and wavergxo

 4. " "y whomand

 Natecon and Non
(ation
" il 8 ros

AJorth CTaralina sata Tallage

This book was presented by Howard T. Shell

This book is due on the date indicated below and is subject to an overdue fine as posted at the Circulation Desk.

CyClopedia of american Horticulture

Plate X. Prominent American Horticulturists

CyCLOPEDIA OF

American Horticulture

COMPRISING SUGGESTIONS FOR CULTIVATION OF HORTICULTURAL PLANTS, DESCRIPTIONS OF THE SPECIES OF FRUITS, VEGETABLES, FLOWERS AND ORNAMENTAL PLANTS SOLD IN THE UNITED STATES AND CANADA, TOGETHER WITH GEOGRAPHICAL AND BIOGRAPHICAL SKETCHES

L. H. BAILEY

Professor of Horticulture in Cornell University

ASSISTED BY
WILHELM MILLER, Рн.D.
Associate Editor
AND MANY EXPERT CULTIVATORS AND BOTANISTS

Jllugtrated mith Tho © Cousand Eigbt launared ©riginal Engrabings

In Four Volumes

Vol. $I I-E-M$

FIFTH EDITION

ふew bork

THE MACMILLAN COMPANY
london : macmillan \& CO., Ltd.

$$
1906
$$

Cofyright, 1900
 By THE MACMILLAN COMPANY

Set up and electrotyped, 1900
Printed June, 1900; reprinted March, 1901, January, 1903, and May, 1904
Jauuary. 1906

COLLABORATORS

I. PARTIAL LIST OF CONTRIBUTORS TO THE CFCLOPEDIA

The asterisk designates the contributors to the second volume. Many of the contributors have also assisted in reading proofs and in other ways.

Adams, Geo. E., Asst. Horticulturist, R. I. Exp. Sta., Kingston, R. I. (Rhode Island.)
*Ames, Oakes, Asst. Dir. Botanic Garden, and Instructor in Botany in Harvard Univ., Cambridge, Mass. (Several genera of Orchids.)
*Archdeacon \& Co., Commission merchants, New York, N. Y. (Mushroom.)
Arnold, Jr., Geo., Florist, Rochester, N. Y. (China Aster.)
Arthur, Prof. J. C., Purdue Univ., Lafayette, Ind. (Physiology of Plants.)
*Atkinson, Geo. F., Prof. of Botany, Cornell Univ., Ithaca, N. Y. (Mushroom.)
Balmer, Prof. J. A., Horticulturist, Wash. Exp. Sta., Pullman, Wash. (Washington.)
*Barclay, F. W., Gardener, Haverford, Pa. (Herbaceous Perennials, Aster, Eryngium, etc.)
*Barnes, Charles R., Prof. of Plant Physiology, Univ. of Chicago, Chicago, III. (Fertilization. Flower.)
*Barnes, William H., Secretary Kans. Hort. Soc., Topeka, Kans. (Kansas.)
*Bayersdorfer, H., Dealer in florists' supplies, Philadelphia, Pa. (Everlasting flowers.)
Beach, Prof. S. A., Horticulturist, N. Y. Exp. Sta., Geneva, N. Y. (Corn. Thinning.)
Beadle, C. D., Botanist and horticulturist, Biltmore, N. C. (Bamboo.)
*Beal, Prof. W. J., Mich. Agric. College, Agrienltural College, Mich. (Grass. Has read proofs of many genera of grasses.)
Beckert, Theo. F., Florist, Allegheny City, Pa. (Bougainvillea.)
*Berckmans, P. J., Pomologist and nurseryman, Augnsta, Ga. (Lawns for the South. Magnolia. Mclia. Michelia. Has read proof of many groups of importance in the South.)
${ }^{*}$ Blair, Prof. J. C., Hortieulturist, IIl. Exp. Sta., Champaign, Ill. (Greenhouse Glass. Illinois.)
*Brandegee, Mrs. Katharine, Botanist, editor of Zoè, San Diego, Calif. (Mammillaria, Melocactus, and other cacti.)
*Bruckner, Nichol N., Dreer's Nursery, Riverton, N. J. (The article "Ferns." Many groups of tender ferns.)

Buffum, Prof. B. C., Horticulturist, Wyo. Exp. Sta., Laramie, Wyo. (Fyoming.)
*Burnette, Prof. F. II., Horticulturist, La. Exp. Sta., Batou Rouge, La. (Louisiana.)
Butz, Prof. Geo. C., Asst. Horticulturist, Pa. Exp. Sta., State College, Pa. (Camation. Pennsylvania.)
*Cameron, Robert, Gardener, Botanic Gardeu of Harvard Univ. (Various articles and much help on rare plants. Alpinia, Campanula, Echinocactus, etc.)
*Canning, Edward J., Gardener, Smith College, Botanic Gardens, Northampton, Mass. (Many articles and much help on rare and diffeult plants. Anthurium, Echinocactus, Epiphyllum, Gloxinia, ctc.)
*Card, Prof. Fred W., Horticulturist, R. I. Exp. Sta., Kingston, R. I. (Nebraska. Botany and culture of bush-fruits, as Amelanchier, Berberis, Blackberry, Buffalo Berry, Currant, Loganberry.)
*Clinkaberry, Henry T., Gardener, Trenton, N J. (Certain orchids, as Laelia.)
Cook, O. F., Div. of Botany, Section of Seed and Plant Introduction, Dept, of Agric., Washington, D. C. (Coffee.)
Corbett, Prof. L. C., Horticulturist, W. Va. Exp. Sta., Morgantown, W. Va. (Hest Virginia.)
*Coulston, Mrs. M. B., Formerly assistant editor of Garden and Forest, Ithaca, N. Y. (Mitchella, and some other native plants.)
*Coulter, John M., Professor and Head of the Dept. of Botany, Univ. of Chicago, Chicago, Iilinois. (Echinocactus.)
*Cowen, J. H., formerly Assistant in Horticulture, Colo. Exp. Sta., 1thaca, N. Y. (Certain Colorado plants, as Lepachys, Leucocrinum.)
${ }^{*}$ Craig, Prof. John, Horticulturist, Ia. Exp. Sta., Ames, Ia. (Canada. Gooseberry. Kale. Kohlrabi.)
Craig, Robert, Florist, Philadelphia, Pa. (Araucaria. Ardisia. Codiœum.)
*Crarg, W. N., Gardener, North Easton, Mass. (Mushroom.)
Crandall, Prof. C. S., Horticulturist, Colo. Exp. Sta., Fort Collins, Colo. (Colorado.)
*Cushman, E. H., Gladiolus specialist, Euelid, Ohio. (Gladiolus.)
*Darlington, H. D., Wholesale florist, specialist in heaths and hard-wooded plants. (Epacris. Leptospermum. Has read proof of many articles on hard-wooded plants.)
*Davis, K. C., Science teacher, Ithaea, N. Y. (Genera in Ranunculacea.)
*Davy, J. Burtt, Asst. Botanist, Univ. of Calif. Exp. Sta., Berkeley, Calif. (Acacia. Eucalyptus. Maytenus. Myrtacea.)
*Deane, Walter, Botanist, Cambridge, Mass. (Herbarium. Has helped on various botanical problems.)
*Dewey, Lyster H., Div. of Botany, Dept. of Agric., Washington, D. C. (Mcntha.)
Dorner, Fred, Carnation specialist, Lafayette Ind. (Carnation.)
Dorsett, P.H.,Associate Physiologist and Patholo gist, Dept. of Agric., Washington, D.C. (Violet.)
*Douglas, Thos. H., of R. Douglas \& Sons, nurserymen and specialists in conifers, Waukegan, IIl. (Larix.)
Duggar, B. M., Asst. Cryptogamic Botanist, Cornell Exp. Sta., Ithaca, N. Y. (Pollen.)
*Dunning, D. M., Amateur, Auburn, N. Y. (Grapes under Glass.)
*DUPEY, Louis, Wholesale florist and specialist in hard-wooded plants, College Point, L. I. (Erica. Has read other articles on heath-like plants.)
Earle, Prof. F. S., Horticulturist, Ala. Polytechnic Institute, Auburn, Ala. (Alabama.)
Earle, Parker, Horticulturist, Roswell, N. M. (New Mexico.)
*Egan, W. C., Amateur, Highland Park, Ill. (Eremurus. Has helped on hardy plants.)
Eisele, J. D., Foreman Dreer's Nursery, Riverton, N. J. (Cordyline.)
Elliott, William H., Florist, Brighton, Mass. (Asparagus plumosus.)
*Emery, S. M., Director Mont. Exp. Sta., Bozeman, Mont. (Montana.)
${ }^{\text {* Endicott, John, Bulb-grower, Canton, Mass. }}$ (Littonia.)
*Endicott, W. E., Teacher, Canton, Mass. (Achimcnes. Acidanthera. Ixia. Has made important corrections in many articles on bulbs.)
Efans, Walter H., Office of Exp. Stations, Dept. of Agric., Washington, D. C. (Alaska.)
*Fawcett, Wm., Dir. Dept. Public Gardens and Plantations, Kingston, Jamaica. (Tropical fruits, as Cherimoya, Marmalade Plum, Egg Fruit, Mango, Mangosteen, Nutmeg)
*Fernow, Prof. B. E., Dir. College of Forestry, Cornell Univ., Ithaca, N. Y. (Conifers. Forestry.)

Finlayson, Kenneth, Gardener, Brookline, Mass. (Diosma.)
*Fletcher, S. W., Horticulturist, Ithaca, N. Y. (Ipomaa and other Convolvulacea. Helianthus and related genera.)
*Fkanceschi, Dr. F., Manager S. Calif. Acclimatizing Ass'n, Santa Barbara, Calif. (Rare plants of S. Calif., as Dasylirion, Flacourtia, Fouquiera, Furcraa, Hazardia, etc. Has read many proofs and made numerous corrections.)
*Gallowar, B. T., Chief Div. Veg. Phys. and Path., Dept. of Agric., Washington, D. C. (Floriculture. Has read articles on fungi.)
*Garfield, C. W., Hortieulturist, Grand Rapids, Mich. (Michigan.)
*Gerard, J. N., Amateur, Elizabeth, N. J. (Many articles, especially on bulbous plants, as Crocus, Iris, Muscari, Narcissus.)
*Gillett, Edward, Nurseryman, Southwick, Mass. (Hardy Ferns. Liparis. Has road mumerous proofs on native plants.)
Goff, Prof. E. S., Horticulturist, Wis. Exp. Sta., Madison, Wis. (Hisconsin.)
Gould, H. P., Asst. Entomologist and Horticulturist, Md. Exp. Sta., College Park, Md. (Brussels Sprouts. Celeriac.)
*Green, Prof. S. B., Horticulturist, Minnesota Exp. Sta., St. Anthony Park, Minn. (Minnesota.)
*Green, Wm. J., Horticulturist, Ohio Exp. Sta., Wooster, Ohio. (Ohio. Greenhouse sub-irrigation.)
*Greenlee, Miss Lennie, Bulb-grower, Garden City, N. C. (Ixia.)
*Greiner, T., Specialist in vegetables, La Salle, N. Y. (Garden vegctables, as Artichoke, Asparagus, Bean, Cress, Corn Salad, Kohlrabi, Lettuce.)
*Grey, Robert M., Gardener, North Easton, Mass. (Numerous important orchid groups, as Cypripedium, Epidendrum, Lycastc, Maxillaria, Masdevallia.)
*Groff, H. H., Gladiolus specialist, Simeoe, Ont. (Gladiolus.)
Gurney, James, Gardener, Mo. Botanical Garden, St. Louis, Mo. (Cacti.)
Hale, J. H., Nurseryman and pomologist, South Glastonbury, Conn. (Connecticut.)
*Halsted, Prof. B. D., Rutgers College, New Brunswick, N. J. (Diseases. Fungus.)
*Hansen, Geo., Landscape architect and botanist, Berkeley, Calif. (Epidendrum.)
Hansen, Prof. N. E., Hortieulturist, S. Dak. Exp. Sta., Brookings, S. Dak. (South Dakota.)
*Harris, F. L., Gardener, Wellesley, Mass. (Lisianthus. Medinilla.)
*Harris, W., Acting Dir., Dept. Public Gardens and Plantations, Kingston, Jamaica. (Mammee Apple and some other tropical fruits.)
${ }^{*}$ Harris, W. K., Florist, Philadelphia, Pa. (Fieus elastiea. Help on Lilium Harrisii.)
*Hasselbring, Heinrich, Asst. in Botany, Cornell Univ., Ithaca, N. Y. (Iris and most orehids from Gongora to Masdevallia.)
*Hastings, G. T., Asst. in Botany, Cornell Univ., Ithaca, N. Y. (Some tropical plants, as Berria, Bertholletia. A few grasses, as Hierochloe, Holeus, Hordeum.)
*Hatfield, T. D., Gardener, Wellesley, Mass. (Numerous and varied contributions, as Gesnera, Gloxinia, Lachenalia, Leca, Macrozamia.)
*Hedrick, U. P., Asst. Prof. of Horticulture, Agricultural College, Mich. (Evaporation of Fruit.)
*Henderson \& Co., Peter, Seedsmen, 37 Cortlandt St., New York, N. Y. (Bulbs. Eccremoearpus.)
*Herrington, A., Gardeuer, Florham Farms, Madison, N. J. (Chrysanthemum coecineum. Hollyhock.)
*Hexamer, Dr. F. M., Editor American Agriculturist, New York, N. Y. (Several biographical sketehes, as Fuller, Harris.)
Hicks, G. H., late of Dept. of Agric., Washington, D. C. (Seed-testing.)
${ }^{*}$ Hicks, Henry, Nurseryman, Westport, L. I. (Ligustrum.)
*Higoins, J. E., Horticulturist aud teacher, Honolulu, H. I. (Hawaiian Islands.)
Hill, E. G., Florist, Richmond, Ind. (Begonia.)
*Hitchсоск, A. S., Prof. of Botany, Kansas State Agric. College, Manhattan, Kans. (Most of the genera of grasses in the second volume.)
*Hoopes, Josiah, Nurseryman, West Chester, Pa. (Hedges.)
*Horsford, Fred. H., Nurseryman and specialist in Lilies, Charlotte, V't. (Alpine Gardens. Lilium. Has read proof of many artieles on native plants.)
*Hunn, Charles E., Gardener, Cornell Exp. Sta., Ithaca, N. Y. (Forcing of Vegetables. Mignonette.)
*Huntley, Prof. F. A., Idaho Exp. Sta., Moscow, ldaho. (Idaho.)
Hutchins, Rev. W. T., Sweet Pea specialist, Indian Orehard, Mass. (Sweet Pea.)
*Irish, H. C., Horticulturist, Mo. Botanical Garden, St. Louis, Mo. (Capsicum. Lactuca.)
Jackson \& Perkins Co., Nurserymen and specialists in Clematis, Newark, N. Y. (Clematis.)
*Jeffers, A., Editor "Cornucopia," Norfolk, Va. (Kale.)
Jordan, A. T., Asst. Horticulturist, New Brunswick, N. J. (New Jersey.)
*Kains, M. G., Div. of Botany, Dept. of Agric., Washington, D. C. (Minor vegetables, as HorseRadish. Herbs, as Hyssopus; also Ginseng and Glyeyrrhiza.)
*Kearney, Jr., T. H., Div. of Botany, Dept. of Agric., Washington, D. C. (Threc orchid genera, Grammangis, Grammatophyllum, Habenaria.)
*Keller, J. B., Florist, Rochester, N. Y. (Many groups of hardy herbaceous perennials. Article on "Herbaceous Perennials.")
*Kelsey, Harlan P., Landscape architect, Boston, Mass. (North Carolina plants, as Galax and Leucothoè.)
Kennedy, P. Beveridge, Horticulturist, Nev. Exp. Sta., Reno, Nev. (Many genera of grasses. Begonia.)
*Kerr, J. W., Nurseryman, Denton, Md. (Maryland.)
Kift, Robert, Florist, Philadelphia, Pa. (Cutflowers.)
Kinney, L. F., Horticulturist, Kingston, R. I. (Celery.)
Lager \& Hurrell, Orchid cultivators, Summit, N. J. (Cattleya.)

Lake, Prof. E. R., Horticulturist, Ore. Exp. Sta., Corvallis, Ore. (Oregon.)
*Landreth, Burnet, Seedsman, Philadelphia, Pa. (David Landreth.)
*Ladman, G. N., Instructor in Horticulture, Cornell Univ., Ithaca, N. Y. (feranium. Impatiens. Pelargonium.)
Lonsdale, Edwin, Florist, Chestnut Hill, Philadelphia, Pa. (Conservatory.)
*Lord \& Burnham Co., Horticultural architects and builders, Irvington-on-Hudson, N. Y. (Greenhouse Construction.)
Lothrop \& Higgins, Dahlia specialists, East Bridgewater, Mass. (Dahlia)
*MacPherson, James, Landscape gardener, Trenton, N.J. (Euphorbia. Has read proof of several orchid genera.)
*Manning, J. Woodward, Horticultural expert and purchasing agent, Boston, Mass. (Pyrethrum. Hardy herbs. Has read proof of many groups of herbaceous perennials.)
*Manning, Warren H., Landscape architect, Boston, Mass. (Article, "Herbaceous Perennials.")
*Mason, Prof. S. C., Berea, Ky. (Labeling. Layering.)
*Massey, Prof. W. F., Horticulturist, N. C. Exp. Sta., Raleigh, N. C. (Figs. North Carolina.)
Mathews, F. Schutler, Artist, 2 Morley St., Boston, Mass. (Color.)
*Mathews, Prof. C. W., Horticulturist, Ky. Exp. Sta., Lexington, Ky. (Kentueky.)
*Mathews, Wm., Florist and orchid grower, Utica, N. Y. (Various rare and important orehids, as Gongora, Grammatophyllum, Ionopsis, Limatodes, Miltonia.)
*Maynard, Prof. S. T., Horticulturist, Mass. Hatch Exp. Sta., Amherst, Mass. (Massachusetts.)
McDowell, Prof. R. H., Reno, Nev. (Nevada.)
McFarland, J. Horace, Horticultural printer and expert in photography, Harrisburg, Pa. (Border.)
*McMillen, Robert, Wholesale grower of mignonette, Pearl River, N. Y. (Mignonette.)
*McWilliam, Geo., Gardener, Whitinsville, Mass.
, (Dipladenia. Luculia.)
Mead, T. L., Horticulturist, Oviedo, Fla. (Crinum. Has helped in matters of extreme southern horticulture.)
*Meehan, Joseph, Nurseryman, Germantown, Philadelphia, Pa. (Idesia.)
*Meredith, A. P., Gardener, South Lancaster, Mass. (Humer.)
Moon, Samuel C., Nurseryman, Morrisville, Pa. (Trees for ornament.)
*Morris, O. M., Asst. Horticulturist, Okla. Exp. Sta., Stillwater, Okla. (Indian Territory. Oklahoma.)
*Munson, T. V., Nurseryman and grape hybridist, Denison, Tex. (Grape culture in the South.)
*Munson, Prof. W. M., Hortieulturist, Me. Exp. Sta., Orono, Me. (Maine.)
Newell, A. J., Gardener, Wellesley, Mass. (Certain orchids.)
*Norton, J. B. S., Botanical Assistant, Mo. Botanical Garden, St. Louis, Mo. (Euphorbiacea. Manihot. Several botanical puzzles, as Lithraa.)
Ogston, Colin, Gardener and orchid eultivator, Kimball Conservatories, Rochester, N. Y. (Dendrobium.)
*Oliver, G. W., Gardener, U. S. Botanic Gardens, Washington, D. C. (Many articles on palms, aroids, succulents and rare plants, and much help on proofs. Alstremeria. Amaryllis.)
Orpet, Edward O., Gardener, So. Lancaster, Mass. (Many articles. Border. Cyclamen. Dianthus, and certain orchids.)
*Parsons, Jr., Samuel, Landseape arehitect, New York, N. Y. (Lawn.)
Peacock, Lawrence K., Dahlia specialist, Ateo, N. J. (Dahlia.)

Powell, Prof. G. Harold, Horticulturist, Del. Exp. Sta., Newark, Del. (Cherry. Delaware.)
Price, Prof. R. H., Horticulturist, Tex. Exp. Sta., College Station, Tex. (Texas.)
*Purdy, Carl, Specialist in California bulbs, Ukiah, Calif. (Califormia native plants, as Brodiaa, Calochortus, Erythronium, Fritillaria.)
Rane, Prof. F. W., Horticulturist, N. H. Exp. Sta., Durham, N. H. (New Hampshire.)
*Rawson, Grove P., Florist, Elmira, N. Y. (Lantana.)
*Rawson, W. W., Seedsman and market gardener, Boston, Mass. (Cucumber. Lettucc.)
*Reasoner, E. N., Nurseryman and horticulturist, Oneeo, Fla. (Many articles, and much help on extreme southern horticulture. Casalpinia. Cocos. Guava. Kumquat. Lemon. Lime. Mango. 1
*Rehder, Alfred, Specialist in hardy trees and shrubs, Jamaica Plain, Mass. (Botany and culture of most of the hardy trees and shrubs.)
*Roberts, Prof. I. P., Dir. College of Agric., Cornell Univ., Ithaca, N. Y. (Drainage. Fertility, Mamure. Potato.)
*Rolfs, Prof. P. H., Botanist, S. C. Exp. Sta., Clemson College, S. C. (Eggplant. Florida.)
Rose, J. N., Asst. Curator, U. S. Nat. Herb., Smithsonian Institution, Washington, D. C. (Agave.)
Rose, N. Jonsson, Landscape Gardener to New York City Parks, New York, N. Y. (Farious exoties.)
*Roth, Filjbert, Asst. Prof. of Forestry, N. Y. State College of Forestry, Cornell Univ., Ithaca, N. Y. (Fagus.)
*Rowlee, Prof. W. W., Asst. Prof. of Botany, Cornell Univ., Ithaca, N. Y. (Definitions. Liatris. Nymphaa. Salix.)
Sargent, Prof. C. S., Dir. Arnold Arboretum, Jamaica Plain, Mass. (dbies.)
*Scott, Wm., Florist, Buffalo, N. Y. (Important florists' plants and flowers, as Acacia, Convallaria, Cyclamen, Cytisus, Smilax, Metrosideros, etc.)
Scott, Wm., Gardener, Tarrytown, N. Y. (Bertolonia and other ducarf tender foliage plants.)
Semple, James, Specialist in China Asters, Bellevue, Pa. (Aster.)
*Sexton, Joseph, Founder of the pampas grass industry, Goleta, Calif. (Gynerium.)
*Shinn, Charles H., Inspector of Experiment Stations, Univ. of Calif., Berkeley, Calif. (California, Fig, Loganberry, ete.)
*Shore, Robert, Gardener, Botanical Dept., Cornell Univ., Ithaea, N. Y. (Tarious articles, as Acalypha, Bedding, Dichorisandra, Episcea, Fittonia, Hymenophyllum.)
*Siebrecht, Henry A., Florist and nurseryman, New York and Rose Hill Nurseries, New Rochelle, N. Y. (Much help on rare greenhouse plants, particularly orchids and palms. Dracana. Ficus. Fuchsia. Gardenia. Ixora. Lapageria. Laurus.)
*Simonds, O. C., Supt. Graceland Cemetery, Buena Ave., Chicago, Ill. (Landscape Cemeteries.)
*Slingerland, Prof. M. V., Asst. Prof. Economic Entomology, Cornell Univ., Ithaca, N. Y. (Insecticides. Insects.)

Smith, A. W., Cosmos eultivator, Amerieus, Ga. (Cosmos.)
Smith, Elmer D., Chrysanthemum specialist, Adrian, Mich. (Chrysanthemum.)
*Smith, Jared G., Div. of Botany, Dept. of Agric., Washington, D. C. (Nearly all pelms. Farious genera, as Centaurea, Cerastium, Cotyledon.)
*Spencer, John W., Fruit-grower, Westfield, Chautauqua Co., N. Y. (Grapes in the North. Help on important fruits.)
*Starnes, Prof. Hugh N., Horticulturist, Ga. Exp. St., Athens, Ga. (Georgia.)
Stinson, Prof. John T., Dir. Mo. Fruit Exp. Sta., Mountain Grove, Mo. (Arkansas.)
*Strong, Wm. C., Nurseryman, Waban, Mass. (Kenrick.)
*Taft, Prof. L. R., Horticulturist, Mieh. Agric. College, Agricultural College, Mich. (Greenhouse Heating. Hotbeds.)
*Taplin, W. H., Specialist in palms and ferns, Holmesburg, Philadelphia, Pa. (Culture of many palms, ferns and foliage plants.)
*Taylor, Wm. A., Asst. Pomologist, Div. of Pomology, Dept. of Agric., Washington, D. C. (Farious articles on nuts, as Hickory.)
*Thilow, J. Otto, of H. A. Dreer, Ine., Philadelphia, Pa. (Leek. Muskmelon.)
*Thompson, C. H., formerly Asst. Botanist, Mo. Botanical Garden, St. Louis, Mo. (Some genera of cacti, as Echinocerus, Epiphyllum.)
*Thorburn \& Co., J. M., Seedsmen, New York, N. Y. (Hyacinth. Have read many proofs of bulbs, annuals, vegetables, herbs, etc.)
Toumey, Prof. J. W., Biologist, Ariz. Exp. Sta., Tueson, Ariz. (Arizona. Date. Opuntia.)
${ }^{*}$ Tracy, S. M., Horticulturist, Biloxi, Miss. (Mississippi.)
*Tracr, Prof. W. W., Seedsman, Detroit, Mich. (Cabbage, Lettuce. Michigan.)
*Trelease, Dr. Wm., Dir. Mo. Botanical Garden, St. Louis, Mo. (Certain desert plants of the lily family, as Aloe, Apicra, Gasteria, Havorthia.)
*Tricker, Wm., Specialist in aquatics, Dreer's Nursery, Riverton, N. J. (Aquarium. Most Aquatics, as Limnanthemum, Limnocharis, Nymphøea, Nelumbium, Fictoria, etc.)
*Troop, Prof. James, Horticulturist, Ind. Exp. Sta., Lafayette, Ind. (Indiana.)
*Turner, Wm., Gardener, Tarrytown-on-Hudson, N. Y. (Forcing of Fruits. Mushroom.)

Tuttle, H. B., Cranberry-grower, Valley Junction, Wis. (Cranberry.)
*Underwood, Prof. L. M., Columbia University, New York, N. Y. (Botany of all ferns.)

Van Deman, H. E., Pomologist, Parksley, Va. (Date.)
*Vaughan, J. C., Seedsman and florist, Chicago, Ill. (Christmas Greens.)
*Vick, James, Editor "Viek's Magazine," Rochester, N. Y. (Malrariscus, Melothria.)
*Voorhees, Prof. Edward B., Dir. N. J. Exp. Sta., New Brunswick, N. J. (Fertilizers.)
Waldron, Prof. C. B., Horticulturist, N. Dak. Exp. Sta., Fargo, N. Dak. (North Dakota.)
*Walker, Ernest, Horticuiturist, Ark. Exp. Sta., Fayetteville, Ark. (Aunuals. Basket Plants. Heliotrope. Watering.)
*Watrous, C. L., Nurseryman and pomologist, Des Moines, Ia. (Iowa.)
*Watson, B. M., Instructor in Horticulture, Bussey Inst., Jamaica Plain, Mass. (Colchicum. Cuttage, Forcing Hardy Plants. Housc Plants.)
Watts, R. L., Horticulturist, Tenn. Exp. Sta., Knoxville, Tenn. (Tennessee.)
*Waugh, Prof. F. A , Horticulturist, V't. Exp. Sta., Burlington, V't. (Beet. Carrot. Cucumber. Greens. Lilium. Pentstemon. Salad Plants. Fermont.)
*Webber, H. J., In charge of Plant Breeding Laboratory, Div. of Veg. Phys. and Path., Dept. of Agric., Washington, D. C. (Citrus. Murraya and other citrous genera.)
*Wellhouse, Col. Fred, Fruit-grower, Fairmount, Kans. (Kansas.)
*Wheeler, H. J., Dir. R. I. Exp. Sta., Kingstou, R. I. (Lime.)
*Whitney, Milton, Chief, Div. of Soils, Dept. of Agrie., Washingtou, D. C. (Irrigation. Soils.)
*Whitten, Prof. J. C., Horticulturist, Mo. Exp. Sta., Columbia, Mo. (Missouri.)
*Whyte, R. B., Amateur, Ottawa, Ont. (Hemerocallis. Lilium.)
*Wickson, Edward J., Prof. of Agricultural Practice, Univ. of Calif., and Horticulturist, Calif. Exp. Sta., Berkeley, Calif. (Almond, Apricot, Cherry, Grape, Lemon, Lime, etc., in California.)
*Wiegand, K. M., Instructor in Botany, Cornell Univ., Ithaca, N. Y. (Coreopsis. Cordyline. Cyperus. Dracana. Juncus. Lysimachia. Musa. Myosotis).
${ }^{*}$ Woolson, G. C., Nurseryman, specialist in hardy herbaceous perennials, Passaic, N. J. (Mertensia. Has read numerous proofs.)
*Wortman, S. W., Mushroom-grower, Iselin, N. J. (Mushroom.)
*Wyman, A. P., Asst. to Olmsted Bros., Landscape Architects, Brookline, Mass. (Dirca, Epigøa, Exochorda, Halesia, Hypericum, Kerria, Liquidambar, and other harely trees and shrubs. Also Lathyrus, Lupinus.)

II. PARTIAL LIST OF THOSE THO HAFE ASSISTED BY READING PROOF, AND IN OTHER WAYS.

Andrews, D. M., Nurseryman, Boulder, Colo. (Native western plants, especially new hardy cacti.)
Ball, C. D., Wholesale florist, Holmesburg, Philadelphia, Pa. (Ferns. Foliage Plants. Palms.)
Barker, Michael, Editor "American Florist," Chicago, III. (Many suggestions.)
Bassett \& Son, Wm. F., Nurserymen, Hammonton, N. J. (Native plants, as Hibiscus.)
Berger \& Co., H. H., New York, N. Y. (Japanese and Californian plants.)
Bessey, Chas. E., Prof. of Botany, Univ. of Neb., Lincoln, Neb. (Native plants, particularly grasses.)
Betscher Pros., Florists, nurserymen and seedsmen, Canal Dover, Ohio. (Gladiolus.)
Blanc, A., Seedsman and plantsman, Philadelphia, Pa. (Cacti. Noceltics.)
Boardman, S. L., Sec. Maine Hort. Soc., Angusta, Me. (Maine.)
Brackett, Col. G. B., Pomologist, Dept. of Agric., Washington, D. C. (Hicoria. Hickory. Juglans.)
Braunton, Ernest, Gardener, Los Angeles, Calif. (Many valuable notes on plants cult. in Calif.)
Breck \& Sons, Joseph, Seedsmen, Boston, Mass. (Portrait of Joseph Breck.)
Budd, Prof. J. L., Horticultural author, Ames, Iowa. (Iowa. Important fruits.)
Budlong Bros., Pickle-makers, Providence, R. I. (Cucumber. Martynia.)
Burbank, Luther, Hybridist, Santa Rosa, Calif. (Gladiolus.)
Bush \& Sons \& Meissner, Bushberg, Mo. (Grapes.)
Caldwell, Geo. C., Prof. of Agric. Chemistry, Cornell Univ., Ithaca, N. Y. (Fertility. Fertilizers. Lime.)
Clark, Miss Josephine A., Asst. Librarian, Dept. of Agric., Washington, D. C. (Information as to species after the dute of Index Kewensis.)
Clinton, L. A., Asst. Agriculturist, Cornell Exp. Sta., Ithaca, N. Y. (Lime.)
Coates, leonard, Napa City, Calif. (Fruit Culture in California.)
Coville, Frederick V., Botanist, Dept. of Agric., Washington, D. C. (Juniperus. Suggestions in various matters.)
Cranefield, Fred, Asst. Horticulturist, Wis. Exp. Sta., Madison, Wis. (Irrigation.)
Dailledouze Bros., Wholesale florists, Flatbush, Brooklyn, N. Y. (Mignonette.)
Dandridge, Mrs. Danske, Amateur, Shepherdstown, W. Va. (Hardy plants.)
Davenport. Geo. E.. Botanist, specialist in ferns, Medford, Mass. (Several genera of ferns.)

Day, Miss Mary A., Librarian, Gray Herbarium of Harvard Univ., Cambridge, Mass. (Rare books.)
Devron, Dr. G., Amateur in bamboos, New Orleans, La. (Bamboo.)
Dock, Miss M. L., Harrisburg, Pa. (Bartram.)
Downer's Sons, J. S., Fairport, Ky. (Kentucky.)
Dreer, H. A. (Inc.), Seedsmen and plantsmen, Philadelphia, Pa. (Many and varied services, especially in aquatics, ferns, foliage plants and rare annuals.)
Elliott, J. Wilkinson, Landscape arehitect, Pittsburg, Pa. (Kochia, and some herbaceous perennials.)
Ellwanger \& Barry, Nurserymen, Rochester, N. Y. (Hardy plants.)

Fisher, Jabez, Fruit-grower, Fitchburg, Mass. (Massachusetts.)
Ganong, W. F., Prof. of Botany, Smith College, Northampton, Mass. (Cacti.)
Goodman, L. A., Fruit-grower, Westport, Mo. (Missouri.)
Halliday Bros., Florists, Baltimore, Md. (Azalea. Camellia.)
Harris, J. S., Fruit-grower, La Crescent, Minn. (Minncsota.)
Heiss, J. B., Florist, Dayton, Ohio. (Palms.)
Hutt, R. L., Prof. of Horticulture, Ont. Agric. College, Guelph, Ont. (Kale. Kohlrabi.)
Jones, Rev. C. J. K., Los Angeles, Calif. (Farious Californian plants.)
Jordan, Dr. W. H., Dir., N. Y. Exp. Sta., Geneva, N. Y. (Fertility. Fertilizers.)
Kedzie, Dr. R. C., Prof. of Chemistry, Mich. Agric. College, Agricultural College, Mieh. (Fertility. Fertilizers. Lime.)
*King, F. H., Prof. of Agricultural Physics, Madison, Wis. (Irrigation, Mulching, etc.)
Latham, A. W., Secretary Minn. Hort. Soc., Minneapolis, Minn. (Minnesota.)
Lupton, J. M., Market-gardener, Gregory, L. I. (Cabbage.)
Mackenzie, R. R., Manager bulb department, J. M. Thorburn \& Co., New York, N. Y. (Many impertant bulbs.)
Makepeace, A. D., Cranberry-grower, West Barnstable, Mass. (Cranberry.)
Manda, W. A., Nurseryman, South Orange, N. J. (Orchill pictures.)
Manning, Jacob W., Nurseryman, Reading, Mass. (Dried specimens of herbaceous perennial plants.)
Manning, Robert, Sec. Mass. Hort. Soc., Boston, Mass. (Biographical sketches. Horticulture.)

May, John N., Florist, Summit, N. J. (Florists' Flowers.)
Meehan, Thos., Nurseryman, Germantown, Pa. (The article "Horticulture.")
Miller, E. S., Specialist in bulbs, Floral Park, L. I. (Many articles on bulbs.)

Mudge, W. S., Hartland, N. Y. (Muskmelon.)
Nanzz \& Neuner, Florists and seedsmen, Louisville, Ky. (Kentucky.)
Nash, Geo. V., Asst. N. Y. Bot. Garden, Bronx Park, N. Y. (Gencra of grasses.)
Parsons, Samuel, Nurseryman, Flushing, L. I. (7he article "Horticulture.")
Pendergast, W. W., Pres. Minn. Hort. Soc., Hutchinson, Minn. (Minnesota.)
Pierson, F. R., Nurseryman, Tarrytown-onHudson, N. Y. (Bulbs.)
Powell, Geo. T., Pomologist, Ghent, N. Y. (Important fruits.)
Ragan, W. H., Div. of Pomology, Dept. of Agric., Washington, D. C. (Indiana.)
Rider, Prof. A. J., Trenton, N. J. (Cranberry.)
Robinson, Dr. B. L., Curator Gray Herbarium of Harvard Univ., Cambridge, Mass. (Jarious articles on natire plants.)
Robinson, John, Author of "Ferns in their Homes and Ours," Salem, Mass. (Several articles on ferns.)
Sander \& Co. (A. Dimmock, Agent), New York, N. Y. (Rceent importations, particularly orchids and palms.)
Schultheis, Anton, Nurseryman and florist, ColIege Point, N. Y. (Hoody plants from Australia and the Cape, as Erica.)
Scoon, C. K., Fruit-grower, Geneva, N. Y. (Cherry.)
Scribner, F. Lampson, Agrostologist, Dept, of Agrie., Washington, D. C. (Genera of grasses.)
Sears, Prof. F. C., School of Horticulture, Wolfville, Nova Scotia. (Canada.)

Seavey, Mrs. Fannie Copley, Landscape gardener, Brighton, Ill. (Landscape Gardening.)
Shady Hill Nursery Co., Boston, Mass. (Herbaceous perennials.)
Shaw, Thos., Prof. of Agrie., Univ. of Minn., Minneapolis, Minn. (Medieago. Melilotus.)
Slaymaker, A. W., Fruit-grower, Camden, Del. (Delaware.)
Smith, Irving C., Market-gardener, Green Bay, Wis. (Kohlrabi.)
Stanton, Geo., Ginseng specialist, Summit, N. J. (Ginseng.)

Storrs \& Harrison, Nurserymen, Painesville, Ohio, (Tarious plants.)
Suzuki \& Iida, Yokohama Nursery Co., New York, N. Y. (Japanese plants.)

Todd, Frederick G., Laudseape architect, Montreal, P. Q. (Hardy trees and shrubs.)
Vick's Sons, James, Seedsmen, Rochester, N. Y. (Farious plants.)
Ward, C. W., Wholesale florist and carnation specialist, Cottage Gardens, Queens, L. I. (Carnation.)
Webb, Prof. Wesley, Dover, Del. (Delaware.)
Wedge, Clarence, Fruit-grower, Albert Lea, Minn. (Minnesota.)
Wheeler, C. F., Prof. of Botany, Mich. Agric. College, Agricultural College, Mich. (Hypericum. Mimulus.)
White, J. J., Cranberry-grower, New Lisbon, N. J. (Cranberry.)

Willard, S. D., Nurseryman, Geneva, N. Y. (Important fruits, as Cherry.)
Wittbold, Geo., Florist, Chicago, Ill. (Palms and ferns.)
Wright, Charles, Horticulturist, Seaford, Del. (Delazare.)
Yeomans, L. T., Fruit-grower, Walworth, N. Y. (Evaporation of fruits.)

ABBREVIATIONS

I. OF GENERAL EAPRENSIONS

II. OF BOTANICAL TERMS

1II. OF BOOKS AND PERIODICALS

To aid the student in the verification of the work, and to introduce him to the literature of the various subjects, citations are made to the portraits of plants in the leading periodicals to which the American is most likely to bave access. These references to pictures have been rerified as far as possible, both in the MS. and in the proof. A uniform method of eitation is much to be desired, but is extremely difficult, because periodicals rarely agree in methods. With great reluctance it was decided to omit the year in most cases, because of the pressure for space, but the student who lacks access to the original volumes may generally ascertain the year by consulting the bibliographical notes below

An arbitrary and brief method of citation has beeu chosen. At the outset it seemed best to inds cate whether the cited picture is colored or not. This accounts for the two ways of citing certain publications containing both kinds of pictures, as The Garden, Revue Horticole, and Gartenflora.

The figures given below explain the method of citation, and iucidentally give some hints as to the number of volumes to date, and of the number of pages or plates in one of the latest volumes.

A few works of the greatest importance are mentioned elsewhere by way of acknowledgment (p. xy). The standard works on the bibliography of botany are Pritzel's Thesaurus and Jackson's Guide to the Literature of Botany; also, Jackson's Catalogue of the Library of the Royal Botanic Gardens, Kew.
A.F. . . . The American Florist. Chicago, A trade paper founded August 15, 1885. The volumes end with July. Many pietures repeated in "Gng." ($14: 1524=$ vol, and page.)
A.G. . . . American Gardening. New York. Represents lyextinct horticultural periodicals, including The American Garden (1888-1890). Founded 1879 (?) ($20: 896=$ vol, and page.)
B. The Botanist. Edited by Mannd. No years on title pages. Founded 1839. 8 vols., 50 colored plates in each vol. ($8: 400=$ vol. and col. plate.) Cumulative index.
B.B. . . . Britton \& Brown. An illustrated Flora of the Northern [. S., ete. New York. 1596-1898. $(3: 588=$ vol, and page.)
B.F. . . . See F.
B.H. . . . La Belgique Horticole. Ghent. 35 vols. (1851-1885.)
B.M. . . . Curtis' Botanical Magazine. London. Founded 1i87. The oldest current periodical devoted to garden plants. The vol. for 1899 is rol. 125 of the whole work. Index to first 107 volumes by E. Tonks. London. ($7690=$ col. plate.)
B.R. . . . Botanical Register (1815-1847). Yols. 1-14 edited by Edwards: vols. $15-33$ by Lindley. In vols. $1-23$ the plates are mumbered from $1-2014$. In vols. $24-33$ they are numbered independently in each vol. There are 6 ss plates in vols, $24-33$. "An Appendix to the First Twenty-three Volumes" (bound separately or with the 25th vol.) contains an index to the first 23 vols. An index to vols. $2+-31$ may be found in vol. 31. (33:70= vol, and col. plate.)
D. . . . Dana. How to Know the Wild Flowers. New York. 1893. (298=page.)
Em. . . . Emerson, (7. B. Trees and Shrubs of Massachusetts. Boston. 2 vols. 149 plates.
F. The Florist. London. 1840-1884. (1884. $192=$ year and page opp. col. plate. (Editors and title pages changed many times. Known as the Florist, Florist's Journal and Florist and Pomologist. Sometimes improper!y called British Florist.
F.C. . . . Floral Cabinet. Knowles \& Westcott. London. 183i-1840. (3:137 vol, and col. plate).
F.E. . . . The Florists' Exchange. New York. A trade paper, whose pictures sometimes are repeated in "A.G." Fouuded Dec. 8, 1888. ($11: 1298=$ vol. and page.)
F.J. . . . See F.
F.M. . . . Floral Magazine. London. Series I, 18611871, 8vo. Series II. 1872-18 1 , 4 to. (1881:450=year and col. plate.)
F.P. . . . See F.
F.R. . . . Florists' Review. Chicago. A trade paper. Vol. 1, Dec. 2, 1897, to May 26, 1898. Two vols. a year. ($4: 660=$ vol. and page. $)$
F. S. . . . Flore des Serres. Ghent. (I845-1880.) Inconsistent in numbering, but the plate numbers are always found on the plate itself or on the page opposite. Valuable but perplexing indexes in vols. 15 and 19. ($23: 2481=$ vol. and col. plate.)
G. C. . . . The Gardeners' Chronicle, London. Series 1. (1841-1873) is cited by year and page. Series 11. or "New Series" (18741886), is cited thus: II. $26: 824=$ series, volume and page. Series 111. is cited thus: 11I. 26:416. Two vols. a year, bcginning 1874. A select index is scattered through 1879 and 1880 . Consult 11. 12:viii (1879), and similar places in subsequent vols.
G. F. . . . Garden and Forest. New York. 1888-1897. ($10: 518=$ vol. and page.)
G.M. . . . Gardeners ${ }^{*}$ Magazine. London. Ed, by Shirley Hibberd. Founded 1860. Vols. 31-42 are cited. (42:872=vol, and page.)
Gn. . . . The Garden. London. Founded 1871. Two vols, a year. $(56: 1254=$ vol. and col. plate. 56, p. $458=$ vol. and page containing black figure.) An Index of the first 20 vols. was separately published. Complete Index of Colored Plates to end of 1888 in vol. 54, p. 334.
Gng. . . . Gardening. Chicago. Founded Sept. 15, 1892. Vols. end Sept. I. $\quad(7: 38+=$ rol. and page.)
Gt. Gartenflora. Berlin. Founded I852. (Gt. $48: 1470=$ vol. and col. plate. (it. $48, \mathrm{p}$. $670=$ vol. and page containing black figure.)
G.W.F. . . Goodale's Wild Flowers of America. Boston, $1886 . \quad(50=$ col. plate.)
HBK. . . Humboldt, Bonpland \& Kunth Nova Genera et Species, etc. Paris. 1815-25. 7 vols. Folio.

1. H. . . . L'Illustration Horticole. Ghent. (1854-1896.) ($43: 72=$ vol. and col, plate.) The volumes were numbered continuously, but there were 6 series. Series $1 .=1854-63$. Series $11 .=1864-69$. Series I1I $=18 ; 0-80$. Series IV. $=188 \mathrm{I}-86$. Series V. $=1887-$ 93. Series V1. $=1894-96$. The plates were numbered continuously in the first 16 vols. from 1 to 614 : in vols. $17-33$ they run from 1 to 619: in series V. from 1 to 190: in Series VI. they begin anew with each vol. Valuable indexes in vols. 10 and 20 . Series V. in to, the rest sro.
J.H. . . . Journal of Horticulture. London. Founded in 1848 as The Cottage Gardener. Series 111. only is cited, beginning 1880. (III. 39:504=series, vol., page.)
K.W. . . . See F. C.
L. In vol. 1 of this work, sometimes means Lindenia, sometimes Lowe's Beautiful Leaved Plants. See "Lind." and "Lowe."
L.B.C. . . The Botanical Cabinet. Loddiges. 181733. 100 plates in each vol. Complete index in last vol. ($20: 2000=$ vol. and col. plate.)
Lind. . . . Lindenia, Ghent. Founded 1885. Folio. Devoted to orchids.
Lowe . . . Beautiful Leaved Plants. E. J. Lowe and Howard. London. 1864. ($60=$ col. plate.)
M. A. B. Freeman-Mitford. The Bamboo Garden. London. 1896. ($224=$ page.)
M.D.G. . . Möller's Deutsche Gärtner-Zeitung. Erfurt. Founded 1886. (1897:425=year and page.)
Mn. . . . Meehan's Monthly. Germantown, Pbiladelphia. Founded 1891. $\quad(9: 192=$ vol. and page opposite col. plate.)
N. Nicholson. Dictionary of Gardening. Vols. 1-4 (1884-1887). Vol. 5 in preparation.
P.F.G. . . Lindley \& Paxton. Flower Garden, London. 1851-53. 3 vols. 4to.
P.G. . . . Pepular Gardening. Buffalo. 1885-90. ($5: 270=$ vol. and page.)
P.M. . . . Paxton's Magazine of Botany. London. $1834-49 . \quad(16: 376=$ vol. and page opposite col. plate.) Vol. 15 has index of first 15 vols.
R. Reichenbachia. Ed, by Fred. Sander. London. Founded 1886. Folio.
R.B. . . . Revue de l'Horticulture Belge et Etrangère Ghent. Founded 1875 ? (23:288=vol. and page opposite col. plate.) In the first vol. of the Cyclopedia "R.B." sometimes means Belgique Horticole, but the confusion is corrected in later vols., where Belgique Horticole is abbreviated to "B.H."
R.H. . . . Revue Horticole. Dates from 1826, but is now considered to bave been founded in 1829. (1899:596=year and page opposite col. plate. 1899, p. $596=$ year and page opposite black figure.)
S. Schneider. The Book of Choice Ferns. London. In 3 vols. Vol. 1, 1892. Vol. 2, 1893.
S.B.F.G. . Sweet British Flower Garden. London. Series I., 1823-29, 3 vols. Series 11., 1831-38, 4 vols.
S.H. . . . Semaine Horticole. Ghent. Founded 1897 (3:548=year and page.)
S.M. . . Semaine Horticole. Erroneously cited in this fasbion a few times in first vol.
S.S. . . Sargent. The Silva of North America. 13 vols. Vol, 1, 1891. Vol. 12, 1898. ($12: 620=$ vol. and plate, not colored.)
S.7. . . . Siebold \& Zuccarini. Flora Japonica. Vol. $1,1835-44$. Vol. 2 by Miquel, 1870. (2:150 $=$ vol. and plate.)
V. or V. M. Vick's Magazine. Rochester, N. Y. Founded 1878. Vols. numbered continuously tbrough the 3 series. Vols. begin with Nov. (23:250=rol. and page.) Sometimes cited as " Vick."
** Additional abbreviations and explanations will be found in the introductory pages of Fol. I.

Cyclopedia of American Horticulture

EARTH NUT, EARTH PEA. Euglish names for the Peanut, or Goober, Arachis hypogrea. Also Apios.

EATONIA (Amos Eaton, American botanist, 17761812; author of popular Manual of Botany of the United States, which was for a long time the only general work available for American students). Gramíner. A North American genus of 4 or 5 species of tufted perennial grasses. Three kinds have been catalogued by Wilfred Brotherton, Rochester, Mich.

A. Panicle dense, spike-like, strict.

obtusàta, Gray. Spikelets crowded on the short, erect panicle-branches: upper empty glume roundedobovate, very obtuse. Dry soil.

AA. Panicle more loose and slender.

Pennsylvánica, Gray, Lrs. 3-6 in, long: paniclebranches lax, nodding. Moist woods and meadows.

Dúdleyi, Vasey. Lrs. 1-2 in. long: panicle-branches spreading in flowering time, afterwards erect.
A. S. Нitснсоск.

EBONY. Diospyros Ebenus.

ECBALLIUM (Greek, to throw out). Cucurbitdeec. Squirtino Cucumber. The Squirting Cucumber is one of the most amusing and disconcerting of all plants. Few if any cultivated plants fire their seeds at one with such startling suddenness and force. It is a hardy annual trailing vine, easily grown in any garden. When ripe, the ohlong, prickly fruit squirts its seeds at the slightest touch, or sometimes at the mere vibration of the ground made by a person walking by. The boy or girl who did not like this plant never lived. Some of the old herbalists called this plant Cucumis asininus. Another curious fact about the plant is that a powerful cathartic is made from the juice of the fruit, which has been known for many centuries. A preparation of it is still sold in the drug stores as Trituratio Elaterini. Ecballium has only one species, and is closely related to the important genera Cucumis and Citrullus. With them it differs from Momordica in lacking the 2 or 3 scales which close the bottom of the calyx. Other generic characters are: prostrate herb, Heshy, rough hairy: lvs. heart-shaped, more or less 3-lobed: tendrils wanting: fls, yellow, the staminate in racemes, pistillate usually from the same axils with the staminate fls.; calyx 5 -cut. It is a native of the middle and eastern Mediterranean regions, especially rich, moist forests. Sims, in the Botanical Magazine, says the plant "is gencrally considered as an annual, but if the soil is dry and the situation sheltered, the root will survive two or three winters, and the plants will flower earlier and spread farther than those of the same year."

Elatèrium, A. Rich. (Momordica Elatèrium, Linn.). squirting Cucumber. Fig. 74. Described above. B. M. 1914.
W. M.

ECCREMOCARPUS (Greek, pendent fruits). Bignoniacere. Three to five species of tall, somewhat woody plants from Peru and Chile, climbing by branched tendrils at the end of the twice pinnate leaves, and having very distinct flowers of somewhat tubular shape, which are colored yellow, orange or scarlet. The species mentioned below is doubtless perennial in southern California, where it is said to show best when climbing over shrubbery, but in the East it is treated as a tender annual and is perhaps usually trained to a trellis or south wall. It bears flowers and fruits at the same time, and the orange flowers make an effective contrast with the pale green foliage. The genus belongs to an order famous for its superb tropical climbers, but in its own
tribe only two genera have any horticultural fame, and that small. These are Jacaranda and Colea, having a 2 -celled ovary, while that of Eccremocarpus is 1 -celled. Eceremocarpus has two sections, iu one of which the corollas are cylindrical, but in the section Calampelis, to which E. scaber belongs, the corolla has a joint at a short distance beyond the calyx, then swells out on the under side, and suddenly constricts into a neek before it reaches the small, circular mouth, surrounded by 5 short, rounded lobes.
scàber, Ruiz \& Pav. (Caldimpelis scàber, D. Don). Although the specific name means rough, the wild plant is only sparingly puberulous, and in cultivation entirely glabrous. About 10 ft . high: lvs. bipinnate; lfts. obliquely cordate, entire or saw-toothed: fls. 1 in. long, orange, in racemes. July, Aug. Chile. B.R. 11:939.

Peter Henderson \& Co.

ECHEVERIA. All referred to Cotyledon.

ECHINACEA (frreek, echinos, hedgehog; alluding to the sharp-pointed bracts of the receptacle). Composito. Purple Cone-flower. Four species of North American perennial herbs, two of them from Mexico, the others native to the United States, and cultivated in our hardy borders. They are closely related to Rudbeckia, but their rays range from flesh color, through rose, to purple and crimson, while those of Rudbeckia are yellow or partly (rarely wholly) brown-purple. The high disk and the downward angle at which the rays are pointed are charming features of Echinaceas. The disk is only convex at first, but becomes egg-shaped, and the receptacle conical, while Rudbeckia has a greater range, the disk from globose to columnar, and the receptacle from

744. Ecballium Elaterium ($\times 1 / 3$).
sonical to cylindrical. Echinaceas and Rudbeckias are stout, and perhaps a little coarse in appearance, but their flowers, sometimes 6 in . across, are very attractive, and borne in succession for two months or more of late summer. With the growing appreciationo hardy borders and of native plants, it should be possible to procure 4 or 5 distinct colors in the flower, associated with low, medium and tall-growing habits. They do well
in ordinary soils, and may be used to help cover unusually dry and exposed spots. They respond well to rich soil, especially sandy loam, and prefer warm and sunny sites. They are perennials of easy culture. Prop. by division, though not too frequently; sometimes by seeds. The roots are black, pungent-tasted, and are said to be used in popular medicine under the name of Black Sampson. Bentham \& Hooker refer Echinacea to Rudbeckia.
purpurea, Monch. Commonly not hairy, typically taller than E. angustifolia, 2 ft . or more high: lvs. ovate-lanceolate, or the lower ones broadly ovate, often 5-nerved, commonly denticulate or sharply serrate, most of them abruptly contracted into a margined petiole: rays at first an inch long and broadish, later often 2 in . long or more, with the same color range as E. augustifolia, but rarely almost white. Rich or deep soil. Va. and Ohio to 1ll. aud La.
Var. serótina, Nutt. (E, intermèdia, Lindl.). The rarietal name means late-tlowering, but the chief point is the hairy or bristly character of the plant. L.B.C. I6:1539. P.M. 15:79.-J. B. Keller says "this is, perhaps, the best form of the genus for garden purposes, the rays being much brighter colored, broader and not rolling at the edges."
angustifolia, DC. Bristly, either sparsely or densely: lvs. narrower than in E. purpurea, from broadly lanceolate to nearly linear, eutire, 3 -nerved, all narrowed gradually to the base, the lower into slender petioles: flower-heads nearly as large as in E. purpurea, but sometimes much smaller. Prairies and barrens, Saskatchewan and Neb. to Tex., east to Ill., Tenn. and Ala. B.M. 528I. G.W.F. 25. - This species has seversl forms, which approach and run into EN. purpurea. L. H. B.

ECHINOCACTUS (Greek, spine and caclus). Cactdeece. A very large genus of globular, strongly ribbed, and strongly spiny forms. Sometimes they become very short-eylindrical; occasionally the ribs are broken up into tubercles which resemble those of Mammillaria; and rarely spiues are entirely wanting. The flowers usually appear just above the young spine-bearing areas, but sometimes they are further removed, and oceasionally they are in the axil of a tubercle. The ovary bears scales which are naked or woolly in the axils, and the fruit is either succulent or dry. The genus is well developed within the United States, about forty species having been recognized, but its extreme northern limit is the southern borders of Colorado, Utah, and Nevada, apparently having spread from the great arid plateau regions of Mexico proper and Lower California. The genus extends throughout Mexico and Central America, and is well represeuted in the drier regions of south America. The genera Astrophytum and Lophophora are here included, although they seem to be very different from the typical forms of Echinocactus. It is impossible to identify with certainty all of the specific names found in trade catalogues, but the following synopsis contains the preat majority of them. In all cases the original descriptions have been consulted, and in some cases it is certain that a name originally applied to one form bas been shifted to another. The following synopsis may be useful, therefore, in checking up the proper application of names, but it may thus leave some of the common species of the trade unaccounted for. No attempt is made to group the species according to relationships, hut a more easily bandled artificial arrangement, based chiefly upou spine characters, is used It must be remembered that the species are exceedingly variable, especially under cultivation, and large allowance must be made for the characters given in the key and in the specific descriptions.

Echinocactus Poselgeriamus, A. Dietr., proves to he Mammillarie Scheerii. The following horticultural names have not been identified: E, chrysanthus (chrysacanthus?), Drageanus trifurcatus.

John M. Coulter.
When starting with newly collected plants of Echinocactus the mutilated roots should be well cut back to within an inch or two of the base of the plants. If the plauts are procured in early summer, the best way to get new roots on them is to place the plauts on a bench
of a greenhouse with a southern exposure, in a mound of fine gravel about eight or ten inches deep. Insert the base of the plants in the gravel and syringe them overbead once a day on bright days. The gravel gets very hot with the sun, and in this they root freely in three or four weeks. When well rooted they can be placed in pots. A good compost consists of six parts of good fibrous loam, one part sand and one part brick rubble. Pots should be just large enough to hold the plants and should be drained about one-fifth of their depth. From March to May is a good time to pot established plants, but if the soil is good and the drainage all right they can remain in the same pots for two or three years.

The plants should receive all the sunlight possible at all times of the year. During the winter they should be watered very sparingly, but in spring and summer they can be watered freely and syringed overhead on bright days. In winter Echinocactus require a night temperature of from 45° to 50° Fahr., and the atmos. phere sbould be perfectly dry. Propagation is effeeted by seeds, euttings and grafting. Robert Cameron.

The diversity of form exbibited in the genus Echinocactus since the genera Astrophytum and Lophophor: are now included, makes this one of the most interest ing of the whole Cactus family. Unlike most globular forms of Cacti, they do not readily produce offsets consequently they must be propagated by seeds if on wishes to increase these plants in quantity. Seeds of Echinocactus, and, in fact, most cactaceous plants, will germinate as freely as scedx of other plants, providel they have been allowed to ripen properly before gathering and carefully dried afterwards. From the experience of the writer, who has raised some hundreds of seedling Cacti and sown them every month in the yea be has found the months of Hay and June to be by far the most favorable for germination. Seeds of Echinocactus will then germinate in five or six days, whilo during the winter months it takes almost as many week Opuntias will germinate in even less than six day They germinate most readily of all the Cactaceæ, ai 1 grow the fastest afterwards, while Mammillarias are 11 slowest to germinate and grow the slowest afterward The seeds should be sown in well-drained 4 -inch pots in a finely sifted mixture of one part leaf-mold, os. part loam and one part charcoal dust and silver san-1 The surface should be made very smooth, and the see pressed lightly into the soil with the bottom of a flower pot and then covered with about three-eighths of an in lh of fine silver sand. This allows the seedlings to push through readily and prevents the soil from crusting on the surface of the pots, as they usually have to stay in their seedling pots at least one year. The pots should be placed in a greenhouse where they will receive plerty of light but not the direet sunlight. for, although Carti are natives of desert regions, the writer has found from experience that the seedlings will simply roast if ex. posed to full sunlight under glass. For the first winter, at least, the seedlings should be kept in a temperature of not less than 60° and carefully looked over every d. 5 to ascertain the condition of the soil, for, although they should be kept on the dry side, they must never be : lowed to become quite dry during the seedling stag When about a year old they may be transplanted 1 , shallow pans not more than 6 inches in diameter, aut prepared with the same mixture as for seedling pots. These pans will be found better than small pots, be cause the soil may be kept more evenly moist and the seedlings do better in consequence.

When grown from 2 to 3 inches in diameter, seedli Echinocactus may be transferred to pots, using si: only just large enough to accommodate them, as th +5 make but few roots. Pot them in a mixture of t, parts fibrous loam, one part leaf-mold and one part pounded brick and silver sand. During the spring a $/ \mathrm{m}$ summer months, established plants may be given a l!f eral supply of water, but must be studiously watered during the fall and winter months. During the winter they should be given a light position in a dry grenuhouse, with a night temperature of 45° to 50°, and a rise of 10° by day. For the summer, they may be eitl ir kept in an airy greenhouse or placed in some conv. nient position outside, planging the pots in the soil or
in some light non-conducting material. Some of the species will commence to blossom in May and others at intervals during the summer. The flowers vary considerably in size, and embrace a good range of color, from white to deep yellow, and from the faintest purple to reep rose. They do not readily produce seed (in New England, at least) unless artificially fertilized. Like most of the Caetus family, the more cylindrical species will readily unite when grafted upon other kinds, not only in the same genus, hut in other genera of Cactaceæ, and for weak-growing species it may often be an advantage to graft upon some stronger-growing species. Cereus baumanni (or C, colubrinus) makes an excellent stock to graft upon, choosing stock plants of reasonable size and height. The system known as "werlgegrafting" is perhaps best for the purpose, and the early spring montlis, or just as the growing season is ahout to commence, is the best time for grafting.

If plants of Eehinocaetus can be kept in a healthy condition, they are not much troubled with inseet pests; mealy-bug is their worst enemy and should be removed at once with a clean mucilage brush. As a guide to amateurs, the writer has found the following to be among the most easily grown: Echinocactus capricornis, E. coptonogonus, E. comnigerus, E. Grusoni, E., horizonthalonius, E'. 子ongihamatus, E. myriostigma, E.. setispinus, E. Texensis, E. Williamsii and E. Wislizeni Edward J. Canning.

INDEX.

Anhatonium, 51. arrigens, 30, Astrophytum, 50 . bicolor, 35.
brevihamatus, 5 . capricornis, 15. coptonogonus, 13. cornigerus, 9. crispatus, 30 . cylindraceus, 2. Echidne, 23 electracanthus, 22. Emoryi, 25. flavovirens, 36. Grusoni, 44. helophorus, 28. hexadrophorus, 31 . horizonthalonius, ingens, 20. intertextus, 37. Johnsoni, 39 .
[21
. phyllacanthus, 17. pilosus. 47. polycephalus, 40.
nolyancistrus, 10. recurvus, 26 . Rinconensis, 15. robustus, 33 , Saltillensis, 45 . Scopa, 46. setispinus, 27. Sileri, 43. Simpsoni. 48 sinuatus, 6 Texensis, 24. Treculianus, 6. turbiniformis, 49. uncinatus, 1, 7. Vanderayi, 23. viridescens, 41. Visnaga. 20 Whipplei, 8. Williamsii, 51. Wislizeni, 4 Wrightii, 1.
A. Spines, or some of them, hooked. B. Central spine solitary.

1. Wrightii iE. uncinàtus, var. Wrightii, Engelm.). Oval, $3-6 \mathrm{in}$. high, 2-31/2 in. in diam, : radial spines 8, arranged as in uneinatus; central spine solitary, angled, flexuous and booked, elongated ($2-6 \mathrm{in}$.), erect, strawcolor, with dark tip: flowers $1-11 / 2$ in. long, dark purple. Texas and northern Mexico.

BB. Central spines 4.

c. Some or all of the spines annulate.
2. cylindràceus, Engelm. Globose to ovate or ovatecylindrical, simple or branching at base, becoming as much as 3 ft . high and Ift . in diam.: ribs 13 in younger specimens, 20-27 in older ones, obtuse and tuberculate: spines stout, compressed, more or less curved, reddish; radials about 12, with $3-5$ additional slender ones at upper edge of areola, 1-2 in. long, the lowest stouter and shorter and much hooked; centrals 4 , very stout and 4 -angled, about 2 in . long and one-twelfth to 18 in . broad, the uppermost broadest and almost straight and erect, the lowest decurved: flowers yellow. Southwestern United States and Lower California.
3. longihamatus, Gal, Suhglobose or at length ovate, becoming 1-2 ft . high: ribs 13-17, often oblique, broad, obtuse, tuberculate-interrupted: spines robust, purplish or variegated when young, at length ashy; radials 8-11, spreading, straight or curved or flexuons, the upper and lower ones 1-3 in. long, the laterals 2-4 in.; centrals 4, angled, the upper ones turned upwards, straight or curved or twisted, the lower one stonter, elongated (3-8 in.), flexuous and more or less hooked: flowers yellow, tinged with red, $2 \frac{1}{2}-3 \frac{1}{2}$ in. long. Texas and Mexico.
4. Wislizeni, Engelm. At first globose, then ovate to eylindrieal, $1 \% 3-4 \mathrm{ft}$, high : ribs $21-25$ (13 in small speeimens), acute and oblique, more or less tuberculate: radial spines three-fifths to 2 in . long, the 3 upper and $3-5$ lower ones stiff, straight or curved, annulate, red (in old specimens the 3 stout upper radials move toward the center and become surrounded by the upper bristly ones), the 12-20 laterals (sometimes additional shorter ones above) bristly, elongated, flexuous, horizontally spreading, yellowish white; centrals 4, stout, angled, and red, one and three-fifths to three and one-fifth in. long, the 3 upper straight, the lower one longest (sometimes as much as $4-5 \mathrm{in}$.), very robust (flat and channeled above), hooked downward : flowers yellow or sometimes red, two to two and three-fifths in. long. From southern Utah to northern Mexico and Lower California.
cc. None of the spines annulate.
5. brevihamàtus, Engelm. Globose-ovate, very dark green: ribs 13 , deeply tuberculate-interrupted, the tubercies with a woolly groove extending to the base: radial spines mostly 12 , terete, straight, white or yellowish, with dusky tips, $1 / 2-1 \mathrm{in}$. long, the upper longer; central spines 4 (rarely 1 or 2 additional one 8), flattened, white with black tips, the 2 lateral ones divergent upward, straight or a little recurved, 1-2 in. long, the uppermost one weaker, the lower stoutest and darkest, porrect or deflexed, hooked downward, $3_{4}-1 \mathrm{in}$. long: flowers funnelform, rose-color, $1-1^{1 / 2} \mathrm{in}$. long. Southwestern Texas and New Mexico.
6. sinuàtus, Dietr. (E. Treculiànus, Labour.). Globose, $4-8 \mathrm{in}$. in diam., bright green: ribs 13 , oblique, acute, tuberculate-interrupted, the tubercles shortgrooved: radial spines $8-12$, setiform and tlexible, the

745. Echinocactus Emoryi, var, rectispinus.

ECHINOCACTUS

3 upper and 3 lower purplish brownand straightish (the lower ones sometimes more or less hooked), four-fifths to 1 in . long, the 2-6 laterals more slender, longer (1 to one and two-fifths in.), ofteu Glattened, puberulent and whitish, sometimes flexuous or hooked; central spines 4, puberulent, yellowish (or pnrplish variegated), the 3 upper ones slender, Hatteued or subangled, erect and generally straight (rarely hooked), one and three-fifths to 2 in . long, the lowest one much stouter, flattened or even channeled, straw-color, flexuous, more or less hooked (sometimes straight), 2-4 in. long: flowers yellow, 2-3 in. long. Texas, Arizona, and northern Mexico.
7. uncinàtus, Gal. Glaucescent, globose to oblong: ribs 13, obtuse, tuberenlate-interrupted: radial spines 7 or $8,1-2 \mathrm{in}$. long, the upper 4 or 5 straw-color, straight, flattened, the lower 3 pnrplish, terete and hooked; centrals 4 , the upper 3 ratber stont and straight, about 1 in . long, the lowest one very long, fattened, hooked at apex: flowers brownish purple. Northern Mexico.
8. Whipplei, Engelm. Globose-ovate, 3-5 in, high, 2-4 in. in diam.: ribs 13-15 (often obliqne), compressed and tuherculately interrupted: radial spines usually 7 , compressed, straight or slightly recurved, $1 / 2$ to threefifths in. long, lower ones shorter than the others, all white excepting the two darker lowest laterals ; central spines 4 , widely divergent, the nppermost one flattened, straight and white, 1 to one and three-ffths in. long, turned upward in the plane of the radials (completing the circle of radials), the others a little shorter, quadrangular compressed, dark brown or black, becoming reddish and finally ashy, the 2 laterals straight, the lowest one stonter and sharply hooked downward: flower greenish red. Northern Arizona.

bbb. Central spines 5 to 8 .

9. cornigerus, DC. Globose or depressed-globose, $10-16 \mathrm{in}$. in diam.: ribs about 21 , very acute and wavy (not tuberculately interrupted): radial spines 6-10, white and comparatively slender, or wanting; centrals red and very robust, angular-compressed, with long, sharp, horny tips, the upper 3 erect-spreading, $1-11 / 2$ in. long, the lower 2 weaker and declined, the central one longer, more rigid and keeled, very broad (one-fifth to one-third in.) and hooked downward: flowers purple, 1-11/2 in. long. Mexico and Central America.
10. polyancístrus, Engelm. \& Bigel. Ovate or at length subcylindric, becoming $4-10 \mathrm{in}$. high and $3-4 \mathrm{in}$. in diam.: ribs $13-1 \frac{1}{7}$, obtnse, tuberculately interrnpted; radial spines 20 or more, compressed and white, the uppermost wanting, the 4 upper ones broader and longer ($1-2$ in.) and dusky-tipped, the laterals shorter (fourfifths to one in.), the lowest very short ($1 / 2 \mathrm{in}$.) and subsetaceous; central spines of several forms, the uppermost one (rarely a second similar hut smaller one above or beside it) compressed-quadrangular, elongated (3-5 in.), white with dusky tip, curved upward, the other 5-10 teretish or subangled, hright purple-brown; upper ones long ($2-4 \mathrm{in}$.) and mostly straight, the others gradually shortening (to nhout 1 in .) downward and sharply hooked: Howers red or yellow, 2 to two and two-fifths in. long and wide. Nevada and southeastern California.
AA. Spines not hooked.
B. Central spines none or indistinct.
11. Monvillii, Lem. Stout, globose and bright green: ribs 13-17, tuberculate, broadest toward the base, undulate; tubercles somewhat hexagonal, strongly dilated below: radial spines $9-12$, the lower ones somewhat longer, very stout, spreading, yellowish translucent, reddish at hase; central wanting: flowers varying from white to yellow and red. Paraguay.
12. Pfelfferi, Zucc. Oblong-globose, becoming 1-2 ft. high and 1 ft , in diam.: ribs $11-13$, compressed and somewhat acute: spines 6 , about equal, rigid, straight, divergent or erect, pale transparent yellow with a brownish base; very rarely a solitary central spine. Mexico.
13. coptonógonus, Lem., var. màjor, Salm-Dyek. Depressed, from a large indurated naked napiform base, 2-4 in. across the top: ribs 10-15, acute from a broad base, more or less transversely interrupted and sinuous: spines 3, annulate, very stout and erect from deeply sunken areoiz, reddish when young, becoming ashy
gray; upper spine stoutest, erect and straight, or slightly curved upward, flattened and keeled. and occasionally twisted, $11 / 2-21 / 4 \mathrm{in}$. long; the two laterals erectdivergent, straight or slightly curved, terete above and somewhat quadrangular below, $1-11 / 2 \mathrm{in}$. long; all from an abruptly enlarged base: flowers not seen, but said to be small and white, with purplish median lines. Mexico.
14. multicostàtus, Hildmann. Depressed-glohose: ribs very numerous, 90 to 120 , compressed into thiu plates which run vertically or are twisted in every direction: spines exceedingly variable, in some cases wanting entirely, in others 3 or 4 , short, rigid, and translucent yellow ; in others more numerous, larger, and often flattish; in still other cases very long and flat, interlacing all over the plant; no centrals: flower white, with a broad purple stripe.
15. capricornis, A. Dietr. Globose: ribs about 11 , broad, spotted all over with white dots: elusters of spines distant, usually seen only near the apex; spines 5-10, long and flexnons; centrals not distinct: flowers large, yellow. Mexico.
16. Rinconénsis, Poselg. Cylindrical, covered with ivory white spines which are tipped with crimson; spines 3, with no centrals: flower large, purple-crimson, darker at base. Northern Mesico.
17. phyllacánthus, Mart. From globose to cylindrieal, with depressed vertex, simple or proliferous, two and one-third to three and three-fifths in. broad: ribs 40-55 (sometimes as few as 30), very much crowded and compressed, thin, acute, very wary, continuous or somewhat iuterrupted: radial spines 5 (sometimes 6 or 7), straight and spreading, the 2 lowest ones white, rigid, one-sixth to one-fourth in. long, half as long as the 2 darker, angled, larger laterals, the uppermost spine thin and broad, channeled above, faintly annulate, flexible, grayish pink, three-fifths to 1 in . long; central spines none: flowers small, dirty white. Mexico.
bn. Central spine solitary (sometimes 2-1 in E. crispatus, helophorus, and setispinus, or wanting in tophothete).

c. Ribs less than 13.

18. leucacánthus, Zucc. Somewhat clavate-cylindrical, pale: ribs $8-10$, thick, obtuse, strongly tuberculate, the areolm with strong wool: radial spines 7 or 8 , similar, straight, finely pubescent, at first yellowish, at length white; central spine solitary, more or less erect, rarely wanting: flowers light yellow. Mexico.
19. ornàtus, DC. (E, Mirbelli, Lem.). Subglobose: ribs 8 , broad, compressed, vertical, thickly covered with close-set white woolly spots, making the whole plant almost white: radial spines 7 , straight, stout, yellowish or becoming gray; central spine solitary. Mexico.
20. ingens, Zuce. (E. l'isnàga, Hook.). Very large (sometimes as much as 10 ft . high and as murh in circumference), globose or oblong, purplish toward the top: ribs 8 , obtuse, tuberenlate: areolre large, distant, with very copious yellowish wool: radial spines 8 or more; central spine solitary; all the spines sbaded yellow and red or brownish, straight, rigid, and interwoven: flowers bright yellow, about 3 in . broad. Mexico.
21. horizonthalonius, Lem. Glaueous, depressed-globose or at length ovate or even cslindric with age, $2-8$ in. high, $21 / 2-1$ in. in diam.: ribs $8-10$ (fewer in very young specimens), often spirally arranged, the tubercles scarcely distinet hy inconspicuous transverse grooves: spines 6-9, stout, compressed, reddish (at length ashy), recurved or sometimes almost straight, nearly equal, four-fifths to $11 / 2 \mathrm{in}$. long (sometimes long and slender and almost terete, sometimes short, stout and broad); radials 5-8, upper ones weaker, lowest wanting; a single stouter decurved central (sometimes wanting): flowers pale rose-purple, $2 \frac{1}{2}$ in. long or more. New Mexico and northern Mexico.

cc. Ribs 15-27.

22. electracánthus, Lem. Globose or thick erlindrical, hecoming 2 tt . high and 1 ft . in diam. : ribs ahout 15: radial spines about 8 , equal, rigid, spreading, yellowish, about 1 in . long; the central one solitary, red at base: flowers clear yellow. Mexico.
23. Echidne, DC. (E. Ítuderwyi, Lem.). Depressedglobose, 5-7 in, in diam., 3-4 in, high: ribs 13, acute: radial spines 7 , broad, rigid, spreading, yellowish, 1 in. or more long; central spine solitary and scarcely longer than the others: flowers bright yellow, 1 in. or more long. Mexico.
24. Texénsis, Hopf. Mostly depressed (sometimes globose, $8-12 \mathrm{in}$. in diam., 4-6 in. high, simple: ribs mostly 21 (sometimes 27 , and in smaller specimens 13 or 14) and undulate: spines stout and fasciculate, reddish, compressed; the exterior 6 or 7 radiant, straightish or curved, unequal, $1 / 2$ to four-fifths in. long in some cases, one and one-fifth to 2 in. in others, much shorter than the solitary and stout recurved central, which is sometimes one-sixth to $1 / 4 \mathrm{in}$. broad: flowers about onefifth in. long, parti-colored (scarlet and orange below to white above). Texas and northeasteru Mexico.
25. Emoryi, Engelm., var. rectispinus, Engelm. Fig. 745. Globose, at length cylindrical: ribs $13-21$, obtuse and strongly tuberculate: radial spines $7-9$, very unequal, the 3 upper ones $4-5 \mathrm{in}$. long, the lower $1 \frac{1}{2}-3 \mathrm{in}$. long and paler; the central very long ($12-13 \mathrm{in}$.$) , straight or$ slightly decurved. Sonthwestern United States and northern Mexico.
26. recúrvus, Link \& Otto. Subglobose and very stout: ribs about 15 , covered with broad, dark red spines, the radials spreading, the central one recurved and very stout. Mexico (?).
27. setispinus, Engelm. Subglobose, 2 to three and one-fifth in. in diam.: ribs 13, more or less oblique, often undulate or somewhat interrupted: radial spines $14-16$, setiform and flexible, two-fiftbs to four-fifths in. long, the uppermost (the longest) and lowest ones yellowish brown, the laterals white; central spines $1-3$, setiform and flexuous, dark, 1 to one and one-fifth in. long: flowers funnelform, one and three-fifths to 3 in . long, yellow, scarlet within. Texas and Mexico.
28. helophorus, Lem. Depressed globose, light green, with purple-red veins: ribs about 20 , compressed, obtuse: radial spines $9-12$, very stout and porrect; central spines $1-4$, stronger and annulate; all the spines pearl gray. Mexico.

CCC. Ribs 30 or more.

29. obvallàtus, DC. Obovate-globose, depressed: ribs very numerous, vertical: spines most abundant towards the apex, unequal, spreading, stout, whitish; the 3 upper radials and solitary central strong, the others (espe cially the lowest) small: flowers purple, with whitish margin. Mexico. - The name was suggested by the appearance of the terminal cluster of flowers surrounded by a fortification of strong spines.
30. erispàtus, DC. (E. árrigens, Link). Globose, 5 in. or more high: ribs $30-60$, compressed and sharp, more or less undulate-crisped: spines $7-11$, widely spreading, more or less flattened, the upper larger and brown at tip, the lower shorter and white, or all of them brown: flowers purple, or white with purple stripes. Mexico and Central America.

ccce. Tuberculate, as in Mammillaria.

31. hexædróphorus, Lem. More or less globular, dark gray: ribs deeply tuberculate, giving the appearance of a Mammillaria, with hexagonal tuhercles: radial spines 6 or 7 , radiating like a star; central spine solitary, erect, longer; all the spines annulate, reddish brown: flowers white, tinted with rose. Mexico.
32. lopothèle, Salm-Dyck. Globose, strongly tuberculate, after the manner of Mammillaria: tubercles quadrangular, hearing clusters of $5-10$, more or less porrect, long, rigid, and equal spines; central solitary or wanting: flowers white or yellowish. Mexico.
bBB. Central spines 4 (2 or 3 in Sileri and sometimes s in Scopa).
C. Ribs less than 18.
33. robustus, Otto. Clavate and stout: rihs ahout 8 , compressed, vertical - radial spines about 14 , the upper ones slender, the lowest 3 stronger; central spines 4 , 4 -angled at hase, transversely striate, the lowest one largest; all the spines purple-red, $11 / 2-3$ in. long: flowers golden yellow. Mexico.
34. Ottonis, Link \& Otto. Depressed-globose or ovate, $3-4$ in. high: ribs $10-12$, obtuse: radial spines $10-18$, slender, yellowish, more or less straight and spreading, about $1 / 2$ in. long; central spines 4 , dusky red, stronger, the uppermost very short, the two laterals horizontal, the lowest longest (1 in ,) and deflexed: flowers lemonyellow, becoming 2-3 in. in diameter. Mexico.
35. bicolor, Gal. Globose-ovate, stout, $1 \frac{1}{2}-4 \mathrm{in}$. in diam., sometimes becoming 8 in . high: ribs 8 , oblique and obtuse, compressed, tuberculate-intercupted: lower radials and centrals varitgated red and white; radials 9-17, spreading and recurved, slender and rather rigid, the lowest one $1 / 2-1 \mathrm{in}$. long, the laterals $1-2 \mathrm{in}$. long and about equaling the $2-4$ flat flexuous ashy upper ones; centrals 4 , flat and flexuons, $1 \frac{1}{2}-3$ in. long, the uppermost thin and not longer than the erect and rigid laterals, the lowest very stout, porrect and very long: flowers funnelform, bright purple, 2-3 in. long. Northern Mexico.

$$
\text { cc. Ribs } 13-27
$$

36. orthacánthus, Link \& Otto, (E. flavorivens, Scheidw.). (dlobose, yellowish green: ribs 12 or 13, vertical, acute: radial spines 14 , unequal, straight and spreading; central spines 4 , stronger, the lowest the largest; all the spines rigid, annulate, and grayish white. Mexico.
37. intertéxtus, Engelm. Ovate-globose, 1-4 in. high: ribs 13 , acute, somewhat oblique, tubereulate-interrupted, the tubercles with a woolly groove: spines short and rigid, reddish from a whitish base and with dusky tips; radial $16-25$, closely appressed and interwoven, the upper 5 to 9 setaceous and white, straight, one-fifth to $1 / 2 \mathrm{in}$. long, the laterals more rigid and a

38. Echinocactus myriostigma.
little longer, the lowest stout and short, a little recurved; centrals 4, the 3 upper ones turned npward and exceeding the radials and interwoven with tbem, the lower one very short, stout and porrect: flowers about I in. long and wide, purplish. Texas and northern Mexico.
39. Orcuttii, Engelm. Cylindrical, $2-31 / 2 \mathrm{ft}$. high, 1 ft . in diam., single or in clisiters up to 18 or more, not rarely decumbent: ribs $18-22$, often oblique: spines extremely variable, angled to flat, $1 / 4-3 \mathrm{in}$. wide; radials 11-13, unequal, lowest and several laterals thinnest; centrals 4 : flowers about 2 in. long, deep crimson in center, bordered by light greenish sellow. Lower California.
40. Johnsoni, Parry. Oval, 4-6 in. high: ribs 17-21, low, rounded, tuberculately interrupted, close set, often oblique, densely covered with stoutish reddish gray spines: radial spines $10-14$, three-fifths to one and onethird in. long, the upper longest; centrals 4, stouter, recurved, about $11 / 2 \mathrm{in}$. long: flowers 2 to two and threefifths in. long and wide, from deep red to pink. Utah, Nevada, California.
41. polycéphalus, Engelm. \& Bige). Glohose (6-10 in. in diam.) to ovate ($10-16 \mathrm{in}$. high, $5-10 \mathrm{in}$. in diam.) and cylindrical (reaching 24-28 in . bigh and about 10 in . in
diam.), profusely branched at base: ribs 13-21 (oceasionally 10): spines $8-15$, very stout and compressed, more or less recurved and reddish; radials 4-11, comparatively slender (the uppermost the most slender), 1-2 in. long; the 4 centrals much stouter and longer ($11 / 2$ to two and four-fifths in.), very unequal, the uppermost one usually broadest and curved upward, the lowest one usually the longest and decurved: flowers yellow. From Utah to northern Mexico.
42. viridéscens, Nutt. Globose or depressed, simple or branching at base, 4-12 in. high, 6-10 in. in diam.: ribs 13-21 (fewer when young), compressed and scarcely tuberculate: spines more or less curved and sometimes twisted, reddish below, shading into greenish or yellowish above; radials 9-20, two-fifths to four-tifths in. long, the lowest shortest, robust, and decurved; centrals 4 , cruciate, much stouter, compressed and 4 -angled, fourfifths to one and two-fifths in. long, the lowest broadest, longest and straightest: flowers yellowish green, about one and three-fifths in. long. Southern California.
43. Lecóntei, Engelm. Resembles Wislizeni, but often somewhat taller (sometimes becoming 8 ft . high and 2 ft . in diam.), usually more slender, and at last clavate from a slender base: ribs somewhat more interrupted and more obtuse: lower central spine more flattened and broader, curved (rather than hooked) or twisted, usually not at all hooked, sometimes as much as 6 in . long: flower rather smaller. From the Great Basin to Mexico and Lower California.
44. Slleri, Engelm. Globose: ribs 13, prominent, densely crowded, with short rhomhic-angled tubercles: radial spines 11-13, white; centrals 3, black, with pale base, three-flfths in. long, the upper one slightly longer: flower scarcely 1 in . long, straw-colored. Utah.
45. Grùsoni, Hildmann. Globose, completely covered by a mass of almost transparent golden spines, which give the plant the appearance of a ball of gold; centrals 4, curved: flowers red and yellow. Mountains of Mexico. -From illustrations it is evident that the radial spines are somewhat numerous and widely spreading, and that the centrals are prominent and more or less deflexed.
46. Saltillénsis, Poselg. Very stout, globose: ribs 15-19, compressed, dark green: spines very prominent. 5-7 in a cluster, stout and porrect, sometimes becoming 5 in . long; centrals 4. Mexico.-Schumann makes this a variety of \boldsymbol{E}. ingens.

746a. Mammillaria macromeris. For comparison with Eehinocacti.

ccc. Ribs 30 or more.

46. Scòpa, Link \& Otto. More or less cylindrical, 1 ft . or more high, $2-4$ in, iu diameter, at length branching above : ribs $30-36$, nearly vertical, tuberculate; radial spines $30-40$, setaceous, white; central spines 3 or 4 , purple, erect; sometimes all the spines are white: flowers yellow. Brazil. - The species is exceedingly plastic in form, branching variously or passing into the cristate condition.

BBBB. Central spines $5-10$.

47. pilòsus, Gal. Glohose, 6-18 in. high : ribs 13-18, compressed, little if at all interrupted: radial spines represented by 3 slender ones at the lowest part of the pulvillus or wanting; centrals 6, very stout, at first purplish, becoming pale yellow, the 3 upper ones erect, the 3 lower recurved-spreading: flowers unknown. Northern Mexico.
48. Simpsoni, Engelm. Subglobose or depressed, turbinate at base, simple, often clustered, three and one-fifth to five in. in diam.: ribs $8-13$, only indicated by the spiral arrangement of the prominent tubercles, whicb are $1 / 2$ to three-fifths in. long, somewnat quadrangular at base and cylindric above: exterior spines $20-30$, slender, rigid, straight, whitish, $1 / 3-1 / 2$ in. long, with $2-5$ additional short setaceous ones above; interior spines $8-10$, stouter, yellowish and reddish brown or black above, erect-spreading, two-fifths to three-fifths in. long; no truly central spine: flowers three-fifths to four-fifths in. long and nearly as broad, yellowish-green to pale purple. Mountains of Colorado, Utah and Nevada.

AAA. Spines entirely wanling.
49. turbiniformis, Pfeiff. Depressed-globose, grayish green, with $12-14$ spirally ascending ribs, cut into regular rhomboidal tubercles; tubercles flat, with a depressed pulvillus, entirely naked excepting a few small setaceous spines upon the younger ones: flowers white, with a purplish base. Mexico,-The depressed and spineless body, with its surface regularly eut in spiral series of low, flat tubercles, gives the plant a very characteristic appearance.
50. myriostigmas. Salm-Dyck (Astrophilum myriostigma, Lem.). Fig. 746. Depressed-glohose, 5 in . in diam.: ribs 5 or 6 , very broad, covered with numerous somewhat pilose white spots, and with deep obtuse sinuses: spines none: flowers large, pale yellow. Mexico. Coult.). Hemispherical, from a very thick root, often densely proliferous, transversely lined below by the remains of withered tubercles: ribs usually 8 (in young specimens often 6), very hroad, gradually merging ahove into the distinct nascent tubercles, which are erowned with somewhat delicate pencillate tufts, which become rather inconspicuous pulrilli on the ribs: flowers small, whitish to rose. Texas and Mexico. - The well-known "mescal button," used by the Indians in religious rites.
52. Lewinii, Hennings (Anhaldnium Lewinii, Hennings. Lophophora Lewinii, Coult.). Like E. Williamsii, but a much more robust form, with more numerous (usually 13) and hence narrower and more sinuous ribs, and much more prominent tufts. Along the Rio Grande.

John M. Coclter.
Other names of Echinocacti may be looked for under Echinocereus and Mammillaria. Echinocactus and Mammillaria are distinguished chiefly by the way in which the fls. are borne, -terminal on the tubercles in the former, and axillary to tubercles or ribs in the latter. In external appearance they are rery similar. Sonie species may be referred to either genus or to both. Mammillaria micromeris (Fig, 302) is considered by some to be an Echinocactus. The strong resemblances between these two genera may be seen by comparing the Echinocacti in Figs. 745 and 746 with the Mammillaria in Fig. $746 a$. See, also, Figs. 1355-7 under Mammillaria.

ECHINOCEREUS (spiny Cereus). Cacticea. Stems usually low and growing in thick clusters, which sometimes reach a considerable size: fls., as a rule, mostly short funnel-form: ovary and tube covered with bracts, from the axils of which are produced to a greater or less extent wool, bristles and spines: fr. globose to ellipsoidal, covered with spines until ripe. Tbe genus is so closely allied to Cereus, and merges so gradually into it, that it seems impossible to draw a sharp line of distinction between them, and, indeed, by some authors they are combined under Cereus. For culture, see Cactus, Cereus, and E'chinocactus.

INDEX

acifer, 19.
adustus, 24.
Berlandieri, 3. Blankii, 4 .
easpitosus, 24.
chloranthus, 20 ehrysocentras, 13. coccineus, 17. conglomeratus, 14. conoideus, 17 . conoideus, 17 etasyacanthus, 22.

dubius, 7.

Engelmannii, 13.
enneacanthus, 6.
Fendleri, 12.
gonacanthus, 9
longisetus, 10.
Merkeri, 8.
Mojavensis, 16.
paucispinus, 9.
pectinatus, 24.
phorniceus, 17.
polyacanthus, 18 . procumbens, 5. rigidissimus, 24. Roetteri, 11. rufispinus, 24. Scheeri, 2. straminens, 15. triglochidiatus, 9 . tuberosus, 1. variegatus, 13 . viriditlorus, 21.
A. Stems small, slender, cytindrical, much resembling Ceveus.

1. tuberòsus, Rümpl. (Cereus tuberòsus, Poselg.). Stems cylindrical, upright, or later reclining, clustered, from a number of more or less glohular or ellipsoidal tuberous roots, the lower part woody and about the size of a lead pencil, the upper part more fleshy, ahout $1 / 2 \mathrm{in}$. in diam., reaching a length of $1-2 \mathrm{ft}$.: rihs ahout 8 , straight, low, rounded: areolio very close together : radial spines $9-12$, horizontally spreading, straight, white, thin subulate, very short; central solitary, subulate, from a tuberous base, about twice the length of the radials, white or brownish, with darker brown or black tips, directed upward, appressed: fls. from the end of the stem, ahout 2 in . long, tube covered with an ahundance of white wool intermingled with bristles, rose-red to purplish: fr. ovoid, green, covered with the white wool and bristles. Tex, and northern Mex.

AA. Stems prostrate, sometimes the branches upright when young, mostly less than 1 in. in diam.
2. Scheèri, Lem. (Cerens Scheèri, Salm-Dyck). Branching freely from the base of the stem and forming dense clusters; branches upright or ascending, ahout 8 in . long by 1 in . in diam., slightly tapering toward the apes, dark green: ribs $8-9$, straight or sometimes inclined to spiral, separated above by sharp grooves, which hecome flattened toward the hase, low arched: areola little more than $1 / 2 \mathrm{in}$. apart, round, yellowish white: radial spines $7-9$, spreading, needle-like, the under pair the longest, about $1 / 4-3 / 8 \mathrm{in}$. long, white with yellowish bases; centrals 3 , the lower the longest, about $3 / 8 \mathrm{in}$., red with brown bases; later all the spines become gray: fl. red, from the upper part of the stem, about 5 in . long: ovary and tube bracteate and furnished with abundance of wool and spines. Mex.
3. Berlandièri, Lem. (Cereus Berlandièri, Engelm.). Stems prostrate, richly branching, forming dense clusters, the branches upright or ascending, 2-3 in. long or longer by $1 / 2-3 / 4 \mathrm{in}$. in diam., light or dark green, and in young growth often purplish : ribs $5-6$, broken up into as many straight or spiral rows of tubercles, tubercles conical, pointed : areolæ $3 / 8-5 / 8$ in. apart, round, whitewoolly, soon naked: radial spines 6-8, stiff hristle-form, thin, horizontally spreading, white, about $3 / 8 \mathrm{in}$. long, the upper one sometimes light brown and somewhat stronger ; central solitary, yellowish brown, sometimes reaching $\frac{3}{4} \mathrm{in}$. in length: fls. from the upper lateral areolæ, $2-3 \mathrm{in}$. long, red to light pink: fr. ovoid, green, hristly. Southern Tex. and northern Mex.
4. Blánkii, Palm. (Cereus Blánkii, Poselg.). Branching freely from the base and thus forming clusters: stems columnar, tapering above, about 6 in. long by 1 in . in diam., dark green: ribs 5-6 (rarely 7), straight, almost divided into tubercles: areolm about $3 / 8 \mathrm{in}$. apart, round, white curly-woolly, later naked: radial spines mostly 8 , horizontally spreading, the under pair the longest, reaching about $9 / 8$ in. in length, all stiff,
straight, thin, white or the upper ones carmine-red when young, later reddish brown; central solitary, por rect, later deflexed, $1-1 / 4$ in. long, white or brownish, black when young: fis. from near the crown, $21 / 2-3$ in. long, purple-red to violet. Mex, R.H. 1865:90.
5. procúmbens, Lem. (Cereus procúmbens, Engelm.). Branching from the lower part of the stem, and so forming clusters: branches procumbent or ascending, angled, at the hase tapering into cylindrical, $1 \frac{1 / 2-5}{} \mathrm{in}$. long by $1 / 2-3 / 4$ in. in diam. : ribs mostly 5 , rarely 4 , straight or spiral, on the upper portion of the branch almost divided into tubercles: areoles $1 / 4-1 / 2$ in. apart, round, sparingly white curly-woolly, soon naked: radial spines $4-6$, subulate, stiff, straight, sharp, in young growth brownish, then white, at the base often yellowish and the tip brownish, horizontally spreading, the upper the longest, reaching $1 / 4 \mathrm{in}$. in length; central solitary, or absent on the lower areolæ, somewhat stronger, $3 / 8-5 / 8 \mathrm{in}$. long, darker: fls. lateral, from just below the crown, 3-4in. long, carmine-red to violet, with white or yellowish throat: fr. ellipsoidal, green, $5 / 8$ in. long. Mex.
6. enneacánthus, Engelm. (Cereus enneacainthus, Engelm.). Freely branching at the base of the stem, and thus forming thick, irregular clusters: branches as cending, usually $3-5$ in. long by $11 / 2-2$ in. in diam., green or sometimes reddish: rihs $8-10$, straight, often divided by transverse grooves into more or less conspicuous tubercles: areola $3 / 8-5 / 8$ in. apart, round, white eurly-woolly, soon naked: radial spines $7-12$ (mostly 8), horizontally spreading, needle-form, straight, stiff, translueent white, base hulbose, the under one longest, reaching about $1 / 2 \mathrm{in}$., the upper one very short; central solitary, or seldom with two additional upper ones, straight, porrect or deflexed, round or angled, whitish to straw-yellow or darker, $3 / 8-11 / 2$ in. long; later all the spines are gray: fls. lateral, from near the crown or lower, $13 / 4-21 / 2$ in. long, red to purplish: fr. spherical, green to red, spiny, $3 /-1 \mathrm{in}$. long. Tex. and northern Mex.

AAA. Stems ereet, more than 1 in. in diameter.

B. Ribs of stem 9 or less,

7. dübius, Rümpl. (Cereus dübius, Engelm.). Tolerably thickly clustered; stems branching at the base, cylindrical or elongated ellipsoidal, $41 / 2-7$ in. high by $11 / 2-21 / 4$ in. in diam.: ribs $7-9$, undulate: areolæ $3 / 8-0 / 8$ in. apart, round, covered with short curly white wool, later naked: radials 5-8, subulate, horizontally spreading, stiff, round or faintly augled, the lower ones usually the longest, about 1 in . long, the upper ones about half as long, or sometimes absent, transparent white; centrals 1-4, stronger and longer, bulbose at the base, straight or curved, reaches $2 \frac{1}{2} \mathrm{in}$. in length, the lowest one longest, straight, porrect or deflexed, the upper ones spreading : fls. lateral, 2 in. long, rose-red to violet: fr. spherical, greenish to purple-red, covered with bundles of deciduous spines. Tex. and northern Mex.
8. Merkeri, Hildm. Stems at first upright, columnar, later reclining, and by branching at the base forming clusters, in new growth bright green, later gray to graybrown and corky: ribs 5-9, undulate to more or less tuberculate: areolio $3 / 4 \mathrm{in}$, aud more apart, round, white velvety, later naked: radial spines 6-9, the upper ones the longest, reaching $11 / 4 \mathrm{in}$. in length, somewhat confluent with the centrals, subulate, spreading, straight; centrals $1-2$, stronger, reaching a length of $2 \mathrm{in} . ;$ all the spines are white, nearly transparent, with red-tinted hulhose base. Northern Mex.
9. paucispinus, Rümpl. (Cereus paucispinus, EngeIm.). Clustered in irregular bunches: stems eyIindrical to ovoid, $4-7 \mathrm{in}$. high by $13 / 4-3 \mathrm{in}$. in diam.: ribs $5-7$, undulate: areolæ $3 / 8-5 / 8$ in. apart, round, white woolly, later naked: radial spines 3-6, spreading, subulate, straight or curved, round, bulbose at the base, the lowest one longest, reaching $3 / 4$ in., light colored, the upper ones reaching to about $1 / 2 \mathrm{in}$., reddish or brownish; central solitary or none, reaching about $1 \frac{1}{2} \mathrm{in}$. in length, somewhat angled, brown-black, porrect or upright; later all the spines blackish: fls, 2 in. oz more long, dark scarlet to yellowish. Tex, and Colo.

Var, triglochidiàtus, K. Sch. (Echinocereus triglochididtus, Engelm. Cereus triglochididitus, Engelm.). Radial spines usually 3 , sometimes as many as 6 , strong, angled, base bulbose, straight or curved, about 1 in . long, soon ash-gray. Tex. and New Mex.

Var. gonacánthus, K. Sch. (Echinocereus gonacánthus, Lem. Cereus gonacanthus, Engelm. and Bigel.). Radial spines 8 , very large, angled aud sometimes twisted, the upper strongest, reaching nearly 3 in . in length, light or dark yellow with brown tips ; central always present, deeply grooved, often flattened, 3 in . or more long. Colo.
bв. Ribs of stem about 9-1s.
10. longisètus, Lem. (Cereus longisètus, Engelm.). Stems clustered, cylindrical, covered with long, dirty white spines, about 8 in . higb by 2 in . in diam., light green: ribs $11-14$, straight, undulate: radial spines 18 20, straight, compressed, base thickened, subulate, flexuose, usually berizontally spreading, interlocking with adjacent clusters, the lower laterals the longest, reaching $3 / 8 \mathrm{in}$. in length, the upper more bristle-like and the shortest, all white ; centrals $5-7$, longer, reaching $21 / 2$ in., stronger, the upper ones scarcely longer than the longest radials; all are bulbose at the base; the three lower ones the longest aud deflexed, spreading and sometimes eurved: fls. red. Mex.
11. Rátteri, Rümpl. (Cereus Rátteri, Engelm.). Loosely open clustered: stems upright, 4-6 in. high, 23 in . in diam., cylindrical or ovoid: ribs 10-13, straight: radial spines $8-15$, subulate, thickened at the base, stiff, sharp, straight or slightly curved, the laterals longest, about $1 / 2$ in., the upper ones shortest, reddish with darker tips; centrals $2-5$, stouter, bulbose at base, $1 / 4-$ $3 / 8 \mathrm{in}$. long, the lower ones the longest; later all the spines are gray: fls. lateral, from near the crown, $2 \frac{1}{2}-3$ in. long, parple-red to violet: fr. short ellipsoidal, spiny, green, $3 / 4$ in. long. Tex. to Ariz. and northern Mex.
12. Féndleri, Rümpl. (Cereus Féndteri, Engelm.) Irregularly clustered: stem cylindrical or rarely ovoid or even globose, sparingly branching, 3-7 in, high by $13 / 4-21 / 2$ inch in diam. : ribs $9-12$, straight or slightly spiral, undulate : radial spines $7-10$, subulate, straight or curved, the lowest or the two lower laterals the longest, about 1 in., stronger, quadrangular, white; the two next higher brownish; the upper ones round, white and much shorter; all are bulbose at the base ; central solitary (or in old plants 3-4), very strongly thickened at the base, round, black, sometimes with a lighter colored tip, curved upward, reaching a length of $1^{3} 4 \mathrm{in}$.: fls. lateral, from near the crown, $2-31 / 2$ in. long, dark carmine-red to purple and violet: fr. ellipsoidal, spiny, green to purple-red, about 1 in . long. Colo., U'tah and south to northern Mex. B.M. 6533.
13. Engelmannii, Lem. (Cereus Engelmannii, Parry). Stems clustered, cylindrical to ovoid, 4-10 in. high, $13 / 4-21 / 2 \mathrm{in}$. in diam., light green: ribs $11-13$, undulate: radial spines $11-13$, somewhat angled, stiff, sharp, straight or somewhat curved, horizontally spreading, the lowest or lower laterals the longest, about $1 / 2$ in., the upper ones the shortest, whitish with brown tips; centrals 4, stiff, straight, angled, stout, the lowest one deflezed, white to dark-colored, reaching a length of $21 / 2$ in., the upper ones about $1 / 2$ as long, spreading, brown: fls. lateral, from just below the crown, $13 / 4-2 \frac{1}{2}$ in. long, purple-red: fr. ovoid, green to purple-red, spiny, later naked, about 1 in . in diam.; pulp purplered. Calif. to Utah and south into Mex.

Var. chrysocéntrus, Engelm. and Bigel. The three upper centrals golden yellow, the lowest white. Mojave desert, Calif.
Var. variegatus, Engelm, and Bigel. The three upper centrals curved, horn-colored and mottled with black. Utah, Nev. and Calif.
14. conglomeràtus, Först. Stems clustered, columnar, somewhat tapering above, reaching a height of 1 ft . and 2 in . in diam., light green: ribs 12-13, strongly undulate, tubercled above: radial spines $9-10$, glossy, spreading, the lower pair the longest, base yellow; centrals 1-4, the lowest straight, porrect, reaching a length of $11 / 2 \mathrm{in}$. and more, somewhat stronger than the rest. Northern Mex.

ECHINOCEREUS

15. stramineus, Rimpl. (Cereus stramineus, Engelmann). Clustered in thick, irregular bunches: stems ovoid to crlindrical, 4-8 in. long, $11 / 2-21 / 2 \mathrm{in}$. in diam.: ribs 11-13: radial spines $7-10$ (usually 8), horizentally radiate, straight or slightly curved, subulate, sharp, round or the long lower ones angled, transparent white, tolerably equal in length, about $1 / 2-3 / 4 \mathrm{in}$. or the lower ones sometimes longer and reaching a length of $11 / 2 \mathrm{in}$.; ce trals 3-1, much longer, stronger, twisted, angled, straw

16. Echinocereus chloranthus.
yellow to brownish, when young reddish transparent, the upper ones shortest and spreading upward, the lower ones porrect or depressed: fls. lateral, $2 \frac{1}{2}-3 \frac{1}{2}$ in. long, bright purple-red or deep dark red to scarlet: fr. ellipsoidal, about $11 / 2 \mathrm{in}$. long, covered with numerous spines, purple-red. Tex. to Ariz, and northern Mex.
17. Mojavénsis, Rümpl. (Cereus Mojarénsis, Engelm. and Bigel.). Stems clustered, ovoid, reaching 3 in. in height by 2 in. in diam.: ribs $8-12$, conspicuously undulate: radial spines $5-8$, the lowest pair the longest, reaching about $21_{4} \mathrm{in}$. in length; all are white with brown tips, subulate, straight or curved, strongly bulbese at the base; central solitary, or sometimes absent, stronger and somewhat longer and darker colored; later all the spines become gray: fls, $2-3$ in. long, deep carmine: fr, ellipsoidal, about 1 in . long. Mojave desert of Ariz., Nev. and Calif.
18. phœnfceus, Lem. (Echinocereus coccineus, Engelm. Cereus phanicers, Engelm.). Stems irregularly clustered, ellipsoidal to short cylindrical, 2-4 in. high by $11 / 2-21 / 4$ in. in diam.: ribs $8-11$, straight: spines bristle-form, straight, round; radials 8-12, white ${ }_{\text {, }}$ $1 / 4-1 / 2 \mathrm{in}$. long, upper ones shortest; centrals 1-4, stouter, white to yellow or brown, with bulbose base: fls. from upper lateral areola searlet-red, with the co rolla threat yellow. Celo, to Ariz.

Var, conoideus, Engelm. (Echinocereus conoidens, Rümpl. Cereus conoideus, Engeln.). Central spine long and robust: fls. large, red. Southern Calif, and northwest Mex.
18. polyacánthus, Engelm. (Cereus polyacánthus, Engelm.). Stems clustered, forming thick masses, cylindrical to ellipsoidal: ribs 9-13: radial spines $8-12$, robust, subulate, stifif and sharp, under one the longest, nearly 1 in ., upper ones scarcely $1 / 2 \mathrm{in}$., white to reddish gray with dark tips ; centrals 3-1, bulbose base, stronger, about the length of the radials or the lowest sometimes reaching 2 in ., horn-colored; later all the spines become gray: fls. lateral, about $1^{3 / 4-21 / 4} \mathrm{in}$. long, dark scarlet to blood-red: fr. spherical, about 1 in . long, greenish red, spiny. Tex. to Calif. and northern Mex.
19. áifer, Lem. (Cereus acifer, Otto). Stems thickly clustered, $6-8 \mathrm{in}$. high by $11 / 2-2 \mathrm{in}$. in diam., becoming gray and corky with age: ribs 9-11, usually 10: radial spines usually 9 , spreading, nnder pair longest, about $1 / 2 \mathrm{in}$., in young growth white, later horn-colored to gray, the upper ones brownish; central solitary, straight, porrect, at first ruby red, later brown, 1 in. long: fls. lateral, 2 in. and more long, clear scarletred, with a jellow throat and sometimes a carmine border. Northern Mex.

BBB. Ribs of stem 13 or more.

20. chloranthus, Rümpl. (Cereus ehloránthus, Engelm.). Fig. 747. Stems in small clusters, cylindrical, slightly tapering above, $4-9 \mathrm{in}$. high by $2-21 / 2 \mathrm{in}$. in diam.: ribs $13-18$, straight or rarely spiral: radial spines $12-20$, horizontally spreading and appressed, sharp, the shortest one about $3 / \mathrm{sin}$. long and white, the lower laterals a little longer and have purple tips; centrals $3-5$, or in young plants absent, bulbose at the base, the upper ones shortest, about the length of the radials, and darker colored, with purplish tips, the lower ones stouter, about 1 in . long, deflexed, white; frequently all the spines are white: fls. lateral, little more than 1 in . long: ovary and tube white bristly; petals green : fr. ellipsoidal, about $1 / 2 \mathrm{in}$. long, spiny. Texas and New Mexico.
21. viridiflorus, Engelm. (Cereus viridiflorus, Engelm.). Stems solitary or only iu age forming small, loose clusters, cylindrical or elongated ellipsoidal, 3-7 in. high by $1-2$ in. in diam.: ribs 13 : radial spines $12-$ 18, horizontally radiate, pectinate, straight or somewhat curved, subulate, the lower laterals the longest, about $1 / 2$ in., translucent ruby red, the others white ; centrals usually absent, rarely 1 , strong, about $3 / 4 \mathrm{in}$. long, curved upward, red with brown point: fls. lateral, from just helow the crown, hroad funnel-form, little more than 1 in . long: ovary and tube spiny: corolla green, with a broad darker olive green to pink stripe down the middle of each petal : fr. ellipsoidal, about $1 / 2 \mathrm{in}$. long, greenish. Wyo. and Kans. to Tex, and New Mex.
22. dasyacanthus, Engelm. (Cereus dasyacanthus, Engelm.). Stems solitary or sometimes forming open clusters, ellipsoidal to short cylindrical: ribs $15-21$, straight or sometimes slightly spiral, obtuse : radial spines $20-30$, straight or sometimes slightly curved, subulate, stiff, sharp, pectinate, white with red or brown tips, later gray, the laterals longest, $1 / 2-1 \mathrm{in}$., the upper ones shortest, about $3 / 8 \mathrm{in}$., those of one cluster interlocking with those of the adjacent clusters; centrals $3-8$, the lower one longest, white with colored tips, mostly with bulbose bases: fls. from near the crown of the stem, large, $21 / 2-3 \mathrm{in}$. long: ovary and short tube covered with white, reddish tipped stiff bristles ; corolla yellow: fr. 1-11/2 in. long, ellipsoidal, spiny, green to reddish. Tex.
23. ctenoldes, Lem. (Cereus ctenoides, Engelm.). Stems solitary or rarely branching, cylindrical to elongated ovoid, reaching a beight of 6 in , and a diam. of $21 / 2 \mathrm{in}$.: ribs $15-16$, usually straight : radial spines $13-$ 22 , horizontally radiate, pectinate, subulate, bases bulbose and laterally compressed, stiff, straight or often slightly curved, the laterals longest and about $3 / 8 \mathrm{in}$., the upper ones very short, white or sometimes with brownish tips ; centrals $2-3$ or rarely 4, superposed, coarser, bulbose at the base, short and conical to $1 / 4 \mathrm{in}$. long, reddish; later all the spines are gray: fls. lateral,
from near the crown, $21 / 2-3 \mathrm{in}$. long: ovary and short tube white bristly: corolla yellow, with greenish throat. Tex. and northern Mex.
24. pectinàtus, Engelm. (Cereus pectinàtus, Engelm.). Clustered stems cylindrical or ovoid, reaching a height of 10 in . by 3 in . diam.: ribs $13-23$, straight: radial spines $16-30$, pectinate, horizontally spreading and appressed, straight or curved, the laterals longest, round, hardly $3 / 8 \mathrm{in}$. long; central usually absent, or as many as 5 , which are short, conical and superposed, white, with tips and bases variously colored with pink, yellow or brown; later all become gray: tls. lateral, from near the crown, $2 \frac{1}{2}-4$ in. long: ovary tuberculate and spiny, light to dark rose-red or rarely white: fr. globose, spiny, green to reddish green. Mex.
Var. adústus, K. Sch. (Cereus adústus, Engelm.). Like the type, but with black-brown to chestnut-brown spines. Mex.

Var. rigidissimus, Engelm. (Cereus cándicans, Hort. (. rigidlssimus, Hort.). Rainbow Cactus. Fig. 748. Stems comparatively shorter and thicker: radial spines I6-20, coarser and stiffer, straight or very little curved; base thickened, white, yellow or red to brown,

748. Echinocereus pectinata, var, rigidissimus.
these colors commonly arranged in alternating bands around the plant, the spines of adjacent clusters interlocking; centrals absent. Tex. to Ariz, and northern Mex.

Var. eæspitòsus, K. Sch. (Echinocereus caspitosus, Engelm. Cereus caspitosus, Engelm.). Radials 20-30, curved, clear white or with rose-red tips; centrals absent, or 1-2 very short ones. Indian Terr., Tex. and Mex.

Var. rufispinus, K. Sch. Of more robust growth: radial spines curved, red. Mex.
Horticultural names unidentified: E. polycéphalus.-E. sanguineus. - E. L'ehri.-E. C'spénskii.-E. paucupìna, no doubt a mutilation of paucispinus. $-E$. Schtini=E. Scheeri?
C. H. Thompson.

ECHINOCYSTIS (Greek, hedge-hog and bladder; from the prickly fruit). Cucurbitacea. Wild Cccimber. WiLd BaLsam-Apple. This genus contains a bardy na tive annual vine which is a great favorite for home arbors, although not especially beautiful in foliage, flower or fruit. Its bladdery fruits about 2 in. long, covered with weak prickles, are a source of unfailing delight to children, who love to make them burst. It is one of the quickest growing of all vines, and is therefore useful in hiding unsightly objects, while the slower-growing shrubbery is getting a start. Tbe latest reviewer of the gourd family (Cogniaux, in DC. Mon. Phan. vol. 3, 1881) makes three sections of this genus, and this plant the sole representative of the second section, or
true Echinocystis, because its juicy fruit bursts irregularly at the top, and contains 2 cells, each with 2 flat tish seeds.
labàta, Torr. \& Gray, Lvs, wider than long, deeply 5-lobed, slightly emarginate at the base: tendrils 3-1. branched: staminate fls. small, in many-fl. panicles longer than the lvs.; calyx glabrous: fr. egg-shaped, sparsely covered with prickles. Saskatchewan to Winnepeg, south to Va. and Ky., west to Colo. A.G. 14: 161. R.H. 189.5, p. 9. G.C. 111., 22:271. Sometimes becomes a weed.
W. M.

ECHINOPS (Greek, like a hedgehog; alluding to the spiny involucral scales). Compósita. Globe Thistle. A large genus of thistle-like plants, with blue or whitish flowers in globose masses. The structure of one of these globes is very curious. Each flower in the globe has a little involucre of its own, and the whole globe has one all-embracing involucre. Another way of saying the same thing is "heads l-fld., crowded into headlike glomes." More or less white-woolly berbs: lvs. alternate, pinnate-dentate or twice or thrice pinnatisect, the lobes and teeth prickly.

Globe Thistles are coarse-growing plants of the easiest culture, and are suitable for naturalizing in wild gardens and shrubberies. An English gardener with an eye for the picturesque (W. Goldring) recommends massing them against a background of Bocconia cordata, or with such boldly contrasting yellow- or whiteflowered plants as Helianthus rigidum or Helianthus muttiflorus. The best species is k. Ruthenicus. A few scattered individuals of each species are not nearly so effective as a condensed mass or group of one kind. E. Ruthenicus flowers in midsummer and for several weeks thereafter. The silvery white stems and handsomely cut prickly foliage of Globe Thistles are interesting features. They make excellent companions for the blue-stemmed Eryngiums. All these plants are attractive to bees, especially E. exaltatus, which has considerable fame as a bee-plant. Globe Thistles are sometimes used abroad for perpetual bouquets.

A. Leaves not pubescent nor setulose above.

Ritro, Linn. Tall, thistle-like plant, with pinnatelobed lvs., which (like the stems) are tomentose beneath, the lobes lanceolate or linear and cut, but not spiny: involucre scales setiform, the inner ones much shorter; fls, blue, rery variable. Var. tenuifolius, DC. (E). Ruthénicus, Hort.) has the lower leaves more narrowly cut, more or less spine-tipped, Gn. 45:9.51.-Perennials of S. Eu., growing 2-3 ft. high. They bloom all summer. Lvs. sometimes loosely webby above.

AA. Leaves pubescent or setulose above.
Bannáticus, Rochel. Lvs. hairy-pubescent above, tomentose beneath (as also the stems), the lower ones deeply pinnately parted, the upper pinnatifid, spiny: fls. blue. Hungary. R.H. 1858, p. 519.
exaltàtus, Schrad. Tall biennial, the stem nearly simple and glandulose-pilose, the lvs. pinnatifid, scarcely spiny: fls. blue. Russia. B.M. $245 \overline{7}$ as E. strictus, Fisch. Distinguished by its simple, erect stem. The garden E. commutatus may be the same as this.
sphærocéphalus, Linn. Tall ($5-7 \mathrm{ft}$.) perennial: Ivs. pinnatifid, viscose-pubescent above, tomentose below, the teeth of the broad lobes yellow-spiued: fls. white or bluish. S. Eu. B.R. 5:356.
L. H. B.

ECHINOPSIS (Greek, hedgehog-like). Cacticea. SEAurchin Cactus. Stems spherical to ellipsoidal or rarely columnar : ribs prominent and usually sharp-angled: fls. usually long trumpet-shaped, ovary and tube covered with linear-lanceolate, cuspidate bracts which become longer toward the outer end of the tube, where they pass gradually into the outer petals, in their axils bearing long, silky, wary hairs and usually a few rather rigid bristles. This is a well marked genus, though by some authors combined with Cereus, confined entirely to South America. Culture as for Cereus.
A. Ribs of stem divided into more or less evident tubercles.
Pentlandii, Salm-Dyck. Stem simple, later branching, spherical or ellipsoidal, reaching 6 in. in diam.:
ribs 12-15, dwided hetween the areolæ into oblique compressed tubercles: radial spines $9-12$, spreading, straight or slightly curved, yellowish brown, the upper the lougest and strongest, reaching $1 / 2-1^{1 / 4} \mathrm{in}$. ; central solitary, or seldom in pairs, porrect, curved, 1-1/2 in., rarely 3 in. long : fls. lateral, $2-21 / 2 \mathrm{in}$. long, yellow, orange, pink to scarlet-red: fr. spherical, green, $3 / 4 \mathrm{in}$. in diam. Peru. B.M. 4124.

AA. Ribs of stem not divided.
 B. Flowers red or pink.

múltiplex, Zucc. Stems at first rather clavate, later globose to ellipsoidal, abundantly branching, 6-12 in. in diam. and the same in beight, or rarely taller, light green to yellowish: ribs $12-14$, straight, scarcely undulate: radial spines about 10 , subulate, straight, yellow to yellowish brown, with darker tips, reacbing $3 / 4$ in. in length, very unequal, horizontally spreading; centrals mostly 4 , of these the lowest is the longest, reaching $1 \frac{1}{2}$ in., somewhat porrect at first, later curved and deflexed, darker colored than the others: fls, rare, lateral, 11-15 in., rose-red. S. Braz, B.M. 3789.

Var. cristàta, Hort. Stems flat and spreading in growth, like an open fan or the flower stalk of the common garden cockscomb, spines reduced to fine, stiff bristles. This is merely a montrosity of the species.
oxygona, Zucc. Stems at first simple, nearly spherical or rarely clavate, becoming short columnar, reaching $11 / 2 \mathrm{ft}$. in beight and 1 ft , in diam., gray-green, darker above: ribs $13-15$, straight or wavy at the base: radial spines $5-15$, horizontally spreading, rery unequal, reaching $5 / 8$ in., subulate, obliquely upright ; centrals $2-5$, somewhat longer, straight, porrect or deflexed, dark horn-colored, with blark tips: fls. commonly many together, lateral, reaching 13 in , in length, pink to ear-mine-red, the inner petals ligbter than the outer ones. S. Braz.
triumphans, Jacobi. This is a hybrid between E. E'yriesii and oxygona, with pink double flowers.

BB. Flowers white.

Eyriesii, Zucc. Stem simple, commonly branching later, at first somewhat depressed, later short to rather tall columnar, reaching a beight of 2 ft and a diam. of

4-6 in., dark greeu: ribs 11-18, straight, undulate, with sharp-angled margins: radial spines about 10 , scarcely more than $1 / 8 \mathrm{in}$. long, rigid, straight, slender conical, pointed, dark brown to black; centrals $4-8$, but very little different from the radials: fls. lateral, 10-15 in. long,
white: fr. small, ellipsoidal, about 1 in. long. S. Braz., Uruguay and Argentine Republic. B.M. $3 \div 11$. B.R. 20:1707.
gemmàta, K. Sch. (E. turbindta, Zuce.). Fig. 749. Stem simple or sometimes branching, at first low spherical or short columnar, later more top-shaped, reaching 1 ft . in height by $4-6 \mathrm{in}$. in diam., dark green: ribs 13-14, rarely more, straight or sometimes slightly spiral with sharp or obtuse margins, which are but little or not at all undulate; central spines appear first, about 3-6 in number, very short, stiff, black; later the radials appear, about $10-14$, longer, horizontally spreading, at first yellowish brown, later horn-colored: fls. lateral or from the upper areolæ, 9-10 in. long, clear white, with a pale greenish midline in the petals. S. Braz.
tubiflora, Zuce. (E). Duvalii, Hort. E. Zuecarinii, Pfeiff.). Stems spherical to ellipsoidal, at first simple but later more or less branching, reaching 10 in . in height by 8 in. in diam., dark green: ribs 11-12, straight, with margins inconspicuously undulate: radial spines numerous, sometimes as many as 20 , unequal, borizontally or obliquely spreading, yellowish white with brown tips, sometimes darker; centrals 3-4, the lowest the longest, reaching $5 / 8 \mathrm{in}$., later deflesed: fls. lateral, about 14 in. long, white with pale green midline in the petals. S. Braz. and Uruguay. B.M. 3627.
Echinopsis Mulleri is a borticultural name only.
C. H. Thompson.

ECHINOSTACHYS (spiny head, from the Greek). A bromeliaceous genus, now referred by Mez to Echmea, which see. Three species have been offered in the Amer. trade: E. Hystrix, Wittm., for which see p. 28. E. Pineliàna, Wittm., which is N. Pinelidna, Baker: $2-3 \mathrm{ft}$.: peduncle and bracts brilliant red: lvs, banded, spine-edged: spike dense, 2 in. long, spiny: petals yellow, the tips fringed and incurved. Brazil. B.M. 5321. E. Van Houtteana, Van Houtte, is E. Van Houttedna, Mez (Quesnelia lian Houtteana, Morr.). Lvs. many, strong spined, sometimes white-banded beneath: fls white, blue-tipped, in a crowded spike: 1-2 ft. Brazil.
L. H. B.

ECHITES (Greek, liper; possibly from its poisonous milky juice or from its twining habit). Apocyndece. A large genus of tropical American twiners related to Dipladenia, and of similar culture. Differs technically from Dipladenia in the 5 -lobed disk and the glandular or 5 -scaled calyx.

Andrewsii, Chapman (E. suberécta, And.). Lvs. 11/2-2 in. long, close together, oval or oblong, mucronate, acute or rounded at the base, margins revolute: peduncles axillary, 3 -5-fld., shorter than the lvs.: fls, yellow; corolla tube 1 in . long, $1 / 2 \mathrm{in}$. wide, much dilated above the insertion of the stamens, bell-shaped, scarcely longer than the lobes; anthers tapering into a long, bristle-like awn: glands of the nectary 5 , rounded, as long as the ovaries. Sandy shores, S. Fla. W. Indies.
paludosa, Vahl. Livs, oblong, oval-oblong, or lanceo-late-oblong, rounded toward the mucronate top: calyx segments glandular, devoid of an interior scale, oblong, mucronate-hlunt, spreading; corolla tube funnel-shaped above a cylindrical base; anthers oblong-lanceolate, acuminate, rounded-cordate at the base, hirsute on the back above.
umbellàta, Jacq. Lvs. ovate or ovate-roundish, mucronate: fls. greenish white; calyx segments glandular, devoid of an interior scale; corolla tube cylindrical, enlarged below the middle, tapering again above: anthers rigid, tapering from a bastate base, glabrous. W. Indies.

ECHIUM (Greek, meaning unknown). Borraginàcer. Viper's Bugloss. Coarse herbs and shrubs, with spikes of blue, violet, red or white flowers. Their nearest ally of garden value is Cerinthe, but they are very distinct in general appearance. E. fastuosum, for instance, has dark blue, 5 -lohed flowers about half au inch across, in spikes 6 inches long and 2 inches wide, perhaps as many as 200 fls . in a spike. Great masses of stamens are thrust out and add to the interest, and the young flower-buds look like pink 5 -pointed stars. Three kinds are cult. out-
doors in California. There being no published American experience with their cultivation under glass, the following points are gleaned from The Garden 42, p. 884 (1892). In rich soil they grow coarse and scarcely flower, and the Howers are never as richly colored as when the plants are more or less starved. Biennials seed freely, and the seed is sown as soon as gathered. E. callithyrsum is a greenhouse shrub or small tree which produces hundreds of spikes during summer. After flowering "the old stems or branches are cut back, when the plant breaks away again, and in this way may be had in bloom almost at will." Cuttings strike freely, flower soon, and make good pot-plants. Seedlings require a greater age and size before blooming. E. fastuosum is the handsomest of the shrubby kinds, grows $2-4 \mathrm{ft}$. high, has long, pale green lvs., covered with soft white hairs, and fls of a peculiarly brilliant deep blue. In California, Franceschi says, Echiums are eminently suited for dry places, and need good drainage. \boldsymbol{E}. velgare is a common weed in the East.
A. Fls. dark blue.
cándicans, Linn. f (E. fastuдsım, Jacq. f., not Ait.). Forms a bush 3 ft . high, but flowers at 3 ft ., and its foliage is green when fresh, hoary white wheu dry. Branches thick, leafy toward the tips: lvs. lanceolate, the upper ones smaller, crowded and narrower: panicles much looser than the spikes of E. fastuosum: fls. sessile, pale blue, the buds reddish purple. Madeira. B.M. 6868. B.R. 1:44.-The fls. are sometimes said to be streaked with white or all white.

AA. Fls. pale blue.

fastuossum, Ait., not Jacq. This has darker blue fls in a dense spike and perhaps less hoary foliage than E. candicans. This was Hooker's conception in 1886 of the relation of the two species, but De Candolle formerly held the opposite opinion. Canaries. R.H. 1876:10. Gn. 10:50,

AAA. Fls. white.

simplex, DC. Woody but biennial and not branched: Ivs. ample, oval-lanceolate: panicle very long, cylindrical, spike-like, the spikelets 2 -fld., pedicelled: stigmas simple.
W. NI.

EDELWEISS. See Leontopodium.

EDGEWORTHIA (after M. P. Edgeworth, English botanist in E. Indies, and his sister Mlaria). Deciduous shruh, with stout branches: lvs. alternate, entire, shortpetioled, crowded at the end of the branches: fls. in dense, peduncled heads, axillary, on branches of the previous year, with or before the lvs., apetalous; perianth tubular. 4-lobed, densely pubescent outside; stamens 8 , in 2 rows; stigma elongated: fr. a dry drupe. One species from Himal. to Japan, the bark of which is used for papermaking. Ornamental shrub, with handsome foliage and yellow, fragrant fls. Hardy only South, thriving in any good, well-drained garden soil; if grown in pots a sandy compost of peat and loam, with sufficient drainage given, will suit them. Prop. by greenwood cuttings in spring under glass; also by seeds, obtained from dealers in Japanese plants. Belongs to Thymelaracere.

Gárdneri, Meissn. (E. papyrifera, Zucc. E. chrysántha, Lindl.). Lrs, elliptic or oblong-lanceolate, appressed pubescent when young, glabrous above at length, $3-8 \mathrm{in}$. long: fls, about 1 in . long, densely clothed with yellowish silky hairs outside, in dense heads about 2 in. in diam. B.M. 7180. B.R. 33:48. F.S. 3:289, - Cannot withstand the long, dry summers South.

Alfred Rehder.
EDRAIANTHUS. See Wahenbergia.
EDWARDSIA. The leguminous genus of this name is now included in Sophora.

EEL-GRASS. Vallisneriu spiralis.

EGGPLANT (Solànum Melongèna, Linn.). Solanà cece. Guinea Squash. Aubergine of the French. This plant is a native of the tropics, probably from the East Indies, but its native land is not known. It is cultivated to a greater or less extent tbroughout the entire tropical
regions. The first reports of its use as a vegetable come from India, hence the above assumption. In the United States it is cultivated as a vegetable as far north as New York, but it usually grows to greater perfection in the southern states. The demands for it during the early months of the year have not been fully supplied. Its cultivation demands as much a specialist as either celery or tobacco, while the specialization must be in a different direction from that of either one of these. Nearly all of the fruit that grows to proper size is edible, and there is no special demand for particular flavors. Eggplants are forced under glass to a limited extent for home use. They require the temperature of a tomato house, and great care must be taken to keep off red spider and mites. In order to insure large fruits, practice artificial pollination. Non-polliHated fruits will grow for a time, but always remain small (Fig. 750). (Cf. Bailey, ForcingBook.)

Soil. - Eggplant will grow on almost any soil in the Soutb, but it develops to greater perfection on a rich, deep, loamy soil free from de- bris. In the clay districts this is not easily obtained, but there are often small fields that are sufficiently dry and yet contain enough sand to make Eggplant growing profitable. No matter whether clay land, loam or sandy land be employed for raising this crop, it will be necessary to plow deeply and thoroughly. The land should be drier than that required by cabbage or beets. In fact, it will stand a greater drought than the ordinary regetables. On the other hand, we should not attempt to grow a crop on land that is composed of large particles, such lands as are ordinarily called thirsty in the vege-table-growing sections of Florida.

Fertilizer. - There is considerable difference in various sections of the country as to whether manure may be applied or not. In the south Atlantic and (Tulf states it is not advisable to use stahle manure. If this form of fertilizer is at hand, the gardener should make it up in the form of compost, when it will be found to the a very useful material. There have been no experiments performed to indicate which forms of chemical fertilizers are the best. In the absence of such work, we can only give general directions in regard to what may be used. The following formula will be found fairly well balanced for Eggplant in the South. If the soil contains a great deal of humus, less nitrogen may be used. If the soil is poor in this element, nitrogen, a greater amount of nitrogen may be used. On moderately fertile land 500 to 1,000 pounds will be sufficient, while on poor lands as much as 2,500 to 3,000 pounds per acre may be employed.

The following table of fertilizers will suggest useful amounts of the different elements when we wish to employ 500 pounds of the above formula to the acre (particularly for the South):

Nitrogen.	(350 lbs cotton seed meal;
	$\{200$ lbs. dried blood; or,
	150 lbs . nitrate of soda: or. 100 lbs , sulphate of ammoni
	(500 lbs. kainit; or, 90 lhs. muriate of potash.
Pot	200 lbs . sulphate of potash and sulphate of magnesia.
Phospbor	$\{250 \mathrm{lbs}$ acid phosphate; or, $\{200 \mathrm{lbs}$ dissolved bone.

200 lbs. cotton seed meal; or, 150 lbs . nitrate of soda: or 100 lbs , sulphate of ammonia. 500 lbs. kainit; or, los. muriate of potash; or suphate or potash and
$\{250$ lbs. acid phosphate; or, 200 lbs . dissolved bone.

Propagating the Seedlings. - The time required to bring plants into bearing from seeds varies with the conditions of the soil and temperature. During eool weather the plants grow rery slowly, but during hot weather they grow rapidly and mature fruit in much less time. Those who wish to have early fruit and are able to use hotbeds or propagating houses should sow the seed 120 to 150 days before the fruit is wanted. Prepare the hotbeds as for other seedlings, and sow in rows a few inches apart. When these are heginning to show their leaves, or when the seedlings are beginning to look spindly, they should be pricked out and transferred to another bed. In this each plant should be given about a 2 -inch square; then they may be forced until the plants crowd one another in the bed, when they should be transferred again. When the plants have attained the size of 6 inches, and the atmosphere will permit, they may be set out in the field.

A somewhat more laborious, but at the same time more successful plan, is to plant the seedlings in 2 -inch flower pots, and then shift to larger ones as often as the plants become pot-bound or crowd one another in the bed. Fig. 751 represents a plant, three-tenths natural size, just taken from a flower pot and ready to be shifted to a larger one. By shifting until 6 -inch pots are reached, the Eggplant may be forced along without injury to blooming size or even to a size when fruit is beginning to set, and then set out in the field without injury to the plants or crop.

Eggplant growers should bear in mind constantly that from the time of sprouting the seeds to the harvesting of the crop, the plants cannot stand a severe shock in their growth without detriment to the crop. When the plant is once started it should then be forced rigbt along, and never allowed to become stunted during its growth. The amount of damage done by neglecting plants before they are set to the field varies with the severity of the shock and the length of time during which the plant undergoes the disadvantageous conditions. If it becomes necessary to harden the plants off before setting them to the field, this should be done gradually.

Culture in the Field.-After the field has been thoroughly prepared in the way of plowing and fertilizing, which should have been done at least two weeks before the plants were set out, the rows should be laid off from 3 to 4 feet apart. The plants may be set from 2 to 4 feet apart in the row, varying with the varieties to be used and the soil. Tillage should be continued, and varied according to the conditions of the weather. Dnr-

751. Pot-grown plant ready for setting in the field.
ing a wet season it is well to cultivate the land as deeply as possible, while during dry weather cultivation should be shallow, simply sufficient to keep the weeds from growing, to keep the soil well aired, and to keep a mulching of dry soil on the land. Under ordinary circumstances it does not pay to prune or pinch out the buds, but where the season is short this may be reresorted to with some advantage. If it is desirable to
hare the fruit attain a certain size before frost, one may begin to pinch out the blossoms and new growth about three weeks before its usual occurrence. This same

process will be of adrantage where the fruit is to be brought into market at a certain time.

Marketing.-As a rule, it is better to cut the fruit from the plaut tban to break it, especially if the work is done by careless laborers. After cutting, it may be placed in large market baskets and hauled to the packing house. For distant market, the fruits should be wrapped separately in heary brown paper. The proper crate for this vegetable is the barrel crate. As this is considered one of the staple vegetables, we do not gain much by using fancy wrappers or packing it in fine crates, hence we may use such material as may be left over from shipping fancy vegetables. It also stands shipment to distant markets, so that, if there is no danger of reduction in price, it is quite as well to ship by freight as by express.

Jarieties.-There are only a few rarieties offered in the market. The New York Improved Spineless matures a little earlier than the Black Pekin. The New York Purple (Fig. 752), Black Pekin, and the New York Spineless are excellent for shipping purposes. The above varieties are the black-fruited, and the most popular in the United States, while the white-fruited sorts are said to be the most popular in Europe. For home use, the white-fruited rarieties are preferable, but as these make poor sellers in the United States, we must raise the purple sorts for market. For home gardens, the early and small Early Dwarf Purple (Fig. 754), is useful. It is particularly recommended for northern climates. There are three main types of Eggplauts, as follows (Bailey, Bull. 26, Cornell Exp. Sta.): The commoner garden varieties, Sold̀num Melongèna, var. escuténtum, Bailey (Figs. 752, 753); the longfruited or "serpent" varieties, S. Melongèna, var. serpentinum, Bailey; the Early Dwarf Purple type, var. depressum, Bailey (Fig. 754). See Solamum. The socalled Chinese Eggplant is a different species, for which consult Solanum.

Seed-growing. - This is by no means a difficult operation, and may be done profitably in certain sections of the South. For this purpose all defective or dwarfed plants in the field should be cut out. By a little attention one will be able to know when the seeds have matured sufficiently for gathering. At this time the eggs usually turn a lighter color or even somewhat yellow. The fruit should be gathered and carried to the packing house, where it may be left in a pile for 2 or 3 days, as there is very little danger from rotting. When a sufficient number have been collected the laborers may be set to paring off the extra amount of meat on the outside of the seed. The remaining core may then be cut
longitudinally into quarters or eighths, using a dull knife to avoid cutting the seed. After a quantity of these have been pared, they may he placed in a barrel and covered with water. The barrel should not be made more than two-thirds full. In a day or two fermentation will set in and the meaty portion will macerate from the sced. The seed may then be separated from the meat by means of sieves, using first wide-meshed ones to remove the meat and then finer-meshed ones to screen out the seed from the finer pulp. The seed should not be allowed to stand more than 2 or 3 days in the macerating barrel, as the heat evolved by fermentation and the heat of the summer is liable to cause them to germinate. After separating the seed from the pulp, it should be dried in the shade and wrapped iu secure packages. By covering with tin foil or oil paper, the atmospheric moisture will be kept out and molding prerented.
Diseases. - The most destructive of diseases in the lower South is a blight fungus which attacks the plant just heneath the surface of the ground, causing the softer tissues at this point to rot off and the plant to die. The fungus is not able to penetrate the harder portion of the stem, consequently the plant lingers along for weeks after being attacked. A number of attempts have been made to cause this blight fungus to produce fruiting organs so that it could be classified, but up to the present this has proved futile. In such cases as this we bave no remedy. After the plant is attacked, it is usually doomed. Much, however, can be done in the way of preventing the spread of this fungus. If all plants are destroyed as soon as found to be affeeted, the fungus cannot perfect its sclerotia, or resting state, and thus its propagating is prevented. The normal home of this

753. Long White Eggplant.
fungus is in decaying vegetable matter. If, therefore, we keep our field free from this sort of material we will do much to present this fungus from being present. Some soluble form of fungicide, as Eau Celeste

EICHHORNLA

or potassium sulphide, may be sprayed about the roots of the plants to good advantage. Practice rotation of crops.

A second form of blight is caused by Bacillus solanacearkm, Smith. This disease bas its origin of infection in the leaves, and is introduced by means of insects which bave fed upon diseased plants and carried the infection to the well ones. The disease works rapidly down the tissues, and causes the death of the leaf and finally of the whole plant. The only remedy for this is to destroy all plants that are affected with the disease as soon as detected, and kill off all insects. When this disease is known to be present in a section, it is best to set the plants as far apart as practicable. In this way the danger of infection from insects is somewhat re duced. When the disease is known to be present in a field it shonld not be planted to this crop.

Insect Enemies.-Among the most annoying of the insect enemies we must place the ent-worm (larva of

754. Sprays of Early Dwarf Purple Eggplant.

Noctudiæ). These insects are almost omnipresent, and when nearly full grown are liable to ent off plants that are 4 or 5 inches high. It is not common for one insect to cut off more than a single plant, but in ordinarily fertile soil there are enough cut-worms present to destroy the entire field. So that, on the whole, it becomes very annoying. Where these insects are quite destructive, it is possible to kill them with poisoned bran or poisoned cotton-seed meal, sweetened with syrup or sugar.

Another insect that does more or less damage is the cotton-boll worm (Heliothis armigera). This insect does its damage by boring a hole into the stems or the fruit. In the latter case it canses it to rot before it is picked, or possibly in transit. As the fruit becomes larger there is less danger of attack from this insect, so that the main trouble occurs in the earlier stages of its growth.
The Eggplant aphis (Siphonophora cucurbite) is one of the most annoying pests to this erop. It usually makes its appearance abont the time the crop is fit to ship, and appears in such numbers that the plants are ruined in the course of a week or two. The insect attacks the lower surface of the leaves, making it difficult to reach the pest with insecticides, but persistent efforts and a good tobacco decoction, applied with a fine nozzle, will give considerable relief. Anthracnose (Glocasporium melongence) does not cause great damage to this crop, but is one of the agents that reduce the profits. "It may be recognized by its producing decided pits in the fruit, upon which soon appear minute blotches bordered with pink.' Bordeaux mixture may be used to good advantage for preventing this disease.

Phoma Solani frequently canses damping-off in the hotbed. It often renders a whole bed worthless. Plants
affected with this fungus nsually fall over as if eaten off by some insect. Some plants, however, continue a miserable existence and finally die. Careful examination will reveal the point of injury, which is at the ground level. The best preventive is to use well drained beds, and then avoid excessive watering. When damping-off is detected in a seedling bed, the atmosphere and surface soil should be dried as rapidly as possible, followed by one application of fungicide. P. H. Rolfs.
EGLANTINE. Rosa Eglanteria. Less properly applied to Rubus Eglanteria and Rosa rubiginosa.

EGYPTIAN BEAN. Same as Black Bean, Dolichos

 Lublab.EGYPTIAN LOTUS. See $\mathrm{V}_{\mathrm{ymp}}$ phea Lotus; also Ve_{e} lumbium.

EHRETIA (G. D. Ehret, botanical painter, born in Germany, 1708, died in England, 1770). Borragindcea. About 50 species of tender trees and shrubs, fonnd in the warmer regions of the world. Two species are cult. outdoors in S. Calif. and 2 others in European greenhouses. Plants with or without rough, short hairs: 1vs. alternate, saw-toothed or not: fls. small, often white, in cymes, corymbs, terminal panicles, or rarely all borne in the upper axils. The 2 species described below are tvergreen trees in S. Calif., attaining a height of 30 ft . Seeds may be obtained through dealers in Japanese plants.

A. Li's. saw-toothed.
 B. Foliage hairy.

macrophylla, Wall. Lvs, ovate, acute, sharply toothed, with long, harsh, rigid hairs above and soft pubescence beneath: panicle terminal, pubescent: calyx ciliate: fr. globose, obscurely 4-grooved. Himalayas.

BB. Foliage not hairy.
acuminàta, R. Brown (E, serràta, Roxb.). Heliotrofe Tree. This belongs to a different tribe of the same family with the Heliotrope, and the white fls. have a honey-like odor, Lss. oblong-lanceolate, acuminate: panicles terminal and axillary: fls, clustered, sessile. Trop. Asia and Anst. - "Drupes red, the size of a pea; said to be edible." E. N. Reasoner, Oneco, Fla.

AA. Les, usually not toothed.

ellíptica, DC. Tree, 15-50 ft, high: lvs. oval or oblong, sometimes saw-toothed, nearly hairless, or with minute hairs and very rough above: fr. a yellow globose drupe, the size of a small pea, with edible thin pulp. Tex., Mex.
W. M.

EICHHORNIA (after J. A. F. Eichhorn, a Prussian). Pontederidcer. This genns includes the Water Hyacinth (see Fig. 755), the famous "million dollar weed" that obstructs navigation in the St. John's river, Florida, and is a source of wonder and delight in every collection of tender aquaties in the North. The curious bladders made by the inflation of the petioles help the plant to float freely. About flowering time the plant sends down anchoring roots which, if the water be only 3 or 4 inches deep, penetrate the soil. The true Hyacinths belong in an allied order ; the Pickerel-weed, in the allied genus Pontederia, the ovary of which by abortion is 1-celled, and each cell I-ovuled, while Eichhornia is 3-celled and many-ovuled.
The plants of this order have been greatly confnsed by botanists, partly because the fugacious, membranous flowers are not well preserved in dried specimens, and partly because of variation in form of leaves, depending upon whether the plants grow in deep or shallow water, or in mad. The common Water Hyaeinth sends out two kinds of roots, the horizontal ones often thick and fleshy, and apparently for reproductive purposes, the vertical ones long, slender, and clothed with innumerable small, horizontal fibers. Water Hyacinths are of easy culture and are propagated by division or seed. If grown in about 3 in . of water, so that the roots may reach the soil, the petioles become elongated and the plant becomes weedy and unsatisfactory.
A. Leaf-stalks inflated: inner perianth-segments not serrated.
speciosa, Kunth (E. crissipes, Solms, Pontederia crássipes, Mart.). Fig. 755. Lrs. in tufts, all constricted at the middle, bladder-like below, sheathed, many-nerved: scape 1 ft . long, with wavy-margined sheaths at and above the middle: fls, about 8 in a loose spike, pale violet, 6-lobed, the upper lobe larger and haring a large patch of blue, with an oblong or pear-shaped spot of bright yellow in the middle: stamens 3 long and 3 short, all curved upwards towards the tip. Braz. B.M. 2932, erroneously, as Pontederia azurea. I.H. 34: 14. A.F. 5:511. Var, màjor, Hort., has rosy lilac flowers. Var. aurea, Hort., has yellowish flowers.
AA. Leaf-stalks not inflated: inner perianth-segments beautifully servate.
azùrea, Kunth. Lrs, on long or short not-inflated petioles, very variable in size and shape: scape often as stout as the leaf-stalk, gradually dilated into a hooded spathe: fls, scattered or crowded in pairs along a stout, hairy, sessile rachis; perianth bright pale blue, hairy outside, inner segments beautifully toothed, the upper a trifle larger, with a heart-shaped spot of yellow, which is margined with white. Braz. B.M. 6487. G.C. Il. 25:17. I.H. $34: 20$. R.H. 1890:540.-One plant will become 5 or 6 ft . across in one season.

Wh. Tricker and W. M.
ELEAGGNUS (ancient Greek name, meaning a kind of willow; from elaios, olive). Eloagndcece. Shrubs or small trees: lvs, alternate, deciduous or persistent, entire or nearly so, clothed more or less with silvery or brownish scales: fls, axillary, solitary or in clusters, apetalous; perianth companulate or tubular, 4-lobed; stamens 4 , included, on very short filaments: fr. a 1 -seeded drupe. About 15 species in S . Europe, A sia and N. America. Highly ornamental shrubs with handsome foliage and mostly decorative frs.; the fls. are inconspicuous, but mostly fragrant. Some of the deciduous species, as E. argentea, lougipes, multiflora and umbellata, are bardy North, while the evergreen ones are hardy only South. A distinct feature of some species, as E. argentea, angustifolia and parvifolia, is the conspicuous silvery hue of their foliage, while E. longipes is the most ornamental in fruit. They grow in almost any well drained soil, also in limestone soil, and prefer sunny position. Prop. by seeds and by cuttings of mature and half-ripened wood; also sometimes increased by layers and by root-cuttings; varieties and rarer kinds can be grafted on seedlings of vigorous growing species.

Index of names (varieties and synonyms in italics):

angustifolia, 1.

argentea. 6.
aureo-variegata, 8 . edulis, 5.
Frederici variegata, 8.
hortensis, 1.

A. Lus. deciduous.

B. Branchlets and liss. beneath siluery white, without any broun scales.

1. angustifolia, Linn. (E. horténsis, Bieb.). Oleaster, Shrub or small tree, to 20 ft , sometimes spiny: lvs. lanceolate or oblong-lanceolate, quite entíre, light green above, $2-3$ in. long: fls. short-pedicelled, $1-3$, axillary, on the lower parts of the branches; perianth campanulate, tube about as long as limb, yellow within, fragrant; style at the base included by a tubular disk: fr. oval, yellow, coated with silvery scales. June. S. Europe, W. Asia. Var, orientalis, Schlecht. (E. arientalis, Linn, f.). Spineless: lvs, often ohlong er oral, clothed more with stellate hairs beneath than with scales, usually glabrous above at length: fr. rather large. Var. spinosa, Dipp. (E. spinòsa, Linn.). Spiny: lvs. linear-lanceolate or lanceolate, scaly above and densely scaly beneath: fr. smaller. L.B.C. 14:1339. B.R. 14:1156.
2. parvifòlia, Royle (E. Japónica, Hort.). Shrub or small tree, to 20 ft ., with erect stems and spiny, spreading branches: lrs. elliptic-ovate or oblong-lanceolate, crisped at the margin, usually with stellate hairs above, glabrous at length, silvery beneath, $11 / 2-3$ in. long: fls. axillary, usually crowded on short lateral branchlets, short pedicelled; perianth narrow, tube longer than
limb, whitish within, fragrant: fr. globose or nearly so, densely silvery when young, pink when ripe, $1 / 3 \mathrm{in}$. long. June. Himalayas, Japan. B.R. 29:51. Mn. 5:145,-Not quite hardy North. Sometimes cult. under the name of E. reflexa, which species, however, is evergreen. Var. Japonica macrophylla is advertised, but probably does not belong to this species.

3. Eichhornia speciosa ($\times 1 \cdot 6$).

BB. Branchlets with reddish or yellowish brown scales and sometimes silvery besides: l's. silvery white beneath, often with few brown scales.
c. Fr. juicy, scarlet-red or brownish rea.
3. umbellàta, Thunbg. Spreading shrub, to 12 ft , often spiny, with yellowish brown branchlets, often partially silvery: lvs. elliptic or ovate-oblong, silveryscaly above, without brown scales beneath, crisped at the margin, $11 / 2-3$ in. long: fls. yellowish white, fragrant, axillary, 1-3 usually crowded on short lateral branchlets; tube of perianth longer than the limb: fr. globose or roundish oval, scarlet, $1 / 4-1 / 3$ in. long, erect, rather shortstalked, clothed with silvery scales when young, ripening late in fall, while the similar E. parvifolia ripens much earlier. May, June. Japan. A.G. 12:206. M.D.G. 1899:569.
4. multiflora, Thunbg. Spreading shrub, to 8 ft ., spineless ; branchlets reddish brown: lvs. elliptic or ovate-oblong, with scales or stellate hairs above, often glabrous at length, usually with few brown seales beneath: fls. 2-3, axillary, usually crowded on short lateral branchlets; tube longer than the limb: fr, acid, oral or roundish-oval, scarlet, $3 / 4-\frac{1}{3} \mathrm{in}$. long, erect or nodding, with brown scales when young, ripening in July or August, rarely later: pedicel as long as or somewhat longer than fr. May, June. Japan. M.D.G. 1899: 569. - Very variable species, and perhaps the former and the following are only varieties of it.
5. longipes, Gray (E. Edulis, Hort.). Goumi. Fig. 756. Shrub, to 6 ft , with reddish brown branchlets: lvs. elliptic, ovate or obovate-oblong, with stellate hairs above, usually glahrous at length, mostly with scattered brown scales beneath, $1-2 \frac{1}{2}$ in. long: fls. $1-2$, axillary, on the lower part of the branches or on short branchlets, yellowish white, fragrant; tube as long as the limb: fr. pendulous, oblong, $3 / 4 \mathrm{in}$, long, scarlet, on slender peduncles, much longer than the fr.; fr. with brown scales when young, ripening in June or July, of agreeable, slightly acid flavor. April, May, Japan, China. B.M. 7341 (as E. wultiflora). G.F. 1:499. G.C. 1873:1014 Gng. 1:275, 277.
cc. Fr. rather dry, silvery white.
6. argentea, Pursh. Erect shrub, to $12 \mathrm{ft} .$, spineless, stoloniferous, with reddish brown branchlets: Ivs. ovate
or oblong-lanceolate, silvery on both sides, often with scattered brown scales beneath, 1-3 in. long: fls. 1-3, axillary, yellow within, fragrant: fr. oval or roundish oval, densely clothed with silvery scales, short-pedicelled, $1 / 8-1 / 2$ in. long. May, June. Canada, south to Quebec, Minnesota, U'tah. B.B. 2:467.

756. Elæagnus longipes ($\times 1 / 2$).

As. Le's. evergrcen : usually flowering in fall.
7. macrophylla, Thunbg. Spineless shrub, to 6 ft ., with silvery white branchletx: lys. broad-ovate or broad-elliptic, on stout and rather long petioles, scaly above, usually glabrous at length, silvery white beneath: fls, axillary, with silvery and browuish scales outside; tube companulate, abruptly narrowed at the base, as long as limb, Japan.
8. pungens, Thunbg. Spreading shrub, to 6 ft., mostly spiny, with brown branchlets: lss. oval or oblong, undulate and often crenulate at the margin, at length glabrous above, silvery beueath, more or less interspersed with brown seales, $2-4 \mathrm{in}$. long: fls. in axillary clusters; tube cylindrical, slightly narrowed at the base, longer than the limb: fr. short-stalked, about $3 / 4 \mathrm{in}$. long, with silvery and brown scales. Japan. Var. Fréderici varisgàta, Hort. Lrs. with yellow center and green margin. Var, maculàta, Hort. With large yellow blotches. A. G. 13:122. Var. Slmoni, Hort. Lrs. rather large, ob-long-elliptic, with few brown scales beneath or nearly without. Var. Simoni tricolor, Hort. Lvs. like the former, but variegated with yellowish and pinkish white. Var. refléxa, Hort. Branches spineless, elongated and flexile: Ivs, with scattered brown scales beneath. Var. variegàta, Hort. Lvs. margined yellowish white. Yar. aúreo-variegàta, Hort., probably belongs here.
E. ferruginea, A. Rich. Spineless evergreen shrub, with spreading brown branches: 1vs. with yellowish and brown scales beneath; perianth with quadrangular, abruptly contracted tube: fr. long-stalked. Japan.-E, gläbra, Thunhg. Spineless evergreen shrub, with brown branches: lvs, shining above, with yellow and brown scales beneath : perianth with slender, tubular tube, gradually narrowed toward the base. twice as long as the limb: fr.shert-stalked. Japan, - E. reflexa, Morr. \& Derne. (E. glabra \times pungens). Evergreen sbrub, with brown branches: Ivs, glabrous above, whitish beneath, densely interspersed with yellowish and light brown scales, giving the under surface a bronzy golden hue: perianth with slender tube: fr. short-stalked. Japan.-E. reflexa, Hort. =E. pungens var. or E. parvifolia.

Alfied Rehder.
ELexIS (Greek, olive). Pulmàcea, tribe Cocoinear. Tropical spineless palms with pinnate foliage, of which the best known is the Oil Palm of western Africa, whose red fruits, borne in large clusters, yield the palm oil of commerce, which is used in making candles and soap. Young plants are grown for ornament in S. Calif., and under glass North. The other 6 species are from tropical S. America. The genus is separated from Cocos by the $1-3$-seeded fruits, with 3 pores above the middle.

Guineénsis, Jacq. Oil Palaf. Stems stout, 20-30 ft., coarsely and deeply ringed: leares $10-15 \mathrm{ft}$.; petiole spiny-serrate; leaflets linear-lanceolate, acute, the same color above and below. F.S. 14:1492.-Elais Guineensis, from an early stage in growth, is one of the most ornamental palms. Until it reaches several feet in height it is a slow grower, consequently we do not see
much of it, except in collections. It does best in a warm temperature, although it will thrive in an intermediate house. Seeds are always obtainable from several of the large European houses. It is but little grown as a commercial palm, as young plants do not show their full character. Given same treatment as Areca lutescens, will grow well. This treatment includes night temperature of 65° and plenty of water.

Jared G. Smith, G. W. Oliver and W. H. Taplin.
ELEOCARPUS (Greek, olire-fruit). Tiliàcea. This genus includes a tender evergreen flowering shrub of very distinct appearance. The creamy white petals, charmingly fringed, the bright red sepals and pedicels, and the uass of yellow stamens are the chief features. The racemes contain $2-5$ pendulous flowers, which are about half an inch across, and fragrant. This plant was once advertised by Pitcher and Manda, and may exist in a few choice collections. The genus has ahout 50 species, all from tropical Asia, Australia and the Pa cific isles. In the tropics they are trees, with alternate, rarely opposite lvs., which are entire or saw-toothed, and in some species sparingly spotted with black beneath: fls, axillary, in racemes; petals glabrous or silky: drupes oblong or globose.
grandiflorus, James Smith. A much-branched shrub, about 7 ft . high under glass: 1 vs . considerably clustered at the ends of branches, 3-6 in. long, broadly lanceolate; petiole a fourth to 1 in . long, with a few distant sawteeth, or more or less round-toothed or wavy-margined: sepals 5 , red outside, white inside; petals 5 . Java. B.M. $4680 .-$ Lvs. rather leathery, dark green above, paler beneath. Warmhouse. Prop. by enttings of nearly ripened wood. Not common.
E. cyàneus, Sims, named for its blue fruits (which are not known in cultivation), has broader and less tapering lys., with more nomerous teeth, and membranous texture, and the sepals are wbite outside. Australia. B.M. 1737.
W. M.

ELEOCOCCA is all referred to Aleurites cordata.

ELEODENDRON (Greek for olive tree, from the resemblauce of the fruit to that of the olive). Celastràcere. Perhaps 40 species of shrubs or small trees in tropical countries, chiefly in the Old World tropics. Lvs, simple, entire or crenate, opposite or alternate, thickish, frequently evergreen: fls, inconspicuous, greenish or white, in axillary elusters; calyx 4-5-parted; petals 4-5, and exceeding the calyx; stamens 4-5: ovary single, surrounded by a fleshy ring: fruit a small fleshy drupe. Certain plants which, before they had blomed, were referred to Aralia, are now known to belong to this genus, representing a distinct natural family. Culture of Aralia.
orientàls, Jacq. (Aràlia Chabrièri, Hort.). A most graceful and handsome plant, with linear-lanceolate alternate, shining, drooping leaves, $10-12 \mathrm{in}$. long, and with a reddish rib. Madagascar, Mauritius. R.H. 1891 , p. 224. A.F. 10:1041. - Holds its lower foliage well, or throws out new foliage to take the place of that which drops. In the early descriptions, the plant was said to liave pinnately compound Ivs., but what were taken for leaflets are really lvs. Still a rare and choice plant in this country. Thrives in either an intermediate or a warm house. Prop. by single-eye euttings in small pots, kept rather warm. See, also, p. 87.
austràle, Vent. Int. into S. Calif. from Australia, and prized for its holly-like foliage. In its uative habitat it is a tree 30-40 feet high, producing useful close-grained wood.
L. H. B.

ELAPHOGLÓSSUM. See Acrostichum.

ELDER and ELDERBERRY. See Sambucus.

elecampane. Inula Helenium.

ELECTRO-HORTICULTURE is a term used by Siemens to designate the application of the electric light to the growing of plants. The term is an unfortunate one, since the use of electric light is not an application of electricity itself to plant-growing, but is merely a device for securing illumination. Any strong
artificial light hastens assimilation, and thereby eauses plants to grow more rapidly. The practical questions to be considered are, therefore, the expense of using the light and determining whether there are injurious elements in the spectrum of the given light.
The spectrum of the electric arc light is the spectrum of carbon plus that of certain gases incident upon combustion. The spectrum of the are light is rich in rays which lie beyond the luminous part, and these rays are very injurious to most plants. These rays of the ultra-violet part of the spectrum are eliminated by a plain glass, so that when the electric light is surrounded by a globe, or when the light is hung above the roof of the greenhouse, the injuries are reduced to a minimum. Long-continued experiments at Coruell University have shown that each kind of plant behaves iu its own way in the presence of electric light. It is not possible to prophesy what the results may be in a giveu species. A few plants, as tomatoes, Euglish cucumbers, and carrots, seem to be very little affected either injurionsly or beneficially. Nearly all flowers are hastened into bloom by the influence of the light, and their colors are often brighter than under normal conditions; but in many instances they do not last so long. The best results are secured if the light is applied to the plants when they have reached nearly or quite their full stature. If applied very early in their growth, they tend to make flowers before the plant has attained sufficient size. In floriculture, therefore, the ehief practical value of the electric arc light seems to be its influence in hastening the flowering of certain plants in dark climates, or when plants must be had for a definite season. For instance, if the light is applied to Easter lilies for a month before their normal blooming time, the period of bloom may be hastened from four to ten days.

Lettuce has shown greater beneficial results from the application of the electric light than any other plant with which careful experiments have been made. Lettuce which receives light from the arc lamp for half of each night may be expected to reach marketable size from oue to two weeks before the normal crop.

As a rule, better results are secured when the light runs only half the night. A common two-thousand candle-power light has a marked effect on the growth of many plants at a distance of sixty to even one hundred feet. The incandescent light has a similar influence, but not so marked. The incandescent or Welsbach gas light is also capable of hastening the growth of plants.

As now understood, the application of the electric light to the growing of plants is a special matter to be used when the climate is abnormally cloudy or when it is desired to hasten the maturity of crops for a particular date. Only in the case of lettuce has it been proved to be of general commercial importance; and even with lettuce, it is doubtful if it will pay for its cost in climates which are abundantly sunny. For the literature of the subject, consult the publications of the Experiment Stations of Cornell University and of West Virginia.
L. H. B.

ELEOCHARIS (Greek-made word, meaning delighting in marshes). Cyperd̀cere. Rush-like native plants, mostly of low, wiry growth, and commonest in marshes and on muddy shores. They are mostly perennial. The culms are simple, terete or angular, bearing a spherical or oblong head of inconspicuous fls.: lvs, usually reduced to mere sheaths. They are interesting for the borders of ponds, and are very easy to naturalize. Three species have been offered by collectors: E. equisetoldes, Torr. A shore plant, with terete hollow culms $2-3 \mathrm{ft}$. high, and cylindrical heads about the thickness of the culm; resembles horse-tail (Equisetunu). E. aciculàris, R. Br. Hair-like, 6 in. high, making grass-like mats. E. ovàta, R.Br. Culms nearly terete, 12 in . high: head globose or ovate.
L. H. B.

ELEPHANT'S EAR is a name for Begonias. The Elephant-Ear Caladium is a Colocasia.

ELEPHANT'S FOOT. Testudinaria.

ELETTARIA (native name). Scitaminàcea. Differs from Amomum in technical characters, as in the slender tube of the perianth, the presence of internal lobes in
the perianth, and the filaments, not prolonged beyend the anther. Perhaps only 2 species, although more have heen described. E. Cardamomum, Maton, affords the small Cardamons of commerce, which are the dried capsules, and which are used in medicine. The large or China Cardamons are from species of Amomum. The Cardamons of Nepal and Bengal are Amomum; those of S. Indta are Elettaria. The Elettaria is native to India, but is cult. in Jamaica, and it will no doubt thrive in parts of S. Fla. Plants have heen offered by Reasoner Bros. The Cardamon plant grows $5-10 \mathrm{ft}$. high, hearlng an erect, jointed, closely sheathed stem, and lanceolate acuminate entire nearly sessile lvs. often 2 ft . long: fls. purple-striped. It is said to prefer shade and a moist soil. In three or four years plants give full crops, but they become more or less exhausted after bearing three or four crops. Prop. by dividing the roots and by seeds. Under glass, handled the same as Alpinia.

L. H. B.

ELEUSINE (Greek, Eleusis, the town where Ceres, the goddess of harvests, was worshipped). Graminear. Crab Grass. Yard Grass. Coarse, tufted aunuals, with the stout unilateral spikes digitate at the apex of the culm. Spikelets several-fld.; arranged in two rows along one side of a continuous rachis, rachilla articulate above the empty glumes: fls. perfect or the upper one staminate: grain loosely enclosed by the fl.-glume and palet. Species 5 or 6 in tropical regions of the Old World. Some are valued as cereals in Africa, India, and some other eastern countries. For E. Egypthaca, see Dactyloctenium.
Indica, Gærtn. Dog's Tail. Wire Grass. Fig. 757. Erect. 2-4 ft. high ; culms ascending, flattened: spikes 5-7, about 2-4 in. long, digitate, often with one or two
 and dooryards in the South, often troublesome as a weed on lawns.
coracàna, Gærtn. AfR1can Millet. Fig. 758. Erect, 2-4 ft high, closely related to and much resembling E. Indica. Can be distinguished from it by its stouter habit, shorter, broader and larger spikes. - Cult. in India, China and Japan for the grain. Beer is brewed from the grain in Abyssinia. In cult, in America as an ornamental grass. Coracana means "of the crows."

Barcinonénsis, Costa. Culms tuffed, 6 in, to 1 ft . high: leaf-blades short, about one-sixteenth of an in.
wide, obtuse at the apex: spikes broad, $2-4$, digitate, 1-11/2 in. long; spikelets closely imbricate, 5 -fld. - lnt. into Amer. on ballast, and in cult. as an ornamental plant.
P. B. Kennedy.

ELEUTHEROCOCCUS (Greek, eleutheros, free, and kokkos, kernel; the seeds are easily detached from the flesh). Aralideere. Ornamental bardy shrubs, with numerous erect, spiny stems, rather large, digitate lvs., inconspicuous greenish fls., and black berries in umbels. They prefer a somewhat moist and rich soil, and are well adapted as single specimens on the lawn or in borders of shrubberies for the handsome bright green foliage. Prop. by seeds and root-cut tings. Three species in E. Asia, with alternate, long-petioled, digitatelvs.: fls.small, greenish, polyg-amous-diccious, 5 -merous, pedicelled, in terminal, peduncled umbels: berry roundish oval, black, *hining, 5 -seeded.
senticosus, Maxim. Shrub, to 15 ft., the branches densely covered with slender spines: lfts. 5, rarely 3, oblong, usually narrowed at the base, acute, sharply and doubly ser rate, sparingly hispid above, with bristly hairs on the veins beneath, 4-6 in. long: fr. about $1 / 2 \mathrm{in}$. high. 12:393.

759. Winter bud of Elodea. Nat. size. July. N. China. Gt. Alfred Rehder.

ELIOT, JARED, author of the first American book on agriculture, was born November 7. 1685 , and died April 22, 1763. He was the graudson of John Eliot, the "apostle of the Indians," and was pastor at Killingworth, Conn., from October 26, 1709, until his death. He was a botanist, and the leading consulting physician in New England. He introduced the mulberry tree into Connecticut, wrote an essay upon the silkworm, and discovered a process of extracting iron from ferrugineous sands. His "Essays upon Field-Husbandry," begun in 1748, formed the first American book devoted exclusively to agriculture. It is now extremely rare. He was a high-minded, progressive and useful citizeu. Many of his sermons were separately reprinted. Jared Eliot and Samuel Deane were among the few agricultural writers of note in the period before American horticulture was considered distinct from agriculture. W. M.

ELLIOTTIA (after Stephen Elliott, South Carolina's early and excellent botanist. For a fine portrait and sketch of him, see G.F. 7:204-206). Ericdeea. A genus allied to Rhododendron and Ledum, with three species, of which the most interesting is an extremoly rare native southern shrub, with delicate white flowers, an inch in diameter, composed of 4 slender petals, and borne in racemes $6-10 \mathrm{in}$. long. John Saul once advertised it, and P. J. Berckmans, of Augusta, Ga., still cultivates it. The two Asiatic species are inferior in size and beauty of flowers. Important generic characters which distinguish this genus from Leiophyllum and Cladothamnus are : flowers terminal, racemose; petals 3-5, entire: anthers 4-10, opening by irregular cracks: ovary $3-5$-celied.
racemòsa, Muhl. Shrub, 4-10 ft. high, branches slender: Ivs. alternate, oblong, acute at both ends, glandu-lar-mucronate, entire, thin, membranous, $3-4$ in. long, 1-1 $1 / 2 \mathrm{in}$. wide; petioles slender, grooved, hairy, about 1 in. long: calyx lobes 4, short, rounded: stamens 8: fr. unknown. Wet, sandy woods of S. C. and Ga. G.F. 7: 205.
W. M.

The plants formerly offered by John Saul were incorrectly named, and he refunded whatever amount had been charged for all plants sold by bim. They proved to be Styrax grandiflora. The only plants now known to exist are a few specimens collected by the writer, in company with Dr. Asa Gray in 1873, in a patch in Columbia county, Ga., which covered an area of about

3 acres. This was afterwards cleared, and not a vestige of Elliottia remains. A small patch is said to exist in Edgefield county, S. C., near the city of Augusta, Ga., but all my efforts to find it have failed.
The only plants which the writer has ever been able to propagate came from suckers. A few of these were sent to the Arnold Arboretum and to Kew Gardens. No seed has ever been produced upon our specimens, which are now 15 feet high.
P. J. Berchmans.

ELM. See L'tmus.
ELODEA (Greek, marshy). Hydrocharidùcere. This genus contains perhaps 9 species of aquatic herbs, including the Ditch-moss, an interesting hardy perennial plant found in slow streams and ponds nearly throughont North America, excent the extreme north. It is particularly desirable for home and school aquaria. It is a slender, wholly submerged plant, with branching stems 4 in , to 3 ft . long, according to the depth of the water. The pistillate fls, are raised to the surface by their long calyx tubes, and float there. The minnte staminate fis., which are rarely seen, commonly break off below, rise to the surface, float about, open, and shed their pollen. The fruit ripens below the surface, and the seeds rise. This plant is now found abundantly in Europe, being sometimes known in England as "Bahington's Curse," from the man who introduced it. It reached England in 1841 and choked up many canals and waterways, notably the Cam. It was very abundant in 1852 and 1853, but declined in the next few years. Ducks, geese and swans are fond of it, and render great service in getting rid of it. It can be used for manure where it grows in sufficient quantities. Like many other water plants, it makes heavy buds in the fall (Fig. 759), which drop to the bottom and grow in the spring.
Canadénsis, Mich. (Anécharis Canadénsis, Planch. A. Alsinástrum, Bab.). Water-weed. Ditch-moss. Water Thyme. Water Pest. Les. in whorls of 3 or 4, or the lower ones opposite, linear, minutely toothed or not, 2-7 lines long. $1 / 2-2$ lines wide: fls. white; calyx tube of the pistillate fls. 2-12 in. long; spathes 5-7 lines long. B.B. 1:93. W. M. Triceer and W. M.

ELODES. See Hypericum.

ELSHOLTZIA (John Sigismund Elsholtz, author of an unpublished Flora Marcica, the MS. of which is in the Royal Library, Berlin) Labidte. Herbs or undershrubs, in temperate and tropical Asia, with fls. in spikes: calyx tubular, 5 -toothed ; corolla oblique or 2 lipped, the upper lip 4 -toothed in the typical species (described below), the lower longer and entire or somewhat crenulate ; stamens 4, separated. One is in the Amer, trade.

cristàta, Willd. Fig. 760. Twelve to 18 in. high, with opposite, petioled, ovate-oblong toothed lvs, and small, light blue fis, in crowded, more or less 1-sided spikes: calyx enlarging in fr. Asia. B.M. 2560.-Hardy annual, with very aromatic foliage and attractive, upright habit. Said to be a good bee plant.
L. H. B.

ELYMUS (Greek, rolled up or enveloped). Gra minere. Lvae Grass. Wild Rie. Ereet perennial grasses, with flat or convolute lvs. and closely-fld. terminal spikes: spikelets 2-6-fld., often long-awned, the uppermost imperfect, sessile, in pairs (rarely in 3's or 4's), at the alternate notches of the continuous or articulate rachis, forming terminal spikes; empty glumes acute or awn-pointed, persistent and subtending the fls. like an involucre. Species about 20, in the temperate regions of Eu., Asia and N. Amer. For E. Hystrix, see Asperella.
arenàrius, Linn. SEa Lyme Grass. Stout, coarse perennial, $2-8 \mathrm{ft}$. high, with strong, ereeping rootstocks: lvs. long, rigid, smooth: spikes dense, terminal, $6-12$ in. long; spikelets about 1 in. long and $3-4$-fld. - One of the best grasses known for binding the drifting sands of our Atlantic and Pacific coasts, especially when combined with Beach Grass (see A m moph ila arenaria). The seed is also used by the Digger Indians for food.
Canadénsis, Linn. Canada Lyme Grass. Terrel Grass. Rather stout, smooth perennial, $3-5 \mathrm{ft}$. high, with broad, flat lrs. 6-12 in. long : spikes 4-9 in. long, exserted, nodding; spikelets very rigid, 3 -5-fld.: fi.glumes long-awned. Common in low thickets and along streams in rich, open woods throughout the country. - Cult. as an ornamental plant. Var. glaucifolius, Gray (E : glaucifolius, Hort.), is pale and glaucous throughout, with usually more slender awns. Cult. as an ornamental grass.
condensàtus,Presl.Giant Rys Grass. The largent of the native Rye Grasses. growing to the height of $5-10 \mathrm{ft}$.: culms in dense tufts, stout: spikes 8 in. to $1 \frac{1}{2} \mathrm{ft}$. long, very variable, compact or interrupted, bearing branching clusters of spikelets at each joint. Common in the Rocky mountain regions and the Pacific slope. -Useful for binding the loose sands on railway banks. Cult. as an ornamental grass.
glauncus, Regel. A glau-cous-leaved, dense, cespitose, hardy perennial grass $3-4$ ft. high, with very short, smooth 1rs. and erect, elongated spikes: spikelets in 2 's, erect, usually 5 -fld., densely villous - pubescent, short awned. Turkestan.-Rarely in cult. as an ornamental grass. P. B. Kennedy.

EMILIA (perhaps a personal name). Compósitce. Herbs, perennial or annual: related to Senecio, but always withont rays: heads rather small, the involucre very simple and

761. Emilia flammea. Separate head $\times 1 / 3$. cup-shaped, with no small outer scales: akenes with 5 acute ciliate angles: florets all perfect. A dozen or more species have been described from Africa, tropical Asia and Polynesia. One species in common cult.
flammea, Cass. (E. sagittàta, DC. E. sonchifolia, Hort., not DC. E, sonchifolia, Linn., var. sagitlàta, Clarke. Cacàlia coceinea, Sims, B.M. 564. C. sonchifolia, Hort., not Linn. C. sagittala, Vahl. Se-
nècio sagittatus, Hoffm.). Tassel Flower. Flora's Paint Brush. Fig. 761. A neat annual, erect, 1-2 ft., glabrous or sparsely bairy, the long stems terminated by clusters of small scarlet (golden yellow in the form called Cacalia lutra, Hort.) beads: lvs, lance-oblong or ovate-lanceolate, clasping the stem, remotely crenatedentate: involucre scales much shorter than the florets. E. Ind., Philippines.-This much-named annual is one of the commonest garden flowers. It is of the easiest culture in any good soil. Blooms from July until frost, if sown as soon as weather is settled.
E. purpürea, Cass. (E. sonchifolia, DC., not Hort. Cacalia sonchifolia, Linn. Senecio sonchifolia, Moench). Radical lvs. often more or less lyrate, stem lvs, brosder and clasping, the heads fewer in the cluster and the involucre scales nearly as long as the florets. Apparently not in cult. in this country.
L. H. B.

EMMENANTHE (Greek, enduring flower; the persistent corollas retain their shape when dry like everlasting flowers). Hydrophylldceo. Half a dozen annual herbs from western North America, of which the most interesting species was introduced to cultivation in 1892, under the name of California Yellow or Golden Bells. It grows $9-12 \mathrm{in}$. high, forming bushy plants, each branch loaded with broadly bell-shaped, pendulous, unwithering flowers, about half an inch long, of creamy yellow. The general effect of a branch suggests the lity-of-the-valley, but the foliage is pinnatifid. The lasting character of the fl. distinguisbed the genus from its allies, the nearest of any garden value being Phacelia. Corolla lobes 5 ; stamens 5 ; style 2 -cut. The species named below belongs to a section of the genus, with calyx lobes broader downward, and coarsely pitted seeds. All the others have the calyx lobes broader upwards and the seeds more or less wrinkled transversely.
penduliflora, Benth. California Yellow or Golden Bells. Somewhat sticky, with long or short, soft bairs: lvs. pinnatifid, lobes numerous, short, somewhat toothed or sharply cut: orules about 16: seeds 1 line long. Calif. G.C. II1. 11:339.
W. M.

EMPETRUM (Greek, en, in, petros, rock; growing often on rocks). Empetrdeer. Crowberry. Evergreen, hardy, prostrate or creeping, heath-like shrubs, with small, crowded lvs., inconspicuous purplish fls., and globose, red or black, edible berries. They grow best in moist, sandy or peaty soil, and are especially handsome for rockeries. Prop. usually by cuttings of nearly ripened wood in late summer under glass. One species through the northern hemisphere in mountainous and arctic regions, also in S. America. Lvs. generally linear, thick, alternate : fls, diocious, small, 1-3 axillary, nearly sessile, 3 -merous: fr. a 6-10-seeded drupe.
nigrum, Linn. Lvs. linear to linear-oblong, glabrous or nearly so, entire, $1 / 6-1 / 4 \mathrm{in}$. long: fls. purplish: fr. black, about one-fifth in. in diam. Var. purpureum. DC. Fr. red. Arctic and boreal N. Am. Var. rubrum, DC. (E. rubrum, Vahl). Young branches and margins of lvs. villous, hence the plant grayish green: fr. red. Antaretic S. Am. B.R. 21:1783.

Alfred Rehder.
ENCELIA (meaning obscure). Compósitce. About 20 species of American berbs, chiefly western, often woody at base. The following was introduced by Franceschi, Santa Barbara, Calif., and has fls, $21 / 2$ in. across, with yellow rays and a black disk. Has probably never been tried in the East.

Californica, Nutt. Woody at base, $2-4 \mathrm{ft}$. high, strong-scented, rather hoary, or becoming green: Ivs. $1-2 \mathrm{in} . l o n g$, ovate to broadly lanceolate, usually entire, indistinctly 3 -ribbed from the base, abruptly stalked: rays numerous, $2-4$-toothed: seeds olovate, with long, silky bairs on the callous margins and a shallow noteh at the tip.

ENCEPHALARTOS (Greek, en, within, kephale, head, and artos, bread; alluding to the bread-like interior of the trunk). Cycadacea. Grand cycads fromtropical and southern Africa, grown chictly for their splendid evergreen foliage. Nineteen or less species. The finest picture of an Encephalartos in any American periodical is probably that in Garden and Forest 4:209, accompany-
ing an article from William Watson, of Kew, whose remarks are here condeused. These plants are specially suited for large conservatories, the fronds being not easily injured. They should succeed outdoors South. Some of the Kew specimens must be nearly a century old. The trunks of some kinds grow only a few inches in many years. The specimen illustrated had a stem 5 ft . in circumference, nearly 3 ft . high, and crowned by 107 leaves, each 3 ft . long, and rigid. A whorl of new leaves is produced each year, the latest one having 34 full sized leaves. The whole head was about $7 \frac{1}{2}$ feet in diameter. Most kinds prefer a sunny, tropical house, but E. brachyphyllus and perhaps others may be grown in a cool grcenhouse if kept a little dry in winter. The cones are always interesting and often very decorative. Those of E. villosus are twice as large as a pineapple, orange-yellow, half-revealing the scarlet fruits.
Cycads are propagated by seeds; also by offsets or suckers. They are slow-growing, except in very warm houses. They like a strong, loamy soil. While making new growth they need plenty of water. See Cycas. The woolliness of the stem and leaf-segments varies with the age of the plants and of the leaves.
The pith and central portion of the cones of some species form an article of food among the Kaffirs, hence the common name of Kaffir Bread. The most widely known species in cultivation are E. villosus, E. Altensteinii and E. pungens. Though very handsome Cycads, they are by no means popular.

Some other Cycads frequently produce seed in conservatories, but Encephalartos seldom does, and plants are, therefore, usually imported. Dry trunks, weighing frequently from $50-75$ pounds, have been received from South Africa. They often remain dormant for a year or more, and do not make ornamental specimens for two or more years.
In the following descriptions "rachis" refers to the midrib of the leaf on which the leaflets or segments are horne, and "petiole" means the portion of the leaf below where the leaflets begin.

A. Leaflets toothed (sometimes entire in No. 1).

B. Petiole 4-angled: foliage glaucous, i. e., covered with plum-like "bloom."

1. horridus, Lehm. Trunk woolly or not: leaflets opposite or alternate, lanceolate, mostly entire, sometimes toothed. Var. glaúca is presumably more glaucous than the type. B.M. 5371.

B8. Petiole sub-cylindrical: foliage not glaucous.

c. Leaves dark green: trunk not woolly.

2. Altensteinii, Lehm. Leaflets mostly opposite, lanceolate. B.M. 7162-3. G.C. 11. 6:392, 393, 397; I1I. 2:281; 12:489-93.
cc. Leares light green: trunk woolly.
3. villosus, Lehm. Leaflets opposite or alternate, linear-lanceolate. B.M. 6654. R.H. 1897:36. G.C. I1. $1: 513 ; 3: 400 ; 7: 21 ; 13: 181$.
AA. Leaflets not toothed (except in young lvs. of Nos. 8 and 9, and also in No, 1).

B: Foliage glaucous.

4. Lêhmanni, Lehm. (Cỳcas Léhmanni, Hort.). Trunk not woolly: rachis and petiole obtusely 4 -angled; leaflets nearly opposite, narrowly or broadly lanceolate, rarely 1-toothed. Gt. 1865:477.

Br. Foliage not glaucous.

C. Apex of leaflets mosily obtuse, pointless.

5. longifolins, Lehm. Trunk not woolly, at length tall: rachis and petiole 4 -cornered but flattish above: lowest leaflets often 1-3-toothed, margin somewhat revolute: wool soon vanishing from the rachis and leaflets. Var. revolùtus, Miq., has the margins more distinctly revolute. Var. angustifoliua has narrower, flat leaflets. Var. Hookeri, DC., has narrowly lanceolate leatlets, not glaucous but intense green, and rachis not woolly. B.M. 4903, erroneously named E. Caffer, is referred to this place by a recent specialist, though the leaffets are distinctly pointed in the picture.

ENDIVE

cc. Apex of leaflets always strong-pointed.

D. Form of leaflets linear.

E. Margin of leaflets revolute.

6. eycadifolius, Lehm. (E. Friderici-Guiliélmi, Lehm. E. cycadifolius, var. Friderici-Guiliémi, Rod.). Trunk woolly at first: rachis and petiole ashy-pubescent : leaflets opposite and alternate, linear. I.H. 29:459. G.F. 4:209.
ex. Margin of leaflets not revolute.
7. púngens, Lehm. (Zàmia púngens, Ait.). Rachis and petiole glabrous: leaflets long-linear, dark green, rigid, flat, striated beneath. Var. glaúca is also sold.

DD. Form of leaflets lanceolate.

E. Rachis glabrous.
8. Cáffer, Miq. (E. Cáffra, Hort.). Petiole 3-angled: leaflets alternate, narrower at the base, twisted, the younger ones with 1 or 2 teeth. R.H. 1869, p. 233. Not B.M. 4903 , which is E. longifolius, var. Hookeri.

EE. Rachis spidery-pubescent.

9. Cáffer, var. brachyphỳllus, DC. (E. brachyphÿllus, Lehm.). Rachis and blades of the lower leaflets spiderypubescent: male cones sessile instead of peduncled. The pinnæ are erect, and longer and narrower than in E. Caffer.
W. M., P. J. Berckmans and W. H. Taplin.

ENCHOLIRIUM. Consult Tillandsia.
ENDIVE (Cichorium Endivia). Compositce. See Cichorium. During summer and fall, well-blanched heads of Endive may be found in all our large city markets, and are appreciated to some extent, especially among the foreign part of our population. We seldom see Endive in American home gardens, or in small local markets. In the absence of lettuce during the latter part of the season, Endive serves as an acceptable

762. Green Curled Endive tied up for blanching.
salad, and is well worthy of greater attention than it receives, especially as it is of easy culture. Select any ordinary good garden soil. Sow seed thinly in drills, which need not be more than a foot apart, but thin the plants promptly to about the same distance in the rows, and keep free from weeds, and also well cultivated and hoed. When the plants have attained nearly their full growth, gather up the leaves and tie them lightly at their tips (Fig. 762). In from two to three weeks' time, according to weather conditions, the heart will blanch beautifully, and the plant should then be promptly used or marketed, as decay sets in soon after this stage of development. The blanching may also be done by slipping a large-sized but short tile or piece of tile over each plant, after the leaves are gathered up and held closely together.
The varietal differences are slight, and consist mostly
in variations of form of leaves. The standard variety grown in America is called Green Curled. In European catalogues we find a number of varieties listed and descrihed. Among them Moss Curled, Rouen, and Broadleaved are the most popular.
T. Greiner.

ENEMIES. This word is found increasingly useful to include the work of Insects and Diseases, which see. Also consult Spraying and Toots.

ENKIANTHUS (Greek words, referring to shape of the Andromeda-like flowers). Also written Enkyanthus. Ericacear. A genus of 5 species of shrubs, allied to our familiar Andromeda, Zenobia and Pieris (the last of which it most resembles in habit), and distinguished from these genera by the obtuse anthers, 2horned at the top on the back, and long pores: seeds 3-5-winged. China, Japan and Himalayas. E.Japonicus is very showy in autumn, with its brilliant yellow foliage more or less marked with red, and its strongly contrasting brown capsules. In early spring it bears numerons umbels of Andromeda-like fls. Pot-grown piants are ohtained through dealers in Japanese plants. The species is hardy as far north as Washington, D. C., and perhaps farther. Enkianthus is a genus of glabrous shrubs: branchlets somewhat whorled: buds furnished with deciduous bracts: lvs. stalked, leathery and evergreen or membranous and deciduous, entire or miuutely toothed: fls, in terminal umbels, white, rosy or scarlet, drooping or merely nodding; calyx small, 5-cut; corolla urceolate or broadly bell-shaped, with 5 spreading or reflexed lohes; stamens 10: ovary 5-celled. Four kinds are grown abroad under glass. Equal parts of loam and peat, and careful potting, are advised. Prop. by cuttings of ripe wood, inserted under glass in spring without heat; also, by layering out of doors.

Japónicus, Hook. Lys. crowded at the ends of branchlets, $11 / 3-2$ in. long, short-stalked, obovate when young, ovate when older, acute, serrulate, deciduous: Hs, drooping, pure white; pedicels 8 lines long, glabrous; corolla globose, with 5 sacs at the base, a contracted mouth, and 5 small, revolute lobes: capsule narrow, erect. Japan. B.M. 5822. R.H. I877, p. 467. G.C. III. 21:357.
E. campanulàtus, Nicholson. Fls. terminal, drooping, in short racemes, dark red throughout, without sacs at the base; pedicels sometimes minutely hairy, 6-9 lines long; corolla 4 lines across, with 5 erect lobes. In the forests of Japan sometimes 30 ft . high. Has brilliant foliage. Northern Jap. B.M. 7059. R.H. 1888, p. 512 (as E. Himalaicus). - E. Himalảicus, Hook. Livs. 2-3 in. long, narrower above the middle and more tapering than in \mathbf{E}, Japoniens, acnter at the base.pubescent beneath when young: fls, drooping, 6-14 in an umbel; pedicels hairy; corolla dull yellowish red, streaked brighter red, witbout sacs at the base, and erect lobes. B.M. 6460. The bright red petioles and leaf-margins are possessed to a lesser degree in the next species, but this has yellowish pedicels and the next species red ones, - E. quinqueflorus. Lour. Livs. longer-petioled than in the rest, oval, and more abruptly pointed: ealyx colored like the corolla instead of green, as in the other kinds: fls, drooping, scarlet, sometimes white at tips, with 5 sacs, which are shorter than in E. Japonicus. R.H. 1849:221. B.A1, 1649. B.R. 11:884-5. The buds are particularly interesting.
W. M.

ENTADA (a Malabar name). Legumindsa. A genus of 13 species of tropical, woody, spineless climbers, with bipinnate lvs. White fls., in spike-like racemes. One kind has lately been introduced from the West Indies to the southern states. It makes a quick growth. Petals free or slightly cohering, valvate: stamens 10 , free, exserted: anthers crowned with a deciduous small gland: ovary many-ovuled. The lvs. often beartendrils. Some of the species yield "Sea Beans" (G. F. 7:503).
polystàchya, DC. At length tendril-bearing: pinna in 4-6 pairs: lfts. in 6-8 pairs, oblong, rounded at apex: racemes in terminal panicles: pod oblong, straightish. Trop. Amer.

ENTELEA (Greek, complete; the stamens all fertile, a distinguishing feature). Tiliacec. Perhaps 3 species of trees from New Zealand and Tabiti. The following is said to be an extremely fast grower in S. Calif., and is cult. abroad under glass, but, from the picture cited, it seems not worth the space in northern greenhouses. Lvs. 5-nerved, stellate-pubescent: fls, white, in terminal
cymes; sepals 4-5; petals 4-5; stamens numerous, free: ovary 4-6-celled; cells many-ovuled: style simple.
arborescens, R . Br . Attaining 30 ft .: the heart-shaped outline of the leaf broken on each side, about two-thirds of the way toward the tip, by a projection $1 / \frac{\mathrm{in}}{\mathrm{in}}$. long or nearly as long as the tip of the leaf: lvs, 6 in . long, 4 in . wide, doubly serrate. New Zeal. B.M. 2480.-lnt. by Franceschi.

ENTEROLOBIUM (meaning not obvious). Legumindso. Six species of tropical trees, of which 2 have been introduced into S. Calif. Unarmed: lvs. bipinnate: fls. greenish, in large heads or clusters; corolla 5toothed; stamens any number up to 10 , purple or white.
A. Pod bent back in a comptete circle.
cyclocárpum, Griseb. Pinnæ in 4-9 pairs: lfts. in $20-30$ pairs, unequal-sided, ohlong, pointed. Cuba, Jamaica, Venezuela.

AA. Pod forming half or two-thirds of a circle.
Timboùva, Mart. "A truly magnificent tree, with shining bark and spreading head, sure to become popular in the South. Hardy at Naples, Italy."-Franceschi.

EOMECON (Greek, eastern poppy). Papaverd̀cea. A rare, hardy herbaceous perennial plant with whlte fls., destined to no great popularity, but interesting to lovers of hardy borders. Hooker writes: "A beautiful monotypic genus, intermediate between Stylophorum and Sanguinaria, differing from both in the scapose habit, racemose fls, and sepals confluent in a membranous, boat-shaped spathe, and further from Stylopherum in the form of the Ivs. and color of the fis., and from Sanguinaria in the four petals and elongate style." The plant is hardy with Woolson at Passaic, N. J.
chionántha, Hance. Rootstock creeping, ascending, full of yellow sap: Ivs. all from the root ; stalks twice as long as the blades; blades $3-6 \mathrm{in}$. long, heart-shaped, concave, broadly sinuate, rounded at the apex, bright pale green above, almost glaucous beneath: scape Ift. high, reddish: fls. 2 in. across, white; petals 4 . Spring. China, not Japan. B.M. 6871.
W. M.

EOPEPON. See Trichosanthes.

EPACRIS (Greek-made name, upon the summit; referring to their habitat). Epacriddcea. About 25-30 heath-like shrubs of Australia, New Zealand, ete., of which half a dozen or less are grown as cool greenhouse pot-plants. Lvs. small and entire, usually sharppointed, sessile or short-stalked, seattered or sub-opposite: fls. small and axillary, short-stalked, the flowering stems being elongated leafy spikes. The fis, are regular and perfect; calyx bracteate; corolla tubular, 5 toothed, white or shades of purple and red; stamens 5: ovary 5-loculed, ripening into either a fleshy or capsular fruit. Distinguished from Ericas by the bracteate or scaly calyx, and the anthers opening by slits rather than pores. In the Old World, Epacrises are prized by those who grow heaths, and many good varieties are known. They bloom in early spring or late winter. The varieties of E^{\prime}. impressa may be flowered for Christmas; perhaps others may be so treated. A carnation house, $50^{\circ}-55^{\circ}$, suits them well. There are double-fld. forms. The most important to the horticulturist are:
impréssa, Labill. Three ft., ereet, twiggy, downy: lvs. horizontal or deflexed, narrow-lanceolate and sharp: fls. rather large (often $1 / 2 \mathrm{in}$. long), tubular, pendent, on very short stalks, red or white. B.M. 3407. There are many forms: var. parvifldra, Lindl., B.R. 25:19; E. campanuldta, Lodd., with broader fls., L.B.C. 20:1925; E. cerceflora, Grah., B.M. 3243 ; E. nivàlis, Lodd., snow white, L.B.C. 19:1821, B.R. I8:I53I; E. variábilis, Lodd., blush, L.B.C. 19:1816; Iongiflora, Cav. (E: minidta, Lindl. E. grandifldra, Willd.). Stema woolly, straggling: lvs, ovate-pointed or cordatepointed, sessile or nearly so, many-nerved: fls. long (nearly I in.), red at base and whito at the limb, colindrical. B.M. 982 . B.R. $31: 5 .-$ Handsome. Var. spléndens, Hort., has brighter colors.
acuminata, Benth. Lvs. ovate, acuminate, clasping. ascending: fls. small, red, the corolla tuhe not much exceeding the calyz.
purpuráscens, R . Br. Lvs, ovate-acuminate, tronghshaped, tipped with a long enrved point or spine: Hs. short, the calyx nearly equaling the corolla, white or pinkish. There is a double-fld. form. L.B.C. 3:237. G.C. II. 5:340.-Probably identical with E. pulchella, Cav.
obtusifolia, Smith. Lis, small, elliptic or linear, thick and obtuse: fls, small, white, the spikes more or less one-sided. L.B.C. 3:292.

Other trade names are E. ardentissima. Fls, crimson.-E. hyacinthiflora, var. candidissima, white, early, and var. filgens, pink, - E. hybrida superba is merely a catalogue name for mixed kinds of Epacris.-E. rubélla. Fls. bright red.-E. salndnea.
L. H. B.

The genns Epaeris (thongh perhaps not as well known as the Ericas, with which they are usually grown, requiring the same culture) furnishes the cool greenhouse with some of the most beautiful hard-wooded flowering plants known, the fls, emhracing a good range of color. Where a good variety of these plants is grown, the flowering period extends from the end of January to the end of April. After flowering, the upright or bashy species shonld receive whatever pruning may be necessary to secure a well-shaped plant, while the pendulous varieties will require the shortening of only the strongest branches to indnce a more even growth. If necessary, potting should be done at this time, and those which do not need repotting should have the drainage of their pots made perfect, as a water-logged condition of the soil is fatal to these plants. The soil best suited to them is two parts good fibrous peat, one part leafmold, and one part silver sand. In potting, small shifts shonld be given and the soil pressed as firmly as possible in the pots. After potting and praning, the plants should be placed in a temperature of $60-65^{\circ}$, and syringed on all fine days to encourage fresh growth. During the snmmer they shonld be placed outside, in a position where they would receive some shade during the hottest part of the day, and the pots should be plunged in ashes or other nou-conducting material. Careful watering is necessary at all times with these plants. If allowed to become dry, they will luse their lower lrs., which spoils their appearance; at the same time a saturated condition of the soil is fatal to them. Though they may be propagated by seeds, the use of cut tings of the young growth is more expeditious. These shonld be abont 1 inch in length and the tip ends of the young growths. They may be inserted thickly in pans of sharp silver sand, with a glass bell-jar placed over them to keep them close. The pans should be plunged in the propagating bed and the cuttings carefully watered and shaded till rooted. The moisture which collects in the bell-jars should be wiped out two or three times a day, and a little rentilation from the bottom admitted after about the third day, removing the bell-jars altogether as the cuttings become rooted, which usually takes two or three weeks. When nicely rooted, they should be potted singly into thumb-pots and grown along, pinching when necessary to induce a bushy babit.

Edtrard J. Canning.
It is a good plan to plunge pots of Epacris in an open position and cover the plants during June and Jnly with lath racks. About Augnst, begin to remove the racks a few hours each day until the middle of September. Then remove the racks altogether. This practice hardens the wood and insures the setting of huds. A top dressing is a great lielp to Epacris and all hardwooded plants. Hay or straw, run through a hay cutter, makes the best dressing. It can be put on quickly and evenly; it protects fron the sun; it is light; it dries quickly, and has no bad effects, as manure does in the case of some hard-wooded plants. The writer has found the following sorts do well: Diadem, Eclipse, Her Majesty, Model, Rose Perfection, hyacinthiflora and vars. candidissima and fulgens, impressa alha, miniata vars, superba and splendens, rubra superba.
H. D. Darlington.

EPHEDRA (ancient Greek name, used by Pliny for the Horse-tail). Gnetdeca. Generally low, muchbranched shrubs, often procumbent and sometimes climbing, the green branches resembling much those of

Eqnisetum, bearing minute, scale-like, sheathing lvs. in distant pairs or whorls: fis. inconspicnous, but fr. in some species decorative, berry-like and scarlet. They are but rarely grown, and most of them are tender; half hardy North are E. distachya, foliata, Nevadensis, trifurea. They can be used for covering dry, sandy banks or rocky slopes, and are prop. by seeds or by suekers and layers. Ahout 30 species from S. Europe, N. Africa, Asia and in extra trop. Amer. Fls. dicecious, in small aments, forming usually peduncled axil lary clusters; staminate f1. with a $2-4$-lobed perianth and with the $2-8$ stamens united into a column; pistil. late fl.with an urceolate perianth, including a naked ovale, dereloping into a nutlet; in some species the bracts of the ament hecome fleshy, and form a berry-like syncarp. Latest monograph by O. Stapf, in Denksehr. Akad. Wissensch., Wien, Vol. 56 (1889), (in German and Latin).
E. distàchya, Linn. (E. vulgaris, Linn.). Low, often procumbent, 1-3 ft ., pale or bluish green: lvs. one.twelfth in. long: aments usually clustered, staminste obloug: fls. with about \& stamens, pistillate 2-fld.: fr. berry-tike. S. Europe. W, Asia. Var. monostachya, Stapf, Aments usually solitary.-E. folieta, Boiss. (E. Kokanica, Rgl.). Procumbent or erect, to 15 ft .. bright or bluish green: lvs. $1 / 8-1-10 \mathrm{in}$. long: aments usually clustered, ovate; staminate-ovate fls, with 3-4 stamens; pistillate 2-fld.: fr. berry-like. W. Asia.-E. Nebrodensis, Tineo. Erect, with rigid, pale green branches: lvs. $1 / 8 \mathrm{in}$. long: aments solitary or few; staminate globular ; pistillate 2-fld. fr, berry. like. Mediterr, region to Himal.-E. Nevadensis, Wats. Ereet, 2-3 ft., with pale or bluish green branches: lvs, $1 / 8 \mathrm{in}$.: aments usually solitary ; staminate ovate 6-8.tid.; pistillate 2 -fld.: fr. dry, with ovate bracts. Calif., New Mex.-E. trifürca, Torr. Erect, with rigid, yellowish or pale green branches: Ivs, in 3 's, connate, nbout $1 / 4 \mathrm{in}$. long: aments solitary: pistillate 1 fld: fr. dry, the roundish bracts with transparent margins. Arizona to Colorado.

Alfred Rehder.
EPIDENDRUM (upon trees, allnding to their epiphytal habit). Orchiddcea, tribe Epidéndrea. Epiphytes: inflorescence simple or branched, nearly always terminal: claw of the lahellum more or less adnate to footless column, the blade spreading and usually deeply lobed: pollinia 4,2 in each anther cell, scparated. Nearly 500 species discovered and described from central America.

Epidendrums are noted as the rankest weeds amongst the orchid tribes. The remarkable success in the raising of hybrids, be it in the genns itself, or with the related Cattleya and Lalia, has opened a wide field for the bybridist. Epidendrum seedlings grow freely; the time required to bring them to the flowering stage is little compared with other orehids, and it is but a question of a short time till the blood of the Epidendrums will he infused into the weaker but more gorgeous flowers of genera more difficult to grow. It is also the long stem and the grace of the racemes of the Epidendra, as well as the odor of some of their species, whith the hybridist will try to blend with the largeness of shortstemmed flowers, of Cattleyas for instance. We therefore give below a list of the species but rarely found under cultivation, but the ralue of which will call for and justify large importations of their kind before long.

George Hansen.
It is scarcely possible to apply any one rule for the eultivation of this widely divergent and large genus, which includes many hundreds of variable individuals geographically distributed all over tropical America. For convenience they are treated nnder their several separate sections.

Section I.-Barkeria embraces several deciduous, small-growing species which generally deteriorate sooner or later under cultivation. They succeed hest in small baskets, suspended from the roof in rough, loose material, such as coarse peat fiber, with a small quantity of live chopped sphagnum moss added to retain moisture, this compost freely interspersed with pieces of charcoal or broken erocks or potsherds. They are all subjeets for the coolhouse, require a free, moist atmosphere, shade from the sun while growing, and must be syringed frequently overhead in bright weather. After the plants have matured growth they should be removed to a rather sunny location and be syringed orerhead often enough to keep them in sound condition until they start new action. While resting during winter the tem-
perature may range from 50° to 55° Fahr. at night, and a few degrees higher during the day. They are increased by division. This should take place as the plants start growth action in early spring, allowing at least three pseudobulbs to each piece.

Section 11.- Encyclium, of which E. atropurpureum, E. nemorale and E.prismatoca rpim are good examples, may be grown either in pots or baskets in equal parts clean peat fiber and live chopped sphagnum, with a liberal amount of drainage, and excepting E. vitellinum, which must be grown cool, they require a moist, sunuy location with a winter temperature of 58° to 65° Fahr. by night and several degrees advance during the day. In February and March, many species will start root or growth action; such as need it should then be repotted or top-dressed, as occasion requires. The temperature should be increased several degrees, and a greater amount of water be allowed with frequent orerhead syringing on bright days. Ventilation ahould be given whenerer the weather will permit, to keep the young growths from damping-off and the atmosphere active; at this time the plants will need light shading to prevent sun-burning. The stock is increased by cutting nearly through the rhizome 3 or 4 bulbs behind the lead, when starting action; this will generally cause the latent eyes to grow, but the pieces should not be removed until the new growth is well adranced.
Section III.-Aulizeum includes such species as E. ciliare, E. cochleatum, ete., the several requirements being identical with the preceding.
Seclion Ir.-Euepidendrum. These are mostly tall growing reed-like species, of which E. evectum and E, radicans afford good illustrations. They are best adapted for pot culture. The pots should be two-thirds filled with drainage and the compost-consisting of about equal parts peat fiber and live sphagnum, well mixed-pressed in firmly about the roots, leaving the surface raised a little above the rim in the center when finished, to shed off surplus water. While the plants are growing they require a shaded, moist location, a day temperature of about 75° Fahr., with 5 or 10 degrees less at night. They should not be kept too wet at the roots, but overhead syringing in bright weather is very beneficial. While at rest, in winter the temperature should be modified 10 degrees and a more sunny location be given, with less frequent syringing, enough only to keep the canes or pseudobulbs in sound condition. Young plants often form in the axils of the upper leaves, and on the old flower stems it is hest to let these young plants remain until they start their second growth, as they can be more safely removed at that time.
Section F.-Psilanthemum contains but one species, E. Stamfordianum, which requires the same general treatment as those in Section 11.
atropurpureum, 15 surantiacum, 27. bicornutum and b dentatum are Di acriums.
Brassavola, 16. Capartianum, 26. Catillus, 2. ciliare, 23. cinnabarinum, 3 . cochleatum, 24. crassifolium, 5 . dichromum, 17 elegans, 11. evectum, 7. eburneum, 4 elliptieum, 5 . Endresil, 6. falcatum, 25. fragrans, 26. Godseffianum, 20. imperator, 2, 8. leucochilum, 8 .

1NDEX.
Lindleyanum, 13. maculatum, 21. macrochilum, 16. nemorale, 18 . odoratum is an Erides. osmantbum, 19. paniculatum, 9 . Parkinsonianum, 25.
prismatocarpum. 20.
radicans, 10 rhizophorum, 10. roseum, 15.
sanguineum is a Brougbtomia. Skinneri, 12 . speetabile, 14. Stamfordianum, 1 tibicinus is a Schomburgkia. venosum, 22 .

A. Inflorescence radical. (Psilanthemum.)

I. Stamfordiànnm, Batem. Stems fusiform, 12 in, long: lvs. 7-9 in.: large panicles of yellow

763. Trailing Arbutus or Mayflower. (See Epigras, page 535.)
13. Lindleyànum, Reichb. f. (Barkèria Lindleyàna, Batem.). Stems slender: fls. numerous, about 2 in. across, rose-purple; labellum with a white disk; petals broader than the sepals. Central America, 1839.
14. spectábile, Reichb. f. (Barkèria spectábilis, Batem.). Flor de Isabal. Stems tufted, cylindrical, ${ }^{4}-5 \mathrm{in}$. high: lvs. 2: raceme about 6 -fld.: fls. $3-4 \mathrm{in}$. across, bright lilac ; sepals linear-lanceolate; petals ovate-lanceolate; labellum white at base, red-spotted. Guatemala.
cc. Pseudobulbs 1-2-, rarely 3-leaved, labellum adnate at base, or not up to the middle, column not winged. (Encyclium.)
15. atropurpùreum, Willd. (E. marrochllum, Hook.). Pseudobulbs ovoid, $3-4 \mathrm{in}$, high: Ivs. lanceolate, 12-15 in. long, dull purple colored: peduncle 6 -10-fld.: fls. $21 / 2 \mathrm{in}$. in diam., purplish brown upon greenish ground; lip yellowish white, with crimson stripes. Mex. to Venezuela. B.M. 3534. A.F. 6:609.
var. ròseum, Reichb. f. Sepals and petals purplish, lip bright rosy. Guatemala. P.M. 11: 243.
16. Brassavolm, Reichb. f. Pseudobulbs pear-shaped: lvs. $6-9$ in.: racemes $18-24 \mathrm{in}$, $6-9$-fld.: fls, 4 in . across, sepals and petals narrow, yellowish brown; lip trowelshaped, purple, white and green. Mex, to Guatemala, $8,000 \mathrm{ft}$. B.M. 5664 .
17. dichròmum, Lindl. Fls. white, lip rose-colored, yellow and downy at base. Brazil.
18. nemoràle, Lind]. Pseudobulbs sub-globose, 3-4in. high: lvs. 9-12 in.: peduncles 2 ft . long, covered with warts : fls. 3-4 in. in diam., rose-colored; lip rosy maure, streaked with purple. Mex. B.M. 4606 . G.C. II. 24:332. A.F. 6:633.
19. osmánthum, Rodrigues (E. Godseffidnum, Rolfe. E. Capartidnum, Lindl.). Fls. $1^{1 / 2}$ in. across, in large panicles, light green, suffused with brown; lip white, lined with rose-purple, fragrant. Braz.-One of the handsomest species.
20. prismatocarpum, Reichb. f. (E. maculatum, Hort.). Pseudobulbs ovoid, tapering, 4-5 in.: lvs. 12-15 in.: fls. $1 \frac{1}{2} \mathrm{in}$. across, pale yellow-green, with purplish black spots; lip pale purple, with yellow tip and white border. Cent. Amer., $5,000 \mathrm{ft}$. B.M. 5336.
21. vitellinum, Lindl. Pseudohulbs ovoid, 2 in . long: lvs. 6-9 in.: peduncles $15-18$ in., $10-15$-flowered: fls. cinnabar-red; lip and column orange. Mex., $6,000-9,000$ ft. B.M. 4107. G.C. 1II. 10:141.

Var. màjus, Veitch. Pseudobulbs shorter: racemes denser: fls, larger and more brilliant. G.C. I1I. 12:159. - Very superior to the species; type no longer imported.
ccc. Pscudobulbs 1-2-, rarely 3-leaved: lip adnate up to aper of column. (Aulizeum.)
22. vendsum, Lindl. Butterfli Orchid. Scape 1 ft ., with white sheaths: lvs. 3, 4-6 in. long, linear-lanceolate: scape tumid at base, 5 -7-fld.: fls. pink, chocolate and green, about 1 in . long, lasting a long time. On oaks, etc., Mex.-Of easy culture. The Florida representative of this species is E. Tampense, Libdl. See 9th Rept. Mo. Bot. Gard. 137, plates 38, 39.
23. ciliàre, Linn. Pseudobulbs clavate, $4-6 \mathrm{in}$.: Irs. 4-6 in., springing from sheathing bract: peduncles 5-7flowered: fls. yellowish green; lip white. Tropical America, between 5th and 20th parallel of north latitude. B.R. 10:784.-Plant resembles a Cattleya. Introduced to cult. in 1790.
24. cochleàtum, Linn. Pseudobulbs 3-4 in. : 1rs. 6 in.: racemes $4-7$-flowered: fls. 3- in . across, greenish white; lip deep purple beueath, light green above, with maroon blotch on each side, column white. Trop. Amer. from Fla. to New Granada. B.M. 572.-Introduced 1787, first epiphytical orchid to flower in England.
25. falcatum, Lindl. (E. Perkinsonianum, Hook.). Pseudobulhs thin, raising from ruuning rhizomes, monophyllous: 1vs. 6-12 in., fleshy, channeled on one side: peduncles $2-5$, sheathed, 1 -flowered: ffs, 5 in . across, greenish yellow; lip white, greenish at apex. Mex. to Guateruala. B.M. 3778.- Plants grow inverted.
26. fràgrans, Swartz. Pseudobulbs fusiform, monophyllous, 3-1 in.: 1rs. 8-12 in.: fls, inverted, 2 in. in diam., very fragrant, pale greenish or whitish; lip erimson streaked. Guatemala, through the West Indies to northern Brazil. B. M. 1669.
27. aurantiacum, Batem. Once classed in the separate group of Epicladium, now often accepted as a spe cies of Cattleya, where it was first referred by Don. The plant grows with, and much resembles ciattleya Skinneri. Fls. 11/2 in. across, orange-red. Guatemala.
Garden hybrids: E. Bérkeleyi (Stamfordianum $\times 0{ }^{\circ}$ Brien ianum) $-E$, Bürtoni (O 'Brienianum $\times 1$ baguense) $-E$. Del lènse (xanthinum \times radicans). $-E$. elegäntulum (Wallisii \times Endresio-Wallisii). G.C. I11. 19:361.-E. Endresio-Wällisii.E. O'Brieniänum (evectum \times radicans). G.C. III. 3:771,-E Phaebus (O 'Brienianum \times vitellinum) - E. radicanti-Stanfor diänum,-E, rädico-vitellinum.-E. Wällisio-ciliäre.-E. xan-tho-radicans.
Euepidendrum: E. arachnoglissum, André. Sts. 4-5 ft. fis. rich purple-lilac; lip fringed, witb orange calli. New Granada. R.H. 1882:554, - E. cnemidóphorum, Lindi. Sts. 4-6 ft .: racemes ample, drooping: fls. purple, brown and yellow,
 Br . Scape few- to many-fld: lvs. 1-3, thick: fls. green, tinged with purple, the sepals spatulate and revolute, the petals narrower and obtuse. S. Fla. and S. Once offered by Reasoner.E. Cooperianum, Batem. Sts. 2-3 ft.: Als. yellow-green; lip bright purple. Braz. B.M. $5654-$ E, Ellisii, Rolie. Fls. car mine-rose, very handsome. Columbia.-E. félgens, Brongn Fls, orange-scarlet, in crowded racemes. Guiana to Braz- \boldsymbol{E}. gracilis, Lindl., was once offered by John Saul, - E. Pbaguènse, H.B.K. Sts. 2-3 ft.: fls, orange-scarlet; lip yellow. New Granada to Peru, $4,50 \mathrm{ft}$.- E. myrianthum, Lindl. Sts. 3.5 ft.: enormous panicles of rich purple fls.; lip witb 2 vellow calli. Guatemala. B.M. 5556. Once offered by Sanl.-E. noctürnum, Linn. Sts. 2-3 ft.: peduncles $8-10$-flowered: fls. white and yellowish, 5 in. across, very fragrant. S. Fla. and Mexico to Pern and West Indies, B.M. 3298 . Once offered by Reasoner- - E, palpigerum. Reichb. f. Fls. beautiful lilac. Mexico- - E. Płávii, Rolfe. Sts. 4-6 ft. high: fis. light purple; lip with white disk, in nnmerons racemes. Costa Rica.-E. Pseudepidéndrum, Reichb. f. Sts. 2-3 ft.: ils. 3 in. in diam., green; lip orange-red and yellow. Cent. Amer., $4,000 \mathrm{ft}$. B.M 5929 . - E, raniferum, Lindl. Sts. $2-3 \mathrm{ft}$.: fls. yellow-green, thickly spotted with purple. Mex, to Guians. B.R. ${ }^{28}: 42,-E$. rigidum, Jaca., was once catalogued by Reasoner.-E. Schicmburgkii, Lindl. Sts. ${ }^{-3}$ ft.: fls. vermilion. Guiana, Brazil, Quito. B.R. 24:53.-E. syringothyirsis, Reichb. f. Sts. $4-5 \mathrm{ft}$. His. deep purple: hip and column with orange and yellow. crowded in long racemes. Bolivia, $8,000-9,000 \mathrm{ft}$. B,M. 6145 . E. Wellisii, Reichb. f. Sts. $4-6 \mathrm{ft}$.: fls. yellow, some purple spots; lip orange and purple, upon wbite ground. New Gra ntda, $4,000-7,000 \mathrm{ft}$. Has lateral as well as terminal racemes. Ouce offered by Saul.
Encyclium: E. dedvena, Reichb. f. Fls. yellow, veined hrown; lip yellowish white, purple-streaked. Brazil. -E, alatum, Batem. Fls. 2 in , across, purple and green; lip yellowish, streaked with purple, fragrant. Cent. Amer. B.M. $3698,-E$. bifidum, Aublet. Fls, pale green, dotted with purple; lip rose, orange and white. W. Indies, Guiana. B.R. 22:1879,-E. Fri-derici-Guiliélmi, Warse. \& Reicbb. f. Bulbs 4-5 ft.: fls. dark purple; base of lip white and yellow. Peru, $6,000-8,000 \mathrm{ft}$. 1.14. 1s: \&s. Once offered by Saul.-E. galloparinum, Reichb, f. Fls, lrown: lip yellow, in large racemes. Brazil. $-E$. oncidioldes, Lindl. Panicles up to 6 ft . long : fls, yellow and brown, sweet-scented. Stately species. Guiana, B.R. 19:1623. Once offered by Sal. - E. phreniceum, Lindl. Panicles 2-3 ft.: fls. deep purple, mottled green: lip rich violet, stained crimson. Handsome. Cuba.-F, virgátum, Lindl. Scape up to 7 ft . high: fls, small, up to 20 , greenish, stained brown. Mexico.

George Hansen.
EPIG库A (Greek, epi, upon, gaia, earth; in reference to its trailing growth). E'ricacea. This genus includes our charming Trailing Arbutus, which in New England at least is the most popular of all our wild flowers. Creeping, branching, slightly woody, more or less rough hairy shrubs: Ivs.alternate and entire, petiolate, leathery and evergreen : fls, monopetalous, perfect, large, dimorphous or diœcious, sessile in axillary or terminal clusters; sepals 5 ; corolla salver-shaped, with 5 -parted spreading border; stamens 10 , attached to the base of the corolla; style columnar; stigma 5-lohed: ovary ovoid, 5 -celled, many-ovaled; capsule depressed-globose, encircled by the persistent calyx. Two species, N. E. America and Japan. The E. cordifolia quoted in Index Kewensis as South American is probably not of this genus. It seems to be known ouly from the old description of Swartz (1792).

The cultivation of the Trailing Arbutus, especially in localities where it has been exterminated by ruthless "Mayflower parties," always attracts interest. Only
a briff epitome is here given. For fuller details, consult G.F. $5: 202$ and $8: 15$; also "The Nursery Book," which gives the experience of a specialist. Occurs in sandy and rocky woods, especially under evergreen trees in earliest spring. Thrives only in a humid soil and shady situations. Transplanted with difficulty. When a too great shock is received from difierence of exposure, change of temperature, etc., it dies within 2 or 3 years, if established at all. Small plants must be procured, removed without harming the roots, and planted nnder the same conditions of soil and exposure with the greatest care. They may also be taken up in late September or October, new roots formed in the greenhouse or coldframe, wintered in a coldpit, but not planted until the second spring. Best on the north side of a hill, in light, sandy soil, mixed with leaf-mold. Once established it spreads rapidly. Prop, by division of old plants, layers or cuttings. Seeds are rarely found, but when found may be used, though slow to develop.
rèpens, Linn. Trathing Arbutus. Ground Latrel. Mayflower. (The Mayflower of English history and literature is the Hawthorn.) Fig. 763. Spreading on the ground in large patches, with hirsute branches $6-15$ in. long just beneath the tvs., sending out roots and leafand flower-bearing stalks every $2-3$ in.: lvs, oval or nearly orbicular, thick, acute or obtuse, cordate or rounded at the base, glabrous above, hirsute below, green on both sides, $1-3 \mathrm{in}$. long, petioles hairy : fls. spicyfragrant, few or several crowded in clusters, practically diocious, either stamens or pistils being abortive, the female fls. larger and whiter, the male smaller and rosy. Em. 431. G.W.F. 37. Mn. 3:17. Gn. 45, p. 193. Newfoundland to N. W. Terr., zouth to Fla., Ky. and Mich., chiefly east. The vernacular name is pronounced Ar' bu-tus, not Ar-bu'-tus.
A. Phelps Wyman.

EPIL ELIA and EPICATTLEYA are bigeneric hybrids. See (i.C. 1II. $16: 629 ; 21: 233 ; 22: 83 ; 23: 391$.
EPILOBIUM (Greek, upon the pod; the flower and pod appearing together). Onagràcere. This genus includes hardy herbaceous perennial plants, thriving in any soil, with willow-like foliage, and large, showy spikes of deep pink or rosy crimson fls, borne from June to August. They are particularly suited for naturalizing in meadows for mass effects. A genus of ahout 65 species, widely seattered in temperate and frigid regions: herbs, or subshrubs, erect, sprawling or creeping: lvs. alternate and opposite, toothed or not: fls. axillary or terminal, solitary or in spikes or racemes, rosy purple or flesh-colored, very rarely yellow; calyx tube scarcely, if at all, produced beyond the ovary; petals 4 , obovate or obcordate, erect or spreading; stamens 8: ovary 4-celled; seeds comose.
The taller species, like E. angustifotium aud hirsutum, make very rank growth in moist places, and are therefore especially adapted for the wild garden or for naturalizing along the water's edge and in low meadows. The underground runners travel great distances, and the plants spread fast when not kept in bounds. Prop. by division or seeds.
angustifolium, Linn. (E'. spicitum, Lam.). Great Willow Herb. Fire, Weed. In cult, mostly branched and $3-5 \mathrm{ft}$. high; in the wild simple or branched, $2-8 \mathrm{ft}$. high : lvs. alternate, very short-petioled, lanceolate, entire or minutely toothed, 2-6 in. long, 4-12 lines wide, pale bencath, acute, narrowed at bases: fls, spreading, in long, terminal spike-like racemes, petals rounded at tip; stigma 4-lobed: capsules 2-3 in. long. Eu., Asia, N. Amer. B.B. 2:481. Var, alba, Hort., has pure white flowers suitable for cutting; also occurs wild. This variety was perfected in England. It forms a compact bush.
hirsùtum, Linn. Stout, $2-4 \mathrm{ft}$. high, with short but conspienous soft hairs: Ivs. oblong-lanceolate, usually opposite, sessile and often clasping, with many small, sharp teeth, $1-3 \mathrm{in}$. long, pubescent on both sides: fls. erect, axillary, about 1 in . across; petals notched. Ballast Weed from Europe. English names are Codlins and Cream, Fiddle Grass.

EPIMEDIUM (Greek, like Medion, a plant said to grow in Media ; a name from Dioscorides, retained by

Linnæus). Berberiddcea. This gems contains some of the daintiest and most interesting plants that can be grown in the hardy border, and E. macranthum, particularly, is as distinct, complicated and fascinating as many of the rare, tender aud costly orchids. The whole tribe to which it belongs is exceptionally interesting, and is one of the most striking of those rare cases in which the cultural, botanical and artistic points of view have much in common. A well grown collection of these plants in pots would almost certainly win high praises and prizes. Of the 12 genera of this tribe, only Berberis and Nandina are shrubs, all the rest being herbs, with creeping, underground stems, and all small, choice, curious, and cultivated to a slight extent, except Bongardia and Leontice. Podophyllum contains our mandrake; Caulophyllum the quaint blue cehosh; and the others are Aceranthus, Achlys, Diphylleia, Jeffersonia and Vancouveria. A collection of all these plants should make a charming study. What appear to be petals in E. maeranthum are really the inner row of sepals, colored like petals, and performing their functions, while the long spurs or nectaries are supposed to be highly

764. Epimedium macranthum,
a, E. alpinum, var. rubrum; b, E. pinnatum, showing 3 types of spur or nectary.
specialized petals. Epimedium has 8 sepals and 4 petals, which are mostly small and in the form of neetaries: stamens 4: capsule opening by a valve on the back: lvs. pinnately twice or thrice dissected. They grow a foot or two high. For E. diphyllum, see Aceranthus, which is distinguished by its flat, not nectarylike petals, and its Irs. with a pair of leaflets on each of the 2 forks of the petiole. Of their culture J, B. Keller writes, "They thrive best in partial shade, and are particularly well suited for rockeries and the margins of shrubberies. Almost any soil will answer for them. The peculiar bronzy tints of the young foliage contrast well with the variously colored flowers. Prop. by division." These plants are suitable for pot-culture and for forcing. The Garden 48, p. 486, shows what a charming picture can be made of the foliage alone when cut and placed in a bowl. The plants retain their foliage all winter, especially in sheltered spots ander trees.

A. Spurs conspicuous, often 1 in . long, sometimes twice

 as long as the showy inner sepals.macranthum, Morr. \& Deene. Fig. 764. Livs. thrice ternate ; leaflets cordate-ovate, unequal at the base, sharply toothed; petioles with short, spreading, conspicuous hairs : outer sepals sometimes colored bright red, remaining after the larger and showier parts of the fl. have fallen: inner sepals ovate-lanceolate, violet: spurs white. Japan. B.F. 22:1906. P.M. 5:151. Not Gn. 46:984, which is E. pinnatum. Var, niveum, Voss (E, niveum, Hort.), has pure white fls. Var. roseum, Voss (E. rdseum, Hort. E. niveum, var, rdseum, Hort.), has fls. white, tinged with pink or pale rosy red. Var. violàceum, Voss (E. violdceum, Morr. \& Decne.), has violet spurs, shorter than in E. macranthum, but much larger than in the other species. B.M. 3751. B.R. 26:43. P.M. 4:123. - A very interesting species.
AA. Spur's medium-sized, nearly as long as the inner sepals.

B. Inner sepals bright red.

alplnum, var. rùhrum. Hook. (E. rìbrum, Morren). Fig. 764. Lvs, biternate (but Hooker's picture shows a tendency to the thrice ternate condition), minutely toothed : spurs white, marked with red, as in Fig. 76t, which shows the very distinet appearance of the flower. Japan. B.M. 5671. R.B. 3, p. 33, t. 6 (1853). Hooker says this differs in no way from \vec{E}, alpinum, except in the larger and red fls., wbile the type which grows wild in England (though probably not native) has dull reddish yellow fls., and, though advertised, is probably not in eultivation.

> BB. Inner sepals whitish or pale yellow.

Musschiànam, Morr. \& Decne. Lvs, only once ternate, sharply toothed, as in \boldsymbol{E}. macranthum: all floral parts whitish or pale yellow. Japan. B.MI. 3745. - The least showy kind, but worth growing in a collection, its spurs haring an individuality difficult to descrihe. Var. ruhrum, of Pitcher \& Manda's catalogue, is presumably an error, as a red-fld. form would be very unexpected.
AAA. Spurs much shorter than the inner sepals, being, in fact, merely small nectur-glands. B. Lis. once or twice ternale.
pinnàtum, Fisch. Fig. 764. LFs, usually biternate, with 5 leaflets, 3 above and I on each side; leaflets with a deeper and narrower basal cut than in E. macrauthum: fls, typically brigbt yellow; nectaries red, a third or fourth as long as the inner sepals. Shady mountain woods of Persia and Cancasus. B.MI. 45 .5. Gn. $46: 984$, erroneously as E. macranthum. (in. 48, p. 486.

Yar. élegans, Hort., presumably has larger, brighter and more numerous fls. E. sulphurewm of European catalogues is regarded by J. W. Manning and J. B. Keller as a pale yellow-fld. form of E. pinnatiom, but by Voss as a variety of E. macrunthum. A yellow form of the violet-fld. E. macranthum would be very surprising.

Var. Colchicum, Hort. (E. Cobchicum, Hort.), has brilliant golden yellow fls. and nectaries $1-1 \frac{1}{2}$ lines long.

BB. Lvs, always once ternate.

Perralderianum, Cosson. This is the African representative of E. pinnutum, from wbich it differs in the key ebaracters and also in the much more strongly cili-ate-toothed leaflets. Its Howers are a "paler yellow than the typical E. pinnatum. It is far from improbable that specimens connecting them will be found in sontbern Europe, if not in Africa." Algeria. B.M. 6509.-Lvs. remain all winter. Less desirable than E. pinnatum.
E. diphýllum, Lodd. See Aceranthus diphyllus. - E. niveum Is catalogued by Van Tubergen as a synonym of Musschianum, but the chances are that all the plants advertised as E . nivenm are E. marranthum, var, niveum. The spurs are so ohviously longer in E. macranthum that there is no excuse for confusion.
W. M.

EPIPACTIS (Greek, epipegnuo; it coagulates milk). Orchiddcece. Hardy terrestrial orchids of minor value. The first mentioned may be obtained through dealers in
native western and Japanese plants; the second is listed in the American edition of a Dutch catalogue. Leafy orchids with creeping rootstocks and unbranched stems: lvs. ovate or lanceolate, with plaited veins: fls, purpilish brown, nearly white or tinged red: Jower bracts often longer than the fls.; sepals free, spreading, nearly as large as the petals; lip free, deeply concave at base, without callosities, narrowly constricted and somewhat jointed in the middle, the upper portion dilated, petaloid.

Royleàna, Lindl. (E. gigantêa, Dougl.). Stout, $1-4 \mathrm{ft}$. high: lvs, from ovate below to narrowly lanceolate above, 3-8 in. long: fls. $3-10$, greenish, strongly veined with purple. June, July. Wash. to Santa Barhara, east to S. Utah and W.Tex., on banks of streams. Also Himalayas. Int. by Pringle and Horsford, 1883. Mn. 8:145.
atróruhens, Schult. $\|(E$. rubigindsa, Crantz). Lrs. often reddish: fls. and ovary dark purple; lip oval, acute, or slightly notched: bracts equaling the fls. or rarely longer. July-Sep. Eu., W. Asia.

EPIPHRONITIS is a bigeneric orehid hybrid of Epldendrum and sophronitis, for a charming picture of which see R.H. 1896:476. It has ahout 10 fls., chiefly a brilliant searlet, set off with bright yellow. Gt. 46, p. 555.

EPIPHYLLUM (on a leaf; referring to the leaf-like branches on which the fls, grow). Cactacea. Crab C'Actus. This genus is confined to Brazil, so far as known, where the plants grow as epiphytes npon the trees, along with orchids, growing in large clusters on the branches: stems flat and jointed, becoming rounded

with age, bearing areols only on the margins and more or less truncated ends, from which grow the new branches and fls.: fls. more or less conspicuously zygomorphous : ovary devoid of bracts, and those of the tube comparatively large and colored as the petals. The genus is closely allied to Phyllocactus, and, indeed, the last two species are referred by some authors to that genus. In cultivation many forms have been produced through hybridization between the different species and with Phyllocactus and Cereus, so that typical plants are rarely met with.
C. H. Thompson.

Epiphyllums are among the most useful as decorative plants of all the Cactaces. Their brilliant colored blossoms, together with the profusion with which they are usually borne, makes them worthy of a place in every collection of plants. They are propagated by euttings, which root readily when inserted in an ordinary propagating bed. Being low-growing or pendent-habited plants, they are very useful subjects for hanging baskets. Like most of the Cactus famaly, they may be grafted readily upon otber Cacti. When grown as potplants, they are often grafted to elevate them above
the pots, so as to show them off to better advantage when in flower. Pereskia aculeata and P. Bleo are the stock most commonly used for grafting Epiphyllums upon, though some gardeners prefer grafting upon Cereus triangularis, taking clean, healthy pieces about 1 foot in length, first rooting them and establishing them in pots, then grafting when active growth of the Epiphyllums commences in spring. It is said by some gardeners that Epiphyllums do better and may be brought into flower earlier by grafting on Cereus triangularis. Other species of Cereus may also be used as stock plants for grafting upon, especially the uprightgrowing species, as C. colubriuus. The system known as wedge-grafting is the best method.

When grown upon their own roots, the soil best suited to them is two-thirds fibrous loam aud one-third leaf-mold, with a fair proportion of silver sand and pounded brick added to keep the soil porous, as they are very impatient of too much moisture at the roots. The pots or pans in which they are grown must also be well drained. They require careful watering at all times, but during the fall and early winter they should receire only enough to keep them from shriveling. They are best kept in the greenhouse the whole year round, giving them an abundance of air during the summer to insure well ripened growth. A temperature of $45-50^{\circ}$ during winter will be sufficient, though a higher temperature may be given after January 1 if wanted in flower earlier.

Edward J. Canning.

truncàtum, Haw. Crab Cactes. Christmas Cactus. Fig. 765. Stems much branched and banging in large bunches from the trees: joints obovate to oblong, with strongly truncate apex, $11 / 4-2 \mathrm{in}$. loug by ahout $3 / 4 \mathrm{in}$. broad, bright green, margins coarsely serrate, with 1-3 large, acute teeth on each side, the 2 upper ones forming more or less incurved horns on eitber side of the truncation: areolæ bearing a few short, yellowish or dark colored bristles, or sometimes none: ils, horizontal, frowing from the truncated end of the younger joints, strongly irregular, $21 / 2-31 / 2 \mathrm{in}$. long, in various shades of red: fr. pear-shaped, red, about 3/8in. In diam. Braz. B.M. 2562. G.C. $11 \mathrm{I} .19: 9$. - Most of the forms in cultivation are hybrids between this species and some other of the genus or with Cereus. Fig. 766. A common basket and rafter plaut.

Russelliànum, Hook. Stems more upright, with pendent brauches: joints $3 / 4-11 / 2$ in. long by $3 / 8-3 / 4$ in. broad, oblong or elliptical to obovate, light green: margins crenate, with 2-1 areolm on either side, bearing a few rery short dark gray bristles: fis. from the end of the youngest joints, red, $13 / 4-21 / 4$ in. long : fr. red, 4 -angled or narrow-winged. Braz. B.M. 3717.

Gæ̈rtneri, K. Sch. (E, Russellidnum, var. Gïrtneri, Reg.). Easter Cactus. Stems of more upright habit, with drooping branches: joints long-oblong or elliptical to obovate, $5 / 8-21 / 4$ in. long by $1 / 2-1$ in. broad, dark green, margins crenate, with about 5 areola on either side, bearing $6-12$ rather stiff, long, yellow or brown bristles, and are especially conspicuous on the truacated apex, where they form a considerable beard: fls. from the apex of the youngest joints, $2 \frac{1}{2}-3$ in. long, scarlet-red: fr. red. Braz. B. M. 7201 .

Epiphyllum Guedneyri, Houl-let-Phyllocactus sp.

C. H. Thompson.

EPIPHYTES, or air plants, grow on trees or other plants without robbing them of food. Orchids are the most famous examples among gardeu plants. Some or-
chids, however, grow in the soil, and others are true parasites. Plants tbat live on decaying organic matter, and have lost more or less of their leaf-green, are called saprophytes. Many mosses are Epiphytes.

EPISCIA (Greek,

 shady; they grow wild in shady places). Gesnericere. Probably the best garden form of this genus is the refined and elegant basket plant, E. cupreata, with its rich, coppery colored, softly hairy leares, shown in Fig, 767. The genus has perhaps 30 species, all tropical American. Herbs with long, short or no hairs: stem from a creeping root, branched or not: lvs. opposite, equal or not in size : fls. pedicelled, axillary, solitary or clustered; corollas mostly searlet, rarely whitish or purplish; tube straight or curved, more or less spurred at the base; equal; lobes 5 , spreading, rounded.
Episcia cupreata is one of the standard basket plants, especially for the warmest greenhouses. It can also be used in pyramids and mounds, as told under Fittonia. As it does not require so close an atmosphere as the Fitonias, it can be grown in some living rooms and perhaps outdoors in summer in a shady place. Its chief charms are the slender, trailing habit, the soft hairiness of the leaves, the coppery hue, which is often laid on like paint in two broad bands skirting the midrib, and the rarer and perhaps finer metallic bluish luster of which one oceasionally gets a glimpse in a finely grown specimen. Give very rich, fibrous loam, and in summer partial shade.

A. F'ls. white

Chontalénsis, Hook. (Cyrtodelra Chontalénsis, Seem.). Stems stout, more or less ascending, dark reddish purple, 6-10 in. long: lvs. opposite and irregularly whorled, 3-4 in. long, oblong-ovate, crenate, obtuse, rounded at the base, decidedly convex on both sides of the midrib and between the much-sunk veins, margins recurved, green, marked with regular purple patches, wbich advance from the margins between the veins toward the midrib and are more or less oblong: fls. in I's and 2's ; corolla tube with a sac at the base, the limb oblique, $11 / 2-2$ in. across, with small and regular but conspicuons and beantiful teeth. Chontales region of Nicaragua. B.M. 5925. R.B. 22:241. F.S. 18: 1924.

AA. Fls. scarlet.

cupreata, Hanst. (Achimènes cupreata, Hook.). Fig. 767. Stems slender, creeping, branched, rooting at the joints, with a main branch rising erect a few inches, which bears the fls. and the largest lvs.: lvs. coppercolored above: fls, solitary, 9 lines wide, scarlet, with a small sac and denticulate limb. Nicaragua. B.M. 4312. Var. viridifolia, Hook., has green foliage and largerfis., I in. across. B.M. 5195.
coccínea, Benth. \& Hook. (Cyrtode bra coceinea, Hort., B. S. Williams). Lrs. dark metallie green, $3-\$ \mathrm{in}$. long, $21 / 2-3$ in. wide. Free-flowering.

Robert Shore and W. M.
EQUISETUM contains the weed known as Horse-tails, or Scouring-rushes. They are suitable for naturalizing in waste and wettish places. Tbey hold sandy banks. The following have beeu advertised by dealers in native
plants: E. arvénse, hiemàle (Fig. 768), limòsum, praténse, robústum, scirpoldes, sylváticum, variegàtum. For descriptions, consult the manuals. They grow usually in moist or swale-like places. They are flowerless plants, allied to ferns and club-mosses.

ERAGROSTIS (Greek, love and grass). Graminece. Love Grass. Annual or perennial grasses, with herbaceous stems of various habits, and from 6 in . to several feet tall. Culms simple or often branched. Inflorescence composed of very variable panicles, either close and narrow, or loose and widely spreading: spikelets 2 -many-fld., the uppermost imperfect. Closely allied to Poa, from which it can be distinguished by its 3 -nerved fl.-glumes, which are destitute of any woolliness. The species are very variable and their limits hard to define. About 100 species occur in the warm and temperate regions of both hemispheres, few of which are of any agricultural or horticultural value. The following are cult. as "ornamental grasses" in flower gardens.

Abyssinica, Link. A branching, leafy annual, $2-4 \mathrm{ft}$. high, with widely spreading capillary panicles of many spikelets: lvs. 12-14 in. long, rough on the upper side, ligule a mere ring: panicles slender, gracefully drooping, grayish when in full bloom: spikelets 5 - 7 -fld., one-fifth of an inch long. Africa. -In cult. as an ornamental grass for bouquets. Grain used as food in Africa. By some referred to Poa.
amábilis, Wight \& Arn. (Pòa amd́bilis, Linn.). An erect grass 6 in . to 1 ft . high, with inconspicuous linear-lanceolate 1 vs ., ciliate at the base: spikelets very large and broad, closely resembling quaking-grass (Briza), 16-24-fld. India. - In cult. as an ornamental grass.
élegans, Nees. Feather Love-Grass. An erect grass $1-2 \mathrm{ft}$. high, with smooth culms and rough lvs.: panicles closely contracted, dense: spikelets rery small, $4-7$-fld., numerous, and presenting a feather-like appearance in mass. S. Amer. - In cult. as an ornamental grass.
768.

Equisetum máxima, Baker. LARGE Love-Grass. A hyemale- tall, robust plant, $2-3 \mathrm{ft}$. high, with lauceolate Common acuminate lvs., cordate at the base: panicles Scouring- very lax and broad, 6-9 in. long: spikelets
rush. rush. oblong, flattened, very large, $1 / 2-1 / 3 \mathrm{in}$. long. Madagascar. - One of the most ornamental species of the genus.
collina, Trin. (\boldsymbol{E}, suarèntens, Becker). ${ }^{\text {r Fig. 769. An }}$ erect, leafy annual, $1-3 \mathrm{ft}$. high, with densely fld., spreading panicles: spikelets 6-13-fd., numerous, one-fifth in. long: pedicels of spikelets and branches of panicle rough: lys. smooth beneath, rough abore. Asia.- The species is very variable under cult., many different forms being found. In cult, as an ornamental grass for bouquets.
E. màjor, Host. Stink Gaass. A common species, growing chietly in cultivated or waste ground. When fresh it emits a strong, unpleasant odor. - Intr. from Eu. - E. pectinacea, Nees. 11 Eadow Coms-(irass. A very pretty perennial grass, with showy colored spikelets. A native of the eastern, sonthern and middle states. It is often gathered for dry houqnets. Should be int. into cult, for ornament.

The seed sent out by a leading seedsman as containing five different species (E, elegans, amabilis, maxima, suaveolens, and Poa amabilis), when grown proved to be one and the same thing: viz., E. suaveolens. This statement is made from specimens grown by Professor Tracy, of Starkville, Miss, in 1885, and also observed by myself in 1897, hoth in the Hort. and the Bot. Gardens at Cornell University. P. B. Kennedv.

ERANTHEMUM (Greek, lovely flower). Acanthacea. Perhaps 30 species of tropical shrubs and subshrubs, some of which are cultivated chiefly for their foliage and others for their flowers. Lvs, entire or

ERANTHEMUM

rarely coarsely toothed: fls. white, lilac, rosy or red, borne in various ways; bracts and bractlets narrow, small; corolla tube long, slender, cylindrical throughout or rarely with a short throat ; limb 5 -parted; stamens 2: ovules 2 in each cell : seeds 4 or fewer. The genus Drdalacanthus, although in a different tribe, is separated only by a combination of technical characters, but the garden forms of both genera described in this work are all distinguishable at a glance. For eulture, see Justicia. Consult Dedalacanthus.

A. Fls. purple.

laxiflorum, Gray. Height 2-4 ft.: lvs. on the same plant varying greatly in size and shape, those near the fls. 2-31/2in. long, $8-15$ lines wide; petioles 2-6 lines long, widest below at or above the middle, more or less ovateoblong, obtuse, narrowed at the base: fls, in cymes; stamens 2, perfect, sharp-pointed. Fiji. B.M. 6336.

AA. Fls. pure white.

tuberculatum, Hook. Easily told while growing by the many small roundish and rough elevations on the branches: lvs. small, $3 / 8-5 / 8 \mathrm{in}$. wide, rarely if ever 1 in . long, broadly ellipitical, obtuse or notehed, almost sessile: fls. numerous, borne singly in the axils, in summer; corolla tube very long and slender, $11 / 2 \mathrm{in}$. long; limb 1 in. across; stamens scarcely exerted. Habitat unknown. B.M. 5405.

AAA. Fls. white, speckled with red-purple. B. Foliage netted with yellow.
reticulàtum, Hort. (E. Schómburgkii, Linden). Height $4 \mathrm{ft} .:$ upper lis. $2-7 \mathrm{in}$. long, ovate-lanceolate, characteristically netted with yellow; lower Ivs. 6-10 in. long, not netted, but the veins prominent and yellow : fls. racemose; corolla speckled with blood-red at the mouth: anthers reddish brown, exserted. Possibly Australia. B.M. 7480. 1.H. $26: 349$.

769. Eragrostis collina $(\times 1 / 4)$.

BB. Foliage not netted with yellow.
Andersoni, Mast. Lvs. lanceolate or elliptic, narrowed into a short stalk: fls. in a spike 6 in. long; lower middle lobe of the corolla larger and speckled with purple. Trinidad. Gn. 45:943.
The following trade names belong to plants grown chiefly for
their foliage. Probably many of them belong in other genera. -E. albo-marginatum. Lrs. broadly margined with white and irregularly suffused gray.-E. atrosanguineum. Hort, Int. by W. Bull. 1875. Lvs, large, dark wine-purple, or llackish crim son, ovate entire, opposite, stalked. Said to endure the hottest sunshine.-E. cultratum, "Lrs. shining, thick, deep-reined."E. Eldorado. Lvs, greenish yellow, veins deeper yellow.-E nerium rùbrum of Pitcher \& Manda's catalogue, presumably a misprint for nervum-rubrum, has lvs. "irregularly shaped, shaded with light and dark green, and blotched with yellow. which darkens to reddish purple." Possibly $=$ Fittonia Ver schaffeltii. $-E$, nigréscens. Presumahly with blackish lvs. $-E$. purpúreum. "Lvs, and stems dark, lurid purple." Siebrecht \& Wadley.
The following trade names are accounted for in other genera: E. igneum. Niee Chamæranthemum. - E. nervosum and pulchellum. See Dadalacanthus. WV. M.

ERANTHIS (Greek, er, spring, and anthos, a flower; from the early opening of the flowers). Ranuniculdcea. Winter Aconite. Low pereanial herbs, with tuberous rootstock: basal lvs. palmately dissected, one stem-leaf sessile or amplexicaul just beneath the large yellow fl.: sepals $5-8$, petal-like; petals small, 2 -lipped neetaries; stamens numerous; carpels few, stalked, manyovuled, becoming follicles. About 7 species, natives of Europe and Asia. Very bardy, and at home in halfshady places, among shrubs or in the border; very desirable because of the rery early, bright fls. Prop. by division of roots. The place where the tubers are planted should be marked during the summer, when the foliage is dead.

The earliest generic name is Cammarum, wbich was given in Hill's British Herbal, p. 47, pl. 7 (1756), or 51 years before Salisbury made the name Eranthis.
hyemalis, Salisb. (Hellébarus hyemdlis, Linn.). Fig. 770. Erect, $5-8$ in.: basal lvs. longpetioled: involucre 12 15 -parted, the bright yellow-fls, always ses
 sile; anthers oblong. Jan.-March. Naturalized from Eu. B.M. 3. Mn. 8:43. G.C. 11. 11:245.

Var. Cilicica, Huth. (E. Cilícica, Schott \& Kotschy). Much like the above. Involucre of deeper and more numerous lobes: anthers ovate instead of oblong; se pals broader, being about $1 / 2 \mathrm{in}$. across; follicles always straight. Season a few weeks later. - The stems, when grown in gardens, said to be red-brown. Roots of this were first sent to England from its native home near Smyrna in 1892. Rare in Amer. G.C. III. 13:266. Gu 45, p. 192 (note).

Sibirica, DC. Much dwarfer, seldom over 3-4 in. high: fls, bright yellow, a little smaller than tbose of E. hyemalis, 5-sepaled. Siberia.

J. B. Keller and K. C. Dayis.

EREMURUS (Greek name, probably referring to their tall and striking aspect in solitary and desert places). Lilidcere. These hardy desert plants when in flower, with their great flower-stalks taller than a man, and crowned with a spike of fls. from $1-1 \mathrm{ft}$. long, are amongst the most striking spectacles in the choicer gardens of the Nortb and East. Their roots are clusters of fleshy fibers: their lvs, all from the root, in dense rosettes, long and linear: fls. white, yellow or rosy; perianth bell-shaped or more widely spreading, wither ing and persisting or finally dropping away; segments distinct or very slightly united at the base; stamens 6: ovary 3 -celled; seeds $1-4$ in each cell, 3 -angled.
W. M.
E. robustus and E. Himalaicus are probably the hardi-
est of all the tall, desert-inhabiting plants of the Lily family - a family including the Poker Plant, the Aloes, the Iuceas, and many others that are not so tall and striking in appearance or else too tender to grow outdoors in the North. Large specimens of E. robustus will annually produce a flower-stalk 8 ft . or more high, with racemes 4 ft . long, remaining in bloom for a month. After flowering the lvs, disappear entirely, but early in spring they reappear, and should then be corered with a box or barrel, to protect the forming flower-stalk from late frosts. A mound of askes over the crown in winter is advisable, or a box with water-tight top filled with dry leaves. Both species like a rich soil, moist but well drained, and plenty of water in the flowering period, but none afterwards. Prop. by division, or slowly by seeds. Large plants are expensive, but they can sometimes be obtained large enough to flower within a year or so of purchase. It tries one's patience to wait for seedlings to reach flowering size. Tbe flowers look like small stars.
W. C. Egan.

A. Flowers rosy.

B. Li's. linear-ligulate.

robustus, Regel. Root-fibers thick and fleshy: lvs. glaucous, glabrous, linear-ligulate, 2 ft . $10 \mathrm{ng}, 11 / 2-2 \mathrm{in}$. wide, roughish on the margin, with minute recurved teeth: raceme $4-1 \frac{1}{2} \mathrm{in}$. wide: stamens about as long as the perianth. Turkestan. B.M. 6726. Gng. 6:52, 324. Gn. 46, p. 335. Mn. 8:123. J.H. IlI. 29:267.

BB. Lis. ovate-lanceolate.

Elwesii, Micheli (\boldsymbol{E}. Elwesianus, Hort.). Lvs. light green, orate-lanceolate, obtuse, flat, not at all rough at the margin, shorter than in E. robustus, nearly triangular, even more glaucous, and beginning to decay at the time of flowering: perianth segments with a band of deeper color down the middle. Habitat ? R.H. 1897:280. Gn. 54, p. 99. G.C. III. 24:137.-Int. by Leichtlin as D. robustus, var. Eluesii.

AA. Flowers white.

Himalàicus, Baker. Root-fibers thick and fleshy: Ivs. 9-12, ligulate, firm, persistent, $1-11 / 2 \mathrm{ft}$. long, $6-15$ lines wide above the middle: raceme $3-31 / 2 \mathrm{in}$. wide: stamens about as long as the perianth. Himal. B.M. 7076. Gn. 49, p. 131. G.C. II. 16:49.

AAA. Fls. some shade of yellow.

B. Color light yellow.
spectáhilis, Bieb. Root-fibers thick and fleshy: lvs. 6-15, lorate, slightly glaucous, 12-18 in. long, 6-12 lines wide above the middle, noticeably narrowed at the base: raceme $1-1 \frac{1}{2} \mathrm{ft}$. long, 2 in . Wide: stamens orange, finally twice as long as the perianth. Asia Minor, Persia. B.M. 4870 .

BB. Color pure yellow ar orange.
Bungei, Baker. Lvs, contemporary with the fls., linear, 1 ft . long, less than 3 lines wide: raceme $4-5 \mathrm{in}$. long, 2 in. Wide: stamens finally twice as long as the perianth. Persia. - Var. perféctus, Hort., is sold.

BEB. Color orange.
aurantlacus, Baker. Closely allied to E. Bungei, but live plants have less acutely keeled lvs.: root-fibers tapering upwards, and orange fs, and stamens. Bokhara, Turkestan. B.M. 7113.
W. M.

ERIANTHUS (Greek, woolly flower). Graminea. Woolly Beard Grass. Plume Grass. Tall and stout reed-like perennials, with the spikes crowded in a panicle and clothed with long, silky hairs, especially in a tuft around the base of each spikelet. Spikelets in pairs, one sessile, the other pedicellate. Glumes 4, the fourth enclosing a hermaphrodite flower and awned. Species about 18, in the warmer regions of both hemispheres.

Eriunthus Rovennie is the best hardy substitute for the pampas grass, which is the most famous of all tall, plumy grasses. For general purposes and for aquatic groups and bedding it has no peers in the North except Arundo Donox and a few tall bamboos. These latter, however, are grown for their foliage effects, and while the plumes of Arundo are highly ornamental, they are only an incident in the North, where frost often cuts down
the plants hefore they flower. The general appearance of Erianthus is striking and unique, and for the plumelike character of its flowers it has few if any rivals.
Ravénnæ, Beauv, (Sácchartm Ravénnce, Muir.). Wool Grass. Plume Grass. Rayenna Grass. A tall, hardy grass, $4-7 \mathrm{ft}$. high, very ornamental, either planted alone or in company with other grasses: 1vs. very long, linear, pointed, band-like, sometimes violet, with a strong white rib in the center. The foliage forms graceful clumps, from which rise long and bandsome plumes, resembling the pampas grass (Gynerium argenteum). Southern Europe, R.H, 1890, p. 546. Gn. 54, p. 496.Its cultivation is not difficult in ordinary garden soil. A sunny situation is preferable. May be propagated by division or by seed. It is exquisite for lawns, and flowers the first season if sown very early. The plumes are fine for winter use when dried.

P. B. Kennedy and W. M.

ERICA (practically meaningless; probably not from ereiko, to break, as commonly stated). E'ricacere. Heath. This is the genus that the gardener usually means hy "Heath." The Heath or heather of English literature and history belongs to the closely allied genus Calluna. The next most important group of cultivated "Heaths" is Epacris, which, however, belongs to a different order. Ericas are low-growing, evergreen, much branched shrubs, with needle-like lvs. in whorls of 3-6, and great numbers of small rosy, white, or rarely yellow fls., of which the most importaut types are the bellshaped, the tubular, and the ventricose, the last being swelled at the base, and then tapering to a narrow neck just below the 4 spreading lohes. Erica is an enormous genus, and the hybrids are past reckoning.
Only a few of the European Heaths are hardy in America, and we have no native Heaths at all in this bemisphere. Of about 14 kinds of Erica grown outdoors in Europe to produce large showy masses, only 3 are hardy here, and it is safest to cover these with evergreen boughs in winter. Two others (E. Mediterranea and \boldsymbol{E}. Lusitanica) we grow under glass somewhat. The tree Heath of southern Europe (E. arborea) will probably never be a feature of our southern landscapes.
The lialcyon days of the Heaths were from about 1806 (when the English took the Cape of Good Hope) until the middle of the century. Andrews' colored engravings of Heaths (1809) marks the first flush of their popularity. Practically, if not absolutely, all the Heaths that are grown on a large scale have been developed from the South A frican species. The old English gardeners still lament the glorious days when the hard-wooded plants of Australia and the Cape formed the chief feature of European indoor horticulture. They complain that the present generation is not willing to give them the care they deserve. This is especially true of America. Nevertheless, according to William Watson, of Kew (in Garden and Forest, 1892, p. 136), Heaths are still grown in surprising quantities. Speaking of E. hyemalis, he says: "1t may be said with truth that no other plant is grown in such enormous quantities for the London market. At least a dozen nurserymen might be named whose annual output of this one Heath amounts to from 20,000 to 30,000 plants each." He pictures a plant in a 5 -inch pot, with about 15 shoots a foot high, and loaded with perhaps 1,000 flowers. Such plants sell at Christmas for about 36 cents. "The flowers remain fresh for at least a month. The popularity of this Heath is thus easily accounted for: it is cheap, very pretty when in flower, and lasts just long enough to satisfy the masses who like window-plants and change. The plants perish almost as soon as the flowers-that is, all those which find their way into the window of a house, or into a small greenhouso. And this accounts for the enormous number disposed of every year. In England E. hyematis is certainly one of the most valuable plants ever introduced." (In America Heaths are of minor importance, even at Easter, and the kind grown most extensively for Christmas seems to be E. melanthera.) Watson adds: "lt is strange that a plant which has enjoyed an exceptional popularity in England for something like fifty years should never have been figured in any English publication or work until now. I have not been able to trace the origin of the plant, nor
find any picture of it in any book to which I have access here. Nor can any of those who have paid attention to garden Heaths assist me."
The great trouble with Heaths is the immense amount of care they need. Few, if any, classes of plants require more attention. Hence the growing of Heaths for the market is extremely specialized, and there is not a retail catalogue in the country that offers more than one species. Nevertheless, all the kinds described below are grown commercially, and are of the first importance in the genus. The stock is largely imported from England. Germany bas a very different set of varieties, and France still anothcr, and there are few cases among cultivated plants showing so great a difference in the three countries. The risks of importation are considerable, and the tendencies toward American independence in this line seem to be gaining.

Another difficulty in Heath culture is the poor quality of peat obtainable in America. In England the peat is

771. Erica hyemalis.

From 300,000 to 400,000 plants of this Heath are sold in London every Christmas.
more fibrous, and has been formed in past ages largely by the decay of the native heather.

The soft-wooded kinds are the ones most grown. The hard-wooded sorts require a longer period of growth and more thorough ripening of the wood.
Apparently only one yellow-fld. Heath is cult. in America, E. Cavendishedna. Unless otherwise stated, the species described below come from the Cape.

In general the Ericas do not grow well in this climate on account of the extreme heat of the summer months, but some varieties grow and flower even better here than in Europe. The choice of the soil is very important. A light peat, mixed with sharp, coarse sand is about the best we can get bere. After flowering, the plants should always be cut down to keep them bushy at the base and well shaped. They will then receive a good repotting, using always very clean pots and plenty of drainage. Cuttings are made from December to April, preferably from young plants, the tender shoots, ahout 1 inch in length, being best. These are planted firmly in a pan filled with clean, fine sand, and covered with a bell-glass, or in a box covered tightly with a pane of glass. Bottom heat is not necessary. When rooted, the cuttings should be potted in small pots, and when well started should be
given as much air as possible. It is well to bring the Ericas out of the greenhouse as early in the spring as possible. The pots should be plunged in a good situation, wbere plenty of air and sunlight can be had. They should be wintered in a greenhouse extremely well rentilated, and a temperature not higher than from 40° to $45^{\circ} \mathrm{F}$. When in bud the plants should not be allowed to dry out too much. Once would be enough to cause the loss of all the buds. Very often the Heaths are attacked by a disease similar to mildew, caused by an excess of humidity in the air. As this disease is very contagious, it is well, as soon as noticed, to use sulphur in powder or sulphate of copper in solution until the plants are rid of it. Index of species described below:
assurgens, 13.
Bothwelliana, 17.
Cattra, 13.
carnea, 1.
Cavendishiana, il
Oavendishii, 11. codonodes, 14 , cupressina, 15. cylindriea, 12. ragrans, 9.
> gracilis, 7.
> herbacea, 1.
> hiemalis, 5.
> hyemalis, 5.
> Lusitanica, 14 . Mediterranea, 16. melanthers, 8 . Parmentierii, 6. persoluta, 13.
prestans, 6. regerminans, 3. Tetralix, 4. translucens, 18. vagans, 2.
ventricosa, 17.
Filmoreana, Wilmoreana and Wilmorei, 10.

```
A. Hardy Heaths.
    B. Spring-blooming
BB. Summer-and fall-blooming.
    C. Inflorescence lateral
    Cc. Inflorescence terminal.
        D. Ovary densely covered with
                long, rough hairs..........
        DD. Owery with short soft hairs . T
AA. Tender Heaths.
    B. Fall-blooming.
        C. Corolla club-shaped or fiennel-
        shaped.
    cC. Corolla videst at base, laper
        ing lo a much constricted neck. 6. præstans
    ccc. Corolla globose, the lobes veryshort
                            7. gracilis
BB, Christmas-blooming.
        c. Corolla lobes long and spread-
        ing . .......................... 8. melanthera
    cc. Corolla lobes long and revolute 9. fragrans
    ccc. Corolla lobes short and rather
        erect.
            10. Wilmorei
BBB. L'aster-blooming.
        C. F'ls, yellôً..
        11. Cavendishiana
        cc, F'ls. rosy to white.
        D. Corolla tubular............. 12. cylindrica
        DD. Corolla globose.
            E. Lrs. in threes.
                F. Fls, white.................13. persoluta
                FF. Fls. rosy. ...............14. Lusitanica
        EE. Lr's. in fours. ............. 15. cupressina
        DDD. Corolla urn-shaped, i. e..
            longer than DD, and more
                constricted at the neck....16. Mediterranea
    DDDD. Corolla rentricose, i. e.,
        swelled at the base, and
        tapering slowly to a nar
        row neck
        17. ventricosa
                        18. translucens
```

1. cárnea, Linn. (E, herbd̀cea, Linn.). Height 6 in.: lvs. in 4 's: inflorescence lateral : corolla broadly bellshaped: anthers exserted: ovary glabrous. Mar.-May. Alps. L.B.C. 15:1452. B.M. 11. Gin. 54:1177 (a charming picture). The bright rosy-fld. form is the best and most striking. There are pale red and pure white varieties. The most popular of all hardy Ericas. Very easily prop. by division. We should try E. Mediterranea, var. hybrida, Hort., said to be a cross with E. carnea, and in England thriving almost as well in loam as in peat. See Gn. 55, p. 125, and 54, p. 262.
2. vàgans, Linn. Cornish Heath. Les. in 4's or 5's: sepals small, ovate, obtuse ; corolla ovate-bell-shaped; anthers ovate-oblong, 2 -parted, exserted : ovary not hairy. W. Eu. and Medit. - Fls. pale purplish red. Grows $3-1 \mathrm{ft}$. in England; 1 ft . with J. W. Manning, Reading, Mass. Var. alba has white fls. Var. capitàta, grows 1-2 ft. high with Meehan at Germantown, Pa., and has "small whitish fls, with a purplish tip."
3. stricta, Don. Corsican Heath. Les. in 4's, a little more erect than in Nos. 3 and 5 : sepals lanceolate, obtuse; corolla oroid-oblong, narrowed at the throat; anthers awl-shaped or awned, included: ovary densely covered with long, rough hairs. Corsica.-Attains 4 ft . in England, but grows 1-2 ft. high with Meehan, at Germantown, Pa. Branches striet, rigid.
4. Tetràlix, Linn. Bell Heather. Cross-leated Heath. Liss. in 4's, margin folded back: fls, rosy; sepals ovate-lanceolate, ciliate; snthers awl-shaped or awned, included: ovary with short, soft bairs. W. Eu. -Foliage grayish. Height in England 6-12 in. With Manning, at Reading, Mass., about 8 in.
5. hyemàlis, Hort. Fig. 771. Written also hiemalis. Watson thinks it may be a winter-flowering form of E. perspicua, figured in L.B.C. 2:102 and 18:1778 as E. Linneana. Fls. rosy pink, tipped white. Var, alba has white fls. With L. Dupuy, Whitestone, L. I.. it flowers in Sept. G.F. 5:137. Gn. 41:856. H. D. Darlington says it is very distinet from E. perspicua.
6. præstans, And. (E. Parmentièrii, Loddiges). Lvs. in 4's, somewhat incurved: bracts crowded: fls, nearly sessile, white, faintly flushed pink at base, in terminal groups of 4 or more; sepals ovate, rough-margined; anthers scarcely acute. Sep. Varieties are pictured under various names in L.B.C., plates 154, 1695, 197 and 1804.
7. grácilis, Salisb. Lvs, in 4's, somewhat erect: bracts remote: sepals smaller, lanceolated; anthers with a short, sharp point. L.B.C. $3: 244$ (pale violet). "Fls. purplish red." Var. autumnàlis, Hort. Fls. Sep. Var. vernalis, fls, in Oct. and Nov.
8. melanthèra, Linn. Fig. Tit2. Lrs. in 3's, obtuse, grooved on the back, younger ones often rough, with glands; bracts mostly crowded: fls. rosy; sepais obo-

9. Erica melanthera.
vate, keeled, colored; anthers black: ovary villous. Not L.B.C. 9:867, whlch may be a form of E. nigrita. Flowers in Dec, and Jan. A.F. 11:1133 and 12:579. F.E. 9:333.
10. fràgrans, And., not Salisb. Lvs. opposite, erectappressed, acute, always glabrous: bracts loose, sepallike: fls, in 2's; sepals ovate, keeled, green : ovary glabrous or slightly bristly at the tip. Habitat? B.M. 2181. L.B.C. $3: 288$.
11. Wilmorei, Knowles \& Westc. (A. Wilmoredna and Filmoredna, Hort.). Hybrid: corolla tubular, bulged below the lobes, slightly velvety-hairy : fls. in 1 ' $s-3$'s, rosy, tipped white. R.H. 1892, p. 202. A.F. 4:251. G.C. III. 19:201. -Var, glaúca, Carr., has nearly glaucous foliage. Var. calyculàta, Carr., has a large additional calyx. R.H. 1892, p. 203. In England flowers in spring.
12. Cavendishiàna, Hort. (E. Cávendishii, Hort.). Hybrid of E. depressa $\times E$. Patersonii. Lvs. in 4's, margins revolute : fls. in 2-4's ; corolla tubular ; stamens included; anthers awned. P.M. 13:3. G.C. 1845, p. 435. F.S. 2:142. A.F. 12:1143. Ging. 5:331. G.C. II. 18:213 and 20:597.
13. cylindrica, And, and Hort., not Wendl. or Thunb. Important hybrid of unknown parentage, cuit, since 1800. Lvs. in t's: fls, nearly sessile; corolla 1 in . long, brilliant rosy red, with a faint eircle of dull blue about two-thirds of the way from the base; anthers awned, included: ovary glabrous. L.B.C. 18:1734. R.H. 1859, p. 42. -Fls, very showy and unusually long. The oldest E. cylindrica. That of Wendland is a yellow-fld. species unknown to cult.
14. persolùta, Linn. Fig. 773. Essentially a white-fld. and very variable species, particularly as regards hairiness. Lrs, erect or spreading, hirsute or glabrous: corolia smali, originally $11 / 2$ lines long; lobes ovate, 2-3 times shorter than the tube, the sinuses acute, narrow. S. Afr. The numerous varieties Bentham found im-
 Erica persoluta. possible to separate either in the wild or in cultivation. Var, hispidula, Benth. Slightly hirsute: Ivs. $21 / 2-3$ lines loug, rough: authers subovate. Var, ľ̈vis, Benth. Lvs. shorter, blunter, often appressed, glabrous; anthers subglohose. Var. subcárnea, Benth., has the corolla lobes more evident. To this last variety Bentham seems to refer most of the horticultural varieties cult. under the name of E. persoluta. E. assurgens, Link., he refers to the first variety; E. Caffra of Linnzus to the first, but of L.B.C. 2:196 (and the trade?) to the second. E. regerminuens of Linnæus is a distinct species (figured in L.B.C. $17: 1614$ ns E. Smithiana); of the trade $=E$. persoluta, var. hispidula; of L. B.C. $18: 1728=\boldsymbol{E}$. persoluta, var subcarnca. Flowers in February and March, while the other species, numbered from 12-18, mostly flower in March and April.

15. Lusiténica, Rudolph (E : codonòdes, Lindl.). Spanish Heath. Branches tomentosepubescent: Ivs. glabrous and ovary glabrous. W. Eu. B.R. 20: 1698. G. C. 11. 7:463; III. 19:487. I.H, 43, p. 321. Gin. 54: 1190; 55, p. 125.-Hardy in England, but not here.
16. cupressina, Forbes (E. turrigera, Salisb.). Lrs. glabrous, subciliate or naked : inflorescence terminal: fls, pedicelled, in 1-4's: bracts remote: sepals finally reflexed; sinuses of the corolla acute, narrow. Probably a hybrid cult. since 1802. F.E. 9:333.

16. Mediterrànea, Linn. (E.

 cárnca, var. oceidentalis, Benth.). Fig. 774. This is considered by Bentham a western form of E. carnea (No. 1), with a little smaller fls., corolla a trifle wider at the apex, and anthers shortly exserted instead 774. Erica Mediterranea. anthers shortly exserted insteadof included. E. Mediterranea
of the trade is hardy in England, and perhaps second of the trade is hardy in England, and pernaps second
ouly to E. carnea in popularity there. In America it seems to be cult, only under glass. B.M. 471. Gin. 54: 1190; 55, p. 403.
17. ventricòsa, Thunb. Lvs. in 4 's, incurved to spreading, with pilose margins: inflorescence tervinal: sepals keeled; anthers with 2 very short ears, or awned, included: ovary glabrous. B.M. 350. L.B.C. 5:431. Var. grandiflöra, with tubes over $1 / 2 \mathrm{in}$. long. L.B.C. 10:945. The following varieties are cult. by L. Dupuy: Bothwelliana, breviflora, carnea rosea, cintra, hirsuta alba, magnifica, superba, tricalor. See R.H. 1858, p. 450 and 1880:50. Gin. 45, p. 87. A.F. 10:1111. F.E. 9:333.
18. translucens, Andr. Perhaps the first of all the garden hybrids between E. tubiflora and E. ventricosa. Lvs. rigid, with or without long, soft, red hairs: fls. in umbel-like heads; bracts remote; corolla rosy, $8-9$ lines long; tube narrowly ventricose, pubescent: limh short, spreading: ovary sessile. Andr. Heaths, 295. Bentham considers this a synonym of E. spuria, Andr. Heaths, 60. Schultheis says "it is the finest Ericagrown; a poor propagator but good grower. Takes 3 mos. to root."
The following are mostly kinds that have been grown suecessfully in smalt quantities by A . Schultheis but have never been advertised in American trade catalegues. $\mathrm{H}=$ hardwooded; the rest are soft-wooded. S. Africa, unless stated.
E. ampullicea, Curt. Lvs. ciliate, mucronate: bracts colored: fis. mostly in 4's; corolla ventricose, very sticky, typically white lined with red, limb spreading, white. Var. rubra. Hort., is the only form cult. B.M. 303. L.B.C. 6:508. H.-E, aristàta, And. Readily distinguished by the long bristle which ends the lvs.: ivs. recurved: fls, in 4's; sepals keeled with red; corolla sticky, 1 in . long, ventricose, but with not so long and narrow a neek as in E, ampullacea. B.M. 1249. L.B.C. 1:73. H. - E barbata, And, Bristly and glandular-pnbescent: Ivs. in 4's: corolla urn-shaped, villons: ovary villous. L.B.C. $2: 124,-\boldsymbol{E}$. Bawiedna, Lodd. Lvs. in t-6's: inflorescence axillary: corolla tubular, slightly inflated: limb erect or scarcely open. L.B.C. 9:842.-E. Burnetti, Hert., not in Index Kewensis.-E. canspicua, Soland., is a species with elnb-shaped, villons fls and villons lvs. in t's. Var, splendens, Klotzseh, with the lvs. and sepals shining green and pubescent corellas, includes E. elata. And. L.B.C. $18: 1788 .-$ E. Devaniana is not in Index Kewensis. H. - E. elata, And. =E. conspicua, var, splendens, - E. Irbyèna, And. Allied to E. ampallacea, but with corolla narrower at the base and tapering with perfect regularity to just below the limb, where it bas a prominent red bulge. It is also distinctly lined with red, and the sepals are green, though the brarts are colored, as in E. ampullacea. L.B.U. 9:816. H, - E. nigréscens, once advertised by Pitcher \& Manda, is presumably E. melan thera (H. D. Darlington).-E.pallida. A confused name. The oldest plant of this name is Salisbury's.which has an urn-shaped corolla, fis, often in 3's, pubescent and hirsute branches and lvs. in 3's. L.B.C. 1: i2 (as E. pura). E. pallida of the trade is prolabbly the tuhuler-fld, hybrid of Loddiges in L.B.C. 14:1355, which has axillary and terminal fis and lvs. in t's to 6's. \boldsymbol{E}. perspicua, Wendl., has a tuhular or sightily club-shaped corolla, lvs. in 4's, pubescent or rough hairy, and fls, in $1-3^{\prime}$'s, but the plant in the trade is probably \boldsymbol{E}. perspicuaides, Forbes, a bybrid, with longer and woollier hairs, Hs, somewhat in umbels, nearly 1 in . long. Only var, erecta is grown here.-E. Simdriana is grown by Louis Dapuy.-E. tricalor is perhaps the most confused name in the genus, and apparently ene of the impor tant kinds abrosd, where it bas many varieties and synonyms. In the trade it seems te stand for a handseme Heath, with lvs. in 4's, distinctly ciliate and terminated by a bristle: fls, in umbels of $8-10,1$ in. long, a little too inflated at the base for the typical tubular form, rosy at the base, then white, then green, and then suddenly constricted into a short neek; pedicels red and exceptionally long. Tbis description is from L.B.C. 12:1105 (as E. eximia), one of the earliest pictures of these charming hybrids which Bentham refers to the bybrid E. aristella. Forbes
Those who expert to import Ericas from the old World will be grateful to A. Schulteis for the following list of kinds which he has been unable to grow successfully at College Point, L. I.: Soft-wooded kinds, E. cerinthoides, colarans, intermedia, mammosa, mirabilis; hard-wooded,jasminoides, Marnockiana.

Lotis Depty and W. M.
ERIGENIA (Greek, spring-barn). Lembellifera. Harbinger of Spring. A monotypic genus. E. bulbòsa, Nutt., is low, nearly stemless, hardy, from a deeplying tuber, with ternately decompound leaves and small umbels of minute white flowers. A few plants may have been sold by collectors and dealers in native plants. B.B. $2: 542$. The Greek pronunciation of the word was Erigenia, but usuage, euphony and analogy warrant the use of Erigènia.
L. H. B.

ERIGERON (Creek, old man in spring; the young plants are somewhat hoary). Compósite. Fleabane. The garden Fleabanes are hardy border plants, suggesting our native asters, but blooming much earlier, and growing in tufts like the English daisy, though usually from 9 in . to 2 ft . high. The genus has perhaps 100 species scattered over the world, particularly
in temperate and mountainous regions. Stem-lvs. entire or toothed: fls, solitary, or in corymbs or panicles: rays in 2 or more series, mostly rose, violet or purple, rarely cream-colored or white, and one kiud has splendid orange flowers.
The garden Fleabanes are practically all perennials. A few annuals are harmless and pretty weeds. Some species have roots that are biennial. but they increase by offsets, and make larger clumps from year to year. They are of easy culture. J. B. Keller finds that they do best when somewhat shaded from the midday sun. They are easily prop. by seeds or division, and doubtless by cuttings, if there were sufficient demand. Small, divided plants set out in early spring produce goodsized flowering plants the first year. A good show of bloom may be had from seeds sown outdoors as early as possible in spring. Some fine masses of these plants in the hardy border or wild garden are much more desirable than an isolated specimen or two of each kind. The most popular species is E. speciosa, of which doubleand white-fld. forms should appear before long. At present it is the best kind, that has the rich, soft colors, from rose to violet and purple. E. aurantiacus has dazzling orange fis., and is nnique in the genus.
A. Fls. orange.
aurantiacus, Regel. More or less velvety: height 9 in.: lrs. oval-oblong, clasping at the base, more or less twisted: heads one on a stem : involucral scales loose, reflexed. July, Aug. Turkestan. R.H. 1882:78. Gn. 52, p. 485. - Perhaps the showiest of the genus. Sold as "Double Orange Daisy."

> AA. Fls. creamy or white.
> B. Lis. linear.
ochroleùcus, Nutt. Height 9-18 in.: stems mostly not branched: lvs. rather rigid: rays $40-60$, white or purplish, never yellow. Gravelly hills and plains N. Wyo. and Mont. to Utah. - This and the next are rare kinds, sold by collectors and dealers in native plants, and not cult. abroad.

BB. Les. broader, lanceolate to orate, or oborate.
Hówellii, Gray. Height about $1 \mathrm{ft} .:$ root-lvs obovate: stem-lvs. ovate, half-clasping: rays $30-35,1-2$ lines wide, white. Cascade Mts., Oregon.
mucronàtus, DC. Lvs, lanceolate, narrowed at base, ciliate, mostly entire, often with a long, callons mucro. Mex. J. B. Keller cultirates a lilac-fld. plant from the Himalayas as E. mucronatus, whieh he says is the same as Vittadenia trilobu, which see.

AAs. Fls. rosy, violet or purple.
B. Rays 100 or more, mostly narrou: les. entire.
C. F'lower-heads large.
D. Involucre hairy.
E. Height about 2 ft.: stems seceral-fld.
speciòsus, DC. (Stenóctis speciòsa, Lindl.). Height $11 / 2-2 \mathrm{ft}$.: hairs few, loose: stem very leafy at top: root-lys. more or less spatulate: stem-lys. lanceolate, acute, half-clasping. B. C. to Ore, near the coast. B.M. 3606. B.R. 19:1577. Gn. 52:1149. Var. supérbus, Hort., sold abroad, has lighter colored and more numerous fls. Var, màjor, Hort., has broader rays and brigbter colors.

> EE. Height 9-15 in.: stems usually 1-fld.
glaùcus, Ker-Gawl. Lus. slightly glaucous: root-lvs. rarely $2-3$-toothed. Pacific coast, where it flowers most of the year. B.R. $1: 10$. Gn. 52, p. 484.

DD. Involuere not hairy.

macránthus, Nutt. Height $10-20 \mathrm{in}$. : hairs numerous and long or short, sometimes nearly absent: lvs. lanceolate to ovate. Rocky Mts, Wyo. to New Mex. and S. W. Utah. Gn. 52, p. 484.-A good species. Blooms later than the eastern species. Violet. Hardy.
cc. Flower-heads (or disk) small.
glabellus, Nutt. Height 6-20 in.: root-1vs. spatulate: stem-lvs. lanceolate, gradually narrowing into bracts: involucre bristly, or at least pubescent : rays violet-
purple or white. Minn. to Rockies. Gn. 52, p. 485. B.M2923. B.B. 3:385. L.B.C. 17:1631, - Cult. by D. M. Andrews, Boulder, Colo. Much cult. ahroad.

BB. Rays 7o or less, wider: les. entire or toothed.

> c. Les. almost or quite entire.
D. Stems with several fls. in a corymb.

Villársii, Bell. Root biennial : height 1 ft .: 1 rs . with 3 or 5 nerves, roughish: fis. corymbose. Eu. B.R. $7: 583$. L.B.C. 14:1399. Not cult., but in 1.H. 43, p. 301 , said to be a parent with E. aurantiacus of E. hybridus rosers, Hort., Haage \& Schmidt. This is said to resemble E. Villarsii in habit, and E. aurantiacus in form of fls. but not in color. Said to bloom freely from May to autumn.

DD. Stems mostly I-fld.

salsuginosus, Gray. Height 12-20 in.: upper stemlvs. with a characteristic mucro. The slightly viscid character of the involucre is particularly designative. Wet ground, on higher mountains, Alaska to Calif. and New Mex. B.M. 4942 .

cc. Les. coarsely toothed above the middle.

bellidifolius, Muhl. Poor Robin's Plantain. Makes new rosettes by offsets from underground stems: height 2 ft.: root-lrs. wider ahove the middle tban in most species: stem-lrs. fewer: fls. spring. Damp borders of woods. Canada to Ill. and La. B.M. 2402. B.B. 3:388. D. 237. - "Fls. clear blue, on long stems."J. W. Manuing. Weedy.
E. purpireum, Hort., according to H. A. Dreer, "rarely exceeds 10 in . in beight, and has medium-sized tls. of soft. rosy purple, borne in graceful, spreading panicles." Form of E. macranthus?
W. M.

ERINUS (a name derived from Dioscorides). Scrophularidcer. The most popular species of this small genus is a hardy, tufted plant 3 or 4 in . high, suited for steep sides of alpine gardens, where it produces in spring its racemes of small purple, rosy or white fls. Root-Ivs. crowded, opposite: stem-lvs, alternate, oblongspatulate, with a few coarse, rounded teeth : corolla lobes 5 , oborate, the 2 upper ones slightly smaller: stamens 4, in two groups, included.
The secret of success in alpine gardens is said to be a constant supply of moisture with perfect drainage. As a class, alpines are impatient of standing water, and Erinus, wbich is a favorite, particularly so. J. B. Keller writes tbat Erinus should be planted in steep parts of the rockery where water cannot lodge on rainy days or in the winter and spring montbs. He adds tbat they need slight shade from midday sun. Divided plants are chiefly sold in America, but the amateur can soon produce a good carpet by the use of seeds. When well established, the seeds are self-sown and the offspring gain in hardiness. It may be safest to keep a pot or two in a coldframe over winter, until the plant can take care of itself. In England, seeds can be sown in earthy holes of brick walls, and Gn. 45, p. 134, shows a charming picture made by informal masses of flowering Erinus naturalized on some old stone steps.
alpinus, Linn. Les. hairy: racemes $2 \frac{1}{2} \mathrm{in}$. long: fls. $1 / 2 \mathrm{in}$. across, purple. April-June. Mountains of W. Eu. B.M. 310.-Vars. albus and carmineus, Hort., have white and crimson fls. respectively.
The following trade names are accounted for in Zaluzianskia: E. duplex, gracilis, Paxtoniana and speciosa.
W. M.

ERIOBOTRYA (Greek, woolly cluster). Rosdcea. Ten or twelre species, mostly East Asian, have been referred to this genus, but some authors restrict it to the one species described below, and others refer all the species to Photinia. Fls. large, white, fragrant, in a terminal rusty-woolly cluster; calyx thick, 5 -tootbed; petals 5 , cremulate: ovary 3 - 5 -loculed, each locule 1 ovuled.
Japónica, Lindl. (Photínia Japónica, Gray). Loquat. Japan Plum and Medlar (erroneously). Small tree, $10-20 \mathrm{ft}$., with thick, evergreen, oval-oblong remotely-tootbed lvs. near the summits of the branches

ERIOSTEMON

the under surface rusty-tomentose: fr. a pear-shaped yeilow pome (Fig. 775), with large sceds and an agreeable acid tavor. B.R. 5:365. A.ti, 12:19. - The Loquat is native to Cbina and Japan, but is much planted in the Gulf states and westward. It blooms from Aug. until the approach of winter, and ripens its clustered fr. in very early spring. The fruit is often seen in northern markets. It is a profuse hearer in congenial climates.

775. Loquat $\left(X^{3} / 4\right)$.

Loquat is an excellent decorative plant, either as an evergreen lawn tree south of Charleston, or as a potplant in the North. Grown from seeds, it is a most satis factory conservatory subject, resisting uncongenial conditions.
L. H. B.

ERIOCNEMA. Consult Bertolonia.

ERIODENDRON (Greek, woolly tree; alluding to the woolly fiber inside the fruit, called "ceibo" and "pochote" by the Mexicans, and used hy them for stuffing pillows). Maledcea. Ten species of tropical trees, thorny or not: lvs. digitate; leaflets 3-7, entire: fls. solitary or clustered, large or medium-sized, rosy or whitish; petals oblong, pubescent or woolly; column of stamens with 5 branches at the top, each bearing $2-3$ anthers. E. occidentelle, G. Don, is cult. by Franceschi, Sauta Barbara, Calif., as Ceiba occidentalis.

ERIOGONUM (Greek, woolly joints). Polygond̀cea. About 100 species, chiefly northwest American herbs, tufted suhshrubs', or slender annuals, mostly densely woolly: lvs. crowded at the base of the stem, alternate, entire. E.compósitum, Dougl., perhaps the best known, has countless minute 6 -lobed neutral colored fis., dull white to rosy, borne in compound umbels 5-6 in. deep and broad. The following have been advertised, but are practically unknown in our gardens: E. campanuldtum, compósitum, flavum, heracleoides, incànum, microthècum var. effùsum, niveum, ийđum, ovalifòtium, spharocéphalum, thymoides, umbellatum. These kinds have been advertised hy D. M. Andrews, Boulder, Colo., E. Gillett, Southwich, Mass., and F. H. Horsford, Charlotte, Vt. Consult American manuals and floras, and Proc. Am. Acad., vols. 8, 12 and 14. Should these attain any garden importance they may be reviewed in an annual continuation of this work. Species are usually found on calcareous soils.
W. M.

ERIOPHORUM (wool-bearing, from the Greek; alludlng to the heads of fruit). Cypericece. Perennial rushlike plants, growing in swales: fls, in dense heads, the bristles very numerous and often becoming greatly elongated in fruit. None of them is known in cult., but the following have been offered by collectors: E. alpinum, Linn.; E.cyperinem, Linn.: E.linedfum, Benth. \& Hook.; E. polystachyou, Linn.; E. vaginatum, Linn.; E. Virginicum, Linn. All these are wild in the northern states. Useful for bog gardens. Avoid late fall planting.

ERIOPHYLLUM (Greek, woolly-leaved). Compósuter Perhaps a dozen species, all from western N. Amer. One kind cult. in a few hardy borders is a low, tufted, herbaceous perennial, with much divided lvs., covered with wool beneath (each stem bearing about 5), and 8 rayed, yellow heads, 2 in . across, borne in a loosely forking fashion on peduncles $3-7 \mathrm{in}$. long. The genus was included in Bahia by Bentham and Hooker, but is now kept distinct largely because of the permanently erect involucral bracts: seeds mostly 4 -angled, and pappus of nerveless and mostly pointless, colorless portions.
cæspitósum, Dougl. (Actinélla landta, Pursh, not Nutt. Bahia lanàtu DC.I, described above, has been advertised by E. (iillett. B.R. 14:1167 is badly drawn as to involucre and pappus.

ERIOPSIS (Greek, like Eria, an orchid of the Epidendrum tribe, which it resembles when not in flower). Orchiddcere. Five Peruvian orchids of the Vanda tribe allied to Acacallis and Warrea. Lrs. plicate: racemes 2 or 3, basal : fls, open, small, maxillaria-like, together: lip 3-lobed, the lateral lobes broad and erect. Cool house orchids, requiring the treatment of Cattleya.
bíloba, Lindl. Pseudobulbs 3 inches long: Ivs, lanceolate: fls. I in. across; sepals and petals yellow, with orange-red margins; labellum yellow spotted with brown. Colombia. B.R. 33:18.
rutidobulbon, Hook. Stouter in habit than the above: pseudobulhs wrinkled, dark colored: racemes drooping: sepals and petals orange-yellow, with deeper colored margins; labellum white, with purple spots. Antioquia, in exposed positions on the stems of palms. Peru. B, M. 4437.

Helenæ, Kräuzlin. Said to be "the finest in this small and rare genus. It differs greatly in habit from the other members; the bulbs somewhat resemble those of Epidendrum Brassavola, but are much stronger, and bear three long, coriaceous, dark, glossy, green leaves. The flowers are twice as large as those of E. biloba, and are borne on tall, arching scapes. The sepals and petals are orange-colored, margined with purple, the lip similar, but with a yellow blotch, spotted with purple at the base." - Sander \& Co., I899.

Oakes Ames.
ERIOSTEMON (Greek, woolly stamens). Rutdcea. Coolhouse evergreen shrubs from Australia, with starry, 5 -petaled fls, an inch wide, of white or blush pink. Practically unknown in America, but abroad considered amongst the finest of hard-wooded winter or springblooming Australian plants. The nurserymen mostly graft them on stocks of Correa, an allied genus, which has tubular fis. instead of free petals. Lvs. alternate, entire, glandular-dotted: stamens 8-10, free, shorter than the petals; anthers pointed. Much care is needed to produce well-trained specimens. With the growth of wealth in America, more of the Australian hard-wooded plants will be grown by skilled gardeners in our finer establishments. The following kinds can be imported from Europe.
A. Foliage linear or narrowly lanceolate.
B. Le's. linear.
scàber, Paxt. Lvs. covered with minute roughnesses: petals white, tipped pink. P.M. 13:127.

BB. Lus, narrowly lanceolate.

linifolius, Seghers. Lvs. broadest at middle, tapering both ways. R.B. 20:97.-Probably an old garden form of some well-known species.

AA. Foliage conspicuously wider.
B. Liss. 10-12 times as long as broad.
c. A pex abruptly pointed.
myoporoldes, DC. Lvs. widest at the middle, tapering evenly both ways: petals white, glandular on the back. B.M. 3180 .

cc. A pex blunt.

salicifolius, Sm . This willow-leaved species has perhaps the handsomest foliage. Lvs. widest above the middle, tapering more gradually to the base than to the apex: petals bright, soft pink. B.M. 2854.

BB, Lus. $8-1$ times as long as broad.

intermèdius, Hook. Lvs, 9-18 lines long, elliptical, ahruptly pointed: petals lanceelate, white, but tipped with pink outside in the bud like the rest: evary placed on a flat disk and net ringed at the base. Probably of garden erigin. Intermediate between E. myoporoides and buxifolius, B.M. 4439 .
buxifòlius, Sm. Lvs, as in E. intermedius, though perhaps smaller: petals obovate, white, tipped pink: ovary sunk into a double disk of 2 rings. B.M. 4101 .\boldsymbol{E}, densifldrum, Seghers., R.B. 20:97, leeks like a prolific herticultural variety of this species.
W. M.

ERITRICHIUM. For E. barbigerrm, see Krynitzkia. For E. nothofuleum, see Plagiobothrys.

ERODIUM (Greek, a heron; alluding to the beaked fruit). Geraniacer. Heron's Bill or Stork's Bill. This genus centains a few low-growing, hardy herbaceous perennial plants, with finely cut foliage and fls. suggesting our wild and hardy fieraniums, frem which they differ in having only 5 instead of 10 anther-bearing stamens, the other 5 being reduced to scales; also the tails of the carpels hairy inside. The comnion Geraniums of our home windows and summer flewer-beds are the blended product of Pelargonium zonale and P.inquinans, and originally had the 2 upper petals distinctly smaller than the 3 lower ones, as de the other wild Pelargeniums frem the Cape of Geed Hope, while Erodium and the true genus, Geranium, of which a few sorts are cultivated in our hardy borders, have all 5 petals nearly equal in size. They also have small glands alternatiug with the petals, which are absent from Pelargonium. Erodium has about 50 widely scattered species. Herbs, rarely semewhat woody or tufted: ivs. opposite or alternate, one often smaller than its mate, stipuled, toothed, loked or dissected: fls, mostly in umbels, of various shades, from crimsen-pink to purple, with darker blotehes on the 2 upper petals and the venation outlined in darker shades.

These plants are chicfly for the front row of the hardy borders and the reck-garden, where they thrive in a gritty loam. They like dry, sunny spots, and may be trusted with a conspicuous position, being chiefly valued for their steady succession of bloom from June to August. Divided plants are chiefly sold here, but the species are easily prop. by seeds. Of E. moschatum only seeds are sold, and these are sown annually, the species not heing hardy. Nos. I and 4 are net native to America, being essentially Asian, but they grew wild in California and to some extent in eastern states. Some Erodiums can be grown in chinks of walls, but not E. Manesca $\tau^{+} i$, which is the strongest-growing, showiest and best kind.

1. cicutàrium, L'Hérit. Tufted, lower and mere slender than No. 4, less glandular, often with cearse, seft, short hairs: 1vs. ebleng, 1-2-pinnate; Ifts. small, nearly sessile, the uppermest confluent, more sharply and deeply cut and with narrower lobes: stipules small, acute: sepals with 1 or 2 terminal bristles: filaments net toothed. Mediterranean regions, Asia. Mn. 7, p. 127.
2. macradènium, L'Hérit. Remarkable for the great length of the roots when twisting ameng reeks, and strong odor of the foliage. L, vs. hairy, glandular, $1^{1 / 2}-2 \mathrm{in}$. long, oblong, pinnate; segments pinnatifid, rachis with a toothed wing : fls. light purple, the 2 upper petals a shale diarker, and the spots nearly black. Pyrenees. B. M. 5665 .
3. Manescàvi, Coss. Height $10-18$ in.: lvs. attaining 6 in. long, $21 / 2 \mathrm{in}$. wide; segments alternate, evate, shertstalked, dentate, with sometimes a deeper cut: fls. at best 2 in. across, strong rosy purple, the spots of the upper petals only a shade or twe darker. Pyrenees. Gn. 55 :1220.-Celers strenger and more uniform than No. 2.
4. moschatum, L'Hérit. Mostly stent and glandular: lfts, large, short-stalked, ovate to elliptical, serrate, broad-lobed: stipules large, rather obtuse: sepals not terminated by bristles: filaments 2-toethed. Mediterranean, Orient.
W. M.

ERPETION. All referred to Viola.

ERUCA (etymelogy in dispute; probably frem the Latin to burn, in allusion to the het seeds). Crucifero. Perhaps half a dezen herbs of Eu. and W. Asia, annual or biennial. Allied to Brassica: differs in the shorter, more turgid silique, with keeled valves; style elongated; seeds in two rows. E. satlva, Mill., Roquette or Tira, is the only species cult, in this conntry. It is a weedy, hispid annual, resembling a Mustard, 2-3 ft . high, with lyrate-pinnatifid ivs, and ereamy yellow fls. See Roquette.
L. H. B.

ERYNGIUM (a name used by Theophrastus for seme sort of thistle). (Tmbellifera. Sea Holly. The Sea Hellies are among the most hizarre of garden plants, and are chiefly valued for the steel-blue or purplish east of their rigid stems, prickly fuliage and teasel-like heads. They look like thistles, and do not suggest any relation to the umbelliferous family of which the flat-topped, white-flowered umbels of wild carret are a common example. The genus has perhaps 100 species, mostly spiny herbs. The petals are white. All those described below are perennial.

The Sea Hollies are toe qneer and striking to be used as elements in the most restful and natural home-pictures, and their proper place is the hardy border, the natural repesitory for all serts of carious things. Here they perpetually challenge one's curiosity and interest. There are twe very distinct greups of them, one with much-cut feliage, as shown in Fig. 776, the other the

776. Eryngium amethystinum.
"Pandanus greup," with long, undivided leaves. A very different list of species is cult. abread, but the main types are here now, and a cellection of kinds is net as artistic as well massed groups of a single kind. They are slightly used in subtropical bedding. The dried stems retain their celor, and are sometimes hung
up in living-rooms. The plants mostly grow from 2-3 ft. high and head out in July and Sep. J. B. Keller advises a light soil and sunny situation. E., umethystinum is probably the favorite. Meehan says that E'. planum is mueh risited by bees. The weak point of Eryngiums is that they are slow to recover from the shoek of division. This makes it difficult to work up a stock at bome sufficient to make an effeetive group. D. Dewar, in his garden monograph of the group, Gn. 46, p. 522 , says tbat the only safe way to inerease the Sea Hollies is by seet. "Sow the seed in pans as soon as gathered, and place in a coldframe. The seeds will germinate in the spring, and if properly managed will be ready to plant out the following year." It is said that many of the species are less showy and satisfactory bere than in England.
A. Le's. dicided into radiating segments.

B. Bracts longer thun the heads.

C. Nrumber of bracts 10-20.

1. Root-ivs. deeply notched at the base and merely toothed at the margin.
2. alplnum, Linn. Bracts $10-20$, a little longer than the oblong heads. Alps. R.H. 1876, p. 113. B.M. 922. Kin. $46: 993$. - There is a white variety.
DD. Root-tus. less deeply notched at the base, etsewhere more dissected.
3. Oliveriànum, Laroch. Braets $10-12$, more rigid and fewer-toothed than in E. alpinum: heads ovate. Orient. Gn. 45, p. 223.

> cc. Number of bracts 6-9.
> D. Root-les, deepty cut.
3. amethystinum, Linn. Fig. 776. Root-Ivs. pinnatifid: bracts 7-8, few-toothed at the base, much longer than the globose heads. Eu. Gn. 46, p. 522, and 55, p. 454. E. catestinum, a trade name unknown to our botanies, is the same thing, according to J. B. Keller.

Dd. Root-les. merely crenate-dentate.
4. gigantèum, Bieb. Root-lvs. deeply cordate: bracts 8-9: bead ovatc. Armenia. Gin. 46, p. 523.

B8. Bracts as long as or shorter than the heads. c. Epper stem-les. 5-parted.
5. plànum, Linn. Middle stem-lrs. stalkless, undivided: bracts 6-7: head rotund. Eu., N. Asia.
cc. LPper stem-lvs, about 8-purted.
6. Léavenworthii, Torr. \& Gray. Height 1-3 ft. : stemlvs. stalkless, somewhat clasping: heads ovoid-oblong. Kans, to Tex., Mex. B.B. 2:522.

AA. Li's, undivided, long and linear.

7. aquáticum, Linn. (E. yureafotium, Michx.). Height 2-6 ft.: stem striate, unbranehed or branehed above: lvs. mostly clasping, finely parallel-veined, lower sometimes 3 ft long, $11 / 2 \mathrm{in}$. wide, all bristly margined: heads globese-ovoid. U. S. B.R. 5:372.
W. M.

In No. 1 the involucre is a deeper blue than in Nos. 2-5; in No. 7 the involuere is not colored and the fls, are white or pale. No. 1 ueeds deep soil and partial shade. No. 3 also makes a good bog plant. No. 7 grows well in either wet or dry situations. Heights of the first five speeies, $2-3 \mathrm{ft}$.; 3-5, 2-31/2; 3-4, 3-4.

F. W. Barclay.

ERYSIMUM (possiply means blister-drawing). Crucifero. Of this big genus we cultivate two brilliant yellow and orange, spring- and summerblooming, hardy "annuals," searcely, if at
all, inferior to the true wallflowers (Cheiranthus) for general purposes, and two lower-growing and perhaps earlier-blooming rock-garden plants. The genus has 70-100 species of biennial and perennial herbs, with long, soft, appressed, 2-parted hairs: lvs. narrow, linear or oblong, entire or variously toothed: fls, orange or yellow, rarely purple, often fragrant; petals 4: style persistent.

Although the two most popular kinds are biennials, the gardeners think of them as annuals. Their seeds can

778. Erysimum asperum ($\times 2 / 3$).
be sown in the fall and produce earlier bloom than if sown in spring. Fig. 777 shows the last flowers open at the top of the pyramid, while the seed pods are swelling below.

The rockery kinds, J. B. Keller writes, do well also in the front row of the border and on dry banks. They like full exposure to sunlight, and in the spring months are completely covered with bright flowers, Divided plants only, not seeds, are offcred by Ameriean dealers. In Gn. 24, p. 462, it is said that E. ochroteucum on level ground is likely to lose its lower liss, and to perish on heary soils in hatd winters. It thrives best when frequently divided, and may be prop. by cuttings.

A. Plants biennial: height 12-18 in.

B. F'ls. yeltow.
ásperum, DC. (E'. Arkansdnum, Nutt.). Figs. 777, 778. Height $1-3 \mathrm{ft}$. in the wild, $12-18 \mathrm{in}$. in gardens: Ivs. dentate or entire, upper ones mostly entire: fls. $1 / 2$ in. aeross: pods rough, $11 / 2-4 \mathrm{in}$. long, 4 -sided, nearly erect. U.S. E. 1 rkansanum is merely a western and broaderleared form. B.B. 2:152.

BB. Fls. orange.
Peroiskianum, Fisch. \& Mey. Pods shorter than in the above, and standing out more nearly at right angles, not so stiff and straight, eonstricted below the narrower style. Caucasus, Afghanistan. B.M. 3757. P.M. 6:245. - There are strains of seed sared by Vilmorin-Andrieux \& ('o., from compact and dwarf plants suitable for edgings. (E. Perofskiantm nanum, R.B. 32:101. E. nanum compactum aureum, Gt. 46, p. 194. E. compactum auream, Peter Henderson \& Co.).

> AA. Plants perennial: height mostly $4-6$ in.: rockgarden plants.
rupéstre, DC. (E. pulehéltum, J. Gay). Stem rather woody at base: lvs. somewhat dentate; stem-lvs. oblong, the hairs short, dense, $2-3$-parted. Asia Minor. R.H.

1880, p. 412.- Woolson, Passaic, N. J., keeps the names separate. His plants of E. rupestre have "citron-yellow fls." E. ruprestre is "more spreading."
ochroleùcum, DC. (E. Rhaticum, DC.). Height 4-12 in.: stems yellowish, creeping: Irs, entire or the upper with a few short, sharp teeth. Spain. J. W. Manning's plants of E. Rhaticum be considers same as E, pulchellum. They "grow 6 in . high, and have bright yellow fis. iu May." Woolson's plants of E. ochrolcucum, "from the Alps of Jura," have pale yellow tls.
W. M.

ERYTHEA (one of the Hesperides, Daughter of Evening). Palmdeere, tribe Corỳphea. Spineless palms with solitary robust caudices, ringed at the base, clothed above with dead leaf-sbeatbs. Leaves terminal, the younger ones tomentose, orbicular, flabellately manyparted, the lobes lacerated at the apex, intermingled with fibers, infolded; rachis short; ligule long; petiole stout, smooth or spiny along the margins; spadices long, white tomentose: branches stout; spathes many, sheathing the peduncle, thick-coriaceous, densely tomentose; bracts and bractlets distinct; fls. pale: fruit globose, small. Species 2. Southern California.

This small group of American palms includes two species only, as far as known at present, these being E. armata, which is known locally as the "Blue Palm," and E. edulis, the latter commonly known as the "Guadalupe Palm," from the fact that it has only been found in a wild state on the island of Guadalupe, off the coast of southern California. The plants in question belong to the fan-leaved section of palms, and bear much resemblance to Brahea, the segments of the leaves being adorned with whitish filaments. In the gardens of Sunta Barbara, California, the Erytheas are planted out, and in a few years form very handsome trees, but in less favored latitudes they may be cultivated in the same manner as Kentias or Latanias, flourishing in a night temperature of 60° when grown in a rich and open soil and abundantly supplied with water.
armàta, Wats. (Brahèa armàta, Wats.). Blue Palm. Tall and slender, 40 ft . high: 1vs. very glaucous; petiole narrow, deeply channeled, margined with numerous stout, more or less hooked, sligbtly spreading spines; segments $30-40$, sub-lacerate at the apex, slightly filiferous. Lower California. G.C. III. 20:425.
édulis, S. Wats." (Brahèr édutis, Wendl.). Stem 30 ft . high, 15 in. thick, with thick, corky bark; sheaths fibrous, at length glabrous: petioles stout, 1 in. wide, planoconvex, unarmed on the acute margins, fibrous-pubescent or glabrate ahove; ligule $2-3$ in. long, densely silky-tomentose ; blade 3 ft .; segments $70-80$, at first tomentose, lacerate at the apex and fibrous on the edges. California. R.H. 1893, p. 297, and 1897, p. 77. G.C. III. 13:507; 22:157. Jared G. Smith and W. H. Taplin.

ERYTHR库A (Greek, red; alluding to the fls, of some species). Gentiandcer. This includes two hardy plants with bright, deep rose fls., one of which is a rockery plant from the Azores, the other a Californian annual which deserves general cultivation. The flowers have slender green tuhes an incb long, and a spreading limb of 5 oblong lobes, each half an inch long. The style of E. venusta is curious. Though longer than the stamens, it does not stand above them, but bends down and stands off at one side. The genus has possibly 30 widely scattered species, and no near allies of garden value. These plants bloom in summer and autumn.

Of E. diffusa, J. B. Keller writes: "A light, sandy loam, in a protected nook of the rockery, with partial shade, is required for this charming little alpine plant. It must be planted in a well sheltered position, and requires protection from sun and severe frost in winter, hut the little plant is well worth all the extra care we may have to expend on it in winter. Prop. by cuttings, seeds or division."

Mássoni, Sweet (E. diffùsa, Woods). Height 4 in.: stems ascending, tufted, not branched above, 1-3-fld.: fls. lateral. Azores. Annuals in Azores, biennial in western Europe. - The plant cult. under this name is considered perennial by our nurserymen.
venùsta, Gray. Height 6-10 in.: stems erect, 4 -angled, cymosely branched, as many as 14 -fld.: $1 \mathrm{vs} .1 / 2-1 \mathrm{in}$.
long, oblong or ovate oblong, very blunt: corolla lobes said to be yellow at the base, but in the picture the fls. have a white eye. Calif. B.M. 6396. - The largest flowered species.

ERYTHRINA (from Greek for red). Leguminòsa. Coral Tree. Herbs, shrubs or trees, with large and showy papilionaceous tls., represented by $25-30$ species in tropical countries. Lws, pinnately 3 -foliolate, with glanduliform stipules. Fls, wostly red and in dense racemes; calyx 2 -lipped; standard free or very nearly so; tenth stameu free, or united only half its length: fr. a slender, more or less twisted pod. Plants usually spiny; very rapid growers. Erythrinas are much prized garden plants. Some of them, particularly the herbaceous kinds, are frequently planted out in the summer. In the house they demand an intermediate temperature. Give rich soil and frequent waterings. In the woody xpecies, aim to have well-ripened wood for flowering, for the bloom is produced on wood of the preceding year. The herhaceous species are propagated by division of the rootstock; also by cuttings from shoots springing from the old roots. Woody species prop. by cuttings of growing woud. All species prop, by seeds, whenever these are obtainable.
A. Herbaceous species (or treated as such). These die down at the end of the season, and the roots may be stored after the manner of Dahlias. It is best to start the roots before planting them out, particularly in the N. In their native countries, these species are more or less woody.
Crista-gálli, Linn. (E. lancrifolia, Jacq.). Common Coral Tree. Bushy and woody, sometimes developing a very sbort trunk, but the flowering branches dying back after blooming, the stronger branches coming annually or periodically from near the root: stem and petioles somewhat spiny: lfts, ovate-oblong or lanceoblong, acuminate, entire: fls. large, brilliant crimson, the keel nearly as long as the down-folding standard, the wings rudimentary. Braz. B.M. 2161.-Runs into many forms, varying in the shade of red, some of them with variegated lvs. South of Washington, stands out of doors if protected. In the North the fleshy roots are taken up and stored. Valuable for summer bloom. Fls. in large, terminal racemes. Madame Belanger is a popular garden form.
compácta, Bull. Of very compact habit: fls, rich crimson. Prohably a form of the last.
speciosa, Andr. Bush-like, reaching 8-12 ft., hut usually cut back as E. Crista-galli is: stems and lvs. prickly: Ifts. broad and more or less 3-lobed, pointed, veiny: fis. in pubescent racemes, rich crimson. W. Ind. B.R. 9:750.-Stem green, very prickly.
herhàcea, Linn. Stems several and herbaceous, from a very thick root, $2-4 \mathrm{ft}$. high, the flowering ones nearly leafless : Ifts. ovate to hastate: petioles loug, more or less prickly: fls. 2 in . long and very slender, deep scarlet, in loose racemes $1-2 \mathrm{ft}$. long: seeds scarlet. N. Car. to W. Ind. Common on Gulf coast of Ala. and Miss. B.M. 877.-E. Bidwillii, Lindl., is a beautiful hybrid of this species and E. Crista-galli (the latter the pollen parent), with herbaceous shoots and an ascending vexillum. B.R. 33:9.
AA. Woody or tree-like species. Greenhouse plants, or planted in the open in S. Calif. and S. Fla.
Humeàna, Spreng. (E. Cáffra, Hort.). Often treelike and 30 ft . or more, the stem and petioles very spiny: petioles long: Ifts. rhomboid-ovate, acuminate: peduncles axillary and strictly erect, longer than the lvs., white-warty: fls, verticillate-spiked on the ends of the peduncles, long and slender, deflexed, brilliant scarlet fading to purple. S. Afr. B.M. 2431. B.R. 9:736.

Corallodéndron, Linh. Coral Tree. Tree, prickly: lfts. ovate-rhomboid: calyx teeth obsolete; standard erect, linear-ohlong, scarlet: seeds searlet, usually with a black spot. W. Ind.
Other Erythrinas bave been introduced into S. Calif.: E. Bogoténsis, said to grow 50 ft , bigh, from Colombia; E. insignis, Todaro, of unknown habitat, 100 ft ; E. vidrum, Todaro, 100 ft ., of unknown habitat.
I. H. B.

ERYTHRONILM

ERYTHROCH㢆TE, or ERYTHROCHETON. See

 Senecio Japonicus.ERYTHRONIUM (from the Greek word for red). Lilidcea. Dog's-Tooth Violet. Adder's Tonifue. Handsome plants of the north temperate zone. Four belong to the Old World, four to eastern N. America, one is found in the Rocky mountains, while in the cool woods and high mountains from northern California to the British possessions the genus is represented by nine species and a number of well marked varieties. Erythroniums have bulbs standing erect and from oblong to linear in form, two radical leaves, which in most species are handsomely mottled: seape slender and leafless, producing from one to many flowers. The perianth consists of six similar divisions, usually recurved, six stamens and a single 3 -lobed style. The species are confused and are much in need of revision. See

Watson, Proe. Amer. Aead. Arts \& Sci. 14:260; 22:479. Baker, Journ. Linn. Soc. $14: 296$. Weathers, G.C. III. 20:361.

The Erythroniums are most interesting spring flowers. They succeed in any light soil, partieularly in partial shade. In common with all herbaceous perennials, especially those which produce bulbs or corms, they profit by a winter mulch of leaves or litter. The western Erytbroniums are all plants of the cool woodlands, except a few which grow at such altitudes as to reach like conditions. They thrive best in shade, a thoroughly drained soil, moist and rich in mold, a surface covering of half rotten leares tending to equalize conditions. Any good fibrons material, as fibrous peat, cocoanut fiber or spent tan bark, or even well rotted sod, will answer the purpose to lighten the soil and give that abundance of mold they delight in. Pockets in shaded rockwork give ideal situations. They will thrive naturalized on cool, wooded slopes, and where the drainage is good will thrive in grass. The leaves ripen before the grass is cut and the effect is very fine. Simply planted in boxes in a loose soil, rich in mold, and left year after year in a shaded spot, they sometimes give splendid bloom. \mathcal{E}. Hartwegii flowers very early, and stands more heat and dryness than any other variety. $E_{\text {E }}$. purpurascens and E^{\prime}, montanum, from high altitudes, tend to throw up their growth very late, and are on that account rather difficult to cult. E. grandiflorum flowers very early, and must be given a cool situatiou and be
kept back, to secure any length of stalk. All of the other western species are very satisfactory garden plants. The propagation of E. Dens-Canis and varieties, the eastern American species and E. Hartwegii, is by offisets. All of the other western species can be increased only by seeds. The eastern species should be planted at least 5 in . deep.
A. Fls, always solitary, and without a erest near base of inner petals: leares handsomely mottled: offsets fex.-Old World species.
Dens-Cànis, Linn. The European species: in the type tls, are rosy purple or lilac: stem $4-6$ in. high. Variations are white, rose-colored or flesh-colored. Var. longifolium, Hort., varies in its narrower leaves and larger flowers. Var. Sibiricum, Hort., from the Altai Mts., is taller. - Little known in Amer. gardens.
AA. Fl. solitary, without a crest on inner petals: producing offsets. - Eastern American species.
Americanum, Smith. Common Adner's Tongee. Fig. 779. Lrs, mottled: fls, yellow; the segments recurved: bulb with long offshoots. Eastern U.S. and Canada, to Fla, and Ark. Runs into many forms. The following names belong with it: E. lanceoldtum, Pursh; E. angustàtum, Raf.; E. bractedtum, Boott.
alhidum, Nutt. Lrs. not mottled, narrow: fls, white, yellow at base; segments recurved. Ont, and N. Y. to Tex.
mesachoreum, Knerr. Lrs. not mottled: fls. lavender, the segments not reeurved: earlier than the last. lowa to Kansas.
propůllans, Gray. Lrs. small, green or slightly mottled: Hs. rose-colored, with yellow hase : offsets produced from the stem sheath. Southern Ontario and Minnesota.
AAA. Fls. 2-4, sometimes more (rarely only 1-fld.).West American species. The Irs. are richly mottled, except in E. grandiflorm. The corms do not produce offsets, except in E. Hartwegii. Inner petals with auricles except in E^{*}. Howellii. All except E^{*}. purpuruscens have large and showy fls.

B. Style \&-cleft.

grandifldrum, Pursh (\boldsymbol{E}, gigantèum, Lindl.). Lvs. unmottled: stem slender, $1-5$-fd.: fls, Very bright yellow; petals recurved; anthers yellow.

Var. álbum, Hort. (E. montanum, Hort.). Like the type, except the fls, are white, yellowish at center, and with a slight greenish cast.

Var, minor, Norren, is smaller.
Nuttalliànum, Schult. Like E. grandiflorum, and perhaps a variety of it, but has red anthers.

Hártwegii, Wats. Bulb-bearing offsets: Ivs, mottled: fls. 1-6, mostly in a sessile umbel, large, light velloworange at center. Foothills of the Fierra Nerada mountains in California. G.C. III. $20: 361$.
revolutum, Smith. Lrs. 1-1, mottled in white and light brown: fls, nearly always 1 or 2 ; petals narrow and curred; style large and stout; filaments from subulate (awl-shaped) to deltoid, opening from white flushed with pink to pinkish purple, becoming purple. J.H. 111. 35:523.

Var. Bolánderii, Hort. (E.grandiflorum, var, Smithii, Hook.). Differing from the type in having white fls., tardily becoming purple, and in being smaller.

Var. Jóhnsoni, Purdy (E. Jóhnsoni, Bolander). Very similar to the type, but Irs. mottled in dark brown and looking as if coated in rarnish, and fls, dark rose with orange center. Gn. 51:1106. G.C. III. 19:549; 25:253.

Var. præcox, Purdy. Lvs. mottled in maliogany, the most beautifully in any Erytbronium: the fls., usually 2-4, are creamy white with orange center.

Var. Watsoni, Purdy. Differs in having a full, ereamy white fl., orange at center, and usually banded with brown above the base; in foggy weather the fl, is bellshaped: Ivs mottled in brown. - One of the finest of Erythroniums.

The California Poppy. Eschscholzia Californica

Var. albiflòrum, Hort. (E. gigantèum, var. albiflòrum, Hort. E. grandiflorum, var. albiflorum, Hook.). This differs from var. Watsoni only in being pure white, with a delicate greenish cast. B.M.5714. F.S. 20:2117. G.C. III. $3: 556 ; 15: 621$.

вe. Style not divided.

eitrinum, Wats. Lvs. mottled: stem 1-3-fld.: petals broad, strougly recurved, light yellow, orange at center, the tips becoming pink.
Héndersonii, Wats. Lvs. mottled in dark brown : petals strongly recurved, pale purple, with a very dark purple, almost black, center. (i.F. 1:317. G.C. I11. $3: 653$; $15: 623$. В.M. 7017.
purpuràscens, Wats. Lvs, not mottled but shaded in dark metallic tints: small, spreading fls. crowded in a raceme, ligbt jellow (almost wbite), center orange, becoming purplish. - The smallest of our Erythroniums. Properly an alpine.

Howellii, Wats. Lvs. mottled: scape 1-3-fld.: fls. pale yellow with orange base, becoming pinkish.-Of the Pacitic coast Erythroniums, this alone is destitute of the ear-shaped appendages at inner base of petal.

Carl Purdy.

