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PREFACE TO THE SECOND EDITION

In rewriting the present book, simplification of the material

has been the main end in view. Considerable matter has been

omitted, and numerous worked exercises have been added. The
second chapter is devoted to an introduction to rectangular

coordinates and to the straight line. New sets of exercises and

long lists of miscellaneous and review exercises have been inserted

at appropriate places. Changes in order of material and in

method of treatment have been made freely.

Much greater use has been made of fine print than in the first

edition. Sections of the text which can readily be omitted have a

star attached to the section numbers. Some of these of a sub-

ordinate illustrative character, or primarily intended for reference,

are put in fine print.

The review chapter on elementary algebra has been greatly

enlarged. This material is placed in the last chapter or appendix,

where the considerable amount of very elementary mathematics

will not at once confront and perhaps discourage the well-prepared

student. At the same time enough material is given so that

students with but a single year of high school algebra can be

gotten ready for the course. The elementary material is so

classified that either a few days, or several weeks may be devoted

to the review.

The writer is greatly indebted to many persons for aid in the

revision. Professors March and Wolff of the University of

Wisconsin have contributed much, and Professor Wolff has read

all of the galley proof. I am especially indebted to Professors

Jordan and Lefschetz of the University of Kansas for many
valuable suggestions and to Professor L. C. Plant of Lansing,

Michigan. To all of these my especial thanks are due.

Charles S. Slichter.





FROM THE PREFACE TO THE
FIRST EDITION

This book is not intended to be a text on "Practical Mathe-

matics" in the sense of making use of scientific material and of

fundamental notions not already in the possession of the student,

or in the sense of making the principles of mathematics secondary

to its technique. On the contrary, it has been the aim to give

the ftmdamental truths of elementary analysis as much promi-

nence as seems possible in a working course for freshmen.

The emphasis of the book is intended to be upon the notion of

functionality. Illustrations from science are freely used to make
this concept prominent. The student should learn early in his

course that an important purpose of mathematics is to express and

to interpret the laws of actual phenomena and not primarily to

secure here and there certain computed results. Mathematics

might well be defined as the science that takes the broadest view of

all of the sciences—an epitome of quantitative knowledge. The
introduction of the student to a broad view of mathematics can

hardly begin too early. ,

The ideas explained above are developed in accordance with a

two-fold plan, as follows

:

First, the plan is to group the material of elementary analysis

about the consideration of the three fundamental functions:

1. The Power Function y = ax" (n any number) or the law

"as X changes by a fixed multiple, y changes by a fixed multiple also."

2. The Simple Periodic Function y = asin mx, considered as

fundamental to all periodic phenomena.

3. 'The Exponential Function, or the law "as x changes by a fixed

increment, y changes by a fixed multiple."

Second, the plan is to enlarge the elementary functions by the

development of the fundamental transformations applicable to

these and other functions. To avoid the appearance of abstruse-
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ness, these transformations are stated with respect to the graphs

of the functions; that is, they are not called transformations, but

"motions" of the loci. The facts are summarized in several

simple "Theorems on Loci," which explain the translation, rota-

tion, shear, and elongation or contraction of the graph of any

function in the xy plane.

Combinations of the fundamental functions as they actually

occur in the expression of elementary natural laws are also dis-

cussed and examples are given of a type that should help to ex-

plain their usefulness.

Emphasis is placed upoji the use of time as variable. This

enriches the treatment of the elementary functions and brings

many of the facts "analytic geometry" into close relation to

their application in science. A chapter on waves is intended to

give the student a broad view of the use of the trigonometric func-

tions and an introduction to the application of analysis to periodic

phenomena.

It is difficult to understand why it is customary to introduce

the trigonometric functions to students seventeen or eighteen years

of age by means of the restricted definitions applicable only to the

right triangle. Actual test shows that such rudimentary methods
are wasteful of time and actually confirm the student in narrow-

ness of view and in lack of scientific imagination. For that reason,

the definitions, theorems and addition formulas of trigonometry

are kept as general as practicable and the formulas are given

general demonstrations.

The possibiUties and responsibiUties of character building in the

department of mathematics are kept constantly in mind. It is

accepted as fundamental that a modern working course in mathe-

matics should emphasize proper habits of work as well as proper

methods of thought; that neatness, system, and orderly habits

have a high value to all students of the sciences, and that a text-

book should help the teacher in every known way to develop these

in the student.
'

The present work is a revision and rewriting of a preliminary

form which has been in use for three years at the University of

Wisconsin. During this time the writer has had frequent and
valuable assistance from the instructional force of the department
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of mathematics in the revision and betterment of the text. Ac-

knowledgments are due especially to Professors Burgess, Dresden,

Hart and Wolfif and to Instructors Fry, Nyberg and Taylor.

Professor Burgess has tested the text in correspondence courses,

and has kindly embraced that opportunity to aid very materially

in the revision. He has been especially successful in shortening

graphical methods and in adapting them to work on squared paper.

Professor Wolff has read all of the final manuscript and made
many suggestions based upon the use of the text in the class room.

Mr. Taylor has read all of the proof and supphed the results to the

exercises.

Professor E. V. Huntington of Harvard University has read the

galley proof and has contributed many important suggestions.

The writer has avoided the introduction of new technical terms,

or terms used in an unusual sense. He has taken the liberty, how-

ever of naming the function ax", the "Power Function of x," as a

short name for this important function seems to be an unfortu-

nate lack—^a lack, which is apparently confined solely to the

Enghsh language.

Chables S. Slichtbr.

University or Wisconsin
July 25, 1914

Note: The results to the exercises are issued aa a separate pamphlet.
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INTRODUCTION

Any course in mathematics requires the frequent use of geo-

metrical constructions, and the carrying out of analytical and

numerical computations. In order that this work may be per-

formed neatly and accurately it is necessary that the student

have a few simple instruments, and a supply of proper material

for doing the work in a systematic and orderly manner. The
indispensible instruments are as follows

:

I. Instruments. (1) Two 4:H hexagonal drawing pencils; one

sharpened to a fine point for marking points upon paper or for sketch-

ing free hand; the other sharpened to a chisel point for drawing

straight lines. Some prefer to use a single pencil sharpened at both

ends, one end round pointed, the other end chisel pointed.

(2) A small drawing board' of soft wood—10X12 inches is large

enough.

(3) A small T-square same length as the drawing board.

(4) A 60° and a 45° transparent triangle. Five-inch triangles

are large enough, although a larger 60° triangle will be found to be

very convenient.

(5) A protractor for laying off angles.

(6) A triangular boxwood scale, decimally divided.

(7) A pair of 6-inoh pencil compasses for drawing circles and
arcs of circles, provided with medium hard lead, sharpened to a

narrow chisel point.

(8) A 10-inch sUde rule is required for Chapter IX, and may be

used earlier at the discretion of the instructor.

II. Materials. All mathematical work should be done on one

side of standard size letter paper, 8^ X 11 inches. This is the

smallest sheet that permits proper arrangement of mathematical

work. A good equipment will include:

(1) A notQ book cover to hold sheets of the above named size and

^Drawing boards of this size with T-square and two wood triangles are marketed
by the Milton Bradly Co., Springfield, Mass.

xiii



XIV INTRODUCTION

a supply of manUa paper "vertical file folders" for use in submit-

ting work for the examination of the instructor.

(2) A number of different forms of squared paper and computa-
tion paper especially prepared for use with this book. These sheets

will be described from time to time as needed in the work. Form
M2 wiU be found convenient for problem work and for general cal-

culation. M2 is a copy of a form used by a number of public utiUty

and industrial corporations. Colleges usually have their own sources

of supply of squared paper, satisfactory for use with this book.

(3) Miscellaneous supphes such as thumb tacks, erasers, sandpaper-

pencil-sharpeners, etc.

in. General Directions. All drawings should be done in pencil,

unless the student has had training in the use of the ruling pen,

in which case he may, if he desires, "ink in" a few of the most
important drawings.

AU mathematical work, such as the solutions of problems and
exercises, and work in computation should be done in ink. The
student should acquire the habit of working problems with pen
and ink. He will find that this habit will materially aid him in

repressing carelessness and indifference and in acquiring neatness

and system.

TO THE STUDENT—SUGGESTIONS ON THE STUDY OF
MATHEMATICS

The following suggestions may assist the student to acquire habits

of work essential to success in the study of mathematics and of the

other exact sciences.

Successful intellectual work depends very largely upon the power

of concentration. Fortxmately this power can be acquired and culti-

vated'. The student should study away from interruption and then

must not permit his work to become interrupted by himseU or by
others. By holding his attention upon his work and by keeping his

mind from wandering to extraneous matters, the student will cultivate

a fundamental habit that will tend to assure his success both in and
out of college.

In a course in mathematics a student (1) studies a textbook and

(2) works exercises and problems. An assigrmient for a given day
may therefore consist of the study of mathematical principles and
theory (such as theorems, definitions, and explanations of processes),

or it may consist of the working out of exercises and problems, or,

as is usually the case, it may consist of the theory and principles of
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processes, together with an assignment of exercises illustrative of the

theory.

1. THE STUDY OF THE TEXTBOOK

Studying a mathematical textbook involves much more than
the mere reading of the statements of principles and of the explanation

of processes. The student must usually read the assigned paragraphs
several times and must frequently turn back and re-read portions of

the text included in previous lessons. In this manner the various

points in the reasoning or explanations can be thought over, and the

habit of asking self-put questions about the work can be acquired.

First of all, in preparing a lesson, try to find out what 'it is about

—

what its purpose is. Try to decide how you yourself would go about
the aocompUshment of the task and, if possible, make an independent

attempt of your own. The more consideration you give to such an
attempt, the greater scientific power you will gain.

In particular:

(A) The student should remember that the words in science have
exact meanings and, of course, these meanings must be known to the

student. In studying mathematics the student should acquire

and use the language oi mathematics. For example, he should not

say ' equation" when he means "expression." Indeed, he should go
farther than this. He should make a conscious effort to use abso-

lutely correct English, not only in written work but in oral work
as well.

(B) While studying the text, work out theorems or illustrative

examples with pen and ink. Do not rely upon a mere reading

—

even repeated readings—of a new piece of reasoning or of the explana-

tion of a new process.

(C) Bead over all of the lesson assigned in the text a last time after

working the assigned exercises. The text will probably have a new
meaning after working out the special cases in the exercises. This

habit will give a meaning to the words, "Learn by doing."

(D) Finally, make a mental simimary of each lesson.

(E) Review often.

2. THE WORKING OF EXERCISES

(F) Read each exercise or problem carefully and plan a method

of attack in advance in order to facilitate arrangements of equations

and computations and the drawing of figures.

(G) Look at your result and see if it is a reasonable one.
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(H) Check result.

(I) Indicate the results by a distinguishing mark, or summarize
in logical qrder.

(J) The figures and diagrams should have sufficient lettering,

titles, etc., to make them self-explanatory. The units of measure

used should, of course, be clearly indicated.

(K) Do all work neatly the first time and (except drawings)

invariably in ink. Try to have the first draft sufficiently neat in

appearance and arrangement to hand in to your instructor.

(L) After the first draft has been finished, read it over carefully

to see where it may be unproved in method or arrangement and
think about the processes you have used. If small changes only

are needed to effect the desired improvement, make them by drawing

lines through the portions to be changed and by making neat inser-

tions. If considerable changes are necessary, do the work over.

The study and improvement of the work will prove to be of fully

as much importance to you as the doing of the work itself.

(M) See to it that each piece of work or exercise is complete. On
any piece of written work the nature of the problem should be clearly

and briefly stated. The student should learn to think of each piece

of work as a thing that is in itself worth while. Hence each detail

should be attended to before the work is submitted to the instructor.

See that sufficient explanation is given and that the numbers and
magnitudes are adequately named and labelled.

TO THE INSTRUCTOR

The instructor cannot insist too emphatically upon the require-

ment that all mathematical work done by the student—^whether

preliininary work, numerical scratch work, or any other kind (except

drawings)—shall be carried out with pen and ink upon paper of

suitable size. This should, of course, include all work done at home,

irrespective of whether it is to be submitted to the instructor or not.

The "psychological effect" of this requirement will be found to entrain

much more than the acquirement of mere technique. If properly

insisted upon, orderly and systematic habits of work will lead to

orderly and systematic habits of thought. The final results will be

very gratifying to those who sufficiently persist in this requirement.

At institutions whose requirements for admisstion include more
than one and one-half units of preparatory algebra, nearly all of

Chapters VI, VII, and VIII may be omitted from the course.

An asterisk attached to a section number indicates that the section
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may he omitted. These sections will frequently be found useful in

forming the basis of discussion by the instructor.

The usual one and one-half year of secondary school Algebra,

including the solution of quadratic equations and a knowledge of

fractional and negative exponents, is required for the work of this

course. In the appendix (Chapter XV) vrill be found material for a

brief review of factoring, qitadratics, and exponents, upon which a week

or ten days should be spent before beginning the regular work in this

text.

This review chapter is placed last because the amount of material

in it is greater than need be taken in all cases and also because college

students do not like to be confronted on the &st page of a scientific

text-book with elementary work of high school grades.
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ELEMENTARY
MATHEMATICAL ANALYSIS

CHAPTER I

VARIABLES AND FUNCTIONS OF VARIABLES

1. Scales. Select a series of points along any curve and mark
the points of division with the numbers of any sequence.' The
result of such a construction is called a scale. Thus in Fig. 1

the points along the curve OA have been selected and marked in

order with the numbers of the sequence:

Oj 4j 2> 1> 25, 3, 5, 7, 8

A non-uniform scale.

Thus primitive man might have made notches along a twig

and then made use of it in making certain measurements of

interest to him. If such a scale were to become generally used by
others, it would be desirable to make many copies of the original

scale. It would, therefore, be necessary to use a twig whose shape

could be readily duplicated; such, for example, as a straight

stick; and it would also be necessary to attach the same symbols

invariably to the same divisions.

Certain advantages are gained (often at the expense of others,

however) if the distances between consecutive points of division

are kept the same; that is, when the intervals are laid off by repe-

tition of the same selected distance. When this is done, the scale

is called a uniform scale. Primitive man might have selected for

1 A sequence of numbers here means a set of numbers arranged in order of

magnitude.

1



2 ELEMENTARY MATHEMATICAL ANALYSIS [§1

such uniform distance the length of his foot, or sandal, the breadth

of his hand, the distance from elbow to the end of the middle

finger (the cubit), the length of a step in pacing (the yard), the

amount he can stretch with both arms extended (the fathom),

etc.

Fig. 2.—An ammeter scale.

We are familiar with many scales, such as those seen on a

yardstick, the dial of a clock, a thermometer, a sun-dial, a steam-

gage, an ammeter or voltmeter, the arm of a store-keeper's

scales, etc. The scales on a clock, a yardstick, or a steel tape are

uniform. Those on a sun-dial,

on some ammeters or on a good

thermometer, are not uniform.

One of the most important

advantages of a uniform scale

is the fact that the place of

beginning, or zero, maybe taken

at any one of the points of divi-

sion. This is not true of a non-

uniform scale. If a sun-dial is not properly oriented, it is useless.

If the needle of an ammeter be bent the instrument cannot be used.

It is always necessary in using such an instrument to know that

the zero is correct. If, however, a yarfistick or a steel tape be

broken, it may stUl be used for measuring lengths. The student

P.M
A.M.

Sun-dial scale.
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may think of many other advantages gajned in using a uniform

scale.

2. Formal Definition of a Scale. If points be selected in order

along any curve corresponding, one to one, to the numbers of

any sequence, the curve, with its divisions, is called a scale.

The notion of one to one correspondence, included in this

definition, is frequently used in mathematics.

Ii II I h I II h I I I I 111 il I M I I II II h I I I h I I I h I I I I II I I I1.2 3 1 5

Fig. 4.—A uniform arithmetical scale.

In mathematics we frequently speak of the arithmetical scale

and of the algebraic scale. The arithmetical scale corresponds

to the numbers of the sequence

0, 1, 2, 3, 4, 5, . .

and such intermediate numbers as may be desired. It is usually

represented by a uniform scale as in Fig. 4. The algebraic

scale corresponds to the numbers of the sequence
. . . -6, -5, -4, -3,-2,-1,0,+!, +2, +3, +4, +5, . . .

and such intermediate numbers as may be desired. It is usually

1 I I I I I I I 1 I I I I I I I 11 I I I M I I I I I I I I I I I I I I I I I I I II I I II I I 1

-B -4 -S -2 -1 +1 +2 +3 +4 +5

Fig. 5.—A uniform algebraic scale.

represented by a uniform scale as in Fig. 5. The arithmetical

scale begins at and extends indefinitely in one direction. The
algebraic scale has no point of beginning; the zero is placed at any

desired point and the positive and negative numbers are then

attached to the divisions to the right and the left, respectively,

of the zero so selected. The algebraic scale extends indefinitely

in both directions.

Exercises

1. On a uniform algebraic scale, how far is the point marked 5 from

the point marked 7? How far is the point marked 6 from the point

marked 10.5? How far is th'e point marked —10.8 from the point

marked 13.6?
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2. Show that the distance between two points selected anywhere on

the uniform algebraic scale is always found by subtraction.

3. What points of the uniform algebraic scale are distant 5 from the

point 3 of that scale? What point of the uniform arithmetical scale

is distant 5 from the point 3 of that scale?

4. -If two algebraic scales intersect at right angles, the common
point being the zero of both scales, explain how to find the distance

from any point of one scale to any point of the other scale.

3. Two Uniform Scales in Juxtaposition or Double Scales.

The relation between two magnitudes or quantities, or between

two numbers, may be shown conveniently by placing two scales

side by side. Thus the relation between the number of centi-

meters and the number of inches in any length may be shown

by placing a centimeter scale and a foot-rule side by side with

their zeros coinciding as in Fig. 6. From this figure it is seen

that 1 inch corresponds to 2.6 centimeters; 3.3 inches correspond

to 8.44 centimeters, 4.6 inches corresponds to 11.76 centimeters;

that 5 centimeters correspond to 1.97 inches, 8.5 centimeters

corresponds to 3.32 inches, etc.

A thermometer is frequently seen bearing both Fahrenheit and

the centigrade scales. See Fig. 7. It is obvious that the double

scale of such a thermometer may be used (within the limits of its

range) for converting any temperature reading Fahrenheit into

the corresponding centigrade equivalent or vice versa. From
Fig. 7 it is seen that 72°F. corresponds to 22.2°C., 212°F. to

100°C., 32°F. to zero degrees centigrade; that 21°C. corresponds

to 69.8°F., 72''C. to 161.6°F.

The construction of scales of the kind considered above

may be made to depend upon the following problem in elementary

geometry : To divide a given line into a given number of equal parts.

Illustration. In Fig. 9 is given a double scale OA-OB showing the

correspondence between speed expressed in miles per hour and speed
expressed in feet per second. The student will reproduce neatly and
accurately the drawing, on a larger scale, in accordance with the

directions given below,

A mUe contains 5280 feet, an hour contains 3600 seconds. Hence,
one mile per hour equals |f-§-J or

-f-| feet per second. Therefore,

if two uniform scales. Fig. 9, one rejJresenting speed expressed in

feet per second, and the other representing speed expressed in miles
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Fia. 9.—Method of constraction of double scale showing relation

between "miles per hour" and "feet per second."
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per hour, are constructed with their zeros coinciding and with the

point marked 22 of the first coinciding with the point marked 15 of the

second, the double scale may be used for converting speed expressed

as miles per hour into speed expressed as feet per second, or vice versa.

Lay off with a scale a line OA 11 inches long. Divide this line

into 22 equal parts, and subdivide each division into 6 equal parts.

Mark these divisions and subdivisions as indicated in Fig. 9. Draw
the line OK, making the angle KOB about 30°. With a pair of bow
dividers or with a scale lay off on OK 15 equal divisions, about f of

an inch each. Let the last point of division be marked C. OC is

then divided into 15 equal parts. Draw CA. With a pair of triangles

draw lines through the points Ci, Ci, Cz, . Cn parallel to CA,
intersecting the line OA in the points marked 15, 14, 13, 1,

respectively. Why is OB a uniform scale divided into 15 equal parts?

Mark the scales OA and OB in red ink with a new set of numbers
so that the double scale may also be used for converting speeds if

the readings fall between 15 and 30 feet per second instead of between

and 15.

From the double scale just constructed, find the speeds expressed

as miles per hour corresponding to speeds of 2, 4, 5, 11, 14, 20, and 25

feet per second.

The lengths selected to represent the various units in any dia-

gram are, of course, arbitrary. As, however, the student is

expected to prepare the various constructions and diagrams

required for the exercises in this book on paper of standard

letter size (that is, 8J by 11 inches), the units selected should

be such as to permit a convenient and practical construction

upon sheets of that size.

Exercises

The student is expected to carry out the actual construction of only

one of the double scales described in the following exercises.

1. Draw a double scale showing the relation between pressure

expressed as inches of mercury and as feet of water, knowing that

the density of mercury is 13.6 times that of water.

These are two of the common ways of expressing pressure. Water
pressure at water power plants, and often for city water service, is

expressed in terms of head in feet. Barometric pressure, and the

vacuum in the suction pipe of a pump and in the exhaust of a con-

densing steam engine are expressed in inches of mercury. The
approximate relations between these units, i.e., 1 atmosphere = 30
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inches of mercury = 32 feet of water' = 15 pounds per square inch,

are known to every student of elementary physics. To obtain, in

terms of feet of water, the pressure equivalent of a; feet of mercury,

multiply X by 13.6, the specific gravity of mercury. This product

divided by 12, or 1.13a;, gives the number of feet of water corre-

sponding to X inches of mercury.

If we let the scale of inches of mercurj' range from to 10, then the

scale of feet of water must range from to 11.3. Hence draw a line

OA 10 inches long divided into inches and tenths to represent inches

of mercury. Draw any line OC through and lay off on it 11.3 uni-

form intervals (uich intervals will be satisfactory). Connect the

end division on OA with the end division on OC by a line AC. Then
from 1, 2, 3, inches on OC draw parallels to AC, thus forming

adjacent to OA the scale of equivalent feet of water. Each of these

intervals can then be subdivided into 10 equal parts corresponding

to tenths of feet of water.

2. Draw a double scale showing pressure expressed as feet, of water,

and as pounds per square inch, knowing that one cubic foot of water
weighs 62.5 pounds.

The weight of one cubic foot of water, 62.5 pounds, divided by 144,

the number of square inches on one face of a cubic foot, gives 0.434

pounds per square inch as the equivalent of one foot of water
pressure.

One pound per square inch is equivalent, therefore, to 1/0.434 or

2.30 feet of water pressure. If we let the scale of pounds range from
to 10, we may select 1 inch as the equivalent of 1 pound per

square inch, and divide the scale OA into inches and tenths to repre-

sent this magnitude. Draw OC through 0, and lay off 23 uniform
intervals on OC, 1/2 inch being a convenient length for each of these

parts. Connect the end division of OC with A and through all

points of division of OC draw lines parallel to CA. The range may
be extended to any amount desired by annexing ciphers to the
numbers attached to the two scales.

Extending the range by annexing ciphers to the attached numbers
is obviously practicable so long as the various intervals or units are

decimally subdivided. The- method is impracticable for scales that
are not decimally subdivided, such as shilUngs and pence, degrees and
minutes, feet and inches, etc.

3. Draw a double scale showing the relations between cubic feet,

and gallons. One gallon equals 231 cubic inches, but use the

approximate relation, 1 cubic foot equals 71 gallons. Divide the
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scale of cubic feet into tenths, the scale of gallons into fourths to

correspond to quarts.

It is obvious that it is always necessary first to select the range

of the various scales, but it is quite as well in this case to show the

equivalents for 1 cubic foot only, as numbers on the various scales

can be multiplied by 10, 100, or 1000, etc., to show the equivalents for

larger amounts.

Select 10 inches = 1 cubic foot for the scale (OA) of cubic feet.

Draw the line OC. On OC lay off 71 equal parts (say, 7^ inches).

Connect the end division with A and draw the parallel lines exactly

as with previous examples. The intervals of the scale of gallons can

then be subdivided into the four equal parts to show quarts.

4. Draw a double scale showing the relation between cubic feet

and liters. One cubic foot equals 28| liters.

5. If a double scale be drawn on a deformable body, as, for example,

on a rubber band, would the double scale still represent true relations

when the rubber band is stretched? What if the stretching were
not uniform?

6. From Fig. 9, find the number of miles per hour corresponding

to 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 feet per second.

Place the results in tabular form, i.e., in the first of two adjacent

vertical columns place the numbers 0, 1, 2, . . .15; opposite these

numbers place in the second vertical column the corresponding

numbers representing speed as mUes per hour. Give the first vertical

column the heading "Speed-ft./sec," and the second column the

heading "Speed-mi./hr." Aa the speed changes from 1 foot per

second to 2 feet per second, the speed changes by what amount in

miles per hour? As the speed changes from 3 feet per second to 4
feet per second, the speed in miles per hour changes by what amount?
The change in speed as miles per hour is how many times the change in

the speed as feet per second?

4. A Non-uniform Scale in Juxtaposition with a Uniform scale.

Each scale of the double scales constructed in the preceding

section were uniform scales. The construction of a double scale

of this kind was possible because the change in the number of units

of one magnitude represented was directly proportional to the

corresponding change in the number of units of the other

magnitude. It will, however, be sometimes desirable to construct

double scales in which this proportionality does not exist. For

example, if a double scale were to be constructed showing the
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relation between the radius and the area of a circle, the preceding

construction could not be used, since the change in area is pro-

portional to the change in the square of the radius and not

to the change in the radius. In this case both scales cannot

be uniform. Figure 10 is a double scale representing the relation

between the radius and the area of a circle. The area is repre-

sented by the points on the uniform scale, the radius by the points

on the non-uniform scale. The relation is A = irr^ where r is

the radius in feet and A is the area in square feet.

KadluB ol circle
4 5 6
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Area of Circle

Fig. 10.—Double scale showing the relation between the area ofa
circle and its radius.

5. Functions. The relation between two magnitudes expressed

graphically by two scales drawn in juxtaposition, as above, may
sometimes be expressed by means of an equation. Thus, F,

the number representing the degrees Fahrenheit in a temperature

reading, and C, the number representing the degrees centigrade

of the same temperature, are connected by the equation

F = iC + 32. (1)

Again y, the number representing speed measured as miles per

hour, and x, the number representing speed measured as feet

per second, are connected by the equation

y = iU. (2)

Again u, the number representing pressure measured as feet of

water, and v, the number representing the same pressure measured

as pounds per square inch, are connected by the equation

u = U^j^- (3)

Again A, the number representing area of a circle measured as

square feet, and r, representing the radius measured as feet, are

connected by the relation A = irr^. (4)

Note. The letters F, C, x, y, u, v, in the above equations stand

for numbers; -to make this emphatic we sometimes speak of them as
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pure or abstract numbers. These numbers are thought of as arising

from the measurement of a magnitude or quantity by the appUoation

of a suitable unit of measure. Thus from the magnitude or quantity

of water, 12 gallons, arises, by use of the unit of measure the gallon,

the abstract number 12.

Algebraic equations express the relation between numbers, and it is

understood that the letters used in algebra stand for numbers and

not for quantities or magnitudes.

Quantity or Magnitude is an answer to the question: "How
much?" Number is an answer to the question: "How many?"
An interesting relation is given by the scales in Fig. 8. This

diagram shows the fee charged for money orders of various

amounts. The amount of the order may first be found on the

upper scale and then the amount of the fee may be read from the

lower scale. The relation here exhibited is quite different from

those previously given. For example, note that as the amount of

the order changes from $50.01 to $60 the fee does not change, but

remains fixed at 20 cents. Then as the amount of the order

changes from $60.00 to $60.01, the fee changes abruptly from

20 cents to 25 cents. For an order of any amount there is a cor-

responding fee, but for each fee there corresponds not an order of

a single value, but orders of a considerable range in value. This is

quite different from the cases presented in Fig. 7. There for each

reading Fahrenheit corresponds a certain reading centigrade,

or vice versa, and for any change, however small, in one of the

temperature readings a change, also small, takes place in the

other reading. For this reason the latter number is said to be

continuous.

The relation between the temperature scales has been expressed

by an algebraic equation. The relation between the value of a

money order and the corresponding fee cannot be expressed by a

similar equation. If we had given only a short piece of the centi-

grade-Fahrenheit double scale, we could, nevertheless, produce it

indefinitely in both directions, and hence find the corresponding

readings for all desired temperatures. But by knowing the fees

for a certain range of money orders we cannot determine the

fees for other amounts. In both of these cases, however, we
express the fact of dependence of one number upon another
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number by sajnng that the first number is a function of the second

number.

6. Definition. Any number, u, is said to be a function of

another number, t, if, when the value of t is given, the value of u
is determined. The number t is called the argument of the

function u.

Illustrations. The length of a rod is a function of its tempera-

ture. The area of a square is a function of the length of a side.

The area of a circle is a function of its radius. The square root

of a number is a function of the number. The strength of an

iron rod is a function of its diameter. The pressure in the ocean

is a function of the depth below the surface. The price of a

railroad ticket is a function of the distance to be travelled.

The temperature Fahrenheit is a function of the temperature

centigrade.

It is obvious that any mathematical expression is, by the above

definition, a function of the letter or letters that occur in it.

Thus, in the equations

u = t^ + it + l

_ t - 1

" ~
2( + 2

u = Vt + 4: + P -\
u is in each case a function of t.

Goods sent by freight are classified into first, second, third,

fourth, and fifth classes. The amount of freight on a package is

a function of its class. It is also a function of its weight. It is

also a function of the distance carried. Only the second of these

functional relations just named can readily be expressed by an
algebraic equation. It is possible, however, to express all three

graphically by means of parallel scales. The definition of the

function is given (for any particular railroad) by the complete

freight tariff book of the railroad.

The fee charged for a money order is a function of the amount of

the order. The functional relation has been expressed graphically

in Fig. 8. Note that for orders of certain amounts, namely,

$2i $5, $10, $20, $30, $40, $50, $60, $75, the function is not de-
fined. The graph alone cannot define the function at these values,
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as one cannot know whether the higher, the lower, or an inter-

mediate fee should be demanded. One can, however, define

the function for these values by the supplementary statement

(for example): "For the critical amounts, always charge the

higher fee." As a matter of fact, however, the lower fee is always

charged.

A function having sudden jumps like the one just considered,

is said to be discontinuous.

Illustration 1. One side of a rectangle is 2 centimeters. The other

side is (x + 2) centimeters. Express the area A of the rectangle as

a function of x.

The area is the product of the breadth by the length of the rectangle.

Hence
A =2(x + 2) =2x + 4, (l;

which is the function of x sought.

Illustration 2. The hypotenuse of a right triangle is 10 inches.

One side is x inches. Express A, the area of the triangle, as a function

of x.

Since the hypotenuse squared equals thesum of the squares of the

two legs, we may write

102 = a;2 -f
yi^

(1)

where y stands for the length in inches of the second leg of the triangle.

But we know that

A = kxy. (2)

From (1)

y = Vl02 - xS '
(3)

Substituting in (2), we have

A = kxy/im -x\ (4)

which is the function of x desired.
,

Illustration 3. Express the amount A of $1 at simple interest at

6 per cent, for n years as a function of n.

The interest on $1 for n years equals Sy^Tfre. Hence the amount
(which is the principal plus the interest) is' expressed by

,'' A = 1 + TBTO.

Exercises

In the following exercises the function described can be represented

by a mathematical expression. The problem is to set up the expres-

sion in each case.



14 ELEMENTARY MATHEMATICAL ANALYSIS [§7

1. One side of a rectangle is 10 feet. Express the area il as a func-

tion of the other side x.

2. One leg of a right triangle is 15 feet. Express the area .A as a

function of the other leg x.

3. The base of a triangle is 12 feet. Express the area as a function

of the altitude I.

4. Express the circumference of a circle as a function (1) of its

radius r; (2) of its diameter d.

6. Express the diagonal doia, square as a function of one side x,

6. One leg of a right triangle is 10. Express the hypotenuse h as

a function of the other leg x.

7. A Ship B sails on a course AB perpendicular to OA. If OA = 30

mUes, express the distance of the ship from as a function of AB.
8. A circle has a radius 10 units. Express the length of a chord

as a function of its distance from the center.

9. An isosceles triangle has two sides each equal to 15 centimeters,

and the third side equal to x centimeters. Express the area of the

triangle as a function of x.

10. A right cone is inscribed in a sphere of radius 12 inches. Ex-
press the volume of the cone as a function of its altitude I.

Hint: The distance from the center of the sphere to the base of

the cone is (t—

1

2), if I >12. The radius of the base of the cone is

Vl2'-(.l-12)' or V24J-Z2. What if 2 < 12?

11. A right cone is inscribed in a sphere of radius a. Express the

volume of the cone as a function of its altitude I.

12. One dollar is at compound interest for 20 years at r per cent.

Express the amount A as a function of r.

7. Functional Notation. The following notation is used to ex-

press that one number is a function of another; thus, if u is a

function of t we write

Likewise

y = /W
means that y is a function of x. Other symbols commonly used to

express functions of x are

:

Hx), Xix), f'(x), F(x), etc.

These may be read the "(^-function of x," the "Z-function of x,"

etc., or more briefly, "the <l>
of x," "the X of x," etc.

Expressing the fact that temperature reading Fahrenheit (.F) is
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a function of temperature reading centigrade (C), we may write:

F=f(.C).

This is made specific by writing

F = iC + 32.

Likewise the fact that the charge for freight is a function of class,

weight, and distance, may be written

r = fie, w, d).

To make this functional symbol explicit, might require that we be

furnished with the complete schedule as printed in the freight tariff

book of the railroad. The dependence of the tariff upon class and

weight can usually be readily expressed, but the dependence upon

distance often contains arbitrary elements that cause it to vary

irregularly, even on different branches of the same railroad. A
complete specification of the functional symbol / would be con-

sidered given in this case when the tariff book of the railroad was in

our hands.

8. Variables and Constants. In elementary algebra, a letter is

always used to stand for a number that preserves the same value

in the same problem or discussion. Such numbers are called

constants. In the discussion above we have used letters to stand

for numbers that are assumed not to preserve the same value but

to change in value; such numbers (and the quantities or

magnitudes which they measure) are called variables.

If r stands for the distance of the center of mass of the earth from

the center of mass of the sun, r is a variable. In the equation s =
igt' (the law of falling bodies), if i be the elapsed time, s the distance

traversed from rest by the falling body, and g the acceleration due to

gravity, then s and t are variables and g is the constant 32.2 feet per

second per second.

The following are constants: Ratio of the diameter to the circum-

ference in any circle; the electrical resistance of pure copper at 60° F.

;

the combining weight of oxygen; the density of pure iron; the velocity

of light in empty space.

The following are variables: the pressure of steam in the cyhnder

of an engine; the price of wheat; the electromotive force in an alter-

nating current; the elevation of groundwater at a given place; the

discharge of a river at a given station. When any of these magnitudes
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are assumed to be measured, the numbers resulting are also variables.

The volume of the mercury in a common thermometer is a variable;

the mass of mercury in the thermometer is a constant.

9.* Graphical Computation. The ordinary operations of arith-

metic, such as multiplication, division, involution and evolution,

can be performed graphically as explained below. The graphical

construction of products and quotients is useful in many problems

of science. The fundamental theorem in all graphical computa-

tion is : The homologous sides of similar triangles are in proportion.

Its application is very simple, as wiU appear from the following

work.

Fboblem 1 : To compute graphically the product of two numbers.

Let the two numbers whose product is required be a and b. On
any line lay off the unit y

jj

of measurement, 01, Fig. i"

11. On the same line,

and, of course, to the same
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AC is to be measured with the same scale used in laying off

01, OA, and IB. The number of unit's in AC is then the product

of a by 6.

It is obvious that the angle OiB may be of any magnitude.

Hence it may conveniently be taken a right angle, in which case the

work may readily be carried out on ordinary squared paper.

Many prefer, however, to do the work on plain paper, la3dng off the

required distances by means of a boxwood triangular scale. If

squared paper is preferred draw the two lines OX and OF at

right angles and the unit line If/, as shown in Fig. 12.'!

In the exercises that follow the dimensions are given in inches.

If the centimeter scale or squared paper Form M\ be used, use

2 cer\timeters everywhere in place of 1 inch.

Exercises

1. Find graphically the product of 1.63 by 2.78.

Hird: Choose 2 inches to represent one unit. Draw a horizontal

line OA 5.56 inches long. Lay off the distance 01 2 inches in

length. Draw IB perpendicular or nearly perpendicular to OA and
lay off IB equal to 3.26 inches in length. Draw OB. Draw AC
parallel to IB. Measure AC. One-half of the length of AC in inches

win be the desired product. It will be noticed that the smaller factor

is laid off on IB.

2. Find graphically the product of 3.15 by 6.27. Let 1 inch

represent one unit.

3. Fmd graphically the product of 36.7 by 5.82.

Hivi: Find the product of 3.67 by 5.82 and then move the decimal

point one place to the right.

4. Find graphically the product of 936 by 3.17.

HiTii: VmA the product of 0.936 by 3.17 and move the decimal

point three places to the right in the result obtained. Let 2 inches

represent one unit.

5. Fiud graphically the product of 9.36 by 7.23.

Hint: Ymd the product of 0.936 by 0.723 and move the decimal

point three places to the right in the result obtained. Let 5 inches

represent one unit.

Problem 2 : To compute graphically the quotient of two numbers

a and b. Formula (A) above can be written
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From this it is seen that the quotient of two numbers a and 6 can

readily be computed graphically by use of Figs. 11 or 12.

Exercises

1. Compute graphically the quotient of 1.33 divided by 1.72.

Hint: Let 5 inches represent one unit. Lay off OA equal to 8.6

inches. Draw AC perpendicular or nearly perpendicular to OA.
Lay off AC equal to 6.65 inches. Draw OC. Draw IB parallel to

AC. One-fifth the number of inches in the length of IB is the required

quotient.

2. Compute graphically the quotient of 7.32 divided by 1.26.

Hint: Find the quotient of 0.732 by 1.26, using 5 inches to represent

one unit.

3. Compute graphically 137 divided by 732.

Hint: Calculate 1.37 divided by 0.732 and move the decimal point

one place to the left in the result obtained. Use 5 inches to represent

one unit.

Pboblem 3 : To compute graphically the square of any number N.
This is a special case of Problem 1, when the two factors are

equal.

Exercises

1. Find graphically the square of (o) 5; (6) 3; (c) 2,

Hint: In finding the square of 5, first find square of^O.S. Let 10

inches represent one unit.

2. Find graphically the square of 93.6.

Hint: Find the square of 0.936.

3. Find graphically the square of 0.0672.

Hint: Find the square of 0.672.

4. Find graphically the square of 112.

Hint: Find the square of 1.12.

Phoblbm 4 : To compute graphically the reciprocal ofany numherN.

This is a special case of Problem 2, when the dividend is 1 and

the divisor is N.

Exercises

Find graphically the reciprocals of the following: (o) 2; (b) 3.5;

(c) 12.3; (d) 0.817.
,

Peoblem 5: To compute graphically the square root of any
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number N. On OX, Fig. 13, lay off 01 = 1 and lA = N. Upon
OA as diameter describe a semicircle OCA. At 1 erect a per-

pendicular, IC, to OA. Then IC is the square root of lA.

Another construction is to place a celluloid triangle in the

position shown in Fig. 13, so that the two edges pass through

and A and the vertex of the right angle Ues on the line 1 U.

Fig. 13 shows the construction for \/7.
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2. Show that (1.05)^^ = 2.08, so that money at 5 percent compoimd
interest more than doubles itself in fifteen years.

Note: The work is less if (1.05)* is firstfound and then this result

cubed.

3. From the following outline the student is to produce a complete

method, including proof, of constructing successive powers of any

number.
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Instead of the above construction, erect a perpendicular to OB
meeting OA produced at ai. At Oi erect a perpendicular meeting OB
produced at 02, and so on indefinitely. Then if OA be unity, ai is

greater than unity and az, 03, 04, . are, respectively, the square.

Fig. 15.=—Graphical computation of powers of a number.

cube, etc., of oi. As an exercise, construct powers of 4/5 and of 2.5.

4. Show that the successive "treads and risers" of the steps of the

"stairways" of Fig. 16a and 166 are proportional to the powers of r.

The figures are from Milaukovitch, Zeitschrift fiir Math, und Nat.

Unterricht, Vol. 40, p. 329.

Fig. 16.—Computation of ar, or', ar', . . . for r < 1 and for r > 1.

10.* Double Scales for Several SimpleAlgebraicFunctions. We
may make use of the graphical method of computation explained

above to construct graphically double scales representing simple
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algebraic relations. For example, we may construct a double

scale for determining the square of any desired number. Call

OA (see Fig. 17) the scale on which we desire to read the number;

call OB the scale on which we read the square. Let us agree to

lay off OA as a uniform scale, using 01 as the unit of measure.

Since we desire to read opposite 0, 1, 2, 3, . . . of the uniform

scale, the squares of these numbers, the lengths along the scale

OB must be laid off proportional to the sqvare roots of the numbers

Fig.

-1

17.

01234567
-Method of constructing a double scale of squares or of

square roots.

0, 1, 2, 3, . . . that is, the square root of any length, when
laid off on OB, and marked with the symbol of the original length,

will he opposite the square root of that number on OA.
No difficulty need be experienced in carrying out the actual con-

struction of double scales representing algebraic relations, either by
use of a table of numerical values of the function or by means of

graphical construction. As a less laborious method of graphically

expressing functional relations will be explained in the next chapter,

the matter of double scales will not be discussed further at this place

.



CHAPTER II

RECTANGULAR COORDINATES AND THE STRAIGHT
LINE

11. Statistical Graphs. Prom work in elementary algebra the

student is familiar with the construction of statistical graphs

simUar to Figs. 18 and 19. The student should carefully study

the construction of these two graphs. In Fig. 18, the point at

the center of any small circle represents the maximum temperature

(or the minimum temperature) on a particular day. This circle

is joined by a straight hne to the circle representing the maximum
(or minimum) temperature on the next day, and so on. The
lines joining the circles enable the eye to foUow at a glance the

changes of temperature for the entire month. However, a point

on a line between two circles has no meaning, because a point

on the horizontal scale between two consecutive points has no

meaning, for of course there is but one daily maximum for each

day. The student should especially note that the ratio of the

distance on the horizontal scale representing days to the distance

on the vertical scale representing a chajige of one degree in

temperature is so chosen as to make the fluctuations in the

temperatures stand out prominently. In constructing statistical

graphs, the student should always choose this ratio so that the

graph will clearly convey its intended meaning.

Smooth curves are drawn through the plotted points of Fig. 19

(not straight lines as in Fig. 18) because in this case intermediate

points have meaning; they represent temperatures at various

times of the day.

Fig. 20 is a barograph, or autographic record of the atmospheric

pressure recorded November 24, 1907, during a balloon journey

from Frankfort to Marienburg in West Prussia. The zero of the

scale of pressure does not appear in the diagram. Note also

- that the scale of pressure is an inverted scale, increasing downward.
23
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The scale of time is an algebraic scale,, the zero of which may be

arbitrarily selected at any convenient point. The scale of pres-

sure is an arithmetical scale. The zero of the barometric scale

'i70
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If the diagram, Fig. 21, he wrapped around a vertical cylinder of

such size that the two midnight lines coincide, then each train

line may be traced through continuously from terminus to terminus.

Functions having this remarkable property are said to be peri-

odic. In the present case the trains run at the same time every

day, that is, periodically. In mathematical language, the po-

sition of the trains is said to be a periodic function of the time.

Chicago

£au Olaire

Menomoaie

Hudson
St Paal
MinneapolieJf

1012 2
A.M. Noon P.M.

Fig. 21.—Graphical time table of certain passenger, trains between
Chicago and Minneapolis.

Fig. 22 represents the fluctuation of the elevation of the ground-

water at a certain point near the sea coast on Long Island. The
fluctuations are primarily due to the tidal wave in the near-by

ocean. The curve is continuous. Is the curve periodic? What
indicates the rate of change in the elevation of the ground-water?

When is the elevation changing most rapidly? When is it

changing most slowly?

Fig. 23 represents the functional relation between the amount of

a domestic money order and the fee. This is an excellent illustra-
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tion of a discontinuous function. On account of the sudden

jumps in the values of the fee, the fee, as explained in the preceding

chapter, is said to be a discontinuous function of the amount of

the order.

Fig. 22.—Upper curve, elevation of water in a well on Long Island.

Lower curve, elevation of water in the nearby ocean.

12. Suggestions on the Construction of Graphs. Two kinds of

rectangular coordinate paper have been prepared for use with this

book. Form Ml is ruled in centimeters and fifths. Form M2
is ruled without major divisions in uniform 1/5-inch intervals.

It is a mistake to assume that more accurate work can be done on

finely ruled than on more coarsely ruled squared paper. Quite the
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contrary is the case. Paper ruled to 1/20-inoh intervals does not per-

mit interpolation within the small intervals while paper ruled to 1/10

or 1/5-inch intervals permits accurate interpolation to one-tenth of the

smallest interval. Form Ml is ruled to 2-mm. intervals, and is fine

enough for any work. The centimeter unit has the very considerable

advantage of permitting twenty of the units within the width of an

ordinary; sheet of letter paper (SJ X 11 inches) while seven is the

largest number of inch units available on such paper.

In order to secure satisfactory results, the student must recog-

nize that there are several varieties of statistical graphs, and that

each sort requires appropriate treatment.

-50

MO 1

-30

r-20

HlO

1. 1. .Ill j_ _L J. _!_ I _L J_
10 9020 80 40 50 60 70 * 80

Amount of the Money Order in Dollars

Fig. 23.—The graph of a discontinuous function.

1. It is possible to make a useful graph when only one variable

is given. Thus Table I gives the ultimate tensile strength of

various materials.

A graph showing these results is given in Fig. 24. There are

two practical ways of showing the numerical values pertaining

to each material, both of which are indicated in the diagram;

either rectangles of appropriate height may be erected opposite the

name of each material, or points marked by circles, dots or crosses

may be located at the appropriate height. It is obvious in this

case that a smooth curve should not be drawn through these points

—such a curve would be quite meaningless. In this case there
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Table I.

—

Ultimate Tensile Strength of Various Materials

Material
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If a graph be made of the noonday temperatures of each day
of the same month referred to in Fig. 18, one of the same methods

indicated above would be used to represent the results; that is,

either rectangles, marked points, or marked points joined by lines.

Although a smooth curve drawn through the known points would

have a meaning (if correct), it is obvious that the noonday

temperatures alone are not sufficient for determining its form.

In all such cases a smooth curve should not be drawn.

3. If the data are reasonably sufficient, a smooth curve may,

and often should, be drawn through the known points. Thus if

the temperature be observed

every hour of the day and the re-

sults be plotted, a smooth curve

drawn carefully through the

plotted points will probably very

accurately represent the un-

known temperatures at interme-

diate times. The same may
safely be done in exercises (3)

and (4) below. In scientific

work it is desirable to mark by
circles or dots the values that

are actually given to distinguish

them from the intermediate

values "guessed" and repre-

sented by the smooth curve.

In addition to the above
suggestions, the student should

adhere to the following instruc-

tions :

4. Every graph should be

marked with suitable numerals
along both numerical scales.

5. Each scale of a statistical graph should bear in words a
description of the magnitude represented and the name of the

unit of measure used. These words should be printed in drafting

letters and not written in script.
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6. Each graph should bear a suitable title telling exactly what is

represented by the diagram.

7. The selection of the units for the horizontal and vertical

scales is an important practical matter in which common sense

must control. It is obvious that in the third exercise given

below 1 cm. =1 foot draft for the horizontal scale, and 1 cm.

= 100 tons for the vertical scale will be units suitable for use on

form Ml.
Further instruction in practical graphing is given in §33.

Exercises

1. Draw a statistical graph from the data given in the following

table. See Mg. 18. Represent the plotted points by small distinct

points, not by circles.

Maximum and Minimum Temperatures at Madison, Wisconsin,

FOR October, 1910

Date
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Hourly Air Temperatures at Madison, Wisconsin, Mat 14,

1910; October 10, 1910

Time
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13. Rectangular Cobrdinates. Two intersecting algebraic

scales, with their zero points in common, may be used as a system

of latitude and longitude to locate any point in their plane. The
student should be familiar with the rudiments of this method
from the graphical work of elementary algebra. The scheme is

illustrated in its simplest form in Fig. 25, where one of the hori-

zontal lines of a sheet of squared paper has been selected as one

of the algebraic scales and one of the vertical lines of the squared

paper has been selected for the second algebraic scale. To locate

a given point in the plane it is merely necessary to give, in a
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degrees of longitude east or west of the standard meridian, and

also by giving its angular distance in degrees of latitude north

or south of the equator.

The sort of latitude and longitude that is set up in the manner

described above is known in mathematics as a system of rectangu-

lar coordinates. It has become customary to letter one of the

scales XX', called the X-axis, and to letter the other YY', called

the Y-axis. In the standard case these are drawn to the right

and left, and up and down, respectively, as shown in Fig. 25.

The distance of any point from the F-axis, measured parallel to

the X-axis, is called the abscissa of the point. The distance of

any point from the X-axis, measured parallel to the F-axis, is

called the ordinate of the point. Collectively, the abscissa and

ordinate are spoken of as the coordinates of the point. Abscissa

corresponds to the longitude and ordinate corresponds to the

latitude of the point, referred to the X-axis as equator, and to

the F-axis as standard meridian. In the standard case, abscissas

measured to the right of YY' are reckoned positive, those to the

left, negative. Ordinates measured up are reckoned positive,

those measured down, negative.

Rectangular coordinates are frequently called Cartesian co-

ordinates, because they were first introduced into mathematics

by Ren6 Descartes (1596-1650).

The point of intersection of the axes is lettered and is called

the origin. The four quadrants, XOY, YOX', X'OY', Y'OX,

are called the first, second, third, and fourth quadrants, respectively.

A point is designated by writing its abscissa and ordinate in a

parenthesis and in this order: Thus, (3, 4) means the point

whose abscissa is 3 and whose ordinate is 4. Likewise (—3, 4)

means the point whose abscissa is (—3) and whose ordinate is

(+4).

Abscissas are usually represented by the letter x and ordinates

are usually represented by the letter y. Thus the point whose

abscissa is 3 and whose ordinate is 4, may be described as the

point (3, 4), or equally well as the point x = 3, y — 4.

Unless the contrary is expUcitly stated, the scales of the eo-

ordinate axes are assumed to be straight and uniform and to inter-

sect at right angles. Exceptions to this are not uncommon.
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Exercises

On suitable squared paper, select and mark a horizontal line as the

X-axis (or axis of abscissas) and select and mark a vertical line as the

F-axis (or axis of ordinates). Select and mark a suitable unit of

measure on each axis, for example 1 centimeter or 1/2 inch.

Then locate the points whose coordinates are given in the following

exercises.

1. Draw the coordinate axes on squared paper and locate the points

(3, 3), (2, 2), (1, 1), (0, 0), (-1, -1), (-2, -2), (-3, -3).

2. Draw the axes and locate the points (2, 3), (—2, 3), ( — 2, —3),

(2, -3).

3. Draw the coordinate axes and locate the points (5, 0), (4, 3),

(3, 4), (0, 5), (-3, 4), (-4, 3), (-5, 0), (-4, -3), (-3, -4), (0, -5),

(3, -4), (4, -3).

4. Draw suitable axes and locate the points ( — 3, —5), (—2, —3),

(-1, -1), (0, 1) (1, 3), (2, 5), (3, 7), (4, 9).

A brief way of describing a ^et of points is to place the abscissas and
ordinates in tabular form, indicating abscissas by the letter x and
indicating ordinates by the letter y, as follows

:

a;
I

-3' -2 -10 1 2 3 4

y \

-5-3-113579
14. Mathematical, or Non-statistical Graphs.—Instead of the

expressions "abscissa of a point," or "ordinate of a point," it has be-

come usual to speak merely of the "x of a point," or of the "y of

a point," since these distances are conventionally represented by
the letters x and y, respectively. If we impose certain conditions

upon X and y, then it will be found that we have, by that very fact,

restricted the possible points of the plane located by them to a

certain array, or set of points, and that all other points of the

plane fail to satisfy the conditions or restrictions imposed.

It is obvious that the command, "Find the place whose latitude

equals its longitude," does not restrict or confine a person to a par-

ticular place or point. The places satifying this condition are

unlimited in number. We indicate all such points by drawing

a line bisecting the angles of the first and third quadrants; at all

points on this line latitude equals longitude. We speak of this

line as the locus of the point satisfying the conditions. We might

describe the same locus by saying "the y of each point of the
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locus equals the x" or, with the maximum brevity, simply, write

the equation "y =; x." The equation "y = x" is called the

equation of the locus, and the line is called the locus of the

equation.

It is of the utmost importance to be able readily to interpret any

condition imposed upon, or, what is the same thing, any relation

between variables, when these are given in words. It will greatly

aid the beginner in mastering the concept of what is meant by the

term fimction if he will try to think of the meaning in words of the

relations commonly given by equations, and vice versa. The
very elegance and brevity of the mathematical expression of rela-

tions by means of equations, tends to make work with them formal
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of this figure states that the y of any point of the line equals the x of

that point. Hence the equation of the line isy = x.

Illustration 2. The line of Fig. 27 is drawn through the origin and
the point (1, 2). Find the equation of the line. Let OB and DP be

the abscissa and ordinate, respectively, of any point on the line. Then
from similar triangles OPD and OPil, DP:OD = 2 : 1, or y : a; = 2: 1,

or y = 2x, which is the equation of the line.

Exercises

What is its

What is

What is

1. Draw a hne through the origin and the point (1, 3).

equation?

2. Draw a line through the origin and the point (1, -f)-

its equation?

3. Draw a line through the origin and the point (1, —1).

its equation? Draw a line through the

origin and the point (1, —2). What is its

equation?

4. Draw loci for the following and show
that each locus is a straight line passing

through the origin: (a) The ordinate of

any point of a certain locus is twice its

abscissa; (b) the x of every point of a cer-

tain locus is half its y; (c) the yoia. point is

1/3 of its x; (d) a point moves in such a

way that its latitude is always treble its

longitude; (e) the sum of the latitude and
longitude of a point is zero; (/) a point

moves so that the difference in its latitude and longitude is always

zero.

Hint: In part (a) let Pi (Fig. 28) be any point on the locus and
let Pi be any second point on the locus.

Draw OPi and OPi] draw PiDi and P2D2 perpendicular to OX. By
the conditions of the problem PiDi = 20Di and P2D2 = 20Di.
Hence

PiDi _ P,D2

ODi OD2'

and the triangles OPiDi and OP2D2 are similar. Then the angles

PiODi and P2OD2 are equal. Hence OPi and OP2 coincide in direction

and 0, Pi, and P2, are upon a straight line.

5. Draw the locus: Beginning at the point (1, 2), a point moves so

Fig. 28.—Diagram
for exercise 4 (o) §14 and

,
exercise 3 §15.
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that its gain ia latitude is always twice as great as its gain in longitude.

Show that the locus is a straight line.

6. A point moves so that its latitude is always greater by 2 units

than three times its longitude. Write the equation of the locus and

construct- Show that the locus is a straight line.

15. Slope. The slope of a straight line is defined to be the

change in y for an increase in x equal to 1. It will be represented

in this book by the letter to. In Fig. 26 the line OP has slope 1 and

in Fig. 27 the line OP
has slope 2. Also in

Fig. 29 the line A has

the slope to = 1.5, for

it is seen that at any

point of the linb the

ordinate y gains 1.5

units for an increase

of 1 in X. The line B,

parallel to the line A,

is also seen to have the

slope equal to 1.5.

The equation of the

line A is obviously y
= 1.5a;. In the same

figure the slope of the

line C is (— 2), for at

any point of this line

the ordinate 2/ decreases

2 units for an increase

in X equal to 1. The equation of the line C is obviously

y = —2x. Line D, parallel to line C, also has slope (— 2).

If h be the change in y for an increase of x equal to k, then the

slope TO is the ratio h/k. Hence the practical method of determin-

ing the slope of a line drawn upon squared paper is: Select two

convenient points on the line rather far apart, and divide the change

in y by the increase in x.

The technical word slope differs from the word slope or slant in

common language only in the fact that slope, in its technical use,

is always expressed as the ratio of two algebraic numbers. In
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common language we speak of a "slope of 1 in 10," or a "grade

of 50 feet per mile," etc. In mathematics the equivalents are

"slope = 1/10," "slope = 50/5280," etc.

As already indicated, the definition of slope requires us to speak

in mathematics of positive slope and negative slope. A line of posi-

tive slope extends upward with respect to the standard direction

OX and a line of negative slope extends downward with reference

toOZ.
In a similar way we may speak of the slope of any curve at a

given point on the curve, meaning thereby the slope of the tangent

line drawn to the curve at that point.

Exercises

1. Give the slopes of the lines in exercises 1 to 6 of the preceding set

of exercises.

2. Draw y = x; y = 2x; y = Zx; y = -^-t y =
^, y =

^, y = — 2x;

y = — 3z; y = Ox.

3. Prove that y = mx always represents a straight line, no matter

what value m may have. Hint: Make use of Fig. 28.

16. Equation of a Straight Line. Intercepts.—In Fig. 30, the

line MN expresses that the ordinate y is, for all points on the line,

always 3 times the abscissa x, or it says that y = 3a;. The line

HK is 2 units higher than MN, so that it states that "2/ is 2 more

than 3a;." Thus the line HK has the equation y = Zx + 2. In

Fig. 29 the line 5 is 2 units higher than the line y = 1.5a;, hence

its equation is y = 1.5x -{- 2. The line D is 2 units lower than

the line C, whose equation is y = —2x, hence the equation of

Disy = -2x - 2.

In general, since y = mx is always a straight line,^ then y =
ma; + 6 is a straight line, for the y of this locus is merely, in each

case, the y of the former increased by the constant amount 6 (which

may, of course, be positive or negative). Therefore, y — mx + 6

is a line parallel to y = mx. The line y = mx + 6 is 6 units

higher than, or above, the line y = mx ii b stands for a positive

number and the line y = mx + b is b units lower than, or below

the line y = mx if 6 stands for a negative number. The distance
1 See exercise 3, §15, above.
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OB (Fig. 30) is equal to b, and is called the Y-intercept of the

graph. The distance OA is equal to — b/m, for it is the value

of X obtained from the equation when y is given the value zero.

It is called the X-intercept of the locus. The equation

7 = mz -|- b is called the common equation of the straight line.

X'
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The line is 1 unit lower than the line y = —2x. Hence through

the point (0, —1) on the F-axis, draw a line of slope (—2). The line

lies halfway between lines C and D (Fig. 29).

Illustration 3. Draw the line whose equation is 4a! — 2?/ — 3 = 0.

Solve the equation for y by transposing the terms 4a; and (—3) to

the right member and dividing both members by (— 2), then

y = 2x-i.

Hence through the point (0, —f) on the y-axis draw a line of slope 2.

Exercises

1. Sketch, from inspection of the equations, the lines given by:

(a) y ^ X. (d) y = X + 3.

(b) y = X + 1. (e) y = X - 1.

(c) y =x + 2. if) y =x -2.

2. Sketch, from inspection of the equations, the lines given by:

(a) y = ix. (/) y = -\x.

(6) y = ix. (g) y = -x.

(c) y = X. (h) 2/
= -2a;.

{d) y = 2x. (i) y = -3x.

- (e) 2/ = 3a;. (j) y = y/2 x.

3. Sketch the lines given by the equations:

(a) a; = 3. {d) y = 1. (s) 2/ = 0.

(6) a; = 6. (e) y = 5. (A) x = 0.

(c) X 2. t/) y = -3. (i)a;2 = 4.

4. Sketch and name the slope and F-intercept in each of the

following:

(o) 2/ = a; + 1. (/) 2/ = 3x + 4.

(6) 2/ = ia; + 1. (?) 2/ = a; - 6.

(c) 2/ = -2a; + 4. Qi) 2/ = fx + 8.

{d) 2/ = 6x + 3. (i) 2/ = -3x + 4.

(e) y = —Sx — 2. 0') 2/ = — ia; — 3.

5. Give the slope and F-intercept for each of the following

:

(a) y =2x + Z. (/) 3y - 6x = 12.

(6) y = 3x -2. (9) y +x = 1.

(c) 2/ = -3x - 1. I^h) 3y'+ 2x = 7.

(d) 2/ = 5x— 6. (i) X — ^ = 6.

(e) 22/ = X + 4. (j) X - 22/ = I.
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6. Find the X-intercept and the }'-intercept for each of the

following

:

(.a) Sx - 2y = 5. (e) y - 2x ~ 6 ,= 0.

(6) 2x + y =Q. if) 2y + 3x + 5 = 0.

(c) X -y = 7. (g) X + y + I = 0.

(d) y -3x = 5. (h) 5y - 3x + 10 = 0.

7. Name the slope and the F-intercept in each of the following;

(a) 2y =x + 4:. {f) ix = 3y - 6.

(6) y -2x-3 =0.
(ff) Wx-y = 7.

(c) y + fa; + J = 0. (h) ax -\=y.
(d) 2y -\-3x = 4. (i) ax + by = c.

(e) 2x -3y = 6. 0') x/a + y/b = 1.

8. What is the equation of the X-axis? Of the K-axis?

9. What ia the equation of a line parallel to the X-axis 4 units

above? 3 units above? 10 units below? 60 units below?

10. What is the equation of a line parallel to the F-axis 3 units

to the right? 20 units to the right? 7 units to the left? 100 units

to the left?

11. Plot the following pairs of points on squared paper, and draw

the line determined by each pair:

(a) (-1, 3) and (5, -6)

(6) (-2, -5) and (3, 4)

(c) (1, 1) and (7, -8).

Find the slope and, by means of similar triangles, find the F-intercept

of each line. Write the equation of each line by replacing m and 6

in y = mx -|- 6 by the values found for slope and intercept. Test

the correctness of the equations by substituting for x and y the co-

ordinates of the given points.

12. A head of 100 feet of water causes a pressure at the bottom of

43.4 pounds per square inch. Draw a graph showing the relation

between head and pressure, for all heads of water from to 200 feet.

StTGGESTiON: There are several ways of proceeding. Let pounds

per square inch be represented by abscissas or x, and feet of water be

represented by ordinates or y. Since negative numbers are not in-

volved ia this exercise, the origin may be taken at or near the lower

left corner of the squared paper. Draw a line through the points

(0, 0) and (86.8, 200). This will be the required graph. Otherwise
100

produce the equation y = 73-72; from the proportion x:y= 43.4 : 100
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and then draw the graph from the fact that the latitude is always

TK~r of the longitude. In drawing this graph let 2 centimeters on the

X-axis represent 10 units, and 1 centimeter on the F-axis represent

10 units. Be sure that the scales are numbered and labelled in

accordance with suggestions (4), (5), and (6) of §12. On the X-axis

mafk only the points corresponding to hundreds of pounds, and on'

the y-axis mark only the points corresponding to tens of feet.

13. From the straight line drawn in exercise 12, find pressure meas-
ured in pounds corresponding to 13.1, 112.6, 93.7, and 187.5 feet of

water.

14. From the straight line drawn in exercise 12, find the head in

feet of water corresponding to 1123, 178, and 89 pounds per square

inch.

16. A pressure of 1 pound per square inch is equivalent to a column
of 2:04 inches of mercury, or to one of 2.30 feet of water. Draw a

graph showing the relation between pressure expressed in feet of water

and pressure expressed in inches of mercury.

StrGGBSTiON: Let x = inches of mercury and y = feet of water.

First properly number and label the X-axis to express inches of mer-

cury and number and label the K-axis to express feet of water. Since

negative numbers are not involved in this exercise, the origin may be
taken at the lower left-hand corner of the squared paper. First locate

the point x = 2.04; y = 2.30 (which are the corresponding values

given by the problem) and draw a line through it and the origin. This

is the required locus since at all points we must have the proportion

x:y:: 2.04 : 2.30, which says that the ordinate of every point of

the locus is 2.30/2.04 times the abscissa of that point.

16. A certain mixture of concrete (in fact, the mixture 1:2:5) con-

tains 1.4 barrels of cement in a cubic yard of concrete. Draw a

graph showing the cost of cement per cubic yard of concrete for a

range of prices of cement from $0.80 to $2.00 per barrel.

Suggestion: Let x be the price per barrel of cement and y be the

cost of the cement in 1 cubic yard of concrete. Let 2 centimeters on
both vertical and horizontal scales represent 10 cents. Number only

the points representing multiples of 10 cents. Since that portion of

the graph near the origin, namely to the left of 0,.80 and below 1.12

will not be used, place the scales on the horizontal and vertical lines

passing through the point (0.80, 1.00) and place this point at or near

the lower left corner of the paper. The X- and F-axes will not

appear on the drawing.

17. Draw a graph showing the cost per cubic yard of concrete for
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various prices of cement, provided $2.10 per yard must be added to

the results of example 16 to cover cost of sand and crushed stone.

18. Cast iron pipe, class A (manufactured for heads under 100 feet),

weighs, per foot of length: 4-inch, 20.0 pounds; 6-inch, 30.8 pounds;

8-inch, 42.9 pounds. Upon a single sheet of squared paper, construct

a graph for each size of pipe, showing the cost per foot for all variations

in market price between $20 and $40 per ton.

Suggestion: If the horizontal scale be selected to represent

•price per ton, the scale may begin at 20 and end at 40, as this covers

the range required by the problem. Therefore let 1 centimeter

represent $1.00. Since the range of prices is from 1 cent to 2 cents

per pound, the cost per foot will range from 20 cents to 40 cents for

4-inch pipe and from 42.9 cents to 85.8 cents for 8-inch pipe.

Hence for the vertical scale 10 cents may be represented by 2

centimeters. In this case the vertical scale may quite as well begin

at cents instead of at 20 cents, as there is plenty of room on' the

paper.

19. Show that the shortest distance between y — mx and y = mx + 6

is not 6, but

—

,

20. Pick out two pairs of parallel Unes in exercise 5, above . Pick

out a pair of parallel lines in exercise 4, above.

17. Line with Slope and One Point, or with Two Points Given.—
The equation of any line parallel to the F-axis is of the form x = a,

which is an equation in which the variable y does not appear. The
equation of all other lines may be written in the form

y = mx + h,
j (1)

in which m is the slope of the line and h is the F-intercept. Two
important special cases are explained below.

Illustration 1. Find the equation of the line of slope 4 which passes

through the point (2, 3).

Since to = 4, equation (1) becomes

y =4x + b. (2)

Replacing a; by 2 and y by 3, we get

3 = 8 -F 6, or 6 = -6.

Hence the equation of the line of slope 4 passing through (2, 3) is

y = 4x - 5, (3)
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Illustration 2. Find the equation of the line passing through the

pomts (2, 3) and (4, 1).

Substituting the given values of x and y in equation (1) we have

3 = 2m + 6

1 = 4w + 6.

Solving these equations for the two unknown numbers, m and 6, we
find

6 = 5

m = —1,

so that the equation of the line passing through the given points is

2/ = -X + 5.

In like manner the equation of a line passing through any two given

points may be found. In geometry we learned that two points de-

termine a straight line, and in the present problem the coordinates

of two given points are necessary and sufficient for the determination

of the equation of the line.

Exercises

1. Find the equation of the line determined by each of the following

conditions:

(a) Passes through (2, 5) and has slope 3.

(6) Passes through ( — 2, 6) and has slope — 2^.

(c) Passes through (4, —1) and has slope 7.41.

2. Find the equation of the line determined by each of the following

pairs of points:

(o) (3, 2) and (1, 5) (c) (4, 6) and (3, -2)

(6) (1, 2) and (- 2, 6) (d) (0, 0) and (-2, -3)

3. Show that the equation of the line passing through (a, 0) and

(0, 6) niay be written in the form

-+! = !
a

4. Find the equations of the three sides of the triangle whose ver-

tices are the points (0, 3), (2, 4), and (5, 9).

In each of the following exercises certain observed data are tabu-

lated which will be found in each case to give points lying on a straight

line. The law connecting y and x must then be of the form

y = mx + b.
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6. Find the law connecting y and x when the following correspond-

ing values are given

:

X
I

10 25 54 72

17 47 105 141

Hint: In plotting, take the origin at the lower left corner of the

squared paper. Let 2 centimeters represent 10 units on the X-axis

and 1 centimeter represent 10 units on the K-axis. To find the slope

divide the change in ?/ or (141 — 17) by the increase in a; or (72 — 10)

which gives 2. Find F-intercept by method of Illustration 1.

6. Find the law connecting x and y from the following data

:

X
I

12.0 15.3 17.8 19.0

y \
24.2 29.0 32.6 34.2

Hint: Take origin near left lower corner of the squared paper and

let 4 centimeters equal 10 units on each axis.

7. L is the latent heat of steam at a temperature i° C Find a

simple formula giving L in terms of t.

« I 75 90 100 115 125

L
I

554 544 536 526 519

Hint: Call the lower left corner of the squared paper the point

t = 75, L = 500. Let 1 centimeter = 5 units on each axis.

8. V is the volume in cubic centimeters of a certain weight of gas

at temperature t° C, the pressure being constant. Find the law

connecting V and t.

t
I

27.0 33.0 40.0 55.0 68.0

V
I

109.9 112.0 114.7 120.1 125

Hint: Call the lower left corner of the squared paper the point

t = 25, V = 100. Let 2 centimeters equal 5 units on the t scale and
1 centimeter equal 1 unit on the V scale.

9. I feet is the length of an iron bar under a pulling stress of W tons.

Find the law connecting I and W.

W
I 1 1^8 3^2 4^2 6.0

I
I

10 10.005 10.010 10.0175 10.0225 10.0325

Hint: Call the lower left comer of the squared paper the point

TF = 0, Z'= 10. Let 2 centimeters = 1 unit on the W scale and 1

qentimpter = 0.005 unit? on the I scale.
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10. The following table gives the draw-bar pull in pounds (P) of

an electric locomotive in terms of the current consumed (A). Find

an approximately correct algebraic formula giving A for any value

of P. Find the current required for a pull of 2000 pounds.

P
I

400 800 1370 1600 2080 2400 ,

A
I

65 86 106 116 137 150

Hint: Call the lower left corner of the squared paper A = 50, P =
400. Let 2 centimeters equal 10 units on the A scale and 1 centimeter

equal 100 units on the P scale. /

Exercises 5-10 above are taken from Saxelby's "Practical Mathe-
matics," Longmans, Green and Co., New York, 1905.



CHAPTER III

THE POWER FUNCTION

18. Definition of the Power Function. The algebraic function

consisting of a single power of the variable, such for example as

the functions x'^, x', 1/x, 1/x'', a;^''', etc., stand next to the linear

function of a single variable, mx + b, in fundamental impor-

tance. The function a;" is known as the power function of x.

19. The Graph of x^. The variable part of many functions of

practical importance is the square of a given variable. Thus the

area of a circle depends upon the square of the radius; the distance

traversed by a falling body depends upon the square of the

elapsed time; the pressure upon a flat surface exposed directly

to the wind depends upon the square of the velocity of the

wind; the heat generated in an electric current in a given time

depends upon the square of the number of amperes of current,

etc. Each of these relations is expressed by an equation of the

form y = ax^, in which x stands for the number of units in one of

the variable quantities (radius of the circle, time of fall, velocity of

the wind, amperes of current, respectively, in the above named
cases) and in which y stands for the other variable dependent

upon these. The number a is a constant which has a value

suitable to each particular problem, but in general is not the same

constant in different problems. Thus, if y be taken as the area of

a circle, y = irx^, in which x is the radius measured in feet or

inches, etc., and y is measured in square feet or square inches,

etc. ; or if s is the distance in feet traversed by a falling body,

thens = 16. li'', where i stands for the elapsed time in seconds.

In one case the value of the constant a is 3.1416 and in the other

its value is 16.1.

Let us first graph the abstract law or equation y = x^, in which

a concrete meaning is not assumed for the variables x and y but

48
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in which both are thought of as abstract variables,

suitable table of values for x and x^ as follows:

First form a

X
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dinate paper, using 2 centimeters as the unit of measure in each

case.^ Table II may be used to save numerical computation in

the construction of the graphs of these power functions. As in

the case oi y = x^, a smooth curve should be sketched free-hand

t
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Table II

51

X
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curve of the class y = a;", if n is a positive number. These curves

are known collectively as curves of the parabolic family, or simply

parabolic curves. The curve y = x^ is called the parabola.

2/ = a;' is called the cubical parabola, y = xi is called the semi-

cubical parabola, etc. Curves for negative values of n do not pass

through the point (0, 0) and are otherwise quite distinct. They
are known as curves of the hyperbolic type, and will be discussed

later.

The student should cut patterns df the parabola, the cubical

parabola and the semi-cubical parabola out of heavy paper for

use in drawing these curves when required. Each pattern should

have drawn upon it either the X- or F-axis and one of the unit

lines to assist in properly adjusting . the pattern upon squared

paper.

21. Symmetry.—In geometry a distinction is made between two

kinds of symmetry of plane figures—symmetry with respect to a

line and symmetry with respect to a point. A plane figure is

symmetrical with respect to a given line if the two parts of the

figure exactly coincide when folded about that line. Thus the let-

ters M and W are each symmetrical with respect to a vertical line

drawn through the vertex of the middle angles. We have already

noted that y = x^ is symmetrical with respect to OY.

A plane figure is symmetrical with respect to a given point when
the figure remains unchanged if rotated 180° in its own plane about

an axis perpendicular to the plane at the given point. Thus the

letters N and Z are each symmetrical with respect to the mid-point

of their central line. The letters H and O are symmetrical both

with respect to lines and with respect to a point. Which sort of

symmetry is possessed by the curve y = a;'? Why?
Another definition of symmetry with respect to a point is per-

haps clearer than the one given by the above statement: A curve

is said to be symmetrical with respect to a given point when all

lines drawn through the given point and terminated by the curve

are bisected at the point 0.

What kind of symmetry with respect to one of the coordinate

axes or to the origin (as the case may be) does the point (2, 3) bear

to the point (-2, 3)? To the point (-2,-3)? To the point

(2, -3)?
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Note that symmetry of the first kind means that a plane figure is

unchanged when turned 180° about a certain line in its plane, and

l-r-Y

Fig. 32.—The parabolas «/ = a;" for n = 1, 2, 3, and 4.

that symmetry of the second kind means that a figure is unchanged

when turned 180° about a certain line perpendicular to its plane.

22. The curves in Figs. 31 to 34 are sketched from a limited
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number of points only, but any number of additional values of x

and y may be tabulated and the accuracy, as well as the extent,

of the graph be made as great as desired. A number of graphs of

power functions are shown as they appear in the first quadrant

in Figs. 34 and 38. The student should explain how to draw the
portions of the curves lying in the other quadrants from the part

appearing in the first quadrant.

In the exercises in this book to "draw a curve" means to con-
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struct the curve as accurately as possible from numerical or other

data. To "sketch a curve" means to produce an approximate or

less accurate representation of the curve, including therein its

characteristic properties, but without the use of extended numer-

ical data. Whenever possible, make use of the paper patterns

mentioned in §20.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 IJl 1.6 1.7 1.8 1.9 2.0

!Fig. 34.—Graph of the power function for n >0 (parabolic curves) in

the first quadrant.

Exercises

1. On coordinate paper draw the curves y — x', y = x^, y = x^,

y = x^, using 2 centimeters as the unit of measure. On the same

sheet draw the Unes x = +1, y = ±1, y — +x.

2. On coordinate paper sketch the curves x = y^, x = y^, x = yi,

X = y^. Compare with the curves of Exercise 1.
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3. Sketch and discuss the curves y = xi, y = xi, y = xi. Can
any of these curves be drawn from patterns made from the

curves of Exercise 1? Why?
4. Draw the curve y^ = x*. Compare with the curve y = x^.

6. Name in each case the quadrants in which the curves of Exer-

cises 1-4 lie, and state the reasons why each curve exists in certain

quadrants and not in the other quadrants.

23. Discussion of the Parabolic Curves.—Draw the straight

ines X = 1, X = —l,y=l,y= —1 upon the same sheet upon

which a number of para-

,/J;^. :^
I

B bolic curves have been

drawn. These lines to-

gether with the coordi-

nate axes divide the plane

into a number of rect-

angular spaces. In Fig.

35 these spaces are shown

divided into two sets,

those represented by the

cross-hatching, and those

shown plain. The cross-

hatched rectangular spaces

'iontain the lines y = x

and y = —x and also all

curves of the parabolic

type. No parabolic curve

enters the rectangular strips

shown plain in Fig. 35.

The line y = x divides the spaces occupied by the parabolic

curves into equal portions. Why does the curve y = x' (in the

first quadrant) lie below this line in the interval a; = to a; = 1,

but above it in the interval to the right of x = 1 ? On the other

hand, why does the curve y = xi, or y^ = x (in the first quad-
rant), lie above the line 2/ = a; in the interval a; = to a; = 1 and
below y = xin the interval to the right of x = 1?

One part of the parabolic curve y = x" always lies in the first

quadrant. If n be an even integer, another part of the curve lies

in which quadrant? If n be an odd integer, the curve lies in which
quadrants?

Fig. 35.—The regions of the parabohc
and the hyperboUc curves. All parabolic
curves he within the cross-hatched
region. All hj^jerboUc curves he within
the region shown plain.
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If the exponent n of any power function be a positive fraction,

say m/r, the equation of the curve may be written y = x". If

in this case both m and r be odd, the curve lies in which quadrants?

If m be even and r be odd, the curve lies in which quadrants?

If m be odd and r be even, the curve lies in which quadrants?

If both m and r be even the curve lies in which quadrants?

A curve which is symmetrical to another curve with respect to a

line may figuratively be spoken of as the reflection or image of the

second curve in a mirror represented by the given line.

Exercises

Exercises 1-5 refer to curves in the first quadrant only.
3

1. The expressions x', x^, x', x* are numerically less than x for

values of x between and 1. How is this fact shown in Fig. 34?

2. The expressions x^, x^, a;', s* are numerically greater than x for

all values of x numerically greater than unity. How is this fact

pictured in Fig. 34?

3. For values of x between and 1, x* <x^ <x'' <x^ < x. For

values X > 1, X* > x^ > x^ > ^ > X. Explain how each of these

facts is expressed by the curves of Fig. 34.
2 i i 1

4. Show that the graphs y = x^, y = a;', y = x'l y = x^ are

the reflections of i/ = x^, y = x', y = x\ y = x\ in the line y = x.

6. Sketch on a single sheet of squared paper without tabulating

the numerical values, the following loci: y = x^", y = a;"', y = a;'"",

y = a;0.01

The following are to be discussed for all quadrants.

6. Sketch, without tabulating numerical values, the following loci

y' = x\ y* = x', y^ = x^, y' = x^, y^ = x^.

7. Show that y = —x' is the reflection oi y = x' in the X-axis.

8. Sketch the following; y = —x, y = —x^, y = —x', y' = — x^,

y^ — — x^.

9. A ball roUs down a smooth inclined plane making an angle of

45° with the horizontal. The distance s measured in feet along the

incline is given by the formula

s = 11.4*2

where t is time in seconds. Draw a, graph for this equation. Let

time t be represented by distances along the axis of abscissas and dis-
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tance s along the axis of ordinates. Let 2 centimeters represent one

second on one axis and 10 feet on the other.

24. Hyperbolic Curves. Loci of equations of the form yx" = 1,

OT y = l/x", where n is positive, are called hyperbolic curves.

The fundamental curve xy = 1, or y = l/x is called the rec-

tangular hyperbola. Its graph is given in Fig. 36, but the curve

Fig. 36.—The hyperbolas y = x" ioi n = — 1, —2, and —3.

should be drawn independently by the student, using 2 centi-
meters as the unit of measure. Its relation to the X- and
y-axes is most characteristic. For a very small positive value of
X, the value of y is very large, and as x approaches 0, y increases
indefinitely. But the function is not defined for x = 0, for the
product xy cannot equal 1 if x be zero. For numerically small but
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negative values of x, y is negative and numerically very large, and

becomes numerically larger as x approaches 0.

Instead of saying that "y increases in value without limit," it

is just as common to say "y becomes infinite;" in fact, "infinite"

is merely the Latin equivalent of "no limit." It is often written

2/ = 00 . This is a mere abbreviation for the longer expressions,

"y becomes infinite" or "y increases in value without limit."

The student must be cautioned that the symbol <» does not stand

Fig. 37.—The hyperbolas y = x" for n -i, —i, —21 and —J

for a number, and that "y = oo" must not be interpreted in the

same way that "y = 5" is interpreted.

