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PREFACE.

A COURSE dealing with the fundamental theorems of infini-

tesimal calculus in a rigorous manner is now recognized as an

essential part of the training of a mathematician. It appears

in the curriculum of nearly every university, and is taken by
students as "Advanced Calculus " in their last collegiate year,

or as part of "Theory of Functions " in the first year of graduate

work. This little volume is designed as a convenient reference

book for such courses; the examples which may be considered

necessary being supplied from other sources. The book may
also be used as a basis for a rather short theoretical course ou

real functions, such as is now given from time to time in some

of our universities.

The general aim has been to obtain rigor of logic with a

minimum of elaborate machinery. It is hoped that the system-

atic use of the Heine-Borel theorem has helped materially

toward this end, since by means of this theorem it is possible

to avoid almost entirely the sequential division or " pinching
"

process so common in discussions of this kind. The definition

of a Umit by means of the notion "value approached" has

simplified the proofs of theorems, such as those giving necessary

and sufficient conditions for the existence of _ limits, and ia

general has largely decreased the number of e's and d's. The

theory of limits is developed for multiple-valued functions,

which gives certain advantages in the treatment of the definite

integral.

In each chapter the more abstract subjects ?ind those which

can be omitted on a first reading are placed in the concluding
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sections. The last chapter of the book is more advanced in

character than the other chapters and is intended as an intro-

duction to the study of a special subject. The index at the

end of the book contains references to the pages where technical

terms are first defined.

When this work was undertaken there was no convenient

source in English containing a rigorous and systematic treat-

ment of the body of theorems usually included in even an ele-

mentary course on real functions, and it was necessary to refer

to the French and German treatises. Since then one treatise,

at least, has appeared in English on the Theory of Functions

of Real Variables. Nevertheless it is hoped that the present

volume, on account of its conciseness, will supply a real want.

The authors are much indebted to Professor E. H. Moore

of the University of Chicago for many helpful criticisms and

suggestions; to Mr. E. B. Morrow of Princeton University for

reading the manuscript and helping prepare the cuts; and to

Professor G. A. Bliss of Princeton, who has suggested several

desirable changes while reading the proof-sheets.
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INFINITESIMAL ANALYSIS.

CHAPTER I.

THE SYSTEM OF REAL NUMBERS.

§ 1. Rational and Irrational Numbers.

- The real number system may be classified as follows:

(1) All integral numbers, both positive and negative, in-

cluding zero.

(2) All numbers —, where m and n are integers (n^^O).

(3) Numbers not included in either of the above classes,

such as V2 and w.f

Numbers of classes (1) and (2) are called rational or com-
mensurable numbers, while the numbers of class (3) are called

irrational or incommensurable numbers.

As an illustration of an irrational number consider the

square root of 2. One ordinarily says that \/2 is 1.4 +, or

tit i8 clear that there is no number— such that—7=2, for if —r = 2.
n n' ' n' '

then m'=2n', where m' and 2n' are integral numbers, and 2n' is the square

of the integral number m. Since in the square of an integral number every

prime factor occurs an even number of times, the factor 2 must occur an
even number of times both in n' and 2n', which is impossible because of

the theorem that an integral number has only one set of prime factors.
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1.41 + , or 1.414+ , etc. The exact meaning of these statements

is expressed by the following inequalities: t

(1.4)2 <2< (1.5)2,

(1.41)2 <2< (1.42)2,

(1.414)2 <2< (1.415)2,

etc.

Moreover, by the foot-note above no terminating decimal is

equal to the square root of 2. Hence Horner's Method, or

the usual algorithm for extracting the square root, leads to an

infinite sequence of rational numbers which may be denoted

by Oi, a2, as, . .
.

, a„, . . . (where ai=1.4, 02 = 1.41, etc.), and

which has the property that for every positive integral value

of n

a„<o„+i, a„2<2< ("-+ 1^)'

Suppose, now, that there is a least number o greater than

every o„. We easily see that if the ordinary laws of arith-

metic as to equality and inequality and addition, subtraction,

and multiplication hold for a and a^, then a^ is the rational

nimiber 2. For if a2<2, let 2-o2= e, whence 2=a? + e. II n

were so taken that jjc<-r, we should have from the last in-

2 £ e
<0„2+4g + g<02+£.

equality {

so that we should have both 2=a^+ e and 2<a2+ e. On the

t a< 6 signifies that a is less than b. a>b signifies that a is greater than 6.

t This involves the assumption that for eveiy nvimber, e, however small

there is a positive integrer n such that ttt-K t- This is of course obvious
10** o

when e is a rational number. If c is an irrational number, however, the

statement will have a definite meaning only after the irrational number
has been fully defined.



THE SYSTEM OF REAL NUMBERS. 3

other hand, if o^ > 2, let a^ - 2 = e' or 2 + e' =a. Taking n such

that r-r- <— , we should have
lU" 5

(a« +
J^)'

< (fln^) + e' < 2 + e' < a;

and since Cn+ iT^ is greater than a* for all values of k, this

would contradict the hypothesis that a is the least number

greater than every number of the sequence a\, 02, 03, . . . We
also see without difficulty that o is the only nimiber such that

«2 = 2.

§ 2. Axiom of Continuity.

The essential step in passing from ordinary raticwial num-
bers to the number corresponding to the sjonbol \/2 is thus

made to depend upon an assumption of the existence of a

number o bearing the unique relation just described to the

sequence a^, a2, a„, . . . In order to state this hypothesis in

general form we introduce the following definitions:

Definition.—^The notation [x] denotes a set,'f any element

of which is denoted by x alone, with or without an index or

subscript.

A set of numbers [x] is said to have an upjxr bound,

M, if there exists a number M such that there is no number

of the set greater than M. This may be denoted by M^[x].

A set of numbers [x] is said to have a lower bound, m, if

there exists a number m such that no number of the set is

less than m. This we denote by m^[x}.

Following are examples of sets of numbers:

(1) 1, 2, 3.

(2) 2, 4, 6, . . .
, 2i, . .

.

(3) 1/2, 1/22, 1/23, . .
.

, i/2», . .

.

(4) All rational numbers less than 1.

(5) All rational numbers whose squares are less than 2.

t Synonyms of set are class, aggregate, collection, assemblage, etc.
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Of the first set 1, or any smaller number, is a lower bound;,

and 3, or any larger number, is an upper bound. The second

set has no upper bound, but 2, or any smaller nimiber, is a

lower bound. The nimiber 3 is the least upper boimd of the

first set, that is, the smallest niraiber which is an upper bound.

The least upper and the greatest lower bounds of a set of num-

bers [x] are called by some writers the upper and lower limits

respectively. We shall denote them by B[x] and 5[x] respect-

ively. By what precedes, the set (5) would have no least upper

bound xmless V2 were coimted as a number.

We now state our hjrpothesis of continuity in the following

form:

Axiom K. If a set [r] of rational numbers having an upper

bound has no rational least upper bound, then there exists one and

only one number B[r] such that

(a) B[r] > /, where / is any number of [r] or any rational rmmr-

ber less than some number of [r].

(6) B[r]<r", where r" is anyrational upper bound of [rj.f

Definition.—^The number ^r\ of axiom K is called the

least upper bound of [r], and as it cannot be a rational number

it is called an irrational nimiber. The set of aU rational and

irrational numbers so defined is called the cordinuxms real num-
ber system. It is also called the linear continuum. The set of

all real numbers between any two real numbers is likewise

called a linear continuum.

Theorem i. // two sets of rational numbers [r] and [s], having

upper bounds, are such that no r is greater than every s and no s

greater than every r, then B[r] and B[s] are the same; that is, in

symbols.

Proof.—^If B[r] is rational, it is evident, and if ^r] is irra-

tional, it is a consequence of Axiom K that

B[r]>s',

t This axiom implies that the new (irrational) numbers have relations

of order with all the rational numbers, but does not explicitly state rela-

tions of order among the irrational numbers themselves. Cf. Theorem 2.



THE SYSTEM OF REAL NUMBERS. 5

where s' is any rational number not an upper bound of [s].

Moreover, if s" is rational and greater than every s, it is greater

than every r. Hence

where s" is any rational upper bound of [s]. Then, by the

definition of B[s],

B[r]=m

Definition.—If a number x (in particular an irrational

number) is the least upper bound of a set of rational numbers

[r], then the set [r] is said to determine the number x.

Corollary 1. The irrational numbers i and i' determined by
the two sets [r] and [/] are equal if and only if there is no num-
ber in either set greater than every number in the other set.

Corollary 2. Every irrational number is determined by some

set of rational numbers.

Definition.—If i and i' are two irrational numbers deter-

mined respectively by sets of rational numbers [r] and [/]

and if some number of [r] is greater than every niunber of [/],

then

i>i' and i'<i.

From these definitions and the order relations among the

rational numbers we prove the following theorem:

Theorem 2. If a and b are any two distinct real numbers, then

a<b orb<a; if a<b, then not b<a; if a<b and b<c,then a<c.

Proof.—Let o, 6, c all be irrational and let [x], [y], [2] be sets

of rational numbers determining a, b, c. In the two sets [x]

and [y] there is either a number in one set greater than every

number of the other or there is not. If there is no number in

either set greater than every number in the other, then, by

Theorem 1, a=b. If there is a number in [x] greater than

every number in [y], then no number in [y] is greater than

•every number in [x]. Hence the first part of the theorem is
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proved, that is, either a=b or a<b orb <a, and if one of these^.

then neither of the other two. If a number yi of [y] is greater

than every number of [x], and a number zi of [z] is greater

than every number of [y], then zi is greater than every num-

ber of [x]. Therefore if o<6 and b<c, then a<c.

We leave to the reader the proof in case one or two of the

numbers a, b, and c are rational.

Lemma.—If [r] is a set of rational numbers determining an

irrational number, then there is no number ri of the set [r]

which is greater than every other number of the set.

This is an immediate consequence of axiom K.

Theorem 3. If a and b are any two distinct numbers, then

there exists a rational number c such that a<c and c<b, or b<e
and c<a.

Proof.—Suppose a<b. When a and b are both rational

—^ is a nimiber of the required type. If a is rational and b

irrational, then the theorem follows from the lemma and Corol-

lary 2, page 5. If a and b are both irrational, it follows from

Corollary 1, page 5. 11 p, is irrational and b rational, then

there are rational numbers less than b and greater than every

number of the set [x] which determines a, since otherwise b
would be the smallest rational nimiber which is an upper bound
of [x], whereas by definition there is no least upper bound
of [x] in the set of rational numbers.

Corollary. A rational number r is the least upper bound of

the set of all numbers which are less than r, as well as of the

set of all rational numbers less than r.

Theorem 4. Every set of numbers [x] which has an upper

bound, has a least upper bound.

Proof.—Let [r] be the set of all rational mmabers such that

no number of the set [r] is greater than every number of the

set [x]. Then B[r] is an upper boimd of [x], since if there were

a number Xi of [x] greater than B[r], then, by Theorem 3, there

would be a rational nmnber less than Xi and greater than

B[r], which would be contrary to the definition of [r] and B[r].
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Further, B[r]js the least upper bound of [x], smce if a number
N less than B[r] were an upper bound of [x], then by Theorem 3

there would be rational numbers greater than N and less than

B[r], which again is contrary to the definition of [r].

Theorem 5. Every set [x] of numbers which has a lower

bound has a greatest lower bound.

Proof.—^The proof may be made by considering the least

upper bound of the set [y] of all numbers, such that every num-
ber of [y] is less than every niunber of [x]. The details are

left to the reader.

Theorem 6. If all numbers are divided into two sets [x] and

[y] such that x<y for every x and y of [x] and [y], then there is

a greatest x or a least y, but not both.

Proof.—The proof is left to the reader.

The proofs of the above theorems are very simple, but ex-

perience has shown that not only the beginner in this kind of

reasoning but even the expert mathematician is likely to make
mistakes. The beginner is advised to write out for himself

every detail which is omitted from the text.

Theorem 4 is a form of the continuity axiom due to Weier-

strass, and 6 is the so-called Dedekind Cut Axiom. Each of

Theorems 4, 5, and 6 expresses the continuity of the real num-

ber system.

§ 3. Addition and Multiplication of Irrationals.

It now remains to show how to perform the operations of

addition, subtraction, multipUcation, and division on these

numbers. A definition of addition of irrational numbers is sug-

gested by the following theorem: "If a and b are rational num-

bers and [x] is the set of all rational niunbers less than a, and

[y] the set of all rational numbers less than b, then [x+y] is

the set of all rational nvmibers less than a+b." The proof of

this theorem is left to the reader.

Definition.—^If a and b are not both rational and [x] is the

set of aU rationals less than a and [y] the set of all rationals less
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than b, then a+b is the least upper bound of [x+ y], and is

called the sum of o and b.

It is clear that if b is rational, [x+b] is the same set as [x+y];

for a given x+b is equal to x' + (6-(x'-x))=a;'+2/', where x'

is any rational number such that x<x'<a; and conversely,

any x+y is equal to (i- 6 + j/) + 6 = i" + 6. It is also clear that

a+b=b+a, since [x+y] is the same set as [y+x]. Likewise

{a+b) +c=a+ {b+c), since [{x+y) +z] is the same as [x + {y+z)].

Furthermore, in case b<a, c=B[x'—y'], where a<x' <b and

a<y'<b, is such that b + c=a, and in case b<a, c=^x' —y'] is

such that b + c==a; c is denoted by o— & and called the differ-

ence between a and b. The negative of a, or — o, is simply 0— a.

We leave the reader to verify that if a>0, then a+b>b, and

that if o<0, then a+b<b for irrational numbers as well as

for rational*'.

The theorems just proved justify the usual method of add-

ing infinite decimals. For example : ;: is the least upper bound

of decimals hke 3.1415, 3.14159, etc. Therefore n:4-2 is the

least upper bound of such nimibers as 5.1415, 5.14159, etc.

Also e is the least upper bound of 2.7182818, etc. Therefore

r+e is the least upper bound of 5, 5.8, 5.85, 5.859, etc.

The definition of multiphcation is suggested by the follow-

ing theorem, the proof of which is also left to the reader.

Let a and b be rational numbers not zero and let [x] be the

set of all rational numbers between and a, and [y] be the set

of aU rationals between and b. Then if

a > 0, 6 > 0, it follows that ab = B[xy]

;

a<0, b<0, " " " ab = B[xy];

a<0, 5>0, " " " a6 = 5[a;j/];

a>0, 6<0, " " " ab= B[.xyl

Definition.—If a and 6 are not both rational and [a;] is the

set of all rational numbers between and o, and [y] the set of

all rationals between and 6,_then if a>0, b>0, ab means

B[xy]; if a<0, 6<0, ab means ^xy], if o<0, 6>0, ab means

B[xy]; if a>0, 6<0, ab means B^xj/]. If a or 6 is zero, then

ab=0.
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It is proved, just as in the case of addition, that ab=ha,
that a{bc) = idb)c, that if a is rational [ay] is the same set as

[xy], that if a>0, b>0, ab>0. Likewise the quotient -r- is

defined as a number c such that ac=b, and it is proved that

in case a>0, 6>0, then c=b\ —/\, where [y'] is the set of all

rationals greater than b. Similarly for the other cases. More-

over, the same sort of reasoning as before justifies the usual

method of multiplying non-terminated decimals.

To complete the rules of operation we have to prove what

is known as the distributive law, namely, that

o(6+c)=a6+ac.

To prove this we consider several cases according as a, b, and
c are positive or negative. We shall give in detail only the

case where all the numbers are positive, leaving the other cases

to be proved by the reader. In the first place we easily see

that for positive numbers e and /, if [t] is the set of all the

rationals between and e, and [T] the set of all rationals less

than e, while [u] and [U] are the corresponding sets for /, then

e+f=B[T+U]=B[t+u].

Hence if [x] is the set of all rationals between and a, [y] be-

tween and b, [z] between and c,

b + c=B[y+z] and hence a{b+c) = B[x{y+z)].

On the other hand ab=B[xy], (ic=^^xz], and therefore db+ac=

^{xy+xz}]. But since the distributive law is true for rationals,

x(y+z)=xy+xz. Hence E[x{y+z)]=B[ixy+xz)] and hence

aib + c)'=ab+ac.

We have now proved that the system of rational, and irra-

tional nimabers is not only continuous, but also is such that we

may perform with these nimibers all the operations of arith-

metic. We have indicated the method, and the reader may
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prove in detail that every rational number may be represented

by a terminated decimal,

aaO*+Oifc_ilO*-i + . . .+ao+~-+ • +^
= afcfflt_i . . . aoffi_ia_2 . . . ffl_n,

or by a circulating decimal,

O'kP'k-l • • • ffloffl-lffl-2 . d-i . . . d- id-i . a_j . .
.

,

where i and j are any positive integers such that i<]'; whereas

every irrational nimiber may be represented by a non-repeating

infinite decimal,

aicO-ic-i aoa_ia_2 . . . «_„ . .

.

The operations of raising to a power or extracting a root on

irrational numbers wiU be considered in a later chapter (see

page 53). An example of elementary reasoning with the sym-

bol jB[x] is to be found on pages 17 and 18. For the present

we need only that x", where n is an integer, means the number
obtained by multipl3dng x by itself n times.

It should be observed that the essential parts of the defini-

tions and arguments of this section are based on the assumption

of continuity which was made at the outset. A clear under-

standing of the irrational number and its relations to the

rational number was first reached during the latter half of the

last century, and then only after protracted study and much
discussion. We have sketched only in brief outline the usual

treatment, since it is beUeved that the importance and diffi-

culty of a full discussion of such subjects wUl appear more
clearly after reading the following chapters.

Among the good discussions of the irrational number in the

English language are : H. P. Manning, Irrational Numbers and
their Representation hy Sequences and Series, Wiley & Sons, New
York; H. B. Fine, College Algebra, Part I, Ginn & Co., Boston-
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Dedekind, Essays on the Theory of Number (translated from

the German), Open Court Pub. Co., Chicago; J. Piehpont,

Theory of Functions of Real Variables, Chapters I and II, Ginn

& Co., Boston.

§ 4. General Remarks on the Number System.

Various modes of treatment of the problem of the number

system as a whole are possible. Perhaps the most elegant is

the following : Assume the existence and defining properties of

the positive integers by means of a set of postulates or axioms.

From these postulates it is not possible to argue that if p and

V
q are prime there exists a number a such that ap=q or a = -,

i.e., in the field of positive integers the operation of division is

not always possible. The set of all pairs of integers jm, n),

if \mk, nk\ {k being an integer) is regarded as the same as

{Tn,n\, form an example of a set of objects which can be added,

subtracted, and multiplied according to the laws holding for

positive integers, provided addition, subtraction, and multipli-

cation are defined by the equations,t

{m,n\®{p,q\ = {mp,Tiq}

{m, n!01p, 5! = {mq+np, nq].

The operations with the subset of pairs {m,l} are exactly the

same as the operations with the integers.

This example shows that no contradiction will be introduced

by adding a further axiom to the effect that besides the integers

there are numbers, called fractions, such that in the extended

system division is possible. Such an axiom is added and the

order relations among the fractions are defined as follows:

p m ..-<— if pn<qm.an
t The details needed to show that these integer pairs satisfy the alge-

braic laws of operation are to be found in Chapter 1, pages 5-12, of Pier-

pont's Theory of Real Functions. Pierpont's exposition differs from that

indicated above, in that he says that the integer pairs actuaUy are the frac-

tions.
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By an analogous example t the possibility of negative num-

bers is shown and an axiom assuming their existence is justi-

fied. This completes the rational nimiber system and brings

the discussion to the point where this book begins.

Our Axiom K, which completes the real number system,

assuming that every bounded set has a least upper bound,

should, as in the previous cases, be accompanied by an exam-

ple to show that no tontradiction with previous axioms is intro-

duced by Axiom K. Such an example is the set of all lower

segments, a lower segment, S, being defined as any Jsounded

set of rational numbers such that if a; is a number of S, every

rational number less than x is in S. For instance, the set of

all rational nimibers less than a rational number a is a lower

segment. Of two lower segments one is always a subset of the

other. We may denote that aS is a subset of S' by the symbol

S©S\

According to the order relation, @, every bounded set of

lower segments [/S] has a least upper bound, namely the lower

segment, consisting of every number in any S of [S\. If S and
T are lower segments whose least upper bounds are s and t, we
may define

and S(g)r

as those lower segments whose least upper bounds are s+ t and
sXt respectively. It is now easy to see that the set of lower

segments contains a subset that satisfies the same conditiohs

as the rational numbers, and that the set as a whole satisfies

axiom K. The legitimacy of axiom K from the logical point

of view is thus established, since our example shows that it

cannot contradict any previous theorem of arithmetic.

Further axioms might now be added, if desired, to postulate

the existence of imaginary numbers, e.g. of a number x for

t Cf. PiERPONT, loc. cit., pages 12-19.
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each triad of real numbers a, b, c, such that oT^+bx+c^O.
These axioms are to be justified by an example to show that
they are not in contradiction with previous assumptions. The
theory of the complex variable is, however, beyond the scope of

this book.

§ 5- Axioms for the Real Number System.

A somewhat more summary way of deahng with the prob-
lem is to set down at the outset a set of postulates for the
system of real numbers as a whole without distinguishing

directly between the rational and the irrational number. Sev-
eral sets of postulates of this kind have been published by E. V.
Huntington m the 3d, 4th, and 5th volumes of the Transac-
tions of the American Mathematical Society. The following
set is due to HuNTiNGTON.f

The system of real numbers is a set of elements related to
ope another by the rules of addition (-I-), multiplication (x),
and magnitude or order (<) specified below.

Al. Every two elements a and 6 determine uniquely aa
element a+b called their sum.

A 2. {a+b)+c=a + ib + c).

A3. (a+6) = (6+a).

A 4. li a+x=a+y, then x= y.

A 5. There is an element z, such that z+z=z. (This ele-

ment z proves to be unique, and is called 0.)

A 6. For every element a there is an element a', such that

a+a'=0.

M 1. Every two elements a and b determine uniquely an

element ab called their product; and if a?^0 and 6?^0, then

M2. iab)c=a{bc).

M 3. ab = ba.

M4. If ax = ay, and a^^O, then x=y.

t Bulletin of the American Mathematical Society, Vol. XII, page 228.

, J The latter part of M 1 may be omitted from the list of axioms, since

it can be proved as a theorem from A 4 and AMI.
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M 5. There is an element u, different from 0, such that

wu = w. This element proves to be uniquely determined, and

is called 1.

M 6. For every element a, not 0, there is an element a",

such that aa" = l.

AMI. a{h+c)=ab + ac.

1. If a^b, then either a<b or b<a.

2. If a<6, then a5^6.

3. If a<b and b<c, then a<c.

O 4. (Continuity.) If [x] is any set of elements such that for

B certain element b and every x,x<b, then there exists. an ele-

ment B such that

—

(1) For every x of [x], x<B;

(2) li y<B, then there is an zi of a; such that y<xi.

A 1. If x<y, then a+x<a+ y.

M 1. If a>0 and b>0, then ab>0.

These postulates may be regarded as summarizing the prop-

erties of the real number system. Every theorem of real

analysis is a logical consequence of them. For convenience of

reference later on we summarize also the rules of operation

with the symbol |a;|, which indicates the "numerical " or "abso-

lute" value of x. That is, if a; is positive, la;|=a;, and if x is

negative, |x|= —x.

\x\ + \ymx+ y\ (1)

.-. I\xk\^\lxk\, (2)
k-l k=l

n

where Ixk=xi+X2+ . . .+x„.

|N-M|^k-2/| = l2/-a;|^W + |j/| (3)

i2;-2/|
= N-l2/l (4)

(5)

\X\ X

\y\
~

y

If lx-t/|<ei, |2/-zl<e2, then |x-2|<ci+e2 (6)
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If [x] is any bounded set,

5[x]-5[x]=F[|xi-X2|] (7)

§ 6. The Number e.

In the theory of the exponential and logarithmic functions

(see page 97) the irrational number e plays an important r61e.

This number may be defined as follows

:

e=B[Er,], (1)

where "^
T\'^2\'^ ' ' '"^n!'

where [n] is the set of all positive integers, and

n! = l-2-3...n.

It is obvious that (1) defines a finite number and not infin-

ity, since

J?„= l+jj+2j+ .
.
•+^<l+l + 2 + 2?+ -

•
• +2^ =^~2^-

The nimiber e may very easily be computed to any number of

decimal places, as follows:

^^0 =
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Theorem 7. e=fil (iH—
) J,

where [n] is the set of all positive integers.

Proof.—By the binomial theorem for positive integers

Hence E„-(l+-) = ^ (^ '-j^,
)

« n*-n(n-l) . .. (n-A+ 1) ,,
k-2 kin''

»-, 7i*-(n-^+ l)fc

•^ Tim •

^iZi kin"

Hence by factoring

_ / 1\" ^(A;-l)(n*-^+n*-'(n-A;+l)1^ "^ ^(_A;- 1) (n*-i +n*-g(n-A;+l) + ... + (n-A;+ l)*-^)

"(A;-l);kn*-»

£-2 kin"

1 ^ (A;-1)A;

<n ifz k\ '

^-('-y<-n('^a)<K• ••••<')

From (a) ^„> (1+-)" d)

and from (6) r+^ '^^""n'
^^^
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whence by the lemma

(l +l)">e-V- (3)
\ nl n\ n

From (1) it follows that e is an upper bound of

1\"-

[(^-ri.

and from (3) it follows that no smaller number can be an upper

bound. Hence

(('-y]-'

§ 7. Algebraic and Transcendental Numbers.

The distinction between rational and irrational nimibers,

which is a feature of the discussion above, is related to that

between algebraic and transcendental numbers. A number is

algebraic if it may be the root of an algebraic equation,

aox"+0ix"-i + . . .+o„_ia;+a„=0,

where n and ao, ai, . .
. , a„ are integers and w> 0. A number is

transcendental if not algebraic. Thus every rational number —
n

is algebraic because it is the root of the equation

nx—m=0,

while every transcendental number is irrational. Examples of

transcendental numbers are, e, the base of the system of natural

logarithms, and ;:, the ratio of the circumference of a circle to

its diameter.

The proof that these numbers are transcendental follows

on page 19, though it makes use of infinite series which will
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not be defined before page 71, and the function e', which is

defined on page 57.

The existence of transcendental numbers was first proved

by J. LiouviLLE, Comptes Rendus, 1844. There are in fact

an infinitude of transcendental numbers between any two num-
bers. Cf. H. Weber, Algebra, Vol. 2, p. 822. No particular

number was proved transcendental till, in 1873, C. Hermite

(Crelle's Journal, Vol. 76, p. 303) proved e to be transcendental.

In 1882 E. LiNDEMANN (Mathematische Annalen, Vol. 20, p. 213)

showed that k is also transcendental.

The latter result has perhaps its most interesting application

in geometry, since it shows the impossibihty of solving the

classical problem of constructing a square equal in area to a

given circle by means of the ruler and compass. This is because

any construction by ruler and compass corresponds, according

to analytic geometry, to the solution of a special type of alge-

braic equation. On this subject, see F. Klein, Famous Prob-

lems of Elementary Geometry (Ginn & Co., Boston), and Weber

and Wellstein, Encyclop'ddie der Ekmmtarrmiherruitik, Vol. 1,

pp. 418-432 (B. G. Teubner, Leipzig).

§ 8. The Transcendence of e.

Theorem 8. // c, Ci, Cz, C3, . .
.

, c„ are integers (or zero bvi

Cj^O), then

c+c.c+c,e2+ ..,+c„c»?^0 (1)

Proof.
—

^The scheme of proof is to find a number such that

when it is multipUed into (1) the product becomes equal to

a whole number distinct from zero plus a number between +1

and —1, a sum which surely cannot be zero. To find this

number N, we study the series t for e*, where A; is an integer <n:

t Cf. pages 71 and 99.
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Multiplying this series successively by the arbitrary factors

i\-bi, we obtain the following equations:

/ k k^ \
c*l!-6i =61 -ll+ftiAU + 2+273 + -.

-j;

e*-2!-&2=&2-2!(l+|)+62-A;2(l+|+^+...);

(k Jfc2\ / k k^ \

e*-s!-6.=6,-s!(l + j-,+2| + . . ^+-^^1)]}

ft2

^+.-Ti+ (.+i)(.+2)
+---)

(s+l)(s+2)

For the sake of convenience in notation the numbers

61 ... 6, may be regarded as the coefficients of an arbitrary

polynomial

<f>{x)=bo+bix+b23^+. . .+6a,

the successive derivatives of which are

<l>'(x)=bi+2-b2X+. . .+s-b,-x'-\

,i^\, XT . T (m+1)! , s!
^<">(a;)=b„.-m!+6m+i- ,, x+...+b.-7- r-.-a*-"

The diagonal in (2) from 6-1! to b,-s \. _^.^ is obviously

^'(A), the next lower diagonal is ^"(A), etc. Therefore by
adding equations (2) in this notation we obtain
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eHV.hi+2\b2+ . . .+s\b,) = <}>'ik) + <j>"ik) + . .

.

+ <l><'Kk) + Jb„,-k'--Rkm, (3)
m-l

k ^
m+ l'^(m+ l)(m+2)

in which ftjfcm= l + zrTT + 7r-rTT7r—rirr+. •

.

Remembering that (f>(x) is perfectly arbitrary, we note tnat

if it were so chosen that

<f>'(.k)=0, <f>"ik)=0,..., .^(''-i)(A:)=0,

for every A; (k= l, 2, 3, . .
.

, n) then equations (2) and (3)

could be written in the form

m-l

+bp-p\

+6p+i-(p+l)!(l+^)

+6..«!(l+i|+2-,+ ... + (^3^). (4)

A choice of (j>{x) satisfying the required conditions is

^{x) = (ao+aiX+as^+ ...+an3^y-j^:Ziy^= (p^iyT"' ^^^

where f{x) = {x-l){x-2)(x-S) .

.

. (x-n).
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Every jfc (*=!, 2, . .
.

, n) is a p-tuple root of (5). Here p

is still perfectly arbitrary, but the degree s of ^(x) is np+ p-1.

If 4)(x) is expanded and the result compared with

<j){x)=bo+biX+ . . .+b,x',

it is plain that

bo=0, bi=0, ..., &p_2=0,

on account of the factor x^~^, and

"-^ (p-1)!' " (p-1)!' *' (p-1)!'

where 7p, Ip+i, ...,/, are all integers. The coefficient of e*=

in the left-hand member of (4) is therefore

Whenever the arbitrary number p is prime and greater than

Co, Np is the sum of Oo", which cannot contain p as a factor,

plus other integers each of which does contain the factor p.

Np is therefore not zero and not divisible by p.

Further, since

(p + Q! (p+ l)(p+2)...(p+0
(p-l)!-r! P

r!

is an integer divisible by p when r^t, it follows that all the

coefficients of the last block of terms in (4) contain p as a
factor. Since k is also an integer, (4) evidently reduces to

Np-e''=^pWkp+ Ib^-k'--Rkm,
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where W^p is an integer or zero, and this may be abbreviated

to the form

Np-e>'=pWkp+rkp. (6)

Before completing our proof we need to show that by choosing

the arbitrary prime number p sufficiently large, rtp can be

made as small as we please. If a is a number greater than n,

\Rkm] 1 + -+;
F

<

m+1 (m+ l)(?ra+ 2)

2

1 + -T +
W

m+1 (m+ l)(m+ 2)

+ .

+ .

<e«

for all integral values of m and oik<n.

\rkp\ Ibm-k^-Rkm
m=l

1 I \h„\-k'^-\Rk,m\.
1=1

Since the number bm is the coefficient of x" in <f>{x) and

since each coefficient of <j>ix) is numerically less than or equal

to the correspanding coefficient of

XP-1

(p-1)!

it follows that

(|ao| + |ai|a;+ |a2|x2+ . . . + |a„|z»)i',

!'-*p|<e''-(^ri)!(N + l«il«+---+W«")''

<(P-1)!''
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where

Q=a(|oo| + |ci|a + . . . + |a„|a:«)

Qp /
is a constant not dependent on p. The expression , _^,

^

is

the pth term of the series for Qe^, and therefore by choosing p
sufficiently large Vkp, may be made as small as we please.

If now p is chosen as a prime number, greater than a and

ao and so great that for every k,

where d is the greatest of the numbers

C, C\, C2, Cz, . . . , Cn,

the equations (6) evidently give

iV p(c+ Cie+ C2e=+ . . . + c„e")

=NpC+ p{CiWij,+ C2W2p+ . . .+cJV„j>)

+ Cirip+C2r2p+ . . . + c„r„p,

=NpC+pW+ R, (8)

where W is an integer or zero and R is numerically less than
unity. Since NpC is not divisible by p and is not zero, while

pW is divisible by p, this sum is numerically greater than or

€qual to zero. Hence

Np(c+Cie+C2^+ . . .+c„e»)?^0.

Hence

and e is a transcendental number.
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§ 9. The Transcendence of n.

The definition of the number r. is derived from Euler's

formula

e^"^" ^ = cos x+\/ — 1 sin x;

by replacing x by n,

e rN/^=-l (1)

If TT is assumed to be an algebraic number, rV - 1 is also

an algebraic number and is the root of an irreducible algebraic

equation F{x)=0 whose coefficients are integers. If the roots

of this equation are denoted by 21, 22, 23, • • , Zn, then, since

^v — 1 is one of the z's, it follows as a consequence of (1) that

(e^' + l)(e'=+ l)(e^»+l) ...(e^" + l)=0. ... (2)

By expanding (2)

l + Ie'i + Ie'i+'i+ Ie''+'i+h+ . . .=0.

Among the exponents zero may occur a number of times

e.g., (c - 1) t-mes. If then

Zi, Zi+ Zj, Z, + Zj+ Zk, ...,

be designated by Xi, X2, X3,
.

, x„, the equation becomes

c+ e^'+e^=+.. . + e'"=0, (3)

where c is a positive number at least unity and the numbers

Xi are algebraic. These numbers, by an argument for which

the reader is referred to Weber and Wellstein's Encyclopddie

der Elemmiarmathematik, p. 427 et seq., may be shown to be

the roots of an algebraic equation

/(x)=ao+aiX+a2x2 + . . .+a„x" = 0, . . . (3')
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the coefBcients being integers and Oo 5^0 and a„ j-^O. The rest of

the argument consists in showing that equation (3) is impossi-

ble when xi, X2, . .
.

, Xn are roots of (3'). The process is

analogous to that in § 8.

e^>c.V.b,=bi-V.+hxu{l+^+~ + . . .)

,

e^..3!63 =63-3!(l+ff+f)+63X.3(l+^+^; + ...),
(4)

e^..s!.6.=6..«!(l+ff+... +^)
+,^,.(l+_£L+^^ + ...)

The numbers 6i, . .
.

, 6„ may be regarded as the coefficients

of an arbitrary polynomial

^(x) = 6o+M+fe2a;2+ . . .+b^,

for which

<l>^'"^(x)^bm-m\+b„+i-^—:rY^-x+ ... + b.j r.'X^'".

J.
»-i

The diagonal in equations (4) from 6i-l! to b,-s\ , , is
(s-1)

obviously (f>'{xk), and the next lower diagonal 4>"{Xk), etc.

Therefore, by adding equations (4),

e**(l!6i+2!62+ . . .+s!6.) = .^'(xjt) + <^"(a;*) + . .

.

^cj>^'Kxk) + h^-Xk^Rk„„ . (5)
i»»=i
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in which

7? - 1
I

^^
I

^fc^
I"*" "^m+ l^(m + l)(m+2) + -'-

Remembering that (f>{x) is perfectly arbitrary, let it be so

chosen that

<t>'{xk)=0, <A"(x,) = 0, <A'"(a;A)=0, ..., </.("- i)(xt)=0

for every xj.

Equation (5) may then be written as follows

:

cMl!&i+2!62+ ...+s!6.) = i6„-(zt)'".i24.„
m=l

+ bp-pl

+i>,«(p+l)!(l + j-')

A choice of ^(x) satisfying the required conditions is

Q^ np—i . ^p—1

4>ix) = "(2? -1)1
{ao+aix+CiX^ + .

.

. +a„a;")p

O np-l.-cp-l

- (p-1)!
(^("))''-

of which every xj is a p-tuple root. If <^(x) is expanded and

the result compared with

^(x)=feo+6iX+. . .+b,x',

it is plain that feo = 0, &i=0, . . . , 6p_2=0, on account of the

factor xP~i
; and

Op-i- (p_l)! ' ''p- (p_i)! ^' (p--l)!
'
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where /p, . . . , /, are all integers. The coefficient of e'k in (6)

may now be written

If the arbitrary number p is chosen as a prime number

greater than a^ and a„, Np becomes the sum of aoPa„"P~i, which

carnot contain p as a factor, and a number of other integers

each of which is divisible by p. Np therefore is not zero and

not divisible by p.

ip+ t)\
Further, since , _^,

,

—j- is an integer divisible by p when

7^', it follows that all of the coefficients of the last block of terms

in (6) contain p as a factor. If then (6) is added by columns,

Npe^=pan^p-^[Po+PiXk+P2Xk'' + . . .+Ps-pXk'-p]

8

+ Ib„-Xk"'-Rk„,. . (7)
m= 1

where Po, Pi, . .
.

, P^^p are integers.

It remains to show tha.tIb,n-Xk"'-Rk„, can be made small at

will by a suitable choice of the arbitrary p. As in the proof
of the transcendence of e, it follows that

' Op
|rifcp| = Ib^-Xk""- Rkm <

7 TT-j • e",
m=l \P— 1^!

where

Q= \arJ'\a(}ao\ + \ai\a + . . . + |a„|a),

and a is the largest of the absolute values of Xkik = l, . .
. , n).

If now p is chosen as a prime number, greater than unity,
greater than ao . . . an and greater than c, and so great also

that |rip| <-, it follows directly from equation (7) that



THE SYSTEM OF REAL NUMBERS. 29

= Njfi+pan^p--^{PoSo+PiSr + . . .+P._pS._p) + iVfcp, (8)

where \rkp\ Ihrn-XlT-Jtlcm
<n'

So=n, and Si= xi^+X2^+X3^+. . .+Xn\ and therefore

_ ttn-l „ fln^-1 2a„_2
,^1=—;r~'

'^2=-—^—-—
, ...,t

and therefore it follows that a„"P-i/Si, a„"P~i(S2, . . . , are all

whole numbers or zero. The term

po„»p-i'iPiSi
t=

is therefore an integer divisible by p, while, on the contrary,

Np and c are not divisible by p. The sum of these terms is

n

therefore a whole number ^+1 or ^ — 1, and since Irkp<l,

the entire right-hand member of (8) is not zero, and hence (3)

is not zero. Therefore

—

Theorem g. The number tz is transcendental.

t Cf. BuRNSiDE and Panton Theory of Equations, Chapter VIII, Vol. I.