ERYTHROXYLUM (Greek, red wood; true of some species). Lindeere. Coca. The Cuca plant, the lvs, of which are of vast importance in mediciue, can be grown in the extreme soutb of Florida and California, and is rarely cult, under glass in the North for its economic interest. It is a shrub 5-6 ft. high, with rusty brown, slender branches, on the extreme tips of which the lvs. are borne. Below the Ivs., on the wood of the preceding year, which is reddish, clusters of 3-5 yellow 5 -lobed ifs. a quarter of an inch across spring from the protection of the swall scales that line the branchlets, and which are colored like the bark. The native country of the Coca being still uncertain, it is necessary for purposes of description to take as the type the earliest described form, which happens to be a Peruvian one, named by Lamarck Erythroxylum Coca, and figured in the Botanical Magazine 1894, plate 7334. The lvs. of this form are about $21 / 2 \mathrm{in}$. long, oblong-obovate, tapering to a short stalk, rounded at the apex, the midrib extending beyond into a short, sharp point.

Coca is grown commercially on a large scale throughout South America. Peru produces fifteen million pounds of the dried leaf every year, Bolivia half as much, and the rest of South America very much more. The lvs. are chewed to prevent hunger and fatigue. Dr. H. H. Rusby, of New York, in the Therapeutic Gazette, says, "The effects of Cocaine as a nerve stimulus applied to intellectual and emotional activity are ruinous. It takes away appetite, abolishes the sensations of hunger and thirst, lessens waste during exertion, and decreases the exhaustion of ill-fed laborers and travelers. Beyond this, Cocaine has no supporting or nourishing power whatever, and its essential action is enfeebling. Every attempt made to support by it athletic competition has resulted in failure or even disaster." Cocaine is an excellent anæsthetic, and is particularly useful in operations on the eye. Coca should not be confused with Cocoa and Cacao, which are discussed under Theobroma. The literature of Coca, from every point of view down to the year 1889, is reviewed in the Kew bulletin for that year.
W. M.

ESCALLONIA (Escallon was a Spanish traveler in S. Amer.). Saxifragàcea. About 40 South American evergreen shrubs or trees, with scattered entire or serrate, ovate or lanceolate lvs, viscid branches, strongodorous fls. in terminal racemes or panicles: petals 5 , linear-spatulate; stamens 5 ; anthers ovate-oblong; style simple, the stigma capitate and 2-3-lobed: ovary 2-3-loculed. A few species have been introduced in the S., chiefly in S. Calif. They are of easy culture; rapid growers. Some of them will no doubt prove half hardy as far north as Washington. Spring and summer.

Montevidénsis, DC. (E. floribúnda, Hort.). Nearly erect bush, branches cylindrical: lvs. 2-4 in. long, elliptic or linear-oblong, obtuse or nearly so, narrowed into a distinct petiole, minutely dentate: fls. white, $1 / 2 \mathrm{in}$.
across, in a large, terminal panicle-like cyme. B.M. 6404. B.R. 17:1467.
pulverulénta, Pers. (E. Berteriàna, DC.). Shrubs, hairy all over: lvs. elliptic and obtuse, serrate : fls. white, in erect, terminal racemes: branches trigonal.
virgàta, Pers. (E. Phitippiàna, Mast. E. virgata, var. Philippiana, Engl.). Half-hardy shrub south of Washington, with rod-like light brown branches: Ivs. nearly sessile, not glandular nor odorous, linear or oblong-spatulate, serrate: fls, white, small, in dense racemes terminating the branchlets.
Organénsis, Gardn. Half hardy S., 2-5 ft., branches red and angled: Irs. elliptic or oblong, crowded, serrate, glossy: fls. pink, in close, terminal clusters. B.M. 4274. -Excellent.
rùbra, Pers. Twiggy shrub, glandular-puhescent: lvs. rather small, obovate-lanceolate, sharp-toothed: fls. long-tubular, red, in short, terminal clusters. B.M. 2890

L. H. B.

ESCHSCHOLZIA (J. F. Eschscholz, of Kotzebue's scientific expedition). Papareràcea. About a dozen low, pale or glaucous herbs, annual or peremnial, with dissected, alternate 1 vs ., and large, showy jellow or whitish fls.: sepals 2; petals 4 ; stamens numerous; stigmas 4-6: capsule long and slender like a silique, 1 -loculed. The calyx forms a hood which is pusbed off over the bud as the petals expand (see detail at the left in Fig. 780). The torus or receptacle (from which the capsule arises) is prominently widened or dilated. Monogr. in Gray, Syn. Fl. N. Amer. 1:90-92. Commonly spelled Eschscholtzia.

Califórnica, Cham. California Poppy. Fig. 780. Perennial, but cult. as an annual, $10-20 \mathrm{in}$. high, forming mats: lvs. petioled and divided into linear parts :
fl. saucer-shaped, opening in sunshine, 2-3 in. across, yellow or orange or cream-colored : pod 3-4 in. long, strong-ribbed: torus large and funnel-shape. Calif. and Ore., mostly along the coast. B.M. 2887 . B.R. 14:1168. R.H. 1894, p. 381. - One of the most popular garden fis. It is treated as a hardy annual. Sceds may be sown very early. It stands considerable cold, and blooms after the first frosts. If well protected, plants of one season's growth will pass the winter and give some bloom the following spring. It sometimes selfsows. Very attractive as an edging, because of its interesting bluish foliage. There are double-fld. forms. Very variable, and cult. under a rariety of names, as C. maritima, Hort. (not Greene), C. vària, Hort. (trade name for mixed varieties), C. aurantiaca, Hort., and C. dilba, Hort. The so-called white varieties are not yet pure white. Do not bear transplanting well.
Var. cròcea, Hort. (E. cròcea, Benth.). Fls. deep orange: torns rery widely expanded: calyx bud longattenuate, B.R. $20: 1677$. B.M. 3495.
Var. Doùglasii, Gray (E. Doǹglasii, Benth.). Rather more slender, and blooms earlier: fls. pure yellow.
tenuifolia, Hook. Lower, with finer-cut and denser foliage, the long divisions being almost capillary: fls. small (1 in , across), light yellow, overtopping the ivs.: torus less prominent. Calif. B.M. 4812.
L. H. B.

ESTRAGON. Artemisia Dracunculus.

- EUCALYPTUS (Greek, eu, well; kalypto, to cover as with a lid: the calyx limb covering the flower before anthesis, then falling off in the form of a lid or cover). Myrtaceo. Gum Tree. Mostly trees, frequently of immense size; a few of the alpine and sub-alpine species shrubby: lvs. simple, entire (Fig. 781), in the seedlings and young shoots of many species horizontal, opposite, sessile and cordate; in the adult mostly vertical (occasionally horizontal), alternate, petiolate and varying from broadly orate to lanceolate-acuminate and falcate, thick or thin, always rigid, penniveined, glabrous,

except rarely in the young shoots, sometimes covered with a glaucous wax: umbels solitary and axillary or paniculate, near the ends of the branchlets, usually white: fls. in umbels of 3 to many, rarely solitary ; calyx tube obconical campannlate or oblong, adnate to the ovary at the base; lobes connate, forming a lid which separates by a circumscissile dehiscence; petals wanting
(or adnate to the calyx-lid) ; stamens numerous, in many rows, usually free, frequently inflexed in bud; anthers small, mostly distinctly longer than broad and opening by parallel longitudinal slits, offen almost kid-ney-shaped and opening by divergent longitudinal slits, or truncate and opening by terminal pores ; style undi vided: fr. a capsule, opening at the top by $3-6$ valves; seeds numerous, mostly angular, only a few fertile. For structure of fruit and calyptra, see Figs. 782-788. A genus of about 140 species, all Australasian, except ing perhaps 5 found in the East Indies. Valuable hard wood trees, mostly of rapid growth : the timber is ex ceedingly durable and largely used in Australia by shipbuilders, railroad engineers, implement makers, and for building purposes. Felling for timber should be effected towards the end of the dry season, when the flow of the sap is least active. Ring-barking, if necessary, should be performed during the latter part of the cool, or the earlier part of the warm season, so that by largely exhansting the sap, the fewest or no new shoots will rise from the root (Mueller). The leaves of many species contain a raluable antiseptic, volatile oil, which is dis tilled for pharmaceutical purposes. The bark of several species yields a resin (kino) containing tannin in commercial quantities, on account of which the name of Gum Trees is applied to the genus. E. Globulus has been very widely distributed over the globe throngh the persevering efforts of the late Baron Von Mueller; it is frequently planted in the malarial regions of warm climates, as at the Campagna at Rome, with very beneficial effect. (Sanitarians will be interested in "Eucalyptus in Algeria and Tunisia, from an hygienic and cli matological point of riew," by Dr. Edward Pepper, Proc. Amer. Phil. Soc. 35:39-56.) In England the same species is grown extensively for subtropical gardening, on account of its distinctive glaucous hue and symmetrical growth, but in that climate it needs the protection of glass in winter. But few species are really hardy; most of them, however, can be grown successfully in California and countries enjoying a similar climate.

For ready determination of species in this critical ge nus, it is necessary to have adult leaves, mature buds, flowers, and mature fruit: immature fruits are often very misleading. Monographed in part by Baron von Mueller in his Eucalyptographia (cited here as F.r. M. Eucal.), in which 300 species are carefully illustrated. Bentham describes $1: 55$ species (almost the whole genus) in his Flora Australiensis, Vol. 3. Tbe following key has been adapted from Luehmann's Dichotomons Key, published in 1898: the descriptions have been summarized from the Eucalyptographia, and subsequently verified by reference to herbarium specimens wherever these were available. References to Hook. Icon. mean Hooker's Icones Plantarum.

Culture in the Eiast: Encalypti are most easily raised from seeds, which generally germinate freely. These should be sown thinly in pots or pans of light, sandy soil, and placed in a little heat. E. Globulus, when intended to be used for subtropical hedding or for a group on a lawn, is best sown in August and grown on througb the winter, for use the following season. In this way mueh larger and better plants may be obtained than when sowing is deferred to the spring. It is best to raise new plants each year, as lifted specimens do not regain their beauty of the preceding season. Being fast-growing plauts, considerable space must be allowed when they become established, either in the open ground or in pots. A rather rich soil, composed of loam and decayed manure, with the addition of some char. coal, to keep it open, is most suitable. E. maculata, varcitriodora, is very useful for growing in pots in the conservatory, its lemon-scented leaves rendering it a general favorite (Nicholson)

Culture in the South: The process of raising Eucalypts is one of extreme simplicity. Well-ripened seeds, shallowly sown (on open nursery ground, or, should the species be a rare or select one, in wood boxes or seed pans) germinate quickly; when about hand-high the seedlings should be transplanted in the nursery, to check tbe downward growth of the roots and to promote the formation of lateral rootlets, fit to retain some soil while moving such seedlings to places of permanency. The operation of transplanting should be carried out in
the cool season, best under a cloudy sky, and the seedlings ought not to get dried up in any way during the process of removal, regular daily watering for some time afterwards being requisite. Eucalyptus seedlings for shipment to plares ouly a few days' distance may be simply packed in closed cases without much soil ; for transmittal to longer distances, they must be well established in pots or bamboo pieces. In this respect Eucalypts should be treated like most pines and other coniferous trees, and, like them, cannot be transplanted when they have attained any size, even when provided with a good ball of earth. But their distribution by means of seeds is the easiest method, on account of the durability and small size of the latter. (F. v. Mueller: adapted).
aemenioides, 31 .
albens, 3 .
alpina, 35 .
amygdalina, 47. angustifolia, 47 . Baileyana,42. buprestium, 15 . calophylla, 5. citriodora, 1. coceifera, 44. colossea, 11. coriscea, 10. cornuta, 37. corymboss, 4. corynoealys, 8. crebra, 23.
diversicolor, 11 . doratoxylon, 9 . drepanophylla, 22. ficifolia, 6.
fissilis, 18.
Globulas, 34.

1NDEX.
gomphocephala, 33. piperita, 16 . goniocalyx, 41. Gunnii, 45. hemastoma, 46 . hemiphloia, :t. Lebmauni, 36 . leptophleba, 22. leucoxylon, 13 , tongifolia, 12,47 . maculista, 1. marginata, 25. megacsrpa, 40 . melanopbloia, 20 melliodora, 19. microcorys, 28. obcordata, 39. obliqua, 18 . occidentalis, 38. pallens, 14. panieulata, 7. panciflora, 10. pilularis, 30 .

Planchoniana, 17. platypus. 34. polyanthemos, 2 . punctata, 29. punctata, 29 . regnans,
resinifera, 26. Risdoni, 32. robusta, 24 . rosea, 14. rostrata, 50 . rudis, 52. saligaa, 27 siderophloia, 21. sideroxylon, 14. splachnicarpa, 5. Stewartiana, 49. tereticornis, 51 . triantha, 31. useinata, 43 undulata,45. viminalis, 48.
A. Fruit-valves quite enclosed in the capsule (see atso No. 25, E. marginata: fruit must be quite mature in order to determine this point).
B. F1s. mostly in terminal or lateral panicles, not simple umbels (occusionally the inflorescence will oppear to be paniculate in section BB also, owing to the falling off of the leaves, so that it is necessary to look for the leaf-scars in placing dorbtful specimens): l-s. scattered, petiolate (except sometimes in seedlings and robust shoots).
c. Les, of equal color on both sides (see also No. 4 and No. 7, E. corymbosa and E. paniculata).
D. Fruit at least $\frac{1}{3} \mathrm{in}$. in diameter, more or less ureeolate: fls. and fruits pedicellate.

1. macalàta, Hook. Shotted Gusi. Handsome tree, 150 ft . high: bark smooth, whitish or reddish gray, mottled with bluish white or brown reddish spots: lrs. lanceolate; reins feathery-spreading: anthers opening by parallel longitudinal slits; lid double. F.v.M. Eucal. 3:4. Hook. Jcon. 619. - Timber valuable for ship-builders, wheelwrights and coopers, and for blocks for street paving.

Var. citriodòra, Bailey (E. citriodòra, Hook.). Lemonscented Gum. Handsome tree: trunk slender: bark smooth, white: branchlets long, slender and drooping: lvs. very long and narrow, light green, strongly lemonscented: fls. creamy white. May-July.-A farorite ornamental tree, of rapid growth in the warmer parts of California: subject to frost. Timber valuable for piles and girders: volatile oil used in perfumery: the young plants useful for window or cool greenhouse culture.

DD. Fruit rarely exceeding $1 / 4 i n$. in diameter.

2. polyánthemos, Schau. Red Box-tree. Well branched tree, from 40 ft . or less to 150 ft , high: bark brown or ash-gray, persistent, roughish: 1vs. from orhicular to ovate, dull and grayish green on both sides: lid depressed- or pyramidal-hemispherical and faintly pointed: fls, small, white, in close panicles, described as resembling gigantic heads of mignonette; outer stamens sterile; fertile anthers truncated, opening by terminal pores. F.r.M. Eucal. 3:9. Hook. Icon. 879. - Fairly rapid grower. Timber extremely hard and durable, unsurpassed for fuel, and much used in Aus-
tralia for ties and wheelwrights' work. Very useful for bees, flowering in Jan, and Feb.
3. hemiphloia, F. v. M. Acstrallay Box-tree. Tree, 90 ft . or less high: bark of trunk persistent, solid, gray: ish and somewhat wrinkled; of branches deciduous, in flakes or long strips: Irs, from lanceolate-falcate to ovate-lanceolate, thick and rigid, often ashy gray; lateral veins diverging at a very acute angle : lid conical: anthers very minute, globular, opening by lateral, pore-like apertures. F. г. M. Eucal. 5:5.Timber hard and tough, valued in Australia for railroad ties, telegraph poles, shafts, spokes, etc.; also makes excellent fuel.

Var, álbens, Moore (E. dilbens, Miq.). White Boxtree. Bark dull green, persistent: Ivs. glaucous or mealy white: fls. chalk-white.
ce. Lis. paler beneath than above: branchlets glabrous.
D. Fruit urceolate (urm-shaped) over $1 / 2$ in. long: lid of calyx not broader than the tube, tearing off along an irregular suture: anthers distinctly longer than broad, opening by almost parallel longitudinal slits.
E. Size of fruit under 1 in . in diameter.
4. corymbosa, Smith. Bloodwood. Small tree: outer bark persistent, rough-furrowed, gray and turving somewhat black; inner yellowish or reddish brown; that of the upper branches smooth and often reddish: Irs. lanceolate, only sligbtly curved, firm; midrib very prominent, lateral veins very numerous, fine, almost transversely spreading; oil-dots inconspicuous: peduncles and pedicels long, slender: fls, yellowish white, fragrant: lid depressed-hemispherical, short-pointed: fr. large, oval-urn-shaped. Aug.-Decem. F,r.M.Eueal. 5:2. - Timber very hard when dry, durable under ground, and much used in Australia for fence posts, rails, railroad tiex, and rough building purposes: bark yields ahout 28 per cent tannic acid; dried lvs, about 18 per cent.
ex. Size of fruit exceeding 1 in . in diameter: lrs. trurning the surfuce more than the edge, to the zenith; veins feathery-spreading.
5. calophylla, R. Br. Medium-sized, umbrageous tree: bark persistent, dark, deeply furrowed: lvs. broad- or lanceolate-ovate, firm and thick, conspicuously stalked: fls. large, white, rarely pink, in large clusters: lid thin, patellar: fr. large, smooth, ovate-urn-shaped, border compressed; seeds very large, black, not winged. . TulyOct. B.M. 4036 (as E. splachnicurpa). F. v. M. Eucal. 10:2. G.C. I11. 20:661.-Ornamental tree, but of rather slow growth and subject to frost. Fruits polished and sold for pipe bowls: good shade-tree for avenues: valuable for bees, flowering late into the fall: bark contains tannin.
6. ficifolia, F.t. M. Crimson-flowered Eucalyptes. Figs, 782, 783. Handsome, umhrageous dwarf tree or tall shrub, of symmetrical habit: bark persistent, furrowed: Ivs. broad- or orate-lanceolate, rigid, conspicuously stalked; veins almost trausverse: fls. crimson or scarlet: fruits large, smooth, urn shaped-ovate; border compressed; seeds pale brown, broadly wiuged. Aug., Sept. F.r. M. Eucal. 7:3.- Yery

782.

Fruit and bud of E. ficifolia. ($\times 1 / 3$.) ornamental ; adapted to the lemon-belt: a shady, heat-resisting arenue tree, withstanding drought. Fruits polished for pipe bowls.

DD. Fruit truncate-orate, pedicellate.

7. paniculàta, Smith. Red Jronbark. Mediumsized tree: bark persistent, hard, rough: lvs. rather thin: fls, sometimes borue in axillary umbels: lid thin, conical, semiovate; outer stamens sterile; anthers minute, truncate, opening by minute pores at the summit; stigma dilated, distinetly broader than the summit of the style: calyx-tube and fr. sometimes 4 -ribbed. May. F.r. M. Eucal. 5:8.- Timber hard and durable, lasting under ground ; valuable for railroad ties, fencing and building purposes.

BB. Fls. in simple, axillary umbels: fr. with o or more cells, and not exceeding 1 in . in length. (See also E. pariculata, Fo. 7.)
c. Lid projecting beyond the rim of the calyx tube: anthers distinctly longer than broad, opening by almost parallel longitudinal slits.
8. corynocalyx, F. Y. M. Sugar Gum. Tree, 120 ft . high: bark smooth: Ivs. elongate-lanceolate, slightly curved, somewhat paler beweath: lid almost hemispherical: fr. urn-shaped-ellipsoid, longitudinally streaked. June-Sept. F. v. M. Eucal. 2:2.-The best trought-resisting tree for desert regions (Mueller) ; the foliage contains but little oil, is sweetish, and is browsed by stock. Needs protection from sea breeze when planted along the coast. An ornamental tree used for roadside planting in southern California. Timber hard, strong, durable; useful for railroad ties and fence posts. Said to be the quickest-growing shade tree for regions exposed to hot, bleak winds; will stand $18^{\circ} \mathrm{F}$.

783. Eucalyptus ficifolia ($\times 1 / 3$) .
co. Lid not projecting beyond the rim of the calyx-tube. D. Li's, opposite: anthers minute, not longer thun broad (nearly oval), opening by longitudinal slits.
9. doratóxylon, F. F. M. SPEAR-WOOD. A pretty, small tree or tall shrub: bark smooth, greenish white: IVs. stalked, narrow, lanceolate: umbels bent downward, on recurred, slender, compressed peduncles: lid terminating in a beak-like point: outer filaments sterile. F.v. M. Eucal. 4:4.-Graceful tree, of slender habit: timber firm and elastic.

> DD. Les. scattered.
E. Leaf-veins several, longitudinal, almost parallel with the midrib.
10. coriàcea, ('unn. (E. pauciftorra, Sieb.). White Gum. Handsome tree: branches spreading ; branchlets slender and more or less drooping: bark smooth, whitish gray: Jvs. broad, elongated, thick: lid hemispherical, twice or thrice shorter than the tube, usually quite blunt: anthers almost kidney-shaped, opening by very divergent, longitudinal slits: fr. shortly-pedicelled. Nov.-Feb. F.V.M. Eucal. 3:6. - An alpine tree, and one of the bardiest species. Cattle browse on the foliage in seasons of drought. Timber used for fuel, fences and building purposes; sometimes badly affected with scale.

EE. Leat-reins all more or less diverging from the nidrib.
F. Foliage much paler beneath (see also No, 25, E marginata): anthers almost heart-shaped, opening by longitudinal slits.
11. diversicolor, F. v. M. (E. colóssea, F. v. M. E. diversicolor, var. colossea, Hort.). KARR1. Very tall, symmetrical tree, attaining 12 ft . in diameter: bark smooth, white: Irs. scareely inequilateral, dark green and shining above; veins feathery-spreading, fine: lid nearly hemispherical ; fls. white, in heary clusters; stamens all fertile. March-May, and again in Novem.
F. v. M. Eucal. 5:4.-A rapid grower, profuse bloomer, and considered a good tree for bees. Timber elastic, valued for building purposes, shafts, masts and fence rails.
FF. Foliage of equal color on both sides, or nearly so. G. Pedicels elongated: lid conical.
12. longifolia, Link. Woollybutt. Tall tree: bark persistent, gray, rough or wrinkled, somewhat fibrous : Ivs. elongated; veins very spreading: lid broadly conical, acute, pale: stamens all fertile; anthers cuneate- or oblong-oval, opening by longitudinal slits : stigma not dilated: fr. rather large, bell-shaped, semiovate, angular: margin outwardly ascending. F. v. M. Eucal. 2:4. -Flowering almost continuously. Valuable for bees.
13. leucoxylon, F. Y. M. White Ifonbakk. Tall tree, usually branching below: bark mostly deciduous, smooth, pale: Ivs, narrow-lanceolate, grayish or dull green: fls, usually in 3 's, white or rarely pink: lid semiovate, pointed: outer stamens sterile; anthers irmncated, opening by apical pores; stigma much dilated: fr. slightly contracted at the orifice, rarely slightly angular. Jan.-Apr. F.v. M. Eucal. I:4. - Valuable bee tree, making an excellent honey. Timber superior to that of almost any other Eucalypt for certain purposes. Valued for harduess and durability; used by wagon- and ship-builders, also for railroad ties and underground work, for axe handles and for turning. Will grow on stony ridges not adapted to ordinary cultural purposes.
14. sideróxylon, Cunn. (E. lewe $6 x y l o n$, var. sideróxylon, Authors). Red Ironbark. Perhaps not specifically distinct from E, lercoxylon: usually not branched below: bark persistent, rough, dark red: Irs, green: fls. white or yellowish.

Var. ròsea, Hort. (E. leucóxylon, var, ròsea, Hort.). LTs, green: fls rose-colored. March, Apr. - A handsome form and profuse bloomer.

Var. pállens, Auct. (E. leucóxylon, var. pållens, Benth. E. leucoxylon, var, pallidu, Hort. E. sideróxylon, var. pillida, Hort.). Lvs. silvery gray: fls. red.A profuse bloomer.
GG. Pedicels short or none: perlile seeds not winged. H. F'r. much contracted ai the orifice, nearly globular: outer anthers kidney-shaped, opening by divergent slits.
15. bupréstium, F. v. M. Shrub, 10 ft . high; lvs. about 2 in. long, narrow; oil-dots much concealed: fis. small, almost pear-shaped in bud: lid hemispherical, pointed: inner anthers opening by large, roundish pores: fr. nearly 1 in . in diam., truncate-globular, grayish; margin compressed. July, Aug. F. v. M. Eucal. 6:I. - Valuable for bees.
16. piperita, Smith. Peppermint Striney-bark. Tall tree: bark persistent, gray, rough and fibrous: oildots copious, transparent: lid broad-conical, acute: fr. about $1 / 4 \mathrm{in}$. in diam. F. v. M. Eucal. 3:8.

HH. Fr. but slightly or not ai all contracted.
 1. Diameter of fr. nearly 1 inch.

17. Planchoniàna, F. F. M. Tree, 100 ft . high: peduncles erect, broadly compressed : pedicels very short or almost none: lid narrow-conical, from a semi-ovate base, about as long as the calys-tube, both Jongitudinally streaked: anthers ovate or roundish ovate, opening by longitudinal slits. July. F.v. M. Eucal. 4:6. - A profuse bloomer. Timber heavy, hard and durable; well adapted for sawing, but not easy to split.
II. Diameter of fr, rarely exceeding $1 / 2 \mathrm{in}$.
J. Calyx-tube and lid granular, rough.
18. obllqua, L'Her. (E. fissilis, F. v. M.). StringrBARK. Tall tree: bark persistent, grayish, very fibrous, but rather soft and fragile: Irs. very inequilateral at base: peduncles nearly terete, mostly slender: calyx tube terete: lid hemispherical, depressed or scarcely pointed. March-May. F. v. M. Eucal. 3:5.-Much valued in Australia for bees. Will grow on poor, dry soil, but subject to frost in California. Wood useful only for cheap, rough work.

sJ. Calyx-fube and lid smooth.

19. melliodora, Cunn. Honey-scented Gum. Spreading tree, 120 ft . high: bark more or less persistent below, roughish, brownish gray without, yellowish within: fls. small: lid conic-hemispherical: outer stamens sterile; anthers minute, truncated, opening by terminal pores: fr. truncate-globular, not exceeding $1 / 3 \mathrm{in}$. in diam., mostly 4 -celled. Feb,-Apr.-F.r.M. Eucal. 2:5. -Timber used by wbeelwrights and ship-builders; makes excellent fuel: Hls. particularly rich in nectar, and much sought by bees.
AA. Fruit-ralces either quite exserted or the points reaehing the level of the rim. I Fruit mast be fully mature in order to render this point determinable.)
B. Fls. generally panicled: anthers renate-cordate, opening by longitudinal slits: lvs. of equal color on both sildes.
c. Le's opposite, mare or less avate.
20. melanophldia, F. v. M. Silyer-leayed Ironbark. Small tree: bark persistent, deeply furrowed, blackish: Ivs. glaucous or mealy white, sessile, from cordateovate or orbicular to ovate-lanceolate, obtuse or acute: peduncles 3 - to 8 -flowered: anthers very small and globular; cells parallel and distinet: fr, truneate-globular, 2 or 3 lines long.

cc. Lrs. seattered, lanceolate.

21. siderophloia, Benth. Large-leaved Ironbark. Tree, 150 ft . high: bark wholly persistent, deeply and somewhat anastomosingly furrowed; furrows yellowish or dark brown: lrs. elongated: lid conical, very acute, about 3 lines long: outer filaments straight in bud; anthers very minute, roundish; stigma not dilated. October. F. v. M. Eucal, 4:8.- Timber very strong, hard and durable; used for railroad ties, wharf piles, spokes and tool-handles.
22. drepanophylla, F.v. M. Low, stunted tree: bark ribbed, dark gray: Ivs, thin, often over 6 in . long; veins fine, numerous, parallel and very diverging: umbels 3 - to 6 -flowered: fls. large; ealyx-lid about as long as the tube (not exceeding 2 lines long): fr, 3 to 4 lines in diameter; valves level with or hardly projecting beyond the rim. Said to be near E. crebra, differing mainly in the large flowers and in the larger, harder and more globular fruit.

Var. leptophlèba, Luehm. (E. leptophlèba, F.v. M.), is said to be ehiefly distinguished by the Ivs, being thicker and the veins more oblique. Timber strong, hard and very durable; used for bridges, mine props and fence posts.
23. crèbra, F. v. M. Narrow-leaved 1 ronbark. Tall tree: bark persistent throughout, dark, almost blackish, ridged and deeply furrowed, solid: lvs. narrow, linearlanceolate, thin: lid semiovate-conical, not exceeding 2 lines long: filaments inflexed in bud; stigma dilated: fruit-valves level with or hardly projecting beyond the rim, not exceeding 2 lines in diameter. F, v. M. Eucal. 5:3.-Timber heavy, hard, elastic and durable; used for railroad ties, piles, fence posts, and in the construction of bridges and wagons; also suitable for splitting into palings.
BB. Fls. mostly in simple axillary umbels: fruits not exceeding 1 in . in diam. c. Lers. paler beneath.
D. Calyptra lid broader than the ealyx-tube.
24. robusta, Smith. Sifamp-mahogant Gum. Fig. 784. Handsome, symmetrieally branching tree, 100 ft . high: bark of trank persistent, rough, dark brown; of the brauches reddish: lvs. large, oval-lanceolate,long-pointed,dark green, coriaceous; the veins almost borizontally spreading: peduncles broadly flattened: fls. large, creamy white; calyx pale ; lid hemispherical below, eylin-dric-conical pointed above ; anthers oblong -oval, opening by parallel longitudinal slits. Fine

784. Fruit and buds of E. robusta ($\times 1 / 3$),
avenue tree; profuse bloomer, especially valuable for bees. Dec.-Feb. F.r. M. Eucal. 7:8. - Timber remarkably durable; used for ship-building, wheelwrights' work, mallets, ete.: seems to thrive well in low, sour, swampy ground uear the seacoast.

DD. Calyptra lid not bwoader than the ealyx-tube. E. Fruit $1 / 2$ in. or more in diameter.

25. marginata, Smith. Jarkah. Talltree: barkpersistent, somewhat tibrous: leat-veins spreading: lid eonical: stamens all fertile, the outer not intlexed in the bud; anthers cordate-kidney-shaped, opening by divergent longitudinal slits: fr--valres very short, scareely or not at all exserted. Apl., May. F.v. M. Eucal. 7:5.-Valuable hardwood tree, requiring a warm climate: timber not attacked by teredo; used for wharf piles, underground work, telegraph poles, railroad ties, floorings, rafters, shingles and furniture; it is easily worked, makes a fine finish, takes a good polish; used in Eng. land for street paving.

EE. Frrit under $1 / 2 \mathrm{in}$. in diameter.
F. Length of lid usually twice or thrice that of the ealyx tube.
26. resinifera, Smith. Kino Eucalipt. Tall tree: bark of truak persistent, rough, of branches deciduous: leaf-veins pinnately spreading: oil-dots pellucid, more or less obliterated: lid conical: stamens all fertile, inflexed in the bud; anthers longer than broad, opening by parallel longitudinal slits. F.v. M. Eucal, 1:9.Timber valued for its strength and durability; particularly good for fuel; used in Sydney for street paving.
FF. Length of lid shorter than or equaling that of the calyx-tube.

G. Foliage mueh paler beneath: lateral veins numer-

 ous, rery spreading.27. Baligna, Smith. Tall tree: bark gray and smooth: leaf-veins feathery-spreadiug : oil-dots numerous but mueh concealed: peduncles broadly compressed; pedicels very short or none: lid hemispherical, short pointed: stamens all fertile; anthers longer than broad, opening by parallel longitudinal slits. Nov. F.v. M. Eucal. 2:8. - Said to be hardier than E.Globulus; prefers rich, alluvial soil.
28. microcorys, F.y.M. Tallow-wood Ger. Tall tree: bark persistent throughout, wrinkled: lvs. thin, of almost papery consistence, copiously dotted with pellucid oil-glands, paler and opaque beneath; veins spreading: pedicels elongated, club-shaped, almost continuous with the calyx tube: lid depressed-hemispherical, hardly jointed: anthers very minute, almost heart-shaped, opening by divergent slits. F.v.M. Eucal. 2:6.- Timber hard, durable, eaxily worked; used preferably for wood bricks; also for railroad ties, knees and breasthooks in ship-building, and telegraph poles.
Gg. Foliage slightly paler beneath, the lateral veins not very close and moderately spreading.
H. Fruit broadest at the orifice: fertile seeds much larger than the sterile ones: stamens all fertile: anthers longer than broad, opening by parallel longitudinal slits.
29. punctàta, DC. Leather-Jacket. Hickory Gum. Beautiful spreading tree, 100 ft . or more high: bark smooth and dark, thick, most of the outer deeiduous: lvs. thin; veins divergently spreading: peduncles broad, strongly compressed: pedicels angular, thick: lid bluntly conical. F.v.M. Eucal. 6:7.-Timber hard, tough and very durable, suitable for fence posts, railroad ties, wheelwrights' and ship-builders' work.
HH. Fruit contraeted at the orifiee: fertile seeds not mach larger than the sterile anes: stamens all fertile: anthers kidney-shaped, opening by divergent longitudinal slits.
30. pilularis, Smith. Blackbutt. Tree, 300 ft , or less high: bark of trunk persistent, blackish gray outside, somewhat fibrous and brownish inside; of branches smooth, gray or whitish: Ivs, rather less shining below than above: peduncles strongly compressed: lid attenu-
ate, from a broadly conical base: fr, ahout 4 lines in diameter; rim thick. F.v.M. Eucal. 3:7.-Timber suitable for floor boards, railroad ties, telegraph poles, and wood brieks

31. Eucalyptus Globulus.
32. acmenioldes, Schau. (E., triantha, Linn. E. piluldris, var. acmenioldes, Benth.). White Mahogany Gum. Tall tree: bark of trunk persistent below, fibrous: peduncles not ruuch compressed, slender: lid hemispherical, pointed at the summit: fruit not exceeding 3 lines in diameter; rim thin. F.v.M. Eucal. 10:1. - Timber heavy, strong and durable; good for palings, rails, floor boards, etc.

Cc. Lus. of equal color on both sides.

D. Mostly opposite lus., not connate (except sometimes in No. $32, E$. Risdoni); margin entire: fruit rarely exceeding $1 / 2 \mathrm{in}$. in diameter, truncateovate.
32. Rísdoni, Hook. Drooping Gty. Small or medium sized tree: bark deciduous, smooth: branches usually pendulous, bark brown or ashy white: Ivs, acute, ovate: lid hemispherical, obtuse: anthers kidney-shaped, opening by divergent longitudinal slits. Closely related to E. amygdalina.

Dn. Mostly scattered lis.: As, and fruits sessile or on short pedicels.

E. Lid muel broader than the calyx-lube.

33. gomphocéphala, DC. TooArt Tree. Tree, 120 ft . or less high: bark persistent, rough but not stringy, rather dark on old trunks, smooth and grayish on younger trees and branches: Ivs, thick, narrowly acuminate, pale green: peduncles broadly flattened; pedicels wanting: lid almost hemispherical: fr. large, top-shaped; border broad, convex. Nov. F.r. M. Eucal. 7:4.-A very distinct species, easily distinguishable by the broad lid. Timber tough, heary and rigid, texture close, grain t wisted, shrinks but little and does not split while seasoning; suitable for large scantlings where great strength is needed, also in ship-building and for bridge supports. One of the strongest woods known.

EUCALYPTUS

EE. Lid not or onty stightly broader than the calyx-tube. F. Calyr-tube and lid warty; anthers larger than broad, opening by nearly parallel longitudinat slits.
34. Globbulus, Labill. Blue Gum, Figs. 781, 785, 786. Tree, 300 ft . or less high: bark grayish or bluish white, smooth except at the base of the trunk: Ivs. lanceolate, thick: calyx-tube and lid covered with bluish white wax: fr. large, augular. Dec.-Feb. F.v.M. Eucal.6:2. G.C.1I. 15:601; III. 2:784; 10:737. - Very attractive to bees, but the nectar has a strong and unpleasant odor. In Callfornia more extensively planted than any other Gum, and readily spreading by voluntary seedlings. Will stand protracted drought without irrigation in a region of only 8 or 10 inches annual rainfall (Franceschi). The most rapid-growing species. Timber used in Australia by ship-builders for planking and keels; also for fence rails, telegraph poles, railroad ties, shafts and spokes. It has been recommended for wine casks. Will tolerate $19^{\circ} \mathrm{F}$. Fig. 785 shows the stamens (5) and the structure of the bud. Nos. 1-4 are $1 / 2$ nat. size; 5 is on a larger seale. No. 4 is a section of a bud.
35. alplna, Lindl. Shrub, 12 ft . high: Ivs. inequilaterally half-ovate, blunt, acute on young shoots, leathery: fls. sessile in the leaf axils, solitary or few: fr. large, 8 lines wide, almost hemispherical, not angular. Sept.Nov. F.r.M. Fucal. 2:I.-A very rare and interesting alpine species, possibly suitable for street planting.
FF. Calyx-tube and tid smooth or rough, but not warty: lvs. much exceeding 1 in . in length.
Q. Stamens not inflexed in the bud (see also No. 51, E. tereticornis): peduncles broadly flattened: calyx tid long, cylindrical, obtuse: anthers ellipsoid, opening by paratlet tongitudinal slits.
36. Léhmanni, Preiss. Tall shrub or small tree: bark coming off in irregular sheets, roughish and reddish: fls. greenish yellow; calyx lid often $11 / 2 \mathrm{in}$. long: ovary convex at the top: fr. half immersed in the receptacle, about $1 / 2 \mathrm{in}$. in diameter; valres connivent into a cone, tapering into the persistent base of the style. JulySept. - Valuable ornamental tree.
37. cornùta, Labill. Yate Tree. Large tree: calyx lid $1-1, \frac{1}{4}$ in. long: filaments yellow: ovary almost on a level with the calyx rim, the top flat or at length slightly convex; style thickened at the base: fr. free (not immersed in the receptacle). July-Sept. F.v. M. Eucal. 9:1.-Closely related to the preceding. Used successfully as a roadside tree in southern California; adapted to the lemon belt, and tolerating alkaline and saline soils (Franceschi). Prefers a somewhat humid soil. Timber hard, tough and elastic, suitable for shafts and frames

787. Fruits and buds of E. occidentalis ($X^{1 / 3}$). of carts, and considered equal to ordinary ash wood. B. M. 6140.
38. occidentalis, Endlich. Flat-toppen Yate. Fig. 787. Tall tree: bark deciduous, mostly smooth: lvs, narrowlanceolate: calyx lid $1 / 2-3 / 4 \mathrm{in}$. long; flaments yellowish: fruitvalves only half exserted, awlshaped, free. F. v. M. Eucal. 6:5.-Individuals show great diversity in time of flowering, so that specimens may be found in blossom at any time between August and April.
39. plátypus, Hook. (E. obcordàta. Turcz.). Tall shrub, 30 ft , or less high: bark smooth, grayish: lvs. petiolate, leathery, broad-obovate, blunt, shining: peduncles flattened and winged, bent downwards: fls. sessile, dull red or yellowish white, not conspicuous : calyxtube prominently angular, much broader than the coniccylindrical lid: fr. truncate-ovate, very angular, border compressed; Howering almost continuously, but never much at a time. F.v.M. Eucal. 7:6. Hook. leon. 849.
GG. Stamens inflered in the bud: fruits from $1 / 2$ to 1 in . in diameter.
40. megacárpa, F.v. M. Tree, 100 ft . or less high: bark deciduous, smooth, grayish white : peduncles sharply 2-edged and dilated upwards: fls. 1-2 or 3, ses.
sile; anthers with a large dorsal gland near the apex: fr. large, slightly angular-streaked; valres thick, convergent, emersed; border broad, depressed. F.r. M. Eucal. 6:3.
ggg. Stamens inflexed in the buds: fruits mostly under $1 / 2$ in. in diameter: lus. lanceolate, rarely linear: calyx-tube and lid not ribbed.
н. Calyx-tube angular: pedicels flattened.
41. goniocàlyx, F.v. M. Bastard Box Tree. Tall tree : peduncles compressed: pedicels very short and angular or wanting; calyx-tube conspicuously angular: lid pyramidal-hemispheric: fr. angular: valves deltoid, almost enclosed. August. F. v. M. Eucal. 1:3.-Ascends to $4,000 \mathrm{ft}$. eleratiou. Timber especially esteemed for wheelwrights' work; also used for house-building, fence rails, etc.; excellent for fuel.
Hн. Calyx-tube and pedicels terete: fr--ealves short, often deltoid.

1. Capsule inserted below the rim of the calyx-tube, or on a lerel with it.
J. Frs. urceolate (i.e., urn-shaped).
2. Baileyàna, F. , M. Tall tree: bark persistent throughout, fibrous: foliage deuse and shady: Ivs. much dotted: anthers broadly cordate, opening by divergent slits: fr. rather large, globular-urn-shaped, 3 -celled; valves deltoid, slightly exserted. F.v. M. Eucal. 3:1.Will grow well on sandy soil. Timber splits easily, is tough and durable; used for fence posts, etc.
JJ. Frs. mostly ovate-truncate, never urceolate: pedicels short: calyx-lid hemispherical, mostly blunt and shorter than the tube.
к. Leat-veins fine, numerous, very divergent.
3. uncinata, Turcz. Shrub, branching from near the base with several thin stems: bark deciduous, smooth and grayish or reddish: lvs. firm, very light green, narrow: fls. small; stamens remaining bent inward in anthesis; anthers very minute, almost globular, opening by terminal pores: fr. very small. F. v. M. Eucal. 4:10. -A very hardy species.

кк. Leaf-ceins not numerous, very oblique.

44. coccifera, Hook. Small, glaucous tree: Ivs. thick and shining. under 3 in . long: peduncles short, thick and much flattened upwards: calyx-tube narrow-turbinate, tapering at the base, prominently angled: lid short, broad, flat or depressed, rugose: anthers kidueyshaped, opening by divergent, longitudinal slits: fr. almost flat on the top. Tasmania, $3,000-1,000 \mathrm{ft}$. elevation. B.M. 4637. G.C. 11. 12:113; 13:395; III. 2:787, 789; 3:799, 801; 9:169. - Perbaps only a sub-alpiue form of E. amygdalina.
45. Gùnnii, Hook. Cider Gcm. Small, often scrubby tree: lys, thick, shining, less than 3 in . long: calyx-lid shining, hemispherical, short-pointed: anthers almost oval, opening by parallel longitudinal slits: capsule somewhat sunk below the narrow rim of the calyx-tube. A very hardy species. Cattle and sheep readily browse on the foliage, as it lacks the peculiarly pungent Eucalyptus odor. May, June. G.C. II. 19:437; III. 2:781; 1I:787.
Var. undulàta, (E. Gúnnii, F. v. M. Eucal. 4:5., not of Hook. E. undulata, Luehm., not of F. v. M.). Swamp GUM. Tall tree: lvs. longer (over 3 in.), broad aud somewhat undulate: fr. top-shaped.- Yields a great deal of nectar, and flowers earlier than E. viminalis. Timber strong and useful.
JJJ. Frs. ovate or globose, truncate: rim rather broad and flat; anthers broader than long almost kidney-shaped, opening by divergent longitudinal slits: les. green: bark of trunk smooth or fibrous.
46. hæmastóma, Smith, White Gum. Tree: Ivs. broad; reins spreading, prominent: outer stamens sterile: fr. short, ovate-truncate, with a reddish apex. F. v. M. Eucal. 2:3.- Will grow on poor, sandy land. Timber of inferior quality.
47. amygdalina, Labill. Peppermint Gum. Tall tree: bark persistent on trunk and lower branches, fibrous:
lvs, rather small, narrow-lanceolate, attenuate into the petiole; veins not much spreading; oil-dots large and not very numerous, translucent: fr. globose, truncate or shortly ovate. F. r. M. Eucal. 5:1. B.M. 3260. B.R. 11:947 (as E. longifoliat). G.C. 1II, 6:16. -Timber not strong, but suitable for shingles, rails, staves, inner building material, etc. Foliage yields more volatile oil than that of any other species tested.
Var. régnans, F. v. M. Giant Gom. Very tall tree, (415 ft . or less high): bark usually smooth, whitish, fibrous only near the base: Ivs. large, broad-lanceolate; oil dots rery fine, numerous.

Var. angustifolia, F. v. M. Graceful, spreading tree: branchlets drooping: lvs. very narrow : fls, very numerous in the umbel. Jan.-Apl., and more or less throughout the year.
II. Capsule raised above the rim of the catyr-tube: les. mostly large, inequilateral; veins very diverging: stems of young plants nearly terete: anthers longer than broad, opening by parallel longitudinal slits.
J. Flowers mostly three in an umbel.
48. viminàlis, Labill. Manna Gum. Fig. 788. Tall and graceful, spreading tree, 300 ft . or less high: bark persistent, roughish and dark-colored(never fibrous), or deciduous, very smooth and grayish white: seedling leaves lanceolate: pedicels almost none or very short: lid semi-orate, mostly shortpointed. F. v. M. Eucal. 10:10. G. C. 111. $4: 597$.-A hardy species, withstanding considerable frost and strong winds. Timber not as strong as that of many other species, but frequently em-
788. Fruits and buds of E. viminalis ($\times 1 / 2$). ployed for shingles, fence rails and ordinary building purposes. Sheep will feed on the foliage. A valuable bee tree. Growing readily in California from voluntary seedlings. Seed said to retain its vitality ten years.

JJ. Flowers more than three in an umbel.

49. Stuartiàna, F.v. M. Apple-scented Gum. Tall, branching tree, with dense, drooping foliage ; closely related to E.viminalis, and distinguishable from the latter when it has more than 3 flowers in an umbel, by the fibrous bark and roundish seedling leaves: pedicels almost none: calyx-lid almost hemispherical or shortly and bluntly conical. March-May. F.v.M. Eucal. 4:9. - One of the hardiest species: timber used mostly for fencing and fuel.
50. rostràta, Schlecht. Red Gum. Tree, 200 ft . or less high: bark early deciduous, smooth, ashy gray or whitish: pedicels conspicuous: calyx-lid acuminate, usually ending in a beak (occasionally blunt). Apl., May. F.v. M. Eucal. 4:7.-Useful for bees. Prefers a moist soil with a clayey subsoil; thrives in ground periodically inundated for a considerahle time, and even in slightly saline places: stands $22^{\circ} \mathrm{F}$. in Italy. Timber hard, heary, strong and extremely durable, either above or under ground or in water; suitable for fence posts, piles and railroad ties; also extensively used in shipbuilding and for wood bricks for street paving; said to make a better fuel than wood of E.Globulus. Somewhat hardier than E.Globulus.
51. tereticornis, Smith. Flooded Gum. Tall tree: bark smooth: peduncles elongated: pedicels conspicuous: calyx-lid conical, not beaked, often much elongated: fr. almost glohose through the broad, ascending rim. Apr., May. F. r. M. Eucal. 9:8.-Closely related to E. rostrata. Will thrive on undrained ground. Timber used by wheelwrights.
52. rùdis, Endl. Tree, 80 ft . high, or less : bark persistent, rough: peduncles $1 / 3-1 \mathrm{in}$. long: pedicels short: calyx-lid conical, not beaked; commissural line between calyx tube and lid prominent : rim of fr. only slightly ascending. Sep.-Nov, F, v. M. Eucal. 10:8.Stands drought better than many others, and promlses

EUCHARIS

to make a beautiful avenue tree; young growth of a deep copper color ; adapted to the lemon belt (Franceschi).
E. botryoldes, Smith. Placed next after E. robusta in the key. Tall tree: lid not broader than the angular calyx tube. F. v. M. Eucal. 4:2. Timber valuable, -E. citriodore, Hook. $=$ maculata, var. citriodora.-E. decipiens, Endlich. Placed next after E. goniocalyx in the key. Tree, 70 ft . high: calyx tube and pedicels terete; capsule raised above the rim of the calyx tube: fr.-valves ending in 5 points. F.v. M. Eucal. 10:3.-E. eugenioides, Sieb. White Stringy-bafk. Placed second after E. Gunnii, var, undulata, iu the key. Tree, 200 ft , high: fls. more than 3 in an umbel: fr. ovate or globose, truncate: rim narrow, the valves inserted somewhat below it. March-Sept. F.v. M. Eucal, 10:4. Timber valuable.-E. eximia, Schauer. Mountain Bloodwood. Placed next before E. maculata in the key. Tree, ahout 80 ft , high: fls, cream-colored, sessile, in Oct. frs. sessile, F. v. M Eucal. $9: 2$. Wood makes good fuel. Hand. some tree when in blossom, - E. incrassata, Labill. Mallee. Placed after E. Planchoniana in the key. Shrub or small tree: frs. rarely exceeding $1 / \mathrm{in}$. in diam.: peduncles erect, short and thick, usually much flattened. F.v.M. Eucal, 5:6. "Will live in mere sand and brave the most scorching bot winds, but will bear some frost. The lvs, supply a considerable proportion of the mercantile Eucalyptus oil."-E. macrorhýnchn, F. v. M. Placed before E. viminalis in the key. Leaf-veins very oblique: fls. and frs, on short pedicels: bd conical: anthers kid-ney-shaped, openiug by divergent longitudiual slits. F. v. M. Eucal. 1:5.-E. microtheca, F. V. M. Placed next to E. siderophloia in the key. Lid not exceeding 2 lines in length: fr.valves much exserted. F. v. M. Eucal. 10:6. One of the best trees for desert tracts; tolerates the intense, scorching heat of a desert summer, and a winter temperature of $18^{\circ} \mathrm{F}$. Timber valuable for cabinet work, ete,-E. miniata, Cuun. Placed after E. paniculata in the key. Fls. in simple umbels, brilliant orange-color: fr, with 3 or more cells, nearly 2 in. long. F.v.M. Eucal. 6:4. A handsome ornamental tree.-E. obtusiflora, Auct. $=$ virgata (below) $--E$. pinnata, a garden name. Is a synonym of some other species.-E. tetraptera, Turez. Shrub, 10 ft . high: fls, very large, axillary, solitary, on a recurved, flat, and very broad peduncle; calyx tube almost obverse-pyramidal, sharply quadrangular, broader than tbe pyramidal-conical lid: stamens red. F. V. M. Encal. 2:10. One of the most ornamental species of the genus, $-E$, virgata, Sieb. (E , obtusiflora, DC.). Placed second after E. obliqua in the key. Shrab, $10-15 \mathrm{ft}$. high: bark smootb: lvs, large, falcate: umbels generally enclosed in large bracts while in bud.
J. Burtt Dayy.

EUCHARIDIUM (from the Greek for charming). Onagràect. Two Californian herbs allied to Clarkia, but differing in having the calyx tube much prolonged beyond the ovary, stamens 4 and opposite the sepals and not appendaged at the base. E, concinnum, Fisch. \& Mey. (E. grandiflòrum, Fisch. \& Mey.), is a graceful garden anuual, growing 1 ft , high. Pubescent or glabrous: Ivs, small, oblong, petioled, entire: fls, rosecolored, nearly or quite an inch across; calyx tube fili form, an inch or more long; filaments filiform; petals 3 -lobed. Of easy culture in any garden soil. B.R. 23:1962. B.M. 3589 . R.H. $1846: 81$; 1857, p. 299. E. Bréweri, Gray, is an annual 1 ft . high. Lrs. 1 in. or more long, narrow-lanceolate: petals large, obcordate, with a narrow lobe in the deep terminal sinus: filaments clubshaped.
L. H. B.

EUCHARIS (very graceful, from the (ireek). Amarylliddcea. Perianth tube straight or curred, the throat dilated; segments broad and spreading ; perianth cup either entire or toothed between the filaments: orules 2 to many in each of the 3 locules: fls, white, in umbels, very showy, standing on long, stout scapes: 1vs. broadovate, narrowed into distinct petioles. Six or eight handsome species from Colombia. Rootstock short and bulb-like. The species are confused. E. grandiflora, E. candida and E. subedentata are the well-marked types. The fls. in Fig. 789, adapted from authentic plates, will distinguish the types. Hybridizes with Urceolina (see Ureeocharis). Monogr. by Baker, Amaryllideæ.
L. H. B.

The Amazon Lilies, as Eucharis are popularly called, are among the most desirable of warmhouse bulbous plants, being not only very beantiful but also very free in the production of flowers.

When grown in pots, they require a coarse, fibrous soil, composed chiefly of rotted sod, and enriched with about one-fourth of dry cow manure and a sprinkling of bone dust. The pots should be well drained, for much water is needed during the growing season, but frequent potting should be aroided, as the roots are im-
patient of disturbance. Shading from full sunshine is required, except during the winter months, and a night temperature of $65-70^{\circ}$ is best for these plauts. By drying off the Eucharis to some extent for a few weeks, a crop of flowers may be had at almost any season, providing the bulbs are strongand healthy, but they should never be dried to such a degree that all the fuliage is lost, else the bulhs will be much weakened.

Good results are also had from planting out the Eucharis on a bench in a warmhouse, the soil and treatment being much the same as for pot-grown specimens. The only insects liable to give much trouble in connection with these plants are mealy bugs and thrips, and these may be controlled by thorough syringing.
W. H. Taplin.
A. Cup toothed and protmeded from the perianth-tube. grandiflora, Planch. (E. Amazónica, Lind.). Amazon Lily. Star of Bethlehem (a name also applied to Ornithogalum). Fig. 789. Bulb globular, 2 in. in diam.: lvs. $2-1$ to each stem: scape $1-2 \frac{1}{2} \mathrm{ft}$., bearing an umbel of 2-4 large (t in. across), very fragraut star-like fls. on pedicels nearly or quite 1 in. long; the segments oblong and obtuse ; eup forming a distinct projecting tuhe. F.S. $9: 957$; 12:1216-17. B.M. 4971. Gn. 48, p. 217. G.C. 11I. $7: 193 ; 16: 665$. A.F. $5: 363 ; 8: 445$. F.E. 8:1000, F.R. 1:11; 2:364.

789. Eucharis.

Leaf of E. grandiflora, and fls. of (a) subedentata, (b) Sanderi, (c) grandiflora, (d) candida.

Var. Modrei, Baker, may be expected to appear in the Amer. trade. It has smaller, rounder and thicker lvs. and smaller fls., with the cup lined with yellow.

Mástersii, Baker. Bulb often smaller: scape 1 ft . high, bearing 2 nearly sessile fls, in the umbel, the perianth segments ovate and spreading and shorter than in the last: cup forming a shallow frilled or notched collar. B.M. 6831. G.C. II. 24:721.-Possibly a hybrid of E. grandiflora and E. Sanderi.
As. Cup almost entirely joined or adnate to the
perianth-tube (the winged filaments may project).
candida, Planch. Fig. 789, d. Bulb globose, bearing stolons, 2 in. in diam.: scape somewhat flattened, glaucous, $1-1 \frac{1}{2} \mathrm{ft}$. higb, bearing $6-10$ short-pedicelled fls.
in an umbel : segments oblong, aeute, more or less reflexed: winged yellow filaments projecting, united at the base only. F.S. 8:788.-Smaller-fld, than E. grandiflora.

Sánderi, Baker. Fig. 789 b. Bulb ovoid, 1-2 in. in diam.: scape terete, I ft., bearing $2-3$ nearly sessile white fls. : segments ovate, 1 in . or more long: yellowish cup, very narrow, like a collar or rim, and bearing the short, curved filanents on its edge. B.M. 6676 . G.C. II. 19:349. - By some thought to be a hybrid of E. grandiflora and E. candida. Var. multiilora, Baker. Fls. smaller, 4-6, striped green. B.M. 6831.
suhedentàta, Benth. (Calliphriria subdentàta, Baker). Fig. 789 a. Bulb ovoid, $11 / 2$ in. in diam.: scape slender, I ft.: fls. 6-8, on pedicels 1 in . or less long; tube I in. long, funuel-shaped above; segments oblong, ascending, I in. long; cup wanting, or represented only by obscure teeth on the filaments. I.H. 28:415. B.M. 6289. - A small-fld. species.
E. Bakeriana, N. E. Br. Has the perianth of E. grandiflora and stamens of E. candida: fls. $2 \frac{1}{2}$ in. across, pure white: tuhe not enlarging emphatically at the top: cup projecting from the bases of the segments, not toothed. B.M. 71+4. G.C. III. 7:417; 12:209.-E. Elmetana, Sander. Hybrid of E. Sanderi and E. grandiflora. Easier to grow than E. Sanderi. G.C. III. $26: 345$. $-\boldsymbol{E}$. Lèhmanni, Regel. Fls. about $4,1^{1 / 2} \mathrm{in}$. across, the spreading corona with 12 long, narrow teeth, the perianth segments spreading or reflexed. ©̂t, 38:1300.- E. Lo wwii, Baker. segments spreading or reftexed. itreading outer segments 1 in. wide and the 3 inner ones incurved. Perhaps a natural hybrid of E. granditlora and E. Sanderi. G.C. III, 13:539: J.H. III. 28:111. -E. Stevensi, N. E. Br. Free dowering : very like E. Sanderi, and a garden hybrid of that speries and E. candida. J.H. III. 30:253. Gn. 46:974. G.C. III. 17:365. L. H. B.

EUCNIDE (Greek-made word, referring to the sharp, nettle-like hairs). Loasdcea. Three western American herbs, by some authors referred to Mentzelia. Fls. yellow; calyx-tube oblong, the limb persistent, 5 -lobed; petals 5 , united at the base and inserted on the throat of the calyx; stamens numerous, the filaments filiform: ovary 1-loculed, bearing a 5 -cleft style. E. hartonioldss, Zucc. (Mentzèlia bartoniòdes, Benth. and Hook.), is sometimes cult. It is a pretty summer-flowering annual, thriving in warm garden soil. Stems about 1 ft ., more or less decumbent, hispid-hairy: lvs. alternate, petioled, broad-ovate and toothed-lobed: flis,large, on long pedicels, the petals ovate-pointed, the numerons yellow hair-like stamens projecting and brush-like. It is half suceulent. Mex. and Tex. B.M. 4491, as Mierospérma bartonioides, Walp.
L. H. B.

EUCODONIA is now referred to Achimenes.
EUCOMIS (Greek, beautifut hair). Litideer. Cape bulbs, half hardy, producing great radical rosettes of long leaves and a strong, leafy-topped spike of greeuish flowers from the center. Fls. regular, 6-parted, rotate; stamens 6: ovary broad and short, obtusely 3 -angled. Prop, by offsets. The bulbs may remain in the open if in a warm place and well protected. Will stand considerable frost. Of easy culture. Let the bulbs remain where planted. In the N. treated as glasshouse plants.
undulàta (E. règia, L'Her.). Royal Crown. Lvs. long-oblong, spreading or recurving, undulate: scape 2 ft ., bearing very numerous green or yellow-green fls. underneath a crown or canopy of lvs.: bulb ovate. B.м. 1083.
punctàta, L'Her. Pineapple Flower. Les. erectspreading, long and narcow, channeled, undulate, brown spotted beneath: scape 2 ft ., spotted: fls. green, the ovary brown. B.M. 913. F.S. 22:2307. A form with lvs. striped beneath with brown is var. stridta, Sims. (B.M. I539.)
bicolor, Baker. Stamens and margins of perianth segments bright purple, otherwise close to E. punctata, but lvs. unspotted (said to be a spotted var.). Foreign dealers offer var. maculdata.
L. H. B.

EUCRYPHIA (Greek for well covered). Rosdecu. Three or four southern hemisphere resinous trees or shrubs, with opposite, evergreen simple or pinnate lvs. and showy white fls. E. pinnatifotia, Gay, is a shrub hardy in parts of England, with large white hypericum-
like 4 -petaled fls. and rose-tike foliage. B.M. 7067. ©.C II. $14: 337$; 111. $9: 613$; $10: 217$; $15: 109 ; 23: 15$ (fr.). E cordifilia, Cav., has 5 petals and simple serrate lys. fi.C. I11. 22:247.-Neither of these is in the American trade. Worthy of trial in the South.

EUGENIA (named in honor of Prince Eugene of Savoy). Myrtàcece. Trees or shrubs: lvs, evergreen, opposite, mostly finely penniveined: fls. white or creamy : fr. a drupe-like berry, usually globular and 1-seeded. Habit and infloresceuce of Myrtus. For cult. and prop., see Myrtus. See Myrtus, also, for E. C'gni.
A. Fls. solitary on axillary peduncles : petals free.

Michelii, Lam. Cayenne, or Surinam Cherry. Pitanga. Shrub, 20 ft .: [ys. ovate-lanceolate, glabrous: peduncles shorter than the glossy lvs.: berry cherrylike, ribbed, about I in. in dian., edible, with a delight ful spicy, acid flavor. Ripe in May and June. Brazil. Hardy in southern Fla, and southern Calif. R.H. I889, p. 532.-Much esteemed for jellies, and in great demand. Useful, also, as a pot-plant, freely producing its showy red fruits.

Brasiliénsis, Lam. Grumichanea of Brazil. Sbrub, $6 \mathrm{ft} .: \mathrm{lvs}$, oval or obovate-oblong, bluntish, scale-like along the branches, 3 in . long, $1 \frac{1}{2} \mathrm{in}$. broad: fr . edible, scarlet, the size of a cherry. April. B.M. 4iv26. R.H. 1845:425.

AA. Fls. in 3 -forking panicles or cymes ; petals free

 und spreading.myrtifolia, Sims (E, austràlis, Wendl.) Brush Cherry. Shrub, 6-I2 ft.: lvs. petiolate, $2-3 \mathrm{in}$. long, obovate to nearly lanceolate, rather thick, dark and glossy green: peduncles $3-5$-fld.: fr. edible, red or violet, about 8 lines in diam., crowned by the persistent calyx lobes. Anstral. Hardy in the South. A.G. $11: 756$. B.M. 2230. - Chiefly grown for ornament. Used for hedges in Calif.

Jámbos, Linn. Rose Apple. Jamrosade. Jambos. Tree, 20-30 ft.: 1vs. narrow-lanceolate, acuminate, long, thick and shining, resembling those of an oleander: fr. $11 / 2-2 \mathrm{in}$. thick, white or yellowish, with a tinge of blushpink on one side, edible, rose-scented, apricot-flavored. E. Indies. Stove. B.M. 1696.- Valued for jelly-making.

AAA. Fls. in s-forking panicles or cymes; petals united into a calyptra.
Jambolàna, Lam. Jambolan, or Jambolan Plum. Tall shrub or tree: Ivs. obtuse or shortly acuminate, $4-6 \mathrm{in}$. long, $2-3 \mathrm{in}$. broad : berry edible, varying from the size of a cherry to that of a pigeon's egg. E. Indies. E. apiculàta, DC.. Chile, has oval apiculate lvs. and 3 -fid. axillary peduncles. Perhaps a Myrtus. J. Burtt Davy

EULALIA. Treated under Miscanthus.
EULARIA. Misprint for Eulalia.
EULOPHIA (Greek, handsome crest). Orchiddcea, tribe Vánder. Terrestrial herbs with membranaceous lvs. and conspicuous pseudobulbs; scape hasal, severalfld.: sepals and petals spreading, similar, ascending; labellum 3-lobed; pollinia 2.-The culture of Calanthe will apply to this genus.
maculàta, Reichb. f. Pseudobulbs ovate, compressed: Ivs. ovate, spotted or blotched: fls, small; upper sepal bood-shaped, lateral ones acuminate, reddish brown; petals broader, white or pale rose; labellum cordate, with two crimson spots, triangular in outline, near the base, otherwise white. Braz. B.R. 8:618 (Angrecum).
scripta, Lindl. Lvs. linear, subdistichons: fls. purple and yellow; sepals and petals linear-oblong; labellum 3 -lobed, lateral lobes rotund at the apices. Madagascar.

Oakes Ames.

EULOPHIELLA (diminutive of Eulophia). Orchiddeea, tribe Vándece. Pseudobulbs fusiform, elongated: lvs. elliptic, plicate: raceme from the base of young growths, with violet rachis: fls. white, fleshy; labellum articulate with the base of the column. Two epiphytes, from Madagascar.

Elisabethæ, Lind. \& Rolfe. Fls. 2-21/2 in. across, usually $2-4$ in the drooping cluster; sepals and petals ovate; labelluas oscillatory; anterior lobe yellew. B.M. 7387 . R.B. 21:181. 1.H. 40:173.

Peetersiana, Kräuz. (Grammatophyllum Rampleri"инm, Reichb.f.). Livs. $2-4 \mathrm{ft}$. long: scape $3-4 \mathrm{ft}$. long: As. 3-4 in. across: sepals bright purple and blotched at tip; petals purple, unblotched; lip white, purplehordered, with 4 erect crests. G.C.III. 23:200. Gn. 53, p. 379. (See G.C. 111. 26:353).

Oakes Ames.
EUONYMUS (ancient Greek name). Syn., Evonymus. Celastràcea. Spindle Tree. Burning Bush. Strawberry Bush. Ornamental, deciduous or evergreen shrubs of upright or sometinues precumbent or creeping habit, with opposite, simple Iss, and rather inconspicnous greenish, whitixh or purplish fls. in axillary cymes; very attractive in fall, with their handsome scarlet, pink or whitish, capsular frs., showing the bright orange seeds when opening, and with the splendid fall coloring which most of the species assume, especially E. alatus, E. Hamiltosianus, Eौropeus and atropurpurens. The Spindle Trees grow in almost any soil, and are well adapted for shrubberies. Most of the cultivated deciduous species, except those from Himalayas, are hardy North, while of the evergreen ones only E. radicans is fairly hardy, and, on account of its greater hardiness, is often used North as a substitute of the ivy for covering walls, rocks and trunks of trees, climbing, if planted in good soil, to a height of 15 and sometimes 20 ft . E. Europøus, and South the evergreen $E . J a$ ponicus, are sometimes used for hedges. Prop, by seeds, usually stratified and sown in spring, or by cuttings of ripened wood in fall. The evergreen species grow readily from cuttings of half-ripened wood under glass in fall or during the winter in the greenh use. Varieties are sometimes grafted or budded on stock of their typical species. About 40 species are known in the northern hemisphere, extending also from S. Asia to Australia. Shrubs or small trees, with usually more or less quadrangular branches and opposite, usually glabrousand serrate lvs.: fls, small, in axillary cymes, 4-5-merons, generally perfect; style and stamens short, the latter inserted on a disk: fr. a 3-5-lobed, somewhat fleshy capsule, each dehiscent valve containing 1 or 2 seeds enclosed in a generally orange-colored aril; the seed itself is usually white. The wood is tough, close. grained and light-colored, often almost white, and used, especially in Eurcpe, for the manufacture of small ar ticles. The bark of the American species has medical properties.

INDEX.
alatus, 3.
albo-marginatus,12.
albo-marginatus,
Americanns, $1,8$. angustifolius 1. argenteo - marginatus, 13.
argenteo-variega$t u s, 12$.
atropurpureus, 6,8, aureo - variegatus, 12.
aureus, 12.
Bungeanus, 11. Carrieri. 18, columnaris, 12.

Europazus, 6. flanpscens, 12 flanpscens, 12.
gracilis, form of, 13. radicams, 13. Hamiltonium of, 13 , radicaus, 13 . Japonicus, 12, 9 reticulatus, 13. Fоортанni, 5 . robustu8, 12. latifolios, 7 . linifolius, 5 Mafotive,
Maachii, 9. Maachii. 9.
macrophyllus, 12. medio-pictus, 12. microphyllus. 12. manus, 5. obovatus, 2 pallens, 12
pulchellus, 12. repens, 13. roseo - marginatus. 13.

Sieboldianus, 9, 10 . subtriflorus, 3. Thunbergianus, 3. tariegatus, 2. verricosus, 4 viridi-varieqatus. 12 Yeddoensis, 10.

A. Foliage deciduous.

B. Capsules tuberculate, depressed-globose. fls.5merous.
I. Americànub, Liuu. Strawberry Bush. Upright shrub, to 8 ft .: lvs. ovate-lanceolate or oblong-lanceolate, usually acute at the base, acuminate, creuately serrate, 11/2-3 in. long: peduncle slender, few-fld.: fls. yellowish or reddish green: fr. pink. June. From southern N. York south, west to Tex. L.B.C. 14:1322. B.B. $2: 394$. -Var, angustifolius, Wood (E. angustifolius, Pursh). Lvs.lanceolate or linear-lanceolate, half-evergreen South.
2. obovàtus, Nutt. (E. Americànus, var. obovàtus, Torr. \& Gray). Procumbent shrub, with rooting stem and erect branches, to 1 ft .: lvs. obovate or elliptic-obovate, crenately serrate, light green, 1-2 in. long: fls. purplish: capsule usually 3 -celled. May. From Canada to Indiana and Kentucky. G.F. 9:385.-1t may be used
for covering the ground under large trees, or for borders of shrubberies. Var. variegatue, Hort., has the lvs. marked pale yellow.

> BB. Capsules smooth: fls. generally 4-merous.
> c. Fr. divided to the basc into 4 or less nearly separate pods.
3. alàtus, Maxim. (C. Thunbergiànus, Blume). Spreading shrub, to 8 ft .: branches with $2-4$ hroad, corky wings : lvs, elliptic or obovate, acute at both ends, sharply serrate, $1-2 \mathrm{in}$. long: fls. $1-3$, short-peduncled, yellowish: capsule purplish, small. May, June. China, Jap.-Var, subtriflorus, Franch. \& Sav. Branches not winged: fls, 1-5.

cc. Fruit more or less $8-5$-lobed.
 D. Branches densely wariy.

4. verrucosus, Scop. Erect shrub, to 6 ft.: Ivs, ovatelanceolate, crenately serrulate, acuminate, $1-21 / 2 \mathrm{in}$. long: fts. slender-peduncled, 1-3, brownish: capsule deeply 4. lobed, yellowish red; seed black, not wholly covered by the orange aril. Southeastern Europe, W. Asia.

DD. Branches smooth.
 E. Anthers yellow.

5. nànus, Bieb. Low shrub, to 2 ft ., with slender, often arching or sometimes procumbent and rooting branches: Ivs. linear or linear-oblong, mucronulate, entire or remotely denticulate and revolute at the margins, $1 / 2-11 / 2$ in. long : fls, slender-peduncled, purplish: capsule deeply 4 -lobed, pink ; seed brown, not wholly covered by the orange aril. May, June. W. Asia to W. China, -Handsome shruh for rockeries and rocky slopes, forming a graceful, pendulous, standard tree if grafted high on E. Europaus. Fruit ripens in August, earliest of all species. E. Kodpmanni is a form of this.
6. Europæus, Linn. Fig. 790. Erect shrub or sometimes small tree, to 20 ft .: lvs. ovate or oblong-lanceolate, acuminate, crenately serrate, $11 / 2-21 / 2 \mathrm{in}$. long: fls. yellowish, in few-fld. cymes: capsule 4 -lobed, usually

pink. May. Europe to E. Asia. B.B. 2:395.-Varying with narrower and broader lvs. There are also several varieties with variegated lvs. and some with frs. of different colors, as var. fructu atropurpureo with deep purple, frúctu coccineo with scarlet, and frúctu álbo (var. lencocarpa, Hort.), with whitish frs. Var. atropurpureus, Arb. Kew., has rather narrow purplish lvs.
7. latifolius, Scop. Shrub or small tree, to 20 ft .: winter buds slender, about $1 / 2 \mathrm{in}$. long: lvs. obovate-oblong, acuminate, crenately serrate, 2-4 in. long: fis. yellowish, often 5 -merous, in slender-peduncled, rather many-fld. cymes: capsule pink, large, with winged lobes. S. Europe, W. Asia. B.M. 2384.-A very decorative species, with handsome foliage and large frs.

eE. Anthers purple.
 F. Fls. purple.

8. atropurpùreus, Jacq. Burning Bush. Shrub or small tree, to 20 ft .: lvs. elliptic, acuminate, obtusely serrate, pubescent beneath, $1 \frac{1}{2}-5 \mathrm{in}$. long: fis. purple, in slender-peduncled, many-fld. cymes: capsule deeply 3-4-lobed, scarlet. June. E. N. Amer., west to Montana. B.B. 2:394. E. Americànus, Hort.

FF. Fls, yellowish or whilish.

9. Hamiltoniànus, Wall. (E. Madckii, Rupr.). Shrub, rarely small tree, to 30 ft ., with almost terete branches: lvs. elliptic to ovate-lanceolate, acuminate, serrulate, $2-5 \mathrm{in}$. long: fls. in $3-12$-fld. cymes: capsule deeply 4 lohed, with rounded valves, pink (yellowish in the Himalayan form); soed usually not wholly covered by the aril, grayish brown. June. Himalaya to Manchuria. Var. semipersistens, Rehder (E. Sieboldidnus, Hort., not Blume). Lvs, elliptic, long-acuminate, half evergreen, keeping its bright green foliage South until midwinter: fr. bright pink, ripening very late.
10. Sieboldiànus, Blume (E. Feddoénsis, Hort.). Shrub or small tree, to 25 ft : 1 r's. ovate-elliptic or elliptic, crenately serrate, shortly and abruptly acuminate, usually puberulous on the veins heneath when young: lvs. $3-6 \mathrm{in}$, long, $1-21 / 2 \mathrm{in}$. broad: cymes $5-20$-fld.: capsule pink, slightly lohed and 4 -angled, with 4 narrow, thick wings; seed scarlet. June. Jap.-This species is often confounded with the former, but easily distinguished hy its larger and much broader lvs.
11. Bungeanus, Maxim. Shrub, to 15 ft ., with slender branches: lvs. slender-petioled, ovate-elliptic or ellip-tic-lanceolate, long-acuminate, finely serrate, 2-4 in. long: fls. in rather few-fld. but numerous cymes : fr. deeply 4-lohed and 4-angled, yellowish: seeds white or pinkish, with orange aril. June. China, Manchuria, M.D.G. 1899:569. - Very attractive with its rather large, profusely produced frs., remaining a loug time on the branches.

As. Foliage evergreen.

I2. Japonicus, Linn. Upright shruh, to 8 ft ., with smooth and slightly quadrangular or striped branches: lvs. ohovate to narrow-elliptic, cuneate at the base, acute or ohtuse, obtusely serrate, shining above, $11 / 2-21 / 2 \mathrm{in}$. long: fls. greenish white, 4 -merous, in slender-peduncled, 5 - to many-fld, cymes: capsule depressed, globose, smooth, pink. June, July. S. Jap.-A very variable species. Var. macrophyllus, Sieh. (var. Nobustus, Hort.). Lvs. oval, large, $2^{\frac{1}{2}}-3$ in. long. Var, microphyllus, Sieb. (E. pulchéllus, Hort. Eurya mierophŷlla, Hort.). Lvs. small, narrow-ohlong or oblong-lanceolate. Var. columnàris, Carr. (var. pyramiddlis, Hort.). Of upright, columnar habit: lvs. broadly oral. There are many varieties with variegated lvs.; some of the best are the following: Var. argénteo-variegàtus, Rgl. Lvs. edged and marked white. Var, aùreo-variegatus, Rgl. Lvs. hlotched yellow. Var. álbo-marginatus, Hort. Lvs. with white, rather narrow margins. Var. medio-pictus, Hort. Lrs, with a yellow blotch in the middle. Var. pállens, Carr. (var. flarescens, Hort.). Lvs. pale yellow when young; similar is var. aureus, Hort., but the yel low is brighter and changes quicker to greeu. Var. víridi-variegatus, Hort. (var. Duc d'Anjou, Hort.). Lvs. large, bright green, variegated with yellow and green in the middle.
13. radicans, Sieb. (E. Japónicus, var radlcans, Rgl.). Low, procumbent shruh, with often trailing and rooting or climbing branches, elimbing sometimes to 20 ft . high: branches terete, densely and minutely warty: lvs, roundish to elliptic-oval, rounded or narrowed at the base, crenately serrate, usually dull green above, with whitish veins, $1 / 2-2$ in, long: fl. and fr. similar to the former, but fr. generally of paler color. June, July. N. and M. Jap. R.H. 1885, p, 295. G.C. II. 20:793.Closely allied to the former, and considered by most hotanists as a variety; also very variable. Var. Carrièri, Vauv. Low shrub, with ascending and spreading branches: lvs, oblong-elliptic, about $1 \frac{1}{2} \mathrm{in}$. long, somewhat shining. Var, argenteo-marginàtus, Hort. Lrs. hordered white. Var. roseo-marginatus, Hort. Lvs. bordered pinkish. Var. reticulatus, Rgl. (var. pictus, Hort., var. argénteo-variegàtus, Hort.). Lvs. marked white along the reins.
E. echinàtus, Wall. Usually creeping or climbing, with rooting branches: lvs. ovate-lanceolate: fr. spiny. Himal. B.M. 2767.-E. fimbriátus, Hort, not Wall.- pendulus.-E. grandiflorus, Wall. Shrub, to 12 ft .: lvs.obovate or obovate-oblong, finely and acutely serrate; fls. white, four-fifths of an in across: fr . globose, yellow. Himal.-E. occidentutis, Nutt. Shrub, to 15 ft .: winter buds rather large: lvs, ovate or elliptic-lanceolate, irregularly serrulate: fls. 5 -merous, purple: fr. slightly
lobed. Ore, Calif.-E. oxyphýllus, Miq. Shrub or small tree. lvs, ovate or obovate, acuminate, rather large, serrulate: fls. 5 merous, purple or whitish: '1r. globose. dap.-E. péndulus, Wall. (E. fimbriatus, Hort.). Evergreen, small tree, with pendulous branchlets: lvs. oblong-lanceolate, sharply serrate, shining, $3-6 \mathrm{itu}$. long: fr, with 4 tapering wings. P.E.G. 2:55. F.S. 7, p. 71.

Alfered Rehder.
EUPATORIUM (from an ancient personal name). Composita. Nore than 400 species, mostly of warm or tropical countries, herbs or shrubs. Heads discoid (rayless), the florets 3 to many, perfect: involucre cylindrical, bell-shaped or hemispherical, the imbricated hracts in 2 or more series: receptacle flat or conical, naked: corolla regular, 5 -toothed, slender-tubed: akenes 5 -angled, truncate: pappus a single row of hair-like, scabrous bristles: perennials.

Gardeners know two classes of Eupatoriums, the glasshouse and the hardy kinds. The latter are native species which only lately have been introduced to the trade as border plants. The glasshouse species are seen only in the larger or amateur collections, as a rule, although some of them are old garden plants. They are confused as to kinds. These species demand the general treatment of Piqueria (or Stevia), a cool or intermediate temperature and pot culture. They are easy to grow. Prop, readily by cuttings. They are useful for winter hloom. Of all Eupatoriums the individual heads are small, but they are aggregated into shows masses. For E. calestinum, see Conoclinium.

791. Leaves of glasshouse Eupatoriums ($\times 1 / 3$).
a, E. riparium; b, E.triste; c, E.glandulosum; d, E.glabratum.

A. Glasshouse or warm-country species.

B. Heads purplish.

serrulatum, DC. Shrubby: stems pubescent: lvs. opposite, very short-stalked, lanceolate or lance-oblong, the stalk ciliate, toothed and prominently nerved: heads aggregated into large purple or rosy tufts. Brazil and Uruguay. R.H. 1894:304. Gt. 44, p. 570. G.C. 11I. 18:265.-Choice.
atrorubens, Nicholson (Hebeclinium atrorubens, Lem.). Lvs. large, ovate-pointed, ciliate and hairy on

EUPHORBIA

the reddish veins, opposite, toothed: beads red or purple, aggregated into a very large red-rayed truss. Mex. 1.H. 9:310.
íanthinum, Hemsl. (Hebeclinium id́nthinum, Hook.). Sub-shrub, but soft-wooded, the terete branches rustypubescent: Ivs. opposite, long-petioled, cuneate-ovate and serrate: fls. light purple, in a large, compound, terminal corymb. Mex. B.M. 4574.

792. Eupatorium perfoliatum $\left(x^{2} / 3\right)$.

BB. Heads white (plants valuctble for cut-flowers).
glechonophýllum, Less. (Ageràtum conspıcuum, Hort.). Half shrubby: lvs. opposite, oval-pointed or ovatelanceolate, nearly glabrous, 3 -nerved, toothed, petiolate: fls. pure white, about 30 in each head. Chile.-Tender glasshouse perennial ; but it may be flowered in the open the first year if seeds are sown early.
ripàrium, Regel. Fig. 791 a. Diffuse, becoming woody at base, 2 ft ., the stems thin and usually reddish and puherulent: Ivs. opposite, lanceolate-acuminate, narrowed into a long petiole, prominently 3 -ribbed, dentate or crenate-dentate : heads in rather compact, longstalked clusters. S. Amer.-Good winter bloomer. Best for the florist.
triste, DC. (E. trieste, Hort.). Fig. 791 b. Strong herb (sub-shrub in the wild), with hairy more or less angled or striate stems: lrs. long-petioled, ovate or ob-long-ovate, hairy and rugose (reminding one of elm or nettle lvs.), very veiny, crenate-dentate: fls, many, bright white, in a large, terminal corymb. Mts, of Jamaica. - Now becoming popular as a pot subject and for cut-fiowers.
glandulosum, HBK. (E. adenóphorum, Spreng. E. adeninthum, Hort., not DC. E. Americanum, Hort.). Fig. 791 c. Diffuse, at length somewhat decumbent at base, the branches glandular-hairy: lvs. deltoid- or cuneate-ovate, slender-petioled, coarsely and sometimes uneveuly crenate-dentate, sparsely pubescent be10w: heads pure white, ageratum-like, in close clusters. Mex.
glabràtum, HBK. (E) Élegans, Hort. E. latifolium, Hort.). Fig. 791 d. Sbrubby, erect, with thin, bard, gla-
brous brown stems : lvs. thickish, small, lance-oblong or ovate-oblong, tapering into a strong petiole, bluntacute, undulate or small-toothed: fls. (sometimes blush) in ascending clusters, which combine to form a strong, terminal panicle. Mex.

> AA. Hardy or border plants.
> B. Heads purple.
purpùreum, Linn. Joe-Pye Weed. Tall, rank plant of low grounds (reaches $8-9 \mathrm{ft}$.): Ivs. whorled, obloag or lanceolate, acuminate, coarsely serrate and veiny: heads in large, compound clusters, purple to flesh-color (rarely almost white). Var. maculàtum, Darl. (E. maculàtum, Linn.), is mostly lower and roughish pubescent, the stern purple-marked. Var. aménum, Gray. Still lower, (2 ft . high), nearly glabrous, the lvs. often opposite. - A good species for bold effects in a border or against shrubbery. Common, and widely distributed.

BB. Heads white.

c. Lvs. perfoliate (united around the stem).
perfoliàtum, Linn. Boneset. Thorocghwort. Fig. 792. Stout, rank-smelling, pubescent, $3-5 \mathrm{ft}$.: 1vs. lanceolate, rugose and pubescent, finely toothed: heads in dense white eymes.-Common in low ground. Much used in domestic medicine. Excellent for striking effects, particularly in low grounds.

ce. Les. not perfoliate.

altissimum, Linn. Tall (reaches $7-8 \mathrm{ft}$.), densely pubescent, branchy: lvs. opposite, lanceolate-acuminate, the petiole very short, remotely dentate or entire: heads only 5 -fld. Open places, Pa . southward.
álbum, Linn. One-3 ft., pubescent: lvs, opposite, wearly or quite sessile, oblong or lance-oblong, coarsely serrate. Sandy soil, E. states.
ageratoldes, Linn. f. White Snakervet. Fig. 793. Neat, glabrous, branchy herb, $3-4 \mathrm{ft}$. : lvs. opposite, thin, ovate with broad base, acuminate, coarsely and sharply toothed: heads small, in a loose but ample inflorescence. Rich woods, Can to La.
aromáticum, Linn. Resembles the last, but usually pubescent: lvs, thickish and blunt or merely acute, the teeth blunt, later-flowering. Dry soil, E. states.

Var. melissoldes, Gray (E '. Fraseri and E. cordifolium, Hort.). Slender and roughish, strict: heads 5-12-tld.: Ivs. subcordate-ovate or oblong, obtuse, crenulate-dentate, sometimes with coarser teeth, the petioles very short. S. E. states.
Various species of the old genus Hebeclinium may be expected in amatenr collections, especially E. macrophifluem, Linn. (H. macrophyllum, DC.), with very large subcordatetoothed lvs., purple heads and purple-hairy stems. R.H. 1866: 350. Other glasshouse species are: E. grandiflorum, Audre. with rugose cordate coarsetoothed lvs, and reddish beads (R. H. 1882:384) ; E, Haagednum, Regel \& Koern., with ovalacuminate coarse-toothed lys. and small, white heads; \boldsymbol{E}. micrinthum, Less,, from Mex. (known in cult. as E. Weinmannianum, Regel \& Koern.), with elliptic-lanceolatelvs and large, fragrant white heads (Gn. 47, p. 44. G.C. II. 5:53) ; E. pròbum4 N.E. Br, with oval, velvety lvs., white heads, and whole plant glandular-sticky (G.C. III. 7:321).

793. Eupatorium ageratoides. ($\times 1 / 3$.)
L. H. B.

EUPHORBIA (classical name, said by Pliny to be in honor of King Juba's physician; possibly from the Greek word for fat). Euphorbidcea. Spurge is a name sometimes applied to the genus as a whole. but is, perhaps, better restricted to one or more species. One of the largest plant genera, of perhaps a thousand species, not less than 700 , of very diferse habit, and found in
most temperate and tropical regions. Many are desert plants, and the greater number grow in dry and sterile places.
Herbs, shrubs or trees, often fleshy and cactus-like, or low and prostrate weeds; but all characterized by a single pedicellate-pistillate flower, with a 3 -celled, 3seeded ovary, without floral envelopes or with a minute calyx, surrounded by numerous staminate flowers consisting each of a single stamen, the insertion of which is represented by an articulation with the pedicel, the whole surrounded by a more or less cup-sbaped involucre, with 5 lobes, and bearing 1-5 glands of various sbapes between the lobes. The staminate flowers are usually subtended by minute bracts. The glands often bear petal-like appendages, the whole involucre (or cyathium) closely simulating a perfect flower (Fig. 794).
Most of the species have abundant milky juice, and the cactiform species have been thus distinguished from cacti, but many cacti also have milky juice. The juice of most species is acrid poisonous, especially if it comes in contact with mucous membranes or open sores. The juice from some of the species is used in medicine as a purgative.
Monographed by Boissier in DeCandolle's Prodromus, 15, pt. 2 (1862). See local floras and Norton, Rept. Mo. Bot. Gard, 11, for native species. Works like Nicholson's Gard. Dict. and Bois' Dict. d'Hort. describe a number of cultivated species, Sce also Fobe, in Monatsschrift für Kakteenkunde, 8:42 (1898).
Many of the fleshy species are cultivated by lovers of succulents for their curious shapes; and a few are valuable for their ornamental foliage. The flowers are usually too minute to be noticeable. Some, like \boldsymbol{E}. corollatu (Fig. 794), E. maculata, E. Cyparissias and E. marginata, are weeds in America, but not troublesome. The great majority of the species are insignificant herbs. The species are remarkably free from injurious insects, and are rarely attacked by a few fungi.
The fleshy species are grown much the same as cacti (wbich see), but the culture is less difficult, and they do well with warmer treatment. In winter they are kept in a dry and cool house, 50° to $55^{\circ} \mathrm{F}$., with good light and little water. Drips must be carefully avoided. In summer the pots should be plunged outdoors in hot, dry situations, with a moderate supply of water and especially good drainage. It is better to protect them from continued rain, but most species do well without this. The more fleshy species, like E. Caput-Medusce and E. meloformis, require more heat and better care than the others. They are propagated by cuttings. Grafting bas not been practiced to a great extent, as with cacti, but seems possible. They do not require a rich soil, and do well in a coarse, sandy loam, or some say in any kind of soil.
The shrubby species, like $\boldsymbol{E}^{\boldsymbol{t}}$. atropurpurea and E. dendroides, do well with the treatment of the more fleshy kinds. See D. A. W. and F. S. Curtis, in Sharon Cactus Guide, Mar. and May, 1897.
The few hardy species of ornamental value make good border plants or are suitable for the rockery. They are mostly propagated by division. The annuals are easily grown from seeds.
E. pulcherrima and E. frlgens are good winter-flowering greenhouse plants, and require special treatment. E. fulgens succeeds well in the warmest parts of the house, in pots, or best planted out like roses and trained upon the wall or strings. It is propagated from cuttings taken in June, when the old plants have started to grow, kept in a warm frame until rooted, and then kept growing with heat, any transfers being made with as little root disturbance as possible. If stocky show plants are wanted, several cuttings may be planted in one pot and checked two or three times during summer by repotting, and kept pinched back freely to secure branches. They are best kept cooler when in flower, but are very sensitive to cold or sudden changes in temperature. After flowering they are kept dry for a few months. For the cut sprays they are best grown from cuttings each year. They last rery well when cut. The culture of the Poinsettia is very similar. To secure plants with large heads, the general plan is to grow from cuttings annually, but the old plants may be continued. Old plants that have been resting may be introduced
to heat and moisture in late spring, and will soon give a liberal supply of cuttings, which are usually taken from the young wood. Successive sets of cuttings may be made at later periods if different sized plants are wanted. When well started, the potted plants are plunged outdoors till Septomber, with plenty of water, light and sunshine and good drainage. They do well in ricb, heary loam in $5-7$-in. pots. They are apt to drop their

794. Flowers of Euphorbia corollata ($\times 2$).
The pistillate flower is at 8 . leaves if exposed to cold or other unfavorable conditions. In autumn they are transferred to the greenhouse, with moderate temperature. When the bracts begin to appear, give more heat and some manure water to expand them. When in flower, reduce the temperature to preserve them longer. After flowering the pots may be stowed away in a dry, warm place till spring, uader the bencbes will do. When the buds are cut the great objection is that they wilteasily. This may be obviated by dipping the cut ends in boiling, water, or keeping them in water for a few days before asing. See Griere. (i.C. III. 9:106, and Hatfield in Gard, and Forest 9:496.
E. splendens is another winter bloomer, and may be treated as the succulents, with more heat and water. It will do well in living rooms, and bears some flowers all the year. It bears rough treatment well, and is propagated by cuttings from the young growth, which root with the greatest ease.
J. B. S. Norton.

Culture of Poinsettia. - Euphorbia phlcherrima and varieties are fine shrubs, evergreen or deciduous, according to the climates in which they are grown. They are found at considerable elevations in Mexico, and subtropical conditions encourage their highest development. The original plants were introduced hy a Dr. Poinsett, of Charleston, S. C., who sold them to the late Robert Buist, about 1833. Buist was a famous Scotch nurseryman of Philadelphia, who, during the early seventies, also distributed the so-called double variety. He sent both forms to Europe, and never quite forgave the botanists for changing the name which be gave the plant-Euphorbia Poinsettiana.
Under natural conditions Poinsettias form large bushes from $5-10$ feet high and 12 or 14 feet in diameter, with woody bases and bollow annual growths. Flowers small,yellow, surrounded by an involucral crown of intense crimson leaves, the whole as large as a sombrero when well developed, varying to the smaller growing variety with creamy white bracts. Their highest development has been noted at Kotergherry, on the Nilgiri mountains of South India, at an elevation of about 6,000 feet, with a rainfall of 50 inches. The minimum temperature varies from $51^{\circ} \mathrm{F}$. in January to 60° in July and August, the maximum from $66^{\circ} \mathrm{F}$. in January, grad ually increasing to 70° in July and August. In parts of the Mediterranean basin, in southern California and similar climates, and in many parts of the tropics at the sea level, the plants are grown, but do not reach such great perfection, for they become deciduous and often stunted. The period of flowering in the northern hemisphere is from late November to March.
There are several ways of managing the plants in cultivation. They are propagated by single eyes, by 4- or 5 -inch cuttings of the one-year-old wood, or by young shoots with a heel of hard wood about March, or by the green tops about the end of August. If they are intended for pot culture as large plants, they simply require shifting along to 8 - or 10 -inch pots, with good drainage and good, turfy soil, with rather more sand than is commonly used for roses. After these large plants have hloomed, they may be stowed away to rest in a dry, light shed with a temperature of not less than 50°. Do not water them, and before the buds wake up

EUPHORBIA

in spring, shake them out, prune them to an eye or two, cut out the dead parts, repot them, and presently they will start to grow again. They may be gradually hardened, plunged outdoors and grown in the full sun during summer, giving them a shift during growth if extra luxuriance is desired. If hench culture is desirahle, plants may he turned into the ground from 4 -inch pots, or eveu from the propagating bed, grown until the end of August or later southward, the leaves stripped from all the stems but the upper foot or se, lifted, and laid flat on the benches, with a bushel or so of good soil over the roots and about an inch over the benches in the spaces. The next rank of plants may have their tops laid well over the roots of the first, and so proceed until all are planced. The ends soon turn up as growth starts, and the heads are very large and fine with suitable temperature and attention. Sometimes mealy bug gets into the heads. It may be driven out by a moderate stream of water from a hose, supporting the heads with one hand to avoid breaking. They are quite brittle. The milkiness produced by cutting may be got rid of by standing the stems in water, for it is sticky, stains, and is disagreeable. For small pot-plants the green tops, ahout 6 or 8 inches long, may be taken in August, dibbled into well drained 4 -in. pots, set on mild bottom

heat, or placed in a rather humid equable temperature southward. They must not he over-watered or too deusely shaded, when they will soon strike, form handsome little plants, often with leaves to the pots, and be very useful for many purposes. For detailed points by professional growers, see A.F. 11:285, 457; 12:536.

James MacPherson.

The following is an alphabetical list of the names in the American trade

Abyssiuica, 20. alcicornis, 16. antiquorum, 12. arborea, 32. atropurpurea, 29. Beaumeriana, 23. carulescens, 19. Canariensis, 18. candelabrum, 22. Caput-Medusxe, 24. cereiformis, 26 . corollata, 2 .

Cyparissias, 35, deudroides, 31. drupifera, 10. echinus, 23. erosa, 26. fulgens, 3 . grandicorvis, 13 grandidens, 16. grandifolic, 10. Granditolia, Grantile
Havanensis, 12. hematodes. 29.

heptagona, 26.

 Hermentiana, 14. heterophylla, 5 . heterophylla, jacquinierflora, 3 lactea, 12, 15. Lathyris, 28. mamillosa, 11. marginata, 1. meloformis, 25, Mexicana? Myrsinites, 37.Natalensis, 36. nerifolia, 9. Palmeri. 34. pandurata, 5. pendula, 6. Pfersdorftii, 21.

Poinsettia, 4 polygona, 26 pulcherrima, 4. Regis-Jubw, 30 . rhipsaloides, 7. robusta, 24.
sanguinea, 29. splendens, 8 . Tirucalli, 7. triangularis, 17. variegata, 1. virosa, 19

A. Involucres flower-like, with 4 or 5 petaloid ap-

 pendages1. marginàta, Pursh (E. variegàta, Sims). SNow-on-the-Mountain. Fig. 795. Plant 2 ft . high, pubescent, dichetomously many-branched : Ivs. numerous, with stipules, light green, 1-3 in. long, ovate-suhcordate to oblong-lanceolate, the upper ones margined, with white or some entirely white ; involucres in the forks of the branches, their appendages large, white. JulyOct. Plains from Dakota to Texas and extending eastward. B.M1. 1747. Gt. 30:218.-Hardy annual, used for its white foliage in bedding and mixed horders in sunny situations.
2. corollàta, Linn. Flowering Spurge. Fig. 794. Plant $11 / 2-3 \mathrm{ft}$. bigh, usually glahrous, slender and diffusely branched above: Ivs. without stipules, ovate-oblong to lanceolate, 1-2 in. long, those of the inflorescence much smaller and opposite; appendages of the numerous involucres 5, white, conspicuous for the genus. July-Oct. Rather dry soil in east U. S. B.M. 2992. L.B.C. $4: 390$. F.R. $1: 969 .-$ A hardy herbaceous perennial, used like Gypsophila for cutting and as a bedder in light soil. Very variable in size and shape of plant, leaves and inflorescence.
3. fulgens, Karwinsky (E. jacquinioflora, Hook.). Scarlet Pleme. Fig. 79G. Small shrub, with slender, drooping branches: lvs. long-petioled, lanceolate, hright green; invelucres in small axillary cymes, their 5 conspicuous bracts bright orange-scarlet. Mexico. B.M. 3673. G.C. 11. 19:816. - A handsome winter-blooming plant, used for cut-flowers or for specimen plants.

AA. Involucres without petaloid appendages to their

 glands, but the glands or subtending bracts sometimes colored petal-like.B. Stem herbaceous or shrubby, not feshy: upper leaves colored: stipules glanduliform: inflorescence cymose.
4. pulchérrima, Willd. (E. Poinsettiana, Buist. Poinsettia pulehérrima, Grah.). Poinsettla. Fig. 797. A shrub, $2-6 \mathrm{ft}$. bigh, branched: 1vs. ovate-elliptical to lanceolate, entire, sinuate-toothed or lobed, or panduriform, $4-6 \mathrm{in}$. long, somewhat pubescent, becoming narrower, more entire and of the brightest vermilion-red ahove; involucres greenish, with one large yellow gland. Nov.-Feb. Moist, shaded parts of tropical Mexico and Central America. B.M. 3493. G.C. II1. 21:125, 193. - Sometimes cut, usually used for specimen plants and in masses. A gorgeous plant. Varieties with white and yellow bracts occur. Var. plenissima, Hort., has a double series of bracts and forms a wider and higher head. G.C. 111. 5:17.
5. heterophylla, Linn. (E., pandurùta, Hort.?). Mexican Fire Plant. Hypockite Plant. Painted leaf. Fire-on-the-Moentain. Anneal Poinsettia. Annual, nearly glabrous, $2-3 \mathrm{ft}$. high : lrs. ovate and sinuatetoothed or fiddle-shaped, or some of them linear or lanceolate and entire, dark green, the upper bright red at the base or only the tips green, involucral glands 1 or 2. July-Sept. Eastern and central U. S. to Peru. Mn. 2, p. 53. Git. 39, p. 105. - Easily grown in sunny places and also in pots indoors. White and yellow variegated forms are in cultivation in this country.
BB. Stem more or less neshy or spiny, often cactuslike: leaves small, none or soon deciduous; involucres single or few together.
c. Bronches short cylindrical, smooth, quill-or rushlike, slender.
6. péndula, Boiss. Branchlets many, slender, pendulous: lvs. very small, opposite. S. Africa?
7. Tirucalli, Linn. (E. rhipsaloides, Lem.). A tree, 20 ft . high, with many slender subyerticillate ascending lrauches; twigs 4-8 in. long: 1vs. 5-8 lines leng, few, alternate. E. Africa and India.-A striking plant.
c. Branches fleshy, a spine on each side of every teaf or leaf-scar, in a few the leaf transformed into a third thorn between them.
D. Podaria (the projections bearing leates and spines) distinct: branches cytindricat or obsotetely angted.
8. spléndens, Bojer. Crown of Thorns. Fig. 798. Stems 3-4 ft. long, $1 / 2-1 \mathrm{in}$, thick, covered with stout spines almost an inch long, somewhat twining: branches few: lvs. few, on the young growth, obovate to oblong-spatulate, thin, bright green, $1-2$ in. long; involucres in long-peduncled dichotomous cymes, near the ends of the branches, each closely subtended by two broadly ovate bright red bracts, filaments forked. Madagascar, flowering all the year, but mostly in winter. B.M. 2902. L.B.C. 18:1713. - Coolhouse plant. The red bracts, with green leaves on the sinuous spiny stems, are striking. It can be trained into ornamental forms.
9. neriifolia, Linn. Arborescent or shrubby: stem obtusely 5 -angled, 3-7 ft , or more high: the small mammiform podaria in rows, with short, dark colored, divergent spines: branches numerous, hearing obovateoblong, obtuse, thick 1 Vs ., $3-5 \mathrm{in}$. long at the summit: small, sessile cynes of greenish involucres in the npper axils. June, July. E. Indies. - Large lvs. persistent from autumn to spring. Cristate forms are in cult.
10. drupifera, Schum. \& Thorn. (E. grandifòlia, Haw.). Arborescent: stem terete: branches obsoletely 4-5angled ; spines small : lvs. terminal, obovate-cuneate, obtuse or retuse, $5-8 \mathrm{in}$. long: small cymes axillary, peduncled: capsule drupaceous. Guinea.

11. mamillòsa, Lem. Low, cespitose: branches less than an inch in diam.: podaria elongated, conical, in 5 spiral rows: lvs. and spines small, soon deciduous.
DD. Podaria conftuent into ribs: branches more or less acutely wing-angled.
E. Growths or branches 3-angled (sometimes 4-angled, especially on the main axis, and in E. alcicornis flat).
12. antiquòram, Linn. (E. Havanénsis, Hort.? E. láclea, Hort.?). Shrub, 8-10 ft. high: branches erectspreading, jointed; angles compressed, repand dentate, the teeth I in. long; spines I-3 lines long: lvs, minute, ovate-spatulate or rotund. India, and naturalized in other places, notably the W. Indies, where it is used for hedges. - Cristate forms are in the trade, as E. lactea monstrosa? and E. Havanensis cristata.
13. grandicórnis, Gobel. Fruticose: branches 3 in . wide; angles broadly winged, deeply lobed and sinuate; spines large, l-2 in. long, light colored. S. Afr. Neu-
bert's Deutsche Garten Mag. 46:29I.-A striking plant, with the widest wings and longest spines of all.
14. Hermentiana, Lem. A shrub, 3-4 ft. high, with many non-jointed, erect branches, their edges repanddentate and broad, slightly concave faces, white-mar-

797. Euphorbia pulcherrima $(\times 1-5)$.
bled when young; spines $2-21 / 2$ lines long: lvs, lanceolate or lance-spatulate, $3-5 \mathrm{in}$. long. Gabon river, W . Afr. - Considered one of the best.
15. láctea, Haw. A shrub: branches erect; faces 1-3 in. wide, plano-convex, yellow and green striped; edges subcompressed, repand dentate; spines 2-3 lines long. East Indies.
16. grándidens, Haw. Tree, $20-30 \mathrm{ft}$. high and as much as 3 ft . in diam.: branches slender, $1 / 2-3 / 4 \mathrm{in}$. wide, numerons, erect-spreading, making a rounded head in old plants; faces almost plane; angles deeply lobed-dentate; spines $3-5$ lines long, slender: lvs, very small, triangular. S. Afr. G.C. II. 26:721.-E. alcicornis, Hort., is probably a form of this with flat branches.
17. triangularis, Hort. Par. Stem 3-7 ft, high, triangular: numerous branches erect, with convex faces dark green; the winged angles sharply toothed and shortspined. S. Afr.

EE. Growths or branches with 4 or more angles or rarely 3 -angted.
18. Canariénsis, Linn. Shrub or tree, 12-20 ft. high, with many 4 -6-angled suberect branches, as much as 3 in . thick, from the base; angles subentire; spines 2 lines long, black : lvs. almost none. Canary Islands. Gi. 53, p. 46. G.C. II. $20: 629$.
19. viròsa, Willd. (E. caruléscens, Haw.). A shrub as much as 15 ft . high, much branched: branches $4-5$ - or sometimes 3 -angled, 1 in. thick, ascending; angles lobed; epidermis bluish; spines strong, $4-5$ lines Iong, black. S. Afr.
20. Abyssínica, Rausch. Stem robust, $30-10 \mathrm{ft}$. bigh, $9-14 \mathrm{ft}$. in greenhouses: branches few, 4-6 in. in diam., dark green; angles 5-8,obtuse bit prominent; edges undulate; spines short, recurved: lvs. minute, spatulate. Abyssinia. Gn. 52, p. 106. G. C. III. 20: 497.Iuch resembles Cereus Peruvianus.
21. Pférsdorffii, Hort. Trunk round, $11 / 2-2^{1 / 2}$ in. thick, 9 -ribbed, much branched when old ; spines large, 4-8 lines long.
22. candelábrum, Trem. \& Klotzeh. Tree, 20-30 ft. high, with a head $60-80 \mathrm{ft}$. in circumference: trunk short and thick, densely branched: branches 3-4-angled;

EUPHORBIA

spines short. Trop. Afr.-See E. Tirucalli for some plants sold under this name.
23. officinàrum, Linn. Fruticose: branches $21 / 2-3$ in. thick, $9-13$-angled, deeply sulcate; edges repand; spines red, divergent or deflexed, 1-1 1 lines long: lvs, minute. N. Afr. R.H. 1875:336-37,-E. Beaumeriana, Hook. \& Coss., and E. echinus, Hook. \& Coss., are closely related species from the same region.
ccc. Branches with spines, if any, not stipular, but in the place of les. or branches
D. Spines not present.
24. Càput-Medùsæ, Linn. Medusa's Head. Stem short, obconical, fleshy: branches numerous from the apex, soon declined around tbe main stem witb their ends erect, $1 / 2 \mathrm{in}$. or more in diam., 6-12 in. long, covered with depressed, keeled tubercles, each hearing a small. linear-lanceolate leaf; glands of the involucre white, rather conspicuous, the outer lip palmatifid. S. Afr. L.B.C. 14:1315. - Curious and rather rare. Var. major, Ait. (E. Commelini, DC.), is a large, erect, unbranched form, perhaps originating from branch cuttings.
25. meloformis, Ait. Fig. 799. Globose or pyriform, $3-5 \mathrm{in}$. in diam., deeply $8-10$-costate, the ribs obscurely tuberculate on the almost acute angles, the sides transversely dark and light green striped or wrinkled when old: the few small lvs, and fls. at the depressed apex: the old forked branches of the inflorescence subpersis tent hut not spinose. A few small branches similar to the muin stem usually present. S. Afr. L.B. C. 5:436. A.G. 11:463.-A very interesting and rare plant in Amer. Best grown only under glass. Often mistaken for a cactus.
799. Euphorbia meloformis.

DD. Spines formed of the sterile peduncles.
26. cereiformis, Linn. (E. eròsa, Willd.). Ereet, 3 ft . or more higb, little branched: branches ereet, with 8-13 tuherculate ribs: Ivs. very small: peduncles usually with ouly one involucre, the sterile ones forming dark colored spines $4-7$ lines long. S. Afr. L.B.C. 14:1334.E. polygona, Haw., with more prominent and spiral ribs, and E. heptágona, Linn., with $7-8$ ribs and sulci hetween them more obtuse, are closely related South African species.
27. Hystrix, Jacq. A shrub, 2-3 ft. high, not ribbed: podaria depressed: Jvs. 2-3 in. long, linear; spines numerous, 1-2 in. long, erect-spreading. S. Afr. Jacq. Hort. Schœenb. 207.
BBB. Stems herbaceous or woody, scarcely ever slightly fleshy-stemmed: inflorescence umbellate: stipules none.
c. Lers. belore the umbel decussate: tall herbs.
28. Láthyris, Linn. Caper Spurge. Mole Plant. Fig. 800. Annual, $2-3 \mathrm{ft}$. tall: Ivs. long, lance-linear, those of the inflorescence ovate-acuminate: glands short-horned : capsules somewhat fleshy. Eu., and naturalized in eastern U.S. Rept. Mo. Bot. Gard, 11, pl. 11. - Cult. in old gardens. Capsules sometimes pickled. Seeds used as a purgative. Said to drive moles from its neighborbood (see Cornell Bull. 61:331).
cc. Lis. usually clustered at the ends of the branches: shrubs.
29. atropurpùrea, Brouss. A shrub, 3-6 ft. high, branched: the pale, glaucous green, spreading or drooping Ivs. crowded at the ends of the branches, 2-3 in. long: umbel 5-10-rayed; involueres surrounded by 2 large, dark purple, broadly ovate, ohtuse, connate bracts. March. Teneriffe, B.M. 3321.-Plants known as E. atropurpurea and E. sanguinea in America, and used for bedding, are in part E. hamatodes, Boiss,, a species of Section A not well known to botanists, and partly a purplish var. of E. pulcherrima.
30. Regis-Jubæ, Webb. Like the last, but Ivs, narrowly linear and bracts not dark purple ; involueral gland with 2 short horns. Teneriffe.
31. dendroldes, Linn. A large, branching shrub, more foliaceous than the two preceding: leaves linear-lanceolate, obtuse or acute; floral leaves yellowish, rhomboidorbicular, mucronate, glands truncate or semi-lunate. Mediterranean region. R.H. 1887:160. Gn. 36, p. 203.
32. Grantii, Oliv. Small shrub with lanceolate leaves, large, long acuminate, ovate bracts and palmate glands. E. Africa. This and the E. arborea offered by Blanc probably belong in this section, though the E. Grantii of American dealers may possibly be Synadenium Grantii, Hook.
ccc. Les. belou the umbel alternate; glands oral in the first species, in the others two horned: leafy herbs.
33. epithymoides, Jacq. (E. polychròma, Kern.). A herbaceous perennial, a foot or more high, with oblong, dark green leaves, floral leaves different shades of yellow at flowering time. May. Europe. B.M. 2258. - Growing in a fine, compact clump, uncommon in gardens.
34. robuista, Small, and Pálmeri, Engelm., are manystemmed perennials, the former from the Rocky mountains, the latter from S. Calif., a foot high, more or less, with small ovate leares and roughened seeds. They have been offered for sale, but have little eultural value.
35. Cyparíssias, Linn. Herb, perennial from root buds, the short plume-like branches covered with spreading, narrow linear, dark green leares an inch long: seeds smooth. Europe. L.B.C. 2:118. G.C. 11. 22:469. Rept. Mo. Bot. Gard. 11, pl. 50.-Cult. in old gardens for its pooss-like growth. Naturalized and a weed in east U.S.
36. Natalénsis, Bernh. Stems many, $1 / 2-1 \mathrm{ft}$. high: umbel 3 -5-rayed, heal-like: leaves crowded, narrow linear-lanceolate, subcoriaceous. S. Africa.
37. Myrsinites, Linn. Perennial herb: many declined stems covered with large, Heshy, glaucous, obovate or ovate-oblong, concave, pointed leaves: umbel $7-12$-rayed: glands and flowers yellow. Europe.-A plant of old gardens, good for rockeries.

800. Euphorbia Lathyris. Seen endwise to show 4 -ranked leaves.

Plants in cult. in Europe hut not in the American trade: Fleshy forms: E, anacantha, Ait.-E. bupleurifolia, Jacq. Short, thick, scaly stem, with a cluster of large leaves at the top.-E, Bojeri, Hook. NearE. splendens. - E. Bredni=E. Bojeri. -E. Capensis. Hort. - E. claudéstina, Jacq. - E. enneágona, Haw. $=$ cereiformis, Linn.-E. fimbriäta, Hort.?-E. Fournièri,

Rebut，a Madagascar species near E．lophogona，Lam，－E．glo－ bùsa，Sims．B．M．2621．－E，glomeruta，Hurt．－E．helicothele， Lem．＝E．Nivulia，Buch．－E．imbricäta，Vahl．－E．Lemaireána， Boiss．Like E．grandicornis，but spines much shorter，$-E$ ． lophogona，Lam．Peculiar club－shaped stem，with large leaves above and cristate stipules．Madagascar．－E．macroglypha， Lem．－E．mamillàris，Linn．－E．Montteri，Hort，－E．pentagona， Haw．－E．piscatoria．Ait－E．py rifòlia，Lam，near lophogona．－ E．serpiformis，Boiss＝E，scopiformis．－E．squarrosa，Haw．－ F．stapeliafórmis，Hort．－E．tetragona，Haw．－E．tithymaloıdes， Linn．$=$ Pedilanthus tithymaloides，－E．trigona，Haw，$-E$ ． tuberculàta，Jacq．－E．xylophylloides，Brongn．

Shrubby or tree－like forms：E．balsamifera，Ait．－E．Berthe－ lòti，Bolle．－E，colletioides，Benth．－E，laserifollia，Lam．－E． mellifera，Ait．－E．misera，Benth．－E．plumerioldes，Teysman． －E．punicea，Swartz．G．C．II．15：529．－E．resiniferal－E．sco－ lopendria，Don．
Herbaceous forms：E．Aléppica，Linn．－E．Charàcias，Linn． －E．Ohamaesỳce，Linn．－E．falcàta，Liun．－E．geniculàta，Orteg． －E．helioscopia，Linn．－E．Ipecacuanhe，Linn．Plint of east U ．S．coast region，root furnishing one of the officinal U．S． drugs．- E．Lagáscee，Spreng．－E．Parálias，Linn．－E．pilosa， Linn．－E．pilulifera，Linn．－E，spintosa，Linn．

Others not well known：E．Amelia，Hort．E ，aphýlla， Brouss．－E．arliculàta，Hort．－E，aurelia，Hort．$=$ E．Amelia？－ E．cáput－odoràta，Hort．－E．Caput－Simice，Hort．－E．Cassỳtha pèndula，Hort．－E．colubrina，Hort．－E．Codperi，Hort．－E． dentata，Hort．－E．de Sinetiana，Hort．－E．erecta．Hort．－E． fimbriata，Hort．－E．funalis，Hort．－E．gardeniefolia，Hort．－ E．gracilis，Hort．－E．Houlletiana，Hort，－E．Houlletti，Hort． $-E$. Krausii，Hort．$=$ E．Kranssiana？$=$ E．erubescens，E．Mey．－ \bar{E} ．longifolia，Hort．－E．Mangador，Hort．$=$ E．Mogador，Hort．？ －E．Mauritania，L．－E．Morini，Hort．－E．abtusa，Hort．－E． ornithopus，Jacq．－E．Pavoénsis．Hort．－E．pilehra，Hort．－E． Pulletiana，Hort．－E．Rebüti，Hort．－E．Richardi，Hort．＝E． Richardiana．－E．Sahariensis，Hort．－E．San Salvador．Hort．－ E．serpentaria，Hort．－E．viperina，Hort．－E．Waltonénsis， Hort．

J．B．S．Norton．
EUPTELEA（Greek eu，well，handsome，and ptelea， elm）．Trockodendracea．Ornamental shrubs or small trees，with alternate，long－petioled，simple lvs．and small fls，appearing before the foliage，resembling some－ what the alder in habit and foliage．Three species from Himalayas to E．Asia，of which the half hardy Japanese species is sometimes cultivated；it prefers somewhat moist situations and is prop．by seeds or by grafting on their own roots．
polyandra．Sieb．\＆Zuce．Shrub or small tree，to 20 ft ．：Ivs．long－petioled，usually roundish ovate，euspi－ date，coarsely and irregularly dentate，slightly pubes－ cent on the veins beneath，2－-in ．long：fls，in small，ax－ illary，peduncled clusters，polygamous－diocious，apeta－ lous；stamens and carpels numerous：fr．consisting of many small winged nutlets，similar to the elm frs．Ja－ pan，China．S．Z． 72.

Alfred Rehder．
EURYA（Greek for large，but of no application）． Ternstremideea．Perhaps 20 shrubs of southern Asia and Malaya，with small dicecious fls．，berry－like frs．，and simple，glabrous evergreen lvs．：fls．in axillary elus－ ters，or rarely solitary；petals and sepals 5 ；stamens 15 or less（rarely only 5），joined to the base of the corolla： ovary usually 3 －loculed．The Euryas are allied to Camellias，and require much the same treatment．They are grown for foliage rather than for fls．Demand an intermediate temperature and a peaty soil．Prop．by euttings taken from the tips of growing shoots．E．Ja－ ponica，Thunb．（E．Sieboldii，Hort．），is the common species，and is very variable．The variegated form of it （known in the trade as E．latifolia variegata）is one of the best glasshouse decorative pot shrubs：lvs．variable in shape，usually ovate－acuminate and irregularly toothed or notched，short－petioled，irregularly blotehed with white：fls，preenish white，in small，axillary clus－ ters．Japan．V．M．23：5．

L．H．B．
EURジLE（mythological name）．Nymphadcere．One species，the Indo－Chinese representative of Victoria Regia，from which it differs in having all the stamens fertile（in Victoria the inner ones are sterile）and in the very small flower，and in other technical characters． \mathbf{E} ． ferox，Salisb．，is the species．The lvs．are $1-\frac{1}{\mathrm{ft}}$ ．across， circular，purple and spiny－ribbed beneath，dark green and uneven above：fls．small，prickly outside，the calyx reddish inside and the $20-30$ purple petals shorter than the calyx lobes；stamens numerous ：fr．a small，many－
seeded，globular berry，bearing the remains of the calyx on its top；seeds edible．B．M．1447．Long cult．in China．Treated as an annual．Has attracted little at－ tention since the introduction of Victoria．As far north as Philadelphia it is hardy，sowing itself every season． It is ferociously spiny．
E．A mazonica，Poepp．，still advertised in catalogues，is Vic－ toria Regia．

L．H．B．and Wm．Tricker，

EUR言CLES（Greek－made name，of no particular ap－ plication）．Amarylliddeer．Two south hemisphere bulbous plants，allied to Hymenocallis and Paneratium． Perianth－tube eylindrical，the segments oblong－lanceo－ late and nearly equal；stameus inserted in the throat of the tube：lvs，broad and stalked，with prominent curv－ ing reins and interlocking veinlets：fls．whito，in um－ bels．Cf．Baker．Amaryllidea，p．130．E，sylvéstris， Salisb．（E．Amboinénsis，Loud．）．Brisbane Lily． Scapes 1－2 ft．，bearing an umbel of $10-40$ handsome， ereamy white fls．（2 in．across），lys，round－cordate，with a very short，blunt point．B．M．1419，as Pancratium Amboinense．B．R．9：715，as Pancratium Australasicum， Lindl．R．H．1879，p．456；p． 457 as E．Australasice， Loud．Malaya，Philippines，N．Australia．Grow in cool－ house，as for Pancratiums．

L．H．B．
EUSCAPHIS（Greek，eu and scaphis，vessel；alluding to the shape and the handsome color of the dehiscent eapsule）．Celastráceq．Ornamental shrub，with rather large pinnate，opposite lvs．，small whitish fls，and at－ tractive brownish red frs．in erect panicles，with shin－ ing black seeds．Monotypic genus allied to Staphylea， but with upright panicles aud the capsules divided to the base into 3 dehiscent，leathery pods．It grows in almost any good garden soil，but is only half－hardy North．Prop．by seeds and greenwood cuttings under glass．
staphyleoldes，Sieb．\＆Zuce．（E．Japonica，Dipp．）． Shrub，to $10 \mathrm{ft} .: 1 \mathrm{fts} .7-11$ ，ovate－lanceolate，glabrous， serrate， $11 / 2-3 \mathrm{iu}$ ．long，each with 2 small stipules：fls． perfect， 5 －merous，small，in many－fld．panicles：fr．con－ sisting of $1-3$ pods，each with 1－2 seeds．May，June． Jap．S．Z． 67.

Alfred Rehder．
EUSTREPHUS（Greek，referring to the climbing habit）．Lilideere．One or two Australian plants，bo－ tanically related to Lapageria，but much less showy． In habit，suggestive of smilax（Asparagus medeoloides）． E．latifolius，R．Br．，is a tall，half－twining，branchy herb，more or less woody at the base，bearing alternate， stiff，linear－lanceolate，short－stalked lvs．and small，ax－ illary，drooping light blue fls．with spreading，ciliate perianth segments：fr，a dry berry：Ivs，2－4 in．long， sharp－pointed：fls．less than 1 in，across．B．M． 1245. Of easy culture，either in the glasshouse border or in pots．Very useful for table decoration and for design work．

L．H．B．

edtácta．Found under Araucaria．

EUTERPE（mythological name）．Palmacere，tribe A rècea．Slender，erect，spineless palms，with solitary or fasciculate，ringed caudices．Lvs．terminal，equally pinnatisect；segments narrowly linear－lanceolate，long， and gradually acuminate or ensiform，membranaceous， plicate，the thickened margins recurved at the base； rachis and petiole 3 －sided toward the base，convex on the back，concave above；petiole elongated；sheath very long，cylindrical，entire：spadix paniculately branched： rachis elongated：branches slender，pradually shorten－ ing above，usually scaly，thick at the base，erect－spread－ ing in fl．：spathes 2，coriaceous or membranaceous， lanceolate，the lower one the shorter，split at the apex， dorsally 2－keeled，the upper one symmetrical，split down the ventral side：bracts bordering the furrows ；bract－ lets ovate－acute：fls．small，white，sessile in the furrows of the spadix：fr．like a pea，purple．Species abont 8. Trop．Amer．and W．Indies．
édulis，Mast．Para Palsr．Assai Palm．Stem，60－90 ft ．high， 8 in．thick，flexuous：Ivs．spreading；sheaths $3-41 / 2 \mathrm{ft}$ ．；petiole $11 / 2 \mathrm{ft}$ ．；blade $6-9 \mathrm{ft} . ;$ segments linear， spreading，deflexed，60－80 on each side，densely crowded， 28－36 in．long， $3 / 4-1$ in．wide．Brazil．
oleràcea, Mast. Cabbage Palm. Fig. 801. Stem $60-100 \mathrm{ft}$., scarcely 1 ft . in diam. at base, attenuate above, flexuous: ivs. arcuate-spreading, 4-6 ft. long, the apex more or less deflexed; segments pendent, linearlanceolate, the upper 2 ft . long, 1 in . wide, many-nerved. Braz. - Fig. 80I is adapted from Martius' Nat. Hist. of

801. Euterpe oleracea.
montàna, R. Grah. Stem 10 ft . high, swollen at the base, ringed: lvs. 9 ft . long, elliptical-obovate; segments lanceolate, entire, glabrous, alternate; petiole 2 ft . long, scaly beneath, unarmed: rachis plano-convex below, subtriangular towards the apex. Grenada. B.M. 3874.

Jared G. Smith.

Euterpes constitute a small group of spineless palms, said to include 8 or 10 species in all, but of these there are but 3 species commonly found in cultivation, namely: E. edulis, E. montana and E. oleracea. These are found under varying conditions in Central and South America and the West Indies, and all three species are valuable as food-producers to the natives of those countries. E. edulis grows iu great quantities in the lowlands of Brazil, where it is known as the Assai Palm, owing to the fact that its seeds are macerated in water. and by this means is produced a beverage known as Assai. E.oleracea is the well-known Cabbage Palm of the West Indies, growing in the lowlands near the coast, while E. montana is the Mountain Cabbage Palm, and is frequently found at considerable altitudes in the same islands, and consequently does not attain the great dimensions of E. oleracea.

The Euterpes do not present any special cultural difficulties, being free-rooting and rapid-growing palms, a night temperature of $65^{\circ} \mathrm{F}$., and abundant moisture, being among their chief requirements. A good, turfy loam, with the addition of about one-fifth of stable mauure while in the compost heap, provides a suitable soil. From their habit of forming a tall, slender stem without suckering from the base, the Euterpes are liable to become rather leggy specimens. When under cultivation, and for trade purposes, it is advisable to group 3 or 4 of the young plants together, thas producing a more bushy specimen. White scale is one of the worst pests to which these palms are subject, and soon ruins the foliage unless care is taken. Seeds germinate in a few weeks if sown in a warm greenhouse, and the young plants make hetter progress when moderately shaded.
W. H. Taplin.

EUTOCA. Now referred to Phacelia.

EVAPORATING OF FRUIT. While the domestic operation of drying fruit has been practiced ever since men looked beyond their immediate wants and stored food for time of greater need, and while dried fruit has long been an article of commerce, yet until a few decades ago only the most primitive methods were used in the drying process, and the industry, commercially, was contined to a few favored regions in Europe. The modern industry is scarcely more than a quarter century old. Its almost inconceivable growth in America in this brief time is one of the industrial phenomena of the epoch. Spurred into activity by the encroachments of the American product in their markets, the European producers, by the adoption of better methods, and by governmental encouragement, have increased greatly their output of dried fruit. And so, from an adjunct to fruit growing for home use, drying fruit has become, within recent years, one of the main branches of horticulture.
Fruit may be cured in the sun, or it may be cured in drying machines, called evaporators. That cured in the sun is called by the producer dried fruit ; that in evaporators, evaporated fruit. By far the greater part of the world's product is cured in the sun.

Sun-drying fruit.-In countries having a sufficiently warm and dry climate, as Greece and Turkey, and parts of France, Spain and western America, fruit is dried almost wholly in the sun. The fact that in these favored localities the drying capacity is limited only by the acreage of sunshine, makes it certain that the proportion of sun-dried fruit will always be vastly greater than that of evaporated fruit. Drying fruit in the sun is a simple process, but one hedged in by many little arts and methods which facilitate the work and improve the product. In geveral, the process is as follows: the fruit is graded, bleached by sulfur, if a light colored product is desired, in the case of prunes dipped or pricked, and is then spread on trays to be exposed to the sun. When the drying process is finished the fruit is again graded, in most cases put through a sweat, and then "finished" in various ways, as by dipping or glossing.
Evaporating fruit.-There are hosts of styles of evaporators, but all possess in common a chamber for the reception of the fruit, through which a current of warm air is forced, or the fruit is forced through the air, or both, the object being to remove the aqueous matter from the fruit as quickly as possible, and the principle being that warm air will absorb more moisture than cool air. The saturated air must not remain in contact with the fruit. Since different fruits exact different conditions, one should be able to change the temperature and velocity of the air current in the drying chamber at will. To make the product homogeneous, current and temperature must be equal in all parts of the evaporator. It is obvious that simplicity in the machine and economy in heat and in room are cardinal virtues in a good evaporator. It is the rule to start the evaporation of large fruits at a low temperature and finish at a high one, but with berries the reverse is true. Some operators start their apples high and finish at a low temperature.
The following are definitions of the somewhat technical terms used in the industry: Bleaching is the pro-
cess of changing the dark color of fruit to a lighter hue, or of preventiug the discoloration; generally accomplished hy sulfuring. Bloaters are prunes which in drying swell up to an ahnormal size ; generally produced by fermentation in over-ripe fruit. Dipping is the process of cutting the skin of fresh prunes to facilitate curing. The operation is performed by submerging the fruit in boiling lye. Cured fruit is some times dipped in one of various solutions as a "finishing" process. Drip is the syrupy liquid which oozes from prunes in the process of evaporation; it generally characterizes a poor prune or a poor evaporator. Frogs are cured prunes having an abnormal shape; a condition caused by curing unripe fruit. Pricking is the process of puncturing the cuticle of fresh prunes. It is done oy means of a machiue, the essential part of which is a board covered with projecting needles, over which the prunes must pass. It accomplishes the same end as lye dipping. Sizes is a term used to indicate the number of cured prunes it takes to make a pound. The "four sizes " known in the markets are 60s-70s, $70 \mathrm{~s}-80 \mathrm{~s}$, $80 \mathrm{~s}-90 \mathrm{~s}, 90 \mathrm{~s}-100 \mathrm{~s}$. Sugaring is the formation of globules of sugar on the cuticle of cured prunes. Sulfuring is a process cured fruit is put through to give it a lighter color. The fruit is subjected to fumes of burning sulfur before being exposed to the sun or put in evaporators. Sweating is a process cured fruit is subjected to before packing, in which it is put in a room at a high temperature and allowed to become moist.

Curing different fruits. - Apples and pears are peeled, cored, cut in rings or quarters, and sulfured, before being placed upon the drying trays. The time required for curing is about three days out of doors and six to twelve hours in the evaporator. There is considerable trade in apples called "dumplings," which are whole apples peeled and cored. Double the time is required in evaporating them, but the price is higher.
Apricots, peaches and nectarines must be fully rlpe before drying and without bruises. They are pitted, and may or may not be peeled. If peeled, the operation is done with machines or with lye, though the use of the latter is cousidered a had practice. The fruit is placed on the trays cup side up. About three days are required for drying in the sun and about eight hours are required for evaporating. The cured product should be of a translucent amber color.

1. Berries are seldom sun-dried for the markets. For evaporating they are placed on trays in quantities of from sixteen to thirty quarts, given a temperature of about 175 degrees at the start, and are finished in from four to five hours, at a temperature of about 100 degrees. After being taken from the evaporator, they are piled for sweating in a warm, ventilated room,
Figs for drying must be gathered when fully ripe. Some growers prefer drying in shade rather than in sun. Evaporators are seldom used. The fruit is not allowed to dry hard, and before packing must be well 8weated. Usually, for "fiuishing," they are dipped in salt water or syrup. The drying process requires from five to eight days.
Prunes are allowed to ripen until they fall to the ground. Before being spread on the trays they are dipped or pricked in order to thin or crack the skin, that the moisture may easily escape, and dripping be prevented. Sun-drying requires from one to three weeks, while from sixteen to thirty hours are required for evaporation. A thorough sweat prevents the sugaring so common to this fruit. Before packing they are graded in sizes. Dipping as a "finishing" process is practiced by many producers. A good prune is soft, smooth and meaty, with loose pit, and of an amber, dark red or golden hue, depending upon the variety.
Grapes for raisins are sun-dried. They must be picked when fully ripe, the bunches, and the berries on the bunches, being sorted as the picking progresses. The operation of drying must be watched with care. The process requires from eight to fourteen days, during which time the bunches must be turned at least once. A sweat is given before packing. Raisins are graded into balf a dozen or more brands for the market.
U. P. Hedrick.

EVENING PRIMROSE. See Enothera.

EVERGREEN. Said of plants which do not shed all their foliage at any one time, thereby remaining green; or of leaves which persist for two or more years. In all evergreen plants, the old leaves shed after a time, when they become so overshadowed or crowded as to be of no further use to the plant. The leaves of pines and spruces persist for tbree to fifteen years.
In the popular mind "Evergreen" and "Conifer" are the same, but some conifers are deciduous, as the larches and taxodiums. Moreover, in the tropics most trees and shrubs are evergreen or nearly so. In the mind of the gardener, evergreen and conifer are thoroughly dissociated, and in works on gardening hundreds of greenhouse plants are called "evergreen," which represents dozens of families besides the Coniferm. Evergreens other than conifers are sometimes called "Broad-leaved Evergreens." See Conifers.

EVERLASTING. A term applied to flowers or plants which retain their shape and other characteristics after being dried. Equivalent to the French word Immortelle (see Revue Horticole, 1890, p. 521).
The most important commercially of the flowers which retain their form and color in a dried state are the French Immortelles, Helichrysum arenarium. These flowers are used very extensively in France in their natural yellow color, for the manufacture of memorial wreaths and crosses, which, being constructed very compactly, are exceedingly durable, even in the severest weather, and are exported in large numbers to all parts of the world. The flowers bleached white, or hleached and then dyed in various colors, are also shipped in enormous quautities, either direct to this country or through some of the large exporting houses of Germany. Approacbing the French Immortelles in aggregate value are the so-called Cape Flowers, Helichrysum grandiflorum, which have reached an enormous sale in this country within a few years, and have largely supplanted the Immortelles on account of their silvery texture and greater beauty every way. They are naturally white, but require bleaching in the sun to give them the desired luster. They come from the Cape of Good Hope, and reach this country mainly via Hamburg.
The common Everlasting of American and English country gardens, Helichrysum bracteatum, is the only one of these everlasting flowers grown to any extent in America, and more or less extensive cultivation of them, commercially, has been practiced in this country, but still a large percentage are imported. They come in white, straw and brown colors naturally, and take readily to a variety of artificial tints; these, together with A mmobium alatum and the well kuown Globe Amaranth, Gomphrenc globosa, are grown and nsed to a considerable extent by the country folk in the construction of the many forms of wreaths, stars, and other Christmas greens, which they sell in the city markets in large quantities, but their sale by wholesalers and jobbers for general consumption is very limited. Statice incana, cultivated or wild from the swamps of southern Europe, and Gypsophila in several species are used to a considerable extent, and the sale of Statice especially, which is popular in combination with Cape Flowers in memorial designs, is quite an item with the dealers in florists' supplies.
Of the dried grasses, the Pampas Plumes of California, Gynerium argenteum, native of South America, are the only American production attaining any great commercial importance. Their beautiful silky plumes, unapproached by any other horticultural product, are used in enormons quantities for decorative purposes, and are an important item of American export. They are used mainly in sun-bleached state, but more or less dyeing, often parti-colored, is also done. Bromus brizeformis is the most extensively used of the smaller grasses. It is mostly imported from Europe, via Erfurt, but has been grown in considerable quantity in Michigan. It can be imported, however, including duty, for about 25 per cent less than it is possible to grow it in this country it is handled in the natural state. Briza maxima, another popular grass, is grown in Italy, whence it is shipped to America, Philadelphia being the largest importing port. Briza media, a medium sized grass, and Briza minima, the flowers of which are as fine as saw-dust, are also
handled in the same manner as Briza maxima, very little of the B.minima being used dyed, however. Phleum pratense, Stipa pennata, and various kinds of oats have more or less commercial value, being used considerably in the manufacture of imitation flowers and straw goods, hut from a florist's standpoint, they are not important. The most important commercially of the imported grasses is the Italian wheat, the quantities used in this country for the manufacture of sheaves for funeral purposes being enormous, and increasing yearly. It comes in many grades of fiueness and length of stem. In this country all attempts to cultivate it in competition with the European product have failed.
Outside of wlat, it is generally true that the use of dried grasses and flowers in this country is on the decline. The fondness of our people for fresh tlowers, and the abundance in which these are now offered, every. where, at all seasons, is largely responsible for the decadence of the fancy for dried flowers. Another factor is the artificial flower industry, which, in France particularly, has attained a wonderful perfection, the materials being principally metal, porcelain, wax or cloth. In Europe, especially in Germany, the grasses seem to maintain their popularity, and it is to these foreign-born people tbat a large part of the material imported here goes.
A number of our native Composites-of the genera Gnaphalium, Antennaria and Anaphalis-are called Everlastings, and are often used in home decorations, particularly in the country; but they have no commercial rating.
H. Bayersdorfer.

EVODIA (Greek, pleasant odor). Rutàcea. Between 20 and 30 trees or shrubs of the Old World tropics, with opposite, punctate, simple or compound Ivs. and small fls., in terminal or asillary cymes. Fls. unisexual; sepals and petals +5 ; stamens $4-5$, inserted at the base of a cup-shaped disk; stigma 4 -lobed. Warmhouse evergreens. Prop, by cuttings of half-ripened wood. E. elegans, Hort., from New Guinea, is a new plant resembling Aralia elegantissima. Lrs. prominently 3lobed, undulate and crenate. E. formosa is another new species int. 1900 by Sander \& Co.

EXACUM (classical name, of no significance to these plants). Gentiandeer. An oriental genus of about 20 species, including 3 kinds of herbs, treated eitber as annuals or biennials, with 5 -lobed fls of lilac, blue or dark purplish blue. Cult. in a very few greenhouses. The genus has no allies in its tribe of garden value. Herbs, dwarf and annual, or tall and paniculate-branching: Ivs, sessile, clasping or short-stalked: fls, swall or attaining 2 in. across, lilac, violet, blue or white, pedicelled or not, in forking cymes ; calyx $4-5$-parted, the segments keeled, winged or flat and 3-nerved; corolla tube short; lobes 4 or 5 , ovate or oblong, twisted; stamens 4 or 5 , attached to the throat, with very short filaments.
According to "K.F." in Ging. 6:229, E. affine can be grown in a greenhouse where the temperature ranges from $55-60^{\circ} \mathrm{F}$. The showier indigo-blue E. macranthum requires a warmer house. The color of the fls, of E. affine raries according to the treatment. If kept in bright, sunny quarters they assume a bluish lilac color; in the shade, blue to deep blue. Plants flower in August. If specimens in $5-\mathrm{in}$. pots are desired, sow in March of the same year; for larger specimens, sow in August of the preceding year. The plants must be kept in a cool but not draughty greenhouse or frame in summer, and shaded from fierce sunlight. The usual precautions needed for very small seeds should be observed. They should receive their moisture from below, as overhead sprinkling disturbs the sprouting seeds.

A. Les. with stalks often $1 / 2 \mathrm{in}$. long.

affine, Balf. Stem cylindrical, 1-2 ft. high, much branched from the base: lvs. $1-1 \frac{1}{2} \mathrm{in}$. long, ellipticovate, faintly $3-5$-nerved: sepals with a broad wing on the back; corolla 6-9 lines wide; lobes almost rounded. Socotra. B.M. 6824. A.F. 13:1104. Gng. 6:229. R.H. 1883, p. 512. Gt. 32:1108. G.C. 11. $21: 605$.

A. Lvs. nearly or quite stalkless.
 B. Corolla lobes rounded.

Zeylánicum, Roxb. Annual: stem 4 -sided, branched only above: lvs, becoming 3 in . long, strongly 3 -nerved, elliptic-oblong, acuminate, narrower than in E. affine, and tapering: fls. $1 \frac{1}{2} \mathrm{in}$. across, in terminal, leafy corymbs; sepals broadly winged; corolla lobes obovate, obtuse. Ceylon. B.M. 4423 (sky-blue, with a dash of purple). R.H. 1859, p. 238.
BB. Corolla lobes tapering to a point.
macránthum, Arn. (E. Zeylánicum, var. macránthum). Stem cylindrical, slightly branched: lys as in E. Zeylanicum, though perhaps more varialble from base to summit: fls. 2 in . across. In both species tbere is a uarrow ring of yellow at the mouth, to which the conspicuous clusters of stamens are attached. Ceylon. B.M. 4771 (deep purplish blue). G.C. III. 15:331.- The best of the genus. The rich, dark blue is worth striving for. Reintroduced by Sander \& Co. 1899.
W. M.

EXCGCARIA sebifera. See Sapium.

EXHIBITIONS of horticultural products may be made for either of two purposes, - to illustrate the subject or thing itself, or to illustrate an ideal. As a matter of fact, all Exhibitions of domesticated products are for the latter purpose. If an Exhibit were made of what a species actually is-whether dahlia, peach or pumpkinbostility would be aroused, for in that case the incapabilities as well as the capabilities of the plant would be shown. Exhibits are really made up of those selected forms which most nearly approach an ideal. This ideal may be a commercial one or an artistic one. The commercial ideal is likely to be held up as the only one. It is usually held dogmatically, and one who has another ideal is a heretic. A so-called show plant, as a chrysanthemum or a dahlia, may represent only one of the many possibilities of the species: and each of these possibilities may be worth the cultivating. It is a significant fact that many of the commercial types are not the most artistic or the most satisfactory ones. They are usually those which are most certain to give uniformly protitable results to the grower. The constant forcing of these types on the public attention tends to popularize them. The chrysanthemum admirably illustrates these remarks: the extra-large show blooms are less satisfactory and agreeable to most persons than freer, smaller and more individual blooms.
The Exhibition ideal in any fruit or plant has a powerful influence on the evolution of the plant. People breed for that ideal. They discard those forms which contradict the ideal. Persons who care less for the formal ideal than for variety, individuality and artistic merit are amateurs in the best sense of the word. Skilled amateurs usually deal with more varied and difficult subjects than the professionals or commercial growers. It is remarkable how plants have been bred to the Exhibition standard. The practice of carding and dressing of the carnation in earlier times has produced the highcentered, flat-bottomed carnation of today. In England, the carnation ideal has been an entire or rose-leaf petal; in America, the ideal is a moderately fringed petal. Perhaps the effect of the Exhibition ideal is nowhere so well seen as in the custom of exhibiting single blooms: it has developed the individual flower rather than the plant as a whole. The chrysanthemum, dahlia and camellia are examples. The Old World custom of showing single blooms of florists' flowers in boles in a board or in sand-like so many heads in a pillory-enforces the ideal of the single flower. Fortunately, this type of Exbibition has had little popularity in this country. A comparison of the pictures of prize Exhibition subjects in European and American journals would show some interesting contrasts. It would contrast single-flower or single-specimen ideals with bouquet ideals in florists' flowers.
In general terms, the entire plant is the unit, rather than the flower or fruit alone. The love of flowers is only the beginning of wisdom. The love of plants is a higher stage. It is pleasing that American Exhibitions are more and more given to plants and to artistic displays. The Old World Exhibitions, while emphasizing
the single-flower ideal in Horists' plants, are very rich in display of specimen plants of other kinds.

Every Exhibition should make its motive or animus clear. The visitor should know whether it is the purpose to show florists' ideals, amateurs' ideals, or both. The best Exhibition of any subject is that which shows all its possibilities and merits. The tendency is for the amateur's ideals not to be seen at the shows. There are fewer prizes for these ideals, and the amateur leaves his choicest things at home. Yet the amateur is the conservator of meritorious plants. He holds interesting and artistic varieties and species decade after decade, and prerents their loss. It is the amateur who has kept the old Laciniatum chrysanthemum against the changing moods of the trade. Consider that the greater number of species described in this Cyclopedia are known only to the amateur. Our horticulture would be poor indeed if only commercial ideals should prevail.
A leading value of an Exhibition is to maintain a society. The annual or periodical show keeps alive interest in the society, and therely enables the society to extend its beneficent work. The great displays made by the American Pomological Society, the Society of American Florists, the American Carnation Society, and other organizations, are excellent examples of the value of an Exbibition in aiding to maintain a society with educational functions. This gives a suggestion for the local improvement society: have an Exhibition in spring and fall. Invite the professional growers to show their specialties at the local show. It is well to make some one plant or group of plants a central feature of each show; and this plant should be shown in all its various forms. Endeavor to interest people in plants themselves, even though they may not show the formal ideals of the plant-breeder. Good subjects for these central features are the different fruits and vegetables, roses, carnations, chrysanthemums, dahlias, gladioli, spring bulbs, aquatics, bog plauts, alpine plants, cacti, orchids, poppies, sweet peas, violets, ferus, peonies, ornamental autumn fruits, wild flowers, bloom of hardy shrubs, foliage or bloom of forest trees, and vines.

Aside from these technical uses of the Exhibition in illustrating the progress of plant-breeding, the show also may be made a powerful means of cxtending and deepening the love of nature. In this guise it will appeal to every person, not to horticulturists only. In every school an Exhibition once or twice a year should be made an adjunct of nature-study instruction. Sucb an Exhibition should not stop with plants, but include all natural objects. It should not be a technical horticultural Exhibit; and therefore, its further discussion is not germane to this work.
L. H. B.

EXOCHORDA (from exo, external, and chorde, a cord or thong; suggested by the free placentary cords supposed to be external to the carpels). Rosdcece. Hardy shrubs or small trees, remarkable for the structure of the fr., which is composed of 5 small, bony carpels, adhering around the central axis in a star-like manner. Allied to Spirea. Prop. by seerls, cuttings and layers. Seeds are produced only on old plants; cuttings root slowly and with difficulty; layering is best. Seed propagation is advisable when seeds can be obtained.
grandiflòra, Lindl. Pearl Bush. Fig. 802. Well known garden shrub, not often over 6-8 ft., but sometimes 15 ft .: lvs. petiolate, lanceolate-oblong, whitish below, very strong toothed on strong shoots, but almost entire upon the older parts, stipuled: fls, appear with lvs. in long, terminal racemes of 5 or 6 fls., pure white; calyx deeply 5 -cleft; petals 5 , narrow, roundish and clawed; stamens $10-15$, short: ir. of 5 bony, 2 -valsed carpels joined to a common axis, each with 1 large, flatwinged seed. Apr., May. Central China. F.S. 9:954. Gt. 47:1455. R. H. 1896, pp. 324, 325. J. H. III. 34:483. B.M. 4795. A.F. 6:343. Gng. 5:97. G.C. H. 16:73; III. 7: 613. - Open habit and with thin, uninteresting foliage. Individual fls. of no value. Useful only in bloom. when it is a dazzling white, the most brilliant shrub of its season. Can be kept in shape by pruning, but better back of or massed with other shrubs. Thrives in any good soil.

Alberti, Regel. Of greater vigor, darker foliage,
covered with spikes of pure white fls., $8-10$ on a spike. Becomes 6 ft . Turkestan. For its garden value, see Ging. for Oct. 1, 1899.
A. Phelps Wrman.

EXORRHIZA (exo, out, outside, rhiza, root; alluding to the large aërial roots above the ground). Palmàcea. High-growing palm, with straight, smooth stem, supported at the hase by large aërial, spiny roots: Ivs. large, pinnate. Allied to Kentia, but distinguished by the imbricate sepals of the sterile fls., the elongated, subulate filaments of the stamens, by the roundish-orate sepals of the pistillate fls. and hy the parietal ovule. In Kentia the ovule is basal and erect.

Wendlandiàna, Bece. (Kéntia exorrhiza, Wendl.). Often more than 60 ft . high: 1vs. $10-12 \mathrm{ft}$. long: pinnæ alternately arranged, 1-2 in. from each other, becoming 4 ft . long and 2 in.broad, 3 -nerved: spadix appearing below the Ivs., enveloped in thick, coriaceous, boat-shaped spathes. Fiji Islands.

EXPERIMENT STATIONS

 exist in all the states and territories of the United States, and in the Canadian provinces, maintained by the gemeral governments. These constitute the most extensive series of agricultural research stations in the world. In Alabama, Connecticut, New Jersey and New York there is also a station maintained in whole or in part by state funds. The total number of regular stations in the United States, to the close of the fiscal year, June 30, 1898, was 54. The total income of these stations was $\$ 1,210,921.17$. In the work of
($\times 1 / 3$.) administration and inquiry, these stations that year employed 669 persons, of whom 77 were horticulturists. In that year, these stations published 406 reports and bulletins. The mailing lists aggregated half a million names. Summaries of all these publications are published by the Office of Experiment Stations, Department of Agriculture, Washington, in the monthly "Experiment Station Record."

In the Dominion of Canada there are five Experimental Farms. One of these is known as the Central Experimental Farm, and is located near the capital, Ottawa, and serves the purposes of the two large provinces of Ontario and Quebec. The other four are branch Experimental Farms, sites for which have been selected in different parts of the country, as follows : One at Nappan, Nova Scotia, which serves for the three maritime provinces; a second at Brandon, Manitola, which serves the purposes of that large prairie province; a third at Indian Head, N. W. T., which serves the purposes of the provisional districts known as the Northwest Territories of Canada; and the fourth is at Agassiz, in the coast climate of British Columbia, and meets the need of the latter important province. The grant made for the maintenance of the five Experimental Farms has been $\$ 75,000$ per annum until 1899, when this was increased to $\$ 80,000$. At the Central Farm there are six officers engaged in research, and two at each of the branch farms, excepting at Agassiz, B. C., where there is only one. The publications relating to the work at all the Experimental Farms are issued from the Central Farm at Ottawa.

FABA. See V'icia.
FABIANA (after Francisco Fabiano, Spanish botanist). Solandcer. This group is a series of surprises. It contains 16 species of heath-like shrubs from South America. They are dwarf, erect, much branched, and \boldsymbol{E}. imbricata has lvs. suggesting an arborvitæ, being scalelike, overlapping, and densely crowded. The flowers resemble a heath in size and profusion, and their culture is the same as Erica. They belong to the same family with the potato. The fis. are club-or funnelshaped, of 5 semi-cylindrical portions grown together at the edges and crowned by a limb of 5 short, rounded, spreading lobes. At present it seems to be cult, only in S. Calif. and the South. Abroad it is cult. under glass in winter and put outdoors in summer.
imbricàta, Ruiz \& Pav, Height $3 \mathrm{ft} .: 1 \mathrm{ss}$, scale-like, imbricated: fls. sessile, white. Spring. Peru. B.R. 25:59.

FAGELIA (after Caspar Fagelius). Legumindsar. A fast-growing, twining subshrub from S. Africa, covered with clammy hairs, and bearing all summer axillary racemes of pea-like fls, which are yellow, the keel tipped violet. Cult. outdoors in S. Calif. and abroad under glass. The plant is allied to Cajanus, but is a genus by itself, chiefly because its seeds are strophioled, pod swollen, not flattened, and the 2 upper calyx lobes nearly distinct.
bitumindsa, DC. Leaflets 3. B,R. $3: 261$, as Glycine, showing fls, also reined with red.

FAGOPYRUM (beech wheat, from the likeness of the fruit to a beech-nut). Polygondcea. Probably only two species of Eu. and N. Asia. Quick-growing annuals, with alternate deltoid or hastate lvs., small honeyscented fls. in racemes or panicles, 5 -parted calyx, 8 stamens, l-loculed orary ripening into a floury, 3-angled akene.
esculéntum, Monch. Beckwheat (which see). Fig. 276, p. 186. Lrs. large and broad, long-petioled: fls. white, in panicled or corymbose racemes: akene or grain with regular angles.

Tatáricum, Gærtn. India Wheat. Deckwheat (which see). More slender: Irs, smaller and bastate or arrow-shaped, shorter-petioled: fls. greenish or yellowish, in small, simple racemes akene with wavy or
notched angles. Useful in short-season climates and on poor soil.
L. H. B.

FAGUS (ancient Latin name). Cupulffere, tribe Fagacea. BeEcF. Tall, deciduous, hardy trees, of noble, symmetrical babit, with smooth, light gray bark and clean dark green foliage, which is rarely attacked by insects or fungi. They are among the most ornamental and beautiful trees for park planting, and attractive at every season, especially in spring, with the young foliage of a tender, delicate green, and the graceful, drooping heads of the staminate Als. The American and the European species are much alike, hut the first has the bark of a lighter color, the head is broader and more roundish, and the lvs. less shining, but turning clear yellow in fall, while the latter has a more ovate head and shining foliage, which turns reddish brown in fall and remains on the brancles almost through the whole winter. It is sometimes used for tall hedges. In Europe the Beech is a very important forest tree, and the hard and rery close-grained wood is largely used in the manatacture of different articles and for fuel; but it is not rery durable in the soil. The sweet nuts are edible, and in Europe an oil is pressed from them, used for cooking and other purposes. The Beech prefers dryish situations, and grows best in sandy loam and in limestone soil. Prop. by seeds sown in fall where there is no danger of ther being eaten by mice, or dried after gathering and kept mixed with dry saud until spring. The fonng plants shonld be transplanted every second or third year; otherwise they make long tap-roots, and cannot always be transplanted successfully. The varieties are grafted on seedling stock, usualiy in the greenhouse in early spring; grafting in the open usually gires not very satisfactory results. Fire species oceur in the cooler regions of the northern bemisphere, all large, deciduous trees, with alternate, distichous, dentate or nearly entire lvs.: fls, moncecious, with the lvs.; staminate in slender-peduncled, pendulons heads appearing at the hase of the young shoots: perianth $5-7$-lobed; stamens 8-13; pistillate with 3 styles, usually two in an axillary peduncled involucre : fr. a lorown, ovate, triangled nut, I or 2 in a priekly, dehiscent involucre. The species of the southern hemisphere, often included under Fagus (as F. betuloides and others), form the genus Nothofagus, which see.
ferruginea, Ait. (F. Americina, Sweet. F. atropunicer, sudw.). Auerican Beech. Figs. 803, 804. Tree, to $80 \mathrm{ft} .$, rarely 120 ft .: Ivs, ovate-oblong, acuminate, coarscly serrate, silky beneath when young, with $9-14$ pairs of reins, dark bluish green above, light yellowish green beneath, $21 / 2-5 \mathrm{in}$. long: incolucre corered with slender, straight or recurved prickles, $3_{4} \mathrm{in}$. high. E. N. Amer., west to Wis. and Texas. S.S. $9: 444$. Em. 182. G.F. 8:125. A.G. 12:71!. Var. latifolia, Loud., with broader and larger, strongly toothed Ivs.
sylvática, Linn. Ecropeay Beech. Fig. 804. Tree, to 80 ft , or rarely 100 ft . 1 ss , orate or elliptic, remotely denticulate, silky beneath and ciliate when young, with 5-9 pairs of Feins, dark green and glossy above, pale beneath, 2-4 in. long: involucre with mostly npright prickles, about 1 in. high. M. and S. Europe to Caucasus. Fig. 804 contrasts the lrs , of the American and European species. A great number of rarieties are in cultiration. of which the following are the most remarkable: Var. heterophýlla, Lond. (rar. asplenifolia, Lodd.). Lrs. deeply cut, often almost to the midrib, into narrow lobes. A very graceful variety, forming a dense and low, shrubby tree. Mn. 1, p. 61. P.G. 3:163. Var. pendula, Lodd. With long, pendulous branches, the larger limbs mostly horizontally spreading. Gn. 55, p. 267. G.F. 1:32. Var. purpurea, Ait. (var. afropurpurea, Hort.). Fig. 805. Lvs. purple. A form with very dark purple lrs. and of compact habit is rar. purpurea Riversi, Hort. There are other forms, differing iu the
shade of purple, and also some with rosy pink rariagated lvs. Var. purpurea péndula, Hort., has purple ivs, and pendulous branches, but is of slow growth. Var. Zlatia, Spaeth, has yellow foliage. Less important varieties, but sometimes grown, are the following: Var. cristata, Lodd., with deeply toothed, curled, small and clustered lvs.: of slow growth. Var. inclsa, Hort. Similar to var. heterophylla, but lrs. less

804. Fagus ferruginea (left), and F. sylvatica $\left(X^{1 / 3}\right)$. deeply cut. Var. macrophýlla, Hort. Lrs. large, to 5 in . long. Var, quercoldes, Pers. (var. quercifolia, Hort.). With deeply toothed and sinuate, rather narrow les. Var. tortuòsa, Hort. Dwarf form, with twisted and contorted branches and small lvs.
F. Japónica, Maxim. Lus, small, elliptic, erenate: involucre small, slender-peduncled, half as long as the nuts. Ja-pan.-F. Stieboldi, Endl. Lus, ovate, shortly acuninate, crenate, with 9-14 pairs of veins: lower prickles of the involucre changing into slender linear or obovateoblong lobes. W. Asia to Japan.

Alfred Rehder.
Both in Europe and the eastern \mathbb{C}. S. the Beech forms extensive forests. It is to-day the common hardwood tree of C'entral Europe, particularly in Denmark and Germany, raised as pure growth or mixture. It requires a loamy, preferably calcareous soil, shuns poor sand and swamp, ascends to $3,500 \mathrm{ft}$. in the Alps; prefers north and east exposures, endures much shade, protects and improves the soil, and produces large amounts of wood per acre. The wood is heary (sp.gr. $0.65-0.75$) hard, straight grained, of close texture, not durable. Beech is not used as building lumber, but is extensively used for ordinary wooden ware, furniture, wheelwright and cooperage stock.
F. Roth.

FAIR MAIDS OF FRANCE. Double forms of Ritижнсиlus aconitifolius.

FAIRY LILY. Cooperia pedunculata.
FANWORT. See Cabomba.
FARFUGIUM. See Senecio Ǩrmpferi.
FÁTSIA (from a Japancse name). Araliàcere. This genus is doubly interesting as producing the famous rice paper of the Chinese, and two superb rivals of the castor oil plant in bold, subtropical effects, made by large lvs. which spread out like fingers. Fatsia has 3 species of trees or small shrubs belonging to the Panax series, in which the petals are valvate, while in the Aralia series they are more or less orerlapping, but the sides affired at the base. Within the Panax series, Pauax itself has the pedicel articulated under the flower, while in Fatsia and Acanthopanax the pedicel is continuous with the flower. Fatsia is distinguished from the bardier and less familiar but worthy Acanthopanax by the greater length and distinctness of the styles.
While Fatsias require more care in the North than the hardy Aralias, their massive, subtropical appearance is highly distinct. A perfect specimen is figured in Gardening 5:133, where W. R. Smith says of F. papyrifera: "This plant produces the beautiful substance known as rice paper ; it grows to 10 ft . high, with a stem 4 in . in diam., full of white pith like the elder; in a full-grown specimen the pith is about I in. in diam. It is divided into pieces 3 in . long, and by the aid of a sbarp instrument is unrolled, forming the thin, narrow sheets known as rice paper, greatly used by the Chinese for drawing figures of plants and animals, and also for making artificial flowers. Until about 1850 the source of this sabstance was unknown to scientists. The Chinese, on in-
quiry, gave very fanciful figures and descriptions of it. * * It is destined to be a people's plant, as onehalf inch of the root will grow and form a good plant the first season. It has survived most winters for the past five years in Washington, D. C..

As associates in groups of bold-habited plants, F. W. Burbidge (Gn. 45. p. 321) suggests Polygonum Nachalinense, Chamarops Fortunci and Fodgersia podophylle. For contrast with feathery and cut-leaved foliage, he suggests bamboos, aucubas, cut-lcaved maples and various ivies. For culture of Fatsias as greenhouse plants, see Aralia. The two oriental species are unarmed. F. horrida, from western N. Amer., is a spiny plant cult. abroad. Siebert and Voss declare that most of the plants sold as Fatsia Japonica are Aratia spinosa. These plants like shade. Full sunlight for an hour or two in early morning is enough. They should bave a shelter-spot, where the wind will not whip their foliage.
papyrifera, Benth. \& Hook. (Aràtia papyrifera, Hook.). Height $5-7 \mathrm{ft}$.: branches and young lvs, covered with stellate, more or less deciduous down: maturelvs. reaching I ft. long, cordate, 5-7-lobed; lobes acute, serrate ; sinus very deep: fls. incenspicuous, white, in sessile, globose clusters. Formosa. B.M. 4897. A.F. 7:385. Ging. 5:133. Gn. 45, p. 321.
Japónica, Deene. \& Planch. (A ràlia Japónič, Thunb., not Hort.? A. Sièboldii, Hort.). Lrs, downy at first, finally shining green: fls. in umbels. Jap., China.Abroad are cult.forms with white or golden margins and a form reticulated with gold markings.
W. M.

FEATHER GERANIUM. Chenopodium Botrys.
FEIJOA Sellowiana is considered a promising fruit plant in S. France. The frs. are ahout $21 / 2 \mathrm{in}$. long, 2 in . thick, and 4 -celled. The flesh is thick, white, pulpy and watery, with a sugary taste, resembling the pineapple and the guara, and with a strong, agreeable odor. Int. 1890 from La Plata. R.H. 1898:264. G.C. HII. 24:451, Gn. 54, p. 208. Order Myrtìcere.

FELfCIA (for Herr Felix, a German official), Compósiter. Much like Aster, from which it differs in baving pappus bristles in one series, and in other technical characters. Forty to 50 herbs or subshrubs in Afr.

805. Good specimen of Purple Beech-Fagus sylvatica.
var. purpurea.
amellòdes, Vos«, (Cinerària amelloldes, Linn, Aster rotundifolius, Thunb. A. C'apensis, Less. Agathaa soléstis, Cass. B, rotundifólia, Ness. A. amelloldes,
DC.). Blue Daisy. Blue Marguerite. Fig. 806. An old greenhouse plant, 1-2 ft., with roundish ovate opposite lvs, and large, solitary heads of an exquisite sky-blue. S. Afr. B.M. 249 (as C'ineroria amelloides). A.F. 13:657. F.R. 1:674. Gng. 6:149. - There is a varie-gated-1vd. var. (1.H. 8:296). Grown easily from cuttings. Handled like a Cineraria; or, 'if grown from spring cuttings for winter bloom, like a Cbrysantbemum, but with more heat in the fall. An elegant pot-plant, and useful for hedding in a protected place.
L. H. B.

FENDLERA (after Augustus Fendler, a German naturalist, botanical explorer of New Mexico). Saxifragàcea. Low, spreading shrub, with small, opposite, greyish foliage, covered in June along the slender, arching brancbes with graceful white fls. resembling in shape a Maltese cross. Hardy in New England, and growing best in a welldrained, sandy or peaty soil and sunny position. A very handsome and graceful plant for sunny rockeries or rocky slopes. Prop. by seeds or by greenwood cuttings under glass. One species from Texas to Mexico ; allied to Philadelphus. Fls. usually solitary at the end of short lateral hranchlets; calyx lobes and petals 4; stamens 8: ovary almost superior: fr. a 4 -celled, dehiscent capsule, with flat, oblong seeds.
rupicola, Engelm, and Gr. To 4 ft . lvs , linear-lanceolate or linear-oblong, 3-nerved, revolute at the margin, greyish tomentose beneath, $1 / 2-1 \mathrm{in}$. long: fls. milky white, I in. aeross; petals rhombic ovate, with distinct claw, spreading ; stamens erect. June, G.F. 2:113. R.H. 1891, p.42. M.D.G. 1899:231.

Alfred Rehder.
FENNEL. Species of Fæniculum (Umbellifera), annuals or treated as such, used as salad or condimental herbs. Native of S. Europe. The common Fennel (F. officinàle, Linn.) is grown mostly for its young lys., which are used in flavoring, and also for its aromatic seeds. Leaves sometimes eaten raw. Sow seeds in late fall to ensure early germination in spring, or sow in early spring. In any good soil, the plant comes to maturity quickly.

The Florence or Sweet Fennel is F. dúlce, DC. The bases of the crowded leaf-stalks are much thickened, making a bulb-like enlargement above the ground. This thickened base bas anoval form in cross-section. Earth-ing-up blanches these thickened leaf-hases, and after boiling they are fit for eating. A good Fennel bottom may be 3 or 4 inches high. This is an Italian vegetable, but is in the Amer. trade. Easily cultivated annual; matures quickly. Now in spring, and later for succession.

Giant Fennel is cult. for ornament, and is described under Ferula. Fennel Flower is a name of Nigella.
L. H. B.

FENUGREEK (Trigonella Fčnem-Grectu, literally Greek hay). An annual legame indigenous to western Asia, cultivated and widely naturalized in Mediterranean countries; little grown in America. The seeds are 1 or 2 lines long, brownish yellow and marked with an oblique furrow half their length. They emit a peculiar odor, and contain stareh, mucilage, a bitter extractive, a
yellow coloring matter, and 6 per cent of fixed and volatile oils. As human food they are used in Egypt, mixed with wheat flour, to make bread; in India, with other condiments, to make curry powder; in Greece, either boiled or raw, as an addition to honey; in many oriental countries, to give plumpness to the female human form. The plant is used as an esculent in Hindostan ; as an early fodder in Egypt, Algiers, France, and other countries bordering the Mcditerranean. Formerly the seed was valued in medicine; now it is employed only in the preparation of emollient eataplasms, enemata, ointments and plasters, never internally. In veterinary practice it is still esteemed for poultices, condition powders, as a vehicle for drugs, and to diminish the nauseating and griping effects of purgatives. It is conmonly used by hostlers to produce glossy coats upon their horses and to give a temporary fire and vigor; by stockmen to excite thirst and digestion in fattening animals ; by manufacturers of patent stock foods as a flavoring ingredient. Fenugreek does not succeed upon clays, sands, wet or sour soils. It yields most seed upon well drained loams of medium texture and of moderate fertility; nost fodder upon rich lands. For seed production, potash and phosphoric acid should be applied; for forage, nitrogenous manures. Deep plowing and thorough harrowing are essential. Ten to 20 pounds of seed should be used broadeast, or 7 to 10 pounds in drills 18 inches apart. Thinning when the plants are 2 or 3 inches tall, and clean culture throughout the season until blossoming time, are necessary for a seed crop. The crop may be mowed, dried and threshed four or five months after seeding. An average yield should be about 950 pounds an acre. As a green manure, Fenugreek is inferior to the clovers, vetches and other popular green manures of this country. It possesses the power of obtaining nitrogen from the air by means of root tubercles.
M. G. Kains.

FENZLIA. See Gilia

FERDINANDA eminens. See Podachenirm.

FERN. The plants included under this name comprise an entire order, made up of several distinct families. They include plants varying in size from a hairlike, creeping stem bearing a few simple, moss-like leaves, to tall trees 40 or more feet in heigbt, with a caudex or trunk nearly a foot in diameter. Singularly euough, the extremes in size are both found in tropical regions where most of the species abound. Most of the ordinary native species, as well as the great majority of those in cultivation, consist of an ereet underground stem or rootstock with leaves, often called fronds, clustered in dense crowns, or in the cases of creeping stems with scattered leaves. The Fern plant represents the asexual phase of growth (sporophyte), producing its spores normally in spore cases (sporangia, Fig. 807), Which are borne in masses (sori, Fig. 808) on the back or margin of the leaf, or in a few cases are grouped in spikes or panicles, or in rare cases spread in a layer over the entire under surface of the leaf. The sexual stage (gametophyte) develops from the germinating spore, and consists of a heart-shaped prothallus (Fig. 809), which bears the sex-organs (archegones, female, and antherids, male) on the under surface. After fertilization in the archegone, the egg develops directly into a young Fern plant (Fig. 809). Many Ferns also propagate regetatively by runners or offsets, by bulblet-like buds, and in certain species the tips of the leaves bend over and take root, as in our common Walkingleaf (Camptosorus, which see).

Great diversity has existed in the matter of the separation of the Ferns into

807. Sporangium or sporecase of a Fern. genera. Hooker, relying mainly on artificial characters drawn largely from the sorus, recognized only about 70 genera, many of them heterogeneous groups of plants with little resemblance in structure, habit or natural affinities. John Smith, relying on stem characters, Presl on variation in venation and habit, Fée, Moore, and others, have recognized a much
greater number of genera, ranging from 150 to 250 , or even more. In the very unequal treatment by Diels in Die Natürlichen Pflanzenfamilien (Engler-Prantl), some 120 genera are recognized. A somewhat similar difference prevails in regard to the number of species. The Synopsis Filicum of Hooker

808. A sorus or fruitdot of a Fern. and Baker(1874), supplemented by Baker's New Ferns (1892), recognizes some 2,700 species. It is the too common tendency in this work (1) to fail to reeognize many ralid species which have been described by German and French botanists, and (2) to mass under one name very diverse groups of species from distant quarters of the worldfrom 8 to 10 species not infrequently appearing as a single so-called "variable species." When we add to the number represented by these two omissions the species recently described, the number of Ferns will approximate 4,000 , and possibly exceed that number. New forms are constantly coming in from the less explored parts of the world, and within the last few years several new species have been deseribed from the United States, including some from the better known portions. Of this number some 200 species are in occasional cultivation in America, but the species that form the bulk of the Fern trade do not exceed two dozen. In Europe several hundred species have long been in cultivation. Most of the species thrive best in the insular regions of the tropics, the island of Jamaica alone furnishing 500 species and Java nearly 600 . About 165 species are native in the United States, representing some 35 genera; our native species are so widely distributed that not more than from 25 to 50 will be found within the limits of one state, and the common species of the best locality do not number more than 20.

The Ferns belong to a group of spore-bearing plants, with vascular (woody) tissue in stem and leaves; this group is technically known as the Pteridophytes, and is composed of three orders; viz., Lie Equisetales, including the horsetails and scouring rushes; the Lycopodiales, including the selaginellas and the club mosses, or ground pines; and the Filicales, including the true Ferns and

809. Prothallus of a

Fern, with a young frond arising. their nearer allies.

The families of the order Filicales may be distinguished as follows:

> A. Spores of one sort (isosporous).
B. Sporangia with no ring, rising from the interior tissues of the leaf. (Eusporangiale Ferns.)

1. Ophioglossàceæ. Adder's-Tongue Ferns. Prothallium subterranean, without chlorophyl; sporangia borne in spikes or panicies on branches distinct from the foliage leaves.
2. Marattiàceæ. Coarse Ferns with sporangia on the under surface of the leaf, arranged in circular or boatshaped receptacles: prothallium above ground, green.
BB. Sporangia rising from an epidermal cell, with an elastic ring of peculiar cells, which assist in scattering the spores by rupturing. (Leptosporangiate Ferns.)

> c. Leaves filmy.
3. Hymenophyllàcea. Filmy Ferns. Sporangia attached to a thread-like receptacle arising in a cup at the end of the leaf: ring complete, borizontal or oblique.
cc. Leaves more firm, herbaceous or leathery.
D. Ring incomplete or rudimentary: sporangia in panicles.
4. Osmundàceæ. Flowering Ferns. Coarse swamp Ferns developing copious green spores early in the season: sporangia in panicles at the apex or middle of the leaf.
DD. Ring apical: sporangia wsually single under a scale, or in panicles.
5. Schizæàceæ. Upright or climbing Ferns with ovate sporangia, which open vertically.

DDD. Sporangia sessile, either single or united in clusters of $3-6$.
6. Gleivheniàceæ. Terrestrial Ferns with firm texture and usually dicbotomous leaves: sporangia opening vertically, in clusters of 3-6.
7. Ceratopteridàceæ. Aquatic Ferns with suceulent foliage: sporangia scattered, with a broad ring: leares of two sorts, the sterile floating.
DDDn. Sporangia numerous, collected in definite elusters (sori).
8. Cyatheaceæ. Mostly tree Ferns with sessile or sbort-stalked sporangia in conspicuous receptacles, opening obliquely (Fig. 632).
9. Polypodiàcea. Ferns with stalked sporangia (Fig. 807), which burst transversely: sori covered with a membranous indusjum or sometimes naked. This family contains five-sixths of all the Ferns.
AA. Spores of two sorts: minute microspores and coiv? spicuous macrospores. (Heterosporous.) These spores develop into two sorts of prothalli, the microspores developing only antherids, and the macrospores only archegones.
10. Marsiliàceæ. Small plants rooting in mud, the leaves either quadrifoliate or reduced to mere filamentous petioles: sporangia borne in oval conceptacles. Often aquatic, with the leaves floating on the surface of water in pools or lakes.
11. Salviniàceæ. Small or minnte plants with the aspect of liver-worts, floating on the surface of pools: sporangia in mostly spherical conceptacles.

The literature on the Ferns is very extensive, since they have ever been attractive plants in cultivation. Many of the species have been illustrated in elaborate treatises by Schkuhr, Kunze, Hooker, Greville, Blume, Fée, Mettenius, Moore, and others. Our native species have been illustrated in the two quarto volumes of D. C. Eaton, "Tbe Ferns of North America." A valuable summary of the more common Fern species is found in Dr. Christ's "Die Farnkräuter der Erde" (1897), and tbe most recent structural and morphological treatment is by Sadebeck, in Engler-Prantl: "Die Natiirlichen Pflanzenfamilien." Schneider's "Book of Cboice Ferns" is the most complete treatise on the species under cultivation. A useful American borticultural manual is Robinson's "Ferns in their Homes and Ours."

L. M. Underwood.

An excellent little bandbook for the wild species of this country is Underwood's "Native Ferus and their Allies."
L. H. B.

Growing Hardy Ferns. - Our hardy Ferns fill a place in our North Americau flora very worthy of our careful study and admiration. They seem to require so little care, and yet give such general satisfaction, and there is such a variety-suited to every taste and con-dition-that no one need do without them. About 20 useful native kinds are evergreen, including the Oregon Cliff-brake and Cheilanthes vestita of the southern states. They are very easy of culture in our New England climate. About 20, like the Maidenhair, that die down through the winter but have perennial roots, are also easy to grow. In the general cultivation of these bardy Ferns, plant them in a moist, sbady situation, with good drainage, and with about one-tbird leaf-mold. Go to nature in selecting the Ferns. Yet it is a fact that some of these Ferns, like Woodwardia Firginica, found growing so common in wet swamps, will thrive
in our garden soil planted with Polypodizm valgare. which nature plants among the rocks and on great boulders well up the mountain side, thus proving to us that it is not always necessary to plant in the same sit uation as we fiud them in the wild. As a rule, we get the best results when planted in shade, yet there are some exceptions, like Dicksonia, which is such a prominent feature on our northern New England hillsides. Many dreary places shut out from the sunlight may be beautified by a clump of Ferns, and fill the place as no other plant will do. The native kinds will survire our New England winters without covering, but they are all benefited by a mulch of leaves or boughs. Be sure that the Feru border is protected from strong winds (Fig. 810). Against the shady or half-shady side of a house is a good spot, if there is no drip from the eaves. It is best to select rather young and small clumps when hunting Ferns in the wild. When once established, these will persist and thrive for years.

It is much better to move Ferns in early spring or late autumn, when not in growth; but we may wish to plant them in summer, when they are in full growth. In this latter case cut off all the new fronds: this will retard evaporation, or keep the plant from wilting. Get the roots inte the soil with as little exposure to the air as possible, and (with a very few exceptions) new fronds will spring up, giving nearly as good results as if planted in early spring. No doubt a great majority of failures from planting when in full growth are due to not cutting back.

Edward Gillett.

810. Hardy Ferns against a house foundation-The Ostrich Fern.
Many species will thrive under other conditions than those in which they grow most luxuriantly in a wild state, and, in general, the species are tenacious of life whereever placed; but as the beauty of Fern foliage is brought out only by luxuriance of growth it should be the aim to plant only where such may be obtained. Ferns are exceedingly easy to transplant, and with care may be removed from uative haunts during the summer, though it is always to the conservation of the strength of plants to move them when dormant. In planting Ferns, especially those of small size, the spattering of soil on the fronds by rain must be prevented by covering the earth with material such as gravel or moss for the smaller species and leares for the more vigorous. The smaller species are easily smothered with leaves, and some of the stronger, as Dieksonia and Aspidium Voreboracense, do not endure coarse covering. The evergreen speeies should preferably he given a position shaded in winter, such as a bank with northern exposure. The best species for planting in sunlight
are Pleris aquilina, Osmundas, Dicksonia, Onoclea sensibilis and Aspidum Voneboracense. When planting in sunlight, give a moister situation and a heavier mulch than if planting in sbade. A light soil is preferable, but, except for the species with running rootstocks, is not necessary. The soil may be enriched with any manure not given to heating. For species native only of limestone soils, old plaster should be mixed with the soil. An application of any manure to Ferns growing in turf is apt to stimulate the grass to the crowding out of the Ferns.
Following are notes, drawn from experience, on the cultivation of some of the common native Ferns:

Adiantum pedatum prefers light, loose, rich soil in cool, moist shade, with yearly mulch of leaves. Soil conditions are more important than shade. Where estahlished in a wild state will endure the full sunshine coming with the removal of trees until soil conditions change or it is crowded out by stronger plants.

Aspidium acrostichoides should be given shade both summer and winter for hest results, and in no case can shade in sumrner be omitted. The plants will endure sunshine for a few jears but will not he thrifty, and will eventually die.

Aspidium Bootti is found in a wild state in moist, shaded positions, but will grow well in shade in quite dry positions.

Aspidium cristatum prefers moist to wet soil in shade. It will not endure strong sunlight.

Aspidium Gotdianum prefers deep, moist, rich soil in cool sbade.

Aspidium marginale wants rich soil in rather deep shade during the entire year, but will grow well in partial shade, and endure even full sunlight, though not growing so luxuriantly.

Aspidium Vorcboracense does best in rather moist, rich soil in partial shade, but will endure full sunlight with good soil conditions.

Aspidium Thelypteris prefers quite moist situations with at least partial shade.

Asplenium angustifolium thrives on rich rather moist soil in shade. Aroid complete removal of fronds when planting in early fall, as this Fern quickly sends up new fronds to the weakening of the following season's growth.

Asplenium ebenerm prefers partial shade. Care must be taken to prevent smothering by leaves and to plant where the least likely to be heared by frost. It is foud most plentifully as a native on banks growing with grass and other plants in partial shade. The fronds are evergreen, but become discolored in serere weather.

Asplenium Filix-famina prefers rich, moist soil in shade.

Isplenium monlanum does well in continusl shade.
Asplenium pinnatifidum and A. Trichomanes need shade during the entire year.

Camplosorus rhizophyllus in the wild state is found in cool, shaded positions not subject to excessive drought or moisture. It prefers a moist atmosphere, but this is not necessury. Avoid any covering of leaves.

Cryplogramma acrostichoides should be grown in shade. It will not endure much sun, at least not a removal to a sunny position.

Cystopteris fragilis should be planted in shade in positions where it will receire no covering of leaves. The frouds die in early August in the drier situations. It will grow in positions which become exceedingly dry in midsummer. It forces well in a coolhouse.

Dicksonia pilosiuscula prefers shady, moist situstions where it does not receive any covering by falling leaves of large size. Grows well in sunshine. Day be transplanted at any season, and takes kindly to heary enrichment.

Onoclea sensibilis prefers a rich, moist soil in partial shade or full sunshine. It will also grow in shade.
Onoclea Struthiopteris should be given a rich, moist soil with at least partial shade. The fronds will "burn" in fierce sunlight.

Osmunda cinnamomea prefers moist, partially shaded situations, but will grow well in full sunshine in rich soil not exceedingly dry.

Osmunda Clayioniana, a native of low ground, both
in shade and sunshine, but will grow equally well in rich soil only fairly moist.

Osmunda regalis prefers a peaty soil in rery wet, boggy position in partial shade, but will grow as well in full sunsbine if soil is rich and not dry.
Pellca atropurpurea prefers rather dry positions in partial shade, winter and summer, with soil not deficient in lime. It will not endure heary mulching. Will grow in full sunshine, but not to its full size. It may be transplanted at any season.

Phegopteris Dryopteris prefers good soil in shade not over moist or dry. Avoid coating of leaves. It is a beautiful species and useful for planting on rock work in shade. The fronds die in August.

Phegopteris hexagonoptera needs good soil in shade. Fronds die down rather early.

Phegopteris polypodioides prefers moist, shaded positions, but will grow in any good soil not too dry. The fronds die down in late summer, especially in the drier positions.

Polyoodium rulgare prefers good, light soil in well drained but moist situations in shade, with no other plants growing with it. It will endure very dry places, but will be dwarfed. Will also do well in full sunlight if soil conditions are good. As a native it grows in positions where it does not receive any yearly coating of fallen leaves, and, wherever planted, should not be covered with coarse material. Plant perfectly evergreen; height 6-10 in.
Pleris aquilina, to be grown to perfection, should have considerahle sunlight, with moist, rich soil, kept cool and loose with a coating of leaves or other material. In such a position it should grow $4-5 \mathrm{ft}$. high, with other dimensions corresponding. However, it will grow in almost any position. Although easy to transplant, it is likely to do poorly until established. It has strong, creeping rootstocks, so that attention is necessary to keep a healthy group within bounds. The earliest fronds put forth die in late summer, hut those of later growth remain green until frost, so that with attention to the removal of dead fronds a group will look well until fall.

Wooduardia angustifolia wants a moist situation in deep shade. Does well in moist peat north of a bank or wall. Will endure full sunlight in positions where it has hecome established, but will not grow well when transplanted to sunny position.
F. W. Barclay.

- Culture of Tender Ferns.-To grow commercial varieties of Ferns profitably, the first care should be to secure the necessary number of properly built and equipped houses, with a conveniently arranged workshop. The house which gives the most general satisfaction runs north and south. Hare an even-span roof, with a fall to roof of 6 inches to the foot. Its benches should be arranged to be about 7 feet wide, with a 24 inch path on either side. In an 18 -foot house this will permit of having a 7 -foot center table, two $31 / 2$-foot side benches and two 24 -inch paths. Benches should not be more than 3 feet above the walks, as this will bring every part of the hench within easy reach, and will permit of every plant being in, constant sight and easily cared for, which fact is essential in the profitahle cultivation of trade Ferns.
The width of house is immaterial, but when houses adjoin, a width of 27 feet has been found to be very satisfactory, as this permits the construction of three 7 foot benches, two 24 -inch paths, and two paths $21 / 2$ feet wide under each gutter.
Thorough provision should be made for ventilation. For a 27 -foot house, a continuous row of ventilators of at least 3 feet in width should be provided, with some reliable apparatus for raising same. Heating is the next important consideration. Either steam or hot water will give equally good results if properly installed. The safest way for the average grower is to give the heating contract to some reliable firm. Water taps should be so arranged that a 25 -foot hose attached to same will easily reach any part of the house. A 25 -foot hose can easily be carried about without injuring either itself or benches and plants; and iron pipe is of only half the cost of good hose. In most Fern houses drip is a source of great aunoyance, and should he prevented by the use of drip-bars, by having a drip-groove plowed
into the headers immediately under the ventilating sash; and also by having a groove in sides of gutter plates. This very slight additional expense will very soon pay for itself by saving a great number of plants, especially when growing very small Ferns in houses, such as have been transplanted from spore-pots into hoxes. Ventilators should fit into a groove iu ridge of house and be hinged to the ridge. When ventilators are so arranged, air, which is very desirable on a good many warm, raing days in the summer, can be given without having plants in the houses suffering from excessive moisture. Burning of the foliage will also be avoided, as the plants will at no time be exposed to the direct rays of the sun. Ventilators hinged on header and opening on ridge will always give trouble. No matter what kind of covering is put over the opening, if it efficiently excludes the burning sun's rays it will also prevent the ingress of air.

Propagating room should be provided for ; and in the case of general trade Ferns raised from spores, it is a very safe rule to calculate on having from 60 to 70 square inches of room in the propagating frame for every 1,000 plants desired. The propagating frame should be $31 / 2$ feet wide, bave sides 9 inches high, and, to insure an even moisture, its bottom should he covered to the thickness of 1 inch with fine cinders with the fine ashes removed, which make very clean and efficient drainage material. The frame should be covered with light sash constructed with drip-bars, to earry off condensation.

Shading of Fern houses should have close attention. It is best effected by the application of a suitable wash to the outside of glass on roof. The following composition for a wash has given excellent results for a number of years: To 2 gallons of benzine or turpentine add 1 pint (or more, according to time the shading is desired to remain on houses) of linseed oil, 5 pounds of pure white lead and enough whitening to make proper thickness (which can very easily be ascertained by applying some of it to a piece of glass while adding the whitening) ; thoroughly mix and apply to outside of glass with a soft brush of the same width as glass. This shading, by the addition of more or less liuseed oil, may be made to stay on houses up to one year. If properly applied in spring, it will be just right during the hot days of summer, and in the fall and winter, when more light is gradually required, the frosts gradually will have reduced the shading, thus admitting more light at the necessary time.

Much time, annoyance and expense will be saved by a careful arrangement of the workshop, or potting room, a thing which in most cases is totally neglected. It should be so built that potting benches are about 3 feet above the floor and 5 feet wide. They uay be permanently constructed of substantial material, in order that a number of pots of different sizes cau he conveniently stored, and that potting material can be thrown from cart or wagon directly onto potting benches. By an improper arrangement of workshop great expense, loss of time and material are incurred by having to bandle material repeatedly in small quantities.
Propagation by Means of Spores.-To grow Ferns from spores successfully, it is advisable to sterilize soil on which spores are to be sown, which can best be done by subjecting it to a high temperature by means of steam under a pressure of from 10 to 15 pounds; and for this purpose a properly equipped workshop should be provided with a tight box about 3 by 3 by 8 feet or larger if an nncommonly large number of Ferns is to be grown. It should be fitted with a grating made of 2 inch laths spaced one inch npart and placed 2 inches from bottom of the box. This grating may be covered with burlap, and if a 3_{4}-inch steampipe is fitted between bottom of box and grating, and connected to bighest point of steam boiler (to insure getting perfeetly dry steam) we are ready to sterilize the soil. After having cooled of , the soil is in practically the same condition as before as far as moisture, friableness, etc.. are concerned, and this cannot be said of soil that has been sterilized by burning aud by otber metbods. This steaming process will effectually destroy all forms of life in the soil and leave it for the use of spores alone. In most localities, the water used for moistening spores
is impure and full of the spores of low forms of plant life, which are very destructive to the prothalli of Ferns. To prevent this, the workshop should be provided with a receptacle in which the water intended for nse on Ferns while iu the prothallus state can be raised to a boiling temperature, which will effectually destroy all spores that may be present in the water. This is best done by leading a 1 -inch steam pipe to within 6 inches of the bottom of the receptacle and turning on a reasonable pressure of steam. If boiled 12 hours before intended for use, it will be cool enough to be applied, and will be pure. A Fern workshop should also be provided with a dry eloset, baving a number of shelves about 12 inches apart, for storing Fern spores.
In beginning the cultivation of Ferns, it is advisable to purchase the spores from some reliable firm which makes Fern-growing a specialty, until a sufficient number of stock plants can be grown to supply spores for home demand. Spores will do about equally well in pots or pans. Pans 12 inches square and 4 inches deep are used for that purpose, as also are the 6 -inch common flower pots. The 12 -inch pans should be supplied with $11 / 2$ inches and the 6 -inch pots with 3 inches of coal cinders for drainage. Soil for sowing spores on is best composed of five parts, in the proportions of two parts good garden soil, two parts of finely screened peat and one of sharp, clean propagating sand. Leaf-mold may be used instead of peat, if easier to procure. This soil should be thorougbly sterilized, as already directed. The spore pots should be filled with the soil to within $\frac{1 / 4}{4}$ inch of the top; press firmly. The rest of the pots should be filled with the same composition after it has been passed through a screen of about $1 / /$-inch mesh, then made absolutely level, firmly pressed and thorougbly watered with sterilized water. Three or four hours after watering will be the best time to sow spores. The spores should be thinly scattered over the surface of the soil, a quantity that can be beld on a surface of onefourth of a square inch being abundant to sow one 12 inch pan. Spores should not be covered with soil. Immediately after sowing, the sash of the propagating frame should be tightly closed and kept so until spores show signs of germination, when a small quantity of air should be given and gradually increased, so that by the time the first small fronds have made their appearance they may have been sufficiently hardened off to bave the sash removed entirely. In sowing spores, great care will be necessary to prevent them from getting mixed, Fern spores being rery minute and so light that the slightest movement of air will carry them long distances. While sowing spores, all spore pots should be kept tightly covered. Being kept in a very close *and humid atmosphere after sowing, the spores should not require any watering for one or two weeks, by which time they will have sufficiently settled not to be dislodged by a very gentle overhead watering, which should be given whenerer soil shows the least sign of being dry. Sterilized water should be used until after the first fronds have been formed. As soon as the first little fronds have made their appearance, care should be taken to weed out all undesirable varieties, which, even with the rery best of care, will oceasionally creep in. A temperature of $65^{\circ} \mathrm{F}$. should be maintained in the propagating house.

As soon as the first little fronds are evenly formed all over the surface of the pot, the little plants should be transferred in clumps of four or five plants each, to well drained pans (Fig. 811) or boxes filled with soil composed of one-half rich garden soil and onehalf peat or leaf - mold, finely screened. In transplanting, great care should be exercised not to cover the remaining prothalli, but to have them just level with the surface of the soil. The clumps of plants should be kept as loose as possible, as this will give each individual plantlet a better chance to form the necessary number of rootlets, and it will, later
on, also be easjer to separate the plants. Boxes for transplanting Ferns are most convenient when 4 inches deep, 14 inches wide and 22 inches long. These boxes will hold about 200 plants placed about one inch apart. As soon as the little plants have formed two or three fronds eacb, they should be separated and transplanted singly into boxes similarly prepared as before, where they may remain until sufficiently strong to be potted iuto 2 - or 21_{4}-inch pots.

Times of sowing Fern spores are the first weeks of March, July and October. When making three sowings a year, and allowing a sufficiently longer time for slower growing varieties, a constant supply of plants will be assured. In calculating on time of sowing spores of commercial varieties of Ferns, it will be helpful to divide them into two classes, as some varieties are considerably slower of growth and will consequently have to be sown earlier, in order to be ready for sale at the same time as the more rapid-growing ones. The following popular conmercial varieties will require from 9 to 10 months between times of sowing and potting. The names are those which the plants bear in the trade:

Adiantum cuneatum,
variegatum,

* grandiceps, Bausei, decorum, Fergasonii, gracilfimum, mundulum, tenerum, Wiegandii,
Cibotium Schiedii regale,
Cyathea medullaris,
Cyrtomium caryotoideum, Fortunii, faleatum,
Davalliatenuifolia strieta,
Veitchiana,
Dicksonis (Balantium) autaretica,
Doodia aspera,
The following trade varieties will develop into plants large enough to be potted in about six months after sowing spores:

Adiantum puhescens, hispidulum,

Alsophila australis,
Gymnogramma calomelanos.
chrysophylla, decomposita, Peruviana, sulphurea.
Lomaria cilista, gibbs,
platyptera,
Nephrodium immersum eris tatum,
Nephrodium molle corymbif. erum.
Onychium Japonicum,

Doodia aspera multifida.
caudata,
Doryopteris nobitis
Lastrea aristata,
". ehrysoloha
орнеа.
Sieboldii.
Lygodium Japonicum,
scandens.
Nephrodium hirtipes,
Nephrolepis exaltata cordata compacta,
Platyloma Bridgesii,
faleata,
Polypodium aurenm,
fraxinifolium, etr.
Polystichum coriaceum,
Pteris setosum
Pteris Victoriæ.
Tremula Smithiana.

Pteris argyrana,
Cretica alho-lineata,
.. magnifica
.. nobilis,
hastata,
adiantoides,
internata,
". Sieboldii,
leptophylla,
Onvrardii.
palmata, serrulata,
.. cristata, Tremula.
Wimsettii.

It should also be borne in mind, when calculating time of sowing, that spores sown in the autumn will require about four weeks longer for development than those sown at other times of the year.

Fern spores are borne on the back or under side of fronds. In some cases they are borne naked on under surface of frond, while in others they are produced under a scale-like membrane or indusium. In some cases, as in Pteris, the edge of the pinna is folded back orer the spores, while in Adiantums a small part of the leaflet is folded back over each little fruit-dot to serve as a shield or indusium. Darallias form a small sack-like receptacle at the extremity of the pinna. The proper time of gathering spores is when they assume a light brown, rather dry appearance, or in the indusium-bearing kinds when the indusium or shield begins to open. Spores should be gathered on a dark day when the fronds are slightly moist, as they will be better retained in that condition, and will not be so liable to pet mixed when disturbed. Fronds, or parts of them, should be cut off entirely in most cases, put up in tight paper bags and stored on shelves in a dry closet for a week, by which.
time, in most cases, they will be sufficiently dry to have spores removed from them by rubbing the frond in a sieve which has about 20 meshes to the inch. When thus separated from fronds the spores should be put up in small seed-bags and placed in air-tight jars until required for sowing. Cared for in this manner, perfect suecess has been invariably secured, even after keeping spores for years.

Propagation by Other Means.-Some Ferns form little plants at the ends of pinnae and of frends, which upon attaining to sufficient size may be detached from parent plants, planted into shallow, well-drained seedpans, and for a week or two left in the propagating frame, where they will soon form roots, when they can be petted. Among such are A diantum caudatum, A. Edgeworthii, A. lunulatum, var. dolabriforme, Asplenium Belangerii, A, bulbifernm, A. salicifolium, Gymnogramme schizophylla, var. gloriosa, Polystichum angulare, var, proliferum, and many more.

A very useful decorative Fern is Vephrolepis davallioides, var. furcans, and it will make a heautiful specimen plant in a comparatively short time. To grow large quantities, the old plants should be cut back to within 6 inches of surface of soil and placed in a house where a bottom heat of $90^{\circ} \mathrm{F}$, may be secured, when they will soon form a large number of short, strong fronds. At this time they may be divided into a number of small plants, potted off and placed in the same position as the parent plants. A somewhat slower method is to plant out a number of plants on a bench into 5 inches of soil, in which soil the rhizomes, running over the surface, will form a number of small plants, which may be detached and grown on.

A beautiful Fern is Adiantum Farleyense, and it deservedly ranks as the greatest favorite among Fernlovers. It is best propagated by division. From old plants, cut off all fronds down to the rhizomes, wash off soil, eut rhizomes into pieces $1 / 2$-inch long, insert same into welfodrained Fern boxes about $1 / 2$-inch apart, in $11 / 2$ inches of clean, sharp propagating sand. Place same in prepagating frame in a temperature of $70^{\circ} \mathrm{F}$. In this position each little fragment of rhizome will form two or three little fronds in about 15 or 20 days, when they may be potted off singly into 2 -inch pots and kept in a temperature of $70^{\circ} \mathrm{F}$. The seil best adapted to A. Far leyense is finely chopped sod which has been piled for about six months, with one-fifth well decomposed cow manure added. To attain perfection in growth and coloring, A. Farleyense should be kept in a light, airy and sunny house, in which every condition of moisture and atmosphere can be kept under absolute control. In a house of this kind, the greatly admired and beantifully pinkish tint may be easily obtained and fronds will be hardy and of good substance. A temperature of 70° F . is at all times desirable.

General Remarks on Ferngrowing. - To grow Ferns such as are used for jardinieres and decorative work (Fig. 812), and mentioned in the two I receding lists, a temperature of no less than $55^{\circ} \mathrm{F}$. should be maintained at all times at night in coldest
812. A good specimen. weather, with a rise of temperature in the daytime or 10
or 15°. To keep Ferns in a healthy and growing condition, to prevent and to kill insect pests and disenses, a proper condition of atmosphere should be carefully maintained at all times. Extremes in heat, moisture or dryness should never be allowed. On a warm, dry, sunny day, when a great deal of air bas to be admitted, much of the moisture of the house is consequently carried off; it will be of great benefit then to syringe the Ferns once or twice a day, also to occasionally dampen floor of houses. An excessively dry atmosphere induces the development of the very troublesome pests, thrips and red spider. On damp and rainy days a saturated atmesphere should be prevented by supplying a little artificial heat, even if some air has to be admitted at the same time. This slight expense of beating on damp days will abundantly pay for itself by causing the growth of streng, thrifty plants. An excessively moist
atmosphere causes parts of fronds of a great many plants to turn black and to rot off, besides inducing the development of almest incurable fungoid diseases.

In the selection and grewing of stock plants, the careful grower should always be on the watch for types which are most perfect in shape, in character of individual fronds, in coloring, freedom of producing spores, and exemption from the attacks of insects and fungous diseases. In a large nnmber of Ferns a great difference between the different plants of the same species will he apparent to the careful observer. Some plants of same species have beautifully developed fronds, but are carried on long, weak stems, which makes them unfit for general use. Others may be of compact, sturdy

813. A home-made Fern case.
hahit of growth, but with poorly shaped individual fronds. In seme individuals the coloring will be greatly superior. By closely studying all these points and by continually selecting only the most perfect types of Ferns from the young plants, we can in a few years work up a very desirable and superior stock. The same stock plants of the rapid-growing varieties of Ferns should not be carried over for more than three or four years, but young and more desirable plants should continually be selected and grown to take their places.

The stock should be shifted into larger pots whenever necessary, and placed in a light, airy house, in Which all necessary conditions are under perfect control, and in which a temperature in coldest weather of $55^{\circ} \mathrm{F}$, at night, with a rise of 10 or 15° in daytime, can always be maintained. The house should be shaded just enough to prevent fronds from turning yellow. Proper attention to atmospheric conditions of steckhouse should never be neglected. Stock plants should not be permitted to remain pot-bound for too long a period of time, except with a few varieties, such, for instance, as Alsophilas, Dicksonias, Cyatheas, Cibotiums, Pteris Tremula, P. argyreora, some Davallias, Polystichum coriaceum, etc., which, if given too much nourishment, will often he very slow in setting spores.

Insects which are most troublesome to Ferns are thrips, red spider, scale and mealy bug. They are mainly present in a too dry atmosphere. Thrips, red spider and mealy bug ars easily prevented by a properly moistened atmosphere, also by spraying of foliage once a week with tobaceo water. As tobaceo greatly varies in strength, every grower will have to determine to his own satisfaction how strong to make his solution. The preparation known as "Rose-leaf tobaceo extract," has proved very efficient in destroying these insect pests. To 50 gallons of water add one quart of the extract, and apply with some good insecticide sprayer and a force pump. Fifty gallons of this solution will be enough to spray 100,000 Ferns in $2 \frac{1}{4}$-inch pots.

Bearing in mind the foregoing advice, the amateur Fern-grower may determine the proper way in which to raise his plants. He may not have a Fern house, but he cau have a tight glass box or Wardian case (Fig. 813).

The bottom should be a zinc tray, to prevent drip on the floor and to prevent too rapid drying out of the soil. The top or roof of the box should be hinged, so that it can be raised. In this miniature greenhouse many interesting Ferns can he grown. Lycopodiums and Selagi nellas (which see) are treated in much the same way as Ferns.

Nichol N. Breckner.
Growing Ferns from Spores by the Amatevr.Ferns may be raised from spores at almost any season of the year, though the early spring months are best The shallow pans 2 in. deep by 6 in diameter, now sold by pot manufacturers, we have found, after repeated trials, best to sow Fern spores in. These should be filled to within half an inch of the top with a mixture of sifted peat, leaf-mold and silver sand in equal proportions, the surface being made very fine and even. By sowing the spores thinly we bave found that they are not as liable to the attacks of fungus during the prothallus stage. They should not be covered with soil, as in sowing seeds. Each pan should be placed in a pot-saucer, and all the water necessary to keep the soil moist should be poured into the saucer and allowed to soak up through the soil. This not only prevents the spores being floated into clusters, but probably filters the water of any germs of low forms of vegetalile life which might prove injurious to the spores during germination. After the prothallus stage is passed this precaution is unnecessary; as soon as the young Ferns begin to develop fronds, they may be watered freely overhead with a fine rose. The pans should be placed in a temperature of 65° to 75°, in a shaded position. Each pan should be covered with a pane of glass to keep the surface evenly moist, taking care to remove the moisture which collects on the glass at least twice daily; but as soon as the spores have germinated, which, in most cases will be in about teu days, these should be gradually removed. A close watch must be kept for fungus during the prothallus stage, and if a pan should show the least sign of it, it should at once be isolated from the rest and a little fine sulphur dusted upon it ; if this fails to check it the prothalli should be at once transplanted to fresh pans of soil, which usually checks it. The chief reasons for fungus are sowing the spores too thickly, a too stagnaut atmosphere after germination, and a dripping greenhouse roof. As soon as the young Ferns begin to make fronds, they may be transplanted.

Edifard J, Canning.
FERN BALLS are the dried rhizomes of Ferns, imported from Japan. Dealers start theminto growth, and sell them when the mass is well covered with its delicate regetation. To start them inte growth, the balls are drenched in a tub of water and then hung in a warmhouse, not in direct sunlight. When the plants are well started, gradually expose them to more light and to a cooler air. fiive liquid manure if they do not grow satisfactorily. The species are mostly Davallias, oftenest apparently D. bullata and D. Mariesii.
L. H. B.

FERNS, POPULAR NAMES OF. Adder's Tongue F., Ophioglossum vulgatum. Beech F., Phegopteris. Bird'snest F., Thamnopteris Nidus-Avis. Bladder F., Cystopteris. Boston F., Neplerolepis exaltutu, var. Bostoniensis. Bristle F., Trichomanes. Buckler F., Dryopteris. Californian Gold F., Gymnogramma triangularis. Chain F., Woodrardia. Christmas F., Polystichum acrostichoides. Cinnamon F., Osmund! cinnamomea. Climbing F., Lygodium, Deer F., Lomaria. Elk's Horn F., Platycerium alricorne. Female F., Asplenium Filix-fuemina, Filmy F., Hymenoplyllum. Floating F., Ceratopteris. Flowering F., Osmunda; sometimes also Anemia. Gold F., Gymnegramma. Grape F., Botrychium. Hart's-tongue F., Phyllitis sicnlopendrium. Hartford F., Lygodium pulmutum. Holly F.. Polystichum Lnnchitis. Lace F., Chrilanthes gracil lima. Lady F., Asplenirm Filis-fomina. Lip F., Cheilanthes. Maidenhair F., Adiantum: more particularly A. C'apillus-leneris abroad and A. pedatum at home. Male F., Dryopteris Filix-mas. Marsh F., Dryopteris Thelypteris. Oak F., Phegopteris Dryopteris. Ostrich F., Mattercein Struthiopteris. Pod F., Ceratopteris thalictroides. Rattlesnake F., Botrychium $\mathbf{I}^{\text {tir }}$ ginianum. Royal F., Osmunda regalis. Sensitive F., Onoclea sensibilis. Shield F., Dryopteris. Stag-horn
F. See Platycerium. Sun F., Pheqopteris. Sweet F., Myrica asplenifolia; abroad, various Dryopteris. Sword F., Jephrolepis exaltate. Venus' Hair F., 1 diantum C'upillus-l'eneris. Walking F., Camptosorus rhizophyllus. Wall F., Polypodium vulgare. Wallrue, Asplenium Ruta-mururia. Washington F., Nephrolepis exaltata, var. Washingtoniensis.

FERRARIA (Giotanni Battisti Ferrari, 1584-1653, Italian Jesuit, botanical writer and collahorator with the celebrated artist Guido Reni). Iridacea. There are 7 species, all frora the Cape of Good Hope, rarely growing more than 6 in . high. They have a large, irregular corm and very glaucous foliage, the lowest Ivs. being long and linear, the rest ovate, elasping, successively smaller, aud topped by inflated sheaths from which emerge the oddest fls. imaginable. These have 6 triangular, spreading, erisped, petal-like lobes, wonderfully marked with many dull colors, as yellow, green, purple and brown. Each spathe contains several fls., and the fls. are united at the rery base, connivent and cup-shaped below the spreading lobes. The fls. last only from morning to afternoon of a single day, but there is a fair succession. Some are visited by carrion flies. Only one species, F. undulata, is advertised at present, but the other 6 are doubtless of equal interest. The first is the oldest kind in cult. It was known to pre-Linnæan authors as Flos Indichs and Gladiolus Indicus. E. S. Miller writes that the bulbs should be stored like Gladiolus in a dry, warm place, away from mice.

A. Fls. dull brownish purple.

undulàta. Linn. Stem stout, erect: upper lvs. and spathes $11 / 2-2 \mathrm{in}$. long: fls. 2 in . across, largely dull purple; anthers oblong, with parallel cells. B,M. 144.

AA. Fls, greenish.

uncinàta, Sweet. Lts. 2-3, linear: fls, 2, "cream colored, edged with sage green," according to W. E. Endicott.

AsA. Fls. dark purple.
atràta, Lodd. Lvs. ahout 4 , sword shaped : fls. 3-4.
Other names are advertised by Dutch bulb growers, but are not to be found in Index Kewensis or Flora Capensis: F. Canarimsis, calestis, conchiflora, arandiflora, immaculata, liliacea and rosen. These can perhaps the accounted for under Tigridia, where F. Pavonia belongs. W. M.

FERTILITY of soils: that condition of soils which makes them productive. The elements of productivity are, a full supply of available plant-food, a suitable and continuous supply of moisture, good physical conditions of the soil, coupled with suitable seed and climate

Land may contain vast quantities of potential nitrogen, potash and phosphoric acid and other plant-food, and yet be unfruitful,-infertile. Most of the potential plant-food in the soil is lazy, not available in sufficient quantities in a single season to produce maximum crops. Average arable land which contains from $3,000-4,000$ pounds of nitrogen, an equal amount of phosphoric acid and four times as much potash in the first 8 inches of an acre, may produce ouly 15 bushels of whest per acre, which requires, with the straw, but 24,13 and 20 pounds of these three elements respectively. Therefore, land may contain a great abundance of potential plant-food and yet not contain enough of that which is available for a full crop. To make land more fertile, one or more of the following means may be employed. I'sually deeper and more thorough tillage should first be resorted to, since most lands, by reason of careless farming, contain much inert plant-food. Superior tillage is almost certain to produce fruitfulness, and tberefore should be resorted to before more expensive methods are tried. Tillage not only makes plant-food more available, but it improves the physical conditions of the soil, thereby making it more comfortable for the plant; it may also assist in relieving the land of surplus water, and give to the soil the power of retaining large stores of moisture by eapillary action.

Moisture plays such an important part in productiveness that it may be said to constitute its prime factor. Clay soils are usually composed of such fine particles that water percolates through them slowly or not at all. The rainfall then must either rua off over the surface,
or remain to be evaporated. The aim should be to so prepare the land by subdrainage, plowing and surface tillage, and by introducing at least one crop of tap-rooted plants in the rotation, that the surplus water will filter through the soil in a reasonable time. Percolation of rainwater through soils makes them more friable and warmer in spring, aërates the land, promotes beneficial biological and chemical changes, and brings to the soil the nitrogenous compounds contained in the rainwater. Soils which are reasonably porous have the power of retaining more moisture, and of giving it up to plants when needed to a greater extent, than either open sandy or close clay soils do. Fertility, which results in fruitfulness, is governed very largely by the water and moisture conditions of the soil, and these, in turn, are largely governed by the texture of the land and the amount of humus which it contains.

Legumes, used either as a harvest or cover-crop, promote fertility. A cover-crop of clovers planted August 1 , and analyzed 64 days after planting, contained of nitrogen, in roots and tops, per acre as follows :

	Tops	Roots	Total
	Lbs.	Lbs.	Lbs.
Crimson clover	125	30	155
Red clover.		40	103
Mammoth clover	. 67	78	145

Clovers and other legumes may be used to fix and store up the uncombined nitrogen of the air and to digest and make available the mineral constitnents of the land, thereby greatly increasing the fertility of the soil.

Barn manures, when properly cared for and iutelligently applied, not only furnish acceptable plant-food but bumus as well. Fertility and high productivity usually may be maintained many years by means of superior tillage, leguminous harvest and cover-crops, and the manures of the farm. In some cases a high state of fertility can be maintained only by oceasional applications of commercial mineral fertilizers, as phosphates and potash, but too often expensive fertilizers have been substituted for tillage, leguminous plants and barn manures.

Fertility may frequently be promoted by light applications (20 to 30 bushels per acre) of quick lime. Lime may serve to make plant-food more available, improve soil texture and correct acidity, Its use is especially recommended on clay and moist lands and in orchards where the ground is much shaded. Applications of gypsum and salt are sometimes beneficial in maintaining fertility, hut they, as well as lime, usually act indirectly, as the soil is seldom deficient in these constituents so far as they are required as plantfood. On high-priced lands, especially those devoted to horticulture, the soil should be made and kept fertile-well up to its highest productive power.
Sometimes soils are rendered unfruitful by the presence of deleterious substances, as organie acids or alkaline salts, or a superabundance of some one or more of its usually useful ingredients, as water or nitrogenous matter. An excess of nitrogen stimulates the growth of stalk and straw at the expense of grain, or in the orchard it tends to the formation of wood rather than to fruitfulness. The acidity should be corrected by lime, as noted abore, the surplus water removed hy drainage, the nitrogenous matter reduced by the production of such crops as are not harmfully affected by its super-

814. A pollen grain of Lilium Philadelphicum.
Before leaving anther, seen in section: t, the tube cell; a, the generative cell. The large spherical cell. The large spherical nneleus. Magnified 500 diameters. abundance, such as forage erops which are prized for their foliage rather than for their seeds, while the alkalinity may sometimes be overcome by deep tillage or irrigation.
J. P. Roberts.

FERTILIZATION, The union of two sex-cells, a male cell and a female cell, to form a new one capable of growing into a plant. The term was formerly used to include the transfer of pollen to the stigma (e.g., Darwin's "On the Fertilization of Orchids by Insects"), but this process is now generally distinguished as Pollination, which see. In the lower plants, fertilization can be mucb more readily observed than in the seed plants, because in the latter it takes place inside of opaque parts, and therefore can be studied only by the most careful mieroscopical methods. The process of fertilization is here described as it oceurs in tilies. In other seed plants it differs in details.

The generative cell (g, Fig. 814) is produced by the pollen grain before it leaves the anther. It is usually lenticular, and placed at one end of the grain. Its most important part is the spherical nucleus, which oceupies the center. When the pollen grain is conreyed to the stigma (s, Fig. 815), the larger cell (t, Fig. 814), nourished by food it absorbs from the stigma, grows, forming a long tube ($p t$, Fig. 815), which traverses the nar row triangular canal ($1,2,3$, Fig. 815) that leads down the long style to the ovary. In many plants the style is not hollow. In this case, and often when it has a canal, the pollen tube pushes its way between the cells of the style, living on the foor it absorbs. Ahout the time the tube begins to grow (or later) the generative cell divides into two. These male cells, or sperms, migrate down the tube (pt, Fig. 815), which makes its way into the opening between the inner integument (i, Fig. 816) of the ovule, penetrates the body of the ovale and enters the em-bryo-sac (E. Fig. 816). Its direction of growth is Mletermined by substances, probably chiefly the sugars, contained in the parts wbich it traverses.

While the pollen tube has

815. Outline of a pistil of Lilium Philadelphicum.
Cut lengthwise almost through the center: s, stigma on which pollen grain, p, has been lodged. The course of the pollen tube, $p t$, is indiested hy broken line. At the right, 1,2,3,4, are cross sections of the pistil at the levels indicated by the arrows: 1, the stigma; 2, 3, the style, show the triangular canal which leads into the three chambers of 4 , the ovary, in each chamber of which are two rows of ovules. Natural size. been growing, the female cell has been forming in the embryo-sac (E, Fig. 816). The nueleus of this huge cell, originally single, has divided into two, these into four, and these into eight nuclei, four migrating to each end. Then one from each group advances toward the middle of the sae and the two fuse into one (e, Fig. 816). One group of three (sometimes after dividing agaiu and again, sometimes only the original tbree) may organize cells at the antipodal end of the embryo sac (A, Fig. 816). In the lilies, however, this does not go far, and two of the three antipodal nuclei are seen to be already reduced in size and partially disorganized. They have no further history. The group of three nearest the point of entrance of pollen tube accumulate the living protoplasm about them and thus organize three naked cells. Two of these (called synergidæ) usually begin to disorganize betore the pollen tube reaches them, but may persist until then or even later. In the lilies they usually disappear early. The third is the egg, or oösphere. When the pollen tube enters the embryo-sac, its end becomes softened and bursts, permitting one or both of the male cells to migrate from it. One male nueleus
(8 , Fig. 816) fuses with the nucleus of the egg (9 , Fig. 816), and fertilization is complete. The other, heretofore supposed to be disorganized, is now said to fuse with 'the endosperm nucleus (e, Fig. 816). The fertilized egg begins at once to grow and forms the em-

816. Part of an ovule of Lilium Philadelphicum.

Cut lengthwise; i, i, inner integument, enclosing. except at a narrow orifice where the pollen tube, pt, enters, the body of the ovale, which is chiefly occupied by the large emhryo sae E. A, antipodal end of embryo sac with three nuclei, one much disorganized. e, the endosperm nucleus, just being formed hy fusion of t wo nuclei from the respective ends of the embryo sac. E, male nucleus, wbich has just migrated from pollen tube and is about to fuse with \&, the egg nucleus. The synergide have disappeared. Magnified 670 diameters.
bryo, while the endosperm nucleus divides and forms cells in which food may be stored for the embryo when it resumes growth at the time of germination.

Charles Reid Barnes.
FERTILIZERS. There is one fact that has been fairly well established by experiment and inquiry, namely, that fruits, flowers and regetables are benefited by the intelligent application of manures and fertilizers, and that, in the majority of cases, such application is followed by profit, In the first place, these crops should be classified for purposes of fertilization according to their period of growth, the first class including the perennial fruits and flowers, and the second, the annual flowers and vegetables. Those of the first class differ from ordinary crops in that a longer season of preparation is required, during which time the growth is vegetative rather than productive, though upon this vegetative growth depends the quality and value of the fruit or flower obtained. The growth of both tree and fruit is dependent, too, not only upon the food acquired during its year of growth, but also upon that previously acquired, aud which has been stored up in bud and branches.

The tree fruits iuclude apples, pears, peaches, plums, cherries, apricots, etc. It may be regarded as a safe assumption that the fertility elements, phosphoric acid,
potash and lime, contribute materially to the proper growth and hardening of the wood, as well as the maturation of the fruit. The necessity for added nitrogen is, on the whole, much less; it should be applied as the need for it appears in the lack of vigor of the tree.

In the next place, it is safe to assume that the materials which furnish these elements or constituents in slowly arailable forms are liable to be quite as useful, except under special conditions, as those which are quickly available, because the tree growing continuously, though slowly, is able to obtain from the gradually dissolving substances a sufficient amount for its daily needs. Hence, as a rule, fertilizers for fruit trees may include the less available and cheaper forms of constitueuts.

Apples and Pears. - On soils of good natural character, the fertilization of apples and pears need not begin until the trees reach the bearing period, when an annual dressing of 400 pounds per acre of either of the following mixtures sbould be applied in early spring, and plowed in :

No. 1.-One part, or 100 pounds each, of ground bone, acid phosphate and miriate of potash.

Fo. 2.-One and one-half parts, or J. 0 pounds, of ground bone, and one part, or 100 pounds, of muriate of potash.

As the trees grow older, these dressings should be inereased. While no definite rules can be laid down as to the most profitable amounts to apply, the best growers find that for mature trees it pays to ase from 1,000 to 1,500 pounds annually. In many cases nitrogen, in addition to that contained in the mixture, should be used, the kind and form depending, perhaps, upon the relative cost more than upon any other one thing, the minimum amount to be 20 pounds per acre, or an equivalent of 125 pounds of nitrate of soda. In many cases it is possible to obtain the necessary nitrogen from the growing of leguminous crops, as crimson clover and red clover, though when these are nsed they should be plowed down early in the spring, in order that their growth may not interfere with the growth of the tree. If they are allowed to remain until mature, they absorb not only the food that may be necessary for the growth of tree and fruit, but the moisture also, and thas they frequently injure rather than improve the erop prospects. On poor soils, the necessity for fertilization is naturally greater. In fact, on these liberal fertilization -500 pounds per acre-should precede the setting of the trees, and be continued annually. On these soils, too, green manuring, as a source of nitrogen, can be practiced with safety for a longer period than in the preceding case.

Peaches. - Peaches differ from apples and pears in respect to fertilizing. The demands for added plantfood are proportionately greater in the early life of the tree, and are different because of their more rapid growth, their early hearing, and the exhaustive character of the crops. On soils of good natural character, however, the necessity for fertilizing is seldom apparent until after the first or second year of growth. That is, good soils will provide sufficient food for a normal development of leaf and wood, and any additional fertilization would have the tendency to unduly inerease the tree growth. On medium and poor soils, the setting of the trees should be preceded by a fertilization, preferably broadcast in spring, and plowed in, with one or the other of the mixtures recommended for apples and pears, as follows :

No. 1. - One part, or 100 pounds each, of ground bone, acid phosphate and muriate of potash.

Fo. 2.-One and one-half parts, or 150 pounds, of ground bone and one part, or 100 pounds, of muriate of potash.

On the better soils, No. 2, and on the poorer, No. I, at the rate of 400 to 600 pounds per acre, which should he followed by the application of the more soluble fertilizers, immediately the trees begin to bear. The need of nitrogen is often very marked, and is shown by a lack of vigor of the tree. Nitrate of soda applied broadcast in early spring has proved a very raluable form of nitrogen, since it is appropriated by the roots during the early season, and if a sufficient ahundance of the minerals is present, it enahles a normal development of
leaf and branch. If the quick-acting nitrogenous fertilizers are applied late, or if too large applications of the slower-acting nitrogenous materials are applied early, the tendency is to provide for a continuous feeding on nitrogen, and thus encourage an undue development of leat and branch, which does not permit the ripening of the wood before the beginning of winter. Thus, on these soils, in addition to an annual application of the basic formula, from 100 to 150 pounds of nitrate of soda, 200 pounds of acid phosphate and 100 pounds of muriate of potash should be applied early in the season and carefully worked into the soil.
Plums, Cherries and Apricots.-The fertilizing of these fruits, when grown on the different classes of soils, need not differ materially from that recommended for peaches under the same conditions, though cherries, particularly, require, in addition, a relatively greater supply of lime, which should be applied at the rate of 30 bushels per acre once in about five years, and thoroughly incorporated with tbe soil.
Simal Frcits and Berries.-These, in respect to their general charanter, correspond more nearly with the regetable crops than with the cereal grains or fruits, heuce, in most cases, natural sources of plant-food are ignored, and the more quickly available materials, particularly nitrogenous and phosphatic, applied.
In the case of strawberries, it is desirable that the soil in which the plants are set should be supplied with soluble and available phosphoric acid ; hence an application, broadcast previous to setting, of from 500 to 800 pounds per acre of the mixture No. 1, is recommended. The nitrogen should also be in quickly available forms, and should be supplied in sufficient quantities at time of setting the plant to enable it to mature, and thus to better withstand the rigors of winter. Hence, an additional application of 100 pounds of dried blood, or its equivalent in nitrate of soda or ammonia, is advisable, particularly on soils not previously well enriched with organic nitrogenous matter. In the spring of the season during whicb the first crop is harvested, dressing with a quick-acting fertilizer, rich in nitrogen, is desirable, carefully applied between the rows, and preferably worked into the soil.
Raspberries and blackberries also require a soil well enriched with the mineral elements, to insure an abundant and strong growth of canes. The need for nitrogen, while apparent, is less marked than in the case of the strawberries, and the slower-acting forms serve a good purpose, provided they are not applied in too great quantities, so as to encourage a large growth of plant, which does not fully mature. An annual application of mixture No. 2 is recommended at the rate of 400 to 600 pounds per acre.
Currants and gooseberries are less likely to need nitrogen than the other berry crops, because of the tendency to the development of mildew. In common with the other crops mentioned, they should be abundantly supplied with the minerals (phosphoric acid and potash), and mixture No. 1 may be used at the rate of 500 to 1,000 pounds per acre.
Grapes.-Grapes are more exhaustive than most of the fruit crops, largely because of tbe larger total crop harvested, and the special need is for phospboric acid and potash. These elements may be supplied by mistures No. 1 or No. 2, and very liberal dressings are rec-ommended-from 800 to 1,500 pounds per acre annu-ally-after the bearing period begins.
Roses and other Flowering Plants. - In the growing of flowers and herbaceous plants, phosphoric acid is particularly needed, and it has been demonstrated that ground bone is one of the most useful forms from which to obtain it, since it furnishes both nitrogen and phosphoric acid in slowly available forms. A good mixture for both the field and prepared soils may consist of four parts of ground bone and one of muriate of potash, applied at the rate of four pounds per square rod, and preferably worked into the soil previous to setting the plants; the after application mas be made in the fall at the same rate.
Vegetable Crops, - Vegetables constitute a group of plants distinguished from all others, both because of their peculiar habits and of their purposes of growth. Both having an important bearing upon fertilization,
they should all be supplied with an abundance of available food. Since nitrogen is the one element that more than any other stimulates leaf and stem growth, its use is extremely beneficial for all of these crops, and because of their relstively high commercial value the quantity of fertilizer may be greatly in excess of that for the other groups. While a classification of tbese crops is possible, a fertilizer of the following composition may be regarded as a basic misture for the entire group:

> Nitrogen 45
> Phosphoric acid $\stackrel{8}{105}$

The nitrogen sbould be derived in part from quickly available sources, and the phosphoric acid should be all soluble or arailable, and the potash from muriate. This should be applied in part broadcast, and in part in the row at time of planting, at the rate of 1,000 to 1,500 pounds per acre, and upon soils naturally poor, two or three additional annual top-dressings with nitrate of soda, at the rate of from 50 to 100 pounds per acre, will prove very serviceable.

Edward B. Voorhees.
FERULA (possibly the stems were anciently used as ferules). Cmbellifere. Glant Fennel. This large genus includes 2 hardy herbs, which are, perhaps, the tallest plants cult. for ornament in this large (but from the garden standpoint unimportant) order. They are valued for the excessive fineness with which their foliage is cut, and their clusters of perhaps $40-50$ umbels of minute yellow fls. borne on stout stems, which rise far above the foliage. F. Tingitana, Linn., from N. Africa, has lvs. 4 times ternately pinnatisect, somewhat glaucous. B.M. 7267 . The common error that it comes from Spain goes back to Morison, 1680. Lindley originated the false notion that this plant is the source of gum ammoniac. F. commùnis, Linn., from S. Eu., has deep green lys., with more linear segments aud more compact habit.
W. M.

FESSENDEN, THOMAS GREEN, editor and author, 1771-1837, founded "The New England Farmer" at Boston in 1822, and edited it until his death. The present "New England Farmer" is not the lineal successor of Fessenden's paper. Fessenden is chiefly noted as a satirical poet, and he was more of a literary man than a gardener. He was born at Walpole, N. H., was graduated at Dartmouth College in 1796, and studied law. He went to England in 1803, and there published his humorous poem, the "Terrible Tractoration." He settled in Boston about 1804. In addition to "The New England Farmer," he edited the sbort-lived "Horticultural Register," and "The Silk Manual." He wrote "The Complete Farmer and Rural Economist,""The New American Gardener," and "The American Kitcben Gardener," three books of a cyclopedic nature designed to cover the fields of agriculture, horticulture and vegetable gardening respectively. They adbered very closely to the contemporaneous English type of horticultural writing. These books profess to have passed through many editions, but they were little altered from issue to issue. Tbey often seem to lack the entbusiasm of direct contact with growing plants. Fessenden's time was one of general farming, and the view-point of gardening was mostly that of the home or amateur. He lived before the days of specialized farming on a large seale, and of commercial horticulture and floriculture. During the greater part of his editorship of "The New England Farmer" there was but one other important American agricultural paper, "The American Farmer," which was published at Saltimore, beginning 1819. The most important contemporaneous American writings on horticulture of a cyclopedic nature were "The American Gardener's Calendar," by Bernard M'Mahon, Philadelphia, 1806, and "Tbe American Gardener" of John Gardiner and David Hepburn, Georgetown, D. C., 1804. For a copy of "The Country Lovers," Fessenden's once famous song to the tune of Yankee Doodle, together with Hawthorne's pen-picture of the man, and an account of his interesting life, see Duyckinck, Cyc. Am. Lit. I:595-599.
W. M.

FICUS

FESTUCA (an ancient name of uncertain meaning). Gramínew. Fescue Grass. Usually cespitose, perennial grasses of rarying habit. Lvs. rather dry, harsh, and asually narrow. Spikelets several, in dense or loose and spreading panicles; empty glumes unequal, mostly keeled; flowering-glumes not keeled, pointed. Species about 80, in all parts of the world. They are essentially permanent pasture grasses, but some are useful for lawns and ornamental purposes.
glaùca, Lam. (fiestìca ovina, var. gletuca, Hack.). Blue Fescue Grass. A handsome, tufted, hardy perennial grass, with deep, silvery blue leaves resembling the common Sheep's Fescue (Festuca ouina), and by most authors regarded as a variety of it. Lrs. very narrow, conduplicate: panicle somewhat one-sided and short: spikelets $3-8$-fld., with a short awn. - Anattractive plant for edgings or for contrast of foliage with deeper colored plants. Often used also in hanging-baskets, window-boxes and the rockery. It will grow almost anywhere if not too densely shaded. Propagated by division of the tufts.
amethýstina, Host. (F. ovina, var. psammóphila, Hack.). A very pretty grass with violet-colored culm and sheaths: lys. somewhat thin and long, blue-green: panicles slightly hranched, small, often riolet-colored: spikelets short-awned, seldom awnless. Europe, - Useful as an ornamental grass in the garden for dry, sunny places. Propagated by division.
Various Fescues are used in pastures and in lawn grass mixtures. F. duriúscula, Linu. (Festuca ovina, var, duriusculs, Hack.). A slender, densely tufted perential grass, 1-2 ft. high: lve, very fine, radical, closely resembling Sheep's Fescue. Panicle open. Eu. Thrives on dry, sandy soils unfit for the growth of better grasses. It possesses some value as a lawn grass, hut if used for this purpose should be sown thickly and unmixed with other grasses.-F. heterophílla, Lam. A rather slender perennial European grass, $2-1 \mathrm{ft}$. high: lvs. of two distinct forms, the radical ones 3 -nerved, narrow, hairy and folded together: those on the culms much broader, flat, aud 5-7-rihbed: panicle large, open and nodding st the apex. Eu. It is an excellent grass for woodland parks, where it is too shady for the successful growth of other lawn grasses.
P. B. Kenneny.

FETTICUS. Another name for Corn Salad.
FEVERBUSH. See Benzoin.
FEVEREEW. Chrysanthemum Parthenium.
FEVER TREE is Pinckneya pubens.

FEVERWORT. Triosterm.

FIBER PLANTS are treated only incidentally in this work. Division of Publications, U. S. Department of Agriculture, Washington, D. C. issues free publications of the Office of Fiber Investigations.

FİCUS (ancient Latin name). Erticacea. The Fig, the India Rubber Plant, the Banyan Tree and the Creeping Fig of conservatory walls belong to this vast and natural genus. which has over 600 species scattered through the warmer regions of the world. Ficus has no near ally of garden value. It is a genus of trees or shrubs and elimbers, with milky juice. In the common Fig the lrs. are deeply lobed, hit in most of the other species they are entire or else the margin is wary or has a few teeth or an occasional small lobe. The lvs. are nearly always alternate, F. hispida being the only species of those described below which bas opposite lvs. The foliage in Ficus varies all the way from leathery to membranous, and is astonishingly variable in venation, so that the veins are very helpful in telling the species apart. What the horticulturist ealls the Fig, or fruit, is the flesby receptacle, while the fruit of the botanist is the seed inside (Fig. 817). In the following account fruit is used instead of receptacle.

The fertilization or caprification of the Fig is one of the most surprising, interesting and complicated chapters in natural history, and is of great practical importance. See $F^{\prime} \mathrm{ig}$, where the culture of F. Carica is discussed.

The most important ornamental plant in the genus is the India Rubber Plant (F^{\prime}. elastica), which probably
ranks amongst the 25 most popular foliage plants for home use indoors. Its culture is given below at length. This is one of the most important rubber-produeing plants. See Rubber Plants.

The Creeping Fig (F, pumila, hetter known as repens or stipulatet), is one of the commonest and best climbers for covering conservatory walls. It clings close and makes a dense mat of foliage, which is about as dark in color as the English ivy. The plant has been cult. since 1771, but within the last quarter century has come to be recognized as the best plant there is for its special purpose. Once in a long while it fruits in conservatories, and the fruiting branches are very unlike the barren ones. They stand out from the conservatory wall instead of lying flat and elose. The lvs of the barren branches are less than an inch long and heart-shaped, with one side longer than the other at the base and a very short petiole; the lvs. of fruiting branches are $2-3$ inches long, elliptic-oblong, narrowed at the base, and with a petiole sometimes half an inch long.

Among the many wonders of the genus Ficus are the epiphytal habit of some, the huge spread of the Banyan Tree (\boldsymbol{F}. Benghalensis), and the fact that some species ripen their fruits under gronnd. Some of the tallest tropical trees are members of this genus, and often they begin life lyy climbing upon other trees. The Ficus often orertops and outlives the other tree, which may be seen in every stage of decay, or may have entirely disappeared, learing the giant climber twined spirally around a great hollow cylinder. The Banyan Tree sends down some of its branches (or aërial roots) into the soil, these take root, make new trunks, and eventually produce a great forest, in which it is impossible to tell the original trunk. The Banyan in the hotanic

817. Young Figs.

Showing how they arise from the axils of the leaves. gardens at Calcutta sprung from a seed probably dropped by a passing bird into the crown of a date palm a little more than a century ago. The main trunk is now 42 ft , in circumference; there are 232 additional trunks, many of them 8-10 ft . in eircumference, and the branches extend over an area 850 ft . in circumference, forming a dense evergreen canopy through which sunlight never penetrates. The Banyan under which Alexander camped, and which is said to have sheltered 7,000 men, now measures $2,000 \mathrm{ft}$. in eircumference and has 3,000 trunks. Other species have the same method of propagation, but F. Benghalensis is the most famous.

The various species of Ficus are cultivated for fruit, for ornament in greenhouses, and for shade outdoors in the extreme South, as indicated in the key by A, AA, and AAA. The shade trees are procurable from southern Florida and sonthern California.

Index of names (synonyms in italic):

aurea, 18 .
australis, 7.
Beughalensis, 20.
Carica. 1.
elastics, 2 and 14.
erecta, 3.
glomerata, 11.
hispida, 10.
Indica, 19.
> infectoria, 12. macrocarpa, 4. macrophylla, 15. minima, 8. nitida, 17. oppositifolia, 10. Palmeri, 16. Parcelli, 6.
pumila, 8. quercifolia, 5 .
radicans, 9 .
religiosa, 21.
repens, 8 ,
retusa, 17.
rubiginosa. 7 and I3. stipulata, 8 .

A. Cult. for fruit.

1. Carica, Linn. Figs. $817,821,822$. Height $15-30 \mathrm{ft} .:$ lvs. 3-5-lobed, the lobes more or less wavy-margined or lobed, and with palmate veins, whereas nearly all species mentioned below are pinnately reined: fr. single, axillary, pear-shaped. Supposed to be a native of Caria, in Asia Minor. Makes a fine pot-plant, and fruits freely in northern conservatories. For culture, see Fig.

AA. Cult. indoors for ornament. hence not tall trees under these conditions.
B. Habit erect, not climbing.
c. Under surface of lvs, not rusty.
D. Foliage not variegated (except in a variety of No. 2).
E. Le's. entire or with margins uary, not lobed.
F. Verves numerous, 50 pairs or so.
2. elástica, Roxb. India Rubber Plant. Figs. 818, 820. Lrs. 3-12 in. long, shining, leathery, oblong to elliptic, with an abrupt, dull point; nerves parallel, running at nearly right angles

818. Leaf of Rubber Plant. showing venation. F. elastica $\left(X^{1} / 4\right)$. from midrib to margin: fr. in pairs, sessile, in axils of fallen lrs., covered at first by a hooded involucre, when ripe greenish yellow, $1 / 2 \mathrm{in}$. long. Damp forests of trop. Asia. G.F. 2:547.-Becomes 100 ft . high in tropics, but becomes unsightly under glass at 8 or 10 ft . Cult. plants mostly have a single stem, hut there is a growing demand for compact and branching plauts. Var. variegàta (var. aurea, Hort.) is much less popular. Lrs. creamy white or yellow near the edges. J. D. Eisele says it is liable to fungous diseascs. This species is also grown South as a shade tree. The nervation is very characteristic. So, also, is the handsome rosy sheath which incloses the young Irs., and which soon drops off. This is regarded as a stipule of exceptionally great size.
fF. Nerves about 8 pairs.
3. erécta, Thunh. Extraordinarily variable: shrub to small tree, glabrous, pubescent, or almost strigose : lvs. broadly orate, obovate or elliptic (lanceolate in var. Sieboldii), entire or with here and there a lobe, or rather coarselydentate above the middle: fr. single or in pairs, peduncled or subsessile, and either globose and not stalked or pear-shaped and long-stalked. Himalayas. China, Japan. B.M. 7550 (where the Irs. look rather leathery). Procurable through dealers in Japanese plants.

FFF. Nerves about 3 pairs.

4. macrocárpa, Wight. Becomes a large, climhing tree: lvs. 5 in . long, membranous, broadly ovate; petiole $2-21 / 2 \mathrm{in}$. long: fr. $1-2 \frac{1}{2}$ in. thick, spotted, globose, in cauline clusters. India. - This name was once adr, by John Saul, who spoke of the plant as a shrub with leathery les.

> EE. Les. deeply lobed, not merely wary.
5. quercifolia, Roxb. The oak-leaved form is the typical one, but King includes F. humilis, Roxb., in which the lvs. are serrate or nearly entire and not lobed, Lrs. 2-5 in. long, "thickly membranous;" nerves $5-7$-pairs; petiole $1 / 2-1 \mathrm{in}$. long: fr. in axillary pairs, egg or peashaped. Burma, Malaya, where it is a shrub, often creeping or decumbent. L.B.C. 16:1540 (fruiting soon after importation, when 2 ft . high). Adv. 1895 by Pitcher and Manda. Voss refers this, with many other synonyms, to F^{\prime}. heterophylla.

> DD. Foliage variegater.
6. Parcelli, Veitch. Lrs thin, membranous, light green, mottled with cream-white, more or less in the
manner of mosaic, oblong-oval, acuminate, dentate. 1slands of Pacific. F.S. 22:2273. F.M. 1874:124.-lnt. by Veitch about 1874. A warmhouse shrubby plant; probably the most popular of the rariegated forms of Ficus. J. D. Eisele says it is readily prop. by cuttings of balfripened wood placed in sand in brisk buttom heat Also cult, in S. Calif., where it bears tricolored fr.

cc. Cnter surface of young 1 rs , rusty.

7. rubiginòsa, Desf. (F. austrùlis, Willı.). Lrs. leathery, rounded or cordate at hase, wotched at tip: fr. mostly in pairs, globular, $5-6$ lines thick, usually warty. Australia, where it thro's out aërial roots like the Banyan Tree. B.M. 2939.- The rusty color is a beautiful feature. Voss considers this a form of F. elastica.

> BB. Hubit climbing or trailing.
c. F'orm of les. orate, obtuse, unequally heart-shaped at buse.
8. pùmila, Linn. (F. stipulàta, Thunb. F. rèpens, Hort., not Rottl.). Creeping Fig. Fig. 819. Prostrate or climhing shrub, clinging close to conservatory walls and then flattened. Lrs. more or less 2 -ranked, on very short petioles, ovate, ohtuse, entire or slightly wavy, rounded or cordate at the base, often unequally; veins prominent helow. Japan, China, Australia. B.M. 6657. R.H. $1891: 448$. (i.C. 11. $14: 550$, 561,717 . Var. minima (\boldsymbol{F}. minima, Hort.) bas smaller ivs. The species is sometimes used for banging baskets.
cc. Form of lus, oblong-acuminate, slightly notched at buse.
9. radlcans, Desf. Garden plant, with green, oblongacuminate Irs, and trailing habit. Imperfectly known. Habitat unknown. Var. variegàta, Hort. W. Bull., has Ivs. irregularly marked with creamy white, the variegation beginning at the margin. G.C. 11I. 22:185. A.G. 19:527. Int. 1897.
AAA. Cult. outdoors in southern Fla, and Calif. for shade, etc., hence often tall trees.
B. Arrangement of les. usually opposite.
10. hispida, Linn, f. (F. oppositifolia, Willd.). Shrub or small tree: lvs. entire or toothed: fr. clustered on old wood or leafy branches, hispid, yellowish. Asia. Trop. Australia.

> BB. Arrangement of lis. alternate.
C. Texture of lvs. membranous, not leathery.
D. Lus, tapering to a point ; base entire, obtuse.
11. glomerata, Roxh. Cluster Fig. Lvs. 4-7 in. long ; nerves 4-6 pairs: fr. clustered on leafless, scaly hranches, pear- or top-shaped, $: 11 / 4 \mathrm{in}$. thick, reddish. India, Burma. - "A quick-growing, evergreeu shade tree."-Reasoner. "A dense shade tree: lrs. have a peculiar metallic luster: small fruits, much relished by cattle and children."-Franceschi.
DD. Lr's. with an abrupt, short, acuminate apex; base notched.
12. infectòria, Roxb. Lus. $31 / 2-5 \mathrm{in}$. long; nerves 5-7 pairs : fr. in axillary pairs, sessile, globose, $1 / 4 \mathrm{in}$. thick, whitish, flushed and dotted. Trop. Asia, Malaya.Grows 60 ft . high, and is one of the best shade trees.
ce. Texture of les. leathery, not membranous.

> D. Ender surface of liss, rusty.
13. rubiginòsa, Desf. Described at No. 7.

DD. Under surface of les. not rusty.
E. Stipules very large, rosy, inclosing the young lvs. when young and falling off afterwards.
14. elastica, Roxb. Descrihed at No. 2.
15. macrophỳlla, Desf. Moreton Bay Fig. Lus. $6-10 \mathrm{in}$. long, 3-4 in. wide: stipules $2-4 \mathrm{in}$. long: fr . nearly globular, 9-12 lines thick, axillary, in 3 's or 4 's, on short, thick peduncles. Austral. - Much planted in southern and middle California, where, however, it does not perfect seed. F. con Mueller says it is perhaps the grandest of Australian avenue trees.
ex. Stipules not exceptionally large and not rosy or deciduous.
F. Young lis. densely corered with wool beneath.
16. Palmeri, Watson. Tree, $8-12 \mathrm{ft}$. high, branching near the ground: lvs. 3 in . long, $2-2 \frac{1}{2} \mathrm{in}$. wide ; petiole 1 in. long : fr. in pairs, axillary, globose, $1 / 2 \mathrm{in}$, thick. Discovered on San Pedro Martin Island, northwestern Mexico, 1887. - Perhaps the best adapted to severely hot and dry places. Franceschi says it attains 30 ft .

> FF. Young lus. not woolly.
> G. Base of les. narrowed.
> H. Stipules glabrous.
17. retúsa, Linn. (F^{\prime}. nitida. Thunb., and Hort., not Blume). Lvs. 2-4 in. long; nerves 5 or 6 pairs; petiole 3-6 lines long: fr. sessile, in pairs, axillary, 4 lines thick, yellow or reddish. Trop. Asia, Malaya.-A large evergreen tree with a few aêrial roots.
18. aùrea, Nutt. Branches pale, smooth, furrowed : Ivs. 3-4 in, long, smooth, oblong, entire, narrowed but obtuse at each end, stout-petioled: fr. orange-yellow, globose, 4 lines thick. S. Fla.-Reasoner says it is a handsome decorative plant for the florist, and that it grows 60 ft . high. Chapman descrihes it as a small tree; he says nothing about stipules. Tender in Sauta Barbara.

нн. Stipules nol glabrous.

19. Indica, Linn. Not the Banyan Tree. Glahrous throughout, except stipules: lvs. $i-7$ in. long ; nerres about 4-6 pairs, not very prominent ; petiole 4-12 lines long; stipules $6-9$ lines long : fr. in crowded pairs, sessile, globose, smooth, yellowish red, 4 lines thick. Trop. Asia, Malaya, - This species is greatly confused in botanical literature with F. Benghulensis, but F. Indica does not take root from its hranches, as does the Banyan Tree, In recent writings F. Indica is often given as a synonym of F. Renghalensis, but the distinctions here given are those made by King, in Flora British India $5: 499$ (1890). Tree grows 50 ft . high.

GG. Base of liss, rounded.

H. Nerves about 5 pairs: li's. 4-8 in. long.

20. Benghalénsis, Linn. Banyan Tree. Also written Bengalensis. Young parts softly pubescent: nerves prominent; petiole 6-18 lines long; stipules 9-12 lines long: fr. in pairs, sessile, globose, puberulous, red,

21. The Creeping Fig on a conservatory wall.

Ficus pumila, better known as F. repens or F. stipulata.
about the size of a small cherry. Trop. Africa, India. A tree, $70-100 \mathrm{ft}$. high, rooting from the branches, thus forming accessory trunks and extending the growth of the tree indefinitely. For an explanation of the confusion between Benghalensis and Indica, see Hooker's Flora Brit. India 5:499, 500.
HH. Nerves about 8 pairs: les. $4 \frac{1}{2}-7 \times 3-4 \frac{1}{2}$ in. long.
21. religiosa, Linn. Peepel Tree of the Hindoos. Petiole 3-1 in. long; stipules minute: fr. in axillary pairs, sessile, dark purple, $1 / 2$ in. thick. India, Gn. 1, p. 435 . - Grows 100 ft . high, and the lvs., suspended on their long, flexible petioles, rustle in the slightest breeze.
F. Afzélii, G. Don, is a plant from S. Afr., never described by Don. The plant in the trade is said to be F. eriobotroides. Once advertised for indoor ornament by Pitcher \& Manda.F. carnósa, Hort. Advertised 1895 by Pitcher \& Manda for indoors. - F. Chauvierii, Hort. In Europe this is said to be second only to F. elastica. Franceschi says it has broader aud more oval lvs., and comes from New Caledonia, where it attains 60 ft . J. D. Eisele says that it has oval lvs. with creamy white veins, is stroug-growing, and should be valuable for subtropical gardening. - F. Cooperi, Hort, is cult indoors from trop. Amer. Advertised 1895 by Pitcher \& Manda. $-F$. Cunninghami is a new species of great size, producing aërial roots : introduced hy California Experiment Statiou, and recommended by Reasoner Bros. for house culture in the South. Presumably soner Bros. for house culture in the South. Presumably known. See E. Afzelii. $-F$, falcita, Miq., is cult, but not advertised. A creeper with lvs. often of 2 forms, leathery, tes selately dotted and colored beneath. It is a form of F. punctata, with lvs. oblong or subrhomboid, obtuse, not tapering below. India. Before No. 8 in the key. -F. lucida, Dryand. From India, but not deseribed in Flora of British India. Advertised 1893 by John Saul for indoors.- F. princeps, Kunth \& Bouché. Braz, Cult. by Franceschi, who says it grows 60 ft . high and has magnifieent foliage, which is bronze and copper-colored when young- F, purifolia may be F. Benjamina, ereeta, Fontanesii or ruhra. The name is advertised by Yokohama Nursery Co., who also advertise F. erecta.
W. M.

Fices elastica, or the Rubber Plant as it is known all over this country, is perhaps the most popular and satisfactory house plant that has ever been cultivated. It is a plant for the million. Some florists have several houses especially devoted to the propagation and cultivation of this tough and thrifty plant. There are also thousands upon thousands of young plants or rooted cuttings from thumb-pots imported into this country, especially from Belgium and Holland, for marketing every spring. It is estimated that from 75,000 to 80,000 Ruhber Plants were sold in America during the last year. There are several varieties of the Rubber Plant, but the true Ficus elastica is the best, both for growing and for selling. It can he eaxily told from the smallerleaved variety, which is smaller and lighter colored in all its parts, the stem beiug smoother, and the sheath that covers the young leaves lacking the hrown tint, which often runs into a bright and heautitul Indian red.

The method of propagating now popular in America employs old, hushy stock-plants, either in pots or tubs, or planted out into a bed where the night temperature can be kept from 60° to $75^{\circ} \mathrm{F}$. As soon as the young shoots are $5-6$ in. long they are operated upon. An incision is made at the place where it is intended to root the young plant, cutting upward on a slant midway between two eyes, making the cut anywhere from $1-2$ in. long, according to the thickness and length of the young shoot or branch. A small wedge, as a piece of match, is then inserted to keep the cut open. A large bandful of clean, danap, well prepared moss is then placed around the branch to cover the cut and is tied moderately firm with twine or raffia. Some use a small piece of charcoal for a wedge in the cut; others coat the two cuts with a mixture of charcoal dust and lime. The latter practice, in the opinion of the writer, is beneficial in that it expedites the callusing of the cuts and the rooting of the young plant after being cut and mossed. The moss should be kept constautly moist, and the higher the temperature, within reasonable limits, the quicker the rooting process goes on. The roots of the young plant usually appear on the outside of the oval-shaped bunch of moss. A complete cut can then be made helow the moss and the young plant potted. The smaller the pot at first the better. The leaves of the young plants should be tied up in order that they may not be injured by coming in contact with one another or by lying flat on the pots. The young plants now require a gentle bottom heat and frequent syringing, - a dozen times on clear days. As soon as the young plants are taken from the stock-plant, a little wax should be put on the end of the cut to prevent the milky sap from escaping. The hest time of the year to propagate and root Ficus is from the first of January to May. The European growers never start much before the Christmas holidays; and from then until spring they make all their cuttings.

The older method of propagating Rubber Plants is still the favorite one abroad; it employs single-eye cuttings. Sometimes, if the branches are very thick, only one-balf the stem is taken with the eye and a single
leaf, the leaf being curled up and tied with raffia, and the small piece with the eye set into the propagating bed. This is a bed of sbarp sand, or sometimes of sand and chopped sphagnum moss or fine cocoa-fiber. Frequently the single-eye cuttings are put at once into the smallest sized thumb-pot, with a mixture of very finely ground potsherd and charcoal filling about one-half the pot, and either soil or sand for the balance. A small stick is used to hold the leaf upright. These pots are plunged into the propagating benches in either sand,

820. Ficus elastica, the Rubber Plant of florists.
moss or fiber, and a steady bottom heat of from 75° to 80° is applied and kept up until the plants are rooted. As a rule, such beds are inclosed in a glasshouse, in order to keep about them close, warm and moist atmosphere. Only ventilation enough to permit the moisture caused by the evaporation to escape is allowed on these beds. In this country, propagation by the first described method can be continued nearly all the year round. From experience of both methods, the writer can say that the top-cutting and mossing process is better by far, especially where plenty of stock plants can be maintained.
After being shifted from the smaller sized pots into 3 - or 4 -in. pots, the young plants will stand a great deal of liquid manure as soon as they are rooted through or become somewhat pot-bound. Many propagators plant out the young plants from 3 - and 4 -in. pots into coldframes after the middle of May, or when all danger of night frost is past. They do very well in the bright, hot, open sun, but must receive plenty of water. After being planted out in frames, they should be potted not later than September, and for early marketing as early as in August. The plan of planting out and potting in the later part of summer or early autumn is a very practicable one, as the plants do not suffer so much from the severe heat during the summer.
H. A. Siebrecht.

Within recent years a much-hranched or tree-shaped style of Rubber Plant has attained a considerable degree of popularity. It is possible to produce such a plant by topping it at any desired height while it is in a free growing condition. However, the best shaped plants are obtained only by natural branching. In order to induce Rubber Plauts to branch freely without the intervention of topping, it is necessary to keep the plants dry and cool for two or three months in the spring, in order to get them thoroughly rested. Then plant them in a frame or in open ground that has been
highly fertilized, and give plenty of water. When the plants start into growth they will be inclined to "break;" that is, to make branches from the axils of many of the leares all along the stem. By this method handsome, tree-shaped specimens of the Rubber Plant may be secured by the following autumn.
W. K. Harris.

FIG is Ficus Curica, a native of Asia. See Ficus. It is a warm-temperate fruit, although it will stand 10 to 20 degrees of frost under farorable conditions. It was early introduced into North America, but excepting on the Pacific coast it has never been more than an amateur fruit. It has been known to fruit in the open in Michigan without other protection than a high board fence inclosure, but usually if grown borth of Philadelphia the plants are lifted in early November, with good balls of earth, kept in a dryish cellar over winter, and planted out the next spring. From Philadelphia to the Carolinas they may be bent to the ground and corered with earth or pine boughs. The fruit is borne on the young wood, and often on young trees. Tbis fruit is really a hollow pear-shaped receptacle with many minute seeds (botanically fruits) on the inside; it grows like a branch from the side of the shoot. Inferior, runwild forms are frequent in the southern states, where they are sometimes called "old man and woman" by the negroes. Figs may be growa under glass, being planted permanently in a border after the manner of hothouse grapes. They usually bear better if the branches are trained more or less horizontally. Two or more crops may be expected in one year under glass. Eastern nurserymen sell Fig trees. As early as 1833 Kenrick ("New American Orchardist ") described 23 varieties. Popular varieties for amateur cultivation in the east are Turkey, White Genoa, Black and Brown Ischia. In order to facilitate the ripening of the fruit in cool climates or under glass, it is a custom to dress the surface of the nearly full grown Figs with sweet oil. As a dessert fruit Figs are usually eaten in the fresh state, in which condition they are scarcely known to people in cool climates. They are also cooked. The commercial Fig is the dried fruit.

The Fig is propagated rery easily from hardwood cut tings, as grapes are. Take cuttings in the fall, cutting just below a bud. If wood is scarce, single-eye cuttings may be used, being started preferably in a frame. From cuttings, bearing plants may be expected in 2 to 4 years. New varieties are obtained from seeds.

Various fruit books give directions for the growing of Figs. Publications in Califormia and of the Uuited States Department of Agriculture discuss them. But the only independent American writing seems to be James T. Worthington's "Manual of Fig Culture in the Northern and Middle States," Chillicothe, Ohio, I869. Although regularly copyrighted, it is a pamphlet of only 10 pages. It recommends the laying-down of the trees in late fall and covering them with earth. This practice gave better results than covering with other material, or carrying the trees over winter in cellars, either in tubs or transplanted from the open.

Incideut to the commercial cultivation of Figs in California, there has been much discussion of tbe necessity of caprification or fertilization by means of the Fig wasp. The necessity for caprification, as well as the nature of the process, was first establisbed by Dr. Gustav Eisen; see "Biological Studies on Figs, Caprifigs and Caprification" (Proc. Cal. Acad. Sci. Ser. 2, Vol. V. 1896). In this paper Dr. Eisen demonstrates for the first time that there are three distinct classes of edible Figs, those which here have been termed Smyrniaca, Hortensis and Intermedia, and that some of these required caprification and otbers not. Another point established by him was that caprification was entirely a process of pollination, and not due to the sting of the Fig insects, as had been previously held hy certain investigators. In this and other Fig work, the United States Department of Agriculture has taken an active part. Dr. Howard, U. S. Entomologist, has done much towards introducing the wasp. As early as I890, H. E. Van Deman, then U. S. Pomologist, introduced a few cuttings of the Smyrna Fig and large quantities of the Capri, and these were distributed in the Fig-growing sections of the country. The Smyrna Fig was first band-pollinated in 1891 by

Dr. Eisen at Niles, Calif. The wasp was introduced several times without suceess, but the Department of Agrieulture took hold of the matter in 1898, and in 1899 succeeded in establisbing the inseet (sent from Algeria by Mr. Swingle) in Mr. Roeding's orchard at Fresno, ('alif.
For further notes on Figs, see Bulletin No. 5, Division of Pomology, U. S. Dept. of Agrie., by Gustav Eisen (1897), Bulletin 20, new series, Division of Entomology, Dept, of Agrie., and various California writings. A recent full aceount of Smyrna Figs, by J. Burtt Dary, is in the Pacifie Rural Press, Nor. 25, 1899.
L. H. B.

Fig Celtlre in the Carolinas. - Enthusiasm in regard to Fig culture in the eastern part of the country has been very much dampened by the two or three severe winter spells of late years. Several methods of winter protection have been tried. A plan, whieh was so suceessful in northern Maryland, of bending them down and mounding with earth, will not do in North Carolina and sonthward. If the soil froze up and remained frozen, as it does in northern Maryland, it would be all right. But here there is more warm than cold weather in winter, and during the warm and wet spells the buried branehes simply rot, and are worse off in the spring than those to whieh no protection is given. In normal winters most varieties of Figs get along very well without protection, but when the mercury drops to 10° or 12° above zero, eren if the wood escapes, the early crop is destroyed. When the trees are branched in bush form from the ground, the best protection here is to bend them down to the ground and eover thickly with green pine boughs. If in standard shape and kept pruned so, the best method of all is to thateh the entire tree with corn stalks and broom sedge, placiug a thiek layer of eorn stalks upright around the body of the trees, and tying them in closely at the top and banking the earth up against the butts, and then to thateb every limb separately with broom sedge, tying as we go. The trees come out in better shape from this than from any other morle of protection. There is a great deal of difference in the natural hardiness of the different varieties. The Celestial is one of the hardiest. Doree Narbus is reputed the hardiest in California, but was killed outright here. Next to Celestial comes the Brown Turkey, the Brunswick and Pegustrata. Adriatic is too tender to be of any use in North Carolina. Station Smyrna, from the California Station, seems to be almost as hardy as the Celestial. A few years ago Brown Turkey Figs were plentiful in the Raleigh market at 75 cts. per bushel, but for two or three years past hardly any bave been offered.
W. F. Masses.

Fig in California. - The Fig, a native of southwestern Asia, is one of the most ancient, beautiful and valuable of all fruit trees, and its more general culture in suitable distriets of the United States is mueh to be desired. There are several recognized botanical varieties of the Fig (Fi^{i} cus Carica), of whieh the following can be noted: (1) Ficus Carica, var. syluestris, the wild Fig of Asia Minor, eommonly ealled the Capri Fig. The fruit of this kind is not edible, but the little Fig wasp (Blastophaga psenes) breeds therein. (2) Ficus Carica, var. Smyrniaca, the true Smyrna Fig, whieh does not mature its fruit unless the flowers are eross-pollinated by hand or by the friendly agency of the Blastophaga, which pollinating is termed eaprification. (3) Ficus Carica, var. hortensis, the eommon Fig of gardens and orchards. (4) Fieus Carica, var. intermedia, a type of Fig which matures one crop, but needs cross-pollination for the main, or second crop.

The last three of the above four botanical varieties of Figs, espeeially the third, have become the parents of many hortieultural forms. The best drying Figs of commeree belong to the second class, Smyrniaca, while nearly all of the fine table and preserving sorts are varieties of hortensis. Nearly all eultivated varieties of Figs yield three erops, more or less distinct according to the variety, the location and the season. The seeond erop is the important one, but the first crop in some varieties is much esteemed for table use. Ripe Figs can be gathered in many California Fig orehards from late in July until rains and frost destroy the fruit.

Figs have been grown on the Pacific eoast for much more than a eentury. Trees were probably at Loreto

Mission, Lower California, before 1710 , and reached the Alta California Missions soon after their estahlishment. Vancouver found Fig trees at Santa Clara in 1792. At the present time the Fig is cultivated in almost all parts of the state of California. The tree stands a range of temperature of from 18° to 120° Fahr., and the only portions of California really unsuited to its growth are certain eold or foggy distriets. In the drier parts of the state it needs irrigation, as do other fmit trees. Some of the old Fig trees in California are of immense size.

It is not uncommon to see trees with trunks of more than 2 feet in diameter. One tree in Stanislaus eounty is 60 fect in height, covers a eirele 70 feet across, and bas a trank that girths 9 feet. The great Banyanlike Fig tree at General Bidwell's, Butte county, illustrated in the Century Magazine for October, 1892, has trailing or descending branches, which have taken root at many places, and the whole group now covers a cirele more than 150 feet in diameter.
larieties. - There are many horticultural varieties of the Fig, probably not less than 150 distinct sorts in eultivation under iunumerable synonyms. Their classification is by shape, color of skin and color of flesh. The shape is round or turbinate in some sorts ; pyriform or obovate in others. The skin varies in eolor in different varieties from green, through pale yellow, buff, light hrown, reddish brown and purple, to black. The flesh is almost white, opaline, or various shades of red; it ean be deseribed as melting, spicy, juicy, coarse or even dry in a few old-sorts which seem but a few removes from the wild. The size varies from sorts hardly as large as a green-gage plum to others that sometimes weigh 4 or 5 ounces apiece. The Fig most often planted in California eame from the old Missions, and is known as California Black, a bardy and very productive sort. Properly dried it is an excellent Fig, but the dark color renders it less marketable than the white varieties. It is a very popular table Fig. The white Fig most generally planted in California is the so-called "W'hite Adriatic," which is the "Grosse Verte" of France and the "Nebian" of Hogg. The best dried Figs yet produced commercially in California are of this variety, which does not need caprification. There is a large and inereasing demand for California dried Figs, which are
not yet equal in quality to the Simyrna product, but can be sold at a lower price.

The following ${ }^{5} 5$ rarieties of Fig are now freely cultivated in Califormia, and extensively grown by the nurseries: Adriatic (Grosse Verte), Ageo, Angelique, Black 1scbia, Black Marseilles (Black Provence or Reculver), Bourjassote Blanc, Brown Turkey, Brunswick, Calitornia Black, Capri, Celeste (Celestine), Col di Signora Nero, Drap d'Or, Du Roi, Grossale, Ladaro, Negro Largo, Ronde Noire, Ronde Violette Hative, Royal Vineyard, Sau Pedro, Smyrna, White Genoa (Girosse Marseilles), White Ischia, White Marseilles (Petite Narseilles). The California Experiment Station has grown at various places the above 25 varieties, and, in addition, about 35 others, thus testing a collection of some 60 sorts, and these have been widely distributed for 6 or 8 years. The list includes Abondance Precoce, Brianzola, Black Brogiatto, Bellona, Bordeaux, Brown Ischia, Dulmatian, Doree Narbus, Rocardi, Ruhrado, Verdal Longe, 3 varieties of Smyrna, Osborne Prolific, Pastiliere and an especially fine variety, Hirta du Japon, a medium-sized, turbinate, dark purple Fig with yellowish white flesh and high quality. This last named variety, with Augelique, Early Violet, Brown Turkey and a few others, is excellent for house culture or forcing. The best sources in France, Spain and Italy have been drawn upon for the various importations of Figs upon which these collectious are based.

Acreage. - About 5,000 acres of land in California have been planted in Figs, mostly in small tracts seldom exceeding 20 acres. The leading Fig counties, as far as area is concerned, are Los Angeles, Santa Bar bara, San Bernardino. Butte and Fresno, but the counties of Alameda, Santa Clara, Solano, Saeramento, Stanislaus, San Joaquin, Placer, Yuba, El Dorado and Shasta contain some of the finest groves and specimen trees.

The Smyrna Figs.-After many attempts, the true Smyrna Figs were introduced on quite au extensive scale by the San Francisco Bulletin in 1882, by the late James Shinn, and by George Roeding, of Fresno. From these different importations, California became well stocked with both the Capri and Smyrniaca types. The Fig wasp was obtained in July, 1891, by James Shinn, but the locality was unsuited to its propagation. It was again introduced at various times by the United States Department of Agriculture and hy Mr. Roeding, until it now seems to be fairly well established at Fresno. The Smyrna Fig was first hand-pollinated in 1891 at Niles and also for several seasous at Fresno, producing Figs which when dried were of superior quality. In 1899 Mr. Roeding's Smyrna Eligs, caprified by the little Fig wasp, bore a Fig crop. Several large orchards of the true Smyrna Figs, in various varieties, and many Capri Fig trees are ready for colonies of this useful Blastophaga, and it is hoped that a new industry can now be developed in various parts of California.

Propagation. - The Fig grows very readily from cuttings. Use well ripened wood of the previous season's growth, cut at the joint, and give them the same treatment required for grape cuttings. They will even grow from single-eye cuttings. Bottom heat is not necessary in California, where the cuttings are set in the nursery in December or January, and are ready for the orchard in a year. In the eastern states, winter-made euttings can be started with bottom beat, or in the open air in April.
Budding is best done by the annular or ring method so useful for the chestnut and walnut. The Fig can be cleft-grafted, say in February in California, but extreme care must be taken to exclude the air. Seedlings are easily grown from the fertile seeds of the imported Smyrna Figs, and from the few fertile sceds occasionally appearing in common varieties.
Planting, C'ulture, ete.-The Fig tree in California requires much space, hence it is used as on avenue tree, or if in orchard form other trees are set between, to be afterwards removed. In good soil Fig trees, like walnuts, should finally stand not less than 40 feet apart.

Little pruning is required for the Fig. Trees grown for table Figs are headed low, about 18 inches from the
ground, to facilitate picking. Trees grown for drying Figs are headed bigher, so that the ground can better be kept smooth and clean, for the Figs are usually allowed to ripen and fall. Cultivation is necessary until the trees completely shade the ground.
Figs begin to bear early in California, often the second or third year. Some trees prove barren, or very poor bearers, and must be replaced by others. Cuttings for propagation should always be taken from well-matured wood of bearing trees. The tree appears to be as long-lived as the olive, has very few insect enemies, and is not subject to disease. The fruit in some distriets in some seasons ferments on the trees ("Fig-sour"). This sometimes seems to come from over irrigation, sometimes from lack of vitality, and more often occurs with very juicy and tender sarieties.
Caprification.-The problems connected with Fig eaprification bave long been discussed, and the necessity for the process has been strenuously denied by many writers. But there is no douht that Figs of the true Smyrna type cast their Figs unless caprified, for old trees are now growing in Califoruia and bear no crop. Cases otherwise reported prove to be of some different, or hortensis, variety. Fig caprification bas been discussed in various papers in the publications of the State Board of Horticulture, by Dr. Eisen and others, in the publications of the Divisions of Pomology and Entomology, at Washington, and by W. T. Swingle in Science, October 20, 1899.
The true Smyrna Figs, which are of several varieties, and doubtless capable of much improvement, yield two crops, the first of which fails, because no pollen is then obtainable from the wild or Capri trees. Both earlier and later varieties of wild Figs than we now have are needed by horticulturists. The wild Fig now produces three crops, but only one is useful for caprification; the others are barren of pollen, but are necessary to maintain the Fig wasp. Only 30 Capri Figs are needed to caprify a large Fig tree, so abundant are the insects and the pollen in good seasons, and one tree of the wild Fig is sufficient for one bundred Smyrna trees. The male of the Fig wasp is without wings, but the female has wings and saw-like mandibles; she cuts her way through scales which interlock over the apex of the balf grown Smyrna Fig. She loses her wings in entering, dies in the Fig, and is absorbed by the vegetable cells; if her eggs are deposited they also perish, and the continuance of the species depends upon those individuals that remain upon the wild Fig trees. The whole story is one of the most interesting known to entomologists.

Fig-drying in California (Fig. 822). - The foreign methods so far as tested in California are not practicable under labor conditions, and not entirely satisfac tory in any case. Some growers let Figs fall from the trees, picking such as shrivel on the trees without dropping ; others let all the Figs fall. Picking is best with the finer sorts. Allow the Figs to shrivel on the trees; pick with great care, place on slat trays, bloomend down, and subject to sulphur fumes, if
hleaching is desired. Expose to the sun; turn the fruit over in

822. Young Fig tree, and Fig-drying in open air. California.
next day begin to "Fig-pull", or press each Fig between the fingers to keep it from "drying hard." In 4 or 5 days the Figs can be placed in the shade, and in a day or two "dipped" in boiling water, to further reduce the coarseness of the skin, close the pores and color the fruit.

Subsequent sweating and "processing" vary much as with prunes, raisins and other dried fruits. Exceeding care, cleanliness and long experience are all-important in the production of a high-grade article.

The dried Fig crop of California is large, and increasing. In 1886 the total product was but 100,000 pounds. In the 5 years ending with 1899 it was $14,945,000$ pounds, an average of $2,989,000$ pounds per annum. White Adriatic, Black Californian and to a small extent White Marseilles were the varieties producing this amount.

Culture in the eastern states. - The culture of the Fig in the northern aud middle parts of the United States is extremely interesting, but is essentially different from California methods, or even from those prevailing in the southern states. The tree is not hardy enough to endure the climate excepting when grown as a bush, and protected in winter, usnally by covering it with several inches of soil. In the sonthern middle states a heavy covering of straw or of evergreen branches is often sufficient. The first crop of fruit is all that can usually be expected in the extreme nortb; the second erop sometimes ripens in the middle states.

South of Virginia, many varieties of Fig are readily grown in the open ground. The experiments of Berckmans, Massey, Normand, Reasoner and others plainly show that the Fig is well adapted to a large area of the southern states, but chiefly for table use-not for drying, which seems to require a less moist summer atmosphere. The Fig cannot be carried far to market in a fresh state, and therefore its extended cultiration to supply local demands will long be profitable. Even in California the fruit markets are with difficulty kept supplied, and many large towns seldom have fresh Figs on the stands.

Charles H. Shinn.
FIG. Adam's F. is Musa paradisiaca. Barbary F., Opuntia vulqaris. Devil's F., Argemone Mexicana. Hottentot's $\mathbf{F}_{.,}$Mesembryanthemum edule. Indian $\mathbf{F}_{\text {, }}$ Opuntia v'ulguris. Keg F,, Diospyros Kaki. Pharaoh's F., Sycomorus antiquorum.

FIG-MARIGOLD. Mesembryanthemum.

FILAGO Germanica, the Cotton Rose, is a cottony annual plant somewhat like Leontopodium, which is now and then collected by tourists and dyed like immortelles. It was called Herba impia by the old herbalists, because a new generation of clustered heads rises out of the parent cluster as if undutifully exalting itself. Fully described in botanies.

FILBERT. Old World species of Corylus.
FILIPENDULA. See $!/ 7$ maria.
FINGER GRASS. Species of Chtoris and Pinicum.
FIORIN. Agrostis stotonifera and alba.
FIR should not be used to mean anything outside the genus Abies, but popularly it includes many trees known to nurserymen and others as Picea. Fir is also used loosely and inaccurately to include conifers of other genera.

FIRE-CRACKER, FLORAL. See Brevoortia.
FIRE-ON-THE-MOUNTAIN. Eıphorbia heterophylla.

FIRE-PINK. Silene Firginica.
FIRE-PLANT is Euphorbia heterophylla.
FIRE-WEED. Epilobium angustifotium and Erechtites hieracifolia.

FISH-GRASS. See Cabomba.

FITTONIA (Elizabeth and Sarah Mary Fitton, authors of "Conversations on Botany," and friends of Robert Brown). Acanthdcea. Three species of low-growing Peruvian herbaceous perennials, valued for the brilliant variegation made by red or white renation of their large, heart-sbaped lvs. Fls, borne singly in the axils of the overlapping bracts, which form a peduncled, terminal
spike; calyx segments linear-bristly; corolla tube slen der; lip long, narrow, shortly lobed at the apex.

Fittonia argyroneura (Fig. 823) and F. Verschaffeltio are among the showiest and most satisfactory of tropical trailing plants that are grown for their foliage. Heat, moisture and shade are the main factors in their culture. They are standard plants in all the finer collections, and require a closer atmosphere than that of the ordinary living room. They are chiefly grown in wide, shallow pans on wire frames filled with moss and peat, some sand, and a little very finely rotted manure.

823. Fittonia argyroneura ($\times 1 / 4$).

They can be trusted with the most conspicuous position, as they are always on dress parade. They look well on a corner, with the pan tilted up somewhat so that some of the foliage may hang down. It is a good plan to place the pan on a small inverted saucer in a large saucer of water chiefly for the sake of a continuous supply of moisture, but also to foil the slugs, which are about the only enemies of these fine plants. A fine, large specimen can be quickly and easily secured by the use of a number of small plants. As fast as they grow they can be pegged down in their porous rooting medium. If a specimen has to be neglected for a long while it can be quickly renewed by covering with a little soil the bare portions of stem and pegging them down.
Fittonias are also amoogst the finest elements in "pyramids" or mounds along with Philodendrum. Cis sus discolor, Episcea cupreata, Nephthytis and Selaginellas. There is often a bare, unsightly space under the benches that can be transformed into a tangle of tropical creepers by the use of such plants. A board can be placed slanting toward the walks and covered with rotten stumps, chunks of peat, and moss for the plants to run in. The open borders near the walks have hardly good enough drainage. They can also be pegged down in mossy coverings for tubs of palms, as they can stand unlimited watering. On the whole, they are ideal plants for tropical conservatories, and it would be hard to orerstate their merits.

A. Habit erect : height $11 / 2 t t$.

gigantèa, Linden (Gymnostàchyum gigantè, Hort.). Suhshrubby, branching: stems reddish violet only between the joints, with 4 ranks of silky, wbite, erect hairs : lrs. opposite, elliptical, not notched at the base, with 2 ranks of hairs, tapering more than in the other species, dark, shining green; reins carmine-red: fls. pale, with a reddish brown band in the middle of the side and upper lobes, and a dark yellow spot in the middle of the lower lip. R.H. I869, p. 186. 1.H. I6:611.

AA. Habit trailing: height about 6 in .

 B. Veins red.Verschafféltii, E. Coëm. (Fittonia and Eranthemum rubronervem and rubrovenosum. Hort. Eranthemum
rubro-venium, Veitch. Gymnostachyum lerschaffeltii, Lemaire). Lrs, ovate, notched at the base, dull green, often yellowish, veined carmine. F.S. 15:1581. 1.H. 10:372. Var. Pearcei (\boldsymbol{F}, and G. Pèarcei, Hort.). Lvs. light, bright green ; Feins light, bright carmine ; under surface somewhat glaucous. Var. Dàveana (F, Dareana, Hort.). Once sold by J. Saul. "Foliage with light ceuter, bordered very dark green." More rohust than the type and with veins of stronger red.

B. Veins white.

argyroneùra, E. Coëm. Lvs, dark, shining green. F.S. 16:1664. Gn. 36, p. 527 , and 2, p. 319. - The velvetiness of the upper surface of F^{*}. Verschaffeltii is due to large, projecting epidermal cells with an apical nucleus. Instead of these characteristic cells, F^{\prime}. argyroneura has small cells and conical hairs, which are partitioned off and have tubercles at the base.

Robert Shore and W. M.
FIVE-FINGER. Potentilla.
FLACOÚRTIA (Etienne de Flacourt, 1607-1660, General Director of the French East India Co., Governor of Nadagascar and author of a history of Madagascarl. Bixdcece. This genus contains a spiny hedge and fruit plant called the Rambustan or Governor's Plum. It is a dense-leared plant with purple fruits, grown only in S. Calif. The whole order, with its 29 genera and 160 species, contains no plants of garden value except a few Azaras and Aberia Caffia, another tropical spiny bedge and fruit plant. Lvs. short-stalked, toothed: fls, small, diocious, in small racemes or glomes ; sepals 4-5, seahlike, ciliated, overlapping; petals none; stamens many; styles 2 to many : ovary $2-5$-celled: fr. a berry. In Aheria the sepals scarcely overlap. F. Ramontchi, L'Hérit., the Governor's Plum, comes from India, Malaya and Madagascar.

F. Franceschi and W. M.

FLAG, Iris. Cat Tail F., Typha. Corn F., Gladiolus. Sweet F., Acorus Calamus. Yellow F., Iris Pseudacorus.

FLAME-FLOWER. Kniphofia aloides.

FLAX. As fiher plants are treated only incidentally in this work, the reader is referred to certain publications of the Department of Agriculture. Report No. 10 of the Office of Fiber Inrestigations contains 80 pages, published in 1898. Farmers' Bulletin No. 27, published 1895 , is a summary in 16 pages. Another summary may be found in the Year Book for 1897. Flax is occasionally cult. for ornament, and is therefore described under Linum.

FLAX, False, is Camelina. New Zealand F., Phormium tenax. Toad F., Linaria.

FLEABANE. Erigeron.

FLEmfNGIA (John Fleming, Pres. Medical Board of Bengal; author of "A Catalogue of Indian Medicinal Plants and Drugs"). Leguminósre. This genus includes two shruhs, cult. only in S. Calif. and S. Fla. Herbs, subshrubs or shrubs of the Old World tropics, erect, prostrate or twining: Ivs. mostly with 3 digitate leaflets, rarely I; stipules none: fls. red or purple and mixed with yellow, in crowded racemes or panicles; stamens 9 and 1: pod short, oblique, swelled, 2-valved: seeds spherical.
congésta, Roxb. Shrub, somewhat erert: Ifts, broadly lanceolated, the side ones 2-nerved, middle one 3-nerved: racemes axillary, dense, shorter than the leaf-stalks. India. "Rich, ornamental foliage: fls. purple."-Franceschi.
F. strohilifera, R. Br., has been iotroduced recently in S. Fla. It has drooping fascicles of white pink-striped fls, and large yellow bracts: Ivs. simple, ovate, acute: plant shrubby.

FLOATING HEART, Limnanthemum.

FLORA'S PAINT BRUSH is a common name for Emilia flammea.

FLORICULTURE. The cultivation of plants for ornamental purposes is known as Floriculture. The work is limited largely to herbaceous or small plants, and is confined for the most part to greenhouses and other glass structures. In this country Floriculture did not assume much importance until about 1825 . Prior to that time a number of firms were devoting considerable attention to the work, but their ficld was so broad that they could hardly be called florists. After the year named, affairs generally were in a more settled condition, and there began to be a marked increase in all lines of business. The eastern states were rapidy increasing in population and wealth, especially near Boston, New Fork, Philadelphia, Baltimore and Washington, and with this increase came a demand for flowers.

Philadelphia was one of the first cities in which Floriculture assumed importance. This was due to the fact that a great deal of wealth had accumulated there, and the people therefore had time and opportunity to cultivate a love for the beautiful in the shape of flowers. Philadelphia had adrantages also due to climate and to the active work of several horticultural societies which were organized early, and did much to extend the interest already awakened. Boston was also a center for Floricultural work, and many fine establishments were located in that ricinity. New York was behind most of the other cities, largely because the time of her people was very fully oceupied with business affairs.

From 1830 to 1840 much progress was made in all branches of the work. Kapid improvemeut in greenhouse construction had been hrought about, and many facilities were afforded growers for heating and ventilating their greenhouses, which materially aided in the production of better stock. The change from flues to hot water was the most important innoration of the period. About 1850 other improsements which had a marked influence on the industry were made in greenhouse construction. Chjef among these may be mentioned the abandonment of movable sashes and the substitution of fixed roofs, the use of larger-sized glass, and the bedding of the glass in putty instead of placing the putty on the outside. These improvements may appear trivial at the present time, but they marked an important advance in greenhouse construction. In those early days the principal plants grown for ent-flowers were camellias, tuheroses, heliotrope, houvardias, etc., and for bedding and for ornamental and other purposes, fuchsias, geraniums and bulbs of various kinds.

By 1860 commercial Floriculture had assumed considerable importance. The establishments in the main, however, were devoted to many diverse lines of work; that is, the commercial florists of the time were required, through the demands of the market, to grow not only eut-flowers, but also plants for ornament and for bedding. Things went on for the most part in this way until after the civil war, when there began an era of plant-growing, which continued until about 1868 or 1870. At this time plants of all kinds were in demand in preference to cut-flowers, consequently many new establishments were started, and these devoted practically all their space to growing ornamental stock. The rose, which had come into general use as early as 1850 , was rapidly superseding the camellia. Carnations were also being grown to a considerable extent, and much attention was devoted to lilies and other bulbous erops, such as hyacinths, tulips, ete. About this time violets hegan to attract attention, and the introduction of the rariety Marie Louise gave an impetus to the work which was destined to have a marked influence on an important phase of Floricultural development.

Ahout 1870 there was a noted increase in the demand for cut-flowers, and in a short time this business assumed important proportions. Soon there was a rush to change from the growing of plants for ornament and for bedding to the forcing of roses, carnations and other crops for the flowers alone. This demand for cut-flowers had an iruportant bearing on methods of culture and the construction of bouses, and was found necessary in many cases to modify existing methods and to change the construction to suit the demands of the time.

During the past twenty-five years the demand for cutflowers has been constantly increasing, and, while the same is true of plants, the demand for flowers has been
proportionally greater. As a result of the inereasing desire for flowers, there have been developed methods of handling them which prior to 1870 were unknown. The best growers have found it necessary to specialize in order to keep pace with the demands of the trade for the bighest grade of flowers, hence we bare specialists in rose-growing, carnation-growing, violet-growing, ete. The immense number of flowers produced required. special methods for handling, and therefore there have been developed wholesale commission houses, retail stores, exchanges, anction sales, and other arrangements for quickly disposing of stock. See Cut-Flowers.

As already pointed out, the industry has assumed the most importance near large cities, owing to the great demand in such places for both plants and flowers. The cities which now lead in the handling of stock of this kind are New York, Chicago, Boston and Philadelphia. The greatest amount of glass devoted to Floriculture is found in New York, Illinois, Pennsylvania and New Jersey, in the order named. There are now probably not less than nine or ten thousand floral establishments in the United States, representing a money value of from twenty-two to twenty-three million dollars, and giving employment to not less than fifteen thousand people. The annual output from these establishments, considered from the retailer's standpoint. is in the neighborbood of twenty-five million dollars. Of this amount from twelve to fourteen millions are annually spent for flowers and the remaining ten or twelve millions for plants.

The rose is the most important cut-flower, grown, and there are not less than six million dollars' worth sold every year in this country. This means an annual production of fully one hundred million flowers. The carnation is the second flower in importance. It is estimated that there is sold annually fully four million dollars' worth of this flower, representing a production of not less than one bundred million flowers. The violet is third, with a production of seventy-five million flowers, valued at seven hundred and ffty thousand dollars. Chrysanthemums are only a part-year erop, but they represent a value of half a million dollars. Of miscellaneous flowers, such as lilies, hyacinths, tulips, orchids, etc., there are probably between two and three million dollars' worth sold annually. The varieties of roses, carnations and chrysanthemums grown for flowers are constantly changing, but the varieties of violets have changed but little in twenty years.

The number of plants sold, including palms, ferns and bedding stock of all kinds, will probably exceed one hundred millions, estimating that the average sized pot for the country as a whole is 3 inches, and the average price 10 cents per pot.

To properly conduct the fine retail establishments in our cities, a large force of employés is required. These establishments are carried on with every attention to methods for attracting and holding trade. The stores are models of elegance, and their methods of bandling the crops, such as having special decorators, show windows, fine delivery wagons, messenger boys, etc., makes the business expensive.

As a rale, florists are such busy people that few of them have time to write hooks on their specialties, consequently the works on this industry can be counted on the fingers of one hand. The first work of importance was Peter Henderson's "Practical Floriculture," which was issued in 1867 . New editions of this were issued from time to time, but nothing further was published until 1893, when M. A. Hunt's "How to Grow CutFlowers" appeared. More recently we have Taft's "Greenbouse Management," which covers the wbole field of plant-growing under glass, and also the "Florists' Manual," by William Scott.
B. T. Galloway.

FLORIDA HORTICULTURE. Fig. 824. The bistory of Horticulture in Florida dates from the earliest settlements, and even prior to that period the aborigines carried on a desultory plant growing. The peculiarity of the soil, however, prohihited the extension of this work except in a few isolated places, It was necessary to introduce commercial fertilizers before Horticulture could make rapid progress in this state. Ep to the time of commercial fertilizers, it was thought that the bammocks were
the only places capable of raising fruit, the rest of the arable land being so sandy and wanting in plant-food that remunerative crops could not be grown on it excepting after it had been "cow-penned."

Such a soil, containing often over 90 per cent sand and insoluble matter, at first sight would seem to be absolutely worthless for Horticultural purposes, but with the adrent of the new Horticulture it beeomes the ideal soil. We have here a lodgment for plants in which oceurs no material that will prore deleterious to the crop, and all we hare to do is to add to it the material that will cause the plant to grow to the necessary size and produce fruit of the desired quality. Beautiful thin-skinned oranges grow only on land properly fertilized and not on soil impregnated with great quantities of organic nitrogen, i.e., fertile lands.

Circumscribed Areas. - In building up of the land from the ocean bed, referring especially to peninsular Florida, the wind and waves have sorted the particles to some extent and have elevated various portions more than others. The separation of the larger particles of sand from the finer, with a porous substratum, has produced what is called a"scrub." The railroad surveys indicate that the maxim elevation in peninsular Florida is about 150 feet. Thus it bappens that, although this land is thirsty, it is rarely or never spent of its capillary moisture. The areas of scrubs may vary in size from a few acres or eren less to many thousands, but they are always sharply defined, having a specialized fora. The soil in a bammock is of a finer texture and is not infrequently underlaid by clay. It often occurs that land of this texture is only a few feet abore sea level, or it may be elevated and rolling, but is always covered with a good growth of hard wood or of cabbage palmetto, or both. This class of land has long been desirable for Horticultural purposes, and is still regarded as valuable; these regions tre more or less isolated, and vary iti extent. Such land usually contains sufficient fertility to raise several crops of vegetables. Flat-woods land is usually lerel, varying in fertility from 96 per cent of sand and insoluble matter to that which will produce a crop of tomatoes. This class of land comprises about nine-tenths of the land of the Peninsula. With proper treatment it raises good crops and is capable of remarkable improvement, The characteristic plant of this land is the long-leaved pine (Pinus palustris).

Horticultural Regions. - The foregoing discussion relates to the state independent of latitude and climate. The state is also divided into four regions, according to climate and latitude: (1) western Florida, that portion of the state lying west of the Aucilla river; (2) eastern Florida, that portion of the state lying between the Aucilla river and a line drawn from the mouth of the S.t. John's river to Cedar Keys; (3) central Florida, that portion of the state lying between eastern Florida and southern Florida; (4) southern Florida, - including the counties of Brevard, Dade, Monroe, Lee, DeSoto and Manatee.

Citrovs Fruits develop best on hammock and flatwoods land, preferring the cabbage palmetto hammocks or a bammock containing a mixture of palmetto and hard wood. The lime (Citrus Medicus var.) alone does well on the shell and coquina lands of southern Florida. The lemon is the best stock for high flat-woods land. For western Florida the Satsuma orange is the best variety. For eastern Florida varieties that mature their fruit before Christmas may be planted. In central Florida all the varieties of Citrus do well, especially toward the south and in protected localities. The following sweet oranges do especially well in southern Florida: Centennial, DuRoi, Exquisite, Hart's Late, Higley's Late, Homosassa, Jaffa, Madam Vinos, Majorca, Maltesc Oral, Nonparcil, Parson Brown, Pineapple and Thorpe. Of the Mandarin group,-China, Cleopatra, Dancy's Tangerine, Japan Tangerine and King. Of the Bitter Orange group, - Phillips Bitter Sweet, Of the Pomelos,-Aurantium, Hart, Josselyn, Seedless and Walter. Of the Kin-Kans, -Marumi and Nagami. Of the Citron group, - Lrman, Lemon and Orange. Of Shaddocks, - Blood, "Forbidden Fruit " and Mammoth.

PEACHES grow in all sections, preferring bammock or rolling flat-woods land or even level flat-woods land if perfectly drained, but the varieties best adapted to
different regions vary considerably. Among those adapted to western Florida we have Alexander, Early Cream, Elberta, Florida Crawford, General Lee, Imperial and Powers' Septcmber. For eastern Florida, Angel, Bidwell's Late, Colon, Ferdinand, Honey, Imperial, Oviedo, Taber, Triana and Waldo. For central Florida, - Angel, Bidwell's Early, Bidwell's Late, Maggie, Peen-to, Waldo and Yum Yum. For sonthern Florida, - Angel, Bidwell's Early, Bidwell's Late, Maggie, Peen-to, Yum Yum, and others.
PLums, as a whole, are adapted only to western and eastern Florida, preferring hanumock and flat-woods land. Burbank does well in the western section. In the eastern section Babcock, Botan and Burbank do well.
Pears. - Kieffer, LeConte and Smith pears do well in western and eastern Florida on hanmock or flat-woods land.
Grapes grow rapidly, but need careful attention to be kept in good bearing condition for a period of years. Hammock land is preferable for them. The native varieties grow to an immense size and produce great quantities of fruit with a minimum attention. Of I. rotundifolia, the Scuppernong and Thomas grow luxuriantly in all sections. Flowers grows well in western, eastern and central Florida. Of the true Vitis section of this genus, Cynthiana, Ires and Norton do well in western Florida; Cynthiana, Ives, Niagara and Norton do well in eastern Florida; Cynthiana, Niagara and Norton in central Florida.

Kaki (Japanese Persimmon).-This fruit needs good hammock land or well drained high, or more or less undulating flat-woods land. It is better adapted to western, eastern and central than to southern Florida. The following varieties do well in western, eastern and central Florida, and under most farorable circumstances in southern Florida: Costata, Hyakume, Okame, Taher's No. I29, Tane-nashi, Tsuru, Yeddo-ichi and Yemon.
Miscellaneots Tree Fruits.- Under farorable conditions Jennings and Red Astrachan apples may be fruited in western Florida; Santa Fé apricot in western and eastern Florida. Figs do fairly well for home use and for canning or candying in eastern and central Florida. They need a compact, tine-textured soil. The following varieties fruit more or less abundantly: Black Ischia, Blue Genoa, Brown Turkey, Bruns wick, Celestial, Green Ischia, Lemon and White Marseilles.
Mulberries will grow on hammock or good quality of flat-woods land in all sections of the state. The following varieties have given good crops: Downing, Hicks and Stubbs. Pomegranates make a more or less ornamental fruit. Acid, Purple and Sweet do well in western, eastern and central Florida. Pecans do best on low hammock land, especially in western Florida. They succeed well in eastern and central Florida, but have not been introduced into sonthern Florida sufficiently to permit definite statement.
Strawberries. - The growing of this crop is controlled largely by efficient and reasonable transportation. If the crop cannot be placed upon the market promptly it is worthless. The development of this industry is, therefore, coincident with that of efficient and reasonable railroad transportation. Probably nine-tenths of the fields of the state are planted on moist flat-woods land, or what is locally known as gall-berry flats. Such land is cleared and thoroughly drained by means of open ditches. On such land strawberries begin to ripen in Jannary and continue until May or June if properly cultivated, though the season of profitable shipment rarely extends beyoud the middle of April. Especially prepared refrigerator cars, so constructed that the ice tank is filled from the ontside, the water melted from it carried off without entering the car, keeping the apartment occupied by berries dry and cool in transit, are now carried by some railroads on express trains. The plants are usnally set out every year, in August, September and October, and bear a good crop the following spring. The most successful strawberry growers continue to cultivate a portion of the old field to secure new plants to be used the following fall for planting out the new field. Clond, Newnan, Lady Thompson and Wilson do well in western, eastern and central Florida.

Pineapples find their most congenial habitat on scrub land. Soil from pineapple fields contains a large per cent of sand and insoluble matter, - as high as 98 per cent. The land must be well drained, free from any standing water, even during the rainy season. The most extensive pineapple area is located on the sand hills near the coast. The character of the vegetation and physical condition of these hills or dunes is essentially that of the scrub land of the interior. The slat sheds or piueapple sheds, which are constructed to afford a half shade, serve a good purpose in summer as well as in
winter. In summer the slats rednce the amount of sunshine that reaches the plants and consequently the intensity of heat, though prooably not the total warmth. In winter they interfere with rapid radiation, which would oecur as the result of a sudden freeze or of a frost. The slat shed is a simple structure, the essential part of it being the roof or covering, which is made of boards or slats fastened so as to leave an opening between the boards or slats equal to the space covered by them. These vary in size from a common plastering
824. Horticultural zones of Florida. lath to boards 4 inches wide. The height of the covering above the ground varies from 6 feet to rarely more than 10. The most extensive fields are located in southern Florida. Smaller areas have been planted in central Florida; nearly all of these are protected by sheds, some of the sheds being so constructed that the roof may be closed completely. The islands or keys underlaid with coraline breccia form one of the most suitable habitats for this plant, while the low, fertile islands or keys are worthless for a pineapple plantation. Red Spanish is cultivated more extensively than all the other varieties combined. It is a hardy variety, and one suited to extensive planting with a minimum amount of attention. For extensive culture Egyptian Queen, Porto (Puerto) Rico and Ripley Queen do well generally, Smooth Cayenne is promising, because not spiny. The total amount of fruit prodnced annually varies considerably, but has probably not exceeded 100,000 whole barrel crates. This, however, is only a fraction of the possibility and probability of pineapple growing in Florida.
Bananas are cultivated only for local markets, but form a source of considerable revenne to a number of plantations. The land best adapted to them is a low, moist hammock or a bay head, especially such soil as is composed largely of muck. Baraçoa (Red Jamaica), Cavendish, Golden, Hart's Choice and Orinoco ("Horse Banana") are leading varieties in southern Florida.

Guava. - The guava has attained considerable importance, thongh as yet it is not cultivated extensively. Plantations exist in varions portions of the state, but the greater quantity used in canning and for jelly is collected from uncultivated or from originally native growth. The native varieties grow well on any fertile soil that is well drained. Fertile soil on coral breccia is a farorite spot for the wild grava. The most

FLOWER

desirable varieties are the common native guava, White Winter, Cattley and Chinese. The native varieties yield the bulk of the fruit used. The Cattley and Chinese do well in central and southern Florida, while the White Winter and native varieties grow to greatest perfection in southern Florida.
Mangoes have not been grown extensively for northern markets. The greatest difficulty has been that of securing trees of unquestionable value for setting out a grove. Since the difficulty in the way of grafting and budding has been overcome, the groves will multiply rapidly. Up to the present time the local markets have demanded more fruit than has been supplied them. Well drained first-class flat-woods land and fertile high hammocks furnish good soil for mangoes. Apricot and No. 11 (Apple) are favorite varieties. They are grown mostly in southern Florida, though fruited in southern portions of central Florida.

Cocoanots are confined to southern Florida and along the seacoast. While the trecs continue to grow when transplanted to the higher lands, they need the low, moist lands of the coast for fruiting and for highest development.

The A vocado Pear has entered the markets to some extent. The soil should be like that for mangoes. Their cultivation is confined to central and southern Florida.

Vegetables. - There are several classes of soils upon which vegetables are grown extensively; riz., hammock, flat-woods, the low islands around the coast, and the marl or drained lands. The low hammocks, especially those composed almost exclusively of cabbage palmetto, produce the largest erops and probably the largest profits, while flat-woods land is probably more extensively cultivated than any other. In a general way all the classes of land mentioned above are capable of growing most or all of the vegetables occurring in the markets. Certain vegetables show a general preterence for certain classes of land. A bigh hardwoo I hammock grows beans, beets, cabbage, cauliflower, collards, eggplant, Irish potatoes, lettuce, watermelons, muskmelou, onion, okra, English peas, pepper, radish, squashes, rutabaga, tomato and sweet potato well; though first-class flat-woods land grows cabbage, cauliflower, eggplant, lettuce, watermelon, muskmelon, onion, tomato and sweet potato to greater perfection. Low cabbage palmetto hammocks grow beets, cabbage, cauliflower, celery, cucumbers, lettuce, nutmeg melons and tomatoes to best adrantage. The low islands around the coast have areas varying in size from a few square rods to many acres in extent,-sometimes reaching a mile in length of unbroken rows. The most important crops grown on these islands are beans, eggplant, peppers and tomatoes. The marl or drained lands of the southeast coast raise principally tomatoes, peppers, eggplant and okra.
P. H. Rolfs.

FLORIDA ARROW ROOT. Zamia integrifolia.

FLORIDA SWAMP LILY. See Crinum A mericanum.

FLORISTS' FLOWERS. This term is considerably used in England to include a group of plants that number their horticultural varieties by the hundreds, and in which the original species or types are no longer cultirated, or else cultirated merely for their interest as prototypes. The list includes $40-50$ groups of plants, or even less. In America the term florists' flowers is little used, and is mostly restricted to certain cut-flowers of great importance to florists, without regard to whether their varieties are numerous or not. Thus, the calla lily, Easter lily, heliotrope, lily-of-the-valley, Marguerite, mignonette, sweet alyssum and tuberose are of considerable commercial importance to florists, but they are not extremely prolific in varieties. Inasmuch as the cut-flower trade bas been greater than the plant trade in America, the American florist hardly thinks of the following plants as florists' flowers: azalea, calceolaria, cineraria, fuchsia, gerauium, gloxinia, pelargonium, primula, nor such old-fashioned favorites as A nemone coronaria, auricula, camellia, polyanthus and ranunculus. The English writers often speak of the dahlia as a florists' flower, and sometimes also the other very variable summer bulbs, as cannas, gladiolus,
and perhaps lilies, though the American florists sell comparatively few flowers cut from these plants in summer. Of hardy border plants, the following are very rich in horticultural varieties : China asters, poppies, stocks, sweet peas, tropæolum and verbena (all of which are annuals), and the following perennials: hollyhocks, pansies, peonies, phlox, pyrethrum. Others of great importance are aquilegia, campanula and eschscholzia, but these are mostly less rich in horticultural varieties. It has been said that florists' flowers are always propagated by cuttings or other asexual parts, but this definition would exclude calceolarias and cinerarias, wbich come fairly true from seed. In America the four most important cut-flowers; are the rose, carnation, violet and chrysanthemum. Consult Floriculture and Cut-flowers.
FLOWER: technically, a short stem carrying one or more specialized leaves which bear sporangia. The word is commonly applied to those flowers whose sporangial leaves are protected and made conspicuous by colored leaves. It is also popularly applied to these clusters of colored leaves eren when the sporangial leares are wanting, as in hydrangeas, snowballs, chrysanthemums and most "double flowers."
When most completely developed, a flower consists of the central short stem, the torus, to which the other parts (leaves) are attached. The leaves, passing from below upwards, are distinguishable into floral leaves, or the sepals and pelals; and the sporangial leaves, or the stamens and carpels. The number of these parts is variable. When "double" flowers are produced, the floral leaves usually are multiplied at the expense of the sporangial ones. In Fig. 825 all these parts are shown. The ovary, showing six ovules, sits on the torus or receptacle. On the orary are three styles. Stamens are at the side. The sepals rise above the petals.
Bracts. - The leaves growing on or near the branches of the flower cluster are usually different in form and size from the foliage; they are called bracts. Note the bracts on the earnation flower (Fig. 366). Sometimes they are bright-colored and are an attractive supplement to the flower, being popularly looked upon as a part of the flower, as in scarlet sage, flowering dogwood (Fig. 558) and poinsettia (Fig. 797). In the arum family (Fig. 79, 137, 146, 318, 734) a single huge bract envelops

the entire flower-cluster. When the bracts grow very close to the torus they are almost indistinguishable from the outer floral leares, as in the strawberry (Fig. 827) and hepatica (Fig. 834).

Torus. - The torus is the short stem or axis on which flower leares are borne. It differs from other parts of the stem chiefly in that, after the rudiments of the flower
leaves are tormed, the intervening parts grow very little, and so do not separate the successive leaves or circles of leaves. The torus is more or less hroadened or elongated to permit the suitable growth of the crowded

leaves. In the strawberry it is high, dome-shaped (Figs. 826, 827) ; in the raspberry the torus remains (S, Fig. 828) when the little drupes are removed; in the rose it is urn-shaped, bearing the leaves on the edge and inner face; in the mouse-tail it is much elongated. When a number of flowers are crowded together their leaves are developed from a common torus, as in sunflower and chrysanthemum and other members of the Composita (Fig. 829). The common torus may be broad and flat, with the flowers seattered over it, as in Dorstenia (Fig. 732) ; or even hollow, as in the fig (Fig. 821), with the minute flowers on the nearly enclosed inner face.

Floral leares. - The leares of the flower form two series; the outer protective and attractive leaves, the floral leaves, and the inner sporangial leaves. The floral leaves are usually distinguishable into an outer set, the calyx, and an inner set, the corolla. The calyx leaves, when separate, are called sepals, and the corolla leaves petals. The sepals are more or less different from the petals in size, shape and color. They are oftenest green, and usually smaller and simpler than the petals. In the bud they usually completely cover the inner leaves. The sepals and petals oftentimes do not remain distinct throughout their development, but each set grows as a single piece; a fact which has been made the basis of classification of the angiosperms. Corollas of a single piece are said to be gamopetalous (Fig. 830). The sepals are more commonly inseparate than the petals.
The apparent union of the floral leaves comes about generally in this way: On the young torus the rudiments of the sepals and petals arise as rounded knobs, which for a longer or shorter time grow independently.

829. Section of a compositous head. Showing the common torus at e.

If they develop independently until their growth ceases, the sepals or petals are distinct, each one being separately attached to the torus. On the other hand, after the leaf rudiments have grown independently for a time, a zone of the torus, both under and between two or more adjacent rudiments, may begin to grow, lifting them on
its margin. In that case, when fully grown the calyx or corolla appears as a single piece, whose free edge is more or less deeply lobed, according to the relative duration of independent development of the rudiments.

The calyx and corolla are sometimes united. This comes about in a similar way. Each begins to develop independently ; later the tissue between calyx and corolla shares in the growth and both are raised on a common base.

The form of the mature floral leares depends largely on the relations of the flower to insects, which visit the flowers for nectar or pollen. The floral leaves are often irregular and unequal, so as to form suitable landing places, neetar glands, guides to the neetar, ete.,-all derices to facilitate the proper transfer of pollen by the visitors; e. g., the sweet pea and other papilionaceous flowers, most orchids, etc. (see Pollination).

The color of the corolla and adjacent parts is due to the presence in the cells of colored sap or special colorbodies. In the latter case the pigment is sometimes erystalline. It is not possible to determine without microscopic examination in wbich way the color is pro-

830. A gamopetalous corolla of Eggplant.
duced. Most blues are due to colored sap; many yellows and reds to color-bodies,

The relvety appearance of many petals is produced by the outgrowth of the surface cells into conical or domeahaped protuberances.

The odor of flowers is usually due to the presence of volatile oils in the surface cells of the petals or sepals, or both. These oils are present in small amount only. They are sometimes found only on the outer face, or only on the inner face, or they may even be restricted to certain lines or patches.

The stamens.-The stamens commonly consist of two parts, a stalk, the filament, bearing a larger portion, the anther (Fig. 831). The filament is usually rigid enough to sustain the weight of the anther, but at maturity it is sometimes so long and slender that the anthers hang as by a thread (so in grasses). The filament is sometimes so short as to seem wanting; the anther is then said to be sessile. The filaments are often united with one another or with the corolla by the mode of growth already described. In the latter case the stamens seem to arise from the corolla. Only rarely are the stamens and carpels united.

The anther is the part of the stamen which bears the spore-cases or pollen sacs (sporangia). (The sporangia are not always borne on stamens. In a few plants they are sunk in the stem of the flower.) Of these there are commonly four, more rarely two or onc. When the anther was looked upon as a chambered body, the sporangia were called

831. Staminate flower of Willow. Showing two stamens; their anthers are at α. theca, or cells. Thus in descriptive botany the anther is said to be "2-celled" or "4-celled." The sporangia are partly free and partly imhedded in a mass of tissue
which joins them, called the connective. This sometimes is extensive, and in a few plants is developed inte peculiar forms to aid in pollination, e. g., in salvias.

The sporangia at maturity consist of two or four (rarely more) layers of cells, constituting a wall, surrounding a quantity of spores, the pollen. The inner portion of the wall censists of a layer of cells whose membranes are irregularly thickened, usually in bands, so that in drying they warp the wall, rupturing it at the weakest place. The lines of weakness are usually definitely localized, so that each anther breaks in a regular way. (a) The rupture may run along the whole length of the anther. In that case it commonly lies at the junction of a pair of sporangia (the left-hand groove in a, Fig. 831), which become confluent, so that the dehiscent anther may seem to have ouly two sporangia, when it really has four. The pollen is thus emptied out practically at once, though the break may begin at the top and progress to the base. Examples: lilies, grasses. (b) The slit may be very short and gape widely, so that a pore is formed through which the pol len is gradually sifted (Fig. 832). Examples: the heaths. (c) In some plants the line of
832. Anther of Azalea.
Showing de-
hiscence by pores. breakage is curved, and the flap, so released, bends outward en drying, lifting like a hinged lid, and closing again in dampness. Examples: Mahonia, barherry, cinnamon.

The pollen spores are, at maturity, single cells, each with a rather thick wall, which is often studded with bosses, or points, or is variously ridged. In anemophileus plants (see I'ollination) the pollen is dry and powdery; in entomophilous plants it is usually moist and coherent. In milkweeds and orchids the whole of the pollen from each sporanginm is beld together in a mass by interwoven threads (Figs. 149, 513). By the time the sporangia discharge the pollen, each spore has begun a development which it cempletes on the stigma to which it is transferred. See Pertilization.

Carpels. - The carpels are the sporangial leaves which oceupy the center of the flower. The number of carpels is very variable. Usually they are fewer than the

833. Pistillate flower of Willow.
Showing one componnd pistil; 8, stigms: st,style: o, ovary. floral leares. In most flowers the carpels are united one to another to form a structure known as a compound pistil (Figs. 825, 833, 835, 836). When the carpels are separate, each develops as a simple pistil. Of these there may be one or many (Figs. 834, 837).

The pistil, if simple, first appears as a ring-liko ridge about the center of the torus. If compound, knoblike rudiments of the compenent carpels first appear. but the growth early involves the torus between, giving rise to an elevated circular ridge. This carpellary ring gradually grews upward, partially or completely inclos-

834. Head of simple pis tils in Hepatica. ing one or more chambers, in which the orules arise. At a time when the ovules (which ripen into seeds) were supposed to be comparable to the eggs of animals, the larger chambered part of the pistil in which they are formed was called the orary, a name which it still retains in descriptive botany. The pistil is often prelenged above the ovary. This part is the style.

Anovule is a fleshy sporangium, jacketed by one or two (rarely three) outgrowths from the base, the integuments, which almost inclose the sperangium proper (nucellus). Within the sporangium of the ovule, several (1 to 40) spores begin to develop. Of these, hewever, rarely more than one reaches maturity. This spore is never set free as the pollen spores are. It therefore acquires no thick wall, and in a
section of the sperangium appears as a cavity within the delicate tissue which surrounds it. It later

835. Section across the compound pistil of Tulip.
Showing central placenta and three-chambered ovary. many chambers as there are carpels inward fom in the former case the placentw will project inward from the wall of the ovary; in the latter they will be aggregated at the center, from which they may project outward into the chambers of the ovary. When the ovules are numerous, the placents are often enlarged to form an adequate surface for their attachment, as in the potato and tomato (see also Fig. 837).

In a considerable number of plants the ovules arise upon the torus itself, a ring of which grows upward, cup-like. From the edge of this cup arise the floral and sporangial leaves, the ovules developing on its sides or base. The carpels theu form a mere roof over the ovule chamber.

The style is sometimes slender and very long (up to several inches; see Fig. 836); sometimes short and thick (Fig. 833). Its length and form are adapted to the means by which the pollination of the pistil is secured. in some cases the style is practically wanting. Its interior is occupied by a tissue whose cells are pushed aside and partly digested by the growing pollen tube (see Fertilization). It is not infrequently traversed by a eanal, a prolongation of the orule chamber.

Some portion of the style, or when that is wanting a portion of the euter surface of the ovary itself, is adapted to the reception of the pollen spores. This receptive surface, whatever its form or location, is called the stigma (Figs. 833, 836). In many cases the upper part of the style is enlarged inte a knob or club-sbaped or lebed portion, the area of the receptive surface being thus increased. In other eases the style is elongated, and the receptive surface is a long line upen
 836. Compound pistil of catnip. Showing 4-parted ovary, long style,2stig. mas (s). one or more sides of the elongated style. In other cases the style is muen branched, as in the grasses, and these branches constitute the stigma. At the time the pollen is being discharged, the stigmatic surfaces are often covered by a sticky secretion. All of these devices are adaptations to insure the lodgment, adhesion and nutrition of the pollen spores (see Pollination).

837. Section across simple pistil of May Apple. Showing single placenta and evales.
The stimulus resulting from fertilization often accelerates the growth of the pistil or causes it to resume growth if it had ceased. The various changes in size, texture, coler, etc., result in the production of fruit.

Charles Reid Barnes.

FLOWER-DE-LUCE. The origin of the Fleur-de-lis of the French coat of arms is not known. By some it is supposed to represent the head of a spear, hy others the flower of a lily. It has also been derived from the points of a crown and from several animal forms, as bees and toads. Apparently the lris has nothing to do with the heraldic Fleur-de-lis. This name as applied to Iris is of later origin and of a purely botanical significance, referring chiefly to I. Germanica. See under ${ }^{2}$ Fleur," Larousse, Dictionaire du XIX Siècle, 8:450.
H. Hasselbring.

FLOWER-FENCE, BARBADOES. Poinciana pulsherrima.
FLOWER-OF-AN-HOUR. Hibiscus Trionum.
FLOWERING MAPLE. See Abutilon.

FLY POISON. See Zygaderus.

FOLIAGE PLANTS. A termused to designate plants which are grown for the general effect of their foliage cather than for their flowers. The term is indefinite. In some cases, and more correctly, it is ased for plants with unique or interesting leaves-usually colored-as colens, Rex begonia, peperomia, calathea, farfugium. In other cases it is used to designate plants of full foliage and graceful babit, -plants which are prized for their general hahit quite as much as for the characters of the individual leaves. Of this latter class, ferns, palms, grevillea, screw pine, araucaria are leading examples. The latter class contains the most popular commercial subjects, and they are much used in room and table decorations. The plants are often rented for use in temporary decorations. For the culture of Foliage Plants, refer to the various genera.

FONTANESIA (after Réné Louiche Desfontaines, prominent French botanist, 1752-1833, director of the hotanical garden at Paris). Oledcer. Ornamental deciduous shrubs, with opposite, rather narrow, entire lvs. and whitish fls. in short, terminal panicles. They retain the foliage unchanged nntil late in fall, and are well adapted for shrubberies, growing in any good garden soil. F^{\prime}. Fortunei is nearly hardy North, F. phillyraoides only half-hardy. Prop. readily by greenwood cuttings under glass in early summer; also by layers, by grafting on privet, and by seeds. Two species from W. Asia and China. Glabrous shrubs, with slender, quadrangular branches: fis. perfect; ealyx lobes and petals 4 ; stamens 2 , exceeding the petals : fr. a flat, winged nutlet.
Fortunei, Carr. (F. Califórnica, Hort.). Shrub, to 15 ft .: Iss. lanceolate or ovate-lanceolate, acuminate. shining, quite entire, 2-4 in. long: fls. in axillary and terminal clusters, forming a narrow, leafy panicle: fr. broad, oval or ovate, $1 / 4-1 / 3 \mathrm{in}$. long. May, June. China. R.H. 1859, p. 43. - Sometimes united with the following, to which it is superior by its more vigorous growth, the darker and larger foliage, and by the greater hardiness.
phillyræoldes, Lab. Shrnb, to 10 ft .: lys. ovate-lanceolate or narrow-elliptic, mostly with rongh, minutely denticulate margin, $1^{11 / 2-21 / 2}$ in. long : fls. almost like the former. W. Asia. L.B.C. 14:1308. Var. angustifolia, Rehder (F. angustifolia, Dipp.). Liss. narrow-lanceolate or oblong-lanceolate.

Alfred Rehder.
FORAGE PLANTS are treated only incidentally in this work, as they belong to agriculture rather than to horticulture. They are mostly grasses and leguminous plants, and have a very large special literature, much of which can be obtained free from the U.S. Department of Agriculture, Washington, D. C. Write to the Division of Publications.
FORBIDDEN FRUIT. See Citrus Decumana and G.F. 9:163.

FORCING. The word Forcing is varionsly used. Properly, it should designate the growing of plants ontside their usual or normal season. This distinguishes Forcing from the ordinary purpose of the glasshouse, which is to imitate the usual season in which
plants grow. For example, begonias are not forced: we endeavor to protect them and to give them the season and the conditions nnder which they grow in the wild. Carnations when flowered in the winter are forced, hecause we transpose their seasons. Chrysanthemnms blooming in October and November are not forced: they are only protected. Sometimes the word Forcing is used

838. House constructed without rafters.
in a very special sense, to denote the production of flowers from bulls or tuhers in a very short time uuder the inflnence of a very high temperature. Thus, the lily-of-the-valley may be placed in a temperature of 90° or above, and the large buds be forced to throw out their flowers before the plant obtains a firm foot-hold on the soil.

A Forcing-house is a building in which plants are forced; but the term has come to denote a simple glasshouse in which plants are grown only for sale, in distinction from private conservatories, or more elaborate structures which are used for the display of plants. See Greenhouse.
The Forcing industry in America is very large. Heretofore it has confined itself mostly to Cut-Flowers (which see), but pot-plants, vegetables aud fruits are receiving more and more attention. The staple forced flowers are the rose, carnation, violet, lily-of-the-valley, and varions bulbs. These are treated under their respective names. Of vegetables, the most important Forcing species is lettuce. This is followed by tomato, cucumber and radish. Other vegetables are of very minor importance as Forcing products. The growing of fruits nder glass

839. Even span Forcing-house, 20 ft ., wide, heated by steam.
is receiving increasing attention in this conntry. Very little of this fruit-raising is really Forcing, however, since the glass inclosure is used chiefly to protect the plants and to enable better care to he given: the fruit does not ripen much ahead of its normal scason. Of this category are glasshouse grapes. Strawberries are really forced, however, the whole period of vegetation and bloom being greatly forwarded. Much attention is now given by florists to the Forcing of hardy plants; and this is one of the most delightful of horticultural operations for the amatenr. Many of our native plants can be forced with the greatest satisfaction, but the bnsiness is usually confined to imported stock of florists' plants.
The Forcing-honse shonld be of the simplest construc-
tion. The plan should secure the greatest amount of light, economy of space and of heating, and directness and simplicity in every operation. The simple sash-bar frame, without rafters (Fig. 838) is the most satisfac-

840. Uneven span Forcing-house, 20 ft , wide, on a side hill. Heated by steam.
tory when properly constructed. The side walls should be low and the roof comparatively flat. Usually there is no glass on the side walls. Under most conditions, the bouse should run north and south, particularly if even in span (Fig. 839), but the lay of the land and the location of existing features usually determine the direction. If the house runs east and west, or if it stands ou sloping land (Fig. 840), an uneven or broken span is usually advisable. The widely different opinions respecting the merits and demerits of the different spans are proof that each is good under certain circumstances. It is the prevail ing opinion that, in broken spans, the loug roof should be to the south ; yet some of the best newer houses have the short spanwhich is then very steep-facing the south (Fig. 843).
In America, all Forcing-houses are beated by means of small wrought-iron pipes, which fit
 threads. The old-time cast-iron flues may be employed for conservatories, but they are too buagling for Fore-ing-houses. They do not admit of sufficient modification in lay-out to adapt them to the long and often crooked runs of Forcing-house establishments. The wrought-iron pipes are heated either by steam or water. Each system bas its advocates, which means that each has its merits. Steam is less costly to install, since less pipe is required. It also admits of greater variation in the lay-out. Crooks and obstacles are more easily overcome. In a large esetablishment, the place may be heated up sooner. Hot water gives a milder heat because the pipes are less

841. Uneven span Forcing-house. 30 ft . wide. Hot water.
hot. Of itself, it is less liable to fluctuations. Theoretically, it is less expensive in fuel; but in practice, the cost of running is found to depend more on the character of the particular system and the operations of the fireman than on the medium itself. When properly installed, steam is as uniform in action as water, and it is adapted to larger areas and to higher temperatures.