As X increases from numerically large negative values to 0,

y continually decreases and becomes negatively infinite (abbre-

viated 2/ = — 00 ). As a; decreases from numerically large positive

values to 0, y continually increases and becomes infinite. Thus,

in the neighborhood oi x = 0, y is discontinuous, and, in this case,

the discontinuity is called an infinite discontinuity.
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0.1 0.2 0.3 0.4 O.S 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.1 1.6 1.6 1.7 1.8 1.9 2.0

Fig. 38.—Hsrperbolic curves in the first quadrant. y = l/s^-^o'is

the adiabatic curve for air.

On account of the symmetry in xy = l,]i we look upon x as a

function o^ y, all of the above statements may be repeated, merely

interchanging x and y wherever

they occur. Thus, there is an in-

finite discontinuity in x, as y
passes through the value 0.

The lines XX' and YY' which

these curves approach as near as'

we please, but never meet, are

called the asymptotes of the

hyperbola.

All other curves of the hyper-

bolic family, such as yx"^ = 1,

^2/" = 1, 2/'a;' = 1, y^x* = 1 and

, the like, approach the X- and
y-axes as asymptotes. The rates at which they approach the

^\
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axes depends upon the relative magnitudes of the exponents of the

powers of x and y; the quadrants in which the branches lie depend

upon the oddness or evenness of these exponents.

Exercises

1. Draw accurately upon squared paper the loci, xy = 1, xy' = 1,

x'y = 1. Use 2 centimeters as unit and make a pattern for xy = 1.

2. Show that the curves of the hyperboUc type lie in the rectangu-

lar regions shown plain, or not cross-hatched, in Fig. 35.

3. In what quadrants do the branches of x^^y'' = 1 he?

4. How does the locus of x^y^ — 1 differ from that oixy = 1 ?

6. Sketch, showing the essential character of each locus, the curves

x^y = 1, x^y = 1, s"""?/ = 1.

6. Show that xy = d passes through the point (\/a, -y/a) ',
that xy

= a' passes through (a, a) and can be made from xy = Ihy "stretch-

ing" (if a > 1) both abscissas and ordinates of xy = 1 in the ratio

l:a.i

25. Symmetry. Some of the facts of symmetry respecting two
portions of the same parabola or hyperbola may be readily ex-

tended by the student to other curves. First answer the following

questions

:

How are the points (a, 6) and (— a, b) related to the F-axis?

How are the points (a, 6) and (a, —6) related to the X-axis?

How are the points (a, b) and (6, a) related to the line y = xl

Prove the result by plane geometry.

The following may then be readily proved by the student:

Theorems on Loci

I. 7/ X he replaced by (—x) in any eqvution containing x and y,

the new graph is the reflection of the former in the axis YY'.

II. If y be replaced by (—y) in any equation containing x and y,

the new graph is the reflection of the former in the axis XX'.
III. If x and y be interchanged in any equation containing x

and y, the new graph is the reflection of the former in the line y = x.

IV. If an equation remains unchanged when x is replaced by

{—x), its graph is symmetrical with respect to the Y-axis.

1 To "elongate" or "stretch" in the .ratio 2 :3 naeans to change tfie length of a

line segment so that (original length) : (new or stretched length) = 2:3.
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v. If an equation remains unchanged when y is replaced by {—y),

its graph is symmetrical with respect to the X-axis.

VI. If an equation remains unchanged when x and y are inter-

changed, its graph is symmetrical with respect to the line y= x.

VII. If an equation remains unchanged when x is replaced by

i—x) and y by {—y), its graph is symmetrical with respect to the

origin.

VIII. If an equation remains unchanged when x is replaced by

(—J/) and y is replaced by (.—x), its graph is symmetrical with re-

spect to the line y = —x.

26. The Variation of the Power Function. The symmetry of

the graphs of the power function with respect to certain lines and

points, while of interest geometrically, nevertheless does not con-

stitute the most important fact in connection with these functions.

Of more importance is the law of change of value or the law by which

the function varies. Thus returning to a table of values for the

power function x^ for the first quadrant.

X
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differences headed "d" in the table. Even more rapidly does the

function x^ gain in value as x grows in value. On the contrary,

for positive values of x the power functions 1/x, 1/x^, 1/x^, etc.,

decrease in value as x grows in value. Referring to the definition

of the slope of a curve given in §15, we see that the parabolic

curves have a positive slope in the first quadrant, while the hyper-

bolic curves have always a negative slope in the first quadrant.

The law of the power function is stated in more definite terms

in §34. That section may be read at once, and then studied

again in connection with the practical work which precedes it.

27. Increasing and Decreasing Functions.—As a point passes

from left to right along the X-axis, x increases algebraically.

As a point moves up on the F-axis, y increases algebraically and

as it moves down on the F-axis, y decreases algebraically. An
increasing function of x is one such that as x increases algebraic-

ally, y, or the function, also increases algebraically. By a

decreasing function of x is meant one such that as x increases

algebraically, y decreases algebraically. Graphically, an increas-

ing function is indicated by a rising curve as a point moves along

it from left to right. The power function y = s^ {n positive) is an

increasing function of x in the first quadrant and y = x~^ (—

n

negative) is a decreasing function of x in the first quadrant.

The power function y = x^ \& an increasing function for all

positive atid for all negative values of x, while y = x'^\&& decreasing

function in the second quadrant but an increasing function in the

first quadrant. In a case like y = +xi, where y has two values

for each positive value of x, it is seen that one of these values

increases with x while the other decreases with x.

Exercises

1. Consider the function y = +x^. As x grows by successive steps

of one unit each, does the function grow by increasingly greater and
greater steps or not? Is the slope of the curve an increasing or a

decreasing function of x?

2. Does the algebraic value of the slope oi xy = 1 increase with x in

the first quadrant?

3. As £ changes from —5 to +5 does the slope oi y = x^ always

increase algebraically?
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4. Express in the language of mathematics the fact that the curves

y = I", when n is a rational number greater than unity, are concave

upward.

Answer: "When n is greater than unity, the slope of the curve

increases as x increases."

Express in a similar way the fact that the curves y = x^/" are

concave downward.

28. The Graph of the Power Function when x» has a Coeffi-

cient. If numerical tables be prepared for the equations

y = x^
y' = 2x'and

0\ 1 X> 2 -4 -3 -2 -1 O
(a) (b)

Fig. 40.— (o) The curves y = x' and y' = 2x'. (b) The curves y =

x^ and 2/ = (I)
•

then for like values of x each ordinate of the second curve will

be two times the corresponding ordinate of the first curve. These

curves are shown in Fig. 40a. For each position of P on the

curve y' = 2x\ DP = 2DQ.

It is obvious that the curve

J i-u V = X" (1)
and the curve y, ^ a^„ ^2)

are similarly related; the ordinate of any point of the second graph

can be made from the corresponding ordinate (i.e., the ordinate

having the same abscissa) of the first graph by multiplying the

former by a. If o be positive and greater than unity, this corre-
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sponds to stretching or elongating all ordinates of (1) in the ratio

1 : o; if a be positive and less than unity, it corresponds to con-

tracting or shortening all ordinates of (1) in the ratio 1 : a.

For example, the graph of y' = ax' can be made from the

graph of y = x"ii the latter be first drawn upon sheet rubber, and if

then the sheet be uniformly stretched in the y direction in the ratio

1 : a. If the curve be drawn upon sheet rubber which is already

under tension in the y direction and if the rubber be allowed to

contract in the y direction, the resulting curve has the equation

y = ax" where a is a proper fraction or a positive number less than

unity.

The above results are best kept in mind when expressed in a

slightly different form. The equation y' = a-x" can, of course, be

written in the form (y'/a) = a;". Comparing this with the equa-

tion y = x", we note that (y'/a) = y or y' = ay, therefore we may
conclude generally that substituting (y'/a) for y in the equation of

any curve multiplies all of the ordinates of the curve by a. For

example, after substituting (y'/2) for y in any equation, the new
ordinate y' must be twice as large as the old ordinate y, in order

that the equation remain true for the same value of x.

(x'\ **

— I
,

that is, substituting (— ) for x in any equation multiplies all of the

abscissas of the curve by a. See Fig. 406. Multiplying all

of the abscissas of a curve by a elongates or stretches all of the

abscissas in the ratio ^ 1 : a if a > 1, but contracts or shortens all

of the abscissas if o < 1. As the above reasoning is true for the

equation of any locus, we may state the results more generally

as follows:

Theorems on Loci

IX. Substituting ( -) for z in the equation of any locus multi-

plies all of the abscissas of the curve by a.

X. Substituting I - ) for y in the equation of any locus multiplies all

of the ordinates of the curve by a.

1 See footnote, p. 61.
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Note: It is not necessary to retain the symbols x' and y' to

indicate new variables, if the change in the variable be otherwise

understood.

Exercises

1. Without actual construction, compare the graphs y, = a;^ and
^2 1 2

y = 5x2; J/ = a;2 and ^ = "2 ; 2/ = - and J/
= -; y = *» and y = 2x^;

s

y = x^ and 2/ = -g '

2. Without actual construction, compare the graphs y = x' and

2/ = f|V; 2/ = s' and ^= x^;y = x^a.ndy = {^j; y = x^ and | = x\

3. Compare y^ = a;= and i/^ = \k] ;
j/^ = i' and (gj = x\- y' =x'

4. Compare the curves t/ = 2x^ and 2/ = 2 ( s j ;
3?/'' = a;' and

32/==
(l)

'; 2/^ = X' and (2)/)^' = {Zxy.

5. Compare ?/ = a; + 3 and y = 2 {x + 3); y = 2x — 1 and

I
=2a; - 1; 2/ = 2a; - 1 and 22/ = 2a; - 1.

The following exercise involves a different principle from that used

above, which the student should reason out for himself.

6. Without actually constructing the curves, compare the curves,

for 2/ = 2a; + 3 and y = 2x + 5; y = x^ and y = x^ + l; y == x' and

2/ = a;' + 2; 2/ = a;' and y = x' — 1; y = x' and y = x' + i;

y =~ and y = —\- 2;y = x^ and 2/ = (x — 1)^.

29. Change of Unit. To produce the graph of 2/
= lOa;^ from

that of 2/ =^ a;^, the stretching of the ordinates in the ratio 1 : 10

need not actually be performed. If the unit of the vertical scale

of 2/
= a;^ be taken 1/10 of that of the horizontal scale, and the

proper numerical values be placed upon the divisions of the

scales, then obviously the graph ol y = x^ may be used for the

graph of 2/ = lOx''. Suitable change in the unit of measure on one

or both of the scales of 2/ = a?" is often a very desirable method of

representing the more general curve y — ax^.

An interesting example is given in Fig. 41. The period of vi-
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1.6

1.4

1.2



68 ELEMENTARY MATHEMATICAL ANALYSIS [§30

A special symbol, « , is often used to express variation. Thus

states that y varies inversely as d^. It is equally well expressed by

k

where A; is a constant called the proportionality factor.

The statements "y varies jointly as u and v," and "y varies

directly as u and inversely as v,'' mean, respectively,

y = kuv

hu

Thus the area of a rectangle varies jointly as its length and

breadth, or

A = kLB.

If the length and breadth are measured in feet andA in square feet,

k is unity. But, if L and B are measured in feet and A in acres,

then k = 1/43560. If L and B are measured in rods and A in

acres, then k = 1/160.

From Ohm's law, we say that the electric current in a circuit

varies directly as the electromotive force and inversely as the

resistance, or

C a -51 or C = A; ^•
K K

The constant multiplier is unity if C be measured in amperes, E
in volts, and R in ohms, so that for these units

^ - R

Exercises

1. The original length of a spring is 10 inches. The force, F,

necessary to stretch the spring is directly proportional to its elongation,

s. (o) Find the proportionality factor if a force of 200 pounds will

hold the spring at a length of 12 inches, (b) What force will be
required to hold the spring at a length of 13 inches? (c) What force
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will be required to elongate the spring 1 inch? Note that the elon-

gation is the extension of the length beyond the original length and not

the total length after elongation.

StfGGBSTioN: Since the force F is directly proportional to the elon-

gations, we may write

F = ks,

where k is the proportionality factor. We have given that F is 200

pounds when s is 2 inches.

2. Hooke's Law states that the elongation of a steel bar is propor-

tional to the force applied. A bar 500 inches long is stretched to a

length of 500.5 inches when a force of 1000 pounds is applied. Find

the proportionality factor.

3. Boyle's Law states that the volume of a perfect gas at constant

temperature varies inversely as the pressure. If volume is measured

as cubic feet and pressure as pounds per square inch, find the pro-

portionality factor if the volume is 13 cubic feet when the pressure

is 60 pounds per square inch. What will be the volume of the same
gas, according to Boyle's Law, if the pressure becomes only 15 pounds
per square inch?

31. Illustrations from Science. Some of the most important

laws of natural science are expressed by means of the power func-

tion' or graphically by means of loci of the parabolic or hyperbolic

type.

The linear equation y = mx is, of course, the simplest case of the

power function and its graph, the straight line, may be regarded as

the simplest of the curves of the parabolic type. The following

illustrations will make clear the importance of the power function

in expressing numerous laws of natural phenomena. Later the

student will learn of two additional types of fundamental laws of

science expressible by two functions entirely different from the

power function now being discussed.

The instructor will ask oral questions concerning each of the

following illustrations. The student should have in mind the

general form of the graph in each case, but should remember that

the law of variation, or the law of change of value which the func-

tional relation expresses, is the matter of fundamental importance.

The graph is useful primarily because it aids to form a mental pic-

ture of the law of variation of the function. The practical graph-

1 For brevity ax" as well as a:" will frequently be called a power function of x.
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ing of the concrete illustrations given below will not be done at

present, but will be taken up later in §33.

(a) The pressure of a fluid in a vessel may be expressed in either

pounds per square inch or in terms of the height of a column of mer-

cury possessing the same static pressure. Thus we may write

p = 0.492/!, (1)

in which p is pressure in pounds per square inch and h is the height of

the column of mercury in inches. The graph' is the straight line

through the origin of slope 492/1000. The constant 0.492 can be

computed from the data that the weight of mercury is 13.6 times

that of an equal volume of water and that 1 cubic foot of water

weighs 62.5 pounds.

In this and the following equations, it must be remembered that

each letter represents a number, and that no equation can be used until

all the magnitudes involved are expressed in terms of the particular

units which are specified in connection with that equation.

(6) The velocity of a falling body which has fallen from a state of

rest during the time t, is given by

V = 32.2/, (2)

in which t is the time in seconds and v is the velocity in feet per second.

If t is measured in seconds and v is in centimeters per second, the

equation becomes' v = 98K. In either case the graph is a straight

line, but the lines have different slopes.

^ A full discuBsion of the process of changing formulas like the ones in the present

section into a new set of units should be sought in text-books on physics and mechan-
ics. The following method is sufficient for elementary purposes. First, write (for

the present example) the formula v = 32.2£ where v is in ft./sec. and t is in seconds.

For any units of measure that may be used, there holds a general relation u = ct,

where c is a constant. To determine what we may call the dimensions of c, sub-

stitute for all letters in the formula the names of the units in which they are ex-

pressed, treating the names as though they were algebraic numbers. From v = ct

write, ft./sec, = csec. Hence (solving for dimensions of c), c has dimensions ft./sec.^

Therefore in the given case, we know c = 32.2 ft./sec. 2. To change to any other

units simply substitute equals for equals. Thus 1 ft. = 30.5 cm., hence c = 32.2 X
30.5 cm./sec.2 = 981 cm./sec.^

To change velocity from mi./hr. to ft./sec. in formula (19) below, we have R =
0.00372 where R is in Ib./sq. ft. and V is in mi./hr. Write the general formula

R = cY^. The dimensions of c are (lb./ft.2) -7- (mi.Vhr.2) or (lb./ft.2) X (hr.^/mi.sy.

In the given case we have the value of c = 0.003 (lb./ft. 2) X (hr.2/mi.2). To change

V to ft./sec, substitute equals for equals, namely 1 hr. = 3600 sec, 1 mi. = 5280

ft., which gives the formula R = 0.0013972^ where V is expressed as ft./sec and

R ig expressed as lb./ft.2. Note that 1 mi./hr. = f ft./sec. approximately.
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(c) The space traversed by a falling body is given by

s = igt\ (3)

or in English itaits (s in feet and t in seconds)

s = 16.1(2. ' (4)

(d) The velocity of the faUing body, from the height h, is

V = \/2gh = V&iAh. (5)

The resistance of the air is not taken into account in formulas (2)

to (5).

The formula equivalent to (5)

jTOD^ = mgh, (6)

where to is the mass of the body, expresses the equivalence of ^mv^,

the kinetic energy of the body, and mgh, the work done by the force of

gravity mg, working through the distance h.

(e) The intensity of the attraction exerted on a unit mass by the

sun or by any planet varies inversely as the square of the distance

from the center of mass of the attracting body. If r stand for that

distance and if / be the force exerted on unit mass of the attracted

body, then

/ = ^- (7)

The constant m is the value of the force when r is unity.

(f) The formula for the horse power transmissible by cold-roUed

shafting is

where H is the horse power transmitted, d the diameter of the shaft in

inches, and N the number of revolutions per minute.

The rapid increase of this function (as the cube of the diameter)

accounts for some interesting facts. Thus doubling the size of the

shaft operating at a given speed increases 8-fold the amount of power
that can be transmitted, while the weight of the shaft is increased but
4-fold.

If H be constant, N varies inversely as d^ Thus an old-fashioned

5.0-h.p. overshot water-wheel making three revolutions per minute
requires about a 9-inch shaft, while a DeLaval 50-h.p. steam turbine

making 16,000 revolutions per minute requires a turbine shaft but
little over J^ inch in diameter.
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(g) The period of the simple pendulum is

T = irVrTg, (9)

where T is the time of one swing in seconds, I the length of the pendu-

lum in feet, and g = 32.2 ft. /sec.', approximately.

(h) The centripetal force on a particle of weight W pounds, rotat-

ing in a circle of radius R feet, at the rate of JV revolutions per second is

F = ^ ^"^
, (10)

9
or if

ff
= 32.16 ft. /sec.?,

F = 1.227GWRN' (11)

where F is measured in pounds. If N be the number of revolutions

per minute, then

^ - 36009
^^^^

= 0.000341 TFiJi\r2_ (13)

(i) An approximation formula for the indicated horse power required/

for a steamboat is

I.H.P. = ^, (14)

where S is speed in knots, D is displacement in tons, and C is a con-

stant appropriate to the size and model of the ship to which it is

appUed. The constant ranges in value from about 240, for finely

shaped boats, to 200, for fairly shaped boats.

(j) Boyle's law for the expansion of a gas maintained at constant

temperature is

pv = C, (15)

where p is the pressure and v the volume of the gas, and C is a constant.

Since the density of a gas is inversely proportional to its volume, the

above equation may be written in the form

P = cp, (16)

in which p is the density of the gas.

(fc) The flow of water over a trapezoidal weir is given by

q= Z.S7Lh^, (17)

where q is the quantity in cubic feet per second, L is the length of the

weir' in feet, and h is the head of water on the weir, in feet.

I The instructor is expected to explain the meaning of the terms here used.
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{I) The physical law holding tor the adiabatic expanBion of air,

that is, the law of expansion holding when the change of volume is not

accompanied by a gain or loss of heat/ is expressed by

p = cp'-^'' (18)

This is a good illustration of a power function with fractional expo-

nent. The graph is not greatly different from the semi-cubical

parabola

y = ci'

(to) The pressure or resistance of the air upon a flat surface per-

pendicular to the current is given by the formula

R = 0.003F^ (19)

in which V is the velocity of the air in miles per hour and B is the

resulting pressure upon the surface in pounds per square foot. Ac-

cording to this law, a 20-mile wind would cause a pressure of about 1.2

pounds per square foot upon the flat surface of. a building. One foot

per second is equivalent to about 2/3 mile per hour, so that the formula

when the velocity is given in feet per second becomes

:

R = 0.0013F2. (20)

(n) The power used to drive an aeroplane may be, divided into two
portions. One portion is utilized in overcoming the resistance of the

air to the onward motion. The other part is used to sustain the

aeroplane against the force of gravity. The first portion does "use-

less" work—^work that should be made as small as possible by the

shapes and sizes of the various parts of the machine. The second part

of the power is used to form continuously anew the wave of compressed
air upon which the aeroplane rides. Calling the total power'' P, the

power required to overcome the resistance Pr, and that used to sus-

tain the aeroplane P«, we have

P =Pr+P, (21)

We learn from the theory of the aeroplane that P, varies as the cube

of the velocity, while P, varies inversely as V, so that

Pr = cV^ (22)

^ Note that when a vessel containing a gas is insulated by a non-conductor of

heat, so that no heat can enter or escape from the vessel, that the temperature of the

gaa will rise when the gas is compressed, and fall when it is expanded. Adiabatic

expansion may be thought of, therefore, as taking place in an inaulated vessel.

2 Power (= work done per unit time) is measured by the unit horse power, which
ia 550 foot-pounds per second.
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and

P, = k
(23)

Thus at high velocity less and less power is requireii to sustain the

aeroplane but more and more is required to overcome the frictional

resistance of the medium. The law expressed by (23) that less and

less power is required to sustain the aeroplane as the speed is increased

is known as Langley's Law. From this law Langley was convinced
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(o) The capacity of cast-iron pipe to transmit water is often given

by the formula
9'-88 = 1.68W-" (24)

in which q is the quantity of water discharged in cubic feet per second,

d is the diameter of the pipe in feet, and h is the loss of head measured

in feet of water per 1000 linear feet of pipe. This is a good illustra-

tion of the equation of a parabolic curve with complicated fractional

exponents. The curve very roughly approximates the locus of the

equation

y = cVhxi. (25)

(p) The contents in gallons of a rectangular tank per foot of depth,

6 feet wide and I feet long, is

q = 7.5W. (26)

The contents in gallons per foot of depth of "a cylindrical tank d feet in

diameter is

q = 7.5^^74. (27)

Fig. 42 shows the graph of (26) for various values of 6 and also shows

to the same scale the graph of (27).

32. Rational and Empirical Equations.—A number of the

formulas given above are capable of demonstration by means of

theoretical considerations only. Such for example are equations

(1), (2), (3), (4), (5), (7), (8), (9), (10), etc., although the constant

coefficients in many of these cases were experimentally deter-

mined. Formulas of this kind are known in mathematics as

rational equations. On the other hand certain of the above for-

mulas, especially equations (14), (17), (19), (22), (23), (24),

including not only the constant coefficients but also the law of

variation of the function itself, are known to be true only as the

result of experiment. Such equations are called empirical

equations. Such formulas arise in the attempt to express by an

equation the results of a series of laboratory measurements.

For example, the density of water (that is, the mass per cubic

centimeter or the weight per cubic foot) varies with the tem-

perature of the water. A large number of experimentors have

prepared accurate tables of the density of water for wide ranges

of temperature centigrade, and a number of very accurate empir-

ical formulas have been ingeniously devised to express the results,

of which the following four equations are samples

:
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Empirical fonnulas jor the density, d, of water in terms of tem-

perature centigrade, B.

96(9 - 4)2
(a) d = 1 -

10'

(K^ ^ 1
93(0 - 4)i»«^

(6) d = 1
jq^^

, , J , 6fl2 - 369 + 47
(c) "^ = 1

io«

, „ J , ,
0.4859» - 81.39^ + 6029 - 1118

(d; d = 1 H jq^

Exercises

1. Among the power functions named in the above illustrations,

pick out examples of increasing functions and of decreasing functions.

2. Under the same difference of head or pressure, show by formula

(24) that an 8-inch pipe will transmit much more than double the

quantity of water per second that can be transmitted by a 4-inch pipe.

3. Wind velocities during exceptionally heavy hurricanes on the

Atlantic coast are sometimes over 140 miles per hour. Show that the

wind pressure on a flat surface during such a storm is about fifty times

the amount experienced during a 20-mile wind.

4. Show that for wind velocities of 10, 20, 40, 80, 160 miles per hour

(varying in geometrical progression with ratio 2), the pressure exerted

on a flat surface is 0.3, 1.2, 4.8, 19.2, 76.8 pounds per square foot

respectively (varying in geometrical progression with ratio 4)

.

6. A 300-h.p. DeLaval turbine makes 10,000 revolutions per min-

ute. Find the necessary diameter of the propeller shaft.

6. A railroad switch target bent over by the wind during a tornado

in Minnesota indicated an air pressure due to a wind of 600 miles per

hour. Show that the equivalent pressure on a flat surface would be

7.5 pounds per square inch.

7. Show that a parachute 50 feet in diameter and weighing 50

pounds will sustain a man weighing 205 pounds when falling at the

rate of 10 feet per second.

Suggestion: Use approximate value ir = 22/7 in finding area of

parachute from formula for circle, nr^, and use formula (20) above.

8. Show that empirical formulas (a) and (6) for the density of

water reduce to a power function if the origin be taken at 9 = 4, d = 1.

33. Practical Graphs of Power Functions. The graphs of the

power function

2/ = a;^ y = x^, y = -> y = x\, etc., (1)
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can, of course, be made the basis of the laws concretely expressed

by equations (1) to (27) of §31. If, however, the graph of a

scientific formula is to serve as a numerical table of the function

for actual use in practical work, then there is much more labor

in the proper construction of the graph than the mere plotting

of the abstract mathematical function. The size of the unit to

be selected, the range over which the graph should extend, the

permissible course of the curve, become matters of practical

importance.

If the apparent slope^ of

+ 1 or —1, it is desirable

to make an abrupt change

of unit in the vertical or

the horizontal scale, so as

to bring the curve back

to a desirable course, for

it is obvious that numeri-

cal readings can best be

taken from a curve when
it crosses the rulings of the

coordinate paper at ap-

parent slopes differing but

little from + 1.

The above suggestions

in practical graphing are

the follow-

a graph departs too widely from

E

350
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shafting lie well within these limits. Likewise one would not

ordinarily be interested in values of N except those lying between

10 and 3000 revolutions per minute. Fig. 43 shows a suitable

graph of this formula for the range 1 < d < 10 for the fixed

value oiN = 100. In order properly to graph this function, three

different scales have been used for the ordinate H, so that the

slope of the curve may not depart too widely from unity.

If similar graphs be drawn for N = 200, N = 300, N = 400,

etc., a set of parabolas is obtained from which the horse power

of shafting for various speeds of rotation as well as for various

diameters may be obtained at once. A set of curves systematic-

ally constructed in a manner similar to that just described, is often

called a family of curves. Fig. 42 shows a family of straight lines

expressing the capacity of rectangular tanks corresponding to

the various widths of the tanks.

Inasmuch as many of the fqrmulas of science are used only for

positive values of the variables, it is only necessary in these cases

to graph the function in the first quadrant. For such problems

the origin may be taken at the lower left corner of the coordinate

paper so that the entire sheet becomes available for the curve in

the first quadrant.

The illustrations of §31 are sufficient to make clear the impor-

tance in science of the functions now being discussed. The follow-

ing exercises give further practice in the useful application of the

properties of the functions.

Exercises

The graphs for the following problems are to be constructed upon
rectangular coordinate paper. The instructions are for centimeter

paper (form Ml) ruled into 20 X 25 cm. squares. On other paper use

J inch in place of 1 centimeter. In each case the units for abscissa

and for ordinates are to be so selected as best to exhibit the functions,

considering both the workable range of values of the variables and
'

the suitable slope of the curves.

The student should read §12 a second time before proceeding with

the following exercises, giving especial care to instructions (4), (5), and

(6) of that section.

1. Classify the graphs of formulas (1) to (27), §31, as to parabolic

or hyperbolic type.
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2. Graph the formula v^ = 2gh, or v = y/lgh = 8.02hi, if h range

between. 1 and 100, the second and foot being the units of measure.

See formula (5), §31.

The following table of values is readily obtained

:

h\ 1 5 10 20 30 40 50 60 70 80 90 100

v\ 8.02 17.9 25.3 35.8 43.9 50.7 56.7 62.1 67.1 71.7 76.0 80.2

Use 2 cm. = 10 feet as the horizontal unit for h, and 2 cm. = 10 feet

per second as the vertipal unit for v. The graph is then readily con-

structed without change of unit or other special expedient.^

3. Graph the formula q = 3.37Lhi fori = 1, and for h = 0, 0.1,

0.2, 0.3, 0.4, 0.5. See formula (17), §31. Use 4 cm. = 0.1 for

horizontal unit for h and 2 cm. =0.1 for vertical unit for q.

4. Draw a curve showing the indicated horse power of a ship I.H.P.

= S'Di/C for C = 200 if the displacement D = 8000 tons, and for

the range of speeds iS = 10 to S = 20 knots. See formula (14), §31.

For the vertical unit use 1 cm. — 1000 h.p. and for the horizontal

unit use 2 cm. = 1 knot. Call the lower left-hand corner of the paper

the point (S = 10, I.H.P. = 0).

5. From the formula expressing the centripetal force in pounds of a

rotating body,

F = 0.000341 ITiJiV^

draw a curve showing the total centripetal force sustained by a 36-inch

automobile tire weighing 25 pounds, for all speeds from 10 to 40 miles

per hour. See formula (13), §31.

Miles per hour must first be converted into revolutions per minute

by .dividing 5280 by the circumference of the tire and then dividing

the result by 60. This gives

1 mile per hour = 9J revolutions per minute

If V be the speed in miles per hour the formula for F becomes

F = 0.000341(1.5)25(9J)2F2 = l.llF^

For horizontal scale let 4 cm. = 10 miles per hour and for the vertical

scale let 1 cm: = 100 pounds.

6. Draw a curve from the formula / = m/r'^ showing the accelera-

tion of gravity due to the earth at all points between the surface of

the earth and a point 240,000 miles (the distance to the moon) from

the center, if / = 32.2 when radius of the earth = 4000 miles.

It is convenient in constructing this graph to take the radius of

the earth as unity, so that the graph will then bo required of / = 32.2/r^
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from r « 1 to r = 60. In order to construct a suitable curve several

changes of units are desirable. See Kg. 44. One centimeter repre-

sents one radius (4000 miles) from r = to r = 10, after which the

scale is reduced so that 1 mm. represents one radius. In the vertical

direction the scale is 4 cm. = 10 feet per second for < r < 5, 4 cm. =

1 foot a second for 5 < r < 10, and 4 cm. =0.1 foot a second for

10 < r < 60. Even with these four changes of units just used the

first and third curves are somewhat steep. The student can readily

improve on the scheme of Fig. 44 by a better selection of units.

40

80

20
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The answers to these questions are readily given. Consider first

the law of the falling body
s = 16.1i^ (1)

Make a table of values for values oi t = 1, 2, 4, 8, 16 seconds, as

follows

:

t
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percent, or any convenient percent. Then the corresponding pairs

of numbers in the other column of the table must also be related by

a fixed percent (of course, not in general the same as the first-

named percent), provided the functional relation is expressible by
means of a power function. If this test does not succeed, then

the function in hand is not a power function.

Since the fixed percent for the function is ot" if the fixed percent

for the variable be m, the possibility of determining n exists,

since the table of laboratory data must yield the numerical values

of both m and to"

36. Simple Modifications of the Parabolic and of the H]rperbolic

Types of Curves. In the study of the motion of objects it is

convenient to divide bodies into two classes: first, bodies which

retain their size and shape unaltered during the motion; second,

bodies which suffer change of size or shape or both during the

motion. The first class of bodies are called rigid bodies ; a mov-
ing stone, the reciprocating or rotating parts of a machine, are

illustrations. The second class of bodies are called elastic bodies
;

a piece of rubber during stretching, a spring during elongation or

contraction, a rope or wire while being coiled, the water flowing in

a set of pipes, are all illustrations of this class of bodies.

When a body changes size or shape the motion is called a

strain.

Bodies that preserve their size and shape unchanged may possess

motion of two simple types: (1) Rotation, in which all particles

of the body move in circles whose centers lie in a straight fine

called the axis of rotation, which line is perpendicular to the plane

of the circles, and (2) translation, in which every straight line of

the body remains fixed in direction.

We have already noted that the curve.

(1)
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to elongate or to contract all of the ordinates, depending upon
whether a > 1 or a < 1, respectively. The substitution of (j/i/a)

for y has therefore produced a motion or strain in the curve

y = x". Likewise

»=(?) («

can be made from

2/ = X" (4)

by multiplying all of the abscissas of (4) by a. The effect is

either to stretch or to contract all of the abscissas, depending

upon whether a > 1, or a < 1, respectively.

In general, if a curve has the equation

V = fix), (5)

then

(6)»=/(?)

is nlade from curve (5) by ' lengthening or stretching the XY-
plane uniformly in the x direction in the ratio 1 : a.

The statement just given is made on- the assumption that

a>l. If a<l then the above statements must be changed

by substituting shorten or contract for elongate or stretch.

The reasons for the above conclusions have been previously

stated : substituting (— ) everywhere in the place of x multiplies

all of the abscissas by a. That is, if (— I = x, then xi = ax, so that

Xi is a-fold the old x.

We shall now explain how certain of the other motions men-
tioned above may be given to a locus by suitable substitution for

X and y.

36. Translation of Any Locus. If a table of values be prepared

for each of the equations

as follows

:

y = x' (1)

2/ = (xi - 3)2 (2)

x
1
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and then if the graph of each be drawn, it will be seen that the

curves differ ordy in their location and not at all in shape or size.

The reason for this is obvious: If {xi — 3) be substituted for x

in any equation, then since {xi — 3) has been put equal to x, it

follows that a;i = a; + 3, or the new x, namely Xi, is greater

Fig. 45.—The curve y^ = (x — f)^ is the curve y' = x' translated

to the right :| units.

than the original x by the amount 3. This means that the new
longitude of each point of the locus after the substitution is greater

than the old longitude by the "fixed amount 3. Therefore the

new locus is the same as the original locus translated to the right

the distance 3.
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The same reasoning applies if {xi — a) be substituted for x,

and the amount of translation in this case is a. The same reason-

ing applies also to the general case y = f{x) and y = f{xi — a),

the latter curve being the same as the former, translated the dis-

tance a in the x direction.

As it is always easy to distinguish from the context the new x

from the old x, it is not necessary to use the symbol Xi, since the

old and new abscissas may both be represented by x. The
following theorems may then be stated:

Theorems on Loci

XI. If {x — a) be substituted for x throughout any equation, the

ecus is translated a distance a in the x direction.

XII. If {y — 6) be substituted for y in any equation, the locus is

translated the distance b in the y direction.

These statements are perfectly general: if the signs of a and

6 are negative, so that the substitutions for x and y are of the form

X + a' and y + b', respectively, then the translations are to

the left and down instead of to the right and up.

Sometimes the motion of translation may seem to be disguised

by the position of the terms a or b. Thus the locus y = 3x -\- 5

is the same as the locus y ~ Sx translated upward the distance 5,

for the first equation is really y — 5 = 3x, from which the conclu-

sion is obvious.

Exercises

The student is not required to draw the curves in exercises 1 to 8 below,

but is expected to make the comparisons by means of the theorems on loci

given above.

1. Compare the curves: (1) y- - 2x and y = 2(z — I); (2) y = x'

and 2/ = (x — 4)'; (3) y = x^ and y — Z = x^; (4) ?/ = x^ and

y = (x - 5)1; (5) y = 5x^ and y = 5{x + 3)2; (6) y = 2x' and

y = 2{x - fc)'; (7) y = 2x' and y = 2x' + k; (8) y + 7 = x' and

y = x' and y - 7 = x'; (9) Sy" = Sx' and 3(,y - 6)^ = 5(x - a)\

2. Compare the curves: (1) y = x^ and y = {x/2)^; (2) y = x^

and y = x^/8; (3) y — x' and y/2 = x'; (4) y = x^ and y = 2x'; (5)

2/2 = 3x« and {.y/bY = 3(x/7)3; (6) y^ = x' and y'^ = (3i)'; (7)

2/ = x* and y — ix^ (note: explain in two ways); (8) y = x^ and

2y = x' and y = 27x».
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3. Translate the locus y = 2a:'; (1) 3 units to the right; (2) 4 units

down; (3) 5 units to the left.

4. Elongate three-fold in the x direction the loci: (1) y^ = x; (2)

3y = x^; (3) y^ = 2x>; (4) y =2x + 7.

6. The loci named in exercise 4 have their ordinates shortened in

the ratio 2:1; write their equations.

6. Show that y = —-r-r and y = r are hyperbolas.
X ~i~ X o

7. Show that y = —-j-r^ is a hyperbola.

Note : Divide the numerator by the denominator, obtaining the

b b
equation y = 1 ^—r> oi y — 1 = —

8. Show that y
=^

or

x+b'"'" '
- x+b

X + a

xH>'

a — b
y = i+:x+b

is a hyperbola, namely the curve xy = a — b translated to a new
position.

« oi i 1 , N ^ ,i_s ^ + 3 , ^ 3x + 2 ,

9. Sketch: (a) y = ^-^7^; (b) y = ^qrj; (c) V =
"Jipj";

^""

id) y = —3-0"' Sketch a curve from which each curve is obtained

by translation.

10. Show how the graph for t/ = x^ + 4:X + 5 may be obtained from

the graph for y = x".

Hint: 2/ = x^ + 4x + 5 = x^ + 4x + 4 + 1 = (x + 2)^ + 1, or

2/ — 1 = (x + 2)2. Thus, the graph for y = x' + 4:X + 5 may be

obtained by translating the graph for y = x^ one unit up and two units

to the left.

11. Sketch the curves for:

(a) 2/ = x2 + 4x + 4; (b) y = x^ + 6x + 10;

(c) 2/ = x2 + 2x - 3; (d) 2/ = 4x2 4. 4^; + j.

(e) y = 4x' + 2x - 1; (f) y = ^x - x";

(s) 2/ = 6x - x"; (h) 2/ = x^ + 3x - 1;

(i) y ^2x^ +Zx; (j) j/ = 3x - 2x2;

(fc) 2/^ = X + 1.

12. Which of the curves of exercise 11 pass through the origin?

13. Sketch:

(a) x2 +2/2 = 1; (6) x^ + j/^ = 4;

(c) x2 + (2/ - i;2 = 1; (d) (x - 1)2 + 2/2 = 4;

(e) (x + 1)2 + (y - 2)2 = 5; (/) x2 + 2x + 2/* = 3.
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37. Shearing Motion. Let the dotted curve Pi'OPi, Fig. 46

be the graph of the semicubical parabola y = xi and OP2 the graph

of y "= X. The graph P'OP is constructed by taking its ordinate,

for any value of the abscissa,

equal to the (algebraic) sum of

the ordinates of the two given

curves. Thus, DP = DPi +
DPi and DP' = DPi' + DP,.

The equation of P'OP is y =
a;t + X, since DPi = xi and

DP2 = X.

Exercises

1. From the curves for y = x^

and y = ^x, sketch y = x^ -\- |.-c.

2. From the curves for y = x'^

and 2/ = — |x, sketch y = x''
—

^x.

3. From the curves for y = —
x^ and y = x, sketch y = x — x^.

4. From the curves for y = -
X

and y = X, sketch y = —\- x-

5. From the curves for y = -
X

and y = X, sketch y = x

38. General Case. Consider

the production of the curve

y = fix) + mx (1)'

from the curve

Fig —The shear of y
the line y = x.

and the straight line

y' =m (2)

(3)

Graphically, the curve (1) is seen to be formed by the addition

of the ordinates of the straight line y" = mx to the corresponding

ordinates of y' = f(x) . Thus, in Fig. 47, the graph of the func-

tion a;^ + a; is made by adding the corresponding ordinates of
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y = x^ and y = x. Mechanically, this might be done by draw-

ing the curve on the edge of a pack of cards (see Fig. 48), and then

slipping the cards over each other uniform amounts. The change

of the shape of a body, or the strain of a body, here illustrated, is

called lamellar motion or shearing motion. It is a form of motion

of very great importance.
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[a], second,, a shearing motion [m], and third, a translation [6].

Either motion may be changed in sense by changing the sign of

a, m, or 6, respectively.

The student may easily show that the effect of a shearing motion

upon the straight line y = mx + b is merely a rotation about

the fixed point (0, b). The line is really stretched in the direction

M
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represented by 2w instead of by m. Writing. this in the form

y = x^ + 2mx + m^ — m^,

or

2/ = (x + my — m^,

y + m'' = (x + mY, (5)

we see that (4) can be made from the parabola y = x'^ hy trans-

lating the curve to the left the amount m and down the amount m^.

(See Fig. 49.)

\
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2. Find the coordinates of the lowest point oi y — x^ — ix, that

is, put this equation in the form y — b = {x — a)^.

3. Compare the curves y = x' -\- 2x and y = x^ — 2x. (Do not

draw the curves.)

4. Explain how the curve y = 1/x + 2x may be formed from the

curve y = 1/x and oi y = 2x.
•

,
39. Rotation of a Locus. The only simple type of displace-

ment of a locus not yet considered is the rotation of the locus

about the origin 0. This will be taken up in the next chapter.

40. Roots of Functions. The roots, or zeros, of a function are

the values of the argument for which the corresponding value of

the function is zero. Thus, 2 and 3 are rgots of the function

x^ — 5x + 6, for substituting either number for x causes the

function to become zero. The roots of a;^ — a; — 6 are + 3 and
- 2. The roots of x^ - 6x^ + llx - 6 are 1, 2, 3.

The word root, used in this sense, has, of course, an entirely

different significance from the same word in "square root," "cube

root,'' etc. But the roots of the function x'' — 5x — 6 are also the

roots of the equation x' — 5x — Q = 0.

In the graph of the cubic function y = x' — x in Fig. 47, the

curve crosses the X-axis at a; = — 1, x = 0, and x = 1. These

are the values of x that make the function x^ — x zero, and are, of

course, the roots of the function a;' — x. No matter what the

function may be, it is obvious that the intercepts on the X-axis of

the curve y = f{x), as OA, OB, Fig. 47, must represent the roots

off(x).

Exercises

1. From the curve y = x^ sketch the curves j/ — 4 = x^; i/ = 4x^;

^y = x^; y = (x - 4)2.

„ ^, , x' . , X* , (x — 3)2
2. Sketch y = -i^;y = ^^ - z] V = -2 - ^'<y = 2ill 1
3. Sketch the curves y = x^; y = x^; y = 2x^; y = (x — 2)^;

y -2 = {x - 2)* and y = (x - 3)*.

4. Sketch the curves y' = (x-3)'; (2/
- 2)2 = x', and (y - 2)^ =

(x - 3)^

5. Graph yi = x and y^ = x' and thence y = x + x'.

6. Find the X-intercepts for the following

:

[a) y = x^ + 2x - 3; (b) y = x' - x; (c) y = 2x'' + x - 3.
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7. Find tbe roots of the following functions:

(a) x^ -Qx + 8; (6) x' +x -2;
(c) x' - X - 6; (d) 2x' - 5s + 2;

(e) Qx" +x - 1; (/) x^ + x'- 2x.

41. Intersectioii of Loci. Any pair of values of x and y that

satisfies an equation containing x and y locates some point on

the graph of that equation. Consequently, any set of values of

X and y that satisfies both equations of a system of two equations

containing x and y, must locate some point common to the

graphs of the two equations. In other words, the coordinates

of a point of intersection of two graphs is a solution of the equa-

tions of the graphs considered as simultaneous equations.

To find the values of x and y that satisfy two equations, we

solve them as simultaneous equations. Hence, to find the points

of intersection of two loci we must solve the equations of the

two curves. There will be a pair of values or a solution for each

point of intersection.

Thus, the intersection of the lines y = 3x — 2 and y = x/2 + 3

is the point (2, 4) and a; = 2, ?/ = 4, is the solution of the simul-

taneous equations.

Exercises

Find the point or points of intersection of the following pairs of loci:

l.y — X — S and y = 2x + 1.

2. y = x^ and y — x.

3. y = 2x^ and y = ix + 1.

4. 2/ = a;' and y — 2x.

5. y = — X and x' + y' = 2Sr.

Miscellaneous Exercises

1. Find the slope, the y-intercept, and the X-intercept for the

following:

Co) y =2x -3; (b) y = x + 2; (c) 3y - 6x = 10.

2. Write the equations of the lines determined by the following

data:

(o) slope 2 F-intercept 5

(ft) slope —2 y-intercept 5

(c) slope 2 y-intercept —5
(d) slope —2 y-intercept —5
(e) slope —2 X-intercept 4
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3. Doesg the line 3y — 2x = 1 pass through the point

:

(a) (1, 1); (6) (2, 2); (c) (-2, -1); (d) (0, 0); (e) ^3, 4).

4. Find the equation of a straight line with slope 2 and passing

through the point (3, 2).

5. Write the equations of the lines determined by the following

data:

(a) slope 1 and passing through (1, 1).

(6) slope —1 and passing through ( — 1, 1).

(c) slope 2 and passing through (1, —3).

{d) slope —3 and passing through (—2, —1).

6. Write the equation of a line passing through (2, 1) and (3, —5).

7. Write the equations of the lines passing through the following

pairs of points:

(a) a, 1) and (2, 3); ^6) (3, -1) and (-2, 1);

(c) (2, -3) and (2, 1); {d) (1, -5) and (-2, -3).

(e) (0, 2) and (3, 0); (/) (0, 0) and (-3, 2).

8. Make two suitable graphs upon a single sheet of squared paper
from the following data giving the highest and lowest average closing

price of twenty-five leading stocks listed on the New York Stock Ex-
change for the years given in the table:

Year
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foot' discharge, and 10° temperature. Start the temperature scale

with 60°, and place the 60, 6 cm. above the horizontal scale. Start

the discharge scale with 3.4 placed on the horizontal scale.

Discharge op a Seepage Ditch

Time,
Aug. 24, 1905
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points. The curve may not pass through all the plotted points.'

Begin to number the vertical axis with 2.90. The true origin will be

far below the sheet of paper.

11. Write the equations of the following curves after translated,

two units to the right; three units to the left; five units up; one unit

down; two units to the left and one unit down:

(a) y = 2x\ (6) y = -Zx'; (c) y = x^; {d) y =-
X

1 1 3 2

W2/=^; U)y=~^; (,g) y = x^-, (h) y = x^.

Sketch each curve in its original and also in its translated position.

12. Write the equation of each curve of exercise 11 when re-

flected in the X-axis; in the K-axis; in the line y = x. Sketch each

curve before and after reflection.

13. Shear each curve of exercise 11 in the line y = ix;in the line

y = — I x; in the line y = x; in the line y = — x. Sketch each curve

in its original and sheared position.

14. Draw on a sheet of coordinate paper the lines z = 0, x = 1,

x = —1, y = 0, y = 1, y = —1. Shade the regions in which the

hyperbolic curves lie with vertical strokes; and those in which the

parabolic curves lie with horizontal strokes. Write down all that

the resulting figure tells you.

15. Consider the following: y = x^, y = x~', y = xi, xy = — 1,

y = —x^,y^ = X*, y' = x% xy = I, x^ = — y', x* = — y'. In which

equation is y an increasing function of x in the first quadrant? For

which does the slope of the curve increase in the first quadrant? For

which does the slope of the curve decrease in the first quadrant?

16. Which of the curves of exercise 11 pass through (0, 0)? Through

(1, 1)? Through (-1, -1)?
17. Find the vertex of the curve y = x^ — 24x -|- 150.

Note : The lowest point of the parabola y = x^ may be called the

vertex.

Suggestion : It is necessary to put the equation in the form y — b

. =(x — ay. This can be done as follows: Add and subtract 144 on

the right side of the equation, obtaining

2/ = x^ - 24x + 144 - 144 + 150,

1 This curve is called » vertical velocity curve. In practical - work, however,
velocities are plotted along the horizontal axis and depths along the vertical axis,

and down from the origin. Your drawing gives the usual form of plotting if it is

turned 90" in a clockwise direction. Vertical velocity curves are parabolic in shape,

with the axis of the parabola parallel to the surface of the water. .
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3/ « (s - 12)» + 6,

or

y -Q = {x - 12)'.

Then this is the carve y = x^ translated 12 units to the right and 6

units up. - Since the vertex oi y = x^ is at the origin, the vertex of the

given curve must be at the point (12, 6).

18. Find the vertex of the parabola V = x' — 6x + 11.

19. Find the vertex of ^ = x' + 8x + 1.

20. Find the vertex oi 4 + y = x' — 7x.

21. Find the vertex of ^ = 9x' + 18a; + 1.

22. Translate y = 4a;' — 12a; + 2 so that the equation will have

tke form y = 4x'.

23. Does the line 2y == 5x — 1 pass through the point of intersec-

tion of y = 2a; + 1 and y — 3x — 2t



CHAPTER IV

THE CIRCLE AND THE CIRCULAR FUNCTIONS

42. Equation of the Circle. In rectangular coordinates the

abscissa x, and the ordinate %, of any point P (as OD and DP,
Fig. 50) form two sides of a right triangle whose hypotenuse

squared is a;^ + j/'. If the point P move in such manner that the

length of this hypotenuse remains
,

fixed, the point P describes a - '^

circle whose center is the origin

(Fig. 50). The equation of this

circle is therefore

x2 + y2 = aS (1) ^,

where a = OP, the radius of the

circle.

It is sometimes convenient to

write the equation of the circle,

solved for y, in the form

y = + Va^ - xK (2)

This gives, for each value of x, the two corresponding equal and

opposite ordinates.

To translate the circle of radius a so that its center shall be at the

point (h, k), it is merely necessary to write

(x - h)'' + (y - k)^ = a^. (3)

This is the general equation of any circle in the plane XY, for it

locates the center at any desired point, {h, k) , and provides for any

desired radius a.

Exercises

1. Write the equations of the circles with center at the origin having

radii 3, 4, 11, V2 respectively.

2. Write the equation of each circle described in exercise 1 in the

form y = + s/a^ — x^.

7 97

Fig. 50.—The circle.
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3. Which of the following points Jie on the circle s^ + j/^ = 169:

(5, 12), (0, 13J, C-12, 5), (10, 8), i9, 9), C9, 10)?

4. Which of the following points lie inside and which lie outside of

the circle x^ + y' = 100: ^7, 7), (10, 0;, (7, 8), (6, 8), (-5, 9),

(-7, -8), (2, 3), (10, 5), (\/40, VSO), (vlg, 9)?

43. The Equation, x^ + y^ + 2gx + 2fy + c = o (1)

may be put in the form (3) §42. For it may be written

x^ + 2gx + g^ + y^ + 2fy+P = g^+f-c
or

(x + gy + {v+ f)' ^ (Vg'+P-'c y, (2)

which represents a circle of radius -v/jf" +P — c whose center is at

the point (.— g, — /). In case g^ + P — c <.0, the radical

becomes imaginary, and the locus is not a real circle; that is,

coordinates of no points in the plane XY satisfy the equation. If

the radical be zero, the locus is a single point.

44. Any equation of the second degree, in two variables, lacking

the term xy and having like coefficients in the terms x^ and y^, repre-

sents a circle, real, null or imaginary. The general equation of

the second degree in two variables may be written

ax" + by' + 2hxy + 2gx + 2fy + c = 0. (3)

For, when only two variables are present, there can be present three

terms of the second degree, two terms of the first degree, and one

term of the zeroth degree. When a = b and h = this reduces

to the form of (1) above after dividing through by a.

Exercises

Find the centers and the radii of the circles given by the following

equations:

1. x' + y' = 25. Also determine which of the following points are

on this circle: (3, 4), (5, 5), (4, 3), (-3, -4;, (-3, 4), (5, 0), (2, V2i).

2. x' + 2/2 =16. 4. x^ + y' -36 = 0.

3. x'+y'- -i = 0. 6. X' +y'' +2x = 0.

B. y = ± -\/l69 — x'. Also find the slope of the diameter through

the point (5, 12). Find the slope of the tangent at (5, 12).
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7. 9 - a;2 - 2/2 = 0. 10. (x + a)' + (y - b)' = 50.

8. x^ +y' -Qy = 16. 11. x' + y^ + 6x - 2y ^ 10.

9. x^ -2x +y^ - &y = 16.. 12. x'' + y' - ix + 6y = 12.

13. x2 + j/2 - 4x - 82/ + 4 = 0.

14. 3x' + 3y' + 6x + 12y - 60 = 0,

16. Is x^ + 2y^ +3x — 4:y — 12 = Q the equation of a circle?

Why?
16. Is 2x' + 2y' — 3x + 4y — 8 = the equation of a circle?

Why?

45. Angular Magnitude. By tHe magnitude of an angle is

meant the amount of rotation of a line about a fixed point. If

a line OA rotate in the plane XY about the fixed point to the

Fig. 51.—Positive angles. Fig. 52.—Negative angles.

position OP, the line OA is called the initial side and the hne OP is

called the terminal side of the angle AOP. The notion of angular

magnitude as introduced in this definition is more general than

that used in elementary geometry. There are two new and very

important consequences that follow therefrom:

(1) Angular magnitude is unlimited in respect to size—that is,

it may be of any amount whatsoever. An angular magnitude

of 100 right angles or twenty-five complete rotations is quite

as possible, under the present definition, as an angle of smaller

amount.

(2) Angular magnitude exists, under the definition, in two
opposite senses—for rotation may be clockwise or anti-clockwise.
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As is usual in mathematics, the two opposite senses are distin-

guished by the terms positive and negative. If the rotation is

anti-clockwise the angle is positive; if clockwise it is negative.

In Fig. 51, AOPi, AOPi, AOP3, and AOPt are positive angles.

In designating an angle its ihitial side is always named first. Thus,

in Fig. 51, AOPi designates a positive angle of initial side OA.

In Fig. 52, AOPi, AOPi, AOP3, and AOPt are negative angles.

In Cartesian coordinates, OX is usually taken as the initial

line for the generation of angles. If the terminal side of an

angle falls within the first quadrant, the angle is said to be an

angle of the first quadrant. If the terminal side of any

angle falls within the second quadrant, it is said to be an "angle

of the second quadrant," etc.

Two angles which differ by any multiple of 360° are called

congruent angles. We shall find that in certain cases congruent

angles may be substituted for each other without modifying results.

The theorem in elementary geometry, that angles at the

center of a circle are proportional to the intercepted arcs, holds

obviously for the more general notion of angular magnitude here

introduced.

46. Units of Measure. Angular magnitude, like all other

magnitudes, must be measured by the application of a suitable

unit of measure. Four systems are in common use:

(1) Right Angle System. Here the unit of measure is the right

angle, and all angles are given by the number of right angles and

fraction of a right angle therein contained. This unit is famihar

to the student from elementary geometry. A practical illus-

tration is the scale of a mariner's compass, in which the right angles

are divided into halves, quarters and eighths.

(2) The Degree System. Here the unit is the angle corre-

sponding to xriT of a complete rotation. This system, with the

sexagesimal sub-division= (division by 60ths) • into minutes

and seconds, is familiar to the student. This system dates back

to remote antiquity. It was used by, if it did not originate

among, the Babylonians.

(3) The Hour System. In astronomy, the angular magnitude

about a point is divided into 24 hours, and these into minutes
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and seconds. This system is analogous to our system of measuring

time.

(4) The Radian, or Circular System. Here the unit of measure

is an angle such that the length of the arc of a circle described about

the vertex as center is equal to the length of the radius of the

circle. This system of angular measure is fundamental in me-

chanics, mathematical physics and pure mathematics. It must

be thoroughly mastered by the student. The unit of measure in

this system is called the radian. Its size is shown in Fig. 53.

O Radius

Fig. 53.—Definition of the Radian. The angle AOP is one Radian.

Inasmuch as the radius is contained 2ir times in a circumference,

we have the equivalents:

2% radians = 360°.

or 1 radian = 57° 17' 44".8 = 57° 17'.7 = 57°.3 nearly.

1 degree = 0.01745 radians.

The following equivalents are of special importance:

a straight angle = x radians.

a right angle = ^ radians.

60° = ^ radians.
o

45° radians.

30° = ^ radians,
o
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There is no generally adopted scheme for writing angular magni-

tude in radian measure. We shall use the superior Roman letter

"'" to indicate the measure. For example, 18° = O.SMW.
Since the circumference of a circle is incommensurable with its

diameter, it follows that the number of radians in an angle is

always incommensurable with the number of degrees in the angle.

The speed, or angular velocity, of rotating parts is usually

given either in revolutions per minute (abbreviated "r.p.m.")

or in radians per second.

47. Uniform Circular Motion. Suppose the line OP, Fig. 50,

is revolving counter-clockwise at the rate of ¥ per second, the

angle AOP in radians is then ht, t being the time in seconds re-

quired for OP to turn from the initial position OA. If we call d

the angle AOP, we have B = kt&s the equation defim'ng the motion.

The following terms are in common use:

1. The angular velocity of the uniform circular motion 's k

(radians per second).

2. The amplitude of the uniform circular motion is a.

3. The period of the uniform circular motion is the number of

seconds required for one revolution.

4. The frequency of the uniform circular motion is the number
of revolutions per second.

Sometimes the unit of time is taken as one minute. Also the

motion is sometimes clockwise, or negative.

Exercises

1. Express each of the following in radians: 135°, 330°, 225°, 15°,

150°, 75°, 120°. (Do not work out in decimals; use jr).

2. Express each of the following in degrees: 0.2'', ^u^' •fTr''' ^ir'-

3. How many revolutions per minute is 20 radians per second?

4. The angular velocity, in radians per second, of a 36-inch auto-

mobile tire is required, when the car is making 20 miles'per hour.

6. What is the angular velocity in radians per second of a 6-foot

drive-wheel, when the speed of the locomotive is 50 miles per hour?

6. The frequency of a cream separator is 6800 r.p.m. What is

its period, and its angular velocity in radians per second?

7. A wheel is revolving uniformly 30^ per second. What is its per-

iod and frequency?
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8. The speed of the turbine wheel of a 5-h.p. DeLaval steam turbine

is 30,000 r.p.m. What is the angular velocity in radians per second?

48. The Circular, or Trigonometric Functions. To each point

on the circle x^ + y^ = a? there corresponds not only an abscissa

and an ordinate, but also an angle 6< 360°, as shown in Fig. 50.

This angle is called the direction angle, or vectorial angle, of the

point P. When 9 is given, x, y, and a are not determined, but the

ratios y/a, x/a, y/x, and their reciprocals, a/y, a/x, x/y are de-

termined. Hence these ratios are, by definition(§6), fimctions

of d. They are known as the circular, or trigonometric, functions

of 6, and are named and written as follows:

Function of e
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taken as the triangle of reference for the angle 6. Smce the

triangles are similar we have

P^D, P.'Di' P^D, Pi'D,'

ODi OD,' OPi OPi'

etc., which shows that identical ratios or trigonometric functions of

6 are derived from the two triangles of reference.

49. 1 Elaborate means for computing the six functions have been

devised and the values of the functions have been placed in

convenient tables for use. The functions are usually printed to

3, 4, 5 or 6 decimal places, but tables of 8, 10 and even 14 places

exist. The functions of only a few angles can be computed by

o^V?

i'lG. 54.—Triangles of reference for angles of 30°, 45°, and 60°

elementary means; these angles are, however, especially important.

(1) The Functions of 30°. In Fig. 54a, if angle AOB be 30°,

angle ABO must be 60°. By constructing the equilateral triangle

BOB', each angle of triangle BOB' will be 60°, and

y = AB = ^BB' = ia.
Therefore '

sin 30°

Also,

OA = \0B^ - AB^ = Va^ - ia^ = iaVs.
Therefore

sin 30° = i,

1 Some will prefer to take §50 before §49.
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o 2 '

tan 30° = ^^- = ^,

1 30° ^ ^'

1 2V3

•=°*3«° =t^ = ^/3,

sec 30° =
cos 30° 3 '

CSC 30° =^^ = 2.
sm 30

(2) Functions of 45°. In the diagram, Fig. 546, the triangle

AOB is isosceles, or y = a;, and a^ = x^ + y' = 2x^. It follows

that a = X •\/2 = y -\/2-

Therefore

sin45° = ^=^,
2/ \/2 2 \

cos 45°
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cos 60° = ^ = i
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Table III

Natural Trigonometric Functions to Two Decimal Places

0'.
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8. Which is greater, sin 40° or 2 sin 20°?

9. Does an angle exist whose tangent is 1,000,000?

61. Signs of the Functions. The circular functions have, of

course, the algebraic signs of the ratios that define them. Of the

three numbers entering these ratios, the distance, or radius

a, is always to be taken as positive. It enters the ratios, there-

fore, always as a positive number. The abscissa and the ordinate,

X and y, have the algebraic signs appropriate to the quadrants in

which P falls. The student should determine the signs of the

functions in each quadrant, as follows: (See Fig. 50.)
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the signs of the abscissa and the ordinate in that quadrant.

Thus the triangle of reference for 120° is geometrically similar

to that for 60°. Hence, sin 120° =

and tan 120° = - Vs.

Exercises

V3
, but cos 120° = - i,

1. The student wiU fill in the blanks in the following table with

the correct numerical value and the correct sign of each function:

Function



110 ELEMENTARY MATHEMATICAL ANALYSIS [§54

In a similar way the functions of 90° may be investigated. Tiie

following table gives the variation of the functions as the angle

varies from 0° to 90°, from 90° to 180°, etc.:

Angle
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Also, since

we obtain

and likewise

y
a

X

a

tan e =

cot e =

y

sin 6

cos d

cos 6

(5)

(6)

Formulas (2) to (6) are the fundamental relations between the six

trigonometric functions. They must be committed to memory
by the student.

= tan csc-=l + cot-

FiG. 55.—Diagram of the relations between the six circular functions.

sin
cos

The above relations between the functions may be illustrated

by a diagram as in Fig. 55. The simpler, or reciprocal, relations

are shown by the connecting lines drawn above the functions.

The reciprocal equations and the formulas (2), (3), and (4) are

sufficient to express the absolute or numerical value of any function

of any angle in terms of any other function of that angle. The
algebraic sign to be given the result must be properly selected

in each case according to the quadrant in which the angle lies.

Exercises

All angles in the following exercises are supposed to be less than
ninety degrees.
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1. Sin e = 1/5. Find the values for the other five circular

functions.

Draw a right triangle whose hypotenuse is 5, whose altitude is 1

and whose base coincides with OX. In other words, make a = 5
and y = 1 in Fig. 56. Calculate x = v'25 — 1 = 2 \/6 and write

down all of the functions from their definitions.

2. Cos 9 = 1/3. Find esc 9.

Take a = 3 and a; = 1 in Fig. 56. Find y and then write down the

function from its definition.

3. Tan 9 = 2. Find sin d.

Take x = I and y = 2 in Fig. 56, calculate a, and then write

down the function from its definition.

O X A
Fig. 56.—Triangle of reference for B and for complement of S.

4. Sec e = 10. Find esc 6.

Take a = 10 and x = 1 and compute y.

6. Find the values of all functions of 9 if cot 6 = 1.5.

6. Find the functions of 9 if cos 8 = 0.1.

7. Find the values of each of the remaining circular functions in

each of the following cases:

(a) sin e = 5/13. (d) tan e = 3/4.

(6) cos e = 4/5. (e) sec 9 = 2.

(g) tan 6 = m.

{h) sin e =
Vc" + d'

(c) sec = 1.25. (/) tan e = 1/3.

Show that the following equalities are correct:

8. tan d cos 9 = sin 6.

9. sin e cot B sec 9 = 1.

10. (sin 9 + cos 9)2 = 2 sin 9 cos 9 + 1.

11. tan 9 + cot 9 = sec 9 esc 9.

12. Express each trigonometric function in terms of each of the

others; i.e., fill in all blank spaces in the following table;
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14. If C08 9 = 12/13 and sin 9 ia negative, find the remaining five

functions of 6.

15. If tan e = — \/3 and cos B is negative, find the remaining func-

tions of e.

16. If cos 9 = — 1/3 and sin 9 is positive, find the remaining

functions.

17. If tan 9 = 5/12 and sec 9 is negative, find the remaining

functions of 9.

18. If sin 9 = 3/5 and tan 9 is negative, find the jemaining func-

tions of 9.

Pl(k,h)

P lh,/c)

Fig. 58.—Triangles of reference for complementary angles.

65. Functions of Complementary Angles. Angles are said

to be complementary if their sum is 90°. Angles are said to be

supplementary if their sum is 180°.

Let be an angle in the first quadrant, and draw the angle

(90° -0) of terminal side OPi, as shown in Fig. 58. Let P and Pi

lie on a circle of radius a. Let the coordinates of the point P be

{h, k), then Pi is the point {k, h). Hence PiDi/OPi = h/a =
sin (90° -5). But from the triangle PDO, h/a = cos 8. Hence

Likewise,

sin (90° — 6) = cos 6

tan (90° - 0) = cot e

sec (90° - d) = esc e

These relations explain the meaning of the words cosine, co-

tangent, cosecant, which are merely abbreviations for comple-
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merit's sine, complement's tangent, etc. Collectively, cosine,

cotangent, and cosecant are called the co-functions. Likewise,

from Fig. 58,

cos (90° — 6) = siad

cot (90° - 0) = tan e

CSC (90° — d) = sec d

Later it will be shown that the above relations hold for all

values of d, positive or negative.

56. Graph of the Sine and Cosine. In rectangular coordinates

we can think of the ordinate y of a point as depending for its

value upon the abscissa or x of that point by means of the equation

y = sin X, provided we think of each value of the abscissa laid

off on the Z-axis as standing for some amount of angular mag-
nitude. Therefore the equation y = sinx must possess a graph
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draw at the left of a sheet of (unruled) drawing paper a circle of

rddius 1.15 inches, as the circle OP5B, Fig. 59. Take as the

origin and prolong the radius BO for the positive portion OX
of the X-axis. Divide OL into 1/5-uich intervals, each corre-

sponding to 10° of angle; eighteen of these correspond to the

length IT, if the radius BO (1.15 inches) be the unit of measure.

Next divide the F-axis proportionately to sin x in the following

manner : With a pair of bow dividers, or by means of a protractor,

divide the semicircle into eighteen equal divisions as shown

in the figure, thus making the length of each small arc exactly

1/5 inch. The perpendiculars, or ordinates, dropped upon OX
from each point of division, divided by the radius, are the sines

of the corresponding angles. Draw lines parallel to OX through

each point of division of this circle. ' These cut the F-axis at points

Ai, Ai, . Then if the radius of the circle be called unity,

the distances OAi, OA 2, OA3, . . are respectively the sines of

the angles OBPi, OBP2, OBP3, These are the successive

ordinates corresponding to the abscissas already laid off on OL.

The curve is then constructed as follows : First draw vertical lines

through the points of division of OX; these, with the horizontal

lines already drawn, divide the plane into a large number of rec-

tangles. Starting at and sketching the diagonals (curved to

fit the alignment of the points) of successive "cornering" rec-

tangles, the curve OCNTL is approximated, which is the graph

oi y — sin x. This curve is called the sinusoid or sine curve.

The curve is of very great importance for it is found to be the

type form of the fundamental waves of science, such as sound

waves, vibrations of wires, rods, plates and bridge members,

tidal waves in the ocean, and ripples on a water surface. The
ordinary progressive waves of the sea are, however, not of this

shape. Using terms borrowed from the language of waves, we
may call C the crest, TV the node, and T the trough of the sinusoid.

It is obvious that as x increases beyond 27r'', the curve is re-

peated, and that the pattern OCNTL is repeated again and again

both to the left and to the right of the diagram as drawn. Thus

it is seen that the sine is a periodic function of period 2t' or 360°.

\For lack of room only a few of the successive points Pi, P2, P3, , , , of (iivigign

ef the quadrant OPjPf are actually lettered in Fig. 59,
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The small rectangles lying along the X-axis are nearly squares.

They would be exactly equilateral if the straight Hne OAi was equal

to the arc OPi. This equality is approached as near as we please

as the number of corresponding divisions of the circle and of OX
is indefinitely increased. In this way we arrive at the notion of

the slope of a curve in mathematics. In this case wfe say that the

slope of the sinusoid at is + 1 and at A'^ is — 1, and at L is + 1.

We say that the curve outs the axis at an angle of 45° at and

at an angle of 315° (or — 45° if we prefer) at N. The slope at C
and at T is zero.

The, curve y = a sin x is made from y = sin x by multiplying

all of the ordinates of the latter by a. The number a is called

the amplitude of the sinusoid.

57. The Cosine Curve. In Fig. 60 let the angles COPi, COP2,

COP3, etc., be laid off from the position of the F-axis OY as initial

side. Then if the radius of the circle be called unity, the dis-

Y
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In Fig. 62 the curve ABODE is the cosine curve y = cos x. The

other curve is the sine curve y = sin x.

68. The Sine of a Negative Angle. In Fig. 61 the full drawn

curve represents the graph for y = sin x. The graph for

y = sin (— x) (1)

r

FiQ. 61.—The relation between y = aia x and y = sin (— s).

may be obtained by rotating the graph for y = sin x,

180° about the F-axis, by Theorem I on Loci. This gives the

dotted curve of Fig. 61. But from the properties of the sinusoid,

the dotted curve is the reflection in the Z-axis of the curve drawn

in full, hence the equation of the dotted curve may also be written

— 2/ = sin X. (2)

Hence, from (1) and (2)

sin (— x) = —sin x. (3)

69. Complementary Angles. Fig. 62 shows the curves for

y = cos X and for y = sin x. By the properties of these curves

Fig. 62.—Comparison of the sine and cosine curves.

it is obvious that the cosine curve may be regarded as the sine

curve translated x/2 units to the left. That is, the cosine curve

y = cos X (1)

has also the equation

y = sin (a; +
I)

• (2)
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Since this curve (the cosine curve) is symmetrical about the Y-

axis, its equation remains unchanged if we change x to {—x),

by Theorem I on Loci. Hence the cosine curve has also the

equation

y = sin
(
- ^ + |\ = smi^-x\- (3)

Comparing (1) and (3) we see that we have proved for all values

of X that

sin ( x| = cosx. (4)

By comparing (1) with (2) we see that sin (s + *) ~ ^°^ ^'

this fact is, however, niuch less useful than that represented by
equation (4).

Exercises

From 'the curves for y = sin x and y = sin( — x), Fig. 61 shows

that:

1. sin {x — v) = sin {—x) and hence sin (tt — s) = sin x.

From the curves for y = cos x and y =^ sxixx, Fig. 62, shows that:

2. sin X = cos {x — s). 3. cos x = sin {x — fir).

4. cos {x + -fir) = sin x. 5. cos (.—x) = cos x.

60. Trigonometric Functions of Negative Angles. We have

already shown, (3) §57, that

sin (— x) = — sin x. (1)

Also from Fig. 62, since the cosine curve is symmetrical about the

y-axis,

cos (—x) = cos X. (2)

Dividing the members of (1) by the members of (2) we find

tan (— x) = tan x. (3)

61. Odd and Even Fimctions. A function that changes sign

but retains the same numerical value when the sign of the argu-

ment is changed is called an odd function. Thus sin x is an odd

function of x, since sin (—x) = —sin x. Likewise x^ is an odd

function of x, as are all odd powers of x. The graph of an odd

function of a; is symmetrical with respect to the origin ; that is,
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if P is a point on the curve, then if the line OP be produced

backward through a distance equal to OP to a point P', then

P' also lies on the curve. The parts of 2/ = x' in the first

and third quadrants are good illustrations of this property.

A function of x that remains unaltered, both in sign and

numerical value, when the argument is changed in sign, is called

an even function of x. Examples are cos x, x', x^ — 3x*,

The graph of an even function is symmetrical with respect to the

y-axis.

Most functions are neither odd nor even, but mixed, like

x^ + sin X, x^ -\- x', and x + cos x.

Exercises

1. Is sin's an odd or an even function of x1 Is tan'a; an odd or

an even function of x7

2. Is the function sin x + 2 tan x an odd or an even'functfon? Is

sin X + cos x an odd or an even function of a;?

62. The Defining Equations Cleared of Fractions. The student

should commit to memory the equations defining the trigonometric

functions when cleared of fractions. In this form the equations

are quite as useful as the original ratios. They are written:

y = a sin 6 y = x tan 6 a = x sec 6

X = a cos 6 X = J cot d a = y esc 9

As applied to the right angled triangle, these three sets of equa-

tions may be stated in words as follows:

Either leg of a right triangle is equal to the hypotenuse multiplied

by the sine of the opposite, or by the cosine of the adjacent, angle.

Either leg of aright triangle is equal to the other leg multiplied by the

tangent of the opposite, or by the cotangent of the adjacent, angle.

The hypotenuse of a right triangle is equal to either leg multiplied

by the secant of the angle adjacent, or by the cosecant of the angle

opposite that leg.

These statements should be committed to memory.

63. Orthographic Projection. In elementary geometry we
learned that the projection of a given point P upon a given line or

plane is the foot of the perpendicular dropped from the given point
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upon the given line or plane. Likewise if perpendiculars be

dropped from the end points A and B of any line segment AB upon

a given line or plane, and if the feet of these perpendiculars be

called P and Q, respectively, then the line segment PQ is called the

projection of the line AB. Also, if perpendiculars be dropped

from all points of a given curve AB upon a given plane MO, the

locus formed by the feet of all perpendiculars so drawn is called the

projection of the given curve upon the plane MO.
To emphasize the fact that the projections were made by. using

perpendiculars to the given plane, it is customary to speak of them

as orthogonal or orthographic projections.

Pig. 63.—Orthographic projection of line segments.

The shadow of a hoop upon a plane surface is not the ortho-

graphic projection of the hoop unless the rays of light from the sun

strike perpendicular to the surface. This could only happen in

our latitude upon a suitable non-horizontal surface.

The shortening, by a given fractional amount, of a set of

parallel line segments of a plane may be brought about geometric-

ally by orthographic projection of all points of the line segments

upon a second plane. For, in Fig. 63, let AiBi, A^Bi, A3B3,

etc., be parallel line segments lying in the plane MN. Let their

projections on any other plane be Aid', AiC^', Ai'C-/, etc.,

respectively. Draw A\.C\ parallel to Ai'Ci' and Aid parallel to
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Aj'Cj', etc. Then since the right triangles AiBiCi, AiB^Ct,

AiBaCz, etc. are similar,

AiBi A2B2 AsBs

AiCi A2C2 AiC

Call this ratio a. It is evident that a>l. Substitute the

equals: A/d' = AiCi, Aj'Ca' = A^d, etc. i'hen

AiBi _ A2B2 _ A3B3 _ , _a
Ai'Ci' ~ Ai'Ci' " As'c ~ ' ~r

The numerators are the original lii\e segments; the denominators

are their projections on the plane MO. The equality of these

fractions shows that the parallel lines have all been shortened in

the ratio a: I.

The above work shows that to produce the curve y = (x/a)",

(o < 1), from 2/ = a;" by orthographic projection it is merely neces-

sary to project all of the abscissas oi y = x" upon a plane passing

through YOY' making an angle with OX such that unity on OX
projects into a length a on the projection of OX. To produce the

curve y = ax" (a < 1) from y = x" hy orthographic projection it is

merely necessary to project all of the ordinates oi y = x" upon a

plane passing through XOX' making an angle with OY such that

unity on OY projects into the length a on the projection of OY.
To lengthen all ordinates of a given curve in a given ratio, 1 : a, the

process must be reversed; that is, erect perpendiculars to the plane

of the given curve at all points of the curve, and cut them by a^lane

passing through XOX' making an angle with OY such that a length

a (,a> 1) measured on the new K-axis projects into unity on OF of

the original plane.

In Fig. 50 the projection of OP in any of its positions, such as

OPi, OP2, OP3, ., is ODi, OD2, OD3, . .
.

, or is the abscissa of

the point P. Thus for all positions

X = a cos 6.

The sign of x gives the sign, or sense, of the projection. In each

case is said to be the angle of projection.

This definition of projection is more general in one respect than

that discussed above. By the present definition the projection of

a line is negative if 90° < 9 < 270° (read, "if 6 is greater than 90°
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but is less than 270°"). This concept is important and essential

in expressing a component of a displacement, of a velocity, of an

acceleration, or of a force.

The cosine of 6 might have been defined as that proper fraction

by which it is necessary to multiply the length of a line in order to

produce its projection on a line making an angle d with it.

Exercises

1. A stretched guy rope 75 ft. long makes an angle of 60° with the

horizontal. What is the length of the projection of the rope on a

horizontal plane? What is the length of the projection of the rope

on a vertical plane?

2. Find the lengths of the projections of the line through the origin

and the point (1, -y/s) upon the OX and OF axes, if the Une is 12 inches

long.

3. A line 8 inches long makes an angle of 45° with the X-axis.

What is the length of its projection on the X-axis?

4. A velocity of 20 feet per second is represented as the diagonal

of a rectangle the longer side of which makes an angle of 30° with the

diagonal. Find the components of the velocity along each side of the

rectangle.

5. Show that the projections of a fixed hne OA upon all other

lines drawn through the point are chords of a circle of diameter OA

.

See Fig. 66.

6. Find the projection of the side of a regular hexagon upon the

three diagonals passing through one end of the given side, if the side

of the hexagon is 20 feet.

64. Polar Coordinates. In Fig. 64, the position of the point

P may be assigned either by giving the x and y of the rectangular

coordinate system, or by giving the vectorial angle 6 and the

distance OP measured along the terminal side of 6. Unlike

the distance o used in the preceding work, it is found conven-

ient to give the line OP a sense or direction as well as length;

such a line is called a vector. In the present Case, OP is known as

the radius vector of the point P, and it is usually symbolized by
the letter p. The vectorial angle 6 and the radius vector p are

together called the polar coordinates of the point P, and the

system used in locating the point is known as the system of polar
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co5rdinates. In Fig. 64 the point P' is located by turning from

the fundamental direction OX, called the polar axis, through an

angle 6 and then stepping backward the distance p to the point

P'; this is, then, the point (— p, 9). P' has also the coordinates

(p, 02), in which 6^ = + 180°; likewise Pi is (+ p', di) and

P'l is (— p', Bi). Thus each point may be located in the polar

system of coordinates in two ways, i.e., with either a positive or a

negative radius vector. If negative values of B be used, there

are four ways of locating a point without using values oi B>
360°. In giving a point in polar coordinates, it is usual to name

the radius vector first and then

the vectorial angle; thus (5, 40°)

means the point of radius vec-

tor 5 and vectorial angle 40°.

65. Polar Coordinate Paper.

Polar coordinate paper (form

MZ) is prepared for the con-

struction of loci in the polar

system. A reduced copy of a

sheet of such paper is shown

in Fig. 65. This plate is grad-

uated in degrees, but a scale of

radian measure is given in the

margin. The radii proceeding

from the pole meet the circles at right angles, just as the two

systems of straight lines meet each other at right angles in rect-

angular coordinate paper. For this reason, both the rectangular

and the polar systems are called orthogonal systems of coordinates.

We have learned that the fundamental notion of a function implies

a table of corresponding values for two variables, one called the

argument and the other the function. The notion of a graph implies

any sort of a scheme for a pictorial representation of this table of

values. There are three common methods in use: the double scale,

the rectangular coordinate paper, and the polar paper. The polar

paper is very convenient in case the argument is an angle measured

in degrees or in radians. Since in a table of values for a functional

relation we need to consider both positive and negative values for

both the argument and the function, it is necessary to use on the

Polar coordinates.
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polar paper the convention already explained. The argument, which

is the angle, is measured counter-clockwise if positive and clockwise

if negative from the line numbered 0°, Fig. 65. The function is

measured outward from the center along the terminal side of the angle

for positive functional values and outward from the center along the

terminal side of the angle produced backward through the center for

negative functional values. In this scheme it appears that four differ-

ent pairs of values are represented by the same point. This is made

FiQ. 65.—Polar coordinate paper.

clear by the points plotted in the figure. The points Pi, Pi, Pa, Pt

are as follows:

Pi: (6, 40°); (6, - 320°); (- 6, 220°); (- 6, - 140°).

Ps: (10, 135°); (10, - 225°); (- 10, 315°); (-10, - 45°).

Pa: (5, 230°); (5, - 130°); (- 5, 50°); (- 5, - 310°).

Pi-. {,&, 330°); (6, - 30°); (- 6, 150°); (- 6, - 210°).

The angular scale cannot be changed, but the functional scale

can be changed at pleasure.

In case the vectorial angle is given in radians, the point may
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be located on polar paper by means of a straight edge and the

marginal scale on form M3.
The point 0, Fig. 65, is called the pole and the line OA, the

polar axis.

Exercises

1. Plot upon polar coordinate paper the following: (a) (0.1, 30°;;

(6) (0.2,40°); (c) (0.6,120°); (d) (0.8,-30°); (e) (1.2,300°);

(/) (0.7, - 47°). Let 10 cm. = 1 unit for p.