CHAPTER II.

SETS OF POINTS AND OF SEGMENTS.

§ I. Correspondence of Numbers and Points.

The system of real numbers may be set into one-to-one cor-

respondence with the points of a straight line. That is, a

scheme may be devised by which every niomber corresponds

to one and only one point of the line and vice versa. The

point is chosen arbitrarily, and the points 1, 2, 3, 4, ... are

at regular intervals to the right of in the order 1, 2, 3, 4, . .

.

from left to right, while the points -1, -2, -3, . . . foUow at

regular intervals in the order 0, -1, -2, -3, . . . from right

to left. The poiBts which correspond to fractional numbers

are at intermediate positions as follows : t

To fix our ideas we obtain a point corresponding to a par-

ticular decimal of a finite number of digits, say 1.32.

?
'. ? ?! ? ? ?

Fia. 1.

Divide the segment 1 2 into ten equal parts. Then divide the

segment 3 4 of this division into ten equal parts. The point

marked 2 by the last division is the point corresponding to 1.32.

If the decimal is not terminating, we simply obtain an

infinite sequence of points, such that any one is to the right

of all that precede it, in case of a positive number, or to the

t It is convenient to think of numbers in this case as simply a notation

for points. In view of the correspondence of points and numbers the num-
bers furnish a complete notation for all points.

30
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left in case of a negative number. The first few points of the
sequence for the number a- are the points corresponding to the
numbers 3, 3.1, 3.14, 3.141. This, set of numbers is bounded,
4, for instance, being an upper bound. Hence the points cor-
responding to these numbers all lie to the left of the point
corresponding to the number 4. To show that there exists a
definite point corresponding to the least upper bound B of the
set of numbers 3, 3.1, 3.14, 3.141, etc., use is made of the foUow-
ing:

Postulate of Geometric Continuity.—7/ o set [x] of points

of a line has a right bound, that is, if there exists a point B on
the line svch that no point of the set \x] is to the right of B, then

there exists a leftmost right bound B of the set [x]. If the set

has a left bound, it has a rightmost left bound.

The leftmost right bound of the set of points corresponding
to the numbers 3., 3.1, 3.14, etc., is the point which corresponds
to the number n. In the same manner it follows from the pos-

tulats that there is a definite point on the line corresponding to

any decimal with an infinitude of digits.!

Conversely, given any point on the line, e.g., a point P, to

the right of 0, there corresponds to it one and only one num-
ber. This is evident since, in dividing the line according to a

decimal scale, either the point in question is one of the division-

points, in which case the number corresponding to the point is

a terminating decimal, or in case it is not a division-point we
will have an infinite set of division points to the left of it, the

point in question being the leftmost right bound of the set. If

now we pick out the rightmost point of this left set in every

division and note the corresponding nimiber, we have a set

of niunbers whose least upper bound corresponds to the

point P.

•f-
It is not implied here, of course, that it is possible to write a decimal

with an infinitude of digits, or to mark the corresponding points. What
is meant is that if an infinite sequence of digits is determined, a definite

number and a definite point are thereby determined. Thus V2 determines

an infinite sequence of digits, that is, it furnishes the law whereby the

sequence can be extended at will.
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The ordinary analytic geometry furnishes a scheme for set-

ting all pairs of real numbers into correspondence with aJI

points of a plane, and all triples of real numbers into corre-

spondence with all points in space. Indeed, it is upon this

correspondence that the analytic geometry is based.

It should be noticed that the correspondence between num-

bers and points on the hne preserves order, that is, if we have

three nimibers, a, b, c, so that a<b<c, then the corresponding

points A, B, C are under the ordinary conventions so arranged

that B is to the right of A, and C to the right of B.

It will be observed that we have not put this matter of the

one-to-one correspondence between points and numbers into

the form of a theorem. Rather than aiming at a rigorous

demonstration from a body of sharply stated axioms, we have

attempted to place the subject-matter before the reader in

such a manner that he will imderstand on the one hand the

necessity, and on the other the grounds, for the hypothesis.

§ 2 Segments and Intervals. Theorem of Borel.

Definition.—A segment a b is the set of all numbers greater

than a and less than b. It does not include its end-points a

and b. An interval ab is the segment a b together with a and
b. For a segment plus its end point a we use the notation
I— —

I

a b, and when a is absent and b present a b. All - these nota-

tions imply that a<b.-\ Sometimes we denote a segment or

interval by a single letter. This is done in case it is not im-

portant to designate a definite segment or interval.

The set of all numbers greater than a is the infinite segment

a 00, and the set of all numbers less than a is the infinite segment
- 00 a. The infinite segments a oo and — oo a, together with the

point a, are respectively the infinite intervals a <x and — oo a.

t The notation ab,ao,ab, etc., to denote the presence or absence of end-
points is du3 to G. Peano, Analisi Infinitisimali. Torino, 1893.
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Unless otherwise specified the expressions segment and interval

will be understood to refer to segments and intervals whose end-
points are finite.

By means of the one-to-one correspondence of numbers and
points on a line we define the length of a segment as follows:

The length of a segment a b with respect to the unit segment
1 is the munber \a-b\. This definition applies equally to all

segments whether they are commensurable or incommensurable
with the unit segment.

Definition.—A set of segments or intervals [a] covers a

segment or interval t if every point of < is a point of some a.

On the interval - 1 1 consider the set of points ^ . The

-1 % 'A K 1

I I 1 I 1 I

Fig. 2.

I— I I— I I—

I

I 1

set of intervals -1 0, ^ 1,
4 2' • • > 2^ 2^^> • covers

I—

I

I—I.
.

the interval —1 1, because every point of —1 1 is a point

of one of the intervals. On the other hand a set of segments

-10,-^ 1, . .
. , ^ o^^j ^*c-j does not cover the interval

because it does not include the points — 1, 1, n, . .
. , ^^ , . .

.
, or 0.

In order to obtain a set of segments which does cover the inter-

val, it is necessary to adjoin a set of segments, no matter how

small, such that one includes -1, one includes 0, one includes 1,

2) 4l • • •

The segment including 0, no matter how small it is, must

include an infinitude of the points ^, and there are only a finite

number of them which do not lie on that segment. It therefore

follows that in this enlarged set there is a subset of segments,
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I—

I

finite in number, which includes all the points of -1 1. This

turns out to be a general theorem, namely, that if any set of seg-

ments covers an interval, there is a finite subset of it which also

covers the interval. The example we have just given shows that

such a theorem is not true of the covering of an interval by a set

of intervals; furthermore, it is not true of the covering of a seg-

ment either by a set of segments or by a set of intervals.

I—

I

Theorem lo.t If an interval a b is covered by any set [a] of

segments, it is covered by a finite number of segments ai, . . . , (j„

of [o].

Proof.—It is evident that at least a part of a 6 is covered

by a finite number of <j's; for example, if ao is the a or one of

—

I

the a's which include a and if b' is any point of a 6 which lies

I—

I

in (To, then o 6' is covered by oo- Let [b'] be the set of

—I I— I

.

all points of a b, such that a b' is covered by a finite number

of a's. By Theorem 4 [b'] has a least upper bound B. To com-

plete our proof we show (a) that B is in [b'], and (6) that B=h.
(a) Let a" b" be a segment of [a] including B. Since B

is the least upper bound of [b'], there is a point of [6'], b', between
<i" and B. But if <ti, <t2, • • . <t« be the finite set of segments

I—

I

covering the interval a b', this set together with a" b" will

I—

I

cover a B, which proves that S is a point of [b'].

(b) If B^b, then B<b and the set ai, 02, . .
.

, a„ together
'

.
I—

I

with a" b", would cover an interval o c, where c is a point

between B and b" ; c would therefore be a point of \b'], which

is contrary to the hypothesis that B is an upper bound of [6'].

Hence B=b and the theorem is proved.

t This theorem is due to E. Borel, Annales de I'Ecole Nonnale Su-
p^rieure, 3d series, Vol. 12 (1895), p. 51. It is frequently referred to as
the Heine-Borel theorem, because it is essentially involved in the proof
of the theorem of uniform continuity given by E. Heine, Die Elemente der
FuTuiionetdehre, Crelle's Journal, Vol. 74 (1872), page 188.
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An immediate consequence of this theorem is the following,

which may be called the theorem of unifarmity.

I—

I

Theorem ii. // an interval a b is covered by a set of seg-

I—

I

ments [a], then a b may be divided into N equal intervals such

that each interval is entirely within a a.

I—

I

Proof.—By Theorem 10 a 6 is covered by a finite set of a's,

<ji, 02, ... , On. The end points of these <t's, together with a

and b, are a finite set of points. Let d be the smallest distance

between any two distinct points of this set. Because of the

overlapping of the a's, any two points not in the same segment

are separated by at least two end points. Therefore any two

points whose distance apart is less than d must he on the same

segment of cri, 02, ... , t7„. Now let N be such that —=rp<d,

then each interval of length —r^ is contained in a a.

Fig. 3.

By this argument we have also proved the following:

I—

I

Theorem 12. If an interval a b is covered by a set of seg-

ments, then there is a number d such that for any two numbers

Xi and X2 such that alxi<X2=& o/nd \x\ -I2I <d, there is a seg-

ment a of [<t] which contains both Xi and 12. In other words,

any interval of length d lies entirely vrithin some a.

The sense in which these are theorems of uniformity is the

I—

I

following. Any point x of a b, bemg witmn a segment a,

can be regarded as the middle point of an interval ix of length

Zi which is entirely within some a. The length Z, is in general

<iifferent for different points, x. Our theorem states that a

value I can be found which is effective as an l^ for every x, i.e.,
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I—

I

uniformly over the interval a b. The distinction here drawn is

one of the most important in rigorous analysis. It was first

observed in connection with the theorem of uniform continuity

;

see page 89.

I—

I

The presence of both end points of o 6 is essential, as is

shown by the following example. 1 is covered by the seg-

.
~^ ^. ^ i i

ments
^ 2, ^ 1, g 2' • • , 2" 2^^' " '

' ' ^^ ^^ ^

points nearer to 0, Ix becomes smaller with the lower bound 0,

—

I

and no I can be found which is effective for all points of 1.

When the end points are absent it is possible, however, to

modify the notion of covering, so that our theorem remains

true. This is sufficiently indicated by the following theorem,

which is an immediate consequence of Theorem 10.

Theorem 13. If on a segment a b there exists any set [a] of

segments such that

(1) [a] includes a segment of which a is an end point and a

segment oj which b is an end point.

(2) Every point of the segment a b lies on one or more of

the segments of the set [o].

Then among the segments of the set [a] there exists a finite set

of segments <ti, <t2, . . . , ct„ which satisfies conditions (1) ajid (8).

The theorems which we have just proved can be generalized

to space of any number of dimensions. A planar generalization

of a segment is a parallelogram with sides parallel to the co-

ordinate axes, the boundary being excluded. The planar gen-

eralization of an interval is the same with the boundary included.

The theorem of Borel becomes

:

Theorem 14. // every point of the interior or boundary of a
parallelogram P is interior to at least one parallelogram p of a set

of parallelograms [p], then every point of P is interior to at least

one parallelogram of a finite subset pi . . .p„ of [p].

Proof.—Let z = 0, x=a>0, y=0, y=b>0 determine the

boundary of P. Let O^yi^b. Upon the interval i of the line
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y=yi, cut off by P, those parallelograms of [p] that include

points of i as interior points determine a set of segments [;r]

such that every point of t is an interior point of one of these seg-

ments ;:. There is by Theorem 10 a finite subset of [n], 7:1. . . r.n,

including every point of i, and therefore a finite subset pi . . . pn

of [p], including as interior points every point of i. Moreover,

since the number of pi . . . p„ is finite, they include in their

interior all the points of a definite strip, e.g., the points be-

tween the lines y=y\—e and y=yi-\-e.

y=b

1/1

V=o
Fig. 4.

Thus for every y\ {O^yi^b) we obtain a strip of the parallel-

ogram P such that every point of its interior is interior to one

of a finite number of the parallelograms [p]. These strips in-

tersect the j/-axis in a set of segments that include every point

of the interval b. There is therefore, by Theorem 10, a

finite set of strips which mcludes every point in P. Smce

each strip is included by a finite number of parallelograms p,

the whole parallelogram P is included by a finite subset of [p].

The generalization of Theorems 11 and 12 is left to the reader.

§ 3. Limit Points. Theorem of Weierstrass.

Definition.—A neighborhood or vicinity of a point a in a line

(or simply a line neighborhood of a) is a segment of this fine such

that a lies within the segment. We denote a line neighborhood
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of a point a by V{a). The symbol V*(a) denotes the set of all

points of V{a) except a itself. The symbols F(oo) and 7*(oo)

are both used to denote infinite segments a + oo , and F(— co

)

and 'F'*(— oo) to denote infinite segments — ooa.f

A neighborhood of a point in a plane (or a plane neighbor-

hood of a point) is the interior of a parallelogram within which

the point lies. A neighborhood of a point (a, b) is denoted by

V(a, b) if (a, 6) is included and by V*{a, b) if (a, b) is excluded.

Instead of the three linear vicinities V(a), V(<x>), and F(— oo)

we have the following nine in the case of the plaile

:

V(-aj,aj)

V(-oo,6)

V (o, oo ,)

V(o, 6)

V (oofoo)

V (oo.fc)

V(— oo, 05) V(a,- oo) V(oo,— od)

Fig. 5,

t This notation is taken from Pibhpont's Theory of Functions of Real
Variables. It is used here, however, with a meaning slightly different from
that of PlERPONT.
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It follows at once from a consideration of the scheme for

setting the points on the Une into correspondence with all

numbers that in every neighborhood of a point there is a point

whose corresponding number is rational.

Definition.—A point a is said to be a limit point of a set

if there are points of the set, other than a, in every neighbor-

hood of a. In case of a line neighborhood this says that there

are points of the set in every V*{a). In the planar case this is

equivalent to saying that (a, b) is a limit point of the set [x, y],

either if for every F*(a) and V{b) there is an (x, y) of which x is

in y*{a) and y in F(6), or if for every V(a) and 7* (6) there is

an {x, y) of which x is in 7(a) and y in V*(b).

Thus is a limit point of the set I ^ I, where k takes all

positive integral values. In this case the limit point is not

a point of the set. On the other hand, in the set 1, 1-J,

1
— 2^, . .

. , 1 — oA' • • > 1 is a limit point of the set and also a

point of the set. In this case 1 is the least upper bound of the

set. In case of the set 1, 2, 3, the number 3 is the least upper

bound without being a limit point. The fimdamental theorem

about limit points is the following (due to Weierstrass) :

Theorem 13. Every infinite hounded set [p] of points on a line

has at least one limit point.

Proof.—Since the set [p] is bounded, every one of its points

lies on a certain interval a b. li the set [p] has no limit point,

I—

I

then about every point of the interval a b there is a segment

a which contains not more than one point of the set [p]. By

Theorem 10 there is a finite set of the segments [a] such that

every point of a 6 and hence of [p] belongs to at least one of

them, but each a contains at most one point of the set [p],

whence [p] is a finite set of points. Since this is contrary to

the hypothesis, the assimiption that there is no limit point is

not tenable.
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It is customary to say that a set which has no finite upper

bound has the upper bound + oo , and that one which has no

finite lower bound has the lower bound — oo . In these cases,

since the set has a point in every F*( + oo ) or in every V*( — oo

)

+ 00 and — 00 are also called limit points. With these con-

ventions the theorem may be stated as follows:

Theorem i6. Every infinite set of points has a limit point,

finite or infinite.

The theorem also generahzes in space of any number of

dimensions. In the planar case we have:

Theorem 17. An infinite set of points lying entirely within a

parallelogram has at least one limit point.

Theorem 17 is a corollary of the stronger theorem that fol-

lows:

Theorem 18. // [{x, y)] is any set of number pairs and if a

is a limit point of the numbers [x], there is a value of b, finite or

+ 00 or —00, sv£h that for every V*{a) and V{b) there is an

(x, y) of which x is in V*{a) and y is in V{b).

Proof.—Suppose there is no value b finite or +00 or — 00

such as is required by the theorem. Since neither +00 nor

- 00 possesses the property required of b, there is a 7* (a) and
a F(oo ) and a V{-<xi) such that for every pair (x, y) of [(x, y)]
whose x lies in V*{fl) y fails to he in either y(oo) or F( — 00).

This means that there exists a pair of numbers M and m such
that for every (x, y) whose x is in V*{a) the y satisfies the con-

dition m<y<M. Further, since there exists no b such as is

required by the theorem, there is for every number k on the
I 1

interval m M & V{k) and a Fa*(o), such that for no (x, y) is x in

Vi^{a) and y in V{k). This set of segments [F(fc)] covers the
I 1

interval m M, whence by Theorem 10 there is a finite subset of

[V{k)], ViQc), . . . , 7„(fc) which covers m M, and hence a finite

set of corresponding Vk*{ays. Let V*(a) be a vicinity of a con-

tained in every one of the finite set of 74*(a)'s and in V*{a).

Hence if the x of a pair (x, y) is in V*{a), its y cannot he in one
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Of the infinite segments W^ and -^, or in one of the finite
segments V^ik), ..., V„{k), i.e., no y, corresponds to this x
which IS contrary to the hypothesis. This argument covers the
cases when a is + oo and when a is - «

.

We add the definitions of a few of the technical terms that
are used in pomt-set theory,f

Definition.—A set of points which includes aU its Umit
points is called a closed set.

A set of pomts every one of which is a Umit point of the
set is called dense in itself.

t

A set of points which is both closed and dense in itself is

called perfect.

A set having no finite limit point is called discrete.

A segment not including its end points is an example of a
set dense in itself but not closed. If the end points are added,
the set is closed and therefore perfect. The set of rational num-
bers is another case of a set dense in itself but not closed. Any
set containing only a finite number of points is cbsed, accord-

ing to our definition.

If every point of an interval a 6 is a limit point of a set

[x], then [x] is everywhere dense on a b. Such a set has a point

between every two points of the interval. A set which is

ever3rwhere dense on no interval is called nowhere dense. All

rational numbers between and 1 form an everywhere dense set.

§ 4. Second Proof of Theorem 15.

To make the reader familiar with a style of argument which

is frequently used in proving theorems which in this book are

made to depend upon Theorems 10 and 14, we adjoin the fol-

lowing lemma and base upon it another proof of Theorem 15.

t For bibliography and an exposition in English see W. H. Young and

G. C. YoTJNG, The Theory of Sets of Points. Cambridge, The University Press,

t In German "in sich dicht."
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Lemma.—^H3rpothesis : On a straight line there is an infinite

I II 1
I 1 ... , ,„

set of intervals ai bi, O262, • • • , CLnOn, • • condiiionea as follows: j
. I—

I

I— I I— I I—

I

(1) Interval 02^2 lies on interval aibi, 0363 on 02^2, etc.

In general o„6„ lies on a„_i&„_i. (This does not exclude the case

ak=ak+\.)

(2) For every interval e>0, however small, there is some n,

say n«, such that \bn,—an,\ <e.

Conclusion: There is one and only one point b which lies

1—

I

upon every interval a„ b„.

Proof.—Since the set of points ci . . . a„ . . . is bounded, we

have at once, by the postulate of continuity, that this set has a

leftmost right bound Ba- Similarly, the set 61 . . . 6„ . . . has

a rightmost left boimd Bf It follows at once that Ba = Bi„

for if not, we get either an a point to the right of Ba, or

a b point to the left of Bi when n, is so chosen that

\bn.-a„,\<B,,-B^.

We now give another proof for Theorem 11. Divide the in-

• I—

I

terval a b on which aU points of [p] lie into two equal intervals.

Then there is an infinite number of points [pj on at least one

of these intervals which we call Ci 61. Divide this interval

j" In particular the set of segments assumed in the hypothesis may be
obtained by dividing any given segment into a given number of equal seg-

ments, then one of these segments into the same number of equal segments

and BO on indefinitely. To show that the sequential division into a num-
ber of equal segments gives a set of segments satisfying the conditions

of the hypothesis we have merely to show that such division gives a

segment less than any assigned segment a^b^. This is equivalent to the

statement tltat for every number e there is an integer n, such that —<e
n

a direct consequence of Theorem 3. This involves the notion that no con-

stant infinitesimal exists. It may appear at first sight that a proof of this

statement is superfluous. The fact is, however, as was first proved by
Vebonesi:, that the non-existence of constant infinitesimals is not provable

without some axiom such as the continuity axiom or the so-called Archime-
dean Axiom.
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into two equal parts and so on indefinitely, always selecting for

division an interval which contains an infinite number of points

of the set [p]. We thus obtain an infinite sequence of intervals

I 1

1

1
I 1

. .

tti bi, a2 b2, . .
.

, an b„ . . . which satisfies the hypothesis of the

lenrnia. There is therefore a point B which belongs to every

I— I i—r I—

I

one of the intervals aibi, az b2, . .
.

, (in bn . .
.

, and therefore

there is a point of the set [p] in every neighborhood of B.

It should be noticed that the intervals in this sequence may

be such that all intervals after a certain one will have, say, the

right extremities in common. In this case the right extremity

is the point B. Such is the sequence, obtained by decimal

division, representing the number 2 = 1.99999. . .

.



CHAPTER III.

FUNCTIONS IN GENERAL. SPECIAL CLASSES OF FUNCTIONS

§ I. Definition of a Function.

Definition.—A variable is a symbol which represents any

one of a set of numbers. A ccnstant is a special case of a vari-

able where the set consists of but one number.

Definition.—A variable y is said to be a single-valued

Junction of another variable x if to every value of x there cor-

responds one and only one value of y. The letter x is called

the independent vaiiable and y the dependent variable.!

Definition.—A variable y is said to be a many-valued

function or multiple-valued function of another variable x if

to every value of x there correspond one or more values of y.

The class of multiple-valued functions thus includes the class

of single-valued functions.!

t This definition of function is the culmination of a long development of

the use of the word. The idea of function arose in connection with coordi-

nate geometry, Rene Descartes using the word as early as 1637. From
this time to that of Leibnitz "function" was used synonymously with the

word "power, " such as x', x', etc.

G. W. Leibnitz regarded "function" as "any expression standing for

certain lengths connected with a curve, such as coordinates, tangents, radii

of curvature, normals, etc."

JoHANN Bernoulli (1718) defined "function" as "an expression made
up of one variable and any constants whatever."

Leonard Euler (1734) called the expression described by Bernoulli an

analytic function and introduced the notation fix) . Euler also distinguished

between algebraic and transcendental functions. He wrote the first treatise

on "The Theory of Functions."

The problem of vibrating strings led to the consideration of trigonometric

series. J. B. Fourier set the problem of determining what kind of relations

<;an be expressed by trigonometric series. The possibility then under con-

44



SPECIAL CLASSES OF FUNCTIONS. 45

It is sometimes convenient to think of special values taken
by these two variables as arranged in two tables, one table con-
taining values of the independent variable and the other contain-
ing the corresponding values of the dependent variable.

Independent Variable Dependent Variable

X2
2/1

2/2

If
2/ is a single-valued function of x, one and only one value

of y will appear in the table for each x. It is evident that
functionality is a reciprocal relation; that is, if ?/ is a function of
X, then z is a function of y. It does not follow, however, that
if 2/ is a single-valued function of x, then x is a single-valued

function of y, e.g., y=x^. It is also to be noticed that such

tables cannot exhibit the functional relation completely when
the independent variable takes all values of the continuum,

since no table contains all such values.

Definition.—That y is & function of x (and hence that x
is a function of y) is expressed by the equation y=j{x) or by

x=f~^{y). If y and x are connected by the equation y=f{x),

f~^(y) is called the inverse function of /(x).

Thus y= x^ has the inverse function x=^±\/y. In this

case, while the first function y=x^ is defined for all real values

of X, the inverse function x= ±\/y is defined only for positive

values of y.

The independent variable may or may not take all values

between any two of its values. Thus n! is a function of n

where n takes only integral values. >S„, the sum of the first

sideration that any relation might be so expressed led Lejedne Dirichlet

to state his celebrated definition, which is the one given above. See the

Encyclopadie der mathematischen Wissenschaften, II A 1, pp. 3-5; also

Ball's History of Mathematics, p. 378. *



46 INFINITESIMAL ANALYSIS.

n terms of a series, is a function of n where n takes only integral

values. Again, the amount of food consumed in a city is a

function of the number of people in the city, where the inde-

pendent variable takes on only integral values. Or the inde-

pendent variable may take on all values between any two of

its values, as in the formula for the distance fallen from rest

by a body in time t, s = -n-

'It follows from the correspondence between pairs of num-

bers and points in a plane that the functional relation between

two variables may be represented by a set of points in a plane.

The points are so taken that while one of the two numbers

which correspond to a point is a value of the independent

variable, the other number is the corresponding value, or one

of the corresponding values, of the dependent variable. Such

representations are called graphs of the function. Cases in

point where the function is single-valued are: the hyperbola

referred to its asymptotes as axes \y=-) ; a straight line not

parallel to the y axis {y=ax+b); or a broken line such that

no line parallel to the y axis contains more than one of its points.

In general, the graph of a single-valued function with a single-

valued inverse is a set of points [{x, y)] such that no two points

have the same x or the same y.

Following is a graph of a function where the independent

variable does not take all values between any two of its values.

Consider Sn, the sum of the first n terms as a function of w in

the series

„ , 1 1 1

The numbers on the x axis are the values taken by the

independent variable, while the functional relation is repre-

sented by the points within the small circles. Thus it is seen

that the graph of this function consists of a discrete set of

points. (Fig. 6.)
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The definition of a function here given is very general. It

will permit, for instance, a function such that for all rational

values of the independent variable the value of the function is

4 5

Fig. 6.

unity, and for irrational values of the independent variable the

value of the function is zero.

§ 2. Bounded Functions.

Since the definition of function is so general there are few

theorems that apply to all functions. If the restriction that

fix) shall be bounded is introduced, we have at once a very im-

portant theorem.

Definition.—^A function, f(x), has an upper bound for a

set of valves [x] of the independent variable if there exists a

finite nimaber M such that f{x) <M for every value of x in the

set [x]. The function has a lower bound m if f{x)>m for every

value of X in {x\. A function which for a given set of values of

X has no finite upper bound is said to be unbounded on that

set, or to have an upper bound + oo on that set, and if it has
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no lower bound on the set the function is said to have the lower

bound — 00 on the set.

I—

1

Theorem 19. If on an interval aba Junction has an upper

bound M, then it has a least upper bound B, and there is at least

I—

I

one value of x, x\ on a b such that the least upper bound of the

function on every neighborhood of Xi contained in a b is B.

Proof.— (1) The set of values of the function f{x) form a

bounded set of numbers. By Theorem 4 the set has a least

upper bound B.

I—

I

(2) Suppose there were no point xi on a b such that the

least upper bound on every neighborhood of x\ contained in

I— I — I—

I

a—bisB. Then for every x of a 6 there would be a segment

Ox containing x such that the least upper bound of /(x) for

I—

I

_
values of x common to (Ji and a 6 is less than B. The set [tTj] is

infinite, but by Theorem 10 there exists a finite subset [<;„] of

I—

1

the set [ctJ covering a b. Therefore, since the upper bound of

fix) is less than B on that part of every one of these segments

of [on] which lies on a b, it follows that the least upper bound
I—

I

_
of /(x) on a 6 is less than B. Hence the hypothesis that no
point Xi exists is not tenable, and there is a point Xi such

that the least upper bound of the function on every one of its

I— I _
neighborhoods which lies in a 6 is B.

This argument applies to multiple-valued as well as to single-

valued functions.

As an exercise the reader may repeat the above argument

to prove the following:

I—

I

Corollary.—If on an interval 06a function has an upper

bound + 00 , then there is at least one value of x, xi on a b such

that in every neighborhood of xi the upper bound of the func-

tion is -I- 00

,
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§ 3. Monotonic Functions ; Inverse Functions.

Definitions.—If a single-valued function f{x) on an interval

a b is such that /(x,)</(x2) whenever a;, <X2, the function is

said to be monotonic increasing on that interval. If /(xi)>
/(X2) whenever xi <X2, the function is said to be monotonic de-

creasing, ^'^j

Fig. 7.

If there exist three values of x on the interval o b, xi, X2,

and X3 such that /(x2)>/(xi) and /(x2)>/(x3), while xt<X2<X3
or /(x2)</(xi) and /(x2)</(x3), while Xi<X2<X3, the function

is said to be oscillating on that interval. A function which is

not oscillating on an interval is called non-oscillating. It should

be noticed that a function is not necessarily oscillating even if

it is not monotonic. That is, it may be constant on some parts

of the interval.

The terms monotonic and oscillating are not convenient of

application to multiple-valued functions. Hence we restrict

their use to single-valued functions.

Definition.—^A function /(x) is said to have a finite niun-

I—

I

ber of oscillations on an interval a 6 if there exists a, finite
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number of points a=xo, Xi, . .
.

, Xn=b, such that on each inter-

val Xk-i xjfe (A;= l, 2, 3, . .
.

, n) f(x) is non-oscillating. It is

evident that if a function has only a finite number of oscilla-

I—

!

tions on an interval a b and if there is no subinterval of

I—

I

I—

I

a 6 on which the function is constant, then the interval a b

may be subdivided into a finite set of intervals on each of

2/>sin

Fig. 8.

which the function is monotonic. Such a function may be

called partitively monotonic (Abteilungsweise monoton).

The function /(x) =sin -, for a; 5^0, and /(i) =0, for a; =0, is an

example of a function with an infinite number of oscillations on
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every neighborhood of a point. fix)=x sin -, for Xf^O, /(O) = 0,

and f{x)=x^ sin -, for Xf^O, /(0)=0 have the above property

-and also are contmuous (see page 61 for meaning of the term
continuous function).

There exist continuous functions which have an infinite

number of oscillations on every neighborhood of every point.

y —x sin i

Fig. 9-

The first function of this type is probably the one discovered by

Weierstrass,t which is continuous over an interval and does not

possess a derivative at any point on this interval (see page 150).

t According to F. Klein, this function was discovered by Weierstrass in

1851. See Klein, Anwendung der Differential- und Integralrechnung auf

Geometrie, p. 83 et seq. The function wa^ first published in a paper en-

titled Abhandlungen aus der FunctionerUehre, Du Bois Beyuond, CreU^s

.Journal, Vol. 79, p. 29 (1874).
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Other functions of this type have been published by Peano,

Moore, and others.f

These latter investigators have obtained the function in

question in connection with space-filling curves.

Theorem 20. If y is a monotonic function of x on the interval

a b, with bounds A and B, then in turn xisa svngle-valued monotonic

I—

I

function of y on A B, whose upper and lower bounds are b and a.

Proof.—It follows from the monotonic character of 1/ as a

function of x that for no two values of x does y have the same

Fig. 10.

I 1

value. Hence for every value of y on A JB there exists one and

t G. Peano, Sut une courbe, qm remplit toiUe une aire plane, Mathematische

Annalen, Vol. 36, pp. 157-160 (1890). Cesaro, Sur la representation analy-

tique des regions et des courbes qui les remplisent, Bulletin des Sciences Mathi-

mati/juss, 2d Ser., Vol. 21, pp. 257-267. E. H. Moore, On Certain Crinkly

Curves. Transactions of the American Mathematical Society, Vol. 1, pp. 73-90

(1899). See also Steikitz, Mathematische Annalen, Vol. 52, pp. 58-69 (1899).
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only one value of x. That is, a; is a single-valued function of y.f
Moreover, it is clear that for any three values of y, yi, 2/2, 2/3,

such that 2/2 is between ?/i and j/3, the corresponding values of

^, Xi, X2, X3, are such that x-^ is between Xi and Xa, i.e., x is

a monotonic function of y, which completes the proof of the

theorem.

CcroUary.—If a function /(x) has a finite number ^ of oscil-

lations and is constant on no interval, then its inverse is at most
(A+ l)-valued. For example, the inverse of y = x^ is double-

valued.

§ 4. Rational, Exponential, and Logarithmic Functions.

Definitions.—The symbol a"", where wi is a positive integer

and a any real number whatever, means the product of m
factors a. This definition gives a meaning to the symbol

y=a„x'"+am-ix"'-^ + . . .+aix + ao,

•where oo . . . a^ are any real numbers and m any positive inte-

ger. In this case y is called a rational integral function of x

or a polynomial in x.t

In case

amX"'+am_iX"'~^+ . . . +ai-x+ao
^~ 6„x" + 6„_iX"-»+ . . . +6i-x+6o '

m and n being positive integers and a* {k=0, . . .m) and bi

(Z = 0, . . . n) being real numbers, y is called a rational function

of X.

If

yn+yfi-lR^(x)+y^-m2{x)+ ... +yRn.l{x) +Rnix) =0,

where Ri{x) . . . R„(x) are rational functions of x, then y is said to

t it is clear that the independent variable y of the inverse function may
not take on all values of a continuum even if x does take on all such values.

% The notion of polynomial finds its natural generalization in that of

a power series

y=c^+ c-x+ C2-x'+ . . . +c„i"+ . . .

For conditions under which a series defines y as a. function of x see

Chapter IV, § 3.
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be an algebraic function of x. Any function which is not

algebraic is transcendental.

The symbol a', where a; =—, m and n being positive integers

and a any positive real number, is defined to be the nth root of

the mth power of a. By elementary algebra it is easily shown

that

o*i.a=^=o*'+*» and {a''^)'"=a''^'".

If y=a',

then 2/ is an exponential function of x. At present this function

is defined only for rational values of x.

Fia. 11.

Theorem 21. The function a' for x on the set \
—

\ is a monotonic

increasing function if l<a, and a monotonic decreasing function

ifO<a<l.
Proof.—(a) For integral values of x the theorem is obvious.

(6) If xi =— and X2=—, where —>—, then
«i ni Til Wi
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c*'<a*' if o>l and a*'>a*» if a<l. The proof of this follows

at once from case (a), since a"i = \a»ij (by definition and ele-

mentary algebra) and an, = ^a»ij .

(c) If xi=— and X2=—, where — <—, we have
Til n-z' rii 712

o"> =a"i"2 and a"2 =o"«"i, where mi 712 >in2-ni, which reduces

case (c) to case (&).

This theorem makes it natural to define a", where a> 1 and x

is a positive irrational number, as the least upper bound of all

r "1 m
numbers of the form La" J, where — is the set of all posi-

tive rational nimibers less than x, i.e., a'^=Bta^J. It is,

however, equally natural to define a" as ^Lo^J, where I I is

the set of all rational numbers greater than x. We shall prove

that the two definitions are equivalent.

Lemma.

—

If [x] is the set of all positive raiional numbers, then

5[a^] = l ifa>l

and B[a='] = l ifa<l.

Proof.—We prove the lemma only for the case o>l, the

argument in the other case being similar. If x is any positive

7?l 1

rational number, —, then the number - is less than or equal

i_ ^ fl

1

to x, and since a' is a monotonic function, a'*<a^. But - I

is a subset of I
-~

I- Hence

where [n] is the set of all positive integers.
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If 5La»J were less than 1, then there would be a value,

ni, of n such that a»i<l. This implies that a<l, which is con-

trary to the hypothesis. On the other hand, if 5La" J > 1, there

is a number of the form 1+e, where e>0, such that l + e<a"
for every n. Hence {l+e)"<a for every n, but by the binomial

theorem for integral exponents

(l+e)''>H-ne,

and the latter expression is clearly greater than a if

a
n>-.

e

Since 5La"J cannot be either greater or less than 1,

Theorem 22. // x is any real number, and \~\ the set of all

rational numbers less than x, and \-\the set 0} all rational numbers

greater than x, then

5La"J =BLaO ifa>l,

Bla'^j^Bla'^J ifO<a<l.

Proof.—We give the detailed proof only in the case a>l,

—
2 n]

is zero,

_ ai-a„J=Blai[l-a«~ vJJ

is also zero. Now if

B[a'^]^B[af'],
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Since as is always greater than a",

Bla^j-Bla^j = £>0.

But from this it would follow that

p m
a9 -a"

is at least as great as e, whereas we have proved that

_ a«-o"J=0.

Hence 5La»J = sLa9j ifa>l.

Definition.—In case x is a positive irrational number,

and I —
I

is the set of all rational numbers greater than x, and

[— is the set of all rational numbers less than x, then

a»= Bla^J - 5L0 » J if a > 1

and a*=5La«] = B[a"] ifO<o<l.

Further, if a; is any negative real number, then

a'=—; and a° = l.
a' .

Theorem 23. The function a* is a monotonic increasing func-

tion ofxifa>l, and a monotonic decreasing function if 0<a<l.

In both cases its upper bound ts + <» and Us lower bound is zero,

the function taking all values between these bounds; further,

ax,.^x,=ai,+i2 and {d'^Y^ = a^'-''K

The proof of this theorem is left as an exercise for the reader.

The proof is partly contained in the preceding theorems and
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involves the same kind of argument about upper and lower

bounds that is used in proving them.

Definition.—The logarithm of x (x>0) to the base a{a>0) is

a number y such that a^=x, or a^°^'==x. That is, the func-

tion logo X is the inverse of a''- The identity

gives at once logo xi+ logo X2= logo (xi X2)

,

and (a*')^'=a''"^^ gives Xi-logoX2=logaX2'^.

By means of Theorem 20, the logarithm logaX, being the

inverse of a monotonic function, is also a monotonic function,

increasing if 1 < a and decreasing if 0< a < 1. Further, the func-

tion has the upper bound+ 00 and the lower bound — 00 , and

takes on all real values as x varies from to +00 . Thus it

follows that for i< a, 1 < b,

B(\ogb x) =log6 a=log6 (Bx).

By means of this relation it is easy to show that the function

x", (a;>0)

is monotonic increasing for all values of a, a>0, that its lower

bound is zero and its upper bound is + w , and that it takes on
all values between these bounds.

The proof of these statements is left to the reader. The
general type of the argument required is exemplified in the

following, by means of which we infer some of the properties

of the function x".

If xi < xz, then

l0g2 Xi < log2 X2,

and Xi • log2 xi < X2 • log2 X2,

and log2 xi *' < log2 X2*».

.". Xi*><X2*».
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Hence i*, (x>0) is a monotonic increasing function of x.