The ideal slape for a Forcing-house is probably in the proportion of breadth to length as 1 is to 4 or 5 . The best houses are rarely less than 18 or 20 ft . Wide, and rarely more than 30 to 35 ft . From 400 to 500 ft . is considered to be the greatest profitable length. Houses of graater length are now building, but they must be considered an experiment. Parallel houses are often "nested" with good results, - the adjoining houses resting on a common wall. When the various houses are to be used for one kiud of crop, the partitions between them may be omitted: a very large space may then be covered with practically one house without the necessity of rearing a high roof.

The accompanying illustrations (Figs. 838-843) show various current styles of American Forcing-houses. For further discussion of glass houses, see Greenhouse.
L. H. B.

The Winter Forcing of Vegetables.-The growing of vegetables undel glass for the winter market bas developed within the past ten years to large proportions. It has grown from the small compartment in private houses devoted to a small supply of
842. Lean-to lettuce house. 26 ft . wide. Hot water.
lettuce and radishes to entire ranges of modern houses, in which are grown almost the entire list of tender vegetables. The special crops, however, are usually confined to four, the management of which is here discussed,let:uce, radishes, tomatoes and cucumbers.
The Forcing of any winter crop is a matter of princlples rather than practice, since local conditions have eversthing to do with the miethods of culture and the kinds of regetables forced. It frequently happens that the same vegetable is grown with equal success in soils of widely different character by different cultivators. Skill in management and close attention to details are the requirements necessary to success. Two fundamental elements, however, are essential: heat and light. The former is needed by all crops; the latter is almost imperative when fruit is wanted. With such crops as lettuce, radish, rhubarb and asparagus, in which the vegetative part only of the plant is wanted, bright sunlight is not absolutely necessary; but with such crops as tomatoes, cucumbers, melons and beans, in which the fruit is the aim, no amount of heat will prove a substitute for sunlight in ripening the pollen, which is often the critical factor in the results. Therefore, a situation where the maximum of sunshine may be had should be selected if such crops are to be grown.

The construction of the house is not a matter of the first importance. The three-quarter span house perhaps
furnishes as nearly as possible the hest condition for forced crops. However, an even-span or shed-roof house grows many crops to a high degree of perfection. As to the inside arrangement of the house, the crops to be growu will have much to do in the matter. Coolhouse crops, as lettuce, radish, and the like, are well grown in solid beds; while heat-loving plants, as tomatoes, cucnmbers, melons, ete., should be planted on benches built over the pipes. This means that the cost of building a greenbouse depends very much on what crop one expects to grow. The saving in benches and beat in houses devoted to cold crops is considerahle, while the ease with which such crops may be grown recommends them to the beginner.
The best paying crops are probably cucumbers and tomatoes; the most exacting, melons. The demand for melons, however, is limited, and the cost of producing good flavored, well ripened fruits in winter is high. Having stated what we conceive to be underlying principles in the winter Forcing of all vegetables, we may consider each of the important crops separately.
Lettuce. - The ideal soil for lettuce would be a well draiued gravelly or sandy loam, but with care in watering a soil of heavy texture may be made to produce excellent crops of the loose, open varieties. The heading or cabhage lettuce is more exacting if a fine quality is desired. The first crop of lettuce from the houses should be ready to use by the middle of November. For this crop seed should be sown in September, allowing on an average from 6 to 8 weeks for the crop to mature. A temperature of $55^{\circ}-60^{\circ}$ through the day, with a drop to 40° or 45° at uight, will suit all varieties, but in the case of the beading varieties a rise of 5 to 10° at the time of heading will finish off the crop more uniformly.
Radishes require the same general treatment as lettuce and may be grown in the same house. As radishes mature in about half the time lettuce does, the radish seed may be sown between the rows of yonng lettuce plants, and the product is out of the way when the lettuce begins to need the entire space.
Tomatoes being a bothouse crop, require a temperature of 75° by day, with a drop of about $5^{\circ}-10^{\circ}$ at night. This is one of the crops which is dependent on the sun, because the pollen must be dry and light in order to pollinate the pistils and produce fruits. The soil for tomatoes may be on the heavy order, and contain a large proportion of fibrous loam, with well rotted manure. As to chemical fertilizers, the best results are to be obtained not from those rich in nitrogen, but from potash and phosphoric acid, as these elements are largely responsible for a slower growth of plant and fruit and a firmer texture and higher flavor of marketable product. To obtain a good gield of fruit through the winter months, it will be necessary to pollinate each flower This may be done rery rapidly. The pollen is jarred into a spoon-like receptacle, and the end of the pistil is tonched with the accumulated pollen. As spring approaches and the sun becomes stronger, a simple jarring of the plants is all that is needed. As to training, the single-stem method has been found to be the best, as the plants can be set much closer and still allow plenty of room to work around each one. This method consists in the pinching out of all lateral growths. Train the stem to a cord, and support the heaviest clusters by strings (Fig. 844). Plants from seeds sown in Angnst will ripen fruits abont the first of Jannary, and should continue in bearing until May. A succession may be had by growing fresh lots in pots or boxes to take the place of exhausted plants. The season of forced tomatoes may be thus continued until the outdoor product fills the market.

Cucumbers are much forced in the eastern states. Cucumbers are a very exacting crop, and need special care in growing. The White Spine type is perhaps more generally grown in this country than the long Forcing cuenmber of the Old World, which has been grown and selected for its Forcing qualities for many years. One of the reasons why the former is the more generally grown is its adaptability to relatively unfavorable conditions. It grows in the full sunlight, is more able to resist attacks of mildew and red spider, and sets its fruit with more freedom than the Old World types. One other reason may be that the people of this conntry

FORCING

have net become accustomed to the long, thin fruit of the English varieties. The English or forcing varieties require partial shade threugh their senson of growth. Seeds sown singly in 3 inch pots in Angust will, if they bave no check, bloom and set fruits in December. The fruits of the White Spine type reach edible maturity 2 and often 3 weeks before the English type. The houses in which cuenmbers are grewn must be arranged with heat below the benches, as it is of the greatest importance that the plants make a rapid grewth and receive no check due to the cooling of the soil. The soil should be a good pasture sod, partially rotted, and mixed with one-fourth the bulk of leaf-mold and sand. If there is danger from damping -off of the vines at the surface of the soil, the plants may be set in a handful of sand, which will allow the water te soak away, leaving the stem of the plant comparatively dry. If the vines are on a central bench, they may be truined te a vertical trellis made of wire, or, if on side benches, to wires run along the roof far enough frem the glass to hold the leaves away from frosts. As the flowers open, hand pollination will be resorted to if the crop be of the White spine type. Pick a staminate flower, strip back the corolla, and insert the column of the anthers inte the pistillate flower. The English varieties are not pollinated, unless it is desired to secure seeds.

Melons are certainly the most difficult of winter crops te handle. The midwinter ripening of the fruits requires more painstaking care and closer attention than any otber crop. The plants, from seed-leaf to fruit,
 must be grown in heat without the slightest cleck. They should be planted on the beach in a strong, loamy soil, which is retentive enough to hold meisture at the roots but not heary enough to become sour. No shading of the glass is required, but air should be given freely on all days when possible. The plants are trained as are cucumbers, except that the central shoot should be pinched out as seon as the plants are well established in the bench, allowing 3 or 4 lateral branches to grew to the beight of 4 or 5 feet, when these in turn should be pinched back. In setting the fruits, it is best te wait until a number of pistillate blossoms are open on a plant and pollinate them at the same time, as it often happens that if one fruit starts into growth some time before other flewers are pollinated, the otherfruits fail te set until the first one reaches considerable size. Pollination is accomplished in the same manner as with cucumbers, and should be done on sunny days, when the bouses are dry. Except during the time of setting the fruits, the house should be moist and the leaves sprayed frequently. The temperature of the melon bouse should run
at least 5° higher than for cucumbers. Hang the truits in slings (Fig. 845). Melons ripening in fall or spring are more easily managed.

Beans may be easily forced in heuses where cucumbers or melons are grewing, using rich, moist seil and strong bottom heat. They are usually grown in pots, 3 or 4 plants in a 6 -inch pet. They make a very rapid grewth, and the green pods are fit to use in from 8 to 10 weeks from the time the seed is sown. While growing the plants should he sprayed with water frequently, as they are very subject to attacks of red spider. The bean is self-fertile, and need not be pollinated (Fig. 846)

Asparagus and Thuberb are forced from old roots brought in from the garden, aod subjected to a gentle heat. The crop is made from the material stored up in the old roots, few new roots growing through the forcing period. The old reots are threwn away after being forced, and others brought in fer the next erop. Both these crops may be grown in out-of-the-way places, under the benches, in corners of the potting shed, or in fact anywhere where heat and moisture may be had. One methed of forcing rhubarb is to grow it entirely in the dark. This produces a very tender stalk with very little feliage.
C. E. Henn.

Forcing of Fruits. - The beuse best adapted for fruit-growing is one running north and south, span roof curvilinear, with ventilation both sides, top and bottom. It is important to be able to give a large quantity of air, especially for ripening the wood after the growth is done. The next thing to be considered is the berders. To produce high-class fruit, perfect drainage is necessary. For very early forcing an inside berder will answer the purpese, but the most satisfactory way is to hare beth eutside and inside borders. A depth of 3 ft . of prepared soil is sufficient, with 9 in . of drainage material on the bottom. Should there be a natural outlet for the drainage water, well and geod, otherwise artificial means must be resorted to. The width of the outside border should be 15 ft . An outside border is particularly advantageous for vines and peach trees, which will last much longer in a healthy, vigorens condition if allewed a root-run outside the greenhouses. A sud cut from the pasture, suitable for grewing roses, would be ideal for the borders. The writer dees not recernmend making a border very rich, for toe often yonng vines are poisoned with feod at the start. A sprinkling of coarse crushed bone and charceal should he mixed with the soil. In the use of charcoal one shauld be geverned by the nature of the soil; if the soil is extra heavy, use charcoal more freely. A topdressing f cow-manure mixed with soil is a good thing when starting a house. A medium loam, neither stiff nor too heavy, answers the purpese.
The trees also may be grown in pots and tubs. One advantage is that a special fruit house is net necessary. Many a honse is going idle during the summer months that would grow fruit to perfection. Any light house

with plenty of air will grow fruit satisfactorily. One of the main points is in the watering. Sheuld the trees get too dry, or on the other hand saturated, the chances are that the fruit will turn yellow and drop, but with good judgment and a certain amount of care success is as-

sured. The trees should be repotted every fall, as they need so much water during the summer months that the soil becomes depleted. However, one should be careful not to overpet. A compost suitable for potted trees is a fairly heavy loam, and say three parts of soil to one of well rotted manure, with a little wood ashes and bone meal worked in. Potted trees are interesting, as there can be a considerable variety of fruit grown in this way. Figs. 847 and 848 illustrate the method of pruning.

Grapes. - In planting grape vines, 2 -year-eld canes should be set. Plant the canes 3 or $31 / 3 \mathrm{ft}$. apart. There is nothing gained by crowding, and in planting young vines, cut them down to about 18 in., to insure good, established vines from the bottom. There can be no bard and fast lines laid down as to how long the vines will bear profitably. With good treatment they should be profitable for 15 or 20 years. A grapery should be started with a night temperature of $45-50^{\circ} \mathrm{F}$, and a rise of 10° or 15° with sun heat in the day. The temperature should be raised 5° every two weeks, until a night temperature of 65° is reached. After the grapes are set, a night temperature of 70° will be the right thing. The vines shovld be syringed three times a day until they are started into growth ; then twice a day autil the foliage gets heavy, and thereafter once every bright day is all that is necessary, mornings preferred. After the grapes commence to color, syringing should be stopped. Foliage is another thing to be considered. With our bot sun a fairly good covering is necessary. The shoots should be stopped at the second or third leaf beyond the bunch, and all laterals pinched at the first leaf. The aim should be to bave a nice covering of foliage over the house, but avoid severe crowding. Grape thinving requires good judgment. Always make it a practice, if possible, to thin the bunches all that is necessary the first time, as going over the bunches the second time is not so satisfactory. A bunch must be so thinned that each berry has room to develop without crushing. Water also plays a prominent part in finishing a crop of grapes. Wbile grape vines are moistureloving plants, it is poor policy to give them a heavy watering after the grapes begin to color. If the plants receive a heavy watering when the grapes start their second swelling, it should be enough until the grapes ripen. After the crop is off the treatment is simple: keep full air on top and bottom; syringe the foliage if red spider makes its appearance, and water the border when dry. Vines that are not intended to be started until February or March should be pruned when the wood is thoreughly ripe. The canes should be brought down and wrapped in burlap to keep the sun off them, and then a matter of 5° or 6° of frost in the house will do no harm. In severe weather it pays to turn a chink of heat in the house. As on all other fruits, there are many Varieties, but only a limited number of standard sorts. For an early grape there is no better than the old stand-
ard Black Hamburg, which is easy to bandle and a very satisfactory variety. A companion to it is Buckland Sweetwater, a white grape ripening at the same time, though of second-rate quality. Its earliness, however, makes it worthy of a place.

Muscat of Alexandria should have a house to itself. To finish this noble grape to perfection requires more heat than ordinary. It can be grown with fair results in a mixed house, but where there are three compartments for early, midseason and late varieties, the midseason compartment should be planted to Muscats. Madresfield Court is also a grape of fine quality. Unfortunately it is difficult to handle, although it is usually planted in a house with such easily handled varieties as Gros Maroe, Giros Colmar, Barbarossa, Mrs. Prince, Alicante. For another view, see Grape.
Peaches and Nectarines. - The same depth of border recommended for the grape vines will be all right for the peach. These, also, must have perfect drainage or the trees will soon get. into a sickly condition. The peach and nectarine have a tendency to rank growth when planted in the border. Care shonld be taken not to make the border too rich. It is an easy matter to apply food when the trees need it. The writer bas found a light application of wood ashes two or three times in the season a capital thing. Crushed bone is also beneficial. When starting the honse, a top-dressing of soil and cow-manure, say twe of soil to one of manure, should keep the trees in a healthy condition. One important point in starting a peach house, especially early in the season, say the first of January or earlier, is to start easy. Nothing is gained by rushing. There are numerous varieties of peaches and nectarines adapted to Forcing. The following is a selection of the best that the, writer has grown under glass: Peaches, EarlyHale Early, Alexander, Condor, Mountain Rose, Haine's Early ; Midseason-Foster, Bellegarde, Noblesse, Oldmixon Free ; Late-Crawford's Late, Sea Eagle, Princess of Wales, Lady Palmerston.
Nectarines, Early-Cardinal, Early Rivers, Advance, Lord Napier ; Midseason-Improved Downton, Dryden,

Byron, Elruge, Milton; Late-Chaucer, Newton, Spen cer, Stanwick, Hamboldt, Victoria, Trees for planting in the house should be especially prepared for the work. A year would be lost with such trees as are usu-
ally offered for sale. For plantiug in the border, choose fan-trained trees, 2 or 3 years old, providing they have been properly transplanted. (See Pruning.)

849. Azalea, received from Europe, now pruned for forcing.

Iudoor peaches and nectarines, with proper care, are profitable for 10 years after planting. The following temperatures for the peach house are suitable for early Forcing: for the first two weeks, 40° by night and 50° by day ; then a rise to 45° by night and 55° or 60° by day, with the sun, which should carry them until their blooming period; then 50° by night and 60° to 70° by day, with sun heat ; after the fruit is set, a rise of 5° or 10° on mild nights would be all right, with the day temperature correspondingly increased. Peaches delight in fresh air: therefore air should be given at every opportunity. Syringe the trees twice a day in bright weather: hold off while the trees are in blossom; after the fruit is set, syringe again twice every bright day, and once a week with whale-oil soap, using enough soap to just color

850. Rhododendron, received from Europe, ready for forcing.
the water: This is a good remedy for greenfly, spider, etc., and produces a fine, glossy foliage. It is better to disbnd by degrees rather than to remove a large quantity of foliage at once, which would naturally cause a check to the tree Disbudding reqquires good judgment.

The shoot, if not needed, should be pinched, leaving three or four leaves to develop the fruit. Trees that are properly cared for during the summer months need little pruning in tbe winter. Prohably the hardest task of all to the grower is thinning the fruit, but this must be done. There cannot be any set number for a tree to carry. Judgment must be used in that respect. Nectarines can be cropped more heavily than peaches. After the crop is gathered, all the useless wood should be cut away to allow plenty of light and sunshine around the wood that is intended for the following season. When the wood is thoroughly ripened it is in coudition to stand zero weather. The temperature of peach houses can go down below zero without a bud being killed. In fact, it is not necessary to use any artificial beat until starting the house. Close the bouse down frosty nights; open up in the morning before the temperature rises much, and avoid exciting the buds. Sometimes one has warm days during the winter months. On such days it is well to keep doors as well as ventilators open.
All the peaches and nectarines recommended for the peach house are admirably adapted for pot work.

Other fruits may be added to these, as apples, pears, plums, cherries, figs, apricots, etc. (see articles under these beadings). The following are some of the best rarieties the writer has grown: Plums-Golden Esperin, Jufferson, Denniston Superb, Green Gage, Grand Duke, The Czar, Early Transparent ; Pears-Magnet, Princess, Souv. du Congres, Louise Bonne de Jersey, Pitmaston Duchess, Beurre Diel; Apples - Williams Favorite, Benoni, King of the Pippins, Washington, King of Tompkins County, Belle de Pontoise, Bismarck, Peasgood Nonesuch, Lady Henniker, Thomas Rivers, Alexander, Cox Pomona. Wh. Terner. Forcing Hardy Plants. -An economical method of obtaining large quantities of flowers in winter: extensively used by commercial florists for cut-flowers and flowering plants. Plants usually forced are byacinths, tulips, narcissus and other

851. Lilac pruned for forcing Dutch bulbs, lily-of-the-valley, astilbe, dicentra, hybrid perpetual roses, Deutzia gracilis, bybrid rhododendrons (R. Sinensis, i.e., Azalea mollis), and Ghent azaleas, and lilacs. For other plants, see A.G. 14:402 (1893).
This mode of procuring flowers at small cost bas always been more or less in vogue among plantsmen, and of late years has received fresh impetus, owing to the heary demands for decorative plants at Easter. It is not only an inexpensive method of getting flowers, but with most plants, after a little experience, the time of blooming can be easily calculated. The process has limitations, at any rate with our present knowledge of the matter, inasmuch as, with the exception of "retarded plants" and a few bulbs, it is not practicable in late autumn and early winter. It is possible, bowever, that by using "retarded plants," i.e., plants held over their natural time of flowering by keeping them in cold storage at a temperature sufficiently low to prevent growth, this difficulty may eventually be overcome. Except, however, with lily-of-the-valley, which is admirably adapted to this practice, we know little of the possibilities of this form of Forcing: it is hoped that other plants, equally useful, may be treated in this way. It is evident that, on account of the cost of storage, bulky plants could not be bandled.
Tbe requirements for successful Forcing are: (1) a
good knowledge of the plants; (2) proper preparation; (3) a period of rest; and (4) proper care after the plants are brought into heat.
Those plants force most easily which bloom in spring and early summer. Late-blooming kinds, like Rhododendron maximum, Clethra and Hydrangea paniculata, var. grandiflora, do not give good results. No success is obtained with asters and goldenrod, unless they are retarded. These points must be studied out by the grower.
Trees and shrubs should be specially prepared for Forcing by careful cultivation for 1 or 2 years before use. They can be planted out of doors, with plenty of room to develop, or they can be grown in pots; the latter method being used with vigorous plants, which are apt to run to growth without developing flower buds Close pruning is necessary, and root-pruning is helpful Grafting, which has a tendency to dwarf and hasten maturity, is also used with strong growers. Sometimes both growing in pots and grafting are employed, as in lilacs. Query: Could we learn anything in these particulars from the Japanese method of dwarfing plants?
A plant fit for Foreing must be compact, both top and roots; economy in space is essential. It is now possible to obtain from the French, Dutch and Belgian nurseries many plants grown for this purpose. A few come potgrown, hut most of them are from the open ground: very little of this work is done in American nurseries. Figs. 849-85I show the methods of preparing woody plants for Forcing.
Herbaceous plants should be prepared for Forcing with equal care, and the process may require several years. The removal of the flower buds and growth, under high cultivation, in close, compact clumps, apparently produces the same results that prusing and grafting accomplish for trees and shrubs. Fig. 852 shows the root-clump of an herb prepared for Forcing.
Plants that have once been foreed are commonly thrown away. It is generally cheaper to buy new stock, but lilacs, azaleas, etc., can be planted out and will recover sufficient strength in 2 years for a second Forcing, or for other use. Some species, like V'iburnum plicatum, staphylea, colchicum, ete, if grown on in pots after Forcing, may be again forced, and seem to do better the second year. This is probably explained by the fact that insufficient preparation was given for the first trial, the first Forcing being really "proper preparation" for the second Forcing.
Hardy plants must have a period of rest for successful Forcing, the time required varying in different species. One cannot tell, except by experiment, that Paper White narcissus will force easily in November and December, while the double Von Sion will not; the individual equation of each kind is an element which must be considered. There is a popular notion that freezing will shorten the time for resting, or, at any rate, is conducive to the welfare of the plant. This idea dees not seem to stand any practical test. After potting, do not subject the plants to severe frosts (10 or $12^{\circ} \mathrm{F}$.), or else the roots, now much exposed, may suffer. The large buds of lilac and rhododendron may also be injured if frozen hard.
Pot the plants as soon as they ripen their growth in autumn, begiuning in September with herbaceous stock, and continuing until severe frost. It is possible, but not desirable, to lift some things after the ground is frozen hard. Plants received from abroad are potted on arrival, or, if furnished with a ball like azaleas (Fig. 849), they can be stored and not potted until brought into heat. Dutch bulbs are boxed or potted as they are received, and buried in the earth or piled in stacks and covered with enough leaves and litter to exclude frosts. Lily-of the-valley, astilbe and dicentra are kept iu their pack-
ing cases in a cool pit until ready for use. Large plants in tubs and boxes cau be covered with leaves and kept out of doors, but most plants should be stored in a cool cellar, pit or frame kept at a temperature of $35^{\circ} \mathrm{F}$.; a temporary variation of 5° either way does no harm. It is well to delay this storage until as late in the season as possible, but it must be done before severe weather.

853. Forcing Lily-of-Valley in pots.

They can be stowed compactly, in several tiers if necessary. It must he remembered that no growth is to be allowed while stored; it is their period of rest, and this must be enforced. Good ventilation must be given on bright days and every precaution taken against an accumulation of moisture: if the plants are well watered when put away very little will be required afterwards. Dampness is most serious with evergreens, like kalmia, and such things as Phlox subulata. This stock should have the airiest positions, or it can be placed in shallow frames 2 ft . deep, which are drier than deep pits. In severe weather the pits are often covered with snow a week or more, but the plants will not suffer if this happens but once or twice during the winter. At such times mice and squirrels will make trouble unless trapped or poisoned.
Nothing except retarded plants, a few bulbs and one or two kinds of prunus should be brought in before Norember. December 15 to January I is as early as it is safe to begin Forcing most hardy plants: it will be found that as the days lengthen the resuits will be more satisfactory. At first the plants must be kept cool, $45^{\circ} \mathrm{F}$. or thereabout. Syringe twice a day until the buds swell: after growth starts the treatment is the same as that

854. Forced Trillium.
given greenhouse plants, and they cau be put in a much warmer house if so desired. It is at this time that care in handling, particularly in the matter of heat, makes it possible to time the period of blooming so accurately, but it is impossible to give any general rules to satisfactorily cover these matters.

A few plants, like lily-of-the-valley, can he placed di-

FORESTRY

rectly in a Forcing-box or pots, generally made over the pipes in the hottest bouse, where a temperature of 80° to $95^{\circ} \mathrm{F}$, can be maintained. They are first soaked in water for a day or two and then kept in this heavy lieat until flower bucls are well developed (Fig. 853). Tulips, hyacinths and otherbulbs, sometimes an azalea or lilac, can also be lurried np in such a box, but it is dangerous, and not good practice; better and more lasting flowers come with ordinary ireatment. Trilliums (Fig. 854) and various earlyflowering wild plants may he forced with satisfaction.

Although no rules can be given for the time required in Foreing, it is knowledge not hard to acquire with eveu surprising exactness. Nothing is likely to require more than three months in houses ranging from 45° to 55° F.-i. e., after bringing in from the pits. A month or six weeks is good time to allow in February and March, but with the same plants and temperatures, more time would be needed earlier; with the advance of the season, the work is quicker and less uncertain. There is great difference in plants. Rhododendrons (the hybrids) require eight weeks or more, bnt one species will often bloom in March, within twenty-four hours. Plants like the rose, which must make a growtly before the buds form, take more time than azaleas. The difference between dull and bright weather is an important factor, but with extra firing, or the use of the Forcingbox, these matters even up, and the average time of flowering is wonderfully even. In this work, a man with good plant sense is most likely to succeed.

B. M. Watson.

FORESTIERA (after Forestier, a French physician). Syn. Adèlia. Oledcea. Deciduous, rarely evergreen trees or shrnhs, with opposite, entire or serrate, generally rather small lvs., inconspicuous yellowish fls. and small black or bluish berries; without much decorative value, and but rarely cultirated. They cannot be grown North, except F^{*}. acuminata and F. ligustrina, which are tolerably bardy in New England. They grow in almost any soil, and are propagated by seeds and layers. About 15 species iu N . Amer.. from Illinois south; also in Mex. and W . Indies. Fls, dicecions, apetalous, with or without calyx, in small, axillary clusters in early spring, before the lvs.; stamens 2-4: fr. a small, mostly black, 1- or 2-seeded berry.
acuminàta, Poir. (Adऐlia acuminàta, Michx.). Decidnous slirub, to 10 ft . bigh, sometimes spiny, glabrous: Ivs, slender petioled, ovate-oblong or orate-lanceolate, remotely serrate, $1_{2}^{1}-4 \mathrm{in}$. long : staminate fis. in dense clusters; pistillate fls, in short panicles : fr. narrow, oblong or cylindrical, falcate, acnte, 1 in. long. W. Jlinois to Texas. Michx. Fl. Bor. Amer. 2:225. B.B. 2:603.
ligustrina, Poir. (Adèza ligustrina, Miehx.). Deciduous shrub, to 6 ft ., pabescent: lvs, elliptic-oborate to oblong, obtuse, appressed-serrulate, about 1 in. long: fis. in fascicles: fr. sessile, short-ovoid, obtuse, $1 / 4 \mathrm{in}$. long. Tenn, to Fla, and Ala.
F. Nèo-Mexicảna, Gray. Shrub, to 10 ft .: lvs. spathulate, al-
most entire, usually glabrous, grayish green and rather small: fr . ovate or short-oblong, obtuse, $1 / 3 \mathrm{in}$. Texas to N. Mex. and Colorado.

Alfred Rehder.
FORESTRY is the rational treatment of forests; this treatment may vary with the object in view. Forests may subserve various objects, giving rise to three classes of forests: they furnish wood materials for the arts-supply forests; they furnish a soil cover, which prevents the blowing of the soil and formation of sand dunes, or which retards the erosion and washing

856. Flowers of Forsythia suspensa, var. Fortunei. Natural size.
of the soil and regulates the waterflow, or which acts as a barrier to cold or hot winds, and exercises other beneficial influences on climate and surroundings-protection forests ; or finally, they furnish enjoyment to the
esthetic and sporting elements in man, as game preserves and parks - luxury forests. Any two or all three objects may be attained simultaneously in the same forest. In the end, and in a more limited sense, Forestry is the art and business of making money from the growing of wood crops, just as agriculture and horticulture are finally concerned in producing values from food crops. In the economy of agriculture, wood erops may be grown ou land which is too poor for field crops.
Tbis art is divided into two distinct and more or less independent branches, namely silviculture, the technical branch, and forest regulation, the business branch. Silviculture is a branch of the larger subject arboriculture, and comprises all the knowledge and skill applied in producing the wood crop, relying mainly on natural sciences. While horticulture and silviculture have hoth to deal with trees, their object and with it their treatment of trees are totally different: the orchardist works for the fruit of the tree, the landscape gardener for the pleasing form; in both cases the object is attained by the existence of the tree and its single individual development; the forester is after the substance of the tree, the wood; bis object is finally only attained by the removal of the tree itself. He deals with masses of trees rather than individnals: it is logs in quantity and of desirable quality, clear of knots, not trees, that he is working for; hence, his treatment differs from that of the horticulturist. Since bis crop takes many years to mature, sometimes a century and more, in order to carry on a continuous Forestry business, from wbich to secure annual returns, special arrangements peculiar to this business must be made: these arrangements, naturally influenced by the economic conditions of the country, form the subject of forest regulation.

The horticulturist, as such, is mainlyinterested in the rational treatment of such forests as have a protective value, influencing climatic, soil and water conditions in general and locally.
B. E. Fernow.

FORGET - ME - NOT. Myosotis.

FORSYTHIA (after William Forsyth, prominent English horticulturist, director of the royal garden at Kensington, 1737-1804). Olедсеа. Golden Bell. Highly ornamental, free-flowering shrubs, with opposite, simple or ternate lvs, and showy yellow fls., borne in great profusion along the slender brancbes in early spring. One of the showiest early-flowering shrubs,
with handsome, clean foliage, remarkably free from insects or fungi, and remaining unchanged until late in fall. The upright forms are well adapted for the borders of shrubberies and the pendulous form for covering walls, fences, arbors or porches. They grow in almost

858. Forsythia viridissima $(\times 1 / 2)$.
any kind of garden soil, and are hardy Nortb. Prop. readily hy greenwood and hardwood cuttings; also by seeds. The brancbes of the pendulous form often take root at the tips when touching the ground, and send forth vigorous shoots, like some brambles or the walk-ing-fern. Two species in China, much cult. in Japan, and one recently discovered in southeastern Europe. Low shrubs, glahrous throughout, with slender, quadrangular hranches and opposite, serrate lvs.: fls. 1-3, axillary, pedicelled; calyx and corolla deeply 4 -lobed, lobes of the corolla oblong, longer than the campanulate tube ; stamens 2, included: fr. a 2-celled, dehiscent capsule, with many winged seeds.
suspensa, Vabl. Shruh, to 8 ft ., but the branches often lopping on the ground and taking root: Irs. broad-ovate or oblong-ovate, serrate, $3-4 \mathrm{in}$. long : fls. $1-3$, about 1 in. long, golden yellow, tube striped orangeyellow within ; calyx about as long as tube : capsule orate, about 1 in . long. China. S.Z.3.-Two rarieties can be distinguished. Var. Sièboldi, Zabel (F. Sieboldi, Dipp.). Fig. 855. Low sbrub, with very slender, pendulous or trailing branches: lvs, mostly simple, broadovate or ovate. B.M. 4995. F.S. 12:1253, Gn. 33, p. 563. A.G. 13:94. G.F. 4:79. Var. Fortunei, Rehder (F., Fórtunei, Lindl.). Fig. 856. Of more vigorous growth, with npright or arching branches: lvs. often ternate, ovate or oblong-ovate: corolla with more narrow and twisted segments, R.H. 1861:291. F.suspensa is an excellent shrub for the margins of groups, because it finally rolls over and meets the greensward. It can also be trained over an arbor. Less common than F. viridissima, but better.
intermèdia, Zabel (F. suspénsa \times viridissima). Sbrub, with slender, erect or arching branches: lvs. ovate-lanceolate, sometimes 3 -lobed or ternate, coarsely serrate, $3-4 \mathrm{in}$. long: fls, almost like those of F, suspensa Fortunei. Gt. 1885:1182 and 40: p. 397.-Often confounded with forms of F. suspensa. In foliage it resembles much the following, which bas tbe lvs. narrower, always simple, usually serrate only above the middle, with smaller teeth. It is as hardy as F. suspense and rery floriferous.
viridissima, Lindl. Figs. 857, 858. Shrub, to 10 ft ., with green, erect branches: lvs. oblong-lanceolate or

FOXGLOVE

lanceolate, always simple and generally serrate only above the middle, very dark green, 3-6 in, long: fls. about 1 in . long; corolla with rather narrow, twisted lobes of bright, somewhat greenish yellow; calyx about half as long as tube. B.M. 4587. F.S. 3:261. B.R.33:39. -Less bardy and graceful than the othe species.
F. Europìa, Deg. \& Bald., from Albania, has small, ovatelanceolate, quite entire lvs.

Alfred Rehder.
FOTHERGILLA (after John Fothergill, eminent English physician, who introduced and cultivated many new plants, 1712-1780). Hamameliddcec. Hardy ornamental shrubs, with alternate, deciduous, simple, dull green lvs, and showy spikes of white fls. in spring with the lvs. : the distinct foliage resembles somewhat that of the alder, or more that of Hamamelis, and turns yellow late in fall. They grow best in moist, peaty or sandy soil. Prop. by speds, not germinating until the second year, or by layers, which take two years to root; the first species also by suckers and rootcuttings. Two closely allied species in the S. Alleghanies: low shrubs, with the branches densely stellate-pubescent: Irs.

859. Fragaria Chiloensis.
panulate, 5 -7-lobed; stamens numerous, with the filaments thickened toward the end: capsule dehiscent, 2 -celled and 2 -seeded.
Gárdeni, Murr. (F. alnifòlia, Linn. f. F. Carolina, Britt.). Low shrub, with generally spreading branches, to 3 ft .: Ivs. oblong or obovate, rouuded or cuneate at the base, coarsely dentate above the middle, pubescent and pale or glaucous beneath, $1-2 \mathrm{in}$. long: spikes ovate or oblong, I-2 in. long, leafless at the base; stamens 1/s-1/4 in. long, sometimes pinkish. B.M. 1341. L.B.C. 16:1507.
majjor, Lodd. (F. monticola, Ashe. F'. alnifsliat, var. mえjor, Sims). Bushy shrub, with upright branches, to 6 ft .: lvs, broadly obovate or roundish, oval, cordate or truncate, coarsely crenate or undulate even to the base, sometimes nearly glabrous beneath, $2^{1} \frac{1}{2}-5 \mathrm{in}$. long: spikes $11 / 2-3$ in. long, with 1-3 lvs. at the base: stamens $1 / 2 \mathrm{in}$. long, wbite. B.M. 1342. L.B.C. I6:1520.-This species is superior to the former on account of its dense, pyramidal habit, larger lys, and showier fls.

Alfred Rehder.
FOUNTAIN PLANT. Amarantus sulicifolius.
FOUQUIERIA(Pierre Ed. Fouquier, professor of medicine at Paris). Tamarisedcere. Candlewood, Four species of plants from the deserts of Mex. and New Mex., of which one is cult. in the larger rockeries of Calif., and is interesting as being an example of an order far removed from the Cactaceæ in fls. and fr., but reduced to something of tbeir habit by the desert. It is often cult.

860. Fragaria Virginiana.

Showing the profuse runners.
by the Mexicans to make an impenetrable, spiny hedge. The plant has small and comparatively few lrs., borne in clusters in the axils of the spines. Fls, with a fun-nel-shaped tube 1 in . or more long, and 5 spreading lobes.
spléndens, Engelm. Coach-twhip. Vine-Cactus. Jarob's Staff. Ocotillo. Sbrab, 6-10, or even 20 ft . high, branching near the base: branches long, gray, furrowed, erect: lvs. oborate, ronuded at apex, wedgeshaped at base, $1 / 2-1 \mathrm{in}$. long: inflor. racemose, thyrsoid: fls. scarlet or brick-red; stamens $8-12$, exserted: seeds white, with a long fringe of spirally thickened hairs. W. Tex, and Ariz. to S. Calif. A.G. 13:759.
F. Franceschi and W. M.

FOURCROY゙A. See F'urcrea.
FOUR-0'CLOCK. See Mirabilis Jalapa.

[^0]FRAGARIA (Latin fragrare, fragrance, from the smell of the fruit). Rósdcec. Strawberry. A small genus of low perennial berbs in the north temperate zone and along the American Cordilleran region. The lvs. are palmately 3 -foliolate and toothed, all from the crown of the plant: fis. white or yellow, in corymbose racemes on slender, leafless scapes, sometimes lacking stamens; calyx deeply 5 -lobed and reinforced by 5 sepal-like bracts ; petals 5 , obovate; stamens many, short; pistils many, on a conical receptacle, becoming small and hard akenes and persisting on the enlarging receptacle. The enlarged receptacle becomes pulpy and edible in the Strawberry, or Fragaria proper, but it remains small in Duchesnea. See Figs. 826, 827. Fragarias propagate naturally by means of runners.
The Fragarias are exceedingly variable. A bout 130 specific names have been applied to them, but there are probably not more than a dozen forms which are distinct enougb to be clearly distinguished as species. Bentham and Hooker would reduce them all to three or four species. Of the true Fragarias, four species-types

white below, blunt-toothed: fl.-clusters forking and long-rayed, the peduncle short, soon lopping on the ground: runners mostly appearing after the fruit is gone: berry large aud firm, dark-colored, more or less musky in Havor, reinforced by a very large calyx or hull. Pacific coast region of S. Amer. A common wild Strawberry of the Pacific slope of N. Amer, is referred to this species, but it is a question whether it is identical with the S. American form.

Var. ananássa, Hort. (F. anandissa, F. tineta, F. calyculata, Duchesne. F'. grandiflèra, Ehrh.). Pine Strawberry. Common Garden Strawberry. Taller growing: lvs. larger and thinner, mostly lighter green on both sides: fr. larger, running into very many kinds.

Virginiàna, Duchesne (F. Iowénsis and F. Illinoénsis, Prince). Scarlet or Virginian Strawberry. Figs. 860, 861, 862. More slender: Ivs. thinner, light green above and below, the upper surface with sunken veins: fl.-clusters small, with a few hanging fruits at the top of a rather long peduncle: runners usually appearing with the fruit: berry small, light scarlet, globular or oblong-conical, usually with a constriction or neck underneath the moderate-sized calyx or hull. E. North Amer.-Variable. The larger and more hairy forms have been separated as var. Illinoénsis, Gray, but it is difficult to define them from the type; and the same is true of the boreal forms, which have been detached as F. Canadensis, Michx. A few early varieties of Strawberries, as Crystal City, seem to be wholly or partly of F. Iirginiana origin.
BB. Levs. normally shorter than the fl-clusters: akenes usually not sunken in the flesh of the berry.
vésca, Linn. (F, semperflòrens, Duchesne). Alpine and Perpetual Strawberries. Erect and dark green, only sparsely hairy, the lvs. thin and light green as compared with the foregoing species, very sharp-toothed: fl.-cluster small, forking, erect : berry firm, small, usually oblong-conical, the akenes very prominent; hull spreading. Eu. - The American representative of this species-common in woods N.- is thought by some to be a distinct species, and it has receired the name F. Americana, Britt.; but it is doubtful if it can be separated. See Figs. 863, 864. The true F, resca is thought to be sparingly naturalized eastward. The native plant often bears white fruit. The cult. forms are rarely seen in this country, but the quality is high, and they are deserving of more attention in home grounds. Variable in cult. There is a form with leaflets reduced to one (F. monophylla, Ducbesne, B.M. 63). This type of Strawberry bears more continuously than F. Chiloensis and F. Vrginiana. The so-called Mexican or Everbearing Strawberry which has been introduced at times is F. Mexieana, Schlecht., which is another form of the vescan type. On the Pacific slope, the type possibly may be represented by F. Califoruica, Cham. \& Schlecht.
moschàta, Duchesne (F. elàtior, Ehrh.). Hautbois. Taller, usually diocious, more pubescent, the calyx or hull strongly reflexed from the fruit: berry duli red, musky. Eu.-Cult. forms rarely seen in Amer.
aA. Duchesnea. Receptacleless fleshy, tasteless: habit trailing: fls. yellow.
Indica, Andr. Neat trailing plant with small obovate crenate-dentate leaflets, solitary long-pedicelled fls., and calyx bracts toothed. India. Naturalized E.-Very useful as a basket trailer.
L. H. B.

FRAGRANT BALM. Monarda didyma.

FRAME. Fig. 865. A box without permanent top or bottom which is desigoed, when covered with glass or other transparent material, as a place in which to grow plants. When supplied with artificial bottom heat, the frame is part of a hotbed; when supplied odly with suo

heat, it is part of a coldframe. The Frame may be of any size, but the normal size is 6 x 12 ft ., an area which accommodates four $3 \times 6 \mathrm{ft}$. sashes; and this 6×12 area is understood when one speaks of "a Frame." See Hotbed.
L. H. B.

FRANCiscEA. Included with Brunfelsia.

FRANCOA (Fr. Franco, Valencia, sixteenth century). Saxifragicea, Three species of (hilean perennia) herbs, with turnip-like (lyrate) Jvs, and terminal, dense racemes of white or pink fls, borne in summer. They are interesting as having points in common with Crassulacear, Rosacer, Galax and even Dionaa. They grow about 2 ft . high, and in the North could perhaps be wintered in a coldframe. Scape-bearing, glandular-pilose or tomentose: rhizome thick, many-headed: Ivs, glan-dular-dentate: fls. 1 in. across, as many as 36 in racemes 6 in. long: floral parts in 4's, rarely 5 's; petals obovate, clawed.
A. Fls, white.
ramosa, D. Don. Taller, woodier and more branching tban the others, and distinguished by pubescent inflorescence. Leaf-stalks not margined: fls. smaller. Hardy at Washington, D. C., according to J. Saul, with spikes 2 ft . long and 1 in . thick.

AA. Fls. mostly pink.

B. Leaf-stalks broadly winged ut the base.
sonchifolia, Cav. Lower lobes continnous with the broad margin at the base of the leaf-stalk: petals deep rose, dark-spotted. B.M. 3309.

BB. Leat-stalks not winged at the base.
appendiculàta, Cav. Lower lobes distant from the base of the stalk: petals pale rose, rarely spotted. B.M. 3178 (shows a white longitudinal band on petals). B.R. 19:1645, where Lindley said (1833), "It thrives hetter if
constantly kept in a greenhouse, especially if it be planted in the open soil, where it can be freely exposed to light and air, without which the beantifnl spots of its petals are scarcely developed." His plate shows 4 pretty red spots near the base of each petal. L.B. ($: 19: 1864$, erroneously named F^{\prime}. sonchifolia, has the midveins and bases of the side.veins of the petals dark red. W., M.

FRASERA (John Fraser, English botanist, collected in America 1785-96 and published Walter's Flora Caroliniana). Gentiandcea. Columbo. Large, stout herbs, all North American, and all but one far-western with a single stem from thick, bitter, mostly biennial roots, opposite or whorled Jvs., and cymose clusters of dull white, yellowish or bluish fis. which are comnonly darkspotted; calyx deeply 4 -parted: corolla wheelshaped, 4-parted, persistent.
A. Le's, in whorls of 4-6, not white-marganed.
speciosa, Dougl. Fls, greenish white or barely tinged bluish, dark-dotted: 2 glands on each corolla lobe.-Cult. by D. M. Andrews, Boulder, Colo.

AA. Les. in $2^{\prime} s$ or $S^{\prime} s$, white-margined.
B. Height $2-3$ ft.: fls, whitish, dark-dotted.

Parryi, Torr. Lvs. opposite or in 3's: I notched gland on each corolla lobe.-Int. I891 by Oreutt, San Diego.

> BB. Height s-s in.: fls. bluish.

Cùsickii, Gray. Liss. opposite: 1 gland reaching from near the base to near the middle of each corolla lobe.Adv. 1889 by F. H. Horsford, Charlotte, Vt.
W. M.

FRAXINELLA. See Dictamnus.

FRAXINUS (ancient Latin name). Oleacea. Ash. Hardy ornamental trees, with deciduous, opposite, pinnate, rather large lvs, and small fls, in panicles, either appearing before the lvs. and greenish, or in the subgenus Ornns after or with lvs, and whitish in show y panicles: the winged fr. is insignificant. They are valuable as street and park trees, and grow mostly into tall, pyramidal or broad-headed trees, with rather light green foliage, which turns yellow or dark purple in fall or remains green, as in F^{+}. ercelsior and Ornus. The Ash is seldom severely injured, though a number of insects and fungi prey on thelvs. and wood, of which two borers, and a fungus attacking the Ivs., are perhaps tbe most obnoxious. Most of the species are hardy North except those from the southern states, southern Europe and Himalayas ; of the sub-genus Ornus, F. Bungeana and $\boldsymbol{F}^{\boldsymbol{*}}$. lonqicuspis seem to be the hardiest. The A shes are important forest trees, and the straight-grained and tough wood is much used for bandles of tools, in the mannfacture of carriages and wagons, for the interior finish of houses, and for furniture, for baskets and also for fuel. From $F_{\text {. Ornus manna is obtained as an exu- }}^{\text {. }}$ dation of the trunk, and some Chinese species yield the C'hinese white wax. The Ashes grow in almost any moderately moist soil, F, nigra being somewhat more moisture-loving, while \boldsymbol{F}. oxycarpa, \boldsymbol{F}. Ornus, \boldsymbol{F}. Sogdi-

ana and F. cuspidata grow well even in drier situations. They are generally readily transplanted and grow rapidly when young. Prop. by seeds gathered in fall and sown immediately, or stratified and sown in spring, covered about 1 in. high with good soil; sometimes remain dor-
mant until the second year. The varieties and rarer kinds are budded in late summer or grafted in spring on the seedlings of any of the common species. About 40 species in the temperate region of the nortbern bemisphere sonth to Cuba; about 15 of the species grow in N. Amer. and nearly as many in E. Asia. Trees or shrubs, with odd-pinnate, rarely simple, opposite lvs. without stipules: fts. in panicles, diœecions or polygamons, with or without calyx or with calyx and a 2-6parted corolla with generally linear segments; stamens geuerally 2: ovary 2 -celled: fr. a 1-seeded, winged samara.

INDEX.

acnminata, 7.
Americana, 7.
alba, 7.
Bosci, 9.
Bungeana, 2.
Caroliniana, 12 epiptera, 7. excelsior, 16. floribunda, 1 and suppl.
juglandifolia, 7. lanceolata, 8.
lentiscifolia, 17. longicuspis, 3 . fandschurica, 15. monophylla, 16.
nigra, 14.
Voncr-Anglia, 7. Oregona, 11 Ornus, 1 pannosa, 9. parvifolia, 2, 17. Pennsylvanira, 9. platycarpa, 12.
potamophila, 18 pubescens, 9. pubinervis, 5 quadrangulata, 13. rotundifolia, 1 and suppl. rufa, 16. sambucifolia, 14 serratifolia, 5. Sieboldiana, 4. simplicifolia, 16, viridis, 8 .

BB. Winter-buds brown or nearly black.
C. Corolla divided to the base: stamens with rather long filaments.
3. longicuspis, Sieb, \& Znec. Slender tree, to 30 ft . with rufously pubescent winter-buds: lfts. 5-7, stalked, oblong-lanceolate, long-acuminate, ohtusely serrate, almost glabrous, 2-4 in. long: fls, in rather slender, barrow panicles, to 4 in . long ; petals linear, acute: fr. oblanceolate. May. Japan.
4. Sieboldiana, Blume. Small tree: winter-buds mostly glahrous and often almost black: lfts. $5-7$, almost sessile, elliptic or oblong-lanceolate, acuminate, serrate, usually pubescent along the midrib beneath, $2-4$ in. long: panicles like the former; petals linearspatulate, obtuse : fr. oblanceolate. May. Jap., Corea.
5. pubinérvis, Blume. Small tree: lfts. 7-11, ovate or orate-oblong, acute or acuminate, serrate, pubescent on the veins beneath, $11 / 2-4 \mathrm{in} . l o n g: ~ p a n i c l e s ~ l e s s ~ n a r r o w ~$ than in the former: petals small and caducous. Jap. - Probably \boldsymbol{F}^{\prime}. serratifolia, Hort., belongs bere.

cc. Corolla with short tube: anthers almost sessile.

6. cuspidáta, Torr. Shrub or small tree, to 20 ft ., with dark, reddish brown buds: Ifts, usually 7 , slender stalked, lanceolate or oblong-lanceolate, acuminate, coarsely serrate, almost glabrous, $11+2$ in. long: fls, fragrant, in 3-4-in, long panicles: fr. spatulate-oblong. April. Texas to Arizona and N. Mex. S.S. 6: S60.Handsome flowering tree for temperate regions.

AA. F'ls, without corolla, appearing before the lis.
B. Fls, diacious, with the calyx persistent on the fr.: anthers linear or linear-oblong: lfts.generally 5-7: buds brown. (Subgewus Leptalix.)
c. F'r. oblanceolate or lanceolate.
D. Branches and petioles glabrous.
7. Americàna, Linn. (F^{\prime}. NòquAnglice, Mill. F. ólba, Marsh.). White Ash. Fig. 867. Tall tree, to $120 \mathrm{ft} .:$ lfts. generally 7, stalked, ovate to ovate-lanceolate, entire or denticulate, dark green above, glancous beneath, $3-5 \mathrm{in} . \operatorname{long}$: fr. linear-oblong, with terete body, the wiug not decurrent, $11 / 2$ in. long. From Canada to Fla., west to Minnesota and Texas. S.S. 6:268. Em, 377. - Very variable. Var. acuminàta, Wesm. $\{\vec{F}$. acuminata, Lam. \boldsymbol{F}. epiptera, Michx. \vec{F}. Americana, var. glauca, Hort.). Lfts. dark green and shining above, very glaucous and almost glabrous be neath, entire. Var. juglandifolia, Rehd. (F. iuglandifolia, Lam.). Lfts, less shining above, usually broader, more or less pubescent beneath, serrate at least above the middle. This is the northern form, while the former is more common in the sonthern states. Var, álbo-marginàta, Hort. Lfts. edged white.
8. lanceolàta, Borkh. (F. víridis, Michx. in part. \boldsymbol{F}. Pennsylvániea, var. lanceoldta. Sarg.). Green Ash. Tree, to 60 ft .: Ifts. 5-9, short-stalked, ovate to oblong-lanceolate, irregularly serrate, green on both sides, almost glabrous, $2-5$ in. long : fr. oblanceolate, with decnrrent wing, bence body margined, about $1^{1 / 2}$ in. long. Canada to Fla., west to Rocky Mts. S.S. 6:272.

DD. Branches, petioles and les. beneath

 pubescent, at least when young.9. Pennsylvánica, Marsb. (F. pubéscens, Lam.). Red Ash. Tree, to 60 ft .: lfts, $5-9$, stalked, ovate to oblong-lanceolate, acuminate, crenately serrate or entire, pubescent beneath, $3-6 \mathrm{in}$. long: fr . linear-spatulate, about 2 in . long, with somewhat decurrent wing. Canada to Fla., west to Dakota and Mo. S.S. 6:271.- Var. aucubæfolia, Hort. Lvs, blotehed yellow, less pubescent. Var. Bosei,

FRAXINUS

Hort. With dark green, shining foliage. Var. pannosa, Hort. Similar to the former, but lvs. larger and narrower.
10. velütina, Torr. (F^{\prime}. pistacicfolia, Torr.). Tree, to 40 ft ., with velvety pubescent, rarely glabrous branches: Ifts. 5-9, sometimes reduced to 3 or even 1, shortstalked, oval to lanceolate, entire or remotely serrate, yellowish green, firm and thick at maturity, pubescent or nearly glabrous beneath, 2-i in. long : fr. spatulate, with marginless body. Texas to Arizona and N. Mexico. S.S. $6: 267 .-$ Not hardy North.
11. Oregona, Nutt. Tree, to 80 ft .: petioles sometimes glabrous at length : Ifts. $7-9$, almost sessile or shortstalked, oblong or elliptic, acuminate, entire or obscurely and remotely serrate, light green, 21/2-6 in. long, thick and firm at maturity : fr. oblong-obovate, witl decurrent wing, about $11 / 2 \mathrm{in}$. long. Wash. to Calif. S. S. 6:276.
cc. Fr. elliptic or broadly spatulate, body compressed with the wing all around.
12. Caroliniàna, Lam. (F. plutycárpa, Michx.). Water Ash. Tree, to 40 ft ., with pubescent or glabrons branches: lfts. $5-7$, stalked, ovate or oblong. acuminate, serrate, rarely entire, pubescent or glabrous beneath, $2-5 \mathrm{in}$. long: ir. 1-2 in. long, with pinnately veined wisg, often 3 -winged. Virginia to Fla., west to Arkansas and Texas. S.S. 6:274-75.
BB. Fls, without calyx (only No, 13 has a decidunus minute caly.x): anthers cordate, rarely lroadly oblong: lits. generally more than 7, nearly glabrous. (Subgenus Fraxinastir.)
c. Branches 4-angled and usually winged.
13. quadrangulàta, Michx. Blue Ash. Tree, to 80 , rarely 120 ft .: Ifts. $7-11$, short-stalked, ovate to lanceolate, acuminate, sharply serrate, yellowish green on hoth sides, $3-5 \mathrm{in}$. long fl . perfect: fr. oblong, emarginate, winged all around, 1-2 in. long. From Michigan to Arkansas and Tennessec. S.S. 6:263.
cc. Branches terete or nearly so.
D. Bloom dixcious: rachis at the base of lfts. with thick rufous tomentum.
14. nigra, Marsh. (F^{\prime}.sambucifdlia, Lam.). Black Ash. Fig. 868. Tree, to 80 ft . 1 fts . 9-11, sessile, oblong-lanceolate, rounded at the base, acuminate, sharply serrate, green on both sides, dark above, 3-6 in. long: anthers broadly oblong: fr. narrow-oblong, with decurrent wing. From Canada to Virginia, west to Mo. S.S. 5:264-65. Em. 382.
15. Mandschùrica, Rupr. Tree, to 100 ft ., with obtusely quadrangular branches and dark brown buds: lfts. $9-11$, almost sessile, ovate to oblong-lanceolate, sharply serrate, pubescent or hispid on the veins beneath, $3-6 \mathrm{in}$. long: fr . oblong-lanceolate, $1-1 \frac{1}{2} \mathrm{in}$.
868. Key of Fraxinus nigra.
Nat. size. long. Manchuria, Corea, Saghalin, Japan. Valuable tree of vigorous growth.
DD. Bloom perfect or polygamous: rachis without con spicuous rufous tomentum.

E. Buds black.

16. excélsior, Linn. Fig. 866. Tall tree, to 120 ft .: buds black: Ifts. 9-13, almost sessile, oblong-ovate or ovatelanceolate, acute or acuminate, serrate, dark green above, paler beneath, $2-5 \mathrm{in}$. long: fr. oblong, often emarginate, about $11 / 2 \mathrm{in}$. long. Eu., W. Asia. Many different varieties are cultivated, some of the most distinct being the following: Var. albo-marginàta, Hort. Lfts. edged white. Var. albo-variegàta, Hort. Lfts. blotched white. Var. aùrea, Lond. With yellow branches. Var. aürea pendula, Loud. With pendulous yellow branches, but a somewhat weak grower. Var. asplenifolia, O. Ktze. (var. scolopendrifolia, Hort.). Lfts. very narrow, almost linear. Var. crispa, Willd. (rar. atrovirens, Hort., var. cucullata, Hort.), with very dark green curled and twisted lvs.; of slow growth. Var, diversifolia, Ait. (F. heterophylla, Vahl. F. simplicifolia laciniata, Hort.
F. rufa, Hort., not Bose). Lirs. simple or 3-parted, usually incisely dentate. Var. monophy̆lla, O. Ktze. (\mathcal{F}. monophylla, Desf. F. simplicifolia, Willd.). Lvs. simple, ovate, serrate, rarely with 1 or 2 small lfts. at the base. Var, nana, Loud. (var. polemoniifolia, var. globosa, Hort.). A compact, slow growing, dwarf form with very small lvs. Var. péndula, Ait. With pendulous branches. One of the best pendulous trees for forming arbors and shady seats.

EE. Buds brown.

17. parvifolia, Lam. (\boldsymbol{F}. lentiscifolia, Desf.). Shrub or snall tree, to 15 ft ., with slender, often purplish branches: Ifts. 7-13, sessile, obovate or obovate-lanceolate, acute, serrate, 1-2 in. long: fr. oblong, obtuse or acnte. W. Asia, S. Europe. Var. pendula, Dipp., with pendulous branches, forming a graceful small weeping tree.
18. potamophila, Herd. Small tree, to 30 ft ., with rather stout, upright branches: 1fts. 7-13, stalked, rhombic-ovate or ovate-fanceolate, serrate, acute or acuminate, $1-21 / 2 \mathrm{in}$. long: fr. linear-oblong, Turkestan, Songaria.
F. angustifolia, Vahl. Allied to F. parvifolis. Lfts. oblonglanceolate or lanceolate, serrate, to 3 in , long. S. En. N. Afr., W. Asia.-F. anomala, Wats. Small tree, to $20 \mathrm{ft} .$, with quadrangular branches: lvs. simple or pinnate, ronndish or roundisb ovate, $1^{1 / 2}-2$ in.: fr . obovate. Colo, [tah. S.S. 6:266t. - . argentea, Loisel., is a var, of \mathbf{F}. rotundifolia, but in gardens often other Ashes, especially varigated forms, are cult. nnder this name. -F. Berlandieriuna, DC. Allied to \mathbf{F}, lanceolata. Tree, to 70 ft .: lfts. 3-5, ovate or obovate, serrate, downy along the veins beneath, to 4 in . long. Texas to Mexico. S.S. 6:273.F. Biltmoreana, Beadle. Allied to F. Americana. Tree, to 50 ft . branches pubescent: Ifts, 7-9, oblong-lanceolate, pubescent heneath, $3-6$ in. long: fr. $1^{1 / 2}-2$ in. long, emarginate, with elliptic.

19. Freesia refracta, var. Leichtlinii.
marginless body. N. Carolina.-F. dimírpha, Coss. \& Dnr. Allied to F. xanthoxyloides. Shrub: lfts. $5-7$, roundish ovate to oblong, crenately serrate, $1 / 2-1 \mathrm{in}$, long. N Africa. Tender. $-F$. dipétala, Hook. \& Ara. Allied to F. enspidata. Shrub: Ifts. $5-7$, elliptic or ovate, serrate or entire, $1 / 2-2$ in. long: fis with 2 obovate petals. Calif., Mexico. S.S. 6:261. Tender.-F. floribünda, Wall. Allied to F. longienspis. Tree, to 40 ft : 1fts, 5-7, ovate-lanceolate, serrate, reticulate beneath, $2-4$ in. long: panicles large, to 10 in . long; petals oblong. Himalayss. Tender, F. Gréggi, Gray. Allied to F. cuspidata. Small tree: lfts. 3-7,
oblong-ohovate, crenately serrate, or entire, $1 / 0-1 \mathrm{in}$. long: ir. linear-oblong, emarginate. S.S. 6:262, G.F. 2:451,-F, Mariesi, Hook, f. Allied to F. Bungeana. Shrab: lfts, 5 , almost sessile, obovate to ovate-lanceolste, entire or serrate, acute, 1-3 in. long. Cbina. B.M. 6678.-F. oxycérpa, Willd. (F. oxyphylla, Bieb.). Allied to F. parvifolia. Tree, to $60 \mathrm{ft.:} \mathrm{lfts.5-11}, \mathrm{lanceo-}$ late, serrate, pubescent along the midrib beneath, $11 /-3$ in. long: fr. oblanceolate, acute. S. Eu., W. Asia.-F. profunda, Bush, Allied to F. Pennsylvanica. Lfts. 7-9, oblong-lanceolate, acuminate, entire, $3-6 \mathrm{in}$. long, tomentose beneath: fr. $2-21 / 2 \mathrm{in}$. long. with decurrent wing. Ark., Mo,-F. raibocarpa, Regel. Shrub: Ifts. 3-7, oblong or oblong-obovate, usuatly entire, obtuse, 1-2 in. long: fr. strongly falcate, with obovate not decurrent wing. Turkestan, Buchar. -F, Régeli, Dipp. Probably only var. of F. potamophila, with darker green, broader and less acute Ifts. Turkestan. -F rhynchophyilla, Hance. Large tree: buds large, thickly covered with rufous tomentum: Ifts. 5, oblong obovate, remotely crenate-serrate, 2-1 in. long: fls, perfect, apetalous, with a calyx. China. G.F, 6:485,F, rotundifolia, Lam. Allied to F. Ornus. Small tree, to 25 ft .: lfts. $5-9$, roundish or roundish obovate, irregularly serrate. S. Europe.-F. Sogdiana, Bge. Allied to F, angustifolia. Small tree: lvs, often in 3 's and rather crowded; lfts. $3-5$, lanceolate, serrate, $2-4$ in. long. Turkestan, -F. tamariscifolia, Vabl. Allied to F, parvifolia, Small tree: lfts. 9-11, short-stalked, oblong-lanceolate, serrate, 1-3 in, long. W. Asis,-F. Texénsis, Sarg, Allied to F. Americana. Tree, to $40 \mathrm{ft}:$ lfts. 5, broadly oval or ovate, rounded or acute at the apex, $11 / 2-21 / 2$ in. long. Texas. S.S. 6:270. - F. Theophrasti, Nouv. Duh., is a var, of \mathbf{F}. Ornus, but in gardens other forms are sometimes cult, under this name. $-F$. Turkestänica, Carr, =F. Sogdiana, -F, xanthoxyloides, Wall. Shrub or small tree, to 25 ft .: Ifts. $5-9$, oblong, crenulate-serrate, 1-2 in. long. Himalayas. Belongs to the subgenus Sciadanthus, having perfect avetalous fls. with calyx.

Alfred Rehder.
FREESIA (the author of this genus never explained the name). Iriddcer. Freesias (Fig. 869) are amongst the dozeu most popular bulbous plants for fall planting and wiuter blooming, and next to the Chinese narcissus, which can be grown in pure water, they flourish in home windows with less care than most other hulbs. They have tubular fls., white or pale yellow, borne in a pretty fashion that makes them amongst the moxt highly individualized of all garden plants. The 5-7 fls. are upright and strung along a jointed axis which is suddenly bent back almost at right angles to the rertical peduncle. (This habit is an accentuation of that of Tritonia, from which Freesia is essentially distinguished by the 2 -cut style.) Of the splendid and almost numberless bulbs from the Cape of Good Hope (including the iris, amaryllis, and lily families) Freesias are, next to gladiolus, the most popular, though not so variable as lxias. This popularity is a growth of the last quarter century or less, though Freesias have been in cultivation since 1816 or earlier. Conservative botanists now suppose that the Freesias are all originally of one stock, which species should be called F. refracta. The extremes of variation in form are shown in Figs. 869 and 870, from the long and slender tube of var. alba to the short and broader tube of var, Leichtlinii. One of the earliest pictures of the plant is that in the Botanical Register for 1816 (Plate 135, as Tritonia refracta), a part of which is reproduced in Fig. 870 to show the great irregularity of the corolla lobes at that early period, and the straggling habit of the fls., some pointing down and others up. The colors in the plate are unattractive, almost repulsive, being a sickly green throughout, with a strong orange color on the tips of the 3 lower lobes. The garden evalution of the Freesias has proceeded along two lines. The greatest effort has been expended to produce a pure white flower, and in the best strains the white color is mostly associated with a long and slender tube. The ideal of a yellow flower is less popular, and is mostly associated with the shorter and broader tube. In both cases the forms with straggling inflorescence and irregular corolla lobes have been relentlessly suppressed. One may easily see how strongly 2 -lipped and gaping were the flowers of 1816 , and how strongly the tube was bulged upon one side. Any tendencies toward such forms in modern bulhs are signs of degeneration or carelessness somewhere. In pedigree plants the lobes are beautifully rounded and the flowers symmetrical. Perhaps the most charming picture of the two prevailing ideals is Plate 347 of the Garden, vol. 22, 1882. One of the earliest pictures of the short-and broad-tubed yellow type is that in L.B.C. 19:1820, published in 1832 as Tritonia odord̀ta. The
probable course of evolution and degeneration in Freesias is pictured in Gog. 7:197 and A.F. 14:1179. In the pursuit of either ideal, the yellow spots have been considered objectionable. The original stock seems to have a trace of violet color, which sometimes shows itself in varying intensity, sometimes in spots or lines, sometimes in a suffused tint. Lately some fine effects are said to have been secured with this minor color, but it is doubtful if the violet hue will ever produce anything of the first importance. Less important pictures of Freesias are in Mn. 8, p. 87. A.G. 17:539. Gn. 51, p. 304. G.C. III. $3: 588 ; 19: 391,392,397$. The writer has not seen the older figures in Jacq. 1c. t. 241. Redouté, Lil. t. 419 and Gt. 808. For gardeu monographs, see Ging. 7: 196, and Gn. 22, p. 94.

The following points are taken with only trifling changes from F. A. Waugh's review of Freesias in Gng. 7:196: "As a florist's flower the white Freesias are most valuable, the whiter the better. The original type of Freesia refracta evidently had a strong tendency toward the yellow color; this keeps turning up with great persistence in $\boldsymbol{F}^{\text {. }}$, refracta alba. There is always a certain per cent of yellow mixture, even in the linest strains. Sometimes it is only $2-3$ per cent; sometimes it is 50 per cent; usually it runs about $5-10$ per cent. The causes of this are not certain. A Californian makes a quasi admission of the allegation that American grown stock shows more yellow than the European growu, and suggests that the strong sunlight of his state accounts for the tendency toward yellow fls. Experiments by V. A. Clark show that the yellow color is formed under the direct oxidizing influence of sunlight. In general it seems that the greater amount of yellow is correlated with stronger growth. Plants which grow very vigorously show darker green leaves and more of the peculiar sulfur color. White flowers are often, like white leaves, a sign of weakness in the plant. This makes it difficult to keep a stock of Freesias vigorous and at the same time selected to a high degree of purity as regards the flowers."
Freesias are much forced ly florists, chiefly for cut flowers at Christmas. If cut when only 2 fls, are out, the rest will open. They can be had in flower from Christmas until June by successional plantings from Aug. to Feb. For the best results the largest and highest priced bulbs should be planted as early as Aug. One of the strong points of Freesias, however, is that planting may be delayed longer than with many other bulbs. Bulhs may be dried off gradually in the pots and kept dry during summer. Repot; the larger bulhs will bloom, but will not give so good results as medium size imported bulbs not previously forced.

FRITILLARIA

In the home window Freesias will flower in 6 weeks after growth starts. Their fragrance is delightful. They are not so particular as the otber important bulbs about being potted long before they are wanted for forcing and stored in a cool place, where the tops are held back while the roots derelop. Be careful to have good drainage. There is danger of overwatering until the plants are in flower.

The wholesale production of Freesia bulbs is an important industry. The Cbannel Islands bave long been known as one of the most favored localities for growing Cape bulbs. Freesias are comparatively little grown in Holland. The centers of the industry seem to be shifting. The Bermuda Islands now have a small share of the trade, and California bas the largest share of any of the American states at present.
A. Fls. distinctly 2-lipped: inflorescence straggling: colors dull; spots prominent.
reiracta, Klatt. Fig. 870. The origical type no longer in cultivation. Lvs. linear: spatbe-valves small, oblonglanceolate, scarious.
AA. Fls, and inflorescence more nearly regular: colors* purer; spots uot prominent.

B. Tube typically long, slender and gradually narroued.

Var, álba. Fig. 870. Lvs, and spathe-ralves as in var. odorata.
日в. Tube typically short, broad, suddenly constricted.
c. Color pale yellow.

Var. Lelchtlinii. Fig. 869. There is a subvariety majur int. by Sutton.

> ce. Color bright yellow.

Var. odorata. Livs. broader and less rigid than in the type: spathe-valves broader and more obtuse. Subvarieties with various colors are lóetea, lilaclna, formosa and Klattedna.
ccc. Color orange.

Var, aurea. Odorless, later than the rest and more uncertain.

Other kinds of less importance are crispa, tricolor, xanthospica, purpurascens and xanthospila. These names do not appear in American catalogues. Bella is a variety highly praised by some.
W. M.

FREMONTIA (after John Charles Fremont, distinguished western explorer, who discovered it in 1846). Syn. Fremontodéndron. Sterculideece. Beautifnl freeflowering sbrub, with alternate, rather small, palmatelylobed Ivs, and large yellow fls, appearing in great profusion in June. It is not hardy North, and in cool regions it sbould have a sunny and sheltered position, preferably against a wall of southern aspeet; it prefers well-drained, rather dry soil, and dislikes, especially during the winter, an exeess of moisture. Prop. by seed - or by greenwood cuttings under glass in summer. One species in California, allied to the Mexican Cheirantbodendron: sbrub or small tree, with stellate pubescenee: 1 vs alternate, slender-petioled: fls, solitary on short, lateral branchlets, apetalous: calyx large, deeply 5-parted, with 3 small braets at the base: stamens 5-connate toward the base into a tube: fr. a 5 celled, debiscent capsule with many seeds.

Californica, Torr. To 20 ft : Ivs, generally roundish orate, eordate or rounded at the base, obtuse, 3- to \ddagger lobed or almost entire, whitish or ferrugineous pubeseent beneath. $3 / 4-1, \mathrm{in}$. long: ealyx $1^{1}-3$ in. across, deep yellow, with stellate bairs outside, villous at the buse within; lobes orbicular: eapsule densely beset with hispid hairs, 1 in. long. S.S. 1:23. B.M. 5591. Gn. 3. n. 55; 29:525 and 33. p. 566. F.S. 22:2349. R.H. 1867:90. 1.H. 13:496. B.H. 17:13.

Alfred Rehder.

FRINGE TREE. Chionanthus Virginica.
FRITILLARIA (Latin Fritillies, commonly understood to be a checker-board, but may bave meant dice-box). Lilideea. This genus ineludes the Crown Imperial and
the Fritillaries, hardy, bulbous plants, mostly low. growing and spring-blooming, with drooping or nodding fls. which are oiten cheekered or tessellated with dark purple and green, but some also have brighter colors. They resemble lilies in baving drooping or nodding fls., but their anthers are fixed at the base, while those of the lilies are fastened on the back but are free to swing about. Lilies, too, have funnel-shaped fls., while Fritillaries and tulips bave bell-shaped fls., and tulip fis, are erect. Nearly all the Old World Fritillaries resemble tulips in having coated bulbs, while all the Ameriean Fritillaries resemble lilies in having scaly bulbs. It is a curious fact that the Cape of Good Hope, wbieh has supplied the world with so many excellent bulbons plants, has no lilies, tulips or Fritillaries.

By far the most popular kinds are the Checkered Lily

871. Common Snake's-head or Checkered Lily. (Fritillaria Meleagris.)
Faithfully redrawn from Besler's Hortus Eystettensis, published in 1613. (Incorrect as to stamens and pistil.)
and Crown lmperial, Figs. 871,874. These are the hardiest, the easiest to enltivate and the most variable. The Crown Imperial is one of the most characteristic plants of old-fashioned gardens, but it has been banished from mans modern gardens beeause of its strong foetid odor. It is the most robnst of all the species, and until 1897 was supposed to be the only one with its fls. in umbels, all the others being solitary or in raeemes. It is a truly imperial plant, and rejoices the ehildren early in erery spring by its marcelous pearly drops of neetar, which seem never to fall. F. Meleagris, the most popular of the pusple kinds, is the common Snake's Head or Checkered Lily, so called from the tessellation of purple and green, whieb is prettiest when as sharply and regnlarly defned as possible. This plant grows wild in moist English meadows, and cau be naturalized in large quantities in sucb situations. It is the only kind that can be used for all the purposes mentioned below and for cut-fls. Other ancient inbabitants of European gardens are F. latifolia, lutea and Persica, for the last of which we are indebted to "Mr. Nicholas Lete,
a lover of all fair flowers," by whose "procurement," Parkinson says, it was secured throngh Turkey. All the remaining kinds are rarer.

As a rule, the kinds that are chiefly purple or green, or mixtures of both colors, are dult, unattractive and cn rious compared with the few kinds that have brilliant yellow or red. Of the duller and purple kinds, 2 of the choicest, next to F. Meleugris, are \vec{F}^{\prime}.tulipifolia (which is flamed like a tulip and never checkered) and F. Camtschutrensis, great masses of which in Alaska make one of the "snmmersights" remembered ly the tourists. The white in Fritillaries is perhaps always more or less greenish, and the white color in F^{\prime}. Meleagris is as good as in any species. By far the most brilliant of the genus is F. recurma, which is also the most diffieult of culture. Next in brilliabey come F. lutea, aureat, Mogqridqei and pradica, all highly individual and all yellow, some checkered, ot hers not.

The culture of Fritillaries is rather complicated, 2 kinds capable of being naturalized, some cult. in borders, some in rockeries and others in pots. The Crown Imperial, being exceptionally vigorous, requires the deepest planting, richest soil and most room. The earth shonld be trenched. Well rotted mannre may lie worked into the soil 6 in . below the bulbs and the bulhs set on a level 6 in . from the surface of the gronnd. This species has the largest fls. in the genns. If possible it should be shaded from the midday sun, as sonthern exposures are said to make the fls. smaller and shorter lived.

In border cultivation the essential peculiarities are a sheltered, shady site, early fall-planting, division every 2 or 3 years, and as a rule a warm, deep, sandy loam, which is not too cold or too retentive of moisture. Bulbs of the taller kinds may be planted 3-4 in. deep; bulbs of the dwarf kinds may be set at half that depth. As all Fritillaries increase rapidly by offsets, it is desirable to lift and divide the plants at least every 3 years, or the small bulbs will rob the big ones. For the same reason Fritillaries are rarely prop. by seeds.

The dwarf and rare sorts require more care and deserve some leaf-mold in their soil. "E. d.," in Gn. 52, pp. 242-244, says that such plants require an evergreen carpet through which they may spring, and recommends Sedum Hispunicum or its var. glaucum as the most perfect carpet possible, taking the least from the soil and giving the least possihle resistance to the plants below. "Such carpets must of necessity be plants of very dwarf, ereeping growth, such as some of the smaller, mossy saxifrages or anbrietias, that dn not mind frequent disturbance and are easily replaced." For the principles cf culture in rockeries and pots, see Alpine Gardens and Bulbs.

Our native Fritillaries, which ioelude the bright-fld. recurra and pudica, are confined to the Pacific coast. Of these Carl Purdy makes 2 cultural gronps, based on the character of bulb, the kind of soil and the conditions of shade. The first gronp contains F. biflora, liliucea and pluriflora; the second F. utropurpurea, coccinea, lanceolata, parriflora, pudica and recurva. The former grow in open fields in heary clay soils; the latter in shady wools, in well drained soils, but F. pudica does not need as much shade as the others of its group, and minst have sandy loam and slight shelter. It is a native of the sandy sage brush region, east of the Sierra Nevada and Cascade Mits. The bulbs of the first group are composed of thick, heavy scales attached to a thin, rhizomatous base; in the second gronp the bulbs are of one piece, and low-conical in form, their sides thickly covered with small, round, white rice-like offsets. For the first group Purdy recommends a rich loam, and a slight shade to draw out the stems and prolong the bloom; for the second group a light, loose soil, rich in mold, a sheltered place and considerable shade. At the best these are not profuse in their bloom. E. J. advises that the bulbs of F. recurea should be planted with the least possible delay.

The key to the various subgenera given below is es sentially Baker's in bis monograph in Latin in Jour. Linn. Soc. 14:251 (1875); it rarely happens that the botanical and horticultural interests agree in using such simple and obvious characters as those of the bulb and style. The nectaries or glands are less useful and
reliable, but they belp to give a sense of the natural groups in this large genus.
A. Bulbs tunicated (i.e.,curtea).
B. Style B -cut.
D. Gtands distiner and
prominent, equal. Species Subg=nera E. Glands lomg........... 1. Evfritilliaria EE. Glands wide..........2-14. Monocodon DD. Glands obscure, equal,

Iong
BB. Style whelivided.
c. Glanels equal, obscure 15-17. AMBLIRION
c.. Gitands unequat, prominent

1. G'funds long 18. Korolkowia DD. Glands short.............. RHiNOPETALEM AA. Bulbs sealy.
B. Style undividet $19 \div \%$. Therisia

Bв. Style 5 -cut.
C. Capsules acutely angled.
D. F'ls. solitury or race-
mose. .
-2i. Goniocarpa
Dd, F'ls. in umbels............ 26. Petilitim
CC. Capsule obtusely angled ..27-30. Liliormiza

INDEX.

Armena, 16.
atropurpurea, 24. aurea, 9. bitlora, 29. Camschatcensis, 30 coceines. 25. delphinensis, 3. Elwesii, 14
Imperialis, 26.
Kamschatcensis, 30 , lanceolata, 22. latifolia, 7.

Libanotica, 20. liliacea, 28 . lutea, 8 .
Meleagris, 1. meleagroides, 11. minor, 11. Moggridgei, 3. Oranensis, 13. pallidiflora, 10. parviflorn, 23. Persica, 19. pluriflora, 21, 27.
pudica, 17. Pyrenaica, 12 Pyrenaica, 12 recurva, 27.
Raddeana, 26, Rutbenica, 6. Sewerzowi, 18 Thunbergi, 4 . tubmformis, 3 tulipifolia, 15 verticillata,
Walujewi, 5
Whittalli,?

1. Meleagris, Linn. Figs. 871-873. Distinguished from No. 2 by the glands $5-6$ lines long and stigmas half as long as the style. Typically l-fld. England and Norway, through central Eu, to Caucasus. Gu. 32:626; 47, p. 330; 52, p.243.-In the English meadows whitish and purplish forms are found which are more or less checkered. The Dutch bulb-growers keep at least 10 kinds distinct. The extremes of color-range are (1) a greenish white, (2) a sufficient degree of purple to make the checkering as distinct as possible, and (3) an approach to yellow. Some kinds bear 2-3 fls.; some are double: some fis. spread so widely as to be almost fumnel-shaped. Var, contorta, an old monstrosity, instead of segments free all the way, and a shouldered base, has the lower third of the perianth united into a funnel-shaped tube. The yellow of some fls, is conjectured to he the result of a cross with F. lutea made before Gerarde's time, say 1630 . 10 Eng. land the species flowers toward the end of April. It is the best "all-ronnd"species.
2. Whittallii, Baker. Height 1 ft .: stem 1-fid.: lvs, linear, glaucous: fls. checkered green and brown. Mt. Taurus. Int. 1893.

3. Strange form of doubling in the Checkered Lily.
Pietured as early as 1613
4. tubæformis, Gren. \& Godr. (F. delphinénsis, Gren.t. Distivguished by the glands $3-4$ lines long and very short stigmas. Alps. Baker gives the same color range as for F. Meleagris, but "D.K.," in Gn. 32, p. 537, regards as the typical color a purplish brown, faintly marked with yellow, belonging to a plant that. fls, in July. However, the most desirable form is var. Moggridgei, Boiss. (F. Móggridge i, Hort.), with its bright yellow, checkered inside with bright red or reddisb brown. This is a dwarfer form from the maritime Alps with wider Jvs. (6-9 lines), longer stigmatic cusps, ap proaching F. lutea, and essentially yellow-fld. G.C. Il 13:532. Gn. 18:244. F.M. 1880:405. - It blooms in mid. April. Var. Burnàti, Planchon, bright plum, checkered
greenish yellow ; has a broadly bell-shaped, smaller fl., which is even earlier and has smaller glands.
5. verticillàta, Willd. (F. leucánthr, Fisch.). This and No. 5 are distinguished from Nos 6-10 by the greater height of the former and their lvs. curled at the tips
 25 -fld.: fls. white or yelfow, never checkered or spotted.

6. Crown Imperial-Fritillaria Imperialis.

Altai Mits. B.M. 3083. - In the type the lrs. are numerous, $20-10$; anthers barely half as long as the filaments: style no longer than the ovary, but in var. Thunbergii (F, Thienbergii, Miq.) the upper Ivs, are ofteu sparse: anthers as long as the filaments; style $11 / 2-2$ times as long as the ovary. G.C. I1. 13:532. It is doubtful if the yellow fld. form is cult.
5. Walujéwi, Regel. Probably belongs here, as its lvs. have tendrils. It is the only kind that is silver-white outside and crimson-brown spotted white or yellow inside. Turkestan. Gn. 52:1137.
6. Rutbénica, Wickst. Height 1-2 ft.: stem 1-3-fld.: Ivs. 6-20: fls. livid purple, obscurely checkered. Caucasus.

7-9. latifolia, Willd., and its allies F. lutea, Miller, and F, aurea, Schott. These three mames may be taken as representing the 3 well-marked types of color: F. latifolia representing the extreme of dark purpleand green without yellow ; \mathcal{F}. aurea, at the other extreme, being essentially yellow, the checker marks smaller and more sharply defined, and the colors of the brightest; F. Intea an iutermediate form, essentially yellow, but greeuish, and with the purple checker-marks duller in color and not so sharply defined aud regular. In this sense the pictures may be referred to the types as follows: B.M. 853 and 1207 to F '. latifolia; B.M. 1538 te F. Lutea; B.M. 7374, R.H. 1878, p. 287, Gn. 42:867, J.H. III. $28: 357$, and probably Gt. 840 , Fig. 1 (net seen by the author) to F. aHrea. F. latifolia represents the extreme width of lvs., and F. aurea is said to differ in having the lower lvs, often whorled. All these grow $3 / 1 / 1 \mathrm{ft}$. high. One of the most anciently cultivated of all Fritillaries is F, lutea, which is found premiscuously mingled with the wider-leaved form, both wild and cult. At present the most popular of the three is probably F. aurpa, which began a new era of prosperity about 1894 with its reintroduction by Leichtlin. All flourish in the C'aucasus region. The Dutch bulh-grewers advertise 10 varieties of F. latifolia.
10. pallidiflora, Scbrenk. Allied to 1 and 12, but with more numerous, broader Ivs., and larger fls. Height 6-15 in.: Ivs. 8-25: Hs. I-6. Siberia. B.M. 6725 (green, with a few dark purple spots). Gt. 1857:209, R.H. 1880, p. 215. G.C.11. 19:573.-"Pale yellow." Van Tubergen.
11. meleagroides, Patrim. (F. minor, Ledeb.). Height 1-2 ft.: stem very slender, mostly 1-fld.: Irs. 3-6, narrowly linear: fls. dark purple, spotted green; anthers a third the length of the filaments. W. Siberia. B. M. 3280 .
12. Pyrenàica, Linn. Height $1-11 / 2 \mathrm{ft}$, mostly 1-fld.: lvs. 6-10, linear, glaucous: fls. dark purple, spotted green ; anthers twofifths the length of the filaments. Pyrenees. B.M. 664, not 952 or 1216 .
13. Oranénsis, Baker. Height $1-11 / 2 \mathrm{ft}$. lower lss, lanceolate: upper Ivs. linear: fls. dark purple, obscurely checkered green. Mt. Oran. G.C. II. 13:341.
14. Elwesii, Boiss. Lvs. 5-6: fis, green, flushed purpie on lack and tips, not checkered. Lycia. B.M. 6321, erroneously, as F. aemopetala.
15. tulipifolia, Bieb. One of the chaicest and daintiest kinds. Very distinct. Foliage glaucous blue: fls. resembling a tulip in shape, and with a chalky look outside. Height 2-8 in.: stem 1-dd.: lvs. 3-4, elliptic, concare, nerveless, $11 / 2-21 / 2 \mathrm{in}$. long: fls. solitary, inside rusty brown-purple, not checkered, outside dark glaucous blue, streaked with the same purple. Caucasus. B. М. 5969 .

I6. Arména, Boiss. Height 6-12 in.: stem 1-fld.: Ivs. 4-5, lower lanceolate, upper linear: fls, between funnel- and bell-shaped, dark purple, not checkered. Armenia. B.M. 6365. J.H. 111.35:83. Var. fúsco-lùtea, Hort., tawny yellow.
17. pùdica, Spreng. Lvs. 3-6, lower ones strap-shaped, often opposite (while in F. tulipifolia and A rmena they are alternate), upper ones linear: fls. pale or dark yellow, rarely purple, never checkered. N. W. Amer. Gn. 13:133. R.H. 1895, p. 229. G.C. III. 19:403. J.H. 111. 32:295. 11n. 4:49.-The stamens (as in Nos. 14 and 15) are nearly as long as the perianth. "Deep orange yellow, fragrant." 'an Tubergen.
18. Sewérzowi, Regel. Height 1-1 $1 / 2 \mathrm{ft} .:$ lowest 1 vs . lorate-lanceolate, 1 in . wide, often opposite, upper Ivs. lanceolate, $6-7$-nerved, $3-4 \mathrm{in}$. long: pedicels $3-6$ lines long: fls. 6-10, green, not checkered, but with a few purple spots outside; filaments purple; anthers green.

Turkestan. Gt. 760. B.M. 6371. J.H. II1. 30:319. G.C. III. 1:457.
19. Pérsica, Linn. Robust, 2-3 ft. high : Jrs. 40-60, glaucous, linear, $4-6 \mathrm{in}$. long, $6-9$ lines wide: raceme 10-50-fid. : fls, small, bell-sbaped, slightly odorous, lilacpurple, sometimes chalky outside and lined with purple but never checkered; stamens a trifle shorter than the perianth. Orient. Fls, end of April or beginning of May. B.M. 1537. Var. mlnor, Sims, B.MI. 962 (excluding synonymy), has smaller fls, and anthers barely exserted.
20. Libanótıca, Baker. ('losely resembling No. 19, but with 6-30 strongly odorous fls., pale lilac, with darker vertical veins; stamens a third shorter than the perianth; anthers purplish. Palestine, rocky and shady parts of Mt. Lebanon.
21. pluriflöra, Torr. Height $1-1^{1 / 2}$ ft.: lvs. 8-12, lowest often opposite, oblaneeolate, the rest narrower: raceme t-12-fld.: tis, rosy purple, not checkered. Calif. G.C. III. 21:23 (a central band of purple down each segment).-"Pale reddish purple." Jan Tubergen.
22. lanceolata, Pursh. This and Nos. 23-25 are natives of W. N. Amer., and grow $1-1^{1 / 2} \mathrm{ft}$. high. Stem 1-3-fid.: 1vs. 4-10, laaceolate, whorled: Hx, pale purple. mostly distinetly checkered Var. grácilis, Hort., dark purple.
23. parviflora, Torr. Stem 5-20-fld.: 1rs. about 9, linear: fls. purple, suffused green, not checkered.
24. atropurpúrea, Nutt. Stem 1-6-fld.: 1rs. 12-20: fls. dark purple obscurely checkered with green. Receut. -Said to rival F, recurva.
25. coccinea, Greene. Stem 1-1-ffd.: lvs, 4-12 in 2 or 3 whorls at middle of stem : fls, yellow and searlet. checkered.
26. Imperiàlis, Linn. (Imperidlis coronàta, Dum. Cour.). Crown Imperial. Fig. 874. Height 2-3 ft.: 1rs. numerous, crowded, ascending, $1 / 2-1$ in. wide, highest often in whorls of $8-10$: fls end of March. B.M. 194 and 1215. Gn. 46, p. 101 and 52, p. 243. A.G. $13: 488$. R.B.20:196. - There are single and double forms in yellow and red, and kinds with foliage striped white, and with gold. The Dutch growers also advertise Aurora, Maximus, and William Rex, red; Sulphureus, sulfur yellow; and Crown upon Crown. American dealers add Couronne Orange and Red Slagzwaard. Var. Iongipétala, Hort. Ga. 56:1247. Formore than a century F. Imperialis has been the only species in cult. with fls. in umbels, but Max Leichtlin writes to G.F. 7:177 (1897), that F. Raddedna belongs to the same group, blooms earlier, and has straw-colored fls. of a different form from F.Imperialis, and adds: "This is likely to cause a revolution in the Imperialis strain when onee it has been carefully hybridized."
27. recurva, Benth. This has stamens only a little shorter than the perianth, while in the next 3 species they are only half the length of the perianth. Utterly distinct from all other Fritillaries by the color of the fls., which are bright red outside without a trace of purple, and brilliant yellow inside, spotted with red. Height 6-24 in.: stem 2 -8-fld., purple, mottled green: 1vs. 6-12, lower ones in whorls of 3-4, linear, ascending: fls. narrow, bell-shaped. Calif. B.M. 6264. Gn. 18:257. Var. pluriflora, Hort., is perhaps the best strain.
28. liliàcea, Lindl. Height 6-12 in.: stem 1-6-fld.: Ivs. 9-15: fls. between funnel- and bell-shaped, whitish, veined green, not checkered. Gt. 1871:715.
29. biflora, Lindl. Height 6-9 in. : stem 1-2-fld.: lvs, 4-8: fls, same shape as in F. liliacea, pale purple, suffused green, scarcely checkered.
30. Camtschatcénsis, Ker-Gawl. Mostly written Kamtschatcensis and rariously misspelled. (Lilium Camtschatcénse, Linn.). Brack Lily. Height 6-18 in.: stem 1-3-fld.: Ivs. $10-15$, dark purple. Siberia, Alaska to Calif. Gn. 25:432; 52, p. 242. F.S. 12:1232.
F. citrina is cult., but little known. See Gn. 52, p. 243.
w. M.

FRELICHIA (J. A. Frelich, physician of Ellwangen, monographed Gentiana, 1796, died 1841). Amarantàcere. Eight species of woolly or hairy North American
annuals, found chiefly in West Indies, Mex. and Brazil. Lvs. opposite: spikes opposite, terminal: fls, perfect, 3 -bracted; calyx tubular, 5 -cleft, hardened aud spiny crested in fr. F. Floridana, Moq., has beeu advertised for sale only rarely iu America. It is cult. abroad. Height 1-3 ft.: lvs. linear to oblong: spikes 2 in. long or more: fls. white and woolly, set off by small blackish bracts. July-Sep. B.M. 2603, as Oplothecu Floridana.
IV. M.

FROG-BIT in America is Limnobium : abroad Hydroharis Morsus-runa.

FROST. The hoar Frost which tojures plants is frozen dew. An object cools at nightfall and the moisture of the air condenses upou it, forming dew. If the temperature then fails below the freezing point, Frost results. Frost is a local phenomenon. It ordinarily occurs in the lower places where the cold air settles; also when the sky is clear, since radiation of the earth's heat is then more rapid. It occurs in still nights when currents of air of rarying temperatures are not set in motion. Frosts must be distinguished from freezes. The latter are wide-area disturbauces. They are associated with storm centers. They often occur over a wide range. They frequently accompany bigh wiods. Frosts can often be prevented, but freezes are usually beyond the control of man.
Frost is prevented when the temperature is not allowed to fall below the freezing point. The temperature is usually controlled by indirect means. The greatest immunity is to be expected when an artificial cloud can be spread over the area. This cloud prevents the radiation of the earth's heat, and thereby prevents the rapid fall of temperature. The basis of this artificial cloud is usually smoke, but if the smoke carries with it a large amount of vapor of water, it will afford a more complete protection. The best material for making the smokecloud is something which will burn with a slow, smouldering fire and afford quantities of smoke. Materials which burn quickly not only afford little smoke, but they are likely to cause upward currents of air which may be injurious. The actual heat of the fire counts for nothiog except in the inmediate vicinity. Compounds which contain much tar are usually efficient. Of home resources, damp straw or hay, loose manure, pruaings of trees, and other litter are among the best. It is essential that the piles be comparatively small and rather numerous. On level lands it is best to have these piles on all four sides of the area at a distance apart of not more than 10 to 30 feet. On somewhat steep slopes the piles may be placed on the upper side, since there usually is a slow current of air moving down the hillside which will carry the smoke over the plantation. The piles should be as wet as possible aod yet burn. Usually Frost occurs in the latter part of the night. It is important, therefore, that the smudges be kept up all night if full protection is secured. It is best for a man to sit up and derote himself to the business. Brush piles made of dry trimmings are inefficient for Frost protection. Moist litter of some kind which burns very slowly should be mixed with them. Of late years various preparations of petroleum and tar have been perfected for the making of smudges, and when one has large areas to protect, these are the most efficient and economical materials to use.
In small areas, Frost may be prevented by sprinkling the plantation with water at nightfall. Any device which keeps the air in motion will also tend to prevent Frost; but such devices are impracticable except on a very small scale. In cranberry bogs Frost may be prevented by completely flooding the plantation.
Frosted plants may be recuperated by keeping them cool and rather dark for a day or two and syringing the tops with cold water. Do not let the sun strike them while they are frozen. Extract the Frost very gradually.
Farmer's Bulletin 34, of U'. S. Dept. Agric., has 24 pages devoted to Frost.
L. H. B.

FROSTWEED. Helianthemum Canadense.
FRUIT-GROWING. Treated under Pomology.

FŨCHSIA (Leonard Fuchs, 1501-1565, German prefessor of medicine, and a botanical anthor). Onagràcece. Sixty or 70 species, the greater part in tropical America, bnt three or four in 'New Zealand. They are very variable in cbaracter. The common Fuchsias are known to us as small herbs, but some of them are shrnbs in their native conntries. F. excorticata, of New Zealand, is a tree $30-40 \mathrm{ft}$. high, whereas F^{\prime}, procumbens, of the

875. Fuchsia speciosa.

The common garden Fuchsia ($\times{ }^{1} / \sqrt{3}$)
same country, is a weak, trailing berl. The fls, are showy ; calyx-tube prolonged beyond the ovary and bell-shaped to tubnlar, with 4 spreading lobes; petals 4, sometimes 5 , or in some species wanting ; stamens usually 8 , often exserted; style long-exserted, the stigma prominent: fr. (seldom seen under glass) a 4-loculed soft berry. Of the many species, less than half a dozen hare entered largely into garden forms. The common garilen kinds have come mostly from F^{\prime}. Magellanica. This species was introdnced into Great Britain from Chile in 1788 , or ahout that time. It is variable in a wild state as well as in cultivation, and plants subsequently introduced from Sonth America were so distinct as to be regarded for a time as distinct species. Even at the present day some of the forms of F. Magellanica are commonly spoken of as species, so much do they differ from the type. As early as 1848, 541 species and varieties-mostly mere garden formswere known and named (Porcher, "La Fuchsia, son Histoire et sa C'ulture"). The Fuchsia reached the height of its popularity about the middle of this century. At the present time it is prized mostly for window gardening and conservatory decoration. The garden farms of the present day are with difficulty referred to specific types. The long-tubed or so-called speciosa forms are probably bybrids of F, Magellanica and F. fulgens (Figs. 875, 876). Others are eridently direct varieties from the stem types. There are many full double forms. For the history and the garden botany of tho Fuchsia, see Hemsley in the fiarden 9:281 and 11:70; also Watson, the Garden $55: 74$.

Fuchsias are amongst the easiest of house plants to grow. The essential points are to hare rigorous roung plants and not to overpot ; the plants bloon better if the roots are somewhat confined from the time that the plant reaches the required size. Any garden soil is suitable. Give the temperature of an ordinary living room, or that required for geraniums. Fuchsias grow readily from seeds, when these are abtainable, and blooming plants should be secured in less than a year. They are commonly grown from slips, or cuttings, of the uearly matured growing wood. Nake the cuttings of one or two joints-preferably two.-allow two leaves to remain, but snip them in two to check loss from eraporation, and insert balf their length in sand or washed grarel. In four or five montbs blooming plants should be obtained. For fall bloon, make cuttings in spring. For spring hloom, take cuttings in early fall or
late summer. After flowering, the plants may be kept cool and comparatively dry if they are to be bloomed again ; but it is usnally more satisfactory to start a new lot each year from cuttings. However, one or two old and large specimen plants, in tubs or large pots, may be a desirable addition to the conservatory. Old plants may becut back severely, aud the young growth which is thrown out will give profuse bloom. Sereen from full sunlight, keep the atmosphere moist, syringe if insects become troublesome, and give a rich soil. Most of the Magellanica types may be left in the open in the South if protected with mulch. There are Fucbsia hedges in S. Ireland and parts of England belonging to this type.
L. H. B.

One of the great merits of the Fuchsia is that all of the strong and robust-growing types make excellent outdoor decorative plants in summer, and are especially adapted for shady and half shady places where few other plants will answer. This is particularly true of plants which have been kept over winter and have been trained into large bush plants or standards. After the first year, they make fine specimens, and they can be kept and used in this manner and for these purposes for many years. They can be stored in a cool gieenhouse, light cellar or any other cool, out-of-the-way place, where hydraugeas, oleanders and such stock is wintered, leaving them in their pot-bound, semidormant state all winter, giving jnst enough moisture to keep them alive. The latter part of March or the beginning of April in the North, the plants can be started into growth, and as soon as root action begins they ean be repotted or retubbed, using rich, open loam, with plenty of good drainage, and can remain in those pots or tubs for another year. When in bud or bloom, frequent application of liquid manure is rery beneticial. Fuchsias are great feeders. They flower best when plunged with their pots or tubs in the ground ontaloors, and can be left ont until very late in the season, as they are nearly semi-hardy, and stand a little frost without serious injury.

Cult, by H. A. Siebrecht.
Various Latin names of horticnltural forms oceur in the trade, but the following represent all the important botanical types in cultivation in this country:
alba, 6 .
arlorescens, 7.
coccizea, 1, 3.
conica, 1.
corallina, 1
corymbiflora, 6.
decussata, 1.
discolor, 1.
elegans, 1.
Exomiensis. 1
fulgens, 4.
globosa, 1.
hybrida, 2.
Loveci, 1.
macrostemma, 1.

Magellanies. 1. procumbens, 8. pumila, 4. Riecartoni, 1. speciosa, 2 . syringafolia, 7. tenella, 1. tripbylla, 5.

A. Fls. drooping.

B. Calyx-tube mostly shorter than the lobes for in F. speciosa sometimes as long again): petals oborate and retuse, convolute in the bud.-Ladies' Ear-Drops.

1. Magellánica, Lam. (F, macrostémma, Ruiz \& Par. F. corrinea, ('urtis, not Aiton). Calyx tuhe little longer than the ovary, ohlong or short-cylindrieal : petals normally blue, and shorter than the red and oblong-lanceolate calyx lobes; stamens long-exserted: Ivs. opposite or in $3^{*} \mathrm{~s}$, lance-ovate, very short-petioled, dentate. Peru and S, to Terre del Fuego. B.M1.97. The leading types are as follows:

Var. globòsa (\boldsymbol{F}, globòsa, Lind\}.). Fls. small and short, the bad nearly globular and the tips of the sepals cohering even after the flower begins to burst; calyx tube very short. A profuse bloomer, and a common type amongst old-fashioned Fuchsias. Probably of garden origin. B,R. 18:1556. Gn. 55, p. 7.5.

Var. conica (F. cónica, Lind1, I. Small-fld., the bud conical-oblong; calyx tube nearly as long as the lobes; petals nearly equal to the calyx lobes. Raised from seeds brought from Chile. B.R. 13:1062.

Var. díscolor (F. discolor, Lindl. F. Lòwei, Hort.). Dwarf and hardy: fls. small, with slender, sbort tube and wide-spreading, rather narrow calyx lobes, which are somewhat longer than the tube: branches deep purple: lvs, undnlate-toothed. Falkland 1sl. B.R. 2l:1805.

Var. grácilis (F. grácilis, Lindl. F. decussitta, Grah.). Very slender and graceful, the fls, drooping on very long pedicels: tube slender, nearly as long as the narrow, spreading lobes: Ivs. narrow, strong-toothed. Chile. B. R. 10:847; 13:1052. B. M. 2507 . Gn. 55, p. 74. Mn. 2, p. 186. - Possibly a distinct species.
With F. Magellanica may be classed F. corallina, Hort., F. Exoniensis, Hort. (G.C. I1. 20:565), F. élegans, Paxt., F. Riccartòni, Hort., F. tenélla, Hort., and others. Some of these are probably hybrids with F. Magellanica.
The short-flowered Fuchsias are less popular than formerly, but many varieties are now in cult. Of this set the Storm King is a representative.
2. speciosa, Hort. (F. hỳbridu, Hort.). Figs. 875, 876. The greater part of present-day garden Fuchsias are of the long tubed type shown in the illustrations. These are probably hybrid derivatives of F. Magellanica and F, fulgens. Amongst the named sorts every gradation will he found, from the short-tubed Storm King to the Earl of Beaconsfield with fls. 3 in . long.
3. coccinea, Ait. Not known to be cult. in America, and inserted bere for the purpose of clearing up the synonymy of F. coccinea. This species appears to have been introduced before r^{\prime}. Magellanica, and it was named F^{\prime}.coccinea by Aiton. F. Magellanica, however,

876. Theresa, a form of F uchsia speciosa ($\times \frac{3}{4}$).
"usurped its name and spread it to erery garden in the kingdom, whilst the true plant lingered in botanic gardens, lastly surviving (greatly to the credit of the Baxters, father and son) in that of Oxford alone." The species was lost from its introduction in 1788 to its rediscovery in au Oxford garden in 1867; meantime forms of F. Magellanica passed as F. coccinea. " F.
coccinea 18 much more graceful than any of the varieties of F. Magellanica, flowers even more freely, and is readily distinguished hy the almost sessile leares with broad bases, and the hairy twigs and petioles; further, its foliage turns of a bright crimson when about to fall." -J. D. Huoker, B.M. 5740. Probably Brazilian.
BE. Calyr-tube lirice or more the length of the lobes: petals pointed, nearly or quite as long as the calyx lobes.
4. fülgens, Mog. \& Sesse. Stem somewhat succulent, glabrous, often red-tinged: lrs. large and coarse, cordate ovate, soft, small-toothed: fls. in terminal, leafy clusters or racemes, the red long-tubular calyx-tube 2-3 in. longand very slender at the base; the calyx lobes short and pointed, greenish at the tip, not very widely spreading; petals deep scarlet, pointed; stamens only short exserted. Mex. B.M. 3801. B.R. 24:1. Gin. 55,p.75. R.H. $1881: 150$ (var. pumila).- A brilliant plant, sometimes seen in choice conservatory collections. Evidently a parent of the F. speciosa tribes.
5. triphylla, Linn. Fig. 877. Low and bushy (18 in. higb), pubescent: Irs. often in 3's, small, oblanceolate, petiolate,

877. Fuchsia triphylla ($\times 1 / 3$). dentate, green above and purple pubescent beneath: fls. $1 \frac{1}{2}$ in. long, in terminal racemes, cinnabar-red, the long tube enlarging towards the top; petals very short ; stamens 4, not exserted. St. Domingo, West Indies. B.M. 6795. Gn. $41: 839$. 1.H.43, p. 94.-Known in botanical collections and sparingly in the trade. The species has a most interesting history, for which see the citations made above. Upon this plant Plumier founded the genns Fuchsia in 1703, giving a rude drawing of it. Upon Plumier's description and picture Linnæus founded bis F. triphylla. Plumier's figure is so unlike existing Fuchsias that there has been much speculation as to the plant which he meant to portray. No Fuchsia was known to bave four stamens or to be native to the West Indies. In 1877 Hemsley wrote of it: "The figure, however, is so rude that nobody, 1 heliere, has been able to identify it with any living or dried plant. Possibly it is not a Fuchsia at all in the sense of the present applicution of the name, for it is represented as baving only four stamens." But in 1873 Thomas Hogg, of New York, secured seeds of a St. Domingo Fuchsia which turns out to be Plumier's original, thus bringing into cultivation a plant which had been unknown to science for 170 years. It came to the attention of botanists in 1882 . For a discussion of further confusion in the history of this plant, see Hemsley, (i.C. 11 . 18, p. 263-4.
6. corymbiflòra, Ruiz \& Pas. Tall but weak grower, needing support when allowed to attain its full beight, therefore excellent for pillars and rafters: lvs. large, ovate-oblong and tapering both ways, serrate, puhescent: fls. deep red, banging in long brilliant corymbs; ealyx tube $3-4 \mathrm{in}$. long and nearly uniformly cylindrical, the lobes lance-acuminate and becoming reflexed; petals deep red, lance-acuminate, about the length of the calyx lobes; stamens length of the petals. Peru. B.M. 4000. Gn. 11:58; 55:1203. F.J. 1841:161. Var. alba, Hort., has white or nearly white calyx-tube and lobes. F.S. 6:547. Gn. 55:1208-A very handsome plant, but not common.

AA. Flowers erect.

7. arboréscens, Sims (F. syringafolia, Carr.). A shrub: lvs. lance-oblong and entire, laurel-like : fls. pink-red, small, with a short or almost globular tube,
in an erect terminal naked lilac-like panicle; calyx lobes and petals about equal in length. Mex. B. M. 2620. -Little grown, but excellent for winter flowering.
8. procúmbens, Cuna. Trailing Fuchsia. Trailing QuEEN. Trailing: Ivs. alteruate, small ($1 / 3-1 / 2$ in. across), cordate-ovate, long-stalked: fls. solitary and asillary, apetalous, the short calys tube orange and the reflexing obtuse lohes dark purple, anthers blue: plant dicecious. N. Zeal. B.M. 6139.- A rery interesting little plant, suitable for haskets.
Species which are not known to be in the Amer, trade are \boldsymbol{F}. ampliata, Benth, Fls, large, scariet, long-tubed, drooping. Colombia. B.M. 6×39-F Facilkeris, Lindl. Compact, with short-jointed branches: fls. very small, flaring-mouthed, rosy, drooping. Mex. B.R. 18:1480.-F. cordifolia, Benth. Fls. 2 in. long, slender, drooping, hairy, red, on very long pedicels. Mex. B.R. 27:70.-F. Dominiana, Hort. Garden hybrid with long drooping red fis. of the speciosa type. F.S. 10:1004.-F. macrantha, Hook. Largest-fid. Fuchsia: $4-6$ in. long. pink-red, in large, drooping elusters. Colombia, Peru. B.M. $4233-F$, microphylla, HBK. Dwarf, small-lvd., with deep red, small axillary, drooping fls.: pretty. Mex, B.R. 15: 1209.-F. scrratifolia, Ruiz do Pav, Fls. long-tubed, speciosa-like, on drooping pedicels from the axils of the whorled lvs., pink, with greenish tinge; handsome. Peru. B.M.4174-F F. simplicicaùlis, Ruiz \& Pav, Las, usually in 3 's, entire: fls, crimson, long and slender-tuhed, in dronping elusters: resembles F. corymbifera. Peru. B.A. $5096 .-$ F. spléndens, Zuce. Shrubby, hairy: tls. drooping, with a short, thick red tube, short, greenish lohes and petals, and long-exserted stamens. Mex, B.M. 408.

L. H. B.

FULLER, ANDREW S., horticultural writer, was born in Utica, N. Y., on August 3, 1828, and died May 4, 1896, at his home at Ridgewood, Bergen county, N. J. Fig. 878. When quite young he removed with his parents to Barre, N.Y., where his father tilled a small farm. At the age of 18 he went to Milwaukee, Wis., where he worked at the carpenter's trade, and became particularly skilful in the construction of greenhouses, and built a small one for bimself on a city lot. Here he brought together a

878. Andrew S. Fuller.
varied collection of plants, the care of which founded the nucleus of his later attainments and renown as a horticulturist. While he lived in Milwaukee he married Miss Jennie Crippen. who survives bim. They never had any children. In 1855 they mored to Flushing, L. I., N.Y., when William R. Prince offered Mr. Fuller the management of his greenhouses. But his ambition did not allow him to remain long in the employ of otbers, and in 1857 he removed te Brooklyn, N. Y., aud engaged in grape and smalt fruit culture, which were then in their infancy. Here he gave particular attention to the improvement of the strawberry by cross-fertilization and selection of the best of the many thousands of seedlings raised by him. The most famous of these were Brooklyn Searlet, Monitor and Colonel Ellsworth, the first of which was generally recoguized as the highestflavored strawberry in existence at the time, although too soft for market. The entire stock of 300,000 plants was purchased by the "New York Tribune," which sent
them out as premiums te its subscribers, in consequence of which they have been widely kuown as the "Tribune strawberries." It was during this period that Fuller wrote his first book, the "Strawherry Culturist." In this work he brought together and systematized all that was known about the subject at the time, combined with the results of his own practical experience. The principles underlying scientific strawherry culture, as well as the practical bints and directions for carrying on the work in the garden and field, are giren in so tborough and admirable a manner that even now, after 40 years since they were written, it would be difficult to improve upon them. Realizing the necessity of having more ground for experimentation, and in order to escape the noise and turmoil of the city, he bought a large piece of land near Ridgewood, N. J. This, when he moved on it, early in the sixties, was little more than a barren waste, but under his constant eare it was not long befnre it developed into one of the most charming homes and interesting aud instructive garden spots in the country; Almost every species and variety of ornamental trees and shrubs hardy in the locality were represented, and his collection of small fruits was the most complete in the country. These furnished him unequaled means and material for observation, study and identification, the results and accounts of which he made known in the clear, concise, convincing style for which his writings have become famous. A. S. Fuller was an indefatigable worker, physically as well as mentally. Immediately after the publication of the "Strawberry Culturist," he commenced working on the "Grape Culturist." This was followed by the "Small Fruit Culturist," "Practical Forestry," "Propagation of Plants," and the "Nut Culturist." The last of them he was fond of calling his "monument," as he did not intend to write another hook, and so fate decided that it should be. He died a few days after he had fluished bis manuscript, and never saw the completed book, of which he was perbaps more proud than of any other of his works, yet in the history of horticultural literature his "Small Fruit Culturist" will, no doubt, oceupy the foremost rank. It was more instrumental in the development and building up of the great industry to which it is devoted than any other book written before or after, and in any land. It was translated into German and published in Weimar in 1868. His books contain but a small part of bis writings. His editorial and other contributions to the "American Agriculturist," to "The Rural New-Yorker," of which he was part owner for a time, the "New York Sun," of which he was agricultural editer for 26 years, "American Gardening" and other periodicals would fill hundreds of volumes. He was also editor of the "Record of Horticulture," 1866-1867. While Mr. Fuller was principally known as a horticulturist, there was hardly a branch of natural science to which he had not devoted more or less attention. His entomological collection, especially that of coleoptera, was one of the most complete in the country: his mineralogical and archeological collections contained many rare specimens, and his horticultural lihrary was one of the most complete in the United States. Personally, Mr. Fuller was a charming man, liberal and hospitahle almost to a fault. He was a man of striking personality, of decided character and opinion, and an implacable foe to sham and deceit. In whatever he undertook he was always a leader, never a frllower; he was always on the lookout for new gronnds to traverse, and nothing made him happier than when a new problem presented itself for solution, but as soon as it was solved his interest in it ceased. During the later years of his life, although in good bealth, Mr. Fuller left his place hut seldom, hut in bis earlicr years he traveled considerably, and took an active and leading part in the meetings of the American Pomological Society, the American Institute Farmers' Club, the Fruit-Growers' Club, and many kindred societies, of which be was an active or honorary member.

F. M. Hexamer.

FUMARIA (fumus, smoke). This genus includes the cemmon Fumitory, F. officinalis, formerly held in great repute for various ailments, but now practically banished from medical practice. Seeds are still rarely sold to these who have faith in old physic gardens. The plant is fully descrihed in our commonest botanies, and has a large literature, which is especially interesting to
those who delight in berhals. As an ornamental plant, it is far surpassed by Adlumia. The genus gives name to the family Fumariacer.

FUMITORY. F'umaria officinalis.

FUNGICIDE (see Spraying) is a material used to destroy fungi or to prohihit their growth. The leading Fungicides are materials which coutain sulfur or copper. Bordeaux mixture is the chief Fungicide in use at the present time. It is a mixture of blue ritriol (sulfate of copper) aud lime, in water. The usual formula is

$$
\begin{aligned}
& \text { Copper sulfate } 6 \text { lbs. } \\
& \text { Lime. } \\
& +\mathrm{lbs} \text {. } \\
& \text { Witer . } 35-50 \text { gals. }
\end{aligned}
$$

The copper sulfate is dissolved in the water, and milk of lime is added. In spraying large areas, it is better to prepare stock solutions for the Bordeaux mixture rather than to make each batch in the quautities called for by the formula. The sulfate of copper may be put into solution aud kept in this condition indefiuitely, ready for use. A simple method is to dissolve 40 or 50 pounds of sulfate in as ruany gallons of water, pulverizing the material and banging it in a coffee-sack in the top of the barrel. A gallon of water, therefore, means a pound of sulfate. The lime may also be slaked and kept in readiness for use. Slake it into the creamy condition familiar to masons, cover lightly with water, aud then close the box or vessel to prevent the water from evaporating. When making the Bordeaux mixture, pour the requisite quantity of the stock solution of sulfate of copper into the barrel, and then fill the barrel half full of water. Now add the lime (which should be diluted with water), stir, aud add enough water to satisfy the formula. In order to test whether the sulfate has been neutralized by the lime, a little ferrocyanide of potassium may be applied to the mixture. Place a spoonful of the Bordeaux misture in a saucer or plate, and add a drop of the ferrocyanide. If a red color appears, the mixture needs more lime. If the test solution is added directly to a tank or barrel of the misture, the color reaction is likely to be lost in the mass. An excess of lime insures the safety of the mixture.
The Bordeaux mixture is used for many parasitic fungous diseases. It is not only iuimical to fungi, but it adheres to foliage and stems for a long time. Best results are secured when it is applied before the fungus has become established. Bordeaux mixture is usually more satisfactory when it has not stood long.
The sulfate of copper is the active Fungicidal ingredient of the Bordeaux mixture, but if applied alove, in water, it is very caustic to foliage, and it does not adhere long. For the treatment of dormant trees and shrubs it may be very useful, since it can be nsed strong, and is therelby very destructive of fungi. For dormant wood it is often used 1 lb . to $10-15$ gallons of water.
The greatest competitor of Bordeaux mixture is a mixture made by dissolving carbonate of copper in ammonia and then diluting the solution with water. It is sometimes used on ornamental plants and nearly ripe fruits, sioce the Bordeaux mixture renders them untidy. One ounce of copper carbonate will be dissolved by 1 pint or less of very strong ammonia. This concentrated liquid can be kept indefinitely. When to be used, dilute with 8-10 gallons of water.
Dry sulfur is a Fungicide. It is sometimes dusted on plants in glasshouses for surface mildews, and it is much used in California vineyards. it is oftepest used as a rapor in houses. It smeared on the heating pipes, the fumes will give a perceptible odor in the house, and will prevent the mildews of roses, cucumbers, and other plants. The sulfur must not be burned, for the fumes of buraing sulfur are fatal to plauts.
L. H. B.

FUNGUS (plural, F'ungi; adjective, fiengous). The class Fungi iucludes all those plants which are popularly kDown as mushrooms or toadstools, puffballs, rusts, smut, molds and mildews. These, however, form but a small part of the total number. There are many others which are inconspicuous, like the yeasts, or which are of no special economic importance and hence have escaped popular notice. All the parts of a fungous
plant are seldom seen. That part which is usually exposed to riew, and which is popularly desiguated as a Fungus, is merely the fertile or fruit-bearing part of the plant. A mushroom is the frnit of a Fungus. The regetative part, that which supplies and elaborates materials for the growth of the plant, and which, in a way, corresponds to the roots and leaves of higher plants, is hidden away in the ground, in decaying wood and other organic matter, or within the tissues of other living plants upou which the Fungus feeds.

Both the regetative and the fruiting part of all Fungi, excepting some of the yeasts, are made up entirely of microscopic threads, which are very much branched and divided into elongated cells by crosswalls at irregular intervals. These threads are called byphr. The regetative hyphe considered collectively are sposen of as the my celium or spawn of the Fungus in the same sense in which we speak of the roots of a tree.
In the lower Fungi, such as molds and most of the parasitic species, the mycelium is comparatively simple, consisting of much-branched threads which course through the nutrient material upon which they grow, or, in the case of parasitic Fumgi, either among the cells, or, as mildews, on the surface of their hosts. At the fruitirg time many threads grow out from the substratum to the light and air. These threads remain simple or become branched like the trunk of a tree, and finally bear spores at the ends of the threads or branches. Examples of these plants are the blue mold on jam, etc.,

879. A Fungus.

A mildew, showing the mycelium in the leaf tissue and the hang. ing spore - bearing threads. Much magnified. the common bread mold, and nearly all the Fungi which form spots or a white coating on leaves. The mycelium of toadstools and other higher Fungi is of much greater extent and more bighly developed than that of the molds. It is often sees as a cottony weft forming white patches on posts and boards exposed in damp, dark places. It can always be found on sticks and on decaying leaves in the woods. The white threads in fire-fanged manure are also mycelium. Perhaps the best known form of mycelium is the spawn in bricks, commercially known as "mushroom spawn." In nature the mycelium of these plants often forms strands as much as an eighth of an inch in thickness. It grows for varying periods of time, sometimes for years, in the ground, in decaying organic materials, or in fallen and standing trunks, etc., until it is ready to fruit.
The fruit of these plants is not formed from a single, erect thread, but of many hundreds of threads which arpear above the substratum as a thick bundle or as a tuberculiform mass. The threads increase in length and send out many branches which become closely interwoven, gradually building up the fleshy umbrella-like bodies, or the hard shelving masses, which we know as toadstools, musbrooms, etc. The spores are borne on the lower, protected side of the fruit bodies on gills or spines, within honey-combed pores, or directly upon the smooth, lower surface.
All Fungi grow on living or dead organic matter. They have no chlorophyll, and hence caunot assimilate carbon from carbon di-oxid.
H. Hasselbring.

A Fungus is a plant of very low organization consist ing of one or more cells multiplying its kind by cell division and by spores. It contains no green substance (chlorephyll), and grows either as a saprophyte upon

880. Colonies of the rust Fungus on the leaf of a hollyhock.
non-living organic matter or derives its food directly from another living organism, and is then a true parasite. Fungi are very common, and range in size from the large hard-shell Fungus upen logs and the puffball and toadstoel in the rich earth to the delicate moulds that infest bread and other foods, and the still more microscopic forms that produce fermentation, as yeast in dongh and other species employed in making beer. Some of the toadstools are very richly tinted with red, yellow, brown and eren blue, and a few are deadly poisenous, as the "death cup" and the "fly agaric," which grow upon the decaying organic matter in shaded places. Others are wholesome, and are grown as articles of food, the leading species of which is the mushroom, Agaricus campestris. More highly prized still is the truffle, which is produced under greund and hunted by hogs, which find them by their odor, and even muzzled hogs are trained to unearth them.

One of the parasitic species, ergot, infests the heads of rye, changing the grains into much evlarged horny purplish masses called "spurred rye" becanse of the resemblance of the fungous grains to a cock's spur. This is extremely poisonous, and when eaten by live stock with the hay or grass has been known to destroy whole herds. This Fungus furnishes one of the most valuable in the whole long list of drugs. Many other fungi grow in the heads of grain, the most conspicuous being the corn smut, which changes the whole ear possibly into a large mass of dark slime when wet. and brown dust when dry. This dnst is the myriads of spores wbich the Fungus produces to secure its repreduction. Iu a similar manner other smuts destroy the oats, wheat and very many kinds of grasses and other plants.

The rusts are similar Fungi which thrive upon the juices of plants and produce patches of orange or yellow upon leaf or stem, the discolored portion being usually swollen and the skin more or less broken.

There is another group of Fungi known as the mildews, and these usnally produce a fine whitish coating to the diseased part, due to the fine stalks that come from the surface of the plant and bear the spores.

Fungi love warmth and moisture for their greatest activity, and therefore they are more in evidence in midsummer when wet weather prevails than at other times. The spores are so small and light that they fleat in the air, and it is only when substances like canned goods have these spores excluded by first killing those
present and preventiug access of others, that they will keep nnattacked, - that is, sweet and edible. Substances can he easily iuoculated by introducing the germs, as mold into potatoes, rust into a tree, or yeast into dough. The number of kinds of Fungl is high among the thousauds, and new species are being found each month, but they are so small that only specialists can nnderstand the microscopic differences that separate one kind from another. Many Fungi have certain forms which are assumed in the cycle of life, and in this they resemble insects with their larval, pupal and imago stages. This polymorphic nature has made the study of the Fungi very puzzling. While a few of these plants are poisonous, and many destrnctive to life, the greatest majority are scavengers, reducing the waste products to simpler and harmless forms. We could not get on well withont this minnte and humble race of plants.

For further discnssion, see Diseases.

Brron D. Halstel.

FUNKIA (Ludwig P. Funke, 1755-1807, and H. C. Funk, 1771-1839. German naturalists). Liliacea. DAy Lily. Plantain Lily. Five or six Japanese perennial herbs, producing attractive clumps of foliage and interesting blossoms. Fls, in terminal racemes or spikes, white orblue ; perianth funnel form, 6 -parted and more or less irregnlar, the lehes not widely spreading: stamens 6 , the filaments filiform, the anthers long-oblong and versatile: porl oblong and angled, many-seeded, splitting into 3 valves (Fig. 884) ; seeds flat and black, winged at the apex. Monogr, by Baker, Jour. Linn. Soc. 11:366. See also, Mottet, R.H. 1897, p. I14.

Funkias are hardy and of the easiest culture. Their dense stools or clumps of foliage are in place along walks or drives and in the angles against buildings. A continuons row along a walk gives a streng and pleasing character. Make the soil rich and deep. The clumps improve with age. The large-leaved kinds grow vigoronsly in moist, shady places. Of some varieties

88t. Colonies of a Fungus on a plum leaf. The dead tissue sometimes falls out, leaving a shothole effeet.
the lvs, are strikingly variegated. Bloom in summer. Foliage is killed by frost. Prop. by dividing the clumps; some species prodnce seeds freely, and seedlings can be grown readily if seed is sown as soon as ripe.
A. Fls, white, ascending: fl.-bract very large, with a smaller one inside.
subcordata, Spreng. (F. álba, Sweet. F. liliillora, Hort. F. Jupónica, Hort., at least of soruc. F. macrintha, Hort. F. corddata, Hort.. not Sieb.). Fig. 882. Lss. large, broadly cordate-ovate, with a short, sharp point. green, many-ribbed: fls. large, 4-6 in. long, with an open bell-shaped perianth, waxy white, the base of the tube surrounded by a broad bract: spike short, the bracts very prominent. - The commonest species in old yards, and an excellent plant. The fls, have an orangelike odor. Clumps of foliage grow $12-20 \mathrm{in}$. high. B.M. 1433, as Hemerocallis Japonica.
Var. grandiflöra, Hort. (F. grandiflòru, Sieb. \& Zuce.), has very long and large fls. G.(. 111, 4:153. F. macrintha, Hort., probably beloogs here.

AA. Fls, blue or lilac, more or less inclined or nodding: bract 1.
B. Lis. glaucous.

Sieboldiàna, Hook. (F. Sièboldii, Lindl. F. glaùca, Hort. F. Sinénsis, Sieb. F. cucullata, Hort. F.glau-

882. Funkia subcordata (\times 1-5).
céscens, Hort. F. cordàta, Sieb.). Differs from the last in the metallic blue color of the less cordate Ivs., in the inclined bluish or pale-tinged, more slender-tubed and smaller fls. (which do not rise above the foliage), and in having only ooe small bract at the base of the ff. B.M. 3663. B.R. $25: 50$. L.B.C. 19:1869, as Hemerocallis Sieboldtiana. There is a form with the body of the leaf yellowish white and the edge green. L. 69.-Lf. blade and petiole each 1 ft . long, the foliage therefore overtopping the fls. The plant usually cult. as F. Sieboldiana is probably F. Fortunei.

Fortunei, Baker. Differs from F. Sieboldiana in having smaller lrs. and the racemes much overtopplng the
foliage, as in otber Funkius. Petiole 2-3 in. long; blade cordate-ovate, $4-5 \mathrm{in}$. long : raceme $1 / 2 \mathrm{ft}$. long on a stem or scape 1 ft . long : fls. pale lilac, funnelshape, $1 \frac{1}{2} \mathrm{in}$. long, the segments lanceolate and ascending and half as long as the tube. -Excellent. Generally cult. as F. Niebaldituna, and many of the pictures of that name probably lielong here, as, apparently, Gin. 38, p.79; A.G. 11:157; A.F.6:322. It is probable that the garden synonyms cited under F. Sieboldiana are usially applied to plants of F. Fortunei.

BB. Leaves green.
ovàta, Spreug. (F. coerùlea, Sweet. F. lanceoldifa, Sieb.). Figs, 883, 884 , 885. Lus. broad-ovate, $5-10 \mathrm{in}$. long and half as wide, usually tapering to the petiole, but sometimes subcordate : raceme long and lax: fl. with a short, sleuder tube and suddenly expanding into a bell-shape, $11 / 2-2$ in. long, nodding, deep blue. B.M. 894, as Hemerocallis caritea. Mn. $1: 73$. - The
commonest blue-fld, species: usually known as $F_{\text {. }}$ ca rulea. F. marginàta, Sieb., is a form with white-bordered los.
lancifolia, Spreng. (F. Japónica, Hort. of some). Lrs. lanceolate to narrowly ovatelanceolate, the blade 6 in . or less long and 2 in . or less wide: raceme lax, 6 10 -fld., ou a tall, slender stem: fis. $11 / 2 \mathrm{in}$. or less long, the tube slender and gradually eularging upward, pale lilac. Var, alho-marginàta, Hort. (F. ailbo-margind̀ta, Hook., B.M. 365̄7) has the lvs. edged white. Var. undulàta (F. unduldata, Otto \& Dietr.) is a form with undulate white-margined lvs.-Graceful, Fls. smaller than those of F. ovata.
F. aùrea, Hort., variegated forms of rarious species. $-F$. cläta, Hort., "bears tall scapes of pale blue fis." $-F$. gigante ${ }^{2}$.
Hort., has "long spikes of blue fls." - F. marginàta. Hort $=F$. laucifolia, var, alba-marginata. $-F$. tardiflora, Hort. - ? $-F$. univittàta, Hort. $=$ F. lancifolia var. $-F$. variegàta, Hort.- variegated forms of various species, usually of F ovata or F lancifolia.F. viridis-marginato, Hort., is probably a form of F. ovata.

L. H. B.

FURCR座A (Ant. François de Fourcroy, 1755-1809, chemist). Syd., F'ourcroya, Fourcraa, F'urcroya, Furcraca. Amaryllidacea. About 17 species of succulent desert plants from tropical America, particularly Mexico, some with spiny foliage like Agave, others with minutely toothed margins like Beschorneria. They occasionally bear immense loose panicles of greenish white fls., suggesting those of Yueca filamentosa, which are known to every plantlover of the North. The perianth of Furcræa is whitish and wheel-shaped; in Agave greenish yellow, fun-nel-shaped. The filaments in Furcrea have a cushionlike swelling at the base, which is absent from Agave. Furcrea is cultivated much in the same way as Agave,

884. Old capsule of Funkia ovata. Nat. size.
except that the Furcreas are given more heat and water. F.gigantea has a very pretty variegated form, which makes a useful pot-plant.

As a rule, Furcreas bear fruit not more than once, and then die withont prodncing suckers. Howerer, they produce while iu flower an immense number of bulbels, which may be used for propagation. It is impossible to say at what size or age the plants will bloom. Grown in pots, they may take a centnry. On the other hand, plants from bulbels hare been known to flower at 3 years.

885. Funkia ovata. (See page 619.)
A. Texture of lus, firm: spines usually present, deltoid: no minute teeth on margin. (Furrea proper.) B. Trunk s-4 ft. long: spines absent.
gigantea, Vent. Lvs. $4-6 \mathrm{ft} . \mathrm{long}^{2} 4-6 \mathrm{in}$. broad at middle, $21 / 2-3$ in, above base, usually without marginal spines, rarely with a few near the base: peduncle $20-40$ ft . long: odor of fls. strong. Trop. Amer. Naturalized in Mauritius, Madagascar, India. B.M. 2250, G.C. III. 23:227. R.H. I857, pp.206, 207. Var. variegàta, Hort., bas variegated lvs.

BB. Trunk ноне or short: spines present. c. Length of lvs. 12 ft . or more.
altissima, Todaro. A recent and little known species named at Palermo, Italy. Franceschi writes that it has hardly any trunk: Ivs. bright green, with very few
spines, 12 ft long or more, erect, not drooping. It is tenderer than the other kinds.

$$
\text { cc. Length of les. } 5-6 \mathrm{ft} \text {. }
$$

elegans, Todaro. Lvs, 4-5 in. broad at middle, 3 in. above base, rough on the back; prickles large: peduncle 20-25 ft. long. Mex.
CCC. Length of le's. 2-s ft.
D. Prickles usually large-sized.
E. Panicle reaching $10-12 \mathrm{ft}$.; branches slightly compound.
Cubénsis, Haw. Lrs. 3 - 4 in. broad above middle, $11 / 2$ in. above hase, the tip convolute; prickles large, distant, hooked: peduncle $5-6 \mathrm{ft}$. long. Odor of fls, faint. This and F.gigantea are widely spread in trop. Amer. and often cult. in the Old World. They are the oldest in cult. All the rest are rare. Var. inermis, Baker, is spineless, B.M. 6543 . \boldsymbol{F}. Líndeni, Jacobi, bas variegated 1vs. I.H.21:186.

EE. Panicle reaching so ft.; branches copiously compousd.
tuberòsa, Ait. Lvs, a trifle longer and narrower than in F^{\prime}. Cubensis, 2-3 in. broad: fls, sweet scented. Int. by Franceschi, 1900.

DD. Prickles middle-sized.

pubescens, Todaro. Baker does not say that the lvs. are not convolute at the tip, nor does he distinguish the lys. from those of F. Cubensis, except in the smallersized prickles. It is presumably the only species in Furcrea proper with a pubescent ovary. Peduncle scarcely longer than the lvs.: panicle 5 times as long as the peduncle; branches copionsly compound. Trop. Amer. B.M. 7250.
AA. Texture of lis. flexible and wary: spines absent: minute teeth on margin. (Subgenus Razlia.)

> B. Trunk 5-6 ft. high: les. gtaucous.

Bedinghaüsii, K. Koch (\boldsymbol{F}. Roezłii, André. Fácca Parmentièri, Roezl. Rázlia règia, Hort.). Lvs. 3-4 ft . long, 3-4 in. broad at middle, 1 in . above base, permanently glaucous on both sides, very rough on the back: inflor. $15-20 \mathrm{ft}$. bigh. Mex. R.B. I863, p. $32 \overline{6}$; 1883, p. 133 (full history). R.H. 1887, p. 353 ; I895, pp. 468, 469. B.M. 7170. Gn. 52, p. 197. G.C. III. 9:489.

BB. Trunk finally $40-50 \mathrm{ft}$. high: les. not gleucous.
longæva, Karw. \& Zuce. Lvs, 4-5 ft. long, 4-5 in. broad, parrowed to 2 in . above base, the roughness ou the back only on the keel: inflorescence 40 ft . long. Mex. B.M. 5519 . G.C. 11. J6:653.
F. Francescht, G. W. Oliver and W. M.

FURZE. $\quad 17 e x$, particularly \boldsymbol{r}. E'и ropu us.

GAILLARDIA (personal name). Compositic. About a dozen American herbs (largely of Atlantic N. Amer.), with alternate, simple, more or less toothed, punctate Ivs. and solitary yellow or red, showy heads: ray fls. usually neutral, often with 2 or more colors or shades; disk fls. mostly purple, the styles with slender hispid branches; involucre with two or more rows of leafy scales. Gaillardias are popular and worthy garden plants. There are two types,-the annual forms, wbich are derived from G. pulchella and G. amblyodon, chietly from the former; and the perennials, which issue from G. aristata. The species are variable and confusing.
Amongst hardy perennial plants, Gaillardias are conspicuous for profusion and duration of tlowers. A constant succession is produced all summer until rery late in autumn. They produce a most gorgeous effect in beds or borders. Moreover, they are highly recommendable for cut-flower purposes, as they last for a long time in water, and can be gathered with ample, self-supporting stems. They thrive best in light, open, well drained soil, and should have the full benefit of air and sun. In heavier or in moistureretaining ground the plants are often winter-killed. The perennial forms are propagated by division, seeds or cuttings in August or September: also by root cuttings in early spring. Seedlings do

886. Gaillardia pulchella, var. picta ($\times 2-5$).
not reproduce the parent ; therefore, if we are in possession of an extra good variety, we must resort to the other modes of propagation, though for general
purposes we may rely on seed sowing, as this involves less labor, but the cuttings make the better plants. G. grandiflora and its many varieties are garden forms of G. aristata. Great improvements hare been introduced in late years. Some of these are bighly colored and of extraordinarily large size, many of the flowers measuring 4 to 5 in . across, as in tbe variety named Jas. Kelway. Another class has quilled florets (G. fistulosa), of which Buffalo Bill is an excellent sample-a large, pure yellow, with maroon disk. Vivian Grey is also a re. markable and most distinct variety, with clear yellow fringed rays and disk of the same color.

Cult. by J. B, Keller.

A. Annual Gaillardias: fls. normally mostly red.

amblyodon, Gay. One-2 ft., erect, leafy, hirsute: lvs. oblong or spatulate, sessile and auriculate, entire or nearly so: lobes (or teeth) of the disk corollas short and obtuse: rays numerons, brown-red or maroon throughout their length. Tex. F.S. 21:2149.-Somewhat cult. amongst garden annuals, and worthy.
pulchélla, Foug. Erect, branching, 12-20 in., soft-pubescent: Ivs, oblong, lanceolate or spatulate, rather soft, nearly sessile, either entire or the lower ones lyrate-pinnatifid: lobes of disk tis. acute or awned: beads 2 in . across, the flat rays yellow at top and rosepurple at base. Ark. and La, to Ariz. B.M. 1602, 3551 as G. bicolor.
Var. picta, Gray (G.picta. Hort.). Fig. 886. The common garden form under cult., having larger heads and of various colors. B.M. 3368. R.H. 1852:20. In one form (G. fistulosa, G. tubulosa, G. Lovenziana, Hort.), the ray florets and sometimes the disk florets are enlarged and tubular. Fig. 887. R. H. 1881, p. 377; 1885:156.

Aa. Perennial Gaillardias: fls, normally yellow.
aristàta, Pursh (G. grandiflòra, G. lietea, G. máxima, and G. perénnis, Hort.). Erect, 2-3 ft.: Ivs. rather thick, lanceolate or oblong, sometimes spatulate, varying from entire to sinuate pinnatifid: lobes of disk corollas acute or awned: heads $3-4 \mathrm{in}$. across, the flat rays yellow, or in cult. varying to red (particularly at the base). Plains W. B.M. 2940. B.R. 14:1186. Gng. $2: 345$. -This is the common perennial Gaillardia of gardens (cult. under many names). Blooms the first year from seed. From G. pulchella it is distinguished by taller growth. firmer Ivs., yellower heads, and less attemuate lobes of the disk fls.; but it is practically impossible to distinguish the two, except that one is annual and the other perennial.
L. H. B.

GALÁCTIA Greek, qala, milk; some kinds said to have a milky juice). Leguminòsa. Perhaps 50 species of prostrate or twining perennial herbs or erect sbrubs, widely scattered. They are of the smallest hort. value, and are chiefly distinguished by the calyx lobes, 4 , entire, acute: fls. in racemes, or the lower ones clustered in the axils: pods linear. Two kinds, once adv, by E. Gillett.
A. Leaflets 3.
glabèlla, Mich. Prostrate, glabrous: stems matted, usually branching, $1-2 \mathrm{ft}$, long: lfts, elliptic, often notched at tip: fls. $4-10$, reddish purple: pods slightly pubescent. Dry, sandy soil. N.Y. to Fla. B.B.2:335.

AA. Leaflets $7-9$
Elliottii, Nutt. Lfts, elliptic-oblong, notehed, pubescent beneath: fls. white, tinged red: pod silky. Dry soil. S. C. to Fla.

GALANTHUS (Greek, milk flower). Amaryllidàcée. SNowdrop. The flowers of Snowdrops (G. mivalis, F'ig. 888) are amongst the smallest and daiutiest of our common hardy cultivated spring-blooming bulbs. Much sentiment attaches to them, and in maay an old-fashioned garden they are the earliest flowers of the new year. They often bloom in early March, before all the snow has gone. Their pendulous white flowers, with the "heart-shaped seal of green" dear to Rossetti, hold a unique place in the affections of lovers of gardens. Snowdrops are amongst the very few flowers in nature in which the green color is decidedly attractive to our seases. At first sight the fls. seem to have 3 large white petals, jaclosing a green and white tube with 6 tips, but a second glauce shows that the parts that function us petals are the outer segments of the perianth, while the 3 inner ones, with their 2-lobed tips, are not grown together, but overlap slightly, forming a rather crude but stiffish tube. It would be interesting to know whether the green marks have any relation to calyx tips. Each plant has a glubose coated bulb, 2-3 lvs., grows 6-9 in. high, and bears usually only 1 flower. which emerges from a spathe. Behind the perianth is a globose green body, which is the ovary.

In a congenial spot, moist, cool aud shady, the plants increase satisfactorily, and sometimes, without any care whatever, form a bed from which literally thousands of flowers may be picked at what is, perhaps, the most desolate and wearisome moment of the year. (For a fine picture of Galanthus, naturalized in the grass, see G.M. 34:184.) The leaves are linear and channeled, and in dark, shining masses make a rich, quiet effect. They come out with the fls., attain their full growth later, and commonly die down in midsummer or fall. A fine large bed of Snowdrops is more to be desired than many Dovelties, rarities, or any individual plants of indifferent health and vigor. The bulbs are cheap, and should be ordered in liberal quantities. In purity, modesty and simplicity, Snowirops have perhaps no peers among hardy spring-blooming bulbs other than squills, grape hyacinths, and the glory-of-the-snow (Chionodoxa).

Crocuses are more cheerful and more brilliant plants, with larger and more variously colored flowers.

An era of new interest in Snewdroos began about $1 \times 7 \overline{3}$, with the introduction of the "giant" kind (G. Elwesii, Fig. 889), but those who de not care for "large violets" will be likely to cling to the small Snowdrops. Nevertheless, G. Elues ii is very distinct, and should be the first cholee if any large kinds are desired. and to secure the best forms the connoisseur should buy imported bulbs of its varieties. The only kinds known so far to possess a patch of greed at the base of the inner segments are G. Elwesii and Fosteri. Considering that there are only 2 main types in this genos, nivalis and E'wesit, the profusion of Latin names (especially since 1888, the date of Baker's" Handbook of the Amaryllidex") is rather trying, except to the connoisseur who, unlike the general public, is chiefly interested in the larger. flowered forms and the novelties.
There are several types of minor importance. The
suturn-flowering kinds, representing many Latin names, as Octobrensis, C'orcyrensis, Kegince Olga, are usually weak-growing plants. However, nuch is hoped from (f. ('ilicicus, especially by the florists, who have litherto fond no Snowdrop that could be profitably forced for Christmas. Doubleness seems to add nothing to the beauty of Snowdrops. So far it seems to have affected only the inner segments of G. nivalis and G. Eluesii. Yellow Snowdrops are also practically unknown in America. In these the heart-shaped spot and the ovary are yellow instead of green. Of these, (i. flurerens $^{\prime}$ is said to have brighter markings than 6 . lutescens.
W. M.

The falanthus is a true winter flower, and one of the few kiads of bulbs which grow naturally in partial shade, and suffer by actual baking of the bulbs. They are found naturally in northern exposures, and conditions similar to these innre te their welfare in gardens. 'The October kinds must be grown in frames, for the leaves will not ripen in the open. The fall-flowering forms are mostly Grecian, and they all show a white Ine in the channeled face of their leaves. G. nivalis flowers in the writer's garden, at Elizabeth, N. J., in a mild January, and G. E'lwesi i is even earlier. Amoug the choicer kinds are G. Imperati, G. Ikariae (very distinet, Scillalike lvs.), G. Whittalli and G. Melvillei major, quite the finest forms of G, nivalis. For general culture no form of Galanthos is so universally satisfactory as G. niculis. The writer has had diappointing resolts with G. Fosteri, and cannot see that G. Couctsicus, var. marimus, is any great gain in size.

The yellow markings on Snowdrops are signs of degeneracy. Among the flowers each season, though more frequent at some times than others, will be found those with light colored markings and occasionally some white ones, but these plants show lack of vigor. In G.Elu'esii the spathes are sometimes 2 -fld. instead of one. All the fall-flowering kinds are rather delicate and decidedly costly, and promise nothing for forcing. G. E'luesii would be best for gentle forcing. The fall-flowering kinds are prohably all forms of G. niadis, including G. Olgor, which Baker keeps as a distinet species.
J. N. Gerard.

Index of names accounted for below:
Byzantinus, 12 . Fosteri, 9. nivalis, 1.
Cassaba, 5.
Caucasicus, 4
Ciliciens, 2.
Corcyrensis, 1
Graens, 6.
granditlorus, 11.
1karie, 8.
Elwesii, 5 .
Imperati, 3 .
ochrospilus.
plieatus, 10.
robustus, 5 .
ungriculatus, 5 .
Whittalli, 5.
Erithroe, 5.
latifolius, 7.
maximus, 4,11
A. Lis. merelychanneled, not plaited.
B. Width of les. small, $8-1$ lines.
c. Base of lvs, not very narrou.
I. nivàlis, Linn. Common Snowdrop. Figs. 888, 889. Bulb 6-12 lines thick: basal sheath split down one side: lvs. glaucous, finally $6-9 \mathrm{in}$. long: outer perianth segments oblong, 6-12 lines long; inner segments green ouly at the sinus. Feb., Mar. Pyrenees to Caucasus. R. H. 1880, p. 148. (t. M. 34:154. G.C. I1. I1:237. Gt. 48, P. 232. There are large-fld. and double forms. Var. Corcyrénsis and others flower in Nov. At least 2 varieties have yellow instead of greed markings. Var. refléxus has onter segments reflexed, G.M. 34:155.
cc. Base of les. very narrow.
2. Cilícicus, Baker. Less robust than Fosteri, with much uarrower lvs., which are narrowed gradually from the middle to a very narrow base. Green color as in nivalis. Bulb $1 / 2$ in. thick: lvs. whitish beneath; outer segments oblong, 9 lines long, $3-4$ lines broad: stamens more than half as Iong as the inner segments. Mt. Taurus, in ('ilicia, where it fls, Nov, to Mar. Jnt. I898. See C. C. 1II, 21:214. Pictured in G. C. III. 23:79. A. F. 13:1137. Gng. 6: 244. F.E. 11:282. Gt. 48, p. 228.

BB. Widih of lus. medium, 6-9 lines long.
c. Foliage moderately glaucous.
D. Outer segments of periauth 12-15 tincs long.
3. Imperàti, Bertol. Fls. larger than in G. nivalis; outer segments more spatulate. Naples and Genoa. This and Cameasicus are regarded by Baker as subspecies of nivalis. G.C.II. 11:237. G.M. 34:155.

DD. Outer segments 9-12 lines long.

4. Caucásicus, Baker (F. Redoùtei, Rupr.). Lvs. finally $8-9 \mathrm{in}$. long, mostly 9 lines broad; outer segments oblong-spatulate, with a very narrow claw. Fls. later than nivalis. Caucasus. Van Tubergen seems to catalogue var, máximus of this species, but consult No. 11.
cc. Foliage very glaucous.
D. Inter segments uith lobes rather spreading or crisped.
5. Elwesii, Hook. Giant Snowdrop. Fig. 889. Bulb larger and tls, more globose than in nivalis: outer segments oblong spatulate, $9-15$ lines long, 6-9 lines broad: inner segments green in the lower half and also around the sinus. Mts. of Asia Minor. B.M. 6166. R.H. 1880 , p. 148 . G. C. II. 11: 236. G.M. $34: 154$.The inner segments are narrowed suddenly just below the apical lobes, which are square and much larger than in Fosteri. They also form a narrower tube than in any other species. Van Tubergen advertises vars. Cassaba (A.F.

6. Galanthus nivalis and Elwesii.

Tha upper fis. are G. nivalis. The Iowest one is G. Elwesii* The middle tls, are a variety of G. Elwesii.
3:47I. Gng. 5:180 Gt. 48, p. 225. Gn. 55, p. 206), ochrospllus, unguiculatus (G. C. III. 17:361), and Erithræ, or Whittalli (Gn. 57, p. 45), which has the largest fls. G. robristus, Hort., seems never to bave been accounted for by Baker. It may perhaps le G. Elwesii, var. robustus which is a trade name. It is broad-Ird. and glancous.
DD. Inner segments with lobes not spreading or crisped.
6. Græcus, Orph. Very near Elwesii, but differing as above and in the smaller fls. and narrower outer segmenta. April. Chios.

ввв. Width of les. greatest, $9-12$ lines. C. Green color only near the sinut.
D. Colored on both sides of the inner segments.
7. latifolius, Rupr. Bulb I in. thick: lvs. lorate, bright green; outer segments ohlong-spatulate, 6-9 lines long; inner segments green around the sinus, inside and out: anthers suddenly narrowed to a sharp point, while in nivalis and Elwesii they are gradually narrowed, Caucasus, where it fls, in May. G.C. Il. $11: 237$; 15:404; 1868:578. Gt. 48, p. 229.

DD. Colored on only one side.

8. Ikàriæ, Baker. Resembles Fosteri in foliage, and Elwesii not in coloring but in the square, crisp lobes of the inner segments, which tend to recurve. Outer seg-
ments nearly $l \mathrm{in} . \mathrm{long}$: stamens rather shorter than the inner segments; green color occupying half the outside of the inner segments. Island of Nikaria (the classical Ikaria). See G (: 111. 13:506. Gn. 52, p. 361 and 19, p. 330 . Int. 1893.
cc. Green color also on the lower half of the inner segments.
9. Fósteri, Baker Resembles latifolius in foliage and Elwesii in flower, but the apical lobes of the inner segments are short and erect, and smaller than in Elwesii. Also the stamens are not more than balf as long as the inner segments, while in nivalis, Elwesii and latifolius they are three-fourths as long. Asia Minor. Int. 1889. G.M. $34: 154$.

> AA. Lis. plaited, the edges permanently rolled back. B. Green color only near the sinus.
10. plicatus, Nt. Bieb. Balb larger than in nivalis: outer segments oblong from a very narrow base, very convex on the back, 9-12 lines long, wide-spreading or even reflexed: inner segments green in the upper half, with a white elge. March, April. Crimea. This is much confounded with G. Caucasicus. G.(., I1. 11:236. B.R. 7:545. B.M. 2162. G.M. 34:155.
11. grandiflòrus, Baker (G. miximus, Baker, not Velatowsky). Possibly a hybrid between plicatus and some form of nivalis, remarkable for its robust habit and green color, extending more than half way down towards the base of the inner segments. Int. 1893. See G.C. III. 13:354, 656. See also G. Caucasicus, var. maximus, No. 4.

BB. Green color also on the lower halfo the inner segments.
12. Byzantinus, Baker. Intermediate between plicatus and Elwesii. "Lvs. 3 in. broad," which seems hardly possible, glaucous on both sides, especially beneath ; margins distinctly and permanently recurved; outer segments oblong, convex on back, 9 lines long, 4 lines broad, apical lobes somewhat reflexed and crisped: stamens much shorter than inner segments. Int. 1893 See G.C. 1II. 13:226
W. M.

GALAX (Greek, gala, milk; alluding to the whiteness of the flowers). Diapensiacec. Galax Jrs., with their lovely shades of red or bronze, furnish some of the most artistic decorative material for Christmas. The diapensia family has only 6 genera, and all of them are monotypic or nearly so. The family seems to be nearly crowded out in the struggle for existence, and its geographical distribution is interesting. Galax is distinguished from the other genera by the corolla 5 parted, with entire segments: stamens connate with the spatulate staminodes: anthers 1-celled: style very short. The plant has long been cult. in bardy borders and rockeries for its beautifully tinted, persistent lvs, and its slender spikes of fls, borne in July. The plant grows about 6-9 in. high, and is native to the mountains of Virginia to Georgia. J. B. Keller recommends a northern aspect in the lower part of the rockery, where the plants can bave shade and moisture. Prop. by division. Galax is usually called "Coltsfoot."
aphylla, Linn. GALAx. Rhizome perennial: Ivs, all from the root, heart-or kidney-shaped, crenate-dentate, often tinged with red or bronze, with radiating nerves and slender petiole, sheathing at the base. B.M. 754. G.F. 5:605. "Aphylla" means "leafless," referring to the scape.
W. M.

The use of Galax leaves for decorative purposes in a commercial way dates back only to 1890 , when they were introduced to the northern florist trade by the writer, who had experimented with them for sereral years before that date, sending to hospitals and individuals. The reports received fully justified the introducer in advertising the leaf widely as a florist's decorative material for making wreaths, erosses, and in fact all designs for which ivy leaves up to that time had been employed almost exclusively. To-day Galax leaves have to a great extent taken the place of iry leaves, being less expensive, easier handled and kept, and furnishing long, wiry stems. The brilliant bronze

GALIUM

leaves supply a color long needed in this class of work. The sizes of the leaves vary, also, from $1 / 2$ inch or less to 5 incbes in diameter, further extending their usefulness. Smal green Galax leaves are now used extensively for bunching with violets, takiug the place of the violet leaves. One of the features of the holiday season in Boston is the fakir with his stand of violets bunched with green Galax. They come in againand are used the same way at the first touch of spring, when the early trailing arbutus or "Mayflower" appears on the street. They can be arranged to corer much more space than the ivy leaves, and do not have to be wired, as is the case with the latter. The keeping qualities of Galax are remarkable, and they are now used the year round from cold storage. Outdoor designs, as in cemeteries, will keep fresh and bright for months if not dried out, but otherwise require no care. A farorite arrangement of Galax leares is to place them loosely in a small rase, where they will retain their bright colors and shape for weeks eren in a close, warm room, though most of the leaves are used, commonly with flowers, in designs made up by the florist. As a Christmas decoration they stand preëminent, and their general good qualities mentioned above cause them to be used throughout the year, more, perhaps, than any other decorative green, ferns possibly excepted.
In Philadelphia a few seasons ago an enterprising young woman introduced a novel and taking innovation in the shape of potted Galax plants for society dinners. Small, brilliantly colored green and bronzelrs, were arranged in tiny pots, specially designed by Messrs. Sackett \& Company, and placed at each plate, to be carried away by the guests as souvenirs. They were also sold through one of Philadelphia's leading merchants by thousands. The larger cities, Boston, New York, Philadelphia and Chicago, use the largest quantities, though many of these are retailed again to smallercities and towns all orer the Cnited States and Canada, and there is a large export trade now established in them, mostly to Gernany and the Netherlands. In 1899-1900, abont 70 tons were sold.
The area over which Galax is collected extends from Virginia to Georgia, and is so rast that there is no danger of exterminating the plant by collecting the leaves, even if it were injured thereby, which does not seem to be the case. It is not practicable to grow the plants for the harrest of leares, at least in America, the process being too expensive. Under cultivation they would perhaps not average one perfect salable leaf per plant, as a speck or wormhole renders the leaf unfit for decorative purposes. In Europe Galax has been tried with rarying success under glass, the leaves bringing a rery high price.
Galax aphylla is a heautiful ground-covering plant, specially adapted to the Rhododendron horder, where the soil and situation alike are suitable to its growth, an delights in shade and a cool, moist, peaty loam. Its charms are far better known in England, howerer, than at home. The leares, when full grown, are always bright green, the brilliant bronze shades appearing later when the plant ripens and the frosts begin. Then when they are exposed to the direct rays of the sun the alternating freezing and sun action cause the leaves to turn in a short time, though sometimes this occurs to an extent before any freezing weather. In dense shade they always remain green. In spring, when the sap begins to start, the leaves often turn green or dingy again, and eventually die down the second season.

Harlan P. Keleet.
GALEANDRA (Greek for helmel and stamen). Orchid àere, tribe l'ánder. A genus of deciduous epiphytes. Lrs, distichous, membranaceous: labellum infundibuli form : sepals and petals equal, spreading: column erect, winged: pollinia 2. Culture as for Eulophia.

Devoniàna, Lindl. Stem erect: Irs. linear-lanceolate, sheathing at base: sepals and petals lanceolate, reddish brown, with green margins; labellum whitish, veined in fron1 with crimson. From the banks of the Rio Nigro. B.M. 4610. 1.H. 21:176. A.F. 6:609.

Baueri, Lindl. Stems subeylindric, nearly fusiform: lvs. lanceolate: racemes terminal, drooping: fls, large;
sepals and petals similar, lanceolate, yellowish; labei lum pale yellow in the throat, interior portion purplish Mex. S. B.R. 26:49. P. M. 14:49.
D'Escagnolleàna, Reichb. f. Stems terete, tapering both ways: lvs. lanceolate, pointed: racemes terminal and drooping: sepals and petals similar, ascending, narrow, yellowish; lip funnel-form or nearly bell-form, fluted, with a rose-purple bloteh on the lower limb. Brazil. 1.H. 34:22 (1887).

Oakes Ades.
GALEGA (Greek, gala, milk : supposed to increase the flow of milk). Leguminosce. Of 109 names of species in this genus, only 6 are now retained, most of the rest being referred to Tephrosia. The 2 plants mentioned below are hardy herbaceous perennials of the easiest culture, about 3 ft . bigh, with odd-pinnate lvs. and pea-shaped fls. of purplish blue or white. They do not require frequent division, make busby plants, and bear in July and Aug. many dense, axillary and terminal racemes of fls., which are useful for cutting. Seeds of Goat's Rue are still offered abroad among miscellaneous agricultural seeds, but the plants are little known in this country.

A. Leaflets lanceolate: stipules broadly lanceolate.

officinalis, Linn. Goat's Rue. Height 2-3 ft.: lfts. mucronate: fls. purplish blue. Eu., W. Asia. Var. alba or álbiflora is commoner in cult. (in. 50, p.269.-A rosecolored variety is sold abroad; also a dwarf, compact, lilac-fld, variety.

AA. Leaflets lanceolate: stipules broadly orate.
orientalis, Lam. Foliage and stipules larger: fls. purplish blue, nodding: pods pendulous. Caucasus. B.M. 2192. B. R. $4: 326 .-$ "Height $21 / 2-4 \mathrm{ft}$. : rootstock creeping: stem simple." J. B. Keller.
J. B. Keller and W. M.

GALIUM (Galion was the name of a plant mentioned by Dioscorides as used in curdling milk. G. verum is used locally abroad for this purpose). Rubidece. Bedstraw or Lady's Bedstraw, because of the legend that one of these plants was in the hay on which the mother ol Christ rested. This genus contains 150-250 species, widely scattered in temperate regions, mostly weeds, often harsh to the touch, but frequently beautiful in their regular, mathematical habit, caused by the whorled

[^1]arrangement of the lrs. A few plants are slightly used abroal in carpeting rockeries, but G. Mollugo is a standard plant with many florists who hare a hardy border Their delicate sprays of minute white flowers
are used to lighten the effect of bouquets of other fls., notably sweet peas, which can hardly be arranged with theirown foliage, and which in large masses are inclined to look heavy and lumpy. Gypsophilas, which are used for the same purpose, bloom later. They have an equal infinity of detail, which baffles the eye to comprehend. The botanist's analysis of all this misty delicacy and airy grace is "fls. in axillary and terminal, trichotomous cymes and panicles. "He also declares that the Ivs. are really opposite, the intervening members of the whorls being stipules. Fig. 890. Galiums are annual or perennjal herbs, with 4 -angled, slender stems and small, white, green, yellow or purple fls.; corolla wheel-shaped, 4-lobed; stamens 4 : styles 2 . The following are perennials from creeping rootstocks, with white fls. in terminal panicles.

A. Les. in 4's : fruit hairy.

boreale, Linn. Height $1 / 8-11 / 2 \mathrm{ft}$.: stem rather firm, ereet and slightly branched: Ivs. lanceolate or linear, 3 -ribbed, scarcely rough at the edges, often 1 in . long: petals with recy short, incurred points. Native.
AA. Le's. in $8^{\prime} s$ or 6 's : fr. smooth or slightly granulated.
Mollùgo, Linn. Stem $1-3 \mathrm{ft}$, long, more or less lranched: Irs. obovate to oblong or linear, more or less rough at edges, always terminated by a little point: petals abruptly narrowed into a relatively long point. - This is known in some places as "Baby's Breath," although that name is also given to Gypsophilas (which see). Eu. Perennial.

GALPHIMIA (anagram of Malpighia). Malpighidecece, an order of almost no horticultural value. This genus includes a yellow-fld. shrub cult, in the extreme South, and valued for the exceptional length of its flowering season. The genus has a dozen or less species, mostly Mexican. Shrubs or subshrnbs: Ivs. opposite, slightly glaucous on both sides or beneath, entire or obscurely toothed, glandular at the margin or base of blade or at the tip of the leaf-stalk: racemes terminal: fls. yellow or reddish. G. nítida, probably a recent species, is cnlt. by E N. Reasoner. Three or four other kinds are rarely cult. under glass abroad.

GALTONIA (after Francis Galton, the distingnished anthropological writer). GIANt Summer Hyacinth. One of the few Cape bulbs that are practically hardy. This fine plant grows $3-\overline{5}$ ft . high and produces racemes $9-12 \mathrm{in}$. long of white, funnel-shaped, pendulous fis. in July or later. The plants should be beavily mulched if left outdoors where winters are severe. In favored localities the bulbs may be left for several yeara with increasingly better results. Largo elumps are desirable. They hare been suggested for cemetery planting. The genus differs from hyacinths mainly by its more numerons and flattened seeds. The other 2 species are inferior to the following, which was introduced by Leichtlin in the early seventies, and now holds a permanent place in borticulture. The plants prefer a rich, open, moist soil. Lillacere.
cándicans, Decne. (Hyacinthus candicans, Baker). Fig. 891. Bulb large, round, coated: 1rs. lorate-lanceolate, $21 / 2 \mathrm{ft}$. long: scape often 4 ft . high: rasemes $12-20$-fld. fls. fragrant. F.S. 21:2173. G.C. 1871:380: 1872:1099 and 11. 15:273. R.H. 1882, p. 32. P.G. 3:101. A. G, 17:281.

GAMBOGE. See under Garcinia.

GAMOLEPIS (Greek for united scales; referring to the involucre). Compósite. About a dozen S. A frican herbs or small shrubs, somewhat allied botanically to Chrysanthemum. Livs, alternate and mostly pinnatisect: peduncles I-headed, the heads bearing I series of yellow, pistillate rays, the disk fls. perfect: akenes without pappus, wingless and glabrous.
ánnua, Less. (G. Tagètes, D('.). Fig. 892. Annual, of wiry growth, a foot or less high, very floriferous: lvs. pinnate or pinnately parted, $5-7$ lobes or leaflets on either side of the rachis and the leaflets entire or lobed: involucre nearly or quite urn-shaped, the scales joined more than half their length: fl.-heads bright yellow or orange, $3 / 4 \mathrm{in}$. across. - Hardy or balf-hardy. Of easiest culture from seeds in sunny places, and most excellent for ribbou borders and for low mass effects. Continnous bloomer.
L. H. B.

GARCINIA (L. Garein, who lived and collected in India, and wrote in the eighteenth century). Guttiferce. This genus includes the Mangosteen, which is declared by some connoisseurs to be one of the rarest and most luscious of all tropical fruits; also the Gamboge Tree, whose resinous juice yields a well-known pigment and purgative. The Mangosteen is cultivated in the West ladies; the Gamboge Tree is also cult. in S. Fla. It is a broad-leaved tree of slow growth. The Mango steen is about the size and shape of an orange, with rind considerably thicker, and ediblesegments of form and arrangement like those of an orange. It is brilliantly colored ontside with rich purple. The persistent stigmas and calyx lobes are seen in Fig. 893. The flavor is said to snggest something between a grape and a peach. Numberless efforts are said to have been made to naturalize this tree in the tropics without success. The successful ripening of this fruit under glass
is usually regarded as a consummate achievement in the art of gardening.
Mangostàna, Linn. Mangosteen. Fig. 893. Height 20 ft .: 1vs. 7-8 in. long, elliptic: fls. reddish; petals 4 : fr, about $21 / 2 \mathrm{in}$. in diam. B.M. 4847. L.B.C.9:845. F.S. 22:2359. G.C. 11. 4:657.
Morélla, Desr. Gamboge Tree. Height $30-50 \mathrm{ft}$. : lvs. more tapering at both ends: fls. yellowish: fr. resembling a Morello cherry in size and shape.
W. M.

The Mangosteen is a dative of the Malay peninsula and archipelago. It is cultivated, and bears fruit in some parts of Ceylon and in a few spots in the Madras Presidency, but no success has been obtained in its cultivation in other parts of ludia. DeCandolle, in his "Origin of Cultivated Plants," says: "Among cultivated plants it is one of the most local, both in its origin, habitation and cultivation." In the West Indies it is successfully cultivated in Trinidad and Jamaica, but only in spots where the climate is moist, hot and fairly equable all through the year; for instance, in the Jamaica Botanic Gardens it bears good crops of fair-sized fruit at Castleton, in a val-

ley on the north side, with a mean temperature of $76^{\circ} \mathrm{F}$. and an annual rainfall of 113 inches, whereas attempts to grow it have failed at Hope Gardens, in the Liguanea plain of the south side, with a mean temperature of 72° and an anmual rainfall of 52 inches. Experience in southern India is much the same; it will grow only in valleys, - oot in the open plains. In England the iree bas been grown in hothouses and the fruit ripened successfully.

The Gamboge Tree is much more widely distributed, being native throughout India, Ceylon, Malaya and Siam. As one might expect, its cultiration is easy, as it stands a cousiderable amount of variation of moisture and heat. In Jamaica it bas become naturalized in some parts of the wetter districts.

Wm. Fawcett.
GARDEN and GARDENING. The word Garden etymologically means an inclosed space, and Gardening is therefore, distinguished from agriculture by being carried on within an inclosure of some kind instead of in the open fields. Gardening operations are usually
conducted on a smalier scale than those of agriculture, and by more intensive metbods. Gardening and horticulture are really synonymous terms, but, by usage, a horticulturist is supposed to have a more extended training and wider range of activities than a gardener. Moreover, the word Gardening now suggests more of the private, homelike and personal point of view, whereas the most distinctive feature of American hor ticulture is the immense commercial importance of fruit-growing on a greater scale tban that of Old World Gardening, and a marked emphasis of the professional side of a fruit-grower's work. The history and discussion of Gardening are, therefore, set forth in this book nnder Horticulture. Large private places are often divided into Fruit Garden, Kitchen Garden and Flower Garden. Fruit-growing is the same as Pomology (which see). Kitchen-Gardening, in its widest sense, is the same as Vegetable-Giardening (which see), or the more learned word, Olericulture; but the expression Kitchen-Gardening is now less common, and generally indicates the private and uncommercial point of riew, whereas Market-Gardening and Truck-Gardening (which are practically the same) are now the chief words used for the wholesale and commercial side of Vegetable-Gardening in the U. S. Flower-Gardening, a third primary division of Gardening, is the same as Floriculture (which see). Under Ornamental Gardening and Landscape Gardening are explained the two different points of riew in the use of plants and flowers for their own sakes or when grouped for artistic effects, the nature. like or picturesque conception being set forth under Landscape Gardening, and the artificial or merely decorative styles under Ornamental Gardening. America being the only country where cut-flowers are commercially more important at present than the trade in potted plants, a special article is devoted to Cut-flowers in this work. Other departments of Ornamental Gardening are treated under Greenbouse Management, Alpine Gardens (including Rock Gardens), Aquatics (including Bog Gardens), Trees, Shrubs, Herbaceous Perennials and Annuals.

GARDENER'S GARTER. Arundo Donux, var. variegata, and Phalaris arundinacea, var. picta.
GARDENIA (after Alexander Garden, M.D., of Charles. ton, S.C., a correspondent of Linnews). Rubiacear. This includes the Cape Jasmine, a tender shrub 2-6 ft. high, with thick, evergreen foliage and large double, waxy Camellia-like, fragrant fls. It blooms from May to Sept. in the South, where it is often used for hedges, and is hardy as far north as Va. In tbe middle of the century the Cape Jnsmine was considered one of the finest stove shrubs in cultivation, but with the waning popularity of Camellias the doom of the Cape Jasmine as a conservatory plant was sealed. The Camellia has a greater range of color, and has had hundreds of varieties, while its sceuted rival has had barely a dozen. The flowers of the Cape Jasmine have never been so perfectly regular as those of a Camellia, and the plants are very subject to insect enemies. Their bloom is successional rather than close, and large plants are therefore not so showy as Camellias. They are considerably grown abroad for cutfls. in early spring, young plants a season or two old being used for best results. The variety with variegated foliage is dwarfer and weaker growing. The true botanical name of the Cape Jasmine is G. jasminoldes, a name almost never used in the trade. "Cape Jasmine" itself is one of the most remarkable cases of the vitality of an erroneous popular name. The single-fld. form was
introiluced much later than the double, and has always been less popular. The earliest picture of a living plant with single fls. was published in 1820 in B.R. 449. Some fine plants still known to the trade as Gardenias are now placed in the allied genera Randia and Mitriostigma. These two genera have a many-celled ovary, while that of Gardenia is 1-celled. The calyx in Gardenia is often tubular, in Mitriostigma 5 -parted, in Randia various. The testa of the seeds is membranaceous in Randia; in Mitriostigma rather fibrous. Gardenias are obtainable ehiefly through southern and Californian dealers. Cape Jasmines are also handled by importers of Japanese plants, who sometimes offer seeds also. G. lucida was probably introduced by Reasoner, and G. Rothmanni by Franceschi. For the true Jasmines (which belong to the olive family, and are often trailing plants), see Jasminum.
G. florida and G. radicans have long been figured separately, and our nurserymeu still keep the names distinct. The only difference which DeCandolle records is that G. florida is more shrubly and erect, with elliptical lvs. acute at both ends, grow ing spontaneously in China and cult. in Japan, while G, radicons has a stem that takes root, lanceolate lvs., and is a native of Japan. Both plants, DeCandolle wrote, were cult. in India and at the Cape. Ellis founded the genus upon a double-fld specimen, which he figured in the Phil. Trans. Roy. Soc. Lond. in 1761. In 1×16 Sims pictured a double form in B.M. 1842 with these remarks: "In the way that Gardenia radicans is treated in our stoves, the stems show no disposition to put forth roots: but probably would were they suffered to come in contact with the earth. It is doubtful whether it has ever been seen in this country, or even in China, with a single flower. There is a great affinity between this, species and Gardenia florida, from which it differs very little, except in the lesser size of its flow ers and leaves, which last are narrowed at both extremities. The flowers have nearly the same fragrant smell, and the plant, flowering more freely and being more easily propagated than the true Cape Jasmine, it has of late much taken the place of this last, and is frequently sold for it." Before 1820, Sir J. Smith wrote in Rees' Encyc.: "The original idea and char acter of this gemus are taken from G.florida, commonly cailed 'Cape Jasmine.' This was first brought to England by Capt. Hutchinson (of the Godolphin Indiaman), who, about the middle of the last century, met with a bush of it in full flower, somewhere near the Cape of Good Hope, probably in a cultisomewhere near the Cape of cool plant in a pot to England.
vated state. He hrought the whole plo vated state. He hrought the whole plant in a pot to England.

* $_{*}^{*}$ Mr. Gordon, the nurseryman, having obtained layers from the tree, propagated it so successfully that he is said to have gained more than $500 l$. by the produce. It is now fre quent in our gardens, treated as a stove plant, thongh it chiefly requires heat in the early spring to make it bloom, being at other times a hardy greenhouse plant. The flowers are the size and aspect of a double Narcissus poeticus, with a sweet and very powerful scent, resembling the flavour of ginger. They turn buff as they fade." From the above evidence, and from the pictures eited below, it seems clear that if the trade names G. Fortunci, florida and radicans really represent 3 distinct varieties, the only single distinction that can be made is in width of foliage; Fortunei having lvs. 2 in, wide, florida 1-1 $1 / 2$ in., and radicans $1 / 2-1$ in. wide.
A. Crrolla tube cylindrical.
c. Ribs on the calyx.
jasminoldes, Ellis. (G. flórida, Linn. G. radleans, Thunb.). Cape Jasmine, Discussed above. Forpictures of douhle forms, see B.M. 1842 and 2627 and B.R. 1:73; single, B.R. 6:449 and B.MI. 3349 ; normal and rariegated foliage, R.H, 1864, p. 30. China. Var. Fortuniana, Lindl.(G.F'̈rtunei, Hort.). B.R. 32:43. F.S. 2:177. R.B. 23:241. In 1893 John Saul advertised G. c cmelliaflöra in addition to G. radirans, G. florida and vars. mdjor and majéstica. G. Sinénsisgrandiflòra of Berger's catalogue perhaps belongs here.

cc. Ribs not present.

lùcida, Roxb. Buds resinous: lvs, oblong: stipules annular, variously divided at the mouth, unequally lobed. India, Burma, Luzon.-The calyx teeth are not decurrent, as in the C'ape Jessamine, and thus the calyx does not have the ribbed look.

Be. Calyx lubular, with 5 very short leeth.

amcena, Sims. Differs from all here described in having numerous strong spines nearly $1 / 2 \mathrm{in}$. long, which are axillary. Lvs.oval, acute, short-stalked : fls, subterminal ; corolla tube I in. long, longer than the lobes, which are 6 , obovate, white, with margins incurvell enough to show the rosy back. India or China.
bвb. Calyx spathe-like.
Thunbérgia, Linn. f. Liss, broadly elliptic, acuie, with pairs of glands along the midribs: fls. 3 in. acros, 3 , pure white ; corolla lohes 8 , overlapping. S. Afr. B.M. 1004. -"Dwarf-growing."-Franceschi.

AA. Corolla lube short and wide-throated.

n. F'ls. 3 in. long and broad.

Rothmánnia, Linn, f. Very distinct in foliage and f1. Lvs. with pairs of hairy glands along the midrib: calyx ribbed, with 5 long teeth, equaling the short, cylindrical portion of the corolla tube; corclla tube ratber suddenly swelled, ribbed: lobes 5, long-acuminate, whitish, spotted purple in the mouth. S. Afir B.M. 690. L.B.C. 11 :1053.- "Fls. pale yellow."-Franceschi.

BB. Fls. $1 \frac{1}{2}$ in. long and broad.

globosa, Hochst. Lvs, oblong, short-acuminate; leafstalk nearly $3-5$ lines long : Hls. white, inside hairy and lined pale jellow; calyx small, with 5 very short teeth; corolla tube wide at the base and gradually swelled; lobes 5, short-acuminate. S. Afr. B.M. 4791, F.S. 9:951.
G. citriodòra, Hook.-Mitriostigma axillare.-G. Stonleyàna, Hook. $=$ Randia maculata.
W. M.

Gardenia jasminoides (the true Cape Jasmine) has again become very popular, even suggesting its popularity thirty years ago, when its wax-like, fragrant blossoms were highly fashionable. Then several of the leading florists erected special houses for it, in order that they might flower it in the winter season. The writer bad charge of one of these houses. The attempt to bloom them in midwinter was, however, only partly successful, for it is against the nature of the plant to force it into bloem hefore the turn of the sun in, say, January. If the plants have been well established the previous summer and are well set with flower buds, they can be successfully forced into bloom in a sunny greenhouse, giving them stove heat and frequent syringings with tepid water. The plants will be entirely covered with their great blossoms. To grow and prepare such plants, cuttings with two or three joints or eyes of well-ripened wood should be made in December or January, putting them into the propagating bed of sharp sand, with a bottom heat of not less than 75°, and keeping close until callused. Then air can be admitted. After rooting, they should be potted into small pots and grown on until the middle of May, when they cau be planted out inte a coldframe or old hotbed, into a rich, sandy loam, giving them the full sun and treating them the same as Ficus elastica is now grown. Abundance of water and frequent syringing are essential. Pinch the shoots, so as to make the plants bushy and branchy. In the latter part of August or beginning of September the plants should be potted into 5 -, 6 - or 7 -inch pots, according to their size, then placed either in a hotbed with gentle bottom heat or in a house where a moist stove temperature can be maintained until the plants are well rooted. During this period they should be slightly shaded, after which the plants can be hardened off and put into their winter quarters. Put in a cool greenhouse where Azaleas or Camellias or other New Holland or Cape stock is wintered, until their time for forcing into flower arrives, in the early part of the new year.

There is considerable difference bet ween the large-leaf or Fortuniana variety and the common (G. jasminoides. While the same treatment will answer for hoth, and the fl. of the former is much larger, it is not so protitable for commercial purposes as the ordinary G. jasminoides. There is also a difference between these and the variety known as G. radicans, and its variegated variety, radicans fol. var. These plants grew much dwarfer, and their habit is more radicant or flat or prostrate in growth. Their foliage is myrtle-like and the flowers are much smaller and are less valuable. These, however, make good flowering (dwarf) pot-plants under similar treatment. The variegated form is cultivated in great abundance in Japan, in the gardens in semi-tropical sections. None of the other varieties is of much commercial importance, and they have ralue only in botanical collections.
H. A. Siebrecht.

GARDEN LEMON. See under Cucumis Melo.

GARDOQQIA betonicoldes = Cedranella Mexicana.

GARLAND FLOWER in the South sometimes means Tedychzum coxonerium. Often means Daphne Cneorum.

GARGET. Phytolacea decandra.

GARLIC (Allium satixnm, Linn.). Hardy perennial bulbous plant, closely allied to the onion. It is natise of southern Europe. It has flat leaves, and the bulb is composed of several separable parts or bulbels, called cloves. These cloves are planted, as onion sets are, in spring or in fall in the South. They mature in summer and early fall. If the soil is rich, it may be necessary to break over the tops to prevent too much top growth and to make the bulbs better, as is sometimes done with onious. This is done when the top growth has reached normal full size. The cloves are usually set t-6 in. apart in drills, in ordinary garden soil. The bulbs are used in cookery, but mostly amongst the foreign population, Strings of bulbs braided together by their tops are common in metropolitan markets (Fig. 894).
L. H. B.

GARLIC PEAR. See

 Craterva.GARRYA (after Nicholas Garry, secretary of the Hudson Bay Company). Including Fadyènia. Corndcea. Ornamental evergreen shrubs with opposite, petioled, entire lvs., with the small greenish white or yellowish fls. in catkin-like, often pendulous spikes, and with dark purple or dark blue berries. None of the species is hardy North, but G. Veatehi, var. flavescens, and also G. Fremonti, which are the hardiest, ean prohahly be grown north to New York in sheltered positions, while the others are hardy only South. They are well adapted for evergreen shrubberies, and the staminate plants are especially decorative in early spring with the showy, pendulous catkins, which in G. elliptica attain to 1 ft . ia length aud often bloom in midwinter. The Garryas thrive well in a well-drained soil and in sunny, sheltered position; in England they are often grown on walls. Prop. by seeds or by cuttings of half-ripened wood under glass; also by layers and sometimes by grafting on Aucuba. About I0 species in W. N. America from S. Oregon to S. Mexico, west to W. Texas. Shrubs with exstipulate lys. : fls. dicecious, apetalous, $1-3$ in the axils of opposite bracts on elongsted, often drooping, axillary spikes; staminate fls. with 4 sepals and 4 stamens, pistillate with 2 sepals and 2 styles and a 1 . celled ovary: berry 1-2-seeded, rather dry.
elliptica, Dougl. Shrub, to $8 \mathrm{ft} .:$ Irs. elliptic to ovaloblong, obtuse or acute, usually undulate, glabrous above, densely tomentose beneath, $\mathrm{J} 1 / 2-3 \mathrm{in}$. long: 3 fls . in the axils of short and broad, pointed bracts; spikes
rather dense, staminate $2-12$ in. long, often brauched, pistillate 1-3 in. long: fr. globose, silky tomentose. Calif. to New Mex. B. R. 20:1686. Gn. 33, p. 562; 51, p. 257; 53, p. 449; 55, p. 258. - This is the handsomest species, and stands about 10° of frost (sometimes more) in a sheltered position.
Thuréti, Carr. (G. elliptica \times Fadyrni). Shrub, to 15 ft .: Ivs. elliptic to elliptic-oblong, at length glossy and glabrous above, whitish tomentose beneath, 2-5 in. long: bracts remote, ovate-lanceolate, with usually 1 fl . in each axil; spikes shorter than those of the former: fr. ovoid, tomentose. Originated in France. R.H. 1869. p. 17; 1879, p. 154, 155.
G. Fadyeni Hook. (Fadyenia Hookeri, Griseb.). Shrub. to 15 ft .: lvs. elliptic to oblong, acute or mucronulate, glossy above, tomentose beneath or almost glabrous at length, 2-4 in. long: bractsoblong lanceolate, renote: fr. tomentose. Jamaica, Cuha,-G. Fremonti, Torr. Shrub, to 10 ft .: Iys, ovate to oblong, acute, glabrous on both sides, yellowish green, 1-3 in. long: spikes dense, $9-5$ in. long, with short bracts: fr. pedicelled, glabrous. Ore. to (alif. G.e: 11. 15:431.-G. maero-
 glabrons above, villous-pubescent beneath. $2-5 \mathrm{in}$. long: spikes dense and short: fr. sessile. Mexieo--G. Featchi, Kellogg. Spreading shrub, to 8 ft .: lvs. elliptic-ovate to elliptic-oblong. acute, yellowish green, silky-tomentose beneath, $1 \frac{1}{2}-2 \frac{1}{2}$ in, long: spikes dense, $1-2 \mathrm{in}$. long: fr. sessile, usually silky tomentose. Nevada to Ualif. and N. Mex.- Var. flavescens, Coult. \& Evans (G. Hlavescens. Wats.) , bas the Ivs. smaller, longer petioled and less pubescent; it is tbe more northern form and hardier. Species named for J. A. Veatch, botanical explorer of Cedros Island, Lower California.

Alfred Rehder.
GARÜGA (native name). Burseràcea. This includes a deciduous East Indian tree, reaching 60 ft , and cult. in S. Fla, and ('alif. for its fruits, which are the size of a gooseberry, and are eaten raw, but chiefly pickled. The genus has 6 species in tropical Asia, Amer, and Australia. Tomentose trees: lvs, erowded at tips of branches, alternate, odd-pinnate; Ifts. opposite, subsessile, serrate: fls, polygamous, panicled; calyx hellshaped, 5 -cut; petals 5, inserted on the tube of the calyx above the middle: ovary $4-5$-celled; ovales in pairs: drupe with 5 , or by abortion 1-3, stones, which are wrinkled and finally 1 -seeded.
pinnàta, Roxb. Lvs, nearly villous; lfts obtusely erenate. India and Malaya. - Also cult, abroad under glass.

GAS PLANT. ('onsult Dictamnus.

GASTERIA (Greek, gaster, belly; referring to the swollen base of the fls.). Lilidere. About 50 species of greenhouse evergreen succulents, allied to Aloe, and native of South Africa. Rather small plants, mostly acaulescent, with usually elongated leaves, crowded in 2 ranks or a loose rosette. Flowers with a rosy ventricose, curved tube and short, suberect, greenish segments, about as long as the stamens and pistil. Several species are proliferous on aborted peduncles. Hybrids are frequent between the species, and with other genera of the tribe. Gasterias flower in winter. For culture, see Aloe.
A. Leaves tapering gradually to the point, concareconver or concarely 8 -sided.
verrucosa, Haw. (Alòe verrucòsa, Mill.). Lvs, in two straight or at length twisted ranks, narrow for the genus, dull gray, very rough, with small white tubereles. Cape. B.M. 837.
carinàta, Haw. (Alde carinàta, Mill.). Lvs, at length spreading in every direction, an inch or more hroad, mostly inequilaterally 3 -sided, dull, greener, the greener protuding tuhercles coarser and more separated. B.M. 1331 (except left-hand leaf).
excavàta, Haw. Like the last, but withont raised tuhercles. Doubtfully distinct from the next. Cape.
glàbra, Haw. (.l lde glabra, Salm-Dyek. A. carinàta, var. subglàbra). Lis. larger, green, somewhat glossy, some of the coarse, remote, pale dots persistently elevated. Cape. B.M. 1331 (left-hand leaf).
acinacifolia, Haw. (Aloेe acinacifòlia). Lvs. dark green, more elongated, somewhat glossy, the scattered pale dots not raised. Cape. B.M. 2369.
pulchra, Haw. (Alòe púlehra, Jacq.). Lvs, sometimes purplish, narrower and longer, the rather coarse, pale dots not elevated. Cape. B.M. 765.
nitida, Haw. (Alde uttida, Salm-Dyek). Lvs. green, more or less glossy, short, deltoid, very thick, the coarse, pale dots not elevated, and the margins nearly smooth. Cape. B.M. 2304.
AA. Leaves with nearly parallel margins, abruptly pointed or mucronate.
B. Leuves strap-shaped, one or both faces flat or coneace, the margins frequently doubled.
intermèdia, Haw. (G. vermedsa, var. intermedia). Lvs. 2-ranked, more rounded on the back than usual in the group, and some of them tapering as in verrucosa, grayish, rough, with numerous pale tubercles. Cape. B.M. 1322 (as A loe lingua).
scabérrima, Salm-Dyck (G. intermèdia, var. aspérrima. G.verrucòsa, var. scabérrimu. Alde scabérrima). Lvs, thinner, less concave and tapering, often swordshaped, very rough, with coarse white tubercles.
disticha, Haw. (G. dentieulàta, Haw. Alòe dístieha, Thunb. A. lingua, Thunb. A. linguiformis, Mill.). Lvs, somewhat concavo-convex, from apple-green becoming dull gray, evanescently pale dotted, smooth, rough-margined. Cape.
Var. conspurcàta, Haw. (G. conspureàtu, Haw. Alde conspurcàta, Salm-Dyck). Lvs. with less roughened margin, the numerous, more persistent, pale dots not elevated.
Var. verrucòsa (Alд̀ linguifórmis, var. verrucòsa). Lvs. roughened by the persistent elevation of some of the more remote greener dots.
Var. angulàta, Haw. (Alde angulatu, Willd.). Lvs. nearly flat on both surfaces, one or hoth margins acutely doubled.
sulcàta, Haw. (Ald̀e sulcàta, Salm-Dyck). Lvs. very concave, with angular, conspicuously elevated and mostly incurved margins, the green dots sometimes protruding. Cape.
nigricans, Haw. (Alde nigricans, Haw. A. lingua, var. crassifolia). Lvs. plano-convex, rather turgid, from dark green with pale dots becoming uniformly purplish, smooth, the occasionally doubled margins very minutely roughened. Cape. B.M. 838 (as Aloe lingua, var. crassifolia).
Var. subnigricans, Haw. (G. subnigricans, Haw.). Greener, the sparse dots somewhat elevated and the margins rough, especially below.

Bв. Leaves suord-shaped, turgid, polished.

planifolia, Bak. Les. 2 -ranked, 2 -edged, narrow, long, biconvex, dark green, with numerous rather large, often confluent pale blotches, the margindenticulate next the apex. Algoa Bay.
maculàta, Haw. (Albe maeulàta, Thunb. A. obliqua, Haw.). Lrs. obliquely 2 -ranked, occasionally 3 -edged, often twisted, broad, with confluent pale blotches, the margin entire. Cape. B.M. 979.
picta, Haw. (G. and A. Bowiedna). Lvs. spirally 2 ranked on an elongated stem, somewhat purplish, broad, from biconvex becoming concave, smooth margined or a little roughened near the middle. Cape.
marmoràta, Bak. Lrs, spirally 2 ranked, often 3 edged, narrow, elongated, smooth, entire or the lower partly rough-margined, highly polished, coarsely palemarbled. Cape?
parvifolia, Bak. Lvs. spreading in all directions, mostly 3 -edged, very short and thick, duller green, with less confluent, small, pale dots, which are often slightly elevated. Cape.

Wm. Trelease.
GASTONIA palmata. See Trevesia.
GASTRONEMA. A section of Cyrtanthus.
GAULTHERIA (named by Kalm after Dr. "Gaulthier," a physician in Quebec, whose name was really
written Gaultier). Eriedeece. This includes the Wintergreen and some other ornamental low aromatic plants with alternate, evergreen lvs., white, pink or scarlet, often fragrant fls. in terminal or axillary racemes or solitary, and with decorative, berry-like red or blackish fr. G. procumbens is fully hardy North, while the other N . American species need protection during the winter; they are well adapted for borders of evergreen shrubberies as well as for rockeries, and in suitable soil they are apt to form a handsome evergreen ground-cover. Most of the foreign species can be grown only South or as greenhouse shrubs. Some have edible fruits, and an aromatic oil used in perfumery and merlicine is obtained from G. proeumbens and several Asiatic species. They grow best in sandy or peaty, somewhat moist soil and partly shaded situations. Prop, by seeds, layers or suckers, division of obder plants, and also by cuttings of half-ripened wood under glass. About 90 species in the warmer and subtropical regions of Asia, Australia, and in America from Canada to Chile. Erect or procumbent shrubs, rarely small trees, usually hairy and glandular: Ivs. petioled, roundish to lanceolate, mostly serrate: fls, in terminal panicles or axillary racemes or solitary; calyx 5 -parted; corolla urceolate, 5 -lobed; stamens 10 : ovary superior: fr. a 5 -celled, dehiscent capsule, usually enclosed hy the fleshy and berry-like calyx.
procúmbens, Linu. Wintergreen. Checkerberry. Boxberky. Partridge Bekry: Stem creeping, sending up erect branches to 5 in . high, bearing toward the end 3-8 dark green, oval or obovate, alnost glabrous lvs., 1-2 in long, with ciliate teeth: fls, solitary, nodding; corolla ovate, white, about $1 / 4 \mathrm{in}$, long: fr, scarlet. July-Sept. Canada to Ga., west to Mich. D. 73. B.M. 1966. L.B.C. J:82.

Shallon, Pursh. Low shrub, to 2 ft ., with spreading, glandular-hairy branches: Ivs. roundish-ovate or ovate, cordate or rounded at the base, serrulate, $2-1 \mathrm{in}$. long: fls. nodding, in terminal and axillary racemes; corolla ovate, white or pinkish: fr. purplish black, glandular, hairy. May, June. Brit. Columbia to Calif. Called "shallon" or "salal" by Indians. B.M. 2843. B.R. 17:1411. L.B.C. 14:1372.
G. antipoda, Forst. Shrub, to 5 ft ., sometimes procumbent, hairy: lvs.orbicular to ohlong, $1 / 4-1 / 3$ in.: fl. solitary, white or pink, campanulate. N. Zealand, Tasmania.- G. coccinea, HBK. Shrub, to 2 ft ., hairy : lvs. roundish ovate, about 1 in .: fls . slender-pedicelled, in elongated, secund racemes; corollaovate, pink. Veneznela. R.H. 1819:181.-G. terruginea, Cham. \& Schlecht. Small shrub, rufously hairy: lvs, ovate or oblong. ${ }^{1-2} \mathbf{i n}$.: fls almost like the former. Brazil. B.M. 4697.-G. fragrantissima, Wall. Shrub or small tree, glabrous: lvs, elliptic to lanceolate, $21 / 2-31 / 2 \mathrm{in}$. long: racemes axillary, erect, shorter than the lvs, ; corolla white or pinkish, globular ovate. Himalayas, Ceylon. B.M. 5984.-G. nummularoides, D. Don (G. Nummularia, DC.). Procumbent: branches densely rufously hairy: lvs, orbicular to ovate, $1 / 2-1 \mathrm{in}$. long: fls, solitary, ovate, white. Himalayas. G.C. II. 22:457. P.F.G. 2:164.-G. ovatifolia, Gray. Procumbent, with ascending and sparingly hairy branches: lvs. ovate, scute, $1-1 \frac{1}{2}$ in. long: fls. solitary, campanulate: fr. scarlet. Brit. Columb. to Ore. G. pyrolòdes, Hook. f. \& Thom. (G. pyrolafolia, Hook. f.). Low shrub, sometimes procumbent, almost glabrous: Ivs. elliptic-obovate, about 11/2 in, long: racemes few-fld., axillary. Himal., Japan.

Alfred Rehder.

GAÛRA (Greek, superb). Onagrùcea. This includes several herbs which are distinct in appearance, but scarcely possess general garden value, though they are pleasant incidents in the hardy border of those who like native plants. The bloom asceuds the slender racemes too slowly to make the plants as showry as possible. The best kind is G. Lindleimeri, which has white fis. of singular appearance, with rosy calyx tubes. Gaura is a genus of $20-25$ species of annual and perennial herbs coufined to the warmer regions of N. Amer.: lvs. alternate, sessile or stalked, entire, dentate, or sinuate: fls. white or rose, in spikes or racemes; calyx tube deciduous, obconical, much prolonged beyond the ovary, with 4 reflexed lobes; petals clawed; stamens mostly 8 , with a small scale-like appendage before the base of each filament; stigma 4 -lobed, surrounded by a ring or cuplike border: fr. nut-like, 3-1-ribbed, finally 1 -celled, and $1-1$-seetled. Gauras are easily prop. by seed. They prefer light soils, and the seedlings can be transplanted directly into permanent quarters.

$$
\text { A. Height } 3 \text { ft.: fls. white. }
$$

Lindheimeri, Engelm. \& Gray. Lvs. lanceolate, with a few wavy teeth and recurved margins. Tex. G.W.F. 23. R.H. 1851:41, and 1857, p. 262.

A. Height 1 ft.: fls. rosy, turning to scarlet.

coccinea, Nutt. Lvs, numerous, lanceolate to linear, repand-denticulate or entire: fls, in spikes: fr. 4 -sided. Tex.
W. M.

GAYLUSSACIA (after J. L. Gaylussac, eminent French chemist; died 1850). Syn., Aduària. Ericaceor, tribe Vacciniea. Evergreen or deciduous shrubs with alternate, short-petioled, entire or serrate lvs., white, red, or reddish green tls in lateral racemes, and hlue or black mostly edible fruits. The deciduous species are hardy Nortb, but are of little decorative value, while the evergreen species, all, except the half-hardy G. brachycera, inhabitants of the S. American mountains, are often very ornamental in foliage and fls., but tender and hardly cultivated in this country. They grow best in peaty or sandy soil and shaded situations. Prop. by seeds, layers or division; the evergreen species by cuttings of half-ripened wood under glass. See also Vaccinium for cuit. About 40 species in N. and S. America, closely allied to Vaccinium, distinguished by the 10 celled ovary, each cell with one ovule.

> A. Liss evergrefn, obtusely servate.
brachycera, Gray. Low shruh, with creeping and ascending stem and spreading angled glabrous branches: lvs. oval, glabrous, $1 / 2-1$ in. long: racemes sbort, with few white or pinkish fls.: fr. black. May, June. Pa. to Va. B.M. 928. L.B.C. 7:G48 (as Jaccinium buxifolium).

As. Lers. deciduous, entire.

B. Fls. in loose racemes: corolla campanulate.

dumosa, Torr. \& Gray. Shrub, to 2 ft ., with creeping stem and almost erect, somewhat hairy and glaudular branches: Ivs, ohovate-oblong to oblanceolate, mucronate, shining above, leathery, 1-2 in. long: fls, white or pinkish; bracts foliaceous and persistent : fr. black, usually pubescent, rather insipid. Nay, June. Newfoundland to Fla. and La. B.M. 1106 (as Vaccinium).
frondòsa, Torr. \& Gray. Blee Heckleberry. Dangleberry. Tangleberry. Shruh, to 6 ft ., with spreading, usually glabrous branches: lvs. oblong or ovalobovate, obtuse or emarginate, pale green above, whitish beneath, membranareous, 1-2 in. long: fls. slender-pedicelled; corolla broadly campanulate, greenish purple: fr. blue, with glaucous bloom, sweet. May, June. N. H. to Fla., west to Ky., preferring moist, peaty soil. Em. 2:451. G.C. 111. 7:580.
ursina, Torr. \& Gray. Shruh, to 4 ft ., with somewhat pubescent, spreading branches: 1rs. obovate to oblong, acuminate, nembranaceous, $2-4 \mathrm{in}$. long: tls white or piakish: fr. finally black, insipid. May, June, N, and S. Carolina. Harlan P. Kelsey writes of this specios: "Shrub 2-6 ft. high; very local in a few counties in southwestern North Carolina, though common in these stations. Locally it is known as 'Buckberry;' a name given by the native mountaineers from the fact that deer feed on the rery abundant clustered fruit in late summer. The berries aro much used for pies and jams, and have a most peculiar and pleasant acid flavor, unlike any other Vaccinium. It promises to be a valuable addition to our garden fruits."

Bв. Fls, in short, sessile racemes: corolla ovate.
resinosa, Torr. \& Gray. Erect shrub, to 3 ft ., resinous when young: Ivs, oval or oblong-lanceolate, mucronulate, yellowish green above, pale beneath, $1-1 \frac{1}{2} \mathrm{in}$. long: fls. short-pedicelled, nodding, reddish: fr. black, rarely white, sweet. May, June. Newfoundland to Ga., west to Wis. and Ky., preferring sandy or rocky soil. Em. 451. B.M. 1288 (as Vaccinium).
G. Pseudo. Vnceinium, Cham. \& Schlecht. Evergreen, usually glabrous shrub, to 3 ft ., with elliptic, entire lvs. and red fls. in secund, many-fld, racemes. Brazil. B.R. 30:62. R.H. 1845:285.

Alfred Rehder,

GAZANIA (after Theodore of Gaza, 1393-1478, translator of Aristotle and Theophrastus). Compósito. This group contains some of the finest of the suhshrubby composites from the Cape of Good Hope. They have an astonishing range of color, - pure white, yellow,orange, scarlet, and the hacks of the rays are in some cases rich purple, and even azure-blue. Their foliage is often densely woolly beneath, and the range of form is amazing. Speaking of G. uniflora, Harrey says: "Frequently all the lvs, are quite simple; in other specimens some lvs. are deeply 3-lobed, the rest simple, and in our var. pinnata, which grows intermixed with the other varieties, the upper Ivs. are quite simple, the lower either 3-lobed or pinnately 5-7-lobed, all on the same branch!" The group is also remarkable for the spots near the base of the rays of G. Paronia and some others. These markings suggest the eyes of a peacock's tail. The plants are also remarkable for their behavior at night, when they close their fls. and turn their foliage enough to make the woolly under sides of the lvs. more conspicuous. The genus has $24-30$ species, which are herbaceous, mostly perennial, rarely annual, with short stems or none: lvs. crowded at the crown of the root, or scattered along the stem : involucral scales in 2 or several rows, cup-like at the base: akenes wingless, villous: pappus in 2 series of very delicate, scarious, toothed scales, often hidden in the wool of the akene. Harvey in Flora Capensis $3: 471$. N. E. Brown in Gin. 47, p. 288.

Gazanias are now rarely met with in some of the oldestfashioned florists' establishments. Few of the more prominent firms keep themnow, and they may be said to be practically out of cultivation in America. All the kinds described below are old garden faverites abroad, particularly G. rigens, a common bedding plant, cult. for nearly a century and a half, but whose precise habitat has never been ascertained. Importers are urged to procure (from the Cape if necessary) the other kinds recommended by Brown, at least the perennial sorts, which are G. jurinecofolia, subulata, longiscapa, uniflora, var. leucolena (exceptionally woolly on both sides of the lvs.), rigens, var. purpurea, armerioides and caspitosa. These are proxumably equally desirable with the older sorts, though not necessarily of the same case of culture. G. moutìna, Spreng., a new species, may be expected in American trade in 1900. It has yellow fls., and is figured in Gt. 48 , p. 584 . Of the annual kinds Brown recommends G. Burchellia, Lichtensteini and tenuifolia. Gazanias are amongst the most conspicuous and eharacteristic of the subshrubby composites at the Cape, being brilliant objects in the sandy wastes. They are said to be of easy culture in our cool greenhouses, and are commended for summer use in the horders of those who can keep them under glass in winter. They can be rapidly prop. in midsummer by cuttings made from the side shoots near the base and placed in a close frame.

A. Color of heads yellow.

B. Rays not spotted: heads 2 in. across.

uniflora, Sims. Stems spreading 6-12 in. or more from a center: Ivs. varying as mentioned above. The woolliness also raries greatly: sometimes the whole plant is snowy white; sometimes the whiteness is confined to the under sides of the lvs. B.M. 2270. L.B.C. 8:795.The involucre is woolly, according to Harvey, but the pictures cited do not show it. This and G. rigens have short stems, with branches alternately leafy, while G. vinhata, Pavonia and pygmora have little or no stem, and the lvs. radical or tufted at the ends of the short brancbes.
BB. Rays spotted at base: heads S in. or more across.
pinnàta, Less. Lvs. commonly pinnate (some simple); lobes oblong or linear in several pairs: peduncle longer tban lvs.: involucral scales acuminate, particularly the inner ones. Harvey names 6 botanical varieties.
A1. Cotor of heads orange: rays spotted at base: heads S in. or more across.
A. Li's, mostly entire and spatulate.
c. Basal markings containing brown.
rigens, R. Br. Stems short and densely leafy or diffuse, laxly leafy, with ascending branches: lvs sometimes sparingly pinnatifid, i. e., with only 1 or 2 side
lobes. B.M. 90 shows a head of scarlet rays, with basal markings of brown, black and white.

cc. Basal markings without brown.

spléndens, Hort. Fig. 895. Hybrid, said to resemble G. uniflora in habit but dwarfer and more compact. Of the kinds in common cult. it is nearest to G. Pavonia in coloring of fls.

BB. Les, mostly pinnate.

Pavònia, R. Br. Peacock Gazania. B.R. 1:35 shows markings of brown, white, yellow and blue, which are marvelous in design and precision of execution. Involueral scales short, the inner broad, acute or subacute.

895. Gazania splendens $(\times 1 / 2)$.

AAA. Color of herds white above.

pygmæ̀a, Sond. Liss. spatulate, entire. Rays white, striped purple beneath. Gn, $47: 1011$. I.H. $43: 53$. B.M. 7455. Var. maculata, N.E. Br. Rays pale crearny white, with a blackish spot at the base, reverse striped dull purple. Var. superba, N. E. Br. Rays white, unspotted, reverse striped bluish. This species is very unreasonable about its involucral scales, which may he short or long, sometimes cup-shaped at the base, and again almost free. This upsets one of the most important features of Harvey's key.
W. M.
gEAN. Prunus Avium.

GEIGER TREE. Cordia Sebestena

GEISSORHIZA (Greek words alluding to the coats of the bulb, which cover it somewhat like overlapping tiles). Iriddceae. About 30 species of Ixia-like, halfhardy Cape bulbs, which are dormant from Aug. to Nov., and are usually flowered under glass in spring and early summer. The spathe-valves are all green and membranous at the tip, while in Ixia the outer spathe-ralve is short, brown and notched at the tip. The genus has a wide range in habit and in color of fls., but these plants are presumably inferior to Ixias for general culture. The following species is advertised in some of the Dutch bulb eatalogues that are printed in English.

Latest monograph by Baker in Flora Capensis 6:65-76 (1896-97).
Rochénsis, Ker. Lrs. glabrous, basal ones narrow, few-ribbed: stem-sheath loose and swelling: fls. $1-2 \mathrm{in}$. across ; perianth tube shorter than the spathe; segments with a nectary at the hase. B.M. 598 (net 672 , as stated in Index Kewensis), where the whole plant is a trifle over 3 in , high and the fls, purple, with a dark red eye, the latter surrounded by a pale blue circle.

GELSEMIUM (from an Italian name of the true Jessamine, which belongs to a different order). Loganiacero. A genus of only 2 species, the typical one being the Carolina Yellow Jessamine, our native woody twiver of the South, which climbs on trees and bears shining evergreen foliage and a profusion of axillary clusters of bright yellow, very fragrant, handsome fls., 1 in. or more long, in early spring. Lvs. opposite, membranous, the leaf-stalks joined by a transverse stipular line: calyx 5 -parted; corolla open funnel-shaped, the 5 lobes broad and imbricated in the bud; stamens 5 ; anthers arrow-shaped; style slender; stigmas 2 , each 2-parted, lobes linear: ovary 2 -celled: pod oval, flattened contrary to the partition, 2 -valved, many-seeded: seeds winged. The cymes of the Chinese species are terminal and trichotomous, of ours axillary, 1-3-fld. Reasoner considers ours one of the best of southern vines, and says: "Not cult. to the extent it deserves. Will grow on any land, rich or poor, wet or dry. Quick-growing, and for several weeks in spring literally covered with its lovely fragrant yellow flowers." It is somewhat grown for winter bloom in northern conservatories. Preparations of the rhizome and roots are common in drug stores. Properties nervine, antispasmodic, sedative.
sempérvirens, Ait. St. purplish: Jvs. small, lanceolate or ovate, acute or subcordate at the base, short-petioled. Nar., Apr. Margins of swamps and rivers. Va. to Fla. A double-fld. form is advertised.
W. M.

GENIPA(Brazilian name). Rubidecer. This includes a West Indian shrub allied to the Cape Jasmine and barely known to American horticulture. Genipa and Gardenia are hard to separate. Small trees: lvs. with short or no stalks, opposite, large, leathery, obovate or lanceolate, shining : cymes axillary, fewfld.: fls. white to yellowish; calyx limb bellshaped, truncated, or 5 -toothed; corolla salversbaped, limb twisted to the left, 5 -parted; stigma club-shaped or bifid: ovary 1-celled: placentas 2, almost touching each other in the axis: berries edible.
clusiifolia, Griseb. Shrub on maritime rocks of Cuba, ete.: Ivs. 4 in. or less long, black wheu dried, obovate, glabrous: corymbs short-peduncled: calyx limb 5-cut : corolla glabrous: berry oroid.

GENISTA (ancient Latin name). Legumindso. Ornamental low shrubs with small deciduous or half evergreen lvs., showy jellow fls., generally in terminal racemes or clusters, appearing profusely in spring or summer, and followed by small, insignificant pods. None of the species is quite hardy North, but G. tinctoria, Anglica, Germanica and some other European species will do well in a sheltered position or if somewhat protected during the winter, while the others are more suited for cult. in southern regions. They are well adapted for covering dry, sandy banks and rocky slopes, and for borders and rockeries. They grow in any welldrained soil, and like a sunny position. Prop. by seeds, sown in spring, also by layers and by greenwood cuttings under glass. About 80 species in Europe, Canar.. N. Afr., W. Asia. Allied to Cytisus, but without callose appendage at the base of the seeds: branches usually striped, sometimes spiny: lvs, entire, alternate, rarely opposite, simple, sometimes 3 -foliolate: fls. yellow, rarely white, style hardly curved; calyx 2 -lipped, with the upper lip deeply 2 -parted. The Genista of florists is Cytisus.

A. Color of fls, wehite.

monospérma, Lam. (Retàma monospérma, Boiss.). Shrub, to 10 ft ., with slender grayish branches, almost
leatless: 1vs. small, simple or rarely 3 -foliolate, generally linear or linear-spatulate, silky: fis. white, fragrant, in short lateral racemes; corolla silky; calyx purple: pod broadly oval, I-2 seeded. Feb.-April. Spain, N. Afr. B.M. 683.

As. Color of fls. yellow.

B. Twigs striped, not winged.

c. Pod globular, indehiscent, 1-seeded.
sphærocarpa, Lam. Similar to the former, but lower and less silky, almost leafless: fls, yellow, very small, in numerous panicled racemes; corolla glahrous. May, June. Spain, N. Afr.

cc. Pod oval to linear, dehiscent.

D. Branckes almost leafless at flowering season or les. very small and searce.
E. Fls, in lerminal heads, sessile.
umbellata, Poir. Ereet shrub, to 2 feet, with rigid branches, forming a dense bush: lvs. simple or 3 -foliolate. lanceolate or linear-lanceolate, silky, $1 / 4-1 / 2$ in. long: corolla silky, over $1 / 3 \mathrm{in}$. long: pod linear-oblong, tomentose, 2-5seeded. April, May. Spain.

EE. Fls. in racemes, pedicelled.

ephedroldes, DC. Erect shrub, to 3 ft ., with rigid branches: Ivs, sessile, simple or 3-foliolate, linear, almost glabrous: fls. in many-fld, terminal racemes, small; standard much shorter than keel: pod oral, I-seeded, silky. April, May. Sardinia, Corsica.

Etnénsis, DC. Shrub, to $6 \mathrm{ft}$. , withslender branches: 1vs. simple, small, linear, silky: fls. axillary, forming loose, terminal racemes, fragrant; keel shorter than the standard: pod glabrous at maturity, oblique-oral, 1-2-seeded. June, July. Sicily, Sardinia. B.M. 2674.
DD. Branrhes leafy, with conspicuous lus. (only G. virgata sometimes scarcely leafy).
E. Spiny.
ferox, Poir. Erect shrub, to 6 ft ., with many stout spines: Ivs, simple, rarely 3 -foliolate, oblong to oborate, almost glabrous: fls. in numerous terminal racemes along the branches; corolla glabrous, over $1 / 2 \mathrm{in}$. long, fragrant: pod linear, densely silky, many-seeded. Spring. N. Africa. B.R. 5:368.

Germánica, Linn. Erect or ascending spiny shrub, to 2 ft ., with villous branches: 1vs. ellipticoblong, ciliate: fls, small, in $1-2 \mathrm{in}$. long racemes: pod oval, villous,fewseeded. June, July. M. and S. Europe.
EE. Not spiny: les. always simple. F. Fls. in racemes: erect shruls. G. Frt. villous or silky,1-4-seeded. 896, Dyer's Green-weed-Genista tinctoria,
($\times 1$ 亿. .)
virgàta, Link. (Spártium virgà(t m, L'Hér.). Shrub, to $8 \mathrm{ft} .$, with slender branches: 1rs. lanceolate to elliptic, silky-villous, $1 / 4-\frac{1}{2}$ in. long: fls. in numerous short, 3-6i-fld. racemes; standard and keel silky: pod obloug, 1-3-seeded, villous. May, July. Maleira. B.M. 2265.
florida, Linn. Erect shrub, to 6 ft ., with glabrous striped branches: Ivs. spatulate-oblong or lanceolate, silky beneath, ${ }_{3}-2 / 3 \mathrm{in}$. long: fis. in dense, many-fld. racemes; corolla glabrous: pod oblong or narrow-oblong silky, 2-4-seeded. April-July. Spain.

GG. Frl. glabrous or nearly so, 3-10-seeded.

polygalæfolia, DC. Ereet shrub, to 6 ft ., with somewhat silky branches: 1vs. spatulate-oblong, glabrous above, sparingly silky beneath, $1 / 2-2 / 3$ in. long: fls. in many-fld. slender racemes; standard and wings glabrous, keel silky; pod oblong or narrow-oblong, almost glabrous, 3-6-seeded. May-July. Spain,
tinctoria, Linn. Drer's Greenweed. Fig. 896. Erect shrub, to 3 ft ., with striped, glabrous or slightly pubescent branches: lvs, oblong-elliptic or oblong-lanceolate, almost glabrous, ciliate, $1 / 2-1$ in. long: racemes manyfld., panicled at the ends of brancbes: corolla glabrous: pod narrow-oblong, glabrous or sligbtly pubescent, 6-10seeded. June-Aug. Europe, W. Asia: naturalized in some places E. B.B. 2:27I.

Var. plèna, Hort. With double fls, Var. virgàta, Mert. \& Koch (G. virgìta, Willd., not Link, not Lam. G. elata, Wender.). Of more vigorous growth, to 6 ft . high: pod 3-6-seeded. Southeast Eu.

FF. Fls, axillary: duarf, procumbent shrub.
pilòsa, Liun. Dwarf, procumbent or ascending: lvs. cuneate, oblong or ohovate, dark green and almost glabrous above, silky beneath: fls, axillary, $1-2$, often racemose toward the end of branches: pod linear, silky, 5-8-seeded. May, June. M. and S. Eu., W. Asia.

BB. Twigs broadly 2-winged.

sagittalis, Linn. (Cyjtisus sagittalis, Mert. \& Koch). Dwarf, procumbent, with ascending or erect, mostly simple branches: Ivs, ovate to oblong, villous: fls, in terminal, short racemes ; corolla glahrous: jod linearoblong, silky. May, June. Eu., W. Asia.
G. álba, Lam. =Cytisns albns. - G. Andreàna, Puissant $=$ Cytisus scoparius, var. Andreanus, $-G$. Anglica, Linn. Spiny sbrub, to 3 ft ., sometimes procumbent, glabrous: lvs oval to linear-oblong, bluish green : racemes few-fld. M. Europe-G. Anxantica, Ten. Allied to G. tinctoria. Dwarf, diffuse: Jvs. elliptic, obtuse, glabrons: fls. in racemes, Italy. S. B. F. G. 2:266.-G, aspalathoides, Lam, Low, spiny slirab: lvs, simple or 3 -foliolate: fls. $1-3$, axillary, forming loose, terminal racemes: pod many-seeded. N. Africa-G. Canariensis, Linn. $=$ ('ytisus C'anariensis. - G. candicans,Linn. = Cytisus candicans.G. elüta, Wender. $\overline{-}$ G, tiuctoria, var, virgata, - G. Hispanica, Linn. Allied to G. Germanica. Dwarf, silky: fls, in head-like, short racemes. Hardy in western N. Y., flowering after the mid. dle of May. A spiny plant with oblong lvs. L.B.C.18:1738. R.H. 1888:36.-G.jüncea, Lam. - Spartium junceum,-G. Maderénsis. Wbb. \Rightarrow Cytisus Maderensis.-G. ovàta, Waldst. \& Kit. Allied to G, tinctoria. To 1 ft , with ascending or erect branches: lvs. ovate to lanceolate, villous: pod villous. S. E. Eu. L. B. C. 5: 482.G. polugalefolia, Hort., not DC. $=\mathrm{G}$, tinctoria.-G. prostrata, Lam. =Cytisus decumbens $-G$, racemosa, Hort. = Cytisus race-mosus.-G. radiata, Scop. Erect shrub, with opposite rigid branches: Ivs, simple or 3 -foliolate: fls. in 3 - 6 -fld. heads: pod oval, silky. S.E. Europe. B. M. 2260,-G. Retäma, Nichols= G. monosperma,-G. scaribsa, Viv. $=$ G. triangularis.-G. scopària, Lam. = Cytisus scoparius,-G. Sibirica, Hort, not Linn, G. tinctoria.-G. triangularis, Willd. Dwarf, with sscending or promumbent triangular branches, glabrous: lvs, obovate to lanceolate, with transparent margin: fls, in short racemes. Italy. S. E. Eut. L. B. C. 12:1135 (as G. scariosa).-G. riruáta, Willd., not Lam., not Link, nor DC. $=$ G. tinctoria, var, virgata.

Alfred Rehder.
GENTIANA (after Gentius, king of Illyricum, who is said to hare discovered the tonic value of these plants). Gentiandcer. Gentians are amongst the most desirable of alpine plants, and of blue flowers in general, but they are generally considered difficult to establish. The genus is the largest in the order, and from a garden point of riew the most important. About 180 species, widely scattered in temperate and mountainous regions. Chiefly perennial herbs, rarely annual or biennial, often dwarf, diffuse or tufted, sometimes erect and slender, or even tall and stout: lys, opposite, mostly sessile: fls, blue, violet, purple, rarely dull yellow or white; floral parts typically 5 , rarely $4-7$.
The Blue Gentian, celebrated by tourists in the Alps, is probably mostly the stemless Gentian, G, acaulis. This was brought to English gardens so long ago that all record of its introduction is lost. It is by far the most popular kind in cultiration. This species is by some split into 5 distinet species, of which G. angustifolia of Villars (not Nichaux) is nearest to the Gentianella of English gardens. It has been so much modified in cultivation that it now has stems 4-6 inches high, and
the rootstock is so stoloniferous that the plant bas to be cut back every year when used for edgings in English gardens. In France it is easily grown in a compost of one-half humus or leaf-soil and one-half good vegetable mold, to which may be added a little sand. Correvon writes: "It can be multiplied by means of offsets, but it is infinitely better to raise it from seed, and, in doing this, it should not be forgotten that the seeds of this group of Gientians are very tedious, and, more especially, very capricious in germinating. I have sown seeds of G.acaulis, some of which did not germinate for 12 months, while others (which I must say were more recently gathered) germinated in a few weeks. The seedlings should be potted as soon as possible and whilo they are very young. They will begin to flower in about 3 years from the time of sowing, rarely sooner." Except G. Andrewsii, G. Saponaria and G. preberuta, and perhaps a few others, Gentians do not thrive as well in America as in England. Our seasons are too hot and dry. Whenever possible, give a damp atmosphere.
It is rash to generalize on Gentian culture, because some plants are tall, others dwarf, some found on mountains, others in lowlands, some in moist soil, others in dry lauds, while some like limestone and others cannot endure it. The annual kinds are of interest only to the expert. Alpine plauts in general are unique in requiring an extremely large water supply, combined with extremely good drainage. Another difiricult problem is to keep the plants as cool as they are on the mountains without shading them more than nature does, Gentian seeds are small, and in germination slow and uncertain. They should be sown as soon as gathered, for the thorough drying out of small seeds is, as a rule, soon fatal. Gentians are difficult to establish, and dislike division of the root, but are well worth patient years of trial, for they are very permanent when once established. Naturelike alpine gardens are one of the latest and most refined departments of gardening, and Gentians are one of the most inviting groups of plants to the skilled amateur. Consult Alpine Gardens.
There are several Fringed Gentians, but ours (G. criuita, Fig. 897) is perhaps the most heautiful of (ientians, and one of the choicest and most delicate of American wild flowers. It has been proposed as our national flower, and, while sought after less than the trailing arbutus, it is in even greater danger of extermination in certain states because it is a biennial, and because it bas never been successfully cultivated. Seeds of G. crinita have long been advertised by one American dealer, but at the Cornell Experiment Station these have never been germinated. The Fringed Gentian is, however, firmly rooted in American literature, and from the time of Bryant's ode many tributes in verse have been paid to its unique beauty. The daily unfolding of its square-ridged and twisted buds has been watched in thousands of homes. By the artists its blue is often considered the nearest approach to the color of the sky, but it must be confessed that a shade of purple often appears in the older flowers.

The Gentian enthusiast should hasten to procure a copy of "The Garden" for Aug. 24, 1895, which contains Correvon's fine cultural monograph of Gentians translated from R.H. 1893, p. 525, and 1894, p. 42. Correvon cultivates his Gentians at Genera, Switzerland. The writer of the present article has searched Correvon's monograph for facts concerning season of bloom, habitat and cultural directions, which are scattered below.

Correvon makes 4 cultural groups of Gentians:

1. Tall Gentians for generat culture: species whose roots are more or less stout, which are of relatively easy culture, and therefore sultable for borders, rockwork and landscape gardening. Typical plant, G. lutea; others are G. affinis, alba, Andreusii, asclepiadea, Bigelovii, Burseri, Cruciafa, decumbens, Fetisowi, getida, Kesselringi, macrophytla, Olivieri, Pnermonanthe, Porphyrio, Saponaria, sceptrum, septemfida and Walujewi.
II. Low-growing Gentians: species whose roots being less stout are adapted to rockwork, and for the open ground only when a special compost is provided. Includes G. acarlis and the species into which it is sometimes divided.
2. Tufted Gentians: species with sessile flowers growing little above the level of the ground, and suited
for the same positions as Group II. Typical plant, G. verma: others are G. Bavarica, imbricata, Oregana, ornate, Pyrenaica, and pumila.
IV. Rare Gentians: species which cannot be grown without some special knowledge and practical experience. Typical plant, G. purpurea; others are G.citiata, Fralichii, panctata, and presumably all the rest.
The two most popular Gentians in American cultivation seem to be G. acuutis and Andrewsii. These are, perhaps, followed by G. Cruciata, puberuia and Saponaria. The plant which King Gentius knew is probably G. Iutea, the root of which furnishes the Gentian of drug stores. From the same sources comes the liqueur or cordial called "Gentiane."
Index of names : those marked with an asterisk (*) appear in American trade catalogues; the rest are cult. abroad. The plants are perennials and mountain-loving, unless otherwise stated.
*acaulis. 51.
adscendens, 3
affinis, 29.
${ }^{*}$ alba, 7 .
algida, 10 and 11.
alpina, 55
*Andrewsii, 22 .
angulosa, 48.
*angustifolia, 52 and 31.
3

3
*asclepiadea, 19.
barbata, 16.
Bavarica, 49.
*Bigelovii, 39 .
Burseri, 2.
*ealycosa, 35.
campestris, 12 .
Carpatica, 46.
Catesbrei, 21 and 22.
ciliata, 15.
*Clusii, 54.
cordifolia, 28.
*erinita, 14 .
*Crucista, 45.
Dinarica, 56 .
*decumbens, 3. detonsa, 16. Fortuni, 27. trigida, 9, 10. Fruelicbii, 18. Gaudini, 43. gelida, 11. imbricata, 47. incarnata, 8 . intermedia, 8 . Kochiana, 3 . Kurroo, 37.
*linearis, 23.
${ }^{*}$ lutea, 1 .
*macrophylla, 44. Mooreroftiana, 13.
*Newberryi, 38 , ochroleuca, 8 . Olivieri, 30. *Oregana, 40. ornata, 32.

Pannonica, 42.
*Parryi, 36.
Pneumonanthe, 20.
Porphyrio, 31.
pseudo - Pneumo nanthe, 23 . prostrata. 25 .
*puberula, 41.
pumila, 50.
*punctata, 6.
*purpurea, 4.
Pyrenaica, 24,
*quinqueflora, 17.
rubra, 5
*Saponaria, 21.
*scabra, 26 ,
*sceptrum, 34.
*septemfida, 28 .
serrata, 16.
Thomasii, 4.
triflora, 33. verna, 48.
A. Calyx spathe-like, split in two. в. Color of fls. yellowish.
c. Form of corolla wheel-shaped... 1. Iutea cc. Form of corolla club-shaped, at least in bud. \qquad
BB, Color of fls. Whue or purple, at least abore.
c. Corolla plaited................... 3. decumbens ec. Corolla not plaited.
D. Anthers growen together. 4. purpurea

DD. Anthers free. 5. rubra

AA. Calyx with a fubular portion, and usualty 5 lobes.
B. Color of fls. yellowish, or greenish white.
c. Style distinct: capsute not stalked
6. punctata
cc. Style none or very short: capsute stalked.
D. Height 2 ft .
7. alba

DD. Height $9-1 \approx$ in.
ddd. Height 6 in. or tess.
E. Lobes of catyx longer than the calyx tube.
9. frigida

Ee. Lobes of calyx shorter thon the calyx tube.
F. Lvs. lanceotate-linear.........10. algida

FF, L's. ovate-lanceolate...........11. gelida
BB, Color of fls. btue or purple.
C. Corolla not ptaited.
D. Glands found at the base of the filaments.
E. Calyx 4-cut...................... 12, campestris EE. Calyx 5 -cut......................13. Moorcroftiana
DD. Glands not found ot the base of the filaments.
E. Fringed Gentians: calyx 4-cut.
F. C'apsule raised on a distinct stalk.
G. Apex of tobes fringed, the
sides less so14. crinita
GG. Apex of tobes not fringed, base fringed...............15. ciliata
Fr, Capsule on a very shart stalk.16. serrata

EE. Not fringed: calyx 5-cut: corolla lobes tipped with a sharp point plaited.
D. Stigmas 2 , alweys distinct.
E. Capsules finally raised on a distinct stalk.
F. Antlers permanently grou'n together.
G. Calys as long as the corolla.18. Froelichii

GG. Calyx one-hulf or one-third as
long as the corolla.
H. Seeds not at all winged. 19. asclepiadea

HH. Seeds slightly winged.

1. Fls. open20. Pneumonanthe
2. Fls, closed, blue............21. Saponaria

Hнн. Seeds strongly winged.

1. Fls. closed, purple..........22. Andrewsii
2. Fls. oper.23. linearis

FF. Anthers free, at least finally.
Q. Mimber of corolla lobes 10..24. Pyrenaica

GG. Vumber of corolla lobes 5 (rarely 4).
H. C'aly. 4-lobed..................25. prostrata

нн. Calyx 5-lobed.

1. Le's. distinctly rought abore (hispü-scabrows)26. scabra
2. Lvs. distinetly rough at the muryins (scabrous).
J. Lobes of calys shorter than the calyx tube............27. Fortuni
JJ. Lobes of calyx as long as the calys tube.
K. Corolla lobes ovate, acute, a little longer than the much cut appendages...28. septemfida
кк. Corolle lolies oblong-lanccolate, obtuse, thrice as long as the much cut appendroges.29. affinis
3. Les. not distinctly rough abore or at margins.
J. Speds not at all winged.
K. Form of corolla lobes linear-oblong30. Olivieri
кк. Form of corolla lobes orate, often broadly so.
4. Fles solitary.
M. Peduncled...............31. Porphyrio
man. Not peduncled.32. ornata
LL. F'ls. in clusters of $3-5$ or more.
M. Le's. lanceolate-linear..33. triflora MM. Le's. or'ate to oblongzenreolate.
N. II cight $2-1 \mathrm{ft}$.
.34. sceptram
Nn. Height 9-12 in.
o. C'ulys lobes ovate, about as long as the calyx tube35. calycosa
oo. Calyx lobes linear. moderately or much shorter than the calyr tube36. Parryi
JJ. Seeds winged (at the base in Кurroo; in Bigelovii wings n(trrow, thickish).
K. Height $2-8$ in.: fls. spotted.
L. Pedicel 1/2 in. long or more 37. Kurroo
LL. Pedicel very short, practically absent38. Newberryi
кк. Height $1-2 \mathrm{ft}$.
L. Fls. in a dense spike....39. Bigelovii

LL. Pls. 1 -fere or several.
M. Appendages conspicuous, sometimes nearly as long as the corolla lobes.
40. Oregana
mм. Appendages only halfas long as the corolla lobe's41. puberula

EE. Capsule sessile.
F. Authers grow'r together: style distinct: seeds winged.
G. Calyx $5 \cdot \mathrm{cut}$, the lobes longer than the culyx tube.........42. Pannonnca
gG. Calyx entire, Iruncate, indistinetly 5 -lobed..................43. Gaudini
5F. Anthers free: style usually not distinet: seeds not winged.
G. Lirs. 6-12 in. lony: calys 5-6;
 lobed. 45. Cruciata
DD. Stigmas contiguous, rather finnel-shaped, the margin cre. nate-fimbriate.
E. Anthers free: style distinet.
F. Calyx pellucid, veiuy.

FF. Calyx leafy.................... 46. Carpatica
G. Seeds winged. 47. imbricata

GG. Seeds not winged.
H. Le'g. ovate. 48. verna

нн. Lis, obovate. 49. Bavarica
HHH, Les. linear.50. pumila
EE. Anthers connate: style short..51. acaulis
F. Fls. spotted.
G. Color sky-blue................52. angustifolia

GG. Color violet-blue 53. Kochiana

FF. Fls not spotted.
G. Corolla broadly bell-shaped.
H. Size of fls. large.54. Clusii

HH. Size of fls. small.............55. alpina
GG. Corolla almost cylindrical..56. Dinarica

1. lutea, Linn. Fls in dense, umbel-like cymes; corolla 5-6-parted; lohes oblong-linear, acuminate; anthers free ; style none. July-Sept. Eu., Asia Minor, - Prop. only by seed. Sow seed in Nov, in coldframe. Seedlings appear the following March and April. In May and June prick them out under a coldframe, and in Aug, transfer joung plants to pots, where they should be kept until needed for permanent outdoor use. Be very careful never to break the roots. Sometimes cult. abroad for medicine.
2. Bürseri, Lapeyr. Lvs. 7-nerved: corolla mostly 6 -cut; lobes ovate-oblong, acute; anthers connate; style distinct. June, July. Pyrenees, - Cult. like 1.
3. decúmbens, Linn., f. (G. adscéndens, Pall.). Lvs. linear-lanceolate, margins scabrous: fls, blue; corolla narrowly obconical, toothed between the lohes; lobes 5 , ovate; anthers connate, finally free. Himal., Sib. JuneAug. B.M. 705, 723. - Cult like 1.
4. purpùrea, Linn. Lvs, ovate-oblong, 5 -nerved: fls, purple ahove; corolla tube yellowish, club-shaped; lobes mostly 6 , obovate-subrotund, one-tbird the length of the tube. Aug., Sept. Eu. L.B.C. $6: 583$ shows a rich, dull purple, with no trace of blue.-Compost of sphagnum and heath soil. Be careful not to break the roots.
5. rùbra, Clairv.(G. Thómasii, Gillab.). One of 5 or more natural hybrids between G. lutea and some species of the section Colanthe, whicb includes G. punctata, prerpurea, Pannonica, and Burseri: fls. purplish outside. Swiss Alps.
6. punctàta, Linn. Lrs, 5-nerved: calyx 5-7-cut: corolla tube bell-shaped; lobes ovate, muticous, one-third the length of the tube; anthers finally free. Middle Eu. The spots are not arranged in any definite order. This belongs to the section Colanthe, in which the seed has a wing of the same color, while the next 5 species belong to the section Pneumonantbe, in which there is no wing, or it is of a different color.-Cult. like 18.
7. alba, Muhl. St. stout: lvs. acuminate, with a claspIng base: fls. in a terminal head, with single or clustered ones in the upper axils; dull white, commonly tinged yellowish or greenish ; corolla resembling G. Saponaria, but more bell-shaped and open; lobes ovate, short, little if at all spreading. Low grounds and mountain meadows, N. Amer. B.M. 1551, erroneously, as G. ochroleuca. - Cult. like 20.
8. ochroleùca, Frol. St. ascending: Ivs ovate-lanceolate and obovate: fls. in crowded terminal, nearly sessile, leafy cymes; corolla yellowish white, club-shaped,
connivent at the apex. N. Amer. Not B.M. 1531 or 1551. Var. intermedia, Griseb. (G. intermèdia, Sims, not L. B. C. $3: 218$), may be a hylhrid between this and G. Andrewsii. It resembles G. ochroleuca in having calyx lohes of unequal lengths, but as long as or longer than the calyx unbe, and free anthers: it resembles $G . A n d r e x s i i$ in the tinge of purplish blue. B, M. 2303. Var. incarnàta, Griseh. (G. inearndta, Sims). B. M. 1856 from Carolina is not cult. These forms are not considered worthy of varietal rank in Gray's Syn. Fl.
9. frigida, Hæuk. Lrs. spatulate-linear, obtuse: fls. 1 or 2 at the top, sometimes a few in the upper axils; calyx not laterally cut, and half as long as the corolla or more; calys teeth lanceolate, a little longer than the calyx tuhe; corolla club-shaped, plaits not cut. Carpathian Mts.; also N. Amer. - This is the true type of G. frigida, which is not in cultivation, but is inserted to make clear the differences between G. algida of Pallas and of Steren.
10. algida, Pall., not Stev. (G. frigida, var. álgida, Griseb.). Lvs. lanceolate-linear: fls. 2-5 at the top and distinctly pedicelled; calyx laterally cut and one-third the length of the corolla; calyx teeth linear-lanceolate, hardly as long as the calyx tube and sometimes only half as long; corolla between club- and bell-shaped; plaits cut with a few crenate teeth. Altai Mts., E. Siberia, N. Am. Gn. 17, p. 343, same as Gn. 27, p. 89; 48, p. 146, and N. 2:60, Fig. 93. -This grows $4-5$ in. high, has numerous stems and fls, nearly $21 / 2 \mathrm{in}$. long, whitish, with blue spots in longitudinal lines. The writer has not seen Gt. 1006.
11. gelida, M. Bieb. (G. átgida, Stev., not Pall.). Lvs. ovate-lanceolate, 3 -herved: fls. few and terminal, or many in the upper axils, peduncled; calyx teeth linear-obloug, acute, nearly as long as the calyx tuhe or shorter than it; corolla rather bell-shaped, yellowish white, its lobes broadly ovate, twice as long as the calyx and twice as long as the lacerated plaits. June, July. Caucasus. Not P.M. 7:5, which is G. septemfida, var. cordifotia.-"Light, deep, cool soil and full sunlight." Correvor.
12. campéstris, Linn. Annual: fls. dark purplish blue; calyx 4 -cut; corolla nearly bowl-shaped, crowned ; anthers free; style none.
13. Moorcroftiàna, Wall. Annual, 4-10 in. high: fls. pale blue; calyx 5 -cut: corolla funnel-shaped. Himal. B.M. 6727 , where fls. are shown as pale purple.
14. crinita, Froel. Fig. 897. Fringed Gentian. Biennial : erect, branched, $1-2 \mathrm{ft}$. high: lvs, lanceolate or ovate-lanceolate, acutish, from a rounded or subcordate partly clasping base: corolla lobes wedge-obovate : seeds roughened by scales or needle-like projections. Moist woods and meadows. N. Amer. B.M. 2031. D. 275. G.W.F. I9. Mn. 4:161. B.B. 2:613. - The ribs of the calyx (made by the decurrent lobes) are one of the minor beauties of this plant, and are probably more pronounced than in the other Fringed Gentians here described.
15. ciliàta, Linn. Perennial: stem flexuose, scarcely branched: lvs. linear, obtuse: corolla lohes obovate-oblong: seeds smooth. Dry limestone soils. Eu. Not B.M. 639, which is G.serrata. - Hardly 3 per cent of Correvon's seedlings have flowered. He recommends a heavy, compact soil which is almost clayey, and full sunlight.
16. serràta, Gunn. (G. barbata, Frol. G. detónsa, Griseh. G. detónsa, var. barbàta, Griseb.). Annual: stem erect, hranching, 3-18 in. high: lvs. linear or lance linear: corolla lobes oblong or spatulate-obovate, fringed around the apex and sides or sometimes either part nearly hare. Wet lands, Ural and Altai Mits., Caucasus, N. Amer. B.B. $2: 614$. B.M. 639 erroneously as G. ciliata. -No plants appear to be advertised as G. serrata. G. barbata is a trade name abroad.
17. quinquefolia, Linn. (G. quinqueflòra, Hill, Lamarck and others). Annual: beight 1-2 ft., the larger plants branched: lvs. 3-7-nerved: inflorescence thyr-soid-paniculate: clusters 3 -5-fld.: fls. bright blue; calyx one-fifth or one-fourth as long as the narrowly funnel-shaped corolla. N. Amer. Prohably the form in cult. is var. occidentàlis, Gray. Height 2-3 ft.,
paniculately much branched: inflorescence more open: calyx half the length of the broader corolla. B. B. 2:615. B.M. 3496. - Very pretty.
18. Froelichil, Jan. Stems short, almost tufted: fis. blue, solitary, peduncled, nearly as long as the stem: corolla not spotted. Very rare in Alps, limestone rocks. -Easily grown on rockwork in compost of equal parts of sphagnum, heath soil aud regetable mold. Half-exposure to sunlight.
19. asclepiadèa, Linn. Stem strict: calyx teeth very short: fls, in spike-like racemes, dark blue; corolla cluh-shaped; calyx one-third as long as the corolla: seeds not winged. July-Sep. S. Eu., Caucasus. B.M. 1078. Gn. 48, p. 143, and 54, p, 39.-The white-fld. form is excellent. Shade or half-shade, and moist, deep soil rich in humus.
20. Pneumonánthe, Linn. Stem erect: fls. dark blue in a cyme-like raceme (the top fls, opening first); corolla cluh-shaped; lobes ovate, acute, mucronate, much longer than the appendages. Aug.-Oct. Mountain marshes, Eu., N. Asia. Var. guttàta, Sims, is dotted white. B.M. 1101.-"Requires a cool, deep, spongy soil, rich in humus. Dislikes lime, and prefers sandy soil. Does remarkahly well when planted on margins of ponds or hrooks. Prop, by seed or division." Correvon.
21. Saponària, Linn. (G. Catesbafi, Walt., not And.). Barrel or Soapwort Gentian. Stem ascending: fls. light blue, club-shaped; calyx lobes linear or ohlong, mostly as long as the calyx tube ; corolla lobes short,

22. Fringed Gentian-Gentiana crinita ($\times 1 / 2$).
broad, roundish, erect, little, and often not at all longer than the 2 -cleft and many-toothed intervening appendages. N. Amer. B.M. 1039. - (Hooker is probably wrong in referring this picture to G. Andrewsii, though the calys lohes in the plate are not narrow enough.) Cult. like 20.
23. Andrewsii, Griseb. (G. Càtes לori, And., not Walt.) Closed, Blind or Bottle Gentian. Fig. 898. Stem ascending: Hs. purplish hlue; calyx lobes lanceolate to
ovate, usually spreading or recurved, shorter than the calyx tube; corolla lobes entirely obliterated, the teeth at the top being supposed to be the remains of the appendages often found between the corolla lokes in otber species. July, Aug. Moist places, N. Amer. B. N1. 6421. D. 273. B.B. 2:616. Gn. 27:477. L.B.C. 9:815 erroneously as G. Sapo-naria.-A white-fld. form is cult. For culture, see 20.
24. linearis, Frel. (G.psendoPneumonánthe, Schult.). Stem strict, 1-2 ft. high: fls. blue, 1-5 in the terminal cluster; corolla narrowly funnel-sbaped; lobes erect, roundish ovate, obtuse, a little longer than the triangular, acnte, entire or 1-2-toothed appendages. Bogs, N. Amer. B.B. 2:617.
25. Pyrenàica, Linn. Stem tufted, about as long as the fl.: lvs. with a cartilaginous, scabrous margin: fls, solitary, dark blue; corolla funnel- or nearly bowl-shaped. May, June. Eu., Asia Minor. B.M. 5742. - Very distinct and dainty. Cultivated like 48.
26. prostràta, Hænke. Annual, dwarf : 1vs. wbite-margined: fls, blue, solitary, the parts usually in 4 's ; corolla salver form, in fruit inclosing the capsule. N. Amer., Asia.
27. scà bra, Bunge. Stem erect, leafy: fls. dark blue, clustered ; corolla bell-shaped. E. Asia. G. Fortuni is considered a variety by recent autborities. Var. Buérgeri is advertised by Yokohama Nursery Co.
28. Fortuni, Hook. Lrs. rather distant, 3-nerved : terminal tls. rather clustered; corolla lobes the, spotted white: outside of tube green; plaits blue, terminated by 3 -toothed appendages, much shorter than the corolla lobes. China. B.N. 4776. F.S. 9:947. I.H. 1:36. - Now thought to be a variety of G. scabra.
29. septémfida, Pall. Lrs. lanceolate ("ovate," Grisebach), 3-5-nerved: fls. dark blue, in bead-like cymes; calyx lobes linear; corolla club-shaped. July-Oct. N. Asia, Orient. B.M. 1229 and 1410 (botb purple outside and dotted brown within; the lobes of the latter spotted wbite). L.B.C. 1:89. Gn. 54, p.37. P.11. 8:51. Not F.S. 8:765.

Var. cordifolia, Boiss. (G. cordifolia, C. Koch), has heart-shaped 1vs.: corolla tube greenish white outside, unspotted within; lobes narrower, unspotted. B.M. 6497. P.M. 7:5, erroneously as G. gelida.-The name septemfida is misleading, as 7-lobed corollas are very rare. Cult. like 1.
29. affinis, Griseh. Lower Ivs. obovate-oblong; upper lvs. lanceolate, acutish : fls. dark blue, in racemiform cymes; calyx lobes oblong-linear ; corolla narrowly ohconical, open. Northwestern Amer. Gn. 46, p. 77, and 48, p. 139. B.B. 2:615 (where corolla lobes are pictured erect, but said to be spreading).-Cult. like 20.
30. Olivièri, Griseb. Fls. dark blue, in umbel-like cymes ; corolla narrowly obconical ; plaits triangular, nearly entire. June-Aug. Mountain pastures, Asia. By recent authority referred to G. decumbens.-Cult. like 1.
31. Porphýrio, J. F. Gmel. (G. angustifòlia, Michx., not Vill.). Lrs, narrowly linear: fls, blue, somewhat brown-dotted (also a snow-white variety with a greenish bue outside); corolla funnel-shaped ; anthers connivent but never connected. July, Aug. Moist pine barrens, N. Amer. B.B. 2:618.-Cult. like 20.
32. ornàta, Wall. Lrs. broadly linear: fls. blue, streaked; calyx lobes spreading; corolla rentricose ; lobes very short, spreading. Himal. B.M. 6514. G.C. 11. $20: 396$.
33. triflora, Pall. Stem erect : fls, dark blue ; corolla club-shaped. E. Siberia.
34. scéptrum, Griseb. Lrs. oblong-lanceolate: fls. dark blue; corolla club-shaped: seeds winged on one side according to Grisebacb, but Gray says not winged. Aug., Sept. N. W. Amer.-Cult. like 1, except that it requires half shade and a ratber peaty soil.
35. calycòsa, Griseb. Lvs. ovate: fls. dark blue, commonly solitary, according to Gray; corolla oblong fun-nel-sbaped: appendages triangular-awl-shaped, laciniate or 2 -cleft at the tip. N. W. Amer.
36. Párryi, Engelm. Lvs, somewhat glaucous, ovate to oblong-lanceolate: fls. purple-blue, appendages narrow, deeply 2 -cleft. N. W. Amer.
37. Kurroò, Royle. St. tufted, as high as $7 \mathrm{in} .:$ lower lvs, lanceolate, upper linear: fls, hlue, spotted white inside, 1-3 on a stem; corolla bell-shaped. Himal. Gn. 17:224. B.M. 6470. Var. brévidens has shorter calyx lobes. J.H. III, $30: 3$.
38. Newberryi, Gray. St. 2-4 in. high: lower lvs. obovate or spatulate: fls. pale blue, white inside, greenish dotted; corolla broadly funnel-shaped. N. W. Amer.
39. Bígelovii, Gray. St. 6-16 in. bigh, equally leafy to the summit: fls. purple; corolla more narrowly funnelform and smaller than in G., uffinis. July, Aug. N. Mtx. B.M. 6874. - "Soon forms large clumps, often with $40-50$ stems from a single plant, each bearing 10-20 bright blue fls." D. M. Andreres.
40. Oregàna, Engelm. Height I-2 ft.: Ivs, ovate: fls. blue: corolla broadly funnel-shaped, over 1 in . long, lobes short, roundish. July, Aug. N. W. Amer.
41. pubérula, Michx. About 1 ft , high : 1 vs . oblonglanceolate to lanceolate-linear: fls. blue; corolla open-funnel-sbaped, $1 \frac{1}{2}-2 \mathrm{in}$. long; lobes orate. N. W. Aruer. B.B. 2:615.
42. Pannónica, Scop. Lower Ivs, broadly elliptical, 5nerved, margin scabrous; upper ones ovate-lanceolate, 3 -nerved : fls. purple above; calyx 5-i-cut ; corolla leathery; anthers connate at first, finally free. Eu.
43. Gaudini, Thom, Natural bybrid witb the habit of G. purpurea, but the membranous corolla of G. punctata: fls. rosy violet. Eu.
44. macrophylla, Pall. Lrs. lanceolate, distant, very spreading: internodes unequal: fls. dark blue. July, Aug. B.M. 1414, not L.B.C. 3:218.- Cult. like 1 .
45. Cruciàta, Linn. (Crucidta verlicilldta, Gilib.). Lvs. ovate-lanceolate, crowded, erect-spreading; internodes equal: fls dark blue. June-Aug. Eu., N. Asia. - Cult. like I. Limestone and full sunlight.
46. Carpática, Kit. Lvs. ohovate: fls, dark blue (as are the next 4 species); corolla funnel-shaped. ('arpathian Mts. - Little known.
47. imbricàta, Frel. Lvs, acute, margins scabrous, (the next 3 species with smooth margins): corolla lobes subrotund. June, July, Limestone rocks, Alps. - In this and the next 3 species, the corolla lobes are usually crenate, half the length of the tube, and 6 times the length of the plaits. "Eastern and granitic Alps." Correron. Cult. like 49.
48. vérna, Linn. Tufted: stem angled: lvs, ovate or ovate-lanceolate : fls. solitary; caly x membranaceous; corolla nearly bowl-shaped; lobes ovate, obtuse. Apr.June. Eu., Caucasus. B.M. 491. L.B.C. 1:62. R.H. 1859, p. 250. Gn. 48, p. 139. G.C. II. 24:373. Var. alàta, Griseb. (G. angulosa, M. Bieb.), is taller and has the nerves of the ventricose calyx produced into wiugs.Rockwork, in a compost of beath-soil, finely crusbed granite, and vegetable mold, with full sunlight.
49. Bavárica, Linn, Calyx lobes lanceolate: corolla funnel- or nearly bowl-shaped; lobes obovate, obtuse: orary sessile: seeds not winged. May-Aug. Cent. Eu. F.S. 7:651. L.B.C. 13:1256. J.H. 11I. 35:585. (in. $15: 174$ (poor). - The pictures cited all show a salvershaped corolla. "Requires a soil that is peaty, or at the very least porous and cool, well drained, and capable of retaining an abundant supply of moisture, although it may be fully exposed to the sun. In the alpine garden here we grow them in pure sphagnum moss on a wall facing due south, but the plants which we raise for sale are grown in pots in a compost of sphagnum, heath-soil and sand. Finest of Group 1II." Correvon.
50. pùmila, Jacq. Steru 3-4-angled: calyx lobes linear: corolla lobes ovate, acute. June, July. Tyrolese and Carinthian Alps.
51. acaulis, Linn. Gentianella. Stemless Gentian. By the botanists of continental Europe this is often split up into the 4 or 5 following species. The plants that Linneous had in mind were probably mostly Clusii and Kochiana. For pictures of G. acaulis in its widest sense, see B.M. 52, G.C. III. 15:236. Gn. 48, p, 146 , and 54 , p. 39, and F.S. $23: 2421$, where a more detailed account of the 4 following species is given.
52. angustifòlia, Vill., not Michx. Stoloniferous: lvs. linear-oblong, narrowing towards the base, glistening above: fls. spotted with sprightly green; calyx lobes more or less spreading, oval, abruptly contracted at the base. May, June. Limestone rocks, Alps. - Considered by Correvon the handsomest species of the whole genus.
53. Kochiàna, Perr. \& Song. Las. large, flat, thin, spreading, oval or broudly oblong, light green: calyx lobes oblong, limp, more or less contracted at the base and separated by truncate sinuses; corolla with 5 blackish green spots on the throat. May, June. Common in pastures on granitie Alps.-Dislikes lime.
54. Clùsii, Perr. and Song. Lys. lanceolate-acute, leathery : fls. dark blue; calyx lobes pressed close against corolla, not contracted at base, and separated by acute sinuses. May, June. Limestone rocks, Alps.
55. alpina, Vill. Stem almost wanting: lvs. small, glisteuing, curving inwards and imbricated, forming rosettes which incurve at about the middle: fls, dark blue. May, June. Granitic Alps. - This and G. Kochiana "require a compost of one-third crusbed granite, one-third heath soil, and one-third vegetable loam, and should be planted on rockwork balf exposed to the sun."
56. Dinárica, Beck. Lvs, broad, thick, erect: fis. dark blue. Alps of S. and E. Austria.
The following are trade names abroad of Gentians not sufficiently described for insertion above: G. Arvernénsis, Hort Perlaps a var, of Pnenmonanthe. Fls. Napoleon blue. See G C. II. 20:40.-G. Charpentieri. Thom. Naturally hybrid, intermediate hetween lutea and punctata: corolla spotted red: calyx 5 -cut. Grisebach does not sny whether the corolla is not plaited, anthers always free, and style none. Alps, above Engadine.G. Fetisowi, Regel. St, erect, tall: fls. deep blue. China, Gt. 1069.-G. Haengsti, Hausm. $=$ G. Kummeriana, - G. Késselringi, Regel. Height about 8 in.: fls, whitish, dotted violet outside Turkestan. Gt. 1087.-G. Kummeriana, Sendt. Hybrid between lutea and Pannonica. Fls. yellowish.-G. Wëllichiana. Height $8-12$ in.: fls. clear blue.-G. Walujèvi, Regel \& Schmalh. Fls. whitish, dotted pale Alue. Turkestan. Gt. 1140. W. M.

GENUS, pl. GENERA (i. e., kind), is a term used in natural history to designate a group of species. As with species, so the Genus is an indefinite conception, varying with the author. The chief value of the couception is its use in aiding us conveniently to arrange and name plants and animals. The name of the Genus is the first of the two words in the name of the plant: thus, in Brassica oleracea, Brassica designates the Genus, and oleracea the particular Brassica of which we are speaking. It is impossible to trace the origin of the genusconception in natural history, but it is usually ascribed to Konrad Gesner (Zurich, 1516-1565).
L. H. B.

GEONOMA (Wittstein gives this ponderous explanation: "(ireek, geonomos, skilled in agriculture: for this tree puts forth buds at the apex of its stem which become new trees"). Palmàcere, tribe Arècea. Slender spineless palms with ringed, reed-like stems: ivs. terminal or alternate; blade entire, 2 -lobed at the apex, or more or less pinnatisect: segments acuminate, 1 -nerved, with the margins broadly recurved at the base; rachis acute ahove, convex on the back; petiole nearly cylindrical, concave at the base above; sheath tubular; spadices ascending or recurved, simple, forked or paniculately branched, slender or stout, often colored; spathes 2, often deciduous before Howering, or obsolete, the lower one partial, truncate, concare, the upper compressed or fusiform: fls borne in the furrows of the spadix, at length partially exserted, when in 3 's the upper one pistillate: cells of the anthers twisted: fr. small, globose, black. Species about 100. Tropical America. For G. Ghiesbreghtiana, see Calyptrogyne.

Jared G. Smith.

Several of the members of this extensive genus of small-growing palms are useful for the greenhouse, though most attractive while in a small state, from the fact that Geonomas soon begin to form a stem, and when aged become rather scantily furnished specimens. These palms are by no means difficult to grow, and do not require a very high temperature, their natural habitat being the mountains of Central and South America, some of the species being found at an altitude of over 4,000 feet ahove sea level. Geonomas form part of the undergrowth on their native mountains, and are said never to appear in the open country unsheltered by trees of larger growth; therefore, shade is necessary for them when cult. under glass.
The old practice of growing Geonomas in a very light, peaty soil does not seem to be the only method, for excellent results bave been secured by growing them in a good loam, well manured and well drained, giving an abundance of water and a night temperature of 60°. Red spiders and thrips are the most troublesome insects to which these plants are subject, and both of these pests multiply much more rapidly if the plants are kept too warm and dry.
The most nseful species from a commercial point of view is G. Riedeliana (G.gracilis), which reminds one of Cocos Weddelliana, but has longer leaflets. Those marked thus (*) are cult. under glass in the North; those marked thus (\dagger) are cult. in S. Calif. only; the others are cult. indoors North and also in S. Calif., except G. Spixiana, which is cult. only in S. Fla. The picture of G. Spixiana below is adapted from Martius work on palms.

899. Geonoma Spixiana.

A tall palm, as it grows in the tropies.

A. Les. simple, 2-lobed at the opex.

1. Cuneate-oblanceolate, rusty, tomentose.

Spixiana, Mart. Fig. 899. Stem slender, solitary, 6-9 ft . high: blades 3 ft . long, bifureate one-fourth of their length, each lobe lanceolate-acuminate, divergent. Western Brazil.

BB. Cuneate-ovate, plicate.

Seemanni, Hort. Low, $1-3 \mathrm{ft}$. high : lvs, all alike, the first 2 in . long, the later ones 10 in . long, short-petioled, triangular, with broad, scarious margins • blade featherveined Central America.

GEORGIA

AA. Les. pinnate.

B. Basal leaf-segments narmor: the upper ones the broadest.
*acaulis, Mart. Acaulescent : lvs, long-petioled, 3-4 ft. high; blade unequally pinnatisect, 22 -25-nerved on each side; basal segments 4 lines wide, spreading, the middle and upper erect-spreading at an acute angle, $3 / 4-1$ in. wide, the apical very wide. Central Brazil.

BB. Broad and namore segments irreqularly intermingled.

C. Blade of leaf 6 ft . long : petiole 1 ft .7 ng .
+Pobliàna, Mart. Stem 12-15 ft. high, slender, densely ringed, columnar or reedy: segments very unequal, linear-lanceolate, falcate-acuminate, few-nerved and many-nerved intermixed, $16-20 \mathrm{in}$. long. Trop. Brazil.
cc. Blade $2-21 / 2 \mathrm{ft}$.: petiole 4 in . long.
telegans, Mart., var. robusta, Dr. Stem 6 ft . high, 3-4 lines in diam.: segmeuts rarely 3, usually 5-7, 1 nerved, $10-14 \mathrm{in}$. long, some 4 lines wide, intermixed with broader, many-nerved ones, all loug, falcate-acuminate. Central Brazil.

BBB. Leaf segments all alike (except the connivent apical ones).
c. Alternate, remote, linear, scurfy.
*Riedeliàna, H. Wendl. (G. gricilis, Lind. \& André). Habit of Cocos Weddelliana, the whole plaut sparsely covered with caducous, brown, shining scales : petiole slender, $11 / 2 \mathrm{ft}$. or more long, terete below, flattened above : rachis triangular, bisulcate above: Ivs. spreading, drooping at the apex ; segments $10-12 \mathrm{in}$. long, about 9 lines wide, linear-acute, elegantly recurved, the 2 terminal oues connivent. Brazil. I.H. 21:169.
cc. Equidistant: petiole half as long as the blade.

Schottiàna, Mart. Stem 9-15 ft. high, J-1 ${ }^{1 / 4} \mathrm{in}$. thick: lvs. recurved, spreading; petiole half or more than half as long as the blade; segments about 35 on each side, 10-12 in. long, two-fifths in. wide, equidistant, linear or linear-lanceolate, very long acuminate. E. Brazil.
The following are imperfectly deseribed, bnt are in the trade : ${ }^{*} G$. imperiàlis, Linden.-* G. princeps, Linden. - ${ }^{*} G$. Puncer. tiana. Hort. Belongs under A. One of the smallestlvs. measures 28 in . long by 10 in . at the broadest. Has not flowered yet, and the genus is therefore uncertain. R.H. 1898, p. 262. G.C. III. 23:258. F.E. 10:886.-G. speciòsa, Barb.-Rodr.

Jared G. Silith, W. H. Taplin and W. M.
GE0RGIA, H0RTICULTURE IN. Fig. 900, The climatology of Georgia is unique. Latitude and altitude combine to exaggerate the four and one-half degrees covered by the state from south to north into at least ten, thereby embracing an extraordinary range of climate. In something less than 300 miles a transition is effected from a subtropical to an almost boreal vegetation.
Proceeding northwestwardly from the coast, the country rises gradually until it culminates in the Blue Ridge, the highest peaks of which (in Towns county, on the Tennessee line) stand a little more than 5,000 feet high. latermediately may be found as varied a climate, and consequently as extended a range of horticultural production, as can be met with in a journey of a thousand miles due worth and south, in a region of normal elevation, such as the Mississippi valley.

Neasurably the geology of the state corresponds with its elevation and consequent climatology, and is not complex except in the extreme northwestern portion. Two formations - the tertiary and metamorphic-cover ninetenths of its area. The Sea Islands, and coast for a short distance inland, are alluvial or quarternary, and bere the vegetation is of a subtropical character-palmettoes and live-oaks on the islands and pines and hammock growtb inland, together with the citrus, fig and olive families, where cultivated.
Slightly beyond the tide-water limit begins the vast sweep of the pine forests, known locally as the "Wiregrass Region," which extends inland some 160 miles, on an average, covering nearly the whole of the tertiary formation. A range of low sand hills, about 300 feet bigh, extending diagonally across the state, separates the ter-
tiary and metamorphic regions. At its hase the land has attained an average altitude of less than 200 feet.

From the summit of this ridge or terrace, formerly the primordial sea-beach, stretches the metamorphic region -the red clay or cotton belt-rising gradually toward the northwest until the Piedmont escarpment is reached - another low hill range on the southern side of and parallel to the Chattahoochee river valley. The height of this escarpment varies from 1,000 to 1,500 feet. Beyond this are the Appalachian foothills and then the

0 IIITR Apple and cherry belt. W Pear and melon belt

900. Georgia, to show horticultural regions.

mountains, in very irregular formation, their spurs radiating in all directions.

In extreme northwest Georgia the surface dips in a general way toward the Tennessee river valley (elevation 700 feet), interspersed, however, with a chaos of mountains and coves, with a complex tangle of geological formations, from lower sllurian to encene.

The prevailing natural growth of the tertiary is rellow pine - that of the metamorphic region hard woods, embracing nearly all of the North American species, oak and hickory predominating.

All this has been a necessary preface to a division of the state into separate horticultural areas, which correspond in the main with its geological features, and may be classified as follows:

Horticultural Areas : Corresponding Geological Divisions.

1. Fig ani Citres Bylt.Quarternary Formation 2. Pear and Melon Belt......................Tertiary Formation 3. Peach and Grape Belt Metamorpbic Formation
2. Apple and Cherry Belt. \qquad Metamorpbic Formation
3. The Fig and Citrus Belt. - In this zone the citrus family does not thrive indigenously, nor is it planted for commercial purposes. Yet oranges and lemons live and bear unprotected, though latterly subject to injury from frost. It is the home of the Ogeechee lime, and formerly both indigo and the olive flourisbed on the Sea Jslands, but their culture has been for many years abandoned. Figs grow to perfection. About the ports-especially Savannah-beavy trucking is followed for the northern market-chiefly potatoes, strawberries, cabbages, celery, tomators, onions and peas.
4. The Pear and Melon Belt. - The sandy soil of the tertiary is especially adapted to the melou and the oriental pear - the former over its entire area, the latter mainly in the southern part. These form two of the leading horticultural industries in this section. The Georgia melon is extensively shipped and widely known throughout the continent. Zymotic blight has of late greatly checked the pear industry, and discouraged the growers. In isolated locations, wherever there exist well defined elevations above the surrounding country-islands, possibly, of the tertiary sea, prematurely uplifted-they have heen converted into rast peach orchards of hundreds of thousands of trees-in the Marshallville and Fort Valley district (the birthplace of the Elberta) running into millions.
Japan plums also thrive in the "Wiregrass," and are now attaining considerable commercial importauce. Figs yield abundant crops throughout this zone. Most of the Labrusca type of grapes and all of the Estivalis type sueceed admirably in the elerated portions and are beginning to be extensively cultivated; hut the Scuppernong (V itis rotundifolia) is the typical grape of the section. The strawberry does only moderately wellfrequently summer-scalds. All blackberries thrive, but raspberries are not generally successful.
But the "Wiregrass" is the home of the sweet potato. Here the pumpkim yam and Georgia yam attain their highest perfection.
5. The Peach and Grape Belt. - It is an anomaly that while the metamorphic region, with its red clay soil-especially on the Piedmont escarpment-is the home of both the peach and the grape, most of the great commercial orchards of the state are located in the "outcropping peach districts" of the tertiary. Cheaper lands and earlier maturity are the cause. Yet naturally tbe metamorphic region is peculiarly adapted to peach and grape culture, and it was here that both attained their first develepment in this state. More species of grapes and a greater number of varieties of each species will attain perfection in middle and Piedmont Georgia than in any one region of America east of the Rockies-a sweeping assertion, but facts sustain it. Labruscas, Vulpinas, Estivales, Rotuudifolias-all seem equally to thrive ; but prices are poor, and grapes are everywhere giving way to peaches, with apples on bottom lands, although this is not an apple region.
Japan plums usually do not do so well as in the "Wiregrass." Native plums are not profitable-even the Wild Goose is unsatisfactory. Figs are uncertain, and in the northern portion of the zone require winter protection. Strawberries and blackberries are excellent, and raspberries quite successful in the Piedment area and northward. Gooseberries and some currants do well in certain portions of the mountains, but not south of the escarpment.
6. The Apple and Cherry Belt.-Apples do not do equally well throughout the entire division styled the "Tennessee Dip." Yet in many localities, especially in the mountain coves, they thrive as well as in western N. Carolina or Vermout. This is notably the case in Pickens, Gilmer, Murray and Fannin counties, which are famous for their apples. Cherries, especially Morellos, form a safe crop here, and, in general, most of the horticultural productions of a much bigher latitude find a place.
Insect and fungous affections have to be combated in all parts of Georgia, just as elsewhere (except in certain portions of the mountaius, where neither are as yet introduced). Growers are generally learning, however, the value of the spray pump.
The San Jowe and other scales have invaded the state, especially in the southeru portion, where some twentyodd counties report infestation. But they are being intelligently combated, for the most part, and it is hoped that they will be steadily held in check.
The main trouble with the Georgia fruit-grower (aside from pear blight and the premature blooming of peaches) is the curculio. Thousands of dollars are annually spent in "jarring" for this pest, but it still remains a serious menace. Hugh N. Starnes,
GEORGINA. A synonym of Dahlia, which still lives in the form of "Georginen," the popular name of Dahlias

GERANIUM, FEATHER. See Chenopodium Botrys.
GERANIUM (Greek, crane; from the resemblance of the fruit to a crane's bill). G'eraniacea. Crane's-bill. Generally herbaceous plants, usually caulescent : Ivs. simple, alternate or opposite and much lobed, sometimes almost radical: fis. regular; sepals 5 , imbricated; petal. 5 ; stamens 10 , in two rows; anthers 10 : seed when ripened separated from the ovary and with its awn bent sinu ously. The genus Erodium, its nearest ally, has but the inner row of stamens furnished with anthers and the awn of the seed is beut spirally. The Geraniums of common speech are classed in the genus Pelargoninm, having at the side of the pedicel a distinct narrow tube and zygomorphic flowers. The genus Geranium has over 150 species, found in the temperate zones particnlarly of the northern hemispheres, very few in the tropies. Valued for the border or rockery, and the roots of some, as G. maculatum, find use in medicine ou account of their astringency. Thrive well in ordinary garden soil, and are propagated by seeds and division of
roots roots.
The following is an alphabetical list of species and varieties described below:
album, 17, $18,19$. argenteum, 1 . Armenum, 4.
Backhousianum,4. Balkanum, 21. cinereum, 2. collinum, 11. collinum, 11
Endressi, 5. erianthum, 13.
flore pleno, 9. Ibericum, 8. incisum, 13. Lancastriense, 6. Londesia, 11. macrorrbizum, 7 . maculatum, 14 . pheam, 10 . platypetalum, 8 .
plenum, 14.
pratense, 9.
Richardsoni, 20.
Robertianuw, 3.
sanguineum, 6.
Sibiricum, 21.
sylvatieum, 21
tuberosum, 21.
Wallichianum, 16.

A. Fls. red or pink.

B. Stature very ducarf.

1. argenteum, Linn. Silver-leaved Crane's-bill. About 3 in . high : lvs, almost radical, on long petioles, j-7-parted, with 3 -fid linear lobes, both surfaces hoary: peduncles almost radical, 1- or 2-fld.: fls, large, pink, with darker reins; petals emarginate. Middle of Juneto Aug. Carnic Alps. B.M. 504. L.B.C. 10:948.- One of the best for the rockery. Often acts as a biennial in N. E.
2. cinèreum, Cav. Giray Crane's-bill. Like G. ar genterm, but 2 -fld. and paler in color: lvs. not as hoary in appearance. June, July. Pyrenees.
3. Robertiànum, Linn. Herb Robert. Red Robin. About 9 in. high: lvs. thin, ovate-orbicular, 3-5-parted, with 3 -fid pinnatifid lobes: peduncles slender, 2 -fld.: fls, small, bright crimson. June to Oct. Amer., Eu., Asia and N. Afr. B.B. 2:341. - For the rockery, and delights in a moist soil and some shade. Odor disagreeable.

BB. Stature 1 ft . or more.

4. Armènum, Boiss. (G. Backhousiànum, Regel 7). About $21 / 2 \mathrm{ft}$. high : Ivs, radical, upright, orbicular, with 5 deep lobes: fls. about $1 \frac{1}{2}$ in. across, inclining to a dark crimson. All season at irregular intervals. Armenia. R.H. 1891, p. 350. - A very vigorous and floriferous species. Sometimes growing 4 ft . high.
5. Endressi, J. Gay. About 18 in, high: Irs. opposite, palmate, 5 -lobed, upper ones 3 -lobed, serrated: peduncles axillary, 2 -fld.: petals entire, fringed at base, light rose, darker reined. Summer. Pyrenees.-Among the best for the border, and useful for cutting.
6. sanguineum, Linn. About $11 / 2 \mathrm{ft}$. high, with stem occasionally forked, erect : 1vs, all petiolate, mostly 7 parted, with $3-5$-lobed linear lobules: peduncles long, mostly 1 -fld.: fls, very large, blood-red. June to Aug. Eu.-One of the best species in cult.

Var. Lancastriense, Hort. A dwarfer form, smaller and with less deeply lobed foliage. Fls. lighter in coler. veined purple.
7. macrorrhizum, Linn. A large-rooted species, about $11 / 2 \mathrm{ft}$. high, with a stem suffruticose at base: about smooth, round, basal ones 5 -lobed, cauline 3 -lobed. toothed and often colored red: calyx inflated; petals spatulate and blood-red in color. May to July. S. Eu.
B. M. 2 ± 20.

AA. F'ts. blue or viotet.

8. Ibèricum, Cav. Iberian Crane's-bill. From 1-11/2 ft. high: stem erect and leafless below, above dichotomously branched, villous: 1vs, opposite, 5-7-parted, with deeply cut lobes and tootbed lohules: fls. 1 in. across, in showy, open panicles, violet. July, Aug. lberia. B.M. 1386.

Var. platypétalum (G. platypétalum, Fisch. and Mey.). Slightly shorter than the parent, with lvs. less deeply lohed and lobes less pointed: fls. deeper and richer in color, and also larger
9. praténse, Linn. Meadow Crane's-bill. About $21 / 2 \mathrm{ft}$. high, with an upright round stem: lvs. mostly hand-shaped, with 7 lobes, each deeply cut : peduncles mostly 2-tid., drooping after flowering : fls. large, blue; petals entire. June, throngh Aug. Eu. - Var. flore pléno. Not as tall as parent. Very numerous deep blue fls. in clusters. June and July, and often again in fall.

901. Geranium maculatum $(\times 1 / 8)$.

AAA. F's. dark blue, almost black.
10. phæum, Linn. About 2 ft . high, with upright, short-haired stem, glandular above: lvs. 5 -7-lobed and deeply toothed: peduncles $1-2$-fld.: petals spreading, obovate, unequally notched and often with a small spur, very dark blue, almost black, with white spot at base of each petal. May,June. Cent. and western Eu.-A good border plant.

AAAA. Fls, purple in various shades

11. collinum, Steph. (G. Londesii, Fisch.). Height 2-3 ft.: stem angular and slightly decumbent: lvs. palmately 5 -parted, deeply divided and cut: petals entire, purple, with a tinge of violet. June, July. Eastern Eu.
-One of the showiest in its season. Should be cut back before seeding, to induce second bloom.
12. Frèmontii, Torr. About 1 ft . high, sometimes subacaulescent: upper 1vs. 3-5-cleft, lower ones 7 -cleft, with 3 -fid or incised lobes: fls. ligbt purple. Rocky Mits. Recently introduced. Blooms all summer.
13. incisum, Nutt. (G. eviainthum, Lind.). About 1 ft . bigh, leafy branched: Ivs. finely cut: pedicels conspicuously glandular-pubescent: petals with stiff white hairs, inner surface purple, about 1 in . wide. Ore.-A hardy species well worth growing. Not perfectly hardy near Boston.
14. maculàtum, Linn. WiLd or Spotted Crane'sBill. Fig, 901. The common American species, about $11 / 2-\mathrm{ft}$. high: stem angular: basal lvs. long-petioled, deeply 3 -5-parted; stem-leaves opposite, shorter petioled: peduncles $1-5$, inflorescence often unbellate: fls. $1-1 \frac{1}{2} \mathrm{in}$. broad, rose-purple; petals woolly at hase. June, July. N. Amer. G.W.F. 3. B.B. 2:341.-Showy native species; should be more in cultiration. Grows best in somewhat wet places. Var. plenum, a doubleflowered rariety of deeper color.
15. Richardsoni, Fisch. \& Trautv. AbJut $1 \frac{1}{2} \mathrm{ft}$. high: Ivs, thin and terminal, lohe of the uppermost lvs. longer than the often greatly reduced lateral lobes: pedicels conspicuously glandular pubescent: fls. large, reddish purple; petals with long white hairs on inner surface. Colo. and west.-Stems and young growth tinged with red.
16. Wallichianum, D. Don. Of prostrate trailing habit: stem and lvs, covered with silky hairs: lvs. light green, 5-parted, with deeply toothed lobes: fls. large, purple, borne sparingly all summer. Himalayas. B, M. 2377.-For the rockery.

AAAAA. Fls. white.

17. Ibéricum, var, album. A white-fld, var, of No. 8 .
18. maculàtum, var. album, A white-fld. var. of No. 14.
19. praténse, var. album. A white-fld. var, of No. 9.
20. Richardsoni. This species (No. 15) in its native habitat is usually white, mostly roseate-veined.
21. Sibiricum, Linn. Siberian Crane's-bill. A slender, somewhat forked plant, villous, $1-2 \mathrm{ft}$. high: lvs. deeply 3-5-parted: peduncles slender, usually 1-fld.: fls. very small, dingy white. June through Aug. Siberia, and naturalized near New York. B.B. 2:341,Another form under same name, with brick-red fls., said to be in cultivation.
G. Balkinum, Hort. A hardy plant, with fragraut foliage: fls, on radical stems, 1 in, across, dark magenta. June, -, , syl . vaticum, Linn. About 2 ft . high, with a soft-haired, upright, round stem: lvs, 5-7-parted, lolves oblong, deeply toothed; fis. purple or violet. June, July. The common wood Geranium of Europe.-G, tuberdsum, Linn. Tuberous-rooted, 9-15 in. higb, with stem at base naked: lvs, many-lobed, linear and serrate: pedicels 1-2-fld.: fls. large, violet. May. S. Eu
G. N. Lhauman.

GERARDIA (after John Gerarde, 1545-1607, perhaps the most popular of the herbalists). Scrophularia cea. Hardy annual and perennial herbs, all American, and mostly of the Atlantic states, with yellow or rosy purple fls., in late summer and autumn, the latter color rarely varying to white: lvs, mainly opposite: calyx 5 toothed or cleft; corolla bell- to funnel-shaped, broad throated, 5 -parted, the 2 posterior lobes often smaller and more united; stamens commonly more or less hairy; anthers more or less approximate in pairs: capsule glo bose, 2-grooved: seeds usually angled, loose coated. The first 3 species described below belong to a section in which the roots are more or less parasitic. These plants are therefore rather difficult to cultivate, and are offered only by collectors. G. tenuifolia is offered by one dealer, the seeds presumably gathered in European gardens.

> A. Fls. yellow.
B. Corolla pubescent outside: biennial or annual.

Pediculària, Linn. Pubescence partly glandular and viscid, especially on the pedicels and calyx, while in the next 2 species there is no glandular pubescence. Lvs. 1-2 in. long, all pinnatifid. N. Am.

BB. Corolla glabrous outside: perennial. c. Height s-6 ft.
quercifolia, Pursh. Stem at first glaucous: lower lys. $3-5$ in. long, $1-2$-pinnatifid: upper lvs, often entire. Dry woods, N. Am.

cc. Height 1-2 ft.

lævigàta, Raf. Not glaucous: 1rs. 11/2-4 in. long. Oak barrens, etc., N. Am.

> AA. Fls. rosy purple rarely varying to white. B. Heiglt 1 ft .
tenuifòlia, Vahl. Height 1 ft .: branehing, paniculate: inflor. racemose: lvs, mostly narrowly linear: corolla $1 / 2 \mathrm{in}$. long. Low or dry ground, N. Am.
bs. Height 2-3 ft.
linifolia, Nutt. Perennial: lvs, erect, very narrowly llnear, 1 line wide: calyx teeth minute ; eorolla 1 in . long. Low pine barrens, N, Am. Not eult., but said to be a parent with Pentstemon pulchellus of G. hybride, Hort. Int. by Haage \& Schmidt, 1899. The poor cut in S.H. 2:485 seems nearer Pentstemon than Gerardia.
W. M.

GERMANDER. See Teucrium.

GESNERIA (Conrad Gesner, Zurich, 15I6-1565, eelebrated naturalist, and considered to be the originator of the idea of genus in taxonomy). Gesnerdcee. Sometimes written Gesnera. More than 50 herbs of tropical America (chiefly Brazilian), with simple, opposite lvs. and showy tubular ths. in terminal short panieles or fascieles. Calyx campanulate, 5 -parted; corolla long, straight or curved, more or less ventricose, the base often distinctly swollen or gibbous, the limb mostly shallow-toothed and nearly regular or bilabiate; stamens 4, didynamous (in pairs under the upper lip); style 1, long ; glands on the disk in the fl. Handsome warmhouse plants (mostly tuberous) allied to Achimenes, Gloxinia, Isoloma and Streptocarpns. Some of the Gesnerias of the trade belong to Nagelia, which differs, amongst other things, in having an annular or ringed disk rather than a disk of distinct glands.
L. H. B.

Gesnerias are tuberous bulbous, or rhizomatous plants. They are natives of tropical s. Ameriea and Mexieo, and all have a period of rest corresponding with the dry season. The stems rise directly from the rootstock. They are clothed with opposite, mostly heartshaped, sometimes orate, leaves. They are densely hirsute; the hairs often are brightly tinted, giving them a sheen like the plumage of birds, so that they are quite as mueh admired for their handsome foliage as for the flowers. The infloreseenee is generally a branched corymb, and the flowers are tubular-labiate, with the limb rarely flattened, as in Achimenes. Gesnerias are not nearly as popular as they onee were, probably on aceount of the transitory character of their corollas, which are continually falling, lasting but a day or two. The roots must be kept in a moderately warm place, such as would suit Gloxinias. They should be kept in the pots in which they have grown, and be watered about once a week during the resting period. It is a mistake to suppose the roots can be kept in dry sand and still retain their vitality. When the roots show a tendency to send up stems is the time to start them, pieking out the advanced ones first. In this way a long season can be secured. They need a light soil to start with, about equal parts leaf-soil, loam and sand, and should be placed in a moderate temperature. Very little water will be required until they are well started. If it is desired to increase stock, smaller bulbs may be boxed off, and cuttings made of surplus shoots. Seeds are produced rather freely, and some good hybrids are in cultivation. As they advance in growth, larger pots will be needed, and a little stronger soil,-the mixture divided into four parts, adding well-decayed manure. They will take abundance of water and some liquid manure when coming into bloom. If neatly trained they make handsome specimens. Their beautiful foliage is liable to be spoiled by impurities or sediment in water, so that we avoid overhead syringing, particularly as they develop. After blooming, a good light place should be given, and
the plants watered until they show signs of going to rest. As they are naturally an undergrowth, a light shading will be beneficial in the hottest weather.

> Cult. by T. D. Hatfield.

A. Lis. green.

cardinàlis, Lem. (G. macrintha, Hort.). Stem 6-12 in. high, stout and hairy: Ivs. large, cordate-ovate, ere-nate-dentate, petioled : fls, red, tubular, hairy, slender (2-3 in. long), the upper lip projecting and the lower one almost wanting, borne in a terminal, more or less flat cluster. Nativity unknown. Gn. 42:874,-G. Durali, Hort, is evidently only a slender form of this species.

Héndersoni, Hort. Lrs, velvety green : fls. 3 in, long, brilliant scarlet, in a large truss. Probably of garden origin.
longiflora, Hort., is a small-leaved species, with drooping, long-tubed nieotiana-like white fls. Gn, 33:644.The botanical position of this plant is in doubt. It is not the G. longiflora, HBK., whieh is purple-fld., nor G. longiflora, DC., whieh is Achimenes longiflora. By some it has been confounded with Isoloma longifolium, Deene.

AA. Les, richly colored, at least underneath.
Leopoldi, Sebeidw. Compact: stem erect from the large, depressed tuber, thinly hairy: lvs. verticillate in 4's, broadly ovate-acuminate, more or less unequal at base, dentate, green above and purple beneath: fls. longtubular, thinly hairy, the lobes nearly equal; light scarlet, in a rather loose, umbel-like cluster. Nativity not recorded. F.S. 7:704-5. Gn. 53:1176.
Donkelæriàna, Lem. (G. Donkelarii, Hook.). Stem often 2 ft . tall : 1 vs . large, cordate-ovate, erenate, hairy, green and purple-tinged above and purple beneath : Its. tubular-eampanulate, the rounded lobes nearly equal, dull red, 2 in. long, hanging from long pedicels in a large paniele. Variable. Colombia. B.M. 5070. R.B. 21:97. F. 1853:241.

Exoniénsis, Hort. Hybrid : 1vs. velvety, with red and purple hairs: fls, bright orange-red, in elose clusters.
refúlgens, Hort. Hybrid: lvs. cordate-oval, red-hairy: fls. deep red or vermilion. - One of the best.
G. cinnabarina, Lind., is a Negelia.-G. Guatemalensis. Hort., "a free grower and bloomer, fls, orange," was once of fered bySaul.-G. jasminiflora, Hort., "fls, of the purest white, freely prodnced, beautiful," once offered by Saul. $-\boldsymbol{G}$. oblong $\alpha_{\text {, }}$ Hort., fls, orange, offered once by Saul. $-G$. nobista, Hort. "vermilion, beautifully spotted and tigered," offered once by Sanl.-G. zebrina, Paxt., see Nagelia. The Gesnerias are much eonfused by hybridizing and breeding.
L. H. B.

GEUM (Greek, geuo, to have a taste; referring to the roots). Rosacee. This genus includes some fine hardy border and roek plants, some of which are valued for their bright red fls.; some for their pure yellow fls.; others for their long plumy fruits. Herbs, with a perennial rhizome, sometimes stoloniferous: root-lvs. crowded, odd-pinnate, the alternate lobes often smaller, terminal ones largest; stem-lvs. few, mostly of 3 lfts. or bract-like: fis. 1-2 in, across, solitary or corymbose. More than 30 species, mostly in temperate and frigid regions.

The plumy kinds are all contained in the subgenus Sieversia. G. Chiloense is the best species, and in the gardens is commonly seen in double forms. A gardener writes that "inferior forms show scarcely any duplicity." Geums are of easy eulture, and are prop, by division or seed. It is said that they hybridize freely if grown together. The dwarf kinds are suited only to the rockery. Correvon, of Geneva, Switz., writes that G. reptans is one of the best of the rockery kinds, and needs full sunlight. For G. trifloram he advises half exposure to sun and a light, moist soil. G. rivale grows naturally in marshy places.
A. Plumy Geums: style in fruit long and plumose. B. Fls. yellow.

c. Plants spreadiny by runners.

réptans, Linn. Root-lvs. interruptedly pinnatifid = upper lvs. 3-lobed: fls. ereet; petals obcordate. Eu Gn. 45:956. - The purple styles are pretty.

cc. Plunts not spreading by muners. D. R oot-les. pinnatifid.

montànum, Linn. ('alyx lobes entire, while those of reptans are often 3 -cut at apex. S. En. (i.(., 11. 13:425. Gn. 45. p. 285.

DD. Root-lns, kidney-shaped.

radiatum, Michx. Very hirsute. Root-Ivs. 2-5 in. broad : stem 1-5-fld.: bractlets minute. Mountains of N. C. -lnt. by H. P. Kelsey.

> nk. Fls. bright red, unmixed with yellow.
C. Lateral lobes of le's. minute.
coccineum, Sibth. \& Sm., not Hort. "Stem-lvs. 3lobed: root-lvs. lyrate, the terminal lobe largest, cor-date-reniform: fls, erect. Mt. Olympus in Bithynia."
The above is an exact translation of the entire description given by Nibthorp and Smith, Flora Greca, t. 485.The chances are that all the plants in the trade under this name are really G. Chiloense.

cc. Luteral lobes of les. 1 in . long.

Chiloénse, Balb. (G. çecinezm. Hort., not Balb.). "Stem-lvs. 3-parted, laciniate; root-lvs. interruptedly lyrate, pilose: terminal lobe rotund, somewhat 3 -lobed, crenate: fls, panicled: carpels villous." The above is a literal translation of B.R. 16:1348, where the terminal lobe is shown to be $21 / 2 \mathrm{in}$. each way, Chile. B.R. 13:1088, and under 1099. L.B.C. 16:1597. Gn. 14:156; 45, p. 284. R.H. 1890, p. 305, and 1881, p. 309, all erroneously as G. coccinerm.

Var. miniàtum, D.K. (G.miniàtum, Rubt. Parker), bas fls, about 2 shades lichter in color. A robust form growing $2-3 \mathrm{ft}$. high, easily prop., and tls , from Apr, to end of July. Gn. $38: 772$, where it is supposed to be a hybrid of G. Chiloense, var. grandiflorum \times (i, aureum, which is a rubust many fld. form of G. montanum, or else of G. Chiloense \times G. urbanum.

Var. grandiflorum, D.K., is an improved form. "The double-tld form of this seems to be a more general favorite, the blooms lasting longer, though I think they lack the elegance of those of the simple form. They begin to expand soon after May and are produced until Oct." 1.K., in Gin. B8, p. 299.
bвb. Fls, chiefly dull red, mixed with yellow.
triflorum, Pursh. Low, softly hairy: Ifts. very numerous and crowded, deeply cut: fls. 3 or more on long peduncles; calyx purple, as long as the petals. Coulter says the petals are erect. Arctic Am. L.B.C. 17:1609. "Fruit sbowy all summer." Woolson.

> AA. Not long and plomy in fruit.
> B. Style jointed and bent in the middle.
> c. Fls. purplish orange.
rivalle, Liun. Root-lvs. lyrate; stem-lvs. few, with 3 lobes or lfts.: calyx brownish purple; petals purplish orange. N. temp. regions. Var. album is also sold.

> ce. F7s. golden yellow.
macrophyllum, Willd. Eastern plant, which F. W. Barelay says is offered by collectors, and prefers a moist, sunny place. B.B. $2: 221$.

BB. Style not jointed, straight,

Rossii, Seringe. Slightly pubescent above: scape 1-3fld.: styles glabrous. Colo., arctic regions.-Fls. large, bright yellow.
G. atrococcineum, Hort., may be a typograpbical error for G, atrosanguineum. - G. atrosanguineum, Hort., is presumably a form of G. Chiloense, with darker fls. than the type, and sold mostly, if not entirely, in its double condition. - G. Japónicum, Thunb., is sold, but little known. St. flexuose, hirsute: lvs. 3-5-lobed. hirsute: fls. erect, yellow: petals as long as the calyx: fr. birsute, awned, recurved. Japan.
W. M.

GEVUINA (from the Chilean name). Also written Guevina. Protedcec. One species, G. Avellàna, Molina (Syn., Quddria heterophýlla, Ruiz \& Pav.). Chilean Nut. Chile Hazel. An evergreen tree, with large, alternate pinnate, dark green, glossy Irs. and white, hermaphrodite fls. in long, axillary racemes. Fruit about the size of a cherry, coral red when ripe, the seed hav-
ing a pleasaut flavored kernel, resembling the hazel in taste and largely used by the Chileans. Sparingly grown in California. Prop, by seeds or by green cuttings under glass.
W. A. Taylor.

GHERKIN. A small Cucumber. The Burr or West Indian Gberkin is C'ucumis Anguria.

GIBB, CHARLES, Canadian horticulturist, and author of important works on Russian fruits and other hardy trees, was born at Montreal June 29, 1842, and died at Cairo, Egypt, March 8, 1890, while returning from a collecting trip in China and Japan. In 1872 he brought to Nontreal the first canned fruit exhibited in Canada. His farm at Abbotsford, Province of Quebec, contained the best collection of hardy fruits, trees and ornamental shrubs in Canada. His trip to Russia in 1882 with Prof. J. L. Budd, the subsequent importations, his second trip to Russia, and his various publications on hardy trees make part of a chapter of great interest and significance in the history of American horticulture. His travels were extensive. His chief works are "Ornamental and Timber Trees not Natives of tbe Province of Quebec" (a comprehensire list of species of possible value for Canadaf, "Report on Russian Fruits," "Hasty Notes on the Trees and Shrubs of Northern Europe," "Russian Apples Imported by the Department of Agriculture, Washington, in $1820^{\circ \prime}$ (an elaborate comparison of Russian opinions and American experience), "Nomenclature of the Russian Apples," "Of Translating and Rendering into Euphonious English Unpronounceable Russian Names, also Throwing Out Synonyms," and "Fruits for the Cold North." For a fuller account, with portrait, see Annals of Horticulture, 1890, $287-290$.

W. M.

GIDEON, PETER M., pioneer pomologist of the northern Mississippi states, $1818-1899$, resided since 18.53 on Lake Minnetonka, Minnesota, and deroted his efforts to the production of apples of sufficient hardiness to withstand the climate. He was born in Ohio. He afterwards lived in Illinois. From boyhood be seems to have been possessed of the idea to raise seedling fruits. He was one of those rare indiriduals who sets a distinct ideal and strives for it throughout a lifetime in spite of every adversity. These are persons of strong and uncompromising wills. They often antagonize their fellows; but their works are usually beneficent. (iideon conceived that the amalgamation of the Siberian crab and the common apple would give the perfect apple for the Nurthwest. His seedlings were numerous. Several of them have been named and disseminated, and are of value. But his greatest achievement, the Wealthy apple, was of pure Pyrus Malus stock. This variety is now one of the standard apples of his geographical region, and it is gaining favor elsewhere. It is a boon to the Northwest. Eren when in poverty, it is said that Mr. Gideon spent his last dollar to buy the seeds from which this apple came. He was instrumental in distributing 10,000 apple seedlings in Minnesota, and some of these are now attracting attention. His work was wholly empirical, yet he did so much and continued bis work for so long a time that the results have contributed to the knowledge of plant-breeding. Probably no other American has labored so long and devotedly for the attainment of a specific ideal in the apple. Portrait and eulogies will be found in The Minnesota Horticulturist, Jan., 1900.
L. H. B.

GILIA (Philipp Salvador Gil, Spanish botanist of the latter half of the eighteenth century, collaborator with Xaurez). Polemonidece. American herbs, mostly of western North America, of nearly 100 species, as the genus is now understood by most botanists. Fls. small, of many colors, the corolla funnel-form to bell-shape or sometimes salver-form, 5-lobed; stamens 5, inserted near the base of the corolla tube, the filaments usually naked: orary 3 -loculed, with axile placenta, the stigmas 3 (or sometimes 2). Gilia is a very polymorphic genus, into which Gray now (Syn. Fl. 2, pt. 1, suppl.) throws Collomia, Linanthus, Leptosiphon, Leptodactylon, Navarretia, Hugelia, Ipomopsis, Fenzlia. In this conception, Gilia is defined as follows : "Fls. naked, not in-
volucellate ; calyx partly herbaceous, scarious below the sinuses; lobes narrow and acute; corolla salverform or funnel-form to campanulate or almost rotate :

902. Gilia grandiflora (\times 3/4).
filaments not bearded at hase : seeds wingless: herbs, or a few suffruticose."

Several of the Gilias are popular garden annuals or biennials (a few perennial). They are of the easjest culture, heing vigorous, hardy and floriferous. They are mostly dwarfish, and are excellent for low masses, edgings or rockeries. Seeds may he sown where the plants are to grow. Any good soil will suit them.

Following are the names in the American trade:
achilleæfolis, 8 . aggregata, 11 . alba, 6, 13, 16. androsscea, 14. aurantiaca, 10. atreus, 15.
eapitata, 6.
carmineus, 15. coccinea, 2 . Collomia, 1, 2. congesta, 4.

> eoronopifolia, 10 . debilis, 5 . densifora, 13 , dianthiflora, 16. dianthoides, 16 . elegans, 10,11 .
> Fenzlia, 16. grandiflora, 1 . hybridus, 15.
> Ipomopsis, 10, 11 . laciniata, 7.

Leptosiphon, 13, 14, liniflora, 12. [15. linifolia, 12. micrantha, 15. minima, 3. Navarretia, 3. nivalis, 9. rosea, 9,15 sanguinea. 10. speciasa, 16. tricolor, 9.
A. Les. normally alternate, entire or pinnately cut or divided (lower les, sometimes opposite).
B. Fls. in dense heads, which are subtended by leufy inrolucres.
c. Foliage entirc or at least not much parted.

1. grandiflòra, Gray (Collòmia grandiflòra, Dougl.). Fig. 902. Erect, with minutely pubescent reddish stems, $1-2 \mathrm{ft}$. bigh: lvs. linear-lanceolate or ohlong, narrowed below but scarcely petioled, entire, acute: fis, many, in dense terminat heads, buff or salmon color, redder inside, 1 in. long. Plains, W. of Rocky Mts. B.M. 2894. B.R. $14: 1174$. -This and the next are interesting annuals. Useful as hee plants.
2. coccinea, Gray (Collòmia coccínea, Lebu.). More slender: stems not red: Ivs. narrower (mostly linear), somewhat cut at the ends: fis. smaller, slender-tubed, yellow or huff ontside and brick-red inside. Chile. B.R. 19:1622.
cc. Foliage pinnately parted or compound.
3. minima, Gray (Navarrètia minima, Nutt.). Dwarf and tufted (3 in . or less high), nearly glabrous: Ivs. needle-like, pinnately parted: fls. white, the corolla scarcely exceeding the white-hairy calyx. In arid districts, Dak. W.
4. congésta, Hook. A foot or less high, erect or spreading, tufted: lrs. mostly 3 - 7 -divided into linear divisions: corolla white, the oval lobes nearly as long as the tube: calyx teeth long-pointed, nearly equaling the corolla. A small-fld. species growing from Wyo. W.
BB. Fls, not in close heads, but more or less scattered: or if capitate, the heads not leafy-subtended.
c. Plunt perennial: seed only 1 in a locule: fls. small.
5. débilis, Wats. Two in. or less high: lrs. oblong, tntire or 2-3-lohed, petioled: fls. solitary and nearly sessile, the purple corolla $2 / 3 \mathrm{in}$. long, the tube exceeding the calyx. S. Utah.-Offered by collectors.
cc. Plant annual: seeds more than 1 to the locule: corolla distinctly tubular, but relatively small. D. Iuflorescence capitate.
6. capitàta, Dongl. Fig. 903. Plant 18 in . to $21 / 2 \mathrm{ft}$. tall, the stems long and nearly straight between joints: fls. about $1 / 2 \mathrm{in}$. long, in dense, nearly globular heads, which terminate long, naked stems; corolla lobes lancelinear, acute: lvs. cut into rery unequal linear lohes. Calif. and Ore. B.M. 2698. B.R. 14:1170.-An old favorite. There is a white form (var. alba). There is also a var. major.
7. laciniàta, Ruiz \& Pav. Much like the last in hotanical characters, and possibly a form of it ; lower and much more slender, the leaf-divisions mostly very narrow (usually almost thread-like), the heads smaller or the fls. sometimes even scattered. Chile. - The fine foliage and compact habit make this species an excellent garden plant.
DD. Inflorescence mixed, capitate on the main branches, scattered on the others.
8. a chilleæfolia, Benth. Fig. 904 . Stout ($2-3 \mathrm{ft}$.) and very branchy and bushy, the early main branches terminating in large, dense heads, but the later, finer growth bearing scattered fls.: Jrs. small, with short, linear lohes or teeth: fls. large, violet or purple-blue,
 ($\times 2$.)
9. Gilia achilleafolia. ($\times^{1 / 4 .}$)

GIL1A

the corolla lobes oblong or obovate : capsules large. W. Calif. B.M. 5939 (showing only capitate inflores-cence).-An old garden plant. Fls. vary to white and rose.

DDD. Inflorescence scattered or loosely cymulose.
9. trícolor, Benth. Fig. 905. A very diffuse, twiggy grower, $2-2 \frac{1}{2} \mathrm{ft}$. high, sparsely pubescent: Ivs. few on the full grown plant, small, with many short, very narrow or needle-shaped divisions: fis. comparatively large ($3 / 4 \mathrm{in}$. long or nearly so), nearly or quite bellshaped, the corolla 2-3 times the length of the calyx ; color of the roundish lobes violet and passing to whitish at the base, of the throat brown-purple and of the tube yellow. W. Calif. B.M. 3463. B.R. 20:170s. - One of the commonest of garden annuals. There is a white form (G. nivalis, Hort.) and a rose-colored form (G. rosed, Hort.). Thrives with the least care, and is always a profuse bloomer.
ccc. Plant biennial: seeds few or many in each locule: fls. large aud long-tubular, red (rusning into white forms), the corolla very much surpassing the subulate calyx lobes. (Ipomopsis.)
10. coronopifolia, Pers. (Ipomópsis elegans, Poir. I. auranilaca and I. sanguinea, Hort.). Standing Cypress. Stem strict and unbranched, sometimes 6 ft . high, very leafy : lvs pinnate, the divisions needle-like and about 1 in . long: fls, many, $11 / 2 \mathrm{in}$. long, long-trum-pet-shape, borne along the sides of the summit of the stem, the calyx inconspicuous amongst the short bractIvs., the corolla scarlet or pink-red and dotted and yellowish within, varying to orange. its lobes obtuse or nearly so and flaring. In dry soil, S. Car., south and
west. B.R. 20:1691.-Common old garden plant, and worthy. Fls. scentless.
11. aggregàta, Spreng. (Ipomópsis élegans, Lindl.). Differs in mostly sborter stature and more slender habit, with redder (sometimes white) fragrant fls., with acute and reflexing corolla lobes. Neb., south and west. B.R. 15:1281. - Probably not in cult. The fls. are fiery scarlet or sometimes nearly white. A very showy biennial.
AA. L's. opposite, entire, or, if altermate (as in No. 12) palmately parted.
B. Foliage very fine, the lus. cut into thread-like or linear divisions.
c. Corolla rotate-bell-shape, with a short, flaring tube.
12. linillora, Benth. (G'.linifolia, Hort.). Fig. 906. Ten to 20 in. high, diffuse and branchy : lower lis. mostly opposite, but the upper alternate, all palmately divided to the base in needle-like or spurrey-like divisions: fls. rather large for the size of the plant, the corolla white or blush, nearly rotate, the thin lobes obtuse. Calif. B.M. $5895 .-$ A useful tufty garden annual. The name liniflora is meant to designate the resemblance of the fls. to those of Linum tenuifolium; but some catalogue maker, evidently thinking that the name meant linearflowered, and was therefore inappropriate or an error, has changed the name to G. linifolia, under which name it is known in the trade.
co. Corolla salier-form, with a filiform and elongated tube (Leptosiphon).
13. densiflora, Benth. (Leptos iphon densiflorus, Benth.). Erect or even strict, 1-2 ft., hairy: lvs. with many filiform somewhat rigid divisions: fls, in rather close heads, lilac or white, $1 / 2-3 / 4 \mathrm{in}$. long; tube of the corolla scarcely longer than the leaves; lobes of the corolla spreading, ohtuse, often dentate, nearly or quite as long as the tube. Calif. B.M. 3578. B.R. 20:1725.Common garden annual. The white-fld. form is known as var. alha, Hort.
14. androsàcea, Steud. (Leptosiphon ondrosàceus, Benth.). Much like the last, but the tube very slender and much exserted beyond the calyx and leaves: fls. 1 in. long, plnk, lilac or white, in rather close heads, the corolla lobes ovate-acute and entire, much shorter than the tube, 12-18 in. Calif. B.M. 3491. B.R. 20:1710.
15. micrántha, Steud. Fig. 907 . Tufted, 8 in. or less high, the stems most leafy near the top: Ivs, short, fascicled: fls. with an exceedingly slender thread-like tube which is $1-11 / 2$ in. long, and projecting prominently above the upper fascicles of lvs., the corolla lobes spreading and obtuse; color range very wide, from purple to lilac, red, yellow and white. Calif. - A popular and important bedding plant. Forms of it are known as Leptosiphon auress, carmineus, hybridus, and roseus.

906. Gilia liniflora $(\times 2 / 3)$.

907. Gilia micrantha $(\times 1 / 2)$.

BB. Foliage of entire (but narroue) lvs.
16. dianthoides, Endl. (Fénzlia dianthifldra, Benth.). Fig. 908. Tufted, 6 in, or less high: Ivs. narrowly linear, opposite: fls. $1-1 \frac{1}{2}$ in. long, lilae or purple, with yellowish throat, the flat-spreading lobes denticulate or
nearly fringed. S. Calif. B.M. 4876, R.H. 1865:10.A choice little annual, excellent for edgings and rockwork, bearing a profusion of pink-like fis. The fls. sometimes vary to white (Fenztia alba, Hort.). A large-fld, form is called C. speciost. L. H. B.

GILL. Tepeta Glechoma.

GILLENIA (a German physician of the seventeenth century, Arnoldus (iillenius). Rosacer. Two East American perennial herbs, with 3 -foliolate nearly sessile lvs. and The Fenzlia of gardens. 5 long white or rose-tinged narrow petals, which are more or less unequal, $10-20$ included stamens, 5 -toothed calyx, and 5 2-4-seeded pods; fls, many in loose, terminal clusters in summer. To this genus Britton has recently given the name Porteranthus (Porter's flower, in honor of Dr. T. C. Porter), hecause Adanson had earlier made a genus Gillena. The species are G. trifoliata, Meench (Bowman's Root), in rich woods from N. Y. to Ga. (Mn. 8:129. B.M. 489), and G. stipulàcea, Nutt. (American Ipecac), with a more southern range. The former has ovate-oblong serrate leaflets and small, mostly entire stipules: the latter has lanceolate deeply incised leaflets and leafy incised stipules, and is more pubescent. Gillenias are excellent, graceful plants for the mixed or hardy border. They are hardy and of easy culture in any good soil. $2-4 \mathrm{ft}$. tall. They propagate by seed and division.
L. H. B.

GILLYFLOWER down to Shakespeare's time usually referred to what we now call the carnation, Dianthus Caryophyllus, also known as clove pink. Since Shake-

909. Ginkgo.
speare's time Gilliflower has usually meant either wallflowers or stocks, as explained under Cherianthus and Matthiola.

GINGER. Zingiber officinate. Wild Ginger. Asarum Canadense.

GIN XGO(Chinese name). Conifera, tribe Táxer. One tree, with wedge-shaped lrs., fls, small and mostly diœcious. Pistillate fl. solitary, the single naked ovule ripening into a drupe. Staminate fls. in slender, loose catkins.

910. Ginkgo fruit and seed. Natural size.
biloba, Linn. (Salisbùria adiantifolia, Smith). Ginkgo. Maidenhair Tree. Kew Tkee. Figs, 909, 910. A tall, sparsely branched, usually slender tree, attaining a height of $60-80 \mathrm{ft}$.: lvs, $3-5$, clustered, fanshaped, divided at summit, with thickened margin, striated on both sides with numerous parallel veins: fls. diœecious; male catkins slender, stalked; females on long footstalks, in pairs, of which one usually aborts: fruit a drupe, consisting of an acrid, foul-smelling pulp surrounding a smooth, angular oval, cream-colored, thinshelled, sweet-kerneled nut. Northern China. F.S. 10, p. 119. G.C. III. 5:265, 269. G.F. 1:175. A.G. 12:268. Gng. 6:194.
Introduced to America early in the century, and generally successful on good soil in the eastern states as far north as eastern Massachusetts and central Michigan and along the St. Lawrence river in parts of Canada. Of special value for solitary planting to secure picturesque effects. Considerably planted in Washington, D.C., where it is growing in esteem as a street tree because of its upright habit and freedom from insect injury. Easily propagated from seed, stratified in autumn; varieties by budding and grafting. Several horticultural forms are recognized, including laciniata, pendula and variegata.
The foul odor of the ripe fruits, which continue to mature and drop during a period of some weeks, constitutes the chief ohjection to the species as a street tree, or near dwellings, and suggests the advisability of propagating from staminate trees by grafting or budding, for planting in such locations. The kernels, which have a sweetish, slightly resinous flavor, are highly esteemed for food in China and Japan, and are gathered from fruiting trees in Washington for such use by Chinese laundrymen.
The word Ginkgo seems to be pronounced with a hard initial G in the orient, but in English a soft G should be used. The name is often spelled Gingko, but the other spelling is preferable because Linnæus spelled it so in the generic name.
W. A. Taylor.

GINSENG (Pànax quinquefòlium, Linn. P. Ginseng, Meyer. Ardia quinquefótia, Decne. \& Planch.) is to the Chinese more than quinine or any other drug is to Americans. As its name Panax implies, it is a panacea, being employed for all the ills that flesh is beir to. Though credited with stimulating, aromatic, alterative,
carminative and tonic properties, the root is with us seldom used except as a demulcent. The revereuce in which it is held, and the high price that it commands in China, led to extensive search for a substitute, which resulted in the discovery in 1716 of American Ginseng, Panax quinquefolium, near Montreal, Canada. Tbis root was favorably received by the Chinese, and soon became an important article of export. During the past 40 years the price of American Ginseng has advanced nearly 700 per cent, but owing to the energetic hunt for the root, to the destruction of forests and to the gathering of plants at improper times, the wild supply has greatly decreased. With the advancing prices and the diminishing supply came experiments in Ginseng eultivation, most of which failed through ignorance of the plant's peculiarities. The seed ripens in Sept. If dry it will not germinate until the second year, but if fresh and properly kept nearly all the seeds will germinate the first season. The soil must be a light, friable loam, free from stones, etc., rich in bumus and well drained; the plants must be well supplied with shade and moisture. Cultivated Ginseng already commands a considerably higher price than the wild root, and, though no returns can be expected from a plantation until it is 3 or 4 years old, the industry is found to be profitable by the men that have given it careful attention.

Ginseng beds can be located in orchards, gardens, or woods, where the roots may remain without danger of deterioration for several years after they first attain marketable size. The roots are so valuable that they are likely to be stolen, and beds should, therefore, be placed where they can be guarded. M. G. Kains.

For further information on Ginseng, send to Div. of Publications, Dept. of Agriculture, Washington, D. C., for Bulletin No. 16 of the Div, of Botany, revised by II. G. Kains in 1898, or consult Kains' Ginseng, its cult., etc., Orange Judd Co., 1899.
W. M.

GLADIOLUS (diminutive of Latin gladius, a sword, from the slape of the lvs, of the first-described species). Iriddcea. Gladioli are amongst the most popular of all garden plants, and particularly of the class known as summer-flowering bulbs, ranking in popularity with cannas, dahlias, lilies and iris, and having probably no other rivals. They are also the most important, commercially, of all the "('ape bulbs."

About 140 specics of cormous herbs, which bear lilyform fls, in spikes at the summit of a scape. Fl. more or less tabular, the tube usually funnel-shaped (enlarging upwards); segments 6 , more or less unequal. strongly narrowed or even clawed at the base, the upper ones often hooded or roofed over the opening or mouth of the flower; stamens 3, inserted on the tube; stigmas 3, on a long style: ovary 3-loculed. Fig. 911. Monogr. by Baker, Iridca, pp. 198-229 (1892).

About 15 of the species are natives of Europe and western Asia. A few have been discovered on the mountains of tropical Africa. The larger part of the species are South African, however (Cape Colony and Natal). and of these species the habitat is not mentioned in the following synopsis. The Europe-Asian species are little cultivated in this country. Some of them are hardy. The S. African species, variously hybridized, have given rise to the numerous and excellent garden strains. There are semi-double forms.
L. H. B.

I. THE CELTURE OF GLADIOLI.

A. From the amaterr's point of view.

The essentials of Gladiolus culture can be told in a sentence: the corms should be planted as early in spring as the soil can be fitted; they flower the same season in July and August, and can be stored over winter in any cool, dry cellar that will keep potatoes. Late spring frosts do not penetrate the soil deep enough to hurt the early planted corms. The blooming season can be easily prolonged until frost by successive plantings from April to July 4. The flowers are excellent for cutting, and last a week in water. Some varieties need staking, but stakes are objectionable on general principles, even when neat and slender. Seedlings are easily raised, and the process is described in the next paragraph. Gladioli are easily forced to flower in Novem-
ber and December, as the corms can be kept dormant by the simplest kind of cold storage. It is common for florists to hold some corms in a cool place until August; then plant them in boxes of rich soil $4-5 \mathrm{in}$. deep, and keep the hoxes outdoors until frost. After frost-time the corms are brought into a cool greenhouse, where they flower witbin two months. New corms form above the old one, and bloom the next season (Fig. 912). Cormels or "spawn" also form on offsboots: these bloom in two or three years.
L. H. B.

AA. From the commercial point of view.
The culture of Gladioli is very easy, aud can he conducted under nearly any of the conditions suitable for potatoes. Gladioli succeed best in a sandy loam which is retentive of moisture. For successful commercial culture it is essential that such soil conditions are obtainable. Planting should be commenced as early in the spring as the proper working of the soil will permit. such preparation of the soil as puts it in a loose, friable condition will answer. Probably the ideal soil is a sod, fall plowed and then most thoroughly worked iu the spring. Strong, fresh stable manure should be avoided. If soil is not sufficiently rich in plant-food it is best to use all strong manures on a previous season's crop of some other kind. Any complete fertilizer is beneficial when thoroughly worked through the soil, at the rate of 600 to 1,000 pounds per acre. The ground being prepared, it should be furrowed 4 in. deep and from 24 to 36 in. apart, according to method of cultivation. If fine, round bulbs are to be grown, and the stock for planting exceeds $11 / 2 \mathrm{in}$. in diameter, it will be necessary to place the bulbs right side up in the furrow by hand, either in single or double rows 2 in. apart. Bulbs of lesser size can be scattered as erenly as possible along the furrow, with an arerage of 10 or 12 to the foot of furrow. Clean culture throughout the growing season is essential. Cutting the spike of flowers is a help to increasing the size of the bulbs. Four months is sufficient for the growth and maturity of the bulb. To harvest, loosen the soil and lift the bulbs by their tops, and lay on the ground to dry off and ripen. Should weather permit

911. Parts of a Gladiolus flower.
they can be entirely ripened out of doors. Cut the tops off close to the bulb, pulling off the old bulbs and roots, and place in thin layers in crates and store in a cool, dry place. If circumstances require, the tops can be trimmed off at once on lifting, and the bulbs taken under cover for cleaning and drying.

Gladioli are increased in three ways: (1) by natural division from the parent corm; (2) by seed; (3) by the small corms growing at the base of the new corm.

In the first method all that is necessary is to separate the corms growing from the original, either wheu cleaning in the fall or before planting in the spring.

When seeds are sown, the seedlings should all produce corms of flowering size in 3 years. Seed should be planted very early in the open ground on rich, sandy soil and not allowed to suffer in the least for lack of

912. Gladiolus corm growing above the old one. Also shows cormels.
moisture. At the end of the first season's growth the corms of the seedlings will be the size of peas, and can be stored under the same conditions as large corms. The second season plant the corms as if they were garden peas. Some will bloom the second year, and all should bloom the next.
lnereasing stock by the small corms or bulblets is the most common method, and the one by which a variety is perpetuated. The small corm is but a cutting or eye, and can be stored in bags, boxes or other suitable receptacles and kept from frost. It is a help to sprouting if the corms are not allowed to dry out during the period of rest. They should be planted like 1-year seedlings, making blooming bulbs the first and second year.

> E. H. Coshmin.

AAA. From the American hybridizer's point of view.
The garden evolution of Gladioli in general is explained at length below. The writer has beeu asked to present the American share in this interesting history. Some ten years ago, when the writer began, under the inspiration of Luther Burbank, his own work in hybridization, the best American-grown stock available was the Hallock collection of some 400 named varieties of Gandavensis and about 100 of the earlier Lemoine hybrids, all of European origin. After trial, the writer placed them all in mixtures.

About this time Luther Burbank hegan to offer a few named varieties, but shortly afterwards sold his whole stock, the collcetion being now in the writer's hands. This collection, in the opinion of the writer, is the best strain of Gandavensis. The varieties were largely of variegated types, with many of unique markings and peculiar form. Burbauk had given particular attention to varieties calculated to withstand the hot, dry winds of California, and had originated several with specially stiff petals, quite distinct from the ordinary types. The pecularity of the flowers blooming around the spike like the hyacinth was also his contribution. All of his varicties are now grown in mixture by the writer with the exception of a white variety, which promises to be distinct and valuable for some time to come. However, the vitality of Burbank's strain is remarkable, and in the opinion of the writer it is greater than that of all the other strains of so-called American hybrids which constitute the principal stocks of commerce on this continent.

The latter strains have probably been largely produced from self-fertilized seed of European and American varieties, themselves the product of natural selection, thus earrying to their progeny the objection of a weak and degenerate parentage.

The work of Dr. Van Fleet, of New Jersey, was carried on more for scientific than commercial results, and reaped a deserved success. However, the writer has found that the offspring of a pure species is less stable than that of well-balanced cross-bred varieties, the former system handing down few varieties of permanent commercial value, though they are in themselves valuable as parents for the foundation of new strains.

The best work of a semi-professional character, in the opinion of the writer, has been done by T. S. Moore, of Indiana, who has spared no trouble or expense in procuring choice material upon which to build, and with satisfactory results. As to G. cruentus la strain of reds), the writer thinks that little is to be gained by its use, as we bave too many reds already. Its roots tend in this climate to early and rapid degeneration.
The writer believes tbat the beauty of the individual flower is the highest ideal, though vigor of plant and vitality of variety are also necessary. He regards the Gladiolus as a cut-flower rather than a garden plant, and belieres higher satisfaction is gotten from cutting the spike when the first bud opens than from leaving the flowers to open outdoors.

A new strain of great interest is composed of the hybrids of the G. Papilio, var. major, a most interesting species in which the under color, a unique shade of blue, is overlaid with dull terra-cotta. In seedlings raised by the writer these colors have separated, producing the most beautiful heliotrope and clematis blues and rich velvety purples, colors quite unknown in the older sections.
Another strain likely to be presented soon is the product of the old species G. dracocephalus. The Howers of the hybrids are covered with minute dots similar to those of the species. The species and its hybrids have exceptional rigor and vitality.
Gladioli are most adaptable to all soils, providing reasonable assistance is given. Clean, saudy loam is preferable, fertilized at least every other autumn with well-rotted manure, which is carefully covered below the depth of planting. Before spading or plowing the ground it is well to dress freely with fresh, hardwood ashes. On heary clay use leached asbes freely, and cover deeply all the green regetable refuse and leaves that have been partially rotted under the manure pile since the previous autumn. Also fill in the trenches with sand or loam. In swamp muck and vegetable deposit, a mixture of sand added yearly is all that is needed, the trenches being filled with sand at planting. Cold, springy swamp lands with the water half filling the trenches at planting, have given perfect satisfaction with blooming bulbs, that have been developed on the other soils. Water should be freely used during the season of active growth; moderately with blooming stock before budding in order to ripen the plant; then again freely before the buds show color and until after blooming. Full exposure to the sun and air is necessary for the hest results.
H. H. Groff.

II. THE KINDS OF GLADIOLI.

alatus, 2.
angustus, 5 .
atroviolaceus, 7 .
bitlorus, 8 .
blandus, 22.
Brencbleyensis, 27.
Bride, 26.
Byzantinus 13.
cardinalis, 17.
Childsii, 30.
Colvillei, 26.
communis, 12 concolor, 4. crispiflorus, 6.
dracocepbalus, 19. tloribundus, 23, 26. Frobeli, 31. Gandavensis, 27. grandis, 3 . Leichtlini, 16. Lemoinei, 28. Milleri, 25. Nauceianns, 29. nanus, 26. Natalensis, 20. oppositiflorus, 24. Papilio, 15. psittacinus, 20.
purp_{21}
Quartinianus, 9
Quartinianus, 26 Sanndersii, 18. segetum, 14. sulphureus, 10. trimaculatus, 5. tristis, 4. Turiceusis, 32. versicolor. 3. vinulus, 11 vittatus, 11 Watsonius, 1

Other Latin names are in the trale, but they are mostly or wholly garden forms.
I. Species.-Few of the original species of Gladioli are in cultivation in their pure form. When grown at

GLADIOLUS

all, they are prized chiefly as oddities, or because of their botanical interest. The following species are either offered at the present time in American trade or are parents of modern garden forms :
A. Fl. with a long, slender, cylindrical curred tube, which is enlarged in the middle: segments nearly equat.