2. Plot upon polar coordinate paper the following: (a) (1.3, 45°);

(6) (11.1, 137°); (cj (9.2, - 47°); (d) (8.5, - 216). Let 1 cm. = 1 unit

for p.

3. Plot upon polar coordinate paper the following: (a) (10, C);

(6) (9, D; (c) (8.2, 1.6'); (d) (12, 3.2"-). Let 1 cm. = 1 unit for p.

4. Explain why the locus for p = 3 is a circle with center at the

pole and radius equal to three units.

5. Draw the loci for p = 5 and p = 7.

6. Explain why the locus 8 = J tt is a straight line passing through

the pole and making an angle of 45° with the polar axis. Explain why
this locus is indefinite in extent and does not terminate at the pole.

7. Draw loci for: 9 = | tt, and d = — \ir.

8. Plot the locus for p = 9, if 9 is measured in radians. Use 2 cm.

as the unit for p.

66. Graphs of p = a cos 9 and p = a sin 0. These are two funda-

mental graphs in polar coordinates. The equation p = o cos 6

states that p is the projection of the fixed length a upon a radial

line proceeding from and making a direction angle 6 with a,

or, in other words, p in all of its positions must be the side adjacent

to the direction angle in a right triangle whose hypotenuse is the

given length o. (See §62 and Fig. 66.) It must be remem-

bered that the direction angle d is always measured from the fixed

direction OA. Hence, to construct the locus p = a cos 6, proceed

as follows: Draw a number of radical lines from 0, Fig. 66.

Project upon each of these the constant length OA, or a. These

projections are then radius vectors for p = a cos and a curve

drawn through their end points gives the required locus.

Thi locus is a circle since P is always at the vertex of a right

triangle standing on the fixgd hypotenuse a, and therefore the

point P is on the semicircle AOP; for, from plane geometry, a right

triangle is always inscribable in a semicircle.
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When 6 is in the second quadrant, as 62, Fig. 66, the cosine is

negative and consequently p is negative. Therefore the point

P2 is located by measuring backward through 0. Since, however,

P2 is the projection of a through the angle 62 (see §63), the

angle at P2 must be a right angle. Thus the semicircle OP2A
is described as d sweeps the second quadrant. When 6 is in

the third quadrant, as ds, the cosine is still negative and p is

measured backward to describe the semicircle APiO a second

time. As 6 sweeps the fourth quadrant, the semicircle OP2A is

described the second time. Thus the graph in polar coordinates

Fig. 66.—The graph of p = a cos e.

of p = a cos d is a circle twice drawn as 6 varies from 0° to 360°.

Once around the circle corresponds to the portion ABC of the

"wave" y = a cos x, in Fig. 61. The second time around the

circle corresponds to the portion CDE from trough to crest of the

cosine curve. Trough and crest of all the successive "wave
lengths" correspond to the point A, the nodes to the point 0.

The polar representation of the cosine of a variable bj^ means

of the circle is more useful and important in science than the

Cartesian representation by means of the sinusoid. The ideas

here presented should be thoroughly mastered by the student.

The graph of p = a sin 6 is also a circle, but the diameter is

the line OB making an angle of 90° with OA, as shown in Fig. 67.

Since p = a sin 6, the radius vector must equal the side lying

opposite the angle 6 in a right triangle of hypotenuse a, if
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0° < e < 90°. Since angle AOPi = angle OBPi, the point Pi

is the vertex of any right triangle erected on OB, or a, as a hypote-

nuse. The semicircle BP2O is described as increases from 90° to

180°. Beyond 180° the sine is negative, so that the radius vector

p must be laid off backward for such angles. Thus P3 is the

point corresponding to the angle 63 of the third quadrant. As 6

sweeps the third and fourth quadrants the circle OP1BP2O is

described a second time. Therefore the graph of p = asiad

is the circle tiince drawn of diameter a, and tangent to OA at 0.

The first time around the circle corresponds to the crest, the

second time around corresponds to the trough of the wave or

sinusoid drawn in rectangular coordi-

nates. corresponds to the nodes of

the sinusoid and B to the maximum and

minimum points, or to the crests and

troughs.

We have seen that the graph of a

function in polar coordinates is a very

different curve from its graph in rect-

angular coordinates. Thus the cosine

of a variable if graphed in rectangular

coordinates is a sinusoid; but if graphed

FiQ. g7_ xhe graph of i^ polar coordinates it is a circle (twice

p = a sine. drawn) . There is in this case a very

great difference in the ease with which

these curves can be constructed; the sinusoid requires an elabo-

rate method, while the circle may be drawn at once with com-

passes. This is one reason why the periodic, or sinusoidal rela-

tion, is preferably represented in the natural sciences by polar

coordinates.

Exercises

1. Show that if — o is negative, p = — a cos 9 is a circle, diameter

a, with center to left of the pole §a units.

2. Show that if — a is negative p — — a sin is a circle, diameter

o, with center below the pole 50 units.

67. Graphical Table of Sines and Cosines. The polar graphs

of p = a sin and p = a cos 9 furnish the best means of construct-

ing graphical tables of sines and cosines. The two circles passing
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through shown on the polar coordinate paper, form M3, Fig. 65,

are drawn for this purpose. A supply of this coordinate paper

should be in the hands of the student. If the diameter of the

sine and cosine circles be called 1, then the radius vector of any
point on the lower circle is the cosine of the vectorial angle, and
the radius vector of the corresponding point on the upper circle

,
is the sine of the vectorial angle. Thus, from the diagram of

form M3, we read cos 45° = 0.707; cos 60° = 0.500; cos 30° =
0.866. These results are correct to the third place.

Exercises

1. /From coordinate paper, form M3, find the values of the following

:

(a) cos 36°; (b) cos 62°; (c) cos 126°; (,d) sin 81°; (e) sin 25°; (/) sin 226°.

68. Graphical Table of Tangents and Secants. Referring to

Fig. 65, it is obvious that the numerical values of the tangents

of angles can be read off by use of the uniform scale bordering

the polar paper, form M3. The scale referred to lies just inside

of the scale of radian measure, and is numbered 0, 2, 4,

Thus to get the numerical value of tan 40° it is merely necessary to

call unity the side OA of the triangle of reference OAP, and then

read the side AP = 0.84; hence tan 40° = 0.84. To the same

scale (i.e., OA = 1) the distance OP = 1.31, but this is the secant

of the angle AOP, whence sec 40° = 1.31. By use of the circles

we find sin 40° = 0.64 and cos 40° = 0.76.

In case we are given an angle greater than 45° (but less than

135°) use the horizontal scale through B. Starting from B as

zero the distance measur/ed on the horizontal scale is the cotangent

of the given angle. The tangent is found by taking the reciprocal

of the cotangent.

Exercises

Find the unknown sides and angles in the following right triangles.

The numerical values of the trigonometric functions may be taken

from the polar paper. The vertices of the triangles are supposed

to be lettered A, B, C with C at the vertex of the right angle. The
small letters a, b, c represent the sides opposite the angles of the same
name. See also table of Natural Trigonometric Functions at end of

the book.

9
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By angle of elevation of an object ia meant the angle between a
horizontal line and a line to the object, both drawn from the point of

observation, when the object lies above the horizontal line. The simi-

lar angle when the object lies below the observer is called the angle of

depression of the object.

The solution of each of the following problems must be cheeked.

The easiest check is to draw the triangles accurately to scale on form
Ml, measuring the unknown sides and angles.

1. When the altitude of the sun is 40°, the length of the shadow cast

by a flag pole on a horizontal plane is 90 feet. Find the height of the

pole.

Outline of Solution. Call height of pole a, and length of shadow
b. Then A = 40° and B = 50°. Hence,

o = 6 tan 40°.

Determining the numerical value of the tangent from the polar paper,

we find

a = 90 X 0.84 = 75.6 ft.,

which result, if checked, is the height of the pole. To check, either

draw a figure to scale, or compute the hypotenuse c, thus

:

c = 90 sec 40°

From the polar paper find sec 40°. Then

c = 90 X 1.31 = 117.9

Since a^ + b' = c', we have c' - b^ = a'', or (c - 6) (c + 6) = a'.

Hence, if the result found be correct,

(117.9 - 90) (117.9 + 90) = (75.6) ^

5800 = 5715.

These results show that the work is correct to about three figures, for

the sides of the triangle are proportional to the square roots of the

numbers last given.

2. At a point 200 feet from, and on a level with, the base of a tower

the angle of elevation of the top of the tower is observed to be 60°.

What is the height of the tower?

3. A ladder 40 feet long stands against a building with the foot of

the ladder 15 feet from the base of the wall. How high does the ladder

reach on the wall?

4. From the top of a vertical cliff the angle of depression of a point
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on the shore 150 feet from the base of the cliff is observed to be 30°.

Find the heiglit of the cliff.

6. In walking halt a mile up a hill, a man rises 300 feet. Find the

angle at which the hill slopes.

If the hill does not slope uniformly the result is the average slope

of the hill.

6. A line 3.5 inches long makes an angle of 35° with OX. Find the

lengths of its projections upon both OX and OY.
7. A vertical cliff is 425 feet high. From the top of the cliff the

angle of depression of a boat at sea is 16°. How far is the boat from

the foot of the chff?

8. The projection of a line on OX is 7.5 inches, and its projection

on OY is 1.25 inches. Find the length of the line, and the angle it

makes with OX.
9.- A battery is placed on a cliff 510 feet high. The angle of depres-

sion of a floating target at sea is 9°. Find the range, or the horizontal

distance of the target from the battery.

10. From a point A the angle of elevation of the top of a monument
is 25°. From the point B, 110 feet farther away from the base of the

monument and at the same elevation as A, the angle of elevation is

15°. Find the height of the monument above the line AB.
11. Find the length of a side of a regular pentagon inscribed in a

circle whose radius is 12 feet.

12. Proceeding south on a north and south road, the direction of a

church tower, as seen from a milestone, is 41° west of south. From
the next milestone the tower is seen at an angle of 65° W. of S. Find

the shortest distance of the tower from the road.

13. A traveler's rule for determining the distance one can see from

a given height above a level surface (such as a plain or the sea) is as

follows :
" To the height in feet add half the height and take the square

root. The result is the distance you can see in miles." Show that

this rule is approximately correct, assuming the earth a sphere of

raldius 3960 miles. Show that the drop in 1 mile is 8 inches, and that

the water in the middle of a lake 8 miles in width stands lOf feet

higher than the water at the shores.

14. Observations of the height of a mountain were taken at A and
B on the same horizontal line, and in the same vertical plane with the

top of the mountain. The elevation of the top at A is 52° and at B is

36°. The distance AB is 3500 feet. Find the height of the mountain.

16. The diagonals of a rhombus are 16 and 20 feet. Find the

lengths of the sides and the angles of the rhombus.
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16. The equation of a line is y = f.r +10. Compute the shortest

distance of this Une from the origin.

17. Find the perimeter and area of ABCD, Fig. 68.

18. Find BC and the total area of ABCD, Fig. 69.

69. The Law of the Circular Functions. It will be emphasised

in this book that the fundamental laws of exact science are three in

number, namely: (1) The power function expressed hy y = ax"

where n may be either positive or negative; (2) the harmonic or

periodic law y = aaia nx, which is fundamental to all periodically

occurring phenomena; and (3) a law to be discussed in a sub-

sequent chapter. While other important laws and functions

arise in the exact sciences, they are secondary to those expressed

by the three' fundamental relations.

Fig. 68.—Diagram for
Exercise 17.

Fig. 69.—Diagram for

Exercise 18.

We have stated the law of the power function in the following

words (see §34):

In any power function, if x change hy a fixed multipk, y

changes by a fixed multiple also. In other words, if x change by

a constant factor, y will change by a constant factor also.

Confining our attention to the fundamental functions, sine

and cosine, in terms of which the other circular functions can

be expressed, we may state their law as follows :i

1 Chapter XI is devoted to a diacuasion of theae fundamental periodic laws.
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The circular functions, sin 6 and cos B, change periodically in

value proportionally to the periodic change in the ordinate and

abscissa, respectively, of a point moving uniformly on the circle

a;2 + 2/2 = aK

The use of the periodic law in the natural sciences is, of course,

very different from that of the power function. The student will

find that circular functions similar toy = a sin nx will be required

in order to express properly all phenomena which are recurrent

or periodic in character, such as the motion of vibrating bodies,

all forms of wave motion, such as sound waves, light waves,

electric waves, alternating currents and waves on water surfaces,

etc. Almost every part of a machine, no matter how compli-

cated its motions, repeats its original motions at stated intervals

and these recurrent positions are expressible in terms of the

circular functions and not otherwise. The student will obtain

a very limited and unprofitable idea of the use of the circular

functions if he deems that their principal use is in numerical

work in solving triangles, etc. The importance of the circular

functions lies in the power they possess of expressing natural

laws of a periodic character.

70. Rotation of Any Locus. In §36 we have shown that any

locus y = f{x) is translated a distance a in the x direction by

substituting (x — a) for x in the equation of the locus. Likewise

the substitution of (y — b) for y was found to translate the locus

the distance b in the y direction. A discussion of the rotation of

a locus was not considered at that place, because a displacement

of this type is best brought about when the equations are ex-

pressed in polar coordinates.

If a table of values be prepared for each of the loci

p = cos 8 (1)

P = cos (9i - 30°) (2)

as follows:
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Equation 1
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By the same reasoning as used above, we see that if in the polar

equation of any curve, d is replaced by (6 — a), the graph of the

new equation is the graph of the original equation rotated about

the pole through an angle a, but is otherwise unchanged.

Thboeems on Loci

XIV. If {d — a) be substituted for 6 throughout the polar equa-

tion of any locus, the curve is rotated through the angle a.

Note that the rotation is positive when a is positive and nega-

tive when a. is negative.

Exercises

paper draw: a = cos i1. Upon a sheet of polar coordinate

p = cos (9 - 60°); p = cos (9 + 60°).

2. Upon a sheet of polar coordinate paper draw: p = sin B;

p = sin (.9 - 30°j; p = sin [6
'+ 30°).

3. Upon a sheet of polar coordinate paper draw: p = cos 9;

P = cos (fl —
I) ; p = cos (9 + |j ; p = cos (9 — t).

71. Polar Equation of the Straight Line. In Fig. 71 let MN be

any straight line in the

plane and OT be the per- »^

pendicular dropped upon

MN from the pole 0. Let

the length of OT be a and

let the direction angle of

OT be a, where, for a

given straight line, a and

a are constants. Let p be

the radius vector of any

point P on the line MN
and let its direction angle

be d. Then, by definition,

- = cos (6 — or). Fig. 71.—^Equation of MN is a = p cos
P (e-a).

Therefore the equation of the straight line MN is

a = p cos {d — a), (1)
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for it is the equation satisfied by the (p, 6) of every point of the

line. This is the equation of any straight line, for its location is

perfectly general. The constants defining the line are the per-

pendicular distance a upon the given line from 0, and the direction

angle a of this perpendicular. The perpendicular OT, or a, is

called the normal to the line MN, and the equation (1) is called

the normal equation of the straight line.

The equation of the circle shown in the figure is

Pi = o cos {6 — a), (2)

in which pi represents the radius vector of a point Pi on the circle.

The relation pi p = a^, which can be deduced from (1) and (2),

is interesting. Because of it, the circle is often called the inverse

of the line MN with respect to the point 0.

Exercises

1. Write the polar equation of the line tangent tp the circle p =

5 cos (9 — 30°) at the end of the diameter passing through the pole.

2. A line is 3 units distant from the pole and makes an angle of

45° with the polar axis. Write its polar equation.

3. Describe the curves p = 10 cos I * — 4) and 10 = p cos ( ^ ~ i) •

Draw the following circles

:
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These are the equations of transformation that enable us to write

the equation of a curve in polar coordinates when its equation

in rectangular coordinates is known, or vice versa. Thus the

straight line x = 3 has the equation

p cos 6 = 3

in polar coordinates. The line x + y = 3 has the polar equation

p cos d + p sin 6 = 3.

The circle x^ + y^ = a^ has the equation

p^cos" 9 + p2 sin^ e = o^
or

or

To solve equations (1) and (2)

for 8, we write

6 = the angle whose cosine is ->

P

6 = the angle whoser sine is -•

P

The verbal expressions "the
„„„!„ „,!,„„„ „„„; ;„ " „i„ Fig. 72.—Rectangular and polar
angle whose cosine is, etc., are

coordinates of a point P.
abbreviated in mathematics by
the notations "arc cos," read "arc-cosine," and "arc sin," read

"arc-sine," as follows:

6 = aic cos (x/p) (3)

9 = arc sin (y/p) (4)

Dividing the members of (2) by the members of (1) we obtain

y
tan = -J which, solved for 6, we write

= the angle whose tangent is
y

which may be abbreviated

d = arc tan (y/x)

and read "8 = the arc-tangent of y/x."

The value of p in terms of x and y is readily written

P = VxM^-

(5)

(6)
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Exercises

1. Write the polar equation of x' + y' + 8x = 0.

The result is p* + 8p cos fl = 0, or p = — 8 cos e.

2. Write the polar equations of (a) x' + y^ — 4j/ =0; (6) a;' + y'

- 6x - iy = Q; (c) x^ +y'- Qy = 4.

3. Write the polar equations of {a) x + y = 1; (6) x + 2y = 1;

(c) X + Vly = 2.

4. Write the rectangular equations of (a) p cos + p sin 9 = 4;

(6) p cos e — 3p sin 9 = 6.

5. Write the polar equation of x* + 2y' — 4x = 0.

6. Write the rectangular equation of p = 2 cos 9 + 3 sin 9.

Hint: Multiply both members of the equation by p, replace p' by
(x' + j/2), p cos 9 by X, and p sin 9 by y.

7. Write the rectangular equation of p = 3 cos 9 — 2 sin 9.

8. Write the rectangular equation of p = 5 sin 9 — 3 cos 9.

73. Identities and Conditional Equations. It is useful to make
a distinction between equalities like

(a - x){a + x) = a' - x\ (1)

which are true for all values of the variable x; and equalities like

x^ -2x = 3, (2)

which are true only for certain particular values of the unknown
number. When two expressions are equal for all values of the

variable for which the expressions are defined, the equality is

known as an identity. When two expressions are equal only for

certain particular values of the unknown number, the equality is

spoken of as a conditional equation. The fundamental formula

sin^ (j) + cos'' = 1

is an identity.

2 sin A + 3 cos ^ = 3.55

is a conditional equation. The symbol = is sometimes used to

distinguish an identity; thus

a' — a;' = (a — x){a'^ -\- ax + x'').

The following illustrations and exercises contain problems both

in the establishment of trigonometric identities and in the finding of

the values of the unknown number from trigonometric conditional

equations.
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The truth of a trigonometric identity may be established by
reducing each side to the same expression. In this work, however, the

student will be required to transform the left-hand side by means of the

fundamental relations (2) to (6), §64, until it is identically equal to the

right-hand side.

Facility in the establishment of trigonometric identities is largely a

matter of skill in recognizing the fundamental forms and of ingenuity

in performing transformations. All solutions of conditional equations

should he checked. The following worked exercises will illustrate the

method.

Illustration 1: Show that (1 — sin u cos u) (sin u + cos u) ^
sin' u + cos' u. Taking the left-hand member

(1 — sin u cos u) (sin u + cos u)

= sin u + cos w — sin^ u cos u — sin u cos^ u
= cos u {1 — sin^ m) + sin u (1 — cos' u)

= cos u cos' u + sin u Bin' u
= cos' u + sin' u.

This last expression is the right-hand member of the given identity.

Thus the identity is verified.

Illustration 2: Show that sec' a; — 1 = sec' x sin' x.

sec' a; — 1 = see's (1 -;— ) = sec'x (1 — cos' x) = see's sin's.
\ sec' x/

Illustration 3: Solve for all values of x less than 360° '

2 sin X + cos s = 2.

Transposing and squaring we get

cos' X =4 — 8sina;-|-4 sin' x.

Since sin' x + cos' s = 1,

1 — sin' s = 4 — 8 sin x + 4 sin' x,

5 sin' a;-8sins + 3=0,
sin s = 1 or 0.6

X = 90°, and 37° or 143° approximately.

Check: 2 sin 90° -t- cos 90° = 2 -|- = 2

Check: 2 sin 37°
-f- cos 37° = 1.2 + 0.8 = 2

Does 2 sin 143° + cos 143° = 1.2 - 0.8 = 0.4 = 2?

The last value does not check. The reasons for this will be dis-

cussed later in §98. Therefore the correct solutions are 90° and 37°

approximately.
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Exercises

1. Solve 6 cos" e + 5 sin 9 = 7 for all values of ff < 90°.

Suggestion: Write 6(1 — sin* 9) + 5 sin 9 = 7 and solve the

quadratic in sin 9.

6 sin" 9-5 sin 9 + 1 =0,
or

(3 sin 9 - 1)(2 sin 9 - 1) = 0.

sin 9 = i or J

= 19.6° approximately and 30°.

The results should be checked.

2. Prove that for all values of 9 (except ir/2 and 3ir/2, for which

the expressions are not defined)

sec* 9 — tan' 9 = tan* 9 + sec* 9.

3. Show that '

sec' u — sin* u = tan* u + cos* u,

for all values of the variable u except 90° and 270°, for which the

expressions are not defined.

4. Find u, if tan u + cot u = 2.

6. Find sec 9, if 2 cos 9 + sin 9 = 2.

6. Show that
sec a +1 tana
tan a ~ sec o — 1

Hint: Multiply both numerator and denominator of the left-hand

member by (sec a — 1).

7. Show that sec a + tan a = x
sec a — tan a

8. Show that sin* a + sin* a tan* a = tan* a.

9. Show that (esc* a — 1) sin* a = cos* a.

10. Show that
sin A _ 1 + cos A

1 — cos A ~ sin A
11. Show that 2 cos* m — 1 = cos* u — sin' u.

12. Show that cos' a — sin' a + 1 = 2 cos* a.

13. Show that sec* u + esc* u = esc* u sec* u.

14. Show that (tan a + cot o)* = sec* a esc* a.

16. Solve sec x — tan s + 1 = for all values of x less than 360°.

74. The Graph of p = a cos + b sin 0. Before reading this

section the student should review exercises 6 and 7, §72. Let us
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find the Cartesian equation for the curve whose polar equation is

p = a cos + 6 sin 6, (1)

where a and b are any constants, positive or negative. First

multiply each member of (1) by p.

ap cos B + bp sin 6 (2)

Since p^ = x^ + y^, p cos B = x, and p sin = y, equation (2)

beaomes
x^ + y^ = ax + by. (3)

Transposing and completing squares

[-ir-b-i]'
+ b'

(4)

Fio. 73.—The circles p = a cos e, p = b sin $, and p = a cos 9 +
6 sin e, or the circles OA, OB, and OC respectively.

This is the Cartesian equation of a circle with center at the point

(io, ib) and of radius iy/a' + 6^. The circle passes through the

pole or origin since the coordinates (0, 0) satisfy the equation

(3), and also passes through the point (a, 6), since these coordiT

nates satisfy (3). Thus if upon the diameters of the circles p =
o cos 6 and|P = 6 sin B, we construct a rectangle, the circle having

a diagonal of this rectangle as a diameter, is the locus of p =
aoosd + b sin B. See Fig. 73.
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Exercises

Draw the graphs for the following

:

1. p = 2 cos 9 + 2 sin 9. 2. p = 3 cos 9 + 2 sin 9.

3. p = — 2 cos 9 + 2 sin 9. 4. p = — 3 cos 9 — 2 sin 9.

5. In Fig. 74 let a =2 and a = 30°. Find the equation of each of

the four circles in the form p = a cos 9 + 6 sin 9.

p=ac°^^

Fig. 74.—Diagram for Exercise 5.

75. Additive Properties. The shearing of a curve in a straight

line, considered in §38, may be thought of as the addition of the

ordinates of the curve and of the straight line, corresponding to a

given value of the abscissa. This sum is the corresponding

ordinate of the new curve. In the more general case the curve

y = fW) + P'(x) may be constructed from the curves y = f(x)

and y = F{x) by adding their ordinates. Thus the curve for

y = x^-\— ) Fig. 75, was constructed by adding the ordinates of

the curves y = x^ and j/ = •

In the same way the curve for p = f(d) + F{6) may be con-

structed from the curves p = f{d), and p = F(,d) by adding the

radius vectors corresponding to the same value of the. vectorial

angle. Thus points on the circle p = 2 cos 6 + 3 sin 6, Fig. 73,

may be located by adding (using the bow dividers) the radius
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vectors of p = 2 cos 9 and p = 3 sin 6. That is, OP = OPi + OPi
for all positions of OP.

I Exercises

1. Plot on polar coordinate paper the curve for p =3 cos 9 + 2 sin 9

making use of the circles p = 3 cos 9 and p = 2 sin 9.

2. Plot on polar coordinate paper the curve for p = cos 9+1
making use of the circles p = cos 9, and p = 1. Note that when

90° < 9 < 270°, the p for p = cos 9 is negative, and that the addition

referred to above is algebraic addition.

3. Plot upon polar coordinate paper the curve for p = 1 + sin 9,

making use of the circles p = 1, and p = sin 9.

4. Plot upon polar coordinate paper the curve for p = 2 cos 9 — 1.

,6. Plot upon polar coordinate paper the curve for p = cos 9 + 2.

76. Graph of y = tan x. If this graph is to be constructed on
a sheet of ordinary letter paper, 8^ inches X U inches, it is desirable
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to proceed as follows:* Draw at the left of the sheet of paper a semi-

circle of radius 1.15 . . inches (that is, of radius = 18/5ir), so

that the length of the arc of an angle of 10°, or ir/18, radians will be

i of an inch. Take for the X-axis a radius COX prolonged, and

take for the F-axis the tangent OY drawn through 0, as in Fig.
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lines through J inch intervals on OX, thus dividing the plane

into a large number of small rectangles. Starting at 0, t, 2fir,

... — IT, — 2ir, . and sketching the diagonals of con-

secutive cornering rectangles, the curve oi y — tan x is approxi-

mated. Greater precision may be obtained by increasing as

desired the number of divisions of the' circle and the number of

corresponding vertical and hprizontal lines.

It is observed that the graph of the tangent is a series of similar

branches, which are discontinuous for x = ir/2, — ir/2, (3/2)ir,

— (3/2)ir, ... At these values of x the curve has vertical

asymptotes, as shown at AB, A'B', in Fig. 76.

If the number of corresponding vertical and horizontal lines

be increased sufficiently, the slope of the diagonal of any rectangle

gives a close approximation to the true slope of the curve at that

point.

It has already been noted that all of the trigonometric functions

are periodic functions of period 2v. It is seen in this case, how-

ever, that tan x has also the shorter period x; for the pattern

M'N' of Fig. 76 is repeated for^each interval ir of the variable x.

77. Graph of cot x. In order to lay off a sequence of values of

cot S on a scale, it is convenient to keep the denominator con-

P» Ps Pi Pr, P. P^ Pi^
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as the successive abscissas, the graph oi y — cot x is drawn, as

shown by the dotted curve in Fig. 76.

The sequence ODi, OD2, Fig. 77 is exactly the same as

the sequence OTi, OT2, . Fig. 76, but arranged in the

reverse order. Hence, the graph of the cotangent and of the

tangent are alike in general form, but one curve descends as the

other ascends, so that the position, in the planeZF, of the branches

of the curve are quite different. In fact, if the curve of the

tangents be rotated about 07 as axis and then translated to the

right the distance ir/2, the curves would become identical.

Therefore, for all values of x,

tan (7r/2 — x) = cot x. (1)

This is a result previously known.

78. Graph of y = sec x. Since sec 6 is the ratio of the radius

divided by the abscissa of any point on the terminal side of the

angle d, it is desirable, in laying off a scale of a sequence of values

of sec d, to draw a series of triangles of reference with the abscissas

in all cases the same, as shown in Fig. 78. In this figure the angles

were laid off from CQ as initial line. Thus

CTs/CSi = sec QCSi,

or, if CSi be unity, the distances like CTt, laid off on CQ, are the

secants of the angles laid off on the arc QSi,0 or laid off on the axis

OX.
The student may describe the manner in which the rectangles

made by drawing horizontal lines through the points of division on

CQ and the vertical Unes drawn at equal intervals aloiig OX, may
be used to construct the curve. If the radius of the circle be 1.15

inches, what should be the length of Oir in inches?

The student may sketch the locus oi y = esc x, and compare

with the locus y — sec x.

Exercises

1. Discuss from the diagrams, 59, 76, 78, the following statements:

Any number, however large or small, is the tangent of some angle.

The sine or cosine of any angle cannot exceed 1 in numerical value.

The secant or cosecant of any angle is always numerically greater^

than I (,or at least equal to 1),
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2. Show that sec (o ~ ^) ~ <'*° ^ ^°'' ^^ values of x.

3. If tan 9 sec 9 = 1, show that sin $ = KVs — 1) and find 9

by use of polar coordinate paper, Form M3.
4. Describe fully the following, locating nodes, troughs, crests, etc.

:

(a) y = sin [x -"^y (c) y = tan y> +lj'

(b) y = cos (^J + 1)
' (d) y = tan (x + 1).
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Exercises

Discuss tlie following topics from a consideration of the graphs of

the functions:

1. In which quadrants is the sine an increasing function of the

angle? In which a decreasing function?

2. In which quadrants is the tangent an increasing, and in which a

decreasing, function of its variable?

3. In which quadrants are the cos 0, cot 6, sec 9, esc 6, increasing

and in which are they decreasing functions of 9?

4. Show that all the co-functions of angles of the first quadrant are

decreasing functions.

1. Show that

2. Show that

Miscellaneous Exercises

tan' a . ,

T—r^

—

r- — sin' a
1 + tan' a

\/l — sin'a COS a

y/\ — COS

3. Show that cot' a — cos' a = cot' a cos* o.

4. Show that

s Vcsc' - 1*

6. Show that

6. Show that

7. Show that

Vsec'a — 1

1 + tan' a __ sin' a
1 + cot' a.

"
cos' a

1 + cos a
8. Show that

CSC a

\\ — sin a ,

\'-

—

-—
,

= sec a — tan a.
I + sin a

sin a , 1 + cos a
-\ ; = 2 CSC a

COS a.
cot a + tan a

9. Show that
1—

T

r-L = sin u cos M.
cot u + tan u

10. Show that

CBO* M (1 -r cos* m) — 2 cot' Mai.
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11. Find the distance of the end of the diameter of ,

p = 8 cos (9 - 60°)

from the line OX.
12. If PI = a cos 9, and P2 = a sin 6, find pi — pi when = 60°

and 0=5.
13. Find the polar equation of the circle x' + y' + Qx = 0:

14. For what value of 9 does p = 3.55, if p = 2 sin 9 + 3 cos 9?

Result: 9 = 23° 30' and 43° 30'. Hint: Draw the circles p = 3.55

and p = 2 sin 9 + 3 cos 9 on polar coordinate paper and find the

vectorial angles for the two points of intersection. This problem is

the same as: "Solve the equation 2 sin 9 + 3 cos 9 = 3.55 for 9."

16. Solve graphically the equation 2 sin 9 + 3 cos 9 = 2.

Hint: Draw on polar coordinate paper the curves p = 2 and

p = 2 sin 9 + 3 cos 9.

16. Solve graphically the equation 4 cos 9 — 3 sin 9= 3.5.

17. Find sin 9 if esc 9= vV_±A'.
a

18. A circular arc is 4,81 inches long. The radius is 12 inches.

What angle is subtended by the arc at the center? Give result in

radians and in degrees.

19. Certain lake shore lots are bounded by north and south lines

66 feet apart. How many feet of lake shore to each lot if the shore-

line is straight and runs 77° 30' E. of N.7

20. If 2/ = 2 sin A + 3 cos A - 3.55, take A as 20°; as 23°; as 26°

and find in each case the value of y. From the values of y just

found find a value of A for which y is approximately zero. This

process is known as "cut and try."

21. The line y = ^x ia to coincide with the diameter of the circle

p = 10 cos (9 — a). Find a.

22. The line y = 2x is to coincide with the diameter of the circle

p = 10 sin (9 + a). Find a.

23. To measure the width of the slide dovetail shown in Fig. 79,

two carefully ground cylindrical gauges of standard dimensions are

placed in the V'a at A and B, as shown, and the distance X carefully

taken with a micrometer. The angle of the dovetail is 60°. Find

the reading of the micrometer when the piece is planed to the required

dimension MN = 4 inches. Also find the distance Y. (Adapted

from "Machinery," N. Y.)

24. Sketch y = ix and y = sinx and then y = ix — sinx.

26. Sketch the curve y = cos .-c + 2 sin x, making use of the curves

y = cos X and ^ = 2 sin x.
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26. Find the maximum value of the function given in exercise 25.

Hint: Find the maximum value of p in the graph of p = cos 9

+ 2 sin e.

27. Find the maximum value of 2 cos x — 3 sin x.

28. Since p = cos 9 + 2 sin fl is a circle passing through the pole,

the equation may be put in the form p =' a cos (9 — a). Find a

and a.

Result: o = VS and a = 63° 20' approximately.

29. A circle is inscribed in a 30°, 60° right triangle. Find the diame-

ter of the circle (a) if the shorter leg of the triangle is 2 inches; (6)

if the longer leg is 2 inches; (c) if the hypotenuse is 4 inches, (d) Find

the length of the sides of the triangle if the diameter of the inscribed

circle is 2 inches.

Fig. 79.—Diagram to Exercise 23.

30. A circle is inscribed in a 45° right triangle. Find the diameter

of the circle if the legs of the triangle are 4 inches.

31. The center of the circle p'= 10 cos (9 — a) Ues on the Ijne

Zx — 2y = \. Find two possible values for a.

32. The center of the circle p = 10 sin (9 + a) lies on the line

X — 22/ = 6. JFind two possible values for a.

33. Write the Cartesian equations for:

(a) p = 2 cos 9 + 3 sin 9. (b) p = 2 cos 9 — 5 sin 9.

(c) p = 2 sin 9 — 5 cos 9.

34. Find the co6rdinates of the center and the radius for:

(o) x» + 2/2 - 2x - 4i/ + 4 = (d) 2x2 + 2y^ + 3x + by=
(5) x« + 2/' + 2x + 42/ + 4 = (e) 3x2 + ^yi _ gj. - y/2y = 10

(c) x' + !/» + 3x - 42/ = (/) x2 + ^2 + 7x- \^Zy = 25



§79] THE CIRCLE AND THE CIRCULAR FUNCTIONS 151

36. Which circles of exercise 34 pass through the origin?

36. Write the equation of a line passing through the origin and the

center of the circle x' + y^ — 3x — 5y = 6.

37. Write the equation of a Une parallel to3x —2y = Q and passing

through the center of x' + y'' — Sx — 2y = 0.



CHAPTER V

THE ELLIPSE AND HYPERBOLA

80. The Ellipse. If all ordinates of a circle be shortened by

the same fractional amount of their length, the resulting curve

is called an ellipse. For example, in Fig. 80, the middle points

of the positive and negative ordinates of the large circle were

marked and a curve drawn

through the points so selected.

The result is the ellipse

ABA'B'A.
If

a;2 + 2/2 = a* (1)

is the equation of a circle, then

x^ + {myY = o^ (2)

in which m is any constant > 1,

is the equation of an ellipse;

for substituting my for y divides

all of the ordinates by m, by

Theorem IX on Loci, §28.

Fig. 80.- -Construction of an
ellipse.

Dividing both members of (2) by a' we obtain.

-i + '-iV = 1. (3)

Let 6' be written in place of —^- Equation (3) becomes
m'-

V
+h = ^ (4)

which is the standard form of the equation of an ellipse.

81. Orthographic Projection of a Circle. The ellipse may
also be looked upon as the orthographic projection of the circle.

152
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Let ABCD, Fig. 81a, be a circle with a radius o. Let AOC, Fig.

816, be an end elevation of the same circle. Rotate this circle

about BOD as an axis through an angle, /J, to the position A"OC".
Project the rotated circle upon its original plane, into the curve

A'BC'D. We shaU show that A'BC'D is an ellipse. Take any

point P upon the original circle. It rotates into the point P", and

P" projects into P'. The equation of the circle is x^ + y^ = o",

where y = MP. To get the equation for the curve A'BC'D
replace MP by its equal MP'/cos /?. (See Fig. 81b.) Whence,

' +
(MP'y
cos''/3

Since MP' is the ^/-coordinate of P',

x^ +
y2

cos'/3

A
P /
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the floor by a circular hoop held at any angle in the path of vertical

rays of light is an ellipse.

If the abscissas of a circle be lengthened by amounts propor-

tional to their lengths, the resulting curve is an ellipse. Let

x^ + y^ — V be the equation of the circle. Then
2

+ 2/2 = b2

is the equation formed by lengthening all abscissas in the raticf

1 : m, TO > 1. Dividing by Ji^ and replacing m'-h'^ by a}, we obtain

a^
"^

62 ^•

Thus the ellipse of Fig. 80 could have been formed by doubling all

of the abscissas of the circle BD'B'D. Hence we see that if all

parallel chords of a circle are lengthened or shortened by an

amount proportional to their length, an ellipse is formed. If the

deformation takes place in chords parallel to either the X- or

F-axis the equation is of the form (4) of the last section, called the

symmetric equation of the ellipse.

The diameter of the circle from which the ellipse may be formed

by shortening parallel chords is called the major axis of the

ellipse. Thus AA', or 2a, Fig. 80 is the major axis of ABA'B'.

The diameter of the circle from which the ellipse could have been

formed by lengthening parallel chords is called the minor axis of

the ellipse. Thus BB', or 26, Fig. 80 is the minor axis of ABA'B'.

The point of intersection of the axes is called the center of

the ellipse. One-half of the major and minor axes are called,

respectively, the semi-major and semi-minor axes of the ellipse.

The points A and A' are called the vertices of the ellipse.

82. Ejcplicit Form of Equation. The equation of the ellipse

o" ^ 62
^''

when solved for y may be put in the important form

.y = + - Va^-x^ (2)

The equation of the circle x^ + y^ = a^ solved for y is

y = ± Va^ - x2- (3)
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Equations (2) and (3) are in a form very useful for many purposes.

It is easy to see that (2) states that the ordinates of the ellipse are

the fractional amount hfa of the ordinates of the circle -(3)

.

The definition of the term function permits us to speak of j/ as a

function of x, or of a; as a function of y, in cases like equation (1)

above; for when x is given, y is determined. To distinguish this

from the case in which the equation is solved for y, as in (2), y, in

the former case, is said to be an implicit function of x, and in the

latter case, y is said to be an explicit function of x.

83. Section of a Cylinder. If a circular cylinder be cut by a

plane, the section of the cylinder is an ellipse. For, select any
diameter of a circular section of

the cylinder as the X-axis. Let

a plane be passed through this

diameter making an angle a
with the circular section. Then
if ordinates (or chords perpen-

dicular to the common X-axis)

be drawn in each of the two

planes, all ordinates of the sec-

tion made by the cutting plane

can be made from the ordinates

of the circular section by multi-

plying them by sec a. Hence

any plane section of a cylinder

is an ellipse.

84. Parametric Equations of the Ellipse. Let ABA'B'A, Fig.

82, be an ellipse whose semi-major axis is a and whose semi-minor

axis is 6. Upon AA' and BB' as diameters construct circles.

These circles are called, respectively, the major and minor auxiliary

circles. From the origin, draw any radius vector, as QP2P1,

making an angle d with the positive direction of the axis of x.

Through P2 and Pi draw lines parallel, respectively, to the X- and

F-axes, and let P be their point of intersection. It will be shown

that P is a point upon the ellipse.

Let the coordinates of P be a; and y. Then

-A construction of the
ellipse.

X = a cos (1)
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and

or

and

Then

y = b sin 6, (2)

- = cos 8,
a

f =sine.

^ + f"
= cos^ fl +sin2 e = 1,

which shows that P is upon the ellipse.

Equations (1) and (2) are called parametric equations of the

ellipse. 6 is called the variable parameter, or the eccentric angle.

The method used above of locating points upon the ellipse

constitutes one of the best practical methods of constructing an

ellipse when its axes are known. For, by it a large number of

points upon the ellipse may be easily, located and a smooth curve

drawn through them.

If the abscissa and ordinate of any point of a curve are ex-

pressed in terms of a third variable, the pair of equations are

called the parametric equations of the curve. Thus,

X = U
y = t + l

are the parametric equations of a certain straight line. Its

ordinary equation

y = ix + l

can be found by eliminating the parameter t.

Exercises

1. Write the equation of the ellipse formed by diminishing the

lengths of all ordinates oix' + y^ =4 by one-half of their length.

2. Write the equation of the ellipse formed by diminishing the'

lengths of all ordinates oi x' + y' =4 by one-third of their lengths.

3. Write the equation of the ellipse formed by lengthening all

ordinates of the circle x' + y^ = 16 by one-third of their length.

4. Write the equation of the ellipse formed by lengthening all

abscissas of the circle x' + ^' = 1 by one-fourth of their length.
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6. Write the equation of the ellipse whose semi-axes are 4 and 3.

6. Construct accurately an ellipse whose semi-axes are 3 inches and
2 inches.

7. Construct accurately an ellipse whose parametric equations are

x = 3 cos e, and y = 2sm e.

8. Write the parametric equations of an ellipse whose semi-axes

are 6 and 10.

9. Draw a curve whose parametric equations are x = cos 6, and

y = sin e.

10. Find the major and minor axes for the following

:

(c) 4x' + 25y' = 100 (d) 25a;2 + 4y' = 100

11. Find the axes of the ellipse k'x^ + h'y^ = hV.
12. Write the equation of the ellipse whose major and minor axes

are 10 and 6, respectively.

13. Find the axes of the elUpse whose equation is

2/ = ± i V36 — a;^ [Note that o must be 6.]

14. Write the parametric equations of the ellipse

y = + IVSl -x2. [a must be 9; b = f X 9 = 6.]

16. Discuss the curve

a; = ± I v'4 - 2/2.

16. Discuss the following curves by comparing them with

a;2 + 2/" = 1-

4x2 -1-2/2 = 1

\x^ H- 2/2 = 1.

17. Write the Cartesian equation of the curves whose parametric

equations are:

. , Fa: = 2 cos 9 , . Tx = 6 cos 6
i \ \^ ~ V^^ cos 9

^°'' ly = sin e ^ ' ly =2 sin S
^'^' ly = V2 sin B.

18. What locus is represented by the parametric equations

X = 2t + 1

2/ = 3« -f- 5?

19. What curve is represented by the parametric equations

X = 2 -H 6 cos e

and 2/ = 5 -1- 2 sin e?
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20. Show that the curve

X = 3 + 3 cos e

2/
= 2 + 2 sin 9

is tangent to the co6rdinate axes.

Rg. 83.—a mechanical cons. ru.tion of the ellipse. See Exercise 23.

21. The circle x' + y^ = 36 is picjocted upon a plane. Find an

equation of the projection if the angle between the plane and the

plane of the circle is 30°.

22. A right circular cylinder is cut by a plane making an angle of

60° with the axis of the cylinder. Find an equation of the curve of

intersection, if the radius of the cylinder is 6 units.

Fig. 84.—Theory of the common "ellipsograph" or elUptic trammel.
See Exercise 24.

23. The line AB, Fig. 83, whose length is (a + 6) moves in such a

way that the ends A and B always lie on the X- and K-axes, respect-

ively. Show that the point P describes an ellipse.

24. The-edge of a straight ruler, NMP, Fig. 84, is marked so that



§84] THE ELLIPSE AND HYPERBOLA 159

PM = b and PN = a. It is moved keeping M and N always on
AA' and BB', respectively. Show that P describes an ellipse. The
elliptic "trammel" or "ellipsograph" is constructed on this principle

by use of adjustable pins on PMN and grooves on AA' and BB'.

25. Draw a semicircle of radius a about the center C, Fig. 85, and
produce a radius to such that CTO = a + 6. From C draw any
number of lines to the tangent to the circle at T. From draw hnes

meeting the tangent at the same points of TN. At the points where
the lines from C cut the semicircle, draw parallels to CT. Show that

Fig. 85.—A graphical construction of an eUipse. See Exercise 25.

the points of meeting of the latter with the lines radiating from O
determine points on an ellipse, with center at and semi-axes equal

to a and b.

Hint ; OD = SM = a cos 9. From the triangles OPD and ONT
OD _PD
TN b

From the triangles CNT and CMS
SM{=OD) _ SC{==a sine)

TN ~ a
'
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Hence
PD =b sin e.

86. Origin at a Vertex. Equation (4) §80, equation (2) §82, and

equations (1) and (2) §84 are the most useful forms of the equa-

tions of the ellipse. It is obvious that the ellipse may be

translated by the methods already explained to any position in

the plane. The ellipse with center at (A, k) and its axes parallel

to the coordinate axes has the equation

{x - hy {y - kr . ,.s

a2
-r 52 - ^' ^^)

Of special importance is the equation of the ellipse when the origin

is taken at the left-hand vertex. This form is best obtained from

equation (2), §82, by translating the curve the distance a in the

X direction. Thus,

y=± -Vo» - (x - ay,
u

or

y^ = — X -„ x^,
a a^ '

or, letting 21 stand for the coeflBcient of x,

2/2 = 2lx -~^x^ = 2lxil - x/2a).
. (2)

For small values of x, x/2a is very small as compared with 1 and

the ellipse nearly coincides with the parabola y^ = 2lx.

86. Theorem. Any equation of the second degree, lacking the

term xy and having the terms containing x^ and y' both present and

wUh coefficients 0/ like signs, represents an ellipse with axes

parallel to the coordinate axes. This is readily shown by putting

the equation

ax^ + hy' + 2gx + 2fy + c = (1)

in the form (1) of the preceding section. The procedure is as

follows:

a{x' + 2^^x) +h[y' + 2f^y)^-c. (2)

a(x^ + 2lx + Q +&(2/^ + 2(. + |) = f + f-c. (3)
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Let M stand for the expression in the right-hand member of (3)

;

then we get

a b

This shows that (1) is an ellipse whose center is at the point

and which is constructed from the circles whose cen-
\ a' hi

ters are at the same point and whose radii are the square roots of

the denominators in (4). The major axis is parallel to OX or

OY according as a is less or greater than 6. The case when the

locus is not real should be noted. Compare §43.

iLLtrsTRATiON: Find the center and axes of the ellipse

a;2 _|- ^yi _|_ 6j; _ 8?/ = 23.

Write the equation in the form

x'^ + Qx + 4j/2 -Sy = 23.

Complete the squares

a" + 6x + 9 + 4y2 - 8?/ + 4 = 36.

Rewriting (a + 3)' + 4(!/ - l)' = 36.

(x + 3)'
, {y - ly ^

36 "^ 9

This is seen to be an ellipse whose center is at the point (—3, 1) and
whose semi-axes are 6 and 3.

87. Limiting Lines of an Ellipse. It is obvious from the

equation

y = +-^/o''-x^

that a; = a and x =. — a are limiting lines beyond which the curve

cannot extend; that is, x cannot exceed o in numerical value

without y becoming imaginary. The same test may be applied

to equations of the form

a;2 + 4x -h 92/2 - 6?/ -(- 4 = 0.
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Solving for y in terms of x

3y = l + Vl-{x + 2)2.

The values of y become imaginary when

(x + 2)2>I,

or

a: + 2>+lor<-l,
or

x> - 1 or < - 3.

These, then, are the limiting lines in the x direction. Finding

the limiting lines in the y direction in the same way, the rectangle

within which the ellipse must lie is determined.

In cases . like the above the actual process of finding the limiUng

lines and the location of the center of the ellipse is best carried out

by the method of §86.

Illustration: Find the coordinates of the center, the length of the

axes, and the equation of the limiting lines of

x' + ix + Qy^ - Qy = 4.

Completing the squares,

(X + 2y + 9(2/ - \Y = 9,

or

(X + 2)' (y - \y _g— +
J

1-

The center of the ellipse is at the point ( — 2, |), its semi-axes are 3 and

1. It may be constructed by translating the ellipse -„ + y = 1, two

units to the left and \ unit up. Hence the limiting lines are

a; = + 3 — 2 and v = + 1 + 3, or x = 1, x = — 5, ?/ = f , and

y--l
Exercises

Find the lengths of the semi-axes, the coordinates of the center, and

the equations of the limiting lines for the seven following loci and

translate the curves so that the terms in x and y disappear, by the

method of §87.

1. x^ - 6x -I- 42/2 + 82/ = 5.

2. 2/2 - 8i/ + 4x2 -h 6 = 0.
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8. 12x« - 48a; + 3y' + 6y - 13.

4. x^ + %2 - 12a; + 6y = 12.

5. 4a;« + y' -12x + 12 2/ - 2 = 0.

6. x' +2y' - X - V2y = 1/2.

7. Show that a;^ — 4a; + 4^^ ^ 82/ + 4 = is an ellipse.

8. Show that x' + 4a; + Qy' — 6y = passes through the origin.

9. Discuss the curves

:

,.,£+!! = , wM:-'

10. Compare the following parabolas with the standard parabola

y = a;2 by means of the appropriate Theorems on Loci:

k
(a) y = 2px2 (c) j/ = — x^

(h) y 2pa;2 (d) y 2px^ + 6.

What are the roots of the last function?

11. Write the symmetrical equation of the ellipse if its parametric

equations are:

X = (3/2) cos e

y = (2/3) sin e.

12. Discuss the curve y^ = (18/5)x - (9/25)x2.

13. Find the center of the curve y^ = 2x (6 — x).

14 Write the parametric equations for the following
:_

(a) x^ + 3y' =4; (6) 2x^ + 5y^ = 6; (c) 5x= + y^ = 7.

15. Write the parametric equations for

x' +2x + 4;/2 - l&y + 13 = 0.

Hint ; The equation may be put in the form

(x + ir
, (y - 2)'

Since x = 2 cos 6 and y = am. 9 are parametric equations for
x^ v'^
-7 +Y = 1, x=2cosfl — 1 and 2/ = sin 9 + 2 are parametric

equations of the given ellipse.

16. Write parametric equations for the following : (a) x' — 2x +
9yi - 6x = 0; (6) 4x2 + 4x + j/2 - 2?/ = 5. (c) 3;2 _ 4^ ^ ^2 + gj/ = 3.
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88. The Rectangular Hyperbola. In §34 the graph of xy = k,

where fc is a constant, was called a rectangular, or equilateral,

hyperbola. It was observed that the X- and F-axes are asymp-

totes of the curve. We shall now find the equation of the equi-

lateral hyperbola when rotated about the origin through an

angle of ( — 45°). For convenience let k be represented by jo^.

Since this is a positive number, the curve will appear in the first

and third quadrants, as shown by the curve RPS, Fig. 86.

Fig. 86.—The rectangular hyperbolas 2 xy — a' and x' — y' = a'.

Let P be any point on the original curve

2xy = aK (1)

Let P' be this poiat after rotation. Let OD' = x and let B'P' = y.

OB = EP = E'P' = D'K - D'H = OD' cos 45° - D'P cos 45°

= iV2 {X - y). (2)

DP = OE = O'E' = OK + KE' = OD' cos 45° + D'P cos 45°

^W2(.x + y).
,

(3)

But OD is x and DP is y in equation (1). Substituting then
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l\/2(,x — y) and i\/2{x + y) for x and y, respectively, in equa-

tion (1), we obtain

x2 - y2 = a2, (4)

the equation of the curve R'P'S', or the equation of the rectangu-

lar hyperbola 2xy = a^ after it has been rotated (— 45°) about

the origin.

The equation of the asymptotes of the curve x'^ — y'' = a''

are y = -\- x and y = — x.

The curve for xy = k is sometimes called the equilateral

hyperbola referred to its asymptotes as axes.

89. Parametric Equations. The parametric equations of the

rectangular hyperbola x^ — y^ = a^ are

X = a sec 8, (1)

and
y = a tan e. (2)

For, dividing (1) and (2) by a, squaring, and subtracting,

-, - ^ = sec" e - tan^ 9 = 1,

which is the same as equation (4) above.

Exercises

1. Find the equations of the following curves after rotation about

the origin through an angle of — 45°.

(o) 2xy = 1; (6) xy = 1; (c) xy = 4; (c) xy = f; (d) xy = 3;

(e) xy - 2 = 0.

2. Show that y^ — x^ = a^ is the equation of the curve 2xy = a'

after rotation about the origin through an angle of + 45°.

3. Show that x^ — y^ = a^ is the equation of the curve 2xy = — o'

after rotation about the origin through an angle of -|- 45°.

4. Find the equations of the curves given in exercise 1 after rota-

tion about the origin through an angle of -|- 45°.

6. Find the equations of the asymptotes for x* — y^ — 2x + 4y = 7.

Hint: Completing the squares

{X - 1)» - (2/ - 2)2 = 4
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Since the assnnptotes for i' — ^' — 4 are y •• ± x, the asymp-

totes for

(X - 1)2 - (V - 2)2 = 4 are 2/
- 2 = ± (a; - 1),

or

y = X + 1 and y +x = 3.

6. Find the equations of the asymptotes and sketch the curves for

(a) x' - y' +2x + ^y = 4;

(6) 2x^ - 22/2 + 4x - 81/ = 0.

90. The Hyperbola of Semi-axes a and b. The ellipse was

defined as the curve produced by lengthening or shortening all

ordinates of the circle x^ + y' = a', an amount proportional

to their lengths. Attention has been called to the fact that such

a curve results also from the orthographic projection of the circle,

or from taking the section of a right circular cylinder by a plane.

The parametric equations of the circle are

X = a cos 6,

and
y = a sin d;

and the parametric equations of the ellipse derived from this

circle as described above are

X = a cos d,

and
y = b sin 6.

Let us define the hyperbola as the curve obtained from the

equilateral hyperbola, x^ — y^ = a^, by shortening or lengthening

all ordinates by an amount proportional to their lengths. Its

equation is then obtained by replacing y in

x'^ — y^ = o' (1)

by my. Hence we have for the equation of the hyperbola

x^ — {myy = a^.

a^
By dividing by a^ and replacing —^ by h'^, we obtamm

a" b'
.-L--^, (2)
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the symmetrical form of the equation of the hyperbola. It is

easily shown that

X = a sec d, (3)

and
y = b tan e. (4)

are parametric equations of the hyperbola whose Cartesian equa-

tion is given by (2). For from (3) and (4) we obtain

-'
-|-, = sec^e - tan^e = 1.

Note that the parametric equations of the equilateral hyper-

bola, X = asecd and y — a tan 6 bear the same relation to the

parametric equations of the hyperbola, that the parametric

equations of the circle bear to the parametric equations of the

ellipse.

It is seen that if the ordinates of the asymptotes to the equilateral

hyperbola are affected in the same way as the ordinates of the

curve itself, i.e., if the asymptotes are considered as part of the

locus transformed, they are still the asymptotes to the hyperbola

after the transformation.

The equations of the asymptotes of the equilateral hyperbola are

y == ± X.

By the transformation they become

my = + X,

a
or, smce ™ ~

ft'

y=±^x, (5)

which are the equations of the asymptotes of

x^ 7/^ _
;^2
~ p - 1-

91. Construction of the Hyperbola. To construct the hypsr-

bola draw two concentric circles of radii OA = a and OB = 6,

as in Fig. 87. Divide each circumference, by means of bow
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dividers, into the same number of convenient intervals. Lay
ofif, on XOX', distances equal to a sec 5 by drawing tangents at

the points of division on the circumference of the a-circle; also lay

off distances equal to 6 tan 6 on the vertical tangent to the 6-

circle by prolonging the radii of the circle through the points of

division of the circumference. Draw horizontal and vertical

lines through the points of division of MN and XX', respectively,

dividing the plane into a large number of rectangles.

J
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Solving the equation (2) §90, for y, the equation of the hyperbola

may be written in the useful form

y = + ~Vx^^T^. (1)

Compare this equation with the equation of the ellipse, (2) §82.

It is easy to show that the vertical distance PG, Fig. 87, of any
point of the curve from the asymptote G'G can be made as small

as we please by moving P outward on the curve away from 0.

Write the equation of the hyperbola in the form

2/1 = V^^^^, (2)

and the equation of the asymptote GG' in the form

2/2 = ^s. (3)

Then

PG? = 2/2 - 2/1 = ^ (x - Va;^ - a-') (4)

Multiply both numerator and denominator in equation (4) by
X + Vx^ - a^.

PC — ~ =^ (5)
0-X + Vx^ - ffl^

Now, as X increases in value without limit the right side of (5)

approaches zero. Whence

PG = Oa,sx = a,

Exercises

1. Write the symmetrical equation of the hyperbola from the

parametric equations x = 5 sec 6, y = 3 tan 8.

2. Find the Cartesian equation of the hyperbola from the relations

X = 7 sec e, 2/ = 10 tan 8. Note that the graphical construction of

the hyperbola holds if 6 > u.

3. What curve is represented by the equation

25 16
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4. What curve is represented by the equation y = ^Vs' — o'?

5. Write the equation of a hyperbola having the asymptoteB

y = ±. (3/4) X, and transverse axis = 24.

6. Show that the curves

x^ + 6i 4?/ + 4 =
and

(.X + 3)2 -{y + 2Y = l

are the same, and show that each is a hyperbola.

Fig. 88.—Conjugate hyperbolas.

7. What curve is represented by the equations

X = h + as&a e

2/ = A; + 5 tan e?

8. Discuss the curve x' — 8x — 2y' — 12y = 6

.

92. Conjugate Hyperbolas. Let GAJ'JA'G', Fig. 88, be the

hyperbola whose equation is

6^
1. (1)

Its transverse axis is AA' = 2a and its conjugate axis is BB' = 26.
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Its asymptotes O'G and J'J are the diagonals, produced, of the

rectangle constructed upon A'A and B'B as sides.

The hyperbola GBJG'B'J', having B'B as transverse axis and

AA' as conjugate axis and G'G and J'J as asymptotes is called the

conjugate of GAJ'JA'G'.

If Y'OY were the Z-axis and if X'OX were the Y-axis the equa-

tion of the hyperbola
GBJG'B'J' would be

0=
1 (2)

By the above supposition we
have interchanged x and y.

Hence, to get the true equa-

tion we must interchange x

and y in equation (2).

Therefore the equation of

the hyperbola conjugate to

x^/a^ — 2/Y62 = 1 is

r
(3)

Fig. 89 shows a family of

pairs of conjugate hyper-

bolas.

Fig. 89.—A family of conjugate
pairs of hyperbolas with common
asymptotes. (An interference pat-
tern made from a glass plate under
compression. From R. Strauble,

"TJeber die Elsticitats-zahlen una
moduln des Glases." Wied. Ann.
Bd. 68, 1899, p. 381.)

Exercises

1. Sketch on the same pair of axes the four following hyperbolas and
their asymptotes:

a)



172 ELEMENTARY MATHEMATICAL ANALYSIS [§92

4. Sketch the curves:

and

16

r
16

t
9
= 1.

6. Write the equation of the hyperbola conjugate to

2/ = ± f y/x' - 64.

6. Compare the graphs of:

2/ = + f Vx^
3

7. Show that 3x^

Fig. 90.—Diagram for Exercise 13.

64

2/ = + f Vx' - 16

y = ± i Vx^ - 4

2/ = ± i Vx^ - 1

y = ±1 Va;' - 1/16

2/ = + f Vx^ -
42/' — 7a; + 52/ + 2 = is a hyperbola. Find

the position of the center and

of the vertices. The vertices

locate the so-called "limiting

Unes" of the hyperbola. Write

the equations of the asymptotes.

8. Show that a;' - 4a;, - ^y^

+ 42/ = 4 is a hyperbola. Find

the coordinates of its center,

the equations of its asymp-

totes, and the equations of its

limiting hnes.

9. Discuss the graphs:

x^ -y^ = 1

and
2/2 -x > = 1.

= 2, and find the10. Discuss the graph 16a;2 — y'^ — 40a; —
hmiting lines.

11. Write the equation conjugate to

^ _^ - 1

4 16

12. Write the equation conjugate to

a;' - 2a! - 2/' - 62/ = 24.

13. A difficult problem : Prove that if a circular cylinder be cut by



§92] THE ELLIPSE AND HYPERBOLA 173

a plane at an angle of 45° to the axis of the cylinder, and if then the

surface of the cylinder be unrolled into a flat surface, the curved

boundary of the surface is a sinusoid. Thus if a stove pipe be cut

at an angle of 45° to its axis, and if then the sheet metal be unrolled

into a flat sheet, the bounding curve is a sinusoid.

In Fig. 90 only one quarter of the cylinder is shown. If P be any

point on the section of the cylinder made by the cutting plane, and if

the length of the arc AD be called e and the distance DP be called y,

the problem is to show that y = sin 8, provided the radius of the cylin-

der be called 1. If the angle of cutting be different from 45°, the

equation of the curve is of the form y = bain 6, where b = tan BOC.



F{x, y) = xy sia -
(2)

CHAPTER VI

SINGLE AND SIMULTANEOUS EQUATIONS

93. Notation of Functions. It has been pointed out that the

symbols f(,x), F{x), 4>(,x), ^{x), etc., are used to denote functions of

X. Likewise the symbols f{x, y), F(x, y), <f>(x, y),^ix, y), etc., are

used to represent functions of two arguments x and y. For

example, f{x, y) in a particular problem may be used to stand
xy

for the function / , , „ . We may indicate this fact by writingV a;2 +y^

Again we may abbreviate the function of x and y, xy sin -> by

the symbol F(x, y). This abbreviation can be indicated by writing

The equation

F{x, 2/) = (3)

indicates that y is a function of a;; y is a function of x expressed

implicitly. If equation (3) were solved for y giving

V^Kx), (4)

J/ is a function of x expressed explicitly. Equations (3) and

(4) represent the same functional relation between x and y.

Thus x^ + 2/2 — a'' = shows that y is & function of x but the

functional relation is expressed implicitly. If the equation be

solved for y, giving y = ± ^a^ — x"^, the same functional relation

between x and y holds, but now 2/ is an explicit function of x.

In the same problem or discussion the symbols f{x), f(y), f{u),

or /(t)) denote the same functional form although the ftrguments

may differ. If

^(") = V#+t'
174
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f{v) means the same function but with every x replaced by y, thus

m - ^

Again, if in a particular problem or discussion

f{x) =x^ + 2x-l,
then fiy) = y^ + 2y - 1,

/(2) = 2= + 2-2 - 1 = 7,

f(- 1) = (- 1)^ + 2(- 1) - 1 = - 2,

/(O) = + - 1 = - 1.

Exercises

1. URx) mx' + 3x+2, find/(2/);/(3);/tO);/(-l);and/(-2).

2. If /(a;) ^ s' + 2x^ + X, find A-1); /(O); /(+1J; f(z); Al/v);
and /(<2).

3. liF(e) =sinfl, findf(,r/2);Ftx);F(0);F(x/6);F(V3)andF(|j-)

4. If*>(fl) s tanS, find¥>(0);¥>(7r/6);«>lir/3);#>(ir'/2);¥'(7r)and*>(|ir).

5. If /(I, 2/) ^ -==^' find/(2, 1);/ (0, 2);/ fe «) and/(m, n).

V a;'' + y'

Hint: To find /(2, 1) replace x by 2, and ?/ by 1 in the given func-

tion of X and y.

94. A poljmomial in x of the nth degree is defined as

aox" + aia;""' + UiX"'^ + + a„_ia; + On,

where the symbols, ao, ai, 02, . . ., stand for any real con-

stants whatsoever, positive or negative, integral or fractional,

rational or irrational, and where n is any positive integer. If

none, of the coefficients are zero the number of terms in a

polynomial in x of the nth degree is (n + 1).

In what follows in this chapter /(re) is supposed to stand for a

polynomial in x.

96. The Remainder Theorem. Let

f{x) = aax" + Oia;"-^ + ajx"-^ H- . . -|- On-iX + On. (1)

Then /(r) =aor» + aif-^ -|- a^r''-'^ + -f (h-\r + a„. (2)

By subtracting (2) from (1),

/(*) ~ /(') — "oCa;" — r") + a\{x''~^ — r"~^) -f

+ o^-i(s - r). (3)
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The right-band side of this equation is made up of a series of terms

containing differences of like powers of x and r, and, hence, by the

well-known theorem in factoring,' each binomial term is exactly

divisible by {x — r). The quotient of the right-hand side of (3)

by {x — r) may be written out at length, but it is sufficient to

abbreviate it by the symbol Q{x) and write

fix) -fir)

or

:/^=QW+;^- (5)

Equation (5) shows that f(r) is the remainder when f(x) is

divided by (a; — r). Thus we have the Remainder Theorem

:

If a polynomial in x be divided by (a; — r), the remainder which

does not contain x is obtained by writing, in the given function, r in

place of x. This theorem shows, for example, that the remainder

of the division

(.t' - 6x2 + iix _ 6) -f. (x - 4) is 43 - 6(4)2 + n(4) - 6, or 6;

also that the remainder of the division

(x' - 6x2 + iia; _ 6) 4- (x -I- 1)

is

(- 1)3 - 6(- 1)2 -1^ 11(- 1) - 6 = - 24.

The theorem enables one to write the remainder without actually

performing the division.

Exercises

Without performing the division find the remainder of the following

divisions

:

1. (x2 + 3x - 2) -=- (x - 1).

2. (x' + 3x2 + 2x -1) ^ (x - 2).

3. {x* + 4x= + 3x2 _ 62; - 1) -^ (I + i).

4. (x' - 3x2 + 2x - 1) -^ (x -2).

6. (x2 + 3x + 2) + (x -h 1).

6. (x2 + 3x + 2) -i- {x + 2).

96. Factor Theorem. From equation (5) of the preceding

section, we see that if fir) is zero, the remainder of the division of

> See Appendix, Chapter XV, p. 159.
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fix) by (x — r) is zero, or /(a;) is exactly divisible by (x — r), i.e.

(x — r) is a factor of f(x). Thus we have the Factor Theorem:

If a polynomial in x becomes zero when r is written in the place of x,

{x — r) is a factor of the polynomial. This means, for example, that

if 3 be substituted for x in the function x' — 6a;^ + Ha; — 6 and

if the result 3^ - 6(3)^ + 11(3) - 6 is zero, then {x - 3) is a

factor of x^ — Qx'^ + lis — 6.

The value r of the argument x that causes the function to take

on the value zero has already been named a root or a zero of the

function. ' The factor theorem may, therefore, be stated in the

form : A polynomial in x is exactly divisible by (x — r) where r is any

root of the polynomial.

The familiar method of solving a quadratic equation by
factoring is nothing but a special case of the present theorem.

Thus, if

x^ - 5x + Q = 0,

(x - 2)(x - 3) = 0;

and the roots are x = 2 and x = 3. The numbers 2 and 3 are

such that when substituted in x^ — 5x + 6 the expression is

zero; and the factors of the expression are x — 2 and ic — 3 by

the factor theorem.

Exercises

1. Tabulating the cubic polynomial /(a;) = x' — 6a;* -|" H^ —6, we
obtain:

X -3 - 2 - 1 - 1 1.5 2 2.5 3 4

fix), -120, -60, -24, -6, 0, +0.375, 0, - 0.375, 0, 6

What is the remainder when the function is divided by .r — 4?

By I + 2? By a; + 3? By a; - 1.5? By a: - 3?

Name three factors of the above function.

2. Find the remainder when a;* — 5x^ + 12.1;^ + 4a; — 8 is divided

by a; - 2.

3. Show by the remainder theorem that x" + a" is divisible by
X + a when n is an odd integer, but that the remainder is 2o" when n
is an even int^er.

4. Without actual division, show that x* — ix' — 7x — 24 is

divisible by a; — 3.

6. Show that a* + a^ — ab' — ¥ is divisible by o — b.

12
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6. Show that (x + l)Ha; - 2) - 4(a; - l)(a: - 5) + 4 is divisible

by I - 1.

7. Show that &x^ - 3x* - 5a;' + 5a;' - 2x - 3 is divisible by

x + 1.

8. Show that (b - c){h + c)' + (c - a){c + a)' + (o - b)(a + b)'

is divisible by (5 — c)(_c — a) {a — b).

Hint: First consider the function as a polynomial in 6; then as a

polynomial in c; and then as a polynomial in a.

9. Show that (6 - c)' + (c - o)' + (o - 6)' is divisible by
(6— c){,c— a)(fl— b).

97. An Equation with Given Roots. The factor theorem enables

us to build up a polynomial having given roots. If, for example, 1,

2, and 3 are roots, 2; — 1, x — 2, and a; — 3, are factors of the poly-

nomial. Hence (x — l)(x — 2) (x — 3), or x' — 6x' + llx — 6

is a factor of the polynomial. Introducing another factor k, which

does not contain x, cannot introduce another root, as a, for k can-

not contain the factor (x — a).

For the same reason, multiplying the equation x' — 6x^ -)- llx

— 6 = by fc, when k does not contain x, cannot introduce roots,

or solutions, in the equation. On the other hand if the equation

be multiplied by a function of x, roots of the equation may be

introduced or removed. For, clearly, if the multiplier contains the

factor (x — a), the root a will be introduced; and if the multiplier

contains the factor (x — 1) in its denominator, the factor (x — 1)

will be divided out from both numerator and denominator, if it

is a factor of the numerator and the root 1 wiU be removed from

the function.

Exercises

Build up polynomial equations having the following numbers for

roots:

1. 1, 3, and 4. 2. -1, 2, and -3. 3. 0, 2, and -1. 4. 1, 0, 0,

and 2.

98. Legitimate and Questionable Transformations. If one

equation is derived from another by an operation which has no

effect one way or another on the solution, it is spoken of as a

legitimate transformation ; if the operation is of such a nature that

it may ha.ve an effect upon the roots, it is called a questionable
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transfonnation, meaning thereby that the effect of the operation

requires examination.

In performing operations on the members of equations, the

effect on the solution must be noted, and proper allowance

made in the result. It cannot be too strongly emphasized that

the test for any solution of an equation is that it satisfy the original

equation. "No matter how elaborate or ingenious the process

by which the solution has been obtained, if it do not stand this

test it is no solution; and, on the other hand, no matter how simply

obtained, provided it do stand this test, it is a solution."^

By the principles or axioms of algebra, an equation remains

true if we unite the same number to both sides by addition or

subtraction; or if we multiply or divide both members by the

same number, not zero; or if like powers or roots of both members

be taken. But we have indicated in the preceding section that

these operations may affect the number of roots of the equation.

This is obvious enoHgh in the case already cited. Sometimes,

however, the operation that removes or introduces roots is so

natural and its effect is so disguised that the student is apt not to

take due account of its effect. Thus, the roots of

3(x - 5) = x(x - 5) + x' - 25 (1)

are — 1 and 5, for either of these when substituted for x will

satisfy the equation. Dividing the equation through by a; —5,

the resulting equation is

3 = a; + a; + 5.

This equation is not satisfied by a; = 5. One root has disappeared

in the transformation. It is easy to keep account of this if (1)

be given in the form

(a; - 5)(a; + 1) = 0,

but the fact that a factor has been removed may be overlooked

when the equation is written in the form first given.

A very important effect upon the roots of an equation results

from squaring both members. The student must always take

proper account of the effect of this common operation. To il-

lustrate, take the equation

a; + 5 = 1 - 2a;. (2)

' Chrystftl's Algebra,
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It is satisfied only by the value a; = — f . Now, by squaring

both sides of the equation, we obtain

a;'' + lOs + 25 = 1 - 4x + ix',

which is satisfied by either a; = 6 or a; = — |. Here obviously,

an extraneous solution has been introduced by the operation of

squaring both members.

It is easy to show that squaring both members of an equation

is equivalent to multiplying both sides by the sum of the left and

right members. Thus, let any equation be represented by

L(x) = R^x) (3)

in which L(x) represents the given function of x that stands on

the left-hand side of the equation and R{x) represents the given

function of x that stands on the right-hand side of the equation.

Squaring both sides,

[Lix)]^ = [B(,x)V.

Transposing,

[L(,x)r - [R\x)V = 0,

factoring,

[Lix) + R(x)] mx) - Rix)] = 0.

But (3) may be written

L{x) - R{x) = 0.

Thus, by squaring the members of equation (3) the factor

L(x) + R(x) has been introduced.

The sum of the left- and right-hand members of (2), above, is

6 — a;. Hence, squaring both sides of (2) is equivalent to the

introduction of this factor, or thq operation introduces the root

6, as already noted.

As another example, suppose that it is required to solve

sin a cos a = \ (4)

for a < 90°. Substituting for cos a, Equation (4) becomes

sin aVl — sin" a. - \, (5)

squaring

sin^ a(l — sin'' a) = y^,
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completing the square

sin* a. — sin'' a-\-\ = j-^-.

Hence,

sin a = + Vi + i \/3
=• ± 0.9659 or ± 0.2588.

Only the positive values satisfy (4); the negative values were

introduced in squaring (5). If, however, the restriction a < 90°

be removed, so that the radical in (5) must be written with the double

sign, then no new solutions are introduced by squaring.

Among the common operations that have no effect on the solu-

tion are multiplication or division by known numbers, or addition

or subtraction of like terms to both members; none of these intro-

duce factors containing the unknown number. Taking the

square root of both numbers is legitimate if the double sign be

given to the radical. Clearing of fractions is legitimate if it be done

so as not to introduce a new factor. If the fractions are not in

their lowest terms, or if the equation be multiplied through by an

expression having more factors than the least common multiple

of the denominators, new solutions may appear, for extra factors

are probably thereby introduced. Hence, in clearing of fractions,

the multiplier should be the least common denominator and the

fractions should be in their lowest terms. This, however, does not

constitute a sufficient condition, therefore iAe only certainty lies

in checking all results.

Exercises

Suggestions: It is important to know that any equation of the

form

oa;2» + bx'' + c =

can be solved as a quadratic by finding the two values of a;". Fre-

quently equations of this type appear in the form

dx' + ex~^ = f.

Likewise any equation of the form

aj(x) + 6V7(S) + c =

can be solved as a quadratic by finding the two values of VjCi) and
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then solving the two equationa resulting from putting \/f(x) equal to

each of them. One of these usually gives extraneous solutions.

These two tjrpes occur in the exercises given below.
Since operations which introduce extraneous solutions are often

used in solving equations, the only sure test for the solution of any
equation is to check the results by substituting them in the original

equation.

Take account of all questionable operations in solving the following

equations:

3a; 6,9+ 7.- Note : 3 la not a, root.' X -3 a; + 3a;-3
2. {x^ + 5x + 6)/{x - 3) + 4a; - 7 = - 15.

3. 3(a; - 5){x - l){x - 2) = (x - 5)(x + 2)(.x + 3).

Note : Divide by (a; — 5), but take account of its effect.

4. x'/a + ax = x''/h + 6a;.

6. oa;(ca; — 36) = 5o(36 — ex).

6. a;' — Ji* = n — a;.

7. (a; - 4)» + (a; - 5)» = 31[(a; - 4)^ - (a; - 5)'^]. Divide by
(a; - 4) + (a; - 5) or 2x - 9.

a;^ — 3a; 1
8. _ .—h 2 + _ - =0. If the fractions be added, multi-

plication is unnecessary. There is only one root.

9. X = 1 - Va;' - 7.

10. V a: + 20 - Va; - 1 - 3 = 0.

11. \/l5/4 + a;
= 3/2 + -y/g.

12. 20a;/V 10a; - 9 - VlOx - 9 = IS/VlOa; -9+9.

13. —;= ,
=

;;. Consider as a proportion and take
y/x- y/x-Z ^-^

by composition and division.

14. a;^_+ 5/2 = (13/4)x>^.

16. y/x^ - 2y/x + a; = 0. Divide by y/~x.

16. 2V'a;2 -5x + 2 - x' + 8x = 3x - 6. Call a;^ - 5a; + 2 = u'.

17. 4a;2 - 4a; + 20\/2a;2 - 5a; + 6 = 6a; + 66.

18. x-^ - 2a;-i = 8. 22. 8x^ - Sx'^ = 63.

19. x^^ - 5a;^i +4 = 0. 23. (x - a)" - 3(x - a)-» = 2.

20. 110a;-* + 1 = 21a;-2 24. 2a;^ - 3a;^ + x = 0.

21. Vx + 4x-J^ = 5.

99. Intersection of Loci. In §41 it was shown that the coordi-

nate of the points of intersection of two loci could be found by
solving the equations of the loci considered as simultaneous

equations.
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Let all terms of an equation be transposed to the left-hand

member, rendering the right-hand member zero. Let this left-

hand member be abbreviated by u. The equation then takes the

form

M = 0. (1)

In a similar way let a second equation be put in the form

« = 0. (2)

Fig. 91 .—Intersections
curves.

Let the graphs for equations (I) and (2) be represented in Fig.

91. The coordinates of any point on curve (1) make u equal to

zero. The coordinates of any point

on curve (2) make v equal to zero.

Consider the graph of

u + kv = Q, (3)

where h is any constant. The co-

ordinates of a point of intersection

of the u and v curve satisfy equa-

tion (3). For, these coordinates

make u zero and they make v zero,

then they make u + kv zero.. Fur-

ther, the coordinates of a point on

the u curve which is not on the v

curve do not satisfy equation (3). For these coordinates make
u zero but do not make v zero, then they do not make u + kv

zero. Similarly the coordinates of a point on the v curve which

is not on the u curve do not satisfy equation (3). Hence the

graph of (3) passes through all points of intersection of the

u and V curves but does not intersect these curves in any other

points. Thus to find the coordinates of the points of intersec-

tion of the u and v curve we may solve (1) and (3) or (2) and (3)

as simultaneous equations.

The locus of the equation

WW = (4)

is the M and v curves considered as a single locus. For, the coordi-

nates of a point on the u curve make u zero, then they make uv

zero. Similarly the coordinates of a point on the v curve make
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uv zero. The coordinates of a point neither upon the u curve

nor upon the v curve make neither u nor v zero, then they cannot

make uv zero. Hence the locus of (4) consists of all points on

the u and v curve but of no other points.

To find the points of intersection of the circle x^ + y' = 25 and the

straight line x + y = 7 yre solve the equations by the usual method, as

follows:

x^ + y' = 25\ (5)

X +y = 7j (6)

The graphs are a circle and a straight line, as shown in (1), Fig. 92.

Squaring the second equation, the system becomes

x^+y'> = 25\ (7)

X' + 2xy + 2,2 = 49 / (8)

The second equation represents the two straight lines shown in (2)

Fig. 92. The effect of squaring has been to introduce two extraneous

solutions corresponding to the points Ps and Pt. For, eCiuation (8)

may be written {x + y + 7)ix + y — 7) =0 while (6) from which it

was derived is x + y — 7 = 0.

Multiplying (7) by 2 and subtracting (8) from it, the last pair of

equations becomes

x^ -2xy + y* = l\ (6)

x' + 2xy + v" = 49
J (7)

which gives the four straight lines of Fig. 92, (.4). Taking t^e square

root of each member, but discarding the equation x + y + 7 = 0,

because it corresponds to the extraneous solutions introduced by the

questionable operation, we have:

x-y = ±l\ (8)

(9)

-2/= ±1\
+ y =7 /

By addition and subtraction we obtain the results:

(10)
X = S\

y=4J
a;
=4"!

2/ = 3/
(11)

represented by the intersections of the lines parallel to the axes shown

in Fig. 92, (5).
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This is a good illustration of the graphical changes that take place

during the solution of simultaneous equations of the second degree.

The ordinary algebraic solution consists, geometrically, in the succes-

sive replacement of loci by others of an entirely different kind, but all

passing through the points of intersection (as Pi, Pa, Fig. 92) of the

original loci. The final locii are straight lines parallel to the axes.

FiQ. 92.—Graphic representation of the steps in the solution of a
certain set of simultaneous equations.

Exercises

Find the coordinates of the points of intersection of the following

pairs of equations; sketch curves representing all equations involved
in the solution:

1. xy = 1

3x - 5y = 2

2. X' + y' = 5

y^ = 4x

Hint fob Ex. 4: Let u = x^andw

3. x' + X = 4j/*

3j + 6j/ = 1

4. x2 + 2/2 = 9

a;2 - yi = 4

= 1/2. Solve for u and v.
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Solve graphically the following

:

6. x' + y' = 25 6. x' + y^ = 25

X +y =2 x^ +y^ + 2x -6y + 6 =0

7. y = x^ + X — I

xy = 1.

100. Quadratic Systems.' Any linear-quadratic systena of

simultaneous equations, such as

y = mx + k

ax'' + hy^ + 2hxy -\- 2gx + 2fy + c =

can always be solved analytically; for y may readily be eliminated

by substituting from the first equation into the second. A
system of two quadratic equations may, however, lead, after

elimination, to an equation of the third or fourth degree; and,

hence, such equations cannot, in general, be solved until the

solutions of the cubic and bi-quadratic equations are known.