Since the upper bound of x log2 x= log2 x^ is + <» , the upper

bound of X* is +00. The lower bound of x* is not negative,

since x>0, and must not be greater than the lower bound of

2=^, since if x<2, x''<2*; since the lower bound of 2* is zerot

the lower bound of x* must also be zero.

Further theorems about these functions are to be found on

pages 64, 81, 97, 123, and 160.

•f
The lower bound of a' is zero by Theorem 23.



CHAPTER IV.

THEORY OF LIMITS.

§1. Definitions. Limits of Monotonic Functions.

Definition.—If a point a is a limit point of a set of values

taken by a variable x, the variable is said to approach a upon

the set; we denote this by the symbol x = a. a may be finite

or +00 or — 00

.

In particular the variable may approach a from the left or

from the right, or in the case where a is finite, the variable may
take values on eacl^ side of the limit point. Even when the

variable takes all values in some neighborhood on each side of

the limit point it may be important to consider it first as taking

the values on one side and then those on the other.

Definition.—A value b (6 may be + oo or - oo or a finite

number) is a value approached by f{x) as x approaches a if for

every V*{a) and V(b) there is at least one value of x such that

x is in V*{a) and f(x) in V(b). Under these conditions f(x) is

also said to approach 6 as x approaches a.

Definition.—If b is the only value approached as x ap-

proaches a, then b is called the limit of f(x) as x approaches a.

This is also indicated by the phrase "f{x) converges to a unique

limit b as X approaches a," or "f{x) approaches b as a limit,"

or by the notation

L fix) =b.
x—a

The function f{x) is sometimes referred to as the limitand.

The set of values taken by x is sometimes indicated by the sym-
bol for a limit, as, for example,

60
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L j(x)=b or L f{x)=b or L f{x)=b.
x>a x<a x\[x]

x^a x±a z±a

The first means that x approaches a from the right, the second

that X approaches a from the left, and the third indicates that

the approach is over some set [x] otherwise defined.

Definition.— If f{x) is single-valued and converges to a

finite limit as x approaches a and

L/(x)=/(a),
x-a

then /(x) is said to be continuous at x=a.

By reference to § 3, Chapter II, the reader will see that if

6 is a value approached by fix) as x approaches a, then (a, b)

is a limit point of the set of points (x, /(x)). Theorem 18

therefore translates into the following important statement:

Theorem 24. If /(x) is any function defined for any set [x] of

which a is a {finite or +« or — 00 ) limit point, then there is at least

one value (finite or +« or -00) approached by f{x) as x ap-

proaches a.

Corollary.—If fix) is a bounded function, the values ap-

proached by fix) are all finite.

In the light of this theorem we see that the existence of

L fix)
x=a

simply means that fix) approaches only one value, while the

non-existence of

Lfix)

means that fix) approaches at least two values as x approaches a.

In case fix) is monotonic (and hence single-valued), or more

generally if fix) is a non-oscillating function, these ideas are

particularly simple. We have in fact the theorem:

Theorem 25. If fix) is a non-oscillating function for a set of

values [x]<a, a being a limit point of [x], then as x approaches a
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from the left on the set [x], f{x) approaches one and only one

value b, and if f{x) is an increasing function,

b = Bf{x)

for X on [x], whereas if f{x) is a decreasing function,

h = B}{x)

for X on [x].

Proof. — Consider an increasing non-oscillating function

and let

h = Bf{x)

for X on [x].

In view of the preceding theorem we need to prove only

that no Value 6V6 can be a value approached. Suppose h'>h;

then since Bf{x) =b, there would be no value of fix) between

b and b', that is, there would be a V(b') which could contain

no value of fix) , whence b'>b 'm not a value approached. Sup-

pose b'<b. Then take b'<b"<b, and since Bf{x)=b, there

would be a value Xi of [x] such that fixi)>b". If xi<x<a,
then b" <fixi)^fix), because fix) cannot decrease as x in-

creases. This defines a V*(a) and a V{b') such that if x is in

y*(a), fix) cannot be in V{b'). Hence b' <b is not a value

approached. A like argument applies if fix) is a decreasing

function, and of course the same theorem holds if x approaches

a from the right.

It does not follow that

Lfix)=Lfix),
x<a x^a
x±a x—a

nor that either of these limits is equal to /(a) . A case in point

is the following: Let the temperature of a cooling body of

water be the independent variable, and the amount of heat

given out in cooling from a certain fixed temperature be the

dependent variable. When the water reaches the freezing-
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point a great amount of heat is given off without any change
in temperature. If the zero temperature is approached from
below, the function approaches a definite limit point k. and if

the temperature approaches zero from above, the function

Hea«

Temp.

FiQ. 12.

approaches an entirely different point A-'. This function, how-

ever, is multiple-valued at the zero point. A case where the

limit fails to exist is the following: The function y=anl x

(see Rg. S, page 50) approaches an infinite number of values

as J approaches zero. The value of the fimction will be alter-

D&tely 1 and —1, as j = -. ^, -r-, etc., and for all values of

X between any two of these the function will take all values

between 1 and —1. Clearly every value between 1 and -1

is a value approached as r approaches zero. In like manner
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1/
=- sin - approaches all values between and including + » and

- 00 , cf. Fig. 13.

tslni

Fig. 13.

The functions a*, logo x, x° defined in § 4 of the last chapter

are all monotonic and all satisfy the condition that

L f{x)=fia)=L fix),
x>a x<a
z£a x—a

at all points where the functions are defined. These functions

are therefore all continuous.
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§ 2. The Existence of Limits.

Theorem 26. A necessary and sufficient condition \ that f(i)

shall converge to a unique limit h as x approaches a, i.e., that

L f{x)=b,

is that for every V(b) there shall exist a V*{a) such that for every

xin r*{a), fix) is in r(b).

Proof.—(1) The condition is necessary. It is to be proved that

if L fix) =b, then for every T'(6) there exists a F*(a) such that

for every x in V*(a) the corresponding f{x) is in T'(b). If this

conclusion did not follow, then for some V{b) every V*(a)

w-ould contain at least one x' such that /(.j-') is not in T'(6).

There is thus defined a set of points [x'] of which a is a limit

point. By Theorem 20 f{x) would approach at least one value

h' as X approaches a on the set [/]. But by the definition of

[/], b' is distinct from h. Hence the hypothesis would be con-

tradicted.

(2) The condition is sufficient. We need only to show that

if for every. V(b) there exists a V*{a) such that for every

X in V*ia) the corresponding fix) is in V(b). then f{x) can

approach no other value than b. If b'j^b, then there exists

a 1(6') and a Vib) which have no point in common. Now if

V*ia) is such that for every x of T'*(a), f{x) is in Vib), then

fThis means: (o) If L f(x) = b, then for e\-ery V(5) there exists a T"*(o),

as specified by the theorem.

(6) If for e^-ery r(6) there exists a T"*(a) as specified,

then L /i,j)= b.

A condition is necessary for a certain conclusion if it can be deduced from

that conclusion ; a condition sufficient for a conclusion is one from which the

conclusion can be deduced, A man sufficient for a task is a man -who can

perform the task, \riiile a man necessary for the task is such that the task

cannot be performed without him.
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for no such x is f{x) in V{b') and hence b' is not a value

approached.

The reader should observe that this proof applies also to

multiple-valued functions, although worded to fit the single-

valued case. It is worthy of note that in case 6 is a finite num-

ber, our theorem becomes

:

A necessary and sufficient condition that

Lf{x)=h
xiza

is that for every £>0 there exists a Vt*(a) such that for every x

mV*(a), \f{x)-b\<B.

In case a also is finite, the condition may be stated in a

form which is frequently used as the definition of a limit, namely

:

L fix) =b means that for every e>0 there exists a 5, >0 sv^h

that if \x—a\<d, and Xy^a, then |/(x)—6|<£.t

Theorem 27. A necessary and sufficient condition that f{x)

shall converge to a finite limit as x approaches a is that for every

e>0 there shall exist a V*{a) such that if Xi and X2 are any two

values of x in V,*{a), then

|/fe)-/(x2)|<e.

Proof.—(1) The condition is necessary. If Lf{x)=b and h

is finite, then by the preceding theorem for every ^>0 there

exists a V *(o) such that if xi and X2 are in V *{a), then

l/(^i)-6|<|

and \fix2)-b\<^,

from which it follows that

|/(Xl)-/fe)|<£.

tThe E subscript to ^. or to F.*(o) denotes that d, or V,*{a') is a func-
tion of e. It is to be noted tha' inasmuch as any number less than S is

effective as dt, dt is a multiple-valued function of e.
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(2) The condition is sufficient. If the condition is satisfied,

there exists a V*{a) upon which the function j{x) is bounded.

For let 7 be some fixed number. By hypothesis there exists a

'V*{a) such that if x and Xo are on y*(o), then

|/(x)-/(xo)|<i.

Taking Zo as a fixed number, we have that

/(xo)-£</(x)</(xo)+7

for every x on V*{a). Hence there is at least one finite value,

6, approached by /(x). Now for every e > there exists a y,*(a)

such that if xi and X2 are any two valves of x in V*{a)^

|/(xi) — /(X2)| < £. Hence by the definition of value approached

there is an x, of 7.* (a) for which

W.)-'b\<^ (a)

and |/(x,)-/(x)l<£ (6)

for every x of F.*(a). Hence, combimng (a) and (6), for every x

of 7 *(o) we have

l/(x)-6|<2£,

and hence by the preceding theorem we have

L/(x)=6.
x-a

In case a as well as 6 is finite. Theorem 27 becomes:

A necessary and sufficient condition thai

Lfix)
x±a

shaU exist and be finite is that for every e>0 there exists a d.>0

such that

\i{Xx)-KXi)\<^
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for every Xi and X2 such that

XiT^a, XzT^a, \xi—a\<d., \x2-a\<8,.

In case a is + 00 the condition becomes

:

For every e > there exists a N.>0 such that

\Kxi)-f{x2)\<e

for every xi and X2 such that Xi>N„ X2>N,.

The necessary and sufficient conditions just derived have

the following evident corollaries

:

Corollary 1. The expression

Lfix)=b,
x~a

where b is finite, is equivalent to the expression

Lif{x)-b)=0,

and whether h is finite or infinite

L fix) =6 is equivalent to L (-fix)) = —6.

Corollary 2. The expressions

L/(a;)=0 and L |/(a;)|=0

are equivalent.

Corollary 3. The expression

Lfix)=b

is equivalent to

Lfiy+a)=b,
»=o

where y+a=x.
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Corollary 4. The expression

L/(i)=6
x<a
i = o

IS equivalent to

jjHh-
where 2=

x—a
The reader should verify these corollaries by writing down

the necessary and sufficient condition for the existence of each

limit. The following less obvious statement is proved in detail

for the case when b is finite, the case when b is + « or — «
being left to the reader.

Corollary 5. If

Lfix)=b,

then L|/(x)| = |b|.

Xza

Proof.—By the necessary condition of Theorem 26 for every

e there exists a 7.* (a) such that for every Xi of V*{a)

\f{x^)-b\<e.

If /(Ji) and b are of the same sign, then

||/(xi)|-|6|| = |/(xO-6|<«,

and if /(xi) and b are of opposite sign, then

|l/(xi)i-|b||< 1/(^1) -M<^.

Hence, by the sufficient condition of Theorem 26,

L \fix)\
x=a

exists and is equal to |6|.
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Corollary 6. If a function /(x) is continuous at x=a, then

|/(x)| is continuous at a;=a.

It should be noticed that

L|/(x)| = |6|

is not equivalent to

L fix) =b.

Suppose j{x) = 4-1 for all rational values of x and f{x) = — 1 for

all irrational values of x. Then L |/(a;)| = +1, but L f{x) does
x=a x=a

not exist, since both + 1 and — 1 are values approached by f{x}

as X approaches any value whatever.

Definition.—Any set of numbers which may be written [i„],

where

n=0, 1,2, ...,K,

or n=0, 1, 2, ...,«,.. .,

is called a Sequence.

To the corollaries of this section may be added a corollary-

related to the definition of a limit.

Corollary 7. If for every sequence of numbers [i„] having a
as a limit point,

L f{x) = h, then L f{x)=b.
x|[ln] x-a
x= a

Proof.—In case two values b and 6i were approached by

f{x) as X approaches a, then, as in the first part of the proof

of Theorem 26, two sequences could be chosen upon one of

which fix) approached b and upon the other of which fix)

approached bi.

§ 3. Application to Infinite Series.

The theory of limits has important apphcations to infinite

series. An infinite series is defined as an expression of the form
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00

i'ot=ai +02+03+ . . . +a„+ ...

If Sn is defined as

n
Ol + ... +an= -^ dkt

k=l

n being any positive integer, then the sum of the series is defined

as

LSr,=S
no- 00

if this limit exists.

If the Umit exists and is finite, the series is said to be conver-

gent. If (S is infinite or if <S„ approaches more than one value

as n approaches infinity, then the series is divergent. For exam-

ple, S is infinite if

lafc= l + l + l + l...,

and Sn has more than one value approached if

ioi= l-l + l-l + l...

It is customary to write

Rn =S— Sn.

A necessary and sufficient condition for the convergence of

an infinite series is obtained from Theorem 27.

(1) Fm- every e>0 there exists an integer N. such thai if

n>N, and n'>N., then

\S„-Sn'\<e.

This condition immediately translates into the following

form:
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(2) For every £>0 there exists an integer N. swh that if

n>N„ then for every k

|o„+o„+i + . . .+a„+fc|<e.

Corollary.—If 2 ot is a convergent series, then L 04=0.
k=l *=«

Definition.—A series

2'ai=Oo+ai + . . .+On+. • •

is said to be absolutely convergent if

|ap| + |ai I + . . . + |a„| + . . . is convergent.

Since

|a„+0„+i+. . .+0„+fc|<|a„| + l0n+l|+. . .Iffln+ltij

the above criteria give

Theorem 28, A series is convergent if tt is absolutely conver-

gent.

00

Theorem 29. If I bkis a convergent series all of whose terms
k=0

00

are positive and I ak is a series such thai for every k, \ak\S)k,
k=Q

then I o*
k-O

is absolutely convergent.

Proof.—By hypothesis

k=0 k-0
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n

Hence I \ak\

is bounded, and being an increasing function of n, the series

is convergent according to Theorem 25.

This theorem gives a useful method of determining the con-

vergence or divergence of a series, namely, by comparison with

a known series. Such a known series is the geometric series

a+ar+ar^+ . . . +ar^+ . .
.

,

where 0<r<l and a>0. In this series

„ l_rn+l a

which shows that the series is convergent. Moreover, it can

easily be seen to have the sum :;—

.

•^ l-r

If rf 1, the geometric series is evidently divergent. This result

can be used to prove the "ratio-test " for convergence.

Theorem 30. // there exists a number, r, 0<r<l, such that

an ^

a„_il

for every integral value of n, then the series

ai+a2+ . . . +an+ (1)

is absolutely convergent. If
a„-i

>1 for every n, the series is

divergent.

Proof.—^The series (1) may be written

02 02 03
. ,

az an ,n~.

Oi+Oi-+ai + •• +°'^:r •n— . • (2)
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and if

On

Ctn-l
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<r, this is numerically less term by term than

Oi+Oir+Oir^ . . .+air" + (3)

and therefore converges absolutely. If
dn

^l,a„^i for every

n; hence, by the corollary, page 72, (1) is divergent.

Nothing is said about the case when

<1, but L
an_

dn-l

It is evident that the ratio test need be applied only to terms

beyond some fixed term a„, since the sum of the first n terms

ai+a2+ . . .+o„

may be regarded as a finite number Sn and the whole series as

i.e., a finite number plus the infinite series

an+i+an+2+ . • •

§ 4. Infinitesimals. Computation of Limits.

Theorem 31. A necessary and sufficient condition thai

L}{x)=b
x±a

is that for the function e(x) defined by the equation f{x) =b + e(x)

L e{x)=0.
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Proof.—Take e{x)=f{x)-b and apply Theorem 26. A
special case of this theorem is: A necessary and sufficient am-
dition for the convergence of a series to a finite value b is that for
every e>0 there exists an integer N. such that if n>N., then
\Rn\<e.

Definition.—A function f{x) such that

Lf{x)=0

is called an infinitesimal as x approaches o.f
Theorem 32. The sum, difference, or product of two infinitesi-

mals is an infinitesimal.

Proof.—Let the two infinitesimals be /i(x) and fzix). For
every £, 1> £>0, there exists a Vi*{a) for every x of which

and a F2*(o) for every x of which

Ux)\<^.

Hence in any V*(a) common to Vi*{a) and V2*{a)

\hix)+f2ixMfi{x)\ + Ux)\<e,

\h(x)-f2(xmflix)\ + \f2ix)\<,,

\hix)-f2{x)\ = \fi(x)\-\f2{x)\<e.

From these inequalities and Theorem 26 the conclusion follows.

Theorem 33. // f{x) is bounded on a certain V*{a) and £(i)

is an infinitesimal as x approaches a, then £{x) •f{x) is also an

infinitesimal as x approaches a.

t No constant, however small if not zero, is an infinitesimal, the essence

of the latter being that it varies so as to approach zero as a limit. Cf.

Goursat, Cours d'Analyse, tome I, p. 21, etc.



76 INFINITESIMAL ANALYSIS.

Proof.—By hypothesis there are two numbers m and M,

such that M>f{x)>m for every x on V*{a). Let k be the

larger of |m| and \M\. Also by hypothesis there exists for every

e a V,*(a) within V*{a) such that if x is in V*ia), then

or A;|£(x)|<£.

But for such values of x

\f{x)-E{x)\<k-\E(x)\<e,

and hence for every e there is a V*ia) such that for x an y,*(o)

\Kx)-c{x)\<e.

Corollary.—If }{x) is an infinitesimal and c any constant,

then c-f{x) is an infinitesimal.

Theorem 34. 7/ L/i(x)=6i ond Lf2{x)=b2,
x~a x~a

bi and 62 6et7ig /inite, then

L\fi{x)±f2(x)\=bi±b2, ... (a)

L\h{x)-f2{x)}=bi-b2; (/?)

andx/6.^0, lJ^^J^^ (,)
^

Proof.—According to Theorem 31, we write

/i(a;)=6i + £i(z),

h{x)=b2 + B2ix),
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where €i(a;) and £2(2;) are infinitesimals. Hence

fi{x)+f2{x)=bi+b2 + siix) + s2ix), . . . (a')

fi{x)-J2{x)=bi-b2 + bi-£2{x)+b2-ei{x) + ei{x)-e2{x). . (/?')

But by the preceding theorem the terms of (a') and (/3') which

involve £1(2) .and e2{x) are infinitesimals, and hence the con-

clusions (a) and (/?) are established.

To establish (;-), observe that by Theorem 26 there exists

a V*{a) for every x of which 1/2(2) -&2I <|62| and hence upon

which /aCx) t-^O. Hence

fijx) ^ bi + sijx) J}i b2eiix) -biezjx)

hix) 62 +£2(2) 62 62162+ £2(X)} '

the second term of which is infinitesimal according to Theorems

32 and 33.

Some of the cases in which 61 and 62 are ± 00 are covered

CO

by the following theorems. The other cases (oo -oo, — , -,

etc.), are treated in Chapter VI.

Theorem 35. i/ ]2{x) has a lower bound on some V*{a),

and if

L/,(2)=+oo,
1=0

then L i/2(a;)+/i(x)} = + oo.

Proof.—Let M be the lower bound of /2(x). By hypothesis,

for every number E there exists a VE*{a) such that for x on

VE*ia)

U{x)>E-M.

Since hix)>M,

this gives hix)+J2{x)>E,

which means that /i(x) +J2{x) approaches the limit + 00

.
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Theorem 36. 7/ L/i(x) = + oo or —00, and if f2(x) is such

that for a F*(a) /2(x) has a lower bound greater than zero or an

upper boundless than zero, then L {/i(x) 72(2;) } is definitely infinite;
x±a

i.e., if /2(x) has a lower bound greater than zero and Lfi{x) = + co,

z = a

then L {fi{x) f2{x) !
= +<», etc.

x~za

Proof.—Suppose /2(x) has a lower bound greater than zero,

say M, and that L fi{x) = + qo . Then for every E there exists a
x~a

- E
Te*{o) within V*{a) such that for every Xi of F£*(a), fi{xi) > t^,

and therefore fi{xi)-f2{xi)jfi{xi)-M>E. Hence by the defini-

tion of Umit of a function Lj/i(x) /2(a;)! =+». If we consider

the case where /2(x) has an upper bound less than zero, we
have in the same manner L {/i(x) •/2(a;)

t
= — <» Similar state-
x±a

ments hold for the cases in which L /i(x) = — 00

.

Corollary.—If /2(x) is positive and has a finite upper bound

.andL/i(x) = +oo, thea

iv , ^ = + 00 .

X±af2{x)

Theorem 37. If L /(x) = + (», then L 77-: = 0, and there is'

a

x~a x~aJ\X)

vicinity V*{a) upon which /(x) >0. Conversely, if L /(x) =0 and
x=a

there is a V*{a) upon which /(x) > 0, then L jr— = + 00

.

Proof.—If L f{x) = + 00
, then for every e there exists a

x-±a

V*{(i) such that if x is in V*{a), then

/(^)>7
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and
77-T<«-

since both f{x) and 7^ are positive.

Again, if L /(x) =0, then for every e there is a 7.* (a) such
x=.a

that for X in V*{a), |/(x)|<e or —->- (/(x) being positive).

Hence L 7^-r = + 00

.

Corollary 1. If /i(x) has finite upper and lower bounds on
some V*{a) and L /2(x) = + « or - 00 , then

Corollary 2. If /2(x) is positive and /i(x) has a positive

lower bound on some V*{a) and L f2{x)=0, then
x£o

£( . , . = +00.
x=a/2(a;)

Theorem 38 (change of variable). If

(1) L/i(j)=6i and L/2(2/)=&2

wfecn y takes all values of /i (x) corresponding to valves of x on

some V*{a), and if

(2) /i{j) f^bi for X on V*{a),

then L /•,(/, (x)) =62.
x-a
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Proof.—(a) Since L /zCj/) =62, for every 7(62) there exists a

F*(6i) such that if y is in V*(bi), jiiy) is in V{hi). Since

L fi{x) =61, for every F(6i) there exists a 7*(a) in F*(a) such
xda

that if a; is in y*(o), /i(x) is in F(6i). But by (2) if x is in

V*{a), fi{x)^bi. Hence (/?) for every V*(bi) there exists a

V*{a) such that for every x in V*(a), /i(x) is in V*{bi).

Combining statements (a) and (/3) : for every 1^(62) there

exists a F*(a) such that for every x in V*{a) fi{x) is in F*(6i),

and hence fzifix)) is in F(62). This means, according to Theo-

rem 26, that

Lf2ih{x))^b2.
x~a

Theorem 39. If L /i(x) =6 and L f2(y) =hQ>)} where y takes
x±a yxb

all valves taken by /i(x) for x on some V*ia),

then L/2(/i(x))=/,(6).
x~a

Proof.—The proof of the theorem is similar to that of Theorem

38. In this case the notation /2(6) implies that 6 is a finite

number. Thus for every ej there exists a V,*{a) entirely

within V*{a) such that if x is in V,*{a),

|/i(x)-fe|<n.

Furthermore, for every £2 there exists a 5,, such that for

every 2/, j/7^6, \y-b\<dE2,

\f2{y)-f2{b)\<e2.

But since Ifziy) -f2{b)\=0 when y = b, this means that for all

values of y (equal or unequal to b) such that \y—b\<d,^,

1/2(2/) -/2(b)|<e2. Now let e, =5„; then, if i is in V.*{a), it

follows that 1/1 (z) -b\<d„ and therefore that

|/2(/l(x))-/2(6)|<S2.

Hence L f2(f,{x))=f2{b).
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Corollary 1. If /^(x) is continuous a,t x=a, and f-ziy) is con-

tinuous at 2/ = /i(a), then /2(/i(x)) is continuous at x = o.

Corollary 2. If ^v 0, /(x)^0, and L /(x) = b, then

under the convention that oo'= = oo if k>0 and oo*:=0ifjfc<0.

Corollary 3. If OO and /(x)>0 and 6>0 and Lf{x)=b,
^'^

Llog,/(x)=log,6,

under the convention that log,. ( + w ) = + oo and log„ = - oo

.

The conclusions of the last two corollaries may also be ex-

pressed by the equations

L(/(x))* = (L/(x))*
x—a ar^a

and log, L/(x)=L log, '(x).

x'-a x±a

Corollary 4. If L (/(x))* or L log /(x) fails to exist, then

L /(x) does not exist.

§ 5. Further Theorems on Limits.

Theorem 40. 7/ f{x):^b for all valves of a set [x] on a certain

V*{a), then every value approached by fix) as x approaches a is

less than or equal to b. Similarly if fix)^b for all values of a set

[x] on a certain F*(o), then every valve approached by /(x) as x

approaches a is greater than or equal to b.

Proof.—If f{x)%b on V*{a), then if b' is any value greater

than b, and V{b') any vicinity of b' which does not include b,

there is no value of x on V*(a) for which /(x) is in V{b'). Hence

V is not a value approached. A similar argument holds for

the case where f{x)^b.
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Corollary 1. If /(x)^0 in the neighborhood of x=c, then if

L fix) exist, L /(x)^0.

Corollary 2. If fiixj^fzix) in the neighborhood of x=a,

then L /i(x)2 L U^)
x±a i£o

if both these Umits exist.

Proof.—Apply Corollary 1 to fi(x)-f2{x).

Corollary 3. If t\{x)'^J2{x) in the neighborhood of x=a,

then the largest value approached by /i(x) is greater than or

equal to the largest value approached by /2(x).

Corollary 4. If /i(x) and ^(x) are both positive in the

neighborhood of x=a, and if /i(x)^/2(x), then if L /i(x)=0,

it follows that

L/2(x)=0.

Theorem 41. // [ucf] is a subset of [x], a being a limit point of

[x'], and if L f{x) exists^ then L /(a/) exists and
x-±a x±a

L f{x) = L fix').^
x~a x'±a

Proof.—By hypothesis there exists for every V{b) a V*{a)

such that for every x of the set [x] which is in V*{a), f{x) is in

F(6). Since [x'] is a subset of [x], the same V*{a) is evidently

efficient for x on [x'].

In the statement of necessary and sufficient conditions for

the existence of a limit we have made use of a certain positive

multiple-valued function of e denoted by 8,. If a given value

is effective as a d„ then every positive value smaller than this

is also effective.

Theorem 42. For every e for which the set of valves of d,

has an upper bound there is a greatest d,.

t The notation /(i') is used to indicate that x takes the values of the

8et[x'].
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Proof.—^Let B[d.] be the least upper bound of the set of

values oi d, for a particular e. If x is such that \x—a\ < B[8,],

then there is a d, such that |x-a|<^,. But if \x-a\<d„

|/(z) -b\ < e. Hence, if \x-a\<B[d.l \f{x) -b\ < e.

Theorem 43. The limit of the least upper bound of a function

fix) on a variable segment a x,a<x, as the end point apjrroaches

a, is the least upper bound of the valv£s approached by the function

as X approaches a from the right.

Proof.^Let / be the least upper bound of the values ap-

proached by the function as x approaches a from the right, and

let b{x) represent the upper bound of fix) for all values of x

on a X. Since Bfix) on the segment a Xi is not greater than

Bfix) on a segment a X2 if xi lies on a x^, bix) is a non-oscillat-

ing function decreasing as x decreases. Hence L bix) exists

by Theorem 21; and by Corollary 3, Theorem 40, L bix)^l. If
x=a

L bix)=k>l, then there are two vicinities of k, V]ik) contained
x=a

in V2ik) and V2ik) not containing I. By Theorem 26 a Vi*ia)

exists such that if x is in 7i*(a), bix) is in V^ik). Further-

more, by the definition of bix), if Xi is an arbitrary value of x

on Fi*(a), then there is a value of x in a Xj such that fix) is

in Vik). Hence k would be a value approached by fix) con-

trary to the hypothesis k>l.

§ 6. Bounds of Indetennination. Oscillation.

It is a corollary of Theorem 43 that in the approach to any

point a from the right or from the left the least upper bound

and the greatest lower bounds of the values approached by

fix) are themselves values approached by fix). The four num-

bers thus indicated may be denoted by

fia+0) = L fix) = L fix),

1=0+0 lia
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the least upper bound of the values approached from the right:

/(a-0)=L/(x)=L/(x),
x=a — x—a

the least upper bound of the values approached from the left:

j{a+0)=L f(x)=L fix),

x'-a+O <—

the greatest lower bound of the values approached from the right

:

/(o-0)=L/(x)=L/(x),
lio- —

>

x±a

the greatest lower bound of the values approached from the left.

If all four of these values coincide, there is only one value

approached and L fix) exists. If /(a+0) and fia+0) coincide,
x=a

this value is denoted by /(a+0) and is the same as L fix).
x>a
x±a

Similarly if /(o-O) and /(a-0) coincide, their common value,

L fix), is denoted by /(a - 0) . The larger of /(o+O) and /(a-0)
x<a

is denoted by L f{x), and is called the upper limit of f{x) as

X approaches a. Similarly L f(x), the lower limit of /(x), is

x=a

the smaller of /(a+0) and fja-O). L fix) and L fix) are

called the bounds of indetermination of fix) at x = a (Unbe-

stimmtheitsgrenzen) . See the Encyclopadie der mathematischen

Wissenschaften, II 41.

In order that a function shall be continuous at a point a it

is necessary and sufficient that

/(a)=/(a+0)= /(a+0)=/(o-0)= /(a+0) . ... (a)

The difference between the greatest and the least of these
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values is called the oscillc.tion of the function at the point a.

It is denoted by 0(,/(x), and according to the theorem above is

equivalent to the lower bound of all values of 0/(x), where

0/(3;) =Bf{x)-Bf{x) for a segment V{a).

0^(1) is used for the oscillation of fix) on the segment a b. It

is sometimes also used for the oscillation of }{x) on the interval

a b. The word oscillation may also be applied to the difference

between the upper and lower bounds of the function on a V*{a).

Denote this by Ov*(a)fi^)- The lower bound of these values

may be denoted by Oa*f{x) and is the difference between the

greatest and the least of the four values /(a+0), /(o-O),

f(a + ), /(g-O)-

The reader wiU find it a useful exercise to construct exam-

ples and to enumerate the different ways in which a func-

tion may be discontinuous, according as /(o+O) or /(a— 0) exist

or do not exist, and according as /(o) does or does not coincide

with any of the values approached by fix). (Compare the

reference to the E. d. m. W. given above.) The principal

classification used is into discontinuities of the first kind, where

/(a+0) and /(a-0) both exist, and discontinuities of the second

kind, where not both /(a+0) and /(a-0) exist.

Theorem 44. If a is a limit point of [x], then a necessary and

sufficient condition that &2 and bi shall be the upper and lower

bounds of indetermination of fix), as x=a, is that for every set

of four numbers Oi, a2, Ci, C2, such that t

ai<6i<Ci<C2<62<ffl2,

there exists a V*ia) such thai for every x on V*ia)

ai</(x)<a2,

and for som£ x', x" on V*ia)

fix')>C2 and fix")<Cy.

t If 6, = - 00, o, = 6, replaces a,<bu If 6a = + =0 , Oj = b, replaces 6,< Oj.
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Proof.—I. The condition is necessary. It is to be proved^

that if 62 and 61 are the upper and lower bounds of indeter-

mination of f{x), as x = a on [x], then for every four numbers

ai<bi<Ci<C2<b2<a2 there exists a V*{a) such that:

—

(1) For all values of x on V*{a), a^<f{x)<a2. If this con-

clusion does not follow, then for a particular pair of numbers

Ci, a2, there are values of f{x) greater than 02 or less than Gj

for X on any V*{a), and by Theorems 24 and 40 there is at least

one value approached greater than 62 or less than 61. This

would contradict the hypothesis, and there is therefore a V*{a)

such that for all values of x on F*(a), ai<f{x) <a2.

(2) For some x', x" on F*(o), f{x')>C2 and /(x")<Ci. If

this conclusion should not follow, then for some V*{a) there

would be no x' such that f(x') >C2, or no x" such that f{x") <Cj,

and therefore bi and 62 could not both be values approached.

II. The condition is sufficient. It is to be proved that 62

and 61 are the upper and lower bounds of the values approached.

If the condition is satisfied, then for every four numbers O], 02,

Ci, C2, such that ai<bi<Ci<C2<b2<a2 there is a V*(a) such

that for all j's on V*{a) ai</(x)<a2, and for some x', x",

f{x')>C2 and f{x")<Ci. By Theorem 24 there are values ap-

proached, and hence we need only to show that 62 is the least

upper and 61 the greatest lower bound of the values approached.
Suppose some B>b2 is the least upper bound of the values

approached; 02 may then be so chosen that b2<a2<B, so that

by hypothesis for x on V*(,a) B cannot be a v^lue approached.

Again, suppose B<62 to be the least upper bound; c may then
be chosen so that B<C2, and hence for some value x' on each
F*(o), /(x')<C2. By the set of values f{x') there is at least

one value approached. This value is greater than C2>B.
Therefore B cannot be the least upper bound. Since the least

upper bound may not be either less than 62 or greater than

62, it must be equal to 62- A similar argument will prove bi to

be the greatest lower bound of the values approached.



CHAPTER V.

CONTINUOUS FUNCTIONS.

§ I. Contintiity at a Point.

The notion of continuous functions will in this chapter, as

in the definition on page 61, be confined to single-valued func-

tions. It has been shown in Theorem 34 that if /i(i) and fzix)

are continuous at a point x=a, then

/lU)±/2(l), /l(x)-/2(x), /i(x)//2(x), (/2(X)?^0)

are also continuous at this point. Corollary 1 of Theorem 39
states that a continuous function of a continuous function is

continuous.

The definition of continuity at a;=a, namely,

Lf{x)=f{a),
x-a

is by Theorem 26 equivalent to the following proposition

:

For every £>0 </icre exists a S,>0 such that if \x-a\<S„
then \fix)-j{a)\<e.

It should be noted that the restriction Xt^u which appears

in the general form of Theorem 26 is of no significance here,

since for x=a, |/(i)—/(a)|=0<£. In other words, we may
deal with vicinities of the type V{a) instead of V*{a).

The difference of the least upper and the greatest lower
I—

I

bound of a function on an interval a b has been called in

Chapter IV, page 85, the oscillation of /(i) on that interval,

and denoted by 0*(x). The definition of continuity and

Theorem 27, Chapter III, give the following necessary and

suflScient condition for the continuity of a function /(i) at the

87
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point x=a: For every e>0 there exists a d,>0 such that if

\xi-a\<d., and |x2-a|<^„ then \f{xi)-f{x2)\<K- This means

that for all values of ii and xz on the segment {a — d,) (a + 5,)

B\fix,)-fix2)\<^<e,

and this means Bfix) —Bf{x) < e,

or 0:lt'Jix)<s.

Then we have

Theorem 45. If fix) is continvaus for x=a, then for every

e > there exists a V,{o-) such that on V,(o) the oscillation of f{x)

is less than e.

Theorem 46. // f{x) is continvaus at a point x=a and if

f(a) is positive, then there is a neighborhood of x=a upon which

the function is positive.

Proof.—If there were values of x, [x'] within every neighbor-

hood of x=a for which the function is equal to or less than zero,

then by Theorem 24 there would be a value approached by

/(a/) as a/ approaches a on the set [a/]. That is, by Theorem
40, there would be a negative or zero value approached by f{x),

which would contradict the hypothesis.

§ 2. Continuity of a Function on an Interval.

Definition.—^A function is said to be continuous on an in-

terval a 6 if it is continuous at every point on the interval.

Theorem 47. If f{x) is cordinujous on a finite interval a b,

then for every e>0,a b can be divided into a finite number of equal

intervals upon each of which the oscillation of f{x) is less than e.f

t The importance of this theorem in proving the properties of continu-
ous functions seems first to have been recognized by Goursat. See his

Coura d'Analyse, Vol. 1, page 161.
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Proof.—By Theorem 45 there is about every point oi a b a.

segment a upon which the oscillation is less than e. This set

of segments [o] covers a b, and by Theorem 11 a 6 can be

divided into a finite number of equal intervals each of which is

interior to a <i; this gives the conclusion of our theorem.

Theorem 48. {Unijorm continuity.) If a function is con-

I—

I

tmuous on a finite interval a b, then for every £ > there exists a

d,>0 such that for any two values of x, Xi, and X2, on a b where

\Xi-X2\<d,, |/(Xi)-/(X2)|<£.

Proof.
—

^This theorem may be inferred in an obvious way
from the preceding theorem, or it may be proved directly as

follows

:

By Theorem 27, for every e there exists a neighborhood

V^(x') of every a/ of a b such that if Xi and X2 are on V (x'),

then |/(a;i)-/(x2)|<£. The V'{xfys constitute a set of seg-

I—

I

ments which cover a b. Hence, by Theorem 12, there is a, d,

such that if \xi—X2\>S„ Xi and X2 are on the same F(x') and

consequently |/(xi)— /(x2)l<e.

The uniform continuity theorem is due to E. Heine.! The

proof given by him is essentially that given above.

In 1873 LiJROTH J gave another proof of the theorem which

is based on the following definition of continuity

:

A single-valued function is continuous at a point x=a' if

for every positive e there exists a d, such that for every Xi and

X2 on the interval a-d, a + S„ |/(a;i)-/(x2)|<« (Theorem 45).

By Theorem 42 there exists a greatest d for a given point

and for a given e. Denote this by J,(x). If the function is con-
I—

I

tinuous at every point of a b, then for every £ there will be

a value of J,{x) for every point of the interval, i.e., d,{x), for

any particular e, will be a single-valued function of x.

t E. Heine: Die Elemente der Functionenlehre, Crelle, Vol. 74 (1872), p. 188.

1 Luroth: Bemerkung iiber Gleichmdssige Stetigkeit, Mathematische Anna-

len, Vol. 6, p. 319.
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The essential part of Luroth's proof consists in establishing

the following fact: If f(x) is continuous at every point of its

interval, then for any particular value of e the function i/x)

is also a continuous function of x. From this it follows by

Theorem 50 that the function J,{x) will actually reach its greatest

lower bound, that is, will have a minimum value; and this

minimum value, like all other values of d„ will be positive.f

This minimum value of J (x) on the interval under consideration

will be effective as a <?, independent of x.