1. Watsònius, Thunb, Corm small, globose: stem slender, 18 in. or less, with 1 long, harrow-linear and stifi leaf and 2-3 short, sheatbing irs.: fls. 2-4, in a lax 1 -sided spike, 2 in . or less long, bright red, the widespreading segments oblong aud acute. B.M. 450.Little known in this country, but offered by the Dutch growers.
AA. Fl. short and open, the thbe short or seareely any: segments tery prominently clawed, usually знеqual.
2. alàtus, Linn. Small, tipe stem only $4-8 \mathrm{in}$. high, and slender : lvs. 3-4, linear and rigid: fls, 3-4 in a lax spike, the curved tube $1 / 2 \mathrm{in}$. long, the perianth bright red and often strongly veined; segments very unequal, the 3 lower tongue-like and protruded, the others obovate or nearly orbicular, all of them differeutly colored toward the base. B.M. 586 ; 592 (the Far. Jamaquensis).
A4s. Fls. of medium length, with a funnel-shaped tube, which is fluring at the top: segments marrowed below, but not distinetly clawed. (Gladiolus proper.)
B. Liss, linear (1/2 in. or less wide)-cxcept sometimes in Nos. $9,10$.

> c. Perianth-segments acutc.
3. grándis, Thunb. (G. versicolor, André). Stem slender, 2 ft . or less: lrs, about 3, linear or nearly terete, strongly ribbed: lls. 6 or less, 3 in. long, with a curved tube ; segments nearly equal, oblong-lanceolate and cuspidate, as long as the tube and twice longer than the stamens, recurved and often wary, yellowish or creamy, tinged and striped with purple-brown: seeds winged. B.M. 1042.
4. tristis, Linn. Very like the last: fls. 2-4, somewhat smaller; segments shorter than the tube and not twice longer than the stamens, acute, yellowish white with purple or brown pencilings, or (in G. concolor, Salisb.), almost white or uniform yellow. B.M. 272, 1098. G.F. 8:75.
5. angústus, Linn. (G. trimaculdtus, Lam.). Small and slender species ($10-20 \mathrm{in}$. tall): 1vs. 3-4, very narrow : fls. 2-6, long-tubed, white, the oblong segments shorter than the tube and the 3 lower ones with a characteristic purple median line ending in a heart-shaped mark. R.M. 602.

cc. Perianth-sryments obtusc.
 D. Color purple or violet.

6. crispiflòrus, Herb. (G. imbricàtus, Linn., var. crispiflorus, Baker). Stem 1-2 ft., rather slender: Jvs. $2-3$, sometimes $1 / 2 \mathrm{in}$. broad: fls. $4-10$, the tube $1 / 4 \mathrm{in}$. long and curved, the scgments obovate (1 in . long), crisped or wary on the edge, dark purple, more or less marked with wbite and red: seeds winged. E. Eu. and W. Asia.-Hardy or nearly so.
7. atroviolàceus, Boiss. Stem $1-2 \mathrm{ft}$. high: Irs. 3 , closely ribbed, firm: fls, few, the tube $1 / 3 \mathrm{in}$. long and curved, the obovate segments 1 in . long and dark purple or violet-blue: seeds globose. W. Asia,-Hardy or nearly so.
8. biflòrus, Klatt. Dwarf (1 ft , or less): If. single, very narrow: fls. $2-3$, the tube nearly straight, the obJong segments twice as long as the tube, lilac.

DD. Color essentially yellow or orange.

9. Quartiniànus, Rich. Strong, 2-4 ft.: Ivs. 3-4, rigid, sometimes nearly ensiform: fls. $4-9$, in an open spike, large, the narrow curved tube $11 / 2 \mathrm{in}$. long; upper segments booded, the others smaller and more or less reflexed, bright yellow or yellow flushed and feathered with scarlet. B.MI, 6739 . G.C. 111. 24:467, and Gn. $55: 1225$ (var, superbus) Mts, of Trop. Afr. - Not known
to be in the Amer. trade, but attracting attention in Europe. One of the best of the genus.
10. sulphùreus, Baker. Stout, but low: 1vs. $3-4$ the blade short and somewhat ensiform: fls. 6-8, large, the curved tube $11 / 2 \mathrm{in}$. long, soft bright yellow; upper segments cucullate, the 3 lower ones small. Mt. Kilimanjaro. Gn. 38:762(?)

DDD. Color (under color) white or nearly so.
11. vittàtus, Hornem. (G. vinulus, Klatt). Low: lvs. 3-4, very narrow: fls. 3-6, nearly ereet, the slightly curved tube nearly or quite an inch long, whitish. the 3 lower segments with a purple central blotch.
BB. Leaves ensiform (1/2in. or more broad, and flat or flattish).
Ender- or body-color essentially purple.
12. communis, Linn. Stem $11 / 2-21 / 2 \mathrm{ft}$: $1 \mathrm{rs} .3-4,1$ ft . or less long: Als. $4-8$, small ($11 / 2 \mathrm{in}$. long), with a curved tube; segments bright purple (flesh-colored in the var, carneus), nearly equal in length, all connivent or touching (making a narrow fl.), the 3 lower ones long-clawed and with a median line: seeds broad-winged. France, Germany. B.M. 86, 1575.-Hardy. Little known in cult. in this country.
13. Byzantlnus, Miller. Fls. more and larger, plant more robust, segments uore spreading at maturity, although the 3 upper ones are contiguous, dark purple, the 3 lower ones with a prominent white median line: seeds winged. Mediterranean region. B. M. 874.-Hardy. Little known in gardens.
14. segètum, Ker. Differs from G. Byzantinus in having globular (not winged) seeds, and in the flaring or spreading segments of the bright purple, obovate-obtuse sepals. Canaries and Mediterranean region. B.M.719.-Hardy. Little grown. Early.
15. Papílio, Hook. Stem 2 ft . or often more: Irs. about 4, rigid, 1 ft . or more long: fls, 612, with a curred tube, pale purple or lilac, yellow in the throat; upper segments obovate and hooded, $11 / 2 \mathrm{in}$. long, the lower ones very parrow below and marked with large red-brown blotches. B.M. 5565 . - Handsome. Varies to white in cult.
cc. Tnder- or body-color essentially red (No. 20 may be sought here).
16. Leichtlini, Baker. Stem about 2 ft . tall, terete : 1 vs . about 4.1 ft . long: fls. 6-8, large, with a curved tube $1 \frac{1}{4}$ in. long, crimson and yellow; upper segments oborate and connirent, 3 lower ones much smaller and acute, spreading, red at tip but yellow and minutely red dotted below.
17. cardinalis, Curt. Tall: fls many, nearly erect, bright scarlet, the tube $11 / 2$ in. long and nearly straight; upper segments long-spatulate (2 in . long), scarlet, the 3 lower ones sborter and narrower, with a large white blotch. B.M. 135.
18. Saùndersii, Hook. f. About 2 ft.: Ivs. $4-6$, strongly ribbed and stiff: fls. $6-8$, large, bright scarlet, the tube 1 in . to $11 / 2 \mathrm{in}$. long and curved; 3 upper segments long-spatulate, uniform scarlet, connivent (2 in . long), 3 lower smaller, whiteblotehed and spotted. B.M. 5873. Gn. 12:83.-Handsome.
ccc. Ender or body-color essentially yellor.

19 dracocéphalus, Hook. f. Stem stout, 2 ft. or less: 1vs. 3-4, rather firm: fls. 3-6, of medium size, yellowish green, the tube (2 in . or less long) curved; upper segments elliptic-obovate and more or less hooded, yellowish and closely striate with purple, the other segments much smaller and reflexing, mostly green and purple spotted. B.M. 5884.-Odd.
20. psittacinus, Hook. (G. Natalensis, Reinw.). Stem 3 ft . high, stout: Irs, about 4, rather rigid: fls, many and large, with a curved tube nearly or quite 2 in . long, rich yellow but thickly grained and overlaid with red (particularly about the margins of the segments); upper segments obovate and hooded, the lower much smaller and reflexing. B.M. 3032. B.R. 17:1442. L.B.C. 18:1756. - One of the leading parents of garden Gladioli.
21. purpùreo-auràtus, Hook. f. Stem 3-4 ft., very slender: Irs. 3 - 4 , short: fls. 10 or more, primrose-yellow, medium in size, the curved tube less than 1 in . long; segments obovate, not widely spreading, the lower ones with a purple blotch. B.M. 5944. G.F. 2:89.-Handsome. A parent of modern Gladioli.

$$
\begin{aligned}
& \text { cccc. Cuder- or body-cotor white. (Forms of No. } 15 \\
& \text { may be sought here.) }
\end{aligned}
$$

22. blándus, Ait. Stem 2 ft . or less tall: 1vs, usually 4: fls, few, white and red-tinged, the curred tuhe $11 / 2$ in. long; segments all oblong or oblong-spatulate and flaring or recurved, some of them red-marked in the throat. Variable. Sometimes pure white (B.M. 648), and sometimes flesh-color (B.M. 645).-An old garden plant.
23. floribùndus, Jacq. Stem short (1 ft.), producing fls. from near its base: lvs, usually 4 : fls. 12 or less, large, white tinged with pink, the slightly curved tube 2 in. or less long; segments obovate or spatulate, obtuse, wide-flaring, red-lined. B.M. 610.
24. oppositiflorus, Herb. Much like the last, but fis. more numerous and smaller, in a distichous (or 2-sided) spike, white, sometimes marked with rose. B.M. 7292 G.C. III. 13:291. Gn. 45:963. - A rery handsome plant growing 3-6 ft. high, and producing spikes 2 ft . long.
25. Milleri, Ker-Gawl. Stem 12-20 in.: 1rs, about 4 : fis, rather large, $4-5$, nearly erect, milk-white, the tube 2 in . or less long and nearly straight; segments oblong and nearly acute. B.M. 652.
II. Hybrids. - The garden Gladioli are hybrids of various kinds and degrees. Of many, tbe parentage is so confused that it cannot be made out. Howerer, there are four main lines of development or dirergence, represented in the late-flowering Gandarensis, Lemoinei and Nanceianus, and the early-flowering Colvillei. An important article on the hybridizing of Gladioli, by Robert T. Jackson, will be found in G.F. 2:88. - Some of the points of merit of the modern Gladiolus are: good constitution; grod substance or texture of flower; brilliancy and definiteness of color; large size; long spikes ($20-25$ blooms).
26. Colvillei, Sweet (G. cardinalis \times tristis). Fls. open or flaring, with oblong-acute segments, scarlet, with long blotches at the base of the lower segments: early-fiowering: spikes short. Hardy south of Washington with some protection. R.H. 1895, p. 289. G.C. 111. 12:90. (in. 28:520; 34:680; 50, p. 66. -The oldest of the garden forms.

Runs into many types and strains. The modern white-flowered type, represented by The Bride, is best known in this country. Small forms are known as G. nanus. Some forms are known as G. floribundus.

Another form of early-flowering Gladioli is known as G. ramósus, Paxt. (issue of G, cardinalis and oppositiflorus), but it is probably no longer possible to distinguish these two groups.
27. Gandavensis, Van Houtte (G. psittacinus \times cardinalis). Fig. 913. Upper segments nearly or quite horizontal or hooded, the colors in bright shades of red and red-yellow, variously streaked and blotehed : late-flowering: spikes long. The commonest old-time type of garden fladiolus. F.S. 2:84 (1846). R.H. 1846:141. P.M1. 11:27.-First offered to the trade by Van Houtte, Aug. 31, 1841. M. Souchet, of Fontainebleau, France,
did much to improre the Gandarensis type by repeated selections and breeding. By Herbert and some others, Gandarensis is considered to be an offspring of G. psittacinus \times oppositiflorus. C. Brenchleyénsis is one of the Gandarensis tribes.
28. Lemóinei, Hort. (\mathcal{i}. Gandarensis \times purpureoauratus). Fig. 914. A modern race characterized by highly colored yellow, red and purplish fls., purpleblotched on the lower segments, with a more or less bell-shaped form of corolla-the segments broad and heary and the upper ones horizontal or strongly hooded. Grown by M. Lemoine, Nancy, France, and first shown at the Paris Exbibition of 1878. Gn.

914. Gladiolus Lemoinei (on the right), and G. Nanceianus.
29. Nanceiànus, Hort. (G. Lemoine $i \times G$. Saundersii). Fig. 914. Robust, with rery large, open-spreading fls., the two side segments widely flaring and sometimes measuring 6-8 in. from tip to tip; upper segment long and upright. First exhibited by Lemoine, the raiser, in 1889. The finest race, characteristically is full-open and large fls., in brilliant shades of red and purple. Gn. 41:846. G.C. 1II. 13:131.
30. Childsii (G. Gandarensis \times Saundersii). Fls. similar to G. Lemoinei in shape and color. Originated by Max Leichtlin, Germany.
31. Fràbeli, Hort., is G. Gandauensis \times G. Saundersii, var. superbus.
32. Turicensis, Hort., is of like parentage. G.F. 3:89. -This and the last are the work of Frobel \& Co., Zurich. They are of recent origin.
L. H. B.

GLADWIN. Iris fotidissima.

GLASS. The important subject of greenhouse glass is treated under Greenhouse Glass.

GLASSHOUSE. Any glass structure in which plants are grown, particularly one which is large enough to admit the operator. It is a generic term. See Greenhouse.

GLASSWORT. Salicomia.
GLAÚCIUM (name refers to glaucous foliage). $P a$ paverd̀ces. Horned Poppy. A dozen or more herbs of S . En. and W. Asia; annuals, biennials or oceasionally per-

GLEDITSCH1A

ennials, a few of which are grewn for their large poppylike fls. and glaucous-blue toliage. Sepals 2: petals 4: stamens many: ovary with 2 (rarely 3) cells, the stigmas miter-sbaped, the fruit becoming a long silique-like capsule: Ivs. alternate, lobed or dissected. Glauciums are low,

915. Glaucium luteum. branchy herbs, often somewhat sueculent, with large fis., mostly yellow or orauge, but varying to red and purple. The fls are usually short-lived, but they are borne in rapid succession. They ace well adapted for foliage effects in borders or edgings. Of easy culture in any good soil. They prefer an open, sunny situation. Mostly prop, by seed, but the perennial kinds by division; liowever, the perennials are short-lived, and asually had best be treated as biennials; they should be grown from seed.
lùteum, Scop. (G.fldvum, DC.). Figs. 915, 916. Stems stout, $1-2 \mathrm{ft}$. , pubescent: radical irs. 2-pinnate and hairy, the upper clasping and sinuate-pinnatifid: fls. genecally solitary, on long stems, $2-3 \mathrm{in}$. across, yellow or orange. Eu.-Sparingly naturalized E. Perennial or biennial; sometimes grown as an annual.
corniculàtum, Curt. (G. phaxícenm, Gaert. G. rùbrum, Hort.). Lower: radical lvs, pinnatifid, pubescent, the upper ones sessile and truncate at the base: fls, red or purplish, with a black spot at the base of each petal. Eu. - Mostly annual. G. F'ischeri, Hort., is probably a form of this.
I. H. B.

GLAZIOVA. See Cocos insignis

GLECHOMA. See Yepeta.
GLEDITSCHIA (after Gottlieb Gleditsch, director of the botanic garden at Berlin; died 1780). Syn Gleditsia. Leguminosor. Honey Locust. Ornamental decidnous trees, often with large branched spines on trunk and branches: beanches spreading, forming a broad graceful rather loose head, with finely pinnate foliage, generally light green and tucning clear vellow in fall; the greenish fls. appearing in racemes carly in summer are inconspicuous, but the large, flat pods ace ornamen-

916, Glaucium luteum $\left(X^{1 / 2}\right)$.
tal and the fertile tree is therefore to be preferred for planting. (f), tracanthos is a useful native. G. Juponied and G.ferox are almost hardy North. They are rery valuable trees for park planting and for avenues, and make almost impenetrable hedges if planted thickly and pruned severely. The coarse-grained wood is durable and strong. The pulp of the pods of (i. triacanthos is sweet when fresh, bence the name Honey Locust, but becomes bitter at length ; in Japan it has been used as a substitute for soap. The Gleditschias are of vigorous growth and thrive in almost any soil. Prop.
by seeds sown in spring about 1 in . deep, they should be soaked in hot water before being sown: varieties and rare kinds are sometimes grafted on seedlings of G. triacanthos in spring. About 10 species in N. America, Asia and Africa. Lvs, alternate, abruptly pinnate, often partly bipinnate on the same leaf, or wholly bipinnate, both usually on the same tree : fls. polygamous ; ealyx lobes and petals $3-5$, stamens 6-10: pod compressed. mostly large and indehiscent, 1-many-seeded.
A. Pod thin-walled: Irs, pinnate with more than IL lfts., or bipinnate.
triacánthos, Linn. Honey or Sweet Locust. Threethorned Acacia. Fig. 917. Tret, $70-140 \mathrm{ft}$., usually with stout simple or branched spines $3-4$ in. long: Irs. 6-8 in. long, with pubescent grooved rachis ; pinnate with 20-30 lfts., bipinnate with 8-14 pinna; lfts. oblouglanceolate, romotely crenulate-serrate, $3 / 4-1 \frac{1}{2}$ in. long: ds, very short-pedicelled in $11 / 2-3$ in. long, narrow racemes: pod 12-18 in. long, slightly falcate and twisted at length. May, June. From Pa. south to Miss., west to Neb. and Tex. S.S. 3:125, 126. - Var. inermis, DC. Unarmed or nearly so, of somewhat more slender and looser habit. Var. Bujoti, Hort. (G. Bujòti pendula, Hort.). With slender, pendulous branches and narrower lfte.

Japonica, Miq. Tree, 60-50 ft., with somewbat conpressed, often branched spines, $2-1$ in. long: lys. $10-$ 12 in . long, with grooved and slightly winged, puberulous rachis, piunate with $16-94$ lfts., bipinnate with $8-12$ pinnæ; Ifts. ovate to oblongnearly lauceolate, obtuse, entire or remotely crenulate, lustrous above, $3 / 4-2$ in. long: fls. short-pedicelled, in slender racemes: pod $10-12$ in. long, twisted, bullate, with the seeds near the middle; pulp acid. Japan, China. (4.F. 6:165. - Var. purpùrea,

917. Gleditschia triacanthos. ($\times 1 / 3$.) Rebd.(G. Sinfersis, var. purpürea, Loud. G, coccinea, Hort. G. Sinensis, var. orienfalis, llort.). Lfts, broadly oval to oblong-oval, obtuse or emarginate, $1 / 2-11 / 2 \mathrm{in}$. on the pinnate, smaller on the bipinnate lvs.
ferox, Desf. Tree, with compressed, large, usually branched spines: lrs. with grooved, almost glabrons rachis, usually bipinnate; pinnae $6-10$, with many lfts. ; Ifts. ovate-lanceolate to lanceolate, acute, minutely and remotely erenulate, ${ }^{1} 3-1 \frac{1}{2} \mathrm{in}$. long. China. Often cult. under the name G. macracantha, Sinensis var. Japanica and horrida and usually referred to G. Sinensis, but seems more closely allied to G. Japonica. Var. nàna, Hort., is a sbrubby, often less spiny form.
AA. Pod thick - walled: lvs, pinnate, with 4-12 lfts., rarely bipinnate.
Sinénsis, Lam. Tree, to 40 ft ., with stout conical often bcanched spines: 15s. $5-7$ in. long, with grooved pubescent rachis, and $8-18$ lfts.; lfts. ovate of oblong-orate, obtuse or acute, crenulate-serrate, reticulate beneath, 3/4-2 in. long: fls. distinctly pedicelled, in slender racemes: pod almost straight, thick, $4-7 \mathrm{in}$. long, $1-1 \frac{1 / 2}{} \mathrm{in}$. hroad. China.
G. aquática, Marsh. (G. monosperma, Walt. G., inermis, Mill., not Linn.). Water or Swamp Locles. Tree, to 60 ft , with mostly simple spines: lvs, pinnate, with 12-18 ovate-oblong. crenulate lits., or bipinnate, with $6-8$ pinnee: pod thin, elliptic, 1-seeded, 1-2 in. long. From Carolina south, west to Texas. S.s. $3: 127-28 . G$. austràlis, Hemsl. Tree with large spines: ifts, very oblique, ohlong, crenate leathery, shining: pod with coriaceous walls, $4-5 \mathrm{in}$. long. S . China.- - . Cáspica, Desf. Allied to G. triacanthos. Lrs, pinnate with 12-20 ovate, crenulate lfts., or bipinnate with $6-8$ pinnae: pod thin, pulpy, to 12 in . long.- \mathcal{i}. Fontanèsi. Spach. $=$ G. macraesntha.- G. hirrida

Willd =G. Sinensis.-G. macracantha, Desf. Allied to G. Sinensis; spines and lfts. generally larger: pod $4-6 \mathrm{in}$. long. $3 / 4 \mathrm{in}$. broad, often almost cylindrical. China.

Alfred Rehder.

GLEICHENIA (W. F. Von Gleichen, 171ī-178:3). Gteicheniàcer. A genus of about 30 species of ferns from the tropical and south temperate zones, growing naturally in dense thickets. The leares fork, often several times, and the family is characterized by dorsal sori composed of a few nearly sessile sporangia; these are surrounded by a broad transverse ring, and open vertically. The species after the third are often catalogued under Mertensia, a name which, because used for a genus of flowers, must give way to Dicranopteris if they are separated aud placed in a distinct genus, where they probahly belong.

A. Eltimate lobes smanl, roundish.
 \section*{B. Sorus of 3-1 sporangia, superficiat.}

rupéstris, R. Br. Lobes rounded or obtuxely quadrangular, the margins thickened and recurved, somewhat glaucous beneath. Australia. Var. glaucéscens, Moore, has Iss of thicker texture, which, when young, are very glaucous on both sides, contrasting with the reddish purple stalks.
circinàta. Swz. Lobes ovate or rotund, with the rachides pubesceut when young; 3-5 times forking, the ultimate pinnules 1 in . long. Austral., New Zealaud.

Var. speluncæ, Hort. (G. spelúnce, R.Br.). Lrs. pendent but not curving; pinuules curved inward, forming small cavities. Yar. semivestita, Labill. (G. semiveshta, Hort.), differs in its close and very erect habit, and flat, deep green pinne. Var. Méndelli, Moore (G. Méndetli, Hort.). More robust and compact than the type, with flat, thicker and glaucous lrs. Gn. 51, p. 472.
BE. Sorus of \& sporangia concealed in slipper-shaped lobes.
dicárpa, R.Br. Lvs. $2-4$ times forked, with the lobes strongly arched, rotund or narrow, with the under surface rusty-hairy. Australia.
AA. Ultimate lobes peetinate : sori near the middle of the reinlets.
c. Leaf, after first forking, bipinnate.
glaùca, Hook. Primary branches elongate, $2-3 \mathrm{ft}$. in length ; rachises with rusty scales; pinnæ $4-8 \mathrm{in}$. long, with closely placed entire segments, glaucous beneath. China and Japan.

cC. Leaf with fan-shaped divisions.

flabellàta, R. Br. Lvs. 2-3 times forked, the divisions ascending, 6 in . or more long, elliptic-lanceolate ; ultimate dirisions linear. Australia.
longipinnata, Hook. Branches of the lvs. repeatedly dichotomous ; pinnæ up to 2 ft . long, 3 in . wide. Trop. America.
AAA. Iltimate branches with a pair of forked pinner: leaf stems zigzag, repeatedty dichotomous.
dichotoma, Willd. With a distinet pair of pinna arising from the base of the forked branches ; segments not decurrent. Tropical regions generally, but several species have been confused here, as in many of the widely distributed species.
L. M. Underwood.

GLOBBA (Malayan name). Seitaminàcea. This genus, which belongs to the same family with the cannas and ginger plant, contains some herbaceons conservatory plants with rhizomes and habit of canna, and a singular floral strueture. Only one species is known to be cult. in America. This is known to the trade as G. coocinea, which is really G. atrosanguinea, fgored at B.M. 6626. Index Kewensis is clearly in error in referring G. coecinea to G. albo-bructeata, as is plain from G.C.11. 18:71. Veitch introduced in I881 a plant under the provisional name of G. coecinea, as it was supposed to be a new species, but the next year it was identified with G. atrosanguinea. This plant was highly praised in 1893 by John Saul, who said substantially: "Plants in bloom the greater part of the year: stems much erowded, $12-18$ in. long, gracefully arching on all sides: fis. scarlet and yellow, in dense racemes." The credit for the
discovery of this plant is generally given to F. W. Burbidge, but in G. C.11. 18:40i Burbidge gives the honor to Curtis. For culture, see Alpinia.
atrosanguinea, Teijsm. \& Binnend. (G. corcinea, Hort., Veiteh). Stem slender, hecoming 2-3 ft, high: Ivs. $3-1$ in. long. elliptic, acuminate at both ends; sheaths purplish, pubescent, elosely clasping the stem: lower Howerless bracts distant, brown, 6-9 lines long: upper and flowering bracts crowded, red: fls. $11 / 2$ in. long; corolla yellow, tubular, thrice as long as calyx. Borneo. B.M. 6626.
W. M.

GLOBE AMARANTH. Gomplirena.

GLOBE FLOWER. See Trollius.
GLOBE HYACINTH. Consult Muscari.
GLOBE MALLOW, See Sparalcea.
GLOBE THISTLE. See Echinops.
GLOBE TULIP. See Caloehortus.
GLOBULARIA (the flowers in small, globular heads). Globularidceu. About a dozen species of old World herbs, subshrubs and shrubs, with small blue fls, mostly in globular heads. Lvx. from the root, or alternate, leathery, eutire or with a few sharp teeth. Probably the commonest and best species is G. tricosantha, which thrives at the front of well-drained borders, but is particularly showy in the rockery. For this and G. vulgaris and its forms, J. B. Keller adrises rather moist hut well-drained soil and partial shade. Prop. by division or seed.
A. Hardy herbaceous plants about 6-12 in. high.

в. Root-lus. 1-nerved.

trichosántha, Fisch. \& Mey. Height 6 in. : root-lvs. spatulate, 3 -toothed at apex: stem-1rs. obovate or oblong, mucronate, sessile. July, Aug. Asia Minor. Syria."Lvs. turn blackish purple in fall."-Woolson.

BB. Root-les. 5-nerved.

vulgàris, Linù. Height $8-12$ in.: root lvs. obovate, petiolate, uearly entire, apex entire, notehed or mucronate: stem-lvs. lanceolate, sessile. S. Eu.. Caucasus. July, Aug. B.M. 2256.

AA. Tender subshrub.

Alỳpum, Linn. Lrs. obovate-oblong, mucronate or 3-toothed at apex. Mediterranean regions. - C'ult. iu S. Calif. by Franceschi, who says it is covered with fls, all winter. Also cult. abroad under glass.
W. M.

GLORIOSA (Latin for glorious). Syn., Methónica. Lilidece. Three tropical species, all African, and one also Asian. They are tall, weak-stemmed plants, supporting themselves by means of tendril-like prolongations of the alternate, lanceolate or lance-ovate lys.: Hls. many and showy, long-stalked, borne singly in the axils of the upper lvs.; perianth of 6 distinct long segments, which are undulate or crisped, and reflexed after the manner of a Cyclamen, variously colored; stamens 6, long and spreading, with versatile anthers: ovary 3 loculed; style long, and bent upward uear the base. Odd and handsome plants, to be grown in a warm house. They are not difficult to grow. The brightest fls. are produced in sunlight. The plants grow from tubers. These tubers should be rested in early winter, and started in pots in January to March. The plants bloom in summer and fall. When potting the old tubers, offsets may be removed (when they occur) and grown separately for the production of new plants. The tubers may be cut in two for purposes of propagation. Let the plants stand near a pillar or other support. Give freely of water when the plants are growing. In this country they are sometimes bedded out in summer. W. E. Eudicott cultivates Gloriosa outdoors in summer at Canton, Mass., and finds that the plants so treated are not much inclined to climb and flower as freely as under glass. In Florida, they may be grown permanently in the open. Success with Gloriosa depends on having strong bulbs. Consult Bulbs.

A. Segments (or petals) much crisped.

supérba, Linn. Climbing Laly. Stem $5-10 \mathrm{ft}$. high: lvs. ovate-lanceolate ; segments $3-1$ in. long and less than an inch wide, opening yellow, but changing to yellow-red and deep scarlet. Africa, Asia. B.R. $1: 77$. Gn. 38:784. R.B. 23:121.

AA. Segments somewhat undulate, but not crisped.

simplex, Linn. (G. rivéscens, Lindl. G.Plantii, Loud.). Fls. opening yellow, and remaining so in shade, lout becoming deep yellow-red when exposed to the sun; wider than in G. superba, barely undulate and wavy, and not prolonged or hooked at the end as in the latter species. Africa. B.M.2539. Var. grandiflòra, Nichols. (Methónica graudiflòra, Hook.), has fls. 8 in. across. B.M. 5216.
G. Abyssinica, Rich., said to be the largest-fld. species, seems not to be in cult.
L. H. B.

GLORY OF THE SNOW. Fanciful name for Chionodoxa.

GLORY PEA. See Clianthus.

GLOXINERA. Name given to bybrids of Gloxinia (Sinningia) and Gesneria. See Gloxinia.

GLOXINIA. The genus Gloxinia was founded by L'Heritier in 1785 (named in honor of P. B. Gloxin, a botanist of Strassburg) upon G. maculata of Brazil. Early in this century a related Brazilian plant was introduced, and it attracted much attention: this plant was named Gloxinia speciosa by Loddiges in his Botanical Cabinet in 1817, and it was there figured. In the same jear it was figured by Ker in the Botanical Register, and also by Sims in the Botanical Magazine. Sims wrote that the plant was "already to be found in most of the large collections abont town [London]." These writers refer the plant to the Linnean class Didynamia, but Ker also suggests that it may belong to the Campanulaceæ. This Gloxinia speciosa was the forerunner and leading parent of the garden Gloxinias, plants which are now referred to the family Gesneracem; but it turus out that the plant really belongs to Nees' genus Sinningia, founded in 1825 on a Brazilian plant which he named S. Melleri. All our garden Gloxinias are Sinningias, but to gardeners they will ever be known as Giloximia; therefore, we will trace the evolution of them here. The genus is one of the Gesneracea.
Gloxinia has no tubers: Sinningia has. Gloxinia has a ring-like or annular disk about the ovary: Sinningia bas 5 distinct glands. The Sinningias are either stemless or stem-bearing, with a trumpet-shape or bell-shape 5 -lobed and more or less 2-lipped corolla, a 5 -angled or 5 -winged calyx, 4 stameus attached to the base of the corolla, and with anthers cohering at the tips in pairs, and a single style with a concave or 2-lohed stigma. The garden Gloxinias belong to the subgenns Ligeria (subgenus of Sinningia), which has a short stem or trunk, and a broad-limbed bell-shaped flower.

The true Gloxinias are not florists' flowers, and they are little known in cultivation. They are apparently not in the American trade. The old G. muevlata is figured in the Garden $39: 801$ (p. 36t), and it is probably to be found in choice collections in the Old World. It produces knotty rootstocks, which, as well as the leaves, may be used for propagation. It is also figured in B.M. 1191. G. glabrdla, Zuce., from Mex., is the G. glabra, Hort., Achimenes gloxiniaflowa, Forkel, and Plectopoma gloxiniflorum, Haust. It is a stemmy plant, with white fls, with yellow-spotted throat. (B.M.4430, as G.fimbriata, Hort.) Plectopoma is now referred to Gloxinia. A few forms of this were once offered by Saul, but, with the exception of P. gloxiniflortm, they are probably all garden forms.
The garden Gloxinias (genus Sinningia) are nearly stemless plants, producing several or many very showy bell-like fls, each on a long stem. Gloxinia speciosa originally bad drooping fls., but the result of continued breeding has produced a race with tls, nearly or quite erect (Figs. 918, 919). The deep bell of the Glosinia is very rich and beautiful, and the erect position is a decided gain. The fls. also have heen increased in size and number, and varied in shape and markings ;
the Jvs. also have become marked with gray or white. The color of the original Gloxinia speciosa was apparently a nearly uniform purple. The modern races bave colors in white, red, purple and all intermediate shades: some are blotched, and others are fine-spotted or sprinkled with darker shades. It is probable that the larger

918. Gloxinia of the florists.
part of the evolution in the common greenhouse filoxinia is a direct development from the old G. speciosa, but hybridity has played an important part. One of the earliest recorded series of hybrids (1844) was with Sinningia gutlate, which is a plant with an upright stem and bearing rather small spotted fls. in the axils of the lvs. (B.R. 13:1112). The issue of this cross showed little effect of the S. gultata, except a distinct branching habit in some of the plants (B.R. $30: 48$). It is possible, however, that S. gultata has had something to do with the evolution of the spots on the present-day flower, although the original G. speciosa was striped and blotched in the throat. The student who wishes to trace some of the forms of garden Gloxinias may look up the following portraits: B.M. 1937, speciosa itself; B.M. 3206, var. albiflora; B.N. 3934, var. macrophylla variegata ; B.M. 3943, var. Menziesii; F.S. 3:220, Zeichleri (hybrid); F.S. $3: 268$; F.S. 4:311, Fyfiana (hybrid); F.S. 6:610; F.S. $10: 1002$; F.S. $14: 1434-6$; F.S. $16: 1699$ and 1705 ; F.S. $17: 176 \mathrm{~m}, 1772-1776$; F.S. $18: 1846,1878$, 18×5, 1918-19; F.S. 19:1955, double forms; F.S. $21: 2164$; F.S. 22:2324. 1.H. 42:39, 41. Gt. $47: 79$: Gt. 48, p. 80. Gn. 15:1fi8; 43:909; 52. p. 268. R.H. 1846:301, Teuchlerii; R.H. 1848:201, Fyfiana; 1877:70, variabilis; R.H. 1883, p. 248. For florists' plants, see A.F. 11:7; A.G. $14: 49$; Ging. 6:83. There are many Latin-made names of garden Gloxinias, but the plants are only forms of the G. speciosa type. One of the commonest current trade names is G. crassifolia, a name applied to some of the best and largest-growing strains.

There are double forms of Gloxinia, in which an outer but shorter corolla is formed. These forms are more curious than nseful. Gloxinia (Sinningia) has been hybridized with Gesneria; and the hybrid progeny has been called Gloxinera (G.C. 111. 17:145, Fig. 22). L. H. B.

Gloxinias are general favorites with most people. Their large tubular and richly colored blossoms, together with their soft, velvety green leaves, make a gorgeous display when in flower. Being natives of tropical America, they require stove temperature during their growing season. Though they may be grown so as to flower at almost any season of the year, yet they are naturally summer-flowering plants, and do best when treated as such. They are propagated by seeds, or by cuttings made of leaves or stems. Seeds are preferable, unless one wishes to increase some very choice colored variety, when it is best to propagate by leaf cuttings,
using partly matured medium sized leaves with a small portion of leaf-stalk attached (Fig. 629, p. 423). These may be inserted in an ordinary propagating bed, where, if kept rather on the dry side, they will soon root and form tubers, when they may be potted and grown on. Seeds should be sown in a warm temperature early in February, in pans or shallow boxes containing a finely sifted mixture of peat, leaf-mold and silver sand in about equal proportions. The seedlings will begin to appear in about ten days, when great care must be exercised in watering, or they will "damp-off," as gardeners term it. In fact, success with these plants throughout the year depends largely upon the care exercised in watering. Even in their most active growth the water always should be given from the spout of a watering can, takiug care not to wet the leaves, though they like a wariu, humid atmosphere during their growing season. As soon as the seedlings can be conveniently handled, they should be potted singly into thumb pots and grown on rapidly, using in subsequent shifts a mixture of two parts leafmold, I part good fibrous loam and I part peat. The plants must be well shaded from sunlight and placed in a position free from draughts. The seedlings should begin to flower by the middle of August, when they should be given an abundance of air. After flowering. the leaves will begin to mature, when water should be gradually withheld. As soon as the leaves have all ripened off, the pots should be stored away in some conrenient place for the winter, in a temperature of about 45°, giving just sufficient water to keep the tubers from shriveling. Towards the middle of February the tubers will show signs of starting into growth. A batch should be started at this time, choosing the tubers which appear most active, and the remainder should be held back for another month; this will give a much longer period of blossoming. The tubers should have all the old soil shaken off and be potted again in clean, well drained pots, using sizes just large enough to accommodate the tubers, the compost being the same mixture as before recom-

919. Modern Gloxinia blooms ($\times 1 / 3$).
mended. They should be given but little water until active root growth commences. As soon as the pots are filled with roots, they should be shifted on at once into the pots they are intended to flower in, as frequent shifts would more or less damage their leaves, which have a tendency to cling round the sides of the pots. The first batch should come into flower in June. When
carefully grown, Gloxinias are particularly free from insect pests or fungous diseases, and the same tubers can be grown for several years. Edward J. Canning.

As floxinias are essentially tropical plants, they require a temperature of 60° (night) if started early; yet seedlings raised during summer time do splendidly when planted in coldframes. When a select collection is desired, it is customary to plant hundreds of seedlings in frames for the summer. A large majority of these will bloom, from which a number of the best is selected. In convection with this method of culture, it is interesting to note that nearly all the plants which fail to bloom are strong growers, making grand specimens the following season, and the majority of them will be purple-flowered. The more upright-growing plants of red and pink shades are the first to bloom; and curiously, also, the latest plants to start of any age are generally the best. Although cultural directions usually insist on care in watering so as to avoid wetting the foliage, we have never been careful to follow these instructions closely, except when the plants are coming into bloom, but we realize that it might be detrimental in moist, dull weather. The greatest objection we hare to wetting the foliage is on account of sediment from the water making a deposit on the bright, hairy foliage, taking away the luster which gives such a healthy and effective appearance to well-bloomed plants.
T. D. Hatfield.

GLYCERIA. Referred to Panicularia.

GLYCINE (Greek for sweet). Leguminòsce. Perhaps 15 or 20 species in tropical Asia, Africa and Australia, mostly twining vines. The Glycines are allied to Dolichos, Vigna and Phaseolus: the cult. species are distinguished by small and hairy fis. in short axillary racemes; stipules very small and free from the petiole: leaflets (3) large and thin: seeds short or globular and pea-like. In this country Glycine is known only in the Soy Bean, G. hispida, Maxim. (Fig. 195, p. 137), which is an erect, hairy aunual from Japan and China. It is also known as the Soja Bean, Coffee Bean and Coffee Berry. It grows 2-4 ft. high, making a rank, bushy herb, and bearing axillary clusters of small hanging, hairy pods, with constrictions between the seeds. The seeds are nearly globular, pea-like, usually white (e, Fig. 191, p. 136). In China and Japan the beans are much used for human food, but in this country the plant is grown for forage, having begun to attract attention about 25 years ago. The beans may be used as a substitute for coffee; and for this purpose the plant is often sold. The Soy Bean, in the form in which we know it, seems to be unknown in a wild state. It is probably a domesticated form of Glycine Sojja, Sieb. \& Zuce., which is wild iu Japan. These two species are united by some authors and separated by others (see Franch. \& Sav. Fl. Jap, 1:108. Maxim. Bull. Acad. St. Petersb. 18:398). For purposes of perspicuity and definition, they may well be kept separate in the books. The Soy Bean has also been separated as a distinct genus under the name of Soja hispida, Mœuch; but this disposition is now mostly given up. For the economic merits of Soy Beans, see various experiment station reports; also Farmers' Bull. 58, U. S. Dept. of Agric. It has been recommended as a drought-resisting crop.
Glycine was once applied to Wistaria. It is sometimes used for that genus at the present day in foreigu lists.

> L. H. B.

GLYCYRRHIZA (Greek, sweet root). Legumindsa. Licorice, also spelled Liquorice, and Lickorice. This genus contains the plant whose roots produce the Licorice of commerce. Seeds in pods are listed by a few dealers with miscellaneous agricultural seeds. The genus has about a dozen widely scattered species of perennial herbs, often glandular: lvs. odd-pinnate; lfts. of indefinite number, rarely 3 , entire, with minute glands or teeth: fls, blue, violet, white or yellowish, in axillary racemes or spikes, which are peduncled or sessile.
glabra, Linn. Height 3-4 ft.: lfts, ovate, subretuse, subglutinous beneath: spikes peduncled, shorter than the Ivs.: fls, distant: pods glabrous, 3-1-seeded. Summer and autumn.
W. M.

The roots of Glycyrrhiza, a native of sonthern Europe and central Asia, are used extensively by draggists; in America by brewers and manufacturers of plug tobacco; in Turkey, Egypt and France to make cooling drinks. Our supply-more than one and a half million dollars' worth in 1899-is derived mainly from Spain, Portugal, Italy, Torkey and Russia (Transeaucasia), the roots from Spain and Italy being considered best, and those from Turkey poorest on account of their bitterness. The soil for Licorice must be deep, mellow, moist, rich and free from stones. Plants are usually set in rows, 3 ft . or more apart, and not less than 1 ft . asnnder. After the plants bave covered the ground, they are allowed to shift for themselves for 3 or 4 years. Harvesting is primitive, the roots being exposed by the plow and pulled by band. Large quantities of roots are thus left to produce a succeeding crop or to overrun the field as weeds. One ton to the acre is considered a fair yield; 1.6 cents a pound an average price. In America the only fields worthy the name are in California, where Licorice is not considered very paying. Experiment and experience with it are, however, hut little more than begun.
M. G. Kanss.

GLYPTOSTROBUS. See Tarodium.

GMELINA (after one of five distinguished German botanists named (imelin). Verbenàcer. Eight species of E. Asiatic and N. Australian trees and shrubs, bearing yellow or brownish irregular As. sometimes nearly 2 in, across. A very few plants may be cult. in Euro pean warmbouses, and in America only in S. Fla. and s. Calif, outdoors. The genus produces a fancy timber similar to teak, which is a product of the same order. Vitex and ('lerodendron are better known congeners. Spiny or not: shoots tomentose: lvs. opposite, entire, toothed or lobed: fls, in panicled eymes, tomentose at least while young: corolla tube slender below: limb oblique, 5- or 4 -lobed; stamens 4 , didynamons.

A. Less, becoming 9 in . long, 6 in . wide.

arbòrea, Roxb. (G. Rhèेdii, Hook.). Unarmed tree, sometimes attaining 60 ft ., deciduous, flowering with the young Ivx.: Ivs, cordate-ovate. India, Malaya. B.M. 4395. Cult. only in S. Calif. hy Franceschi, who keeps G. Rherdii separate.

$$
\text { AA. Les. } 1 / 2-11 / 2 \text { in. long. }
$$

Agiática, Linn. (G. parviflora, Pers., a typographical error for G. parvifolia, Roxb.।. Shrubby, sometimes spinescent: Ivs, ovate or obovate, entire or lobed. India, Ceylon.

GNAPHALIUM. See Leontopodixom and Helichrysum. There are various native (inaphaliums, but they are not in cultivation. G. lanutum of gardeners is He7ichrysum petiolatım.

GOAT'S BEARD is nsually Spirad Aruncus; also the genus Tragopogon, to which the Salsify or Oyster Plant belongs.

GOAT'S FOOT. Oxatis Caprina.

GOAT'S RUE. See Galega.
GOBO. See Burdock.
gethea. See Pavonif.
GODETIA. Included in (E'nothera.
GOLDEN CHAIN. Laburnzm rulgare.
GOLDEN CLUB. Orontium.
GOLDEN DEWDROP. Fanciful pame for Duranta Plumieri.

GOLDEN FEATHER. See Chrysanthemum parthe.

 nioides.GOLDENROD. Sotidago.
GOLDEN SEAL. Hydrastis.
GOLD FERN, Gymnogramma.

GOLDFUSSIA. Included in Strobilanthes.
GOLD THREAD. Coptis trifolia.
GOMBO, Gumbo, or Okra. See Hibischs esculentus.
GOMPHRENA (name suggested by Gromphrana, Pliny's name for some Amaranth, supposed to be derived from gropho, to write or paint; alluding to the bighly colored or "painted" foliage). Amaranticece. This genus includes the Gilobe Amaranth, a common everlasting flower of easy culture. It is also known as Bachelor's Button, though two other utterly distinct plants (Centarreu Cyanus and Rumuculus acris) have the same popular name. The flower-heads are an inch or less in diameter, globose, of many colors, and chiefly remarkable for the showy bracts, which hide the true flowers. In a family remarkable for brilliant foliage this genus seems to be the only one valued for everlastings. Nearly all the other everlasting flowers of importance belong to the Compositæ. Gomplrena bas about 70 species, mostly in the warmer parts of America and Australia, but the Globe Amaranth is widely dispersed thronghout the tropics. Herbs erect or prostrate, pubescent to villous, with or without a leafy involucre: Hs, short or loug, white or colored: bracts short or long, concave, and keeled, winged or crested on the back. For culture, see Annuals and Everlasting Flowers.
globosa, Linn. Globe Ayaranth. Barhelor's Button. Height 18 in . or less: lvs. elliptic to obovate, the largest 4 in. long, $11 / 2 \mathrm{in}$. wide, tapering to a petiole. July. B.M1. 2815. R.H. 1890, p. 522. F.R. 1:333. The following names of horticultural varieties indicate the range of color: vars, alba, aúrea, carnea, nana compacta (=alba), purpürea, striàta, violàcea. Dwarf and compaet forms are likely to be associated with any color. There is a narrow-leaved form of this species which Voss calls G. Haggeana, KI. (G. aurantidea, Hort. G. coccinea, Decne.), which has lanceolate 1vs., often 6 times as long as broad. The lvs. are rarely $1 / 2 \mathrm{in}$. wide. R.H. 1854:161. All are easily grown annuals.
G. gnaphatioldes, Vahl. See Pfaffia.
W. M.

GONANIA is a typographical error in some nursery catalogues for Gouania.

GONGORA (after Don Antonio Caballero y Gongora, Bishop of ('ordova). Includes Acropera. Orchiddcea, tribe lióndea, subtribe Cyrtopodiër. A small genus of plants with curions spotted fls., not common in cultivation, and of little value except for collections. Distinguished from the other members of the subtribe by being epiphytic, having the dorsal sepal adnate to the column, and by its many-fld. raceme. Dorsal sepal ereet, spreading, thus appearing to spring from the base of the eolumn; lateral sepals spreading or reflexed from the base of the columu, wider; petals small, adnate to the hase of the column; labellum continuous with the column, narrow and fleshy, with 2 thick lateral horned or aristulate lobes, and a central one which is saceate or even folded, forming a vertical plate: column erect or ascending, not winged: pseudobulbs sulcate, sheathed, bearing 1 or 2 large, plicate lvs.: fls, borne in a long, loose, pendent raceme arising from the base of the pseudobulbs.
Gongoras are extremely free-flowering, and grow easily in a mixture of sphagnum and peat, with a little charcoal added for drainage. During the growing season they require plenty of water, and brisk heat. In the winter they require little water, but should be kept in a moist atmosphere in a cool, shaded house. They grow well with Cattleyas, or in a temperature of 60° in winter and 80° in summer. Some growers prefer to use fine fern root packed tigbtly and for a top finish a little fine moss found in damp meadows, instead of sphagnum, which in this climate is quick to decay.
A. Laterat sepals ovate or oblong, truncate.
truncàta, Lisdl. Pseudobulbs deeply furcate : lateral sepals rotund, oblong, truncate, the upper one ovate, keeled; petals minute, ovate; sepals and petals pale straw color, spotted with purple; base of labellum compressed in the middle, 2-horned : apex ovate, canaliculate. B.R. $31: 56$.

AA. Lateral sepals broad, ovate, pointed.
B. Fts. light sepia brown: ovary much incurved.
galeàta, Reich. f. (Maxillària galeàta, LindI. Acro pèru Ĺddigesii, Lindl.). Pseudobulbs ovate-conical, clothed with membranous scales: Ivs. broadly lanceolate, 6 in . long: racemes drooping, 6-8 in. long, witb 6-12 pale sepia brown fls.: dorsal sepal galeate; petals small, oblong-truncate; labellum 3 -lobed; lateral lobes inflexed, middle one saccate. The plants bear several short, rather large-fld. racemes. Aug. Mex. B.M. 3563. L.B.C. 17:1645.

BB. Fls. yellow: orary somewhat incurred.
Armenlaca, Reichb. f. (Acropèra Armenàaca, Lindl.) Pseudobulbs ovate, sulcate, 2-lvd.: raceme loose, bearing many yellow fls.: sepals ovate, rounded, apiculate, the lateral ones oblique; petals one-balf as long as the column; labellum fleshy; apex ovate, plane, acuminate, base tuberculate, crested. B.M. 5501 .

AAA. Lateral sepals lanceolate to ovate-lanceolate. B. Fls. chocolate-brown, spotted.

atropurpurea, Hook. Pseudobulbs oblong-cylindrical, deeply sulcate, $2-\mathrm{lvd}$.: 1 vs , about 1 ft . long, lanceolate, subplicate: racemes numerous, 2 ft . long, bearing many ebocolate-colored, spotted fls. about 2 in. in diam.: margins of the sepals revolute; petals small, twisted at the apex; labellum 4 -horned at the base; apex folded so as to form a vertical triangular plate. This species is the most common in cultivation. It is nearly always in flower during the summer. Trinidad. B.M. 3220.

BB. Fls, yellow, spotted.

quinquenérvis, Ruiz \& Pavon (G. maculàta, Lindl.). Pseudobulbs ovate-oblong, deeply furrowed, 2 -livd.: 1vs. broadly lanceolate, 5 -plaited: racemes many, 2 ft . long, with numerous yellow fls. spotted with dark red: lateral sepals reflexed, meeting in the back; petals small, linearoblong, from the middle of the column; lip 4-horned at base; apex folded, tapering to a setaceous point. A curious plant, much resembling G. atropurpurea except in color and form of tls. May-Aug. B.M. 3687. B.R. 19:1616.
beb. Fls. dull red-purple spotted, with a yellow labellum.
tricolor, Reichb. f. (G. maculd̀ta, var, tricolor, Lindl.). Pseudobulbs ovoid, $21 / 2$ in. long, deeply furrowed: lvs. ovate-oblong, acuminate, about 5 -ribbed, 6 in. long: raceme slender, pendulous, lax-fld., 6-10 in. long: pedicels with ovary $11 / 2-2 \mathrm{in}$. long, speckled like the rachis: fls, about 2 in . long: dorsal sepals lanceolate, with revolute margins, tip recurved: lateral sepals ovate-lanceolate, with revolute margins, dull red-purple, with a pale, stout midrib: free portion of the petal spreading, upcurved, lanceolate, speckled: labellum golden yellow, base cuneiform saccate, truncate in front, with an awn on each side, apical part broadly funnel-shaped, with a spurlike, slender, speckled tip, gibbous bebind: column slender, speckled. B.M. 7530. B.R. $33: 69$.
G. fuscäta. Hort. (Acropera fuseata and luteola, Hort.), bas been cult, for many years, but no description is arailable.

H. Hasselbring and Wis. Mathews.

GONIOMA (Greek, gonia, angle, corner; the corona cornered near the top). A pocynacea. A monotypic genus containing a South African shrub. John Saul, of Washington, D. C., spoke of it as having racemes of double white fls., borne on the point of erery shoot, and suggesting the Cape Jessamine by their form and fragrance. He probably had some other plant in mind, for, according to DeCandolle, Gonioma bas yellowish fls., only a third of an inch long, borne in cymes which are sborter than the lvs., the lvs. being $1^{3 / 1-2}$ in. long. Saul also advertised "Tabernamontana Camelliaftora pleno Glory of the Day," which may have been a rariety of the common Tabernemontana coronaria. Gonioma differs from Tabernæmontana in having the ovules arranged in 2 series instead of an indefinite number of series.
Kamássi, E. Mey. (Tabernamontàna Camássi, Regel). Height 16-20 ft.: Ivs. opposite or the upper ones in 3's, oblong-lanceolate, entire, leathery, 1-6 lines wide: cymes small, terminal, 8 - 10 - fd.: fls, salver-shaped, yel-
lowish, 3 lines long; tube a little wider at the middle and angled, constricted at top, pilose within from the middle to the top; lohes a third as long as the tube, ovate, cordate, twisted to the right in the bud; style 2 -cut.

GONIOPHLEBIUM. A subgenus of Polypodium, with anastomosing reins; by some regarded as a genus. For G. subauricutatum, see Polypodium.

GONIOPTERIS (Greek, angled fern). Polypodiàcea. A genus of tropical ferns allied to Phegopteris, with naked rounded sori and the lower veinlets of contiguous segments or lobes united. By some placed under Polypodium.
crenàta, Presl. Lrs. 1-2 ft. long, on stalks nearly as long, Tith a terminal pinnee $6-8$ in. long, often 2 in . Wide, and $4-8$ similar lateral pinna; margins bluntly lobed; sori near the main reins. Cuba and Mexico to Brazil.
L. M. Underwood.

GOOBER is a commoner name in the Soutb than "Peanut," which is the universal name in the North. For culture, see Peanut; for botany, see Arachis.

GOODIA (after Peter Good, who found the plant in N. S. Wales). Leguminòse. An Australian genus of 2 species of shrubs, with pea-like fis., chiefly yellow, but with red markings. Both species have long been cult. in a few conservatories ahroad, but the pubescent species is now forgotten and the glabrous one, in America is cult, chietly in S. Calif, outdoors, Underglass these shrubs are treated like Cape heaths or Australian hardwooded plants. The genus has no near allies of garden ralue. It belongs with 4 other Australian genera to the sub-tribe Bossiæa, in which the Ivs, are mostly simple : stamens coalesced into a sheath, which is split abore: seeds strophiolate. From these 4 genera Goodia differs in having 3 leaflets, and its racemes terminal or opposite the lys. instead of axillary.
A. Schultheis writes that Goodias are occasionally seen in florists' windows in America. Wm. Watson, of Kew, says the fls, are very fragrant, and remain on the plant a long time. He adds (G.F. 2:244): "Probably this plant, if taken in hand by the florists, would prove quite as useful for spring flowering as the popular Cytisus racemosus."
Iotifolia, Salisb. Often misspelled "latifolia," but the name means "lotus-leaved." Glabrous shrub described above. B.M. 958, J.H. III. 29:484. -Likely to be confused with Argyrotobium Andrewsianum, belonging to the Crotalaria subtribe, in which the seeds are not strophiolate. 1n Argyrolobium the 3 leaflets are digitate and the stipules, bracts and bractlets small but persistent. A. Andreusianum has sparsely silky Ivs. In Goodia the 3 leaflets are pinnately arranged, and the stipules, bracts and bractlets very evanescent.
W. M.

GOOD - KING HENRY. Consult Chenopodium.

GOODYERA (after John Goodyer, British botanist, who belped Johnson in his edition of Gerarde's Herbal

920. Goodyera pubescens.

Orchiddcew, tribe Neottiè. This genus includes the Rattlesnake Playtain and a few other dwarf terrestrial orchids of minor importance which are cult. chiefly for their variegated foliage. They grow a few inches high, with scapes $8-15 \mathrm{in}$, high at most. About 25 species. Los. radical, usually reticulately veined: fls. in dense or loose spikes; labellum saccate; anther on the back of the column.

A. Hardy natice plants.

B. Labellum strongly inflated, with a short tip.
pubéscens, R. Br. Rattlesnake Plantain. Fig. 920. Lvs. ovate, deep green; veins netted, white: scape stout: spike dense, orate in outline before anthesis: ths. globular, whitish; beak of stigma short, obscure. Aug. N. F. to Fla., west to Mich. and Minn. L.B.C. 1:1. B.B. $1: 474$. Mn. 2:54. F.S. 15:1555. A.G. $12: 281$ and $13: 590$. Shonld be grown in ordinary loam mixed with pine needles and dry pine twigs. Not well suited for greenhouse cult.

вB. Labellum saccate, with an elongated tip.

C. Beak of the stigma shorter than its body.
repens, R. Br. LFs. ovate to oblong-lanceolate; veins dark: spike 1 -sided: labellum with a recurved tip. L.B.C. 20:1987. B,B. 1:474. Rhodora, 1, plate 1. Var. ophioides, Feruald (Fig. 921). is the commoner form of this species, with very broadly marked Ivs.
cc. Beak as long as or longer than the stigma.
tesselàta, Lodd. (G, pubéscens, var. minor). Lvs. broadly ovate to oblong-lanceolate: venation exceedingly variable: scape slender: spike loose: fls. white; labellum less saceate than in G. repens; tip straight. B.M. 2540. L. B. C. 10:952. Rhodora 1, plate 1. Confused by tradesmen with the next. -Should be planted out in a rockery in shade, the roots being firmly placed among dead pine needles and loam. Referred by Index Kewensis to G. pubescens.
ввn. Labellum scarcely saccate, murgin involute.
Menziesii, I indl. Plant rather large: veins netted: spike somewhat 1-sided. Western U.S. to northern N. Eng. B. B. 1:475. - Advertised by Dutch dealers.
AA. Tender exotics, cult, under glass.
B. Lrs. with a whitish midrein.
velutina, Maxim. Fls, whitish, tinged rose. Japan. F.S. 17:1779.

BB. Lus. with white, netted reins.
Schlechteudaliàna, Reichb. f. (G. J тро́ніса, Blume). In general appearance like G. tesselata. Lvs. ovate: spike loose: fls. white. Japan.-Once advertised by Pitcher \& Manda.
G. Dawsoniàna and G. discolor. See Hæmaria.-G. quercicola. See Physurus.

GOORA NUT is a name for the Cola.

GOOSEBERRY. The Gooseberry and the currant are two of the hardiest types of bush fruits. The native forms range far north into British America (see Ribes). Seedlings of these are also very bardy. English varieties are comparatively tender. The Gooseberry appears not to have been cultivated for more than 300 years. There was, however, a remarkable increase in the number of varieties in England between 1650 and 1750 . The Gooseberry became a favorite fruit with the Lancaslire weavers, who should be credited with this great development. Miller, 1731, says it would be useless to attempt an enumeration of varieties. In America the fooseherry has been a neglected fruit. With wild forms in abundance, types greatly superior to those from which the
immense English varieties were derived, with a erying need for better table varieties, practically nothing has been done to improve the natives. Our natives have not been improved primarily because the American people have never acquired or cultivated a taste for the fresh fruit of the Gooseberry, In England the fruit of many of the large, fine-flavored varieties is used uncooked. In America the fruit of the Gooseberry is thought of only in connection with pie (tart) or jam, and when transformed into these food products, Havor, while of some importance, is but a minor consideration. The claim that English Gooseberries are less palatable than the natives is quite true, when passed upon from this standpoint. The best cooking apples are not usually prized in tbe raw state on the table, and vice versa. The point is this-and it is worth mak-ing-that there are dessert Gooseberries and also culinary Gooseberries. We should keep the classes distinct, and work for the production of varieties with the vigor of our natives and quality and size of fruit of the best European. Houghton was produced nearly 70 years ago, and Downing from Houghton seed, grown by Charles Downing, about 40 years ago (see Bailey, "Evolution of our Native Fruits"). These two varieties represent the American type, although it is possible that Downing is the result of a cross between Houghton and some European variety. The habit of the plant partakes somewhat of European characteristics. Downing is the more popular.

Site and preparation of soil. - The largent and finest native bushes are found upon rich bottom lands. Moist, but not soggy, clay loams give best results. No amount of fertilizing will bring saudy soil into condition suitable to the successful culture of the Gooseberry anywhere in this country except, perbaps, along the north Atlantic and north Pacific seaboards. (iood results have been secured in the Lake Ontario fruit region on reddish, ealcareous clay. In such situations the fruit does not drop easily, and the plants are usually free from mildew. On the east and west coasts the aspect or lay of the land is of less importance than in the interior. In the mid-continental region a sharp, north slope on a cool, clay loam ridge is essential to the fullest success. A clover sod turned under and thoroughly worked up is an excellent preparation for the Gooseberry plantation. A heary preparatory application of barnyard manure may tend to make the soil too porous and too easily dried out. If applied the season previous to setting the plants, and the land is cropped with potatoes, it will be left in good condition to recetve the Gooseberries.

Gooseberries, particularly the English kinds, will endure more shade than most fruit plants, provided the soil is suitable. Good results are often secured by planting in rather densely shaded city gardens. Where these conditions prevail, special attention should be paid to maintaining an open head, in order to discourage the growth of mildews.

Planting and training. - The Gooseberry vegetates at a low temperature. It should, therefore, be planted as soon as the ground can be worked in spring. A better plan is to plant early in autumn. It may be trausplauted successfully as early as August 15 south of latitude 42 degrees, and north of that line from September 1 up to the beginning of frosty weather. When set out late in autumn, the surface of the ground should be thoroughly mulched with straw or manure. The English varieties grow somewhat larger than the American type. and require rather more space. The plants are variously distanced, according to the inclination of the grower; 6×3. 5×3, and $4 \times 4 \mathrm{ft}$, apart for garden culture are the commoner distances at which the plants are set.

The training of the Gooseberry is exceedingly simple. It bears most freely on 2 -and 3 -jear-old wood. The aim
should be to keep a continuous supply of vigorous shoots. As they become enfeebled, cut them out. Encourage spurring by eutting back when a variety indulges in a rambling habit, like Josselyn (Red Jacket). In the East, it is recommended to thin the head to lessen the tendency to mildew. This is probably good advice, but in the West it does not apply with the same force : rather cut out the weaker branches, and prerent mildew by other methods. Thin, also, to facilitate fruit picking. Prune to encourage upright

923. Leaves of Ribes Grossularia. Natural size.
growth, when cultivating varieties like Mountain Seedling and Houghton. The bush form, with several stems, is to be preferred to the siugle stem; plantations last longer in bush form, and are more productive.

Tillage and fertilizing. - In the east and west coast climates, and in the lake region, clean culture may be given; but in the interior, mulching with strawy manure or barnyard litter is better than mulching with soil. Cool, rich soil constitutes an essential to success. Good results have been obtained by the use of coal ashes as a mulch. This is, of course, only an amateur's method, and not feasible on a commercial scale. The Gooseberry is grown with a fair degree of success between young orchard trees on the loose soils bordering the upper waters of the Mississippi and Missouri rivers. The practice is not to be commended from the staudpoint of the welfare of the orchard. fooseberries are also grown between grape rows-a practice hardly to be commended. Practice only shallow tillage.
Picking, marketing. and conserving.-Picking Gooseberries is an uncomfortable and generally uncongenial occupation. The best native varieties, as a rule, are those most completely armed with thorns. A little practice, however, will enable a dexterous picker to secure the

924. Crown Bob, an English Gooseberry ($\times \frac{3}{4}$).

925. Industry, one of the English Gooseberries. Nearly natural size.
berries without receiving much punishment in return. The berries cluster along the lower side of the bearing branch. They are best removed by elevating and steadying the branch with one hand while the other hand rapidly removes the berries, working from the base upwards. Picking costs between 1 and 2 cents per quartusually $11 / 2$ cents. English Gooseberries should be marketed either in quart boxes or in 5 -pound Climax baskets.
American varieties are nearly always picked green, and are usually called for in considerable quantities for stewing, jam making or for canning. These are shipped in 10 -and 20 -pound baskets. Beach, in Bull. 114, N. Y Exp. Sta., gires the following reasons for marketing Gooseberries in the green condition: "(1)The hard, green fruit is not as easily injured in picking and packing as the pulpy ripe fruit, and it will stand transportation better. (2) The fruit that is allowed to ripen on the bushes is exposed longer to attacks of sunscald and mildew, and should long-continued rains follow a period of drought, the ripening fruit is liable to crack and spoil. (3) The ripening of fruit is an exhaustive process, from which the tree is partly relieved when the fruit is marketed green. (4) The proceeds from the green fruit usually compare farorably with the proceeds from the ripe fruit, although the large English varieties sometimes bring the highest prices of the season."

Gooseberries are very palatable if canned just before reaching maturity. Sugar should be used in the proportion of one-third to one-half pound to each quart of berries. When treated in this way, Gooseberry pie may be enjoyed at any time during winter. Gooseberry jam is indulged in to a considerable extent by residents of Iowa, Nebraska, Minnesota and Dakota. Wild berries are gathered and largely used for the purpose, their aromatic acidity giving a spiciness to the finished prod-

926. Ribes oxyacanthoides in bloom ($\times 2 / 3$).

927. Leaves of Ribes oxyacanthoides. Natural size.
uet which is notably wanting in that made from cultivated types.
Types and varieties. - Practically, there are two types of Gooseberries in cultivation.

1. The European (Ribes Grossularia, Figs, 922, 923), characterized by stocky, upright growth, light-colored spines, thick, glossy lvs, and large, variously colored fr. The plants are less hardy than our natives or their hybrids, are affected by our hot summer suns, and are very susceptible to fungous troubles, prominent among which is mildew. The New York Experiment Station recommends the following varieties: Crown Bob (Fig. 924) ; red, large, round, of good quality. Industry (Fig. 925), Lancashire Lad; fr. dark red, nearly round; plant prolific, healthy. Prince Harry; one of the largest, green, good quality.
2. Americans, and hybrids between Europen and American species, usually classed with Americans (Figs. 926, 927, 928) : lvs. thinner than in R. Grossularia; leafstalks hairy, spines borne singly, fr. small, reddish green, shading off to purple. Pale Red may be considered a good type of the species. Varieties: Champirn

3. An American Gooseberry $\left(x^{1} 1\right)$-Ribes oxyacanthoides.
partakes largely of European characteristics. Downing is the most widely planted of all Gooseberries in America (Fig. 929) ; fruit medium size, oval, green; plant upright, vigorous, healthy, productive. Houghton, an old favorite; fr. small, round, dark red, good quality. Pearl; almost identical with Downing, of which it is a seedling. Josselyn; fr. large, red, oval; plant vigorous and prolific. Another promising native type is R. Cynoslati, represented by the Mathews, of Iowa origin.

Propagation. -This is effected in three principal ways. (1) Cuttings: The Gooseherry does not "strike" very readily from cuttings. Native varieties root more freely than English types. The cuttings may be taken in the fall, as soon as the wood is ripened. They should be 7 to 9 in . long. They may be set in the ground at once, or tied in bundles and buried in the ground, or stored in a cold cellar over winter. The cellar must be coldalmost down to freezing point. Fall-set cuttings should he planted obliquely, so that the heaving of the ground will not throw them out. Set cuttings in nursery row 3 feet apart and give clean culture. (2) Layers: Propagation by layering is the common bursery practice. For this purpose, plants 5 or 6 years old are used. They should be vigorous and healthy. They should he cut back severely in the autumn or early spring. This encourages a dense, bushy growth. The Iayering is done by plowing a furrow against the row on each side and forcing the branches down by throwing soil directly on top of the bushes. In moist regions a comparatively small amount of covering is necessary. In dryish regions 5 or 6 inches of soil is necessary. In the fall the soil is removed and the rooted branches separated from the parent bush, leaving buds for the production of shoots the following season; or, the entire plant may be taken up and divided. (3) Root-cuttings: Native Gooseberries may also be propagated by cuttings of the roots. The plants are taken up in the fall with all roots possible. The latter are cut into 2 -or 3 -inch lengths and

929. Downing Gooseberry.
packed in bozes of earth, which are stored in a cold cellar. In spring the pieces of roots are planted in nursery rows, covered with 2 inches of soil. English varieties are not readily propagated by this method. When singlestem plants are desired, they should he grown from cuttings. In order to discourage sprouting tendencies the buds above the roots should be removed-dishudded. Layer plants are hest for producing the bush form of plant used almost exclusively in America.

Diseases.-The Gooseberry, as a rule, is affected seriously by only two plant parasites, mildew and leaf-spot. The former attacks the English varieties, while the latter is the chief fungous enemy of American varieties.
Mildew (Spharothect Mors-l'er): This is the bugbear of English varieties in America. It has done more to discourage the cultivation of this type than anything else. This fungus attacks shoots, foliage and fruit. It covers the affected part with a gray, frost-like coating. This turns to a dirty brown later on. It is a surfacegrowing parasite, and the web-like covering may be peeled from the fruit in its early stages. The ends of the shoots and younger leaves are attacked first, causing the bush to take ou a stunted appearance. Remedies for mildew : (1) Sanitary: circulation of air secured by a favorable site, good drainage and proper training. (2) Fungicides: (a) Potassium sulphide, liver of sulphur 1 oz . to 2 gals, water. Spray 4 or 5 times, at intervals of 6 or 8 day's, beginning with the unfolding of the leaves. (b) Bordeaux mixture may be used with good results for the first two applications. It stains the fruit when applied after the fruit is half-grown. (c) Dilute copper sulphate, 1 oz , to 15 gals . water, may be nsed throughout the season.
Leaf-spot (Septoria Ribis): This disease attacks the leaves only. It produces numerous small hrown, irregularly shaped spots or patches on the lvs. This spotting causes a premature dropping of the lvs., often hefore the fruit is fully developed. Remedy: Spray early in the season, and again after harvesting the fruit, with Bordeaux mixture.
Injurious Insects. - (I) The imported Currant worm: The larva of a saw-fly attacks the foliage soon after fruit sets. The attack is first made on the lower leaves. From this point the morms work upward on the bush, stripping the leaves in their line of march. The worms are exceedingly voracious, and will defoliate a bush in 2 or 3 days. The mature insect is a saw-fly, which deposits its eggs on the under side of the leaf. Usually two broods occur during the season. Treatment: Spray with arsenical poison early. Bordeaux mixture and Paris green may be used in combination for the early spray. For the later sprays, fresh powdered hellebore, at the rate of 1 lb , to 50 gals. of water, is effective. The grower should not wait for the insect to make its appearance, but should ward off danger as soon as the leaves appear by spraying with Bordeaux mixture and Paris green, which will adhere to the foliage and be on the spot when needed. Other injurious insects are the Gooseberry fruit worm (Epochra ('anadensis), which burrows in the green fruit, causing it to drop. Remedy: Destroy infested berries.
2. Currant borer (Psenocerus supernotutus): The larva of a moth. Eggs are laid near the tip of the cane, down the center of which the larva tumncls. Infested canes are readily detected. They should be cut out and burned. San José scale and four-lined leaf-bug are sometimes injurious. When a plantation is infested by the former it should be thoroughly treated with whale oil soap misture in winter, diluted kerosene on sunshiny days in spring, or, in bad cases of infestation, it will probably be wisest to root up and destroy the busbes. Kerosene emulsion is used against the four-lined bug with success.

John Craig.
gooseberry, barbadoEs. See Pereskia.
GOOSEFOOT. Vernacular for Chenopodium.

GORDONIA (after James Gordon, an English nurseryman; died 1780). Ternstromidcer. Ornamental trees and shrubs with alternate, simple, rather large, deciduous or persistent livs., axillary, showy white fls. and a woody capsule. Only G. pubescens is hardy north to Mass., while the others are cultivated only in subtropical regions. They all have very handsome shining foliage, and produce their large white fls. even on rather small plants. They grow best in a somewhat moist, peaty or sandy soil. Prop. by seeds, layers or cuttings from half-ripened wood under glass. About 15 species in the S . Atlantic states and subtrop. and trop. Asia. Fls. solitary and axillary toward the end of the branches; sepals and petals 5 , rarely more; stamens numerous: capsule 5 -celled, dehiscent with 2 or many usually winged seeds in euch cell.
P. J. Berckmans writes that a large tree in the Bartram garden, near Philadelphia, was long supposed to be the only living specimen of G. pubescens. All other specimens in cultivation are believed to have been propagated from the Bartram tree, which has lately died. All efforts since 1790 to rediscover this tree in the South have failed.
A. Foliage deciduous.
pubéscens. L'Hérit. (G. Altemáha, Sarg.). Shrub or tree, to 30 tt .: lvs, ohovate-oblong, narrowed into a short petiole, sparingly serrate, bright green and shining above, glabrous, turning scarlet in fall, $5-6 \mathrm{in}$. long: tis. short-perlicelled, pure white, about 3 in . across; petals roundish obovate, with crenulate margin, concave: capsule glohular. Sept., Oct. Georgia, but not found again since 1790 . S.S. $1: 22$. G.W. F. 47. Mn. 6:201. Gng. 7:167. M1.D.G. 1899:25.-One of the few trees that flower in autumn.

AA. Foliage evergreen.

Lasiánthus, Ellis. Loblolly Bay Tree, to 60 ft ., usually shrubby in cult.: Jvs. obevate-lanceolate, narrowed into a short petiole, crenately dentate, dark greenand shining above, $t-6 \mathrm{in}$. long: fls. long-pedicelled, white, $2-21 / 3 \mathrm{in}$. across ; petals oblong-ohovate; stamens short: capsule ovate. July, Aug. Va. to Fla. and Miss. S.S. 1:21. B.M. 668.
an6mala, Spreng. Large shrub: Ivs. oblanceolate, narrowed into a very short petiofe, entire or serrate, dark green above, $3-6 \mathrm{in}$. long: fls. almost sessite, creamy white, 2-3 in. across; petals roundish obovate. Nov. S. China. B.M. 4019 (as Polyspora axillaris). B.M. 2047 and B.R. 4:349 (as Camellia axilleris).
G. Javánica, Rolliss. See Schima Noronhæ.

Alfred Rehder.

GORSE. Clex Europatus.

GOSSYPIUM (name used by Pliny, probably from the Arabic). Maledeece. Cotron (which see). Probably not more than a dozen original species, although more than 100 have been described. The species which have produced the cultivated Cotton are new much confused. Two or three species are in the trade for ornamental purposes : G. Davidsonii, Kellogg, from Lower California, a woody plant with handsome yellow but rather small fls. (1 in . long), and small cordate, mostly entire Ivs. G. Sturtii, F. Muell. A shrub of several feet, more or less marked with black dots: lys. broadty ovate, entire: fls. large, purple, with a dark center.
L. H. B.

GOUANIA (Antoine Gouan, 1733-1821, professor of botany at Montpelier, France). Rhamndeea. This genus includes the "Chawstick" of Jamaica, a rapid-growing, shrubby vine, with pretty heart-shaped lrs., grown sometimes for ornament in the extreme South. It is suitable for screening unsightly ohjects. The stems are chewed in the West Indies. Tooth brushes are made from the frayed ends and tooth-powder from the pulverized wood. The genus has about 30 species of shrubs, sometimes tall climbers, tendril-bearing: branches long and slender: lvs. alternated, petiolate, penninerved, entire or dentate: fls, in clusters, arranged along axillary and terminal, elongated peduncles; disk 5-lobed; style 3 -fid: capsule with 3 indehiscent berries.

Domingensis, Linn. Lvs. usually $1^{11 / 2}-2$ in. long, elliptical, glabrate, with blunt, distant serratures ; veins tapering towards the margin : capsule winged, emarginate. West Indies.

GOUMI. See Elcagnus.

GOURD. In England, a generic name for species of Cucurbita (which see). In America the term is used to designate these cucurbitous fruits which are hardshelled, and are used for ornament or for the making of domestic utensils. The fourd of history is probably Lagenaria. In the northern United States, the small, hard-shelled forms of Cucuerbita Pepo (var. ovifera) are commonly understood when the word Gourd is used. The Gourds in the Amer. trade are referable to their species as follows:
Anaconda, Lagenaria vut $\left.\begin{array}{c}\text { Onion-shaped, Cucurbita } \\ \text { Papis. }\end{array}\right]$ paris.
Apple-shaped, Cucurbita Pepo.
Bicolor, Cucurbita Pepo.
Bonnet, Luffa.
Bottle shaped, Lajenaria vulgaris.
Calabash, Lagenaria vulgaris.
Coloquinte. Cucurbita Pepo.
Dipper, Lagenaria vulgaris.
Dipsaceous. Cucumis dipsaceus.
Dish-cloth, Luffa.
Egg. Egg-shape, Cucurbita Pepo.
Gooseberry, Cucumis Anguria.
Hedgehog, Cucumis dipsaceus. Hercules' Club, Lagenaria melgaris.
Mate Gourd, small form of Lagenaria vulgaris. Mock Orange, Cucurbita Pepo. Pepo.
Orange, Cucurbita Pepo,
Ostrich Egg, Cucumis dip. saceus.
Pear shaped, Eucurbita Pepo (Fig. 597).
Powder Horn, Lagenaria vulgaris.
Rag. Luffa.
Serpent or snake (not Snake
Cucumber, which is a Cucumis), Lagenariu vulgaris and Trichosanthes.
Sponge, Luffa.
Sponge, Lufta.
Spoon, Lagenaria nulgaris.
Sugar Trough, Lagenaria julgaris.
Tashkent. Cucurbita Pepo.
Turk's Turban, Cucurbita Pepo.
Vegetable Sponge, Luffa,
Wax fiourd, Benincasa cerifera.

L. H. B.

GRAFTAGE comprises the process and operation of inserting a part of one plant into another, with the intention that the part shall grow on the foster root, together with all the questions which arise in relation to the practice. It is a comprehensive or generic term, whereas grafting is a specific term designating merely the operation. The teriu Graftage (analogue of the French greffage) was proposed by the present writer in 1887.

Grafting is one of the oldest of the arts of plant-craft. It is probable that the real art of grafting has held more or less as a professional or class secret in the ancient world, for the writers seem to have only the vaguest notion of its possihilities and limitations. Vergil writes (Preston's translation):

But thou shalt lend

Grafts of rude arbute unto the walnut tree.
Shait bid the unfruitful plane sound apples bear,
Chestnuts the beech, the ash blow white with the pras.
And, under the elm, the sow on acorns fare.
It seems to have been a popular misconception that any kind of plant will grow on any other. Pliny asserts that the art of grafting was taught to man by nature. Birds swallow seeds, and these seeds, falling in "some cleft in the bark of a tree," germinate and make plants. "Hence it is that we see the cherry growing upen the willow, the plane upon the laurel, the laurel upon the cherry, and fruits of various tints and hues all springing from the same tree at once." This, of course, is not grafting at all, but the implanting of seeds in earthfilled chinks and cracks, in which the plants find a congenial foothold and soil. But the ancients have left us abundant testimony that genuine grafting was employed with success. Pliny describes a cleft-graft. He gives several precautions: the stock must be "that of a tree suitable for the purpose," and the graft must be "taken from one that is proper for grafting; the incision or cleft must not be made in a knot; the graft must he from a tree "that is a good bearer, and from a young shoot;" the graft must not be sharpened or pointed "while the wind is blowing;" "a graft should not be used that is too full of sap, no, by Hercules! no more than one that is dry and parched;" "it is a point most
religionsly observed, to insert the graft during the moon's increase."

The accompanying cut (Fig, 930) reproduced exact size from Rohert Sharrock's "History of the Propaga. tion and Improvement of Vegetables," 1672 , shows various kinds of grafting in vogue over two centuries ago. Following is the literal explanation of the plate :

930. Sharrock's illustration of the modes of Grafting. 1672.

The Exemplification of the Operations by the Figure.

a. Denotes the ordinary entting of the bark for inoculation. $b b$. The sides of the bark lifted up for the putting in of the sbield.
c. The shield taken off with the bud, which lies under the stalk of the leaf cut off.
$l n$. The shield put into the stock to be bound up.
d. The bark cnt ont in an oblong square, according to anotber usual way of inoculation.
g. The shield cut out for the fitting the disbarked square. m. The same shield put into the stock.
f. A variation of the forementioned way, by cutting off the upper part of the oblique square, and binding the lower part down upon the shield.
o. The shield so put in to be bonnd up.
e. Another variation lyy slitting the bark, that the bud and leaf may stand forth at e, and the bark slit be bound down upon the shield.
h. A cross cut for inoculation.
i. The same cross cut litted up, in this figure somewbat too big.
k. The shield eut off to be put therein.
p. The shield put in.
g or q. The cut of cyon or stock for whip-grafting.
$r 7$. The cut of cyon and stock for shoulder-grafting.
s. The cut of the cyons and slit of the stock for grafting in the cleft.
x. The stock set for ablactation or approach.
u. The cyon of the branch for the same operation.
12. The branch that is to be taken off by circumposition.
3. The branch that lears up the mold to the disbarked place.
4. The branch of a carnation to be laid.
5. The joynt where the slit begins.
6. The next joynt where the slit is propped open, with a piece of a carnation leaf put in.
Herein are seen the germs of all the grafting practices of the present day, together with some practices of layering. Sharrock treated the whole subject of grafting under the head of "lnsitions," and bere he minutely describes the cleft-graft, and speaks of it as "the common way of grafting." The practice which we now know as inarehing or grafting by approach, he significantly calls "Ablactation" (that is, suckling or weaning). Now that so much is said about the proper and eareful selection of cions, it is interesting to read Sharrock's advice on this suhject: "(iood bearing trees are made from Cyons of the like fruitfulness. * * Cyons are best chosen from the fairest, strongest shuits, not trom under shoots or suckers, which will he long ere they bear fruit, which is contrary to the intention of gratting." But we have seen that Pliny gave similar advice before the Christian era, - which is only another illustration of the fact that most of our current notions bave their roots deep in the past.

The chief office of grafting is to perpetuate a variety. It is employed in those cases in which plants do not bear seeds, or in which the seeds do not come true or are difficult to germinate, or when the plants do not propagate well by cuttings or layers. It is also employed to increase the ease and speed of multiplying plants. A third office is to produce some radical change in the nature of the cion, as rendering it more dwarf, more fruitful, or otherwise changing its labit. A fourth general office of grafting is to adapt plants to adverse soils or climates. An example is the very general use of the peach root in the southern states upon which to work the plum, is the peach thrives better than the plum in sandy soils. The practice in Russia of working the apple on roots of the Siberian rab is an example of an effort to make a plant better able to withstand a very severe climate.

In common practice, the effect of the stock on the cion is rather mere a mechanical or physical one than physiological or chemical. The influences are very largely those which are associated with greater or less growth. As a rule, each part of the combined plant-the stock and cionmaintains its individuality. There are certain cases, however, in which the cion seems to partake of the nature of the stock; and others in which the stock partakes of the nature of the cion. There are recorded instances of a distinct change in the flavor of fruit when the cion is put ppon stock which bears fruit of very different character. There are some varieties of apples and pears which, when worked apon a seedling root, will tend to change the habit of growth of that root. Examples are Northern Spy and Whitney apples, which, when grafted on a root of unknown parentage, tend to make that root grow very

931. Stick of buds. ($\times 1 / 3$.)
deep in the soil. All these instances seem to be special cases, or exceptions to the general rule that each part maintains its individuality. Reasons tor this change of nature in these cases have not been determined, and in most cases such results are not to be predicted. The most marked effect of stock on the cion is a dwarfing influence. Dwarfing may be expected whenever the stock is of a smaller stature than the cion. The most familiar example is the dwarf pear, made by working the pear on quince stock. Supplying a plant with a slow-growing root is only the beginning of the making of a dwarf. The plant must be kept dwarf by subsequent pruning and other care. It is significant that there is comparatively little demand for large-growing forms of woody plants, whereas there is a great demand for dwarf forms.

Extended experiments on plants which are not commonly grafted have thrown considerable light on the possible mutual influences of cion and stock. The researches of Daniel (whose latest contribution comprises nearly all of vol. 8 of Ann. Sci. Nat. Ser. 8, Botany, 1898) show that the stock may have a specific influence on the cion, and that the resulting characters may be hereditary in seedlings. These experiments, as also those of Vöchting, have thrown much light on the physiology of grafting and the variation induced by it, but they will not modify the practices of horticulturists nor greatly change our ideas respecting the results to he ohtained from accustomed operations. Experience has

long since determined what general and practical results are to be expected from grafting.
The limits within which grafting can succeed are to be determined only by experiment. These limits are often within the species, and usually within the genus, but there are instances in which plants of distinct genera intergraft with success, as in some of the cacti. But generic and graftage limits are not comparahle: genera are only arbitrary divisions proposed for purposes of classification, and intergrafting, like intercrossing, has no necessary relation to these conceptions. In general, the closer the affinity of cion and stock, the better the union. When stock of the same species cannot be secured, it is allowahle to choose another species. Thus it has been impossible to secure Japanese plum stocks upon which to grow the varieties of Japanese plums, and peach, Marianna, myrobalan and domestica plum stocks have heen used. In some cases another species grows more readily from seed, is cheaper, is less liable to fungous injury in the nursery, or has some other practical advantage. Thus, most domestica plums (Prunus domestica) in the North are worked on the myrohalan (P. cerasifera): most sweet and sour cherries
grafting, particularly in the Old World. Cases of poor unions and the difliculties of sprouting from the root or stock are cited as proofs that graftage is injurious and devitalizing. But these are instances of poor graftage. They show what should not be done. Properly done, on plants of proper affinity, graftage is not devitalizing. It is essential to modern horticulture. There are disadvantages, to he sure, but the advantages overhalauce. There are disadvantages in wearing boots. There is no use in arguing against things which are indispensable.
The ways or fashions of grafting are legion, There are as many ways as there are ways of whittling. The operator may faxhion the union of the stock and the cion to suit himself, if only he apply camhium to camhium, make a close

Cleft-grafting. joint, and properly protect the work. Thus, Thouin in his "Monographie des Greffes," I821, describes 119 kinds of grafting. All kinds of grafting may he classified into three groups :

1. Bud-grafting or budding. In the old days called inoculation.
2. Cion-grafting, or what is now thought of as grafting proper.
3. Grafting by approach, sometimes called inarching.

A word may be needed about the terminology of graftage. As already explained, grafting is merely the operation of inserting a part of one plant into another; but it is ordiuarily restricted to grafting by means of short twigs or cions, and budding is used to designate the insertion of single buds which are severed from the branch on which they grew. Stock is the plant or part on which the grafting is done. Cion is the part inserted into the stock, although it is usually restricted to cuttings of twigs, and does not include detached buds. In many writings the word is spelled scion, but the other is shorter and etymologically more correct. When the writer found it necessary to use the word in print, he chose the shorter form, although it is not commended by the dictionaries. It has been said that cion is an anatomical term. It may be; but it was originally a horticultural term. The early horticultural writings used cion and cyon. Scion is later, and has nothing to commend it except usage ; but the usage is not uniform. The word graft is sometimes used in the sense of cion, but it would better be used for the completed thing, - the new plant or part made by the joining of cion and stock.

BuDding, - The operation of budding consists of inserting a single detached bud underneath the bark of the stock. It is employed only in stocks of small diameter, aud preferably in those not more than one year old. The operation may be performed whenever the bark will peel and whenever mature buds may be obtained. The bark will peel in early spring and again cion. in late summer or early fall, and the operation of budding in the open ground is therefore performed at those times. In the spring the buds are secured from twigs of the previous season's growth. At the second budding season, in late summer or early fall, the buds are secured from growing twigs of the season. At that time of the year the buds will be suffciently developed to he easily recognized and handled. Budding is much employed in nurseries. Peaches, cherries, plums, and most stone fruits, are habitually budded rather than ciongrafted. In the East apples and pears are usually budded in the nursery; but in the West apples at least are usually root-grafted. It is practicable to insert buds in the tops of young trees, rather than cions, for the purpose of
changing the tree into a different variety. Sometimes the buds are inserted in limbs which are two and three years old; but it is usually preferable, if the tree is of some age, to cut hack the tree somewhat heavily the previous season or the previous spring, in order to get a growth of suckers into which the buds may be set. Third-rate stocks are sometimes set in nursery rows and budded the following July in western nurseries.

The cutting from which the buds are taken is known to budders as a stick (Fig. 931). In early spring budding, this stick is the last year's growth of the variety which it is desired to propagate. Later in the season the stick is the twig which is grown during that season. Not all the buds on the stick are strong enough or good enough for hudding. The hadder will usually discard the weak ones at the top and at the bottom, unless be is very much pressed for buds, as may be the case with new or rare varieties. If the stick is taken late in the season the leaves will he on; but these are quickly cut off to prevent too nuch evaporation from the cutting. About one-fourth of an inch of the leaf-stalk is left to serve as a handle to the bud.

The ordinary operation of budding is that which is shown in the illustrations. It is known as shield-budding, from the shape of the removed bud. With a thinbladed, sharp knife, the operator slices off the bud by placing his thumh beneath the hud and making a deft and quick stroke of the blade. Just under the bud he cats a little into the wood. Some budders afterward remove this bit of wood; but this is not essential. If this wood is somewhat hard and dry, or if it carries some pith with it, it may serve to dry out the bud or to prevent intimate contact with the cambium of the stock. In ordinary operations this truncheon of wood is not removed. Most budders cut all the buds on a stick before they insert any of them; hut they are allowed to hang to the stick by their upper or lower ends, being snipped off by the knife as fast as they are needed (Fig. 931).

The stock is first prepared by remoring all the leaves and twigs from the area which is to be budded. In the case of nursery stock, it is customary for a boy to strip the lower leaves of the stock a day or so in advance of

939. Cleft-grafting of an old tree.
the budding. If the stripping is done three or four days or a week before the hudding, it will sometimes cause the hark to set and, therefore, interfere with the operation. Nursery trees are usually budded as near the ground as the operator can work - not more than 2 or 3 inches ahove the surface. In most cases, the budder prefers to
set the bud on the north side of the stock in order that it may be shaded from the hot sun.

A T-shaped incision, just through the bark, is made on the stock (Fig. 932). The crosswise incision is usually made first. As the operator takes his knife from the last incision which be makes, be gives it a deft turn to right and left and loosens the flaps of the bark, so that the hud can easily be inserted. The bud is now taken from the stick and shoved into the matrix underneath the hark until it is entirely within the cleft (Fig. 933). A boy follows and ties the bud, making 4 or 5 deft turns and bolding the strand by covering the lower end underneath one of the turns (Fig. 934). No wax or other covering is used. Any soft strand may he used for this purpose. It was the old custom to use basswood bark, which Was taken in the spring from the inner layers of the bark of the basswood tree. This material was then macerated in water and afterwards pounded to make it soft. Yarn is also used. At the present time raffia is universally employed. Tbis is the stripping of an oriental palm, and it can be hought in the market at about 20 cents per pound, and at that price is cheaper than home-made materials; it is also better. It is customary to lay it on the ground or in a danmp place over night in order to soften it and to allow the operator to flatten out the strands. This raffia is cut in Bark-grafting the length to suit before the tying is begun, and the bunch of strands is then held underneath the belt or carried in a box. For budding, the operator pre fers a small, thin-bladed knife, with a rounded or thumb-shaped cutting surface (Fig. 935).

When budding is performed late in the season, the bud does not throw out a shoot until the following spring. It merely grows fast or "sticks" to the stock. Two or three weeks after the setting of the hud, the bandage is cut so that it will not restrict the swelling of the stock. If the stock grows very rapidly, it may be necessary to cut the bandage hefore that time. Nothing more is done with the tree until the following spring, at which time the whole tree is cut off about one inch above the bud. This one bud now throws out shoots and makes a rery heary growth, being impelled by the strong root. During this first season of growth a peach tree will attain the height of four to six feet, and be ready for market in the fall. If the bud is set early in the spring it will throw out a shoot the same season; but ordinarily it would not make the growth in one season that the bud does in the other case. Spring budding in the open air is rarely employed in nursery practice. It is sometimes used in the top-hudding of established plants. In all budding practices, it is iuportant to keep down the suckers from the stock.

In the South a perch tree may be large enough in June, if the seeds are planted in Fehruary or March, to be budded. The bud will grow the same year, and hy fall will make a salable tree. This operation of budding in early summer on stocks which grow that year is known as June-budding. As a rule, June-hudded trees are smaller than fall-hudded trees; but they can be obtained one year sooner.

There are many other kinds of budding. Some of these will be found in American writings. None of these other styles of budding, however, is of commer. cial importance in this country.

Grafting proper is the operation of inserting a twig or a woody cion into a stock. The kinds of grafting are very many. Few are described here. They may he classified in respect to the place or position of the cion on the stock: root-grafting, or the insertion of the cion in the root of the stock; crown-grafting, or the insertion of the cion at the crown (surface of the ground); stemgrafting, or the insertion of the cion in any part of the main stem or trunk; top-grafting, or the insertion of the cion in the top or branches of the plant. Grafting may again be classified in respect to the maturity of the cion: dormant wood grafting; and softwood or herba-
ceous grafting, in which the cion is taken from green or growing wood.

It is customary to classify grafting in respect to the way in which the union is made. There are three general types in common use in this country: cleft-grafting, whip-grafting, veneer-grafting.
Cleft-grafting consists in splitting the stock and inserting a wedge-shape cion into the cleft. It is employed only in rather large stocks, preferably in those which are an inch or more in diameter. The stock is cut off, and it is split with a knife made for the purpose. The cleft is then held open by a wedge and the cions are inserted in the side of the cleft in such position that the cambiums of the stock and cion are in contact (Fig. 9:6). The whole surface is then securely waxed in order to prevent evaporation and to protect the wounds from the sun (Fig. 937). Cleft-grafting is performed in early spring. The cions are taken some time previously from the last year's shoots. They are stored in the cellar or other cool place in order that they may be perfectly dormant. It is customary to cut them of three huds' length; but if the shoot is very long-jointed and if the variety is new or rare, and the wood therefore scarce, they may be made of one or two buds. The wedge-shaped part should be somewhat thicker ou the outside in order that it may be clasped tightly in the cleft (Fig. 938). It is customary to have one bud near the top of the wedge. Although this bud is covered with wax, it is the mest likely to grow, since it is nearest the source of food supply and is less injured by external conditions. It pushes through the wax. It is customary to insert two cions in all stocks, even though only one branch is desired. By inserting two cions, the chances of success are doubled, and the wounds heal better if a twig grows on each side. After a year or two, one of he cions may be cut off if desired. There are many kinds of grafting. wax, but the one which is mest serviceable for applying with the hands in the epen air is made by melting together one pound (by weight) of rendered tallow, two parts of beeswax and

943. Tree grown from a long-cion root-graft.
four parts of resin. The melted liquid is poured into a pail or tub of water, when it immediately bardens. It is then pulled until it is light-celored and develops a grain.

It is then put away for future use, and will keep indefinitely. When used, the warmth of the hands will cause it to soften. The hands should be greased to prevent it from sticking.

Cleft-grafting is the methed usually employed in the top-grafting of fruit trees, as apples, pears, plums and cherries. Old peach trees are rarely changed over to a new variety. If they are, budding is employed, as al. ready suggested: the limbs are headed back so that new

944. Grafting knife ($\times 1 / 2$).

wood is secured in which the buds may be set. It is important, in all top-working of fruit trees, to keep down the suckers which spring up around the cion, and which sometimes completely choke it. In changing over the top of a fruit tree, all the leading branches should be grafted (Fig. 939). It is well to stand at some distance from the tree and make a mental picture of how the tree will look when the new top is secured: the grafts should be set in approximately a radius from the center of the tree. It is rare that the stock should be larger than twe inches in diameter where the cions are set. On some of the main branches it will be necessary to graft side branches lower down in order to fill the top and to afford foetholds to pickers and pruners. It will require from three to four years to change over the tree to a new variety. Each year a little more of the original top is removed, and the cions take more and more of the space.
Bark-grafting (Fig. 940) is a most excellent method of grafting fairly large limbs, since it does not injure the stock so much as the cleft-graft. The cions are cut thin and inserted between the bark and wood. The bark is securely bound to hold it tight, and the entire surface is waxed, as in cleft-grafting. This method is called crown-grafting by the French and English.

Whip-grafting is employed in the nursery and on very small stocks. It is not used in top-grafting except now and then on small limbs. The pictures sufficiently illustrate how the work is done. The cion and stock should be of approxiruately equal size. Each is cut off in a slanting direction, and a split or tongue is made near the middle. The same shape is given to cion and stock (Figs. 941, 942). The object of the tongue is to hold the parts together securely; it also presents more contact. The cien is then bound to the stock, preferahly by means of wased cord. If the graft is above ground, the wounds should be thoroughly waxed over the string. If the graft is below ground, the tie will be all that is necessary: the moist earth packed around the wound will prevent evaporation and protect it.
The cbief use of the whipgraft is in roet-grafting, which is employed chiefly

945. Veneer-grafting. on apples and mostly at the West. In the East, ether things beingequal, budded apple trees are preferable to reot-grafted trees. In the West, however, it is necessary to have apple trees on roots of known hardiness. The seedling stocks are not of known hardiness, even theugh the seeds have come from the hardiest varicties. It is therefore customary to use cions 6 to 12 in . long, grafted onto pieces of reots $21 / 4-4 \mathrm{in}$. long (Fig. 942). The graft is set so deep that only the top bud of the cion projects above the surface. The piece of root acts as a nurse, and roots may start from the cien itself (Fig.943). When the tree is transferred to

GRAFTAGE

the orchard, the original root may be cut off in case it is not very vigorous; although this is not done if the union seems to be good and the foster roots are strong. This root-grafting is done in winter (Dec. and Jan. preferred) ; the grafts are stored in clean sawdust, sand or moss in a cool cellar, and are set in nursery rows in the open early in the spring, after the manner of grape cuttings.
The waxed string, with which the whip-grafts are tied, may be made by dropping a ball of yarn into the melted grafting wax which is spoken of above. In five minutes the wax will bave penetrated the ball, but the strand can readily be unwound. The best material for this purpose is No. 18 knitting cotton. This is strong enough to hold the work together, and yet weak enough so that it may be broken in the bands without cutting the fingers. It will ordinarily decay during the year, and thereby not interfere with the growth of the tree. If the grafting is done in a room at a living temperature, the

946. Veneer-grafting.
wazed string should be soft enough to stick to the stock without being tied. Four or fire turns are made around the union. Waxed Manila paper, cut in narrow strips, is also much used; also single strand cotton "chain" or warp-thread, either waxed or not wased.

Any sharp knife with a handle large enough to be grasped readily is useful for whip-grafting. The blade should be thin, and the steel of best quality. The handle should also be strong. Fig. 944 shows a common form of grafting knife. Good shoe-knives may be used.

Veneer-grafting. - This style of grafting, which is considerably used under glass with fancy and ornamental plants, consists in simply champering the surfaces of cion and stock and applying the one to the other (Fig. 945). The cion is bound to the stock by raffia or other material. If the graft is in the open the wounds are thoroughly waxed; but in the house they may be covered merely with moss. This style of union is used with berbaceous plants, as well as on hard wood. Sometimes the stock is severed at the point of union, as in Fig. 945 ; but in other cases it is not severed nor headed back until the cion has taken hold (Fig. 946). In the latter case, the stock is not injured in case the graft does not grow.

Herbaceous grafting. - Pelargoniums, chrysanthemums and other soft-wooded greenhouse plants are
sometimes grafted for the novelty of having more than one variety growing on the same root. Probably most herbaceous plants can be grafted readily, with the exception of the endogens, which do not lend themselves to the operation, although there are instances in which grafting has been made successful on them. In order to succeed with an herbaceous cion, it is necessary that the room be rather close and moist in order that evaporation may not he very rapid. One should endeavor to secure the general conditions which obtain in a good propagating bouse. The temperature should be kept rather below the normal for that species until union has taken place. It is usually best to cover the union with moss or some other material in order to protect the wound and to check evaporation. Best results are secured when the cion is firm in texture, as also in the case of berbaceous cuttings. The kind of graft is of less importance, although it is customary to use the veneer-graft cions, since there is less injury to the stock and the outer surfaces are easily applied to each other. The cion ordinarily consists of one or two joints, and if the leaves are large, they are cut in two, as in the making of softwood cuttings.

Inareling. - In those cases in which union takes place with much difficulty, it is possible to effect the conjunction by allowing the cion to grow fast to the stock before the cion is severed from its own roots. The plant which it is desired to have grow on the stock is bent over to the stock, the surfaces of the two are exposed so that the cambiums may be pressed close together, and the two are then bound until union takes place. In some cases a tongue is made in both the cion and the stock, much as in whip-grafting, so that the surface of contact is greater and the parts are beld together more securely. When the cion has become thoroughly established on the stock, the cion is severed from its own root and the top of the stock is cut off. This inarching or grafting by approach is also used in the greenhouse when it is desired to transfer the whole top or the whole branch of one plant to another. The illustration (Fig. 947) shows such a case. Inarching is seldom employed in this country in a commercial way.

Inarching is sometimes employed to unite two hranches into one for the purpose of making a specimen fruit grow larger. If, for example, a twig of an apple tree is inarched into a limb just back of a fruit, the extra food supply may cause that fruit to grow larger, and a finer specimen may be ohtained. This use of the graft is employed only for the purpose of securing extra fine specimens for exhibition or other purposes.

Bridge-grafting. - Wounds or girdles may be bridged by cions, as in Fig. 948. Trim the edges of the girdle to the fresh, firm tissue, insert cions which are whittled wedgeshape at each end, draw bandages around the trunk so as to hold the free edges of the bark and the ends of the cions, and pour melted wax over the work. This operation is performed in spring, with dormant cions. Prevent the buds from throwing out shoots.

948. Bridgegrafting.

If the cions are placed close together, they will soon unite along their sides and make a continuous coveriug of the wound.

Literature.-For further discussion of the whole subject of grafting, the reader is referred to current works on fruit-growing; also to the two American special books on the subject-Fuller's "Propagation of Plants" and Bailey's "Nursery-Book." In English work, "Baltet's "Budding and Gratting" is standard. It is an English version of "L'Art de Greffer."
L. H. B.

GRAM, or CHICK PEA. Cicer arietinum.

GRAMMANGIS (Greek, gramma; perhaps referring to the markings of the fls.). Orchidacea, tribe I'dindea. Species about t, of Madagascar and Java. Pseudobulbs short and thick, with foliage-leaves only at their summit, hence not enclosed in the leaf-sheaths: fl-clusters from the base, many-fld., pendulous: tis. not spurred; middle sepal strongly concave, lateral sepals somewhat sac-shaped at base, free, spreading; petals ascending, somewhat different in form and color; lip 3-lobed, with erect lateral lobes and recursed middle lobe; column slender, winged. Nearest Cymbidium, differing chiefly in having the foliage-leaves only at the end of the pseudobulb, and the rostellum crescent-shaped (in Cymbidium it is triangular). From Grammatophyllum (which see), Grammangis differs in the attachment of its pollen masses and in the position of its foliage-leaves. Best cultivated in baskets hung near the glass, where the light is most intense. The plants can also be grown successfully in pots placed near the glass, or fastened to blocks, but in the latter case they must be given more water.
Ellisii, Reichb. f. (Grammatophýllum Éllis ii, Lindl.). Pseudobulbs 7-11 in. long, each bearing 5-6 1vs.: 1 vs . $11 / 2-2 \mathrm{ft}$. long: sepals yellow, elegantly marked with dark transverse lines; petals and lip pale pink, the latter with a strong mid-nerve. Summer. Madagascar. B. M. 5179.
G. Húttoni, B. \& H. (Cymbidium Húttonl, Hook. f.). Pseudobulbs of a single intervode, $3-5 \mathrm{in}$. long, elongated, obovoid, green: lvs. in pairs, $6-8 \mathrm{in}$. long, $2-21 / 2 \mathrm{in}$. wide, dark green, coriaceons raceme about 10 -fld., drooping: sepals obovate, recurved, light brown outside, streaked transversely inside with chocolate color: lip greenish, with chocolate stripes. June. Java. B.M. 5676.
T. H. Kearney, Je.

GRAMMANTHES (Greek, letter-flower; the petals of the full-colored varieties with a darker mark like a letter V, whence also the name of the synonymous genus Fauanthes). Crassuldece. This genus includes a small, half-hardy, annual, succulent plant, with thick, fleshy lvs. and yellow fls., which grows about 6 in . high and is used for edgings, baskets and pots. All the 9 specific names are now referred to one, G. gentianoides. Beside the type, 4 botanical varieties were recognized in Flora Capensis $2: 33 \mathrm{I}$ (1861-2). Calyx bell-shaped, semi5 -fld.; corolla tube as long as the calyx; limb 5-6-lobed: carpels 5-6, many-ovuled, with awl-shaped styles: scales minute, and evanescent: follicles many-seeded.
gentianoldes, DC. Glabrous, somewhat glaucous: branches forking: stems rigid, filiform: lvs. opposite, distant: fls. orange, yellow, or creamy white, and marked as above described. Cape. B.M. 4607 and 6401. F.S. 5:518. The type (var. vèra, Haw.) has lvs. ovateoblong : limb of corolla ovate-oblong, a third longer than the stamens. Var. chloræflora, Haw., has lvs. oblong or linear: fls, a little larger; limb of corolla ovatelanceolate, twice as long as the stamens.
W. M.

GRAMMATOPHYLLUM (Greek, gramma, a line or streak, and phyllon, leaf; probably referring to the parallel leaf-veins). Orchiddceur, tribe Vándec. A small genus of perhaps 8 or 9 epiphytic species, of which about half are well-defined, inhabiting the islands from Madagascar to the Philippines and New Guinea. The genus includes some of the largest and showiest of cultivated orchids. Roots numerous: stems or pseudobulbs many-leaved: lvs, long, ribbon-shaped, thick, evergreen: racemes long-stalked, loosely many-fld.. springing from near the base of the pseudobulb: fls.
large, not obviously spurred; sepals and petals nearly equal, spreading; lip comparatively small, with margin entirely free, 3-lobed, with erect lateral lobes; column slender. Allied genera are Grammangis and Cymbidium, from both of which Grammatophyllum differs in having the pollen masses each borne upon an appendage of the stalk, while in the two related genera they are attached to a common stalk without special appendages.
The few species in cultivation are such infrequent bloomers that the flowering of a fine example is something of an event. They are propagated from pieces of the pseudobulbs. The plants are best grown in goodsized and well-drained pots filled with peat, and need considerable water while actively growing. They should be allowed to rest occasionally. Season of bloom and further cultural details with each species.
T. H. Kearnee, Jr.

Cultivate Grammatophyllums in shallow perforated pans three-fourths filled with broken potsherds. The solid part of the potting material should be of fern fiber packed very tight and thin. Place near the strongest sunlight, under lightly shaded glass. Keep a temperature of 70° to 95° in the growing season. Give plenty of water while growing. They need a long season of rest, without water, in a shaded house, in a temperature of 50° to 55°.

Wir. Mathews.
A. Pseudobulbs very long, comparatively slender.
speciosum, Blume (G. Sanderidnum, Hort.). Letter Plant. Pseudobulbs 6-10 ft. long, slender, flexuous: tvs. 2-ranked, 1-2 ft. long: flower clusters open, sometimes 6 ft . long from the base of the stalk: fls. numerous, 6 in. in diam., clear yellow, spotted with deep redpurple. Winter. Malayan region, notably Java. G.C. 1II. $7: 297 ; 14: 15 ; 22: 145,147 ; 13: 1$. B.M. 5157.-This magnificent plant, one of the very largest of its family, has been well-named the "Queen of Orchids." A buge individual growing on a tree in the open at the Botanical Garden of Buitenzorg, Java, has the following dimensions: diameter of whole plant, 18 ft .; collar about the trunk of the tree formed by the closely interwoven roots $7^{1 / 2} \mathrm{ft}$. in diameter, $21 / 3 \mathrm{ft}$. thick, and over 3 ft . high: flower-clusters (appearing at the same time) $50-60$, each 2 ft . or more in length and bearing $70-100$ flowers. And it must be remembered that this huge plant is an epiphyte! Temperature, especially soil temperature, should be carefully regulated in growing this plant. Owing to the brighter light, it does better in American than in European hothouses.
AA. Pseudobulbs comparatively short and thick, leafy only at summit.
B. Fly. greenish or yellowish, spotted with brown.

Fenzliànum, Reichb. f. (G. Measuresiànum, Hort.). Lrs. 4-6: fl. clusters sometimes 15 at one time, each over 5 ft . long and containing over 60 fls .: sepals and petals narrow, cream color to greenish yellow, tipped and spotted with brown aud purple; lip streaked with purple. Apr. Island of Amboina. Pbilippine Islands(?). I.H. III. 29:123. G.M. 34:334. - The fls, are smaller and the spots fewer and smaller than in Rumphianum.
Rumphiànum, Miq. (C. Guilélmi II, Kränzlin). Pseudobulbs 6-8 in. long, ovoid or fusiform: lvs. 1-2 ft. long: raceme nodding or hanging, $3-4 \mathrm{ft}$. long from the base of the stalk: fls. often $30-35,3 \mathrm{in}$. in diameter, green outside, green blotched with brown-purple within; sepals and petals similar; lip purple-reined, downy. Molucca Islands, Borneo, New Guinea, and (?) the Philippines. B.M. 7507.-A large, showy species.

> Bb. Fls. brown, streaked with green.
multiflòrum, Lindl. Lrs. 3-1: fi. clusters nearly 2 ft . long. Summer. Philippine Islands. P.M. 6:217.-This very desirable species has not yet found its way into American trade. It is easily grown, either in a pot filled with a well-drained "compost of heath soil and potsherds," or merely fastened to copper wire and hung from the roof.
G. Éllisii, Lindl.=Grammangis Ellisii.-G. indeterminàle, Hort.=?-G. levictum, Hort.=? T. H. Kearney, JR.
granadilla. Consult Passiflora.

GRAPE. The Grape is probably the oldest of domesticated fruits. It is probable that wine was made from it before the species was brought into cultivation. It seems to have been cultivated at the dawn of history, its product was certainly no rarity in Noah's time.

949. The Labrusca or Fox-Grape type. a, Niagara; b, Brighton black rot.
ments finally failed because of the incursions of the
Of all countries, North America is richest in species of Vitis (see the article litis). These species range from oceau to ocean and from the British possessions to the tropies. The species which bas been most inuproved is Iitis Labrusca of the Atlantic slope, although it seems to possess less native merit than some of the southwestern species-types. Of this species are the Concord and Catawba types (Figs. 949-951). To some extent it has been hybridjzed with Jitis rinifera (as in Agawam, Lindley, Barry, and others of E.S. Rogers' varieties), and with native species. Already a number of the popular varieties represent such wide departures that they cannot be referred positively to any species. Of these, Delaware and lsabella are examples. The second most important species, in point of amelioration, is Vitis astivalis, from which several of the best wine Grapes have sprung (Fig. 952). The Post-oak (irape (Jitis Linsecomi, or 1. astivalis, var. Linsecomi) of the southwest, is one of the most promising species, and already has given excellent results in hybridization. See Figs. 953, 954. 1. rotundifolia of the South has given the Senppernong and a few less known forms. Beyond these species, there are none which have given varieties of great commercial importance, although considerable bas been done in improving them. Some of the best of the wild species are practically untouched: tbere is only a comparatively small area of our great country which has yet developed large interests in Grape-growing: the (irape-types of a century bence, therefore, may he expected to be very unlike the present day varieties. For an extended sketch of American (irape history, see "Evolution of Our Native Fruits." The American Grape literature is voluminous. Fifty authors have written on the subject. Fet there is very little of this writing which catches the actual spirit of American Grapegrowing ; this fact, together with the intrinsie intricacy and diversity of the subject itseli, makes it seem wise to devote considerable space to the Grape in this Cyclopedia,
While the native (irape was being ameliorated in the East, the Old World Jitis vinifera was becoming estahlished on the Pacific slope. In fact, litis vinifera bas there run wild. The phylloxera and mildew are not native there, and the climate better suits the species. The Pacific coast viticulture, therefore, is of the Old World kind. Wine is the lcading revenue of the Grape.

We now know that the phylloxera or root-louse can he evaded when the vinifera Girape is grafted on native or resistant stocks, and tbe mildew can be combated by fungicides. Of late years, therefore, new efforts have been made to grow the wine Grape in the eastern states, and in the southern latitudes some of these experiments promised well for a time. However, so great attention is required in order to produce a satisfactory product as to discourage the growing of vinifera varieties in the open in the East. Vinifera types will always he special f.irapes io the East, adapted only to particular conditions, for it is not to be expected that they can compete with

The Grape of history is the Old World Vitis vinifera, the "wine-hearing Vitis." probably native to Asia. The paramount use of the firape always bas been the production of wine. A subsidiary value is the production of raisins; and auother is the production of fruit for the dessert and for culinary uses. Great efforts were made to introduce the cultivation of the European Grape into the American colonies, but the efforts resulted in failure. It was not until the latter part of the present century that the cbief causes of this failure became known: the depredations of the phylloxera and mildew,-and even then the causes were discovered largely because these enemies had made incursions into the rineyards of Europe. In the meantime, one or two of the native species of Vitis had been ameliorated, and American viticulture had become established on a unique and indigenous basis, and the fruits are grown to eat rather than to drink. So fully did the early American rentures follow European customs that the Grapes were usually planted on terraced slopes,as they are on the Rhine and about the continental lakes. Eren to this day the terrace ridges can be traced in scme of the slcpes ahout Cincinı ati, where Longwertb and others celtirated the frape fifty years and more ago. Those early esperi -

950. The Labrusca type of Grape, comprising most of the common American varieties.

the more easily grown and cosmopolitan native varieties. Under glass, however, the vinifera varieties thrive; below a special discussion is given to this branch of the subject.
The greatcst development of the native Grape industry has taken place in New York and Ohio, bordering lakes and large streams. These areas are the lower Hudson river valley; the region of the central-western New York lakes; the Lake Erie region of New York, Pennsyivania and Ohio. There are also important Grape interests in Outario, Michigan, and other northern parts. There is cousiderable interest in Grape cuiture in the cooler parts of Georgia and Alabama, and there are enlarging areas in the country extending from the Ozark region southward. Nearly all the country, excepting the northernmost parts, raises Grapes, but in most cases the growing of them cannot be said to be extensive enough to be called an industry. Although the Grape sections of the North hug the water areas and the land, therefore, is often steep, all Grape growers prefer nearly level land. The Old World plantations are largely on very stecp lauds ; such lands, by virtue of their warmth and drainage, are thought to give an extra quality of wine. These ideas were brought to this country, and many of our early vineyards were planted on terraced slopes. But we grow Grapes for a different purpose from the Europeans, and land is cheap and labor is dear. Old World methods cannot be followed in the American commercial plantations.

The ideal bunch of Grapes is one which is of medium size for the variety, compact, uniformly developed and ripened throughout, containing no small or diseased berries, and with the bloom intact. A very dense or crowded cluster is not the most desirable, for all the berries cannot develop fully, and the chnster is not easily handled when the fruit is eaten. Fig. $95 \overline{5}$ shows a cluster of good shape and compactness: Fig. 956 is too broad and irregular ; Figs. 957 and 958 are rather too dense and compact.
The American Grape is essentially a dessert fruit. It is eaten from the hand. There are several manufactured products, but, with the exception of wine, they are yet of minor importance. Americans are not a winedrinking people, and wine is a secondary output of the Grape in the eastern states, although there are many large wine-cellars in New York and Ohio, and the product is of excellent quality. Unfermented grape juice is a product which deservedly is growing in popularity. The lack of secondary domestic uses of the Grape is one reason for the very serious gluts in the markets. However, one year with another, the profit on a good vineyard may be expected to exceed that on the staple farm crops.
The American book literature of the Grape is nearly as large as that of all the tree fruits combined.
nampion, one of the early - season Labruscas. but of poor quality ($\times 3 / 4$). Probably 100 books, counting the various editions, have been published in North America since Adlum's volume in 1823 (see "Evolution of Our Native Fruits," pp. 117126). The earlier books were ${ }^{\text {E }}$ founded largely on European practices. The leading current works are: "Bushberg Descriptive Catalogue and Grape Growers' Manual!" Mitzky's "Our Native firape;" Fuller's "Grape Culturist;" Husmann's "American Grape Growing and Wine Making," For the Pacific slope, Husmann's "Grape Culture and Wine Making in California," Wickson's "California Fruits," and Eisen's "Raisin Industry" are current guides. Detailed discussions of pruning and methods of training are contained in "The Prun-ing-Book." A standard European monograph is Foëx's "Cours Complet de Viticulture."

Pruning and Training.-A Grape vine is pruned in order to reduce the amount of wood (that is, to thin or to limit the amount of fruit), and to keep the plant within manageable shape and bounds. A vine is trained

952. Horticultural product of Vitis astivalis-Onderdonk, seedling of Herbemont ($\times 5 ; 6$).
in order to keep it off the ground, out of the way of the workmen, and to so arrange the fruit that it will be well exposed to light and air. In order to understand the pruning of Grapes, the operator must fully grasp this principle: F'ruit is borne on wood of the present season, which arises from wood of the previous season. To illustrate: A growing shoot, or cane of l^99, makes buds. In 1900 a shoot arises from each bud; and near the base of this shoot the Grapes are borne (1 to 4 clusters on each). This is shown in Fig. 959. The 1899 shoot is shown at the top. The 1900 shoot bears 4 clusters of Grapes. While every bud on the 1899 shoot may produce shoots or canes in 1900 , only the strongest of these new shoots will bear fruit. The skilled Grape grower can tell by the looks of his cane (as he pranes it, in winter) which buds will give rise to the Grapeproducing wood the following season. The larger and stronger buds usually give best results; but if the cane itself is very big and stout, or if it is very weak and slender, be does not expect good results from any of its buds. A hard, well-ripened cane the diameter of a man's little finger is the ideal size.
The second principle to be mastered is this: A vine should bear only a limited number of clusters,-say from 30 to 80 . A shoot bears clusters near its base; befond these clusters the shoot grows into a long, leafy cane. An average of two clusters may be reckoned to a shoot. If the vine is strong enough to bear 60 clusters, 30 good buds must be left at the annual pruning. How much a vine should be allowed to bear will depend on the variety, distance apart of the vines, strength of the soil, age of the vine, system of pruning, and the ideals
of the grower. The Concord is one of the strongest and most productive of Cirapes. Twelve to 15 lbs . is a fair erop for a mature vine; 20 lbs is a heavy crop; 25 lbs . is a very heavy crop. An average cluster of Concord will weigh $1 / 4-1 / 3 \mathrm{lb}$. The vine may be expected to carry from 30 to 60 clusters; and the annual pruning will leare from 5 5 to 30 buds.

Since the bearing wood springs from new canes, it follows that the fruit of the Grape is each year borne farther from the main trunk of the vine. Observe that the fruit of wild vines is borne beyond reach when they

953. Hybrid of Vitis Linsecomi and a FoxGrape derivative-Husmann ($X / \mathrm{s} / \mathrm{j}$).
next year; and the other or older cane is entirely eut away after the fruit is off. That is, the wood is constantly renewed; and the new shoots which are to give bearing wood the following year are called renewals. There are some systems of Grape training which renew back to the root every year or two, and these have been called renewal systems ; but every system of Grape pruning must practice renewal in one way or another.

An old system of renewal was by means of spurs. Fig. 960 illustrates this. The horizontal part is a permanent arm or branch. We will suppose that it grew in I 890. In 189] a shoot grew upward. It bore two or three clusters of fruit. In the fall it was cut back to a, two buds being left to supply the shoots of the succeeding year. This sbort branch is now called a spur. Only one shoot was wanted for the next year, but two buds were left in case one should be injured. In 1892, a branch grew from one of these buds: it bore fruit: in the fall it was cut back to b. In I893 a shoot will grow from one of the buds, c. Thus the spur elongates year by year, becoming a forking, complicated, stubby branch. After a few years it may become weak: the grower sees this, and if a new shoot should start from the main arm near the base of the spur, he encourages it and cuts off all of the old spur: thus he renews back again to the main vine. Shoots from adventitious or secondary buds are likely to spring from the main arm or the spur at
any time. These are usually weak and are removed, but now and then a strong one arises. Spur pruning is now rarely used except in Grapes grown on arbors or under glass, in which cases it is necessary to bave a long, permanent trunk. On arbors it is best to carry one arm or trunk from each root to the top of the frame. work. Each year the lateral canes are cut back to spurs of two or three buds. The pruning of glasshouse Grapes is discussed under Grapes under Glass.

The current systems of pruning renew to a head-or to the main trunk-each year. The trunk of the vine is carried up to the desired height - to one of the wires of the trellis-and one or more canes are taken out from its top each year. The object is to keep the bearing wood near the main trunk and to obviate the use of spurs. Tbis type of pruning is illustrated in Fig. 961. This engraving shows the head of a vine seven years old, and on which two canes are allowed to remain after each annual pruning. The part extending from b to f and d is the base of the bearing cane of 1892 . In the winter of $1892-3$, this cane is cut off at d, and the new cane, e, is left to make the bearing wood of 1893. Another cane sprung from f, but it was too weak to leave for fruiting. It was, therefore, cut away. The old stub, b, f, d, will be cut away a year hence, in the winter of 1893-4. In the meantime, a renewal cane will have grown from the stub c, wbich is left for that purpose,

and the old cane, $b d$, will be cut off just beyond it, between c and f. In this way, the bearing wood is kept close to the head of the vine. The wound a shows where an old stub was cut away this winter, 1892 3 , while b shows where one was cut off the previous winter. A scar upon the back of the head, which does not show in the illustration, marks the spot where a stub was cut away two years ago, in the winter of 1890-1. This method of pruning can be kept np almost indefinitely, and if care is exercised in keeping the stubs short, the head will not enlarge out of proportion to the growth of the stock or trunk.
There are two common styles of training in use in the northern states, but each of them practices essentially the system of renewals which is described in the last paragraph. One style of training carries the trunk only to the lowest wire of the trellis. The canes-usually 2 in number-are tied horizontally on the bottom wire, and the bearing shoots are tied, as they grow, to the t wo wires above (Fig. 962). This is an upright system. The other style carries the trunk to the top wire. The canes are tied on the top wire, and the bearing shoots hang. This is the drooping or Kniffin system. If the shoots run out on the top wire by clinging to it by tendrils, they are torn loose, so that they will hang: this is a very necessary practice. There is controversy as to the comparative merits of these systems, which proves that

955. Grein Golden.

956. Eaton.

A good Grape cluster.
each has merit. It is probahle that the upright system is better for the slender or shorter varieties, as Delaware, and also for those whose shoots stand erect, as Catawba. The Kniffin has distinct merit for strong-growing varieties, as Concord; it is also cheaper, since it requires no summer tring. Grape-training is a rery special subject; it is discussed at length, with many illustrations, in "The Pruning-Book."
One- or 2-year-old vines are planted either in the fall or early spring. At planting, the vine is cut back to 3 or 4 buds and the roots are well shortened. If all the buds start, the strongest one or two may be allowed to grow. The canes arising from this bud should be staked and allowed to grow through the season: or in large plantations the first-year canes may be allowed to lie on the ground. The second year this cane should be cut back to the same number of eyes as the first year. After growth begins in the second spring, one of the strongest shoots should be allowed to remain. This cane may be grown to a single stake through the second summer. At the end of the second year the cane may be cut back to the bottom wire of the trellis, if upright training is to be employed. The cane may be strong enough at this time to be made the permanent trunk of the Kiniffin training, hat in most cases the trunk is not carried to the top wire uutil the third year.

The main pruning is performed when the vine is dormant. The ideal time is January and February in the North, although the work is often begun in November if the area is large. Pruning in spring causes the vine to bleed, but bleeding is not injurious. But late pruning interferes with tillage, and the buds are likely to be injured after they are swollen. Summer pruning is now practiced only to the extent of pulling out suckers and weak shoots, and even this is not always done. Head-ing-in the rine in summer is likely to start side growths, which are useless and troublesome.
Propagation.-The Grape grows readily from seeds:

957. Moore Early.

958. Massasoit.
which may be kept over winter and germinated in the house early in the spring. They may be even planted in beds in the open, but the proportion of failures will
be greater. Seeds produce new rarieties, and they are used only in an experimental way.

The commercial propagation of Grapes is done by means of hardwood cuttings. These cuttings are taken in the winter from the trimmings of vineyards. In all ordinary cases they are made of two or three buds, length, preferably three (Fig. 963). They are cut as soon as the canes are trimmed, tied in small bundles, and these bundles are then buried half their depth in damp sand in a cool cellar. By spring the cuttings will be more or less callused. The cuttings are planted in the open on the approach of warm weather. A loose, loamy soil is selected, and it is well and deeply prepared. The cuttings are inserted until only the upper bud stands at the surface of the ground. These cuttings are placed 6 to 8 inches apart in rows, and the rows are far enough apart to allow of horse cultivation. These cuttings may give plants large enough for sale the following fall; but it is usually preferred to let the plants grow two years before they are put upon the market. In such cases it is customary, in many of the best nurseries, to transplant at the end of the first season. When wood is scarce, the canes are sometimes cut

959. Fruit-bearing of the Grape.
to single eyes. In this case about an inch of wood is left on either side of the bud. Single-eye cuttings are nearly always started under glass, preferably on the greenhouse bench. If they are started in February, they will be large enough for transplanting in a well-prepared seed-bed very early in the spring. Green wood cuttings are sometimes used in the summer time with new and rare varieties, but they are not in general favor. In California, rooted rines of one year are preferred; and in soil in which cuttings root readily, they are sometimes planted directly iu the vineyard.

The Grape is easily grafted. Because of the flexible nature of the vine, bowerer, it is customary to make the graft below the surface of the ground. An ordinary cleft-graft is the one which is usually employed. The whole vine is cut off 4 or 5 inches below the surface, and the graft is inserted in the same fashion as in apple or pear trees. The surface may then be waxed or covered with clay or other material, to keep the water out of the cleft, although if the earth is firmly packed around the graft and no water stands, the union may be perfectly satisfactory withont any corer (Figs. 96i-5). Vines of any age may be grafted, it is important that
the cions be perfectly dormant. These cions are taken and stored in the same way as cuttings. The grafting should be done very early in the spring, before the sap starts. Grafting may also be done late in the spring, after all danger of bleeding is over ; but, in that case, it is more difficult to keep the cions dormant, and the growth is not likely to be so great during the first season. Tineyards which are composed of unprofitable varieties may be changed to new varieties very readily by this means. Vinifera varieties can also be grafted on our common phylloxera-resistant stocks by the same method. Almost any method of grafting ean be employed upon the Grape vine if the work is done beneath the surface.

Diseases.-The Grape is amenable to many inseet and fungous attacks. The most serious difficulty is the phyllosera, which, however, is practically unknown as an injurious pest on the native Grapes. (n the rinifera rarieties it is exceedingly serious, and it is working great devastation in many of the vineyards of the Old World and of the Pacifie coast. The most practicable means of dealing with this pest is to graft the vinifera vines on дative or resistant roots.

The miklew and black rot are the most serious of the fungous enemies. The mildew (Peronospora viticola) is the more common form of rot in the North. In the South the black rot (Lestadia Biduellii) is very scrious. Both these diseases cause the berries to decay. They also attack the leaves, particularly the mildew, causing the leaves to fall and preventing the Grapes from maturing. It is the milder which has worked sueh havoe in European rineyards. The mildew is most serious on thin-leaved and smoothleaved varieties, as the Delaware. It causes yellowish patches to appear on the leaves, with frost-like colonies on the under sides. It eauses the berries to decay with a gray and finally a brown rot, the berries usually remaining small and firm but not greatly wrinkled. The black rot causes the berries to lecome very hard, dry and shriveled, and the epidermis is corered with minute pimples (Fig. 96i6). The treatment for both these diseases is the same-spraying with Bordeaux mixture. In regions in which the diseases have not been very prevalent, it is usually sufficient to begin the spraying after the fruit has begun to set, and to spray two or three times, as the case seems to require. When the diseases have been rery prevalent, however, it is better to begin before the buds swell in the spring.

In infested vineyards, the foliage and diseased berries should be raked up and burned in the fall.

The anthracnose or scab (Sphaceloma ampelinum) is a very serious fungous disease. It is most apparent on the fruit, where it makes a hard, scabby pateh. Its most serious work, however, occurs on the stems of the
clusters and on the young growth, where it makes sunken, discolored areas, and where it interferes seriously with the growth of the parts. It is not so easily controlled as the mildew and the black rot. Careful attention to pruning away all the diseased wood and burming it will help in controlling the disease. Before growth starts, spray the rines, trellis and posts with strong sulfate of eopper solution. After the leaves open, use the Bordeaux mixture.
In Grape bouses the powdery mildew (ℓ neinula spiralis) often does serious damage. It also oceurs in the open vineyard, but it is usually not serious there. It appears as a very thin, dust-like covering on the leaves. It sometimes attacks the berries, eausing them to re main small or to crack. This fungus lives on the surface, and is therefore readily eontrolled in Grape houses by dusting with flowers of sulfur or by the fumes of evaporated sulfur.

For further discussions on Grape diseases and difficulties, the reader should consult the bulletins of the experiment stations, publications of the Department of Agriculture at Washington, books on economie entomology, and Lodeman's "Spraying of Plants."

Varieties. - Of the native Grapes, fully 800 varietjes

952. Upright system of Grape training.

At the winter pruning, all the top will be cut away except two eanes nesr the eenter: these two will be laid down in opposite directions on the bottom wire for the next seasou's fruiting.
have been named and described. Many foreign rarieties have been introduced. Yet, in any region the number of useful commereial varieties is usually less than a dozen. Of the American Grapes (those aside from viniferas), the Concord is the cosmopolitan variety. Others of great prominence are Worden, Niagara, Catawba, Delaware. For the South, eonsult Munson's article, below. For the Pacific viniferas, consult Wickson's account, below. Following are notes on varieties by Ralph Bush, of the old firm of Bush \& Sons, Bushberg, Mo. This firm was established shortly after the eivil war by Isidor and Ralph Bush, father and son. In the early seventies the firm beeame Bush \& Son \& Meissner, by the entering of G. E. Meissner. The recent death of the elder Bush and Meissner has left the firm in the hands of Ralph Bush \& Sons. It is this firm which publishes the Grape manual already mentioned. Iu that work and in Mitzky's "Native Grape," great numbers of varieties are deseribed. Mr. Bush's remarks on rarieties of Grapes, made for this occasion, are as follows :
"The planting of vineyards, both for market and amateur purposes, is on the increase. The inelination in planting tends more towards quality than to quantity; that is, from the many inquiries and orders, the main question seems to be the adaptation of the variety to the soil or the purpose. In former years the planter, without question, would order so many Concord, Hartford, Ives, Elvira, ete., and in rare cases, one or two of a better variety. Now there is no demand whatever for Hartford, much less for lves and Elvira, while the planting of even the Coneord is on the decrease. The general tendeney around the great lakes is still to plant the Catawba, and it certainly thrives very well. In many parts of Ohio, Indiana, Kentucky and Tennessee the Noah and Niagara are in great demand; as also the Delaware, Norton Virginia and Cynthiana for wine purposes. In the section south of the Ohio river, as also in the western states, such kinds as Moore Early, Moore Diamond, Brighton, Worden, Cottage, Niagara,
and many of the Rogers hybrids are now planted. In the soutkernstates, from Texas to Georgia, the Niagara, Herbemont, Cunningham, as also Norton Virginia and C'ynthiana, are most frequently wanted." L. H. B.

Grapes in the North. - Seeking a proper location for Grapes in the northern states east of the Rocky mountains, one should make a distinction between Grapes planted for commercial purposes and those planted for domestic use. If for the former, the climatie conditions must be so perfect that a crop can be depended on each season with the same certainty as the appearance of the tax collector or the annual interest on the mortgage. If for the latter, the chances may be such as to give a yield of Grapes three years out of five, which is better than no (irapes at all. Any section in which dent corn has a liberal season iu which to mature is a practicable place for a household vineyard, provided the early ripeuing rarieties are selected. For this purpose, for black or deep purple, may be suggested Moore Early and Worden. During the past three years the Caupbell is often favorably mentioned. For white or pale green, the Green Mlountain, sometimes called the Winchell, and for red the Brighton, are good varieties.
The best location for a commercial rineyard is along the shores of our lakes or large rivers. The adrantage of such locations is due almost entirely to protection from late and early frosts. During the early derelopment of the Grape industry, many loose ideas were prevalent that certain spots within the different Grape zoues had some special magic of sunshine, or temperature, or draught of air, or alchemy of the soil, that gave such superior quality of fruit. The earlier vineyards at Hammondsport, N. Y., were planted upon steep hillsides-so steep that terraces were sometimes formed, which made cultivation and harvesting expensive. Such locations were probably considered superior to all others hecause some one had seen Grapes grown in similar locations along the Rhine. It was also said that the west bank of the lake was superior because the Grapes received the morning sun. Henry O. Fairchild, a pioneer and progressive rineyardist, in time proved the foolishness of the idea by planting a rineyard on the east side of the lake, where the lay of the land made cultiration more easy and the Grapes receired the afternoon sun. In later years, when the Grapes from either shore

964. Cleft-grafting the Grape. reached the market, no consumer could tell whether the fruit received the morning or afternoon sun. The first vineyards planted in the Lake Erie belt were at Brocton, Chautuaqua county. The industry clung about that initial location nany years, for it was a popular belief that there was some special current of air passing

965. Cleft-grafting the Grape
of Grape product in all that area is the difference between the conscientious and the careless packer. If there was ever any reason for such an idea as the quality of fruit being influenced by location, it was probably due to the inexperieuce of some outside planter, which led him to put up too much or too little wood, and imperfect ripening of the fruit was the result. The conclusion was jumped at that the difference was due to a heaven-horn blessing of location, instead of good judg-

966. Grapes ruined by black rot.
ment in pruning. It is the common thing for writers to lay much stress on "southern slopes" and "sunny slopes," but in most cases they have said so because some one has said so before them, and not because they spoke from experience. Scarcely an acre of the 25,000 planted to vineyards in the Chautauqua belt but faces the north, and is in full siew of Lake Erie, as the seats of a theater face the stage.

There is one feature of location upon which much stress must be laid, eren in the lake zones, and that is opportunity for frost drainage. It is a well attested fact that the cold air settles in the bottom of a valley; therefore, the bottom of a ravine is usually colder in frosty nights than the hillside. It often happens that a late spring or early fall frost will injure Grapes in the lower location, and not on the slopes. This is a factor that planters of all fruit should observe.
There has been as much nonsense written about the best soils for Grapes as there has been about best location. One has a vineyard planted on the gravel of what was once the beach of Lake Erie, when it had a higher level than at present. His neighbor across the road has a rineyard planted on a very stiff elay, which was onee the bottom of the lake. One gets just as large yields and just as fine quality of fruit as the other. The only tifference is that the former, being on the grarel. is able to work his soil earlier than the latter; his fruit ripens earlier, so that he is able to borrow all of the neighbor's harvesting tools. Another neighbor has a rineyard extending across both clay and gravel, and he would uot sell one acre cheaper than another. In commercial planting, the period of protection from frosts should be broad enough so that the difference in ripening from gravel or clay should not make a difference of success or failure. For domestic planting, the gravel would be preferable. The soils of which most serious warning should be giren are those containing a very liberal supply of arailable nitrogen. All experienced fruit-growers know of the impossibility of early fruiting of trees or vines which are making a rampant growth. There is no fruit so easily intexicated by nitrogen as the Grape. Long-jointed canes are always to be avoided. Besides being less fruitful, a riotous growth of Grape vine is far more liable to mildew and to other diseasea than those of sober growth. One of the surprises in the
from the hills to the lake at that special point that did not pass elsewhere. Now there are more than 25,000 acres of vineyard planted between Silver Creek and Haroor Creek, and the yield of that area for the season of 1899 was about 7,000 car loads. The only marked difference
development of the Chautauqua Grape zone is that some of the so-called poor land has given vineyards as productive as any,-land that previously had been given over to sheep pasture, briers and mulleins. This land was poor in nitrogen, but no doubt had a fair supply of available potash and phosphoric acid, which Grapes most require.
In preparing land for vineyard planting, it is necessary to lay great stress on the importance of first removing all trees, stumps and large rocks, for when the trellis is put up all tillage of the soil will be in a straight line and one way. A favorite way of disposing of boulders is to

bury them about twenty inches deeper than one thinks uecessary, for they bave a vexatious way of overcoming the power of gravitation and creeping out of their graves. The real reason for this apparent freak is the compacting of the soil in later years. If any open ditches should cross the line of the Grape rows, they should be supplied with tile and the ditch filled so as to make long "houts" possible. Short rows and frequent turning should be avoided as much as possible. Turning at the end of a row is lost Jabor, and the time it occupies would enable a team to cultivate over a bundred feet straight abead.
The rows in nearly all the commercial rineyards are 9 feet apart, and the vines are planted 8 feet apart in the row. This makes 605 plants per acre. If the land is sod, plow into narrow lands, so that the center of the dead-furrows are 9 feet apart, and plant in the bottom
of the dead-furrow When the plow is set to cut a furrow 8 to 9 inches deep, the dead-furrow will have about the required depth for planting. If the ground is stubble, plow the whole field, and then lay out rows by striking a double-furrow. Much care should be exercised to have the rows perfectly straight and to plant the rines straight in the row. This has a practical use, besides appealing to the professional pride of all good farmers. If the plants are not straight in the row, the posts cannot be set straight; and if the posts are not straight the wires composing the trellis will bind on the posts which are out of line, and they cannot be easily tightened in spring.

No. I vines, of one season's growth from cuttings, are much to be preferred to No. 2 vines of the same period of growth. A young plant, stunted in growth either by constitutional reasons or accident, has a handicap that usually follows it all through life. For the same reason, avoid planting 2 -year-old plants, as often they are the sccond season's growth of what was a cull the year before. Cull plants and cull men are seldom worth the cost of reformation. Spring planting is universally followed in the North. It should be completed by the last of May. Some vineyards planted during the last half of Juue have developed into good production, but it was due to the grace of favorable weather and soil. Fig. 967 represents a fair No. 1 Grape vine. The few roots at d c should be trimmed, as well as the main body of the roots showu by segment of circle ef. The pruning facilitates planting, and the removed parts would make no root growth of value if retained. The stem of the vine can be cut back to two or three buds, as shown by $a b$. Six quarts of well pulverized fertile soil, well packed about the roots, will hold the plant in place and keep it moist until the furrow can be filled by plowing, if on stubble, or by frequent harrowing and cultivating if on sod. During the first season, all cultivation necessary for conservation of moisture should be given. If no tilled erop is planted, this tillage can be done by cultivating or harrowing crosswise alternately. But little hand-work in weeding will be required. Whether some hoed crop be planted between the rows the first season is a question of profit for each vineyardist to decide. It adds something to the expense of cultivation. It is generally no detriment to the growth of the Grape vines. After the first season, the ground should not be planted to other crops.
The general appearance of an infant rineyard at or about the middle of the first season's growth is shown in Fig. 968. Lay great stress upon the importance of a rigorous and even growth during the first and second years. If such is not attained, many years will be required for the vines to recover, and sometimes they never reach the standard of a good vineyard. Even vines planted after the second year to fill vacancies require constant coddling to bring them up to the average. In the spring of the second year the shoots or canes of the previous season's growth should be cut back to three or four buds, and the canes should be thinned out according to the vigor of the vine-one cane for a feeble growth, and three or four for a decidedly vigorous growth. In all other respects, the second year's management should be a repetition of the first.
In the spring beginning the third year will come the most considerable expense of the undertaking-that of putting up the trellis. There are many forms of training Grapes, and some of them so peculiar that special trellises must be constructed. There are three popular styles of Grape training in the commercial Grape fields of the North: Kniffin system, as practiced in the Hudson river valley; the High Renewal system, as practiced along Lakes Keuka, Canandaigua and Seneca; and the Chautauqua system, as practiced along the Lake Erie valley. It is impossible to say which of the three is preferable. A man's preference usually depends on how he was brought up-like his politics and religion. In horticultural meetings, advocates of the various systems argue the merits with much partisan fervor. It is clear to me that the essential point to be attained in any system is to hang up the vines so that fruit and foliage can obtain the greatest amount of air and sunshine, all of which can be secured by several methods. The common form of trellis may be illustrated by a high

968. A vineyard in its first summer.
wire fence, as shown in Fig. 969; but the Knifin system omits the hottom wire.
The vineyardists of the Chautauqua Grape belt have developed a mode of pruning and training of Grapes which has many features peculiar to that district. The trellis is made of two wires, of No. 9 or No. 10 gauge, and chestnut posts. The posts are from 6 to 8 feet in length, aud cost 1 cent per lineal foot at the railroad station. In later years, siuce experience has shown how important air and sunshine are in ripeniug the fruit, 8 -foot posts are most commonly used. (irape posts should be somewhat heavier than those commonly used for wire fence-from one-third to one-half larger-and the heaviest should be sorted out for the end posts, for these bear the strain of the wire. An experienced farmer need not be told that they should be sharpened with a true lead-pencil taper, excepting the crooked ones, which should be so heveled as to counteract the crook in driving.
The usual distance apart for the posts in the row of Grapes is one post to every three vines, or, in other words, 27 feet, and for ease in stretching the wire, they should be in as straight a line as possible. The posts are driven, but a hole should first be made by an unusually large crowbar with a bulb near the lower end. After the posts are stuck into the holes, they are most conveniently driven by the operator standing in a wagon which is hauled through the row by a horse. A fair weight of maul is 12 pounds, and it requires a good man to swing one of that size all day. Iron mauls are commonly used because they are the cheapest, but one with an iron shell filled with wood "brooms" or frays the top of the post less than the iron maul. Eighteen inches is a fair depth to drive the posts ou most soils. If the proprietor delegates the driving to another man, he would better direct that 20 to 22 inches be the proper depth, for to the man swinging the maul the post seems deeper than it really is.
A vineyard should have a break or an alley at right angles to the rows as often as every 50 Grape vines, for the purpose of dumping Grape brush and shortening the trip when hauling fruit. If the vineyard is in fair thrift, longer rows will give so much brush as to be inconvenient in hauling out.
The end posts should not only be the largest of the lot, but should also he well braced. The most common mode is the "hypotenuse brace," consisting of a stiff rail or a 4×4 scantling 12 feet long, with one end notched into the post about midway between the two wires, and the other end resting on the ground against a 2 -foot peg of about the same size as the end post.

The wires (two wires in the Chautauqua trellis)
should be strung on the windward side of the post; that is, on the side from which the prevailing winds come. This is very important when the wind is blowing at 30 to 40 miles an hour, and the vines have sails of many square feet of foliage, and perhaps three and four tons of fruit per acre. The staples should be of the same gauge of wire as that used in barbed wire fences, but about one-half inch longer, unless the Grape posts should be of hard wood, like locust ; then fence staples will be long enough. The bottom trellis wire is usually placed from 28 to 32 inches from the ground. Owing to the arm system of pruning in the Chautauqua Grape belt, the height of the lower trellis wire is permanent. The upper trellis wire is, in many iustances, raised as the vineyard comes to maturity. The first year of fruiting it may not be more than 24 inches above the lower wire, and year by year be raised to 30 and 32 inches. It is not advisable to go more than 36 inches apart without putting in a middle or third wire. Each spring many of the posts will sag, and the upper wire will be slack, and many of the braces will be out of place. All of these faults should be corrected just hefore tying up the canes in spring.
A large part of the pruning is done in the winter months-some beginning in the fall soou after the crop is harvested. Two grades of labor can be employed in this operation-the skilled and the unskilled. The man of skill, or the expert, goes ahead and blocks out. He stands in front of a vine of far more tangled brush than that seen iu Fig. 962, and, at a glance, tells by a judgment ripened by much observation, just how many buds are required to ballast and not over-ballast the vine for another year. As the expert stands hefore the vine making the estimate, he might be likened to a man weighing a ham with steelyards, pushing the weight backward and forward, notch by uotch, finding the point of balance. The expert, with his pruning shears, makes a dive here and a lunge there, a clip at the bottom and a snip at the top, and with a few more seemingly wild passes all wood is severed from the bearing vine, but the numher of buds desired to give fruit another year are left. The unskilled help, who receives possihly a dollar a day less than the expert, follows the expert, cutting the tendrils and other parts of the vine that are attached to anything hut the trellis. The next process is "stripping" the brush, and it is one involving brute force. ragged clothes and leather mittens. If the laborer

969. Illustrating the bracing of the end post in a fence or trellis.
does not put on a ragged suit, he will be apt to have one before he is done with his job. There is a little knack even in doing this work to the best advantage. The dismembered vines still hang to the upper trellis and often cling with considerahle tenacity, and a particular jerk or yank, more easily demonstrated than de-
scribed, is most effectual to land the brushon the ground between the rows.

The next operation is to haul the brush to the end of the row. Many tools have been devised for this purpose, some of them involving considerable expense. It is now the general practice to use a simple pole-one a little larger than would be used to bind a load of logs, and not so large as reguired in binding a load of hay, It may be a sapling about 4 inches at the butt and $21 / 2$ inches at the top, and 10 to 12 feet long. The small end is to le held in the right hand, and the butt end to be pushed along the ground. A horse is hitched to this pole by a rope drawn through an inch hole about 4 feet from the butt or ground end. When starting at the end of the row, it scems that the straight pole would not gather any brush at all. It is a question of eatching the first wad, and all the rest of the brush will cling to it. At the end of the row the brush is hauled to a conrenient pile, where it is to be burned, and is dumped by letting the end of the pole held in the hand revolse over towards the horse. If the pole hits the horse, the operator will see that there is not enough stretch of rope between the pole and whiffletree, and more must be provided.
Tying is done by women, boys and girls, and cheap men. The tying materials are trire, wool-twine, raftia, willow and carpet-rags. The horizontal arms, at the lower wire, are more or less permanent, and they are loosely confined to the wire, always by string or willow. The vertical canes, which are fastened to the top trellis, are now commonly tied with annealed wire of $\mathrm{No}_{3} 18$ gauge, and cut in leugths of 4 inches. Ihe economy in using the wire is the despatch in tying, and the fact that the work can be done on cool days when light gloves are nccessary. The use of wire lias heen strenuously opposed by people who have never used it. The objection has been that the fine wire would chafe the cane so that the cane wonld break and fall from the trellis. Such instances occur rarely, and when they do it is so late in the season that the tendrils of the vine are ample to hold it to the trellis. The cane should be tied to the windward side of the wire for the same reason that the wire was stapled on the windward side of the post. In using the wire tic, the operator stands on the opposite side of the trellis from the cans, and follows the movements as illustrated in Figs. $970-973$. This operation puts on the wire with the fewest number of movements, binds the cane snug to the trellis, and makes a loop that falls from the trellis on the following season, when the cane is torn away. The tying wire

970. Tying with wire. The first movement.
should be thoroughly annealed, so that it can be easily bent and give no springy reaction after being worked. This wire is also useful in tying thorny shrubs to a trellis when a mittened hand is necessary to hold the branches in place while the other hand makes the tie.

To recommend varieties is a difficult and personal
matter. Grapes, like most other fruits, are influenced in character by difference of location. There are many more Concords sold than any other variety, yet by the fastidious Grape eater it is thought far inferior to many other varieties. Howerer, as it is the sort the public most want, and is a good yielder, it is probably the most

971. The second movement.

profitable to plant. For the past few years many have wished that all their Concords were Niagara, for the reason that the yield of the latter has been good and the crop brought at least ten dollars per ton more when sold in bulk. Derhaps this eondition is only temporary. The Catawba is of excellent flavor; it is latest to ripenand an excellent variety for storage. When placed in good cellars, and an even low temperature is maintained, but not low «nough to freeze, this variety will keep in good shipping condition until the last of March and first of April. These are standard commercial varieties in New York and ohio. Worden is excellent for a near-by market, but does not stand long journeys well.

Many fruits are better picked before fully ripe, of which the pear is a conspicuous example. Grapes have not that characteristic, for no maturing development goes on after the fruit is harvested. As soon as the full ripening period has been reached, the clusters should he gathered by carefully entting and placing in trays which hold from 25 to 35 pounds. The care in handling should almost equal that taken with eggs. After picking, the fruit should be placed in a fruit house built upon the principle of an ice house, but so arranged as to give free access to the cooling night air, and to be closed each morning to protect from the beat of the day. By such means the temperature can in time be worked down to 40°, which checks excessive evaporation, ther-by keeping the stems green and the fruit plump. This is the ideal method, but is far from being attained or even sought in many large commercial districts. The praetice is far more closely observed in the Lake Keuka (N. Y.) and adjacent lake districts than in the Chautauqua district. In the former locality many Concords are stored in this manner and shipped in fine condition during November and December, and Catawbas during the balance of the wiuter. In the latter district the fruit is sent almost direct from the vine to the consumer. This directness means haste and carelessness that is much to the detriment of the frapes when they reach the market.

From 1893 to 1899 the price of Grapes steadily declined, and with the decline came a casting about for means to economize in harvesting. One of the ways developed towards that end has been to require that the woman who packs should increase her daily output from 809 -pound baskets to 200 . The woman fulfilled the requirements without working any harder in one case than the other. The increase is at the expense of quality of packing, which at first was at the expense of the consumer or shipper, but in the final outcome resulted in less demand for the frapes. The public may be fooled part of the time, but sooner or later smart prac-
tices will come back to the point from which they started like a boomerang. Grapes designed for shipment are packed in climax baskets. The size prevailing in the Keuka district are "poneys,' having a gross weight of less than five pounds. In the Chautanqua district the 8 -pound is the almost universal size. The reason

972. The third movement.
for such distinct customs is due to the demands of the markets to which the Grapes are shipped. Shipments of the Keuka section go to the Atlantic cities, and those from Chautauqua go to the west.

In the Lake Keuka district of western New York there are a number of wine cellars involving large capital, two or three of which make excellent champagne. This industry began at Hammondsport in the sixties, and several varieties of Grapes were planted solely for wine purposes, but the quality of the fruit was not good for table use. In the Chautauqua district the wine industry has received little attention compared to that given in the Keuka district. There has been no opportunity for the blending of several juices, for the reason that the Concord is so nearly the universal variety planted. But another industry - that of bottling Grape juice as it comes from the press-has lately been established, and promises considerable development.

The methods of marketing Grapes are of great variety. During the season of 1893 and 1894 there was formed in the Lake Keuka district and adjacent lakes a coopperative marketing association composed of producers. This association was incorporated and officered by its own members, and represented over three-fourths of the production of that district. The plan was to maintain prices more evenly and to secure a better equalization of supply and of markets. This association was abandoned after two years' trial. The failure was not due to excessive cost in selling nor want of integrity of the officers, but to inability "to pull together," and a desire of each producer to be independent, hoping to do a little better for himself than the association could do for him.

The Chautauqua district has had two periods of coöperative shipments, and each of longer duration than that of the Keuka field. The tirst was for the seasons of 1892, 1893 and 1894. The plan was resumed again in 1897, and continued through the seazons of 1898 and 1899. For the season of 1897 the association represented about 85 per cent of the acroage of the district beginning at Silver Creck, N. Y., and continuing to Harbor Creek, Pa., comprising about 25,000 acres.

These associations, no doubt, serve a good purpose in giving a more even distribution of fruit in different markets. When there is no concert of action the market of a certain city may be poorly supplied to-day and an advance of prices follows, a state of affairs quickly known to all shippers, with a result that everyone, trying to benefit by such an advantage. will consign to that market, making an aggregate far beyond the demand; and a sharp decline of prices will follow. A union represent-
ing a bigh percentage of acreage can prevent such gluts, provided the over-supply or under-consumption is not such that all the available markets in the country are not glutted, a state of affairs that is liable to happen at mid-barvest, when donble the number of cars is forced ou the market.

The total shipments from the Chautauqua district for seven seasons have been as follows:

A. B. Clothier, of Silver Creek, N. Y., gives the following as the expense of planting and developing an acre of Grapes:
Plowing and marking an acre of land.
$\$ 300$
Number of plants, 8 ft . $x 9 \mathrm{ft}$., 605. Cost........................
Cost of planting.
1210
Cost of planting...
Number of cnltivations first season, 7. Cost...........
Cost of cultivation second season...........................
150
staples, 6 lbs. Cost... for - wire treilis,
Number posts for trellis, 202; number braces, 20. Cost.
Cost of putting up trellis.
2280

Cost of acre of Grapes, exclnsive of land.................. $\$ 7054$
S. S. Crissey, of Fredonia, N. Y., horticultural editor of the "Grape Belt," without going iuto details, puts the total cost of an aere of vineyard at from $\$ 75$ to $\$ 80$, which practically agrees with that of Mr. Clother. These are men of experience and wide observation, and their estimates may be considered to be representative and reliable.

Mr. Clothier gives the following estimate for the cost of labor for an acre of Grapes in bearing, per season:

```
Cost of pruning, pulling brush, tapping posts, righting
    braces, stretehing wires, tying of vines, and cultiva-
    tion per acre........................................... \(\$ 1200\)
Cost of picking into crates, 4 tons of Grapes.............. 450
Cost of hauling to station and loading in car, 4 tons of
    Grapes..
                                    400
                                    \(\$ 2050\)
```

Mr. Crissey's estimate is a little higher, making cost under the same conditions to he $\$ 23$.

As to the yield of an acre of Grapes in the Chantauqua belt, the variation is great. A vineyardist who has any expertation of standing in line with progressive men

973. The tie complete.

should expect to have a record of 4 tons of Concords per acre. This is more than the average, but unless a man can exceed the average in any line, there is small chance for him to succeed.
As to prices, the variation during the past seven years has been greater than that of the yield. Grapes have
been sold at less than $\$ 10$ per ton, and at more than $\$ 15$. When more than the latter, it is risky for the seller to be too confident of a much higher price for any great length of time; and if less than the former, the buyer would better secure his supply as soon as possible. An average price is, say, $\$ 12.50$. This gives a gross income for a 4 -ton acre of Concords as $\$ 50$, and a net income from $\$ 27$ to $\$ 30$. Be it remembered that this is for Girapes in crates. The cost of packing 4 tons of Grapes in 8 -pound baskets, including baskets, would be from $\$ 28$ to $\$ 30$. The prices for Concords in crates or baskets vary so much that it may be advantageous to -scll in either way. A man with a small vineyard and a large family would pack in baskets, when another who had to pay all his help or who found help scarce would sell by the ton in crates.

John W. Spencer.
Grapes in the South, - The region south of the 38th degree north latitude has in it more native species of Grapes than all the world besides. This alone would lead one to suppose the South naturally adapted to vineyard culture. Yet New York, Ohio and California up to the present far excel it in vineyard area, although only three or four species are native in these states. The cause of this is that diligent experimenters and oripinators have produced varicties of good marketable value adapted to those regions, from natives of those regions, or hylrids of natives with hardiest foreign kinds. In the case of California, the rinifera varieties are mostly grown because the climate and other conditions are so similar to those of the native region of the vinifera. But the South has chiefly planted the northern and foreign varieties which succeed but indifferently in most southern localities, and has neglected almost entirely its native varieties until quite recently, Now experimenters have shown that most excellent and very successful varietics of all colors and seasons can be and have been produced by selection and hybridization of some of the large, fine-fruited varieties.

While the foregoing predicts by actual existence in practical market vineyards in a number of localitics in the South what is in store for the South as a whole, the present state of Grape culture in the South at large is a different affair. Information gathered from best sourees throughout the South shows that Grape cultare is a very small industry. It shows that the leading varieties cultivated in the northern sections of the South aro ('atawba, Concord, Delaware, Early Victor, Elvira, Ires, Moore Early, Moore Diamond, Niagara, Norton Virginia, Perkins, Worden, Wyoming. Favorable mention is made of America, Beacon, Brilliant, Camphell Early, Gold Coin, Green Mountain, Laussel, Ozark, Presly.
East of Texas and south of Tennessee, the following are chiefly planted: Brighton, Champion, Concord, Delaware, Diana, Diamond, Elvira, Goethe, Hartford, Herbemont, Ives, Missouri Reisling, Moore Early, Niagara, Norton Virginia [Cyathiana], Perkins, Worden. Of the Muscadine class for wine: Flowers, James, Mish, Scuppernong, Thomas. Favorable mention, of varieties testing, is made of Brilliaut, Bertrand, Carman, Fern, (iold Coin, Jaeger, Laussel, Marguerite, Superb. In the southwestern section, west of the 96th meridian, are chiefly planted the Herhemont, Jacquez [Black Spanish, Le~ noir], Niagara and Golden Chasselas, Malaga and some other vinifera varieties near the gulf coast and in western Texas under irrigation. By several who have had them under trial for several years favorable mention is made of Bertrand, Brilliant, Carman, Fern, Jacger, Laussel, Marguerite, Muench, Neva, Perry, as furnishing successful table and wine Grapes for this region.

For Georgia, Professor Hugh N. Starnes gives me the following notes: "Leading varieties in order named: Ives, Concord, Niagara, Delaware, Moore Early, fioetbe, Lindley, and for wine Norton Virginia, Scuppernong and Thomas.
"General distance 10×10; Delawares 8×8; Rotundifolias 30 ft . apart. Single stake spiral method of training chiefly used, and either spur renewal or cane renewal pruning employed, according to circumstances. Some growers employ trellises instead of single stakes, using either one or two wires and adopting the umbrella Kniffin or low wire arm spur Kniffin system of training, according to circumstances. See Bulletin No. 28, Georgia Experiment Station.
"Very little wine is now made in this state, and that is nearly all claret from Norton Virginia, Ives or Concord. In southern fieorgia a poor article of Scuppernong wine is made, but it is not adapted to trained palates-too foxy. Delaware and Goethe blended are sometimes used to make a very good Rhine wine, and when properly handled sometimes produce an excellent article. Goethe must, reinforced with 20 per cent of California brandy, makes a good pale sherry; yet it is difficult to sell wine here profitably. When it can be sold at all, prices range from 50 ets, to $\$ 2$ per gallon, according to the grade. Grape vinegar, while geuerally regarded as inferior to cider vinegar, will bring about 25 or 30 cts, at retail and 20 cts . wholesale, and at these figures is more profitable than wine.
"When sold fresh the Grapes are generally shipped in refrigerator cars in 10 -pound baskets to different northern points. Later shipments take a southerly direction to Atlantic and fiulf seaports. Sometimes the regulation 6- or 9-carrier peach crates are nsed for shipping Grapes, but are not as satisfactory as the 10 -pcund separate baskets. Delawares are generally shipped in 5 pound baskets. Returns are uncertain. They vary from $11 / 2$ cts. per lb . to 5 cts., according to circumstances. Sometimes as high as 10 cts. is realized on very early and very late shipments or with choice Grapes, but this is seldom. Distilleries pay three-fourths of I cent per pound dclivered, or gather and pay $1 / 2$ cent per pound. If only I ton per acre of Grapes is the yield, the gross return (and also the net return) per acre would thus be from $\$ 10$ to $\$ 15$. This is more than cotton ordinarily nets. With two tons per acre of Grapes, which is not an enormous yield, the return would be $\$ 30$ per acre delivered at the still. To those who have no scruples in regard to so disposing of their erop, this is probably the most profitable method. There are local stills in almost every county.
"There is not much encouragement now for Grape raising in Ceorgia, and vineyards are annually being destroyed by hundreds of acres. Some planting, however, is still going on in southern Georgia, in the "wire grass" country, where the industry is still found profitable by reason of the fact that the northern market may be entered ahead of competition, and also that insects and fungous pests have not yet put in an appearance in that region," See Gcoryia.

Planting, Training, ctc.-The vines of the true southeru Grapes, such as Herbemont and the Post-oak (irupe hylrids, are planted 12 to $I 4$ feet apart, in rows 9 ft . apart, while such northern varieties as are planted are set 8 feet apart in row. The Muscadines, such as Scuppernong, are mostly grown upon arbors about 7 feet high and rarely or never pruned, although trained on trellis, as are other Cirapes, and, pruned early in fall, after leaf-fall, succeed excellently. The culture is mostly with the plow, turning first away and then to the rows, hoeing the space aloug the row not reached by the plow. The trellis mostly used is the 3 -wire trellis; first wire at 18 to 24 inches from the ground, and the others successively I foot apart, above the first. The trainiog is generally an indifferent attempt at the Kniffin system, and no system is generally carried out. Some pinch back the lealing shoots once, few twice. Some use single posts and spur-prune. A few have made the Munson canopy trough trellis of 3 wires, and report most favorably of it.
Fungicides are used successfully by some. Others plant only such as Ives, Norton Virginia, Moore Early, Perkins, and some other varieties not subject to rot and mildew, so as to avoid spraying. They also avoid, thereby, having Grapes of the finer qualities, and get only the lowest prices. From such mostly come the report that Grape culture with them is unprofitable. So it should be, as such Grapes in the market have the effect to depress prices on all kinds of Grapes, as any grower knows. In the moister parts of the South, black rot, downy mildew and ripe Grape rot are rery prevalent, but, excepting the ripe rot, are readily overcome by the Bordeaux mixture spray properly applied.

Few growers in the South use fertilizers in their vineyards. Some use barnyard manure, but the more iutelligent use cotton seed or cotton-seed meal in connection with ground bone, kainit and soluble phos phates.

Marketing and Profits. - The crop is mostly marketed fresh in the local or near-by markets, as the ordinary freight and express rates will not permit profitable returns on the varieties mostly grown. But it has been demonstrated that fine Grapes that will carry well can easily be grown in the South, and, when handled in best manner in neat baskets, are quite profitable.

There are a few established wineries in the South, which use Ives, Norton Virginia, Herbemont, LeNoir, and some of the Scuppernong and other Muscadine varieties. The chief complaint of wine-growers is that legislation brought ahout by the prohibition movement is adverse and often entirely prohibitive. In consequence, some have bottled the juice fresh under some sterilizing process, but the people are not yet educated up to the use of this excellent, bealthful, nourishing beverage, yet the demand for it is growing, and may be largely increased by enterprising makers.

Reports collected from all parts of the South state the profits all the way from nothing up to $\$ 150$ per acre, sometimes higher, and it is clearly evident that the intelligence and enterprise of the planter is the chief element in controlling profits. Of course, localities, soils and varieties play important parts, but an intelligent grower would not select poor locality, situation, soil and varieties to start with, just as be would not pursue poor methods in the conduct of the husiness. As an illustration, the writer knows persons who bring to the Denison [Tex.] market, a place of 20,000 population, Ires and Perkins Grapes in bushel baskets, getting, hy hard work, ahout one cent a pound, while others bring in ueat δ pound baskets, carefully packed, Delaware, Brilliant, Diamond, Niagara, Rommel and others of like good qualities, and get from 30 to 50 cents per basket the season through, with brisk sales and no grumbling.

It may he said, in conclusion, that the South promises everything to the wide-awake, intelligent Grape-grower, for its capabilities are unlimited in the production in quality and season when no other section competes with it, and it has vast markets at home and in the great cities just north of it.
T. V. Menson.

Grapes on the Pacific Slope. - The Grape industries of California are established upon the success of the vinifera species. There are two wild species in the state, Iitis Californica and I. Arizonica, hut by a popular error the term California Grape has been often used to indicate the Mission Grape, which was introduced from their earlier estahlishments in Lower California by the padres, who entered the territory now comprised in the state of California in 1769, to extend their missionary work among the aborigines. This Mission Grape has never been fully identified with any variety now grown in Europe, and whether the padres brought it to America in the form of seeds or cuttings is not known. The difficulty in identifying it has led many to consider it a seedling. but it is just as reasonable to hold that it was, two hundred years ago, an esteemed varicty which was displaced in the course of viticnltural progress by better varieties, and its survival at the California Missions is due to its isolation from that progress. It was this Grape which was found in California by the early American settlers, and very large areas of it were planted, but for the last thirty years it has decreased in favor rapidly, being displaced hy many other varieties of superior value for various purposes. These varieties are almost wholly of the vinifera species. The native American varieties and their improved offspring thrive in California when given suitable situation and culture, but they do not meet any encouraging market demand. A very few packages glut the San Francisco market for their kind, while the vinifera table varieties are selling in large quantities. Only a few individuals give any consideration to American varieties for wine, and none of them are suited for raisins. The only attention given to the American species is in the use of some of them as phylloxera-resistant roots, upon which to graft the vinifera varieties, as is done in France; and California experience is a close reproduction of French results in this circumvention of the insect. It seems probable, although some districts are still free from invasion, that in the end all our vinifera vineyards will be upon American roots.

Grape-growing upon a large scale hegan in California very soon after the American occupation. In the fifties,
collections of the leading European varieties were introduced, and state aid was secured for the promotion of viticulture. The first raisins were shown in 1863 , and a considerahle wine product was attained soon after, but the sale of it was attended by many disappointments, and discouragement ensued. In the latter seventies the wine interest was revived by better demand for the product, and a new propaganda for extension on better lines and with more suitable methods and better varieties, was earnestly taken up. Again the state granted funds liberally, and the agitation resulted in vine planting and cellar construction in the valleys and foothills all over the state. The product increased more rapidly than the demand for it, and the quality of much of it was success-

974. The common short-pruning system used for the
Vinifera Grape in California.
fully impeached. Losses and disappointments were again encountered, and the area of wine Grapes was largely reduced hy abandonment, by the advancement of the phyllosera and by the inroads of a peculiar disease which has bafled effort to determine its cause, though thousands of acres have heen swept away by it. Even the lessened wine product found most acute trade issues to meet, which were temporarily overcome by growers' coöperative effort until the constantly sbrinking production met an advancing demand, and profitable prices for wine Grapes were again secured. This fact has again stimulated interest in planting, even with the greater investment required by resistant roots, and the century closes with a renewal of confidence which bids fair to again extend the wine industry of the state.

The raisin interest of the state did not attract wide attention until about 1875 , but it advanced with great rapidity until 1894 , when a product of 103 million pounds was reached and a decline of value below the cost of production ensued. As events have proved, this decline was largely due to lack of proper system in marketing, for a period of loss and depression has been followed by return to prices yielding a profit through control of the marketing by a coopperative association of the growers. This experience came just in time to sare the raisin interest from large sacrifices, and points the way to future maintenance. The shipping of table Grapes from California to the markets of the eastern states has reached an aggregate of about a thousand car loads on several different years, and is one of the fixed features of overland fruit shipment. The area of Grapes in California in 1900 is about 140,000 acres: one-seventh table Grapes, two-sevenths raisin Grapes and four-sevenths wine Grapes, as nearly as can be estimated.

The Grape has a wider range of adaptation in California than any other single fruit. It endures all elevations to which commercial fruit-growing is carried; it thrives in the most intense valley heat if amply supplied with water by irrigation. It accepts all fertile soils, but is most profitable upon light, deep, warm loams, both in the valleys and on the hillsides. All varieties which will bear well with such treatment are grown with low stumps and very short pruning, which discards nearly all of the previous season's growth. Only a few varieties are given longer canes and the support of a wire or a high stake.

The training of the vinifera Grape is very unlike that of the native Grapes. The stocks are kept to low, strong stumps, and the bearing shoots are not trained or are tied to stakes. Trellises are not used. Fig. 974 shows 3 epochs in the common style of pruuing, the right-hand figure representing the mature vine.

Though hundreds of varietics of vinifera have been introduced from Europe and Asia during the last half century, only a few have surrived cultural and commercial tests and are now planted. For raisins the prevailing varieties are White Muscat of Alexandria, and the Muscatel Gordo Blanco and the Malaga, with the Sultana and Thompson Seedless for seedless raisins: for table Girapes, in addition to the foregoing, the Flame Tokay, Emperor, Cornichon, Black Malvoise, Rose of Peru. Black Hamburg, Chasselas varieties and Verdal are chiefly grown, though, of course, a much larger list prevails for local uses. In wine Grapes there is naturally a larger list to meet local requirements of soil and climate and to produce the various kinds of wine.

Acceptable varieties for dry wines are:
Red (Claret and Burgundy), -Zinfandel, Carignan, Mataro, Mourastel, Petite Sirah, Petit Bouschet, Alicaute Bouschet. Grenache, Valdepeñas, Cabernet Sauvignon, St. Macaire, Beclan, Mondeuse, Blue Elhling. Refosco, and Barbera.

White (Sauterne. Hock, etc.). - Semillon, Sauvignon Blane and Vert, Johannisburg Riesling, Franken Riesling, Traminer, Chasselas Dore (Gutedel), Chauche Gris, Burger, Folle Blanche, Feher Szagos, Green Hungarian, Palomino, White Pinot, Thompson Seedless.
Varieties for sweet wines are:
Ports.-Mission, Malvoisie, Grenache, Troussean.
Sherry and Madeira.-Mission, Palomino, West White Prolific, Verdelho, Feher Szagos, Sultana, Thompson Seedless.
Angelica, Muscat, ete-Muscat of Alexandria, Muscatella, Furmint (Tokay wine).

In regions of the Pacific coast north of California, vinifera varieties are less widely grown, and locations meeting their requirements must be selected with much care and circumspection. The number of varieties is much smaller than in California, as there is no product of wine or raisins, but of table Cirapes only, and they are almost wholly early ripening kinds, which can mature in the shorter growing season at the North. On the other hand, the American varieties are widely grown, the Concord, Delaware, Moore Diamond, Moore Early, Niagara and Worden being most favorably reported.

E. J. Tickson.

Grapes Under Glass. - Under glass, the European rarieties alone are used. This species, Jitis vinifera, is the vine of the ancients, and is indigenous to the more salubrious parts of eastern Asia and southern Europe. It is referred to in the earliest mythological writings of ancient Egypt and thence on numberless occastons, notably in the Bible and the New Testament. The story of the spies from the promised Iand, with its generous illustration, has excited the admiration and perbaps questioned the credulity of many of us. It is only fair, however, to state that the size of the cluster there represented has been amply borne out in recent years. The type Vitis vinifera, if there ever was a type, has become so merged and modified by cultivation in different climates and countries that it is difficult to trace it at the present day. Over 2,000 varieties have been deseribed, covering the widest range in size, color, texture and flavor, general appearance and quality.

For disparity of size, we have the diminutive Black Corinth, from which the Zante currants are prepared, and the giant Gros Colman, now exten-ively grown for commercial purposes under glass in England; and for contrast in color we have the beautiful Rose Chasselas and the pink and white Frontignans and Muscats, with their superb qualities and flavors, growing by the side of the blue-black Alicante of thick skin and coarser texture, but valuable for its late-keeping quality ; and worth more than all the others put together, we have the Black Hamburg, combining all the good qualities, and easy of culture.

Prohably in no branch of borticulture is the gardeners' skill more generously rewarded than in Grapegroming under glass. In England it has been an essential feature of horticultural work for more than a century, resulting in fruit of a finer quality and flavor than that grown in the open air, and very often enormous
clusters, weighing from 20 to 30 pounds. Started thero as a matter of luxury, it bas become of late years a matter of profit, and vineries of large extent have been erected for commercial purposes. Probably this work has been retarded here by the introduction of the many very excellent varieties of our native Grapes, so easily grown in the open air and so constantly improved by hybridizing with the European, and undoubtedly this work will yet result in a much closer approach to the standard of European quality.
The essential difference between American and European kinds is that in the American the pulp separates from the skin, is usually tough and more or less acid, so that it is disagreeable to remove the seeds, while in the European the pulp adheres to the skin, is tender and sweet throughout, and the seeds are easily removed. European Grapes, when well grown, are valuable and agreeable for the use of invalids, and, undoubtedly, in the judgment of the majority of people, surpass in quality any other fruit grown.

The subject of Grape cultivation under glass may be divided under several heads, as follows: The Houses; The Border; The J'ines; The Frwit.

The Houses. - These are mainly of two forms, spanroof and lean-to, with occasional modifications between. Unless one has ample time and a desire to study their construction, it is better to have plans and estimates furnished by professional builders.
Span-roof houses are adapted to large places with spacious grounds, and particularly when an ornamental effect is desired. On account of their exposure on all sides, they require very careful attention, especially if used for early forcing of Grapes. Where early work is not desired, or for use without artificial heat, their disadvantage is not so apparent. Houses without artificial heat, known as cold graperies, were in earlier years in more general use than those with heat, but have about disappeared with the introduction of the modern economical heating apparatus, aud the very great advantage in the use of the same, if only to a limited extent.
Lean-to houses, on account of their snug construction and protection from northerly or prevailing winds, are especially desirable for early forcing of Grapes (Figs. 975, 976). Often a stable or other building can be utilized for the north side, but generally a wall of brick or stone is erected for this purpose. Such a wall can be covered on the outside with Ampelopsis tricuspidata, or Crimson Rambler roses, producing a beautiful and ornamental effect. A good house, on a small scale, can be made of hotbed sash (Fig. 976).
Foundations for the other three sides or for a span-roof vinery can be constructed of masonry or wood. Masonry is preferable, as the conditions of requisite heat and moisture are very destructive to wood work, especially near the ground. With masonry, piers are erected, starting from solid ground and up to near the surface. They should be about 2

975. A good lean-to Grape house.

The roots run through the wall to an outside border.
of 2 feet between, and opposite each space a vine is to be planted inside the house, as hereafter deseribed. Strong eapstones, thick enough to come slightly above the surface of the border and about 18 inches wide, are then laid from pier to pier. On such a foundation a superstrueture can be erected with some confidence. For the base of the superstructure masonry is preferable, about 18 inches in height being necessary before the glass work begins. A bollow wall, constructed of hard brick and cement, is desirable, and openings should be left for ventilation. The upper surface of these walls should be covered with eement. If constructed of wood, the same general plan should be carried out, using the most durable kind only.

Aside from its durability, masonry has an adrantage over wood in being a better equalizer of temperature, and the heavy back wall of a lean-to house can be made of great value for this purpose. The general plans of the superstructure are shown in the illustrations. It should present as much glass surface as possible. The frame can be of iron or wood, as preferred. Light, beat and moisture are the great features desired, also a generous supply of air under favorable conditions. The glass should be of good quality, otherwise blisters will burn the foliage and fruit. Small ventilators corered with wire gauze should be built in the foundation walls, and large ones at the upper part of the house. Ventilation should always be free from a draft or sudden change of temperature. A draft is just as unpleasant to a sensitive vine in a house as it is to a human being, and if subjected to it disease is sure to follow, mildew being the first evidence; and yet a generous supply of air is a prime requisite in growing Grapes under glass, especially during the ripening period. Previous to that time the lower ventilators should bevery carefully used, some growers never opening them until the Grapes begin to color, and the new growth and foliage are some. what hardened. More or less air is always admitted around the glass in a very equable manner and thence to the upper ventilators.

The modern heating apparatus, consisting of a boiler in an adjacent pit for heating water, with circulating pipes throughout the house, as shown in illustrations on Greenhouse, is a very perfect and economical supplier of heat, and it should be erected by a practical builder. A little heat at a critical time will often save a house full of Grapes, and, while it can be dispensed with, its advantages are very material.

It is possible to fruit Grapes in benches in pots, removing the pots when the fruit is past, and using the house for other purposes (Fig. 977).

The Border. - A good border is of great importance, as no permanent success can lie obtained without it, and probably the difference between success and failure more often lies here than in any other feature.

It is a good plan to construct vineries so that their borders can be somewhat elevated above the surrounding ground. as better drainage is thus secured, and good drainage is imperative (Fig. 975). The border should fill the house inside and extend outside adjacent to where the vines are planted at least 6 feet when first made, and to this outside border additions shonld be made every two or three years of from 2 to 4 feet until a width of 20 feet is secured. The border can hardly be made too
976. Lean-to grapery glazed with sash. rich, provided the material is well slecomposed. A mixture of six parts good loamy turf from an old pasture or piece of new ground, and one part of well
prepared manure, one part old plaster or mortar, and one part of ground bout, all to be well composted together, will meet all the requirements. If the subsoil is clay, a foundation of old brick and mortar is very desirable to insure drainage. The border above this shonld be from 2 to 3 feet in depth. No trees or shrubs should be permitted to extend their roots into it, a very common canse of trouble, and nothing whatever should be grown on it, although the temptation to try a few melons or some lettuce is often too great to be orercome, and

977. Even-span house, with the vines plunged in pots.
these probably do a minimnm of damage. In snch a border, if properly supplied with water, the vine roots will remain at home, and not go wandering off into trouble. Where extra early work is not desired, no attempt should be made to keep the frost entirely out of the border during the winter, as this is apt to result in a heavy, sodden surface in spring. It is better to spade it up roughly just before winter and cover with a good coat of manure, permitting the frost to enter the gronnd some inches. In the spring it is dug over again and, when raked off. presents a rich, lively surface. The inside border is to be covered with a coat of well-rotted manure, and spaded up and well watered at the time of starting the vines. For midseason work, from February 15 to March 1 is the proper time to do this in New York state, the inside border carrying the vines nicely until the outside border is in shape a month or more later. Then withont hard forcing early Grapes can be brought in by the last of June or July, and the later ones through the following two or three months. It is much better to store late Grapes in modern Grape rooms, where they can be kept fresh and plump for several months through the winter, than to attempt extra early work by starting rines in heated horders in November and December.

The lines. - The amateur should purchase these from some nurseryman of establisbed reputation. Vines 1 or 2 years old are better than older ones. For supporting the rines, light cast-iron brackets are secured to the rafters, and these support wires running lengthwise of the bouse about 15 inches from the glass, and to these wires the rines are tied as fast as they grow. The vines are to be planted inside the house about a foot from the front wall and about 4 feet apart, placing one opposite each opening in the foundation as before described. It is not desirable to plant them along the back wall of a lean-to house. They should be cut back to two or three buds near the ground, and when these start the strong est shoot only is selected for training and the others rubbed off. As this shoot advances it is tied to the wires, and it may reach the limit of the honse by July 1 , or perhaps not until September 1, depending on the eare, the vigor of the vine, and the border. Once there, the end is pinched and the cane continues to strengthen and increase in size and store up material in the lateral buds nutil the end of the season, when it is taken down and pruned to one-third its length, laid on the ground and corered from the sun for the winter. Care should be taken that mice do not eat out the buds, as once out they cau never be restored. In the spring of the second year, or as soon as it is desired to start the vines, they are tied up again, and the terminal shoot again trained to the top of the house, where it is stopped as before.

Any fruit appearing on this shoot should be removed. The lateral shoots that start out each way below the terminal should be thinned to about 12 or 15 inches apart on each side. This is an important feature, especially if we adopt the spur system of pruning, which we will first consider, for we are now establishing our vine for a long term of years, and it is desirable to have it symmetrical with the side shoots, and fruit evenly distributed over its entire length. An example of a well balanced vine is given in the illustration of the Muscat Hamburg. A few clusters of fruit may be taken from this part of the vine this second year, and the laterals should be pinched at two eyes beyond the cluster, and as they break pinched again through the season. As soon as the leaves fall, the vines are again taken down for pruning. The terminal should be shortened about onehalf and the side shoots cut back to a bud very close to the main stem, when it goes through the winter as before.

At the beginning of the third year the terminal again goes to the top of the house without fruit, when it is stopped and the laterals are allowed to bear as before, say not more than one pound of fruit per foot of the main stem. We now have our vine established to the top of the house, and the only pruning in after years is to cut the laterals each year close to the main stem. A bud will nearly always be found in the first oneeighth inch, sometimes several of them. When these start, the strongest is selected and the others rubbed off, unless one is desired for training to the opposite side to fill a vacancy there. When the vines attain full strength, two pounds of fruit per foot of main stem can be grown, but heavy loads require great care. Too heavy a load causes shanking, and then all is lost. The stems of the berries wither and the fruit turns sour before ripening. Rigid pinching of the laterals is very important. Commence at the second joint beyond the cluster, or about 18 inches from the main stem, and

978. Pruning to spurs.

A long or old spur is shown on the left.
pinch thereafter as fast as new shoots break and show a leaf. Pinch early and often. It has been said that a good gardener can carry the summer prunings from a large vinery for an entire season in his rest pocket. Some require a wheelbarrow. At the place where the laterals start, a spur soon forms on the main stem, from
which the system takes its name. It often becomes several inches in length and quite ungainly. This spur system of pruning is represented in Figs. 978-980.
In the other system of pruning, known as the "long rod" or "long cane" system, a new cane is grown up from a bud near the ground every year as often as desired to replace the old one, which is entirely removed. It is often desirable to do this. If the vine is well established, this new cane can be fruited its entire length the first season, the laterals being pinched, as before described. It will produce finer fruit, but it is not as safe with a heavy load as an old cane.

An ample supply of water judiciously and freely used, particularly at the time of starting the vines, is an absolute necessity. It should not be applied in the house, however, during the period of blossoming, as a dry air is advantaceous for the transfer of the pollen for fertilization.

An important feature is thinning the clusters and establishing the load a vine has to carry. This requires experience and judgment. As a rule, about one-half the clusters should be removed -often more-care being taken to balance the load evenly on each side. This shoulif be done as early as the general form of
 the clusters can be seen, except with the Muscats and other shy setting kinds, when it may be well to wait for the berries to set, as some clusters set perfectly while others fail.
Thinning the berries should be attended to promptly, selecting cool days and mornings for this work. Close growing kinds, like Alicante, cannot be commenced on too early after setting, and it is much better to crowd this work than to have it crowd the operator. In many varieties one-third to one-half the berries have to be removed. Experience is the only guide in this. A pointed stick is very useful with the vine scissors, and never touch the clusters with the fingers.

Tying up the shoulders of the clusters is necessary to permit a free circulation of air and light, otherwise the interior may decay, and, once started, the cluster is soon gone. The principal diseases or troubles to guard against are mildew and red spider. The remedy for the former is sulfur, and for the latter moisture. Mildew is generally bronght on by a sudden change of temperature. A vigorous condition of the vine has much to do in resisting it. Red spider will almost always appear in the hot weather of July and August if the vines are allowed to become too dry.

Thrips are sometimes very injurious, but can be controlled with nicotiue, which, if properly applied, will not injure the fruit. Thrips and red spider, if not taken in time, multiply rapidly, and "an ounce of prevention is worth a pound of cure" in these cases.

Perlaps, in a general way, the most important requisite of all is a large amount of enthusiasm and love for the work. This is necessary to insure the continued care and culture requisite to permanent success.

The Fruit Tarieties.-As said before, very many varieties exist, but probably not one-half of these are in active cultivation at the present time. Varieties are adapted to localities, soils, climates, ete. Perhaps 50 have been grown under glass in this country. Of these we will consider a few of the more prominent.
The Black Hamburg is more extensively grown and of more value for this purpose than all others put together, because it meets the requirements of the ordinary cultivator, and will stand abuse and neglect and still give fair results better than any other kind. It rarely gives very large clusters, but is a free bearer, sets perfectly, will carry heavy loads and matures early. Under better care the appearance and improvement in
quality is remarkable, and it can be made as good as the best. It is the rariety with which the novice begins. Many houses consist entirely of Black Hamburgs, and many that do not would give far better satisfaction if they did.
Muscat of Alexandria is the best of the white varieties for general cultivation. It requires a higher temperature and longer season than the Black Hamburg to come to perfection, and will keep longer after cutting than that kind. When well grown and ripened it may be taken as a staudard of quality. See Fig. 980.
Muscat Hamburg is a black Grape, probably a cross between the two above named varieties, and presenting marked characteristics of each. It has beautiful tapering clusters of fine quality.

Barbarossa is a good variety for those ambitious to grow large clusters, and when well grown is of fine quality. It is a late black Grape, requiring a long season to ripen well, but repays for the trouble by keeping thereafter for a long time. Clusters frequently grow to 8 or 10 pounds in weight, measuring about 24 inches each way, and they have been grown to more than double tbis weight.
Other large-growing varieties are the White Nice and Syrian, the latter of which is said to be the kind that the spies found in the land of promise. Clusters of 20 to 30 pounds weight are common to these two coarse-growing kiuds, but their quality is so poor that they are now rarely grown.
Grizzly Frontignan is a beautifully mottled pink Grape ~quite a deep pink sometimes-and has long, slender clusters. In quality and flavor it is unsurpassed by any other Grape, and it ripens rather early.
Royal Muscadine is an early white Grape of fair quality and good habit; frequent in English houses.
Gros Colman, a large black Grape of fine quality and a late keeper, is now grown largely for commercial purposes in England and sent to this side to supply our wants in this line in spring. The berries frequently measure $4^{1 / 2}$ inches around, and it therefore requires early and severe thinning.
Alicante is a black Grape of very distinct character, seeming to depart somewhat from the vinifera type, very juiey, and of fair quality. It has a very thick skin, and is about the best for long keeping.

Lady Downs is another late black Grape of good quality, but not adapted to all localities. Rose Chasselas, a small red Grape, is the earliest and very beautiful. Trentbam Black, the earliest black Geope, has small clusters, but large, soft berries quite: like Alicante.

980. Muscat of Alexandria.

Besring on spurs (as explained in Figs. 978, 979).

Foster Seedling is a beautiful midseason, ambercolored Grape, with large clusters and berries sometimes liable to crack. Madresfield Court Muscat is a

981. Floret of June-grass.

Showing the floral glume, palet, two feathery stigmas, and three stamens. Enlarged.

982. Floret of a Grass (rye). Much enlarged. $c c$, floral glume and palet ; a, stigmas ; $\langle b b$, stamens.
midseason Grape-fine in quality, but also inclined to crack. This trouble can often be controlled by twisting or slitting the stems of the clusters, thereby checking the flow of sap.
Many other popular varieties are described in various works devoted to firape culture.
For other notes on Grapes under glass, see the article on Forcing.
D. M. Denning.

GRAPE-FRUIT. See Citrus Decumana and Pomelo.

GRAPE HYACINTH. Muscari botryoides
GRAPE, SEASIDE. Coccoloba wifera.
GRAPTOPHYLLUM (Greek words referring to the variegated foliage). Acauthacece. An oriental genus of about 5 species of tender shrubs, one of which is cult. in a very few American conservatories for its variegated foliage, and is said to be very popular in India and through the tropies. No two lvs. are marked exactly alike, but the yellow color is near the midrib rather than at the margins. The genus is close to Thyrsacanthus, but in Thyrsacantbus the fls, are not so distinetly 2 -lippec. Lvs. opposite, entire (in one species spiny-dentate), often colored: fls. reddish purple, wide gaping, clustered either in a terminal thyrse or in the axils; corolla tube inflated above; upper lip with 2 short recurved lobes; lower lip 3-cut; stamens 2. For culture, see Justicia.
horténse, Nees (G. pictum, Griff. Justicia picta, Linn.). Caricature Plant. Height finally 6-8 ft.: Ivs.

GRASS

elliptic, acuminate, irregularly marked with yellow along the midrib: fls, crimson, in axillary whorls; corolla pubescent. Habitat? B.R. 15:1227. Lowe 45. (B, M, 1870 shows a variety with reddish brown coloring).

GRASS (Graminea). Annual or perennial herbs (some bamboos woody), mostly tufted or decumbent, rarely climbing, often creeping and rooting at the base. True roots fibrous. Stems (culms) simple or branching, usually hollow (wheat), sometimes solid (maize) between the nodes. Leaves springing from the nodes, alternate, in two vertical rows on the stem; the sheaths closed

983. Spike of a Grass (rye), containing many flowers.
when young, but usually split down one side in maturing; ligule a thin tongue-like growth at the apex of the sheath; blade entire, parallel-veined, commonly long and narrow ; a 2 -keeled membranous prophyllum (or leaf) always standing between each branch and the main axis. Spikelets in panicles, racemes or spikes. usually consisting of 2 (rarely 0,1 , or more than 2) chaffy empty glumes at the base of a short axis (rachilla). Which supports one or more floral glumes, in the axil of each of which is commonly 1 flower. Flowers
perfect or imperfect, destitute of true calyx or corolla. Between each Horal glume and flower are usually 2 (rarely 3) minute byaline scales (lodicules). Stamens 3 (rarely 1, 2 or more than 3); pistil 1: ovary 1-celled, 1 -ovuled; styles 2 (rarely 1 or 3), usnally plumose: fruit (grain or caryopsis) seed-like, often enclosed by the palet and its floral glume. Seed erect, closely corered by the thin pericarp; embryo small, on one side of the base of the endosperm. Figs. 981-984 show the structare of various Grass florets.
Perennial Grasses, such as those commonly grown for meadow, pasture or lawn, produce large numbers of sterile shoots that hear leaves from very short stems, but no flowers. There are many widely different plants. which in popular language have the name "grass" attached to them, such as knot-grass, rib-grass, cottongrass, sea-grass, eel-grass, sedge-grass, scorpion-grass, but these do not belong to the family here under consideration. Neither are the clovers and their allies, or the sedges and rushes, to be called Grasses. No other plants are truly entitled to this name, excepting those answering to the description ahove given.
The plants most likely to he mistaken for Grasses are the sedges (Cyperacew), of which there are large numbers in great variety frequently found on wet land. The best popular way to distinguish Grasses from sedges is this: the leaves of sedges are arranged on 3 sides or angles of the stem, while on Grasses they are found on 2 sides, alternate and 2 -ranked. In making use of this test, care must be taken to select well grown, erect stems. Most sedges have solid stems and most Grasses have bollow stems. To learn to distinguish plants of the Grass family is easy, but to discriminate between species is difficult.

Among the species most commonly known are timothy, red top, June-grass, orchard-grass, meadow foxtail, the fescues, oat-grass, sweet-vernal, quack-grass, Bermuda-grass, sugar cane, chess, and the cereals, such as wheat, barley, rye, oats, rice, sorghum, Indian corn. In number of species the Grass family occupies the fifth place with 3,500 , while the composita, legumes, orchids and madderworts are larger. In number of individuals, the firasses excel any other family. Seed plants are arranged in 200 to 220 families, and of all these the true firasses are of greatest importance to man; in fact, they are of more value as food for man and domestic animals than all other kinds of vegetation combined. None of these families is more widely distributed over the carth's surface, or is found in greater extremes of climate or diversity of soil.
The species are very numerous in tropical regions, where the plants are usually scattered, while in a moist, temperate climate, though the species are less numerous, the number of plants is enormous, often clothing vast areas. Where soil is thin or moisture insufficient, the Grasses grow in bunches more or less isolated. Plants of one section of the family Panicareæ predominate in the tropics and warm temperate regions, while plants of the other section, Poacea, predominate in temperate and cold regions.
Overstocking dry grazing districts checks the better Grasses, destroying many of them, and encourages the bitter weeds which multiply and occupy the land.

A Grass extends its domain by running rootstocks, by liberating sceds enclosed in the glumes, which are caught by the breeze, by some passing animal, or the nearest stream ; the twisting and untwisting of awns bury some of them in cracks, crevices or soft earth. In case a growing stem is thrown down for any reason, several of the lower nodes promptly elongate on the lower side and thus bring the top into an erect position. Each sheath supports and holds erect the tender lower portion of the internode, where it is soft and weak; it also protects the young branches or panicles. Thrifty blades of Grasses suitable for pasture and lawn elongate from the lower end, so that when the tips are cut off the leares do not cease to elongate, but renew their length. When exposed to sun or dry nir, the blades develup a thicker epidermis, and. ly shrinking of some of the delicate balliform cells of the upper epidermis, they diminish their surfare as they roll their edges inward or bring them together, like closing an open book. When the plant is in flower the minute and delicate lodi-
cules become distended just in time to spread the glumes and liberate the stamens.

Grasses are not so much employed for ornameuting homes as their merits warrant. By selecting, some can be found suited to every week of the growing season, though many of them are in their prime during June, the month of roses. Wild rice (Zizania) is fine for rich soil in the margins of ponds, and masses of reed grass for deep beds of moist muck. For massing or for borders the following and others are stately: Arundo Do-

984. Staminate spikelet of a Grass (maize).

Showing two tlorets, one of which (with three stamens) is expanded. 1, 1, empty glumes; 2,2, palets. Enlarged.
nax, A. conspicua, maize, pampas grass, Eulalia, ribbon grass, Anaropogon formosus, A. Halepensis, Asperelle Hystrix, Tripsacum. For glaucous blue-green, use Elymus arenarius, Festucu glauca and Poa cesia. For potting and borders, there are striped varieties of Dactylis, Anthoxauthum, Alopecurus, Holcus lanatus, H. mollis, Poa trivialis, Phlerm pratense; and others may soon be produced. For table decoration nothing is better than the elegant, airy panicles of large numbers of wild Grasses, such as species of Poa, Kuleria, Eatonia, Panicum, Paspalum, Eragrostis, Mublenbergia, Bromus, Festuca, Agrostis, Deschampsia, Uniola, Briza, Cinna pendula. For large halls and exhibitions, what surpasses sheaves of wheat, barley, rice, oats or any of the wild Grasses? For decoration, Grasses should be cut before ripe, dried in the dark in an upright position, and may be used in that condition or dyed or bleached. For paths, nothing is more pleasing than strips of well mown lawn.

Drainage keeps out sedges aud encourages the better Grasses; manure and irrigation help the best Giasses to ehoke and diminish most weeds. Enough has already been done to show that rich rewards are sure for him who patiently and intelligently attempts to improve Grasses for any purpose whatever by selection and crossing. Quack-grass is excellent for bolding embankments; Ammophila arcnuria for holding drifting sands. The Grass family furnishes its full quota of weeds, among them quack-grass, crab-grass, chess, June-grass, sand-bur, stink-grass.

Turf-forming Grasses are those that spread freely by creeping rootstocks, such as June-grass, quack-grass, Bermuda-grass, Rhode Island bent and red-top, while most others are more or less bunchy. For northern regions not subject to severe droughts, sow Rhode Island beut and June-grass both, or either one alone; for northern regions, which are liable to suffer from dry weather, sow June-grass and plant Bermuda-grass. These two on the same ground supplement each other in different kinds of weather, securing a green carpet during every part of each growing season. W. J. Beal.

GRASSES, POPULAR NAMES OF. There are few frasses which hold commanding positions as specimen plants, although the agricultural values of Grasses are transcendent. Some of the commoner vernacular Grass names are given below, with references to the proper genera: Animated Oats, A vena. Artificial G., sometimes used for certain forage plants, as sorghum, but also leguninous plants, as clover, lucerne, sainfoin. Awnless Brome G., Bromus inermis. Beach G., Ammophila arenaria. Bear G., unusual name for Yuecu filamentosa. Beard G., Indropogon ; also Polypogon Monspeliensis. Bengal G., Seturiu Italica, Bent G., Agrostis. Bermuda G., Capriola Pactylon. Blue-eyed G., Sisyrinchium. Blue G., Pou. Blue Joint G., C'tlamagrostis Canadensix. Bog G., Cares. Bristly Foxtail G., Seteria magne. Brome G., Bromus. Buffalo G., Buchlö̈̀ dactyloides. Canada Blue G., Poa compressa. Canary G., Phalaris Canuricusis. Cat-tail G., Philenm pratense. China G., Bolimerin nivea. Citronella G.., A udropogon Vardus. Cotton G., Eriophorwm. Couch G., Agripyrum repens. Crab G., Eleusine and Punicum sunguinale. Creeping Bent G., Igrostis stolonifera. Crested Dog's Tail, Cynosurus cristatus. Deer G., Rhexia Virginica. Dog's Tail G., Cymosurus. Eel G., Fallisneria spirulis. English Rye G., Lolium perenne. Esparto G., Siuju tenacissima. Feather G., Stipa pennata. Feather Sedge G., Andropogon saccharoides. Fescue G., Festuca. Finger-comb G., Dactyloctenium. Finger G., Chloris. Fowl Meadow G., Poa serotina. Fly Away G., Agrostis scabra. Fourleaved G., Paris quudrifolia. Foxtail G., Alopecurus pratensis. Golden Top G., Lamorckia aurea. Guinea G., Panicum jumentorum ; also erroneously used for Andropogon Halepensis. Hair G., Agrostis scabra. Hare's Tail G.: Lagurus ovatus. Hassock G., Deschamp. sia caspitosa. Herd's Grass in New England is timothy (Phleum pratense); in Pennsylvauia, Fiorin (Agrostis vulgaris). Holy G., Hierochloa borealis. Hungarian G., Setaria Italica. Italian Rye G., Lolium Italicum. Japanese Lawn G., Zoysia pungers. Job's Tears G., Coir. Johnson G., Andropogon Halepensis. June G., Poa pratensis. Kentucky Blue G., Poa pratensis. Large Quaking G., Briza marimu. Little Quaking G., Brizut minor. Love G., Eragrostis elegans. Lyme G. of upholstery is Deschampsia cuspitosa. Marram G., Ammopkila arenaria. Meadow Foxtail G., Aloperurus pratensis. Myrtle G., Icorus Culamus. Oat G., Arrienatherum "uenaceжm; also varions species of Avena. Orchard G., Dactylis glomerita. Palm-leaved G., Prnicum sulcatum. Pampas G., Gyuerium. Pepper G., Lepidium ; also Piluluria globulafera. Plume G., Erianthus Ruvennu. Pony G., Calamagrostis stricta. Purple Bent G., Calamovilfa brevipilis. Quack, Quick, or Quitch G., Agropyrum repens. Quaking G., Briza. Rattlesnake G., Briza maxima. Ray G., Lot ium perenne. Red Top G., Agrostis vulgaris. Reed G., Arundo, Bamboo. Reed Bent G., Calamagrostis. Reed Canary G., Phalaris armndinaceu. Rescue G., Bromus uniotoides. RhodeIsland Bent G., Agrostis canina. Ribbon G., Phalaris arundinucea, var, variegata. Rough Bent G., Agrostis scubra. Roughish Meadow G., Poa trivialis. Rough-Stalked Meadow G., Poa trivialis. Rye G., Lolium perenue. Sand G., Calamovilfa longifolia. Scurvy G., Cocklearia officinalis. Scutch G., Caprinla Dactylon. Seacoast Bent G., 1 grostis coarctala. Seneca G., Hierochloa borealis. Sesame G., Tripsacum. Sheep's Fescue G., Festuca ovina. Silk G., Agrost is scabra. Silver Beard G., A udropogon argentens. Sour G., local name for Rumex A cetosella. Squirrel-tail G., Hordeum. Star G., Callitricke; also locally for Hypoxis and Aletris. Striped G., Phalaris amudinacea, var. variegatit. Sweet-scented Vernal G., Anthoranthum odoratum. Tall Meadow Oat G., Arbenatherum clatius. Tickle G., Agrostis scabra. Tear G., Coix Lachryma-Eobi. Texas Blue G., Poa arachnifera. Timothy, Phtrom. Tufted Hair G., Deschampsia cuspitosa. Vanilla G., Hiprochloa boreulis. Viper's G.. Scorzonera. White Bent G., Agrostis alba. Whitlew G., Draba, especially D, verna and Saxifraqa triductylites. Wood Meadow G., Poa nemoralis. W0olly Beard G., Erianthus. Worm G., Spiqelia; also Scdum album, Yellow-eyed G., Jyrix. Zebra G., Miscanthus Sinensis.

GRASSW0RT. See Cerastium.

GRATIOLA (Latin, grace or favor, from its reputed heating qualities). Scrophularidece. This genus contains au unimportant trailing annual, which grows wild in wet, sandy places from Quebec to Fla., and bears yellow fls., half an inch long, from June to Septemher. G. aùrea, Muhl., was once offered by collectors. It is a glandular plant, with lvs. lanceolate, entire or remotely denticulate, and 2 sterile filaments. B.B. 3:162.

GRAVESIA (after C. L. Graves, who collected in Madagascar). Melastomaceo. Three species of dwarf warmhouse foliage plants, natives of Madagascar, and

985. Asa Gray at 76 years.
cult. in a few American conservatories. For eulture and for distinctions from allied genera, see Bertolonia, under which name most of the varieties are still known.
guttùta, Triana (Bertolonia guttìta, Hook.). Canlescent, erect: branches obtusely 4 -angled: petioles long, densely scurfy-powdery: 1vs membranous, 5 -nerved, rotund at base, slightly scurfy above and spotted, under side and calyx scurfy-powdery, cymesterminal, severalfld. Int. 1865, and first described at B.M. 5524 as B. guttata, where the lvs. are shown with fairly well defined, double longitudinal rows of roundish pink dots. F.S. 16:1696 is probably a copy of B.M. 5524. (See, also, Git. 1865, p. 385, and B.H. 1865, p. 225.) Var. eupérba, Hort., 1.H.26:359 (1879) is shown, with more and larger reddish purple spots, which are less regularly arranged. Var. Legrelleana (B. Legrelleina, Van Houtte). An alleged hybrid obtained by Van Houtte and figured in F. S. 23:2407. Coignenx refers this plate to Gravesia guttata, but no fls. are shown, nor have the Irs. any spots. The nerves are outlined in white, and some of the eross veins for short distances. Var. Alfred Bleu is brilliantly spotted and lined with bright red, the nerves boldly outlined, the cross veins interruptedly outlined. 1.H., 41:13 (1894). Var. margaritàcea, Nicholson (B. margaritdcea, Hort. W. Bull=Kalpinga margaritacea. F.S. 16:1697). See DC. Mon. Phan. 7:537.

GRAY, ASA (Fig. 985), botanist and naturalist, was born in Paris, Oneida county, N. Y., Nov. 18, 1810, and died in Cambridge, Mass., Jau. 30, 1888. His father was a tanner. He studied medicine, bnt never practiced it. He early became interested in botany, and entered into correspondence with Dr. Lewis C. Beek and Dr. John Torrey, both of whom were well known botanists of the time. In 1833, Gray became assistant to Torrey, who beld the chair of chemistry and botany in the New York College of Physicians and Surgeons. From this connection dates his serions botanical work. His first hook, the "Elements of Botany," appeared in 1836. To the schools, however, he became best known through his "Lessons," which first appeared in 1857. To the last revision of this book, in 1887, he gave the name "Elements of Botany," thus reviving the title of his maiden effort. The "Botanical Text Book" first appeared in 1842: it went to a sixth edition in 1879. From the first this work was accepted as the highest authority on the subjects which it treated; and it is to-day the model for the formal presentation of morphology and taxonomy. Gray is further known as an anthor of textbooks in the admirable books for youth, "How Plants Grow," 185\%, and "How Plants Behave," 1872. Gray's texts at once became standards, and have done more to make botany teachable in the schools than any other American works. They are expressions of the older or topical method of presenting plant subjects, as contrasted with the newer ideals which first introduce the pupil to hiological or life problems. They will always be known as having marked an epoch in the teaching of botany in America.
Gray was chiefly known for his taxonomic and descriptive work with plants. It fell to his hand to review the North American flora. The western country was largely unknown hotanically. The collections of government surveys and of individuals went to him for study. His publications on this new flora are voluminous and critical. He also reviewed the floras of many of the Pacific islands and of Japan. His most ambitions work was the "Synoptical Flora of North America." This great work began to appear in 1838, at which time he was a junior anthor with Torrey. After having passed to two volumes, comprising the orders from Ranunculaceæ through Composite, the work was discontinued until, in 1878, he published the Gamopetalæ after Compositæ. In 1884, he published the families from Caprifoliacea through Compositæ. The necessity of studying the wealth of new material resulting from the extension of the national domain made the completion of the work impossible in the interim. The work is still in progress by Gray's successors.
Gray's most widely known systematic work is the "Manual of the Botany of the Northern United States," which first appeared in 1818, and which he took through five editions. The sixth edition, from the hand of Seredo Watson, Gray's successor in taxonomic work, appeared in 1889. From the first it has been the standard flora of its region. In 1868, Gray supplemented the manual by the "Field, Forest and Garden Botany," which was designed as an easy introduction to the commoner wild and cultivated plants. Gray regarded this as his poorest work, yet it met a need and has been deservedly popular. It has been our most acceptable account of cultivated plants. It lacks the critical spirit of his other works, and the accounts of the cultivated plants were drawn largely from literature, rather than from the plants themselves. Working chienly with taxonomic questions, Gray found little interest in plants which, by domestication, have been made to vary to the confusion of the old specific bounds. Yet it is remarkable how accurately he indicated the species which have been chiefly concerned in the evolution of gardeu forms, and how comprehensively he covered the field of the domestic flora. A revision of the "Field, Forest and Garden Botany "was made in 1895.

In his riew of species, Gray accepted the dominant English ideal as held by the Hookers and by Bentham. Species were large conjunctive groups: he tended to make few rather than many. There were indications of a revolt from this point of view in the later years. but
his personality and influence prevented any great defection. At the present time, the pendulum seems to have swung to the opposite extreme. Species are small disjunctive groups: authors tend to make many rather than few. It will probably be a decade or more before the species-ideal swings back to the middle point, where only a pendulum can rest.
Gray was a philosophical naturalist. He was one of the first of the great American naturalists to espouse tho main argument of Darwin's "Origin of Species." In this respect he stands in bold contrast to his great colleague Agassiz. Gray's influence was the greater because he was known to be a pronounced theist. He entered the conflict which arose between organic evolution and theology, and did much to heal the schism. His writings on the evolution controversies were published in two volumes, "Darwiniana" and "Natural Science and Religion."
Gray was a constructive philosopher, as well as a critic. His essay on the "Relations of the Japanese Flora to that of North America," was one of the first masterful attempts to explain the principles of the distribution of species. This essay stands for the following conceptions: that species bave one origin; that distribution over the earth is due to physical causes; that the origin of the north temperate flora is circumpolar. One who is unfamiliar with the points of view of his time cannot catch the full significance of these conclusions. They are now accepted, not challenged. Into philosophical discussions of cultivated plants he made few excursions, although his paper on the running out of varieties has become a standard; and in his many reviews he made occasional contributions to this field.

Asa Gray was a lovable man. He was gentle, quiet, sweet-tempered; intellectually he was keen aud penetrating. Both by bis personality and his teaching, he exerted an incalculable influence on American botany, and, indeed, on American biological science. In Europe be became a representative of what was best in American science. Harvard College, in which be held a professorship from 1842 until his death, became the Mecea of every American botanist. Here he built up the most important herbarium and botanical library in the New World. He was the master of American botany.

Gray's writings were voluminous. He was known as one of the most skilful of American reviewers and biographers. His scattered untechnical writiugs were republished in two volumes in 1889, by Professor Sargent, as the "Scientific Papers of Asa Gras." See the "Letters of Asa Gray," 2 vols., 1893, by his widow, Jane Loring Gray.
L. H. B.

GREENHOUSE. In America the word Greenhouse is used generically for any glass building in which plants are grown, with the exception of coldframes and hotbeds. Originally and etymologically, however, it means a bouse in which plants are kept alive or green: in the Greenhouse plants are placed for winter protection, and it is not expected that they shall grow. The evolution of the true Greenhouso seems to have begun with the idea of a human dwelling house. At first larger windows were inserted; and later, a glass roof was added. In early times it was thought best to have living rooms above the Greenhouse, that it might not freeze through the roof. Even as late as 1806, Bernard McMahon, writing in Philadelphia, felt called upon to combat this idea. The old or original conception of a Greenhouse as a place for protecting and storing plants is practically extinct, at least in America (Fig. 986).

Other types of plant houses are the conservatory (which see), in which plants are kept for display; the forcing-house (see Forcing), in which plants are forced to grow at other times than their normal season; the stove or warmhouse ; the propagating pit. Originally the warmest part of the plant-house, that part in which tropical plants were grown, was heated by a stove made of brick, and the house itself came to be called a stove. This use of the word stove to designate the warmest part or room of the range is universal in England, but in America we prefer the word warmhonse (and this word is used in this Cyclopedia). Originally, hothouse was practically equivalent to stove, but this term is
little used in this country, and when used it is mostly applied generically in the sense of Greenhouse.

It will thus be seen that there is no one word which is properly generic for all glass plant houses. The word glasshouse has been suggested, and it is often used in this work; but there are other glass houses than those used for plants. It seems best, therefore, to use the word Greenhouse for all glass buildings in which plants are grown; and usage farors this conclusion.
The long, low Greenhouse range, of the type which we now know in our commercial establishments, probably had a different origin from the bigh-sided Greenhouse. The glasshouse range appears to have developed from the practice of protecting fruits and other

986. The old-time Greenhouse.

With opaque roof and sash-made sides (Abererombie, 1786).
plants against a wall. In European countries, particularly in England, it is the practice to train fruits aud other plants on stone or brick walls, in order that they may be protected from inclement weather and receive the greater sun heat which is stored up in the masonry, It occurred to Nicholas Facio Duilhier to incline these fruit walls to the horizon so that they would receive the greater part of the iucident rays of the sun at right angles. He wrote a book on the subject of "Fruit-Walls Improved," which was published in England in 1699. Facio was a mathematician, and he worked out the principle of the inclined walls from mathematical considerations. Such walls were actually built, but according to the testimony of Stephen Switzer, who wrote in 1724, these walls were not more successful than those which stood perpendicularly. Certain of these walls on the grounds of Belvoir Castle, and over which grapes were growing, received the additional protection of glass sash set in front of the inclined walls and over the vines. In addition to this, flues were constructed behind the wall in order that heat might be given. The construction of bollow heated walls was not uncommon in that day. The satisfactory results which followed this experiment induced S witzer to design glass-covered walls. The "glasshouse" which he pictured in the "Practical Fruit-Gardener" (1731) represents a Gireenhouse $31 / 2 \mathrm{ft}$. wide in the clear, Fig. 987. At the back of this house is an inclined heated wall on which the grapes are grown. Three and one-half ft , in front of this, a framework is erected to receive the sash. There are 3 tiers of openings or windows along the front, the two lower ones of which are for window sash, and the upper one is vacant in order to provide for ventilation and to allow space to receive the lower sash when they are lifted up. The whole structure is covered with a roof or coping. Switzer declares that the introduction of these covered, sloping walls "led the world " to the "Improvement of glassing and forcing grapes, which was never done to that Perfection in any Place as it is upon some of the great Slopes of that elevated and noble Situation of Belvoir Castle." Johnson, in his "History of English Gardening," quotes the remarks of Switzer, and makes the statement that the use of these walls "led to the first erection of a regular forcing structure of which we have an account." The immediate outcome of these covered walls seems to have been the lean-to Greenhouse, and from that has developed the double-span glass range of the present day. Long before Switzer's time plants were forced in a crude way, even by the Romans, mostly by being placed in baskets or other movable receptacles, so that they could be placed nnder cover in inclement weather; but the improvements of Facio and Switzer seem to have been

GREENHOUSE

amongst the earliest attempts to make low glass ranges for plants, particularly in England.

It was ahout the beginning of the nineteenth century tbat great improvements began to be made in the glasshouse. This new interest was due to the introduction of new plants from strange countries, the improvement of heating apparatus, and the general adrance in the art of building. The ideals which prevailed at the opening o the century may be gleaned from J. Loudon's "Treatise on Several Improvements recently made in Hot-Houses," London, 1805. One of the devices recommended by Loudon will interest the reader. It is shown

Location, Plans, Grading, Foundations, Framework, Glazing and Painting, Plunt Tables, Ventilation, Heating.

Location. - Greenhouses which are intended for use in connection with the garden should he placed, for convenient attendance, within the garden inclosure or along its boundary. A good location for the garden will usually be found the best one for the Greenhouse.

A conservatory or Greenhouse designed for a private place, where specimen aud hlooming plants will be kept for the pleasure of the family and entertainment of visitors, should be attached to the dwelling or located as

987. Switzer's glasshouse, built on an inclined wall. 1731.
in Fig. 988. The bellows is used for the purpose of forcing air into the house, that the plants may be supplied with a fresh or non-vitiated atmosphere. "By forcing the air into the house, once a day or so, double the quantity of air which the house usually contains" can be secured. The house could be "charged." The tube leading from the bellows is shown at b; it discharges at c. ('urtains run on the wire, i; the curtain cord is at f.
All commercial structures are now built on the plan of the lons. low glass range, with rery little height at the eares. The taller glass structures, if built at all, are used for conservatory purposes or as architectural features. The general tendency of the huilding of glass structures is towards extreme simplicity (Fig. 1005). In the extreme South, lattice-work buildings are sometimes used for the protection of plants, both from light frosts and from the sun (Fig. 959). The heating which is now employed in this country is of three different kinds: hot water under very low pressure or in the open tank system; bot water in practically closed circuits; and steam. Hot water under low pressure is an old-time idea of heating, and is not now popular in this country except for conservatories and pricate establishments. The heavy, cumbersome pipes are not adapted to laying over long distances and under rarying conditious. The commercial houses are now lieated by means of wrought-iron pipes, which go togetber with threads. The comparative merits of steam and hot water in these wrought-iron pipes are much discussed. For large establishments, particularly those which are on various elevations, and which are likely to be changed frequently, steam is preferable; and, on the whole, it seems to be gaining in favor for commercial establishments. It requires no more attention on the part of the operator, when modern heaters are used, than hot water. However, the merits of one system or the other are very largely those of the individual establishment and apparatus, and the personal choice of the operator (see Forring),

The special American literature ou Greenhouse construction and management will be found in the following books: Leuchars' "Hot-Honses," 1850; Henderson's "Practical Floriculture," first ed., 1869; Field's "Gireenhouse as a Winter Garden." 1869; Hunt's "How to Grow Cnt-Flowers," 1893; Taft's "Greenhouse Construction," 1893; Bailey's "Forcing Book," 1897; Taft's "Greenhouse Management," 1898.
L. H. B.

Greenhouse Construction. - For convenience, this suhject may be considered unler the following beads: i.e.,
vear as possible in a well-kept part of the grounds. A conservatory does not require a full southern exposure. Most decorative plants thrive as well or better and continue in bloom for a longer time if kept in a house baving plenty of light, but so located as to receive but little direct sunlight. Large ranges of glass adapted to a variety of purposes are generally kept separate from other buildings. In parks the location shonld he near a main entrance.
The location of a range of glass for commercial purposes, where the elements of expense and profit are to have the first consideration, is of great importance. The cbief items which determine the desirability of a suitable location are the adaptability and value of the land, cost of fuel delivered, ample and inexpensive water supply, and proximity to a market. The top of a bleak bill or the bottom of a valley should both be avoided. Level land, or that having a southerly slope, is the best.

Plans. - When asite for the proposed Greenhouse has been decided upon, full plans should be made before commencing to build. The plans should embrace not only the glass, which is required at once, but should provide for the largest increase which can be anticipated. In this way houses can be erected which are convenient to work and have a good appearance, with small extra cost for building only part at a time. Attention sbould be given to the special peculiarities of the location, like the exposure to the sum, grade of ground, shape of lot, and best location for the heating apparatus. Each compartment should bare the pro-

to the light adapted to the plants for which it is provided.

It will readily be seen that to locate and plan a range of glass to the best advantage requires skill and experience. In a communication recently received by the

An inexpensive wall of rubble stone work or of concrete is all that is needed in the ground. The part of the wall showing above grade may be of plain hrick or faced with stone, to correspond with the construction of other surrounding buildings. A good substitute for these masonry walls is found in the use of cast-iron posts in connection with double boarding. A renovable base at the ground line, which can readily be renewed, adds very much to the value of this construction, making it durable and satisfactory. It has been quite extersively adopted by florists in houses for commercial purposes and for small and inexpensive Greenhouses. It is recommended for such bouses.

Framework, - The construction hest adapted for conservatories, park houses and Greenhouses, and for private places where the improvements are desired to be permanent in character and attractive in appearance, is the combination of iron and wood. In this system, the main frame which supports the weight aod strain is of iron or steel, wood being used in the frames for the setting of the glass, and to form a non-conductor, of great advantage in the heating of the house. The iron work in this style of construction usually consists of east-iron sills eapping the foundation walls, wrought-iron rafters setting on the sills, about 8 feet apart and running from sill to ridge, forming the side post and rafter in one piece, cast-irou gutters, and angle-irou purlins between the rafters, all securely bracketed and bolted together, forming a complete framework of metal, light, strong and durable. The wood used consists of light sash bars for the setting of the glass, sashes for ventilation, and doors. This woodwork being entirely supported by the metal frame, and not being used where it will be continually wet, will be found as durable as any other material, and for many reasons better adapted for the requirements of a Greenhouse roof. This combination system of metal and wood construction has been extensively adopted by florists and large growers of cut-flowers, though generally with the cast-iron post style of foundation. The first cost is somewhat increased over an all-wood construction, but in view of its greater durability and saving in repairs, it will be found in the end the better investurent. In
writer from a superintendent of one of the most important botanic gardens in the country, it was remarked that "when the architect prevails, the gardener fails." It is also true to a greater degree than in almost any other class of buildings that the beginner or amateur who undertakes to plan and coostruct his own Greenhouse is likely to pay well for his experience, and will at least sympathize with the "lawyer who pleaded his own cause and found he had a fool for a client." This is perfectly true, as many know to their cost. To plan a Greenhouse satisfactorily the designer must have a practical knowledge of the requirements. To meet this inereasing demand, specialists can be found, known as "horticultural architects," who devote their entire time to this branch of work.

Grading. - The floor of the Greenhouse should be a few inches above the outside grade. As most Greenhouses are necessarily built low to accommodate the plants, a small terrace around them adds to the elevation and the good appearance of the structure. It will usually be best to keep the floor of a Greenhouse all on one level. When the variation in the grade of the ground is not too great, the floor line should be at the highest point of the grade. In the case of a long house, the floor line is sometimes made the same as the natural grade, but such an arrangement is to be avoided when possible. For locations on a hillside, the different apartments may have different floor levels, with necessary steps between thers.

All the sod and loam should be removed from the space to be covered by a Greenhouse, and all the filling necessary made with subsoil. The latter should be laid in thin layers and each wet down and thoroughly tamped. Loam used for filling under a Greenhouse is apt to become sour, and will continue to settle for a long time, causing much trouble and annoyance.

Foundations, - Too much care cannot be given to the preparation of good foundations. These are usually of brick, bnt may be made of stone or concrete. The brick walls take up less room in the house than stone, and are usually less expensive. The foundation walls should be extended down to a point below the frost line, generally 3 or 4 feet deep, and are usually raised about 2 feet above the grade.
cases in which the roof water is not needed for watering the houses, an

990. Even-span curvilinear Greenhouse.

Witb east-iron piping.
angle-iron plate is substituted for the gutter, so framed as to allow the snow and ice to slide over it, keeping the roof entirely clear from such accumnlations, which
darken a house in the cold winter weather, when light is most needed. The double-boarded sides, when erected with care, are warmer than ordiaary masonry walls.

Cast-iron gutter's are provided to collect the rain water from the roof. By exposing the inner side of these gutters to the heat of the bouse, they are kept free of ice in the winter. Small metal clips fastened with screws are used to connect the wood sash hars to the cast-iron gutters, augle-iron plates and purlins. This method of securing the sash bars in place is very convenient in case of repairs, and readers the structure practically portable. A careful examiaation of any old Greenhouse will show that the parts of the frame which decay first are those pieces of wood which are joined together, for water penetrating the joints soon destroys the wood. This trouble is largely avoided by arrauging the frame so that each piece of wood is fastened directly to the iron frame instead of to another piece of wood. Joints between wood and iron do not rot the wood, the latter being preserved by the corrosion of the metal.

The curvilinear form of bouse (Fig. 990) is ornamental and particularly well adapted for conservatories, palm houses and show houses of all kinds. It is preferred for vineries and fruit houses, as the form allows the canes to be supported on the line of the roof without a sharp bend at the plate line. The light in a curved house, being aimitted at different angles, is better diffused and more natural than when reflected through a loug pave of straight glass. The cost of a curved roof is slightly greater in the construction, but the arched frame is stronger and will keep its shape better than a house with straight lines, thus largely compensating for the extra cost. For special purposes and locations, special forms of frames may be used. Good forms of commercial houses are shown in Figs. 991,992 . The latter is the most popular form for the forcing-house.

For small Greenhouses and those adapted for the use of amateurs, a frame made cbiefly of wood will be found quite satisfactory. An improved method of framing is to use small rafters of wood from 5 to 8 feet apart, with cast-iron brackets at ridge and plate; these rafters are connected by light angle-iron cross purlins, and the latter support very light sash bars spaced for glass between the rafters. The ridge is usually supported by gas jipe posts, and when the rafters are of considerable length additional supports are placed under their centers, instead of darkening the house by rafters of greater size. In this way the roof can be made as light as the metal construction first described, and will nearly approach it in durability and fiaish. Details of construction of wooden houses are shown in Firs. 993, 994.

It is geaerally admitted that the so-called "sash bar construction "is not the best or lightest method of construction, but as the absence of most of the framing reduces its cost so that it is the cheapest to build, it remains a popular method of putting up a commercial Greeahonse. Circulars showing the varions methods adopted by the dealers in Greenhouse material can readily be obtained by applyiag to them.

The best wood to use for Greenhouse framework and plant-beds is undoubtedly cypress. In purchasing this lumber, care should be taken that only that grown in the states borderiag on the Gulf of Mexico be selected. This will be found of a dark red or brown color, quite soft and easily worked. There is an inferior variety of cypress growing farther north, which is light in color, hard and spriagy, and apt to be shaky. As the latter variety is cheaper than red gulf eypress it is frequeatly used by those who do not know the difference, to the serious detriment of the work and the loss of reputation of cypress for such purposes.

In the market there are three grades of cypress lumber, and it is important to know which to select. The best grade is known as "firsts and seconds," and calls for lumber with a small amount of sap on the edges aud occasionally a small sound knot. This is the quality which should be ordered for all the framework of the roof, sash-bars, etc. In order to make the material entirely free from sap there will be a waste in cutting up this quality of from 10 to 20 per cent. The second grade is known to the trade as "selects." This name indicates that it bas been graded so that one face of each piece of lumber is of ahout the same quality as the "firsts and seconds," the other face generally lieing largely sap. This quality is only fit for outside boarding in Greenhouse construction; it has too much sap. The cost is usually about tire dollars per thousand less than the best grade. As it looks to the inexperienced eye almost the same as the best grade, too much of it finds its way into Greenhouse structures. Such sap lumber will not last more than from two to five years. Too great care cannot be exercised to avoid its use. The third grade of cypress lumber is termed "cutting up," and is so called because it embraces all the pieces which have imperfections, such as large knots, splits, etc., which bar them from the better grades. This is a good quality to purchase for base boards and plant tables, for by cutting out the sap and objectionable knots it will be found satisfactory for these purposes. The "cutting up" grade costs about ten dollars less per thousand than the "Brsts and seconds." The percentage of waste in cutting up will he somewhat greater than in the otber grades.
Cypress lumber which has been in use for gutters, sash-bars, plates, etc., in Greenbouses where high temperatures have been maintained is still, after many years, apparently in as good condition as when first used. Owing to the porous texture of the wood, the paint, when applied, sinks in and does not make as fine a coat as on some other woods, but because of this fact the paint adberes to the wood better and lasts longer.

Glazing and Painting.-Ordiuary sheet or window glass is in general use for greenhouse glazing. It is better to use only the thickness known to the trade as "double thick." This weighs from 24 to 26 ounces per square foot. The thickness known to the trade as "single thick" weighs only about 16 ounces to the square foot, and is entirely too frail for the purpose. There is very little difference at present in the quality of the imported Freach or Belgian and the American
glass. The weight of most of the glass of American manufacture is about 2 ounces greater per foot than the imported, and therefore proportionately stronger. This greater strength is of considerable importauce in the additional security which it affords from damage caused by that enemy of the florists, the hail storm. There is a great difference in the quality of the glass made by different manufacturers in its adaptation to Greenhouse use. This difference is caused chiefly by
the joints, nor does it provide any means of escape for the condensed water from the under side of the glass, which is a very serious objection. In ordinary glazing, where each light laps over the one below, the condensed water passes through the joints to the outside, forming a perfect remedy for this trouble. The difference in the cost is very slight, if anything, provided the work is equally well done, as the value of the putty onitted is fully offset by the extra cost of the caps.

The painting of a Greenhouse roof is a very important part of the work. Owing to the extremes of heat, cold, dryness and moisture to which it is exposed, the conditions are decidedly different from ordinary buildings. Three-coat work is the best. The priming coat on the wood work should be mostly oil, and, as far as possible, the material should be dipped into a tank of paint. Iron and steel framing material should be primed with a metallic paint. The priming coat should be applied before
the quality of the material used in the glass, making it more or less opaque, and in the number of small knots, causing lenses, which concentrate the sun's rays ind burn the foliage of the plants. This last defeet in the glass cannot be wholly guarded against, as the product of a factory does not always run the same, so that any favorite brand cannot be fully relied upon in this respect. The lenses which burn will be found in all the different grades of glass, firsts, seconds aud thirds, with little, if any difference, the grading being done chiefly for other defects, such as affect the value of the glass for window purposes. For these reasons, in selecting the glass for a Greenhouse, it requires experience to decide what make of glass it will be best to purchase. It will be well to purchase from some oue who makex a specialty of furnishing glass for Greenhouses, or call in the aid of some friend who has had experience in building, and can give intelligent advice.
The second quality of glass is usually selected for the best Greenhouse work. The standard widths are from I2 to 16 inches, and lengths vary from 16 to 24 inches. A favorite size is $\mathbf{I 6}$ by 24 inches. This is about as large as it is practical to use double thick glass, and makes a roof with comparatively few laps.
It is not safe to purchase fourth quality of glass or the so-called "Greenhouse glass" frequently offered by window glass dealers, as both of the grades contain the culls and lights only fit to glaze cheap sash for market gardeners, and is of doubtful economy even for this purpose. Rough plate or ribbed glass is not adapted for a Greenhouse roof. It uot only obscures the light, but is so brittle that the breakage is greater than with the double thick sheet-glass. It is also very difficult to set it so as to make a tight roof on account of the uneven linos of the ribbing. Recently a few conservatories bave been glazed with thick, polished plate-glass, mak ing very handsome roofs, but rather expensive.

To set glass properly in a Greenhouse roof, it should be bedded in the best putty on wood sash bars aed lapped at the joints. The bars should be spaced accurately, so that the glass will fit the rabbets with not over one-sixteenth of an inch allowance, and the panes of glass should lap each other not more than from oneeighth to one-quarter of an inch. Zinc shoe nails fasten the glass best, usiog from 4 to 6 to each pane, according to the size of the light. No putty should be used on the outside of the glass. A comparatively new system of glazing has been adopted by some florists, in which no putty is used, but the glass is placed directly on the rabbets of the bars and the ends of the panes are butted together and beld in place by wood caps fastened to the sash bars. This system does not make a tight roof, allowing considerable water to enter the bouse through
the material is exposed to the weather. The material of the second and finishing coats should be pure linseed oil and white lead. Experience has shown that this material is the best for this work. The color should be white, or a light tint of any desired shade may be used, but no heavy color should be adopted which requires coloring matter in place of the lead in the mixing. Each coat should be applied thin and well rubhed out. While the appearance may oot be quite as fine when the work is first done, the paint will not peel off, and will last longer and form a better protection for the structure than when it is put on in thick coats. It will also form a good base for repainting, and this should be done in a similar manner. It is economical to repaint a Greenhouse every two years, and generally one coat will be sufficient.

Plant Tables.-Stages for plants in pots or raised beds for planting out usually cover the entire area of a Greeuhouse, except the walks, and their cost constitutes a considerable proportion of the expeuse. Palms are usually grown in solid beds or in pots or boxes sitting on the ground. Many vegetables are grown in solid beds near the ground level. Roses and carnations are usually in raised beds. Angle-iron frames supported on adjustable gas pipe legs, with slate or tile bottoms, form the best plant tables (Fig. 995). Wood bottoms, which can be readily renewed, are frequently substituted, sav ing a part of the first cost. When the table supports are of wood care should be taken that they are not fastenen

993. Details of gutter.

994. Details of ridge (B) and eave (C).
against any part of the framework of the house, unless iron brackets are used so as entirely to separate the woodwork.

Ventilation. - No Greenbouse is complete without a good ventilating apparatus. About one-tenth of the roof should be arranged to open or close for ventilation, thongh this percentage will vary according to the form of house and the purpose for which it is used. It is not
desirable to open all the rentilators in a loug house with one set of apparatus, for frequently one end will not need as much ventilation as the other end, or may be affected by the wind forming a current lengthwise of the house. To avoid this a Greenhouse 200 feet long should have 3 or 4 sets of apparatus, which can be operated separately. In all Greenhouses of considerable width, it is desirable that ventilation should be provided on both sides of the ridge, so that the rentilation can be given on the "leeward" side, which will prevent the wind from blowing directly into the house.

Heating. - The success of the florist, gardener or amateur in the management of a Greenhouse depends largely on the satisfactory working of the heating apparatus. There are two systems of Greenhouse heating which, when the apparatus is properly installed, are economical and satisfactory; viz., hot water and steam. The open-tank hot water heating has more advantage in its adaptation to general use than any other, and is so simple that its management is readily understood hy any one. It is practically automatic, and is capable of maintaining an even temperature for ten hours without atteution. Low pressure steam heating is well adapted to large commercial ranges, and to large conservatories in parks and private places, where a night attendant can be kept in charge of the fires to turn on and shut off steain from the radiating pipes as the changing outside temperature may require. The beating of Greenhouses to the best advantage under the varying conditions of climate and interior requirements, demands, like the designing of frreenhouses, the services of an experienced specialist in horticultural work.

Lord \& Burnham Co.
Greenhouse Glass, - The selection of glass for Greenhouses, and the nature of the imperfections which render it undesirable for such use, are questions which have received much attention from horticultural writers, and which have brought forth a variety of answers. Three qualities are essential in all glass to be used in Greenhouse construction: first, minimum of obstruction to solar rays; second, strength sufficient to withstand the strain of winds and storms, especially hail; and third, freedom from defects rendering it liable to burn plants grown under it.

It is an established fact that plants thrive best under a clear and transparent glass, which lets through the greatest possible percentage of the sun's rays. This includes all the solar rays, calorific or heat rays and actinic or chemical rays, as well as the colorific or light rays. Clear white glass of the grade known as "single thick" (12 panes to the inch i lets through from 60 to 70

995. Details of iron-frame benches.

per cent of the sun's rays, common green glass of the same thickness, 52 to 56 per cent, and "double thick" (8 panes to the inch) common green glass from 50 to 52 per eent. This percentage is reduced by other colors, dark blue glass letting through but 18 per cent. In connection with the matter of tint, it should be noted that some glass, especially clear white glass purified with arsenic acid, or that in which a large amount of potash is used in proportion to the amount of lime used in manufacture, becomes dull after long exposure to the weather, the dullness being occasioned by the efflorescence of salts contained in the glass. Before this disintegration has proceeded too far, the crust or eftlorescence may be removed with muriatic acid.

The strength of glass depends upon its thiekness and
the thoroughness of the annealing. Glass is annealed by passing through a series of ovens, where it is raised to a high heat and then gradually cooled, whatever toughness and elasticity the finished product may contain being due to this process. The thickness of glass varies, not only with grades (single and douhle thick), but also more or less within the grades, and even with different parts of the same pane. Single thick glass is too thin for use in fireenhouses, and in selecting any glass for such a purpose it shoull be examined pane hy pane, and all showing marked variation in thickness, either between panes or in different parts of the pane, rejected. A pane of varying thickness is much more liable to breakage from climatic changes or sudden shocks than one which is uniform in this regard. From the foregoing statements it will be seen that, in general, the ordinary double thick green glass is hest, is regards both tint and

996. Burned areas on a Begonia leaf. strength, green glass being less liable to change in tint than white, and the double thick being the stronger grade. By green glass is meant simply the ordinary sheet glass, the green color of which is only noticcable when looking at a cut edge.
The idea has long been more or less prevalent that such visible defects in sheet glass as the so-called "bubbles," "blisters" and "stones," produce a focusing of the solar rays passing through them, thus burning the foliage of plants grown under glass containing these defects (Fig, 996). This view has been held by glass manufacturers and horticulturists alike, and seems not to have bewn pabliely contradieted uatil 1895 (Bull. 95 , Cornell University Agric, Exp. Sta., p. 278). In riew of the erroneousness of this theory, it is rather remarkable that it should have satined such prevalence. Nearly all bubbles and hlisters are thinner in the middle than at the periphery, being thus concave rather than conrex leuses, and actually ditfusing the rays of light passing through them rather than producing destructive foci. While it is true that saud stones or knots in glass may produce foci, these points of focus scarcely ever exist more than a few inches from the surface of the glass, and consequently these defects can do no damage when occurring in roofs several feet distant from the growing plants below.

The only full and complete series of experiments on this subject in this country (conducted at the Cornell University Agricultural Experiment Station, the Physical Laboratory of Cornell University, and a glass factory in Ithaca, New York, but yet unpublished) shows the true cause of the birning by glass to be the variation in thickness of the entire pane, or portion of same, thus causing a prismatic or lens-like effect (Fig. 997), which causes a more or less distinct focussing of the sun's rays at distaaces varying from 5 or 6 feet to 30 feet, or even more, from the glass,
This defect usually occurs along the side or end of the pane, and is not risible to the eye, but may be easily detected by the use of the micrometer caliper or by testing in the sunlight. It may be found in all kinds of glass, and is caused by a reduction of the upper or pipe end of the cylinder from which sheet glass is made, by the glass blower, to facilitate the removal of the "cap" or neck end of the cylinder, by which it is attached to the pipe while being blown. The defect, as before stated, is one which may be found in all grades and qualities of sheet glass, of both foreign and domestic manufacture. The fact is well known that differences in the thickness of spectacle lensea, which are imperceptible to the eye, may produce sufficient refraction to materially var; the direction of rays of light
passing through such lenses, and it is not difficult to see that the same effect may be produced by similarly imperceptible variations in the thickness of sheet glass. That this is the case has been conclusively shown by the series of experiments before mentioned. These also show that burns on plants, caused by defective glass roofs, oceur iu lines and not in isolated spots, burns of the latter description being usually the result of a

997. Refraction of light rays by an irregular pane of class.
weakening or deterioration of tissue, due to carelessness in the matter of ventilation, humidity of the atmesphere and water, and temperature of Greenhouses, rather than to defects in the glass of roofs.

If, therefore, it is not possible to obtain glass of uniform thickness with certainty, it may be found cheaper and often fully as satisfactory to purchase the lower or common grades of double thick glass, using in the roof only those panes which show, after testing in the sunlight for foci, an entire lack of the prismatic character which makes them dangerous to plants grown under them.
J. C. Blair.

Greenhouse Heating. - In all sections in which the temperature drops below the freezing point, it is necessary to provide some artificial means for heating (ireenhouses. Nearly all modern structures are warmed either by steam or hot water, although hot air flues are occasionally used. While hot water is preferred for small ranges of glass, as it can be depended upon to furnish an even degree of heat when left for a number of hours, steam is more confmonly used for extensive plants, as the cost of piping the houses is much less than when hot water is used. Steam boilers require more attention than hot water heaters, but when there is more than 10,000 or 12,000 square feet of glass, it is best to have a night fireman and watchman, and the extra expense can be made up by the saving in the cost of fuel, as it will be possible to use a lower grade of coal. Under these conditions the cost of running a steam plant will be as low as with hot water, but in small houses, where hard coal is used, and the fires receive no attention for six to eight hours during the night, hot water heaters will he cheapest to operate, and will be most satisfactory. See, also, the article Forcing.

As the various flowers and vegetables grown under glass require different temperatures, the piping of Greenhouses has to be raried accordingly. Thus, although it may vary from 3 to 5° for different varieties of the same species, our common plants require the following night temperature: violets and lettuce, 45 to 50°; radishes and carnations, 50 to 55°; roses and tomatoes. 60°; cucumbers and stove plants, 70°.

Boilers. Whether steam or hot water is used for heating, the best hoilers for houses with less than 2,000 feet of radiation are of cast iron, hut for larger houses, especially when steam is ased, boilers of a tnbular pattern are commonly preferrert. Although it is not usually practiced, it will be safest and often cheapest in the end if two or more boilers of medium size are used instead of one large boiler of the same capacity as the small ones combined. When only one boiler is used it might result in the loss of all the plants in the house if any accident should happen to it in severe weather, while if
two or more boilers are used, and are so arranged that any of them can be cut off, the danger from this source will be greatly lessened. The use of two or more small boilers will also be found much more economical than one large one during the fall or spring, when it will be far cheaper to maintain a firc in one of the small boilers than in a large oue.

In selecting a boiler, it is always desirable to have one sufficiently large to afford the necessary heat without forcing the fire, as this will not only give more satisfactory results, but will result in the economy of fuel and labor, and will proloug the life of the boiler. Boiler makers generally use some definite ratio between the size of the grate and the amount of fire surface in the boiler, but this raries with the size of the boiler and the efficiency of the fire surface. In small hot water boilers, with very effective fire surface, the ratio between the two is frequently as small as 1 to 15 , while in larger beilers it is often as great as 1 to 35 , and even more where hard coal is used and the boilers have constant attendance. For small Greenhouses it is desirable to have the grate sufficiently large to permit of leaving the fire without attention for eight to ten hours in the severest weather, while for a large range of houses it is eustomary to employ a night fireman, and a grate much smaller proportionately could be used. In steam boilers the capacity is generally rated at about 100 square feet of radiation for each horse-power; and an average of about I5 square feet of fire surface is considered equivalent to a borse-power, it being customary to estimate that 12 square feet in large boilers and 18 feet in very small ones will equal one horse-power. Thus, in boilers of medium size, an area of 10 square feet of grate will answer for 250 square feet of heating or fire surface, and this will be suflicient for nearly 1,700 feet of radiating surface, where steam is used; and, as hot water requires about two-thirds more radiation, a boiler of the above size will answer for from 2,800 to 3,000 square feet of hot water radiation. In using the ahove figures for small boilers that will not have attendance during the night, it is generally advisable to make an allowance for this of about 25 per cent, and, when a boiler is required for 1,000 feet of radiation, select one that would be rated at 1,250 feet.
For large ranges, tubular steam boilers will generally be mere satisfactory. Good results will be secured from those either of fire-tube or of water-tube construction, and many prefer them when hot water is used; but when tubular boilers are used for hot water heating. although good results may be secured when a regular steam boiler is employed, it is adrisable to have them made without a steam dome, and to hare the entire shell filled with tubes (Fig. 998). As a rule, these boilers will be less expensive than east-iron boilers, and if properly cared for, will be nearly as durable.

During the past few years a large number of coil boilers have been constructed for hot water heating. These boilers are generally from 4 to 6 feet long, and are

998. Horizontal tubular boiler for hot water.
made from wrought-iron pipe, varying in size from I to 2 inches in diameter, but when constructed from I-inch pipe they are not very durable, as the pipe itself is eomparatively thin, and wherever the threads are exposed it is quirkly eaten through. There is alse more trouble from the boiling over of the water than when larger pipes are used, and when boilers are constructed of 1 -inch pipe it is neeessary to have either an elevated expansion tank or to run it as a closed system. In making the boiler the pipes are cut of the desired length, usually of 5 or 6 feet, and the ends are connected either by return bends or by manifolds, so as to
form a number of vertical coils, each containing from six to ten pipes. The upper ends of the manifolds are joined at the front end of the beater and connect with a flow pipe, while the lower ends of the rear manifolds are joined to the returns. As a rule, the grate is of the same width as the coil, and from one-half to two-thirds as long. Although a box coil is much cheaper than a cast-iron heater, when we add to its cost the expense for grate, doors and other fittings, and of bricking it in, the amount saved will not be large, especially as the coil

999. Flow and supply pipe for under-bench flows.
boilers are, as a rule, not more than one-half as lasting as cast-iron boilers, most of which are complete and require no brick work or trimmings.

Hot Water Piping. - Modern hot water heating systems do not differ particularly from those in which steam is used, except that larger sized pipes are required to afford the necessary radiation. Formerly 4 -iuch castiron pipes were used in the piping of Greenhouses, but as the joints are packed with oakum, cement or iron filings, they frequently give trouble by leaking, and it is much more difficult to make changes or repairs than when smaller wrought-iron pipes with serew joints are used. Owing to the large volnme of water in the pipes, the circnlation is necessarily quite sluggish, and it is not easy to secure the high temperature in the water that can be obtained from smaller pipes. Another objection to these large pipes is, that it is not possible to carry the flows overhead, as is often desirable.

When the flow pipes supply a number of houses, or if the heater is at some distance from the Greenhouse to be warmed, it is best to start from the beiler with one large pipe, or with two pipes leading out from different sides of the boiler, rather than to carry independent pipes to each bouse. If there are several houses to be lieated, it is advisable to have the heater located at the north end or side of the houses, as near the center as possible, and carry the flow pipe along the ends of the houses just over the doors, although, if nocessary, they may be beneath the level of the doorways. From this main pipe one or more supply pipes can lead into each of the houses. The size of the main feed pipe, as well as of the branch pipes, should be in proportion to the amount of radiation that they supply ; and, in determinjog the amount that can be handled by pipes of different sizes, it is adrisable to use somewhat larger supply pipes when all of the radiation, both fow and return, is nuder the benches than when the flow pipes at least are overhead. A similar aliowance should be made when the boiler is partly above the level of the returns, as compared with a system in which the radiating pipes are a number of feet above the top of the boiler, since in the latter case a much smaller supply pipe will suffice. In a general way, the following sizes can be used as supply pipes: $1 / 2$-inch pipes for 75 to 100 square feet of radiation; 2-inch pipes for 150 to 200 square feet; $21 / 2$ inch for 250 to $350 ; 3$-inch for 400 to $600 ; 3 \frac{1}{2}$-inch for 600 to 800 ; 4-inch for 1,000 to 1,200 ; and 5 -inch for 1,500 to 2,000 square feet of radiation. The supply pipes should, if possible, rise vertically from the heater to a point higher tban the highest point in the system and then should have a slight fall, say 1 inch in 20 feet, so tbat there will be no opportunity for the pocketing of air in the pipes. It will, however, make but little dif-
ference whether the pipes run up-hill or are givea a slight downward slope, and the former arrangement may be used where it will best suit the conditions. In case the pipes are carried under the benches, and it is impossible to sink the boilers much below the level of the coils, it will be well to have the flow pipe run vertically from the boiler to a height of 8 or 10 feet (Fig. 949), and then branch and run horizontally along the ends of the houses, taking off the supply pipes for each and dropping them below the level of the benches.
It is often desirable to have some or all of the flow pipes overhead, as this will greatly improve the circulation and will aid in preventing cold drafts of air upon the plants. Some make use of a single large flow pipe in each honse. This is located upon the posts, a foot or so beneath the ridge, and carries the water to the farther end of the house, where branch pipes connect with the coils, but a better distribution of the heat can be secured in bouses more than 10 feet wide if two or more pipes are used. These can be upon the ridge and purlin posts, and it is often desirable to have one upon each of the wall plates. The number and size of these flow pipes will depend upon the width of the houses and the size of the coils that they supply. The amouut of radiating surface in the fow pipe itself should be added to that in the coil, in determining the size of supply pipe that will be required. For long houses it will often be necessary to use one or more 3 -inch pipes, but ordinarily 2. inch or $21 / 2$-inch pipes distributed upon the posts and wall plates will give the best resnlts.

The size of pipe nsed for the returns will depend upon the leagth of the coils and their height above the boiler, as the pipes for elevated short coils may be smaller than those of considerable length that are below the top of the boiler. Ordinarily 2 -inch pipe will he desirable for coils more than 75 feet in length, and will be preferable to a smaller size when they are only 50 feet in length, if the flows are under the benches and the lowest part of the coils are below the top of the boiler. For short coils, pipes as small as $11 / 4$-inch may be used where they are somewhat elevated, but for ordinary commercial Greenhouses $1 \frac{1}{2}$-inch pipe is better up to 50 to 75 feet, and 2-inch pipe for all others, as, while small pipe furnishes the most effective radiation, the increased friction impedes the circulation.

If a single large flow pipe is nsed, it is often desirable to lave one or more of the returns elevated upon the purlin posts and wall plates, but ordinarily the radiating surface should be distributed upon the walls (Fig. 1000), and under the benches in houses where, as is now generally the case, there are walks along the sidewalls. In houses in which it is uudesirable to have bottom heat, all of the pipes may be upon the walls; and this is also the usual arrangement when solid beds are used, except in wide houses, in which case a portion of the returas may be upon the silles of the beds, beneath the walks, or elevated upon the purlin and ridge posts. The pipes in the coils may be connected at their ends either by means of manifolds or hy tees and close nipples, but in either case provision should be made for the expansion of the

iCu0. Pipe work for modern greenhouse heating. A wall coil.
pipes, which may be done in the case of vertical coils by running them partly across the ends of the houses and in the horizontal coils by the same means, or by placing the header at the lower end of the coil and a foot or so lower, and connecting it with the ends of the pipes by means of nipples and right and left ells.

When all of the pipes are under the beaches or upon the walls, a single large pipe may be used as a flow to supply all of the others in the coil, or two or more of the pipes of the same size, as the returns may he used as flow pipes. These pipes can be so arranged that they will each supply one or more returns, or they soay connect with a header from which all of the return pipes start. Care should be takeu to give all of the return pipes a slight fall, and it will be best it this is only enough to insure their being kept free from air. It will be safest to give the smaller pipes a slope of one iuch in 15 feet, but 2 -inch pipes, if carefully graded and securely supported at intervals of 10 feet, will give good results if the fall is not more than 1 inch in 30 feet. This is often of considerable importance in long houses where it is uot possible to siok the heater so as to give the returns a fall of 1 inch in 10 or 15 feet, as is often recommended. It should be understood that better circulation can be secured when a returo pipe has but a slight slope if sufficient to keep it free from air, with a vertical drop of the return pipe at the lower end, than when the coil has a much greater fall in running from one end of the house to the other, if this briugs the lower end of the coil down to about the level of the main return. The circulation in a coil fed by an under-bench flow will be quite unsatisfactory when the lower end of the coil is below the top of the heater, if it is connected at its own level with the return pipes from other coils, that are considerably higher, and especially if they are fed by elevated flow pipes. When overhead flow pipes are used, the slope of the returns will necessarily be toward the heater, but when the pipes are all under the benches the slope may be in either direction, and if connected at the end nearest the heater it will be necessary to run a return pipe of the same size as the supply pipe, back from the farther end of the house, unless there are a number of houses in the range, when a main return pipe can be run across the farther end of the houses, to which coils can be connected. If a coil is made up of two or more pipes of the same size, a part of which are flows and the others returns, it will be advisable to run all of these pipes down hill; although, if there are only one or two flow pipes, and the lower end of the coil is considerably above the heater, a good circulation can be secured if the flow pipes ruu up hill to the farther end and are brought back with a downward flow. The downhill system, with a flow pipe ruuning to the farther end of the house, has two advantages, as it does away with the necessity of air valves, or other openings for the escape of air, except at one point, which should be the highest in the system, and it provides for a somewhat more even distribution of the heat, the farther end of the houses being fully as warm as the end nearest the boiler. Where there is a large range of houses and overhead pipes are not desired, the difference in temperature that can be secured at the two ends of the houses will not be marked if the coils are connected with the main flow pipe at the end nearest the boiler, and are joined with a main return pipe passing along the farther end of the houses, and if the coils upon the walls are carried along the ends of the houses to the doors.
For all hot water heating plants au expansion tank is neces. sary (Fig. 949). This may be made from heary galranized sheet-iron, or a riveted boiler iron tank may be used. It should be connected with the heating pipes, but the point of connection will make little difference, although when the downhill system is used, if the pipe leading to the expansion tank starts from the highest point of the system it will make the use of air valves unnecessary. The tank may be located only slightly above the highest point of the system, but it will be best placed at least 10 to 15 feet higher, as the elevation of the tank
will lessen the danger of the boiling over of the water in the system, and make it possible to secure a higher temperature in the water of the coils than when the tank is not thus elevated. Tronble from the boiling of the water in the heater is most likely to occur when the flow or return pipes are too small, and when the fire surface in the boiler is composed of smatt, wroughtiron pipes or drop tubes. When there is a proper adjustment between the size of the boiler and the radiating surface, and the return connections are of sufficient size, there will be little danger from it.

Estimating Hot Water Radiation.-Owing to the great variations in temperature and the differences in the construction of Greenhouses and in their exposures, it is impossible to give an explicit rule regarding the amount of radiation to be required uuder all conditions; but experience has shown that, in well-built houses, any desired temperature can be secured, for various minimum outside temperatures, when there is a certain ratio between the amount of radiating surface and the amount of exposed glass and wall surface, supposing, of course, that there is a proper adjustment between the size of the boiler aud radiating surface, and that the system is so arranged as to give good results. Thus, when a temperature of 40° is desired in sections where the mercury does not drop below zero, it will be possible to maintain a temperature of 45° inside the Greenhouse when there is 1 square foot of radiating surface to $4 \frac{1}{2}$ square feet of glass. Under the same conditions, 50° can be secured when there is 1 foot of pipe to 4 of glass, and $55^{\circ}, 60^{\circ}, 65^{\circ}$ and 70° can be obtained when there is, respectively, 1 square foot of pipe to each $3 \frac{1}{2}, 3,21 / 2$ and 2 square feet of glass. For outside temperatures slightly under or above zero, there should be a proportionate increase or decrease in the amount of pipe used, and if the houses are poorly constructed, or in an exposed location, it will be desirable to provide increased radiating surface. Under the best conditions the temperatures mentioned could be obtained with a slightly smaller amount of radiation, but the greatest economy, so far as both coal consumption and labor are concerned, will be secured when the amount of radiation recommended is used. In determining the amount of exposed glass surface, the number of square feet in the roof, ends and sides of the houses should he added, and to this it is always well to add one-fifth of the exposed wooden or other wall surface, and if this sum is divided by the number which expresses the ratio between the area
of glass and the amount of radiation, it will give the number of square feet of heating pipe to be required. The unit of measurement of wrought - iron pipe is the interior diam-

if they must be employed, special hot-water fittings should be secured.

Iu conservatories with high side walls, it is desirable to place the flow pipes at the plate and the returns on the wall or under the tables. Figs. 1001, 1002 and 1003 illustrate the lay out of pipes for water in a carnation, rose and violet house.

Hot Water Vinder Pressure. - In some large Greenhouses the hot water systems have been placed nnder pressure by closing the expansion tank. To prevent any danger of the blowing up of the system, a safety-valve. with a weight set so as to allow the water to escape before the danger point is reached, is attached either to the tank or expansion pipe. The system being completely closed, the water as it warms is placed under pressure. and steam cannot be formed. This makes it possible to raise the temperature of water in the coils quite a num. ber of degrees higber than when an open tank is used. As there is even more danger from an explosion of a system when the water is under pressure than when steam is used, care should be taken to see that the safetyvalve is in good working order, and that it is set at a point well below the danger limit.

When water is carried under pressure, it permits of the use of smaller flows and returns, and a considerable reduction in the amount of radiating surtace. On the other hand, it is less economical in fuel than the open system, and requires rather more attention. The pressure system cannot be recommended for use under all conditions, and it will geuerally be best to have the piping adapted for all except the most severe weather, and then to have it so arranged that the system can be closed, if it becomes necessary to do so in order to maintain the desired temperature.

Piping for steam. - The arrangement of the heating pipes for use with steam need not be unlike that above described for hot water, except that smallerflow and return pipes are used. When there is but one or two houses it is well to use overbead flow pipes, as a rule only one being required in a house. A 2 -inch flow pipe will he sufficient for 400 square feet of radiation, and $21 / 2-3-, 31 / 2$ - and 4 -inch supply pipes will an8 wer, respectively, for 700 , $1,000,1,400$ and 1,900 square feet of radiation, For long houses it will be best to use $11 / 4$-inch pipe for the coils, bnt l-inch pipe will answer for houses 100 feet or less in length. The coils should, of course, run down hill, but if overhead supply pipes are not used the connection may he made at the end of the honse nearest the boiler and the return pipe may be placed underneath the coil. In order to prevent the water from backing up in the coils it is desirable that they should be at least 18 or 20 inches above the level of the water in the boiler, while 3 or 4 feet would be eren better. There should be an automatic air valve at the lower end of each coil, and, in order to regulate the amount of steam, a shut-off valve should be placed in both flow and return pipes. Unless there are several coils in each house it will always be well to have valves upon a number of the pipes in the coils, so that all but one or two can be cut off if desired. To prevent the water from being forced out from the boiler when the steam is turned into the houses, there should be a check valve in the return pipe near the heater.

The amount of radiation which will be required to secure any desired temperature will vary to some extent with the amount of pressure that is carried in the boiler, but, as a rule, this is not more than five pounds, and often no pressure at all is used. It will ordinarily he best to have the radiation sufficient to furnish the temperature desired in ordinarily cold weather without carrying any pressure, and then by raising the pressure to from five to ten pounds secure the heat that is needed dnring cold waves.

In determining the amount of radiation for a steamheated house, 1 square foot of pipe will answer for 9 square feet of glass, when 40° is desired, and for 7,5 and

3 where $50^{\circ}, 60^{\circ}$ and 70°, respectively, are required Fig. 1004 illustrates piping for steam in a rose house.

Heating by Flues.- Where fuet is cheap, and when either a low temperature is desired in the house or the outside temperature does not drop much below the freezing point, hot-air flues may be used, but while the cost of constructing them is not large, the danger from fire is so great that they are not always economical. A brick furuace is built at one end of the house, and from this a 10 - or 12 -inch Hue is constructed to carry the smoke and hot gases through the house to the chimney, which may be at the farther end, or directly over the furnace, the flue in the latter case making a complete circuit of the house. When the houses are more than 60 feet long, it is advisable to have a furnace at each end, and the flue will then extend only to the center of the house and return to the end from which it started. The first 30 feet of the flue should be of fire brick, but heyond that it can he constructed of sewer pipe. While either hard or soft coal may be used, the best results will be secured with 3 - or 4 -foot lengths of hard wood. Where the temperature does not drop more than 10 or 12° below zero, a temperature of 40° may be maintained in

1002. Rose house, $150 \times 20 \mathrm{ft}$. piped for water.
a house 20 feet wide with one circuit of 12 -inch sewer pipe. Care should be taken that the flue in no place is in contact with woodwork, and that there is a gradual rise in the the from the point where it leaves the furnace to where it enters the chimney.
L. R. Taft.

Greenhouse Management.-Persons usually learn to grow plants under glass hy rule of thumb. Such knowledge is always essential, but better and quicker results are obtained if underlying truths or principles are learned at the same time. Even if no better results in plant-growing were to be obtained, the learning of principles could never do harm, and it adds immensely to the intellectual satisfaction in the work. There is no Ameri can writing which essays to expound the principles of Greenhouse management, although there are excellent manuals giving direct advice for the growing of various classes of plants. The hest single recent American book in this line is Taft's "Gireenhouse Management," which brings together in one volume concise directions for the growing of the leading kinds of Greenhouse subjects. There are two kinds of principles to apprehend in Greenhouse management, -those relating to the management of the plants themselves, and those dealing primarily with the management of the house.

The first principle to be apprehended in the growing of plants under glass is this: Each plant has its ou'n season of bloom. Every good gardener knows the times and seasons of his plants as he knows his alphabet, without knowing that he knows. Yet there are many failures because of lack of this knowledge, particularly
among amateurs. The housewife is always asking how to make her wax-plant bloom, without knowing that it would bloom if she would let it alone in winter and let it grow in spring and summer. What we try to accomplish by means of fertilizers, foreing and other special practices may often be accomplished almost withont effort if we know the natural season of the plant. Nearly all Greenhouse plants are grown on this principle. We give them conditions as nearly normal to them as possible. We endeavor to accommodate our conditions to the plant, not our plant to the conditions. There are some plants which it is possible to make bloom in abnormal seasons, as roses, carnations, lilies: these we may force (see Forcing). But these forcing plants are few eompared with the whole number of Creenhonse species. The season of norral acticity is the key to the whole problem of growing plauts under glass ; yet many a young man has served an apprenticeship, or has taken a course in an agricultural college, without learning this principle.

The second prineiple from the plant side is this: The greater part of the growth should be make before the plant is expected to bloom. It is natural for a plant first to grow: then it blooms and makes its fruit. In the great majority of cases, these two great functions do not proceed simultaneously, at least not to their fall degree. This principle is admirably illustrated in woody plants. The gardener always impresses upon the apprentice the neeessity of securing "well ripened wood "of Azaleas, Camellias, and the like, if he would have good flowers. That is, the plant should have completed one cycle of its life before it begins another. From immature and sappy wood only poor bloom may be expected. This is true to a large degree even in herbaceous plants. The vegetative stage or cycle may be made shorter or longer by smaller or larger pots, but the stage of ravid growth must be well passed before the best bloom is wanted. Fertilizer applied then will go to the produetion of flowers; but before that time it will go to the production of leaf and wood. The stronger and better the plant in its vegetative stage, the more satisfactory it will be in its blooming stage.

Closely like to the last principle is the law that checking growth, so long as the plant remains healthy, induces fruitfulness or floriferousnoss. If the gardener continues to shift his plants into larger pots, he should not expect the best results in bloom. He shifts from pot to pot until the plant reaches the desired size; then he allows the roots to be confined, and the plant is set into bloom Over-potting is a serious evil. When the blooming habit is once begun, he may apply lignid manure or other fertilizer if the plant needs it. The rosegrower or the eucumber-grower wants a shallow bench, that the plants may not run too much to vine.

Most plants demand a particular season of inactivity or rest. It is not rest in the sense of recuperation, but it is the habit or custom of the plant. For ages, most

1003. Violet house with water heating.
plants have been forced to cease their activities becanse of cold or dry. These habits are so fixed that the plants must be bumored when they are grown under glass. Some plants have no such definite seasons, and will yrow more or less continuously, but these are the exceptions. Others may rest at almost any time of the year; but most plants have a definite season, and this season must be learned. In general, experience is the only gnide as to whether a plant needs rest; but bulbs and tubers and
thick rhizomes always signify that the plant was obliged, in its native haunts, to carry itself over an unpropitions season, and that a rest is very necessary, if not absoIntely essential, uuder domestication. Instinctively, we let bulbons plants rest. They usually rest in our winter and bloom in our sprins and summer, but some of them - of which some of
the Cape bulbs, as Nerines, are examples - rest in our summer and bloom in fall.

As a rule, the night temperature should be $10-15^{\circ}$ Fahr. below the maximum day temperature in the sbade. A high night temperature makes the plants soft and tends to bring them to maturity too early. It makes weak stems and flabby flowers. The temperature should change gradaally: violent fluctuations are fatal to good results, particularly to plants which are grown at a high temperature.

In Greenhouse cultivation, every plant is to receive individual care. In the fiekl, the erop is the anit: there we deal with plauts in the aggregate. In the Greenhouse, each plant is to be saved and to receive special care: upon this success depends. There sbould be no vacant places on the Greenhouse bench; room is too

and bottom of the soil; and in pots it takes place from all sides. Wrater on a rising temperature. This advice is particularly applicable to warmbouse stuff. Watering is a cooling process. The foliage shoutd not go into the night wet, particularly if the plant is soft-growing or is a warmhouse subject. Watersparingly or not at all when evaporation is slight, as in dull weather.

In all Greenhouse work, see that the soil is thoroughly comminuted and that it contains much sand or fiber. The amount of soil is small: see that it is all usable. In the garden, roots may wander if good soil is not at hand: in pots they cannot. The excessive wateriug in Greenhouses tends to pack the soil, particularly if the water is applied from a hose. The soil tends to run together or to puddle. Therefore, it should contain little silt or clay. The gardener's practice of adding sand to his (ireenhouse soil is thus explained.

Ventilation is employed for the purpose of realucing temperature and of lessening atmospheric moisture. Theoretically, it is employed also for the purpose of introducing chemically fresh air, but with the opening and shutting of doors, and the unavoidable leaks in the house, it is not necessary to give much thought to the introduction of mere fresi air. Ventilating reduces the temperature by letting out warm air and letting in cool air. The air should be admitted in small quantities and at
valuable. All this means that every eare should be taken to so arrange the house that every plant will have a chance to develop to its utmost perfection. Patient hand labor pays with fireenhouse plants. The work eannot be doue by tools or by proxy. Therefore, the gardener becomes skilful.

Every caution should be taken to prevent the plunts from becoming diseased or from being attacked by insects. The greater part of insect and fungous troubles in the Greenhouse are the result of carelessness or of mistakes in the growing of the plants. Determine what diseases or pests are likely to attack any plant; discover under what conditions these diseases or pests are likely to thrive: then see that those conditions do not arise. Keep the house sweet and clean. Destroy the affected parts whenever practicable. Then if trouble come, apply the fungicide or the insecticide. Remember that the very protection which is given the plants, in the way of equable conditions, also protects their enemies: therefore, it is better to count on not baving the difficulties than on curing them. If diseaxes or pests have been troublesome, make a complete change of soil or stock before the next season, if practicable. At least once every year there is an opportunity to rid the place of pests. Many gardeners carry their troubles year by year by trying to fight them, when they might succeed by trying to aroid them.

The hiaher the temperature and the more rapid the growth, the greater the care necessary to insure good results. Plants grown under such eonditions are soft and juicy. They are easily injured by every untoward circumstance, particularly by drafts of cold air. Let a draft of cold air fall on cucumbers or rapid-growing roses, and mildew will result in spite of Borleaux mixture and brimstone.

In dark weather, grow the plants slow. If given too mnch heat or too much water, they become soft and flabby, and fall prey to mildew, green fly and other disorders. A stocky plant is always desirable, but partieularly in the dull weather and short days of midwinter: at that time, take extra precautions in the management of the house.

Watering plants under glass requires more judgment than any other single operation. Apply water when the plants need it, is a gardener's rule, but it is difficult to apply because one may not know when they need it. Yet, if the gardener will pat the emphasis on the word need be will at least be cautioned; novices often apply the advice as if it read, Apply water when the plants will stand it. Water hhoroughly at each application. Mere dribbling may do more harm than good. Many people water too frequently but not enough. Remember that in benches eraporation takes place from both top
the greatest distance from the plants in order to avoid the ill effects of drafts on the plants. Many small openings are better than a few large ones. Ventilate on a rising temperature.

Most plants require shading in the summer under glass. Stuading is of use in mitiguting the heut more than in tempering the light. A shaded house has more uniform conditions of temperature and moisture. If plants are grown soft and in partial shade, they are likely to be injured if exposed to bright sunlight. Sunscalding is most common in spring, since the plants are not yet inured to bright sunshine and strong sun heat. The burning of plants is due to waves (not bubbles) in the glass. It should be said that, other things being equal, the larger the house the easier is the management of it. It is less snbject to fluctuations of temperature and moisture. In the "nesting" of houses, one house protects the otber from the weather. A good commercial American Greenhouse plant is shown in Fig. 1005.
L. H. B.

GREENS, CHRISTMAS. The Christmas Greens industry las developed to an enormons extent within a few years. Some twenty years ago, when florists began to use lycopodium, a dozen barrels were all that was used in a single season in many of our lower cities. To-day the output in the United States is probably nearly 200 tons - about 40 car loads.

The materials now used, mentioned in something like their order of commercial importance, are holly, lycopodium (also known as bouquet green, ground pine, clab moss, etc.), mistletoe, laurel, and cedar clippings. Other articles of similar utility are wild smilax, hardy ferns, needle pines, outdoor palm leaves, Florida moss, galax leaves and leucothoe sprays: these all come from the South.

Lycopodiam is one of the oldest and commonest of decorative materials. During seasons of long continued "Indian summer," a surplus is frequently gathered by careless pickers and dumped on tbe market. The choicest picked stock being obtainable only through the regular and well established trade channels, such sources are usnally the only ones in case of early snow storms, which prevent the gathering of it. Choice stock from eastern Vermont, northern New York and Pennsylvania has been nsually handled in large sugar barrels, tied in carefully arranged bunches, weighing perhaps one-balf to one pound each. These bunches are packed in the barrels in layers, with roots toward the center. The quantity is always limited and the price 25 to 35 per cent higher than the Wisconsin and Michigan stock. Lycopodium, as handled in the West, comes almost entirely from northern Wisconsin, and is gath. ered from the north end of Lake Michigan, in the vi-
cinity of Sturgeon Bay, west nearly to St. Paul. The green helt in that state aunually moves northward as the country becomes settled and as the woods and swamps are depleted. This plant seerus to thrive best in moist, shaded localities, and when plucked out by the roots, as is done when gathering, is not replaced by new growth of its kind. More open situations and drier ground produce lycopodium of a lighter and yellowish color, and consequently of less decorative value. Indians pick the best green, but are unreliable when exact dates must be met. The average season's output from Wis consin is perhaps 35 car loads, or 150 to 200 tons.

The use of bolly in a commercial way has grown from a very small heginning to its present proportions within fifteen years. Until the last six years most of the holly was handled by wholesale seedsmen and florists. With in that time the sale of holly has been taken up by the produce commission houses in large cities, thereby tre bling the volume, but reducing the quality. Delaware and Maryland furnish the best stock of what is known as eastern holly, while Tennessee aud some other parts of the south ship what is usually an inferior quality. Holly is almost always packed in uniform cases $2 \times 2 \times 4$ ft. Freezing, while packed in cases, daruages it but little, provided the holly be allowed to thaw out in a very cool and preferably dark place, where the teroperature is uot allowed to exceed $45^{\circ} \mathrm{F}$. If, however, frozen holly is shipped in warm express cars, the follage may turn black in a night.

English holly has occasionally been imported into the United States and into Canada, but never satisfactorily commercially. The eastern cities use mistletoe from England and France, brought over in fast steamers. The berries are much larger than those of the American mistletoe, which grows chiefly in Tennessee, Kentucky, Arkansas, Texas and New Mexico. It is usually shipped in crates of ahout 112 pounds, and the sultry quarters on shipboard often cause the loss of the leaves. The western states use probahly not more than 8,000 to 10,000 pounds of American-grown stock from the localities named. It is also shipped in other kinds of packages. Mistletoe is very liahle to damage from frost.

Cedar clippings are now but little used during the holiday season, but on other occasions, where open air decorations are desired, they are frequently made into roping or wreaths. Laurel from Maryland and Virginia is mostly used in eastern states.

Wild smilax, in light cases, uswally in three sizes, is shipped by express mostly from Alabama and Georgia. It is as liable to injury by freezing as mistletoe, but is not damaged if allowed to thaw out gradually before removal from the case. About $\$ 10,000$ worth is used annually.

Eight million hardy ferns were recently offered by one wholesale dealer in Christmas Greens. These ferns are largely gathered in Massachusetts and Miehigan.

Among the newest and most artistic materials for Christmas decoration are galax leaves and leucotho \ddot{e} sprays, which are here figured and are elsewhere fully described. Galax grows in the mountains from North Carolina to Georgia, and nowhere else in the world.
For further particulars concerning this industry, see American Florist 14:598-600 (1898). For the artistic side of Christmas decoration, see illnstrated articles by F. Sehuyler Mathews in American Florist 8:484 and 9:493. J. C. Vaughan.

GREENS, EDIBLE, or POT-HERBS. This term Greens is generally applied in America to any Pot-herb, that is to say, to any green herbage which is cooked and served separately from the other principal and secondary dishes of a square meal. The term Greens is usually used for the mess of cookery which is brought to the table. It is not so often applied to the plants growing in the garden. In the garden, perhaps, they are herbs-Pot-herbs-though this tersu is not so much employed as it conveniently might be. Greens are served early in the spring, when the appetite craves auything which tastes like out-of-doors.

All sorts of plants are used as Pot-herbs. Almost anything which shows a succulent growth in the spring is likely to be tried by somebody. Turnip tops, potato leaves, pig-weeds, purslane, and many other apparently
impossible herbs, are often impressed iuto the service. The really good Pot-herhs are comparatively few, however. Prohably the best are dandelion, spinach, mustard (various species), endive, chard, beet-top and kale.

The following plauts have been more or less used as Pot-herbs:

Buck's-horn Plautain, Plantago Coronopus.
California Peppergrass, Brassica Japonica.
Cardoon. Cynara Cardunculus.
Chard, Beta vulgaris.
Chervil, Anthriscus Cerefolium
Chicory, Cichorium Intybus.
Chinese Amaranth, A marantus Gangeticus.
Chinese Artichoke, Stachys Sicboldi (\mathcal{N}, affinis or S. tuberifera).
Chinese Cabbage, Brassica Pe-Tsai.
Chinese Cabbage, Brassica Chinensis.
Chinese Mnstard, Brassica juncea.
Chives, Allium Schoenoprasum.
Corn Salad, Falerianella olitoria.
Cress, Lepidium sativa.
Meadow Cress, Cardamine prutensis.
Pará Cress, Npilanthes oleracea.
Upland Cress, Barbarea vulgaris aud pracox.
Other so-called Cresses, as Lepidium Clilense, Lepidium piscidium, Lepidium Virginicum, Senebiera pinnatifida, Nasturtium Indicum, Gynandropsis pentaphylla.
Dandelion, Taraxicum officinate.
Dock, Rumex, several species.
Endive, Cichoritom Endivia.
Globe Artichoke, Cynara Scolymus,
Good King Heary, Chenopodium Bonus Henricus.
Goosefoot, Chenopodium, mostly C. album.
Ice Plant, Mesembryanthemum crystallinum.
Italian Corn Salad, Valerianella eriocarpa.
Kale, Brassica oleracea
Lettuce, Lactuca (especially the wild species, some of which are excellent).
Malabar Nightshade, Basella albn and Basella rubra.
Mustard, Brassica species.
Nasturtiums, Tropaolums.
Orach, Atriplex hortensis.
Parsley, A pium Petroselinum
Pepper-grass, Lepidium species.
Pigweed, A narantus species.
Pokeweed, Phytolacca decandra.
Quinoa, Chenopodium Quinoa.
Rocket Salad, Eruca sativa,
Rosella, Hibiseus Sabdariffa.
Salad-Burnet, Porterium Sanguisorba.
Sorrels, various, Oxalis crenata, O, tetraphylla.
Spinach, Spinacia oleracea.
Tuberous-Rooted Chinese Mustard, Brassica napiformis.
Turkish Rocket, Bunias orientalis
Turnip, Brassica Rapa.
Winter Purslane, Montia perfoliata.
Culture. - Pot-herbs are wanted at the earliest possible moment in the spring. They are, therefore, often grown in hotbeds, frames, or in greenhouses (see Spinach, Dandelion, Mustard, ete.). They must be suceulent and tender. It is necessary, on this account, that they be quickly grown in loose, very rich, well-drained soil, with plenty of water. Specific directions for the eultivation of the various plants will be found under the several heads.
F. A. WAUGH.

GREENWEED. Genista tinctoria.

GREGORIA. See Douglasia.

GRENADIN or GRENADINE. A type of Carnation.
GREVILLEA (Chas, F. Greville, once vice-president of the Royal Society of England, and a patron of botany). Protedeed. Trees or shrubs, of nearly 200 species, mostly Australian, of which one is everywhere cult. in this country as a decorative pot-plant. Fls. small, perfect, mostly in pairs in the ciusters or racemes, apetalous, the calyx with 4 recurved parts; stamens of 4 sessile anthers borne on the sepals; style 1, long and curved: lvs. alternate, of many forms: fr. a follicle, with 1 or 2 winged seeds.
robusta, Cunn. Silk Oak. Fig. 1006. One of the most popular of all fern-leaved pot-plants, and easily grown from seeds (which are imported in large quantities). When young (from $2-5 \mathrm{ft}$. high) it makes a most graceful subject. In glasshouses it is not grown to large size, and, therefore, little is known of the great size which it attains in its native forest. According to Von Mueller, it is "indigenous to the subtropical part of

East Australia, rising to 150 feet, of rather rapid growth, and resisting drought to a remarkable degree; hence one of the most eligible trees even for desert culture, though naturally a sylvan plant. The wood is elastic and durable, valued particularly for staves of casks, also for furniture. The richly developed golden yellow trusses of flowers attract honey-sucking birds and bees through

several months of the year. The seeds are copiously produced and germinate readily. Rate of growth in Victoria, $20-30 \mathrm{ft}$. in 20 years. In Ceylon it attained a stem-circumference of 5 ft . in 8 years." In California and S. Fla. it is a valuable lawn tree. When grown in the open, it will stand some frost. As a glasshouse plant it is grown almost wholly from seeds, and is used in its young state; as the plant becomes old, it loses its leaves and becomes ragged below. It thrires in the temperature suited to geraniums or roses, and it stands much hard usage and neglect. It is popular as a window subject. Best results with Grevillea are usually secured by raising a fresh stock every year, from seed sown late in winter or in spring. The following winter or spring they will be in 4-6-in. pots, and will be in their prime. The younc plants need frequent repotting to keep them in good condition. Grevillea robusta has come to be generally known as a florists' plant within the past ten years. Lxs, twice-pinnatifid, the ultimate divisions harrow and pointed and sometimes lobed, pubescent. B.M. 3184. A.G. $14: 115$. A.F. $4: 413 .-1 n$ the West Indies the plant is much grown, and it is often trimmed to desired shape. In exposed places the foliage becomes golden in cast.
There are no other Girevilleas in the Amer, trade, but following are tucessible portraits of other species: (i. acanthifulia, Cunu. B M. 2807.-G, alpéstris. Meissn. (G. alpina, var., Lindl.) B B. I. 5007. R. H. 18x7:108. R.B. 23:145, -G. annutifLind. Muell. B. M. 6687 .-G. arenairia, R. Br. (G. canescens. R.Br.). B.M. 3185,-G. asplenifilia, Knight. B. M1. 7070. R.H 1882, p. 245 (as G. longifolin) - G. Banksii, R.Br. B.M. 5870; G.,., III. 16:15-G. Cálevi. R.Br. B.M. 3133-G. canescens. R.Br. $=$ G, arenaria. $-G$. ericifölia, R.Br. B.M. Gust.-G. fasciculăta, R.Br. B.M. 610ふ̄.-G. Hilliàna, Muell. B.M. ₹524.-G. Hookeriäne, Meissn. B.M. $6 \times 79 .-G$. intricita, Meissn. B. M.
 26:469.-G. lineäris, R.Br. B.M. 2661.-G. Iongifitia, R.Br. $=$ -asplenifolia.-G. macróstylis, Muell. B.M. 5915.-G. Preissei, Meissn. B.M. Б\&37.-G, pulchella, Meissn, B. M. 5979.-G. pmi. cea: R.Br. B.M. 6698,-G. rosmarinifàlia, Cumn. B.M. 5971: G. C. II. 5:529,-G. sericea, R.Br. (G, dubia, R.Br.), B.M. 379k -G. sulphitren, Cunn.-G, juniperina.- G. Thelemanniäna Hneg. R.H. 1882: 556 .
L. H.B.

GREWIA (Nehemiah Grew, of Coventry, 1628-82. author of a work on anatomy of plants). Tiliàcer. This includes two little known plants slightly cult, in S. Fla. A genus of about 60 species of trees and shrubs in the warmer parts of the Old World, often having
stellate pubescence: Irs, entire or serrate, 3-i-nerved fls. yellow or rarely purple, in axillary, few-fld. cymes or terminal panicles ; petals 5 , with pits or glands inside at the base; stamens indefinite: drupe $1-1$-stoned. G. Caffra, Meissn., from Natal, was int. by Reasoner Bros. in 1891. A bushy plant, fith pink star-shaped fls. borne during most of the year. G. denticulata, Wall., from India, was never described. Under this name Reasoner cultivates a plant "resembling a mulberry in growth, which bears enormous quantities of acid drupes, about the size of cranherries; used for pickling."

GREXIA (after Sir George Grey, once Governor of Cape Colony). Sapindacca. A monotypic genus, containing is small tree from Natal, which bears large pikes of pendulous, 5 -petaled, scarlet fls., and is cult. outdoors in S. Calif. and abroad under glass in many botanic gardens. In R.H. 1894:252 the plant is shown at its best, with a spike 6 in. long and 2-3 in. wide, containing probably over 100 fls., each three-fourths of an inch across. In France this tree flowered from the end of autumn throughout the winter. The long-exserted stamens with reddish purple anthers make a striking feature. The structure of the fls, is so peculiar that Haryey referred the genus doubtfully to the saxifrage family. In European greenhonses Greyia is a shrub requiring full sunlight, thorough rijening of the wood and a season of rest before flowering. In Natal it flowers in August or September, which is early spring there. Europeans recommend a sundy loam. Prop, by seeds or by cuttings from half-ripened wood.

Sutherlandi, Hook. \& Haw. Small tree, with thick, naked branches: 1rs. clustered at the ends of the branches, $2-3 \mathrm{in}$. long, orbicular, ovate or oblong, deeply cordate at base, toothed; petiole 9-12 lines long: disk cup-sliaped, with 10 marginal teeth, each crowned by a peltate gland; stamens 10 : ovary laterally 5 -lobed, 5 celled; ovales numerous, in 2 series in the inner angle of the cells: fr. capsular, 5 -valved : seeds albuminous B.M. 6040. R.H. 1894:252. G.(', I1. 19:625. .1.H. 111. 30:101.

GRIFFINIA (after William Griffin, who brought these plants from Brazil). Amaryllidàcece. Seven species of Brazilian bulbs, with distinct foliage and fls, abont $21 / 2 \mathrm{in}$. across, which are more or less tinged with lilac or rose. Like many other genera of the annaryllis fantily, bulbs of flowering size are too costly for general use. Lys. usually petioled, and with a very broad blade: perianth tube none or very short ; the 3 lower segments narrower than the upper: ovary 3 -celled: stigma capitate, rarely 3-fd: umbel 6-15-fld. (iriffinia is distinguished from many other genera by its 2 ovules, which are basal and collateral. See Baker, Amaryllider.

As there seems to be no recorded American experience with these fine bulbs, the following English experiénce is taken from W. Watson's article in The Garden 50, p. 209: "(iriffinias are called stove plants. They do not always thrive under cultivation, but where they do they are strikingly ornamental. Herbert states that in Brazil they are buried 8 inches deep in strong loam, the scape and leaves rising to the height of 2 feet, whereas in our stoves they rot when potted in strong soil. He recommends light peat and sand for them. But they thrive when planted in fibrous loam three parts, leafmold one part, and a good sprinkling of silver sand. The bulbs should be partly huried and the pots carefully drained. During winter the plants rest and require no water. They should be placed on a dry shelf in a warm or intermediate house and kept there until about March, when growth recommences and the flower-spikes push up. The plants ought to be at their best in May, though they do not appear to flower at any definite time under cultivation. They may be made to flower in winter by forcing, but the probable result of this is the sickening of the bulbs. The lrs, are deciduous, new ones being dereloped along with the flower-spikes, as in the Hippeastrums. The plants require moderate supplies of moisture, both at the root and overhead, and a light position. They do not ripen seeds under cultiration, but may be propagated by means of offsets from the bulbs."

A. Stigme capitate.

hyacinthina, Herb. Bulb globose: lvs, 6-9 in. long, $2-3 \mathrm{in}$. broad, rounded at the base to a channeled petiole as long as the blade : seape $1-2 \mathrm{ft}$. long: pedicels none or very short: stameus much shorter than the segments. B.R. 2:163 (as Amaryllis hyacinthina. Upper segments tinged blue, lower ones nearly white). J.H. III. 31:3i1. Var. maxima, Gn. 50, p. 209, is probably the best garden forni. Called "Blue Amaryllis" in some eatalogues.

As. Stigma distinctly s-cut.

Blumenàvia, K. Koch \& Bouché. Bulb oroid: lvs. 4-5 in. long, cuneately narrowed to a petiole, shorter than the blade: scape $6-8 \mathrm{in}$. long: pedicels ${ }^{1 / 2} \mathrm{in}$. long: stamens as long as the perianth. B.M. 5666 (reins rosecolored). R.H. 1867:32. Gn. $50: 1083$ (veined and flushed with rose).

GRINDELIA (Prof. Hieronymus Grindel, of Riga and Dorpat). ('omposite. This genus contains 2 plants from which a fluid-extract is obtained that is used externally against poisoning by "poison ivy." They are bardy plants sometimes cult. for their showy yellow tls., which are 1 $1 / 2-2$ in. across and borne freely all summer. A geuus of about 14 species of American herbs, sometimes shrubby, of coarse habit, juostly natives of the U. S. west of the Mississippi. Lis. sessile or partly clasping and usually serrate and rigid: heads terminating the branches. The plants often lave a sticky halsam, especially the heads before and during flowering, whence they are called "Gum-plants" in Californiu, particularly G. robusta, which is the common one. The 2 species described below have roots that are perennial aud shortlived, but sometimes annual. These plants are also wholly glabrous, and hare firm or rigid leaves.
Grindelias are of the easiest culture, and are prop. by division, cuttings or seed. G. squarrosa is hardy in the East: G. robustu is sold in Calif. They are best for wild places and trying situations. J. W. Manning says that G. squarrosa grows freely in all soils. J. W. Keller writes that it does best in a light, open, moderately rich soil. In California it is common on dry hills. According to John S. Wright, both species grow in salt marshes and on alkaline soil, being indiscriminately gathered for medicinal purposes. The extract is also tonic and sedative, aud is used in astbma. The rays are numerous, sometimes 30 , about $1 / 2 \mathrm{in}$. long.
squarròsa, Dunal. Shrubby, branched from hase, 1-9 ft. high : outer akenes usually squarely truncate and even at summit B.M. 1706.
rohùsta, Nutt. Gum-Plant. Herbaceous: lvs. larger and more rigid: akenes all, or some outer ones, 1-toothed or bordered at the summit. Fls. tbroughout the Californian winter. Collected stock is offered.
W. M.

GRISELINIA (after Frane Griselini, Venetian botanist, middle of eighteenth century). Including Decostea. Corndeec. This includes a tree aud a shrub with large, glossy, laurel-like foliage, rarely cult. in the South, and nearly hardy at Washington. A genus of 8 species of trees, shrubs or clinbers from New Zealand, Chili and Brazil, with lvs. alternate, often inequal-sided, leathery: fls. minute, in glabrous or pubescent racemes or panicles.
littoralis, Raonl. Tree, 30 ft . high: 1 rs . ovate or oblong, wedge-shaped or narrowed into a petiole: veins obscure beneath. New Zealand.
lùcida, Forst. f. Shrub, I0-12 ft. bigh: lvs. obovate or oblong, very unequal at the base; veins distinct beneath. New Zeal. Not cultivated here. Var. macrophylla (G. maerophîllu, Hort.) is a large-leaved form. G. lucida is prized in Europe for apartments. Showy. Requires shade and moisture.
GROMWELL, Lithospermum.
GROUND CHERRY is Physalis: in the Old World Prunus C'hamecerasus. Ground Hemlock or American Yew, is Taxus Canadensis. Ground Ivy. Nepeta Glechoma. Ground Laurel. Old World name for Epi-
gara repens. Groundnut, Apios and Panax; also Old World name for peanut or goober (Arachis). Ground Pine, Lycopodium. Ground Pink, Phlox subrlata.

GROUNDSEL. See Senecio. Groundsel Tree. Baccharis hulimifolia.

GRUMICHAMA. Eugenia Erasilionsis.

GRUMíLEA. All referred to Psychotria.
GUAIACUM (native West Indian name). Zygopkyllacee. Guaiacum is kept in every good drug store, and the tree which produces the resin used in medicine has a hard, heavy wood, used for blocks and pulleys, zulers. etc. It is cult. to a rery slight extent in S. Calif. and in tropical Fla. for ornamental value. The genus has 8 - 10 species of trees or shrubs, mostly tropical American, and all have hard wood and abundant resin: Jrs. opposite, abruptly pinnate, leathery: lfts. 2-14, entire: peduncles borne in pairs between the deciduous stipules, 1-fld.: fls. blue or purple: sepals $4-5$, deciduous, unequal ; petals $4-5$, broadly obovate ; stamens 8-10, inserted in the short, inconspicuous disk.
officinàle, Linn. Middle-sized or low tree, inlabiting arid plains from the Fla, keys to Venezuela, Lfts, in pairs, evergreen, a quarter to half an inch long.

GUAM, ISLAND OF. Sec Ladrones.
GUAVA (species of Psidium, which see). Fig. 1007. The Guava, in its various species, is so easily cultivated and spreads so readily from seeds that it is atmost a weed in tropical countries. In Florida and other sections near the tropies it is at home, and succeeds admirably on any soil not too wet. It usually bears in its second year from seed, or after frosting down, bence if a winter passes without seriously damaging the tops, a considerable amount of fruit is produced the succeeding summer and autumn. The strictly tropical species and varieties are the best for all purposes, and make the finest of jelly and preserves. The Cattley and the Chinese are now cultivated in Florida; when dormant they will stand a temperature as low as $22^{\circ} \mathrm{F}$. The toliage of these two sorts is very ornamental, being a rich, glossy green, not unlike that of Camellia Japonica.
The Guara is most readily propagated from seed, but is quite variable, hybridizing so easily that to secure a certain fine variety recourse must be had to grafting or

1007. Cattley Guava.

propagating from cuttings. Grafting is performed after the usual metbods Propagation by cuttings is difficult, but possible, and the best results seem to be had from half-ripened wood, using bottom beat in a frame or house. Large cuttings are occasionally rooted in the open ground, after the same method of rooting figs or willows. If grown from seed, the young plants should
be potted off when very small, and kept growing in pots until wanted for permanent setting in the orchard, as the plants in open ground do net transplant well. Rooted cuttings, of course, should be treated the same as seedling plants as to final handling.

Guavas grow well on any soil, sandy or clayey, rich or poor, dry or moist; but they will not live in a bog. On too rich soil the growth is apt to be rank and the quality of the fruit injured. This fruit tree is as easily grown under sheds as is the pine-apple in Florida, and when tbus protected is certain to bear abundantly, even well out of the tropies.
E. N. Reasoner.

GUAZUMA (name of Mexican origin). Sterculicicea. Seven or eight tropical American (one also Jaran) trees, with small white, pink or yellow fls, in shortpeduncled, axillary cymes. Petals 5, often 2 -parted: stamens 10 , united into a tube or column, some of them sterile; styles 5: fr, a 5-loculed nut the size of a filbert: Ivs. 2-ranked, serrate. Allied to Theobroma, but that genus has a berry-like fr., entire lrs., fascicled or solitary fls., and a different staminal celumn. G. ulmifolia, Lam., the "Guacima" of Mexico, is offered by Francescbi. It becomes a large tree : branchlets powdery: lvs, ovate to oblong-lanceolate, somewhat pointed, oblique at base, powdery beneath when young bnt becoming glabrous: nut nearly globular, with 5 furrows. The tree is said to yield medicinal preparations.

GUELDER ROSE. See Tiburnum Opulus.

GUERNSEY LILY. Nerine Sarniensis.
GUEVINA, See Gevиina.
GUILIELMA. See Bactris.

GUINEA HEN FLOWER. Fritillarit Meleagris.

GOIZOTIA (after Guizot, the celebrated historian). Composite. This genus has 5 species of annual herbs from tropical Africa, one of which has some economic interest from its oil-producing seeds. Neither this nor closely allied genera have much ornamental value. The plants have yellow heads, abont 2 in . across, with 8 broad, 3 -toothed rays and a leafy outer involucre. Sceds can be obtained by the pound from S . Fla., and they are listed among miscellaneous agricultural seeds in a few of the largest European catalogues. The plant is cult. in India for the oil.
Abyssinica, Cass. (G. oleffera, DC. I'erbesina sutiza, Roxb.). Lvs. opposite, lanceolate, clasping, remotely serrate. B.M. 1017.

GUM TREES. Sce Eucalyptus and Acacia.
GUNNERA (J. Ernst Gunner, 1718-1773, was a Swedish hishop and botanist, and wrote a local flora). Haloragdcere. The little family Haloragaceæ comprises about 100 widely scattered and heterogeneous species in 9 genera. In the northeastern states are the aquatic genera Callitriche, Proserpinaca, Hippuris, Myriopbyllum. These comprise small and mostly inconspicuons plants. In the Australian region are the endemic genera Loudonia and Meionectes; and there remain Serpicula, Gunnera, and Haloragis, with very wide and disjointed distributions. Gunnera has perhaps a dezen known species in S. Afr., Abyssinia, Java, Tasmania, Hawaii and S. Amer. In general appearance the Ginnneras are wholly unlike our native haloragaceous plants. The lss. are gigantic and more or less orbicular, radical : fls. perfect or imperfect, small, packed in a great cob-like spike ; petals 2 or none ; calys none, or with 2-3 lobes; stamens 1 or 2: ovary 1 -loculed, bearing 2 filiform styles : fr. a drupe. They are perennial herbs, and with protection the two following species may be grown even in some of our northern states.
Gunneras are perhaps the noblest of all lawn foliage plants. To produce satisfactory effects, rich, moist ground is indispensable. The plants must never suffer for want of water. Full exposure to sun is advisable, but they should be sheltered from severe winds, else the leaves will be damaged. Ample winter protection
should be provided for. A liberal covering of leaves or litter, beld in place by brush er branches, will generally keep them from harm. Apply the covering in December and remove early in spring. Prop. by division. Seeds are also employed, and they can now be readily secured.
manicata, Lind. Stem thick and very shert, the titanic crown of lvs. rising from the ground: petioles often as tall as a man, prickly : blades beconing 5 to 10 ft , across, orbicular in general outline, variously lobed, crenate, furrowed and channeled along the great veins: fls. green: spikes dense and tapering, eften mere than 1 ft . in diam. and $3-4 \mathrm{ft}$, tall. S. Brazil. I.H. 31:531. Gin. 45, p. $21: 50$, p. 455 ; 54, p. 385 . (i.C. 111. 14:589. G.F. 8:55. - The crown of 15s, sometimes measures from $25-35 \mathrm{ft}$. across. This is the better species.

Chilénsis, Lam. (G. scàbra, Ruiz \& Pav.). Not so robust, the lvs, smaller and less spiny, and the fl_{1}-spikes less tall: fls. reddish. R.H. 1862, p. 310 ; 1894, p. 397. Gin. 49, p. 151. G.C. 1I. 26:425; 111. 8:665.-Longer known in cult. Thrives in drier soil.
L. H. B, and J. B. Keleer.

GUTIERREZIA (personal name). Compósiter. About 18 species of herbs or subshrubs, often resinous, all American, mostly western N. American. They are much branched from the base, and bave narrow, entire lvs. and clusters of small yellow heads.

Euthàmiæ, Torr. \& Gray. More or less woody at base. seldom over 1 ft , high: involncre turbinate, 2 lines long: rays and disk-fs, each 3-9: akenes silky-pubescent; pappus of about 9 chaffy scales. N. W. N. Amer.

GUZMANIA (A. Guzmann, Spanish naturalist). Bromeliàcer. Inclndes Caragrata. Abont 70 tropical American Bromeliads, of which several are fairly well known ornamental glasshouse snbjects. They closely resemble the erect-growing Tillandsias, but differ in technical characters: fls. in a simple spike-like terminal cluster, tubular, the outer segments or calyx oblong and obtuse, the inner or petals shorter than the tube; anthers inserted on the throat of the tube, and united by their edges aronnd the style. Grown in the warmlionse, along with Billbergia and Tillandsia, which see for culture. Closely allied to Echmea. Many species are cult. in fanciers' collections in the Old World. For G. picta, see Nidularium. For G. Legrelliana, see Hohenbergia. G. rosea, a name which has appeared in the Amer. trade, is probably an Nehmea. Monogr. by Mez, DC. Monogr. Phaner. 9 (1896).
A. Corolla (or segments) purple or red.
lingulàta, Mez (Caraguàta lingulàte, Lindl. C. spléndens, Bouché. C. lingulala spléndens, Hert.). Epiphyte : ivs, many, lanceolate or ensiform, $11 / 2 \mathrm{ft}$. long, remotely toothed: spike becoming drooping, showily red-bracted: expanded fl. about as long as the long-pointed bracts, the tube yellowish and the limb blue-porple. W. Indies, Cent. Amer., and adjacent S. Amer. B.R. 13:1068. F.S. 11:1091.-Handsome. Var. cardinàlis, André (Caraguàta cardinàlis, André). Bright scarlet: very showy. Columbia. 1.H. 27:374. R.H. 1883:12.

As. Corolla (or segments) white.

tricolor, Ruiz \& Pav. (G. fràgrans, Hort., at least in part. G. grándis, Hort., in part. G. maculàta, Hort., in part. G. monostàchya, Rusby). Lvs, several to many, broad and more or less recurved, entire on the edges, usually shorter than the stout, erect spike: lower bracts green streaked with black, upper ones red-tinged: corolla white. W. Indies, Cent. Amer., S. Amer. L.B.C, $5: 162$. F.S. $9: 918$. B.M. 5220.-Interesting because of its combination of green, red and white. Some, at least. of the horticultural plants which pass as G. fragrans belong to Echmea eburnea, Baker (Canistrum Lindeni, Mez. Nidularium Lindeni, Regel). This species is further mentioned under Nidularium.
Devansayàna, Morr. (Caraguàta Devansayd̀na,Morr.). Lvs, about 20. narrow linear or ensiform, hrown-striped on the back: fls, white, in a dense, obleng spike, the scarlet bracts eval. Equador.

AAA. Corolla (or segments) yellow.
Melindnis, Regel (Caragudta Melindnis, Morr.), Lvs. strap-shaped, green above and brown-tinted beneath: fls. yellow, subtended by oblong red bracts. French Guiana.
L. H. B.

GYMNÓCLADUS (Greek, naked branch; referring to the naked branches, which in winter are destitute of twigs). Leguminỏsu. A genus of 2 species, one of which is a searce native tree, the Kentucky Coffee Berry, so called because its seeds were used for coffee west of the Alleghanies before and during the Revolutionary War. It is a desirable shade tree for city streets, and is especially interesting in winter. It is a clean, stout tree, bright and graceful in appearance and free from disease, growing from $30-60 \mathrm{ft}$, high in cultivation, and not leafing out until the middle of May, after the other trees are in full foliage. It is thornless and has compound foliage. Grows with erect divisions,making narrow, pyramidal head. Branchlets very stout and destitute of spray: fls. white, dicecious or polygamous, in terminal racemes: pods long, hanging. Grows naturally in bottom lands and ricbest soils. May be planted in any soil, but thrives best in deep, rich, or rather humid soil. Prop. by seeds and euttings.

Canadénsis, Lam. (G.dióca, C.Koch). Kentucky Coffee Tree. Fig. 1008, Height in the wild, $75-100 \mathrm{ft}$.: Ivs. large, twice pinnate with $4-7$ pairs of partial leaf-stalks, each partial leaf-stalk with 5 -13 ovate, acute lfts., except the lowest of I lft., $1-3 \mathrm{~mm}$. long, standing edgewise. Racemes many-fld. and elongated, nearly white, terminating brancbes of the season; stauinate clusters 3-4 in. long; pistillate $10-12$ in., and compact: ovary sessile: pods 6-10 in. long, flat, seytbe-shaped, dark reddish

brown, hanging unopened all wintec. Early summer. S. Ontario to Penn., Tenn.. Minn., Neb, and Indian Terr. S.S. $3: 123,124$. R.H. 1897, p. 491. B.B. 2:261.
G. Chinensis, Baill., with smaller, more numerous lfts, and much thicker pods, is not eult. A. Phelps WYMAN.

GYMNOGRAMMA (Greek, a maked line; referring to the soril. Also written Gymnogramme, Polypodidceae. An unnatural aggregate of plants of very dissimilar
habit, agreeing in the possession of naked sori, which extend along the veins in various lines. A large number of the species are coated on the under surface with a white or yellow waxy powder, which has given the names of Gold Ferns or Silver Ferns. Two species occur in the West, the "Golden-back" of California, and a species less common from Arizona and other parts of the Southwest. Over 80 species of wide distribution have been included in the genus, whicb by many is divided into a series of natural geuera. The name Gymnogramma itself is probably not tenable.

INDEX.

argyrophylla, 9. surea, 6.
calomelanos, 8. chrysophylla, 4. decomposita, 7. elegantissima, 2.
hispida, 1. Laucheana, 4. magnifica, 8 . Peruviana, 9. pulehella, 11. schizophylla, 2.
sulphurea, 5
Tartarea, 10.
Tatarica, 10
triangularis, 3.
Wettenhalliana, 11.

A. Under surfaces of lis, not powdery.
 B. Lus, pentagonat, hairy on both sides.

1. hispida, Mett. A low plant, $5-8 \mathrm{in}$. high, with pentagonal, palmate lys. 1 in, or more either way, densely covered on both sides, but especially below, with strigose hairs. Has been incorrectly referred to G. Ehrenbergiana. Tex., Ariz., Mex.-Hardy.
BB. Lus. triangular-tanceolate, naked; ultimate segments nurrow.
2. schizophylla, Baker. Lvs, 18-24 in. long, quadripinnatifid, the stalks, rachises and divisions slender, the ultimate segments finely cut. A comparatively recent introduction; rery graceful in cultivation. Jamaica. A. G. 18:421. G.F. 2:533. A.F. 10: 827. I.H. 31:522. Gn. 48, p. 417. Var. elegantissima (G. elegantissima, Hort. W. Bull.), has reddish brown rachises.
AA. Under surfaces with wax like powder. (Gold and Sileer Ferns.)
B. Powder yellow: lis. about as broad as long.
3. triangulàris, Kaulf. Fig. 1009. Lvs. $2-5$ in. wide ant long, on stalks 6-12 in. long, dark green above, below deep golden yellow, or occasionally white; lower pinnæ much larger than the others, deltoid; the upper lanceolate. Calif. to B.C. Gn. 48, p. 444.-
 A white powdered variety with
4. Gymnogramma triangularis $(X 1 / 3)$. ande powdered variety with a viscous upper surface and coarser cuttings (var. viscosa, D. C. Eaton) is found in S. Calif.
BB. Powder yellow: les. lanceolate, several times as long as broad.
c. Lis. scarcely more than bipinnate.
5. chrysophylla, Kaulf. Livs. 12-18 in. long, with blackish stalks and rachises, the segments slightly pinnatifid at the base: powder golden yellow. W. Indies to Braz. R.H. 1856:201. G.C. I1I. 23:373.-Often considered a var. of G. calomelanos. Var. Laucheàna (G. Lauchedna, Hort.), has triangular lvs. except in its subvariety gigantea. Gn. 48, p. 437.-By many this species is considered a variety of G, calomelanos.

cc. Lvs. tripinnatifid to quadripinnate.

5 . sulphùrea, Desv. Lvs. 6-12 in. long on chestnutbrown stalks, the pinna long, tapering, less than $11 / 2 \mathrm{in}$. wide at base, the pinnules compact, with 3-7 divisions; powder sulfur-yellow. W. Indies.
6. aurrea, Desv. Lrs, 6-12 in. long, $7-10 \mathrm{in}$. wide, deltoid ; pinna deltoid, $2-3 \mathrm{in}$. wide at base, the ultimate divisions cuneate. Madagascar.-By some this is referred to G. argentea, Mett., a similar fern with white powder.
7. decompósita, Baker. Lrs. $1_{2} \mathrm{ft}$. long, 1 ft . broad, deltoid, quadripınnate or even 5 -pinnate; pinna close, lanceolate, with the ultimate divisions linear and 1nerved: powder rather scanty. Andes. F.R. 2:25. (i.C. III. $11: 365$. F. 1874, p. 148.

BBB. Powder white: lus. lanceolate.

D. Segments acule.

8. calomélanos, Kaulf. Stalks and rachises nearly black: lvs. $1-3 \mathrm{ft}$. long, with lanceolate pinnw; segments often with a large lobe-like auricle at the upper side of the base. West Indies to Brazil. A.G.14:303. - The most variable species of the genus. (i. magnifica, Hort., is probably one of the many garden varieties. Var. chrysophylla is here considered a distinet species. (See No. 4.)

DD. Segments obtuse, rounded.
9. Peruviana, Desv. Lvs. 6-12 in. long, 3-5 in. wide, with dark chestnut brown stalks; pinnæ somewhat regularly pinnatifid on both sides below. Mexico to Peru. By some considered a var. of G. calomelanos. Var. argyrophylla (G, argyrophyilla, Hort.), is silvery on buth sides.
10. Tartàrea, Desv. (G. Tatírica, Hort.). Lrs. 9-18 in. long. $2-5$ in. broad, with closely set pinna, tapering gradually to a point; pinnules scarcely divided or ent, mostly merely crenate. Trop. Amer. from Mex. sonthward.

```
DDD. Segments fan-shaped or wedge-shaped.
```

11. pulchélla, Linden. Lvs. 6-12 in. long, 4 in. wide, the lower pinnæ much the largest ; piunules mbricated; texture rather thin. Venezuela. Var. Wettenhalliàna, Moore (G. Weftenhallidna, Hort.) is a garden variety, with pale sulfur-yellow powder.
G. Japonicz. See Dictyogramma Japonica.

L. M. U'verwood.

Gold and Silver Ferns are amongst the choicest and most distinct of all terns in cultivation, by reason of the beautiful golden or silvery powder that covers the barks of the fronds. The best Gold Fern is G. chrysophylla: the best Silver Fern is G. calomelanos. Unfortunately; however, these fine subjects scarcely thrive anywhere but in a warm conservatory. The finest Gold or Silver Fern will present an unsightly appearance if syringed or watered overhead, as the water carries off the farina. Moreover, many a fine specimen is spoiled by overwatering at the roots in winter time or directly after repotting. The Gold Fern shown on Plate X1, which was considered one of the finest specimens of Gymnogramma ever raised in America, a plant that had been carefully kept for many years, was destroyed one winter by overwatering. In the summer time, when these ferns are growing freely, there is little danger of over-watering, always provided the drainage be thorongh. In the wiuter Gold and Silver Ferns should have a drier atmosphere, and less water will suffice. Plants in small pots should be lowered into a pail of water. Do not soak them again until they show indications of drymess. Large specimens shonld never be watered with the hose; always use the watering can. A eritical time with Gold and silver Ferns is after repotting, and many promising specimens are ruined as a result of premature watering at this time. When the plants are well established and the roots have taken fresh hold in the new soil they will need more water.
Gold and Silver Ferns like a drier atmosphere than the majority of ferns, particularly in winter. Hence they shonld not be placed on low henches. Elevate them in some way so that they can get the warmer and drier air of the conservatory. Young specimens shonld be placed on shelves or brackets near the light. Older plants may be set upon a large inverted pot or fern pan. A plant grown from spores shows its true character early. A year's growth produces fine little ferns, in 2 or 3 -in. pots, with fronds 4 or 5 in . long, the young ferns being 2 or 3 in . high. Another year's care will give bandsome specimens a foot or more bich.

The first thing to do with Gokd and Silver Ferns is to give them a special place where they can receive special care. For potting a light mixture is desirable. In the Old World, loam is usually not recommended, but for large specimens the writer has had best success in nsing 2 parts of fibrous loam, 1 part peat broken or chopped
in good sized pieces, and 1 part leaf-mold, with a little sand and some charcoal to keep the soil porous. These ferns can hardly have too much light, and need slight shade only in summer. In winter the night temperature should be 55° to 60°, with a day temperature 5° to 10° higher. Be sure to give these ferns a drier atmosphere and less moisture at the roots in winter than in summer. llowever, the plants must not be allowed to get too dry.

The writer prefers to grow large specimens in pans rather than in pots, as the roots bave more room to spreal. Surface rooting can be encouraged by a light mulch of chopped moss, some fine peat and sand. Keep the crown of the plant a little elevated. It is necessary to have plenty of drainage. A good potting soil for young plants consists of 2 parts peat and 1 part sand. Repot in February, before the young growth has started. If repotting is delayed too long the joung fronds will be injured.

Robert Shore.
GYMNOPETALUM (Greek, naked petal). Cucurbi. tacer. A genns of 6 species of tropical oriental vines, of which one, G. Cochinchinense, is cult, chiefly for its ornamental gourds. It is a tender perennial plant, and is said to have small white fis, horne in late summer and autumn. It is advertised only in the largest seed catalogues, under the name of Scotunthus tubiflorus. Scotanthus was formerly thought to be a closely allied genus, differing only in the staminate fls. possessing bracts and 3 bristle-like rudiments of an ovary, while the staminate fls. of Gymnopetalum, by the old definition have no bracts or minute ones, and but 1 rudiment of an ovary. The latest monograph of the Cucurbitacea is by Coigneaux in DC. Mon. Phan. vol. 3, 1881. He includes Scotanthus in Gymnopetalum, and distinguishes G. Gochinchinense from the 5 other species by the following characters: fls, monoecious, white; calyx teeth long lin-ear-awl-shaped; calyx shortly villous, not tomentose: Ifs. ovate, angled or slightly lobed: fr. 10 -ribbed.

Cochinchinénse, Kurz (Scotánthus tubiflòrus, Naud.). Musk-scented: stem much-branched, slender, grooved, creeping or climbing, $5-7 \% \mathrm{ft}$. long: 1 rs , about $11 / 2-21 / 2$ in, long, 1-2 in. wide: fr. bright red, oroid, rather acute at the base, produced at the apex into a long point which withers and remains, 2 in . long, more than 1 in, thick.

GYMNOPTERIS, See Acrostichum.

GYMNOSPORIA (Greek, naked seeds; because in some species the seeds have no false coat, or aril). Celastrdeea. This includes a pretty evergreen spiny shrub, enlt. in S. Calif., and suitable tor hedges. A genus of about 60 species of shrubs or simall trees, growing in warm regions: branches often spiny: lvs. alternate, without stipules : fls. in small, forking cymes; sepals, petals and stamens $4-5$, the last inserted underneath the disk, which is hroad, wary or lobed; style 2-3-lobed: capsule obovoid or nearly glohose: seeds $1-2$ in each cell. G. serrata, from Himalayas, is cult. at Santa Barbara, Calif., from seeds sent to \boldsymbol{F}^{\prime}. Franceshi by the Botanic Garden of Rome.

GYMNOSTACHYUM stands as a good genus, but for the trade forms, see Fittonia.

GYMNOTRIX. See Pennisetum.

GYNANDROPSIS (Greek words: the stamens look as if they were borne on the orary). Capparidacea. This genus includes a tender annual plant with $5-7$ leaflets, and flowers resembling the spider flower, or Cleome. It is known to the trade at present as a C'leome, but Gyandropsis is distinguished by having a long torus (or receptacle), which is produced into a slender body (or gynophore) which is elongrated at the middle, and bears the pistil to which the flaments are united. Cleome has a short torus, which often has an appendix on the back. Stamens about 6 in Gynandropsis: in Cleome 4-6, often 10. Gyaandropsis has about 10 species, found in the warmer parts of the world. Leaflets $3-7$: fls. white or purplish; sepals deciduous; petals entire or crenulate, obovate, with a slender claw : sceds
kidney-shaped or orbicular, compressed, with a wrinkled or tubercled coat. For culture, see Cleome.
speciósa, DC. (Cleome speciosa, HBK.). Rather velvety towards the top: lfts. $5-7$, subserrulate, oblong, acuminate. Mex.
W. 11.

GYNERIUM (Greek, woolly stigmas). Graminerr. This genus was until 1897 held to include the Pampas Grass (Gynerium argentenm), which has long been considered the finest of all tall, plumy grasses, as also the most important, commercially, of all ornamental grasses. Plumes of Pampas Grass are shipped in large quantities from California to Europe, and are dyed rarious colors. In nature the plumes are silvery white, with varieties ranging from rose to carmine, violet and purple. They are often $2-3 \mathrm{ft}$. long. Pampas Grass is grown commercially only in California. The plumes are not collected in South America or shipped therefrom. The plumes of the male plants are much inferior to those of the females, and California growers excrcise the greatest care to allow uo male plants in the plautation. In this country the plumes are sold chiefly to persous of foreign birth. (See E'verlastings.) As a border plant, tbe Pampas Grass is not perfectly hardy in the North, the hest substitute for it being Lrianthus Ravenna. Horticulturally, Pampas Grass is not to be compared with the Giant Reed (Arando Donax), as the two things represent two different types of beanty. The Arundo is valued for its bold hahit, of which the tall, reedy stems are an important feature, while its plumes are wholly incidental, being smaller than those of the Pampas Girass, and often not produced hefore the northern frosts.

The plumes of Pampas Grass and of CVa Grass (G. saccharoides) are both sold in London, and are presumably distinguished in the trade. Ura Grass is too tender to be grown even in southern California. In England Pampas Grass is generally hardy, while Ura Grass is known only to a very few hothouses. Uva Grass is the original species of Gynerjum, and is now considered to he the only species in that geuus, the Pampas Grass having been removed in 1897 to the new genus Cortaderia. Pampas Grass should henceforth be catalogued by nurserymen as Cortuderia argentea. Uva Grass should be tried in southern gardens, as also another plant said by critics to be far more beautiful than either, namely, Cortaderia jułata, which is chietly known to the trade as Gynerium arcuato-nebulosum.

Pampas tirass can be grown in sheltered spots as far north as Rochester, N. Y., if well protected in winter. A box well filled with dry leaves, hay or straw, and inverted over the clumps, will generally keep them from harm. Perfect specimens can be ohtained only in light, rich soil, with moderate moisture, at least in the early stages of growth. Prop. readily by division in spring, or by seeds, which may produce flowering plants in 2 jears.