A single illustration will show that an equation of the fourth

degree may result from the elimination of an unknown number

between two quadratics. Thus, let

x^ — y = 5x

a;2 + j/2 = 10.

From the first, y = x^ — 5x. Substituting this value of y in the

second equation, and performing the indicated operations, we
obtain

a;4 _ lOx' + 26s^ - 10 = 0.

WhUe, in general, a bi-quadratic equation results from the

process of elimination from two quadratic equations, there are

special cases of some importance in which the resulting equation

is either a quadratic equation or a higher equation in the quadratic

form. Two of these cases are:

(1) Systems in which the terms containing the unknown num-
bers are homogeneous; that is, systems in which the terms con-

^ A large part of the remainder of this chapter can be omitted if the students

have had a good course in algebra in the secondary school.
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taining the unknown numbers are all of the second degree with

respect to the unknown numbers, such, for example, as

x'' — 2xy = 5

3x^ - lOy^ = 35.

(2) Systems in which both equations are symmetrical; that is,

such that interchanging x and y in every term does not alter the

equations; for example

x' + y^ - X - y = 78

xy + X + y = 39.

101. Unknown Terms Homogeneous. The following work
illustrates the reasoning that will lead to a solution when applied

to any quadratic system all of whose terms containing x and y
are of the second degree. Let the system be

x^ — xy = 2

2x^ + 2/2 = 9. (1)

Divide each equation by x'^ (or y'^), then

1 - iy/x) = 2/x^

2 + (y/xr = Vx'. (2)

Since the left members were homogeneous, dividing by x' renders

them functions of the ratio (y/x) alone; call this ratio m. Then
equations (2) contain only the unknown numbers m and x^.

The latter is readily eliminated by subtraction, leaving a quad-

ratic for the determination of m. When m is known, substituting

in (2) determines x, and the relation y = mx determines the

corresponding values of y.

The above illustrates the principles on which the solution is based.

In practice, it is usual to substitute y = mx at once, and then eliminate

x' by comparison; thus, from the substitution y = mxin (1), we obtain

x' - mx^ = 2

2x' + mV = 9. (3)
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Thence,

Whence,

or

a;2 = 2/(1 - m)

x^ = 9/(2 + m').

2/(1 -m) = 9/(2 + m^),

2m' + 9m = 5.

\

\
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These solutions should be written as corresponding pairs of values as

follows:

X = 2 X. = -2 X = (1/3)V3 a; = - (l/3)\/3

y = l v=-l t/='-(5/3)V3 y= (5/3)^3

This system can readily be solved without the use of the mx sub-

stitution by merely solving the first equation fpr y and substituting

in the second.

Graphically (See Fig. 93), the above problem is equivalent to

finding the intersections of the curves

:

x(x - y) = 2

(V2x)' + y' = 9

The first is a curve with the two asymptotes x = and x — y = 0.

That these lines are asymptotes is readily seen if the equation be
2

put in the form y = x If a; is positive, y is less than x, or the

curve is below the line y = x. If x is negative y is greater than x, or

the curve-is above the line y = x. As x increases in numerical value,

2
- approaches zero and the curve approaches the line y = x. As a;

approaches zero, y increases without limit. As a matter of fact, the

curve is a hyperbola, although proof that such is the case cannot be

given until the method of rotating any curve about the origin has been

explained. The second curve is obviously an ellipse generated from

a circle of radius 3 by shortening the abscissas in the ratio y/2 : 1. The
two curves intersect at the points:

X =2 - 2 0.557 . . . -0.557 ...

2/ = 1 - 1 - 2.887 ... +2.887 ...

The auxiliary lines, y = ^x and y = — 5x, made use of in the solution

are shown by the dotted lines.

102. Symmetrical Systems. Simultaneous quadratics of this

type are readily solved analytically by solving for the values of

the binomials x -\- y and x — y. The ingenuity of the student

will usually, show many short cuts or special expedients adapted

to the particular problem. The following worked examples point

oat some of the more common artifices used.

1. Solve

x + y =Q (1)

xy = 5. (2)
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Squaring (1)

x^ + 2xy + y^ = 36. (3)

Subtracting four times (2) from (3)

x'- - 2xy + 2/= = 16.

Whence

But from (1)

Therefore

a; = 5

2/ = l

2. Solve
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From (2) and (5) proceed as in example 1, and find

1 = 4 , X = 2.
r> and ,

y = 2 2/ = 4

Otherwise, divide (1) by (2) and proceed by the usual method.

4. Solve

a;2 + SI/ = ^ (a; + J/) (1)

y-'-'rxy = ^- (x + v). (2)

Adding (1) and (2)

{x + yy - 6{x + y)
'=

0, (3)

whence,

X + 2/ = or 6. (4)

Now, because x + y is a factor of both members of (1) and (2), the

original equations are satisfied by the unlimited number of pairs of

values of x and y whose sum is zero, namely, the coordinates of all

points on the line x -\- y = Q.

Dividing (1) by (2), we get

x/y = 7/11.

This, and the line x -\- y = &, from (4), give the solution:

y = T/Z

y = 11/3.

Graphically, the equation (1) is the two straight lines i;

{x-7/3){x + y) =0.

Equation (2) is the two straight lines

(2/ - n/3){x+y) =0.

These loci intersect in the point (7/3, 11/3) and also intersect every-

where on the line x + y = 0.

Exercises

1. Show that
3-2 + J/2 = 25

X + y = 1

has a solution, but that there is no real solution of the system

a;2 + j/2 = 25

X +y = U.
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2. Do the curves

Do the curves

3. Solve

x' + y' = 25

xy — 100, intersect?

a;2 + 2/2 = 25

xy = 12, intersect?

(x^ + y'){x + y) = 272

x^ + y^ + x'+ y = 42.

Note : Call x^ + y^ = u, and x + y = v.

4. Show that there are four real solutions to

x^ -\- y^ - \2 = X -\-y

xy-\-S = 2{x +y).

5. Solve x'' -\- y^ -\- x + y = li

xy = 6.

103. Graphical Solution of the Cubic Equation. The roots of a

cubic x' + ax' + j3x + 7 = (where a, /3, and 7 are given known
numbers) may be determined graphically as explained in §40.

Another method of solving the cubic equation graphically

will now be given. The roots of the equation

x^ + ax^ + ^x + y = (1)

are the JST-intercepts for the graph of

y = x^ + ax' + ^x + y. (2)

If we replace x in equation (2) by (x — k), where fc is a constant,

the equation (2) becomes

y = ix-ky+ a(.x - ky + /3(a; - k) + y,

or

y = x^ + {a- Zh)x' + (j3 - 2ak + ^k')x

-{¥ - al<!,'+ fik -y). (3)

a
It will be noticed that if k is chosen equal to -5 the coefficient of

x^ vanishes and equation (3) becomes

y = x^ + ax + b, (4)
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when a stands for the coefficient of x and h stands for the absolute

term of equation (3).

Since the graph for (4) differs from the graph of (2) only in that

it is translated -s units parallel to the Z-axis, the X-intercepts for

the first graph are ^ units greater (less if a is negative) than the

X-intercepts for the second graph. Hence, if the roots of

x^ + ax + h (5)

can be found, these roots decreased by o are the roots of (1).

Since an equation of the form

(2) can always be put in the form

of equation (4), we shall only

consider cubic equations of the

form

x^ + ax + h = Q. (6)

Consider the system of curves

2/ = x= (7)

y = — ax — b. (8)

Equation (7) gives the cubic pj^ 9 4.—Construction for
parabola, and (8) the straight graphical solution of .t' + a x+
line. Fig. 94. ^ = "•

Let P be a point of intersec-

tion of the cubic and the straight line. Let OD be the abscissa

of the point P. The value of OD is a root of equation (6). For
OD is a value of x for which a;' = — ax — b, or for which a;' +
ax + b = 0.

In drawing the graph of the cubic parabola, it is desirable to use, for

the ^-seale, one-tenth of the unit used for the x-scale, so as to bring a
greater range of values for y upon an ordinary sheet of coordinate

paper. The cubic parabola graphed to this scale is shown in Kg. 95.

The diagram gives the solution of s' — a; — 1 = 0. The graphs

y = x' and y = x + 1 aie seen to intersect at x = 1.32. This, then,

should be one root of the cubic correct to two decimal places. The
line y = X + 1 cuts the cubic parabola in but one point, which shows
that there is but one real root of the cubic. To obtain the imaginary
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Fia. 95.—Graphic solution of the cubic a;^ — a; — 1 = and
s3 _ 10 a; - 10 = 0.
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roots, divide a;^ — a; — 1 by x — 1.32. The result of the division,

retaining but two places of decimals in the coefficients, is

s2 + 1.32x + 0.7424.

. Putting this equal to zero and solving by completing the square, we
find

X = - 0.66 + 0.55V - 1,

in which, of course, the coefficients are not correct to more than two
places.

The equation

x^ - lOx - 10 = (9)

illustrates a case in which the cubic has three real roots. The straight

line y = IQx + 10 cuts the cubic parabola (See Fig. 95) at x = — 1.2,

X = — 2.4, and x = 3.6. These, then, are the approximate roots.

The product

(x + 1.2) (x + 2.4) (x - 3.6) = x' - lO.OSx - 10.37

should give the original equation (9). This result checks the work
to about two decimal places.

The x-scale of Fig. 95 extends only from — 6 to + 5. The same
diagram may, however, be used for any range of values by suitably

changing the unit of measure on the two scales; thus, the divisions of

the x-scale may be marked with numbers 5-fold the present numbers,

in which case the numbers on the y-aaaXe must be marked with num-
bers 125 times as great as the present numbers. These results are

shown by the auxiliary numbers attached to the i/-scale in Fig. OS.'

It is obvious that a similar process will apply to any equation of the

form
X" + ox + 6 = 0.

Exercises

Solve graphically the following equations and check each result

separately

:

1. x' - 4x -I- 10 = 4. x' - 15x - 5 = 0.

2. x' - 12x - 8 = 0. 5. x' - 3x + 1 = 0.

3. x' -I- X - 3 = 0. 6. x^ - 4x - 2 =0.
7. 2 sin 9 -f- 3 cos e = 3.5.

» For other graphical methods of solution of equationSt see Runge's Graphical
Methods," Columbia University Press, 1912. More work on the graphical solution
of the cubic will be found in Schultze, " Advanced Algebra," p. 484.
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Note: Construct on polar paper the circles p = 3.5 and p =
2 sin 9 + 3 cos 0.

8. 2x + sin a; = 0.6.

Note: Find the intersecJon oiy = sin x and the line y= — 2a;+ 0.6.

If 1.15 inches is the amplitude of 3/'= sins;, then 1.15 inches must be the
unit of measure used for the construction of the line y = — 2a;+ 0.6.

9. x' + X + 1 + 1/x = 0.

10. Show that a;' + a.T + b = can have but one real root if a > 0.

104. Method of Successive Approxunations. It must be re-

membered that the graphic methods of solving numerical equa-

tions by finding one or both coordiaates of points of intersection of

graphs, gives results only approximately correct. The degree of

accurately depends upon the scale of the drawing and upon

the accuracy with which the graphs are constructed. The results

thus obtained may be used as a first approximation to the solution

by a method illustrated below

Suppose that it is required to find to four decimal places one root of

x' — X — 1 = 0. See §103 and Fig. 95. The graphic method gives

X = 1.32. This is the first approximation. A second approximation

is found as follows

:

Substituting 1.32 for x in

y = x' — X — \
J

(1)

gives — 0.0200 for y. This shows that 1.32 is not the exact value for

y. Substituting 1.33 for a; gives 0.0226 for y. Put these results in

tabular form
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place. The next step will show that this result is correct to four

decimal places.

To find a third approximation we build another table of values:

1.3247

1.3248

Differences 0.0001

y

-0.0000766

+0.0003499

0.0004265

Fig. 96.—Method of approximation to a root of an equation.

Reasoning as before, we get x = 1.324718 which is very likely true

to the last decimal place.

The above method is applicable to an equation like exercise 8
above. In fact it is the only numerical method that is applicable tn

such cases.

Exercises

Find correct to four decimal places the roots of:

1. x' -ix + 10 = 0.

2. X' - 12x -8=0. See Exercises 1 and 2, §103.



CHAPTER VII

PERMUTATIONS AND COMBINATIONS;

THE BINOMIAL THEOREM
]

105. Ftmdamental Principle. If one thing can be done in n

different ways and another thing can be done in r different ways,

then both things can be done together, or in succession, in n Xr
different ways. This simple theorem is fundamental to the work

of this chapter. To illustrate, if there be 3 ways of going from

Madison to Chicago and 7 ways of going from Chicago to New
York, then there are 21 ways of going from Madison to New York.

To prove the general theorem, note that if there be only one

way of doing the first thing, that way could be associated with

each of the r ways of doing the second thing, making r ways

of doing both. That is, for each way of doing the first, there are

r ways of doing both things; hence, for n ways of doing the first

there are n X r ways of doing both.

Illustrations: A penny may fall in 2 ways; a common die may
fall in 6 ways; the two may fall together in 12 ways.

In a society, any one of 9 seniors is eligible for president and any one

of 14 juniors is eligible for vice-president. The number of tickets

possible is, therefore, 9 X 14 or 126.

I can purchase a present at any one of 4 shops. I can give it away
to any one of 7 people. I can, therefore, purchase and give it away in

any one of 28 different ways.

A product of two factors is to be made by selecting the first factor

from the numbers a, b, c, and then selecting the second factor from the

numbers x, y, z, u, v. The number of possible products is, therefore, 15.

If a first thing can be done in n different ways, a second in r

different ways, and a third in s different ways, the three things

can^be done in n X r X s different ways. This follows at once

from the fundamental principle, since we may regard the first

198



§106] PERMUTATIONS AND COMBINATIONS 199

two things as constituting a single thing that can be done in nr

ways, and then associate it with the third, making nr X s ways

of doing the two things, consisting of the first two and the third.

In the same way, if one thing can be done in n different ways, a

second in r different ways, a third in s, a fourth in t, etc., then all

can be done together inn X r X s X t "different ways.

Thus, n different presents can be given to x men and a women
in (x + a)" different ways. For the first of the n presents can

be given away in (x + a) diiferent ways, the second can be given

away in (x + a) different ways, and the third in (a; + a) different

ways and so on. Hence, the number of possible ways of giving

away the n presents to {x + a) men and women is

(a; + a){x + a)(x + a) to n factors, or {x + a)".

Exercises

1. A building has 6 exits. In how many ways can a person leave

the building and enter by a different door?

2. A car has five seats. In how many different ways may three

people be seated, each occupying a different seat?

3. In how many different ways may 3 presents be given away to

10 people?

106. Definitions. Every distinct order in which objects

may be placed in a line or row is called a permutation, or an

arrangement. Every distinct selection of objects that can be

made, irrespective of the order in which they are placed, is called

a combination, or group.

Thus, if we take the letters a, b, e, two at a time, there are six

arrangements, namely, ab, ac, ba, be, ca, cb, but there are only

three groups, namely, ab, ac, be.

If we take the three letters all ,at a time, there are six arrange-

ments possible, namely, abc, acb, boa, baa, cab, eba, but there is

only one group, namely, abc.

Permutations and combinations are both results of mode of

selection. Permutations are selections made with the understand-

ing that two selections are considered as different even though

they differ in arrangement only; combinations are selections made
with the understanding that two selections are not considered as

different, if they differ in arrangement only.
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In the following work, products of the natural numbers like

1X2X3; 1X2X3X4X5; etc.

are of frequent occurrence. These products are abbreviated by

the sjonbols 3\, 5Land read "factorial three," "factorial five"

respectively.

107. Formula for the Number of Permutations of n Different

Things Taken All at a Time. We are required to find how many
possible ways there are of arranging n different things in a line.

Lay out a row of n blank spaces, so that each may receive one of

these objects, thus:

I
1

I I
2

I I

3
I I

4
I I

5
I . . . MlJ

In the fijst space we may place any one of the n objects; therefore,

that space may be occupied in n different ways. The second

space, after one object has been placed in the first space, may be

occupied in (n — 1) different ways; hence, by the fundamental

principle, the two spaces may be occupied in n(n — 1) different

ways. In like manner, the third space may be occupied in (n — 2)

different ways, and, by the same principle, the first three spaces

may be occupied in n(n — l)(n — 2) different ways, and so on.

The next to the last space can be occupied in but two different

ways, since there are but two objects left, and the last space

can be occupied in but one way by placing therein the last re-

maining object. Hence, the total number of different ways of

occupying the n spaces in the row with the n objects is the product

n(n - l)(n -2) . . 3-2-1,

or

n!.

If we use the symbol Pn to stand for the number of permutations

of n things taken all at a time, then we write

P„ = n! (1)

108. Formula for the Nxmiber of Permutations of n Things

Taken r at a Time. We are required to find how many possible

ways there are of arranging a row consisting of r different things,
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when we may 8ele(}t the r things from a larger group of n different

things.

For convenience in reasoning, lay out a row of r blank spaces,

so that each of the spaces may receive one of the objects, thus:

\
1

I I

2
\

3
j . . .

i r-1
I I

r \

In the first space of the row, we may place any one of the n objects;

therefore, that space may be occupied in n different ways. The
second space, after one object has been placed in the first space,

may be occupied in (w — 1) different ways; hence, by the fun-

damental principle, the two spaces may be occupied in n{n — 1)

different ways. In like manner, the third space may be occupied

in (n — 2) different ways; hence, the first three may be occupied

in n{n — !)(« — 2) different ways, and so on. The last, or rth,

space can be occupied in as many different ways as there are

objects left. When an object is about to be selected for the rth

space, there have been used (r — 1) objects (one for each of the

(r — 1) spaces already occupied). Since there were n objects to

begin with, the number of objects left is n — (r — 1), orn — r + 1,

which is the number of different ways in which the last space

in the row may be occupied. Hence, the formula:

P„,. = n(n - i)(n - 2) (n - r + i), (1)

in which P„,r stands for the number of permutations of n things

taken r at a time.

This formula, by multiplication and division by (n — r)

!

becomes

:

_ n(n - 1) . . . (w - r + l)(n - r){n - r - 1) . . .
3-2-1

"" ~ {n-r){n-r-l). 3-21

n'
or P.,. = , v.- (2)

' (n — r)

!

^ '

This formula is more compact than the form (I) above, but the

fraction is not in its lowest terms.

Formula (1) is easily remembered by the fact that there are

just r factors, beginning with n and decreasing by one. Thus we
have

Pio,7 = 10X9X8X7X6X5X4.
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Exercises
,

1. How many permutations can be made of six things taken all at a

time?

2. How many different numbers can be made with the five digits

1, 2, 3, 4, 5, using each digit once and only once to form each number?
3. The number of permutations of four things taken all at a time

bears what ratio to the number of permutations of seven things taken

all at a time?

4. How many arrangements can be made of eight things taken three

at a time?

5. How many arrangements can be made of eight things taken five

at a time?

6. How many four-figure numbers can be formed with the nine

digits 1, 2, 9 without repeating any digit in any number?
7. How many different signals can be made with seven different

flags, by hoisting them one above another five at a time?

8. How many different signals can be made with seven different

flags, by hoisting them one above another any number at a time?

9. How many different arrangements can be made of nine ball

players, supposing only two of them can catch and one pitch?

10. How many different ways may the letters of the word algebra

be written, using all of the letters?

109. Formula for the number of combinations, or groups,

of n different things taken r at a time.

It is obvious that the number of combinations, or groups, con-

sisting of r objects each that can be selected from n objects, is

less than the number of permutations of the same objects taken

r at a time, for each combination or group when selected can be

arranged in a large number of ways. In fact, since there are r

objects in the group, each group can be arranged in exactly r\

different ways. Hence, for each group of r objects, selected from

n objects, there exists r! permutations of r objects each. There-

fore, the number of permutations of n things taken r at a time, is

r! times the number of combinations of n objects taken r at a

time. Calling the unknown number of combinations x, we have

xXrl = P„„ =
,

^"
,, ,

{n — r)\

or solving for x

^ n\

r!(n — r)!
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This is the number of combinations of n objects taken r at a time,

and may be symbdiized

C 5J (I)

This fraction will always reduce to a whole number. It may be

written in the useful form

P _ n{n - l){n - 2) . . . (n - r + 1) ,„.

^"" ~
1X2X3. r

'
^'''

It is easily remembered in this form, for it has r factors in both

the numerator and the denominator. Thus for the number of

combinations of ten things taken four at a time we have four

factors in the numerator and denominator, or

„ ^ 10 X 9 X 8 X 7
^">'' 1X2X3X4

Exercises

1. Howmany different products of three each can be made with the

five numbers a, 6, c, d, e, provided each combination of three factors

gives a different product.

2. How many products can be made from nine different numbers,

by taking six numbers to form each product?

3. How many products can be made from nine different numbers,

by taking four numbers to form each product?

4. How many different hands of thirteen cards each can be held at a

game of whist?

6. A building has 5 entrances. In how many ways can a. person

enter the building and leave by a different door?

6. In how many ways can a child be named, supposing that there

are 400 different Christian names, without giving it more than three

names?
7. In how many ways can a committee of three be appointed from

six Italians, four Frenchmen, and seven Americans provided each

nationality is represented?

8. There are five straight lines in a plane, no two of which are par-

allel; how many intersections are there?

9. There are five points in a plane, no three of which are coUinear;

how many lines result from joining each point to every other point?

10. In a plane there are n straight lines, no two of which are parallel

;

how many intersections are there?
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11. In a plane there are n points, no three of which are collinear;

how many straight lines do they determine?

12. In a plane there are n.points, no three of which are collinear,

except r, which are all in the same straight line; find the number of

straight lines which result from joining them.

13. In how many ways can seven people sit at a round table?

14. In how many ways can seven beads of different colors be strung

so as to form a bracelet?

15. How many different sums of money can be formed from a dime,

a quarter, a half dollar, a dollar, a quarter eagle, a half eagle, and an

eagle?

110.* The Arithmetical Triangle. In deriving by actual mul-

tiplication, as below, any power of a binomial x + a from the

preceding power, it is easy to see that any coeflSicient in the new
power is the sum of the coefficient of the corresponding term in the

multiplicand and the coefficient preceding it in the multiplicand.

Thus
x' + 3ax^ + So^a; + a'

X + a

X* + 3ax^ + 3aV + a^x

ax' + 3aV + 3a'x + a*

x'^ + Aax' + &aV + Aa'x + a\

or, retaining coefficients only, we have

1+3+3+1
1^ 1

1+3+3+1
1+3+3+1

1+4+6+4+1
from which the law of formation of the coefficients 1, 4, 6, . . .

is evideAt. Hence, writing down the coefficients of the powers

of a; + o in order, we have
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Powers CoefScients

]
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Each of vthe eight partial products contains a letter from each

parenthesis, and never two from the same parenthesis. The
number of terms is the number of different ways in which a letter

can be selected from each of the three parentheses. In the present

case this is, by §105, 2X2X2 = 8.

Let it be required to write out the value of (x + a)", where x

and o stand for any two numbers and n is a positive integer.

That is, we must consider the product of the n parentheses

(x + a)(x + a){x + a) (x + a),

by the distributive law stated above.

First. Take an x from each of the parentheses to form one of

the partial products. This gives the term x" of the product.

Second. Take an a from the first parenthesis with an x from

each of the other (n — 1) parentheses. This gives aa;""' as

another partial product. But if we take a from the second paren-

thesis and an x from each of the other (n — 1) parentheses, we get

ax"-'- as another partial product. Likewise by taking a from any

of the parentheses and an x from each of the other (n — 1) paren-

theses, we shall obtain aa;»~' as a partial product. Hence, the

final product contains n terms like ax"~', or, adding these, we
obtain nax""^ as a part of the product.

Third. We may obtain a partial product like a^x^~'^ by taking

an a from any two of the parentheses, together with the x's from

each of the other (n —2) parentheses. Hence, there are as many
partial products like o^a;»"^ as there are ways of selecting two a's,

from n parentheses; that is, as many ways as there are groups, or

combinations, of n things taken two at a time, or

n{n — 1)

r2

Hence, —- a^a;""^ is another part of the product.
1 '^

Fourth. We may obtain a partial product like a'a;"~' by taking

an a from any three of the parentheses together with the a;'s from

each of the other (» — 3) parentheses. Hence, there are as many
partial products like a'a;»-' as there are ways of selecting three o's

from n parentheses, that is, as many ways as there are combina-
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tions of n things taken three at a time, or V9^

Hence, TY^ a^x"-' is another part of the product.

In general, we may obtain a partial product like a'x"'' (where r

is an integer < n) by taking an a from any r parentheses together

with the x's from each of the other (w — r) parentheses.

Hence, there are as many partial products Uke a'x"~' as there are

ways of selecting r a's from n parentheses; that is, as many ways

as there are combinations of n .things taken r at a time, or

-r-T

—

'—Ti' Hence, -7-7

—

'-—rr a'x"'' stands for any term
r] {n — r)l ' r\ (n ^ r)l

•'

in general in the product (x + o)".

Finally, we may obtain one partial product like a" by taking an

a from each of the parentheses. Hence, a" is the last term in the

product.

Thus we have shown that

/ I \ 1 11 n(n — I ) , , ,

(x + a)" = X" + nax"-! -\—^ a^x""^ + . . .

1-2

+ r!(n°-r)l^''^""^+ '
+"^"- ^^^

This is the binomial formula of Isaac Newton. The right-hand

side is called the expansion or development of the power of the

binomial.

It is obvious that the expansion of (x — a)" will differ from the

above only in the signs of the alternate terms containing the odd

powers of a, which, of course, will have the negative sign.

Exercises

1.. Expand {u + Sy)^. Here x = u and a = 3y. By the formula

we get

u^ + bu^iSy) + I0u\3y)' + lOu^iSyy + 5u{Zyy + {3y)K

Performing the indicated operations, we obtain

u^ + 15u'y + 90u'y^ + 270u^y^ + i05uy* + 2i3yK

Expand each of the following by the binomial formula

:



2.



§113] PERMUTATIONS AND COMBINATIONS 209

If five terms of the series be used, the error is -^ for a; «= i, or about

6 percent.

113. Approximation Fonnulas. If x be very small, the expan-

sion of

(1 + a;)« = 1 + ns + -^-^1— x^ +
is approximately

(1 + a;)" - 1 + nx, (1)

since x^, x' and all higher powers of x are much smaller than x.

Thus, using the symbol ^ to express "approximately equals," we
have, for example

(1.01)3 = 1.03.

For, (1 + 1/100)5 _ 1 +3/100.

The true value of (1.01)' is 1.030301, so that the approximation is

very good.

Likewise

(i - x)" ^ I — nx, (2)

if X be small.

If X, y, and z be small compared with unity, the following ap-

proximation formulas hold

:

(i-+x)(i+y)^ i+x-l-y, (3)

f^-i+x-y, (4)

(i-|-x)(i-hy)(i + z)=T= i4-x-f-y-hz. (5)

The approximation formulas are proved as follows

:

(1 -|- x) (1 +y) = l+x + y + xy^l+x + y, for a;?/ is small

compared to x and y.

,.
I

V = 1 + X — y + ,
,

= 1 + a; — y, for the fraction is

small compared to x and y.

1 + x) (1 + y) {1 + z) ^ {1 +x + y) (1 + z) ^ 1 + X + y + z

Exercises

1. Explain the following approximation formulas, in which |x| < 1

14
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Vl - X "5=

(1 +x)-i^

(1 + x)-i =F

(1 +x^)i ===

2. Compute the approximate numerical value of the following

:

(a) (1.03) i (d) (1.05) i

(6) (1.02) (1.03) (e) 1.02/1.03

(c) (1.01)(1.02)/(1.03)(1.04).

3. The formula for the period of a simple pendulum is

T =WT7i-
For the value of gravity at New York, this reduces to

T =
6.253'

in which I, the length of the pendulum, is measured in inches. This

pendulum beats seconds when

I = (6.253)=i or 39.10 inches.

What is the period of the pendulum if I be lengthened to 39.13 inches?

Hint:

T =
6.253

^ - "6:253" - 6:253^^ + ^^^

VT
(1 + h/2l).

6.253

Take I = 39.10, and h = 0.03.

Then
?" = 1 + 0.03/78.20

= 1.00038.

A day contains 86,400 seconds. The change of length would, there-

fore, cause a loss of 32.8 seconds per day, if the pendulum were

attfiched to a clock,
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4, On the ocean how far can one see at an elevation of h feet above

its surface?

Call the radius of the earth o( = 3960 miles), and the distance one

can see d, which is along a tangent from the point of observation to

the sphere. Since h is in feet, and since a + Toon! d, and a are the

sides of a right triangle, we have (o + ^/5280)'' = d' + a\

or

"[ ' + sis]
-''+«

Expanding the binomial by the approximation formula we have

.[ '+mk] ='' + <

d2 = 2a;i/5280

= 2 X 3960^/5280

-¥,
or

d = Vp
where d is expressed in miles and h in feet. See §68, exercise 13.

5. By what percent is the area of a circle altered if its radius of

100 cm. be changed to 101 cm.?

6. By what percent is the volume of a sphere, |-7ro', altered if the

radius be changed from 100 cm. to 101 cm.?

7. If the formula for the horse power of a ship is I.H.P. = „„-, i

where S is speed in knots and D is displacements in tons, what in-

crease in horse power is required in order to increase the speed from

fifteen to sixteen knots, the tonnage remaining constant at 5000?

What increase in horse power is required to maintain the same speed

if the load or tonnage be increased from 5000 to 5500?

114.* Graphical Representation of the Coefficients of any
Power of a Binomial. If we erect ordiaates at equal intervals

on the X-axis proportional to the coeflBcients of any power of a

binomial, we find that a curve is approximated, which becomes
very striking as the exponent is taken larger and larger. In Fig.

97 the ordinates are proportional to the coefficients of the 999th

power of {x + a). The drawing is due to Quetelet.
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The limit of the broken line at the top of the ordinates in Eig.

97 is, as n is increased indefinitely, a beU-shaped curve, known as

Fig. 97.—Graphical representation of the values of the binomial
coefficients in the 999th power of a binomial. The middle coeflScients
are taken equal to 5, for convenience, and the others are expressed
to that scale also.

the probability curve. In treatises on the Theory of Probability,

it is shown that the equation of the curve is 2/=ae~*^^



CHAPTER VIII

PROGRESSIONS

116. An Arithmetical Progression or an Arithmetical Series,

is any succession of terms such that each term differs from that

immediately preceding by a fixed number called the common
difference. The following are arithmetical progressions:

(1) 1, 2, 3, 4, 5.

(2) 4, 6, 8, 10, 12.

(3) 32, 27, 22, 17, 12.

(4)
2i, 3i 5, 6i 7i.

(5) (u - v), u, {u + v).

(6) a, a + d, a + 2d, a -\- 3d, . . .

The first and last terms are called the extremes, and the other

terms are called the means.

Where there are but three numbers in the series, the middle

number is called the arithmetical mean of the other two. To
find the arithmetical mean of the two numbers a and 5, proceed as

follows:

Let A stand for the required mean; then, by definition

A — a = b — A,

whence

A - ^ + ^

Thus, the arithmetical mean 6f 12 and 18 is 15, for 12, 15, 18 is an

arithmetical progression of common difference 3.

By the arithmetical mean, or arithmetical average, of several

numbers is meant the result of dividing the sum of the numbers

by the number of the numbers. It is, therefore, such a number
213
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that if all numbers of the set were equal to the arithmetical mean,

the sum of the set would be the same.

The general arithmetical progression of n terms is expressed by:

Number of

term: 12 3 4 . n

Progression: a, (a + d), (a + 2d), (a + 3d), . . . (a + [n — 1] d)

Here a and d may be any algebraic numbers whatsoever, integral

or fractional, rational or irrational, positive or negative, but n

must be a positive integer. When the common difference is nega-

tive, the progression is said to be a decreasing progression ; other-

wise, it is an increasing progression.

From the general progression written above, we see that a for-

mula for the nth term of any arithmetical progression may be

written

I = a -H (n - i)d, (1)

in which I stands for the nth term.

Formula (1) enables us to obtain the value of any one of the num-

bers, I, a, n, d, when the other three are given. Thus:

(1) Find the 100th term of

3 4- 8 -h 13 -I- . . .

Here a = 3, d = 5, n = 100.

Therefore ' Z = 3 + 99 X 5 = 498.

(2) Find the number of terms in the progression

5 + 7 -I- 9 + . . . + 39.

Here a = 5, d = 2,1 = 39.

Therefore 39 = 5 -t- (ra - 1)2,

or n = 18.

(3) Find the common difference in a progression of fifteen terms in

which the extremes are f and 425.

Here u, = ^,1 = 42^, n = 15,

whence 42| = J -F (15 - l)d,

or d = 3.

116. The Sum of n Terms. If s stands for the sum of n terms

of an arithmetical progression, and if the sum of the terms be
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written first in natural order, and again in reverse order, we have

s = a + (a + d) + (a + 2d) + + (a + [n - 1] d), (1)

s = 1+ {I - d) + {I - 2d) + . . + Q -In- l]d). (2)

Adding (1) and (2), term by term, noting that the positive and

negative common differences nullify one another, we obtain

2s = (a + Z) + (a + Z) + (a + + . + (a + l), (3)

or, since the number of terms in the original i5rogression is n, we
may write

2s = n{a + I),

or s = n(a + l)/2. (4)

If the value for I, from (1) §115, be substituted in formula

(4) it becomes

s = n [2a + (n - i)d]. (5)

In equation (4), (a + Z)/2 is the average of the first and nth

terms. The formula (4) states, therefore, that the sum equals the

number of the terms multiplied by the average of the first and last.

An arithmetical progression is a very simple particular instance

of a much more general class of expressions known in mathematics

as series. A series is any sequence of terms formed accord-

ing to some law, such as:

(x + 1) + (x + 2y+ {x + sy +. . .

x + 3x^ + 5x^+ . . .

cos X + cos 2x + cos 3x -\- . . .

It is only in a very limited number of cases that a short expression

can be found for the sum of n terms of a series. An arithmetical

progression is one of these cases.

Formula (4) enables us to find the value of any one of the numbers
s, n, a, I, when the values of the other three are given. Thus:

(1) Find the number of terms in an arithmetical progression in

which the first term is 4, the last term 22, and the sum 91.

Here a = 4, Z = 22, s = 91,

whence, 91 = ra(4 + 22) /2,

or n = 7.
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The two formulas, (1) §116 and (4) §118, contain five letters;

' hence, if any two of them stand for unknown numbers, and the values

of the others are given, the values of the two unknown numbers can be

found by the solution of a system of two equations. Thus

:

(2) Find the number of terms in a progression whose sum is 1095, if

the first term is 38 and the difference is 5.

Here s = 1095, a = 38, and d = 5,

whence, I = 38 + {n - 1)5, (6)

1096 = n(38 + l)/2. (7)

From (6) / = 33 + 5n. (8)

From (7) 2190 = 38ra + nl. (9)

Substituting the value of / from (8) in (9), we get

2190 = 71n + 5nK (10)

Solving this quadratic equation, we find

n = 15, or - 29.2.

The second result is inadmissible, since the number of terms cannot

be either negative or fractional.

Exercises

Solve each of the following:

1. Given, o = 7, d = 4, n = 15; find 2 and s.

2. Given, a = 17,1 = 350, d = 9; find n and s.

3. Given, a = 3, n = 50, s = 3825; find I and d.

4. Given, s = 4784, a = 41, d = 2; find Zand n.

5. Given, s = 1008, d = 4, Z = 88; find a and n.

6. Find the sum of the first n even numbers.

7. Find the sum of the first n odd nvmibers.

8. Insert nine arithmetical means between —7/8 and + 7/8.

9. Sum (o + 6)2 + [a" + ¥) + (,a -byton terms.

10. Find the sum of the first fifty multiples of 7.

11. Find the amount of $1.00 at simple interest at 5 percent for

1920 years.

12. How long must $1.00 accumulate at 3| percent simple interest

until the total amounts to $100?

13. How many terms of the progression 9 + 13 + 17 + . .

must be taken in order that the sum may equal 624? How many
terms must be taken in order that the sum may exceed 750?
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14. Show that the only right triangles whose sides are in arithmetical

progression are those whose sides are proportional to 3, 4, and 6.

117. A geometrical progression or a geometrical series is any

succession of terms such that each term is the product of the

preceding term by a fixed factor called the ratio. The following

are examples:

(1) 3, 6, 12, 24, 48. (3) 1/2, 1/4, 1/8, 1/16, 1/32.

(2) 100, -50, 25, -12i (4) a, ar, ar\ ar\ ar* . .

The geometrical mean G of two numbers, a and 6, is a number-

such that a, G, 6 is a geometrical progression. By definition

G/a = b/G,

whence,

G^ = ab,

or

G = Vab.

Thus, 4 is the geometrical mean of 2 and 8. The arithmetical

mean of 2 and 8 is 5. The geometrical mean of n positive num-
bers is the value of the nth root of their product. Thus the geo-

metrical mean of 8, 9, and 24 is -?/ 8 X 9 X 24 = 12.

118. The nth Term and the Sum of n Terms. If a represents

the first term and r the ratio of any geometrical progression, the

progression may be written:

Number of term: 123 4 .. n— 1 n.

Progression: o, ar, ar^, ar', . . ar"'^, ar"~^.

Therefore, representing the nth term by I, we obtain the simple

formula

1 = ar»-i. (1)

Representing by s the sum of n terms of any geometrical pro-

gression, we have

s = a -\- ar + ar^ + . . . + ar" ~^ + ar" ~ ^,

or,

s = ail+r + r^+ . . + r"-^ + r"-^).

But, by a fundamental theorem in factoring, ^ the expression in the

1 See Appendix, Chapter XV.
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(2)

parenthesis is the quotient of 1 — r» by 1 — r. Hence,

a(i — r»)

Another form is obtained by introducing I by the substitution

or»-' = I,

a — rl
which gives s = ——— (3)

Formula (1), or (2), enables one to find any one of the four

numbers involved in the equations when three are given. The
two formulas (1) and (2) considered as simultaneous equations

enable one to find any two of the five numbers a, r, n, I, s, when the

other three are given. But if r be one of the unknown numbers,

the equations of the system may be of a high degree and beyond

the range of Chapter VI unless solved by graphical means. If

n be an unknown number, an equation of a new type is introduced,

namely, one with the unknown number appearing as an exponent.

Equations of this type, known as exponential equations, will be

treated in the chapter on logarithms. The following examples

illustrate cases in which the resulting single and simultaneous

equations are readily solved.

(IJ Insert three geometrical means between 31 and 496.

Here

a = 3l,l = 496, and n = 6.

Hence,

496 = 31 X r'

r* = 16,

or

r = ± 2.

Consequently the required means are either 62, 124, and 248, or — 62,

+ 124, and - 248.

(2) Find the sum of a geometrical progression of five terms, the

extremes being 8 and 10,368.

Here
a = 8,1 = 10,368, and n = 5.

Hence,

10,368 = 8r* (1)
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aad

8 = (10,368r - 8)/{r - 1). (2)

From the first,

r = 6

whence, from the second,

s = 12,440.

(3) Find the extremes of a geometrical progression whose sum is 635,
if the ratio be 2 and the number of terms be 7.

Here

s = 635, r- = 2, and n = 7.

Hence,

I = a2«, (3)

635 = (2/ - a). (4)

Substituting I from (3) in (4), we get

635 = 128 o - a.

Hence,

a = 5, and I = 320.

(4) The fourth term of a geometrical progression is 4, and the
sixth term is 1. What is the tenth term?
Here

ar^ = 4, (5)

and

ar^ = 1. (6)

Dividing (6) by (5) we obtain

r2 _ 1
i, or r = + i

Therefore, from (5),

a = 4^/r^ = +32.
Then the tenth term is

± 32(+ \y = tV.

Exercises

1. Find the sum of seven terms of 4 + 8 + 16 + . . .

2. Find the sum of - 4 + 8 - 16 + . . . to six terms.

3. Find the tenth term and the sum of ten terms of 4 — 2 + 1

4. Find r and s; given a = 2,1 = 31,250, Ji = 7.
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6. Insert two geometrical means between 47 and 1269.

6. Insert three geometrical means between 2 and 3.

7. Insert seven geometrical means between o' and 6*.

8. Show that the quotient (o" — 6»)/(o — 6) is a geometrical

progression.

9. Sum x"""^ + x"~' y + a;""' y' + . . to n terms.

10. Sum a;"~i — a^~' y + s""' y' — . to w terms.

11. Sum a + ar~^ + ar~' + . . . to n terms.

12. If a, b, c, d, ' . . . are in geometrical progression, show that

a'^ + 6', 6* + c^, c^ + (i^ . . are also in geometrical progression.

13. If any numbers are in geometrical progression, show that their

differences are also in geometrical progression.

14. A man agreed to pay for the shoeing of his horse as follows:

1 cent for the first naU, 2 cents for the second nail, 4 cents for the third

nail, and so on until the eight naUs in each shoe were paid for. What
did the last nail cost?. How much did he agree to pay in all?

119. Compound Interest. Just as the amount of principle and

interest of a sum of money at simple interest for n years is ex-

pressed by the (n + l)st term of an arithmetical progression, so,

in a similiar way, the amount of any sum at compound interest for

n years is represented by the (n + l)st term of a geometrical pro-

gression. Thus, the amount of $1.00 at compound interest at

4 percent for twenty years is given by the expression

1(1.04)2".

The amount of p dollars for n years at r percent is

K' + i5-o)"-

The present value of $1.00, due twenty years hence, estimating

compound interest at 4 percent, is

1/(1.04)2".

The value of $1.00, paid annually at the beginning of each year

into a fund accumulating at 4 percent compound interest, is, at

the end of twenty years

(1.04)1 + (104)'' + . . . (1.04)2",

which is the sum of the terms of a geometrical progression of

twenty terms.
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Problems of this character in compound interest, in compound

discount, and in the more complicated problems that proceed

therefrom, are basal to the theory of annuities, life insurance, and

depreciation of machinery and structures. The computation of

the high powers involved necessitates the postponement of such

problems until the subject of logarithms has been explained.

120. Infinite Geometrical Progressions. If the ratio of a

geometrical progression be a proper fraction, the progression is

said to be a decreasing progression. Thus,

1 1 i i 1 cnA ill 1
I) 2) i! 8) iw> ana 3, s, jt, ^t

are decreasing progressions. If we increase the number of terms

in the first of these progressions the sums will always be less than

2; but the difference (2 — s) will become and remain less than any

pre-assigned number.

Definition: A constant, a, is called the limit of a variable,

t, if, as t runs through a sequence of numbers, the difference

(a — t) becomes, and remains, numerically smaller than any

pre-assigned number.

By definition, 2 is, therefore, the limit of the first of the above

progressions. The sum of n terms of this particular progression

should be written down by the student for a number of successive

values for n, thus:

Number of terms:

1, 2, 3, 4, 5, ... 10,

Sum: 1, 1 + i 1 + f , 1 + I, 1 + li . . 1+Ui,
The nth term differs from 2 by only l/2»-i.

It is easy to show that the sum of every decreasing geometrical

progression approaches a fixed limit as the number of terms

becomes infinite. Write the formula'^

in the form

If we suppose that r is a proper fraction and that n increases with-

s
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out limit, then r» can be made less than any assigned number; for,

the value of any power of a proper fraction decreases as the ex-

ponent of the power increases. As the other parts of the second

fraction in (1) do not change in value as n changes, the fraction

as a whole can be made smaller than any number that can be

assigned. Hence, we write

limit
n— 00 b]'Th <^'

The left-hand side is read: "The limit of s as n becomes

infinite." The symbol = means: "approaches" or "becomes."

Exercises

As n = 00 , find the limit of each of the following

:

1. * - i + 1 - tV + •
•

Here

a = -^jT = — -3,

1

whence, limit s = —j-r = f

.

1 ~ ( "2)
2. 0.3333 . .

Here a = -,%, r = ,Vi
3

whence, limit s = — = \

3. 9-6+4- ' ^.\-\+-h----
4. 0.272727 ... 7. 4 4- 0.8 + 0.16 + . . .

5. 0.279279279 . . .

8. Express the number 8 as the sum of an infinite geometrical

progression whose second term is 2.

121.* Graphical Representation. Note that all the essentials

of a geometrical progression may be studied if we assume the

first term to be unity, for the number a occurs only as a single

constant multiplier in each term, and also occurs in the same

manner in the formulas for I and s.

To represent the geometrical series 1 + r + r'' . . + r"-'

graphically, lay off OM = 1 on OY, OSi = 1 on OX, SiPi =
r on the unit line, and draw MP^. Draw the arc P11S2 and erect

P2S2. Draw the arc P2'S2 and erect PzSs. Continue this con-

struction until the perpendicular P„iS„ is erected. The series of

trapezoids OMPiSi, S1P1P2S2, SJ'^iPiSi, .. . , S,_iP„_iP„S„



§121] PROGRESSIONS 223

are similar and, since PiSi = r X OM, it follows that P2S2 =
rPiSiyPiSa = rP^Si, . , P„S„ = rF„_iS„_i. Hence we have:

OM = OSi =1
PkSi = S1S2 = r .'. 0<Si2 = 1 + r = sum of 2 terms

P2S2 = O203 ,0^3 = 1 +r + r2 sum of 3 terms

PzSs = S^Si = r^ ;. OSi = 1 + r + r^ + r' = sum of 4 terms

Pn-iSn-i = Sn-iS„ = r"-' .-. OSn = 1 + r +r' +
sum of n terms.

*m— 1 =

O Si S2 S3 S« Sii

Fig. 98.—Graphical construction of the sum of a G. P. r > 1.

Fig. 98 shows the series whose ratio is r- = 1.2. Fig. 99 shows
the series whose ratio is 0.8.

Y
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allowed to increase without limit, the, sum OSn also increases with-

out limit. Fig. 99 shows that when the number of terms is made to

increase without limit, the sum 0S„ approaches OL as a limit.

Now the value of OL is the value of x when ^ = 0. Hence the

limit of the sum of the progression, or OL, is -t-^—
Consult also §9, problem 6, exercise 3 and Figs. 15, 16.

122.* Harmonical Progressions. A series of terms such that

their reciprocals form an arithmetical progression are said to form

an harmonical progression. The following are examples:

C1^ 1 1 1 1
(') 2: 3> 4! T-

(2) 1, T, T) TT-

(3) l/{x-y),l/x, l/(x + tj).

(4) i 1, - 1, - i
(5) 4, 6, 12.

(6) 1/a, l/(a + d), 1/ia + 2d), . .

Although harmonical progressions are of such a simple character,

no simple expression has been found for the sum of n terms. Our

knowledge of arithmetical progressions enables us to find the

value of any required term and to insert any required number
of harmonical means between two given extremes, as in the

examples below.

(1) Write six terms of the harmonical progression 6, 3, 2.

We must write six terms of the arithmetical progression, ^, ^, ^.

The common difference of the latter is ^, so that the arithmetical pro-

gression is §, §, §, f , ^, 1, and the harmonical progression is 6, 3, 2,

1.5, 1.2, 1.

(2) Insert two harmonical means between 4 and 2.

We must insert two arithmetical means between ^ and -^; these are

^ and -1%, whence the required harmonical means are 3 and 2.4.

123.* Harmonical Mean. The harmonical mean of two

numbers is found as follows: Let the two numbers be a and 6

and let H stand for the required mean. Then we have

1/H - 1/a = 1/6 - 1/H.

That is,

2/H = 1/a + 1/6 = (a -I- 6) /ab.

Hence,

• H = 2ab/(a -1- b). (1)
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Thus the harmonical mean of 4 and 12 is 96/(4 + 12) = 6.

By the harmonical mean of several numbers is meant the reciprocal

of the arithmetical mean of their reciprocals. Thus the har-

monical mean of 12, 8, and 48 is 13i-t-

124. * Relation between A, G, and H. As previously found,

A= {a+ 6)/2, G= V^,H = 2ah/{a + b).

Hence,

AH = ab,

and, since ab = C,
AH = G\

or

G = VaH. (1)

Exercises

1. Continue the harmonical progression 12, 6, 4.

2. Find the difference (1.8 + 1.2 4- 0.8 + . to 8 terms)

- (1.8 + 1.2 + 0.6 + . . . to 8 terms).

3. If the arithmetical mean between two numbers be 1, show that

the harmonical mean is the square of the geometrical mean.

Questions and Exercises for Review of Chapters I to VIII

1. Define scale; uniform scale; non-uniform scale; arithmetical

scale; algebraic scale; double scale.

2. Define constant; variable.

3. Define function; increasing function; decreasing function; even
function; odd function.

4. Give illustrations of even functions; of odd functions.

6. Express the area, A, of an equilateral triangle as a function of the
length, X, of its sides.

6. Express the volume, V, of a right circular cone as a function of its

altitude h. The radius of the base is 10 inches.

7. A strip of tin L feet long and 40 inches wide is made into a gutter
with rectangular cross section, by bending up an equal portion of each
side. Express the cross section, y, of the gutter as a function of the
breadth, x, of the amount of tin turned up. Show that the maximum
cross section is 200 square inches.

8. A strip of tin 24 inches square has an equal square cut from each
corner. The rectangular projections are then turned up to form a tray

15
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with square base and rectangular sides. If x is the side of the square

cut out show that 4x(12 — x)* is the function representing the volume
of the tray.

9. In a triangle whose sides are 6, 8, and 10 feet is inscribed a rec-

tangle the base of which lies in the longest side of the triangle. Ex-
press the area, A, of the rectangle as a function of its altitude, h.

10. A ladder 20 feet long leans against the vertical wall of a house.

Express the area, A, of the triangle formed by the ladder, the wall, and
the horizontal ground, as a function of the distance, x, of the foot of

the ladder from the wall.

11. Find graphically the values of the following: (a) (31.6) (7.21);

(6) f^; (c) (1.36)'; (d) ~-y
12. Describe the method of representing the position of points on a

plane by the rectangular, or Cartesian, system of coordinates. Define

axes; origin; abscissa; ordinate; quadrant. How are the quadrants

numbered?
13. What is meant by the graph, locus, or curve, of an equation?

14. What is meant by the equation of a curve, graph, or locus of a

point.

15. Which of the following points are on the curve Zx -\-2y = 4:

(a) (2, -1); (6) (3, 1); (c) (-4, 8); (d) (0, 0).

16. Find the distance of each of the following points from the origin

:

(a) (1, 3); (6) (-2, 3); (c) (2, -3); (d) (-3, -2).

17. Show that, for all values oi m, y = mx is a straight line passing

through the origin.

18. Show that the equation of any straight line passing through the

origin is of the form y = mx.

19. Find the equation of a straight line passing through the origin

and the point (—3, 5).

20. Show that, for all values of m and b,y = mx + 6 is the equation

of a straight line.

21. Show that the equation of any straight line is of the form

y = mx + b.

22. Find the equation of a straight line passing through the points

(1, 3) and (-2, 5).

23. Define slope of a straight line.

24. Define K-intercept, and X-intercept, of a straight line.

25. Find the slope, s-intercept, and 2/-intercept, for the following:

(a) 3x +2y = 6; (6) x - 2y = 5; (c) 2y - 3x = 7.

26. Define X-, and K-intercepts of a curve.
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27. Write the equations of a line if:

(a) F-intercept is 3 and slope is 2,

(6) y-intereept is 1 and slope is —2,

(c) y-intercept is —2, and slope is 5,

id) X-interoept is 3 and slope is 2,

(e) X-intercept is —2 and slope is 3,

(J) X-intercept is J and slope is — ^,

(g) X-intercept is 2 and i/-intercept is 3.

28. What is meant by curve of the parabolic type?

29. What is meant by curves of the hyperbolic type?

30. What is the parabola?

31. What is the equilateral, or rectangular, hyperbola?

32. What is the cubical parabola?

33. What is the semi-cubical parabola?

34. When is a curve symmetrical with respect to the X-axis; with

respect to the y-axis; with respect to the line x = y; with respect to

the line y = — x; with respect to the origin? Give equation of two

curves for each of the cases considered above.

35. Sketch, y = x^; y = \x^; y = 2x\

36. Sketch y'' = x; y^ = Jx; y' = 2x.

37. Sketch y = x'; y = - x'.

1 2 1
38. Sketch y

=
-; V = - ^: y =

2i'

39. Sketch x'^ = y'; x' = y'^.

40. Sketch y = x^; y = — x'.

41. Define rational equation, empirical equation.

42. Write the equation of the curve y = x^ — 3x, after it is

translated

(a) two units to the right; (6) three units to the left; (c) one unit

up; (d) five units down; (e) one unit to the left and two units down.

43. Find the coordinates of the vertex of

:

(o) y = x'' + 2x; (6) y = x' - 2x + 3;

(c) y = 3x^ + 6x; (d) y = 6x - 3x^ + 2.

2; _]_ 3
44. Show that y = —3^ is an hyperbola. Write the equation of

its asymptotes.

45. What is meant ty shearing notion?

46. Show that shearing the curve y = ax' in the line y = mx, is

equivalent to translating the original curve. Find the coordinates

of the vertex of the translated curve.

47. What is meant by the roots of a function?
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48. Find the roots of:

(a) *2 + 2x - 3; (6) x^ - 3x; (c) 3x^ + 2x - 6.

49. Write the equation of the curve j/^ = x' — x' when reflected in

:

(a) the X-axis; (6) the F-axis; (c) the line x = y; (d) the line

X = — y.

50. The roots of a function correspond to what points on the graph

of the function?

52. Write the equation of a circle, radius o, center at the origin;

center at the point (h, k).

53. Show that x' + y' + 2gx + 2/v + d = is a circle.

54. Find the coordinates of the center and the length of the radius

of:

(a) x' + y' - 2x - ^y + 1 = 0; {d) 2x' + 2y^ + 3x + by = 0;

(6) x2 + ^2 + 2x + 42/ + 1 =0; (e) Sx^ + S?/^ - 6x - V2y = 10;

(c) x2 + 2/2 + 3x - 42/ = 0; (/) x^ + 2/' + 7x - VZy = 25.

66. Which circles of exercise 54 pass through the origin?

66. Write the equation of the circle if i

(o) the radius is 5 and the center is at (1, 2) ; '

(6) the radius is 6 and the center is at ( — J^, 2)

;

(c) the radius is 10 and the center is at ( — 2, — 3)

;

(d) it passes through the origin and the center is at (1, 1)

;

(e) it passes through the origin and the center is at ( — 2, 3);

(/) it passes through (1, 2) and the center is at (—2, 3).

57. Write the equation of a line passing through the origin and the

center of the circle
'

x2 + 2/2 - 2x + 32/ = 5.

58. Write the equation of a circle passing through the point (2, 3)

and through the center of the circle

x2 + 2/^ - 3x - 22/ = 0.

69. Show that if two straight lines are mutually perpendicular, the

slope of one is the negative reciprocal of the slope of the other.

60. Show that {x - a)^ + y^ = a^ and (x - ZaY + y^ = a' are

tangent to each other.

61. Find analytically the coordinates of the points of intersection

of x2 + 2/2 — 4x — 92/ = 9 and y — ^ x + 1.

62. Find approximate solutions for exercise 61 by drawing the

curves on squared paper.

63. Solve graphically the simultaneous equations

x^ + y' - 2x ~ 4:y = 4:

-£2 + 2/2 + 4x - 42/ = 0.

64. Define degree'; radian.

66. Define the six circular functions.
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66. Express the following as radians:

(o) 45°; (6) 90°; (c) 180°; (d) 135°; (e) 225°; (f) 60°; (g) 30°; (h) 300°;

(i) 270°; U) 315°; (ft) 120°; (l) 160°; (ra) 216°; (n) 310°.

67. Express the following radians as degrees:

(a) i^; (fe)i^; (c) |^; (rf) |^; (e) |^; (/) 3; (?) 2.

68. How many revolutions per minute are 10 radians per second?

5 7r radians per second? fir radians per second?

69. A car is running at the rate of 30 miles per hour. Its 36-inch

tire is revolving at the rate of how many radians per second?

70. A shaft rotates at the rate of 15,000 revolutions per minute.

What is its angular velocity in radians per second?

71. Give the values of the circular functions of:

(a) 30°; (6) 60°; (c) 45°.

72. Give the algebraic signs of the functions of an angle in the first

quadrant; in the second quadrant ; in the third quadrant; in the fourth

quadrant.

73. Give the functions of the following angles:

(o) 120°; (6) 135°; (c) 150°; (d) 210°; (e) 225°; (J) 240°; {g) 300°;

(h) 316°; W 330°; (j) 0°; (k) 90°; (I) 180°; (m) 270°; (n) 360°.

74. Find the functions of a if

:

(a) sin a = f and cos a is negative;

(6) sin a = f and cos a is positive;

(c) sin a =
-f and tan a is positive;

(d) sin a = f and tan a is negative;

(e) tan a = 2 and cos a is negative;

(/) tan a = — 3 and sin a is positive;

(g) sec or = 5 and tan a is negative.

75. Which of the circular functions are even functions? Which are

odd functions?

76. Show that cos a = sin (^ — a)

.

77. Draw the graph oi y = sin x.

78. Show that the curve for y = cos x may be obtained from the

curve for y = sinx by translating it ir/2 units to the left.

79. Show that sin^ a + cos^ a = 1.

80. Show that sec^ a = 1 + tan" a.

81. Show that esc" a = 1 + cot" a.

82. Show that tan a =
cos a

nn on ii i J cos a
83. Show that cot a = -^ •

sm a
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84. Express sin a; in terms of:

(a) cos x; (6) tan x; (c) cot x; (d) sec x; (e) esc x.

86. Express cos x in terms of:

(a) sin x; (6) tan x; (c) cot x; {d) sec x; (e) esc x.

86. Express tan x in terms of:

(a) sin x; (6) cos x; (c) cot a:; (d) sec x; (?) esc a;.

87. The longer leg of a plot of land in the form of a 60° right

triangle is 80 rods. Find the area of the plot in acres.

88. A plot of land in the form of a 60° right triangle contains

72 acres.

Find the length in rods of each side of the triangle.

Hint : Let x represent the number of rods in the length of the shorter

leg.

89. The shorter side of a rectangle is 100 feet, the diagonal is 200

feet. Find the length of the longer side.

90. Explain how points may be located in a plane by means of polar

coordinates.

91. Define pole; polar axis; radius vector; vectorial angle.

92. Draw curves for:

(a) p = 1; (6) p = 2; (c) p = 3; (d) p = 5; (e) e = 0; (/) e =,r/4;

(g) e = 7r/3; {h) e = T-/2; 6 = 2.

Hint: fl is measured in radians.

93. What curve is represented by p = a cos 9? Prove.

94. What curve is represented by p = 6 sin 9? Prove.

95. Draw on a sheet of polar coordinate paper curve for the

following

:

(a) p = 2 cos e; (6) p = — 2 cos 9;

(c) p = 2 sin 9; (d) p = — 2 sin 9.

96. Prove that p = a cos 9 + 6 sin 9 is a circle.

97. Draw curves for the following

:

(a) p = 2 cos 9 + 3 sin 9; (6) p = 3 cos 9 — 2 sin 9;

(c) p = — 2 cos 9 + sin 9; (d) p = — 3 cos 9 — 3 sin 9.

98. Draw the circles p = 1 and p = cos 9 and from them plot the

graph for p = 1 + cos 9.

99. Plot curve for the following equations

:

(a) p = 1 + sin 9; (6) p = 1 — sin 9;

(c) p = 2 + cos 9; (d) p = 1 - 2 cos 9.
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100. From a sheet of polar coordinate paper, form M3, find values

for the following

:

(a) sin 30°; (6) cos 30°; (c) sin 45^; (d) cos 45°; (e) tan 45°; (/) cos 10°;

(g) sin 116°; (h) cos 216°; (i) sin 127°; (j) tan 37°; (fc) sin 227°;

{I) cos 316°.

101. Show that when the curve for p = f{8) is rotated about the

pole through an angle a, its equation becomes p = f{e — a).

102. State fourteen "Theorems on Loci."

103. Find the polar equation of a straight line.

104. The center of the circle p = 10 sin (9 — a) lies on the line

X — y = 3. Find a.

105. The center of the circle p = 10 cos (0 — a) lies on the line

3x - 2y = 1. Find a.

106. The center of the circle p = 5 sin {$ + a) lies on the line

X - 2?/ = 6. Find a.

107. Write the Cartesian equations for:

(a) p = 2 cos e + 3 sin 6;

(6) p = 3 cos 9 — 2 sin $;

(c) p = 2 sin 9 — 3 cos $.

108. Solve analytically 2 = 2 cos 9 — 3 sin 9 for all values of 8

between 0° and 360°.

109. Solve graphically the equation given in exercise 108.

110. Sketch a curve for y = - — 2x." X

111. Sketch a curve for y = ^ -j- sin x.

112. A circle is inscribed in a 30°, 60° right triangle. Find the

diameter of the circle if the shorter leg of the triangle is 4 inches; if

the longer leg of the triangle is 6 inches; if the hypotenuse of the

triangle is 10 inches. Find the lengths of the three sides of the tri-

angle if the radius of the inscribed circle is 6 inches.

113. A circle is inscribed in a 45° right triangle. Find the diameter
of the circle if the legs of the triangle are each 4 inches in length.

114. A circle is circumscribed about a 30°, 60° right triangle. Find
the radius of the circle if the hypotenuse of the triangle is 10 inches.

116. Write the polar equation for

x^ - y^ = a2(x2 + 2/2)2.

116. Define an ellipse; major axis; minor axis.

117. Give parametric equations for an ellipse.
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118. Find the coordinates of the center and the lengths of the semi-

axes of the ellipse

X = 3 + 2 cos a

y = 2 — svD. a.

119. Show that every section of a right circular cylinder by a plane

is an ellipse.

120. Show that the projection of a circle upon a plane is an ellipse.

121. Define an equilateral, or rectangular,\ hyperbola. Define an

hyperbola.

122. Give parametric equations for an hyperbola.

123. Define the axes, the center, and the asymptotes of an

hyperbola.

124. Find the coordinates of the center, the lengths of the semi-

axes, and the equations of the asymptotes for

x' - y^ + 2x - ^y = 11.

126. Find the equation for the curve of sy = 4 when rotated about

the origin through an angle of —45°

126. Define conjugate hyperbolas.

127. Write the equation of the hyperbola conjugate to

x'i — y'' — X -\- iy = 11.

128. Sketch the curve with asymptotes for

X = 3 + 2 sec a

2/ = 1 — 3 tan a.

129. Write the equation of the curve formed when the circle

x2 -|- j/2 = o' is sheared in the Une y = x. Sketch the curve.

130. Write the equation of the curve formed when the hyperbola

x^ V^
-J

— ^ = 1 is sheared in the line y = x. Sketch the curve.

131. State and prove the remainder theorem.

132. State and prove the factor theorem.

133. Without performing the division, find the rehiainder of

(s' - 2x2 + 3 - 1) -H (a; + 2).

134. Explain what is meant by questionable and legitimate

transformations.

136. Explain a method of finding approximately the roots of a

cubic equation.

136. Find the equation of the straight line passing through the

points of intersection oi x^ + y' + 2x + 4y — 11 — and

X- + y^ - 2x - 2y = 0.



§124] PROGRESSIONS 233

137. What are the equations of the coordinate axes?

138. What is the locus of x^ = 4? of y' = 4? of a^ = 2/«?

of o2a;2 = 62!/2?

140. Solve { „ , .", „ .

141. Define series.

142. Define arithmetical progression; geometrical progression; har-

monical progression.

143. Define arithmetical mean; geometrical mean.

144. Derive formulas for I and s of an arithmetical progression.

146. Derive formulas for I and s of a geometrical progression.

146. Define an infinite geometrical progression. •

147. Derive the formula for the sum of an infinite geometrical

progression.

148. Find the value of 0.273273273 . .

149. A debt of $10,000 is to be paid in ten years. An equal amount
is paid at the end of each year. Find this amount if the indebtedness

draws interest at 5 percent.

150. An equal amount of money is deposited at the end of each year

for twenty years as a sinking fund to replace a piece of machinery

valued at $10,000. How much must be deposited at the end of each

year, if the deposits draw 4 percent compound interest.



CHAPTER IX

THE LOGARITHMIC AND THE EXPONENTIAL
FUNCTIONS

125. Historical Development. The almost miraculous power

of modern calculation is due, in large part, to the invention of

logarithms in the first quarter of the seventeenth century by a

Scotchman, John Napier, Baron of Merchiston. This invention

was founded on a very simple and obvious principle, that had

been quite overlooked by mathematicians for many genera-

tions. Napier'sinventionmay be explained as follows:^ Let there

be an arithmetical and a geometrical progression which are to be

associated together, as, for example, the following

:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

Now the product of any two numbers of the second line may be

found by adding the two numbers of the first progression above

them, finding this sum in the first Une, and finally taking the num-

ber lying under it ; this^Iatter number is the product sought. Thus,

suppose the product of 8 by 32 is desired. Over these numbers

of the second line stand the numbers 3 and 5, whose sum is 8.

Under 8 is found 256, the product desired. Now since but a

limited variety of numbers is offered in this table, it would be

useless in the actual practice of multiplication, for the reason

that the particular numbers whose product is desired would

probably not be found in the second line. The overcoming

of this obvious obstacle constitutes the novelty of Napier's inven-

tion. Napier proposed to insert any number of intermediate

terms in each progression. Thus, instead of the portion

0, 1, 2, 3, 4

1, 2, 4, 8, 16

1 Merely the fundamental principles of the invention, not historical details, are

given in what follows. For a very brief course in logarithms, only §§131-144
need be taken.

234
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of the two series we may wi-ite

0, I 1, U, 2, 2i 3, 3), 4

1, \/2, 2, Vs, 4, a/32, 8, ^128, 16

by inserting arithmetical means between the consecutive terms

of the arithmetical series and by inserting geometrical means

between the terms of the geometrical series. Let these be

computed to any desired degree of accuracy, say to two decimal

places. Then we have the series

A. P.
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except in the position of the decimal point. The correct position

of the decimal point can be determined by inanection after the

significant figures of the product have been obtained. Using

the above table we find 2.38 X 14.1 = 33.6.

The above table, when properly extended, is a table of loga-

rithms. As geometrical and arithmetical progressions different

from those given above might havo been used, the number of

possible systems of logarithms is indefinitely great. The first

column of figures contains the logarithms of the numbers that

stand opposite them in the second column. Napier, by this

process, said he divided the ratio of 1.00 to 2.00 into "100 equal

ratios," by which he referred to the insertion of 100 geometrical

means between 1.00 and 2.00. The "number of the ratio" he

called the logarithm of the number, for example, 0.75 opposite

1.69, is the logarithm of 1.69. The word logarithm is from two

Greek words meaning " The number of the ratios." In order to

produce a table of logarithms it was merely necessary to compute

numerous geometrical means; that is, no operations except multi-

plication and the extraction of square roots were required. But

the numerical work was carried out by Napier to so many decimal

places that the computation was exceedingly difficult.

The news of the remarkable invention of logarithms induced

Henry Briggs, professor at Gresham College, London, to visit

Napier in 1615. It was on this visit that Briggs suggested the ad-

vantages of a system of logarithms ia which the logarithm of

10 should be 1, for then it would only be necessary to insert a

sufficient number of geometrical means between 1 and 10 to

get the logarithm of any desired number. With the encourage-

ment of Napier, Briggs undertook the computation, and in 1617,

published the logarithms of numbers from 1 to 1000 and, in

1624, the logarithms'of numbers from 1 to 20,000, and from 90,000

to 100,000 to fourteen decimal places. The gap between 20,000

and 90,000 was filled by a Hollander, Adrian Vlacq, whose table,

published in 1628, is the source from which nearly all the tables

since published have been derived.

126. Graphical Computation of the Terms of a Geometrical

Progression. Draw the lines y = x and y = rx, Fig. 100. From
the point (1, r) on ?/ = rx draw a horizontal line io y = x, thence
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a vertical line toy = rx, etc., thereby forming the "stairway" of

line segments between y = x and y = rx a,s shown in Fig. 100.

Then the points, N, P, Q, etc., have the ordinates r, r'\ r^, etc.,

as required, for, to obtain the ordinate of P, or PD, the value of x

used was OD = r, hence P is the point on y = rx for a; = r, or

y PD Likewise Q is by construction the point on y
rx for X = r^, hence the y of the point Q = r X r' = r^, etc.
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be sketched with greater accuracy. The lines y =• x and y = rx

(in this case y = 2x) are drawn, and the "stairway" constructed

as before (See §126). Vertical lines drawn through a; = —2, —1,

0, 1, 2, 3, . . . and horizontal lines drawn through the hori-

zontal tread of each step of the stairWay divides the plane into a

large number of rectangles. Starting at M and sketching the

diagonals of successive cornering rectangles the smooth curve

-. -1 1 2 3 - .

Fig. 101.—Graphical construction of the curve y = 2".

MNP is obtained. Intermediate points ofthe curve are located by
doubling the number of vertical lines by bisecting the distances

between each original pair, and then by increasing the number of

horizontal lines in the following manner: Draw the line y = s/r x

(in the case of the Fig. 101, y = V'2 x). At the points where

this line cuts the vertical risers of each step of the "stairway"

(some of these points are marked .A, B, C in the diagram) draw a
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new set of horizontal lines. Each of the original rectangles is thus

divided into four smaller rectangles. Starting at M and sketching

a smooth curve along the diagonals of successive cornering rec-

tangles, the desired graph is obtained. By the use of the straight

line y = -s/r x another set of intermediate points may be located,

and so on, and the resulting curve thus drawn to any degree of

accuracy required. In explaining this process, the student will

show that the method of construction just used consists in the

doubling of the number of horizontal lines of the figure by the

successive insertion of geometrical means between the terms of a

geometrical progression, while at the same time the number of

vertical lines is successively doubled by the insertion of arithmet-

ical means between the terms of an arithmetical series. Thus the

graphical work of construction of the curve corresponds to the

successive insertion of geometrical and arithmetical means in the

two series discussed in §125.

As explained above, the ordinate y of any point of the curve

MNP of Fig. 101 is a term of a geometrical progression, and the

abscissa x of the same point is the corresponding term of an

arithmetical progression. Since, when y is given, the value of x

is determined, we say, by definition, that a; is a function of y
(§6). This particular functional relation is so important that

it is given a special name: x is called the logarithm of y, and the

statement is abbreviated by writing

X = logy,

but to distinguish from the case in which some other geometrical

progression might have been used, the ratio of the progression

may be written as a subscript, thus

X = logr?/,

which is read "x is the logarithm of y to the base r."

The ratio of the geometrical progression, or r, is called the base.

If we assume that the process of locating the successive sets of

intermediate points by the construction of successive geometrical

means will lead, if continued indefinitely, to the generation of

the curve MNP without breaks or gaps, then we may say that in

the equation

X = lOgry,
; (1)
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the logarithm is a function of y defined for all -positive values of y
and for all halites of x.

It is seen at once from the method of construction used in Fig.

101 that the values of y at a; = 1, 2, 3, 4, ... , are respectively

y = r, T^, r-', r*, . . , and the values oi y a.t x = 1/2, 3/2, 5/2,

. . . , are y = r^, r^, r^, . . . , respectively, and similarly for

other intermediate values of x. In other words, the equation

connecting the two variables x and y may be written

y = r^ (2)

Thus, when the values of a variable x run over an arithmetical

progression {of first term 0) while the corresponding values of a

variable y run over a geometrical progression {of first term 1), the

relation between the variables may be written in either of the forms

(1) or (2) above. Equation (2) is called an exponential equation

and y is said to be an exponential function of x, while in (1) x

is said to be a logarithmic function of y. The student has fre-

quently been called upon in mathematics to express relations

between variables in two different or "inverse" forms, analogous

to the two forms y = r' and x = logr?/. For example, he has

written either

y = x^, 01 X = ± y/y;
and either

y = X ^ 01 X = y^

The graph of a function is of course the same whether the equation

be solved for x or solved for y.

Exercises

1. Write the following equations in logarithmic form:

(a) y = l(y; (d) u = 5';

(b) y = 3'; (e) z = o"; 1

(c) y = a^; if) u = 1.1'.

> As a matter of fact, both the arithmetical and the geometrical methods given

above define the function only tor rational values of x; that is, the only values of

X that come into view in the process explained above are whole numbers and

intermediate rational fractions like 2|, 2j, 2f, 2^j, 2j|, . . .
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2. Write the following equations in exponential form

:

(o) X = logio y; (d) u = log, y;

(b) X = logs y, (e) t = logs z;

(c) X = logs y; (/) u = loga x.

3. Find the values of the following

:

(a) logio 100; (d) log2 64;

(6) logs 25; (e) log, 81;

(c) logs 27; if) log ^16.

128. The Subtangent of the Exponential Curve. The
student is expected to construct the curves described in the

following exercises by the method of §127. The inch or 2 cm.

may be adopted as the unit of measure; the curves should be drawn

on plain paper within the interval from x = — 2toa;=-j-;2.

If tangents' be drawn to the curves at x = — 2, — 1, 0, 1, 2,

it will be noted, as nearly as can be determined by experiment,

that the several tangents to any one curve cut the X-axis at the

same constant distance to the left of the ordinate of the point

of tangency. This distance is called the subtangent of the curve.

This distance is greater than unity if r = 2 and less than unity

if r = 3. The value of the base for which the subtangent is exactly

unity is later shown to be a certain irrational or incommensurable

number, approximately 2.7183 . , represented in mathematics

1 It is not easy to draw accurately the tangent to a curve at a given point.

A number of instruments have been designed to assist in drawing tangents to

curves. One of these, called a "Radiator," will be found listed in most catalogs of

drawing instruments. Another instrument consists of a straight edge provided

with a vertical mirror as shown in Fig. 102. When the straight edge is placed across

Fig. 102.—Mirrored ruler for drawing the normal (and hence the

'

tangent) to any curve.

a curve the reflection of the curve in the mirror and the curve itself can both bii

seen and usually the curve and image meet to form a cusp or angle. The straight

edge may be turned, however, until the image forms a smooth continuation of the
given curve. In this position the straight-edge is perpendicular to the tangent and
the tangent can then be accurately drawn. See Gramberg, Technische Messungen,
1911.

16



242 ELEMENTARY MATHEMATICAL ANALYSIS [§129

by the letter e, and called the Naperian base. This number, and

the number ir, are two of the most important and fundamental

constants of mathematics.

Exercises

Draw the following curves on plain paper using 1 inch or 2 cm. as the

unit of measure; make the tests referred to in the second paragraph of

§128.

1. Construct a curve similar to Fig. 101, representing the equation

X = log2 y, from a;=— 2toa; = +2, and draw tangents at a; = — 1,

X = 0, X = 1, X = 2. >

2. Construct the curve whose equation is a; = logs y from a; = — 2

to a; = +2, and draw tangents at a; = — 1, x = 0, a; = 1, x = 2.

3. Construct the curve whose equation is x = logs.? y, and show by
trial or experiment that the tangent to the curve at x = 2 cuts the X-
axis at nearly x = 1, that the tangent at x = 1 cuts the X^xis at

nearly x = 0, that the tangent at x =
cuts the X-axis at nearly x = — 1, etc.

4. Draw the curve x = logo.s y and
show that it is the same as the reflection

of X = log2 y in the mirror x = 0.

Note: The student must remember
that the experimental testing of the

properties of the tangents to the curves

called for above does not constitute mathe-

FiQ. 103. matical proof of the usual deductive sort

famUiar to him. The experimental tests

have value, however, in preparing the student for a rigorous in-

V estigation of these same properties when taken up in the calculus.

129. Slope of the Exponential Curve. Let MP, Fig. 103, be
any exponential curve, y = r. By the slope of the curve at P
we mean the slope of the tangent TP at P. We have just shown
experimentally that the length of the subtangent TD is constant

for all positions of the point P on the curve y = r". We can
then write

slope of curve at P = ^^^ = j> (1)
1 U K

where k is the constant length of TD. We can also write

slope of curve at P = cy, (2)

where c = t •

k
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From (2) we can conclude that: The slope of an exponential

curve at a given point is proportional to the ordinate at that point.

At the point (0, 1) the slope is c = t- As we have seen, the

value oik {= TD) depends on the value of r in the equation of the

curve, y = r". For some values of r it is less than 1, for others

greater than 1. We have defined e as that value of r for which

k = TD = 1. This is equivalent to defining e as that value

of r for which the curve y = r" has the slope unity at the point

(0, 1) . Later we shall adopt this definition of e.

Since c = t = 1 for the curve y = e", it follows from (2) that

for this particular curve of the family of curves y = r", the slope

at any point is equal to the ordinate.

The reasoning of this section is based on the experimentally de-

termined result that for a given exponential curve the subtangent

is of constant length.

130.* The Exponential Function. The expression a", where a

is any positive number except 1, has a definite meaning and

value for all positive or negative rational values of x, for the

meaning of numbers affected by positive or negative fractional

exponents has been fully explained in elementary algebra. The
process outlined above likewise defines logrS for aU rational

values of x, but not for irrational values of x, such as -\/2, VB, etc.

As a matter of fact the expression a' has, as yet, no meaning

assigned to it for irrational values of x; thus 10^^ has no meaning

by the definitions of exponents previously given, for \/2 is not a

whole number, hence 10"^^ does not mean that 10 is repeated

as a factor a certain number of times; also \/2 is not a fraction,

so that 10"^^ cannot mean a power of a root of 10. But if any

one of the numbers of the following sequence

:

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, . .

be used as the exponent of 10, the resulting power can be com-
puted to any desired number of decimal places. For example,
IQi" is the 141th power of the 100th root of 10; to find the 100th

root we may take the square root of 10, find the square root of
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this result, then find its 5th root, finally finding the 5th root

of this last result.

If the various powers be thus computed to seven places we find:

10'* =25.11887
10'" =25.70396
101"

«

=25.94179
101.4142 =25.95374
101.41421 = 25.95434 .

101.414213 = 25.95452 . . .

101.4142135 = 25.95455 .

Now the sequence of exponents used in the first column is

found by extracting the square root of 2 to successive decimal

places. The sequence in the second column approaches a limit.

This limit is taken hy definition as the value of 10'^''.

In general, if x is an irrational number, a" is defined as the limit

of a sequence of numbers, o^', a'^', . . . , a^. . . , the exponents

xi, xi, . ., Xn,. . . being a sequence of rational mumbers
approaching a; as a limit.

It thus appears that if a and y are any given positive numbers,

there is a number x, rational or irrational, which satisfies the equa-

tion a' = y. The expression a' is called the exponential func-

tion of X with "base a.

131. Definitions.—In the exponential equation a' = y:

The number a is called the base.

The number y is called the exponential function of x to the base

a, and is sometimes written y = expoX.

The number x is called the logarithm of y to the base ,a, and

is written x = logay- Thus in the equation a" = y, x may be

called either the exponent of a or the logarithm of y.

The two equations,

y = a'

X = logay,

express exactly the same relations between x and y; one equation

is solved for x, the other is solved for y. The graphs are identical,

just as the graphs oi y = x^ and x = ± \/y are identical.

132. Common Logarithms. In the equation 10"° = y, x is
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called the common logarithm of y. It is also called the Brigg's

logarithm of y. Thus, the common logarithm of any number is

the exponent of the power to which 10 must be raised to produce

the given number. Thus 2 is the common logarithm of 100,

since 10" = 100; likewise 1.3010 will be found to be the con^mon

logarithm of 20 correct to 4 decimal places, since lO^-'"" = 20.00.

133. Systems of Logarithms. If in the exponential equation

y = a', where a is any positive number except 1, different values

be assigned to y and the corresponding values of x be computed

and tabulated, the results constitute a system of logarithms.

The number of different possible systems is unlimited, as abeady

noted in §125. -As a matter of fact, however, only two systems

have been computed and tubulated; the natural, or Naperian, or

hyperboUc, system, whose base is the incommensurable number e,

approximately 2.7182818, and the common, or Brigg's, system,

whose base is 10. The letter e is set aside in mathematics to

stand for the base of the natural system.

Natural logarithms of all numbers from 1 to 20,000 have

been computed to 17 decimal places. The common logarithms

are usually printed in tables of 4, 5, 6, 7 or 8 decimal places.

It will be found later that the graphs of all logarithmic functions

of the form x = logo y can be made by stretching or by contract-

ing in the same fixed ratio the ordinates of any one of the logarith-

mic curves. That is, the logarithms of one system can be ob-

tained from those of another system by multiplying by a constant

factor. For this reason numerical tables in more than one

system of logarithms are unnecessary.