The property of a continuous function exhibited above is

called uniform continuity, and Theorem 48 may be briefly

stated in the form: Every function amtimwus on an interval

is uniformly continuous on that interval.t

This theorem is used, for example, in proving the integrability

of continuous functions. See page 157.

I— I .

Theorem 49. // a function is continuous on an interval a b, it

is bounded on that interval.

Proof.—By Theorem 46 the interval a b can be divided into

a finite number of intervals, such that the oscillation on each

interval is less than a given positive number s. If the number

of intervals is n, then the oscillation on the interval a 6 is

less than ne. Since the function is defined at all points of the

interval, its value being f{xi) at some point Xi, it follows that
I—

I

every value of f(x) on a 6 is less than f{xi) +ne and greater

than /(xi)-n£; which proves the theorem.

Theorem 50. // a function f{x) is continuous on an interval
*

t It is interesting to note that this proof will not hold if the condition

of Theorem 26 is used as a definition of continuity. On this point see N. J.

Lennes: The Annals of Mathematics, second series, Vol. 6, p. 86.

Jit should be noticed that this theorem does not hold if "segment"

is substituted for "interval," as is shown by the function — on the segment

1, which is continuous but not uniformly continuous. The function is

defined and continuous for every value of x on this segment, but not for every

value of X on the interval 1.
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I—

I

a b, then the function assumes as values its least upper and
its greatest lovoer hound.

Proof.—By the preceding theorem the function is bounded
and hence the least upper and greatest lower bounds are finite.

By Theorem 19 there is a point k on the interval a b such that

the least upper bound of the function on every neighborhood of

x=kis the same as the least upper bound on the interval a b.

Denote the least upper bound of f{x) on a 6 by B. It follows

from Theorem 43 that 5 is a value approached by fix) as x

approaches k. But since L f{x)=f{k), the function being con-

tinuous at x=-k, we have that f{k) = B. In the same manner
we can prove that the function reaches its greatest lower

bound.

Corollary.—If A; is a value not assumed by a continuous

, . I—

I

function on an interval a b, then f{x) -k or k-f{x) is a con-

tinuous function of x and assumes its least upper and greatest

lower bounds. That is, there is a definite number i which is

the least difference between k and the set of values of /(x) 'on

the interval a b.

I—

I

Theorem 51. If a function is continuous on an interval a b,

then the function takes on all values between its least upper and

its greatest lower bound.

Proof.—If there is a value k between these bounds which

is not assumed by a continuous function f{x), then by the

corollary of the preceding theorem there is a value i such that

no values of fix) are between k—J and k+J. With e less than

J divide the interval a b into subintervals according to

Theorem 47, such that the oscillation on every interval is less

than £. No interval of this set can contain values of fix)

both greater and less than k, and no two consecutive intervals

can contain such values. Suppose the values of fix) on the

first interval of this set are all greater than k, then the same is
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true of the second interval of the set, and so on. Hence it

I—

I

follows that all values of f{x) on a b are either greater than or

less than k, which is contrary to the hypothesis that k Ues be-

tween the least upper and the greatest lower bounds of the

function on a b. Hence the hypothesis that /(x) does not

assume the value k is untenable.

By the aid of Theorem 51 we are enabled to prove the fol-

lowing :

Theorem 51a. // /i(x) is continuous at every point of an inier-

'—

I

val a' b' except at a certain point a, and if

Lfi{x) = + cc and L/2(x)= — 00,

then for every b, finite or +00 or — 00 , there exist two sequences

of points, [xj] and [x/] (i=0, 1, 2, . . . ), each sequence having a

as a limit point, such that

L i/ife)+/2(x/)!=6.

Proof.—Let [x/] be any sequence whatever on a' b' having a
... .

I—

I

as a limit point, and let Xq be an arbitrary point of a' V. Since

/i(x) assumes all values between /i(xo) and +00, and since

^ f2{x) = — oo, it follows, in case b is finite, that for every i

greater than some fixed value there exists an Xi such that

fl{Xi)+f2ix/)=b.

In case 6= -I- « , Xj is chosen so that

fl{Xi)+f2iXi')>i.

Corollary.—Whether /j(x) and /2(x) are continuous or not,

if L /i(x)=4-oo and L /2(x)=-oo, there exists a pair of
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sequences [xj and [x/] such that

L {/l(Xi)+/2(x/)|
»=«

is + 00 or — 00

.

Theorem 52. // y is a function, f{x), of x, monotonic and con-

I—

I

tinuous on an interval a b, then x=f~^{y) is a function of y

which is monotonic and continuous on the intenal f{a) f{b).

Proof.—By Theorem 20 the function f~'^{y) is monotonic and

has as upper and lower bounds a and h. By Theorems 50 and

51 the function is defined for every value of y between and

including /(a) and f{b) and for no other values. We prove the

I—

I

function contmuous on the interval /(a) f{b) by showing that

it is continuous at any point y=yi on this interval. As y
I-—

I

approaches j/i on the interval /(a) j/i, f~^(y) approaches a definite

limit g by Theorem 25, and by Theorem 40 a<glf-^{yi)±b. If

g<f~^{yi), then for values of x on the interval g /(j/j) there is

no corresponding value of y, contrary to the hypothesis that f{x)

I—

1

is defined at every point of the interval a b. Hence g=f~'^{yi),

and by similar reasoning we show that f~^{y) approaches /~H2/i)

I

—

—*]

as y approaches 2/1 on the interval, 2/1 / ^{b).

Theorem 53. // f{x) is single-valued and continuous with A, B
I—

I

as lower and upper bounds, on an interval a b and has a single-

I—

I

.
I—

I

valued inverse on the interval, A B then f{x) u monotonic on a b.

Proof.—If f{x) is not monotonic, then there must be three

values of x,

Xi<X2<X3,

such that either f{xi)^f(x2)'^f{xz)

or /(Xi)^/(X2)/^(X3).

In either case, if one of the equality signs holds, the hypothesis

tnat /(x) has a single-valued inverse is contradicted. If there
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are no equality signs, it follows by Theorem 51 that there are

two values of x, Xt and x^, such that

Xi<X4<X2<3;5<2:3,

and /(X4)=/(X5), in contradiction with the hypothesis that f{x)

has a single-valued inverse.

Corollary.—li f{x) is single-valued, continuous, and has a

single-valued inverse on an interval a b, then the inverse func-

I—

I

tion is monotonic on A B.

§ 3. Functions Continuous on an Everywhere Dense Set.

Theorem 54. // the functions fiix) and /2(x) are continuous

on the interval a b, and if fi{x)=f2{x) on a set everywhere dense,

then /i(x) =/2(2) on the whole interval.^

I—

I

Proof.—Let [a/] be the set everywhere dense on a 6 for

which, by hypothesis, /i(x) =fi{x). Let x" be any point of the

interval not of the set [a/]. By hypothesis x" is a limit point of

the set [x'], and further /i(x) and /2(x) are continuous at x=x".

Hence L /i(x) =/i(x")

and L /2(x) =/2(x").
X=l"

But by Theorem 41 L fi{x')=L fi (x)

,

x'=i" lil"

and by Theorem 41 L f2{xf) =L fzix).

x'il" x=x"

Therefore /i(x") =/2(x").

t I.e., if a function f(x), continuous on an interval a b, is known on an

everywhere dense set on that interval, it is known for every point on that

interval.
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I—

I

Definition.—On an interval o 6 a function /(x') is uniformly

continuous over a set [x'] if for every £>0 there exists a 5,>0

such that for any two values of a/, Xi, and X2' an a b, for which

\xi' -X2'\<d„ \}{x,').-f{x2')\<e.

Theorem 55. // o function f{x') is defined on a set everywhere

I—

I

dense on the interval a b and is uniformly continuous over that

set, then there exists one and only one function f{x) defined on
I—

I

the full interval a b such that:

(1) /(i) is identical with f{xf) where fix') is defined.

1—

I

(2) f{x) is continuous on the interval a b.

I—

I

Proof.—Let x" be any point on the interval a b, but not

of the set [a/]. We first prove that

L/(x')
x' £1"

exists and is finite. By the definition of uniform continuity, for

every e there exists a d, such that for any two values of x', Xi,

and x/, where |xi'-i2'|<5., |/(xi') -/(a;2')l<^- Hence we

have for every pair of values Xi' and Xz where |xi'-x"|<y

and 1x2' -x"| <Y that |/(xiO -/(xz') | < £. By Theorem 23 this

is a sufficient condition that

L/(x')
x-^x"

shall exist and be finite.

Let fix) denote a function identical with fixf) on the set

[x'] and equal to

Lfix')

at all points x". This function is defined upon the continuum,
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since all points x" on a b are limit points of the set [a/]. Hence

the function has the property that L /(x')=/(x) for every x
Xi -X

of a b.

We next prove that f{x) is continuous at every point on the

I—

I

interval a b, in other words that f{x) cannot approach a value

b different from /(zi) as x approaches Xi. We already know
that /(z) approaches f{xi) on the set [x']. If 6 is another value

approached, then for every positive e and d there is an x^ such

that

\X.,-Xi\<d, \f{X.,)-b\<€ (1)

Since f{xa) =L f{x') we have that for every e>0 there exists a

d,>0 such that for every x' for which \x' -x^| <5„

\fix')-f{x.,)\<e (2)

From (1) and (2) we have

\m-b\<2e (3)

Since the d of (1) is any positive number, there is an x^ on
every neighborhood of xj, and hence by (2) and (3) an a/ on
every neighborhood of Xi such that |/(x') — ?>| <2£, e being arbi-

trary and b a constant different from /(xi"). But this is con-

trary to the fact proved above, that L j{x') exists and is equal

to /(xi). Hence the function is continuous at every point of the
I—

I

interval a b. The uniqueness of the function follows directly

from Theorem 54. ,

This theorem can be applied, for example, to give an ele-

gant definition of the exponential function (see Chap. III). We

first show that the function a" is uniformly continuous on

the set of all rational values between xi and X2, and then define
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a* on the continuum as that continuous function which coin-

— TO
cides with a" for the rational values — . The properties of the

function then follow very easily. It will be an excellent exer-

cise for the reader to carry out this development in detail.

§ 4. The Exponential Function.

Consider the function defined by the infinite series

x^ x^ x^

Applying the ratio test for the convergence of infinite series

we have

.71! (n-1)! n

If n' is a fixed integer larger than x, this ratio is always less than

— < 1 The series (1) therefore converges absolutely for every
n'

value of X, and we may denote its sura by

e(x).

From Chap. I, page 17, we have that

Theorem 56. .iMT-

where [n] is the set of att positive irUegers, exists and is equal to

e(x) for all values of x.
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Proof.—Let E„(x) = 2' ri
fc=oA;!

(where 0! = 1).

Then, since

\ n) " ^(n-l)!'n"^(n-2)!-2!W "^•"'^nlW '

it follows that

(x\ "I " / 1 t? ^ \

1+-) = I (t-.-t ,,,•
, J x*

< " /I to(w-I) (n-A: + l))m

< -^
ri~~fc F •

A;!n*

Now, since

n*-(n-A; + l)*= (A-l){n*-i+n*-2.(n-A+ l)+...

+ (n-A; + l)*-M<(i-l)A;-n*-i,

it follows that

^„(x)-(l+3" < 2' .^•e{\x\)

~k=.2ik-2)l-n^ n

For a fixed value of x, therefore, we have

(l+|)"=E„(x) + ei(»),

where ei(n) is an infinitesimal as n= oo.

At the same time

e{x)=E„{x) + £2{n),

where e2{n) is an infinitesimal as n= w.

Hence L (l+-Y=e(x).
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Theorem 57. L (iH— ) ,

where [z] is the set of all real numbers, exists and is equal to e{x).

Proof.—If z is any number greater than 1, let nz be the

integer such that

ni^z<nz + l.

Hence,it«>0, l+£i l+|>l +j^j . . . . (1)

Henc (i+|)"""Mi+j)'>('+S:Ti)""' ' ' <^'

« (-3(-3""=(-?)'>(-i:Vi)-*"-V- (3)

Since L (l+f) =1, and L (l+r4l)=l.

and L (l+f) =e(x), and L (l+Z-Tj) =e(a;;,

the inequaUty (3), together with Corollary 3, Theorem 40, leads

to the result:

L (l+4)'=e(x).

The argument is similar if i<0.

Corollary. ^L^(l+-) =e{x),

where [z] is any set of numbers with limit point+ oo.

Theorem 58. The function e{x) is the same as e^ where

1 1
,
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Proof.—By the continuity of 3^ as a function of 2 (see Corol-

lary 2 of Theorem 39), it follows that, since

L (1+-)" =e,

L (1+-) =e'.

where 2=na;. Hence by Theorem 39

&=L (1+-)'

and by the corollary of Theorem 57 the latter expression is equal
to e(x) , Hence we have

ex= i+a;+|+|^+ (1)

(1) is frequently used as the definition of e*, a' being defined
as e^logeO.



CHAPTER VI.

INFINITESIMALS AND INFINITES.

§ I. The Order of a Function at a Point.

An infinitesimal has been defined (page 75) as a function f{x)

such that

L fix) =0.

A function which is unbounded in every vicinity of a;= a
is said to have an infinity at a, to be or become infinite at

x = a, or to have an infinite singularity at x = a.t The recipro-

cal of an infinitesimal at x=a is infinite at this point.

A function may be infinite at a point in a variety of ways

:

(a) It may be monotonic and approach +00 or - 00 as

x=a; for example, - as a; approaches zero from the positive

side.

(5) It may oscillate on every neighborhood of x=a and

still approach + 00 or — 00 as a unique limit; for example,

• 1 ^
sm--l-2

X

as X approaches zero.

t It is perfectly compatible with the.se statements to say that while

fix) has an infinite singularity at x=a, /{o)=0 or any other finite number.

For example, a function which is — for all values of x except x = is left

undefined for i=0 and hence at this point the function may be defined

as zero or any other number. This function illustrates very well how a

function which has a finite value at every point may nevertheless have infinite

smgularities.

101
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(c) It may approach any set of real numbers or the set of

all real numbers; an example of the latter is

. 1
sm-

X

as X approaches zero. See Fig. 13, page 64.

(d) + 00 and — » may both be approached while no other

number is approached; for example, - as a; approaches zero from

both sides.

Definition of Order.—If /(x) and 0(x) are two functions

such that in some neighborhood V*{a) neither of them changes

sign or is zero, and if

where k is finite and not zero, then f{x) and <f>{x) are said to be

oi the same order aX- x= a. If

x=a<{>ix)
'

then f{x) is said to be infinitesimal with respect to 4>{x), and

<fi{x) is said to be infinite with respect to f(x). If

L -rr^ = + 00 or — 00

then, by Theorem 37, <f>ix) is infinitesimal with respect to f(x),

and fix) infinite with respect to <f){x). If f{x) and <p{x) are both

infinitesimal at x=a, and f(x) is infinitesimal with respect to

<l){x), then fix) is infinitesimal of a higher order than <^(x), and

^ix) of lower order than fix). If ^(x) and fix) are both infinite

at x=o, and fix) is infinite with respect to ^(x), then /(x) is
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infinite of higher order than <i>{x), and 0(x) is infinite of lower
order than /(x).t

The independent variable x is usually said to be an infini-

tesimal of the first order as x approaches zero, x^ of the second
order, etc. Any constant j^O is said to be infinite of zero order,

- is of the first order, ^ of the second order, etc. This usage,

however, is best confined to analytic functions. In the general

case there are no two infinitesimals of consecutive order. Evi-
dently there are as many different orders of infinitesimals be-

tween X and a;2 as there are numbers between 1 and 2; i.e., xi+*

is of higher order than x for every positive value of k.

c,. -r /l(x) 1
, ^ foix)

oince L j-T-T^T whenever L '-rT~=k, we have
x-aj2\X) K x=a hW

Theorem 59. If /i(x) is of the same order as fzix), then fzix)

is of the same order as f\{x).

Theorem 60. The function cf{x) is of the same order as f{x),

c being any constant not zero.

Proof.—By Theorem 34, L ^^=c.

Theorem 61. If fiix) is of the same order as fiix), and /2(x)

is of the savfie order as fsix), then fiix) and fsix) are of the same

order.

t This definition of order is by no means as general as it might possibly

be made. The restriction to functions which are not zero and do not change

sign may be partly removed. The existence of

x=a't>(.x)

is dispensed with for some cases in § 4 on Rank of Infinitesimals and In-

finites. For an account of still further generalizations (due mainly to

Cauchy) see E. Borel, Series a Termes Positifs, Chapters III and IV, Paris,

1902. An excellent treatment of the material of this section together with

extensions of the concept of order of infinity is due to E. Borlotti, CaJr

colo degli Infinitesimi, Modena, 1905 (62 pages).
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Proof.—By hypothesis L 7^,—- = fci and L r-r-r=k2.

By Theorem 34, ^L ^-^ ;£/^=,£WV
(By definition, /2(a;) 5^0 and jz{x) y^O for some neighborhood of

x=a.) Hence

7- A^^) 7 7

x=al3W

Theorem 62, 7/ /i(x) and /2(x) are infinitesimal (infinite)

and neither is zero or changes sign on some V*{a), then f\{x) f2{x)

is infinitesimal (infinite) of a higher order than either.

Proof. L^-^fy^^=L/i(x)=0. (±00.)
xia /2W xia

Theorem 63. If fi(x), . . . , fn(x) have the same sign on some

V*(a) and if f2(x), . . . , fn(x) are infinitesimal (infinite) of the

same or higher (lower) order than fi(x), then

fl(x)+f2(x)+f3(x)+...+fn(x)

is of the same order as fi(x), and if /2(x), faix), . . . , f„(x) are of

higher (lower) order than fi(x), then fi(x)±f2(x)±f3(x)±. . .+fn(x)

is of the same order as /i (x)

.

Proof.—^We are to show that

J
fl(x)+f2(x)+...+f„(x)

i=a fl(x)

By hypothesis,

xi fAx)
-""

xta fl(x)
-"" •'•'

xia M^^^"'

A T A(^)
1
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Hence, by Theorem 30,

r [hix) f2ix) hix) Ux)\

since all the ^'s are positive or zero.

Similarly, under the second hypothesis.

^ Mx)±f2(x)±...±Ux) ^ j^
/iJ^ + M^li +/"W

]

\h(x) hix)
•••

/i(x)i

= 1+0 + . ..+0 = 1.

Theorem 64.—// /3(x) and fi{x) are infinitesimals with re-

spect to fi{x) and /aCx), then

J
\h{x)+fz{x)\-\h{x)+j^{x)]

^ , J
l/i(a:)+/3(x}-l/2(x)+/4(x)|

Froot. L ,/,.,,
,

^ ^ h(x) -hix) +fx(x) -Uix) +/3(X) f2{x) +f3ix) -f.jx)

xj,a h(x)-f2{x)

J
/l(x)-/2fa)

, J
/1(X)-/4 (X)

J
hix)-f2(.x) f3{x)-U(x)

xLhix) •/2(X) xl'a hix) f2{x) JlafM h{x) \Lh{x) -^ix)
^•

§ 2. The Limit of a Quotient.

Theorem 65. If as x = a, £i(x) is an infinitesimal vnth respect

to /i(x) and szix) with respect to fzix), then the valv£s approached by

/l(x) + £l(x) ^^^ M£)
/2(X)+«2(X) ^^ /2(X)

•as X approaches a are identical.
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Proof.—This follows from the identity

^i(x)\

/l(x)+£i(x) _ /i(x)

f2{x)+e2{x) fiix)' /i ,i2_(i)
1 +

f2{x)'

Since tt4 and 4^,-^ are infinitesimal.
flix) }2{X)

Corollary.—If /i(x) and /2(x) are infinite at a;=a, then

fiix)+c /i(x)

f,{x)+d
^""^

/2(X)

approach the same values.

Theorem 66. // L ^,= L ^,^k, and if L^,=l

• ^ V ,. i. T
hi.x)+h{x)

J
hix)

IS finite, then lc= L -,—,
^ , , , ^

= Li , , .
,' ' x^a^\{x)-V^2{x) xUaA-^^^y

provided l^ -1 if k is finite, and provided l>0 if k is infinite.

fi{x)+f2{x) f2{x) fi(x)<j>2{x)-f2{x)Mx)
Proof.

4>iix)+Mx) Mx) Mx){<f>i{x)+Mx)) '

/l(x)+/2(x) _ Mx) //i(x) /2(X)\ 7 1 \

4>l{x)+(j>2{x) 4>2{X) \(/)i(x) (f>2{x)l "I ^2{X)
).

In case k is finite, the second term of the right-hand member
is evidently infinitesimal if Ij^—l and the theorem is proved.

In the case where k is infinite we write the above identity in

the following form:

/1(X)+/2(X) /l(x) 1__.^,/2(X) 1

4>i{x)-\-<f>2(x) 0i(x) ^2(3:) (f>2{x) 9!>i(x)
'

«^i.(x) %2(a;)
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Both terms of the second member approach + oo or both - oo

if Z>0.

Corollary.~li <f>i{x) and 962(3;) are both positive for some

VHa), and if A= L ilM= L ^4^, then L i#tM^ =k

whenever k is finite. If k is infinite, the condition must be added

that , , - has a finite upper and a non-zero lower bound.

Theorem 67. // /i(x) and /2(x) are both infinitesimals asx = a,

then a necessary and sufficient condition that

L , , - =k {k finite and not zero)
x= a /2W

is that in the equation fi(x)=k-f2{x) + s(x), e{x) is an infini-

tesimal of higher order than /i(x) or fzix).

Proof.

—

{lyThe condition is necessary.—Since L r~-( =/fc,

X4a/2(X)

}2{X)
'' + '^^'^^'

or /i(x)=/2(2;)-A;+/2(x)-£'(a;), where L £'(x)=0 (Theorem 31).
x~a

By Theorems 60 and 61, fi(x) and /2(x) -k are of the same order,

since kf^O, while by Theorem 62 s'{x)-f2{x) is of higher order

than either /i(x) or f2(x). Hence the function s{x) = s'(x) •/2(x) is

infinitesimal.

(2) The condition is sufficient.—By hypothesis /i(x) =

f2(,x)-k + £(x), where /i(x) and /2(x) are of the same order as

£(t)
x=a, while e(x) is of higher order than these. Let e'{x) =ryT,

/2W
/ (x)

which by hypothesis is an infinitesimal. We then have j-j—

t / \

= k + e'{x). Hence, by Theorem 31, L j-j-r = k.
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§ 3. Indeterminate Forms.t

a
Lemma.—// j- and -y are any two fractions such that b and d

are both positive or both negative, then the value of

a+ c

b+d

I—

I

,. , . . a c
lies on the interval j- -7.

Proof.—Suppose b and d both positive and

a ^a+c
b^b+d'

then db+ad^ab+ be.

.'. ad^ be;

.'. cd+ad^ cd+bc;

a+c ^c
• 6+d = d*

The other cases follow similarly.

Theorem 68. // /(x) and (f>{x), defined on some F(+qo), are

'both infinitesimal as x approaches + 00 , and if for some positive

number h, (f>{x+h) is always less than <f>{x) and

, f{x+h)-f{x) ^^

then

„4>{x+h)—4>{x)

exists and is equal to k.X

f The theorems of this section are to be used in § 6 of Chap. VII.

% This and the following theorem are due to O. Stolz, who generalized

them from the special oases (stated in our corollaries) due to Cauchy. See
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Proof.—Let Vi(k) and Vzik) be a pair of vicinities of k such
that Vzik) is entirely within T^(^-). By hypothesis there exists

an h and an A'o such that if j > A'2,

f{x+ h)-fix)

(l>{x+h)-i>{x) W
is in V2{k). Since this is true for every x>X2,

f{x + 2h)-fix+ h)

<i>ix+2h)-<j,{x+h) (2)

is also in V2{k). From this it follows by means of the lemma

fV,of
f(x+2h)-fix)

^^^^
<l>{x+2h)-<pixy (3)

whose value is between the values of (1) and (2), is also in V2{k).

By repeating this argimient we have that for every integral

value of n, and for every x>X2,

jix+nh)-f{x)

(j)ix+nh)—<p{x)

is in F2(*)-

By Theorem 65, for any x

^ fjx+m-fix) _ /(i)

n=<x><f>{x+nh)-^{x) <j>{xy

Hence for every a; and for every e there exists a value of n, Nx„
such that if n> Nxi,

f{x+nh)-fix) fix)

<j>{x+nh)—(j)(x) <f>{x)

<£.

Taking e less than the distance between the nearest end-points

fix)
cf Viik) and V2ik) it is plain that for every i>A'2, ttt is

(pyX)

Stolz und Gmeiner, Functionentheorie, Vol. 1, p. 31. See also the referenca

to BoBTOLOTn given on page 103.
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on Vi{k), which, according to Theorem 26, proves that

Corollary.—If [n] is the set of all positive integers and

^(n+ 1) < <pin) and f(n) and ^(n) are both infinitesimal as w = qo
,

then if

/(n+ l)-/(n) _

it follows that L -rr^ exists and is equal to k.

Theorem 69. If }{x) is bounded on every finite interval of a

certain y( + oo), and if ^{x) is monotonic on the same F( + oo)

and L ^(x) = +00 , and if for some positive number h

fix+h)-f{x)

,^^<j>{x+h)-<}>(x) "'

then L ~rl

exists and is equal to k.

Proof.—By hypothesis, for every pair of vicinities Vi{k) and
y2{k), V2(k) entirely within Vi(k), there exists an X2 such that

if x>X2, then

f{x+h)-f{x)

4{x+h)-<t>{x)

is in Viik). From this it follows as in the last theorem that

f{x+nh)-f{x)

<j>(x+nh) —<f>{x)

is in Vzik). Now make use of the identity

fjx+nh) _f{x+nh)-f{x) fix)

4>{x+nh) (j>{x+nh) ^{x+nh)
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f{x+nh)-fix) / <f>{x) \ fix)

'4>{x+nh)-<j>{x)\ <j>ix+nh)/'^<f>{x+nhy ' ' ^^

Let [a/] be the set of all points on the interval X2 X2+h, and

for this interval let A2 be an upper bound of \f{x^) |
and B2 an

upper bound of <j>{x'). Then

cl>{x') _ B2

4>{xf +nh) ~ ''^^' "^ ^ <j>{X2+nh)

and JL/!./ , An = «2(a/, n) <—-

—

<^(i' +n;i)
~ ''^

'
'"^ ^ <]>{X2 +nhy

Hence for every £ there exists a value of n, N^y, such that if

n>N£y^
£1(2/, n)<e and £2(2^, «)<« .... (2)

I—

I

independently of xf so long as a/ is on X2 X2+h.

There are then three cases to discuss:

(1) A finite. (2) k= + <». (3) 4= -00.

(1) k finite. By the preceding argument, for x>Z2,

f{x+nh)-f{x)

<j>{x+nh)-<j){x)

is in V2(k), and hence

\fixf+nh)-f{xf)\ ^^, .

where ey, is the length of the mterval FaCA) and K the

absolute value of k.

Then, in view of (1),

fi^+r^ _ fjif +nh) -fix')

4>ix!+'nh) <l>ix'+nh)-4>ixf)
<iK+ev^€iix/,n) + e2ix',n).
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Now take £v smaller in absolute value than the length of the

interval between the closer end-points of Vi(k) and V2ik). By

(2) there exists a value of n, N^y, such that if n>N£y,

-'i(^»<2(Ztt;;:)

and e2(x',n)<-^

for all values of 2/ on X2 X2 +h.

Hence for n> ATJ J,

f(x'+nh) fix' + nh) -f{x')

4){x'+nh) ^{x'+nh)-4>{x')

«7 , «v

<^^+^^.)2(:^TT7;+T^'^

and since for a;> Z2 +Neyh there is an n> iVjj, and an a/ between

X2 and X2+h such that

3/+nh=x,

it follows that if a;> X2 +Ney,

]Kx) f(x'+nh)-fix')
l

|^(x) 4>(.^+nh)-<f>ix)\'^^^'

fix)
and therefore, -j-p-!- is on Fi(A).

This means, according to Theorem 26, that

(2) A=+oo.
If the numbers wii and ma are the lower end pomts of

7i(A;) and Y^ih), then

<^(x'+nA)-,^(x')>"'2
forx'>Z2.
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If ev is then chosen less than m2-mi, there will exist a value

of A'^g^ such that

for all values of n>Ngy independently of x' so long as a/ is in
I

X2 X2 + h. Then, in view of (1),

f{x'+nh) ii ^v \ ey ev 1 1 \

Since there is no loss of generality if m2> +1, this proves that

for X >X2 +Nsyn,

fix) >m2 — £v>mi,
<P{x)

and hence -rrr is on VAk).
4>{x)

(3) A; = — 00 is treated in an analogous manner.

Corollary 1. If [n] is the set of all positive integers and if

<j>{n-\-\)> ^(n) and L ^(n) = 00

,

11= 00

.
.f r

/(n + l)-/(n)
then If

„f.^(n + l)-^(n)-*' .

it follows that L -yt-x exists and is equal to k
„-=o?>W

I—

I

Corollary 2. If f{x) is bounded on every interval, x (x+ l),

and if L f{x + l)-}{x)=k,
I— 00

m
then L

XS3 00 x

exists and is equal to k.
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§ 4. Rank of Infinitesimals and Infinites.

Definition.—If on some V*{a) neither /i(a;) nor /2(x) vanishes,

and
fi(x)

f2ix)
and

Ihix)
are both bounded as x approaches a,

f (x)
then fi{x) and /2(x) are of the same rank whether L j-i—. exists

or not.t

The following theorem is obvious.

Theorem 70. // /i(x) and /2(x) are of the same order, they

are of the same rank, and if fi{x) and f2{x) are of different orders,

they are not of the same rank. If fi{x) and ^(a;) are of the same

rank, they may or may not be of the same order.

Theorem 71. // fi{x) and fiix) are of the same rank as x

approaches a, then c-fi{x) and /2(x) are of the same rank, c being

any constant not zero.

Proof.—By hypothesis for some positive number M,

AW

hence

/2(X)

c-fiix)

<M and
/2(X)

hix)
<M,

/2(X)
<M-|c| and

f2{x)

c-fi{x)
<
M

Theorem 72. // /i(x) and /2(x) are of the same rank and

fiix) and fz{x) are of the same rank as x approaches a, then fi{x)

and fz{x) are of the same rank as x approaches a.

Proof.—By hypothesis,

fi{x)

/2(X)
<Mi and

/2(X)

hix)
<M2

in some neighborhood of 2;= a. Therefore

fiix)

f2{x)
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In the same maimer

115

/2(X)

hix)
<Mi and

fsix)

f2{x)
<M2, whence

hix)

hix)
<Mi-M2.

Theorem 73. // /i(x) is infinitesimal {infinite) and does not

vanish on some V*{a), and if fiix) and fz{x) are infinitesimal

{infinite) of the sam£ rank as x approaches a, then fi{x) f2{x) is

0/ higher order than /aCx), and f\{x) fz{x) is of higher order than

}2{x). Conversely, if for every function, fi{x), infinitesimal {infi-

nite) at a, fi{x) f2{x) is of higher order than f3{x), and fi{x) fz{x)

is of higher order than f2{x), then f2{x) and /3(x) are of the same

rank.

fiix)
Proof.—Since

fsix)

by Theorem 33 that

is bounded as x approaches a, it follows

^ fi{x)-f2{x) _^
fsix)

which proves the first part of the theorem.

fsix)
Since Ukewise

/2(X)
is bounded, we have that

flix)-f3{x)
L

f2ix)

Suppose that for every fiix)

flix)-f2ix)

=0.

L
1=0 fsix)

=0 and L^^^W^^O,

and that /2(x) and fsix) are not of the same rank. Then, on

a certam subset [x J,
L
r%fs{x')

f2{x)

same

0, or on some other subset

[x"l L ^=0. Let /i(x)=(7§ on the set [x'] for which
x'±al2iX ) /3W

^ M£)^Q
j^j^d x-a on the other points of the continuum;

x=.Js{x) '
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then /i(x) is an infinitesimal as x approaches a, while for the

set [x']

h{xf)-k{xf) _ Mxo U^),

which contradicts the hypothesis that

J h(x)-f3ix)
Li T~7~\ ~^'
x^a I2(X)

Similarly if on a certain subset L r-r^=0, we obtain a con-

t / \

tradiction by putting /i(x) =rT~:'



CHAPTER VII.

DERIVATIVES AND DIFFERENTIALS.

§ I. Definition and Illustration of Derivatives.

Definition.—If the ratio Z^_^ approaches a definite

limit, finite or infinite, as x approaches Xi, the derivative of

f{x) at the point Xi is the limit

J-
fix) -/fa)

_

x=xi X Xi

It is implied that the function }{x) is a single-valued function

Oh

Fig. 14.

of X. x—Xi is sometimes denoted by Jxi, and f{x)—f{xi) by

J/(xi), or, if 2/=/(x), by Ayi.

An obvious illustration of a derivative occurs in Cartesian

geometry when the fimction is represented by a graph (Fig. 14).

117
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Here
^^^^ ^^^^^

is the slope of the line AB. If we sup-
X— Xi

pose that the line AB approaches a fixed du-ection (which

in this figure would obviously be the case) as x approaches Xi,

f(x) —f(xj)
then L -^^—-^"-^ will exist and will be equal to the slope of

the limiting position of A B.

If the point x were taken only on one side of x\, we should

have two similar limiting processes. It is quite conceivable, how-

ever, that limits should exist on each side, but that they should

differ. That case occurs if the graph has a cusp as in Fig. 15.

Fig. 15.

These two cases are distinguished by the terms progressive

and regressive derivatives. WTien the independent variable

approaches its limit from below we speak of the progressive

derivative, and when from above we speak of the regressive

derivative. It follows from the definition of derivative that,

except in one singular case, it exists only when both these

limits exist and are equal. The exception is the case of a

derivative of a function at an end-point of an interval upon

which the function is defined. Obviously both the progressive

and the regressive derivative cannot exist at such a point. In
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this case we say the derivative exists if either the progressive

or the regressive derivative exists.

Whether the progressive and regressive derivatives exist or

not, there exist always four so-called derived numbers (which

may be± w), namely, the upper and lower bounds of indeter-

mination of

/(x)-/(xi)

X—Xi '

a? x = Xi from the right or from the' left. (Compare page 84,

Chapter IV.) The derived numbers are denoted by the sjonbols

D, D, D, D,

analogous to the symbols on page £4. Of cotirse, in every cEise^

D^D and D^D.
—> <

—

If we consider the curve representing the function

. 1

" X

at the point 2;=0, it is apparent that the Umiting position of

A B does not exist, although the function is continuous at the

point x=0 if defined as zero for x=0. For at every maxi-

mum and minimum of the curve sin—, a; -sin = ±x, and the
X X

curve touches the lines x=y and x=—y. That is, •—

—

-——
^

' X—Xi
approaches every value between 1 and —1 inclusive, as x

approaches zero.

The notion derivative is fimdamental in physics as well as

in geometry. If, for instance, we consider the motion of a

body, we may represent its distance from a fixed point as a

function of time, /(<). At a certain instant of time h its dis-

tance from the fixed point is /(ii), and at another instant ^2

it is f(t2) ; then

ti—tz
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is the average velocity of the body during the interval of time

ti-t2 in a direction from or toward the assumed fixed point.

Whether the motion be from or toward the fixed point is of

f{tl}-f(t2) .

If we consider this ratio as the time interval is taken shorter

and shorter, that is, as <2 approaches h, it will in ordinary

physical motion approach a perfectly definite limit. This limit

is spoken of as the velocity. of the body at the instant ti.

Definition.—^The derivative of a fimction y=f{,x) is denoted

df(x) diV
by fix) or by Di/(x) or -~^ '^^ T" /'(^) ^ ^^^° referred to as

the derived Junction of /(x)

.

§ 2. Formulas of Differentiation.

Theorem 74. The derivative of a constant is zero. More

precisely: If there exists a neighborhood of Xi such that for every

valus of X on this neighborhood fix) =/(ii), then fixi) =0.

Proof.—In the neighborhood specified =0 for

every value of x.

Corollary.—If f(xi) exists and if in every F*(xi) there is a

value of X such that fix) =fixi), then fixi) =0.

Theorem 75. When for two functions /i(x) and fzix) the derived

functions fi'ix) and fz'ix) exist at xi it follows that, except in the

indeterminate case 00 — 00

,

(a) // fsix) =/i(x) +/2(x), then fzix) has a derivative at Xi and

/3'(Xl)=/l'(Xi)+/2'(Xi).

(b) If fsix) =/i(x) •f2{x), then fsix) has a derivative at Xi and

fz'ix{) =/i'(xi) -/aCxi) +/i(xi) -//(xi).

(c) // fzix) =-7-r\, then, provided there is a F(xi) wpon which

./2(x) 7^0, fzix) has a derivative and

,,, . //(Xl)-/2(Xl)-/l(Xi)-//(Xi)
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Proof.—By definition and the theorems of Chapter IV
(which exclude the case oo — oo),

(a) //(xO +h'{x.) = L /-iMzM^) + L /?M^MEl)
(1)

x=Zi X X] x^x\ X — Xi

^ ^ I
h(x)-h{x^)

^
Hx)-U{x{)

I

^ ^ /i(x)+/2(x)-/ifa)-/2(xO
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Hence L
^;^

exists and fs'ixi) =h{xi) -h'ixi) +/2'(xi) -fiixi).

(0
/^(^)=M^)-

The argument is based on the identity

/i(x)_/ifa)

/2(X) /2(Xl) _ /l(x)-/2fa)-/2(x)-/lfa)
,

x-ii /2(a;) 72(2:1) -(x-xi)

which holds when a; 7^X1 and when f2{x) 7^0.

3^^ fi(x)-f2(x^)-f2{x)-h(xr)

f2{x)-f2{Xl)ix-Xi)

Jljx) J2{x{)-h{x{) f2{x{)+h{Xi) U(Xl)-f2{x) -hJXi)

U{x)-J2{Xi){x-Xi)

/zfa) \h{x) -hjxi) I -/i(xi) {/2(x) -/aCzi) i

f2{x)-f2iXl)ix-Xl)

As before (excluding the case 00 — 00) we have

, ,. , /2(Xl)-/l^fa)-/2^fa)'-/lfa)

Corollary.—It follows from Theorems 74 and 75 of this

chapter that if ]2{x)=a-fi{x) where /i'(x) exists, then

/2'(x)=a-/i'(^).