The popular name "Pampas firass" is now unchangeable, but the plant does not grow on the pampas or vast grassy plains of South America, but in the mountains. "All the eridence tends to show that it is confined to the neighborbood of water courses and to depressions where there is a constant and sufficient supply of underground water." The manuer in which this misleading name became fixed is explained by O. Stapf, of Kew, in his excellent monograph of this group in G.C. III. 22:358, 378,396 (1897). In this place Stapf pives 5 species of Cortaderia, and another is added in B. M1. 7607. In S. America the Pampas Grass and some of its allies are called Cortadero; hence the generic name Cortaderia. Cortaderias aze widely distributed in S. America.

Cortadèria argéntea, Stapf (Gynerium urgénleum, Nees). Pampas Grass. Fig. 1010. Grows in individualized, large, thick tussocks: rhizome very short : culms biennial, 3-6 ft. bigh, excluding the panicle: lvs. mostly crowded at the base ; sheaths increasing in leugth from the base upwards from 2 in . to $21 / 2 \mathrm{ft}$., several to many times longer than the internodes: sexual dimorphism of the spikelets slight (apart from the genitalia): spikelets 3-6-fld., the uppermost florets more or less rudimentary. For hahit sketches, see R.H. 1890,
p. 489. Gng. 5:89. G.C. I1I. 26:654. J.H. III. $35: 43$. A.G. $14: 323$. F.S. 12 , p. 179 .

None of the following varietal names have botanical rank, but they probably are fairly distinct horticulturally, and so far they have appeared only in connection with the name Gynerium. Var. monstrosum is perhaps the most robust, and var. nànum (which grows about 3 ft . high), the dwarfest. The others here mentioned are supposed to be the same height as the type. A slender form with narrower foliage is var, élegans, with lvs, a fourth of an inch wide

1010. Pampas Grass. (See Gynerium.)
and stalks $5-7 \mathrm{ft}$. ligh. R.H. 1862 , p. 150 . It has subvarieties with white striped foliage, Yar. elegans-niveolineatum, and spotted with white, var. elegans-niveovittatum. The preceding varieties, except where noted, have the height of the type and white plumes. The next four varieties differ from the type in having colored plumes : vars. róseum, violàceum, purpùreum and carmineum, the names indicating the different colors. Varieties with white-striped foliage are alhum variegàtum and Stenackeri folis variegatis. Varieties with yellow-striped foliage are aureum variegàtum and Wesserlingi variegatum. Var. Roi des Roses was said by John Saul to have foliage striped with rose, hut others describe it as a rosy-plumed variety.

When advertised under Cortaderia, these names should all have the feminine endings, as monstrosa, ete.

Cortadèria jubàta, Stapf (Gynèrium jubàtum, Lem. G. arcucto-nebulosum. Hort.). Differs from Pampas Grass in the rather laxer, more graceful plume, with longer, more flexuous, nodding branckes, somewhat smaller spikelets, more delicate glumes, and in the longer, Fery slender staminodes of the pistillate fls, The plume is lavender-colored, and the plant has been killed hy a temperature of $3^{\circ} \mathrm{F}$. Grows in a dense tuft, perennial, but with biennial culms: spikelets 3-5fld. The plume is $1-2 \mathrm{ft}$. long. B.M. 7607 . G.C. III. 26:658. Gin. 55, p. 93. R.H. 1885, p. 200. Gn. 15, p. 179 Int. by Lemoine, of Nancy, France. Prohable synonyms are G. roseum Rendlateri and G. argenteum carmina. tum Rendlateri. F.S. 20:2075. - Not so well known as the other two species.

Gynerium saccharoldes, Humh. \& Bonp. UvA Grass. Rhizome creeping: culms perennial, 12-30 ft. high: Ivs. rather evenly distributed over the culm, those near the base gradually withering away, leaving the stem naked $4-14 \mathrm{ft}$. ahove ground: sheaths nearly equal (except the lowest), about 6 in . long, slightly longer than the internodes: sexual diraorphism of the fls. Fery conspicuous: spikelets 2-fld. B.M. 7352, - Essentially a more tender plant than the Prmpas Grass.
J. B. Keller and W. M.

The growing of Pampas plumes for profit in California has heen carried on for over 25 years. Pampas Grass was introduced into the United States about 1848. In the northern states it is frequently planted on the lawn in summer, and upon the appronch of cold weather transferred in a tuh to a cellar for winter protection. In California, a hill will sometimes attain a height of 20 ft ., a diameter as great, and a weight of 2,000 peunds. Such plants would be quite inconvenient for our northern friends to handle in the cellar.

Plants are easily produced from seed, but as the sex and variety are very uncertain, stock is usually increased hy dividing the female plants, the plumes of which are much more beautiful thau those of the male. The growing of Pampas firass on a commercial seale dates from 1874, when the difference in sex was discovered.

In 1872 the writer sowed seed which in two ycars gave several hundred plume-besring jlauts. Even then the variations in color and fineness were very marked.

In 1874 , it was found that by pulling the immature plumes from the sheaths and exposing them to the hot sun the male plumes would hang heavily like oats, while the female plumes would become fluffy, and light and airy. In November, 1874, samples of the female plumes were sent to Peter Henderson \& Co., New York. Three hundred were ordered at once, and the following day instructions were received to double the order and sead by express. This was the first lot of good plumes ever seut east fron California, and was the begiming of the present Pampas industry. The writer's plantation was increased each year uatil 1889, when it comprised about 5,000 hills. There were a number of other extensive plantations in the neighborhood of Santa Barbara. The erop of 1889 was estimated at $1,000,000$ plumes. The demand has been good, but the prices have never been as high as at the beginning of the industry. The first prices were $\$ 300$ per 1,000 plumes. The decrease in price was gradual until 1886, when sales were slow at $\$ 30$ per 1,010 plunes. Some of the growers did not harvest their crops that year, and destroyed their plants. In the fall of 1887 plumes were in demand at $\$ 40$ per 1,000 , and in 1888 they were scarce at $\$ 50$ and $\$ 60$ per 1,000. The following spring there was an inerease in acreage. Since then the industry has had its ups and downs, and the price bas ruled low for several years, the present prices beiug $\$ 13.50$ and $\$ 14$ for first-class, and $\$ s$ to $\$ 9$ for second size.

Pampas (irass should be put on the best valley land, and set 10 by 16 feet apart. Before planting, the ground should he deeply plowed and put in first-class condition. In selecting stock, divide only female plants that preduce the finest white plumes. Young hills produce the best plants. From old hills the hest plants are ebtained around the outside, those in the center of the stool heing mostly worthless unless planted in large clumps. Some plumes will he produced the first year after planting. They will not be first-class, but are worth saviug. The second year, if well grown, they should produce 80 to 150 plumes to the hill. Not all plantations will yield this mueh. The third and fourth years there will not be much change in the yield. As a plant gets older the plumes are larger hut the yie'd is less. After 8 or 10 years a quantity of dead matter will bave accumulated, and the hills should be trimmed or burned.
The appearance of the plumes is a signal for great activity among those whe have large fields. The grass should be so trimmed early in September, before the plumes appear, that each hill will be easy of access. Young plants ripen their plumes twe or three weeks earlier than old ones, and some varieties are earlier than others. It requires exercise of judgment to pick the phmes at the proper time. They are generally ready when they are exposed from the husk a few inches and have a fluffy look. It is well to try a few at this stage, and if they cure well at the stem end when dry they are all right, but if they do not become fluffy at the stemend they have been picked too young. If the plume looks dark and seedy at the top when cured, it was too old when picked. Some varieties, especially those producing very long plumes, should be allowed to remain somewhat longer on the plant than those of the short-plumed
varieties. By trying a few of each variety, the time of ripening can soon be ascertained. Some varieties are pulled from the husk in the field; others have to be hauled to husking benches, where the husk or sheath is removed. Some planters husk them like corn: others use a knife set iu such a way as to split the husk without injuring the plume. When the husk has been split, a quick jerk or strike on the table will extract the plume. The plumes are then taken to the drying ground and evenly spread in long rows. This ground should be made smooth aud free from any trash that is liable to adhere to the plumes. Clean stubble ground is the best. The plumes are left on the ground three days and two nights to cure, and are turned and shaken once earh day. They are next packed away as broadiy and smoethly as possible on shelves in a dry building, where they should lie ten days or two weeks, or until the stems are thoroughly dried, at which time they are ready for market. They are packed in two grades: the first-class, having plumes 26 inches long and over, clear of stem (sometimes as long as 45 inches), is packed in cases that measure three-quarters of a ton and contain 3,000 plumes; second class stock is packed in cases of the same size, the plumes being 17 to 26 inches long clear of stem, and 6,000 in each case. If shipping by express, the writer uses bales of about 2,000 plumes, covered with canvas or hurlap and some light strips of wood at the corners. If the plumes are packed smootbly and evenly they will withstand heavy pressure. Careful all-round cultivation is necessary to produce good plumes. About three-quarters of a million plumes are grown at Santa Barhara at the present time.
The best market at present is Lendon, the next Hamburg. Berlin, Demmark, New York and Philadelphia take a few. Pampas plumes are colored in London. In America the pure white plumes give the best satisfaction.

Joseph Sexton.
GYNURA (name refers to the tailed stigmas). Composita. Twenty or more berbs (rarely somewhat shrubby) of tropical Asia, Africa and Australia. Lrs. alternate, entire or lobed, pumerous; heads discoid, the florets commonly all fertile, not very showy. The Gynuras are attractive glasshouse herbs, usually requiring a moderately high temperature. Genus allied to Senecio and Cineraria.
aurantiaca, DC. Velvet Plant. Stout and branchy, 2-3 ft ., with almost succulent stems, densely elothed with violet or purple hairs: lvs. large and soft, ovate, jagged-toothed, hairy, shart petioled or the upper ones clasping, overlaid with iridescent purple: heads in a terminal cluster, yellow or orange. Java. I.H. $28: 436$. One of the handsomest of recent foliage plants. In winter it may be grown in the conservatory or warmhouse, but in the summer it may be hedded out in a warm and protected place. It grows rapidly, and makes a most satisfactory display of colored leafage. It is readily propagated by cuttings in the bouse, as geraniums are.
Other species, but not known to the in the Amer. trade, are:
G. auriculata, Cass. (G. ovalis, DC. Cacalia ovalis, Ker.).

1011. Gypsophila muralis.

Only slightly villous: lvs, oval, eutire or repand, green both sides: fls. yellow, fragrant. China. B.R. 2:101.-G. bicolor, DC., 2-3 ft., of looser growth than the above, glabrous: lvs. lance ovate, somewbat downy, short-petioled, deep-toothed or pinnatifid, green above and purple beneath: fis orange. Moluceas. B. M. 5123.- G, ovátis, DC. $=$ G. auriculata. - G. sar mentosa, DC. Climbing, with purple glabrous stems: Ivs, narrow, ovate to lanceolate, icuminate petioled, remotely smalltoothed, green and purple-ribbed. Warmhouse plant from Malayan ls. B.M. 7244.
L. H. B,

GYPSOPHILA (gypsum-louing), because it likes calcareons soils). Caryophyttacete. European and Asian herbs, bearing a profusion of small fls., and useful for
 mist-like effects in mixed horders and as trimming in bouquets. There are perhaps 60 species. Sepals 5 , united below, but the calyx naked at the base (not bracted, as in some related genera) : petals 5 , clawed, very small, usually white: styles 2: pod 4 -valved: Irs. small, entire, opposite. Very branchy or spreading, slender herbs, with scant foliage when in bloom. Of easiest culture, in open, rather dry places. They are desirable for rockwork. They make an excellent effect as filling amongst shrubbery; also good for covering unkempt places with a mass of delicate bloom. Hardy.

> A. Plant annzal.
1012. Gypsophila elegans.
Natural size.
muràlis, Linn. Fig. 1011. Very diffuse and branchy, mostly with shorter joints than G. elegans, of finer appearance: lvs, linear, spurry like: fls. small, rosy; 1-11/2 ft. Eu.-Makes a dense little mound when well grown.
élegans, Bieb. Fig. 1012. Repeatedly forked-branched, glahrons: lvs. sessile, the uppermost linear, the lower oblong or spatulate: fls, white or sometimes (G, rosea, Hort.) rosy; 1 ft . Caucasus. - Much cult., and handsome.

AA. Plant perennial.

B. Lis. short, spatulate : plant pubescent.
cerastioides, D.Don. Low, lensely puhescent: Irs. pubescent, the radical ones long-petioled, the others spatulate or obovate, obtuse or nearly so: fls. large (often $2 / 3 \mathrm{in}$. across), white or lilac, pink-veined. Himalayas.
B.M. 6699. Fn. 47, p. $422 .-$ Of creeping hahit; exeellent for rockwork.

> BB. Le's. long: plant glabrous or nearty so.
paniculata, Linn. Babv's Breath. Fig. 1013. Diffuse and rather tall-growing ($2-3 \mathrm{ft}$.), forking: lvs, lin-ear-lanccolate, the largest 3 in . long, but becoming smaller towards the inflorescence, sharp-pointed: fts. white, very numerous: pedicels 2-3 times as long as the calyx. Eu. - A very popular plant, especially for use in the trimming of bouquets. A most graceful subject. Stems stiff and wiry, therefore excellent for cutting. A picture of its use in floral arrangement will be found in A.F. 6:340.
acutifolia, Fisch. Very like the last, but the plant greener, the lvs. narrower (indistinetly 3 nerved) and the pedicels scarcely longer than the calyx. Caneasus. $-G$. paniculata seems sometimes to be cult, under this name.

Stèveni, Fisch. $(G$. glaùca, Hort.). Lower than G. panicutata, glau-cous-green: lvs. linearlanceolate and carinate, mostly radical; fls. rather larger, white, the panicles smaller than those of G. panicutata; petals shorter than the calyx. Caucasus.
répens, Linn. Stems trailing or prostrate, ascending at the ends, not glaucous : lvs. linear, sharp-pointed, glabrous: fls. rather large, white or rose, the petals

1013. Gypsophila paniculata abont twice longer than the sepals and the pedicels usually much longer. Alps and Pyrenees. B.M. 1448.-Best adapted to the rock ery.
I. H. B.

HABENARIA (Greek, a rein or strap; referring to the shape of parts of the flower). Orchidacea, tribe Ophrydea. Rein Oremis. Terrestrial leafy herbs, resembling orchis in habit: tubers usually undivided, rarely lobed: fls. in terminal racemes or spikes, rarely solitary; sepals subequal, free or cohering at base, erect or spreading; petals usunlly smaller, often 2-lobed; lip spreading or drooping, long- or short-spurred at base, its blade entire or 3 -5-fid; column very short, sessile; rostellum usually 1-toothed or lobed; glands naked; anther cells parallel or divergent: capsule ovoid or oblong, erect. The lateral lobes are sometimes fringed, giving the flower a graceful appearance. Species about 400 , very widely distributed in temperate and tropical regions.

Few species of Habenaria wre of much horticultural importance, especially in this country. Some of the exotic kinds enjoy some favor as stove plants in England, while there are a number of hardy North American species which can be recommended for outdoor cultivation in boggy places. H. Susannae, carnea, militaris and

1014. Habenaria carnea.
other East Indian species are best grown in a moderately warm house, needing good light and a fair amount of water. It is recommended to repot them after the resting season in a compost of peat, moss, loam and crock dust, with the tuber resting upon the crocked up bottom of the pot and the growing point just beneath the soil. They should then he given a good supply of water
until rfter flowering. These Habenarins are much like Bletia in their requirements.

The most popular species at present seem to be $\boldsymbol{\Pi}$. ciliaris, fimbriata and psycodes, but these give a very imperfect conception of the beauties of the genus, although in the opinion of the writer, H. ciliaris is the showiest orchid in temperate North America. The native species are procurable through collectors and dealers in native plants: foreign species through Dutch bulb growers; and H. radiatn through deaters in Japanese plants.

Index of species described below:
bifolia, 29 .
blepbariglottis, 15. Bonatea, 19. bracteata, 24. earnea, 6 . eblorantha, 20. ciliaris, 8 . cinnabarina, 10. conopea, 1. conopsea, 1 cristata, 9. cristata, 9 .
dilatata, 35. elegans. 32.

Elwesii. 18.
fimbriata, 4 . gigantea, 17.
gracilis, 33.
Hookeriana. 30.
Hookerii. 30. hsperborea, 31. integra, 7. lacera, 23. leиеорhies, 22. liveophtarbys. 22.14 longecalcarata, 16. militaris, 11.
nivea, 13.
obtusata, 27. odoratissima, 2.
orbiculata, 28 .
peramona, 3 .
psycodes, 5 .
pusilla, 11.
radiata, 21
rbodocheila, 12.
Susanna, 17.
tridentata. 25.
Unalascheensis, 34 .
virescens, 26.
A. Fls. purple: lip S-parted: stems leafy.
B. Segments of lip entire: bracts nearly equaling the flowers.

1. conopsea, Benth. (fiymuadènia conópsea, R.Br. G. conopea, French authors). Deadman's Fingers. FIs. violct-purple to flesh-colored, rarely white, fragrant, medium-sized; spur longer than ovary, sometimes twice as long. June, July. Europe, N. Asia. - There is an I. conopsea of Reichenbach dating from 18.54, whereas Bentham's dates only from 1880.
2. odoratissima, Franch. (Gymnadinia odoratissima, A. Rieh.). Fls. intensely red-purple, aromatic, only half as large as in the preceding; spur shorter than ovary. May, June. Europe.
br. Segments of lip loolhed.
3. peramona, fray. Rather tall: fls. large and showy, violet-purple; middle segment of lip 2 lobed. July, Aug. N. J. to Va, and Ill. B.B. 1:466.

BBB. Segmenls of lip deeply and copiously fringed.

4. fimbriàta, R. Br. Fls. lilac, rarely white, fragrant; petals laterally toothed. Summer. New Brunswick to Mich. and Mts. of N. C. A.(i. 12:152. G.F. 10:483. B.B. 1:466.
5. psycòdes, Gray. Three ft, or less high: Hs. many, crowded, much smaller than in fimbriata, lilac, rarely white, fragrant. July, Aig. Newfoundland to Minn. and bigh mountains of N. C. B.B. $1: 466$.

AA. Fls. pink throughout: lvs. all radical.
6. cárnea, N. E. Brown. Fig. 1014. Lrs, dull green, spotted with white: As. few, loosely clustered, light pink, fading nearly white; lip large; spur over 2 in. long. l'enang. G.C. 111. 10:729. Gn. 47:1005. G.M. 36:642. G.F. 4:487. J.H. 1II. 33:319. R.B. 21:44.This species, one of the most beautiful of the genus, is apparently not yet in American trude.

AAA. Fls, orange.

B. Color orangc-yellow throughout. C. Lip nearly or quite entire.
7. integra, Spreng. Two ft. or less high, leafy: fis, small, erowded. July. N. J. to La., near the coast. B.B. 1:463.

Ce. Lip fringed or lacerate.

8. ciliaris, R. Br. Yellow Fringed Orchis. Fig. 1015. Fls. crowded, brilliant orange; petals fringed at apex; spur about twice as long as lip; lip long-fringed. Aug. Eastern [. S. B.M. 1668. B.B. 1:464.-A striking species.
9. cristàta, R. Br. Smaller: fls much smaller; petals merely toothed; spur little exceeding the lip. July. N. J. to La, near the coast. B.B. 1:464.

BB. Color cinnabar-orange, the sepals red-spotted outside.
10. cinnabarina, Rolfe. Small: stem leafy: lip 3 lobed; spur straight, nearly equaling ovary. Madagascar. - Not in Amer. trade.
AAAA. Fls, with green sepals and petals: lip brilliantly colored.
11. mílitàris, Reichb. f. (H. pus\{lla, Reichb.f.). Bluish glaucous: fls.numerous; lip scarlet,trifid,midlobe bifid; spur long and very slender, greenish white. Cochin China. R.H. 1888:396. J.H. 11J. 33:53. G. M. 36: 436 . - The author says of this fine plant: "No English soldier can hoast a jacket of a deeper scarlet than the lip of our plant." Not in Amer. trade.
12. rhodocheila, Hance. Nearly related to militaris, but fls. fewer and subcorymbose; petals almost helmet-shaped; lip varying from deep rose-pink to cinnabar and madder; spur dull yellow. China, B.M. 75 ㄱ. - Not in Amer. trade.

AAAAA. Fls. white to green or greenish yellure.
в. Color pure uthite.
c. Lip entire.
13. nivea, Spreng. Lrs., except 1 or 2 lowest, bract-like: fls, numerous, loosely clustered, small; spur very slender. Summer. Del. to Ala. B.B. 1:462.
14. leucostachys, Wats. Usually tall and stout : lvs. several : fls. many, rather large. Idaho to Ariz., Calif. and Oreg. Mo. 6:81. - Nearly related to H. dilatata, but distinguished by its spur greatly exceeding the sepals.

> cc. Lip fringed.
15. blephariglòttis, Poir. Fls. much as in ciliaris, hut somewhat smaller; petals slightly erose at apex; spur about 3 times as long as lip. Muly. Newfoundlaud to N. C.

1015. Habenaria ciliaris, or Yellow Fringed Orchid. ($\times 1 / 4$.) and Minn. B, B, 1: $46 \overline{5}$. Mn, 8:113. - One of our finest natives.

ccc. Lip s-parted.

16. longecalcaràta, A. Rich. Livs. all radical: fls. 1-3, large, long-stalked; middle jobe of lip narrow, lateral ones hroader, unevenly fringed; spur twice as long as ovary, with pedicel. July, Ang. India. B.M. 7228 . - Not in Awer, trade.
17. Susánnæ, R. Br. (H. gigantèa. Don). Stem tall, stout, leafy: fls, 3-5, very large, fragrant; broal, fanshaped side lobes of lip deeply fringed; midlobe tongueshaped, entire; spur more than twice as long as ovary and pedicel. India, Malaya, China. B. M. 3374. (i.C'. III. 16:279. J.H. III. 29:2:6. - This and the preceding are among the largest-fld. and showiest Habenarias. Not in Amer. trade.
BB. Color partly or wholly green, or greenish yellow. c. Lip deeply 3-lobed or 3-parted.
D. Petals cleft or parted into 2 lobes or segments.
18. Elwesii, Hook. Erect, leafy : fls, few, large, greenish yellow; petals cleft almost to base into long, slender, sickle-shaped, hairy segments; lip smooth, the segments long and slender. India. B.M. 7478.-A remarkable species.
19. Bonàtea, Reichb. f. (Bonàted speciosa, Willd.). Stont, leaty: fls, rather large, light green and white ;
lobes of lip, especially central one, tubular towards hase. S. Afr. (i. C. 11I. 17:743.-Cult. like Disa grandiflora.

DD. Petals not eleft or parted.
E. Spur sac-shaped: lobes of lip entire.
20. chlorántha, Spreng. Lvs. clasping : fls, not exceeding bracts, greenish. Mascarene Islands.

EE. Spur long and slender.
F. Middle lobe of lip entire, the others fringed.
21. radiàta, Spreng. Petals exceeding sepals ; spur greenish white, about equaling the ovary. Aug., Sept. Japan.

FF. $4 l l$ lobes of lip deeply fringed.

22. leucophæa, Gray. Four ft. high or less: fls. large, whitish or greenish, fragrant ; petals erose ; spur ex ceeding ovary. July. N. Y. to Jinn. and Ark. B.B. 1:465.
23. lácera, R. Br. Ragged Orchis. Smaller: fls. greenish yellow; spur not equaling ovary. June, July. Nova Scotia to Ga. and Mo. B.B. 1:465.
cc. Lip merely toothed or slightly lobed: fs, inconsрісионя.
D. Fls. much shorter than the conspicuous bracts: spur sac-shaped, short.
24. bracteàta, R. Br. Fls. greenish; spur often white. Summer. Northeastern U. S. to B. C., Eu. B.B. $1: 463$.
DD. Fls. nearly equaling or exceeding bracts : spur long and slender.
E. Les, 1-2 near base of stem.
25. tridentàta, Hook. Fls. greenish, loosely clustered; lip wide at apex, 3-toothed; spur incurved. July, Aug. Newfoundland to Minn., Fla. and La. A.G. 12:153. B.B. 1: 463 .

Ee. Li's. \mathcal{B} or more.
26. viréscens, Spreng. Leafy: As, greenish; lip only slightly exceeding petals, with 2 lateral teeth and a nearly basal wart. July, Range of preceding. B.B. I: $\ddagger 64$.
ccc. Lip entire: fls, inconspicuous.
D. Large les. all basal.
E. Lcaf solitury.
27. ohtusàta, Richards. Spike Ioosely-fld. : fls. yellowgreen; lip deflexed; spur about equaling lip. Summer. Across B. Amer., south to N. Y. and Col. B.B. 1:461.

EE. Leaves 2.

F. Spur mueh exceeding ovary.
28. orbiculata, Torr. Lvs, orhicular, lying on the ground: fls. numerous, loosely clustered, greenish; lip white, obtuse. July, Ang. Across B. Amer, and Minn. to mountains of N. C. B.B. 1:461.
29. bifolia, R. Br. Betterfly Orchis. Lvs. oblong: fls. white, with tips of spur and lip greenish, fragrant in the evening. May, June. Eu.

FF. Spur about equaling ovary.
30. Hookeriàna, Gray (II. Hnòkeri, Lindl.). Lvs. oval, ohovate or orbicular: fls, greenish yellow ; lip acute. Summer. Nova Scotia to N. J. and lowa. B, B. 1:461.

DD. Large les. several above the buse.
E. Spike commonly dense.
31. hyperbòrea, R. Br. Fls. greenish ; petals, obtuse lip and slender spur all about equally long. Summer. Northern U. S. to Nova Scotia and Alaska. B.B. 1:462.
3I. élegans, Boland. Large lvs, all on lower part of stem: fls, numerous, small, greenish; sepals 1 -nerved, all alike; spur filiform. Vancouver Island to Calif.

EE. Spilie commonly loose.
F. Spur short, sac-shaper.
33. grácilis, S. Wats. Three ft. high or less: spike long, many-fld.: fls, greenish; spur ahout equaling lip and sepals. Ore and Wash.

FF. Spur not sac-shaped.

34. Unalaschcénsis, Wats. Fls. white or greenish; sepals, petals aud lip about equal; spur slender, barely to nearly twice longer than lip. Summer. Unalaska to Calif. and Utah. - Near H. elegans, but more slender, with a longer and more epen spike. It is referred by some to the genus Herminium.
35. dilatata, Gray. Fls. greenish white; lip widened or even auricled at base : spurabout as long, incurved. Summer. Coeler parts of N. Amer. A.G. 12:153. B.B. 1:462.-Nore slender and narrower-leaved than H. hyperborea.
T. H. Kearney, Jr.

HABERLEA (after a professor of botany at Pesth, whe died in 1831). G'esneràcea. This includes a dainty little hardy herbaceeus perennial plant, which is tufted and hears in spring a few scapes 4-6 in. high, with $2-5$ nodding, violet-colored, 5-lobed, tuhular fls., each about 1 in. long and 1 in , aeross. Only 1 species is known, and it is found wild only in a few miles of a single valley in Thrace, where it abounds on the southern slope of the Balkans en shaded schistose recks. Only 4 species of Gesneracea are fuund wild in Europe, and 3 of them are said te be confined each to one spot. The allied genus Ramondia has the same habit and is equally desirable. The corella of Haberlea has a conspicuous tube, which is thrust out of the calyx nearly $1 / 2 \mathrm{in}$., and 5 lobes, 2 of which are much smaller than the others, while in Ramondia the flower seems to be wheel-shaped, with 5 equal petals, because the corolla tube is very short and incenspicuous and the lobes deeply cut.

Haberlea has 4 included didynamous stamens and a bell-shaped calyx. Ramondia has exserted, equal stamens and a wheel-shaped calyx. Haberlea was int, to cult. ahout 1881 by Leichtlin, and few, if any, of our skilled amateurs know the plant. It is not advertised in America. For culture, see Rimondia.

Rhodopensis, Friv. Clothed everywhere with soft, spreading hairs, except the corolla: Ivs. $2-3 \mathrm{in}$. long, obevate-or ovate-oblong, obtuse, coarsely crenate, thick, leathery, few-nerved: calyx 5 -cleft; corella pale lilae. B. M. 6651 .

$$
\mathrm{W}, \mathrm{M}
$$

HABRANTHUS. Included in Hippeastrum.
HABROTHAMNUS is all referred to Cestrum. $I I$. fasciculatus $=C$. fasciculatum; II. elegans and $\Pi_{\text {I }}$. coccineus elegans=f'. elegans; H. Vewelli=C. Vewelli.

HACKBERRY. ('eltis occidentatis.

HACKMATACK, or TAMARACK, Larix Americana.
HEMANTHUS (blood flower). Amaryllidacer. Blood Lify. Between 30 and 40 Africau bulbous plants, of which the greater part are natives of the Cape region. Fls. shewy, often numerous, in umbels; periantlı straight and erect, with a shert, cylindrical tube; segments longer than the tube, narrow, equal; stamens 6 , inserted is the throat of the perianth, usually exserted, the anthers versatile; style filiform and erect, on a 3 loculed orary: fr. berry-like, indehiscent. The fls, are red or white, on a solid seape, which is little, if any, longer than the cluster of root-lys.: they lack the corona of many amaryllidaceous plants. Monogr. by Baker in Amaryllidea, 1888 ; but the S. African species are revised by him more recently in Flera Capensis, vol. 6. See, also, Flora Trop. Africa, vel. 7.

Hemanthuses, like mest ('ape bulbs, are summer-and autumn-flowering; or, when started indeors or in frames, blooming in spring or early summer. The fls, often precede the lvs. The foliage is usually large and luxuriant, and the scape is often handsomely colored. The fls, are sometimes as much as 2 in . across, and produced in great ball-like heads nearly or quite a foct through. Yet the species are essentially curiosities in this country. The culture given Nerine suits them well. Their season of growth is usually not more than tbree or four months, and the remainder of the year they may be laid away in the pots. When growing, give plenty of rather weak liquid manure, keep in an intermediate or warm beuse, and when in hloem keep them somewhat cooler. Avoid everpotting. Prop. by offsets, which usu-
ally form freely; and until they do form, the bulbs will probably not need repotting. Separate the offsets when growth is beginning. In this country they are sometimes flowered in pots plunged in a warm, protected border, blooming in summer and fall. For H. toxicarius, see Buphane disticha.

A. Leares thin or membranaceous.

B. Spathes and perianth segments spreading.
multiflorus, Martyn (II. tenuiflorus, Herb. H. Ḱilbreyeri, Baker). Bulb globose, 3 in. or less in diam.: ivs. $3-1$ on a short, separate stem, the petiele short and sheathing, the oblong hlade $6-12$ in. long, with $6-8$ reins each side of the midrib: scape straight, $1-3 \mathrm{ft}$. high, green or red-spotted: umbel often 6 in. in diam., containing $30-100$ fls., which are usually blood-red, with linear 3 -nerved segments twice or more as long as the tube; red filaments long-exserted, bearing prominent yellow anthers. Trop. Africa. Variable. B.M. 96l, 1995, 3870. L.B.C. 10:912; 20:1948 (erroneously as \boldsymbol{H}. ринісєus). F.S. 1:58; 23:2377. 3.H. 26:354. Var. su= pérbus, Hert., is an impreved brilliant-celered form.

Kátherinæ, Baker. Bulb globose, $2-3$ in. in diam.:]vs. $3-5$, on a short, separate stem, appearing with the fls., with a short, spotted petiole, the blade oblong, $9-14$ in. long and 4-6 in. broad, the lateral veins 8-10: peduncle 1 ft . tall, spotted toward the base: umbel sometimes 9 in, in diam., densely many-fld.: fls, bright red, $2-21 / 2$ in. long, the lanceolate reflexing segments little longer than the cylindrical tube; red filaments exserted. S. Afr. B,M. 67:8.-Name spelled both Katherine and Katharinar, eveu by Baker; but the former spelling is the original. In cult. the lvs. beceme "about 3 ft . in length and of a bright pale green coler-apple-green, as it is usually called-and the venation is more strongly marked than is usual in H. mulfiflorus, $_{\boldsymbol{H}}$. cinnabari. wus and other allied kinds. ${ }^{\text {n }}$ Burbidge, Gn. 49, p. 160_{1} with figure.

Lindeni, N. E. Brown. Lvs. 6-8, in 2 ranks, arising from a thick, selid rootstock, nearly or quite evergreen; petioles long, winged; blade $10-12 \mathrm{in}$. long and $3-5 \mathrm{in}$. wide, long-ovate, lanceolate or ovate-oblong, acute, the base rounded or subcordate, with a longitudinal fold either side of the midrib: scape $11 / 2 \mathrm{ft}$. tall, arising from the side of the lrs., flattened on one side, more or less spotted: umbel globular, 6-8 in. in diameter, with 100 or more searlet fls, opening in succession: fls. 2 in . across, the tube $3 / 4 \mathrm{in}$. long, the lebes longer and linearlanceolate and acute. Congo. G.C.111.8:437; 13:483. 1.H. 37:112; 40:172, Fig. 1; 41, p. 18. Gt. 46, p.217. G.M. 36:290. J.H. 11I. 28:73.-Handsome.
BE. Spathes and perianth segments erect or ascending. puniceus, Linn. Bulb nearly glebular, $2-3 \mathrm{in}$. in diameter: lys. $2-1$, from the bulb, the petiole one-half the length of the blade, the blade $6-12 \mathrm{in}$. long and $2-4 \mathrm{in}$. broad, oblong, strengly undulated, the main veins about 6 on each side the rib: scape $6-15 \mathrm{in}$. tall, spotted: umbel globose and dense, 3-4 in. in diameter, bearing many scentless, pale scarlet, yellowish red or rarely white fls. 1 in. loug: perianth tube cylindrical, sherter than the lanceolate 3 -nerred segments: filaments red, 1 in, long. S. Africa. B. M. 1315.

AA. Les. thick and fleshy.
 日. Bracts and fls, whito.

albiflos, Jacq. Bulb or tuber compressed sidewise, with thick, 2-ranged scales: lvs. 2-4, appearing with the fls., nearly erect, obtuse, 6-8 in. long and nearly half as broad, narrowed to the base, green and glabreus, but ciliate on theedges: scape less than 1 ft . tall, pale green, bearing a dense, globular umbel 2 in , in diameter: fls. 3_{4} in long, the linear segments mucb exceeding the tube. S. Africa. B. M. 1239. L. B. C. 7:602. Var. pubéscens, Baker, has 1vs. hairy above. L.B.C. 8:702. B.R. 5:382. II. Clarkei, Hort., is a bybrid of tbis species and C. coccinelts.

BE. Bracts and fls. red.

coccineus, Linn. Bulb compressed sidewise, 3 in, in diam., the scalesmany, thick, 2-ranged: 1rs. 2, suberect, liagulate, reaching 2 ft . long and 8 in . broad, narrewed to the base, green and glabreus, net ciliate: scape 6-10
in. tall, compressed, mottled: hracts large and thick, ascending and forming a cup, in which the red fls, are borne: fls. 1 in . long, with linear segments and a short tube. S. Africa. B.M. 1075. L.B.C. 3:240. Var. coaretàtus, Baker, has smaller Ivs, and shorter bracts. B.R. $3: 181$.-Odd plants.
tigrlnus, Jacq. Lrs. ciliate on the margins, 1 ft . or less long, spotted on the lower part of the back; scape 6 in., red-spotted: umbel dense, 2 in . or less in diam.: bracts shorter than in the last (not over $2 \mathrm{in} . \operatorname{long}$), bright red: fls. 1 in . or less long, with very short tube. S. Africa. B.M. 1705.
L. H. B.

HemARIA (Greek, referring to the blood-red under surface of the lvs.). Orchidacea. A genus of 4 species of terrestrial orchids, known to the trade chiefly as Goodyera. They are really dwarf stove foliage plants, and are to be cult. like Ancetochilus. In Hemaria the lower lip is swelled above its base into a wide claw and is provided with a pouch-like sac at base, and a blade of 2 divergent lobes; in Goodyera the blade of the lip is small and not clawed Both genera belong to a large group in which the lip either has no spur or sac, or if the latter is present, it is included between the sepals; while in Anœectochilus the lip has a prominent sac or spur projecting between the lateral sepals.

The leaves of H. discolor are green above and red below. It is, however, not nearly so brilliant as Hemaria Dausoniana, which has the same red colorbeneath, and is beautifully netted above with red or yellow. In both species a dozen or more small fis., chiefly white, are borne on a densely hairy scape. Alfred Rehder writes that these plants seem much easier to cultivate than Ancectochilus. He has succeeded in growing Anœectochilus only under hand glasses, but has grown Hæmaria without a hand glass in large, shallow pans, with the rhizomes creeping in sphagnum.

A. Lus, not netted-veined above.

discolor, Lindl. (Goodyèra discolor, Ker.). Blade of lvs. oblong, 3 in. long. ${ }^{3}$ in in.wide. China (Brazil, according to Loddiges). L.B.C.2:148. B.M. 205. B.R. $4: 271$. -John Saul's plants had white longitudinal markings.

AA. Levs. brilliantly netted-veined above.
Dawsoniàna, (G. Díusonii, Boxall. Ancetochilus Dawsoniànus, Low). Blade of lvs, elliptic, 3 in , long, $13 / 4$ in. wide. Burma, Philippines. B. M. 7486 (veins of 2 lvs. blood-red; of the other almost wholly yellow).John Saul says "golden purple" veins.

H. Hasselbring.

HAIRBELL or HAREBELL. Campanula rotundifolia.

HAKEA (after Baron von Hake, German friend of botany). Proteàcece. A genus of Australian shrubs, slightly cult. indoors abroad and outdoors in S. Calif. The genus is too polymorphous and unimportant to be described at length here. Ninety-five species are fully described in English, with an elaborate key in Flora Australiensis 5:489 (1870).

A. Length of lus. 1-2 inches.

pugioniformis, Car. Height usually $2-4$, rarely 8 ft .: 1 vs . all eutire, terete, smooth, rigid, $1-2 \mathrm{in}$. long: fls. few, in axillary, sessile clusters. L.B.C. 4:353.Franceschi says it is an odd plant, which at a distance looks like a pine and has whitish fls.

ablong raceme which is 1-3 in. long. G.C. III. 19:85. -lnt, in 1899 by Mrs. T. B. Shepherd, who says that there are 5 or more racemes in a bunch.

$$
\text { вв. Nerves few, } 1-3 \text {; }
$$

c. Fls. red, in globular heads.
laurina, R. Br. Tall shrub, attaining 10 ft .: lvs. 4-6 in. long, 3- or 5 -nerved, often sickle-shaped, on long petioles: fls. in a globular head, $11 / 2-2$ in. thick, from which the numerous showy white stigmas project 1 in . or more in every direction. Blooms in the Californian winter. B.M. 7127. f.C. 11. 23:149.-Called SEa Urchin on the Riviera.
cc. Fls. pink, in long racemes.
ulicina, R. Br. Lrs usually linear-lanceolate or linear, pungent, 4-8 in. long, prominently $1-$ 3-nerved beneath: perianth and pedicels glabrous: fr. rarely above $1 / 2$ in. long, with a short, straight beak. - The foliage resembles the European furze. W. M.
HALESIA (Stephen Hale, 1677-1761, author of a famous work on "Vegetable Statics"). Sy1.., Mohrodéndron. Styracàcer. Silver Bell. Snowdrop Tree. The common Snowdrop Tree (H. tetráptera) is a fine, hardy, small-sized tree, which is covered with a bewildering, cloudy mass of small, snowy white flowers, borne about the middle of May, before the foliage of the tree appears. The genus has only 4 species, and is exclusively North American, if we place the Japanese H. hispida in the genus Pterostyras by reason of

1017. Halesia tetraptera. var. Meehani. the subterminal inflorescence and smaller and fleshifr fruit. Small trees and shrubs, more or less stellate pubescent: lrs. rather large, membranous, ovate-oblong, acuminate, more or less denticulate, slender-petioled, deciduous, light green: inflorescence lateral: fls. snowwhite, bell-shaped, drooping, on slender pedicels, in fascicles or short racemes along the whole length
1016. Halesia tetraptera $(\times 1 / 3)$.

As. Length of les. $4-8 \mathrm{in}$. B. Nerves many.
multilineàta, Meissn. Tree or tall shrub: lvs. flat, 6-8 in. long, with many very fine nerves: fls, pink, in
of the branches, borne in the axils of lvs. of the preceding year ; calyx obconical, slightly 4-8toorhed, adnate to the 3-4-celled ovary; corolla bellshaped, epigynous, $4-5$ cleft or parted nearly to the base; stamens 8-16: ovary 2-4-celled, 4 ovules in each cell: fr. a drupe, dry, oblong, longitudinally $2-4$ winged, tipped with the style and minute calyx teeth.
The common Snowdrop Tree, H. tetraptera, is found in woods and along strcams, but thrives in almost any good soil. Its habit is round-headed, irregular and somewhat pendulous, rather light and twiggy. It is adapted to shrubberies and lawns in almost any position, but prefers a somewhat sheltered place and a welldrained, rich soil. It is easily tramsplanted. It often grows in bush form, but may be grown as a tree when eut to one shoot and given ample room. The flowers
are rather short-lised, except in var. Meehani. Prop, most commonly by layers, also by root-euttings in spring and autumn; and by seeds, which should be kept constantly moist, as they rarely germinate until the second year if allowed to dry. H. diptera is hardy as far north as Philadelphia, but of doubtful hardiness farther north, though it may become acclimatized. Thrives best in a cool, deep loam. Prop, by seeds, which should never be allowed to dry, and by grafting on H. tetraptera.
tetráptera, Linn. Fig. 1016. A small tree or shrub $8^{\circ}-10^{\circ}$, whose fls. resemble those of a snowdrop. Lvs. ovate or ovate-oblong, finely serrate, dark green and glabrous above, pale green and stellate-pubescent below, 2- 4 in. long: fls. in lateral clusters of $2-4$; corolla 4-lobed, I in. long: ovary 4-celled: drupe ellipsoidal, longitudinally 4 -winged, $1-1 \frac{1}{2} \mathrm{in}$. long. Va.S. and W. B. M. 910. Mn. 5, p. 194. S.S. 6:257. Ging. 2:247. A.G. $14: 211$; 18:438. M.D.G. 1899:352-3. Var. Meehani, Sargent (H, Meèhani, Hort.). Fig. 1017. Habit wholly unlike that of the type, round, bushy and more upright, from a distance looking like an apple tree, 12 ft. high. Has thicker, rugose, dark green lrs., on young plants glandular serrate, and smaller, more numerous fls with short calyx-tubes and cup-shaped corollas, without the narrow base. Seems barren, but is not a by brid. Growth smaller. G.F. 5:535. Gng. 2:247.
diptera, Ellis. A small tree or shrub from the South not easily distinguished from M. tetraptera. The Irs, are larger, ovate, green on both sides, coarsely serrate and downy: fls. white, on long pedicels, in racemes of 2-4, more showy than those of Π. tetraptera; petais 4 , nearly distinct, 1 in. long : ovary 3 -celled: drupe with 2 large opposite wings and 2 obsolete. Early June. S.S. $6: 259$. - Plant not so large as of Π. tetraptera: lvs. larger and fls, more showy.
H. corymbisa, Nich. = Pterostyrax corymbosa. - H. hispida, Mast. = Pterostyrax hispida, -H, parviflora. Michx. Much like H. tetraptera, hut shrubby, with smaller fls. and 2 -winged fr . Ga, and Fla.
A. Phelps WYMan.

HALIMODENDRON (Greek, salt tree; referring to the maritime habit of the plant). Legumindste. A genus whose sole representative is a hardy deciduous shrub $4-10 \mathrm{ft}$. high, growing in the dry, barren saltfields of Siberia. It is characterized by the small, equally pinnate lvs. ending in sharp, stingiag spines, and composed of I-2 pairs of clean Ifts., and by the rather large rose-purplish fls., in 2-3-fld. lateral fascicles from the old nodes at the base of the summer shoots, appearing from May-July. The branches are whitish and prickly, with small petiolar spines. In cultivation the shrub is very hardy, enduring both drought and cold, and, while it thrives in sandy soils, it succeeds, also, in saline or alkaline. The rosy fls. and the airiness of the fine lvs. make it very ornamental. It is propagated by seeds, layers and cuttings, or may be grafted upon the common Laburnum, upon Caragana arberescens, or Colutea arborescens.
argénteum, Fisch. Salt Tree. Lus compound: Ifts. spatulate or long-oval, nucronate, blue-green, more or less pubescent: fis. irregular, papilionaceous; calyx cup-shaped, with 5 short teeth; petals of nearly equal length; standard orbicular, with the sides turned backward; keel obtuse, straight; stamens diadelphous, unequal: orary stipitate, few-ovuled: style filiform: pod inflated, oroid, hard, depressed in the seed-bearing portion, 6-7 in. long; seeds oval, sub-compressed. B.A1.1016. R.H. 1876:30, as H. speciosum. A. Phelps Truan.

HALLERIA (Albrecht von Haller, 1708-177. Swiss physician aud naturalist, and professor at (Göttingen). Scrophmlaridece. About 6 species of shrubs from Africa and Madagascar, one of which is cult, indoors abroad and outdoors in S. Calif. H. lucida, Linn., grows 4-6 ft. high, has opposite, orate, acuminate, serrate Irs., and axillary clusters of about 6 reddish, tubular Hs., each about 1 in. long. The fls. are bulged on one side, with 2 short teeth in one lip and 3 in the other, and sometimes yellowish at the base. Stamens 4, didynamous, exserted. B.M. 1744. - Sometimes called African Honeysuckle.

HALOPHYTTUM. See Hoplophytum.

HAMAMELIS (Greek, hama, together, and melon, apple or fruit: fruits and flowers at the same time). Ilamameliddcea. Witch Hazel. Hardy ornamental shrubs or small trees, with deciduous, alternate, shortpetioled IVs., yellow fls, in axillary clusters, appearing late in fall or early in spring, and with capsular fruits. Valuable on account of their blooming at a time when hardly any other shrub outdoors is in flower; well adapted for shrubberies ; of compact, bushy habit and with handsome foliage, turning bright yellow, orange or purple in fall. It thrives best in somewhat moist, peaty and sandy soil. The Japanese species likes a more sunny position than the American, and is less moistureloving. Prop. by seeds, which do not germinate until the secoud year, or by layers; rarerkinds also hy grafting on seedlings of H. Iirginiana in spring in the greeuhouse. Three closely allied species in eastern N. Amer., China and Jap. Lvs. stipulate, crenate-dentate: fls. in short-peduncled, nodding, axillary, few-fld.

1018. Witch Hazel, Hamamelis Virginiana. Showing flowers and fruits. Natural size.
clusters, perfect; ealyx 4-parted; petals 4, linear, crumpled; stamens 4, very short: fr, a dehiscent, woody, 2 -celled capsule, with 2 shining black seeds. The seeds are shot out with considerable force. Occasionally writers spell the common name Wych Hazel, but there seems to be little historical reason for it. Witch, as used in Witch Hazel and Witch Elm, is probably allied to weak, referring to a drooping or straggling babit.

Virginiàna, Linn. Fig. 1018. Shrub or small tree, attaining $25 \mathrm{ft} .:$ IFs. oblique and cordate at the base, obovate, coarsely crenate, pubescent on the reins beneath, +6 in. long; petals bright jellow, $1 / 2-3 / 4$ in. long ; calyx dull brownish yellow inside: fr. surrounded by the calys to one-half. Sept., Oct. ('anada to Fla., west to Neb. and Tex. Em. 472. S.S. 5:198. B.M. 6684. L.B.C. 6:598. A.G. 11:657 and 17:71.

Japónica, Sieb. and Zucc. Shrub or small tree, to 30 ft .: Irs, roundish to obloug-orate or obovate, sinuately crenate, prominently veined beneath, glabrous or pubescent, $2-4$ in. Jong: petals $3 / 4 \mathrm{in}$. long, yellow; calyx lobes revolute, purplish or yellow inside: fr, only at the base surrounded by the calyx. Feb.-April. Japan. - There are 2 varieties. Var. arborea, Reld. (H, arborea, Mast.). Lvs, larger, usually more roundish and of firmer texture: petals golden yellow; calyx deep purple inside: of more vigorous growth. B.M1. 6659. R.H. 1891:472.
G.C. II. 1:187 and 15:205 and III. 9:247. G.M. 34:94. Var. Zuccariniàna, Arb. Kew. Lvs, smaller and thiuner: petals canary yellow; calyx pale or brownish yellow inside. G.F. 4:257. Gin. 17, p. 251.

Alfred Rehder.
HAMELIA (Henry Louis Duhamel du Monceau, 1700-1782, prominent French botanical author). Rubiàcea. This genus contain3 a tender shrub with large clusters of scarlet-orange fls, much prized in Fla., and recently urged for northern conservatories under the name of "Scarlet Bush." About 13 species of tropical and subtropical American shrubs, glabrous or pubescent: iss. opposite or in whorls of 3-4, petioled, ovateoblong, acute at both eads: fls, in terminal, 2-3-forking cymes, yellow, reddish or scarlet, with pedicels short or none; corolla tubular or almost bell-shaped, about 5 -ribbed ; limb with 5 short lobes; stamens 5 : ovary 5-celled: berries small, ovoid, 5 -lobed, many-seeded. Hoffmania is distinguished by its 2-3-celled herry.

Hamelia patens, a native of the West Indies and S. Florida, along the coast, a beantiful and almost unknown plant, should become a favorite in greenhouse culture. The lvs, have a purplisb hue at some seasons of the year, and the fls. are of a bright orange-red color. In Florida it must surely become a favorite for open-air planting, as it is there rarely killed down by frost, and when it is it sprouts up readily from the root, and blooms the following summer. It is in bloom for many months, and without doubt could be forced at any season. With age it becomes a woody shrub, $5-12 \mathrm{ft}$. in height. The fls. are succeeded by handsome black berries, which are retained a long while.

A. Fls. scarlet-orange : berries ovoid, black.

pàtens, Jacq. Lrs. typically in 3 's, rarely $2-5$, more or less villous-pubescent: cymes $2-3$-forked, disposed in a pedunculate, terminal umbel. B.M. 2533.
AA. F'ls, orange-yellow: berries globular, purple.
sphærocárpa, Ruiz \& Par. Lrs. in 3's, oblong, hirsute on both sides: cymes disposed in terminal panicles : corolla tubular, distinctly 5 -cornered: berries hispid. Woods of Peru.
E. N. Reasoner and W. M.

HAPLOPAPPUS is Aplopupp:s.
HAPLOPHYLLUM. See Ruta.

HARBINGER OF SPRING. Erigenia bulbosu.

HARDEN BERGIA (after Franziska, Countess of Hardenberg, sister of Baron Huegel, a well known traveler.) Leguminòsa. Three Australian twining herhs or subshrubs, with long racemes of small fls., ranging from white through pink and rosy purple to violet-blue, often with 1 or 2 green or yellowish spots on the standard. The genus is told from Kennedya by the different habit, smaller, more numerous, differently colored fls., short calyx teeth and by the keel, which in the 2 species described below is much shorter than the wings. Both are cult. abroad under glass by those who are skilled in managing Australian woody plants. The species first mentioned is cult, outdoors in Calif.; the second was once offered by John Saul, of Washington, D. C. These plants can be trained into bush form. Monograph in Flora Australiensis 2:246 (1864).
A. Leaflets solilary : pods flat, with dry pulp inside. monophỳlla, Benth. Lfts, usually $2-3$, or even \ddagger in. long, obtuse, varying from broadly cordate-ovate to narrowly lanceolate: fls, less than $1 / 2 \mathrm{in}$. long, in 2 's or rarely 3 's, as many as 35 in a raceme, and the upper racemes often forming a terminal panicle: pod flat, with dry, pithy pulp inside. B. 2:84. B.M. 263, 2l69. L.B.C. 8:758 and 20:1940. B.R. 11:944 and 16:1336. R.H. 1896, p. 431. R.B. 22:169, - Has many synonyms. The fls, range from white through rose and purplish to pure violet, but are never distiuctly blue. Var. alba is cult.

AA. Leaflets 3 or 5 : pod turgid, without pith or pulp.

Comptoniàna, Benth. Lfts. 3 or 5 , and in the latter case the side ones in 2 opposite pairs, which are not distant as in other 5 -leafleted members of the tribe: Hs. in pairs or clusters of $3-4$ along the racemes. B.R. 4:298,

22:1862 and 26:60. R.H. 1882, p. 344. J.H. 111. 30:361.The fls, are said to have the same size, color and structure as in H. monophylla, but in cultivation the blue or violet-blue form has probably been most popular. Var. alhe is cult.
H. retusa, Benth., is an anomalous species not cult. All other names in this genus are syuonyms of the 2 species described ahove.
W. M.

HARDHACK. Spirca tomentosa.

HARD HEADS. Centaurea nigra.

HARDY PLANTS. The word "bardy" covers many distinet icleas. It is used to distinguish plants that can be cultivated outdoors the year round from plants that must be grown under glass part or all of the year. For example, in this Cyclopedia plants are spoken of as bardy as far north as Washington, D. C., New York, Boston or Montreal, meaning that the plants are not killed by the winters at these places. In its widest sense, "hardy" indicates resistance to all kinds of unfavorable conditions. Thus, while all the common geraniums are tender plants, one variety may be hardier than another because it withstands intense heat and drought and general neglect. Iu general, however, the unqualified word "hardy" indicates that the plant is able to withstand the winter of the given place. See the articles Border and Landscape Gardening. Smaller divisions of the subject of Hardy Plants are discussed under Alpine Gardens (including Rock Gardens) and Aquatics (including Bog Plants).

HAREBELL. Campanula rotundifolia.

HARICOT (French name for Pluseolus vulgaris). Same as Kidney Bean of the English. It is the common garden bean of America, as distinguished from the Windsor or Broad bean, the Lima bean, etc. See Bean.
harina. See Wallichia.
IIARLEQUIN FLOWERS. Sparaxis.

HARPALIUM. All referred to Helianthus.

HARRIS, JOSEPH (Fig. 1019), agricultural author, was born June 29, 1828, in the village of Shawbury, Eugland, and died at his home at Moreton Farm, near Rochester, N. Y, Nov. 18, I892. His father and forefathers for several generations were farmers; it is, therefore, but natural that he should have inlierited a keen interest in everything pertaining to rural life. From early youth he showed a remarkable fondness for investigation and experimentation, in the pursuit of which be found gratification by his study of agricultural chemistry with Messrs. Lawes \& Gilbert, on their famous experiment farms at Rothamsted. It was during this period that he laid the foundation of his future usefulness in the cause of rational and scientific agriculture and borticulture. In the year 1849 he came to America, and soon become

1019. Jcseph Harris. one of the foremost and most reliable writers for the rural press. His "Walks and Talks on the Farm," which appeared in the "Genesee Farmer" in 1864-65, attracted general attention, and in 1866, when the "Genesee Farmer" was purchased by the "American Agriculturist," Mr. Harris joined the editorial staff of this paper and continued his "Walks and Talks" in each number up to 1876. After an intermission of eight years,
he resumed them again until the iucreasing demands of his seed business upon his time prevented him from continuing them. In all there were 171 chapters. It is to be regreited that these "Walks and Talks" have never been published in book form, as they constitute a decidedly unique feature in our agriculturalliterature. These articles were written in the form of conversations with the "Deacon," who was his neighbor and one pf the oldest farmers in the town, and not, as has often been supposed, a fictitious character. They are narratives of actual experiences on the farm, and talks about things that occupied his thought for the time, and have, therefore, an intensely practical character throughout. He lets the Deacon state that farming is a poor business, and then patiently talks himout of it, and convinces him that the only farming that pays is "high farming," making a garden of the entire farm. He cherished the idea that the intelligent farmer must put his questions to the soil and not to his neighbor, and then have the patience to wait and read the answers when they come. He had an abiding belief in manures and clean land, and in all his writings he earnestly endeavored to inpress upon his readers that the real source of fertility must be looked for in the stores of plant-food lying dormant in the soil, and that tillage, underdraining and thorough cultivation are the means by which we develop and render this plant-food available, and that the real basis of success is faith accompanied by good works. His books, "Llarris on the Pig," "Talks on Manures," and "The Use of Nitrate of Soda" are all of the same practical stamp. His last book, "Gardening for Young and Old," as its title indicates, is intended as a guide for the boy and his grandfather at the same time, but with the mental reservation that it should be principally for the young folks. Mr. Harris realized the need of more gardening and better gardeners, and had strong faith in the promising future of seed-growing in this country. In the development of these industries he saw bright opportunities for the boys, because they were young and could afford to wait, and especially because they would bemore liable to adopt new processes. In this work he makes a strong plea for a more general cultivation of flowers, losing no opportunity to convince the realer that the beanty of flowers elevates the tastes, and their cultiration gires health and pleasure. These and similar sentiments pervade all his writings, and may well serve as a keynote to his life's aim. Whatever work be undertook he dill with a full heart and convincing earnestness. His writings and teachings have left an indelible impress upon legions of cultivators of the soil, because be was sound in principle and honest in his convictions. In summing up his life-work, it is safe to assert that no one has done more in this country to dignify rational and profitable agriculture and horticulture than Joseph Harris.
F. M. Hexamer.

HARTWEGIA (Theodor Hartweg collected in Mexico for the Horticultural Society of London, and found these plants near Vera Cruz). Orchidacea. A genns of 2 species of tender epiphytic orehids from tropical America, growing about a foot high and bearing purple fls. The genus has the habit of Epidendrum, section Amphiglottis, hut differs in having the labellum saccate at the base, in which respect the genns approaches Ponera; however, Ponera has a very different habit. H. purpurea was once advertised by John Saul. Rest them in a coolhouse Oct. to Mar. Growing temperature should be $65-90^{\circ}$.
purpùrea, Lind. Lrs. solitary, leathery, ovate-lanceolate, equally terete with the stem, many times shorter than the thread-like peduncle: fls. small, purple; sepals acute, a little larger than the petals; limb of the lip white at the base, callous. Mex.
H. gémma, Reichb. f. "This is a most lovely gem." wrote Reichenbach, and "much hetter than its predecessor." Gemma, therefore, does not mean "twin," as sometimes stated. Lirs, solitary, semi-terete, thick, acute, channelled, blotched with blackish violet: fls, ametbyst-purple, in a small, 1 -hranched panicle; odd sepal acute, obtusely strap-shaped; equal sepals oblong-acute. Cent. Amer.

HAEVEST BELLS. Gentrana Pnewmonanthe.

HASSOCK GRASS. Consult Deschampsia.

HASTINGSIA (S. Clinton Hastings, promoter of Californian botany). Lilidcea. Two bulbous plants of the Pacific slope, with white or greenish fls. in many-fld. panicles or racemes : perianth segments distinct, each obscurely 3 -nerved; stamens 6 ; style short. Hastingsias hare strong, nearly naked stems, arising from a scaly bulb: lvs. thick. The two species are offered by collectors, but they are little known in eult. Treatment as for Camassia. H. alba, Wats., is 2-3 ft. high: 1vs. $1 / 2 \mathrm{in}$. or less wide: raceme simple or nearly so, 1 ft . long, densely fld., the fis. $1 / 4 \mathrm{in}$. or less lorg, white or greenish white; stamens equaling the segments. N. Calif. northward. H, bracteosa, Wats. Bracts narrow and nearly equaling the fls., which are larger than in the other, and white; stamens half as long as segments: lvs. longer. Oregon.
L. H. B.

HAW, or HAWTHORN. Consult Crategus.

HAW, BLACK. Tiburnum prunifolium.

HAWAIIAN ISLANDS, HORTICULTURE IN. Fig. 1020. The group known as the Hawaiian or Sandwich Islands is located about 2,100 miles from San Francisco, iu a southwesterly direction. It lies between the parallels $18^{\circ} 50^{\prime}$ and $23^{\circ} 5^{\prime}$ nort latitude and between the meridians $150^{\circ} 40^{\prime}$ and 160° west longitude.
AREA. - The five most important islands have an area of about 6,200 square miles, or rather less than that of Massachnsetts, and extend about 380 miles from northwest to southeast.

Climates. - It is hardly possible to speak of the climate of Hawaii (as the whole group is sometimes called), for there are so many different climates in this small area. The extent of the rainfall, fur example, which forms so important a factor in the horticultural conditions of a country, is decidedly different in different regions and even in localities within a few miles of each other. To understand the climatic conditions, it is neecssary to recall that these islands are of volcanic formation, their central parts and the larger part of their area being oceupied by rugged and high mountains, with valleys lying between the ranges and narrow plains near the coast. Being in the path of the northeast trade winds, the windward side of the islands receives an abundant rainfall throughout the year, while the southwest shores are comparatively dry. Thus, at Honoluln, on the southwest shore of Oahu, the annual rainfall arerages about 38 inches, while that of the city of Hilo, on the windward side of the island of Hawaii, measures 12 feet. Even within a very narrow range, as, for example, the limits of the city of Honolulu, there is great variety of rainfall, certain localities receiving frequent rains throughout the year, while others only two or three milcs distant practico irrigation constantly. Some of the great sugar-cane plantations depend wholly upon the natural supply of water, while others could not grow cane at all without their expensive systems of artesian wells and irrigation.

Similarly there is a great variation in the temperature in different parts of this small but important country, but exceedingly slight variations with the changing seasons. The windward side is cooler than that which is sheltcred by the mountains, but in no part of the islands is the heat so intense as would be expected from their location within the tropics. Only rarely, in the hottest localities, does the mercury rise to $90^{\circ} \mathrm{F}$. Again, the variation in elevation from sea level to many thousand feet gives a like variation in temperature, so that some of the mountains of the largest island are covered with snow during a part of the year. In short, so far as climate is concerned, the Hawaiian lslands offer all that could be asked for great and dirersified horticultural industries.

Horticeltiral Distriets, -Only a small percentage of the total area of the country is snitable for cultivation. The tillable portions are, in general, the plains along the coast and the valleys among the mountains. By far the larger part of such lands is now ocenpied by sugar-cane plantations, which are to be fonnd on every important island of the group. There

1020. Hawaiian Islands. The chief horticultural regions are at A, B, D, E,
are some extensive coffee sections on the island of Hawaii, particularly the district of Kona, whose coffee has established a reputation for peculiar excellence of flavor. There are no large areas devoted to horticulture, but perhaps the most important horticultural regions, at the present time, are on the islands of Hawaii and Oahu. Some of the elevated lands of Maui help to supply the Honolulu market with potatoes. The main horticultural areas are designated on the map by the letters A, B, D, E.

Present Status of Horticulture. - As will he seen from the forcgoing statements, horticulture is as yet quite undeveloped. Almost all the scientific effort and investigation in agriculture (using that term in its wider meaning) have been devoted to sugar-cane, for until recently the sugar planters' experiment station has been the only agricultural institution in the islands. There is, howefer, some considerable variety of horticultural products, and the cultivation of some of these has assumed commercial proportions. Among the latter in the field of pomology is the banana, of which there are many different varieties in the country. Some of these grow wild in the woods, as do also oranges and limes. Bananas and a few pineapples are the only fruits grown to any extent for export, though the people are awakening to the horticultural possibilities, and some are planting other fruits. The export of bananas for the year 1898 amounted to 76,000 bunches, and the home consumption, though no record is taken of it, would doubtless be found considerably greater. These are raised chiefly by the Chinese, but there are also white men in the business who, by their snperior still, produce a finer fruit.

The oranges are seed....gs almost without exception, but some of these are, in the writer's opinion, well worthy of propagation, having a flavor which many prefer to that of the fruit imported from California. The island of Hawaii produces most of the home-grown oranges in the market, but the gardens of all the islands have their orange trees.

Grapes for the Honolulu market are grown for the most part by the Portuguese within the limits of the city. The Isabella and the Concord are the only two varieties that have succeeded thus far, but there can be no
doubt that this is due merely to the lack of scientific and persistent effort. Peaches thus far have failed, and possibly for the same reason. They, however, do not take any decided season of rest. Grapes are pruned twice per year frequently-in fact usually-and are made to produce two crops per year. Among the other fruits which are much esteemed are the cocoanut, papaya (Carica Papaya), alligator pear (Persea gratissima), mango, fig, guara, lime, and other tropical and subtropical fruits. Apples have been grown on the higher elevations of Hawaii, but plums, pears and apricots have not yet been made to succeed to any extent.

Vegetable gardening is conducted chiefly by the Chinese, who grow most of the commoner and more easily managed vegetables. These are marketed from house to house in baskets, balanced on a pole over the shoulder. The taro (Colocasia), which when manufactured into "poi" forms the chief food of the natives, is also now grown chiefly by the Chinese.

In floriculture, asters and carnations and a few other flowers are produced by the Portuguese and natives in the vicinity of Honolulu for sale in the flower market, which consists of the open sidewalk lined with Hawailan men and women sitting against the buildings sleeping or smoking or making "leis." These "leis" (lays) are solid wreaths of flowers, which, according to Hawaiian custom, are thrown about the shoulders of friends departing on a royage. This is mentioned here since more flowers are probably sold in this form than in any other way. Many plants, such as carnations, violets, pansies and the like, when grown on the lower lands, are cultivated in boxes raised some distance from the ground, for the ground temperature seems to be rather too high to produce the best results. Hawaii is not quite so much a "land of flowers" to-day as in years gone by, for in recent years a most devastating pest, commonly known as the Japanese beetle, has driven the rose and other plants almost completely out of cultivation. This, which is the most important insect enemy to horticulture, has been comhated with its natural enemies in the way of fungi, and, though still a serious pest, its numbers are not so great as formerly.

Landscape gardening may be mentioned, since it bears so close a relation to horticulture. Much money has

HAWORTHIA

been spent in the "improvement" of home grounds, and some architectural gardening is to be found, but naturalistic landscape gardening is, as yet, in its infancy in the islands, though nature furnishes so many excellent types.

Possibilities of Horticulture. - There can be no doubt that the climates and the qualities of the soils are such as to give to this country a very brilliant future in the production of varied and superior horticultural prodncts. The amount of a vailable land, however, is limited, since the larger tillable tracts are already used in the production of sugar-cane, and will probably remain so oceupied. Still there are a good many small areas admirably adapted to horticulture.
Then, too, the matter of market is one which must be considered, since for all articles which cannot be shipped on a six days' royage, the cultivator is limited at present to but one city of about 30,000 inhabitants and another good-sized town. Again, the highly devel oped horticulture of California lies between Hawaii and the great American markets. These home towns, however, are likely to double and treble their present population during the next few years, and while there are to-day many tons of fruit and vegetables imported from California on every cold-storage steamer which arrives, there does not seem to be immediate cause for alarm regarding the market. An outlet for fruits and vegetables during the winter season is hoped to be found in California, and a colony of American settlers is now developing this trade.

Many minor industries are being tried, such as the eultivation of the ranilla bean, various fiber plants, the castor oil bean, and the like, and doubtless some of these will prove valuable additions to the agriculture of the country. The future of Hawaiian horticulture is not an easy subject upon which to prophesy at the present time, but one upon which many greatly interested in the country's welfare are now thinking. A government experiment station is greatly needed to aid in the solution of some problems connected with the subject.
J. E. Higains.

HAWKWEED. Hieracium. Various species of Crepis are known as Hawksbeard.

HAW0RTHIA (A. H. Haworth, an English botanist of the beginning of the century, who wrote much and well on succulents). Liliacea, tribe Aloinea. Acaulescent or short-stemmed succulents: lvs, mostly rather small, crowded in short or less commouly elongated rosettes: fls, white, rosy-striped, with somewhat irregular spreading limb, the style and stamens included. Cape region. Cultivation and propagation as for Aloe, Gasteria and Apicra, to which the genus is closely related.

Latest monograph, Baker, in Flora Capensis, vol. 6, 1896-7.

INDEX.

albicans, 25 ,
altilinea, 23
artichnoides, 24. a ristata, 23 . asperula, 19. attenuata, 7. coarctata, 6 . concava, 16. cuspidata, 20. cymbrefolia, 16. eymbiformis, 16 expansa, 3. fasciata, 8 . herbacea, 22 .
hybrida, 13. levigata, 25
levis. 25.
limpida, 23. major, 9 .
marginata, 25.
Margaritifera, 9 .
mirabilis, 17
mucronata, 23.
pumila, 22.
Radula, 12.
Radula asperior, 10.
recurva, 15.

Reinwardtil, 5
Reinwardtiivirulis reticulata, 22 . 6 . retusa, 19.
rigida, 3.
rugosa, 10.
scabra, 4.
subulata, 11
tessellata, 14
tortuosa, 2.
triangularis, 1.
turgida, 21.
viscosa, 1.
A. Foliage on an elongated stem. (Aspect of Apicra.) B. Les. concare, never coarsely whue-dotted.

C. Arrangement of lts. S-ranked.

1. viscosa, Haw. (Alòe viscòsa, Linn. A. triangularis, Lam. A plera viscossa, Willd.). Lrs, broad and short, densely imbricated, appressed, with spreading apex, minutely scabrous or viscidly punctate. B.M. 814.-In the type the leaf rows are vertical, but several marked varieties occur, in some of which they are prominently spirally twisted.
2. tortuoss, Haw. (Alde tortuosa. Haw.). Lis, more elongate, less crowded, not spreading at apex, in strongly twisted rows, scabrous. B.M. 1337 (as Aloe rigida).Varies into several named forms.
cc. Arrangement of les. many-ranked: stem shorter.
3. rigida, Haw. (H. espínsa, Haw. Alde rigida, KerGawl. A. expánsa, Haw.). Lvs, spreading or recurved, somewhat attenuate, scabrous on the back. L.B.C. $15: 1430$.
4. scàbra, Haw. (.Alde scabra, Schult. f.). Lvs. suberect in a shorter rosette than usual, thick and rather obtuse, nearly plane above, both faces rugose-scabrons.

BB. Les. mostly biconvex, white-dotted.

5. Reinwardtii, Haw. (Atдe Reinuavdtii, Salm-Dyck) Fig. 1022. Lvs, erect, often plano-convex, inflexed at apex, very acute, somewhat veined beneath, the back or both faces with numerous elerated wbite tuhercles in more or less evident rows.
6. coarctàta, Haw. (H. Reinicardtii viridis, Alde coarctita, Nchult. f.). Lrs, thicker, clearer green and more succulent, strongly biconvex, the back with a few scattered, scarcely elevated whitish dots.

7. Hawalian vegetation. Showing the Royal Palin as it grows in Honolulu.

AA. Foliage in a compact rosette.
B. Murgin of les, not horny.
C. Shape lis. lanceolate. (Aspect somerhat of Aloe humilis.)
D. The las. coarsely whifetuberculate.
7. attenuáta, Haw. (Alòe attentata, Haw. Apicra attenudta, Willd.). Lvs, thick, attenuate, rigidly spreading, rather concaro-convex, scabrous or often white-dotted above, the back with the white tubercles mostly in transverse rows. B.M. 1345 (as A loe Rudula).
8. fasciàta, Haw. (Alo e fascidta, salm-Dyck. Aplera fascidta, Willd.). Lvs. more turgid, suberect, merely acute. not scabrous the large white dorsal tubercles confluent in rather distant transverse bands.
9. margaritifera, Haw. (H. major, Duval. Aloe margaritifera, Burm.). Lvs. turgid, spreading, merely acute, both faces with scattered coarse white tubercles. Which often turn green on the upper surface. P. 4.57 . Varies iuto several named forms.

DD. The lvs. less conspicuously white-luberculate.
10. rugòsa, Bak. (Alde rugosa, Nalm-Dyek. II. Ridula aspèrior). Lvs. long attenuate, spreading, plano-convex, both faces with irregularly placed, rather coarse greenish tubercles.

1022. Haworthia Reinwardtii.

11. subulàta, Bak. (Alə̀e subuldata, Salm-Dyck). Like the preceding, but the scattered or rugosely confluent tubercles very small, whitish.
12. Rádula, Haw. (Alue Rádula, Jacq. Apicra Rádula, Willd.). Lrs. shorter, the white tubercles finer. Cape.
13. hybrida, Haw. Lrs. short, more turgid, the upper face somewhat rugose, the lower with scattered green tubereles. Cape?
cc. Shape of lis. orate to delloid, succulent, not tuberculate, spreading, the rosette often somerhat elongated.
14. tessellàta, Haw. (Alde tessellàta, schult. f.). Lvs. acute or acuminate, setosely denticulate, scalrous beneath, the smonth upper surface with pale lines anastomosing in squares.
15. recúrva, Haw. (Alde recuirra. Haw. A piera recuirva, Willd.), Lvs, entire, scabraus beneath, the smanth upper surface longitudinally pale striate. B.M. 1353.
16. cymbiformis, Haw. (H. concàıa, Haw. Al̀e cymbiformis, Haw. A. cymbefólia, Schrad. Apicra cymbefolia, Willd.). Lvs. entire, smooth, rather obtuse, longitudinally striate. B.M. 802.
cce. Shape of le's. cuneately prismatic, pellucid.
D. The lis. ereet, obliquely truncate, with deltoid, palestriate apes.
17. mirabilis, Haw. (Alde mivíbilis, Haw. Aplera mirábilis, Willd.). Lvs. ciliate-denticulate on margin aud keel, sparingly tuberculate beneath. B. ⒈ 1354.
18. aspérula, Haw. (Alòe aspérula, Schult. f.). Lvs. entire, finely scabrous.
19. retùsa, Haw. (Alde retùsa, Linn. Apiera retùsa, Willd. Catevila retirsa, Medic.). Lvs. entire, smooth. B.M. 455.
nn. The lus, erecfo-spreading, pointed, smooth.
20. cuspidàta, Haw. (Alde cuspidèta, Schult, f.). Lrs. stout, rather concave, entire, nearly erect, the setulose apex obscurely longitudinally or reticulately striate and sometimes truncate, but very abliquely so.
21. türgida, Haw. (Al应 tírgila, Schult. f.). Lvs. small, spreading, very turgis, acute, eutire, longitudinally striate.
22. reticulàta, Haw. (Alòe reticuldta, Haw. A. piemila, Linn. A. herbàcea, DC . A. aruchnoldes reticulata. Aplera reticulatu, Willd.). Lvs. as in the last, or slightly eiliate au the angles, the striations anastomosing. B.M. 1315. L.B.C. $14: 1354$.
23. altilinea, Haw, (H. mueronita, H. limpida and H. uristata, Haw. Alöe alfilinér, Schult. t.). Lrs. entire, aristately pointed, longitudinally striate.
24. arachnoides, Haw. (Alde a rachnoidea, Mill. A piera arachnoides, Willd. Catecda arachnoidea, Medie.). Lvs, more flattened-triquetrons, aristately pointed, the angles ciliate-toothed. B.M. 756.

BB. Margin and keel of les. horny-bordered.
25.albicans, Haw. (H. lovis, Haw. Alde lerigdta, Schult. A.álbicans, Haw. A. marginàtı, Lam. A plera álbicans, Willd.). Lvs. broad, 3-sided, acute, entire, smooth or with a few dorsal tubereles, white-bordered. B. M. 1452 .

William Trelease.
HAWTHORN. See Cratogus.
HAWTHORN, EAST INDIAN, Raphiolepis ovata.
HAZÁRDIA (Barelay Hazard, Californian botanist). Compósiter. This includes a small Califoruian subshrub, with silvery leaves and peculiar, not pretty, heads of fls., borne in August. It is suitable for rockeries and bedding out, but there are better woolly-leaved plants in cult. The genus has about 4 species of stout, tomentose, deciduous shrubs of the islands off the coast of Calif.: heads white-tomentose, numerous, in large cymose panicles, which terminate the branches; rays $5-8$, neutral, very short, ligulate or irregnlarly 5 -toothed or lobed, pale yellow changing to brownish purple. In $1887 \mathrm{E} . \mathrm{L}$. Greene made this new genus, remarking that it differs from Diplostephium mainly in habit, the paucity, reduced size, and different color of its rays. It also lacks the tuft of hairs characteristic of the style-tips of Corethrogyne.
det0nsa, E. L. Greene. (Corethrógyne detónsa, Greene). Lovs. of firm texture, $3-5 \mathrm{in}$. long, abovate-ablang, coarsely serrate; uppersurface of older lvs. partly divested of the white tomentym which covers all other parts of the plant.
F. Franceschi and W. M.

HAZEL. See Corylus. Chilean Hazel is Gevuina Avellana.

HEAL-ALL. Brunella.

HEART'S EASE. Old English name for Pansy, Viola tricolor.

HEARTSEED or BALLOON VINE, Cardiospermum.
HEATH, HEATHER. The common Heather of Old World literature is a hardy plant, Calluma eutgaris. The greenhouse Heaths are from the Cape of Ciood Hape and Europe, and belang to the genas Erica. For St. Dabeoc's Heath, see Dabacia.

HEATING is discussed under (rreenhouse Ifeating, Construction and Management.

HEBECLINIUM. All referred to Eupatorium.
HECHTIA (J. G. H. Heeht, who died in 1837). Bromelideco. A genus of 15 species of Dlexican succulent plants, one of which is perbaps cult, in a very few fanciers' collections of tender plants for its dense rosettes of recurved spiny lvs., which are purple abore from the middle to the tip and silvery beneath. The genus is distinguished by having diœcious fls. The fls, have no decorative value, being one-third of an inch across, white, in
small sessile, axillary, yellew-bracted heads, borne at intervals of an inch or so on a very slender scape 2 ft . long. Give perforated pots and high temperature. Mon. by C. Mez in DC. Mon. Pban. 9:543-551 (1896).
glomeràta, Zucc. (II. Ghièsbrechtii, Lem.). Los. 10-18 in. long, rigid, leathery, $9-12$ lines wide at base, narrowed gradually to the sbarp-ponted apex: bracts sheathing, acuminate: corella 3-lobed nearly to the base; stamens 6 : ovary 3 -celled. B.M. 5842 . I.H. $10: 378$. - Soil of chopped moss, old manure and charcoal.

HEDEOMA (Greek, sweet smell). Labiatce. AMERIcan Pennyroyal. This is a plant of no ornamental value, but the seeds are offered by our nurserymen to those who cultivate the plant for its medicinal oil, which is commonly sold in drag stores. It is claimed to be offensive to mosquitoes, and the plant can be easily naturalized in dry, sandy spots. It is common in woods and along roads. The genns has about 16 species, all American. The Pennyroyal of the Old World is Mentha Pulegium, sometimes cult. for its lvs. and tops, which are used as culinary herbs.
pulegioldes, Pers. American Pennyroyal. Annual, 6-18 in. high: stem very slender, much branched, pubescent: lvs, opposite, orate to oblong-obovate, sparingly serrate in the upper portion, mostly obtuse at the apex and narrowed at the base, $1 / 2-1 \frac{1}{2} \mathrm{in}$. long: fls. in axillary elusters; corolla purple, 2-lipped, the lower one with 3 large lobes. July-Sep. B.B. 3:106.

HEDERA (ancient Latin name of the 1 vy). 1 rulidcere. Ivy. Ornamental evergreen climbing shrubs, with alternate, entire or palmately $3-5$-lobed, long-petioled lvs., inconspicuous greenish fls. in terminal, peduncled umbels, appearing in fall, and black, rarely yellow, red or whitish berries. Nomesmall-lvd, forms may be grown North if protected during the winter, but most of the larger-lvd. and variegated forms are too tender porth of the middle states. The lvy is a rery valuable plant for covering walls, rocks, trunks of trees and trelliswork, and sometimes climbs very high. It may also be used for covering walls in cool greenhouses, for screens in drawing-rooms and for banging baskets. It is a popular window-garden plant, enduring many uncongenial conditionsand thriving without bright sunlight. In shally

t023. Hedera Helix (X^{1} is .
Form with white-ribbed leaves.
places under trees it makes a bandsome evergreen carpet, and is also often used for borders of sbrubberies or flower beds. It grows in almost any soil, but best in a somewhat moist and rich one, and in shaded positions. The climbing or creeping branches do not flower; fls. are produced on erect, bushy branches, appearing on old, bigb-climbing plants only. Prop. by cuttings of balf-ripened wood at any time of the year in the greenhouse or in frames, or, in more temperate regions, in
the open ground in fall; gentle bottom heat will hasten the development of roots considerably; also increased by layers and by seeds. The slow-growing forms, especially the shrubby ones, are often grafted on cuttings of strong-growing varieties. Two species in Eu., N. Afr. and Asia. Fls. perfect ; calyx 5 -toothed; petals and stamens 5: ovary 5 -celled: fr. a 3-5-seeded berry. Many Araliads have been described formerly as species of Hedera wbich are now referred to otber genera. A good popalar monograph is Sbirley Hibberd's "The Jry: A Monograph, comprising the bistory, uses, characteristics, and affinities of tbe plant, and a descriptive list of all the garden Ivies in cultivation." London, $18 \pi^{2}$.

Hèlix, Linn. Ivy. English Ivy. Fig. I0®3. High climbing or creeping: 1rs. usually 3-5-lobed, dark green above, pale or yellowish green beneath, -these of the flowering branches entire, generally ovate: calyx with minute teeth; calyx, pedicels and tips of young branches covered with grayish white stellate hairs: fr. black, sometimes yellow. En., Canaries, N. Afr., Asia.-A very variable species, of which more than 60 varieties are cult, in European gardens. Some of the most remarkable are the following: Var. Algeriensis, Hort. Lvs, roundisb or broadly ovate, entire or sligbtly 3-lobed, rather large, bright green; a Fariegated form has the lrs. edged jellowish wbite. Var. arboréscens, Loud, (II. arborea, Hort.). Not climbing, forming an erect, low shrub: lvs, ovate to elliptic, entire. This variety is gained by using flowering branches for propagation. There are also some variegated forms, as Silver Queen, with silvery variegated lvs. Var. aurantiaca, André. Lvs. rather small, orate or triangular-ovate, entire or 3 -lobed, the middle lebe often with few coarse teeth, greyish green: fr. orange-red. R.H. 1884:84. Var. Canariensis, DC. Livs. large, roundish ovate, entire or slightly 3 -lobed, bright or yellowish green, to 8 in. broad, those of flowering branches often broader than long. Canaries. Tender. Var. Cavendishi, Hort, (rar. marginata minor, Hort.). Slow-growing, with rather small dull green lvs., cdged creamy white, striped red or pink infall. Var, chrysocarpa, Ten. (H. chrysocárpa, Walsh. H. poeturum, Bertol.). Lrs, rather small, usually 3 -lobed, grayish green: fr. yellow. Var. conglomerata, Hort. Slow-growing: Ivs, crowded, small, entire or 3 -lobed, undulate. R.II. 1890, p. 163 . Var. crenata, Hort. (H. vitifolia and H. digitìta nòva, Hort.). Similar to rar. digitata, but lobes shorter and broader, crenate at the margin, light green. Var. deltoidea, Hort. Les. rather small, bluntly deltoid, almost entire, blackish green, changing to dall purplish bronze in fall. Var. digitata, Loud. Lrs. rather small, deeply palmately lobed, with narrow lobes and prolonged middle lobe. M.D.G. I897:229. S.H. 2:237. Yar. Donerailénsis, Hort. Lvs. small, usually 3-lobed, with rather short, spreading lateral lobes: of conpact growth. Var. grácilis, Hort. Livs, rather small, with bread, short lobes, dull green, bronzy in fall. Var. Hibernica, Koelne (II. Scótica, Hort.). Lvs. large, with short and broad lobes. Var. lobata major, Hort. Similar to the preceding, but Irs. somewhat smaller, more dceply lobed and lobes narrower. Var. maculàta, Hort. (II. latifolia maculàta, Hort.). Similar to var. Hibernica: lrs. spetted and striped yellowish white. Var. Maderénsis variegata, Hort. Similar to var. Canariensis: Ivs, not or slightly lobed, edged white. Tender. G.C. II. 15:657. Var. marginàta, Hort, Lvs. broadly triangular-ovate, irregularly bordered sellowish white, striped red or piuk in fall: of somewhat slow growth. Var. marginata rubra, Hort. (vars, tricolor, etegantissima, C'ultisi, Hort.). Lke the preceding, but edges of lvs. becoming red in tall. Var. marmorata, Hort. Similar to var. Hibernica, but lvs, irregularly blotcbed yellowish wbite. Var. palmata, Hort. Similar to var. digitata, but lobes broader, and middle lobe not much prolonged. Var. rhómbea, Arb. Kew. (1. rhómber, Sieb. \& Zucc.). Lvs. rather small, gencrally broadly orate, entire or sligbtly lobed, those of flowering branches elliptic or rbombic-ovate. narrowed toward tbebase. Japan. Var. rhombea-variegata, Hort. (H. submargindta, Hibberd. H. Japónicu zariegita, Hort. H. Japónica argéntea, Hort.). Lvs. like those of the preceding, but with narrow white margins. Var. sagittifolia, Hert. Livs. rather small, with triangular middle lobe and short, blunt lateral lobes,
dall dark green. Var. variegàta, Hort. Lss. lighter green, edged and blotched yellowish white.

Colchica, C. Koch (H. Ragneriana, Hort. H. corideea, Hibberd). High climbing, but nsually less bigh than the common lvy. Lrs large, broadly ovate, cordate, almost entire, rarely slightly 3 -lobed, bright green, of firm texture, those of flowering branches generally ob-long-ovate: calyx lobes triangnlar-ovate, conspicuous; calyx, pedicels and tips of yonng branches coated with golden yellow seales: fr. black. W. Asia. Var. dentàta, Hibberd (H. dentata, Hort.). Lss. with remote small teeth, of somewhat thinnertexture. G.M. $30: 388$. Var. purpurea, Hibberd. Lvs. purplish.

Alfred Refder.

HEDGES. Living green fences are used for two distinct purposes-defense and ornament. Ornamental Hedges may be rendered defensive by stretching tightly 2 or 3 strands of barbed wire through the center of the Hedge. So far, no plant has yet been tested that meets all the requirements of the farmer for a truly impass able barrier, althongh the Osage orange (Mitclura akrantiaca) possesses more recommendable features than any other hardy tree. This tree, however, is not hardy in the northernmost states. Next to this, perbsps, ranks the honey locust (Gleditschia triacanthos), with many warm admirers and adrocates. The hawthorn of Europe (Cratagus Oxyacantha) may not be planted in this country with any chance of success, owing to fungous enemies, and all of the large-sized thorny shrubs fail in important characters. A perfect thorn Hedge reqnires nnremitting eare, and must conform to an established rule, the most important being entire freedom from weeds and a systematic pruning. The preparation of the soil for a Hedge consists in thoroughly plowing and cultirating an area 6 feet wide and the length the Hedge is proposed to extend. If this spaceshould be fertilized and cropped the year previons to planting, vegetation will be greatly accelerated. The plants must be shortened, both top and root, and set 9 inches apart in a single row. The double row, as formerly adrised by some growers, is now practically obsolete, and justly so, being difficult to cultivate and preserve free from weeds. A trench or furrow is opened through the center of the cultivated strip of a snfficient depth to admit the roots without bending In setting, the soil must be made firm with the aid of a rammer, a practice nnexcelled for aiding growth, and, indeed, preserving plantlife after removal. Pruning is simply an annnal necessity from the first, excepting when the Hedge is intended to be plashed, and even in such cases, after the laying process, pruning mast never be omitted during summer. This work is greatly accelerated and conse quently cheapened by shearing when the plants are young and tender, say during the month of July. As to the best ontline, a plain triangle, or what may be more sightly, the cnrvilinear or Gothic arch, is desirable, and a flat top is to be disconraged, as a body of snow lodged on the latter invariably injures the symmetry and beauty of any Hedge. The ornamental Hedge proper may be either evergreen or deciduous, and yet in the so-called California privet (Ligustrum oralifolizm) are united, to a certain extent, botb conditions. Taking into consideration its almost faultless character for the purpose, we may assign it a prominent position at the head of the list.

Among strictly evergreen plants, the Norway spruce (Picea excelsa) succeeds most satisfactorily. For a combination of cheapness and general utility, the American arborvitæ (Thuja occidentalis) may be placed next, although for decided beauty nothing ean supplant the common hemlock (Tsuga Canadensis). The number of available deciduous trees and sbrubs suitable for Hedging is so extensive that to specify even a few is unnecessary. Flowering shrubs may, bowever, claim preference, and such attractire species as Cydonia Japonica, Deutzia scabra, some of the spireas, viburnums, etc., may be employed with good effect. Species of Berberis are occasionally used with marked success, especially the purple-leared variety, although rather formal in character. The most serious annoyance to the Hedge grower is the presence of unwelcome woody vines, such as poison iry (Rhus Toxicodendron), Japan evergreen
honeysuckle (Lonicera Japonica), etc., and the only remedy is to persistently remore them by hand as soon as discovered. The attacks of insects may be treated similarly to those which injure our trees and shrubs. The charming little Berberts Thunhergi is a model of beauty and utility, owing to the brilliant autumnal tints of its foliage and abundant crops of searlet fruit. Otber grod plants for special uses are Russian mulberry, Rhamnus, and Ligustrum Ibofa. Josiah Hoopes.

HEDYCHIUM (Greek, sweet suow; the large white fls. are sweet scented). Scilamindcer. Butterfly Lily. Ginger Lily. Garland Flower. Something like 25 tropical Asian erect, leafy, rbizomatous herbs allied to canna and ginger. Fls, in a terminal spike or thyrse; stamen 1, with a 2 -locnled anther surrounding the style; staminodia sometimes present; flower-tube slender, with six dirisions, one of which is eularged and lip-like. Hedychiums are strong-growing plants, very ornamental, both in foliage and in flower. They are essentially fall bloomers, althongh they may be made to bloom more or less continuously under glass. After blooming, gradually dry off the rhizomes, and let them rest for a time. Pot them up in spring or early summer, and give them rich soil and plenty of water and an occasional sppply of liquid manure. The rbizomes may be divided every two or three years. They need an abundance of water. In fact, the pots may be set balf their depth in water, and H. coronarium is often immersed until only the crown is emersed. The common white-flowered species is Π. coronarizm. This re quires warmhouse treatment for best resnlts, although it often flowers well when plunged in a warm, balfshady place in the open. The species do not stand frost, but they may be left out in the south if well protected. The flowers are very fragrant; in fact, their odor may be too heavy for a small room.

A. Fls. white.

coronarinm, Konig. Three to $5 \mathrm{ft} .: 1 \mathrm{ss}$, canna-like, green, pointed: tis. very large ($3-1 \mathrm{in}$. across), longtubed, pure white or the lip sometimes blotched green, the 3 onter segments narrow, the lip large and erect and more or less lobed. India. B.M. 708 . L.B.C. 6:507. - Handsome and worthy. Needs warm quarters. Said to have been sold as Myrosma carncefolia, but that name belongs to a wholly different plant.

AA. Fls. yellow or red.

flàvum, Roxbg. Fls. large, orange; corolla tube cylindrical, $2^{\frac{1}{2}}$ in. long; segments spreading, the outer ones linear, acute and an inch or so long, the lip very large and rounded, retuse; stamen not exserted. India. B.M. 3039 (and 2378 ?).

Gardnerianum, Roscoe. Tall: fls, light yellow, odd, short-stalked in the terminal spike, but the red filament long-projected beyond the segments; lip oral and short 3 -toothed, the other segments narrow: fr. red and showy. India. B.M. 6913. B.R. 9:774. J.H. I11. 32:239 (in fruit). G.C.III. I1:176 (plate erroneously labeled H. coronarium). - The best of the genus, and hardier than Π. coronarium.
caccineum, Buch.-Ham. Fls. rather small, searlet, the filament long-projected; lip nearly or quite entire: fl.bracts conspicuous. India. L.B.C. 8:705. L. H. B.

HEDYSARUM (Greek for sweet smell). Leguminỏse. Two or 3 North American herbs, and about 60 in the Old World. Perennial berbs or subshrabs, with odd pinnate lvs., and often showy racemes of red, purple or white, small pea-like fls.; calyx 5 -cleft, the teeth nearly equal Standard obcordate or oborate; keel nearly straight and Jonger than the wings; stamens 9 and I; fr. a flattened jointed pod. Very closely allied to Desmodium, but the latter genus has 3 -foliatelrs. Many of the Hedysarums are attractive border plants. They are of easiest culture in a light and open, well-drained soil. Gire a sunny place. Hardy. Prop. by division and seeds. For the Sainfoin, sometimes known as H. Onobrychis, see Onobryekis.
A. F'ls. normally red (varying to white).
caronảrinm, Linn. French Honeysuckle, Perennial or biennial, $2-1 \mathrm{ft}$, tall, branchy. An old garden plant
with red, fragrant fls., erowded in axillary spikes or racemes: lvs. with $3-7$ pairs of elliptic or roundish, somewhat pubescent lfts. Eu. Var. \&lbum, Hort., has white fls.

AA. Fls, normally purple (varying to white).

multijugum, Maxim Hardy perennial of angular, straggling growth, $2-5 \mathrm{ft}$. high, very showy, and worthy of general cult. Fls. violet or pusplish magenta, with yellow blotches, in racemes $8-18 \mathrm{in}$. long, all summer: lvs, $4-6$ in. long, containing 6-12 pairs of grayish green oval, small lfts. Mongolia. Gn, 53:1170. G.(‥11I. 18:8, 9.- Of recent introduction. Very fine for rockwork.
boreale, Nutt. (H. Americanum, Britt.). Erect or half-decumbent herh, simply or nearly so, $1-3 \mathrm{ft} .: 1 \mathrm{fts}$. 5-10 pairs, glabrous, oblong or oblanceolate: fls, violetpurple, varying to white, the calyx teeth orate-acnte and shorter than the tube. Lahrador and northern N. Englaud across the continent.

Mackenzii, Richards. Much like the last, but somewhat pubescent: fis. larger, calyx reeth awl-like and acuminate, and longer than the tube. Colo. N. and W.
L. H. B.

HEDYSCEPE (Greek, sweel covering). Palmicea. EMBrella Palm. This iucludes oue of the many palms knowu to the trade as a Kentia, and resembles that genus in habit and foliage, but is distinct in flower. In Kentia the fls are arranged in 4 ranks, and the ovule is fastened at the hottom of the cell, while in Hedyscepe (and its cultivated allies, Kentiopsis, Veitchia, Nenga, Archontopbcenix, Rhopalostylis and Dictyosperma) the fls, are spirally arranged in the branches of the spadix, and the orule is fastened at the side. From the allies above mentioned Hedyscepe is distinguished by the following characters: staminate fls, with narrowly lanceolate sepals, $9-12$ stamens, with lowg filaments ; pistillate fls. with petals like the sepals and valvate at the apex. As a house plant, H. Canterburyana is dwarfer and more spreading than the two Howeas, and has a lighter shade of green.
H. Cauterburymua, a very handsome palm, is the only species belonging to the genus, and, like the important Howeas (or Kentias of commercial horticulture), is only known in a wild state on Lord Howe's lsland, where it

1024. Hedyscepe Canterburyana.
is known as the "Tmbrella Palm" from the recurving liabit of its foliage. It grows at a greater altitude than the Howeas, not appearing below the 900 -feet level, and from this it may be inferred that a slightly lower temperature is more sujtable for this palm; but in a general way the same conditions as those required by the so-called Kentias will give good results with this subject, namely, a night temperature of 60° to $62^{\circ} \mathrm{F}$, moderate shading throughout nearly the whole year, plenty of water, and a rich and rather heary soil. These palms respond freely to generous treatment. As a commercial palm, H. Canferburyana is not very popular as yet, partly owing
to the higher cost of seeds and the frequently low percentage of germination, and partly from the fact that in a young state this palm is by no means a rapid grower. In regard to hardiness of foliage, it is fully equal to the Kentias, and for gracefulness and symmetry of growth will compare favorably with any of the commercial species. In S. Calif. it is cult. outdoors.

Canterburyàna, H. Wendl. \& Drude (Kéntia Canterburyana, F. Muell.). Usibeella Palm. Fig. 1024. Tall, spineless palm, with a thick, stout candex: Ivs. terminal, dense, equally piunatisect, the numerous segments linear-lanceolate, acuminate, the lower nerves reeurved at the base, rather remote from the margin; rachis arched, recurving: spaaix with a short peduncle, and thickened, flexuose branches; areola lax: fls, medium: fr . ovoid, large. R.H. 1873, p.218. F.R. 1:85. The illustration (Fig. 1024) is adapted from Martius.

Jared G. Smith and W. H. Taplin.
HEERIA (commemorative of Oswald Heer, Swiss botanist). Melastomìcea. Includes Helerocéntron. According to the latest monographer (Cogniaux, DC. Monogr. Phaner. 7), the genus has 6 Mexican and Central American species. They are herbs or shrubs, erect or prostrate, with opposite membranaceous pinnately nerved (rarely 3 -nerved) entire lrs., and white, rose or purple irregular fls. in panicles or rarely solitary. Not to be confounded with Centradenia, which has winged stems, unequal-sided lvs, and calyz teeth small and much shorter than the calys tuhe. Stamens 8 , very unequal, the 4 larger ones with long appendages or connections: ovary loculed: petals 4.- Warmhouse plants, requiring the culture of Centradenia, but grown chiefly for the fls., whereas Centradenias are grown also for foliage. H. ròsea, Triana (Heterocéntron Mricànum, Naud., H. roseum, Br. \& Bouché) is the only species in general cult. A foot or more high, with 4 -angled (but not winged) stem: Irs. elliptic, obtuse or acute, pinnate-nerved: fls. Jright rose, in a large, terminal panjcle, showy. B.M. 5166. 1.H.3:97. Var, álba, Hook., is a white-fld. form.
L. H. B.

HELENIOPSIS. See Heloniopsis.

HELENIUM (possibly the autborhad in mind Helenus, the son of Priam, but he left no record of the application of this name). Compósito. Sneeze. Weed. About 25 species of hardy annual and perennial herbs, bearing yellow fls. from early summer to late autumn. Only the perennials are in cultivation. Stem erect, usually branching above: lvs. alternate, narrowly to broadly lanceolate, entire or toothed, glandular-dotted; petiole and stem sometimes winged: heads solitary or corymbose, yellow or brownish.

The genus closely resembles Helianthus, but differs in haring elongated. often top-shaped fruits, which are never compressed and are usually silky rillose; while the fruits of Helianthus are generally more or less 4 sided and are smooth. In Helenium the receptacle is naked; in Helianthus it bears paleaceous bracts, which subtend the florets.

Heleniums thrive hest in a rich, moist soil, with a sunny aspect, and are propagated by seeds, cuttings or division. All the species are very easily grown, the only serious difticulty heing a white aphis which sometimes attacks the roots. If plants look unkealthy they should be lifted, washed with an insecticide and reset in a new place. The commonest species in cult. is H, autumnale, but perhaps the most valuable species for general plant ing is H. Hoopesii, which is one of our earliest blooming composites, and is also desirahle for the horder or for ent-flowers. H. Hoopesii, Bolanderii and aufumbale will give bloom in succession from May-Oct. The first two are also attractive when grown in pots, but they do not flower from seed the first year, either in pots or in the open.
A. Stem and branches vinged.

B, Disk yellow.

autumnàle, Linn. (H. grandiflòrum, Nutt.). Fig. 1025. Stem 2-6 ft. high, roughish, leafy: lvs. mostly toothed, smooth: heads 1-11/ in, across, numerons, borne at the end of short, very leafy stalks: rays drooping, 3-cleft. lemon-yellow to rich orsnge; disk fellow. July-Oct

Moist places, Can. to Fla. and west to B. C. and Ariz. B. M. 2994. Gin. $29: 533$; 55:1216. A.G. 12:682. G.C. 11I. 10:433. - Very showy. It has distinct merit for the hack of borders, hut is more appreciated in Europe than in America. There are several garden forms: var. pumilum is $1-2 \mathrm{ft}$. high, a very free bloomer, and is largely grown for cut-flowers in some places; var. grandiflorum

C'ommonly known as Sueezeweed.
and var, supérbum are uuusually vigorous and large-fld.; var. striatum has a maroon and gold disk with yellow rays variously striped and splashed with rich crimson. J. H. III. 31:293. This should be distinguished from the striped forms of H. nudiflorum.

BB. Disk brown or purplish.

C. Lers. all entire: heads solitarg or few, long-stalked.

Bigelovii, Gray. Stem $2-3 \mathrm{ft}$. high, nearly smooth: upperlrs. narrow to oblong-lanc solate, lower spatulate: heads commonly $11 / 2-21 / 2$ in, hroad: rays $3 / 4 \mathrm{in}$. long: flower-stalk slender. Aug. Wet ground, Calif. S.H. 1:373.

Bolánderi, Gray. Stem I-2 ft, high, stout, somewhat pubescent: lvs. oblong to ovate-lanceolate, the lower obovate: heads commonly 3 iu . wide: rays often 1 in . long: flower-stalks thick, hollow. June-Sept. Low ground, N. E. Calif. Gn. 29, p. 19I, R.H. 1891, p. 377.Sometimes grown as H. grandiflorus.
cc. Lowerlus. tootherl: heads numerous, corymbose, short-stalked.
nudiflor rum, Nutt. Stem 1-3 ft. high, roughish, leafy : lower lvs, spatulate, toothed: heads $1-1 \frac{1}{2} \mathrm{in}$, across: rays wedge-shaped, drooping, yellow, brown-purple or striped with hoth colors. July-Oct. Moist snils, N. C. to Fla., west to III. and Tex.-A garden form, var. grandicéphalum striàtum, bas fls. over 2 in. across.

AA. Stem and branches not winged.
Hoopesii, firay. Stem $1-3 \mathrm{ft}$. high, stout, slightly tomentose when young, but soon smooth, branching ahove into an umbel of several to many fls.: Ivs, thickish, entire: heads usually borne singly ou long stalks, commonly 3 in. wide : rays but slightly drooping; disk yellow. May-Sept. Rocky Mts. - A very fine horder plant, and especially valuable for cut-fls.
H. Doùglasii, Hort. - Monolopia major.-H. tenuifôlium. Nutt. Annual. A weed in the southern Atlantic and southwestern states. Stem 8 in . to 2 ft . high, very leaty: lvs. threadlike, entire, sessile, often whorled. Va., Fla., west to Mo. and Tex. S. IV. Fletcher.
HELIANTHELLA (Greek, resembling Helianthus). Compossta. Eleven species of Lardy perennial herbs from North Amer., with showy yellow fls. horue in autumn. The species described below is advertised hy a western dealer in native plants. Stem commonly uubranched: lvs. mostly seattered and sessile, linear or lanceolate, entire: beads solitary or few, with yellow rays and a yellow or brownish disk. The single species in cultivation is easily grown in a variety of soils, aud is propagated by seeds or by dividing the rootstocks.

Helianthella belongs to a group of genera distinguished from Helianthus by laving the fruits laterally compressed instead of thick and obtusely angled. Other cultivated genera of this group are Actinomeris, Encelia and Verbesina, which are distinguished from one another by combiuations of fruit and pappus characters.
quinquenervis, Gray. Stem $2-4 \mathrm{ft}$. high, nearly smooth: Ivs. noostly opposite, 4-9 in. loug: heads 3-5 in. broad, long-stalked, solitary or a few below in the axils of the lvs., with an involucre of large, leafy bracts rays pale yellow, I $1 / 2 \mathrm{in}$. long. June-Sept. Roekv Mlts.
S. W. Fletcher.

HELIANTHEMUM (Greek for sun flower). Cistacere. Rock Rose. Sun Rose. Frostweed. Herbs or subsbrahs in temperate and warm climates of Old and New Worlds. The species are confused, and estimates of their numbers vary from 30 to more than 100 . Fls. opening in the sun, mostly yellow, usually in terminal clusters; petals 5, soon falling; stamens many: ovary imperfectly 3 -loculed, containing numerous seeds; style I: stems bard and more or less woody: Ivs. small, linear or oblong, entire, often grayish. Helianthemums are evergreens or nearly so, forming low mats of herbage, and hearing a profusion of fls, in hot weather. They are especially adapted for rock work and horders. They thrive in rather poor soil. Although the following species are fairly hardy in the North, they profit hy a protection of mulch. Prop. mostly by division; also by seeds and by cuttings of half-ripe wood. See Cistus. Sweet's "Cistinew" (1825-1830, London) is the monumental work on these plants. See, also, Nicholson in Gn. 26, p. 420, for a running account of the garden forms.

Canadénse, Michx. Frostweed. Diffuse, 2 ft . or less high, caulescent : Ivs, oblong, linear, or oblanceolate, nearly sessile: fls. solitary or 2 together, 1 in. across, bright yellow, the sepals hairy, In rocky and sandy soil, Me.to N.C. and Wis. G.W.F.29.-Sold by collectors. The later axillary branches produce small apetalous fls.

Chamæcistus, Mill. Usually less than I ft. tall, procumbent, forming mats: lvs. linear-lanceolate or hroader, numerous at the base of the plant, small, hoary beneath but green and bairy above: fls, normally yellow, in loose, more or less nodding racemes, on hairy pedicels. Eu., N. Afr., W. Asia. - This is the commonly cult, species, running into many forms. It is much less grown in this country than in Eu. It is an excellent rockwork plant. There are double-flowered forms; also forms with red and copper-colored fls. The following names occurring in trade lists are to be referred to this species-group: angustifolium, álba-plino, auránteaplèno, cròceum, ç̀preum, grandiflòrum, hyssopifòlium, lĭtea plèno, mutábıle, purpùrea-plèno, vhodánthemum, rhodínthum, variibile, vulgàre.
ocymoldes, Pers. (H. Algarvénse, Dun. Cistus Algarvénse, Sims). Shrub, 2-3 ft., twiggy, nearly erect, hoary-pubescent: lvs. opposite, linear-oblong or spatulate, the tips recurved: fis. bright yellow with a purple eye, $11 / 2 \mathrm{in}$. across, in corymbose clusters. Spain and Portugal. B.M. 562t.-Little known in this country. Hardy in England.
formòsum, Dun. (Cistus formòsus, Curt.). Spread. ing, much-branched, tomentose, but becoming nearly or quite glabrous with age: Ivs. elliptic to lance-obovate,
short-stalked: fls, large (2 in . across), yellow, with h]ack eye, on slender, hairy pedicels. Portugal. B.M. 264. Gu. 26:466; 53, p. 131. G.M. 34:246. - Perhaps the most showy of the genus. Excellent for rockwork. The branches are erect, reaching $3-4 \mathrm{ft}$. Not hardy North.
umbellàtum, Mill. Diffuse, 1-2 ft. tall: Ivs. small, linear or linear-lanceolate, revolute on margins, more or less viscid: fls, umbellate or whorled, white. En.

L. H. B.

HELIANTHUS (Greek, helios, the sun, and anthos, a flower). Compósitar. Sunflower. This genus iacludes the common anmual Sunflower, and about 15 hardy herbaceous perenaial plants, rather coarse in habit, with yellow fls., which are mostly large, numerons and borne in autumn. Altogether there are about 80 species, mostly N. American. Lvs. generally opposite below and alternate above, but this is not a constaut character: heads pedunculate. solitary or corymbose, terminating the stem or bracches: disk-fls, perfeet, yellow, brown or purplish, with a tubular 5 -limbed corolla; rays neutral, yellow. The genus is very variable, and there are also many natural hybrids; hence the species are difficult to delimit. The old notion that the flower-heads follow the suu from east to west has recently been substantiated for H. cumuus. (See Botanical Gazette, vol. 29:197.) Garden monographs are found in Gin. 27, p. 66; 45, p. $372 ; 49$, p. 326 and 55 , p. 146.

Sunflowers are of the easiest culture, and are adapted to a variety of soils. They are seen to best advantage when planted inmasses, ratherthan assolitaryspecimens, and should be given plenty of room, being gross feeders.

Most Sunflowers, especially H. anиuиs, are too coarse to be harmonious near the house, but find an effective setting in the backgrouud, against the shrubbery border. A few species, however, especially H.orgyalis and H. debilis, are worth growing for their foliage alone. The annual species are prop. by seeds or cuttings; the perennial chiefly by division. All varieties of H. mulfiflorms root readily from both soft and hardwood euttings. The double forms rarely produce fertile seeds and must be prop. by division. The seeds of annuals may be planted directly in the border, but it is best to start them indoors in March. Pereanial kinds, particnlarly forms of H. muttiflorus, should be taken up in late fall or early spring, every two years, and the rootstocks divided and replanted; otherwise the roots will ramble away, and the flowers will deteriorate. All thrive in a light, dry soil; but $H_{\text {. annuws and }}^{\boldsymbol{H}}$. giganteus may be used to advantage for drying malarial spots. Sunflowers do not thrive in very shady places.
S. W. Fletcher.

Sunflowers ($I I$. anинus) are cultivated extensively in Russia, India and Egypt; less witlely in Turkey, Germany, Italy and France. The seeds from the largeseeded variety are sold upon the streets in Russia as we do peauuts, except that they are eaten raw. The smallseeded variety is preferred for the manufacture of oil. When cold-pressed, a citron-yellow, sweet-tasting oil, considered equal to olive or almond oil for table ase, is produced. The resulting oil-cake, when warm-pressed, yields a less edible flnid, which is used for lighting, and in such arts as woollen dressing, candle- and soap-making. The oils dry slowly, become turbid at ordinary temperatures and solid at $4^{\circ} \mathrm{F}$. For stock and poultry feeding, and for other purposes, Sunflower oil-cake is about equal in value to that of flas-and cotton-seed. The cake is largely exported by Russia to Denmark and Sweden, and to some extent to other European markets. Sunflower stems and heads make an excellent paper, and the stems furnish a fine fiber that compares favorably with silk. They are, however, generally used for fuel, since the above industries have not been developed.

Sunflowers frow readily in many soils, but best results are obtained upon light, rich, calcareous or alluvial land, well supplied with moisture and unshaded by trees. White, clayey and poor soils are unfavorable Preparation of the soil should be thorough; deep fall plowing followed by spring harrowing being preferred to spring preparation. The seeds are generally sown in drilis running north and south, 30 in. apart, 9 in. asunder in the drill, and 1 in . deep. Sometimes they are transpianted from nursery heds when 4-6 in. tall. About
a week after the plants appear they are thinned to 18 in asunder. From 4 to 6 pounds of the seed will sow an acre. Cultivation is the same as for corn, except that when the plants reach a height of $3-4 \mathrm{ft}$., the inferior

1026. Helianthus debilis. Nearly half size.
flower beads should be removed, leaving only 4 or 5 on the principal stem. In windy climates hilling is sometimes necessary to prevent blowing down.

On some farms the roots are harvested as they ripen and placed upon floors or mosable pole racks to dry. Upon larger areas they are cut to the ground when most of the heads have ripened and piled, beads up, to cure. The forner method insures a much higher grade of oil, and is therefore preferred. Every effort is made to prevent fermentation, either in the heads or in the pile of seeds, since this injures the quality of the oil. When thoroughly dry the heads are either placed on racks or piled. face downward, on a floor and beaten with flails. The seeds are then spread thinly, shoveled over oceasionally, and allowed to become perfectly dry before being sent to the mill. The average yield is about 50 bushels to the acre. The percentage of husks ranges from 40 to 60 ; and the oil from 15 to 28 . As a general rule, 100 bushels of seed will yield 33 bushels of kernels, 100 bushels of kernels from 280 to 320 gallons of oil of both qualities.

Russian Sunflower, a large-seeded variety, producing a single head, grows 8 ft . tall, put is less esteemed for oil production than the small-seeded varieties.

The common Sunflower, Helianthus annuus

In America the Sunflower industry may be said to have hardly commenced, there heing at present but two well-developed markets for the seed. M. G. Kains.

1NDEX.
angustifolius, 5. สทมuцs, 1.
argophyllus, 2. atrorubens, 7. Calitornieus, $1,20$. cucumerifolius, 3. decapetalus, 11. debilis, 3. divaricatus, 12.
doronicoides, 16. gigantens, 13. grosse-serratus, 10 hirsutus, 21. ævigatus, R . latifloras, 19. Maximiliani, 14. Missouriensis, 6.
mollis, 17 . multitlorus, 11. orgyalis, 4 . pumilus, 18 rigidus, 6 . strumosus, 9. trachelifolius, 22). tuberosus, 15.

> A. Annuals: les. long-petioled: disk broun or purplish.
> B. Stem erect, stout, simple or branching above.
> 1. annuus 2. argophyllus
> Be. Stem diffuse, slender, branching freely from the base.... Perennials by creeping rootstocks: les. sessile or shortpetioted.
> в. Disk brown or purplish.
> c. Les. linear, entire (except
> the loser), sessile...... 4. orgyalis
> 5. angustifolius
> ce. Less. ovate to broad-lanceolate, mostly toothed, narroued at the base into a winged petiole.
> 6. rigidus 7. atrorubens
> BB. Disk yellowish.
> C. Stem smooth below, the branches often slightly rough or pubescent.
> D. Lvs. pale beneath......
> 8. lævigatus
> 9. strumosus
> 10. grosse-serratus
> DD. Li's. green on both sides.11. decapetalus
> 12. divaricatus
> ce. Stem rough or hairy below.
> D. Rootstocks thickened into one or more Neshy tubers. 13. giganteus 14. Maximiliani 15. tuberosus
> DD. Rootstocks ull slender.
> E. Lou'er les. sessile or with a elasping base...............16. doranicoides 17. mollis EE. Lower lis. shortpetioled.
> F. Stem 1-z tt., not brauching..... 18. pumilus
> FF. Stem usually over
> 3ft.,branching.19. lætiflorus
> 20. Californicus
> 21. hirsutns
> 22. trachelifolius

1. ánnuus, Linn. Common Sunflower, Stem 3-12 ft., rough-hairy, often mottled: lvs. 4-I2 in. long, broadly ovate, acute, the lower cordate, coarsely serrate, rough on both sides: fls. $3-6 \mathrm{in}$. wide in wild specimens, often 14 in cult. July-Sept. Minn. to Tex., west to Wash. and Cal. Gn. 27, p. 68. Gt. 43, p. 95 (as H. Ienticularis). B. R. 15:1265 (as H. Tenticularis).-A valuable pconomic and ornamental plant. The lis. are used for fodder, the tls. yield a yellow dye, the seeds furnish an oil and are used for food. It is grown for food cbiefly in Russia. H. annurs has long been in cult. as au ornamental, and has varied into many distinct forms. Common varieties are: Var. Californicus, very large aud double; var. citrinus, with primrose-colored rays (Gn. 49, p. 327) ; var. globősus fistulosus, having enormous globular heads; var. nànus fl. pl. (Globe of Gold), (Iwarf and double, valuable for borders; Russian Giant, $10-12 \mathrm{ft}$. bigh, single, grown mostly for seed; var. variegatus, with variegated lvs., but not especially attractive.
2. argophyllus, Tort. \& Gray. Silvery-leaved SenFLower. Stem usually $4-\overline{5} \mathrm{ft}$. high, soft grey, with a dense, silky pubescence, especially the upper branches. Otherwise like \boldsymbol{U}. annuus, into which it seems to vary under cultivatiou if the seedlings are not constantly selected for their silky character. Texas. The rar. Texana, Hort., which does not differ botanically from the type, is an attractive form of this species. R. H. 1857, p. 431. Gn. 12, p. 280; 27, p. 67; 55, p. 147.
3. débilis, Nutt. (H. cucumerifollius, Torr. \& Gray). Cucumber-leayed Sunflower. Fig, 1026. St. 1-4 ft. bigh, hairy throughout: brancbes often mottled with purple or white, each one bearing a fl.: $1 \mathrm{vs} .1-4 \mathrm{in}$. long. ovate to triangular, generally with a cordate base, thin, glossy, irregularly rootbed or entire: fls. 2-3 in. wide. on slender peduncles. July-Sept. Fla. to Texas and westward. G.C. 111. 17:167. Gt. 44, p. 571. B.M. 7432. Gn. 49:1064. -This is one of the best for cut-Hs. It needs a sandy soil.

1027. Clump of Helianthus orgyalis.

4. orgyalis, DC. Fig. 1027. Steru $8-10 \mathrm{ft}$. high, strict, smootb, very leafy: Ivs, $8-16 \mathrm{in}$. long, slightly rough, drooping: fls, numerons, lemon-yellow. Sept., Oct. Dry plains, Neb. to Tex. and westward. Gn. 27, p. 67; 55, p. 147. F.R. 2:146. This species has distinct and
attractive foliage, which is not at all coarse. A well grown plant will produce spikes of fis. nearly 4 ft . long.
5. angustiIolius, Linn. Swamp Sunflower. Stem 2-6 ft . high, simple or branching above, slightly rough: 1vs. $2-7 \mathrm{in}$. long, somewhat tufted, drooping, with rolled edges, smooth or slightly rough: fls. $2-3 \mathrm{in}$. wide, few or solitary. Aug.-Oct. Wet land, N. Y. to Fla., west to Ky, and Tex. B.M. 2051.
6. rigidus, Desf. (H. Missouriénsıs, Schwein.). St. $1-3 \mathrm{ft}$. high (rarely $5-8 \mathrm{ft}$.), strict, sparingly branched, rough or hairy: lvs. 6-12 in. long, oblong to ovate-lanceolate, firm, thick, rough-hairy, entire or slightly toothed: fls. $21 / 2-4 \mathrm{in}$. wille, showy, long-stalked; rays numerous, about $11 / 2 \mathrm{in}$. long ; disk sometimes yellow at first, turning brown. Aug.-Oct. Mich. to Tex, and west to Col. B.R. 6:508 (as H. atrorubens). B.M. 2020 (as H. diffusus). B.M. 2668 (as H. alrorubens). Gn.27, p.68.After \boldsymbol{I}. decapetalus this species is one of the best perennial Sunflowers. It varies under cultivation chiefly in the direction of doubling and in lengtheniog the blooming period. Some of the best garden rarieties are æstıvàlis, grandiflorus, semi-plenus and Miss Mellish.
7. atrorubens, Lidn. Purple-disk Sunflower. St. $2-5 \mathrm{ft}$. high: lvs. usually thin, sometimes hoary heneath : fls, about 2 in . across; rays few (10 to 16), rarely over 1 in . long; disk dark red. Otherwise like H. rigidus, to which it is inferior. Va. to Fla., west to Ohio and La.
8. lævigàtus, Torr. \& Gray. Stem 2-5 ft., simple or branched above: Ivs. 3-6 in. long, lanceolate, smooth, entire or slightly toothed: fls, $1-11 / 2 \mathrm{in}$. broad, few or solitary; rays $6-10$, usually less than 1 in . long. Aug.Oct. Va. to N. C.

9. Helianthus decapetalus, var, multiflorus. (See species No. 11.)
10. strumòsus, Linn. St. 3-7 ft. high, usually branching, often glaucous: lvs. 3-8 in. long, ovate-lanceolate, rough above, entire or toothed: fis. $21 / 2-4 \mathrm{in}$. across; rays $8-15,1-1 \frac{1}{2} \mathrm{in}$. long. July-Sept. Open woods, Can. to Ga. and west to Wis, and Ark. Var. mollis, Torr. \& Gray. Lvs. downy beneath. B.M. 3689 (as H. mollis, Lam.!.
11. grobsse-serràtus, Martens. St. 6-10 ft. high, very smooth, glaucous: lvs. long-lanceolate, slender-petioled,
rough above: fls, many, cymose, $1-3 \mathrm{in}$. broad. Aug.Oct. Pa. to Mo., south to Tex. - Passes into H. grgauteus.
12. decapétalus, Linn. Stem 2-5 ft. bigh, branched above: lvs. 3-8 in. long, ovate-lanceolate, sharply serrate, thin, rough above, finely pubescent beneath : fls. $2-3$ in. across, numerous; rays generally more than 10 , in spite of the specific name. July-Sept. Moist soils, Quebee to Ga., west to Mich. and Ky. G. C. 11. 16:601.Under cult. it has given rise to the horticultural var. multiflorus (H. multillorus, Hort.). Fig.1028. B.M. 227. G.C. 111. 10:421. Gin. 27:476, pp. 71, 74; 45.p. 373 . Gt. 43, p. 554 (ing. 3:63. F.R. 2:413. The many garden forms of var. multiflorus differ mainly in the extent of doubling, season of blooming, babit of plant and size of 6 . Among the best are: Var. Ilòre plèno and var. grandillorus, almost completely double; var, major, fls. larger than common; var. máximus, very large, single fls. with pointed rays; Soliel d'Or, with quilled florets, like a Cactus Dahlia, Multitlorus varieties are the most popular of perednial Sunflowers, and deservedly so. If the double forms are grown on poor soil, or are allowed to remain for several years without being divided, they become single.
13. divaricàtus, Linn. Fig. 1029. Stem 1-6 ft, high: Irs. sessile, rough above, pubescent beneath, standing out nearly at right angles to the stem : fls. few or solitary, 2 in across. Juls-Sept Dry woodlands, Can. to Fla., west to Neb. and La.
14. gigantèus, Linn. Indian Potato. Stem 3-12 ft. high, stout: $1 \mathrm{ss} .3-7 \mathrm{in}$. long, lanceolate, very rough, serrate or nearly entire: Als, usually several, $1^{1 / 2}-3 \mathrm{in}$. broad, mostly long-stalked; rays $10-20$, barely 1 in . long, cupped, pale yellow : seeds smooth. Aug.-Oct. Wet ground, Can. to Fla., west to Neb. B.M. 7555. D. 165. - Var. subtuberòsus, Bourgeau. A northern form with unusually tleshy roots, which were formerly collected by Indians for food. Hence "Indian Potato."
15. Maximiliani, Schrad. Stem generally $2-4 \mathrm{ft}$. high, sometimes 8-10: lvs. iuclined to be trough-shaped: fls. on short, densely pubescent peduncles; rays 15-30, generally $1 \frac{1}{2}$ in. long, deep yellow. Otherwise like H. $g i$ ganteus, of which it is probably the western form. Aug.Oct. Dry plains, west of Mississippi river.
16. tuberósus, Linn. Jertsalem Artichohe. Stem 5-12 ft., brauched above. lvs. 4-8 in., usually ovate, acuminate, serrate, rough above, finely pubescent beneath: ths. several or numerous, $2-3$ in. across; rays 12-20: seeds pubescent. Gin. 27:68. B.M. 7545.-Frequently cultivated for its edible tubers. See Arlichoke, Jerusalem.
17. doronicoldes, Lam. Stem 3-7 ft. high: 1vs. 4-8 in. long, ovate oblong, narrowed towards both ends, rough on both sides: fls. numerous, in loose panicles; rays 12-20, broad. Otherwise as H. Ialifolius. Aug., Sept. Dry soils, Obio to Mo. B.M. 2778 (as H.pubescens).
18. mollis, Lam. Stem $2-5 \mathrm{ft}$. high, stout, rery leafy, boary villose, at least when young: Ivs, $3-5 \mathrm{in}$, long, ovate-lanceolate, white-pubescent or rough on upper side: fls. solitary or few, 2-3 in. broad; rays 15-25. July-Sept. Barren soils, Obio to Ga., west to Ia. and Tex. Ga. 55:1212.
19. pùmilus, Nutt. Stem rough and hairy thronghout: lvs. only 5-7 pairs, 1-4 in. long, ovate-lanceolate: ths. few, short-peduncled. Eastern Rocky Mts, and adjacent plains.
20. lætiflorus, Pers. Showy Sunfower. Stem 4-8 ft. high, leafy: 15s. 4-10 in. long, orate-lanceolate, more or less serrate, rough on both sides: fls. several. 2-4 in.
broad, short-peduncled ; rays $15-25$, about $1 \frac{1}{2} \mathrm{in}$. long, showy. Prairies, lad., Ill., Wis. Gn. 45:960. G.M. 31:204. - A desirable Helianthus. The garden form H. semiplenus is better than the type. Resembles tall-growing forms of H. rigidus, but disk yellow.
21. Californicus, DC. Stem 3-8 ft. high. Ivs. lanceolate, rough on both sides: fls, loosely paniculate. Calif. - Most of the plants grown under this name are a garden form of H. алиинs.
22. hirsùtus, Raf. Stem $2-4 \mathrm{ft}$. high, densely hairy : lvs, orate-lanceolate, thick, very rough, pubescent and pale beneath: fls, several, 2-3 in. across. July-Oct. Dry soils, Pa. to Gia., west to Wis. and Texas.
23. trachelifolius, Mill. Resembles strumosus, but stem and fl.-stalks usually rough-hairy and ivs. thinner, green on both sides. Aug., Sept. Dry soil, Pa. to Wis. S. W. Fletcher.

HELICHRYSUM (Greek for slen and gold; referring to the flower beads). Compósitce. Syn., Elichrysum. Nearly 300 Old World herlss or shrubs, mostly African and Australian. Nome of them are grown for everlast ings, being, with Helipterum, amongst the most important plants for that purpose. Easily grown as hardy annuals in any garden soil. Fls. of two kinds, the ontermost ones with pistils only : involucre dry and chafflike, the stiff overlapping scales glabrous, often colored: heads large, terminating the brancbes, normally yellow, but now varying into many colors in long-cultivated forms.
A. Lis. oblong or narmow; grown for everlastings. B. Heads large, solitary.
bracteàtum, Andr. Fig. 1030. Stont annual, 11/2-3 ft. tall, somewbat branched, the terete stems nearly or quite glabroas: lvs. many and rather large, oblong-lanceolate, narrowed to a short petiole, entire, green: heads terminating the branches, $1-21$ in. across, yellow or orange, the short and obtuse involucre-scales imbricated. Australia. - Perbaps the most important single everlasting fl. grown in this country, particularly for bold or heavy desigu work. It is very variable, particularly in color. The heads are pure white in var. album, Hort. (H.álbum, Hort. H. niveum, Grah. B.M. 3857); scales tipped with red in var. bicolor, Hort. (Elichrysum bícolor, Lindl. B.R. $21: 1814$); dark searlet in var. atrococcineum, Hort. (H. atrococcineum, Hort.) ; dark bloodred in var, atrosanguineum, Hort. (H. atrosanguineum, Hort.). The forms with very large heads are often known as H. macrinthum, Hort. The double forms are often known as H. monstròsum, Hort. Otber portraits of this species will be found in B.R. 24:58, R.H. 1851:101.
bв. Heads medium to small, in clusters.
c. Color yellow or orange.
arenàrium, DC. A foot or less high, herbaceous: lvs. plane, white-woolly, the lower ones oblong-obovate and long-attenuated into a petiole, the apper ones linear-lanceolate and acute: heads globular, in compact little corymbs, bright yellow. Perennial, in sand, France. - Apparently not cult. in this conntry. See Everlasting.
orientàle, Gærtn. (Gnaphatium orientàle, Linn.). Stem simple, $11 / 2 \mathrm{ft}$. or less tall: Ivs. oval-oblong to lanceolate, obtuse, sessile, rather small: heads bright yellow, small, globular, in corymbs. S. Eu. to Asia Minor.Much cult. in Mediterranean regions, but little known in this country.
apiculàtum, D. Don. Perennial, $1-2 \mathrm{ft}$., tomentose, leafy below: 1 vs . lance-spatulate, the base more or less spatulate: heads $1 / 2 \mathrm{in}$. across, in small heads or clusters, orange-yellow, the scales sharp-pointed. Australia. -Little known in tbis country.

cc. Color white or nearly so.

grandiflòrum, Less. Perennial, somewhat woody, decumbent at the base: Jvs. crowded near the base, sessile, obovate to oval or oblong, obtuse, woolly on both sides: heads hemispherical, in corymbose clusters, glossy, eream-color, $1 / 4 \mathrm{in}$. across. S. Afr.
diosmæfolium, Sweet. Tall, upright: lvs. very small, narrow-linear ($1 / 2 \mathrm{in}$. or less long), the margins revolute:
heads small and numerous, white.-Cult. in S. Calif. by Franceschi. Australia; sometimes grows 20 ft . high.

AA. Lvs. ovale or broader: border and vase plant.
petiolatum, DC. (Gnaphalium lanàtum, Hort.). Tender perennial, cult, for its long, woolly stems and woolly lrs., either as an edging in ribbon borders or as

1030. Helichrysum bracteatum ($\times 1 / 8$).

One of the choicest everlastings.
an ornament in Jawn rases: lvs. petiolate, ovate and broad at the base, obtuse: heads (not often seen in cult.) in branched cymes, the involucre scales obtuse, cream-white. S. Afr.-An old garden plant. Prop, by cuttings from stock plants carried over winter.
L. H. B.

HELICODEA. See Billbergia.

HELICODICEROS (Greek, spirally 2-horned). Aràcec. The extraordinary plant shown in Fig .1031 is known as the "Hairy Arum" and sold by the bulbdealers as Arum crinitum. When in flower it has a disgusting odor, which attracts carrion flies and bright green insects, as uncanny as the plant itself. The plant is the only species in its genus, the hairiness of the spadix being a very distinct character. Helicodiceros and Dracunculus are alike in having few ovules, which are fastened at the top and bottom of the cell, but in the latter the staminate and pistillate fls, are close together, while in the former they are separated by a sterile portion. Arum differs from both genera in having the ovales fastened in 2 series at the side of the cell. The Ivs, of Arum are spear-or arrow-shaped, while in the other two they are pedately cut. Latest monograph in Latin by Engler in D.C. Mon. Phan. 2:604 (1879).

This plant is worth growing once, since it is one of the great curiosities of horticulture. It may be secured
from bulb dcalers in the fall and flowered under glass in the spring. It is a most vile-smelling plant when in full flower. The plucky artist who drew the accompanying picture of this arnm wrote at the bottom of his drawing, "Air'em."

1031. Helicodiceros muscivorus ($\times 1 / \mathrm{it}$).
musclvorus, Eng. (II. crinitus, Schott. A rum crinttum, Ait. Dracínculus crinitus, schott). Fig. 1031. Height $11 / 2 \mathrm{ft}$.: spathe-limb purple, covered with purple hairs. Corsica. B.R. 10:8:31. F.S. 5:445. W. M1.
heliconia (Mt. Helicon, in Greece, seat of the Musest. Scitumindeer. Foliage plants allied to Musa. Perhaps 25 to 30 species in tropical America. The plants are grown in a warmhouse along with Alocasias, Anthuriums and Calatheas: the directions given for the cultivation of Calathea apply very well to Heliconia. Under the name of Wild Plantain or Balisier, U. Bihai is cult. outdoors in S. Fla. and along the (iulf of Mex. It is an evergreen shrub rivaling the bananas in foliage and scarlet and black flower-sheaths. E. N. Reasoner classes it among plants that sprout up readily in the extreme South if killed hy frost, and recommends it as a house plant for the South.

From Musa, Heliconia differs chiefly in having a dry, often dehiscing, 3 -locnled, 3 -seeded frnit. Fls. in clusters below the Irs., subtended by bracts after the way of Musa; sepals 3, linear, free or somewhat joined to the corolla; corolla short-tubed; stamens 5 ; staminodium 1: lvs. large and striking, often beautifuliy marked; stems arising from a strong rootstock. Various species have been introduced into enlt., but the following are the only ones appearing in the Amer. trade.

Bihái, Linn. Balisier. Wild Plantain. Becoming $10-15 \mathrm{ft}$. tall, banana-like: lvs. oral or oblong-oval, longpetioled, transversely ribbed, the blades $3-5 \mathrm{ft}$. long: blossom sheaths very large, scarlet and hlack, the fls. red or orange. W. Indies and S. - A most striking plant, but rarely seen in glasshouse collections. It is naturalized in the Old World tropics.
aurreo-striata, Hort. Perhaps a form of the preceding: 1vs, beantifully striped along both midrib and transverse veins with golden yellow: stems striped with yellow and green: leaf-limb oval-acuminate. I.H. 29:464; 42, p. 289 (where a list of the best kinds will be found). S.H. 2, p. 133. F.R. 3:493.-Very handsome. The best known kind.
illustris, Hort., is of the general style of the last, hut the rib and veins are marked with pink. Var. rubricaulis, Hort., has more red, the petiole being bright vermilion. R.H. 1896:36 (where a review is made of the species). R.B 21, p. 69. Gn. 52, p. 359.
angustifolia, Hook. Dwarfer: lvs. long and narrow, $11 / 3-1^{1 / 2} \mathrm{ft}$. long. $3-6 \mathrm{in}$. wide, green: fls. yellowish green, G-10 in each red bract. S. Amer. B. M. 4475. L. H. B.

HELIOPHILA (Greek, sun-loving). Cruciferw. This genus includes a blue-flowered half-hardy annual, that grows about 3 in . high and is advertised at present only in the rery largest catalogues of flower seeds. The genus contains abont 61 species of annual and aubshrubby perennials, natives exclusively of S. Africa. There are no vear allies of garden valne. The dehiscent pod is an important character of the genns. Other important generic characters are pods sessile or pedicelled, 2 -celled, 2 -valred: seeds in a single row, often winged. The racemes are long and leafless, and the fis. yellow, white, rosy or sky-blne. Latest monograph in English by Sonder in Flora Capensis 1:35-54 (1859-60). For general culture, sce A manals.
The plant in the trade is known as II. arabioldes, Sims, which Sonder refers to H. pilosa, Lam., var. incisa, Sonder. II. pilosa is a very variable species, with stem 6-24in. high, erect or diffuse, simple or anbranched from the base: lower lvs. often opposite, the rest alternate: fls, normally sky-blue, with a yellow center, bnt the natural varieties include lilac and yellow. The typical II. pilosa has a stem that is rough with spreading hairs: Irs. hairy, either oblong or linear, entire or sometimes lobed near apex, cuneate at hase: pods linear, erect or spreading. Var. incisa, Sonders, has Irs. linearcuneate, 3 -cut at the apex, rarely 5 -cut, the lobes linear or acuminate. B.N. 496.
W. M

HELIOPSIS (Greek, tike the sun). Compósitor. Abont 10 species of bardy herbaceons plants, bearing numerous yellow fis, in autumn, and all native to N. America. They are all perennials except one, and that is not cultivated. They are not common in gardens becanse of the more attractive forms in Helianthus. II. lor zis, var. Jitcheriana, however, deserves wider popularity. Heliopsis Inas no pappus, while in Helianthus the pappus has 2 awns. In Heliopsis the rays have pistils, but may be fertile or sterile. In Helianthus the rays have no pistils at all. Stem erect, loosely branching: heads yellow, long-stalked, borne in loose terminal or axillary panicles: Ivs. opposite, petioled, 3-ribbed, oblong-ovate to ovate-lanceolate, coarsely toothed. For cnlture, see Helianthus.
lævis, Pers. Stem 3-5 ft, high: Ivs, 3-5 in. long, thimish, smooth on both sides or roughish above: ffs. numerous, $11 / 2-21 / 2$ in. broad, long-stemmed. July-Oct. Open places, Can. to Fla., west to III. and Ky, B.M. 3372. Var. Pitcheriana (II. Pitchenidna, Hort.). A dwarf, more branching and lonshy form, $2-3 \mathrm{ft}$. high, with a spread of $3-4 \mathrm{ft} .:$ fls. produced much more freely than in the preceding and a leeper yellow. One of the best bardy plants for the perennial border, being especially valuable for cutting and for planting in dry places. Int. 1895 by Pitcher \& Manda. A.G. 16:323. F.R. 2:259.
scàbra, Dunal. Differs from Ψ. loevis chiefly in being rough thronghont: upper lis, sometimes entire: heads few, often solitary. Dry soils, Me. to N. J. and west to Mo. J.II. 33:359. B.R. 7:592 (as H. canescens).-Passes into laris.
S. W. Fletcher.

HELIOTROPE. See IIeliotropirm.

HELIOTROPIUM (heliotropic ; twruing to the sun). Boragindcea. A widely spread genus in warm regions, of more than 100 species. Herbs or rarely shrubs, with small flowers in terminal, forking clusters and alternate simple leares: corolla short funnel-form or sal-ver-shape, the throat mostly open (sometimes constricted) ; stamens 5, attached to the tabe, not exserted, the filaments very short: ovary t-locnled and splitting into 4 nutlets (or two 2 -loculed nutlets) when ripe, surmonnted by a simple style. There is a Heliotrope (H. Curassdiveum, Linn.) native to the S. Atlantic states, with white fls, and oblong or linear lvs.; also a naturalized species (\boldsymbol{H}. Indicam, Linn.) with bluish scented fls, and lance-ovate rugose lvs. The florists' Heliotropes seem to be derived from 2 species. H. Peruvia num, Linn., is perhaps the leading species. Fig. 1032. Lrs, oval or oblong-lanceolate, very veiny, not conspicuonsly narrowed at the base: fls, small, in a close cyme, the corolla tube little longer than the calys. Peru. B.M. 141.-Vanlla-scented. H. corymbósum, Ruiz \& Pav.
(H. grandiflòrum, Don), has longer and relatively narrower lvs., which are distinctly uarrowed to the base, flower-clusters larger and more open, fls, nearly twice larger and the corolla tube nearly twice longer than the calyx ; calyx teeth longer and narrower. Peru. B.M. 1609. Narcissus-scented. Many of the large-trussed and large-flowered garden varieties are apparently of this species rather than of the former; or possibly the two are hybridized. Originally both species were violetflowered, but the colors are now in various shades of

purple, and there are white-flowered forms. H.Voltaireanum, Hort., occurs in our tradelists. It is a compact garden form, said to be a hybrid. P.M. 16, p. 100. Another species, H. Europæum, Linn., is rarely seen in old collections, particularly South, and it is sparingly naturalized. It is a hoary-downy herb 6-18 in. high, with longpetioled oval lvs., and white fls. in scirpioid racemes. L. H. B.

The Heliotrope is a warmth- and sun-loving plant, preferring a rich, light soil, good drainage and plenty of
1032. Heliotropium Peruvianum. ($\times 1 / 2$.)
ing next to the Geranium as a pot-plant for spring trade. For cut-flowers in winter it is equally popular, but its lasting qualities wheu cut are uncertain. Successful growers assert that for best resnlts, strong stems and good keeping qualities, it should he growa in a moderately cool, airy house. Some of the best the writer bas seen were grown in a bouse suited to violets and mignonette, in which the temperature seldom rose to $50^{\circ} \mathrm{F}$, at night.
Stout, soft cuttings make the best plants, and root easily in a temperature of $60^{\circ} \mathrm{F}$. From the time they are inserted, sufficient water must be given to prevent wilting. A propagating bed is not required. Ordinary flats will do-the medium balf-leaf soil and sand. They must be well shaded for a week or so. They are very liable to the cutting bench fungus, and should be potted or boxed off as soon as rooted, which should be in ten or twelve days. Any light soil will do, and it need not be rich for the first shift.

For winter flowers, euttings may be taken in July and treated as above. Some of the plants amoug the spring batch with straight stems may be grown along for standards by taking out the side shoots until 2 ft . high. These make handsome drooping specimens. By pruning abont midsummer they may be kept in good condition for years. Stock intended for spring cuttings is better grown continuously in pots, as the plants lift badly in the autumn.

The plants do not lift well. The writer prefers to grow a few left-over bedding plants for stock. Cuttings struck in June or July and grown continuously indoors make the best plants for winter flowers. Tall young plants may be grown into standards hy taking out the side shoots until they reach 2 or 3 feet in beight, and then letting them branchout. Shifted along, they make large specimens in 12-inch pots, and may be kept in good condition for years by judicious pruning, topdressing and the use of manure water.

Heliotrope is extensively used as a bedding plant, is a favorite in window-gardens, and is much grown by florists for cut-flowers. The ease with which it may be grown either in pots or the garden, the color and fragrance of its dainty flowers, and the continuity of bloom, have all contributed to make it a general farorite.

There have been numerous garden varieties and a number of hybrids - white and the differenttints of blue predominating. Floral catalogues rarely mention, however, more than 6-8 varieties. Madame de Blonay bas for years been a favorite white, while Queen of Violets is perhaps the finest of the blues. Chieftain is a lighter tint. Albert Delaux is a variety with golden variegated foliage, but variegated Heliotropes are undesirable. Among seedlings double forms occasionally appear. They have no special merit, and are seldom perpetuated.

T. D. Hatfield.

HELIPTERUM

(Greek for sun and

1033. Helipterum Manglesii ($X^{2} / 3$). Generally known as Rhodanthe. wing; said to refer to the light-plumed pappus). Compósiter. Including Acroclinium and Rhodanthe. About 50 species in Australia and S. Africa, of which a few are cult. as everlastings or immortelles (see Everlastings). The cult.
kinds are annual nerbs (or grown as such), of easiest cultivation in any garden soil. Fls, mostly perfect, with 5 -toethed open corollas: akenes woolly, bearing a pappus of many plumose bristles: involucre glabrens, obevate or top-shaped, silvery or rose-colored: plants mostly glabrous. This and Helichrysum are amongst the most important of everlasting flowers.
A. Heads large, many-flowered. B. Les, broad.

Mánglesii, Muell. (Rhodínthe Mánglesii, Lindl. Roccárdia Mánglesii, Voss). Fig. 1033. Neat glaucous annual, 12-18 in. tall, with very slender, long pedicels, bearing pretty nodding heads: 1vs. thin, oval or elliptic, clasping: involucre silvery-chaffy, the ray florets originally clear, handsome pink, but now rarying to white (R. álba, Hort.), and to dark red (R. atrosanguinea, Drumm.). Var. maculàtum (R. maculata, Drumm. Roccárdia Md́nglesii, var. maculàta, Voss), is usually larger, with sherter Ifs, and involucre flecked with red: rays pink or white. Austr8l. B.R. 20:1703,-A charming plant, and one of the few everlastings which retains much of its grace and beauty after being dried. There are double-fld. forms, i, e., these with all or nearly all the florets ligulate. Excellent alse for pet culture. Seeds of the mixed vars. are sometimes sold under the name Rhodanthe varius.

ab . Lus. linear.

ròseum, Benth. (Acroclinium roseum, Hook. Roccairdia ròsea, Vess). Fig. 1034. Annual, 1-2 ft. high, glabrous, with many strict simple branches from the crown, each stem terminated by one large head: lvs. numerous, alternate, small and linear: rays many, pointed, bright

1034. Helipterum roseum $(X 1 / 2)$.

1035. Helipterum Humboldtianum $\left(\times{ }_{1}^{1} 2\right)$.
pink (or varying to white in H. álbum, Hort.). Austral. B. M. 4801. - A very serviceable and handsome plant.

AA. Heads small, clustered.

Humboldtiànum, DC. (H. Súnfordii, Honk. Roccárdia Humboldtidna, Voss). Fig. 1035. Andual (or cult. as
such), erect or with a decumbent base, the stems somewhat branching: lvs. (and stems) white-tomentese, linear or lance-linear, pointed, alternate: heads small, oblong, yellow, in a dense cerymbese truss. Anstralia. B. M. 5350 .
corymbiflòrum, Schlecht. (Roccárdia corymbiflòra, Yoss). Annual, lower than the last, more branchy: Ivs. broader: beads $2-3$ times larger, top-shaped, in small corymbs, the prominent rays white. Australia.
L. H. B.

HELLEBORE. See Helleborus.

HELLEBORUS (ancient name of H.orientalis, meaning unknown). Ranueuldaceu. Hardy herbaceous perennials, about 8 species, natives of Europe and western Asia. Erect, with large palmately divided lvs., the basal long-petioled, the upper sessile and sometimes reduced to bracts: fls, large, white, greenish, red, purple, or yellowish; sepals 5, broad, petal-like, mainly persistent; petals small, tubular, furnished with claws; stamens many; carpels $3-10$, sessile, forming leathery, many-seeded capsules, dehiscent at the apex.
All the kiods will thrive in ordinary garden soil, but for the best results ase a soil of rich loam and cearse sand, with a top-dressing of rotteu manure. A moist, well-drained, partially shaded situation is preferable. The species may he planted in shrubbery borders, and in reckeries, or if wanted for cut-flowers they should be planted in beds. An important peint is net to disturb the plants when once established, ss they are very sensitive to frequent changes of location. All the species bloom before spring arrives; \& few mild days in December or January will bring out the buds of H. niger varieties, and the others are net far behind. They are easily forced under glass. Strong plants should be taken up into large pets snd gradually inured to a warm temperature. Blossoms may thus be brought forth at any time desired in winter. Prop, best by division in fall or spring; but if seeds mature they will germinate well if planted immediately in pans or in rich, open ground. Seedlings sheuld besr flowers the third seasen. Monegraphs by J. G. Baker in G.C. 11. 7:432 (1877 and by Thos. Moore in G.C. 1J. 11:431 (1879).

A. Li's, dying anниally, thin.

viridis, Linn. Stem scapose: reotstock creeping: 1 basal leaf $8-12 \mathrm{in}$. broad, on petiele 6-10 in. long; segments $7-11$, oblong, acute, sharply serrate: H1-stem hardly exceeding the basal leaf, bearing 3-6 fls. and large, leaf-like bracts: fls, large, yellowish green; sepals breadly oblong, obtuse, spreading: capsules about 4, as long as the sepals, transversely ribbed; style erect. Eu. Nat. in eastern states. G.C. II. 25:553.Net so much used as the ether species bere given.
Var. purpuráscens, Waldst. \& Kit. Differs chiefly in the central leaf-segments being deeply palmately cleft, and the fls, much tinged with purple, especially on the outside. Hungary. B.M. 3170.

AA. Lus. evergreen, coriaceous.

1. Flower-stem never more than once forked: fls. 1 or 2. niger, Linu. Christmas Rose. Fig. 1036. Stemless: roetstock short, black: only 1 leaf somewhat irregularly divided into lobes, toothed on the outer half: petiole 5-7 inches long: flower-stem simple or once branched: fls, very large; sepals white, or flushed with purple: capsules 6-8. Rocky places, Eu. B.M. 8. Gn. 55, p. 13.
Var. angustifolius, Hort. (var. minor, Hort.). Plant and leaf similar, but fls, small. Very pretty. G.C.Il. 21:85, and 111. 21:19.
Var. altifolius, Hayne (var. mdjor, Hort. Var. máxi. $m u s$, Hort.). Petiole reacbing 1 ft . in length: fis. the largest in the genus, $3-5 \mathrm{in}$, across, and often seversl on same stem. (in, $14: 142 ; 48: 1021$. G. C. 11. 20:693. A.G. 11:63.

By. Flower-stem forked 2 or 3 times: fls. several or many.
orientàlis, Lam. Stemless; short creeping rootstock: 1 radical leaf, $7-9$-lobed; segments 6 in. long, 11/2-2 in. broad, sente, serrate in the outer half, pubescent, with strongly raised veins beneath; petiole 1 ft . long: flewer-
stem over 1 ft . high, forked above, 2-6-fd., large, leaflike bracts; sepals roundish, imbricated, white, purple beneath and purple edges, spreading: capsules oblong, shorter than the sepals, transversely ribbed: style erect or incurved. Asia Minor. Gn. 47, p. 136. - There are numerous varieties of this beautiful species.

c. Purple-fld. varieties.

Var. Colchicus, Regel. Stem purple-spotted, quite glaucous: 1 leaf to each flower-stem: fls. 3-6 on a stem, deep bright purple, both inside and out. Asia Minor. B.M. 4581 (as H. atrorubens). Git. 1860:293. Var. Col-chicus-punctatus, T. Moore. Fls. deeper plum-purple, more glancous, exquisitely mottled inside with innumer-

1036. Christmas Rose, Helleborus Niger ($\times 1 / 9$).
able dark dots. Gn. 16:189, f. 8.- One of the handsomest of all the Hellebores.

Var. Abchásicus, A. Braun. Much like var. Colchicus, but differing in having 2 or more lvs. to a flower-stem. Caucasus regiov. Gt. 1866:496 (as H. Caucasicus, var. Abchasicus, Regel).

Var. atrórubens, Waldst. \& Kit. Only 1 leaf on a flower-stem, glabrous, thinuer in texture than in the rest of the orientalis group: segments narrow: fls. 2-4 on a stem; sepals dark purple outside, greenish purple within. Hungary, R.H. 1865:231.-A connecting link hetween the viridis and orientalis groups.

Var. rùbro-purpùreus, Hort. (H. alropurpùrea, Hort.). A seedling of var, atrorubens, with bold foliage and purple flower-stems: fls. spreading, deep purple. Characters well fixed and very handsome. Gn. $16: 189$, f. 1. R.H. 1884:564.

Purple-fld. hybrids of the varieties of H. ovientalis are found in the trade under the following names: Var, elegans; var. iridescens; F.C. Heinemann, fls. very large, imbricated, deep purple and mottled; Frau Irene Heinemann, fls. rose-purple outside, greenish white, with dark lines and dots inside; Gretchen Heinemann, red-fld., strong grower; Hofgarten-Inspector Hariwig, fls.rose-purple without and greenish within; A potheker Bogren, rose-purple, very large.

ce. White-fld. varieties.

Var. Olýmpicus, Lindl. Glabrous : fis. small, but spreading, very numerous; sepals green on outer surface, white within. Bithynia. B.F. 28:58. - Hybrids closely allied to this have been given the trade names: Willy Schmidt and Prof. Dr. Schleicher.

Var. guttàtus, A. Braun. Glahrous, green stem: sepals green outside, white withiu and elegautly spotted with purple crimson dots. Caucasus region. - Two allied hybrid forms are named: Commerz Benary and Albin Otto. Gn. 16:189, f. 4.

Var. antiquòrum, A. Braun. Glabrous, green mottled stem: fls, as in var. Olympicus, but more imbricated, maintaiving the hell-shaped form. B.R. 28:34 (as \boldsymbol{H}. orientalis, Lindl.). Gn. 16:189, f. 3.
ecc, Green-fld. varieiy.
Var. Cancásicus, A. Braun. Lvs. very glossy; segments more oblong than in the type, often 3 or 4 in. broad: sepals round, pale green, much tmbricated. Caucasus region.
K. C. Davis.

HELMET FLOWER. Aconitam, C'oryanthes and Seulellaria.

HELONIAS (Greek, swamp-louing). Lilikceip. Swamp Pink. This genus includes a rare hardy perennial bulbous plant which grows in bogs from northern N.J. to N. C., aud is sold by dealers in native plants. In very early spring it bears a hollow scape 1-2 ft. high, crowned by a raceme $1-3 \mathrm{in}$. long, composed of perhaps 30 pink or purplish fls., each $1 / 2 \mathrm{in}$. across, 6 -lobed, and with 6 blue anthers. The genus has probably only one species, the other plants called Helonias being largely referred to other genera, which are distinguished in Britton and Brown's lllustrated Flora 1:399. The genus is placed by Britton and Brown in Nelanthaceæ, an order included in the Liliaceæ by Bentham and Hooker. Helonias has a short, stout rootstock like a leek. The allied Heloniopsis is also in the trade.
bullàta, Linn. Swamp Pink. Stud Pink. Lis. several or numerous, thin, dark green, clustered at the base of the scape, $6-15 \mathrm{in}$. long, $1 / 2-2 \mathrm{in}$. wide, with fine parallel nerves: scape stout, bracted below. Apr., May. B. N. 747. L.B.C. 10:961. B.B. 1:402. -Int. by H.P. Kelsey.

Helonias, which is perfectly hardy, is so easily propagated by division that it is hardly worth while to grow from seed. Under cultivation, also, it seems to rarely mature perfect seed. It multiplies itself rapidly from offsets, a single plant often providing a dozen others in a season. It is found growing in dense shade and also in the full glare of the sun, always iu wet sphagnum bog in the latter case, while in the shade it sometimes spreads to dry ground. Although one of the showiest of all American bog plants, it is comparatively little known here, though better in England. It makes an elegant pot-plant.

Harlan P. Kelsey and W. M.
HELONIOPSIS (Greek, like Helonias). Liliacear. This includes an berbaceous plant resembling our swamp pink, Helonias bullaia, in the color of its tis. and stamens, but the fls, are larger and fewer, and the 1vs. numerous and tufted. The style in Heloniopsis is a conspicnous feature, being long and red, tipped with a purple undivided stigma, while in Helonias the style is very short and 3-cut. Both genera are separated from numerous allied genera by the septicidal dehiscence of their capsules. The fls. are bell-shaped, drooping, deep pink, 6 -lobed, with 6 red filaments and purple-blue stamens. The genus bas about 4 species. The following grows in the mountains of Japan at an altitude of 2,000 $7,000 \mathrm{ft}$., and is presumably hardy. It was once offered by John Saul, of Washington, D. C.

Japonica, Maxim. Rootstock short, stout, with long root fibers: Ivs. oblanceolate, persistent, green tinged purple: seeds small, very numerous, with a conspicuous tail at each end. B.M. 6986.

HELWINGIA (after G. A. Helwing, 1666-1748, a German clergynian, who wrote on the botany of Prussia). Aralidcea. A curious deciduous shrub, remarkable for the reason that the small, inconspicuous greenish fls, are borne in clusters on the midribs of the lvs. at about the center of their upper surfaces. Of not much decorative value and therefore rarely cultivated, but interesting on account of the unusual position of the fls.; ten-
der North. It seems to grow in any soil that is somewhat moist. Prop. by freenwood cuttings under glass. Two species in Jap. and Himal. Fls, diœecious, shortpedicelled, with obsolete calyx, $3-5$ petals and stamens aod 3-1-celled ovary: fr, a berry-like, 3-1-seeded drupe.

Japónica, A. Dietr. (I. rusciflora, Willd.). Bnshy shrub, 3-5 ft. high: 1rs. petioled, ovate or elliptic-ovate, acnminate, serrate, stipulate, $11 / 2-3 \mathrm{id}$. long: fls. in June, the staminate generally with 3 , the pistillate with 4 petals. Jap. S.Z 86. A.G. 13:8.

A. Phelps Trman.

HEMEROCALLIS (Greek, beautiful by day; because the blossoms close at night). Lilideec. Iellow Day Lilies. This gedus ineludes the Lemon Lily (H. flart). which is one of the hardiest and most delightful of all herbaceous perennial plants. It easily ranks among the 50 most popular plants for the home garden. All the blue and white Day Lilies belong to the genus Funkia: all the yellow and orange Day Lilies belong to Hemeroeallis. The Yellow Day Lilies have narrow, grass-like foliage, and their flowers hare wider fnnnels. The blue and white Day Lilies have very broad foliage, which is not at all grass-like. The flowers of Funkia are borne in racemes; of Hemerocallis in corymb-like panicles.

Hemerocallis has only 7 species, all of which are cultivated. The plants are all remarkahly free from enemies, and need no protection of any kind, even in the severest winters. The roots are bundles of fleshy tuhers, and are sometimes classed with bulbs in catalogues of Durserymen. Small plants will flower freely the first year. Clumps can often be left undivided for 4 or 5 years without a loss in size or number of flowers, but as a

1037. Lemon Lilies-Hemerocallis flava.

general thing all robust-growing herbaceous perennials shonld be divided every second year. In old clumps the roots often become birmly matted near the middle, and the wastefnl competition between the too-numerons roots weakens the vitality of the plant. Next io H. flava, the oldest garden favorites among the Yellow Day Lilies is H. fulwa, sometimes called Brown Day Lily, and erroneously in some catalogues the Lemon Lily. H. fulia is a taller plant, with later and orange-colored fis. and wary inner segments. Within fire years a new species, G, aurantiacu, has come into great prominence, and its var, major by some connoisseursis considered the finest of all Day Lilies. As a rule, double forms are not as popular as the types, and for the writer they lack the simplicity and definite character of the single flowers. Yellow Day Lilies have a wholesome fragrance. The individual flowers are short-lived, but there is a good succession. The plauts thrive in almost any garden soil, but are most luxuriant along the borders of ponds or moist places, and in partial shade. The flowers are excellent for eutting. Plants prop. by division.
R. B. Whyte gives the succession of hloom at Ottawa, Canada, as follows: H. Dumartierii, June 4; minor, Middendorfii and Thunbergii, June 11; rutilans. June 18: fulra, July 2; aurantiaca, var. major, July 9; fulea, var. K'wauso, July 23, and disticha fl. pl.. July 30. He
adds that $I I$. Dumortierii, auruntiaca var. major and H. rufilans differ from all others in the fls, being reddish brown outside, which is very marked in the bud.

A. Fls. fragrant.

B. Inner segments of perituth firm: veins not joined by cross veins: color yellow.

C. Blossoms in June.

flàva, Lion. Lemon Lily. Fig. 1037. Lvs. 18-24 in. long, 6-8 lines wide: scapes longer than the lvs.: corymb $6-9 \cdot$ fld.: pedicels $12-24$ lines long: tube 6-15 lines long. Europe, temperate Asia. B.M.19. A.G.17:437. Gin. 48, p. $400 .-1 \mathrm{l}$ s some important works on gardeniog the color is erroneonsly given as orange.

cc. Blossoms in July.

Thunbergii, Baker. "Except for its later flowering, Thunbergii does not differ materially from flava." Baker. Livs. $6-71 / 2$ lines wide: corymb loose, 8 -10-fld., with 1 or 2 fls . lower down: tube nearly 1 in . long: fls. lemon-yellow, opening widely, 3 in. across: segments membraoous, crisped. Japan. Int. 1890.-Rare. R. B. Whyte writes that the fls, are not nearly as large as those of H. flazu, appear in June, and that H. Thunbergii differs from all others in having the upper 6 to 10 in . of the scape thickened and flattened.

> BB. Inner segments membranous and wary al the margin: a few veins joined.
> c. Lus. z-s lines wide tube and pedicel long: color of fls. yellow.
mlnor, Mill. (H. graminea, And., not Schlecht. \boldsymbol{H}. graminifolia, schlecht.). Lvs. 15-18 in. long, darker green than in the other species: scapes about as long us the .vs.: corymb 3-6-fld.: pedicels 3-24 liaes long. Jnly, Aug. N. Ania. B.M. 873.
cc. Lrs. 6-8 lines wide: tube very short: color of fls. oranige.
Dumortièrii, Morren (H, vütilans, Hort.). Height 11/2-2 ft.: lvs. 12-15 in. long : scapes hardly as long as the lvs.: corymb 2-3-fld.: pedicels 3-6 lines long: fls. $2-21 / 2$ in. long, while they are $3-4$ in. long in all the other species; inner segments 5-6 lines wide. Jap. B.H. 2:43. Gn. 31:589.-H. Sieboldii is now practically abandoned as a trade name. The yellow-fld. species of this name is H. Dumortierii ; the blue-fld, species pictured in L.B.C. 19:1869 and P.M. 5:25 is Furkia Sieboldii. Var. flore plèno (H. disticha pleno, Hort.) is less cutt. This species is the earliest to blossom. R. B. Whyte considers Π. rulilans distinet.
CCC. Li's. 8-12 lines wide.
D. Color of fls. orange: tube 8-9 lines long.
aurantlaca, Baker. Height $2 \frac{1}{2}-3 \mathrm{ft}$.: lvs, more than 12 lines wide: cerymb 6-8-fld.: fls. bright orange, opening less widely than any other species. July. Jap. or E. Siberia? - Tbe type was introduced to cult, in 1890 and has rapidly given way to var. major, Baker, introduced 1895, which is larger in all parts. Lvs, 12-18 lines wide: tuhe 9 lises long: fls, when expanded $5-6 \mathrm{in}$. across. Jnly-Sept. Jap. G. (., 111. 18:71. Gn. 48:1041 and 50, p. 17. J.H. IJI. $31: 157$. A.G. 18:179.-Closest to Dumortierii, from which it is chiefly distinguished by its much larger, later and more reddish fis. and longer tube.

DD. Color of fls. yellow: tube 5-6 lines long.
Middendorfii, Trant. \& Mey. Name variously misspelled. Height $1-1 / 1 ⁄ 2^{\mathrm{ft}}$: Ivs. $15-18 \mathrm{in}$. long, $8-12$ lines wide: scapes about as long as the lvs.: corymb 2-4-fd.: pedicels almost none : inner segments 9-12 lines wide. Amur region. Gt. plate 522. R.H. 1897, p. 139.

AA. Fls. not fragrant.

fülva. Ling. (H. disticha, Don). Lrs. 18-2t in, long, 9-15 lines wide: corymb 6-12-fld.: fis, orange; pedicels short ; inuer segments with wary margios, with numerous reins joined by cross reins. July, Aug. Eu., temperate Asia. B.M. fi4 (centeal hand of white). Mn. 5. p. 193. Var. Kwanso (\boldsymbol{H}. Ku, wiso, Hort.), the "Donble Orange Lily," hlooms longer than any singlefld. form, according to Meehan. Gt. 500 . It has a sub-
₹ariety with variegated lrs. Var. flore pleno, Hort., is shown in F.S. 18:1891, with a red spot on the middle of each segment. Gn. 48, p. 401. R.H. 1897, p. 139. Var. variegata has a stripe of white down the middle of each leaf.
W. M.

HEMICYCLIA (Greek, semi-circular; referring to the sear or furrow on the seed). Euphorbiancer. This includes a spreading tree, attaining a height of 40 ft ., which is cult. in S. Calif. by Franceschi, who values it for its "beautiful holly-like lvs. and red fruits." The genus has about 9 species, natives of India, Ceylon and the Eastern Archipelago, with no near allies of garden value. Trees or shrubs: lus. alternate, petioled, entire, leathery when full grown: fls. diocious; petals none; sepals of staminate fls. 4-5, the inner often larger and somewhat petal-like: fr . a globose or ovoid, indehiscent drupe: seed by abortion, usually solitary. \boldsymbol{H}. Australasica is told from the other 2 Anstralian species by its very short blaments and glabrous ovary.
Australàsica, Muell. Arg. Lrs. broadly ovate to ovate-oblong, ohtuse, $1 \frac{1}{2}-3 \mathrm{in}$. long, finely veined below: fr, nearly $1 / 1 \mathrm{im}$. long, very smooth, red and succulent, enclosing a stone.

HEMIONİTIS (Greek, mute; the plants erroneously supposed to be sterile). Polypodidcere. A genus of tropical ferns, with copiously netted veins and naked sori following the reins. Eight or 9 species occur in the tropies of both hemispheres. The plants are dwarf, and are grown in Wardian cases by a few fanciers in the Old World. For culture, see Ferns.

H, palmảta, Limn. Lvs. palmate, $2-6$ in, wide, with 5 nearly equal triangular divisions, those of the sterile lvs. less acute; surfaces pubescent. W. Indies, Mex., S.Aner.-H.élegans, Dav. Lvs. 4-10 in. wide, with a broad sinns at the base and 5 long slender, lanceolate divisions: plant smooth. Mex. G.F. 4:485.

L. M. Underwood.

HEMITELIA (Greek, with half a roof; referring to sori). Cyatheícere. A geaus of tree ferns of the tropics, with round or semiglobose sori and an inferior indusium, consisting of a scale which is often indistinct and deciduous. Some 20 species oceur in both hemispheres. For culture, see Ferms.
H. Guianénsis, Hook. Rachis slightly scaly and hispid: Irs. bi-tripinnate, the secondary rachis distinctly winged, especially at the upper portion: sori few in each segment, usually $2-4$; indusium ciliate and often lobed. Var. Paradie, Hort., is the form commonly in cultivation. British Gniana, 1, H. 24:280. -H, Lindeni. Hook. Lvs. pinnate, the pinnor distant and slightly stalked, $6-12$ in, long, $1-1^{1 / 4} \mathrm{in}$. broad, the base trumeate or wedge-shaped: sori in 2-3 irregular lines near the margin. Veneznels. I.H. 42:46.
L. M. Underwood.

HEMLOCK in Old World literature is what we eall Poison Hemlock, an umbelliferous herb named Conium macrelatum. By Hemlock, Americans mean Hemlock Spruce, an evergreen tree, Tsuga Canadensis.

HEMP. Common Hemp is Cannabis sativa (which see). Bowstring H., see Sanserieriu. Manilla H., Musa textilis. Sisal H., Agave rigida, var. Sisalana.

HEN-AND-CHICKENS. A proliferous form of the English daisy, Bellis perennis; also the thick-leaved rosettes of Cotyledon, used in carpet-bedding and known as Echeveria.

HENBANE. Hyoscyetmus niger.

HENDERSON, PETER (Plate X.), 1822-1890, marketgardener, florist, seedsman and author, was born at Pathhead, near Edinburgh, Scotland, in 1829, and died in Jersey City, Jan. 17, 1890. He was trained in Old World methods of gardening, came to America in 1843, worked under Geo. Thorburn and Robert Buist, and in 1847 began business in Jersey City as a market-gardener, with a capital of $\$ 500$, saved by 3 years' hard work. He continued to live there until bis death. The publication of "Gardening for Profit" in 1865 marks an era in American horticulture. It was the first American book devoted entirely to market-gardening, and it helped to induce many persons to enter the business. By the time
of his death abont 150,000 copies of the book are said to have been distributed. It was written in an aggiegate of 100 hours, when the author was working 16 hours a day, largely at manual labor. At the noon intervals and late at night he wrote this work lying on his back, with a pillow under his bead. The secret of its suecess, and of the author's, was the invention of new methods adapted to operations on a large scale. The second edition in 1874 , and the third in 1887 , are both thorough revisions.
"Henderson's Practical Floriculture," 1868, was an epoch-making book in commercial floriculture. Up to this time most works on flower-gardening had been written for the amateur. This point of view is necessarily the commoner one, and Henderson's contribution to it was "Gardening for Pleasure," 1875. In the compilation of "The Handbook of Plants," 1881, he was largely aided by C. L. Allen, and in the second edition, 1890, by W. J. Davidson. "Garden aud Farm Topics" was issued in 1884, and in the same year appeared "How the Farm Pays," a stenographic report of conversations between Wm. Crozier and Peter Headerson. It is claimed that nearly a quarter of a million copies of his various works hare been sold. His seed business was founded at New York in 1865 . Lately more than 200,000 copies of the various catalogues have been distributed anuually.

Few men, if any, have done so much to simplify and improve methods of handling plants for commercial purposes. His greenhouses were an object lesson to many visitors, his methods were widely copied, aud his basiness successes were the goal of ambitious marketgardeners and florists, among whom he was for many years the most commandiug figure. He was a frequent contributor to the horticultural and agrieultural magazines, and during his forty-two years of business life is supposed to hare written or dictated at least 175,000 letters. Two-thirds of these letters were written with bis own hands, and he always replied promptly to inquiries about methods of cultivation. A self-made man, simple and abstemious in his habits, he was a tireless worker. He combined in a high degree the faculties of growing plants and of business ability. His mastery of details was complete. His books are exceptionally readable, his powerful personality appearing through every page. The records of his personal experience are practical, ingenious and fertile in suggestion. An account of his life is published in a memoir of 48 pages by his son, Alfred Henderson.
W. M.

HENFREYA. See Asystasia.
HEPATICA (liver-like, from the shape of the leaves). Ranunculdeer. Hepatica. Liver Leaf. A gemis of 3 species, natives of the north temperate zone. Stemless, low perennials : Irs. 3-lobed and sometimes toothed; appearing after the flowers and remaining green over winter: scapes l-fld., with an involucre of 3 small sessile lvs. simulating a calyx: sepals petal-like, white, pink or purple: akenes shortbeaked, pubescent. Fig. 1038. The plants prefer shade, but do fairly well in open places. Tbey should remain undisturbed from year to year, in rich, welldrained loam. Well suited to the north or east slope of a rockery. Plants kept in pots in a coldframe until midwinter will quickly hloom at any time desired if removed to a warm room or greenhouse. Prop. by

1038. Flower of Hepatica. Nistural size. division or seed.
triloba, Choix. (Hepática Hepática, Karst. Ancmòne Hepática, Liun. A. triloba, Hort.). Scapes 4-6 in. : lobes of Jvs. obtuse: fls. $\frac{1}{2}-1$ in, across; sepals oval or

second editiou (Georgetown, 1818) contains $3 \not 48$ pages. It includes "A Treatise on Gardening, by a citizen of Virginia." This occupies 80 pages. The copy owned by the Massachusetts Horticultural Society possesses this manascript note: "This treatise is by John Randolph, of Williamsburg, father of Edmund Randolpb, Secretary of State during the administration of Gieneral Washington." Robert Manning writes that this note may have been made by General Dearborn. A third edition was published at Washington in 1826, and contained 308 pp
W. M,

HERACLEUM (named for Hercules, who used it in medicine, according to Pliny). L mbellifera. This inclades 3 bardy herbaceons plants sometimes called Giant Parsley or Giant Cow-parsnip. They are not suited for general gardening, but are sometimes grown in wild gardens or parks, or as single specimens on lawns, where a very bold and striking object is desired. They are coarse herbs, growing $5-6 \mathrm{ft}$. high, with broad foliage, which is their chief beauty. According to J. Woodward Manning, they are adapted to all soils, hut prefer a rich, moist soil, and hence do well at the edge of running water. Manning adds that these plants should never be allowed to go to seed. J. B. Keller writes that if these plants are grown on an open, sunny lawn, they should be liberally supplied with water at all times. Prop. by division or seed. The genus Heracleum bas $50-70$ widely scattered species and no near allies of garden value.

A. Plant perennial.

lanàtum, Mich. Lrs, trisect, tomentose beneath; segments petiolulate, rotund, cordate, lobed: leatlets of the involucel lanceolate: fr. oval-orbicular. N. Amer., W. Asia. Mn. 4, p. 164.
villòsum, Fisch. (H. gigantèum, Fisch.). Height 8-12 ft.: lvs. sinuate-pinnatifid, sharply serrate, acuminate, woolly-tomentose beneath; leaflets of involucres short, bristly, deflexed: umbels sparingly rayed: fr. elliptic. eiliate, woolly on the back. G.C. 1II. $3: 437$ and $20: 271$. - Keller says the fls, are nearly white, and borne in Aug. and Sept., in denser umbels than those of H. Nibiricum.

1040. The Goose Tree of the herbalists.

AA. Plant biennial.

Sibiricum, Linn. Lvs. scabrous to hirsute, pinnate or deeply pianatift; segments lobed or palmately parted, serrate: petals about equal: fr. subrotund-oval, deeply notched at the apex. Eu., N. Asia. - Keller, says this bears yellowish green fls. in July and Aug.

IT. M.
HERBA IMPIA of the old herbalists is Filago Germanica.

HERBALS. Books on plants, published from the fourteenth to the middle of the eighteenth century, were largely written from the medicinal point of view, and were often called Herbals. The scieatific point of view of plant-knowledge is conveniently dated from 1753 , when Linnæus published his "Species Plantarum." Of the herbalists, John Gecarde is probably read most at the present time. His style is chatty, quaint and personal. One of the notions accepted by the early herbalists was that of the vegetable lamb, which is pictured in this work under Cibotium (Fig. 470). Another idea that fascinated these worthy plant-lovers was that of the barnacle goose tree. Fig. 1040 is reproduced from a book by Duret, $\mathbf{1 6 0 5}$, and shows how the fruits that fall upon dry land become "flying birds," while those that fall into the water become "swimming fishes." Other conceptions of this goose tree are reproduced in the Gardeners ${ }^{\text {. }}$ Magazine $35: 749$ (1892). Almost every large library possesses a few Herbals, as Matthiolus, Baubin, L'Obel and Fuchsius. The largest collectiou of Herbals in America is the one given by the late E. Lewis Sturtevant to the Missouri Botanical Garden at St. Louis.

HERBARIUM. A collection of dried plants systematically named and arranged. Every horticulturist who takes delight in his profession should have an Herbarium, as it increases jmmensely the value and pleasure of his work. Every amateur, nurseryman and florist is hereby strongly urged to make a collection of dried specimens of the plants in which he is particularly interested. It need not be expensive nor consume much time, and the process of drying a plant is simple and easy. An Herbarium is like a reference Iibrary, and is equally invaluable.

Unfortunately, lovers of eultivated plants rarely eare for pressed specimens because they are so lifeless and colorless. Yet there is no surer way for a nurseryman to keep his stock true to name than by making an Herbarium. There are many uaiversities and colleges in America where botanists are glad to verify the names of plants for the sake of the duplicate specimens. This is one of the most practieal and useful ways in which botanists and horticulturists can coöperate. The unnecessary waste in time and money caused by confused nomenclature and confused labels is one of the difficulties of a large collection of growing plants.

Eren in the largest nursery of hardy piants specimens can be taken by one man in two days in late spring, of everything that is in characteristic coodition at that time. Three bundred specimens can be secured in two days in our best nurseries. Even after the spring rush is over there is time to get most of the important springflowering plants in flower or fruit, and from that time two or three hours a week is enough to keep up with the procession of flowers. Sometimes interest can be aroused in a young student, who will be glad to do all the work for the sake of duplicates.

Use merchandise tags or acheapsubstitute in the form of pieces of paper about 7 in. long, 1 in . Wide, with a longitudinal slit a little more than 1 in . long near one end. Pass one end of this piece of paper through the slit, and draw it close about the stem of the plant, leaving plenty of room for the trade name of the plant, the date, and the color of the flowers. It is rery useful also to add the height of the plant, and anything else that is not likely to show in a dried specimen. When a basketful is gathered, place each specimen between a

1041. A common method of mounting Herbarium specimens,
folded newspaper page. Each newspaper page, with its inclosed specimen, is then placed betweeu "driers." These are larire pieces of felt paper, a kiod which is even more absorbent than blotting paper. A hundred driers cost a dollar. Put a board on top of each pile and weight it with stones. Shift the driers daily for a week or so, and then at longer intervals, until the specimens are wholly dry. A better way of drying plants, particularly in a small way, is to use a frame press (to be purchased of dealers in botanists' supplies), provided with cords and straps for tightening the bundle and giving the requisite pressure. Specimens are discouraging looking objects while in press, but when they are carefully prepared and properly mounted on standard size paper ($111 / 2 \times 16^{1 / 4}$ in.), with neat labels glving the name, locality, habitat, date and collector, they not only become attractive but are of great scientific value.

The finer and more artistic quality in Herbarium work differs ouly in the degree of care bestowed at every stage of the process. Some of our elementary botanies give full instructions for making an Herbarium. See, also, the "Horticulturist"s Rule Book." Herbaria are notably poor in cultivated plants. For the critical study of garden plants, an Herbarium is a necessity. The sheets are kept iu heavy manila paper folders or covers, each genus by itself. The regulation size for this geaus cover when folded is $113 / 4 \times 16 \frac{1}{2}$ in. Lay the sheets flat (Fig. 1041). Take pains to select specimens which show flowers, leaves and fruits; and herbs should show the roots.

Walter Deane.
HERBERTIA (Wm. Herbert, 1778-1847, Dean of Manchester, distinguished botanist, anthor of "Amaryllidaceæ," and ardent lover of bulbs). Iridacea. Seven species of American bulbous plants, with fugitive blue or lilac fls, borne in summer. One species is procurable through Dutch growers. It frows less than a foot high. The bulbs may be started in coldframes. The genus is distinguished by the complete absence of a
perianth tube. The showy onter segments are about 1 in. long, and obovate, the inner ones abont as long as the stamens. For culture, consult Bulbs and Tigridia. Mon. by Baker, Irideæ, 1892.
pulchélla, Sweet. Bulb globose, 15 in . thick or more; tunics brown: Ivs, about 4, linear, plaited, 3-6 in, long: spathes $11 / 2 \mathrm{in}$. long: outer segments lilac, with a white claw spotted lilac. Chile. B.M. 3862.

HERB LILIES, Alstrameria.

HERB OF GRACE, Ruta graveolens

HERB-PARIS. Paris quadrifolia.

HERB-PATIENCE, See Rumex.

HERB-ROBERT, Geranium Robertianum.

HERBS, An Herb is a plant which dies to the ground each year. It may be annual, as bean, candytuft, pigweed; biennial, as mullein, parsnip; perennial, as burdock, foxglove, rhubarb, To the gardener, however, the word Herb is ordinarily synonymous with herbaceous perennial; and be usually has in mind those particular perennial Herbs whicb are grown for ornament, and which remain where they are planted. Goldenrods, bleeding beart, sweet william, hollybock, daffodils are examples. To many persons, however, the word Herb is synonymous with Sweet Herb, and it suggests sage and tansy.

Herbs have two kinds of values, - their intrinsic merits as individual plants, and their value in the composition or the mass. It is usually pessible to secure both these values at one and the same time. In fact, the individual beauty of Herbs is enhanced rather than diminished by exereising proper care in placiug them. Planted with other things, they have a background, and the beanties are brought out the stronger by contrast and comparison. It is quite as important, therefore, to consider the place for planting as to choose the particular kinds of plants. The appreciation of artistic effects in plants is a mark of highly developed sensibilities. Happily, this appreciation is rapidly growing; and this fact contributes to the increasing popularity of landscape gardening and ornamental gardening. Some of the best effects in Herb planting are to be seen in the wild, particularly along fences, roads and streams. In interpretiog these native effects, the planter must remember that Herbs are likely to grow larger and more bushy in cultivation than in the wild. He should cover the bare and unseemly places about the borders of his place (Fig. 1042). He may utilize a rock or a wall as a background (Fig. 1043). He may bide the ground line abeut a post (Fig.

1042. An informal Herb border.
1044) or along a fence. Some of the commonest Herbs are bandsome when well grown and well placed. (See Fig. 1045.) Always plant where the Herbs will have relation te something else,-to the general design or handling of the place. This will usnally be about the
boundaries. The hardy border is the unit in most planting of herbs. See Figs, 1042, 1046. A rockwork Herb border (Fig. 1047) is often useful in the rear or at one side of the premises. Fill some of the corners hy the beuse (Fig. 1048). In remete parts of the grounds, halfwild effects may be allowed, as in Fig. 1049. A pond or

1043. Planting against a rock back-ground.
pool, even if stagnant, often may be atilized to advantage (Fig. J050). A goed Herb out of place may be worse than a poor Herb in place. But when Herbs are grown for their individual effects, give plenty of room and goed care: aim at a perfect specimen (Figs, 1051, 1052). For furtber hints on related subjects, see Landscape Gardening; also Border.
L. H. B.

Herbaceoes Perennials from the Landscape Architect's Point of View, - No clear definition can be drawn between herbaceous perennials, biennials rnd annuals, between Herbs and woody plants, for there are tender Herbs that would in a warmer climate become strubs or even trees, biennials that become pereanials from stolons or offsets, and annuals that become biennials from seed germinating late in the season. Strictly speaking, however, herbaceous perennials are plants having yerennial roots with tops that die to the ground annually, such as the columbines, larkspurs, day-lilies, peonies, and most sedges, grasses and ferns. It is customary, however, in publications relating to this elass of plants as well as in actual use, to include closely allied species with evergreen foliage, such as statice, yucca, sempervivums and certain pentstemons, together with plants baving more or less woody and persistent abovegronnd stems, such as the suffruticose artemisias and the evergreen creeping species of phlox, veronica, vinca, the iberis, the helianthemums, and many alpine plants, while most bulbous-rooted plants which are true herbsceous perennials are separately classified and grown as bulbs.

Herbaceous perennials are an exceedingly important element of landscape, for they predominate in the mat of grassy or sedgy plants, cevering dry or wet open fields and in the surface vegetation under woods and shrubby thickets, either as a grass crop, compesed of a comparatively few species eultivated for ecenomic purposes, or as a wild growth made up of many species. The most attractive of these native plants are being cultivated and improved more and mere from year to year for ornamental purposes, and are planted in the flower garden, in artificial plantations of shrubbery and in the wild garden. It is to such natives and to exetics of the same class, which are cultivated for a similar purpose, that reference is to be made hereafter.

Fifty years ago nearly every well-to-do family maintained a flower garden, in which there were from 50 to 150 species and varieties of berbsceons perennials, and there were few of the humbler familics that did not have a dezen or more species established about their homes. Snch plants were distributed by excbange among neighbors and were propagated and offered at retail by dealers, whe, however, gradually allowed their stock of plants te run low or abandoned them altogether, until many kinds dropped ont of cultivation or were neglected in faver of tbe tender "bedding eut "plants that were brought suddenly into favor by the displays at the Philadelphia Centennial Exposition.

There has been, particularly during the last 15 years, such an increasing interest in herbaceons perennials that there are now offered in the catalogues of American
nurserymen and collertors of native plants, nearly 3,000 species aud varieties, exclusive of the many garden forms that are distinguished chiefly by the color of their flowers.

In use, the species and varieties of berhaceous perennials may be broadly separated into three groups.

1044. One may hide the ground line with Herbs or Shrubs.

First, plants for the garden that require the favorable conditions of a highly cultivated ground, and careful attention to attain perfection and to persist and increase from year to year. This would include many exotics, some native species and most of the horticultural varjeties. Many of such species which would find a congenial place only in the garden have attractive flowers which are so fugitire that they can only be enjoyed on the plant. Other species which are suitable to eut flowers from can hardly be grown in the Hower garden in sufficient quantity to liberally meet the floral requirements of the home, and they should be grown in quantity in the kitchen garden or in a special cut-flower garden, for their crops of flowers. Included among plants of diffieult cultivation with fugitive flowers are the rock or alpine plants, many of which are offered in European catalognes bot few of which will thrive here, and for such as will succeed more favorable conditions are usually found in a well-drained border than in an artificial rockery.

Second, plants for the shruhbery, having aggressive liahits, which make them rather objectionable in the flower garden, but fit them to withstand successfully the crowding of shrubs. This class of plants will give variety and prolong the flowering season of shruh borders about lawns, and would be made up ehiefly of stronggrowing natives and a few of the more persistent exoties.
Third, plants for the wild garden, including the species that require for success some one of the many special conditions prevailing in oncultivated or uncultivable land, or which are so rampant as to require the restraint that some one of these natural conditions will provide. This ciass of plants would be made up chiefly of natives and a few of the more persistent exotics, and they would ${ }^{2} \mathrm{~L}$ used to enrich groups of native plants under woods, in neadows, streams and ponds and on hedges and poor soil. These are attractive plants that will and do grow successfully under all these conditions without special cultivation, and many of them may ha already on the ground. If every plant in a group of natives is watched for at least a year, it will be found that many are so attractive at one season or another that they will be retained and developed in heauty by the gradual removal of the less desirable kinds, for which others that are more desirable may be substituted. (See also the article Wild Gardening.)

In arranging plants in new plantations, or in modifying existing plantations in gardens, lawns or woods, much more effective landscape compositions and more agreeable color effects can be
secured by using large quantities of a few sorts than by using a few individnals of many kinds. Groups of different species should be selected that will give from period to period during the flowering season effective and dominating masses of foliage and color, and all other plants of the garden which appear at the same time should be made subordinate to these. (Consult, also, the article Border.)

Herbaceous perennials are propagated by divisions and from offsets, cuttings and seed. some kinds, as dictamnus and papaver, may lie propagated by root cuttings. The exotic species of gardens and many of the more readily grown natives can be obtained in wholesale quantities from nurserymen. A few exoties and a very large number of attractive native species can be procured in wholesale quantities from collectors of native plants, many of whom also offer nursery-grown plants of the best natives and of a few exotics. The attractive native plants in any region can be transplanted with little difficulty if they are collected with a good sod of earth ahout the roots.

Warren H. Manning.
The Culture of Herbaceous Perennials.- A good number of the herbaceous perennials in cultivation are exceedingly easy of cultivation, ibriving well in any moderately rich soil of suitable physical condition, and enduring our winter cold aud changeableness and summer heat and drought. There are, however, otber spedies which do not grow well in our American climate, except during more moderate seasons or when placed where the climate is locally modified. Whether the plants one desires to grow be easy or difficult of cultore, one should aim first of all for a luxuriaut growth, for any time or lahor saved by poorly preparing the soil, or any money saved by the use of weak or stunted plants, will be regretted later. Unless it is intended to imitate the effect of certain barrens in nature, a garden without luxuriance is lacking in an essential quality.

The preparation of ground for planting consists, in the order of their importance: in making the soil by openness and fineness suitable for root penetration to a depth of from 18 in. to 2 ft ; in providing undergronnd drainage at a depth of at least $21 / 2 \mathrm{ft}$.; in making the soil sufficiently fertile; and in making the surface soil notliable to "baking."

Depthand physical condition of soil arevery important, and shoutd be one's first care. If the season is short and work mast be rushed, it is better to omit the manuring and to devote all one's energy to securing a deep feeding area for the roots and a fine physical condition of the soil. In the hardy border the roots of plants are able to penetrate far more deeply into the soil than they do usually in a wild state or in ordinary field culture. This vigor of root growth reaching to good depth, as compared with that of equal vigor but nearer the surface, gives not only greater endurance of drought but aids the plant to

1045. A good effect with Rhubarb.
endure changeableness of weather, and particularly adds to its hardiness. There are many plants which are hardy only if protected until the roots are thoroughly established. This is more often noticed with trees and

1046. A mixed Herbaccous border.
strong-rooted plants which are able te penetate deeply into the subsvil, but the same applies to berbaceous plants, except that it is usually necessary to loosen the subsoil to ensure penetration by their finer roots to a satisfactory extent. It is not necessary to make the subsoil equal in richness to the upper portion, but it should preferably be mixed with a portion of the surface soil.

The fine roots are the feeding roots and the surfaces of the soil particles are their feeding ground, so that in making the soil particles smaller the feeding surface in the soil is increased, thus allowing for more roots and making available a greater part of the plant-food in the seil. A fine physical condition can usually be obtained by turning the soil over a few times. No soil should be turned or handled when too moist to crumble, as the clay in the soil is quick to become puddled, and therefore impervious to feeding roets.

Underground draiuage is necessary, since reots cannot grow in soil filled with stagnant water. Where the natural subseil drainage is not sufficient, artificial means should be used. Unless the draioage is geed many plants will be injured daring the rainier seasons or killed during winter. Plants that are not firmly established are often easily killed by excess of moisture about the roots during their dormant season; fer instance, many bog plants otherwise perfeetly hardy will winter-kill if planted late in the fall. A further fact showing the effect of water on dormant roots is that many plants, if cut down low enough in the fall to allow water, as from melting snow, to reach the reot through the hollow plant stems, will often be entirely rotted by spring. Thus, when it is necessary to destroy goldenrod the dry stems can be mowed in late fall with a sharp scythe. The vulnerability of the root to water coming through the plant-stem may be easily seen by comparing in the spring roots of corn, the stalks of which were cut at different heights the previous fall.

The subject of feeding plants in general is treated at some length under Fertilizers and Fertility, which see. In the hardy border no large amount of coarse or highly fermentable material shonld be used. The enrichment of the soil shenld, if possible, be made while preparing the border, and any fertilizers used should be well mixed with the soil. Even if a liberal amount of stable manure is available, it is well to use some petash or phosphoric acid in connection with it. A light top-dressing of manure given in the fall will keep up the fertility of the soil and afford a slight winter protection, which is appreciated by even the hardiest plants. Over-richness as well as poverty
of soil tend to make plants in genetal less hardy, but usually a great abundance of plant-food should be given, especially for the bardier species, with vigerous constitutions and long season of growth. Many plants having a season of rest in late summer de best in soil not overly rich, especially if the pesition be moist.
A loose and open surface soil prevents baking after rains and waterings; saves some of the labor necessary to keep the soil open and friable; allews the growth of many smaller, finer-rooted or creeping plants which cannot grow well in a stiff soil; permits the sowing of many aunuals in the border. Many low-grewing plants are injured on clayey soil by having the under surfaces of the leaves coated with soil by spattering of rain. A clay soil may be made more loose by the addition of manures, sawdust, coal ashes, sand or almest any such material. A light, fine mulch should be kept on the surface of a clay soil.
The points to be borne in mind in planting should be healthy plants, careful planting and sufficient thickness of planting. Plants should be obtained which have net been stunted, as a weakened plant will never make as good a specimen as if rightly treated from the start. When plants are received from the uursery they may be heeled-in if necessary, but every day plants are left where they bave no root hold on the soil is an injury te them, in propertion to the suitableness of the weather for root growth. If plants must remain any censiderable length of time before being placed in their permanent position, it is best to plant them in reserve ground, and te remeve them when desired with balls of earth.

Symmetry of tep grewth is to some extent, at least, de. pendent on symmetry of root growth, so that by careful planting the roots not only become more quiekly and strongly active, but give us hope for a more symmetrical plant than can be ohtained by careless planting. The proper way to place a plant in the ground is equally to distribute the roots ahout the plant, leaving the tips pointed downward, and then to lim the seil sufficiently abont the roots.

A perennial border should be planted rather thick, se that when in foliage it shall appear as one mass. Any showing of soil between plants is not only nnnatural, but destroys the beauty of the border as a whole.

Winter Protection of Herbaceous Perenmials. - The protection of species net reliably hardy may be accem. plished with any material suitable for keeping out frost which is not naturally too moist or clese. The material should preferably be heaped over the crewn of the plant, to shed part of the rain as well as to prevent quick changes of temperature, or to wholly exclude frost, as the plant may need.

The material to be used will he decided by the plants

1047. An Herb-covered rock work
to be protected, by what is on hand or easıly obtainable, and by the presence or not of mice or other vermin, which often work under such material as straw and destroy the plants. Pretected plants should be examined
during the winter, and if mice are present they may be killed or driven away by placing a few drops of carbon bisulphide in each hole found. (This is also a good way to rid coldframes of these pests. Plenty of ventilation should be given at the time, as the gas evaporated is destructive to vegetation. As the gas is heavjer than air, it sinks for the most part down the boles.) If, however, mice are not troublesome, there is no better material for keeping out cold and shedding water than straw. Nature's plan for plant protection is to use the foliage and stems of the plants themselres, the whole ground surface heing covered as the weather grows colder with successire coatings of snow, which protection again grows lighter as spring approaches. This is still the ideal winter protection for plants, but snows are likely to disappear in midwinter, and mice are well adapted to live under na-

1049. A tame-wild corner. Asparagus and Boneset. ture's laws. Where mice are
troublesome a light material may be made by composting leaves, manure rakings from lawns, greenhouse waste, weeds not in fruit as pulled during the season, and the like. The material should be earthy enough to keep mice out, and loose enough to permit of easy remoral in spring. It should also he loose enough not to hold too much water in winter. Sawdust and charcoal are examples of such material. Most of the plants that are largely eultivated need no protection, but all herbaceous perennials, nnless they are evergreen or easily smothered, are benefited by a slight covering to protect the soil from alternate freezing and thawing. When the plants are evergreen a covering to supply shade is often desirable. Other plants, such as Helianthus decapetalus $f l . p l$., really Deed protection, not to exclude frost, but to lessen considerably the sererity of the winter. Still others, as many of the lilies, are best covered to the exclusion of frost. In general, the plants we endeavor to grow which need complete protection have crowns below the surface, and so may be covered with any amount or kind of material. Wben it is desired to thorougbly protect crowas on the soil surface, flats may be first placed over the erowns before adding the protection. Late fall plantings should, in almost all cases, be protected to some ex tent, since plants are less hardy when poorly established in the soil.

Propagation of Herbaceous Perennials.The methods of propagation most used are by seed, by plant division, and by cuttings.

Propagation by seed is generally not of use for the perpetuation of horticultural varieties, though to a varied extent with different species any variety tends to reproduce its varietalcharacteristics more perfectly the longer it becomes established as a variety. However, some of our garden

1048. A rear corner, embellished with weeds.
plants have been separated into their present number of varieties or forms mainly by continual propagation by seed and plant selection, and such may be satisfactorily increased by seed. An example might be taken in the hollyhock, although, if a group be left to resow itself, or no seed selection be maintained, it will soon become mainly composed of single-flowered plants by reason of their greater seed production. In general, propagation by seeds is satisfactory for all established species and for such rarieties and forms as have been thoroughly established eitber by nature's slow processes or by man's continual selection.

Seed-sowing is not, however, always an easy way to increase many of our garden plants, as there are often a few small items necessary to know concerning a species before success can be assured. Seeds of some perennials remain dormant for a longseason after sowing, and, in general, they are very much slower in starting than annuals. Some require more heat than others to germinate, while others require a very cool soil. Many plants brought into cultivation from foreign countries or milder parts of our own land do not produce seed which will remain sound over winter in the soil, nor do seedlings of all hardy perennials withstand the colder season: for instance, Papaver orientalis, a hardy plant itself, produces a great quantity of seed whicb germinates readily as it falls, but the seedlings will not survive the winter unprotected.

A general rule for seed sowing would read: Sow the seed when ripe, and then maintain such conditions of temperature and moisture as the seed would receive in the native habitat of the plant.

Native American plants not from decidedly milder parts and many foreign species may be easily inereased by sowing of seed when ripe in the open ground. Among such might be included rudbeckia, aquilegia, coreopsis, monarda, asters (perevnial), delphiniums, digitalis, Dianthus barbatus, and pblox, all of which will bloom the following season.

Plants generally have one or rarely two particular seasons for blooming, and unless of sufficient size and suitable condition when that season approaches they will wait for its recurrence before showing flowers; so that by sowing seed early in the spring and giving good cultural attention to the plants, we may expect to flower many plants naturally hlooming late in the year, or such as are somewhat floriferous at nearly all seasons: for instance, Lobelia cordinalis and other lohelias, many native asters, Gaillardia aristata, Bellis perennis, ete.

HERBS

The propagation of plants by division is simply the separation of a larger clump of roots and crowns into smaller plants. In the case of plants having buds on the roots, this division may be carried further, and small pieces of the root used to grow other plants.
The separation of plants as practiced in the garden is not usually so mnch for the purpose of increase as to avoid over-crowding of roots and crowns, with loss of vigor to the plant; for instance, a plant of iris having been undisturhed for a number of years, becomes a tangled circular mat of rootstocks, which in the center cannot find room to grow, and so the plant appears as a large clump of roots, throwing up foliage only on the outer ring. The period during which a plant may remain in any one place witbout needing separation will vary with the vigor of growth of the plant in each position; for instance, a group of plantain lily in a favorable situation will need separation every two years, while in a poorer place it might remain four. However, the average length of time for a few typical species may be given thus: Bellis perennis, pompon chrysanthemums, and other strong-spreading, shallow-rooted and easily established plants do best with yearly separation; Phlox maculata and monarda every two years; helianthus, asters and many of the compositæ and Phlox decussate about every three years; Convallaria majalis and many spring-flowering bulbs every fonr years; while such plants as peonies may be left for a longer period.
In general, better flowers are obtained from a plant with but one crown than when t wo or more are left, but unless the Dew growths are crowding out the central portions or are themselves too numerous to make a rigorous growth possible, division is not necessary. In fact, many plants require a better establishment in the soil tban can be given by transplanting or than they can quickly obtain, and such are best nodistorbed until quite over-crowded. The question is whether by diriding a plant better flowers and foliage may be obtained than by allowing it to become more thoroughly established.
The time of the year for separation will vary as to the blooming season of the plant; that is, for early-blooming plants late summer or early fall, and for late-hlooming plants either late fall or spring, preferably the latter, as many otherwise bardy plants are either weakened or killed if disturbed in the fall.
Propagation by cuttings is rarely useful for the amateur, in the case of herbaceous perennials, but it is an important commercial method. Plants may be obtained from almost any plant having foliage stems by taking a short piece of the growing wood with a bud, either lateral or terminal, and placing the lower end in moist sand or other material suitable for root growth. It is usially necessary to hare the lower ead of the cutting a node of
the stem, and to make the temperature of the material in which it is placed higher than that of the atmosphere (which is the relation of the soil and air in sunsbine), and to diminish the evaporation from the exposed parts of the cutting by maintenadce of a moist atmosphere

1051. A healthy clump of Joe Pye Weed.
and by removal in part of the foliage on the cutting. Some experience will be necessary to know the best temperatures for sand and atmosphere and the most desirable degree of ripeness in the wood to be taken, as they will vary somewhat with species. In general, any cutting of growing wood will form roots in moist sand at a temperature suitable for vigorous root growth of the plant. The increase of plants by cuttings has the adrantages of heing rapid and of allowing the perpetustion of any variation noticed on a portion of any plant. See Cuttage.
Whichever method of propagation is used. selection of stock for increase should be practiced. If by seed, then the best seed from the best plant should be taken. It is considered by many growers that seeds borne the least number of nodes from the root tend to produce dwarfer and earlier-blooming plants, while the opposite is eqnally certain. All plants vary, and often the seeds which will produce the most striking variations are the slower to germinate and weaker as seedlings, bnt any mistreatment of young plants is apt to be against any desirable improvement. The donble flowered and highly colored forms of our garden plants are generally the results not only of intercrossing of species or selection, or both, but of intense and perfect culture. A poor, starved plant may not retrograde itself, but it is apt to produce seed wbich wil vary to suit its location.
In propagating by diviaiou, the aim should be not only to secure vigorous plants but to select for increase such plants as appear to be the best. Cuttings also should be obtained from selected plants-and the more so since the method is rapid.
F. W. Barclay.

The Most Popular Kinds.-If all hardy berbaceous perennials were divided into 3 groups, based opon their popularity, the first group would perhaps include 10-12 kinds, the second $30-50$, and the third would be too numerous to list in detail. Several of the largest dealers in these plants were asked for such selections, basing their judgment on actual sales and general experience. Replies were received from Ellwanger \& Barry, J. Woodward Manning, and the Shady

Hill Nursery Co. These reports agree as to the 6 most popular hardy Lerbaceous perennials. These are anemone, hollyhock, larkspur, iris, peony, phlox. The next 4 favorites are columbine, poppy, rudbeckia and sunflower. These are probably the 10 most popular plants of their class in America. To fill out the list to a dozen, one might choose 2 of the following 10: Campanula, chrysanthemum, coreopsis, dianthus, dicentra, eulalia, funkia, gaillardia, hemerocallis, pyrethrum. The following list of 12 is selected on a different principle by W. C. Egan, who writes that a bed composed of the following will produce flowers frou early spring to late fall in the following order: Phlox subututa, lily-of-the-valley, bleeding heart, iris (German and Japanese), peony, larkspur, platycodon, phlox (tall), rudbeckia Golden Glow, gaillardia, Boltonia latisquama, sunflower. In the Sonth the I2 most popular kinds would make a very different list. \mathbf{P}. J. Berckmans writes that the following are hardy at Augusta, Ga., and are probably most popular in the South: Canna, carnation, chrysanthemum, dablia, violet, verbena, German iris, Japanese iris, funkia, helianthus, phlox, bollyhock.
An analysis of 4 northern lists gives the following 33 as favorites of the second rank. The agreement would have been mueh closer if bulbs, grasses and subshrubs had been excluded:
Achillea,
Aconitum,
Alsssum,
Asclepias,
Aster,
Astilbe,
Botonia,
Campanula,
Dicentra,
Dietamnus,
Digitalis,

Gaillardia, Geraninm, Gypsophila Helenium, Helleborus. Heucbera, Hibiseus, Tberis, Kniphofia, Lobelia, Lychnis,

Monarda, Enothera. Platycodon, Ranunculus.
Sedum,
Silene,
Spirzes,
Trollins,
Veronica,
Vinca.
W. M.

Selections for Special Purposes. - The following lists are intended to be suggestive, not complete (not all of them in Amer. trade):

1. For shudy ptaces. - Only those which really need shade are here mentioned. Other important kinds succeed in full sunlight and also in partial shade.

> A. Requiring deep shade.

Anemone alpina.

$$
\begin{array}{ll}
& \text { dichotoma, } \\
. & \text { nemorosa, } \\
\text { sylvestris, }
\end{array}
$$

Hepatica
Horminum Pyrenaicum,
Ourisia cocciuea (stiff soil).
4A. Requiring partiat shade.
Actes,
Adonis,
Anemone Apennina, ." Caroliniana,
Arisema,
Arnebia echioides,
Arum Italicum, maculatum.
Calypso (moist),
Goodyera,
Habenaria,
Helleborus.

Liparis,
Lscbnis fulgens.
Haageana,
Omphatodes Lacilix.
Omphatodes Lacilize.
Orchis spect verua,
Orchis spectabilis,
Phlox divarieata,
Ramondia,
Ranuneulus aconitifolius,
Saxifraga,
Tiarella,
Trillium.
2. For dry places.-The following will endure extremely dry locations, and are therefore desirable for naturalization. They can endure neglect and drought:

Alyssum,
Antennaria.
Asclepias tuberosa,
Carlina.
Cheiranthus alpizus,
Dianthus arenarins,

Draba.
Erinus alpinus.
Genista sagittalis,
Helianthemam,
Linatia.
Reseda glauca.

The following are desirable for dry situations, but are not as hardy in this respect as the preceding:

モthionema,	Hepatica,
Avemone Caroliniana,	1 lieris,
. ${ }_{\text {a }}$ nemorosa,	Iris pumila,
Cerastinm,	Saxifraga.
Dapbne Cneorum,	
Erysimum,	Phlox (creepir

AA. Blooming in summer.

Anthemis,
Aquilegia,
Arenaria,
Aster amellus,
Campanula.
Coronilla Iberica,
Cytisus.
Dictamnus,
Euphorbia corollata,
AAA. Blooming in autumn.

Aster,

Calandrinia,

Callirhoē,
Cassia,
Centaurea dealbata,
Coronilla varia,
Coronilla V
Corydatis.
Desmodium,

Galtonia,
Gypsophila,
Helionsis.
Hieraciam,
Hierac
nula.
Iris Germanica,
Ononis.
Pyrethrum Tchilatchewi,
Statice,
Yneca.

Erodium,
Eulalia,
Gieranium Ibericum, etc.,
Helianthemum,
Linum,
Enothera.
Platycodon,
Sedum.
3. For moist and wet places. - In the following subgroups those marked with a star(*) demand the treatment indicated; the others will also thrive with a less degree of moisture:
A. Near the water's edge.

Acorus, Anemone Apennina, ". rivularis, Virginiana,	Monarda didyma, Myosotis, Polygonum amphibium. Sachalinense
*Butomus,	*Ranunculus aquaticns,
*Carex riparia,	fluitans, hederacens,
Iris pseudacoras. levigata,	Typha.
AA. Moi	ounds.
Achillea Ptarmica fl. pl.,	Helenium,
Aconitum,	Lobelia,
Anemone alpina,	Lytbram,
*Arenaria Balearica,	Mertensia,
Arisæma,	Podophyllum Emod
Arnica,	Polygonatum,
Arundo,	Polygouam,
Astillbe,	Primula,
Boltonia,	Pyrethrum uliginosum,
*Cardamine pratense fi. pl.,	*Saxifraga rivularis,
elone,	
Cimicifuga.	Virginiensis,
* Corydalis solida. Dodecatheon,	Spirsea, Trillium,
Funkia,	Trollius.

4. For carpets and edgings. - The followlng are all more or less low and dense:
A. Blooming in spring

玉thionema.
Ajuga,
Alyssum,
Arabis.
Armeria (spring to fall).
Asperula,
Aubrietia,
Daphne.
Erysimum,
AA. Blooming in summer.
Achillea Clavenre.
Arenaria.
Aster alpinus.
Campannla (dwarf),
Diantbus,

Hieracium,

Saponaria,
Silene acanlis,

Heuchera (spring to fall).
lberis,
Lotus corniculatus,
Phlox amoena,
". reptans,
Polemonium
Viola cornuta (spring to fall).
. alpestris.
AAA. Blooming in autumn.
Achillea aurea,
Ceratostigma Larpenta,
Armeria,
Erodinm,
Helianthemum,
Henchera.

Silene Shafte,
Tunica Saxifraga,
Viola cornuta.
5. For cut-flowers. - In the following lists 1 stands for spring, 2 for summer, and 3 for autumn:

A. Blooming in spring.

Ethionema,
Alyssum,
Anemone sylvestris.
Astilbe (1-2),
Centaurea montana.
Doronicum,
Hesperis (1-2),
Heuchera (1-3),
Theris,
Lychnis Visearia.
Lupinus (1-2),
Myosotis (1-2),

Omphalodes,
Papaver (1-2),
Peony,
Phlox divaricata,
Primula,
Pyrethrum hybridum (1-2),
Pyrethrum Tehihatchewi (1-3),
Ranunenlus (1-2),
Spirata (1-2),
Viola odorata.
AA. Blooming in summer.

Anthericum Liliastrum,
Aquilegin,
Campsuula.
Centaurea Rutbenica,
Cheiranthus,
Clematis,
Delphinium,
Dianthus.
Eryngiam,
Euphorbia,
Gypsophila,
Hemerocallis,
Iris.
Linaria,
Rudbeckia,
Statice,
Thalietrum,
Trollins,
Valeriana.
Veromica.
Heuchera ($1-3$),
Achillea (2-3),
Aconitum (2-3),
Anemone Japonica,
Anthemis tinctoria (2-3),
Arenaria graminifolia.
Aster.
Boltonia,
Cedronella.
Centranthus.
Chrysanthemum maxi-
mum (2-3),
Coreopsis (2-3),
Crocosmia,
Gaillardia (2-3).
Helenium (2-3),
Helianthemum (2-3),

Lilium (2-8),
Lychnis Flos-euculli, vespertina,
Phlox paniculata, suffruticosa,
Platycodon (2-3),
Polygourm affine. cuspidatum,
Pyrethrum uliginosum,
Salvia farinacea (2-3).
Saponaria (2-3).
Senecio (2-3),
Stokesta (2-3),
Viola cornuta (2-3).
6. For bold effects. - The following have striking and characteristic habit, and are desirable for prominent positions as single specimens or as exclusive groups. Some are foliage plants, the flowers being inconspicuous or not to be counted upon. Tall means 5 ft . or more; the others are of medium beight, $2-4 \mathrm{ft}$.:
A. Flowers incidental.

7. For forcing and greenhouse decoration. - The following are good subjects for potting. Helleborus and Saxifraga can be forced for Christmas. Those in the first list can be forced for Easter. Those in the second list are desirable for indoor decoration between Easter and the burst of spring outdoors:
A. For forcing.

Alyssum,
Arabis,
Cheiranthus alpinus,
Dianthus,
Funkia (variegated),
Heuchera sanguinea.
1 beris,

Lychnis Flos-cuculli,
Lychnis Visearia,
Saxifraga,
Peony,
Polygonatum multiflo-
Polygonatum multiflo-
Primula.
[rum,
Spiræa.

> AA. For indoor decoration.

Acorus gramineus,
Aster alpinus,
Aubrietia,
Campanula.
Dodecatheon,

Hepatica,
Myosotis,
Phlox amoena,
.. reptans,
subulata.

HERBS. ORNAMENTAL. See Herbaceous Peren. nials.

HERBS, POT. See Greens.
HERBS, SALAD. See Greens and Sialad Plants.
HERCULES' CLUB. Aralia spinost. Also Zunthorylum Clava-Herculis.

HERMODACTYLUS (Greek, Mercury's fingers; from the arrangement of the tubers). Iridacere. SNAKE'sHEAD 1 kis . This is a hardy tuberous plaut closely allied to lris, the fis, purplisi black and green, of a quaint and peculiarly attractive beauty. The plant is procurable from Dutch and Italian growers. The genus differs from Iris only in the l-celled ovary with 3 parietal placen1 ; Iris has a 3-celled ovary.
tuberosus, Salisb. (Iris tuberòsa, Linn.). Tubers 2-4, digitate, 1 in . long: stem 1 - $\mathrm{fk}, \mathrm{l}, \mathrm{ft}$. or more high: lvs. 2-3, glaucons, 4-angled, 1-2 ft, long: outer perianth segments 2 in. long, dark purple; iuner ones green. Apr. B.M. 531. F.S. 11:1083. (i.C. 11. 23; 672.

J. N. Gerard.

HERNANDIA (Francisco Hernandez, physician to Philip 11 of Spain, traveled in West Indies 1.593-1600, and wrote on natural history of spain). Luuràcea. Jack-in-a-Box. This includes H. outgera, a tree from Mauritius, which grows 40 ft . high, and is cult. in S. Calif. by Franceschi, who says it has light green, glossy lvs. with a red spot in the center, and large, whitish, egg-shaped fruits. The genus has 9 widely scattered species of tropical trees: Ivs. alternate, entire, ovate or peltate, 3 - 7 -nerved: fls in a loose panicle, the extreme branches terminated by a $4-5$-bracted involucre. Of the 3 fls , in an involucre, the central one is pistillate and sessile, the lateral ones staminate and pedicelled. H. sonora, Linn., from India, is much used in Europe for subtropical bedding, and produces a juice that re moves hairs from the face without pain. Its staminate fls. have their parts in 3^{\prime} s or 4's and the filaments have one gland at the base, while in H. origera the floral parts are always in 3's and there are two glands at the base of each filament. II. sonora has peltate or cordate 1vs. $7-12$ in. long and 4-6 in. wide.
ovigera, Linn. Lvs, $6-7 \mathrm{in}$. long, $4^{1 / 2}-6$ in. wide, oblong, acuminate, palminerved: fr. an egg-shaped drupe, borne on a stalk and obscurely ribbed.

HERNIÅRIA (Greek; supposed to cure hernia or rupture). Illecebrìcer. HERNiARY. RUPTURE-wort. This includes a bardy herbaceous perennial plant, which grows about 2 in. high and produces inconspicnous greenish tis, in summer. It makes a dense mat of moss-like foliage, which turns a deep bronzy red in winter. It is much used in carpet-hedding and to a less extent in rockerios and for edgings of hardy borders. Recommended for covering graves. It thrives in the poorest soils, makes a solid covering, and is by some regarded as one of the most valuable of hardy trailers. Prop. by division or seed. Grows wild in England, and is kept in many large collections of hardy plants.

The genus has $8-23$ species, which are widely scattered, but all grow in sandy places, chiefly near the sea. It has no near allies of great garden value, but 2 species of Paronychia are cult. for the same purpose and are easily told apart by peneral appearance. Herniaria and Paronychia are alike iu their 5 -parted perianth and 2 stigmas, hut in Herniaria the segments are blunt, while in Paronychia they are hooded near the apex and have a horn or small sharp point on the back near the apex. Herniaria is composed of annuals or perennials with roots of short duration, and they are all much branched, trailing plants, either glabrous or hirsute: Ivs, opposite, alternate or clustered, small, entire: fls. minute, crowded in the axils; sepals, petals and stamens 5: seed solitary.
glàbra, Linn. Lass, obovate, rareıy orbieular, glabrous except a few hairs at edges, which are usually recurred: fls, in a leafy spikn or the lower ones at considerable intervals. July, Aug. Eu., Asia.
W. M.

HESPERANTHA (Greek, evening flower). Iridacea. Twenty-six species of Cape bulhs, 3 of which are procurable from Dutch growers. They belong to the Ixia tribe and are much inferior to Ixias for general cultivation, but have fragrant flowers, opening at evening. The genus is still more closely allied to Geissorhiza, and differs only in having longer style-branches and spathevalves always green instead of sometimes brownish above. The corms are $1 / 2 \mathrm{in}$. thick or less: 1vs. 2-5: fls. $2-10$ in a lax, distichous spike; inner segments white; outer ones redoutside. For culture, see Ixia and Bulbs. Mon. by Baker in Irideæ, 1892, and in Flora Capensis, vol. 6. 1896-7.

> A. Foliage hairy.
pilossa, Ker. Corm globose: 1vs. 2, linear, erect, strongly ribbed, $3-6 \mathrm{in}$. long: outer segments claret-red. B.M. 1475 (outer segments speckled with color).

AA. Foliage not hairy.

B. Lis. spreading, s-3 in. long.
falcàta, Ker. Corm conic: 1vs. 2-4, lanceolate: onter segments claret-red. B.M. 566, as Ixza falcata.
BB. Les, erect, 4-6 in. long.
graminifolia, D. Don. Corm globose: 1vs. 3-5, linear: cuter segments reldish brown. B. M. 1255, as Geissorhiza setacea.

HÉSPERIS (Greek, evening, same root as vesper ; flowers more fragrant at evening). Crucifere. This includes the Dame's Rocket, a vigorous, hardy herbaceons perennial plant, forming clumps $2-3 \mathrm{ft}$. high, branched from the base, and covered with showy terminal pyramidal spikes of 4 -petaled flowers, resembling stocks. The colors range from white through lilac and pink to pnrple. The double forms are most popular. Rockets bloom from June to Aug., aud have long been cult. in cottage gardens. J. B. Keller writes: "The ordinary single forms are not worth growing in the border, bnt may be used in wild gardens. The double Rockets are considered amongst the best hardy plants, being very productive of bloom and extremely uscful for entting."
The genus has about 20 species in Europe, A sia Minor and Siberia. Herbs, biennial or with a stem that is perennial at the base, pilose, the hairs simple, forked or glaudular: stem-lrs. usually sparse, ovate or oblong, entire, deutate or lyrate: fls, in loose racemes, often fragrant; petals 4, long-clawed: pods long, linear, cylindrical : seeds numerous, winged or not. The genus is allied to the stocks, but has a somewhat different habit and the hypocotyl incumbent not accumbent.
matronalis, Linn. Rocket. Sweet Rocket. Dasie's Violet. Damask Violet. Fig. 1053. Lus ovate-lanceolate. $2-3 \mathrm{in}$. long, toothed: pods $2-4 \mathrm{in}$. long, straight, mach contracted between the seeds. En., N. Asia Escaped from gardens in Eng. Gn. 53, p. 293 and 49, p. 339 (a lovely garden view).

IT. M.
HESPEROCALLIS (Greek, evening beauty). Liliàces. This genus of only one species belongs to the group of desert plants of the Lily family, of which the common Y^{\prime} ucet filamentosa is the best hardy type. It is a native of Colorado, and is also said to grow in Calif. and Mex. Franceschi writes that the large, waxy white or greenish fls. are very fragraut, and that the hulb should be deeply planted in perfectly drained soil. This genas, like Yucea and Cordyline, has an indefinite number of ovules in each cell, while in Draræna the ovnles are solitary and in Dasylirion 3 in each cell. Hesperocallis bears its fls. in an unbranched raceme, while the other genera named here bear their fls. in panicles. All have woody stems. Other important generic characters of Hesperocallis are the funnelshaped perianth and the loculicidal dehiscence of the capsule.
undulàta, Gray. Bulb large, corm-like: stem stout, 1-2 ft. high, 5-8-fld.: lvs. linear, fleshy, keeled, 3-6 lines wide, wary margined: fls. $11 / 2-2 \mathrm{in}$. long; segments $5-7$ nerved.

HESPEROCHIRON (Greck, hesperos, originally evening, but here western, i. e., in the direction of the setting sun, and Chiron, a centaur distinguished for his knowledge of plants; hence "Western Centaury," these plants being at first placed in the Gentian family). Hydrophyllàcec. A genus of 3 species of northwest American tufted perennial herbs with scapes bearing solitary, rather large whitish fls. The nearest allied genera of garden value are Phacelia and Emmenanthe, which are

1053. Dame's Rocket or Sweet RocketHesperis matronalis ($\times 1 / 2$).
very distinct in color of fis., general appearance and cymose inflorescence. It is still doubtful whether Hesperochiron is in the right order. Dwarf, stemless perennials or possibly biennials: Ivs, entire, spatnlate or oblong: Als. purplish or nearly white, with parts normally in 5's, rarely in 6's to 7's; style 2-cut; capsule 1 . celled, loculicidal, 15-20-seeded: seeds minntely netted or wrinkled. Procurable through Californian specialists and collectors.

A. Corolla lobes shorter than the tube.

Californicus, Wats. Lrs. numerous: corolla somewhat oblong, bell-shaped. Hills and meadows. B.R. 10:833 (as Nicotiana nana).
as. Corolla lobes longer than the tute.
pùmilus, T. C. Porter. Lis. fewer : corolla nearly wheel-shaped; tube densely bearded within. Springy and marshy grounds in mountains.
W. M.

HESPEROSCORDUM. Consult Brodica.
heterocentron. See Meeria.

HETEROMELES is included in Photinia.

HETEROPÁPPUS (Greek, two kinds of pappus). Compósito. This includes a plant that lovers of our native Asters and Boltonias should not neglect. It is a hardy herbaceous perennial plant that bears azure-blue asterlike fls, in summer. The genus is closely related to Aster, having the habit of the Asters of the section Calimeris. The plant in the trade is known as C'alimeris Tatarica. Heteropappus is closely related to Boltonia and is not far from Callistephus, which contains the China Asters. The chief botanical distinetion resides in the pappus, which is the large group containing Callistephus and Aster is composed of numerous bristles arranged in one or more series, while Boltonias and Heteropappus belong to a group in which the pappus is anomalous. In Boltonia it is composed of very short, somewhat chaffy bristles, with the addition usually of 2-4 awns not longer than the akene. In Heteropappus the pappus of the rays is composed of very short, somewhat chaffy bristles, while in tbe disk-fls, it consists of numerous slender bristles arranged in I or 2 series.
Heteropappus is a genus of $2-4$ species from Japan and China. Herbs, erect, branched above: lvs, alternate, entire or coarsely toothed: heads in loose irregular panicles or solitary at the tips of branches: rays white or sky blue. See Calimeris.
bispidus, Less. (Calimeris Tatárica, Lindl.). Stem roughisb: Ivs. linear, acute, pubescent: branches spreading, usually unbranched and bearing 1 head: involucral scales acuminate, birsute, herbaceous, not white-margined. Japan. Sandy places of Mongolia.
HETEROPHRAGMA (Greek, an odd kind of capsule). Bignonidceas. This includes a tropical tree that is very rare in cultivation. 1t grows $30-50 \mathrm{ft}$. high, with 5-7 leaflets, which are $7-9 \mathrm{in}$. long and about 5 in . wide, and swelling tubular 5 -lobed $\mathrm{fls}, 2 \mathrm{in}$. wide and densely woolly outside. The plant was onee offered in this country as Bignonia adenophylla, but Biguonia helongs to a tribe in which the debiscence of the capsule is septifragal or septicidal, while Heterophragma belongs to a tribe in which the dehiscence is loculicidal. Heterophragma is a genus of 3 species of trees frome India and Africa. Lvs. opposite, arge, pinnate: fls, rosy, yellow or orange, glabrous or tomentose outside; calyx irregular, 3-5-lobed during anthesis: capsule long, cylindrical or compressed, falcate or twisted, loculicidally 2 -valved; septum flat or 4 -angular: seeds winged on both sides.
adenophỳllum, Seem. (Bignònia adenophýlla, Wall.). Leaflets hroadly elliptic, pubescent when mature: fls. brownish yellow, densely woolly: capsule cylindrical, twisted, 1-3 ft. long, 1 in . wide, resembing a cork screw. India.

HETEROSMILAX (Greek, another kind of Smilax). Lilidacea. This includes an ornamental climber with the habit of Smilax, but the perianth is undivided (instead of 6-parted, as in Smilax) and the mouth is minutely dentate. It resembles Smilax in having dioccious tls., borne in umbels aud tendril-bearing stalks. The genus contains 5 species of woody climbers from India, Malaya, China and Japan: Ivs, 3-5-nerved: fls, small or very small. Latest monograph in Latin in DC. Mon. Phan 1:41 (1878).

Japonica, Kunth. Lvs, with stalks about $1 / 2 \mathrm{in}$. long, blades about $4-5 \mathrm{in}$. long: staminate As, unknown. Japan, where it is cult. for the roots, which are used in medicine.

HETEROSPATHE (Greek, a different kind of spathe). Palmacea. Also written Heterospatha. A genus of only 1 species, native of the small island of Amboyna, the Dutch headquarters in the East Indies. It is said by Sander and Co. to be a rare and highly ornamental palm, with graceful, spreading habit and pinnatisect leaves, the segments being long, slender and tapering. Its nearest allies of garden value are Verschaffeltia and Dypsis, in which the stigmas are basilar in fruit, while

Heterospatha helongs to a group in which the stigmas are eccentric or lateral in fruit. Other important generic characters are the 6 stamens with versatile anthers and the 1-celled ovary. The plant is procurable from importers and from S. Fla.
elata, Scheff. Tall, unarmed: lvs. terminal, long-petioled, equally pinnatisect; segments numerous, lanceolate, narrowed at both ends, acuminate, 1-nerved, margins thickened and recurved at tbe base; rachis round on the back, flat on the face; sheath sbort, fibrous, swelled at the base: spathes 2, the lower 2 -crested, the upper much longer. A very worthy palm.

HEÛCHERA Johann Heinrich von Heucher, 16771747, professor of botany at Wittenberg). Saxifragàcece. Tbis includes I. sanyuinea wbich probably ranks among the half-dozen best plants with small, red flowers. $1 t$ is very desirable for the hardy border, where it blooms from spring to late fall. It is also useful to florists for cutflowers and for forcing. All the Heucheras resemhle our dainty wild flower, the Bishop's Cap (Mitella) in their babit, as they have a tuft of heart-shaped, 5-9lobed, crenate leaves, from which spring a dozen or so slender scapes a foot or more high with small fls. borne in panicles, giving a delicate and airy effect.
Heuchera helongs to a group of genera including Mi. tella and Tiarella, in which the ovary is 1 -celled. In Heuchera the petals are 5 or 0 , and entire; iu Mitella5, 3 -fid or pinnatifd; in Tiarella 5 and entire. Heuchera has 5 stamens; Mitella 5 or 10; Tiarella 10. The capsule of Heuchera is inferior, 2-beaked; in Mitella superior, not beaked; in Tiarella superior, compressed. Heuchera has about 20 species, all North American and ranging from Mexico to the arctic regions.
The attractive and petal-like portion of II. sanguinea is the calyx, the petals being small in all Heucheras (often shorter than the calyx). The other species are attractive by reason of their general habit, and particularly the graceful, open panicle. II. sunguinea came into prominence about 1884 and is now, according to J . B. Keller, one of the most popular of hardy perennials. The others are procurable from the largest dealers in native plants and from western collectors. They range from 3 in , to 3 ft . high, averaging about $11 / 2 \mathrm{ft}$., and bloom in summer, having greenish white or purplish fls. J. B. Keller writes that almost any good garden soil suits them, and that they are not particular as regards exposure to sunlight (though an open situation is preferable), and that they look well in borders, rockeries, separate beds and elsewhere. Prop. by division or seed.
A. Stamens and styles included (or in $\Pi_{\text {. pubescens }}$ scitrcely exserted).
B. Scapes hairy.
c. Inflorescence a panicle.
D. Calyr not prominently oblique, i.e., the lobes equal or netrly so.
E. Margin of liss. pointed, with distinct leelh.
sanguínea, Engelm. Coral Bells. Crimson Bells. Height 1-1 $1 / 2 \mathrm{ft}$: : scapes pilose below, glandular pubeseent above: fls. typically bright red, hut in horticultural varieties ranging from white through pink and rose to dark crimson. New Hex., Ariz. The best pictures are B.AI. 6929, Gn. 26:463. Others are Gt. 45, p. 577. I.H. 43, p. 334. Mu. 8, p. 75. A.G. 17:201. R.H. 1898, p. 431. R.B. 22, p. 246. S.H. 2:120. G.C. 11I, $4: 125$. P.G. $4: 35$. Var. álba (\boldsymbol{H}. alba, Hort.) has pure white fls., and was int. ahout 1896 by Haage \& Schmidt. Var. spléndens, int. 1898 by the same firm, has dark erimson fls. Var. robusta, or grandiflora, Hort., according to J. B. Keller, is an improvement on the type, the bells being larger and the color brighter. Var, hybrida ("Rosy Morn"), Hort., according to D. M. Andrews, is "more robust than the type, foliage deeper cut and the divisions more pointed: fis, rosy pink." Andrews adds that var. álba comes true from seed.

EE. Margin of les, with crenations merely acute or blunt.
pubéscens, Pursh (H. ribifòlia, Fisch. \& Avé-Lall.). Height $9-12$ or 15 in.: scapes densely glandular pubescent, at least above. Rich woods, Mits. of Pent. to N.

Є. B.B. 2: 179.- "Evergreen foliage marbled with brouzy red." - Woolsan.
D. Calyx prominently oblique.
hispida, Pursh. Height $2-4 \mathrm{ft}$. Woods, Va. to Idaho. B.B. 2:180.
cc. Inflorescence a spike.
cylindrica, Dougl. Height 10-24 in. Yellowstone Park westward. B. R. 23:1924.

BE. Scapes not hairy.
c. Inflorescence a loose panicle.
parvifolia, Nutt. Height $1 / 2-2 \mathrm{ft}$. New Mex, to Mont.
cc. Inflorescence denser, spicate.
bracteàta, Ser. Height 3-6 in. Colo. AA. Stamens and styles much exserted, at least at tirst.
B. Length of calyx $3-5$ lines.
rubéscens, Torr. Height 8-15 in.: scape usually leafless, glabrous or somewhat scabrous: margiu of lvs, ciliate. New Mex, to Nev.

B8. Length of calyx $1 \frac{112}{2}-3$ lines.
Americana, Linn. Alum Root. Height 2-3 ft .: scape leafless or with a few small lvs., more or less glandular-hirsute. Dry or rocky woods, Ont. to La. and Minn. B. B. 2:179. R. H. 1898, p. 431.-"Has mottled foliage."-Gillett.

BBB. Length of ealyx $1-1 \frac{1}{2}$ lines.

c. Scape riltous, i. e., densely covered with long, soft hairs.
villosa, Michx. Height $1-3 \mathrm{ft} . ;$ scape mostly leafless. Rocky places, Va. to Ga. and Tenn. В.В. 2:179.
cc. Scape thinly covered with minute gtandular hairs.
micrantha, Dougl. Height $1-2 \mathrm{ft}$. Calif. B.R. 15:1302. R.H. 1898, p. 431.

The following names are seen in trade catalogues but not in Index Kewensis. H. $p u r$ purascens was advertised 1898, hy H. Correvon, Geneva, Switzerland. Plants in American trade are not yet large enough for identi-fication,-H. Wheeleri was found in the South some years ago, and Thomas Meehan, who has not examined it closely, says it looks like a form of H. Canadensis with variegated lvs. IV. M.

HEVEA (from the Brazilian name). Euphorbidcea. This includes the tree that produces the Para rubber of commerce. The genus contains 11 species of tall trees from Brazil and Guiana, furnishing the milky juice called caoutchoue: lvs. alternate, long-stalked, the 3 leaflets entire, feather-veined, membranons or leathery: fls. small, monecions. hoportant generic characters are the 3 leaflets, loose panicles, 5 -toothed or 5-lobed calyx, and 5-10 stamens, the filaments united in a column under the rudimentary ovary. The pearest ally of garden value is Jatropha, in which the fls. have petals, while Hevea belongs to a group in which the petals are lacking. This plant may possibly be cult, under glass for its economie interest in a few botanical collections. It was once advertised by Reasoner Bros., Oneco, Fla. The common "rubber plaut," extensively cult. North as a bouse plant, is the East India Rubber Plant, Ficus etastica.

Brasiliénsis, Muell. Arg. South American Rubber Tree. Height 60 ft, : Ifts. membranous: staminate fls, with buds narrowly ovoid-conical and dise small,

1054. Hibiscus vesicariusH. Africanus of gardens. ($\times 1 / 2$.)
urn-shaped, many-lobed, tomentose; anthers 10 , in 2 whorls: floral lfts. $2-3 \mathrm{in}$. long, elliptic-lanceolate. Brazil.

HEXISEA (Greek, six equal things; because the attractive and bright colored parts of the flower are 6, and of equal size). Orchidacea. Should bave been written Herisia. This includes a small epiphytic plant which John Saul once advertiked as "hearing protuse panicles of bright vermilion flowers twice a year." The genus belongs to a subtribe closely related to Epidendrum but with different pollinia. Stems terete or angled, with usually 2 lvs. at the apex of each annabal growth. New growths arise in the axils of the Ivs., the entire stem being thus made up of loug, fusiform, apparently superimposed pseudobulbs, with 2 lvs. at each node. Lvs. few, narrow : racemes terminal, the short-peduncled furnished with overlapping, leathery scales: fls, orange or purple; anthers semi-globose; pollinia 4, in 1 series. Four species, ranging from Mexico to Guiana.
bidentàta, Lindl. Height 6-8 in.: stem branched, forming spindle-shaped, many-grooved internodes: Ivs, in pairs, 2-4 in. long, 3 lines wide, channelled, notehed. Panama. B.M. 7031. G.M. 37:19.

H. Hasselbrino.

HIBISCUS (old Latin name). Malvacea. Marsh Mallow. Kose MalLow. A polymorphous genas, allied to Gossypium, Abutilon, Althasa and Malva, the species widely distributed in temperate and tropical countries. Herbs or shrubs, or even trees, with lvs. palmately veined or parted. Parts of the fl. in 5's ; calyx gamosepalous, 5 -toothed or 5 -cleft, snbtended by an involucel of narrow bracts; corolla usually campanulate, showy, of 5 distinet petals; stamens united into a $5 \cdot$ toothed column: ovary 5 -loculed, bearing 5 styles: fr. a dry, more or less dehiscent capsule. Between 150 and 200 species. Horticulturally, there are four general groups of Hibiscus-the annuals, the perennial border herbs, the hardy sbrubs, and the glasshouse shrubs. The culture and treatment vary with these gronps.
sculeatus, 6 .
Africanus, 1.
anemoneflorms, 13.
atrorubens, 13.
bicolor, 13.
brilliantissimus, 21
Californicus, 11. ealycinus, 18. camellaflorus, 13. carminatus, 21. chrysanthus, 18, 21. eisplatinus, 19. coccineus, 7. coccineus,
cerestis, 13.
Cooperi, 21. Crimson Eye, 9. Denisoni, 20. elatus, 15. elegantissimus, 13 . esculentus, 4.
frutex, 13 .
fulgens, 21.
frelgidus, 21. grandifforus, 12. Hamabo, 14. heterophyllus, 17 . incadus, 10. kermesinus, 21.

INDEX.
lasiocarpus, 11.
Leopoldii, 13.
Puteus, 21.
Manihot, 5. militaris, 8 . miniatus, 21. Moscheutos, 9.
mutabilis. See mutabilis. paoniflorws, 13. palustris. 9. ригригеия, 13. ranuncrileflorus,13. Rosa-Sinensis, 21. Rosella, 3. roseus, 9. ruber, 13. Sabdariffa. 3. Sinensis, 21. speciosu8, 7, 13. sub-violacevs, 21 . Syriacus, 13. tiliaceus, 16. totus albus. 13. Trionum, 2. vesicarins, 1. zebrinus. 21.

A. Annals.

B. Plant low and diffuse.

1. vesicàrius, Cav. (H. Africànus,Hort.). Flower-of-an-hour. Bladder Ketmi. Trailing Hollyhock. Fig. 1054. A foot or 2 high, bushy-spreading, the main branches becoming prostrate, usually bispid-hairy: Ivs. $3-5$-parted, the upper ones 3 -parted, with the middle lobe much the largest, the lobes linear-oblong or sometimes widening upwards, coarsely notched, the root-lys. undivided: fla. solitary in the upper axils, opening wide in the sunshine but closing in shadow, $1-3$ in. across, sulfur-yellow or white, usually with a brown eye; pedicel elongating in fr., and the calyx becoming much inflated. Cent. Afr. - An interesting annual, blooming freely throughout the hot weather of summer, and thriving in any open, warm place. Seeds are usually sown where the plants are to stand. Excellent for rockwork.
2. Trionum, Linn., to which the above species is usnally referred, has much wider and more spatulate and relatively shorter leaf-lobes, which are round-tootbed or lyrately lobed: fils, smaller. From S. Eu, and Afr. B M. 209. -Sometimes a weed about cult. grounds.

BB. Plant mostly tall, strict and stout.
3. Sabdariffa, Linn. (H. Rosella, Hort.). JAmaica Sorrel. Moselle. Strong, 5-7 ft. high, nearly glabrous, the stems terete and reddish: root-lvs. ovate and undivided, the upper ones digitately 3 -parted, the side lobes sometimes again lobed; lobes lanceolate-oblong and erenate dentate: Ass. solitary and almost sessile in the axils, much shorter than the long leaf-stalks; calyx and bracts red aud thick, less than half the length of the yellow corolla. Old World tropics. - Widely cult, in the tropics, and now grown somewhat in S. Fla, and S. Calif, for the fleshy calyxes, which, when cooked, make an excellent sauce or jelly with the flavor of cranberry. The green seed pod is not edible. The juice from the calyxes makes a cooling acid drink. Thrives in hot, dry climates.
4. esculéntus, Linn. (Ahelmóschus esculentus, Moench). Okra. Gumbo. Mostly strict, 2-6 ft., the stems terete and more or less hispid: lis. cordate in outline, 3-5-lobed or divided, the lobes orate-pointed and coarsely toothed or notched: fils. solitary and axillars, on inch-long peduncles, yellow, with a red center: fr . a long ribbed pod ($5-12 \mathrm{in}$. long), used in cookery. Trop. Asia, - For culture, etc., see Okra, A large-fld. form (var. speciosus, cf. H. Mamihot) in Gt. 43, p. 623.

AA. Perennial herbs, mostly grown as border plants.

These plants are late summer and fall bloomers, with hollyhock-like ils. They send up new, strong shoots or canes each year. Many of them are perfectly hardy in the $\mathrm{N}_{\text {. }}$, but even these profit by a mulch covering. Others are tender in the N., and the roots should be taken up after frost and stored in a dry, warm cellar. Keep them just moist enough to maintain life in them. Many times the roots of these herbaceous species are set in large pots in the spring, and they then make most excellent specimens. All the species require a deep, rich soil and plenty of water.

B. Foliage green and usually glabrous.

5. Mánihot, Linn. Tall and stout ($3-9 \mathrm{ft}$), glabrous or hairy: Irs. large, palmately or pedately $5-9$ parted into long and narrow oblong-lanceolate dentate lobes: involucre bracts oblong-lanceolate, falling after a time (as does the calyx x) : fl. large ($4-9$ in, across), pale yellow (sometimes white), with a purple eye: capsule oblong and hispid. Old World tropics, and spontaneous in S. states. B.M. 1702; 3152 (Irs, more cut). S.H. 2:263. - This is apparently the Sunset Hibiscus of the trade; also the Queen of the Summer Hibiscus. In botanical works, H. Manihot is said to be an annual, but as known to horticulturists it is a perennial. For a discussion of this point as related to the limitations of the species, see G. C. 11I. 22:249; (in. 53, p. 127 (and plate 1157). Botanically, the species is allied to H. esculéntus. Not hardy in the open in the North, but the roots may be taken up in the fall and carried over winter in a warm, dry cellar. In the middle states and South, it may be expected to survive if well mulched. Grows readily from seeds,
blooming late the first year if the seeds are started under glass.
6. aculeatus, Walt. Not very stout, $2-6 \mathrm{ft}$. tall, hispid all over but not tomentose nor whitish: les. roundish
\qquad

 .
\qquad
\qquad
\qquad . ? .

 -
nearly or quite glabrous above, the long petiole often joined to the peduncle: involucre bracts linear, nearly or quite as long as the tomentose calyx: fls, very large ($4-7-8$ in. broad), light rose-color (or white in var. albus), with a purple eye: capsule glabrous. Marshes along the coast from Mass. to Fla. and west to L. Michigan. B.M. 882. B.R. 17:1463; 33:7. Mn. 2:161. Gng. $2: 227$. H. roseus, There, of Europe, a rose-colored form, is considered to be a naturalized form of this American species. R.H. 1879:10. - One of the best of the Marsh Mallows, thriving in any good garden soil. Of easiest culture and perfectly hardy. Blooms in Aug. and Sept. The foliage is strong and effective. The most generally cultivated of the hardy herbaceous kinds. The form known as Crimson Eye (clear white with a crimson center) was introduced i89t by Wm. F Bassett \& Son. It was found in a swamp in New Jersey. There is some question, however, as to whether it is specifically the same as H. Moschentos. The fls. are pure white (except the center), expand wide, and the lvs, are bronze-tinted. The carpels are more attenuate.
[0. incànus, Wendl. Much like I. Moscheutos, and sometimes passing for it in the trade: 1vs. smaller and narrower, ovate-lanceolate, not lobed, serrate-toothed: fis. sulfur-yellow, with a crimson eye. S. Car, and south. -Seems to be hardy in the North with a mulch protection.
7. Californicus, Kell. Strong growing, 5 ft ., the stem terete or slightly grooved above, more or less pubescent: Ivs, distinctly cordate, evate, shallow-toothed and not lobed, dull ashy gray beneath : involucre bracts hairy: corolla white or rose, with a purple eye, $3-5 \mathrm{in}$. across : capsule pubescent. Calif.-Gray regards this as a form of H. lasiocarpus, Cav. (var. occidentalis, Gray). A portrait of H. lasiocarpus will be found in G.F. 1:426. Although the name H. Californicus is common in the trade, it is a question how much of the stock, if any, is this species. Certainly some of it is H. Moscheutos. From H. Moscheutos this species is told by its cordate ashy-tomentose 1 ss . and hairy-ciliate involucre bracts. The plant known to the trade as H. Californicus is hardy.

> cc. Lrs. strongly lobed.
12. grandiflorus, Michx. Tall and stout (3-8 ft.), the terete reddish stem becoming glabrons: lvs. large, 3 lobed, the lobes evate-acuminate or ovate-oblong-acuminate, the side ones widely spreading, blunt-toothed or even again lebed: fls. very large ($6-8 \mathrm{in}$. across), white or rose, with deeper eye. Ga., Fla. west.-Aside from the large fls, and lebed lvs., this is very like H. Moscheutos. It is doubtful if the true H. grandiflorus is in the trade.

AAA. Shrubs, hardy in the Forth (or in the middle states).
13. Syriacus, Linn. (Althea frùtex, Hort.). Shrubry Althea. Rose of Sharon. Figs. 1056, 1057. Sbrub, $6-12 \mathrm{ft}$. high, much branched, nearly or quite glabrous: lvs. rather small, short-petioled,

1056. Capsule
of Hibiscus Syriacus. strongly 3 -ribbed, triangular- or rhombic-orate, mostly 3-lobed and with many rounded teeth or notches: fis. solitary in the axils on the young wood (late in the season), somewhat bell-shaped, $2-3$ in. long, rose or purple, nsually darker at the base: pod short, splitting into 5 valres. Asia. B. M. 83. R. H. 1845:133 (var. speciosurs, with donble fls.). - One of the commonest of ornamental shrubs, and hardy in Ontario. It is immensely variable in character of fls., the colors ranging from blue-purple to violetred, flesh color and white; alse full double forms. There are forms with rariegated lvs. Colored plates of some of the double-fld. forms will be found in Gn. 52:1150. The species thrives in any good soil. Prop, by seeds, by euttings of ripened wood taken in the fall, and named vars. by grafting on the common
seedling stock. Nativity uncertain, but probably not Syrian, as Linnaus supposed: probably native in China. To this species belong such trade names as
 H. totus d́lbus, H. Lèopoldii, H. pronifldrus, H. coles- $_{\text {, }}$ tis, H. violacews, H. anemonafldrus, H. at~órubens, H. bicolor, H. camellaflomus, H. elegantissimus, etc.
14. Hamàbo, Sieh. \& Zucc. A Japanese species offered by importers but not yet tested in this conntry, and prebably not hardy south of the southern-middie states: $6-10 \mathrm{ft}$. high, closely pubescent: 1rs. roundish, with an abrupt short point, irregularly shallowly teothed, white

1057. Hibiscus Syriacus ($\times 1 / 2$).
tomentoses involucre of scales united at the base: fls. solitary in the upper axils, large, yellow, with a darker base.
AAAA. Shirubs of glasshouses, or permanently planted out in the far Soulh.
B. Lis. hnary beneath.
15. elàtus, Swartz (Paritium elatum, G. Don). Mountain Mahoe. A West Indian tree, now introduced in S. Calif.: Irs. ronnd-cordate, short-cuspidate, entire:
involucre deciduous (with the calyx), 8-10-toothed: fls. $4 \mathrm{in} . l o n g$, opening primrose color in the morning, then changing, as the day advances, to orange and deep red. - This species, the next, and probably others, yield the Cuba bast, used for tying eigars and for other purposes. Lvs, and shoots medicinal: wood durable.
16. tiliảceus, Linn. (Paritium tiliecem, Juss.). Kound-headed tree $20-30 \mathrm{ft}$. high: lvs. round-cordate and short-acuminate, entire or obscurely crenate: involucre persistent (with the calyx), 10 -toothed: fls, $2-3 \mathrm{in}$. long, yellow. Old World tropies, but naturalized in the W. Indies aud at Key West.-Offered recently by Reasoner. Evergreen. Sprouts from the base if frozen.

BB. Les. usuully green both sides.

17 heterophyllus, Vent. Tall shrub of Australia, int. in S. Calif., where it is a free aud showy bloomer: nearly glabrous: Ivs, varying from linear to lanceolate and elliptic-oblong and from entire to 3-lobed, 5-6 in. long, usually serrulate and sometimes white beneath: fls. large ($3-1 \mathrm{ju} . \operatorname{long}$), white, with a deep crimson eye, the calyx tomentose: capsule hairy.
18. calycinus, Willd. (H. chrysánthes, Hort.). Small shrub from S. Africa, and sparingly known in this country: pubescent: Ivs. long-stalked, round-cordate, somewhat 3-5-angled and 5-7-nerved, crenate, hairy or velvety: fls. on axillary peduncles which are shorter than the petioles, large, yellow, with a dark center: involucre bracts 5 , bristle-pointed: capsule tomentose. - To be grown indoors, but may be planted out in the summer with good results. Probably valuable for permanent planting in the extreme S.
19. cisplátinus, St. Hil. Bushy, 3-5 ft.: stems glabrous but prickly: lvs. deltoid-lanceolate or deltoidovate, 3-lobed, coarsely toothed, sparsely hairy on the veins: fls, solitary, $\frac{4-5}{}$ in. scross, light pink, with darker color in the eye and sometimes darker on the margins. Brazil (this side the Platte river, whence the specific name). R.H. 1898:480. Gng. 7:50.-Little known in this country. It is a late fall bloomer, and may be planted out in summer. It seeds freely, and these, sown as soon as ripe, will give blooming plants for the following fall. Handsome.
20. Dénisoni, Burb. Small glasshouse shrub, flowering when very small, glabrous: lvs. thick and rather stiff, slender-stalked, elliptic-ovate, entire or obscurels crenulate, acuminate, dull green: fls, terminal, large, white, $4-5 \mathrm{in}$. across. Nativity unknown, but int. from Austral. F.M. 1876:232.-A good greenhouse plant, requiring warm temperature.

1058. Hibiscus Rosa-Sinensis ($\times 1 \cdot 5$).
21. Ròsa-Sinénsis, Linn. (H. Sinénsis, Hort.). ChlNese Hibiscus. Shoeblack Plant. Fig. 1058. In glasshouses a shrub $3-8 \mathrm{ft}$, bigh, but reaching 20 ft . in subtropical regions, glabrous: lvs. rather large, thin and shining green, broad-ovate to lance-ovate, somewhat tapering to the base, acuminate, coarsely and unequally toothed: involucre bracts linear, free, as long as che calyx tube: fls. solitary in the upper axils of the new
growth, on peduncles which exceed the petioles, bright rose-red, $4-5 \mathrm{in}$. across, with a projecting red column of stamens and pistil. Asia, probably China: now distributed in warm countries, and one of the hest known old-fashioned conservatory pot-plants. B.M. 158. 1.H. 29:441. G.C. 111. 2:529. Gin. 53, p. 127. - It is now immensely variable. Forms are double-fld., and others are orange, yellow, bright red, magenta, and parti-colored. Var. Cooperi, Hort. (H. Cooperi, Hort.), has narrow white-marked lvs. and distorted scarlet fis. Trade names belonging to this species are H. brilliantissimus, H. carminatus, H. chrystinthus, H. fúlgidus, H. fúlgens, H. kermesinus, H. luteus, H. miniatus, H. sub-violàceus, H. zebrinus. Hibiscus Hosa-Sinensis is a sum-mer-Howering shrub which always attracts attention. It is often plunged in the open with other subtropical stuti, It is easy to grow in ordinary potting soil. In winter keep it slow by witholdiug water and keeping in a temperature not above 50°. In spring head the plants in aud start them up to get the new wood on which the flowers are borne. Give plenty of water when growing, and syringe frequently. Prop. readily by softwood cuttings in spring, or by bard cuttings in fall.
H. A'rcheri, Hort., is a hybrid of H. Rosa-Sinensis and H. schizopetalus, raised by A. S. Archer, Antigua. West Indies Much like H. Rosa-Sinensis. Fls, red. Go. 55:1221.-H. Cam. eroni, Knowles \& Weste. Tall shrub, with heart-sbaped 3-lobed lvs. and large, solitary, cream-colored, red-veined fls. Madag. B.M. 3936. The plant figured under this name io Gn. $53: 1164$ is probably a form of H. Rosa-Sinensis. $-\boldsymbol{H}$. mutabilis, Lion, Tree-like or tall shrub: Ivs, cordate, 5-angled, toothed, dowoy: fls, axillary, opening white or piok but chaogiog to deep red by night: involucre bracts shorter thas calyx. China. Cult. in tropical and subtropical regions. Recently introd. in S. Fla. under the name of Cotton Rose and Confederate Rose. \boldsymbol{H}. schizopetalus, Hook. f. Allied to H. Rosa-Sineosis: fls. pendulous, the recurviog petals beautifully cut, the involucre nooe, the fruit long and bearing glabrous seeds. E. tropical Afr. B. M. 6524. F.S. 23;2397-8. One of the bandsomest of the genus. -H. splendens, Fras. Shrub, 12-20 ft., soft-tomentose, prickly: lvs, cordate-ovate, palmately $3-5-7$-lobed: fls. very large, rosered. Austral. B.M. 3025. B.R. 19:1629. Handsome.-H. Surattensis, Lion. Trailing, with palmately $3-5$-parted lvs.: fls, yellow: iuvolucre bracts with odd aail-tike spines. India, but widely distributed. G.(., 11I. 9:529.-H. venüstus, Blume. Very like H, mutabilis, but involuere bracts broad. Java. B. M. il83.-H. villosus, undetermined trade oame. L. H. B.

HICKORY-NUT. Notwithstanding the high esteem in which the nuts of several species of Hickory have been held since the settlement of America ly the white men, but little progress has been made in their domestication and improvement. Out of the 9 or 10 species recognized by botanists, not more than 3 or 4 have been found sufficiently promising from an economic standpoint to justify conspicuous effort at amelioration. Of these the l'ecan (\boldsymbol{H}. Pecun) stands easily first, followed in order of apparent value by the Shagbark (Little Shellbark), H. ovata; the Shellbark (Big Shellbark), H. laciniosa, and the Pignut, H. glabra. The Pecan differs in its requirements of soil aod climate from the other species, and is descrilied separately under Pecan. For the botany of the Hickories, see Hicoria.

In Havor and quality of kernel the Shagbark is esteemed by most Americaus as the choicest of native nuts, though in these respects the Shellbark is but little inferior to it. The thinner shell and larger proportion of kernel have given the former precedence over the latter in most cultural efforts; though the thrifty growth, symmetrical form and luxuriant foliage of the latter render it one of the most handsome and useful of natire trees for roadside or lawn plantiog. The Shag. bark has the broader area of natural distribution, being found in localities throughout most of the United States to the eastward of the Great Plains, except on the lowlands of the South Atlantic coast and Gulf states. The Sbellbark is mainly confined to the vanley of the Mississippi and its larger tributaries, extending eastward, however, into eastern Pennsylvania and western New York.

The Pignut, which is similar to the Shagbark in area of distribution, is much inferior to the others in quality, but shows wider variation than eitber in this respect, and has disclosed at least one variety of distinct cultural merit.

As the Hickories, other than the Pecan, are slow-
growing species at best, they should not be planted on other thau fertile soil. The Shellbark is native to river bottoms, and requires richer land than theothers, which endure a ratber wide range of soil characteristics, provided there is sufficient depth aud good drainage. Deep, well-drained, fertile loams, either of sandy or clayey nature, are acceptable to all the species.

Propagation. - All the species are propagated by seed. Planting is frequently done in autumn, but, to lessen the destruction by rodents, is more safely done in early spring. In such ease the freshly gathered nuts, after removal from the hulls, should be stored in slightly dampened sand during the winter, or stratilied, as other tree seeds. Uniformity of growth is promoted by planting nuts where trees are to stand, as the transplanting process in ordinary seasons is accompanied by a considerable loss. If trees must be transplanted, it is probably best to transplant annually in nursery rows, in rich soil, to promote growth of librous roots and to lessen the sbock of final transplantation to the permanent location.
The propagation of the Hickories by budding and grafting is exceedingly difficult, even the most experienced propagators of woody plants failing to secure more than a small perceutage of success. Most growers favor cleft crown-grafting in the spring, on established stocks of the same species. The operation is performed just as stocks are starting into growth, using dormant cions with terminal buds and mounding up to the top bud with fine earth. As the stocks are in condition only for a few days, the process is uncertain and expensive.

One of the most successful propagators of woody plants, Jackson Dawson, of Arnold Arboretum, recommends the use of the Bitternut (H. minima) as a stock, growiog seedlings in boxes 4 in . deep for one or two years, until of sufficient size for grafting. Under this plan the seed lings should be trausferred to pots in the autumn and taken into the greenhouse about January 1. He advises side-grafting these close to the collar. As soon as the roots begin to start, the grafted trees in pots must be plunged in sphagnum to the top bud and left until March to callus. Root-gratting, as commonly practiced, has rarely been found to succeed.

One promising method of root-propagation suggested by Fuller consists in the *turning up or exposing at the surface of the ground of side roots, severed from the parent tree." Their lower extremities are left in place for one or two seasons, until a distinct top has been formed tbrough the agency of adventitious buds on the exposed portions. Though a slow and expensive process, this is probably more certain than any other method yet developed. In some instances, where the tops of trees have been killed, the varieties bave been perpetuated through this practice by promptly tarning up and staking roots that were yet alive.

Planting should be done in autumn, or as early in spring as the ground can safely be worked. An abundance of rich soil should be used in the holes, as much of the success in transplanting depends upon a prompt and vigorous root-growth. If clean cultivation cannot be practiced, a heavy mulch should be applied, and be maintained for several years, until the tree is well established. After this, little

HICKORY-NUT
care is needed, except to guard against the attacks of leaf-eating insects.
Production and Use.-Large quantities of Shagbarks are consumed in our cities, but the supply is mainly from the forests.
In some sections, choice second-growth trees bave been preserved along fences and roadsides, and these are usually found to yield larger crops and finer nuts than the forest trees. In pertions of southeastern Pennsylvania there is a large production of nuts from such trees. In that section the nuts are marketed in the form of kernels free from sbells, for use by confectioners and bakers. The cracking of the nuts is done by women and children on the farms, this work constituting a domestic industry of some importance at certain seasons. As the use of Shagbarks in cooking is apparently increasing, it is important that trees oearing hoice nuts shall be preserved and eared for. The characteristics that determine commercial value are : tirst, eracking quality ; second, thinness of shell; tbird, size; fourth, plumpness and flavor of kernel; fifth, productiveness.

Numerous apparently natural Hickory hybrids bave been brought to notice, but those thus far discovered have given little evidence of cultural value. The most important are the Nuss-
1059. Forms of Hicoria ovata. 1. Ovate form. 2. Long-ovate form. 6,6a. Meriden. 7. Jackson. 8.8a, Milford. Nat. size.
 baumer and McCallister nuts, which are described under Pecan.

Varieties. - In consequence of the difficulty with which the Hickories are propagated by budding and grafting, few nurseries offer other than seedling trees. Several choice varieties of Shagbark have been described and named because of desirable characteristics, however, and several of these have been propagated in a small way by crown-grafting on established trees. Grafted trees of one variety, the Hales, can be obtained in small numbers at one or two murseries. No varieties of the Shellbark have been offered by nurserymen. The illustrations (Fig. 1059) are adapted from the Nut-Culture Bulletin of the U. S. Dept, of Agric.

The more important varieties are the following:

Shagbark: Curtis.-Cond. A smonth nut of medium size, slightly compressed: kernel plamp, light in color and of good quality: sbell thin; cracking quality good.
Dover.-Pa. A medinm-sized angular nut, rather broad at the base, but having a long and sharp basal point: shell moderately thin; cracking quality good: quality good.
Eliot.-Coun. Of medium size, compressed, angular, ovate, with prominent tip: kernel plump ; flavor mild aud pleasant: shell thiu; eracking quality good.
Hales (Hale's Papershell), - N. J. Large, quadrangular, slightly compressed, with a peculiar wavy surface: kernel rather deeply corrugated, hat plump and of good quality, re\% taining its sweetness for two years or more: shell thin and of fair cracking quality. The Hales nut is the first named variety of Hickory, having been described and illustrated by A. S. Fuller in "The Rural New Yorker" in 1870. It is probably the only sort now obtainable at the nurseries. The original tree bears a fair crop annually, and nmmerous younger trees grafted from it are now in bearing.
Jackson.-Ohio. A compressed oval nut of large size: kernel large, plump, and of excellent quality: shell tbin; cracking quality mediam. Fig. 1059.

HICORIA

Leaming.-Mo. A large nut of fine flavor and excellent cracking quality, the kernel coming out in unbroken halves.
Mferiden.-Conn. Large, oblong, compressed: kernel large and of good quality: shell rather thick, but eracks well. Fig. 1059.

Milford.-Mass, A compressed ovate nut, medium to large in size, with large, plump kernel of excellent quality: cracks well: one of the best nuts yet hrought to notice. Fig. 1059.

1060. Foliage and pistillate flowers of Hicoria Pecan.

Rice.-Ohio. Angular, ovate, medium to large in size: kernel plump, hright and of fine quality; shell thin andof good cracking quality: tree regularly productive.

Woodbourne.-Ps. Long, compressed ovate, large and smooth: kernel tender and of very high quality: shell rather thick, but cracks well.

Pignot: Of the somewhat numerons sweet-flavored forms found in this species, the following one at least has been deemed worthy of perjetuation hecause of its delicate flavor, thin shell and excellent cracking quality.
Brackett.-Iowa. Roundish compressed, smooth and of grayish color, medium tn large in size: kernel plump, sweet and of delicate flavor: shell very thin, anil easily freed from the kernel.

> WM. A. TAYLOR.

HICORIA (from its aboriginal name) Syn., Carya. Juglandicee. Hickony. Hardy ornamental trees, with rather large, deciduous odd-pinnate lys., small green ish fls., the staminate ones in conspicnous pendulous racemes, and with rather large, green, dehiscent fruits
enclosing a mostly edible nut. The Hickories are among the most beautiful and most useful trees of the American forest, and are all very ortamental park trees, with a straight, sometimes high and slender trunk and a large, graceful, pyramidal or oblong head of generally light green foliage, turning from yellow to orange or orange-brown in fall. They are hardy North except H. Pecun, aquatica and myristicuforms, but H. Pecan thrives rarely in Massachusetts in sheltered positions. Most of the species have heavy, hard, strong and tough wood, much valued for many purposes, especially for handles of tools, manufacture of carriages and wagons, also for making haskets and for fuel. The nuts of some species, as H. Pecan and Π. orata, also H. laciniata and some varieties of H. glabra and H. alba are edible, and are sold in large quantities, mostly gathered from the woods, though in later years orchards of improved rarieties have been planted. A large number of insects prey upon the Hickory, attacking the wood, foliage and fr., for which see the Fifth Ann. Rep. of the U. S. Entom. Com., p. 285-329. There are also some fungi, causing sometimes an early defoliation of the trees.

The Hickories generally grow best in rich, moist soil, but some. especially H. glabra, H. alba and H. ovata, grow equally well in drier localities. They are of rather slow growth, and difficult to transplant if taken from the woods; therefore the seeds are often planted where the trees are to stand, but if grown in the nursery and transplauted several times when young, trees $6-10 \mathrm{ft}$. bigh may be transplanted successfully. Prop. usually by seeds stratified and sown in spring in rows about 3 in . deep; named varieties may be grafted in spring in the greenhouse, on potted stock of H. minima, which seems to be the best species for this purpose, veneer- or splice-grafting being usually employed; sometimes also increased hy rootsprouts. For futber horticu!tural advice, see Hickoryvut and Pecur.

There are about 10 species of Hickory, all in E. N. America from Canada to Mexico. Branches with solid pith: 1vs. alternate, without stipules, with $3-17$ serrate ifts.: fls, moncecious, apetalous, appearing with the lvs.; staminate fls, in asillary, slender, pendulons eat kins, each fl. with 3-10 stamens, borne in the axil of a 3-lobed bract; pistillate fls, in a terminal, $2-10$-fid. cluster or spike, consisting of a l-celled orary enclosed by a 4 lobed involucre: fr. globular to oblong, with a husk separating into 4 valves and a bony nut, incompletely 2-4-celled. See also Rep. Missouri Bot. Gard. 7, p. 2842, pl. 1-23, and Rep, of I. S. Dept, of Agric. Div. of Pomol. Nut-Culture (1896), cited below as U.S.N.C. (the first number referring to the plate, the second and third to the figure).
A. Scales of buds valrate, 4-6: fr. with winged sutwres; nut usually thin-shelled: litts. $\gamma-1$, wsually falcate.
B. Nit mostly elongated, almost terete: husk thin, splitting to the base: kernel sueet.
Pecán, Britt, (Carya oliveformis, Nutt.). Pecan. Fig. 1060. Tall tree, to 170 ft ., with the branches pubescent when young: bark deeply furrowed, grayish brown: Ifts. 11-17, short - stalked, oblonglanceolate, acuminate, serrate or doubly serrate, tomentose and glandular when young, usually glabrous at length, $4-7$ in. long: staminate catkins almost sessile: fr. 3-10 in clusters or spikes, oblong, $11 / 2-31 / 2 \mathrm{in}$. long; nut ovoid or oblong, smooth, brown, irregularly marked with dark brown, 2-celled at the base; keruel sweet. From lowa and Ind. south to Alah. and Tex.; also in Mexico. S.S. 7:

1061. One form of Pignut -H. glabra.
Natural size. 338-39. A. G. 12:273-75. U.S. N.C. 1, 8,9. - This species is the most important as a fruit tree, an 1 many named varieties are cultivated in the southern states, bnt it is tender North. The wood is less valuable than that of the other species. Hybrids of this species are known with H. minima, alba
and laciniosa, for which see Rep. Mo. Bot. Gard. 7, pl. 20-23 and Gng. 2:226. See Pecan.
myristicæfórmis, Britt. (Carya myristicaformis, Nutt.). Nutmeg-Hickory. Tree, to 100 ft . with dark brown bark, broken iuto appressed scales: 1fts. $5-11$, short-stalked or almost sessile, ovate-lanceolate, the uppermost much larger and obovate, serrate, scurfy-pubescent beneath when young and with brown scales ahove, at length dark green above, silvery and lustrous beneath, $3-5$ in. long: staminate catkins peduncled: fr. generally solitary, short ovoid or obovate, abour $11 / 2$ in. long; nut ovoid, reddish brown marked with irregular spots and stripes, thick-shelled, 4 -celled below; kernel sweet. From S. Car. to Ark. and Mex. S.S. 7:342-43.A very decorative species on account of its handsome foliage, but not hardy Norih.
nB. Nut usually as broad as long, compressed with irregularly angled or reticulate surface, thinshelled, 4 -celled betow: kernel bitter.
aquática, Britt. (Carya aquática, Nutt.). WaterHickory. Bitter Pecan. Usually small tree, rarely to 100 ft ., with light brown hark separating into long, thin plates. Ifts 7-13, sessile or short-stalked, lanceolate, loug-acuminate, finely serrate, yellowish tomentose when young, glabrous at length. fr. 3-4, ovoid to broadly ohovate, $1-1 \frac{1}{2} \mathrm{in}$. long; husk thin, splitting to the hase; nut obovate, much compressed, irregularly angled and ridged, dull reddish brown; kernel very bitter. From Va. to 111., south to Fla. and Tex. S.S. 7:344-45. U.S.N.C. 12, 7-8.
minima, Britt. (Carya amára, Nutt.). Bitter Nut. Swamp-Hiekory. Tree, to 100 ft .: bark grayish brown, brokeu iuto thin scales: young branches and petioles glabrous: lfts. 5-9, ovate-lanceolate to lanceolate-acuminate, densely serrate, pubescent when young and glandular, almost glabrous at length, 3-6 in. long: fr. 2-3, broadly ohovate or subglobose, winged from the apex to the middle, $3 / 4-1 \frac{1}{2} \mathrm{in}$. long; husk thin, splitting somewhat below the middle; nutslightly compressed, roundish, abruptly contracted into a short point, irregularly

1062. Characteristic growth of the Pignut Hickory. Hicoria glabra.
reticulate ; kernel bitter. Quebee to Minn., south to Fla. and Tex. S.S. 7:340-41. Em. 226.-A valuable park tree, with handsome, rather broad head, growing in cult. more rapidly than other Hickories.

1063. Hicoria glabra, var. microcarpa-the false Shagbark.

AA. Scales of buds imbricate, more than 6: fr, nol or slightly winged at the sutures: mut usually thick-shelled, 4-celled below: lfts. S-9, not fal. cate, the uppermost larger and generally obovate.
B. Buds small, 1/4-1/2in. long: husk thin : nut slightly or not angled.
glàbra, Britt. (Carya porelna, Nutt.). Pignut. Figs. 1061,1062 . Tree, occasionally to 120 ft., with usually dark gray fissured bark and slender, glabrous branchlets : Ifts. 3-7, almost sessile, oblong to oblong-lanceolate, long-acumiuate, sharply serrate, almost glabrous, 3-6 in. long: fr. usually ovoid or ohovate, the sutures usually slightly winged toward the apex and the husk splitting mostly only half way to the base; nut usually brownish, not angled ; kernel mostly astringent. S.S. 7:352-53. A.G. $11: 386-7$. U.S.N.C. 12, 5. - A very handsome park tree, with rather narrow-oblong head and slender, often pendulous branchlets, especially in the following var. A very variable tree, and the following varieties are considered by some botanists as distinct species.

Var. microcárpa, Trel. (Carya mierocárpa, Nutt.). Figs. 10ti3-6. Bark more or less shaggy: Ifts, quite glabrous, often somewhat broader: fr. subglohose; busk splitting nearly to the base; nut grayish or whitish, angled, rather thin-shelled, often broader than long; kernel sweet. From Quebec to Mich., south to Fla. A. G. 11:381-88, 1, 2, 5, 8, 10. U.S.N.C. 12 , 4, 6, -Often very distinet. Probably H. borealis, Ashe, belongs to this variety. Var. odoràta, Sarg. Similar to and often united with the former. Bark fissured,

1064. Fruit of H. glabra. 1065. Twig of var. microcarpa, the false Shagbark. Natural size.

Hicoria alabra var. microcarpa,
not shaggy : lfts, generally broader, ovate or oblongovate, glandular: fr. more ovoid, splitting almost to the base; nut gray or brownish, slightly angled. S.S. 7:354 (partly). Var. villosa, Sarg. (H. pállida, Ashe). Bark deeply fissured: Ifts. $5-7$, hairy along the midrib beneath and the rachis covered with tufts of hair: fr. subglobose to ovoid; nut brown, thick-shelled. Mo. to Del, and Ala. S.S. 7:355. G.F. 10:305

BB. Buds large, $1 / 2-1$ in. long: nut angied; kernel sueet
C. Bark not shaggy: branches and petioles tomentose: outer bud-scales fulling in uutumn: husk not separating quite to the base.
álba, Britt. (Carya tomentosa, Nutt. Not to be confounded with (\mathcal{C}. aiba, which is H. ovata). Mockernut. Big Bud Hickory. Tree, rarely attaining to 100 ft .: Ifts. 7-9, almost sessile, oblong-lanceolate, long-acuminate, usually finely serrate, glandular and tomentose beneath, very fragrant when erushed, 4-8 in. long: fr. globose to pear-shaped, $11 / 2-3 \mathrm{in}$. long; nut light brown, globular to oblong, slightly compressed, angled, narrowed toward the apex, thick-shelled; kernel small, sweet. Mass, to Ontario and Neb., sonth to Fla. and 'Tex. S.S. 7:350-51. U.S.N.C. 12, 1-3. Em, 222.
Ce, Bzrk shaggy, light gray: branches and petioles giabrows or pubescent: husk very thick, separating to the base: outer bud-scales persisting through the winter.
laciniosa, Sarg. (Carya sulcata, Nutt. H, acuminata, Dippel). Big or Bottom Shellbark-Hickoky. King Nut. Tall tree, occasionally to 120 ft .: branchlets orange-red: lfts. 7-9, oblong-lanceolate, acuminate, serrate, pubescent when young, usually glabrons at length, $4-8 \mathrm{in}$. long: fr . generally oblong, $2-3 \mathrm{in}$. long; nut yellowish white, oblong, but sometimes as broad as long. slightly compressed and obscurely 4-angled, pointed at both ends; kernel sweet. N. Y. to Iowa, south to Tenn. and Ind. Terr. S.S. 7:348-49. U.S.N.C. 11.
ovàta, Britt. (Carya álba, Nutt.). Shagbark-Hickory. Also Little Shellbark-Hickorv, althongh the

HIERACIUM

latter name by some is applied to the preceding. Figs. 1067, 1068. Tree, oceasionally to 120 ft . Ifts. generally 5 , sessile, oblong or oblong-lanceolate, acurainate, serrate, densely fimbriate, pubescent and glandular when young, glabrous at length, 4-6 in. long: fr. subglobose, about $11 / 2-21 / 2$ in. long; nut white, oblong to broadly obovate, 4 -angled; kernel sweet. From Quebee to Minn., south to Fla, and Tex. S.S. 7:346-47. Em. 217. U.S.N.C. 10 . A. G. $11: 386,6,9 ; 387,3 ; 388,11$. Gng. 7:51. A.F. 14:339. - Next to Pecan the best as a fruit tree, especially for the northern states, where Pecan is not quite hardy. Several named varieties are in trade, of which probably var. Halesi, Hort., with large, thin-shelled nut, is tbe best known. An ornamental, often very picturesque tree; the stout branches forming a rather broad, usually somewhat open head.
H. Farolinae-septentrionàlis, Ashe. Allied to H. ovata: fr. smaller: lits, $3-5$, oblong-lanceolate, glabrous. N. C. to Ga.-H. Mexicana, Engelm. Tree, with shaggy bark and tomen-tose-puhescent lvs.: fr. depressed, with rather thick husk and broad, sharply 4 -angled, white nut. Mex. The only species not native to the U. S.-H. Texina, Le Conte. Similar to H. Pecan, but lfts, broader, less falcate, almost sessile; nut smaller, much darker, with somewhat rough surface; kernel bitter. Texas.

> Alfred Rehder.

Twig of Hicoria ovata.

HidAlgoa ("atter the Mexican Hidalgo"). Syn., Childsia. Compásitue. This includes a tender herbaceous vine, allied to Dahlia, with scarlet fls, about $21 / 2 \mathrm{in}$. across, introduced in 1899 by John Lewis Childs, under the name of Childsia Wercklei, or "Treasure Vine." Hidalgoa is closely allied to Dahlia and Coreopsis, but differs from both in the large, fertile akene of the rays and in the sterile disc-fls., the styles of which are entire or very shortly 2 -lobed. Only 2 species were hitherto recognized, both from Central America. From these H. Wereklet differs in its more compound lvs. and much larger heads. Suitable for cool, shady verandas.

Wércklei, Hook. (Childsia Wércklei, J. L. Childs). Tall, woody at base, much branched, climbing by petioles: lvs. opposite, pinnately ternatisect, $11 / 2-21 / 2 \mathrm{in}$. long, 2 in . wide, the teeth tipped reddish brown: petiole $11 / 2-2 \mathrm{in}$. long, coiled at base: peduncle axillary, as long as the Ivs., 1-fld.: rays about 10. Costa Rica. B.M. 7684. J.L. Childs' Cat. Rare Flowers, ete., 1899, p. 1, with colored plate. A.G. 20:570.
W. N.

HIERACIUM (Greek, u hark; the aneients thought that hawks sharpened their eyesight by using the sap of these plants). Compósita. Hawkweeds. Over 250 species of hardy berbaceous perennials, mostly native to Eu. and S. Amer., some of which are bad weeds in

1068. Fruit of Hicoria ovata, the Shagbark Hickory.

Natural size. The cross-section is to show structure, not to show a good horticultural fruit.
the eastern states. Livs. often toothed, but never deeply lobed: heads usually small, loosely paniculate or cymose, rarely solitary: rays truncate, 5 -toothed at the apex: seeds angular. The genus passes into Crepis,
from which it is distinguished by having stiff, usually brownish, rarely white pappus, and obloug or columnar seeds. The cultivated species bear in summer and autumn a succession of small yellow or orange-colored As. There is one white-fid. species, H. nivale. They are often worth growing in rockeries and waste places, but care should be taken to prevent them from crowding out more desirable plants. H. villosum is the most desirable species. Hawkweeds will grow in almost any soil or aspect. They are propagated chiefly by dividing the stolons, or by seeds, and if left to themselves will soon form a dense mat of herbage over the poorest of soils. The Old World species are much confused.

A. Flowering stem leafless or with 1-5 l's.: liss, mostly in a rosette at base of stem.
 B. Scapes unbranched above, bearing but a single head.

Pilosélla, Lian. Mouse-ear Hawriweed. Stem slender, 4-12 in. high, stoloniferous, densely hairy throughout: lvs. entire, oblong or spatulate, narrowed into a petiole: fls. 1 in . broad, pale yellow, sometimes striped or tinged with red or purple.-Commonly flowers the whole seasor. Int, from Eu. and common in dooryards and fields. Ont. to Pa, and Mich.

BB. Scapes branched above, bearing several to many heuds.
 c. Basal les, coarsely toothed.

vulgatum, Fries (H. umbrosum, Jord.). Stem 1-3 ft. high, slightly glaucous: basal Ivs. $2-5$ in. long, oblong to lanceolate, acute at both ends, petioled, petioles usually pubescent. July-Sept. Int. from Eu. Lab. to N. J.
cc. Basal lus. entire or very finely toothed.
D. Le's. mostly obovate to ovate, purple-veined.
venosum, Lidn. Rattlesnake Weed. Stem $1-3 \mathrm{ft}$. high, slender, smooth or nearly so: Ivs. $1-4 \mathrm{in}$. long, obovate to spatulate, subsessile: fls, $1 / 2-3 / 4 \mathrm{in}$. Wide, bright yellow. Aug., Sept. Dry woods, Me, to Ga, and west to Man. and Neb. D. 133.-A common plant in woods. Advertised by one dealer in native plants.
od. Lrs. mostly spatnlate to oblong, green-reined.
aurantlacum, Lidn. Orange Hawkweed. Stem 6 in. to 2 ft . high, slender, somewhat hairy: heads ${ }^{1} 2-1 \mathrm{in}$. across, short-stalked, orange to orange-red. June-Oct. Nat. from Eu. by roadsides and in fields, Ont. to Pa.A bad weed if allowed to spread. It is worthy of being established in high and dry parts of a rockery, where few other plants can grow.
præaltum, Vill. (H. stoloniferum, Bess.). Plants usually spreading very rapidly by stolons: stem $2-3 \mathrm{ft}$. high, slender, glaucous, bairy at base: basal lvs, entire: beads $1 / 2 \mathrm{in}$. across, in an open cyme, bright yellow. June-Sept. Nat. from Eu, along roadsides in N. Y.; sometimes troublesome in cult. land.

AA. Flowering stem leify, at least belove.

B. Stem brauchiny from the base.
ramossum, Waldst. \& Kit. Lrs, ovate to lanceolate, narrowed at the base, toothed, hairy on margin and beneath; lower lvs. petioled, upper ones subsessile. July-Sept. Eu.
nivàle, Froel. White Hawkweed. Differs from Π. ramosum chiefly in baving white fls. and glaucous, somewhat leathery ivs., which are not hairy on the margin. A white Hawkweed is advertised and, according to Gray, this is the only white-fld. species in the genus. Tyrolese Alps.

sв. Stem unbranched below.

c. Whole plant silky-rillose.
villosum, Jaeq. Shaggy Hawkweed. Stem 1-2 ft. high, often 4 ft . under cult.: basal lvs, oblong-lanceolate to lanceolate, narrowed at the base, finely toothed; stem-lvs, sessile, the upper half clasping: fls. $1 \frac{1}{2}-2$ in across, bright golden. June-Aug. Eu. Gn. 46:994.The silvery foliage and showy fls. of this species make it more desirable for the garden than any other Hieracium now in cultivation. It is easily kept from spreading.

ce. Plant smooth or slightly prbescent.

Canadénse, Michx. Stem 1-5 ft. high, slender: lvs. ovate-oblong to lanceolate, acute, serrate, sessile, the
upper with clasping base: fls. 1 in . across. June-Aug. Dry woods, N. S. to Pa., west to B. C. and Ore.
Gronovii, Linn. Stem 1-3 ft. high, stiff: Ivs, hairy, the upper oval or oblong, broadly sessile, the lower obovate to spatulate, narrowed into a short petiole: fls. $1 / 2-3 / 4 \mathrm{in}$. wide. Sandy soils, Can. to Fla., west to Mo and La.
S. W. Fletcher.

HIERÓCHLOË (Greek, holy grass; in northern Europe it is scattered before churches on saints' days). Also written Hierochloa. Graminea. This genus contains the fragrant Vanilla Grass, the sterile shoots of which are woven by the North American Indians into small mats, baskets and boxes. These retain their fragrance for years. It is a genus of 13 species of aromatic perennial grasses with creeping rootstocks, flat leaves and contracted or open panicles, found in temperate and frigid zones. The spikelets are 3 -fld., only the terminal fl. perfect. Vanilla Grass is not a good forage plant, as most animals dislike it. The seed seems to be nowhere obtainable, and only one American dealer advertises plants of it. The bdor is like that of the common anoual sweet vernal grass, Anthosanthum odoratum, but is more powerful. Hierochloë is closely allied to Anthoxanthum, but is distinguished by the 3 -tld. spikelets and rather loose panicles, Anthoxanthum having 1-fld. spikelets and contracted panicles.
boreàlis, Roem. \& schult. (H. odoràta, Wahl.). VAnilla Grass. Holy Grass. Seneca Grass Sweetscented Grass. Rather slender, smooth, $1-2 \mathrm{ft}$. high: lvs. short: panicle brownish, spreading, 2-4 in. long. June, July. Eu., N. Amer. B.B. 1:1:32.
G. T. Hastings.

HIGGiNSIA. See Hoffmannia.

HIMANTOGLOSSUM. All included in Orehis.

HIPPEASTRUM (knight or horse and star, from some fancied resemblance in H. equestre, perhaps of the equitant lvs, and the star-shaped corolla-opening). Amarylliddcea. Includes Habranthus. From 40 to 50 tropical American bulbous plants, now much bybridized. Closely allied genera are Amaryllis, Crinum, Sprekelia, Brunsvigia, Zephyranthes, Lycoris, Sternbergia, Vallota, which see. The fls. are large and showy, two to several being borne on a stout, hollow, leafless scape: perianth tube evident, often long, dilated in the throat; segments erect-spreading, nearly or quite equal; blaments (6) distinct, often with small seales between.
The Hippeastrums are usually known in gardens under the general name of Amaryllis: and their culture is given in full under that name. Many of them are noble garden plants, but the high price of the hulbs prevents them from becoming popular, although they may be grown easily from seeds. Most of the species were first described in the genus Amaryllis, but that genus differs in its solid scape and absence of scales between the filaments.

Very many of the names in trade catalogues are of horticultural forms; and many of them caunot be referred positicely to any of the original species. Fcr the Belladonna Lily, see A maryllis; for Atamasco Lily, see Zephyranthes; for Josephine Lily, see Brinsrigia. For Amaryllis aurea, see Lycoris: for A. candida, see Zephyranthes; for A. formossissima, see Sprekelia: for A.gigantea, see Brunsrigia; for A. longifolia, see Crinum; for A. lutea, see Stermbergia; for A. Nerine, see Verine; for A. orientalis, see Brunsvigia; for A. ornata, see Crinum; for A.speciosa or purpurea, see l'allota. Latin-form names which do not appear in the following account are very likely to be borticultural forms.

index.

Ackermanni, 3. acuminatum, 12. Alberti 9. Anlicum, 2 . citrinum, io. erocatum, 12. equestre, 6 . fulgidum, 6,12 . ignescens, 6 . Johnsoni, 14 Leopoldi, 10 .
major, 6. Marauensis, 8 . miniatum, 1 . pardinum, 5. platypetala, 2. procerum, 11. psittacinum, 4. pulcherrimum, 3 pulverulentum, 12 . pyrrochroum, 6 Regina, 9.
retieulatum, 7 . Rozzli, 6. rutilum, 12 solandriflorum, 1. syathareum, 6. spathaceum,
splendens, 6, splendetus, 6.
striatifolium, 7 striatifolium,
strlosnm, 8 . subbarbatum. 12. Fittatnm. 13 . Walteri, 6.

The genus divides itself into the narrow-leaved (lvs. linear) and broad-leaved sections. All the common garden sorts belong to the latter section. The species which are chiefly known in cult., or whicb have been parents of hybrid races, are contrasted below. In some species the fowers precede the leaves.

A. Perianth tube t-5 in. long, very slender.

1. solandriflorum, Herb. Bulb ovoid. 3-4 in. in diameter, with a short neek: 1rs, appearing with tbe fls., I-2 ft . long. 1-2 in. wide, blunt: scape somewbat tlattened, $2-3 \mathrm{ft}$. tall, bearing $2-4$ declined greenish white Hs.: perianth tube cylindrical, nearly as long as the obovate sometimes purple-ribbed segments; stamens not ex serted. S. Amer. B. M. $2573 ; 3771$. L. B. C. 12:1200. 1.H. 35 :58. - Apparently little known in gardens, but is the parent of hybrids.

> AA. Perianth tube short (usually not more than 1 in. long).
B. Therat constricted or closed by a neek or collar. c. Stigma 3-parted.
2. aùlicum, Herb. Lily-ef-the-Palace. Bulb ofoid, $3-4 \mathrm{in}$. in diameter, with a short Deek: Ivא. 6-9, 1-2 ft. long, 2 in. broad, bright green, the end blunt or nearly so, appearing with the fils.: scape scarcely longer than the lvs., stout. terete, usually bearing 2 large red fls., of which the segments are green at the base: segments $5-6 \mathrm{in}$. long, the 2 upper inner ones much broader than the otbers, all of them obovate and somewhat pointed; corona in the throat grven; stamens shorter than the perianth; filaments red. Brazil. B.M. 3311 . B.R. 6:444. Gt, 45, p. 417. - One of the best, and common in the trade. The form known as var. platypétala, Lindl., B.R. 12:1038, with broader petals and more rebust habit, is in the trade.
3. Ackermanni, Hort., is a garden hybrid, with large crimson fls. The var. pulcherrimum, Hort., with crimson, green-striped fls., is best known.
4. psittacinum, Herb. Bulb 3-4 in. in diameter, with a long neck: | r s. with the fls., 6-8, lightly glaucous, becoming nearly or quite 2 ft . long: scape stout, $2-3 \mathrm{ft}$. tall, bearing a 2-4-fld. umbel: perianth segments $4-5 \mathrm{in}$. long, oblong and acute, undulate, the edge crimson, the main part green but crimsen-striped; stamens much sborter than the perianth. S. Braz. B. R. 3:199. L. B. C. 13:1204.-Apparently little known in cult., but it has been a parent in hybridizations.

cc. Stigma capitate.

5. pardinum, Dombr. Bulb globular, 2-3 in. in diameter, with a short neck: Irs. 5-7, appearing with the fls. but not fully developed until after the fls, are gone, becoming 2 ft . long and $\frac{2}{} \mathrm{in}$. broad, narrowed to the base: scape nearly terete, $1 \frac{1}{2} \mathrm{ft}$. tall, glaucous, usnally bearing 2 spotted fls.: perianth segments $4-5$ in. long, oblong but much narrowed at the base, acnte, greenish yellow and much spotted with red, not striped, the lowest inner segment narrowest; stamens declined, shorter than the perianth. Peru. B.M. $5645 .-$ A handsome species, with fls. 6-7 in. across, offered in the American trade, and also a parent in the modern spotted hybrids.

BB. Throat not constricted.
 c. Stigma capitate or onty obscurely lobed.
 D. Tube of perianth $1 / 2-1 \mathrm{in}$. long.

6. equéstre, Herb. Barbadoes Lily. Bulb globular, 2 in . in diameter, producing offsets freely, with brown scales and a short neck: 1vs. 6-8, developing fully after the fls., $12-20 \mathrm{in}$. long and becoming about 2 in . wide, narrowed to the point: scape 1-2 ft., terete. glaucons: fis. 2 4. 4-5 in. across, the green tube 1 in . long, the segments obovate-pointed, bright red with green at the
base, the 3 Inner ones narrower than the outer; stamens sborter than the perianth. Mexico to Cbile and Brazil. B. M.305. - An old garden species, one of the best for winter and spring blooming. There are several garden forms and hybrids, witb larger and better tls. Var. spléndens, Truff., R.H. 1895: 578 (var. Wálteri, Wittm., Gt.44, 1418), is larger in all its parts, fls. red, and the pedicels are longur. Var. fulgidum, Hort. (not II. fulgidum, Herb.), has brilliant orange segments margined with white. Var. ignéscens, Hort., is deep clear scarlet, with white throat and white bars on the segments. Var, màjor, Hort., has very large, bright orange fls., with a green central star. B.R. $3: 234$. H. Räzli, Regel, H. pyrróchroum, Lem., 1. H. 11:420, and \boldsymbol{H}. spathacerm, Sims, B.M. 2315 , are regarded hy Baker as forms of this species. There are double-fld. forms.
7. reticulàtum, Herb. Bulb nearly globular, with a short neck: Irs, appearing with the fis, rather shert and bread for the gemus, being oblanceolate, 1 ft . long and 2 in. broad, thin and bright green: scape about 1 ft . tall, nearly terete, bearing 3-6 tessellated or checkered fls. 4-5 in. acress: fls. hright mauve or pur-ple-red, with cross lines and bars of crimson, the segments ebovate and much narrowed below; stamens shorter than the perianth, declined. S. Brazil. B. M. 657. Var. striatifolium, Baker, has still broader lrs., with a white keel or stripe. B. M. 2113. B. R. 5:352. G. C. 111. 4:477. - Handsome. Blooms normally in late summer. Offered in American catalogues.
8. stylösum, Herb. (Amary̆llis Maranénsis, Ker Gawl). Bulb globular, 3 in. in diam., with a short neek and pale coverings: 15s. 4-6, mostly appearing with the fls., bright green, becoming nearly 2 in. wide: scape $1-2 \mathrm{ft}$., bearing 3-8 light red or flesb-colored fls. 4 in. across: perianth tube $1 / 2 \mathrm{in}$. long; segments oblong-acute, less than 1 in . wide, tawny pink or flesh-red ; stamens somewhat exserted, the style much so (whence the specifie name). Guiana and Braz. B.M. 2278. B.R. 9:719. - Apparently not much cult., but it has been a parent of bybrids.

DD. Tube of periunth rery short ($1, r$. scarcely any).
9. Reginæ, Herb. Bulb globular, 3 in. in diam.: Jrs. dereloping after the fls., 2 ft . long and $1 \frac{1}{2}-2 \mathrm{in}$. broad, green: scape $10-20$ in., bearing 2-4 red declined fls.: perianth segments 4-5 in. long, oborate and acute, the lowest innermost one narrower, all bright red, a large whitish star in the throat ; tube sometimes nearly or quite 1 in. long; stamens shorter than the perianth. Mex, to Peru and Braz. B.M. 453.-An old garden plant, still much cult. There are double-fld forms: Amaryllis Alberti, Lem., I.H. 13:498, Baker considers to be one of these.
10. Leopoldi, Dombr. Bulb globular, 2-3 in. in diam., with shert neck: lvs. with the fls, or mearly so, of en 2 ft . long: scape stout, $11 / 2-2 \mathrm{ft}$., Dearly terete, bearing about 2 large, very regular and parti-colored fls., measuring 6-7 in. across: perianth tube without any cerona or constriction at the throat ; segments obevate, 2 in . broad, the lower half dull crimsen, the tips greenish white, the intermediate part bright red, with a ferked white mark at the base of each, and a green-white throat: stamens declined, mostly exceeding the perianth, the filaments white; style exserted. Peru. G.C. 18i0:733.-

Distinct, and one of the best. Apparently not in the Amer. trade, but it has been used in hybridizing.
11. pròcerum, Lem. (Amargllis Rayneri, Hook. f.). Bulb ovoid, with a neck $10-12 \mathrm{in}$. long, on the apex of which-as on a trunk-the drooping, curling, buff-edged lvs. are borne (the lvs. $16-20 \mathrm{in}$. long): scape $12-18 \mathrm{in}$. high, 2 -edged, green, bearing $2-3$ horizontal pale lilac fis. $4-5 \mathrm{in}$. across: segments oblauceolate, acute, not 1 in . broad; throat without a star ; stamens much shorter than the perianth; stigma capitate. Brazil. 1.H. 11:408. F.S. 20:2077-8. B.M. 5883. Gn. 45:959.One of the most distinct of the genus. In the Amer. trade. Sometimes called "Blue Amaryllis" and "Empress of Brazil." Plant out for late summer or fall bloom, in a warm, sunny place. Keep bulb dry until late spring.

cc. Stigma markedly 3-parted.

12. rùtilum, Herb, Bulb nearly globular, $2-3 \mathrm{in}$. in diam., stoloniferous, with short neck: Ivs. 6-8, elongating after flowering, bright green, 1 ft . long and an inch or more wide: scape as long as the lvs., somewhat compressed, glaucous, bearing $2-4$ red fls.: perianth tube $3 / 4 \mathrm{in}$. long, green, with a minute crown in the throat ; segments oblong, acute, crimson and green keeled; stamens shorter than the periauth, the filaments red. Braz. B.R. 1:23. L.B.C. 15:1449.-Incultivation chiefly known in the var. fulgidum, Baker (II. fúlgidum, Herb.), which is in all parts larger, deep crimson, the fl.-segments 3-5 in. loug. B.R. 3:226. B.M. 1943, as Amarÿllis minid̀ta; 2475 as H. subbarbàtum. Var. crocitum, Baker, is as large as var. fulgidum, except in its fls., which are smaller, with undulate segments, saf-fron-colored. B. R. 1:38, Var. citrinum, Baker, has bright yellow fls, Var. acuminàtum, Roem. (A, and H. puiverulénta). Fis. pink and segments acute. B.R. 7:534; 14:1188. L.B.C. 5:484. B.M. 2273.
13. vittàtum, Herb.. Fig. 1069. Bulb globular, 3 in. in diam.: lvs. 6-8, usually appearing after the fls., bright green, 2 ft . long: seape often 3 ft . high, bearing $3-6$ horizontal or declined striped white-edged fis. 4-5-in. across: tube about 1 in . long, with au obscure crown or crest at the throat; segments obovate-oblong and acute, $11 / 2 \mathrm{in}$. or less broad, the uader color whitish but overlaid with red stripes, the keel white; stamens shorter than the limb. Peru; but once thought to be S. African. B.M. 129. G.C. 111. 24:119. - The commonest speciestype in Amer, gardens, now cult. iu many forms. It seems to have entered freely into hybrids, and some of the forms now passing as \boldsymbol{H}. viltatum are perhaps mongrels. The double red feathery stripes on each side of the more or less irregular-edged segments distinguish this species from its congeners.

14. Hippeastrum Johnsoni $(\times 1 / 4)$.
15. H. Johnsoni, Bury. Fig. 1070. Fls. deep dull red, each segment with a white stripe down the keel. A very profuse bloomer, and withstands much abuse. It is the most popular single Amaryllid in this country, and is particularly prized for window-gardens. It is the oldest hybrid, having been raised by one Johnson, an English watchmaker, who, in 1799, crossed H. Regine with H. vittatum.
The three following Hippeastrums are offered in Dutch-

American lists: H, advenum, Herb. Belongs to the narrowlvd, section of the genus: lvs. linear, glancous: ts. $2-6$, about 2 in . long, yellow or red, on slender pedicels, the segments ob-long-linear and acute; stigma 3-parted. Chile. B, M, 1125. B.R. $10: 849$. A form with pale yellow fls. is var. pallidus, Herb. L.B.C. 18:1760,-H. praténse, Baker. Also linear-lvd.: fls, 2-4, bright scarlet, the very short tube with small seales in the throat, the segments $21 /$ in. long ; stigma capitate. Chile. B.R. 28:35,-H. röseum, Baker. lvs, narrow-linear, glancous, 1 ft . long, with the fls.: scape 6 in , high, bearing 1 or 2 small bright red fls.: stigma 3 -parted. Chile.
Latin-form trade names to be accounted for: atrosanguincum, cardinàlis, cròcea, delicäta, formèsa (hybrid), Gravince (Craveana, Gravesiana, (iraveana), Lindeni, macrántha, refülgens, rübis (bybrid), rübra striata, Williamsii. L. H. B.

HIPPOPHAE (Greek, horse-killing; alluding to the berries, which are somewhat poisonous). Eleagndceo. This includes the Sea Buckthorn, a bardy European and mid-Asian shrub valued for its clusters of bright orange-red berries about the size of a pea, which persist all fall aud winter. It also has the silvery or gray foliage which makes several members of this family useful in fiue landscape effects. This family has only 2 other geuera, Elæagnus and Shepherdia (including the Buffalo Berry). Hippopbaï and Elæagnus have alternate Ivs, and 4 stamens, but the former bas unisexual and mostly diceious fls., while the latter has hermaphrodite fls. Shepherdia has opposite lvs., 8 stamens and dicecious fls. Hippophaë bas 2 species of shrubs or small trees: branches often spiny, covered with minute stellate hairs, as are all the young parts: fls. borne at the base of small lateral branches; staminate ones in catkins, sessile in the axils of 2 deciduous bracts; filaments none; pistillate fls, pedicelled, solitary in the axils of Ivs.; perianth top-shaped, in 2 divisions: ovary 1-celled, 1 -ovuled: style large, club-shaped.

In order to secure a good setting of berries, one or two staminate plants should be placed near every group of a dozen pistillate ones. When the shrubs are without berries the expert nurseryman can distinguish the two sexes by the more upright growth of the staminate and the more twiggy growth of the pistillate plants. The redder the berries the better for ornamental purposes. The berries are somewhat poisonous, but are eaten by birds. Though essentially a seashore plant, it is easily cult. inland in common garden soil, and thrives even in barren, sandy lands. It inhabits cool moving sands and the alluvium of torrents. When grown abroad to hold sbifting sands it makes a straggling, stunted bush 2 ft . or more high. Under favorable conditions it may be grown into a tree 20 ft . high. The suckers may become so numerous as to be troublesome. The numerous spines which terminate the branches and the interlaching stems suggest its use for hedges. It is propagated by layers, suckers, root-cuttings and seeds.
rbamnoldes, Linn. Sea Bucethorn. Swallow Thorn. Lus, appearing before the fls., grayish green above, silvery green below and scattered with reddish scales helow: fls, yellowish, borne in clusters of $2-3$ in May : fr. berry-like, orange-yellow, acid, maturing iu Sept. G.M. 37:791. Gn. 49:1050 (with a fine colored plate and thorough appreciation by W. Goldring), and 54, p. 396.
H. salicifólia, D.Don, has larger lvs., less densely coated with silvery seales. Nepal. Not cult.
A. P. Wrman.

HOBBLEBUSH. Viburnum lantanoides.

HOES. See Tools.

HOFFMÁNNIA (Georg Franz Hoftimann, 1760-1826, professor of botany at Göttingen). Including Campylobötrys and Higginsia. Rubiacecr. About 15 tropical American herbs or shrubs, with opposite or verticillate Ivs, and small white, yellow or red tls., cult. for the very showy foliage. Corolla tubular, with 4 (rarely 5) oblong or linear obtuse lobes; stamens 4: ring-like disk about the 2-3-loculed ovary: style filiform, the stigma 2 -lobed. The Hoffmannias require warm temperature, although they may be plunged in the open in the summer. Well growu specimens are also adapted to the decoration of window-gardens and living rooms. Propagated by cuttings. Hoffmannias are very showy foliage plants.

A. Fl.-clusters on long stalks.

discolor, Hemsl. (Campylobòtrys discolor, Hook.). Fig. 1071. About 6 in high, but lopping over the side of the pot or pan and making a mat, slightly hairy, the brancbes purplish: lvs. short-petioled, oblong-obovate,

1071. Hö̈mannia discolor $(>$ A loose growing sprig.
entire, satiny green above and rich light purple to green beneath: fls, small, red, in recurving racemes, on red peduncles. Mex. B.M. 4530.-Excellent little plant.
refulgens, Hemsl. Much like the former, but twice or more as large, the lvs. sessile and almost suceulent, nar-row-obovate, with many parallel veins running from the midrib to the margin, the under surface pale red or wine color and the upper surface dull green, with iridescent shades of purple and brown: fls, 1 in. across, pale red. Mex. B.M. 5346 as Higginsia vefulgens.-A nost beantiful plant.

> AA. I'l.-clusters crowded in the axils.

Ghièsbreghtii, Henasl. Half shrubby, 2-4 ft. tall, nearly giabrous: stem acntely 4 -angled: IVs. usually 1 ft, or less long, oblong-lanceolate-acuminate, entire, the short winged petiole somewhat decurrent, very strongly veined, purple-red beneath and dark velvety green above: fls. yellow, with a red spot in the ceuter. Mex. B. M. 5383 as IIgginsiu Ghiesbrechtii. 1.H. 8:279, as a Campylobotrys.-A form with handsomely mottled Ivs. is var. variegata, Hort. (I.H. 30:498).
regàlis, Hemsl. Sbrubby, strong-growing, glabrous, the branches obtusely 4 -angled and somewhat fleshy: Ivs. large, round-ovate and abruptly acuminate, entire, plicate with arched nerves, glabrous, purple-red beneath and dark rich green above: fls. yellow, sessile. Mex. B.M. 5280 , as a Higginsia.

Higginsia Roezli, Hort., is described as "a very heautiful new tropical plant, with dark bronzy leaves, streaked and marbled with white." Saul.
L. H. B.

HOHENBERGIA (personal name). Bromelideed. Species commonly referred to Echmea, but the latest monographer (Mez, DC. Monogr. Phaner. 9) retains 17 species under this genus. The genus differs from Echmea iu technical floral characters, the petals being ligulate, fls, always sessile and small, etc. H. Legrelliàna, Baker, is by Mez referred to Echmea (E. Lagrellidna, Mez) and by Bentham \& Hooker to Portea. It has also been referred to Ortgiesia. It is a strong Bill-bergia-like plant, with $7-12$ strong, entire, brown-sealy Ivs, and a simple dense spike of red fls, standing 4-7 ft. bigh: floral bracts serrate. Uruguay. For H. ferruginea, see Echmea. Warmhouse.
L. H. B.

HOLBELLIA (Frederick Louis Holboell, once Supt. Bot. Gard., Copenhagen). Berberidacew. This genns contains a fine shrubby climber, which is unfortunately inferior in hardiness to Akebia quinuta, the latter being one of the best of all hardy vines. Holbollia resembles Akebia in having digitate lvs., edible, oblong, indehiscent berries and an indefinite number of ovules. It differs in having 6 sepals and 6 minute petals, while Akebia has 3 sepals and no petals. Both genera have free stamens, while those of Stanntonia are monadelphous. Holboellia has only I species. Generic ebaracters are: fls, purple or greenish, moncecious; sepals 6, petal-like; staminate fls. with rudimentary ofaries; pistillate fls, with 6 very small, sterile stamens.

Any one who was surprised with the "discovery" of the strange purple fls, of Akehia will be interested in the fls. of Holbollia. These are also purple or vary to greenish white, and the staminate fls., which appear later, are highly fragrant. The plant should he tried outdoors in the South where an evergreen quick-growing climber is desired, as it makes annual shoots 10 to 12 ft . long, and the foliage is distinct and beautiful. For the cool greenbouse it is too rampant and produces too few fls.
latifolia, Wallich. Leaflets commonly 3 or 5 , but very variable in form and number. Himalayas. B.R. 32:49. R.H. 1890:348. Gn. 8, p. 548, and I4, p. 369. W. M.

HOLCUS (Greek, to draw out; an old fable crediting this plant with the power of drawing thorns from the flesh). Graminece. Ahout 8 species of annual or perennial tufted grasses from Europe and Africa. The only species cult. is a forage grass of poor quality but capable of growing well in dry soil. 1ts nearest allies of garden value are Avena and Deschampsia, from which it liffers as follows: spikelets falling off whole, and glumes with no or minute awns. Avena and Deschampsia have the floral glumes decidedly awned and the empty glumes remain on the plant when the florets fall.
lanàtus, Linn. HEADOW Soft Grass. Perennial, 2-3 ft. bigh: lvs. downy: panicle greenish or tinged purple. Eu. A variegated form is cult. abroad for ornament.

G. T. Hastings.

HOLLY. Consult Ilex.

HOLLY, SEA. Eryngium.
HOLLYHOCK (Altha rosea which see). Figs. 1072-4. The Hollyhock is an old garden favorite, full of sentiment and association with a distant past, and only the ravages of a dire disease have robbed it of the proud position it heldamong garden flowers during the middle of the present century. A plant of strong, vigorous growth, noble aspect, and of the most ornamental character, it must not be neglected or ignored, for we can ill dispense with its stately beauty. Before the ravages of disease there were in existence large collections of named varieties, and the Hollyhock was then one of

1072. The Hollyhock.
the most important of flowers. Within recent years, too, either from loss of virulence or through preventive measures, the disease having been somewhat controlled, collections of named varieties are again being formed, but, in the light of his own experience, the writer be-

1073. Semi-double Hollyhock $(\times 1 / 2)$.
lieves that one can get the best and surest results by raising plants from seed of a good strain. This may be sown at any time during the early months of the year. Sow in pots or pans and place in a warmhouse to assist germination. Pot the plants singly as they develop, and keep them growing freely but sturdily in a cool, airy temperature, removiag them to the open air as summer advances. If well grown, the plants shoutd be in 6-in. pots at this time. During the latter part of summer they may be planted out where they are to bloom. As Hollyhocks demand liberal treatment, their permanent spot should be well prepared by deep digging, at the same time working in a good quantity of rotted manure. Plant 3 ft . apart and firmly, and should the fall months be dry, give water frequently, as suffering from drought predisposes plants to attack of disease. The following spring the plants will grow vigorously, and the only attention needed is copious watering during dry spells. The flowers will appear from July onwards. The Hollyhack is a bardy perennial, and if it enjoys an immunity from disease, will spring up and flower each year. Should disease appear, however, root the plants out and destroy by fire and make the next plantation on a new site some distance removed. 'Thorough spraying with fungicides may he expected to hold the disease in check, if applications are made early and to the under sides of the lrs.; but if Bordeaux mixture is used, the plants look very untidy. Perhaps it is better to use ammoniacal earbonate of copper. A diseased leaf is shown in Fig. 880. If the stock keeps bealthy and it is desired to increase specially fine varieties, this can be done easily by cuttings formed from offshoots. These
 should be taken oft sandy soil and kept close in a shaded coldframe.

A few fine aamed varieties obtainable in the trade at present are: Apollon, rose; Brennus, crimson; Ettie Beale, flesh pink; Mrs. Barron, rose-pink, and very beautiful; Diadem, rich vellow; Her Majesty, rose;

Enchantress, yellow; Ochrolenca, light vellow; Queen, silver-rose ; Venus, white; Psyche, laveuder. Figs. 245 and 246 , vol. 1, show good placing of Hollyhoeks.

A. Herringtos

HOLY GHOST PLANT. Peristeria elata.
HOMALANTHUS (application obscure). E'uphorbideece. This genus includes a small Australian tree or tall shrub cult. in S. Calif. for its copper-colored foliage. It is probably slightly cult, abroad under glass like Euphorbia pulcherrima. The genus coutains $5-8$ species of Malayan and Australasian trees or shrubs: lvs, alternate, stalked, wide, entire, feather-veined: racemes terminal: fls. apetalous; disk none; calyx of staminate fls. 2-parted: stamens 6-50; calyx of pistillate: fls. 2-3-fid: ovary 2 -celled.
The genus has no near allies of garden value, and the: fls, are insignificant, being borne in racemes which consist mostly of staminate fls., with a few pistillate fis, at the base.
Leschenaultiànus, A. Juss. (H. populifòlius, R. Grab. Carumbinm populifolium, Reinw.). Lvs. broadly ovatetriaugular or rhomboidal, glaucous, $2-1$ or even 6 in . long, with stalks of same length: racemes $I-1$ in. long. India, Malaya, Australia. B.M. 2780.

HOMALOMENA (Greek, equal filaments). Aràcear. Also written Homalonema. This genus includes some tender foliage plants, variegated after the fashion of the well-knowu Dieffenbachias, and the rarer Aglaonema and Schismatoglottis. It is probable that the plants seldom produce flowers or fruit in cultivation. They are known to the trade as Curmeria, which is now regarded as a section of Homalomena in which the spathe has a distinct tube and the lvs, are either glabrous or pilose, while in the section Euhomalomena the spathe has an indistinct tube, and the Ivs. are always glabrous
The genus has about 15 species, natives of tropical Asia and America: robust herbs, with a thick rhizome: stem short or none: lvs. ovato- or triangular-cordate, or lanceolate, nerves reaching the margin, petiole mostly long and sheathing. Important generic characters are: stamens distinet: fr. included within the persistent spathe: ovules anatropous, adnate to the septa. For culture, see Dieffenbachia. Latest Monograph by Engler in DC. Mon. Phan. 2:332(1879). The species described below belong to the suhgenus Curmeria, with 3 other species, and all are American; the other 10 species are Asian.

Piteher and Manda advertised in 1895 Curmeria Leopoldii, a rare and costly plant, of which the writer finds no further information.

A. Liss. irregulerly blotched.

Wállisii, Regel (Curmèria Wállisii, Mast.). L_s. glabrous throughont, the hase obtuse or acute, not potched ; petiole $I^{1 / 2}$ in. long ; blade 5 in. long, $2-21 / 2$ in. wide. Colombia. G.C. II, 7:108. B.M. 6571 (midrib outlined in light eolor). I.H. 25:303. R.H.1878, p. 193. The blotches are pale yellowish green, becoming greenish gray. None of the pictures show a white-bordered leaf with golden hlotehes, as one dealer advertises.

AA. Lvs, with midrib bordered with white.
picturàta, Regel (Curmèria picturàta, Linden \& André). Lvs. with petiole and nidrib pilose: petiole 4 in. long; blade $10-12 \mathrm{in}$. long, 8 in. wide. Colombia. 1.H. 20:121. - Blotehed only near the midrib.
W. M.

HOMERIA (application uncertain). Iriddcee. This includes a half-hardy bulb. which can he set out in spring, and bears orange-colored fls, in summer. It is allied to Sparaxis, requires the same culture, and the bulbs, which are dormant from Aug. to Nov., are procurable from Dutch dealers. A genus of 6 species, all from the Cape of Good Hope. It belongs to the Moræa tribe, in which the fls. are stalked and more than one to a spathe, and the style branches placed opposite the stamens. It differs from Iris and Moraea in baving style branches furnished with terminal stigmas not overtop. ping the anthers. Nearer allies of garden value are Tigridia, Herbertia and Ferraria, from all of which

Homeria differs in the 2 petaloid stigmatose crests at the ends of the style branehes. Homeria has 6 nearly equal perianth segments, whieh at the base are united into a eup. Monogr. by J. G. Baker in Handhook of the Jrideæ, 1892, and Flora Capensis 6:26 (1896-7). The following characters successively delimit H. collina from the other 5 species: perianth segments not blotched in the middle: As. large: spathes $21 / 2-3 \mathrm{in}$. long: 1rs, not banded down the middle. W. E. Endieott writes that H. collina does well when treated like Ixia, as described by him in this work.
collna, Vent. (Morìa collina, Thunb.). Corm tunicated, globose, $3 / 4-1 \mathrm{is}$. long: the only long leaf is linear, rigid, $11 / 2-2 \mathrm{ft}$. long, overtopping the fls.: stem bearing $1-4$ elusters of fls,: perianth segments $11 / 4-1 \frac{1}{2} \mathrm{in}$. long, typically bright red, as in B.M1.1033; G.C. 111.4:163. Var. aurantiaca has a slenderer habit and yellow-clawed, bright red segments, which are narrower and more acute than the type. B.M. 1612. Var. ochroleùca has the babit of the type and pale yellow fls. B.M. 1103. It is probable that var. aurantiaca is the only form in which the species is cultivated.
homocéltis, a name in the Amer. trade, is a misspelling of Homoioceltis. P. J. Berekmans writes that seeds of Homoceltis Japonica were distributed some 20 years ago by Gen. Wm. Browne, then a professor at the Georgia State University. These trees were iujured io Georgia by the severe cold of February, 1899. Reasoner writes that it is a fine, deciduous tree, with the appearance of an elm or hackberry, and makes a dense top. It has not flowered in Florida.

Homoioceltis aspera, Blume, is Aphananthe aspera (which see), and this is the only Homoioceltis in Japan. Some, at least, of the stock known as H. Japonica (and sometimes called also (eltis Davidiana) is A phananthe aspera. In Aphananthe, the secondary veins are straight and end the teeth of the lrs.; in Celtis, they are curred and form loops along the margin.

HONESTY. Lnnaria annta.
HONEY LOCUST. Gleditschia triacanthos. Honeysuckle, Lonicera. Honeywort, Cerinthe.

HOOKERA. A part of Brodicra.

HOP. See Π.

HOP HORNBEAM See Ostrya. Hop, Wild, Bryonia dioica.

HOPLOPHYTUM. Several Bromeliads have been described under this name, but the species are now referred to Echmea. Halophytum of oue trade catalogue is apparently an error for Π oplophytum.

HORDEUM (Latin, heary; because barley bread is heavy and firm). Graminee. This genus includes the Barley (H. saticum) and the Squirrel Tail Grass (H. jubatum), the latter a meadow weed ohnoxious in the West, but sometimes cult. for ornament in the East and abroad. Its head of long spreadiog awns is ornamental, but the spikelets separate too readily to make the grass particularly desirable. Hordeums are erect, annual or perennial grasses, spikelets in 3's, sessile on opposite sides of the notched rachis, empty glumes natrow and long, forming an involuere around the spikelets, In these characters it resembles Elymus and Asprella, but it is separated from them by the faet that each spikelet is but 1-fld., while in the others the spikelets are 2-many Hd. See Barley.
jubàtum, Linn. Squirrel-tail Grass. Wild Barlet. Erect, simple, usually smooth and glabrous, 10 in. to 2 ft . high: lvs. $1-5 \mathrm{in}$. long, only the central spikelet in each cluster perfect: awns of empty glumes $1-21 / 2 \mathrm{in}$. long, spreading. In dry soil, northern U. S. and Canada. B.B. 1:229. R.H. 1890, p. 488 (poor).
G. T. Hastinge.

HOREHOUND, See Marrubium.
HORMINUM. See Salvia.

HORNBEAM. Consult C'arpinus.

HORNED POPPY. Glaucium.

HORSE, in combination with other names of plants, usually signifies something large and coarse, not necessarily eaten by horses.

HORSE BALM. Collinsonia.
HORSE BEAN. See Vicia Faba.
HORSE CHESTNUT. See Esculus

HORSE MINT. See Monarda.