In the following pages the common logarithm of any number n
wiU be written log n, and not logu n; that is, the base is supposed

to be 10 unless otherwise designated; In x for logeS and Ig x for

logic X are also used.

Exercises

Write the following in logarithmic notation:

1. 103 = 1000. 6. e" = y.

2. 10-3 ^ 0.001. 7. 10»" = 1.7783.

3. 10» = 1. 8. lO»Mio = 2.

4. IP = 121. 9. oi = a.

5. 16«" = 2. 10. 10i°8io!' = y.

Express the following in exponential notation

:



246 Ea^EMENTARY MATHEMATICAL ANALYSIS [§134

11. logu 4 = 0.6021. 16. log-^^iOO = I
12. log 10000 = 4. 17. logj7(l) = -ll.
13. log 0.0001 = - 4. 18. logic 10 = i-

14. logs 1024 = 10. 19. log 1 = [O.

16. log. o = 1. 20. logal = [o.

134. Graphical Table.

function defined by the two progressions whose use was suggested

In Fig. 104 is shown the graph of the

10



§135] LOGARITHMIC AND EXPONENTIAL FUNCTIONS 247

If we let L stand for the logarithm of the number N, the

functional relation is obviously L = logioiV, or iV = 10^. The
curve, Fig. 104, may now be used as a graphical table of logarithms

from which the results can be read to about 2 decimal places.

The logarithms of numbers between 1 and 10 may be read directly

from the graph. Thus, logio 7.24 = 0.860. If the logarithm is

between and 1, the number is read directly from the graph.

Thus if the logarithm is 0.273, the number is 1.87.

If we multiply the readings of the A/^-scale by 10", we must add

n to the readings on the L-scale, for lO^A'' = 10^+".

If we divide the readings on the A''-scale by 10", we must
subtract n from the readings on the L-scale, for N/10" = 10^ ~".

This fact enables us to read the logarithms of all numbers from

the graph, and conversely to find the number corresponding to

any logarithm. Thus we have, log 72.4 = 1.860, log 724 =
2.860, log 0.724 = 0.860 - 1, log 0.0724 = 0.860 - 2.

If the logarithm is 1.273, the number is 18.7.

If'the logarithm is 2.273, the number is 187.

If the logarithm is 0.273 - 1, the number is 0.187.

If the logarithm is 0.273 - 2, the number is 0.0187.

We observe that the computation of a three place table -oi

logarithms would not involve a large amount of work. Such a

table has actually been computed in drawing the curve of Fig.

104. The original tables of Briggs and Vlacq involved an enor-

mous expenditure of labor and extraordinary skill, or even genius

in computation, because the results were given to fourteen places

of decimals.

135. Properties of Logarithms. The following properties of

logarithms follow at once from the general properties or laws of

exponents.

(1) The logarithm of 1 is in all systems. For a" = 1, that

is, logal = 0. In Fig. 101, note that the curve passes through

(0, 1).

(2) The logarithm of the base itself in any system is 1. For
a^ = o, that is, log„a = 1. In Fig. 101, by construction N is

always the point (1, r), where r is the ratio of the first or funda-

mental progression in which means are inserted; in the present

notation, this is the point (1, a).
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(3) Negative numbers have no logarithms. This follows at

once from Fig. 101. In Figs. 100, 101, and 104, note that the

curves do iiot extend below the X-axis.

Note: While negative numbers have no logarithms, this does not

prevent the computation of expressions containing negative factors

and divisors. Thus to compute (287) X (- 374), find (287) X (374)

by logarithms and give proper sign to the result.

136. Logarithm of a Product. Let n and r be any two positive

numbers, and let

logo n = X and logo r = y. (1)

Then, by definition of a logarithm, §131,

n — a' and r = a". (2)

Hence,

nr = a"a" = a''*^

Therefore, by definition of a logarithm, §131,

logo nr = X + y,

or, by (1),

log. nr = loga n + log. r. (3)

Hence, the logarithm of the product of two numbers is equal to

the sum of the logarithms of those numbers.

In the same way, if log. s = «, then

nrs = a"^-'-',

that is,

log. nrs = log. n + log. r + log. s.

Exercises

Find the results by the formulas and check by the curve of Fig. 104.

1. Given log 2 = 0.3010, and log 3 = 0.4771; find log 6; find log 18.

2. Given log 5 = 0.6990 and log 7 = 0.8451; find log 35.

3. Given log 9 = 0.9542, find log 81.

4. Given log 386 = 2.5866 and log 857 = 2.9330; find the logarithm

of their product.

6. Given log llx = 1.888 and log 11 = 1.0414; find log x.

137. Logarithm of a Quotient. Let n and r be any two positive

numbers, and let

log. n = X and log. r = y. (1)
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From (1), by the definition of a logarithm,

n = O' and r = a".

Hence,

n/r = a" -T- a" = a''".

Therefore, by definition of a logarithm,

loga {n'/r) = X - y,

or by (1)

logo (n/r) = logo n - log, r. (2)

Hence, the logarithm of the quotient of two numbers equals the

logarithm of the dividend minus the logarithm of the divisor.

Exercises

Find the results by the formulas and check by the curve of Fig. 104.

1. Given log 6 = 0.6990 and log 2 = 0.3010; find log (5/2); find

log 0.4.

2. Given log 63 = 1.7993, and log 9 = 0.9542; find log 7.

3. Given log 84 = 1.9243 and log 12 = 1.0792; find log 7.

4. Given log 1776 = 3.2494 and log 1912 = 3.2815; find log

1776/1912; find log 1912/1776.

5. Given log a;/12 = 0.4321 and log 12 = 1.0792, find log x.

138. Logarithm of any Power. Let n be any positive number
and let

logo n = X. (1)

From (1), by the definition of a logarithm,

n = a".

Raising both sides to the pth power, where p is any number what-

soever,

UP = a"'.

Therefore, by definition of a logarithm,

logo (w) = px,

or, by (1),

logo (n^) = p logon. (2)

Hence, the logarithm of any power of a number equals the logarithm

of the number multiplied by the index of the power.
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The above includes the two cases: (1) the finding of the

logarithm of any integral power of a number, since, in this case

p is a positive integer; and (2) the finding of the logarithm of any

root of a number, since, in this case, p is the reciprocal of the index

of the root.

Exercises

1. Given log 2 = 0.3010; find log 1024; find log V2; find log y^.
2. Given log 1234 = 3.0913; find log Vl234; find log -^/i^Si.

3. Given log 5 = 0.6990; find log 53 ; find log sl.

4. Show that log (11/15) + log (490/297) - 2 log (7/9) = log 2.

6. Find an expression for the value of x from the equation 3' = 567.

Solution: Take the logarithm of each side;

X log 3 = log 567.

But
log 567 = log (3< X 7) = 4 log 3 + log 7.

Therefore

X log 3 = 4 log 3 + log 7,

or

X = 4 + (log 7)/(log 3).

6. Find an expression for x in the equation 5' = 375.

7. Given log 2 = 0.3010 and log 3 = 0.4771, find how many digits

in 6'°.

8. Find an expression for x from the equation

3» X 2»+i = -v/si^.

9. Prove that log (75/16) - 2 log (5/9) + log (32/243) = log 2.

139. Characteristic and Mantissa. The common logarithm

of a number is always written so that it consists of a positive

decimal part and an integral part which may be either positive

or negative. Thus log 0.02 = log 2 - log 100 = 0.3010 - 2.

Log 0.02 is never written — 1.6990.

When a logarithm of a number is thus arranged, special names

are given to each part. The positive or negative integral part is

called the characteristic of the logarithm. The •positive decimal

part is called the mantissa. Thus, in log 200 = 2.3010, 2 is

the characteristic and 3010 is the mantissa. In log 0.02 =
0.3010 — 2, (— 2) is the characteristic and 3010 is the mantissa.

Since log 1=0 and log 10 = 1, every number lying between 1
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an4 10 has for its common logarithm a number between and 1

;

that is, the characteristic is 0. Thus log 2 = 0.3010, log 9.99 =

0.9996, log 1.91 = 0.2810. Starting with the equation

log 1.91 = 0.2810,

we have, by §136,

log 19.1 = log 1.91 + log 10 = 0.2810 + 1 = 1.2810,

log 191 = log 1.91 + log 100 = 0.2810 + 2 = 2.2810,

log 1910 = log 1.91 + log 1000 = 0.2810 + 3 = 3.2810, etc.

Likewise, by §137,

log 0.191 = log 1.91 - log 10 = 0.2810 - 1,

log 0.0191 = log 1.91 - log 100 = 0.2810 - 2,

log 0.00191 = log 1.91 - log 1000 = 0.2810 - 3, etc.

Since thexharaoteristic of the common logarithm of any number

having its first significant figure in units place is zero, and since

moving the decimal point to the right or left is equivalent to

multiplying or dividing by a power of 10, or equivalent to adding

an integer to or subtracting an integer from the logarithm,

(§134): (1) the value of the characteristic is dependent merely

upon the position of the decimal point in the number; (2) the

value of the mantissa is the same for the logarithms of all

numbers that differ only in the position of the decimal point.

In particular, we derive therefrom the following rule for finding

the characteristic of the common logarithm of any number:

The characteristic of the common logarithm of a number equals

the number of places the first significant figure of the number is

removed from units' place, and is positive if the first significant

figure stands to the left of units' place and is negative if it stands

to the right of units' place.

Thus, in log 1910 = 3.2810, the first figure 1 is three places from

units' place and the characteristic is 3. In log 0.0191 = 0.2810

— 2, the first significant figure 1 is two places to the right of units'

place and the characteristic is — 2. A computer in determining

the characteristic of the logarithm of a number first points to

units' place and counts zero, then passes to the next place and

counts one and so on until the first significant figure is reached.
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Logarithms with negative characteristics, Uke 0.3010 — 1,

0.3010 — 2, etc., should be written in the equivalent form

9.3010 - 10, 8.3010 - 10, etc.

Exercises

,

1. What numbers have for the characteristic of their logarithm?

What numbers have for the mantissa of their logarithms?

2. Find the characteristics of the logarithms of the following num-
bers: 1234, 5, 678, 910, 212, 57.45, 345.543, 7, 7.7, 0.7, 0.00000097,

0.00010097.

3. Given that log 31,416 = 4.4971, find the logarithms of the

foUowmg numbers: 314.16, 3.1416, 3,141,600, 0.031416, 0.31416,

0.00031416.

4. Given that log 746 = 2.8727, write the numbers which have the

foUowmg logarithms: 4.8727, 1.8727, 7.8727 - 10, 9.8727 - 10,

3.8727, 6.8727 - 10.

140. Logarithmic Tables. A table of common logarithms con-

tains only the mantissas of the logarithms of a certain convenient

sequence of numbers. For example, a four place table will con-

tain the mantissas of the logarithms of numbers from 100 to

1000; a five place table will usually contain the mantissas of

the logarithms of numbers from 1000 to 10,000, and so on. Of

course it is unnecessary to print decimal points or characteristics.

A table of logarithms should contain means for readily obtaining

the logarithms of numbers intermediate to those tabulated, by

means of tabular differences and proportional parts.'

The tabular differences are the differences between successive

mantissas. If any tabular difference be multiplied successively

by the numbers 0.1, 0.2, 0.3, . . . , 0.8, 0.9, the results are called

the proportional parts. Thus, from a four place table we find

log 263 = 2.4200. The tabular difference is given in the table

as 16. If we wish the logarithm of 263.7, the proportional part

0.7 X 16 or 11.2 is added to the mantissa, giving, to four places,

log 263.7 = 2.4211. This process is known as interpolation.

Corrections of this kind are made with great rapidity after a

1 The student is supposed to have Slichter's Four Place Tables, Macmillan A
Co., New York. The edition printed on three sheets of heavy manilla paper per-

forated to lit in notebook is preferred. See also tables at end of this book.
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little practice. It is obvious that the principle used in the

correction is the equivalent of a geometrical assumption that the

graph of the function is nearly straight between the successive

values of the argument given in the table. The corrections

should invariablybeaddedmentally and all the work of interpolation

should be done mentally if the finding of the proportional parts by

mental work does not require multiplication beyond the range of

12 X 12. To make interpolations mentally is an essential practice,

if the student is to learn to compute by logarithms with any skiU

beyond the most rudimentary requirements.

A good method is the following: Suppose log 13.78 is required.

First write down the characteristic 1 ; then, with the table at your

left, find 137 in the number column and mark the corresponding

mantissa by placing your thumb above it or your first finger

below it. Do not read this mantissa, but read the tabular differ-

ence, 32. From the p. p. table find the correction, 26, for 8. Now
return to the mantissa marked by your finger, and read it increased

by 26, i.e., 1393; then place 1393 after the characteristic 1

previously written down.

The accuracy required for nearly aU engineering computations

does not exceed 3 or 4 significant figures. Four figure accuracy

means that the errors permitted do not exceed 1 percent of

1 percent. Only a small portion of the fundamental data of

science is reliable to this degree of accuracy.^ The usual meas-

urements of the testing laboratory fall far short of it. Only

in certain work "in geodesy, and in a few other special fields of

engineering, need more than four place logarithms be used.

Exercises

Knd the logarithms of the following

:

1. 136. 4. 375.S 7. 2.758.

2. 752. 5. 217.6 8. 762,700.

3. 976. 6. 17.62 9. 0.1278.

^ Fundamental constants upon wMch much of the calculation in applied science

must be based are not often known to four figures. The mechanical equivalent of

heat is hardly known to 1 percent. The specific heat of superheated steam is even
less accurately known. The tensile, tortional, and compressive strength of no
structural material would be assumed to be known to a greater accuracy than the
above-named constants. Of course no calculated result can be more accurate than
the least accurate of the measurements upon which it depends.
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141. Anti-logarithms. If we wish to find the number which

has a given logarithm, it is convenient to have a table in which

the logarithm is printed before the number. Such a table is known
as a table of anti-logarithms. It is usually not best to print

tables of anti-logarithms to more than four places; to find a number
when a five place logarithm is given, it is preferable to use the

table of logarithms inversely, as the large number of pages required

for a table of anti-logarithms is a disadvantage that is not com-

pensated for by the additional convenience of such a table.

Exercises

From a four place table of anti-logarithms, find the numbers cor-

responding to the following logarithms:

1. 2.7864. 2. 3.1286. 3. 1.8152.

4. 9.6278 - 10. 5. 8.1278 - 10. . 6. 6.1785 - 10.

142. Cologarithms. Any computation involving multiplica-

tion, division, evolution, and involution may be performed by

the addition of a single column of logarithms. This possibility

is secured by using the cologarithms, instead of the logarithms, of

aU divisors. The cologarithm, or complementary logarithm,

of a number n is defined to be (10 — log n) — 10. The part

(10 — log n) can be taken from the table just as readily as log n,

by subtracting in order all the figures of the logarithm, including the

characteristic, from 9, except the last figure, which must be taken

from 10. The subtraction should, of course, be»done mentally.

Thus log 263 = 2.4200, whence colog 263 = 7.5800 - 10. In

like manner colog 0.0263 = 1.5800. It is obvious that the

addition of (10 — log n) — 10 is the same as the subtraction of

log n.

The convenience arising from this use may be illustrated as follows

:

Suppose it is required to find x from the proportion

37.42 :x ::647 : v'0.S82!

We then have

2 log 37.4 = 3.1458

(1/2) log 0.582 = 9,8825 - 10

colog 647 = 7.1891 _ 10

log X = 0.2174

X = [1. 650].
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It is a good custom to enclose a computed result in square

brackets.

143. Arrangement of Work. All logarithmic work should be

arranged in a vertical column and should be done with pen and

ink. Study the formula in which numerical values are to be

substituted and decide upon an arrangement of your work in the

vertical column which will make the additions, subtractions, etc.,

of logarithms as systematic and easy as possible. Fill out the

vertical column with the names and values of the data before

turning to the table of logarithms. This is called blocking out

the work. The work is not properly blocked out unless every

entry in the work as laid out is carefully labelled, stating exactly

the name or value of the magnitude whose logarithm is taken,

and unless the computation sheet bears a formula or statement

fully explaining the purpose of the work.

Computation Sheet, Form M7, is suitable for general logarithmic

computation.

Illustration 1. Find the weight in pounds of a circular disk

of steel of radius 2.64 feet and thickness 0.824 inch, if the specific

gravity of the steel be 7.86.

Formula : Call r the radius in feet and t the thickness in inches.

Take 64.48 as the weight of one cubic foot of water. Then the weight

in pounds w is given by

w =-nrH</12)(64.48)(7.86).

Work:
logx
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Wobk:
log 0.1673 =9.2235-10
log 2,142 =0.3308

colog 3 . 871 = 9.4122 - 10

Sum = 8.9665 - 10

log a; =9.6555-10
X = [0.4524]

Remark 1. In writing a decimal fraction without an integral part,

always place a zero before the decimal point; thus 0. 1673.

Remark 2. Note the order of logarithmic work: First, write the

formula; next block out the work by writing down the first column, as

in illustrations above; finally hunt up logarithms from table and place

in second column of work.

Remark 3. After addition note that 23.8819 — 20 is written as

3.8819.

Remark 4. In dividing a logarithm like 8.9665 — 10 by 3, first

call the expression 28.9665 — 30 and then divide by 3. If division

by 5 had been required, the dividend would of course have been called

48.9665 - 50.

Exercises

1. Compute by logarithms the value of the following : 2.56 X 3.11

X 421; 7.04 X 0.21 X 0.0646; 3215 X 12.82 -^ 864.

2. Compute the following by logarithms: 81' ^ 17«; 158\/0^;

(343/892)'; Vl893 \/l912/446='.

3. Compute the following by logarithms: (2.7182)'"'; (7.41)-*;

(8.31)«-".

4. Solve the following equations: 5* = 10; 3*-^ = 4; log» 71 =
1.21.

5. Find the amount of $550 for fifteen years at 5 percent compound
interest.

6. A corporation is to repay a loan of $200,000 by twenty equal

annual payments. How much will have to be paid each year, if

money be supposed to be worth 5 percent?

Let X be the amount paid each year. As the debt of $200,000 is

owed now, the present value of the twenty equal payments of x dollars

each must add up to the debt or $200,000. The sum of x dollars

to be paid n years hence has a present worth of only

X

(1.05)"
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if money be worth 6 percent compound interest. The present value,

then, of X dollars paid one year hence, x dollars paid two years hence,

and so on, is

1.05 (1.05)!' ' (1.05)3 , . . . , (105)20

This is a geometrical progression which can be summed by the usual

formula.

The result in this case is the value of an annuity payable at the end
of each year for twenty years that a present payment of $200,000 will

purchase. Four place tables will not give more than 3 place accuracy

in this and the following problem. To get 4 or 5 place accuracy,

6 place tables would be required.

7. It is estimated that a certain power plant costing $220,000 will

become entirely worthless except for a scrap value of $20,000 at the

end of twenty years. What annual sum must be set aside to amount
to the cost of replacement at the end of twenty years, if 5 percent

compound interest is realized on the money in the depreciation fund?
Let the annual amount set aside be x. In this case the twenty

equal payments are to have a value of $200,000 twenty years hence,

while in the preceding problem the payments were to be worth

$200,000 now. In this case, therefore,

a;(1.05)" + a;(1.05)" + x(1.05)" + . . .

+ x(1.05)2 + x(1.05) + s = $200,000.

The geometrical progression is to be summed and the resulting

equation solved for x.

8. The population of the United States in 1790 was 3,930,000 and
in 1910 it was 93,400,000. What was the average rate percent in-

crease for each decade of this period, assuming that the population

increased in geometrical progression with a uniform ratio for the entire

period.

9. Find the surface and the volume of a sphere whose radius is 7.211.

10. Find the weight of a cone of altitude 9.64 inches, the radius of

the base being 5.35 inches, if the cone is made of steel of specific

gravity 7.93.

11. Find the weight of a sphere of cast iron 14.2 inches in diameter,

if the specific gravity of the iron be 7.30.

12. In twenty-four hours of continuous pumping, a pump dis-

charges 450 gallons per minute; by how much will it raise the level of

water in a reservoir having a surface of 1 acre? (1 acre = 43560 sq.ft.)

17
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144. Trigonometric Computations. Logarithms of the trigo-

nometric functions are used for computing the numerical value

of expressions containing trigonometric functions, and in the

solution of triangles. Right triangles, previously solved by

use of the natural functions, are often more readily solved by

means of logarithms. (See §62.) The tables of trigonometric

functions "contain adequate explanation of their use, so that

detailed instructions need not be given in this place. Two new
matters Of great importance are met with in the use of the loga-'

rithms of the trigonometric functions that do not arise in the use

of a table of logarithms of numbers, which, on that account, re-

quire especial attention from the student:

(1) In interpolating in a table of logarithms of trigonometric

functions, the corrections to the logarithms of all co-functions must

be svhtracted and not added. Failure to do this is the cause of

most of the errors made by the beginner.

(2) To secure proper relative accuracy in computation, the

S and T functions must be used in interpolating for the sine and

tangent of small angles.

In the following work, four place tables of logarithms are

supposed to be in the hands of the students.

Exercises

1. A lateral face of a right prism, whose base is a square 17.45 feet

on a side, is cut in a line parallel to the base by a plane making an

angle of 27° 15' with the face. Find the area of the section of the

prism made by the cutting plane.

2. The perimeter of a regular decagon is 24 feet. Find the area of

the decagon.

3. To find the distance between two points B and C on opposite

banks of a river, a distance CA is measured 300 feet, perpendicular

to CB. At A the angle CAB is found to be 47° 27'. Find the

distance CB.

4. In running a line 18 miles in a direction north, 2° 13.2' east,

how far in feet does one depart from a north and south line passing

through the place of beginning?

5. How far is Madison, Wisconsin, latitude 43° 5', from the earth's

axis of rotation, assuming that the earth is a sphere of radius 3960

miles?
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6. A man walking east 7° 15' north along a river notices that after

passing opposite a tree across the river he walks 107 paces before he

is in line with the shadow of the tree. Time of day, noon. How far

is it across the river?

7. Solve the right-angled triangle in which one leg = 2\/3 and the

hypotenuse = 2ir.

8. The moon's radius is 1081 miles. When nearest the earth, the

moon's apparent diameter (the angle subtended by the moon's disk as

seen from the position of the earth's center) is 32'.79. When farthest

from the earth, her apparent diameter is only 28'. 73. Find the

nearest and farthest distances of the moon in miles.

9. A pendulum 39 inches long vibrates 3° 5' each side of its mean
position. At the end of each swing, how far is the pendulum bob
above its lowest position?

10. If the deviation of the compass be 2° 1.14' east, how many feet

does magnetic north depart from true north in a distance of 1 mile

true north?

11. Solve

X : 1.72 = 427 : V2gh,

a g = 32.2 and h = 78.2.

12. A substance containing 20 percent of impurities is to be purified

by crystallization from a mother liquid. Each crystallization reduces

the impurity 88.6 percent. How many crystallizations will produce

a substance 0.9999 pure?

13. Compute the value of (1 — ae"'")" where a = 15.6, b = -t~'
\

X = 10, 71 = 2, 2/ = 2.5.

14. Find the volume of a cone if the angle at the apex be 15° 38'

and the altitude 17.48 inches.

15. The angle subtended by the sun's diameter as seen from the

earth is 32'.06. Find the diameter of the sun in miles, if the distance

from the earth to the sun be 92.8 million miles.

16. Compute by logarithms four values of p from the equation

V = 32.2(ii."8, for d = 2,3, 4, 5.

17. Solve 3' = 405 for the value of x.

18. Compute:
23.07 X 0.1354 X -s/234

13.54

What advantage is there in using the co-logarithm of the denomi-
nator?
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145. * Logarithmic and Exponential Curves. The graphical

construction of the exponential curve has already been explained.

It was noted that curves whose equations are of the form y = r^

pass through the point (0, 1), and that the slope of the curves

for positive values of x is steeper the larger the value selected for

the number r. In a system of exponential curves y = r' passing

through the point (0, 1), or the point M of Fig. 105, we have

assumed (§129) that there is one curve passing through M
with slope 1. The equation of this particular curve we have

called y = e', thereby de-

fining the number e as that

value of r for which the

curve y = r' passes through

the point (0, 1) with slope 1.

In §130 there was de-

veloped on the basis of the

first definition of e, the

characteristic property of

the curve 2/ = e": The slope

of the curve y = e' at any

point is equal to the ordinate

of that point. This fact,

developed experimenrtaUy

in §129, will now be shown

to foUow necessarily from

the definition of e just

given.

Select the point P on the

curve y = e' at any point

desired. Draw a line through P cutting the curve at any neigh-

boring point Q. (Fig. 105.) A line like PQ that cuts a curve at

two points is called a secant line. As the point Q is taken nearer

and nearer to the pointP (P remaining fixed), the limiting position

approached by the secant PQ is called the tangent to the curve

at the point P. This is the general definition of the tangent to

any curve.

The slope of the secant joining P to the neighboring point Q
is HQ/PH. As the point Q approaches P this ratio approaches

Fig. 105.- -Definition of tangent to a
curve.
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the slope of the tangent to y = e' at the point P- Let OD = x

and PH = h; then OE = x + h, also DP = e' and EQ = e'+K

Since HQ is the y of the point Q minus the y of the point P, we

have
jjQ ^gx+h — gx^

^
e'^
— 1

Pff~ ^ ~ ^'
/i

Now the slope of j/ = e* at P is the limit of the above expression

as Q approaches P, or as h approaches zero. That is

slope of e' at P =
J^'J

e'[^^] • (D

As the point Q approaches the point P, or as h approaches zero,

X does not change. Then

slope of e-^ at P = e-
J^'J [^"T^]

"

^2)

We now seek to find

limit [" e'^ - 11

h=Ol h J

if such limit exists.

Since the fraction (e* — l)/h does not contain x, its value, for

any value of h, and hence its hmit, is the same for every point of

the curve. If its value is calculated for any particular point of the

curve, as the point M, it will have this value at any other point as

P. .From equation (2) the slope of the tangent line at the point

M is

„ limitre^-1]
^ ^=0L h J

or

limit f e'- - 1
]

h=Ol h i'

But by the definition of e, the slope of ?/ = e* at M is 1

.

S[^]-'- «>

Substituting this result in equation (2), we have

slope at P = e'. (4)
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This expresses the fact that the slope oi y = e' at any point is e",

or is the ordinate y of that point, a fact that was first indicated

experimentally in §129.

Later an approximate value, 2.7183, will be found for e.

146. Comparison of the Curves y. = v and y = e*. In Fig.

105 the slope oiy = e' atP is given by DP measured by the unit

OM. The distance TD, the subtangent, is constant for all posi-

tions of the point P- We shall prove two theorems.

1. The curve for y = r" can be made from y = e' by multiplying

all of the abscissae of the latter by a constant. There is a number m
such that e"* = r'. Hence

y = r' may be written

y = (e"')' = e""'. Now
this curve is made from

2/ = e* by substituting mx
for X, or by multiplying

all of the abscissas of

y = e' hy 1/m.

2. The slope ofy = r' at

any point is a constant times

the ordinate of that point.

The curve y = r" can be

made from y = e' hy mul-

tiplying all of the abscissas

of the latter by 1/m.

Therefore the side TD of

the triangle PDT va. Fig.

105 will be multiplied by

1/m, the other side DP
remaining the same.
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is called the logarithmic curve. This distinction, however, has

little utility, as the equation of either locus can be expressed in

either notation.

The notation y = In x is often used to indicate the natural loga-

rithm of X and the notation y = Ig x, or y = log x, is used to stand

for the common logarithm of x.

Table IV.

The following table of powers of e is useful in sketching exponen-

tial curves.

eo.2 = 1.2214
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tion of X, that is, that the function changes sign but not absolute value

when the sign of x is changed.

3. Draw the graphs oi y = e", and y = e~''.

4. Draw the graphs of y = e*/*, and y = e~'/'.

6. Compare the curves: y = e*/*, y = e*''*, y = e', y = e'".

6. Sketch the curves y = 1', y = 2', y = Z', y = i", y = 5', y = &',

y = 8',y = 10"^, from a;=-3toa;=+3.

147. Change of Base and Properties of the Exponential Curv&
Consider the curves y = e' and y = a', Fig. 108, where a > e.

For a given y = OH, the abscissas HP\ and ffiPz are log, y and

logaj/, respectively. It has been shown (§146) that the curve

y = a' can be obtained from the curve y = e* by multiplying the

abscissas of the latter curve by— , where m is the number such that

a. (1)
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Hence, if N represents any number,

logio N = 0.4343 log. N, (5)

log.N = —-— logioN = 2.3026 log, N. (6)
04343

From the definition of m and M,

100.«43 = g^ (7)

g2.3026 = 10. (8)

Incidentally it should be noted that, since M = —' from (3)

and (4),

^°S^°" = 1^' ^^^

A remarkable property of the logarithmic curve appears from

comparing the curves y = a' and y = a''*'''. The second of these

curves can be derived from y = a' by translating the latter curve

the distance h to the left. But y = a*+'' may be written y = a'^a^,

from which it can be seen that the new curve may also be

considered as derived from y = a' hy multipljang aU ordinates

oiy = a" by a*.

Translating the exponential curve in the negative x-direction is the

same as multiplying all ordinaies by a certain fixed number, or is

equivalent to a certain orthographic projection of the original curve

upon a plane through the X-axis.

Changing the sign of h changes the sense of the translation and

changes elongation to shortening or vice versa.

Exercises

1. Compare the curve y = e" with the curve y = 10*.

2. Graph the logarithmic spiral p = e>,6 being measured in radians.

Note : The radian measure in the margin of Form MZ should be

used for this purpose.

3. Graph p = e-«.

4. The pressure of the atmosphere is given in millimeters of mer-

cury by the formula

y = 760.e-»'/'i""'

where the altitude x is measured in meters above the sea level. Pro-
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duce a table of pressure for the altitudes x =0; 10; 50; 100; 200;

300; 1000; 10,000; 100,000.

5. From the data of the last problem, find the approximate pressure

at an altitude of 25,000 feet.

6. Show that the relation of exercise 4 may be

written

X = 18,421 (log 760 - log y).

7. Determine the value of the quotient j for

the following values of x : 2, 3, 5, 7.

8. How large is e"""', approximately?

9. What is the approximate value of lO"""!?

148. Logarithmic Double Scale. The relation

between a number and its logarithm can be

shown by a double scale of the sort discussed in

§§3 and 10. Such a scale is shown in Fig. 109.

It may be constructed as follows: First con-

struct the uniform scale A, in which the unit

distance — 1 is shown divided into 100 equal

parts. Opposite 0.3010 ( = log 2) of the A-

scale place a division line on the 5-scale marked

by the number 2. Opposite 0.4771 (= log 3)

of the A-scale place a division line of the B-

scale marked by the number 3. Likewise op-

posite 0.6021 (= log 4) of A place 4 on B; op-

posite 0.6990 (= log 5) of A place 5 on B; etc.

Intermediate points on B are similarly located

—

for example the 2.1 mark on B should be

placed opposite 0.3222 (= log 2.1) on A.

The non-uniform scale B is called a loga-

rithmic scale, for the lengths measured along it

are proportional to the logarithms of the natural

numbers.

The double scale of Fig. 109 may obviously

be used as a table of logarithms. Thus from

it we may read log 7.1 = 0.85; log 3.3 = 0.52; log 1.5 = 0.175.

Since log 10a; = 1 + log x, it follows that, if the scales A and B,

Fig. 109, were extended another unit to the right, this second

s —

3

a
.a

a
ho
o

= i!



§149] LOGARITHMIC AND EXPONENTIAL FUNCTIONS 267

unit would be identical to the first one, except in the attached

numbers. The numbers on the A-scale would be changed from

0.0, 0.1, 0.2, . .,1.0 to 1.0, 1.1, 1.2, . ,, 2.0, while those

on the non-uniform, or S-scale, would be changed from 1, 2, 3,

. . ., 10 to 10, 20,30, . ., 100.

Passing along this scale an integral number of unit intervals

corresponds thus to change of characteristic in the logarithms, and

to change in the position of the decimal point in the numbers.

It is not, however, necessary to construct more than one block of

this double scale, since we are at liberty to add an integer n to the num-
bers of the uniform scale, provided at the same time we multiply the

numbers of the non-uniform scale by 10". In this way we may obtain

any desired portion of the extended scale. Thus, we may change 0.1,

0.2, 0.3, . ., 1.0 on X to 3.1, 3.2, 3.3, . . ., 4.0, by adding 3 to

to each number, provided at the same time we change the numbers

1, 2, 3, 4, . ., 10 on the S-scale to 1000, 2000, 3000, 4000, . .,

10,000 by multiplying them by 10^. If n be negative (say — 2) we
may write, as in the case of logarithms, 8.0 — 10, 8.1 — 10, 8.2 —
10, . . ., 9.0 - 10, or, more simply, - 2, - 1.9, - 1.8, - 1.7,

., — 1.0, changing the numbers on the non-uniform scale at the

same time to 0.01, 0.02, 0.03, . ., 0.10.

Exercises

Read the following from the double scale. Fig. 109.

1. log 5.5 2. log 2.4 3. log 1.9 4. log 71

6. anti-log'O.74 6. anti-log 0.38 7. anti-log 1.38 8. anti-log 2.38

149. The Slide Rule. By far the most important apphcation

of the non-uniform scale ruled proportionally to log z, is the com-

puting device known as the slide rule. The principle upon which

the operation of the slide rule is based is very simple. If we have

two scales' divided proportionally to log x (A and B, Fig. 110),

so arranged that one scale may slide along the other, then slid-

ing one scale (called the slide) until its left end is opposite any
desired division of the first scale, selecting any desited division of

the slide, as at R, Fig. 110, and taking the reading of the original

scale beneath this point, as N, the product of,the two factors

whose logarithms are proportional to AB and BR can be read
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X

directly from the lower scale at N. For AN is, by construction,

the sum oi AB and BR, and since the scales

were laid off proportionally to log x and marked

with the numbers of which the distances are the

logarithms, the process described adds the loga-

rithms mechanically, but indicates the results

in terms of the numbers themselves. By this

device all of the operations commonly carried

out by use of a logarithmic table may be per-

formed mechanically. Full description of the

use of the shde rule need not be given in de-

tail at this place, as complete instructions are

found in the pamphlet furnished with each

slide rule. A very brief amount of individual

instruction given to the student by the instruc-

tor will insure the rapid acquirement of skill in

the use of the instrument. In what follows,

the four scales of the slide rule are designated

from top to bottom of the rule, hy A, B, C, D,

respectively. The ends of the scales are called

the indices.

AH|Ordinary 10-inch sUde rule should give results

accurate to three significant figures, which is ac-

curate enough for most of the purposes of applied

science.

An exaggerated idea sometimes prevails con-

cerning the degree of accuracy required by work
in science or in applied science. Many of the

fundamental constants of science, upon which a

large number of other results depend, are known
only to three decimal places. In such cases

greater than three figure accuracy is impossible

even if desired. In other cases greater accuracy

is of no value even if possible. The real deside-

ratum in computed results is, first, to know by a

suitable check thai the work of compiUation is correct,

and, second, to know to what order or degree of ac-

curacy both the daia and the resuU are dependahle.

The absurdity of an undue number of decimal

^-2!* »

j3

a
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places in computation is illustrated by the original tables of loga-

rithms, which if now used would enable one to compute from the

radius of the earth, the circumference to 1/10,000 part o/ an inch.

The following matters should be emphasized in the use of the

slide rule

:

(1) All numbers for the purpose of slide rule computation should

be considered as given with the first figure in units place. Thus

517 X 1910 X 0.024 should be considered as 5.17 X 1.19 X 2.4 X
10^ X 10' X 10~^ The result should then be mentally approxi-

mated (say 24,000) for the purpose of locating the decimal point,

and for checking the work.

(2) A proportion should always be solved by one setting of the

slide.

(3) A combined product and quotient like

aXhXcXd
rXsXt

should always be solved as follows:

Place runner on a of scale D;

set r of scale C to a of scale D;

runner to fe of C;

s of C to rurmer;

runner to c of C;

t of C to runner;

runner to d of C; find on D the significant figures of the
'

result.

(4) The runner must be set on the first half of A for square

roots of numbers having an odd number of digits, and on the

second half of A for the square roots of other numbers.

(5) Use judgment so as to compute results in most accurate

manner—thus instead of computing 264/233, compute 31/233 and
hence find 264/233 = 1 + 31/233.^

(6) Besides checking by mental calculation as suggested in (1)

above, also check by computing several neighboring values and
graphing the results if necessary. Thus check 5.17 X 1.91 X 2.4

by computing both 5.20 X 19.2 X 2.42 and 5.10 X 1.90 X 2.38.

1 Show by trial that this* gives a more accurate result.
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Exercises

Compute the following on the slide rule:

1. 3.12 X 2.24; 1.89 X 4.25; 2.88 X 3.16; 3.1 X 236.

2. 8.72/2.36; 4.58/2.36; 6.23/2.12; 10/3.14.

3. 32.5 X 72.5; 0.000116 X 0.00135; 0.0392/0.00114.

4. 3,967,000 H- 367,800,000. g 78.5 X 36.6 X 20.8

, 6.64X42.6 8.75X5.25 '

„ .^'^^J^?^^
32.5 ' 32.3

Solve the proportion

6.46 X 57.5 X 8.55

3.26 X296 X 0.642'

X : 1.72 = 4.14 : V^gh.

where g = 32.2 andA^ = 78.2.

o n , VlTl X 1.41
9. Compute

166.7X4.5
'

10. The following is an approximate formula for the area of a seg-

ment of a circle

:

<•

A = h'/2c + 2ch/3,

where c is the length of the chord and h is the altitude of the segment.

Test this formula for segments of a circle of unit radius, whose arcs

are 7r/3, ir/2, and tt radians, respectively.

11. Two steamers start at the same time from the same port; the

first sails at 12 miles an hour due south, and the second sails at 16

miles an hour due east. Knd the bearing of the &st steamer as seen

from the second {l) after one hour, (2) after two hours, and compute

their distances apart at each time.

The following exercises require the use of the data printed herewith.

An "acre-foot" means the quantity of water that would cover 1

acre 1 foot deep. "Second-foot" means a discharge at the rate of 1

cubic foot of water per second. By the "run-off" of any drainage

area is meant the quantity of water flowing therefrom in its surface

stream or river, during a year or other interval of time.

1 square mUe = 640 acres.

1 acre = 43,560 square feet.

1 day = 86,400 seconds.

1 second-foot = 2 acre-feet per day, approximately.

1 cubic foot = 7J gallons, approximately.

1 cubic foot water = 62^ pounds water, approximately.

1 h.p. = 550 foot-pounds per second.

450 gallons per minute = 1 second-foot, approximately.
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Each of the following problems should be handled on the slide rule as

a continuous piece of computation.

12. A drainage area of 710 square miles has an annual run-off of

120,000 acre-feet. The average annual rainfall is 27 inches. Find

what percent of the rainfall appears as run-off.

13. A centrifugal pump discharges 750 gallons per minute against

a total lift of 28 feet. Find the theoretical horse power required.

Also daily discharge in acre-feet if the pump operates fourteen hours

per day.

14. What is the theoretical horse power represented by a stream

discharging 550 second-feet if there be a fall of 42 feet?

15. A district containing 25,000 acres of irrigable land is to be sup-

plied with water by means of a canal. The average annual quantity

of water required is Sf feet on each acre. Find the capacity of the

canal in second-feet, if the quantity of water required is to be delivered

uniformly during an irrigation season of five months.

16. A municipal water supply amounts to 35,000,000 gallons per

twenty-four hours. Find the equivalent in cubic feet per second.

17. A single rainfall of 3.9 inches on a catchment area of 210 square

mUes is found to contribute 17,500 acre-feet of water to storage reser-

voir. The run-off is what percent of the rainfall in this case?

150. Semi-logarithmic Coordiaate Paper. Fig. Ill represents

a sheet of rectangular coordinate paper, on which ON has been

chosen as the unit of measure. Along the right-hand edge of this

sheet is constructed a logarithmic scale LM of the type discussed

in §148, i.e., any number, say 4, on the scale LM stands opposite

the logarithm of that number (in the case named opposite 0.6021)

on the uniform scale ON.
Let us agree always to designate by capital letters distances

measured on the uniform scales, and by lower case letters dis-

tances measured on the logarithmic scale. Thus Y will mean the

ordinate of a point as read on the scale ON, while y will mean the

ordinate of a point as read on the scale LM. Moreover, we agree

to plot a function, using logarithms of the values of the function

as ordinates and the natural values of the argument, or variable,

as abscissas.

Let PQ be any straight line on this paper, and let it be required

to find its equation, referred to the uniform a;-scale OL and the

logarithmic 2/-scale LM. We proceed as follows

:
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The equation of this line, referred to the uniform Z-axis OL
and the uniform Y-axis, ON, where is the origin, is

Y = mx + B,

m being the slope of the line, and B its F-intercept. ,Now, for the

line PQ, m = 0.742 and B = 0.36, so that the equation of PQ is

Y = 0.742a: + 0.36. (1)

To find the equation of this curve referred to the scalesLM and

OL, it is only necessary to notice that

y = log 2/
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which may be written

log y - log 2.30 = 0.742a;,

log
2|o

= 0-7*2..

}^M *=' ^
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its equation referred to the scales OL and LM may be obtained by
replacing Y by log y and B by log 6 in the manner described above,

giving

log y = mx + log 6, (5)

which, as above, may be reduced to the form

y = bio"*. (6)

This is the general equation of the exponential curve. Hence:

Any exponential curve can he represented by a straight line, provided

ordinates are read from a suitable logarithmic scale, and abscissas

are read from a uniform scale.

Fig. 112 represents the same line PQ, y = (2.30)10°'"', as

Fig. 111. The two figures differ only in one respect; in Fig. Ill

the rulings of the uniform scale ON are extended across the page,

while in Fig. 112 these rulings are replaced by those of the scale

LM.
Coordinate paper such as that represented by Fig. 112 is known

as semi-logarithmic paper. It affords a convenient coordinate

system for work with the exponential function.

Every point on PQ (Fig. 112) satisfies the exponential equation

y = 2.30(10" '^2-).

Thus, in the case of the point R,

3.98 = 2.30(10'''")'''2»

= 2.30(10»-238).

The slope of any line on the semi-logarithmic paper may be read

or determined by means of the uniform scales BC and AB oi form

M5. The scale AD of form M5 is the scale of the natural loga-

rithms, so that any equation of the form y = e"" can be graphed

at once by the use of this scale. Thus, the line y = e"''(Fig.

113) passes through the point A or (0, 1), and a point on BC op-

posite the point marked 1.0 on AD. Note that 1.0 on scale AD,
- 2.718 on the non-uniform scale of the main body of the paper,

and 0.4343 on the scale BC aU fall together, as they should.

To draw the line y = 10""', the corner D of the plate may be

taken as the point (0, 1). On the line drawn once across the sheet

representing y = 10"*, y has a range between 1 and 10 only.*
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To represent the range of y between 10 and 100, two or more sheets

of form M5 may be pasted together, or, preferably, the continua-

tion of the line may be shown on the same sheet by suitably chang-

ing the numbers attached to the scales AB and BC. Thus Fig.

113 shows in this manner y = IW".
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_

lUiTTBTBATiON 2. Draw the curve y = 3(10'^""*^].

From (8) above it is seen that this curve passes through the point

(2, 3) with slope 2.

Illustration 3. Plot the following data upon semi-logarithmic

paper and find, if possible, the equation connecting the x- and y-

values.

10
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or

or

log V = hx -\- log 2.51,

'• y _ ^
log

2.51 2'

y
2.51

= 10'

V = 2.51(10»),

an empirical equation connecting the x- and j^-values of the table.

Exercises

On semi-logarithmic paper draw the following:

1. y = 10", y = W, y = 10»^.

2. y = 10-==, y = IQ-'i*, y = 10-»«.

3. y = e^', y = e".

i. y = e"", y = e~^'.

5. Sx = log y, (l/2)a; = log y.

6. Find an empirical equation connecting the x- and the y-values

given in the accompanying table.

X
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X-axis. Since the amount of any sum at compound interest is

given by a term of a geometrical progression, it is obvious that a

sum at compound interest accumulates by the same law of growth

as is indicated by a set of uniformly spaced ordinates of an expo-

nential curve; hence the term "compound interest law," from

this superficial view, is appropriate. The detailed discussion

that follows will make this clear:

Let $1 be loaned at r percent per annum compound interest.

At the end of one year the amount is (1 -|- r/100).

At the end of two years the amount is (1 -|- r/100)'',

and at the end of t years it is (1 + r/100)'.

If interest be compounded semi-annually, instead of annually,

the amount at the end of t years is (1 -|- r/200)''',

and if compounded monthly the amount at the end of the same

period is (1 +-r/\2QQy^'

or if compounded n times per year y= {1 + r/lOOn)"',

where t is expressed in years. Now if we find the limit of this

expression as n is increased indefinitely, we will find the amount of

principle and interest on the hypothesis that the interest was

compounded conlinuously . For convenience let r/lOOn = 1/m.

Then

2/ = (1 + 1/m)-'/'»», (1)

where the limit is to be taken as m or n becomes infinite. Calling

(1 + l/uY = f(u) (2)

and expanding by the binomial theorem for any integral value

of u we obtain

r/- \ II fi / \ i

w(w — 1) 1 ,

f{u) = 1 + u{l/u) + \2 ^ + • •

= 1 -I- 1 + (1 - l/w)/2! -I- (1 - 1/m)(1 - 2/u)/3\ -I- ... (3)

In the calculus it is shown that the limit of this series as u becomes

infinite is the limit of the series

l-hl + l/2!-M/3!-h ... (4)

The limit of this series is easily found; it is, in fact, the Naperian

base e. It is shown in the calculus that the restriction that u
shall be an integer may be removed, so that the limit of (3) may
be found when m is a continuous variable.
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It is easy to see that the Umit of (4) is > 2^ and < 3. The sum
of the first three terms of the series (4) equals 2i; the rest of the

terms are positive, therefore e>2^. The terms of the series (4),

after the first three, are also observed to be less, term for term, than

the terms of the progression:

(1/2)2 + (1/2)3 + (5)

But this is a geometrical progression the limit of whose sum is 1/2.

Therefore (3) is always less than 2| + 5, or 3. The value of e is

readily approximated by the following computation of the first

8 terms of (4):

2.00000 = 1 + 1

0.50000 = 1/2!

0.16667 = 1/3!

0.04167 = 1/4!

0.00833 = 1/5!

0.00139 = 1/6!

0.00020 = 1/7!

Sum of 8 terms = 2.71826

The value of e here found is correct to four decimal places.

Returning to equation (1) above, the amount of $1 at r percent

compound interest compounded continuously is

y = e"/""- (6)

Thus $100 at 6 percent compound interest, compounded annually,

amounts, at the end of ten years, to

y = 100(1.06)"' = $179.10.

The amount of $100 compounded continuously for ten years is

y = 100e«-6= $182.20

The difference is thus $3.10

152. Logarithmic Increment. The compound interest law is

one of the important laws of nature. As previously noted, the

slope or rate of increase of the exponential function

y = ae'"

at any point is always proportional to the ordinate or to the value
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of the function at that point. Thiis when in nature we find any

function or magnitude that increases at a rate proportional to itself

we have a case of the exponential or compound interest law.

The law is also frequently expressed by saying, as has been re-

peatedly stated in this book, that the first of two magnitudes varies

in geometrical progression while a second magnitude varies in arith-

metical progression. A famUiar example of this is the increased

friction as a rope is coiled around a post. A few turns of the

hawsers about the bitts at the wharf is sufficient to hold a large

ship, because as the number of turns increases 'In arithmetical

progression, the friction increases in geometrical progression.

Thus the following table gives the results of experiments to de-

termine what weight could be held up by a one-pound weight,

when a cord attached to the first weight passed over a round peg

the number of times shown in the first column of the table:

Average logarithmic increment =

n = number of
turns of the cord

on the peg
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By graphing columns 1 and 3 on squared paper, the value of m is

determined and we find

w = lO"-^'", or n = 2.2 log w.

Another way is to graph columns 1 and 2 on semi-logarithmic

paper.

An interesting example of the compound interest law is Weber's

law in psychology, which states that if stimuli are in geometrical

progression, the sense perceptions are in arithmetical progression.

163. Modulus of Decay, Logarithmic Decrement. In a very

large number of cases in nature a function obeying the "compound
interest" law appears as a decreasing function rather than as an

increasing function, so that the equation is of the form

y = ae~>"', (1)

where (— 6) is essentially negative, b is the modulus of decay, or

the logarithmic decrement, corresponding to an increase of x

by unity. The following are examples of this law:

(1) If the thickness of panes of glass increase in arithmetical pro-

gression, the amount of light transmitted decreases in geometrical

progression. That is, the relation is of the form

L = oe-«, (2)

where t is the thickness of the glass or other absorbing material and L
is the intensity of the light transmitted. Since when t = the light

transmitted must have its initial intensity, Lo, (2) becomes

L = Loe-«. (3)

The constant 6 must be determined from the data of the problem.

Thus, if a pane of glass one unit thick absorbs 2 percent of the incident

light,

U = 100, Z, = 98 for « = 1,

and 98 = 100e-»,

or log 98 - log 100 = - 6 log e.

Therefore 6 = j^j^ = 0.02

The light transmitted by ten panes of glass is then

iio = 100e-"'f»»«) = 100e-»-2,
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or, by the table of §146,

Lio = 100/1.2214 = 82 percent

(2) Variation in atmospheric pressure with the altitude is usually

expressed by Halley's Law,

p = 760e-*/8»»»,

where h is the altitude in meters above sea level and p is the atmos-

pheric pressure in millimeters of mercury. See §147, Exercises 4, 5, 6.

(3) Newton's law of cooling states that a body surrounded by a

medium of constant temperature loses heat at a rate proportional

to the difference in temperature between it and the surrounding

medium. This, then, is a case of the compound interest law. If

6 denotes temperature of the cooling body above that of the surround-

ing medium at any time t, we must have

e = ae~K

The constant a must be the value of 8 when i = 0, or the initial tem-

perature of the body.

Exercises

1. A thermometer bulb initially at temperature 19°.3 C. is exposed to

the air and its temperature B observed to be 14°.2 C. at the end of

twenty seconds. If the law of cooling be given by e = ffoe"", where

t is the time in seconds, find the value of 6 and 6.

Soltjtion: The condition of the problem gives 9 = 19.3 when < = 0,

hence, Bo = 19.3. Also, 14.2 = 19.3e-206. This gives

log 19.3 - 20b log e = log 14.2,

from which 6 can be readily computed.

2. If IJ percent of the incident light is lost when Ught is directed

through a plate of glass 0.3 cm. thick, how much light would be lost in

penetrating a plate of glass 2 cm. thick?

3. Forty percent of the incident light is lost when passed through

a place of glass 2 inches thick. Find the value of a in the equation

L = LoB'"', where t is thickness of the plate in inches, L is the percent

of light transmitted, and Lo = 100.

4. As I descend a mountain the pressure of the air increases each

foot by the amount due to the weight of the layer of air 1 foot thick.

As the density of this layer is itself proportional to the pressure, show

that the pressure as I descend must increase by the compound inter-

est law.

6. Power is transmitted in a clock through a train of gear wheels
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n in number. If the loss of power in each pair of gears is 10 per-

cent, draw a curve showing the loss of power at the nth gear.

Note: The graphical method' of §121, Figs. 98, 99, may appro-

priately be used.

6. Given that the intensity of light is diminished 2 percent by
passing through one pane of glass, find the intensity / of the light

after passing through n panes.

7. The temperature of a body cooling according to Newton's law

.^fell from 30° to 18° in six minutes. Find the equation connecting

the temperature of the body and the time of cooling.

154. Empirical Curves on Semi-logarithmic Coordinate Paper.

One of the most important uses of semi-logarithmic paper is in

determining the functional relation between observed data, when
such data are connected by a relation of the exponential form

as already indicated in §160. Suppose, for example, that the

following are the results of an experiment to determine the law

connecting two variables x and y

:

0.04 0.18 0.36 0.51 0.685 0.833 0.97

5.3 4.4 3.75 3.1 2.6 2.33 1.9

If the equation connecting x and y is of the exponential form, the

points whose coordinates are given by corresponding values of x

and y in the table will lie in a straight line on semi-logarithmic

paper, except for such errors as may be due to inaccuracies in the

observations. Plotting the points on semi-logarithmic coordinate

paper, we find that they lie nearly on the line PQ (Fig. 115).

Assuming that, if the data were exact, the points would lie exactly

on this line,' we may proceed to determine the equation of this line

as approximately representing the relation between x and y.

It is easy to find the equation of such a line referred to the uni-

^ We would not be at liberty to make such an assumption if tte variation of the

points away from the line was of a character similar to that represented by the dots

near the top of Fig. 115. These points, although not departing greatly from the

line shown; depart from it systematically. That is, they lie below it at each end

,

and above it in the center, seeming to approximate a curve (such as the one shown
dotted") more nearly than the line. The points arranged about the line PQ depart

as far from that line as do the points above the higher line, but they do not depart

systematically, as if tending to lie along a smooth curve. When points arrange

themselves as at the top of Fig. 115, one must infer that the relation connecting

the given data is not exponential in character.
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form scale AB and BC of form M5. We may imagine that all

rulings are erased and replaced by extensions of the uniform AB
scale, as in Fig. 111. The equation of the line PQ is then

Y = mx + B, (1)

where m is the slope, and B is the T-intercept. Now, for PQ,

O-Jlf
f-.
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If it is desired to express the relation to the base e instead of

base 10, we may note 10 = e2-''026 (§147, equation (8)), or, sub-

stituting in (2),

y = 5.39 (e2-303)-o.447x

= 5.39 e-i»"« (3)

The same result could have been obtained directly by determin-

ing the slope of PQ from the uniform scale AD at the left of

Form Mb.

155. Change of Scale on Semi-logaritbmic Paper. A sheet of

semi-logarithmic paper, form Af5, is a square. If sheets of this

paper be arranged "checker-board fashion" over the plane, then

the vertical non-uniform scale will be a repetition of the scale LM,
Fig. 115, except that the successive segments of lengthLM must be

numbered 1, 2, 3, . ,9 for the original LM, then 10, 20,

30, , 90 for the next vertical segment of the checker-board,

then 100, 200, 300, , 900, for the next, etc. It is obvious,

therefore, that the initial point A of a sheet of semi-logarithmic

paper may be said to have the ordinate 1, or 10, or 100, etc., or

10~^, lO"'', etc., as may be most convenient for the particular

graph under consideration. The horizontal scale being a uniform

scale, any values of x may be plotted to any convenient scale on

it, as when using ordinary squared paper. However, if the hori-

zontal unit of length (the length AB, form Mb) be taken as any

value different from unity, then the slope m of the line PQ drawn

on the semi-logarithmic paper can only be found by dividing its

apparent slope by the scale value of the side AB. That is, the

correct value of m in

y — &10""'

is, in all cases,

_ apparent slope ofPQ
scale value of AB

The "apparent slope" of PQ is to be measured by applying any
convenient uniform scale of inches, centimeters, etc., to the

horizontal and vertical sides of a right triangle of which PQ is the

hypotenuse.
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Exercises

1. A thermometer bulb initially at temperature 19°.3 C. is exposed

to the air and its temperature e noted at various times t (in seconds)

as follows:

t 20 40 60 80 100 120

19.3 14.2 10.4 7.6 5.6 4.1 3.0

Plot these results on semi-logarithmic paper and test whether or not

e follows the compound interest law. If so, determine the value of

So and 6 in the equation 6 = SolO"". Note that the last point given

by the table, namely t = 120, 6 — 3.0, goes into a new square if the

scale AB be called 0—100. If the scale AB be called 0—200 then all

entries can appear on a single sheet of form Af5.

2. Graph the following on semi-logarithmic paper:

n
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mental laws of natural science are three in number, namely: (1)

the parabolic law, expressed by the power function y = ax"

where n may be either positive or negative; (2) the harmonic or

periodic law, y = asin nx, which is fundamental to all periodically

occurring phenomena; and (3) the compound interest law dis-

cussed in this chapter. While there are other important laws and

functions in mathematics, they are secondary to those expressed

by these fundamental functions. The second of the functions

above named wUl be more fully discussed in the chapter on waves.

The discussion of the compound interest law should not be closed

without a careful comparison of power functions and exponential

functions.

The characteristic property of the power function

y = ax" (1)

is that as x changes hy a constant factor, y changes by a constant

factor also. Let

y = ax" = f(x). (2)

Let X change by a constant factor m, so that the new value of x

is mx. Call y' the new value of y. Then

y' = a{mx)" = f{mx). (3)

That is,

y' a(mx)" ,.,— = -^^

—

'- = m", (4)
y ax"

which shows that the ratio of the two y's is independent of the value

of X used, or is constant for constant values of m.

Another statement of the law of the power function is: As .t

increases in geometrical progression, y, or the power function, in-

creases in geometrical progression also.

r
Let m be nearly 1, say 1 + t^, where r is the percent change in x

and is small, then we have

y' K^' + m) '^K^)'- = '
,,

;""' = ^ ^^^^^ = (1 + r)" =F 1 + nr (5)
y fix) ax"

by the approximation formula for the binomial theorem (§113).
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Hence,

d' + m)-^^^^
y fix) 100

(6)

f^)=nr. (7)100
y

The left-hand member is the percent change in y or infix). The
number r is the percent change in the variable a;. Therefore

(7) states that for small changes of the variable the percent of

change in the function is n times the percent of change in the variable.

Let the exponential function be represented by

y = ae'' = Fix). (8)

As already noted in the preceding sections, increasing x by a con-

stant term increases y, or the function, by a constani factor. Thus

y' F{x + h) aeoi'^")
'

y Fix) ~ oe»' ~ ' ^ '

which is independent of the value of x, or is constant for constant h.

The expression e'* is the factor by which y or, the function, is in-

creased when X is increased by the term, or increment, h. See

§147.

In other words, as x increases in arithmetical progression, y,

or the exponential function, increases in geometrical progression.

The percent of change is

[Fix + /i) - Fix)-
100 ^ = 100 [e'* - 1], (10)

Fix)

which is constant for constant increments h added to the variable x.

If X change by a constant percent from a; to a; ( 1 + t?^) , it will

be found that the percent change in the function is not constant,

but is variable.

The above properties enable one to determine whether measure-

ments taken in the laboratory can be expressed by functions of

either of the types discussed; if the numerical data satisfy the

test that if the argument change by a constant factor the function

also changes by a constant factor, then the relation may be repre-

sented by a power function. If, however, it is found that a change
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of the argument by a constant increment changes the function

by a constant factor, then the relation can be expressed by an

equation of the exponential type.

We have already shown how to determine the constants of the

exponential equation by graphing the data upon semi-logarithmic

paper. In case the equation representing the function is of the

form

y = ae^'' + c, (11)

then the curve is not a straight line upon semi-logarithmic paper.

If tabulated observations satisfy the condition that the function

less (or plus) a certain constant increases by a constant factor as

the argument increases by a constant term, then the equation of

the type (11) represents the function and the other constants can

readily be determined.

The determination of the equations of curves of the parabolic

and hyperbolic type is best made by plotting the observed data

upon logarithmic coordinate paper as explained in the next section.

157. Logarithmic Coordinate Paper. If coordinate paper be

prepared on which the uniform x and y scales are both replaced

by non-uniform scales divided proportionately to log x and log y,

respectively, then it is possible to show that any curve of the para-

bolic or hyperbolic type when drawn upon such coordinate paper will

be a straight line. This kind of squared paper is called logarithmic

paper, and is illustrated in Fig. 116.

To find the equation of a line PQ on such paper, we imagine, as

in the case of semi-logarithmic paper, that aU rulings are erased

and replaced by continuations of the uniform scales ON and MN,
on which the length ON or MN is taken as unity. Denoting, as

before, distances referred to these uniform scales by capital letters,

we may write as the general equation of a straight line

Y = mX + B. (1)

In the case of the line PQ, m = 0.505, B = 0.219, and hence

Y = 0.505X + 0.219.

But, Y = log y, X = log X, where y and x represent distances

19
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measured on the scale LM and LO respectively, and 0.219 =

log 1.65. Hence

log y = 0.505 log X + log 1.65

or

log y — log 1.65 = 0.505 log .r.

ar 1 10 AT
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In general, if £ = log 6, we may write the equation (1) in the

form

y — bx'" (3)

If the straight line on logarithmic paper passes through the

point (1, 1) its Cartesian equation is

Y = mX, (4)

or, referred to the logarithmic scales,

log y = m log X — log a;"",

or

y = X". (5)

If the straight line on logarithmic paper passes through the point

(a, 6) with slope m, its equation referred to the logarithmic scales

is

(6)I = [;]

On logarithmic paper, form Mi, the numbers printed in the

lower and in the left margin refer to the non-uniform scale in the

body of the paper. By calling the left-hand lower corner the

point (1,10), (10, 10), (10, 1), (10, 100), (1,100) or (100, 100), . . .
,

instead of (1,1), these numbers may be changed to 10, 20, 30,

. , or to 100, 200, 300, . . . , etc.

If the range of any variable is to extend beyond any of the single

decimal intervals, 1—10, 10—100, 100—1000, . . . , the "multiple

paper," form MQ, may be used, or several straight lines may be drawn
across form JW4 corresponding to the value of the function in each

decimal interval, 1—10, 10—100, . . ., so that as many straight

lines will be required to represent the function on the first sheet as

there are intervals of the decimal scale to be represented. However,
if the exponent m in i/ = bx" be a rational number, say n/r, then the

lines required for all decimal intervals will reduce to r different straight

lines.

One of the most important uses of logarithmic paper is the de-

termination of the equation of a curve satisfied by laboratory

data. If such data, when plotted on logarithmic paper, give

a straight line, an equation of the form (6) above satisfies the

observations and the equation is readily found. The exponent

m is determined by measuring the slope of the line with an ordinary
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uniform scale. The equation of the line is best found by noting

the coordinates of any one point (o, 6) and substituting these

and the slope m in equation (6).

Illustration 1. Construct the semi-cubical parabola y= 2x1

on logarithmic paper.

The result is a straight line of slope -| cutting the line LM, Fig. 116,

at the point marked 2.

100? ^ » 9 ~ I

90
80
70
60
EO

40

30

20

£__________.£/ E

/ D F
2 3 4 5 6 78910 20 30 40 5060
K ? M

Fig. 117.—Multiple logarithmic paper.

100

Illustbation 2. Find an empirical equation connecting the x and

y of the accompanying table.

X
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Substituting for a and 6 in (fi) the coSrdinates of any of the points

on the line, for example (5, 1), we get

y. = M '

1 \6/
or 2/ = 25^-

Exercises

Draw the following on single or multiple logarithmic paper, forms

M4or Af6:

1. y = x,y =2x,y =3x,y = ix. i. y = x^^, y = x^^,
.^

2. y = X, y = x^, y = x\ y ^ x*. 5. y = 2x', y = Ja;', A = itrK

Z. y = 1/x, y = l/x\ y = 1/xK

6. Find the empirical equation connecting x and y of the following

table.

X
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Draw the following on single or multiple logarithmic paper as best

suits the particular example. Carefully, label the scales and indicate

the true numerical value of the division points. Use common sense

values of the variables—^for example in exercise 16 do not graph for

speed over 30 knots.

9. p = 0.003«^, where p is the pressure in pounds per square foot

on a flat surface exposed to a wind velocity of v miles per hour.

Suggestion: The "common sense" range for v is from w = 10 to

V = 100.

c
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17. H = —p— , for D = 5000, 10,000, 15,000, 20,000, where C =

225, D is displacement in tons and /S is speed in knots.

18. H =
-go",

for N = 100, 200, 300, 400, 500, 600, 700, 800, 900,

1000. d is the diameter of cold rolled shafting in inches. The line

should be graphed for values of d between d = 1 and d = 10.

19. F = O.OOOSilWBN', where N is revolutions per minute, R is

radius in feet, W is weight in pounds, and F is centrifugal force in

pounds.
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their values have been computed and printed. The first of

these is called the hyperbolic cosine of u and the second is called

the hyperbolic sine of u ; they are written in the following notation

:

cosh w = (6« + e~")/2, sinh li = (e« — e~")/2.

Triction Head in Feei per IDOO Ft. of Pipe
Not«:

For opoD ooadults, multlplj IlydraUllo Radlut bj 4 to

get Equivalent SUmetsT. Diagram givu noarly Boms
reaults aa KuttWB Fonnulm Kith n=.011.
Fur old or foul pipes multlplj required head bj 1.4&

f>00 ^ ^^^ o' divide diagram veloolt; b; I>20 to 1,28 for

V= 2 to & feet per Beoond

.

j

g For Bubb pipes ffsO-fiO^lia

Diagram, of Flow In Clean Oaat Iron or Wrought Iron Pipes

Baaed on the Formula, H, in Feet per 1000 Feet = 0,38K"^-

FiG. 120.—A compHcated example of the use of multiple logarithmic paper, Form
MQ. From Transactions Am. Soc. C. E., Vol. LI.

If X = a cosh u and y= a sinh u, then squaring and subtracting

x^ — y^ = a2(cosh'' u — sinh^ u)

=..p + 2 + e-2" 2 + e--'

4 4

Therefore the hyperbolic functions

x= a cosh u, and y = a sinh u

'1
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appear in the parametric equations of a rectangular hyperbola

just as the circular functions

X = a cos B, and y = asind

appear in the parametric equations of the circle

a;2 -)- j/2 = o^
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1.&
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The student should arrange in tabular form the necessary

numerical work for the construction of the curves of Figs. 122

and 123.

If the coefficient of the second exponent be increased in absolute

value, the points of intersection with the F-axis remain the same,

but the region of close approach of the curves to each other is

moved along the curve y = e-' to a point much nearer the Y-axis

as can be seen by comparing Fig. 123 with Fig. 122.

159. *Damped Vibrations. If a body vibrates in a medium like

a gas or liquid, the amplitude of the swings are found to get smaller

and smaller, or the motion slowly (or rapidly in some cases) dies out.

In the case of a pendulum vibrating in oil, the rate of decay of the

amplitude of the swings is rapid, but the ordinary rate of the decay of

such vibrations in air is quite slow. The ratio between the lengths

of the successive amplitudes of vibration is called the damping factor

or the modulus of decay.

The same fact is noted in case the vibrations are the torsional

vibrations of a body suspended by a fine wire or thread. Thus a

viscometer, an instrument used for determining the viscosity of

lubricating oils, provides means for determining the rate of the decay

of the torsional vibration of a disk, or of a circular cylinder suspended

in the oil by a fine wire. The "amplitude of swing" is in this case the

angle through which the disk or cylinder turns, measured from its

neutral position to the end of each swing.

In all such cases it is found that the logarithms of the successive

amplitudes of the swings differ by a certain constant amount or, as

it is said, the logarithmic decrement is constant. Therefore the

amplitudes must satisfy an equation of the form

A = ae~^

where A is amplitude and / is time. The actual motion is given by an
equation of the form

y = ae~^ sin ct,

A study of oscillations of this type will be taken up more fully in

the calculus. For the present it will suffice to graph a few examples.

Let the expression be

y = g-f/B sin t. (1)

A table of values of t and y must first be derived. There are three

ways of proceeding; (1) Assign successive values to t urespective of
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the period of the eine (see Table V and Fig. 124). (2) Select for the

values of t those values that give aliquot parts of the period 2t of the

sine (see Table VI and Kg. 125). (3) Draw the sinusoid y = sin t

carefuUy to scale by the method of §56; then draw upon the same

V
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The first method involves very much more work than the second

for two principal reasons: First, tables of the logarithms of the

trigonometric functions with the radian and the decimal divisions

of the radian as argument are not available; for this reason 57.3°

must be multiplied by the value of t in each case so that an ordinary

trigonometric table may be used; second, each of the values written

in column (3) of the table must be separately determined, while if

the periodic character of the sine be taken advantage of, the numerical

values would be the same in each quadrant.

TABLE V
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period of tl^e Bine, such as ir/6 or ir/12 or r/l& or 5r/20, etc., possesses

the advantage that the values used in column (3) need be found for one

quadrant only and the values required in column (2) are quite as

readily found on the slide rule as in the first method.

TABLE VI

Table of the function y = e""/* sin t

1
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scale than on the horizontal scale. In Fig. 125 the horizontal unit

is incommensurable with the vertical unit. To draw the curve to a

true scale in both dimensions it is preferable to lay off the coSrdinates

on plain drawing paper and not on ordinary squared paper. Rec-

tangular coordinate paper is not adapted to the proper construction

and discussion of the sinusoid, or of curves, like the present one, that

are derived therefrom.

Curves whose equations are of the form y = je"*/' sin tor y =
Se"'.'' sin t, etc., are readily constructed, since the constants i, 3, etc.,

merely multiply the ordinates of (1) by \, 3, etc., as the case may be.

Likewise the curve y = e~'* sin ex is readily drawn since sin ex can be

made from sin x by multiplying all abscissas of sin x by 1/c.



CHAPTER X

TRIGONOMETRIC EQUATIONS AND THE SOLUTION
OF TRIANGLES

A. FURTHER TRIGONOMETRIC IDENTITIES

160. The circle p = a cos d + h sin 0. In §74 an analytical

proof was given of the fact that p = a cos fl + 6 sin 5 is the polar

equation of a circle passing through the pole and having its

center at the point (\a, 56). The demonstration there given

should now be reviewed.

Geometrical Explanation. The following geometrical dis-

cussion should give the

student a better under-

standing of the important

theorem of §74.

We know (§66) that pi

= a cos B is the polar equa-

tion of a circle of diameter

a, the diameter coinciding

in direction with the polar

axis OX; for example, the

circle OA, Fig. 126. Like-

wise, p2 = 6 sin is a circle

whose diameter is of length

6 and makes an angle of

-|-90° with the polar axis

OX, for example, the circle

OB, Fig. 126. Also, p =
c cos {0— 6) is a circle whose

diameter c has the direction angle 5. See Theorem XIV on Loci,

§70. We shall show that if the radius vectors corresponding to

any value old in the equations pi = a cos d and pa = 6 sin 6 be added
together to.make a new radius vector p, then, for all values of B,

304

Pig. 126.—Combination of the cir-

cles p = a cos 6 and p = 6 sin 9 into a
single circle p = a cos B + 6 sin e.
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the extremity of p lies on a circle (the circle OC, Fig. 126) of di-

ameter Vo^ + h'^. In other words we shallshow geometrically that

p = a cos & + 6 sin fl (1)

is the equation of a circle.

In Fig. 126, pi = a cos Q wiU be called the a-cirde OA; p^ =
6 sin 6 will be called the b-circle OB. For any value of the angle

6 draw radius vectors OM, ON, meeting the a- and 6-circles respec-

tively at the points M and N. If P be the point of intersec-

tion of MN produced with the circle whose diameter is the diagonal

OC of the rectangle described on OA and OB, we shaU show that

OM + ON = OP, no matter in what direction OP be drawn.

Let the circle last mentioned be drawn, and project BC on OP.

Since ONB and OPC are right angles, NP is the projection of

BC {= a) upon OP. But OM also is the projection of a (= OA)
upon OP. Hence NP = OM because the projections of equal

parallel lines on the same line are equal. Therefore, for all values

of d, NP = pi and OP = ON + NP = pi + pi, which is the fact

that was to be proved.

Designating the angle AOC by 5, the equation of the circle OC is

by §70.

P = Va^ 4- h'^ cos {6 - S) (2)

The value of 5 is known, for its tangent is -• It should be observed

that there is no restriction on the value oi 6. As the point P
moves on the circle OC, the circumference is twice described as d

varies from 0° to 360°, but the diagram for other positions of the

point P is in no case essentially different from Fig. 126.

The above reasoning and the diagram involve the restriction

_
that both o and 6 are positive numbers. While it is possible to

supplement the reasoning to cover the cases in which this restric-

tion is removed, it is unnecessary as the analytical proof of §74

is applicable for all values of a and b.

The equation of the circle OC in any position, that is, for

any value of a and 6, positive or negative, may also be written

in the form

p = Va^ + b^sm{d + i)
'

(3)

in which e is the angle BOC in Fig. 126. The equation of the
20
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circle OC has therefore been written in three different forms,

namely equations (1), (2) and (3) above.

Illustration 1. From the above we know that the equation

p = 6 cos 9 + 8 sin 9 represents a circle. The diameter of the

circle is Va* + ft" = VSM"^ = lOi so that the equation of the

circle may also be written p = 10 cos (9 — i), where 5 is the angle

whose tangent is - = ^ = 1.33. From a table of tangents S = 53° 8',

so that the equation of the circle may be written p = 10 cos (9 — 5l3 °8').

Illustration 2. Write the equation of the circle p = cos 9 —
-y/S sin 9 in the form p = c cos (9 — S) and in the form p =
c sin (9 + e).

Here a = 1, 6 = — -y/S, c = \/a* + 6« = 2. Hence C must be the

point (1, — \/3) in the second quadrant. Then 5 = angle of second

quadrant whose tangent is (— -s/S/l), or 120°. Also « = — 30°. Hence
the required equations are p = 2 cos (9 — 120°) and p = 2 sin (9 — 30°).

The result of this section should also be interpreted when the vari-

ables are x and y in rectangular coordinates, and not p and 9 of

polar coordinates. Thus, y = a cos a; is a sinusoid with highest point

or crest at a; =0, 2t, iar, . . . Likewise, y = b sin s is a sinusoid

with crest at a; = y -«-' -~-'
. . The above demonstration shows

that the curve

y = a cos X + b sin X

is identical with the sinusoid

y = Va' + 6" cos (a; - hi) = \/a'- + ¥ sin (a; + h)

of amplitude \/a^ -\- b- and with the crest located at a; = hi, or at

s — ^2, where hi is, in radians, the angle whose tangent is -> and hi

is, in radians, the angle whose tangent is r-

Exercises

1. Put the equation p = 2 cos 9 + 2v'3 sin 9 in the form p =
c cos (9 — 8) and find the value of h.

2. Put the equation p = 4 cos 9 + \\/Z sin 9 in the form p =
ccos (9 — 5).

3. Put the equation p = — 4 cos § — 4 sin 9 in the form p -
c sin (9 + e),
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4. Put the equation p = 2-\/3 cos 6 + 2 sin fl in the form p =
c cos (9 — 8).

6. Put the equation p = 3 cos 9 + 4 sin 9 in the form p =
csin (9 + e). Put the same equation in the form p = c cos (9 — 'S).

(S is the angle AOC, Fig. 126.)

6. Put the equation p = 5 cos 9 + 12 sin 9 in the form p =

o sin (9 + e); also in the form p = c cos (9 — S).

7. Put the equation (x — 1)^ + (y — ly = 2 in. the form p =
c sin (9 + a) and determine c and a.

8. Put the equation (a; + 1)^ + (2/ — \/3)' = 4 in the form p =
c sin (9 — a) and determine c and a.

9. Put the equation (x + 1)^ + (y + Vs)^ = 4 in the form p =
c sin (9 — a) and determine c and a.

10. Find the maximum value of cos 9 — \/3 sin 9, and determine

the value of 9 for which the expression is a maximum.
Suggestion : Call the expression p. The maximum value of p is the

diameter of the circle p = cos 9 — -y/s sin 9. The direction angle of

the diameter is the value of a when the equation is put in the form

p = c cos (9 — a).

11. Find the value of 9 that renders p = f-v/S cos 9 — ^ sin 9 a

maximum and determine the maximum value of p.

12. Find the maximum value of 3 cos t + isint.

161. Addition Fonnulas for the Sine and Cosine. From the

preceding section, equations (1), (2) and (3), we know that the

equation of the circle OC, Fig. 127, may be written in any one of

the forms

p = a cos 6 + 6 sin 0, (1)

p = c sin(,e- e), (2)

p = c cos (e-5). (3)

Hence, for all values oi 9, d, and e,

sin (6 — e) = - cos 5 + - sin 6, (4)

cos (9 - 5) = -cose + - sin 9, (6)

In each of these equations c = -^/a" + h^. The letters a and 6

stand for the co6rdinates of C irrespective of their signs or of

the position of C,
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Since (4) and (5) are true for all values of 6, they are true when
» = 0° and when = 90°.

First, Let = 0° in (4).

Then a/c = sin (— e) = — sin e by §60, (6)

-Second, let B = 90° in (4),

Then 6/c = sin (90° - e) = cos « (7)

Substituting (6) and (7) in (4) we have

sin (5 — e) = sin cos e — cos 6 sin e (8)

Fig. 127.—The circle p = c cos (9 — 5) or p = sin c (fl — e) used
in the proof of the addition formulas. Note that e = 90° + «

which is also true for negative angles, namely Si = 90° + ei.

In like manner upon letting = and = 90° in succession in

(5) we have

- = cos (- 5) = cos 5, by §60. (9)

= cos (90 — 5) = sin 5.

Substituting (9) and (10) in (5) we obtain

cos {8 — B) = cos 9 cos 6 + sin sin 5

(10)

(11)
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Since these are,true for all values of S and e, put 5 = (-^Si) and
e = ( — ei). Then by §60, these equations become

sin (6 + ei) = sin cos ei + cos 6 sin €i (12)

cos (0 + Si) = cos 6 cos 5i — sin 9 sin 5i (13)

To aid in committing these four important formulas (8), (11),

(12) and (13) to memory, it is best to designate in each case the

angles by a and |3, and write (12) and (13) in the form

sin (a + /3) = sin o: cos /3 + cos a sin /3 (14)

cos (a + /3) = cos a cos |8 — sin a sin /3 (15)

and also write (8) and (11) in the form

sin (a — P) = sia a cos /3 — cos a sin /3 (16)

cos (a — |3) = cos a cos /3 + sin q: sin j3 (17)

The four formulas (14), (15), (16) and (17) must be committed to

memory. They are called the addition fonnulas for the sine and

cosine. The above demonstration shows that the addition for-

mulas are true for all values of a and fi.

By the above formulas it is possible to compute the sine and

cosine of 75° and 15° from the following data:

sin 30° = i sin 45° = iV2
cos 30° = iV3 cos 45° = iV2

Thus

sin 75° = sin (30° + 45°) = sin 30° cos 45° + cos 30° sin 45°

= HV2 + |\/3iV2 = iV^(V'3 + 1)

Likewise

sin 15° = sin (45° - 30°) = i-s/2(\/3 - 1)

162. Addition Formula for the Tangent. Dividing the mem-
bers of (14) §161 by the members of (15) we obtain

,
, a\ sin (a -t- /3) sin a cos |8 -h cos a sin |3 ,,

,

tan (a + p) = -,
——37- = 5 ; ;—5 ^1;

cos (o -t- p) cos acosp — sm asmp
Dividing numerator and denominator of the last fraction by
cos a cos /3

sin a cos /3 cos a cos |8

tan ia + ^) = ^^E^^l_Jo[^^ (2)
cos a cos fi _ sin a sin fi

cos a cos ^ cos acosfi
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or

, ,
.. tan a + tan /3 ,„,

tan (a + B) = —

^

(3)
y I t^'

I - tan<»tan|3

Likewise it can be shown from (16) and (17), §161, that

. , „ tana — tan ^ , .

tan (a - |3) = —t— r—

^

(4)^ ' I + tanatan|3

Equations (3) and (4) are the addition formulas for the tangent.

Exercises

1. Compute cos 75° and cos 15°.

2. Compute tan 75° and tan 15°.

3. Write in simple form the equation of the circle

p = sin 6 + cos B.

4. Put the equation of the circle p = 3 sin 9 + 4 cos 6 in the form

p = c sin (9 + 9i) and find, from the tables or by the slide rule, the

value of ©i.

6. Derive a formula for cot (a + p).

6. Prove cos (s + t) cos {s — t) = cos'' s — sin^ t.

7. Express in the form c cos (a — b) the binomial 3 cos a + 4 sin o.

8. Express in the form c sin (a + 6) the binomial 5 cqs o + 12 sin a.

9. Find the coordinates of the maximum point or crest of the sinus-

oid y = sin X + -\/3 cos x. [First reduce the equation to the form

2/ = c sin (a; + a)].

163. Functions of Composite Angles. The sine, cosine, or

tangent of the angles (90°— d), (90° + 6), (180° - 6), (180° + 6),

(270° — 6), (270° + d) can be expressed in terms of functions

of 6 alone by means of the addition formulas of §§161 and 162.