Theorem 76. Ifx>0, then -^x^= A; • x*"i.
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(o) If A; is a positive integer, we have

L—^— = L 1 a;*- 1 + x*^2. 3.J
_|_ .,. 2.4.3.^4-2 +2.jjr-ij

x=ii '' ^1 1=1,

171

{b) If A; is a positive rational fraction — , we have

x"— Xi" \x"/ — XXi"/
L/ = Li

JT ( J-'\"~l / J-^^n^Z ( 1\ ( l\n-l 2 i
~'\X^) + \X"/ • Vli"/ +. . .+ Ui"/ X"-Xi"

1 (
1\'"-1

Tw:i-m\xi»/ ,

by the preceding case.

1 / J.\ "•""1 fn ——I
But —T-^:^^-m\xi") =^^^1" =A;-Xi*-i.

(c) If A; is a negative rational number and equal to —m,
then, by the two preceding cases,

^3,^, X-Xi arix, a;"-!!™ X-Xi Xi^"

= — Tnxi""*"^

But — TOXi~"'~^ = A;-x*"^

(d) If A; is a positive irrational number, we proceed as

follows

:
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Consider values of x greater than or equal to unity. Let x

approach Xi so that x>xi. Since, by Theorem 23, x'' is a

monotonic increasing function of k for x>l, it follows that

t^^^^^u.}^ y^.u'.SL
X — Xi X — Xi X — Xi

for all values of k' less than k, and all values of x greater than x^.

If k' is a rational number, we have by the preceding cases that

xY'
KxJ

-1

lii, X—Xi

Since Xi*~^ is a continuous function of k, it follows that for

every number N less than A;xi*~i there exists a rational num-

ber ki' loss than k such that

jV<A;i'-Xi*''-i<A;-2i*-i.

Hence, by Theorem 40,

xi«=-
X — Xi

cannot approach a value A^ less than A;xi*~i as x approaches Xi.

By a precisely similar argument we show that a number
greater than kxi''~'^ cannot be a value approached. Since there

is always at least one value approached, we have that

x'^-xi"

If x<Xi as X approaches Xi, we write

X*^ — Xi«
-=x''

X — Xi X\—X

and proceed as before. If A; is a negative number we proceed



DERIVATIVES AND DIFFERENTIALS. 125

as under (c). The case in which a;i < 1 is treated similarly. For
another proof see page 127.

Theorem 77. ^ log„ x=-- log„ e.

Proof. ^.2i?i^±^^)j:iog«_5=lw ^±i5
ix Jx ^ X

=i..o.(l.f)r..

But, by Theorem 57,

Therefore L —

^

—

^

^2_ =, _ . i^g^ g_

Corollary. — log„ x = -.

Theorem 78. // }i'(x) exists and if there is a V{xi) upon which

fi(x) is continuous and possesses a single-valued inverse x = f2{y),

then J2{y) is differentiable and

If f'i^) is or +<x> or — co the convention
+ 00 — 00

is understood. Cf. Theorem 37.

Proof.—To prove this theorem we observe that

X= Xi ^ ^l *=Ii ^ •''1

/l(x)-/i(Xi)

By the definition of single-valued inverse (p. 45),

x-X'^ _ hiy)-f2{yi)

/i(x)-/(xi) y-yi

t Theorem 78 gives a sufficient condition for the equality

dx dx'

dy
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Hence, by Theorems 38 and 34 and 37,

x-x. x-xi u=m f2{y)-f2{yi) U'iy)'

]i.x)-f{xx) y-yi

Theorem 79. // (1) /i'(x) exists and is finite for x^Xi, and

fi(x) is continuous at x=Xi,

(2) f2'iy) exists and is. finite for 2/1 =fi{xi),

then ^/2{/i(xi)l=/2'(2/i)-/i'(2;i).t

Proof.—We prove this theorem first for the case when there

is a V*{xi) upon which fi(x) 7^/i(xi). In this case the following

is an identity in x :

/2{/l(x)i-/2l/lfa)i _ /2i/l(x)}-/2|/l(Xi)} /i(x)-/i(3:i)

X-Xi fi(x)-fiixi) ' X-Xi

By hypothesis (2) and Theorem 38,

'

y^m y-yi xix. h{x)-fi{Xi)

By hypothesis (1),

Hence, by equation (1) and Theorem 34, we have the existence of

^fffC-rM r /2{/l(x)}-/2J/l(Xi)} f,..,,, .

^2|/i(a;)( = L^
^3^^^ f2{yi)-fi'(xi).

If /i(x)=/i(xi) for values of x on every neighborhood of

T=Xi, then, by hypothesis (1) and the corollary of Theorem 74,

/'(xi)=0.

t Theorem 79 gives a sufficient condition for the equality

dz_ dz dy

dx dydx'
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Let [x'] be the set of points upon which /i(a;)7^/i(xi). (There

is such a set unless f(x) is constant in the neighborhood of

x = xi.) Then, by the same argument as in the first case, we
have

d
^,/2l/i(a;i)! =/2'(j/i)-/i'(xi)=0 for X on the set [x'].

Let [x"] be the set of values of x not included in [x']. Then

a^Mh (xi)
}
- ,,L

, —:^r—^ = 0'

since the limitand function is zero. Hence both for the set [x']

and for the set [x"] the conclusion of our theorem is that the

derivative required is zero.

Theorem 80.
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If

§ 3. Differential Notations.

y= f{x) and L K,
x=a ^ •*'!

we denote f{x)-f{x{) hy Ay, and x-Xi by dx. Then, by

Theorem 31,

Mj^Ax-K+Ax- £{x),

where Ax- s{x) is an infinitesimal with respect to Ay and Ax for

x = a. This fact is expressed by the equation

dy=K-dx, where K=j'{x).

Here dy and dx are any numbers that satisfy this equation.

There is no condition as to their being small, either expressed

or implied, and dx and dy may be regarded as variable or

Fig. 16.

constant, large or small, as may be found convenient. When
either dx or dy is once chosen, the other is, of course, determined.

The numbers dx and dy are called the differentials of x and y
respectively.
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In Fig. 16, f{xi) is the tangent of the angle CAB, dx is the

length of any segment AB with one extremity at A and parallel to

the j-axis, and dy is the length of the segment BC. If x is

regarded as approaching xi, then AB' is the infinitesimal ix,

WD' is Jy, while Wc' is e{x) -Ax. Hence, by Theorem 73, 'WC'

is an infimtesimal of higher order than Ax or Ay.

We thus obtain a complete correspondence between deriva-

tives and the ratios of differentials. Accordingly, for any for-

mula in derivatives there is a corresponding formula in differ-

entials. Thus corresponding to Theorem 75 we have

:

Theorem 8i. When for two junctions /i(x) and /zCx)

dfi{x)=fi'{x)-dx and df2{x)=J2ix)-dx at Xi, it follows

that

(a) ///3(x)=/i(x)+/2(x),

(km dfsixi) = |/i'(xi) +/2'(xi) \dx

=d/i(xi)+d/2(xi).

ib) ///3(x)=/i(x)-/2(x),

then dU{x,) = \h'{x^)-U'ix{)\dx

= d/i(xi)-d/2(xi).

(c) // h{x)=h{x)-f2{x),

then d/3(xi) = {/i(xi)-/2'(xi)+/2(xi)+/i'(xi)! -dx

= /i(a:i)-d/2(xi)+/2(xi)-d/i(xi).

, ^, , ,
\f2(x,)-h'{x,)-h(xi)-f2'ixr)\-dx

then d/3(xi)=
{f2{xi)\^

/2(x,)-d/i(x,)-/i(x,)d/2(xi)

i/2(Xl)P

The rule obtained on page 123 et seq. that the derivative of x* is

Jfc
• X*- 1 corresponds to the equation dx*= A; • x*- ^ • dx. If

,
in the
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equation dy=f{x)dx, dx is regarded as a constant while x

varies, then dyisa. function of x. We then obtain a differential

d2(dy) = {f'{x)-dx\d2X in precisely the same manner that we
obtain dy=f{x)-dx. Since d2X may be chosen arbitrarily, we
choose it equal to dx. Hence d{dy) =f"{x)dx^. We write this

d'^y=f'(,x)-dx'^.

The differential coefficient f"{x) is clearly identical with the de-

rivative of fix). In this manner we obtain successively

d^y=f^^\x)-dx^, etc.

We may write these results,

^^fix) ^=f"(x) ^-n-Hx)
dx '^^>' dx' ^ ^^^'•••-dx"~' ^^''•

Evidently the existence of the differential coefficient is coexten-

sive with the existence of the derivative.

§ 4. Mean-value Theorems.

Theorem 82. // /(x) has a unique and finite derivative at
x= xi, then f(x) is continuous at x\.

Proof.—The proof depends upon the evident fact that if

f(x)-f{xi) approach anything but zero as x approaches Xi, then
one of the values approached by

m-f{x,)
X— Xi

is +00 or — 00

.

Definition.—The function f(x) is said to have a maximum
at x=xi if there exists a neighborhood V(xi) such that

(1) No value of fix) in 7(xi) is greater than /(xi).

(2) There is a value of x, X2, in 7(xi) such that X2<xi
a.nd/(x2)</(ii).



DERIVATIVES AND DIFFERENTIALS. 131

(3) There is a value of x, 13, in V{xi) such that X3>a;i and
/(X3)</(Xi).

Similarly we define a minimum of a function.

This definition allows any point of a constant stretch like

a, Fig. 17, to be a maximum, but does not allow any point of

b to be either a maximum or a minimum.

Fig. 17.

Theorem 83. // fixi) exists and if /(i) has a maximum or a

minimum at x=xi, then f{xi) =0.

Proof.—In case of a maximum at xi, it follows directly from

the hypothesis that

rix. X-Xi <
xix, X-Xl

X>Xi *<^1

Since f(xi) exists these limits are equal, that is, the derivative

is equal to zero. Similarly in case of a minimum.

Theorem 84. // /(xi)=/(x2), fix) being corUimwus on th£
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interval Xi X2, and if the derivative exists t at every point between

Xi and X2, then there is a value f between Xi and X2 such that /'(?)= 0.

The derivative need not exist at Xi and X2-

Proof.—(a) The function may be a constant between Xi and

X2, in which case f{x) = for all values of x between Xi and

X2 by Theorem 74.

(6) There may be values of the function between Xi and X2

which are greater than f{xi) and f{x2). Since the function is

continuous on the interval Xi X2, it reaches a least upper boimd

on this interval at some point X3 (different from Xi and '0:2).

By Theorem 83,

/'(X3)=0.

(c) In case there are values of the function on the interval

I—

I

Xi X2 less than /(xi), the derivative is zero at the minimum
point in precisely the same manner as under case (b).

Fig. 18.

This theorem is called Rolle's Theorem. The restriction

that /(x) shall be continuous is unnecessary if the derivative

t Not necessarily finite.
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exists, but simplifies the argument. The proof without this

restriction is suggested as an exercise for the reader.

The geometric interpretation is that any curve representing

a continuous fimction, }{x), such that f{xi) =f{x2), and having a

tangent at every point betweeen xi and X2 has a horizontal

tangent at some point between them. An immediate gener-

alization of this is that between any two points A and B on

a curve which satisfies the hypothesis of this theorem there

is a tangent to the curve which is parallel to the Une AB.

The following theorem is a corresponding analytical generali-

zation :

I—

I

Theorem 85. // /(x) is continuous on the interval. Xi X2, and

if the derivative exists at every point between X\ and X2, then there

is a value of x, x = $, between xi and X2 such that

' X1-X2

Proof.—Consider a function /i(z) such that

fii.x)=f{x)-{x-x2)—^^_^^ ;

then fi{xi)=fix2) and /i(x2)=/(x2).

Therefore /i(a;i)=/i(x2).

Hence, by Theorem 84, there is an x, x = $ on the segment xi X2

such that /i'(0=0.

That is, />'©=/'(« -'-^^^-0.

Therefore f(f)-^^^^^.

This is the "mean-value theorem." Its content may also be

expressed by the equation

f{X2)=f{Xl) + {X2-Xl)n^).
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Denoting xi -x by dx and f by x + Odx, where 0<5<1, it takes

the form
/(xi +dx) =/(xi) +f (xi + ddx)dx.

Theorem 86. // /i(x) and /2(x) are continiious on an interval

a b, and if /i'(x) and /a'Cx) exist between a and b, fz'ix) 5^ ± oo
,

and /2'(x)7^0, /2(a) 5^/2 (&), ^^len there is a value of x, x=f
between a and b such that

fi(a)-fi(b)_fi'{?)

/2(a) -/2(6) /2'(f)-

Proof.—Consider a function

Since /3(a) =0 and fsib) =0, we have as before /a'Cf) = 0.

Therefore AMzMl^M)inereiore
/2(a) -/2(6) /a'Ce)"

This is called the second mean-value theorem. The first

mean-value theorem has a very important extension to "Taylor's

series with a remainder," which follows as Theorem 87.

§ 5. Taylor's Series.

The derivative of f{x) is denoted by /"(x) and is called the

second derviative of /(x). In general the nth derivative is the

derivative of the n - 1st derivative and is denoted by /^"'(x)

.

Theorem 87. // the first n derivatives of the function f{x)
l-l

exist and are finite upon the interval a b, there is a value of x, x„
l-l

on the interval a b such that
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/(&)=/(a)+^/'(a)+^V(a) + .

^ (n-1)! ' ^'^^+ „, ; {Xn).

Proof.—Let i?„ be a constant such that

Fix) =f{x) -fia) - {x-a)na) J-^^f"{a) -...

_ (x-a)"-^ ,„_.) (.T-g)"

(n-1)! ' ''^^ n! ""

is equal to zero for x=b. Since F{x)=0 for x= a, there is, by

Theorem 84, some value of x, Xi,a<xi<b such that i^'(xi)=0.

That is,

F'ix)=nx)-na)-{x-a)r{a)-. .

.

_ (x-a)"-' , (x-a)"->

(n-2)! ^ "^"^ („_i),
«n

is equal to zero for x=a;i. Since also F'{a) =0, there is a value

of X, X2, a<X2<Xi such that F"{x2)=0. Proceeding in this

manner we obtain a value of x, x„, a<x„<Xn-i such that

F^^KXn)=0.

But F">(x„)=p(a;n)-ii;n=0.

Therefore /i!„ = f"H2:»),

whence the theorem.

Corollary—In Theorem 87, f^'^Kx) need be supposed to exist

only on ab.

Definition.—The expression

n! n- *"=o "'•

is called the remainder, and the infinite series

t-o «•

is called Taylor's Series.
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a constant different from zero,

» /W.(g)(b-g)n
then 2 —^

n=0 "•

is convergent but not equal to j(b), i.e.,

If L^-(&-a)»

fails to exist and be finite, then

00 /('')(a)

„=o «!
(6 -a)"

is a divergent series.

Hence an obvious necessary and sufficient condition that

for a function /(x) all of whose derivatives exist for the values

of I, o<x<6,

n=0 "•

is that L '—V^ (6 -a)»= O.f

This leads at once, by Theorem 33, to the following sufficient

condition

:

n—00 ni

for every value of i on o b is not sufficient, since in depends upon n.
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Theorem 88. // /(")(x) exists and |/(")(x)| is less than a fixed

I—

I

quantity M for every x on the interval a b and for every n
{n = l,2, . . .), then

m=m + ^^f'ia) + . . . + ^i^;(n)(a) + . .

.

Functions are well known all of whose derivatives exist at
I—

I

every point on an interval a b, but such that for some point

on this interval

n= "''

where fi is a function of x not identically zero. Other func-
tions are known for which the series is divergent. The classical

example of the former is that given by Cauchy,t e~? at the

point x= 0. If this function is defined to be zero for 2 = 0, all

its derivatives are zero for x=0, whence Taylor's development

gives a function which is zero for all values of x.

Pringsheim X has given a set of necessary and sufficient

conditions that a function shall be representable for the values

oi h, 0<h<R,hy means of the series

l-,./W(0)-A".

It was remarked above, p. 131, that a necessary condition for

f(x) to be a maximum at a; = a is f (a) =0 if the derivative exists.

Taylor's series permits us to extend this as follows

:

Theorem 89. // on some V{a) the first n derivatives of f{x)

exist and are finite and on V*{a) /'"• '^(x) exists and is bounded,^

and if

|- Cauchy, Collected Works, 2d series, Vol. 4, p. 250.

j A. Pringsheim, Mathematische Annalen, Vol. 44 (1893), p. 52, 53.

See also Koxig, Mathematische Annalen, Vol. 23, p. 450.

§ Instead of assuming the existence of /<»+')(x) we might have assumed

A") (a:) continuous without essentially changing the proof.
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0=/'(a)=/"(a) = ..;=/(»-i>(a),

then : (1) If n is odd, f{x) has neither a maximum nor a mini-

mum at a;

(2) // n is even, j{x) has a maximum or a minimum according

as f'^aXQ or f''\a)>Q.

Proof.—By Taylor's theorem, for every x in the vicinity of a

fix) =/(a) + (x-o)«/(")(o) + (a;-a)"+i-/(»+»(f«),

where ^x is between x and a.

Hence j{x) -f{a) = (x- a) "{/(») (a) + (i-a)/("+i)(f^) }

.

But since /^""""^'(fi) is bounded and x—a is infinitesimal, there

exists a 'V*{a) such that if x is in 7* (a),

Kx)-m
is positive or negative according as

(x-a)"-/(")(o)

is positive or negative.

(1) If n is odd,(a;— a)"is of the same sign as x—a, and hence

for /("'(a) >0

j{x)-f{a)>0 '\ix>a,

f{x)-J{a)<0 iix<a;

while for f"Ka)<0

/(x)-/(a)>0 ifa;<a,

/(x)-/(a)<0 ifx>a.

(2) If n is even, (x—a)" is always positive, and

hence if f"'(a)>0.

/(x)-/(o)>0 ifa;>a,

/(x)-/(a)>0 ifx<a;
then /(a) is a maximum.
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If /(">(a)<0.

/(x)-/(a)<0 if a;>a, 1

tr \ t/ \ ^n -t ^ f
then /(a) is a mimmum.

/(x)-/(a)<0 if i<a;
J

'^ -^

§ 6. Indeterminate Forms.

The mean-value theorems have an important application in

the derivation of l'Hospital's rule for calculating "indeter-

minate forms." There are seven cases.

fix)
(1) -, i.e., to compute L -tt-t if L /(x)=Oand L <}>{x)=0.

(2) — , i.e., to compute L -rr^ if L f{x) = ± oo and

L 0(1) = ±00.

(3) 00 —CO, i.e., to compute L j/(x)— ^(i)| if L f(x)= ±00
x=a x^a

and L <f>{x)= ±00.

(4) O-oo, i.e., to compute L /(x)-0(i) if L /(x)=0 and

Z/ <f>ix)= ±00.

(5)
1°°, i.e., to compute L /(x)*(^> if L /(x) = l and

L 4>(x) = ± 00

.

(6) 0°, i.e., to compute L /(x)*^^) if L /(x) = and L ^(x) =0.
x=a x=a x^a

(7) 00 0, i.e., to compute L f{xY^''^ if L/(x)=±oo and

L 0(x)=O.

These problems may all be reduced to one or the other of

the first two. The third may be written (since /(x) t-^O on some

V*{a))

/(i)-<^(x)=-^ ^(x) =—^.
W) Jixj

which is either determinate or of type (1).
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To the cases (5), (6), and (7) we may apply the corollaries of

Theorem 39 of Chapter IV, from which it follows (provided

fix) 7^0 on some F*(o)), that

exists if and only if

log L /(x)*(^>= L log/(a;)*(^>= L 9&(a;) log/(x) exists.
x=a x=a x^a

The evaluation of L -~

^)
comes under case (1) or case (2).

The evaluation of cases (1) and (2) is effected by the follow-

ing theorems:

Theorem 90. // /(x) and 4>{x) are continuous and differentiable

and <^(x) is monotonic and (f>'{x) ^0 and <j>'(x) j^ 00 and

(1) i] L f{x)=0 and L <j>ix)=0 or

(2) if L ,^(x)=±oo,t

XwOO 0(x)

exists and is equal to K.

Proof.—For every positive h we have, by the second mean-
value theorem,

fix +h)- fix) _f(e.)

<t>ix+h)-<}>ix) <f>'i$^y

where ^^ lies between x and x + h. But since f ,, takes on values
which are a subset of the values of x, and since L f = 00

t It is not necessary that Lf{x)=aa cf. Theorem 69.
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which in turn implies L 77 r{—-~rT =K
x^oo<p{x + h)-<j>{x) '

and this, according to Theorems 68 and 69, gives

Corollary.—If f{x) is continuous and differentiable, then

L — L fix).

The theorem above can be extended by the substitution

1
z = -

x-a

to the case where x approaches a finite value o. The approach

must of course be one-sided.

Theorem 91. // fix) and (f>{x) are continuous and differen-

tiable on same V*(a) and f{x) is hounded on every finite interval,

while (f>{x) is monotonic and

(1) L /(x)=0, L 0(1) =0 or
x=a x—a

(2) L ^(x) =+ 00 or - 00 :

thenxf
xt¥(i) '

it follows that L 77-r

exists and is equal to K.
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fix)
Proof.—If L ,,, . exists, the limit exists when the approach

x=a V \-^)

is only on values of x>a. Consider only such values of x.

Then if

^=^' /(^)=/(«+7)=-P'(2)

and 4>{x)='^{a+-)=0{z),

by hypothesis and Theorem 79, F'iz) and 0'iz) exist and

i^'(3)=/'(x)g.

Hence If LVi^r^'

\ hen, according to Theorem 38,

r F'iz)

exists and is equal to K.

Hence, by Theorem 90,

exists and is equal to K.

T ZM
.t^<I>iz)

fix)
Hence, by Theorem 38, L ., .

exists and is equal to K.

We have now derived conditions under which we can state

a general rule for computing an indeterminate form.

Provided fix) is not zero on every V*ia), any of the forms

<3) to (7) can be reduced to

Fix)

(Pix) W
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where this is of type (1) or (2). Provided Fix) and 0{x) satisfy

the conditions of Theorem 91, the existence of the limit of (a)

depends on the existence of the Umit of

F'ix)

¥{xj- (^)

If (6) is indeterminate, and F'{x) and 0'{x) satisfy the condi-

tions of Theorem 91, the limit of (6) depends on the Umit of

F"{x)

'(X)
'ft-y\> 'W

and so on in general. If at each step the conditions of Theorem
91 are satisfied and the form is still indeterminate, the Umit of

i?'(n+l)(x)

depends on the limit of ^u+iv^ ('i+l)

If (n) is indeterminate for all values of n, this rule leads to no

result. If for some value of n

then all the preceding Umits exist and are equal to K, and so

x=o<P(a;)

The original expression is equal to X or e^ according to the case

under consideration.
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§ 7. General Theorems on Derivatives.

Theorem 92. // /(x) is coniiniious and f(x) exists for every x

on an interval a b, then f'{x) takes on every value between any

two of its values.

Proof.—Consider any two values of f'(x), f'{x\), and f'ixi)

on the interval a b. Consider, further, the function
X — Xi

on the interval between Xi and X2. Since is a con-
X— Xi

tinuous function of x on this interval, it takes on every value

between and /'(xi), which is its limiting value as x

approaches xi. Hence, by Theorem 85, /'(x) takes on all values

between and including f{xi), and — — for values of x

I—

I

on the interval Xi X2. By considering in a similar manner the

/(X2) -fix) i—

I

function on the interval Xi X2, we show that f'{x)

takes on all values between -—^-—^

—

— and /'(X2). Hence /'(x)

takes on all values between f(xi) and /'(X2).

Theorem 93. // the derivative exists at every point on an
interval, including its end-points, it does not follow that the de-

rivative is continuous or that it takes on its upper and lower

bounds.

Proof.—^This is shown by the following example.

The curve shall he between the x-axis and the parabola

2" —1
j/
= ix2. The straight lines of slopes 1, IJ, If, . .

.
, 1 h—-— . . .2"

through the points (i, 0), (i, 0), . .
. , [^ifi, o) , . . ., respectively,

meet the parabola in points Ai, A2, A3, ... , A„, . . . The

broken line ^1 (J, 0) A2 (i, 0) A3 . . .An {^,0j . . . oo , has an
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infinitude of vertices. In each angle of the broken line con-
sider an arc of circle tangent to and terminated by the sides of

Fig. 19.

the angle, the points of tangency being one fourth of the distance

to the nearest vertex. The function whose graph consists of

these circular arcs and the portions of the broken line between
IH

them is continuous and differentiable on the interval 1.

Its derivative is discontinuous at j=0 and has the least upper

bound 2, which is never reached.

Theorem 94. // /'(x) exists and is equal to zero for every valiie

l-l
, . ,

of X on the interval a h, then f{x) is a constant on thai interval.

Proof.—By Theorem 82, fix) is continuous. Suppose /(i)

not a constant, so that for two values of x, ii, and X2,

f{xi)7if{x2), then, by Theorem 85, there is a value of x,

x=$ between xi and X2 such that

^^^^' X2-X, '
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which is different from zero, whence f'(x) is not zero for every
1-1

value of X on the interval a b. Hence f(x) is a constant on
l-l

a b.

Corollary.—If /i'(x) ^fzix) and is finite for every value of x

on an interval a b, then fi{x) —J2(x) is a constant on this interval.

Theorem 95. // j'ix) exists and is positive for every value

l-l

of x on the interval a b, then f(x) is monotonic increasing on this

interval. If f'{x) is negative for every value of x on this interval,

then f{x) is monotonic decreasing.

Proof,—If f{x) is positive for every value of x, then it fol-

lows from Theorem 85, provided that f{x) is continuous, that

the function is monotonic increasing, for if there were two

values of x, Xi and X2, such that /(xi) t /(X2) while Xi <X2, then

there would be a value of x, x = f, between xi and X2 such that

/'(f)
_/(^2)~/fa)

<o
X2-X1

In case fix) is not supposed continuous, the argument can
be made as follows: If f{xi)>0, then, by Theorem 23, there

exists about the point xi a segment (xi— iJ), (xi-f-<J), upon
which

/(£W(£l)>0,
X — Xi

and hence, if x>Xi, /(x)>/(xi) and if x<X], /(x)</(xi). Now

about every point of the segment a b there is such a segment.

Let xf and x" be any two points of a 6 such that x'<x". By
Theorem 10, there is a finite set of these segments of lengths

Si . . . dn which include within them every point of the interval
I—

I

x' x". We thus have a finite set of points, namely, the mid-
point and points on the overlapping parts of the segments
x'<Xi<X2<... <Xft<x", such that
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/(a/X/CxiX/feX. . .</(xfc)</(x").

Hence /(x')</(x"). In a similar manner we prove that the

function is monotonic decreasing in case f{x) is negative.

Theorem 96. // a function f{x) is monotonic increasing on
l-l

an interval a b, and if f{x) exists for every value of x on this

interval, then there is no point on the interval for which f{x) is

negative. That is, f{x) is either positive or zero for every point

I—

I

of a b.

Proof.—If /'(x) is negative for some value of x, say Xi,

then L = C, a negative number,
x=xi X— Xi

whence there is a neighborhood of Xi on which /(x) >/(xi), while

x<xi, or /(xi)>/(x), while x>Xi, \Yliicli is contrary to the

hypothesis that the function is monotonic increasing in the

neighborhood of x= ii. In the same manner we prove that if

the function is monotonic decreasing, and if the derivative

exists, then fix) cannot be positive.

The following theorem states necessary and sufficient condi-

tions for the existence of the progressive and regressive deriva-

tives. Conditions for the existence of a derivative proper are

obtained by adding the condition that the progressive and

regressive derivatives are equal.

Theorem 97. // /(x), x<Xi, is continuous in some neighbor-

hood of x=Xi, then a necessary and sufficient condition that f{xi)

shall exist and be finite is that there exists not more than one

linear function of x, ax+c, such that /(x) +ax+c vanishes on every

neighborhood 0/ x= xi.

Proof__(l) The condition is necessary. We prove that if /'(x)

exists and is finite, then not more than one function of the form

ax+ c exists such that /(x) +ax+c vanishes on every neighbor-

hood of x=Xi. If no such function exists, the theorem is veri-

fied. If there is one such function, the following argument wUl

show that there is only one. Since, by hypothesis,
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exists, we have, by Theorem 75, that

f{x)+ax+c-j{xi)-axi-c

exists. Let [a/] be the subset of the set of values of x on any

neighborhood of x=xi such that j{x')+ax!+c vanishes on the

set [a/]. By Theorem 41,

j{xf)+axf +c-f(xi) -axi -c

^ ^f(x)+ax+c-f(xr)-ax,-c
^^^^^^_^^^

X=Xi ^ -^1

Since /'(xi) and a are both finite,

f{x')+ax^+(/-f{xi)-axi-c

x'^xi x! -Xi

is finite. But the numerator of this fraction is a constant,

f{x)+ax+c being zero on the set [x']. Hence

^
/(x)+ax+c-/(x0.3ax^c^

or /'(xO+a=0,
xix, X-Xi

and, being continuous, /(xi)+axi+c=0.

The numbers o and c are miiquely determined by the equations

i/'(xi)+a=0,

(/(xi)+axi+c=0.

(2) The condition is sufficient. We are to show that
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j- /W-/(Xi)

can fail to exist only when there are at least two functions of
the form ax+c such that /(x)+ax + c vanishes on every neigh-

borhood of i=xi. If L Mz/(£l)
x-xi X — Xi

does not exist, then ^S^^-J.^^
X— Xi

approaches at least two distinct values Ki and K2. Let K2<Ki.
Let A and B be two finite values such that K2<A<B<Ki.
On every neighborhood of x= xi there are values of x for which

X-Xi

is greater than B, and also values of x for which

f(x)-f{xi)

X-Xi

is less than A. Hence, since

/(x)-/(xi)

X-Xi

is continuous at every point except possibly xi, in a certain

neighborhood of Xi there are values of a; in every neighborhood

of xi for which =A,
X— Xi

or fix)-}{xi)=A(x-Xi),

which gives -f(xi) -A{x-xi)

as one function of the form ax+c.
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In the same manner we show that —f(xi)—B(x—Xi) is

another function ax+c, which makes f{x)+ax+c vanish on

every neighborhood of x=^xi.

The geometric meaning of this theorem is obvious. If P is

a point on the curve representing f(x), then a necessary and

sufficient condition that this curve shall have a tangent at P is

that there exists not more than one line through P which inter-

sects the curve an infinite number of times on any neighborhood

of P- Compare the fvmctions x sin — and x^ sin — on page 51.

The earlier mathematicians supposed that every continuous

function must have a derivative except at particular points.

The first example of a fimctipn which has no derivative at any

point is due to Weiersiwadc .7^
The function is

00

/(x)= I 6" cos (a'^nx),

where a is an odd integer, < 6 < 1 and ai>>l + |?r.

t For references and remarks see page 51

.



CHAPTER VIII.

DEFINITE INTEGRALS.

§ I. Definition of the Definite Integral.

The area of a rectangle the lengths of whose sides are exact
multiples of the length of the side of a unit square, is the num-
ber of squares equal to the unit square contained within the
rectangle, and is easily seen to be equal to the product of the
lengths of its base and altitude.t

In case the sides of the rectangle and the side of the unit
square are commensurable, the sides of the rectangle not being

exact multiples of the side of the square, the rectangle and the

square are divided into a set ..of equal squares. The area of the

rectangle is then defined as the ratio of the niunber of squares

in the rectangle to be measxared to the number of squares in the

unit square. Again, the area is equal to the product of the

base and altitude.

Any figure so related to the unit square that both figures can

be divided into a finite set of equal squares is said to be com-

mensurable with the miit.

The area of a rectangle incommensurable with the unit is

defined as the least upper boimd of the areas of all commensur-

able rectangles contained within it.

It foUows directly from the definition of the product of

irrational nvunbers that this process gives the area as the prod-

uct of the base and altitude. J

t Of course the units are not necessarily squares; they may be triangles,

parallelograms, etc.

X For the meaning of the length of a segment mcommensurable with the

unit segment, compare Chapter II, page 33.

151
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Turning to the figure bounded by the segment a b (which

we take on the x axis in a system of rectangular coordinates)

the graph of a function y^fix) and the ordinates a;=a and x=6,

Fig. 20.

we obtain as follows an approximation to the common notion

of the area of such figures.

Let xo=a, xi, X2, . .
.

, Xn = b he a. set of points lying in order

from a to 6. Such a set of points is called a partition of a h,

and is denoted by n. The intervals xq xi, xi Xz, . .
.

, a;„_ii„

are intervals of ;:.

Let xi—zo=.^ia;, X2—xi=J2X, . . . , x„-Xn-i=^„x,
and let fi, $2, . . , $n

be a set of points such that $1 is on the interval xq Xi, $2 is on
I 1 . I

1

Xi X2 . • • , and $n IS on i„_ix„.

Then /(fi), fiU), ..., /(f„)

are the altitudes of a set of rectangles whose combined area is

a more or less close approximation of the area of our figure.

Denote this approximate area by S.

Then S=m)Jix+m)J2X+ . . .+/(f„)i„x= I fih)^kX.
k-l

As the greatest Ji^ is taken smaller and smaller, the figure
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composed of the rectangles comes nearer to the figure bounded
by the curve.

In consequence of these geometrical notions we define the

area of the figure as the limit of S as the J^x's decrease in-

definitely. The area S is the definite integral of /(x) from a

to 6. It has been tacitly assumed that the graph of y=f{x) is

continuous, since we do not usually speak of an area being

enclosed by a discontinuous curve. The definition of the defi-

nite integral when stated in its general form admits, however,

of functions which are discontinuous in a great variety of ways.

A more general definition of the definite integral is as follows

:

1— I I—

I

Let a h {or h a) he an interval upon which a function f{x) is

defined, single-valued and bounded. Let n, stand for any par-

I— I I—

I

tilicn of a b or b a by the points a = Xo, Xi, X2, . . . , x„ = 6 such

that the numbers A\X= Xi—a, A2X= X2 — X\,..., J„x~6— x„_i

are each numerically less than or equal to d.

fl, f2, • • , fn

be a set of points on the intervals

I 1 I—

I

I 1 , ., ^ I 1
I 1 I 1

Xq-Xi, Xi X2, . . , Xn-lXn (pr if b<a, Xi Xo, X2 Xi, X3 X2,

I 1

. . . , x„ x„_i) respectively, and let

// the many-valued function of d, S„ approaches a single limiting

value as d approaches zero, then

L S,= f){x)dx.

When we desire to indicate the interval' of integration we

write \Si and *?:, instead of Ss and n,. a and b are called

the limits of integration.

The details of this definition should be carefully noted.
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For every d there is an infinite number of different partitions

TTg, and for every partition there is an infinite set of different

sets of fA, so that for every d the function Sg has an infinite

set of values. The graph of the function S» is of the type

shown in Fig. 21. Every value of S» for one d is assumed by

*S for every larger d. For any particular value of d the values

Fig. 21.

of Si lie on a definite interval BS3 BS,, whose length never in-

creases as d decreases. If this interval approaches as 5 ap-

proaches 0, the required hmit exists.

It is to be noticed that the set of ;r's, [:r*] includes every

possible n whose largest JkX is less than d. Thus we carmot

obtain the set of all ;r's by sequential repartitioning of any

given n, since there are partitions of the set [ng] which have

no partition points in common with any given partition. Inat-

tention to this point is perhaps the greatest source of error in

the development of the notion of a definite integral.

§ 2. Integrability of Functions.

The class of integrable functions is very large, including

nearly all the bounded functions studied in mathematics and
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physics. Even such an arbitrary function as

y=Qii X irrational,

y=^\/n^ if x=m/n,

is integrable. (See page 182, Theorem 127.)

Examples of non-integrable functions are y=\/x on the

interval 1 (where it is not bounded, see page 191), and the

function,

2/ =0 if a; is irrational and

y=\\i x\s rational.

To determine the conditions of integrability we introduce

the concept of integral oscillation. On any interval a b, f(x)

has a least upper bound A and a greatest lower bound B, be-

tween which the function varies. If A—B=Jy=''Ofix) is mul-

tiplied by the length of the interval, Jx= \b-a\, it gives the

area of a rectangle, including the graph of f{x). If the interval

is subdivided by a partition ;:, the sum of the products Jx-Jy

on the intervals of the partition is called the integral oscilla-

tion of fix) for the partition tt and is denoted by 0^. If we call

A]cy the difference between the upper and lower bounds of /(x)

I 1

on the intervals Xk-iXk, we have

n

Q^= \Aix\-Aiy+ \A2x\-A2y-\-... + \Anx\Jny-=I\Akx\-dky.
k= 1

Greometrically 0,, represents the areas of the rectangles Fi,...,F^

(Fig. 22), and so we exp)ect to find that if the lower bound

of 0, is zero, fix) is integrable. This proposition, which requires

some rather deUcate argument for its proof, will be taken up

in § 7. At present we shall show in a simple manner that every

continuous and every monotonic function is integrable.

Lemma i. If S„ and SJ are two sums (formed by using differ-

ent $k's) on the same partition, then
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Proof.

l'S,--S,'|
= I{f{^k)'f{^k')\JkX

4=1
^ ^ i/(fft)-/(.V)|-Mjfcx|.

A=l

But |/(f jt) -/(f*')l^ifc2/ by the definition of Jty.

Therefore |5„-S/|< I \Jkx\-dky (4)
k=l
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intervals Jk'x, dk"x, etc., of n^, and these contribute io S„
the terms

K^k')dk'x+f{^n^k"x+ (1)

The corresponding term of *S, is

/(ftM*x=/(fO^/a;+/(fi)J/'x + (2>

But since |/(fft)-/(f«:') 1=^*3/, the difference between (1) and

(2) is less than or equal to

Aky-\dk'x^Ak"x+ . . .\^Aky-\dkx\

and hence \S:,-SA< I Aky-U,^\=0^.
' k=\ I

Theorem 98. Every Junction continuous on a b is integrable

I—

I

on a b.

Proof.—^We have to investigate the existence of the limit

LS} of the many-valued function Ss as d~0. Since S, ap-

proaches at least one value as d approaches zero (see Theorem

24), we need only to prove that it cannot have more than one

value approached. Suppose there were two such values, B
R — C

and C, B>C. Let £ =——. By the definition of value

approached, for every 8 there must exist an S (which we call

Sb) such that

\SB-B\<e, (1)

and such that the corresponding ttb has its largest AkX<8.