HORSE-RADISH (Fig. 1075), the well-known condiment used so much with roast beef and oysters, is a member of the natural fanily Crucifers, to which belong eabbage, turnip, wallfower, stock, charlock, mustard, and many other vegetables, flowers and weeds. It comes to us trom Great Britain, where it is thought to have been naturalized from some more eastern European country. It is often found growing wild in moist locations, such as the margins of streams, in cool woods and damp meadows, and, in some places, botably in the state of New York, is troublesome as a weed. For botanical description, see Cochlearia.
The root is perennial, fleshy, whitish externally, pure white withis, conical at the top, cylindrical, and, unlike the tap-roots of parsnips, is abruptly branched below. When bruised, it emits a volatile oil of strong, pungent odor aod hot, biting taste. If eaten before this oil eraporates, it "is highly stimulant, exeiting the stomach when swallowed, and promoting the secretions, especially that of urine. Externally, it is rubefacient. Its chief use is as a condiment to promote appetite and invigorate digestion; but it is also occasionally employed is medicine." (U.S. Dispensatory.) As a table relish, the eonsumption of Horse-radish is increasing, and greater attention is being paid to its cultivation than formerly. Under the old methods, profitable returns were often obtained, but under the new, profits are generally highly satisfactory where enemies are not very troublesome. The season of fresh-grated Horse-radish runs almost parallel to that of oysters, with which the root is most frequently eaten in this country. [ingrated roots are, however, kept in cold storage for summer use, since roots dig at that season have an unpleasant taste.
Horse-radish will do well upon almost any soil except the lightest sand and the heariest clay, but a deep loam of medium texture and moderate richness, well supplied with humus and moisture, will produce roots of the best quality and the largest size. In dry soils the roots will be small, woody and deficient in pungency; in wet, small, succulent, strong-tasting. Drainage is essential, and so is a fairly open subsoil. Hard subsoil induces excessive branching of the root. Applications of nitrogenous manures should be rather light, commercial fertilizers rich in potash being giren the preference. Rolfs recommends a mixture containing 10 per cent potash, 7 per cent phosphoric acid, 4 per cent nitrogen, 600 pounds drilled in per acre. A heavier application broadcast and deeply plowed under, it is believed, would give better results, since the shaft of the root is less likely to become unduly branched when the food is below instead of above and around it, especially when the sets are placed borizontally. A weeder should be used after the harrow periodically until the plants are an inch or so tall. Thorough preparation of the soil is essential.
Since Horse-radish rarely produces seeds, enttings
are made from the roots, not less than one fourth of an inch thick and $4-5 \mathrm{in}$. long (Fig. 1076). To facilitate planting the large-end up, the upper end is eut off square and the lower oblique. If set small-end up no growth may result. In horizontal planting this special eutting is unnecessary. Roat-crowns are sometimes used, but since these develop a large number of roots too small for profitable grating, they are employed only for increasing stock.

The land having been prepared, shallow furrows are laid off 30 in. apart and 2-5 in. deep, accordiug to the method of planting. Sets are planted horizontally, vertically, and at all interrening angles, the large ends being made to point in one direction to facilitate cultivation and digging. The angle is a matter of choice, good returns being obtained in each. The usual distance between sets is about 12 in. Cultivation is given after every rain, or once in 10 days, until the lvs. shade the ground.

Double-cropping is common in Horse-radish growing, early cabbage, turnip beets and other quick maturing plants being used. The sets are dibbled in 2-4 weeks after the first crop, vertically, 18 in. asunder, between the rows of cabbage, which are not less than 2 ft . apart. One management answers for both erops until the first is removed, when, after one cultivation, the Horse-radish usually takes full possession. Deep burying of the sets at the time the first crop is planted is also practiced, the object, as in the first case, being to prevent the appearance of the former until the latter is almost mature.

Horse-radish makes its best growth in the cool autumn, steadily improves after September, and, not being injured by frost if undug, is usually left until late before harvesting with plow or spade. Storage in pits is best, since the roots lose less of their crispness, pungency and good appearance than if stored in cellars. In trimming for storage, the lateral roots are saved and buried for next season's planting. Exposure to air, sun and frost robs the roots of their good qualities and injures their vitality.

The insect enemies of this plant are those that attack other members of the cabbage family, the harlequin bug being the most dreaded. Remedies are the same as for other pests of this group of plants. Only two diseases have been reported, and these are seldom troublesome.

In the neighborbood of cities, especially where oysters are cheap, this erop is generally profitable, the usual retail price being 10 cents per pint, freshly grated, but without rinegar. This quantity weighs a scant balfpound. The cost of growing per acre is ahout as follows: Cuttings ($10.000 \circledast \$ 2$), $\$ 20$; fertilizer ($1,000 \mathrm{lbs}$), $\$ 17.50$; cultivation (6 times), $\$ 6$; rent of land, $\$ 5$; plowing, wear of tools, etc., $\$ 3.50$; setting roots, at 30 cents per $1,000, \$ 3$; total, $\$ 5$. A marketable crop varies from 3,000 to 6,000 pounds, which may sometimes be sold as high as 5 cents per 1 lh . for first-class root, and $21 / 2$ cents for second grade. Usually, however, prices seldom rise above 4 cents and 2 cents for the two grades. Under good cultivation, the proportion of No. 1 to No. 2 root is about I to I by weight. Lower prices may rule in well supplied markets, and higher in poorly furnished, and when sold in small lots to retail graters, even 7 cents may be obtained.
M. G. Kains.

HORSE-RADISH TREE. Moringa pterygosperma.

HORSE SUGAR. Symplocos tinctoria.
HORSETAIL. Equisetum.

HORSEWEED. Collinsonia.
HORTICULTURE (hortus a garden, originally an inclosure; culturt, to care for or to cultivate). Horticulture is the growing of flowers, fruits and vegetables, and of plants for ornament and fancy. lncident to the growing of the plants are all the questions of plant-breeding, rariation of plants under domestication, and the bearings and applications of many biological and physical sciences. + Primarily it is au art, but it is intimately connected with science at every point. From agriculture it has no definite boundary. It is, in fact, a department of agriculture, as forestry is; for agriculture, in its largest meaning, is the business of raising products from the land. It is customary, however, to limit the word agriculture to the growing of grains, forage, bread-stufts, textilos, and the like, aud to the raising of animals. In this restricted application it is practically coürdinate, in a classificatory sense, with forestry and Horticulture. Etymologically, agriculture is the tending of the fields (agri, field) or those parts which, in earlier times, lay beyond the fortified or protected inclosure, or at least more or less remote from the residence; Horticulture was concerned with the area within the inelosure. Equivalent to Horticulture in etymology is gardening (Anglo-Saxon gyrdan, to enclose, to which the verb to gird is allied). By custom, however, garden and gardening denote more restricted areas and operations than are implied in the term Horticulture. The word paradise is connected with the idea of an inclosure and a garden. Early gardening books of the Cyclopedia type are sometimes known as paradisa. Parkinson's famous Paradisus, or account of "a garden of all sorts of pleasant flowers," was published in England in 1699.

The only demarcation between Horticulture and agriculture is the line of custom. Sweet potatoes are usually considered to be a horticultural erop in North America, particularly in the northern states, but round or Irish potatoes are usually classed as an agricultural crop. Nor is there a definite division between Horticulture and botany. The science of plants is botany; yet some of the most significant problems relating to plants-their response to the needs of man-are ordinarily resigned by the botanist to the horticulturist. Horticulture is a composite of hotanical and agricultural subjects.
But Horticulture is more than all this. 1t is a means of expressing the art-sense. Plant-forms and plantcolors are as expressive as the canvas work of the painter. In some respects they are more expressive, since they are things themselves, with individuality and life, not the suggestions of things. The painter's work excels in its power to suggest, and in its condensed portrayal of expression. But the essentials of a good landscape painting often can be presented in an artificially-made landscape. This effort to plant what the artist paints is modern. It is strictly not Horticulture, although Horticulture is contributory to the results, as paint-making is contrihutory to painting. Landscape making is fundamentally a fine art. In this work it is treated under Landscape Gardening.

Horticulture divides itself into four somewbat coördinate branches (Aunals Hort. 1891, 125-130) :

Pomology, or the growing of fruits;
Olericulture, or vegetable-gardening;
Floriculture, or the raising of ornamental plants for their individual ases or for their products;
Landseape Horticulture, or the growing of plants for their use in the landscape for in lanoscape gardening).
In the world at large, floriculture is the most important as measured by the number of people who are interested, and by the number of species of plants which are grown (see Floriculture). In North America, pomology is the most important in respect to commercial supremacy. North America is the great fruit-growing country of the world (see Pomology). Relatively speaking, regetable-gardening is undeveloped in the New World. Landscape Horticulture and landscape gardening will appeal to a constantly enlarging constituency with the growth of culture and of leisure and the deepening of the home life.

Strictly speaking, there are few horticulturists. The details are too many to allow any one person to cover
the entire range. It is only those who look for principles who survey the whole field. Practitioners must confine themselves to rather close bounds. Consider that no less than 25,000 species of plants are in cultivation, each having its own requirements. Consider the great number of species which are actually on sale in North America, as registered in this Cyclopedia. The most important species vary immensely, the named and recorded forms often running into the thousands; and each of these forms has particularmerits and often paxticular requirements. Consider that the requirements are likely to be different in any two places, and that the plants are profoundly modified by changes in conditions or in treatment. Consider the vagaries of markets, which are ruled by questions of fancy more than by questions of necessity. There is probably no art in which the separate details are so many as in Horticulture.

Of Horticulture there are two general types, - that which is associated immediately with the home life, and that which is undertaken primarily for the gaining of a livelihood. The former is amateur Horticulture. Those things are grown which appeal to the personal tastes: they are grown for oneself. The latter is commercial Horticulture. Those things are grown which the market demands: they are grown for others. In all countries, commercial Horticulture is a relatively late development. General agriculture is usually the primary means of earning a living from the soil. For the most part, Horticulture comes only with the demand for the luxuries and refinements of life: it does not deal with what we eall the staples. It is not the purpose of this sketch to trace the general history of Horticulture. If one desires such outlines, he should consult the Bohn edition of Pliny's "Natural History;" Loudon's "Eneyclopadia of Gardening:" G. W. Johnson's "History of English Gardening ;" Amherst's "History of Gardening in England;"Sieveking's "Gardens, Ancient and Modern;" Jäger's "Gartenkunst und Gärten, sonst und jetzt ; Huttig's "Geschichte des Gartenbsues;" the historical chapters of André's "L'Art des Jardins." For the histories of cultivated plants, see DeCaudolle's "Origin of Cultivated Plants;" Hehn \& Stallybrass" "Wanderings of Plants and Animals from their first Home;" Pickering's "Chronological History of Plants."

In North America thore was little commercial Horticulture before the opening of the ninetcenth century. There were excellent home gardens more than a century ago, in which many exotic plants were growing; yet, in proportion to the whole population, these gardens were isolated. The status of any modern time is aceurately reflected in its writings. It may be well, therefore, to bring in review the leadjug early horticultural writings of this country. Few studies have been made of our horticultural history. The best is the introductory sketch, by Robert Manning, in the "History of the Massachusetts Horticultural Society," 1880. For its field, Slade's "Evolution of Horticulture in New England," 1895, is interesting. In a still narrower field, Boardman's "Agricultural Bibliography of Maine" is eritical and invaluable. The chapter on "American Horticulture," by Alfred Henderson, in Depew's "One Hundred Years of American Commerce," 1895, presents the commercial side of the subject. Another fragment of the history is presented in the writer's "Sketch of the Erolution of our Native Fruits," 1898 . Histories from several points of view are presented in the "Florists' Exchange" for March 30, 1895; and the writer has incorporated parts of his own contribution to that history in the sketch which follows.

The earliest writings on American plants were by physicians and naturalists who desired to exploit the wonders of the newly discovered hemisphere. The earliest separate writing is probably that of Nicolo Monardes on the products of the New World, which was published in Seville in parts, from 1565 to 1571. The completed treatise was translated into Itslian, Latin, English and French. Monardes is now remembered to us in the genus Monarda, one of the mint tribes. He wrote of the medicinal and poisonous plants of the West Indies, and gave pictures, some of them fantastical. His picture of tobacco is not greatly inaecurste, however; and it has the distinction of being probably the first picture extant of the plant, if not of any Ameri-
can plant. This picture is here reproduced (Fig. 1077) exact size, to show the style of illustration of three hundred years ago. Jacques Cornutus is generally supposed to have been the first writer on American plants. His work, "Canadensium Plantarum," appeared in 1635, and it also had pictures. One of the earliest writers on the general products and conditions of the northern country was John Josselyn, who, in 1672 , published a book entitled "New England's Rarities discovered in Birds, Beasts, Fishes, Serpents, and Plants of that Country," and in 1674 a second volume, "An Account of Two Voyages to New England, made during the years 16.38, 1663." The "Rarities" gives specific accounts of matny plants, together with pictures of a few of them, as, for example, the pitcher plant. He mentions the plants which had become naturalized from Europe. There is also a list "Of such Garden Herbs (amongst us) as do thrive there, and of such as do not." This list, the earlist record of the kind, is here transeribed :

Cabbidge growes there exceeding well.
Lettice.
Sorrel.
Parsley.
Marygold.
French Mallowes.
Chervel.
Burnet.
Winter Savory.
Summer Savory
Time.
Sage.
Carrats.
Parsnips of a prodigious size.
Red Beetes.
Radishes.
Turnips.
Purslain.
Wheat.
Rye.
Barley, which commonly degenerates into Oats.
Oats.
Pease of all sorts, and the best in the World; I never heard of, nor did see in eight Years time, one Worm eaten Pea.

Garden Beans.
Naked Oats, there called Silpee, an excellent grain used insteed of Oat Meal, they dry it in an Oven, or in a Pan upon the fire, then beat it small in a Morter.

Spear Mint.
Rew, will hardly grow.
Fetherfew prospereth exceedingly
Southern Wood, is no Plant for this Country. Nor
Rosemary. Nor
Bayes.
White Satten groweth pretty well, so doth
Lavender Cotton. But
Lavender is not for the climate.
Penny Royal.
Smalledge.
Ground lvy, or Ale Hoof.
(iilly Flowers will continue two Years.
Fennel must be taken up, and kept in a warm Cellar all Winter.
Housleek prospereth notably.
Holly hoeks.
Enula Campana, in two Years time the Roots rot.
Comferie, with white Flowers.
Coriander, and
Dill, and
Annis thrive exceedingly, but Annis Seed, as also the Seed of Fennel, seldom come to maturity ; the Seed of Annis is commonly eaten with a fly.
Clary never lasts but one Summer, the Roots rot with the Frost.

Sparagus thrives exceedingly, so does
Garden Sorrel, and
Sweet Bryer, or Eglantine.
Bloodwort but sorrily, but
Patience, and
English Roses, very pleasantly
Celandine, by the West Country men called Kenning Wort, grows but slowly
Dluschata, as well as in England.
Dittander, or Pepper Wort, fourisheth notably, and so doth Tansie.
Musk Mellons are better than our English, and
Cucumbers.
Pompions, there be of several kinds, some proper to the Conntry, they are dryer then our English Pompions, and better tasted: you may eat them green.

Tuckerman comments as follows on the above lists: "The earliest, almost the only account that we have of the gardens of our fathers, after they had settled themselves in their New England, and had tamed its rugged
coasts to obedience to English husbaudry. What with their garden beans, and Indian beans, and pease ('as good as ever 1 eat iu England,' says Higginson in I629); their beets, parsnips, turnips, and carrots ('our turnips, parsnips, aud carrots are both bigger and sweeter than is ordinary to be found in England,' says the same reverend writer); their cabbages and asparagus,-both thriving, we are told, exceedingly; their radishes aud lettuce; their sorrel, parsley, chervil, and marigold, for pot-herbs ; and their sage, thyme, savory of both kinds, elary, auise, fenuel, coriander, spearmint, and pennyroyal, for sweet herbs, - not to mention the Indian pompions and melons and squanter-squashes, and other odde fruits of the country,' - the first-named of which had got to be so well approved among the settlers, when Josselyn wrote in 1672 , that, what he calls 'the ancient NewEngland standing dish' (we may call it so now!) was made of them; aud, finally, their pleasant, familiar flowers, lavender-cotton and hollybocks and satin ('we call this herbe, in Norfolke, sattin,' says Gerard; 'and, among our women, it is called honestie') and gillyflowers, which meant pinks as well, and dear English roses, and eglantine, -yen, possibly, hedges of eglantine,surely the gardens of New England. fifty years after the settlement of the country, were as well stocked as they were a hundred and fifty years after. Nor were the first planters long behindhand in fruit. Even at his first visit, in I639, our author was treated with 'half a score of very fair pippius,' from the (Governor's lsland in Boston Harbor; though there was theo, he says, 'not one apple tree nor pear planted yet in no part of the countrey but upon that island.' But he has a much better account to give in 1671: "The quinces, cherries, damsons, set the dames a work. Marmalad and preserved damsons is to he met with in every house. Our fruit trees prosper abundantly,-apple trees, pear trees, quince trees, cherry trees, plum trees, barberry trees. I have observed, with admiration, that the kernels sown, or the succors planted, produce as fair and good fruit, without grafting, as the tree from whence they were taken. The countrey is replenished with fair and large orchards. It was affirmed by one Mr. Woolcut (a magistrate in Connecticut Colony), at the Captain's messe (of which 1 was), aboard the ship 1 carue bome in, that he made five huadred hogstheads of syder out of his own orehard in one year.'-Voyages, p. 189-90. Our barberry bushes, now so familiar inhahitants of the bedgerows of eastern New England, should seem from this to have come, with the eglantines, from the gardens of the first settlers. Barberries 'are planted in most of our English gardens,' says Gerard." Relics of Josselyn's time still persist in old apple trees in New England (Fig. 1078). The foregoing lists and remarks show that the colonists early brought their familiar home plants to the uew country: and there are many collateral evidences of the same character. There was long and arduous experimenting with plants and methods. Several things which were tried on a large scale failed so completely, either from uncongenial conditions or for economic reasons, that they are now unknown to us as commercial crops; amongst these are indigo, silk and the wine grape. The histories of these things can be traced only as a refrain is cotemporary writing. Indian corn, tobacco and cotton early became the great staple crops.

The Indians cultivated corn, beans, pumpkins and other plauts when America was discovered. They soon adopted some of the fruits which were introduced by the colonists. William Penn and others found peaches among the Indians. Orchards of peaches and apples were found in western New York by Sullivan's raid against the Six Nations in revolutionary times. Josselyn, Roger Williams, Wood and others speak of the corn and squashes of the lndians. The word squash is adopted from the Indian name, squontersquash, askutasquash, or isqoutersquash. (.. C.Jones, in his "History of Georgia," in describing the explorations of De Soto, says that before reaching the Indian town of Canasagua (whose location was in Gordon county, Georgia), DeSoto "was met by twenty men from the village, each bearing a basket of mulberries. This fruit was here abundant and well flavored. Plum and walnut trees were growing luxuriantly throughout the country, attaining a size and beauty, without planting or pruning,
which could not be surpassed in the irrigated and wellcultivated gardens of Spain." For critical notes on the plants cultivated by the American aborigines, see Gray and Trumbull, Amer. Journ. of Science, vol. 25 (April, May), vol. 26 (August).
"Fruit-growing among the Indians of Georgia and Alabama in the early history of these states," writes Berckmans, "is demonstrated by the large quantity of peaches which the Indian traders of the early colonial period found growing in the Creek, Cherokee and Choctaw villages. It is on record that ladians often made long trips to other tribes for exchangiug various articles

1077. Earliest picture of an American plant. Monardes. 1571.
of their making, and thus the seed from those peach trees was undoubtedly procured from the Florida Indians, who, in turn, procured these from the trees planted by the Spauish explorers. The peculiar type of 'Indian peaches,' found throughout the South and recognized by the downy and striped fruit and purple bark on the young growth, was introluced from Spain and gradually disseminated by the Iudians. Apple-growing was quite extensively carried on by the cherokee Indians in the mountain regions of Ceorgia, Alabama and North Carolina. The trees being all seedlings, as grafting was likely unknown to the Red Man, vestiges of old apple trees origiually plauted by these denizens of the South are still occasionally found in upper Georgia. Fifty years ago a large collection of apples was introduced into cultivation, and to-day many of the best southern winter apples owe their origin to the Jndians, who procured the first seeds from traders."

One of the earliest glimpses of plant-growing in the New World is an account in the Philosophical Transactions of the Royal Nociety, early in the eighteenth century, by Chief Justice Paul Dudley, of Roxbury, near Boston. In the Abridgement of the Transactions are the
following notes, amongst others, under the date 1724: "The plants of England, as well those of the fields and orchards as of the garden, that have been brought over into New England, suit very well with the soil, and grow to perfection. The apples are as good as those of England, and look fairer, as well as the pears; but they have not all of the sorts. The peaches rather excel

1078. Relic of colonial days-apple tree at 250 years.
those of England, and there is no trouble or expence of walls for them; for the peach trees are all standards, and Mr. Dudley has had, in his own garden, 700 or 800 fine peaches of the rare-ripes, growing at a time on one tree. * * * The peach trees are large and fruitful, and commonly bear in 3 years from the stone. ** * The common cherries are not so good as the Kentish cherries of England; and they have no dukes, or heartcherries, unless in two or three gardens." It was reported that people of "late years have run much upon orchards." The product of these orchards was chiefly cider. "Some of their apple trees will make 6 , some have made 7 barrels of cider: but this is not common; and the apples will yield from 7 to 9 bushels for a barrel of cider: a good apple tree will measure from 6 to 10 feet in girt." Dudley mentions a bloomless apple, and "the tree was no graft." In common with other new countries. New England astonished persons with the luxuriant growth of the plants. "An onion, set out for seed, will rise to 4 feet 9 inches in height. A parsnip will reach to 8 feet; red orrice [oraeh] will mount 9 feet; white orrice 8. In the pastures he measured seed mullen 9 feet 2 inches in height, and one of the common thistles above 8 feet." Record is made of a pumpkin vine which grew unattended in a pasture. It made a single stem which "ran along over several fences, and spread orer a large piece of ground far and wide." "From this single vine were gathered 260 pumpkins; one with another as large as a half peek; enough in the whole, to fill a large tumbrel, besides a considerable number of small and uuripe pumpkins." Indian corn was "the most prolific grain." Mr. Dudley did not accept the notion that the buixing of corn is due to the intermingling of the roots, but thought that it was brought about through the ageney of the wind. He also noted that the hop and the running kidney bean twine in opposite directions on their support.

The colonial ornamental gardens were unlike our own in the relative poverty of plants, in the absence of the landseape arrangement, in the rarity of greenhouses, and the lack of smooth-sbaren lawns (for the lawn mower
was not invented till this century). These gardens were of two general types: the unconventional personal garden, without form but not void (Fig. 1079), in which things grew in delightful democracy; the conventional, box-bordered, geometrical garden, in which thiugs grew in most respectful aristocracy. (Plate Xil.) There were many interesting and elahorate private gardens in the colonial days. One of the earliest and best was that of Governor Peter Stuyvesant, of New Amsterdan (New York, near Third Avenue), known as the "Bouwerie," where 40 or 50 negro slaves, and also white servants, were kept at work. "The road to the city had been put in good condition, and shade trees were planted on each side where it crossed the Governor's property." The Bowery of these degenerate dars has lost the Eden-like features which distinguished its illustrious progenitor.

Excellent gardens were attached to the residences of wealthy persons by the middle of last century, and probably earlier. and they were said to have been encouraged by the example and precept of Washington. There are records of many large and meritorions collections of plants a eentury and more ago. William Hamilton's collection at Philadelphia was one of the best, and it contained a large collection of exotics. It flourished towards the close of last century, and was broken up in 1828. William Jackson began "a highly interesting collection of plants at his residence in Londongrove," Pennsylvania, in 1777. About 1800 Joshua and Samuel Pierce, East Marlborough, Pa., "began to adorn their premises by tasteful culture and planting," and hy the establishment of an arboretum of evergreens. The most famous botanie garden which Xorth America has ever had was John Bartram's, established at Philadelphia in 1728. It contained a great collection of native plants, and some of the trees are now amongst the most ralued landmarks of the city. Bartram was a skilful farmer and gardener, and his sons, John and William, inherited bis tastes and continued the garden. The elder Bartram was probably the first American to perform successful experiments in hybridization. Bartram's honse (Fig. 1080), built by himself, is still one of the sights of the environs of I'hiladelphia, and the site of the garden, with many of the old trees standing, is now happily a public park. Bartram's cousin, Humphry Marshall, established a botanic garden at West Bradford, in Chester county, Pa., in 1773. John Bartram's name is preserved to us in the moss Bartramia, and Marshall's in the gemus Marshallia,

1079. An old-time garden.
applied to small Compositæ of the eastern states. The Elgin botanic garden, near New York, was established in 1801 by David Hosack, a man of great learning and of the keenest sympathies with rural occupations. He
is now remembered in the interesting gemus Hosackia, one of the Leguminosæ. A botanic garden was established at Charleston, S. C., about I804, add one in Maryland about the same tinue. The Botanic (iarden at Cambridge, Mass., was begun iu 1805 , an institution which, together with the ProLessorship of Natural History at Cambridge, was founded largely through the efforts of the Massachusetts Society for Promoting Agrieulture. The society subseribed $\$ 500$ for the purpose, and raised more by subscription.

Early General Writings. -The progress of Horticul. ture may be traced in the hooks devoted to the subject. The earliest writings did not separate Hortisulture from agriculture. The only work exclusively devoted to agricultural matters which appeared in America hefore the Revolution seems to have heen the "Essays upon FieldHushandry," begun in 1748 and completed in 1759 , by Rev. Jared Eliot, of Killingworth, Conn., grandson of the famous apostle Eliot. (See Eliot.) "There are sundry books on husbaadry wrote in England," said Eliot, in his preface. "Haring read all on that subject I could obtain: yet such is the difference of elimate and Method of Management between them and us, arising from Causes that must make them always differ, so that those Books are not very Useful to us. Besides this, the Terms of Art made use of are so unknown to us, that a great deal they Write is quite uniotelligible to the generality of New-England Realers."

Just at the close of the Revolution, J. Hector St. John's "Letters from an American Farmer" appeared, although "the troubles that convulsed the American colonies had not broken out when letters were written." For a period of twenty-five years following the close of the war the condition of our agriculture, and of all American institutions, was minutely unfolded to the world through the writings of many travelers, English and Freuch, who made inquisitive journeys into the new country. Stricklaud, an English traveler, wrote in 1801 that "land in America affords little pleasure or profit, and appears in a progress of continually affording less. * * * Land in New York, formerly producing 20 bushels to the acre, now produces only 10. * * * Little profit can be found in the present mode of agriculture of this country, and I apprehead it to be a fact that it affords a bare subsistence. * * * Decline has pervaded all the states." There is ahundant evidence, includiog a pairstaking inquiry made hy Washington, to show that agrieulture was at a low state at the close of the century. It was in striking contrast to its status a hundred years later, dotwithstanding the lugubrious writings of the present time.

There was early development of the garden desire in the South as well as in the North. Io South Caroliua appeared the earliest Ameriean horticnltural hook of which we have any record. This book is no longer extant, and it is known to this generation chiefly or wholly from the following page in Ramsay's "History of South Caroliua," 1809: "The planters of Carolina have derived so great profits from the cultiration of rice, indigo (see Indigo) and cotton that they have always too much neglected the culture of garilens. The high price of their staple commodities in erery period has tempted them to sacrifice convenience to erops of a marketable quality. There are numbers whose neglected gardens neither afford flowers to regale the senses, nor the vegetables necessary to the comfort of their families, though they annually receive considerable sums in money for
their crops sent to market. To this there have heen some illustrious exceptions of persons who cultivated gardens on a large seale, both for use and pleasure. The first that can be recollected is Mrs. Lamboll, who, before the middle of the eighteenth century, improved the southwest extremity of King street [Charleston], in a garden which was richly stored with flowers and other curiosities of nature, in addition to all the common regetables for family use. She was followed by Mrs. Logan and Mrs. Hopton, who cultivated extensive gardens in Meeting. George and King streets, on lands now covered with bouses. The former reduced the knowledge she had acquired by long experience and observation to a regular system, which was published after her death, with the title of 'The Gardener's Kalendar;' and to this day regulates the practice of gardens in aud near Charlestown." Ramsay records that Mrs. Martha Logan was the daughter of Robert Daniel, one of the last proprietary gorernors of South Carolina. "Mrs. Logan was a great florist, and uncommonly fond of a garden. She was seventy years old when she wrote her treatise on gardening, and died in 1779 , aged 77 years."

The opening of the nineteenth century may be taken as a convenient starting point for a narrative of the evolution of American Horticulture. At that time Horticulture began to attain some prominence as distinct from general agriculture, and the establishment of peace after the long and depleting war with England had turned the attention of the best citizens afresh to the occupation of the soil. The example of Washington, in returning to the farm after a long and honorable puhlic career, no doubt exerted great influence. His agricultural correspondence was large, and much of it was published at the opening of the century. His correspondence with Arthur Young and Sir John Sinclair will be found in volumes published in Loudon in 1800 and I801, in Alexandria in 1803, and in Washington in 1847. Details respecting the management of his plautations comprise rol, is. of the Memoirs of the Loug Island Historical Society, 1889.
It was not until 1790, however, that an indigenous and distinctly agricultural treatise other than Eliot's appeared in America. At that time, the Res. Samuel Deaze, vice-president of Bowdoin College, published his "New England Farmer, or Georgical Dictionary," a eyclopedie work of the state of American agriculture. This passed to a second edition in 1797, and to a third in 1822. (See Deane.) In 1799 J. B. Bordley published in Philadelphia "Essays and Notes on Husbandry." Other
early works need not be mentioned here. As early as 1785, Varlo's "New System of Husbandry" was printed in Philadelphia. It is in many ways a remarkable book, and it was written by a man who had had remarkable experiences. He was not an American, and the work first appeared in the old country; but Varlo had Jived in this country, and was in sympathy with the American people. The book contained a "Farmer's and Kitchen Garden Calendar." In 1792 there appeared anonymously, from Burlington, New Jersey, the third edition of Arthur Young's "Rural Economy," which excellently displays that noted author's catholicity of view. He argues strongly for experiments and for the establishing of agricultural journals. This book first appeared in London, in 1770.

At the opening of the century, Sir Humphry Davy had not illumined the science of agricultural chemistry, and men were even disputing as to what the food of plants is. The "burn-baking" or "devonshiring "of the land-burning the sod and scattering the ashes over the field-was still recommended; and in 1799 James Anderson's "Essay on Quick-lime as a Cement and as a Manure," was given an American edition in Boston. It is easy to see from these facts that the fundamental conceptions of the science of agriculture were vague and crude a century ago. Near the close of the last century, Deane wrote that "the alarming effeet of the present low state of husbandry is, that we are necessitated to import much of our food and clothing, while we are incapable of making proportionable remittances in the produce of the soil, or in anything else."
The earliest book on a horticultural subject known to have been published in North America, excepting Mrs. Logan's, was an American edition of Marshall's "Introduction to the Knowledge and Practice of Gardening," Boston, 1799. The first indigenous horticultural book appeared in 1804, "The American Gardener," by John Gardiner and David Hepburn. It was published at Washington. This book had an extensice sale. It was revised by "a citizen of Virginia," and republished in Georgetown, D. C., in 1818. A third edition appeared in 1826. (See Hepburn.) This book was followed in 1806 by Bernard M'Habon's excellent and voluminous "American Gardener's Calendar," in Philadelphia. This work enjoyed much popularity, and the eleventh edition appeared as late as 1857 . For fifty years it remained tbe best American work on general gardening. M'Mahon remembered in the Mahonia barberries, was an important personage. He was largely rexponsible for the introduction into cultivation of the plants collected by Lewis and Clark. These early books were calendars, giring advice for the successive months. They were made on the plan then popular in England, a plan which has such noteworthy precedent as the excellent "Kalendarium Hortense "of John Evelyn, which first appeared in 1664, and went to nine regular editions. Other early books of this type were "An old gardener's 'Practical American Gardener,'"Baltimore, I819 and 1822; Thorburn's "Gentleman's and Gardener's Kalendar," New York, the tbird edition of which appeared in 1821; Robert Squibb's "Gardener's Calendar for the States of North-Carolina, South-Carolina, and Georgia," Charleston, 1827.

The first indigenous book written on the topical plan. treating subject by subject, was Coxe's fruit book, 1817; the second appears to have been Cobbett's "American fiardener, ${ }^{n}$ published at New York in 1819, in London in 1821 , and which passed through subsequent editions. This William (sobbett is the one who edited the federalist paper in Philadelphia known as "Peter Porcupine's Gazette," and whose attack upon Dr. Rush's treatment of yellow ferer brought against him a judgment for damages, and which decided him to return to England in 1800 , wbence he had come, by way of France, in 1792. In Loudon he again took up political writing, and in 1817 he retreated to America to escape political penalties, and resided upon a farm on Long lsland until 1819. He kept a seed store in New York in I818, and we find firant Thorburn disputing with him in the "Evening Post" as to which sold the better rutabaga seed at one dollar a pound. Cobbett, it seems, claimed to have been the introducer of this vegretable, also known as the Russia turnip, into this country ; but Tborburn retorts that "in the year 1796 a large field of these turnips was
raised by Wm. Pront on that piece of ground now occupied by the nary yard, at the city of Washington." He completed his life in England, becoming a voluminous author upon political and economical subjects. (See Cobbett.) It is interesting to note, in connection with this dispute about the turnips, that the kohlrabi was introduced about the same time, and Deane says of it in

1081. Two old-time flowers-Hollyhock and Crown Imperial.
1797, that "whether this plant, which bas but newly found its way into our country, is hardy enough to bear the frost of our winters, I suppose is yet to be proved." It was recommended to be grown as a biennial, which aecounts for Deane's fear that it might not pass the winters.

Fessenden's "New American Gardener," made upon the topical plan, appeared in Boston in 1828 , and went to various editions ; and from this time on, gardening books were frequent. Some of the leading early autbors are Thomas Bridgeman, of New York ; Robert Buist, of Philadelphia, and Joseph Breck, of Boston.

Flower-Books and Floricultcre.- The first American book devoted wholly to flowers was probably Roland (ireen's "Treatise on the Cultivation of Flowers," Boston, 1828 . Edward Sayers published the "American Flower fiarden Companion," in Boston, in 1838. From 1830 to 1860 there appeared many of those superficial and fashionable books, which deal with the language of flowers, and which assume that the proper way to popularize botany is by means of manufactured sentiment.

Green's book on flowers deserves a paragraph, since it enables us to determine what were the leading ornamental piants in that early day (1828). The full title of the book is " A Treatise on the Cultivation of Ornamental Flowers: Comprising Remarks on the Requisite Soil, Sowing, Transplanting, and General Management: with Directions for the General Treatment of Bulbons Flower Roots, Greenhouse Plants, etc." It comprises only 60 pages. The introductory pages give general directions; then follow two annotated lists, one of annuals and bi ennials and the other of greenhouse plants. Tbese lists are interesting, also, for what they do not contain. Ail the plants which they mention are here set down:

ANNEAL AND HIENNIAL FLOWERS.

Althæa frutex.
Almond, Double-flowering,
Amaranthus superbus,
Amaranthus tricolor.
Animated Oats,
Aster, China,
Auricula,
Azalea nudiflora,
Box.
Box,
Brier, Sweet,
Canterbury Bell,
Carnation.
Cassia Marylandica.

Catalpa,
Cherry, Double-flowering,
Cbrysanthemum lndicum,
Clematis, Austrian (C, in. tegrifolia),
Clethra,
Columbine,
Convolvulus
Corchorus Japonicus,
Crocus.
Copid's Car, or Monk's Hood (Aconitum).
Dahlia.

ANNUAL ANB BIENNIAL FLOWERS-Continued

Daisy,
Dwarf Basil,
Egg Plant.
Eupatorinm, Blue.
Euphorbia Lathyris,
Fading Beanty, or Morniug Bride (Scabiosa)
Fir (Pinus balsamea),
Foxglove,
Fringe Tree
Geranium (Pelargonium),
Garden Angelica,
Glycine, Cluster-flowering,
Golden Coreopsis,
Golden Everlasting (Teran themum),
Hollyhock,
Honeysuckle,
Hyacinth,
Hydrangea,
Ice Plant,
Impatiens Balsamina,
Iris,
Lagerstromia Indica,
Laurel, Broad-leaved
(Kalmia),
Laburnum,
Larkspur,
lilac.
Lily.
Lime Plant (Podop: yll m peltatum),
Lychnadia (Phlox)
Dlezereon (Daphne rewm),
Mountain Ash,

Musk Geranium
Myrtle,
Nareissus,
Nasturtium.
Passion Flower.
Pwony,
Pea, Sweet.
Pearb, Double-tlowering.
Pink,
Perennial Sunflower, double. Polyanthus,
Pyrethrum Parthenium,
Poppy,
Purple Hyacinth Bean,
Roses.
Rose Acacia.
Rose colored Hibiscus,
Rudbeckia,
Scarlet Cacalia,
Scarlet Lychnis (L. Chalce donica)
Siberian Crab.
Snow-ball Tree,
Snowberry,
Spice-wood (Laurus Benzoin), Spiderwort (Tradescantia),
Spirea,
Syringa, or Mock Orange.
StrawberryTree(Enonymus)
Sweet Bay (Laurus nobilis). Sweet William, or Poetic Pink,
Tulip,
Venetian Sumac, or Fringe Tree,
Violet, blue fragrant.

GREENHOUSE PLANTS.

Lilies of the valley,
Ranuncaluses,
Anemones.
Single and Double Jonquils,
White Lilies,
Roses,
Tuberoses,
Persian Iris,

Mignonette.
Verbena trifoliata, or Sweet Verrain,
Fuchsia coecinea
Cobaza scandens.
Camellia Japonica, or Japanese Rose,
Myrtles.

These lists are much less ample than those of M'Mahon, over twenty years earlier, but they may be supposed to include the popular and most easily grown things. They will be suggestice to those who wish to make "old-fashioned gardens." M'Mahon's list was eridently largely compiled from European sources. Green says that the first list (strangely called "annual and biennial flowers") contains "such plants, shrubs and trees as are of easy cultivation, generally hardy." The second list comprises "a few different sorts of greenhouse plants" "which are commonly grown in rooms."

The first American book to be devoted to a special flower was Sayers' book on the dahlia, Boston, 1839, which appeared only a year later than Paston's well-kuown book in England. Sayers' book also included the cactus. The next special flower book seems to hare been Buists' "Rose Manual," Philadelphia, 1844, although a sentimental book on the "Queen of Flowers" had appeared in the same city in 1841. Buist's book went to at least four editions. It was followed by Prince's in 1846, and by S. B. Parson's "The Rose: Its History, Poctry, Culture and Classification," 1846. Parson's book went to a rerised edition. Of later-date flower-books there are seseral of importance, but it is not the purpose of this history to trace more than the beginnings of American floricultural writings.

In 1838 appeared a book in French in New Orleans. This was Lelievre's "Nouveau Jardinier de la Louixiane." It was a small book of 200 pages, with a calendar and brief directions for the growing of vegetables, fruits and flowers. Singularly enough, a French book also appeared at the other extreme of the country. This was Provancher's "Le Verger-Canadien," published in Quebec in 187.
The writings clearly portray the tendencies of the floricultural interests,-from the formal-flower ideals of the dahlia and camellia to the enormous development
of the cut-flower interest, and the growth within the last few years of the greater love of plants themselves. Palms and decorative plauts are now almost necessities, where 50 years ago they would have been the luxury of lusuries. "There has been a radical change in the character of the flowers used for cut-Hower purposes," wrote Alfred Henderson in 1895. "Fifty years ago, camellia flowers retailed freely for a dollar each, and during the holidays Philadelphia used to send thousands to New York florists, gettiug $\$ 500$ per 1,000 ; while roses went begging at one-tenth these figures. Now, the rose is queen, and the poor camellia finds none so poor to do ber reverence. * * * I confidently believe that the time is not far distaut wheu we shall compete seriously with the foreign grower in the production of new varieties of roses." William Scott, of Buffalo, makes the following comments on teudencies in floriculture: "About the year 1880, tulips and narcissuses begau to be forced, and during the next 15 years immense quantities of these bulbs were imported annually fron Holland. As the methods of forcing were perfected the market became overstocked, and; although large quantities are still forced for the winter and spring months, they are not now in the same favor as formerly, and the rose, carnation, violet, lily-of-the-valley and mignonette are still the favorites. Orehids are not yet the flower for the million, but there is a yearly increasing demand for them, and at present the showy orchids, such as the Cattleyas and Lælias, are far short of the demand. As their cultication is more generally understood, we look for a very steady inerease in the number grown. and are confident that the supply will not soon exceed the demand. Within the past 5 or 6 years a marked increase is noticeable in the use of plants to adorn the home, and the demand is for an expensive class of plants, -palms, dracenas, araucarias and ferns being among those mostly used. Now few homes with any pretension to luxury or even comfort are without a few fine plants seattered through the rooms, and many of our modern houses are provided with either a bay wiudow or small conservatory for the accommodation of plants." See Cul-Flowers and Floricullure.

Early Pomological Writings.-It is in the pomolog. ical writings that North America bas made the greatest contributions to horticultural literature. William For

1082. Example of the earliest illustrations of American fruite. Esopus Spitzenburg, figured by Coxe in 1817.
syth's excellent "Treatise on the Culture and Manage ment of Fruit Trees" appeared in London in 1802, and it was widely read, "an impression of 1,500 copies (of the

1083. One of the old Downing test apple trees.

first edition), in 4 to having been sold in a little more than eight months." An American edition, by William Cobbett, appeared in New York and Philadelphia in 1802, and in Albany in 1803, and an epitome of it by tean American farmer." was published in Philadelphia in 1803. The first American pomological book was William Cose's "View of the Cultivation of Fruit Trees," published in Philadelphia in 1817, a work kuown to students of hortienltural literature for the uniform completeness and aceurary of its descriptions. A feature of this excellent work Are the many woodeuts of varieties of fruits. Although not answering the requirements of the present day, they were considered to be very good for the time and for a new conntry. One of them is here reproduced (Fig. 1082) to show the style of workmanship. Coxe had 100 woodeuts of apples, 63 of pears, 15 of peaches, 17 of plums, 3 of apricots, 2 of nectarines. This makes 200 engravings, which would he considered liberal illustration even at the present day.

James Thacher's "American Orchardist "appeared in Boston in 1829 , and the second edition at Plymouth in 1825. The first edition was also bound with William Cobbett's "Cottage Economy," and the double volume was issued in New Vork in 1824 as "American Orchardist and Cottage Eeonomy," "The Pomological Manual," New York, 1831 (second edition 18.32), is a compilation of descriptions of varieties, by William Robert Prince and William Prince, son and father respectively. William Kenrick's "New Ameriean Orchardist" was published in Boston in 1833. The eighth edition appeared in 1848. Like all early works, it devotes most of its space to varieties. Robert Manning, whose son of the same name is the secretary of the Massachusetts Horticultural Society, published his admirable "Book of Fruits," at Salem, in 1838, being aided by John M. Ires. Tpon the death of Manning, Ires published a second edition in 1844 under the title of "The New England Fruit Book," and a third in 1847 as "The New England Eook of Fruits." Downing's "Fruits and Frnit Trees of America" appeared in 1845 in two forms, dnodecimo and octaro, althongh both issues were printed from the same type. One issme of the octavo form contained colored plates. Thomas' "Fruit Culturist," which is known in sub). sequent editions as "The American Fruit Culturist," appeared in 1846. Other pomological writings which appeared before 1850 are Sayers' "American Frnit Garden Companion," Boston, 1839 ; Hoffy's "Orchardist's Companion," Philadelphia, 1841; Bridgeman's "Fruit Cultivator's Manual," New York, 1845; Floy's American edition of George Lindley's "Guide to the Oreharil and Fruit

HORTICULTURE

Garden," New York, 1846; Jaques' "Practienl Treatise on the Management of Fruit Trees," Woreester, 1849 ; Goodrich's "Northern Fruit Culturist," Bnrlington, Vt., 1819 ; Cole's "Americtu Fruit Book," and others. Barry's "Fruit Garden" appeared in 1851.

Of these pomological books, the first place should he given to those of Coxe, Keurick, Manning, Downing, Thomas and Barry. The influence of Downing's "Fruits and Fruit Trees of America" probably bas been greater than that of all others in extending a love of fruits and a eritical attitude towards varieties. Bequa by Andrew Jackson Downing-perhaps the fairest name in American horticnltural literatnre - it was contimed and revised by the elder brotber, (harles, after the untimely death of the former (sce Downing). Reminiscences of the Downings are shown in Figs. 1083-t. Most of these works were largely compilations. A notable exception was Manning's "Book of Fruits." In the introduetory remarks to the volume is the following statement: "There is one circumstance to which we venture to call the attention of our readers-that while some recent works on pomology are compiled from earlier authors, or from information derived at seeond-hand, the writers themselves seldom having the means of observation in their power, we have in these pages deseribed no speeimen which we have not actnally identified beyond a reasonable donbt of its genuineness." It was Manning who chiefly made known to Americans the pears of the Belgian, Van Mons. He was one of the most careful ohservers and conscientions writers amongst Americau pomologists.

The awakening pomology of the region west of the Alleghanies fonnd expression in Elliott's "Fruit Book," 1854 , whose author wrote from Cleveland, and which went to a new edition in 1859 as "The Western Fruit Book," wath the preface dated at St. Louis; and Hooper's "Western Frnit Book," 1857, written at Cincinnati. Dr. John A. Warder was a guiding spirit of the opening West.

In America, no crop has been the subject of so much book writing as the grape. Counting the various editions, no doubt a hundred books have appeared, being the work-of at least fifty authors. Since the American grape is a product of our own woods within a centnry, the progress in grape-growing has always been ahead of the books. Most of the books are founded largely on European advice, and therefore are not applicable to American conditions. In general pomology, the books seem to have had mnch influence upon fruit-growing; but in the grape the books and actual conmereial grapegrowing seem to have had little relation one to the

1084. The fruit house of Charles Downing.
other. Some of the later books have more nearly caught the right point of view.
The earliest separate grape hook was pnblished in Washington in 1823 , by the prophetic Adlum," A Memoir on the Cultivation of the Vine in America." This went to a second edition in 1828 (see $A d / u m$ and Plate 1I). Before this time (1806), S. W. Jolnson had devoted mach space to the grape in his "Rural Economy," published at New Brunswick, N. J., and he published the first pictures of grape training (Fig. 1085). Adlum's book was followed in 1826 by the "American Vine Dresser's Guide," by the anprophetic Dafour. This work also gave pictures of grape training, one of which is reproduced in Fig. 1086. The larger part of the grape literature appeared before the close of the Civil War, although the larger part of the development of the subject has taken place since that time.

General Remarks on Fruit-Growing.-Horticalture, in its commercial aspects, was nothing more than an incidental feature of farm management at the opening of the century. In fact, it is only in the present generation that the field cultivation of horticultural crops has come to assume any general importance in the rural economy of the nation. And even now, horticultural operations which are projected as a fundamental conception of land oceupation are confined to few parts of the country. It is still the original or first conception of the farmer's boy, when he proposes to occupy land of his own, that he raise grain and hay and stock, and add the fruits and other horticultural crops by piecemeal. It is only in particular parts of the country that the farmer starts out with Horticulture as a base, and with grain and stock and hay as accessories; and even in these places, the best horticulturists are still drawing their practices and the reasons for theru from the operations of general mised agriculture. There was practically only one general horticultural commodity, at least in the northern states, a hundred years ago, and that was the apple. Pears, peaches, cherries, quinces and some other fruits were common, but there was little thought of marketing them. Eren the apple was generally an accidental crop. Little care was given the trees, and the varieties were few, and they were rarely selected with reference to particular uses, beyond their adaptability to cider and the home consumption.

Thacher, writing from Plymouth in 1821, says that "the most palpable neglect prevails in respect of proper pruning, eleaning, and manuring round the roots of trees, and of perpetuating choice fruits, by engrafting from it on other stocks. Old orchards are, in general, in a state of rapid decay; and it is not uncommon to see raluable and thrifty trees exposed to the depredations of cattle and sheep, and their foliage annoyed by caterpillars and other destructive insects. In fact, we know of no branch of agriculture so unacconntably and so culpably disregarded." Were it not for the date of Thacher's writing, we should mistake this picture for one drawn at the present day.

If one may judge from the freqnent and particular references to cider in the old accounts, it does not seem too mneh to say that this sprightly commodity was held in greater estimation by our ancestors than by ourselves. In faet, the cider barrel seems to have been the
chief and proper end of the apple. Of his thirty chapters on fruit-growing, Coxe (1817) devotes nine to cider, or 42 pages ont of 253 . John Taylor's single epistle devoted to horticultural matters in the sixty and more letters of his "Arator" is upon "Orchards," but it is mostly a rehement plea formore cider. "Good cider," he says, "would be a national saving of wealth, by expelling foreign liquors; and of life, by expelling the nse of ardent spirits." In Virginia, in Taylor's day, apples were "the only species of orchards, at a distance

1085. The earliest American picture of Grape training (1806).

HORTICULTURE

ing of apples since the first settlement of the country. Early in the last century there appears to have been a great abundance of the fruit; but in 1821 Thacher declared that "it is a remarkable fact that the first planters bequeathed to their posterity a greater number of orchards, in proportion to their population, than are now to be found in the old colony," and he attributes the decline in orcharding largely to the encroachment of the "poisonous liquor" of the later times. Ender the inspiration of Thacher, Coxe, Kenrick, Prince, Manning, and the Downings, orchards were again planted, and we are just now in another period of decline in the East, following the decay of these plantations.

Apples were carried far into the frontiers by the Indians and probably also by the French missionaries, and the "Indian apple orchards" are still known in many localities eren east of the Mississippi (see also, Appleseed, Johnny). At the opening of the century, the Early Harvext, Newtown Pippin, Swaar, Spitzenberg. Rhode Island Greening, Yellow Bellefleur, Roshury Russet, and other familiar apples of American origin were widely disseminated and much esteemed. Apples had hegun to be planted by settlers in Ohio before 1800. In 1817, Coxe could recommend a list of "one hundred kinds of the nost estimable apples cultivated in our country;" and in 1825 William Prince offered 116 varieties for sale-at $371 / 2$ cents per tree-of which 17 were set aside-after the fashion of the time-as particularly adapted to the making of cider. Of these 116 varieties, 6) were considered to be of American origin. In 1872 , Downing's list of apples which had been fruited and described in America, had swelled to 1856 rarieties, of which 1099 were of known American origin. Of this great inventory, probably not over a third were actually in cultivation at any one time, and very many of then are now lost. Yet the apple is still our most important fruit, and 878 varieties were actually offered for sale by the nurserymen of North America in 1892.

There has been a most noticenble tendeney towards the origination of varieties of apples in this country, and the consequent exclusion of varieties of European origin. As early as I760, cions of American varieties were sent to England. Before the Revolution, apples were exported. The origination of indigenous varieties was of course, an accidental one, and was a necessary result of the universal method of growing apple trees directly from seeds, and top-grafting them in ease they should turn out profitless. A critical study of American Horticulture will show that all species of plants which have been widely cultivated in this country have gradually run into indigenous varieties, and the whole body of our domesticated flora has undergone a progressive evolu-
tion and adaptation without our knowing it. By far the greater number ef the apples of the older apple-growing regions of the country are indigenous rarieties, and the same process is now operating in the Northwest, where the American seedlings of the Russian stock are proving to be wore valuable than the original importations.

1087. Bartram's cider mill, a relic of the last century.

It is said that the apples were placed in the circular groove in the rock and crushed by means of a weight rolling over them. The juice ran out the gutter at the farther side and was caught in a rock-hewn cistern.

Pears were amongst the earliest fruits introduced into the New World, and the French, particularly, disseminated them far and wide along the waterways, as witnessed by the patriarchal trees of the Detroit river and portions of the Mississippi system. John Bartram's Petre pear (Fig. 1080) is one of the patriarchs of the last century, although the tree is not large. The first book devoted exclusicely to the pear was Field's, puhlished in 1859. The Japanese type of pears had been brought into the country from two and perbaps three separate introductions, early in the fifties, but they had not gained sufficient prominence to attract Field's attention. From this oriental stock has come a race of promising hybrids with the common pear, represented chiefly by the Kieffer, Le Conte and Garber.

Peaches were early introduced into the New World by various colonists, and they thrived so well that they soon became spontaneous Nuttall found them naturalized in the forests of Arkansas in 1819, and the species now grows with all the luxurious ahandon of a native in waste and forest lands from feorgia and the Carolinas to the westward of the Mississippi. There is probably no country in the world in which peaches grow and bear so freely as in the United States. The old Spanish or Melocoton type is now the most popular race of peaches, giving rise to the Crawfords and their derivatives.

Of late years there has been a contraction of the original peach areas, and many good people have thought that the climate is growing uncongenial, hut it is only the natural result of the civilization of the country and the cbange in methods of Horticulture. Peaches had never been an industry, but the orchards were planted here and
1086. Dufour's picture of Grape training (1826).

Patterned after the Sonth-European fashion of employing mulberry trees for supports.
the general farming. For generations insect pests were not common. There were no good markets, and the fruit sold as low as 25 cents a bushel from the wagon box. In fact, it was grown more for the home supply than with an idea of shippiug it to market. Under such couditions, it did not matter if half the crop was wormy, or if many trees failed and died each year. Such factsoften passed almost unnoticed. The trees bore well, to be sure; but the crop was not measured in baskets and accounted for in dollars and cents, aud under such conditions only the most productive trees left their impress upon the memory. The soils had not undergone such a long system of robbery then as now. When the old orchards wore out, there was no particular incentive to plant more, for there was little money in them. Often the young and energetic men had gone West, there to repeat the history perhaps, and the old people did not care to set orchards. And upon this contracting area, all the borers and other pests which had been bred in the many old orchards now concentrated their energies, until they have lett scarcely enough trees in some localities upon which to perpetuate their kind. A new country or a new industry is generally free of serious attacks of those insects which follow the crop in older communities. But the foes come in unnoticed and for a time spread unmolested, when finally, perhaps almost suddenly, their number becomes so great that they threaten destruction, and the tarmer looks on in amazement.

The orange is another tree which has thrived so well in the new country that the spontaneous thickets of Florida, known to be descendants of early Spanish introductions, are confidently believed by residents to be indigenous to the soil.

The progress of the plum in America nearly equals that of the grape in historic interest. The small, sponthat of the grape in historic interest.
taneous plums, known as Damsons, the offspring of introductions from Europe, were early abundant in New England. Plum culture has never thrived far south of Mason and Dixon's line or west of Lake Michigan, except, of course, upon the Pacific coast and parts of the far sonthwestern country. There are climatic limitations which more or less restrict the area of plum growing, and the leaf-blight fungus, black-knot, and fruit-rot have added to the perplexities. In this great interior and soutbern area, various native plums, offshoots of several indigenous species, have now spread themselves, and they have already laid the foundation of a new type of plum culture. The first of these novel plums to receive a name was that whicb we now know as the Miner, and the seed from which it sprung was planted by William Dodd, an officer under General Jackson, in Knox county, Tennessee, in 1814. The second of these native plums to come into prominence, and the one which really marks the popularization of the fruit, is the Wild Goose. Some time before 18.50 , a man shot a wild goose near Columbia, Tennessee, and where the carcass was thrown this plum, Adonis-like. sprung forth. It was introduced to the trade about 1850, by the late J. S. Downer, of Fairview, Kentucky. Over 200 named varieties of these native plums are now described, and some of them are widely disseminated and deservedly popular. In the South and on the plains, these natives are a prominent horticultural group. The complexity of the cultivate plum flora is now further increased by the introduction of the Japanese or Chinese type, which first came in by way of California in 1870. Fimally, about 1880, the apricot plum, or Prumus Simmiii, was introduced from China by way of France; and the American plum industry, with no less than ten specific types to draw upon, and which represent the entire circuit of the northern hemisphere,
is now fairly launched upon an experimental career whose promiso lies with the coming century.

The grape of America is of two unlike types, -the natives, which comprise all commercial outdoor varieties in the interior and easteru states; and the vinifera or Old World kinds, which are grown in California. The native types have been developed within the century. The oldest commercial variety is the Catawba, which dates from 1802. The cosmopolitan variety, the Concord, which first fruited in 1849 . A full review of the history is made in "Evolution of our Native Fruits."

There was no commercial strawberry culture in America, worthy of the name, until the introduction of the Hovey (Fig. 1088) late in the thirties. This and the Boston Pine were seedlings of C. M. Hovey's, Cambridge, Massachusetts. They first fruited in 1836 and 1837, and from them have descended most of the garden strawberries of the present day. These were seedlings of the old Pine type of strawberry, which is a direct descendant of the wild strawberry of Chile. The Wilson, or Wilson's Albany, which originated with John Wilson, of Albany, New York, began to attract attention about 1856 or 1857, and it marked the beginning of the modern epoch in American strawherry growing. In the middle West, strawherry growing was given a great impulse by Longworth and Warder.
Raspherries were grown in the last century, but they were of the tender European species, of which the Antwerps were the common types. This type of raspberry is now almost wholly superseded by the offspring of our native red and black species, which first hegan to impress themselves upon cultivation about 1860 .
The blackberry, an indigenous American fruit, first commended itself to cultivation with the introduction of the New Rochelle or Lawton, towards the close of the

1088. The original picture of the Hovey Strawberry. Magazine of Horticulture, August, 1840 . Original size
was first brought to the attention of the public in 1875. The following year the Lueretia, the most popnlar of dewberries, was introduced into Ohio from West Virginia, where it had been found wild some years before by a Union soldier.

The history of the gooseberry in America recalls that of the grape. It is a characteristic fruit of England and the low countries, and it was early introduced into America. But, like the European grapes, the gooseberries were attacked by a fungous sickness which rendered

1089. The original picture of the Houghton Gooseberry. From the Horticulturist for September, 1868. Original size.
their cultivation precarious. An improved form of the native species mast be introdnced, and this was accomplished by Abel Houghton, of Massachusetts, who, from the seed of the wild berry, produced the variety which now bears his name. This variety began to attract some attention a little previous to 1850, although it was not planted freely until several years later (Fig. 1089). From seed of the Houghton sprang the Downing, still the most popular gooseberry in America, although Houghton is still much grown from Philadelphia south; and onr gooseberry cnlture is, therefore, but two remores from nature. With the adrent of the Bordeaux mixture and its related specifics, however, the English gooseberries are again coming to the fore. Hybrids of the English and American types, as in the Triumph or Columbia and the Chautauqua, may be expected to become more popular for home use and special markets, but the Americans will probably remain in favor for general market purposes.

The cranberry, most unique of American horticultural products, was first cultivated, or rescued from mere wild bogs, about 1810. Its cultivation began to attract attention ahout 1840 , although the difficulties connected with the growing of a new crop did not begin to clear away
until about 1850. C'ape Cod was the first cranberry-growing region, which was soon followed by New Jersey, and later by Wisconsin and other regions. The varieties now known are over a hundred, and the anmual prodnet from tame bogs in the United States is nearly 800,000 bushels.

The Nursery and Seed Business. - It is impossible to fix a date for the beginning of the nursery business in America. Trees were at first grown in small quantities as a mere adjunct to general farm operations. Governor John Endicott, of the Massachusetts Colony, was one of the best fruit growers of his time, and he grew mauy trees. In 1644 , he wrote to John Winthrop as follows: "My children burnt mee at least 500 trees this Spring by setting the ground on fire neere them; ${ }^{n}$ and in 1648 he traded 500 apple trees, 3 years old, for 250 acres of land. The first nursery in Maine is thought by Manning to have been that of Ephraim Goodale, at Orrington, established early in the present century. Other early nurserymen of Daine were the brothers Benjamin and Charles Vaughan, Englishmen, who settled at Hallowell in 1796. The first nursery in South Carolina was established by John Watson, formerly gardener to Henry Laurens, before the Revolution. In Massachusetts, there were several small nurserymen towards the close of last century, amongst others, John Kenrick, of Newtown, whose son Hilliam wrote the "New American Orchardist," published in 1833 , and which passed through at least eight editions. The trees were generally top-grafted or budded, sometimes in the nursery and sometimes after removal to the orchard. Deane writes in 1797, that "the fruit trees should be allowed to grow to the height of 5 or 6 feet before they are budded or grafted." Stocks were sometimes grafted at the crown, and even root-grafting was known, althongh it is generally said that this operation originated with Thomas Andrew Knight, in 1811. It is prohable, however, that the root-grafting of last century was only grafting at the surface of the ground, and that it had little similarity to the method now in vogue. One of the new trees a hundred years ago was the Lombardy poplar. John Kenrick had two acres desoted to it in 1797; and Deane writes, in 1797, that "t the Lombardy poplar begins to be planted in this country. To what size they will arrive, and how durable they will be in this country, time will discoser." He does not mention it in the first edition, 1790. The tree is said to have been introdnced into America by William Hamilton, of Philadelphia, in 1784, although Mr. Meehan writes that he remembers trees Hfty years ago that seemed to be a century old. Manning quotes a bill of sale of nursery stock in 1799 , showing that the price of fruit trees was $331 / 3$ cents each. With relatively cheaper money and with much better trees, we now buy for one-third this price. Deane speaks of raising npple trees as follows: "The way to propagate them is by sowing the pomace from eydermills, digging, or hoeing it into the earth in autumn. The foung plants will be up in the following spring: and the next autumn, they should be trans. planted from the seed bed into the nursery, in rows from 2 to 3 feet apart and 1 foot in the rows, where the ground has been fitted to receive them." Nothing is said about grafting the trees in the nursery,

But the first independent nursery in the New World, in the sense in which we now nuderstand the term, seems to have been that established by William Prince at Flushing, Long Island, and which was continned under four generations of the same family. The fonntler was William Prince. The second Prince was also William, the son, and author of the first professed American treatise npon Horticulture, 1828. The third generation was William Robert Prince. He was the author of "A Treatise on the Vine" (1830), "The Pomologieal Manual" (1831), and "Manual of Roses" (1846). In the first two he was aided by his father, the second William. This William Robert Pince is the one who first distinguished the types of the prairie strawberry into the two species, Frafaria lllinnensis and \boldsymbol{F}. Towensis. From a large catalogue of William Prince second, published in 1825-and which contains, amongst other things, lists of 116 kinds of apples, 108 of pears, 54 of cherries, 50 of plums, 16 of apricots, 74 of peaches and 255 of geraniums - the following acconnt is taken of the founding of this interesting establish-
ment: "The Linnæan Garden was commenced about the middle of the last century by William Prince, the father of the present proprietor, at a time when there were few or no establishments of the kind in this country. It originated from his rearing a few trees to ornament his own grounds; but finding, after the first efforts had been attended with success, that he could devote a portion of his lands more lucratively to their cultivation for sale than to other purposes, he conmenced their culture more extensively, and shortly after published a catalogue, which, at that early period, contained several hundred species and varieties, and hence arose the first extensive fruit collectiou in America." The elder Prince died in 1802, "at an advauced age."

Amongst the nurseries which were prominent from 1820 to 1830 were Bloodgood's, Wilson's, Parmentier's, and Hoge's, near New York; Buel and Wilson's, at Albany; Sinclair and Moore's, at Baltimore, David Thomas, a man of great character, and possessed of scientific attainments, was the earliest horticulturist of central or western New York. His collection of fruits at Aurora, upon Cayuga Lake, was begun about 1830. His son, John 3. Thomas, nurseryman and author of the "American Fruit Culturist," which first appeared in 1846 , died at a ripe old age in 1895 , and in his removal the country lost one of its most expert, systematic and conscientious pomologists. The uursery firm of Parsous \& Co., on Long Island, was fouuded iu 1838, and is continuing. It was instrumental in distributing great quantities of fruit and ornamental stock at a formative time in American Horticulture, and it was a pioneer in several commercial methods of propagation of the more difficult ornamental stock. It was the chief distributor of Japanese plants in the early days. Between 1840 and 1850 arose the beginnings of that marvelous network of nurseries, which, under the lead of Ellwanger \& Barry, T. C. Maxwell \& Brothers, W. \& T. Smith, and others, has spread the name of western New York throughout North America. In 1857, Prosper J. Berckmans, who had then been a resident of the United States seven years, removed to Georgia, and laid the foundation of what is now the best known nursery in the South.

The first American seed house, David Landreth's, in Philadelphia, was established in 1784 . The second was John Mackejohn's, 1792; third, William Leeson, 1794; fourth, Bernard M Mahon, 1800, all of Philadelphia. In 1802, Grant Thorburn's was established in New York. The first and last of these businesses still exist under the family names. M'Mahon did a large husiness in exporting seeds of native plants, and it was through his work that many American plants came into cultivation in Europe. His catalogue of seeds of American plants in 1804, for the export trade, contained about 1,000 species of trees, herbs and shrubs. He also announced at

1090. One of the earliest American greenhouses. 1764.
that time that he had "also for sale an extensive variety of Asiatic, South Sea 1slands, African and European seeds of the most curious and rare kinds." "The prices shall be moderate, and due allowance will be made to those who buy to sell again." II'Mahon, through busi-
ness and writing, had great iufluence on American Horticulture in its formative period. As we have seen, he distributed seeds of the Lewis and Clark expedition; but Landreth is said to have shared these seeds, and also those collected by Nuttall. Those were days of the enthusiastic exportation of the seeds of American plants.

The development of the seed trade is coincident with the development of the postal service. Burnet Landreth writes that "it was not until 1775 that the New York city post office was first estahlished, the mail passing

1091. Greenhouse front.

With glass lights and door of glass at the end, to be 7 feet high, 35 in length by 12 in breadth. Brick foundation 2 feet high, half a foot of which to be nnderground.-Robert Squibb, Gardener's Calendar, Charleston, S. C. 1827.
once every two weeks between New York and Boston. In 1775, a through mail was established by Postmaster Franklin between Boston and Savannah, the letters being carried by post riders, each man covering 25 miles. Previous to that date, sixty days would frequently pass without a mail from Virginia." Landreth estimates that there are now nearly two hundred seed firms in the United States publishing and distributing descriptive seed catalogues.

Greenhouses.-The first glasshouse in North America was probably that erected early in last century in Boston, by Andrew Faneuil, who died in 1737. This passed to his nephew, Peter Faneuil, who built Faneuil Hall. The greenhouse which is commonly considered to be the first one built in the country was erected in 1764 in New York, for James Beekman. A picture of this, from Taft's "Greenhouse Construction," is shown in Fig. 1090 Glasshouses were fully described in 1804 by Gardiner and Hepburn, aud in 1806 by M'Mahon, but these authors do not state to what extent such structures existed in America. In Doctor Hosack's botanic garden, 1801, extensive glasshouses were erected. Compare Figs. 986, 987. Fig. 1091 shows one of the earliest American pic tures of a greenhouse. It is copied, full size, from Squibb's "Gardener's Calendar," Charleston, S. C., 1827. Fig. 1092 shows the first greenhouse in Chicago, as illus trated in "American Florist." Note the small panes, and the sash construction. This was huilt in 1835 or 1836. With these pictures should he compared the modern greenhouses as shown in Fig. 1093; also in the pictures in the articles on Greenhouse.

These early houses were heated by flues or fermenting substances. The use of steam in closed circuits began in England about 1820. Hot-water circulation seems to have been a later invention, although it drove out steam heating, until the latter began to regain its supremacy in this country twenty or twenty-five years ago. The "New England Farmer" for June 1, 1831, contains a description of hot-water heating for hothouses, a matter which was then considered to be a great norelty.

Most of the early houses had very little, if any, glass in the roof, and the sides were high. It was once a fashion to build living rooms orer the house, so that the roof would not freeze. In the "modern" construction of the greenhouse of M'Mahon's day, 1806, he advised
that "one-third of the front side of the roof, for the whole length of the honse, be formed of glass-work," and in order that the tall, perpendicular sides of the house should bave as "much glass as possible," he sajd that "the piers between the sashes are commonly made of good timber, from 6 to 8 or 10 inches thick, according

1092. First greenhouse in Chicago (1835 or 1836).
to their height." "The width of the windows for the glass sashes may be 5 or 6 feet; ${ }^{*}{ }^{*}{ }^{*}$ the bottom sashes must reach within a foot or 18 inches of the floor of the honse and their top reach within 8 or 10 inches of the ceiling. The panes in the roof should be 6 inches by 4, this size "being not only the strongest, but by much the cheapest, and they should lap over each other about half an inch." But the sides or "front lights must be made with large panes of glass." Many or most of the early plant-houses had removeable tops, made of sash. On the change from the old to the new ideas, Alfred Henderson writes as follows: "The first published adrocacy of the fixed-roof system was made by Mr. Peter B. Mead, in the 'New York Horticulturist,' in 1857 . Before that, all greenhouse structures for commercial purposes were formed of portable sashes, and nearly all were constructed as 'lean-to's,' with high back walls, and none were connected. All were separate and detached, being placed at all angles, without plan or system. Then, too, the heating was nearly all done by horizontal smoke-fines, or manure fermenting, although there was a crude attempt at heating by bot water by some private individuals as early as 1833. The first use of heating by hot water on anything like a large scale, however, was in 1839 , when Hitchings \& Co., of this city, heated a large conservatory for Mr. William Niblo, of New York; and yet for nearly twenty years after this time heating by hot water was almost exclusively confined to greenhouses and graperies on private places, as few professional florists in those days could afford to indulge in such luxuries. All this is changed now. The use of steam, hot water under pressure, and the gravity system of hot-water heating are almost universally in operation, the hot-air flue having been relegated to the past. The best evidence of progress is in the fact that the florist has not waited for the tradesman, but has brought ahout these improvements bimself."

Much attention was early given to the slope of the roof, in order tbat the greatest amount of sunlight might be obtained. Early in this century the curvilinear roof came into use, as the varions angles which it presents to the sun were supposed to catch the maximum number of the incident rays. The sides of the bouse remained bigh, for the most part, until near the middle of this century. All this shows that the early glasshouse was modeled after the dwelling or other buildings, and that it had not developed into a structure in which plants were grown for commercial purposes.

The modern commercial forcing-house, with direct roof, low sides, and heated by steam or hot water in closed circuits, is mostly a development of the last thirty years. Its forerunner was the propagating-pit of the nurseryman. If anything is lost in sunlight by adopting a simple roof, the loss is more than compensated by the lighter framework and larger glass. In the forcinghouse, all architectural ambition is sacrificed to the one desire to create a commercial garden in the frosty months.

Lettuce, cucumhers, tomatoes, carnations, violets, and various other plants are now grown as crops under glass roofs, whilst a generation ago they were generally not forced at all for market or were grown mostly under frames. With the simplifying and cheapening of the
glasshouse, amateur flower and vegetable growing has acquired a new impetus, and the business of the retail florist bas grown amazingly in the recent years.
Some idea of the increase of the demand for plants may be obtained from the sale of flower pots. A. H. Hews, of Cambridge, Massachnsetts, whose ancestors began the manufacture of pots before 1765 , reports that for a period of twenty-two years, from 1788 to 1810 the accounts of the sales of pots "cover about as many pages as we now often use in one day; and the amount in dollars and cents does not compare with single sales of the year 1894." He also compared the sales for 1869 and 1894 and "found the increase as ten to one; or, in round numbers, 700,000 flower pots in the former year and $7,000,000$ in the latter; and if the same factory can in 1920, twenty-five years later, produce and sell 70,000, 000 , we sball verily be living in a land of tlowers."

One of the earliest greenhouse builders was Frederic A. Lord, who built his first houses, according to Taft, in Buffalo in 1855, and who, in 1872 , entered into partnership with W. A. Burnham, at Irvington, on the Hudson. In very recent years a new impetus has been given to glasshouse building and work hy the establishment of the agricultural experiment stations and the extension of horticultural teaching in the colleges.

Horticultcre in California. - California Horticulture is in the main patterned after the South-Enropean types, and to this extent it originated from SpanisbMexican sources. The Horticulture of California's high mountain valleys approximates more closely to that of colder regions, while the Horticulture of the Pacific slope, north of California, becomes more and more different from the South-European types, but still has many characteristics of its own separating it sbarply from that of the Atlantic slope. The first borticultural experiments in California were at the missions of the Peninsula (Baja or Lower California), where 22 missions were founded between 1697 and 1797. Here the Mission Fathers introduced the date palm; also oranges, lemons, limes, pineapples, bananas, olives, figs, pomegranates, peaches, quinces, plums, apples, pears and grapes. They shipped to Monterey and the northern missions large quantities of dried figs, grapes, dates and peaches. The Upper California missions received seeds, cions, etc., from those of Lower California, as well as from Mexico. The first of these missions was established in 1769 at San Diego by the Franciscans, under the leadership of Father Junipero Serra, whose name visitors to

1093. Interior of a modern commercial greenhouseCarnations.
the California State Bnilding at the World's Fair will recall in connection with the great date palm from the Mission Valley of San Diego. This palm was raised from seed which Janipero Serra planted abont 1770. Twenty-one missions were founded by the Franciscans, the last one in 1823 , and at all but one or two of them there were important collections of the fruits of south-
ern Europe-olives, figs, oranges, lemons, pomegranates, wine grapes, and also apples, pears and peaches. Early in this century the mission of San Gahriel bad over 2,000 fruit trees, and others had more than a thousand. Fig. 1094 shows the yard of San Juan Capistrano Mission, as it existed in 1889. There are also some traces in California of the fruits of the few early Russian settlements. With the American occupation and the immigration from the East, came the eastern American types of fruits, and the state is now the seat of a wonderfully raried fruit culture, although the small fruits have not yet attained that prominence which they enjoy in older countries.

Details of the early Californian Horticulture are given for this occasion by Charles Howard Shinn. The first aflicial horticultural reports from California appeared in the second part of the United States Patent Office Report for 1851. In this report, Mr. A. Williams, of San Francisco, presented statistics from the Horner Ranch, near the Mission San José, Alameda county, where 800 acres were planted in vegetables and the crop of 1851 sold for upwards of $\$ 200,000$. The crop of potatoes, onions, heets, turnips and tomatoes was 134,200 hushels. The same report noted an onion weighing 21 pounds, and at the Fair of 1853 the committee on vegetables reported a "white Hat turnip" weighing 33 pounds, a squash that weighed 121 pounds, and a tomato weighing $51 / 2$ pounds. Thus early California began to boast of the mamunoth productions of her soil. The first official report printed in California appeared in a document issued by the Secretary of State for 1852. The capital then employed in "fruits and orchards" was given at $\$ 366,910$. The market-garden interests were surprisingly large; among single items were " 460,000 pumpkins, worth $\$ 46,000$;" upwards of $5,000,000$ pounds of onions, "worth $\$ 186,000$;" 30,000 busbels of beans, "worth $\$ 72,000$." Santa Barbara county reported " 1,370 barrels of olives, worth $\$ 27.500 . "$ Horticultural statisties are continued in the reports of the state Surveyor General. In December, 1853, the State Agricultural Society of California was organized, after a successful exhibition in San Francisco, where almonds, figs, olives, walnuts, and many other fruits, as well as vegetahles and flowers, were shown. Fairs were held in 1854 and 1855, but were not officially reported. The state began to publish the proceedings of the agricultural society in 1858 , when its membership was 856, and annual reports have continued till the present time. The California Horticultural so ciety was organized April 5, 1881; in 1883, the State Board of Horticulture was established. Reports of these hodies and of the state fruit-growers' conventions have appeared annually or biennially since 1882. The State Viticultural Commission was organized in 1881, and its reports continued until 1894. Upwards of one hundred octavo volumes represent the official output of California since 1858 in lines of Hortienlture, including, of course, the California Experiment Station reports.
Among the special California horticultural literature, are the following: "California Fraits," E. J. Wickson, first edition, I889; second edition, 1891; third edition, 1900. So many changes and additions have occurred in this book that all three editions will be found very useful in lihraries. "California Vegetahles." E.J. Wickson, 1897. The only book on this subject that has yet appeared (1900). "Gardening in California," Vi'm. S. Lyon, Los Angeles, 1897. This is a small volume of 156
pages. "Olive Growing," Pohndorff, San Francisco, 1884. "Olive Culture," A. Flamant, San Francisco, 1887. "The Olive," Arthur T. Marvin, San Francisco, 1888. "The Raisin Industry," Gustav Eisen, San Francisco, 1890. "The Wine Press and Cellar," E. H. Rixford, San Francisco, 1883. "Grape Culture, a Handbook for California," T. Hart Hyatt, San Francisco, 1876. "Orange Culture in California," Thomas A. Garey, San Francisco, 1882. Contains appendix on grape culture, by L. J. Rose. "Orange Culture," W. A. Spalding, Los Angeles, Calif. "The California Farmer," established in January,

1094. One of the early California Missions, which were the early promoters of Horticulture on the western coast - San Juan Capistrano.

1854, and maintaining a spasmodic existence for a number of years, printed the first pomological and horticultural reports of committees, etc. "The Rural Press" was estahlished in 1871, in San Francisco, and still continues. "The Rural Californian," of Los Angeles, still in existence, was established in 1877. "The California Fruit-Grower," commenced in 1888, and still survives (1900). "The California Florist," first issued in Santa Barhara, then in San Francisco, began in May, 1888, and stopped in April, 1889. "The California Cultivator," of Los Angeles, established in $188 \pm$, still published. "The Pacific Tree and Vine," of San José, established in 1882, still published.

California is now a horticultural wonderland; but its illimitable plantations are depressing to the man of small means and non-commercial ambitions, or to those who would grow for the discriminating personal market. Difficult climates develop the highest type of the amateur.
Periodicals. - Whilst the periodicals of any subject are supposed to ehronicle all the fleeting events of the days and years, and to embalm them for future generations, it is the most difficult thing to remember and record the journals themselves. Many horticultural journals bave lived and died in this country without having attracted the attention of a single library or collector of books. They germinated in the rich soil of expectation, bloomed in the dewy morning of enthusiasm, and collapsed when the sun rose. It is probably no exaggeration to say that 500 horticultural journals have been started in North America. There are about 40 in the flesh at the present moment. The "Massachusetts Agricultural Repository" was started in 1793 , and this was the first agricultural journal in the country, but it was as late as 1821 that a horticultural department was added to it. The first journal to devote any important extent of its space to horticultural matters was the
"New England Farmer," which was established in Boston in 1822, and which was one of the chief instruments in the organization of the Massachusetts Horticultural Society, Its first editor was Thomas G. Fessenden, author of the "New American Gardener," a book which appeared in 1828 , and passed through at least six editions. The "Horticultural Register and Gardener's Magazine," established in Boston in 1835, and edited by Fessenden and Joseph Breck, and "Hovey's Magazine," were probably the first distinct Horticultural periodicals. The former, although a magazine of more than ordinary merit, did not persist long. The latter was founded by C. M. Hovey and P. B. Hovey, Jr., and was called the "American Gardener's Magazine and Register of Iseful Discoveries and lmprorements in Horticultural and Rural Affairs," a journal which, in the third volume, became the "Magazine of Horticulture," and which enjoyed an uninterrupted existence until 1868 , thus covering a third of a century of the most critical and interesting period in American Horticulture.

The next important journalistic venture was A. J. Downing's "Horticulturist," begun in 1846 , and continued under many changes and vicissitules for some thirty years, and still represented, in line of descent, by "American Gardening." It has been published in Aibany, Rochester, Philadelphia and New York. The first seven volumes were edited by A. J. Downing; the eighth and ninth by Patrick Barry; the tenth by Barry and J. J. Smith; the eleventh to fourteenth by J. J. Smith; fifteenth and sisteenth, by Peter B. Dead; seventeenth and eighteenth, by Mead and G. E. Woodward. Later it was continued by Henry T. Williams, in New York, until the close of 1875, when the "HorticnIturist" was united with the "Gardeners' Monthly," of Philadelphia. This latter magazine started January 1, 1859, as a quarto, but became an octavo with its second volume. It continued until the close of 1887, when upon the death of its publisher, Charles Marot, it passed into the hands of "American Garden," New York. It had a long and useful career under the editorial management of one of the most accomplished and conscientions of American horticulturists, Thomas Meehan, whom all the younger generation has learned to love. The "American Garden," itself was a continuation of the "Ladies' Floral Cabinet," In November, 1891, "American Garden" absorbed "Popular (rardening," which was established at Buffalo in October, 1885, and the combined journals became known as "American Gardening." With the issue of September, 1893 , this journal again passed into new management, and the magazine type of American Horticulture ceased to exist. The "Philadelphia Florist" completed its first volume in $1852-3$. The subsequent volumes (at least three) were known as the "Florist and Horticultural Journal." It was a very creditable monthly magazine, with colored plates. An early journal in the new West was Hooper and Elliott's "Western Farmer and Gardener," Cincinnati, September, 1839-1845, with plates colored by hand.

The first pomological journal was probably Hoffy's "Orchardist's Companion," a quarterly, established in Philadelphia in 1841, and edited by Dr. Bincklé. It was a pretentious quarto, with colored plates, of which only one volume was issued. This was followed in 1860 by the "North American Pomologist" by Dr. Brinckle, an abler publication than the other. Other early hortieultural periodicals were "Western Horticultural Review," Cincinnati, 1851 to 1853 , edited by dohn A. Warder; "American Journal of Horticulture," later known as "Tilton's Journal of Horticulture," Boston, 1867 to 187 I (9 vols.), edited in its last three years by the younger Robert Manning; "Western Pomologist," Des Moines, Iowa, and Leavenworth, Kansas, 1870 to 1872 , by Mark Miller, Dr. J. Stayman, and others. The first attempt to establish a weekly, after the pattern of the great English journals, was "Garden and Forest," which appeared in New York in 1888, under the management of Professor Charles S. Sargent, of Harrard University. Unfortunately, this fine journal came to an end with 1897. It stands as the highest type of American horticultural journalism. Probably the first journal devoted to any particular fruit or plant was Husmann's "Grape Culturist," St. Louis, 1869 to 1871 .

On the Pacific coast, the earliest distinct horticultural
periodical was the "California Culturist," the first number of which appeared in January, 1859. This ran througin four volumes, and it records the marvels of the first era of modern fruit-growing upon the Pacific slope. The "California Horticulturist" was established in 1871, and ran through 10 yearly volumes, when, in 1880 , it was merged into the "Pacific Rural Press," which is still in active existence. The curcent periodical literature calls for no comment here, except to remark that pomology - the one distinctive feature of American Horti-culture-has no journal devoted to its interests.

America has never been farored with horticultural annuals to the extent to which England and other countries have. The first attempt of the kind seems to have been Woodward's "Record of Horticulture," edited by A.S. Fuller, which appeared in 1866 and 1867. The next venture was the "American Horticulttural Annual," New York, for the years 1868,1869 and 1870 , under the general editorial care of Dr. George Thurber. The attempt was not made again until the present writer established "Annals of Horticulture," in 1889, and which was issued for five years, the last volume containing an account of the Horticulture of the Columbian Exposition.

Horticultural Societies. - The year 1785 saw the establishment of two agricultural societies, the Philadelphia Society for Promoting Agriculture, and the Agricultural Society of South Carolina. These were followed in 1792 by the organization of the Massachusetts Society for Promoting Agriculture. It was not nntil 1818, however, that the first horticultural organization came into existence, the New Fork Horticultural Society, now, unhappily, extinct. It expired about 1837. The second, organized in 1827, was the Pennsylvania Horticultural Society, which is still in rigorous existence. The third, according to Manning, was the Domestic Horticultural Society, organized at Geneva, New York, in 1828, and which was the forerunner of the Western New York Horticultural Society, the latter having continued for 40 years, and which now enjoys the most energetic and influential membersbip of any similar society in the Union. The next organization was the Albaoy Horticultural Society, established in 1829, but which expired long ago. In 1829 , also, the Massachusetts Horticultoral Society was organized, an association which, in the character of the men who have been members of it and in the service which it has rendered to the advancement of cural taste, stands without a rival in the country. The American Pomological Society was organized in 1850, through a union of the North American Pomological Convention and the American Congress of FruitGrowers, hoth of which were established in 1848. The Congress of Fruit-Growers was a meeting held in New York on the 10 th of October, 1848, at the call of the Massachusetts, Philadelphia, New Jersey and New Haven Horticultural Societies and the Board of Agriculture of the American Institute of the City of New York. The Pomological Convention held its first meeting on the 1st of September in Buffalo. The American Pomological Society is undoubtedly the strongest organization of pomologists in the world. A. J. Downing wrote in 1852 , that "within the last ten years the taste for borticultural pursuits has astonishingly increased in the Tnited States. There are, at the present moment, at least twelve societies in different parts of the Union devoted to the improvement of gardening, and to the dissemination of infermation on the subject." At the present time there are over 500 such societies, and the average attendance at the meetings cannot be less, in the aggregate, than 15,000 . From a careful estimate which 1 made in 1891, I concluded that the aggregate attendance for that year at the national, state, provincial and district societies "probably exceeded 5,000 ." There are now at least ten national societies devoted to Horticulture or some branch of it. The most gratifying feature of this movement towards organization, however, is the establishment of great numbers of local societies, florists' clubs, and the like, which sustain the interest in horticultural pursuits and foster pride in the personal surroundings of the members. All this great body of societies is proof enough that there is a rapidly expanding and abiding love of Horticulture in America, and that it must increase with the increasing amelioration of the country.

Experiment Stations

 and Colleges, - Closely associated with the aims of the societies in the general extension of education, are the experiment stations and agricultural colleges. These institutions are the result of agitations in the agricultural societies. These agitations began over one hundred years ago. Most of the experiment stations are founded upon the Federal law known as the Hatch Act, which received the President's signature March 2, 1887. There are now 55 experiment stations in the United States. There are a dozen scientific bureaus and divisions connected with the Department of Agriculture at Washington, three of which directly concern the horticulturist: Divisions of Pomology, Vegetable Pathology and Entomology, and to these might be added the Division of Gardens and Grounds. The work of all these stations and of the agricultural bureaus and divisions is condensed and epitomized in the "Experiment Station Record," a monthly publication of the Department of Agriculture.The writings and teachings of the horticulturists in the colleges and experiment stations will, in time, bring our horticultural activities into proper relationships and perspective. These men will arrive in time at judjcial conclusions on the disputed points. It is only those persons who have some taste and leisure for study and reflection who can do this. Persons who are intensely absorbed in one commercial pursuit usually exalt that pursuit out of all proportion to its relative importance.

Commerclal Transportation. - The rise of the great commercial movement in horticultural products may be said to have taken place since the civil war. The first important invention to usher in this era, aside from improvements in transportation, was that of canning perishable commodities. The method originated with a Frenchmau in 1795 , but it first became an assured and recognized success in this country. The inauguration of the process dates from 1825, when President Mouroe signed patents to Thomas Kensett and Ezra Daggett, to protect them in an improvement in the art of preserving. Kensett appears to have canned various products somewhat extensively as early as 1819. At the present time, the United States outstrips other countries in the variety and extent of its canned goods. Over 20,000 factories in North America now employ towards a million hands, directly or indirectly. during the canning season. For a sketch of the development of the canning industry, see an article by Eilward S. Judge in "One Hundred Years of Americau Commerce."

Drying fruit for market by fire heat hegan to attain some prominence ahout 1860 , but the advent of the Alden drier about 1870, and the Williams and others at about the same time, brought in the modern "evaporated" product, which is now an inseparable adjunet of the fruit trade. In the East, the most important region of evaporating establishments is western New York, particularly Wayne county, although California far excels other areas in the output of similar produets.
The exportation of fruit has lately assumed large proportions. The first record known to the writer of the shipping of fruit across the ocean occurs in the correspondence of John Bartram, from which it appears that as early as 1773 apples were shipped to England in "great quantities." In 1821, 68,643 bushels of apples were exported. The modern apple export trade is generally said to have begun with the shipment of five

1095. A modern commercial apple orchard, in clean tullage.
barrels from Boston to Glasgow in 1845 under the auspices of one Buchanan, a Scotchman. The first heavy exportations were made about 1880 . In the season of 1880-81 the total shipment of apples from North America to Europe was $1,328,806$ barrels. The subsequent heavy years of the earlier period were as follows: 1888-89, 1,407,409 barrels; 1891-92, 1,450,336 harrels; 1892-93, $1,203,538$ barrels; $1894-5,1,438,155$ barrels. California green fruits were first shipped to Europe in 1891, hut the first public shipments were made the following year. Fresh grapes from the East were first shipped in 1892 from Chautanqua county, New York. Florida first shipped oranges to Europe in the fall of 1892, and California early in 1893. The eranberry was first put upon the European market in 1893. The first shipment of fresh peaches across the ocean from the East appears to have been made in 1893, when a consignment of Delaware peaches was made to Amhassador Bayard at London, but the attempt was only partially successful. The Canadians have recently made careful experiments with transatlantic shipments. The annual value of fruit exports from the United States (including cider, vinegar, canned and preserved fruits, nuts, and all green fruits) is about five million dollars' worth. The largest single item in this aggregate is fresh apples, comprising one and one-third million dollars' worth.

Unfortunately, there are no statistics of American Horticulture. Various horticultural inquiries were included in the schedules of the Eleventh Census (1890); only a few bulletins of summaries were published. The American Cranherry Society makes a yearly summary of the output, by means of correspondence amongst its members. The apple exporters have records of the transatlantic apple trade. The Treasury Department puhlishes summary statistics of imports and exports. But beyond this, there is little statistical measure of our horticultural wealth, except figures which are gathered now and then for special areas from transportation companies. The Twelfth Census is giving attention to the matter.

A summary history of the fruit tracle was written by John W. Nix for Depew's "One Hundred Years of American Commerce," 1895. "One huodred years ago the fruit merchant, as such, did not exist in this country. Some of the larger importers occasionally received, among the other articles of an assorted Mediterranean cargo, a few half casks of dried prunes, currants, raisins, or grapes, but heyond these even the luxurious did not aspire. It was some years before even so sim-
ple a custom as selling native fruit brought to town in season by the neighboring farmer became at all general with the old New York grocers." The first bananas were imported into the United States in 1804, but "it was not until 1830 and later that the importation 0° foreiga fruit was considered seriously." "ln 1832 there arrived at New York by sailing ship the first cargo of oranges from Sicily. Lemons followed almost immediately, and the Mediterranean fruit trade became a recognized interest from that time." The fruits came to be sold largely by auction. About 1865 the wholesale comraission business had "come to be a generally recognized feature of the fruit trade, many of the Italian growers * * consigning their fruit directly to American firms." "About 1880, the third and last change in the methods governing the 1 talian fruit trade began with the establishment bere of representatives of several of the large Italian bouses." "Prior to the civil war and for several years afterward, the small fruits of New York, New Jersey, Long Island and Delaware were the only competitors of the foreign fruit. * * * Such was the condition of affairs in 1867, when the first consignment of greeu fruit from California was shipped by express to New York."
L. O. Thayer, editor of "Cold Storage," New York, estimates that there are in the United States (in 1900) 920 cold stores, excluding 300 used exclusively for meat. Of this 920 he says that 700 are fitted for the storing of fruits, produce, eggs, butter, etc. The capacity of these 700 is something like $35,000,000$ cubic feet, or a yearly capacity of $980,000,000$ younds. Almost every cold store works to its fullest capacity nine months in the year. In Canada there are 40 cold stores, about 30 of them being fitted for butter, eggs and produce. Their eapacity is about 200,000 cubic feet. Wm. A. Taylor estimates that in March, 1901, there were about 60,040 refrigerator cars in service in the United States, Canatia and Mexico. Shippers estimate that 95 per cent of the California deciduous fresh frusts are bandled in these cars.

Conclusion. - The one most significant thing in American Horticulture is the fact that it is American. ldeals, methods, varieties, implements, are unique. Even the species of plants which we cultivate are often peculiar to ourselves. This is particularly true in the fruits, for the native wild species have given us our grapes, raspberries, blackberries, dewberries, mulberries, cranberries, some gooseberries, many plums, some apples, and various minor fruits. In other esculerts, it has given us the pumpkins and squashes, Indian corn, beans and Jerusalem artichokes. Our uative flora has enriched the flower gardens of our own country and of the world. An inquiry made in 1891 showed that 2,416 species of the Cnited States and Canada had been introduced to cultivation. In that year, 1,929 of these species were actually in the trale, and 1.500 had been introduced into England. Even when the species are of Old World origin, the varieties are American in most of those types which have been long cultirated here. Very few Old World apples and peaches are popular in North America, and the number in pears, plums and other fruits is constantly decreasing. The American carnation is already of a different type from the European. One of the strongly American features of our Horticulture is the great proportionate development of the cut-Hower industry; but the last few years have seen a relative increase of pot-plant and decorative-plant demands. These divergencies are likely to increase rather than diminish. The tendencies which differentiate our Hort i culture from that of the Old World will also differentiate the Horticulture of each geographical area of our own country, thereby giving each area the varieties and the methorls which are best adapted to it.

The second most significant thing in our Horticulture is its strong commercial trend. This is particularly true of fruit-growing and cut-flower-growing, which have developed on a large-area basis (Figs. 1093, 1095). The first horticultural interest in this country was the amateur or home-garden type. That type is not dead, and it will not die so long as hearts burn for the out-of-doors and souls long for beauty and for the solace of nearness to nature. Amateur or personal Horticulture is increasing with great rapidity. It is a part of the ripening of the home life and the acquiring of
leisure. Personal gardening is intellectual employment. The amateurs are the chief buyers of horticultural books. Yet, for all this, the prevailing note in American Horticulture is commercialism, and this note is the stronger the farther one goes from the Atlantic seaboard. Both types of Horticulture will increase. They are not incompatible, but complementary. Both are necessary to the greatest public weal. The commercial type will always be the aspiration of the comparatively few: it is coming more and more to be a profession. The personal or anateur type will be increasingly the hope of the many, for every person who has a home wants a garden.

Another important feature of our Horticulture is its living literature. Persons may eare nothing for books; yet the literature of any subject is the measure of its ideals. Persons may say that the books are theoretical and beyond them; yet good books are always beyond, else they are not good. There is no use for literature if it does not inspire and point to better things. We measure the aspirations of any time by its writings. Whether the fact be recognized or not, the literature of our Horticulture is an underlying force which slowly dominates the thoughts and ideals of men. A book is a powerful teacher. It states its propositions, and is silent; and in the silence its lessons sink into the ther of the mind. More than 600 books bave enriched American Horticul ture. Many of them have been poor, but even these may have challenged controversy and have done good. The early books were largely empirical and dogmatic. Downing, for example, in 1845 , says that tillage makes better orchards, and he cites cases; but he does not give reasons. He does not mention nitrogen, potash. soil moisture, chemical activities. He does not even mention plant-food in connection with tillage. The horizon has widened since then. Men do not take up things actively until they know the reasons. The poor farmer, not knowing reasons for anything, has no inspiration and goes fishing. Thirty years ago, Colonel Waring was the apostle of deep-plowing; yet one should plow neither deep nor shallow until he knows why. Our literature has been singularly devoid of principles and analysis. The great writer is ho who catches the significant movements and ideas of his time and portrays them to inspire his reader. Henderson first caught the rising commercial spirit of our regetable gardening; his "(iardening for Profit" is the greatest American vegetable gardening book, even if somewhat out of date as a book of practice. The book of principles is now needed by the vegetablegardener. American pomology has several strong names amongst its writers. Most of these writers have sacrificed fundamental things to varieties. The first sustained effort to write on fruit-growing from the point of riew of underlying principles was by Charles R. Baker, who in 1866 published his "Practical and Scientific Fruit Culture." But the time was apparently not yet ready for a book of this kind, and much of the discussion lacked vital connection with the orchard. The book was too suggestive of the study and the compiler. Coxe, Kenrick, Manning, Downing, Thomas, Warder, Barry, Fuller, are significant names in American pomological literature. In floriculture there have been many excellent treatises, but there is not a single great or comprehensive book. In recent years, the making of horticultural literature is passing more and more from the working horticulturist to the specially trained student and writer.
The great development of American Horticulture, as compared with European standards, has been in frnitgrowing and its aceessory manufactures, and cut-flowers. Its landscape planting is also a strong feature, and is increasing rapidly. Its cemetery planting is probably the best in the world. In America, also, the development of agricultural tools and appliances, and of spraying for insects and diseases, have reached their highest development, Other characteristic features of our Horticulture are its youth, and the vigor with which its scope is enlarging.
L. H. B.

HOSACKIA (Darid Hosack, professor of botany and medicine in New York ; author of Hortus Elginensis, 1811; died 1835). Leguminosce. Herbaceous plants, of which 3 species were once advertised by collectors of north-

(1)
west American plants. The genus contains about 30 species, all American and almost wholly confined to the Paeific slope. Herbs or rarely subshrubs: lvs. pinnate, with 2 to many lfts.: stipules minute and gland-like, rarely searious or leafy: fls. fellow or reddish, in axillary umbels which are peduncled or not. The genus is closely related to Lotus, but the calyx teeth are shorter than the tube: keel obtuse: Ivs, usually with numerous lfts., none of which are like stipules, while Lotus has calyx lohes usually longer than the tube, a rostrate keel and 5 or 4 lfts., of wbich 2 or 1 are stipule-like.

The 2 species first mentioned belong to a section in which the pods are shortly acute, linear, many-seeded, straight, glabrous: fls, and fr. not reflexed : peduncles long. The third species belongs to a section in wbich the pods are long-attenuate upwards, incurred, pubescent: peduncles short or none: fls, and fr. reflexed. Monogr. by Watson in Bot. Calif. 1:133.
crassifolia, Benth. Stout, $2-3 \mathrm{ft}$. high, nearly glabrous: lfts. $9-15$, thickish: stipules scarious, small: bract below the ambel: ealyx teeth short: pod thick: fls. greenish yellow or purplish. B.R. 23:1977.
bicolor, Dougl. Glabrous: lfts. 5-9: stipules scarious, small: bract usually none or small: calyx teeth half as long as the tube: pod slender: fls. yellow, the wings often white. B.M. 2913.
decumbens, Benth. Silky or woolly, with appressed hairs: stems ascending, 1 ft . or more long: stems herbaceous: lfts. 5-7: umbels less dense: stipules glandlike: pods pubescent.
W. M.

HOTBEDS. These are low glass structures that are generally heated by fermenting vegetable substances, such as stable manure, although fire heat is occasionally applied, steam, hot water and flues being used. Their usual place is some spot sloping to the south, where they are protected by buildings, evergreen sereens or board fences, from the north and west winds (Fig. 1096). The frames are made eitber of plank or boards and may be portable, or built in place, the former being taken down and packed away except when needed. A tight board fence 6 feet high, as a wind-break, is desirable, as it will also serve as a support for the shutters, mats aud sash when they are removed from the bed, and it will answer best for this purpose if it inclines a foot or so to the north.
When movable frames (Fig. 1097) are used they are generally constructed of 2 -inch plank, the side pieces

1096. Hotbed sheltered by a hedge. The straw mats bave been rolled off.
belng from 9 to 12 feet and the ends 6 feet in length, to receive either three or four ordinary sash, which are 3 by 6 feet. The north side of the frame is made 15 inches wide, while the south side is but 9 or 10 inches, thus giving a slope to the south, which will permit the water to run off and favor the passage of the sun's rays through the glass. The end pieces are 6 feet in length,
but taper from 15 inches at one end to 9 or 10 at the other, so as to fit the side boards. The plank for portahle Hotbed frames may be held in place by means of stakes, or iron rods or bolts may be fastened to the ends of the side pieces so that they can pass through the holes in the ends of the frame, which can then be fastened by keys or nuts. As supports for the sash and to hold the sides of the frame in place, cross-strips of

1097. Hotbed with movable frame.
board 3 inches wide are sunk into the upper edge every 3 feet, and another strip with a width equal to the thickness of the sash is fastened on edge to the center of its side. Frames of this size require a slightly deeper mass of heating material than would be necessary for larger frames, and when they are to be used during the winter, it is well to excavate to the depth of $21 / 2$ feet, and for a space 2 feet longer and wider than the frame. and after the hole has been filled with heating material, the material should be well tramped down. The frame is put in place and manure is then banked about it.

For permanent frames, rough 1 -iuch boards may be used, although 2 -inch plank will be found far more durable. Stout stakes should be driven into the ground about + feet apart, where the north line of the bed is to he located. These should project above the surface from 12 to 15 inches, and should be boarded up from a point just below the level of the ground, so that the stakes will be on the north side of the frame. A second row of stakes should then be driven at a distance from the first row equal to the length of the sash, which is usually 6 feet, although other lengths are sometimes used. The south wall of the frame should then be boarded up so that it will be 5 or 6 inches lower than the north wall, after which the end should be elosed and cross-pieces should be fitted, the same as for the portable sash. To prevent frost from working into the frame, soil should be taken from the inside and banked against the boards outside, so that it will reach two-thirds of the way to the top of the frame, and when the bed is ready for use, 3 or 4 incbes of horse manure should be spread over this. The frame should be placed about 3 feet from the fence, and if other rows are needed, there should be alleys about 7 feet wide between them.

Hotbed Sash. - The size that has been found most satisfactory for Hotbed sash is 3 by 6 feet, as when larger than this they are not readily handled by one man. While pine and other native lumber may be used; cypress is generally preferred, as it is numch more durable and costs but little if any more than clear pine. The sides and upper ends of the sash are made from 3 by $11 / 2$-inch strips, grooved to receive the glass, while the lower end is about 1 by 5 inches. The center strips are 1 hy $1 \frac{1}{2}$ inches. For glazing Hotbed sash, single strength 10 by 12 glass is commonly used, as three rows of this size will fill a sash 3 feet wide. While doublestrength glass will be less easily broken, the increased weight is an objection to its use. The sash should receive two coats of paint, and after the glass, which may be either lapped or butted, has been set, it should be given a third coat.

Mats and Shutters. - For covering the frames on cold nights during the winter and early spring months, straw mats are often used, although those made of burlap are generally preferred. The burlap may be either single or doubled, or it may be stuffed with straw, excelsior or other materials. Quilted mats filled with combination wool are very warm and quite durable. During the winter, wooden shutters are also desirable to place over the mats, as they assist in holding the heat, and by keeping the mats dry, aid in preserving them.

Heating Material for Hotbeds. - To provide beat for the beds decomposing borse manure is generally used. While a large amount of straw is not desirable. the
presence of urine-soaked bedding with the manure to the extent of one-third its bulk is not objectionable, as it will lengthen the heating period of the manure. Unless straw is mixed with the manure, it will be well to add forest leaves to the amount of one-third to one-half the amount of the manure. The heating material should be forked over and placed in a pile 5 or 6 feet w^{2} de, 3 or 4

1098. Hotbed in cross-section.
feet high and of any desired length. If the manure and straw are dry, it will be well to moisten them with a fine spray. In case there is but a small amount of manure, it will be best to use warm water, thoughin all cases the soaking of the manure should be avoided. Within four or five days the giving off of steam will indicate that heating has commenced. The pile should then be forked over, working the outer portions into the center.

The amount of heating material that will be required for a Hotbed will vary with the crop, as well as with the location and season. For zero weather, there should be at least 18 inches of heating material after it has been well packed down, and 24 inches will be desirahle in midwinter in the northern states, while 6 or 8 inches may answer where only a few degrees of frost are expected. For 18 inches of manure, the excavation should he made to a depth of 28 inches below the level of the south side of the frame, and 31 inches below that of the north side. After the manure has warmed through for the second time it should be placed in the excavation, spreading it evenly and packing it down with the fork, but leaving it for a few days hefore tramping it. Care should be taken to have the corners well filled, that an even settling may be secured. After the mauure has again warmed up, it should be thoroughly tramped.

The bed is then ready for the soil, which should he quite rich and coutain a large amount of sand and humus, a compost of decomposed pasture sods with onethird their bulk of rotten manure being excellent for the purpose. The thickness of the soil should vary from 5 to 7 inches, the greater depth being desirable for radishes and other root crops (Fig. 1098). When boxes of plants are to be placed in the beds the depth of soil need not be more than 3 inches. For a few days the bed will be quite warm, but when the temperature of the soil has dropped below 90° the seeds may be sown or the plants set out.

In severe weather the mats and shutters should be placed on the bed at night and should be removed in the morning. When the sun is shining, or if the bed is very hot, it should be ventilated by raising (Fig. 1099) or slipping down (Fig. 1097) the sash, the amount depending upon the season and the condition of the bed. By the middle of the afternoon the sash should be closed and the covering should be replaced before night. When used in the winter time, the Hotbed should be either sunk in the ground or well banked up with soil or manure, so as to keep out the frost.

Pipe-heated Hotbeds.-Fire Hotbeds are generally from 10 to 12 feet wide, with a span roof. A Hotbed of this size would require two lines of 6 -inch sewer pipe as flues (Fig. 1100), with furnaces in which wood can be burned at their lower ends. In order that a good draft
can he secured, it is advisable to have it upon a side-hill sloping to the south. When hot water is used for heating Hotbeds, a 2 - or $2 \frac{1}{2}$-inch wrought-iron pipe is placed just beneath the ridge as a flow pipe, with one or two 2 -inch pipes upon each of the side walls, the number varying with the season and the crops to be grown (Fig. 1101). Steam may be used in the same way, but the pipes should be one or two sizes smaller.
In the northern states the use of Hotbeds for grow. ing crops during the winter months is not advisable, as better results can be secured in greenhouses, which will not be very much more expensive to build, and will be more durable hesides much easier to handle, but in the spring Hotheds are very useful for starting vegetable and bedding plants, as well as for growing lettuce, radishes and other vegetables. In the South fire Hot heds answer very well for use in the winter for growing plants for the truck garden, as well as for foreing vegetables, but even there the simply constructed greenhouses are more satisfactory.

Coldframes differ from Hotbeds only in lacking artificial heat, as they depend entirely upon the sun. The surface of the soil should be from 6 to 12 inches below the glass, and a large amount of plant-food should be provided. Coldframes are often used for wintering halfhardy plants, and for starting and growing plants in the spring, after danger from severe frost is over.

Management of Hotbeds.- If the weather is mild during the latter part of February, the manure can be procured and prepared for use so that the Hotbed may be started about the first of March. If properly constructed

1100. Fire Hotbed.
they will provide heat for two months, and can then bo used during May as a coldframe, thus making it possible to take off two crops in the spring. Although it is not often practiced, they may be used in the fall for growing a crop of lettuce or other vegetables, which can be matured before the first of December.

If a greenhouse is not available for starting the plants, seeds of lettuce, radishes, cabbages and other of the hardier plants may be sown in the Hothed in the spring as soon as it is ready, in rows 4 or 5 inches apart. When the first truc leaf appears, the radishes should be thinned and the other plants transplanted to about 2 inches. Later on, the lettuce plants should he placed about 8 inches apart each way. If the weather is so cold that the bed should not be kept open, the seeds may be sown and the first transplanting may be in flats or boxes, which can then be placed in the beds. Aside from proper ventilation, covering and watering, the beds should he occasionally weeded and the soil stirred. About the first of April, tomatoes, cucumbers and similar plants may be started. As soon as one erop is taken off another should be placed in the beds, and by deepening the soil they may be used during the early summer for growing cauliflower, tomatoes and cucumbers.
I. R. TAFT.

HOTEIA. See Astilbe.

HOTTENTOT BREAD. Testudinaria elephantipes.

HOTTONIA (Peter Hotton, 1648-1709, protessor at Leyden). Primulacea. Featherfoil. A genus of two species of aquatic plants, the only aquatic members of the primrose family. They are suitable for small aquaria. The European species is procurable from dealers in aquatics; the American one can he gathered in shallow, stagnant ponds from Massachusetts to western New York and south to Florida and Louisiana. -The European plant, H. palugtris, Linn., is an herb with creeping rootstock, whorled, leafy branches entirely
submerged and alternate, pinnately dissected lvs., the divisions numerous and linear. From the center of the whorl of branches a single leafless flower-stem rises out of the water in summer, bearing a raceme with several whorls of $3-5$ or 6 handsome, pale purple fls., ap-

1101. Hutbed (or forcing-house) heated by hot water.
parently with 5 petals, but actually with a short corolla tube below the lobes. The plants root in the mud or float, and the fls. are about three-fourths of an inch in diameter. Stamens 5, inserted on the tube of the corolla: capsule scbglobose, with 5 lateral valves: seeds numerous. The American plant, H. inflata, Ell., has spongy stems and clustered peduncies, which are partly above water, inflated, jointed, the lowest joint 2-4 in. long and sometimes 1 in . thick, the others 1-3 in number and successively shorter: fls. small, in whorls of $2-10$ at the joints. B.B. 2:586. Neither species is advertised. Like all aquarium plants, they are interesting, but they have no horticultural value otherwise. Both plants are called Featherfoil and Water-violet; the American also Water-feather and Water-yarrow.

HOULLETIA (after Houllet, French gardener). Orchiddece. About 8 species of epiphytic, pseudobulbous orchids from South America, allied to Stanhopea, and blooming in summer. Pseudobulbs conical, 1-leaved: lvs. lanceolate, plicate: sepals and petals usually nearly equal : labellum continuous with the clarate, arcuate column: pollinia 2, on a long caudicle.
odoratissima, Linden. Sepals and petals reddish brown: labellum white, with two crimson appendages midway of its length. Colombia. G.C. 11. 24:7i7. Var. Antioquiénsis, André (H. Antioquensis, Hort.), has labellum white, tinged yellow. 1.H. 17:12.

Brocklehurstiàna, Lindl. Fls. 5-8, about 3 in . across, brownish red, dotted with brown-purple; sepals oblong, obtuse, the lateral ones slightly united at base; petals narrower, obovate; labellum yellow, thickly dotted with brown-purple; from its lower half two linear appendages have their origin. Braz. B.M. 4072. P.M. 9:49. R.H. 1885:492.
pieta, Linden \& Reichb. f. Fls. 6-10; sepals oblong, brownish, unspotted above, tessellated with yellow below; petals similarly colored; labellum yellow, spotted or dotted with brown-purple or red-purple, the end hastate: apex recurved, pale yellow veined with erimson. Colombia. B.M. 6305.

Wálisii, Linden \& Reichb. f. (II. chrysántha, Lind. \& André). Fls. about 2 in . across; sepals and petals yellow, blotched inside with brown purple; labellum yellow, dotted with crimson. Colombia. G.C. 11. 18:437. 1.H. 18:71.

Oakes Ames.
HOUND'S TONGUE. See Cynoglossum.

HOUSE LEEK, Sempervivum tectorum.
HOUSE PLANTS (Figs. 1102-1104) are those plants which can be grown in the ordinary rooms of dwelling bouses. They may be hardy or tender; but only such as are suitable for this purpose will be considered here.

In the living rooms of the modern well-built house, plants must contend against difficulties which did not exist in the less carefully equipped dwellings of fifty years ago or earlier. The present methods of heating and lighting, by gas or kerosene lamps, not electricity, produce a dry atmosphere which is inimical to vegetable growth. In houses lighted by electricity, and heated by any system which introduces fresh air in abundance, this matter is not so troublesome. Too much heat and dry air are harder for plants to endure than insufficient light, but it is also lack of light which makes it so difficult to grow flowering plants in houses. Dust and insects do harm, but these difficulties can be overcome.

For the above reasons it is important to select House Plants which are adapted to resist a dry atmosphere, a high temperature and inadequate light. \rightarrow Such examples can be found among certain tropical plants with coriaceous leaves and small stomata, what the florists call foliage plants, e. g., rubber trees, palms, ete. These make the best foundation upon which any successful system of growing plants in houses can be built. Flowering plants can also be used, but they should be introduced from time to time, each in its proper season, when about to bloom or in bloom, and not considered a part of the permanent arrangement. After flowering they should be removed: their function is not unlike the use of cutflowers, but they last longer and are not much more expensive, while they largely increase the attraction of the window-garden.
The best rooms for plants are those which get the most sun, and the best positions are those nearest the windows, where there is not only more light but more fresh air. A large palm, fern or rubber will grow in an entry or poorly lighted corner, but the best place is that which is best lighted. Plants do well in a kitchen, the moisture from the cooking helping them materially; it is by no means a bad hospital for unhealthy specimens.

1102. Pot-plants in the window.

Sometimes a plant-room, not a conservatory, can be set aside for this purpose exclusively. If this is done in the basement, and it is possible to get good light, satisfactory results are obtained. The tloor can be made of
concrete and water used without stint. In such a room plants can be grown and brought into the living rooms when in their best condition.

In rooms in which plants are kept, any device by which the atmospheric moisture can be increased is desirable: oilcloth on the floor, or a floor of porous tiles; a zine tray, in which the pots can be set and snrrounded with moss; saucers under the pots, the pots being raised slightly to prevent the roots of the plants standing in the water which runs through. By these aids not only can plenty of water he given to the roots, but there will also be some opportunity to sprinkle the leaves, while the evaporation of surplus water will dampen the air. Tbe Japanese porcelain pots are not only ornamental but useful; the glaze prevents undue evaporation from the sides, and the legs hold the pot well above the water which may collect in the saucer: they are in every way excellent. Wooden tubs are serviceable for large plants or for any which are likely to be exposed to frost, either before or after bringing into the house. Plants shonld never be overpotted, but the larger the bnlk of earth the easier it can be kept uniformly moist; from the wider surface, too, there is more evaporation. For these reasons it is sometimes a good plan to have window boxes in which several plants can be grown; or the boxes can be filled with moss in which the pots can be plunged. All pots, tubs or boxes for growing plants should bave holes in the bottom through which water can pass freely.

1103. A window-garden.

Mucb trouble is likely to come from the use of unsuitable potting soil. Procure it from an experienced florist, or make it yourself of equal parts rotted sods, old leafmold, well-decayed cow manure and clean, sharp sand: discard tea leaves, chip dirt, and the decomposed remains of dead stumps. The soil sbould always be moist when used, not too wet and never dry: it should be made firm, not hard, and a good space left between the surface and rim. Large pots should be drained with potsherds and moss. The best time for potting is just before the plant begins to grow; the next best is just before growth censes, thus giving the plant opportunity to establish itself in its new quarters before it stops growing. It is not always easy to do this properly at bome, and large and valuable plants should be sent to a
florist. Plants growing in the open air should be lifted and potted two weeks or more before bringing into the house, not only before frost but before the nigbts are cool. Keep them at first in a cool, shady place, gradually accustom them to the sunlight, and carefully avoid all drafts. Do not give too mneh water at the root: some wilting is unavoidable, and cannot be prevented by heavy watering. Give one good application when they are first potted, and sprinkle the foliage and surronndings in the middle of the day. After they are established, keep them out of doors, on the piazza or porch, until there is danger of frost, but try to bring them into the house before the furnace fires are lighted.

A period of rest is natural to all plants. Amateurs often make mistakes in trying to force plants to grow all winter in the house after a vigorons growth in the open ground all summer. Such plants should be rested, kept cool at first and water withheld, but never to sneh an extent as to shrivel the wood. No rules can be given for watering, the most important detail of plant-growing. Water must be given as it is required, a knowledge to be gained from experience only. This may be once a day or once a week, twice a day or once in two days. The smaller the pot and the more vigorous the growth, the oftener it will be required. In hot weather and in dry rooms more water is needed than in cool rooms and on damp, cloudy days. It should always be given in sufficient quantity to pass through the hole in the bottom of the pot: here it can remain an hour or more, and part of it will soak up, back into the pot, but the surplus should be taken away with a sponge, unless the pot has legs or it is a plant like calla, English ivy or some ferns, which are uninjured by an over-snpply. Water given to the foliage of House Plants in the form of spray is always helpful.

Insects, dnst and sometimes fungons pests are troublesome to House Plants, due largely to insnflicient watering and lack of ventilation. The best remedy is frequent Washings with warm water and a sponge for plants with large leaves. All plants can be easily cleaned at the kitchen sink or in the bath tub, or advantage can be taken of a mild day, and the work done in the yard with the bose. The forcible application of water will remove most insects, but if scale appears it must be taken off with a stifif brush. Whale-oil and tobaceo soap are too rank for house use; fir-tree oil and Gishurst's compound are less obnoxions. They can be vsed when the plants are washed with sponge or brush. 'The florists' preventive against greenfly is impracticable: enough tobacco smoke to harm him would not be tolerated. The red spider can be driven off by spraying with an atomizer, if discovered in time. Some plants are not attacked by insects, but are injured by dust, e.g., the rubber-tree. Dusting when dry is better than nothing, hut washing is best. If fungons diseases appear, the plants should be isolated, giving a chance to recover, or be thrown away.

Ventilation is an important factor in keeping House Plants in good condition, Open the windows on bright days: the fresh air is moist and therefore grateful, and will do no harm, even if the plants are near the glass, so long as the sun shines and discretion is exercised.

The night temperature need never exceed $50^{\circ} \mathrm{F}_{\text {., }}$, and a drop of 5° or even 10° is not likely to do any harm. Precautions must be taken to exclude frost; the blinds must be shut and the curtains pulled down on cold nights. A layer of newspapers between the plants and the windows is a protection in extremely bad weather, or a large kerosene lamp can be allowed to burn all night near the plants.

A list of suitable foliage plants for the house: Ficus elastica, tbe rubber plant; F. religiosa, the peepul tree, and most of the other strong-growing evergreen species. Linistona Sinensis, Corypha australis, Chamoerops Fortunei and Rhapis Japonica, all good fan-palms (the first is the best); Phonix reclinata, P. rupicola and P. Canariensis are the best date-palms. Seaforthia elegans, Hovea Belmoreana, Fentia Forsteriana, Areca Baueri, A. rubra and Cocos Weddeliana are all good palms, but require more care than the fan and date-palms. Cycas revoluta, the sago-palm, Curculigo recurvata, Aspidistra lurida, Pandanus utilis, the screw pine, P. Veitchii, Phormium tenax (New Zealand flax), Cyperus altemifolia, Papyrus antiquorum, Cordyline (Dracæna), Agave

Americana (the century plant), Pittosporum, Grevillea robusta, English ivy, all do well in ordinary rooms. Daphne odora, Laurestiuus, Olea fragrans and orange tree are both flowering and foliage plants, but require a cooler room than any of the preceding varieties.

Good flowering plants are Azalea Indica and Camellia Japonica, both of which should be kept in a cool room when not in bloom. Calla and begonia both do well. Chrysanthemums, eyclamens, Chinese and English primroses, freesia, ixia, oxalis, fuchsia, mahernia, enphorbia,heliotrope, pelargonium and lily-of-the-valley can be brought into the rooms when in flower, and last a reasonable time in good condition. Hyacinths,tulips, narcissus and crocus, if potted in October, kept covered up out of doors until cold weather, stored in a cool cellar until the middle of January and theu brought into warm rooms, will give flowers: a succession can be maintained by bringing them into warmth at intervals (see Bulbs).
B. M. Watson.

HOUSTONLA (Dr. Wm. Houston, of the early part of the eighteenth century). Rubidcea. About 20 North American small herbs or subshrubs, with pretty white, blue or purple fis., some of the species occasionally cult. in wild gardens and rockeries. Parts of the fls. in 4's, the corolla gamopetalous and funnel-form or salverform ; stamens and styles polymorphous ; stigmas 2 : capsule opening near the top: Ivs. small, opposite. A moist, partly shaded place is to be recommended formost Houstonias, because their flowering season is thereby prolonged and the plants retain their foliage much longer than in a drier and sunny position. Collected plants are not difficult to establish. Prop. by division. The following perennial species are offered by American dealers.
A. Stamens or stigmas conspicuously exserted.
purpùrea, Linn. Tufted, 3-12 in, high, bearing offisets, glabrous or pubescent: radical lvs. ovate or oblong, short-stalked: fls, in late spring or summer, the corolla funnel-form, light purple to white. Canada to Texas. Var. longifolia, Gray, 3-6 in. high, thinner-lvd. and mostly glabrous: ivs. oblong-lanceolate to linear, 1/2-1 $1 / 2$ in. long. Var. tenuifolia, Gray, is slender and diffuse, $6-12 \mathrm{in}$. high, with almost filiform branches and peduncles: stem-Ivs. linear. This species and its forms grow well in dry, open places.

AA. Slamens or stigmas little or not at all exserted.
cærùlea, Linn. Bluets. Innocence. Quaker Lady. Fig. 1105. Little tufted perennials, $3-6 \mathrm{in}$. high, the stems glabrous: radical lvs. spatulate to obovate, hairy, shortpetioled, the stem-lvs. small: corolla salver form, the tube much exceeding the calyx lobes, varying from blue to white, with a yellow eye. B.M.370. D. 233. - Charming little plant in grassy places in the northeastern states and southward in the Allegheny region. Excellent for roekwork and grassy borders. Eanly spring. In gardens, may be treated as annual or biennial.
serpyllifolia, Michx. Extensively ereeping: radical Ivs. orbicular to ovate-spatulate and abruptly petioled: corolla rather larger than that of H. cerulea, deep vio-let-blue (often white). Va., southward. Early spring.

J. B. Keller and L. H. B.

HOVENIA (after David Hoven, Senator of Amsterdam). Rhamndcea. Oruamental shrub or small tree, with deciduous alternate, long-petioled IVs. greenish inconspicuous fls. in axillary peduncled cymes, and with small globular frs, on reddish, fleshy aud edible peduncles. It grows into a small, round-headed tree, with handsome somewhat shining foliage, and thrives best in sandy loam, but is not hardy north. Prop. by seeds, also by root-cuttings and cuttings of ripened wood under glass. One species in Himal., China and Japan. Without stipules: calyx lobes, petals and stamens 5 , style 3-parted: fr. 3 celled and 3-seeded, indehiscent.

dulcis, Thunb. (H. incequalis, DC.). To $30 \mathrm{ft.:}$ Ivs. cordate-ovate or ovate, acuminate, serrate, almost glabrous, 4-6 in. long: cymes many-fld. S.Z. 73-74. B.M. 2360. A.G. 12:80.

Alfred Rehder.
HOVEY, CHARLES MASON (Fig. 1106), horticultura] journalist and nurseryman, was born in Cambridge, Mass., Oet. 26, 1810, and died there Sept. 2, 1887. He is best known as editor of the "Magazine of Horticulture," which had an uninterrupted existence from 1835 to 1868. It was founded as the "American Gardener's Magazine," by C. M. Hovey and his brother, Phineas Brown Hovey. In its third volume (1837) it changed its name, and continuously thereafter was known as the "Magazine of Horticulture," and was edited by Charles M. Hovey alone. It enjoyed the longest period of prosperity of any American horticultural journal. It is a reeord of the budding stage of New World horticulture. 1t was modelled after Loudon's "Gardener's Magazine," although its spirit was essentially American. Essays, records of current events, reviews of books, descriptions of varieties, were promineut features. It bad very few illustrations. Mr. Hovey was autbor of the "Fruits of America," issued in parts from 1852 to 1856, completing two volumesaad making more than a beginning on a third. Its purpose was to give "richly colored figures and full descriptions of all the choicest varieties cultivated in the United States." The volumes contain more than 100 colored plates. Handsomely printed and bonnd, these volumes are a fine type of the amateur's art-book of varieties.

Mr. Hovey was also nurseryman and seed merchant. Until 1840 , his grounds at Cambridge are said to have comprised only an acre, but at that time his premises were greatly enlarged. His epoeh was a time of knowl-
edge of varieties. Straightway he began assiduously to collect varieties, until he exhibited pears, apples and camellias by the hundreds, and plums, grapes, chrysanthemums and many other things by the score. These things were shown before the Massachusetts Horticul-

tural Society, which was the center of horticultural influence of the country. He raised many seedlings. Thuya Hoveyi is still prized as a garden conifer. His greatest contribution to horticultural varieties was the Hovey strawherry, which first fruited in 1836, and which is generally regarded as the starting-point of American commercial strawberry-growing (see Fig. 1088). For many years this berry was the standard of market excellence. Mr. Hovey continued to grow it and cherish it until the end. The writer remembers with what enthusiasm he expatiated on its virtuex but a very few years before his death. Mr. Hovey was long an active member, and for a time president, of the Massachusetts Horticultural Society. He was one of the active projectors of the building which gave the Society a new and more commodious home. The history of the society records that, when the project was in doubt, "the perseverance and determiuation of the president of the society and chairman of the building committee, Charles M. Hovey, triumphed over every hindrance, and carried the work on to success."
A portrait of Mr. Hovey will be found in the first volume of the "Fruits of Anerica." Another occurs in "Gardeners' Monthly" for 1886 (frontispiece) and "American Garden," Nov., 1887; and a reduction of this appears in Fig. 1106.
L. H. B.

HOWEA (named for Lord Howe's Island, where these 2 species grow). Also written Horeia. Pulmdeed. A genus of only 2 species, known to the trade as Kentias, and certainly ranking among the 6 most popular palms for house culture. They have the habit of Kentia, but their fls. differ widely. Howea belongs to a subtribe in which the fls. in each spadix are attached to the stem between the bases of opposite lvs., while Kentia belongs to another subtribe in which the fls, are attached at a lower point. Also Howea has symmetrical staminate fls. with rotund sepals, while in Kentia the staminate fls. are not symmetrical, the sepals being small and acute.

HOWEA

Howea's nearest cultivated ally is Linospadix, from which it is distinguished by the following characters: staminate fls. with very numerous stamens, the anthers erect and fastened at the hase: pistillate fls, with no staminodes : ovule erect. H. Belmoreana is the more popular of the two species, and as a house plant may be readily told from H. Forsteriana by the more nearly erect position of its leaf segments; those of II. Forsterian α are more pendent. Howeas are erect, spineless palms, with stout ringed caudex: lvs, terminal, numerous, dense, equally pinnatisect: segments narrow, acuminate: spadices $2-3 \mathrm{ft}$. long, solitary or 3-5 from 1 spathe, thick, cylindrical, nodding or pendulous: peduncle long, compressed at the base: spathe solitary, as long as the spadix, cylindrical, 2 -keeled toward the apex, longitudinally split; bracts bordering the channels; bractlets scaly: tls. sunk in the deep furrows of the spadix, the staminate nearly an inch long: fr. $11 / 2 \mathrm{in}$. long, olive-shaped.
Belmoreàna, Becc. (Kéntia Belmoredna, F. Muell.). Curly Palm Fig. 1107. Described and distinguished above. B.M. 7018. R.H. 1897:256 and p. 257; (i.C. IlI. 8:75. I.H. 21:191. A.G. 13:141; 16.345. Mn. 9:25.-Var. variegáta, Hort. Adv, 1895 by Pitcher \& Manda.
Forsteriàna, Bece. (Kentia Forsteridna, F. Muell.). Flat or Thatch Leaf Palm. G.C. Ill. \&: 75 and 533. S.H. 2:53. A.G. 16:346. A.F. 4:565; 14:701.

Jared G. Smith and W. M.
The two species of this genus are heyond a douht the most popular and also the most satisfactory palms in the trade for decorative work in general, and in consequence of the great and growing demand, are grown by tens of thousands in the large nurseries. There does not seem to be any record of either of these species having borne fruit in cultivation in this country, and the trade, therefore, depends on imported seeds, which are gathered in immense quantities on Lord Howe's Island, usually shipped from thence to Sydney, N. S. W., and from the latter port to either London or New York. This long voyage is a severe test of the vitality of such seeds, and frequently results in faulty germination, the average of germination seldom exceeding 50 per cent, and is often much less. Two heary shipments of Howea seeds are made each year, the first installment arriving in February or March, and the second in September or October. Many growers favor the autumn shipment of these seeds as giving the best results. The seeds should be sown at once on their arrival, the practice followed by large growers heing that of broadcasting the seeds on a side-bench in a warm greenhouse on 2 to 3 inches of light soil, then covering them with 1 inch of the same compost, watering liberally and keeping up a bottom heat of ahout 80°. Under such treatment some of the seeds may germinate in two months, but others in the same lot may not start for eight or

1106. Charles M. Hovey.
nine months, from which it will be seen that the operation extends over a considerable period of time. The seedlings should he potted into small pots when the first leaf is expanded, kept moist aud given a night temperature of 65°, the greenhouse in which they are
placed being moderately shaded. In three to four months the young plants should be ready for shifting into 3 -inch pots if properly cared for; from this time forward they do not require a bigher night temperature thau 60°. The Howeas are not very particular in regard to soil, a rich, light loam answering very well for them, but a very stiff soil may be improved by the addition of one-fourth part of peat, and in all cases a reasonable proportion of fertilizers may be used to advantage. Scale insects are the most troublesome the grower has to contend with, and should be removed as rapidly as possible, else the foliage will be permanently disfigured, Of the two species referred to, H. Belmoreana is perhaps the greater favorite, being more compact in growth and extremely graceful in foliage, a plant of this species of a given age usually carrying a greater number of leaves than one of H. Forsteriana of the same age, and the leaves having more leaflets than those of the latter species. The seeds of the two species are very similar in appearance, though those of H. Belmoreana frequently average a larger size, and while those of the last named species require about three years to mature oo the tree, the sepds of H. Forsteriana ripen in about twelve mouths. For house culture by amateurs, see Palms.
W. H. Taplin.

HOYA (Thomas Hoy was once gardener to the Duke of Northumberland). Asclepiadàcere. More than 50 tropical Asian and Australian climbing or trailing evergreen shrubs, hearing thick, opposite lvs., and odd, often showy fls, in umbel-like clusters. Corolla rotate, 5 -lobed, thick and more or less waxy in appearance: crown of 5 thick and depressed fleshy appendages: pollen-masses 10 , short, fixed by their base in pairs to the 5 glands of the stigma: follicles acuminate, smooth: stems twining, or climbing hy means of roots.
Hoyas are summer-blooming plants, of comparatively easy culture. They need an intermediate or warm temperature. Let them rest or remain very slow in winter (50° in a dryish place), but start them into growth towards spring. In the summer they are sometimes plunged in the border, but better results are to be expected, as a rule, by keeping them in pots in the conservatory. In their growing and blooming season, give plenty of sun and air. They propagate by cuttings of the top growth in spring, and also by layering. The latter metbod is particularly adaptable to \boldsymbol{H}. carnosa and other species which climb by means of roots. A. P. Meredith advises as follows: "For compost, use fibrous loam, lumpy (or coarse) in two parts, to one of leafmold, using charcoal pounded fine, brick dust, or lime rubble if procurable, instead of sand. They are often found doing well in loaru and sand. When in growth use weak liquid manure."

A. Plant distinctly climbing.

earnòsa, R. Br. (H. Motóskei, Teijsm.). Wax Plant. Twiner, and attaching itself to support hy means of roots; ordinarily grown as a pot-or tub-plant, and reaching 5-8 ft. high, but growing twice and more this height when it has the opportunity: glabrous: Ivs, succulent and slining, ovate-oblong, acute, short-stalked, entire: fls. white with pink center, fragrant, in axillary or interpetiolar umbels, the crown-segments very convex, and spreading into a horizontal star. Trop. Asia and Anstral. B.M. 788, as Asclepias carnosa. A.G. 18:34.-The common species, and often seen in window-gardens. After the bloom is over (in summer) keep the plant in a cool place in order that it may remaiu half-dormant. in late winter or spring, start it into growth. Do not cut off the spur which remains after the fls. pass, for this spur bears fls, again. The Wax Plant is easy to manage, and it improves with age. Often trained as a permanent cover for a glasshouse wall. In the South, it is nearly everblooming. There is a form (var. variegàta) with handsme variegated Ivs. L. 44.
glabulosa, Hook. f. Hairy : lvs. elliptic-oblong or longoblong, acuminate, rounded at the base, the midrib very stout, the petiole an inch or less long: fis. pale straw or cream color, the star-like crown-segments white, with pink at the base, borne in dense, globular umbels: follicles a foot or more long. Sikkim. F.M. 1880:406. G.C.
II. 17:741. - A handsome species, requiring the general treatment given to H. carnosa.
imperialis, Lindl. Lofty climber, with puberulent stems and foliage: lvs. elliptic or linear-oblong, obtuse but with a short point: fls. immense ($2-3 \mathrm{in}$. across), leathery, dull purple, somewbat pubesceut near the white crown, the segments triangular-acute: umbels drooping on long peduncles: follicles 9 in . long. E. lndies.

1107. Howea Belmoreana.

One of the most popular of all palms.
B.M.4397. F.S. 4:393-4.-A noble Hoya, requiring very rich soil and a rather high temperature. Although naturally a very tall climber, it can be made to flower in pots when 3 or 4 ft . high.

AA. Plant trailing or nearly erect.

bélla, Hook. (H. Páxtoni, Hort.). Slender, hushy, 1-2 ft. high, pubescent: lvs. an inch long, ovate-acute, very short-stalked, somewhat recurved: fls. $3 / 4 \mathrm{in}$. across, pure white, with very short and half-acute lobes, the erown-segments boat-shaped and violet: umbels fewfld. and short-stalked. India. B. M. 4402. F.S. 4:399. J.H. III. 35:5. - Handsome little species; scarcely climbing.
L. H. B.

HUCKLEBERRY. See Taccinium; also Gaylussacia.

HULSEA (Dr. G. W. Hulse, of La., who collected in Calif.). Compósitre. This includes one of many woolly herbs offered by Californian collectors. It grows a few inches high and bears fis. with $20-30$ yellow rays. Six species of herbs, perennial, biennial or annual, all Californian, glandular pubescent or woolly: Ivs. pinnately lohed or toothed: fls. large, solitary, yellow or purple; involucral bracts free, narrow; style branches obtuse: pappus of 4 hyaline, lacerated, chaffy scales. Monogr. hy Gray in Bot. Calif. I:385.
nàna, Gray. Stems depressed, leafy at summit: lvs. pinnatifid or incised, petiole long-margined: peduncle 1-2 in. long: involucral scales in 2 series: rays $20-30$.

HUMATA (Latin, of the earth; referring to the creeping habit of the rbizomes). Polypodideer. A genus of ferns related to Davallia and sometimes included with
that genus, with small, thick, deltoid lvs., with the indusium tough, suborbicular or reniform, attached by a broad base and free at the apex and sides. Some 20 species are known, mostly from the East Indies. For culture, see Davallia.

Tyermanni, Moore (Davállia Tyermanni, Baker). Bear's Foot Fern. Rootstock wide-creeping, densely covered with Inear white scales; 1rs. 4-6 in. Iong, deltoid, 3-4-pinnatitid; Iower pinna largest, the lowest pinnules cuneate-oblong or deltoid; sori at the base of the ultimate Jobes less than a line broad. Central Cbina. G.C. 187I:87I.
L. M. Underwood.

HUMBLE PLANT. Mimosa pudica.

HÙMEA (after Lady Hume). Compósiter. This includes a half-hardy biennial Australian plant, growing 5 or 6 ft . high, cult. for the grass-like beauty of its large, loose, much-branched, drooping panicles. The genus has no near allies of garden ralue. It belongs to a group of 6 Australian genera which have no pappus. Humea has nothing of the typical beauty of the common garden composites, since it has no rays. Its fls. are exclusively tubular and hermaphrodite, $1-4$ in a small head. Other important generic characters are the narrow involucre with scarious or petaloid, non-radiating bracts. Three, at any rate, of the 4 other species are shrubs, with Hs . in dense corymbs and involucral bracts rigid or petal-like, while in H. elegans the bracts are thin and scarious.

Sow seed from July 1 to Sept. 1. Keep young plants during winter in very cool house in preference to frames, in northern latitudes, on account of losing so much foliage through damping. In spriag, or when signs of growth are taking place, repot into Iarger pots, usiug a good, rich loam, which has had plenty of manure. They are gross feeders and growers, requiring plenty of water and good feeding. Good plants in 10 -in. pots are very ornamental for conservatory or piazza work. The young plants need plenty of light and air, and should be kept nearly dry during the winter. In spring they should be started into growth gradually, and successively repotted until an $8-\mathrm{in}$. pot is needed. They should not be syringed except when growing rapidly in warm weatber. In June the plants can be placed in a subtropical bed that is shielded from high winds, and staked. The foliage has a peculiar and agreeable scent.
élegans, Smith. Lower Ivs, ovate-lanceolate or oblong, acuminate, stem clasping or decurrent, 6-10 in. Iong, wrinkled: fls. variously described as brownish red, pink, ruby-red and rose. H. albida. Hort., is presumably a whitish fld. form of this species, and should therefore be called var. albida. R.H. 1862, pp. 9-10 and 1895, p. 459.
A. P. Meredith aud W. M.

HÛMULUS (old Latin name). L'rticàcece. Hop. Two or three twining viues, with rough, opposite, palmately lobed or divided lvs, and dicecious fls, in axillary clusters. Staminate fls. with 5 ereet stamens and 5 -parted calyx, in little drooping, tassel-like racemes: pistillate Hs. With an entire calyx or perianth closely investing the orary, which bears 2 Iong stigmas, the fls. in pairs under large overlapping bracts, the wbole making a cone-like catkin which, when becoming very large, is a "bop."
A. Plant bearing hops, the pistillate catkin greatly enlarging in fruit.
Lupulus, Linn. Common Hop. Native to Europe and North America, and long cult. for the hops, which are used in the brewing of beer: it is a perennial herb: shoots often grow $25-30 \mathrm{ft}$. long in the season: roughhairy: Irs. ovate or orbicular-ovate in general outline, deeply 3 -Iohed (sometimes 5 -7-lobed), or the upper ones not lohed, margins strongly and pniformiy dentate, petioles long: staminate fls. in panicles $2-6 \mathrm{in}$. long: hops (mature pistillate catkins) oblong or ovoid, loose and papery, straw-yellow, often 2 in. or more long, glandular and odoriferous. - Natire along rivers and in thickets in the northern states, and southward in the Alleghanies and Rockies. Much caltirated for Hops, and extensively run wild from cultivated plants. The Hop
makes an excellent arbor or screen plant. Recent European literature mentions a var. aureus, with yellow foliage. The Hop grows readily from cuttings of the shoots, which spring from the crown; also by seeds, but the latter do not reproduce the particular varieties or strains. As a field crop, the Hop is not a horticultural subject, and is not discussed here.
AA. Plant not bearing loops, -the pistillate catkin not greatly enlarging in fruit.
Japónicus, Sieb. \& Zuce. Aunual (or at least treated as such): foliage very like the last, but usually more deeply cut and not less than 5-lobed: catkins not glandular. Japan. G.C. II. 24:716. - Int. to general cult. in 1886, and now one of the most popular of all elimbing herbs. It is a very quick grower, plants $10-20 \mathrm{ft}$. long coming from seed sown in early May. It is very easy of cultivation, and often seeds itself. Var. variegatus, Hort., is the most popular form. Gng. 1:241. A.F. 8:489. The foliage is variously streaked and splashed with white. Seeds of this variety will give a large percentage of variegated forms, and the plants usually show interesting variations, H.Japonicus is more popular as an ornamental vine than H. Lupulus, because it grows so quickly from seeds, and also hecause it has such interesting variegated forms; but H. Lupulus has a distinct charm in its great hanging Hops. L. H. B.

HUNNEMANNIA (John Humneman, English friend of botany, d. 1839). Papareracea. This includes a fine yellow-Hld. herb closely allied to the California Poppy (Eschscholzia) and of the same garden value. It is treated as a hardy annual. The genus has but 1 species, a native of Mexico, and agrees with Eschscholzia in having much-eut foliage and spreading lobes of the stigma, but differs in having separate sepals instead of the peculiar hood-like calyx of Eschscholzia, which covers the young flower like a candle extinguisher. The only other genus in the Hunnemannia tribe is Dendromecon, a shrub with entire Ivs., separate sepals aud 2 erect, stigmatic lohes. For culture, see Anmuals.
fumariæfolia, Sweet. Lvs. triternately divided: peduncles solitary, terminal : fls. 2 in . or more across; petals 4 ; stamens numerous. B.AI. 3061. -Sold as Giant Yellow Tulip Poppy.
W. M.

In our trial grounds during 1898, this was one of the showiest and most satisfactory plants in over 400 trials. The seed was sown early in May, and by the middle of July the plants were covered with their large yellow flowers, and they were never out of flower until hard frost. The plants have a bushy hahit and beautiful, feathery, glaucous foliage. The flowers have wary horders, and at times stand up like tulips.
W. F. Dreer.

HUSK TOMATO, Physalis.
HYACINTH, See Hyacinthus, below.
HYACINTH BEAN. See Dolichos.
HYACINTH, GRAPE. See Muscari.
HYACINTH, WATER, See Eichhornia.
HYACINTHUS (name from Greek mythology), Liliàcere. Ot Hyacinths there are something over 30 species, the great part South African. Others inhabit the Mediterranean region, and from this source come the common garilen Hyacinths. From related genera, Hyacinthus is distinguished by the funnel-shaped or bellshaped flower, the throat not constricted, the lobes shorter than or at most not much exceeding the tube, the 6 stamens attached to the tube or throat and the flaments thread-Iike or dilated at the base. Bulhous plants with only radical lvs., and fls. in a raceme or spike. The common Hyacinth is H. orientalis, Linn. (Fig. 1108), with $4-8$ thick green lis. $8-12$ in. long, $\frac{1}{2}-11 / 2$ in. Wide: scape $8-18$ in. tall, stout, bearing an elongated and àense raceme: perianth about 1 in , long, the tube usually ventricose or swollen, the lobes ob-long-spatulate, as long as the tuhe, in many colors, often double in cult. B.M.995. F.S. 23:2399-2400-The Hya-
cinth is extensively grown in Holland for export to this and other countries, and consequently is commonly known as the Dutch Hyacinth. The Roman Hyacinth (Figs. 1109-10) is var. albulus, Baker (H. álbulus, Jord. H. Romànus, Hort., not Linn.), is smaller aud slenderer, Jvs. narrower, very erect, fls. fewer, earlier, white or blush, the tuhe cylindrical and scarcely rentricose, the segments narrower and usually proportionately shorter. Central France, and perbaps in the Mediterranean region. Much used for early bloom. The Hyacinth has heen cultivated for some centuries, and it shared some of the early popularity of the tulip in the Netherlands. H. orientalis is wild in Syria, Asia Minor, Greece and Dalmatia. For a picture of a Hyacinth bulb, see Fig. 288 , Vol. I.
Other species are sometimes seen in the gardens of the curious, particularly H. amethystinus, Linu., Spain, France (B.M. 2425. Gn. 47, p. 147), and H. azureus, Baker (B.M. 6822. G.C. III. 24:191, var. gigantèus), Mediterranean region. The former is slender and graceful, with light blue fls, in short racemes, standing nearly or quite $1 / 2 \mathrm{ft}$. high: fls. small, nodding, bell-shaped, with short teeth-like segments. There is a white-fld. form. Good for rockeries. Hardy in the ruiddle states. The latter species is by some considered to be a form of H. ciliatus, Cyrill. Looks like a Grape Hyacinth (or Muscari): 4-8 in, tall, with strongly eanaliculate, glaucous lvs.: fls. blue, fragrant, in a dense spike 1 in. long, tubular, with small teeth. Distinguished from the genus Muscari by the periauth segments being flaring instead of incurved. Hardy in middle states. H. fastigiatus, Bertol. (H. Pouzolzii, Gay) is a Corsican species, which is hardy in southern New England. It is a delicate species, with very narrow lvs., scape $3-5 \mathrm{in}$. high and shorter than the lvs.: fls. few, in a loose cluster, $1 / 4-1 / 3 \mathrm{in}$. long and light blue (a white form), with oblong-lanceolate segments longer than the tube. B.M. 6663. Hyacinthus Romanus, of Linnæus, is not the H. Romanus of horticulturists (which is the Roman Hyaeinth, H. orientalis, var. albulus). Linnrus' species is a blue-white, scilla-like plant (see B.M. 939). H. candicans is now referred to Galtonia. For general cultural notes, see Bulbs.
L. H. B.

Culture of the Hyacinth. -The perfection of the flower depends largely upon the strength of the roots, and as Hyacinths make all their root growth in the fall, the bulbs should be planted early,-say from the beginning to the middle of October. Any good garden soil suits, provided it is well drained. The ground should be carefully prepared by spading to a depth of 20 inches, so that the roots may pass straight through it to their full development of 12 or 16 inches. If the soil is naturally stiff it may be lightened by the addition of some sand, and if the beds have been occupied by other plants during the summer, some pure old cow manure, well worked in, is recommended. Horse manure should not be used.

The bulbs should be planted 6 inches deep (to the bottom of the bulbs) and very uniformly, to insure simultaneous flowering. The ground having been prepared as above, perhaps the hest way is to remove 3 or 4 inches of the soil, level the bed carefully with the rake and set the bulbs in it 5 or 6 inches apart each way, pressiug them in firmly, and then covering them
evenly with the soil that had been taken out. When winter sets in, the beds should be covered with 2 inches of dry litter or coarse manure. As soon as the shoots appear above ground in the spring, 1 inch of this covering should be removed and the balauce when danger from late frosts is past. Unnamed Hyacinths in separate colors can be bought cheaply, and when grown in masses of solid color or in design beds, they make a very rich display.

Forcing in Pots. - For this purpose large, solid bulbs should be selected, and potted singly in 5 -inch pots iu a rich compost of loam, leafmold and some sharp sand. A few pieces of broken pot being placed in the bottom for drainage, the pots should be filled lightly, and the bults pressed into the loose soil till only the apex remains above the surface. The pots are then buried to a depth of 8 or 10 inches in the open ground for seven or eight weeks, till the roots are developed fully and the sprout is about $11 / 2 \mathrm{in}$. above the bulb. When taken inside they should be kept in subdued light, at a temperature of about 50°, until the sprout has assumed a vigorous green color. Florists who force large numbers for winter decorations, set them un der the greenhouse henches

1109. Roman Hyacinth. for about two weeks, and then force them in a temperature of 70°. A greater heat than this attenuates the growth and weakens the color. Syringing with water twice a day is recommended, and as the flower-spike develops weak manure water is helpful. The slower Hyacinths are forced the finer and more lasting will be the hloom. Bulbs wanted in flower for Christmas should be potted in September, and for a succession later, at intervals as desired. Single Hyacinths are handsomer and force better than the double, although a few of the latter may be recommended. The following are among the best adapted for forcing and most largely grown by American florists:

Single Blue:
Baron van Thuyll. China-blue.
Charles Dickens. Dark porcelain.
Czar Peter. Light blue.
King of the Blues. Dark blue.
Leonidas. Clear blue.
Queen of the Blues. Light blue.
Regulus. Porcelain-blue.
Dovble Blee
('harles Dickens, Dark blue
Van Speyk. Lilac-hlue.
Single White :
Alba superbissima. Pure white. Baroness van Thuyll. Pure white Grandeur a Merveille. Blush-white. La Grandesse. Pure white.
L'Innocence. Pure white.
Madame Vanderhoop. Pure white.
Mont Blanc. Pure white.
Paix de l'Europe. Pure white.
Double White
La Tour d'Auvergne. Pure white.
Prince of Waterloo. Pure white.
Single Ren :
Charles Dickens. Pink.
Gertrude. Bright pink.
Gigantea. Bright rose.
Moreno. Waxy pink.
Norma. Delicate waxy pink.
Robert Steiger. Crimson.
Sultan Favorite. Salmon.

1110. Roman Hyacinth.

Double Red:
Bonquet Tendre. Crimson. Noble par Merite. Deep rosa.
Single Lilac: Haydn, Lilac-mauve.
Sinole Tellow :
Ida. Pure yellow. Kiug of the Yellows. Deep yellow.

Double Yellow:

Goethe. Bright yellow.
Miniature Hyacinths, or "Dutch Romans," are smallsized bulhs of the ordinary Dutch Hyacinths. They are excellent for growing in groups in howls, pans or flats, planted close together and treated just like the large Hyacinths when grown in pots.

Culture in Glasses.-Some of the single Hyacinths may be grown very satisfactorily in water. Special glasses for the purpose can be bought from the seedsmen. They should be filled with pure water and the bulb so placed that its base barely touches the water. They are stored in a dark, cold closet or cellar till the roots are developed, and then brought in to the light. An airy, sunny situation and a temperature of about 60° regularly maintained will insure the best results. The glasses should be kept filled by adding water occasionally as required. The following varieties are especially suited for glasses:

$$
\begin{aligned}
& \text { Charles Dickens. Pink. } \\
& \text { Lord Macaulay. Deep rose. } \\
& \text { Mina. Pure white. } \\
& \text { L'Innocence. Pure white. } \\
& \text { Von Schiller. Dark red. } \\
& \text { Grand Lilas. Light blue. }
\end{aligned}
$$

are taken out of the ground by hand, dried, cleaned and assorted into three grades of quality, according to size Early in August they are ready for shipping. Overgrown or unshapely hulbs are reserved for propagating. As soon as these are taken out of the ground, three deep cross cuts are made with a sharp knife in the hottom of each bulh. They are tben set out, bottom upwards, and covered with loose soil for two or three weeks, during which time the cuts open out and the wounds are healed. They are then taken up and kept spread out on tables in storehouses till October, when they are planted out. When lifted next June nothing of the parent bulh remains but dry skins, on the edges of which from 20 to 30 offsets are fastened. These bulblets are picked off by hand and planted out in the fall, just like large bulbs. This process of planting in fall and taking up in summer for a two months' rest is repeated for four or five years, till the bulbs have attained to marketable size. Another method of propagating is to hollow out the bottom of the bulb smoothly to a point in the center. More offsets are obtained in this way, hut they are smaller and take a year or two longer to reach maturity.

New varieties are obtained from seed, but such a degree of perfection in form and color has already been obtained that it is seldom a seedling is produced that proves superior to existing varieties of the same color. Some new varieties are ohtained by encouraging any tendency to change of color or form which may be shown hy the standard sorts. In this way the single blue Charles Dickens has been changed to single red and to douhle blue, and again, very recently, to double red, till we have four varieties named Charles Dickens. Last year's catalogue of a reliable Dutch grower contains 340 named Hyacinths. J. M. Thorburn \& Co.

HYBRIDS are the products cf crossing between species. Of late, the word Hyhrid has been used by some writers to comprise all crosses, whether hetween species or varicties. The justification of this usage is the fact that there are no hard and fast lines between varieties and species, and therefore that hybridism in the old sense is incapable of exact delimitation. The opponents to this usage, however, contend that so long as it is customary to speak of species and varieties as different classificatory categories, it is equally allowable and useful to speak of Hybrids as between species and of crossbreeds as between varieties; moreover, historical custom favors this usage. Common-language terms rarely if ever express absolute or ideal truth: they grow up by custom. Whenever new ideas and discoveries render them inexact, it may be quite as well to invent new terms as to give new and technical meanings to old terms which are thoroughly established in literature. The word Hybrid has always been a specific term, and it were a pity now to make it a generic one, particularly since there is a well established generic term. The generic word, both substantive and verb, is cross. Specific kinds of crosses are Hybrids, between species; cross-breeds, hetween plants of the same species: balf-byhrid, between a species and a variety of another species; bigener, between plants of different
genera. There are technical terms to designate the various kinds and degrees of crossing.
It was formerly held that inability to make fertile Hy brids is proof that the forms are distinct species; and contrariwise, that plants which make fertile crosses are of one species. Hybridization has also been made a test of genera. These notions are now given up, for crossing and classiticatiou belong to two unlike categories of facts. Species and genera are not entities in themselves, but are mere artificial groups made by men for their convenieuce when writing and speaking of living things. Crossing is a biological phenomenon.
Hybrids are unusual facts in nature; that is, they are rare compared with the whole number of plants. On the other hand, cross-breeds are usual. Most flowers are so constructed as to favor cross-pollination. Cross-breeding is one of the prime means of inducing slight variations and of invigorating a type. Upon the variations which arise from crossing and other means, natural selection operates in the production of new forms. But it is significant that these new forms usually come about slowly and gradually. It is the desire of the cultivator to produce new forms quickly and of pronounced distinctness. He therefore employs crossing between unlike types, or species, hoping thereby to secure wider departures. In nature, the cross-breed is the beginning of a process of breeding: it starts off the variation. Man is often tempted to look upou the Hybrid as the end. If the products of a given cross are not to his liking, he throws them away and tries again. The most expert plant-breeders, however, now hybridize to get a"break," and thenceforth depend chiefly on selection to realize their clear-cut ideals, particularly in seedpropagated plants.
To man Hybrids are of no value unless they can be propagated. By seeds they usually vary immensely: it is difficult to "lix" them so that they will come true. By cuttings or layers or division, however, the character of the parent may be propagated with practical certainty: the original plant is divided, and the parts are put on the market. Nearly all commercial Hybrids are of plants which are thus propagated by asexual parts: Kieffer pear, Hybrid grapes, Wilson blackberry, Wild Goose plum, cannas, roses, begonias, anthuriums, fuchsias, pelargoniums, rhododendrons. Since the Hybrid is variable when propagated by seeds, continued selection, or plant-breeding, must be employed to fix and establish a desirable type.
It is thus seen that hybridization rarely gives rise to dominant horticultural seed-races, but rather to an individual plant which may be disseminated by some divisional means of propagation. The seeds of Hybrids as of the modern cannas-may give rise to good varieties, and they may not; but these new varieties are, in their turn, usually propagated by means of asexual parts if they are to be kept true.
Practically there is no certainty in hybridization. Rarely can a man picture to himself an ideal variety, and then by means of hybridization produce it. He hybridizes plants which possess some of the characteristics of the desired or ideal variety, and then takes his chances. True plant-breeding sets an ideal, and then reaches it by working along certain definite lines. It seeks first to secure a rariation in the desired direction: this may be secured by means of crossing, change of soil, modification of food supply, and other changed conditions. It seeks, then, to preserve or augment the form by means of definite selection.
We are not yet able to formulate positive laws of hybridization. Every Hybrid is a law unto itself. By the study of many examples of hybridization, one is able to construct an average of probabilities as to what will or what will not occur in a giren case: but the given case may contradiet all the probabilities without apparent cause. Hybridization is an empirical subject.
One can not tell what species will or will not hybridize except by trying. Hundreds of species have been tried, and for them the knowledge is more or less exact. Plants hybridize most freely which are the subjects of much care and coddling: the orchids are the best examples. In these groups, Hybrids are chiefly fanciers' plants, valuable often only because they are Hybrids or are rare and curious. One cannot tell beforehand
whether the products of any hybridization will be exact intermediates, or in what way or degree they will carry over or blend the parental characters. As a rule, the more closely akin the species, the more perfect will be the blending or amalgamation of the two. See Pollination.
The literature of hybridization is extensive but scattered. The standard text is Focke's "Die Pflanzen-Mischlinge," 1881 . The possibilities of hybridization as a factor in plant-breeding are presented in many aspects in the "Hybrid Conference Report" of the Royal Horticultural Society, London, 1900. There are special books devoted to orchid Hybrids (see Orchids). In North America there has been little fundamental writing on the subject. See an excellent paper by Swingle and Webber, YearBook of the U. S. Dept. Agric. 1897; papers in American Gardening, 1899, pp. 397, 413, 431 ; Bailey's "PlantBreeding," 1895.
L. H. B.

HYDRANGEA (Greek, hydor, water, and aggeion, vessel ; alluding to the cup-shaped fruit). Saxifragad. cea. Very ornamental deciduous shrubs, with opposite, simple, rarely lobed, petioled lvs, and small, white, bluish or pinkish fls. in corymbs or panicles, bearing usually marginal sterile fls., with enlarged showy sepals, or in some varieties all the fls, are sterile and enlarged: fr. a small, insignificant capsule. H. panicklata is the hardiest of all, but H. arborescens, H, radiata and H. Bretschneideri are also almost hardy North, while H. quercifolia and petioluris require at least a very sheltered position and H. horfensis, velutisa, involucrata and virens are still more tender, and can hardly be grown outdoors North except when well protected and sheltered. They grow best in a rich, porous and somewhat moist soil and thrive well in partly shaded positions, but flower more freely in full sun if they only have sufficient moisture. All Hydrangeas are well adapted for borders of shrubberies, and H. paniculata and hortensis, especially the varicties with sterile fis., are very showy as single specimens on the lawn. In warmer climates the latter is sometimes used for ornamental hedges (see G.C. 111. 24:337 and 456); but it is not hardy in the North. These and also most of the other species should be pruned in fall or early spring, and the branches of the previous year cut back to 1-3 pairs of buds, according to the growth of the branches and the desired size of the panicles; if only slightly pruned the panicles will be many but small. Sometimes they are cut back every year almost to the ground and produce then enormous panicles, which, however, usually need artificial support and lack the gracefulness of less severely proned plants. H. paniculata, var. grandiflora can be grown in a small standard tree; for this purpose vigorous young plants should be selected and planted in rich soil, and cut down to the base. The strongest shoot of each plant will attain by fall the height of 4-6 ft., if freely manured and watered during the summer; in autumn, all the weaker branches are cut off, and in colder climates the plants should be lifted and stored in a frost-proof pit or cellar, since the wood is not usually sufficiently ripened to withstand severe frost. In the following year the top of the stem is allowed to branch. The weaker basal shoots may be pegged down to make new plants. Strong-growing varieties of H. hortensis may be treated in the same way if standard plants are desired.
H. hortensis, which cannot withstand much more than 10° of frost, is in the North much grown as a potplant, especially the more showy varieties with large heads of sterile fls., and is extensively used for outdoor decoration during the summer. Late in fall, when the lvs. have fallen after frost, the plants are moved to a frost-proof cellar and kept rather dry until spring, when they are repotted in new soil and the growth of last year cut back to 1 or 2 pairs of buds. As a suitable soil may be recommended a mixture of loam, leaf-mold and sand, with ground bone, dried cow manure or some other kind of manure added. During the summer a liberal supply of water should be given, also occasionally applications of liquid manure, until the fls. have developed. They may also be planted in the open ground during the summer, lifted late in fall with a large ball of earth, stored over winter in a coldframe or pit and planted out
again in spring; this will not injure in any way the profusion of tls. In certain kinds of soil the pink Hortensias show a tendency to turn blue, and perhaps this cas be caused by adding iron fllings or alum to the soil. H. hortensis is also a valuable plant for forcing, and is much grown for Easter, especially the var. Otaksa, on account of its dwarfer habit. Handsome pot-plants can he grown in one year from cuttings. In February or March cuttings are inserted in the propagating bouse with slight bottom heat, and planted in small pots as soon as they are rooted. During the summer they may be easily grown in pots and plunged outdoors in coal asbes or in any kind of porous soil, transplanted several times and freely watered and oceasionally manured; or they may be planted out in rich soil, exposed to the full sun, where water sbould be liberally given and now and then an application of liquid manure. Last of September they should be repotted in 8 inch pots, kept shady some days until establisbed, and afterwards exposed to the sun. After the first frosts they may be brought into a cool greenhouse. If intended to have them in flower for Easter, they should be transferred not later tban the fore part of January into a warmer house, with a temperature gradually rising from 50° to 60°; the plants should be freely watered, and about once a week an application of liquid manure given until the
1111. Summer cutting of Hydrangea paniculata. flower buds are developed. T'be fls, should be almost fully developed some time before they are desired, that they may be hardened off in a cooler house, since overforced plants are likely to collapse if exposed to sudden changes of temperature. After flowering, the plants are pruned and repotted or planted out and treated as above described for euttings, or they may be thrown away and another sct of plants raised from cuttings.
H. petiolaris is a handsome elimbing plant for covering walls and trunks of trees, and grows well in the sbade, but fls. freely only in the full sum

The Hydrangeas are readily prop. by cuttings of halfripened or nearly ripe wood under glass in summer (Fig. 11II); also by hardwood euttings, layers, suekers or division of older plants. H. quercifolia is best propagated by suckers or by layers of growing wood put down in summer. Rarely increased by seeds, which are very small, and should be sown in fall in pans or boxes and only slightly covered with soil.

About 25 species in N, and S. America, Himal. and E. Asia. Lrs. without stipules: fls. perfect in terminal panicles or corymbs, often with sterile marginal fls.; calyx lobes and petals $4-5$; stamens nsually 10 ; styles $2-5$, short: capsule 2-5-celled, debiscent at the base of the styles, with many minute seeds.

INDEX.

acuminsta, 7 (1) arborescens, 3. Azisai, 7 (1). Azissi, 7 (1)
Belzoni, 7 (I) Bretschneideri, 6
Burgeri. 7 (1).
corulea, 7 (1).
canescens, 4. cinerea, 4. cordinta, 3 . fimbriata, 7 (3). floribunda, 1 . glabrescens. 6 grandiflora, 1. heteromalla, 5.

Hortensia, 7 (2). hortensis, 7, 8, iuvolucrata, 8 . Japonica, 7 (1) Lundleyi, 7 (1) macrosepala, 7 (1). roseo-marginata, 7. Mandshurica, 7 (2), rubro-plena, 7 (3). Mariesi, 7 (1) nigra, 7 (2). nivea, 4
Otaksa, 7 (2) paniculata, 1 Pekinensis, 6. petiolaris, 9 . pracox, I.
prolifera, 7 (3) pubescens. 5. quercifolia, 2 radiata, 4. rosalba, 7 (1) serrata. 7 (1). stellata, 7 (3) tardiva, 1. Thunbergi, 7 (1). urticifolia, 3. variegata, 7 . vestita, 6 .
A. Erect or spreading shrubs: stamens 10 : petals expanding.

B. Inflorescence pyramidal.

1. paniculàta, Sieb. Shrub or small tree, to 30 ft , with dense globose head: lvs. elliptic or ovate, acuminate, serrate, sparingly pubescent above, more densely on the veins beneath, 2_{-5} in.: panicle $6-12$ in. long: fis. whitish, the sterile ones ehanging later to purplish; styles 3: capsule with the calyx about at the middle. Aug., Sept. Japan. S.Z. 61.- The following varieties are cult.: Var, floribunda, Regel. Panicles large, with more and larger sterile fls. (it. 16:530. Var. grandillora, Sieb. (var. hortensis, Maxim.). Fig. 1112. Almost all fls. sterile; panicles very large and showy. F.S. 16:1665̈-66. Gin. $10: 37$ and 54 , p. 376 . R.H. 1873:50. Mn. 8:119. A.G. 18:313. Gng. 3:357 and 5:3. F.E. 8:214. S.H. 1:174. Var. pràcox, Rehd. Almost like the type, but flowering about 6 weeks earlier, in the middle of July. G.F. 10:363. The late flowering typieal form is sometimes called var. tardiva, Hort. H. panicutata, var. grandiflora is the common Hydrangea of lawns. It is seen to best effect when planted close in front of heavy shrubbery. Cut back rather heavily in early spring.
2. quercifolia, Bartr. Shrub, with spreading branches to 6 ft . Young branches densely ferrugineously tomentose: lvs. long petioled, roundish or broadly ovate, pinnately lobed with serrate lokes, glabrous above at lengtb, whitish tomentose beneath, $4-8$ in. long: panicle $4-7$ in. long: fls, pinkish white, the sterile ones turning purple. June. Ky. to Alab. and Fla. B.M.975. Ging. 2:305. Hardy at Philadelphia.

BB. Inflorescence corymbose, flat or globular.

c. Cyme without involucre at the base.

D. Stytes usually 2: capsule with the calyx at the apex.

3. arboréscens, Linn. (H. uricifolia, Hort.). Erect shrub, $4-10 \mathrm{ft} .:$ Ivs. long-petioled, ovate, acute or acuminate, rounded or cordate at the base, serrate, green and glabrous on both sides or somewhat pubescent or glaucous beneath, 3-6 in. long: cymes $2-5$ in. broad, with none or few sterile fis. June, July. N. J. to lowa, south to Fla. and Mo. B.M. 13:437. - Var. cordàta, Torr. d Gr., has the lvs. broadly ovate and cordate. - Var. stérilis, Torr. \& Cir. Almost all fis. sterile, known also as Hills of Snow.
4. radiata, Walt. (H. nivea, Michx.). Similar to the former, but lvs. densely whitish tomentose beneath and eymes always with sterile tls. June, July. N. C. to Mo., south to Ga. B.B. 2:185, - Var, canéscens, Dipp. ($H_{\text {. }}$ canescens, Hort. H. cinerea, Small). Lvs. grayish tomentose beneatb, sometimes pubescent above. Tenn. to Ga. - Hardy about Philadelphia.
DD. Styles usually 3: capsule with the calyx near the middle.
5. vestita, Wall. (H. heteromálla, Don. H. pubéscens, Decne.). Shrub, to 10 ft . : petiole deeply grooved and margined, red: lvs. ovate, acuminate, densely setosely dentate, almost glabrous above, densely whitishtomentose beneath, $4-8$ in. long: cyme $5-8$ in. broad, with bracts; sepals of sterile fls. elliptic or obovate, acute or macromilate: capsule with the calyx above the middle. June, July. Himal. F.S. $4: 378-79$. (t.C. II. 22:617.
6. Brétschneideri, Dipp. (H. vestlta, var. pubéscens, Maxim. II. Pekinénsis,Hort.). Shrub, to $8 \mathrm{ft} .:$ petioles not margined; IFs. orate or elliptic-ovate to oblongovate, acute or acuminate, serrate with short callous teeth, more or less pubescent beneath, 3-5 in. long; cymes similar to the former but smaller and denser, sepals roundish, obtuse: capsule with the calyx near the middle. July. N. China, Setshuen. G.F. 3:17 and 6:396. - Var. glabréscens, Rehd. (H. serrata, Koehne, not DC.). LFs, smaller, elliptic, more coarsely serrate and only sparingly pubescent.
7. horténsis, Smith (H. Hortensia, DC. H. opuloldes, C. Koch. H. Japónica, Sieb.). Shrab, to 8 ft ., almost glabrous: Ivs, ovate or ovate-elliptic, acuminate or acute, coarsely serrate, $5-8 \mathrm{in}$. long: fis, in large cymes without bracts, white, bluish or pink, few or all of
them sterile. - The greenhouse Hydrangea. June, July, but blooming in winter under glass. A large number of varicties have been introduced from Jupan and China, where this species has been exteusively cultivated for many centuries, and where it is native. The following are some of the best known. They may be divided into 3 groups:
(1) Japonica group: cymes flat, with sterile and fertile flowers.
Var, acuminàta, A. Gray (H. acuminàta, Sieb. \& Zuce. H. BuErgeri, Sieb. \& Zuce.). Lvs, ovate-lanceolate, acuminate, sparingly appressed-pubescent: sterile fls. with elliptic entire sepals, usually blue. S.Z. 56-57. Var. Azisai, Maxim. (H. Azisai, Sieb.). Lvs. ellipticovate, glabrous : sterıle tls. with obovate sepals, longpedicelled, overtopping the fertile ones. S.Z. 51. Var. Belzoni, Maxim. (H. Belzonii, Sieb. \& Zucc. H. Japoniea, var. cer rùlea, Hook. H. Japonica, var. carulescens, Regl.). Of dwarfer and stonter habit : Ivs. ovate or obovate, short-aruminate, glabrous, somewhat thick: sterile tis, whitish, pinkish or bluish, with rbombic, usually entire sepals. S.Z. 55. B.M. 4253. Here belongs also var. Impératrice Eugenie with pink fis. R H. 1868:471. Var. Japónica, Maxim. (H. Juponica, Sieb.). Lvs. ovate to elliptic, acuminate, glabrous: sepals broadly ovate, toothed, pink. S.Z. 53. B.R. 30:61. R.H. 1874:90 (as H. acuminata). Var. macrosépala, Rgl. Differs from the former only by its larger sepals. Gt. 15:520. Var. Màriesi, Hort., seems also not much different, but has somewhat broader 1 rs., and the pink sterile fis. are very large, $3-31 / 2 \mathrm{in}$. across. Gin. $54: 1196$, (t, C. III. 23, suppl. 5-28. Var. rosálba, Van Houtte (H. Lindleyi, Hort.). Lvs. ovate or elliptic-ovate, acuminate, sparingly hairy: sepals dentate, ovate or broadly ovate, white and pink or white changing to pink. S.S. 16:164950. R.H. 1866:430. Gn. 46:990. Var. serràta, Rehd. (H. serrata, DC. H. Thindergi, Sieb. \& Zuce, H. cyanea, Hort.): Lrs. elliptic or ovate, narrowed at both ends, serrate, sparingly appressed-hairy, $11 / 2-3 \mathrm{in}$. long: cymes small, 3-4 in. broad: Hls. pinkish or bluish; sepals rounđtish, obtuse or emarginate. S.Z. 58. G.C. 1870:1699.
(2) Hortensia group: cymes globose, with almost all fls, sterile.
Var. nigra, Arb. Kew. (H. Mandshirica, Koehne. H. opuloldes, var. cyanóclada, Dipp. H. nigra, Carr. H. ramulis coccineis and ram. pictis, Hort.). Brauches dark purple or vio 3 t, often almost black: lvs. ovateelliptic, acute: cyr es large, with purple peduncles: sepals pink or bluish, obovate. A.F. 5:360. Var. Hortensia, Maxiru. LTs. large, elliptic, glabrous: sepals broadly ovate, entire, usually pink. This is the form which first came into cultivation outside of Japan and China, and is said to have been introduced from China to England in 1790, by Joseph Banks. B.M. $4: 38$. G.C.III. $24: 45$. Gn. 45, p. 12; 50,pp. 123, 256, 367; 52:281. Var. Otáksa, Maxim. (H. Otaksa, Sieb. \& Zucc.). Fig. 1113. Dwarfer, but of vigorous growth: Irs. obovate, short-

acuminate, ratber thick, glabrous: sepals obovate, entire, pink or blue. S.Z.52. F.S. 17:1732-33. Gn, 50:1079. R.H. 1868:450. Mn. 5, p. 105. A.G. 11:415. A.F, 10:1015. F.E.9:52 and 401. Gng. 5:161. Var. plèna, Rgl. Similar

8. Hydrangea hortensis, var, Otaksa.
to var. Hortensia, but sepals toothed. Var. Thomas Hogg, Hort. Les. elliptic or ovate, rather small: heads large, pure white. This variety is somewhat dwarfer than the common Hydrangea and is, besides Otaksa, the best as a pot-plant. It is also to be recommended for outdoor cultivation, as it is one of the bardiest.
(3) Stellata group: fls. with many narrow sepals.

Var. stellata, Maxim. (H. stellata, Sieb. \& Zuce.). Lvs. ovate or orate-oblong, sparingly pubescent: cymes with larger sterile and smaller fertile fls., both with many narrow-elliptic sepals. S.Z. 59. Var. fimbriàta, Dipp. Cymes rather dense, with almost all the fls. sterile: sepals fimbriate, white, pink toward the base. G.C. III. 23, suppl. 5:28. Var. prolifera, Hort. (H. stellata, var. prolifera, Rgl .). The fertile fls. bearing 1 or few smaller ones in the center. Var, rubro-plena, Dipp. Cymes rather dense, with alroost all fls. sterile, changing from pink or pale lilac to dark red.

There are also some rarieties with variegated lvs., as var. variegata, Regel, a form of var. Belzoni, with tbe lvs. edged white (F.S. $7: 696$); var. tricolor, Hort., with the lvs. variegated with white and edged yellow; var. roseo-marginata, Hort., with the lvs. spotted white and edged pink.

cc. Cyme enclosed before expanding by 6-8 large, deciduows bracts.

8. involucràta, sjeb. Low shrub, to 5 ft . : lvs.oblong, acuminate, densely and sharply serrate, appressed, pubesceut on both sides, rough to the touch, 4-8 in. long: bracts at the base of the cyme large, orbicular; smaller bracts none: fertile fls. blue or pinkish, sterile ones whitish: capsule with the calyx at the apex; styles usually 2. Aug. Jap. S.Z. 63. J.H. III. 32:103. H. Sapphire, introduced 1890 by Lovett, seems to belong here. Var. hortensis, Maxim. Fls. double, usually pink and often proliferous. S.Z. 64. F.S. 3:187.

AA. Climbing by aërial rootlels: stamens 15: petals eap-like, colering, falling off as a whole.
9. petiolàris, Sieh. \& Zuce. (H. scándens, Maxim., not DC. H. volùbitis, Hort.). (limb-
ing to 80 ft . in Japan: 1vs. long-petioled, broadly ovatecordate to elliptic, acute or acuminate, crenately serrate, almost glabrous, 2-4 in. long: cymes rather loose, -810 in . across, with rather few sterile fls.; styles usually 2: capsule with the calyx at the apex. July, Japan, Sacchalin. B. M. 6788 . S. Z. 54, 59, 2, 92. M. D. G. 1897:236-37. S.H. 2:191-93.-A very variable species, figured and described by Sieb. \& Zucc. under three different names. In gardens it is often met with under the name of Schizophragma hydrangeoides, another Japanese climber of similar habit, which, however, is easily distingnished by its sinuately dentate Ivs. and its sterile fls, having only one large cordate sepal.
H. altissima, Wall. Allied to H. petiolaris, but less high climbing, often only a spreading shrub, to 15 ft .: Ivs.ovatelanceolate: stamens 10. Himal.-H. aspera, Don. Shrub, to 30 ft ., similar to H . vestita: Ivs, oblong-lanceolate, densely pubescent benesth: sepals usually toothed: fr. with the calyx at the apex. Himal. Tender. $-\boldsymbol{H}$. hirta, Sieb. \& Zuec. Shrub, to $4 \mathrm{ft} .: l \mathrm{ls}$. broad-elliptic, coarsely incised-serrate: cymes withont sterile fls. Jap. S.Z. 62. Not very decorative, -H. robista, Hook. f. \& Thoms. (H. cyanema, Nutt.). Spreading shrub, to $15 \mathrm{ft.}$, with large ovate Ivs., pubescent on both sides; sterile fls. with toothed sepals: capsule with the calyx at the apex. Himal. B. M, 5038. Handsome in bloom, but tender. - H. virens, Sieb. Slender shruh, to 6 ft .: Ivs, elliptic or lanceolate, coarsely serrate, $1-21 / 2$ in.: eymes rather few-fld., sterile fls, with 3 or $\frac{1}{2}$ large, unequal sepals, white. Jap. S.Z. 60 . A desirable shrub, with gracefu. and delicate fls, and with the lvs, often handsomely variegated along the veins, but tender.

Alfred Rehder.
HYDRASTIS (name of douhtful meaning). Ranunculacer. Two species of bardy herbaceous perennials, one from Japan and one from N. Amer. Stem erect, pubescent: Ivs. palmately 5 -7-lobed, serrate: fls, greenish white, small, solitary; sepals 3 , petal-jike. falling early; petals none; stamens many; carpels 2 -oruled, in fruit becoming aggregated berries. Requires moist situations in good, ricb loam and leaf-mold. Prop. by division of the root, and by seed.

Canadensis, Liun. Orange Root. Golden-seal. Stem 4-10 in. long, from a thick, yellow rootstock: basal Ivs. 5-8 in. broad; stem lvs. 2, lower one petioled, upper sessile and near the small flower: fr. in ovoid head, the 8-12 fleshy carpels tipped with a short, curved beak. April. Eastern U. S., in rich woods. B.M. 3019 (in flower); 3232 (in fruit).-Used in gardens for the showy leares and beautiful red fruit; root used in medicine.
K. C. Dayis.

HYDRIASTELE (Greek, water and column: the tall trunks growing near springs). Palmacee. A genus of one species, a tropical Australian palm advertised by perhaps only one American dealer as Kentia Wendlan diana. It is told, however, from the Kentias in foliage by the leaf-segments split at the apex instead of acuminate and not split. More fundamentally, it differs in having the ovule on the side of the cell instead of at the bottom, as in Kentia. In this respect it agrees with the group of genera mentioned under Hedyscepe, hut it differs from that group in having the fls. borne in 4 ranks instead of spirally. Hydriastele is a spineless palm with erect winged caudex: lvs. terminal, pinnatisect; segments alternate, linear, split at the apex; midveins covered below with caducous scales; margins thin; rachis laterally compressed, dorsally convex; face of the petiole concare; sheath rather short: spadices with short, wide peduncles, branched from the base, the branches obtusely quadrate, long, slender, pendulous: spathes 2 , complete, compressed, deciduous, the lower one ancipital: bracts and bractlets connate; fruit small, ellipsoidal, smooth or ribbed. For culture, see Palms.

Wendlandiàna, H. Wendl. \& Drude (Kentia Wendlandidna, F. Muell.). A tall palm. Leaves many feet long; segments numerous, unequal, the longest $11 / 2 \mathrm{ft}$., the upper ones confluent at the base, all denticulate at the apex. Queensland.

Jafed G. Smith.
This distinct and excellent palm has hitherto been rare, but now that the seeds are being produced in tropieal nurseries it is fast becoming popular. The seeds are round, fairly hard, and resemble those of A rehontophenix Atexandro. The characteristic lvs. are pinnatifid, the segments being irregular and somewhat jagged at the apex. after the fashion of a Fish Tail palm or

Caryota. It stands the temperature of an ordinary living room better than many other palms. For rapid growth it needs more heat than Howea Belmoreana and Forsterima. In the greenhouse a temperature of 60 to 70° is most congenial. A lower temperature will not hurt it, but gives a slower and more compact growth. It loves plenty of moisture, and frequent syringing is beneficisl. For potting soil, it likes rich loam, with plenty of sharp sand and good drainage. The seeds and seedlings should be treated more like the commercial Areca, i.e., Chrysatidocarpus lutescens. It forms a single stem when only 3 ft . high, and grows to a height of 20 ft . or more in eult. It is at jts best when 10 to 15 ft . high. When well established and pot-bound it lores high feeding, as does Chrysalidocarpus lutescens. This palm has a bright future commercially.

H. A. Siebrecht.

HYDROCHARIS (Greek, graceful water plant) Hydrocharidicea. Frogbit. A genus of one species, an aquatic plant, grown in a few aquaria. It is found in ditches and ponds in Europe and temperate Asia. H. Morsus-rànæ, Linn., has floating stems resembling runners, and tufts of radical leaves, and submerged roots. Lrs. stalked, roundish, with a heart-shaped base, rather thick, about 2 in, across: peduncles of the staminate plant bearing 2-3 fls, on long pedicels, which spring from a spathe of 2 thin bracts: petals 3, white, stamens 3-12: spathe of the pistillate fis, sessile among the ivs.: styles 6, with ?-cleft stigmas. For American Frogbit, see Limnobium.

Hydrocharis dies in the fall, but winter buds (see similar buds of Elodea, Fig. 759) break off and sink when the old plants die. In spring, or in the greenhouse or aquarium under genial conditions, they start early into growth, the scales bursting and a young leaf dereloping and then the whole rises to the surface. It is a very interesting plant. Its fine, silky roots are beautiful and attractive in the aquarium, as well as the soft, tender leaves and delicate flowers.

Wm. Tricker.

HYDROCLEYS. See Limnocharis.

HYDROCOTYLE (Greek, water and beaker; the plants thrive in moist places, and the roundish Ivs, have a cup-like depression in the middle). Imbelliferce. This includes a plant which, according to J. N. Rose, is considerably used at Washington, D.C., for carpet bedding under the name of $H_{\text {. }}$ sibthorpioides, but, like many other ledding plants its name seems not to appear in

1114. Hydrocotyle rotundifolia $(\times 1 / 3)$.
the leading retail catalogues, American or foreign. Fig. 1114 is the only accessible picture of the plant, except that in Hooker's Exotic Flora as H. nitidula. The plant has shining Ivs. $1 / 4-1$ in. across, and is perhaps perennial. It is prostrate and roots at the nodes. The genus contains about 70 widely scattered species, mostly inhabiting swamps, and has no near allies of garden value. The species vary widely in habit and otherwise.

Important generic characters are fr. strongly compressed: calyx teeth minute or obsolete; petals concave, valvate or imbricate: umbels simple. For culture, see Bedding.
rotundifolia, Roxb. (H. sibthorpioldes, Lem. Sibthórpia Europìa, Hort., not Linn.). Fig. 1114. Lrs.
 or lower, doubly crenate: umbel 6-8-fld.: fr. Q-ribbed. Trop. Asia and Afr. Numerous synonyms are accounted for by the variable length of the petiole.
W. M.

HYDROPHYLLUM (Greek, water-teaf; application obscure). Hydrophytlacere. About 7 species of American hardy herbaceous plants, mostly North American, and perennial, with pinnate or palmately cut foliage and cymose clusters of numerous small white, lilac, light blue, purplish or violet fls. borne in early summer. These plants grow a foot or two high, and are desirable for shady situations where other plants do not succeed. They are obtainable from dealers in native plants and collectors. Floral parts in 5's: ovary 2-celled: styles 2. Important generic characters are: calyx appendaged or not: corolla bell-shaped, the tube within bearing a linear, longitudinal appendage opposite each lobe, with infolded edges, forming a nectariferous groove.

A. Calyx appendaged with a reflexed lobe at each sinus.

appendiculatum, Michx. Biennial (all the others perennial), hirsute with long spreading hairs: root-Ivs. pinnately 5-7-parted: stem-lvs, palmately $5-7$-angulatedlobed: fls. violet or purple. B.B. 3:44.
AA. Calyx not prominently appendaged (often minutely appendaged in H. Canadense).
B. Lvs. palmately cut.

Canadénse, Linn. Fls, mostly greenish white: sometimes purplish. B.R. 3:242. B.B. 3:44.

BB. Lvs. pinnately cut.
c. Peduncle shorter than the petioles.
capitatum, Dougl. Tufted, about 9 in . high: Ivs. softly hirsute or pubescent. This and the next are the only 2 far western species.

> cc. Peduncle longer than the petioles. D. Divisions of the leaf $7-15$.
occidentalle, Gray. Pubescent, hirsute or sparingly hispid: fls, violet-purple, varying to white: Ift. or more.

$$
\text { DD. Divisions of the leaf } 3-5 \text {. }
$$

Virginicum, Linn. Glabrous or nearly so: fls, white or violet-purple. B.B. 3:43.
HYDROT応NIA (Greek, water and band; referring to a triangular glandular har which secretes nectar). Iridacere. Four species of tender bulbs from Mexico and Peru, more curious than beautiful, allied to Tigridia, which see for culture. The following is procurable from Duteh bulb growers.

Van-Hoùttei, Baker. Stem 2-3 ft. long, bearing 2-3 fis.: 1 vs . lanceolate, plaited, the lower 1 ft . long: spathes inflated, 2 in. long: perianth campanulate; outer segments oblong, over 1 in . long, greenish outside, inside dark brown, much veined, yellowish at tip; inner segments suborbicular, half as long, pale lilac, somewhat veined. F.S. $21: 2174$, as Tigridia Houttei.
HYMENA広A (application obscure). Legumindsa. This includes a tree cult. in S . Calif. for its economic interest. According to Von Mueller, the timber is hard, extremely heavy, close-grained, used for select wheelwork, treenails, beams, planks, and in various machinery. A íragrant, amber-like resiu, known as West Indian copal, exudes from the stem. A tree of colossal size and remarkable longevity, found in the West Indies, Trop. Amer. and subtropical S. Amer. A genus of 8 species of tropical American trees: 1fts. 2, leathery, said to close at night: fls. white, in short, densely corymbose panicles; sepals 4 : petals 5 , sessile; stamens 10: stigma small: pod short, indehiscent, woody.

Courbaril, Linn. Lfts. unequal-sided, obliquely ob-long-lanceolate: tls. pedicellate: pod few-seeded, filled with an edible mealy pulp with a honey-like taste.

HYMENOCALLIS (beautifut membrane, alluding to the webbed filaments). Including Ismene. A marylliddece. Spider Lily. Sea Daffodil. Bulbous plants of about 30 species of the warm parts of the New World (one in Africa), cult. for the fragrant white (in I species yellow), umbellate fls. Perianth with a cyhndrical tube, equal linear or lanceolate segments: stamens 6 , the flaments free above but webbed and united into a cup below, the anthers narrow and versatile: ovary 3 loculed, with 2 ovules in each, bearing a long, slender style and capitate stigma: scape solid and compressed, arising from a tunicated bulb: lvs, oblong or strapshape. The genus is represented in the Old World by Pancratium, which differs chiefly in having many ovules in each locule. For an account of the species, see Baker, Amaryllideæ, pp. 120-129 (1888).
Some of the species of Hymenocallis are winter bloomers : these should be ireated essentially like Crinums, being rested or kept slow in the summer. They require a warm temperature. Of such are H. macrostephana, H. speciosa, H. Caribaa. Other species require an intermediate or conservatory temperature, and bloom in spring or summer, resting in winter. Of such are H. calathina, H. Harrisiana, H. Macteana, H. lacera, H. littoralis. Some of these latter or intermediate-house species are hardy in the southern states, there blooming in spring, as H. tacera, H. Gatvestonensis, and others. The species of Hymenocallis require no special treatment (see Butbs), except that the same bulbs may be flowered year after year if they receive good care. Use turfy or peaty soil that will not become "sour" or soggy. Prop. by offsets from the bulbs.

INDEX.

calatbina, 12.
Caribæa, 7. declinatum, 7. Galvestonensis, 8 . Guianense, 1.

Harrisiana, 6. lacera, 9. littoralis, 4 Macleana, is. macrostephana, 10.
rotata, 9 .
Senegambiea, 5. speciosa, 3. tubiflora, 1.
A. Filaments long and slender beyond the small cup. в. Lvs. distinetly petioled.

1. tubiflora, Salisb. Bulb ovoid, about 4 in. in diam.. short-necked: leaf-blade about a foot long and one-third to one-half as broad at the middle, the petiole 6-12 in. long: scape 1 ft . tall: fls, many in the umbel and sessile, the valves or bracts broad and cuspidate: tube of perianth greenish, 6-8 in. long, the linear white reflexing segments 4 in. long: cup 1 in . long, not toothed, less than half or a third the length of the free part of the filament. Northeastern S. Amer. B.R. 4:265, as Pancratium Guianense, Ker.
2. undulata, Herb. Bulb ovoid, 3-4 in. in diam.: 1vs. with an oblong blade 1 ft . long and half as wide, crossveined: scape 2 ft . long, compressed: fls, about 10 , sessile, the tube 6-7 in. long, and the segments $3-4 \mathrm{in}$. long and linear, white, with tinged red cup an inch long. Venezuela.
3. specidsa, Salisb. Bulb globular, 3-4 in, in diam.: Ivs. 20 or less, large (often 2 ft . long), oblanceolate-oblong and acute, narrowed into a channelled petiole : scape mostly shorter than the foliage, glaucous: fls. $10-15$, on very short pedicels, the bracts or spathevalves 3-4 in. long: tuhe of perianth greenish, 3-4 in. long, the segments often twice longer (entire fl. often 9 in . long): cup about $11 / 2 \mathrm{in}$. long, toothed, the free parts of the filaments little longer than the cup. W. Indies. B.M. 1453. Gn. 47, p, 294. F. 1883, p. 71.-One of the best. The bulb improves with age if care is taken in growing and repotting. The lvs. are evergreen and handsome. Fls. very fragrant, retaining their scent even when dried. Blooms in winter. This and \boldsymbol{H}. macrostephana are the most showy species.

B. Lvs, not petioled, strap-shaped.

c. Perianth tube mostly above 3 in. long.

4. littoralis, Salisb. Bulb $3-4 \mathrm{in}$. in diam.: Ivs. about $12,2-3 \mathrm{ft}$. long, $11 / 2 \mathrm{in}$. broad, acute: scape 2 -edged, 2 ft . or less tall: fls. 4-8 in a sessile umbel, the tube 6-7 in. long and green-tinged, the segments linear and recurved, 4 in. long, joined to the base of the cup: the cup funnelshape, broader and longer, toothed, the free part of the

HYMENOSPORUM

filaments about $2-3 \mathrm{in}$. long: style about equaling the stamens. Tropics. Gin. 53, p. 57.-Long known in eult., but less showy than other species.
5. Senegámbica, Kunth \& Bouché. Lvs. somewhat curved, acute, 2 ft . long, 2 in . broad at the widest place: scape about as long as the lvs.: fls. 6-8 in a sessile umbel, the tube $5-6 \mathrm{in}$. long, segments very narrow and 4 in . long: cup funnel-shaped, 1 in . long and somewhat broader, the free parts of the filaments 2 in. long. W. Africa.
6. Harrisiàna, Herb. Bulb globular, small (less than 2 in. in diam.): Ivs, only $3-6$, a foot long and 2 in. broad, much narrowed below: scape less than 1 ft . tall, slender, glaucous: $\mathrm{fls}, 2-3$ in a sessile nmbel, the tube slender and 3-1 in. long, the segments linear and 3 in. or less long: eup funnel-shaped, $3 / 4$ in. loug, plicate, small-toothed, the free filaments $11 / 2 \mathrm{in}$. long and often exceeding the style. Mex. B.M. 6562.-Flowers in early summer. Hardy South.
cc. Perianth lube mostly under 3 in . long.
7. Caribæa, Herb. (Paneràtinm Caribìum, Linn. P. dectindtum, Jacq.). Bulb globular, $3-4$ in. in diam.: lvs, thin, 12 or more, not 2 -ranked, shining, 2-3 ft. long, 2-3 in. broad at the widest place: scape sharp-angled, nearly or quite as long as the lvs.: umbel sessile, $6-12$ - fld.: tube $2-3 \mathrm{in}$. long, the segments linear and somewhat exceeding it: cup 1 in . long, toothed, the free part of the filaments $1 \frac{1}{2}-2$ in. long. W. Indies. B.M. 826. L. B.C. 6:558.
8. Galvestonénsis, Baker. Scape $1-2 \mathrm{ft}$. long, rather shorter than the linear Ivs.: umbel sessile, $1-6$: perianth tube $2-3$ in. long (sometimes shorter), mostly a little shorter than the linear segments: cup $11 / 4 \mathrm{in}$, or less long, funnel-shape, the edge erect, the free part of the filaments little more than $1 / 2 \mathrm{in}$. long. Texas. - Lately introduced to cultivation with the statement that it "may be planted out in gardens all over the North like a peony and prove bardy." Spring or early summer.
9. lácera, Salisb. (II. rotata, Herb. Pancratium rotatum, Ker). Bulh ovoid, 2 in. or less in diam, with a long neck and producing stolons or runners: Ivs, 6-8, linear, $11 / 2 \mathrm{ft}$. or less long, flat above but concave toward the base: scape 2-edged, glaucous, about as long as the Ivs.: umbel sessile, with $2-6 \mathrm{fls}$.: tube green, $3-4 \mathrm{in}$. long, exceeded by the linear, often recurved lobes: cup saucer-shaped or rotate, irregularly toothed, the free part of the filaments $1^{11} \mathrm{in}$. long. N. Car. to Fla. B.M. 827. L.B.C. 1:19.- Variable, particularly in the dimensions of the fl. Spring or early summer.

1115. Hymenocallis macrostephana ($\times \mathrm{I}-5$).
10. macrostéphana, Baker. Fig. 1115. Closely allied to H. speciosa, and conjectured by Baker to be a hybrid of that species and H. calathina. Bulb with a long neek: Ivs. 8-9, oblanceolate and bright green, 2-3 ft. long: fls. 6-10, large and striking because of the great cup (whence the specific name), which is 2 in. across and as much long, wavy-toothed: tube greenish, 3 in. long: segments
linear-lanceolate, a little longer than the tube. B,M. 6436. Gn. 18:211. - Blooms in Feb, and Nar. One of the best of the Spider Lilies, perhaps the best for warmhouse culture.
AA. F'ilaments short and incurved (usualty tess than 1 in. long) beyond the targe cup. (Ismène.)
11. Macleàna, Nichols. (Ismène Macleàna, Herb.). Bulb ovoid, 2 in. in diam.: Ivs. a foot or more long and nearly 2 in. broad, narrowing towards the base: scape 2 edged, about the length of the lvs.: fls. $2-8$, with a straight tube 2 in. or less long, and linear, erect or somewhat spreading segments as long as the tube: cup corollalike, $11 / 2 \mathrm{in}$. long and green-striped, fringed, the free flaments $1 / 2 \mathrm{in}$. long, strongly inflexed and angled or kneed at the cup. Peru. B.N1. 3675.-One of the plants known to the Peruvians as Amancæs, the subject of festivals. This and the next are intermediate-house species, flowering in spring and summer.
12. calathina, Nichols. (Ismène calathina, Herb. Pancràtium catathinum, Ker). Bulb long-necked: Ivs. $6-8$, somewhat 2 -ranked, strap-shaped, 2 ft . or less long: scape 2 -edged, $11 / 2$ to 2 ft . tall, bearing $2-5 \mathrm{fls}$. in a sessile umbel: tube green, 3-1 in. long, much enlarging above: segments as long as the tube, $1 / 2 \mathrm{in}$. wide, lanceolate: cup corolla-like and green-striped, usually larger than in the last, with rounded fringed lobes; flaments free for $1 / 2 \mathrm{in}$., incurved but not angled. Peru, Bolivia. B. M. 2685.

The following names may be expected in the trade: \boldsymbol{H}. adnata, Herb.-H. littoralis.-H. Amancees, Nichols., is one of the Ismene group, and the only species with yellow fls. B.M. 1224, B.R. 7:600. Gin, 48, p. 168.-H. amona, Herb, = H. ovata (below). - H. Andreäna, Nichols. An Ismene: fi, only 1, the cup nearly or quite as long as the segments. R.H. 1884, p. 129, $468,-H$. crassifolia, Herl. (H, oceidentalis, Britton \& Brown). Ga, to Mo.: lvs. linear, evergreen, thick: fls. with tube $3-5 \mathrm{in}$. long and lipear segments mearly as long: cup much narrowed below. -H. fragrans, Salish. $=$ H. ovata (below) - H. Moritziむna, Kunth. Evergreen, with lvs, like Eucharis : fls. white, fragrant, with greenish tubes, very slender and twice as long as the segments, the cup very short and toothed. Venezuela. G.C. III. 27:K9.-H. ováta, Roem. Lvs, broad and petioled: ifs. 6-10, the tube about 2 in . long, the linear segments little longer: cup 1 in. long. W. Indies. B.R.1:43. B.M. 1467 . L. H. B.

HYMENODIUM, See Acrostichum.

HYMENOLEPIS, See Acrostichum

HYMENOPHYLLUM (Greek, membrane-leaved): Hymenophyllacea. A large genus of filmy ferns allied to Trichomanes, but having a more or less deeply 2 -lipped or 2 -valved involuere. Some 80 species are found in the tropics of both hemispheres. One species appears in wells in England.

Hymenophytlum demissum is a difficult plant to grow. It needs a Wardian ease in a coolhouse, and occasional sprinkling overhead. The members of this genus are propagated slowly by division.
A. Lus. glabrous : rachis slightly winged above.
polyánthos, Swz. Lvs, 2-8 in. long, $1-3$ in, wide, tripinnatifid: sori2-12 to a pinna; involueresmall. Tropics of both hemispheres.
demissum, Swz. Lvs. 4-12 in. $\operatorname{long}, 3-4$ in. wide, 3-1. pinnatifid; sori very numerous, $20-30$ to a pinns; involucre with ovate entire valves. E. Indies to New Zealand.

AA. Lis. pubescent or ciliate.

ciliàtum, Swz. Fig. 1116. Stalks ciliated and winged above: Ivs. 2-6 in. long, 1-2 in. wide, tripinnatifid, the segments ciliated; insolucre roundish, the valves divided half way down and ciliated. Tropies of both hemispheres.
æruginòsum, Carm. Fig. 1117. Stalks tomentose: Ivs. 2-3 in. long, 1 in. or less wide, tripinnatifid, the pinna often imbricate, the surface and margins densely pubescent ; involucres small, with valves divided nearly to the base, densely ciliate. Tristan d'Acunha.
L. M. Underwood and Robert Shore.

HYMENOSPORUM (Greek, referring to the 2 -winged seeds which distinguish it from Pittosporum). Pittospordeec. This includes an ornamental shrub, cult. only
in S. Calif. It has corymbs of tubular yellow fls. each 1 in, or more across. The genus has only one species, an evergreen Australian shrub, with the habit of Pittosporum and resembling that genus in having thick, leathery capsules and an indefinite number of seeds, but in Pittosporum the seeds are thicker, not so much flattened and not winged.
flàvum, F. Muell. Lvs. usually alternate, sometimes opposite or subverticillate, becoming nearly 9 in , long, obovate, leathery, entire: corolla with 5 obovate lobes, silky outside, marked with red at the throat ; stamens 5. B.M. 4799.

HYMENOXYS Californica is Actinolepis coronaria

1116. Hymenophyllum ciliatum. ($\times 1 / 2$.)

1117. Hymenophyllum æruginosum. Nat. size.

HYOPHORBE (Greek, food for swine; referring to the fruits, probably). Palmacea. Three species of pinnate palms from Mauritius, 2 of which are cult, under glass North and outdoors South. Much of their distinctive beauty is in the color of the petiole and rachis, which in H. Verschaffeltii is yellow, while in H. a maricaulis the petiole is maroon and the rachis orange. The first species also has its leaves handsomely veiued with white.

These two species are highly ornamental palms, and are frequently found in trade collections. They would probably be grown in greater quantities were it not for the fact that they are not very rapid growers while in a young state. They are naturally heat-loving plants, and flourish under similar treatment to that recommended for the paln commercially known as Areca lutescens, namely, a good loamy soil well enriched with stable manure and with a moderate addition of bone dust, firm potting, an abundance of water, and a night temperature of 65°, while in common with palms in general when grown under glass, it is found necessary to shade from full sunshine during the period between March 1 and November 1.

Of the two species, H. Verschaffeltii is much the bet ter, and is one that should he found in all collections, its stout and usually triangular stem and well furnished foliage giving it a distinction that readily attracts attention. Seeds of Hyophorbe should be sown in a light compost, pure peat giving good results for this purpose, the seed pots being placed in a bottom heat of 80° and kept moist. The seedlings are delicate in their earlier stages, and should be kept in a warm place until thor-
oughly estabished; they also require careful watering, the roots of these small plants being quite tender.

Hyophorbe is allied to Chamadorea and Roscheria, which are cultivated. Hyophorbe is spmeless and the leaf segments are acuminate, while Roscheria has spines and segments 2-cut at the apex. In Hyophorbe the fls. are moncecious in the same sparlix and disposed in small, elongated heaps: in Chamedorea the fls, are dioecious or monoecious in different spadices and spirally disposed. Hyophorbe contains stout, spineless palms with ringed caudices, cylindrical, or swollen below the middle or interruptedly swollen: Ivs. terminal, equally pinnatisect, the subopposite segments linearlanceolate, acuminate, plicate-nerved, with the thickened margins recurved at the base; petiole subeylindrieal, the upper surface slightly furrowed, 3-sided at the base; sheath large, swollen, entire: sparlices with short peduncles, twice-branched, the branches slender, spreading; spathes numerous, imbricated in 2 rows: fls, pale green or yellow: fr. small, pear-shaped or olive-shaped, straight or curved, gibbous or bigibbous at the base, orange or blue.
amaricaùlis, Mart. (Arèca speciosa, Hort.). Palm 60 ft . high, with a bottle-shaped caudex, $15-24 \mathrm{in}$. in diam. near the base, slightly diminishing upwards to the base of the leaf-sheaths and there abruptly constricted : petiole 12-18 in. long, somewhat trigonous, grooved on the face ; seguents in $40-60$ pairs, 18 in. long, 2 in. broad, with the central and 1 lateral vein on each side prominent above, the veins clothed below with ratber rigid, lanceolate, appressed scales 1.H. 13:462. - Mauritius.

Verschafféltii, H. Wendl. (Arèea Verschafféltii, Hort.). Caudex 25-30 ft. high, 6-12 in. in diam. at the base, bulging after a few feet, reaching $12-24$ in. in diam. in the middle, thence contracting upward: petiole 3 in . long, subterete, slightly grooved on the upper surface, with a yellow band extending from the upper part of the leaf-sheath along the face of the petiole to the base of the blade; segments in $30-50$ pairs, $20-30$ in. long, 1 in. wide, only the central vein prominent, clothed on the under surface toward the base with short, linear scales. Mauritius. I.H. 13:462. G.C. 1870:418.
H. Commersoniàna, Indica and lutéscens are Chrysalidocarpus lutescens, though H. Indica is given as a good species by Index Kewensis. Jared G. Smith and W. H. Taplin.

HYOSCY゙AMUS (Greek, $\log ^{\prime}$'s bean). Solandceæ. Henbane is a coarse, clammy, ill-smelling, annual or biennial wayside weed which is cultivated for medicinal purposes. An extract is commonly sold in drug stores. About 15 species of herbs, biennial or perennial, pilose or glabrous: lvs. wavy-margined, coarsely toothed, or pinnatifid, rarely entire : corolla pallid, or lurid and netted-veined, funnel-shaped, with 5 unequal lobes : capsule circumscissile above the middle. The nearest ally of garden value is Datura. Henbane grows wild in Eu., W. Asia and Himalayas and is naturalized in Amer. It is found in sandy and waste places. Seeds ean be obtained by the pound or less. For medicinal purposes, only the leaves of the second year's growth should be used.
niger, Linn. Annual or biennial, 1-21/2 ft. high: lvs. $3-7$ in. long, the upper ones stem-clasping, irregularly lobed or pinnatifid: fis." greenish yellow, with purple veins. June-Sept. B.B. 3:138.

HYPERICUM (old Greek name of obscure meaning used by Dioscorides). Hypericacca. Sr. John's-Worr. A genus of about 200 species, consistiug of berbs, un-der-shrubs and shrubs, and scattered over the whole world, but particularly abundant in S. Europe, W. Asia and N. Amer.; few species of any value in the garden. The leaves are opposite, oblong or lanceolate, exstipular, sessile or subsessile, entire, subevergreen or deciduous, dotted with pellucid or opaque glands, rich in volatile oil. Flowers polypetalons, terminal, solitary or disposed in single or compound cymes, appearing July-Oct., but particularly in early August ; sepals 4-5, more or less united at the base and unequal, petals commonly yellow, $4-5$, oblique or contorted, hypogynous, alternate with the calyx; stameas numerous, free or connate, in

3-5 clusters, sometimes with interposed hypogynous glands: ovary free, 1-celled, with a central placenta or incompletely or completely 3-5-celled, sometimes longitudinally furrowed: fr. a berry or capsule, with numerous seeds borne upon the placenta or introflexed margins of the carpels: styles 3-5, free or united, persistent.

The Hypericums grow 6 in . to 5 ft , high, of erect to prostrate habit, most of them tender or of uncertain bardiness, requiring some winter protection. Many kinds from the southern United States and southern Europe, otherwise good, are unreliable from lack of hardiness. Several N. American species not yet in cultivation are ornamental and bardy. The few useful species furnish a brilliant color, blooming when most shrubs do not. All are of simple culture, succeeding in almost any garden soil, but generally preferring a ligbt, warm land; hence useful in sandy soils, flowering later and longer if partly shaded. They are prop. by seeds, suckers, cuttings and strong pieces of ereeping-rooted kinds. The twigs are terete, 2 -angled or 4 -angled. The smaller species are useful as rock-plants, the larger as border plants, in the front of shrubberies or in unmixed masses. Their commou name, St. John's-Wort, comes from the fact that the common people of some European nations used to gather the flowers of \boldsymbol{H}. perforatum to decorate their dwellings on St. John's Day. The Hy pericums are mostly short-lived, and need renewal every 6-7 years.
adpressum, 9. Androsiemum, 8 Ascyron, 1. aureum, 20. axillare, 14. Buckleyi, 10. calyeinum, 5 . Chinense, 23. cistifolium, 21 densiflorum, 13. elatum, 17. elegans, 11

INDEX.

fastigiatum, 9. floribundum, 18. foliosum, 22 . gladioides, 14. hircinam, 16. Hookerianum, 2. Japonicum, 12. Kalmianum, 6, 22. lobocarpum, 7. топоgупит, 23. Moserianum, 4. multiflorum, 19

Nepalense, 3. nudiflorum, 21. oblongifolium, 2 patulum, 3 prolificum, 22. pyramidatum, 1. salicifolium, 23. spharocarpon, 15. tricolor, 4. triflorum, 2. Vralum, 3. Virginicum, 24.
A. Flowers yellow.
B. Styles 5.

c. Plant herbaceous.

1. Ascyron, Linn. (II. pyramidd̀tum, Dryand.). Upright perennial, $2-6 \mathrm{ft}$. bigh, with tetragonal stems: lvs. clasping, ovate-oblong or ovate-lanceolate, acuminate from the base, $2-5 \mathrm{in}$. long: cymes terminal, 3 - 12 -fld., appearing in July; fis, 1-2 in. in diam.; sepals small, ovate-lanceolate; petals thin, narrowly obovate or oblanceolate, curiously shaped and twisted, persistent until withered; stamens in 5 clusters; styles somewhat spreading; stigmas capitate: capsule ovoid, $3 / 4 \mathrm{in}$. long. - A somewhat coarse and ungainly plant living on river banks, native to both North America and N. Asia. B.B. $2: 429$. - Toward fall apt to be unsightly through the lower lvs, dying and remaining.

cc. Plant shrubby or suffruticose.

D. Stems terete.
2. Hookeriànum, Wight \& Arn. (H. oblongifoltium, Hook., not Choisy, H. triflorum, Blume). A suffruticose species, $21 / 2 \mathrm{ft}$. high, thin growing: Ivs, among the largest of the genus, $1-4 \mathrm{in}$. long, evergreen, ovate or oblong, sessile, dark blue-green ahove, pale and glaucous below, minutely pellucid punctate : corymbs severalfld., of large golden yellow fls. in profusion, 2-3 in. in diam.; sepals large, obovate; petals very large, firm, sub-rotund; stamens in 5 clusters; styles recurved, longer than the stamens: ovary broad-ovate, longitudinally furrowed. - Considered to be one of the best species because of its large fls, and hardiness. August. From the higher altitudes of the Himalayas. B.M. 4949. Gn. 54, p. 490.-Easily prop, by cuttings.
3. pátulum, Thunb. (H. Vràlum, Don. H. Nepalénse, Hort.). An evergreen spreading under-shrub, $11 / 2-2 \mathrm{ft}$. bigh, with many smooth, purplish arching branches: Ivs. ovate-lanceolate, acute, without dots: fis. many, solitary or in cymes, large, 2 in. in diam., of good substance; sepals suhorbicular; styles recurved: capsule ovate, more or less longitudinally furrowed. Japan, China and the Himalayas. Not very hardy, but one of the
best where it succeeds. Gn. 54, p. 491. B.M. 2375, 5693. R.H. 1875:171. - Not so showy as some American species, but graceful and delicate, and one of the best for rock-gardens. Earliest to bloom.
4. Moseriànum, André. Gold Flower. Hybrid raised by Moser, of France, from H. patutum and II. calycinum, generally resembling the latter but lacking its coarseness, and surpassing both parents in good qualities. A glabrous subshrub 2 ft . high, erect, with the tips of the branches pendulous: lvs. similar to those of H. calycinum, ovate-obtuse-mucronulate, opaque, 2 in. long, dark green above, pale helow: inflorescence with 1-3 fls. per stalk, which are golden yellow, 2 in. in diam., blooming for some time: calyx of foliaceous oblong sepals; corolla of broad rounded petals, their color beight ened by the many tufted yellow stamens with reddish anthers: capsule top-shaped. July, Aug. R.H. 1889, p. 464. Gin. 54:1201. R.B. 16:97. G.C. I1I. 10:333,-Not bardy in N. England, but successful farther south. Not good individually, but good in masses, better adapted to the berbaceous border than the shrubbery. May be used as a pot-plant. Var. trícolor. Variegated form of white and green edged with red. Habit like H. patulum, but more horizontal, the Irs. smaller and narrower: fls. one-fourth the size of those of \boldsymbol{H}. Moserianum but similar. Less hardy.

DD. Stems angled.

5. calyclnum, Linn. Rose of Sharon. Aaron's Beard. A subshrub, 1 ft . or less high, with many procumbent or ascending stems occurring in thick tufts: lvs. ovate, evergreen, leathery, dark green, glaucous below, $2-4 \mathrm{in}$. long, filled with pellucid dots: fls. large, solitary, or 2-3 together, 3 in . in diameter; sepals large, obovate, spreading; stamens long and showy, in 5 clusters, with red anthers; styles shorter than the stamens, divergent: capsule ovate, 4 in. long. July-Sept. B.M. 146 . - A rapidly spreading plant, creeping by woody rootstalks completely covering the soil. Used as a ground cover abroad. Not very hardy in New England, the annual killing-hack preventing its covering wide stretches, but not destroying its bloom each year, nor its usefulness in the berbaceous border, or in the margin of a shrubbery. May be protected, and its dark, persis tent foliage preserved. Thrives in sun and moderate shade. From Greece and A sia Minor. Prop. by root and ripe wood cuttings.
6. Kalmiànum, Linn. A shrub, 2-3 ft. high, with rather contorted stems: lvs, oblong-linear, or oblanceolate, $1-21 / 2 \mathrm{in}$. long, bluish, more or less glaucous below, crowded: fls. small, $1 / 2-1 \mathrm{in}$. in diameter, in $3-$ severalflowered cymes; sepals foliaceous oblong; stamens dis tinct; styles united below to form a beak: capsule ovoid, longitudinally furrowed. (+ .F. 3:113. Mn. 6:141.-A rare species, confined to tbe rocks and sands of Niagara and the northern lakes, enduring considerable dryness. Easily adapted to the garden, succeeding in the shade. Not so showy in fl. as some other species, but good because of its bright, narrow lvs, and bardiness.
7. lobocárpum, Gattinger. Upright, hardy shrub, [1/2 ft . high, in the South $5-7 \mathrm{ft}$.: lvs, oblong-lanceolate or linear-lanceolate, obtuse or barely acute, $11 / 2-2 \mathrm{in}$. long: fls. profuse, small, in many-flowered naked cymes; sepals linear-lanceolate; stamens numerous; styles connivent: capsule oblong, 5 -angled, furrowed. Last of August. Tenn., where it frequents marshes. G.F. 10:453. -Straggling plant of inferior quality.

BB. Styles 3.

c. Fruit a berry: lvs. ovate.

8. Androsæmum, Linn. (Androsì̀mum officinále, All.). Sweet Amber. Common Tutsan, A dense undershrub with erect, quadrangular stems: Ivs. ovate, 4 in. long, subcordate, minutely dotted, dark green, whitisb below: fls. solitary or in cymes of 3-9, large, light yellow; sepals ovate; stamens in 5 clusters, longer than the corolla; ovary subglobular or oval, incompletely 3-celled; styles divergent, persistent: fr. berry-like, blackish violet, the size of a pea. June-Sept. Lives in shady, wet places, W. Europe, - Not yet proved bardy at the North. Fls, not particularly attractive, but good in fruit and foliage. All parts very aromatic.

CC. Fr. a capsule,1-ふ-celled.

D. Plant low, 6-15 in. high.
9. adpréssum, Barton. (H. fastigiàtum, E11.). Practically a herbaceous perennial, erect from a creeping or decumbent base, growing in dense masses: Irs, oblong or lanceolate, $1-2 \mathrm{in}$. long, acute, thin: cymes few-sev-eral-flowered. July, August. Moist places, Nantucket, Mass., south. B.B. 2:431. Spreads rapidly by underground stolons, suggesting oceasional use as a ground cover. Not very hardy in New England.
10. Bùckleii, M. A. Curtis. Later written Buckleyi. Dense shrub, with slender, 4 -angled stems, forming neat, rounded tufts: Ivs, bluish, broadly ovate oblong, $1 / 2-21 / 2$ in. long, rounded at the apex, gradually narrowed at the base, pale below, becoming scarlet in autumn: fls. solitary or in cymes of $3, I$ in. in diam.; sepals ovate ; petals striated and strap-shaped; styles connate: eapsule oblong-ovoid, large. June, July. Found only in the highest mountains of the Carolinas and Ga. G.F. $4: 581$. -Adapted to rockeries and margins of small shrubberies.

I1. élegans, Steph. A low perennial, I-11/2 ft. high. with erect, winged stem filled with black dots: lvs. ovate-lanceolate, rather clasping, bright green: fls. racemose, 1 in . in diam., appearing in late summer and autumn; sepals ovate, much shorter than the petals, the stamens somewhat longer: capsule ovoid, witb 3 apices. - A scarcely hardy plant from Siberia.
12. Japonicum, Thunb. Decumbeyt, with ovate or oval 3-nerved clasping lvs. $1 / 2 \mathrm{in}$, or less long, the stems 4 -angled, $2-\mathrm{I} 5 \mathrm{in}$. tall : fls. $1 / 4 \mathrm{in}$. across, yellow, with petals equaling the linear-lanceolate sepals and bracts; styles one-third the length of the ovary. Japan to India. - Perennial ; but Hooker (Flora of India) says it is annual. Blooms in spring. Not hardy North.

DD. Plant higher, 2-4 ft.

E. Leaves linear.

13. densiflòrum, Pursh (\boldsymbol{H}. protificum, var. densifldrum, A. Gray). A shrub, closely related to H. prolificum, but rarer: stems erect, stout, densely leafy, 4-6 ft. high: Ivs. variable, broader and oblong like those of H. prolificum, or narrower and linear-lanceolate like those of H. galioides, 1-2 in. long, mucronulate: fls. $1 / 2 \mathrm{in}$. in diameter, in broad, dense, many-fld. cymes; sepals narrow, not foliaceous; stamens distinct; styles connate: capsule completely 3 -celled, short and slender, longitudinally furrowed. July-Sept. Pine barrens, N. J., and south. Mn. 4:97. G.F. 3:527.-R.H. 1899, p. 517, 518. Not well known, but appears to be hardy.
14. galioides, Lam. (H. axiltare, Lam., not Michx.). Practically suffruticose, but sometimes occurs as a round, compact shrub: stems erect, 3 ft . high, slender: Ivs. linear, mucronulate, dark green, crowded, $1-3$ in. long: fls. in dense, many-fld. cymes $1 / 4-1 / 2$ in. wide; sepals linear, foliaceous, equal, sborter than the narrow petals; stamens distinct; styles at first connate, becoming free: capsule conical, completely 3 -celled, acute, longitudinally furrowed. July-Sept. Natural to low, wet grounds, Delaware to Fla, but grows freely in rich garden soil. G.F. 10:433. G.C. 11I. 24:301,-Seems to be perfectly hardy. Easily raised from seeds. Not well known.
15. sphærocárpum, Michx. Erect perennial, 1-21/2 ft. high, 4-sided: Ivs. linear or linear-oblong, obtuse, I-2 in. long: cymes of many small fls. $1 / 2$ in. in diameter, nearly leafless; sepals ovate, mucronate; petals 3 times longer; stamens numerous, distinct; styles united below: capsule globose, $1 / 4 \mathrm{in}$. long. July. Frequents rocky banks of rivers, Ohio and Ky.; satisfactory in light, sandy soil. -Spreads rapidly by stoloniferous roots, covering the soil and preventing washing. Not very ornamental. Half-hardy North.

EE. Lvs. broadly lanceotate or ovate: sepals ovate.
F. Stamens and styles longer than the petals:
styles divergent.
16. hirclnum, Linn. Glabrous subshrab of round, compact habit, $2-3 \mathrm{ft}$. high, the branches winged toward the tips: 1vs. ovate-lanceolate, acute, glandular, 1-2 in. long, deep green: fls. $\mathrm{I} 1 / 2$ in. wide, solitary or 3 -clustered; sepals deciduous, one-third to one-fourth the length of
the lance-oblong petals, which are of a deeper yellow tban in the other species; stamens very long; styles spreading, longer than the stamens: capsule ovoid, pointed. July-Aug.-Species characterized by the strong, goat-like odor of the lvs. (hence the name). Of easy cultivation, but requiring a dry position and winter protection. Mediterranean region. Var, minus, Wats. Dwarfer, with smaller Ivs, and tis.; as pretty and freeblooming as the type, and, in the rock-garden, preferable.
17. elàtum, Dryand. Strong, tufted undershrub, recalling H. Androsomum, 3-4 ft. high, 1 ot quite hardy, sometimes credited to the United States, but really from the Canaries: lvs. oval, 11/2-3 in. long, dark green, whitish below, acute: As. numerous, 1 in . in diameter, in 3-7-flowered cymes; sepals ovate-oblong; stamens distinct; styles prolonged, distinct: eapsule oblong, small. July.
18. floribundum, Dryand. A subshrub, with round, glabrous stems: Ivs. lanceolate-elliptic, ligbt green, without dots, numerous, $1-11 / 2 \mathrm{in}$. long: fls, in few- to manyflowered panicles, $11 / 2-2$ in. in diameter, with dilated peduncles: sepals somewhat acute; stamens numerous, shorter than tbe petals, petals and stamens persistent; ovary oval; styles long, divergent, with capitate stig-mas.-From the Canary and Madeira lslands. Not hardy North, but in cultivation in S. California. Grows very rapidly to the height of about 12 ft . Generally prop. from seeds, which are produced freely.
19. multiflòrum, Hort., not HBK. A supposed hybrid between H. Androsamum and $H_{\text {. elatum, assuming an }}$ intermediate form, but more closely resembling H. elatum. It also resembles \boldsymbol{H}. hircinum, but is more shrubby and taller. Lvs, ovate-oblong, acute, somewhat clasping, I-2 in. long: fls. in profusion, several in a cyme, 1 in . wide, lasting two weeks; sepals small, ovate reflexed; styles spreading: capsule oblong. July.-Not very hardy.

1118. Hypericum aureum $(\times 1 / 3)$.

FF. Stamens and styles shorter than the petals: styles connivent.
20. aùreum, Bartram. Fig. 1118. Showy sbrub 3 ft . high, more woody than most species, of stiff, dense habit, top often globular like a miniature tree, the branches 2 -edged, with thin, exfoliating red bark: lvs.
oblong, mucronate, bluish, pale below, leathery : fls. solitary in the native state, in cymes of several in cultivation, $11 / 2-2$ in. in diam., bright yellow, heightened by the golden filaments at the center; bracts leat-like, lasting two weeks; sepals leaf-like, ovate, shorter than the thick, broad petals, which persist until withered; stamens distinct, very numerous; styles connate: capsule ovate acuminate, red. July-Aug. Affects rocky situations when wild, generally shady, where moisture is longest retained, from Ga. and Tenn., but perfectly hardy in Mass. G.F. 2:185. - Prop. by seeds and cuttings, young plants from seed blooming the second year.
21. nudiflorum, Michx. $(\boldsymbol{H}$. cistifolium, Coulter, not Lam.). Showy subshrub, 1-2 ft. high, with quadrangular winged branches: Ivs, ovate-lanceolate or oblong, subacuminate or obtuse, $2-3$ in. long, thim, veiny, pale above and below, with minute reddish dots: cymes leafless, loosely flowered, of many small fls; sepals linear to oblong; styles united: capsule ovate-conical, $1 / 4 \mathrm{in}$. long. N. C. and S.-Ornamental and of easy cultivation.
22. prolificum, Linn. (H. folìsum, Jacq. Myriándra prolifica, Spach). A stout, dense shcub, 3 ft . bigh, with terete branches and exfoliating light brown bark, the twigs 2 -angled: Ivs. oblong or oblanceolate obtuse, 1-3 in. long, glossy, dark green, pellucid, punctate: fls. in profusion, $\mathrm{I}_{2} / 2 \mathrm{in}$. Wide, in several- to many-flowered cymes; sepals lance-orate; stamens numerous, distinct ; styles united at the base: capsules large, oblong, $1 / 2 \mathrm{in}$. long. July-Sept. Found in sandy or rocky soil, New Jersey to Lowa and (ieorgia; oue of the most commonly cultivated. G.F. 3:526-A strong, hardy shrub. Grows rapidly in ordinary garden soil, flowering regularly and profusely. Varies greatly in size.

BBB, Styles united throughout.

23. Chinénse, Linn, (H. monógynum, Willd. H. salicifolium, Sieb. \& Zucc.). Shrubby, half evergreen: lvs. narrow, elliptic and obtuse, 1-2 in. long: fs. large, yellow, with lone stamens resembling "fine golden wire." Mar.-Sept. Orient. G.C.1I1. 1:705, -Said to be known only as a garden plant. Tender. Grown under glass in parts of the Old World.

AA. Flouers pink.

24. Virginicum, Linn. (Elorlèa campanulata, Pursh. Etoder Jirgfnica, Nutt.). Marsh St-John's-Wort. Smooth perennial, 1-1/2 ft. high, nearly simple: 1vs. numerons, oblong or oval, cordate, clasping, rounded, I- $21 / 2$ in. long: $\mathrm{Hk} .1 / 2$ in. in diam., pink-or flesh-colored, in small, close cymes; sepals equal; petals oblong; stamens at least 9 in 3 sets; styles distinct: capsule oblong. July, Aug. In swamps, Labrador to Louisiana. B.B. 2: $436,-$ Useful plant for an artificial bog, and thrives well also in any fine, loamy soil in the shade or sun.
H. Egypticum, Linn. Dwarf shrub, with very small yellow lvs. and minute, solitary tis. in profusion. Not hardy. Mediterranean region. G. C.II. 14:503.-H. Baleàricum, Linn. Curious evergreen species, with small oblong lvs. $1 / 2$ in. long, warty beneath and on the twigs: Hs. few, large, Solitary Not very hardy. Mediterranean region. $-H$, Coris, Linn. Procumbent shrub, with linear lvs. in whorls, flowering May-Sept. Not hardy. Central and S. Europe.- H, dolabriforme, Vent. Proeumbent perennial, with ascendiug stems $6-20 \mathrm{in}$. high, with small narrow lvs. and fls. 1 in . wide. Not tery hardy. Ky, and S. - H. Elodes, Huds. Procumbent perennial, with round-ovate, tomentose lvs. and few-flowered, pale yellow panicles. Suitable to boggy places. Europe, $-\boldsymbol{H}$, empetrifolium. Willd. Neat, evergreen subshrub in patches, 6-12 in. high, with fine lvs. and fls. Not hardy. $-\boldsymbol{H}$. fasciculatum. Lam. Tall shrub, $3-6 \mathrm{ft}$., erect, with numerous small linear lvs, and small fls., and frequenting marshy places South. Not tested North.-H. inodorum, Mill. Dense arching or pendulous shrub, $1 \frac{1}{2} \mathrm{ft}$. high, with oblong lvs. And few fis - \boldsymbol{H}. nummulảrium. Linn. Perennial, from the Pyrenees, with sscending stem and orbicular lvs.H. Olympicum, Linn, Evergreen shrub, with lanceolate lvs, and fls. 1-2in.wide, with narrowpetals. Gin. 30:590.-H.opácum,Torr. \& Gray. Southeru shrub, 1- ft , high: lvs, small, pointed, numerous: fis. small, in many-flowered cymes: stems erect, slender. Half hardy North. G. F. 5:305.-H. orientàle, Linn. Halfhardy, erect perennial, $6-12 \mathrm{in}$. high, with linear lvs. Asia.H, perforatum, Linn. The common perennial species of the fields naturalized from Europe, with elliptical oblong or linearoblong lvs. and numerous fls. in leafy, open cymes. $-H$. puilchrum, Linn. Central European species, with cordate connate lvs. Not hardy,-H, ramosissimum. Hort. Dense, npright and slightly pendulous shruh, $11 / 2-2 \mathrm{ft}$. high, with large elliptical lvs. and fls. in clusters. Hardy. A. Phelps Wrman.

HYPH\&NE (Greek, to entuine; referring to the fibers of the fruit). Palmàcea. About 11 species of fan-leaved palms from tropical Africa and Madagascar. The Borassus tribe of palms consists of Borassus, Lodoicea, Latania and Hyphzna. In the first two the staminate fls. in the pits of the spadix are numerous; in the last two they are solitary. In the first and fourth there are few stamens; in the second and third the stamens are numerous. Hyphæne consists of unarmed palms of moderate or tall stature : caudex robust, eglindrical, ventricose or pear-shaped, simple or forkingly branched: lvs. terminal, orbicular, palmate-flabelliform, plicatemultifid; segments ensiform, acute or 2 -fid, margins induplicate with fibers interposed: rachis short: petiole strongly biconvex or a trifle flatter above, margins minutely spiny: ligule short, rotund; sheath short, open.

Hyphene crinita does not look at all like Latania. It has long, thick seed-leaves, and has withstood the cold at Oviedo, Fla., better thav any other palm. It is extremely slow of growth, and cannot be desirable as a house plant. It is probably cult. more in northern conservatories than in the South.
crinita, Gartn. (H. Natalénsis, Kunze). Young fronds 1 to $11 / 2 \mathrm{ft}$. long, lanceolate, bi-or trifid at the apex, bright green, clothed on both sides with a white
\qquad

\qquad

bloom which soon vanishes, plicate, scabrous on the margins and nerves above; petiole sheathed for 1 or 2 in., deeply channeled above, rough on the margins: fruits obovate, $2^{\frac{1}{3}}$ in. long, smooth. S. Africa. Cult. outdoors in S. Fla.

Jared G. Smith and E. N. Reasoner.

HYPOCRITE PLANT. Euphorbia heterophylla.

HYPOLLEPIS (Greek, a scale underneoth). Polypodidece. A genus of ferns with marginal sori, placed in the sinuses of the leaf, covered with the membranous leaf margin. Tropical ferns of both hemispheres rarely cultivated. Ten or more species are known.
rèpens, Presl. Stalks straw-colored, more or less prickly: lvs. 3-4 ft. long, quadripinuatifid; lower pinna 1-2 ft. long, $6-12 \mathrm{in}$. wide, ovate acuminate: sori $2-6$ to a segment. West Indies to Brazil.
Hypolepis repens is a rather coarse fern, of easy culture, with the general appearance of a Cyathea. Like all strong-growing ferns, it requires a large percentage of loam. It likes shade and moisture at all times, and is readily propagated by spores, which it produces in great quantity. It often sows itself, and requires a stove or intermediate temperature.
H. Californica. See Cheilanthes Californica.
L. M. Underwood.

HYPOXIS (old Greek name, of no application to these plants). Amaryllidaceo. Star-Grass. Ahout 50 species of little herhs of temperate and tropical regions, with linear leaves, hard rootstalks or corms, perianth adnate to the ovary, and anthers not versatile. They are scarcely known in cultivation, although the common species of the northern states, H. erecta, Linn. (\boldsymbol{H}. hirsùta, Coville), Fig. 1119, is offered by dealers in native plants. The lvs. are radical, hairy, grass-like: fls, 1-6, small, star-like, hright yellow, on scapes $4-10 \mathrm{in}$. tall. Give a half-shady place in the rockery or border. Prop. by division. Blooms in spring. Not showy, but interesting. D. 143. G.W.F. 39. H. stellata, Linn. f., from S. Africa, is a pretty greenhouse bulh, blooming in Dec.: 1rs. 4-12, glabrous, a foot or less long: peduncles sometimes forked, 1-4, hearing fls. white inside, and the outer segments green-striped on the back.

> J. B. Keller and L. H. B.

HYSSOPUS (ancient name; but precisely what plant was the sacred Hyssop of the Jews is uncertain). Labitto, Hyssop. Hyssop is a familiar plant, cultivated for medicine and also for ornament in hardy horders. It is considered a genus of only one species, the numerous synonyms being referred mostly to H. officinalis or to the genus Lophanthus, 2 species of which are cult. Hyssopus has entire lvs.: Lophanthus has serrate lvs. Important generic characters of Hyssopus are the 15 -nerved calyx and divergent stamens: upper lip of corolla 2 -lohed; lower 3-lobed: stamens 4 , didynamous, 2 of which are exserted.
officinalis, Linn. Fig. 1120. Stems herhaceous from a woody base, slender, branched or not: Ivs. linear to
oblong, sessile or nearly so, acute at both ends or the lower ones ohtuse at the apex, $11 / 2-2$ in. long. B.M. 2299. B.B. 3:110. Var. \&lba, with white fls.. is cult.

Hyssop is a hardy perennial shruh, growing 18 in. tall, which has been naturalized in the United States from southern Europe or Si beria. Lvs, narrow and entire: fls., which appear from June to September, blue, sometimes white or pink, borne in whorled spikes, which are more or less interrupted. The whole plant has a strong odor aud pungent, hitter taste. The green parts are used in connection with wormwood and other plants in the manufacture of absinthe, occasionally as a pot herb, and as a flavoring for cold salad plants. The powdered, dried flowers are similarly employed in soups. The flower spikes are cut just as the hlossoms hegin to open, and are dried for use in domestic medicine as a stimulant and expectorant in the treatment of asthma, coughs and other pulmonary troubles. Hyssop is not now so highly esteemed as formerly by the medical profession.

This plant is readily propagated by seed, cuttings and plant division. The seed, generally employed in cold climates, is sown in early spring, either in drills 15 to 18 inches apart where the plants are to remain, or hroadcast in nursery beds for transplanting, 12 inches asunder in

1120. Hyssop-Hyssopus officinalis ($\times 1 / 2$). June or July. Propagation hy cuttings aud hy division may be done in the autumn, but better in the spring, when the plants first start to grow. Greenwood cuttings may be started in the shade in the early summer. They need to be well watered. The soil should he a light, mellow, calcareous or sandy loam, with a warm aspect. Culture and harvesting are the same as for sage, mint and other herbs. The beds should be renewed every three or four years.
M. G. Kains.

IANKPA. A misprint for Jancæa, See Ramondia.
IBERIS (from Iberia, the ancient name of Spain, where the genus is abundant). Crucifer(e. A genus of qbout 30 species, native to soutbern Europe, western Asia and northern Africa, all low-growing annuals, biennials and subshrubs. Comparatively few species are cult. The annuals are the common Candytuft of gardens. The biennials are not cultivated. The subshrubs are flat, dwarf, compact, commonly evergreen plants, with dark green Ivs., completely covered with broad, flat or elongated clusters of irregular eruciferous fls. in spring.

The annuals are showy branching plants, 6-18 in. high, much grown in masses in beds or for edging. Florists grow them also, especially the white varieties, for cut-flowers. They are of easy cultivation, and succeed in any rich garden soil, in a place exposed to light and air. They are propagated by seeds, which may he sown at any season, in the house or open ground, but particularly in the fall when the climate permits, or as early as possible in spring, in rows $6-8$ in. apart where the plants are to grow, the plants being thinned later to 4 in. apart in the row. The tinest display is attained from autumn-sown plants, which flower from May to July. If seed is sown in autumn, the plants should be slightly protected from the sun during winter. Seeds sown early in the spring bloom from July to September. Continuous bloom may be obtained by sowing every two weeks. Good results are attained by sowing under glass and transplanting into open ground when the soil is warm. The name Candytuft was given because the fls, appear in tufts and because the first introduced species, I. umbellata, was brought from Candia.

The subshrubby species are adapted to the front of shrubberies, where they connect taller plants with the surrounding lawn. They may appear in separate clumps, in broad masses, or may mingle with other genera in the berbaceous border. They are suited to rockeries, and hang well over walls and ledges. They are to be treated much like herbaceous perennials. They are plants of refinement, and are pleasing when close to the observer. They are useful and popular for cut-flowers, are easily forced into bloom in winter, and are adapted to pot and pan culture. They are easily propagated. The perennial Iberis succeed best when let alone. Once planted and not disturbed, they soon form a dense foliage. They are the best spreading, dwarf plants with white flowers.

Iberis is a genus of glabrous or minutely downy plants, with terete stems and pungent, watery juice: lvs, alteruate, without stipules, linear or ohovate, entire or pinnatifid, often flesby: fls. perfect, in terminal corymbs or racemes; sepals 4, iuferior, deciduous; petals 4, hypogynous, white or purple, obovate, with short claws, very unequal, opposite each other in pairs, their spreading limbs forming an irregular cross, the two outer petals much larger and about equal in size: pods or silicles roundish or ovate at the base, flattened at right angles to the narrow partition, notched at the top, in which stands the permanent style, the 2 valves boat-shaped, the keel or midrib expanding into a wing, the cells I-seeded. The characters of Iberis as distinguished from other Cruciferm are taken almost wholly from the pods and seeds, the fls being similar to most cruciferæ except that they are irregular.

A. Phelps Wrman.

The common white-fld, annual Candytuft is I, amara. The common annual kinds with colored fls. are I. umbellata. The common perennial kind is I. sempervirens. The clusters of some kinds remain rather flat-topped when they run to seed, while the clusters of other kinds lengthen after flowering. This is expressed in technical language under A and AA in the key which follows:
A. Inflorescence racemose in fruit.
B. Annuals: stems not woody at the base.
c. Lobes of the pod erect. D. Les, foothed....... 1. amara

DD. Le's. pectinate(i.e., dirisions deeper,
narrou'er, and farther apart)... 2. pectinata
cc. Lobes of the pod
spreading.
D. Les. merely toothed 3. odorata

DD. Les. deeply cut (pinnatifid) 4. pinnata
Bв. Perennials: stems woody at the base.
c. White in flower ruce-
mose 5, sempervirens
cc. While in flower corymbose.
D. Margin of les. entire.
E. Form of les. linear.
F. Apex of lvs.
subacute.... 6. saxatilis
FF. Apex of liss.
obtuse...... 6. saxatilis, var. corifolis
EE. Form of lrs. ob-
long, narrou at
base............ 7. Garrexiana
DD. Margin of les. toothed toward apex
8. Gibraltarica

AA. Inflorescence corymbose in fruit.
B. Annuals: stems not woody at the base..... 9. umbellata
BB. Perennials: stems uoody at the base.
C. Les. crenate.........10. Tenoreana
cc. Lus. entirc or subdentate.
D. Radicle desrending: seed not margined: septum simple....... JI. Pruiti
DD. Radiclehorizontal: seed somewhat margined: septum nearly double 12. semperflorens
affinis, 2.
amara, 1
torifolia, 6.
coronaria. 1.
Dunnetti, 9.
Garrexiana, 7

INDEX.

1. amàra, Lipn. Comsion Annual C. Bitter C. Clown's Nustard. Lvs. lanceolate, toothed toward apex : fls. white. Common in Eu. S.B.F.G. II. 359. The best form is var. coronaria, Voss (I. corondria, Hort., not D. Don). Rocket C. This has larger and fuller clusters and larger fls. The taller varieties, Empress, Spiral White and Giant Snowflake, grow 18 in. high, with solid pyramidal trusses 5-8 in. long. Dwarf forms are Tom Thumb and Little Prince. All are good bedders, and Empress is fine for cutting. Seed may be sown at any time, but the bext results with Empress are secured by sowing under glass and transplanting to the open, where plants will bloom in May and June.
2. pectinàta, Boiss. (I. afflnis, Hort., not Jord.). Fls. white. Spain. Advertised only as A. affinis.

Likely to be confused with I. odorata, but the petals are 4 times as long as the calyx and the pods have short hairs, while in I. odorata the petals are $11 / 2$ times as long as the calyx and the pods glabrous.
3. odoràta, Linn. Sweet-scented or Fragrant Candytuft. Lvs. linear: fls, white. Crete. S.B.F.G. 50. Frequently confused with I. pinnata. Better and more fragrant in poor soil.

4. pinnàta, Linn. Not advertised in America, but often sold as I. odorata. Fls. white: inflorescence only slightly elongated in fruit. Spain, S. France, Italy.
5. sempérvirens, Linn. Evergreen C. Lvs. oblong, obtuse, narrowed at base, glabrous: fls. white. Crete. Ging. 2:145 (fine babit sketch). F.R. 1:75 (poor). Var. plèna, a double form, is cult., but is less desirable. Var. rosea and var. foliis variegàtis are sold abroad. Var. supérba or Perfection is said to be one of the best forms.This is the commonest, hardiest and most permanent of the perennial kinds. When the rarer and tenderer kinds are winter-killed I. sempervirens is likely to spread out and surround the labels of other kinds. This probably explains why some of the most
plant under other names, 1121. Iberis Gibraltarica ($\times 1 / 2$). reliable dealers have sold this particularly 1. Gibraltarica.
6. saxátilis, Linn. Lvs. glabrous or ciliate: fls. white. S. Eu.

Var. corifolia, Sims (I. corifòlia, Sweet). Lvs. glabrous: fls. white. B. M. 1642, though this picture was doubtfully referred by Baker to I. Garrexiana.
7. Garrexiàna, All., not Scop. Lvs. glabrous : fis. white. Piedmont, Pyrenees. Referred by Index Kewensis to I. sempervirens. Intermediate between I. sempervirens and I. saxatilis, having the habit of the latter.
8. Gibraltárica, Linn. Fig. I121. Livs, wedge-shaped, obtuse, subciliate: outer fls. pink, inner ones white. Gibraltar. B.M. 124. Gn. 10:38. R.H. 1870:330. Gn. 24, p. 549, same as R.H. 1885, p. 446. -This is considered by some as the most striking and showy of the perennial kinds. It grows higher and more erect, with larger elusters and larger fls., but is less hardy than the others. This is much sought after, and the stock in the nurseries is often not true to uame. Var. hỳbrida is advertised.
9. umbellàta, Linn. Lvs. lanceolate, acuminate, lower ones serrate, upper ones entire : fls. in the wild typically parplish, rarely white : pods acutely 2 -lobed. Italy, Crete, Spain. B.M. 106.-This is the common annual Candytuft with colored fls., the colors being more numerous and better fixed than in any other species. American trade names are vars. carminea, cárnea, lilacina and Dünnetti (I. Dímuetti, Hort.), the last being dark purple. Vars. rosea, purpurea and álba are advertised abroad, also vars. nãna, pùmila and hỳbrida. Tall and dwarf forms of all the colors are procurable.
10. Tenoreàna, DC. Lower Ivs, ohovate, narrowed at base: upper lvs. oblong-linear: fis. purplish or whitish: pods notched at apex. Naples. B.M. 2783. L.B.C. 18:1721. According to Baker (G.C. 1868:711), this is the only perennial kind that is decidedly hairy. DeCandolle says the lvs. are puberulous.
11. Prùiti, Tineo. Liss. glabrous, obovate-spatulate, entire or subdentate: fls, white: pods merely notehed at apex. Sicily. Not advertised here, but cult, abroad.
12. sempérflorens, Linn. Lvs. wedge-shaped or spatulate, obtuse, entire, glabrous: pods scarcely notched at apex. Sicily and perhaps Persia. The characters in the key under D and DD distinguish this from all the other species of lberis. Once advertised by Piteher \& Manda, together with var. plena, a double variety. Var. foliis variegatis said to be cult. abroad.

1. cariaccea, once advertised by Saul, is presumably a typographical error. - I. cordifollia is a frequent error for I. corifolia. - I. correcefolia, Hort., is a common trade name abroad, which is usually spelled I. corrofolia in American catalogues.' There is no genus Corra, and Correa is an Australian plant of the Rutacee. Specimens should therefore he compared with I. saxatilis, var. corifolia. Mottet's description, however, would place this plant directly after Garrexiana in the key, heing distinguished from Garrexiana by the Howers becoming purplish instead of always remaining white. Mottet says that I, correosfolia, Hort., is a hyhrid,with spatulate, entire, obtuse lvs. This question could he quickly settled if seedsmen would keep dried specimens of their plants.- \boldsymbol{I}. Iberica, of John Saul's catalogue, 1893, is not in Index Kewensis.-1. lilacina of careless trade eatalogues is presumably a lilac-fld. variety of I, umbellata.I. ñ̀m hybbrida, Hort., is not I. nana, All., a distinet botanical species, but a trade name of mixed dwarf varieties of some common annual kind, presumably 1, umbellata.
W. M.

ICE PLANT is Mesembryanthemum crystallinum.

IDAHO, HORTICULTURE IN. Fig. 1122. The state of Jdaho lies entirely west of the Rocky Mountain range, whose summit line forms the northeastern boundary. All drainage and waterways of the state finally reach the Columbia river by many directions and extensions of numerous rivers and creeks, excepting for a small area in the extreme southeastern portion of the state, which drains to the Great Salt Lake, in Utah. Generally the state is very mountainous, but a considerable area of the southern portion constitutes the high table-lands lying on both sides of the Snake river. Most of the state lies above an altitude of 2,000 feet. At and near Lewiston, in the valleys of the Snake and Clearwater rivers, the altitude drops suddenly to 647 feet and upwards. The numerous mountain chains and peaks which cover this vast Rocky Mouutain slope, direct the streams

in endless ways to their outlets into the large rivers. Thus it can be understood that climatic influences are extremely variable. Altitude does not altogether determine the character of the climate in the valleys. The prevailing currents of air in a given locality are often influenced and directed by the direction of the monntain ranges and the proximity of snow-elad peaks. Greater
extremes of temperature prevail in the southern portion of the state than in the northern. The summers are hotter in the south than in the north, and the rigors of winter are more severely experienced.
Jrrigation for the successful cultivation of crops is necessary over most of the southern portion of the state, below the 45 th parallel of latitude. North of this there is generally an abundance of rainfall, the atmosphere is humid, and the soil is retentive of moisture. The native soils of Idaho are mostly of voleanic origin, interspersed with clay and sandy loam, and altogether quite fertile. Excepting in the narrow mountain valleys, and in the deep canyons of the Snake river, altitude largely determines the character of horticultural pursuits. According to the United States Weather Bureau records, some of the altitudes are these: Lewiston, 647 feet ; Kootenai, 1,750; Payette, 2,150; Fort Sherman, 2,196; Hoscow, 2,571; Boise, 2,880; American Falls, 4.341; Blackfoot, 4,503; Fort Lemhi, 4,700; Idaho Falls, 4,732; Paris, 5,946; Atlanta, 7,000. The known altitudes are named at points which are considered most advantageous for estimating variations for the whole state. Much of the south-central portion of Jdaho contains vast lava beds, and hundreds of square miles are thus oceupied. Among them, however, lie fertile irrigated areas. The wild sage brush covering these extensive table lands grows most luxuriantly, often attaining to a height of sis feet and over. Along the streams and bottomlands of southern Idaho are growths of willows and poplars, and in the mountain gulches a black haw and dwarf maple skirt the water courses. Very little shrubbery grows in the mountains. In the mountain regions above an elevation of 4,500 feet, pine, spruce and fir abouud. That portion of the state north of the 45 th parallel contains fine forests of pine, fir, tamarack and cedar. The mountains, hills and valleys are also well covered with small deciduous trees and shrubbery, which for ages have contributed towards the establisbment of a soil rich in organic matter. The list of species of deciduous plants found native in this part of the state is so extensive that it would seem out of place to name them in this article. There are no wild fruits of economic importance growing in the state.
Horticultural operations are conducted within narrow limits above an altitude of 4,500 feet. U'p to 3,500 feet eleration, fruit-raising has shown great promise. The best adapted sections for raising apples lie within the counties of Latab, Nez Perce, Washington, Canyon, Ada, and more limited in portions of Elmore, Boise, Cassia, Owylice, Lincoln and Kootenai. Apples can also be produced in other counties to a very limited extent. Even in Bear Lake county, at an elevation of 6,000 feet, some varieties are being raised successfully.
The horticultural inspectors of the various horticul tural districts last year made a careful computation of the fruit acreage in their respective territories, and reported as follows: Ada county, 5,581 acres; Bannock, 100 ; Bear Lake, 100 ; Bingham, 1,100; Blaine, 350 ; Boise, 141 ; Canyon, 5,360; Cassia, 507 ; Custer, 185 ; Elmore, 875 ; Fremont, I,000; Idaho, 200 ; Kootenai, 1,500; Latah, 5,900 ; Lemhi, 200 ; Lincoln, 840 ; Nez Perce, 2,000 ; Oneida, 1,000 ; Owybee, 216 ; Shoshone, 1,200; Washington, 2,450. These figures show for the whole state a total of 30,805 acres planted to fruit. The figures include orchards, vineyards, and small fruit plantings, and are considered very reliable. Considerably the largest acreage is apples; then follow prunes, peaches, pears, cherries, nectarines and quinces in the order named. Small-fruit growing covers an important portion of the acreage given.

All kinds of forest trees suitable to northern climatic conditions can be grown with excellent success within the state.
F. A. Hentley.

IDESSIA (Yobrants Jdes, Dutch traveler in Cbina). Bixacer. A genus whose only species is a Japanese tree, hardy as far north as Philadelphia. It is a large, rapid-growing, deciduous tree, with large lvs, borne on reddish stalks and loose clusters of fragrant, greenish yellow fls. which are inconspicuous except for their prominent anthers, and numerous orange-colored berries about the size of a small cherry. Fls. dicecious, the parts in 5's (or 3-6); sepals tomentose, imbricated, de-
ciduous; petals $0 ;$ stamens indefinite, inserted on a small disk with villous tilaments: ovary of pistillate fls. globose: berries with an indefinite numher of seeds. Prop. by green wood and root cuttings.
polycárpa, Maxim. Height 40 to 50 ft .: lvs. drooping, $5-10 \mathrm{in}$. long, sometimes 8 in . broad, usually cordateacuminate, sometimes oblong or orbicular, deep green, margin distantly serrate, glaucous beneath, petiole 1-6 in. long: panicles shorter than the lvs., pendulous: staminate fls. $1 / 2 \mathrm{in}$. across. Var. crispa has curled foliage. B.M. 6794. R.H. 1872, pp. 174, 175 ; 1878, p. 254 ; 1888, pp. 463-465. F. 1874, pp. 64, 65.

Joseph Meehan and W. M.
ILEX (the ancient Latin name of Quercus Ilex). Including Prinos and Othera. Ilicinea (or Aquifolideere). Holly. Ornamental evergreen or deciduous shrubs, with siternate, simple, sometimes spiny lvs., small, inconspicuous, whitish fls. in axillary clusters or solitary, and black, red or sometimes yellow berries, remaining on the branches often until the following spring. Of the evergreen species, only I. glabra and I. rugosa are quite bardy North, and also I. opaca and I. crenata in somewhat sheltered positions. I. Aquifolium and I. cornuta are more tender but stand many degrees of frost if sheltered, while most of the others can only be grown South. Of the deciduous species, I. decidua, I. mouticola, I. lovigata and verticillata are bardy Nortb; also I. Sieboldi and some other Japanese species are hardy or nearly so. The Hollies, expecially those witb scarlet or red berries, are highly ornamental, and the berried branches of I. opaca and I. Aquifolium are in great demand for Christmas decoration. Also I. letigata and verticillata, the prettiest in fruit of the deciduous kinds, are sometimes sold for this purpose. The deciduous species are mostly shrubs, while many of the evergreen species grow into small or medium-sized trees, and I. opaca is the tallest of the broad-leaved evergreens which are bardy North; the evergreens I. erenata, glabra, rugosa, always remain shrubby. Ilex opaca fills the old, deserted and very dry and sunny, barren fields of the South, and thrives on extremely poor soil, and has good color, too. This trait is worth noting. I. Aquifollum is a favorite erergreen in English gardens, and numerous varieties are there in cultivation; it stands severe pruning well, and can be elipped and trained into almost every shape; it also makes fine bedges, but its slow growth is a disadyantage. As the chief value of the deciduous species is in the ornamental fruits and the Hollies are diocious, care should be taken to select in planting a few staminate ones, but mostly pistillate plants, and to give the latter the most prominent place. The ligbt, close-grained and tough wood of some of the arborescent species is much valued for turnery-work, engraving and cabinet-making. The lvs of some tropical species, as I. Paraguariensis and I. conocarpa, yield a kind of tea known as Y'erba de Maté, or Pararuay Tea, which is much used in S. America. The Hollies grow best in rich, well-drained soil, and the evergreen ones in partly shaded situations, but I. loevigata, verticillata and also Sieboldi prefer moist places, and grow even in swamps. Most of the species grow slowly, and are not easily transplanted when older. The best time for moving the evergreen species is the early fall, when the young wood has almost ripened, or in the spring just before the plants start into new growth. The leaves should be stripped on I. opaca and I. Aquifolium, when transplanted, particularly if at all exposed-or at least nearly all. This is absolutely necessary to insure success. Wild Hollies may be handled this way with success, particularly if cut back as well. Prop. by seeds, which do not germinate until the second year, and are therefore stratified and treated like those of the slowfrowing hawthorus. The young seedlings should be transplanted after the second year. The evergreen species may be increased by cuttings of ripened wood under glass, especially the shrubby ones; they are also sometimes grafted or budded on seedlings of I. Aquifolium or opaca. About 175 species in N. and S. America, tropical and temperate Asia and few in Africa, Australia and Europe. Lvs, petioled, with small, caducous stipules: fls. dicecious, usually in rather few-fld. axillary cymes; calyx lobes, petals and stamens usually 4 , sometimes
more; style very short: fr. a berry-like drupe, with usually 4 bony 1 -seeded stones.

Index of names accounted for below, besides those in the supplementary list:

INDEX,

albo-marginata, 17. albo-picta, 18 .
angustifolia, 34. Alteclarensis, 2. Aquifolinm, 1.
argenteo-marginata, 17.
argenteo-mediopicta, 18.
argutidens, 46 .
a ureo-marginata, 20.
anreo-regina, 20 .
aureo-maculata, 19.
aureo-picta latifolia, 21.
Cassine, 33 and 37. cornuta, 31.
crenata, 38.
crispa, 16.
Dahoon, 33.
decidua, 40.
dubius, 41 . echinata, 3.
ferox, 3 .
ferox argentea, 22. ferox surea, 23 , Fortunei, 38. fructu aurantiaco, 28.
fructu luteo, 27. glabra, 39. Handsworthensis, hastata, 8. heterophylla, 12. heterophylla aureopicta, 24.
Irevigata, 43. latifolia, 4 and 36. latifolia marginata, 20.
laurifolia, 13.
marginata, 14. microphylis, 9 . mollis, 42. monticola, 41. myrtifolia, 10 and 35.

ораса, 32.
pendula, 29.
platyphyllos, 5. princeps, 6. pyramidalis, 30. quercifolia, 32.
Scotica, 15 . Scotica aurea, 25. serrata, 45. serratifolia, 11.
Sieboldii, 47. tortiosa, 16. verticillata, 44. vomitoria 37.
Wateriana, 26.

A. Foliage evergreen.

B. Lus. with coarse, spiny teeth, ravely mostiy entire. C. Fls. in axillary elusters on brancltes of previous year.

1. Aquifolinm, Linn. Ecropean Holly. Fig. 1123. Tree, to 40 ft ., with short, spreading branches, forming an oblong or pyramidal head, in cultivation often shrubby, glabrous: lvs. short-petioled, usually ovate or oblong-orate, wared and with strong, spiny teeth, shining, $1 \frac{1}{2}-3$ in. long: fr. scarlet, globular, shining. May, June. Southern and middle Eu., western Asia, China. Gig. 4:83. - A very variable species. A full account of the numerous varieties cult, in England is given by T. Moore in G.C. II. 2, p. 433,519, 687, 751, 812 ; 4, p. 687, $741 ; 5$, p. $43,365,437,624 ; 6$, p. $232,389,616$, where 153 varieties are deseribed and many of them figured. Some of the most important and most distinct are deseribed below. Osmanthus Aquifolium, Sieb. \& Zuce., an oleaceous shrub, which may readily be known by its opposite leaves, is oceasionally supplied by dealers as a variety of Ilex Aquifolium.
(a.) Foliage green.
(h.) Li's. spiny-toothed.

(c.) Size of lvs. large, about 2-4 in. long.

2. Var. Alteclarénsis, Hort. Lvs. oval, large, thin and rather plain, with numerous teeth. 3. Var. férox, Loud. (I. echinàta, Mill.). Lvs. of medium size, with strong teeth and numerous small spines on the upper convex surface. A very distinct variety, known as Hedgehog Holly. N. 2:175. 4. Var, latifolia, Loud. Lvs, oral to $31 / 2 \mathrm{in}$. long, with rather few, divaricate teeth. G.C.II. 2:433. 5. Var, platyphyllos, Hort. Lvs, broadly ovate, to $31 / 2$ in. long, with divaricate spines, thick, deep green. 6. Var. princeps, Moore. Lvs, broadly ovate, to $4 \frac{1}{2}$ in. long, with strong, regular spines, dark green, with prominent veins below. G.C. 11. 13:45.
(cc.) Size of lus. small, 1-2 in. long.
3. Var. Handsworthénsis, Hort. Lvs, ovate-lanceolate, with numerous, moderately divaricate spines, projected toward the apex, glossy green. G. C.II. $2: 519$. 8. Var. hastàta, Hort. Lis. ovate-lanceolate, halbert-shaped: spines large, nsually only $2-4$ on each side at the base, the upper half usually entire. G. C.11. 2:687. 9. Var. microphylla, Hort. Lis, ovate-lanceolate, about I in. long, shining green, with small, equal plane spines. G.C.11, 2:751. A very small-leaved form, but var. lingata is still smaller, and has the smallest lvs. of all. 10. Var. myrtifolia, Hort. Lvs, ovate-lanceolate, $1-1 \frac{1}{2}$ In. long, moderately spiny, rarely entire. G.C.II. 2:687. 11. Var. serratifolia, Loud. Lvs. ovate-lanceolate, stiff, with numerous small spiny teeth. G.C.11.2:687.
(bb.) Lvs. all or most of them without spines.
4. Var. heterophylla, Loud. Lrs, oral or ellipticorate, about $21 / 2$ in. long, sometimes twisted near the apex, entire or with few spiny teeth. G.C.I1. 2:519.
5. Var. laurifolia, Loud. Lvs. ovate to elliptic-lanceolate, $2-3$ in. long, usually quite entire. 14. Var. marginàta, Loud. Lvs. broadly orate, sometimes twisted near the apex, with thickened entire margin. G. C.II. 2:813. 15. Var. Scótica, Hort. Lvs, oval-obovate, blunt and rounded at the apex, rarely pointed, $11 / 2-2 \mathrm{in}$. long, with thickened, wavy entire margin. (1. C. II. 2:813. 16. Var. tortuosa, Hort. (var. erispa, Hort.). Lvs, oval and spirally twisted, with revolute margin, entire or with few spines, about 2 in . long: of dense habit. G.C. 11. $2: 813$.

> (aa.) Fotiage variegated.
> (b.) Lrs. spiny-toothed.
17. Var. álho-marginàta, Loud. (var. argenteo-marginàta, Hort.). Lvs. broadly ovate, to $21 / 2 \mathrm{in}$. long, with numerous irregular spines, dark green, the disk mottled with grayish green, with rather narrow silvery margin. 18. Var. albo-picta, Loud. (var. argenteo-medio-pícta, Hort.). Lvs. ovate, with divaricate spines, dark green, with a whitish center and a narrow, irregular, silyery margin. G.C. II. 4:687. 19. Var. aưreo-maculàta, Hort.

1123. Hex aquifolium. ($\times 1 / 3$.)

1124. Ilex opaca. ($\times 1 / 3$.)

Lrs. oblong-oval, $2 \frac{1}{2}$ in. long, with distant triangular, somewhat divaricate spines, with a large creamy white blotch in the center, outer part of the margin dark green, inner part mottled pale gray. 20. Var, aùreo-regina, Hort. (var. aurea marginata and var. latifolia marginàta, Hort.). Lvs. broadly ovate, to 3 in. long, with strongly divaricate spines, mottled with gray and green, with a broad, continuous golden yellow margin. G.C. 11.5:44. 21. Var, aüreo-picta latifolia, Hort. Lrs. ovate or broadly ovate, 2 in . or more long, with a large, branching, deep yellow blotch in the middle, and with an irregular, deep glossy green margin. G.C. II. 5:624. 22. Var. ferrox argéntea, Loud. Like var. ferox, but the margin and the surface spines creamy white. G.C.II. 5:44. 23. Var. fèrox aurea, Loud., is like the former, but with yellow spines and margin.

(bL.) Lvs. spineless or mostly so.

24. Var. heterophylla aureo-picta, Hort. Lvs, ovate, flat, sometimes with few spines, about $21 / 2 \mathrm{in}$. long, marked in the middle with a broad feathery blotch of bright yellow. G.C. 11. 6:389. 25. Var. Scotica aurea, Hort. Lvs. obovate, blunt, slightly wavy, about $1 \frac{1}{2}$ in. long, dark, mottled green, with a broad golden margin: of dwarf habit. 26. Var. Wateriana, Hort. Lys. oblong or ovate, with a few spines, or entire and plain and obtuse, about 2 in. long, mottled with gray and yellowish green and edged with a broad, irregular golden band. G.C. II. 6:233.

There are also some other vars., as, 27, var. fructu luteo, with yellow, and 28, var. fructu aurantiaco, with orange berries; 29, var. pendula, with pendulous branches and 30 , var. pyramidalis, with ascending branches, forming a narrow, oblong head.
31. cornuta, Lindl. Shrubby, with short spreading branches, glabrous: 1vs. oblong, with 3 strong spines at the dilated apex, and with 1-2 strong spines on each side of tbe truncate base, but rounded and spineless at the base on older plants, dark glossy green above, 2-4 in. long: fr. scarlet, elustered, short-pedicelled. June, July. N. China. P.F.G. 1, p. 43. G.C. 1850:311. F.S. 7, p. 216; 9:895. B.M. 5059.
cc. F7s. in 1-few-fld. axillary, peduncled cymes, on this year's growth.
32. opàca, Ait. (I. quercifolia, Meerb.). Aymerican Horly. Fig. 1124. Tree, witb spreading short branches,
sometimes to 50 ft ., forming a narrow, pyramidal head, glabrous: Ivs. oval or elliptic-lanceolate, with large remote spiny teeth, rarely entire, dull green above, yellowish green beneath, 2-4 in. long: fr. dull scarlet, usually solitary, globose. June. Mass, to Fla., west to Mo. and Tex. Em. 385. S. S. 1: 45. Gng. 4:277.- Hardier than I. Aquifolium, but less handsome.

BB. Lis. serrate, crenate or entire.

c. Fr. red: nutlet ribbed on the back. Tender.

33. Cassine, Linn. (I. Dahoòn, Walt.). Dahoon, Shrub or small tree, to 30 ft .: Ivs. obovate to oblonglinear, acute or obtuse and mucronulate, entire or sharply serrate above the middle, usually pubescent beneath when young, $2-3 \mathrm{in}$. long: fr. globose, small, dull red, rarely yellow, on this year's growth. April, May. N. C. to Fla., west to La. S.S. S. 1:46. 34. Var. angustifolia, Ait. Lvs, linear-oblong to linear, 2-3 in. long. 35. Var, myrtifolia, Chapm. Lvs. linear-oblong, 1-2 in. long: fr. usually solitary. S.S. 1:45.
34. latifolia, Thunb. Tree, sometimes to 60 ft ., glabrous: Ivs. oval to oblong-lanceolate or obovate-oblong, serrate, glossy green above, 3-7 in. long: fr. red, large, in almost sessile clusters. June. Japan. B.M. 5597. P.F.G. 3, p. 13. - One of the most beautiful Hollies.
35. vomitòria, Ait. (I. Cassine, Walt., not Linn.). Cassena. Yaupon. Shrub, rarely tree to 25 ft ., with spreadiug branches: lvs, oval or oblong, obtuse, crenate, glabrous, $1 / 2-1$, rarely to 2 in . long: fls, clustered on branches of the previous year: fr. scarlet, globose, small. April. Va. to Fla, west to Ark. and Tex. S.S. $1: 48$.

cc. Fr. black: mutlets smooth: pistillate fls. usually solitary, on this year's grouth.
36. crenàta, Thunb. (I. Fortrenei, Hort.). Muchbranched shrub, rarely small tree to 20 ft .: lvs. oval, obovate or oblong-lanceolate, crenately serrate, glabrous, $1 / 2-11 / 2$ in. long: fls. 4 -merous. May, June. Japan. Gng. 6:165.
37. glàbra, Gray (Prlnos glàber, Linn.). Inkberry. Winterberry. Much-branched upright shrub, to 8 ft : Ivs. obovate to oblanceolate, obtuse, with few obtuse teeth toward the apex, glabrous, 1-2 in. long: fls, 5-8merous. June. Mass. to Fla., west to Miss. L.B.C. 5:450.

AA. Foliage deciduous: fr. red. (Prinos.)
B. Frs, mostly and les. partly fascicled on short spurs : mutlets ribbed on the back.
40. decidua, Walt. (Prinos deciduus, DC.). Shrub or small tree, to 30 ft ., with light gray spreading brancbes: lvs, cuneate-oblong or obovate, usually obtuse, crenately serrate, dark green, and with impressed veins above, pale and pubescent beneath, $11 / 2-3 \mathrm{in}$. long: fr . globose, orange or orange-scarlet, $1 / 2$ in. across. May. Va. to Fla., west to Texas. S.S. 1:49.
41. monticola, Gray (Prinos dùbius, Don). Tree, to $40 \mathrm{ft} .$, with slender branches, forming a narrow pyramidal head or spreading shrub: lvs. oval or oval-lanceolate, acute or acuminate, sharply serrate, pubescent only along the veins beneath, 2-6 in. long: fr. red, globularovoid, $1 / 2$ in. across. May. N.Y. to S. ('., west to Ala. S.S. 1:50. G.C. II. 14:689 (as I. decidua). 42. Var. mollis, Britton (I. móllis, Gray). Lvs. broadly ovate, soft-pubescent when young, glabrous above at length.

BB. Frs. and lvs. not fascicled: frs. axillary: nutlets smooth.
43. lævigàta, Gray (Prinos lavigatus, Pursh). Winterberry. Low shrub, of ppright habit: Ivs. lanceolate, acute, finely or erenately serrate, rather thick, glabrous or nearly $s 0,11 / 2-21 / 3 \mathrm{in}$. long, turning clear yellow in fall: fls. 6-9-merous: fr. depressed-globose, bright orange-red, over $1 / 4 \mathrm{in}$. across. May, June. Maine to Pa. and Va. G.F. 4:221.
44. verticillàta, Gray (Prinos verticillatus, Linn.). Black Alder. Winterberry. Fig. 1125. Shrub, with spreading brancbes: Irs. obovate tooblanceolate or lanceolate, acuminate or acute, serrate or doubly serrate, usually pubescent beneath, $11 / 2-3 \mathrm{in}$. long, turning black after frost: fls. 5-6-merous : fr. bright red, rarely yellow, abont $1 / 4 \mathrm{in}$. across. June, July. Canada to Fla., west to Wis. and Mo. Em. 3×8. - Very variable in shape and texture of lys. One of tbe best hardy shrubs, with ornamental frs., which remain on the branches until midwinter, and are not eaten by birds.
45. serrata, Thunb. Slender shrub, to 15 ft ., similar to the former but smaller in every part: Ivs. elliptic or ovate, acute or acuminate, finely serrate, pubescent or glabrous beneath, $1-2 \mathrm{in}$. long: fls, ± 5-merous : fr. brightred, small, one-sixth to one-fifth in, across. June. Japan. There are two forms of this species: both have been introduced from Japan as I. Sieboldi, the first by Prof. Sargent, the second by Thomas Hogg. 46. Var. argutidens, Rehder (I, argùtidens, Miq.). Lvs, glabrous beneath, sbort-petioled, teeth more remote and less fine: fls. usually 4 -merous. 47. Var. Sieboldi, Rehder (I. Sieboldi, Miq.). Lvs. somewhat larger, longer-petioled, more finely serrate, pubescent beneath: fls. usually 5-merous.

1. ambigua, Chapm. Deciduous large sbrub, allied to 1, monticola. Lis. nsually almost glabrous, remotely serrate, 1-2 in loug N. C. to Fla., west to Ark. and Tex.-I. Amelanchier, M. A. Curtis. Decidnons shrub, to 6 ft .: lvs, oblong, subacute, serrate, pubescent, $1^{1 / 2-3} \mathrm{in}$. long: fr, dull red, large. Va. to La. G.F.2:41. Hardy.-I. Californica. Brandegee. Evergreen large shrub, to 12 ft ., glabrous: 1 vs . elliptic to oblong-elliptic, obtuse, remotely and crenately serrulate, $2-5$ in. long: fr, black, small. Calif. G.F. 7:415 (by error named 1. triflora).-I, Canariensis, Poir. Evergreen tree, to 20 ft ., glabrous: Ivs, ovate to ovate-oblong, obtuse, entire, $2-1$ in. long: fr. usually solitary, on this year's growth. Canar.-1. conocarpa, Reiss, Evergreen shrub, to $6 \mathrm{ft}$. : lvs. oolong-lanceolate, acuminate, serrulate, glabrous, $3-5 \mathrm{in}$. long; fls. in short, dense spikes: fr. ovoidconic. Brazil. B. MI. 7810.-1. coridicea, Chapm. (1. Incida, Torr. \& Gr.). Allied to 1. glabra, but taller: lvs. broader and longer, to 3 in., apute or acuminate. N. C. to Fla., west to La.-I. dipy rena, Wall. Evergreen tree, to 40 ft .: lvs, elliptic to lanceolate. remotely spiny-serrate, sometimes entire, glabrous, $2-+$ in. long: fr. scarlet, globose, clnstered. Himal.-I. dübia, B. S. P. $=1$. monticola.-I. Gongónha, Mart, -Villaresia mucronata, - I. insignis, Hook. f. Evergreen small tree: lvs. elliptic-lanceolate, $6-9 \mathrm{in}$. long, spiny-toothed. often almost entire on older plants: fr. large, globose. Himal. G.C.II. 14:297.-I. fntegra, Tbunb. Evergreen large shruo or tree, to 40 ft .: ivs. obovate.
obtusely pointed, entire, ${ }^{2-3} \mathrm{in}$, long: fr, large, rather long. peduncled, red. Japan.-I. longipes, Chapm. Deciduous shrub, allied to 1 . decidua: lvs, elliptic-lanceolate, crenately serrate, almost glabrous: fr. globose, slender-pedicelled. N. C. to Gia., west to La. G. F. 3:355,-I. microcirpa, Lindl, = rotunda, Thunb.-I. Paraguarieusis, St. Hil. (I. Paraguayensis, Auth.). Mate. Paraguay Tea. Shrub, to 15 ft .: lvs. obovate, obtuse, obtusely serrate, $2-5$ in. long, glabrous: fr. small, peduncled. Brazd.-I. Perddo, Ait. (I. platyphyllos, Webb. \& Berth.). Evergreen pyramidal tree, to 20 ft ., glabrous; lys. broadly ovate or obovate to ohlong, entire, serrate on young plants, $2-5$ in long: fr, large, red, chnstered, short-pedicelled, on last year's growth: Canar. L, B.C. 6:549. B. M. 4079.-I, rotúnda, Thunb. (1. microcarpa, Lindl.). Evergreen slirub or tree, to 40 ft .: lys. oblong or elliptic, acute, pointed, quite entire: fr, small, red, in peduncled clusters. Japan, P.F.fi.1.p. +3. G.C. 1850:311. F.S.7. p. 216.-I. rugòsa, F. Schmidt. Evergreen low spreading shrub, sometimes prostrate, glabrous: lvs, oblong-lanceolate to lanceolate, remotely crenate-serrate, rugose above, $3 / 4-2$ in. long: fr, usually solitary, scarlet. Japan, Sacchalin.- \boldsymbol{I}. triflòra, Brandegee. Evergreen tree, to 40 ft ., with spreading pubescent Brandegee. Evergreen tree, to 40 ft ., with spreading pubescent
branches: lvs. elliptic-lanceolate, remotely serrate or almost entire, pubescent, $2-31 / 2$ in. long: fis. 5 -merous. Calif. G.F. 7: 416 (by error named 1. Californica).

Alfied Rehder.

ILLICIUM (Latin forallurement; probablyin reference to the agreeable odor). Magnolidece. A half dozen species in Japan, China, India and eastern N. America, Small trees or shrubs, glabrous, with thick, short-petioled entire evergreen lvs.: fls, small, solitary or in 3's in the axils of lvs. or bud-scales, nodding or inelined, yellow or purplish; sepals 3-6; petals many, imbricated in 3 or more rows or series; stamens 10 -many, with thick filaments: carpels usually mauy, forming a ring of almost woody pods. The Illiciums are aromatic plants with perfect fls.

One of the Illiciums furnishes the Star or Chincse Anise, which is the small star-shaped cluster of fruits. The odor and flavor strongly resemble Anise. It is much used in oriental countries in cookery, and is exported to some extent and is said to be used in flavoring certain French wines. This product comes from China. It has been supposed to be the product of I. anisatum of Linnaeus, but that plant is a Japanese tree and it contains a poison. In the American trade are the names I. anisatum and I. religiosum. It now transpires that these names belong to the same plant, and that the Star Anise is produced by another species. This other species, or the true Star Anise, was first accurately described and figured (as I. verum, Hook. f.) in B.M. 7005 (1888), where the confusiou of two or three centuries is elucidated. There is probably only one East Asian Illicium in the trade in N. Amer., as follows:
anisàtum, Linn., not Gærtn. (I. religiosum, Sieh. \& Zuce.). Small tree: lvs. alternate, elliptic, short-petioled, somewhat acuminate: fls, mostly solitary, sessile or nearly 80 , yellowish, not fragrant, with many very narrow petals, and $20-30$ stamens. Japan. B. M. 3965.Grown far S. There is a form with variegated Ivs.
Two native Illiciums growing in the Gulf country are: \boldsymbol{I}. Floridànum, Ellis. Shrub, 6-10 ft.: lvs, oblong-lanceolate, 4 in. or more long: petals $20-30$, very narrow, dark crimson. B.M. 439. Gn, 36, p. 151. J.H. 1II. 30:365,-I, parviflàrum, Miebx. Lvs, elliptic or lanceolate, mostly under 4 in . long: petals very small ($1 / 4 \mathrm{in}$. long), $6-11$, yellowish.
L. H. B.

ILLINOIS, HORTICULTURE IN, Fig. 1126. The state of Illinois, lying in the heart of the Mississippi valley, the most fertile portion of the United States, and with its eastern boundary over 700 miles from the Atlantic coast, has a range north and south of a little over 350 miles, extending from 37° to $42^{\circ} 30^{\prime}$ north latitude, and a breadth east and west of about 200 miles at its widest point. In spite of its great length, the difference in mean annual temperature between the extreme northern and southern parts of the state is only $10^{\circ} \mathrm{F}$., although the rainfall in the southern part is one-half greater than in the northern.

Soil conditions alone considered, Illinois stands, agriculturally, at the very forefront. Third among the states of the Union (1890) in population, and first in railroad mileage, it is also first in total bulk of agricultural and herticultural products. There are no considerable tracts of worthless land in the state; and the statistics collected by the State Board of Agriculture show every one of the 102 counties of the state to be fruit-producing.

The statistics of the census of 1890 showed Illinois at that time to be easily third in rank among the horticultural states.

The horticultural interests of Illinois have been well looked after and carefully placed on a permanent basis by the legislature. In 1874 an act was passed by that body establishing the Illinois State Horticultural Society (which was organized in 1855) as a public corporatiou

1126. Illinois.

Showing three borticultural divisions, following county lines,
of the state. The State Horticultural Society is divided into three subdivisions, the Northern, Central and Southern lllinois Horticultural Societies, each taking in about one-third of the state (see map). The State Horticultural Society has been liberally supported by the legislature since its foundation, and is in a flourishing condition.
The most distinctive fruit section of Illinois is the southern third. This area contains something over 150,000 acres devoted to the growing of apples alone. Other deciduous fruits, notably peaches and pears, and small fruits, especially strawberries, are also grown in large quantities in this part of Illinois. During the season of 1898 over 800 car-loads of strawberries alone were shipped to outside markets from the fruit districts of southern Illinois. Inereased shipping facilities and the coming into bearing of orchards already some time planted are rapidly bringing southern Illinois into competition with Michigan in the production of peaches.
The southern fruit district, as indicated on the map, lies between 37° and $39^{\circ} 30^{\prime}$ north latitude, the former being the latitude of Norfolk, Va., and the latter that of Baltimore, Md. The climate of this district is best indicated by the fact that the isotherm $55^{\circ} \mathrm{E}$. passes through the northern part of the district, the same temperature line also passing through the peach and sweet potato districts of Delaware and southern New Jersey. The 50° isotherm passes through Illinois about on the dividing line between the northern and central fruit dis-

ILLINOIS

tricts, thus showing the mean annual temperature of the northern district,-which is second to the southern in small-fruit production, and in 1898 produced more grapes than both the other districts put together, - to be practically the same as that of the great grape and small fruit sections of central New York. While speaking of temperature it should also be noted that the mean annual temperature of the famous Santa Clara valley and the Santa Cruz mountain wine grape district of California is $55^{\circ} \mathrm{F}$., or about that of Madison and Bond counties, Illinois.

In 1898 the total annual precipitation at Galena, in the extreme northwest corner of the state, was 30 inches; in Henderson county and from thence along a line a little north of east clear across the state, 40 inches; in a circle taking in Adams, Pike, Fulton, Tazewell, Menard and Morgan counties, and along a line entering the state in Monroe county, bending north almost as far as Springfield, and thence southeast to Lawrence county, 50 inches; and in the 12 or 14 extreme southern counties of the state, 60 inches. The mean annual rainfall for 10 years up to and including 1898 at the Illinois Agricultural Experiment Station at Urbana, Champaign county, was nearly $33 \frac{2}{3}$ inches.
Products, - An idea of the extent of the horticultural interests of Illinois can be best gained by reference to the following tables, which give the approximate production of the various horticultural crops raised in the state for five years, down to and including 1898:

Orchard Facits-Annual Crop in Bushels. APPLES.

Year.	Nor. Div.	Cent. Div.	Sou. Div.	Total.
1894	305.957	1,794,338	533,403	2,542.798
1895	365,9018	2,287,731	4,737,027	7.390,566
1896	391,754	1,890,464	2,404,441	$4,636,659$
1897	520,775	2,871,049	5,164,672	$8,556,487$
1898	136,154	227,050	670,280	1,033,484
PEACHES.				
1894	889	13,247	49,582	63,698
1895	6,063	23,173	169,576	198,812
1896	8,135	20.704	141,174	170,013
1897	2.387	11,075	230.816	244,278
1898	8,912	10,750	193,730	213,392
PEARS.				
1894	313	1.845	3,007	5,165
1895	275	1,528	14,194	15,997
1896	434	1.251	19,191	13,876
1897	192	1,090	13,773	15,055
1898	223	885	10,177	11,285

Year.	Grapes-Annual Crop in Pounds.			
	Nor. Div.	Cent. Div.	Sou. Div.	Total.
1894	603,638	658,908	467,813	1,731,089
1895	198,888	459,916	410,839	1,069,643
1×96	248,151	467,877	263,900	980,018
1×97	449,833	573.832	239,807	1,263,472
1898	715,592	435,544	291.807	1,352,943
Straweerries - Annual Falue of Crop.				
1894	\$14,309	\$4,037	\$25,019	\$43,365
1895	5,556	1,985	3,458	10,999
1896	7,407	3,805	14,910	26,122
1897	14,362	3,864	24,374	42,600
1898	17,840	3,929	24,080	45,849
Watermelons-Annual Value of Crop.				
1894	\$ 4,021	\$28,963	\$2,128	\$55,112
1895	20,231	18,116	11,710	50,057
1896	23,215	16,217	8,435	47,121
1897	21,497	16,451	8,276	46,224
1898	20,773	16,103	8,261	45,137

Other Fruits and Beraies-Annual Talue of Crop.				
1894	\$98,190	\$36,930	\$42,364	\$107,484
1895	17,532	30,915	114,560	163,007
1896	18,196	22.586	80,733	121,515
1897	21,175	25,775	110,249	157,199
1898	25,807	26,452	84,186	136,445

Sweet Potatoes-Annual Crop in Bushels.

1894	7,901	85,321	235,704	328,926
1895	18,409	80,231	200,220	298,864
1896	25,408	67,147	210,790	303,345
1897	10,003	49,596	132,703	192,302
1898	12,633	67,327	280,156	360,116

The large falling off in the apple production of the state during the season of 1898 was due to a scourge of the apple-scab fungus, which attacked and devastated the apple orcbards in all parts of the state. Pear-growing in soutbern lllinois has been more or less kept back by the prevalence of pear blight, which has destroyed many trees before coming into bearing. No comment on the other tables is necessary, as they tell their own story.
The nursery industry has been largely developed in Illinois. There are 447 commercial nurseries in the state, 203 in the uorthern division, 143 in the central, and 101 in the southern. The other branches of horticultural industry are also well developed in the state. Gardening for the Chicago market forms a large and important business in itself; while the growing of vegetables for shipment in certain sections of southern Illinois is assuming large proportions. Cobden, in Union county, is the largest sbipping point for tomatoes in the United States, sending out some 300 car-loads of this single fruit during the season of 1898. Union county, exclusive of Cobden, shipped to outside markets about 400 car-loads of tomatoes duriug the same season.
Chicago was, according to the census of 1890 , the second largest market in the United States for cut-flowers. The business has grown considerably since that time, although exact figures are not obtainable. The only notable examples of landscape horticultnre or landscape gardening in the state are found in the Chicago city park system, which is the largest and in some respects the finest in the entire country.
With her situation, natural advantages, vast resources and present attainments along these lines, Illinois seems destined to take even higher rank borticulturally in the not far distant future than she has in the past; and with her increasing production and immense and growing railway facilities, to prove a formidable rival to the older fruit-producing regions of the Union.
The tables giving crop reports are compiled from figures given in the annual statistical reports of the Illinois State Board of Agriculture. Other figures (except where noted as being from census report) are from the Report of the Illinois State Farmers' Institute for 1898. The climatic and meteorological information is based on reports of the United States Weather Bureau and records of the lllinois Agricnltural Experiment Station.
J. C. Blatr.

IMANTOPHYLLUM. Included under Clivia.
IMMORTELLES. Consult Everlasting Flawers.
IMPATIENS (from the Latin; having reference to the pods, which, when ripe, on slight pressure burst open, scattering the seed). Geraniacea. (By some referred to Balsaminàcece.) Tender, succulent herbs, with very fleshy stems and simple leaves usually alternate and the upper ones often in whorls: peduncles axillary, with 1-6 or more fls. of various colors: sepals 3 (seldom 5), the posterior one taking on a spur-like shape; petals 5 or 3, in which case 2 are grown together: fr. a pod, which, when ripe, bursts when pinched, scattering the seeds. About 220 species, mainly from tropical India and Africa. About 20 have found their way into cultivation for the most part as greenhouse plants, 1 . Balsamina being the species best known as an outdoor annual. See Balsam. Propagation by cuttings and seed.

A. Peduncles with single fls.

Hawkeri, W. Bull. A bushy, soft-wooded plant with well branched stems of a dull red color; lvs. opposite or in whorls of 3 , ovate, acuminate, serrate, dark green: peduncles axillary, long and slender: tls. rounded in outline, about 3 in , in diam., deep carmine, with a white eye. South Sealslands. lnt, abont 1886. G.C. 11. 25:761. I.H. $34: 2$. - A greenhouse plant, needing an intermediate temperature. Plants from early spring cuttings bloom all summer and into autumn.
platypétala, Lindl. (I. pulchérrima, Dalzell. I. latifolia, Hort.). Stems strong, succulent, branched and usually reddish purple: Ivs. whorled, lanceolate or oval, serrate, hairy beneath: peduncles axillary, shorter than

the Irs.: fls. large, rose-colored: spur sickle-shaped, rather thin and petals transversely obcordate. Summer. Java. R.H. $1847: 221$. B.R. 32:68. - Needs a moderate to warm temp., and may be used as a house-plant or in
protected and warm situations outdoors. Prop. by cuttings, and during growth should be treated like Gloxinias. Var. Lucie or Lucy belongs here.

AA. Peduncles with $1-2 \mathrm{fls}$.

Sultáni, Hook. Fig. 1127 From 12-24 in. high, with stout stem and branches, rather succulent and green:

1129. Impatiens Roylei ($\times 1 / 3$).
lys. elliptical or lanceolate and narrowed into a petiole about 1 in , long; lower Ivs, alternate, upper ones almost whorled: peduncles axillary, of a rich rose-red in the original form. Hybrids and sports have given shades from pink to almost purple, and a white variety also exists. Spur is very long and thin. Zanzibar. B.M. 6643. Gn. 23, p. 331. V.7:325, 326. S.H. $2: 280$. 1.H. $30: 488 ; 42$, p. 140. R.H. 1884:12. - Increased by seeds; also by cuttings, which root readily. With I. Hookeriana, the best in cult. A greenhouse plant; it also does well as a house plant, blooming almost continuously.

4AA. Peduncles with 2-4 fls.: plant 2-4 ft.
aùrea, Muhl. (I. pállida. Nutt.). Pale Touch-meNot. Jewel-weed. Fig. 1128. With I. biflora the representatives of the family in the indigenous flora of the U.S. Larger than 1. biflora; otherwise similar to it, with pale yellow fls. sparingly dotted with brownish red; spur short, notched, and less than one-third the length of the posterior sepal. Moist, shady places. July-Sept. Quebee to Ore., Kans. and Ga. B.B. 2:404. - Procurable from dealers in native plants.
biflòra, Walt. (I. fílea, Nutt.). Spotted Touch-menot. Jewel-ween. With I. aurea representing the genus in the U.S. An annual with orange-colored fis., mottled with reddish brown: spur strongly inflexed, about half as long as posterior sepal. Moist, shady places. July-October. Nova Scotia to Alaska, Ore., Mo. and Fla. B.B. 2: 403 . D. 155. - Has heen offered by dealers in native plants.

Balsámina, Linn. (Balsámina horténsis, DC.). Garden Balsam. See Vol. I, p. 126.

asaa. Peduncles with S-6 or more fls.

Hookeriàna, Arn. (I. biglandulòsa, Moon. I. Sultáni álba. Hort.). A very succulent much-branched plant, growing to a height of 3 ft .: lvs. long-petioled, ovatelanceolate, toothed: peduncles axillary in the npper lvs.: fls. large, white, spotted with purple on the large lower petals; spur bent horn-shaped, and longer than the fls. Blooms in fall. Ceylon. B.M. 4704. - It is a perennial, requires a moderate temp., and does not bloom until well developed. Prop. by cuttings. One of the best species in cult.

Roylei, Walp. (I. glanduligera, Royle). Fig. 1129. A rather coarse garden annual, with strong stem, succulent and much-branched: lower lys. opposite; upper Irs. usually in 3's and whorled, all ovate or ovate-lanceolate, naked, 4 in. long, sharply serrate; basal serrations and the petiole glandular: peduncles axillary. with 3 or more fls, and rery namerous toward top of plant: fls. large, dark purple; spur very short. Aug., Sept. India. B.M. 4020 . B.R. $26: 22$, - Grown from seed, needing but little care, and useful in groups.
G. N. Latman.

IMPHEE. See Sorghum.

INCARVILLEA (after Incarville, the French Jesuit missionary to China). Bignoniàcere. About 10 species of berbaceous perennials from central Asia, one of which, 1. Delacayi, has achieved extraordinary notice since 1893. It is a hardy plant with handsome pinnate foliage, each leat being ift. long, with as many as $15-20$ dentate segments: scape $1-2 \mathrm{ft}$. high, bearing 2-12 large trumpet-shaped, rosy purple ths., each 2-3 in. long and as much wide. These tls. are probably equal in decorative value to many of the Bignonias cherished in our greeuhouses. In size and beauty they rank with those of Catalpa, Bignonia aud Tecoma, of the same family. This species is certainly the finest bardy herbaceons perennial in the Bignonia family. The tube is yellow inside aird out, and the 2 upper lobes are smaller than the 3 lower oues. The genus is closely allied to Amphicome, and the flowers of both have the same general appearance, but in Incarvillea the calyx lobes are awlshaped, while in Amphicome the calyx is truncate or shortly deutate. Also the seeds of Incarvillea have an entire hyaline wing, while in Amphicome the seeds have a wing that is eut into long thin, strips or hairs. The two genera form a small but remarkable group, characterized by their capsules opening by the ventral suture only. William Watson declares that lnearvilleas are not annuals, as stated in the botanies.

The general experience seems to be that these plants need rather more winter protection than most hardy herbaceous perennials. A light, sandy loam, well enricbed and deeply worked, suits them well, and they like a sheltered position in a rather warm, sunny place. Prop, by division or seed.
A. Segments loothed from base to apex.

Delavàyi, Bur. \& Franch. Fig. 1130. Lvs. few, radical; lfts, $4-5 \mathrm{in}$. long, not quite opposite: stamens included. B.M. 7462 . Gn. 54:1198. R.H. I893:54. J.H. III. 30:449. Gt. 43:1398. Mn. 3, p. 26. G.C. 1II. $26: 659$. G.M. 38:306.

1130. Incarvillea Delavayi.

AA. Segmenls parted or dissected.

variábilis, Batalin. Subsbrub: Ivs, 2- or 3-pinnate; segments parted or dissected, their lobes entire or slightly lobed: fls, as many as 10 , pale rose. Gt. 47, p. 222.- Int. 1×98 by Haage and Schmidt, who say that it makes a strong-growing, busby plant covered with fls. each 1 in . or more across, from May to Oct.: also that seedlings bloom the first year.

AAA. Segments often entire or nearly so.

B. Form of segments lanceolate or narrower.

Olgæ, Regel (I. Kодрmannii, W. Lauche). Subshrub, $2-3 \mathrm{ft}$. high: lvs. $2-+\mathrm{in}$. long: segments linear-oblong
or lanceolate, narrower than in I. Delavayi, especially at the hase, entire or with a few distant teeth towards the tip: fls, pale pink, veiny; tube $1 \frac{1}{2}$ in. long; limb about 1 in. across, the 5 lobes nearly equal. B.M. 6593 (throat not yellow). G. C. I1, 19:89. (in. 28, p. 653.The hardiest species.

BB. Form of segments ovate or broader.

grandiflora, Bur. \& Franch. Differs from I. Delevayi in its shorter lvs., more rounded lfts., short scapes bearing only 1 or 2 fls . as large as those of 1 . Nelarayi, but with narrower calyx lobes and longer corolla lobes, the color deep rose-red. Dried specimens show about a dozen scapes on a plant. China. (in. 56:1230.-1nt. about l898. Imperfectly known, and may be a form of 1. compacta. I.grandiflora, Poir.=Tecoma grandiflora. 1. grandiflora, Spreng.=-Eschynanthus grandiflova.
J. B. Keleer and W. M.

INDIANA, HORTICULTURE IN, Fig. 1131. Indiana is essentially a frut-growing state. There is no part of its soil that cannot be made suitable for the production of fruit of some kind. There are portions, however, that are better adapted to the growing of wheat and corn or grazing on account of the prairie character of the soil, or the climatic conditions, which render the cultivation of orchard fruits a precarious husiness. By referring to the accompanying map, it will be seen that the mean annual isotherms for the year 1898, and the same will bold approximately for a series of years, are decidedly irregular in the northern part of the state, while in the southern half they run more uniformly across the state. This is caused very largely by the ameliorating influence of Lake Michigan, which is felt very perceptibly along the northern counties which are protected from the severe northwest winds; but it is not felt in any appreciable degree as we go down the western side of the state. And so it often happens that the temperature falls lower 75 miles south of Lake Michigan than it does in the counties bordering on Michigan. This differeuce is often great enough to render peach growing iu this section, as a commercial business, out of the question. From the northeastern portion of the state soutb to the Ohio river, aud covering all that territory not already mentioned, the climate is not so severe, and fine crops of peaches are often produced. The dotted line, shown on the map, starting bear Michigan City and running in an irregular line, taking in most of the famous Kankakce marshes, thence in a southerly and westerly direction, finally striking the west line of the state a little north of Terra Haute, is intended to indicate, approximately, that portion of the state that is better adapted to the growing of general farm crops than fruit. This is not wholly due to climatic causes, but in a large degree to adverse soil conditions. A large part of this region is flat prairie land; much of it was once corered with marshes, but with modern drainage facilities nearly all of this naturally fertile land bas been improved until it has become oue of the best farming sections in the state. Only occasional spots, however, are high enough for orchard purposes ; but small-fruits and vegetahles grow with the greatest luxuriance, and large quantities of these are shipped to the Cbicago market. A region in the Kankakee valley, including starke and adjoining counties, is famous for its sugar beet productions. The soll bere is of a sandy nature, eminently adapted to the culture of this vegetable; specimens hare been analyzed which yielded 22 per cent of sugar, with a purity coefficient of 90 to 95 . While there are not many large commercial orchards found in the northern and northeastern portions of the state, the soil and climate are admirably adapted to the growing of all kinds of orchard fruits, with the exception of peaches, which are grown only to a limited extent. Here we find a sandy or clay loam, with clay subsoil, which was originally covered with oak, maple, hickory, walnut and all kinds of hard woods found in this climate. The surface is more or less rolling, with numerous small lakes dotting the landscape. thus insuring botb soil and atmospheric drainage. In the shallow waters of some of these lakes and marshes the cranberry finds congenial surroundings, and in the sandy districts of Pulaski, Fulton, Kosciusko and surrounding counties, the huckleberry grows to perfection.

In eastern Indiana the plum and the cherry are grown more largely than the peach, while the central part of the state excels in pears. Small-fruits are abundaut everywhere.

Southern Indiana has a mean annnal temperature 8° to 10° warmer than that of the northern eud. With other favorahle conditions in the way of soil, protection from severe winds and perfect atmospheric drainage, owiug to the fact that the country for the most part is hilly, the peach and other tender fruits are successfully grown. Here, on the banks of the Ohio river, was, until recently, one of the largest peach orchards in the middle West ; and even now orchards of from 40,000 to 50,000 trees may be scen on the "knobs" in Clark and Washington counties. Here, too, is the home of the "Big Red Apple" (Ben Davis) and the Kieffer pear. The largest Kieffer pear orchard may be seen near the town of Salem, in Washington county. This orchard cousists of 12,000 trees. The soil in southern Indiana is for the most part decidedly different from that found farther north. In a report of the United States Geological Survey made some years ago, mention is made of the "white clay lands," which cover a large portion of southern Indiana, Ohio and Illinois, where most of the finest fruit is grown. In Indiana the northern boundary of this peculiar formation, according to the description, begins near Terre Hante on the west, and passes more or less irregularly across the state, passing into Ohio near Brookville, Franklin county. Thus the greater portion of the state south of this line is made up of this white clay deposit. In many places this elay becomes almost a brick-red, but the characteristics are, in general, the same, whatever the color. An apple orchard consisting of snch varieties as Ben Davis, Rome Beauty, Winesap, Rall's Genet and Grimes' Golden, planted on these clays, is certain to reward the owner who gives it intelligent attention.

Here is also the home of the papaw, Asimina triloba, and the native persimmon. Diospymes l'irginiana. Excellent varieties of the latter are cultirated to some
extent for the large markets, but the industry is as yet in its infancy. Both of these wild fruits offer a wide field for investigation. This section also includes the famous melon districts, where both musk-aud watermelons are grown to perfection. Hundreds of acres are grown annually and the products shipped to the larger cities of the North and West.

James Troop.
INDIAN BEAN. Catulpu. 1. Cherry. Whammus Caroliniana. I. Corn, Zea Mays. see ('orn. I, Cress. Tropeolum. I. Cucumber-Root. Medenla Virginica. 1. Currant, Symphoricarpos vulgaris. I. Fig. Opuntia vulgaris. 1. Hemp. A pocynum cannabinum. I. Mallow. Abutilon I. Physic. Gillenia. I. Pipe. Monotropa. I. Rice Zizania aquatica. I. Shot. Canna.

INDIAN TERRITORY, HORTICULTURAL POSSIBILITIES OF. Fig. 11:s2. The horticulture of the Indian Territory is in a very primitive state. The land is owned in common. The individual has the right to live on and occupy a certain piece of laud for an indefinite length of time. The shipping facilities are poor. The local markets are very limited. The country is thinly populated. There is an abundance of wild fruit. The people are not sufficiently educated in agricultural industries to be successful in fruit culture.

There are soils of all kinds in the Territory. Most of the soil, however, is a sandy loam with a clay subsoil. Most of the land drained by the Arkansas and Canadian rivers is sandy. That drained by the Neosho and Verdigris is a black clay and limestone land with beavy clay subsoil. All the grades between these can be found on the borders of these river watersheds. In the extreme sonthern part some of the land is very low and wet.

Most of the country is rolling, and in extreme northeastern and south central part the hills almost reach the diguity of mountains. The Boston mountains (a spur of the Ozariss) run along the northeast border. The Washtaw hills extend through the southeru part from east to west. The Flint hills enter the northwest part of the Territory, and are enclosed by the Arkansas and Verdigris rivers. From this it will be seen that bat little of the country is flat or low and swampy, and the best of exposures for fruit land may be had in all parts of the country. There are no lakes or large bodies of water in the Territory.

The flora is about the same as that of Ackansas, although more limited in the western part. Few collections have been made, and only the plants of commercial importance are well known. The forest belts of Arkansas and Missouri extend for some distance into

I132. Indian Territory.
the Territory. Most of the timber is only second grade, composed of oaks, pine and walnut.

Garden crops, where grown and cultivated, do well. Potatoes are grown to some extent for market in the Cherokee Nation, and give good returns. The early potatoes do best, but are very hard to keep over sum-
mer. Late potatoes yield well, but require more care in cultivation. Onions, beets, carrots, tomatoes and cabbage all produce good crops, but are not grown in commercial quantities. All of these vegetables promise to be money-makers in case of settlement of the country. Melons are grown here and shipped to neighboring markets with fair profits.

There are apple orchards in the Territory that have been in bearing for 15 years, and are still in fair condition. These orchards are usually near the Indian agencies or Mission schools, and are cared for by white people. When Oklahoma was first opened for settlement therf were several wagon loads of apples taken to Guthrie and Oklahoma city, from the Creek Nation. These apples were of as good quality and as fine in appearance as apples shipped from Missouri and Kansas, and sold for a bigher price. There are still a few apples taken each year from the Creek and Chickasaw Nations to the border towns of Oklahoma and sold for a good price. The fruit is the same quality as that grown in southern Missouri and northern Arkansas.

Few peach orchards bave been planted, and these are mostly of seedling trees. The light open winters frequently cause the crop to be diminished or destroyed by the late spring frosts.

Plums seem to be perfectly at home here, and are almost a sure crop every year.

Grapes and berries are usually very free from disease, and bear heavily. The fruit is large, well developed and of a fine quality.

The soil and climate of Indian Territory are both very favorable to the production of fruit, and with permanent white settlement horticulture has a bright future within the borders of the Territory.
O. M. Morris.

INDIAN TOBACCO. Lobelia inflata. I. Turnip. Arisama triphylla. I. Wheat. Fagopyrum Tataricum.

INDIGO. See Indigofera. False Indigo. See Baptisia and A morpha.

INDIGOFERA (indigo-bearing). Leguminòsa, Is Digo. Perbaps 250 berbs or shrubs in many parts of the world. Lvs. odd-pinnate (rarely digitate): fls, usually small, in axillary racemes or spikes, in color ranging from purple to rose and white; standard mostly roundish, often persisting for some time: keel with a spur on either side: pod various, asually with thin partitions between the seeds. Several species are native to the United States.

Indigo is mostly the product of I. tinctoria, of Asia, but it is also made from the West Indian species, I. Anil. Other species, even of other genera, also yield 1ndigo. These species were early introduced into the southern states for Indigo-making, and the product was once manufactured to a considerable extent. The plant was introduced into South ('arolina in 1742 from the West Indies. When it was found that commercial Indigo could be made, the British Government offered a bounty. In 1775 , the production was more than one million pounds of Indigo. The war for independence checked the industry, and thereafter the rising importance of the cotton crop, amongst other things, drove it to the wall. But as late as the middle of the present century, Indigo continued to be made in remote places. Plants still persist in some places as escapes from cultivation. Indigofera tinctoria is perennial, but is grown from seeds, which give from two to four cuttings of lierbage the first year. The Indigo is not contained in the plant, but the dye is a product of manufacture from a glucoside indican which is contained in the herbage, and which is obtained as an extract. Indigo seed is offered by seedsmen.

In North America, several species of Indigofera are occasionally grown as ornamental subjects. In the North, they are mostly greenhouse subjects. Propagated by seeds or cuttings, chiefly the latter.

AA. Raceme as long as or longer than the leaf.
décora, Lindl. Weak-growing or even half-climbing shrub, the branches slender and red-tinged: leaflets in 6-8 pairs, broad-lanceolate, usually drooping, sharppointed: racemes long, with showy rose-pink fls, about

1 in. long: standard oblong, nearly or quite obtuse, with a beart-like mark near the base: wings linearlanceolate or spatulate, ciliate. China. B.R. 32:22. B.M.5063. G.M. 31:591. P.M. 16:290.-Regarded as a greenhouse plant and cult. in the open far South. Var. álba is said (G.F. 7, pp. 266, 376, fig. 61) to be a hardy herbaceous or half-shrubby plant at the Arnold Arboretum.
macrostachys, Vent. Shrubby, the stems terete and appressed-pubescent: lcaflets $8-10$ pairs, oval-oblong, obtuse but mucronate, pubescent: racemes longer than the lvs., many-fld.: fls. rose. China.

Caroliniàna, Walt. Tall and branebing: leaflets 5-8 pairs, oblong or obovate: fls. small, many, yellowish brown and with short-acute calyx teeth: legume oblong, 2 -seeded, less than $1 / 2 \mathrm{in}$. long. Perennial, in the pine barrens from N. Carolina soutb.

AA. Raceme mostly shorter than the leaf.

australis, Willd. (I. angulata, Lindl. I. sylvática, Sieb.). A very variable species, known by its glabrous aspect, short or nearly obsolete teeth of the calyx and the pod glabrous when young. Erect shrub: 1fts. 9-17, varying from oblong to almost orbicular, $3 / 4 \mathrm{in}$. or less long, obtuse or retuse: fls, red and mostly showy, the racemes sometimes as long as the lis.; standard truncate at the base, with a very short claw: pod nearly or quite straight, terete. Austral. B.R. 5:386. L.B.C. $2: 149$. B. N1. 3000. - Extreme South.
tinctòria, Linn. Indigo. Fig. 1133. Shrub, 4-6 ft., with silvery branches: $1 \mathrm{fts}, 7-15$, thin, rather large, obo-vate-oblong, pubescent beneath: fls. small, reddish yel-

1133. Indigofera Anil.

Nearly natural size. The single pod is I. tinctoria ($\times 1 / 2$).
low, in sbort racemes: pod nearly straight, somewhat knotty, 8-12-seeded. S. Asia.-Long cult. and widely distribated. Runs wild South. Indigo was known to the Egyptians.

Anil, Linn. West Indian Indigo. Fig, 1133. Much like the last, bnt fls, smaller, and pods curved and not knotty. W. Indies, but now rans wild in the southern states. B. N. 6506.
L. H.B.

INGA (W West Indian name). Legumindsa. Tbis contains some tropical trees and shrubs, with acacia-like foliage and clusters of showy red stamens. Under this name 3 species are cult. in S. Calif., but 2 of them be-
long to Calliandra. Another allied genus is Pithecolobium. Inga has pinnate foliage; the other two genera bave bipinnate foliage. In Inga the pod is scarcely or slowly dehiscent: in Calliandra the valves dehisce elastically from the apex to the base of the pod and are revolute; in Pithecolobium the valves are often twisted, but never rolled baek and elastic.

A. Leaflets hairy beneath.

affinis, DC. (consult I. dúlcis in the supplementary list). Lvs, simply pinnate; lfts, in 4 pairs, ovate, acuminate, pubescent above, somewhat shining and villous below, one side smaller than the other, 3 in . long, $11 / 2 \mathrm{in}$. wide; petioles, branches, peduncles and fls, velvety tomentose, a gland between each pair of lvs.: spikes solitary or in pairs: corollas villous. Trop. Amer. -This is probably the plant eult. in S. Fla, and S. Calif. as I. dulcis.

AA. Leaflets not hairy.

Feuillei, DC. Lvs, simply pinnate; lfts. in 3-1 pairs, oval-oblong, acute at both ends, glabrous: pods l-2 ft. long, linear, flat, glahrous, white inside. Peru.-Int. 1900 by Franceschi. The sweet, edible pulp of the pods is much prized by the Peruvians, who call it Pacay.
I. anómala, Kunth. Properly Calliandra grandiflora, Benth. Unarmed: Ivs. bipinnate; pinnes $15-17$-paired; lfts. more than 20-paired, linear, obtuse; petioles not glandular: branches, peduncles and fis. puberulous: fls, rosy: pod linear, acute, narrowed at the base, glabrous, thickened at the margin. Trop. Amer.-I. duilcis. The older plant of this name is Willdenow's, which comes from the Philippines, and is described under Pithecolohium. I duleis, of Martius, comes from Brazil, and is I affinis described above. Franceschi's plant of 1. duleis makes a bushy tree, which he says comes from Central America, and has pods containing a white pulp rich in sugar. This plant, he says, grows only in frostless districts, while Inga anomala and puleherrima will grow where the lemon thrives, -I. pulchér rima, Cerv. Properly Calliandra Tweediei, Benth. Lvs. bipinnate: pinnae $3-5$-paired; lfts, as many as 25 -paired, paler and slightly hairy beneath : stipules ovato-scariose, brown hairy; pedumcle being a head of abont 20 fls . Mex. B.M. 4188 . P.M. II:147. W. M.

INKBERRY. Ilex glabra.

INSECTICIDES. Substances used to kill insects, as commonly understood; but, as defined in dictionaries, "one who or that which kills, or the act of killing an insect," coustitutes an Insecticide. Hence there are many natural Insecticides, such as winds, rains, sudden changes of temperature, forest and prairie fires, insectivorous plants, some bacteria and fungi, several of the higher animals (including man), and many of the invertebrates (including spiders and a host of parasitic and predaceous insects). Oftentimes these Insecticides of nature materially aid man in his warfare against injurions insects, but usually it is necessary to resort to a spray or some other artificial Insecticide.

Insecticides may be elassed into those which are eaten with the food and kill by poisoning ; powders, waskes and gases which kill by suffocation; and certain oils and soaps which kill when they come in contact with the body, and nay also suffocate by closing the breathing holes. The poisons are effective against only the biting or chewing insects, and the sucking insects must be hit with a powder, an oil or soap; or both kinds of feeders may be suffocated with the gaseous Insecticides.

Arsenic is the chief ingredient in most poisonous Insecticides. Its solubility in water, causing it to burn the foliage severely, prevents its being used alone. But by boiling one pound of it with two pounds of lime or four pounds of sal-soda in two gallons of water for half an hour, a veryicheap, effective and reliable Insecticide results; use about $I 1 / 2$ quarts to 40 gallons of Bordeaux mixture or water.

Paris green is still the standard poisonous Inseeticide, but its cost and adulteration have recently brought several substitutes, such as paragrene and green arsenoid, on the market. London purple is too soluhle and variahle to give uniform results; hence it is not as much used as formerly. These arsenicals are used at the rate of 1 pound in from 100 to 300 gallons of water or Bordeaux mixture on fruit trees, the most dilute on the peach. Arsenate of lead is now largely
used against such insects as the gypsy moth and the elm leaf-beetle; Iarge quantities of it can be used on the foliage without injury, and it adheres better than Paris green, but is sometimes more expensive. Hellebore, the standard currant worm remedy, is especially valuable to use after fruits are more than half grown, when there would be danger from the use of the arsenical poisons.

Tobaceo in its various forms is one of the best Insecticides for sucking insects; it is particularly useful in greenhouses. Pyrethrum powder is the standard Insecticide for house-flies, and is often effectively used against other insects.

Kerosene is one of the most active and effective of Insecticides. It can rarely be used with safety undiluted, but as an emulsion with soap, it has been the standard remedy for sucking insects for many years. The formula is: half a pound of soap, I gallon hot water, and 2 gallons of kerosene; pour the kerosene into the hot soap solution and agitate violently for a few minutes. Recently, however, manufacturers have devised spray pumps which combine kerosene and water into a good, effective emulsion. These kerowater pumps can be regulated to use certain percentages of kerosene, but they are often unreliable and have not taken the place of the kerosene soap emulsion. Whale-oil soap is now extensively and successfully used in killing scale insects and plant-lice. It and the lime-sulfur spray are the most effective sprays now in use against the famous San José scale, the pear psylla, and other sucking insects. Crude petroleum has heen successfully used in combatting cattle lice and the horn-fly, and is an effective but sometimes unsafe substance to apply on dormant trees for the San Jose and other scales. In California, a resin wash and a lime, salt and sulfur wash are extensively nsed and found very effective against scale insects; in the East the lime-sulfur wash is also effective.

Two gases are extensively used in killing insects. The fumes of carbon bisulfide are certain death to insects infesting stored grains, seeds or clothing. Place the infested material in a tight box; pour the liquid, at the rate of 1 pound to each 100 bushels, or 1 pound to each 1,000 eubie feet, into shallow dishes placed on top of the materials, and quickly close the box, leaving it for a day or so. The fumes are explosive; hence keep all lights away. This liquid has also been suceessfully used in treating melon and cucumber vines, under covers for plant-lice. The other gaseous Insecticide is hydrocyanic acid gas, the uses of which are discussed below under Scale Insects, page 8I2.
The arsenical poisons seem to be equally effective when applied in combination with the fungicide Bordeaux mixture, and most fruit-growers now spray with such a combination. Sometimes one of the Insecticides for killing sucking insects has been successfully mixed with the Bordeaux, but it is doubtful if they are as effective when thus applied. The poisons do not readily mix with the soaps or oils, and, as a rule, one cannot effectively hit sucking insects, biting insects, or the fungous diseases with a single application of some combination mixture.
M. V. Slingerland.

INSECTS. The animals which constitute the Insect world play an important part in most horticultural operations. The busy bee is an indispensable aid in the production of many fruits, but the equally busy jaws of canker-worms or other Insects oftentimes seriously interfere with man's plans for profitable crops. Horticulturists should become more intimately acquainted with their little friends and foes in the Inseet world. Not only from the economic standpoint is this knowledge necessary in the business of growing plants, but the striking peculiarities of form, coloring, structure, habits, and the wonderful transformations of Insects afford one of the most interesting fields in nature. The life-stories of many Insects, if told in detail, would rival in variety and interest many a famous fairy tale. The seience that treats of Insects, or entomology, has now reached the stage where its devotees are no longer looked upon as "crazy bug-hunters" in most communities. A recent directory of the eatomologists, or those interested in the study of Insect life, of the United States and Canada contains the names of over 1,200 persons.

What They Are.-An Insect is an animal which, in the adnlt stage, has its body divided into three distinct

1134. A beetle.

Showing the different parts. regions: the head, the thorax and the abdomen (Fig. I134). The bead bears one pair of antennaz, and there are always three pairs of legs and usually either one or two pairs of wings attached to the thorax. By these characteristies one can usually readily distinguish an adult Insect from any other animal. Among the near relatives of Insects in the animal world are the cray-fish, sow-bugs and crabs, but these are mostly aquatic animals, breathing by true gills; they have two pairs of antennæ, and at least five pairs of legs. Centipedes, or "hundred-legged worms"" and millipedes, or "thonsand-legged worms," are also nearly related to Insects, but they have the thorax and abdomen forming a continuons region, with from 6 to 200 segments, earh bearing one or two pairs of legs; they have one pair of antenna. The layman usually classes such animals as the spiders, mites and daddy-long-legs among the Insects, but they form a distinct class, ax they have the head and thorax grown together, no antennæ, and bave four pairs of legs.

How They Are Constructed. - Insects are constructed on an entirely different plan from the bigher animals. Their supporting skeleton is ontside, it being simply the skin hardened more or less by a horny substance, known as chitin. This firm outer wall, or skeleton, sapports and protects the muscles, blood-vessels, nerves, and other organs within. The mouth-parts, antenng and eyes of an Insect are attached to its head, and all are exceedingly useful organs, as will be shown later in discussing the feeling and the other sensations of an

Insect. An Insect's wings and legs are always borne by the thorax. The wings are primarily organs of flight, but are used as musical organs by some of the grasshoppers and crickets. Female canker-worm moths, hedbugs, and some other Insects have practically nowings, and the house-flies, mosquitoes, male bark lice, and similar insects have but one pair of wings. Insects use their legs primarily for walking, running or climhing; some have their front legs modifled for catching other Insects for food; others have hind legs fitted for jumping, while the honey-bee has little "pockets" on its hind legs for carrying pollen to feed its yonng.

Head of grasshopper. Showing the great eye. A detasil of a part of the surface of the compound eye is also shown.
1135.