Thus, write .

sia (a + /?) = sin a cos /3 + cos a sin /3 (1)

cos {a + fi) = cos a cos ;8 — sin a sin j3 (2)

Put a = 180°, and /3 = + 0; then (1) and (2) become, re-

spectively,

sin (180° ± 0) = T sin e (3)

cos (180° ±6) = ~ Gosd (4)
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Also in (1) and (2) put a = 90°, and P = ±6, then (1) and (2)

become, respectively,

sin (90° ± 6) = cos 6 (5)

cos (90° ± 6) = + sine (6)

By division of (3) by (4) and of (5) by (6),

tan (180° ±6) = + tan 6», (7)

tan (90° ± 6) = + cot d. (8)

In a similar manner all of the results given in the following table

may be proved to be true.

(-ft./l) Pa AC ft, A)

(A. ft)
P(h.k)

Pt(.-h,-h) P,(h.-k)

(-ft.-ft) Pa
P, (k.-h)

A B
Fig. 128.—An angle 9 combined with an even number of right

angles, (A) and wijh an odd number of right angles, (B)

.

TABLE VII

Functions of 6 Coupled with an Eeen or with an Odd Number of

Bight Angles
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classes the composite angles that are made by coupling with

an odd number of right angles, as (90° + fl), (ff - 90°), (270° - 6),

(450° + 6), etc., and those composite angles that are made by

coupling 6 with an even number of right angles, as (180° + 6)

(180° - 6), (360° - 6), (- 6), etc. Note that is an even

number, so that ( — 9) or (0° — 6) falls into the second class of

composite angles. We can then make the following statements

:

Theorems on Functions of Composite Angles

Think of the original angle 6 as an angle of the first quadrant:

I. Any function of a composite angle made by coupling B {by

addition or subtraction) with an even number of right angles, is

equal to the same function of the original angle 6, with an algebraic

sign the same as the sign of the function of the composite angle in

its quadrant.

II. Any function of a composite angle made by coupling (by

addition or subtraction) with an odd number of right angles, is eqital

to the co-function of the original angle B, with an algebraic sign

the same as the sign of the function of the composite angle in its

quadrant.

For example, let the original angle be 6, and the composite angle be

(180° + 8). Take any function of (180° + $), say tan (180° + 6), it is

equal to + tan 6, the sign + being the sign of the tangent in the quad-

rant of the composite angle (180° + 8), or third quadrant. Likewise

cot (270° + 6) must equal the negative co-function of the original

angle, or — tan 0, the algebraic sign being the sign of the cotangent in

the quadrant of the composite angle (270° -|- 9), or fourth quadrant.

In the above statements it has been assumed that the angle fl is an

angle of the first quadrant. This is merely for the convenience of

determining signs, for the results stated in itaUcs are true, no matter

in what quadrant 9 may actually, he.

Exercise

Given sin 30° = J, cos 30° = JVS, tan 30° = iVS, cot 30° = \/3,

find the sine, cosine, and tangent of each of the following angles by
means of the above Theorems on Functions of Composite Angles:

(a) 150°; ^b) 210°; (c) 240°; (d) 300°; (e) 330°; (/) 120°; (g) 60°;

(h) -30°.
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164. Angle that a Given Line Makes with Another Line. The
slope m of the straight line y = mx + b is the tangent of the

direction angle, that is, the tangent of the angle that the line makes

with OX. If Li and L^ are any two lines in the plane, the angle

that Li makes with Lj is the positive angle through which L^ must

he rotated about their point of intersection in order that Li may
coincide with Li. Represent the direction angles of two straight

lines

y = miX + bi (1)

y = mix. + hi (2)

by the symbols di and 6^. Then, through the intersection of the

lines pass a line parallel to the OX-axis, as shown in Fig. 129.

Call the angle that the line Li makes with La) that is, the positive

^
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The condition that the given lines (1) and (2) are perpendicular

to each other is that tan 4> shall become infinite; that is, that the

denominator of (5) shall vanish. Hence the condition of perpen-

dicularity is

1 + miW2 = 0,

m: = - ^- (7)

Therefore, in order that two lines may be perpendicular to each

other, the slope of one line must be the negative reciprocal of the slope

of the other line.

Thus the lines y = %x — A and y = — fa; + 2 are per-

pendicular.

Exercises

1. Find the tangent of the angle that the first line makes with

the second line of each set:

[a) y = 2x + Z, y = x + 2,

{h)y = Zx -Z, y = 2x + 1,

(c) y = ix + 5, y = Zx - 1,

id) y = lOx + I, y = Ux - 1,

2. Find the angle that the first line of each pair makes with the

second:

(a) y = X +5, y = - a; -|- 5.

(6) 2/ = Ja; -H 6, y = - 2x.

(c) 2/ = 2a; + 4, y = x + 1.

(d) 2x+Zy = \, Ix =y = \.

(e) 2i 4- 42/ = 3, 3a; 4- 62/ = 7.

(/) 2x +Ay = 3, 6a; - 32/ = 7.

3. Find the angle, in each of the following cases, that the first

line makes with the second: -

(o) 2/= x/Vz +4, 2/ = V3x+ 2.

(6) y = a;/\/3 -|- 1, y = VZx- 4.

(c) y = y/Zx - 6, 2/ = s/Zx- Z.

4. Find the angle that 2i/ — 6a; -1- 7 = makes with y + 2x +
7=0 and also the angle that the second line makes with the first.
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166. The Functions of the Double Angle. The addition

formulas for the sine, cosine, and tangent reduce to formulas of

great importance for the special case fi = a.

Thus sin (a + a) = sin a cos a + cos a sin a,

or sin 2a = 2 sin a cos a. (1)

Also cos (a + a) = cos a cos a — sin a sin a

which can be written in the three forms:

cos 2 a = cos^ a — sin^ a, (2)

cos 2 a = 2 cos^ oi —I, (3)

cos 2 o! = I — 2' sin^ a. (4)

Forms (3) and (4) are obtained from (2) by substituting,

respectively, sin^ a = 1 — cos'' a and cos^ a = 1 — sin^ a.

Equations (3) and (4) are frequently useful in the forms

:

— , . I + cos 2a; ,g,

(6)

Again
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may be computed when the functions of 30° are known. Thus

cos 30° = (1/2) VS
therefore sin 15° = \/(l - cos 30°)/2 = V'l/2 - (1/4)^3-

Also cos 15° = Vl/2 + (1/4)^3.

Likewise by (3)

tan 15° = L^^#^ = 2 - V3.

Exercises

1. Compute sin 60° from the sine and cosine of 30°.

2. Compute sine, cosine, and tangent of 221°.

3. If sin X = 2/5, find the numerical value of sin 2x, cos 2x, and

tan 2x.

4. Show by expanding sin (x + 2x) that sin 3a; = 3 sin a; — 4 sin 'x.

, _, . „ 3 tan x — tan' x
0. Prove tan 3a; = —5 5-:—

;

1—3 tan* X
6. Show that sin 29/sin e — cos 29/cos 9 = sec 8.

7. Show that

Ism 2 + cos^) = 1 + sin e.

8. Show that cos 29(1 + tan 29 tan B) = 1.

9. If sin A = 3/5, calculate sin {A/2).

10. Prove that tan (7r/4 + 9) =
^ _^ g

-

11. Prove that tan (ir/4 - 9)' = (1 - tan 9)/(l + tan 9).

12. Show that sec 9 + tan 9 = ^^—

•

cos 9

. » p., . , . 1 + 2 sin a cos a cos a + sin a
13. Show that - x—- ;-=— = —

-.

cos* a — sm* a cos a — sm o

14. Show that sec 9 + tan 9 = tan [i+g
16. Show that —^—j—

j

:r-^ — tan A tan B.
cot A + cot B

16. Prove that cos (s + t) cos {s — t) + sin (s + t) sin (s — i) =
cos 2t.

167. Sums and Differences of Sines and of Cosines Expressed

as Products. The following formulas, which permit the substi-

tution of a product for a sum of two sines or of two cosines, are
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important in many transformations in mathematics, especially in

the calculus. They are immediately derivable from the addition

formulas. Thus, by the addition formulas (14) and (16), §161, we

obtain

sin (a + 6) + sin (a — 6) = 2 sin o cos 6.

Likewise by subtraction of the same formulas

sin (a + 6) — sin (a — b) = 2 cos a sin b.

By the addition and subtraction, respectively, of the addition

formulas for the cosine there results

cos (a + 6) + cos (a — b) = 2 cos a cos 6.

cos (a + 6) — cos {a — b) = — 2 sin a sin 6.

These formulas can be written

sin o cos b — 5 [sin (o + 6) + sin (a — 6)], (1)

cos a sin 6 = | [sin (a + 6) — sin (o — b)], (2)

cos a cos 6 = 2 [cos (a + b) + cos (a — 6)], (3)

sin a sin 6 = — 5 [cos (a + 6) — cos (a — 6)]. (4)

Represent (a + 6) by a and (a — b) by /?.

Then o = (a + /3) /2 and b = (a - j8)/2

Hence the above formulas become

sin a + sin j3 = 2 sm cos -' (5)

• n a + . a — ,„,
sm a — sin fl = 2 cos sm > (6)22
cos a + cos /3 = 2 cos cos > (7)

2 2

cos a — cos /3 = — 2 sm sm ^-
(8)

2 2

The principal use of these formulas is in certain transformations

in the Calculus. A minor use is in adapting certain formulas to

logarithmic work by replacing sums and differences by products.

These formulas should not be committed to memory. They
can be derived in a moment when needed by recalling their
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connection with the addition formulas. Formula (2) is really-

contained in formula (1). For by (1)

cos a sin 6 = sin 6 cos a

= 5 [sin(& + a) + sin (6 — a)]

= 5 [sin (a + 6) — sin (a — 6)],

since sin(— B) = — sin &

Exercises

Express as the sum or difference of sines or cosines:

1. sin 5x cos 2x. 6. sin 3x sin 7x.

2. cos 3a; sin 7x. 7. cos 3a; cos 8x.

3. cos 4a; cos x. 8. cos 5a; sin 2x.

4. sin 5x sin 2x. 9. sin 3a; cos lOx.

6. sin 3x cos 5x. 10. cos 2x cos 6x.

168.* Graph of y = sin 2x, y = sin nx, etc. Since the substi-

tution of nx for X in any equation multiplies the abscissas of the

curve by 1/n, or («>!) shortens, or contracts, the abscissas of all

points of the curve in the uniform ratio n : 1, the curve y = sin 2x

must have twice as many crests, nodes, and troughs in a given

interval of x as the sinusoid y = sin x. The curve y = sin 2x is

therefore readily drawn from Fig. 59 as follows: Divide the axis

OX into twice as many equal intervals as shown in Fig. 59 and

draw vertical lines through the points of division. Then in the

new diagram there are twice as many small rectangles as in the

original. Starting at and sketching the diagonals (curved to

iit the alignment of the points) of successive cornering rectangles,

the curve y = sin 2x is constructed. It is, of course, the ortho-

graphic projection of J/ = sin x upon a plane passing through

the F-axis and making an angle of 60° (the angle whose cosine is

1/2) with the x2/-plane. The curve y = cos 2x is sunilarly con-

structed. In each of these cases we see that the period of the

function is t and not 2ir.

169.* Graph of p = sia20,p — cos 20, etc. The curve p = cos 6

is the circle of diameter unity coinciding in direction with the axis

OX. We have already emphasized that as d varies from 0° to

360° the circk is twice drawn, so that the curve consists of two
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superimposed circular loops. Now p = cos 2d wiU be found to

consist of four loops, somewhat analogous to the leaves of a four-

leafed clover, but each loop is described but once as 6 varies from
0° to 360°. The curve p = cos 36 is a three-looped curve, but each

loop is twice drawn as S varies from 0° to 360°. Also p = cos 116

has eleven loops, each twice drawn, while p = cos 126 has twenty-

four loops, each one described but once, as 6 varies from 0° to 360°.

The curves p = cos 2 6, p = sin 39, p = sin 6/2 should be drawn

by the student upon polar coordinate paper.

170.* Graph of y = sln^x, and y = cos^x. The graphs y = sin' x

and y = cos'' x have important applications in science. The following

E

Y
A
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through each point of division of OA. Next divide the axis OX into

intervals equal to the intervals of 8 laid off on the arc APE. Since the

radius of the circle OA was taken to be (SB/Sir) inches, an interval of

10° corresponds to an arc of length 2/5 inch, which therefore Inust

be the length of the equal intervals laid off on OX. Through each of

the points of division of OX draw vertical lines, thus dividing the

plane into a large number of small rectangles. Starting at A and
sketching the diagonals of successive cornering rectangles, the locus

ARS oi y = cos' x is constructed.

From Fig. 130, it is seen that B always lies at the vertex of a right-

angled triangle of hypotenuse OA. Thus as P describes the circle of

radius OA, B describes a circle of radius OA/2. Therefore the curve

ABS is related to the small circle ABO in the same manner that

the curve of Fig. 59 is related to its circle; consequently the curve

ARS of Fig: 130 is a sinusoid tangent to the X-axis. Thus the graph

y = cos' a; is a cosine curve of amplitude 1/2 and wave length or period

IT, lying above the X-axis and tangent to it.

B. PLANE TRIANGLES: CONDITIONAL EQUATIONS

171. Law of Sines. The first of the conditional equations per-

taining to the oblique triangle is a proportion connecting the sines

Fig. 131.—Derivation of the law of sines and the law of cosines.

of the three angles of the triangle with the lengths of the respec-

tive sides lying opposite. Call the angles of the triangle A, B, C,

and indicate the opposite sides by the small letters a, b, c, respec-

tively. From the vertex of any angle, drop a perpendicular p
upon the opposite side, meeting the latter (produced if necessary)
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at D. Then, by the properties of right triangles, we have, in

either Fig. 131 (1) or 131 (2),

p = c sin DAB. (1)

From A BDC,

p = a sin C. (2)

But,

sin DAB = sin A, Fig. 131 (1)

= sin (180° - A), Fig. 131 (2)

= sin A.

Therefore p = c sin A = » sin C, (3)

or a/sin A = c/sin C. (4)

In like manner, by dropping a perpendicular from A upon a, we
can prove

b/sin B = c/sin C. (5)

Therefore a/sin A = b/sin B = c/sin C (6)

Stated in words, the formula says: In any oblique triangle the

sides are proportional to the sines of the opposite angles.

Geometrically: Calling each of the ratios in (6) 2B, it is seen

from Fig. 131 (2) that R is the radius of the circumscribed circle

since c/ sin C = 2R can be deduced from the triangle BAE. Similar

construction can be made for the angle B or A.

172. Law of Cosines. From plane geometry we have the theo-

rem: The square of any side opposite an acute angle of an oblique

triangle is equal to the sum of the squares of the other two sides di-

minished by twice the product of one of those sides by the projection

of the other side on it. Thus, in Fig. 131 (1),

o2 = 6'2 + c^ - 2bd. (1)

But - d = c cos A.

Therefore a^ = b^ + c'^ - 2bc cos A, (2)

Likewise we learn from geometry that the square of any side oppo-

site an obtuse angle of an oblique triangle is equal to the sum of the

squares of the other two sides increased by twice the product of one of
21
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those sides by the projection of the other on it. Thus, in Fig. 131 (2)

,

a2 = 62 + c2 + 2bd (3)
'

But d = c cos DAB = c cos (180 — A) = — c cos A.

Therefore (3) becomes

a2 = b'' + c^ - 2bc cos A. (4)

This is the same as (2), so that the trigonometric form of the geo-

metrical theorem is the same whether the side first named is oppo-

site an acute or opposite an obtuse angle.

In the same way we may show that, in any^ triangle

b2= c2-|-a2 -2cacosB, (5)

c2 = a^-l-b^ - 2ab cosC. (6)

Independently of the theorem from plane geometry, we note

from Fig. 131 (1)

a^ = (b - dy -f- p2 = (6 _ dy + c''
- d^

= 62 + (.2 _ -2,bd

= fe'' -h c^ - 26c cos A.

From 131 (2)

o" = (6 -I- dy + p2 = (6 -h dy -I- c2 - d^

= 6='
-I- c2 -I- 2bd

= 62 + 0^-1- 26c cos DAB
= 62-)-c' - 26c cos A,

since DAS = 180° - A and cos (180° - A) = - cos A.

Second Phoop: Since any side of an oblique triangle is

the sum of the projections of the other two sides upon it, the

angles of projection being the angles of the triangle, we have

a = b cos C -|- c cos B,

b = c cos A -f- a cos C, (7)

c = a cos B -h b cos A.

Multiply the first of these equations by a, the second by 6,

the third by c, and subtract the second and third from the first.

The result is

a^ — b^ — c^ — ah cos C -\- ca cos B
— 6c cos A — ab cos C
— ca cos B — be cos A
= — 26c cos A,

or a^ = 6^ -h c'' — 26c cos A.
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173. Law of Tangents. An important relation results if we
take formula (5) §171 by composition and division. First

write the law of sines in the form

sin A
sin jB'

(1)

Then, by composition and division, the sum of the first anteced-

ent and consequent is to their difference as the sum of the second

antecedent and consequent is to their difference; that is

a + h _ sin A + sin B
,

,„,

a — & sin A — sin B

Expressing the sums and difference on the right-hand side of (2) as

products by means of the formulas (5) and (6) of §167, we obtain

a + b ^ 2 sin i(,A + B) cos i(A - £) ',

a-h 2 cos K^ + B) sin |(A - B)

or simplifying and replacing the

ratio of sine to cosine by the tan-

gent, we obtain

(3)

a-l-b ^ tan \{k + B)
.

a - b tan J(A - B)

In like manner it follows that

b 4- c tan |(B 4- C).

b - c tan KB - C)

4- a _ tan_|(C_+A)
— a tan KC — A)

(4)

Fig. 132.—Geometrical
(R\ derivation of law of tan-

gents.

Expressed in words: In any triangle, the sum of two sides is to

their difference, as the tangent of half the sum of the angles opposite

is to the tangent of half of-their difference.

Geometrical Proof: From any vertex of the triangle as center,

say C, draw a circle of radius equal to the shortest of the two sides of

the triangle meeting at C, as in Fig. 132. Let the circle meet the side

a&t R and the same side produced at E. Draw AE and AR. Call

the angles at A, a, and /3, as shown. Then BE = a + 6 and

BR = a - b. Also

a + P = A,
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and /. CRA = + B (the external angle of a triangle RAB is equal to

the sum of the two opposite interior angles), or

a - = B.

Therefore

a = lU + B),

P = i{A- B).

Draw RS \\
to EA. ZEAR = ZARS = 90°.

By similar triangles

BE/BR = AE/'SR
^AE . 8R
AR AR

But BE = a + b and BR = a - b, while

AE . ,SR.„
-r-p- = tan a and -j-k = tan p.AR AR

Therefore
a+6 ^ tan KA + -B).

inerelore
^ _ ^ ^^^ ^^^ _ ^^

174. The following special formulas are readily deduced from the

sine formulas and are sometimes useful as check formulas in computa-

tion. They are closely related to the law of tangents. From the

proportion '

a:b:c = sin A: sin B:sin C
by composition ,

c _ sin C
0+6 sin A + sin B

Now by §165 (1) and §167 (5) this may be written

c 2 sin jC cos jC
+ 6

~ 2 sin UA + B) cos i(A - B)'

Since C = 180° - (A + B), therefore

C/2 = 90° - |(A + B), and cos C/2 = sin UA + B).

c sin iC cos |(A + B) ,,,

a + b cos i(A — B) cos i(A — B;

In like manner it can be proved that

c _ sin i(A + B)
,2)

a - b sin |(A - B)

Both (1) and (2) can be readily deduced geometrically from Fig. 132.

176. The s-formulas. The cosine formula
y

a2 = 62 -}- c^ - 26c cos A
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can be written in the forms

a^ = (b + cy - 26c(l + cos A), (1)

a2 = (6 - c)2 + 26c(l - cos A), (2)

by adding (+26c) and (—26c) to the right-hand member in each

case. But now we know from §166, (1) and (2), that

1 + C0S A = 2 cos" (A/2),

1 - cos JL = 2 sm" (A/2). ,

Therefore (1) and (2) above become

o= = (6 + c)2 - 46c cos" (A/2), (3)

' a" = (6 - cy + 46c sin" (A/2). (4)

Writing these in the form i\i

ibc sin" (A/2) = o"]- (6 - c^, (5)

46c cos" (A/2) = (6 + c)" - a", (6)

and dividing the members of (5) by the members of (6), we
obtain

tan" (A/2) =1^1^. (7)

Factoring the numerator and denominator we obtain

tan" (A/2) -
fi
+ ^Tu^T^ + l

-

(8)
'(6 + c + o) (6 + c — a)

Let the perimeter of the triangle be represented by 2s, that is,

let

a + 6 + c = 2s.

Hence, subtracting 2c, 26, and 2a in turn,

a + 6 — c = 2s — 2c (subtracting 2c),

a — 6-|-c = 2s — 26 (subtracting 26),

6 + c — a = 2s — 2a (subtracting 2a).

Therefore equation (8) becomes

tan" (A/2) = (^ -/>)i^ ' <=)
.

(g)
s(s — a)

Let

(s - a) (s - 6) (s - c) /s = r\ (10)
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Then

or
'

Likewise

tan^ (A/2) = r-V(s - aY,

tan (A/2) = r/(s — a).

tan (B/2) = r/(s - b),

tan (C/2) = r/(s - c),

(11)

(12)

(13)

Fig. 133.—Geometrical derivation of the s-formulas.

Geometrically: These formulas may be found by means of the

diagram Fig. 133. Let the circle be inscribed in the triangle ABC;
its center is located at the intersection of the bisectors of the internal

angles of the triangle. Let its radius be r. ATi = ATt, BTt = BTz,

CTi = CTi, and since 2s = a + 6 + c, it follows that one way of

writing the value of s is

s = BTi + TiC + ATi.
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Therefore

ATi = s -a.'
Hence it follows that

tan (A/2) = r/(s - o). (14)

Since this result is the same as (11) above, it proves that the r of

equation (10) is the radius of the inscribed circle, and therefore proves

that the radius of the inscribed circle may be expressed by the formula

Us - a)is -6)(s -c)

a fact that is usually proved in text books on plane geometry.

176.* Miscellaneous Formulas for Oblique Triangles. The fol-

lowing formulas are given without proof. They are occasionally

useful for reference, although no use will be made of them in

this book. The following notation is used: The three sides of

the oblique triangle are named a, b, c, and the angles opposite

these A, B, C, respectively. The semi-perimeter of the triangle

is s, OT 2s = a + b + c. The radius of the circumscribed circle

is B, that of the inscribed circle is r, and the radii of the escribed

circles are Ta, n, r^ tangent, respectively, to the sides a, b, c

of the given triangle. K stands for the area of the triangle.

s = 4i? cos iA cos J-B cos §(7 (1)

s — c — 4Rsin iA sin ^B cos iC (2)

and analogs for s — a and s — b.

r = iR sin JA sin iB sin iC (3)

Tc = 4jB cos iA cos iB sin iC (4)

and analogs for Ta and rt.

Ta = s tan iA,n = s tan iB, r^ = s tan JC (5)

2K = ab sinC = be sin A = ca sin B (6)

K = 2R'' sin A sin S sin C =
|^ (7)

K = Vsis -a) is- b) (s - c) (8)

K = rs = ra(s — a) = n(s — 6) = r^is — c) (9)

Z2 = rr^nr, (10)

K^ = {s - a) tan iA = {s - b) tan iB = {s - c) tan |C (11)
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C. NUMERICAL SOLUTION OF OBLIQUE TRIANGLES

177. An oblique triangle possesses six elements; namely, the

three sides and the three angles. If any three of these six

magnitudes be given (except the three angles), the triangle is

determinate, or may be constructed by the methods explained

in plane geometry; it will also be found that if any three of these

six magnitudes be given, the other three may be computed by the

formulas of trigonometry, provided, that the given parts include

at least one side.

It is convenient to divide the solution of triangles into four

cases, as follows

:

I. Given two angles and one side.

II. Given two sides and an angle opposite one of them.

III. Given two sides and the included angle.

IV. Given the three sides.

The solution of these cases with appropriate checks will now
be given. The best arrangement of the work of computation

usually consists in writing the data and computed results in the

left margin of a sheet of ruled letter paper (SJ inches X 11 inches)

and placing the computation in the body of the sheet. Every

entry should be carefully labeled and computed results should be

enclosed in square brackets. AU work should be done on ruled

paper and invariably in ink. Special calculation sheets (forms

M2 and M7) have be'en prepared for the use of students. Neat-

ness and systematic arrangement of the work and proper checking

are more important thanr rapidity of calculation.

178. Computer's Rules. The following computer's rules are

useful to remember in logarithmic work

:

Last Digit Even: When it becomes necessary to discard a

5 that terminates any decimal, increase by unity the last digit

retained if it be an odd digit, but leave it unchanged if it be an

even digit; that is, keep the last digit retained even. Thus log tt

= 0.4971; hence write | log x = 0.2486. Also log sin 18° 5'

= 9.4900 + (correction) 19.5 = 9.4920.

Of course if the discarded figure is greater than 5, the last

digit retained is increased by 1, whUe if the discarded figure is

less than 5, the last digit retained is unchanged.
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Functions or Angles in Second Quadbant: In finding

from the table any function of an angle greater than 100° (but

< 180°) replace the first two digits of the number of degrees in the

angle by their sum and take the co-function of the result. The
method is valid because it is equivalent to the subtraction

of 90° from the angle. By §163 this always gives the cor-

rect numerical value of the function. The algebraic sign should

be taken into account separately. Thus, sin 157° 32' 7" =
cos 67° 32' 7". In case of an angle between 90° and 100°,

ignore the first digit and proceed in the same way. Thus,

tan 97° 57' 42" = - cot 7° 57' 42"

179. Case I. Given two angles and one side, as A, B, and c.

1. To find €, use the relationA+B + C = 180°.

2. To find a and 6, use the law of sines, §171.

3. To check results, apply the check formula (1) or (2) §174.

Illtjstkation: In an oblique triangle, let c = 1492, A = 49° 52',

B = 27° 15'. It is required to compute C, a, b.

The following form of work is self explanatory. It should be noted

that the process of work and the meaning of each number entering the

calculation is properly indicated or labeled in the work.
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i(C + B) = 65° 4'

UC - B) = 37° 49'

log a = 3.0683

log c - 6 = 2.8982

log r^b = 01701

log sin i {C + B) = 9.9575 - 10

log siD i (e - B) = 9.7875 - 10

Examples

Find the remaining parts, given

:

1. A = 47° 20', B = 32° 10',

2. B = 37° 38', C = 77° 23',

3. B = 25° 2', C = 105° 17',

4. C = 19° 35', A = 79° 47',

Check

a = 739.

6 = 1224.

6 = 0.3272.

c = 56.47.

180. Case n. Given two sides and an angle opposite one of

hem, as a, b, and A

.

Fig. 134.—Case II of triangles, for one, two, and impossible
solutions.

1. To find B, use the law of sines, §171.

2. To find C, use the equation A +B + C = 180°.

3. To find c use the law of sines.

4. To check, apply the check formula (I) or (2), §174.

When an angle as B, above, is determined from its sine, it admits

of two values, which are supplementary to each other. There

may be, therefore, two solutions to a triangle in Case II. The
solutions are illustrated in Fig. 134.
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• In case one of the two values of B when added to the given

angle A gives a sum greater than two right angles, this value

of B must be discarded, and but one solution exists. If a be

less than the perpendicular distance from C to c, no solution

is possible.

Illustration: Solve the triangle if a = 345, 6 = 534, and
A = 25° 25'.

The solution is readily understood from the following work.

Numerical Work
Given

a = 345

6 = 534

To find c, B, and C.

Formulas
. „ b sin A

A = 25° 25'
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Examples

Compute the unknown parts in each of the following triangles

:

, 1. a = 0.8, b = 0.6, B = 40° 15'.

2. o = 8.81, 6 = 11.87, A = 19° 9'.

3. 6 = 81.05, c = 98.75, C = 99° 19'.

4. c = 50.37, a. = 58.11, C = 78° 13'.

6. a = 1213, 6 = 1156, B = 94° 15'.

181. Case III. Given two sides and the included angle, as a,b,C.

1. To find A +B,useA +B = 180° - C.

2. To find A and B, compute (A — B)/2 by the law of tangents,

§173, equation (4), then A = (A + B)/2 + (A - B)/2 and

B = (A+ B)/2 - {A - B)/2.

3. To find c, use law of sines, §171.

4. To check, use law of sines.

Illustration: Given a = 1033, 6 = 635, C = 38° 36'.
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Check
b sin C
sin B

log 6 =2.8028
log sin C = 9.7951 - 10

log sin B = 9.7737 - 10

logc =2.8242
c = [667.1]

Examples

Compute the unknown parts in each of the following triangles

:

1. a =78.9, 6=68.7, C = 78° 10'.

2. c = 70.16, a = 39.14, B = 16° 16'.

3. 6 = 1781, c = 982.7, A = 123° 16'.

182. Case IV. Given the three sides.

1. To find the angles, use the s-formulas, §175, (11),

and (13).

2. To check, use A + B + C = 180°.

Illustration: Given a = 455, 6 = 566, c = 677, find A, B and C.

Numerical Work

(12)

Given

"Work.
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iA = 20° 53'

JJS = 27° 58'

JC = 41° 9'

A = [41° 46']

B = [55° 56']

C = [82° 18']

Check.

A+B+C = 180°

Exercises

Find the values of tlJe angles in each of the following triangles

:

1. a = 173, 6 = 98.6, c = 230.

2. a = 8.067, 6 = 1.765, c = 6.490.

3. a = 1911, 6 = 1776, c = 1492.

Miscellaneous Problems

The instructor will select only a limited number of the following

problems for actual computation by the student. The student

should be required, however, to outline in writing the solution of a

number of problems which he is not required actually to compute, and,

when practicable, to block out a suitable check for each one of them.

1. From one corner P of a triangular field PQB the side PQ bears

N. 10° E. 100 rods. QR bears N. 63° E. and PR bears N. 38° 10' E.

Find the perimeter and area of the field.

2. The town B lies 15 miles east of A, C lies 10 miles south of A.

X lies on the Hne BC, and the bearmg of AX is S. 46° 20' E. Find

the distances from X to the other three towns.

3. To find the length of a lake (Fig. 135), the angle C = 48° 10', the

side a = 4382 feet, and the angle B = 62° 20' were measured. Find

the length of the lake c, and check.

4. To continue a line past an obstacle L, Pig. 136, the line BC and
the angles marked at B and C were measured and found to be 1842

feet, 28° 15', and 67° 24', respectively. Find the distance CD, and
the angle at D necessary to continue the line AB; also compute the

distance BD.
5. Find the longer diagonal of a parallelogram, two sides being

69.1 and 97.4 and the acute angle being 29° 34'.

What is the magnitude of the single force equivalent to two forces

of 69.1 and 97.4 dynes respectively, making an angle of 29° 34' with

each other?

6. A force of 75.2 dynes acts at an angle of 35° with a force F.

Their resultant is 125 dynes. What is the magnitude of Fl
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7. The equation of a circle is p = 10 cos 6. The points A and
B on this circle have vectorial angles 31° and 54° respectively. Find
the distance AB, (1) along the chord; (2) along the arc of the circle.

8. Knd the lengths of the sides of the triangle enclosed by the
straight lines

:

e = 26° 115°; p cos (9 - 45°) = 50.

Fig. 135.—Diagram for
Problem 3.

Fig. 136.—Diagram for Problem 4.

9. A gravel heap has a rectangular base 100 feet long and 30 feet

wide. The sides have a slope of 2 in 5. Find the number of cubic

yards of gravel in the heap.

10. A point B is invisible and inaccessible from A and it is necessary

to find its distance from A. To do this a straight line is run from A
to P and continued to Q such that B is visible from P and Q. The
following measurements are then taken: AP, = 2367 feet; PQ = 2159

feet; APB = 142° 37'.3; AQB = 76° 13'.8. Find AB.
11. To determine the height of a mountain the angle of elevation

of the top was taken at two stations on a level road and in a direct

line with it, the one 5280 yards nearer the mountain than the other.

The angles of elevation were found to be 2° 45' at the further station

and 3° 20' at the nearer station. Find the horizontal distance of the

mountain top from the nearer station and the height of the mountain
above it. Use S and T functions.

12. Explain how to find the distance between two mountain peaks

Ml and Af2, (1) when A and B at which measurements are taken are in

the same vertical plane with Mi and M^; (2) when neither A nor B
is in the same vertical plane with Mi and M2.

13. The sides of a triangular field are 534 yards, 679 yards, and 474

yards. The first bears north, and following the sides in the order here

given the field is always to the left. Find the bearing of the other

two sides 'and the area.
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14. From a triangular field whose sides are 124 rods, 96 rods, and

104 rods a strip containing 10 acres is sold. The strip is of uniform

width, having as one of its parallel sides the longest side of the field.

Knd the width of the strip.

16. Three circles are externally mutually tangent. Their radii are

5, 6, and 7 feet. Find the area and perimeter of the three-cornered

area enclosed by the circles and the

length of a wire that will enclose the

group of three circles when stretched

about them.

16. To find the distance between two
inaccessible objects C and D, Kg. 137,

two points A and B are selected from

which both objects are visible. The dis-

137_ Diagram for tS'^ce AB is found to be 7572 feet.

Problem 16. The following angles were then taken:

ABD = 122° 37' BAC = 80° 20'

ABC = 70° 12' BAD = 27° 13'

Knd the distance DC and check.

17. A circle of radius o has its center at the point (pi, 9i). Knd its

equation in polar coordinates. (Use law of cosines.)

18. A surveyor desired the distance of an inaccessible object

from A and B, but had no instruments to measure angles. He
measured AA' in the Une AO, BB' in the line BO; also AB, BA', and
AB'. How did he find OA and OB?

19. From a point A a distant object C bears N. 32° 16' W. and
from B the same object bears N. 50° W. AB bears N. 10° 39' W.
The distance AB is 1000 yards. Knd the distance AC.

20. The angle of elevation of a mountain peak is observed to be
19° 30'. The angle of depres.sion of its image reflected in a lake 1250

feet below the observer is found to be 34° 5'. Find the height of the

mountain above the observer and the horizontal distance to it. (See

Fig. 138.)

21. One side of a mountain is a smooth eastern slope inclined at an

angle of 26° 10' to the horizontal. At a station A a vertical shaft is

sunk to a depth of 300 feet. From the foot of the shaft two horizontal

tunnels are dug, one bearing N. 22° 30' E. and the other S. 65° E.

These tunnels emerge at B and at C respectively. Find the lengths

of the tunnels and the lengths of the sides of the triangle ABC.
22. A rectangular field ABCD has side AB = 40 rods; AD = 80

rods. Locate a point P in the diagonal AC so that the perimeter of

the triangle APB will be 160 rods. {Hint: Express perimeter as a

function of angle at P.)
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8. Find the area enclosed by the lines y = k' y = \/3 x, and the

Fig. 138.—Diagram for Problem 20.

circle x' — lOs + ^^^ = 0. (Hint: Change to polar coordinates.)

24. The displacement of a particle from a fixed point is given by

d = 2.5 cos t + 2.5 sin t.

What values of t give maximum and minimum displacements; what
is the maximum displacement?

25. A quarter section of land is enclosed by a fence. A farmer

wishes to make use of this fence and 60 rods of additional fencing in

making a triangular field in one comer of the original tract. Find

the field of greatest possible area. Show that it is also the field of

maximum perimeter, under the conditions given.

26. A force Fi = 100 dynes makes an angle of 6° with the horizontal,

and a second force Fi = 50 dynes makes an angle of 90° with Fi.

Determine B so that (1) the sum of the horizontal components of

Fi and Ft shall be a maximum; (2) so that the sum of the vertical com-
ponents shall be zero.

27. Find the area of the largest triangular field that can be enclosed

by 200 rods of fence, if one side is 70 rods in length.

22
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28. Change the equation of the curve xy = I to polar coordinates,

rotate through — 45°, and change back to rectangular coordinates.

29. A particle moves along a straight line so that the distance

varies directly as (sin t + cos t). When t = 7r/4, the distance is 10.

Find the equation of motion.

30. From the top of a lighthouse 60 feet.high the angle of depression

of a ship at anchor was observed to be 4° 52'; from the bottom bf the

lighthouse the angle was 4° 2'. Required the horizontal distance from

the lighthouse to the ship and the height of the base of the lighthouse

above the sea.

31. The Une AB runs north and south. The line AC makes an

angle of 52° 8'.6 with AB. Locate the Une BC perpendicular to AB
so that the area ABC shall be 1 acre.

32. University Hall casts a shadow 324 feet long on the hillside

on which it stands. The slope of the hillside is 15 feet in 100 feet,

and the elevation of the sun is 23° 27' Find the height of the building.

33. To determine the distance of a fort A from a place B, a line BC
and the angles ABC and BCA were measured and found to be 3225.5

yards, 60° 34', and 56° 10' respectively. Find the distance AB.
34. A balloon is directly over a straight level road, and between two

points on the road from which it is observed. The points are 15,847

feet apart, and the angles of elevation are 49° 12' and 53° 29'. Find
the height.

35. Two trees are on opposite sides of a pond. Denoting the trees

by A and B, we measure AC = 297.6 feet, BC = 864.4 feet, and the

angle ACB = 87° 43'. Find AB.
36. Two mountains are 9 and 13 miles respectively from a town,

and they include at the town an angle of 71° 36'. Find the distance

between the mountains.

37. The sides of a triangular field are, in clockwise order, 534 feet,

679 feet, and 474 feet; the first bears north; find the bearings of the

other sides and the area.

38. Under what visual angle is an object 7 feet long seen when the

eye is 15 feet from one end and 18 feet from the other?

39. The shadow of a cloud at noon is cast on a spot 1600 feet west

of an observer, and the cloud bears S., 76° W., elevation 23°. Find

its height.



CHAPTER XI

SIMPLE HARMONIC MOTION AND WAVES

183. Simple Harmonic Motion. In Fig. 139, x = 0T> =
a cos DOM, where a is the radius of the circle. If now the point

M is thought of as moving with constant or uniform speed on the

circle, starting at A, or (which amounts to the same thing) if

the radius OM is thought of as moving with constant angular

velocity, say k radians per second, starting from OA, then angle

DOM = kt and the position of the point D at time t is given by

X = a cos kt, (1)

where t is the time in seconds required for OM to move from posi-

tion OA to position OM.
Let us study the motion of the point D as M moves on the

circle with constant speed.

D starts at A and moves to

the left with increasing speed

until it arrives at 0, where

its speed begins to decrease,

decreasing to at A'. Then
the point moves to the right

with increasing speed until it

again passes through 0, after

which its speed diminishes,

becoming when it arrives

atA . Then the whole motion

is repeated. A body whose

position on a straight line is

given at any instant by an equation of the form (1), that is one

which moves as the point D does, is said to describe simple harmonic

motion. On account of the frequency with which this term will

occur, we shall abbreviate it by the symbols S.H.M. Examples

.339

Fig. 139.
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of bodies that move approximately in this way are: The bob of a

pendulum, a point in the prong of a vibrating tuning fork, a

point in a vibrating violin string, the particles of air during the

passage of a sound wave. The motion is oscillatory in character

and repeats itself in definite intervals of time.

The length of this interval can be easily found by considering

the motion of the point M on the circle. The point D starting

from any given position will return to this position moving in the

same direction after an interval of time which is the time required

for M to describe the circle, i.e., after 2ir/k seconds, the time in

which the radius OM describes the angle 2ir radians at the rate of

k radians per second. This time within which a body executing

S.H.M. performs a complete oscillation is called the period of the

S.H.M. It is denoted by T. Thus

T = ^. (2)

This expression can be obtained directly from the equation x =
a cos kt by means of the fact that the cosine is a periodic function

of period 2x. The period T is the amount by which t must be

increased in order to increase the angle kt by the amount 27r.

If t be increased by the amount 2ir/k, then kt is increased by
2x, because

fc(t+^) =A;i + 2ir.

The number of complete periods per second is

^ = T = .V (3)

N is called the frequency of the S.H.M.

'if instead of counting time from the instant at which the

auxiliary point M passed through A, we count it from the instant

it passed through E, then ZEOM = kt, and it is clear that

ZAOM = (kt — e) if e stands for the constant angle EOA.
Then (1) becomes

X = a cos (Jet — «). (4)

The number a is called the amplitude, e is called the epoch angle,
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and (Jet — e) is called the phase angle of the S.H.M. represented

by (4).

In like manner the point D2, the projection of the point M upon

the vertical diameter of the circle in Fig. 139, describes S.H.M.

Its equation is

2/ = a sin (kt — e), (5)

where time t is measured from the instant M passes through E.

184. Mechanical Generation of S.H.M. Fig. 140 illustrates

a way in which S.H.M. may be described by mechanical means.

rp
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Exercises

1. Find the periods of the following S.H.M.

:

{a) y = 3 sin 2t. (e) y = a sin (10< — 7r/3).

(6) 2/ = 10 sin (1/2)

«

(/) t/ = o sin (2«/3 - 27r/5).

(c) y = 7 cos 4<. ig) y = a sin (6< + c).

{d) y = a sin 27r<.

2. Give the amplitudes and epoch angles in each of the instances

given in exercise 1.

3. The bob of a second's pendulum swings a maximimi of 4 cm.

each side of its lowest position. Considering the motion as rectilinear

S.H.M., write the equation of motion.'
^ The term period is used differently in the case of a pendulum than in the case

of S.H.M. The time of a swing is the period of a pendulum; the time of a awino-

swang is the period of a S.H.M.

Write the equation of motion of a pendulum of the same length

which was released from the end of its swing 1/2 second after the first

pendulum was similarly released.

4. A particle moves in a straight Une in such a way that its dis-

placement from a fixed point of the line is given by d = 2 cos* t. Show
that the particle moves in S.H.M., and find the amplitude and period

of the motion.

6. A particle moves in a vertical circle of radius 2 units with angular

velocity of 20 radians per second. Counting time from the instant

the particle was at its lowest position, write the equation of motion

of its projection (1) upon the vertical diameter; (2) upon the horizon-

tal diameter; (3) upon the diameter bisecting the angle between the

horizontal and vertical.

186. S.H.M. Record on Smoked Glass. If P, Fig. 140, be a

tracing point attached to the vertical arm of the cross-head and

capable of describing a curve on a piece of smoked glass, HK, which

is moved to the right at constant speed, then when P describes

S.H.M. in the vertical line OP, the curve NiCTNJ' traced on the

plate HK is a sinusoid. For, if iVj be taken as origin, and if for

convenience positive abscissas be measured to the left, the coordi-

nates of P are

X = Vt,

and y = a sin {kt — e)
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where V is the linear velocity of the plate. Eliminating t

between these two equations,

y = asin yy - ej (1)

the equation of a sinusoid.

If the plate HK moves with the same velocity as the point M,
we have

V = ha

and equation (1) becomes

- = sm -, (2)
a a

the equation of an undistorted sinusoid.'

186.* Composition of Two S.H.M.'s at Right Angles.

It is obvious that

X = a cos ht

represents a S.H.M. one quarter of a period in advance of a;' = a sin kt,

since sin I fci + ^1 = cos kt. A pair of S.H.M.'s possessing this

property are said to be in quadrature. (4) and (5), §183, may be said

to be in quadrature.

We have shown that if a point M, moving uniformly on a circle, be

projected upon both the X- and 7-axes, two S.H.M.'s result. The
phase angles of these two motions differ from each other by 7r/2.

The converse of this fact, namely that uniform motion in a circle may
be the resultant of two S.H.M.'s in quadrature, is easily proved, for the

two equations of S.H.M.

X = a cos kt

y = a sin kt

are obviously the parametric equations of a circle. Hence the theorem :

Uniform motion in a circle may he regarded as the residtant of two

S.H.M.'s of equal amplitudes and equal periods and differing by 7r/2 in

phase angle.

This important truth is illustrated by Fig. 141. Let the X- and

1 The student should note that ^ = sin - is of exactly the same shape as y = sm x,

for multiplying both ordinates and abscissas of any curve by a is merely constructing

the curve to a different scale. However, ^ = sin o is a distorted sinusoid, for the

ordinates of y = sin x are multiplied by 3 while the abscissas are multiplied only

by 2.
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y-axes be divided proportionally to the trigonometric sine, as in Fig.

59. Through the points of division of the two axes draw lines per-

pendicular to the axes, thus dividing the plane into a large number of

small rectangles. Starting at the end of one of the axes, and sketch-

ing the diagonals of successive cornering rectangles, the circle ABA'B'
is drawn.

If the same construction be carried out for the case in which the Y-

axis is divided proportionally to 6 sin kt and in which the X-axis is

divided proportionally to osin

kt, the ellipse AiBiA'iB'i re-

sults. These facts are merely

a repetition of the statements

made in §84.

187. Waves.—Let Fig. 142

represent a section obtained

by passing at any instant a

vertical plane perpendicular

to the crests of a series of

small waves on the surface

of a body of water. The
wavy line represents the ap-

pearance of the surface at

any instant. It is a fact

that its equation is, in the

case of small waves or ripples,
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sine curve, whose equation is (1) above. If, however, we consider

this curve as referred to the fixed origin Oi, then the moving

sinusoid thus conceived is called a simple progressive sinusoidal

wave or merely a wave. Under the conditions represented in

Fig. 140, it is a wave progressing to the right with the uniform

speed of the plate HK. At any single instant, the equation of

the curve is

y = a sin h{x - OiN), (2)

where OiN is the distance that the node N has been translated

to the right of the origin Oi. If V be the uniform velocity of

translation of HK, then,

OiN = Vt (3)1

Fig. 142.

and the equation of the wave is

y = asiah{x — Vt),

or y = a sin Qix — hVt),

or y = a sin (hy — kt),

if k be put for hV, so that

V = -

(4)

(5)

Because of the presence of the variable t, (4) is not the equation

of a fixed sinusoid, but of a moving sinusoid or wave.

Applying the same terms used fbr S.H.M., the expression

{hx — ht) is the phase angle, the expression (+ kt) is the epoch

angle and a is the amplitude of the wave. See Fig. 143a and c.

The expression Qix — kt) is a linear function of the variables

1 In what follows, t is not the time elapsed since itf , Fig. 140, was at A, as used in

S183| but is the elapsed time since N was at 0i, These values of t differ by the time

of half a revolution or by ir/k.
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X and t. The sine or cosine of this function is called a simple

harmonic fmiction of x and t.

The wave form on the surface of water moves along with fixed

velocity V. The particles of water, however, do not share in this

b

^''S<^^'yr>

<.
X X X/

Fig. 143.—Wave forms, (a) of different amplitude; (5) of different
wave lengths; (c) of different phase or epoch angles.

forward motion. Each particle on the surface moves up and
down in a vertical line as the wave form passes it. In fact we
shaU now see that each particle describes S.H.M. in a vertical

direction.

To examine the motion of a single particle of water, we have
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only to regard x as constant, say x = Xi, in equation (4) above

The displacement of this particle is then given by

y = a sin (hxi — kt)

or y = — a sin (M — hxi).

That is y = a sin {kt — hxi — ir). (6)

This is the equation of a S.H.M. whose period is T = 2T/k. The
epoch angle is hxi + ir. This will be different for different par-

ticles. This means that the phase angles of the S.H.M. of succes-

sive particles differ, but they all oscillate up and down with the

same period 2ir/k.

188. Wave Length. The wave length of a progressive wave is

the distance from crest to crest or from trough to trough. It

is the amount by which x must be increased in the equation of

the wave in order that the angle (hx — kt) may be increased by
2ir. Hence the wave length,

^ = ¥- «
189. Period or Periodic Time. If we fix our attention upon any

particular or constant value of x, and view the progressive wave
as it passes the vertical line through this abscissa, the elapsed

time from the passage of one crest to the next crest is called the

period, or periodic time. It is readily seen to be the increment

in t which changes the angle (hx — kt) by the amount 2ir. Hence

the period

The expression T is called the periodic time, or period, of the

wave. It is the length of time required for the wave to move one

wave length. To contrast wave length and period, think of a per-

son in a boat anchored at a fixed point in a lake. The time that

the person must wait at that fixed point (x constant) for crest to

follow crest is the periodic time. The wave length is the distance

he observes between crests at a given instant of time (t constant)

.

The number of periods per unit of time is called the frequency

of the wave. Hence, if N represent the frequency of the wave,

N = |'=|- (2,
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190. Velocity or Rate of Propagation. The rate of movement
V of the sinusoid on the plate HK, Fig. 140, is shown by equation

(5), §187, to be k/h units of length per second. This is called the

velocity of the wave or the velocity of propagation. The equa-

tion of the wave may be written

2/ = o sin h{x — Yt).

From equations (1) §188 and (1) §189 we obtain

A;

and since 7 = r, we have
K

k_L
h~ t'

V =^. (1)

This equation is obvious from general considerations, for the

wave moves forward a wave length L in time T, hence the speed

of the wave must be m'

191. L and T Equation of a Wave. If we solve equations (1)

§188 and (1) §189 for h and k respectively, and substitute these

values of h and ifc in the equation

2/
= a sin {hx — kt)

we obtain

\i-a-
From this form it is seen that the argument of the sine increases

by 2ir when either x increases by an amount L or when t increases

by the amount T. By use of (1), §190, the last equation may
also be written

^- -' -
.(2)

a sm2^
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same in each, but the second wave is in advance of the first by
the amount E (measured in linear units), for the second equation

can be obtained from the first by substituting (x — E) for x, which

translates the curve the amount E in the OX direction. In this

case E is called the lead (or the lag if negative) of the second wave
compared with the first. The lead is a linear magnitude measured

in centimeters, inches, feet, etc.

The terms phase and epoch are sometimes used to designate

the time, or, more accurately, the fractional amount of the period

required to describe the phase angle and epoch angle respectively.

In this use, the phase is the fractional part of the period that has

elapsed since the moving point last passed through the middle point

of its simple harmonic motion in the direction reckoned as positive.

See Fig. 143c.

The tidal wave in mid-ocean, the ripples on a water surface,

the wave sent along a rope that is rapidly shaken by the hand,

are illustrations of progressive waves of the type discuseed above.

Sound waves also belong' to this class if the alternate condensations

and rarefactions of the medium be graphically represented by

ordinates. The ordinary progressive waves observed upon a lake

or the sea are not, however, progressive waves of this type. The
surface of the water in this case is not sinusoidal in form, but

is represented by another class of curves known in mathematics

as trochoids.

Exercises

1. Derive the amplitudOj the wave length, the periodic time, the

velocity of propagation of the following waves

:

(a) y = a sin {2x — 3<). , > .„„ . 2w, _.. ..

(b) y =5 sin (0.75a; - lOOOi). W V = 10° ^25^"^ ~ ^°' " ^^

(c) 2/
= 10 sin

(I
- .*) .

(/) 2/ = 100 sin(5x + 4t).

2,r (?) y = 0-025 sin ^(,x + </3).

id) y = 50smy(a; - 3t).
*

2. Write the equation of a progressive sinusoidal wave whose height

is 5 feet, length 40 feet and velocity 4 miles per hour.

3. Write the equation of a wave of wave length 10 meters, height 1

meter, and velocity of propagation 3.5 miles per hour. (Note: 1

mile = 1.609 kilometers.)



350 ELEMENTARY MATHEMATICAL ANALYSIS [§193

4. Sound waves of all wave lengths travel in still air at 70° F. with

a velocity of 1130 feet per second. Find the wave length of sound

waves of frequencies 256, 128, and 600 per second.

193. Stationary Waves. The form of a violin string during its

free vibration is sinusoidal, but the nodes, crests, troughs, etc.,

are stationary and not progressive as in the case of the waves

just discussed. Such waves are called stationary waves. The
water in a basin or even in a large pond or lake is also capable of

vibrating in this way. Fig. 144 may be used to illustrate the

stationary waves of this type, either of a musical string or of the

water surface of & lake, but in the case of a vibrating string, the

ends must be supposed to be fastened at the points and N.

The shores of the lake may be taken at / and K-ot at I and H,

etc. As is well known, such bodies are capable of vibrating in

Fig. 144.—A stationary wave.

segments so that the number of nodes may be large. This

explains the "harmonics" of a vibrating violin string and the

various modes in which stationary waves may exist on a water

surface. A stationary wave on the surface of a lake or pond is

known as a seiche, and was first noted and studied on Lake

Geneva, Switzerland. The amplitudes of seiches are usually

small, and must be studied by means of recording instruments

so set up that the influence of progressive waves is eliminated.

The maximum seiche recorded on Lake Geneva was about 6 feet,

although the ordinary amplitude is only a few centimeters.

The equation of a stationary wave may be found by adding the

ordinates of a progressive wave

y = asin (hx — kt) (1)
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traveling to the right (A; > 0), to the ordinates of a progressive

wave

y = asm {hx + /c<) (2)

traveling to the left.

Expanding the right members of (1) and (2) by the addition

formula for the sine and adding

y = 2a cos kt sin hx, (3)

or in terms of L and T, §188 (1) and §189 (1),

' y = 2a cos (^) sin {~:j (4)

In Fig. 144, the origin is at and the X-axis is the Line of nodes

ONX. If in equation (3) we look upon 2a cos kt as the vari-

able amplitude of the sinusoid

y = sin hx,

we note that the nodes, of the sinusoid remain stationary, but

that the amplitude 2a cos kt changes as time goes on. When
t = 0, the sine curve has amplitude 2a and wave length 2ir/h.

When t = ir/2k, or T/i, the sinusoid is reduced to the straight

line y = 0. When t = ir/k, or T/2, the curve is the sinusoid

y = — 2a sin hx

which has a trough where the initial form had a crest, or vice

versa.

Exercises

In the following exercises the height of the wave means the maxi-

mum rise above the line of nodes. When a seiche is uninodal, the

shores of the lake correspond to the points I and K, Fig. 144. When
a seiche is binodal, the points / and H are at the lake shore.

1. From the equation of a stationary wave in the form y =
2a sin %rx/L cos 2-wtlT, show that K, Fig. 144, is at its lowest depth

fori = r/2,,3r/2, 67/2, .

2. Henry observed a fifteen-hour uninodal seiche in Lake Erie,

which was 396 kilometers in length. Write the equation of the prin-

cipal or uninodal stationary wave if the amplitude of the seiche was
15 cm.

3. A small pond 111 meters in length was observed by Eridros to

have a uninodal seiche of period fourteen seconds. Write the equation

of the stationary wave if the ampUtude be o.
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4. Forel reports that the uninodal longitudinal seiche of Lake

Geneva has a period of seventy-three minutes and that the binodal

seiche has a period of thirty-five and one-half minutes. The trans-

verse seiche has a period of ten minutes for the uninodal and five

minutes for the binodal. The longitudinal and transverse axes of the

lake are 45 miles and 5 miles respectively. Write the equation of

these different seiches.

5. A standing wave or uninodal seiche exists on Lake Mendota of

period twenty-two minutes. If the maximum height is 8 inches and
the distance .across the lake is 6 miles, write the equation of the seiche.

194.* Compound Harmonic Motion and Compound Waves.
The addition of two or more simple harmonic functions of frequencies

which are multiples of the frequency of a given first or fundamental

harmonic, gives rise to compound harmonic motion. Thus,

y = a sin fc< + & sin Zkt,

corresponds to the superposition of a S.H.M. of period 2ir/3fc and
amplitude 6 upon a fundamental S.H.M. of period 2ir/A; and amplitude

a. To compound motions of this type, there correspond compound
waves of various sorts, such as a fundamental sound wave with

overtones, or tidal waves in restricted bays or harbors. The graphs

of the curves

y = sin X + sin 2x

y = ainx + sin 3a

are easily constructed. They may be drawn by adding the ordinates

of the various sinusoids constructed on the same axis, as in Fig. 145.

To compound the curves, first draw the component curves, say y =

sin X and y = sin 3x of Kg. 145. Then use the edge of a piece of paper

divided proportionally to sin x (that is, like the scale OB, Fig. 145) and

use this as a scale by means of which the successive ordinates of a given

X may be added. For example, to locate the point on the composite

curve corresponding to the abscissa OD, Fig. 145, we must add DP
and DQ. Hence place vertically at P the lower end of the paper scale

just mentioned. The sixth scale division above P on this scale will

then locate the required point M of the composite scale.'

In Fig. 146 the curves:

y = sin X + sin (2x + 27rn/16)

y = sin 2x + sin (3x + 2)rre/16)

I Note that if the method described be used, there is really no need of drawing

the curve y = sin 3a:. If both curves are drawn, ordinates may conveniently be

added with bow dividers.
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are shown for values of n = 0, 1, 2, . , IS in succession—that is,

for successive phase differences corresponding to one-sixteenth of the

wave length of the fundamental y = sin x.

Fig. 145.—The curves y = sin x,y= sin 3x and the compound curve
y = sin X + sin 3x. '^

Fifth

Fig. 146.—The curves (o) j/ = sin x + sin {2x + 27rn/16) and (b)

2/ = sin 2a; + sm (3x + 2Tn/16), for n = 0, 1, 2, . . 15. {From
Thomson and Tail.)

Wave forms compounded from the odd harmonics only are espe-

eially important, as alternating-current curves are of this type. See
Fig. 147.

23
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196.* Harmonic Analysis. Fourier showed in 1822 in his "Ana-

lytical Theory of Heat" that a periodic single-valued function, say

y — f(x), under certain conditions of continuity, can be represented

by the sum of a series of sines and cosines of the multiple angles of the

form

y = ao + ai cos x + a^ cos 2x + Oa cos 3x + . . .

+ bi sin X +bi sin 2a; -|- 63 sin 3a; + . . .

This means, for example, that it is always possible to represent the

complex tidal wave in a harbor, by means of the sum of a number of

simple waves or harmonics. The term harmonic analysis is given to

the process of determining these sinusoidal components of a compound
periodic curve. In §194 we have performed the direct operation of

50
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connecting rod be very long in comparison with the diameter of the

circle.

A second approximation to the motion of the point A can be

obtained by introducing the second harmonic or octave of the funda-

mental. In Fig. 148, let the radius of the circle be a and the length

of the connecting rod be I. The length of the stroke M'N is 2a, and
the origin may conveniently be taken at the mid-point of the stroke,

0. When B is at E, A is at M and when B is at K, A is at A'^.

Then MH = NK = I and OC = I. Now

But

and

Hence

X = CA - CO = CA - I = CD + DA - I.

CD = a cos e

DA = Vl^ - BD' = Vl' - a^ sin^ e.

X = acose +1 Vl - (a^/l^) sin^ B - I

(1)

(2)

(3)

(4)

Fig. 148.—Connecting rod motion.

Approximating the radical by §113 (\/l — x = 1 — x/2) we obtain

^ , , / , a^ sin^ e\
,

,,,
X = acos 9 +1 il 2p— ) ~ '• (^)

Since sin^ 9 = (1 — cos 26) /2, we obtain

X = a cos 9+27 "^"^ ^^ ~ 47' ^^^

which is approximately true as long as I is much greater than a.

It is seen from the above result that the second approximation to

connecting rod motion contains as overtone the octave, or second

a*
harmonic, ^j cos 29, in addition to the first or fundamental harmonic

a cos 8.
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Exercises

1. Draw the curve corresponding to equation (5) above if o' = 1.15

inches, and Z = 3 inches.

2. The motion of a slide valve is given by an equation of the form

3/ = oi sin (9 + e) + 02 sin (28 + 90°).

Draw the curve if ai = 100, oj = 25, c = 40°, using 6 as the abscissa

in rectangular coordinates.



CHAPTER XII

COMPLEX NUMBERS

197. ScaJes of Numbers. To measure any magnitude, we
apply a unit of measure and then express the result in terms of

numbers. Thus, to measure the volume of the liquid in a cask

we may draw off the liquid, a measure full at a time, in a gallon

measure, and conclude, for example, that the number of gallons

is 125. In this case the number 12^ is taken from the arith-

metical scale of numbers, 0, 1, 2, 3, 4, . . If we desire to meas-

ure the height of a stake above the ground, we may apply a foot-

rule and say, for example, that the height in inches above the

ground is 12|, or, if the positive sign indicates height above the

ground, we may say that the height in inches is -|- 12J. In

this latter case the number -|- 12? has been selected from the

algebraic scale of numbers . . .
— 4, — 3, — 2, — 1, 0, + 1,

+ 2, + 3, + 4, . .

The scale of numbers which must be used to express the value of a

magnitude depends entirely upon the nature of the magnitude. The
attempt to express certain magnitudes by means of numbers taken

from the algebraic scale may sometimes lead, as every student of

algebra knows, to meaningless absurdities. Thus a problem involving

the number of sheep in a pen, or the number of marbles in a box, or

the number of gallons in a cask, cannot lead to a negative result, for

the magnitudes just named are arithmetical quantities and their meas-
urement leads to a number taken from the arithmetical scale. The
absurdity that sometimes appears in results to problems concerning

these magnitudes is due to the fact that one attempts to apply the

notion of algebraic number to a magnitude that does not permit of it.

Science deals with a great many different kinds of magnitudes, the

measurement of some of which leads to arithmetical numbers while the

measurement of others leads to algebraic numbers; the remarkable

fact is that two different number scales serve adequately to express

magnitudes of so many different sorts.' The magnitudes of science

357
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are so various in kind that one might reasonably expect that the

variety of number systems required in the mathematics of these

sciences would be very great.

The arithmetical scale is used when we enumerate the number of

gallons in a cask and say: 0, 1, 2, 3, . . . If we observe 3 gallons

in the cask, and then remove one, we note those remaining and say

tiDo; we may remove another gallon and say one, we may remove the

last gallon and say zero; but now the magnitude has come to an end.

The algebraic scale is used when we measure in inches the height of

a stake above the ground and say three. We may drive the stake

down an inch and say two; we may drive the stake another inch and
say one; we may drive the stake another inch and say zero, or

"level with the ground;" but, unUke the case of the gallons in the

cask, we need not stop but may drive the stake another inch and say

one below the ground, or, for brevity, minus one; and so on.

Many of the magnitudes considered in science are completely ex-

pressed by means of arithmetical numbers only; for example, such

magnitudes as density or specific gravity; temperature;^ electrical re-

sistance; quantity of energy; such as ergs, joules or foot-pounds;

power, such as horse power, kilowatts, etc. All of the magnitudes

just mentioned are scalar, as it is called; that is, they exist in one

sense only—^not in one sense and also in the opposite sense, as do forces,

velocitiesj distances, as explained above. The arithmetical scale of

numbers is therefore ample for their expression.

The distraction, then, between an algebraic number and an arith-

metical number is the notion of sense which must always be associated

with any algebraic number. Thus an algebraic number not only

answers the question "how many" but also affirms the sense in which

that number is to be understood; thus the algebraic number -|- 12J, if

arising in the measurement of angular magnitude, refers to an angular

magnitude of 12| units (degrees, or radians, etc.) taken in the sense

defined as positive rotation.

198. Algebraic Number Not the Most General Sort. Algebraic

numbers, although more general than arithmetical numbers, are

themselves quite restricted. For, each algebraic number corre-

sponds to a point of the algebraic scale. But for points not on the

scale there corresponds no algebraic number. That is, the alge-

braic scale is one-dimensional. It is thus seen that there is an

^ Temperature is an arithmetical quantity, since there is an absolute zero of

temperature. Temperature does not exist in two opposite senses, but in a single

sense.
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opportunity of enlarging our conception of number if we can re-

move the restriction of one dimension—that is, if we can get out of

the line of the algebraic scale and set up a number system such that

one number of the system will correspond, for examiple, to each

point of a plane, and such that one point of the plane will corre-

spond to each number of the system. We will seek, therefore, an

extension or generalization of the number system of algebra that

will enable us to consider, along with the points of the algebraic

scale, those points which lie without it.

199. Numbers as Operators. The extension of the number

system mentioned in the last section may be facilitated by chang-

ing the conception usually associated with symbols of number.

The usual distinction in algebra is between symbols of number and

symbols of operation. Thus a symbol which may be looked upon as

answering the question "how many" is called a number, whUe a

symbol which tells us to do something is called a symbol of opera-

tion, or, simply, an operator. Thus in the expression -\/2) "v/ is

a symbol of operation and 2 is a number. A symbol of operation

may always be read as a verb in the imperative mood; thus we
may read -s/x: "Take the square root of x." Likewise log x,

and cos 9 may be read; "Find the logarithm of x," "Take the co-

sine of 8." In these expressions "log" and "cos" are symbols

of operation; they teU us to do something; they do not answer the

question "how many" or "how much" and hence are not num-

bers. Here we speak of -\/j log, cos, as operators ; we speak of x as

. the operand, or that which is operated upon.

It is interesting to note that any number may be regarded as a

symbol of operation; by doing so we very greatly enlarge some

original conceptions. Thus, 10 may be regarded not only as ten,

answering the question "how many," but it may quite as well be

regarded as denoting the operation of taking unity, or any other

operand that follows" it, ten times; to express this we may write

10-1, in which 10 may be called a tensor (that is, "stretcher"),

or a symbol of the operation of stretching a unit until the result

obtained is tenfold the size of the unit itself. In the same way
the symbol 2 may be looked upon as denoting the operation of

doubling unity, or of doubling any operand that follows it; like-
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wise the tensor 3 may be looked upon as a trebler, 4 as a quadrupler,

etc.

With the usual understanding that any symbol of operation

operates upon that which follows it, we may write compound

operators like 2-2-3-1. Here 3 denotes a trebler and 31 denotes

that the unit is to be trebled, 2 denotes that this result is to be

doubled and the next 2 denotes that this result is to be doubled.

Thus representing the unit by a line running to the right, we have

the following representation of the operators

:

The unit ->

3-1 -^^-^
2-31 > >

2-2-31 T > >

Notice the significance that should now be assigned to an expo-

nent attached to these (or other) symbols of operation. The
exponent means to repeat the operation designated by the operator;

that is, the operation designated by the base is to be performed,

and performed again on this result, and so on, the number of opera-

tions being denoted by the exponent. ThusW means to perform

the operation of repeating unity ten times (indicated by 10) and

then to perform the operation of repeating the result ten times,

that is, it means 10 (101). Also, 10' means 10[10(10-1)]. Like-

wise log^ 30 means log (log 30) which, if the base be 10, equals

log 1.4771, or finally 0.1694. An apparent exception- occurs in

the case of the trigonometric functions. The expression cos'j;

should mean, in this notation, cos (cos x), but because trigo-

nometry is historically so much older than the ideas here ex-

pressed, the expression cos'' x came to be used for (cos a;)', or

(cos x) X (cos x), but cos~^ 6 means arc cos 6, not 1/cos 9.

To be consistent with the notation of elementary mathematics,

the expression \/4, looked upon as a symbol of operation, must

denote an operation which must be performed twice in order

to be equivalent to the operation of quadrupling; that is, such

that (-\/4)^ = 4. Likewise i/i denotes an operation which

must be' performed three times in succession in order to be

equivalent to quadrupling. But we know that the operation

denoted by 2, if performed twice, is equivalent to quadrupling;
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therefore \/4 = 2, etc. Just as 4^, 4', etc., may be called stronger

tensors than a single 4, so -s/i, Vi, etc. may be called weaker

tensors than the operator 4.

200. Reversor. The expression ( — 1), looked upon as a

symbol of operation, is not a tensor, as it leaves the size unchanged

of that upon which it operates. If this operator be applied to

any magnitude, it will change the sense in which the magnitude

is then taken to exactly the opposite sense. Thus, if 6 stands

for six hours after, then ( — 1)(6) stands for six hours before

a certain event, and ( — 1) is the sj'mbol of this operation of

reversing the sense of the magnitude. Also if 6 stands for a line

running six units to the right of a certain point, then ( — 1)(6)

stands for a line running six units to the left of that point; so

that ( — 1) is the symbol which denotes the operation of turning

the straight line through 180°. As 2, 3, 4, when looked upon as

symbols of operations, were called tensors, the operator ( — 1)

may conveniently be designated a reversor.

Exercises

Show graphically the effect of the operations indicated in each of

the following exercises. Take as the initial unit-operand a straight

line 1/2 inch long extending to the right of the zero or initial point.

Explaia each expression as consisting of the operand unity and
symbols of operation—^tensors, reversors, etc., which operate upon
it, one after the other, in a definite order.

1. 2-3-1. 8. (Viy-i - 1)-1-

2. 3-3-1. 9. ( - l)s-22-31.

3. - 1-31. 10. 3-321.

4. 2'1. 11. ( - 1)'2-2«1.

6. VSI. 12. 3( - 1)V21.
6. (-v/2)^-l. 13. (\/2)-( - 1)"»-1.

7. -v/gVi-l. 14. Vl0-2-( - 1)1.

15. A tensor, if permitted to operate seven times in succession, will

just double the operand. Symbolize this tensor.

16. A tensor, if permitted to operate five times in succession, will

quadruple the operand. Symbohze this tensor.
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201. Versors. The expression %/ — 1 cannot consistently,

with the meaning abeady assigned to \/ and ( — 1), be looked

upon as answering the question "how many," and therefore is not

a number in that sense; yet if we consider \/ — 1 as a symbol of

operation, it can be given a meaning consistent with the operators

already considered. For if 2 is the operator that doubles, and

\/2 is the operator that when used twice doubles, then since ( — 1)

is the operator that reverses, the expression \/ — ^ should be an

operator which, when used twice, reverses. So, as ( — 1) may
be defined as the symbol which operates to turn a straight line

through an angle of 180°, in a similar way we may define the

expression %/ — 1 as « symbol

which denotes the operation of

turning a straight line through

an angle of 90° in the positive

direction. The restriction of

positive rotation is inserted

to make the definition unique.

The symbols ( — 1) and
y/ — 1 are not tensors. They
do not represent a stretching

or contracting of the operand.

Their effect is merely to turn

the operand to a new direc-

tion; hence these symbols

may be called versors, or

"turners."

202. The Operator V^^. In Fig. 149 let a be any line.

Then a operated upon by V - 1 (that is, V — 1 a) is a turned
anti-clockwise through 90°, which gives OB. Now, of course,

V — 1 can operate on V — 1 a just as well as on a. Then
V — 1 (V — 1 a), or PC, is V — 1 g turned positively through
90°. Similarly, V - UV - 1(V - 1 a)] is V^I i.s/'^l a)

turned through 90°, etc.

As we are at liberty to consider two turns of 90° as equivalent

to one turn of 180°, therefore, \/ — 1 (V — 1 a) = ( — 1) o.

Now OD = ( - 1) OS, OD = i- 1) (-v/^T a); but also 0D =
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V^ ( - a), therefore, ( - 1)V^ a = V"^ (
- «)• Thus

the student may show many like relations.

The operator •%/ — 1 is usually represented by the symbol i and

will generally be so represented in what follows.

Exercises

Interpret each of the following expressions as a symbol of operation:

1. 2, 3, 4, -1.

2 3^23,4", (-1^ (-1)^
3. V2,VZ,V- 1, \/'2, \/- 1.

Select a convenient unit and construct each of the following expres-

sions geometrically, explaining the meaning of each operator:

4. 2-3-5-1. 7. (-1)''V^^-1.
6. 2=-(-l)-l. 8. 2'-(-l)^-(\/- l)"-!.

6. 3V-1-21. 9. 3V - 1(-1)V -11.

203. Complex Numbers. An expression of the form a + hi

is cdlled a complex number, since it contains a term taken from

each of the following scales, so th.at the unit is not single but

double or complex:

- 3,
-

2, - 1, 0, + 1, + 2, + 3,

. - 3i, - 2i, - i, 0, + I, + 2i, + 3t,

Any number belonging to the first scale is called a real nimiber,

any number belonging to the second scale is called a pure

imaginary.

It is important to note that the only element common to the two

series in this complex scale is 0.

The explanation of the meaning of the symbol (a + hi) will

be given in the following section. It will be shown in subsequent

theorems that any expression made up of the sum, product,

power or quotient of complex numbers may be put in the form

a + hi, in which both a and 6 are re&l.

204. Meaning of a Complex Nimiber. Any real number, or

any expression containing only real numbers, may be consid-

ered as locating a point in a line.

Thus, suppose we wish to draw the expression 2 + 5. Let be
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the zero point and OX the positive direction. Lay off OA = 2 in

the direction OX and at A lay off AB = 5 in the direction OX.
Then the path OA + AB is the geometrical representation of

2+5.
A B X

Any complex number may be taken as the representation of the

position of a point in a plane. For, suppose c + di is the complex

number. Let 0, Fig. 150, be the zero point and OX the positive

direction. Lay off OA = + c in the direction OX and at A erect

di in the direction OY, in-

stead of in the direction OX
as in the last example. It

is agreed to consider the

step to the right, OA,
followed by the step up-

ward, AP, as the meaning

of the complex number c +
di^ Either the broken 'path

OA + AP or the direct -path

OP may he taken as the repre-

smtation of c + di, and either

path constitutes the definition

of the sum of c and di.

— di, and — c + di may be

Fig. 150.—The geometrical con-
struction of a complex number,
c + di.

di.In the same manner c

constructed.

The meaning of some of the laws of algebra as applied to imagi-

naries may now be illustrated. Let us construct c + di + a + hi.

The first two terms, c + di, give OA + AB, locating B (Fig.

151). The next two terms, a + hi, give BC + CP, locating P.

Hence the entire expression locates the point P with reference to

0. Now if the original expression be changed in any manner
allowed by the laws of algebra, the result is merely a different path

to the same point. Thus:

c + a +di + hiis the path OA, AD, DC, CP
{c+a)+ {d + h)i is the path OD, DP
a + di+ c + 6i is the path OE, EH, HC, CP
a+di + hi + c is the path OE, EH, HF, FP, etc.
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The student should consider other cases. Is there any method
of locating P with the same four elements, which the figure does

not illustrate?

205. Laws. It can be shown by simple geometrical construc-

tion that the operator i, as defined above, obeys the ordinary

laws of algebra. We can then apply all of the elementary laws of

algebra to the symbol i and work with it just as we do with any
other letter. The following are illustrations of each law:
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The expression -\/ — a, where a is any number of the arith-

metical scale, is defined as equivalent to \/ — l -o;that is, y/ — a

- i\fa. For example, V — 4 = 2i, V —3 = i'\/^, etc. In

what foUows it is presupposed that the student will reduce expressions

of the form -y/ — ato the form i s/a before performing algebraic op-

erations. From this it follows that y/ — a-^/ — b = — y/cA and

not Vobl
The relation -\/ — 4 = 2-\/ — 1 may be interpreted as follows

:

( — 4) is the operator that quadruples and reverses; then •%/ — 4

is an operator which used twice quadruples and reverses. But
2-%/ — 1 is an operator such that two such operators quadruple

and reverse. That is, V — 4 = 2\/ — 1.

206. Powers of i. We shall now interpret the powers of i by
means of the new significance of an exponent and by the commu-
tative, associative and other laws. First:

i° or i° 1 = + 1 i^ = iH = i

^ i' .or i^ 1 = i %'• = iH = — \

j2 = _
]^

j7 ~= m = — i

i^ = iH = — i i' = m = + 1

i* = m^ = + 1 etc. etc.

Whence it is seen that all even powers of i are either + 1 or — 1,

and all odd powers are either i or — i. The student may reconcile

this with Fig. 149. The zero power of i must be unity, for the

exponent zero can only mean that the operation denoted by the

symbol of operation is not to be performed at all; that is, unity is to

be left unchanged; thus 10° or 10»-1 = 1, 2" = 1, log" x = x,

sin" X = X, etc.

Exercises

Select as unit a distance 1/2 inch in length extending to the right

and represent graphically each of the following expressions:

1. i + 2i' + 3i' + 4i* -f .

2. t + i« + i* + i« + i' + .

3. i + i* + e + i^ + i' + i'^ + .

4. i(i + i< + i' + i* + i' + ii2 + . . ).

5. i + i«
-f-

1' + 2i^ + i* + t" + i' + 3i» + . . .
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207. Conjugate Complex Numbers. Two complex numbers

are said to be conjugate if they differ ohiy in the sign of the term

containing \/ — 1." Such are x + iy and x — iy.

Conjugate imaginaries have a real sum and a real product.

For {x + yi) + {x — yi) = x + yi + x — yi,

=. X + X + yi — yi = 2x.

Likewise, applying the ordinary rules of algebra,

{x + yi) (x — yi) = x^ — yH'' = a;^ + j/^

It is well to note that the product of two conjugate complex

numbers is always positive and is the sum of two squares.

This fact is very important and will be used frequently. Thus

(3 - 4i)(3 + 4.1) = 3^'+ 42 = 25; (1 + i){l - i) = 2;

(cos d + i sin 9) (cos d — i sin 6) = cos" 6 + sin" = 1; etc.

208. The sum, product, or quotient of two complex numbers is,

in general, a complex number of the typical form a + bi.

Let the two complex numbers be a; + yi and u + vi.

(1) Their sum is (x + yi) + (u + vi)

= (x + u) + {y + v)i

by the laws of algebra. This last expression is in the form a + bi.

(2) Their product is {x + yi) (u + vi)

= x{u + vi)+ yi{u + vi)

= xu + xvi + yui + yvi'

= {xu — yv) + {xv + yu)i

by the laws of algebra. This last expression is in the form a + bi

(3) Their quotient is

X + yi _ (x + yi){u — vi)

u + vi (m + vi)(u — vi)

By the preceding, the numerator is of the form a' + b'i. By
§207, the denominator equals m" + «". Then the quotient equals

a' + b'i a' b' .

u^ + v^ m" + w" ' m" + »2

by distributive law. This last expression is of the form a + bi.
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Exercises

Reduce the following expressions to the typiqal form a + bi; the

student must change every imaginary of the form -y/ — o to the form

1. V - 25 + V~^^ + V^^i2i - V^'ei - 6i.

2. (2V~^^ + 3v'^)(4\/"-^3 - 5V^^).
3. (x - [2 +3i]){x - [2 -3i]).

4. (-5 + 12V^T)^. 6. (vr+i)(-v/r^).
5. (3 - 4V^.)'. 7. (Ve"- V^~^)'.

a 1
8. ,

. 12.

2 1 - i^

13.;" S+V -2 • (1 - 0'-

10. , 'V _ 14. l^.^^A

11.
1 +V 15. (2 + sV^^n.^
i-i" 2 + v^n"

-„ o + a;i a — xi
lb. ^

j
;•

a — XI a + x%

209. If a complex number is equal to zero, the imaginary and

real "parts are separately equal to zero.

Suppose X + y \/ — 1 = 0,

X and y being real numbers.

Then x = — y V — 1.

Now it is absurd or impossible that a real number should equal

an imaginary, except they each be zero, since the real and imagi-

nary scales are at right angles to each other and intersect only at

the point zero.

Therefore x = and y = 0.

If two complex numbers are equal, then the real parts and the

imaginary parts must be respectively equal.

For if X + yi = u + vi

then (x -«) + (?/ - v)i = 0.
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Whence, by the above theorem,

That is,

X — u = and y — v= 0.

a; = M and y = v.

210. Modulus. Let the complex number x + yihe constructed,

as in Fig. 152, in which OA = x and AP = yi. Draw the line

OP, and let the angle AOP be called 0.

The numerical length of OP is called the modulus of the complex
number x + yi. It is algebraically represented by -y/x^ + y^,

or by the symbol \x + yi\. Thus, mod (3 + 4*) = V9 + 16 = 5.

The student can easily see that two conjugate complex numbers
have the same modulus.

If 2/ = 0, the mod (x + yi) = \/^= \x\, where the vertical

lines indicate that merely the numerical, or absolute, value of

X is called for. Thus the

modulus of any real number
is the same as what is called

the numerical, or absolute
value, of the number. Thus
mod (— 5) = 5.

211. Amplitude. In Fig.

152 the angle AOP or 6 is

called the argument, or ampli-

tude, or simply the angle, of

the complex number x + yi.

Putting r = \^x^ + y^ - mod {x +

y

Fig. 152.—Modulus and amplitude
of a complex number.

yi) = ;x +iy\, we have

sin 6 = and cos 6
X

r

Therefore,

.•B + ?/i = r cos + ir sin Q = r(cos 9 + i sin 9). (1)

We have expressed the complex number x + yi in terms of its

modulus and amplitude. The last member of (1) is called the

polar fonn of the complex number {x + iy).

To put 3 — 4i in this form, we have

mod (3 - 4i) = \/9 + 16 = 5; sin 5 = ^ = - |; cos S = - = f^
r 5 r 5

24
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Therefore,

The amplitude d is tan-' (
~ o) i

^^^ is in the fourth quadrant.

Why?
It is well to plot the complex number in order to be sure of the

amplitude 6. It avoids confusion to use positive angles in all

cases. For example, to change 3 — \/3 i to the polar form, plot

the point (3, — \/3) and find from the triangle that r = 2 \/3 and

9 = 330°. Hence

3 - VS i = 2V3(cos 330° + i sin 330°).
[<

The ampUtude of all positive numbers is 0, and of all negative

numbers is 180°. The unit expressed in terms of its modulus and

amplitude is evidently l(cos + i sin 0).