Similarly there must be an Sc such that

\Sc-C\<^, (2)

and such that the corresponding nc has its largest JkPO<d. Let

TT be a partition made up of the points both of tcb and nc, and

let S be one of the corresponding sums. ;r is a repartition both

of TZB and nc.
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Therefore |5-<Scl<0;rp (3)

and |S-5B|<ar^ (4)

But since f(x) is continuous, by the theorem of uniform conti-

nuity, d can be so chosen that if any two values of x differ by

less than d, the corresponding values of /(x) differ by less than

and hence on the partitions ttb and nc, whose J^x's are all
£

\b-a\

less than 8, the corresponding i^j/'s are all less than ,, _ , . So

n

we have (since I AkX = h—a)

On = i" \JkX\-Jky< - |itx|-|T-—

T

= £•

Hence 0„„<£ and On„<s.

B—C
So we have, since e=—j— and d is so chosen that whenever

\^-x"\<d,\f{x')-fixf')\<~^^

\Sb-B\<s,

\Sc-C\<e,

\Sb-S\<b,

\Sc-S\<e.

From these inequalities it follows that \B—C\<4e, which con-

tradicts the statement that «=

—

j—. Hence the hypothesis

that fix) is not integrable is untenable.

Theorem 99. Every non-oscillating hounded function is

integrable.

Proof.—The proof runs, as in the preceding theorem, to the
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paragraph following (4). Let D and d be the upper and lower

bounds of /(z) . d, being arbitrary, can be so chosen that 8= jr-^.D—a

Then 0„^= 3 Jky-\^kx\< I /t^y-S,
° k-l A=l

and since f{x) is non-oscillating,

idky=D-d.

Therefore 0„ „ < (D - d) 5= e.

Similarly Ojt < e. Hence again we have

\SB-B\<e,

\Sc-C\<^,

\Sb-S\<^,

\Sc-S\<^,

and therefore |5— C|<4e, whereas e was assumed equal to

R—C—-7— . Thus the hypothesis of a non-integrable non-oscillating

fimction is imtenable.

§ 3. Computation of Definite Integrals.

In computing definite integrals it is important to observe

that whfn the integral is known to exist the Umit can be cal-

culated on any properly chosen subset of the Si's. (See Theorem

41.) So we have that if <S,„ S)^, ... is any sequence of sums

such that L 5„=0, then

L Sin
ttsX

One case of this kind occurs when f* is taken as an end-
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point of the interval Xk-i Xk and all the i^x's are equal. Then

we have

rb n
I

/ f{x)dx= L I f{a+kJx)Jx, -where Ax = -

6—

a

A simple example of this principle is the proof of the following

theorem

.

Theorem loo. // ]{x) is a constant, C, then

rCdx=CQ)-a).

Proof.—The function f{x) =C is integrable either according

to Theorem 98 or Theorem 99. Hence

rCdx= L I C^—= L n-C^-^^=CQ)-a).

A few other examples follow. In each case the function is

known to be integrable by the theorems of § 2.

/}''Theorem loi. / e^dx=e''— e".

Proof.

—

=e^-Jx-—7-—7-'-—
7^
—

r^'^-^x .

, t. •. ^^

Ax
Whence the result follows since L -j-—:=1. (Differentiate

JiioC — i

mmierator and denominator with respect to Jx according to

Theorem 90.
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Instead of arranging the partition-points in an arithmetical

progression as in the cases above, we may put them in a geo-

metrical progression, that is, we let

6\" 6

aj ==«' a
=3"'

Aix= aq — a, J2X= aq^—aq, . . . , J„x= ag"— 05""^,

fi=a, 62=03, . . . , f„=a5"-i,

and obtain the formula

rfix)dx= L a{q-lMa)+qfiaq)+... +q'^-'f(.aq--^)]
J <• « = i

= L a{q-l)'l qi^fiaq^).
jii 4=0

We apply this scheme to the following.

Theorem 102. In all cases where m is a whole number?^ -1,

and if a>0, b>0 for every value of m?^ -1,

/
6 ^m+1 (j'n+1

x'^dx= m+ 1

X^dx= L a{q-l) I q''{aq'')'"

a 9=1 i-0

=a'"+i L (3-l)[l + (r+i) + (r+^)' + - . + ir^')^-n (1)

(om+l)n_l

= La'"+M(3")"'^'-i!jFrri
9= 1 ^
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Hence / x^dx= -

m + 1 '

T
g-1 1

Theorem 103. / -dx= log b—loga, {0<a<b).

Proof. By equation (1) in the last theorem, since g™+i = g° = 1

,

/ -dx= L niq-1);

>°^ a)
but n=—i

, hence
log 3

£V^= ,il^- ^°S (^)=log (|)=log&-loga,

since (§6, Chapter VII) l'Hospital's rule gives

8=1 log g

The following theorem is of frequent use in computing both

derivatives and integrals.

I—

I

Theorem 104. // on an interval a b two functions /(x) and

Fix) have the property that for every two valries of x, xi and X2,

where a<xi<X2<b,

fiXl){X2-Xi) < F{X2) -F(Xi) < /(X2)(X2-Xi);

or if /(Xi)(X2-Xi) > i^(X2) -2^(Xi) > /(X2)(X2-Xi),

then (1), if f{x) is coniiniums,
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and (2) whether f{x) is continuous or not,

I }{x)dx exists and is equal to F{h) —F{a).

Proof.—We consider first the case

fiXi)iX2-Xi)<F{X2)-F{Xi)<fiX2){X2-Xi).

This gives /(xi) <—-— < /(X2).
X2 — Xi

Since f{x) is continuous at x = xi, L /(x2)=/(xi). Hence, by

Theorem 40 (Corollary 2),

F(x2)-Fixx)
^ —77^:7,— =/(a;i),

zj-l, X2— Xl

which proves (1).

To prove (2) we observe that f{x) is non-oscillating and

therefore integrable according to Theorem 99. On any parti-

tion 7t whose dividing points are xi, X2, . . . , x„_i we have

/(o)(xi-a) <F{xi)-Fia) </(xi)(xi-a),

/(Xi)(X2-Xi) <F{X2)-FiXi) </(X2)(X2-Xi),

/(Xn_i)(5-x„_i) <F(b) -F(x„_i)</(6)(6-x„_i).

Adding, we get

/(o)(xi-a)+/(xi)(x2-xi) + . . .+/(x„_i)(6-x„_i)<F(6)-J!?'(o)

^/(a;i)(2;i-a)+/(x2)(x2-xi) + . . .+f(jb)ib-Xn-l).

But /(o)(xi-a) +. . .+/(x„_i)(6-x„_i)>BS,

and /(xi)(xi-a)+. . .+/(b)(&-x„_i)<B<S,.
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Since this holds for every n, we have by Theorem 40 that as

(Theorem 99) / f{x)dx exists,

/^<'x)dx=Fib)-F{a).

The proof in case fixi){x2-Xi)>F{x2) -Fixi)>f(x2){x2-xi}

is identical with the above when we write > instead of <.

§ 4. Elementary Properties of Definite Integrals.

Theorem 105. // a<b<c, and if a bounded function f{x) is

integrable from a to c, then it is integrable from a to b and from

b to c.

Proof.—Suppose f(x) not integrable from a to b, then .by

the definition of a limit (see Chap. II.) there must be a set of

values of IS3, [aS/], such that L 18,'= A, and another set [aS/']

such that L 183" = B, while A and B are distinct. Whether
}=0

£f{x)dx exists or not, there must be a set of values of ISt^

[iSi'l such that the limit L IS/ =C. Now for every »S/ and

iS/ there exists a IS/ such that lS/=iS/+tS/. Therefore

A+C is a value approached by IS}. By similar reasoning,

5 +C is a value approached by IS}- Hence IS3 has two values

approached, which is contrary to the hypothesis. Hence

/ {x)dx must exist. By similar reasoning / f{x)dx must exist.

Theorem 106. // a<b<c and if a bounded function f{x) is

integrable from a to b and from b to c, then f{x) is integrable from

f{x)dx= / f{x)dx+ I f{x)dx.

Proof.—Since / f{x)dx and / f{x)dx exist, we know by

Theorem 26 that for every e there exists a ^c' such that for
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every value of *5, where d < d/,

aSi- I f{x)di
<S'

and also a d." such that for every value of tSi where d<d/',

ts^-fj('x)dx
£

l-l

165

(1)

(2)

Now if the upper bound of /(x) on a c is M and its lower

bound is m, let oj" -, and let d, be smaller than the

smallest of 5/, dg" , d,'".

Consider any value of IS,. If the point b is one of the
points of the partition upon which ISa is computed, then tS,
is the s.im of one value of iS, and one value of IS,. If b is

not a point of this partition, let JbX be the length of the inter-

val of a-^i that contains b. Then for properly chosen ^Ss

and bS,

\%+lS,-'aSs\<AbX{M-m)<-^. ... (3)

So in evory case (whether or not 6 is a partition-point of „;:,)

by combining (1), (2), and (3) we obtain the result that for

every e there exists a d, such that for every aSi,

dx\<e.IS,,-fj{x)dx- fj{x)dji

Therefore L 'aS,= / /(x)dx+ Imdx,

which proves the theorem.

Theorem 107. Provided both integrals exist,f and a<b,

r\m\dxt\ f){x)dx

.

t That the first integral exists if Che second exists is shown in Theorem 135.
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Proof. I\}i^k) MiX >
I

Ifi$k)^kX\.

Hence for every (Sj|/(x)| there is a smaller or equal Si fix), the

d's being the same. Hence by CoroUary 2, Theorem 40,

LS,\m\>\ LSem\.

Theorem io8. // / f{x)dx exists, then I f{x)dx exists and

f f(x)dx=- ffixjdx.

Proof.—^This is a consequence of the theorem (Corollary 1

Theorem 27) that

L (-/(x)) = - Lfix),

a sum

cor-

for to every S used in defining / f{x)dx corresponds

equal to —S which is used in defining / f{x)dx.

Similarly to every S' used in defining / f{x)dx there

responds a sum -S' used in defining / fix)dx. Hence the

function Sg in the definition of / f{x)dx is the negative of the

function Sg used in the definition of / f{x)dx. Hence the

theorem follows from the theorem quoted.

We adjoin the following two theorems, the first of which is

an inmiediate consequence of the definition of an integral, and
the second a corollary of Theorems 105, 106, and 108.
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Theorem 109. J^^^
f{x-h)dx exists and is equal to / f{x)dx,

provided the latter integral exists.\

Theorem no. // any two of the following integrals exist, so
does the third, and

£ f{x)dx+Jjf{x)dx= rf{x)dx.

Theorem in. If C is any constant and if f{x) is integrable
I—

I

I—

I

onab, then Cf{x) is integrable on ah and

£'cf{x)dx = cj'''fix)dx.

n
Proof.—Sa= I fi$k)^kX is an S) of the set which defines

i—

1

fb

J^
f{x)dx and 5/= I^ Cf{$k)J^ is the corresponding S» of the

set which defines / Cf{x)dx. Hence our theorem follows

immediately from Theorem 34, a special case of which is L Cf{x)

=CLf{x).

Theorem 112. // fi{x) and fzix) are any two functions each

I—

I

integrable on the interval a b, then f{x) =f\{x) ±f2{x) is integra-

I—

I

bU on ah and

rf(x)dx= rfi{x)dx± Pfzixjdx.

Proof.—^The proof depends directly upon the theorem that

if L ^i(x)=6i, and L ^(x) =62; then L ^i(x)±^(x)=6i±62
x=a x=a x=a

(Theorem 34).

t First stated formally by H. Lebesode, Lemons smt VInUgration, Chapter

VU, page 98.
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1-1

Theorem 113. // /i(x) and foix) are integrable onab and such

l-l

that for every value of x on a b fi(x)tf2{x), then

rf,(,x)dx> rf2{x)dx.

Proof.—Since Si is always greater than or equal to S2, then,

by Theorem 34, L Sit L S2, which proves the theorem.
1=0 oiO

Theorem 114. (Maximum-Minimum Theorem.)

If (1) the product fi{x)-f2{x) and the factor fi{x) are inte-

i-l

grable on a b,

I 1

(2) /i (x) is always positive or always negative on a b,

(.3)' M and m are the least upper and the greatest lower

I—

I

bounds respectively of /2(x) on a b,

then m- / fi{x)dx< / fi{x)f2ix)dx<M I fi{x)dx,

or m- f fi{x)dx > f)i{x) -fz^x >M- Pfx{x)dx.

Proof.—By Theorem 111,

M J fi{x)dx== rM-fi{x)dx

and m- / fi{x)dx= I m-fi{x)dx.
%/ a */o

But in case /i(x) is always positive,

m-fi{x)<fi{x)-f2{x)<M-fi{x).

Hence, by the preceding theorem.

J^m-fi{x)dx ^fjiix) f2{x)dx <f^M.f{x)dx,
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and therefore

m- rji(x)dx< rh{x)-f2ix)dx<M- PU{x)dx.
Ja %J a J a

If/i(x) is always negative, it follows in the same manner that

m- rji{x)dxl /^fi{x)-h{x)dx>M- Ai(i)dx.

As an obvious corollary of this theorem we have the Mean-

value Theorem

:

Theorem 115. Under the hypothesis of Theorem II4 there exists

a number K, m'S K^M, such that

rh{x)-f2(x)dx=K f''h{x)dx.

Corollary 1. In case f^^x) is continuous we have a value

I—

I

f of X on a h such that

Ai(:c)-/2(x)dx=/2(f) f U^)dx.
J a 'J "

In case /i(x)=l, / /i(x)dx = 6-a,

and the theorem reduces to this

:

Theorem 116. // /(x) is any integrable function on the inter-

val a b, there exists a numberM lying between the upper and lower

I—

I

bounds of /(x) on a b such that

rfix)dx = M{b-a),

I—

I

and if fix) is continuous, there is a value $ of x on a b swk

that fj{x)dx =fmh-a).
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In many applications of the integral calculus the expression

Cmdx
—^ represents the notion of an average value of the

dependent variable y=f{x) as x varies from a to 6. An average

of an infinite set of values of /(x) is of course to be described

only by means of a limiting process. Consider a set of points

\-.—

I

xj, X2, . .
.

, Xn-i,Xn=b ou thc interval a b such that

Xi—a= X2—Xi = X3—X2 = . . = X„-i—X„^2=b—Xn-l.

Then M„=- I f{xk),

and we define the mean value of f{x), lM}(x)= L M„ if this
n=oo

,. . . T% b — a
linut exists. But Xk+i—Xk= =ix.

If the definite integral / f{x)dx exists, we may write
i/ a

/ f(x)dx= LS»,

where

Si= I f{xk)Ax= I f{xk)^^ =^^^ 1 f{xk) = (b-a)M„.
k-i k"! n n jc^i

Therefore L Sa = ib-a) L M„.
} = n=ixi

We therefore have the theorem:

Theorem 117. In case the integral of f{x) exists on the interval

yf{x)dx
a

o b, iMfix) =
b—a

We note that \M is the same as the K which occvirs in the

mean-value theorem, and that the last theorem suggests a simple
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method of approximating 'the value of a definite integral by

multiplying the average of a finite nmnber of ordinates by b-a.

§ 5. The Definite Integral as a Function of the Limits of

Integration.

I 1

Theorem 118. // /(.r) i\>f integrahle on an intenal a b, and

I— I r^
if X i^ any poini of a b, I f{x)dx is a contimtous function of x.

Proof.— / /(,x)dr exists, b>- Theorem 105, and by the defini-

tion of a continuous function we need only to show that

L^(^fj{x)dx-fjKx)dj^ =0.

By the theorems of the preceding section,

A(j)dr - A(x) rf-r = rf{x)dx<\iB- (/ -x) \<\B- [x' -x)\,

%/a U a *J I

where {B stands for the least upper bound of f{x) on the inter-

I— 1 - I—

I

val J x! , and B for the least upper bound of f{,x) on a b. Smce

5 is a constant, B\x' -x) approaches zero as x' approaches x.

and therefore by Theorem 40, Corollary 4, the conclusion of our

theorem follows.

Theorem 119. // /(x) Vs conXinuoM^ on an inten'ol a b,

/fix)dx (a<x<6) possesses a derivative icith respect to x such

that

Proof.—By the preceding theorem / /(x)dx is continuous.



172 INFINITESIMAL ANALYSIS.

To form the derivative we investigate the expression

f)(x)dx- f){x)dx f){x)dx

X' —X x' —X

as x' approaches x.

By Theorem 115 (the mean-value theorem),

(1)

f%)dx = mx!)){xf-x),

where f(x) is a value of x between x and x' and is a function

of x'. Hence (1) is equal to

m (2)

But as xf approaches x, f also approaches x and so, by Theorem

39, as x' approaches x, (2) approaches j{x). Therefore

/ l{x)dx- / j{x)dx ,

-=/(x)4/«x)i..
X —X

Following is a more general statement of Theorem 119.

Corollary.—^If /(x) is continuous at a point Xi of a b ana

mtegrable on a b, then at a;= Xx

lf)(x)dx^Kx).

The proof is like that of Theorem 112 except that

y/(x)dx = {x-Xi)M(x)

,

and M(xi) is a value between the upper and lower bounds of
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fix) on xi X. But by the continuity of f{x) at i

L Mix) = fix,),

and hence the conclusion follows as in the theorem.

Theorem 120. // fix) is any continuous function on the inter-

I—

I

val a b, and Fix) any function on this interval such that

im-fix),

then Fix) differs from I fix)dx at most by an additive constant.

Proof.—Let Fix) = j ^fix)dx + 4>ix).

Since Fix) and / fix)dx are both differentiable,

By the preceding theorem

d,

dx.
fjix)dx=fix).

Hence j-^ix) =0, whence, by Theorem 94, <^(a;) is a constant.

Theorem 121. // fix) is a continuous function on an interval

a b and Fix) is such that

then £fix)dx = Fib)-Fia).
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Proof.—By the last theorem,

f{x)dx=F{x)+c.

But 0= rf{x)dx=F{a)+c.

Therefore -F(a)=c.

Whence f''f{x)dx=F{b) +c=i?'(6) -F(a).

The symbol [F{x)fa or |S F{x) is frequently used for ^(6) -F{a).

In these terms the above theorem is expressed by the equation

){x)dx= \lF{x).r
By this last theorem the theory of definite and indefinite

integrals is united as far as continuous functions are concerned,

and a table of derivatives gives a table of integrals. For dis-

continuous functions the correspondence does not in general

hold. That is, there are on the one hand integrable functions

](x) such that / \{x)dx is not differentiable with respect to x,

.and on the other hand differentiable functions ^(x) such that

^'(x) is not integrable.

t

§ 6. Integration by Parts and by Substitution.

The formulas for integration by parts and by substitution

are ordinarily written as follows:

/ udv = uv— / vd.u,

fM^y-JKyy%dx.

t For a good discussion of this subject the reader is referred to H. Le-
BESGUE, L&;ons sur VIntegration.
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The following theorems state sufficient conditions for their

validity.

Theorem 122. (Integration by parts.)

£ hix) h'{x)dx=\jM f2{x)^-fj2{x) h'{x)dx,

-provided //(x) and fz'ix) exist and are continuous on the interval
I—

I

a b.

Proof.—By Theorem 75,

£{hix) -Mx)) =/i(x) -k'ix) +k(.x) h'i.x).

Therefore

X di^f^^""^
•/2W)dx = y^ /i(x) f2'{x)dx + £''j2{x) fi'ix)dx.

(The integral exists since it follows from the existence and

continuity of //(x) and ^'(a;) that /i(x) and /zCz) are continuous).

By Theorem 121,

£ii\h(x) •Hx)\dx=hQ>) f2ib) -hia) ./2(a).

Therefore

fjl(x) h'{x)dx= [hix) hix)l-fj2{x) ll'(x)dx.

Theorem 123. (Integration by substitution.) If y = cp(x) has a
I—

I

continuous derivative at every point of ab and f(y) is continuous

for all values taken byy = (j)(x) as x varies from a to b,

where A = (j>(a), B= <f>(b).
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Proof.—By Theorem 120 and by Theorem 79,

C being an arbitrary constant. C is determined by letting

X = a. Then if x = 6 we have*

Theorem

fjmy-£mt-d--

f(x)dx =
J^

fi4>iy))-^dy,

where x — <j){y) and a = 4>{A), h = 4>{B); provided that both inte-

grals exist, and that <f>{y) is non-oscillating and has a finite

derivative.

Proof. f f{x)dx= L I f{$k)^kX (1)

whenever the least upper bound of J4X for each n approaches

„ , B-A
zero as n approaches + 00 . Now let jy= ,

yk=A+k-Jy,

4>(yk)-4>(.yk-i)-.dkX.

Hence, by Theorem 85, AkX = ^'(j)]^Ay,

where ij* lies between j/i and yk-i- Now if fj:= ^(ijA), it will

lie between <j){yk) and cj>{yk-i); moreover the Akx's are all of

the same sign or zero; and since the hypothesis makes ^(t/)

uniformly continuous, their least upper bound approaches zero

as n approaches + 00

.

Therefore f f{x)dx= L I f{^k)^k£

= L I f{4>irik))-<f>'{r,k)-Jy
nioo k=l

^fii>iyW(.y)dy,
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provided the latter integral exists.

Hence fji'')^^ = fj('f>iy)) '^dy.

Corollary.—The validity of this theorem remains if <f>(y)

has a finite number of oscillations.

Proof.—Suppose the maximum and minimum values of

<p{y) are

Oi, (h, 0,3, ... , o„,

corresponding to the values of y,

Ai, A2, A3, ... , An.

Then we have

ffix)dx= f''){x)dx+ f\x)dx + ...+ rf{x)dx

r^ dx
=//(*(x);5*

The form of this proposition given in Theorem 123 would per-

mit an infinitude of oscillations of ^(2/).

§ 7. General Conditions for Integrability.

The following lemmas are to be associated with those on

pages 155 and 156.

Lemma 3. If ttj is a repartition of n, then for any function

I—

I

bounded on a b

0.,<0..

Proof.—Any interval iti of ^ is composed of one or more

intervals Ak'x, Ak'x, etc., of ni, and these contribute to 0,,

the terms

\Ak'x\Ak'y + \Ak"x\Ak"y+ (1)
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The corresponding term of 0^ is

\Jkx\Jky = \^k'x\J^y+ \Jk"x\Jky+ (2)

Since each of JVy, ^k"y, etc., is less than or equal to Jky,

(1) is less than or equal to (2), and hence 0,. ^ 0».

I—

1

Lemma 4. If kq is any partition of the interval a b, and

eo any positive number, then for any bounded function there

exists a number do such that for every partition tc whose greatest

J is less than 80

Proof.—We prove the lemma by showing that if no has

N + 1 partition points Xo, Xi, X2, . . . , x„, an effective choice

of ^0 is

where R is the oscillation of the function on a b.

Of the intervals of tz there are at most JV— 1 which con-

tain as interior points, points oi xq, xi, . .
.

, xif. Denote the

lengths of these intervals of n by JpX, and denote by JgX the

lengths of the intervals of k which contain as interior points no
points of Xo, Xi, X2, . . . , x^. Then

V q

If ;:' is a repartition of no obtained by introducing the points

of n, then

Q

is a subset of the terms whose sum constitutes O^/. Hence, by
Lenuna 3,

i'|i^|.i,2/<0.-<0,„.

Since \A^\<s^ = J2-^
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it follows that i'|Jpx| • Jp2/<«o.
p

Therefore 0,„ + £o^O,.

Lemma 5. If ;r is any partition, 0, is the least upper bound
of the expression

o» — »S,
,

where SJ and SJ' may be any two values of 5, corresponding

to different choices of the f's.

Proof.—^Without loss of generality we may assume every

Jtx positive.

Then BS^ -BS,= B\S: -S^"\.

But BS,= b\ I K^k)-A,A =• I {5(/et)|Jtx
It-i J *=i

and BS^= B-
t=i

J *=i -

Therefore BS^-BS,= -" [5/(ft)-J3/(ft)]Jtx— *-i —

n

Therefore 5(5/ -5/') =0..

Theorem 125. A necessary and sufficient condition that a

function f{x), defined, single-valued, and bounded on an interval

I—

I

I—

I

a b shaU be integrable on a b, is that the greatest lower bound of

On for this function shall be zero.

Proof.—^We first show that if /(x) is integrable the lower

bound of 0, is zero. By hypothesis,

r^f{x)dx= L S)

exists. By Theorem 27, Chapter IV, this implies that for every s
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there exists a S, such that for every di<d. and 32<d,

Hence, if ;r be a partition whose intervals i^x are all less than

d„ we inust have

\SJ-S/'\<e

''•!

for every 5/ and S/'. By Lemma 3 this implies that 0„ < s.

But if for every £ there exists a tt such that 0^ < e, then

50. =0.

Secondly, we show that if the lower bound of 0. is zero,

S3 converges to a single value,

f){x)dx,

as d approaches zero. Given any positive quantity s there

exists a partition n, such that On,<-7. By Lemma 4 there

exists a S, such that for every ti whose intervals are numerically

less than d,

0,<0..+|<-|.

Now let Sn,' and Sn," be any two values of Sg^, and let

;:/" be the partition composed of the points of both ;r/ and

7:,". Then for any value of Sn^"' we have, by Lemma 2,

\S„; -Sn."'\ 20< <^,

\Sn,"-S„;"\<On;'<-^.

Therefore \S,t,' -Sn,"\<s.
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Hence for every e we have a d, such that for every two values

oiS,,d<d„

\S.,'-Sn,"\<e.

By Theorem 27, this imphes the existence of L Sg.

In case the definite integral does not exist it is sometimes

desirable to use the upper and lower bounds of indeterminate-

ness oi Ssas d approaches zero. These are denoted respectively

by the symbols / f{x)dx and / }{x)dx f

and are called the upper and lower definite integrals of /(x)

They are both equal to

f)ix)dx

if and only if the latter integral exists. They are usually

defined by the equations

BS.f f{x)dx=R -'it;

«/ a

where 5,= i" {Bfi^^)\Jia for all partitions of tc, and

/ fix)dx = BS,

where S,= 1 i^/Cc^) UhX for all partitions of n.

k=l

That f f{x)dx exists when the upper and lower integrals

are equal is evident under this definition, because

o.=s^-s^,

t For a more extended theory of these integrals, cf. Pierpont, page 337.
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and thus B0^=0 if and only if

/* fix)dx= f fix)dx.

For every value of 5>0 there is an infinite set of partitions

n, for which the largest J^a; is less than d, and for each of these

there is a value of 0^. If Os stands for any such 0^, then

0) is a many-valued function of b.

Theorem 126. A necessary and sufficient condition that a

function f{x), defined, single-valued, and hounded on an interval

I—

I

a b, is integrable is that

L O,=0.

Proof.T-r^e condition is necessary.

By Theorem 125 the integrability of f(x) implies B0„=0.

Hence for every e there exists a partition t: such that

By Lemma 4 there exists a 1?, such that for every s^ whose

greatest Jx is less than d,

0,'<0, + £<2s.

Hence L O' = 0.

The condition is sufficient.

Since L O*=0,

andO,>0, B0],=0.

Hence the function is integrable by Theorem 125.

Theorem 127. A necessary and sufficient condition that a

function, defined, single-valued, and bounded on an interval a b,

shall be integrable on that interval is that for every pair of positive
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numbers a and X there exists a partition n such that the sum of

the lengths of those intervals on which the oscillation of the function

is greater than a is less than A.

Proof.—The condition is necessary.

If for a given pair of positive numbers a and X there exists

DO ;r such as is required by the theorem, then 0^> a- A for every

n, which is contrary to the conclusion of Theorem 125. that

The condition is sufficient.

For a given positive e choose a and X so that

e £
a(b — a)<-^ and XR<-^,

where R is the oscillation of the function on a b. Let s^ be a

partition such that the sum of the lengths of those intervals on

which the oscillation of the function is greater than a is less

than A. Then the sum of the terms of 0^ which occur on these

intervals is less than

XR,

and the sum of the terms of 0^ on the remaining intervals is

less than

aQ) — a)

.

Therefore On<X-R + aQ)-a)<£.

Hence BO, = 0,

whence by Theorem 125 the integral exists.

Defimtion.—The content of a set of points [x] on an interval

a 6 is a number C[x] defined as follows: Let w be any parti-

tion of a b, none of the partition points of which are points

of [x], and D, the sum 'of the lengths of those intervals of n
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which contain points of [x] as interior points. Then

BD^= C[x].

An important special case is where

C[x] = 0.

It is evident that if a set [x] has content zero, for every e

there exists a finite set of segments of lengths

«i, «2, £3, • • • , «n

which contain every point [x] and such that

n

1=1

It is also evident that if the sets [xi] and [2:2] are of content zero,

then the set of all Xi and X2 is of content zero.f

Theorem 128. A necessary and sufficient condition for the

integrability of a function f(x) on an interval a b is that for every

a>0 the set of points [x„] at which the oscillation of f{x) is greater

than or equal to a shall he of content zero.X

Proof.—If at every point of an interval c d the oscillation

of /(i) is less than a, then about each point of c d there is a

segment upon which the oscillation is less than a, and hence

by Theorem 11, Chapter II, there is a partition of c d upon

each interval of which the oscillation of f{x) is less than a.

Now to prove the condition sufficient we observe that if the

content of {x„] is zero, there exists for every X a partition TZi

such that the sum of the lengths of the intervals containing

points of [x,] is less than X. Moreover we have just seen

t For further discussion of the notion content see Pierpont, Real Func-

tions, Vol. I, p. 352, and Lebesque, Lemons sur I'lntigration.

X Compare the example on page 155.
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that the intervals which do not contain points on [x„] can be
repartitioned into intervals on which the oscillation is less than
a. Hence, by Theorem 127, the function is integrable.

To prove the condition necessary we note that on every
interval containing a point, x„ the oscillation of j{x) is greater
than or equal to or equal to a. Hence, if

C[xj>0,

the sum of the intervals upon which the oscillation is greater

than or equal to ct is greater than C[x<,].

Definition.—A set of points is said to be numerable if it is

capable of being set into one-to-one correspondence with the
positive integral numbers. If a set [x] is numerable, it can
always be indicated by the notation Xi, X2, X3, . . . , Xn, . . . , or

\xn\, but if it is not numerable, the notation \xn\ cannot be
apphed with the understanding that n is integral.

Theorem 129. A 'perfect set of points is not numerably infinite.^

Proof.—Suppose the theorem not true. Then there exists

a sequence of points \xn\ containing every point of a perfect set

[x]. Let Pi be any point of [x], and a^ bi a segment containing

Pi. Let x„, be the first of lx„! within oi 61. Since x„ is a

limit point of points of [x], there are points of the set other

than Pi and z„, on the segment ai bi. Let P2 be such a point,

and let 02 62 be a segment within ai 61 and containing P2

but neither Pi nor x„,. Let x„^ be the first point of {x„i

within 02 62. Proceeding in this maimer we obtain a sequence

of segments ja, bi\ such that every segment lies within the

preceding and such that every segment ai bi contains no point

^ni-ic of the sequence \xn\. By the lemma on page 42, Chapter

II, there is a point P on every segment of this set. Since there

are points of [x] on every segment a,- bi, P is a limit point of the

set [x]. Since [x] is a perfect set, P is a point of [x]. But if P

t For definition of perfect set see page 91.



186 INFINITESIMAL ANALYSIS.

were in the sequence jz„}, there would be only a finite number

of points of [x] preceding P, whereas by the construction there

is an infinitude of such points.

Theorem 130. A numerably infinite set of sets of points each

of content zero cannot contain every point of any interval.

Proof.—Let the set of sets be ordered into a sequence {[x]„]

.

We show that on every segment a b there is at least one point

not of ![x]„). Since [x]i is of content zero, there is a segment

oi 61 contained in a 6 which contains no point of [x]i. Let

[x]„j be the first set of the sequence which contains a point of

Ci bi. Since [x]„, is of content zero, there is a segment 02 62

contained in ai 61 which contains no point of [x]„,. Continuing

in this manner we obtain a sequence of segments o b,ai 61, ...

,

a„ bn . . . such that every segment lies within the preceding,

and such that a„ 6„ contains no point of [x]i, . . .
,

[x]„. By
the lemma on page 42 there is at least one point P on all these

segments. Hence P is a point of a 6 and is not a point of any

set of |[x]„!.

Theorem 131. The points of discontinuity of an integrabk

function form at most a set consisting of a numerable set of sets,

each of content zero.

Proof.—Let <ti, 02, 0-3, .. .

be any set of numbers such that

and L a„ = 0.
n=oo

By Theorem 128 the set of points [x„J at which the oscillation

of f{x) is greater than or equal to On+i and less than «;„ is of

content zero. Since the set of sets j[x„Ji includes all the points

of discontinuity of fix) , this proves the theorem.

Theorem 132. // a function f{x) is integrable on an interval

I—

I

o b, then it is continuous at a set of points which is everywhere

I— I

dense on a b.
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Proof.—^If the theorem fails to hold, then there exists an

interval a 6 on which the function is discontinuous at every

point. By Theorem 131 an integrable function is discontinuous

at most on a numerably infinite set of sets each of content zero,

and by Theorem 130 such sets of sets fail to contain every

point of any interval.

Theorem 133. // / f{x)dx =

for every X of a b, then /(x)=0 on a set of points everywhere
I—

I

dense on a b, and for every a>0 the points where \fix)\> a form

a set of content zero.

Proof.—^At every point X where f{x) is continuous, accord-

ing to the corollary of Theorem 119,

smce I f{x)dx IS a constant. The points of continuity of f{x)Ja

are everywhere dense, according to Theorem 132. Hence the

zero points of /(i) are everywhere dense. At a point of discon-

tinuity the oscillation of f{x) is greater than or equal to |/(x)|.

Hence the points where |/(x)
|
> a form a set of content zero.

Theorem 134. //

rx nx
I f{x)dx= I (f>{x)dx

I 1

for every X of a b, then f{x)=<f)(x) on a set of points everywhere

I—

I

dense on a b, and for every <7>0 the points where \f{x) —<f){x)\>a

forms a set of content zero.

Proof.—Apply the theorem above to /(x) -<^(x).

Theorem 135. // /(x) is integrable from a to b, then |/(x)| is

integrable from a tob.'f

tThe converse theorem is not true; cf. example given on page 192.
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Proof.—

Since 0<0,\Kx)\<OJ{x),

it follows that BO^f{x) = implies 5 0„|/(x)| = 0, and hence

the integrabilityof j{x) implies the integrability of |/(a;)|.

Theorem 136. // /(x) and <l>{x) are both integrabk on an inter-

I—

I

vol a b, then

f{x)-4>{x) (1)

I—

I

^ -

IS integrable on a b; and, provided there is a constant m > such

I—

I

that |^(x)| —m>0 for x on a b, then

/(x)H-^(x) (2)

I—

!

is integrable on a b.

Proof.—Since f{x) and ^(x) are both integrable on a 6, it

follows that for every pair of positive numbers a and A there

is a partition tti for fix) and a partition 712 for ^(x) such that

the sums of the lengths of the intervals on which the oscilla-

tions of f{x) and <f>(x) respectively are greater than a are

less than X. Let 7: be the partition consisting of the points

of both TTi and 712. Then the sum of the intervals of tz on which
the oscillation of either f{x) or (p{x) is greater than a is less

than 2A. Let M be the greater of B\f{x)\ and B\(f>{x)\ on a b.

Then on any interval of 71 on which the oscillations of /(x)

and (p{x) are both less than a the oscillation of /(x)-^(x)

is less than aM. Hence the sum of the intervals on which
the oscillation of /(x) 0(x) is greater than aM is less than 2A.

Since a and A may be chosen so that 2A and aM shall be any
pair of preassigned numbers, it follows by Theorem 127 that

1—1
fix) <f>ix) is integrable on a b.

In view of the argument above it is sufficient for the second
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part of the theorem to prove that -t-~. is integrable on a 6 if

</>(a;) is integrable and \(f>{x)\ >m. Consider a partition re such

that the sum of the intervals on which the oscillation of ^(x)

is greater than a is less than X. Since

1 1

^(Xi) <j>{X2)

.. \<f>(Xi)~(<j>X2)\

mXl)\-\<f>{X2)\

it follows that n is such that the sum of the intervals on which

the oscillation of -ri-^ is greater than —5 is less than X, and

T7-T is integrable according to Theorem 127.

A second proof may be made by comparing the integral

oscillations of /(x) and ^(x) with those of the functions (1) and

(2) and applying Theorem 125.

j

Theorem 137. // /(x) is an integrable function on an interval

1—1
a b, and if <p{y) is a continuous function on an interval

Bf Bf, where Bf and Bf are the lower and upper bounds respecl-~ ~~
I—

I

ively of f(x) on a b, then (p\f{x)\ is an integrable function of x

I—

I

on the interval a b.X

Proof.—By Theorem 48 there exists for every a>0 ad„ such

that for \yi-y2\<d„

\<f>(yi)-<f>(y2)\<<T (1)

Since f(x) is integrable on a 6 it follows by Theorem 127

that for every positive number X there is a partition ic such

t Cf. PlERPONT, Vol. 1, pp. 346, 347, 348.

X This theorem is due to Dtr Bois Retmond. It cannot be modified so

as to read " an integrable function of an integrable function is integrable."

Cf. E. H. Moore, Annals of Mathematics, new series, Vol. 2, 1901, p. 153.
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that the sum of the intervals on which the oscillation of f{x)

is greater than d„ is less than X. But by (1) this means that

the sum of the intervals on which the oscillation of ^{f{x)\

is greater than a is less than A. This, by Theorem 127, proves

that ^l/(x)l is integrable.



CHAPTER IX.

IMPROPER DEFINITE INTEGRALS.

§ I. The Improper Definite Integral on a Finite Interval.

If fix) is infinite at one or more points of the interval a b,

then, whatever may be the other properties of the function, the

definite integral of /(x) defined in Chapter VIII cannot exist on
I—

I

the interval a b.

Definition.—^If / f{x)dx exists for every x,a<x<b, and if f

L rfix)dx
x=aJ T.

exists and is finite, /(i) being unboimded on every neighbor-

hood of x= a, then this limit is the improper definite integral

I—

I

on the interval a b. If f{x) is unbounded m every neigh-

borhood of x=a, and also in every neighborhood of x=b, but

bounded on some neighborhood of every other point of the

I—

I

. .
I—

I

I—

I

interval a b, we consider two intervals a c and c b where c

is any point a<c<b. If the improper definite integral exists

I—

I

1—1
, . .

on a c and also on c b, then the sum of these mtegraJs is the

I—

I

improper definite integral on a b.

t We will understand throughout this chapter that in the expression

(,x)dx

I 1

X approaches a on the interval o 6.