The arrangement of the internal organs in Insects is somewhat pe. culiar. The alimentary or focidcanal in larva is a nearly straight tube, occupying the central portion of the body; in adult Insects it is usually much longer than the body and is more or less folded; from the mouth the food passes through a pharynx, an esophagus, some times a crop and a gizzard, a stom-
the venter and connect a series of nerve centers or ganglia, typically one for each segment of the body. From each of these ganglia or little brains nerves arise, which supply the adjacent organs and ramify throughout the body. In Insects, all parts of the body cavity that are not occupied by the internal organs are filled with a rich, colorless or slightly greenish blood. There is no system of tubes, like our arteries and veins, in which the blood is confined and throngh which it flows There is a so-called "heart" above the food-canal, along the middle line of the back; it is a tube consisting of several chambers comnunicating with each other and with the body cavity by ralvular openings. The blood is forced through this heart into the head, where it escapes into the hody cavity. It then flows to all parts of the body, even out into the appendages, in regular streams which have definite directions, but which are not confined in tubes. They, like the ocean currents, are definite streams with liqnid shores. Insects do not breathe throngh the month, as many suppose, but

1136. Fossil dragon-fly, Petalia longialata $(\times 1-5)$.
through a series of holes along the sides of the body. These openings, or spiracles, lead into a system of air tubes, called tracheæ. These tracheæ branch and finally ramify all through the Insect. Insects have no lungs, but the tracheæ sometimes connect with air-sacs or bladders in the body, which belp to buoy up the insect when flying. Thus the relation between the circulation of the hlood and respiration is not nearly so intimate in Insects as in man. In Insects the air is carried to all the tissues of the body in the trachem and the blood simply bathes these tissues. Just how the blood is pnrified and how the waste matter is disposed of in Insects are not yet clearly understood. Aquatic Insects breathe by either carrying down bubbles of air from the surface entangled under their wings, or they may be provided with.organs known as tracheal gills; these are usually plate-like expansions of the body that are abundantly supplied with traches, in which the air is brought practically in contact with the air in water, and may thus be purified. More than 4,000 different moscles have been found in a single caterpillar. Notwithstanding their delicate appearance, these mnscles ure really very strong and their rapidity of action is wonderful; in certain gnats the ach, and a small and large intestine. The nervons system of an Insect is similar to that in the higher animals, but it extends along the venter instead of the back. There is a little brain in the upper part of the head, and two nerve cords extend from this around the food canal to another ganglion or nerve center in the lower part of the bead; two nerve cords then extend longitudinally along

1137. The four stages in an insect's life-egg, larva, pupa, imago.-The codling-moth. Egg much eularged; others $\times 1^{1 / 2}$.
muscles moreor vibrate the wings 15,000 times per second. Their Sensafions. - Insects can see, feel, hear, taste and smell, and they may also possess other senses, as a sense of direction. Many Insects have two kinds of eyes. On each side of the head the large componnd eye is easily recognized (Fig. 1135) ; each compound eye is composed
of many small eyes, from 50 in some ants to many thousands in a hutterfly or dragon-fly. Between these compound eyes, from one to four simple eyes are to be found

1t38. Nymphs of t.12 four-lined leaf-bug and adult of the tarnished plant-hug.
The smallest one is the nymph recently hatched. The next is the nymph after the first moult. The imago is shown at the right. Hair lines at the right of nymphs, and small figure near imago indicate the natural size.
in many adult Insects. Caterpillars and other larva possess only simple eyes. It is thought that each facet of the compound eye sees a part of an object; thus the whole eye would form a mosaic picture on the Insect's brain. The simple eyes doubtless see as our eyes do, and seem to be best adapted for use in dark places and for near vision. Insects do not see the form of objects distinctly, but their eyes are doubtless superior to ours in distinguishing the smallest movements of an object. It is now supposed that no Insects can distinctly see objects at a greater distance than 6 feet. It must be a sixth sense, a sense of direction, which enables the bee to find its way for a mile or more back to its home. Insects are doubtless able to distinguish the

1139. Larva of a sphinx moth. color of objects, and some Insects seem to prefer certain colors. Blue is said to be the favorite color of the honey-bee, and violet that of ants; ants are also apparently sensitive to the ultraviolet rays of light, which man cannot perceive. It is generally supposed that the shape and high colors of

1140. Tent-caterpillar. periments seem to show that Insects are guided to flowers by the sense of smell rather than by sight.
The hard outer skin of an Insect has no nerves distributed in it, bence it is not sensitive; but it is pierced with holes, in which grow hairs that are in connection with nerves at their base. It is by means of these sensory hairs that Insects feel, and are sensitive to touch on most parts of the body.

Donbtless Insects are not deaf, for we know that many of them make sounds, and it must naturally follow that they have ears to bear, for there is every reason to suppose that they make these sounds as lovesongs to attract the sexes, as a means of communication, or possibly to express their emotions. Some think that

1141. A maggot.

Larva of a dipterous insect.
bees and ants hear sounds too shrill for our ears. Insects have no true voice, but produce Farious noises mechanically, either by rapid movements of their wings, Which causes the humming of bees and flies, or by friction between roughened surfaces on the body or its appendages, thus producing the rasping sounds or shrill cries of some crickets and grasshoppers. The house-fly hums on F, thus vibrating its wings 335 times in a second, while the wing tone of the honey-bee is A. Usually the males are the musicians of the Insect world, but it is the female of the familiar mosquito which does the singing, and the "biting" also. The male mosquito doubtless hears the song of his mate by means of his antennæ, is the song causes the antennal hairs to vibrate rapidly. Organs which are structurally ear-like have been found in various parts

1142. A grub. Larva of a heetle. of the body of Insects. The common brown grasshoppers of the fields have a large ear on each side of the first segment of the abdomen; one can easily distinguish with the naked eye the niembrane or tympanum stretched over a cavity. Many of the long-horned green grasshoppers, katydids and crickets have two similar ears on the tibia of each front leg. Some think that mosquitoes have the faculty of the perception of the direction of sound more highly developed than in any other class of animals.

Inseets undoubtedly possess the sense of taste. When morphine or strychnine was mixed with honey, ants perceived the fraud the moment they began to feed. The substitution of alum for sugar was soon detected by wasps. Bees and wasps seem to have a more delicate gustatory sense than flies. Taste organs have been found in many Inseets, and are usually situated either in the mouth or on the organs immediately surrounding it.

Many experiments have shown that the antenna are the principal organs of smell in Insects. Blow-flies and cockroaches which have had their antenns removed are not attacted by their favorite food, and male Inseets find their mates with difficulty when deprived of their antennæ.

The familiar world which surrounds us may be a totally different place to insects. To them it may be full of music which we cannot hear, of color which we cannot see, of sensations which we cannot perceive. Do Insects think or reason? Why not? Their actions are said to be the result of inherited habit or instinct. But some of them have been seen to do things which require the exereise of instinctive powers so acute and so closely akin to reason that one can hardly escape the conclusion that some Insects are endowed with reasoning powers.

Their Number, Size and 1 ge.-Experts guess that there are from $2,000,000$ to $10,000,000$ different kinds of Insects in the world. Only about 400,000 of these have yet been described and named by man. Between 30,000 and 40,000 are now known in North America. Four-fifths of all the kinds of animals are Insects; some single families of Inseets are said to contain more species than one can see stars in a clear sky at night; and
there are as many butterflies as birds in North America. The larger part of the land animals are Insects, and it is asserted that the larger proportion of the animal matter existing on the lands of the globe is probably locked $u p$ in the forms of Insects.

Iusects vary in size from little beetles, of which it would take 100 , placed end to end, to measure an inch, up to tropical species 6 or 8 inches in length, or of equal bulk to a mouse.

Insects have a very long, but, as yet, rery imperfect pedigree extending through the geological ages to Silurian times. Fossil remaius of many different kinds of lnsects have been found in the rocks (Fig. 1136) ; even such delicate Insects as plantlice left their impress on the rocks ages ago. In the carboniferous or coal age, the Insect world was evidently quite different from that of to-day, for fossils of veritable Insect mammoths have been found; dragon-flies with a wing-expanse of from 2 to 3 feet

1144.
engthwisc section of the promethea cocoon.
howing at the apex the valve like opening through which themoth escaped. then existed. Insect fossils found in the Tertiary rocks indicate that there were more kinds of Insects then than now.

Their Growth and Transformations. Fig. 1137.-1nsects wherethew, showing where the moth gets out.
bees and some other Insects, there hatches a worm-like creature, much unlike the parent Insect. It is called a larva (Fig. 1139); the larve of butterflies and moths are often called caterpillars (Fig. 1140); maggots are the larva of flies (Fig. 1141); and the term grub is applied to the larva of beetles and bees (Fig. 1142). When these larva get their full growth, some of them go into the ground, where they form an earthen cell, while others proceed to spin around themselves a silkeu home or cocoon (Figs, 1143, 1144, 1145). In these retreats the larva change to a quiescent or lifeless-appearing creature which has little resemblance to either the larva or the parent Insect. It is called a pupa (Fig. 1146). The pupe of butterllies are often called chrysalids. Flies change to pupa in the hardened skin of the maggot. Some pupa,like those of mosquitoes, are very active. Wonderful changes take place within the skin of the pupa. Nearly all

1148. Imago of a tent-caterpillar.
the larval tis-
sues break down and the Insect is practically made over, from a crawling larva to a beautiful, flying adult Insect. When the adult is fully formed, it breaks its pupal shroud and emerges to spend a comparatively brief existence as a winged ereature. Such Insects are said to undergo a complete metamorphosis, and pass through four strikingly different stages during their life: the egg, the worm-like larva, the quiescent pupa, and the adult insect. Such remarkable changes or transformations make the story of an Insect's life one of intense interest to one who reads it from nature's book. Various kinds of adult Insects, or imagoes, are shown in Figs. 1147-1152.

No two kinds of Insects have the same life-story to tell. Some pass their whole life

1149. A beetle The adnlt of a borer larva. ou a single host; some partake of only a certain kind of food, while others thrive on many kinds of plants; some are cannibals at times, and others, like the parasites, are boarders within their host, while many prey openly on their bretbren in the Insect world. Usually the life of the adult Insect is brief, but ants have been kept for thirteen years, and the periodical cicada has to spend seventeen years as a nymph underground before it is fitted to become a denizen of the air. The winter months may be passed in any of the different stages of the Insect's life. Two rery closely allied Insects may have very different life habits.
How They Grow. - Many people believe that the small house-flies grow to be the large ones. While most Insects feed after they become adults, they get little or none of their growth during their adult life. Insects grow mostly while they are larrx, or nymphs. The maggots from which the little house-flies develop doubtless do not have as luxuriant or favorable feeding grounds as do those of the larger flies. In 30 days some leaf-feeding caterpillars will increase in size 10.000 times ; and a certain fleshfeeding maggot will in 24 hours consume two huudred times its own weight, which would be paralleled in the human race if a one-day-old baby ate 1,500 pounds the first day of its existence! The skin of \ln sects is so hard and inelastic that it cannot stretch to accommodate

1150. One of the weevil beetles
With a long and strong proboscis. such rapid growth. But nature obriates this difficulty by teaching these creatures how to grow a new suit of clothes or a new skin underneath the old one, and then to shed or moult the lat-
ter. The old skin is shed in its entirety, even from all the appendages, and sometimes remains in such a natural position where the lnsect left it as to easily deceive one into thinking that he is looking at the In-

One of the commonest predaceous insects.
sect rather than at its cast-off clothes. Some lnsects are so neat and economical that they devour their old suits or skins soon after moulting them. Larvæ, or nymphs, may moult from two or three to ten or more times; the larve do not often change strikingly in appearance, but the nymphs gradually acquire the characters and structures of the adult.

How They Eat. - To the horticulturist, the mouth-parts of an Insect are its most important organs or appendages. The mouth-parts are built on two very different plans. Grasshoppers, beetles, caterpillars and grubs have two pairs of horny jaws, working from side to side, with which they bite or chew off pieces of their food, that then pass into the food-canal for digestion (Fig. 1153). The seale Insects (Fig. I154), plant-lice, true bugs (Fig. 1155), mosquitoes and others have these jaws drawn out into thread-like organs, which are worked along a groove in a stiff beak or extended under lip. Such Insects can eat only liquid food, which they suck with their beak-like mouth-parts. The Insect places its beak on the surface of the plant, forces the thread-like jaws into the tissues, and then begins a sucking operation, which draws the juices of the plant up along the jaws and the groove in the beak into the food-canal of the Insect.
Thus a sucking lnsect could not partake of particles of poison sprayed on the surface of a plant. Its mouth-

1152. Moths of the peach-tree borer.

The lowest one is male.
parts are not built for such feeding, and as it is impracticable to poison the juice of the plant, one is forced to fight such Insects with a deadly gas, or each individual Insect must be actually hit with some insecticide. A knowledge of these fundamental facts about the eating habits of Insects would have saved much time and money that have heen wasted in trying to check the ravages of sucking Insects with Paris green and similar poisons.

Some Insects, like the bees and wasps, have mouthparts fitted both for sucking or lapping and for biting.
Beneficlal insects. - The horticulturist has many staunch and true friends among the insects. The honeybee, the many wild bees, and other Insects, as they visit the blossoms to get food for themselves, for their young, and honey for man, leave an insurance policy in the shape of tiny grains of pollen, which often insures a crop of fruit that otherwise might be extremely uncertain. The honey-bee is often accused of biting into ripe fruits, especially grapes. They have not jet been proved guilty, and careful, exhaustive experiments have shown that they will not do it under the most favorable circumstances. Wasps and other strong-jawed insects are responsible for most of this injury, the bees simply sipping the juice from the wound.
Most of the pretty little beetles known to every child as "lady-hugs" eat nothing but injurious Insects; many other beetles are also predaceous. Man is also often deeply indebted to many of the two-winged Insects or true flies whose larve live as parasites inside the hody of Insect pests or feed upon them predaceously. Were it not for the ravenous larvas of the "lady-bugs" and of the syrphus flies, plant-lice of all kinds would soon get heyond control. While man must recognize these little friends as valuable aids in his warfare against the hordes of Insect pests, it will

1153. Mouth-parts of a biting insect. rarely be safe to wait for the pests to be controlled by their enemies. Fig. 1156 shows a tomato worm bearing the cocoons of a parasite. Fig. 115 I shows one of the predaceous beetles destroying a cutworm.

Injurious Insects, - There are now about a thousand differeut kinds of Inseets that may he classed as injurious in the United States and Canada. Over 600 kinds were exhibited at the Columbian Exposition in 1893. All of these may not be injurious every year, as most Insect pests have periods of subsidence, when certain factors, possihly their enemies or perhaps climate conditions, hold them in check. The outlook for American horticulturists, so far as injurious Insects are concerned, is not encouraging. Nowhere else in the world are Insects being fought as intelligently, successfully and scientifically as in America, yet we never have exterminated, and it is very doubtful if we ever will, a single Insect pest. This means that American horticulturists will never have any fewer kinds of lnsects to fight. On the contrary, there are many more Insect pests now than in our grandfather's early days, and new pests are appearing every year. This alarming state of affairs is largely due to two causes, for both of which man is responsible. Man is continually eneroaching upon and thereby disturbing nature's primitive domain and the equilibrium which has there become established between animals and plants. In consequence, Insects like the Colorado potato beetle, the appletree or the peach-tree borers have been at tracted from their original wild food plants to man's cultivated crops, which often offer practically unlimited feeding grounds. Nlost of the new Insect pests, however, are now coming to America from foreign shores. American horticul

1154. San José Scale.

Showing the mature winter scale: also the insect itself, with its thread-like feeding organs.
turists are continually importing plants from the ends of the earth, and oftentimes the plants are accompanied by one or more of their Insect pests. Some comparatively recent introductions of this kind are the sinuate pearborer, the pear midge, the gypsy moth, the brown-tail

1155. Hemipterous insect.

Known to entomologists as a true bug.
moth, the horn-fy and the elm leaf-beetle; such standard pests as the Hexsian fly, the cabbage butterfly, the cur-rant-worm, the codling-moth (Fig. 1137) came in many years ago. Of the 73 Insects which rank as first-class pests, each of them almost annually causing a loss of hundreds of thousands of dollars, over one half have been introduced from foreign countries, mostly from Europe. It is a significant fact that usually these imported Insects become much more serious pests here than in their native bome; this is doubtless largely due to the absence of their native enemies, to more favorable climatic conditions here, and to a less intense system of agriculture in this country. Most of our worst Insect pests of the fruits, of the garden crops, of the granary, of the household, of the greenhouse, and practically all of our most dangerous scale Iusects, are of foreign origin. Man will contisue to encroach on and disturb nature's primitive domain, and commercial operations will never cease, nor is there much hope of ever effectually quarantining our shores against these little foes; heuce there seems to be no practicable way to stop this increase of the Insect enemies of the horticulturist. The one who is the best fitted by nature, and who best fits himself with a knowledge of these pests and how to fight them, will usually be the one to survive and reap the reward of profitable erops. No part of a plant, from its roots to the fruit it produces, escapes the tiny jaws or the sucking beaks of lnsects.

Root-feeding Insects.- Many of the small fruits and vegetahles are often seriously injured by Insects feeding on the roots. The grape-vine fidia the grub of a small beptle) and the grape phylloxera plant-louse live on grape roots. Strawberries often succumb to the attacks of the grubs of several small beetles known as strawberry-root worms, and to the large white grubs of the May beetles. The roots of cabbages, radishes and

1156. Tomato worm attacked by parasitic insects.
other cruciferous plants are often devoured by hordes of hungry maggots.

These underground root feeding Insects are difficult pests to control, like any other unseen foe. Sometimes they can be successfully reached by injecting a little carbon bisulfide into the soil around the base of the
plant. The cabbage maggots can be largely prevented by the use of tarred paper pads placed around the plants, or by pouring a carbolic acid emulsion at the base of the infested plauts. The strawberry root-feeders are best controlled by frequent cultivatiou and a short rotation of crops.

Borers. - These are the larra of several different kinds of Insects, which burrow into and feed upon the inner bark, the solid wood, or the interior pith of the larger roots, trunks, lranches, and stems or stalks of many horticultural plants. Nearly every kind of fruit trees is attacked by its special kind of borer, as are also many of the smaller rine and bush-fruits and garden crops. Borers are often the most destructive of Insect pests. The two apple-tree borers, the round-headed (Fig. 1157) and the flat-headed species, and the peachtree borer (Fig. 1152) doubtless cause the death of as many apple and peach trees in America as all other enemies conbined. The recently imported sinuate pear-borer seriously threatens the pear indus-

tles, or" shot-hole" borers, usually attack only unthrifty or sickly fruit trees, and a tree once infested by them is usually doomed. Two borers, one the grub of a beetle and the other the caterpillar of a moth, sometimes tunnel down the stems of currants and gooseberries. Raspberries and blackberries (Fig. 1158) also suffer from two or three kinds of borers, one working in the root, one in the stem, and a maggot bores down and kills the new shoots. A caterpillar closely allied to the peachtree borer lives in squash vines, often ruining the crop. The potato-stalk weevil sometimes does much damage in potato fields.

Sometimes one can prevent borers from getting into a fruit tree with a paper bandage closely wrapped around the part liable to be attacked, or by the application of some "wash." Most of the washes recommended will prove ineffectual or dangerous to use. Gas-tar has given good results, but some report injury to peach trees from its use; hence one should first experiment with it on a few trees. No way has been found to keep borers out of the swall fruits or garden crops; usually if infested canes, stems or plants are cut out and burned early in the fall or whenerer noticed, most of the borers will be killed. When borers once get into fruit trees, the "dig-
ging-out" process is usually the only resort, although some report that they readily kill the depredator by simply injecting a little carbon bisulfide into the entrance of his burrow and quickly closing it with putty.

Bud and Leaf-feeding Insects. - The buds and leaves of horticultural crops often swarm with legions of biting and sucking Insects. A mere enumeration of the different kinds of these pests would weary the reader. Some Insects, like the rose chafer, Work on several different kinds of plants, while many others attack only one or two kinds. In apple orchards, the opening buds are seized upon by the hungry bud-moth and case-beariug caterpillars, by the newly-hatched canker-worms, and hy tent-caterpillars, whose tents or "signboards "are familiar objects in many orchards. These pests continue their destructive work on the leaves. The pear slug often needs to be checked in its work of skeletonizing the leaves of the pear and cherry. The pear psylla, one of the jumping plant-lice, is a very serious menace to pear-growing in many localities; the fruit is either dwarfed or drops from badly infested trees, and sometimes so many little pumps sucking out its life finally cause the death of the tree. The little blue grape-vine flea-beetle often literally nips the prospective crop of fruit in the bud, or the rose-cbafer may swarm orer the vines and eat the foliage or blossoms. Currant and gooseberry growers realize that eternal vigilance against the familiar green currant worms is the price of a crop of fruit. The asparagus beetles
 would soon appropriate every asparagus shoot that appears in many localities. It is a continual struggle against Insect pests to get a paying crop of almost any vegetable. The several kinds of cabbage caterpillars would soon riddle the leaves. The hungry striped eucumber beetles can hardly wait for the melon, squash, or cucumber vines to come up. Two sucking Insects, the harlequin cahbage bug and the squash stink-bug, are equally as destruetive as their hiting relatives.

The bud-and leaf-feeding Insects are usually readily coutrolled by spraying some poison on their food, or by hitting them with some oil or soap spray. As the female moths of canker-worms are wingless, a wire trap or sticky bandage placed around the trunk of the tree in the late fall and early spring, to capture the moths as they crawl up the tree to lay their eggs, will greatly help to check these serious pests. The collection and burning of the conspicuous egg-rings of the ienteaterpillars at any time between August and the following April, will greatly reduce the vast numbers of tents or signboards of shiftlessness in apple orchards. Hand-picking or collecting is the most successful method of controlling the rose-chafer, harlequin cabbage bug, and the squash stink-bug in many cases. Prompt action, guided by a knowledge of the linsect's hahits and lifehistory, and an intelligent use of materials and apparatus, are essentials in any successful effort to control these bud- and leaf-feeding pests of the horticulturist.

Frwit-eating Insects. - "Wormy" apples, pears, quinces, plums, peaches, cherries, apricots, grapes, eurrants and nuts are often the rule rather than the exception. The codling-moth or apple-worm often ruins from one-third to one-half of the erop each year in many localities; it also infests pears seriously. The apple maggot tunnels its way through and through the flesh of a large percentage of the apples in the northern sections of the country. Most of the wormy plums, peaches, cherries and apricots are the mork of the gruh of that worst Insect enemy of the stone fruits-the plum curculio; the plum gouger, a similar Insect, whose grub works in the pit of plums, is equally destructive to this fruit in some states. "Knotty" quinces are largely the work of the adults of the quince curculio, while its grub often ruins the fruit with its disgusting worm-hole. There is also a grape curculio. that. with the aid of the
caterpillar of a little moth, works havoc in grapes. Currants and gooseberries are often wormy from the work of two or three different kinds of naggots and caterpillars. A new pest has now included the delicious eherry in its menu; it is a fruit-fly, closely allied to the apple maggot; infested cherries may show no external sigus of the presence of the maggot reveling in the

1160. A crane fly. Mounted.
juices within. Various small beetles, known as weevils, are responsible for most wormy nuts.

Most of the fruit-eating Insects are out of the reach of the ordinary insecticides. The codling-moth is a noted exception, however, for the peculiar habit that the little eaterpillar has of usually entering the blossom end of the fruit and feeding therein for a few days, gives the man with a poison spray a very vulnerable point of attack. It is only necessary to spray a bit of poison into the open ealyx cup within a few days after the petals fall, aud let nature soon close the calices and keep the poison therein until the newly-hatched caterpillar includes it in its first menu. Often 75 per cent of the apples that would otherwise be ruined by the worms are sared by an application of Paris green at this eritical time. The fact that the apple maggot never leaves the fruit until after it is picised or has fallen from the tree, gives one a chance materially to reduce its numbers by frequently gathering the windfalls and feeding them to stock or burying them deeply. As the plum eureulio, in the adult stage, feeds on the leaves and fruits, a poison spray, applied soon after blossoming time, is apparently sometimes effective against it, particularly on cherries. Many extensive growers of the stonefruits, however, are satisfied that this pest can be best circumvented by jarring the curculios onto sheets and killing them; the quince curculio is also best fought by the jarring method. Hand-picking of the infested fruits must be practiced when grapes, eurrants or gooseberries are attacked by fruit-eating Insects.

Plant-Lice.-Scarcely a plant escapes the little suction pump or beak of some kind of a plant-louse or aphis. About 250 different kinds of plant-lice have been identified in the United beetle. Mounted. States, and nearly every kind of fruit, flower, farm or garden crop has its special plant-louse enemy, which is often a serious factor in the production of a crop. These little ereatures are so şmall, so variable, so hard to perceire, present so many different forms in the same species, and have such varied and interesting life-stories to tell, that what we now know about them is but a mere beginning as compared to what is yet to he learned. It would take a large rolume to include the interesting stories which might be told of the lires and of the relations with ants of some of the commonest of these plant-lice. No other group of Insects presents so many curious, varied, interesting, and wonderful problems of life as do the aphids.

In the aggregate, the damage done by plant-lice is very great. At times hundreds of acres of peas have been ruined by an aphid. Nursery stock often suffers severely, but bearing fruit trees are not often seriously injured by them. About 40 different kinds of aphides live in greenhouses, where a perpetual warfare has to be waged against them. In 4 years we have reared nearly 100 generations of a common aphis in greenhouses, and there were no indications of any eggstage or of male forms during this time, so that they may thus breed indefinitely in houses, their young being born alive and no males appearing.

The standard remedies for plant-lice are whale-oil soap, kerosene emulsion, kerowater, and tobacco in various ways (as a decoction, dry as a dust, or the "Roseleaf" or similar extracts), and these are successfully used to kill the aphides in all situations.

Scale Insects.Since the recent advent of the San José scale into the eastern United States, scale Insects of all kinds have attracted world-wide attention. They are all small Insects, and derive their name from the fart that their tender bodies are protected by hard, scale-like coverings secreted by the Insects. Thus protected, they are difficult Insects to kill, and as they are easily transported on nursery stock, buds or cions, and also multiply rapidly, the scale lusects are justly to be considered as among the most dangerous and destructive of injurious Insects. A single female rear a brood of from 100 to 600 young, and there may be four or five generations a year; and more than 2,000 eggs have been laid by a single Lecanium scale.

The scale Insects, the dreaded San José species included, can be successfully controlled by judicious, intelligent and timely work with sprays of whale-oil soap, lime-sulfur, erude petroleum, or hydrocyanic acid gas, which should be used in the case of nurspry stock.

Since 1889 fumigation with hydrocyanic acid gas has been extensively practiced in the citrous orchards of California, and now Florida and South African fruitgrowers are also using it in their orchards. Large gastight tents or boxes are placed orer the trees and the gas then generated within. Much nursery stock is now treated with the gas in tight hoxes or houses: this is required by law in Maryiand and the province of Ontario, and it should be practiced in other regions. Recently greenhouses, railway coaches, rooms in private houses, and whole flouring mills have been effectively fumigated with this gas. It is generated with water, a good grade of commercial sulfuric acid, and potassium cyanide 98 to 99 per cent pure. The acid is poured into the water in an earthen jar or crock and the cyanide then dropped iu. In fumigating trees, rooms or flouring mills, 1 ounce of the eyanide, $1 \frac{1}{2}$ fluidounces of sulfuric acid, and $21 / 4$ ounces of water are used for every 125 cubic feet of
space ; for nursery stock use the same amounts for each 100 cubic feet of space; in greenhouses the gas is used about one-half as strong, or eren less for some kinds of plants. Nursery stock, trees and plants in greenhouses are usually subjected to the gas for from 30 to 60 minutes; mills are usually kept closed 12 to 24 hours. As potassium cyanide and hydrocyanic acid gas are among the most deadly poisons, fumigation should be ander the direct supervision of competent persons.
lasects are preserved in collections by securing them in tight cases by means of a pin inserted through the thorax, or through the right wing if the subject is a beetle. Moths and butterflies are pinned in position on a spreading-board until thoroughly dried. See Figs. 1159-1163. Every horticulturist should make a collection of injurious Insects.

Insect Literuture for Horticulturists.- Horticulturists should keep in close tonch with the experiment stations and state entomologists of their own and of other states, and also with the Department of Agriculture at Washington; for it is from these sources that the best and latest advice regarding injurious Insects is now heing disseminated free, either by personal correspondence or by means of bulletins. Among the books, one or more of which may well find a place in a horticulturist's library are the following: Weed's "Insects and Insecticides," Sempers' "Injurious Insects and the Use of Insecticides," Lodeman's "The Spraying of Plants," Saunders' "Fruit Insects," and smith's "Economic Entomology:"
M. V. Slingerland.

INULA (ancient name). Compósitor. This genus includes some hardy herbaceous plants of the easiest culture and of rather coarse habit, with heads of yellow or orange, each $2-4$ in. across, borne in summer. There is such a great abundance of autumn-flowering yellow composites in the hardy border that only those Inulas that bloom in early summer are particularly desirable. Elecampane, I. Helenium, is probably also cultivated for medicine. A preparation of the mucilaginous roots is common in drug stores. Inula flowers have as many as 40 linear rays. The plants like a sunny position in any garden soil, and are prop. by dirision or seed.

Iunla is a genus of about 56 species, fonnd in Europe, Asia and Africa: herbs, usually perennial, glandular, hairy: lrs. radical or alternate, entire or serrate: heads large, medium or small, solitary, corymbose, panicled or crowded at the crown: rays yellow, rarely white.

A. Stems panicled or corymbose.

Helènium, Linn. Elecampane. Fig. 1164. Tall, thick-stemmed: IFs. unequally dentate-serrate: rootlvs. elliptic-oblong, narrowed into a petiole: stem-lvs. half-clasping, cordate-oblong: outer involucral parts leafy, orate. Wet, sandy and mountainous regions. Eu., N. Asia. Naturalized in Amer. D. 163. - For medicinal purposes, 2 -year-old roots should be dug in August. If older they are likely to be stringy and woody.

1163. A cross-section of spreading board in front of the cleat "d," in Fig. 1162.

AA. Stems 1-fld., or with at most 2 or 3 heads.

B. Outer involucral parts linear and numerous.

grandiflora, Willd. Height $2-3 \mathrm{ft}$. : Ivs. elliptic-oblong, serrulate, all sessile; upper ones subcordate; lower ones $2-1$ in. long: glands numerous: heads $3^{1} / 4-1 \mathrm{in}$ across. Himalayas, Caucasus. G.F. 6:406.Cult. but not adrertised. Earliest blooming Inula in cult. Bears orange-yellow fls. 5 in. across in June, and has bold but not coarse habit.
glandulosa, Willd. Height 2-3 ft. : lower 1vs. oblongspatulate, long-attenuate at the base, the uppermost oblong with a subcordate-decurrant base, all entire or very obsoletely denticulate: glands remote. Caucasus. B. R. 4:334. B. N. 1907. (ìn. 22, p. 234; 25, p. 101 ; 49:1047 and p. 7. J.H. 1II. 35:153. R.H. 1881, p. 419.

1164. Elecampane, Inula Helenium.
G.M. 33:541 and 38:477.-Keller says it has deep golden yellow, fringed, half-drooping rays. Rays are commonly said to be entire, but B.M. 1907 shows 2 minute teeth, and in B.R. 4:33+ the fringes are more than a quarter of an inch long. This is said to be the only cult. species that does not seed freely. The Garden pictures an orange variety.
Hookeri, C. B. Clarke. Height 1-2 ft.: lvs. 3-4 in. long, sessile or narrowed into very short petioles, ob-long-lanceolote, acute at the base, minutely toothed, glandular: heads $21 / 2-31 / 2$ in. across; rays "pale yellow," according to Hooker. Himalayas. B. $11.6+11$ (rays pure yellow).-Fls. orange-yellow, according to J. IV. Manning. J. B. Keller says it flowers in Aug. and Sept., and has bright yellow fringed rays. Howerer, in B. M. 6411 the rays have only 3 minute teeth.
eb. Outer involueral parls lanceolate and leafy.
hirta, Linn. Lvs, netted-veined, lanceolate or ovateohlong, the lowest narrowed at the base, the others rounded at the base and balf-clasping. Eu., N. Asia. -Keller says it growa 15-18 in. high and fls. Jnly-Aug.
ensifolia, Linn. Lvs, with numerous somewhat parallel nerves, narrowly linear-lanceolate, involucral parts appressed, not spreading. Eu., N. Asia. G.M. 41:559.Keller says it grows 6-8 in. high and fls. July-Aug. Rockery plant; blooms first year from seed if sown early.

W. M.

IOCHROMA (Greek, vtoiet-colored). Solanàceo. This genus includes 2 bandsome flowering shrubs cult, outdoors in S. Calif. and under glass in Europe. They are tall-growing, and bear clusters of as many as 20 tubular, drooping fls., each $1-1 \frac{1 / 2}{2} \mathrm{in}$. long and less than $1 / 2 \mathrm{in}$.
across at the mouth, which seems to have 10 short lobes, but 5 of these are shorter, and are really appendages in the sinuses between the 5 typical lobes. lochroma is a genus of about 18 American species, mostly tropical and South American : trees or shrubs: Irs. entire, usually large: fls, violet, blue, white, yellowish or scarlet: berries globose or ovoid, pulpy.

A. F'ls. indigo-blue.

lanceolàta, Miers. Shrub, $4-5 \mathrm{ft}$. high (taller in Calif.), the young branches herbaceous and downy, with stellate hairs: lvs. alternate, oval or elliptic-lanceolate, acute, entire, tapering below into a long petiole: umbels supra-axillary and terminal. Equador. B.M. 4338 and F.S. 4:309 (as Chenesthes lanceolata).

As. Fls. searlet or orange-scarlet.
fuchsioides, Miers. Lrs. often clustered, obovate, very obtuse, tapering at the base into a short petiole. Peru. B.M. 4149 (as Lycium fuchsioides).

IONIDIUM. For I. coneolor, see Solea.

IONOPSIDIUM (Greek, violet-like). Crucifera. I. acaute is a pretty, tufted little plant, growing 2 or 3 inches high and bearing numerous small 4-petaled, lilac fls. from spring to fall. It is a half-hardy perennial from Spain and N. Africa, but is treated as an annual. It is desirable for edgings in moist, shady places, and for rockeries. In rich garden soil the plants make numerous runners. The fis, are about $1 / 2$ in. across, 1 on each stalk. They open white and turn lilac. The plant has been advertised as the Diamond Flower by seedsmen. This plant is referred by lndex Kewensis to Cochlearia, a genus whose limits are very uncertain.
acaüle, Reichb. (Cochleària acaùlis, Desf.). Lvs. ovate-rotund, heart-shaped at the base; petioles propertionately very long: pods subrotund, notched. B.R. 32:51.
W. M.

IONOPSIS (Greek, violet-like). Orchiddcece. A small genus of epiphytic orchids, numbering about 10 species, many of which can probahly be reduced to varieties of a few species. Most of the species are insignificant, only one or two being cultivated. The tine specimen of \vec{I}. paniculata figured in the Botanical Magazine has a panicle 10 in . long, $81 / 2 \mathrm{in}$. wide, with 5 branches, and about 80 fls., each three-quarters of an inch across and chietly white, with riolet markings near the center and a dash of yellow. In its native country it is said to remain in attractive condition from Sept. to May. The fls. are produced so freely and over so long a period that it is sometimes necessary to destroy the flower spikes, which are out of all proportion to the number of lis. The plants succeed in the warmhouse under the same treatment as Burlingtonias or the more delicate Oncidiums.
Ionopsis consists of tropical herbs without pseudehulbs, having very short stems, with few, narrow, sheathing, coriaceous lrs.: sepals subequal, erect, spreading, the dorsal one free, the lateral ones united into a short spur behind; petals like the dorsal sepals; labellum united to the base of the column, middle lobe large, expanded, $2-3$ times as long as the sepals, 2 -lobed; column short: pollinia 2: fls, small, in simple racemes or much-branched panicles.
paniculàta, Lindl. Lrs. thick and channelled, linear lanceolate, keeled, $2-3$ in a cluster and about 6 in. long: panicle much branched and spreading, loaded with innumerable fls. of a delicate texture: sepals and petals very short, sharp-pointed, the petals wider: labellum rery large, pubescent at base, with a 2 -lobed rounded limb, which in some is almost entirely white, while in others it has a spot of purple or yellow on the disk. Winter. Brazil. B.M. 5541. F.S. 22:2333 A.F. 6:631.Very variable.
utricularioldes, Lindl. Lrs. and general habit as in the last: sepals and petals bluntish; spur short; labellum almost twice as long as the petals; lobes snb-quadrate-rounded, white, streaked with red veins. Jamaica.
H. Hasselbring.

The best means of culture for the successful growing of these beautiful though delicate orchids is in shallow
pans, with plenty of small broken coal cinders for drainage, covered with the fine particles of fern root and chopped sphagnum gathered from the upland meadows. Plenty of beat and moisture during the growing season are essential. Rest them in winter at a temperature of 50° to $55^{\circ} \mathrm{F}$.

William Mathews.
IOWA, HORTICULTURE IN. Fig. 1165. Iowa is nearly a rectangle, about 200 miles north and south between the parallels $40^{\circ} 36^{\prime \prime}$ and $43^{\circ} 30^{\prime}$, and 300 miles east and west, bordered on the east by the Mississippi and on the west by the Missouri and the Big Sioux rivers. Its extreme elevations are 444 feet in the southeast corner, and 1,694 at the highest point near the northwest corner, the average elevation being about 800 feet above the sea. The surface is a gentle, undulating, grassy plain, well drained by numerous streams discharging into the rivers on its borders. All these streams are bordered more or less broadly with belts of native timber, often many miles in width along the larger ones. The divide between the streams falling eastwardly and those falling westwardly is a line running from a little east of the northwest corner southwardly to about the middle of the state at the Missouri line, draining threefourths of the state into the Mississippi and one-fourth westwardly. The entire surface, except a short and narrow belt along the Mississippi at the northeast corner, is found deeply covered with glacial drift, the depth varying from a few feet to 200 feet or more. In about half the state this drift is overlaid more or less deeply with the peculiar deposit called loess, this being mainly in the south, extending farther north on the west, as shown by the map.

There are no regions the size of lowa which contain fewer acres unfit for agriculture. Agriculture is as profitable in northern lowa as in the southern part. Horticul-

1165. Iowa.

To show horticultaral regions.
ture, however, has had a greater development in the southern and southwestern counties, the region of the fruit-hearing loess. It is not attempted to draw a hard and fast line below which fruit-growing is easy and above which it is difficult, but only to indicate, in a general way, that in the north and increasing with the distance, greater care must be used io selecting situations and varieties in culture and in protection.

If safe conclusions may be drawn from the native fruits and nuts found in Iowa, the state has great horticultural adaptabilities. The native nuts, the walnuts, blaek and white, the hickories and bazelnuts, are abundant and of high quality, and the pecan is found along the Mississippi. The iruits, especially the currants, raspberries, apples and plums, will compare favorably with the natives found in Europe, and the plums greatly excel. It cannot be doubted that they will soon be developed into varieties fit to satisfy the most exacting tastes. Many hybrids have been secured between the native and the cultivated apples descended from Europe, and this line of work, hitherto neglected, is believed to promise a race of apples entirely adapted to the inter-contigental climatic conditions of the region

The apples of Europe, and their desceudants, originating along the eastern seaboard, have not been found entirely successful orer the region of broader prairies, but have succeeded best in the southern half of the
state, and especially on or near the timbered lands. Here, commercial orcharding bas had its greatest development. This industry is so young that statistics have not heen systematically gathered, but in the most favored localities apple crops to the value of $\$ 100$ a year per acre are not uncommon. Fruit, to the value of more than $\$ 350,000$, has been reported as the product of a single county in one year, this being mainly of winter apples, the surplus finding markets in the Northwest, in the East, and in foreign countries.

In isolated localities, commercial apple-growing has been fully as successful in the north, but has necessarily been confued to a few sorts, chiefly two, the Oldenburg and the Wealthy. It has always been found that the long-keeping sorts of highest quality have been fastidious in choice of location in the south, and still more so northward, where early maturing sorts are more successful.

Pear-growing is everywhere difficult. Much time and money hare been spent with eastern and foreign varieties without satisfaction. This fruit is profitably grown in a few lacalities only, and under management of exceptional skill. A race of praitie-born seedlings must, apparently, be grown to insure success.

With plums, the reverse is true. A generation of men tried to acclimatize the plums of Europe, and lately the effort has been extended to the Japanese, but without satisfaction; in fact, no others succeed in competition with the natives of the soil. These, and especially the Americana types, are so well adapted, so profusely productive of such bandsome and good fruit, that even as they came from the hand of nature, they have taken substantial possession of the nurseries and orchards of the state. Such flattering successes have followed the first attempts to grow them for market, that the industry is fast assuming large proportions. New and improved varieties of larger size and Gier quality are offered every year, and a bright future for that fruit is assured.

Of cherries, only the sour sorts succeed, and little effort has been made to breed sweet varieties better adapted to prairie conditions. Commercial cherry-growing is successful in the southern half of the state, and is rapidly jncreasing.
Peaches bave been grown in limited quantities in the southeast since the first settlement of the state. By seedling selection, the limit of success iq gradually extending northward and now reaches to the middle of the state, but only for bome use, as yet.

The quince and the apricot cannot be said to succeed in lowa. The former is liable to root-kill.
The grape flourishes and ripens in profusion, especially in the south, whence it is shipped in large quantities.
The currant, the gooseberry, the raspberry, the blackberry and the strawberry flourish in every part of the state, requiring more favorable situations and greater care in the north. In some localities the native gooseberry has been cultivated in preference to the best pastern varieties, while European sorts bave very limited snecess. The greatest difficulty the fruit-grower of Iowa has had, and still bas to contend against, is that he has been compelled to choose between varieties all of which had originated far from his place of fruitage, and usually under conditions of soil and climate so different that the chances bare been strongly against success bere. It is only of late that those who have insisted that prairie regions should breed and select for themselves races of fruit from seeds planted and grown under their own peculiar conditions, bave found a patient bearing. With intelligent effort along this line, the future is full of promise that the horticulture of Inwa may be brought to the high level now held by its agriculture.
An account of the introduction of the Russian fruits into lowa and otber parts of the North, will be found under Pomology.
C. L. Watrous.

IPECAC. The root of Cephä̈lis Ipecacurnha (now referred to Psychotria), a Brazilian plant not cultivated in N. America. For wild or American Ipecac, see Gillenia stipulacea.
IPOMEA (according to Linn. from ips, bindweed, and homoins, like, because of its resemblance to Convolvulus; but ips is a worm). Including Batatas, Calonye-
tion, Mi la, Pharbitis and Quumoclit. Convolvuldcea. Mcrninc-Glory. Moonflower. Over 300 species of annual or perennial herbs, mostly twining, rarely trees (G.F. 7:364) or shrubs, widely distributed in tropical and temperate regions. They are remarkable for easy culture, quick growth and beautiful Howers; bence the genus includes several of our most popular plants for covering verandas and screening unsightly objects.
The generic characters of Ipomes are not clearly defined. The list of synonyms given above is a record of unsuccessful attempts to find constant characters by which this large and variable genus may be separated into smaller and more definte groups. It is distinguished from Convolvulus, its uearest ally, by haring hut 1 capitate or 2-3 globose stigmas, while Convolvulus has 2 linear or ovate stigmas. Stem mostly slender, twining or climbing, sometimes prostrate, diffuse or erect; leaves alternate, entire, lobed or parted, often varying greatly on the same plant ; flowers usually showy, borne singly or in cymes on axillary peduncles ; corolla funnelform, salverform or bell-shaped (in one species bag-shaped), the limb sometimes entire, but usually 5 -angled or 5-lobed, red, purple, blue, white or yellow, in various shades and mixtures; calyx without the bracts at the base, which appear in some species of Convolvulus, but the outer sepals are commonly larger. The flowers of most species open in early morning aud last but a few hours under bright sunlight, hence the popular name. A few open only at night-fall.
"The Japanese Morning-Glories," also called "Imperial " and "Emperor" Morning-Glories, were introduced to the American trade from Japan in 1895. They are probably selected strains of I. hederacea, although some botauists consider them to be of hybrid origin, possibly I. hederacea \times rubro-cerutea. Maximowiez referred them to I. hederacea, and this appears to be the more reasonable disposition. The culture of the "asagoa" in Japan amounted to a popular craze about 1830, the equivalent of $\$ 14$ to $\$ 18$ sometimes being paid for a single seed of the rare sorts. With political disturbances came a decline of interest, but more recently the popular fancy for Morning-Glories bas again reviced. The Japanese gardeners grow their plants almost entirely in pots, and by constant attention have made them vary into many curious oddities in flower and foliage. Several finely illustrated books on the Morning-Glory alone are publisked in Japan. See also "Century Magazine," $55: 281$ (1897). The Japanese Ipomceas are sold in this country mostly in strains, each package of seed giving tlowers of many forms and colors. There are some inferior strains offered, and the flowers from these are often disappointing ; yet as a class the Japanese Morning-Glories are the most gorgeous and versatile of garden Ipomœas. If the seeds are notched they will generally bloom in 6 weeks from sowing.

Moruing-Glories are among the least exacting of gardeu plants as regards soil and site. Most species love a strong soil and sunny site, with plenty of water; but they will make the best of much that is uncongenial. The seeds of the annual kinds may be sown directly outof doors, but are preferably started indoors, at least in the North. If the plants are allowed to become slightly pot-bound before being transplanted, they will come into bloom earlier. Germination may be hastened and also made more certain by filing a small notch in each seed, or by soaking the seeds in warm water about 2 hours. The "Moonflower" and the "Japanese MorningGlories" particularly are liable to germinate poorly unless these precautions are taken.

The perennial fpomeas are grown from seeds in some cases, but mostly from cuttings of well ripened wood, layers, or division of the rootstocks. Some of the greenhouse species, notably I. Horsfallice, rarely produce seed and are rooted from stem-cuttings with great difficulty. These are often propagated successfully by grafting well ripened shoots on pieces of their own roots, or the roots of I. pandurata. I. ternata roots from cuttings more readily, and I. Leari and I. Jalapa are easily propagated from cuttings.

The rapid growth and dense foliage of most garden Ipomceas make them especially valuable tor covering arbors, verandas, walls, and for screening unsightly objects. I. purpurea, I. rubro-carulea, I. hederacea
and I. Quamoclit are the most popular annual species for this purpose; and I. Leari, setosa and pendurata are among the best perennials. In the South, the perennials may be carried through the winter outside by cutting off the stems and mulching the roots heavily in the fall; in the North the tubers should be taken up and wintered like Dablias, keeping them perfectly dry in a cool greenhouse or frost-proof cellar. I. leptophylla is valuable for very dry soils. I. Bona-nox is worthy of a place in every garden.
The tender perennials are seen to advantage when trained to pillars, trellises, or along the roof of a greenhouse. Their roots should be given plenty of room to forage and their tops to spread. I. Horstallire and its closely related species, I. ternuta, are very satisfactory for this purpose. After flowering the strong shoots should be cut hack aud the plant rested. Several species, particularly I. Leari, mubro-cernlea and hederacea, make excellent pot-plants if they are kept somewhat pot-bound to induce flowering. The roots of nearly all the perenuial species are more or less purgative; particularly I. Purga, from which comes the Jalap of commerce, I. Julapa aud I. cathartica. I. Batctas is the common sweet potato.
The trade names of Ipomcas are endlessly mixed. Thus, I. Mexicana of the catalogues may be I. hederacea, I. digitata, I. Jalapa, I. Bona-nox, I. Leari or I. rubro-carulea; but is rarely the true I. Mexicana of Gray. "Moonflower" is often applied indiscriminately

1166. Ipomcea Quamoclit ($\times 1 / 2$)

to several species of Ipomœa, but it should be restricted to I. Bona-nox and I. grandiflora. It is evident that most of the plants now sold as I. grandiflora are forms of I. Bona-nox; but a few of the smaller and inferior types are the true I. grandiflora of Lamarck. I. hybrida is a trade name for strains of I. purpurea and I. rubrocorulea. The "Tree Ipomca" is I. fistulosa. The "Japanese" or "lmperial" Morning-Glories may be referred to I. hederacea. Other popular catalogue
names are : Double Morning-Glory is mostly I. purpurea, 1l.pl.; Brazilian Morning-Glory is I.setosa; Hardy or Perennial Moonflower is I. pandurata; 1pomœes Heavenly Blue is I. mubro-carmea.

INDEX.
angustifolia, 6.
Batatas, 25.
Bona-nox, 21.
Bona-nox, 22.
Bonariensis, 15.
Briggsiz, 12.
chrysantha, 23,
chryseides, 23.
coccinea, 7 .
Dickensoni, 3.
digitata, 11.
dissecta, 9 .
Ferrandiana, 4.
ficifolia, 15.
filicaulis, 6.
tistulosa, 16.
Goodelli, 16. grandiflora, 22. arandiflora, 21. hederacea, 4. hederifolia, 7

Hookeri, 8. Horsfalize, 12. Huberi, 3. hybrida, 3, 8 . insignis. 11. imperialis, 4 Jalapa, 20. kermesina, 3. Leari, 19 leptophylla, 17. limbata, 4. Lindheimeri, 10, Lindleyana, 10. lobata, 1.
maritima, 24.
maritima, 24.
Mexiesna, $4,5,8,10$, Thompsoniana, 13. $11,20,21$.
Michauxi, 20.
Nit. 4.
noctiflora, 21. noctiphyton, 21.
palmata, 11. pandurata, 18 paniculata, 11.
Perringiana, 15.
Pes-capra, 24.
Purga, 26.
purpurea, 3.
Qusmoclit, 2 rubro-cserulea, 8 Sellazii, 15.
setosa, 14.
sinitata, 9 .
sinuata, 9 .
ternata, 13. varia, 3. versicolor, 1. riolacea-striata, 3 . Wolcottiana, 27.
A. Plantannual: roots not tuberous. B. F'ls. numerous, in long scorpioid racemes; corolla a bag-shaped tube, contracted at the mouth

1. versicolor

BB. Fls. borne singly or fere in loose cymes; corolla expanded into a limb.
c. Lvs. pinnately divided into many thread-like segments.
2. Quamoclit
cc. Les. entire or lobed, not divided.
D. Stem hairy.
E. Les. broad-ovate, cordate, entire........ 3. purpurea
EE. Lvs. angulate or deeply 9 -lobed 4. hederacea
5. Mexicana

DD. Stem not hairy.
E. Lus. linear or lanceo-
late, sub-sessile ... 6. angustifolia
EE. Lits, outate-cordate to hastate; petioled.
F. Fls, usually less than 1 in.across; searlet ororange. 7. coccinea
FF. Fls, usually orer sin. across; red, blue or purple .. 8. rubro-cærulea
AA. Plant perennial, with largefleshy rootstocks.
B. Le's. palmately divided into s-7 segments.
c. Stem and petioles hairy .
9. ainuata
10. Lindheimeri
cc. Stem and petioles not hairy.
D. Peiluncles longer than the petioles............11. digitata
DD. Peduncles equaling the petioles.
5. Fls. red: leaf seqments sessile,tapering to both ends, margin wary...... 12. Horsfalliæ
ee. Fls, white: leaf segments stalked, not tapering to the ends, margin not wary..13. ternata
BB. Les. entire, angutate or lobed, not divided.
c. Stem, lus, and peduncles densely hairy.
D. Corolla saleerform, the lobes pointed: leat lobes acuminate, sinrately toothed........14. setosa

IPOMEA

DD. Corolla funnelform, the lobes obtuse: leaf lobes unequal, blunt, entire.15. Bonariensis cc. Plant not heiry.
D. Stem erect or ascending, not trailing or climbing.
E. Lvs. cordate to subsagittate, long-petioled, acuminate, pubescent beneath.. 16. fistulosa
E., Le's. linear, very short-petioled, acute, not pubescent beneath.......17. leptophylla
DD. Stem trailing, climbing, or twining.
E. Lvs. pale beneath.
F. Fls. white, with
purple throat ...18. pandurata
FF. Fls. lilac to dark
purple...........19. Leari
EE. Lrs. not pale beneath.
F. F's. opening at
night20. Jalapa
21. Bona-nox
22. grandiflora

FF. Fls.opening in the morning.
G. Corolla yellow.23. chryseides Gg. Corolla purple.
н. Lus. notched
at the end.24. Pes-capræ
нн. Les.acute or acuminate.25. Batatas
26. Purga

AAA. Plant perennial by a woody stem.27. Wolcottiana

1. versicolor, Meissn. (Mna lobdata, Llav. et Lex.). A vigorous climber, $15-20 \mathrm{ft}$. high : Ivs. with a cordate base, 3 -lobed, the middle lobe longest and narrowed below: fls. $1 / 2-3 / 4 \mathrm{in}$. wide, opening rich crimson, soon fading to pale yellow. July-Sept. Mex. Gin. 30, p. 436 , 437; 39:792. R.H. 1887, p. 19. G.C.11. 26:68t, 685. P.M. 16:100. V. $10: 34$, 35 . B.R. $28: 24 .-$ Distinguished from all other Ipomceas by its bag-shaped corolla and scorpioid inflorescence. It is a very free bloomer, and deservedly popular.
2. Quámoclit, Linn. (Quámoclit mulgàris, Choisy). Cypress-vine. Indian Pink. Fig. 1166. Stem smooth, slender, twining to a height of $10-20 \mathrm{ft}$.: lvs, short-petioled or sessile: peduncles few-fld., commonly much longer than the petioles: corolla $1-1^{11}$ ² in. long, scarlet, the tube narrowly funnelform, inflated above; the limb nearly Hat, 5 -lobed. July-Oct. Naturalized from tropical America, Va. to Fla., west to Kan. and Tex.; sparingly escaped from cultivation farther north. B.M. 244. Gn. 29:33. - Beautiful in flower and foliage. Var. alba, Hort., has white tls.
3. purpùrsa, Roth. (Convólvulus majus, Hort. Conwóvilus purpüreus, Linn.). Tall Mgrning-Glory. Fig. 1167. Stem trailing or twining for $4-10 \mathrm{ft}$., branching from the base: peduncles slender, $1-5$-fld., often longer than the petioles: corolla 1-2 in. long, light blue, purple, pink and diversely variegated. July-Sept. Trop. America. Escaped from gardens to waste places, Can. to Fla., west to Neb. and Tex.; widely distributed in most trop. regions. B.M. 113, 1005, 1682. Gin. 21, p. 295; 27, p. 473. - One of the most popular of garden annuals. Some of its varieties resemble the entire-leaved forms of I.hederacea, but may be distinguished by their longer and more slender peduncles, umbellate pedicels, and oblongacute sepals without the long tip usually found on \boldsymbol{I}. hederacea. Seeds ripen freely on cultivated varieties and may be gatbered for future sowings. Among the host of garden forms are: álba, white; atro-cærulea, dark blue; atrosanguinea, dark parple; azùrea, skyblue; carminàta, light crimson; Dickensoni (Pharbitis hispida, var. Dickensoni), azure-blue: Huberi (I. Hùberi, var. variegdta, Hort.). Lvs, marked with silvery white, fls. variously colored and margined with white; kermesina (I. kermesina), scarlet ; ròsea, blush rose;
vària, a trade name for packages containing a mixture of many kinds; violàcea-striata, violet-purple. There are several double forms of I. purpùrea. Var. fl. pl. has very large lvs.: fls. appearing much later than single varieties, semi- or much-doubled, bluish white streaked with light blue or pink. Int. 1892. Said to be very floriferous and a good pot-plant, G.F.5:593. A.G. 14:246. Var. violà cea fl. pl., Hort., is entirely distinct from the preceding. Git. 47, p. 133.
4. hederàcea, Jacq. (I. , Vধl, Roth. I. scabra, Hort.). Stem twining or climbing, $2-8 \mathrm{ft}$.: Ivs. 2-5 in. long, ovate-cordate, the lobes ovate to orate-lanceolate, entire, or the lateral lobes repand or denticulate; the middle lohe narrowed at the base: peduncle 1-3-fld., mostly shorter than the petiole: corolla funnelform, the tube usually white, the limb light hlue, purple or rose, and in various combinations of these colors; sepals hairy, lanceolate, with long and often recurved tips. July-Oct. -Widely naturalized from trop. America in fields and waste places, Pa. to Fla., west to Neb. and Mex. Perhaps native in the South. B.R.I:85; $4: 276$ (as I. corrulea). B.M. 188 (as Convolvulus Nil). Gn.27, p. 473. This species shows great variation in the form of its Ivs., both on the same plant and on different plants. In some forms formerly known as I. Nil, the lvs. are nearly entire; in others they are very deeply lohed. Next to I. purpurea, this is now the most popular Morning-Glory in cultivation, and the introduction of the improved Japanese strains will extend its usefulness. Before the appearance of these oriental varieties in occidental gardens, the species had already varied into many distinct horticultural varieties; as var. limbàta (I. limbata, Hort.), with the corolla violet-purple, edged with white. B.M. 5720 (as Pharbitis Nil); Gn. 29, p. 32. Var. marmoràta coléstina, large fls., marbled and striped with light blue; Gt. 44, p. 592 . Var. marmoràta ròsea, fls. marhled with rose; Gt. 44, p.76. Var. foliis marmoratis, Ivs. marked with yellow, limb of corolla rose color. Var. grandiflòra, large blue fls. Var. Ferrandiana, similar to var. grandiflora. Aside from these strains, the follow-

5. Morning-Glory, Ipomcea purpurea $(\times 1 / 2)$. No. 3 .
ing named varieties of Japanese Ipomœas are offered: Antigone, 1vs. variegated: fls, blue, with pink throat. Aglaia, lvs. variegated: fls, crimson, with white throat. Aseria, fls. dull copper-red. Ceres, like Aglaia, but fls. edged with white. Euphrosyne, lvs, variegated: fls. pure white, with pink throat. Princess, fls. spotted with carmine. Gt 47, p. 133. A form with foliage dot-
ted with white is shown in 1.H. 43, p. 75. The various strains give fls. which are diversely scalloped, ruffed, fringed, doubled, and show a wonderful range of coloring.
6. Mexicana, Gray. Like I. hederacea, hut young Irs. entire or slightly angulate, becoming deeply 3 -lohed and

cordate, as in hederacea, the middle lobe hroadest : peduncles as long or longer than petioles: corolla 1 in. wide, violet-purple, sometimes with erimson plaits. Possibly this should not be distinguished from I. hederacea. The plants in the trade as I. Mexicana are mostly I. hederacea, digitata and Bona-nox. I. Mexicana vera, Hort. ; I. Mexicana grandiflora alba, Hort., and I. Mexicana grandiflora hybrida, Hort., are I. Bontenox or I. grandiflora.
7. angustifolia, Jacq. (I. filicaùlis, Blume). Stem prostrate, trailing or rarely climbing, much-branched: 15s. 1-3 in. long, less than 1 in. wide, glabrous: peduncles exceeding the petioles, bearing $1-2$ small, bellshaped fls., which are yellowish white with a purple eye. Aug., Sept. Widely distributed in tropical Asia, Africa and America. B.M. 5426. B.R. 4:317 (as I. den-ticulata).-Sometimes grown in the warmhouse, hut there is hardly enough foliage to set off the pretty darkeyed flowers.
8. coccinea, Linn. Star Ipomga. Fig. 1168. Stem freely twining for 10 ft .: lvs. slender-petioled, entire or angulate, acuminate : peduncle $2-6 \mathrm{in}$. long, few- to-several-fid.: corolla $1 / 2-2 / 3$ in. wide, salverform: limb ohscurely lobed, scarlet with a yellow throat. Aug.-Oct. Apparently naturalized from tropical America, on rirer banks in the middle and south Atlantic states; probably indigenous to northern Mex, and Ariz. B.M. 221.-Fls. are produced in abundance, but are disappointingly small. In var. lutea, Hort., the fls. are entirely orange, or with a tinge of scarlet.

Var, hederifolia, Gray (I. hederifolia, Linn. Mna sanguinea, Hort.). Fig. I169. This Plains form of the species has angulate, 3 -lobed or even 3 - 5 -parted lvs, and tls. usually larger. B.R. 1:9. B.M. 1769. 1.H. 41, p. 159. - It is superior to the type for ornamental purposes.
8. rubro-cærùlea, Hook. (I. Hookeri, Hort.). Stem tinged with purple, branched, $10-20 \mathrm{ft}$. high: lvs, membranaceous, much-reined, short-acuminate: peduncle fleshy, 3-4-fld.: fls. 3-4 in. wide, the tube white and limb red before expanding, at length purple or china-blue. Aug.-Oct. Mex. R.H. 1855:441 (as Pharbitis rubrocarulea). B.M. 3297. P.M. 3:99. Gn. 27:493.-One of the most beautiful of annual climbers. The fis, are often dashed, blotched and shaded with rose, or are entirely rose. It is likely to run to vine when out-of-doors unless the roots are confined in a box or pot to induce early flowering. It makes an excellent pot-plant for the greenhouse. Var. Heavenly Blue, from Calif., was said to be a cross between I. Leari and I. rersicolor, hut proves to be a blue form of I. rubro-corulea, which is especially valuable for cut-fls. Var. alha, Hort., has pure white flowers.
9. sinuàta, Ort. (I. dissécta, Pursh, not Willd. I. sinitùta, Hort.). Stem somewhat woody at base, covered with long yellowish hairs: Ivs, smooth or nearly so, palmately 7 -parted, the divisions lanceolate or narrowly oblong, more or less siuuately cut and toothed: peduncles $1-2$-fld., longer than the petioles: fls. 1-2 in. wide, bell-shaped, white with purple center; calyx as long as the corolla tube. June-Sept. Trop. Amer., and near the coast from Gia, to Tex. - In Tex. It expands only $2-3$ hours at midday, and is there called the "Noon-flower." It may be treated as a coolhouse evergreen, and is worth growing for its delicate foliage alone. In the North the tubers must be wintered in a cellar.

10. Lindheimeri, Giray (I. heterophýlla, Torr., not Orteg). Plant finely pubescent, hoary when young: lvs, deeply 5 -cleft or 5 -parted, all of the lobes or the 3 interior ones ovate to ovate-lanceolate, with a much contracted base: peduncle 1-2-fld. : corolta long-funnelform, about $31 / 2 \mathrm{in}$. long, light bIue. Rocky soils, W. Tex. to N.Mex. - Var. Lindleyàna, Hort. (I. Lindleyàna, Hort.), has smaller lvs., lighter colored fls., and is a more profuse bloomer. An improvement on the type, but more tender.
11. digitàta, Linn. (I. paniculdta, R. Br. I. palmata, Hort., not Forsk.). Stem trailing or climbing, 20- 40 ft. : Ivs. $3-7$ in. wide, $5-7$-parted, the segments elliptic, sometimes spatulate, entire: fls. numerous, in a 2 branched cyme ; corolla $1 \frac{1}{2}-3 \mathrm{in}$. wide, broadly bellshaped, 5 -lobed, pinkish purple or pink: seeds with a dense tuft of dirty white wool springing from the apex. July-Sept. Tropics of both hemispheres. R.H. 1853:381. B.R. 1:62 and 4:333 (as I. Platensis). B.M. 3685 (as I. Platensis). Ging. 2:311.-One of the best tuberous rooted Ipomoas for the garden or warmhouse. In the North it may be used with fine effect if grown in a tub and trained to an adjacent pillar or trellis, the vine being cut off before frost and the tul) stored. Further south the tabers may be planted directly in the open, and will give a profusion of bloom nearly all summer.

Var. insignis, Hort. (I. insignis, Ker.). Lvs, not palmately divided, nearly entire or lobed, the under surface sometimes purplish. B.M. 1790. B.R. 1:75. - There are few plants of rar. insignis in cultivation.
12. Horsfállis, Hook. Fls, many, in a 2-branched cyme; corolla bell-shaped, the limb of 5 broad, rouuded lobes, very showy. Cosmopolitan tropics. B.M. 3315. P.M. 3:50. F.S. $16: 1647$. K.W. 1:29. - Perhaps the most ? pular lpomoea for winter-flowering in a warmhouse. well treated it will climb $20-30 \mathrm{ft}$., and will bear huu-
dreds of fls, each day in early winter. I. Horsfalliop may also be grown out-of-doors, but it will not come into bloom till late fall unless the roots are cramped. Var. alba, Hort., is I. ternate; Lady Slade has pale rose fls.; var. Briggsii (I. Briggsii, Hort.), or Lady Briggs, is generally considered better thau the type for most purposes. It is a freer grower and bloomer, the fls, are a rich magenta-crimson, and it roots from cuttings much more readily than I. Horsfallia. This variety makes a fine plant in a $10-\mathrm{in}$. pot. G.M. $37: 49$. Var. Thompsoni, or I. Thomsonidua, Hort., is I. ternata.
13. ternàta, Jacq. (I. Horsfállio, var. dlba, Hort I. Horsfúllio, var. Thomsonidne, Hort, I. Thomsoniena, Mast.). Stem somewhat woody at base: Ivs, usually 3 parted, the segments elliptic or elliptic-oblong, fleshy, smooth: fls. trumpet-shaped, about 2 in. across. Otherwise like I. Horsfallio, of which it is often considered a variety. Probably from W. ludies. (i.(. 11. 20:817. F. 1884:118. Gin. 35, p. 440.-Not considered quite as effective for greenhouse culture as I. Horsfallio.
14. setosa, Ker. Brazilian Morning-Glory. Plant very vigorous, branching, covered with stiff purplish hairs: Ivs. 3-10 in. wide, cordate, angular or 3-lobed, the middle lobe abruptly contracted below into a narrow neck: peduncles many-fld., longer than the petioles: $\mathrm{fls} 2-.4 \mathrm{in}$. wide, salverform, rose-purple. Aitg.-Oct. Braz. B.R. $4: 335 .-$ An excellent free-growing climber for covering arbors, and especially valuable for making a dense sereen beeause of its very leafy habit. In the latitude of New York seeds sown in the open will give flowering plants in late August. It may also be treated as a warmhouse deciduous twiner. Var. Northern Light is said to le a cross with I. Bona-nox. Plant unusually vigorous, often growing $40-50 \mathrm{ft} .:$ fls. lavender-pink.
15. Bonariénsis, Hook. (1. ficifòlia, Lindl. I. Perringiàna, Dammer. I. Séllowï, Penny). Stem branching, tiuged with purple and corered with short stellate hairs: IFs, deeply cordate, $3-5$-lobed, the middle lobe longest: peduncles several-fld., longer than the petioles: fis. $1 \frac{1}{2}-$ 2 in. Wide, violet to lilac, the limb spreading into 5 erenate lobes. August-October. Trop. America and A frica. B.M. 3665. B.R. 27:13. P.M. 9:25. (tit. $47: 1446$,-Here belongs I. Sellowii, Penny, aud probably Hort., not I. Selloi, Mart., which is a distinct species.
16. fistulòsa, Mart. (I. Texàna, Coulter). Stem 4-10 ft . bigh, subshrubby, branching, smooth or minutely pubescent: lys. $4-6$ in, long, thickish, entire or nearly so: peduncles $1-2 \mathrm{in}$. long, mostly shorter than the petioles, few-many-fld. : corolla about 3 in . long, bell-shaped, pink-purple. July-sept. Brazil; now eseaped from gardens in Mex. and southern United States. It is known to the trade chietly as var. Goodelli (I. Goodélli, Hort.). This var. has lavender-pink fls., with a darker throat, and is apparently more floriferous and desirable than the type. It produces seed sparingly, but is easily rooted from cuttings. In the south it is bardy if the stem is cut down and the roots mulched: in the North, the roots must be brought indoors. Advertised as the "Tree I pomœa."
17. leptophylla, Torr. Besh Moon-Flower, Stem ?-5 ft. bigh, with many slender, recurving branches: lvs. 2-4 in. long, entire: peduncle stout, 1-f-fld., usually shorter than the lvs.: corolla about 3 in . across. funnelform, rose-pink, deepening to purple in the throat. Aug.-Oet. Dry plains, Neb. and Wyo., south to Tex. and N. Mex. - This species is adapted for very dry places because of its enormous tuberous rootstocks, which often weigh 100 lbs , and extend into the subsoil for 4 ft . It sometimes thrives where no rain has fallen for one to three years. The plant is beautiful when in flower.
18. panduràta, Man-of-the-Earth. Wild PotatoVINE. Stem $2-12 \mathrm{ft}$. long: root very long and large ($10-$ 20 lbs.$):$ IFs. $2-4 \mathrm{in} . \operatorname{long}$, long-petioled, usually cordate and entire, occasionally angulate, fiddle-shape or hastately 3 -lobed: peduncles $1-5$-fld., commonly a little longer than the petioles : corolla $2-4 \mathrm{in}$. wide, 1roadly funnelform with pointed lobes, white with a dark purple throat. May-Sept. Dry soils, Can. to Fla., west to Mich. and Tex. A.G. 12:637. R.H. 1893:574. B.M. 1603 (as Conrolvulus candicans), 1939, and Gn. 27, p. 373
(both as C. panduratus). B.R. 7:588, - In some places this species is a very troublesome weed, which is almost impossible to exterminate because of its long tuberous roots. It can easily be kept within bounds in the garden with a little care, and makes a very desirable plant for covering an old dead stump or back fence. The chief merit of I. pandurata as a garden plant is its hardiness; hence it is often sold as the "Hardy" or "Perennial Moonflower." If wellmulched the roots will stand 26° below zero. There is a double-fld. form.
19. Leari, Paxt. Blee Dawn Flower. Stem a very rapid grower, often $30-40 \mathrm{ft}$. loug, somewhat shrubly at the base: $1 \mathrm{rs}, 3-6$ in. long, cordate, acute, mostly entire or slightly 3 -lobed, variable: fls. borne in clusters of I230 , opening in succession ; corolla 4-5 in, broad, bellshaped, deep lilac, sometimes dark purple with five lighter plaits. Very beautiful. Aug.-Oct. Tropies of both hemispheres. P.M. 4:267. B.M. 3928 (as Pharbi. tis Leari). B.R. 27:56 (as Pharbitis Leari).-A magnificent species for the warmhouse, but not usually satisfactory outside, at least in the North. One plant is on record as producing $60,000 \mathrm{fls}$ at the rate of 300 a day. When grown in the open the fls. are likely to be an unattractive coppery purple.
20. Jalȧpa, Pursh (I. Michaùxi, Sweet). Stem 6-8 ft. high, branched, slightly rough, springing from an oblong root weighing $4-30 \mathrm{lbs}$. Ivs, $3-5$ in. long, ovatecordate, membranaceous, reiny, repand or deeply lobed, pubescent beneath, variable: ifs. $3-4 \mathrm{in}$. wide, the corolla bowl-shaped, witha narrowtube, rose, whiteorrose-purple. Aug.-Oet. Mex. L.B.C. 6:518 (as Convolvulus Jalapa). B.N. 1572 (as Conwolewlus Jalapa). B.R. 4:342; 8:62J. - A very oroamental warmhouse climber and valuable for the garden if the tubers are started in the greenhouse before being set out; otherwise the plant seldom blooms much before frost. The "Jalap" of commeree does not come from this plant, but front I. Purga. The roots of I.Jalapa are but slightly purgative.
21. Bona-nóx, Linn. Moonflower. Fig. 1170. Stem $10-20 \mathrm{ft}$. high: $1 \mathrm{rs} .3-8 \mathrm{in}$. long, cordate to hastate, entire, angular or 3 -lobed, acute, glabrous: peduncles 2-6 in. long, J-7-fld., equaling the petioles: corolla $3-6$ in. long, 46 in . wide, trumpet-shaped, pure white, sometimes with greenish plaits: Hls. fragrant, usually closing in the morning, sometimes remaining open till noon. Aug.-Sept. American and Asiatic tropics. B. M. 752. B. R. 1I:889 (as I. latiflora). Gn. 21, p. 259; 27, p. 473. V. 10:359. Known in gardens chiefly as var. grandiflora, Hort. (I. grandiflora. Roxb, and Hort., not Lam.), which does not differ materially from the type. Most of the large-fid. and very
 fragrant forms in cultiration may be referred here; the smaller forms are probably \boldsymbol{I}. grandiflora, Lau. Var. grandiflora is also sold under the following names: I. Childsii, I. noctiphyton, I. noctiflora, I. Mexicane grandiflora, I. Mexicuna grandiflora alba, I. Mexicana grandiflora vera. These varions trade names represent strains of rarying excellence. A form with variegated Irs. is offered. The Moonflower is most popular as a garden plant, but it also does well trained along the roof of a low house or against a pillar. It is
evening.
t170. Ipomuca Bona-nox ($\times 1 / 4$), excellent for cut-flowers in the evening.
22. grandiflora, Lam, (Calonýction grandiflorum, Chois. I. Bona-nox, Hort., not Linn.). Differs from I. Bond-nox in having the stem usually covered with short, sharp points: Ivs, smaller, entire: peduncle much shorter (usually 1-2 in.): fls, not over 3 in. wide; sepals elliptic, obtuse (in I. Bona-nox ovate, mucronate): seeds shortly villose, with shaggy margins (in I. Bona-nox
smooth). Cosmop, trop, - Some of the inferior strains passing as I. Bora-nox and its synonyms helong here.
23. chrysèides, Ker. Stem slightly woody, much twiniog, smooth or branches slightly hairy: Ivs. I-2 in. long, orate-cordate to subhastate, acute, entire or toothed, 3angled, 3 -lobed and repand: peduncles $\mathrm{I}-7$-fld., longer than the petioles: corolla $1 / 2-3 / 4$ in. Wide, funnel-shaped. July-Oct. Trop. Asia and Africa. B. R. $4: 270 .-1 t$ can be growa out-of-doors, but is tarly in blooming. Best treated as a warmhouse evergreen climher. I. chryseides is adrertised abroad. I. chrysantha, Hort., described in American catalogues as having rich, glossy foliage and golden yellow tis., may belong here.
24. Pes-cajpræ, Roth (I, maritima, R. Br.). Stem creeping, seldom twining, $20-60 \mathrm{ft} .:$ roots often 12 ft . long and 2 in. thick: Irs. I- 1 in . long, fleshy, roundish, often broader than long, with 2 glands at the base and prominently pinnate-veined: pedunclesusually few-fld., equaling the petioles: corolla nearly 2 in. long, bellshaped, margin scarcely lobed. Aug.-Oct. Trop. coasts of both hemispheres; drifting sands of coast, Ga, to Tex. B.R. 4:319.
25. Batàtas, Poir. (Batàtas Edulis, Chois.). Sweet Potato. Lvs. ovate cordate, usually angular or lobed, variable, petioled: peduncles equaling or exceeding the petioles, several-fld.: corolla $\mathbf{I}-2$ in. wide. Origin unknown, unless it be from I. fastigiata of tropical America. - Largely cultivated in many varieties for its edible tubers. See Sueet Potato.
26. Pürga, Hayde. Lvs. sagittate-cordate, smooth: peduncles generally I-fld.,-longer than the petioles: fls. rose-purple ; corolla long-tubular, with a flat limb. Sept.-Oct. Trop. Amer. B.R. 33:49 (as Ěxogonium Purga). - The "Jalap" of conmmerce is an active purgatire made by grinding to a powder aried slices of the tuberous roots of this species. It was principally collected near Xalapa, Mex., of which Jalap is a corruption.
27. Wolcottiàna, Rose. Tree, $25-30 \mathrm{ft}$, high, often Ift. through, with slender, slightly drooping branches: Irs. ovate to orate-lanceolate, $3-5 \mathrm{in}$. long, smooth: fls, numerous, in short racemes or corymbs ; corolla about $21 / 2$ in. broad, white, broadly bell-shaped. Mex. G.F. 7:365. - Seeds do not germinate readily.
I. aürea. Kellogg. Lvs, trifollolate or quinate, the leaflets rhombie, entire, sub-repand: fls, 2-4 in weross, funnelform, with a widely expanded limb, goldeñ yellow. Cah. After No. 12 in key.
S. W. Fletcher.

IRESINE (Greek name for a liarvest garland wound with wool: the flowers and seeds of these plants are woolly). Amarantdeeq. Achyranthes, From 20 to 25 spectes of herbs or subshrubs, in tropical and subtropical Amer. Lvs. stalked, opposite, the margins not toothed in the domestic species: fls, very small, bracteate, in axillary or terminal panicles, perfect or imperfect (plants sometimes dicecious), the perianth of one series terete, 5 -parted, with ovate-oblong segments; stamens 5 ; style short or none, the stigmas 2 or 3 : fr. a utriculus. Two or three species are io common cultivation as bedding plants, because of their highly colored lvs. and stems. The first of these to be introduced was described before the fls, were knowa and it was referred to Achyranthes (A. Ferschaffeltii), but in that geuus the anthers are 2-loculed, whereas in Iresine they are I-loculed. To gardeners they are still known as Achyranthes.

Becanse of eaze of propagation, ability to withstaud sun and shearing, and the bright colors, the I resines are amongst the most popular bedding plants. Few plants are easier to grow. Stock plants are kept over winter in a cool temperature (as in a carnation house), and in February and March they are given more heat and moisture, and cut back, to get eutting wood. Cuttings root quickly in any gond cutting-bed. For mass bedding, plants are usually set 6-10 in, apart. They will not withstand frost.

Hérhstii, Hook. f. (Achyránthes Ierschaffellii, Lem.). Lvs. broadly ovate or orbicular, obtuve and notehed at the apex, purple-red, with prominent arched veins, or in the commoner variety green or green-red with yellow veins (var. aüreo-reticulata). S. Amer. B.M. 5499.This was described and figured in August, 1864, by Lemaire as Achyranthes(?) I'erschaffeltii (I.H. I1:409), and later by Van Houtte as Iresine Verschaffeltii (F.S.

15:1601). In Jnly, 1864, however, Hooker had published it as Iresine Herbstii, in honor of Mr. Herbst, of the Kew Nursery, who introduced it from the River Platte. There are horticultural varieties with Latin vames.
I. Wallisii, Ort.,

1171. Iresine Lindeni ($\times 1 / 2$). is a small plant, with numerous small roundish lvs., which are bronze - red or dark red above and dark blood-red beneath. Probably a form of I. Herbstii.

Lindeni, VanHoutte (Achyrinthes acuminàta, Hort.). Fig. 1171. Lvs. ovate-acuminate or lanceovate, with less arching or curving veins, in the original form rich, deep blood-red, but in some garden forms with lightbanded veins. Equador. F.S. 17: 1737.More pyramidal in habit than the other species, and now more eommon. To this species evidently belong the garden forms known as Emersoni, Callensii and formosa.
I. Biemuelleri, Haage \& Scbmidt, is probably a garden form of one of the above, it is a compact, dwarf grower, withstanding severe cutting: lvs. and twigs rose-carmine. L. H. B.

IRIARTÈA (after Bernard Iriarte). Palmd̀cea. Tall spineless palms, with cylindrical or swollen stems supported on a pyramid of aërial roots: Ivs. few, unequally pinnate; Ifts. equilateral, cuoeate, entire or erose, plicate; petiole channelled; sheath cylindrical: fls, small: tr. 1-2 in. long: stigmas eccentric or lateral in fr. This palm is separated from Ceroxylon by the cuneate leaflets. Species 10. Trop. A. Amer. 1. Bungerothii was advertised in 1895 by Piteher \& Manda as Triartea, which was presnmably a typographical error for Iriartea. No description of this species is available.

Jared G. Smith.
IRIS (Greek, rainbow). Iridadcecr. Plate XVI. Distinguished from the other members of the tribe except Hermodactylus and Morea by the 2 -winged style branches, from Hermodactylus by the 3 -celled capsule, and from Morea by the more or less counate perianth segments. Herbs with linear or ensiform, equitant leaves and a rhizomatous or bulbous rootstalk: stem simple or branched: flowers of 6 segments, the 3 outer reflesed, and the 3 ioner usually smaller and erect, always narrowed to a distinet claw, one to many in terminal heads, from spathes which are formed of the upper bract-like leaves ; spathe stalked or sessile ; style divided into 3 petal-like branches, which are bifid or crested at the tip; stigmatie surface immediately below the crests : ovary sessile or pedicelled, within the spathe. For a monograph of the genus, see Baker's Irideæ, 1888.

About 170 species of Iris are known to botanists. They are natives of the north temperate zone, inhabiting Asia, Europe and North America, with a few species in northern Africa. About 100 species, with innumerable garden varieties, are offered by dealers in America. Many of these, including tbe native species, are cultivated only to a slight extent, so that horticultural interest centers chiefly around a few groups given below :

1. German Irises. - The plants known to the trade, and widely advertised as Iris Germanica, German Iris or Fleur-de-lis, are varieties and bybrids of several species, all of which are closely related to I. Germanica. It is a curious fact that \boldsymbol{I}. Germanica itself has comparatively few varieties, and forms but a small part of the gronp named after it. It rarely or never seeds in cultivation, even when placed near closely related species. The principal parent species are I. Flarentina,
squatens, sambucina, flavescens and variegata. Owing to their diversity of origin, the varieties have a great diversity of color, ranging from pare white (in I. Florentina and its derivatives) throngh all shades of manve and blue to dark purple. From I. variegata and I. flavescens the yellow-flowered varieties and those whose flowers are variegated with yellow were probably derived. The flowers of all the varieties are large and haodsome, of ten stately, exhibiting beantiful variegation and shades of color. They are borne on stont, erect, branched stalks much exceeding the clumps of spreading leaves. All are hardy, and form excellent border plants, flowering in May and June.
2. Japanese Irises.- All the plants cnitivated as Japanese Irises are referable to a single species, Iris lovigata, more generally known as \boldsymbol{I}. Kompferi. The type of the species has been so much broken that its varieties constitute a distinet horticnltural group, containing perhaps as many or more named varieties than the I. Germanica gronp itself. So far as known, no hybrids or other species enter into the make-up of this class. The plants form strong clumps, attaining a height of 2 to 3 feet, and bearing several flower stems. The leaves are slender, erect, growing almost parallel to each other. In the wild type the inner segments are erect and rather small. Under cultivation they have been much broadened and have acquired a spreading habit, giring the flower a flat, expanded form characteristic of this group. In color they range from white through various shades of blue to deep parple, with the segments variegated with darker veins and streaks, or plain. All the varieties are hardy, and thrive best in cool, moist situations. They begin flowering in the latter part of June and continue through Jnly.
3. Dwaif Irises. - The dwarf Irises comprise several species related to I. pumila, verna and cristata. They seldom grow over 9 inches high, but spread rapidly by their creeping rhizomes, soon forming large patches. This habit makes them usefnl border plants. I. arenaria lives well in dry, sandy sitnations. The flowers are varionsly colored blue, lilac, sellow, etc.
4. Oncocyches Irises. - The interesting species of the subgenns Obcocyclus inhabit the dry mountain regions of P'alestine, Persia and Armenia. They differ from other Irises in many striking characters. The plants grow from 6 to 12 inches high, the stem bearing a siogle flower, which in some species is of enormons size, compared with the size of the plant. The segments, of which the inder are larger than the outer, present a most singular combination of somber colors. The peenliar colors are often due to the interlacing of numerons very thin veins, usually blne or brown, on a white or straw-colored gronnd. The most common shades thns produced are beantiful sky-blue, light gray, and brown to almost black. In some, all the segments are colored nearly alike, but in most species the inner and outer segments are differently colored. In America this gronp is not widely cultivated, the most common representative being 1. Susiana. Many recorded hybrids have been raised in Enrope. For a monograph, see Foster, Gr. 43, pp. 130-135.

Bulbous Irises. - Abont 20 species of bulbous Irises are eultivated in America. They are rather dwarf, hardy and half-hardy bulbous plants, known chietly for the brilliant colors and strong contrasts, and for their numerous flowers. The species most commonly fonnd in gardens are I. Xiphium, better known as I. Hispanica, and I. xiphoides or I. Anglica. The latter is probably the oldest Iris in cultivation. See Foster, G. C. 11. 23, pp. 567 and 726.
II. Hasselbeing.

The Irises are a widely distributed group of plants, occurring in almost all degrees of longitude of the north temperate zone. They are found in few forms above 40 degrees north latitude, and there seem to be no species south of the Atlas monntains of Africa, the botanists rating the nearly allied southern forms as Moreas. There is a somewhat general localization of some of the main forms of Irises, central to sonthern Europe being rich in the broad-leaved species, both tall and dwarf, these giving way in Asia to many narrow-leaved forms, which forms are also abnndant on our western coast, in fact east to Missonri. Spain and the Mediterranean

Plate XVI. Japanese Irises, Iris lævigata
regions of Africa are the home of bulbous forms. In southwestern Asia are found not only broad-leaved forms, but this region is also the home of a rich variety of dainty bulbous kinds and the curious Oncocyclus species.

As will be seen by their distribution, Irises are especially adapted by their hardiness to growth in our gardens, though some forms, as the African, the Indian, and the Oncocyclus species, need special treatment or protection. In the main the Irises, from a cultural point of view, are like others of nature's various families, mostly very good-uot to say commonplace-with a few decidedly bad members. As there are nearly I70 species of irises, with countless varleties, they are interesting to the amateur collector and grower both for their variety and their general beauty of flower.

The life of Iris flowers varies from three to six days. They are fragile, hut if cut before the petals unroll may be forwarded to considerable distance without injury. This is the only way, in fact, by which the Horist can market them. The botanists divide the Irises into two main groups, the bulbous kind and those with rhizomes, these groups being each divided by the varying characters of the more or less raised line in the middle of the fall of the flower. This, of course, gives no elue to cultural necessities or to time of flowering, two important details in a garden.

Considering the bulbons Irises as a group, these are all hardy without protection in the latitude of New York city except I. Histrio, I. alata, I. juncea, I. Palostina, I. Tingitana, I. Varlani.

In the order of their flowering, the reticulata group is the earliest, I. Bakeriana and others starting into flower as soon as released by frost, usually in February or March. These are soon followed by the others of this group, the largest-flowered member being I, histrioides. A peaty, sandy soil seems to be most acceptable to this group, and no organic manure must be given them. A location, if possible, where they may be kept on the side of dryness in summer is desirable. The culture of these, like that of all exotic plants in our gardens, is, of course, tentative. If, on trial, they seem to be happy and increase from offsets or buds, they may remain in the borders indefinitely, but if during the second season they show no gain, the bulbs should be lifted and a trial made in another location. This group seeds freely, and the seed pods will be found just under the sonl surface.

Closely following this group are the so-called Juno Irises, of which I. Persica is the most familiar, though not the best example. These Irises have somewhat large bulbs, with curious, persistent, fleshy roots, and seem to thrive best in somewhat stiff soil, in sheltered locations, where they will be well baked during the summer. They flower in March and April, the best forms being I. Rosenbachiana, I. orchioides, I. Sindjarensis, and I. Assyriaca. They are desirable plants in the most exclusive gardens. They seed freely, and also increase by off sets.

About the same time as above will flower the Iris tuberosa ("The Widow"), which is neither bulbous nor an Iris strictly, but has a weird beauty of its own, with its green and black flowers. This should have a summer baking. (See Hermodactylus.)

Planted out in the early fall, the so-called Spanish Irises make an early start and produce leaves which are persistent during the winter and seldom injured here. in May and June they broaden out, and are then surmounted by very bright, distinct and charming flowers. Very satisfactory flowers, these, and of the easiest culture. They probably do best in spots inclining to moisture. The bulbs make offsets rapidly, and should often be divided and replanted. There are two forms and numerous flowers of this iris. The boldest form is that known as the "Thunderbolt."

The "English" Irises, I. xiphioides, follow the "Spanish" in June and July. Their flowers are wider in all their parts, and in a limited range of colors, white and purple. "Mt. Blanc," pure white, is probably the most satisfactory of the group. The foliage of the English lris does not spear till early spring, and the varieties flourish in a rather drier position than the "Spanish."

The African bulbous irises, I. juncea, I. Vartani, I. alata, are subjects for a coolhouse, though the former is rarely hardy here.

The rhizomatous Irises may be divided into a number of sections, but in a cultural way may be broadly considered in two sections : those with thick, surfacecreeping rhizomes, as the bybrid German, and those with more or less thin ones, as I. Sibirica and I. lovigata, which are subterranean. While the former section comprises plants which grow in various conditions, some with the roots submerged, yet in a general way they have mostly surface-creeping rhizomes. These are best transplanted soon after flowering, at which time they commence a new growth. It is customary for the nurserymen to supply these in the fall, which usually leads to the loss of a season, as they often fail to become established when planted late. The foliage of the lris indicates a sun-loving family, and lrises should be planted in full exposure in rich, but not manured soil, well drained. The rhizomes should be planted flat and covered to half their diameter. If the rhizomes are in a growing condition, no further care will usually be necessary with the great majority of the species, but if the rhizomes are dormant and partly dried up, as they are frequently on receipt, care should be taken that they have not much moisture till they start into growth, otherwise they are likely to rot. Not every lris will grow in every garden, but the failure to establish these plants is most often caused by too much exposure to excitement of light, warmth and moisture when the plant is not ready to convert its reserve into food. Valuable species should have the protection of a frame in such circumstances till it seems safe to plant them out. If carefully treated and not excited, apparently hopeless dried up rhizomes may often be saved. Most of these Irises in common cultivation increase rapidly, and should be divided and replanted every two or three years; otherwise the rhizomes become matted and the abode of grass, etc. Among them will be found some of the showiest flowers of the family.

Usually in early May we bave flowers of I. Chamaxiris and its variety I. Olbiensis, followed quickly by the dwarfer I. pumila and its white form I. Attica. Forms of I. lutescens, Lam., quickly follow, after which I. Germanica, I. Florentina and the host of "hybrid German" varieties come rapidly forward aud give a great wealth of color. Every one is familiar with the great bearded purple I. Germanica, perhaps the most generally cultivated Iris. There are larger-fld. forms of this: I. Amas and I. macrantha. I. Germanica alba seems to be a variety of I. albicans. This and I. Florentina are the usual white-fld. forms seen at this time. Of bold, lighter purple kinds, I. pallida and its hybrids are then preëminent.

The German Irises of the garden are not varieties of I. Germanica, but bybrids of various species, as I. pallida, I. variegata, I. sambucinA, I. squalens, I. lurida \times wild forms and I. neglecta, I. amana, I, plicata and \boldsymbol{I}. Swertii, which are known only iu gardens. Naturally these vary much in stature, time of flowering, size and coloring of fls. They may be had in almost endless variety, but a typical collection may be made with comparatively few plants.

Among the best forms of the "hybrid German " Irises are: I. aphylla-Bridesmaid, Madame Chereau, Swertii; I. атюна-Compte de St. Clair, Fairy Queen, Reticulata alba, Victoriue; I. neglecta-Cordelia, Wagner; I. pallida-Khedive, Mad. Pacquitte, Queen of May, Walmer; I. squalens-Amols, Jacquinians, Harrison Weir, Mons. Cherion; I. variegata-Beaconsfield, Darius, Hector, Honorable, Prince of Orange.

June is flowering time for many Iris species, many of which are uncommon, but of the more available forms one could scarcely neglect the native \boldsymbol{I}. hexagona, the dark La Mance form of which is very distinct and amougst the bandsomest of the family, A white form of this is not bardy here. I. fulva, another native plant with eopper-colored flowers, is also interesting. Irises with distinct forms of this season are I. Monnieri and I. orientalis (or I. ochroleuca), both of which bave obliquely growing rhizomes and enjoy moisture.

For margins of water I. Pseudacorws, with yellow fls., is invaluable, and our natives, I, versicolor and I. Caro-
linensis, seem as happy in the moisture as in the uplands. The Iris rhizomes which require deep planting are mostly smaller and thinner than those of surface creepers. The species with these roots are mostly strong-growing plants, rapidly increasiog and requiring an abuodance of moisture, though there are some nota ble exceptions to be mentioned later. Of the members of this group, I. Sibirica, in several purple and white forms, is a common garden plant. I. ensata is a common Asiatic Iris with small fls. borne among the narrow foliage, which is as oruamental as some of the large grasses.

The Japanese Irises, which usually end the general display of Irises, are a remarkable example of typebreaking, the occidental gardeners having worked up from I. lavigata a wonderful variety of colorings and variation in number of petals, though the colors may be included in about half a dozen general types. There are few handsomer flowers than good forms of the white Japanese Iris. This Iris may be grown on the upland, but it does not do its best in such locations, for it is particularly susceptihle to good treatment, and to produce large flowers both water and manure are essential. Mr. Peter Barr, the veteran fancier of good plants, lately wrote the undersigned from Japan, after consulting one of the oldest enltivators, that "this Iris is grown in the rice fields in winter and watered each munth while at rest with human manure (cow manure would do) ; as soon as young growth appears no more manure is given and the ground is flooded. When growth has ended the water is withdrawn."

One of the most curious things in connection with the Japanese Iris is that though these plants bave been in cultivation here since soon after the treaty ports were first opened, they seem to have excited little attention from gardeners until within a few years. Yet the first importations were as handsome as the later. In this conncetion it may be said that Japan has also 1. gracilipes, a dark parple hardy form, and I. Japonica or Chinensis, one of the beauties of the fanily but, like I. tectorum (the Roof Iris), another crested kind, needing here greenhonse protection and well worth it. There is, however, a perfectly hardy crested Iris, the beautiful dwarf I. cristata of the upper sonthern states-a charming plant for a front horder or rockery. Equally dwarf are our lake Irises I. lacustris and I. verna.

The west coast of the United States is fortunate in possessing some beautiful and distinct lrises, mostly of the wiry-cooted, thin-leaved type. They have not yet been filly separated botanically, and they are most difficult things to establish in eastern or other gardens, so that there are really very few in eultiration. Raising from seed scems the most practical way of establishing there species. They seem to be perfectly handy here, for some of them have been tested and flowered, but they do not tarry long.
I. macrosiphon, I. Inartwegii, I. Douglasiana, I. bracteata, I. tenax, I. longipetala, I. tenuis and I. Purdyi is a list which will interest the searcher after interesting plants. Max Leichtlin, who has a genius for growing diffieult things, has been successful in establishing I. bracteata, I. macrosiphon and I. Purdyand. He says, "My experience is that they cannot be moved unless in full vegetation. We must grow them from seed, and not touch the seedlings until they hare formed a solid rootstock. After this and movement to grow has begun, they can be safely handled and transplanted like other Irises."

There remain to be considered two allied groups, the Oncocyclus and Regelia. These are considered by amateurs the most interesting groups of the Iris family - interesting in the amateur's vocabulary meaning something rare and difficult. At the best, these plants give few flowers, but they compensate for this hy their distinct and quaist beauty. The best known member of the family, I. Susiana, bas been in cultivation several bundred years, but is hy no means yet a common plant. It takes more kindly to cultivation than any of the other species, will usually flower in the border the first year after planting if the spring is not too rigorous; and gardens are not unknown where from some conditions of fortunate placing or soil, they continue to flourish. It cannot he said that there is any hard and fast formula
for growing these Irises. They vary among themselves as to their requirements, and need special and different treatment in different gardens and climates. These Irises are natives of Palestine, Asia Minor, the Cancasus, Central Asia and Persia regions, all ot which are hot and

1172. Iris unguicularis.

Type of smooth-petaled Iris $(\times 1 / 3)$. No. 13.
dry in summer, with a settled and sometimes severely cold winter and a genial spring. In some of the regions they are protected hy acovering of snow in winter while dormant, but Palestine and Persia have open winters, and their Irises make growth at this time. After cultivatiug most of the species for a number of seasons, the writer's experience does not lead him to dogmatize much on their cultivation or to approve of many special derices which have been put forward from time to time as the solution of the problem. The consensus of opinion among the growers who have had the best success with these plants is about as follows, premising that we are dealing with plants which are perfectly hardy: We receive the rhizomes with the Dutch bulbs in the fall, at which time they are dormant and leafless. It is well to store them in a cool place and plant ont in Norember in a bed of fairly light and well drained soil in a horder fully exposed. They require no protection, but if the climate is one where frosts and thaw alternate, it is well to give the ground a covering while frozen to keep it firm. The Irises so planted will seldom spear here till genial weather arrives, and with plentiful supplies of moisture at the root will give flowers from strong buds. After flowering, or, more accurately, flowering time, one is forced to choose between two methods of treatment. If the garden is high, dry and hot, the best procedure is to cover the beds with a glass frame sufficiently large to protect them from moisture and allow the rhizomes to bake. This frame may be removed in the late fall. If the leares appear, as some of them are likely to do, they may be left unprotected until very severe weather sets in, here usually in December. The protection should be something to protect the leaves from the winter sun and frequent change of temperature. Here coal ashes have proved satisfactory, though unsightly. Foliage does not seem to become as soft under them as under leares or mats. If the spring is genial, with weather
steadily becoming warm, the plants being uncovered as soon as the conditions will seem to warrant, should be in the best possible shape to reward one with their noble blooms. It is the lack of this genial spring in the latitude of New York which, howerer, leads often to cultural troubles. The leaves, having been protected, are none too hard, and, with the constant alternate thawing and freezing, and the bigh winds, hot and cold, the plants need constant watching and application of needed covering till really genial weather. Otherwise the foliage is blighted and no flowers are produced.

In gardens which are low and never free from mois ture, the best procedure is that followed in Holland, lifting the rhizomes in July and taking them under cover in dry earth, planting out again in the fall. In this case care should be used in lifting not to injure the numerous fleshy roots. The Palestine and Persian forms of these Irises are considered the most difficult to cultirate, from their habit of eardy growth.
Irises are not only increased by the division of the rhizomes or by offsets, but may be rapidly grown from seed, which they usually produce freely, though, in most cases, they require artificial fertilization. A large number of the common Irises of gardens are hybrids, and of late jears a number of beautiful hybrids have been produced between some of the rarer Oncocyclus species, and between these also and common forms, as I. variegata, etc. There are still opportunities to produce many new and untried crosses, and experiments in this line are recommended. The pollination of the Iris is simple. The anthers should be removed when the flower first opens, and preserved in paper or vials, properly marked. The pollen will retain its potency for a week or perhaps longer, and may be applied to the stigma of the flower selected (the anther of which has been removed promptly) with a camel's-hair brush. The stigma will be found near the apex of the petal-like style, and is ready for pollination when the upper edge drops down and exposes the upper surface. Many Iris seeds germinate with considerable irregularity, and failure to start promptly should not lead to discouragement or discarding of the pas in which the seeds are.
J. N. Gerard.

INDEX.

acuta, 12.
alata, 99.
Alberti, 36.
albicans, 54 .
атсепа, 59.
Anglica, 82
aphylla, 50, 56, 57.
arenaria, 46 .
Asiatica, 55. atrafusca, 75. atropurpurea, 74. atroviolacea, 37, 65. aurea, 34 . аzurea, 37. Bakeriana, 90. Balkana, 40. Benacensis, 52.
bitlora. 41 . biglumis, 7. Billiotti, 63. Bismarckiana, 72.
Bloudovii, ${ }^{47}$.
Bohemica, 50 . Boissieri, 86 . bracteata, 14 . Caroliniana, 21. Cancasica, 100 Cengialti, 42. Chameiris, 45. Chinensis, 35 . cerrulea, 87, 102. concolor, 68. cristata, 32. cuprea, 17. сиалеа, 87. Cypriana, 64.
Danfordie, 93.
Delarayi, 8 .
Douglasiana, 16. ensata, 7.
falcata, 50. filifolia, 84 . fimbriata, 35.
flavescens, 49.
flavissima, 47.

Florentina, 54.
fortidissima, 27.
Fosteriana, 96.
fragrans, 7, 41.
fulva. 17 .
fumosa, 101
furcata, 50 .
Gatesii. 78.
Germanica, 60.
gigantea, 26. gracilis, 10, 37, 39. graminea. 11. Grant-Duffic. 4 Gueldenstadtiana, 23.

Gypsea, 60. haematophylla, 12. halophylla, 30 .
Hartwegii. 3 .
Нетене, 71.
hexagona. 20.
Hispanica, 81.
Histrio. 88 .
histrioides, 87. honorabilis, 48.
humilis, 1.
Hungarica, 50.
bybrida, 59.
Iberica, 76
Italica, 45 .
Jacquesiana, 61.
Japoniea, 35.
juncea, 85.
Junonia. 55.
Kcempleri, 28.
Koehii, 53
Kolpakowskiana, 91.

Korolkowi, 68.
Krelagei, 87.
laveigata. 28.
Leichtlini, 67.
Leichtliniana, 68.
lineata, 66,
longipetala, 9.

Lortetii, 73.
lupina, 80.
lurida. 51, 70.
Lusitanica, 81.
Intescens. 4 .
macrosiphon, 2.
major, 77, 87 .
major, 71, 87
Mlarie, 71.
marie, 91.
Milesii, 34.
minor, 46 .
Missouriensis, 15.
Monnieri, 25.
Nazarina, 79.
neglecta, 58 .
Nikitensis, 11. nothe, 30 . nudicaulis, 41. ochroleuct, 26. ocvlata, 102. olbiensis, 45 . orchioides, 102. orientalis, 12, 26. oxypetala, 7 . pabularia, 7. Palæstina, 98. pallida, 18, 55. Panormitana, 38.
paradoxa, 69.
paradoxa,
Persica, 94. plicata, 56. prismatica, lo. Pseudacorus, 18. pseudo-pumila, 38. pumila, 37.
ригригеа, 94.
reticulata, $60,87$.
Rosenhachiana, 95.
Ruthenica, 1,5.
sambucina, 62.
sanguinea, 12.
Sarii, 70, 79.
scorpioides, 99.
setosa, 22
Sibirica, 12.
sicula. 55.
Sindjarensis, 97 Sisyrinchium, 92 Sogdiana, 23. speciosa. 55. spectabilis, 81 . spuria, 30 . squatens, 61 Squatens, 61. statellie, ${ }^{4+}$.
stylosa, 13.
superba, 13
Susiana, 77
Suwarowi, 66.
Swertil, 57. tectorum, 33. tenax, 6.
Tingitana, 83. Tolmicaнa, 15 Trojana, 29. unguicularis, 13.
vaga, 67.
variegata, $12,18,48$.
Vartani, 89.
verna, 31.
versiculor, 19.
riolacea, 68.
virespens, 43.
Yirginica, 10.
xiphioides, 82.
Xiphinm, 81.

Synopsis of Stbgenera is Ctlotiviation.
Series I. Rootstock a short, thick, or creeping rhizome.
APOGON. Outer segments of the perianth without a beard or crest. peries
Pardanthopsts. Outer serments of the perianth not distinctly bearded or crested, merely keeled; sometimes slightly hairy Species
Evansia. Outer segments of the perianth distinctly erested on the claw and lower part of the blade \qquad . Species
Pseudevansia. Outer segments bearded or hairy:

Pogoniris and Regelia. Outer segments bearded or hairy: hair restricted to a dense beard along the midrib
Oncocyclus. Outer segments bearded or hairy: hairs diffused over the lower part of the blade and claw; inner segments larger than the outer.

Series II. Rootstock bulbous.

Xiphion. Inner segments of the perianth large, erect: stamens not adbering to the style branches Species 81-91
Gynandiris. Inner segments large, erect: stamens adhering to the style branches....Species 92
Juno. Inner segments small and spreading or deflexed
. Species 93-102
SUBGENUS APOGON
A. Lus. linear, generally less than $1 / 2$ in. broad.
B. Sheath splitting up into fibers.
c. Valves of the spathe green. D. Tube of the perianth 11/2-2 in. long.
E. Spathe sessile...... 1. humilis

EE. Spathe stalked 2. macrosiphon DD. Tube of the periunth
short or obsolete.
E. Fls. yellow.......... 3. Hartwegii
4. Grant-Duffii

EE. F7s. some shade of
blue or wiste.
F. Stem lex. reduced.
G. Stem terete.
H. Rootstock
slender,
ride-creep-
ing........ 5. Ruthenica
HH. Rootstock
short.
creeping . . 6. tenax
7. ensata
8. Delavayi

GG. Stem com-
pressed......9. Iongipetala
FF. Stem les. long,
generally orer 1
ft. in length....10. prismatica
11. graminea
cc. I'alves of the spathe brown and scarious............12. Sibirica
BB. Sheaths not splitting into
fibers.
c. Stem nearly absotete..... 13. unguicnlaris
ce. Stem present, clothed with
sheathing bracts........14. hracteats
ccc. Stem present, bearing 1-2
leaves 15. Missouriensis 16. Douglasiana

AA. Lus. ensiform, generally much over $1 / 2$ in. broad.
B. Stem bearing several long leates.
c. F'ls. reddisk brou'n. 17. fulva
C. F'ls. yellow 18. Pseudacorus
ccc. Fls. blue, purple, lilae,
ete., or white.
D. Lu's. somewhat glaucous19. versicolor
DD. Les. bright green, not glaueous.
E. F'ls. sessile20. bexagona

EE. Fls. pedicelled.....21. Caroliniana
22. setosa

BB. Stem bearing $2-1$ reduced lvs.
c. Fls, yellow................23, Guldenstædtiana
24. aurea
25. Monnieri
26. orientalis
cc. Fls. some shade of blue or
white. 27. fcetidissima
28. lævigata
29. Trojana
30. spuria

1. bùmilis, M. Bieb. (I. Ruthénica, Ker., not Dryand.). Rhizome wide-creeping: lvs. to 12 in a tuft, glaucous, 6-12 in. long: Hs. bright lilac; outer sepals with a suborbicular blade and a long cuneate claw. Caucasus to Georgia and Hungary. Gin. 10, p. 379.
2. macrosiphon, Torr. Plants rather dwarf, 6-12 in. high: lrs. grass-like, green, 12 in . long, exceeding the fls.: stem 3-6 in. long: pedicels very short: outer segments obovate-cuneate, undulate, pale yellow to cream, with a network of brownish crimson or bright lilac veins ; ioner segments rather small, colored like the outer. Free-flowering. Calif, and Ore. (in. 52, p.126.Torrey says the Hs, are bright lilac and the lvs. less than 4 lines wide.
3. Hártwegii, Baker. Lrs, few (2), 6-12 in, long, finely reined: stem 6 in . long, with linear leaf low down: pedicel $1-1 \frac{1}{2}$ in. long: limb pale yellow: outer segments with an oblong blade, sborter than the claw. Calif. Rarely cult.
4. Grant-Dúffii, Baker. Luss, about 1 ft . long: stem 6 in. high, with about 2 lvs., onter valres marked with fine black lines: outer segments with a yellow blade, much shorter than the claw; claw veined with lilac on a yellowish white ground. Palestine. Gt. 42 , Supp. Pl. Not valuable commercially.
5. Ruthénica, Dryand., not Ker. Lrs. 3-12 in. long, in crowded tufts; stem slender, $3-6 \mathrm{in}$, long, but often obsolete: tube twice as long as the ovary: outer segments with an oblong blade rather shorter than the claw, lilac, violet-scented. Apr., May. China, Siberis and Cent. Asia. B.M. 1123 and 1393. Gn. 50, p. 187.
6. ténax, Dongl. Sheaths short: Ivs, 6-12 in. long: stem 6-12 in. long: pedicel long: outer segment broadly obovate, with an acute point: blade about as long as the claw, bright lilac, with purple reins and a variegated white and yellow spot on the throat: inner segments shorter, waved. Apr., May. Dry soils, B, C. and Ore. Int, to Eng. 1826. B.N1. 3343. B.R. 15:1218. Gn. 53:1175. - Hardy.
7. ensàta, Thunb. (I. biglùmis, Vahl. I. oxypétala, Bunge. I. fragrans, Lindl.). Sheaths large: Ivs. $1-3 \mathrm{ft}$. long: pedicel ${ }^{2-4} \mathrm{in}$., often longer than the spathe: limb loose, bright blue or lilac: outer segments oblanceolate, 2 in, long: blade shorter than the claw, veined with dark blue, yellowish on the throat: inner segments slender, ereet, bright blue. Russia, Japan, Caucasus. B.M. 2528 and 2331. B.R. 26:1. Gt. 1011.-Hardy. Variable.

Var. pabulària, Naudin (I. pabulària, Hort.). Said to be distinct. Larger, with lvs, purplish red near the base. Used as a forage plant. Does well in driest situations. Gt. 47:1452. - Described by Wittmack, Gt. 47, p. 369. The seeds should be sown in beds, and the
young plants set out the following spring, 10 in . apart eacb way, where they are to remain.
8. Delavàyi, Micheli. Lvs. 2-21/2 ft. long, often nearly 1 in . broad: stem $3-5 \mathrm{ft}$. bigh, hifurcate: spathe valves green: outer segments reflexed from the middle, oblong, obtuse or emarginate, brilliant violet, spotted with white on the lower half; claw yellow, veined with lilac; inner segments oblong-lanceolate, acute, erect, violet. Large plants, with the flower-stalks erect, high above the lvs. Thibet. R.H. 1895, p. 399.
9. longipétala, Herb. Lrs, 1-11/2 ft. long: stem stout, solid, compressed, $11 / \mathrm{ft}$. high : fts. bright lilac; outer segreents obovate, retiexing lalf way down; claw veined with violet on a white ground. Calit. B.M. 5298.
10. prismática, Pursh (I. Virginica, Muhl. I. grácilis, Bigel.). Plant tall, slender: Ivs, mostly shorter than the stem, grass-like: stem l-2 ft., simple or forked, flexuous: spathes $1-2$-fld.: pedicel long, exceeding the spathe: outer segments $11 / 2-9$ in. long: blade shorter than the claw, bright lilac, yellow on the throat, marked with purple and darker veins; inner segments erect, bright lilae. May, June. Wet grounds, New Brunswick to Pa. and N. Car. B.M. 1504.
11. graminea, Linn. (I. Nikiténsis, Lange). Lvs. strongly ribbed, $1-1 \frac{1}{2} \mathrm{ft}$, long: stem compressed, angled, slender, solid: pedicel $1-1 \frac{1}{2}$ in, long: limb bright lilac, copiously veined; outer segments with an orbicular blade $1 / 2 \mathrm{in}$. broad and shorter than the broad claw; claw dull yellow, reined with purple; inner segments erect, nearly straight. May. Central and S. Eu. B.M. 681. - Long cult. ; mentioned by Lobel, Clusius and Gerarde. Distinguished from 1 . Sibirica by its solid, angular stem.
12. Sibírica, Linn. (I. acùta, Willd.). Compact, tufted: Ivs, green, not rigid, $1-2 \mathrm{ft}$. long: stem slender, terete, fistulose, much overtopping the Ivs., simple or forked, bearing several clusters of fls.: limb bright li-lac-blue; outer segments $1^{1} / 2-2$ in. long, with an orbicular blade gradually narrowed to a slender claw, reined with bright violet, whitish toward the elaw; inner segments shorter, erect. ('entral and S. Eu, and eastern Siberia. Int, in 1796. B.M. 50. R.H. 1898, p. 23.-Common in eult. The plants form large, compact clumps, producing many long flowering stems from the center. Var. orientalis, Thunb. (I. sunguinea, Don. I. Sibirica, var. sanguinea, Hort. I. hamatophylla, Fisch. I. Sibiriea. var. Hematophýlla, Hort.). Fls. larger, more fugitive; blade of the outer segments orbicular: young lvs. reddish. June. Produces a second crop later. Var. álba, Hort., with pure white fls. Var. variegata, Hort., with variegated lis. Var. acuta, Hort. Narrow-lyd.
13. unguiculàris, Poir. (I, stylosa, Desf.). Fig. 1172. Lvs, about 6 in a tuft, finally $11 / 2-9 \mathrm{ft}$. long, bright green: tube 5-6 in. long, filiform, exserted from the spathe: limb bright lilac, rarely white; outer segments $21 / 2-3$ in. long, 1 in. broad, with a yellow keel, streaked with lilac on a white ground at the tbroat; inner segments oblong. Jan., Feb. Algeria. B.M. 5773. Gin. $24: 398 ; 46: 979 ; 49$, p. 236; 50, p. 187. G.C. III. 25:85. - Not hardy, but useful for cutting in early winter. Fragrant. Var. alba, Hort. White form; spring. Var. superba. Hort. Bluish purple. Oct, and later.
14. bracteata, S. Wats. Rudimentary lvs, brown, rery rigid; produced lvs. 1 to few, much exceeding the stem, 1-2 ft . long, one side green, the other glaucous, edge revolute: stem 1 -headed, angled, $2-3 \mathrm{in}$. to 1 ft . long, sheathed with bracts $2-4$ in. long: tube short, funnelform: outer segments $2-3$ in.; blade ovate, as long as the claw, pale yellow, reined with bluish purple; inner segments shorter, erect, yellow; style branches long, narrow. June. Discovered in 1884 by Thomas Howell, in Ore. G.F. 1:43.-Int, 1888.
15. Missouriénsis, Nutt. (I. Tolmieàna, Herb.) Lrs. pale green, finely ribbed, $1-11 / 2 \mathrm{ft}$. long; stem $1-2 \mathrm{ft}$. long, usually exceeding the lvs., bearing a single large leaf low down: pedicel long: tube very short: limb bright lilac; outer segments obovate, 1 in. broad, yellow near the claw: inner segments oblong, straight, erect, Wet soil, S. Dak. and Mont, to Ariz. Gn. 50:1082, - Not common in eult. Flowers early.
16. Douglasiàna. Herb. Rhizome stout, short, creeping: Irs. about 6 in a tuft, broadest in the middle, strongly ribbed, $1-2 \mathrm{ft}$. long: stem $1-2 \mathrm{ft}$. high, usually simple, with one long bract leaf: tube $1 / 2^{-3}+4$ in. long: fls. 3-4 in. in diameter; outer segments obovate-spatulate, spreading and recurved, pale lilac, with a white disk and purple veins; inner segments shorter, erect, lanceolate, acuminate, pale lilac, not veined. Calif. B. M. 6083. Gn. 50:1086.
17. fülva, Ker. (I. cùprea, Pursh). Lvs, thin, bright green, $11 / 2-2 \mathrm{ft}$. long, not exceeding the stem: stem $2-3$ tt. high, forked low down ; lower stem-lvs. 1 ft . long: pedicel produced: tube greenish yellow, 1 in . long: limb loosely expanded, bright reddish brown or coppercolored, variegated with blue and green; outer segments obovate-cuneate, emarginate; inver segments smaller, spreading. Late June. In swamps, 111. to Ga., La. and Tex. Introduced into England 1811 by Lyon. B.M. 1496. Gin. 53:1175. Min, 5:61.
18. Pseudácorus, Linn. Lrs. $11 / 2-3 \mathrm{ft}$. long, equaling the stem: stem stout, terete, $2-3$ ft., beariog several long lvs. and several clusters of fls.: limb bright yellow; outer segments broadly obovate, $2-21 / 2 \mathrm{in}$. long, yellow, with a brigbt spot and radiating brown veins on the claw; inuer segments scarcely longer than the claw of the outer, oblong. May, June. Europe, Syria and the Barbary states; naturalized in N. Y., Mass, and N. J.The plants form fine, large clumps, bearing numerous flowering stalks. Var. variegata, Hort. Lvs. striped with creamy white. Var. pallida, Hort. Fls. pale sulfuryellow.
19. versicolor, Linn. Les. slightly glaucous, $\mathbf{1}^{112}-2 \mathrm{ft}$. long: stem forked low down and often branched above, 2-3-headed: tube very short: limb violet-blue; outer segments spatulate, $2-3 \mathrm{in}$. long, variegated with yellow on the claw and reined with purple; inner segments oblanceolate, mucb smaller. British N. A. and nortbern U. S. Int. into Eng. 1732. B.M. 21. G.W.F.5. D. 89.
20. hexágona, Walt. Lrs. 2-3 ft., long: stem usually simple, 3 ft . long, $2-3$-headed, with several large Ivs., the upper ones exceeding the fls.: spathe valves sometimes leaf-like: tube 1 in . loug, green, dilated upward: limb bright lilac; outer segments 3 in. loug; blade ohovate, with a bright yellow keel on the claw; claw downy; inner segments shorter, erect; style branches very concave, green, with a central lilac band. Ky. to Tex. and Fla. B.M. 6787.
21. Caroliniàna, S. Wats. Lvs. 2-3 ft. long, bright green: stem stout, simple or branched: tube $\frac{1 / 2}{2} \mathrm{in}$. long: limb lilac, variegated with purple and brown; outer segments broadly spatulate, $21 / 2-3 \mathrm{in}$. long, with narrow claws; inner segments narrower, nearly erect. Differs from I. versicolor by its green lvs. Discovered by W.A. Manda in N. Car. G.F. 6:33̄̄.
22. setòsa, Pallas. Lvs. thin, green, 1-11/2 ft. long : stem deeply forked, much exceeding the lvs.: tube $1 / 4 \mathrm{in}$. long: limb bright lilac; outer segments $2-2 \frac{1}{2} \mathrm{in}$. long; blade 1 in. broad, suddenly narrowed at the claw, copiously veined; inner segments very small, $1 / 2 \mathrm{in}$., cuneate, large-cuspidate; style brancbes large, crested. E. Siberia, Japan, and northwestern Amer. B.M. 2326. Gt. 322.
23. Gueldenstcedtiàna, Lepech. Lvs. pale green, 1-11/2 ft . loog: stem stout, terete, $1 \frac{1}{2}-2 \mathrm{ft}$. long, often bearing 1-2 spicate clusters below the end one: limb pale yellow; outer segments with an orbicular blade $1 / 2-3 / 4$ in. broad, shorter than the claw, wbich has a bright yellow keel and faint lilac veins; inner segments shorter, erect. Asia.-Var. Sogdiana, Baker. A rariety with gray-lilac flowers.
24. aùrea, Liudl. Lvs. scarcely glaucons, 11/2-2 ft. long: stem $3-3 \frac{1}{2} \mathrm{ft}$, long, stout, terete, witb $1-2$ sessile clusters below the end one: spatbes $2-3$-fld.: pedicel long: limb bright yellow; outer segments with an oblong blade 1 in . broad, as loug as the claw; inner segments less than $1 / 2$ in. broad. July. West Himalayas. B.R. $33: 59$. Gn. $31: 579$,-Int. by Dr. Royle. This species has brighter yellow fls. than the others of this group (18-21).
25. Monnièri, DC. Les, slightly glaucous, $2-3 \mathrm{ft}$. loug: stem stout, terete, 3-4 ft. long, with several sessile clus-
ters of fls.: limb $2 \frac{1}{2}-3 \frac{1}{2}$ in. long, lemon-yellow, without veins; blade of outer segments orbicular, 1-1 $1 / 2 \mathrm{in}$. long, equaling the claw; inner segments oblong-unguiculate, 1 iv. broad. Rhodes and Crete. Discovered and int. by Sieber, 1821. Not showy except in masses. This and I. orientalis are perhaps varieties of I. spuria.

1173. Habit sketch of Iris orientalis $(\times 1-20)$. No. 26 .
26. orientalis, Miller (I. ochroleüca, Linn. I. gigantèa, Carr.). Fig. 1173. Plants growing in strong clumps: lvs. 2-3 ft. long, slightly glaucous: stem 3-4 ft., stout, terete, with $2-3$ spicate clusters of fls.: outer segments obovate, 1 in . broad, as long as the claw, yellow. paler or white toward the margin; inner segments oblong, 1 in . broad, lemon-yellow to whitish. Asia Minor and Syria. B.M. 61. Gn. $20: 301 ; 38: 779 ; 46$, p. 362 and 50 , p. 186. R.H. 1875, p. 357. - One of the largest of the Irises. Grows in almost any situation. White forms of this plant are in cultivation.
27. fcetidissima, Linn. Gladwin, Lys. 1-1 $1 / 2 \mathrm{ft}$. long: stem compressed, $2-3 \mathrm{ft}$. long, $2-3$-headed: tube $1 / 2 \mathrm{in}$. long: limb bright lilac; outer segments $11 / 2-2 \mathrm{in}$. long, with a suborbicular blade equaling the claw; inner segments shorter, oblanceolate. Central and S. Eu., Eng., Afghanistan and Algeria. Gn. 47, p. 30.-This plant is very distinct, and is easily recognized by the odor of the broken lvs. The capsules remain on the plants in winter, bursting open and displaying rows of orange-red berries. The fls, are rather inconspicuous. There is a whitish variety with brown veins, and a variety witb white-striped Ivs.
28. lævigàta, Fisch. \& Mey. (I. Kómpferi, Sieb.). Japanese Ikis. Fig. 1174. Lis. thin, ensiform, 1-11/2 ft . long: stem much overtopping the 1vs., obscurely angled, $1-3$-headed : pedicel $1 / 2-2 \mathrm{in}$. long: tube short: limb blue, violet, etc., sometimes white, spreading, 3-5 in. across; outer segments broadly ovate-oblong, obtuse, with a yellow spot on the claw ; claw short, distinct ; inner segments oblanceolate, erect, conniving or spreading: style branches with bifid, incurved lobes. E. Siberia and Japan. Int. by Von Siebold, and flowered at Gheut in 1857. B.M. 6132. I.H. 5:157. F.S. 20:2073-74; $23: 2431-36$. Gt. 442 . Gn. $9: 21 ; 16: 195 ; 21: 341$; 55. p. 105. R.H. 1890 , p. 188 . G.C. 1II. $13: 165,169 ; 14: 501$. A.G. 19:596. Gng. 1:256; 5:163; 6:339; 7:145. J.H.111. 28:205. F.E. 10:777. F.M. 1874:137; 1880:403.
29. Trojàna, Kerner. Lvs. very acute, glaucescent: stem over 3 ft . high, much branched and overtopping the lvs.: pedicel none: ds. brigbt violet-puiple; outer segments obovate; blade longer than the claw ; claw white, bordered with yellow and veined with brown-purple; inner segments elliptic, suddenly narrowed to a claw: style crests broad, denticulate. Troad, Asia Minor.
30. spuria, Linn. Lrs. firm, linear, glaucescent, 1 ft . long: stem overtopping the lvs., bearing 1-3 spicate beads: pedicel sborter than the spathe: tube $1 / 2-3 / 4$ in. long: limb bright lilac; outer segments with an orbicular, spreading blade $\frac{15}{2} \mathrm{in}$. broad and half as long as the claw; claws broad, concave, lilac, with a yellow

IRIS

keel and purple veins; inner segments shorter, straight, oblauceolate: style crests small. Central and S. Europe. B. M. 58 .

Var. nòtha, Bieb. (I. halophilla, Ker.). More robust: 1vs. 1 in . broad: spathes larger: stem $2-3 \mathrm{ft}$. high. Caucasns to Kashmir. 1ut. 1780 by Peter Pallas. B.M. 875. - Hardy.

SLBOENUS PARDANTHOPSIS.

31. vérna, Linn. Dwarf, 6 in . high: rhizome widecreeping: sheaths not splitting into tibers: lvs. linear, slightly glaucons, 3-8 in. long: stem searcely any, 1 headed: tube slender, $11 / 2 \mathrm{in}$. long: limb deep violet; outer segments $11 / 2 \mathrm{in}$. long, obovate, narrowed into a slender yellow, slightly pubescent claw; inner segments erect, smaller, violet. Shade, Obio, Ky., Va. and south. L.B.C. 19:1855.

SUBGENES EVANSIA.

A. Stem very short.
32. cristata

AA. Stem equaling or exceeding the lvs.
B. Pedicels much shorter than the spathe33. tectorum
BB. Pedicels as long as the spathe, and articulate ut the apex.................34. Milesii
35. Japonica
32. cristata, Ait. Plant dwarf: rhizome slender, ereeping: Ivs, ensiform, thin, $4-8 \mathrm{in}$. long, green: stem $1-3$ in. high, flattened, 1 -headed, bearing $2-3$ lvs.: tube slender, $11 / 2-2 \mathrm{in}$. long: limb blue; outer segments obovate, $1-1 \frac{1}{2} \mathrm{in}$. long, erested; inner segments shorter, naked. Apr., May. Mts. Ky., Va, and Carolinas. B.M. 412. Gin. 45, p. 127. L.B.C. 14:1366.
33. tectorum, Maxim. Fig. 1175. LFs. 1 ft .10 g , ensiform, strongly ribbed: stem $11 / 2 \mathrm{ft}$., subterete; heads on long

1174. Japanese Iris $(\times 1 / 2)$.

Iris lovigata, better known as I. Kempferi. No. 28 .
peduncles: tube 1 in . long: limb bright lilac; outer segments 2 in . long, obovate; claw half as long as the blade, streaked with violet, with a wavy edge and a large, laciniate, white and lilac crest running up the claw and balf up the blade: inner segments spreading, nearly as
large, plain lilac, short-clawed. Sent to Eu, in 1872 by Dr. Hance. Cult, in China and Japan. B.M1. 6118. F.S. $22: 2282$. Gt. 716. Gin. 50:1086.
34. Milesii, Baker. Lvs. $7-8$ on the stem, 2-3 ft. long and 2-3 in. broad: stem 2-3 ft . bigh, branched, bearing 4-5 heads: tis. bright lilac, lasting only a day; outer segments oblong - cuneate, claret-purple, whitisb in the center, spotted and veined with lilac, furnished with a deeply laciniated yellow crest; inner segments oblong, spreading; style crests deeply toothed. Near 1. tectorum, but inferior. Hima. layas. B.M. 6889.
35. Japónica, Thunb. (I. Chinénsis, Curt. I, fimbriùta, Vent.). Fig. 1176. Les. ensiform, $1-1 \frac{1}{2} \mathrm{ft}$, long: stem slender, as long as the Ivs., with a raceme of lilac fls, : tube $3 / 4$ in. long: outer segments $1-1 \frac{1}{2}$ in. long, with crimped margins, yellow on the claw, crested; inner segments smaller. Winter. Japan and China. B. M1. 373. Git. 511. Gn. 28:503. J. H. 111. $31: 185$. A. G. 12:704. F. R. 2:149.An evergreen greenhouse plant.

1175. Iris tectorum ($\times 1 / 4$).

No. 3 :

SCBGENUS PSEUDEVANSIA.

36. Alberti, Regel. Lrs, ensiform, glaucous, $11 / 2-2 \mathrm{ft}$. long: stem exceeding the lvs., bearing $5-6$ heads in a loose panicle; outer segments obovate cuneate, 2 in. long, bright lilac, with a rudimentary crest and a dense beard of white, yellow-tipped hairs, veined; inner segments as long and broader tban the outer, with convolute claws, lilac. Discovered in Turkestan by Dr. Albert Regel. Git. 999. B.M. 7020.

STBGENERA POGONIRIS AND REGELIA.

A. Diarf: les. generally less than $9 \mathrm{in} . l o n g$.
B. Pedicel absolete, or very short. C. Perianth tube 2 in. or more
in length.

38. pseudo-pumila
c. Perianth tube 1 in . or less in length.
D. Stem $6 i n$. or more in length.
E. Fls. ilue, purple, riolet. etc. F. Spathe ralves green or nearly so.
G. Le's. linear.....39. gracilis

GG. Lrs. ensiform... 40. Balkana F. Spathe vatres entirely seariose ...42. Cengialti
EE. Fls. yellow43. virescens
DD. stem 2 in. or less in
length.
E. Fis. blue41. biflora

EE. Fls. yellow...........45. Chamæiris
Bb. Pedicel as long as the ovary.
c. Sheaths not splitting into
fibers46. arenaria
c. Sheaths splitting into fibers.47. flavissima

AA. Tall: les. generally more than
1 ft . long.
B. Stem 2-6-headed.
c. Fls. yellow48. variegata
49. flavescens
cc. F'ls. blue, violet, etc., or white.
D. Stem short, scarcely overtopping the les........50. aphylla 51. lurida
52. Benacensis
53. Kochii

DD. Stem tall, much overtopping the les.
E. Spathe values scari-
ous.................... 54. Florentina
55. pallida
56. plicata
57. Swertii

EE. Spathe values green, or scarious only on the upper portion. F. Spathe valves tinged with purple.................58, neglecta 59. hybrida 60. Germanica

FF. Spathe valves not tinged with purple.
61. squalens 62. sambucina
63. Biliotti
64. Cypriana

BB. Stem 1-headed.
C. Spathe valves entirely scarious at the flowering time.65, atroviolacsa
cc. Spathe ralees green.

$$
\begin{aligned}
& \text { D. Lus. thin, linear.66. Suwarowi } \\
& \text { DD. Lvs. ensiform 67. 68. Korolkowi }
\end{aligned}
$$

37. pùmila, Linn. (I, grìcilis, E. Berg.). Fig. 1177. Lvs. linear, $2-1 \mathrm{in}$. long: stem none or very short, 1 headed: spathe valves scariose at the tip: fls. fugitive, yellow, or bright or dark lilac: limb 2 in. long. A dwarf, hardy plant, spreading rapidly in borders. B.M. 9. L. B.C. 16:1574.-Var, alba, Hort, pure white. Var. atroviolàcea, Hort., velvet-purple. Var. azurrea, Hort., azureblue.
38. pseudo-pùmila, Tineo (I. Penormitàna,Tod.). Lvs. ensiform, glaucescent, 6-9 in. long, narrowed suddenly to an oblique tip, I-headed, 6-8 in. long, 1-fl.: tube $2-21 / 2 \mathrm{in}$. long: spathe ralves green: fls, varying from yellow to bright lilac; outer segments oblong unguiculate, $2-21 / 2 \mathrm{in}$. long; inner segments rather broader. Mts., Sicily.
39. gracilis, Maxim. Tufted Ivs. grass-like, sborter than the stem: stem I ft. long, 1-headed: fls. pale lilac; outer segments obovate-oblong, with a yellow beard; inner segmeuts oblong-emarginate, with a short claw. Western China.
40. Balkana, Janka. Rhizome stout: tufts erowded: Ivs. ensiform, glaucescent, 3-4 in. long: stem 6-9 in. long, I-headed: spathes $1-2$-fld.: fls. dark elaret-lilae; outer segments obovate-cuneate, 2-3 in. long; beard dense, white, tipped with lilac; inner segments erect, oblong. Early May. Balkans.
41. biflòra, Linn. (I. fràgrans, Salisb. I. mudicaùlis, Hook.). Lvs. 6-9 in. long : stem 2-10 in. long, compressed: fls. bright riolet-purple; outer segments obo-Fate-cuneate, $2-21 / 2$ in. long, with dark veins and a beard of long, yellow hairs. Portugal and N. Moroceo. B.M. 5806 .
42. Cengialti, Ambrosi. Resembles I. pallida, of which it is probably merely a dwarf variety: Ivs. 6 in. long: stem about as long as the Ivs.: fls. Irright lilac; outer segments with a white beard. May, June. Lombardy and S. Tyrol.-Often spelled I. Ciengialti.
43. viréscens, DC. Lrs. 8-9 in. long : stem 9-12 in. long, bearing $2-3$ reduced IFs.: outer segments obovatecumeate, $2-21 / 2$ in. long, 1 in. broad, greenish yellow, reined at the claw with purple; inner segments obovate, dull yellow. April. Valais.
44. lutéscens, Lam. Lvs, 6-9 in. long: stem equaling the lvs.: fls. pale yellow ; outer segments obovateeuneate, $2-21 / 2 \mathrm{in}$. long, pale yellow, streaked with pale brown, undulate; inner segments broader, suddenly
narrowed to a claw, which is streaked with purple, crenulate. S. France, B.M. 2861.-Var. Statellæ, Tod. Spathe valves shorter, less pointed, and more scariose: segments broader. Sicily. B.M. 6894.
45. Chamælris, Bertol. (I. Olbiénsis, Henon). Lvs. $3-4$ in. long. $1 / 2$ in. broad: stem very short: fls. bright yellow; outer segments obovate-cuneate, tinged and veined with brown; inner segments oblong. May. Italy, France. - Var. Itálica, Parl. Fls, dark violet.
46. arendria, Waldst. Lrs. few in a tuft, linear, 3-1 in. long: stem short: limb bright jellow: outer segments oblong-cnneate, $11 / 4 \mathrm{in}$. long, $1 / 2 \mathrm{in}$. broad; inner segments smaller: very distinct. Rare in cult., but good for dry soils.-Hardy. Var. minor, Hort. Smaller. B.R. 7:549.
47. flavissima, Pallas. Lvs, thin, linear, 4-8 in. long: stem 1-6 in. long: limb bright yellow: outer segments $1-1 / 2 \mathrm{in}$. long, $3 / 4 \mathrm{in}$. broad: inner segments oblong, narrower. - Var. Bloudovii, Led. (I. Bloudдvii, Hort. More robust, with broader ifs., a larger stem and larger fls. Siberia and Mongolia.

48. Iris Japonica. A crested flower $(\times 1 / 6)$, No. 35.
49. variegàta, Linn. Livs, $1-1 \frac{1}{2} \mathrm{ft}$. long: stem equaling the lvs,: outer segments oblong-cuneate, claretbrown toward the tip, much veined with brown on a yellow ground; beard bright yellow; inner segments erect, oblong, bright jellow, veined Austria, Turkey and S.

Russia. Long in cult. B.M. 16. Gn. 14:135; 521143 (var. atrea). Var. honoréhilis, Hort. Yellow, shaded with brown.
49. flavéscens, DC. Lvs. 12-15 in. long: stem 2-3 ft. high: Hs. bright lemon-yellow; outer segments obovatecuneate, $21 / 2 \mathrm{in}$. long; beard deep yellow; inner segments obovate, pale yellow. Bosnia to Caucasus and Armenia. B.R. $31: 35$ (as I. imbrieata).
50. aphylla, Linn. (I. fureàta, Bieb. I. Bohèmica, F. W. schmidt. I. Hungàrica, Waldst. I. faledła, Tausch.). Lvs. glaucescent, 6-12 in. long: stem equaling the lvs., sometimes forked low down, leafless: spathe valres greenish: fls. dark lilac; outer segments obovatecuneate, $2-21 / 2 \mathrm{in}$. long; heard white; inner segments broader, obovate. E. Eu. B.M. 2361. B.R. 10:801. L.B.C. 20:1970. - Nos. 50 to 53 cannot be easily separated from each other by the material available. They are distinguisbed by slight differences in the lvs., spathe valves, beard, and form of the segments, as described in the text.
51. lùrids, Ait. Lovs. 1 ft . long, slightly glaucous: stem not much overtopping the 1rs., 3-1-headed: spathe valves green, very ventricose: outer segments obovatecuneate, reflexed from half-way down, dead purple at the top, veined with dull purple on a yellowish ground below; beard yellow; ianer segments broader, dull purple. Southeastera Eu B.M. 986.
52. Benacénsis, Kerner. Lrs, 1 ft . long: stem about as long as the Ivs., 3 -headed: spathe valves lanceolate, berbaceous, tinged with purple, scarious at the tip: outer segments obovate, dark violet, veined with brownviolet; beard yellowish white; inner segments oblong, clawed, bright violet. Limestone rocks, S. Tyrol.
53. Kòchii, Kerner. Lvs. 12-15 in. long, glaucescent : stem as long as the Ivs., 3-4-headed: spathe valves lanceolate, the outer herbaceous: outer segments obovate, dark violet; claw veined with brown; beard yellow; inner segments obovate, clawed, dark violet. 1stria, near Trieste and Rovigno.

1177. Iris pumila $(\times 1 / a)$. One of the best dwarf species.
54. Florentina, Linn. Rhizome fragrant when dried (orris-root): lvs, 1-11/6 ft. long: stem exceeding the Irs. fls. white; outer segments $31 / 2$ in. long, tinged with lavender; claw yellowish reined with purple; inner segments as large, white. Cent. and S. Eu. B.M. 671. Gn. 16:190 and 51, p. 295. -Flowers early, with I.Germanica. Hardy. Var. albicans, Lange. Pure white. Spain to Cyprus. Var. alba, Hort. Pure white.
55. pálida, Lam. (I. Junònia, Schott \& Klotschy. I. Asiática, Stapf. I. sicula. Tod.). Lers. 1^{1} /ft. long: stem much exceeding the lvs., $2-3 \mathrm{ft}$. high: fls. fragrant, violet, rarely white; outer segments obovate-cuneate, $31 / 2 \mathrm{in}$. long; inner segments orbicular. Differs from I. Germanica by its scented fls., which appear a month
later. B.M. 685. Gn. 14:85; 33:631; 50, p. 119. G.M. 38:441. - Var. spsciosa, Hort. Tall, with large, light blue towers.
56. plicàta, Lam. (I. aphýlla, var. plicàta, Ker.). Rhizome, stem andlrs. as in I. pallida: outer segments obovate, pure white in the center, conspicuously veined with lilac towards the margin and on the claw; inner segments very plicate, white tinged with lilac on the margin. B.MI. $870 .-$ Known only a cult. Probably derived from I. pallida.
57. Swértii, Lam. (I. aphýlla, var. Swértii, Ker.). Much dwarfer than I. Florentina and I, pallida. Stem $1-11 / 2 \mathrm{ft}$. long: spathe valves flushed with violet: outer segments $2-21 / 2 \mathrm{in}$. long, obovate-cuneate, white, faintly veined and flushed with purple on the margin; inner segments as large, much crisped, pure white, except the purple keel and margin. Fls. May and June, long before 1. pallida. - Fragrant. Known only in cult.

The following seven species (58-64) are closely related, the distinctions between them being mainly tbose of degree. Some of them are known only in cultivation, and are no doubt derived forms; all are connected by numerous intermediate garden forms:
58. neglécta, Horn. Lvs. slightly glaucous, 12-15 in. long, ensiform, purple at the base: stem taller, $11 / 2-$ 2 ft ., many-lld.: spathe valves green below at the flowering time, much tinged with purple: outer segments obovate-cuneate, very obtuse, 2 in. long, violet-blue on the margin, whitish veined with blue in the center; beard yellow; inner segments erect or connivent, oblong, as large as the outer, pale lilac. June. B.M. 2435. -Known only in cult.
59. hybrida, Retz. (I. amiena, DC.). Differs from I. neglecta by its longer spathe valves, and its pure white or faintly lilac-tinted outer segments and style branches. June. - Known only in cult.
60. Germánica, Linn. Fig. 1178. Lvs, 1-11/2 ft. long: stem $2-3 \mathrm{ft}$, high : spathe valves tinged with purple: outer segments obovate-cuneate, $2-3$ in. long; beard yellow; inner segments as large, obovate, connivent. Central and S.Eu. Early May, June. B.M.670. B.R. 10:818. 1.H. 40:182 (var. Gypsea, pure white). Gn. 48:1033 (dark purple var.). - Var. reticulàta subérha, Hort. Outer segments purple, veined; inner segments lavender.
61. squàlens, Linn. Lvs. glaucous, $1-11 / 2 \mathrm{ft}$. long: stem $2-3 \mathrm{ft}$. high : spathe valves subscarious: outer segments obovate-cuneate, upper part plain lilac-purple; claw yellow, veined with lilac; beard yellow; inner segments as large, obovate, dull lilac and yellow, or brownish and yellow. Central Eu, to Caucasus. B.M. 787. - Many of the German Irises of cultivators belong to this form. Var. Jacquesianna, Hort. Outer segments dark red-violet, yellow at base; inner segments tawny yellow. Late. One of the best.
62. sambucina, Linn. Differs from I. squalens by its less robust habit, narrower segments and elder-like odor. The outer segments are colored and veined with claret, not lilac, purple; inner segments emarginate. Late May. Central Eu. B.M. 187.-Tall and handsome.
63. Biliotti, Fost. LVs. darker green, more distinctly striated, and more rigid than in I. Germanica: stem several-header, $21 / 2-3 \mathrm{ft}$. long: spathe valves ventricose: outer segments obovate cuneate, reddish purple, with many dark veins; beard white, tipped with yellow; inner segments orbicular unguiculate, 2 in . broad, bright blue-purple. Late June. Trebizond.-Very near I. Ger. manica.
64. Cypriana, Foster \& Baker, Plants tall, the branching stem being 3 ft . high, bearing many fls, 6-7 in. in diameter: outer segments obovate cuneate, reddish lilac, with thin, darker veins; claw whitish, with greenish hrown veins; inner segments oblong-unguiculate, lilac, spotted with reddish brown on the claw. June, July. Cyprus.-Very near I. pallida, from which it differs only by the longer naricular spathe valves, which are not entirely scariose at the flowering time, and the more obovate segments.
65. atroviolàcea, Lange. Liss, Fery claucous, 1 ft . long: stem equaling the lvs.: spathe entirely scariose : fls. dark violet, very fragrant; outer segments obovate-
cuneate, 3 in . long; beard white, tipped with yellow; inner segments as long, 2 in. broad, orbicular. Late May. - Known only in cult. Probably a hybrid between 1. Chamairis and I. pallida.
66. Suwardwi, Regel (I. linedta, Foster). Lvs. thin, linear, 1 ft . long, pale green : stem 1 ft . high, bearing 2-3 reduced lvs. and a single head of fls.; onter segments oblong-cuneate, $1 / 2 \mathrm{in}$, broad, 2 in . long, closely veined with oblique lines of claret-purple on a greenish yellow ground; beard blue; inner segments oblong, with a long claw, often faintly bearded, reined and tinted on the margins with claret-purple. B.M. 7029.
67. Leichtlini, Regel (I. vidga, Foster). Rhizome slender, wide-creeping: lvs. in tufts, not contiguous, ensiform, $1-1 \frac{1}{2} \mathrm{ft}$. long, scarcely glaucous: stem $11 / 2 \mathrm{ft}$. long, 1-headed, bearing 2-3 fls. and 2 reduced lvs. : outer segments $2-2 \frac{1}{2} \mathrm{in}$. long, oblong-cuneate, bright liiac, with a whitish beard; inner segments oblong, as broad as the outer, claw also bearded. Turkestan. Gn. 52:1136. - Var. vìga, Hort., has larger flowers.
68. Korolkdwi, Regel. Rhizome short-creeping: lvs. glaucous, 1 ft . long: stem 1 ft . long: limb $21 / 2-3 \mathrm{in}$. long, milk-white, veined with red-brown in the type: outer segments oblong, 1 in . broad, with a brown beard and a brown patch in the tbroat; inner segments as large, erect. May. Turkestan. B. M. 7025. Gin. 28:517. G.C. I1I. 4:37.-Very hardy. One of the eariiest. Variously colored lilac, etc., in cult. Var. cóncolor, Hort. Purplish lilac, veined darker. Var. Leichtliniàna, Hort. Creamy white, with brownish veins. Var. violacea, Hort. Violet, wlth dark veins.

SUBGENUS ONCOCYCLUS,

A. Outer segments ligulate, much reduced 69. paradoxa

AA. Outer segments not much smaller
than the inner.
B. Les. pale green.
c. Less. ensiform. 75. atrofuszz
ce. Lus. linear.......................70. Sarii
71. Mariæ

BB. Lis. glaucous.
c. Les, ensiform.7. Bismarckiana 73. Lortetii 74. atropurpurea
CC. Les. linear. D. Stem very short or none..76. Iberica DD. Stem over 6 in. long......77. Susiana
78. Gatesii 79. Nazarena 80. lupina
69. paradóxa, Stev. Plants dwarf: lvs, linear, 3-6 in. long : stem 2-6 in, bigh: fl. large; outer segments reduced to a mere claw, dark, covered with a dense pile; inner segments 2 in . long, orbicular, lilac to white. Mlts., Georgia and N. Persia. B.M. 7081. Gn. 32:628; 46, p.173. Gt. 386. - A flower with singular combinations of color. Grows in dry situations, but requires shelter in winter. Long cult., but not common.
70. Sarii, Schott. Rbizome short, stout: Ivs. about 6 in. long, finally 1 ft ., linear-complicate : stem 3-6 in. long, with 2 reduced lanceolate lvs.: pedicel very short: tube 1 in . long: fls. bright lilac, large as in I, susiant: outer segments obovate-cuneate, $11 / 2-2$ in. broad, reflexed from half way down; inner segments oblong, with a short claw. Very near I. Iberica, from which it differs chiefly by its bright lilac fls. Asia Minor. Var. lùrida, Boiss. Outer segments with many brown-black spots and lines on a pale brownish ground. B.M. 6960.
71. Màriæ, Barbey (1. Hélenue, Barbey). Lvs. very falcate, 3-4 in. long: stem 3-6 in. long, with 2-4 short lvs.: limb pale lilac, with fine red-brown veins: outer segments orbicular, $21 / 2 \mathrm{in}$. long, with a dark purple patch at the throat; inner segments larger, more rounded. Desert between Egypt and Palestine. Discovered 1880. Gt. 42, p. 488; Supp. Pl. J.H. III. 28:302. G.M. 37:215.
72. Bismarckiana, Hort. Damman. Habit of I. Susiana, and fls. as large: lvs. 8 in . long: stem 1 ft . high: outer segments orbienlar, ash-gray, with darker veins
and a dark spot at the base; inner segments sky-blue, with blackish veins. Lebanon. G.M. 40:250.
73. Lortétii, Barbey. Lvs. less than 1 ft . long: stem short: limb 4 in. long: outer segments obovate, 3 in. broad, whitish, finely veined and spotted with red-

1178. Iris Germanica ($\times 1 / 3$).

Typical of many species in which the beard is confined to the midrib.
brown, with a dark spot at the throat: inner segments orbicular, connivent, pale gray, with red-brown veins. -Quite bardy N. B.M. 7251. Gn. 43:897; 48, p. 337. Git. 42, p. 490 . G.C. III. 12:153. G.M. $36: 386 ; 40: 250$.
74. atropurpurea, Baker. Lvs. 6 in. long: stem 4-5 in.: outer segments oblong, 2 in. long, purplish black, without veins, with a yellow patch on the throat and a beard of yellow, black-tipped hairs; inner segments larger, of the same color, with discernable veins: style crests small. Easily distinguished by its rather small, uniformly colored fowers. Gt. 42, p. 489. Pl. Supp.
75. Var. atrofusca, Baker (I, atrofísca, Baker). Lvs, pale green, 1 ft . long: stem 1 ft . long, bidden by the sheathing innerlss.: limb dark purple-brown; outer segments obovate, 3 in . long, with a dark spot on the
throat; inner segments larger and broader: style branches very convex; crests large. B.M. 7379, Gn. 48, p. 8; 50:1089 and p. 333.
76. Ibèrica, Hoffm. Dwarf, with a large flower: Ivs. $3-6 \mathrm{in}$. long, narrow, very falcate: stem 3-4 in. long: outer segments rounded-obovate, 2 in. broad, pale brown, closely veined and blotched with purple-brown and with a shining dark patch on

1179. Type of Oncocyclus IrisIris Susiana ($\times 1 / 3$).
Type of diffusely bearded flower. the throat; inner segments connivent, pure white, faintly veined. with a few wine-red spots at base. Cancasus and mountains of Armenia and Persia. B.M. 5847. Gt. 386 and 723. F.S. 19:1963. R.H, 1873: 370. Gn. 10:49. 1.H. 19: 106. G.C. II. 11:693. F. 1873:25. F. M. 1875: 168. -Hardy.

77. Susiàna, Linu.

 Mourning Irts. Fig. 1179. Lis. very glaucous, 6-9 in. long, nearly I in. broad: outer segments obovate, 3 in . long, brownish purple, veined and spotted with blackbrown, with a brown beard; inner segments brownish white, spotted with violet - brown and hlack. Asia Minor and Persia. B. M. 91. F. S. 11:1087, 10s8. R.II. 1859. p. 322, 323. Gn. 32, p. 193 and 39:800. - The best known of this group. said to have heen introduced from Constantinople in 1753. Name from a city in Persia. Not entirely hardy North, but a good potplant. Var. major, Hort. Bluish, tinted brown.78. Gàtesii. Foster. Habit and foliage of I. susiana: outer seg. ments orbicular, 3 in. broad, cream-white, sometimes sky-blue, covered with a network of fine veins, giving them a light gray tint; inner segments larger, pale purple or yellow. Dry regions, Armenia, (in. 43: 897 , and 52, pp. 88 and 279. G.C. 111. 8:17. A.G. 13:60,-The largest-fld. of its subgenus. Fls, about twice as large as in I. Susiana. Quite hardy.
79. Nazarèna, Hort. (I, Sarii, var. Vazarèna, Font.). Foliage and stem of I. Susianu, and fis, as large: outer segments obovate, straw-colored, netted with red and brown veins and blotched with a patch of black-crimson near the claw; beard dark purple, with a bare streak running down the claw; inner segments cream-white, with thin blue veins. Palestine. - Foster described this plant without definitely determining its systematic position. It is related to I. Surii and to I. Bismarekiana, and differs from the other members of this section by its long, ereeping, stoloniferous rhizome. See Gin. 43, p. 133. I.H. 42, p. 78. Gt. 42, p. 487 and supp. pl.
80. Juplna, Foster. Livs. I ft. long: stem 6 in. high, with $21 v s$, and 1 fl .: outer segments obovate-cuneate, yellowish green, with red-brown veins and a relvety dark brown patch on the throat; elaw with a yellowish beard: inner segments orbicular, with a short claw, colored like the outer; style erests large, toothed. Turkish Armenia, where it is called "Wolf's Ear," hence the specific name. Gn. $43: 897$ and 54 , p. 59.

SUBGENUS XIPHION.

A. Stem 1 ft . or more in length.
B. Tube obsolete.

$$
\begin{aligned}
& \text { c. Lrs. subterete81. Xiphium } \\
& \text { cc. Les. linear complicate...82. xiphioides }
\end{aligned}
$$ BB. Tube more or less developed.

c. Les. linear complicate83. Tingitana
Cc. Les, slender, terete or subterete.
D. Pedicel $11 / 2 \mathrm{in}$. long ... 84. filifolia

DD. Pedicel short. 85 . juncea
86. Boissieri

As. Stem very short or none.
B, Les, acutely quadrangular.
very short at the flowering time.
87. reticulata

BB. Lvs. acutely quadrangular, much overtopping the /7...88. Histrio
89. Vartani
bab. Les.terete orlinear subterete.
c. Bulb turics composed of
parallel fibers..........90. Bakeriana
ce, Bulb tunics reticulated...9I. Kolpakowskiana
81. Xiphium, Linn. (I. Hispanica, Hort. I. spectabilis, Spach). Spanish lris. Fig. Il80. Lvs, about 1 ft . long: stem 1-2 ft. high: pedicel long: tube obsolete: outer segments $2-21 / 2 \mathrm{in}$. long, violet-purple, yellow in the center; inner segments as long, but narrower. Late June. Spain and N. Afr. B.M. 686. Gn. $20: 308$ and 30, p. 385. - Long cult. and well known. Hardy in N. J. in protected situations. Var. Lusitánica, Ker. (I. Lusitrinica, Hort.). Fls. yellow. B.M. 679.

1180. Iris Xiphium ($\times 1 / 4$). Type of bulbous Iris.
82. xiphioldes, Ehrh. (I. Ánglica, Hort.). English lris. Lvs. about 1 ft .: stem 1-2 ft.: fls. dark violetpurple in the typical form: outer segments orbicular, yellow in the center; inuer segments shorter, oblong. French and Spanish Pyrenees. B.M. 687. Gn. 30, p. 384; 3I:586.
83. Tingitàna, Boiss. \& Reut. Stem stout, I-2. headed, about 2 ft . high, bidden by the sheathing bases of the stout, falcate lys., of which there are 6-7 on the stem, the lower about 1 ft , long: fls. 2-3 in a cluster; outer seginents 3 in . long, with an obovate, reflexed blade, pale lilac, yellow in the center, and with a bright yellow keel down the claw; inner segments shorter, oblanceolate, erect, incurved. Tangiers. B.M. 6775. Gn. 36:720. G.M. 40:377.
84. filifolia, Boiss., not Bunge (Xiphion fitifolium, Klatt.). Slender and leafy, about 2 ft . bigh, bearing 1-2 bright violet-purple fls. $2-21 / 2 \mathrm{in}$. in diameter: 1 vs . about twice as long as the stem, weak, flexuous, convolute: outer segments with a narrow claw expanding suddenly into a reflexed, suborbicular lamina, bright yellow down the center; inner segments erect, obovate-lanceolate, erose, notched. S. Spaiu. B.M. 5928. - Int. 1869. Hardy.
85. júncea, Desf. (Xiphion júncerm, Klatt.). Stem slender, erect, rigid, $9-18 \mathrm{in}$. high, bearing 1 (rarely 2) golden yellow flowers, $2-3$ in. in diam,: Ivs, rigid, the lower 1 ft . long: outer segments with an orbicular blade shorter than the cuneate claw, recurved and veined with brown; inner segments ereet, oblanceolate. May, June. Algeria, Tunis, etc. B.M. 5890 . Gn. 54:1200.
86. Boissièri, Henriq. Les. 1 ft . long: stem about a foot long, bearing few, reduced lanceolate lvs. and a single flower: outer segments $11 / 2$ in. long; blade obovate, reflexed, as long as the cuneate claw, bright lilac, with a yellow keel running down the claw, slightly bearded; inner segments as long as the outer, erect, ohovate, clawed, bright lilac. June. S. Portugal. B. M. 7097.
87. reticulàta, M. Bieb. Lvs, 2 in a tuft, short, erect, elongating to $11 / 2 \mathrm{ft}$.: stem very short: fls, bright purple, very fragrant; outer segments 2 in. long, yellow at the claw, with a low yellow crest; inner segments narrower. Nid-April. Asia Minor and Persia. B.M. 5577. F. S. 5, pp. 507-9. R. H. 1890, p. 133. L. B. C. 19:1829. Gi. 779. Gn. 20:295; 54, p. 471. G.C. 11. 11:501; 21:217. F. 1860:161. Var. histrioldes, Foster (I. histrioldes, Hort.). Outer segments much mottled with white and litac on the claw and broad, orbicular blade. A sia Minor, Persia, and the Caucas. Gn. 42:880. J.H. II1. 34:111. -Early-flowering, and fine for pots. Var. Krèlagei, Regel. Fls. red-purple, varying greatly in shade; claw conspicuously veined. The common wild form of the Caucasus. Nearly odorless. Var. corulea, Hort. Azureblue. Var. cyànea, Hort. Blue. Var. major, Hort. Like the type, but larger.
88. Hístrio, Reichb. f. (Xiphion Histrio, Hook. f.). Plants tufted, slender and flaccid: Ivs. deeply grooved on each face, 1 ft . long: stem half as bigh, very slender, 1-fld.: fls. 3 in. in diameter; tube $3-4$ in. long, blue above; outer segments obovate-spatulate, spreading, deep blue, with a yellow line in the center bordered with white and spotted and shaded with blue; inner segments erect, oblanceolate, blue. Related to I. reticulata, differing only in its paler, odorless fls., which are produced several weeks earlier. Feh. Mts. of Palestine. B. M. 6033. Gn. 9, p. 29, and 33:653. G. C. III. 12:729; 21:105.
89. Vártani, Foster. Lvs. usually 2, 8-9 in. long, slender, finally longer: stem very short, hidden: tuhe $2^{1 / 2}$ in. long: outer segments with a narrow claw, suddenly enlarged into an ovate-lanceolate blade; pale, slaty lilac, with darker veins and a crisp yellow crest down the claw; inner segments erect, almost linear-lanceolate, pale lilac. Dec. Palestine, near Nazareth. B.M. 6942.Not scented.
90. Bakeriàna, Foster. Lvs, 3-4, 6-9 in. long, finally a foot or more after flowering: fls. single, on a short peduncle, fragrant; outer segments with a long, obovateelliptical claw, and a small, ovate, reflexed blade, intense violet, creamy in the center, with a yellow streak down the claw; inner segments shorter, erect, oblanceolate, lilac ; style crests large. Feb, Mar. Armenia. B.M. 7084. Gn. 37:753. G.C. III. 7:293, and 21:103. J.H. III. 34:177. G.M. 40:118.
91. Kolpakowskiàna, Regel (Xiphion Kolpakowskid̀mum, Baker). Lvs. 5-6, wrapped round by a sheath at the base, very short at the flowering time, but growing
longer: scape very short, 1 -fld.: outer segments with a long, erect claw and an ovate, acute blade, deep violetpurple with a yellow keel down the claw; inner segments ohlanceolate, erect, pale lilac. Mts., Turkestan. Very near I. reticulata, fls. at the same time, and is sweet-scented. B.M. 6489. Gn. 17, p. 75, and 33:653.

SUBGENUS GYNANDRIRIS.

92. Sisyrinchium, Linn. (Xiphion Sisyrinchium, Baker. Moraa Sisyrinchium, Ker. I. maricoides, Regel). Stem 6-12 in. high, stout or flexuons, 1-3headed: Irs. 2, slender, as long as the stem: fls. fugitive, lilac-purple, with a yellow, oblong spot on the outer segments, which are oblong spatulate; inner segments narrow-lanceolate, erect, pale: style erests large, lancedeltoid. Widely spread through S. Eu., Afr, and Asia. Easily killed by frost. B. M. 1407 (not good), and 6096. In I. maricoides, Regel, the filaments are said to be distinct from each other and from the style.

SUBGENUS JUNO.
A. Les, holloue, tetragonous, produced after the flowers..... 93. Danfordiz
AA. Livs. linear complicate, short at the flowering time....... the flowering time......... 95. Rosenbachiana
AAA. Lis, lanceotete, very
AAAA. Lvs. lanceolate, fulcate at base; 3-9 in. long.
B. Stem 1-2-headed: inner segments pendulous. c. Le's. with a distinet white margin........ 96. Fosteriana CC. Lus.ull bright green.... 97. Sindjarensis B8. Stem 1-headed: inner seg ments spreading........ 98. Palæstina 99. alata

B8в. Stem 3-6-headed: le's. s-6 or 9 in . long. c. Lus. with a harny border..................100. Caucasica ce. Les. without a horny border.101. fumosa 102. orchioides
93. Dánfordiæ, Boiss. Fl. stems 24 in . high: lvs. finally a foot long: tls, bright yellow, $1 \frac{1}{2}$ in. in diameter; outer segments with an orbicular blade spotted with brown; claw cuneate ; inner segments reduced to minute, spreading, subulate teeth: style crests large. Spring. Cicilian Taurus. B.M. 7140.-Fragrant.
94. Pérsica, Linn. Bulb ovoid: lvs, 4-5, 2-3 in. long: stem short, 1 -headed: tube 2-3 in. long: limb pale lilac: outer segments with an orbicular blade with a dark purple bloteh, an orange keel, and purple lines and spots; claw auriculate; inner segments small. Should be lifted in summer. Asia Minor and Persia. B.M. 1. Gn. 11, p. 207; 14:156; 33:653; 54, p. 103 \& 470 . F.S. 10:1045. G.C. III. 7:577. Var. purpurea, Hort. A bright purple variety. Fine. Krelage.
95. Rosenbachiàna, Regel. Liss. 4-5, finally 6-8 in. long: stem short, 1 -3-headed: outer segments obovatecuneate; blade reflexed, white at the tip, deep purple in the middle and creamy below, with a yellow keel and dark lilac veins; inner segments spreading or reflexed, obovate, pale lilac. The color of the fls, is very variable. Mts., Turkestan. B.M. 7135. J.H. II1. 28:189. G.C. III. 7:577. G.M. 34:171.
96. Fosteriàna, Aitch. Livs. 4-6 in. long: stem short: outer segments yellow, streaked with black, obovatecuneate; claw not auriculate; inner segments shorter, obovate, bright purple. March. Afghan and Russian boundary. B.M. 7215. - Very different from the allied species I. orchioides, I. Sindjarensis, etc., on account of the difference in color of the sepals and petals.
97. Sindjarénsis, Boiss. \& Haussk. Lvs, about 8, crowded, 1 in . broad: stem short: ds. slaty lilac; outer segments with an obovate, reflexed blade narrowed to a claw, with darker lilac lines and a small yellow crestinner segments oblong, clawed. Feb. Deserts of Mes opotamia. Plants half a foot high. B.M. 7145. G.C. 111. 7:365. J.H. III. $28: 227$.
98. Palæstina, Boiss. Lvs. 3-6 in, long: stem very short: tls. pale yellow, tinged with lilac; outer segments oblong, upper $1 / 4$ reflexed; claw auriculate; inner segments minute, narrowly lanceolate. Fls. in winter. Nts. of Palestine. Very near I. C'aucasica, but distinguished by its longer acuminate spathes and the color of the fls.
99. alàta, Poir. (I. scorpioldes, Desf.). Lvs. ahout 6, plane, 6-9 in. long: stem very short: outer segments 3-4 in. long, obovate-cuneate, bright lilac, variegated with white, and having a yellow keel down the claw; inner segments obovate-unguiculate, spreading from the base of the outer: style crest large, laciniately toothed. Winter-flowering. Plants very dwarf. Spain to Sicily and Algeria. B.R. $22: 1876$. Gn. 10, p. 579 and 54, p. 102. G.M. 35:614.
100. Cancásica, Hoffm. Lvs. about 6: stem short: fls. pale or bright yellow; outer segments with an ovate blade and a very broad rhomboidal claw, with small au-

1181. Iris orchioides ($\times^{1 / 4}$).

A good species for pots.
ricles and a toothed or ciliated crest; inner segments oblanceolate, Dwarfer habit than I. orchioides. Caucasus to Asia Minor, ete.
101. fumòsa, Boiss. \& Haussk. Lvs, about 10: stem 6 in . long: outer segments spatulate-oblanceolate, recurved above the middle, claw with a yellow crest; inner segments minute, spatulate, toothed. The fls, are greenish yellow, shaded with smoky gray. Dry fields, Syria.
102. orchioldes, Carr. Fig. 1181. Lrs. about 6: stem 12-15 in. long, with distinet internodes: spathes 1 -fld., 2 in . long: fls. yellow; outer segments with an oborate blade, and a purple blotch on each side of the crest of the claw; inner segments oblanceolate, less than an incb long, and generally sharply deflexed, with a long filiform claw. Spring. Var. oculàta, Maxim. Blade of the outer seg.
ments more spotted. Var, cærulea, Hort. Fls, bright lilae, with a yellow bloteh on the blade of the outer segments. Mts., Turkestan. B.M. 7III. Gn. 53, p. 482. R.H. I880, p. 337 .

Of the following names, which are fonnd in catalogues, no complete description is available: I. Assyriaca. Bluish white, I. augustina. Deep yellow, marked with maroon. Gard. form of I.variegata $-I$. Battandieri. White. Algeria. Bulbons.-I. Bosniaca. Yellow, Rhizomatons.-1. brachysiphon. Pale blne, Rbizomatous.-I. Brittanicus. Pale pink, with the outer seg. Rhizomatous-1, Brittanicus. Pale pink, with the onter seg-
ments veined with porple. Gard. form of I. squalens.-I. Candiana. Ontersegments reddish purple; innersegments light lavender. Germanica. $-I$. Coreäna, Like I., Sibiriea, early and a free bloomer, -I. edina. Light purple and violet. Var. of I. neglecta.-I. Eggeri. Blackish brown. Oneocyclus.-1. Fisheri. Apogon-I. flava. Pale yellow. Germanica,-I. Gladstoniana, Hybrid of 1. atropurpurea. Pale black, with yellow markings.I. gracilis, Lichten =Morea tennis. See also index given above. I. ignititia, probably Ignacite, a form of I. neglecta. Lilac, with the onter segment shaded purple.-I. ligutaris. Purple. Germanica - I. monspur, Foster=1. Monnieri \times 1, spuraa. $-\boldsymbol{I}$. nigricans. Lvs, short ensiform: fis dull black to deep black. Distinet from I. atropurpurea by its nniform dark color and dwarf foliage. Oncocyelus,-I. panerea, probably pancrace.var. of I. variegata. Buff and purple. - I. pavar $=1$. paradoxa \times I. variegata.-I. Robinsoniana, F. Muell.-Morea Robinsoniana.I. Rudini, Hort. Herb. Fls. black-brown and claret. Said to be stronger and more free-flowering than the other Oncocyelus Irises,-I. Sikkimensis. Lilac. Rhizomatous,-I. stenophylla. This plant was discovered in the Cilician Taurus in 1895-6, Hanssknecht named it stenophylla without describing it. J. G Baker gives a short description in G,C. 111. 27:170. Near I. Persica. Lvs, 5-6, linear, tufted, channelled down the face, short and stiffly erect at the flowering time: fls, springing from the ground, the long tube lightly wrapped round by the lanceolate spathe valves; outer segments 2 in. long; blade reflexed, blackish blne towards the tip, with many black spots on a pale ground below it: inner segments small, horizontal: style hranches lilac. Not in American trade. G.C. III. 27:171. Gn. $57: 203 .-1$, tuberôsa. Linn. -Hermodactylus tuberosus. $-\boldsymbol{I}$. Vogeliana. Similar to I. Persiea and I. Rosenbachiana, bnt earlierflowering. Fls, variable in color, silver-gray predominating, with violet, rose or lilae markings. Var, grandiflora. LargeHowering.
The following nnmbers are not mentioned in catalogues of American dealers. They are procurable through foreign growers, and are advertised in Dutch-American catalogues: $1.4,5$, $8,29,34,38,39,40,42,51,52,53,56,58,59,62,63,64,66,67,72,80$. $83,84,85,86,88,89,90,91,92,93,95,94,97,98,99,100,101,102$.
H. Hasselbring.

IRIS-R00T, or 0RRIS-R00T. Iris Florentina.

IRONBARK. Eucalyptus.

IRONWEED. Weed.
IRONWOOD, in America, Ostrya l'irginica.
IRRIGATION. Irrigation in its broadest sense includes all problems of collecting, storing, delivering, and applying water to the land through the construction of dams, reservoirs, canals and laterals, and the application of power when necessary to deliver the water; while in a restricted horticultural sense it is a method of cultivation, having for its object to increase and regulate the water supply in the soil.
In this latter sense Irrigation is a necessary practice in the arid regions, and is advisable in the humid regions in proportion to the intensity of the cultivation aud the value of the crop grown. Thus in Florida, with an average of 60 to 70 inches of annual rainfall-usually well distributed-lrrigation has been largely introduced in the past few years for horticultural crops and even for tobacco, as an insurance against loss or damage by the occasional droughts. The first cost of a small Irrigation plant in Florida, for 20 acres or over, is said tc be approximately $\$ 100$ to $\$ 150$ per acre; the interest on which, and the necessary repairs, would amount to from $\$ 5$ to $\$ 10$ per acre per annum. This is a small expenditure to insure a crop against loss or injury where the value per acre is so great as in many horticultural lines. lrigation is needed not only to prevent the actual death of the plants, but to promote a uniform, rapid, and continuous growth, which is necessary for the development of the finest texture or flavor of the commercial crop.
King has shown that the value of a cropsared in Wisconsin, such as the strawberry, in a season when the crops generally are injured by drought, may pay all the expenses of the original cost of the Irrigation plant.

In the semi-arid regions west of the lo0th meridian, with a raiafall of from 20 to 30 inches, crops are liable to be entire failures three or four years out of five; while with an Irrigation plaut there should not be a failure one year in five. In the arid regions with less than 15 or 20 inches of rain, Irrigation is a necessity on most soils. Here the work has been highly organized and systematized, se that the cost of water delivered at the field amounts from $\$ 2$ to $\$ 5$ per acre per annum. Under skilful management the most abundant yields are secured. The most careful management is required in the application of water to prevent serious injury to the land and to avoid actual injury to the crop in rendering the plants tender and liable to disease, and in maintaining the quality and flavor, both of which are liable to depreciate unless good judgment is displayed in supplying water.
Sources of Water Supply. - The principal sources of water supply are streams, surface wells, artesian wells, and the storage of storm waters. For small irrigated tracts near cities the city water supply may often be used to advantage. In other localities the nature of the conditions will determine the most economical source from which to obtain the water. Perpetually flowing streams, if situated in such a way that water can be carried to the land by gravity, have the advantage of cheapness of construction and maintenance. On the other hand, if the stream supplies others in the community, there is liable to be trouble and expeose in establishing and maiutaining water-right claims and in securing water when needed for the crop. Questions arising out of the water rights on streams and rivers in the western states, with the various state laws, the multiplicity of court decisions on the most intricate legal questious-both in different states and different counties along the line of the stream-the absence in most states of adequate police or judicial powers vested in the Irrigation commissioner, nave led to the most perplexing and bewildering state of affairs, and haveinvolved the states and individuals in enormous costs for law suits, resulting in many cases in the apportionment of many times the volume of the stream to the settlers along its bank.

The large planter must seek some perennial and abundant supply of water, as is furnished by streams, but it is safe to say that all streams of any size in the western part of the United States are already appropriated to their fullest extent, although the water so appropriated is not all in present use. Smaller planters are much more independent with some of the other sources of supply mentioned above. Wells from 10 to 20 feet deep, with pumps operated by windmills, or wells of a maximum depth of 50 feet operated by many forms of gasoline, hot air or portable engines, attached to direct acting pumps or centrifugal pumps, form in general a very satisfactory means of irrigatiog small areas.

Over limited areas artesian wells have been very successfully used. If they are flowing wells delivering a considerable stream, they can be used over small areas without storage reservoirs, or over much larger areas with reservoirs. They should be capped in all cases, where possible, so that the flow can be stopped when not actually needed.

In many places it is possible, at a comparatively small expense, to construct a dam to collect the storm waters. The magnitude and expense of such work will depend entirely on the configuration of the surface, the area of the watershed, the volume of the water to be bandled as well as the nature of the soil, and the material out of which the dam is to be constructed.

Methods of Raising Water.-Various methods are used for raising water from streams, wells, or storage reservoirs which may lie below the general level of the land to be irrigated. Hydraulic rams are sometimes used for small areas, but these are not economical when a small volume of water is at hand, as only about oneseventh of the water can be collected. Open buckets carried on an endless belt, operated by either windmills, steam power or even horse-power, are used with success and offer the advantage of cheap construction. The ordinary cylinder or plunger pumps are usually employed when the water has little or no sediment, and are operated by windmills or by steam or other form
of engine. When the water carries considerable sediment such pumps are lisble to wear away rapidly, and the centrifugal pump is the most economical form to use. The relative tirst cost of equipment for pumping with windmills or with gasoline or hot air engines of approximately equal horse-power is about the same. The windmill, however, is dependent upon a meau velocity of wind of about eight miles per hour, while the engine may be operated at any time, and is thus more reliable when either form of motive power is taxed to nearly the extreme limit. There are many kinds of windmills on the market, and many forms of home-nade construction are in use.
Storing and Conducting Water.-Storage reservoirs for streams and for storm waters vary in size and in cost as well as in mode of construction, according to the character of the land, size of area, volume of water, nature of the material of coustruction, and demand for the water. The construction of such reservoirs sometimes involves engineering problems of the most difficult kind, demanding the expenditure of immense sums of money.
In the use of windmills it is necessary to have small distributing ponds or tanks, as the direct flow from the pump is usually so small and varies so much with the velocity of the wind that it canuot be depended on to water any considerable ares. Where it is stored it can be turned out onto the land in large volumes, so that it spreads over the surface and waters the whole area uniformly. For an ordinary windmill the ponds are from 50 to 100 feet square. They can be stocked with fish and thus be a source of some revenue and variety in the family supplies. Unless the pond is situated on a slight elevation, the earth for the embankment must be taken from the outside. The banks are usually made with a slope of $1 \frac{1}{2}$ to 1 foot. For a bank 5 feet high and 2 feet across the top, the side would be about $71 / 2$ feet and the hase about 17 feet wide. If the ground is at all pervious to water, the bottom of the pond should be protected from undue seepage and loss of water by puddling. This should be done with clay, if this is obtainable. This puddling is often done by driving horses or cattle in the pond while the surface is wet. A pond of the size indicated above, operated by a windmill where the mean wind velocity is about 8 miles per hour, will irrigate from 3 to 5 acres of land in the semi-arid regions. Such a pond could be counted upon to irrigate from 5 to 10 acres where, as in the East, only one or two irrigations would be required during the season. The size of the reservoirs and the area they will irrigate, when supplied by steam or other kind of engine, will depend upon the a vailable water supply and upon the size of pump and power used.

Ditches and Flumes.-The water is usually carried from the stream or storage reservoir by gravity in open ditches. This involves loss by evaporation from the surface and by seepage through the soil. When the water supply is limited and its value is consequently great, terra-cotta pipes, iron pipes, cement or wooden pipes may be used. When the surface of the country is uneven and ravines have to be crossed, flumes are used to carry the water on an even grade across the depression. These flumes may be iron pipes, open wooden troughs, or wooden pipes held together with substantial hoops. If the depression is not too great the ditch may be built up on an earth embankment. When the water has to pass through a gravelly soil, or when for other reasons the soil is very pervious, special precautions should be taken to prevent seepage by using pipes, cementing the sides of the open ditch, or puddling the ditch with clay or similar material.

Application of Water. - The water is usually applied to the ground by flooding over the whole surface. For this purpose the surface must be perfectly level and the ground carefully prepared, so that the water will flow uniformly and quickly over the entire area and be of uniform depth throughout. Where crops are cultivated in rows or on beds the water is allowed to flow down in the troughs between the rows, and there must be a sufficient head of water to reach the end of the rows in a reasonably short time, so that the whole width of the field will be properly watered.

Where the surface of the ground is so uneren that surface flooding cannot be used, basins are formed by
throwing up slight ridges, with a plow or other implement, and the water turned into these basins in succession and allowed to accumulate to a sufficient extent, This method is particularly applicable to fruit trees, although it is occasionally used in other crops. In very sandy soils the water is occasionally carried through the field in wooden troughs, which admit of sufficient seepage to water the land. This prevents the undue seepage which might occur in such soils if the water was flowed over the surface. Another method is to distribute the water through the field in iron pipes, with openings at frequent iutervals, in which nozzles can be attached to deliver a fine spray over a small area. With four or five such nozzles an attendant can water a considerable area of ground in the course of a day. Such an irrigating outfit in Florida was supplied with a power equivalent to about one harse-power per acre. The mains and laterals were of 1 -inch or $1 \frac{1}{2}$-inch iron pipes laid near the surface of the greund, the laterals about 100 feet apart, with hydrauts every 50 feet. Tanks were originally used, but it was found desirable to pump directly into the mains to insure a sufficient pressure.

Care should be exercised in applying water to the land. Where water is plentiful there is a common practice of using such an excess as to injure the flavor of fruit, increase the liability of disease, and eventually injure the land by the accumnlation of seepage waters and of alkali. As a rule, there has been very much more damage from over-irrigation than from the use of too little water. The first two or three years a soil usually requires a considerable amount of water, but after beeoming well moistened to a considerable depth it should require comparatively little water thereafter to maintain its fertility. As it is not easy to apply just the proper amount, the excess should be provided for. If there is any reason to fear lack of drainage, the land should be thoroughly underdrained before Irrigation is started, or at any subsequent time when the need of it becomes apparent.

Irrigation always should bo supplemented by the most thorough cuitivation. After going to the expense of watering the seil in this way, it is poor ecenemy to allow the water to escape by evaporation or otherwise; therefore every precaution should be used in thorough, subsequent cultivation and in the exclusion of weeds, to conserve the meisture so applied. The intelligent horticulturist will find that in the use of this expensive method of maintaining a proper water supply in the soil, it is incumbent upon him, even more than if the method were not used, to give careful attention to all the ordinary methods of preparation and cultivation in order to maintain the advantages be has established by the Irrigation plant.

Milton Whitney.
Sub-irrigation in the Greenhouse.- The term subirrigation is used to describe a method of supplying water to the roots of plants by means of some form of conduit placed below the surface of the soil. In greenheuse operations, the essential features of the plan are a level, water-tight bench-bottom, and tile or pipes to serve as conduits for the water. The tile, or pipes, are laid directly on the bench bottom, and over these the soil is spread, usually to the depth of about 6 inches. When water is introduced in sufficient quantities through the tile or pipes, it passes out at the joints or perforations into the soil.

When applied to greenhouse operations, the term subwatering has been proposed by Goff and Cranefield for the reasen that Irrigation is used to denote watering on a large scale out-of doors. It may be said, however, that the words watering and Irrigation do net indicate the scale of operations with any degree of accuracy, hence it seems as well to use an old word as to coin one, especially when the familiar ward expresses the meaning intended.

Experiments in watering plants by this method were begun in the winter of 1890 and 1891, at the Ohio Experiment Station. The suggestion came from the result obtained in an effort to check the lettuce rot. Water was introduced to the soil in boxes by means of a pipe, in a similar manner to the method often employed in watering hills of melons and cucumbers. When the plants were watered in this manner, the lettuce showed

Ro much more vigor than that watered in the ordinary way that operatiens were begun at once on a larger seale: first in a bed on the ground having a elay bottom, then on a water-tight bench, made of lumber, and finally, on tile benches, cosered with cement.

In all of the earlier experiments the water was introduced through pipes, or drain-tile, lajd about 2 feet apart on the bottom of the benches. Goff and Cranefield have used brick instead of tile, placing them near enough together to touch. They were set on edge in a galvanizediron pan, made for the purpose. J. C. Arthur clipped off the corners of the bricks, so as to facilitate the flow of water. The Ohio Station has modified this plan by using common drain-tile, laid so as to touch, thus eovering the entire bench bottom, instead of a line of tile every 2 feet, as at first.

Benches made of lumber have proved unaatisfactory because of the swelling and warping of the boards. Solid beds on the ground have not been successful, except where an impervious clay bottom existed. Galva-nized-iron adds greatly to the cost of construction, and lasts only a short time. The only suitable bench for greenhouse sub-irrigation is one made of materials which are not acted upon by water.

A well-made tile- and cement-bench seems to be the only form of construction that will meet the requirements. Such a bench does not cost so much as to preclude its use, and will last as long as any other part of the greenhouse. In describing such a bench, it will not be necessary to enter into details, except such as relate to the method of watering under discussion. The bench must be water-tight, or nearly so, and this condition is secured by spreading a layer of cement, an inch or more in thickness, over the tile bottom. It is not a matter of any moment whether flat tile or common drain-tile are used, except in the quantity of cement required. The cement must he spread with care, so as to secure a perfectly flat, level bottom, otherwise the water will not flow uniformly in all directions. The sides of the benches are made of cement also, but need be only 2 or 3 inches high, or of sufficient height to merely retain the water. Boards or slate are placed outside the cement wall to retain the soil. The tile-hottom may rest on iron or woed cross-pieces. Wood has been in use for this purpose at the Ohio Station for seven years and shows no signs of decay, because it is out of reach of the water.

Nine years' experience shows that a perfectly constructed bench bottom, with the tile laid 2 feet apart, will serve satisfactorily in distributing the water to all parts of the bed, provided the tile are straight, so as not to impede the flow of water. The tile are laid in the

1182. Sub-irrigation with two runs of tile.
same manner as tile-drains, and lengthwise or crosswise the bed, as preferred. Better results are usually secured if they are laid crosswise than lengthwise, as it is difficult to secure an even flow through long lines of tile. A little cement or mortar is used at each joint merely to hold the tile in place when the soil is put in the bench, but not enough to impede the flow of water from the
joints. The first tile where the water is introduced is laid at an angle, one end resting on the edge of the bench side. This leaves a wide opening at the first joint, which is closed with cement. A better plan is to use a curved sewer-pipe for the inlet, but this is not always arailable. The picture (Fig. 1182) shows how the tile is laid on the bench bottom, being a view of a side bench in a carnation house.

Following Goff's suggestion in the use of brick, tiles

1183. Sub-irrigation with two tiers of tile.
have been used over the entire bench bottom with good results, and it seems probable that this will be found to be the hest form of construction, as it appears more certainly to insure an even distribution of water. The method of construction is the same as ahove described, for the two plans differ only in the number of tiles employed to distribute the water. When the bench bottom is covered with tile, placed near enough together so that the soil will not fall between, it will be readily seen tbat water introduced at any point will flow to all parts of the bed in and around the tile. It needs simply to be brought up to such a level that it will reach the soil, when capillary attraction will complete the distribution. Fig. 1183 shows a beuch in a tomato house constructed after this plan. A.A are the inlets; B the irrigating tile, from which the soil has been removed; C is the tile bench bottom, corered with cement. The same size of tile, viz., $21 / 2$ - or 3 -inch, is used both above and below. D is the cement side, which has been broken away to show the method of construction. The outer board has been removed also.
The cost of construction need not be discussed here, except to state that the only items extra, more than are required in any well-constructed greenbouse, are the cement bottom and the tile in which the water is distributed.
A plan has been devised for applying water to small plants in flats which may properly be mentioned under this head. The flats are shallow hoxes with slatted bottoms. When the plants require water, the flats are placed in a sballow rat of water and allowed to remain until the surface of the soil appears to be damp, or even wet.
A watering in this manner is far more efficient than by the ordinary method. Taken in connection with subirrigation in the henches, a crop of lettuce can be brought to marketable size nearly two weeks earlier than when surface watering is practiced. Anything like a full discussion of results of experiments in watering plants in the greenhouse by sub-irrigation would be too voluminous for an article in this connection. A brief review of the results obtained at some of the stations, together with a short discussion of some general principles, will serve the purpose intended. The increase in weight of lettuce from sub-irrigated plats over those watered in the ordinary manner has been reported by Rane, of West Virginia, as 25 per cent and hy Goff and Cranefield as 26 per cent. At the Ohio Station the range bas been from 25 to 100 per cent. In the latter case the result was obtained by commencing with the plants as soon as taken from the seed-bed, and carrying
the two lots through to the termination of the experiment, one by watering altogether on the surface of the soil, the other by sub-irrigation. Each of the experimenters speaks of a gain in earliness of several days by sub-irrigation. Rane secured similar results with long-rooted radishes by this method of watering, but not with the turnip-rooted sorts, while Munson, of Maine, doubled the crop by watering below. Better results have usually been secured at the Ohio Station with the turnip-rooted than with the long varieties, but in all cases there has been a gain in favor of sub-irrigation, varying from 50 to 100 per cent. Rane found that sub-irrigation increased the yield of tomatoes, hut the gain was not large. Essentially the same results have been secured in Ohio. The tomato crop has not been greatly influenced by the manner in which the water was applied, and the same is true of beets, while subirrigated cucumbers and parsley have shown a decided gain over surface-watered. Carnations, roses, chrysanthemums, sweet peas, violets and smilax bave been under experiment by the two methods of watering, and while no such marked results bave been secured as with lettuce and radishes, the sub-irrigated plots bave sbown superiority over those watered in the ordinary manner, in nearly all cases. With carnations the improvement has been mainly in length and stiffness of stem.

Aside from the, increase of crop secured by sub-irrigation, there are other considerations which may be urged in its favor, and these are embodied in the following general propositions:
(1) H'atering by sub-irrigation in the greenhouse saves labor. The amount of labor saved depends mostly on the completeness of the arrangements for watering, but there is a saving in the number of applications as well. It is possible to reduce the time employed in watering a house, or series of houses, to onefifth the time usually required.
(2) Watering by sub-irrigation assures an abundant and uniform supply of water to atl parts of the bed. Perfect construction of the benches is assumed in this case, but with such construction watering becomes almost automatic, the only care necessary being to look after such portions of the beds as may, by position, be subject to unusual conditions of air or sunlight.
(3) Where sub-irrigation is practiced in the greenhouse, the surface of the soil does not become compacted, but retains its originat toose, friable condition. It is true that where frequent syringing is practiced the surface of the soil becomes more or less hardened, but not to the extent that occurs in surface-watering, and the condition is easily remedied, whereas in the other case it is not. It follows that a heavier soil may be used for sub-irrigation than with surface-watering.
Still other considerations might be urged in favor of this method of watering, but many of them would apply to special cases only. Regarding the effect of the method upon insects and diseases, but little can be said. Lettuce rot is less prevalent upon sub-irrigated plots than upon those which are surface-watered, but in extreme cases plants succumb to the disease, whichever method of watering is practiced. Munson found that radishes suffered more from the attacks of millipedes upon sub-irrigated plots than upon plots watered in the usual manner. Nematodes work upon the roots of roses, whichever way the plants are watered. The manner of watering bas no apparent effect upon the red spider. Even in bouses watered wholly by sub-irrigation this pest is no worse than in houses in which the water is applied to the surface of the soil. It may be said, bowever, that nearly all classes of plants are more easily kept in a healtby growing condition, and are thus better able to resist enemies of all sorts, when sub-irrigated than when supplied with water in the ordinary way.
This method of applying water to plants in greenhouse benches has now been sufficiently tested to determine its value. All that now remains is to devise ways and means to utilize what is known concerning it. The adaptation to suit particular cases must be made by individuals, but this will be far easier in the future than in the past, because better methods of construction prevail than formerly. The success of sub-irrigation in the greenhouse is now simply a question of mechanics.
W. J. Green.

ISATIS (meaning obscure). Cruciferce. This includes the Dyer's Woad, I. tinctoric, formerly cult, for a blue dye, but no longer advertised. Casar relates that the

1184. Isoloma Tydæa (X^{1})
ancient Britons used the Woad for staining their bodies, and the word Britain itself comes from an old Celtic word meaning painted. Before indigo became common in Europe, the Dyer's Woad produced the chief blue coloring matter for woolen cloth. The introduction of indigo in the seveuteenth century destroyed this important industry, not without opposition. Dioscorides and Pliny mention both the Dyer's Woad and indigo.
I. tinctoria, Linn., is rather tall, glabrous and glaucons: stem-lvs. lanceolate, entire, sessile, somewhat ar-row-shaped: fls, small, yellow, borne in early summer, on panicled racemes. Instead of a pod, opening lengthwise hy valves, it has a closed fruit like on the samara of an ash, 1-celled, 1-seeded, indehiscent, wing-like. It is a biennial, and common in Europe.

ISCHARUM, See Biarum.
ISMENE. Now referred to Hymenocallis.
ISNÁRDIA. Includes a few species of Ludwigia.
ISOCHILUS (Greek, equal lip). Orchiddeea. A genus of no commercial value. Plants epiphytic, with tall, slender, leafy stems, without pseudobulbs, bearing a few small fis. at the summit. Sepals erect, free, keeled; petals similar but plane; labellum like the petals and united
with them to the base of the column, somewhat sigmoid below the middle: column erect, long, without wings: pollinia 4. Ahout 5 species in Braz., Mex., and W. Ind.
lineàris, R. Br. Slender, 1-1 $1 / 2 \mathrm{ft}$. high, leafy: Ivs. distichous, linear, striate, obtuse, emarginate, $1 \frac{1}{2}$ in. long: fls. purple, borne in a short, terminal spike. March. Growing on rocks and trees in thiek woods, Jamaica, Trinidad, Brazil, ete. B.R. 9:745. L.B.C. 14:1341.

H. Hasselbring.

ISÓLEPIS. See Scirpus.

ISOLOMA (equal border). Gesnerdeew. Includes Tydacu. Sixty or more tropical American plants, very closely allied to Gesneria and Achimenes. From (iesneria distinguished by absence of well-formed tubers and characters of capsule and anthers, and the 5 lohes of the disk equal; from Achimenes in the more tuhular flowers and lobed disk. The eulture is the same as for Achimenes and Gesneria. Seeds of the newer hybrids germinatequiekly, and plants bloom the same year. It is probable that the pure species are not in the trade. Like Achimenes, Gesneria and Gloxinia, they bave been much liybridized and raried. It is probable that they are hybridized with Achimenes and fiesneria. Tydaa is a garden genus. It is not known how the current forms have originated. Some of the recent ones have fringed fis. (Gn. $55: 1223$).

Tydæa (A chimènes picta, Benth. Tydier picta, Dene.). Fig. 1184. One to 2 ft., hairy: Ivs. cordate-ovate, coarsely serrate, spotted and reticulated with pale green or silvery green, with a broad light zone down the center: fls. single, on long, axillary stems, nodding, the orifice oblique and lobes obtuse, the upper longitudinal half of the H . red, the lower half yellow and red. spotted. Colombia. B.M. 4126 (adapted in Fig. 1184). B.R. 31:42. F.S. 1:1718. - On this species Decaisne founded the genus Tydra in 1848. This species has beeu called Isoloma pictum, but this name was taken by Planchon in 1850 to '51 for the Gesneria picta of Hook., which is a very different plant. See F.S. 6:586. B.M. 4431. This latter plant, the first Isoloma pictum, is apparently not in commerce.
amábile, Mottet (Tydofa amábilis, Planch. \& Lind.). Frect, hairy: lvs. ovate, more or less tapering to the

1185. Isoloma Jaliscanum ($\times 1 / 2$).
petiole, bluntly serrate, purplish on the veins: fls. hairy, pendent, dark rose dotted with purple, paler inside. Colombia. B.M. 4999. R.H. 1859, p. 25. F.S. 10:1070.

Cecilim, Nichols. (Tydea Cecílice, André). Much like I. amabile, but lvs, marked with violet and silvery zones or blotches: fls. 2 or 3 from each axil, the fls. pale rose outside and striped in the throat, and the linb pur-ple-spotted. Colombia. I.H. 23:260.
ocellàtum, Benth. \& Hook. (Achimènes ocellàta, Hook.). sbort-hairy on the stem: Ivs.ovate-acuminate, serrate, green: fls. small, on peduncles shorter than the lvs., the tube and short, rounded lobes red, the segments marked with whitish and black spots. Panama. B. M. 4359.

Jaliscànum, Wats. Fig. 1185. Herbaceous or some what woody at the base, 1 ft ., pubescent: Ivs. opposite, oblong-lanceolate to orate-lanceolate to ovate, shortacuminate, short-stalked, serrate: fls. $2-4$ on an axillary peduncle, the corolla an inch long, tubular and shortlobed, 'pubescent, scarlet. Mex.-A worthy plant, not yet in the trade, but has been cult.
L. H. B.

ISONANDRA (Greek, equal anthers). Sapotàcecr. Isonandra Gutta is a large-leaved E. Indian tree, which furnishes the best commercial gutta-percha. The name has appeared in one southern catalogue, but the plants were found to be not true to name. This plant should be called Dichopsis Gutta. In Dichopsis the floral parts are in 6's, stamens 12, and the seeds hare no albumen, while in Isonandra the floral parts are in 4 's, the stamens 8, and the seeds albuminous. See Rubber Plants.
Gütta, Hook. Properly Dichópsis Guitta, Benth. \& Hook. Gutta-percha Tree. Lys. leathery, elliptic, abruptly pointed Malaya. R.H. 1898, p. 441.

ISOTOMA (Greek, equally cut; referring to the corolla, and true only by contrast with Lobelia) Companuldcea. This includes a plant treated as a half-hardy annual, which grows about a foot high, has curiously cut foliage, and odd fls. with a slender bent tube 1 in . or more long, and 5 slender spreading lobes, each $1 / 2 \mathrm{in}$. long. Among allied genera of garilen value, Centropogon and Siphocampylus have the stamens fastened at the base of the tube, while in Isotoma they are at the top or above the middle. (Centropogon has an indehiscent berry: Siphocampylus a capsule 2 -valved at the top like Isotoma.) Downingia has a tube of stamens free from the corolla.
axillàris, Lindl. Perennial, flowering the first year so as to appear annual, but forming at length a hard rootstock, erect, with few spreading branches: lvs. linear, irregularly pinnatifid, 2-3 in. long, lobes linear: pedicels axillary, $2-6 \mathrm{in}$. long: fls. large, bluish purple, pale outside. Australia. B.M. 2702 (as Lobelia senecioides) and 5073 (as Isotoma senecioides, var. subpinnatifida). - Not in cult.
petrea, F. Muell. Identical with the above, except that the lvs, are ovate-oblong or elliptical. Australia. The plant in the trade is said to have cream-colored fls., and is sold as a "Lemon Verbena," a name which properly belongs to Lantana.

ITALIAN MAY. Spirea hypericifolia.

ITEA (Greek name of the willow; because it has wil-low-like lvs., and grows near the water). Saxifragdेcece. A genus of trees and shrubs, numbering about 5 species, inhabiting eastern N. Amer. and eastern Asia, whose one representative in cultivation is I. Jirginica, a low, upright, somewhat coarse shrub, best known by its long, upright racemes of small white fls, appearing about July 1, in Massachusetts, and its brilliant antumu coloring. In nature it inhabits low, wet places. In cultivation it seems to adapt itself to almost any soil. It is not perfectly hardy, but grows rapidly and seems enduring of both sun and shade. In ornamental use it is planted in masses or mixed with other slrubs of similar character in the sbrubby border or at the edge of woods. Its somewhat coarse character does not favor its approach to more refined objects. In autumn it becomes a brilliant red. It is prop, from seed, by cuttings and by division of roots, which spread slowly and form clumps of stems. It may be collected from the wild.

Virgínica, Linn. Virginian Willow. Fig. 1186. A shrub, $11 / 2-6 \mathrm{ft}$. high, usually not more tban $2-3 \mathrm{ft}$. high, of upright, somewhat slender habit: Ivs. deciduous, alternate, oblong, pointed, minutely serrate, smooth green above, pale and slightly pubescent below, petioled, without stipules, 1-3 in. long: tls. regular, 3 lines long, fragrant, white, in solitary, erect, hairy, simple, dense, terminal racemes $2-6 \mathrm{in}$. long, given a greenish white effect by the stamens and pistils, not particularly showy, appeariug late June and July; calyx 5 -cleft, persistent, nearly free from the base of the ovary; corolla of 5 lan-

1186. Itea Virginica $(\times 1 / 3)$.
ceolate, nearly erect petals and longer than the 5 stamens : capsule slender, longitudinally 2 -furrowed, 2 celled, many-seeded, splitting through the simple style and partition. Pa. and N. J. to Fla. and La. B.M. 2409.

A. Phelps Wrman.

IVA (named after Ajuga $I_{v a}$, from its similar smell). Composite. This includes I. frutescens, Linn., the Marsh Elder or High-water shrub, a native hardy perennial of no garden value, which is, nevertheless, on record as having been cult. It grows $3-12 \mathrm{ft}$. high in salt marshes and on muddy seashores, has serrate lvs. and fls, as inconspicuous as those of a ragweed. See B.B. 3:292 and Gray's Manual.

IXIA

IVESIA. All referred to Potentilla.
IVY. The common or English Ivy is Hedera. Boston $\mathbf{I}_{.}=$Ampelopsis tricuspidata. German $\mathbf{I},=$ Climbing Senecio and Herniaria glabra. Ground $\mathbf{I}=$ Vepeta Glechoma. KenilworthI.=Linaria Cymbalaria. Poison I. $=R h u s, R$. Coxicodendron. Some authors think that two species of Rbus are confused, R, radicans being the common Poison Ivy of the North, and R. Toxicodendron being a shrub of the South.

IXIA (Greek, bird lime; said to refer to the juice). Iridacece. Ixias are delightful tender bulbs originally from the Cape of Good Hope, with attractive grass-like foliage and spikes of flowers borne in early spring, exhibiting an exceptionally wide range of colors. They grow about $11 / 2 \mathrm{ft}$, high on the average, with an unbranched stem, a spike $3-8 \mathrm{in}$. long, containing 6-12 fls. each $11 / 2-2$ in. or more across. The fts, have a very slender tube usually about $1 / 2$ in. long, and 6 segments. The following colors are all well marked in Isia: white, yellow in at least 3 shades, orange, lilac, rose, pink, crimson, light and dark purple, ruby red, pale blue, and even green. Perhaps the only important colors lack-
 ing are sky-blue and red in the bright shades of scarlet and vermilion. The flowers may be concolorous (all of one color) or these same shades may be combined with an eye. Most of our cultivated forms seem to bave an eye of brown, purple or almost black, but there have been kinds with a white, blue or green eye. Occasionally there is a ring of brown color above the purple. Add to this that the backs of the segments may be more or less suffused with various colors(usually, however, that of the eye) and the interesting possibilities of Ixias in color combinations can be imagined. Sooner or later all good gardeners yield to the fascination ot bulbous plants, and whoever has not yet succeeded in growing Ixias has something to live for.

Ixias number their cultivated varieties by the hundreds. Next to Crocuses and Freesias they have no rivals in point of popularity among spring-blooming bulbs of the important Iris family, which rejoices in the possession of such splendid summerblooming bulbs as Iris, Gladiolus and Montbretia. Culturally they belong to the same class with Babiana and Sparaxis, which are also desirable and distinct in general appearance and coloring, but are outstripped by lxias in popularity and in number of varieties. Botanically, these three genera belong to the Ixia tribe, in which the Hls. are spicate, not fugitive and never more than one to a spathe. The stamens of Ixia are equilateral; those of Babiana and Sparaxis unilateral. Ixias have about 6 erect grass-like lvs. arranged in 2 ranks; Babiana bas plaited, hairy lvs.

Bulb catalogues give no bint whatever as to the parentage of the numerous named varieties. Not one of them mentions I. maculata nor I. calumellaris, which were the two all-important parent stocks. Of the 23 species recognized by Baker in Flora Capensis, vol. 6,1896 , only 1. viridiflora appears as a trade name, but I. speciosa and paniculata are advertised under their synonyms cralerinides and longiflora. I. crocata is Tritonia crocata, and I. hybrida of the trade is not the hybrida of the botanists, but means notining more than mixed varieties.

Before speaking of the domiuant types, it is convenient to mention some very distinct species which are still cultivated in a condition not essentially different, botanically, from the wild types. I. paniculatu is instantly distinguished from all other Ixias in cult. by its very long tube, which is often 3 in . long. It is also the last to bloom. I. viridiflora is unique in the genus for its green flowers, and it is one of the few green-flowered plants that are attractive. Whether this species has hybridized with the other dark-eyed species is conjectural. At any rate, the prototype is a popular plant to-day.
Of 86 named varieties received from 3 leading dealers in America, England and Holland, and supposed to be a representative collection, all but a bare dozen seem to be the offspring of I. maculata and I. calumellaris. Both of these species have a purple or purple-black eye, sometimes brown, and the white and yellow colors of the segments are derived from maculata, while the lilac and purple shades of the segments are derived from columellaris. Baker makes no distinction between these two prototypes except that of color. The common opinion is that Ixias hybridize freely, both at the Cape and in cultivation, and it is usually said that they are now so thorougbly mixed by hybridization and selection that it is impossible to refer any of the named horticultural varieties to their proper species. Nevertheless, from a study of the specimens mentioned above and the colored plates cited below, the writer ventures the opinion that the vast majority of cultivated Ixias are eyed forms, which, with the exception of viridiflora, can be readily referred either to maculaia or to columellaris, and that all such forms could be reproduced without hybridization if the original types were reintroduced from the Cape and subjected to an equal period of selection.

The real mystery in Ixia is why the self-colored forms are so little cultivated. There are at least 7 species with self-colored fls. which should be obtained directly from the Cape, if necessary, for they would all make decided additions to the Ixias that are in common cultivation. These are: palysiachya, pure white; flexuasa, white, veined rose, with fine red and purple varieties; arislala, a superior pink; lutea, orange; patens, bright red; speciosa, ruby-red, and odorala, yellow. Of the eyed forms ovata, a bright red flower, should be added, as this color seems to be lacking among the varieties that are commonly cultivated; also monadelpha in its variety with pale blue segments.

One of the most desirable of all these little-known types is \boldsymbol{I}. speciosa, which is shown in the Botanical Magazine, with a delightful ruby-red color, untonched with any suggestion of purple, lilac or allied shades. This form would seem to promise to the hybridizer the possibility of several distinct shades of red that now seem to be practically unknown in cultivated Ixias. A synonym of I. speciosa is I. craterioides, which is a common trade name, but it is doubtful if the ruby-red form is in general cultivation. At any rate, it has not been sufficiently exploited. The dearth of good colored plates of modern cnltivated Ixias is out of all proportion to their commercial and artistic value. The writer has no record of any good one since that published in $188 \pm$ in "The Garden."

Ixia flowers are charming in every stage of development. At first the flowers are erect and cup-shaped. They close at night and remain closed on dark days. As they grow older they open wider and become more star-shaped. The reader may judge by Fig. 1187 of the beauty of the flowers in theirdrooping stage. The plants remain in flower for three weeks, though the faded flowers at the bottom of the spike should be taken off toward the end of the period. As cut-flowers, they are presentable for a week or two.
W. M.

Culture of Ixias Out-of-noors. - The writer has always liked Ixias, but has considered that it is too much trouble to grow them under glass. They are vastly more satisfactory when grown outside. The planting of the bulbs shonld be delayed until the last moment, because Ixias are more inclined than most things to make an autumnal growth. They should be planted 3 inches deep, as late as November 30. In planting bulbs it is always
well to sprinkle a handfnl of sand on the spot where the bulbs are to lie. This helps the drainage, especially on heavy lands, and prevents rotting. The bulbs should then be covered with ahont 3 inches of leaves, hay, or better still, pine needles. In the latitnde of Boston, bulb heds can be uncovered during the first week of April. However, there will still be sharp frosts to nip the tender shoots that have started beneath the winter covering. Conseqnently a little hay or other covering material should be left near by, where it can be easily gotten when a chilly evening threatens. In ten days the young sprouts will become sufficiently hardened to withstand any subsequent cold. Even such hardy things as Alliums, when first uncovered, can hardly withstand any frost at all. It is, however, a mistake to wait two weeks longer and then permanently uncover the bulb beds, for by that time the early-starting things are likely to be so lank and long that they never attain ideal sturdiness. It is better to uncover too early than too late. The secret of success with lxias ontdoors is largely in hardening the plants in early spring and in never allowing them to grow too fast under cover, where they become yellow and sickly. During the winter shutters can be placed over the bulb beds to shed the rain; but the bulbs do as well without this protection, thongh they may be later in starting. Of conrse,

Ixia hulbs cannot stand any
 freezing, and they must, therefore, be planted in unfrozen soil. After flowering, let the hulbs remain in the soil until the end of July: then take them up, and store them, not in dry earth, but in boxes without any packing. Let them remain in a dry place until they are wanted for November planting. In the southern part of England Ixias can be planted 6 inches deep in bardy borders as late as December, and Krelage, perbaps thinking of still warmer regions, considers Ixias as summer-blooming bulbs, and advises planting from October to December. In the writer's experience, the flowers from the old bulhs are not at all inferior in succeeding years: indeed, the contrary has been the case, and the bulbs he raises are vastly superior to the ones he buys. Amateurs are commonly advised to throw away the offsets becanse fresh bulbs are cheap. Yet the undersigned finds that many of the offsets bloom the first year and nearly all of them the second.
It is commonly thought that if Cape bulbs are ever raised commercially in America, California or the coastal plain of the sonthern states would be the fittest regions for the industry. The writer knows of Ixias being raised commercially near Boston with every prospect of success. It is strange that Tritonias, Sparaxis and Babianas cannot be grown in the same way, thongh it is some consolation that they can be so easily grown in pots. To the undersigned Ixias are the most pleasing of all bulbs. He has thousands in bloom in the month of June, and thinks they make a braver show even 1188. Ixia paniculata ($\times 1 / 3$). than tulips.
W. E. Endicott.

Culture of Ixias in Greenhouses.-1 xia bulbs can be planted any time from September 15 to October 30 , the sooner the better. In general, tender bulbs of small size tend to lose vitality when kept a long time in the dry air of warehouses. Ixia bulbs shonld be planted an inch deep, 5 or 6 in a 5 -in. pot, or 8 to 10 in a 6 -in. pot. They
like a componnd of sandy soil and leaf-mold. It is supposed that three-fourths of the failures with Ixias are due to hasty forcing. The pots should be stored under a bench or in a rather dark cellar, at a temperature of 45°. The object is to hold back the tops while the roots are growing, in order to get stocky, well colored, slowly started shoots. They need no water until growth has started. Then water carefully until the flowers come, as the young plants are liable to rot at the surface of the ground. While flowering water freely. After flowering, some gardeners give the plants no water. Others keep the soil moist until the leaves turn yellow, and then gradually withhold water. As to temperature, the plants may be bronght into a cool greenhouse $\left(50^{\circ}\right)$ when well started, and towards the end of Jannary may be given 5° more heat if flowers are desi:ed as early as the middle of March. Ixias have to be staked and tied. The old bulbs, from which the offsets have been removed, may be used again. Isia hulbs, which are really fibrouscoated corms about $1 / 2 \mathrm{in}$. thick, keep as well as Freesias. Seedlings flower the third year.

Culture of Ixias in Coldframes. - Choose for the frame an open place, sheltered from north and west winds. In its

1189. Ixia maculata.
($\times 1 / 3$) construction give especial care to providing good drainage, to close-fitting and snug banking, so that frost, mice and moles can be kept ont. A sandy soil, without manures, is safest and best for 1sias. If fertilizers are used they must be placed several inches below the bulbs, never in contact with them. As in outdoor culture, the bulbs must be planted late and in soil well dried by placing the sashes over the frame some time beforehand. Plant about 3 inches deep, as far apart, and treat afterwards much as in greenhouse culture. Take off the sashes in early May to show the mass of rich, odd flowers which, ordinarily, will open about that time and last for several weeks. If the frame is to bave other tenants through the summer, the Ixias may be taken up after their tops are dead and stored in dry sand till planting time comes around again. Otherwise, merely cease watering as the tops of the Ixias die down, and put on the sashes again, tilting them so that they will give air and shed rain.
L. Greenlee.

1NDEX.

aristata, 3 . lutea 6. aristata,
columellaris, 10. columellaris, 10.
craterioides, 8. flexuoss, 5. longiflora, 2.
macnlata, 9 . monadelpha, 13. monadelpha ovata, 11 .
paniculata, 2. patens, 7. polystachya, 4 polystachys, speciosa, 8,
viridiflora, 12.
A. Tube of perianth dilated below the limb into a distinet funnel.

1. odoràta, Ker. Fls. pure yellow. B.M. 1173.

AA. Tube of perianth not dilated.
B. Length of tube $21 / 2-3 \mathrm{in}$.
2. paniculảta, Delaroche (I. longiflora, Berg.). Fig. 1188. Segments white, often tinged red: throat same color or black. B.D1. 256 and 1502.

BB. Length of tube 1 in .
3. aristàta, Ker. Fls. whitish, according to Baker, but a fine pink in B.M. 589 .

BBB. Length of tube $1 / 2-3 / 4 \mathrm{in}$.
C. Segments $1 / 2 \mathrm{in}$. long or less.
D. Color white.
4. polystàchya, Linn. No eye. B.M. 623.

Dn. Color shades of red or lilac,
5. flexuòsa, Liun. No eye. B.M. 624.
CC. Segments more then $1 / 2 \mathrm{in}$. long.
D. Fls. self-colored.
E. Color yellow or orange.
6. lùtea, Baker. Fls. "uniformly deep bright yellow," according to Baker, but orange iu B.M. 846.

> EE. Color red.
F. Segments $1 / 2-3 / 4$ in. long.
7. pàtens, Ait. Fls. pale red, accordiug to Baker, but deep rosy red in B. M. 522.

FF. Segments 3/4-1 in. long.
8. speciòsa, Audr. (I. eraterioldes, Ker.). Fls, dark erimson, according to Baker, but rich ruby-red in B.M.594.

DD. Fls. with an eye of brown, purple or black.
E. Color of segments white to yelloze.
9. maculàta, Linn. Fig. II89. Fls, typically yellow, according to Baker. B.M. 539 (orange). The following natural varieties show the range of color. Var. ochroleuca, Ker. Segments sulfur-yellow; eye brown. B. M. 1285. Var. nigro-álbida, Klatt. Segments white; eye black. Var. ornàta, Baker. Fls. flushed bright red or parple onstside.

EE. Color of segments lilac to purple.

10. columellàris, Ker. Typically with bright, mauvepurple segments and blue throat. B.M. 630.

EEE. Color of segments bright red.
11. ovàta, Klatt. Andrews Bot. Rep., plate 23. EeEe. Color of segments green.
12. viridiflora, Lam. Typically with pale green segments and black throat. B.M. 549. L.B.C. I6:1548. F.S. 2:124. Var. cana, Eckl. Segments pale blue; throat black. B.M. 889 (as I. maculata amethystina). Var. cæsia, Ker. Segments pale lilae; eye greenish. B.R.7:530.
eeeee. Color of segments pale blue.
13. monadelpha, Delaroche. Only species in the genus that does not have free anthers. B.M. 607; 1378. -segments typically lilac, but there are forms with claretred, hlue or pale yellow segments, comhined with eyes and markings of various colors.
W. M.

IXIOLIRION (Greek, an Iria-like lily). Amaryllidacea. A genus of 2 species of hardy bulbs from western Asia, with nmbels of $5-9$ deep bine or violet, 6 -lohed fls, each 2 in . across, horne in spring. Perianth regular, without any tuhe ahove the ovary; segments oblanceolate; stamens shorter than the segments, attached to their claws. The nearest cultivated allies are Alstremeria and Bomarea, which have no distinct rootstock, while Ixiolirion has a bulbous rootstock. Monogr. by Baker, Amaryllideæ, I888.
montànnm, Herb. (I. Pállasii, Fisch. \& Mey.). Bulb oroid, 1 in. thick, with a neck $2-3$ in. below the basal tuft of lrs.: stem about 1 ft . long: lys. about 4 . persistent, and a few smaller ones above: fls, on long nnequal pedicels and often 1 or 2 fls . below; perianth bright lilae according to Baker. Syria to Siberia. B.R. 30:66. F.S. 22:2270. R.H. 1880:310. J.H. II1. $31: 583$.

Var. Tatáricum, Herb. (I. Tatáricum, Hort.). Stems more slender: IFs, awl-shaped: fls, all in a terminal umbel, smaller tban the type. Altai Mits. G.C.II. 19:757. Regel calls the collective species I. Tataricum, and describes 5 species of it.

IXORA (a Malabar deity). Rubidcea. Many species (100 or more) of shruhs or small trees with opposite or verticillate lvs, and terminal or axillary corymhs of very showy fls., inhabiting the tropical parts of Asia, Africa, America, Australia and Pacific islands. The species are very difficult to distinguish. The fls, are white, rose or scarlet, on bracteate pedicels; corolla very long- and
slender-tubed, the throat sometimes barhed, the limb 4 or 5 -lobed and wide-spreading; stamens 4 or 5 , inserted on the throat, the filaments short or none: ovary on a flesliy disk, 2-loculed, the style filiform and exserted, 2 brauched: ovales solitary.
L. H. B.

Ixoras, which are handsome dwarf flowering shrubs, belong to the tropies. The species, as well as their by brids, all bear heautiful trusses of flowers of varions sbades, from a creamy white to a rich crimson. They require a stove temperature during most of the time, although, after having finished their growth in the early autumn, they could be placed for a time into a lower or greenhouse temperature, in which they would more fully ripen their yonng growth and set and develop their flower buds. After this, when again placed in the warmhouse, the plants will keep flowering until spring. Sandy leafmold, with plenty of drainage, is best to cultivate them in. They like plenty of heat and moistare, and care should he taken not to overpot them. The foliage shonld be syringed often, as otherwise the mealy hag and other insects will infest them. They do best in a sunny spot in a greenhouse temperature, but should not fall helow 60° while growing. They propagate freely from cuttings of half-ripe wood, and they produce their hest flowers when the pots are filled with roots; then a little feeding with liquid manure will bring out the size and color of the flowers to perfection. H. A. Siebrecht.

Many of the Latin names of Ixoras are of horticultural forms. Of this class, the following are in the Amer. trade: Chélsoni, fls, brilliant salmon-orange. Colei, fls. pure white: cross of I, coccinea and I. slricta, var, alba. Conspicua, fls, yellow, becoming orange. Dixidua, fls. deep orange. Fraseri, fls, scarlet in the tube, and brilliant salmon above. Orndta, salmon-orange. Prínceps, fls. Whitish, becoming orange; said to bave come from Java. Reglna, fls. shaded violet-salmon. Sanguinea, fls. crimson, shaded with violet. Spléndida, crimsonorange. 1.H. 29:463. Wéstii, fls, pale rose, becoming hrilliant; bybrid (Gn. 42:886. G.M.36:35). Williamsii, fls, reddish salmon. Other horticultural forms are: Armeniaca, yellow; Decora, yellow; Illústris, orange; Insignis, rose ; Pilgrimi, orange-scarlet; Profusa, rose; Specidsa, yellow; Spléndens, orange; V'enùsta, orange.
A. F'ls. uswally in shades of red (sometimes varying to rose).
stricta, Roxbg. (I. coccinea, Hort. I. blánda, Ker. l. crocafa, Lindl.). Apparently the common species, known in greenhouses as I. coccinea: glabrous shruh, with sessile or suhsessile lvs, which are obovate or obovate ohlong, and very slender-tubed fis. in dense corymhs, the corolla lohes short and rounded. Moluceas and China. B.M. 169 (as I. coccinea). B.R. 10:782.-Runs into nearly pure white forms. I. striata of the importers of Japanese plants is probably a misprint for stricta. There are said to be yellowish fld. forms. Prince of Orange is said to he a form of this species.
coccinea, Linn. (I, grandifldra, Br. I. Bandhúca, Roxbg.). Much like the last, but lvs, oblong and corolla lohes acute. E. Indies. B.R. 2:15t; 6:513.
macrothyrsa, Tejsm. \& Binn. (I. Diffii, Moore). Very large, glabrous: IFs, a foot long, liwear-oblong to oblong-lanceolate: cluster very large, 8 in, across, bearing very many deep red tinged crimcon fls., with lanceolate obtuse lobes about $1 / 2 \mathrm{in}$. long. E. Indies. B. M. 6853.-Probably the finest of the genus.

AA. Fls. in shades of yellow or orange.

Javánica, DC. Glabrous shrnb with lvs. 5-7 in. long, orate-ohlong, acute or acuminate: corymb terminal, with forking coral-red branches: fls. deep orange-red, the lohes rounded. Java. B. M. 4586.
congesta, Roxb. (I. Griffithii, Hook.). Erergreen tree in its native haunts, glabrons, except the cymes: lis. very large ($6-12 \mathrm{in}$. long), stalked, elliptic or ellipticohlong, acute or acuminate: cymes sessile or nearly so: fis, orange-yellow, changing to reddish, the segments rounded. Indies. B.M. 4325.

AAA. Flowers white.
parviflòra, Vahl. Evergreen tree, with subsessile oblong or elliptic-obtuse lrs, 3-6 in. long: cymes sessile: fls. white, the tube only $1 / 3 \mathrm{in}$. long. India. L. H. B.

JACARANDA (Brazilian name). Bignoniàcere. J. orulifolia perhaps ranks among the 100 best floweriug trees or shrubs for subtropical regions. The foliage is as finely cut as a fern, symmetrical and elegant. The leaves are decussate, distant, each one with 16 or more pairs of pinnæ, each pinna having 14-24 pairs of leaflets. The plant bears loose,pyramidal panicles, 8 in , high, of $40-90$ blue fls., each 2 in . long aud $11 / 2$ in. wide, which have a long, bent, swelling tube and the 2 lobes of one lip smaller than the 3 other lobes. From S. Fla. It is one of the best of foliage plants for the S., valuable alike for florists' decorations, conservatory, subtropical bedding in the North, or for lawn specimens in Florida, where, if cut back by frost, it rapidly recovers its beauty. It reaches a height of 20 ft , or more. It is commonly planted in parts of S. Calif., and attains a height of 50 ft . and more. This species is also cult. in Europe under glass. Jacaranda is a genns of about 30 tropical American spacies, mostly Brazilian: trees, with lvs. opposite, 2 . pinnate, rarely 1 -pinnate: lfts. usually numerons, entire or dentate: fls. showy blue or violet, panicled; corolla lobes rotund; perfect stamens 4, didynamous; staminode about as long as the stamens, club-shaped at the apex and often bearded at the top.
ovalifolia, R. Br. (J. mimosqfòlia, D. Don). Lvs. distant, spreading, oblong, villous: fls, more or less horizontal. S. Amer. B.R. 8:631. B.M. 2327. R.H. 1897:132.
E. N. Reasoner and W M.

JACK BEAN. Refer to Canavalia.

JACK FRUIT. Artocarpus integrifolia.
JACK-IN-A-BOX. Hernandia.
JACK-IN-THE-PULPIT. See Ariscma.
JACOBEEA, All included in Senecio.
JACOBINIA (probably a personal name). Acanthdेcece. A polymorphous genus of 30 or 40 tropical American berbs or shrubs, including the genera Libonia, Sericographis and Cyrtanthera. Plants cultivated for their narrow-tubular red, orange or yellow fls.: Ivs. opposite and entire: calyx deeply 5 -parted, with linear or awl-shaped segments; corolla more or less 2 -lipped, one lip 2-lobed and the other 3-lobed; stamens 2; staminodia represented by two hairy elevations on the corolla tube; pistil ripening into an oblong or ovate capsule, the style filiform, the ovary surrounded by a disk.
Jacobinias, in common with otber Acanthads, are much confused as to species. A closely allied genus is Justicia, which, among other characters, is distinguished by having spurs or appendages at the base of the anther lobes, whereas Jacobinia bas no sucb appendages. Other allied genera are Aphelandra, Dianthera, Adhatoda, Thyrsacanthus, Eranthemum, Barleria, Dædalacanthus.
Jacobinias are mostly subshrubs in their native places, but they are usually treated as herbs under cultivation, They are showy greenhouse or conservatory subjects. When well grown they are attractive plants, but they soon become weedy under neglect. They propagate very readily from cuttings, after the manner of fuchsias, and the most satisfactory plants are usually those which are allowed to bloom but once. Most of them thrive well under conditions suited to begonias.
A. Fls. in a more or less dense terminal panicle or ihyrse: corolla long, more or less curved. stamens fixed to the middle or near the top of corolla tube. (Subgenus Cyrtanthera.)
magnifica, Benth. \& Hook. (Cyrtanthèra magnifica, Nees. Justicia magnifica, Pohl). Strong forking berb or subshrub, blooming when 1 or 2 ft . high, but becom-
ing several feet high if allowed to grow: stems 4 -angled: Ivs. opposite, lanceolate to ovate-lanceolate to oval-oblong, narrow or broad at base, attenuate to apex, wavy-margined, veiny, downy, sometimes a foot long: fls, rose-purple, ascending, arched at the top and the lower lip recurving, borne in dense terminal spike-like thyrses. Brazil. G.F. 5:317. Var. cárnea (Justícia cárnea, Hook.) bas flesh-colored fls. B.M. 3383. B.R. 17:1397. - A handsome old plant, of comparatively easy culture in a conservatory temperature. Cuttings made in Feb. or March should bloom early the following winter. Young plants are usually most satistactory, tbe old ones being kept over only for cutting stock. Give rich soil, and plenty of water in the growing season.
Pohliàna, Benth. \& Hook. (Cyrtanthera Pohlidna, Nees). Much like J. magnifica, but more robust and leafy: 1vs. ovate-acuminate and rounded or nearly or quite cordate at the base, more glabrous, often purpletinged: fis, bright crimson: bracts sbort-acute, or in one form obtuse. Brazil. - Vass considers \boldsymbol{J}, magnifica, var. carnea to be synonymous with J. Pohliana.
Var. velùtina, Hort. (J. velùtina and Justícia velìtina, Hort. Cyrfanthèra Pohlidna, var velütina, Nees). Dwarf: bracts obtuse: lvs. villous-pubescent on both surfaces: fls. 2 in . long, rose-color. Brazil. Ging. $7: 212$. A.F $14: 998 .-A$ worthy plant of conpparatively recent introduction in this country. It is an excellent pot subject and has been considerably advertised recently as the "New Dwarf Justicia velutina." A profuse and continuous bloomer. Cultural remarks under J. magnifica also apply to this.

AA. Fls. in a dense terminal spike: corolla long and curved: stamens fixed to the base of the tube. (Subgenus Polystachys.)

coccinea, Hiern. (Justicia coccinea, Aubl.). Erect herb or subshrub, usually grown from cuttings each year and treated as a pot subject: $2-5 \mathrm{ft}$. high: branches terete: Ivs. elliptic or ovate-lanceolate, entire, glabrous

1190. Jacobinia Penrhosiensis $(\times 1 / 2)$.
or nearly so: fls, crimson, in a dense terminal spike. pubescent, the long upper lip more or less arched and the lower one reflexed. Brazil. B.M. 432.-Blooms in summer. Said to be known sometimes as Aphelandra cristata.

AAA. Fls. scattered or in loose more or less leafy panicles: of medium length, straight or nearly so, not deeply cleft. (Subgenus Libonia.)
pauciflora, Benth. \& Hook. (Sericógraph is pauciflora, Nees, Jibònia floribúnda, C. Koch). A common conservatory plant, subshrubby, but usually treated as a pot-plant, with terete, short-jointed, close pubescent branches: lvs. elliptic or elliptic-oblong, short and rather small, entire, very short-stalked: fls. 1 in. long, tubular, drooping or nearly borizontal, scarlet with yellow at the end, the lips short. Brazil.-A most floriferous plant, almost as easy to grow as a fuchsia, and to be handled in essentially the same way.

Penrhosiénsis (Libdnia Penrhosiensis, Carr.). Fig. 1190. Much like the last, but lvs. more pointed and tis. larger and more showy. R.H. 1876:50. (ing. 2:131. - It is a most excellent plant, and is taking the place of J. pauciflora. It is hybrid ot J. pauciflora and J. Ghies. brechtiana. Another and very similar hybrid of the same parentage is Sericobania igruea, Lindl. \& André. I.H. 22:198. J. Penrhosiensis is a winter bloomer, a little earlier than J. putciflora. Cuttings struck in spring make full blooming subjects by fall and early winter. This and J. pauciflora are common conservatory plants.

Ghiesbreghtiàna, Benth. \& Hook. (Cyrtanthèra Ghiesbreghtianu, Deene. Sericographis Ghiesbreghtidm, Nees. Justicia Gheisbreghtiana, Lem. Aphelándra Ghiesbreghtidna, Hort.). Lvs, narrower (lance-ovate) and longer, acuminate: fls. in a terminal, very loose panicle, tubular, scarlet, appearing at the same season as those of J. Penrhosiensis. Mex. F.S. $4: 339 .-$ Introd. by Ghiesbreght; but when the plant was transferred to the genus Jacobinia the name was misspelled Ghiesbrechtiana.
J. Lindeni, Nichols. (Justicia Lindeni, Houll.), is a Mexican subshrub, with lance-ovate lvs., and a fascicled head of orang.. yellow tls. Does not appear to be in the Aner. trade. R.II. 1870:250.
L. H. B.

JACOB'S LADDER. Polemonium caruleum.
JACOB'S STAFF. Fouquieria splendens.
JACQUEMONTIA (after Victor Jacquemont, a French naturalist; dsed 1832). Comzolvulceer. About 50 species of tropical and subtropical twining herbs, allied to Ipomcea and Convolvulus, to which they are inferior for garden culture. They are distinguished from lpomera by having two stigmas instead of one; and from Convolvulus by having the stigmas ovate or oblong instead of linear-filiform to subulate. I. violaccet makes an attractire greenhouse climber for summer and autunn flowering, but is not as desirable for this purpose as several species of Ipomcea. It is apt to become leggy after a few years. Propagated readily by seeds or cuttings. For other botanical characters and cultural directions, see Ipomara.
violàcea, Choisy (Convólvulus pentainthus, Jacq.). Steru perennial, somewhat shrubby at base, twining 6-8 ft., pubescent or nearly glabrous: lvs. cordate to ovatelanceolate, acuminate: peduucles slender, bearing $5-12$ fls. in a loose cymose cluster: corolla about $11 / 4 \mathrm{in}$. Wide, short-funnelform, sharply 5 -angled, rich violet-blue. June-Sept. Trop. Amer, and as far north as Fla. B. I1. 2151. B. 4:197. P.M. 6:219. In var. canéscens, Hort. (J. canéscens, Benth.), the whole plant is covered with short, brownish down. B.R. 33:27.
tamnifolia, Griseb. Plant annual, usually low and erect, at length twining if support is near, covered with tawny yellow hairs: lvs. cordate, ovate, long-petioled: peduncles bearing many fls, is dense, involucrate clusters: fls. less than $1 / 2 \mathrm{in}$. long, violet. Cult. and waste ground, S. C. to Ark., and southward.

S. W. Fletcher.

JACQUINIA (Nicholas Joseph de Jacquin, 1727-1817, distinguished botanical painter and writer, who painted many West Indian plants from nature). Myrsindeea. About 20 species of tropical American trees and slirubs, one of which is called Bracelet Wood in the West Indies, because the brown and yellow shiny seeds are made into bracelets. It is a low tree, with evergreen lvs. some-
what like box but obovate, and racemes of small, white, honey-scented fls. which in the North under glass would be borne in winter. It seems to be cult. only in S. Fla, and S. Calif. outdoors. Generic characters are lvs. rigid, margined, entire: fls. white or orange, borne in racemes, nmbels or singly ; corolla 5 -fid, wheel- to sal-rer-shaped, crowned at the tbroat and between the lobes with 5 roundish appendages (staminodia): berry leathery, several-seeded. In the allied genus Theophrasta the corolla is cylldrical, shortly 5 -lobed, the appendages are fastened at the base of the corolla instead of the throat, and the berry is many-seeded.
armillàris, Linn. Lvs, cuneate-spatulate or obovate, blunt, revolute at the margin, usually whorled, 4 in. long, I1/2 in. wide: berry $1 / 4 \mathrm{in}$. thick. W. Judies.

JAMBOLAN and JAMBOS. See E'ugenia.

JAMESIA (after its discoverer, Dr. Edwin James, 1797-1861, botauical explorer of the Rocky Mountains). Syn., Edwinia, Saxifragàeer. Low, hardy shrub of upright habit, with deciduous, opposite, petioled, serrate lvs., and white fls. in terminal, short panicles. Handsome shrub for borders of shrubberies or rocky slopes in sunny situations, thriving in any well-drained garden soil, best in a peaty and sandy one. Prop. by seeds or by cuttings of ripened wood. One species in the Rocky Mountains from Utah to New Mex. Lrs. without stipules: calyx lobes and petals 5: stamens 10: styles usually 3 : fr. a 3-celled, many-seeded, dehiscent capsule.

Americàna, Torr, \& Gr. Shrub, to 4 ft . : Ivs. broadly ovate to oblong-ovate, acute, serrate, dentate, pubescent or almost glabrous above, whitish tomentose beneath, $1 / 2-2$ in. long: fls, about $1 / 2$ in. across, white, sometimes pinkish ontside. June. B.M. 6142. J.H. IIl. 32:37. Gn. 32, p. 522, and 33, p. 606.

Alfred Rehder.
JAMESTOWN WEED is Dalura Stramonium.
JAMROSODE. See Eugenia Jambos.
JAPONICA. Popular name for Cydonia Japonica and Camellia Japonica.

JARRAH. Eucalyptus marginata.

JASIONE (ancient name of no application to this plant). Campanuldcea. This includes the Shepherd's Scahious, a hardy herbaceous perennial plant of compact habit, about a foot high, and bearing globose heads 2 inches io diameter, composed of very many light blue flowers. It is of easy culture in any garden soil, grows either in full sunlight or partial shade, and is equally adapted for borders, edgings, or the rockery. The common annual Scabious belongs to the teasel family, and has 4 stamens, while the Shepherd's Scabious bas 5 stamens. Jasione bas about 12 species, mostly European, and is easily distinguished from its allies by the fis. heing borne in a head with an involucre, the corolla ent into 5 awl-shaped strips, and the anthers somewhat united at their bases. They differ widely in duration and habit. Prop. by division and seed.
perénnis, Lam. Shepherd's Scabious. Sheep Scabsous. SheEP's-Bit. Stem ereet, sparingly if at all branched: root-lvs, obovate, io the non-floriferous plants forming a tufted rosette; stem-lvs. oblong-linear, entire: peduncles long, leafless: bracts ovate, serratedentate. July, Aug. B.R. 6:505. B.M. 2198.

J. B. Keller and W. M.

JÁSMINUM (Arabic name). Oledceor. Jasmine. Jessamine. Climbing or erect shrubs, of more than 100 species in warm regions of the Old World. Fls, fragrant; corolla yellow or white (sometimes reddish outside), salver-shaped, the 4-9 lobes convolute in the bud, much exceeding the calyx; stamens 2, included in the corolla tube: ovary 2 -loculed, with a single erect ovule in each locule, becoming in fr. a twin berry: lvs, pinnate, but sometimes reduced to I lft. (petiole jointed). Jasmines are of diverse horticultural groups. Some of them are bardy in the middle and southern states, whereas others are winter-flowering warmhouse plants. Most of them are known as coolhouse or temperatehouse shrubs, of half-climbing habit. They are all of
casy culture. They propagate readily by cuttings of nearly matnre wood and by layers. Often the fls. are very fragrant. The species are usually called Jasmines, and the word Jessamine is commonly restricted to J. officinale, which is the Jessamine of poetry. Some of them (particularly J. grandiflorim) are grown for perfume-making. The Cape Jessamine is Gardenia. Yellow or Carolina Jessamine is Gelseminm.

INDEX.

affine, 7.
anastomosans, 5. Azoricum, 9.
Ravum, 10. gracile. 6. gracillimum, 4. grandiflorum, 8 . hirsutum, 3. humile, 10 .
lucidum, 6. multiflorum, 3 . nuditlorum, 12. odoratissimum, 11 officinale, 7 . poeticum, 7. pubesceus, 3 . Reevesii, 10 .

revolutum, 10.

Sambae, 1.
Siebotdianum, 12 . simplicifolium, 6. trifoliaturn, 1 . trinerve, 5 . triumphans, 10. undulatum, 2 .

A. Les. reduced to ore lft.: fls. white.

 B. Calyx pubescenl or hairy.1. Sámbac, Soland. Arabian Jasmine. Climbing, the angnlar brancblets pubescent: 1 vs . opposite or ternate (the ternate-Ivd. specimens giving rise to the name trifoliatum), firm in texture, shining, bearly or quite glabrons, the petiole short and abruptly curved upwards, elliptic-ovate or broad-ovate, either promiuently acnte or completely rounded on the end, entire, prominently veined: clusters 3-12-fld.: calyx lobes linear and prominent, hirsute on the edges (sometimes almost glabrous) : corolla tube $1 / 2 \mathrm{in}$. long; lobes oblong or orbicular. ladia. - Much cult. in the tropics. Fls, white, but turning purple as they die. B.R. 1:1. A full double bnt-ton-fld. group is in cult., one form of which is the Grand Duke of Tuscany (or Graud Duke). The double form is shown in B.M. 1785. This double form sometimes passes as J. trifoliatum. J. Sambac is a perpetual bloomer, particularly in trostless countries, where it can stand in the open.
2. undulàtum, Ker. Climbing, with hairy branches. slender: 1vs. opposite, short-petioled, rather smali (about 2 in . long), o vate-lanceolate and acuminate, somewhat pubescent beneath, somewhat undulate: fls. 6-10, in terminal cymes, white, long-tubed; calyx teeth short; corolla tube $3 / 4 \mathrm{in}$. long, and slender; lobes half or less as long, acute. India. B.R. 6:436.-Liss, sometimes ternate. Little known in enlt. in this country.
3. pubéscens, Willd. (J. hirsùtum, Willd. J. multiflòrum, Andr.). Climbing, rusty-hairy: Ivs, very shortpetioled, rather thick, ovate-acute: calyx teeth usually $2 / 3 \mathrm{in}$. long (nearly or quite twice as long as in J. undulatum), with spreading yellow hairs: fis. white, much like those of \mathcal{J}. undulatum, the lobes broad, often halfdouble. India. B.M. 1991. B.R. 1:15.-Will stand some frost.
4. gracillimum, Hook, f. Climbing or serambling, soft pubescent or hairy: lvs. very short-petioled, ovate-lanceolate, acuminate, the base cordate or truncate, bright green above and pubescent beneath, $11 / 2 \mathrm{in}$. or less long: fls, white, in very large, dense hanging heads, an inch or more across, fragrant; calyx teeth long and awl-like, half as long as the slender corolla tube; corolla lobes many (usually about 9), acnte. N. Borneo. G.C. II. 15:9. B.M. 6559 .- Long, lithe branches spring from near the ground and bear heavy clusters at their ends. Handsome winter bloomer. Nearly hardy in eastern N. Car.

BB. C'alyx glabrous.

5. trinérve, Vahl. Tall-climbing, with terete glabrous branches: Ivs. short-stalked, ample, ovate-oblong and acnminate, strongly 3 -nerved from the base: fls. white, in sinall clusters; calyx teeth narrow but mnch shorter than the long corolla tube; corolla lobes only half as long as the tube, acute. India. B.R. 11:918.-Perhaps only a form of J. anaslomosans, Wall.
6. simplicifolium, Forst. (J. lücidum, Banks). Climber, or sometimes a tree in its native place, glabrous or pubescent: lvs. mostly short-stalked, shining, varying from oblong-elliptic to ovate-lanceolate to cor-date-orate, acute or obtuse, usually less than 3 in . long: fls. white, in terminal forking, many-fld. clusters; calyx teeth short and sometimes scarcely any; corolla tube
$1 / r^{-1} / 2$ in. long, the acute lobes somewhat shorter. Austral. B.M. 980. B.R. 8:606 (as J. gracile, Andr.).Summer bloomer.

AA. Lrs. of 3 or more lfts.
 B. Flowers white.

7. officinàle, Linn. (J. poéticum, Hort.). Jessamine. Long, slender grower requiring snpport, but scarcely self-climbing, glabrous or very nearly so: Ivs, opposite, odd-pinnate, the lateral $1 \mathrm{fts}$. . $2-3$ pairs and rhomboid-ob-long-acute, the terminal one longer: fls. 2-10 in terminal more or less leafy clusters; calyx teeth linear, $1 / 4-2 \mathrm{sin}$. long, or sometimes as long as the rather short corolla tube; corolla lobes oblong, more or less involute on the margins. Persia, India. B.M. 31. R.H. 1878, p. 428. - Long cultivated. The glossy foliage and fragrant white summer-bloowing fls. render the plant very attractive in the S., where it is hardy. With protection it will stand as far N. as Phila. Var, affine, Nichols. (J. affine, Hort.), is a form with larger fls. R.H. 1878, p. 428.
8. grandiflòrum, Linn. Catalonian, Italian, Royal or Spanish Jasmine. Nearly erect-growing, the branches drooping aud angular, glabrons or very nearly so: lvs. opposite, the rachis flattened or winged, the lfts, 2-3 pairs, elliptic or round-elliptic, mostly ending in a very small point or cusp: calyx teeth $1 / 4 \mathrm{in}$. long or rarely half as long as the corolla tube; corolla star-shaped, larger than in J. officinale. Ivdia. B.R. 2:91.-Probably the best white-flowered species. Snmmer and fall, or nearly perpetual in warm conntries. Much grown in Eu, for perfnmery. Stands $10^{\circ}-12^{\circ}$ of frost.
9. Azòricum, Linn. Climbing, glabrous or nearly so, the branches terete: lvs, evergreen, opposite, the lfts. 3 , ovate-acuminate, the 2 side ones often smaller: calyx teeth very small; oblong corolla lobes about as Jong as the tube. Canary 1sl. B.M. 1889.-A good white-fld. temperate-honse species blooming in summer and winter.

10. Jasminum humile $(\times 1 / 3)$.

вb. Flowers yellow.
10. hùmile, Linn. (J. revolütum, Sims. J. flùvum, Sieb. J. triúmphans, Hort.). ITalian Yellow Jasmine. Fig. 1191. A diffuse shrub, in the open ground in the S. reaching 20 ft , and requiring snpport, but in glasshouses usually grown as a pot bush: branches glabrous, angled: lvs. alternate, odd-pinnate (rarely reduced to 1 lft . f , the lateral lfts. $1-3$ pairs, all lfts. thickish and acuminate, and more or less revolute on the edges, varying from oblong to oblong-lanceolate to oblong-rotund: As, bright yellow, in open clusters; calyx teeth very short; corolla tube $3^{3 / 4}-1 \mathrm{in}$. long, usually considerably exceeding the mostly obtnse and reflexing lobes. Trop. Asia. B.M. 1731. B.R. 3:178; $5: 350$. L.B.C. $10: 966$.The commonest Jasmine in American glasshonses, usnally known as J. revolutum. It is hardy in the open as farnorth as Mary land. Lvs. thick and evergreen. Needs a cool house if grown under glass. Summer and fall bloomer. J. Reèvesii, Hort., may belong to this species.

1I. odoratissimum, Lion. Much like the last, but more erect and less leafy when in flower: lvs. alternate, the leaflets 3 or 5 , shining, oval or broad-oval and obtuse: tis. yellow, in a terminal cluster; calyx teeth very short; corolla lobes oblong-obtuse, mostly shorter than the tube.

Summer. Madeira. B.M. 285.-It is an erect, glabrous sbrub with straight, stiff, terete or faintly angular branches.
12. nudiflörum, Lindl. (J. Sieboldiànum, Blume). Twiggy, nearly erect sbrub with 4 -angled glabrous stiff branchlets: Ivs, opposite, small, with 3 little ovate ciliate Ifts., the entire foliage falling in autumn or when the growth is completed: fls. solitary, in early spring (or winter), from long, scaly buds, subtended by several or many small leaf-like bracts, yellow; calyx lobes leafy and spreading or reflexed, shorter than the corolla tube; corolla segments ohovate, of wavy. China. B.R. 32:48. B.M. 4649. R.H. 1852:201. G.C. III. 11:181.-A most interesting plant, reminding one of Forsy thia when in bloom. Hardy south of Washington, and blooming nearly all winter. With protection, it will stand as far north as Hudson river valley, and bloom very early in spring. In northern glasshouses, used mostly as a late winter and early spring bloomer. Strong-growing specimeus need support.
J. angulàre, Vahl. Fls. very long-tnbed, white: Ivs. opposite, ternate. S. Afr. B, M. 6865,-J. calcareum, Muell. (J. Nove Zelandicum, Bosse), is a spring and summer-blooming Australian species with white fls. and simple, opposite, thick, 3- or 5 -nerved Ivs.-J. didymum, Forst. Climber: tls, small, white, in narrow axillary cymes which exceed the lvs.: lvs. opposite, ternate; lfts. often retuse. Austral. B.M. 6349.-J. früticans, Linn. Bushy: hranches angular: lvs, alternate, small, ternate, the lfts. ohovate: fls. yellow. Mediterranean region. B.31. 461 $-J$. potyointhum, Franch., a recent C'hinese species in the way of J. grandiflorum, may be expected to appear in cult. Fls. white inside, reddish outside, long-tubed: lls, opposite, with about 5 long-acuminate lfts. R.H. 1891, D. 270.-J. putigerum, Don. Much like J. humile, but fls. smaller and plant villous. India.
L. H. B.

JÁTROPHA (Greek, referring to .ts medicinal use). Euphorbideece. This includes the French Physic Nut, J. Cureas, which is grown commercially in the Cape Verde Islands for the seeds, which yield a purgative oil resembling castor oil. It is also grown for oruament in S. Fla, and S. Calif. About 68 species of tropical herbs or tall shrubs: lvs. alternate, petiolate, usually palmately lobed: fls, at the tips of branches in forking cymose panicles, monœcious; calyx 5 -parted; corolla twisted; stamens 10 or fewer: column surrounded by 5 glands: capsule 2-3-seeded.
multifida, Linn. Shruhby, 5-10 ft. high: lvs. longpetioled, 7-9-parted, glabrous, not glandular; segments pinnatifid; stipules many-parted, the divisions bristly; cymes umbel-like: petals distinct, 3 times as long as the calyx; stamens 8-10. Tropics; naturalized in Jamaica and common there. - Cult, at Santa Barbara, hy Franceschi, who says its curiously divided leaves and scarlet flowers are very ornamental, and adds that it is called "Coral Bush."

Cúrcas, Lind. French Physic Net. Subshrub, 6-12 ft . high: Irs. suhcordate-roundish, angular or obsoletely $3-5$-lobed, glabrous; stipules deciduous: corolla 5 parted, villous inside, twice as long as the calyx; stamens $10-15$. Tropics. - A weed at St. Vincent. Reasoner says it grows 20 ft . bigh.
gossfpifolia, Linn. Subshrub, a few feet high: lvs. long-petioled, 5 -parted, with prominent gland-tipped hairs on the margin, petioles and many-parted stipules, those on the petioles branched: petals distinct, dark purple; stamens $8-10$. Tropics. L.B.C. 2:117. B.R. 9:746.- Long cultivated for oruament. Has been recently advocated as a specific for leprosy.
J. stimulisa, Michx., the Sparge Nettle, is a common weed in the South.

> J. B. S. Norton.

JEFFERSONIA (after Thomas Jefferson, third president of the U.S.). Berberidacere. A genus of 2 species, one of which is a native hardy herbaceous perennial plant, growing about 8 in. high, with cbaracteristic foliage and a naked scape, bearing a solitary white (sometimes reddish) flower in May. Distinguished from the group of cultivated allies mentioned under Epimedium by the following characters: lvs. 2-parted: sepals 4 : petals 8, larger than the sepals, and flat; stamens 8: ovules in an indefinite number of series along the venter. The capsule is half-circumscissile near the top, making, with the seape, an object resembling a pipe. Mn. 5, p. 226.
binàta, Bart. (J. diphŷlla, Pers.). Fig. 1192. Becoming 16-18 in. high in fruit: Irs. glaucous beneath, 3-6 in. long, $2-4$ in.wide: fls.
about 1 in. across. Woods, E. Pa, to Va . and Tend. B.B. 2:92.

JERUSALEM AR-

 TICHOKE. tichoke, Jerusalem J. Cherry. Solanum Рsендо-сорsicum. J. Cross. Lychuis Chatcedonica. J. 0ak. Chenopodium Botrys. J. Sage. Phlomis fruticosa. J. Thorn. Parkinsonia aculeata.JESSAMINE is Jasminum officinale. Cape Jessamine is Gardenia jasminoides. Malayan Jessamine is Rhyncospermum jasminoides.
JEWEL WEED. Impatiens aurea and biflora.
JIMPSON or JIMSON WEED. Consult Datura.
JOB'S TEARS. Coix.
JOE-PYE WEED, Eupatorium purpureum.

JOHNNY APPLESEED. See Appleseed, Johnny.
JOHNSON GRASS. Andropogon Halepensis.
JONQUIL, See Narcissus.
JOVE'S FRUIT. Benzoin melissifolium.
JUB庆A (after Juba, kiog of Numidia). Palmdeere. This includes the Wine Palm of Chile, J. spectabilis, which in this country is cult, outdoors in S. Calif. and in the North under glass. "It is one of the hardiest palms,"says Franceschi, "and can endure drought and many degrees of cold. If liberally treated, it makes a large tree in a few years." A full-sized trunk yields about 90 gallons of sugary sap, wich is boiled by the Chileans and called palm honey. There is some danger of the species being exterminated in Chile. The fruits look like diminutive cocoanuts, and are called Coquitos, or by the trade "Monkey's Cocoanuts." In Europe, it is cult. under glass, and also used for subtropical bedding.

Juboa spectabilis is a handsome and satisfactory palm for the cool palm house, where it would be treated in common with such plants as Chamarops humilis, the Sabals and Euterpe montana, which may be grown well in a night temperature of 50°, providing the plants are properly established. In general appearance, J. spectabilis reminds one of some kinds of Pbonix, and, like them, does not show the true cbaracter of its foliage in a very small state, the seedling Jubma producing several simple lvs. before developing foliage of the pinnate type. In Jubæa, however, the lower pionæ do not revert to spines, as is usually the case with Phenix, and the pinns are also arranged irregularly on the midrib, thus giving the frouds a feathery effect. The culture of Jubæa is by no means difficult, propagation being effected by means of imported seeds, which usually give a fair percentage of germination, providing they are started in a warmhouse and kept moist. The seedlings should be potted as soon as the second leaf appears, and kept in a warmbouse until they are large enougb for a 4 -inch pot, and from this time forward cooler treatment will give the best results, always remembering the fact that while many palms (and Jubæa among the number), will bear much neglect, yet the best results are only to be had by giving plenty of nourishment.

Jubra has 2 species of tall, unarmed S. American palms: candex thick, covered with the bases of the
sheaths: Ivs. terminal, pinnatisect; segments spreading, linear-lanceolate, rigid; margins recurved; rachis laterally compressed, convex on the hack, acute heneath; sheath short, open. Allied genera in cult. are Attalea, Cocos, Maximiliana and Scheelea, which are distinguished chiefly by the staminate fls. In Jubra the petals are lanceolate: stamens numerous, included, the anther cells connate: fr. 1 -seeded. In Attalea the petals are lanceolate: stamens $10-24$, included, anther cells connate: fr. 2-6-seeded. For distinctions from other genera consult, also, Cocos, Maximiliana and Scheelea.
epectábilis, HBK. Height $40-60 \mathrm{ft}$.: lvs. $6-12 \mathrm{ft}$. long. G.C.II. 18:401; 111. 18:516. Gzn. 5, p. 413. V.8:340. -The southernmost American palm.
W. H. Taplin and W. M.

JUDAS TREE. Cereis.
JÚGLANS (ancient Latin name from Jovis glans, nut of Jupiter). Juglandacer. Walnot. Butternut. Ornamental and fruit-bearing trees, rarely shrubs, with deciduous, alternate, odd-pinnate lvs, and with inconspicuous greenish fls., appearing with the Ivs., the staminate in pendulous slender catkins, the pistillate in few- to many Hd. racemes: the fr. a large drupe, containing an edible nut. Most of the species are hardy, and are very valuable park trees, with a massive, straight trunk, and a light and airy broad top, the best being probably J. nigra, one of the noblest trees of the American forest. J. regia, J. Californica and the Mexi-

1193. Leaf of Juglans nigra ($\times 1 / 3$).
can species are tender in the North. Though many fungi and insects prey on the Walnut, none of them do very serious damage, the worst being, perhaps, the hick-ory-borer. The wood of the Walnut, which is easily worked and susceptible of receiving a beautiful polish, is much used for eabinet-making and the interior finish of bouses, especially that of J. nigra and regia, which is heary, strong and durable, and of dark brown color, while that of J. cinerea and Sieboldiana is light and soft. The busks of the nuts are sometimes used for dyeing yellow, and the bark for tanning leather. The husk of
J. cinerea has some medicinal properties. The nuts of all species are edible, and are an article of commercial importance, especially those of the European Walnut, which are the best. This species is extensively grown

1194. Pistillate flowers of Juglans cinerea. Natural size.
in the warmer parts of Europe, in California and in the east from Pennsylvania to Georgia. The nuts of the native species are also sold on the market, but mostly gathered in the woods, though a number of improved varieties are in cultivation. J. Sieboldiana and \mathcal{J} cordiformis, with nuts superior to those of the native species, will probably become valuable nut trees where J. regia is too teuder; the nuts of both are much valued in Japan. The Walnut grows best in moderately moist, rich soil, but J. cinerea is more moisture-loving and J. regia prefers well-drained hillsides. They are not easily transplanted when older, and therefore the nuts are often planted where the trees are to stand, but they may be safely transplanted when 2 or 3 years old, or even later whem they have been transplanted in the nursery. Prop. by seeds, which should be stratified and not allowed to become dry. A light, sandy soil is to be preferred, as the young plants produce more fibrous roots, while in stiff soil they are liable to make a long taproot. The young seedlings are transplanted when about 2 years old; sometimes the taproot is eut by a long knife. Varieties are often grafted on potted stock in the greenhouse in early spring or are budded in summer, either shield- or flute-budding being employed; even top-grafting of old trees is sometimes practiced. About 10 species in N. Amer., south to Mex. and from S. E. Europe to E. Asia. Trees, rarely large sbrubs: the stout brancnes with laminate pith: lvs.without stipules, of aromatic fragrance when bruised: staminate fls, with a $2-5$-lobed perianth and $6-30$ stamens, in slender catkins; pistillate fls. in fewto many-fld, racemes : ovary inferior, 1-celled, with 4 calyx lobes and included in a 3-lobed involucre: fr. a large drupe with a thick, indehiscent husk; nut 2-or 4 celled at the base, indehiscent or separating at last into 2 valves. For culture and further information, see U. S. Dept. of Agric., Nut Culture in the U. S., quoted below as U. S. N. C.; see, also, Walnul.

1195. Juglans Mandschurica. Natural size.
A. Fr. glabrous or finely pubescent: nut t-celled at the base.

B. Lifts. $5-18$, almost entire.

règia, Linn. Persian or English Walntut. Round headed tree, to 70 ft .: lvs, oblong or oblong-ovate, acnte

JUGLANS

1196. Juglans Sieboldiana ($\times 1-\bar{j}$).
or acuminate, almost glabrous, hright green, 2-5 in. long: fr. almost globular, green; nut usually oral, reticulate and ratber smooth, ratber thin-shelled. S.E. Europe, Himal., China. U.S. N. C., pl.6. Many vars, are cultivated as fruit trees, for which see Walnut. Of the ornamental vars, the most distinct aud decorative is var. laciniàta, Loud. (var. filicifollik, Hort., var. asplenifolia, Hort.), with narrow, pinnately cut lfts.; very effective as a siogle specimen on the lawn; remains usually shrubby. Var. monophylla, Hort., has the lvs. simple or 3 -foliolate. Var. pendula, Hort., has pendulous branches. Var. præparturiens, Hort., is a sbrubby var., produciug rather small, thin-shelled nuts on very young plants. Var. Bartheriàna, Hort. (var. elongàta, Hort.). Nut elongated, narrow-oblong. R.H. 1859, p. 147; 1861, p. 427. Gn. 50:478.

1197. Juglans Sieboldiana fruits. With and withont the husk. Natural size.

BB. Lfts. 13-25, serrate.

Californica, Wats. Round-headed tree, occasionally to $60 \mathrm{ft} .$, with puberulous branchlets: Ifts. ovate-oblong to oblong-lauceolate, acute or acuminate, almost glabrous or puberulous wben young, $2-4$ in. long: stamens $30-40$: ovary almost glabrons or puberulous: fr. globose, $3 / 4-11 / 2$ in. across ; nut obscurely sulcate, rather thio-shelled. Calif. S. S. 7:337. Gn. 49, p. 278. - A graceful, ornamental tree, also used as stock for grafting in Calif. The nut is of good quality but rather small.
rupéstris, Engelm. Shrub or small tree, rarely to 50 ft.: branchlets pubescent when young: Ifts, ovate-lanceolate to lanceolate, acuminate, puberulous or pubescent when young, $2-5 \mathrm{in}$. long: stamens about 20 : ovary pubescent or tomentose : fr. globular, rarely ovoid, often pointed, usually pubescent, $1 / 2-1 \frac{1}{2}$ in. across; nut deeply sulcate, with longitudinal grooves, thick-shelled, with small kernel. Colo. to Tex, aud northern Mex. S.S. 7:335. - Tbe typical form has narrower, more glalirous lys, and smaller frs., while var. major, Torr., the western form, is of more vigorous growth, has broader, more coarsely serrate and more pubescent lvs. and larger, less thjek-walled nuts, S.S. 7:336. Probably J. longirostris, Carr. (R. H. $1878, \mathrm{p} .53$), belongs here.
nigra, Lian. Black Walnct. Fig. 1193. Lofty tree, to 150 ft ., with rough brown bark and pubescent brancblets : Ifts. oblonglanceolate, acuminate, appressedserrate, glabrous and somewhat shining abore at length, pubescent beneath, $3-5 \mathrm{in}$. long: fr. usually $1-3$ on 8 short stalk, $11 / 2-3$ in. across, with papillose surface; nut thiek-sbelled, globular or somewhat cepressed, deeply furrowed. Mass, to Fla., west to Minn. and Tex. S. S. 7: 333-334. Em. 211. fi.f. II. 11:373; 26:617. U.S.N.C. 7, pp.1-3. Gu. 27, pp. 269, 270.
AA. Fr. coated with viscid hairs: nut z-celled at the base: lfts. with stellate and glandular pubescence beneath, serrate.
cinèrea, Linn. BUTTERNUT. White Walnct. Fig, 1194. Large tree, occasionally to 100 ft ., with gray bark: Ifts. 11-19, oblonglanceolate, acuminate, appressedserrate, usually pubescent on both sides, more densely below, 3-5 in. long: fr. in short racemes, 2-5, oblong, pointed, $3-5 \mathrm{in}$, long; nut oblong, with 4 more aod 4 less promiinent irregular ribs and many broken slarp ridges hetween. New Brunswick to Ga., west to Dak. and Ark. S. S. 7:331-332. Em. 207. U.S.N.C. 7, p. 4.

Mandshùrica, Maxim. Fig. 1195.

1198. Winter twig of Juglans Sieboldiana. Natural size. Broad-headed tree, to 60 ft .: Itts. oblong, acute, obtusely serrate, at leagth almost glarous ahove, puhescent beneath, rarely almost glabrous at length, $3-8 \mathrm{in}$. long: fr , in short racemes, globularovate to ohlong; nut similar to that of the former, but less sharply ridged. Mandshuria, Amurland. G.C. 111. 4:384. R.H. 1861, p, 429 (as J. regia octogona). Gn. 50, p. 478 (by error as J. regia cordata). U.S.N.C. 7, p. 5.

Sieboldiàna, Maxim. (J. ailantifolia, Carr.). Figs. 1196-8. Broad-headed tree, to $50 \mathrm{ft.:}$ Ifts. 11-17, oval to oval-oblong, short-acuminate, densely serrate, glabrous above, pubesceut beneath, 3-6 in. long: frs. in long racemes, sometimes twenty, globose to ovate-oblong; nut more or less globose, witb thick, wing-like sutures and pointed apex, the surface rather snootb, slightly rugose and pitted, $1-1 \frac{1}{2}$ in. long, rather thick-sbelled. Japan. Gn. 47, p. 442. A.G. 11:701; 12:179. R.H. 1878, pp. 414-415, U.S.N.C. 7, p. 7.
cordiformis, Maxim. Fig. 1199. In habit and foliage very near to the preceding. hut lvs. less pubescent, and nut very different, heart-shaped, much Hattened, sharply 2 -edged and with a shallow longitudinal groove in the middle of the flat sides, smooth and rather thin-shelled. Japan. U.S.N.C. 7, p. 6.

1199. Juglans cordiformis Natural size.
intermèdia, Carr. (J. nigra \times règia $)$. Hybrid of garden origin of which two forms have been described. Var. pyriformis, Carr., with a fr. more resembling that of J. regia. R.H. 1863, p. 30. Var. Vilmoriniàna, Carr., with a fr. more like that of J. nigra. G.F. 4:52-53. Probably also J. regia gibbosa, Carr., with a large, thickshelled, deeply rugose nut, belongs here. R.H. 1861, p. 428. Gn, 50, p. 478 . Another not uncommon hybrid is J. quadrangulata, Carr. (J. cinerea \times regia. J. alata, Hort.), of which large trees are known as well in this country as in Europe. G.E. 7:435. R.H. 1870, p. 494. Hybrids between J. Californica and J. regia and between J. Californica and J. nigra have been raised by Luther Burbank, and a bybrid of J. cinerea and nigra has been reported from Germany as J. cinereo-nigra, Wender.

Alfred Rehder.

JUJUBE. Zizyphus Jujuba.

JUNCUS (classical name, "to join"). Juncàcece. Rushes. Grass-like plants growing in wet or rarely in dry places, and sending up from the rootstock numerous cylindrical, strict, commonly unbranched stems, which bear a terminal cyme of greeuish flowers: lvs. grass-like, terete or flat: perianth of 6 rigid, chaffy parts: stamens short, either 3 or 6: capsule 3-celled or rarely 1 -celled, many-seeded. Rusbes differ from the true grasses and sedges in baving a true perianth and a many-seeded pod. The genus includes a host of species distributed throughout the temperate regions, but only the following are in the American trade, and are used for planting in bogs and around aquatic gardens. Rushes are sold by deaters in native and aquatic plants. The kind used in making mats in Japan is procurable from dealers in Japanese plants.
effusus, Linn. (J. commùnis, Hort.). Common Resh. Fig. 1200. Stem soft, 1-4 ft. high, not leaf-bearing: cyme diffuse, J-2 in. long, appearing lateral : sepals acute, equaling the short, retuse and pointless greenish brown capsule: stamens 3: seeds small, not tailed. North temperate zone. Used also for weaving into mats, etc. Var. congéstus. Hort. Cyme dense and capitate. Var. vittàtus, Buch. (J. effùsus, var. aureo-strì̀tus, Hort. J. conglomeràtus variegatus, Hort.). Foliage striped with yellow. Var. spiralis, Hort. A curious form with stems spirally twisted like a corkscrew.
conglomeràtus, Linn. Very similar to the above: cymes congested and capitate, appearing lateral: capsule obovoid, obtuse or retuse, apiculate. North temp. regions. Differs mainly in the apiculate capsule. Probably much of the trade material named tbis to he referred to congested forms of J. effusus.
J. zebrinus, Hort. $=$ Scirpns Tabernæmontanus, var. zehrinns. K. M. Wiegand.

JUNEBERRY. Amelanchier.

JUNIPERUS (ancient Latin name). Conifera. JuniPER. Ornamental evergreen trees and shrubs with opposite or whorled, peedle-shaped or scale-like Ivs, often on the same tree, and with inconspicuous small fls.: fr.
a berry-like small cone, usually glohose. Many of the species are bardy North, as J. Virginiana, communis, rigida, Sabina, Chinensis, Pseudo-sabina, spharica, Davurica, recurea rar. squamata; others are halfhardy, as J. Orycedrus, macrocarpa, recurva, excelsa, occidentalis, while some, as J. procera, Bermudiana, thurifera and the Nexican species, can only be grown South. All are valuable ornamental plants, and the erect-growing species, mostly of pyramidal or columnar habit, are decorative as single specimens on the lawn or if planted in groups. Some varieties form a very narrow column, and are valuable for formal gardens; the columnar form of J. Virginiane is a good substitute in the North for the classical eypress. The low Junipers, as J. communis var. nana, Sabina, and recurva var. squamata, are well adapted for covering rocky slopes or sandy banks. The close-grained, fragrant wood is mucb used for the interior finish of houses and in the manufacture of small articles, also for posts, since it is very durable in the soil; that of J. Virginiana and Bermudiana is in great demand for pencil-making. The fruits and also the young branchlets of some species contain an aromatic oil used in medicine. The fruit of J.drupacea is edible. The Junipers thrive best in sandy and loamy, moderately moist soil, but grow well even in rather dry, rocky and gravelly ground. They prefer sunny, open situations. They are well adapted for hedges and for planting as shelter or wind-breaks; also for seaside planting. Prop. by seeds, which ger-

1209. Common Rush, Juncus effusus.

The flower-cluster, a, is natural size. The single flower, b, is enlarged.
minate usually the second and sometimes the third year, or by cuttings of nearly ripened wood in fall under glass, either outdoors or in the greenhouse. As a rule, those with needle-shaped lvs. root much easier
than those with scale-like lvs., and the latter are therefore mostly increased by side-grafting during the winter in the greenhouse on young potted plants of the typical form or an allied species. The shrubhy species, especially J. Subina, are also prop, by layers.
About 35 species distributed throughout the extra tropical regions of the northern hemisphere, in America south to Mexico and W. Ludia. Trees or shrubs with the branchlets spreading in all directions: lvs, either all needle-shaped aod in 3 's, or needie-shaped aod scalelike, and usually opposite, often found on the same plant, the needle shaped lvs, prevailing on younger plants and vigorous branches, the scale-like ones ou older plants: fis, diceious, rarely moncecious; staminate yellow, consisting of numerous anthers united into an ovoid or oblong catkin; pistillate greenish, minutely globular, with several bracts; each or some beariug I or 2 ovules; the bracts become fleshy and unite into a herrylike cone, usually wholly enclosing the 1-6, rarely 12 , seeds. The fr. ripens either the first year, as in \boldsymbol{J}. Virginiant, or the second, as in J. Sabina and most species, or in the third, as in J. communzs.
Juniperus is closely allied to Cupressus, and sometimes hard to distigguish without fr.; but youog plants with needle-shaped lvs. can be almost always told apart, since Juoiperus has whitish lines or mazes on the upper surface of the lvs., while the similar juvenile forms of allied genera have the whitish marks beveath. Most species are very variable, as well in habit as in the shape of the lvs., which renders the determination of an unknown form, at least without fr., a rather dificult task.

INDES.

alpina, 5.
Barbadensis, 14.
Bermudiana, 14, 16,
Californica, 8.
Canadensis, 5
Chinensis, 12.
communis, 5.
drupacea, 1.
excelsa, 10.
Fortunei, 13.
Hibernica, 5 .
hemispharica, 5.
Japonica, 12
macrocarpa, 2.
nana, 5.
Neaboriensis, 2.
oblonga, 5.
occidentalis, 9 .
Oxycedrus, 3. phoenicea, 7 . phoenicea, ${ }^{7}$. proenmbens, 12, 17. prostrata, 17. recurva, 6. repanda, 6. repens, 17 . Reevesi, 12. rigida, 4.

Sabina, 17.
sabinoides, 17 and suppl. Schottil, 14. Shephardi, 13. Sinensiz, 12. spherica, 13
Snecica, 5. squamata, 6 tamariscifolia, 17. tripartita, 11. venusta. 10. Virginiana, 14. Waukegan, 17.
A. Foliage nlways needle-shaped and in s's, rigid, jointed at the base: fls. axillary, diocious: win-ter-buds with scale-like lvs. (see also No. 6).
B. Fr.large, 3/4-1 in. across, with the seeds connate into a usually s-celled bony stone. (Caryocedrus.)

1. drupàcea, Labill. Pyramidal tree with narrow head, to 45 ft .: Ivs. lanceolate, spiny-pointed, $1 / \mathrm{m}^{-3 / 4} \mathrm{in}$. long and $1 / 5-1 / 6 \mathrm{in}$. broad (the broadest of all species), with 2 white lines above: fr. bluish black, edible. S. E. Eu., W. Asia. G.C. 1854:455; 111. 19:519. R.H. 1854, p. 165.

Bb. Fr. smaller: seeds not connate, usually s. c. Lvs. with \& white lines above.
2. macrocárpa, Sibth. (J. Veaboriénsis, Gord.). Sbrub or small tree, to 12 ft ., of deose pyramidal habit: lvs. crowded, linear-lanceolate, spiny-pointed, spreading, $1 / 2-3 / 4 \mathrm{in}$. long: fr. to $1 / 2 \mathrm{in}$. across, dark brown, glaucous. Mediterranean region.
3. Oxycedrus, Lino. Bushy shrub or small tree, to 12 ft ., with rather sleader branches: 1rs. linear, spinypointed, spreading, $1 / 2-3 / 4$ in.: fr. globose, $1 / 4-1 / 3$ in. across, brown, shining, not or slightly glancous. Medjterranean region.

> cc. Lrs, with one white line above.
4. rígida, Sieh. \& Zucc. Small, pyramidal tree, to 30 ft ., or spreading shrub with the sleuder branches pendulous at the extremities: Ivs. in closely set whorls, narrow-linear, stiff, yellowish green, $1 / 2-1 \mathrm{in}$. long: fr. about $1 / 4 \mathrm{in}$. across, dark violet. Japan. S.Z. 125.Graceful, hardy shrub, somewhat similar to J. communis, var. oblonga, but the lvs. more crowded and stiffer.
5. commùnis, Lina. Comyon Juniper. Shrub, with procumbent, spreading or erect branches, sometimes tree becoming $40 \mathrm{ft} .:$ Ivs. linear or linear-lanceolate, concave aod with a broad white band above, spinypointed, $1 / 3-3 / 4 \mathrm{in}$. long: fr. almost sessile, dark blue,
glancous, $1 / 4-1 / 3 \mathrm{in}$. across. Widely distributed through the colder regions and mountaios of the northern hemisphere io many different forms. Some of the most important varieties are the following: Var. aureo-variegata, Hort. Upright form, with the tips of the branchlets golden yellow. Var. Canadénsis, Loud. (J. C'anudensis, Burgsd. J. nana Canadensis, Carr.). Similar to var. nana, but higher aud more erect and the lvs. somewhat longer and narrower. Var. Canadensis aurea, Hort. Like the former, but tips of brancblets golden yellow. Var. hemisphæ̈rica, Parl. (J. hemispharica, Presl). A low, dense, rounded bush, rarely more than 3 ft . high: lvs. straight and stiff, short. Mountaius of southera Eu. and N. Afr. Var. Hibérnica, Gord. (var. striete, Carr.). Pig. 535, Vol. I. Narrow, columuar forin,

1201. Juniperus communis, var. nana.
with upright hranches, deep green, tips of branchlets erect. Var. nàna, Loud. (J. nд̀na, Willd. J. alpina, S. F. Gray. J. Sibirica, Burgsd.). Fig. 1201. Lowspreading or procumbent shrub, seldom over 2 ft . high: Ivs, oblong-linear, abruptly poioted, usually incurved, deosely clothing the branches, with a broad silvery white line above, $1 / 4-1 / 9 \mathrm{in}$. loog. Arctic and mountainous regions. Var. oblonga, Loud. (J. oblónga, Bieb.). Upright shrub, with slender, diverging and recurving branches: Ivs, thin, long-attenuate, horizontally spreading, bright green. Transcaucasia. Var. oblóngo-péndula, Carr. (var. reflexa, Parl.). Similar to the preceding, hut more decidedly pendulous. A very graceful form. Var. pendula, Carr. Shrub, with spreading, recurviag branches and pendulous branchlets. Var. Suècica, Loud. (var. fastigidta, Hort.). Narrow, columnar form, growing sometimes into a tree to 40 ft . high, with rather long, spreading lvs., the branchlets with drooping tips: of lighter and more bluish color than the similar var. Hibernica. Var. vulgàris, Loud. Bushy shruh or small tree, with usually upright or sometimes spreading branches: Ivs. linear, straight aud spreading. This is the common European form, sometimes hard to distinguish from the American upright form, var. erécta, Pursh, which, however, has not the columnar habit so common with the European variety, and uas the lvs. more silvery white above, of lighter green and mostly slightly curved.
AA. Foliage usually of two kinds of ľs. (Fig. 1203) and opposite, decurrent: fls.terminal: no distinct winter-buds.
B. Lis. in s's, lanceolate, short, loosely appressed: fr. oblong.
6. recurva, Hamilt. (J. repinda, Hort.). Shrub or small tree, to 30 ft ., with spreadiog and usually recurving brauches: branchlets rather thick: lvs. linearlanceolate, pointed, grayish or glaucous green with a whitish band above : fr, about $1 / 3 \mathrm{in}$. long, 1 -seeded. Himalayas. G.C. II. 19:468. Gu. 36, p. 215. Var. dénsa, Carr. Dwarf, with short, crowded branchlets: Ivs. curved, grayish green. Var, squamata, Parl. (J. squamdta, Hamilt.). Prostrate, with long, trailing branches and numerous short brauchlets: lvs, straight, slightly spreading, glaucous or bluish green. Much hardier than the type.
BB. Lus. mostly opposite, scale-like or of two kinds, usually with a gland on the back: fr, mostly globular.
c. Fr. erect or nodding: mostly trees.
D. C'olor of fr, reddish brown, with rather dry, fibrous flesh: le's. minutely denticulate.
7. phœnicea, Linu. Shrub or small tree, to 20 ft , with ovate-pyranidal head and upright branches:
branchlets slender: Ivs. acicular and spreading or scalelike, imbricate, rhombic, obtuse, opposite, often bluish green: fr. $1 / 3-1 / 2 \mathrm{in}$. across, shining, with $3-6$ seeds. S. Eu., N. Afr.
8. Californica, Carr. Fig. 1202. Pyramidal tree, to 40 ft., or shrub with many erect branches: brauchlets rather stout: lys. usually in 3's, imbricate, rhombic, obtuse, tbick, yellowish green, with conspicuous gland, moly on vigorous branches acicular: fr. $1 / 4^{-1 / 3} \mathrm{in}$. long, with bluish bloom and with 1-2 large seeds. Calif. S.S. 10:517. R.H. 1854, p. 353.

DD. Color of ir. bluish black or blue, with juicy, resinous flesh.

E. Imbricate lvs, usually in $S^{\prime} s$, minutely denticulate.
9. occidentalis, Hook. Tree, to 40 feet, rarely to 60 ft., with spreading branches forming a broad, low Lead, or shrub with several upright stems: branehlets stout and thick, imbricate, ovate, acute, grayish green, rarely acieular : fr , subglobose or ovoid, $1 / 4-\frac{1}{3} \mathrm{in}$. long, with $2-3$ seeds. Washington to Calif. S.S. $10: 521$.

EE. Imbricate lvs. opposite, entire or nearly so. F. Seeds of fr. 2-6.

G. Shape of imbricate lus. acute: branchlets slender. 10. excelsa, Bieb. Tree, to 60 feet, with pyramidal head and upright or spreading branches: lvs. ovate, spreading, in 3's, on the lower branches, but mostly opposite, rhombic, bluish green: fr. bluish black, bloomy, globular, about $1 / 3 \mathrm{in}$, across, with $3-6$ seeds. Greece, W. Asia to Himal. Git. 46, p. 209. Var. stricta, Hort. Of upright, columnar habit, with very glaueous foliage. Var. venusta, Hort., seems hardly different from the former.
11. pròcera, Hochst. Tree, to 100 or 150 ft ., similar to the preceding: Ivs. in $3^{\prime} s$, or opposite, lanceolate and

1202. Juniperus Californica ($\times 1 / 3$).
spreading or loosely appressed and orate-lanceolate : fr. globose, small, about $1 / 4 \mathrm{in}$. across, $2-3$-seeded. Mts. of E. Afr. - Probably the tallest species of the genus.

GG. Shape of imbricate lvs. obtuse.

12. Chinénsis, Linn. Tree, to 60 ft ., or shrub, sometimes procumbent: branches rather slender: Ivs, opposite or whorled, linear, pointed and spreading, with a white band above or scale-like, appressed, rhombic, obtuse: fr. globular. brownish violet, bloomy, one-fifth to
$1 / 3$ in, across, with 2 or 3 seeds. Himal., China, Japan. S.Z. 126, 127. - Very variable in habit : the staminate plant usually forms a much-branched, upright, pyramidal bush, often almost columnar, while the pistillate bas slender, spreading branches. They are therefore often distinguished as var. máscula and var fémina (var. Reèvesi, Hort.). The first one is the most desirable as an orvamental plant. Var. argenteo-variegata, Hort. Dwarf, dense form, with dimorph lvs.: tips of branchlets mostly white. Var. aürea, Hort. (var. misculu aìrea, Hort.). Upright form, with the young branchlets goldes yellow, the color becoming more brilliant in the full sun. Var. pendula, Hort. With spreading bradehes, pendulous at the extremities. Var. pyramidalis, Carr. Narrow, pyramidal form, with bluish green, mostly needle-shaped foliage. Var. procumbens, Endl. (J. procimbens, Sieb. 厅. J"pónira, Carr.). Dense, low shrub with spreading, soruetimes procumbent brauches and mostly acieular Ivs. in whorls, with two white lines above, longer and stouter than iu the type. S.Z. 127, fig. 3. Var. procumbens aurea, Hort. Branches robust and loog, decumbent, with rather few branchlets, young growth golden yellow at first, changing to light green. Var, procumbens albo-variegata, Hort. Rather dense, bluish green form, variegated with white. Var. procumbens aureo-variegata, Hort. Dwarf, dense form, variegated with goldeu yellow.
13. sphæ̀rica, Lindl. (.I. Fórtunei, Vau Houtte). Similar to the former. Densely branched shrub or tree, to 30 ft ., with upright branches: branchlets short, rather thick, auadrangular: Ivs. acicular and whorled, but less rigid than those of the former, or scale-like, rhombic-oblong, somewhat spreading: fr. globular, about $1 / 3 \mathrm{in}$, across, not bloomy, 3 -seeded. N. China_ P.F.G. 1, p. 59. Var. glaùca, Gord. (J. Shéphardi, Hort.). Dense form, with usually needle-shaped glancous foliage.

FF. Seeds of fr. 1-2, small, $1 / 6-1 / 3 \mathrm{in}$. across.
14. Virginiàna, Limn. Red Cedar. Savin. Fig. 1203. Tree, to 100 yt., with conical head and spreading or upright branches: lvs. acicular, spiny-pointed, spreading or scale-like, rhombic, acute or subacute, imbricate, very small: fr. brownish violet, bloomy, globular or ovoid. Canada to Fla., east of the Rocky Mts. S.S. 10:524. G.F. $8: 65 ; 10: 145 .-$ A very variable species. Some of the most important varieties are the following: Var. álho-variegata, Hort. Branchlets variegated with white. Var. aüreo-variegàta, Hort. With golden yellow variegation. Var. Barhadénsis, Gord, (var. grácilis, Sarg. Var. Bedfordidna, Veitch. J. Bermudiana, Hort., not Linn.). Tree, with slender, spreading branches, pendulous at the extremities: lvs. bright green, spiny-pointed, mostly needle-shaped on the cult. plants. Gulf states, Jamaica, Barbadoes. Tender. Var. dumosa, Carr. Dense shrub, forming a rounded pyramid, with mostly needle-shaped, bright green lvs. Var. elegantissima, Hort. Tips of young branchlets golden yellow. Var. glauca, Carr. Vigorous-growing form, with glaucous foliage. Var. pendula, Carr. With spreading limbs and slender, pendulous branches: lvs. usually scale-like. Var. pyramidalis, Carr. Dense, columnar form, with the foliage glaucous (var. pyramiddlis glaùca) or bright green (var. pyramidatis viridis). Var. réptans, Beissn. Low shrub, with borizontally spreading, procumbent branches and slender, curving branchlets: bright green. M.D.G. 1896:296. Probably the same as var. horizontalis, Arb. Kew. Var. Schotti, Hort. A dwarfish, dense, pyramidal form, with bright green and rather light foliage. Var. tripartita, Hort. A dwarf, spreading form, densely branched, with acicular, glancous lvs. - The dwarf forms are often very similar to J. Sabina and hard to distinguish without frs. except by the strong, disagreeable odor of the bruised branchlets of the latter.
15. scopuloेrum, Sarg. Closely allied to the preceding, but considered by the author as a distinct species, chiefly distinguished by the somewhat larger fr., ripening not until the second year; by its habit, forming a broad head with stout, spreading branches and often dividing into several stems near the base, and by its shredding bark. The branchlets are somewhat shorter and stouter, and the foliage usually glaucous or yellow-

JUSTICIA

ish green. Brit. Columb. to Calif. in the Rocky Mts. G.F. 10:423.
16. Bermudiàna, Linn. Tree, to 40 ft ., in habit much like J. Virginiana, but branches much stouter and foliage pale bluish green: branchlets thickly set, quadrangular, stout and short: lvs, mostly imbricate, thick or acicular, spiny-pointed, rigid, erect-spreading: staminate catkins larger: fr, usually 2-seeded and depressedglobular. Bermuda and cult. in other W. Indian Islands. G.C. 11. 19: 657. G.F. 4:295.
cc. Fr. pendulous, on curred peduncles, small: shrubs, usually spreading or procumbent.
17. Sabina, Linn. Spreading or procumbent shrub, rarely with erect stem, to 10 ft .: branchlets rather slender, of a very strong, disagreeable odor when bruised: lvs. needle-shaped, acute and slightly spreading or imbricate, oblong-rhombic, acute or subacute, usually dark green: fr. one-fifth to $1 / 4 \mathrm{iu}$, thick, globular, $1-3$-seeded. Mts. of middle and southern Eu., W. Asia, Sib ${ }^{\text {r., N. }}$ Amer. - Very variable. The most remarkable vars. are the following: Var. fastigiàta, Hort. Erect shrub of columnar babit, with dalk green, mostly imbricate lvs. Var. hùmilis,

1203. The two kinds of red cedar leaves. Niatural size.

The right hand specimen shows the foliage of red cedar on young shoots; the other shows the two kinds.

Endl. Procumbent, with ascending thickish hranchlets: lvs. usually imbricate, scale-like, often bluish green. Var. prostràta, Loud. (var. procimbens, Pursh. J. prostràta, Pers. J. rèpens, Nutt. J. procimbens, Nichols.). Procumhent, rarely ascending, with usually trailing, long branches, furnished with numerous short branchlets: Ivs acicular, spiny-pointed or imbricate, acute, bluish or glaucous green: fr. ylobular, blue and bloony. Nova Scotia to Brit. Columb., south to N. Y. and Wyo. Sometimes called Waukegan Juniper. Var. tamariscifolia, Ait. (J. sabinoldes, Griseb.). Procumbent or ascending, rarely erect: Irs. nsually all needle-shaped and often in 3^{\prime} s, slightly incurved, dark and bright green, with a white line above. Mountains of S. Eu. Var. variegàta, Hort. Branchlets variegated with creamy white: lvs. mostly imbricate.
${ }^{I}$. Davùrica, Pall. Allied to J. Sabina. Procumhent, with slender, spreading or drooping branchlets: fr. 1-4-seeded, small. Siberis.-J. fotidissima, Willd. Allied to J. excelsa. To IV ft. high: branchlets thicker: lvs, with spreading apex, mucronate, usually eglandular: fr. larger, 1-2-seeded. Gireece, W. Asia.-J. flaccida, Schlecht. Graceful tree, to 30 ft ., with spreading branches and slender, remote, pendulous brancblets: lvs. acute, with spreading tips: fr. globular, 5 -10-seeded. Tex., Mex. S.S. 10:519.-J. litoralis, Max. (J. conferta, Parl.). Allied to J . rigida, bnt prostrate, with long, trailing branches: fr . larger. Japan.-J. macrópoda, Boiss. Allied to J. excelsa. Shrub or small tree, to 30 ft ., sometimes procumbent: lvs, closely appressed: fr, nodding. globalar, 4-seeded. Persia to Himal-J. Mexicana, Schiede. Pyramidal tree: branchlets numerous, short and rather stout: lvs, acute, loosely appressed: fr. 2-4-seeded. Mex.-J. monosperma, Sarg. (J. occidentalis, var. monosperma, Engelm.). Closely allied to J, oceidentalis, Branchlets more slender: lvs, usually opposite and eglandular: fr. smaller and usually I-seeded. Rocky Mts., from Col, to New

Mex. S.S. 10:522.-J, páchyphloea, Torr. Tree, to 60 ft ., allied to J. occidentalis, with broad, pyramidal or round-topped head: lvs, usually opposite, glandular, bluish green: fr, dark reddish brown, bloomy, with usually 4 seeds. Has a checkered bark like a black-jack oak. Col, to Tex. and New Mex. S.S. 10:520.-J. Pseúdo-sabina, Fisch. \& Mey. Allied to J. Sabina. Erect shrub, with thick, dense and short branchlets: lvs. usually dimorph; fr, ovate, blackish, glossy, 1 -seeded. Siber $-J$, sabinoides, Endl. =J, thurifera.-J, sabinoides, Nees $=\boldsymbol{J}$. tetragona. - J. Sanderi, Hort., recently introduced from Japan, is a juvenile form of a Chamaecyparis, probably C . obtusa. It is a deuse shrub with needle-shaped bluish green lvs. $-J$. tetragona, Scblecht. Allied to J. oceidentalis. Small tree, to 20 ft ., rarely to 40 ft ., with round-topped or pyramidal head and slender, quadrangulsr branchlets: Ivs, obtuse, usually eglandular: fr, subglobose, mostly 1-seeded. Tex. to Mex. S.S. eghandular, fr, subglobose, mostly 1 -seeded. Tex. $10: 523$. J. the $i f e r a$, Linn. Shrub or tree, to 40 ft ., with roundtopped head and spreading branches: branchlets slender: fr. globular, 2-3-seeded. Spain, Algeria.-J. Utahénsis, Lemm. (J. ('abfornica, var. Utahensis, Engelm.). Bushy tree, rarely more than $20 \mathrm{ft.}$, with broad, open head: branchlets slender: lvs. ohtuse, light yellowisb green: fr. usually 1 -seeded. Col. to Calif., west to Utah. S.S. 10:518. Alfred Rehder.

JUPITER'S BEARD. Centranthus ruber and Anthyllis Iarba-Jovis.

JUSSIEA. See Jussieua.

JUSSIEÛA (the Jussien family contained five botanists, of whom the most distinguished was Antoine Laurent de Jussieu, 1748-1836, who laid the foundations of a modern natural system of the vegetable kingdom). Also written Jussiua. Owa4 racea. About 30 species of tropical plants, largely bog and aquatic herbs and shrubs, one of which is cult. in America. It grows $2-3 \mathrm{ft}$, high, and prodnecs numerous axillary fls, of a bright yellow, somewhat like an evening primrose. It is little cult., but desirable for planting at the edge of a pond of tender aquatics or for tub culture. Jussieua is allied to Ludwigia, and distiuguished by the following characters: petals 4-6, not clawed, entire or 2-lobed: stamens 8-12: ovary 4-celled. Jussieuas have alternate Ivs., which are mostly membranous and entire, rarely leathery and serrate: fis. yellow or white, solitary, short or longpedicelled.
longifolia, DC. Erect, glabrous: stem 3-angled: lvs. sessile, lanceolate-linear, acuminate at both ends, glandular beneath at the margins: pedicels 1-fld., longer than the ovary, and bearing 2 bractlets at the apex: petals 4 , obovate, scarcely notched at the apex: stamens 8. Brazt?.
W. M.

The plant in the trade as J. longifolia is a summerflowering aquatic herb, and differs somewhat from the description given above. The stems of young seedlings are 4 -wiuged, and a specimen before the writer of a plaut of the previous season is 5 -winged. The main root of these old plants may betuber-like, 3 in . long, $1 / 2 \mathrm{in}$. thick, or 8-10 in. long and more slender. Also the lower lvs., at least, are opposite. J. longifolia is best treated as a tender annual.

The seed may be sown in fall or spring in shallow water, using seed-pans or pots, as with other flower seeds. Cover the seed, which is very fine, with finely sifted soil, place the pot or seed-pan in water, but do not submerge antil the second day, when the seed will be thoroughly soaked and will not float on the surface of the water. When the plants attain a few leaves they should be potted, singly, into thumb-pots, and later into 3 -in. pots, and from these planted into their summer quarters. It is not absolutely necessary to keep these plants always submerged in water after potting. The plants will do well on a bench, which should be covered with sand or ashes and the plants kept well watered.

Wm. Triceer.
JUSTICLA (James Justice, a Scotch gardener and author of 18 th century). A canthdeea. A large and polymorphous genus (perhaps 100 species) in the warm parts of the Old and New World. They are mostly herbs of various habits, with opposite entire lvs., and are cult. under glass for the showy fascicles or heads of fls. Most of the garden plants which are known as Justicias
are Jacobinias. Consult Jacobinia, for example, for Justicia maynifica, J. carnea, J. Pohliana, J. velutina, J.coccinea, J. Ghiesbreghtiana and J. Lindeni. Justicia Adhatoda is Adhatoda Vasica. Others may belong to Thyrsacanthus and Dedalacanthus. The Justicia variegata of eatalogues is probably not the \boldsymbol{J}, variegata of Aublet and the botanists, but is very likely a variegatedleaved form of some Jacobinia. From Jacobinia the species are distinguished by the spurred or appendaged anthers. The corolla is red, purple or white, tubular, deeply 2-parted or lipped: stamens 2: seeds normally 4, in an ovate or oblong capsule: fls. in bracted heads or fascicles.

The remarks on the culture of Jacobinias will apply here. Plants are secured readily from cuttings made in late winter or spring, and these should bloom the coming fall or winter. After blooming, discard the plants,
except such as are to be kept for furnishing enttings. Unless well beadel bark, old plants become loose and weedy, and they take up too much room.
It is not known that any true Justicias are in the Amer. trade. J. flava, recently introduced, is Schauevia flavicoma, which see. "It is covered for months with large, feather-jike clusters of pure yellow flowers, remaining perfect for a very long time, and enhanced hy dark green, shiny foliage."
L. H. B.

JUTE is a fiber plant, of easy culture in warm climates. It has been successfully grown in the Gulf states, but, according to the Department of Agriculture, the want of a suitable machine for separating the fiber is the great obstacle which prevents the growth of the Jutefiber industry in America. See Corchorus.

KADSÙRA (Japanese name). Magnoliàcea. About 7 species, tropical Asian woody climbers, of oue of which Cbarles S. Sargent writes ($4 . \mathrm{F}, 6 ; 75$): "The flowers are not at all sbowy, but it is a plant of extraordinary beauty in the autumn when the clusters of searlet fruit are ripe, their brilliancy being heightened by coutrast with the dark green, lustrous, persistent leaves. ** * It might well be grown wherever the climate is sufficiently mild, as in the autumu no plant is more beautiful." Kadsuras have leatbery or rarely membranous foliage: fls. axillary, solitary, whitish or rosy, unisexual; sepals and petals 9-15, gradually changing from the outermost and smallest to the innermost and petaloid : staminate fls. with an indefinite number of stamens, which are separate or coalesced into a globe: carpels indefinite in number, 2-3-ovuled: mature berries in globular heads.

Japónica, Linu. Small, procumbent, warty shrub: lvs. oval or oblong-oval, thick, serrate: peduncles 1 -fld., solitary. Japan, as far as 35° north latitude. -The type is advertised by Japanese dealers; also a variety with foliage blotched with white, and another var, with foliage margined white.

KAMPFERIA (Engelbert Kæmpfer, 1631-1716, traveled in the Orient, and wrote on Japan. He is also commemorated by Iris Kiempferi). Sritaminacea. About 18 species of tropical African and Asian plants with tuberous or fleshy roots, often stemless, and bearing the peculiar fls, of this order in which the showy parts, as in the Canna, are the staminodes. For culture, see Hedychium and Zingiber.

A. Foliage margined with white.

Gilberti, Hort. Fleshy-rooted: Ivs, oblong-lanceolate, deep green, bordered white, wavy at the margin: fls. purple and white. East Indies, G.C. 1I. 17:713. R.B. 21:169. S.H. 2:131.-Int. by W. Bull, 1882. Reasoner Bros, cultivate this outdoors in S. Fla., and say, "The Hs, are borne on ornamental crimion heads rising from the ground on separate stalks, and resembling in outline small pineapple fruits. These heads retain their beauty all summer."

AA. Foliage not margined with white.
 B. Les. tinged purple beneath.

rotúnda, Linn. Stemless, tuberous: 1vs. not produced until after the fls., oblong, erect, petioled: corolla segments long-linear: staminodes oblong, acute, white, $11 / 2-2$ in. long: lip lilae or reddish, deeply cut into 2 suborbicular lobes: anther-crest deeply 2 -fid: petiole short, channelled: blade 12 in . long, $3-4 \mathrm{in}$. wide, usually variegated with darker and lighter green above and tinged purple beneath: spikes 4-6-fld., produced in Mar. and Apr. India. B M. 920 and 6054 .-Adv. 1895 by Pitcher \& Manda, who said the fls, were fragrant.

bB. Les. not tinged purple beneath.

Kirkii, Schumann (Cienkowskya Kirkii, Hook.). Leaf-stem 3-4 in. long: Ivs. about 4, crowded at the apex of the stem, oblong, acute, $8-9 \mathrm{in}$. long, 21/2-3 in. wide at the middle: flowering stems short, slender, 1-fld.: corolla lobes oblong-lanceolate, 1 in . long: staminodes more than twice as long as the corolla lobes, pale rose-purple: lip rounded at the apex, slightly notched, 2 in . hroad, with a yellow mark at the throat. Trop. Afr. B.M. 5994. I.H. $30: 495$. - Once adv. by John Saul.
W. M.

KAFFIR CORN. See Sorghum.

KAGENECKIA (after an Austrian minister to Spain). hosdeea. Six species of tender evergreen trees from Chile and Peru, one of which is cult. at Nanta Barbara. The fis, are white, 5 -petaled, about $3 / 4 \mathrm{in}$. across, and unisexual. The male fls, are borne in racemes or corymbs; the females are solitary ; all are terminal:

Ivs. leathery, serrate, short-stalked: stamens 16-20, inserted on the mouth of the calyx, in 1 series: carpels 5 , free: ovules numerous, in 2 series.
oblonga, Ruiz \& Pav. Les. oblong, acuminate at both ends, the serrations obtuse and ratber callous. Chile. -lnt. 1900 by Franceschi.

KAKI. See Persimmon and Diospyros.

KALÁNCHOË (Chinese name). Crassuldecer. Sometimes spelled C'alanchoë. About 50 species of succulent erect shrubs, chiefly of tropical Africa, but also inhabiting tropical Asia, S. Africa and Brazil. Lvs. opposite, sessile or stalked, varying from entire to crenate and pinnatifid: fls. yellow, purple or scarlet, in many-fld. terminal cymes, rather large and often showy; calyx 4 parted, the narrow lobes shorter tban the corolla tube, usually falling early; corolla 4 -parted and usually spreading; stamens 8: carpels 4. A few species are prized by amateurs. The fls. are lasting in bouquets. The foliage is ornamental and interesting. Culture of Crussula, which see also for a conspectus of the garden crassulaceous genera. The four following species are novelties. K. pinndta, Pers. (Mn. 2:56), is Bryophyttum calycinum (which see).

A. Flowers scarlet or orange.

coccinea, Welw. Somewhat hairy above, 2-4 ft. tall: lower Irs,ovate-obtuse, coarsely crenate-dentate, stalked; upper lvs, linear-lanceolate-obtuse, sessile: tls, scarlet or orange, on short pedicels, in broad, forking panicles which have stalks about 1 ft . long; calyx pubescent, the segments lanceolate-acute ; corolla tube $1 / 2 \mathrm{in}$. long, the limb $1 / 2 \mathrm{in}$. across, and the segments deltoid-orate. Trop, Africa.
flámmea, Stapf. A foot to 18 in . high, glabrous, little branching: lvs. ovate-oblong, obtuse, narrowed into a short petiole (blade about 2 in . long and $1 \frac{1}{4}-1 \frac{1}{2} \mathrm{in}$. wide), fleshy, obscurely crenate-dentate or almost entire: fls. yellow aud orange-scarlet, $1 / 2$ in. across; calyx parted to the base, the segments linear-lanceolate and somewhat acute; corolla tube 4 -angled, less than $1 / 2 \mathrm{in}$. long, yellowish ; lobes ovate-acute, orange-red. Trop. Afr. B. M1. 7595. G.C. III. 26:47. - First fully described in Kew Bulletin, Aug.-Sept., 1897, p. 266, but it was named and partially described in G.C. July 10, 1897, as h^{-}. flamea, which is evidently an orthographical error. The plant is one of the leading uovelties of 1900 . Thrives in a comparatively cool greenhouse.

AA. Flowers pink.

cárnea, Mast. Stems simple, 2 ft . or less, glabrous: Ivs. oval or obovate, obtuse, crenate-dentate, narrowed into a short petiole, the upper ones nearly linear and sessile: fls. light rose or pink, very fragrant, nearly $1 / 2$ in. across; calyx parted to the base, the segments lin-ear-pointed; corolla tube swollen at base, and 2-3 times longer than calyx; corolla lobes broad-oval, acute. S. Afr. G.C. III. 1:211. G.F. 3:53.-Good winter bloomer, prop. by seeds or cuttings. Seeds sown in spring give blooming plants for the following Christmas.

AAA. F'ls, white or white-yellow, very long.
marmoràta, Baker (K. grandiflora, Rich., not Wight). Stem stout and branching: Ivs. large ($6-8 \mathrm{in}$. long), obovate, narrowed to a short broad petiole, crenate, blotched with purple: fls. long and tubular (3 in . or more long), creamy white or yellowish, the lobes ovateacuminate. Abyssinia. B.N. 7333. 1.H. 43, p. 45. - Interesting pot-plant, with large trusses of ereet fls.

L. H. B

KALE or BORECOLE (Brassica oleracea, var. acephala, Figs.295, 296) is thought by some to be the original type of the cabbage. Members of this section of the cabbage tribe do not form heads, but have variously
colored, often finely cut, leaves with fleshy leaf-stems, which form part of the edible portion. These leaf-stems are tough in the early autumn, but become crisp and palatable with the accession of autumn frosts. The plant is exceedingly hardy; in the southern states it winters without injury and in the Atlantic states may be carried through with slight winter protection. For autumn use the seeds are sown in early spring under glass or in coldframes and treated exactiy as cabbage. In the South the seed may be sown in August or September, and the plants are ready for use the following spring. In the colder regions they may he carried through the winter in coldframes. Leading types: (I) Dwarf Scotch Curled; (2) Tall Green Curled; (3) Variegated; (4) Purple. There are many intermediate forms. The finely cut varieties of Scotch Kale are now frequently used for bedding purposes. Their hardiness gives them special features of usefulness in the autumn. Kale is adapted to a wide range of country. One of the leading Kale centers is Norfolk, Va., where it is grown during fall and winter for the early northern market. See also Brassica and Cabbage.

John Craig.
The Dwarf Scotch Kale makes a most excellent plant for spring greens. It is hardy enough to stand the winters of western New York without protection uninjured, and to make a new growth of tender sprouts very early in spring. These sprouts are serviceable for greens, salads, etc. For this purpose we sow seed early in June, either in a seed-bed and transplant the seedlings, just as we do cahbages, or directly in the hill, thinning to one plant in a hill. In a general way, the plant is handled like late cabbage.
T. Greiner.

Kale at Norfolk (Fig. 1204). - Truckers ahout Norfolk, Va., grow both the Scotch and the Blue Kale, more of the former than of the latter. The amount of Kale shipped from Norfolk one year with another will average somewhere bet ween 175,000 and 200,000 barrels. The number of barrels shipped in a single season has reached as high as a quarter-million.
The soil most desirable is a clay loam,-just such land as is best adapted to the growth of cabbages. The seed is sown with a hand drill in August, and shipments therefrom begin in October following, and continue off and on thronghout the winter, until the crop is entirely shipped, -say until April 1 to 15 following. As soon as the frosts in the vicinity of New York and Philadelphia have been sufficiently heavy in the fall to kill all outdoor vegetables, Norfolk Kale is in fairly good demand and brings from 75 cts. to $\$ 2$ per barrel in northern markets. The yield per acre ranges from 200 harrels up to 400. Instances have been known in which more than 600 barrels of the Mammoth Kale have been raised from an acre of ground. It is a cheap crop to raise, requiring not more than half as much fertilizer as the spinach erop.

The soil is prepared, generally, in the following manner: It is thoroughly plowed, say about August 1, and harrowed level and smooth, and as the lands are very loose the Kale bed, although it may comprise 100 acres, is as mellow and as friable as the best of garden lands anywhere. A little later in the mouth the soil is thrown up with a single plow into small beds or ridges. Sometimes a single row will be sown by itself on a little ridge. Sometimes a ridge will be wider, and two rows will be
grown thereon. Sometimes four or five rows are thus sown; but as the soil must be relieved of the winter's rains, the beds are generally narrow, with little furrows hetween them to draw off any surplus water which may fall during the winter months, as we have from 2 to 6 inches of rain per month throughout the year. After the plants are well upthey are tilled between the rows with cultivator or small plow, and hands are sent through the field with small hand hoes to thin out the crop, leaving healthy plants at about 6 inches apart. In the warm and sunny days of September, October and November the plant makes a heavy growth, covering the earth entirely in many instances. Then the trucker, if the demand for Kale be good. can thin out and sell the surplus plants, leaving the remainder to reach a greater degree of development; or he can cut clean as he goes, and put the same land into radish or winter peas later in the winter.

1204. A Noriolk Kale field at the Christmas harvest time.

There is money in the Kale crop at 75 ets. per barrel. During the past season the price bas ranged from 50 cts. to $\$ 2$ per barrel, and has paid very well indeed. Within 15 miles of Norfolk, something over 1,000 acres is devoted to Kale each year. It is considered one of the cheapest crops to grow, yielding a moderate percentage of profit. If the soil is in good or fair condition, very little fertilizer or manure is required for the Kale crop. Its cultivation is simple and inexpensive. It is cut when ready for market and packed in barrels, using canvas for one of the barrel heads, at a cost of 5 cts. per barrel for cutting.
A. Jeffers.

KALE, SEA. Crambe maritima; but treated under Sea-Kale.
KALMIA (after Peter Kalm, Swedish botanist, traveled $1748-51$ in N. America). Ericàcece. American Laurel. Beautiful ornamental evergreen shrubs, rarely deciduous, with entire opposite or alternate lvs. and purple, pink or almost white showy fis. in terminal corymbs or in axillary umbels, rarely solitary: fr. capsular. Most of the species are hardy North, partieularly the most ornamental member of the genus, K. latifolia, which next to Rhododendron is the most beantiful flowering hardy evergreen. Massed in groups or as single specimen on the lawn, it is one of the most decorative plants when covered with its abundant pink dowers. Even small plants produce flowers. The foliage is very
decorative, contrasting well with the red and yellowish branches. The species is also easily forced and makes a very handsome pot-plant. The other species are pretty border plants for evergreen shrubberies. The Kalmias thrive well in a saudy, peaty or loamy soil, but dislike clay and limestone. They grow almost as well in swamps as in drier locations and prefer partly shaded situations, but thrive also well in sunny places, provided there be sufficient moisture. They require generally almost the same treatment as the hardy Rhododendron, but are less particular about soil and position. Transplanting, if carefully done either early in fall or in spring, is not difficult; a mulching the first season after planting will be of much advantage to keep the roots from drying in summer and from frost in winter. Prop. usually by seeds sown in sandy, peaty soil in pans or boxes in early spring and kept in a cool frame or greenhouse. The seedlings should be pricked off as soon as they can be handled, and after they are again established gradually hardened off and the following year transplanted in frames or beds outdoors. Vars, of K. latifolia are usually increased by side-grafting on seedlings in the greenbouse or by layers, since it grows less readily from cuttings, while the other species may be prop. by cuttiugs of half-ripened wood under glass. Six species in N. Amer. and Cuba, allied to Rhododendron : fls, in terminal or lateral corymbs or umbels, rarely solitary ; calyx 5 -parted; corolla saucer-shaped or broadly compauulate, 5 -lobed; stamens 10 , with slender filaments, the anthers held back in little pouches of the corolla, springing up suddenly and discharging the pollen if touched: ovary 5 -celled, superior; capsule

1205. Kalmia latifolia ($\mathrm{X}_{1 / 2}^{2}$).
globnlar, parting into 5 valves, with numerous minute seeds. The lvs. of the Kalmias are said to be poisonous to animals, especially those of \boldsymbol{K}. angustifolia. The flower of Kalmia is one of those proposed as a national flower emblem, especially on account of the exquisite symmetrical beauty of the single flower. It is a purely American genus, but unfortunately it is popularly known only in the eastern states.

A. Fls. in umbels or corymbs.

B. Lus, evergreen.

c. Branchlets terete: lvs. pale green beneath.
latifolia, Linn. Mountain or American Laurel. Calico Bush. Fig. 1205. Shrub, 4-10 it. high, rarely tree to 30 ft ., with dense, round-topped head: Ivs. petioled, alternate or irregularly whorled, oblong or elliptic-lanceolate, acute at both ends, dark green above, yellowish green below, 3-4 in. long: fls. in large, terminal compound corymbs on viscid peduncles; corolla rose-colored to white, with purple markings within, about $3 / 4 \mathrm{in}$. across. May, June. New Brunswick to Fla., west to Ohio and Tennessee. B.M. 175. Em. 443. S.S. 5:236-237. A.F. 13:32. Gng. 3:1; 7:289. Gn. 22:343; 27, p. 549 \& 33, p. 607. - Var. élba, Hort. Fls. almost white. Var. monstruòsa, Monillef. (var. polypétala, Arb. Kew.). Corolla dirided into 5 narrow petals. G. F. 3:453. Var, myrtifolia, Rand (var. nàna or minor, Hort.). Lys. small, 1-2 in. long, deep green, of slow growth, forming a low, dense bush. Var. rùbra, C. Koch (var. Pavirti, André). Fls. deep pink. R.H. 1888:540.
angustifolia, Linn. Sheep-Laurel. Lambkill. Wreky. Shrub, to 3 ft .: lvs. usually in pairs or 3's, petioled, usually oblong, obtuse, light green above, pale beneath, $1-21 / 2 \mathrm{in}$. long: corymb lateral, many-fld., compound or simple: fls. $1 / 3-1 / 2 \mathrm{in}$. across, purple or crimson. June, July. From Newfoundland and Hudson bay to Ga. B.M. 331. Em. 445, - There are vars. with light purple fls., var. ròsea, Hort.: with crimson fls., var. rùbra, Hort.; with ovate or oval Ivs., var. ovàta, Pursh, and of dwarf hahit, var. nèna, Hort.
c. Branchlets 2-edged: lu's, glaucous-uhite beneath,
all opposite or in S^{\prime}.
polifolia, Wangh. (K. glaùca, Ait.). Low, straggling shrub, to 2 ft .: lvs. almost sessile, oval to linear-oblong, obtuse, revolute at the margins, $1 / 2-11 / 2$ in. long: fls. in simple terminal umbels, slender-pedicelled, $1 / 2-3 / 4 \mathrm{in}$. across, rose-colored or purplish. May, June. Newfoundland to Pa. and in the Rocky Mts. from Sitka to Calif. B.M.177. L.B.C. $16: 1508$. Em. 441. G.W.F.A. 18.Var. microphylla is the alpine form of the Rocky Mts. growing only a few inches bigh and with rery small Ivs., $1 / 2 \mathrm{in}$. or less long. Var. rosmarinifolia bas narrow, oblong-linear, strongly revolute lvs.

BB. Lvs. deciduous, alternate.

cuneàta, Michs. Erectshrub, with slender, straggling stems, to 3 ft .: Ivs. petioled, cuneate, obovate-oblong, acute or obtuse, pubescent beneath when young, $3 / 4-11 / 2$ in. long: fls, slender-pedicelled, in few-fd. lateral umbels, creamy white with a red band within, $1 / 2-3 / 4$ in. across. June. N. C. and S. C. G.F. 8:435.

AA. Fls. solitary, axillary: plant hirsute.
hirsùta, Walt. Low shrub, with many erect or ascending stems, to $1 \mathrm{ft} .:$ Ivs. almost sessile, oblong to lanceolate, $1 / 4-1 / 2$ in. long: ts. slender-pedicelled, $1 / 2 \mathrm{in}$. across, rose-purple; sepals oblong-lanceolate, hirsute, longer than the capsule. June. S. Va. to Fla. B.M. 138. L.B.C. 11:1058.

Alfred Rehder.
kALopanax. See Acunthopanax.
KANSAS, HORTICULTURE IN. Fig. 1206. In 1854, when Congress passed a law opening this territory for settlement, it was considered as part of the great American desert, and it was almost universally thought to be fit only for grazing purposes. As to fruit-growing, such a possibility was not considered. This impression did much to retard tree-planting. Another great drawback was the fact that every settler planting fruit trees must have the favorite varieties of his former home grown. This resulted in the planting of over 2,000 kinds of apples alone. Few of these could be made to succeed, and, in time, so many failed that the impression was deepened that Kansas could not grow fruit. But amid these losses occasionally a man would succeed with some variety, and his success was heralded over the state until eventually the worthless kinds were weeded out and the road to success was perceired. Eventually the people could plant trees with some as-
surance that they would gather fruit therefrom. Since then, rapid progress in tree-planting has been made.

Apple trees do not bear beavy crops every year, but there has not been a total failure any year since the trees commenced bearing, some forty years ago. Peaches bear in some parts of the state every year, the south having few failures. Pears succeed throughout the state, although some varieties blight in some localities.

1206. Climatological regions of Kansas.

Plums and cherries are successful throughout the state, if the curculio is destroyed. Grapes bear heavy crops nearly every year. Strawberries yield good crops. Raspberries and blackberries also do well.
Market-gardening is profitably carried on around Kansas City, Leavenworth, Atchison, Lawrence, Topeka, Ft. Scott, Wichita, and many other towns. Sweet potatoes are at home here and are grown in large quantities. They are on the market from early in september to March and sometimes in May. Irish potatoes are not a sure crop on the uplands, but immense quantities are grown on the bottom-lands. Hundreds of car-loads are grown and shipped from the Kansas river bottom, between Topeka and Kansas City, every year.
The uplands are rolling prairies, with a deep, alluvial soil, with enough clay and sand intermixed to make it an ideal soil for fruit-growing. The subsoil is red clay, with some sand. This is underlaid with limestone from one to forty feet below the surface. This limestone is full of seams or cracks which afford a good subdrainage, so that little of the land needs artificial drainage. These lands, as above described, embrace a very large percentage of the entire state. The bottom-lands are wide, ranging from one to ten miles in width. These bottom-lands are composed largely of sand, with enough humus intermixed to make them very productive. They support some of the finest orchards.

Kansas City is the lowest point in the state, and is about 750 feet above the sea level. It gradually gets higher west, until it is over 4,000 feet on the western border. The rainfall is of the usual amount on the eastern border, but gradually decreases as the western boundary is approached.

Fred Wellhouse.
Kansas is, to the eye, practically level. There are no mountains within its boundaries, yet the eastern third is rolling. Some parts are rough, while the west is practically level, yet the state runs steadily up-hill from its eastern border, which is 750 feet above sea level, to the western limit, which is 4,500 feet above sea level. This naturally gives a varying climate. It is like climbing a mountain 3,750 feet high, and passing through the varying atmospheric changes as one goes upward, from a moist, easy-growing climate to a clear, windy, dry elevation 3,750 feet higher.

In the eastern third of the state (1, Fig. 1206) the apple and pear are at home, and when well grown are excellent. New varieties originating in the state or in the west are taking the place of eastern and imported varieties. Orchards and gardens are scattered all over the eastern half, and are very successful. The commercial horticulturist finds his early market in Nebraska, Colorado and Iowa; his later market in the cities and towns of Kansas, and a still later market in Texas, when the heat of summer has paralyzed Texan products. Oklahoma and the indian Territory have for years been good markets for the southern part of Kansas. Many orchardists in the middle west sell every
apple, good, bad or indifferent, for cash to wagoners who come from the south and west annually in large numbers to carry away the orchard products. Toward the west, cherries, plums and peaches seem more at home. The two former are very prolific, and a success iu the central part (2). Peach pits are planted in rows throughout the west for wind-breaks, and such trees bear considerable fruit, some of it very tine. Along the Arkansas river. where the roots of trees penetrate to water, all fruits do finely, and on irrigated lands back from the bottom-lands, horticulture prospers in all departments. The bluffs along the Missouri river, in the northeastern part of the state, seem peculiarly adapted to the apple, and it is grown there in immense quantities. Here are some of the greatest apple orchards of the world. The total number of apple trees in the state is $11,005,607$; pears, 398,975 ; peaches, $5,734,337$; plums, 919,527 ; cherries, $1,666,456$. The acreage of vineyards is 6,543 ; of nurseries, 2,803 ; blackberries, 3,253 ; raspberries, 1,504; strawberries, 1,864 (1900).
Strawberries do well anywhere in the state. Some prominent varieties originated here. Raspberries are of easy culture. The "Kansas" originated in Lawrence, and has become the mainstay among blackeaps over a wide range. Blackberries are indigenous, and cultivated varieties mainly do well, though some of them rust badly. Raisin grapes are grown in the south by winter covering. Prunes and figs will also grow there. Vegetables of all kinds do well and are of fine quality, the tomato being especially at home. Early potatoes of the Kaw valley are widely known, and millions of bushels are exported yearly. Fertilizers are little used, and the stable manure of the cities is largely dumped on the commons. Only gardeners seem to value it. Melons are of easy growth, and of the finest quality. Sugar-beets have been tried at various points, but on analysis do not often come up to the required standard of saccharine qualities. Indian corn is the great staple, and all the sugar and popping varietiea come to the finest maturity in quality. The lack of water in western Kansas (3) is the greatest drawiback to agriculture there. William H. Barnes.
KARÀTAS (Brazilian name). Bromelidcece. Bentham \& Hooker refer about 10 West Indiau and Brazilian bromeliads to this genus, but Mez, the latest monog. rapher (DC. Monoge. Pbaner. 9), refers the species to other genera. Baker retains it. As understood by Bentham \& Hooker, Karatas differs from Bromelia chiefly in its dense, capitate flower-clusters, which are sessile in the axils of the upper leaves. The species are cult. the same as Bromelia, Billbergia, and the like. They are little known in this country. Apparently the only common one is K. spectábilis, Ant. (Nidularium spectábile, Moore. Regèlia spectábilis, Linden. Aregèlia spectábilis, Mez). It is a stemless, tufted perennial, with broadly strap-shaped, spine-edged lrs., which are green above, gray-bauded beneath and red-tipped at the end: fls. numerous, sunk amongst the lvs., the corolla with bluish lobes. Braz. B.M. 6024. L. H. B.

KARRI. Eucalyptus diversicolor.