212. Vector. The point P, Fig. 152, located by OA + AP, or

X + yi, may also be considered as located by the line or radius

vector OP; that is, by a line starting at 0, of length r and making

an angle 6 with the direction OX. A directed line, as we are now
considering OP, is called a vector. When thus considered, the two

parts of the compound operator

r (cos 5 + i sin 6) (1)

receive the following interpretation : The operator (cos 6 + ism 6),

which depends upon B alone, turns the unit Ijdng along OX
through an angle 6, and may therefore be looked upon as a versor

of rotative power 6. The versor (cos 6 -\- i sin 6) is often abbre-

viated by the convenient symbol cWd. The operator r is a tensor,

which stretches the turned unit in the ratio 1 : r. The result of

these two operations is that the point P is locaited r units from

in a direction making the angle 6 with OX.
Thus, the operator (cos ^ + i sin 6) is simply a more general

operator than i, but of the same kind. The operator i turns a

unit through a right angle and the operator (cos -\- i sin 6) turns

a unit through an angle B. If 6 be put equal to 90°, cos 6-\-i sin 6

reduces to i.
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For d = 0, cos 6 + i sin $ reduces to 1

6 = 90°, cos d + i sin d reduces to i

6 = 180°, cos 6 -\- i sin 6 reduces to — 1

6 = 270°, cos 6 + isin 6 reduces to — i

Since 3 — 4i = 5(f — fi), the point located by 3 — 4i may be

reached by turning the unit vector through an angle 8 =
sin~'(— 4/5) = COS"' 3/5 and stretching the result in the ratio 1 :5.

// a complex number vanishes, its modulus vanishes; and con-

versely, if the modulus vanishes, the complex number vanishes.

li X + yi = 0, then x = and y = 0, hy §210. Therefore,

Vx^ + t/2 = 0. Also, if Va;^ + y^ = 0, then x^ + y^ = 0, and

since x and y are real, neither x' nor y^ is negative, and so their

sum is not zero unless each be zero.

// two complex numbers are equal, their moduli are equal, but if

two moduli are equal, the complex numbers are not necessarily equal.

li X -i- yi = u + vi, then x = u and y = vhy §210.

Therefore, V^^+^ = Vu^ + vK

But if y/x'^ + y'^ = y/u^ + v^, obviously x"^ need not equal

u^ nor y"^ = v'.

213. Sum of Complex Numbers. Let a given complex number
locate the point A, Fig. 153, and let a second complex number
locate the point B. Then if the first of the complex numbers be

represented by the radius vector OA, and if the second complex

number be represented by the radius vector OB, the sum of the

two complex numbers will be represented by the diagonal OC of

the parallelogram constructed on the lines OA and OB. This law

of addition is the well-known .law of addition of vectors used in

physics when the resultant of two forces or the resultant of two

velocities, two accelerations, or two directed magnitudes of any

kind, is to be found.

The proof that the sum of the two complex numbers is repre-

sented by the diagonal OC is very simple. Let the graph of the

first complex number be ODi + DiA and let that of the second be

OD2 -f- DiB. To add these, at the point A construct AE = ODi
and EC = D^B. Then the sum of the two complex numbers is

geometrically represented by OJ)^ + BiA + AE + EC, or by the
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radius vector OC which joins the end points. Since, by construc-

tion, the triangle AEC is equal to the triangle OD^B, AC must be

equal and parallel to OB, and the figure OACB is a parallelogram.

OC, which represents the required sum, is the diagonal of this

parallelogram, which we were required to prove.

Di Di Di

Fig. 153.—Sum of two complex numbers.

Exercises

Mnd algebraically the sum of the following complex numbers, and

construct the same by means of the law of addition of vectors.

1. (1 + 2i) + (3 + 4i). 4. (3 - 4i) - (3 + 4i).

2. (1 + i) + (2 + i). 5. (-2 + i) + (0 - ti).

3. (1 - i) + (1 + 2i). 6. (- 1 + i) + (3 + i) + (2 + 2i).

7. (2 - i) + (- 2 + i) + (1 + i)-

8. Find the modulus and ampHtude ^in degrees and minutes) of

2(cos 30° .+ i sin 30°) + (cos 45° + i sin 45°).

9. By the parallelogram of vectors, show that the sum of two con-

jugate complex numbers is real.

10. If ij be the sum of the complex numbers Zi'= xi -|- iyi, Z8 =

Xi -\-iyi, «a = Sa + Vii, etc., show that —R, zi, zj, 23, . . . form the

sides of a closed polygon.

214. Product of Complex Nximbers. The product, of two or

more complex ^umbers is a complex number whose modulus is'>the
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product of the moduli and whose amplitude is the sum of the ampli-

tudes of the com,plex numbers.

Let the complex numbers be

^1 = xi + y-ii = ri (cos Q\ + i sin 6i)

Z2 = a;2 + 2/21 == rj (cos 02 + i sin ^2), etc.

By actual multiplication, we get

«i22 = rir-2 [(cos 01 cos 02 — sin 0i sin 02) +
(sin 01 cos 02 + cos 0i sin di)i\ = rir^ [cos (0i + 02) + i sin (0i + di)]

Whence it is seen that rir2 is the modulus of the product -and

(01 + 02) is the amplitude.

(2 + 2»)(v7+i)

Fig. 154.—Product of two pomplex numbers.

The above theorem is illustrated by Fig. 154. If the two given

complex numbers be represented by their vectors OPi and OPt, their

product will be represented by the vector OP3 whose direction angle

is the sum of the amplitudes of the two given factors, and whose
length OP3 is the product of the lengths OPi and OP2.

The figure represents the product (2 + 2i) {y/z + i). Expressed in

terms of modulus and ampUtude these may be written,

-s/3'+ i = 2(cos 30° + i sin 30°)

2 + 21 = 2v^(cos 45° + i sin 45°)
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Hence, ri = 2, rj = 2\/2, Bi = 30°, 6, = 45°

Therefore (2 + 2i)(V3 + i) = 4v'2 (cos 75° + i sin 75°)

Exercises

Find the moduli and amplitudes of the following products, and
construct the factors and products graphically. Take a positi-i/e angle

for the amplitude in every case.

1. (1 + \/3t)(2-\/3 + 2i). 4. (1 + iy. _
2. (2 + W3i){2 + 2i). 5. (2 - 2v'3i)(\/3 + Si).

3. (V3 + 3i)(2 - 2i). 6. (1 - iy.

7. (1 + i)\l - i)K

8. 2 (cos 15° + i sin 15°) X 3 (cos 25° + i sin 25°).

Find numerical result by use of slide rule or trigonometric tables.

9. 2(cos 10° + i sin 10°) X (1/3) (cos 12° + i sin 12°) X
6(co3 8° +isin8°).

10. Find the value of 4-\/2 (cos 75° +isin75°) + (Vs + i).

216. Quotient of Two Complex Numbers. The quotient of

two complex numbers is a complex number whose modulus is the

quotient of the moduli and whose amplitude is the difference of the

amplitudes of the two complex numbers. Let the complex numbers

be

Si = Xi + yii = ri(cos Q\-\- i sin 9i)

Zi = Xi + yii = rjCcos di + i sin 62).

We have
zi _ ri(cos Bi + i sin gi)(cos dj — i sin 6i)

02 raCcos 02 + i sin S2)(cos 82 — i sin 0i)

^ ri[oos {di - 62) +i sin (9i - gg)]

r2 (cos'' ^2 + sin^ 62)

= -[cos (^1 -^2) + i sin (^i - 62)]-
r2

Whence it is seen that — is the modulus of the quotient and

(.01 — 02) is the ampUtude.

In Fig. 155, the complex number represented by the vector OPi

when divided by the complex number represented by OP2 yields

the result represented by OP3, whose length ri/rais foundby dividing

the length of OPi by the length of OP2, and whose, direction angle
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is the difference (ffi — 61) of the amplitudes of OPi and OPi.

The figure is drawn to scale for the case:

5 (cos 60° + i sin 60°)

2 (cos 20° + i sin 20°)
= (2.5) (cos 40° + i sin 40°)

Fig. 155.—Quotient of two complex numbers.

Exercises

Find the quotient and graph the results in each of the following

exercises. Always take ampUtudes as positive angles and if 9j > 61,

take 9i + 360° instead of 9i.

1. (1 + \/3i) -^ (V2 + V2i). 3. (SVS -3i) -i- ( - 1 + \/3i).

2. (i + iVSi) -^ (^2 - V2i). 4. (1 - VSi) -h i.

6. 2(oos 36° + i sin 36°) -r- 5(cos 4° + i sin 4°;.

6. 1.2(cos 48° + i sin 48°) h- [2(cos 15° + i sin 15°)

3(cos 9° + i sin 9°;].

„ [4 + (4/3)-v/3i] (2 + 2Vdi)
8 + 8i

8. Express in terms of a, b, e, d, the ampUtude of (a + bi) +
(c + di). I

216. De Moivre's Theorem. As a special case of §214 consider

the expression

(cos d + i sin S)»

where n is a positive number.



376 ELEMENTARY MATHEMATICAL ANALYSIS [§216

This being the product of n factors like (cos e + i sin e), we

write, by means of §214,

(cos S + i sin 6) (cos + i sin S)

= [cos(0+e+ . )+isin((9+e+ ...)],
or

(cos 5 + i sin 6)" = (cos nd + i sin nd), (1)

which relation is known as De Moivre's theorem.

De Moivre's theorem holds for fractional values of n. For, first

consider the expression

(cos e + i sin e)^^\

where the power 1/t of aos d -\- i sin B is, by definition, an

operator such that the <th power of the expression equals

cos + i sin B.

a

Put B = t(i>, SO that 4> —
~t

Then (cos B + i sin 9)'/' = (cos tij) + i sin tij))^'^

= [(cos ^ + i sin
</.)']i'" by (1)

= cos <j> + i sin <p

= cos 1 + I sin 1 • (2)

Next consider the case in which n = j. We know

(cos B + i sin BY'' = [(cos fl + i sin B)')]^''

= (cos sB+ i sin sfl)!/' by (1)

= cosy +i sin y by (2). (3)

Likewise the theorem may be proved for negative values of n.

Illustkation 1. Find (3 + i \/3)*.

Write 3 + i VS = 2 V3(cos 30" + i sin 30°).

Then, by De Moivre's theorem,

(3 + i VS)* = 144(cos 120° + i sin_120°)

= 144( - l/2+_^V3i)
= -72 + 72-v/3i
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Illustration 2. Knd (2 + 2i)".

Write 2 + 2i in the form

2 + 2i = 2 \/2_(i V2 + i V2i)
(2 + 2i)'i = (2 V2)"(cos 45° + i sin 45°)"

= (2 \/2)"(cos 495° + i sin 495°)

= (2 •v/2)"(ooa 135° + i sin 135°)

= (2V'2)"( - ^ ^2 +i\/2i)
= 2i«

( - 1 + i).

Exercises

Evaluate the following by De Moivre's theorem, using trigonomet-

ric table or slide rule when necessary.

1. (8 +8\/3t)".V 6. [1/2 + (l/2)V3i]*.

2. •>y27 (cos 76° - i sin 75°). 7. (1 + i)'.

3. -^125i. 8. (- 2 + 2i)^.

4. [cos 9° + i sin 9°]". 9. [(1/2)V3 - (l/2)i]'.

5. (S+VSi)'-
-10. Find value of (-1 + V - 3)= + (-1 - V - 3)' by De

Moivre's theorem.

11. Find the value of x^ - 2z + 2 for x = 1 + i.

12. If ii = - 1/2 + (1/2)^^^ and J2 = - 1/2 - (1/2)V - 3,

showthatjV = l.jV = l,ji' =J2,h^ =Ju3i^" =jV = l,jV"'^'=ii.

217. The Roots of Unity. Unity may be written

1 = cos + i sin

1 = cos 2ir + i sin 2ir

1 = cos 47r + i sin Air

1 = cos 6t + i sin 6ir

and so on. By De Moivre's theorem the cube root of any of these

is taken by dividing the amplitudes by 3. Therefore, from the

above expressions in turn, there results

Vi = cos + i sin = 1

•^1 = cos (27r/3) + i sin (27r/3) = cos 120° + i sin 120°

= -l/2 + i(l/2) V3
Vl = cos (4ir/3) + i sin (47r/3) = cos 240° + i sin 240°

_ = - 1/2 - i(l/2) V3
Vl = cos 67r/3 + i sin Qir/S = same as first, etc.
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Therefore there are three cube roots of unity. Since these are the

roots of the equation a;' — 1 = 0, they might have been found by

factoring, thus

x> - 1 = (x - 1) ix^ + x+ 1)

= ix-l){x + 1/2 + i Vsi) (^ + 1/2-4 V3i)

The three roots of unity divide the angular space about the point

into three equal angles, as shown in Fig. 156. In the same

way, it can be shown that there are four fourth roots, five fifth

roots, etc., of unity and that the vectors representing them have

modulus 1 and amplitudes that divide equally the space about 0.

B
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siace adding a multiple of 360° to the amplitude does not change

the value of the sin and cosine. In applying De Moivre's theorem,

there results

(VS + 3i)>^ = >yi2 (cos 210° +i sin 210°) '

= V^12 [ - (l/2)v'3 - (l/2)i]

Illttstration 2. Find the cube root of — \/2 + \/2 i.

We write:

- \/2 + i V2 = 2 (cos 135° + i cos 135°)

= 2[cos (135° + Ji360°) + i cos (135° + 7i360°)].

in which n is any integer. Hence

{-\/2+i V2)^ = \/2 [cos (45° + ?il20°) + i sin (45° + nl20°)]^
= ^ (cos 45° + i sin 45°) for n =
= -^2 (cos 165° + i sin 165°) forra = 1

= -^2 (cos 285° + i sin 285°) for n = 2.

These are the three cube roots of the given complex number. For

« = 3 the first root is obtained a second time.

Exercises

Find all the indicated roots of the following:

1. (8 + SVsi)^. 6. (2 + 2i)^.

2. i^27(cos 75° + i sin 75°). 6. 32^.

3. -^iMi. 7. V/5I2.
4. ( - 2 + 2i)^.

8. Find to four places one of the imaginary 7th roots of + 1.

Note: Cos 51° 25.7' + i sin 51° 25.7' = 0.6235 + 0.7818i.

218.* Irrational Numbers. A rational ntunber is a number that

can be expressed as the quotient of two integers. All other real

numbers are irrational. Thus V^j \/5j V^?, ir, e, are irrational

numbers. An irrational number is always intermediate in value

to two rational numbers which differ from each other by a number
as small as we please. Thus

1.414, < •v/2 < 1.415

1.4142 < \/2 < 1.4143

1.41421 < V2 < 1.41422, etc.
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It is easy to prove that \/2 cannot be expressed as the quotient

of two integers For, if possible, let

V2=l, (1)

where a and 6 are integers and r is in its lowest terms. Squaring

the members of (1) we have

2 =^. (2)

This cannot be true, since 2 is an integer and a and 6 are prime

to each other.

An irrational number, when expressed in the decimal scale, is

never a repeating decimal. For, if the irratiqn,al number could be

expressed in that manner, the repeating decimal could be evalu-

ated by §120 in the fractional form
^ _ ' which, by definition

of an irrational number, is impossible. On the contrary, every

rational number when expressed in the decimal scale is a repeating

decimal. Thus 1/3 = 0.33 . . and 1/4 = 0.25000. . .

The proof that ir and e are irrational numbers is not given in

this book.^

The student should not get the idea that because irrational num-

bers are usually approximated by decimal fractions, that the

irrational number itself is not exact. This can be illustrated by

the graphical construction of \/2. Locate the point P whose

coordinates are (1, 1). Call the abscissa OD and the ordinate DP.

Then OP = y/% OZ) = 1, and DP = 1. It is obvious that the

hypotenuse OP must be considered just as exact or definite as the

legs OB and DP The notion that irrational numbers are inexact

must be avoided.

The process of counting objects can be carried out by use of the

primitive scale of numbers 0, 1, 2, 3, 4, . . . The other numbers

made use of in mathematics, namely,

(1) positive and negative numbers

(2) integral and fractional numbers

(3) rational and irrational numbers

(4) real and imaginary numbers,

^ See Monographs on Modern Mathematics, edited by J. W. A. Young.
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may be looked upon as classes of numbers that permit the opera-

tions siibtraction, division and evolution, to be carried out under all

circumstances. Thus, in the history of algebra it was found that

in order to carry out subtraction under all circumstances, negative

numbers were required; to carry out division under all circum-

stances, fractions, were required; to carry out evolution of arith-

metical numbers under all circumstances, irrational numbers

were required; finally to carry out evolution of algebraic numbers

under all circumstances, imaginaries were required. It will be

found that it wiE not be necessary to introduce any additional

form of number into algebra; that is, the most general number
required is a number of the form a 4- 6i, where a and 6 are positive

or negative, integral or fractional, rational or irrational. This is

the most general number that satisfies the following conditions:

(a) The possibility of performing the operations of algebra and
the inverse operations under all circumstances.

(6) The conservation or permanence of the fundamental laws of

algebra: namely, the commutative, associative, distributive, and
index laws.

Further extension of the number system beyond that of complex

numbers leads to operators which do not obey the commutative

law in multiplication; that is, in which the value of a product is

dependent upon the order of the factors, and in which a product

does not necessarily vanish when one factor is zero. Numbers of

this kind the student may later study in the introduction to the

study of electromagnetic theory under the head of "Vector ^

Analysis" or in the subject of "Quaternions.'' Such numbers or

operators do not belong to the domain of numbers we are now
studying.

219.* Simple Periodic Variation Represented by a Complex Num-
ber. Fluctuating magnitudes exist that follow the law of S.H.M.
although, strictly speaking, such magnitudes can be said to be "sim-

ple harmonic motions" in only a figurative sense. For example we
may think of the fluctuations of the voltage or amperage in an alter-

nating current as following such a law. Thus if E represent the

electromotive force or pressure of the alternating current, then the

fluctuations are expressed by
E = Eo sin oit
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or by
E = Eo sin 2irft,

where/is the frequency of the fluctuation. Instead of S.H.M. such a

variable is naiore accurately called a sinusoidal varying magnitude,

although for brevity we shall often call it S.H.M. The graph in rec-

tangular coordinates of such a periodic function is often called a

"wave," although this term should, in exact language, be reserved for

a moving periodic curve, such a.sy = a sin (hx — kt).

If the polar representation

p = a sin (ot — <i) (1)

of the sinusoidal varying magnitude be used, then the graph of (1)

is a circle of diameter a inclined the angular amount uU to the left of

the axis OY, as is seen at once by calUng cot = 9 and aU = a in the

equation of the circle p = o sin (9 — a). The circle can be drawn

when the length and direction of its diameter are known; that is, the

circle is completely specified when a and the direction of a (told by

a) are given. Therefore the simple harmonic motion is completely

symbolized by a vector OA of length a drawn from the origin in the

direction given by the angle uti. The direction angle of the vectorOA is

a + 2> or ah + g-

The circle on the vector OA is located or characterized equally

well if the rectangular coordinates (c, d) of the end of the diameter

of the circle be given. But the complex number c + diis represented

by a vector which coincides with the diameter o of this circle. Hence

we may represent the circle by the complex niunber c + di. Its

modulus is a = \/c' + d'' and its amplitude is a + s. Therefore if in

(1) we take o = \/c* + d-, at, = a and the variable angle at = 9, we
can completely describe the S.H.M. by the complex number c + di.

In the theory of alternating currents the sinusoidal varying current or

voltage can conveniently be represented by a complex number, and

that method of representing such magnitudes is in common use.

One of the advantages of representing S.H.M. by a vector or by a

complex number is the fact that two or more such motions of like

periods may then be compounded by the law of addition of vectors.

This method of find^g the resultant of two sinusoidal varying mag-
nitudes of like periods possesses remarkable utihty and simplicity.

To summarize, we may say:

(o) A siniisoidal varying magnitude is represented graphically in
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polar coordinates by a vector, which by its length denotes the amplitude

and by its direction angle with respect to OY denotes the epoch angle.

(6) Sinusoidal varying magnitudes of like periods may be compounded

or resolved graphically by the law of parallelogram of vectors.

If two sinusoidal varying magnitudes of like periods are in quad-

rature (that is, if their epoch angles differ by 90°), their relation,

neglecting their epochs, can be completely expressed by a single com-
plex number. Thus let two S.H.M. in quadrature

and

E„ = 113 sin a{t - h)

Ec = 40 cos a{t - ti)

(2)

(3)

Fig. 157.—Composition of two S.H.M. in quadrature by law of

addition of vectors.

be represented by the circles and by the vectors marked OEo and

0B„, Fig. 157. Call the resultant of these Ei. Then

Ei = 113 sin fc)(i - «i) + 40 cos u(« - <i) (4)

= -\/402 -t- 113^ sin w{t - ti)

= 120 sin w{t - ti), (5)

where wij is measured as shown in Fig. 157. Instead of representing

(2) and (3) in the polar diagram by 0E„ and OEe and their resultant
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by OEi, we may represent (2), (3), and (4) in the complex number

diagram, Fig. 158, by £?„, lEc, and Ec + iEc, respectively. Since the

modulus and amplitude of £„ + iEc are y/Eo' + &* and a, respec-

tively, and since the epoch angle of the resultant in Fig. 157 is ut2 =

toil — a, we can state the resultant as follows:

// we have given two S.H.M.'s in quadrature and take the amplitude

oj the one possessing the greater epoch angle as c and the amplitude

of the other S.H.M. as d, and construct the complex number c + di,

then this complex number c + di completely characterizes both of the

S.H.M.'s and their resultant. For, we can determine the modulus p

and the amplitude aoi c + di and then if wti is the epoch angle of the

moticm with amplitude c, the epoch angle of the resultant is ati — a.

If we consider the two harmonic

P motions

iEc p — 0,1 sin ui{t — ti)

and

p = 02 sin ci)(t — ti),

,

' and if Ji be greater than ti, the first

Fig. 158.—Complex number S.H.M. reaches its maximum value
representation of the facts ji^ ^^e second reaches its maxi-
shown by polar diagram, Fig. ^

mi. ^ ^ o ti at • ^i.

147
^ B

>
B mum. The first S.H.M. is there-

fore said to lag the amount (<i — tij

behind the second S.H.M. That is, a S.H.M. represented by a circle

located anticlockwise from a second circle represents a S.H.M. that

lags behind the second.

220.* Illustration from Alternating Currents. The steady current

C flowing in a simple electric circuit is determined by the pressure or,

electromotive force, E and the resistance R according to the equation

known as Ohm's law,

^ r'

or

E = CR.

E is the pressure or voltage required to make the current C flow

against the resistance R. If the current, instead of being steady,

varies or fluctuates, then the pressure CR required to make the current

C flow over the true resistance is called the ohmic voltage, or ohmic

pressure. But a changing or fluctuating current in an inductive

circuit sets up a changing magnetic field around the circuit, from which

there results a counter electromotive force, or choking effect, due to the

changing of the current strength. This electromotive force is called
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the reactive voltage or reactive pressure. The choking effect that it

has on the current is known as the inductive reactance. In case of a

periodically changing current it acts alternately with and against the

current. Opposite to the reactive voltage there is a component of the

impressed voltage that is consumed by the reactance. See Fig. 159.

The pressure which is at every instant applied to the circuit

from without is called the impressed electromotive force, or voltage.

Of the three pressures—namely, the impressed voltage, the ohmic
voltage (consumed by the resistance) and the reactive voltage con-

sumed by the inductive reactance—any one may always be regarded

as the resultajit of the other two. Hence, if in a polar diagram the

pressures be represented in magnitude and relative phase by the sides

of a parallelogram, the impressed

voltage may be regarded as the

diagonal of a parallelogram of

which the other two pressures are

sides. Since, however, the re-

actance or the counter inductive

pressure depends upon the rate of

change of the current, it lags, in

the case of a sinusoidal current,, Fiq. 159.—Complex number
90° behind the true, or ohmic, diagram of equation 5, §220.

voltage, which last is always in

phase with the current. The pressure consumed by the counter in-

ductive pressure therefore leads the current by 90°. Thus, in the

language of complex numbers

Ei=E„ + iE„ (1)

in which

Ei = impressed pressure

Eo = ohmic pressure, or pressure consumed by the resistance

Ec = counter inductive pressure, or the pressure consumed

by reactance.

It is found that the counter inductive pressure depends upon a con-

stant of the circuit L called the inductance and upon the angular veloc-

ity or frequency of the alternating impressed pressure, so that

E^ = 2ir/LC = wLC
Hence (1) may be written

Ei = RC + i2irfLC (2)

= flC + wLC (3)
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The modulus of the complex number on the right of this equation is

Considering, then, merely the absolute value \Ec\ and \C\ of pressure

and current, we may write

Id = ,
'^'1 „ (4)

From the analogy of this to Ohm's law,

^ r'

the denominator -\/i22 _|. ^iii ig thought of as limiting or restricting

the current and is called the impedance of the circuit.

Let there be a condenser in the circuit of an alternator, but let the

circuit be free from inductance. Then besides the pressure con-

sumed by the resistance, an additional pressure is required at any

instant to hold the charge on the condenser. If K be the capacity

of the condenser, it is found that that part of the pressure consumed
C C

in holding the charge on the condenser is ?r7v-' °^ ~xr' ^nd is in phase

position 90° behind the current C. The choking effect of this on the

current may be called the condensive reactance. When a condenser

is in the circuit in addition to inductance, the total pressure con-

sumed by the reactance has the form

:

^"^^ " 2^'
and the complex number that symbolizes the vector is

iP
Ei =RC + i2^fCL - ~. (5)

(see Fig. 159).

Further illustrations of the applications of complex numbers to

alternating currents is out of place in this book. The illustrations are

merely for the purpose of emphasizing the usefulness of these numbers
in applied science. An interesting application of the use of complex
numbers to the problem of the steam turbine will be found in Stein-

metz's "Engineering Mathematics," Page 33.

Exercises

1. Draw the polar diagram and complex number representation of

& if iJ = 5, C = 21,/ = 60, L = 0.009, K = 0.005.

2. Draw a similar diagram if Ei = 100, Eo = .90, / = 40, L =
. 008,

K = 0.003.



CHAPTER XIII

LOCI

221. Parametric Equations. The equation of a plane curve is

ordinarily given by an equation in two variables, as has been

amply illustrated by numerous examples in the preceding chapters.

It is obvious that a curve might also be given by two equations

containing three variables, for if the third variable be eliminated

from the two equations, a single equation in two variables results.

When it is desirable to describe a locus by means of two equations in

three variables the equations are known as parametric equations,

as has already been explained in §84. Two of the variables usu-

ally belong to one of the common coordinate systems and the

third is an extra variable called the parameter. In applied science

the variable time frequently occurs as a parameter.

The parametric equations of the circle have already been writ-

ten. They are

X = a cos d, (1)

y = a sin 6,

where the parameter d is the direction angle of the radius vector

to the point (a;, y). Likewise the parametric equations of the

elUpse have been written

X = a cos d, (2)

y r h sin d,

and those of the hyperbola have been written

a; = a sec d, (3)

y = h tan 0.

In harmonic motion, the ellipse was seen to be the resultant of

the two S.H.M. in quadrature

X = a cos (lit, (4)

2/ = 6 sin cat.

Here the parameter t is time.

387
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222. Problems in Loci. It is frequently required to find the

equation of a locus when a description of the process of its genera-

tion is given in words, or when a mechanism by means of which the

curve is generated is fully described. There is only one way to

gain facility in obtaining the equations of curves thus described,

and that is by the solution of numerous problems. Sometimes

it is best to seek the parametric equations of the curve, but

sometimes the ordinary polar or Cartesian equation can be ob-

tained directly. The following problems are illustrative:

Fig. 160.—Generation of so-called "elliptic motion."

(1) A straight line of constant length a + b moves with its ends

always sliding on two fixed lines at right angles to each other.

Find the equation of the curve described by any point of the

moving line. (See §84, exercise 23.)

In Fig. 160, let AB be the line of fixed length, and let it so move
that A remains on the Z-axis and B remains on the F-axis. Let

any point of this line be P whose distance from A is 6 and whose

distance from B is a. If the angle X'AB be called 6, then PD,

the ordinate of P, is

y = b sin 9

and OD, the abscissa of P, is

X = a cos 6,

Therefore P describes an ellipse of semi-axes a and 6.
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(2) A circle rolls without slipping within a circle of twice the

diameter. Show that any point attached to the moving circle'

describes an ellipse.

Draw the smaller rolling circle in any position within the larger

circle, and call the point of tangency T, as in Fig. 160. Since

the smaller circle is half the size of the larger circle, the smaller

circle always passes through 0, and the line Adjoining the points

of intersection of the small circle with the coordinate axes is, for

all positions, a diameter, since the angle AOB is a right angle.

If we can prove that the arc AT = the arc HT for all positions

of T, then we shall have shown that as the small circle rolls from an

initial position with point of contact at H, the end A of the diam-

eter AB slides on the line OX. Since B lies on OY and since AB
is of fixed length, this proves by problem (1) that any point of the

small circle lying on the particular diameter AB describes an

ellipse.

To prove that arc AT = arc HT, we have that the angle HOT

is measured in radians by „„— • The angle AO'T is measured in

arc AT
radians by q,^ Since Z AO'T = 2 Z HOT, we have

arc AT __ arc HT
O'A " OH '

But, OH = 20'A. Hence a.TC AT = arc HT.
We can now prove that any other point of the rolling circle de-

scribes an ellipse. Let any other point be Pi. Through Pi draw

the diameter JO'K. The above reasoning applies directly, re-

placing A by J and H by N.

It is easy to see that all points equidistant from the center of the

small circle, such as the points P, and Pi, describe ellipses of the

same semi-axes a and 6, but with their major axes variously in-

clined to OH.

(3) Determine the curve given by the parametric equations

X = a cos 2ut (1)

y = a sin ut. (2)

^"Circle" is here used in the sense of a "disc" or circular area and not in the

Beose of a " oiroumference."



390 ELEMENTARY MATHEMATICAL ANALYSIS [§222

To eliminate t, the first equation may be written

K = a (1 - 2sin2a)0. (3)

From the second equation, sin cot = ~. Substituting for sin ut in

(3),

- = «(l-^> (4)

or

2/^=-|^ + f- (5)

This curve is the parabola y^ = mx, the special location of which

the student should describe.

(4) Construct a graph such that the increase in y varies directly

as X.

If y varied directly as x, then y would equal kx, where A; is any

constant. In the given problem, however, the increase in y (and

not y itself) must vary in this manner. Let the initial value of y
be represented by z/o. Then the gain or increase of y is repre-

sented by 2/
— 2/0. Hence, by the problem,

y — yo = kx. (1)

Since t/o is a constant, (1) is the equation of the straight line of

slope k and F-intercept j/o, which ordinarily would be written in

the form

y = kx + 2/0.

(5) Express the diagonal of a cube as a function of its edge, and

graph the function.

If the edge of the cube be x, its diagonal is -v/a;" + x^ + x^ or

X \/3. If the diagonal be represented by y, we have y =\/3x,
which is a straight line.

(6) A rectangle whose length is twice its breadth is to be in-

scribed in a circle of radius a. Express the area of this rectangle

in terms of the radius of the circle.

Let the rectangle be drawn in a circle whose equation is

x^ + y^ = a'. At a corner of the rectangle we have x = 2y. The
area A of the rectangle is 4xy, or 8y^ since x = 2y. From the
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equation of the circle we obtain 4y^ + y^ = a^ or y^ = a^/5.

Hence

A = (8/5)a2.

If A and a be graphed as Cartesian variables, the graph is a

parabola.

(7) A rectangle is inscribed in a circle. Express the area of the

rectangle as a function of a half of one side.

Here, as above,

A = 4x2/ = 4x Va^ — x^-

The student should graph this curve, for which purpose a may be

put equal to unity. First draw the semicircle y = \/'o^ — x'-

For X = 1/6, take one-fifth of the ordinate of this semicircle. For

X = 2/5, take two-fifths of the ordinate of the semicircle, and so on.

The curve through these points is y = x s/a^ — x^, from which

y = 4x \/a^ — x'' can be had by proper change in the vertical unit

of measure.

Exercises

1. In polar coordinates, draw the curves:

p = 2 cos 8 p = 2 cos 9 + 1

P = 2 cos 9 — 1 p = 2 cos 9 -1- 3.

2. On polar coordinate paper select the point (1, 1). (This means
the point whose coordinates are one centimeter, and one radian.)

Starting at this point, a point moves so that the radius vector of the

moving point is always equal to the vectorial angle. Sketch the

curve. Write the polar equation of the curve.

3. A point moves so that one of its polar coordinates, the radius

vector, varies directly as the other polar coordinate, the vectorial

angle. Write the polar equation of such a curve. Does the curve

go through the point (!', 1)?

4. A polar curve is generated by a point Which starts at the point

(1, 2) and moves so that the increase in the radius vector always

equals the increase in the vectorial angle. Write the equation of the

curve.

6. A polar curve is generated by a point which starts at the point

(1, 2) and moves so that the increase in the radius vector varies directly

as the increase in the vectorial angle. Write the equation of the curve.

6. A ball is thrown from a tower with a horizontal velocity of 10
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feet per second. It falls at the same time through a variable distance

given by s = 16. 1<^, where t is the elapsed time in seconds and a is

in feet. Find the equation of the curve traced by the ball.

7. The point P divides the line AB, of fixed length, externally in

the ratio a : 6, that is, so placed that PA/PB = a/b. If the line AB
move with its end points always remaining on two fixed lines OX and

OK at right angles to each other, then P describes an ellipse of semi-

axes a and b.

8. If in the last problem the lines OX and OY are not at right

angles to each other, the point P still describes an ellipse.

9. A point moves so as to keep the ratio of its distances from two
fixed lines AC and BD constant. Prove that the locus consists of

four straight hnes.

10. A sinusoidal wave of amplitude 6 cm. has a node at + 5 cm.

and an adjacent crest at + 8 cm. Write the equation of the curve.

11. The velocity of a simple wave is 10 meters per second. The
period is two seconds. Find the wave length and the frequency.

12. A polar curve passes through the point (1, 1) and the radius

vector varies inversely as the vectorial angle. Plot the curve and
write its equation. Consider especially the points where the vectorial

angle becomes infinite and where it is zero. Sketch the same func-

tion in rectangular coordinates.

13. Rectangles are inscribed in a circle of radius r. Express by
means of an equation and plot: (o) the area, and (6) the perimeter of

the rectangles as a function of the breadth.

14. Right triangles are constructed on a line of given length h as

hypotenuse. Express and plot: (a) the area, and (6) the perimeter as

a function of the length of one leg.

16. A conical tent is to be constructed of given volume, V. Express

and graph the amount of canvas required as a function of the radius

of the base.

16. A closed cylindrical tin can is to be constructed of givenvolume,

V. Plot the amount of tin required as a function of the radius of the

can.

17. A rectangular water-tank lined with lead is to be constructed

to hold 108 cubic feet. It has a square base and open top. Plot

the amount of lead required as a function of the side of the base.

18. An open cylindrical water-tank is to be made of given volume,

V. The cost of the sides per square foot is two-thirds the cost of the

bottom per square foot. Plot the cost as a function of the diameter.

19. An open box is to be made from a sheet of pasteboard 12 inches

square, by cutting equal squares from the four comers and bending up
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the sides. Plot the volume as a function of the side of one of the

squares out out.

20. The illumination of a plane surface by a luminous point varies

directly as the cosine of the angle of incidence, and inversely as the

square of the distance from the surface. Plot the illumination of a

point on the floor 10 feet from the wall, as a function of the height

of a gas burner on the wall.

21. Using the vertical distances between corresponding points on

the curves y = sin t and y = — sin t as ordinates and the vertical

distances between corresponding points oi y = 2t and j/ = t^ as abscis-

sas, find the equation of the resulting curve.

223. Loci Defined by Focal Radii. A number of important

curves are defined by imposing conditions upon the distances of

any point of the locus from two fixed points, called foci.

Pig. 161.—The lepmiscate.

(1) A point moves so that the product of its distances from two
fixed points is constant. Find the equation of the path of the par-

ticle. Let the two fixed points Fi and Fi, Kg. 161, be taken on the

X-axis the distance o each side of the origin. Call the distances of P
from the fixed points ri and rj. Then the variables ri and rj in terms

of ::; and y are

ri'^ = y' + (x - a)2

Hence

ri' =y' + (x + a)2.

nW = [y^ + (a; - o)"] [y^ + {x + a)'].

(1)

(2)

Calling the constant value of tiTi = c', we have, as the Cartesian

equation of the locus,

y' + (x- ay] [y^ + (x + a)»] = c\ (3)
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Fig. 162.—The lemniscate and the
Cassinian ovals.

which may be written

(2/2 + a;2 + a2)2 - 4a^'x^ = c* (4)

(x2 + y'y + 2aV + 20^2/2 + a* - iaV = c* (5)

V (a;2 + 2/2)2 ^ 2a%x' - y') + c* - a'. (6)

If c = a the curve is called

the lemniscate, and the Car-

tesian equation reduces to

(x2+ 2/2)2 = 2a2(a;2 - 2/=^)- (7)

For other values of c the

curves are known as the

Cassinian ovals. The stu-

dent will show that when
c < u, the curve consists of

two separate ovals surround-

ing the foci, and for c > a

there is but a single oval.

The curves are shown in Fig. 162. These curves give the form of

the equipotential surfaces in a field around two positively or two

negatively charged parallel wires.

(2) Construct the curve such that the ratio of the distances of any

of the curve from two fixed points is constant. Let the two fixed

points be A and B, Fig.

163; let the constant ratio

of the distances of any point

of the curve from the two
fixed points be n/J'2 = mm.
To find one point of the

locus, draw circles from A
and B as centers whose radii

are in the ratio m/n. Let

these circles intersect at the

point P. At P bisect the

angle between PA and PB
internally and externally by
the lines PM and PN respectively. The line AB ia then divided

at M internally in the ratio MA/MB = m/n and externally at N
in the ratio NA/NB = m/n, because the bisectors of any angle of

a triangle divide the base into segments proportional to the adja-

cent sides. Since the external and internal bisectors of any angle

Fig. 163.—Construction of 'the curve
ri/Ti = m/n, or the circle MPN.
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must be at right angles to each other, PM is perpendicular to PiV

for any position of P. Hence the locus of P is a circle, since it is the

vertex of a right triangle described on the fixed hypotenuse MN.
If a large number of circles be drawn for different values of m/n, and

if similar circles be described about B, then these circles are known
as the dipolar circles. See Fig. 164. In physics it is found that these

circles are the equipotential hnes about two parallel wires perpendic-

ular to the plane of the paper at A and B and carrying electricity of

opposite sign.

Fig. 164.—The dipolar circles, or a family of circles made by
drawing ri/ra = e for various values of e.

Exercises

1. Draw the locus satisfying the condition that the ratio of the

distances of any point from two fixed points ten units apart is 2/3.

2. Draw the two circles which divide a line of length 14 internally

and externally in the ratio 3/4.

224. The Cycloid. The cycloid is the curve traced by a point

on the circumference of a circle, called the generating circle,

which rolls without slipping on a fixed line called the base. To
find the equation of the cycloid, let OA,'Yig. 165, be the base, P
the tracing point of the generating circle in any one position, and

Q the angle between the radii SP and SH. Since P was at when
the circle began to roll,

OH = ad,



396 ELEMENTARY MATHEMATICAL ANALYSIS [§225

if a be the radius of the generating circle. Since »= OD and

y = DP, we have

x= OH- SP sin e= a(e - sin 6)

y= HS- SP cos e= a(i- cos (9).

(1)

(2)

These ar^ the parametric equations of the curve. For most

purposes these are more useful than the Cartesian equation.

o D H c A -

Fig. 165.—Definition of the cycloid.

It is readily seen from the definition of the curve, that the locus

consists of an unlimited number of loops above the X-axis, with

points of contact with the X-axis at intervals of 2xa (the circum-

ference of the generating circle) and with maximum points at

X - Ta, 3xo, etc.

"=*'2Pl6 12 3 4
6 C A

Fig. 166.—Construction of the cycloid.

225.* Graphical Construction of the Cycloid. To construct the

cycloid, Fig. 166, draw a circle of radius 1.15 inches and divide the

circumference into thirty-six equal parts. Draw horizontal lines

through each point of division exactly as in the construction of

the sinusoid, Fig. 59- Lay off uniform intervals of 1/5 inch each

on the X-axis, marked 1, 2, 3, . . . Then from the point of

division of the circle pi lay off the distance 01 to the right.
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From pi lay off 02 to the right, from pa lay off 03 to the right,

etc. The points thus determined lie on the cycloid. The number
of divisions of the circumference is of course immaterial except

that an even number of division is .convenient. Further the

divisions laid off on the base OA must be the same length as

the arcs laid off on the circle.

Note that by the process of construction above, the vertical

distances from OX to points on the curve are proportional to

(1 — cos 6) and that the horizontal distances from OY to points

on the curve are proportional to (d— sin 6).

The analogy of the cycloid to the sine curve is brought out by

Fig. 167. A set of horizontal lines are drawn as before and also a

sequence of semicircles spaced at horizontal intervals equal to

Fig. 167.—Analogy of the cycloid to the sinusoid.

the intervals of arc on the circle. The plane is thus divided

into a large number of small quadrilaterals having two sides

straight and two sides curved. Starting at and sketching the

diagonals of successive cornering quadrilaterals the cycloid is

traced. If, instead of the sequence of circles, uniformly spaced

vertical straight lines had been used, the sinusoid would have been

drawn; The sinusoid on that account is frequently called the

"companion to the cycloid."

226. Epicycloids and Hj^ocycloids. The curve traced by a

point attached to the circumference of a circle which rolls without

slipping on the circimiference of a fixed circle is called an epi-

cycloid or a hypocycloid according as the rolling circle touches

the outside or inside of the fixed circle. If the tracing point

is not on the circumference of the rolling circle but on a radius

or radius produced, the curve it describes is called a trochoid if
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the circle rolls upon a straight line, or an epitrochoid or a hypo-

trochoid if the circle rolls upon another circle.

Exercises

1. Construct a cycloid by dividing a generating circle of radius

1.15 inches into twenty-four equal arcs and dividing the base into

intervals 3/10 inch each.

2. Compare the cycloid of length 2ir and height 1 with a semi-

ellipse of length 2ir and height 1.

3. Write the parametric equations of a cycloid for origin C, Fig. 165.

4. Write the parametric equations of a cycloid for origin B, Fig. 165.

6. Show that the top of a rolling wheel travels through space twice

as fast as the hub of the wheel.

6. By experiment or otherwise show that the tangent to the cycloid

at any point always passes through the highest point of the generating

circle in the instantaneous position of the circle pertaining to that

point.



CHAPTER XIV

THE CONIC SECTIONS

227. The Focal Radii of the EUipse. Draw any ellipse with

major and minor circles of radii a and 6 respectively, as in Fig.

168. Draw tangents, II' and KK', to the minor circle at the

extremities of the minor axes and comJ)lete the rectangle II'KK'.

Properties of the elUpse.

The points Fi and Fi, in which IK and I'K' cut the major axis, are

called the foci of the ellipse. Prom any point on the ellipse draw
the focal radii PFj = rj. and PF2 = r^, as shown in the figure.

Represent the distance OFi = OF 2 by c. Then it follows from

the triangle OIFi that

a^ = b« + c^. (1)

This is one of the fundamental relations between the constants of

the ellipse. >

399
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From the triangles PFiD and PFiD there follows:

n^ = (c - xY + v' (2)

r/ = (c + xy + if. (3)

But the equation of the ellipse is

b ,

2/ = - Vo' - x\

or

y^ = ^,(a^ - a;^). (4)

Substituting this value of y^ in (2)

ri' = c'' - 2cx + x^ + -.(a'' - x^) (5)

= c^ -2cx + x^ + ¥ -~i a;^

or by (1)

r," = a^ - 2cx + a;^ [l -
-^J

.

(6)

Substituting

1 _ ^ - «' - fe' _ ^,

we obtain
/i2/»2

ri2 = o2 - 2ca; +^ (7)

= [•-"]""
<»)

Therefore

Likewise, from (3), by exactly the same substitutions, there

follows

r2 = a + "''
(10)

a

From (9) and (10), by addition,

ri + Tz = 2a. (11)

Hence in any ellipse the sum of the focal radii is constant and equal

to the major axis,
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The converse of this theorem, namely, if the sum of the focal

radii of any locus is constant, the curve is an ellipse, can readily

be proved. It is merely necessary to substitute the values of ri

and Ti from (2) and (3) in equation (11), and simplify the resulting

equation in x and y; or first square (11) and then substitute ri and

r-2 from (2) and (3). There results an equation of the second

degree lacking the term xy and having the terms containing x'' and

y^ both present and with coefficients of like signs. By §86, such an

equation represents an ellipse.

Hence the ellipse might have been defined as the locus of a

point, the sum of whose distances from two fixed points is constant.

An ellipse can be drawn by attaching a string of length 2a by

pins at the points F\ and F2 and tracing the curve by a pencil so

guided that the string is always kept taut. Or better, take a

string of length 2a + 2c and form a loop enclosing the two pins;

the entire curve can then be drawn with one sweep of the pencil.

The focal radii may also be evaluated in terms of the para-

metric or eccentric angle 0. The student may regard the follow-

ing demonstration of the truth of equation (11) as simpler than

that given above.

Since a; = a cos 6, and y = h sm d

equation (2) gives

ri" =¥ sin^ e -h (c - a cos df (12)

= h^aia^e + c^ - 2accos0 + o^ cos^ d. (13)

To put the right side in the form of a perfect square, write

W = a^ - c^. Then

ri' = a^ sin'' — c^ sin'' B + c^ — 2ac cos d + a' cos^ 6

= o^ - 2oc cos e +c'^ cos^ e. (14)

Whence

Likewise

Whence

ri = a — c cos 9. (15)

rj = a -|- c cos 6. (16)

ri -H r2 = 2a.

228. The Eccentricity. The ratio c/a measures, in terms of o as

unit, the distance Pf either fopus from the center of the ellipse.

26
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This ratio is called the eccentricity of the ellipse. In the triangle

IFiO, the ratio c/a is the cosine of the angle FiOI, represented in

what follows by /3. Calling the eccentricity e, we have

e = c/a = cos |8. (1)

The ellipse is made from the major circle by contracting its ordi-

nates in the ratio m = b/a, or by orthographic projection of the

circle through the angle of projection

a = cos~i b/a.

Hence, as companion to (1) we may write

m = b/a = cos a = sin |8. (2)

229. The Ratio Definition of the Ellipse. In Fig. 168, let the

tangents to the major circle at I and I' be drawn. Draw a

perpendicular to the major axis produced at the points cut by
these tangents. These two lines ai'e called the directrices of the

ellipse.

We shall prove that the ratio PFi/PH (or PFt/PH') is constant

for all positions of P. From §227, equation (9) or (15),

ri = a — c cos d, (1)

/?• (2)

(3)

From the figure,
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A similar proof holds for the other focus and directrix. Thus,

for any point on the ellipse the distance to a focus bears a fixed

ratio to the distance to the corresponding directrix. From (5),

the ratio is seen to be less than unity.

Assuming the converse of the above, the ellipse might have been

defined as follows : The ellipse is the locus of a point whose distance

from a fixed point (called the focus) is in a constant ratio, less than

unity, to its distance from a fixed line (called the directrix).

If, in any ellipse, c = 0, it follows that b must equal a and the el-

lipse reduces to a circle. If c is nearly equal to a, then from the

equation

a2 = 62 + c^,

it foljows that the semi-minor axis & must be very small. That is,

for an eccentricity nearly unity the ellipse is very slender.

If the sun be regarded as fixed in space, then the orbits of the

planets are ellipses, with the sun at one fobus. (This is "Kepler's

First Law.") The eccentricity of the earth's orbit is 0.017. The
orbit of Mercury has an eccentricity of about 0.2, which is greater

than that of any other planet.

Exercises

Find the eccentricities and the distance from center to foci of the

following elUpses:

1. a;V9 -I- 2/74 = 1. i. 2y = Vl - x".

2. 2/ = (2/3.)-\/36 - xK 5. Qx" + IQy' = 14.

3. 25a;2 + iy' = 100. 6..2a;2 + 3^^ = 1.

Find the equation of the ellipse from the following data:

7. e = 1/2, a = 4. Draw this ellipse.

8. c = 4, a = .5.

9. ri = 6 - 2a;/3, ri = 6 + 2a;/3.

10. ri = 5 — 4 cos 0, ri = 5 -j- 4: cos 6.

Solve the following exercises:

11. Find the eccentricity of the ellipse made by the orthographic

projection of the circle x' + y^ = a' through the angle 60°.

, 12. The angle of projection of a circle x' + y' = a' by which an
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ellipse is formed is a. Show that the eccentricity of the ellipse is

sia a.

13. A circular cylinder of radius 5 is cut by a plane making an

angle 30° with the axis. Find the eccentricity of the elliptic section.

14. If the greatest distance of the earth from the sun is 92,500,000

miles, find its least distance. (Eccentricity of earth's orbit = 0.017.)

16. In the ellipse a;*/25 + y'/16 = 1, find the distance between

the two directrices.

16. Write the equation of the ellipse whose foci are (2, 0), ( — 2, 0),

and whose directrices are x = 5 and a; = — 5.

17. Prove equation 11 §227 by transposing one radical in:

V(.x+c)^+y^ + V{x - c)2 + y' = 2o

squaring, and reducing to an identity.

18. Obtain the equation of the ellipse from the definition at the top

of page 403.

230. The Latus Rectum. The double ordinate through the

focus is called the latus rectum of the ellipse. The value of the

semi-latus rectum is readily formed from the equation

y = (b/a) Va" - a;'

by substituting c for x. If I represents the corresponding value

oiy,

I = (b/a) Va^ - c2 = 6Va (1)

(2)

since a^ — c'^
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comet (Enke's) o = 2.2, e = 0.85. Sketch the curves, taking 3 cm.

or 1 inch as unit of measure.

13. If i = 7.2 and e = 0.6, find c, a, 6.

14. An ellipse, with center at the origin and major axis coinciding

with the X-axis, passes through the points (8, 3) and (6, 4). Find the

axes of the ellipse.

231. Focal Radii of the Hjrperbola. Construct a hyperbola

from auxiliary circles of radii o and b, then the transverse axis of

the hyperbola is 2a and the conjugate axis is 26. Unlike the case

of the ellipse, b may be either greater or less than a. As previously

explained, the asymptotes are the extensions of the diagonals of the

rectangles BTAO, BT'A'O. From the points /, /', in which the

\^
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From any point on either branch of the hyperbola draw the focal

radii PFi and PF2, represented by ri and rj respectively. Then
from the figure

ri^ = (x - c)'+y\ (2)

But from the equation of the hyperbola

y^ = {V/a?){z^ - a?), (3)

hence

n^ = (x - cY + Wix" - a?) la"- (4)

= {aH^ - 2a^cx + aH^ + Vx^ - a^V") /a" (5)

= {cH'' - 2a?ex + a") /a?- (6)

= {ex - o?)ya\ (7)

Hence r\ = {c/a)x — a. (8)

In like manner it may be shown that

r2 = {c/a)x + a. (9)

Hence from (8) and (9) it follows

r2 — Ti = 2a. (10)

Thus^ in any hyperbola, the difference between the distances of any

point on it from the foci is constant and equal to the transverse axis.

The above relation may be derived in terms of the parametric

angle 9. Since in any hyperbola x = a sec 8 and y = b tan 6,

ri" = V tan'' (9 + (o sec - cf

= W tan^ 6 + a' sec" 9 — 2ac sec + c\

To put the right-hand side in the form of a perfect square, write

¥ = c^ - a\ Then



408 ELEMENTAKY MATHEMATICAL ANALYSIS (§233

IK, and I'K'. These lines are called the diiectrices of the

hyperbola. It wiU now be proved that the ratio of the distance of

any point of the hyperbola frota a focus to its distance from the

corresponding directrix is constant. Adopt the notation

c/a = sec ;8 = e. (1)

Then, from the figure

PFi/PH = ri/{x - ON) = ri/(a sec - o cos ;8) (2)

Substituting ri from (11) above:

PF^/PH = "^'l^-'* ^ (3)' a sec — a cos j8
^ '

= c sec 8 — a c

(4)
a (^sec e - -j

which proves the theorem. The constant ratio e is called the

eccentricity of the hyperbola, and, as shown by (1), is always

greater than unity.

Assuming the converse of the above, it is obvious that the hyper-

bola might have been defined as follows: The hyperbola is the

locus of a point whose distance from a fixed point (called the focus)

is in a constant ratio, greater than unity, to its distance from a fixed

line {called the directrix). Proof will be given in §234.

233. The Latus Rectum. The double ordinate through the

focus is called the latus rectum of the hyperbola. The value of

the semi-latus rectum is readily found from the equation

y = (b/a) Vx^ - a^

by snbstituting c for a;. HI represent the corresponding value of y,

I = (b/a) Vc' - a^ = hya. (1)

Hence the entire latus rectum is represented by

2l = 2bVa. (2)

Equation (1) may also be written

i = 6 Ve' - 1. (3)
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In Fig. 169 the distances AFi, AN, ON, OB, OFi, FiN may
readily be expressed in terms of o and e, as follows in equations

(4) to (8). Collecting in a single table the other important for-

mulas for the hyperbola, we have

:
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Exercises

1. Find the eccentricity and axes of sV^ — y'/^^ = 1-

2. Find the eccentricity and latus rectum of the hyperbola con-

jugate to the hyperbola of the preceding exercise.

3. A hyperbola has a transverse axis equal to 14 units and its

asymptotes make an angle of 30° with the Z-axis. Find the equation

of the hyperbola.

4. Find the latus rectum and locate the foci and asymptotes of

4i2 - 362/2 = 144.

6. Locate the directrices of the hyperbola of the preceding exercise.

6. In Fig. 169 show that rz = GK' and ri = GI and hence that

rj — ri = IK' or 2a.

7. Find the equation of the hyperbola having latus rectum 4/3

and a = 26.

8. The eccentricity of a hyperbola is 3/2 and its directrices are the

lines X = 2 and x = — 2. Write the equation and draw the curve

with its asymptotes, a-circle, 6-circle, and foci.

9. Find the eccentricity and axes of 3x^ — 5y' = — 45.

10. Find the eccentricity of the rectangular hyperbola.

11. Describe the shape of a hyperbola whose eccentricity is nearly

unity. Describe the form of a hyperbola if the eccentricity is very

Large.

12. Describe the hyperbola if b/a = 2, but a very small.

13. Write the equation of the hyperbola if (1) c = 6, o = 3; (2)

c = .25, o = 24; (3) c = 17, 6 = 8. /

14. Describe the locus (,x + 1)V7 - iy - 3)V5 = 1.

15. Find the equation of the hyperbola whose center is at the origin

and whose transverse axis coincides with the X-axis and which passes

through the points (4.5, — 1), (6, 8).

234. The Polar Equation of the Ellipse and Hyperbola. In

mechanics and astronomy the polar equations of the ellipse and

hyperbola are often required with the pole or origin at the right-

hand focus in the case of the ellipse and at the left-hand focus in

the case of the hyperbola. In these positions the radius vector

of any point on the curve will increase with the vectorial angle

when B < 180°. To obtain the polar equation of the ellipse and

hyperbola, make use of the ratio property of the curves, namely:

That the locus of a point whose distances from a fixed point (called

the focus) is in a constant ratio e to its distances from a fixed
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line (called the directrix), is an ellipse if e < 1 or a hyperbola

if e > 1. In Fig. 170 let F be the fixed point, or focus, IK the

fixed line, or directrix, P the moving point, and FL = I the semi-

latus rectum. Then the problem is to find the polar equation

under the condition

pg-e (1)

If e is understood to be unrestricted in value, the work and

the result will apply equally well either to the ellipse or to the

hyperbola.

Fig. 170.—Polar equation of a conic.

When the point P occupies the position L, Fig. 170, we have

PF = I and PH = FN, whence from (1)

(2)FN = ^-.

e

Take the origin of polar coordinates at F, and also take FP = p

and the angle AFP = 6. Then

PH = FN - FD (3)

FD = p cos e. (4)
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Hence from (2), (3), and (4)

PH = - - p cos e. (5)
e

Substituting these values of FP and PH in (1), clearing of frac-

tions and solving for p, we obtain

" = I + e cos e
^^^

which is the equation required.

When e < 1, (6) is the equation of an ellipse with pole at the

right-hand focus. When e > 1, (6) is the equation of a hyperbola

with the pole at the left-hand focus. In both cases the origin has

been so selected that p increases as d increases.

Note: Calling FN (Fig. 170) = n, equation (1) above may be

written in rectangular coordinates

^^' + y' =e, (7)
n — X

x' + y^ = e\n - x)'
^°'

which may be reduced to the form

/ we' \ 2 y' _ e'n'

r "•
1 - eV "^ 1 - e' (1 -e')^' ^^'

By §§86 and 90 this represents an ellipse if e < 1 or a hyperbola

if e > 1. Thus starting with the ratio definition (7) we have proved

that the curve is an ellipse or a hyperbola; that is, we have proved

the statements in italics at end of §§229 and 232.

Exercises

n

1. Graph on polar paper, form M3, the curve p = j—r-^ i

for e = 2, e = 1/2, and e = 1.

It will be sufficient in graphing to use 9 = 0°, 30°, 60°, 90°, 120°,

160°, 180°, 210°, . ., 360°.

2. Write the polar equation of an ellipse whose semi-latus rectum
is 6 feet and whose eccentricity is 1/3.

3. Write the polar equation of an ellipse whose semi-axes are 5 and 3.

4. Discuss equation (6) for the case e = 0.
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6. Write the polar equation of a hyperbola if the eccentricity be

-\/2 and the distance from focus to vertex be 4.

6. Write the polar equation of the asymptotes of

4 + 5 cos
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ppi = 2/2 + FD^ (1)

= 2/2 + {x - OFY
= 1/2 + (a; - p)2.

Since PF by definition equals PH or a; + p, we have

{x + vY = 2/2 + {x - v)\ (2)

whence
y^ = 4px, (3)

which is the equation of the parabola in terms of the focal distance,

OF or p.

The double ordinate through F is called the latus rectum.

The semi-latus rectum can be obtained from (3) by placing

X = p, whence
1 = 2p, (4)

where / is the semi-latus rectum. Hence the entire latus rectum is

4p, or the coefficient of x in equation (3).

In Fig. 171, the quadrilateral FLIK is a square since FL and

FK are each equal to 2p.

236. Polar Equation of the Parabola. In accordance with the

ratio definition of the parabola, its polar equation is found at

once from equation (6), §234, by putting e = 1. Hence the polar

equation of the parabola is

'' = 7Tiosl" (^)

For this equation we may make the following table of values:

e
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These curves taken together are called the conies. The definition

fnay be worded: A conic is the locus of a point whose distances

from a fixed point (called the focus) and a fixed line (called the

directrix) are in a constant ratio. The unity between the three

curves was shown by their equation in polar coordinates. Moving
the ellipse so that its left vertex passes through the origin, as in

§85, and writing the hyperbola with the origin at the right ver-

tex (so that both curves pass through the origin in a comparable

manner), we may compare each with the parabola as follows:

TheeUipse: y^ = 2lx - (b^/a^)x'' (1)

The parabola: j/' = 2lx (2)

The hyperbola: y'' = 2lx + (b''/a')x'' (3)

In these equations I stands for the semi-latus rectum of each

of the curves. These equations may also be written

1/2 = 2lx - (l/a)x' (4)

2/^ = 2lx I (5)

2/2 = 2lx + (l/a)x'' (6)

whence it is seen that if Z be kept constant while a be increased

without limit, the ellipse and hyperbola each approach the parab-

ola as near as we please. Only for large values of x, if a be large,

is there a material difference in the shapes of the curves.

Exercises

1. Write the equation of the circle in the form (1) above.

2. Write the equation of the equilateral hyperbola in the form (3)

above.

3. Describe the curve

^ I

''
1 -I- cos (e - a)'

where a is a constant.

4. In Fig. 172 translate the curve xy = Ihy suitable change in the

equation to the position shown by the dotted curve, if the translation

of each point is unity.
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6. In Pig. 173 translate the curve j/* = 4px by suitable change in

the equation to the position shown by the dotted curve, if the distance

each point is moved be 3p.

Fig. 172.—A hyperbola translated at an angle of 45° to OX.

6. A bridge truss has the form of a circular segment, as shown in

Fig. 174. If the total span be 80 yards and the altitude BS be 20

Y
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erected atyards. Find the length of the ordinates CD, CiDi, .

untform intervals of 3 yards along the Une AAi-

238.* The Conies are Conic Sections. The curves nowtnown as

the conies were originally studied by the Greek geometers as the sec-

X
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In Fig. 176, let the plane NDN'D', caUed the cutting plane, cut the

lower nappe of a right circular cone in the curve VPV. It can be

proved by geometry that this curve is an ellipse. The foci F and F
are the points at which the two inscribed spheres SFS' and RF'R' are

tangent to the plane ND'. The directrices are the two lines ND
and N'D' in which the plane ND' cuts the two planes SHS' and

RKR' produced.

239. Tangent to the Parabola. Let us investigate the condition

that the line y = mx + b shaU be tangent to the parabola y^ =

ipx. First find the points of intersection of these loci by solving

the two equations

y = mx + 6 (1)

2/2 = 4pa; (2)

as simultaneous equations.

Eliminating y by substituting the value of y from (1) in (2),

mV + 2mbx + b' - ipx = 0, (3)

or

mV + 2{mb - 2p)x + b^ == 0. (4)

Solving for x (see formula for quadratic. Appendix §309, (2)).

_ _ mb — 2p 2\/p' — pmb /gx

m^
~ m^

Therefore there are in general two values of x or two points of

intersection of the straight line and the parabola. By the defini-

tion of a tangent to a curve (§146) this line becomes a tan-

gent to the parabola when the two points of intersection become

a single point; that is, when the expression under the radical in (5)

approaches zero. This condition requires that

p^ — pmb = 0,

or

b = p/m. (6)

Therefore when 6 of equation (1) has this value, the line is tangent

to the parabola. The equation of the tangent line is, therefore

y = mx + p/m. (7)

This line is tangent to the parabola y^ = ipx for all values of
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m. Substituting in (5) the value of & = p/m, we may find the

abscissa of the point of tangency
i

xi = p/m'. (8)

Substituting this value of x in (7) the corresponding ordinate o'

this point is found to be

yi = 2p/m. (9)

240. Properties of the Parabola. In Fig. 171, F is the focus,

HK is the directrix, PT is a tangent at any point P The
perpendicular PN to the tangent at the point of tangency is

called the normal to the parabola. The projection DT of the

tangent PT on the X-axis is called the subtangent and the pro-

jection DN of the normal PN on the X-axis is called the sub-

normal. The line through any point parallel to the axis, as PR,
is known as a diameter of the parabola.

(a) The subtangent to the parabola at any point is bisected by

the vertex. It is to be proved that OT = OD for all positions of P
Now OD is the abscissa of P, which has been found to be p/m^.

From the equation of the tangent

y = mx + p/m,

the intercept OT on the X-axis is found by putting y = Q and

solving for x. This yields

X = — p/m}.

This is numerically the same as OD, hence the vertex bisects

DT.

(6) The subnormal to the parabola at any point is constant and

eqval to the semi-latus rectum.

The angle DPN has its sides mutually perpendicular to the

sides of the angle DTP, hence the angles are equal. Since the

tangent of the angle DTP = m, therefore

tangent DPN = m.

From the right triangle PDN,

DN = PD tan DPN = PD m
= i2p/m)m = 2p.
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Since KF also equals 2p, we have

DN = KF.

(fi) PFTH is a rhombus. To prove the figurePFTH a rhombus

it is merely necessary to show that FT = PH, since PF = PH

FT = FO + OT
PH = DK = DO + OK

But
OD = OT and OK = FO.

Therefore

FT = PH,

and 1;he figure is a rhombus.

It follows that the two diagonals of the rhombus intersect at

right angles on the F-axis.

(d) The normal to a parabola bisects the angle between the focal

radius and the diameter at the point. We are to show that

Z NPF = Z NPR.
Since FPHT is a rhombus,

Z FPT = Z TPH.
But

Z TPH = Z RPS,

being vertical angles. From the two right angles NPT and NPS
subtract the equal angles last named. Hence,

Z FPN = Z NPR.

It is because of this property of the parabola that the reflectors

of locomotive or automobile headlights are made parabolic.

The rays from" a source of light at F are reflected in lines parallel

to the axis, so that, in the theoretical case, a beam of light is sent

out in parallel lines, or in a beam of undiminishing strength.

241. To Draw a Parabolic Arc. One of the best ways of de-

scribing a parabolic arc is by drawing a large number of tangent

lines by the principle of §240 (c). Since in Fig. 171 the tan-

gent is for all positions perpendicular to the focal line FH at

the point where the latter crosses OY, it is merely necessary to



§241] THE CONIC SECTIONS 421

draw a large number of focal lines, as in Fig. 177, and erect

perpendiculars to them at the points where they cross the F-axis.

The equations of the tangent lines in Fig. 177 are of the form

= mx + p/m (1)

Fig. 177.—Graphical construction of a parabolic arc "by tangents."

in which p is the constant given by the equation of the parabola,

and in which m takes on in succession a sequence of values appro-

priate to the various tangent lines of the figure. These lines are

said to constitute a family of lines and to envelop the curve to
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which they are tangent. The curve itself is called the envelope

of the family of lines.

The curve of the supporting surface of an aeroplane as well as

the curve of the propeller blades is a parabolic arc. The curve of

the cables of a suspension bridge is also paraboUc.

Exercises

1. Write the equation of the parabola which the family y = mx
+ 7/2m envelops.

2. Draw an arc of a parabola if p = 3 inches.

3. At what point is ^ = mx + Z/m tangent to the parabola y' =
121?

4. At what point isy = mx + ll/ira tangent to y^ = 44x?

6. Draw the family of lines y = mx + 1/m for m = 0.4, m = 0.6,

m = 0.8, m = 1, m = 2, m = 4, m — 8.

242. Tangent to the Circle. An equation of a tangent hne to

a circle can be found, as in the case of the parabola above, by
finding, the points of intersection of

y = mx + b (1)

and

x^ + y^ = a^ (2)

and then imposing the condition that the two points of intersection

shall become a single point. The value of 6 that satisfies this

condition when substituted in (1) gives the equation of the re-

quired tangent. It is easier, however, to obtain this result by the

following method. In Fig. 178 let the straight line be drawn

tangent to the circle at T. Let the slope of this line be m.

Then m = tan ONT = tan a, if a be the direction angle of the

tangent line. The intercept b of t*he line on the F-aris can be ex-

pressed in terms of a and a,

b = a sec a = ay/l -{- m'^. (3)

Hence the equation of the tangent to the circle is

y = mx + a-\/i + m^.

The double sign is written in order to include in a single equation

the two tangents of given slope m, as illustrated in the figure.



§243] THE CONIC SECTIONS 423

Exercises

1. Find the equations of the tangents to x' + y^ = 16 making an
angle of 60° with the X-axis.

2. Find the equations of the tangents to x' + y^ = 25 making an
angle of 45° with the X-axis.

3. Find the equation of tangents to x^ + y^ = 25 parallel to y =
3x - 2.

4. Find the equation of tangents to x^ + y' = 16 perpendicular to

y = (l/2)x + 3.

5. Find the equations of the tangents to (a; — 3)^ -|- (?/
— 4)^ = 25

whose slope is 3.

FiG. 178.—The equation of a line of given slope, tangent to a given
circle.

6. Find the equation of the tangent to the circle by the method
of §239.

243. Nonnal Equation of Straight Line. The normal equation

of the straight line was obtained in polar coordinates in §71.

The equation was written

p cos {d — a) = a. (1)

In this equation (p, d) are the polar coordinates of any point on
the line, a is the distance of the line from the origin, and a is the

direction angle of a perpendicular to the line from the origin.

(See Fig. 71.) Expanding cos {6 — a) in (1) we obtain

f> cos 6 cos a -J- p sin 5 sin a = a. (2)
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But for any value of p and d, p cos B = x and p sin 9 = y.

Hence (2) may be written in rectangular coordinates

X cos a + y sin a = a. (3)

This also is called the normal equation of the straight line.

If an equation of any line be given in the form

ax + by = c (4)

it can readily be "reduced to the normal form. Dividing this

equation through by s/a^ + b^,

" b c .,,
X + . y = . (5)

Va' + b^ Va^ + h^ VaT+h^'

Now aly/a?' + 6^ and b/-\/a^ + h^ may be regarded as the cosine

and sine, respectively, of the angle formed with the positive Z-axis

by the line joining the origin to the point (a, 6). Calling this

angle a, equation (5) may be written

X cos a + 2/ sin o; = d, (6)

which is of the form (3) above. Inasmuch as the right-hand side

of the equation in the normal form represents the distance of the

line from the origin, it is best to keep the right-hand Side of the

equation positive. The value of a and the quadrant in which it

lies is then determined by the signs of cos a and sin a on the left-

hand side of the equation. The angle a may have any value from

0° to 360°.

Illustrations:
• (1) Put the equation Zx — ^y = 10 in the normal form. Here

a2 + 62 = 3' + ( - 4)2 =25. Dividing by 5 we obtain

{Z/5)x - (4/5)2/ = 2.

The distance of this line from the origin is 2. The angle a is the angle

whose cosine is 3/5 and whose sine is — 4/5. Therefore, from the

tables, a = 306° 52'.

(2) Put the equation 3a; — 4v 4- 20 = in the normal form. Trans-

posing and dividing by — 1 to make the right-hand side of the equa-

tion positive, we obtain — 3a; -(- 4i/ = 20.

Here cos a = - 3/5, sin a = 4/5, d = 4. Hence a = 126° 52'.
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(3) What is the distance between the lines (1) and (2)? The lines

are parallel and on opposite sides of the origin. Their distance apart

is therefore 2 + 4 or 6.

(4) Put X + y = I in the normal form. Here VoM- b^ = V'2.
The equation becomes i -s/^x + i \/2y = i y/2. a = 45°, d = i \/2.

Exercises

1. The shortest distance from the origin to a line is 5 and the direc-

tion angle of the perpendicular from the origin to the line is 30°-

Write the equation of the line.

2. The perpendicular from the origin upon a straight line makes an
angle of 135° with OX, and its length is 2v'2. Find the equation of

the line.

3. Write the equation of a straight line in the normal form if a =
60° and d = y/s.

4. Put 2\/3a; + 2?/ = 32 in the normal form and find the

numerical values of a and d.

6. Put 2a; — 2i/ = 1 in the normal form and find the values of a
and d.

6. Find the equation of the straight line, if the perpendicular from
the origin on the line, makes an angle of 46° with the X-axis and its

length is \/2.

7. Put 2 -ho = 1 ii the normal form.

244. To Translate Any Locus a Given Distance in a Given Direc-

tion. To move any locus the distance d to the right we sub-

stitute (xi — d) for X in the equation of the locus. To move the

locus the distance d in the y direction we substitute (2/1 — d) for y.

To move any locus the distance d in the direction a we substitute

(xi — d cos a) for x, , ,

(2/1 — d sin a) for y,

which must give the desired equation of the new locus. It is

not necessary to use the subscript attached to the new coordinates

if the distinction between the new and old coordinates can be

kept in mind without this device.

The circle x^ + y^ = a^ moved the distance d in the direction

a becomes

(x — d cos a)^ -i- (y — d sin a)" =• a'^
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which may be changed to

x^ — 2Ax, cos a + 2/^ — 2^2/ sin a = a?- — cP.

245. Distance of Any Point From Any Line. Let the equation

of the line I, Kg. 179, in the normal form be

X cos a + 2/ sin a = a, (1)

and let (a;i, t/i) be any point P in the plane. (See Fig. 179.)

If the point {xi, yi) is on the opposite side of the line froin the

origin, the line can be moved so that it will pass through the point

by translating it the proper distance in the direction a. Let

the unknown amount of the required translation be represented

by d. To translate the line the amount d in the direction a,

we must substitute for x and y the values

X = x' — d cos a . .

y = y' — d cos a

We obtain

(x' — d cos a) COB a + iy'
— d sin a) sin a =a. (3)

The line represented by this equation passes through the point

(xi, 2/i). Substituting these coordinates for x' and y' and solving

for d, we have

d = Xi COS a + yi sin a — a. (4)

This is the distance of (xi, yi) from the given line.

If the given point is on the same side of the line as the origin,

as the point Pixi, y^ Fig. 179, then the given line must be

translated the distance d in the direction (180° + a), and the result

is the same as (4) above except all signs are changed. We are usu-

ally interested only in the numerical value of d, so that formula

(4) may be used for all cases. When the value of d comes out

negative it merely means that the given point is on the same side

of the line as the origin.

Equation (4) may be interpreted as follows

:

To find the distance of any point from a given line, put the equa-

tion of the line in the normal form, transpose all terms to the left-

hand member and siibstitvte the coordinates of the given point for x

and y. The absolute value of the left-hand member is the distance

of P from the line.
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The above facts may be stated in an interesting form as follows:

Let any line be

X cos a + 2/ sin a — a = 0.

If the coordinates of any point on this line be substituted in this

equation, the left-hand member reduces to zero. If the coordi-

nates of any point not on the line be substituted for x and y in the

equation, the left-hand member of the equation does not reduce

to zero, but becomes negative if the given point is on the origin

side of the line and positive if the given point is on the non-

origin side of the line . The absolute value of the left-hand member

\

\'^
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Subatitute — 1 for a; and 4 for y. The left member is now the value

of d, BO that

The result is negative, so that (— 1, 4) is on the same side of the line as

the origin.

iLLtrsTRATioN 2. Find the distance of (2, — 4) from

x-2 y+3
4 7

Clear of fractions and simplify,

7a; - 4?/ - 26 = 0.

Put in normal form,

iz^ - i\y - u = 0.

Substitute 2 for x and — 4 for y,

The point is on the non-origin side of the given line, and irV of one imit

from it.

Exercises

1. Find the distance of the point (4, 5) from the line 3x + iy = 10.

2. Find the distance from the origin to the line x/3 — 2//4 = 1.

3. Find the distance from (-3, - 4) to 12(a; + 6) = 6(2/ - 2).

4. Find the distance from (3, 4) to the line x/3 — y/4 = 1.

5. Find the distance between the parallel lines y = 2x -\- 3, and

y = 2x +5.
6. Find the distance between y = 2x — 3, y = 2x + 5.

7. Find the distance from (0, 3) to 4a; — 3y = 12.

8. Find the distance from (0, 1) to a; + 2 — 2?/ =0.

246. Tangent to a Circle at a Given Point. The equation of

a line having a given slope m and tangent to a given circle with

center at the origin, was given in §242. We shall now find the

equation of the line that is tangent to the circle at a given point

(xo, 2/o).

The line,

a ='p cos {6 — a), (1)

or its equivalent,

a; cos a + 2/ sin a = a, (2)
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is tangent to the circle of radius a, and the point of tangency is at

the end of the diameter whose direction angle is a. The point of

tangency is therefore (o cos a, a sin a). Hence, multiplying (2)

through by a, we obtain

x{a cos a) + y(a sin a) = a^, (3)

or

xox + yoy = a.K (4)

This is the equation of the hne tangent to the circle of radius a
at the point (xq, ya).

Thus 3a; + 4?/ = 25 is tangent to a;^ + y"^- = 25 at (3, 4).

247. Tangent to the Ellipse at a Given Point. It is easy to

draw the tangent to the ellipse at any desired point. In Fig. 180,

Fig. 180.—Tangent to the ellipse at a given point.

let Po be the point at which a tangent is desired. Draw the

major circle, and let Pj of the circle be a point on the same ordinate

asPo. Draw a tangent to the circle at Pi and let it meet the

Z-axis at T. Then when the circle is projected to form the

ellipse, the straight line PiT is projected to make the tangent to

the ellipse. Since T when projected remains the same point and

since Po is the projection of Pi, the line through Po and T is the

required tangent to the ellipse.
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The equation of the tangent PoT is alao readily found. The
equation of PiT is

xxo + yyo = ffl^ (1)

To project his into the line Po^ it is merely necessary to multiply

the ordinates y and yo' by b/a; that is, to substitute y = ay/b and

2/o' = ayo/b. Whence (1) becomes

xox + a^yoy/b^ = a^ (2)

or, dividing by a^,

xox/a" + joj/b^ = I (3)

which is the tangent to

a;2/a2 -I- 2^2/62 = 1

at the point (xo, yo)-

Exercises

1. Find the equations of the tangents to the ellipse whose semi-axes

are 4 and 3 at the points for which x = 2.

2. Find the equations of the tangents to x'/16 + y^/9 = 1 at the

ends of the left-hand latus rectum.

3. Required the tangents to x'/9 + y'/i = 1, making an angle of

45° with the X-axis. [Solve y = x + b and x'/9 + y"/4 = 1 as in

§239.]

4. Find the equatioiis of the tangents to sr^/lOO -I- y'/25 = 1 at

the points where y = 3.

6. Find the equations of the tangents to x'/S6 + y'/16 = 1 at the

^ints where x = y.

248. The Tangent, Normal, and Focal Radii of the Ellipse. In

the right triangle PiOT, Fig. 180, the side PiO is a mean propor-

tional between the entire hjrpotenuse OT and the adjacent

segment OD. That is

a^ = xoX OT, or OT = a^/xo

Then FiT = OT - OFi = OT - ae

= a'^/xo — ae

Wkewis^ FtT = OT + OFi

5= aVaio +- ae
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Therefore FrT/FiT = {a^xa - ae)/{ayxa + ae)

= (a — exo)/{a + exo)

But by §230 this last ratio is equal to r^/r^. Therefore we
may write FiT/F^T = P^F./PoF,.

Hence T, which divides the base FiFi of the triangle PoFaFi
externally at T in the ratio of the two sides PF^ and PFi of the

triangle, lies on the bisector of the external angle FiPoQ of the

triangle FJPoFi. This' proves the important theorem:

The tangent to the ellipse bisects the external angle between the

focal radii at the point.

This theorem provides a second method of constructing a

tangent at a given point of an elUpse, often more convenient

than that of §247, since the method of §247 often runs the

construction off of the paper.

The normal PoN, being perpendicular to the tangent, must
bisect the internal angle F^PoFi between the focal radii F^o and

F,Po.

Since the angle of reflection equals the angle of incidence for

light, sound, and other wave motions, a source of light or sound at

Fi is "brought to a focus" again atF^, because of the fact that the

normal to the ellipse bisects the angle between the focal radii.

249. Additional Equations of the Straight Liae.^ The equations

of the straight line in the slope form

y = mx + b (1)

and in the normal forms

p cos {d— a) = a (2)

a; cos a + 2/ sin a = a (3)

and the general form

ax + by + c = (4)

have already been used. Two constants and only two are neces-

sary for each of these equations. The constants in the first

equation are m and 6; in the second and third, a and a; in the

fourth a/c and b/c, or any two of the ratios that result from divid-

ing through by one of the coefficients. Equation (4) appears to

contain three constants, but it is only the relative size of these that

> See §17.
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determines the particular line represented by the equation, since

the line would remain the same when the equation is multiplied

or divided through by any constant (not zero).

These facts are usually summarized by the statement that two

conditions are necessary and sufficient to determine a straight

line. The number of ways in which these conditions may be given

is, of course, unhmited. Thus a straight line is determined if we
say, for example, that the line passes through the vertex of an

angle and bisects that angle, or if we say that the line passes

through the center of a circle and is parallel to another line, or if

we say that the straight Une is tangent to two given circles, etc.

An important case is that in which the line is determined by the

requirement that it pass through a given point in a given direc-

tion. The equation of the line adapted to this case is readily

found. Let the given point be {xi, yi). The line through the

origin with the required slope is

y = mx.

Translate this line so that it passes through (xi, yi) and we have

y - yi = m(x - xi). (5)

Another way of obtaining the same result is : Substitute the

coordinates (.Xi, yi) in (1)

2/1 = mxi + 6. (6)

Subtract the members of this from (1) above, so as to eliminate

b. There results

y - yi = m{x — a;i). (7)

This is the required equation. The given point is (a;i, 2/1) and the

direction of the line through that point is given by the slope m.

Another important case is that in which the straight line is

determined by requiring it to pass through two given points.