191
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This definition can obviously be extended to the case where

the function is unbounded in the neighborhood of a finite num-

ber of points. Such points are then considered as partition

points, dividing the interval a b into a set of subintervals.

If the improper definite integral exists on each of these in-

I—

I

tervals, their sum is the improper definite integral on a b.

Theorem 138. // / f{x)dx exists for every x, a<x<b, then

a necessary and sufficient condition that

L rf{x)dx
t=aJx

shall exist and be finite is that for every e there exists a V,*{a)

I—

I

such that for every two values of x, Xi and xz, on the interval a b

and on V,*{a)

I

rx,

\J f^'
|m/ Xi

x)dx <s.

Proof.—This theorem is a special case of Theorem 27, since,

by Theorem 110,

f{x)dx= / f{x)dx- / f(x)dx.
Xi *JX\ \J X2

Theorem 139. // / f{x)dx exists for every x, a<x<6, and if

L r\f{x)\dx
x=a«/ X

is finite, then

L rf(x)dx

exists and is finite.^

t The first part of the hypothesis in this theorem is not redundant as

is shown by the following example. Let f{x) = x-i for positive rational values
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Proof.—By the necessary condition of Theorem 138 there
is a V*{a) corresponding to any preassigned e such that for

any two values of x, xi and Xz, which lie on the segment a~b
and on V*{a)

I

r)fix)\d2 <£.

But, by Theorem 107,

\

r)f{x)\dx\>\ r){x)dx\,

since, by the hypothesis and Theorem 105, f^^f{x)dx exists.

Hence, by the sufficient condition of Theorem 138,

L f)ix)d2

exists and is finite.

Theorem 140I. // / ]{x) dx exists for every x on the segment

a b, and if (x—a)''f(x) is bounded on V*(a) for some valve of

k, 0<k<l, then

L rf{x)dx
x=aJ X

exists and is finite.

Proof.—By hypothesis (i— a)*|/(a;)|<Af, i.e.,

of I and /(i)=— 2~J for positive irrational values of x. In this case

L I \f(x)\dx exists and is finite, while / j{x)dx does not exist for any

value of X on the interval o 5, and consequently L I f(x)dx has no mean-
xiavx

ing since the limitand does not exist.
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where M may be taken greater than one. The proof of the

theorem consists in showing that for every e there exists a d,

such that if 0<xi-a<d„ 0<X2-a<d„ Xi<X2, then

I r^"'

I f{x)dx < e.

By Theorems 105 and 133,

=^^\ix2-ay-'-(xi-ay-''\.

That the last term of this series of inequalities is infinitesimal,

the reader may verify by choosing

This theorem may also be proved as a corollary of Theorem

Corollary.—If /(x) is integrable on x 6 for every x of a 6,

1 is of the same

oi k, 0<k<l, then

143

and is of the same or lower order than -. rr for some value
{x— a)"

L Prndz

exists and is finite.

Theorem 141. // for any positive number m and for any ktl
there exists a V*{a) on which f{x) does not change sign, and on
which (x— o)* /(x) >m for every x, then

L rf{x)d2
^aJX

cannot exist and he finite.

L
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Proof.—(1) In case

/jix)dx

fails to exist for some value of x between a and b,

L f''fix)dx

fails to exist because the limitand function does not exist.

(2) If
fj^''^'^-

exists for every value of x between a and h, we proceed as follows

:

Let 5< 1 be the length of a V*{a) on which f(x) does not change

sign, and on which {x —aYj{x)>m, and let Xi be the extrem-

ity of this neighborhood, which is greater than a. Then

l/(^)l>(^r^>(^^r^* ^^^ ^^^'y ^ ""^ *^^ neighborhood.

Take xi so that (X2 - a) * = 2(a;2 - Xi)

.

>fe?^^^^-^^)
=^-Then / f{x)dx

Hence, by the necessary condition of Theorem 138,

L rf{x)dx

cannot exist and be finite.

Theorem 142. // L f{x)dx

cxiste and is finite and if fix) approaches infinity monotonicaliy

as x=a on some V*ia), then

L (x-a)-/(x)=0,
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1

or in other words f{x) has an infinity of order lower than ^3^-t

Proof.—By means of Theorem 138 it follows from the hypoth-

esis that for every £ there exists a 7* (a) within V*{a) such

that for every Xi and X2 on a b, and also on V*ia),

/ fix)dx <£.

Let X2 be any point of such a neighborhood and let Xi be so

chosen that Xi — a = X2 — Xi

.

Since Xi and X2 are on V*{a),

/(Xi)>/(X2).

It follows from Theorem 116 that

But

/ fix)dx >|/(X2)|-(X2-Xi).

/(X2) • (X2-X1) = J/(X2) • (x2-a).

f L (i— o)-/(x) =0 is not a sufficient condition for the existence of

L I l(x)dx,
xia'' X

as is shown by the following example. Consider a set of points i,, I2

•Cs, . . . , i„, . . . such that Xn— a= 2(i„-|-i— a), Xi— a being unity.

2"
Define /(i,)= l, /(x2)=|, /(i,)=2, . . . , /(=r")=^:fri' Letthefunc-

tion be linear from f{xO to /(12), from /(xj) to /(xa), etc. Then

1/Wx\
/(x)dx >i, /(x)<ix >J, etc.

Since these integrals are all of the same sign, their sum for any given num-
ber of terms is greater than the sum of the corresponding number of terms.

2
in the harmonic series. Also (x„— o) /(xr.) =—tT' '^l»e°ce L (x— a)/(x)=0.
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Hence for x = X2, \j{x) \-{x-a)<2e.

Since e is arbitrary, and since X2 is any point in V*{a), it follows

that L /(x)-(x-a)=0.

Corollary.—If / f(x)dx

exists for every x between a and h, and

l^ f)ix)dzL
x=a\J X

exists and is finite, and if /(x) is entirely positive or entirely

negative, then zero is a value approached by {x — a)-f(x) as x

approaches a.

Proof.—Consider the case when the function is entirely

positive. Suppose zero is not a value approached. Then there

exists a pair of positive numbers £ and 8 such that for every

X, x — a<d,

{x—a)-f{x)> £.

I—

I

On the interval, a a+ d, consider the function

x—a

Since / ——zdx
Jx x—a

is a non-oscillating function of x, it follows from Theorem 25 that

L f ——dx
xLaJ T x-a

exists, and by Theorem 142 this limit must be infinite.
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Since 1/(^)1>^
on the neighborhood under consideration, it follows from Theo-

rem 107 and Corollary 2; Theorem 40, that

L f f{x)d2L
x=a^ X

exists and is infinite, which is contrary to the hypothesis.

Theorem 143.! // (1) fii^) and /2(x) are of the same rank of

infinity at x= a, or if /i(x) is of lower order than fiix),

(2) / fi{x)dx and I f2ix)dx both exist

for every x on the segment a b,

(3) There is a neighborhood of x^a on

which /2(x) does not change sign,

P
(4) L I f2(.x)dx is finite, J

th£n it follows that L I f\{x)dx exists and is finite.

t This is what Professor Moore in his lectures calls the relative con-

vergence theorem. Theorems 143, 144, 151, 152 in this form are due to him.

t We notice that since under the hypothesis /zCi) does not change sign,

L I f2{x)dxL
I

f2{x)dx
JX

cannot fail to exist either finite or infinite, for it follows from this hypothesis

that / fi{x)dx is a non-oscillating function of x and therefore, by Theorem 25

that the limit exists.
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Proof.—Since from the hypothesis

L I f2{x)dx

exists and is finite, we have by Theorem 138 that for every t

there exists a F*(a) such that for every xi and X2 on segment

a b and on V*{a)

IX
X2

J2{x)dx
xi

<e.

<MConsider Xi and X2 on a neighborhood of a;= a for which ^^
)/2(x)

and for which /2(x) does not change sign. Then, by Theorem
113,

I

f''h(x)dx <M-\ f'^f2(x)d2 <M-c.

Since M-e can be made small at will by making e small, it

follows by Theorem 138 that

£hix)d2L
TJJiU X

exists and is finite.

An important special case of this theorem is when /i(x)

is of the same or lower order of infinity than /2(x), i.e.,

L . , . =.K, a constant not zero.
x=a/2(2;)

The reader should verify for himself that Theorem 140 is a

corollary of Theorem 143. The other previous tests for the

existence of the improper definite integral can all be reduced to

special cases of Theorem 143. Cf., for example, the logarithmic

test on page 410 of Pierpont.

Theorem 144. // (1) /i(x) and /2(x) are of the same rank of

infinity at x=a, or if /i(x) is of higher order than f2{x),

(2) / f\{x)dx and I f2{x)dx both exist

I—

I

for every x on the segment a b,
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(3) There is a neighborhood of x=a on

which /i(x) does not change sign,

(4) L I f2(x)dx is infinite (see note

under Theorem 143),

then L / fi (x)dx exists and is infinite or fails to exist.'f

x= a\J X

Proof.—This is a direct consequence of Theorem 143, since if

L / /i(x)dx,
x^aJ X

which exists by the foot-note of Theorem 143, were finite, then

L I f2{^)dx
x'=aJ X

would exist and be finite.

Theorem 145. // for a function /i(x) which does not change

sign in the neighborhood of x — a there exists a monotonic func-

tion f2{x) infinite of the same rank as fi(x) as x approaches a,

I fi{x)dx and / f2ix)dx both existing for every x on the seg-

ment a b, then a necessary condition that L I fi {x)dx shall exist
xLa\J X

and be finite is that

L (x-a)-/i(i)=0.

Proof.—By hypothesis

L rfx{x)dx

t This is what Professor Moore calls the relative divergence theorem.
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exists and is finite. Hence, by Theorem 143,

x'=.aJ X

exists and is finite. Therefore, by Theorem 142,

L (x-a)-/2(x)=0.

Since
j^^

is bounded as x approaches a, i.e., |/i(2;)| <M- |/2(x)|,

we have (i-a) \h{x)\<M-{x-a) \U{x)\.

But L M.(x-a).|/2(a;)|=0.

Therefore, by Corollary 4, Theorem 40,

i'(x-a)-|/i(x)|=0,

or by Corollary 2, Theorem 27,

L ix-a)-fiix)=0.
x~a

§ 2. The Definite Integral on an Infinite Interval.

The integral over an infinite interval, viz..

L h{x)dx,
c=oo«/ a

has properties analogous to those of the improper definite inte-

gral on a finite interval discussed in the preceding section, and

is likewise called an improper definite integral.

The following theorems correspond to Theorems 138 to 145.
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Theorem 146. // / f{x)dx

exists for every x, a<x, then a necessary and sufficient condition

that L f{x)dx

exists and is finite, is that for every e there exists a D, such that

for every two values of x, Xi and Xj, each greater than D„

I

r'f(.x)d\x\<t

Proof.—The theorem is a,direct consequence of Theorems 105

and 27.

Theorem 147. // / f{x)dx

exists for every x greater than a, and if

L r\m\dx

is finite,'\ then

L f\x)dx

exists and is finite.

Proof.—The proof is like that of Theorem 139.

Theorem 148. // / f{x)dz

exists for every x greater than a, and if {x—a)^-f{x) is bounded as

X approaches infinity for some k, k>\, then

L rf{x)di

exists and is finite.

t Note on page 192 shows that this hypothesis is not redundant.
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Proof.—^If in the proof of Theorem 140 we write Z),i-*=

^

j^f
instead of d.^-''= ' ~

\ and use Theorem 146 in-

stead of 138, the proof of Theorem 140 will apply to Theorem
148.

Theorem 149. // f{x) does not change sign for x greater than

some fixed number D, and if for some positive number m and
some number k^\ \{x-aY-f{x)\ >m for every x greater than D,
then

L f){x)dx

cannot exist and be finite.

Proof.—By making suitable changes in the proof of Theorem
141 so as to make xi and X2 approach infinity instead of a, that

proof applies to this theorem.

Theorem 150. // L / f{x)dx
1=00 »/(i

exists and is finite, and if f{x) is monotonic for all values of x

greater than some fixed number, then

L (x-a)-/(x)=0.

Proof.—By making slight modifications of the proof of

Theorem 142, that proof applies to this theorem.

Corollary.—If / f{x)dx

exists for every x greater than a, and

L f'f{x)dx

«

exists and is finite, and if /(x) does not change sign for x greater
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than some fixed number, then zero is a value approached by

(x-a)/(x) as X approaches oo.

The proof is similar to that of the corollary of Theorem 142.

Theorem 151. //

(1) fi{x) and /2(x) are infinitesimals of the same rank as x

approaches 00, or if fi{x) is of higher order than f2{x),

(2) / fi{x)dx and I f2{x)dx both exist for every x, a<x,

(3) /2(2;) does not change sign for x greater than some fi^ed

number,

(4) L I f2{x)dx is finite,

then it follows that

L rfi{x)dx
x^ootJa

exists and is finite.^

Proof.—The proof is analogous to that of Theorem 143.

Theorem 152. //

(1) /i(x) and fzix) are infinitesimals of the same rank as x

approaches infinity, or if fi{x) is of lower order than fiix),

(2) / fi{x)dx and I f2{x)dx both exist for every x, a<x,
%J a Ja

(3) /i(x) does not change sign for x greater than some fixed

number,

(4) L I f2{x)dx is infinite,

then L I fi{x)dx

exists and is infinite or fails to exist.

Proof like that of Theorem 144.

Theorem 153. // for a function fi{x) which does not change

sign in the neighborhood of x=<xi there exists a monotonic func-

tion fzix) such that /i(x) and /2(x) are infinitesimals of the same

t See note under Theorem 143.
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rank as X approaches infinity, I fi(x)dx and / f2(x)dxbotheJ>-

isling for every x>a, then a necessary condition that

L rh{x)dx

shall exist and he finite is that

L (x-a)-/i(x) = 0.

The proof is like that of Theorem 145.

§ 3. Properties of the Simple Improper Definite Integral.

The following definition of the simple improper definite

integral is equivalent in substance to that given on page 192,

and in form is partly the definition of the general improper

definite integral given on page 210.

The definite integral of a function is said to exist properly at

a point Xi or in the neighborhood of this point, on the interval

l-i I—

I

. . . .

a 6 if there exists an interval on ai bi contaimngxi as anmterior

point (or as an end point in case Xi=a or Xi=b) ^vrh that the

proper definite integral of fix) exists on this : te val. The

integral is said to exist improperly at a point xi on the interval

aTb if f(x) has an infinite singularity at Xj and there exists an

interval ai bi on a b containing Xi as an interior point (or end

noint in case Xi=a or ii=6) such that the improper definite

I— I . I—

I

integral exists on each of the intervals a, xi and xi 61.

If on an interval a b the definite integral exists properly

at every point except a finite number of points, and ex-

ists improperly at each of these points, then the improper

definite integral is said to exist simply on the interval

iTb, or the simple improper definite integral is said to exist on
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1-1
.

I-I

the interval a b. Let Xi, X2, . . . , Xn be the points of a 6 at

which the integral exists improperly. The simple improper
l-l

definite integral on a 6 is the sum of the improper definite

l-l I—

I

1
1 I I—

I

integrals on the intervals a Xi, xi X2, . . , x„_i x„, x„ b.

We denote the simple improper definite integral of f{x) on
l-l

the interval o 6 by

rmdx

This symbol is used generically to include the proper as well as

the improper definite integral.

Theorem 154. // a<b<c, and if two of the three simple im-

proper definite integrals

I f{x)dx, I f(x)dx, and / f{x)dx
S^a SJb S«/ o

exist, then the third exists and

rf{x)dx+ rf{x)dx^ rf{x)dx.
5«/ o St/ b St/ o

Proof.—If 6 is a point at which the integral exists improperly,

and if

/ f{x)dx and / f{x)dx
sJa sJbS'Ja SJb

both exist, then by the definition of

rf(x)dx
SJ a

the latter exists and is equal to the sum of the two former.

If one of the two integrals, say

/ Kx)dx,
sJ a
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exists, and if f"f{x)dx
Sja

exists, then / ^{x)dx
• sjb

exists since only in that case does

frndx
Sja

exist. The equation

/ f{x)dx+ /fix)dx= f'f{x)dx
Sja sJb sJ a

likewise holds.

If 6 is a point at which the integral exists properly, then the
theorem follows from the above argument and the definition on
page 205.

Theorem 155. // / f{x)dx

exists, then I f{x)dx
sJb

exists and I f{x)dx= — I f(x)dx.
sJ a sJb

Proof.—^In case the integral exists improperly only at one point

of the interval, then the theorem is an immediate consequence

of Theorem 108 and CoroUary 1, Theorem 27. (If L fix) =K,

then L{ —fix) j
= —K.) The theorem in the general case follows

directly from this case and the definition of the simple improper

definite integral.

Theorem 156. If c is a constant and if the simple improper
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definite integral of j{x) exists on a b, then the simple improper

l-l

definite iniegral of c-f{x) exists on a b and

rf(x)dx=' rcf{x)dx.
J a Sj a

Proof.—^The theorem is a direct consequence of Theorems

111 and 34.

Theorem 157. // the simple improper definite integrals of fi{x)

and fiix) both exist ona b, then the simple improper definite inte-

gral of /i(x) +/2(x) and of /i(x) —f^ix) both exist and

f\fl{x)±f2{x)\dx= rfl{x)dx± f)2{x)dx.
SJa St/o Sja

Proof.—^The theorem is a direct consequence of Theorems 112

and 34.

Theorem 158. // the simple improper definite integrals of

/i(i) and fzix) both exist, and if fi{x) > fzix), then

rf,{x)dx> rf2{x)dx.
St/

a

SJ a

Proof.—The theorem is a direct consequence of Theorem
113 and Corollary 2, Theorem 40.

Theorem 159. // / f{x)dx
sJa

exists, then I f{x)dx
St/a

is a continiums function of the limit of integration on the interval

a 0.

Proof.—If a; is a point at which the integral exists properly,

the theorem is the same as 118. If a; is a point at which
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the integral exists improperly, then the theorem follows from
Theorems 138 and 27.

Theorem i6o.
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§ 3. A More General Improper Integral.

The problem of defining and studying the properties of the

improper integral when the set of points of singularity is infinite

has been treated by many writers.! In this section we give a

few properties of improper integrals as defined by Harnack

and Moore.
I—

I

Denote by Po any set of points of content zero on a b, and

by P the set of all points of a 6 not points of Po- P and Pq
I—

I

are complementary sub-sets of a b. Denote by / any fimte set

I—

I

of non-overlapping intervals of a 6 which contain no point of the

set Pq. The symbol m(7) stands for the sum of the lengths of the

intervals of I. Eor the sake of brevity D will be used for |a— 6|.

The following conditions are assumed to be satisfied

:

(a) The definite integral of f{x) exists properly at every

point of P. The sum of the integrals of /(x) on the intervals of

/ is denoted by

Prndx.
'J a I

(b) For every positive e there exists a positive 8. such that

for any two sets, I' and I", of intervals none of which contain

any point of Pq and for which

|D-m(7')|<^. and \D-miI")\<8„

t A. Cauchy and B. Riemann studied the case of a fiflite number of sin-

gularities in papers which are to be found in these writers' collected works.
The infinite case has been treated by

A. Hahnack, Mathematische Annalen, Vols. 21 and 24 (1883-84).

O. Holder, Mathematische Annalen, Vol. 24 (1884).

C. Jordan, Cours d'Analyse, Vol.' 2 (1894, 2d ed.).

O. Stolz, Grundzuge der Differential- und Integralrechnung , Vol. 3.

A. ScHOENFLiES, JahresbeHcht der Deutschen Mathematiker-Vereinigung

Vol. 8 (1900).

Valleb-Potjssin, LiouvUle's Journal, Ser. 4, Vol. 8 (1892).

E. H. Moore, Transactions of the American Mathematical Society Vol 2
(1901).

J. PlERPONT, Theory of Functions of Real Variables (1906).
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/ f{x)dx— I f{x)dx <e.
\J al' JaV

It follows by Theorem 27 that

exists and is finite. This limit is denoted by

r }{x)dx
bJaP„

and is called the hroad improper definite integral with respect

to Po of the fmiction /(x) on the interval a b.

It is to be noticed that all the points of Po need not be on
1—

I

. I—

I

a b] those which are not on a 6 do not affect the existence of

/ f{x)dx.W aPa

Therefore if f{x) is improperly integrable on some sub-interval

I—
I

I—
I . . , ,

a' V of o h, its mtegral may be denoted by

. r fix)dx.
Wa'Pa

Theorem i6i. If a<b<c and if of the integrals

r f{x)dx, r f{x)dx, r fix)dx,
WaPo b^bPo b-^ aPo

either (a) / fix)dx and / fix)dx exist,

<y (^) / f{x)dx exists,

b'^aPo
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then all three integrals exist and

/' fix)dx+ r f{x)dx= f f{x)dx. . . (1)

JaPa -JlPo b^aPo

I—

I

, , ,

Proof.—Every set I of intervals on o c may be regarded as

composed of a set Ton a h and a set 7 on 6 c, while, conversely,

every pair of sets / and / constitute a set I. Hence

r Hx)dx= f f{x)dx+ I -f{x)dx.
J al "J a'l '^ b I

(Note that both members of this equation are multiple-valued

functions of mil) and of m (7) and m(T)). The conclusion of

our theorem follows in case (a) from Theorem 34.

It remains to show that if / /(a;)dx exists, then / f{x)dx
bJ a Po bJa Po

and / j{x)dx exist, and in that case also equation (1) holds.
bJ bPo

Suppose that on some sequence of sets [/] one of the two expres-

sions / _ f{x)dx and / _ f{x)dx, say / _ f{x)dx, approaches
Jal J bl J al

two distinct values as m(/) approaches D. Since there is some

sequence of sets of intervals 1
7'

| on which / _ /(x) approaches
'^ bl

only one value, it follows that on the sequence of sets of intervals

obtained by associating with each 7 an V and with each 7' an 7',

/ f{x)dx approaches two distinct values as m{I) = D, which
Jal
is contrary to hypothesis.

If / _f{x)dx approaches infinity, then clearly / f{x)dx

must approach infinity of the opposite sign. Hence, by the

corollary of Theorem 51a, / f{x)dx will approach both + oo
mJ a I
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and -00 as m{I)^D, which again contradicts the hypothesis

that / f{x)dx exists. The equaUty

I f{x)dx= f f{x)dx+ r f(x)dx
b'J n P„ b'J a Po b'J b Pa

now follows from the identity of the limitands

/ f{x)dx and / f{x)dx+ / _f{x)dx.
'J a I 'Ja Y ^bY

Theorem 162. // / f{x)dx exists, then I f(x)dx existsW a. Pa b-J b P„

and

f f(x)dx=- f f{x)dx.
Wa Po b'Jb Po

Proof.—By Theorem 108» for every /

/ f{x)dx= - I f{x)dx,
J al «/ 6 /

whence / ]{x)dx=- I j{x)dx.
W aPo b^ b Po

Theorem 163. // / f{x)dx exists, then I c-f{x)dx exists
bJ a Pa b^ a Pa

end

I c-f(x)dx = c- I fix)dx.
Wa Pa b'^a Po

Proof.—This is a direct consequence of Theorems 111 and 34.

Theorem 164. // / fi{x)dx and I f2{x)dx both exist,

bJ a Po b^ o Pa

then / (fi{x)±f2{x))dx exists and
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r hi^)dx± r J2{x)dx= f {h{x)dx±h{x))dx.
W a Pa h^ a Po b^ a Pq

Proof.—This is a direct consequence of Theorems 112 and 34.

Theorem 165. // h{x) ^fzix), then

r h{x)dx^ f f2{x)dx,

provided these integrals exist.

Proof.—By Theorems 113 and 40.

Theorem 166. // / fi{x)dx and I hix)dx both exist,

r hix)-f2{x)dx
b-^aPo

does not in general exist.

Proof.—Let fi{x)=J2{x) = -j=. In this case the hypothesis

of the theorem is verified but the product, - fails to be inte-

I—

I

grable on the interval 1.

Theorem 167. / f{x)dx is a continuous function of x.
b^aPo

Proof.—If a; is a point at which the integral exists properly,

the continuity follows by Theorem 118. If a; is a point of the

set Po, then, by Theorem 26, we need to show that for every e

I—

I

there is a d, such that for every interval a' h' containing Xi and

I n
of length less than d„

\
I f{x)dx <s. By definition there

|6>/o' Po

exists a d, such that for every I' and /'' for which lm(/') -D\<d,
md\mir)-D\<d.,

I

r f(x)dx- f f{x)dx
|«/ a P Ja V

<e.
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I—

I

Let a' b' be an interval containing xi such that

|a'-fe'l<y-

Let /' be any set of intervals not containing any point of Pq and
. . .

I—

I

containing no point of a' h', and such that |m(/') - D| < d,. De-

note hyl^a'b') any set of non-overlapping intervals on a' V con-
taining no point of Pq, and let /" be the set of all intervals in
/' and 7(„-i,o- Then

\m(I")-D\<d.

and /_ t{x)dx= /_ /(x)dx+ r_f(x)dx
^al" ^aV 'J a! Ka'V)

\

pv (I Ph />b

and / _ /(x)dd= / _ j{x)dx- / _/(x)da

Hence / f{x)dx
\b^ a' Po

<e.

Corollary.—For Xi any point on a 6

L
x=xi b'^ Xj

f'f{x)dx=0.

Theorem i68. If f{x) is integrable with respect to Pq, and if

Pi is a set of points of content zero, then f{x) is integrable with

respect to the set P2 consisting of all points in Po and in Pi and

r f{x)dx= f f{x)dx.

Proof.—Obviously the set P2 is of content zero. Any set

of intervals / not containing a point of P2 is also a set 1 not
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containing a point of Po- Hence any value approached by

/ J{x)dx as m(/) approaches D is a value approached by
'J al

yf{x)dx as m(7) approaches D. Hence / f{x)dx exists

and

/ f{x)dx= f f{x)dx.

Theorem 169. If fi{x) is integrable vnth respect to Pi and

J2{x) is integrable with respect to P2, then fi{x) ±f2{x) is integrable

with respect to the set, P3, of all points in Pi and P2 and

r f{x)dx± r f{x)dx= r (/iwi/acx))^.
i«/ a Pi 6*^0 Pj 6«^ a Pa

Proof.—By Theorem 168 each of the functions fi{x) and

fzix) is integrable with respect to P3, and

and

/ fi{x)dx= / fi{x)dx,
WaPi WaP}

/ f2(x)dx= / f2{x)dx,Wa P, W a P,

and hence, by Theorem 164, fi{x)±f2{x) is integrable with

respect to P3 and

r fi{x)dx+ r f{x)dx= r (j(x)±f{x))dx.W a Pi b^ a Pi W a Pi

The broad improper definite integral as here defined con-

tains as a special case the proper definite integral, the integral

in that case existing properly at every point of the interval a h.

It does not, however, contain as a special case the simple im-

proper definite integral considered in § 3. This may readily

be shown by means of the function used on page 209 to show
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that the simple improper definite integral is not absolutely

convergent. In the case of this function a sequence of sets

of intervals /„ may be so chosen that / f{x)dx shall ap-

proach any value whatever as m(/a) approaches D.

An improper integral which includes both the simple and
the broad improper integrals is obtained as follows; Every
set / is to be such that if /' is its complementary set of seg-

ments on a b, then every segment of I' contains at least one

point of Pq. The limit of / f{x)dx as m(7) approaches D, if
•-'a /

existent, is called the narrow improper definite integral and is

denoted by / f{x)dx.

It is evident that if the broad integral exists, then the narrow
integral also exists. The narrow integral includes the simple

improper definite integral of the preceding chapter. Hence it

follows that the broad and the narrow integrals are not equiva-

lent.! Theorems 161 to 167 hold of the narrow integral as well

as of the broad integral. The proofs are identical with the

above except that the sets 7 are limited as in the definition of the

narrow integral. It may be shown by examples that Theorems

168 and 169 do not hold in the case of the narrow integral.

To show that 168 does not hold consider the function defined

in the proof of Theorem 160, where Po consists of the point 0.

Let Pi be the [xj of that example. Then obviously the narrow

integral / ti^)dx, where P2 contains all the points of Pi

and P2, fails to exist. The same example shows that Theorem

169 does not hold of the narrow integral.

f The narrow integral is so called because it has fewer properties than the

broad integral. It exi.sts for a wider class of functions.
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§ 5. Special Theorems on the Criteria of Existence of the

Improper Definite Integral on a Finite Interval.

The examples of this section are intended to give an idea of

the possible singularities of improperly integrable functions, and

to indicate the difficulty of obtaining more general criteria of

the divergence or convergence of the simple improper integral

than those given in § § 1 and 2 of this chapter.

Lemjna.—'For every function /i(x) which is unboimded in

every neighborhood of x=a there is a function /2(x) which is

infinitesimal as x approaches a, such that ji{x)-f2{x) is un-

bounded in every neighborhood of i= o, and such that

/2(X)

x—a

is monotonic increasing as x approaches o.

Proof.—Since /i(i) is imboimded in every neighborhood of

x = o, it follows that for every point Xi of the segment a b there

is a point X2 on the segment a xi such that

|/ife)|>2|/i(xi)l>2M,

and such that (xg —a) 5 J(xi — a).

Let Xi, X2, X3, . .
.

, x„, . . . be a sequence of points dense only

at a such that

|/i(a;„)|>2|/i(x„_i)|>2''-i-M,

and such that |x„— a| ^ i|x„_i -a\.

We define /2(x) as follows:

hM = - on the points Xi, X2, . .
.

, x„, . . .

.

TV
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avd fzix) is linear between the points of the sequence Xi, X2, . . .

,

Xn,... Then there are values of x on a;„ x„_i such that

l/i(a;)|-/2(x)>|-M,

whence hi^)-hi^) is unbounded in the neighborhood of a.f

Ubviously ^—^ IS monotomc increasing as x approaches a.

Theorem 170. For every function /i(x) which is unbounded
in every neighborhood of x = a there exists a non-oscUlating func-
tion f2{x) such that

L I f2(x)dx

exists and is finite, while

(.x-a)-fi{x)-f2{x)

is unbounded in the neighborhood of x=a.
Proof.—According to the lemma there exists a function

/3 (x) such that L fa (x) = 0,

while fz{x)-fi(x) is imbounded and the fimction

fsix)
U{x) =x—a

is monotonic increasing as x approaches a. Since

ix-a)f4(x)-fiix)^f3ix)-f,ix),

t In case L f,(x)=<x, f,(x) ==== or ftipc)^- —
-^ would satisfy the

/ (x)
requirements of the lemma except that they need not make -^^^ monotonic.
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(x-a)-}i{x)-fi{x) is unbounded in the neighborhood of x=a.
I—

I

Let xi, . . . , a;„, . . . be a sequence of points on a b whose only-

limit point is a, such that /3(x)-/i(x) is unbounded on this set.

In the sequence

(xi -o)/4(xi), (x2-a)/4(x2), ..., ix„-a)U{x)„ . (1)

L (x„-o)/4(x„)=0, since L {x-a)fi{x)=0.
71=00 x=a

Hence there is a value of n, rii, such that

l(xi-a)/4(xi)l>2l(x„.-a)/4(xOI,

and another value of n, Ui, such that

|(x„,-a)/4(x„J| >2|(x„,-a)/4(x„,)|, etc.,

rim+i being so chosen that

|(2„„-a)/4(x„JI > 2l(x„„^i -a)/4(a;n„+i)|.

In this manner we select from the sequence (1) a set of tenns

forming the convergent series

(xi-a)/4(xi) + (x„, -a)/4(x„,) + . . . + (x„^-a)/4(x„J+. . . (2)

We then obtain a function f^ix) as follows: For the set of values

of X

x„„^i<x<x„„, /2(X)=/4(X„„).

Then (1) /zC^;) is non-oscillating since

/4(a;"m)</4(a;nm+l).

(2) {x-a)J2(x)-fi{x) is unbounded on the set ij, x^,

Xr^, , Xn„, -, since on this set

/2(X)=/4(X).



IMPROPER DEFINITE INTEGRALS. 221

But the terms of this series are numerically smaller than the
corresponding terms of the convergent series (2). Hence

^ / }2(x)dx

exists and is finite.

Theorem 170 may be regarded as showing that

L (x-a)/2(a;)=0

is a strong necessary condition that, under the hypothesis of
Theorem 142,

^ / f2{x)dxL
z—a*/ X

shall exist and be finite. For, according to Theorem 170, it is

impossible to modify the function (a; -a) by any factor /i(i)

which shall approach infinity so slowly that for every function

fzix) where

L / f2{x)dx
\UX

exists and is finite

L(x-a)A(z)-/2(a:)=0.t
x^a

Theorem 171. For every function fiix) defirMi on the interval

I—

I

a b there exists a function fzix) such that

(1) fzix) is continuous and does not change sign on a certain

neighborhood of x= a.

t See Prinosheim, Mathematische Annilen, Vo!. 37, pp. 591-694 (1890).
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(2) L I f2(x)dx exists and is finite.

(3) For X on a certain set [a/]

x=a h{x')

Proof.—Let Xi , x-i, . . . , x„', ... be a set of points of the

I—

I

interval a b dense only at a. Let Bi, Bz, B3, . .
.

, Bn, ... be

a set of numbers such that

5„-n|/i(x'„)|>2-fi„+i(n + l)i/i(z'„+i)|. (n= l, 2, 3, . . .)

On the X axis lay off a set of segments [a„] such that a„ is of

length Bn and a;„ is its middle point. On the segments (t„ as

bases construct isosceles triangles on the positive side of the

X axis whose altitudes are n-|/i(a;)|. The measures of areas

of these triangles form a convergent series. Let fsix) be

any continuous, monotonic, unbounded function such that

L rf3(x)dx

exists and is finite. We then define /2(a;) as the function repre-

sented by the following curve

:

(1) Those parts of the boundaries of the isosceles triangles

just described which lie above the curve defined by ]z{x).

(2) Those parts of the curve defined by ]z{x) which he out-

side the triangles or on their boundary. Obviously the func-

tion so "defined has the properties specified in the theorem, the

points xx, X2,..., Xn', . . . being the set [a/] specified by (3)

of the theorem.

Theorem 171 means that from the hypothesis that the

improper definite integral of f{x) exists on a 6 it is impossible

to obtain any conclusion whatever as to the order of infinity

or the rank of infinity of f{x) atx=a. This is what one would
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expect a -priori, since the definite integral is a function of two

parameters, while the necessary condition in terms of t ounded-

ness would be in terms of only one of these.

§ 6. Special Theorems on the Criteria of the Existence of the

Improper Definite Integral on the Infinite Interval.

Theorem 172. For every function fi{x) which is unbounded as

X approaches 00 there exists a non-osciUating function /2(x) such

that L I f2{x)dz
z^oDc/a

exists and is finite, while (x — a)fi{x)-f2^x) is unbounded as x
approaches <x>.

Proof.—Obviously the lemma of Theorem 170 can be stated

so as to apply to the case where x approaches « instead of 0.

If then in the proof of Theorem 161 the set of points ii . . . x„ . .

.

is so taken that

L Xn=CO

instead of a, the proof of Theorem 161 applies with the excep-

tion that fzix) is non-oscillating decreasing instead of non-oscil-

lating increasing.

Theorem 173. For every function f\ {x) defined on the interval

a 00 there exists a function /2(x) such that

(1) /zCx) is corUinuou^ and does not change sign for x greater

than a certain fixed number.

(2) L I f2(x)dx

exists and is finite.
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(3) For X on a certain set [x^

Proof.—Such a function /aCx) may be defined in a manner

analogous to that of the proof of Theorem 171.

The remarks as to the meaning of Theorems 170 and 171

apply with obvious modifications to Theorems 172 and 173.
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' of the real number system, 13

Bounds of indetermination, 84
" upper and lower, 3, 47

Broad improper definite integral, 211

Change of variable, 79, 126, 175
Class, 3

Closed set, 41

Constant, 44
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Increasing function, 49
Independent variable, 44

Infinite, 101, 102
Infinite segment, 32

" series, 70
" " convergence and di-

vergence of, 71

Infinitesimals, 75
Infinity as a limit, 40, 47, 60
Integral, definite, 153
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205
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'
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'
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Many-valued function, 44
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Non-oscillating function, 49
Nowhere dense, 41
Number, 1

" algebraic, 18
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" sets of, 3
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Proper existence of the definite inte-
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Ratio test for convergence of infinite

series, 73
Real mmiber system, 4, 13
Regressive derivative, 118
RoUe's theorem, 132

Segment, 32
infinite. 32

" lower, 12
Sequence of numbers, 70
Series, infinite, 70
" convergence and divergence

of, 71
" geometric, 73
" Taylor's, 134, 135

Sets of numbers, 3
Simple improper definite integral, 205
Single-valued functions, 44
Singularity, 101
Sum of irrational numbers, 7

Taylor's series, 134
Theorem of uniformity, 35
Transcendental functions, 54

" numbers, 18

Unbounded function, 47
Uniform continuity, 89
Uniformity, 35
Upper bound of a function, 47

" "" set of numbers, 3
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Upper integral, 181
" limit, 84

Value approached by a function, 60
«' " " the independ-

ent variable, 60

Variable, 44
'

' dependent, 44
" independent, 44

Vicinity, 38
V(a), 38
V*{a), 38





SHORT-TITLE CATALOGUE
OF THE

PUBLICATIONS
or

JOHN WILEY & SONS,
New York.

Lokdon: chapman & HALL, Ldhtbd.

ARRANGED TTNDER SUBJECTS.

Descriptive circulars sent on application. Books marked with an asterisk (*) are sold

at net prices only. All books are bound in cloth unless otherwise stated.

AGRICULTURE.

Amuby's Miintnl of Cattle-feedinc. lamo. Si 75
Principles of Animal nutrition 8vo, 4 00

Budd and Hansen's American Horticultural Manual:
Part L PropacatioD, Culture, and Improvement ijmo, i 50
Part n. Systematic Pomolocy umo, i 50

Downins's Fruits and Fruit-trees of America .8to, 5 00
Elliott's Encineering for Land Drainage ismo, i so

Practical Farm Drainage lamo. i 00
Graves's Forest Mensuration 8vo, 4 00
Green's Principles of American Forestry lamo, i 50
Grotenfelt's Principles of Modem Dairy Practice. (VolL) ismo, a 00

Kemp's Landscape Gardening lamo, 1 50
Maynard's Landscape Gardening as Applied to Home Decoration lamo, i 50
* McKay and Larsen's Principles and Practice of Butter-making 8vo, i 50
Sanderson's Insects Injurious to Staple Crops iimo, i so

Insects Injurious to Garden Crops. (In preparation.)

Insects Injuring Fruits. (In preparation.)

Stockbridge's Rocks and Soils 8vo, 2 so
Winton's Microscopy of Vegetable Foods Svo, 7 50

Woll's Handbook for Farmers and Dairymen. i6mo, i 50

ARCHITECTURE.

Baldwin's Steam Heating for Buildings ismo, a so
Bashore's Sanitation of a Country House lamo. i 00

Berg's Buildings and Structures of American Railroads 4to, 5 00

Birkmire's Planning and Construction of American Theatres. Svo, 3 00

Architectural Iron and Steel Svo, 3 50

Compound Riveted Girders as Applied in Buildings. Svo, 2 00

Planning and Construction of High Office Buildings. Svo, 3 50

Skeleton Construction in Buildings Svo, 3 00

Brigg's Modem American School Buildings. Svo, 4 00
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CHEMISTRY.

* Abegg's Theory of Electrolytic Dissociatioo. (Von Ende.) i2mo, i 25

Adriance's Laboratory Calculations and Specific Gravity Tables i2mo, i 25

Alezeyeff's General Principles of Organic Synthesis. (Matthews.) 8vo, 3 00

Allen's Tables for Iron Analysis 8vo, 3 00

Arnold's Compendium of Chemistry. (Mandel.) Small 8vo, 3 50

Austen's Notes for Chemical Students lamo, i 50

Bemadou's Smokeless Powder.—Nitre-cellulose, and Theory of the Cellulose

Molecule i2mo, 2 50
* Browning's Introduction to the Rarer Elements 8vo, i so

Bnuh and Penfield's Manual of Determinative Mineralogy 8vo, 4 00
* Claassen's Beet-sugar Manufacture. (Hall and Rolfe.) 8vo, 3 00

Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.). .8vo, 300
Cohn's Indicators and Test-papers Z3mo, 2 00

Tests and Reagents 8vo, 300
Crafts's Short Course in Qualitative Chemical Analysis. (Schaeffer.). . . z3mo, i 50
* Danneel's Electrochemistry. (Merriam.) i2mo, 1 25

Dolezalek's Theory of the Lead Accumulator (Storage Battery). (Von
Ende.) i3mo, 2 50

Drechsel's Chemical Reactions. (MerrilL) i2mo, i 25
Duhem's Thermodynamics and Chemistry. (Burgess.) 8vo, 4 00

Eissler's Modem High Explosives 8vo, 4 00
Effront's Enzymes and their Applications. (Prescott.) 8to, 3 00
Erdmann's Introduction to Chemical Preparations. (Dunlap.) i2mo, i 25
Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe.

i2mo, morocco, i 50
Fowler's Sewage Works Analyses i2mo, 2 00
Fresenius's Manual of Qualitative Chemical Analysis. (Wells.) 8vo, 5 00

Manualof (Qualitative Chemical Analysis. Part I. Descriptive. (Wells.) 8vo, 3 00
System of Instruction in Quantitative Chemical Analysis. (Cohn.)

2 vols 8vo, 12 so
Fuertes's Water and Public Health i2mo, i so
Furman's Manual of Practical Assaying 8vo, 3 00
* Getman's Exercises in Physical Chemistry i2mo, 2 00
Gill's Gas and Fuel Analysis for Engineers izmo, i 25
* Gooch and Browning's Outlines of Qualitative Chemical Analysis. Small 8vo, 1 25
Grotenfelt's Principles of Modem Dairy Practice. (WolL) i2mo, 2 00
Groth's Introduction to Chemical Crystallography (Marshall) i2mo, i 25
Hammarsten's Text-book of Physiological Chemistry. (MandeL) Svo, 4 00
Helm's Principles of Mathematical Chemistry. (Morgan.) iimo, i so
Bering's Ready Reference Tables (Conversion Factors) i6mo, morocco, 2 so
Hind's Inorganic Chemistry 8vo, 3 00
* Laboratory Manual for Students i2mo, i 00
Holleman's Text-book of Inorganic Chemistry. (Cooper.) 8vo, 2 50

Text-book of Organic Chemistry. (Walker and Mott.) Svo, 2 50
* Laboratory Manual of Organic Chemistry. (Walker.) i2mo, i 00
Hopkins's Oil-chemists' Handbook Svo, 3 00
Iddings's Rock Minerals Svo, 5 00
Jackson's Directions for Laboratory Work in Physiological Chemistry . . Svo, 125
Keep's Cast Iron Svo, 2 50
Ladd's ISanual of Quantitative Chemical Analysis i2mo, z 00
Landauer's Spectrum Analysis. (Tingle.) Svo, 3 00
* Langworthy and Austen. The Occurrence of Aluminium in Vegetable

Products, Animal Products, and Natural Waters 8vo, 2 00
Lassar-Cohn's Application of Some General Reactions to Investigations in

Organic Chemistry. (Tizigle.) z2mo, z 00
Leach's The Inspection and Analysis of Food with Special Reference to State

ControL Svo, 7 50
Lob's Electrochetnistry of Organic Compounds. (Lorenz.) Svo, 3 oo
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Lodge's Notes on Assaying and Metallurgical Laboratory Experiments. .. .8to,

Low's Technical Method of Ore Analysis 8vo,

Lunge's Techno-chemical Analysis. (Cohn.) i2mo
* McKay and Larsen's Principles and Practice of Butter-making 8to,

Mandel's Handbook for Bio-chemical Laboratory umo,
'^ Martin's Laboratory Guide to Qualitative Analysis with the Blowpipe . . x2mo.
Mason's Water-supply. (Considered Principally from a Sanitary Standpoint.)

3d Edition, Rewritten 8to,

Examination of Water. (Chemical and BacteriologicaL). X2mo,
Matthew's The Textile Fibres 8to,

Meyer's Determination of Radicles in Carbon Compounds. (Tingle.). . xamo.
Miller's Manual of Assaying lamo.

Cyanide Process i2mo,
Minet's Production of Aluminum and its Industrial Use. (Waldo.) . . . . i2mo,
Mixter's Elementary Text-book of Chemistry x2mo,
Morgan's An Outline of the Theory of Solutions and its Results. ...... i2mo,

Elements of Physical Chemistry i2mo,
* Physical Chemistry for Electrical Engineers i2mo,

Morse's Calculations used in Cane-sugar Factories z6mo, morocco,
* Muir's History of Chemical Theories and Laws 8vo,

Mulliken's General Method for the Identification of Pure Organic Compounds.
VoL I Large 8to,

O'Brine's Laboratory Guide in Chemical Analysis 8to,

O'Driscoll's Notes on the Treatment of Gold Ores 8vo.
Ostwald's Conversations on Chemistry. Part One. (Ramsey.) l2mo,

" " " " Part Two. (Turnbull.) i2mo,
* Pauli's Physical Chemistry in the Service of Medicine. C Fischer.) .... z2mo,
* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests.

8vo, paper,

Pictet's The Alkaloids and their Chemical Constitution. (Biddle.) 8vo,

Pinner's Introductian to Organic Chemistry. (Austen.) i2mo,
Poole's Calorific Power of Fuels 8vo,

Prescott and Winslow's Elements of Water Bacteriology, with Special Refer-

ence to Sanitary Water Analysts i2mo,
* Reisig's Guide to Piece-dyeing 8to,

Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. .8vo

,

Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I.

Non-metallic Elements.) 8vo, morocco,

Ricketts and Miller's Notes on Assaying 8vo,

Rideal's Sewage and the Bacterial Purification of Sewage 8vo,

Disinfection and the Preservation of Food 8vo,

Riggs's Elementary Manual for the Chemical Laboratory 8vo,

Robine and Lenglen's Cyanide Industry. (Le Clerc.) 8vo,

Ruddiman's Incompatibilities in Prescriptions 8vo,

* Whys in Pharmacy i2mo,

Sabin's Industrial and Artistic Technology of Paints and Varnish 8vo,

Salkowski's Physiological and Pathological Chemistry. (OrndorS.) 8vo,

Schimpf's Text-book of Volumetric Analysis i2mo.

Essentials of Volumetric Analysis i2mo,

* Qualitative Chemical Analysis 8vo,

Smith's Lecture Notes on Chemistry for Dental Students 8vo,

Spencer's Handbook for Chemists of Beet-sugar Bouses i6mo, morocco,

Handbook for Cane Sugar Manufacturers i6mo, morocco,

Stockbridge's Rocks and Soils 8vo,

* Tillman's Elementary Lessons in Heat 8vo,

* Descriptive General Chemistry 8vo,

Treadwell's QuaUtative Analysis. (HaU.) 8vo,

Quantitative Analysis. (Hall.) 8vo,

Tumeaure and Russell's Public Water-supplies 8vo,
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Van Deventer's Physical Chemistry for Beginners. (Boltwood.) x2mo, z 50
• Wa]ke*s Lectures on Explosives 8vo, 4 00

Ware's Beet-sugar Manufacture and Refining Small 8vo, cloth, 4 00

Washington's Manual of the Chemical Analysis of Rocks 8vo, 2 00

Weaver's Military Explosives 8vo, 3 00

Wehrenfennig*5 Analysis and Softening of Boiler Feed-Water 8vo, 4 00

Wells's Laboratory Guide in Qualitative Chemical Analysis 8vo, t 50

Short Course in Inorganic Qualitative Chemical Analysis for Engineering

Students iimo, i 50

Text-book of Chemical Arithmetic i2mo» i 25
Whipple's Microscopy of Drinking-water 8vo, 3 50
Wilson's Cyanide Processes i2mo» i 50

Chlorination Process z2mo, i 50
Winton's Microscopy of Vegetable Foods 8vo, 7 50
Wulling's Elementary Course in Inor^ai^ic, Pharmaceuticai, and Medical

Chemistry. z2mo, 3 00

CIVIL ENGINEERING.

BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEERING.
RAILWAY ENGINEERING.

Baker's Engineers' Surveying Instruments z2mo, 3 00

Bixby's Graphical Computing Table Paper 19^X241 inches. 25

Breed and Hosmer's Principles and Practice of Surveying 8vo, 3 00
* Burr's Ancient and Modero Engineering and the Isthmian Canal .... Svo, 3 50
Comstock's Field Astronomy for Engineers 8vo» 2 50
Crandall's Text-book on Geodesy and Least Squares 8vo, 3 00
Davis's Elevation and Stadia Tables 8vo, i 00
Elliott's Engineering for Land Drainage 1200, i 50

Practical Farm Drainage i2mo, z 00

Fiebeger's Treatise on Civil Engineering 8vo,

Flemer's Phototopographic Methods and Instruments 8vo,

Folwell's Sewerage. (Designing and Maintenance.) 8vo,
Freitag's Architectural Engineering. 2d Edition, Rewritten 8vo,
French and Ives's Stereotomy 8vo,
Goodhue's Municipal Improvements i2mo,
Gore's Elements of Geodesy 8vo,
Hayford's Text-book of Geodetic Astronomy 8vo,
Bering's Ready Reference Tables (Conversion Factors') x6mo, morocco,
Howe's Retaining Walls for Earth i2mo,
* Ives's Adjustments of the Engineer's Transit and Level x6ino, Bds.

Ives and Hilts's Problems in Surveying x6mo, morocco,

Johnson's (J. B.) Theory and Practice of Surveying Small 8vo,

Johnson's (L. J.) Statics by Algebraic and Graphic Methods 8vo,

Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.) . z2mo.
Mahan's Treatise on Civil Engineering. (1873.) (Wood.) 8vo,
* Descriptive Geometry 8vo,

Merriman's Elements of Precise Surveying and Geodesy 8vo,

Merriman and Brooks's Handbook for Surveyors z6mo, morocco,

Nugent's Plane Surveying 8vo,

Ogden's Sewer Design i2mo,
Parsons's Disposal of Municipal Refuse 8vo,

Patton's Treatise on Civil Engineering 8vo half lealher.

Reed's Topographical Drawing and Sketching 4to,

Rtdeal's Sewage and the Bacterial Purification of Sewage 8vo,

Siebert and Biggin's Modern Stone-cutting and Masonry 8vo,
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Coolidge and Freeman's Elements ot General Drafting for Mechanical Engi-

neers Oblong 4to,

Durley's Kinematics of Hachioes .8to«

Emch's Introduction to Projective Geometry and its Applications 8to,

Hill's Text-book on Shades and Shadows, and Perspective 8vo,

Jamison's Elements of Mechanical Drawing 8vo,

Advanced Mechanical Drawing 8vo,

Jones's Machine Design

:

Part I. Kinematics of Machinery 8vo,

Part n. Form, Strength, and Proportions of Parts 8vo,

MacCord's Elements of Descriptive Geometry 8vo,

Kinematics; or. Practical Mechanism 8vo,

Mechanical Drawing 4to,

Velocity Diagrams 8vo,

MacLeod's Descriptive Geometry.. Small Svo,

* Mahan's Descriptive Geometry and Stone-cutting 8vo,

Industrial Drawing. (Thompson.) 8vo,

Moyer's Descriptive Geometry 8vo,

Reed's Topographical Drawing and Sketching 4to,

Reid's Course in Mechanical Drawing Svo,

Text-book of Mechanical Drawing and Elementary Machine Design. Svo,

Robinson's Principles of Mechanism Svo,

Schwamb and Merrill's Elements of Mechanism Svo,

Smith's (R. S.) Manual of Topographical Drawing. (McMillan.) Svo,

Smith (A. W.) and Marx's Machine Design Svo,
* Titsworth's Elements of Mechanical Drawing Oblong Svo,

Warren's Elements of Plane and SoUd Free-hand Geometrical Drawing. i2mo.
Drafting Instruments and Operations X2mo,
Manual of Elementary Projection Drawing i2mo.
Manual of Elementary Problems in the Linear Perspective of Form and

Shadow z2mo.
Plane Problems in Elementary Geometry i2mo,
Primary Geometry. lamo.
Elements of Descriptive Geometry, Shadows, and Perspective 8vo,

General Problems of Shades and Shadows Svo,

Elements of Machine Construction and Drawing Svo,
Problems, Theorems, and Examples in Descriptive Geometry Svo,

Weisbach's Kinematics and Power of Transmission. (Hermann and
Klein.): Svo,

Whelpley's Practical Instruction in the Art of Letter Engraving i2mo.
Wilsoa's (H. M.) Topographic Surveying 8vo,
Wilson's (V. T.) Free-hand Perspective Svo.
Wilson's (V. T.) Free-hand Lettering , gvo,
Woolf's Elementary Course in Descriptive Geometry Large Svo,

ELECTRICITY AND PHYSICS.

* Abegg's Theory of Electrolytic Dissociation. (Von Ende.) i2ma, i 25
Anthony and Braclcett's Text-book of Physics. (Magie.) Small Svo 3 00
Anthony's Lecture-notes on the Theory of Electrical Measurements. .. .i3mo, 1 00
Benjamin's History of Electricity 8vo, 3 00

Voltaic Cell Svo, 3 00
Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.).Svo, 3 00
* Collins's Manual of Wireless Telegraphy i2mo, i 50

Morocco, 2 00
Crehore and Squier's Polarizing Photo-chronograph Svo, 3 00
* Danneel's Electrochemistry. (Merriam.) i2mo, i 25
Dawson's "Engineering" and Electric Traction Pocket-book. i6mo, morocco, 5 00
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Leach's The Inspection and Aiutlysis of Food with Special Reference to State

Control Large 8vo, 7 so
* McKay and Larsen's Principles and Practice of Butter-making 8vo, i 50
Uatthewe's The Textile Fibres 8vo, 3 50
Metcalf's SteeL A Uanual for Steel-users: i2mo, 2 00

Hetcalfe'r Cost of Manufacttires—And the Administration of Workshops . 8to, 5 00

Heyer's Modem Locomotive Construction 4to, zo 00

Horse's Calculations used in Cane-sugar Factories i6mo, morocco, z 50
* Reisig's Guide to Piece-dyeing 8vo, 25 00

Rice's Concrete-block Manufacture 8vo, ^ 00
Sabin's Industrial and Artistic Technology of Paints and Vamislu 8vo, 3 00

Smith's PresE-workizig of Metals 8vo, 3 00

Spaldizig's HydrauUc Cement. z2mo, 2 00

Spencer's Hancfbook for Cheznists of Beet-sugar Houses. .... z6mo morocco* 3 00
Handbook for Cane Sugar Manufacturers i6mo morocco* 3 00

Taylor and Thoznpson's Treatise on Concrete, Plain and Reinforced 8vo, 5 00
Thurston's Manual of Steam-boilers, their Designs, Construction and Opera-

tiozi. 8to, s do
* Walke's Lectures on Explosives 8vo, 4 00
Ware's Beet-sugar Manufacture and Refining Small 8vo, 4 00
Weaver's Military Explosives 8vo,

West's American Foundry Practice z2mo,
Moulder's Text-book z2mo,

Wolff's Windmill as a Prime Mover 8vo,

3 00

SO

50

3
Wood's Rustless Coatings: Corrosion and Electrolysis of Iron and Steel. .8vo, 4 00

MATHEMATICS.

I so

50

7S
so

z2mo, I 7S

Baker's Elliptic Functions. 8vo,
• Bass's Elements of Differential Calculus Z2mo, 4
Briggs's Elements of Plane Azzalytic Geometry Z2mo i 00
Compton's Moniul of Logarithznic Computations i2ino i 50
Davis's Introduction to the Logic of Algebra. gvo, i 50
• Dickson's CoUege Algebra Large Z2mo! i SO
• Introduction to the Theory of Algebraic Equations Large z2mo, z 25
Emch's Introduction to Projective Geometry and its Applications 8vo
Halsted's Elements of Geometry. ^vo

Elementary Synthetic Geometry gyo'
Rational Geometry z2mG

• Johnson's (J. B.) Thr:.e-place Logarithmic Tables: Vest-pocket size. paper! is
zoo copies for s 00

• Mounted on heavy cardboard, 8X10 inches, 25
zo copies for 2 00

Johnson's (W. W.) Elementary Treatise on Differential Calculus. .Small 8vo, 3 00
Elementary Treatise on the Integral Calculus SmalfSvo, z so

Johnson's (W. W.) Curve Tracing in Cartesian Co-ordinates z2mo, z 00
Jolmson's (W. W.) Treatise on Ordiziary and PartiaT Differential Equations.

SnzallSvo, 3 so
Johnson's (W. W.) Theory of Errors and the Method of Least Squares. z2mo, z 50
• Johnson's (W. W.) Theoretical Mechaziics z2mo, 3 00
Laplace's Philosophical Essay on ProbabiUties. (Truscott and Emory.) . z2mo, 2 00
• Ludlow and Bass. Elements of Trigonometry and Logarithmic and Other

Tables 8vo, 3 00
Trigonometry and Tables published separately Each, 2 oc

• Ludlow's Logarithiziic and Trigonometric Tables gvo t 00
Mann ing's Irrational Numbers and their Representation by Sequences and Series

Z2mo, z 25
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Hathenuitlcal Monocraphs. Edited by Mansfield Merriman and Robert
S. Woodward Octavo, each i oo

No. 1. History of Modern Mathematics, by David Eugene Smith.
No. J. Synthetic Projective Geometry, by George Bruce Balsted.
No. 3. Determinants, by Laenas OiSord Weld. No. 4. Hyper-
bolic Functions, by James McMahon. No. 5. Harmonic Func-
tions, by William E. Byerly. No. 6. Grassmann's Space Analysis,
by Edward W. Hyde. No. 7. ProbabiUty and Theory of Errors,
by Robert S. Woodward. No. 8. Vector Analysis and Quaternions,
by Alexander Macfarlaae. No. 9. Differential Equations, by
William Woolsey Johnson. No. 10. The Solution of Equations,
by Mansfield Merriman. No. 1 1. Functiotas of a Complex Variable,
by Thomas S. Fislcr.

Haurer's Technical Mechanics 8vo, 4 00
Merriman's Method of Least Squares 8vo a 00
Rice and Johnson's Elementary Treatise on the Differential Calculus. . Sm. 8vo, 3 00

Differential and Integral Calculus, a vols, in one Small 8vo, a 50
* Veblen and Lennes's Introduction to the Real Infinitesimal Analysis of One

Variable gvo, a 00
Wood's Elements of Co-ordinate Geometry gvo, a oo

Trigonometry: Analytical, Plane, and Spherical lamo, i 00

MECHANICAL ENGINEERmO.

MATERIALS OF ENGINEERING, STEAM-ENGINES AND BOILERS.

Bacon's Forge Practice lamo,
Baldwin's Steam Heating for Buildings lamo,
Barr's Kinematics of Machinery 8vo,
• Bartlett's Mechanical Drawing 8vo,

•
" " " Abridged Ed 8vo,

Benjamin's Wrinkles and Recipes lamo.

Carpenter's Experimental Engineering 8vo,

Heating and Ventilating Buildings 8vo,

Clerk's Gas and Oil Engine Small 8vo,

Coolidge's Manual of Drawing 8vo, paper.

Coolidge and Freeman's Elements of General Drafting for Mechanical En-
gineers Oblong 4to,

Cromwell's Treatise on Toothed Gearing lamo.

Treatise on Belts and Pulleys lamo,

Durley's haematics of Machines 8vo,

Flather's Dynamometers and the Measurement of Power lamo,

Rope Driving -. lamo.

Gill's Gas and Fuel Analysis for Engineers lamo.

Hall's Car Lubrication lamo,

Bering's Ready Reference Tables (Conversion Factors) i6mo, morocco.

Button's The Gas Engine 8vo,

Jamison's Mechanical Drawing Svo,

Jones's Machine besign:

Part I. Kinematics of Machinery Svo,

Part II. Form, Strength, and Proportions of Parts Svo,

Kent's Mechanical Engineers' Pocket-book i6mo, morocco,

Kerr's Power and Power Transmission Svo,

Leonard's Machine Shop, Tools, and Methods Svo,

• Lorenz's Modem Refrigerating Machinery. (Pope, Haven, and Dean.)
.
Svo,

MacCord's Kinematics; or. Practical Mechanism Svo,

Mechanical Drawing 4to,

Velocity Diagrams Svo, i 50
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MacForland's Standard Reduction Factors for Gaaes 8vo, i 50
Uahan's Industrial Drawing. (Thompson.) 8vo 3 50

Pooies Calorific Power of Fuels 8to, 3 00

Rcid's Course in Uechanical Drawing 8to, 2 00

Text-book of Hecbanical Drawing and Elementary Machine Design. 8vo, 3 00

Richard's Compressed Air zsmo, i so

Robinson's Principles of Mechanism. 8to, 3 00

Schwaub and Merrill's Elements of Mechanism 8vo, 3 00

Smith's (0.) Press-working of Metals 8vo 3 00
Smith (A. W.) and Marx's Machine Design 8vo, 3 00
Thurston's Treatise on Friction and Lost Work in Machinery and Mill

Work 8vo, 3 00
Animal as a Machine and Prime Motor, and the Laws of Energetics. i2nio, 1 00

Tillson's Complete Automobile Instructor i6mo, i 50
Morocco, 2 00

Warren's Elements of Machine Construction and Drawing 8vo, 7 50
Weisbach's Kinematics and the Power of Transmission, (Herrmann

—

Klein.) 8vo, 5 00
Machinery of Transmission and Governors. (Herrmann—Klein.). .Svo, s 00

Wolff's Windmill as a Prime Mover 8vo, 3 00
Wood's Turbines 8vo, 2 50

MATERIALS OP ElTGmEERING.

* Bovey's Strength of Materials and Theory of Structures 8vo, 7 50
Burr's Elasticity and Resistance of the Materials of Engineering. 6th Edition.

Reset 8to,
Church's Mechanics of Engineering 8vo,
* Greene's Structural Mechanics gvo,
Johnson's Materials of Construction 8vo,
Keep's Cast Iron gyo
Lanza's Applied Mechanics gvo
Martens's Handbook on Testing Materials. (Henning.) 8vo,

Haurer's Technical Mechanics gvo,
Heiriman's Mechanics of Materials gvo
* Strength of Materials i2mo
Metcalf's SteeL A Manual for Steel-users i2mo',
Sabin's Industrial and Artistic Technology of Paints and Varnish 8vo,
Smith's Materials of Machines l2mo'
Thurston's Materials of Engineering 3 vols., 8vo

Part n. Iron and SteeL gvo!
Part in. A Treatise on Brasses, Bronzes, and Other Alloys and their

Constituents gvo
Wood's (De V.) Treatise on the Resistance of Materials and an Appendix on

the Preservation of Timber gvo.
Elements of Analytical Mechanics gvo.

Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and
Steel gvo.

STEAM-ENGINES AND BOILERS.

Berry's Temperature-entropy Diagram i2mo
Carnot's Reflections on the Motive Power of Heat (Thurston.) i2mo, i so
Dawson's "Engineering" and Electric Traction Pocket-book i6mo, mor., s 00
Ford's Boiler Making for Boiler Makers i8mo,
Goss's Locomotive Sparks gvo

Locomotive Performance gvo
Hemenway's Indicator Practice and Steam-engine Economy . ismo
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Button's Hechanical Engineering of Power Plants 8to, 5 00
Heat and Heat-engines 8to. s 00

Kent's Steam boiler Economy 8vo, 4 00
Kneass's Practice and Theory of the Injector 8to, i so
HacCord's Slide-valves 8vo, 2 00
Meyer's Modem Locomotive Construction 4to, 10 00
Peabody's Manual of the Steam-engine Indicator lamo. i 50

Tables of the Properties of Saturated Steam and Other Vapors 8vo, i oo
Thermodynamics of the Steam-engine and Other Heat-engines 8vo, 5 00
Valve-gears for Steam-engines 8vo, i 50

Peabody and Miller's Steam-boilers 8vo, 4 00
Pray's Twenty Years with the Indicator Large 8vo, 2 50
Pupin's Thermodynamics of Reversible Cycles in Gases and Saturated Vapors.

(Osterberg.) umo, i 15
Reagan's Locomotives: Simple, Compound, and Electric. New Edition.

Large z3mo, 3 50
Rontgen's Principles of Thermodynamics. (Du Bois.) 8vo, 5 oc

Sinclair's Locomotive Engine Running and Management xamo, 2 00

Smart's Handbook of Engineering Laboratory Practice lamo, a 50

Snow's Steam-boiler Practice 8vo, 3 00

Spangler's Valve-gears 8vo, 2 50

Notes on Thermodynamics i2mo, i 00

Spangler, Greene, and Marshall's Elements of Steam-engineering 8vo, 3 00

Thomas's Steam-turbines 8vo, 3 50

Thurston's Handy Tables 8vo, x so
Manual of the Steam-engine 2 vols., 8vo, 10 00

Part I. History, Structure, and Theory 8vo, 6 00
Part n. Design, Construction, and Operation 8vo, 6 00
Handbook of Engine and Boiler Trials, and the Use of the Indicator and

the Prony Brake 8vo, 5 00

Stationary Steam-engines 8vo, 2 go

Steam-boiler Explosions in Theory and in Practice i2mo, i 50

Manual of Steam-boilers, their Designs, Construction, and Operation . Svo, 5 00

Wehrenfenning'sAnalysisandSofteningof Boiler Feed-water (Patterson) 8vo, 400
Weisbach's Heat, Steam, and Steam-engines. (Du Bois.) Svo, 5 00

Whitham's Steam-engine Design 8vo, s 00

Wood's Thermodynamics, Heat Motors, and Refrigerating Machines. . .8vo, 4 00

MECHANICS AND MACHINERY.

Barr's Kinematics of Machinery Svo, 3 so
* Bovey's Strength of Materials and Theory of Structures Svo, 7 50

Chase's The Art of Pattern-making i2mo, 2 50

Church's Mechanics of Engineering Svo, 6 00

Notes and Examples in Mechanics Svo, 2 00

Compton's First Lessons in Metal-working i2mo, i so

Compton and De Groodt's The Speed Lathe i2mo, 1 ko

Cromwell's Treatise on Toothed Gearing i2mo, i 50

Treatise on Belts and Pulleys i2mo, i 50

Dana's Text-book of Elementary Mechanics for Colleges and Schools. . i2mo, i 50

Dingey's Machinery Pattern Making i2mo, 2 00

Dredge's Record of the Transportation Exhibits Building of the World's

Columbian Exposition of 1893 4*0 half morocco, s 00

Du Bob's Elementary Principles of Mechanics:

VoL I. Kinematics 8vo, 3 so

Vol n. Statics 8vo. 4 00

Mechanics of Engineering. VoL I SmaU4to, 7 SO

VoL n Small 4to, 10 00

Durley's Kinematics of Machines 8™- 4 00

15



Fitzgerald's Boston Machinist i6mo, i oo

Flather's Dynamometers, and the Measurement of Power iimo, 3 00

Rope Driving i2mo, 2 00

Goss's Locomotive Sparks 8vo, 2 00

Locomotive Performance 8vo, s 00

* Greene's Structural Mechanics 8vo, 2 so

Hall's Car Lubrication i2mo, i 00 .

Holly's Art of Saw Filins i8mo, 75

James's Kinematics of a Point and the Rational Mechanics of a Particle.

Small 8va, 2 00

* Johnson's (W. W.) Theoretical Mechanics i2mo, 3 00

Johnson's (L. J.) Statics by Graphic and Algebraic Methods Svo, 2 00

Jones's Machine Design:

Part I. Kinematics of Machinery Svo, i 50

Part n. Form, Strength, and Proportions of Parts Svo, 3 00

Kerr's Power and Power Transmission Svo, 2 00

Lanza's Applied Mechanics Svo, 7 50

Leonard's Machine Shop, Tools, and Methods Svo, 4 00

* Lorenz's Modem Refrigerating Machinery. (Pope, Haven, and Dean.). Svo, 400
MacCord's Kinematics; or, Practical Mechanism Svo, 5 00

Velocity Diagrams Svo, i 50
* Martin's Text Book on Mechanics, Vol. 1, Statics i2mo, 1 25

Maurer's Technical Mechanics. Svo, 4 00

Herriman's Mechanics of Materials Svo, s 00
* Elements of Mechanics i2mo, i 00
* Michie's Elements of Analytical Mechanics Svo, 4 00

*Parshall and Hobart's Electric Machine Design 4to, half morocco, 12 50

Reagan's Locomotives : Simple, Compound, and Electric. New Edition.

Large i2mo, 3 00

Reid's Course in Mechanical Drawing Svo, 2 00

Text-book of Mechanical Drawing and Elementary Machine Design. Svo, 3 00

Richards's Compressed Air i2mo, i 50
Robinson's Principles of Mechanism Svo, 3 00

Ryan, Norris, and Hoxie's Electrical Machinery. VoL I Svo, 2 50

Sanborn's Mechanics: Problems Large 12310, i 50
Schwamb and Merrill's Elements of Mechanism 8to, 3 00
Sinclair's Locomotive-engine Running and Management. i2mo, 2 00
Smith's (O.) Press-working of Metals Svo, 3 00
Smith's (A. W.) Materials of Machines i2mo, i 00
Smith (A. W.) and Marx's Machine Design Svo, 3 00
Spangler, Greene, and Marshall's Elements of Steam-engineering Svo, 3 00
Thurston's Treatise on Friction and Lost Work in Machinery and Mill

Work Svo, 3 00
Animal as a Machine and Prime Motor, and the Lawc of Energetics. i2mo, 1 00

Tillson's Complete Automobile Instructor i6mo, i 50
Morocco, 2 00

Warren's Elements of Machine Construction and Drawing Svo, 7 50
Weisbach's Kinematics and Power of Transmission. (Herrmann—Klein.). Svo, 500

Machinery of Transmission and Governors. (Herrmann—Klein.). Svo, 5 00
Wood's Elements of Analytical Mechanics Svo, 3 00

Principles of Elementary Mechanics i2mo, i 25
Turbines Svo, 2 50

The World's Columbian Exposition of 1893 4to, i 00

MEDICAL.

De Fursac's Manual of Psychiatry. (RosanoS and Collins.) Large i2mo, 2 50
Ehrlich's Collected Studies on Immunity. (Bolduan.) Svo, 6 00
Hammarsten's Text-book on Physiological Chemistry. (Mandel.) Svo, 4 00
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Lassai-Cohn's Practical Urinary Analysis. (Lorenz.) iimo, i oo
* Pauli's Physical Chemistry in the Service of Hedicjae. (Fischer.). i2mo, i 25
* Pozzi-Escot's The Toxins and Venoms and their Antibodies. (Cohn.). izmo, i 03

Rostoski's Senun Diagnosis. (Bolduan.) izmo, i 00

Salkowski's Physiological and Pathological Chemistry. (OrndorCE.) &ro, 2 50
* Satterlee's Ovtlines of Human Embryology izmo, z 25

Steel's Treatise on the Diseases of the Dog 8vo, 3 50

Von Behring's Suppression of Tuberculosis. (Bolduan.) i2mo, i 00

Wassermann's Immune Sera Hemolysis, Cytotoxins, and Precipitins. (Bol-

duan.) i2mo, cloth, I 00

Woodhull's Botes on Military Hygiene 26mo, i 50
* Personal Hygiene izmo, i 00

Vulling's An Elementary Course in Inorganic Pharmaceutical and Medical

Chem&try izmo, 2 00

METALLURGY.

Egleston's Metallurgy of Silver, Gold, and Mercury

:

VoL L Silver 8vo,

VoL n. Gold and Mercury 8vo,

Goesel's Minerals and Metals: A Reference Book. i6mo, mor.

* Iles's Lead-smelting izmo,

Keep's Cast Iron 8vo,

Kunhardt's Practice of Ore Dressing in Europe 8vo,

Le Cbatelier's High-temperatuxe Measurements. (Boudouard—Burgess.)x2mo,

MetcalTs SteeL A Manual for Steel-users. izmo.

Miller's Cyanide Process. izmo,

Minet's Production of Afaiminom and its Industrial Use. (Waldo.). . . . izmo,

Robine and Lenglen's Cyanide Industry. (Le Clerc.) 8to,

Smith's Materials of Machines. izmo,

Thurston's Materials of Engineering. In Three Parts 8vo,

Part n. Iron and SteeL 8vo,

Part HL A Treatise on Brasses, Bronzes, and Other Alloys and their

Constituents 8™>

Ulke's Modem Electrolytic Copper Refining 8yo,

JimERALOGY.

Barringer's Description of Minerals of Commercial Value. Oblong, morocco, 2 50

Boyd's Resources of Southwest Virginia 8vo, 3 00

Map of Southwest Virignia Pocket-book form. 2 00

Brush's Manual of Determinative Mineralogy. (Penfield.) 8vo, 4 00

Chester's Catalogue of Minerals 8". paper, i 00

Cloth, I zs

Dictionary of the Hames of Minerals 8vo, 3 so

Dana's System of Mineralogy Large 8vo. half leather. .2 so

First Appendix to Dana's New " System of Mineralogy." Large 8vo, i 00

Text-book of Mineralogy 8vo, 4 00

Minerals and How to Study Them "•>«>• ' SO

Catalogue of American LocaUties of Minerals Large Bvo,

Manual of Mineralogy and Petrography >s™o

Douglas's Untechnical Addresses on Technical Subjects "mo, i 00

Eakle's Mineral Tables
™' '

\^
Egleston's Catalogue of Minerals and Synonyms • »»<>, so

Goesel's Minerals and Metals: A Reference Book i6mo,mor. 300

Groth's Introduction to Chemical Crystallography (Marshall) "mo. i 25
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IddingB's Rock Minerals 8vo, s oo

HeiTill's Non-metallic Minerals: Their Occurrence and Uses 8to, 4 00

* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests.

8to, paper, 50

* Richards's Synopsis of Mineral Characters izmo, morocco, i 25

* Rles's Clays: Their Occurrence, Properties, and Uses 8vo, 5 00

Rosenbusch's Microscopical Physiography of the Rock-mak ing Minerals.

(Iddings.) 8vo, s 00

* Tillman's Text-book of Important Minerals and Rocks 8vo, 2 00

Boyd's Resources of Southwest Virginia 8vo, 3 00

Map of Southwest Virginia Pocket-book form 2 00

Douglas's Untecbnical Addresses on Technical Subjects i2mo, I 00

EisSler's Modem High Eiplosives
"'' 4 "o

Goeael's Minerals and Metals : A Reference Book . . i6mo, mor. 3 00

Goodyear's Coal-mines of the Western Coast of the United States i2mo, 2 50

Ihlseng's Manual of Mining 8vo, 5 00

• Iles's Lead-smelting i2mo, 2 so

Kunhardt's Practice of Ore Dressing In Europe 8vo, i 50

Miller's Cyanide Process i2mo, i 00

O'Driscoll's Notes on the Treatment of Gold Ores 8vo, 2 00

Robine and Lenglen's Cyanide Industry. (Le Clerc.) 8vo, 4 00

• Walke's Lectures on Explosives 8vo, 4 00

Weaver's Military Explosives 8vo, 3 00

Wilson's Cyanide Processes i2mo, i 50

Chlorination Process i2mo, 1 50

Hydraulic and Placer Mining i2mo, 2 00

Treatise on Practical and Theoretical Mine Ventilation. i2mo, 125

SANITARY SCIENCE.

Bashore's Sanitation of a Country House i2nio, 1 00
* Outlines of Practical Sanitation i2mo, i 25
FolweH's Sewerage. (Designing, Construction, and Maintenance. J 8vo, 3 00

Water-supply Engineering 8vo, 4 00
Fowler's Sewage Works Analyses I2m3, 2 00
Fuertes's Water and Public Health i2mo, x 50

Water-filtration Works i2mo, 2 50
Gerhard's Guide to Sanitary House-inspection x6mo, 1 00

Hazen's Filtration of Public Water-supplies 8vo, 3 00

Leach's The Inspection and Analysis of Food with Special Reference to State

Control 8vo, 7 so
Mason's Water-supply. (ConsideredprincipaUyfromaSanitaryStandpoint)8vo, 4 00

Examination of Water. (Chemical and Bacteriological) i2mo, i 25
* Merriman's Elements of Sanitary Engineering 8vo, 2 00
Ogden's Sewer Design i2mo, 2 00
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer-

ence to Sanitary Water Analysis i2mo, i 25
* Price's Handbook on Sanitation i2mo, 1 so
Richards's Cost of Food. A Study in Dietaries i2mo, x 00

Cost of Living as Modified by Sanitary Science i2mo, x 00
Cost of Shelter .• i2mo, i 00
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