Let the second of the given points be (012, yi). Substitute these

coordinates in (5)

2/2 - 2/1 = »»(»2 - a;i). (8)

To eliminate ?n, divide the members of (7) by the members of (8)

2/
- 2/1 X — xi

2/2 - 2/1 2:2 - X\
(9)
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or, as it is usually written

L^Zli ^Yl^zll^;
(10)

X — Xi X2 — Xi

This is the equation of a line passing through two given points.

Since (10) may be looked upon as a proportion, the equation may
be written in a variety of forms.

250. The Circle Through Three Given Points. In general, the

equation of a circle can be found (when three pojnts are given.

Either of the general equations of the circle

{x - hY +{y - kY = a\ (1)

or

a;" + 2/^ + 2gx + 2/2/ + c = (2)

contains three unknown constants, so that in general three con-

ditions may be imposed upon them. It is best to illustrate the

general method by a particular example. Let the three given

points be (— 1, 3), (0, 2), and (5, 0). Then since the coordinates

of these points must satisfy the equation of the circle, we obtain

from (2) above

1 + 9 - 2ff + 6/ + c = 0, (3)

4 + 4/ + c = 0, (4)

25 +\0g + c = 0. (5)

Eliminating c from (3) and (4) and from (4) and (5), we obtain

6 - 2sr^ + 2/ = 0,

21 + 10^ - 4/ = 0.

Eliminating /

? = - 5i
Whence

/ = - 8i
and

a = 30.

So the equation of the circle is

a;2 4- yi _ lla; _ ny + 30 = 0.

28
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Exercises

1. Knd the equation of the line passing through (2, 3) with slope

2/3.

2. Find the equation of the line passing through (2, 3), and (3, 5).

3. Find the line passing through (2, — 1) making an angle whose

tangent is 2 with the Z-axis.

4. Find the line through (2, 3) parallel to 2/ = 7a; + 11.

5. A line passes through (—1, — 3) and is perpendicular to

y — 2x —' 3. Find its equation.

6. Find the line passing through (— 2, 3), and (—3,-1).
7. Find the equation of the line which passes through (— 1, —3),

and (-2,4).
8. Find the slope of the line that passes through ( — 1, 6 ), and

(-2,8).
9. Find the equation of the line passing through the left focus and

the upper end of the right latus rectum of a;2/2S + y'/9 = 1.

10. Find the equation of the circle passing through (2, 8)„ (5, 7),

and (6, 6)

.

11. Find the equation of the circle which passes through (1, 2),

(- 2, 3), and (- 1, - 1).

12. Find the equation of the parabola in the form y^ = ipx which

passes through the point (2, 4).

251. Change from Polar to Rectangular Coordinates. The
relations between x, y of the Cartesian system and p, 6 of the

polar system have already been explained and use made of

them. The relations are here brought together for reference

:

X = p cos 8 (1)

y = p sin 0. (2)

By these we may pass from the Cartesian equation of any locus

to the equivalent polar equation of that locus. Dividing (2)

by (1) and also squaring and adding, we obtain:

e = tan-i y/x (3)

P = Vx^ + y^ (4)

These may be used to convert any polar equation into the Carte-

sian equivalent.

262. Rotation of Any Locus. It has already been explained

that any locus can be rotated tlirough an angle a by substituting
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(Ot — a) for d in the polar equation of the locus. It remains to

determine the substitutions for x and y which will bring about
the rotation of a locus in rectangular coordinates. Let us consider

any point P of a locus before and after rotation through the given
angle a. Call the coordinates of the point before rotation

(x, y) in rectangular coordinates and (p, 6) in polar coordinates.'

Then, from (1) and (2), §251,

X = p cos 6 (1)

t/ = P sin 6. (2)

Call the coordinates of the point after rotation (xi, yi) and
(Pi, ^i), but note that the value of p is

unchanged by the rotation. Then for p (Pi, e,) or

the point P', Fig. 181, we may write ] /\ (X1.V1)

Xi = p cos 61 (3)

2/1 = p sin 01. (4)

Since, however, the rotation requires —
that Fig- 181

6 = Oi - ot (5)

equations (1) and (2) become

X = p cos (di -^ a) = p cos di cos a + p sin 81 sin a (6)

2/ = p sin (di — a) = p sin 61 cos a — p cos 0i sin a. (7)

But, from (3) and (4), p cos di and p sin di are the new values of

X and y; hence, substituting in (6) and (7) from (3) and (4) we
obtain

X = xi cos Qi + yi sin a (8)

y '=
yi cos a — Xi sin a. (9)

Hence, if the equatiofi of any locus is given in rectangular co-

ordinates, it is rotated through the positive angle a by the sub-

stitutions

X cos a + y sin a for X

y cos Q! — X sin a for y, (10)

in which it is permissible to drop the subscripts, if the context

shows in each case whether we are^ dealing with the old x and y
or with the new x and y.

PiP.e) or

-Rotation of

any locus.
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If the required rotation is clockwise, or negative, we must

replace a by (— a) in aU of the above equations.

Whenever comenient, the eqvation of a curve should he taken in

the -polar form if it is required to rotate the locus.

Important Facts: The following facts should be remembered

by the student:

(1) To rotate a curve through 90°, change x to y and y to { — x).

(2) Rotation through any angle leaves the expression x^ + y^

(fir any function of it) unchanged. This is obvious since the circle

x^ + y^ = a^ is not changed by rotation about (0, 0).

Fig. 182.—Effect of rotation on the special forms x^ + y^, 2xy, and
x^ - 2/2.

(3) Rotation through + 45° changes 2xy to y^ — x^.

Rotation through — 45° changes 2xy to x^ ,— y^.

(4) Rotation through + 45° changes x^ — y^ to 2xy.

Rotation through — 45° changes x'^ — y^ to — 2xy.

Statements (3) and (4) follow at once from consideration of the

equations

i;2 - 2/2 = a^ (1)

a' (2)

a' <3)

a^ (4)

2xy

yi _ j;Z

- 2xy



§253] THE CONIC SECTIONS 437

of the four hyperbolas bearing corresponding numbers (I), (2),

(3), (4) in Fig. 182. The proper substitution in any case can

be remembered by thinking of the four hyperbolas of this figure.

(5) The degree of an equation of a locus cannot he changed by

a rotation. This follows at once from the fact that the equations

of transformation (8) and (9) are linear.

Exercises

In order to shorten, the work, use statements (1) to (4) whenever

possible.

1. Turn the locus a* — j/' = 4 through 45°.

2. Turn x' + y' = a' through 79°. Turn ixy = 1 through 45°.

3. Turn x cos a -\- y sin a = a through an angle /3. (Since this

locus is well known in the polar form, transformation formulas (6) and

(7) above need not be used.)

4. Rotate x' - y^ = 1 through 90°.

5. Rotate s" — j/^ = a' through — 45°.

6. Rotate x' - y' = 1 through 30°.

7. Rotate x^ - y" = 4: through 60°.

8. Rotate ixy = 1 through 30°.

9. Rotate x' + 2y' = 1 through 45°.

10. Change the equation (x — a)' + (y — b)' = rHo the polar form.

11. Change p cos 29 = 2a, one of a class of curves known as Cote's

spirals, to the Cartesian form.

12. Write the equation of the lemniscate in the polar form.

13. Show that p' — 2p/oicos (9 — 9i) + pi" = a'is the polar equation

of a circle with center at (pi, 9i) and of radius a.

14. Write the Cartesian equation of the locus p" = 16 sin 29.

15. Turn p^ = 8 sin 29 through an angle of 45°.

16. Rotate x^ - 2y^ = 1 through 90°.

17. Rotate {x^ + y^)^ + {x' - y')^ = 1 through 45°.

18. Rotate log {x' + y^) = tan {x^ - y^) through 45°.

19. Rotate x^ -&xy -\-y''=\ through 45°.

20. Rotate x^ + y^^ = a}^ through 45°. Show that the result is

the parabola y = x^la + o/2, and sketch the curves.

253. Ellipse with Major Axis at 45° to the QX Axis. The

ellipse frequently arises in applied science as the resultant of the.

projection of the motion of two points moving uniformly on two
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circles, as has already been explained in §186. Thus the para-

metric equations «

X = a cos t (1)

2/ = 6 sin t, (2)

define an ellipse which may be considered the resultant of two
S.H.M. in quadrature. We shall prove that the equations

a; = o cos t

y = asm (t + a),

(3)

(4)

define an ellipse, with major axis making an angle of 45° with OX.
The graph is readily constructed as in Fig. 183. The Car-

tesian equation of the curve is found by eliminating t between
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know that (x* + y^) is unchanged and that 2xy is to be replaced

by (a;2 — y^). Therefore (6) becomes

x^l — sin a) + y^{l + sin a) = a^ cos^a. (7)

Replacing cos^ a by 1 — sin^ a, and dividing through by the

right-hand member, we obtain

a\l + sin a)
"^ a^l - sin a) " ^' ^^^

which may be written

—-— +-^,= 1, (9)

2a2 cos^
I

20^ sin'' |^

where /8 is the complement of a. Equation (8) or (9) proves

that the locus is an ellipse. It is any ellipse, since by properly

choosing a and a the denominators in (8) can be given any desired

values. Hence the pair of parametric equations (3) and (4), or

the Cartesian equation (5) represents an ellipse with its major axis

inclined + 45° to the X-axis.

254. She.ar of the Circle. The effect of the addition of the term

mx to f(x), in the equation y = f(x), has been shown in §38

to change the shape of the locus by lamellar, or shearing, motion

in the Xy-plane. We usually speak of this process as "the shear of

the locus y = fix) in the line y — mx." When appUed to the circle

?/ = + V'a^ — x'^ the effect is to move vertically the middle point

of each double ordinate of the circle to a position on the line

y = mx. The result of the shearing motion is shown in Fig. 184.

The area hounded by the curve is unchanged by the shear.

The equation after shear is •

y = mx + \/a'^ — x^. (1)

This is the same form as equation (5) of §253, if we put m =

and replace y cos ahyyu After the substitution, rotate the curve

sma
cos a
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through 45°, and replace ^i by y cos a. The equation can then

be written

a^ (1 + sin a)

y^ (1 + sin a)
(2)

Therefore the curve of Fig. 184 is an ellipse.

The straight line y = mx passes through the middle points of

the parallel vertical chords of the eUipse

y = mx + (3)

The locus of the middle points of parallel chords of any curve is

called a diameter of that curve. We have thus shown that one

diameter of the eUipse is a straight line. Since the same reasoning

applies to

y = mx+ {h/aWa^ - x\ (4)

X' /
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In treatises on Conic Sections it is shown that the general

equation of the second degree in two variables represents a conic.

Three cases are distinguished as follows:

The general equation of the second degree represents

an ' eUipse if h^ — ab <

a parabola ii h^ — ab =

a h3rperboIa if h^ — ab > 0.

(2)

(3)

(4)

To render the above classification true in all cases we must classify

the "imaginary ellipse," -^ +r^ = — 1, as an ellipse, and other

degenerate cases must be similarly treated. The expression

h^ — ab is called the quadratic invariant of the equation (1), so

Fig. 185.—Confocal ellipses and hyperbolas. Note that the curves of

, one set cut the curves of the other set orthogonally.

called because its value remains unchanged as the curve is moved
about in the coordinate plane. In other words, as the locus (1)

is translated or rotated to any new position in the plane, and while

of course the coefficients of x^, xy, and y^ change to new values, the

function of these coefiicients, h'^ — ab, does not change in value,

but remains invariant. The above facts are not proved in this

book.
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266. Confocal Conies. Fig. 185 shows a number of ellipises

and hyperbolas possessing the same foci A and B. This family

of curves may be represented by the single equation,

in which the parameter k takes on any value less than a^, and in

which a > b. If fc satisfies the inequality

k < 6^

the curves are ellipses. If k satisfies the inequalities

¥ < k < a\

the curves are hyperbolas. The ellipses of Fig. 185 may be

regarded as representing the successive positions of the wave front

of sound waves leaving the sounding body AB, or they may be

regarded as the equipotential lines around the magnet AB, of

which the hyperbolas represent the lines of magnetic force.

Exercises

1. Sketch the curve y = 2x + \/4 — as".

2. Draw the curve

X = 2 cos B

2/ = 2 sin (9 +7r/6).

3. Find the axes of the elUpse

X = 3 cos 6

2/ = 3 sin (9 + 7r/4).

4. Draw the curve y = x + \/6x — x*.

6. Draw the curve y = x + y/x' — 6i.

6. Show that y = x ± \/6x is a parabola.

7. Sketch the curve y = (I/2)x + Vl6 - x^
8. Sketch the curve 2/ = 5x sin 60° + cos 60°-\/25 -x«.

9. Discuss the curve

x'/a' + y'/b" - 2{xy/ah) sin a = cos^ a.
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Show that the locus is always tangent to the rectangle x = ± o,

y = ± b, and that the points of contact form a parallelogram of

constant perimeter 4:\/a' + b^ for all values of a. Hint: Compare
with equation (6), §253.

10. Show that x = a cos {8 — a), y = b sin (9 — or) represents an
elUpse for all values of a.

11. Prove from equation (8), §253, that the distance from the

end of the minor to the end. of the major axis of the resulting ellipse

remains the same independently of the magnitude of a.

12. Show that the following construction of the hyperbola xy' = a'

is correct. On the — X-axis lay off OC = a. Connect C with any
point A on the F-axis. At C construct a perpendicular to AC cut-

ting the F-axis in B. At B erect a perpendicular to BC cutting the

-|- X-axis at D. Through A draw a parallel to the X-axis and through

D draw a parallel to the F-axis. The two lines last drawn meet at P,

a point on the desired curve.

13. Explain the following construction of the cubical parabola

a^y = x'. Lay off OB on the — F-axis equal to a. From B draw a

line to any point C of the X-axis. At C erect a perpendicular to BC
cutting the F-axis at D. At D erect a perpendicular to CD cutting

the X-axis at E. Lay off OE on the F-axis. Then OE is the ordinate

of a point of the curve for which the abscissa is OC.

14. Explain and prove the following construction of the semi-

cubical parabola, ay^ = i'. Lay off on the — X-axis, OA = u..

From A draw a parallel to the line y = mx, cutting the F-axis in B.

Erect at B a perpendicular to AB cutting the X-a,xis at C, and at C
erect a perpendicular to Ou. The point- of intersection with y = mx
is a point of the curve.

Miscellaneous Exercises

1. Show that sec^ a(l + sec 2a) = 2 sec 2a.

sin a + sin 2a
2.
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6. Solve the equation sin* a — 2 cos a + i =0.
7. Simplify the product

(x -2 - v'3)(a; - 2 - iVs){x - 2 + V3)ix -2 + iVS).

8. Express in the form c cos (o — 6) the binomial

30 cos o + 40 sin a.

9. Find tan 6 by means of the formula for tan (A + B), if

8 =tan-i 1/2 + tan-i 1/3.

10. Find sin 9, if 9 = sin-i 1/5 + sin-i 1/7.

11. Find the "equation of a circle whose center is the origin and
which passes through the point (14, 17).

12. Discuss the curve

X = aS

y = a(l — cos 0).

• 13. Graph on polar paper p^ = a' cos 29.

14. A fixed point located on one leg of a carpenter's "square"

traces a curve as the square is moved, the two arms of the square,

however, always passing through two fixed points A and B. Find

the equation of the curve.

16. Find the parametric equations of the oval traced by a point

attached to the connecting rod of a steam engine.

16. Prove that

tan (45° + t) - tan (45° - r) = . ^^f'^!

17. Find the quotient of (6 - 2i) by (3 + 75i).

18. Solye for y by inspection:

sin (90° + iy) cos (90° - iy) + cos (90° + ^y) sin (90° - iy) = sin y.

19. Write the parametric equations for the circle, the ellipse, and

the hyperbola.

20. The length of the shadow cast by a tower varies inversely as

the tangent of the angle of elevation of the sun. Graph the length

of the shadow for various elevations of the sun.

21. From your knowledge of the equations of the straight line and

circle, graph y = ax + y/a^ — x'^-

(See Shearing Motion, §37.)

22. In the same manner, sketch y = a -{ x -\- y/'a^ — x^-

23. Graph the curve y = 1/x + x'. Has this, curve a minimum
point?
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24. Find by use of logarithmio paper the equations of the curves

of Fig. 186. These curves give the amounts in ce^ts per kilowatt-

hour that must be added to price of electric power to meet fixed

charges of certain given annual amounts for various load factors.

25. The angle of elevation of a mountain top seen from a certain

point is 29° 4'. The angle of depression of the image of the mountain

top seen in a lake 230 feet below the observer is 31° 20'. Find the

height and horizontal distance of the mountain top, and produce a

single formula for the solution of the problem.

26. Find the points of intersection of the curves

a;2 -I- 2/^ = 4

y^ = 4x.

27. Solve llOx-* + 1 = 2\x-'.

28. Solve 3(a; - 7)(a; - l){x - 2) = (» + 2){x - 7){.x + 3).

29. Solve sin x cos x = 1/4.

30. By means of a progression, show how to find the compound

interest on $1000 for 25 years at 5 per cent.

100

90

80

70

I
I 50

•s
o
^ 40
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31. Find the approximate equations for the following data:

(a) Steam pressure

:

(6) Gas-engine mixture

:

V = volume, p = pressure.

V = volume, -p = pressure.
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40. Calculate (1 - VsifK
41. Plot the amount of tin required to make a tomato can to hold

1 quart as a function of the radius of its base. Deterinine approxi-

mately from the graph the dimensions requiring the least tin.

42. Find the axes of the ellipse whose foci are (2, 0) and ( — 2, 0),

and whose directrices are x = ± 5.

43. Write the polar equation for the ellipse in problem 42.

44. Find the equation of the hyperbola whose foci are (5, 0) and
(— 5, 0), and whose directrices are x = + 2.

46. Write the equation of the hyperbola of problem 44 in polar

coordinates.

46. Discuss the curve p(l + cos 9) = 4. Write its equation in

rectangular coordinates.

47. Find the foci of the hyperbola 2xy = a". Also its eccentricity.

48. Find the equation of the locus of a point whose distance from
the point (3, 4) is always twice its distance from the line 3x + 4y = 12.

What is the locus?

49. A point moves so that the quotient of its distance from two
fixed points is a constant. Find the equation of the locus of the

point.

60. Evaluate log 10 - log2 8 + logy 492.

51. Find the maximum and minimum value of (3 sin j: — 4 cos x).

What values of x give these maximum and minimum values?

62. Find the equation of a circle passing through the points (1, 2),

(- 1, 3), and (3, - 2).

63. A sinusoidal wave has a wave-length of ?r, a period of tt, and an

amplitude of t. Write its equation.

64. Compute the value of each of the following

:

1^; 7 ois 47° X 6 cis (- 14°); (7 +61)"; '^Ti+ST.

65. Prove by the addition formulas that:

sin (90° -t) = COST, sin (360° - t) = - sinr,

sin (90° +t) = COST, tan (r + 270°) = - cotT.

56. Solve x2 + 6x + Vx' -|- 6x -|- 1 = 1-

57. Find the product of 3 - 2i by - 2 + i.

68. Find all the values of

(cos e -I- 1 sin e)2; (cos S + i sin 6)^^; -^V, VT.
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69. Show that

sin (a + 6 + c) = sin o cos b cos c + cos a sin b cos c

+ cos a cos b sin c — sin o sin 6 sin r

60. Draw upon squared paper, using 2 cm. = 1, the curve y" = x

By counting the small squares of the paper find the area bounded by

the curve and the ordinates x = 1/2, 1, IJ, 2, 2i, 3, 3i, 4, . .By
plotting these points upon some form of coordinate paper, find the

functional relation existing between the x coordinate and the area

imder the curve.

61. The latitude of two towns is 27° 31'. They are 7 miles apart

measured on the parallel of latitude. Find their difference in

longitude.

62. Solve 3"'"' = 2'+'. Be very careful to take account of all

questionable operations. There are two solutions.

63. Find (two problems) the equation connecting:

X
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69. Sketch on squared paiper

:

y =
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sin 2a; == ? cos - = ?
2

cos 2x = ">

cot - = ?
2

79. Solve a' + 1 = 0.

80. y = — St' + 4i — 5 and x = 5t are the parametric equations

of a curve. Discuss the curve.

81. Show that [rfcos e +i sin S)] [(r'(cos B' + i sin B')] =
rr'lcos (e + B') +i sin (e + 6')].

82. Two S.H.M. have amplitude 6 and period two seconds. The
point executing the first motion is one-fourth of a second in advance
of the point executing the second motion. Write the equations of

motion.

83. Show that sin 5x = sin* a; — 10 sin' x cos' x -\- 5 sin x cos^ x.



CHAPTER XV

APPENDIX

A REVIEW OF SECONDARY SCHOOL ALGEBRA

300. Only the most important topics are included in this review

Prom five to ten recitations should be given to this work before begin-

ning regular work in Chapter I.

With the kind permission of Professor Hart, a number of the exer-

cises have been taken from the Second Course in Algebra, by Wells and
Hart.

,
301. Special Products. A few simple muItipUcations may be per-

formed mentally.

(1) The product of the sum and difference of any two numbers:

(a -I- 6)(a - 6) = o2 - 62

From this we have (3a; - 2y)i3x + 2y) = 9x^ - ^y^.

Exercises

Multiply mentally the following

:

1. (3a; - J/) (3a; -|- y). 6. (29)(31), or (30 - 1)(30 + 1) =
900 - 1 = 899.

2. (2a; + 7)(2a; - 7). 7. (51) (49).

3. (5a; - y){5x + y). 8. (52)(48), or (50 + 2)(50 - 2).

4. Ixh/ - 3a){x'y + 3o). 9. (103) (97).

6. (o + 3b) (o - 36). 10. (25) (35).

(2) A few products of binomials are:
\

(o + by = a' + 2ab + 6'.

(o - by = o' - 2o6-|- 6^

(a + 6)3 = a> + 3a'b + 3ab' + b\

(a - 6)» = a' - 3a'b + 3a¥ - bK

la + h)* = a* + 4o»6 + 6a'b' + 4o6» + 6*.

(a - b)* = a* - 4o»6 + 6a'b' - 4a6' + 6".

Thus (3 - o) 3 = 27 - 27o + 9a» + a\
and (a; -t- y^Y = x* + 4a;'v«+ Qx^y* + ^y^ + y\

451
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Expand mentally the following:

1. (2o - x)K 4. {x - d)*.

2. (a; + 3yy. 5. (1 - a;)'.

3. (2x - 1)'. • 6. (2 + yY.

7. (52)2, or (50 + 2)', or 2500 + 200 + 4 = 2704.

8. (31)2, or (30 + ly. 9. (29)', or (30 - 1)^.

(3) The square of a polynomial is illustrated hy the following:

(a + b + c)2 = a" + 62 + c2 + 2ab + lac + 2bc.

(o + 6 + c + d)2 = a2 + 62 + c2 + d2 + 2o6 + 2oc + 2ad + 26c +
26d + 2cd.

(3 - a; + !/)2 = 9 + x2 + 2/2 - 6a;+ 62/ - 2xy.

Expand mentally the following

:

1. (o + 6 + 2)2. • 4. (2a - X + 3)2.

2. (a + 6 - 2)2. 5. (x2 - 22/2 + 4)2.

3. (a - 6 - c)2. 6. (x - 2o - 62/2)'.

(4) The product of two binomials having a common term:

(x + a){x + 6) = x2 + (o + b)x +,ab.

Thus (x + 5)(x - 11) = x2 + (5 - ll)x + 5( - 11),

= x2 - 6x - 55.

(x +7)(x + 2) = x2 +9x + 14.

(x - 5)(.x + 3) = x2 - 2x - 15.

(x2 - 22/) (x2 - 32/) = x" - 5x22/ + 6j/2.

Find mentally the value of each of the following

:

1. (x + 2)(x + 3). 6. (3x + 22/)(3x - 7y).

2. (x - 2)(x + 3). 7. (x2 - 3)(x2 - 4).

3. (x - 2)(x - 3). 8. (3x1/ - z)(3x2/+ 7z).

4. (x + 2)(x - 3). 9. (x22/2 - 3)(x22/2 - 10).

5. (x2 + 52/) (x2 - 52/). 10. (x - 2y){2x - 2y).

(5) rfte product of two general binomials:

{ax + 6) (ex + d) = ocx2 + (6c + ad)x + bd.

Thus
(3o - 4b) (2a + 76) = (3a) (2a) + (- 8 + 21)ab + (- 4 b) (7b)

= 6a2 + 13ab - 28b2.

Find mentally the following products:

1. (5x - 22/)2. 4. (2m + 3)(m + 4).

2. (a + llb)(a + 36). 5. (2/2 + 4z)(2/2 + 4z).

3. (a - 2u)(a + 12»). 6. (3x2/ - 7)2.
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7. (Sw^w - 4:)(.3uh; + 4). 29. (2 - 3s«)(5 + 2st).

8. {2x - 5)(a; + 4)i 30. (a^b + 6c) (0^6 - 13c).

9. (2r2 - 7)(3r2 + 5). 31. [Ip + 5)(lp - 4).

10. (p2 - Sq){,p^ + 7q). 32. {a' + 7)(o' - 11).

11. (a + l)(o - i). 33. (So + 5) (7a - 8).

12. iix + 5y){ix - By). 34. (1 + 8n)(l - 9n).

13. (u - |)(w - I). 35. (2a - 6") (2a + 3b*).

14. (2a; + 3)(Js + 1). 36. (12a; - i){9x - J).

16. (3x2 4. 46c) (3x' - 46c). 37. (20 - 16z)(3 + 2z).

16. iy -8)(.y + 5). 38. (r^ + 16s) (r^ - s).

17. (X - i){x - f). 39. (a - 6x2) (a 4. ^2^

18. (1 - 6s) (3 + 2s). 40. (4r + uv)(ir - 5uv).

19. (2< - '7w^){3t - 4u)2). 41. (6x2 _ 1)2,

20. (|u - i)(f« + J). 42. (1 + 23n)(5 - n).

21. (3r - 7<)(5r + 2t). 43. (x* - 2/*)(x« + y*).

22. (11x2 _ I)(i2x2 + 1). 44. (5a2 - 4b)(6a2 - 56).

23. (z2 - 6) (02 + 12). 46. (x2j/ + yH){xh/ - y^x).

24. (x + 32/2) (x - 22/2). 46. (fa + 10) (2a + 1).

26. (6m» - 6s2)(5m' + s2) 47. (9r + 2s) (3r - 4s).

26. (5x + |)(5x -i). 48. (12x2 4. 5) (43,2 _ 3).

27. (3x + 7)(x - 5). 49. (a26* + 4x2)2.

28. (4o - 363)2. 60. (a^ - 5«)(a« + 6«).

61. (a + 6)(a - 6)(a2 + 62)(a* +6<).

302. Symbols of Aggregation. If a sign of aggregation is preceded

by the negative sign, change all signs within when the sign of aggre-

gation is removed. If the sign of aggregation is preceded by the posi-

tive sign, all signs within remain the same when the sign of aggre-

gation is removed.

5x2 _ [syi 4. {2x2 _ (2,2 4. 3^2) 4- 5j/2} _ ^2;

= 5X2 _ [^yl 4. {2x2 - y2 - 3x2 4. 52^2} _ 3;2]

= 5X2 _ [3y2 4. {42,2 _ 3.2} - x2]

= 6x2 _ [3y2 _|_ 4j,2 _ -j2 - x2]

= 5X2 _ [7j,2 _ 2x21

= 5x2 _ 7y2 4. 2x2

= 7X2 _ -Jyl

Exercises

Simplify the following by removing the signs of aggregation

:

1. ab - 46^ - (2a2 - 62) _ {
_ 502 4. 206 - 862).

2. X -
{ 2/ -I- z - [x - ( - X - 2/) -f z]) + [z - (2x - 2/)].
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3. o-{ -o — [-o-(-o- 1)]).

4. Syz - [2yz + (9z - 2yz)].

6. - { -1 -[-1 -(-1)]1.
6. 5x' - [Sy' + {2x^ - {y' + Zx'') + 5y^} - x'].

7. ab - [46^' - (2o» - b^) - [
- 5o' + 2ab - 3b']].

8. 33/' - I2y' + (9z - 2yx)].

303. Factoring. Since (a + b)' = a' ± 2ab + b', any expression

of the form of the right-hand side can be factored by inspection.

Thus,

x' - 6xy + 9y' = {x - 3y)'

and
4 + 4(o + 6) + (a + 6)2 = (2 + o + 6)'

Exercises 1

Factor the followlag by inspection:

1. Qx^ - ZQxy + 25yK

2. 4 + 16« + 16«».

3. a;*j/* + 10a;'j/2z2 + 25z*.

4. 9 + 6(x» + j/») + (I' + !/>)». .

6. a* + 4o26« + 4b<.

Since (o + 6) (o — 6) = a' — 6', any expression of the form of the

right-hand side can be factored by inspection. Thus,

4o2 - 9b' = (2a -|- 36) (2o - 36).

Exercises 2 j

Factor the following by inspection:

1. x'j/' - «'• 4. 25 - 3a;'.

2. (o -I- 5)' - c'. 6. 81 - 625x*.

3. c^ - {a-\- 6)'.

Since (a 4- 6)(o + c) = o' + (6 + c)a + 6c, any expression of the

form of the right-hand side can be factored by inspection. Thus,

a;' -5a; - 14 = (a; - 7)(a; +2)

Exercises 3

Factor the following by inspection:

1. a;' + 7s + 10. 4. 9i' - 18s - 27.

2. a' + 4aj/ - 21?/'. 5. 25 + 30o - 27a».

3. 4a;' - 18iy + 18i/'.
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Since (a + &)(«' — ah + 6*) = a' + b', any expression of the form

of the right-hand side can be factored by inspection. Thus,

27 + 125a;» = (3 + 5x)(,Q - ISa; + 25a;2).

Exercises 4

Factor the following by inspection:

1. x'y' + 1. 4. 125 + x'yK

2. x' + y". 5. x' + 8yK
3. 8 + 27a;'. i

Since (o — 6)(a^ + ab + 6') = o' — 6', any expression of the form

of the right-hand side can be factored by inspection. Thus,

27 - 125a:' = (3 - 5x)(9 + 15a; + 25ai2).

Exercises 5

Factor the following by inspection:

1. x>y' - 1. 4. 125 - x^yK

2. x^ — y^, or (a;* + y^)ix' — y^). 5, z^ — 8yK

3. 8 - 9a;'. 6. 27 - 8a';

The following may be factored by grouping the terms. Thus,

a'm + o're — m — n = a'(m + n) — (m + ra)

= (o' — l)(m + n)

= (a - l)(a2 +a + l)(m + n).

Exercises 6

Factor the following:

1. ax — ay + bx — by. 4. x^ — xy* — x^y + y^.

2. a;' + 3a2 + 3a; - 1. 5. a;* - x^y - xy^ + y\
3. ax^ - 2axy + ay' + bx' - 2bxy + by',

A trinomial of the form px' + gx + ?, if the product of two bino-

mials, may be factored as outlined below.

In the product

ax + b

ex + d

OCX' + {be + ad)x + bd
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the terms acx'' and hd are called end prodiicts and bcx and adx are called

cross proditcts. This most important case of factoring is best learned

from the consideration of actual examples.

Factor 21x'i + 5a; - 4.

Prom the term 21a;*, consider as possible first terms 7s and 3a;, thus

(7a; )(3a; ). For factors of (— 4), try 2 and 2, with unhke signs,

and signs so arranged that the cross product with larger absolute

value shall be positive; thus (7a; — 2)(3i + 2). This gives middle

term Sx; incorrect. For (—4) try 4 and 1, with signs selected as be-

fore; thus, (7x — l)(3a; + 4). Middle term 25a;; incorrect. Try

(7a; + 4) (3a; — 1). Middle term 5x; correct.

Factor 2ix' - 17xy + ZyK

Try (6a; — 32/)(4x — y). Incorrect, since first () contains factors

and given expression does not. Try (fix — y){4:x — 3y). Middle

term - 22; incorrect. Try (8a; - 3y)(3x - y). Middle term - 17;

correct.
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304. To factor a polynomial completely, first remove any monomial
factor present; then factor the resulting expression by any of the type
forms which apply, until prime factors have been obtained throughout.

'Thus,

(a) 5a« - 5&« = 5{a^ - 6«) = b{cfi - V){a^ + 6=)

= 5{a - b)(a2 + a6 + V){a + h){a^ - ah -^ h")

(b) 42aa;2 + lOox - 8a = 2a{2\x^ + 5x - 4)

= 2a(Jx +4) (3a; - 1)

(c) 2Cmnu^ - IWmnu + X2imn = 5mn{^' - 20m + 25)

= bmnhu - 5Y.

Exercises

Factor the following expressions: ,

1. xV"° - A"*- 22. a;2 + Qx - 27.

2. 9x» - 43/6. 23. c' -64«3.

3. ,25a;« - 1. 24. Sx' - 1.

4. 81 - ^K 26. 1 - 13< - 68«2.

6. 1 - 6ia''b*c\ 26. a;< - Cx^b - SSb".

6. a;' — y^. 27. au" — 4aM!; — i5av^.

7. 225 - aS. 28. 28a2 - a - 2.

8. 121x2 - 1442/2. 29. Ss^ - 17si + 24{2.

9. 49ot« - SQx'y^zK 30. 15r= - r - 6.

10. 169 -:^ a'lx^. 31. iy^ - 3y - 7.

11. 4x2 _ 20x + 25. 32. 641*6 _ 27x3.

12. 9o2 + 6ob + b2. 33. 6ar - 3as + 4a«.

13. a'b^ - nabc - QOcK 34. a^ +2a - 35.

14. r* - llr' + 30. 35. 9x2 ^ i2xy - 32^".

16. 16b2 + 30b + 9. 36. o" + lOab + 25b2.

16. Slu" + 180ua + lOOs;' 37. 625x22/2 - ^.
17. 36a2 - l32o + 121. 38. 3cdy' - 9cdy - 30cd.

18. x'y* - Axy^ + 4. 39. 4ox2 - 25ay*.

19. o2b2 - 2ab - 35. 40. 3y^ +24.
,20. u' +~u3 _ 110. 41. 4x2 _ 27x + 45.

21. a*b2 - 14o2b + 49. 42. 6x2 + 7^ _ 3,
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43. -jV' - 1. 58. 2am« - .50a.

44. 10x>y - 5x^y^ - 5xy\ 69. 72 + 7a; - 49a;».

45. »i»n» + 7mn - 30. 60. 31a;' + 23xy - 8yK
46. x^ - Zxy - 70yK 61. 24o» + 26a - 5.

47. mx" + 7mx - 44r«. 62. 1 - 3xy - IQSx'y^

48. x' - 3a;» - 108x. 63. x^ - Umx + AOm^.

49. x> - yK 64. 26 + 10a5 - 28o%.
60. a;* - hx-^ - 'iAy\ 65. c» + 27(f».

61. 8n« + 18n - 6. 66. Zx^y - 27xy\
62. 3i* - 12. 67. -^^^ - 4^^*-
63. Stw" - 42ot« + 49<». 68. 49ji<2/ - 196nV-
64. lOa;' - 39a; + 14. 69. a;« - 16a; + 48.

65. 12x« + 11a; + 2. 70. a;' + 23a; - 50.

66. 363;" + 12i - 35. 71. a<w« + 31a!^2 + 30.

67. x' - SyK 72. 9a;' + Z.7xy + iy\

306. General Distributive Law in Multiplication. From the mean-
ing of a product, we may write

(a + 6+c+. . .){x + y + z + . . .)=ox + 6a; + ca;-|-. . .

+ ay + hy + cy +. . .

+ az + bz + cz +. . .,

etc.

Stating this in words : The product of one polynomial by another is the

sum of all the terms found by multiplying each term of one polynomial

by each term of the other polynomial.

To multiply several polynomials together, we continue the above

process. In words we may state the generalized distributive law of

the product of any number of polynomials as follows:

The product of k polynomials is the aggregate of all of the possible

partial products which can be made by multiplying together k terms, of

which one and only one must be taken from each polynomial.

Thus,

{a + b+c-V. . .){x+y + z+. . .)(«+« + 10 +. . .)

= axu + axv + . . . + ayu + ayv + . . . + azu + azv + . . .

+ bxu + bxv + . . . + byu -H byv -|- . . . + bzu + bzv + . . .

+ cxu + cxv + . . .

4- . . .,etc.

If the number of terms in the different polynomials be n, r, s, t. . .

respectively, the total number of terms in the product will be nrst , , .

The student may prove this.
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306. The Fundamental Theorem in the Factoring of z" ± a". The

expression (s" — a") is always divisible by (x — a), when n is a posi-

Write a"— a» = s" — ox"~i + oa;""^ — a"

= a;"~'(a; — a) + oCa;"""- — o"~^)

Nowi/(a;'~' — o'~i) is divisible by {x — o), then'plainly s'~'(a; — a)

+ a(a;'~' — a'~i) is also divisible by {x — a). But this last expression

equals (x* — o*), as we have shown. Therefore, if (x — a) exactly

divides (a;*~i — o*~'), it will also exactly divide (a* — o*).

That is, if the law is true for any positive integral value of k, it

is true for k one greater. But by actual division the law is true when
k is 3, (x' — o' = (x' + ax + a'){x~a) therefore it is true when
k is 4. Being true when k is 4, it is true when k is 5, and so on up
to fc = n, any positive integer.

We see that (x — o) is one factor of (x" — o"). The other factor of

(x"— o») is found by actually dividing (x" — a") by (x —a). Thus
(x» - a") = (x - o)(x"-i + ax"-' + a'x"-^ + . . . + o»-=x + o"-')

The student may show that (x + a) divides x" + o" if ra be odd, and

divides x" — a" if n be even.

Exercises

Factor the following:

1. x' + yK 7. m* - 243.

2. x5+32. 8. 32o» +2436^
3. x« - 81. 9. 64 - x«.

4. x» + 1. 10. x'y' -z».

6. X* - 162/*. 11- a:' - 2/".

6. x'j/s + 1. 12. 27x5 - 8y\

Miscellaneous Exercises in Factoring

Factor the following:

1. {a+by - c\ 10. (1 +«!=)«- iuK

2. (to - n)2 - x\ 11. 9(to - n)" - 12(m - n) + 4.

3. (x - 2/)2 - z2. 12. (xii - 4)2 - (x + 2)2.

, 4. x2 - (v - z)2. 13. (x2 + 3x)2 + 4(x2 + 2x) + 4.

6. (7x - 2yY - y'. 14. (Ox^ + 4)2 - 144x2.

6. (a + 6)2 + 23(a + b) + 60. 15. (x + y^ + 7(x + 2/) - 144.

7. (x + y)' + 2(x +y) - 63. 16. (a2 + o + 9)' - 9.

8. (x - yy - (x + 2/)2. 17. (x + 2/)» - z^

9. (x' - 22/)2 + 2(x2 - 22/) + 1. 18. (x + y)' + z».
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19. x^ - {y + z)K 33. 9a* - ix^ +.j/»- 6x'y - 20x« -
20. x^ - \y - z)'. IhzK

21. aj= + {y - 2)3. 34. 4i/* - 322/2 + 1.

22. (to + «)s + 8«'. 36. 94" - 31««x« + 25a;*.

23. (re + y)' + (a; - y)'. 36. 25o* + 340^62 + 496*.

24. 27a» - (o - b)». 37. 2a(a; + i/)
- 3(a; + y).

26. o' - 2a6 + 6* - c^ 38. a(s - j/) - 6(a; - y).

26. a;« + 2xy + 2/^ - z^. 39. ab + on + 6to + mn.

27. a^ - a;2 - 2a;2/ - j/^. 40. 2 + 3a; - Sa;^ - 12a;3.

28. a;2 - 2/2 - z2 + 2j/z. 41. 56 - 32a + 21a2 - 120^.

29. b" - 4 + 2a6 + 02. 42. 4a' + o^b^ - 4b= - 16ab.

30. 2mn - m^ + 1 - m^. 43. si - sr - r" + r«.

31. 9a2 - 24ab + 16b« - '^e. 44. a;^ + a;2 + a; + 1.

32. 4a2 - 6b - 9— b^.

307. Fractions. Multiplying or dividing both numerator and
denominator of a fraction by the same number, excepting zero, does

not change the value of the fraction. To reduce a fraction to its low-

est terms factor both numerator and denominator and then divide out

the common factors if there are any. Thus,

ai*+ aa;2j/'+ a2/* _ a{x'^ + xy + y')(3;' — xy + j/') _ x' — xy + y'

aV — a'y^ a'(x — y)(x' + xy + y') " a(x — y)

Exercises

Reduce the following to lower terms:

ax + ay — X — y
1.
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4o2 + 8a + 3 6a2 - 9o
i.

6.

2o2 - 5a + 3 4a2 - 1

16a; - 4 _ 20a; + 5 a;^ + 2a: + 1

5a; - 5
'

6a: + 6
"

I6x^ - 1
'

a:» + 8y^
_ X -2y

_ a;" + 23;;/ + 4^^

a;' - 8^' '

a; 4- 22/
'

x^! - 2a;2/ + iy"'

2n' -n - 3 n^ + 4»i + 4 ra^ -

10.

n* - 8n2 + 16 n^ + n 2n' - 3n
x^ — xy — 2y^ ^ x — 2y '

x' — 9xy^ ' X — 3y
2a;g -xy - 3y' ___ 3x^ + xy - 2y'

9x' - 25y' ' 9x' - 30a;^ + 25^8'

2a' - Sab - 36= . r2a' - 7ab - 46=
. a' - 4^ab + 4an

L a' -a2 - o6 - 262 la' - 3ab - 46' ' o^ - ab - 66^

3 \/^+2 _x_\ /^^
V X ^ X - 3/ \a: - 2 x + 3/

1

X

308. Simple Equations. Adding the same number to both mem-
bers of an equation does not change the equation. It follows that a

term may be transposed from one member of an equation to the

other member provided its sign is changed. Thus from

3x - 2 = 3 + 2x.

3x - 2x = 3 + 2, or X = 5.

Exercises

Solve the following equations for x:

1 ^ ~ ^ 4. 2x - 1X -3
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309. Quadratic equations are usually solved (a) by factoring, (6)

by completing the square, or (c) by use of a formula.

(a) To solve by factoring, transpose all terms to the left member of

the equation and completely factor. The solution of the equation is

then deduced from the fact that if the value of a product is zero, then

one of the factors must equal zero. Thus

(1) Solve the equation

a;2 + 54 = 15a;

Transposing x^ — 15a; + 54 =
Factoring (a; - 9) (a: - 6) =0

a!-9=0ifa;=9
X - 6 = Qiix = 6

Hence the roots of the equation are 9 and 6

Check: Does (9)' + 54 = 15 X 9?

Does (6)« + 54 = 15 X 6?

(2) Solve the equation

12a;2 + x = &

Transposing 12a;'' + a — 6 =0
Factoring (3a; - 2) (4a; + 3 =

3a;-2=0ifa; = |
4a; +'3 = if a; = -f

Hence the roots of the equation are f and — f.

Check: Does 12(f)2 + f = 6?

Doesl2(-f)»-f=6?

(b) To solve by completing the square, use the properties of

(a; ± a)* = a;' ± 2oa; + o*, as follows:
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(3) Solve x^ - V2.X = 13.

Add the square of 1/2 of 12 to each side

a;2 - 12a; + 36 = 49

Take the square root of each member

a -6 = ±7

Hence

a; = 6 + 7 = 13

a; = 6 -7 = -1

Check: Does (13) ^ - 12 X 13 = 137

Does (-1)2 - 12 X (-1) = 137

Since in general (a; — a){x — V) = a;^ — (a + b)x + o6, we can check

thus:

Does 13 + (- 1) = - (- 12)7

Doesl3(-l) = -137

(4) Solve x^ - 20a; + 97 = 0.

Transpose 97 and add the square of 1/2 of 20 to each side:

a;' - 20a; + 100 = - 97 + 100 = 3

Take the square root of each number:

a; - 10 = + -\/3

Hence

si = 10 + -\/3[

a;2 = 10 - ^3

Check: Does xi + Xj = — (— 20)7

Does xiXz =97?

(c) To solve by use of a formula, first solve

0x2 + 6x + c = (1)

The roots are

- h±y/V - 4ac

2a
(2)

For a particular example, substitute the appropriate values of a, 6,

and c. Thus:

(5) Solve 2x2 - 3x - 5 = q.

Comparing the equation term by term with (1) we have

o = 2, 6= -3, c= -5
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Substitute these values in the formula (2)

^ _ -(-3) + V(-3)'-4(2)(-5)
2(2)

3 + 7

Therefore

xi — 5/2, X2 = — 1

Check: Does Xi + x^ = — b/a = 3/2?

Does X1X2 = c/a = — 5/2?

Exercises

Solve the following quadratics in any manner:
1. s= + 5x + 6 = 0. 29. 3i2 _ I2ax = 63a'.

2. a;2 + 4a; = 96. 30. ix' - I2ax = 16a^

3. x' = 110 + X. 31. x^ - X =6.
4. x' + 5x = 0. 32. x' +7x = - 12.

6. 6x2 + 7a; + 2 = q. 33. x' - 5x = 14.

6. 8x2 - lOx + 3 = 0. 34. x^ + x = 12.

7. x' + mx - 2m,' = 0. 36. x" - x = 12.

8. 3«2 - « - 4 = 0. 36. x' = Qx - 5.

9. 107-2 + 7r = 12. 37. x' = - 4x + 21.

10. x' + 2ax = b. 38. x^ = - 4x + 5.

11. x2 + 4x = 5. 39. x2 + 5x + 6 = 0.

12. x2 + 6x = 16. 40. x' + llx = - 30.

13. 2x2 - 20x = 48. 41. x2 - 7x + 12 = 0.

14. x2 + 3x =18. 42. x2 - 13x = 30.

15. x2 + Sx = 36. 43. 3x2 + 4^ = 7.

16. 3x2 4. 6x = 9. 44. 3x2 + 61 = 24.

17. 4x2 _ 4a; = 8. 45. 4-^2 - 5x = 26.

18. x2 - 7x = - 6. 46. 5x2 _ 7^; = 24.

19. x2 - ax = 6a2. 47. 2x2 - 35 = 3x.

20. x2 - 2ax = 3a2. 48. 3x2 _ 50 = 5x.

21. x2 - X = 2. 49. 3x2 _ 24 = 6x.

22. x2 + X = a2 + o. 50. 2x2 - Sx = 104.

23. x2 - lOx = - 9. 51. 2x2 ^ iqx = 300.

24. 2x2 _ 15a; = 50. 52. 3x2 _ iqx = 200.

26. x2 + 8x = -15. 53. 4x2 - 7x + ^ = q.

26. 3x2 + 12x = 36. 54. |x2 _ fx = - ^^.
27. 2x2 + lox = 100. 55. 9x2 + 6x - 43 = 0.

28. »2 _ 5a; = _ 4, 66. 18x2 - 3x - 66 = 0.
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67.
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106.
_£_4.a:-l_a;»+a;-l

106.

X ~ 1 X x' — X

X x__ _ a:' + 23: — 2

s+2 a; + 3~a;' + 5a;+6*

107. ~ 1 Z?_ L ^^ =
a; - 2 ^ 24(a! + 2) ^4 - a;^

108. (. + -!)= -^(a;+g + 7 = i

Hint: Let a; + - = j/. Then

2/' - Y!/ + 7 = *

Solve this equation for y. Place a; + - equal to each value found

for y and solve the resulting equations for x. There are in all four

roots of the given equation.

109. a;« - 35a;« + 216 = 0. ,,, _i_
1 o i

i
Hint: Let a;' = v.

111. a: + - = 2 + 2.

110. .^+ ^0^29. ii2.?i__24 +1=0.
a;"

a; a; — 2

113. (a;2 + a;)2 = 12 + ^{yfl + a;),

a; + 1 12(a - 1)
114. 1 +

116.

a;-l a; + l

Ca;-l)(a;-2) _ (a; + l)Ca; + 2)

X -Z » + 3

116. Solve oV _ 2fa2/ + bV = 1 for J/i considering a, &, ^, and a; as

known numbers.

307. The Definitions of Exponents.

(1) n a positive integer: o" = aaa . . . to n factors.

(2) n and r positive integers: a^' = '^ a and a"/' = (Vo)"
= v^.

(3) o» = 1.

(4) n any number, positive or negative, integral or fractional:

a-» = l/o».

308. The Laws of Exponents. For n and r any numbers, positive

or negative, integral or fractional

:

(1) a"o' = o"*', or law for multipUoation and division.
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(2) (o")' = a", or law for involution.

(3) o'S" = (aft)", or distributive law of exponents.

Note: The student must distinguish between — a" and (— a)".

Thus - 8!^ = - 2, and (- 8)!^ 2, but (- ZY = 9 and - 3' =
-9.

Exercises 1

Use the definitions of exponents (1), (2), (3), (4) §307, and the laws

of exponents (1), (2), (3), §308, and find the results of the indicated

operations in the following exercises.

1. x"x".
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We arrange the work thus:

J + J + 1

a'' + a — gi

ai +J + a

_ of _ o _ ai

a' + 2ai + a* - a^

37. (x + 22/4 + 32/*).(i - 2yi + 32/*).

38. (X* + yh(.x^ - yh-

39. (,J - Sah^ + 4:ah - ah^-)(ai - 2o*6*).
3 i_ 1 ^ ^

40. (a» - 20"+ 3o")(2a» - a").

Exercises 4

Find the numerical value of each of the following;

1. 2-1. 4. 10-5. 7. 2-\ 10. 1024-*.

2. 4-2. 5. l-» 8. 16-". 11. 512-4.

3. (-2)-». 6. 2-2. 9. 81-4. 12. 625-*.

1 5 5-2 16-i
13. i- 16. (:r^,- 1,7. —^- 19. ^3r-

9 . 1-8 32-4 7-1

14. J-. 16. I^i- 18. ^^iir- 20. —^•
3-2 8 1 21 49-1

Write each of the following expressions without using negative

exponents:

21. x-K 25. 5a-'. 29. (a; + y)-\ 33. 2o«a;-^-4.

22. x'y-K 26.30-^6-4. 30. (- x)-^ 34. (- a^)-^

„o 1 „„ 2a-2 „, X* „^ a-ibi
23. ^Ti- 27. „,. _, - 31. -^- 35. n"^-

„. mr' „„ 0^6-* „„ 3(rl6-i „„ 3a26-2c-''
24- -^- 28. _ _, 32. ^—5

—

36. g^,.,,,^,. -

a;

"

a-3^-5 so-fj, 5o ^b =c *

Write each of the following expressions in one line:

37 (1. 39 -^. 41 ^^- 43
''"y"

-

38 1. 40 ^^-^. 42 '^E^yll. 44 J??i
38-

a' f• 3a-2r»
*2-

u>z-^
**" ^=F^

16(a+ b)-'c4
. ^ , 1 , 1, A-.

"•
(a - 6)-lc-« x3 + x=i + X + a-i
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Exercises 6

Perform the indicated operations in each of the following by means
of the laws of exponents.

1. o« X o"". 4. 8a-* X 3a'. 7. m"* X m"*.

2. r" X r-i». 6. m-i X tt*. 8. Sax-' X kbx\
3. c-> -r c-K 6. a;= -=- a;-". 9. o-»6-» -r- ab"'.

10, (- 7o-»6-»)(-4oi'b-')(a-%''a;-').

11. (2o*6-*)(a-*6*- |o*b* + ah-^).
12. 7a-»b-V-'-i- 80-26-%-

13. S6a;5J/-'^4 -^ Tai-iy-'a-*,

14. 18o-i&lc-5 -=- 6a*bV«.

16. Cai'j^-^ai -r 2a;-^3/iz-i.

16. (a-')!.

17. (o-s)-".

18 (a«)-«.

19. (7i*)-».

20. (r-iyi.

21. (c-')^

22. (obc)-*.

33. (bj.

42. (a2a;-i+3a=x-i')(4o-i - 5a;-i + 6ax-^)

4a-i - 5a;-i + &ax-'

aH-^ + 3a'a;-'

4ox-i - 5a"a;-2 + 6o»a;-»

12a'a;-' - 15a»a;-° + 18a«z-«

4aa;-i + 7a2a:-2 - 9a'a;-= + 18a*a;-*

43. (2a;-* - 3a; + 4a;*) (a;-? - 2a;-* + 3a;-*).

44. (a;-* - 2a;-*^ + y^){x-^ - y^).

46. (3a;* - |x* + 4) X 2a;-*.

46. (a;-^ + x'h + l)(a;"* - 1).

47. (a;-*+ 3/-=) (a;-* - y-^).

48. {x^y + yh{x^ - y-*).
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49. (2o*- 3axi){3a-i .+ 2a;-*) (4a*a;* + 9o-M).

60. (x-^ - x-iyi + x-iy - y^) - (a;-* - j/*).

x~^ — y^)x-^ — x-^y' + x-'y — y'(3r^ + y
x-^ — x-hji

x'^y — y'

x-^y —y'

Bl. (x-' + 2x-°- - Sx-i) -i- (x-\+ 3s-i).

309. Reduction of Surds or Radicals.

1. // any factor of the number under thi radical sign is an exact

power of the indicated root, the root of that factor may he extracted and
written as the coefficient of the surd, while the other factors are left

under the radical sign.

(1) Thus,
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3. W& may change the index of some surds in the following manner:

(1) Thus, a/I = vVi
= V2

1,2) Also, VlOOO = -s/^^/W^Q

= Vio

(3) Also, V2563^ = v/VilPas
\

= v^lGca'

A surd is in its simplest form when (1) no factor of the expression

under the radical sign is a perfect power of the required root, (2) the

expression under the radical sign is integral, (3) the index of the surd is

the lowest possible.

Methods of making the different reductions required by this defini-

tion have already been explained. We give a few examples.

(1) Simplify
^^^^

(2) Simplify^—.

a= 'a 1 3,_-- -

*/400 /20 1 , 2 ^__

(3) Simplifying-^.

5 « /512 5 /"S h .„

-

2 \ 125 2

'

f4) Simplify 3\/2 + 2^- + Vs.

3^2 + 2-/- + VS = 3V2 + \/2 + 2^2

= 6V2.
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In any piece of work it is usually expected that all the surds will

finally be left in their simplest form.

Exercises

Reduce each of the following surds to its simplest form

:

5. ^ — 7. ^ .

5 \4 \81 \b'x^

\3 \27 \12 \ x'

9. Simplify V^ + AV^ + 6VS-
10. Simplify 1 + Vs + V2 - V27 - Vl2 + Vl5.
11. Sunplify i/21 + 7v^ X "^21 - 7V5.
12. Find the value of a;^ - 6a; + 7 if a; = 3 - \/3.

13. Find the value when x = \/3 of the expression
2a;- 1 _ 2a; + 1

(a;- 1)2 (x + 1)2'

14. Find the value of

(35VT0 + 77\/2 + 63-v/3)(vT^ + V2 + \/3).

Solve and check each of the following equations:

15. vT+4 = 4. 22. Vx - Vx - 5 = \/5.

16. v/2a; + 6 = 4. 23. Va; - 7 = Va; - 14 + 1.

17. VlOa; + 16 =
5^

24. Vx - 7 = -y/x + 1 - 2.

18. V2x + 7 = VSx - 2. 26. x = 7 - Vx" - 7.

19. 14 + -i^4x - 40 =^10. 26. Vx + 2 - Vx - 1 -3=0.
20. Vl6x+ 9 = 4V'4x - 3. 27. -y/x + 3 + \/3x - 2 = 7. _
21. V^- + X = f + Vx. 28. V2x+ 1+ Vx - 3 = 2Vx.

20x ,
. 18

29- -7?^?=^ - VlOx - 9 = -jrz : + 9.
VlOx - 9 VlOx - 9

30 ^^^ _ Vi + 1

31.

Vx — 1 X — 3

Vx + Vx — 3 _ 3_

Vx — Vx — 3 X —

:

318. Rationalizing the Benominator of a Fraction.

Illustration: Rationalize the denominator of

V3 + 2 (V3 + 2)(V3+ V2) 3 + 2V3+V6 + 2V3
V3-V2 (V3 - V2)(V3 + V2)
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ExerciBes

Rationalize the denominator of each of the following

:

1 6 g Vl^^^ + 1

'
3 + -v/s"

' Vx -2+2'

2 VS - V2 ^ Vo - 6 + Va
' VB + -\/2 " Va — b — Va

g 2V2 + 3 g Vl + g - Vl - g

3\/2 + 2 ' Vl +a + Vr^^
^ 5>/2^+6

g
1

3V2 - 6 a;2 - Vl + x'

Vi + Va '
1 + Vi - x^
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Logarithms of Tbigonometeic Functions

log sin log tan dc log cot log COS pp

so

so

SO

8.9403
8.9S4S

8. 9682
8.9816
8. 9945

9 . 0070
9.0192
9.031I

9.. 0426
9.0S39
9 . 0648

9.07SS
9.0859
9 . 0961

9.1060
9.1157
9.1252

9.1345
9.1436
9.1525

9.1612
9.1697
9.1781

9.1863
9-1943
9.2022

9.2100
9.2176
9.2251

9.2324
9.2397

log COS

142
137

134
129
125

122
119
IIS

113
109
107

104
102
99

97
95
93

9f
89
8t

85
84
82

80
79
78

76
75
73

8.9420
8.9563

8.9701
8.9836
8 . 9966

9.0093
9.0216
9.0336

9.0453
9.0567
9.0678

9.0786
9.0891
9.0995

9 . 1096
9.1194
9.1291

9.1385
9.1478
9.1569

0.1658
9. 1745
9.1S31

9.1915
9.1907
9.2078

9.2158
9.2236
9.2313

S-2389
9.2463

log cot

143
138

13s
130
127

123
120
117

114
111
108

105
104
lOI

98
97
94

93
91
89

87
86
84

82
81
80

78
77
76

1.0580
1.0437

1.0299
1.0164
1.0034

0.9907
0.9784
0.9664

0.9547
0.9433
0.9322

0.9214
0.9109
0.9005

0.8904
9.8806
0.8709

0.8615
0.8522
0.8431

o . 8342
0.8255
0.8169

0.8085
0.8003
0.7922

0.7842
0.7764
0.7687

0.7611
0.7537

9.9983
9.9982

9.9981
g.9980
9.9979

9.9977
9.9976
9.9975

9.9973
9.9972
9.9971

9.9969
9.9968
9.9966

9.9964
9.9963
9.9961

9.9959
9-9958
9.9956

9.9954
9.9952
9.9950

9.9948
9.9946
9.9944

9.9942
9.9940
9.9938

9.9936 10
9.9934 O 80

o 8S

10
84

50

40
30
20

o 83

40
30
20

10
82

SO

40
30
20

81

dc log tan log sin

"3
II.

3

22.6
33.9
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Logarithms op Thigonomethic Functions

log sin log tan dc log cot log COS

IS o

20
30
40

i6

i8

20
30
40

19 o

9.4130
9.4177

9.4223
9.4269
9.4314

9.43S9
9.4403
9-4447

9-4491
9-4533
9.4576

9.4618
9.4659
9.4700

9-4741
9.4781
9.4821

9.4861
9.4900
9-4939

9.4977
9-5015
9-S052

9.S090
9.5126
9.S163

9.5199
9-5235
9.5270

9-^306
9-5341

9.4281
9.4331

9.4381
9.4430
9.4479

9.4527
9-4575
9.4622

9.4669
9-4716
9-4762

,4808
4853
14898

9-4943
9-4987
9-5031

9-5075
9-5118
9.5161

9.5203
9-5245
9-5287

9-5329
9-5370
9-5411

9-5451
9-5491
9-5531

9-5571
9-S611

0-5719
0-5669

0,5619
0-5570
0.5521

0-5473
0-5425
0.5378

0-5331
0.5284
O-S238

0.5192
0-S147
0.5102

0-5057
0.5013
o

. 4969

0.492s
0.4882
0.4839

0.4797
0.475s
0.4713

0.4671
0.4630
0.4589

0.4549
0.4509
0.4469

0.4429
0.4389

9-9849
9.9846

9.9843
9.9839
9.9836

9.9832
9.9828
9.9825

9.9821
9.9817
9-9814

9-9S10
9.9806
9.9802

9.9798
9-9794
9.9790

9.9786
9-9782
9.9778

9.9774
9.9770
9-9765

9.9761
9.9757
9.9752

9-9748
9 9743
9.9739

9-9734
9-9730

75

72

50 71

25.0
30.0

35-0
40.0
45 -Q

48
4.8
9.6
14.4

ig.2
24.0
28.8

33.6
38.4
43

49
4-9
9.8
14-7

log cos log cot dc log tan log sin

46

1
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Logarithms of Thigonometbic Functions

log Bin d log tan dc log cot log cos d

iS 9.62S9
9.6286

9.6313
30 9.6340
40 9 . 6366

26 o

SO

so
28

10

30

9.6392
9.641S
9.6444

9.6470
9.649s
9.6S21

9.6546
9.6370
9.6595

9.6620
9.6644
9.6668

9 . 6692
9.6716
9.6740

9.6763
9.6787
9.6810

9.6833
9.6856
9.6878

9.6901
9.6923
9.6946

9.6968
9.6990

log cos

9.6687
9.6720

9.6752
9.6785
9.6817

9.6850
9.6882
9.6914

9.6946
9.6977
9 .
7009

9.7040
9.7072
9.7103

9.7134
9.7165
9.7196

9.7226
9.7257
9.7287

9.7317
9.7348
9.7378

9.7408
9-7438
9.7467

9.7497
9.7S26
9.7356

9.758s
9.7614

log cot dc

0.3313
0.3280

0.3248
0.321S
0.3183

0.3150
0.3118
0.3086

0.3054
0.3023
0.2991

o . 2960
0.292&
0.2897

0.2866
0.2835
0.2804

0.2774
0.2743
0.2713

0.2683
0.2652
0.2622

0.2392
0.2562
0.2533

0.2503
0.2474
0.2444

0.2415
0.2386

log tan

9.9573
9.9567

9.9361
9.9SS3
9-9549

9-9543
9-9S37
9-9530

9-9524
9-9518
9-9512

9-9505
9-9499
9.9492

9.9486
9.9479
0-9473

9 - 9466
9-9459
9-9453

9.9446
9.9439
9.9432

,9425
.9418
.9411

9-9404
9-9397
9-9390

9-9383
9-937S

log sin

6S

o 64

63
SO

o 62

o 61

o 60

6
0.6
1.2
1.8

2.4
3.0
3.6

7
0.7
1.4
2.1

2.8
3.5
4-2

4-9
3-6
6-3

8
0.8
1.6
2.4

3.2
4-0
4-8

3-6
6-4
7-2



484 ELEMENTARY MATHEMATICAL ANALYSIS

LOGABITHMS OP TSiaONOMBTKIC FUNCTIONS

log sin log tan dc log cot log COS

30
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LOQAEITHMS OF TeIGONOMBTBIC FUNCTIONS,

log sin log tan dc log cot log cos

3S

30
40

so
36 o

30
40

so
37

10

20
30
40

SO
38 o

39 o

9-7585
9 . 7604

9.7622
9.7640
9.7657

9-7675
9.7692
9.7710

\

9.7727
9.7744
9.7761

9.7778
9-7795
9-7811

9.7S28
9-7844
9.7861

9-7877
9.7893
9.7910

9.7926
9.7941
9.7957

9.7973
9.7989
9.8004

9.8020
9.8035
9.8050

9.8066
9.8081

log COS

9.8452
9.8479

9.8506
9.8533
9.8559

9-8586
9-8613
9-8639

9.8666
9.8692
9.8718

9.8745
9.8771
9.8797

9.8824
9-8850
9-8876

9.8902
9.8928
9.8954

g.8980
9 . 9006
9.9032

9-9058
9.9084
9.9110

9.9135
9.9161
9.9187

9.9212
9.9238

log cot dc

0.1548
O.IS2I

0.1494
o . 1467
O.I44I

O.I414
0.1387
O.I36I

0.1334
0.1308
0.1282

O.I2S5
0.1229
0.1203

O.II76
Q.I150
o. 1124

0.1098
0.1072
0.1046

0.1020
. 0994

0.0968

0.0942
0.0916
0.0890

0.086s
0.0839
0.0813

p. 0788
0.0762

9-9134
9-9125

9-9I16
9-9107
9.9098

9.9089
9.9080
9.9070

9.9061
9-9052
9 . 9042

9-9033
9-9023
9-9014

9.9004
9.8995
9-8985

9-8975
9-8965
9-8955

9-8945
9-8935
9-8925

9-891S
9-8905
9-8895

9.8884
9-8874
9 - 8864

9-8853
9.8843

log tan log sin

o 55

S4
50

40
30
20

o S3

50

9
0.9
1.8
2-7

3-6
4-5
5-4

6-3
7-2
8.1

4.4
S-5
6-6

7.7
8.8
9-9

27

1
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LOQARITHMS OF TRIGONOMETRIC FUNCTIONS

log Bin log tan dc log cot log COS

42 o

43 o

44 o

50
45

9 . 8081
9 . 8096

9.8111
9.812s
9.8140

9.81SS
9.8169
9.8184

9.8198
9.8213
9.8227

9.8241
9.82SS
9.8269

9.8283
9.8297
9.8311

9.8324
9.8338
9.8351

9.836s
9-8378
9.8391

9.840s
9.8418
9.8431

9.8444
9.84S7
9 . 8469

9.8482
9.849s

9.9238
9.9264

9.9289
9.931S
9.9341

9 . 9366
9.9392
9.94*7

9.9443
9.9468
9.9494

9.9SI9
9. 9544
9.9S70

9.9S9S
9. 9621
9.9646

9.9671
9.9697
9.9722

9.9747
9.9772
9.9798

9.9823
9.9S48
9.9874

9.9899
9.9924
9.9949

9. 9975
O . 0000

0.0762
0.0736

0.07II
0.068s
o.o6s9

0.0634
o . 0608
0.0583

0.0SS7
O.OS32 ,

0.0506

0.0481
0.0456

. 0430

. 040s
0.0379
0.0354

o . 0329
. 0303

0.0278

0.0253
0.0228
0.0202

0.0177
0.0IS2
0.0126

O.OIOI
0.0076
0.0051

0.002s
. 0000

log COS log cot dc log tan

9.8843
9.8832

9.8821
9.88IC
9.8800

9.8789
9.8778
9.8767

9.8756
9.8745
9.8733

g.8722
9.87II
9 . 8699

9.8688
9.8676
9 . 8665

9.8653
9.8641
9.8629

0.8618
9.8606
9.8594

9.8582
9.8569
9.8557

9.8545
0.8532
9.8520

9.8507
9.8495

49
so

o 48
SO

40
30

47
50

40
30
20

46
SO

40
30
20

log sin

26
2.6
S.2
7.8

10.4
13.0
IS.

6

18.2
20.8
23.4

25
2.5
so
.7.5

10.

o

12.

S

IS.O

17. s
20.0
22. S

15
1.

5

3.0
4.5

6.0
7.5
9.0

10.

s

12.0
13.

5

14
1.4
2.8
4.2

5.6
7.0
8.4

9.8

1.0
2.0
3.0

4.0
5.0
6.0

7.0
8.0
9.0

13
1.3
2.6
3.9

5.2
6.5
7.8

9.1
10.4
II.

7

4.4
s.s
6.6

7.7
8.8
9.9

12
1.2

1:1

4.8
6.0
7.2

8.4
9.6
10.8
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Natural Trigonometric Functions
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INDEX
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Abscissa, 33

Absolute value of complex num-
ber, 369

Addition formulas for sine and
cosine, 307-309

for tangent, 309

Additive properties of graphs,

142, 295-297

Aggregation, symbols of, 453

Algebraic scale, 3, 357

Alternating current curves, 384

et seq.

represented by complex

numbers, 384

Amplitude of complex number,

369

of S. H. M., 340

of sinusoid, 117

of uniform circular motion,

102

of wave, 345

Angle, 99

depression, 130

direction, 103

eccentric, 156

elevation, 130

epoch, 340, 345

initial side, 99

phase, 340, 345

that one line makes with an-

other, 313

vectorial, 103

Angles, congruent, 100

Angular magnitude, 99

units of measure, 100

velocity, 102

Anti-logarithm, 254

Approximation formulas, 209

Approximations, successive, 196

Argument of function, 12

of complex number, 369
Arithmetical mean, 213

progression, 213-216

triangle, 204

Asymptotes of hyperbola, 60,

165, 167

Auxiliary circles, 155

Axes of ellipse, 154

of hyperbola, 168

Binomial coefficients, graphical

representation of, 211,

212

theorem, 204 et seq.

Briggs, Henry, 236

system of logarithms, 245

Cartesian coordinates, 33

Cassinian ovals, 394

Catenary, 297

Change of base, 264, 265

of unit, 66, 70, foot note, 77

et seq., 285

Characteristic, 250, 251

Circle and circular functions.

Chap. IV, 97 et seq.

Circle, dipolar, 395

equation of, 97, 98

sine and cosine, 126-128

tangent to, 422, 428

through three points, 433

491
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Circles, auxiliary, 155

Circular functions, 103 et seq.

graphical computation of,

106, 115

fundamental relations, 110,

304-318

law of, 132

motion, 102

Cologarithm, 254

Combinations, 199, 202, Chap.
VII

Common logarithms, 246

Complementary angles, 114, 118

Completing square, 463

Complex numbers, Chap. XII,

357 et seq.

defined, 363

laws of, 365

polar form, 369

typical form, 363

Composite angles, functions of,

310-312

Composition of two S. H. M.'s,

343

Compound harmonic motion, 334

interest, 220

law, 277

Computers rules, 328

Conditional equations, 138, 320-

327

Conies, 414, 417

con-focal, 441

sections. Chap. XIV, 399 et

seq.

Conjugate axis, 168

complex numbers, 367

hyperbolas, 170

Connecting rod motion, 355

Constants and variables, 15

Continuous function, 11

compounding of interest, 278

Coordinate paper, 27, 124, 271,

289

Coordinates, Chap. II, 23 et seq.

Cartesian, 34

orthogonal, 124

polar, 123, 434

rectangular, 33 et seq.

relation of polar and rectan-

gular, 136, 434

Cosecant, 103

Cosine, 103

curve, 117, 126

law, 321

Cotangent, 103

Crest of sinusoid, 116

Cubical parabola, 52

Cubic equation, 192 et seq.

"Cut and Try," 149

Cycloid, 395

Damped vibrations, 299

Damping factor, 299

Decreasing function, 63

geometrical series, 221

DeMoivres theorem, 375

Descartes, Ren6, 34

Diameter of any curve, 440

of ellipse, 440

of parabola, 419

Direction angle, 103

Directrix of ellipse, 402, 415

of hyperbola, 408, 415

of parabola, 408, 413

Discontinuous function, 13, 27,

59

Distance of point from line,

426

Distributive law of multiplica-

tion, 205, 365

general, 456
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Double angle, functions of, 315
scale, 4-9, 21, 22, 266-276

of algebraic functions, 21

of logarithmic functions,

266-276

"e," 241, 245, 260, 277

Eccentric angle, 156

Eccentricity of earth's orbit, 403
of ellipse, 401

of hyperbola, 408

of parabola, 413, 415

Ellipse, 52 et seq., 399 et seq.,

Chaps. V and XIV.
axes of, 154

construction, 155, 158, 159

directrices, 402, 415

eccentricity, 402

focal radii, 399, 430

foci, 399

latus recturn, 404

parametric equation, 155

polar equation, 410

symmetrical equation of, 154.

tangent to, 429

vertices, 154

Ellipsograph, 158

Elliptic motion, 344, 388

Empirical curves, 46, 283, 291

formulas, 75

Envelope, 422

Epicycloid and epitrochoid, 397

Epoch angle, 340, 345, 348

Equations, conditional, 138

explicit, 154

quadratic, 462

systems, 186-192

simple, 461

single and simultaneous,

Chap. VI, 174

with given roots, 178

Even function, 119

Expansion, binomial, 205, 208

Exponential curves, 236-240,

260-264

equation, 240

function, Chap. IX, 234 et seq.

compared with power,
286-289

defined, 240, 243, 244

sums of, 295-299

Exponents, definition of, 466

irrational, 243, 244

laws of, 466

Factor theorem, 177

Factorial number, 200

Factoring, 454-460

fundamental theorem in, 459

Family of curves, 78

of lines, 421

Focal radii and foci, 393

of eUipse, 399, 430

of hyperbola, 406

radius of parabola, 414

Fractions, 460

Frequency of S. H. M., 340

of sinusoidal wave, 347

uniform circular motion, 102

Function, periodic, 26, 113

power, 48 et seq., 286

S. H. M., 339

trigononietric, 103

Functions, 10, 11

circular, Chap. IV, 97 et

seq., 103

continuous, 11

discontinuous, 13, 27, 59

even and odd, 119

explicit and implicit, 155, 174

exponential, 240,-243, 244,

286 et seq.
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Functions, increasing and de-

creasing, 63, 147

General equation of second de-

gree, 440

Geometrical mean, 217

progression, 217 et seq.

Graphical computation, 16 et seq.

of circular functions, 106

of integral powers, 19

of logarithms, 237

of product, 16

of quotient, 17

of sq. roots, 18, 21

of squares, 18, 21

solution of cubic, 192

simultaneous equations,

183 et seq.

Graph of binomial coefficients,

211, 212

of complex number, 364

of cycloid, 396

of ellipse, 158, 159

of equation, 36

of functions of multiple an-

gles, 318, 319

of geometrical series, 236

of hyperbola, 167, 168

of hyperbolic functions, 297

of logarithmic and exponen-

tial curves, 236-240, 260

of parabolic arc, 420

of power function, 48-60, 64

of sinusoid, 115

of tangent and secant curves,

143-147

Graphs, suggestions on construc-

tion of, 27

nonnstatistical, 35

Half-angle, functions of, 315 .

Halley's law, 282

Haridonic analysis, 354

functions, 346

fundamental, 352

motion, Chap. XI, 339 et seq.

compound, 352

Hyperbola, Chap. V and XIV.
asymptotes, 165, 167

axes, 168

center, 168

conjugate, 170

construction of, 167

eccentricity, 408

foci and focal radii, 406

latus rectum, 408

parametric equations, 165,

167

polar equation, 410

rectangular, 58, 164

symmetrical equation, 166

vertices, 168

Hyperbolic curves, 52, 58

sine and cosine, 296

system of logarithms, 245

Hypocycloid and Hypo-trochoid,

397

i = V^^, 362

Identities, 110, 111, 138, 304r-317

Illustrations from science, 69-76

Image of curve, 57

Increasing function, 63, 147

progression, 214

Increment, logarithmic, 279

Infinite discontinuity, 59

geometrical progression, 221

Infinity, 69

Intercepts, 39, 40

Interest, compound, 220, 277

curve, 237

Interpolation, 252

Intersection of loci, 92, 182
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Inverse of curve, 136

of straight line and circle, 136

trigonometric functions, 137,

360

Irrational numbers, 379

Lamellar motion, 88

Langley's law, 74

Latitude and longitude of a point,

33

Latus rectum of ellipse, 404

of hyperbola, 408

of parabola, 414

Law of circular functions, 132

of complex numbers, 365

of compound interest, 277

of exponential function, 288

of power function, 80-82

of sines, cosines, and tan-

gents, 320-327

Lead or lag, 349, 384

Legitimate transformations, 178

Lemniscate, 393

Limit, 221

Limiting lines of ellipse, 161

Loci, Chap. XIII, 387 et seq.

defined by focal radii, 393

Theorems on, 61, 62, 65, 85,

88, 135

Locus of points, 35, 36

of equation, 36

Logarithmic and exponential

functions, Chap. IX,

234 et seq.

coordinate paper, 289-295

curves, 236-240, 260-264

double scale, 266

functions, 240, 244

increment and decrement,

279-282, 299

tables, 252, 253

Logarithm of a number, 236, 244

Logarithms, common, 244

graph, 237-243

properties of, 247-250

systems of, 245

Mantissa, 250

Mean, arithmetical, 213

geometrical, 217

harmonical, 224

Modulus of complex number, 369

of decay, 281, 299

of logarithmic system, 264

Motion, circular, 102

compound harmonic, 352

connecting rod, 355

elliptic, 344, 388

shearing, 87

S. H. M., 339 et seq.

Naperian base, 245, 260, 277, 341

system of logs., 245

Napier, John, 234

Natural system of logarithms, 245

Negative angle, 100

functions of, 118, 119

Newton's law, 282

Node, 116

Normal, 136

equation of line, 136, 423

to ellipse, 430

to parabola, 420

Oblique triangles, 320-334

Odd functions, 119

Operators, 359

Ordinate of point, 33

Origin, 34

at vertex, 160, 415

Orthogonal systems, 124

Orthographic projection, 120-

123, 152, 265
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Paper, logarithmic, 289 et seq.

polar, 124 et seq.

rectangular, 33 et seq.

semi-log, 271, 283 et seq.

Parabola, 52, 413

cubical, 52

polar equation, 414

properties of, 419

semi-cubical, 52

Parabolic curves, 49 et seq., 56, 289

Parameter, 155, 387

Parametric equations, 155

of cycloid, 396

of ellipse, 155

of hyperbola, 165, 166

Pascal's triangle, 204, 205

Periodic functions {see trig.-

fcns.), 26, 116

Period of S. H. M., 341

of simple pendulum, 342

of uniform circular mo-
tion, 102

of wave, 347

Permutations, 199-202

and combinations, Chap.

VII, 198 et seq.

Phase angle, 341, 348, 349

Plane triangles, 320-334

Polar coordinates, 123, 434

diagrams of periodic func-

tions, 126, 318

equation of ellipse, 410

of hyperbola, 410

of parabola, 414

of straight hne, 135

form of complex number, 369

relation to rectangular, 136,

434

Polynomial, 175

Positive and negative angle, 100,

119

Positive and negative coordi-

nates, 33

side of line, 427

Power function. Chap. Ill, 48 et

seq.

compared with exponen-

tial, 286-289

law of, 80-82

practical graph, 76

variation of, 62

Probability curve, 212

Products, special, 451, 452

Progressions, Chap. VIII, 213 et

seq.

arithmetical, 213-216

decreasing, 214

geometrical, 217-224

harmonical, 224, 225

Projection, orthographic, 120-

123, 152, 265

Proportionality factor, 68

Quadrants, 34

Quadratic equations, 462

systems of equations, 186

Questionable transformations,

178

Radian unit of measure, 101, 102

Radicals, reduction of, 471

Radius vector, 123

Ratio definition of conies, 414, 415

Rationalization, 472

Rational formulas, 75

numbers, 354

Rectangular coords, (see Coordi-

nates), Chap. II, 33

et seq.

Reflection of curve, 57

Remainder theorem, 175

Reversors, 361

Right angle system, 100
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Root of any complex number, 376

of equation, 91

of function, 91, 177

of utoity, 377

Rotation of locus, 82, 133

polar coordinates, 133-135

rectangular, 434^436

of rigid body, 82

Scalar numbers, 358

Scale, 1, 3

algebraic, 3, 357

functions, 21

arithmetical, 3, 357

double, 4 et seq.

logarithmic, 266-276

uniform, 1

Tables, damped vibrations, 301,

302

logarithms, 252, 476

natural trig, functions, 107,

128, 129, 487

powers, 51

of "e," 263

Tangent, 103

graph, 143

law, 323

to circle, 422, 428

to curve, 260

to ellipse, 429

to parabola, 418

Theorems, binomial, 205 et seq.

factor, 176

functions of composite an-

gles, 310

on loci, 61, 65, 85, 135

remainder, 175

Transformations, legitimate and
questionable, 178

Translation, 82, 83

of any locus, 83, 85, 425
32

Translation of rigid body, 82

Transverse axis, 168

Triangle of reference, 103, 108

Triangles, solution of, 129, 320-

338

oblique, 320-338

right, 129-131

Trigonometric curves, 115, 117,

143-147, 319

functions, 103 et seq.

Trochoid, 397

Trochoidal waves, 349

Trough of sinusoid, 116

Uniform circular motion, 102

Unit, change of, 66, 70, 77 et

seq., 285

of angular measure, 101

Variables and constants, 15

and functions of variables.

Chap. I

Variation, 67

of power function, 62

Vector, 123

radius, 123

Vectorial angle, 103, 123

Velocity, angular, 102, 339

of wave, 348

Versors, 362

Vertices of ellipse, 154

of hyperbola, 168

Vibrations, damped, 299

Waves, Chap. XI, 339 et seq.

compound, 352

length of, 347

progressive, 344 et seq.

sinusoidal, 344 et seq.

stationary, 350

trochoidal, 349

Zero of function, 91
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