KAULFUSSIA (G.F.Kaul. fuss, professor of natural history at Halle). Compositee. A small, branchy, hardy annual, 6-12 in. high, with blue or red aster-like fls., on long stems: plant pubescent or hispid: Irs, oblongspatulate or oblong-lanceolate, entire or remotely denticulate: heads many-fld., radiate, the ray fls. pistillate, the disk-fls. perfect: akene

1207. Charieis heterophylla. Natural size. obovate and compressed, those of the disk with plumose pappus: involucre scales in two rows. K, amelloides, Nees (Figs. 1207-8), is an excellent annual, of easy culture in any garden soil. Var, atroviolàcea, Hort., bas dark violet fls. Var. kermesina, Hort., has riolet-red fls. Sow seeds where
the plants are to grow; or they may be started indoors and the plants transplanted to the open. The genus Kaulfussia was founded by Nees in 1820. In 1817, how-

1208. Charieis heterophylla. commonly known as Kaulfussia amelloides.
ever, the plant was described by Cassini as Chárieis heterophylla, and this name should stand. S. Africa.
L. H. B.

KENILW0RTH IVY. Linaria Cymbalaria.

KENNEDYA (Kennedy, of the nursery firm of Kennedy \& Lee, important English nurserymen of the latter part of last century). Leguminoso. Australian woody trailers or twiners of about a dozen species, making excellent plants for the intermediate house or conservatory. Fls. red to almost black, pea-like: irs. mostly pinnately 3 -foliolate: standard orbicular or obovate, narrowed to a claw, and bearing minute auricles; wings falcate, joined to the keel; stameus diadelphous, -9 and 1: pod linear, flattened or cylindrical, 2 . valved, with pithy divisions between the seeds. Kennedyas are easily grown from euttings of nearly ripe wood: also from seeds. They are mostly spring and summer bloomers, and should rest in winter. Give plenty of water during summer. They should be given support: they grow from $3-10$ feet high, making stiff, woody stems. They may be trimmed back freely when at rest. The taller kinds, like K. rubicunda and K. coccinea, are excellent for rafters. Well-rooted plants may be planted permanently in the greenhouse border.

A. Fls. nearly black.

nigricans, Lindl. Twining, robust, somewhat pubescent: lfts. (sometimes reduced to I) broad-ovate or rhomboid, entire, obtuse or emarginate: fls. slender, 1 in . or more long, in short one-sided axillary racemes, deep violet-purple or almost black: pod flattened. B.R. 20:1715. B.M. 3652.- К. carulea, Hort., with blue fls., is perhaps this species.

AA. Fls, red or scarlet.

B. Standard narrow-obovate.

ruhicunda, Vent. Pubescent: lfts. 3-4 in. long, ovate to orbicular or ovate-lanceolate, entire: fls, dull red, drooping in racemes, usually not exceeding the lvs.; standard narrow-obovate, reflexed; wings narrow and erect: pod flat or nearly so. L.B.C. 10:954. B.M. 268 (as Glycine rubicunda), B.R. 13:1101 (as Amphodus ovatus).

BB. Standard broad-orate or orbicular.
prostráta, R. Br. Prostate or twining, pubescent: Ifts. broad-obovate or orbicular, less than 1 in. long, often wavy : stipules leafy, cordate: fls. 2-1 on each peduncle (which usually exceeds the lvs.), scarlet, $3 / 4$ in. long; standard ohovate; keel ineurved and obtuse; wings narrow and short: podnearly cylindrical, pubes cent. B.M. 270 (as Glycine coccinea).

Var. màjor, DC. (K. Marryattoe, Lindl. K. Marryattidna, Hort.). Larger and more hairy: lfts. larger, strongly undulate: stipules sometimes 1 in. across: fls. large, deep scarlet. B.R. $21: 1790$. (in. 28:501. A.F. 3:547. - A very handsome winter-flowering twiner.
coccinea, Vent. Densely pubescent: lfts. 3 or 5 , ovate or oblong, very obtuse, often 3-lobed: stipules very
small: fls, $1 / 3$ in. long, searlet, in long-peduncled elusters of $15-20$; standard orbicular; keel very obtuse: pod flattened. B.M. 2664. L.B.C. 12:1126. - Known under severalnames, as K. inophylla, Lindl., B.R. 17:1421; K. dilatata, Cunn., B.R. 18:1526; Zichya tricolor, Lindl., B.R. 25:52; Z. villösa, Lindl., B.R. 28:68, and others. Handsome slender twiner or trailer. L. H. B.

KENRICK, WILLIAM, was born in 1795, and was the oldest son of Jobn Kenrick, one of the pioneer American nurserymen. His father commenced his nursery in the year 1790 on Nonantum Hill, near the line of the towns of Newton and Brighton, Mass., and on the very ground where the apostle Eliot began bis labors for the Indians, under Waban, their chief. The raising of peach seedlings was the commencement of Mr. Kenrick's work. He soon acquired the art of budding, and thus offered naned varieties for sale. In the year 1823 his son William became a partner in the nursery, and we find the first advertisement of the stock in the October number of the "New England Farmer" of that year. It named 30 varieties of finest budded peaches 5 to 8 feet high at $331 / 3$ cents each; 10 varieties of European grapes; 4 American: Isabella, Catawba, Bland and Scuppernong; currants, horse-chestnut, catalpa, mouutain ash, lilacs, roses and a few other ornamental trees. It was stated that the trees would be packed with clay and mats. The son, William, appears to have assumed early control, having planted in 1823 two acres in currants alone. In 1824 they made 1,700 gallons of currant wine, increasing the amount to 3,000 gallons in 1825 and to 3,600 in 1826 , Mr. Kenrick was an enthusiast in whatever he did, bis extensive cultivation and introduction of the Lombardy poplar being an illustration of his sanguine temperament. A still more marked instance was bis culture of the Morus multicaulis about the year 1835, and his advocacy of silk culture. For a time he found this to be a more profitable venture to himself tban to his patrons. But it should be said that, however sanguine and confident were his opinions, they were honestly held and with no intent to mislead. In the year 1835 Mr . Keurick published "The American Silk Growers' Guide," a small treatise on mulberry culture. In 1833 appeared the "New American Orchardist." This is a larger work, and is a full description of the fruits of that date. The author acknowledges his large indebtedness to other cultivators, especially to Mr. Robert Manning, of Salem, who published his "Book of Fruits" in 1838. Mr. Kenriek died in February, 1872.

Wm. C. Strona.
KENTIA (after William Kent, horticulturist, companion of Reinwardt in journeys through the Indian archipelago). Palmdcea. Spineless palms with pinnate lvs., sharp-pointed or 2-toothed, linear-lanceolate lfts., midnerves scaly beneath, and rachis angled above; petiole channeled above, rounded on the back. It differs from Areca in the sharply 4 -angled branchlets of the spadices; and from Hedyscepe and Kentiopsis in having only 6 stamens. Species at most 6 or 7 , from the Moluccas to northern Australia. The type is K. procera. Blume, from New Guinea, which is not cult. It is probable that none of the Kentias known to the American trade belong properly in this genus.
K. austràlis, Hort., from Lord Howe's Island, is prohably one of the four following palms which, according to Maiden in Proc. Linn. Soc. N. S. W. 1898, are the only palms on that island: Clinostigma Mooreanum, Howea Belmoreana and Forsteriana, and Hedyscepe Canterburyana. K. australis was int. 1873 and advertised 1 k 03 hy John Saul.- K. Belmoreana, C. Moore=Howea Belmoreana. - K, Baveri, Seem. - Rhopalostylis Baneri, -K. Belmoreana, F. Iuell. = Howea Belmoreana. - K. Bróronii, Hort. Dedicated to D. S. Brown, of St. Louis, Mo, Resembles K . Macarthori. Lvs, pinnate, arching. Ifts, truacate and premorse. Very graceful. A.G. 15:266 and 20:223. This is, perhaps, Neaga or Hydriastele, $-K$. Canterburyana, F. Muell.-Hedyscepe Cauterburyana. -K. dinaricata, Planch. - Kentiopsis divaricata. - K. Dumoniana, Hort. Adv, 1895 by Pitcher \& Manda. F.R. 1:379.- . élegans, Brongn, \& Gris. Cyphophoenix elegans.- , exorrhiza, H. Wendl.-Exorrhiza Wendlandi-ana.- K. Forsteriäna. F. Muell, Howea Forsterians.- K. frutéscens. Hort, Cult, by Siebrecht \& Son.-K. fulcita, Brong. = Cyphophonix fulcita.- \boldsymbol{K}, gracilis. Hort.- Jierokentia grac-ilis.-K. Kirsteniana, Hort. Lvs. very slender, dark green. arching, ascending, widely pinnated; lfts. broadly cuneate shaped like a shark's fin, the truncate apex curiously erose, ragged, the upper margin extending into a long, sharp tip; peti-
oles eovered with light grayish brown pabescence. New Ireland. A.G. 20:253 (1899). G.C. I11, 24:391. This is probably a Nenga.-K. Lindeni, Hort. $=$ Kentiopsis macrocarpa. K. Lüciuni, Lind. =Kentiopsis macrocarpa. -K. Macärthuri, Hort. Au elegant palm, with smooth, suberect Ivs.; lfts. semipendulons, alternate, $4-8 \mathrm{in}$. long, $1 / 4^{-1} \mathrm{in}$. wide, the midvein prominent above, obliquely truncate and ragged or premorse. Stems smooth, suckering quite treely. New Grainea. Int, 1878, Veitch \& Sons. F. 1879, p.115. Perhaps a Nenga, -K. Mooreana, F. Mnell.=Clinostigma Mooreanum. - K. Morei. Hort. Dreer. Possibly same as K. Mooreana, - K, rubricaùlis, Hort. Lvs. pinnate, ovate, with red petioles. Adv. 1805 by Pitcher $\mathcal{\&}$ Mindia.-K. rupicola, Hort. Adv. 1895 by Piteher \& Manda. K. Sanderizna, Hort. Very slender in habit, very hard foliage, spreading: Ifts. very narrow, arranged on an arching rachis similar to Cocos Weddelliana. A gracefnl plant for jardinieres or conservatories. A.G. 20:223.-K. Sapida, Jart,-Rhopalostylis sapida. -K. Fan Hoúttet. Hort. = Veitchia, sp. ! Adv. 1895 by Pitcher \& Manda.-K. Veitchii, Hort, probably=Hedyscepe Canterburyana.-K. Wendlandiàna. F. Muell.-Hydriastele Wendlandiana.

JARED G. SMTH.
KENTIOPSIS (Greek: like Kentia). Palmえ̀eer. Spineless palms: Ivs. equally pinnate; pinna subopposite, very coriaceous, narrow, sword-shaped, narrowed to the obtuse or touthed apex, with strong mid-nerve, prominent veins and thickened margins. Species 2. New Caledonia.
Kentiopsis belongs to a large group of genera mentioned under Hedyscepe (p. 718), which differ from Kentia in having the ovule fastened on the side of the locule, and more or less pendulons, instead of fastened at the base and erect, as in Kentia. Kentiopsis is distinguished from Hydriastele by having its tls. arranged spirally instead of in 4 ranks. From numerous other eultivated allies it is distinguished by the following characters: stamens numerous, 20-25: leaf-segments narrowed, obtuse or dentate: sepals of the stamiuate fls. triangular-orbicular, broadly overlapping.
macrocárpa, Brongu. (Kéntia Lindeni, Hort. Linden. Kéntia Luiciana, Linden). Racbis flat above, convex below. The form known as Kéntia Luciani has bright green lvs., tinged with brown on the under surface, the young petiole yellowish, later becoming brown. 1.H. $29: 45 I$ and $24: 276$. F. 1884, p. 71. S.H. 2:117. - The species is distinguished by the reddish tinge of the young leaves.
K. divaricàta, Brongn. (Kentia divaricata, Planch.), is referred by Drude in Eugler \& Prantl, to Drymophloens. It may be distinguished from the preceding by the alternate pinnie and triangular rachis, keeled above. 1.H. 28:409. This has been confused in the trade with Kentia gracilis, which is referred by Index Kewensis to Mierokentiagracilis. See I.H. 23:245. Advertised 1895 by Pitcher \& Manda. $-K$. oliveformis, Brongn.. is characterized by the 4 . angled rachis. Not eultivated.

KENTUCKY HORTICULTURE. Fig. 1209. The state of Kentucky, while its interests have not been distinctively developed in the direction of horticulture, is, nevertheless, in its various parts, admirably adapted to nearly all the fruits and vegetables of the temperate zone. Its cultivation has been primarily that pertaining to general agriculture and stock-raising, ratherthan horticulture.

Before the civil war the people of wealth and culture, particnlarly over large areas through the central portion of the state, dwelt very largely in the country rather than in the towns, which at that time were nearly all small and comparatively unimportant. There are many evidences still remaining, in stately country homes surrounded by magnificent old trees and oldfashioned gardens, to bear witness to the high appreciation of the people of that period for the amenities of
rural life. At that time commercial horticulture in the state was almost unknown; but with the steady advance in fruit-growing throughont the country, and with in* creasing facilities for rapid transportation for perishable products, there have been developed in recent years several well-defined fruit-and vegetable-growing areas, in which these industries have assumed large proportions.
The most important of these districts are two which lie respectively to the northeast and south of Lonisville, and the boundaries of which, to some extent, overlap. The first of these is comprised largely of the counties of Trimble and Oldham. Trimble county is especially noted for its extensive peach orehards, which are sitnated upon the elevated lands adjacent to the Ohio river, much of the truit being shipped by water to Lonisville, Cincinnati, and other river towns. Oldham county bas a large aereage of grapes. The first vineyards were established in the decade of 1850-60, of the Catawba and Isabella varieties. On account of the rot, the culture of these varieties was not very suceessful, but early in the next decade the Ives was introduced, and owing to its productiveness and shipping qualities, it has since been grown almost exclusively. The growth of the industry was quite steady nutil about 1890 , when one or two seasons of large crops, accompanied by bigh prices, led to a very large increase in the acreage. During the past few years the business has been somewhat depressed, on account of the competition of earlier grapes from Georgia and other sonthern states.
To the south and southwest of Louisville lies the fruit district, known as Muldraugh Hill, a low, mountainons elevation, extending, in Kentucky, iu a southeasterly direction from the Ohio river in Meade county, through Hardin, Larue, Green, and portions of adjacent counties. In this hill conntry fruit-growing is most largely developed on its sonthern slope, peaches and apples holding the first place in importance, while pears, plums and the small fruits are also extensively grown. This locality seems peculiarly adapted to the apple and peach, orchards of the latter having prodaced, according to good anthorities, nineteen paying crops in twenty three years, with comparative freedom from disease, and attaining, when permitted, a great age and size. The fruit from this district is shipped to various points in the Mississippi valley, but especially to such northern cities as Indianapolis and Cbieago, where it holds high rank.

Between and connecting the two fruit districts men

1209. Kentucky

Shaded areas designate pomological districts,
tioned is the county of Jefferson, containing the largest city in the state-Louisville. In this county fruitgrowing and market-gardening are very extensively developed, particularly for the local market, and bere also are found the most extensive florists' establishments in the state, as well as many forcing-honses, devoted to growing winter vegetables, chiefly lettuce.

Throughout mueh of the fruit districts mentioned, as in many other parts of the state, the favorable results
secured in fruit-production are possible largely on account of the immunity from late spring frosts, due to elevated locations and to the deeply eroded river cbannels, which afford abundant cold air drainage.
In the extreme southwestern corner of the state (near K in Fig. 1209), in the counties of Carlisle, Hickman aud Fulton, a combination of favorable conditions has led to an extensive development of the trucking and small fruit interests. Chief among these conditions are a fertile soil, a warm spriog temperature, and direct and rapid transportation, both by water and rail, to northern cities. Many hundreds of acres of strawberries are grown, and the production of beans, spinach, melons and other garden crops is of nearly equal importance.
In the vicinity of Cincinnati, Obio, the fruit and vege-table-growing interests are quite extensive, although the conditions for market-gardening bave led to a greater development of that business upon the northern than upon the Kentucky side of the Ohio river.
About two-fifths of the eastern portion of Kentucky, comprising the mountainous part of the state, is still sparsely settled, its agriculture is confined to a few staple crops produced, in many cases, by primitive methods, and true horticulture is comparatively unknown over a great part of this vast area, although, as shown in isolated localities, nearly all our fruits and vegetables can be grown with perfect success. Within the borders of this mountain region, in the southeastern part of the state, are several prosperous German and Swiss colonies, nearly every member of which, with characteristic industry and thrift, has possessed himself, on some part of his farm, of a vineyard and orchard, and so produces an ample supply of the best fruits. Here and there in other localities, enterprising individuals bave demonstrated the easy possibility of producing orchard and garden products without stint; but the average farmer of the mountain region, as too often elsewbere, is apparently content to let his table remain bare of the best fruits and vegetables, as bis home surroundings are so often bare of trees and flowers.
The public parks of the state are confined almost exclusively to those of the city of Louisville, which was itself without any park system until recent years. After the passage of an act providing for their establishment, a board of park commissioners was elected in 1890 , since which time the development of the park system has been vigorously prosecuted. At the present time there has been secured for this purpose a splendid public possession of over 1,100 acres, composed of Iroquois park, 589 acres; Cherokee park, 304 acres; Sbawnee park, 167 acres; and the southern park way, 48 acres, together with a number of small city squares. These parks are being improved under the direction of the most skilful landscape architects, and promise soon to bring the city of Louisville to an equality in this respect with other great eities of the country.

Of other public grounds in which the work of the landscape horticulturist is manifest, the two cemeteries, Cave Hill, of Louisville, and that of Lexingtod are perbaps the most notable examples in the state. The former comprises an area of about 300 acres, and Is situated upon a beautiful tract of land, elevated 100 feet above the Ohio river. It contains several beautiful lakes, and is especially rich in its collections of aquaties.
The cemetery at Lexington contains over 100 acres, and was established in 1849 . It is exceptionally fortunate in baving been under the same superintendent during its entire bistory of almost fifty years, and in having the landscape metbod of treatment followed from the first. Among many interesting borticultural features, the most notable to-day are the magnificent old bur oaks and white elms, many of which are 4 or 5 feet in diameter.

Clarence W. Mathews.
KENTUCKY BLUE GRASS. Poa pratensis.
KENTUCKY COFFEE TREE. Gymnocladus Canadensis.

KERNERA. Cruciféro. Under this name amateurs cultivate a rock plant growing about 4 in . bigh, which blooms profusely all summer, its fls, being small, white,
and borne in elongated umbels. It should prohably be known as Cochlearia saxatilis. Four genera, representing 4 orders, bave been named after Jobaun Simon von Kerner, 1755-1830, Prof. of Botany at Stuttgart. Bentham and Hooker regard the cruciferous Kernera as a subgenus of Cochlearia, in which the stamens are longer and bowed at the apex: pods turgid; valves very convex: cotyledons accumbent or incumbent.
The following species is a compact, branching, neat habited plant thriving in any light soil that is moderately rich. It requires a sunny but not too dry situation. Prop. by cuttings, division or seed.
K. saxátilis, Reichb. Properly Cochlearia saxatilis, Linn Root-lvs, oblong, dentate, pilose: stem-lvs. linear-oblong petals 4 , obovate, 2-3 times as long as the calyx: seeds numerous, not margined. Eu.
J. B. Keller and W. M.

KERRIA (after William Kerr, a gardener who introduced this and many other plants from Cbina; not J. Bellenden Ker or M. Kerr, as ofted stated). Rosdcea. A monotypic genus, one of the first shrubs brougbt from Japan; best known by its weak, slender green branches, slender irregularly toothed lvs, and large yellow fls. It grows 4-8 ft . bigh and as broad as bigh, with numerous short-branched, spreading stems, attractive in winter from its light green branches, in early June when its blossoms appear in greatest abundance; in November, when the lvs, are of a clear yellow, and is not unattractive throughout the whole year. It is a refined plant and deserves free use in ornamental planting, either in simple masses or at the front of a shrubby group or border. It is not thorougbly bardy in all situations in the northern states, the tips of its branches often winter-killing, which causes it to demand a well-drained and partially sheltered position. It grows in any good garden soil. Although eaduring sunlight, it is best in partial shade, since the inteusity of full sunlight partially bleaches the fis. It is prop. by cuttings, layers and root divisions.
Japónica, DC (Córchorus Japónicus, Thunb.) Globe Flower. Japanese Rose. Fig. 1210. Lus. simple, alternate, ovate-lanceolate, acuminate, largely unequally serrate, $1-2 \mathrm{in}$. long, clear green above, pale below, thin, slightly pubescent: fis, abundant, solitary, terminal, peduncled, I-2 in. in diameter, appearing in June and

:210. Kerria Japonica.
Showing single and double flowers ($\times 1 / \frac{1}{3}$).
more or less throughout the year; calyx persistent. 5 lohed; petals 5, large, yellow, ovate; stamens numerous: carpels $\overline{5}-8$, globose, distinct. A.f. 18:425. F.E. $9: 593$. R.H. 1869, p. 293. S.B.F.G. Il. 337. Gn. 21, p. 275.Var. flore plèno, double, more vigorons and more frequent in culture than the single. B.M. 1296. Var. grandiflora, a vigorous form with large fls. Yar, aureovittatis (ramulis rariegatis cureis), a dwarf form, the branches striped with yellow and green. Var. argenteovariegàta, $2-3 \mathrm{ft}$. high, with small green lvs, edged with white.
A. Phelps Wyman.

KIDNEY BEAN. Common name in England for the common beans in distinction from the Lima bean, the former being Phaseolus vulgaris, the latter P. lunatus.

KIDNEY VETCH. See Anthyllis.
KINGNUT, Carya suleata.
KIN-KAN. See Kiumquat.
KINNIKINNICK. Dry bark of Cornus Amomum, smoked by western Indans.

KITCHEN GARDEN. See l'egetable Gardening, Gardens, and Horticulture.

KLEINIA. Of the 3 genera of Composita of this name, 2 are referred to Porophyllum and Jaumea, but the trade names will be accounted for under Senecio.

KNAPWEED. See Centaurea.

KNIGHT'S STAR. Hippeastrum equestre.

KNIPHÓFIA (Johann Hieronymus Kuiphof, 1704176̄̃, professor at Erfurt). Lilidees. This genus includes the Red-hot Poker Plant (Fig. 1211), which is unique in its appearance and one of the most striking plants in common cultivation. No one who has ever seen its pyramidal spike of blazing red fis. borne in autumn is likely to forget when and where he "discovered" this plant. It is herbaceous and nearly hardy N., has sword-shaped lvs. 2-3 ft. long, and several scapes 4 or 5 ft . high surmounted by a spike 4-8 in. long composed of perhaps 100 tubular, drooping fls., each 1 in . or more long, and fiery, untamed red. A sky-rocket is not more startling. By far the commonest species is \boldsymbol{K}. aloides, which has perhaps a dozen varieties with Latin names and twice as many with personal names. All the other species bave much the same general effect, and are of interest chiefly to collectors and fanciers. Poker Plants are hardy south of Philadelphia when well covered in winter, but in the North it is generally safer to dig up the plants in Novenuber, place them in boxes with dry earth, and store them in a cellar in winter. In spring place them in a warm, sheltered, well-drained spot, preferably with a background of shrubbery to set off the flowers.

The genus is confined to Africa and Madagascar, and all but two of the species numbered below are from south Africa. The plants seem to be still better known to the trade as species of Tritoma, but the following account omits most of such synonyms. Bentham and Hooker placed Kniphofia between Funkia and Notosceptrum. The latter genus is not in cultivation, and Funkia has blue or white fis., which colors are not found in Kniphofia. Poker Plants have fis, of red, orange or yellow. Blandfordia bas similar colors and agrees in having pendulous tubular fls, with short lobes, and also long, narrow lvs., but the stamens are fixed at the middle of the tube, and the capsule has septicidal dehiscence, while in Kniphofia the stamens are fixed under the pistil and the capsule has loculicidal dehiscence.

Knipbofias are often classed by dealers as bulbous plants, though they have only a short rhizome and numerous, clustered, thickish root-fibers. Baker speaks of the "raceme" of a Kniphofia, but the pedicels are so short that the inflorescence is here spoken of as a "spike," particularly as a spike signifies to the popular mind a denser inflorescence than a raceme. Most of the species have been very recently monographed by Baker in Flora Capensis, vol. 6 and Flora of Trop. Afr. vol. 7. When the beight of the plants is given below, it refers to the beight of the scape.

Index of names exclusive of those in the supplementary lists (varieties and synonyms in italic):
aloides, 1.
Burchelli, 3 .
carnosa, 1.
caulescens, 6.
comosa, 10 .
coronianum, 5.
> corollina, 5.
> glaucescens, 1. grandiflora, 1. grandis. 1 . Leiehtlinii, 9 . Macowanii. 5

Nelsoni, 4.
nobreis, 1 .
pauciflora, 8 .
Rooperi, 2 .
Saundersii, 1.
Tuckii, 7 .
A. Length of perianth 1 in. or more. B. Stemless or nearly 80.
C. Form of bes, sward-shapedacuminate.
D. Color of lvs. dull green. E. Widith of lvs. $3 / 4$ in 1. aloides EE. Wialth of les. $11 / 2$ in....... 2. Rooperi DD. Color of les. bright green.... 3. Burchelli CC. Form of lvs. linear.
D. Width of les. one-sixteenth to one-twelfth of an inch...... 4. Nelsoni
DD. Width of les. one-eighth to one-sixth of an inch...... 5. Macowanii
 AA. Length of perianth $1 / 2-3 / 4$ in.
B. Form of perianth subeylindrical. . 7. Tuckii BB. Form of perianth funnel-shuped.
c. Width of le's. one-eighth to onesixth of an inch. 8. pauciflora cc. Width of lus. $1 / 2$ in.
D. Stamens $1 \frac{1}{2}$ limes as long as the perianth 9. Leichtlinii
DD. Stamens twice as long as the perianth....................... 10. comosa

1. aloldt3, Moench (K. Uvària, Hook. Tritoma Uvdria, Ker.). Red-hot Poker Plant. Poker Plant. Torch Lily. Flame Flower. Fig. 12II. Lvs. slightly

2. Kniphofia aloides.

Separate flower natural size.
glaucous, 2-3 ft. long, scabrous on the margin, acutely keeled, with $30-40$ close vertical veins: raceme dense, often 6 in . long, $21 / 2-3 \mathrm{in}$. thick: upper fls, bright red, lower ones yellow; perianth cylindrical; stamens sometimes barely exserted. F.S. 13:1393. B.M. 4816:758.The following varieties with Latin names are in the trade and usually advertised as apparent species under Kniphofis or Tritoma. They may be all more or less distinct horticulturally. Aneverblooming kind is advertised in 1900 and said to flower from June to Dec. Var. carnòsa is figured in $\mathrm{Gn} .19: 286$ with the fls. opening from the top instead of the bottom, and with red filaments and yellow anthers. Leichtlin introduced it about 1881 and said it grew $11 / 2-2 \mathrm{ft}$. high, the apricot-red of the fls. toned down by a glaucous bloom. Var. floribunda is early-flowering, says Van Tubergen. Var. glauca is less known than the next. Var. glaucescens is figured in Gn. 36:727 with a spike 9 in . long, of "vermilion-scarlet fis. changing to a more orange color. One of the freest bloomers. Int. 1859." Foliage somewhat glaucous. Var. grandiflora, one of the earliest improvements on the type. Johu Saul said it grows 2-3 ft, high. Var. grandis. "The largest-flowered of all; fls, red and yellow, 5 ft ." Woolson. Referred by Kew authorities to var. maxima. Var. nobilis is said by Carriere, R.H. 1885:259, to have
shorter and stricterlvs, than Saundersii, the spikes more ovoid, the fls, uniformly red and less deflexed. Lvs. not glaucous. Gn. 55, p. 167. Var. Saundersii, in R.H. 1882:504, is shown with "red-orange fls ." in an elliptical spike and said to grow 6 ft . and more high. Woolson finds it grows 4-6 ft. high in rich soil, with cylindrical spikes $18-24 \mathrm{in}$. long and fls. often $1 / 2 \mathrm{in}$. across. Var. serótina is a late-fld. form.

Baker's treatment of the varieties is as follows:
Var, máxima, Baker (K. and T, graudiflora, Hort. T. Saùrdersii, Garr.). Nore robust: lvs. $4-5 \mathrm{ft}$. long, 1 in . wide: raceme and fls. longer: stamens more decidedly exserted. B.M. 6553 (fls, yellow, more or less tinged red). R.H. 1882:504 (colored like the type).

Var. nobilis, Baker (T. nóbilis, Guill.). Still more robust: scape including raceme sometimes $6-7 \mathrm{ft}$. long: fls. $11 / 2$ in. long. R.H. 1885:252.

Var, serotina, Hort. Alate-flowering form with slender perianth $1 \frac{1}{4} \mathrm{in}$. long aud distinetly exserted stamens. Baker also mentions varieties carnosa and glaucescens without diserimination. Other varieties with Latin names are mentioned in Gn. 36: 727.
2. Rooperi, Lem. Lvs, 4 ft . long, scabrous on the margin, glaucous. Later-fld, than No. J: fls. paler. B. M. 6116 .
3. Búrchelli, Kunth. Livs, $2-3 \mathrm{ft}$. long, $1 / 2-3 / 4 \mathrm{in}$. wide, smooth on the nargin: spike 6-12 in. long: fls. bright yellow, much tinged with red when young. "A much dwarfer plant than No. I and for many purposes equally desirable. Height $I^{1} / 2 \mathrm{ft}$. Fls. tinged green." J. B. Keller.
4. Nélsoni, Mast. Lvs. J1⁄2-2 ft. long, with a thick midrib and recurved serrulate edges. G.C. I1I. 11:561. Gn. 50 , p. $400 ; 55: 1213$ (brick-red, no trace of yellow).
5. Macowanii, Baker. Lvs, with a thickened scabrous margin, many upper fls, bright dark red. B.M. 6167. R.H. 1879:390. - "A very neat dwarf species with orangescarlet As. in early autumn, $1-2 \mathrm{ft}$." 11 ooolson . K. coralllna, Hort., R.B. 19:25 (J893), a hybrid between this speeies and K. Uvaria, was raised by Deleuil, of Marseilles. Woolson says it grows $18-24 \mathrm{in}$. high and bears ovoid spikes of coral red fls, all summer and fall. He says it is good for cutting. K. corolinianum of one of our nursery catalogues is presumably an error for \boldsymbol{K}. corollina. K. mèdia Macoueanii, Hort. "A hybrid between K. aloides grandiflora and K. Macowanii. This is an earlier blooming sort than either of its parents, as dwarf as Macowanii and much earlier and more brilliant. Thoroughly tested." Woolson.
6. cauléscens, Baker. Lvs. sword-shaped-acuminate, broadly channelled, not acutely keeled on the back, 4-5 ft . long, 5-6 in. wide, margin serrulate: spike over 1 ft . long, 3 in, thick: lower fls, yellow, upper ones red. G. C. III. 6:564. R.H. 1887:I32.-This differs from all described above in having stamens much exserted. Gn. $41: 861$ is perhaps the most artistic of all colored plates of Kniphotias.
7. Túckii, Baker. Lvs. ensiform (linear in Nos. 8-10), $\mathrm{J}-1 \frac{1}{2} \mathrm{ft}$. long, $3 / 4 \mathrm{in}$. wide, margin serrate: spike very dense, $5-6 \mathrm{in}$. long: fls. yellow, tinged bright red when young. One of the hardiest.
8. pauciflora, Baker. Lvs.]-11/2 ft. long, margin smooth: raceme lax (dense in Nos, 9-10), 2-3 in. long: fls. pale yellow; stamens shortly exserted, as in No. 7. G.C.I11. I2:65 shows it with only 25 fls , and the loosest raceme of any species here described.
9. Leichtlinii, Baker. Fls. bright yellow; perianth more narrowly funnel-shaped than in No. 10 , becoming s/4in. long: seape speckled with red, sometimes bearing a bract $4-5$ in. long. This and No. 10 are from tropical Africa; the rest from Sonth Africa. B.M, 6716. R.H. 1884, p. 557. Var. distáchya, Baker, has a forked seape and small accessory luteral raceme.
10. comósa, Hochst. Fis. bright yellow, dilated suddenly ft the middle, $1 / 2 \mathrm{in}$. long; filaments red; anthers yellow. B.M. 6569.- This has relatively longer stamezs than any other species and is perhaps more conspicuous by reason of its mass of stamens than the outline of the spike. One of the tenderest.
Supplementary list of imperfectly known Latin names rep-
resenting kinds now advertised in Ameriea: \boldsymbol{K}, hybrida. Hort., is a trade name used to include varieties with personal names, of miscellaneons or anknown parentage. $-\boldsymbol{K}$. mutabile, Hort "Height $5-6 \mathrm{ft}$." Woolson. - K. Pfitzerit, Hort. John Saul, 1895, said "rose-scarlet without a trace of yellow." Dreer, 1900, says it is a great improvement of K , aloides, var. grandifiora, the scapes more numerous, often $4^{1 / 2} \mathrm{ft}$. high: spikes over 12 in . long: fls, rich orange-searlet, shading to salmon-rose at the edge.-K. specidsa, Hort. Van Tuhergen.-K. Wodidii, Hort., is advertised by Franceschi, who says it comes from Natal, and has lemon-yellow fls. Not in Flora Capensis.
Twenty-five varieties with personal names are advertised by Van Tubergen and Krelage. How mueh variation in hahit and season of hloom does not appear. The color-range is about as follows: dark brick red, carmine-red, coral red, scarlet orange, orange, hronzy yellow, deep yellow, pure yellow and primroseor straw-colored. The tilaments may be red or yellow, the anthers apparently sometimes differently colored from the filaanthers apparently sometimes differently colored from the fila-
ments. Some hybrids are recorded, and some form of K . aloides is usually concerned.
W. M.

KOCHIA (after W. D. J. Koch, 1771-1849, professor of botany at Erlangen; wrote a flora of Germany and Switzerland). Chenopodideeo. This includes a plant treated as 4 hardy annual which is called the Mock Cypress or Summer Cypress. J. Wilkinson Elliott says, "It grows $2-21 / 2 \mathrm{ft}$. high, resembling asmall, closely sheared evergreen, the foliage being light green until September, when the whole plant is a solid mass of erimson. The fls, are minute but countless. The plant dies within two weeks after blooming. It germinates very quickly, even in the warm spells of late winter." Elliott called it the Mexican Fire Plant, because the seeds were procured in Mexico. However, the genus has no species native to the western hemisphere. It is probably this same plant which is ndvertised by Bridgeman as Belvidere Fochia. There is no genus called Belvidere. The French popular name for this plant is Belvedere, and it is a native of Europe and northern Asia. Bridgeman, however, says the fls, are gellow, and gives the beight as 3 ft ., while Voss (Vilmorin's Blumengartnerei) says it is 3-5 ft . high or more. Voss advises a clay soil and sunny position, and since it likes a salty soil recommeuds that about an ounce and a half of saltpetre be sprinkled over each square yard of soil. This plant is used abroad as a "foliage plant," beeause of the vivid color of the whole plant from July to September.

The seed may be sown indoors in April, and the plants set out in May, or the seeds may be sown in the open ground about May 1. The plants should stand about 2 ft. npart.

Kochia is a polymorphorus genus of about 30 speeies of herbs which are often woody at the base: Irs. of ten minute and narrow, alternate, more or less silky, rarely glabrous: fis, small or minute, sessile, solitary or clustered in the axils of the lvs.; caly x enlarging into a flask-shaped body, which incloses the fruit; perianth orbicular; lobes 5 , incurved and beuring horizontal wings on the back or on the tube which are membranous or searious, distinct or confluent ; stamens 5 ; filaments short or long and compressed; stigmas 2, rarely 3.
scoparia, Schrad. Mock Cypress. Summer Crpress. Erect, much-branched, densely pyramidal: branches striate, slender, and close to the main stem: lvs. linear-lanceolate, ciliate, $2-3 \mathrm{in}$. long, 2-4 lines wide: fls, inconspicuous, green; perianth in fruit provided with very short, triangular, pointed appendages.

KGELERIA (Georg Ladwig Koler, professor of natural bistory at Mainz, puhlished in 1802 a deseription of the grasses of (iermany and France). Graminere. This includes a tufted, perennial grass sometimes offered by collectors of native plants. Wilfred Brotherton suggests its cultivation for ornament in dry, silvery sand. It is a very variable plant, growing $1-21 / 2 \mathrm{ft}$. bigh, erect and unbranched, and has shining spikes. The genus contains about 15 widely scattered species, and its nearest eultivated allies are Eatonia and Molinia, which are diseriminated elsewhere. Important generic characters are the spicate panicles, which are eylindrical or somewhat interrupted: flowering glumes more or less hyalinescarious, blunt, or tipped with a muero or rarely a short awn.
cristàta, Pers. Stems rigid, pubescent just below the panicle: sheaths often shorter than the internodes,
sinooth, seabrous or hirsute : Ivs. I-I2 in. long, flat or involnte: spikelets $2-5$-fld. July-Sept. Widely distrionted in N. Amer. in sandy and prairie soil. B.B. 1:194.
W. M.

KOELREUTERIA (Joseph G. Kcelreuter, J733-I806, professor of natural history at Karlsruhe). Sapinddeea. An arborescent genus of about 3 species occurring in China and Japan, one of which is K. paniculata, a me-dimm-sized, irregular, round-headed tree, $25-30 \mathrm{ft}$. high, with large, componnd, irregularly toothed lvs., yellow fls. in July and large, bladdery fruits in panicles in antumn. It is hardy in Mass., although single limbs are occasionally killed back in winter. It also endnres dry weather and bot winds in the West. It is of easy culture, but requires a fairly rich soil. As an ornament it may be used as a single specimen, though not a particularly refined tree, or it may be mixed with other genera in the woody border. It is prop. by seeds, which it ripens early and freely, by layers in autumn, by cuttings of the young branches in spring, and by root-cuttings.
paniculàta, Laxm. (Sapindus Chinénsis, Murr.). Varnish Tree. Lys, deciduons, alternate, J2 in. long, unequally pinnate, without stipules; lfts. ovate, largely and irregularly dentate, glabrous, in 4-7 pairs, opposite and alternate: fls. yellow, $1 / 2 \mathrm{in}$. long, in large, upright, terminal, many-fld. panicles; sepals 5 ; petals $3-4$, hypogynous, irregular, each claw with a scale-like appendage, the disk enlarging before each petal; stamens 5-8: ovary oblong, pubescent, becoming a 3-lobed, 3-celled bladdery, inflated, triangular pod, $\mathrm{J}^{1 / 2-2}$ in. long, usually red, becoming brown, borne in large, erect panicles. G.C. I11. 2:561. Gng. 2:353 and 8:219. Gn. 32, p. 378.
K. bipinndra, Franch. A vigorous tree, 60 ft . high, with doubly pinnate lvs, over 2 ft . long, growing in W. Cbina. R.H. 1888, p.393. Ga.34, p.305.-К. Japónica, Sieb. A more branched form with deeply cut lvs. and smaller fruit, but not specifically distinet from K . paniculata.
A. Phelps Wralan.

KEENIGA. See Alyssum.

KOHLRABI (Brassica oleracea, var. caulo-rapa). Fig. I212. This plant exhibits a remarkable variation from the normal form of the specific type, as represented by the cabbage. A prominent writer on vegetables, referring to the botany of the plant, says: "It comes between the cabbage and turnip." Had this reference been made to the edible portion it would be literally true. In the turnip the edihle part is the swollen root; in the cabbage it is the fleshy and tightly curled leaves, while in the Kohlrabi it is the globular enlargement midway between root and top. This plant is mainly grown for cattle food. It is but little known in America. In France and Germany its usefulness is generally recognized. In ltaly the partially developed stems are used as substitutes for cauliflower and cabbage. It is not likely that as a eattle food it will grow in popularity in this country, as rape is better adapted for sheep-grazing purposes, and turnips can be grown with equal ease and kept through winter with greater satisfaction. Its treatment in the garden is essentially that of early cabbage. The plants are very hardy. For very early crop it is desirable to start them in a hotbed. If properly hardened off, they may be set out as soon as the frost is out of the ground. Plant and cnltivate like early cabbages. The seed of main field crop may be sown direetly in the hill. The rows should be $21 / 2 \mathrm{ft}$, apart, and the hills 2 ft , apart in the row. Several seeds are planted in each hill, and all plants pulled out but one, after danger of destruetion by flea-beetle is over. Many growers in the western states follow this plan in growing late cabbages, as well as kale and brussels sprouts. The seed may be planted, according to locality, from May 10 to June 20. When the plants are grown in the seed bed the treatment is essentially the same as that deseribed under Cabbage. In northern regions, only the early varieties should be grown on account of the slowness of the plant in maturing. No special effort seems to have been made to develop many distinet varieties of Kohlrabi. The two leading types are the Purple and the White Vienna, which mature sufficiently for table use in $21 / 2-3$ months from time of sowing seed; the common white requires 3-4 months to reach edible size, and much longer to attain maturity. Where corn is largely grown as a cattle
food, the cnlture of Koblrahi is not likely to extend. Vilmorin describes Artichoke-leaved and Neapolitan. Other varieties are Erfint, Goliath, Green, Imperial, Late Purple, Purple Vienna, Short-leaved Vienna, White Forcing, and White Vienna. Persons who like turnips will also like Kohlrabi. The almost universal error in using it is to allow the tubers to get too large. When they are partially grown they are soft and palatable. Cabhage worm and clnhroot are the most important enemies. Consult, also, Brassica and Cabbage. John Craig.
Koblrabi may be grown, bunched and put on the market in exactly the same manner as early table beets are handled. In our eastern cities, where the population consists to a large extent of people of German extraction, Kohlrabí for table use is in good de mand, or such a demand is easily culti-

1212. Kohlrabi vated. We find it an easy crop to grow, and invariably profitable, simply because few gardeners make a specialty of it. As early in spring as the ground can be brought into best shape, sow seed in rows with the drill, the rows to be about 18 inches apart, and afterwards thin the plants to stand 4 to 6 inches apart in the rows. Begin pulling and bunching when the bulbs have attained a size of 2 to 3 inches in diameter. Make successional sowings to keep up a continuous supply of the tender bulbs. They grow tough when nearing full development and maturity. Plants often winter well on their summer stems, and seed may be grown from them.
T. Greiner.

KOLA. See Cola.

KONJAK. See Conophallus Konjak.

KRAU̇SSIA (C. F. F. Krauss, of Stuttgart, collected plants at the Cape, and wrote on South Sea corals). Rubiacere. K. lanceolata is a shrub cultivated in southern Florida, bearing small white fls. in axillary, many-fld. cymes $1 / 2 \mathrm{in}$. or more long. K. coriacea of the trade will be found under Tricalysia, an allied genus, in which the fls. do not have a densely bearded throat, as in Kraussia, but are quite glabrous. Kraussia has 3 species of shrubs from the Cape of Good Hope: lvs. opposite, short-stalked, entire, leathery, elliptical or lanceolate: stipules short, persistent, grown together into a small cup: corolla broadly funnel-shaped; lobes 5: ovary 2 -celled: berry pea-shaped, 1-3-seeded. E. N. Reasoner writes that the Kranssias have been frozen so many times in Florida that he has never seen them in flower.
lanceolàta, Sond. Branches yellowish, 4-grooved: lvs. laneeolate, acuminate, $3-3 \frac{1}{4}$ in. long, $8-10$ lines wide: filaments exserted, nearly as long as the anthers: stigma 2-cut, one-third as long as the style.

KRIGIA (David Krig or Krieg, an early collector in Maryland and Delaware). Compositce, Five species of hardy herbaceons plants, annual and perennial, yel-low-fld. and sometimes called "Dwarf Dandelions." They differ from the common dandelion in baving a pappus composed of both chaff and bristles, instead of bristles alone. They are natives of the Atlantic states. Three perennial species are cult, by dealers in native plants. These have heads about 1 in . across and $15-20$

KYDIA

pappus bristles. Unlike the common dandelion, these plants do not become weedy.

$$
\begin{gathered}
\text { A. Stem a leafless scape, bearing } 1 \text { head. } \\
\text { B. Has tubers. }
\end{gathered}
$$

Dandelion, Nutt. Height 6-18 in.: Ivs. lanceolate or almost linear, varying from minutely toothed to pinnatifid. Apr.-June. Moist ground, Md. to Fla, and Tex. -The only kind that has tubers.

BB. Has no tubers.

montàna, Nutt. (K. Dandelion, var. montana, Chapman). Height $9-12$ in.: lvs. oblong to linear, varying from entire to pinnatifid: head smaller than in K. $\dot{D} a n$. delion. Crevices of rocks, Alleghenies, N. and S. Car. and Ga. - Harlan P. Kelsey writes that this is an admirable rock plant, thriving in any soil or situation, and blooming profusely from March to June or July. Prop. by seed or division.
AA. Stem 1-3-7vd., branched above, bearing 2-6 heads.
amplexicaùlis, Nutt. (Cýnthia Virginica, Willd.). Height 12-24 in.: Ivs. oblong or oval, obtuse, entire or repand and denticulate, or the root-lvs. somewhat lyrate: stem-lvs. partly clasping. May-Oct. Moist banks, N. Y. to Ga., west to Colo.

KRYNITZKIA (Prof. J. Krynitzki, of Cracow). Borraginace. Chiefly North American herbs, annuals and some perennials, with small fls, nearly always white. Two species have been listed in eastern catalogues, and are procurable from western collectors. The following descriptions give some idea of what the plants are like, and for specific distinctions from numerous allies the student is referred to Gray's "Synoptical Flora."
glomeràta, Gray. Biennial, coarse, grayish pricklyhirsute, $1-3 \mathrm{ft}$. high: Ivs. spatulate or linear-spatulate: fis, white, thyrsoid-glomerate. Plains, along eastern base of Rocky Mountains.
barbigera, Gray (Eritrichium barbigerum, Gray) Hispid and hirsute, $9-12$ in. high: Jvs. linear: fls.white in solitary or panicled, elongating spikes. S. Calif.

KUDZU VINE. Pueraria Thunbergiana.
KUMQUAT or KINKAN, of the Japanese, is a dwarf member of the citrous tribe (Citrus Japonica), seldom growing more than 6 or 8 ft . high on the

1213. The oblong Kumquat ($\times^{3 / 4}$). Kumquat (\times,4). rowing in restrieted but a bush, eminently adapted for growing in restricted places, both in-and outdoors. As a
pot-plant for the house it is a gem, making a very hand some evergreen bush and blooming freely through the spring or early summer, then setting its interesting fruit. The flowers are much like the orange, white and scented, but smaller. The soil best adapted to the Kumquat is a light loam or sand; it thrives in any soil suited to the orange or lemon.

There are two well-defined varieties of this species, the ohlong and round fruited; the oblong fruit (Fig. 1213) is about $1 \frac{1}{4}$ inches long by 1 in diameter, and aal the fruits of this variety are almost of an exact size, not

1214. Round Kumquat ($\times 1 / 3$).
so much variance being noticed among them as in hens' eggs. On the contrary, the round fruits (Fig. 1214) are produced with great difference in size, varying from $1 / 4$ to a full inch in diameter. There is also some difference in flavor and thickness of skin between the varieties, the oblong being more esteemed. For an account, with illustrations of the two types of Kumquat, see A. (x. 21:345 (1900). The fruit, when eaten out of hand, is entirely consumed, excepting the few small seeds; almost everyone tasting it seems to relish the combined flaror of skin, pulp and juice. Its chief use, however, is in making marmalade or preserves. The fruit is used whole in heavy syrup, and makes a delicious dainty. It is also candied and used in fine confectionery.
E. N. Rfasoner.

KYDIA (Col. Rohert Kyd, founder of the Calcutta Botanic Garden, died 1794), Maleàcec. Three species of oriental trees, one of which is cult. in S. Fla. and S. Calif. K. calyclna has white or pink fis. somewhat like those of Hihiscus, and borne in long panicles. This genus belongs to a subtribe characterized hy having 2 or more orules. Kydia has $4-6$ bractlets; Abutilon none; Spharalcea 3. Kydia has fls. polygamous; petals 5 ; staminal tube dirided about the middle into 5 divisions, each bearing 3 anthers, which are imperfect in the pistillate fls.
calycina, Roxb. Tree, attaining $25 \mathrm{ft}$. : lvs. 4-5 in. long, 3 in. wide, rounded, cordate, palmately 7 -nerved, more or less lobed, midlobe longest, close felted beneath; petiole I-2 in. long : inflorescence much-branched, many-fld.

LABELING. Figs. 1215-1218. The characters demanded in a good plant label are legibility, convenience, durability and a reasonable cheapuess. The purposes for which labels are needed by the horticulturist may be grouped as follows: (1) For pots, boxes, frames and benches; (2) for stock in storage or transit; (3) for rows, plots or beds in garden, nursery, orchard, etc.; (4) for individual trees, shrubs and plants.

Of the materials that may be used for labels, wood holds the first place, and the soft, easily worked nature of white piue makes this the favorite, though other more durable woods, such as cedar, cypress, spruce and mulberry, are used to some extent. Machine-made, ready painted wooden labels of convenient shapes and sizes, from 4 to 12 inches in length, (see 1, Fig. 1215) are carried in all stocks of gardeners' supplies, and are in common use in all work with plants in pots, boxes, benches, etc., and to some extent in out-of-door gardening; but these should not be trusted when the label is expected to endure for a considerable time. In the storage of grafts and cuttings in pits or cellars, two of these labels should be written and slipped together under the tie, the outer one for immediate reference and the under and protected oue for security when the other becomes defaced.

Notched or perforated labels (2, 3, Fig. 1215), with or without wires, are also prepared for nurserymen's use, those strung with soft copper wire being the best. These are used in the sbipping of nearly all trees and shrubs, and here great annoyance would be saved if all names were written distinctly and with a heavy impression. If such labels are used on stock after planting, the grower should use great care that stems and branches are not choked by the wire. The printing of any desired names may be procured on order, effecting a great saving of time and a gain in distinctness.

For marking rows, plots, etc., stakes should be used large enough to readily attract attention and not be broken over or moved in cultivation. A very serviceable stake for nurseries, trial grounds and gardens is made by cutting 2 inch pine or cyress plank $21 / 2$ inches wide and 2 feet long, pointing and giving two good coats of paint. Inseriptions may be stenciled on these as suggested in 4, Fig. 1215, written with a heavy pencil, or better, when names, dates and list or plot numbers are wanted, written on a square of sheet zine and fastened to the face of the stake with small nails. (No. 5.) An annual coat of paint obliterates old lettering and preserves the wood.

A common wooden label for borders, groups or specimen plants is shown by No, 6 and a variation by No. 7. The stakes should be of some durable wood, and the whole well painted. A paint of pure lampblack and oil is the most indestructible that we have, and letters of this will stand out like type after the lead paint and the very wood surface have weathered away from them. An effective contrast is obtained by painting the face of the label black and doing the lettering in white.

For more permanent labels in a variety of forms, sheet zinc has proved superior to all other materials. It may be stamped with steel letter dies or written upon with a common lead pencil, but more commonly a chemical ink is used. The common formula for this in horticultural books is substantially that prepared by the French chemist, Brainnot, in 1837, and is as follows: Take two parts by weight of verdigris (acetate of copper), two of sal ammoniac (ammonium chloride), one part of lampblack and thirty parts of soft water.

The chemicals should be incorporated with a little of the water, and the balance added. Keep in a glass bottle tightly corked and shake frequently while using, as the lampblack tends to separate. The zine, cut in the desired forms, should be prepared by scouring slightly with emery dust or fine saud paper. The ink may be applied with a quill or coarse steel pen, but a fresh one will be needed with each batch of labels. Inks of an aqueous solution of chloride of copper or of chloride of mercury are also recommended for writing on zinc, which should first be cleaned with a weak solution of muriatic acid. Bichloride of platinum is one of the blackest inks for ziuc. A slightly oxidized zinc surface may be written upon with a soft lead pencil, and while the inscription will not be very distinct at first will grow more so with age, and will endure for years.
A wired zinc label, as shown in 8, Fig. 1215, If exposed to the wind will sometimes cut out the eye completely, unless care is taken to twist the wire up tightly. Strips of zinc five-eighths of an inch wide and 7 inches long (9 , Fig. 1215), coiled loosely around a branch, as in No. 10 , are the most serviceable form of tree label, but even these should be noticed every year, that they do not become fastened into the fork of a rapidly growing tree.
For borders or beds of herbaceous perenuials, bulbs, and the like, the label shown in No, 11 is excellent and inexpensive. A piece of galranized wire Nos. 6-8 in size, is cut $1^{1 / 2}$ to 2 feet long, bent to shape and the written zine tablet closed in. For a more conspicuous label, the zine may be given a coat of white lead, then one of black enamel paint, and the letters be traced in white. In some European botanical gardens a zinc tablet staniped with sunken letters brought into relief by paiut are used for similar purposes. A zinc label, with two wire legs to

1215. Various types of labels.

LABURNUM

prevent it from turning around, is shown in Fig 1216. It can be made for about $\$ 2$ per hundred, with the face $3 \frac{13}{4} \times 11 / 2$ inchs.

There are many designs of expensive cast or enameled metal or porcelain labels, that bave found little use iu this country. A label of stamped zinc of English mauufacture (shown in 16, Fig. 1215) is oue of the best garden labels. For Labeling specimen tree trunks, a sheet of zinc or copper with a little water-ledge bent at the top, painted, enameled black and lettered in white, is ahout the best thing we have. It should be secured with copper tacks, and given occasional attention. (See No. 15.) The white bronze tree tablety with letters cast in relief have so far failed to secure general introduction. A series of thin sheet-copperlabels, to be writtenon with a stylus against a soft, yielding surface, as a piece of leather, are shown in Nos. 12, 13, 14. These have proved too frail for exposed out-of-door use, but are very good for conservatory plants, orchards, etc., though the inscription needs rather close examination. In making copper labels, the

1216. A metal garden label.

1217. Tiec labels of many patterns.
temper should be taken ont and the metal folded on the edges. A neat label for conservatory use is made of white sheet-celluloid with a mat surface, as pencil marks show very plaiuly on it.

Bailey describes (in "Principles of Fruit-growing") the tree labels shown in Fig. 1217. "1, 2, German labels, made of glazed earthenware, with the name colored blue and sunken. Strong copper wire, coiled, to allow of the growth of the limb, holds the label to the tree. 3, Cornell lahel, made of wood. 4, double wooden label, consisting of two common wooden labels fastened together. The name is written on the outside of the double label, as in any other label, but it is also written on the inside to insure permanence. When the outside writing is worn off, the label is opened and the inside is still bright. The label is fastened to the tree by a tack or small nail, as shown in the cut at the right. The label is seen opened in the cut at the left. 5,6, zinc labels, used at the Nen York State Experiment Station, Geneva. The wire is driven into the tree, and the name is written or printed on the zinc with black paint. 7, common handmade wooden tag, taken from an old tree in the test orchard of the late Charles Downing, Newburgh, N. Y. 8, thin copper label, with the name indented into the metal by the use of a bard-peiuted instrument. Some metal labels are liable to tear out at the hole when exposed to winds. 9, common painted pine label used by

1218. Paddock's vineyard label. nurserymen, and costing (without the copper wire) about 35 cents per thousand for the common size, which is $31 / 2$ inches long. 10, Lodeman's label, used somewhat at Cornell, consisting of a tag of sheet lead securely fastened to a coiled brass wire. The wire is secured to the body of the tree by a staple or screw-eye, and it is expected that the wire will become imbedded in the trunk as the tree grows. No. 11, common zinc label or tally." A good vineyard label is shown in Fig. 1218, described by Bailey as follows: "The figure is Paddock's vineyard label (designed by W. Paddock, State Experiment Station, Geneva, N. Y.). The label is a strip of heavy zine secured to a stiff galvanized wire. This wire or shank is provided with a hook at the lower end and a half-hitch near its middle, so that it can be securely adjusted to the wires of the trellis, hold ing the label well above the foliage."
S. C. Mason,

LABLAB BEAN, See Dolichos.

LABRADOR TEA. See Ledum.
LABURNUM (ancient Latin name). Leguminòse. Including Podocytisus. Golden Chain. Ornamental shrubs or small trees, with alternate trifolioliate petioled Ivs., and yellow papilionaceous, showy fls, in many-fld., usually pendulous racemes, L. alpinum is hardiest, L. vulgaris is almost hardy in Mass., while L. Caramanicum is tender. They are adapted for planting on rocky slopes or in borders of shrubberies, when they should be allowed enough space to show to the best advantage their graceful, drooping racemes of golden fls., which contrast with the dark green foliage. They are hardly ever attacked by insects or fungi. The lvs. fall late in autumn without changing color. They thrive in any kind of well-drained soil, includung limestone, and grow as well in
partly shaded positions as in suuny ones. Prop. by seeds, sown usually in spring, and also by layers; the vars, are mostly grafted or budded on seedlings of one of the species. Three species in S. Europe and W. Asia, often included under Cytisus. Livs. exstipulate; As. slender-pedicelled, in termiual simple racemes, mostly pendulous ; calyx 2-lipped, with obtuse, short lips; corolla papilionaceous, with the petals all distinet: ovary stalked: fr. a linear pod with several seeds, compressed, tardily dehiscent; seed without appendage at the base. All parts of the plants are poisonous, especially the young fruits. The hard, tough and closegrained wood is susceptible of a very fine polish, and is manufactured into various small articles. Consult Cytisus, Genista and Petteria for names not found in this genus.
vulgàre, Griseb. (L. anagyroides, Medic. Cýtisus Labúrnum, Linn.). Golden C'hain. Bean Tree. Fig. 1219. Large shrub or small tree, to 20 ft ., with erect or spreading branches: branchlets appressed-pubescent, grayish green: lvs. long-petioled; lfts, elliptic or ellip-tic-ovate, usually obtuse and mucronulate, glaucousgreen and appressed-silky puhescent beneath when young, $1-1^{3 / 4} \mathrm{in}$. long: racemes silky-pnhescent, $4-8 \mathrm{in}$. long: fls. about $3 / 4 \mathrm{in}$. long: pod appressed-pubescent, with thick peel, about 2 in . long; seeds black. May, June. S. Europe. Gn. 25, p. 518 ; 34, p. 30, and 51, p. 302.-There are many garden forms, as rar. aùreum, Hort., with yellow foliage, F.S. 21:2242-43; var. bullàtum, C. Koch (var. involütum, Hort.), with curled

1219. Golden Chain, Laburnum vulgare ($X^{1 / 3}$).
lfts.; var. Carlièri, C. Koch, with very small and narrow lfts. and loug and slender racemes; var. péndulum, C. Koch, with pendulous branches, Gn. 25, p. 522 ; var. quercifolium, C. Koch, with sinuately lobed lfts., Gn. 25, p. 520 and 34, p. 30; var. sessilifolium, C. Koch, with crowded, sessile lvs.
alpinum, Griseb. (Cytisus alpinus, Mill.). Scotch Laburnem. Shrub or tree, to 30 ft ., similar to the former: branchlets glabrous or hirsute when young: lits. usually elliptic, acute, pale green and glabrous beneath or sparingly birsute, ciliate, $1-1^{3 / 4}$ in. long: racemes long and slender, glabrous or sparingly hirsute: fis. smaller: pod thin, with the upper suture winged, glabrous; seed brown. June. Mts., S. Europe. B.M. 176 (as Cytisus Laburnum). Gn. 25, p. 519 and 34, p. 30.This species flowers about two weeks later than the former, and bas much longer and more slender racemes; it also is of more upright and stiffer growth and hardier.

Wátereri, Dipp. (L. Párksii, Hort. C. alpinus \times vulgàris, Wittst.). Hybrid of garden origin, but found also wild. Lvs, beneath and racemes sparingly pubescent: racemes long and slender: pod with narrow wing, sparingly appressed-pubescent.-As hardy as L. alpinum and sometimes considered to be a variety of that species.

Ádami, Kirchn. (C. Adami, Poit. C. Labúrnum purpuráscens, Loud. L. vulgàre \times Cylisus purpùreus). Probably graft-hybrid, originated at Vitry, near Paris, ahout 1826 . Habit and foliage usually almost like L. vulgare, but fls, dull purplish, rarely yellow; sometimes bearing a few branches with the fls. and lvs. of Cytisus purpurens. A very interesting form, but of less ornamental value. B.R. 23:1965, B.H. $21: 16-18$. - Much discussed by Darwin and others as an example of grafthybridism.
L. Caramánicum. Benth. \& Hook. (Podocytisus Caramanicus, Boiss.). Erect shrub, to 4 ft ., much resembling in foliage and habit the Cytisns sessilifolius, with long and slender terminal upright racemes. July-Sept. Asia Minor. R.H. 1861, p. 410 .-L. fràgrans, Griseh., L. ramentàceum, C. Koch, and L. Wèldeni, Lavall.=Petteria ramentacea

Alfred Rehder.

LABYRINTHS or mazes are still kept up in some Old World gardeus as relies of the past. They were popular in the sixteenth and seventeenth centuries. Fig. 1220 is the plan of an English Labyrinth of two centuries ago. It would be vandalism to destroy so fine an example of a style of gardening no longer fashionable, but folly to copy it in a modern garden. Mazes are made of clipped evergreens of various kinds.

LACIENA (one of the names of Helen, which Limalley states may be applied to this plant on account of its beauty, a compliment which the plant does not at all merit; but be adds it may also be derived from Lakis, a cleft, alluding to the divisions of the lip, but this derivation is impossible). Orchidacea. A little-known genus containing only 2 species inhabiting Central Amer. Pseudobulhs rather long, ovoid, smooth at first: lvs. large, elliptic-pointed and contracted into a petiole, plicate venose: raceme pendent from the base of the pseudobulbs, loose, bearing up to 10 medium-sized fls.: sepals and petals nearly equal, elliptical, half-spreading; labellum equaling the petals, articulated to the base of the column, clawed, with the lateral lobes incurved, terminal larger, spreading and narrowed at the base to a broad claw: column rather long, winged, hooded at the top; pollinia 2 on a simple stipe.
The plants should be grown in baskets or on blocks of wood like Stanhopeas: if potted the racemes are likely to bury themselves in the soil. At the end of October water should be almost entirely withheld for a few weeks. The flower-stalks appear in spring.
bicolor, Lindl. Racemes drooping, about 18 in . long, bearing 9 or 10 fls. The fls. are greenish yellow, covered externally with short hairs; petals with 3 purple streaks; labellum hairy, spotted with purple. Discovered about 1843 in Guatemala, at an elevation of $7,000 \mathrm{ft}$. B.R. 30:50. - Var. glabràta, Lem. Fls, everywhere nearly glabrous, creamy white. Not in the American trade. I.H. 1:33.
spectábilis, Reichb. f. Fls, about 1 in. in diam., whitish, suffused with pink and speckled with purple; sepals concave orbicular; petals smaller connirent. B. M. 6516. - Far more handsome than the former, but not advertised in America.

Heinrich Hasselbring.

1220. The maze on St. Catherine's Hill, Winchester, England.

From a plan made in 1710. (See Labyrinths, p. 865.)

English amateurs. L. Nelsoni, the first and one of the best hybrids, was rasied, not in a greenhouse, but in a home window, by the Rev. John Nelson. Four fine hybrids, raised by T. H. Marsh, are sbown in Gn. 46:981, where their parentage is given. L. Nelsoni bas played an important part in the production of these hybrids, Ruby, Cawston Gem, Little Beanty and Topaz, all of which are in the trade.
W. M.

It is well to make one job of it, planting Freesias and Lachenalias together. Six are planted in a 6 -inch pot, in good rich loam. They probably do as well without leaf soil, if the drainage be good. They are stored in a well protected coldframe until late in November, but might be kept longer, as a pinch of frost will not hurt them. After they are brought into the greenhonse, and make good growth, plenty of water may be given, and, occasionally, liquid manure. A night temperature of 50° F . will be found about right, but they scarcely bear forcing until the flowering scapes show. If forced before the buds show, the flowers are often malformed. With good management they remain in bloom from six to eight weeks.

After blooming, the plants should be set on a shelf in

LACHENALIA (Werner de Lachenal, 1736-1800, professor of botany at Bascl). Liliace. ('ape Cowslips. Lachenalias (Fig .122 I) are Cape bulbs that are easily flowered in a cool greenhouse in early spring or even in winter. They bave a remarkable range of color, and with good management may be kept in an attractive condition for two months or more. There are species with bell-shaped flowers, and some in which the flowers are all more or less erect, but the favorite types are the long, cylindrical, pendulons flowers with the brilliant red and yellow colors. Of the 42 species, about 9 are cult., the most popular being L. tricolor, particularly its var. Velsoni and some of the recent forms with personal names. I. pendula is perhaps second in popularity, the rest being known chiefly to bulb fanciers. Lachenalias are very distinct in coloring and general appearance. They usually have 2 leaves (sometimes 5 in cult.), rarely 1 , and the bulbs are globose, tunicated, and about $1 / 2-\mathrm{I}$ in. thick. An exceptionally strong bulb, under the most favorable conditions sends up 3 or 4 erect flower-stalks 9 in. high, with as many as 40 fowers, each $1-11 / 2 \mathrm{in}$. long. Uuder eareless treatment the leaves and flower-stalks are weaker, and bear perhaps 6-12 flowers. Lachenalias are fine subjects for hanging baskets.

This genus is also interesting when studying the evolution of the perianth. In our common lilies the 6 seg ments are all the same size and all colored like petals. Lachenalia has only I species in which the segments are practically equal. The others vary wonderfully, but usually the inner segments are longer, and sometimes the outer segments are small and more or less greenish, thereby suggesting the division of perianth into ealyx and corolla. The genus is monographed in English by Baker in the sixth volume of Flora Capensis, which contains all the Cape bulbs and should be in the hands of every bulb specialist.

It should encourage the amateur to know that the recent improvement of Lachenalias is largely due to two
a light position and watered as carefnlly as before the blooming season, less water being given as signs of maturity appear; viz., discolored leaves and withered flow-er-stems. When thoroughly ripened, they are stored in the pots they have grown in and kept quite dry until the month of August. They must be repotted then. If by chance drip should strike the soil, the plants may be found starting into growth. The bulbs multiply rapidly, more than doubling in a season. Fully one-third of the extra bulbs will be serviceable, and still more would make bloom of less decorative value. There are many more-bulblets-which can be sown on the borders of carnation or violet benches, a large number making good-sized bulbs in one season. Seeds of Lachenalias germinate readily in a few weeks, and with good treatment max. 5 seedlings will bloom before going to rest. In the opinion of the writer, L. Velsoni is stiii the most satisiactory kind to grow.
T. D. Hatfield.

INDEX.
aurea, 6. Aureliana, 4 Cammi, 6. glaucina, 3. Iuteola. 6 . Nelsoni, 6.
reflexa, 1.
orchioides, 2. pallida, 8. pendula, 4. pustulata, 7. quadricolor, 6.
rubida, 5 .
tricolor, 6.
unifolia, 9 .
violacea, 7 .
A. Base of perianth oblique \qquad I. reflexa

AA. Base of perianth equally rounded.
B. Form of perianth more or less cylindrical.
o. Fls. all erect or at most spreading.
D. Length of perianth 4 lines.... 2. orchioides ID. Length of perianth 6-9 lines... 3. glaucina cs. F'ls. drooping or pendulous, at least the lower ones.
D. Innersegments scarcely longer than the outer.

> DD. Inner segments 2-s lines longer than the outer....... 5. rubida DDD. Inner segments s- 4 tines longer than the outer...... 6. tricolor

B8. Form of perianth bell-shaped.
C. Lus, pustulate. i. e., covered with
blister-like elevations.
D. Inflorescence spicate........ 7. pustulata
DD. Inflorescence racemose...... 8. pallida

DD. Inflorescence racemose....... 8. pallida
cc. Lvs. not pustulute............... 9. . unifolia

1. refléxa, Thunb. Lvs, clasping the base of the stem for 1-2 in.: spike usually few-fld.: fls, all erect or spreading, yellowish.
2. orchioldes, Ait. Lvs. strap-shaped, often spotted, 1 in. wide, clasping the base of the stem: \#s. white, yellow, red or blue. B. M. 8.54 and 1269 . L. B. C. 11:1076 (as L. mutabilis). "The most striking color forms," says Baker, "are atroviolàcea, byacinth blue; virenti-flàva, greenish yellow, and mutábilis, inner segments dull yellow, tipped red-brown."
3. glaucina, Jacq. Lvs, as in No, 2: fls, long, white, red, yellow or tinged blue. B.M. 3552 (wonderfully varied in color). B.R. 16:1350 and 23:1945.
4. péndula, Ait. Bulb globose, abont I in. thick: peduncle 6-12 in. long, more robust than in Nos. 5 and 6: raceme few- or many-fld., 2-6 in, long, all except the upper fls, more or less nodding: outer segments yellow, passing upwards into red, not spotted; inner bright redpurple at the tip. B.M. 590. Gn. $18: 241 ; 23$, p. $142 ; 33$, p. 249, and 45, p.355. F. 1871:265. V. 8:172. Var. Aureliana has outer segments red, barely tipped yellow; inner ones tipped green. R.H. 1890:396. G.C. I11. 23:I95.
5. rùbida, Jacq. Bulb about $1 / 2$ in. thick: peduncle 6-9 in. long: 1/ss, spotted: raceme 6-20-fld.: outer segments bright red, tipped green; inner ones yellow below the tip.
6. trícolor, Thunb. Lvs. often spotted: lower fls, nodding ; outer segments yellow, tipped green; inmer purplish red at the tip. L.B.C, 8:767. B.M. 83, F. 1871: 265. (in. 18:241 and 47 , p. 163 . Var. quadricolor (L. quadricolor, Jacq.), perianth with a red base and greenish yellow middle; outer segments tipped green; inner ones tipped red-purple. L.B.C. 8:746. Var. luteola (L.

7. Lachenalia Nelsoni $(\times 1 / 4)$.
lutèola, Jacq.), perianth lemon-yellow, tinged green towards the tip. L.B.C. 8:734. F.S. 18:1873. B.M. 1704 and 1020. Var. luteola maculata (L. luteola maculata, Hort.), differs from the preceding in baving spotted foliage. Var. Nélsoni (L. Nélsoni. Hort.). Fig. 1221. Perianth bright yellow, both series of segments faintly
tinged green. Gn. 49, p. 470. Ging, 5: 262. J. H. ILI. $30: 231$. Var. aurea, Hook. (L. curea, Lindl.), perianth bright orauge-yellow. F. 1871:265. B.M. 5992."The varieties are connected by intermediate stages. Several hybrids between L. pendutr and the varieties of L. tricolor are in cult., the finest of which is L. Cammi, Hort., which combines the bright yellow fls. of L. aurea, with the babit of L. pemdula."
8. pustulata, Jacq. Lrs, lanccolate: fls. white or faintly tinged red. B.M. 817. Perhaps synonymous with No. 8. Var. violacea is cult.
9. pallida, Ait. Lvs. strap-shaped: fls. white; outer segments tipped green. B.M. 1372.
10. unifolia, Jacq. Differs from all deseribed above in having only one leaf, which is linear to awl-shaped, and has a band of brown at the base: fls. white, or more or less tinged with red or blue. B.M. 766.
L. viridis, Thnnb., is Dipeadi filamentosum, which is distinguished from the species of Lachenalia hy having 3-6 lvs., which are linear: raceme very lax: fls, bright green. Cape, In Dipeadi the outer segments usually have a tail, which is lacking in Lachenalia; and the seeds of Dipcadi are strongly compressed, while in Lachenalia they are obovoid or globose. D. viride is distinguished from all other species in its genus by the outer segments being falcate, 9-12 lines long, distinctly longer than the inner ones, which are connivent: lvs, linear, nut crisped, 3-6 lines broad.
W. M.

LACTU̇CA (from the old Latin name lac: referring to the milky juice). Compósitce. Lettuce. A well-known genus of hardy annual or perennial herbs, mostly native of the northern hemisphere. Nore than 200 specific names have been given to the genus, probably half of which are synonymis with but only 8 or 9 known in cult., and these are doubtless forms of but 2 or 3 species. Plants 2-4 or more feet bigh, with alternate, variously shaped Ivs. and small-panicled heads of yellow, white or blue fls. Only 1 species is to be found in the American trade, though wild plants of other species are often gatbered for medicinal purposes or used as a salad. All of the species possess narcotic and sedative properties, the sedative known as lactucarium or lettuce-opium, being obtained principally from the European species, L. virosa. Lettuce has been known and used as a salad from a very remote period. It is said to have served at the tables of Persian kings $400 \mathrm{~B} . \mathrm{C}$. See Lettuce.
sativa, Linn. Lettuce. An annual plant, not known in the wild state but generally supposed to have originated from L. Scariola, Linn., in Asia. There are many garden varieties assuming an endless variety of forms but which may be divided into 4 quite distinct types.

Var capitảta, Hort. (L. capitàta, DC.). Common Cabbage Lettuce. Lvs. entire or sparingly dentate, broad, rounded, yellowish or brownish green, more or less wrinkled and in some garden varieties much curled, spreading, 6-It in., usually quite compact.

Var. intybàcea, Hort. (L. intybicea, Jacq. L. quereln a, Linn.). Cut-Leaved Lettuee. Los. 6-10 in. long, deeply and irregularly cut on the edges, loosely spreading.

Var. Romàna, Hort. Cos Lettuce. One to 2 ft . high: Ivs. entire or sparingly dentate, much longer than broad, quite erect, forming a cylindrical or conicalshaped plant.

Var. angustàna, Hort. (L. angustàa, Hort.). Lrs. 1-2 in. wide, 6-12 in. long, entire, slightly spreading in habit.
L. Canadénsis, Linn. Biennial, 4-9 ft. bigh: lvs, entire or nearly so. Wild plants often gathered for salad. $-L$. perénnis, Linn. Root perennial, 2-3 ft, high: lvs, $8-10 \mathrm{in}$. long, deeply eut: fls large, purple. Native of Eu. $-L$. Scariola, Liun. Prickly Lettuce. Annual or biennial, sometimes 6 ft . high: lvs. 1-2 in. wide, 4-6 in. long: fls, yellow, inconspicuous, Int. from Old World, and now a widely distributed weed.
H. C. IRiSh.

LADRONES. The Ladrone or Mariana Islands (Fig. 1222) lie about 1,200 miles east of the Philippines. The seventeen islands contain about 400 square miles. Guam is the southermmost of the islands, and is about as large as all the rest together. It is 600 miles from the
northerumost of the group. The Ladrones lie in an almost straight line north and south. They were captured from Spain in July, 1898, and Guam was retained by the Uuited States chiefly as a coaling station.

The Ladrones were discovered in 1521 by Magellan in the first voyage ronnd the world. They were the first islands in the Pacific to come into continuous contact with European civilization. The aboriginal race, the Chamorros, is extinct, and was replaced chiefly by Tagals from the Philippines. These base deteriorated.

The chief settlement is Agana, on the island of Guam, which contains a majority of the population of the whole group. The Spaniards had but one mail a year between the Ladrones and the Philippines.

The Ladrones are well wooded, but the original flora has almost ranished. None of the Pacific islands possesses any metal, or any native mammal, save a kind of bat.

The Ladrones are said to have a more agreeable climate tban is common within the tropics. There is moisture at all times, but a so-called "dry season" lasts
showy fls, borne singly or in 2- to many-fld. racemes, which arise from the top of 1-2-Ivd. pseudobulbs. The plants greatly resemble Cattleyas, and differ only by the presence of 8 perfect pollen masses instead of 4 , as in Cattleya. Lvs. oblong, coriaceous or fleshy, not plicate: pseudobulbs terminating the annual growth, ovate, clavate, fusiform or stem-like, long or short, consisting of 1 to several thickened internodes, or of slender and quill-like form with merely a small bulbous swelling at base, sheathed with scales and bearing 1 or 2 lvs. at the summit: sepals subequal, free, spreading; petals wider and sometimes longer, spreading; all usually plane: labellum free from the base of the column, more or less distinctly 3 -lobed, the lateral lobes short, erect, folding over the column; middle lobe long, expanded, lanceolate-ovate, etc.: column concave in front, and thus narrowly 2 -winged on the edges: pollinia 8,4 in each locule: scape terminal, long or short, bracted.
The genus contains about 30 species, dispersed in the maritime provinces of Mexico and Guatemala and in S. Brazil. No species is common to the two widely separated regions. A single species, L. monophylla, inhabits the mountains of Jamaica. In their natire homes the plants are often found clinging to bare rocks and trees, where they are exposed to the full force of the tropical sun, and, in the wet season, to daily drenching rains. Some of the species grow at great altitudes. Thus, L. autumnalis, rar. furfuracea, is always found in alpine regions at elevations of $7,500-$ $8,500 \mathrm{ft}$. For a list of cultivated kinds, see R. A. Rolfe, G.C. 11I. 7: 107, 256, 333, 355; and $8: 241,652$.
Lalia may be conveniently divided into groups, as follows:
Group I (species 1-10).Pseudobulhs rounded, pyriform or ovate. The plants of this section are mediumsized, with the pseudobulbs terminating each year's growth sessile at intervals on the rhizome, and sheathed at least at first with bract leaves. The scape, except in L. grandiflora, is long and slender, erect, nodding or sub-horizontal, and bears at
from June to Sept., during which time the northeast trade winds prevail. The rainfall is in most places abundant. The highest part of Guam is 1,500 feet above the sea.

The Ladrones have exported no fruit to speak of. Cocoanuts and hauanas are perhaps the chief fruits. Guava tigs and brealfruit grow well. Other products are rice, sugar, indigo, arrow-root, cotton, tohacco, and even wheat.

One of the best recent accounts of the Ladrone Islands is in Appleton's Annual Cyclopedia for 1898. For maps of the Ladrones, see Century Atlas, and Overland Monthly $33: 92$. For references to recent literature, see the Cumulative Index of Periodical Literature. There is a book on the history of the Ladrones written in Spanish. It is an octavo of 210 pages published at Granada in 1886, and entitled Historia de las islas Marianas. The author is Luis de lbañez y Garcia.

LADY'S EARDROPS, Short-flowered Fuchsias. L. Garters. Phalaris arudinacea, var. picta. L. Mantle. Alchemilla vulgaris. L. Slipper. Cypripediums. L. Smock or Meadow Cress. Cardamine pratensis. L. Tresses. Spiranthes.

L座LIA (meaning uncertain). Orchidàcerf. A useful and attractive geuus of orchids, mostly with large,
its end 1 or 2 fls . L. anceps), or a raceme of $2-7$ fls. (L. albida). L. grandiflora, placed here on account of its thickened pseudobulbs, bears greater resemblance to the members of the next group.

Group II (species 11-13).-Pseudobulbs short-cylindrical, stem-like, or swollen jointed, i. e., consisting of several internodes and sheathed with bracts. These plants are of dwarf habit, bearing 1-2 very large fls. on short scapes, so that the top of the flower scarcely exceeds the Ivs., which are oblong, about 6 in . long, and leathery.

Grove 1II (species 14-23).-Pseudobulbs long-oblong, fusiform or clavate, tapering below to a sheathed and jointed stalk. This group contains the largest and most showy Lalias. The pseudobulbous stems are tall and tufted, a foot or more in length, forming robust, compact, almost bushy plants. The flowering stems of L. superbiens are said to attain a height of 12 ft . The racemes bear 3-7 large, handsome flowers.
Group IV (species 24-26). Pseudobulbs slender, reedlike and tufted, clothed with scales and often somewhat swollen at base. This group includes a few species which are very distinct on account of their bright searlet or orange-colored fls. and slender, reed-like pseudobulbs. L. monophylla is perhaps the smallest of all Lexias, being scarcely over 6 in . high, with pseudobulbs about as thick as a crow-quill. One variety of L. cinnabarina has purple fls.

INDEX

acuminata, 10. alba, 2, 4, 9, 11, 23 albida, 3 .
A mesiana, 9.
anceps. 9.
Ashworthiana, 9, 22. atropurpurea, 22. atrorubens, 4. Arnoldiaua, 5. antumnalis, 4. Barkeriana, 9. bella, 3.
Boothiana, 20. caulescens, 1. Cauwelartic, 21. cinnsbarina, 26. crispa. 21
crispilnbia, 26. Crawshayana, 7.
Dawsoni, 9.
Dayana, 12
delicata, 9.
Digbyana, 14. Eyermanniana, 6. Eyerma
flava, 1.

Förstermannii, 5.
Fournieri, 4. furfuracea, 4. glauca, 15.
Gouldiana, 8.
grandiflora, 2, 9 . grandis, 18. harpophylla, 25. Hilliana, 9. holochila, 9 . Jongheans, 11. Lawrenciana, 26. Leeana, 9, 13. Lindleyana $=$ Cat tleya Lindleyana. lobata, 20.
majalis, 2.
majus, 2,3. Mandaiana, 22. marginata, 12. monophylla, 24. moradn, 9. Moradn, 9 peduncularis, 10 . pedunculari
Pinelii, 12.

Percivaliana, 9. Perrinil, 23. prastans, 12. proetexta, 22.
pumila, 12.
purpurata, 22.
Kivieri, 20.
rosea, 3, 9.
rubescens, 10
Russelliana, 22.
Sanderiana, 9.
Scottiana, 9. schraderi, 22. Schroderiana, 9. Stella, 9. superbiens. 19. sulphurea, 3. tenebrosa, 18. venusta, 4. Veitchiana, 9. virens, 16. Waddoniensis, 9 Williamsi, 9 . Wanthina, 17.

The following names must be sought under Laliocattleya: L. amanda, Dominiann, Dormnniana, elegans, euspatha, Exoni ensis, Nyleptha, prasiata, Schilleriana, Turneri.

GROUP I.

A. Psendobulbs not compressed or edged.
B. Fls. bright yellow. 1. flava

BB. Fls, rose, purple or white.
C. Scape scarcely equaling the lis.: dwarf plants, with very large fls.
2. grandiflora
cc. Scape slender, much exceeding the le's.
D. F'ls. small, white or pale
yellow.
3. albida

DD. Fls, large, rose-purple;
rarely white.
E. Lip Z-keeled
4. autumnalis
5. Arnoldiana

EE. Lip S-keeled.
F. Les. ablong
FF. Le's. bance-linear or
6. Eyermanniana
oblong-linear.
7. Crawshayana

AA. Pseudobulbs compressed and edged.
B. Lip with a broad, elevated line
down the center: ovary viscose. 9. ancepa
BB. Lip with 3 keels: ovary not viscose.
10. rubescens

1. flàva, Lindl. (L. cauléscens, Lindl.). Lャs. 3-5 in. long, ohlong-lanceolate, acute, very thick and stiff: scape 1 ft ., erect, bearing $4-8$ bright yellow fls, $2-2 \frac{1}{2} \mathrm{in}$. in diameter: sepals and petals spreading, oblong-lanceolate, ohtuse or subacute; labellum not longer than the petals; middle lohe recurved, crisped and undulate, having 4 elevated ridges running down the center; lateral lohes ohtuse. Autumn. Braz. B.R. 28:62.
2. grandiflora, Lindl. (L. majalis, Lindl.). Lvs. solitary, oblong, coriaceous, 6-7 in. long: fls. solitary, rarely 2 , on a short peduncle, scarcely equaling the lvs., $5-8$ in. across, showy, rose-lilac; sepals lanceolate, plane; petals oblong, acute, shorter and much broader than the sepals; middle lohe of the lahellum large, expanded, emarginate, center white, shading to lilae at the margin, spotted with dark lilac: side lohes small, white inside, streaked with lilac. May, June. Mex. B.M. 5667. B.R. 30:30. P.M. 12:1. G.U. 11. 19:628.-A magniftcent orchid. Var, álba, Reichb. f. White. A.G. 19:109; 20:371. Var. màjus is advertised.
3. álbida, Batem. Lvs. lance-linear, acute: scape twice as long as the lvs.: fls. 2 in. across, pure, transparent white except a yellow streak down the lip and a few erimson dots at its base, sweet-scented; sepals lanceolate, spreading; petals similar but broader, all very acute; labellum 3-lohed; side lobes small, erect; middle lobe large, round-ovate, reflexed. All autumn and winter. Oaxaca, Mex. B.M. 3957. B.R. 25:54. Gn. 35:695.-The first white-flowered species discovered.

Var, sulphưrea, Reichb. f. Larger: fls. sulfur-yellow, with a rose-colored border on the middle lohe, and rose spots on the inner surface of the side lobes. Var, bella, Hort., ex-Williams, not Reichb. f. Fls. larger thau the type; sepals and petals creamy white, faintly bordered with lilac; lip white, the middle lobe hroadly bordered with deep rose and having three yellow ridges down the center. Var. rosea, Hort. Fls. rose-colored. Var. majus is advertised.
4. autumnàlis, Lindl. Lvs, oblong-linear, obtuse, coriaceous, 5 in . long: scape $1 \frac{1}{2}-2 \mathrm{ft}$. long, $5-6-\mathrm{fld}$., with sheathing scales: fls. showy, fragrant; sepals lanceolateacuminate; petals ohlong-lanceolate, undulate; lateral lobes of the labellum large, ereet, rotund-truncate, whitish; middle lobe obovate, obtuse, apiculate, recurved, deep purple; disk with two narrow yellow lamellæ. In color and general appearance much like L. anceps, but the segments lack the green ribs. Autumn. Mex. B.M. 3817. B.R. 25:27. I.H. 1:17. P.M.6:121. G.C. 1872:1009. - (irows on bare rocks and stunted trees in most exposed situations, often at great altitudes. Less valuahle than L. anceps. Var. furfuràcea, Rolfe (L. furfuràcea, Lindl.). This seems to be a dwarf alpine form, with the ovary more scurfy and the petals unusually broad. It is always found at great elevations, oceurring frequently at $7,500-8,500 \mathrm{ft}$. Intermediate forms exist. B. M. 3810. B. R. 25:26. Var. atrorubens, Backhouse. Pseudobulbs short: fls. large, deep rose or magenta, darker toward the ends of the segments and the labellum; base of the labellum and lateral lobes white. Gn. 17:229. Var. venùsta, Hort. Goldring. In habit resembles var. atrorubens: stalk $2-3 \mathrm{ft}$. : Als. large, rosy mauve. Gn. 25:438. Var. Fournieri, Ed. André. Fls. about 6-7 in. across; sepals revolute at the summit, purple-red; petals rhomboid, of the same color, all paler toward the base; labellum white, with the middle lobe colored like the segments. Larger than var. atrormbens. R.H. 1896:548. Var. alba, Hort. Fls. pure white.
5. Arnoldiàna, Manda. Pseudobulbs $4-6 \mathrm{in}$. long, pyriform, deeply furcate, $21 \mathrm{rd.:} \mathrm{1vs}. \mathrm{5-7} \mathrm{in}. \mathrm{long}, \mathrm{leatbery}$, lanceolate, thick and dark green: scape $1-4 \mathrm{ft}$. long, 3-11-fld.: sepals ohlong-lanceolate, pointed; petals broader, ovate, all somewhat reflexed, rose-colored; middle lohe of the labellum reflexed, deep rose-purple, paler towards the center; throat with 2 yellow keels, spotted purple; lateral lohes straight, pale rose or white. A species closely related to L. autumnalis, from which it differs in having bulbs growing erect and rigid lvs. and in the absence of the fetid odor of L. aretumnatis (W. A. Manda). Mex. A.F. 5:303.-Var, Foretermannii, Hort. Identical with the type, but has pure white fls., with a tinge of delicate pink on the ends of the segments (W. A. Manda).
6. Eyermanniàna, Reichb.f. Natural hybrid. Pseudobulbs like those of L. grandiflora: lvs. oblong, acute, very leathery, $6 \mathrm{in} . \operatorname{long}$ and 2 in . broad: racemes bearing 3-1 fis. up to 4 in. across (as large as those of L. Gouldiana, but smaller than L. autumnalis), rose-purple (white suffused with bright rosy crimson); sepals lance-oblong, acute; petals broadly oblong or almost rotund, ohtuse; side lobes of the labellum oblong; middle lohe rounded, wary, white bordered with rose and having 3 yellow keels on the disk fading to whitish on the blade, L. autumnalis \times L. grandiflora, Reichb. L. autumnalis \times L. albida, Rolfe. G.C. III. 4:109.
7. Crawshayàna, Reichb, f. Natural hybrid. Pseudobulbs and lvs. as in L. albida: scape few-(2)-fld., long as in L. anceps, but thinner and with shorter, narrower sheaths: sepals and petals narrower than in L. anceps, of a fine amethyst color; labellum open near the column; side lohes obtuse angled, antrorse, rich purple at the tips; middle lobe cuueate, abruptly blunt, lower half rich purple; throat yellow, veined with purple, 3 -keeled. According to Reichb., a hybrid between L. anceps (?) and autumnalis (?) or albide and anceps. J.H.111.30:67 (as L. anceps, var. Crawshayana). The plaut there figured is probably the species in question, although, according to the figure and the accompanying description, the sepals and petals are wider than those of L. anceps.
8. Gouldiàna, Reichb. f. Pseudobulbs ovate, 2-lvd.: Ivs. oblong-linear: scape slender, $1-2 \mathrm{ft}$. long, bearing as many as 6 deep rose-purple fls, resembling those
of L. anceps: sepals lance-oblong, pointed; petals broader, ovate, acute; mildle lobe of the labellum large, deeply colored, throat white and reined; side lobes white. Dec. to Jan. Mex. G.C. III. 7:169.-A useful species, large plants often bearing 5-10 racemes. Perhaps only a var. of L. autumnalis.
9. anceps, Lindl. Fig. 1223. Pseudobulbs scattered on the rhizome, ovate: lvs. $5-9 \mathrm{in}$. long, oblong-lanceolate: scape from the top of the pseudobulbs, $11 / 2-2 \mathrm{ft}$. long, clothed with keeled scales and bearing 1-2 very showy, purplish rose-colored fls.: sepals lanceolateacuminate; petals ovate-acuminate, all with a greenish line on the back; labellum inside of the lateral lobes yellow, with red marks; middle lobe oblong, acute, deep purple, white on the disk, with a thickened yellow keel terminating in 3 ridges. Mex. B.M.3804. B.R.21:1751. G.C. II. 24: 405; III. 15: 172. P.M. 4:73.-Gne of the most beautiful Lælias, possessing many fine varieties. Var. Barkeriàna, Lindl. Sepals and petals subequal; middle lobe of the labellum rather narrow, acute, B.R.

23:1947. F.S. 11:1100. Gn. 25:446. Var. Dáwsoni, J. Anders. Scape 2-3 ft. long, 2-3-fld.: fls, white ; interior of the labelfum marked with radiating purple lines, with the usual yellow ridge. Juquila, Mex. Gn. 25:446. G. C. 111. 1:424. S.H. 2, p. 175. F, M. 1871:530. Var, alba, Reichb. f. Sepals and petals as in var, Dawsoni: fls, pure white, with the disk of the lip pale yellow. Dec., Jan. G. C. I1I. 1:485; III. 15:172. Var. Hilliàna, Reichb. f. Sepals and petals white; front lohe ofthe labellum bilobedemarginate. I.H. 33:584. Pale violet, with a yellow disk. Gn. 25:446 (Hitli). G. C. III. 1:425 (Hillii). Var. Williamsi, Hort. Sander. Sepals and petals pure white, of good form, narrower than in var. Stella; labellum white, large, with the disk and throat yellow, marked with crim-son-purple. G.C. III. 1:349. Gn. 25:446 (as Williamsiana). Var, Leeana, Reichb. f. Fls,white, smaller than in L. anceps; petals very narrow and very acute; side lobes of the labellum blunt; middle lobe small, triangular, wary, with a thick, well-developed keel; throat yellowish, veined with reddish-purple. Var. Schroderiàna, Reichb. f. Fls. unusually large; sepals, petals and middle lobe of the labellum pure white; side lobes and throat streaked with broad lines of purplish crimson. A strong grower. Gn. 44:928. G.M. 33:813. Var. Sanderiana, Reichb. f. Fls. white; disk of lip crimson. G. C. 111. $1: 281$ and $25: 136$. Gn. $44: 928$. G. M. $37: 88$. Var. Veitchiàna, Reichb.f. Sepals aod petals white; disk of the labellum yellow, veined with brown; lateral lobes and anterior part of the middle lobe veined with purple.

Gin. 25:446 (Feitchi). Var. Stella, Reichb. f. Fls. pure white; labellum with yellow throat, marked with light crimson lines. G.C. 111. 1:280 and 8:500. Var. Amesiàna, O'Brien. Sepals and petals broad, feather-veined with mauve; labellum white; middle lobe crimson-purple. G.C.111. 23:59. Var. Ashworthiàna, J. O'Brien, Sepals pure white, lance-oblong; petals broadly ovate, also white; front lobe of the labellum broad, expanded, white, with a few blue dots and yellow keels on the throat; side lobes with lines of slaty blue. G.C. Ill. 15:103. J.H. III. 28:125. Var. Waddoniénsis. Fls. pure white; side lobes of the lip marked with purple lines. disk yellowisb. G.C.111. 23:125. G.M. 41:115. Var. Percivaliàna, Reichb. f. Fls. small, but freely produced; sepals and petals white, tinged with bluish pink; lateral lobes of the labellum deep purple at the tips and spotted; throat yellow, with purplish crimson lines; middle lobe creamy yellow at the base; apex purplish. Gn. 25:446. Var. delicàta, Hort. ex Williams. Labellum white, suffused with mauve; throat orangeyellow; sepals and petals rose, mauve or lilac. Var. rosea, Reichb, f. A variety having bright rose-colored Hls., with the margins of the labellum darker rose. Gn. 25:446. Var. grandiflora, Williams. A robust form resembling the type. G.C. III. 3:105. Var. holochila, Rolfe. Sepals and petals nearly alike, pale lilac; lip petaloid, elliptical-lanceolate, light purple, yellow and white at the base. G.F. $4: 173$. Var. Scottiana, Warn. and Will. Sepals and petals mauve; labellum deep purple, with a yellow throat. Var. moràda. This is a name under which importations of large, highly colored forms of L. anceps were sold by the Liverpool Hort. Co., Eng., as var, grandiflora.
10. ruhéscens, Lindl. (L. acrminàta, Lindl. L. peduncularis, Liudl.). Pseudobulbs ovate to subrotund, clustered, sometinies rugose, 1-1vd.: Ivs. oblong to lance-oblong, emarginate, 4-5 in. long: scape slender, jointed, sheathed with hrown scales at the joints, 1 ft . long, with 2-8 graceful, fragrant fls.: sepals spreading, linear-oblong, acute; petals slightly longer and twice as wide, undulate; labellum as long as the petal; middle lobe of the same form but more undulate and with a stain of yellow on the disk, purplish red on the inner surface. A slender, graceful plant with small, whitish, lilac-tinted or rose-colored fis. B.M. 4905 and 4099. B. R. 26:41; $27: 24 ; 31: 69$. F.S. $1: 9 ; 7: 742$. P.M. 10:49. - Flowers much smaller than L. anceps.

GROTP II.
A. Psewdobulbs ovate, evidently thickened.
B. Lip with about 7 undulate keels...11. Jongbeana BB. Lip without or with plane keels.. 2. grandiflora AA. Pseudobulbs oblong, more stem-like.
B. Fls, greenish yellow...............15. glauca

BB. Fls. bright colored or white.
c. Labellum firm, fleshy; lateral lobes conrolute over the col-
ини12. pumila
cc. Lateral lobes of the lip resting on the middle lobe............13. Leeana
11. Jongheana, Reichb. f. Rhizome with remarkably thick root-fibers: pseudobulbs orate-oblong, 1-lvd.: lvs. broadly oblong, $3-5 \mathrm{in}$. long, Fery thick and dark green: scape stout, shorter than the leaf, 1-2-tld.: fls. 4 in . in diameter, bright amethyst color; sepals linearlanceolate, acute; petals broadly oblong-obtuse; labellum convolute; lateral lobes very sballow; middle lobe emarginate, white and crisp, with about 7 golden yellow undulate ridges in the throat. Braz. B.M.6038. R.H. 1873:290. G.C, 1872:425. - A dwarf species with remarkable"leathery lFs. Said to equal L. grandiflora and Cattleya Mossio. Rare in cultivation.
12. pùmila, Reiebh. f. (Cattleya pùmila, Hook. C. marginata, Paxt. Lalia prostans, Lindl. \& Reichb. f. L. Dayana, Rejehb. f. L. Pinélii, Hort.). Pseudobulbs small, stem-like, with one oblong to linear-oblong leaf 5-6 in. long: peduncle shorter than the Irs., each bearing a single, large, drooping, rose-purple fl,: sepals oblong, acute: petals ovate-oblong, broader, undulate; labellum rery involute; lateral lobes subquadrate, middle lobe short, emarginate, waved and crisped;
throat yellow, apex rich purple. A pretty dwarf species from Braz. B. M. 3656 and 5498 . P. M. 10:265. F. M. 1877:249. B.R. $30: 5$. F. 1850:89 (Catlleya spectabilis). G.C. II. 23:597. Many variations of this plant have been descrihed as distinet species, although hotanically but one species. Some of them are well-marked horticultural varieties. Var. prestans, Veitch (L. prestans, Lindl. \& Reichb. f.). A large-fld., highly-colored variety, with the sepals and petals much broader than in the type; labellum rich purple, very rigid and fleshy, lines almost obsolete. B.MI. 5498. Gn. 53, p. 550. Var. marginàta, Hort. (as Cattleya marginata, Paxt.), Fls. large; sepals and petals rose-crimson; labellum with a white border, crisp. Braz. P. M. 10:265. I. H. 6:193 (as Cattleyd pumila, var. major, Lem.). F.S. 18:1900. G.C. III. 22:262. A.G. 11:158. Var. Dayàna, Dean (L. Dayana, Reichb.f.). Sepals and petals rose-purple; labellum with a deep purple margin. Earlier than the type. Braz. R.H. 1890, p. 190. F.M. 1877:249. Var. alba, Hort. Fls. like var. prostans, but pure white with the base of the lip yellow. G.C.II1.21:11. J.H.111.34:27.
13. Leeàna, Reichb. f. Hybrid: pseudohulhs cylindrical, somewhat swollen, 1-1vd.: lvs. cuneate-oblong, very coriaceous: sepals and petals spreading, ligulate, acute, somewhat undulate, rose color; lateral lobes of the labellum semi-ovate, acute, the tips resting on the middle lamella, white, tips purple; middle lobe broad, obeordate. Sept. "Natural hybrid of L. marginata and ?" Hansen.-As this plant has 4 pollinia, it is probably nearer Cattleya. It was imperfectly described by Reichb, as a doubtful hybrid.

GROUP III.

A. F'ls. greenish yellow. B. Labellum deeply fringed on the margin.
14. Digbyana

BB. Labellum not fringed.
D. Evidently S-lobed...........15. glaucs DD. Obsoletely S-lobed.16. virens
AA. Fls. all yellow......................17. xanthina
AAA. Fls. with only the sepals and pelals
tawny yellow; labellum some
other color18. grandis
AAAA. Flls. purple, rose or white.
B. Labellum with several prominent toothed crests19. Buperbiens
BB. Labellum destitute of crests.
C. Petals and labellum waved and crisped.
D. Fls. uniformly purple....20. Boothisns DD. F'ls. uhite and purple. E. Lip ovate-acuminate ...21. crispa EE. Lip rounded............2.2. purpurata cc. Sepals and labellum plane, or nearly so

23. Perrinii

14. Digbyàna, Benth. (Brassávola Digbydna, Lindl.). Pseudobulbs elongate, stem-like, 1-Jvd.: 1rs. elliptical, thick, fleshy, plane, slightly keeled: peduncle with a solitary, very large, fragrant flower $3-5 \mathrm{in}$, across: sepals and petals similar, oblong, spreading, pale purplish green; petals slightly broader; labellum very large-cordate, entirely surrounding the column, white or creamcolored, with the margin cut into a broad laciniate fringe, which makes the flower very striking. July, Aug. Honduras. B.M. 4474. B.R. 32:53. F.S. 3:237. G.C. 111 . 18:153.-A slow-growing orehid.
15. glaùca, Benth. (Brassárola gla ùca, Lindl.). Stem short, creeping: pseudobulbs short, oblong, stem-like, compressed and sheathed with scales, bearing a single oblong glaucous, very thick and leathery leaf: fls, usually single, on a stalis shorter than the leaf, fragrant; sepals and petals spreading, oblong-lanceolate, obtuse, greenish yellow; labellum with a short claw surrounding the column, then expanding into a large 3 -lobed limb, yellowish white, streaked with red in the throat. Mex. and Guat. B.M. 4033. B.R. 26:44. G.C. Ill. 7:357.
:6. virens, Lindl. Plants about 6 in. high: fls, 1 in. across; sepals suberect, ovate; petals lanceolate, subequal; lahellum obsoletely 3 -lobed, cucullate; apex ovate, crisp, with obscure raised lines toward the bave. The fls. are pale yellowish green of no beauty. Brazil.
16. xanthina, Lindl. Lvs. oblong, onger than the fusiform pseudobulb: raceme $3-5-\mathrm{fld}$: : Als, 3 in , across, buff-yellow except the lip, which is white in front streaked with crimson-purple; sepals and petals subequal, oblong-obtuse, molulate, leathery and convex; labellum nearly quadrate when spread out, without raised veins. Brazil. Int. 1858. B.M. 5144 F.S. 23:2418. - A second-rate speeies.
17. grándis, Liudl. \& Paxt. Pseudobulbs stem-like, 1-lvd., 1 tt. bigh: lvs. rigid, oblong-lanceolate: scape erect, bearing $2-5 \mathrm{fls} .4 \mathrm{in}$. across: sepals and petals lanceolate, the latter a little broader, slightly curied or t wisted; labellum white; front lobe large, bell-shaped, crenate-toothed, veined with purple. Spring. Brazil. B.M. 5353 . F.S. 7, p. 238 and $23: 2473$. - A curious śpecies with the sepals and petals colored tawny yellow, contrasting strongly with the whitish purple-veined lip. Var. tenebrosa, God. Lebeuf. Sepals and petals citronyellow, less undulate; labellum trumpet-shaped, purple, with a broad border of white with many purple veins. G.C. 111. 14:221. G.M. $36: 531$.
18. supérbiens, Lindl. Pseudobulbs 1 ft . or more in length, oblong, with one or two coriaceous oblong lvs. equaling the pseudobulbs in length: scape drooping, $5-6 \mathrm{ft}$. long, hearing a globose cluster of $10-20 \mathrm{fls}$. each about 6 in . in diam.: sepals and petals nearly equal, spreading, oblong-lanceolate, obtuse, lilac-purple, paler below; labellum as long as the segments; middle lobe broad obcordate, waved and crisp; disk with several prominent toothed crests, yellow, deep crimson-purple on the margins; side lobes yellow with purple margins and stripes. Guatemala. B.M. 1090. F.S.11:1178-79. P.M. 11:97. R.H. 1886:3:4.-A very large plant.
19. Boothiàna, Reichb.f. (L. lobata, Veitch. Cattlèya lobata, Lindl.). A strong-growing plant: pseudohulbs clavate, furrowed, 1-1rd.: Ivs. lanceolate-oblong, about as long as the scape: scape $8-10 \mathrm{in}$. long, from the axil of the leaf, $2-5-\mathrm{fll}$.: fls , about 5 in . across, uniformly violet-purple with rich crimson veins on the lip; sepals lanceolate, with reflexed margins; petals hroad, oblong, undulate, crisp; labellum cucullate, the middle lobe reflexed, all beautifully waved and crisped. Much like L. crispa in habit. Apr., May, S. Brazil. R.H.1874:331 (L. Rivieri,Carr.). (í.C.1848:403 and III. 10:577. F.S.20, p. 132. A.G.13:608. - This plant is not free-Howering, hence it is little cult., although a beautiful and distinct species.
20. crispa, Reichb. f. (Cattleya críspa, Lindl.). Pseudohulbs clustered, elongate-clavate, 1-lvd.: Irs, large, 1 ft . long, oblong-lanceolate, emarginate: scape with 5-6 large, handsome, fragrant fls.: sepals linear-oblanceolate or spatulate, acute, margins revolute; petals much broader, with the margins beautifully waved and crisped; labellum standing forward, recurved at the apex; side lobes rounded, white, yellow at base, streaked with red; middle lobe long, ovate-acuminate, deep purple inside, veined, all remarkably waved and crisped. Summer. On lofty trees, fully exposed. Brazil. B.M. 3910. B.R. 14:1172. Gn. 48, p. 504. J.H. III. 33:197. P.M. 5:5. A fine white-fld. species resembling a Cattleya in habit. Var. Cauweliertiæ, L. Linden. Sepals and petals tinged with greenish yellow; hase of labellum yellow. I.H. 38:121.
21. purpuràta, Lindl. \& Past. Fig. 1224. Pseudobulbs long-elliptical, 6-8 in. high: ivs. solitary, oblong, leathery, dark green, 1 ft , or more in length: scape erect, $3-7$-fld.: fls, very large, $6-8 \mathrm{in}$. across; sepals linearoblong, spreading, white, suffused with light rose; petals much broader, ovate, undulate crisp, base attenuate, colored like the sepals; labellum very large, bell-shaped; middle lobe rounded, undulate-crisp, rich purple with darker veins, throat yellow. A rohust plant, whose large fls., borne on strong, erect stalks, make it one of the grandest Lalias in cultivation. Spring. Brazil. I.H. 1, p. 54, and 3:83. F.S. 11:1138-39. Gn. 54, p. 17 and 56, p. 46 (var. Mrs. Measures). G. C. 11. 14: 45 and $20: 533$. A. F. 6:223. - Var. atropurpùrea, Williams. Sepals and petals deep rose; labellum large, expanded, purple-magenta; throat yellow, veined with purple. Brazil. Var. Ashworthiàna, J. Anders. Petals wider than in the type, 2 in . wide, purplish rose, with darker stripes. A highly colored form. G. C. 111. 20:39. Var. Nélisii, Hort., Verschaff. Sepals and petals subsessile,
the former rose-colored outside; midlobe of the labellum ovate, acute. Much like the type in color. I.H. 15:569. Var. Russelliàna, Williams (L. Russellidna, Hort.). Fls. large; sepals somewbat narrow, white, suffused with lilac; petals broader, deeper lilac; labellum large, roselilae; throat yellow, marked with rose. Autumn, Var. Schrœderi, Reichb. f. Sepals and petals white; labellum white, with a tinge of rose in the center; tube pale yellow, with fine, dark purple lines. 1.H. 38:139. Var. Mandaiana, Hort. Pseudobulbs thinner and narrower

22. Lalia purpurata ($\times 1 / 6$).
than in the type: fis, as large as those of the type, pure white, with a faint tinge of pink on the labellum. Var. prætexta, Reichb. f. No deseription of this plant is available.
23. Pérrinii, Lindl, (Cáttleya Pérrinii, Lindl.). Pseudobulbs elongate: lvs. solitary, oblong, coriaceous, 8 in. long, equaling the stem: fls, showy, 2-3 on a short stalk; sepals oblong-linear, obtuse; petals a little broader, all rose-purple, darker at the tips; middle lobe of labellum cucullate, expanded, oblong, obtuse, undulate, with an inflated fistular cavity at the base, destitute of ridges, color deep crimson; lateral lobes erect, acute, pale. Oct.-Dec. Brazil. B.M. 37IL. B.R. 24:2. P.M. 13:5. G.M. 37:717. A.F. 13:II96.-Fls. rather pale. Var. alba, O'Brien. Fls. white, with the labellum tinged with yellow. There are several pale varieties of this plant.

QROUP IV

A. Les, solitary.
......................24. monophylla

24. monophylla, N. E. Brown. Rhizome a matted mass sending up tufts of leaf- and flower-stems: flowering stems $6-10 \mathrm{in}$. long, as thick as a crow-quill, rigid and erect, bearing a single linear-oblong, obtuse leaf $2-3$ in. long, and several sheathing bracts: fls. I-2 in. across,
vivid orauge-scarlet; sepals and petals similar, spreading, oblong, subacute; labellum very small, lateral lobes embracing the column, terminal minute papillose on the disk. Mts. of Jamaica, growing on trees at elevations of $3,000-5,000 \mathrm{ft}$. B.M. 6683.
25. harpophylla, Reichb. f. Hybrid much like L. cinnabarina. Pseudobulbs slender, about 10 in. long, each bearing a single lance-linear leaf: raceme short, suberect, bearing $5-10$ brilliant scarlet-orange fls.: sepais and petals oblong-lauceolate, acute; middle lobe linear, acuminate, crisp, with a whitish spot. A luxuriant freeflowering species. Feb., March. Brazil. Gin. 24:400. F.M. 1879:372. - Probably a hybrid between L. cinnabarina and a Brassavola(?) Reichb. f.
26. cinnabarina, Batem. Psendobulbs elongate, cylindrical, but broadest at the base, sheathed with scales, bearing 1-2 linear-oblong, reflexed, acute, coriaceous Ivs.: raceme terminal, erect, $15-20 \mathrm{in}$. long, with $4-5$ medium-sized reddish orange fls.: sepals and petals linear-oblong, obtuse, spreading; labellum convolute, reflexed; lateral lobes acute, middle lobe large, oval, crisp, Brazil. B.M. 4302. P.M. 7:193.-A summerflowering species whose peculiar color and graceful habit render it very ornamental. Var. crispilabia, Veitch (L. crispilabıa, A. Rieh. L. Lawrencidna, Hort.). Fls. amethyst-purple; labellum darker, finely erisp and undulate: raceme $12-14 \mathrm{in}$. long, bearing $3-5 \mathrm{fls}$. A pretty, free-flowering variety.

Lielia Latone, Hort. Veitch. Sepals and petals light orangeyellow: labellum whitish at base, the rest purple bordered with orange-yellow: middle lobe much nodulated. A garden hybrid between L. cinnabarina and L. purpurata. Not advertised in America. A. Pericat, Pbiladelphia, writes as follows of this plant: "Laelia Latona, raised by Veitch, is a beautiful hybrid Leelia of a distinet and unusual color from L. purpurata \times L. cinnabarina, the latter being the seed parent. The sepals and petals are of light orange-yellow: lip whitish at the base, the remainder red-purple bordered with orange-yellow, the margin of the apical spreading: lobe is much undulated."

Heinrich Hasselbeing.

Lælias may be divided into three cultural groups: (I) those which have clavate pseudobulbs and which bear a nearer affinity to Cattleya than the others; (2) those with long, rounded, slender stems, and (3) those with pseudubulbs more or less pyriform in sliape.

Those of the first group should be placed amongst the warmer-growing Cattleyas. Examples are L. purpurata, L. grandis, L. Digbyana, L. glouca and L. Boothiana. Those of the second, or slender-bulbed group, succeed in a much cooler and shadier spot, and need more moisture, both in the atmosphere and at the roots. Examples are L. pumila, L. harpophylla and L. monophylla. Of the group with pear-shaped bulbs, L. anceps, with its numerous varieties, is perhaps the best known.

Otbers are L. autumnalis, L. majalis and L. albida. To these may be added such species as L. cinnabarina, L. flata, and some few others of similar habit. These require at all times a sunny, airy position, with abundance of overhead watering during their period of growth, and after flowering a severe resting period, the one great object being to keep them inactive for as long time as possible. L. autumnalis and L. majalis require somewhat different treatment, since they flower from an incompleted butb, and should, therefore, receive atteution until the bulbs are solid, when the drier condition must be observed.
The best method for cultivation of specimens of the first group is to pot them in the ordinary flower-pot, but for very large specimens a basket is preferred as a more ready means of carrying off the water and affording better and sweeter conditions for the roots. The potting material should be composed of about two-thirds good peat or fern root and tbe remainder fresh sphagnum moss. The cultivator should use good judgment as to when to water the plants. No bard and fast rules can be laid down in regard to this. More can be accomplished by watchfulness than ever can be written.

The slender-bulbed species require about equal parts of peat and moss. Such species as L. pumila do best in rather small pans and may be suspended from the roof. All these thin-bulbed species enjoy shade rather than direct sunlight. More moisture is essential both atmospherieally and at the roots, and at no season should
it be withheld for very long periods. Watch carefully for any symptom of suffering from lack of water.
The Mexican Lælias do best with a smaller quantity of moss and peat, and thrive best when put up in baskets or eribs. They enjoy a great amount of direct suushine, and should hare during the time of active growth an almost unlimited supply of water, which is best supplied to them after the sun begins to lose its power. At this time it comes as a weleome, refreshing bath. A good syringing in the early morning is needed to help the plaiut through the day. With such treatment plenty of strong flowers must result. L. cinnabarina, L. flara and allied kinds enjoy the above treatment equally well. Many beautiful hybrids hare been raised in gardens, and the needs of each from a cultural riew will be best obtained by noting to which section or group they belong, and giving the treatment recommended for such.
A really good selection of Lælias for the adornment of the orchid house is herewith appended: L. anceps and its rarieties, alba, Dawsmii, Hilliana, Sanderiana, stella, rosea, Veitchii, Williamsii, Schrederiana and Amesiana, all of which bave pure white sepals and petals and various colored labellums; Scottiana and grandiflora, distinguished for size; and a wonderful peloriate form known as Reblingianum. L. albida, autum. nalis, cinnabarina, flava, pumila, Dayana, prestans, Dormaniana. grandis, Lindleyana, majalis, tenebrosa, monophylla, harpophylla, Perrinii, purpurata, superbiens, xanthina. In some species almost endless variety occurs, notably so with L. purpurata, Perrinii and albida, and pure white varieties are known in many of the rarer species.

Henry T. Clinkaberry.
LeLIOCATTLEYA. A name proposed by R. A. Rolfe to designate the bigeneric bybrids of Laplia and of Cattleya, which readily hyhridize. The species of the two genera hare 8 and 4 pollen masses respectirely, while the hybrids are irregular in this respect. Many of the plauts are natural bybrids, and many others hare been produced by artificial crossing. For a list of Læliocattleyas, see Rolfe in G.C. 111. 6:78, 155. In the following account $\mathrm{L}=\mathrm{L} æ l i a ; \mathrm{Lc}=\mathrm{L} æ l i o c a t t l e y a ;$ $\mathrm{C}=$ Cattleya.
H. T. Clinkaberry writes that the cultivation of Laliocattleyas is the same as for Larlia and Cattleya. It is therefore important to know the parentage in each case, trom which one may know whether warm or coolhouse treatment is needed. He adds that many Læeliocattleyas are of such a vigorous constitution that they are nearly always in growth.

INDEX.

alba, 13.
amanda, 2.
Andreana, 7.
Brysiana, 1.
callistoglossa, 5 .
Corheillensis, 3.
Dominiana, 6.
Dominyana, 6.

Dormaniana, 16. Duvaliana, 10. elegans, 1. eximia inversa, 11. Exoniensis. 17 intermedio-flava, 15 Nylephtha, 1. Martineti, 12
prasiata, 1.
radiata, 9 .
Sallieri, 8.
Schilleriana, 13.
Stelzneriano- Har dyana, 4.
Turneri, 1.
velutino-elegans, 14.

1. elegans
2. amanda
3. Corbeillensis
4. Stelzneriano-Hardyana
5. callistoglossa

AA. Fls. rose-purple, mauve, violet, etc.
6. Dominiana
7. Andreana
8. Salleri
9. radiata
10. Duvaliana
11. eximia inversa
12. Martineti

AAA. Fls, white or whitish, or yellow........... 3. Schilleriana
14. velutino-elegans
15. intermedio-flava

AAAA. Fls. olive-brown 16. Dormaniana
AAAAA. Fls. tinted light blue.17. Exoniensis

1. élegans, Rolfe (Làlia élegans, Reichb. f. Cáttleya élegans, Morren). Pseudobulhs terete, stem-like, 15-20 in. high: Irs. solitary, linear-oblong, coriaceous, 10-12
in. long: scape short, stout, 3 -7-fld.: fls. 5 in . in diam., light or bright rose, fragrant; sepals oblong, acute, often somewhat twisted or with revolute edges; petals much wider, lanceolate, margin somewhat undulate; labellum with the lateral lobes elongate-obtuse, whitish with purple apices, convolute over the column; middle lobe broadened in front, subreniform, margin undulate, crisp, entirely a rery deep purple, without raised lines or callosities. May-Sept. Brazil. B. M. 4700. I.H. 4:134 (as L. Brysiana); II:402. - A showy, tall-growing species.

Var. Nyléptha, O'Brien. Fls. large; sepals tinted with yellow and rose, lightly spotted with purple toward the tips; petals broader, more suffused with purple; lip bright purple in front, paler at the side lobes. G.C. Ill. 3:176.

Var. Türneri, Warn. Fls. large, richly colored; sepals and petals bright amethyst-purple, with deeper veins; lip with a large purple blotch on the middle lobe; side lobes white, tipped with rose. Gn. $47, \mathrm{p} .319 ; 49: 1067$ and p. 385. -One of the finest of the genus.

Var, prasiàta, Reichb.f. Sepals and petals rose, tinged with green: labellum white at the base and side lohes, middle lobe crimson-purple.-Var. superbum is advertised.
2. amánda, Rolfe (Lielia a m@́uda, Reichb. f.). Natural hybrid between C. intermedia and perbaps Lelia crispa. Pseudobulbs thin, fusiform, $5-7 \mathrm{in}$. long, $1-2$ lvd.: lvs. shorter than the pseudobulbs, cuneate-oblong, acute: fls. in pairs, from a small, narrow spathe; sepals oblong-ligulate, aeute, light rose, with a grayish bue outside, wary; petals similar hut broader, with darker tinted nerves on the inside; lateral lobes of the labellum enveloping the column, rich dark purple; middle lobe transrersely oblong, short, emarginate, wayy, separated from the others by an exceedingly short istbmus, veined with rich purple. Brazil. 1.H. 38:135.
3. Corbeillensis, Maron. Garden hybrid of C. Loddigesii and L. pumila, var. marginata. Pseudobulbs 5-6 in. long, fusiform: Irs, about 6 in. long: fl.-stalk $2-3 \mathrm{in}$. long, bearing $1-2$ showy fis, about 5 in . across: sepals and petals bright rose, the latter reined with deeper purple lines; throat of the labellum veined with yellow on a white ground; blade intense purple, bilobed and undulate.
4. Stelzneriàno-Hardyàna, Maron. A garden hybrid of Lc. elegans, var. Stelzueriana and Cattleya Hardyana. Plants rigorous: pseudobulbs 7-8 in. long: Ivs. 10 in . long by $21 / 2 \mathrm{in}$. wide: sepals pale clear rose, deeper on the edges; petals undulate, rose on the margins, fading almost to white at the center; labellum purple-magenta, undulate lacerate on the margin, with a broad purple line in the center of the blade and 2 large white spots in the throat.
5. callistoglóssa, Rolfe (Lìlia callistoglóssa, Reichb. f.). Garden hybrid of L. purpurata and Cattleya labiata, var. Harscewiczii. Pseudobulbs as in L. purpurata: lvs. 12 in . long: petals broad, oblong, acute; sepals narrower, all pure rose; middle lobe of the labellum broad, retuse, dark purple, with yellow on the disk; side lobes small obtuse-angled.
6. Dominiana, Rolfe (Lielia Dominyàna, Reichb. f.). Garden bybrid. Plants having the general habit of Catteya Mossio: pseudobulls fusiform, rather short, 1-lvd.: Ivs. linear-oblong: raceme hearing few large, handsome fis.: sepals narrowly oblong, acute, light purple, with dark reticulations; petals broadly cuneateoblong, wary, light purple; labellum cucullate, with the middle lobe large, spreading, all wary and crisp, deep blackish purple. F. M. 1878:325. Raised for Veitch by Mr. Dominy from a cross between Cattleya Dowiana and some Lalia, - according to Reichenbach, La lia (Laliocattleya) elegans. Mr. R. A. Rolfe suggests the more probable parentage of Cattleya Dowiana and Lalia lobata. The first plant flowered in Angust, 1878.
7. Andreana, Maron. A garden hybrid between C. bicolor and La liocattleya elegans. Pseudobulbs 8-12 in. long, stem-like: lvs. oblong, 6 in. long: fls. $6-7$ in. across, rose-violet; sepals and petals spreading. narrowly oblong, with the margins recurved, those of the
petals undulate; labellum contracted in the middle, with a subquadrate toothed and undulate middle lobe, violet-purple. R.H. 1896:328.
8. Sallièri, Maron. Garden hybrid between Lalia purpurata, var. Williamsi, and Loddigesii. Pseudobulbs 1-2-1vd., about 10 in . high: lvs. 8 in. long, 3 in. wide: fls. several on a stalk, which is shorter than the lvs., 5-6 in. across; sepals and petals mauve, with deeper lines; labellum tubular, colored like the segments, and expanding into a carmine blade, pale at the tip.
9. radiàta, Maron. Garden hybrid of Lelia purpurate and C ', nobilior. Psendobulbs almost round, bearing 1-2 coriaceous lvs. 7 in . long by $2 \frac{1}{2} \mathrm{in}$. wide: fl.-stalks about $7-8 \mathrm{in}$. long, bearing several large, showy, violetred fls.; labellum deep red, with purple veins and a whitish throat.
10. Duvaliàna, Hort. Hybrid between L. purpurata and C. Luddemaniana. Sepals and petals half-spreading, light mauve; labellum broad, dark maroon-erimson on the lobes and in the throat, which is traversed by darker lines. - According to Arnold \& Co., handsome flower of striking appearance.
11. exímia invérsa, Hort, Hybrid between L. purpurata and C. Warneri, the inverse cross of Lc. eximia. Sepals and petals deep rose-purple; labellum bright magenta-crimson. - Said by Arnold \& Co. to be one of the finest bybrids yet raised between these genera, resembling C. W'arueri.
12. Martinéti, Maron. Garden hybrid between Cuttleya Mossia and La lia grandis, var. tenebrosa, Fls, resembling those of the Cattleya labiata group; sepals and petals rose-violet; labellum red to mauve, pale at the margins, and netted with numerous deep red veins.
13. Schilleriana, Rolfe (Lielia Schilleridna, Reichb. f.). Lvs. 8 in. long: fl.-stems 20 in . long: sepals and petals white, elongate-lanceolate; labellum veined with purple on the throat; disk purplish yellow, middle lobe spotted crimson-purple. A natural hybrid between C. intermedia and Lc. elegans. Brazil. Var. álba, Hort. Petals and sepals pure white; middle lobe of the labellum rich carmine-magenta, presenting an agreeable contrast. June, July. 1.H. 31:526. Gn. 17:218.
14. velùtino-élegans, J. O'Brien. Garden hybrid of C. velutina and $L c$, elegans. Resembles in habit a stout form of Cattleya velutina: Als. fragrant, 3-t on at upright stem; sepals and petals creamy white, tinged with nankeen-yellow and veined with rose; labellum bluish white at base, side lobes folded over the column; middle lobe broad, toothed and crisp on the margin, rich erimson-purple, veined with white and having an orange blotch at the base.
15. intermedio-flava, Maron. Garden hybrid of C. intermedia and L, ftara. Of medium habit: sepals and petals clear yellow; labellum with a bright rose-purple bloteh in front.
16. Dormaniàns, Rolfe (Làlia Dormaniàna, Reichb. f.). Natural liybrid of C, bicolor and L. pumila. Pseudobulbs terete, thin, slender, ahout 1 ft . $\operatorname{long}, 1-2-1 \mathrm{Fd}$. : Ivs. oblong-ligulate, acute: peduncle $2-\overline{0}$-fld.: petals and sepals narrow oblong-ligulate, olive-brown, marbled outside with wine-red spots; labellum light purplish white, with darker veins: middle lobe transversely obcordate, mauve-purple. Brazil.

17 Exoniensis, Rolfe (C'áttleya Exoniénsis, Reichb. f.). (Garden hybrid probably between C. lubiata and L. crispa. Sppals ligulate acuminate; petals oblong. cuneate, plicate, all tinted light blue; labellum undulate, crisp, deep orange at base with whitish side lobes; middle lobe rich purple, with darker veins.
L. Aclóndiar (L. purpurata and C. Aclandia), is also adrertised.
H. Hasselbring.

LAGENARIA (Latin, lagena, a bottle). Cucurbitdeco. Gourd. Calabash. L. vulgaris, Ser., is the only species, now grown or spontaneous in all warm countries, originally from tropical Africa and Asia. It is exceedingly variahle in its fruit, and has received many speciesnames as L. microcarpa, R.H. 1855:61; L. clarata; L. pyrotheca, R.B. 23, p.198; L. virginalis,white-fruited,
G. C. III. 11:85; var. longissima, (rt. 48:159. The smooth, hard shells of the fruits are used for drinking cups, water jugs, and many domestic utensils. From the pear-shaped shell of a small-fruited form the Paraguayans drink their famous mate, or llex tea. The commonest forms are shown in the engraving (Fig. 1225). The long curved forms are often called snake gourds in this country (not to be confounded with snake cucumber, which is a Cucumis). These are sometimes several feet long. The form with a constricted middle is the bottle gourd. See Gourd.

Lagenaria is a tender annual, which should receive the culture of squashes. The season in the northern states and Ontario is often too short for the full maturity of the fruits, particularly if seeds have been brought from the South. Give a quick warm soil and sunny exposure. In the North, seeds may be started inside in pots, or on incerted sods, after the manner of cucumbers. The Lagenarias are rampant growers, often running $30-40$ feet, and covering the ground or a fence with a dense mass of large, roundish, soft leaves. The plant has a musky odor and a sticky feeling.

Plant monocious: fls. solitary, white, funnelform, very soft in texture, withering in the sun: staminate fls. on rery long, slender stalks (usually exceeding the leaf): pistillate fls. mostly short-stalked, witb 3 2-lobed stigmas and hairy ovary: tendrils forked, long and slender: stem striate-grooved, soft-hairs: Ivs. large, soft-pubescent, cordate-ovate or reniform-ovate, sometimes angled, the

1225. Various forms ol gourds, Lagenaria vulgaris.
edges ohscurely apiculate-sinuate, on prominent or long petioles. To this species belong the gourds known in this country as Hercules ${ }^{1}$ Club, Sugar Trough, Dipper, Snake, Calabash, Bottle, Miniature Bottle, Depressa. In some countries, the young fruit is eaten as we eat summer squash. Monogr. by Cognianx, DC. Monogr, Pbaner. 3: $\ddagger 17$.
L. H. B.

LAGERSTREMIA (Magnus N. Lagerstroem, 16961759, a swede and friend of Linnæus). Lythricer. The Crape Myrtle, Lagerstromia Indica, is to the South what the lilac and snowball are to the North-an inhabitant of nearly every home yard. It is a strong-growing shrub. reaching a height of $\dot{1} 0-25 \mathrm{ft}$., deciduous-leared, producing an abundance of soft-fringed flowers in spring and summer. The normal form has pink flowers, but varieties with blush, white and purple fis. are not uncommon. It is hardy as far north as Baltimore, but north of that latitude it needs protection; even with protection it can not be grown north of the Long Island region.

Lagerstromia is a South Asian genus of nearly 20 species of shrubs and trees. The lvs, are opposite or the uppermost alternate, mostly ovate, entire: fis. in axillary and terminal panicles, the pedicels bracted; calyx with a funuel-shaped tube and 6-9 lobes; petals mostly 6 , crinkled or fringed, with a long, slender claw (Fig. 1226) ; stamens many, long, some of them upward curved: ovary 3-6-celled, with a long, bent style and capitate stigma: fr. a capsule; seeds winged at the top.

Índica, Linn. Crape Mrrtle. Fig. 1226, Glabrous brown-barked shrub, with rather small (2 in. long) elliptic or oblong sessile mostly acute lvs.: panicle open, sometimes minutely pubescent: ealyx not ribbed, gla brous or nearly so. Widely cult. in India, but probably native to Cbina. B.M. 405. R.H. 1857, p. 627; 1874:130. Ging. $1: 151 ; 5: 281$. A.F. $9: 85$, G.M1. $36: 449 .-$ Common everywhere in the South, particularly in the pink, blush
and white forms. It can be prop. readily by cuttings of the ripe wood. In the N., the plants may be lifted in the fall and kept in a cellar. In spring they may be planted out, or flowered under glass. The Crape Myrtle

${ }^{\text {² }}$ 226. Crape Myrtle, Lagerstruemia Indica. Natural size.
blooms continuously for 2 or 3 months, beginning in June in the Gulf states. The hark is smooth, as it polished. Several named vars.

Flos-Reginæ, Retz. Tree, $50-60 \mathrm{ft} .$, with elliptic or long-lanceolate obtuse lvs, $4-8 \mathrm{in}$. long: panicle large: fls. $2-3$ in. across, varying trom rose to purple from morning to evening, the calyx grooved, the petals erosewavy: capsule 1 in . or more long. India. (i.C. 111. 15:77. - A noble plant in tropical India; also int. in S. Calif. In the Old World sometimes grown under glass.

L. H. B.

LAGUNARIA (named for its resemblance to Lagunæa, which is now considered a section of Hibiscus and commemorates a Spanish botanist, Andrés de Laguna, 1494 or 1499-1560, physician to Pope Julius III.). Malvacea. One species, an Australian tree cult. outdoors in S. Calif. and indoors in Europe. It has large, pale rose fls. like Hibiscus, $21 / 2$ in. across, with 5 spreading lobes, a column of stamens and a 5 -lobed slield-shaped stigma. It differs from Hibiscus in having no bractlets or only 3, while Hibiscos usually has 5 or more. Lrs. entire, scurfy-tomentose: fls, axillary; calyx 5 -toothed; ovary 5-celled.

Pátersonii, G. Don. About 12 ft . high, spotted brown on trunk and branches: Ivs. ovate, entire, $2-3 \mathrm{in}$. long, dark green above, ashy gray beneath: peduncle $11 / 2 \mathrm{in}$. long: corolla lobes ovate, covered with minute hairy scales inside, villous outside. B.M. 769 as (Laguncea Putersonia.)

LAGÛRUS (Greek, lagos, a hare; oura, a tail). Graminere. Hare's-tall Grass. Contains a single species, native of the Mediterranean region, and cultivated for ornament, the small white heads being used for dry bouquets. Spikelets l-fld., aggregated in a close panicle, forming an ovoid head; scarious empty glumes persistent and clothed with fine woolly hairs. Flowering glume with a dorsal awn. A hardy annual. Seeds sown in fall and plants set out in spring.
ovàtus, Linn. Cnlms abont 1 ft . high, in bunches: Ivs. and sheaths downy, R.H. 1890, p. 488. V. 3:217 and 247.

A. S. Hitchсоск.

LAMARCKIA (J. B, Lamarck, 1744-1829, distinguished French naturalist, and author of the Lamarekian philosophy of organic evolution). Graminea. Contains a single species, native from Mediterranean region to Afghanistan, and introduced in California. An ornamental annual grass, often cultivated under the nams of Chrysurus cynosuroides and C. aurews. Spikelets of two sorts, fertile 1 -fld., long-awned, surronnded by the long sterile spikelets of many obtuse glumes, arranged in a one-sided crowded panicle Seeds may be sown in the spring, or better in the fall and plants set out in the spring.
aùrea, Mcench. Culms 6-12 in. high. R.H. 1890, p. 546.

> A. S. Hitchcock.

LAMBKILL. Kalmia angustifolia.
LAMB'S LETTUCE. Consult Corn Salad. L. Quarter. Chenopodium, particularlyC.album. Used as a pot-herb.

LAMIUM (Greek for theroat, referring to the shape of the corolla). Labiate. Dead Nettle. About 40 annual and perennial herbs of the Old World, of which several run wild in this country as weeds aud others are cult. as hardy border plants. Botanically, they are distinguished by a 2 -lipped corolla, of which the tube is somewhat longer than the calyx, the upper lip ascending and concave, and the lower one 3 -lobed: stamens 4, in 2 pairs, ascending under the upper lip: fls, in axillary or terminal whorls, often rather showy: lvs. opposite, mostly erenate-dentate and petiolate: calyx awl-toothed. Not to be confounded with Nepeta.

Lamiums are diffuse mostly pubescent or hairy herbs, commonly decumbent at the base and often almost trailing. They are of the easiest culture in any open soil. Useful for rockwork. The cult. kinds are perennial, and are commonly propagated by division.
maculàtum, Linn. (L. álbum and L. purpùreum, Hort., not Linn. L. variegatum, Hort.). Straggling or halttrailing herb, the tips ascending, slightly hairy: lys, long-petioled (except the uppermost), cordate-ovate, blunt, ronnd-toothed: fls. 1 in. long, ascending in the clusters, the upper lip strongly arched or booded, the tube 2-3 times longer than the calyx, hairy within. Eu. - Flowers usually purple-red, but sometimes varying to white (when it is known as L, albom, but the L. album of botanists is a different plant, laving pointed and sharp-toothed Ivs.). The lvs, are usually wbitish blotehed along the midrib (var, variegdtum), and in this form it is common abont old gardens, trailing in the waste places. The plant is also run wild. L. purpureum of the botanists is annual.
eriocéphalum, Benth. Stem much branched, glabrous: lower lvs. long-stalked, puberulent, small, orbicular, somewhat incise-crenate: floral lys. larger, deeply toothed, sessile or nearly so: calyx villous; corolla 3-4 times longer than the calyx, straight, purple. Taurus. Said by some to be annual.

Galeóhdolon, Crantz, of Europe, with yellow fls, and sometimes with yellowish foliage, is cult. in the Old World, but it has not appeared in the Amer. trade.
L. H. B.

LAMPROCÓCCUS, See Echmea.
LANDRETH, DAVID, founder of the oldest seedhouse in America, was born in 1752 at Haggerston, Northumberland county, England. He came to Americalate in the eighteenth century, making Philadelphia his home, and establishing there, in 1784 , a nursery and seed business. Its location, on what was then known as High street, is now covered by the building 1210 and 1212 Market street. The raising of trees and production of seeds were condncted on land near by, particularly on a tract at Twelfth aud Filbert streets. This locality prov. ing too contracted for the purpose, the nursery and seed grounds were removed in 1789 to the "Neck," then considered far ont of town, the place chosen being not far distant from the site of the present arsenal.
The subject of the present sketch, the yonnger David Landreth (Plate X), was born in Philadelphia in 1802. When of suitable age he entered actively into his father's business, which had considerably extended in Philadelphia, while a branch house had been opened in Charleston, S.C. The young man's early duty was that of manager of this Charleston branch. Of the Charleston business, it will suffice here to say that it continued till the era of the civil war, when it came to a sudden end by the act of the Confederate States District Court, which confiscated the real estate and merchandise alike, on April 22, 1862.

The younger David Landreth, in 1828 , succeeded his father as proprietor of the well-established and thriving business in Philadelphia, a business which was to remain highly prosperons for half a century afterwards under his fostering care. His time, however, was not wholly occupied with the details of business, bat was turned at an early age towards the literature of husbandry and to enterprises of public interest. Among the latter may be mentioned the Philadelphia Horticultural Society, of which, in 1827, he was one of the fonnders and a viee-president, and in 1828 was elected corresponding secretary, which office he held for seven
years. At a subsequent date he was made president of the Philadelphia Society for the Promotion of Agriculture, and vice-president of the Uuited States Agricultural Society, and became an active member of many other organizations.
His literary labors included the publication of the "Illustrated Floral Magazine," started in 1832, and an advanced work for that period. At a later date he wrote much upon husbandry, his graceful style as a writer and his technical knowledge of the subject makiug his views of much value in the progress of the industry. He edited an American edition of George W. Johnson's "A Dictionary of Modern Gardening," a volume of 635 pages, published at Philadelphia in 1847.

In 1847 the Landreth nursery was removed to Bloomsdate, where Mr. Landreth established what is believed to be the most complete seed-farm in the United States, and where he planted an arboretum which perhaps stands unequaled in this country in the development of its trees. He was an early breeder of the Channel Island cattle, then styled Alderneys, and was among the earliest manufacturers of mowing and reaping machinery. In 1872-73 he experimented in steam-plowing with a Scotch engine, and in the following year with an American engine. Subsequently, steam-digging and steam-chopping were experimented with at Bloomsdate, and many improvements produced in the machine shop of that model farm.

David Landreth lived until 1880 in the eujoyment and care of the husiness which had been so much developed in his hands, and which had reached almost its hundredth year. The firm is now one of the thirty centenary firms in the United States. Duriug a long life he had served his country in connection with agriculture, a pursuit which be dignified by the wide respect he had gained as an old-school country gentleman, and his reputation as an able and learned agriculturist. In early life he had lived amid the plantations of the Landreth nursery, one of the show places of Philadelphia-the site now marked by the Landreth School-and his virthes and character were those of one brought up in intimate contact with nature.

Bernet Landreth.
LANDSCAPE GARDENING. "Gardeuing may be divided into three species - kitchen gardening - parterre-gardening-and landskip, or picturesque gardening: which latter is the subject intended in the following pages-It consists in pleasing the imagination by scenes of grandeur, beauty, or variety. Convenience merely has no share here; any farther than as it pleases the imagination." These are the opening lines of "Uneonnected Thoughts on Gardening," by the poet William

Shenstone, 1764. These sentences gave the world the term Landscape Gardening, to embody the growing desire to make grounds like nature. Milton, Addison, Pope, and the Dutch painters, expressed the awakening to the charms of the external world and hastened the day of treedom and naturainess. These and others had protested, directly or indirectly, against the artificialisms of living, as Bacon, also, in the following sentence, had protested: "As for the making of Knots or Figures, with divers Colored Earths, they be but toys, you may see as good sights many times in Tarts.
I do not like Images cut out in Juniper, or other gar-den-stuff ; they are for Chitdren."
One does not know what shenstone's protest meant until he knows the style of gardening which had been and still was in vogue. Gardens were fantastic constructions, elaborate with designs and formalities, cramped with geometrical details. A Roman garden (Fig. 1227)was well enough in its place, but there are other conditions and other ideals. Only rarely can such gardens as these find the proper setting. If effective, they must be dominated or supported by architecture. In the freer atmosphere of the country, they are evidently artiticial: they are conceits. The reader will catch the feeling of the formal gardens of a later time by looking at Fig. 1228, which is a reduction from one of Batty Langley's designs in his "New Principles of Gardening," 1728. Langley seems to have been the extremest of geometricians. In fact, Part I of his book on gardening treats "Of Geometry." Yet his plates suited the taste of the time. The particular plan which is shown in Fig. 1228 he describes as follows: "The House opens to the North upon the Park A, to the East upon the Court B, to the South upon the Parterre of Grass and Water C ; and Lastly to the West upon the circular Bason D, from which leads a pleasant Avenue ZX. The Mount F, is raised with the Earth that came out of the Canal EE, and its slope H is planted with Hedges of different Ever-Greens, that rising behind one another of different Colours, have a very good Effect, being view'd from M. I, I, are contracted Walks leading up the Mount." The ideas of the time are further reflected in Fig. 1229, which is a reproduction, on a smaller scale, of one of Langley's pictures of artificial ruins. It is one of his "views of the Ruins of Buildings, after the old Roman manner, to terminate such Walks that end in disagreeable Objects ; which Ruins may either be painted upon Canvas, or actually built in that manner with Brick, and cover'd with Plaistering in Imitation of Stone."
The awakening love of nature and of the spontaneous life, as expressed in writings and paintings, soon found expression also in gardens. Iu verse, Pope gave rules

1228. One of Langley's "Designs for gardens that lye irregularly to the Grand House." 1728.
for the laying out of a spontaneous garden. The accompanying plan of Shenstone's garden, the Leasowes (Fig. 1230), and the picture of a glimpse therein (Fig. 1231), show how far his conceptions were removed from those of Langley, howsoever much they may fall short of the ideals of the present day. A full description has been left us of the Leasowes. Here is a glimpse: "Passing through a small gate at the bottom of the fine swelling lawn that surrounds the house, you enter upon a winding path, with a piece of water on your right. The path and water, over-shadowed with trees that grow upon the slopes of this narrow dingle, renter the scene at once cool, gloomy, solemn, and sequestered; and forms so striking a contraste to the lively scene you have just left, that you seem all on a sudden landed in a subterraneous kind of region. Winding forward down the valley, you pass beside a small root-house, where on a tablet are these lines:
> 'Here in cool grot, and mossy cell,
> We rural fays and faeries dwell;
> Tho' rarely seen by mortal eye.
> When the pale moon, ascending high,
> Darts thro yon limes her quivering beams,
> We frisk it near these erystal streams.'"

The garden-art of the old time was largely a corollary of architecture. The garden-art of the present time, particularly amongst English-speaking peoples, exists for its own sake. Yet, one cannot say that the old-time garden-art is unlovely, or that it contradicts the canons of good taste. The two belong to different categories of æsthetic feeling, and the mere fact that both of them use plant-subjects does not make them comparahle. Garden-art, like painting or music or literature, develops along racial or national lines. The Latins and their descendants have liked the formal and conventional gardens; and since these gardens express the personal and national emotions, they need no apology, notwithstanding the fact they are condemned by many landscape gardeners.
A different type of endeavor is that which attempts to interpret nature in the making of landscapes. The ideal landscape garden, like the ideal landscape painting, expresses or emphasizes some single thought or feeling. Its expression may be gay, bold, retired, quiet, florid; but if it is natural, its expression will conform to the place and the purpose, and the expressions are not matters of rule. It should be a picture, not a collection of
interesting objects. Mere planting and grading do not make a landscape garden: in fact, they often spoil it. It is not enough to plant: the plants must be in the right place. A yard or a lawn with bushes or flowerbeds seattered over it may be interesting as a mere garden, but it is not a landscape garden. The Italian gardens were hardly landscape gardens. A real landscape garden has opeu breadth, space, atmosphere. It usually has an open center with mass-planted sides, and vistas to the offscape. Incidentally, it may be ornamented; yet many persons even confound ornamental gardening with Landscape Gardening: it would be as proper to confound house-painting with architecture. Figs. 1227 and 1232 show the contrasts of a mere garden and a landscape garden. Compare Plates XIV and XV.
It will be seen from the above that the term Landscape Gardening precisely expresses the art of making a garden or tame area which shall be a landscape or picture. Yet, amongst the profession, the term landscape architecture is preferred. This tern borrows the dignity of architecture, and is useful in a professional way. The writer much prefers the term Landscape Gardening; but it is apparent that the term landscape architecture is growing in favor with the profession, and there is little use in debating over a mere term. Properly speaking, the terms Landscape Gardening and landscape architecture are not synonymous, although in practice they are so used. It is not every place which is adapted to the making of a landscape pictmre. Formal gardens are often more to be desired than natural ones. They may conform to the principles of art, but it is the art of formal gardens, not of natural gardens. Too often have formal gardens been judged from the viewpoiut of the natural or landscape garden, and hence confusion has arisen. There is now a slow but wholesome reaction against the too exclusive use of the true landscape garden. In practice, however, one cannot separate the two, so that one practitioner is, or should be, both landscape gardener and landscape architect. So it comes that the term landscape architecture stands for the whole art of laying out grounds. The term is therefore hroader than its etymology would suggent: the word "architect" should be taken in its general sense of contriver or planner, rather than in its specific one of builder. It is the nature-like landscape garden, rather than the formalesque garden, which the writer has in mind in the advice which is given in this article. The
character of the formalesque garden is dominated so completely by the nature of the architecture and the site, that condensed general remarks are of little purpose.

Landscape Gardening has undergone many fluetuations of taste within the century. Such changes are to

1229 An improvised ruin. 1728.
be expected as long as the human race makes progress. The constantly increasing wealth of plants modifies the spirit of the work. It is no longer worth while to follow any school or cult. Every style has its use and place. In small city or suburban places, a formal or formalesque treatment of the ground plan may be desirable. In larger and freer places, the spirit of the fields may be given fuller expression The fundamental thing to consider is the fact that there must be a general theory or plan before there is any grading and planting, - these latter things are only means to an end. Yet many persons who would be called landscape gardeners conceive that to plant a place is the whole of the problem. The working ont of the details of the plan is to Landscape Gardening what building is to architecture, or what pen-work and grammar are to literature. It is the industrial or constructional part of the work. It is what has been called Landscape Horticnlture (Bailey "Gardeo and Forest," 1:58). It has to do with all the details of kinds of plants, the care of them, the making of lawns, and similar problems. The American writings on Landscape Gardening are mostly writings on landscape horticulture and kinds of plants. Of indigenous American books, only two (Downing and Waugh) can be said to give a dominaat sbare of their space to the principles of Landscape Gardening as a fine-art conception.

The first American practicing landscape gardener of note was André Parmentier, who came to this country from Belgium ahout 1824 and established a nursery on ground which is now in the heart of Brooklyn. He was a man of great taste and skill, and Andrew J. Downing considered his "labors and example as baving effected, directly, far more for Landscape Gardening in America than those of any other individual whatever." He laid out many places, even as far away as the southern states on the south and Montreal on the north. The first American book on Landscape Gardening sprung full-fledged and complete from the pen of A.J. Downing in 1841, withont having undergone the tedions evoIution of preliminary and imperfect editions which characterize so many horticultural and kindred writings. It
was immediately popular, and it has prohably exerted a greater influence on American horticulture than any other single volume. It remains to this day without a superior and almost withont a competitor. Downing was also the second prominent practicing landscape gardener, although his untimely death left the country with no eompleted works of his genius. His best known pieces are the gronnds of the smithsonian Institution and Lafayette Square, Washington, but it is doubtful if the subsequent treatment which the former demesne has received is such as would have pleased the designer. A. J. Downing's pomological work was continued by his painstaking brother Charles; but the artistic work dropped at his death, and Henry Winthrop Sargent, who edited the sixth edition of the "Landscape Gardeniog," in 1859, declared that "there has heen no one since Mr. Downing's death who bas exactly filled the niche be occupied in the public estimation." The third genius of American Landscape Gardening, and the one who has carried the art to its highest points of excellence, is Frederick Law Olmsted, who as a young man was inspired by Downing, and who became a landscape gardener when he was placed in charge of the improvements of Central Park, New York city, about 1856. For more than twenty-five years, Mr. Olmsted has given his talents wholly to this delightful art, and, more than any other American, has moulded and erystallized publie taste respecting the appreciation of Landscape Gardening. A leading spirit in the construction of this great park was Calvert Vaux, who, with Olmsted, was joint author of the original plan. Vaux was also associated with A.J. Downing. He died in 1895 . He was an excellent artist. The initiation of C'entral Park as a pleasure ground inaugurated the modern park systems of the country, and created what the Earl of Meath has recently designated the "veritable rage for park making" which has "seized the American public." See the article on Parks, Vol. III.

Within recent years, the number of practitioners of Landscape fardening has greatly increased. The art is becoming established in popular estimation. Tastes may change, but the changes will affect only the minor applications of Landseape Gardening. The desire for artistic treatment of gronnds is ineradicable. Three national societies are conservators of the Landscape

1230. Plan of the Leasowes, the seat of Shenstone. The residence is near the center.

Gardening and rural art of the country : American Park and Out-Door Art Association; American Society of Landseape Architects ; Association of American Cemetery Superintendents.

The one point in which America excels other conntries
in landscape art is in the rural and garden cemetery. The first distinct movement towards a rural cemetery was made in 1825 by dacob Bigelow, of Boston, whose work was soon taken up by the Massachusetts Horticultural Society. As a result of the agitation by this admirable organization, Mt. Auburn Cemetery, at Cambridge, was established and incorporated in 1831. The consummation of this enterprise gave to the world a cemetery which should be distinet from church-yards, removed from the city, and softened by the gracious touch of nature; and thereby, also, the young Massa chusetts Horticultural Society set an example to all similar organizations and achieved for itself enduring fame. The work of Repton and Loudon had not then enlivened and broadened the conceptions of Landscape Gardening, and Mt. Auburn, whilst an excellent work of its kind, is not a landscape garden cemetery. The modern art of garden cemetery making-in which, as in the park, the continuous expanse of greensward is the fundamental conception of the fabric-originated with Adolph Strauch, who, in 1854 , became superintendent of Spring Grove cemetery, Cincinnati. Strauch was a Prussian, born in 1822, and died in 1883. His work at Spring Grove cemetery has justly given him lasing fame, and his book describing the place must be consulted by any one who traces the evolution of the garden cemetery. The Board of Directors of the cemetery said, at the time of his death, that "he had filled the measure of his ambition by the consent of his profession, which ranked him as the equal of Repton and Puekler-Muskau as a master of art in landscape creation, which had been finally proved by him to be possible to be successfully applied in adorning and making attractive the last resting places of humanity." At the present time, about a hundred hurial places in various parts of North America can be said to be landscape-garden cemeteries. See the article on Landscape Cemeteries, following.

The successful practice of Landscape Gardening depends, first, on an artistic temperament and an inherent love of nature; second, on an intimate knowledge of plants; and third, on familiarity with various arts and handicrafts, as the making of roads, grading, draining, enriching the land, and the like. Landscape Gardening must be sharply distinguished from gardening: the former is the making of pictures with plants; the latter is the growing of plants without reference to the picture. In one, the interest centers in art: in the other it centers in plants. Since Landscape Gardening is primarily a matter of taste, it is impossible that it be

1231. Glimpse in Shenstone's Leasowes.
dominated by rules. However, a few general precepts and suggestions may be useful, and these are given in the following paragraph (see Figs, 1232-1238).

The motive of a true landscape garden, as already explained, is to make a picture. The picture should have a landscape or nature-like effect. The place should be one thing: it should emphasize some thought or feeling. it should have one central or emphatic object. Avoid scattered effects. Bunch or mass the planting. Dis-
tinguish sharply between the fundamentals and the in-cidentals,-those things which are to give the character or tone to the place, and those which are embellishments or ornaments. Keep one or more spaces open. Plant the sides or boundaries with masses. Use single or individual plants only to emphasize or to heighten an effect, not to

1232. Outline of an open center and mass-planted sides. Suggestion from Englischer Garten, Munich. give it character: they are incidentals. Ornament should be an incident. Foliage is a fundamental. Greensward is the canvas on which the picture is spread. Plants are more useful for the positions they occupy than for their kinds. Walks and drives are no part of a landscape picture: they are a necessity, but they may he made to conform to the spirit of the picture. The place for walks and drives is where they are needed: otherwise they have no use or purpose. It is the part of a good landscape gardener to make his grounds conform to the buildings: it shoukd equally be the part of an architect to make his buildings conform to the landscape. Make views to desirable objects in the outlying landscape or the offscape. Obstruct the views to undesirable parts. Aim for a good prospect from every window in a residence, including the kitchen. Shear the trees and bushes when hedges, curiosities, and formal gardens are wanted: let them assume their natural forms when a landscape garden is wanted (Figs. 1237, 1238). Place no tree or plant until you are sure that it will mean something.

The best results in the planning of any place are to be expected when one enploys a competent landscape gardener. Avoid the mau who places great stress on flower heds and "designs." Yet one can do much by himself, and he the happier for the effort. Books will help. Some of the current American books on Landscape Gardening and related topics are the following : Downing's "Landscape (iardening ;"Kemp's "How to Lay Out a Garden;" Parson's "Landscape Gardening" and "How to Plan the Home Grounds ;" Long's "Ornamental Gardening for Americans;" Waugh's "Landscape Garilening;" Maynard's "Landscape Gardening as Applied to Home Décoration;" Davis' "Ornamental Shruhs;" Van Rensselaer's "Art Ont of Doors ;" Bailey's "Garden-Making." See Borders, Herbs, Launs, Parks, Shrubs.
L. H. B

Landscape Cemeteries (Plate XVII). - The cemeteries of the present day have come into existence from a desire to have burials made at a distance from centers of population, and among beautiful surroundings. They are often called "rural cemeteries." The first one in the United States to merit this name was Mt. Auburn, near Boston, Mass., founded in 1831. Since then the idea of having burial places park-like in their character has been spreading until they contain to-day some of the most beautiful landscapes developed by the hand of man. The wish to have in the cemetery all the beauty of trees, shrubs, lawns and flowers has gradually led to the abolition of fences, coping and other lot enclosures, and a reduction in the number of monuments and the size of headstones. There are many who now believe

LANDSCAPE GARDENING

that the last resting place should be surrounded by the quietness and beauty of these features of nature's handiwork without distracting stonework or artificial objects. There are others who say that "the cemetery should be a cemetery," meaning by this expression that it should resemble somewhat closely the old churchyard or graveyard, with its coultitude of crowded stones, inscribed with the names and good qualities of all buried within its walls.

All agree that the cemetery should be so situated and maintained as to menace in no way the healthfulness of surrounding neighborhoods. The ideal location is one where the ground is somewhat undulating and thoroughly drained by having a porous subsoil, while the surface soil is sufficiently rich and deep to support a good growth of vegetation. In some instances, as at Forest Hills, Boston, Mass., and at Woodlawn, New York, it has been necessary to blast and remove rock and then fill in the space with earth. In other cases, the natural soil has been so poor that it has been necessary to cover it with rich earth hauled from a long distance. In still other cases, it has been found necessary to select a clay soil because there was no other, or to make ground by excavating lakes, using the material excavated to raise the surrounding land, or to bury above ground in structures erected for the purpose, as at New Orleans.

When a site is chosen, it is usually subdivided into sections and lots, which must be made accessible by the construction of drives and walks. The drive should pass within 150 or 200 feet of every place available for burial. The width of the drive should vary according to the size of the cemetery and the probable amount of driving. If the area is very small, say not over four or fice acres, it may be unnecessary to have any drive. In a little larger area, a grass drive 8 feet wide might suffice; in one still larger, a driveway 16 feet; and, finally, a cemetery designed to accommodate large populations should have good macadamized roadways 24 or 32 feet in width. Walks should generally be left in grass which forms part of a continuous lawn, such being better in appearance and more easily maintained than those made of gravel. The location of the drives will determine the shape and size of the sections. The plans should be made after a careful study of the ground in question, the drives being placed so that they will have easy grades, command good views, and be as few as possible without being more than 300 or 400 feet apart. When the ground is irregular in shape, or has steep slopes, or

1233. A free and open center.
contains streams or lakes or valuahle trees, these conditions may make it necessary to construct more drives than would otherwise be desirable. They can generally be staked out on the ground by eye with a hetter effect than if drawn first in an office hy the use of some geo-

1234. A flank planting, leaving the center free.
metrical eurse. They should nearly always be curved to produce the most pleasing result, a curved driveway being interesting because: (1) when the margins are properly planted certain portions of the ground are always hidden; (2) they insure varied effects of light and shade; (3) they make the average distance from the cemetery entrance to the lots shorter than if one follows straight lines and turns right angles.

An open tract, to begin with, is in many ways preferable to one that is thickly wooded, but groups of trees or single specimens that have broadened out in a natural way would be very valuable, since they would belp to take away the nakcd, forbidding appearance of land newly planted with young trees. On a vacant area, it is usually advisable to plant some large trees for the sake of immediate effect. These can be grouped about the entrance, a fork in the drives, the top of a hill, the margin of a lake, or other distinguishing position. The objection to a piece of land covered with thick woods is that the necessary thinning to get sufficient open space will leave tall, spindling trees, unused to exposure. These, while not very attractive in themselves, are very likely to die and are liable to be blown down. If there are thick woods in the land chosen, the trees selected to remain should be those that are healthjest and have the lowest branches. Some of the trees removed might be cut off at the ground, when the sprouts springing from the stump will form beautiful bush-like specimens.

The necessary buildings will vary with the size of the cemetery, but they should always be modest in appearance and suitably embellished with shrubbery and vines. The office would naturally be placed near the entrance to avoid unnecessary walking, but it should not be placed immediately on the highway or public street. The large arch frequently built over the gateway is usually too pretentious in appearance and not in keeping with the character of the grounds. A natural archway of living trees wonld be better. The chapel, if any, should be built well within the grounds to give it greater seclusion and quietness.

Whether there should be greenhouses or not cannot be discussed here on acconut of the lituits of this article. It may simply be said that with the greater variety of flowering trees and shrubs which we have to choose from, is well as the thousands of hardy, flowering, herbaceous plants, most heautiful effects can be produced without the expense, the continual labor and the hare beds unore than half the year, which would follow the construction of greenhouses. Usually the selection for planting of material found growing in the adjacent country will help to produce satisfactory results with little expenditure of money and time. To prevent intrusion, a fence along the boundary of the cemetery is necessary, hut this can be a simple inexpeusire wire fence, serving in places as a support for vines, and in places being hidden by a belt of trees and shrubbery. No one would now make the cemetery dreary by confining the planting to spruces
a meeting of the Association of American Cemetery superintendents, held at Boston, in 1890, the following rules were recommended by a unanimous rote of those iu attendance:

Rule I: (This should be a general rule, stating the authority and conditions on which lots are sold and the restrictions on transfers. The rule, of course, would have to be raried according to conditions existing in each cemetery.)

Rule 2: The Trustees dexire to leave the improvements of lots, as far as possible, to the taste of the owners ; but, in justice to all, they reserve the right, given them by law, to exclude or remove from auy lot any headstone, monument or other structure, tree, plant or other object whatever which may conflict with the regulations, or which they shall consider injurious to the gencral appearance of the grounds; but no trees

1235. A structural foliage mass, with rugged sky line and irregular ground plan, and embellished with flowers on the margin-
and weeping willows. On the contrary, every effort is made to secure bright, cheerful effects by the selection of all kinds of flowering, happy-looking plants. The modern cemetery becomes in fact a sort of arboretum. It includes some evergreens which are most suitably grouped along the houndary belt, and which should contain all kinds of hardy pines, as well as the more stiff and formal spruces. The planting of Norway spruces has in many places been overdone. The development of attractive landscapes in cemeteries is of so much importance that Mr. Strauch, who was the greatest cemetery designer that we have had, used to call the present method "the landscape lawn plan."

A good landscape in the cemetery is usually the result of years of growth. It must first be earefully designed, and then receive care and attention from some one familiar and in sympathy with the scheme adopted. To insure such attention, and to protect the interest of all lot-owners, as well as to maintain the dignity and character of a city of the dead, rules have been adopted by all leading cemeteries. These rules are the result of study and experience on the part of many men. At
growing within any lot shall be removed or trimmed without the consent of the Trustees.
Rule 3: Lot-owners may have planting or other work done on their lots at their expense, upon application to the Superintendent. No workmen other than employees of the cemetery will be admitted to the cemetery except for the purpose of setting stone-work.

Rule 4: No iron- or wire-work, and no seats or vases will he allowed on lots, excepting by permission of the Trustees, and when any article made of iron begins to rust, the same shall be removed from the cemetery.
Rule 5: The Trustees desire to encourage the planting of trees and shrubbery, hut, in order to protect the rights of all and to secure the best general results, they require that such planting shall be done only in accordance with the directions of the Superintendent of the cemetery.

Rule 6: No coping, nor any kind of enclosure, will be permitted. The boundaries of lots will be marked by corner-stones, which will be set by the cemetery, at the expense of the lot-owner, with the centers upon the lines bounding the lot. Corner-stones must not project above the ground and must not be altered nor removed.

LANDSCAPE GARDENING

Rule 7: No lots shall be filled above the established grade.

Rule 8: All interments in lots shall be restricted to the members of the family or relations of the lot-owner.

Rule 9: No disinterment will be allowed withont the

Against this background, flowers would look well.
permission of the Trustees, of the lot-owner, and of the next of kin of the deceased.

Rule 10: Mlounds over graves should be kept low, not exceeding four inches in height; and stone or other enclosures around graves will not be allowed.

Rule 11: Foundations for all monuments, headstones, etc., shall be buitt by the cemetery at the expense of the lot-owner, and fifteen days' notice must be given for the building of foundations. The cost of the same must be paid in advance.

Rule 12: Every foundation must be at least as wide and as long as the base stone resting upon it, and must not project above the surface of the ground. All foundations mnst extend as low as the bottom of the grave.
Rule 13: Only one monument will be permitted on a family burial lot.

Rule 14: (This sinould be a rule limiting the height of headstones, and the lower this limit is made the better. Even with the lawn is considered best.)

Rule 15: All stone- and marble-works, monuments and headstones must be accepted by the simperintendent as being in conformity with the foregoing rules before being taken into the cemetery.
Rule 16: No monument, headstone or coping, and no portion of any rauit above gronnd, shall be constructed of other material than cut stone or real bronze. No artificial material will he permitted.

Rule 17: The Trustees wish, as far as possible, to discourage the building of vanlts, believing, with the best landscape gardeners of the day, that they are generally injurions to the appearance of the grounds, and, unless constructed with great care, are apt to leak and are liahle to rapid decay, and in the conrse of time to becone unsightly ruins. Therefore, no raults will be permitted to be built unless the designs for the same are exceptionally good, and the construction is solid and thorough. The designs must be submitted to the Trustees, and will not be approved unless the structure would, in their judgment, be an archi, tectural ornament to the cemetery.

Rule 18: Material for stone or marble work will not be allowed to remain in the cemetery longer than shall be strictly necessary, and refuse or other unused material must be removed as soon as the work is completed. in case of neglect such removal will be made by the cemetery at the expense of the lot-owner and contractor, who shall be severally responsible. No material of any kind will be received at the cemetery after $12 o^{\circ}$ 'clock ar. on Saturdays.

Rule 19: The Trustees shall have the right to make exceptions from the foregoing rules in faror of designs which they consider exceptionally artistic and ornamental, and such exceptions shall not be construed as a rescission of any rule.

Rule 20 : It shall be the duty and right of the Trustees from time to time to lay out and alter such avenues and walks, and to make such rules and regulations for the government of the grounds as they may deem requisite and proper and calculated to secure and promote the general object of the cemetery.
Rule 21: The Superintendent is directed to enforce the above regulations, and to exclude from the cemetery any person wilfully violating the same.
Cemeteries should be established upon a basis to enable those in anthority to take uniform care of the grounds for all time. The prices charged for lots should be high enough to enable a fund to be set aside that will yield an annual income snfficient to pay all necessary general expenses. In laying out a new cemetery, those in charge should scek the best advice available. Such advice should be based on a thorough knowledge of Landscape Gardeniug and the special needs of burial grounds. Mnch information can be obtained by visiting Spring (irove, at (incinnati, Ohio, generally recognized as the pioneer of park-like cemeteries, and perhaps the best example in the world. Oakwoods Cemetery, at Troy, N. Y.; Swan Point Cemetery, at Providence, R. 1., and Forest Hills, at Boston, Mass., are some of the prominent examples of the system now in vogue. Graceland Cemetery, at Chicago, 111., although much smaller in area than those already mentioned, contains some good landscape effects. There are many other cemeteries in the vicinity of the large cities of the United States which can be commended on account of the good taste displayed in them. There are others, like Mt. Auburn of Boston, Greenwood of Brooklyn and Laurel Hill of Philadelphia, which, while containing many beautiful trees and expensive monuments, include also many fences, railings, copings and hedges that serve as camples of what to avoid rather than to imitate.

Our leading cemeteries should keep pace with the best thought of the times, with the best theories of religion, science and economics. They should be, as the name implies, sleeping places-places of rest and freedom from intrusion. It seems natural that people should

1237. An artistic group-plantiag alongside a walk.
select for such a place the very best production of land-scape-art, a place where spreading lawns give a cheerful warmth and sunlight; where pleasing vistas show distant clouds or the setting sun ; where branching trees give grateful shade, furnish pleasing objects to look at, and places for the birds to come each year and sing
again their weleome songs; where blossoming shrubs delight the eye, perfume the air, and make attractive resting places. Such places may seem to exist more for the living than for the dead, bnt the living are the ones that need them. If it seems natural to select a most beantiful park, a real picture, we might say, for a sleeping place, it seems strange to put into this picture obelisk after obelisk, stone posts and slabs of all shapes

1238. A group which has been spoiled by the pruning shears.

Lantanas have been long in cultivation, and it is difficult to refer the garden forms to botanical species. The species themselves are confnsing. Nost of the garden kinds are of the L. Camara type. There are several Camara-like species which probably have hybridized to produce these forms; but Voss, the latest garden monographer, regards these species as only forms of L. Camara (preferring, however, to use the name L. aculeata). Accepting L. C'amara in Voss's sense, the garden Lantanas may be said to be derived from that species; and this riew is adopted below. Monogr. by J. C. Schauer, DC. Prodr. xi. 594-609.
L. H. B.

The Lantana has been improved in its usefulness as a bedding plant of late years, largely through the efforts of French bybridizers. The older varieties were mostly rather tall and lanky, later in coming into bloom, and dropped their flowers badly after rain storms, but were showy in warm and dry weather. The new varieties are dwarf, spreading and bushy in habit, early and free-flowering, and the heads or umbels of bloom average much larger, with florets in proportion; nor do they drop off from the plants as the old varieties did in bad weather. These newer kinds
and sizes, and stone tombs within whose walls their owners hope to have their dead bodies preserved forever. The history of sepulture shows the futility of trying to preserve one's body or one's name with the help of stone. A man can only hand his name down to posterity by his own work, and even if his body should be preserved as long as were those of the ancient Egyptians, it might fiually be used only to propel a locomotive or a steamboat. These facts should be recognized in the modern cemetery. The ground should assist in changing the body back into organic forms or to receive the ashes, if the quicker process of cremation is adopted. The scenery should solace those that are bereft.

It is repugnant to our best feeliugs to use the same land over and over again, as is done in many cities in Europe and, to some extent, in the United States. A cemetery is frequently spoken of as the last resting place, and it serves mankind best when it is so in fact, since in that ease, after it has served its purpose of purification, it becomes a park, a breathing place for the people of the city, whose growth is likely to crowd the vicinity with houses. The memory of past generations will certainly be sweeter if it is associated with trees, than if it is connected with tombs, catacombs and pyramids. The problem presented to cemetery associations is, therefore, how to secure the most pleasing combinations of growing plants, including trees, shrubs, flowers and grass ; the most satisfactory views ; the inost harmonious and restful park, for the cemetery is really a memorial park.

Those seeking information on this subject will find it in the histories of the various cemeteries and in encyclopædias. The development of the landscape idea in connection with cemeteries is giren in some of the reports of those institutions, that of Spring Grove for the year 1869 being especially valuable. The reports of the Association of American Cemetery Superintendents contain many papers of interest. The volumes of the "Modern Cemetery," afterwards the "Park and Cemetery," the only periodical devoted to the interests of burial places, contain articles relating to all phases of the subject. All books relating in any way to Landscape Gardening are of value in cemetery work, since they treat of all its natural features.

O. C. Simonds.

LANTANA (old name, once applied to a Viburnum). Ferbendcea. Perhaps a half hundred species of herbs or shrubs, sometimes half-climbing, with opposite rough dentate leaves, and spikes or cymes of small verbenalike flowers. They are natives of the tropical and subtropical parts of Asia, Atrica and America. Fls, small, gamopetalous, the calyx very small, the corolla somewhat irregularly $4-5$-parted, the corolla tube slender : stamens 4, didynamous: orary 2 -loculed, hecoming a fleshy or dryish drupe with 2 nutlets. The bracts subtending the head often imitate an involucre. Verbena differs in having akene-like nutlets and long-tubular 5 toothed calyx. are not as well known as they shonld be. They are very desirable for any situation where sun-loving bedding plants are used, in groups or borders, window-boxes, baskets and vases. The Lantans is not particular as to soil, and flourishes provided the exposure is sunny and the soil well supplied with moisture, at least until a fair growth has been made. When well established it does not seem to mind drought, and continue bright and attractive in the hottest weather. It should not be transplanted out in the open before danger of frost is over. If the old plants are wanted for propagation, eut them back and transfer to pots early in September, and when they start into new growth the soft wood will furnish euttings that root easily. Keep young stock in a warm position through the winter months, and repot in April.

Save the old plants, after Jack Frost has nipped their freshness late in the fall, prune severely back, remove them indoors, giving them a temperature anywhere above 40°, and with a little attention and fresh soil, every plant will be a perfect specimen, covered with bloom in May. Gardeners train them into fine standards, as prim and shapely as need be. Among the French varieties the most representative are Argus, orange with yellow eenter; Tethys, canary yellow; A. Clavean, silvery rose with yellow center. These are very dwarf spreading growers, about 8 in . high. Amiel is semidwarf, orange-red with yellow center, bright and showy; Protée belongs to the eqme class, rose color, jellowshaded center; Delicatissima is a trailing or creeping sort, with slender stems, small leaves and dainty flowers of pink and larender: La Pluie d'Or, golden yellow, is a standard variety among the older kinds.

Grove P. Rawson.

A. Plant often spiny: fruit juicy.

Camàra, Linn. (L. aculed̀ta, Linn.). Fig. 1239. Small shrub, 1-4 ft. high, hairy, sometimes with short, hooked prickles: lys. rather thick, rugose, scabrous above but pubescent beneath, ovate or cordate-ovate, mostly shortacuminate, crenate-dentate, the petioles short: elusters of fls, on strong axillary peduncles which may or may not exceed the lvs.: fls, in a dense, nearly flat-topped head, usually opening yellow or pink but changing to orange or scarlet, the bracts narrow and not conspicuous. Trop. Amer., extending north to Texas and S. Ga. B.M. 96. L.B.C. 12:1171 (as L. scabrida, Ait.). - In the wild, the plant may grow 10 ft . high, and it is usually prickly (hence the name L. aculeata of Linnæus). The cultivated plant is less prickly or even unarmed. The plant has a strong smell, but the ease with which it can be made to produce an almost continuous supply of bloom renders it a popular greenhouse and bedding subject. Color of fis, varies on different plants. Of late years the Lantanas have been neglected by florists, but improved varieties are now bringing it into favor again.

Var. nivea (L. nivea, Vent.). Fls. white, the outer ones becoming bluish: heads rounder. B.M. 1946.

LAPAGERIA

Var. mutabilis (L. nívea, var. mutábilis, Hook.). Remarkable for tbe cbange of color in the nearly globular heads: in little more than a day the fls. may cbange from white through yellowish, lilac, rose and blue. The outer fis. open white and run through yellowish, rose and lilac; the inner ones open yellowish. B.M. 3110. R.H. 1852:461.

Var. mista (L. mista, Linn. Not spelled mixta by Linnæus, although it is so spelled by later authors). Outer fls. opening yellowisb and becoming saffron and brick-red; inuer tis. yellow, changing to orange.
Var. cròcea (L. cròcea, Jacq.). Fls. opening sulfuryellow aud changing to saffron. R.H. 1852:461.

Var. sanguinea (L, sanguinea, Medic.). Fls. opening saffron-yellow, changing to bright red.
purpurea, Hornem. Erect: brancbes 4-angled and somewhat hairy, with few recurved spines: Ivs. ovate, narrowed into a petiole, acuminate, serrate-crenate, rugose: fis. purple, very pretty, in bemispherical-umbellate heads, the bracts short and lance-subulate. S. Amer. -Int. by Franceschi, 1900. A form of L. Camara?
AA. Plant never spiny: fruit thin-fleshed, usually not juicy.
trifolia, Linn. (L. innua, Linn.). Half-shrubby, hairy: Ivs, ovate-lanceolate or elliptic-oblong, pointed, erenate-dentate, in 3's or 4's: heads becoming ovoid or oblong, the involucre not conspicuous: fls. rose-lilac varying to white, with yellow throat: fr. rather pulpy, showiug well amongst the bracts. Trop. Amer. B.M. 1449. -The name L. annиa seems to have been applied to young plants, on the impression that they were annuals. The picture of L. annua in B.M. 1022 is quite as likely to be a form of L. Camara. Little known in cult.

Sellowiàna, Link and Otto (L. delicatissima, Hort.?). Weeping or Trailing Lantana. Twiggy, slender plant with lopping or trailing pubescent branches: Ivs, small, ovate, tapering below, close-toothed: fls, small, in longstalked small heads, rosy lilac, the outer bracts or scales of the involucre broad-ovate and hairy and half or less as long as the slender pubescent corolla tube. S. Amer. B.M. 2981. B. 3:115. R.H. 1852: 461 ?-A very profuse bloomer in both winter and summer, and most desirable for pot or basket culture. Should be better known. Verbena-like. The plant seems to be an escape in Fla.
involucràta, Linn. Low, much-branched bush, with obscurely 4 -angled gray branches, and blunt, ovate. small, crenate-dentate ivs.: fls. small, nearly or quite equalled by the ovate involucre bracts. Trop. Amer., reaching N. to S. Fla, and S. Tex.-Said to be occasionally cult. indoors for the light lilac or white fls.
L. H. B.

LAPAGERIA the Limpress Jos phine, née Tascher de La Pagerie). Lilideco. Chilean Bellflower. A single species of noble, half hardy evergreen climber, alJied to the smilaxes. Lrs. alternate, lance-ovate or cor-date-lanceolate, 3-5-nerved, acuminate: fls, large and showy, bell-shaped, hanging singly from the upper axils or somewhat racemose at the end of the vine, about 3 in. long; stamens 6 , borne on the torus or slightly attached to the base of the inner segments, shorter than the perianth: ovary sessile and 1 -loculed, with 3 parietal placentæ, ripening into a 3 -angled, oblong, fleshy, indehiscent, berry-like beaked fruit, and bearing nearly globular seeds imbedded in the pulp. L. rosea, Ruiz \& Pavon, is the only species. Fig. 1240. it has rose-colored or rose-crimson fls., with lighter spots. Chile. B.M. 4447. F.S. 5:491: 20:2059-60. R.H. 18:00:101. Gt. 46:1445; 47, p. 101. (i.C. 111. 20:657 (fruits); 25:45. Gn. 34, p. 321; 48, p. 4i5; 49:1056; 55, p. 57. Gng. 5:356. Mn. 7:191. Var. albiflora, Hook. (var. dlba, Hort.), has white or whitish fls. B.M. 4892. R.H. 1852:441. F.S. 20:2059-60. Gin. 41, p. 53; 49:1056 and p. 175; 54, p. 277. A.G. 13:745 (poor). Ging. 2.187; 5:356. A double-fld. form of the white variety is shown in G.C. 11. 17:777. The species is variable in vigor, floriferousness, size, color and substance of bloom, and there are a number of named horticultural subvarieties. Lapagerias are tall-twining plants, suitable for rafters or walls in coolhouses, or for culture in the open in the milder parts of the country. They are usually propagated from layers, but stronger plants usually are obtained from seeds, although varieties may not come true. The first live plants were introduced into England in 1847. Lapagerias should be seen more frequently in America. Pranceschi says that in California tbe plant prefers shady places "where the atmosphere will never become too dry."
Lapageria rosea and Philesia buxifolia have been hybridized by Veitch, producing a plant known as Philageria l'eitchii, Mast. (G.C. 1872:358). Philesia afforded the pollen. It is not in the American trade, but is a most interesting plant hybrid. For an anatomical study of it, bearing on problems of hybridity, see J. M. Macfarlane, Trans. Roy. Soc. Edinburgh, 37 , pt. 1, p. 207 (1892).
L. H. B.

It is by no means an easy task to grow Lapagerias. They do best planted out into a cool greenhouse, where only the morning sun strikes them. If the border or bed in the greenhouse is on a naturally sandy or gravelly subsoil, so that the natural drainage is perfect, it is an ideal place for these plants. They like a deep bed of sand or gravel underneath their roots, where abundance

1240. Lapageria rosea ($\times 1 / 2$).
of water can be applied during the spring and summer months and where the drainage is perfect. Light peaty loam is best, and after plants are fully established they like plenty of liquid fertilizing. The soil, in all cases,
must be open and sandy. They should be trained against a wall, facing either the east or north. Abundant syringing, temperature not to exceed 50° to 60° at night, and even as low as 45° at night in winter, plenty of air, -tbese are requisites. In winter they require but little water except spraying when the temperature warrants it. Where no such sandy strata or subsoil exists it must be provided, but care must be taken that they are not crowded into an obscure corner where the soil will not dry out, as otherwise it will sour and the plants not do well. The roots must not be put too deep, as the plant is a shallow rooter. If no sand-bed can be had it is best to have the young plants in shallow pans, and, breaking the bottom, set them into such a prepared bed, sinking the pans until the roots go ont into the prepared bed. In their native homes Lapagerias grow where plenty of water falls during their growing season and where they are semi-dormant the rest of the year. They tlower from the well-ripened and matnred wood of a strong growth. Propagation is effected by by means of layers or from seeds. H. A. Siebrecht

LAPEIROÜSIA. Preferably spelled Lapeyrousia.

LAPEYROUSIA (Jean Francois Galoup de Lapeyrouse, distinguished French naval officer, born 1741). Iridàcea. About 32 species of African bulbs, something like Freesias, but with blue or red fls., which are produced in summer instead of spring. They can be grown outdoors in the North with some winter covering, and are said to be quite hardy south of Washington, D. C., if planted deep. By American dealers they are still listed under the name of Anomatheca, which Baker has reduced to one of the 3 subgenera of Lapeyrousia, characterized by having several lvs. forming a 2 -ranked basal rosette, accompanied by a Jong, branched stem. Lapeyrousia is further distinguished from Freesia by baving a more slender perianth-tube, with the stamens inserted at the throat instead of below; also by the osules being more regularly superposed instead of crowded together. The species of Lapeyrousia have an egg-shaped or globose corru about $1 / 2$ in. thick, and matted with tunics: Irs. linear or sword-shaped: inflorescence various, often a loose, 1-sided, more or less zigzag spike, as in Freesia: fls. variously colored, $1-2 \mathrm{in}$. across; perianth tube long or short; segments spreading, 3 larger than the other 3 . Monographed by Baker in his "Hand book of the Iridea," and also in the African floras.
These plants will probably never have anything like the degree of popularity enjoyed by Freesias, because of their later season of bloom and lack of fragrance. Probably the most popular kind is L. cruenta, which grows $6-10 \mathrm{in}$. high, blooming in summer and fall. In a sheltered and in light, porous soil it generally sneceeds in the North without any protection, but the bulbs are safer in very severe winters under a covering of litter or straw. The bulbs increase rapidly, and should be divided every few years before they become too crowded.

A. Color of fts. chiefly blue or violet.

corymbòsa, Ker. (Anomathèca corymbòsa, Hort. A. Blanc). This belongs to the subgenus Ovieda, having usually 1-2 basal lvs., while the next 3 species belong to the subgenus Anomatheca, having more numerous Ivs. L. corymbosa has 1 basal leaf which is spreading, swordshaped, 4-6 in. long: inflorescence a dense flat-topped cluster of as many as 15 fls, each about 1 in. across, with practically regular segments, blue, with a starshaped white figure near the throat, outlined in black after the fashion of Quedlinburg Phlox. B.M. 595. J.H. 111. 32:379.

AA. Cotor of fls. red, uith 8 darker spots at the base of the 3 smatler segments. E. Size of fls. 2 in. across.
grandiflòra, Baker. (A. grandiflòra, Baker). Les. 1 ft . or more long: fls. bright red; stamens as long as the segments; the 3 style branches each 2-cut. B.M. 6924. - A newer species than cruenta, and perhaps destined to greater faror. Corm globose (oroid in the others bere described).

BB. Size of fls. 1 in. across. C. Segments bright carminc.

cruénta, Benth. (A. cruénta, Lindl.). Lrs. $1 / 2-1 \mathrm{ft}$. long: stamens less than half as long as the segments: the 3 style branclies uncut. B.R. 16:1369. L.B.C 19:1857. P.M1. 1:103. J.H. 11I. 31:397.

Cc. Segments pate red or rosy.

jüncea, Pourr. (A. júncea, Ker.). Lrs, strap-shaped, (linear in the 2 preceding species), $6-8 \mathrm{in}$. long: stamens half as long as the segments.- Less known in cult. than the others.
J. B. Keller and W. M.

LAPPA. See Aretium.

LARCH. See Larix

LARDIZABALA (after the Spanish naturalist Lardizabal y Uribe). Berberiddect. Six species of S. American shrubby climbers, mostly Chilean, one of which is cult, outdoors in S. Calif. and the warmer parts of Europe. It is something like the well known hardy vine Akebia quinata, having similar, odd-looking, dark-colored fis., but the leaflets are in 3's instead of 5's. The leaves may be once, twice or thrice ternate, and they are dark green, glossy, and here and there have 1 or 2 almost spiny teeth.

There are 4 genera of the Barberry family containing shrubby climbers that are cult. Of these Akehia is the best. Akebia and Holbcellia have free stamens: Lardizabala and Stanntonia have monadelphous stamens. In all of these the showy parts are the 6 sepals, the 6 petals being much smaller in Lardizabala and absent in Stauntonia. Lardizabala is forther distinguished from Stauntonia by haring once- to thrice-ternate foliage and oblong berries, while Stauntonia has digitate foliage with 3-7 leaflets.
biternàta, Ruiz \& Pav. Lvs. generally once ternate, particularly in the flowering branches: lfts, rather leathery, evergreen, ovate, dark green above, paler and net-ted-veined beneath: staminate fls, in a dense drooping spike, containing as many as J 5 fls . each about 1 in. across, with ovate dark purplish chocolate colored sepals and small lanceolate white petals. Chile. B.M. 4501. Gn. 28, p. 489. - Grows about I2 ft. high against walls in warmer parts of England. The fruit is said to be sold in the Chilean markets and cordage is made of the fiber.
W. M.

LARIX (ancient Latin name). Coniferce. Larch. Tamarack. Orbamental deciduous coniferous trees of pyramidal habit, with the Ivs. linear and clustered except on young shoots, where they are spirally arranged, and with the pistillate fls, often very conspicuous by their bright purple color: cones erect, globose to oblong, rarely more than 2 in . long. They are all hardy North except the Himalayan L. Griffithi, and are often planted as park trees, chiefly for the light green foliage and the regular conical, or in some vars. pendulous, habit The most beautiful is probably L. teptotepis, with the foliage turning bright yellow in fall, while the others assume only a pale yellow color. They are also very valnable forest trees, especially for the northern and monntainous regions; no forest tree goes farther north than the Larch, reaching in N. America 67° and in Siberia 72° of latitude The wood is hard, heavy and very durable, and much used for construction, that of L. occidentalis being considered the best of all American conifers. From the European Larch torpentine is obtained. The bark contains tannin, and an extract is used for tanding leather. The Larch grows in almost any kind of soil, including clay and limestone, and prefers a somerhat moist, but well-drained soil and an open situation; the American Larch grows well even in swamps. Unfortunately several insects and fungi prey on the Larch, and sometimes do considerable damage, especially the leaf-eating larvæ of some moths. Prop. usually by seeds sown in spring, and the young seed lings shaded; vars. are grafted on seedlings, mostly on those of L. decidua (Europaz), either outdoors by whip or cleft-grafting or in the greenhouse by veneer-grafting: they may also be increased by cuttings of nearly ripened wood under glass or by layers, but this method is rarely
practiced. Nine species in the colder regions of the northern bemisphere. Staminate fls. small, globose to oblong, solitary, consisting of numerous short-stalked, spirally arranged anthers; pistillate fls. larger, consisting of several or numerous scales, with 2 naked ovules at the base, each scale borne in the axil of a mucb longer bract; cone with woody, 2 -seeded scales, persistent on the axis; seeds with large, thin wings, ripening the first year.

Alfred Rehder.
The European Larch is an upright, conical grower, and one of our best lawn trees. In the spring, when it is covered with its new growth of soft, feathery, light green foliage, it is a very striking and beautiful object. As it begins growth at a low temperature, it is the first of our trees to be covered with new folinge. Again in the autumn it is very beautiful, as its needles turn a golden color before falling, for this tree, unlike most of the conifers, is deciduous after the first year. In the middle West and along the coast in Massachusetts, it is planted for timber, shelter helts and wind-breaks. Unlike its American relative, L. Americana, or Tamarack, this tree grows on high grouud and does well on a great variety of soils. It does not do well on low, submerged ground, the home of L. A mericasa. The Larch is known in Europe as one of the most durable woods. It does not ignite easily, neither does it splinter, and the wood was in great demand for these reasons for battleships before the ironclads displaced the wooden ships.
The Larch stands transplanting well, but this must be done very early in the spring, before new growth begins. The seed is sown in beds of finely prepared soil, about the middle of May, and either raked in or covered very lightly by hand, not to exceed one-eighth of an inch. It is usually sown in beds 4 feet wide. As soon as it germinates it is shaded with lath frames, raised about 10 inches above the bed. The first year it makes a growth of from 2 to 4 inches, and holds its foliage the first winter. A slight covering of hay or straw should be lightly shaken over the seedlings as soon as winter sets in, to prevent the seedlings being thrown out by continual freezing and thawing. The frames are put on again to hold the snow. During the following summer the frames should be removed entirely. At two years old they will be from 6 to 20 inches in height, and can then be moved to nursery rows or planted out permanently in the forest. The seeds should be sown thicker than other conifer seed, as seldom over 60 per cent germinate. Sometimes they make very little upward growth the first and second years after transplanting, seemingly putting all their strength into the side shoots in order to sprrad out and shade the ground over their roots, a custom followed by all the conifers on hot, sandy soil. This being finally accomplished, they will make a rapid upward growth.

Thos. H. Douglas.

A. Bracts longer than the scales: scales numerous,

 stiff, spreading or recurved after maturity.occidentallis, Nutt. Tall tree, to 150 ft ., with darkcolored bark, becoming bright cinnamon-red on older trunks, and with short, horizontal brancbes, forming a narrow pyramidal head: branchlets pubescent when young: Jvs. rigid, sharply pointed, triancular, keeled beneath, $1-13 / 4 \mathrm{in}$. long, pale green: cone oblong, $1-1 \frac{1}{2} \mathrm{in}$. long: scales orbicular, almost entire, tomentose iseneath. Brit. Col. to Mont and Ore. S.S. 12:594. G.F. 9:497. Gt. $20: 685$, figs,8-10. G.C. II. 25:652. B.H. 22:8, tigs. 3-5.

AA. Bracts shorter than seales.

B. Lvs. with 2 white liues beneath: seales numerous, reflexed at the apex.
leptolepis, Murr. (L. Kámpferi, Sarg., not Gord.). Tree, to 80 ft ., with horizontal branches, forming a pyramidal head: branchlet yellowish or reddish brown, glabrous and glossy; spurs short and globular: lvs. rather broad, obtuse, soft, $1 / 2-\mathrm{I} 1 / 2$ in., light or bluish green: cones ovate-oblong, $1 / 2-1 \frac{1}{2}$ in. long, with emarginate, roundish ovate scales. Jap. G.C. 11. 19:88. Gt.

20:685, fig. 5. B.H. 22:8, fig. 2, - The handsomest of the Larches as a lawn tree. Var, minor, Murr. (var, Murraydma, Naxim. L. Japónica, Murr, not Garr.). Dwarfer form with smaller cones. Gt. 20:685, fig. 2. B. H. 22:9, fig. 4.

BB. Lrs. without white lines, very nurrou: scales erect-spreading, straight or slightly incuried at the apex.
decídua, Mill. (L. Europaza, DC.). European Lareh. Fig. 1241. Tree, to 100 ft ., with pyramidal, later often irregular, head: bark dark grayish brown: branchlets slender, glabrous, yellowish: lvs. compressed, triangular, soft and obtuse, bright green, $3 / 4-11 / 4 \mathrm{in}$. long: pistillate fls. purplish; cones $3 / 4-11 / 2$ in. long, with many al most orbicular scales, usually finely tomentose on the back. N. and M. Eu. Gt. $20: 684$, fig. 3. B.H. 22:7, fig. 1. Var. pendula, Loud. With pendulous branches;

LASTHENIA (name of a woman who was a pupil of Plato). Compósitce. Low, slender annuals with numerous inch-wide yellow flowers in early snmmer.
glabràta, Lindl. (L. Californica, Lindl. Homolóqyne glabrata, Bartl.). The plant cult. under this name is likely to be Baeria gracilis, which see. Height $1 \mathrm{ft} .:$ lvs. much longer than in B. grucilis, strongly keeled, not hairy, or rarely pubescent: involncre eularged below the flower. Calif. B.M. 3730. B,R. $21: 1780$ \& 1823.

LASTREA (C. J. L. Delastre, Austrian botanist). A name commonly used in England for species of Dryopteris. Also spelled Lastrea. On the basis of priority it has no claim to recognition, as it was established by Bory, in 1824, while we have Nephrodinm, 1803; Aspidium, 1801; Tectaria, 1800; Polystichum, 1799, and Dryopteris, 1763.

The following additional species of Dryopteris (Vol. 1, p. 508) are in the American trade nnder the name Lastrea (the combinations are for Dryopteris, not Lastrea):

A. Lourest pinne reduced to auricles: texture thin.

sáncta, Kuntze. Lis, 6-9 in. long, 1-2 in. wide on short slender stems; lower pinnæ very much rednced; under surface glandular. West Indies.
palústris, Kuntze. Lvs. 2-3 ft. long, 8-12 in. wide, on long straw-colored stems; lower pinnae reduced, the upper $3 / 4 \mathrm{in}$. wide, cut down to the rachis into linear-oblong lobes. Brazil.
montàna, Kuntze. Lvs. $11 / 2-2 \mathrm{ft}$. long, $6-8 \mathrm{in}$. wide; lower pinnæ greatly reduced to mere auricles; upper pinna 1 in . wide, cut into close blunt lobes. Eu., western N. America. A variety cristido-grácile is also cult.

AA. Lower pinne scarcely reduced: texture firm.

rigida, Kuntze. Stipes stotit, densely scaly: Ivs. $1-1 \frac{1}{2} \mathrm{ft}$. long, 4-6 in. wide, oblong lanceolate, the lower pinna not reduced; segments with mucronate teeth. En. Var. arguta in Calif.
lépida, Moore. Lvs. 11/2 ft . long, $6-7 \mathrm{in}$. wide, ovate, bipinnatifid or bipinnate, the lower 4 or 5 pairs slightly smaller: indusia bairy. Of greenhouse origin, native country unknown.

Other species cultivated under the name Lastres, as L. aristata and L. Richardsi, belong to the genus Polystichum, which see.
L. M. Underwood.

LATANIA (East Indian name). Palmdeea. Three species of fan palms from the Mascarene Islands. L. Borbonica is one of the dozen commonest trade names among palms, but the seeds offered under this name are said to be almost invariably those of Livistona Chinensis. Latania Borbonica of the botanists is properly Latania Commersonii, which has 3-seeded frnits, while those of Livistona Chinensis are 1 -seeded. Latanias are tall, spineless palms, with solitary robust annular trunks: Ivs, ample, terminal, long-petioled, suborbicular, palmately flabelliform, plicately multifid; segments smooth or spiny on the margins; rachis short; petiole 3 -sided, concave above; ligule conchoidal; sheath short; spadices many feet long, compressed at the base and branches, sheathed with incomplete sheaths: staminatefld. branches cylindrical, digitately arranged at the ends of the branches, very densely clothed with imbricated bracts: pistillate portion somewhat twisted. few-fld., sheathed with very broad dentate bracts: staminate fls. half-exserted beyond the bracts, the perianth smooth and shining: pistillate fls. larger: drupe globose, obovoid or pear-shaped, yellow. Allied genera are diseriminated under Hyphane.

A. Lvs. glaucous.

Lódigesii, Mart. (L. glaucophýlla, Hort.). Lvs. 3-5 ft. long, very glaucous, primary veins slightly tomentose beneath, tinged with red, especially in young plants; segments 2 ft . long, less than 3 in . wide, unequally acuminate, the edges spiny in young plants; petioles $3-41 / 2 \mathrm{ft}$. (or more) long, tomentose, entire in the mature, spiny in the young plant: drupe pear-shaped, 3 -angled, $21 / 2 \mathrm{in}$. long, $13 / 4$ in, thick. Mauritins.

AA. Le's, not glancous.

B. Petiole densely tomentose, with an orange margin.

Verschafféltií, Lemaire (L. aürea, Duncan). Lrs. pale green, $41 / 2-5 \mathrm{ft}$. long, the segments $21 / 2 \mathrm{ft}$. long, above 2 in . Wide, acuminate, the entire margins and veins slightly tomentose beneath; petioles $5-8 \mathrm{ft}$., densely tomentose, with entire orange margins, spiny in young plants: drape slightly 3 -angled, 2 in. long, $11 / 2 \mathrm{in}$. wide. Isl. Rodriguez. 1.H.6:229.

BB. Petiole red, slightly tomenlose.

Cómmersonii, Gmel. (L. rìbra, Jacq. L. Börbonica, Lam., not Hort.). Lvs. $5-51 / 2 \mathrm{ft}$. long, dark green above, paler beneath; segments lanceolate, acuminate, 2 ft . long, $3^{1 / 4-31 / 2}$ in. wide, their margins entire, spiny in young plants, veins and margins tinged with red; petiole $4-6 \mathrm{ft}$., slightly tomentose, the margins smooth, spiny in young plants: drupe glubose, $11 / 2-13 / 4 \mathrm{in}$. in dian. Mauritins. Not A.F. 4:567 and 7:127; A.G. 13:141; 15:389 and 19:557; V.9:199, all of which are Livistona Chinensis.

JARED G. SMTH.
Latanias are essentially warmhonse palms and require moderate sbading tbrough the greater portion of the year, and also an abundance of water. A well-drained and rather light compost is most suitable for them, and if the soil at the time of repotting is of the same temperature as the house in which the plants are grown, there will be less risk of a check to the delicate rootlets. L. Commersonii is a partieularly striking palm, the leaf-stems being quite long, smooth, and colored bright crimsou, as are also the ribs of its fan-like leaves, this coloring beiug especially bright on the young foliage. L. Loddigesii is the strongest grower of the genus, the leafstalks reaching a length of about $8 \mathrm{ft} .$, usually chocolate-colored and quite glaucons, the leaves thick and leathery and their ribs reddish while young, though never developing such bright tints as those of the preceding species. L. Verschaffeltii is also very attractive, though possibly a little more delicate than the other two, its leafstalks being long and rather slender, and orange-yellow in color, the ribs of the leaflets also yellow and the leaves themselves of a light shade of green.
L. erecta and L. variegata are trade names, the former being advertised by Saul, 1893 ; the latter by Pitcher \& Manda, 1895 . Any specimens in eult. will probsbly he fonnd to be rarieties of some of the above.
W. H. Taplin.

LATHYRUS (name used by Theophrastus for some leguminous plant). Legrominosw. A geuus of about 100 species, occurring in the nortbern hemisphere and in South America, consisting of annual and perennial, climbing and upright herbs witb pinnate lvs., half-sagittate stipules and showy, papilionaceous flowers.
The genus is best known lyy the Sweet Pea. Most other furms are perennial, although some of these are cultirated as annuals. All are free-growing plants, so independent in their ways that they require a place to grow by themselves, apart from other plants of like habit or size. Hence they are to be grown alone, on trellises or against walls, or allowed to form a wild tangle among strong shrubs. The chief value of the annuals is for cut-flowers, though their part in the garden is not to be ignored. As a temporary screen in summer for shintting out unsightly objects, they are valuable, or for quickly covering trellises or rough places otherwise nusightly.

The perennials are of comparatively easy cultivation, succeeding in any garden soil. The annuals are more exacting in their requirements, demanding a moderately rich garden soil, abnndant moisture, coolness and depth for their roots, and open sunlight. All are grown from seed, sown very early in the open to secure the required coolness for the roots. The perennials are propagated, in addition, by division, special varieties being increased by cuttings in the fall, after the flowering season, or in spring, from old plants stored in the greenhouse. The roots of perennials are long and fleshy, and, when once established, continue for years without attention.
Orobus niger and vernus are common garden names, but Bentham \& Hooker make Orobus a subgenas of

Lathyrus, characterized in part by the lack of tendrils. (See, also, Orobus.) Lathyrus has lvs. equally pinnate, ending in a tendril or in a point; lfts. 2 or several; stipules leafy, large and prominent, half-sagittate: fls. solitary or racemose, on long axillary peduncles; calyx ob-lique-campanulate, 5 -parted, the npper teeth often shorter; corolla dark blue, violet, rose, white or yellow, or a union of these, the standard large, broadly obovate or roundish, notched, with a short claw, the wings fal-cate-oborate or oblong, the keel shorter than the wings, ineurved, obtuse; stamens diadelpbous (9 and 1) or monodelphous below: ovary a one-celled pod, several-ovuled; style curved, usually twisted, flattened, hairy along the inner side; pod flat or terete, 2-valved, dehis-

INDEX,

Orobus, 13, 15, 16 palustris, 9. polymorphus, 14 . rotundifolius, 5. sihthorvi, 6. splendens, 7, 12. svlvestris, 4 . Tingitanus, 2. uudulatus, 6. venosus, 11. veruas, 16.
A. Habit climbing: lvs, tendril-bearing. (Lathymus.) B. Annuals: leaflels one pair.

1. odoràtus. Linn. Sweet Pea. Stem rough-hairy, winged: lfts, oval or oblong, mucronnlate; stipules lanceolate peduncle 2-1-ffd., much longer than the lvs.: fls. in shades of blue, red, yellow and white, fragrant, the sbield large and showy, expanded, sometimes "hooded:" pod 1-2 in. Summer. Sicily. B.M. 60.-For culture and varieties, see Sucet Pea.
2. Tingitànus, Linn. Tangier Scarlet Pea. Fig. 1242. Sts, spreading, winged, glabrous, 3 ft . long: lfts. linear-lanceolate, obtuse, mucronulate; stipules lanceolate: peduncle 2 -fld., longer than the $1 \mathrm{rs} .: \mathrm{fls}, 1 \mathrm{in}$. long,
dark red-purple; shield large, purple, wings and keel bright red; pod $4-5$ in. long. June, July. W. Mediterranean region. B.M. 1o0.-An earlier annual than the Sweet Pea, and because of its vigor should be kept away from it or it will run it out.

BB. Perennials.
C. Lvs. with 1 pair of leanets.

D. Stipules narrow.

3. grandiflorus, Sibth. and Sm. Everlasting Pea. Two-flowered Pea, stem winged, 4-6 ft. long: Ifts. large, ovate, obtuse, mucronulate, undulate; tendrils branched, short ; stipnles small: peduncles $2-3$-fld., longer than the Ivs.: shield large, obcordate, notched, broad, rose-purple, wings dark purple: pod linear, 3 in. June, July. S.Eu. B.M. 1938.-Larger vine than L. latifolius, but weaker and less rampant. Fls. as large as those of tbe Sweet Pea. Free-flowering, succeeding in any soil, not requiring much light. Adapted to banks, along walk-margins in woods, among stroug shrubs, and as a covering for rocks.
4. sylvestris, Linn. Flat Pea. Stem straggling or climbing, 3-5 ft. long, stout, winged, glabrous, with creeping rootstock: lfts. linear-lanceolate, thick, with winged leafstalk: peduncle 3-6-fld., equaling the lrs.: fls. $1 / 2 \mathrm{in}$. long; standard rose, with green spot on its back; wings purple at summit; keel greenish: pod lanceolate, 2-3 in. long. All summer. All Europe, in thickets and rocky places.- Inferior ornamentally to other perennials, but valuable as a forage plant for cattle and for plowing under in a green state as a fertilizer. Grows well on poor, unimproved sandy soil, and is unaffected by frosts and droughts. For garden culture, it may be sown in a seed-bed and transplanted when of suitable size. Its seeds in the wild state are said to be to some degree unhealthful, but in the cultivated form this quality has been bred out.
5. rotundifolius, Willd. Persian Everlasting Pea. Low-growing, winged species: Ifts. ovate: stipules toothed: pednncles many-fld., longer than the Ivs.: fls. large, rose-pink. June. Russia and the East. B.M. 6522.-A species of easy culture, requiring a cool, shady and sheltered position. Adapted to stony banks.
6. undulàtus, Boiss. (L. Síbthorpi, Baker). Stems twining, broadly winged: lfts, oblong: peduncle 5-6-fld.: fls, a mauve-red. S.B.F.G.333.-A form intermediate between L. latifolius and L. votundifotius. A somewhat tender species, said to be 6 weeks earlier than any other.

DD. Stipules broad.

7. latifolius, Linn. Everlasting Pea. Perennial Pea. Fig. 1243. Stem winged, $4-8 \mathrm{ft}$. : l fts . orate-elliptic or ovate-lanceolate, somewhat glaucous, mueronate, 2-3 in. long; teudril branching: peduncle many-fld., longer than the lvs.: fls. rose, large : pod flat, $4-5 \mathrm{in}$. long. Aug. Woods of Europe.-This is the common Perennial Pea, and one of the hardiest and most easily cultivated species, thriving almost anywhere, even amoug flags and boulders. A rampant grower, it is a good trellis plant, and is adapted as a cover to wild, rough places, where it scrambles orer bushes and stones. It succeeds in shade and grows rapidly, but, like all species of Lathyrus, it is impatient of removal, owing to the size and length of its roots. Has no place in the border. 1ts varieties are not clearly defined. Var. albus, Hort., the white form, is adapted to the same uses as the type, and is, besides, valuable to florists wanting white flowers in midsummer. Var. splèndens, Hort., dark purple and red, is said to be the best form of the type, but does not come true from seed. There is a striped form, also. Other trade names are rars. albiflorus and grandiflorus.
8. Magellánicus, Lam. Lord Anson's Blue. Stem $3-5 \mathrm{ft}$. long, smooth, angled, somewhat branched: Ifts. ovate or oblong-linear; tendrils branched; stipules cor-date-sagittate, broad: peduncles long, 3-4-fld.: fls. dark purple-blue. June, July. Straits of Magellan. S.B.F.G. 11. 344.-A strong-growing, woody, almost evergreen
species covered with a bluish hloom. Since it is a maritime plant, salt is said to assist its growth. It is sometimes regarded as an annual. Far, albus, Hort., "Lord Anson's White," is the white form.

ce. Lvs. with more than 1 pair of leaflets.

9. palüstris, Linn. Marsh Pea. Wing-stememed Wild Pea. Stem slender, $1-3 \mathrm{ft}$. long, glabrous or somewhat pubescent, often winged, rather erect: Ifts. $2-4$ pairs, oblong-lanceolate, acute, 1-2 in. long; tendrils branched; stipules small, lanceolate: peduncles $2-8$-fld., searcely longer thau the lvs.: fls, purplish, $1 / \frac{i n}{}$. loug: pod 2 in . long. Summer. Northern N. America and N. Europe, in moist places. - A good bog plant. Var. myrtifolius, Gray (L. myotifôtius, Muhl.). Myrtle-leaven MarshPEA. Has smaller, obtuse lvs., broader and larger stipules, the fls. pale purple. July, Aug. Bauks of rivers, northern North America to N. (.
10. maritimus, Bigel. Sea or Seaside Pea. Beach PeA. Stem stout, $1-2 \mathrm{ft}$. long, angled, decumbent: Ifts. 3-6 pairs, ovate-oblong, thick, glaucous, nearly blue. 1-2 in. long; stipules leaf-like, broadly ovate and cor-date-hastate: peduncles 6 - 10 -fld., a little shorter than the Ivs.: fls. purple; wings and keel paler, $3 / 4 \mathrm{in}$. long: pod $11 / 2$ in. long, hairy. May-Aug. Gravelly seacoasts throughout northern hemisphere.-A spreading plaut with creeping rootstock and of rapid growth, very tenacious of life. A good plant in roek gardens and in gravelly soil.
11. venòsus, Muhl. Showy Wiln Pea. Stem stout, $2-3 \mathrm{ft}$. long, finely pubescent, strongly 4-angled: Ifts. 4-6 pairs, oblong-ovate, ohtuse, often pubescent below, 2 in . long; stipules narrow, short: peduncle crowded, 8-16-fld., rather shorter than the lvs.: fls. purple, 6-8 lines long: pod smooth. June. Iuly. Shady places and along streams, Canada to Ga. S.B.F.G. 1I. 37.
12. spléndens, Kellogg. Pride of California. Stem subshrubby, slender, more or less soft-pubescent: Ifts. $4-6$, ovate-oblong to linear, $1 / 2-1 \mathrm{in}$. long, acute; stipules narrow: peduncle 6-12-fld.: fls, pale rose or violet, large. Dry hills of coast ranges, Calif. Gn. $52: 1133 .-\mathrm{A}$ greenhouse plant 1 ft . long or more, becoming $8-10 \mathrm{ft}$. at home, where it dies down during the summer. Elsewhere it adapts itself to elimate but is not hardy in N. United States. Sometimes confused with a variety of L. latifolizes.

AA. Habit not climbing: les, not tendrit-bearing. (Orobus.)
B. Fls. yellou.
13. montànus, Bernh. (Orobus zùteus, Linn. L. lìteus, Baker). Stem simple, angled, smooth: lfts. 5-8 pairs, large, elliptic-lanceolate, pointed, glaucous below: peduncles many fld., a little shorter than the Ivs.: fls. large, orange-yellow. June, July. Forests of the Alps.
S.B.F.G. II. 115. - A shade-enduring species with fls. in erect, spike-like clusters and adapted to borders aud rockeries.

BB. F'/s. not yellow.
14. polymórphus, Nutt. Prairie Vetchling. Stem rather stont, usually low, glabrous or finely pubescent, erect, a little woody at the base: Iftx. 3-6 pairs, scattered, narrowly oblong, acute, thick, 1-2 in. long; stipules narrowly acuminate: peduncle 2 - 6 -fld., a little longer than the lvs.: fls. purple, large. March-July. Grassy, alluvial plains, Colo, to New Mex. and Ariz.
15. niger, Bernh. (Órobus nlger, Linn.). Black Pea. Black Bitter Vetch, Stem erect or ascending, branched, angled, $1-2 \mathrm{ft}$. loug: 1fts, 6-8 pairs, elliptical or ovate, $1 / 2-1$ in. long, light green, turning black when drying; stipules narrow, small: peduncles 6 - 8 -fd., longer than the lvs.: fls. purple, small. June, July, Mountainous and rocky districts, Middle Europe. B. M. 2261.-Slender species, with short rootstock, succeeding in the shade.
16. vérnus, Bernh. (Orrobus vérnus, Linn.). Spring Bitter Vetch. Steui simple, somewhat pubescent, 1-2 ft. long: Ifts. 2-3 pairs, ovate-acumiuate, light green; stipules entire: peduncles $5-7$-fld., shorter than the IVs.: fls. blue-violet; keel shaded with green, nodding. May, June. Hills and woods, S. aud central Europe. B.M. 521. - The most popular Orobus; a compact, tufted plant, growing quickly in sun or a little shade; best in deep. sandy loam, in a sheltered position; hardy. Var. álbus, a white form, is rare.
L. galègiformis and L. Helvéticus are names in the American trade, but cannot be placed botanically.-L, tuberòsus, Linn., has been imported by an American amateur. It differs from all deseribed above by having tubers. It is a native of the northern parts of the Old World, and bears red flowers, which are generally fewer and smaller than those of L. sylvestris.
A. Phelps Wyman.

LAUREL. Properly Laurus nobilis, but other broadleaved evergreens have taken the name. In America, the Kalmias are known as Laurels. The Cherry Laurel is Prunus Lauro-cerasus, and in America P. Caroliniana. Portugal Laurel, is P. Lusitanica. Ground Laurel is Epigæa.

LAURESTINUS. Popular name of IViburnum Tinus.

LAUROCERASUS, Consult Prunus

LAÛRUS nobilis (Laurus is the ancient name) is the Sweet Bay tree of the florists, the most universal of all evergreen tub-plants. It is native to the Mediterranean region, sometimes attaining a height of 40 to 60 ft ., but rarely assuming a true tree-like form. As a cultivated subject, it is grown as a small standard tree, with a close-sheared top. The plant endures abuse and neglect, the head can be trimmed to almost any shape, and the growth may be kept within small limits year after year. F.R. 1:669 (Fig. 1244). It is, therefore, the most popular of plants for decoration of open-air or exposed restaurauts, esplanades, architectural appurtenances, and the like. Although much used in America, it is still more popular in Europe. Of the European dealers one may order plants with heads trained to pyramids, cones, globes, and the like, and with bodies long or short. The plant will endure considerable frost. It is grown in the open in Eugland: "The Sweet Bay bush in the farmer's or cottage garden comes with its story from the streams of Greece, where it seeks moisture in a thirsty land along with the wild Olive and the Arbutus. And this Sweet Bay is the Laurel of the poets, of the first and greatest of all poet and artist nations of the earth-the Laurel sacred to Apollo, and used in many ways in his worship, as we may see on coins, and in many other things that remain to us of the great peoples of the past" (Gn. 47, pp. 301, 307). Although so universally used, there are few important horticultural varieties,-the variegated-leaved and crisped-leaved forms being the best known. Prop. by cuttings, and sometimes by seeds.

Laurus gives name to the family Lauriced, which includes Cinnamomum, Camphora, Persea, Sassafras, Benzoin, and other genera. Dlany species have been re-

LAVANDULA

ferred to Laurus, but with the exception of two, these species are now placed in other genera. These two true Lauruses are L. nobilis, Linn. (the subject of this sketch), and L. Canariensis, Webb \& Berth., of the Canary 1slands. The tis, are dicecious or perfect, small and inconspicuous, in small, axillary umbels; perianth with a short tube and a 4 -parted limb; stamens $8-12$ or more, and staminodia often present: ovary sunk in the receptacle, the style short: fr. a small berry.
The Sweet Bay (L. nobilis) has stiff, dull green, entire, alternate lvs. lanceolate or lance-oblong in shape: yellowish fls. in early spring: succulent, purple, cherry-

like fruits. The lrs, are sometimes used in cookery and the making of confections, because of their pleasant aromatic flavor. The wreaths with which the heroes of antiquity were crowned were made of Laurel leaves.
Laurus Benzoin of trade catalogues is Benzoin odoriferum. L. Sassafras is the Sassafras tree. L. Camphora is the Camphor tree (see Camphora and Cinnamomum).
L. H. B.

It is estimated that sereral hundred thousand Bay Trees are sold every year in Europe and America. They are mostly imported from Belgium and Holland, where they are cult. as follows: Cuttings 3-1 inches long from well-ripened wood are put in sharp sand, either under bell glasses or in glass cases. Bottom heat is not essential. After the cuttings have rooted, they are potted in small pots, in fairly rich sandy loam, with good drainage, and can then be put in a hotbed, with some gentle bottom heat, where they will at once make a good strong growth. After this they are, as a rule, planted in nursery rows, in rich sandy soil, with perfect drainage. They will make a strong shoot 3 to 5 feet in length in one season. These shoots are tied up to stakes. At the end of the growing season and long before the cold weather sets in, these young plants, together with their stakes, are taken up and put into their winter quarters, which, as a rule, is a well-lighted and ventilated shed-an ordinary barn-like shed, sometimes built several feet inte the ground and provided with sky-lights and rentilators. These plants are set in close rows and watered once or twice a week, according to the weather. Little or no fire heat is used in these sheds unless the weather gets extremely cold. The temperature is kept just above freezing. In the spring they are taken out and either potted and plunged in nursery rows, or planted out, as before. Plenty of water, rich peaty soil and the congenial moist atmosphere near the seacoast induces them to make a fast and luxuriant growth. Thus they are cultivated continually until the plants have been trained into the desired form, and as soon as they have attained enough of this form to show their character, which usually is from 5 to 6 years after propagation, they are planted in properly proportioned bardwood tubs and are then ready for the market, or to
be further cultivated, perhaps for a good many years, until they grow into large specimens. The trees are cut back and trimmed into shape once a year, after the new growth is well matured.
The peaty muck soil in which they are grown abroad is very deceptive to Americans, and many fine trees have been ruined by not understanding its nature. Its dark color always makes it look moist. Sometimes when the soil looks moist enough the trees are really dying from drought.
In retubbing trees there is danger of using for filling material a soil that is too heary. The water then runs into the new soil, leaving the old soil dry. If the trouble is not detected soon the trees may be spoiled. The only thing to do in such cases is to comb out the old ball and cut back to live roots. The tree can then be planted in the open to gain a new set of roots, after which the top can be cut back to live wood. The tree may thus be eventually brought into a good shape again.

As a rule, Bay Trees are not good house plants. They do not like the dry heat of a dwelling. They can, however, stand considerable beat if they bave plenty of fresh air and plenty of water. In spring and early summer, when they are making and finishing their growth. they can stand any quantity of liquid manure or of strong manure mulching, for they are great feeders. Many people erroneously suppose that this tree affords the bay rum of commerce. The cured leaves of the Sweet Bay are used in putting up packages of rice, and impart a rich and agreeable aroma. H. A. Siebrecht.
LAVANDULA (Latin, lawo, to wash; referring to the use of Lavender in the bath). Labidtoe. This genus includes the Lavender (L. vera), an ancient garden favorite because of its pleasant odor. The genus contains about 20 species, scattered from the Mediterranean region to India; perennial herbs, subshrubs or shrubs. lvs. commonly crowded at the base, pinnatifid or dis. sected : whorls 2-10-fid., crowded into long-peduncled cylindrical spikes, which are unbranched or branched from the base: fls. blue or violet; calyx tubular, 13-15striated, 5 -toothed; corolla lobes nearly equal, or the posterior lip 2-cut, the anterior 3 -cut ; stamens 4, didynamous, declined, included in the tube; style shortly 2 -cut at the apex. In the North, winter protection should be provided for Lavender. The plant grows naturally in dry and liilly wastes. J. B. Keller advises a light, open soil.
A. Spike loose: upper floral li's. fertile, shorter than the calys.
B. Lrs. not densely woolly.
vèra, DC. Latender. Subsbrub, $1-3 \mathrm{ft}$. high: 1 rs . oblong-linear or lanceolate, entire; younger ones often clustered in the axils, white-tomentose, revolute at the margins; older ones greener, 1-1 $1 / 2 \mathrm{in}$. long: spikes interrupted: whorls $6-10$-fld. Summer.
Splca, Cav. Dwarfer than the true Lavender, whiter, the lrs. more crowded at the base of the branches, spike denser and shorter. The floral lvs. are lanceolate or linear (rhomboid-ovate acuminate in L. vera), and the bracts are linear-awl-shaped, shorter than the calyx, while in L. vera the bracts are almost absent.

BB. Les densely woolly.

lanata, Boiss. Differs also from the preceding in having much longer and less crowded spikes. Woolson says it grows $1-2 \mathrm{ft}$. high and needs winter protection at Passaic, N. J.

AA. Spike dense: upper floral lrs. sterile, comose.

B. Les. entire.

Stæchas, Linn. Shruh, $2-3 \mathrm{ft}$. high: lvs. tomentose, about $1 / 2 \mathrm{in}$. long: spikes short-peduncled, densely comose : fls. dark purple, Cult. only in S. Calif.

BB. Les. obtusely pinnate-dentate.

dentàta, Linn. Lrs. pubescent : spikes long-peduncled: fis deep purple. Mediterranean region. B.M. 400. -lut. 1900 by Franceschi.
W. M.

Lavender (L. rera, DC.), a labiate shrub, 2-3, sometimes 6 ft . tall, with green or glaucous lvs, and flowers in cylindrical, terminal spikes, of a blue tint
named from them, is a native of Persia, the Canaries, and the Mediterranean region, covering vast tracts of dry land in Spain, Italy and sonthern France, cultivated largely in the last-named conntry antl in the counties of Surrey and Hertfordshire, England.

In the eastern United States it is grown in but few gardens, but in California, where climatie and soil conditions seem favorable, it is nore commonly planted, though not upon a commercial scale. The dry soil of that state and the light limestone soil of the Black Belt of Alahama and adjacent states seem to be most inviting to this industry.

The generic name is derived from the ancient use of its flowers and leaves in bath perfumery. The flowers long retain their strong, fragraut odor after drying, and upon distillation yield a lemon-yellow, very fluid oil of aromatic, bitterish, burning taste. Though this is officiuallycredited with stimulant and tonic properties, it is seldom administered in the pure state. Its chief uses are in the manufacture of perfumery, aromatic vinegar and lavender water, an alcoholic solution of the oil and other odorous substanees. For these purposes, English oil has long commanded the highest price, but recently the French product has been claimed superior. Though all parts of the plant are aromatic, and both leaves and flower-stems are used in oil manufacture, oil ohtained in the first half honr of distillation from flowers alone is much superior to the later distillate and also to the oil obtained from a mixture of flowers and stems. These grades, and also the highly valued product of very dry seasons, are always sold separately.

Larender is best propagated by cuttings of one season's growth taken with a heel of older wood, in late autumn or early spring. When set $3-4$ in. asunder in rather moist soil and shaded, they strike more readily and produce more symmetrical plants than older weod. Seed does not propagate desired varieties, and division is not adrised, since plants so obtained are more susceptible to disease than those made from young-wood cuttings. After danger of frost, the 1 -year-old plants are set 4 ft . asunder in rows 6 ft . apart, running nortb and south. Closer planting and the hedge-method yield a smaller quantity of bloom Dry, light, calcareous, even stony soils upon sites where sin and air are unimpeded by trees, etc., faror this plant. Upon such fewer are injured by frost, and the oil is of superior quality. In moist soil so much water enters the plant as to enfeeble it, and upon rich lands yield and quality both snffer. Light fertilizing with stable manure or ashes turned under in autumn, and spring harrowing, are advised. During the first year in the fleld the plants should be elipped to prevent Howering and to encourage stockiness. Figorous plants so treated may grow to a height and a diameter of 5 ft ., and when $2-4$ years old produce secondary bloom spikes after the general harvest, which usually oceurs in early August. Plantations should be destroyed when $4-6$ years old and the land rested with other crops before setting to Lavender again. Cutting in clear weather, in early blossom, hefore the dew is off and at once distilling give best results; but no delay should occur. Cutting in wet weather, in the heat of the day, holdiug blossoms long before distilling and exposing them to the sun after cutting result in serious losses. One pound of flowers yields from $1 / 2-1$ drachm of oil, and an acre from $10-25$ pounds. The anmual output of the stills of Grasse, Frauce, is from 80,000 to 100,000 kilogrammes.
"Oil of spike," ohtained from a broad-leaved, much whiter and smaller species (L. Spica), is less fragrant than true Lavender oil, being analogous to oil of turpentine, with which it is often adulterated. It suggests the odor of rancid cocoanut oil. Officinally, it is credited with carminative and stimulant properties, and has heen found useful in nervous languor and headache. It is used hy artists in the manufacture of varnishes, by porcelain painters, and to a small extent in perfumery, ruainly as an adulterant. From 20,000 to 25,000 kilogrammes are annually produced at Grasse.
M. G. Kains.

LAVATERA (two Lavater brothers, physicians and naturalists at Zurich, friends of Tournefort). Malvàcea. About 18 species of widely scattered herbs, shrubs and
trees, tomentose or hairy: lvs. angled or lobed: fls. sometimes $2-4$ in. across, Farionsly colored, rarely yellaw, solitary in the axils or borne in terminal racenes; colnmn of stamens divided at the summit into an indefinite number of filaments ; petals 5.

The genus has 5 near allies of garden value, which are all distingnishable by their bractlets. In Lavatera and Althæa they are grown together at the base; in Malra and Callirhoë they are frce all the way, sometimes absent in Callirhoë; Sidalcea has none at all. Lavatera is fnrther distinguished from Althea by having $3-6$ hractlets (Althæa having (6-9), and the axis of the fruit surpassing the carpels, which is not the case in Althra. These plants are of the easiest culture, the first species being the commonest, and all prop. by seeds. There seem to be no double forms. They are far less popnlar than Hollyhocks.

A. Anmuиl, herbaceons.

triméstris, Linu. Height 3-6 ft .: IFs, nearly glabrons, apper ones angled: fls, rosy, 4 in . across: receptacle or axis of the fr. expanded at the apex into a disk, inclosing the ovary. Mediterranean region. Var. alba has white fls. Gn. 24, p.89; 51, p. 212 and $53: 1154$. B.M. 109.

As. Biennial or perennial, shrubby or tree-like.

B. Foliage variegated.

arborea, Linn. Biennial, woody at the base, with annual flowering branches, forming a shrnh $3-5 \mathrm{ft}$. high or less: Ivs, $5-9-1$ ohed, softly downy on both sides, rarely Dearly glabrous: fls. pale purple-red, about 2 in. across: receptacle small, marked with little pits, not exserted. Cult. only in the form of rar. variegata, which has mottled IFs. Gn. 23, p. 114. V. 8:99.

> BB. Foliage not variegated.
> c. Fls, 1-1 in the axils, pedicelled.
assurgentiflora, Kellogg. Presumably perennial, shruhhy, $6-15 \mathrm{ft}$. high: lvs. glahrous or sparingly stel-late-puhescent, 5-7-lobed, 3-6 in. wide: fls. purple; petals I-I $1 / 2 \mathrm{in}$. long, with long, narrow, glabrous claws, and a pair of dense, hairy tufts at the base: axis of the fr. low-conical, about as long as the carpels. Anacapa Island. Cult. in Calif.-Franceschi says it makes a large, round-headed shruh, with large red fis., and is one of the best plants to stand salipe winds. See Wind-breaks.
CC. Fls, solitary, sessile.

Olbia, Linn. Perennial, shruhby, about 6 ft . high: hairs of the stem pilose, somewhat clustered, distant: Ivs. softly tomentose, lower ones 5 -lohed, upper 3 -lobed, highest ohlong, scarcely divided: fls. reddish purple. S. Eu. - Not advertised in America, but commonly cult. in England, where jt occasionally sows itself. W. M.

LAVENDER. See Lavardala.
LAVENDER COTTON is Suntolinu Chamacyparissus.
LAVIA, of one nursery catalogue, is a typographical error for Layia.

LAWN. For most people the word Lawn bears a vague meaning, compounded of their recollection of grass-covered spaces dotted over with trees and shrubs, and of broad areas covered simply with closely-mown turf. Both are correct impressions: but the more important feature is that a Lawn shall be an open area of grass space (Figs, 1245, 1246). Many exceptions or additions to this definition may, however, be admitted. A great white oak, for instance, rugged and picturesque against the evening sky, needs only to be seen to furnish an ample excuse for jts retention on any Lawn. But this would be a happy chance, not affeeting the principles which should govern the construction of a Lawn on an oped area.

It may readily appear that the Lawn will, as originally designed, prove too sunny or too strongly wind-swept over its extended expanse; but the remedy for this will be found to lie not so much in planting single trees or detached groups of trees over the nucovered area, as in extending limbs, points, promontories and peninsulas of trees, or trees and shrubs, directly out from the main

1245. An open area of grass space.
body of bordering plantations which will usnally frame the Lawn and the different pietures that will appear in any properly unified scheme of landscape gardening. The art of the designer will display itself in determining the relative sizes of the Lawns and these enclosing or framing plantations. A eareful eye must, of course, be given to the individuality of the Lawn itself, which should never be allowed to merge into the neighboring plantations. A like prineiple applies to all kinds of art - it is fundamental and vital in its eharacter. The reader may fancy that its application would tend to limit the beauty of landscape gardening by eliminating certain features of natural beauty, such as trees, shrubs and beds of flowers, but, if he will look at an open Lawn with discerning and sympathetic eyes, he will find that the "moring eloud-shadows, waring grass, rich patches of dark and light green, studded with the starry radiance of the humble flora of the grass, and the hundred ineidents of blazing or subdued color and form that appear on the surface of an open meadow," need no added beauty of tree or shrub to perfeet their nearly unapproachable loveliness. So important does the writer consider the essential and peculiar beauty of the Lawn as distinguished from that of any other part of the home domain, that he always feels inelined to term it the true focus of the pieture, the central point of interest in any landscape gardening design.

This being the case, it behooves us always to literally leave no stone unturned or clod of earth untilled and unfertilized in order to ohtain a satisfactory open Lawn. Did the reader ever really see sueb an one? Let him answer frankly to himself whether he has or has not seen a Lawn whieb showed no traces of twitch grass and other early weeds in July, nor any summer grass and later weeds in August and September,-above all, a Lawn which would stand a protracted drought without artifieial watering. Very likely he will think it is impossible to make such a Lawn under the conditions of soil and climate whieb each and all of us are likely to believe specially eharacteristie of the spot of ground on which we live. Perbaps, on the other band, he will declare that he has seen such a Lawn in some remote place, but if we question him, ten chanees to one we shall find that his observation of this exceptional Lawn is limited-that he has not wintered and summered near it, or seen it during its periods of "storm and stress." The writer knows one place where such a Lawn can be seen, and he refers to it, not beeause it is properly a Lawn, for it laeks the requisite framing plantations; but it is perfeet in the first essential of a good Lawn-it is a pieee of perfect Lawn grass. A brief deseription will show how this standard of excellence was reached. The Lawn eonsists of small patehes of grass turf on a private farm in Manchester, Conn. Each patch was worked and turned over with various ingeniously contrived hoes, forks and rakes until the last lurking weed was remored that conld be fonnd by dint of skill and untiring patience. The soil was that of an old garden, and naturally good. It was tilled in the most thorough manner and not fertilized at all, for fear new weeds be introduced. Then, in this mellow and receptire medium, were set cuttings or joints of the hardiest and most luxuriant varieties of grasses
which had been discovered by months and even years of keen and intelligent search in the old meadows of both the Old and the New World from Austria to Australia. The result is an elastie firmness, an endurance, depth and richness of the turf whieh suggests to the tread the deep pile of some Eastern carpet woven in a hand-loom.
But all can not attain this standard on their Lawns. For those who do not look higher than the ordinary standard-and eren this is none too often desired, or even understood, by the general public-the following directions for Lawn making may be given:

1. The Lawn should be earefully graded, either conves, level or eoneave, in such eomparatively long, suave and graceful lines as will aecord with the peculiar conformation of the ground (Fig. 1247).
2. Plow, harrow or spade, and fork the soil of the Lawn to a depth of two feet, if possible, and keep removing the stones and burning the gathered rubbish for several weeks, or as long as you can persuade yourself to do it, or pay any one else to do it, with the full assurance that no matter how much you do, you will not be likely to destroy all the weeds and win the very best possible results.
3. Enrich the soil by a eovering of still richer mold. Next to this in efficiency are bone dust, superphosphate of lime, nitrate of soda, and nitrogenons manures like ground flesh and bone mixed in proportions suited to the special soil, which may vary materially in a distanee of a few hundred yards. The usual proportions are one ton to the acre of ordinary artificial fertilizers, sueh as superphosphate of lime and bone dust, or 15 to 25 of well-rotted stable manure. If artificial fertilizers are not arailable, then take eow manure, sheep manure, or last of all, beeanse it is the most productive of weeds, ordinary stable manure. These natural manures are, after all, the best, save for their weed-bearing qualities. They will need composting with several times their bnlk of good soil and evenly sprearling and barrowing or raking in tbroughout the surface of the Lawn.
4. For turfing, the cleanest grass seed that can be obtained at any price will be found the best in the end.

5. Ground plan of a nature-like garden. To show relative importance of lawn and planting.

The bulk of this seed shonld be Kentucky blue-grass or June-grass (Poa pratensis) mixed with red-top or herd's grass (Agrostis alba, var. vulgaris) 'or Agrostis canina, the Rhode Island bent-grass. The adrantage of using several kinds of grass is that the first-comers bold possession of the ground against ineursions of weeds until the stronger but slower-growing Kentucky blue-grass

gets complete root-hold, when, in the struggle for life, the earlier grewths of grass, being weaker, go to the wall and are crowded out of existence. How fine this blue-grass may become under favorable conditions it will be needless to point out to those who have seen the grass meadows of Kentucky.
5. On a quiet day the seed should be sown evenly over the Lawn surface - a task which can be well done only by much skill and experience. The ground will then need careful raking with a fine-toothed iron rake,
or Capriola), a plant of trailing and stoloniferous habit. Although it is known throughout the southern states under the name of Bermuda, it is, however, a native grass of Bengal and other sections of India, and found, also, in Corea. In Bengal it is known as "Doob grass," and there bighly prized for its vigorous growth of a soft, dark hue, and thriving where scarcely any other kind will. This grass has become widely disseminated throughout the South, where it has received both the harshest pessible reputation as a nuisance when allowed to take a foothold in cultivated fields and gardens, as well as unstinted praise from these whe have learned its great value as a pasture, hay or Lawn grass.
When required for Lawns, the roets sbould be cut in short lengths, - passing them through a hay cutter is the most expeditious. Let the ground be well and deeply plowed or dug, well manured, and after sowing the pieces of grass roots they must be either raked or harrowed in, then the surface made perfectly level by rolling; or, where the area is limited, the roots may be planted 6 inches apart. Plant at any time during February or March, or in the fall if preferred. If during the spring the soil should become very dry, an occasioual watering, where this is practicable, should be attended to until the grass is well established. Neither excessive heat or cold will kill the roots if left
and rolling with an iron roller, the heavier the better. In very dry and windy weather it is hardly worth while to sow grass seed.
6. As soon as the grass has grewn 3 or 4 inches, cut it first with a scythe and afterwards with the Lawn mower, in order to secure a good, thick-set turf. Every spring, and oftener if wet weather prevails, a compacting with the iron roller will serve a good purpose. Fertilizing on the top of the Lawn in the winter is always in order, provided the remainders of rubbish from the stable manure that may be used be removed early in spring before the grass starts.
7. The last and perhaps the most important care to be given the Lawn in the process of its establishment is the weeding of the first summer. The next is the weeding of the second summer-and the third is the weeding at any time it may need it, ne matter how many years may have elapsed since its construction. The onion patch and the flower garden need no more weeding than the Lawn, if for no other reason than beeanse the use and beauty of either onion patch or flower garden can never, combined, equal those of the home Lawn. In it, skill and patience and the love of beauty find abundant reward.

Samuel Pafsons, Jr.
Lawns for the South. - The scarcity of handsome Lawns throughout the South often leads to the impression that the cause is from a lack of proper grasses possessing suflicient resisting power to withstand the long, warm summers. This idea is, unfortunately, widely entertained, and, as a consequence, one of the most pleasing features of landscape gardening is lost. The principal cause which has led to this opinion is from the endeaver, in the fermation of Lawns, to use the many kinds of grass seeds which are so successful in the northern states and which are unsuited for southern soils and climate, unless in a few exceptional localities.

Sown during the fall months in properly prepared land, a very good stand can be had during winter and early summer, but unless there is sufficient moisture, either from copious rains or liberal irrigation, most of those otherwise excellent grasses fail and die out during a protracted drought. Lawns of an extensive area, when formed with northern and Enrepean grasses, are therefore unadrisable South, but where the extent is limited, the soil deeply dug, well fertilized and artificial irrigation available, then a very satisfactory result may be expected. Several Lawn grass mixtures are recommended, but the best that has come under our observation is the formula known in Philadelphia as "Erergreen Lawn Misture."

There are, however, several native and exetic grasses, which not only resist tbe long summer heat, but, if properly treated, afford most excellent Lawn-making material. First of all is the Bermuda grass (Cynodon
undisturbed, but plewing up during warm weather will soon rid the ground of the roots if this is desired. As the new growth attains a few inches in height, use the Lawn mower every week or ten days during moist weather, but even during dry weather the grass must be kept occasionally clipped to prerent flowering. If the growth is not vigerous, apply a top-dressing of bone meal. In the fall a coat of well-retted stable manure sbould be given; this may be raked off early in the spring, previously running a sharp-teothed barrow over the Lawn, and finally rolling it well. In this way a permanent and good Lawn may be secured with very little additional expense. Any soil, unless naturally very wet, will suit Bermuda grass.

Paspalum distichum, or "Joint grass," is native of the southern states, and usually found in moist or low grounds. It can be utilized in seils which are too wet to suit the Bermuda, but at best makes an indifferent Lawn, as it is of low-creeping and not sufficiently dense habit.

Stenotaphrum dimidiatum, known on the coast and Florida as "Goose grass" (St. Augustine grass), is an erect-growing perennial plant, with flat or channelled leaves. It is found in pine-barren swamps and ponds from Florida to North Carelina, and being well adapted to the sandy soils of the coast, even those which are commonly termed salt-water lands, it is therefore valuable tor such localities. As for the Bermuda, the soil should be well fertilized and prepared. The rootlets are planted in rows a few inches apart. As the growth begins, repeated clippings are required. While it makes a coarse sod, still its bright green color and adaptability to soils where few other grasses of low growth are possible, makes it a valuable plant for Lawns.

Many Lawns are injured by allowing other grasses to take a foothold. Sporobolus Indicus, or "Smut grass," was originally introrluced from the West Indies. It seon forms large tufts, with tall, wiry stems, whese panicles are usually covered with a black fungous growth. Aristida purpurascens, or "Broom Sedge," will soon deface a Lawn if left undisturbed. Both should be eradicated as soon as they appear.
P. J. Berckmans.

LAWSONIA (after Dr. Lawson, who published in 1709, at London, an account of his betanical journey in Carolina). Lythrdeer. This genus includes a tropical shrub, cult. in Europe under glass for ornament and outdeors in the tropics throughout the world. Its fragrant white fls. produce the henna or alhenna of the Arabs (Cyprus of the ancients), which is used in Egypt and elsewhere by wemen to color their nails, and by men to dye their beards. In America it seems to be cult. only in S . Calif. and S. Fla.

Lawsonia is a genus with perhaps only one species, a

LAYERING

glabrous shrub, with branches spiny or not. Important generic characters are : ealyx 4 -parted: petals 4 : stamens 8: capsule globose, 4-celled, rupturing irregularly.
alba, Lam. Henna Plant. Lis. opposite, oval-lanceolate, entire, short-stalked: As. panicled. Native to India, the Orient, N. Afr. Naturalized in West Indies.

LAYERING. Figs. 1248-1253. Layering is the process by which a part of a plant stem is made to produce roots while still attached to aud nourished by the parent plant, so that it may be able to maintain an independent growth. The tendency, under favorable conditions, to produce roots from the cambium zone of some part of the stem is manifested by many plants, especially in the tropics. It may be noticed in the species of Ficus cultivated in the greenhouse, in Epigrea and Rhus Toxicodendron in the woods, in tomato vines in the garden, in grape canes lying on the ground, and frequently in young apple trees when the trunk becomes covered with earth to an unusual depth. With most such plauts, rooting hy detached parts is easily accomplished, and this being more convenient, layering is generally practiced only with those plants which do not root readily from cuttings.

The mode of root-production is essentially the same in either case. The right conditions as to moisture, temperature, food supply, ete., seem to stimulate the formation of one or more growing points in the cambium zone. The multiplying cells force their way through the bark, and if favorable soil contact is secured, supporting roots are soon developed. The same results may come, sometimes more readily, from or near a callus formed in the effort to heal a cut surface. It is when the food supply is deficient or the cell action is so slow that the detached part would perish before supporting roots could be established, that rooting while the parts are still attached to and nourished hy the parent plant need be employed.

The different methods of Layering are simply matters of detail adaptenl to the varying natures of the plants to be dealt with. Usually branches are selected of rather young wood, which can easily be brought under the soil and which, when rooted, can be removed without damage to the old plant. The most favorable season is generally the spring or time of most rapid cell growth.

1248. A layer notched at the bottom.

The methods of Layering may be represented in the following diagram:

METHODS OF LAYERING	
Treer and Shrebs	Bowed branc
	Bark ruptured.
	Bark ringed.
	Tongue cut.
	Tip layered.
	Mound- or stool-laye
	Potted or aëria
Vines andCanes	Nimple layer.
	Trench layer.
	Serpentine layer.

As shown in Fig. 1248, a suitable branch is hent to the ground and beld in place by a forked pin, so that a por-
tion of it is covered with 2 or 3 inches of rich earth, the end being bent to an upright position and fastened to a stake. The bend and consequent rupture of the bark may be all that is needed to obstruct the movement of food-material and cause the development of roots at this

1249. A layer ringed or girdled at the bottom.
point. If not, a tongue may be cut not deeper than onethird of the thickness of the hranch from below upwards and near a bud or node. In Fig. 1249 a layered branch is shown with a ring of bark removed, a good practice with thick, hard-barked species.
For many low-branched shrubs, mound-or stool-layers are prepared (Fig. I250), as follows: In the spring, bead the bush back to a series of stubs, which will produce a large number of vigorous young shoots. By midsummer, in some cases, or the following spring, a mound of earth is thrown around the old stool and the base of the new shoots, and from these latter abundant rooting is secured, so that by the following autumn or spring they may be separated and set in nursery rows.

When a branch cannot be brought to the ground, sometimes the earth is loronght to the branch by clasping the halves of a broken or specially made pot around a tongued or girdled branch and filling in earth and sphagnum moss to retain the moisture; or the moss may be held in place by a cone of strong paper (Fig .1251). It may be necessary to support the pot with a light stand of stakes. Where a moist atmosphere is retained, as in a conservatory, merely a ball of sphagnum bound around the branch with twine will serve an equally good purpose with less trouble. This kind of propagation is known as air-layering, Chinese layering or circumposition.

In the case of rines, a cane may be laid horizontally in a shallow trench, corering a few inches to induce rooting, and learing a node or two exposed for growth, and so on to the end, as shown by Fig. 1252. After young shoots are well started from the
 uncovered buds, the earth may be filled in to the level of the dotted line.

In Fig. 1953 is shown what is often called the serpentine layer, in which the cane is bent, portions being covercd and the intervals left above the ground. It is said that by this means the tendency of the sap to flow to the extremity and there make the strongest growth, is overcome, and even rooting secured the whole length of the cane. This method is often used with quick-growing vines like clematis and wistaria, from which it is possible to secure a succession of layers from the annual growth during spring and early summer.

All of the foregoing operations will be found more readily successful in the more moist situations; more successful in the nearly saturated atmosphere of the southern states, for instance, than in the comparatively dry conditions of the prairie states.
S. C. Mason.

LAYIA (Thomas Lay, naturalist in the Beechey voyage). Compositce. About 13 species of California annuals, with yellow or white fls. in spring or early summer. Lvs. chiefly alternate, all entire or some, particnlarly the lower, with about 2 pairs of linear side lobes above the middle of the leaf. For general culture they are probably inferior to Madia elegans, which has a similar habit and is distinguished by the blood-colored spot at the base of the rays. The fls. in Layia are about $1-11 / 2$ in. across, and the rays are distinctly 3 -toothed. The species described below are diffuse, much-branched and about a foot high. It is probable that for best results they should be started early indoors, and transplanted outdoors in May. Easy to grow.

> A. Rays entirely white.
glandulòsa, Hook. Hispid, sometimes glandular: lvs. $1-1 \frac{1}{2}$ in. long, $2-3$ lines broad, linear, the upper ones all entire: rays $8-13$. B.M. 6856. - Not cult., but desirable.

AA. Rays yellow, sometimes tipped white
B. Plants hairy.
elegans, Torr. \& Gray. All the upper lvs, entire: rays 10-12, yellow, rarely white-tipped: pappus white or whit-

1251. Air-Layering.
ish, its copious villous hairs much shorter than the awnshaped bristles, which are long plumose below the middle. This and the next have a few small, seattered, stalked glands which are wanting from the last two. Gn. 31, p. 465. - Procurable from western collectors. Perhaps the best of the genus.
platyglossa, Gray. Some of the upper 1 vs . pinnatifid: rays light yellow, commonly whitetipped : pappus of stont, awn-like bristles which are upwardly scabrous. B.M. 3719.-Cult. in Eu.

BE. Plants not hairy or at most minutely pubescent.
Calliglossa, Gray. Akenes villous-pubescent or partly glabrate: pappus of $10-18$ very unequal and rigid awl-shaped awns. B. R. 22:1850 (erroneously as Oxyura chrysanthemoides).
chrysanthemoldes, Gray (Oxyùra chrysanthemoides, DC.). Akenes wholly glabrous, broader: pappus none. Not B.R. 22: 1850, which is the above. According to Thorburn this is a hardy annual trailer with white fls., blooming in summer and autumn.

LEAD PLANT is A morpha canescens.
LEADWORT. Plumbago.

LEATHER FLOWER. Clematis Iioma. L. Jacket. Eucalyptus punctata. L. Leaf. Chamordaphne. L. Wood. Dirca palustris; also Cyrilla.

1252. A horizontal multiple layer.

LEBIDIEROPSIS (Greek; resembling Lebidiera, a genus now included in Cleistanthus). Euphorbiacea. This genus includes a small tree with very hard wood, and of unknown value, introduced from a botanical garden of northern India by Reasoner Bros., Oneco, Fla. Lebidieropsis was reduced by Bentham and Hooker to the rank of a subgenus of Cleistanthus, but in the Flora of British India Hooker says that Lebidieropsis should probably be restored, the seeds being globose, while in Cleistanthus they are always oblong. The seeds also differ in structure. Generic characters of Cleistanthus are: trees or shrubs: Ivs, alternate, 2 -ranked, entire: fls, small or minute, in axillary clusters and spikes, moncecious; calyx 5 -cleft or 4-6-cleft; petals as many, minute; stamens 5 ; filaments united in a column in the center of the disk: ovary 3 -celled.
orbiculàris, Muell., Arg. Lvs. $11 / 2-4 \mathrm{in}$. long, $11 / 2-3 \mathrm{in}$. wide, leathery, broadly obovate or elliptic, tip rounded or retuse, glaucous beneath, nerves $5-8$ pairs: fls, silky, 3-6 in a cluster; petals fleshy, narrow: seeds 2 lines thick, chestnut-brown, with scanty albumen. Hooker does not recognize the 3 varieties distinguished by Mueller on the shape and hairiness of the lvs.

LEDUM (Ledon, ancient Greek name of Cistus). Ericàcele. Labrador Tea. Ornamental low evergreen shrubs with alternate, entire, short-petioled lvs., slightly fragrant when hruised, and with handsome white fis. in terminal umbels, appearing in early summer. They are all hardy North, and well adapted for borders of evergreen shrubberies or for planting in swampy situations. They thrive as well in sunny as in partly shaded situations, and prefer a moist, sandy and peaty soil. Transplanting is easy, if the plants are moved with a sufficient ball of earth. Prop, by seeds sown in spring in sandy

1253. Serpentine Layering.

peat and treated like those of Azalea and Rhododendron, the young plants growing but slowly; increased also by layers and division. Three species in the arctic and cold regions of the northern hemisphere, all found
in N. America. Allied to Rbododendron, but corolla polypetalous. Fls, rather small, $1 / 3-1 / 2$ in. across, longpedicelled, in terminal, umbel-like racemes; calyx lobes and petals 5 , spreading; stamens $5-10$: capsule nodding, 5 -celled, separating from the base into 5 valves, with many minute seeds. The lvs, contain a volatile oil, with narcotic properties; the lvs, of L. latifolium are said to bave been used during the war of independence as a substitute for tea, hence the name "Labrador Tea."
palústre, Linn. Wild Rosemary. One to 2 ft . bigh: 1vs. linear or linear-oblong, revolute at the margin, dark green and somewhat rugose above, densely ferrugineoustomentose beneath like the young branches, $1 / 2-\mathrm{I}^{1 / 2}$ in. long: stamens 10: capsule ovate. May, June. N. hemisphere, in N. America from Nevfoundland to Alaska. L.B.C. 6:560. Var. dilatatom, Gray. Lvs. broader: capsule more oblong. N.W. coast of N. Amer., Japan. Var. decumhens, Ait. With procumbent stems and shorter usually oval lrs.
latilolium, Ait. (L. Groenlíndicum. Oeder). One to 3 ft ., similar to the former, but lvs. broader, oblong or linear-oblong, 1-2 in. long, tomentum beneath often whitish at first: stamens 5-7: capsule oblong. May, June. Canada to Brit. Col., south to Pa, and Wis. L. B. C. 6:534 and II:1049 (as L. caradense). J. H. I11. 31:20 (as L. palustre). Gn. 34, p. 31.
L. buxifolium. Berg. = Leiophyllum buxifolium.-L, alandulòsum, Nutt. Shrub, to 6 ft , lvs, oblong or oval, glabrous. glaucous and glandular beneath: stamens 10. July, Ang. B.C. to Calif. B.M. 7610.

Alfred Rehder.
LEEA (James Lee, Scotch nurseryman, 1715-1795). Leedceध. About 20 species of tropical, oriental small trees or shrubs, some of which are cult, as young plants in warm conservatories for their colored foliage and stately habit. Lus. alternate, $1-3$ times pinnate; lfts. entire or serrate; tendrils none: fls. small or large, red, yellow or green, in cymes; calyx 5-toothed; petals 5, connate at the hase and with the tube of stamens: ovary 3-6-celled; cells l-ovuled: fr. a herry. By Bentbam and Hooker this genus was placed in the order Ampelidem, which others call Vitacea. Vitis differs in having the climbing habit, ovary 2 -celled; cells 2-ovuled. The first species mentioned seems to be valued particularly for its fls .: the others are foliage plants which are presumably distinct horticultucally, but 2 of them may not be good botanical species, and cannot be distinguished without a knowledge of the flowers.

Leeas are tropical house plants. L. amabilis has beautiful, silvery, vine-like foliage. It makes a handsome plant for pillar-posts, and does exceedingly well planted out; but it should be given a season of rest during winter time by a partial drying out, when it will loose most, if not all, its foliage. This practice should be followed in any case. It may also be grown as a trained specimen in pots. Peaty soil is often recommended, but good light loam, with plenty of drainage. does equally well.

A. Foliage green.

coccinea, Planch. Lus. 3 -pinnate; lfts. 5 on each main division of the leaf, oblong-lanceolate, dentate, margin recurved: fls. 60 or more in a trichotomous, flat-topped cluster about 3 in . across, scarlet in bud, the 5 spreading lobes of the corolla pink above; stamens yellow, exserted, each fl. about $1 / 2$ in. across. Burma. B.M. 5299. - It begins to flower when only a foot high, but the main stalk of the clusters is only an inch or so long. Adv. by John Saul, 1893.

AA. Foliage colored or variegated.

B. Lvs. marked bright red; veins while.

Micholitzii, Hort. Introduced by Sander \& Co., 1899, from Guinea, but not distinguished in their description from L. amabilis, var. splendens, which is probably still cult. in Eu.
amábilis, Hort. Veitch. Lvs. pinnate: 1fts. 5 or 7, lanceolate, acuminate, serrate, upper surface velvety, deep bronzy green, with a broad white stripe; veins white at the bases: young Ivs. pale pinkish brown. G.C. II. 17:493. Gn. 21, p.352. Var. apléndens, Lind., is marked with bright red and has a red stem. 1.H. 3I:5I8.

BB. Les. flushed bronze; veins rosy.
gambuclna, Willd. (L. Hohrsidna, Hort. Sander). Lvs. pinnate; lfts. $6 \frac{1}{2}$ in. long, $21 / 2$ in. wide, oblong, cordate at the base, acuminate, coarsely crenate. India, Malaya, Philippines, trop. Australia. A very variable species. The above synonymy is the judgment of M . T. Masters in G.C. IlI. 23:245. F.E. 10:554. A.F. 13:1284. Gng. 6:278.
T. D. Hatfield and W. M.

LEEK (Allium Porrum), a flat-leaved, bulbous, bardy biennial, is probably a native of the Mediterranean region, where, particularly in Egypt, it has been used for culinary and medicinal purposes since prehistoric time. All parts of the plant possess an offensive, pungent odor and acrid taste due to an essential oil characteristic of its close relative, the onion. In medicine, the bulb, like the onion, is used as a renal stimulant. The blanched stems and leaves are much employed in continental cookery as a flavoring for soups, stews, etc., boiled and served like asparagus, and in the raw state. Except in the larger cities and among our foreign population, the Leek is little used in Ainerica. The seed should be sown in a well-prepared, light, deep, rich. moist loam in a nursery bed or coldframe. The site should be open, the suhsoil dry. When six or eight weeks old, or about 5 inches tall, the young plants should be set 9 inches asunder, in drills 3 to 6 inches deep and 18 inches apart. Shortening both roots and stems is often advised. As the plants grow, the soil shonld be drawn loosely round the stems and lower leaves to insure blanching. When blanched Leeks are not desired, the plants may be cultivated like onions;

1254. A papilionaceous flower-Sweet Pea.

Sbowing the banner, standard or vexillum at s : the wings at 10 ; the keel at k.
indeed, except for earthing up, the cultural methods employed for these two crops are identical. Leeks are marketed in bunches like young onions aud, for winter use, are stored like celery. As a second crop to follow early cabbage, spinach, etc., they are in general favor with market-gardeners. In soups and stews the rank odor disappears, leaving a mild and agreeable flavor.
M. G. KAlNs.

Leek, though of the onion family, and also a biennial, is differently treated and used. The object in its cultiration is to develop the leaves in such a manner that they become numerous; the flower-stem does not appear before the second year, hence the necessity of growing it to full size the first year.

Sow the seed in Marcb in a seed-bed (with slight bottom heat), in drills 2 or 3 inches apart; when large enough, thin out to stand I inch apart in the row, as they may attain the thickness of a fair-sized straw. In May or early June the seedlings are transplanted in the open ground; they are then cut half-way down and should also be set deep, so they will begin blanching when they attain a fair size. The soil best suited is a rich, moist, light loam; prior to the transplanting it should be well prepared with well-rotted stable manure, if possible. The plants are generally set in drills 12 to I5 inches apart, and 6 to 9 inches apart in the drills. They should be well cultivated, and when growing freely should be earthed up slightly with the hand cultivator or hand-hoe. Some of the successful gardeners still cultivate them on the celery-trenching system; by this means they can be watered more thoroughly and
will attain a much larger size; also can be conveniently left in the trench with slight protection, and taken therefrom for winter use. Care must be taken not to cover too early, as they decay easily, beginning at the end of

1255. Essential organs of a Sweet Pea flower. Calys at C ; tenth stamen at A ; stigms at E.
the foliage; this destroys their appearance. The bardier kinds are used for this purpose and will blanch yellow down to the so-called stem, which is white to the root. Leeks planted out in May are ready for use in September; the sowings can be made earlier and later to suit the time of maturing, and can be sown in August and September in coldframes and wintered over with slight protection, then transplanted to the open ground in April. The varieties best known to American gardeners are London Flag, Large Musselburgh or Scotch Flag, Giant Careatan, and Large Rouen.
J. Otto Thilow.

LEGUMES. The popular name given to a vast and important family of plants, of which pea, bean, clover, vetch, etc., are common representatives. The order is generally known as the pulse family, or Leguminosa. It contains nearly 450 genera, comprising over 7,000 species, and in economic importance ranks second only to the grasses (Graminea). The species of this family are distri-

buted over the entire earth. By far the greater number are herbs and half-shrubby plants, but in the warmer regions of the earth they attain the dimensions of for-
est trees. Numerous species are widely cultivated as agricultural crops. Among these, beans and peas are important food-plants, while clover, vetches, peas, melilot, alfalfa, lucerne, cow-peas, etc., are valuable forage crops, cover-crops, and green manures. Many of the exotic species are of commercial importance. The arboreal forms furnish structural timber and cabinet woods. Many also furnish dye-stuffs, rubber, balsams, oils, etc., and some are cultivated for ornamental purposes.

In respect to the character of the flowers, the family is divided into three subfamilies. In the large subdivision to which the ornamental species of Mimosa and Acacia belong, the flowers are small and regular and often clustered in spherical or oblong heads. The stamens are free or united into a tube and much exerted. In the second subfamily the flowers are usually irregular, with the upper petal folded inside of the others in the bud. The coffee-tree, honey locust, and the large genus Cassia belong in this subdivision. Most of the native species of

1257. A 4 -sided legumioous pod-Daubentonia.

Legumes, and all those cultivated as farm crops, belong to the vast subfamily Papilionacear. In these the flower is of the papilionaceous type, or peatype(Fig.1254). The upper larger petal, called the banner, s, is exterior and folded over the others in the bud. The two lateral ones, situated below the banner, are the wings, u, u, while the lower pair, which are sometimes united, form the keel, k. The keel encloses the stamens and pistil, the latter being often bent at right angles to the ovary, or coiled. The stamens are either free or they form a tuhular sheath surrounding the ovary. Often the upper one alone is free, leaving a slit along the upper side of the sheath (Fig. 1255). These flowers are often dependent on insects for pollination, a fact which is of great importance in raising clover seed.

The fruit of the Leguminosw is a pod or Legume, as in the bean (Fig. 1256). As a rule, the pods are oneloculed, and have the seeds arranged in rows. In some tribes they become several-celled by partitions which arise between the seeds. These pods become constricted at the partitions, and at maturity separate into short joints (see Fig, 694, Vol. 1). The valves of the pods are generally papery or leathery, and open at maturity, often by a sudden snapping of the valves, which scatters the seeds. In other tribes, however, the pods are indehiscent, or do not split at maturity (Fig. 1257).

The roots of Legumes have numerous small tubereles scattered throughout the root-systems. Fig. I258. These are caused by and infested with minute organisms, to which the name bacteroids has been applied. The bacteroids are always present, and probably multiply to some extent in soils where Legumes have been grown. They are very minute bodies, which are either rod-like in form or branched in the form of a Y or a T. The infection of the plants has been observed to take place through the root-hairs. Within the plant the bacteroids assume a new and peculiar form. They grow out into a branched and flexuous thread, which is enlarged and nodulose at places. At the point of infection the rootcells are stimulated to growth, producing the nodules characteristic of Legumes. The threads permeate the entire tubercle. The old threads finally disorganize, and it is believed that their protein substances are absorbed by the host.

It has been shown, first in 1886 by experiments conducted by Hellriegel and Wilfarth and later by numerous other investigators, that when Legumes are grown in sterilized sand, which contains no trace of nitrogen, they soon die of nitrogen-hunger, and no tubercles are formed on their roots. If, however, a very small quantity of soil extract or of bacteroids, grown from roottubercles, is added to the sand, the plants assume new vigor and grow to maturity. Tubercles are formed on the roots, and the plants are fonnd to contain more nitrogen than was present in the seed. By such experiments it is shown that Legumes can acquire free sitrogen through the agency of the bacteroids. The physiological process by which this is done is still obsenre.

Some species of Legumes can be innoculated by bacteroids from other species, but others seem to be dependent upon their own specific organism. The organisms are spread in the soil only by mechanical agencies, such as working the soil, moving water, wind, etc. If the soil is rich in nitrogen, leguminons plants can develop, like all others, without the aid of tubercles.
Recently pure caltures of bacteroids have been offered in the market as Nitragin, to be used for the purpose of innocnlating soils deficient in micro-organisms. Althongh several experimenters claim succeas with this substance, its practical application to agriculture remains yet to be demonstrated. The substance sold as Alinit, and said to enable grasses to acquire free nitrogen, is merely a pure cultnre of a very common bacterium present in all decaying matter.

Heinrich Hasselbring.
LEIOPHYLLUM (from leios, smooth and phyllon; referring to the smooth foliage). Syn., Dendrium, Ammyrsue. Ericàcea. Sand Myrtle. Evergreen hardy densely branched shrnb, sometimes procumbent, with small, glabrous, opposite or alternate crowded Ivs. and wbite or light piak small fls. in terminal many-fld. umbels, appearing profusely late in spring. It resenibles in appearance somewhat the Dwarf Box, and is well adapted for borders of evergreen shrubberies and also for rockeries. It thrives best in a peaty or very sandy, loamy soil and as well in a sunny as in a partly shaded position. Prop, by seeds sown in pans and placed in a cool frame or by layers put down in fall. One species in E. N. Amer, from N. J, to Fla. Allied to Ledum. Lers. entire: fls. in terminal, umbelliforn corymbs ; sepals and petals 5; stamens 10: fr. a 2 -5-celled dehiscent many-seeded capsule.
buxifolium, Ell. (Lèdum burifòlium, Berg.). Dense, leafy bush, to ${ }^{*} 3 \mathrm{ft}$. high: lvs. shortpetioled, thick, oval or obovate, ahout $1 / 2 \mathrm{in}$. long: fls. white, pinkish outside, abont onefifth in. across, on slender pedicels; petals elliptic, almost twice as long as sepals. AprilJune. Pine harrens and mountains, N. J. to Fla. B.M. 6752. Gn. 42, p. 559 . G.W.F.A. 49. B,R. 7:531 (as Ammyrsine). L.B.C. 1:52 (as Ledum). Var, prostràtum, Gray, Forming dense depressed tufts: lvs. usually oval, and deep green. High mountains of Carolina. Alfred Rehder.
LEMNA (Greek, limne; a large pool of standing water). Lemnàcea. Duckwerd. Ducksmeat. Duckweeds are common upon stagnant pools, often covering the water with a blanket of green. They are easily gathered for schoolroom and home aquaria, and may be procured from specialists in aquatics and native plants. Ducks and earp eat these plants greedily. One of the common Duckweeds is shown 6 times its natural size in Fig. 1259. Duckweeds are small floating plants, withont any distinct stems, a whoie
plant commonly consisting of one leaf and one unbranched root which has no vascnlar tissue. These trs. are called fronds by the botanist largely because Ivs. do not ordinarily emit roots. The plants grow separately, or cohere by their edges in 2's or 3's, and multiply by similar fronds, which grow out of the edges of the old ones something like buds. The flowers are minute and appear on the edge of the frond. They consist of a pistil and generally 2 stamens which are inclosed in a sheath, which the botanists have determined is a spathe by reason of the place where it is borne and by homology with related plants. L. minor is said to flower more frequently than any other northern species. Details of its fiower are shown in Fig. 1260, where there seem to be 4 anthers, but there are only 2 , each bearing 2 locnles. Some botanists consider the 2 stamens as 2 fls , and the pistil a third flower. Duckweeds are perennial plants. In the autumn they fall to the bottom of the ditch or pond, but rise again in the spring, and increase in size. The allied genus Wolfio contains the smallest flowering plants in the vegetable kingdom. There are abont 11 species of Duckweeds, widely scattered. L. polyrhiza is commonly known in American botanies as Spirodela polyrhiza, but Spirodela is considered by Bentham and Hooker a subgenus of Lemna. The common Duckweed occasionally infests the small lily ponds (artificial ones), where it is a pest. The simple remedy is to flush the pond and see that common goldfish or carp are in sufficient numbers to clear off the remainder.

A. Ieins 7-11: roots several.

polyrhiza, Linn. (Spirodèla polyrhlza, Schleid.). Also spelled polyrrhiza. Fronds broadly ovate or orbicular, attaining 3 or 4 lines diam. B.B. $1: 365$.

AA. Veins 1-5: root solitary.

B. Fronds oblong, 6 lines long, 8 lines wide.

trisulca, Linn. Fronds much thinider than in the next, narrow and minutely toothed at one end, thicker and taslk-like at the other, usually with 2 young ones growing from opposite sides near the bave. B.B. 1:366. V. 3:200.

B8. Fronds broadly onate or arbicular, z lines long.
minor, Linn. Figs. 1259-60. Fronds usually cohering in 3's or 4's, rather thick, not minntely toothed. B.B. 1:366. V. 3:200.

Wm. Tricker and W. M.
LEMON culture in Florida was assuming an important share of horticultural work previous to the cold winter of 1894-5, but since then attention has been more largely given to hardier frnits. The growing of Lemon trees is beginning again in lower Florida, in sections free from killing frosts, and although soil conditions are rather unfavorable to the cultivation of citrous trees, owing to the rocky or poor character of the ground, there is evidence of interest and some practical results from the experimental plantations. There remained after the killing freezes some
1258. Nodules on the
roots of a young plant of garden pea.
Natural size. isolated orcbards of Lemons in southern Florida, which have since entirely recovered and have borne full crops of fruit for two or three years.
The pecuniary reward to a careful Lemon grower is large, provided he has suitable soil and a sitnation removed from killing frosts, and, althongh profits from other citrons fruits may be temporarily larger, Lemons are constantly in demand, and the reward is correspondingly certain. Orchards are usually set with oudded trees, about 20 by 25 feet apart. The young trees after setting are advantageously mulched with grass or other
litter, which holds moisture for the unestablished roots, and gradually rots, affording humus. The stocks used are sour orange and rough Lemon principally, but other stock may be used, and the Lemon may also he raised from cuttings in the same manner that citrons are grown. The remarks as to the use of Citrus trifoliata as a stock for limes will apply also in this case (see Limc),
The cultivation is the same as for orange trees: shallow plowing early in spring, followed by thorough harrowing once or twice each month until the summer rainy season has well setin. After this time the grass which naturally springs up is allowed to grow at will until autumn, when it is mowed for convenience in picking fruit and getting about the orchard. Many growers perceive advantage in raising soil-enriching plants in the orchard and so, instead of allowing native grasses to grow, sow seeds of various forage plants, as beggar-weed (see Desmodium), cow-peas, velvet beans, erc., part of which growth is harvested for hay, the rest left to add fertility to the soil, and is later plowed under. In late autumn most growers apply

1259. Duckweeds, Lemna minor. fertilizer, usually composed of sulfate of potash, sulfate of ammonia and bone-black, which is broadcasted at the rate of 800 to 1,500 pounds per acre. This fertilizer is not wasted by the action of the sun, and is either left on the surface to be washed in by rain or is mixed in the soil by harrow or turning-plow. Fertilizing is also done in the early summer, and occasionally a third application is made before ripening of the fruit, but the rule is, two applications per year of about the same amount each.
E. N. Reasoner.

1260. Floral details of Lemna minor. $a a$, stamens; b, pistil.

Lemon in California, - Though Lemons have been grown in California for half a century, it is only during the last decade that the culture has risen to considerable commercial importance. This fact is shown by the latest statistical data, which indicates ahout a quarter of a million bearing trees and about a million non-bearing trees as comprising the aggregate of Lemon planting in this state. The early product consisted of seedlings which were of excessive size, with juice of low acid content and rind of marked bitterness. The closest att ntion of Lemon-growers was given about twenty years ago, and for some time afterwards, to the testing of the best seedlings and the varieties brought from the Mediterranean region, to secure acceptable size, thiuness of rind and freedom from bitterness, with high percentage of citric acid in the juice. The result was that a few such varieties were found and they were demonstrated to be equal in these characteristics to the imported fruit from Sicily. Then, for the first time, California growers were able to compete with the imported fruit, and the planting of Lemons began upon a large scale. The local markets were first supplied, overland shipments were undertaken, and the fruit was found to be
acceptable east of the Rocky mountains and the undertaking to displace the Mediterranean fruit at all points in the United States began. This effort was greatly advanced by the protective tariff, which counterbalanced the advantages which forcign producers had previously enjoyed in cheaper labor and in less cost of transportation. Shipments of about 1,200 car-loads of Lemons a year to the eastern markets show the success which California growers have attained in competition with the imported fruit.
Local adaptations of climatic and soil conditions to the growth of the Lemon have required long and close study and experimentation. The Lemon is less hardy than the orange, and will suffer seriously with degrees of frost which the orange will endure. Almost frostless situations are, therefore, most promising. The Lemon will reach perfection in a region where the summer heat may be slightly less than required to develop satisfactory sweetuess in the orange. These desiderata of very light frost and somewhat lower summer temperature are found to coincide in places most open to ocean influences in southern California. Roughly speaking then, the Lemon region is on or near the coast and the orange region in interior valleys. Differentiation in planting these two fruits has proceeded along these lines quite largely, though it is still true that in certain places most excellent Lemons are grown at interior points and most excellent oranges near the coast. The orange has proved to be, however, rather more easily grown and prepared for market than the Lemon, and on the whole, more profitable, perhaps; so that these facts are to be properly included when an effort is made to account for the disposition of those owning Lemon orchards in the interior to work them over to the orange.
A light warm loam is best suited to the growth of the Lemon, while the orange root seems to be adapted to a range of heavier soils. This was of more moment when the practice was to grow the Lemon on its own roots, either from cuttings or by budding on seedling Lemon stock. But the production of a Lemon tree of less riotous growth and fruit of less average size and, withal, a healthier and more satisfactory tree, wats found to be attained by using the orange seedling as a stock for the Lemon tree, and this is the universal practice at the present time. Propagation is by the ordinary process of budding on a seedling root two or three years old. Distances of planting in the orchard differ somewhat according to the judgment of growers, but about 100 trees to the acre is the average.
Pruning the Lemou has been a vexed problem with the growers for years. The tree is naturally of rangy growth, running out long leaders which afterwards assume a pendent form and are tossed about in the wind, to the detriment of both tree and fruit, which is apt to come at the ends of the long, pliant shoots. Thus an unpruned Lemon orchard becomes almost impenetrable for necessary orchard work. This is in marked contrast to the growth of the orange, which is more compact and symmetrical, and needs but slight regulation after a good form is secured in the young tree. Regular shortening-in of the branches of the Lemon is therefore necessary, followed by thinning of the new shoots, so that the tree shall not make too many bearing twigs and become too dense in the center. In that way the fruit can be kept within easy reach, and the branches stiff and strong to carry it.
Ample irrigation and frequent cultivation to prevent evaporation afterwards are essential to thrift and bearing of the Lemon in California. Neglected trees lose their leaves and prematurely ripen fruit lacking in juice.
Scores of varieties have enjoyed fleeting popularity in California and now not more than six are largely grown; viz., Villa Franca, Lisbon, Enreka, Genoa, Messina and Bonnie Brae. Of these, the first three constitute probably four-fifths of the crop.
The preparation of the Lemon for marketing has been a matter of discussion and experiment for years. The bulk of the crop ripens in the winter: the time to sell Lemons is in the summer. The Lemon ripened on the tree has very poor keeping quality. Both for meeting the market demand and to secure a fruit which will endure shipping, Lemons need storage for a considerable
time. Proper storage, or curing, as it is generally called, results in thinning and toughening the rind so that it has a pliable character, a silky finish and is not easily bruised in bandling. Very costly curing houses have sometimes been found defective in not readily disposing of the products of evaporation from the fresh fruit. At present, simpler constructions, consisting in thoroughly ventilated inner apartments for the fruit, with outer walls and double roof to protect the interior against wide temperature changes in the outer air, are giving very satisfactory results. The fruit needs freedom from extremes of temperature, abundant ventilation and yet no intrusion of wind or air currents and the absence of light. When these are secured, the fruit ripens slowly, assumes a beautiful, characteristic color and is then good for long keeping or distant shipment. It is essential to secure uniform size, and this is done by picking without regard to ripeness as soon as a fruit reaches a certain size. The result is that the fruit is picked before any sign of coloring appears. The standard is $21 / 4$ inches in diameter, as measured with an iron ring which the picker carries. The diameter decreases one-eighth of an inch during curing. Late-ripening fruit, for quick sale, may be allowed to get a little larger, but no fruit should be above $25 / 8$ inches in diameter. All fruit must be cut and not plucked from the trees, and until the final packing for shipment, should be bandled in shallow trays or boxes, piled with air spaces between them so that the air may circulate and remove the exhalations.
E. J. Wiegson.

LEMON VERBENA is Lippia.

LEMON VINE is Pereskia.

LEMONIA. See Ravenia.

LENS (ancient Latin name of the Lentil). Leguminòsc. This genus includes the Lentil, Lens escutenta, one of the oldest and still one of the most important food-plants for man, especially in the warmer parts of the Old World and the Orient. It is a much-branched tufted annual $1-1 \frac{1}{2}$ feet high. The leaves have numerous leatlets and end in a tendril. The flowers are small, white or pale blue, axillary and borne in pairs. The pods are short and broad, very flat, and contain 2 flat seeds which are rounded in outline and convex on both sides. The lens of the astronomer and physicist was named because it was shaped like one of these seeds. Some varieties have gray seeds, otbers red. Esau sold his birthright to Jacob for a mess of red pottage made of Lentils. Lentils are used chiefly for soups and stews. They are a coarser and cheaper food than fresh peas and beans, and about as palatable as split peas. Lentils rank amongst the most nutritious of all vegetables, as they contain about 26 per cent caseine, 35 per cent of starch and ouly 14 per cent of water. Lentils are also of the easiest culture, but the seeds are often destroyed by a weevil. The seed is generally sown in drills in March. The heaviest crops are produced on rather dry, sandy soils. The plants need no special care between seedtime and haryest. The seeds keep better iu the pods than after being threshed out. Some of the varieties are the Puy Green, Small Winter and Small March. The genus Lens is placed by Bentham \& Hooker between the vetch and sweet pea, (Vicia and Lathyrus). In Lens and Vicia the wings of the flower adhere to the keel, while in Lathyrus they are free or only slightly adherent. Lens has 2 ovules; Vicia usually many.

LENTIL. See Lens.

LEONÒTIS (Greek, lion's car, which the flowers are supposed to resemble). Labiatar. Lion's Ear. Lion's TatL. This includes a tender shrub, with scarletorange, gaping fls., cult. outdoors in S. Fla, and S. Calif. As a bedding plant it is little grown north of Washington, D.C., and it is far outclassed in popularity by the Scarlet Sage, which gives an equally vivid mass of red in the northern autumn. The Lion's Ear differs from the Scarlet Sage in having conspicuously hairy, almost plush-like fis. These are 2 in. long, as many as 18 in a whorl, and 3 or 4 whorls open successively on
each branch. The fls are oddly gaping, the upper lip very long and uncut, the lower very short and 3 -cut. In the North, cuttings should be started in early spring, the young plants transplanted to the open in May and thereafter irequently pinched to make a symmetrical instead of a straggling bush, and if the plants do not flower before frost, they can be cut back, lifted and brought into a cool greenhouse to flower in November or December. A southern enthusiast says that they are as easy to cultivate as a geranium.
Franceschi writes that the plant seldom seeds in S California, and must be propagated from cuttings, which, if taken from hardened wood, do not root as readily as many other labiates. The plants are much improved by cutting back every year or so.
Leonotis has about a dozen species, ehiefly south African. Herbs or shrubs: Ivs. dentate, the floral ones alike or narrower and more sessile: fls. scarlet or yellow; calyx tubular, 10 -nerved, obliquely 8 -10-toothed; stamens 4 , didynamous.
Leonurus, R. Br. Sbrubby, 3-6 ft. high: 1vs. 2 in long, oblong-lanceolate, obtuse, coarsely serrate, narrowed at the base, slightly tomentose beneath: floral ones like the rest; corollas more than thrice as long as the calyx. S. Afr. B. M. 478 (as Phlomis Leonurus). R.H. 1857, p. 548. Gin. 53, p. 460. G.C. 11. 19:186.
W. M.

LEONTICE (Greek, lion's foot; referring to the shape of the leaf). Berberidacea. Lion's Leaf. About 7 species of hardy herbaceous perennials, chiefly Asian, of low growth and distinct appearance. Three kinds are advertised by the Dutch bulb growers, but perhaps one of them belongs to Bongardia. Leontice is distinguished from the bighly interesting and rare group mentioned under Epimedium by having 6-9 sepals (which are the showy parts), and 6 petals reduced to small nectaries. Like Bongardia, it bas 6 stamens and a bladtery capsule. These plants have a turnip-shaped corm about 2 in. thick, and bear yellow fls, in early spring. Bongardia has only one species, which is described in the supplementary list of the present article.

A. Les. twice ternately cut.

Leontopetalum, Linn. Lfts, ovate or oborate, rarely subcordate: panicle large, dense, leafy. Italy and the Orient.-Root used in the Holyland ngainst epilepsy.

AA. Le's.digitately cut.

B. Raceme dense, conical.

Álberti, Regel. Stems several, stout, earh giving off 2 subradical lvs. which are undeveloped at flowering time: lvs. finally on stalks $4-5$ in. long, digitately 5 -parted; lfts. pale green, glaucous, elliptic; nerves prominent and parallel beneath: scape $6-8 \mathrm{in}$. high, robust: raceme as many as 18 -fld.: fls. nearly 1 in. across, ochre-yellow, streaked reddish brown on back; petals shorter than the stamens. Turkestan. B. M1. 6900. Gt. 1881:1057.

BB. Raceme loose, oblong.

Altaica, Pall, According to Index Kewensis, this is a synonym of Bongardia Ratuolfii, but the following description, taken from the plant figured as L. Altaica, in B. 2t. 3245 , is very distinet from that figured as Bongardia liaurolfii in B. M. 6244. Lus, not from the root, digitately cut, only one leaf on each flower-stem, the leaf having 3 primary divisions, each of which is petioled and has 5 lfts., 2 of which are smaller than the rest; lfts. elliptical : inflorescence a raceme, bearing large, more or less roundish leafy bracts: fls, mostly erect, having 6 showy, oblong, not overlapping, entire parts supposed to be sepals, the petals small, yellow, erect, shorter tban the anthers.
Bongârdia Raùzolfii, C. A. Mey. Lvs, all from the root, pinnate; lifts. 3-8 pairs, or some of the lfts, in whorls of $3-4$. wedge-shaped, 3 -fid, with a conspicuous triangular crimson mark at the base of each: inflorescence a panicle, bearing minute, linear bracts: fls. drooping, having 6 showy, wedgeshaped, erenate parts, 3 of which should possibly be considered petals, and the other 3 inner sepals, since there are 3 small, greenish lobes outside which are like an ordinary calyx, and should, perhaps, be called the outer calyx. B.M, 6244. F.C.3:98. B. 1:50.
W. M.

LEONTOPODIUM (Greek, lion's foot). Compósitar. The Edelweiss is perhaps the one flower most sought by tourists in the Alps. It is an emblem of purity, and the name means "noble white." It is a low plant, 4-12 in. high, densely covered with a whitish wool, the attractive

1261. Edelweiss-Leontopodium alpinum $\left(X^{1 / 4}\right)$.
portion being the flat, star-like cluster of woolly floral leaves surrounding the true fls., which are small, inconspicuous and yellow. The general impression seems to be that Edelweiss canuot be cult. in America. In 1900, however, it is being extensively advertised as a potplant, and it has long been cult. in rock gardens. J. B. Keller writes, "It can be grown to perfection in elevated position of the rockery, in rather light soil and with full exposure to sun. It also succeeds in an ordinary hardy border where the plants can be kept moderately dry in winter." Dreer advises that the seed be sown early in spring iu shallow pans of sandy soil and leafmold and kept cool and moist. E. J. Canning sows seeds of Edelweiss in $4-\mathrm{in}$. pots in the greenhouse in Feb., pricking off as soon as large enough to handle, and finally transferring them to the rock garden, where they flower well the second year; but after that they are inclined to die out.
To establish a colony of Edelweiss an English writer (Gn. 52, p. 146) advises that a few stray seedlings be firmly planted in a narrow chink of rock so placed that a deep fissure of gritty or sandy loam may be assured for the roots to ramble in. Plants in pots may be grown and flowered when the collar is tightly wedged between some pieces of stone or old mortar. The plant is best propagated by seeds, as division is not always successful.

Leontopodium has about 6 widely scattered species of perennial herbs, all tufted and woolly, with ascending or erect stems which are unbranched except at the very top: stem-lvs. alternate, entire: heads small, crowded into dense cymes surrounded by a sort of leafy involucre. Edelweiss is still catalogued as a Gnaphalium, but in that genus the style is 2-cut, while in Leontopodium it is uncut. Leontopodium is more nearly allied to our common weed, the "Pearly Everlasting" (Anaphalis margaritacea), which lacks the dense cluster of starlike floral leaves, but in the opinion of the writer has as much beauty as the Edelweiss.
alpinum, Cass. (Gnaphdてium Leontopodium, Linn.). Fig. 1261. Livs. lanceolate, floral ones oblong: fl--heads 7-9 in a cluster: involucral seales woolly at base, hlackish at apex. B.M. 1958. Gn. 29, p. 529 and 52, p. 146.

LEOPARD'S BANE. Doronicum.

LEOPARD FLOWER is Belemcanda.

LEPACHYS (Greek, a thick scale; probably referring to the thickened upper part of the bracts of the receptacle). Compósitơ. This includes a fine prairie wildflower, L. columnaris, for which, unfortunately, there is no common name. It grows $2-3 \mathrm{ft}$. high, has elegantly cut foliage, and bears fis. something like a Brown-eyed Susan, but the disk is finally cylindrical and more than an inch high, with 6 or 7 oval, reflexed rays hanging from the base. In a fine specimen these rays are $11 / 2 \mathrm{in}$. long and nearly 1 in . broad. There are

5 inches or more of naked wiry stem between foliage and flower. Typically, the rays are yellow, but perhaps the most attractive form is var. pulcherrima, which has a large brown or brown-purple area toward the base of each ray. Like the majority of our native western fls. that are cult. in the eastern states, the plants have reached our gardens from European cultivators. Meehan says it is perfectly hardy in our northern borders, but the English do not regard it as entirely safe without some winter protection. Moreover, it is one of the easiest herbaceous perennials to raise from seed, flowering the first year, and it is chiefly treated in the Old World as an annual bedding plant, the seeds being known to the trade as Obeliscaria pulcherrima. For bedding, the seeds are sown in early spring in a hothed, the seedlings pricked off into boxes, hardened off, and tinally transplanted to the open, only slight care heing necessary to obtain compact bushes about 2 ft . high. Under such eircumstances the plants flower from June to September, and the season may be prolonged by a sowing in the open. This plant deserves trial in our northern horders, where seed can probably be thinly sown in the open, where the plants are to stand, with a fair chance of autumnal bloom the same year. The fls. last well in water and should be cut with long stems to get the benefit of the delicately-cut foliage

Lepachys contains 4 species of herbs, all American, 3 perennial. Lvs. alternate, pinnately divided or parted: disks at first grayish, their corollas yellowish, becoming tawny: chaffy bracts commonly marked with an intermarginal purple line or spot, containing volatile oil or resin. Monographed in Gray's "Synoptical Flora." For generic distinctions, see Rudbeckiu.

A. Rays oval, scarcely as long as the disk at its longest.

columnàris, Torr. \& Gray. Fig. 1262. Branching from the base, $1-2 \mathrm{ft}$. high in the wild, often 3 ft . in cult.: stem-lvs. with 5-9 divisions, which are oblong to

1262. Lepachys columnaris ($\times 1-5$) .
linear in outline and sometimes $2-3$-cleft: fls, solitary, terminating the branches; rays yellow; style-tips short, obtuse. Prairies. B.M. 1601. Mn. 1:65. G.W.F.A. 8.

Var. pulchérrima, Torr. \& Gray (Obeliscària pulchérrima, DC.), differs only in having the rays partly
or wholly brown-purple. The plants in the trade are mostly margined with yellow or have about half of each color. Gn. 51:1104. R.H. 1854:421. Var. totus-purpureus, Hort. D. M. Audrews, is "a variety with dark orange-brown rays, almost black."

AA. Rays oblong-lanceolate, very much longer than the

 disk.pinnàta, Torr. \& Gray. Slender, 3-5 ft. higb: lvs. with 3-7 Ifts., which are lanceolate, sparsely serrate, sometimes lobed, the uppermost run together: rays yellow, often 2 in . or more long. Western N. Y. to Ia., south to La. B.M. 2310.
J. H. Cowen.

LEPIDIUM (from Greek for littte scale; alluding to the small flat pods). Cruciferre. Cress. Peppergrass. Perhaps 100 species of small berbs (sometimes undershrubs) in many parts of the world, with very small white fls. There are about 20 native species, mostly western, and several introduced weedy species. The foliage and pods have an aromatic-peppery flavor. The foliage of some species is used as salad, and the pods are sometimes fed to tame birds (whence the name "Canary grass"). There are no species of much ornamental value.
sativum, Linn. Garden Cress. Annual, 1-2 ft., glaucous when in flower and fruit, glabrous: fls. small and inconspicuous, in an elongating raceme: pods nearly circular, bifid at the apex, winged: Ivs. exceedingly various, but usually the radical ones pinnately divided and subdivided, the central cauline ones $2-3$-cleft nearly to the base and the segments entire or toothed, the uppermost simple and entire. W. Asia, but widely disseminated as a cult. plant, and sparingly run wild in the northern part of the U. S. and Canada. - Under cultivation the foliage varies immensely. The curled sorts have lvs. as finely cut as curled parsley. On Australian Cress, which is a golden-Jvd. form, there are sometimes on the same plant broad-spatulate, ragged-edged lvs., cut lvs., and simple linear lvs. For culture, see Cress.

Other Lepidinms are sometimes eaten, but are not in the trade and are of little importance. One of these is the common L. Virginicum, Linn., wild in the U. S., and known as Pepper-grass. Others are the Chilean L. Chiténse, Kunze, and the Oceanic L. piscidium, Forst. f .
L. H. B.

LEPTACTINA (Greek, graceful rays; referring to the star-like aspect of the flower). Also written Leptactinia. Rubiàcere This includes a shrub from western tropical Africa which should rank among the finest tall hothouse shrubs in cultivation that bave large white flowers. The fls. have a slender tube, 4 in . long, and 5 darrow spreading lobes, each $5 \frac{1}{2} \mathrm{in}$. long and recurved for onethird of their length. As many as 4 fls, are borne at the top of each branch, in the axils of the bighest pair of lvs. The plant might be compared to a giant-flowered, loose-clustered lxora. It is not yet advertised in America, but seems worthy of a trial in some of our best conservatories.

The genus contains 6 species, all tropical African shrubs, important generic characters being the large calyx lobes, very long corolla tube, 5 included stamens, style branches free or connate, large, lax stipules, and clustered inflorescence.

Mánnii, Hook. Branching shrub, 6 ft . high: Ivs. $51 / 2$ in. long, $21 / 2 \mathrm{in}$. wide and larger in proportion, oval, wavy-margined, obtuse, with globose green bodies between the insertions of the lvs., which are stipules: calyx tube 3 lines long, lobes 1 in. or more long, leafy; corolla silky within, lobes lanceolate; stamens 5, included: style hairy above, 2-branched. B.M. 7367.

LEPTOSIPH0N. Now referred to Gitia.

LEPTOSPERMUM (Greek, stender seed). Myrtdeea. This genus includes some Australian shrubs, which are cult. outdoors in S. Calif., and under glass in the North only by a few persons who are expert in the culture of heaths and other hardwood Cape and Australian plants. They hare great numbers of small white, yellowish or pinkish fis, about $1 / 2 \mathrm{in}$. across, with 5 petals, which are roundish and clawed. Franceschi reports that they
stand drought well in California. The genus has about 20 species, chiefly Australian, and has not been monographed since 1866, in vol. 3 of Flora Australiensis. Shrubs or small trees: Ivs. small, rigid, entire, alternate, nerveless or $1-3$-nerved: Hs. white, sessile, solitary or 2-3 at the ends of short branchlets or in the axils of the lvs.: fls. usually white; stamens numerons. The young shoots are often silky.

Leptospermum bullatum (see L. scoparium below) is an exceptionally good pot-plant for those who can grow heaths. It is better than L. lovigatum. Cuttings taken from well-ripened wood in the fall or from young growth in summer root freely under the treatment given Erica. For a potting, use two parts leaf-mold and one of sand. Plunge the pots outside during the summer in the full sunlight. The plants make a straggling growth, unless trimmed into shape. By fall they will be covered with buds, but it is impossible to force them into bloom for Christmas. Keep the plants in a cool house with Ericas or Azaleas until the latter part of February or March, and then give them a little more heat, say 55° to 60°. The plants will soon be a mass of white flowers. L. buttatum does not grow rapidly, but, like Epacris, as it grows older it makes fine specimens. It has tough foliage, stands much hard usage, and when in bloom attracts plant-buyers. It deserves greater popularity.

A. Ovary usually 10 -celled.

lævigàtum, F. Muell. Tall shrub, attaining $20-30 \mathrm{ft}$., glabrous and somewhat glaucous: Ivs. varying from obovate oblong to oblong-cuneate or narrow-oblong, obtuse, mostly 6-9 lines long, but sometimes 12 or more, 3-nerved: calyx glabrous: capsule slightly protruding above the calyx tube. B.M. 1304 (as Fabricia lowigata). G.C. 1I. 25:816; 11I. 9:45.

AA. Ovary usually 5-celled.
B. Calyx tube glabrous.
c. Lus. flat or with recurved margins, obtuse or scarcely pointed (except in the large variety).
flavéscens, smith. Lvs. varying from narrow-oblong or linear-lanceolate to broadly oblong or even obovate, usually less than 6 lines long, attaining 9 lines in the largest forms. Var. commune, Benth and Muell. Lvs. narrow, 6-9 lines long: fls. middle-sized. B. M. 2695. Var. obovàtum, F. Muell. Lvs. broadly obovate to obo-vate-oblong, under 6 lines long. Cult. in Europe under glass. Var. grandiflorum, Benth. \& Muell. Lvs. rather larger: fls. larger than in any other variety, L.B.C. 6:514.
cc. Lus. flat or concare, sharp-pointed, narrow or smalt.
scopàrium, Forst. Attaining $10-12 \mathrm{ft}$.: lvs. ovate to linear-lanceolate or linear, mostly under 6 lines long. Otherwise, almost exactly as in flavescens. B.M. 3419. L. juniperinum, a narrow-leaved form, is considered synonymous by the botanists, but is kept distinct in the trade, as also is L. bulldtum, Hort., which is perhaps the only Leptospermum cult. in the North. J.H. 111. 30:435. L. scoparium, var. grandiflorum, Hort., Gn. 51 :1120 , is one of the most desirable forms. It is said to be of relatively easy culture, with compact habit, the branches spreading in all directions.-Excellent plants for the amateur, but very slow-growing.

BB. Calyx tube more or less densely clolhed with silky or woolty hairs.
lanigerum, Smith. Lvs. varying from obovate-oblong to elliptic or narrow-oblong, normally 6 lines long. A form with lvs. narrower, 6-12 lines long, and large fls., is pictured in B. M. 1810. L. B. C. 8:701. I. H. 32:570. G. C. 11. 12:427. Gn. 19:266, and 27, p. 145.-Extremely variable. Long cult. abroad, but not adv. in America.
H. D. Darlington and W. M.

LEPTOSYNE (Greek, stenderness). Compósita, This includes some yellow-fld, composites, with muchdivided foliage like Cosmos. They are 7 species of herbs and subshrubs, all from California except L. Arizonica. They are the representatives of Coreopsis on the western side of the continent, but have mostly pistillate rays and always a ring on the tube of the disk-
fis. In the North these plants are mostly treated as half-hardy annuals. None of them bas anything like the popularity of either Cosmos or Caltiopsis elegans. The commonest species is L. maritima, but L. Ntillmani promises to outrank it, though it is not yet advertised in America. L. Stillmani is said to bear fls. $11 / 2 \mathrm{in}$. across, for 5 or 6 weeks. Its seed germinates quickly and can be sown outdoors. Sandy soil and a sunny position is adrised. It is said to bloom in four to five weeks after sowing. L. maritima should be started indoors, transplanted in May, and can be brought into flower by July. Two distinct plants ace passing in the teade as L. maritima, one of which is L. calliopsidea, and is considered an inferior plant by some. The seeds of the two plants are easily distinguished. Genus monographed 1886, in Gray's "Synoptical Flora."

A. Rays obovate.

B. Seeds having long, soft, villous hairs.
calliopsidea, Gray (Agarista calliopsidea, DC. Corebpsis calliopsidea, Bol.). This is the plant figured in R.H. 1873:330, erroneously as L. maritima. Annual. $1-2 \mathrm{ft}$. bigh: fls. 3 in. across; rays fewer, shorter and broader than in L. maritima, $1^{1 / 4} \mathrm{in}$. long, $3 / 4-1 \mathrm{in}$. wide.

BB. Seeds having short, rigid bristles.
Doùglasii, DC. Annnal, 9-12 in. ligh: 1vs. 1-3-times parted: ring of the disk-tis. distinctly bearded. Int. by Oreutt, 1891.
brb. Seeds not hairy.
Stillmanni, Geay. Stonter than L. Douglasii: ring of the disk-fls. beardless. Gn. 52, p. 461. G.C. III. 22:333. R.B. 23, p. 275. Gt. 46, p. 612. S.H. 2:44. Int. 1898, by Benary.

AA. Rays oblong.

B. Stems low, from a thick base.

maritima, Gray. Perennial: lvs. 2 pinnate: fls. $31 / 2 \mathrm{in}$. across, borne at the ends of branches on peduncles 9-12 in. long; rays $16-20,11 / 2 \mathrm{in}$. long; disk 1 in . across: seeds not hairy. B.M. 6241. Gu. 49:1061. Not R.H. 1873:330, which is really L. calliopsidea. - Makes a good bog plant.

Bb. Stems 2-8 ft. high, 1-5 in. thick.
gigantèa, Kellogg. Differs in being leafy at the top only, the others being leafy at the base: lvs. 2-3-pinnate: fls. smaller than in L. maritima, borne on short corymbose peduncles; disk $1 / 2$ in, across: seeds not hairy. Cult. in S. Calif. Gt.44, p. 592. - Feanceschi says the fls, are sweet-scented.
W.M.

LEPTOTENIA dissécta and multlfida were allvertised in 1881 by Edward Gillett, of Southwick, Mass., for Californian collectors, but it is doubtful if any plants of these species are cult. in gardens. They are presumably iuferior in height and hardiness to Ferula. For descriptions, see Coulter and Rose's Revision of North American Umbelliferæ, 1888.

LEPTOTES. See Tetramiera.

LESPEDEZZA (D. Lespedez was a Spanish governor of Florida, who aided the botanist Michaux). Leguminòsa. Bush Clover. Between 30 and 40 perennial herbs and shrubs in N. Amec., Asia and Australia, with small (often inconspicuous), pea-shaped fls. in racemes or heads: lvs. pinnately 3 -foliolate or racely 1 -foliolate, the lfts, entice and wanting stipels: calyx lobes nearly equal, sometimes subulate; anthers usually 9 and 1 : pod short and 1 -seeded (and in this differing from Desmodium, which has jointed pods). In some of the Lespedezas there are two kinds of fls.,-petal-bearing and mostly sterile, apetalous and mostly fertile. There are a number of native Lespedezas, some of which are offered by dealers in native plants, but they are not very showy and are most in place in native borders and in amateur collections. Two or three of the oriental species are now becoming popular. L. striata is the Japan Clover of the South, and is a raluable forage and green-manure plant. L. bicolor is a low shrub, with small violetpurple fls., hardy in New England, but little known in cult. The most important ornamental members of the
genns thus far introduced are L. Sieboldi and L. Japonica, which are hardy herbs sending up many strong, wiry shoots each year, and blooming profnsely in September and October. Their late bloom is very desirable. All Lespedezas are of the easiest culture wherever hardy. Usually increased by division of the clumps. L. Sieboldi is readily peopagated by greenwood cuttings under glass. Monoge. by Maximowicz in Act. Hort. Petrop. ii. (1873).

A. Occidental or native Lespedezas: of upright or erect habit, not showy: stipules and flower-bracts mi-

 nute, subulate.These species are not in general commerce, but are offered by dealers in native plants. They thrive in light, dey soils. Because of the geayish or beownish color of the foliage, they are sometimes useful in landscapegardening work. Hardy, and of easiest culture. Perennial.
B. Fls. whitich or yellowish, all complete.
hírta, El1. Erect, $2-4 \mathrm{ft}$. tall, silky-pubescent: petioles shorter than the Ivs.: Ifts, nearly orbicular: fls, in oblong or cylindrical heads which are on peduncles which nsually exceed the Ivs. Dey soils, New England to Fla, and W. Mn. 6:181.
capitàta, Michx. Much like the last, but lfts. narrowoblong or oval, and the flo-heads dense and short-peduncled. Range of the above.
B8. Fls, purple or violet, or some of them apetalous.
c. Peduncles slender.
violàcea, Pers. Two to 3 ft ., only slightly pubescent: lfts, oral or elliptic: fls. small, in a loose cluster which is on a stalk usually longer than the 1vs. Range of above.

Nuittallii, Darl. Two to 3 ft ., bairypubescent: lfts. oval, oblong or nearly orbicular: A.-clusters dense or even capitate, the stalk mostly exceeding the Ivs. Range of above.
cc. Peduncles nearly
or quite wanting.
Stùvei, Nutt. Mostly unbranched, 2-4
ft., velvety-pubescent: petioles very short : lfts. oblong to nearly orbicular: fls. in nearly sessile, axillary clusters or heads. New York, south and west.
frutéscens, Britt. (L. Stüvei, var. intermèdia, Wats.). Less pubescent or almost glabrous: petioles mostly longer : lfts. oval to elliptic: clusters very shortstalked. New Eng., south and west.
AA. Oriental Lespedeza, grown for forage in the South: of trailing habit: stipules and fl-bracts conspicuous.
striàta, Hook. \& Acn. Japan Clover. Hoopkoop. Annual, somewhat pubescent, decumbent or erect, slender: lvs. small and very nnmerous, the lfts. oblong or obovate, and the petioles very short: fls. small, pink or purple, in axillary clusters. China and Japahn.-Said to have been introdnced accidentally into S. Car. in 1849, but probably in the country much before that time. It is now extensively naturalized south of the Ohio rivec, growing on nearly all kinds of land. On light lands it makes dense mats,

LETTUCE

but on heavy lands grows $18-24 \mathrm{in}$. high. It is a good pasture-and bay-plant, and is useful for plowing under as a green manure. It thrives on land which is indifferently prepared. For bay, seed is sown early in spring, at the rate of $1 / 2$ bushel per acre. It often yields 2 tons of bay to the acre. For pasturage in the South, it is sometimes sown with oats in the fall.

AAA. Oriental Lespedezas, grown as ornamental plants for the fls.: erect: stipules and fl.-bracts

 small: perennials.hicolor, Turez. Fig. 1263. Shrub, with slender branches, becoming $6-10 \mathrm{ft}$. tall, slender and graceful, glabrous: lvs. on thin wiry stalks, mostly longer than the glabrons blades; Ifts. oval to ronnd-obovate, rounded at the apex, the terminal one 1-2 in. long: fls. small, purple, in simple or compound racemes, wbich surpass the lvs.: pod $1 / 4 \mathrm{in}$. long, somewhat pubescent. Japan. - Hardy as far north as Boston, blooming in July and seeding freely. A good slender shrub for adding variety to the border. A white-fld. variety is adrertised.

Sièholdi, Miq. (Desmòdium pendutiflòrum. Oudem. L. racemòsa, Dipp. L. formòsa, Koehne). Fig. 1264. Herb, throwing up strong, wiry shoots each year from the crown: stems angled, reddish or brown, hairy (at least above): Irs. dull above and light-colored and hairy beneath, the petiole usually

1264. Lespedeza Sieboldi. ($\times 1 / 6$.) somewhat shorter than the blade; lfts. elliptic-oblongpointed: fls, twice larger than in the last (nearly $1 / 2 \mathrm{in}$. long), rose-purple, drooping in very numerous long racemes, which at the top of the plant are panicled: pod nearly or quite 1/2 in. long, pubescent. Japan. G.F. 5:115. Gng. 1:23. R.H. 1873:210. J.H. 111. 30:15. G. C. 11. 20:749. F.S. 18: 1888. B. M1. 6602 and Mn. 7, p. 69 (as L. bicolor), - Blooms in September, and hardy in central New England. A rery desirable late-blooming plaut, making a large specimen with age. Does not often seed in the North.

Japónica (Desmòdium Jupónicum, Hort., not Miq.). Very like the last, but blooms a week or two later, has very numerous pure white fls., much lighter colored herbage, usually nearly glabrous lys. and stems, the lfts. broader and less pointed.-Hardy as the last, and seems to seed more freely in the North. Perhaps a botanical variety of L. Sieboldi, but distinct for horticultural purposes.

Other Japanese and Chinese Lespedezas may be expected to appear in the trade. See Franchet, R.H. 1890, pp. 225-227, for an appear in the trace. See Framehet, R.H. 1890 , pp. 2ictare of L. Delavayi.
L. H, B.

LETTSOMIA is a genus of the Convolvalus family. About 26 species of tropical oriental climbers. An unknown species was advertised from S. Florida in 1889 and is still procurable. Reasoner and others think well of it.

LETTUCE (see Lactuca) is the most popular of salad vegetables. Plate XV1I1. It is a quick-growing annnal, delighting in cool atmosphere and open, loose soil. As an outdoor crop, it thrives best in spring. Special care is needed to grow it in the hot summers of America, although heat-resisting varieties have been developed. Of late years, the forcing of Lettuce under glass has come to be a large industry. The most serions trouble in forcing Lettuce is the rot, due to a species of botrytis. The leaves become soft and fall, leaving only the core of the plant erect (Fig. 1265). This trouble may be prevented by growing in loose soil, by keeping the surface of the
soil and of the plant as dry as possible, and by avoiding a too warm and too moist atmosphere. Sub-irrigation (see Irrigation) is to be advised for Lettuce forcing. Of varieties, there are two general types, - the cabbage or heading sorts (Fig. 1266), and the loose sorts (Fig.

1265. Lettuce plant collapsed with the rot.

1267). The latter are more used because more easily grown, but the former are considered to be the finer.

In 1885, Goff reduced the kinds of Lettuce to 87 varieties (4th Rep. N. Y. Exp. Sta.), throwing them into three general groups: (I) leaves roundish or but slightly oblong, spreading rather than upright; (2) leaves oblong, tending to grow upright; (3) leaves pinnately lobed. These categories were divided into subtribes on minor leaf-characters. In 1889 (Annals Hort.) 119 names of Lettuces were catalogued by North American seedsmen. Lettuce has been in cultivation for over 2,000 years.
L. H. B.

Lettuce Ott-of-Doors. - While Lettuce seems never more enjoyable than when it comes from the greenhouse during the colder parts of the year, yet it is acceptable for salad purposes and is in good demand the entire year. In open gronnd, at the North, we may have it in all its perfection from June until snow flies again in the fall. Usually it is much less of a knack, however, to have it in the earlier part of the season and up to August, than in the torrid weather of August and early fall. For early market we start the plants in the greenhouse dnring February, and prick them out in flats or sunken thumb-pots filled with rich, fibrous loam, and after thoroughly hardening them by exposure for a week or more in a coldframe, we take the plants up, with a chunk of soil, and plant them out in very rich, wellprepared loam outdoors, just as soon as the weather will permit. Tennisball and its various strains and selections, Boston Market, etc., are good for this purpose. The rows may be made a foot apart, and the plants set 6 or 8 inches apart in the rows. We want neat solid heads, even if not as large or heavy as some of the heads we can easily produce later on from summer varieties, and we wish to get them as early in the season as possible in order to be able to put them on the market when prices are still high. Light applications of nitrate of soda, either broadcast over the patch at the time of setting the plants, or along the rows very soon after, seldom fail to assist in hastening early growth and to increase the size of the heads. This is a "trick of

1266. Heading Lettuce.
the trade" well worth practicing. The free use of the wheel-hoe keeps the soil loose and the crop free from weeds, and also hastens it to early market condition.

At the time of setting the first plants in open ground, we also sow a patch with the garden drill, using seed

sparingly and covering it lightly, say one-half inch deep, although in good soil the seed will come up readily even if placed an inch or so below the level of the surface. The varieties catalogued by seedsmen as suitable for summer culture are almost endless, and most of them are good enough. Among the standard sorts we have the Hanson, Deacon, Simpson, Salamander, Stubborn Seeder, several Butter Lettuces, etc. Beeause of our hot, dry seasons, the Cos Lettuces are less popular in this country than in Europe. The heads should be tied up and blanched, for the best results. The plants of drill-sown Lettuces should be thinned early. For home use we leave them at first only a few inches apart, so that they have just room enough to form little heads. Every other plant may then be taken out and used for the home table. These little heads are delicious. The remaining heads are left to attain full size and are then used for the table or for market. If grown for market only, the plants are thinned to stand not less than 5 or 6 inches apart from the start. In due time every other plant can be taken up for market, while the ones remaining have a chance to grow to largest size afterward. From early spring until along in August we sow a few rows of there summer Lettuces every two weeks or so, and thus try to provide a continuous supply of good heads. The demand may drop off for a few days, or even weeks, but it is sure to revive. If we can

1267. Curling, or Grand Rapids Lettuce.
manage to have gond Lettuce late in the fall it will seldom go begging for customers.
Sometimes we may wish to raise seed of a sort that suits our purposes. All we have to do is to leave some of the plants in the rows, until the larger part of the seeds on a plant have matured. The plant is then cut off near the gronnd and exposed on a sheet to sun and air to dry. The seeds are then to be thrashed out and. cleaned.
T. Greiner.

Lettuce for the Village Garden and City Yard. The value of Lettuce for the table depends largely upon its being fresh. A very small area may be made to produce an abundant supply for an ordinary-sized family. The plant is quite healthy and hardy, when young enduring a considerable frost without injury. It has few insect enemies and the requisites for its successful culture are few and easily understood. On this account it can he grownwith greater satisfaction and profit on a village lot, or even in a city back yard, than can most of our garden vegetables. To produce it of the best quality under these conditions, as early in the spring as the gronnd is at all dry and the grass begins to start, a bit of ground should be well dressed with fine manure, putting on from one-half a bushel to one boshel to the square yard, and then well spading up, working in the manure and making the bed as fine and smooth as possible. Make a mark about one inch deep, drop in the seed at the
rate of from 25 to 50 seeds to the foot, and cover with from one-fourth to one-half an inch of fine soil pressed down with the hoe or hand. From two feet to two yards of such row for each member of the family should furnish an abundance for the time that the product of a single planting is usable, and if more than one row is planted they should be about two feet apart. In from 15 to 20 days the young plants should be thinned out leaying 8 to io to the foot, and at the same time a second row, to give a succession, should be planted. About 20 days later the first row should be re-thinned, leaving plants from 6 to 12 inches apart according to the size of the variety, and a third row planted. A fourth planting may be made, but Lettuce planted as late as the time of the ripening of strawherries is not likely to do very well unless protected from the sun and heat. A supply of fine fall Lettuce may be secured if, in August or early September, we re-manure and spade the ground which was occupied by the first crop, and make a trench some 6 or 8 inches deep and fill this with water. When this has soaked away, refill, and repeat this from one to six times, according to the dryness, of the soil. Fill this trench with tine, moist, not wet soil, in which make a mark and sow the seed as in the spring. Cover the row with a foot-wide board, and about three days later put some bricks under so as to hold the troard about two inches above the soil. As soon as the plants are well up turn the bricks so as to hold the board about four inches up, and take it off altogether about five o'clock in the afternoon, leaving it off until eight or nine in the morning. On cloudy days give more exposure, as the plants develop until the shade is eutirely dispensed with. Some of the finest Lettuce the writer has ever seen was grown in a city yard by this method. W. W. Tracy.

Lettuce Forcing. - This vegetable is one of the principal money crops of the market-gardener in winter. It is grown in hotbeds and hothouses. The old way is to raise it in hotbeds, but since the experiments of growing in houses have been so successful it is grown mostly in them.
For the first early crop to be grown in heds or houses, the seed is sown in the seedhouse about Augnst 20, in the latitude of Boston. By this means, the Lettuce will be brought into market the latter part of October or the first of November, after the frost bas spoiled the outdoor crop; and thus it often brings very good prices. The sowing is made in a bed in the house prepared for the purpose with sterilized soil, so that there will be no fear of a rusty root or mildew on the plants. The soil should be 10 inches deep, well moistened and beat up very fine, with no manure or fertilizer. For every ounce of seed, prepare a space 6 feet square, raking off the bed as smooth as possible. Sow the seed and then sprinkle the bed with water. Then sift on one-fourth of an inch of either sterilized or clean subsoil, preferably the latter. In about four days the plantlets will appear. Three weeks from sowing, the plants will be ready for transplanting. This should be done at the proper time, that is, before the plants become too large. Prepare the soil the same as for the seed-bed. If 3 inches of the sterilized soil, or some new soil that no Lettuce has been grown in, can be had, it will be sufficient. Transplant the Lettuce 4 inches apart in sufticient quantity to set out the prepared space. In three or four weeks these plants will be large enough to again transplant into the bed or house inteuded for them. Sterilizing is done in a box $5 x 4$ feet and 3 feet deep, with several punctured steam pipes in the bottom. The soil should heated to 200°
In preparing the bed for the last transplanting, the soil should be well wet before working and then let stand until the water has all drained off, which will be in about twenty-four hours. Now put in stable manure, worked fine with the first heat out of it, which is secured by piling and overhauling twice a week for two or three weeks before using. Apply this prepared manure about 3 inches deep and dig into the soil to a depth of 12 to 15 inches. Rake off and mark with the marker 8 inches apart. If the soil is new no sterilization is needed, but if old would prefer about 2 inches of the top sterilized. This is done to prevent the mildew and disease that often comes from old, worn-out soil.

If the bed is properly prepared it will ueed no water-
ing. If the plants are large, they may need to be sprinkled immediately after setting the last time. No more water is required until they begin to mature. Many think that the crop requires constant watering, but that is wrong, because the roots will not go down if the top is kept constantly wet, and a better crop will be obtained if not watered until it begins to mature or to head.
The kind of Lettuce intended in the above remarks is the head variety, called in many sections the Boston Lettuce. This crop should be ready to begin to pull in six or seven weeks from time of last transplanting. According to the previous statements, it has taken thirteen weeks from seed to produce a crop. This is starting in September or October. Earlier than this the time will be one or two weeks less. It is customary to pull over the bed once and take out the best ones, and then give the remainder a good wetting. In about one week those left will be fit to pull clean. After the first transplanting to 4 inches, it is the surest way to smoke the house three nights in succession, once the second week and once the third week. This is done to keep the plants free from disease or from the green-fly or louse. If it is desired to follow with a second crop of Lettuce on the same bed, the plants must be ready for the second crop when the first is taken off, and thus lose no time of the house.
In hotbeds much the same course is pursued as in the house; sometimes one will succeed better than the other. For midwinter the houses are the better, and for late spring the beds.
The best way of heating the beds is by the use of hot stable manure placed in the bottom of the bed, and about 8 inches of loam on top. Ten inches of manure, hot, will hold for two crops of Lettuce. The first crop will need a little special fertilizer. The second crop will require about 3 inches of stable manure prepared as for the houses. The beds are prepared in the fall and covered with coarse manure or hay until wanted. The beds, after setting, are covered with straw mats or shutters at night when the temperature is below freezing, and ventilated by day when it is above 60°.
The heat is supplied to the houses by steam and the temperature controlled by ventilation. The proper temperature for the growing crop is 40° at night and 70° by day.
For continuous crops through the season, sow every week enough seed to give the plants required. One ounce should produce 5,000 plants. This sowing is continued uutil February 1, which is the time to sow the seed for the crop to be set out in the field. These plants are grown in hotbeds and hardened off before they are set out; that is, they are transplanted from seed-bed to 4 inches apart in hotbeds, and are then taken up and transplanted to the field. This is a very different variety of Lettuce. It will not head in the honses, while the variety grown in the houses will not grow in the field.
A great improvement has been made in the varieties of Lettuce. The variety grown twenty years ago called White seed Tennisball was a very tine Lettuce and would pack 6 dozen to the barrel-box or 10 dozen to the barrel, but the improved variety of to-day will fill 3 dozen to the barrel-box and 5 to 6 dozen to the barrel. The new variety is called the New Hothouse Lettuce, and will grow in beds just as well as in the bouse.
Experiments made with the electric light have been very successful. It not only hastens the time of growing, but also improves the size and quality of the bead. The writer estimates that the light increases the size and quality 10 per cent and hastens the time of growth 15 per cent. This is by the use of arc lights over the houses by night. This could not be practiced on botbeds, because they are covered by night. Between the first of November and the first of March the days are very short and the nights very long, so that the electric light inereases the length of the day, and when applied it has the same effect as the longer days of spring have upon the growth of crops.
The Lettuce, when prepared for market, is pulled, then washed, and for the Boston market is put in boxes of 3 dozen each and sold at wholesale by the bos. The smaller heads are packed 4 dozen in each box and are usually sold per bos for about one-balf the 3-dozen size. When packing for other markets, as New York, Philadelphia, Washington or Chicago, it is packed in cases that will bold a barrel. These cases have a partition in
the center, so that the Lettuce when packed will not all fall to one end should the cases be roughly handled. The expense of sending a case from Boston to New York is 25 cts., to Philadelphia 50 cts., and to Chicago 75 cts .
The crop from the Nouth has affected our sales very much in the midwinter, but the climate seems to bave changed in that locality so that it is in our favor, for of late years they have cold weather there two or three times each season, thus giving us the market. Our Lettuce is far superior to theirs and of a different variety. They have named theirs the Big Boston. It will be seen that the name of Boston is very popular in the Lettace market. This inferior Lettuce coming from the South is packed in baskets.
There is a disease of Lettuce called by some a "burn," but this is a misnomer. It is a disease coming more from a diseased root or a cold soil, because it develops most when there is but very little sun, and least when there is most sun; and if the plant is examined there will be found a diseased root. Here the benefit of the new or sterilized soil is very apparent. The use of sterilized soil is of much more benefit than the electric light, because if the plant is diseased no light will cure it and no crop can be successful with diseased plants. Preparing the soil by wetting thoroughly before transplanting is one of the great secrets in successful growing of Let tuce, and heating the water to a high temperature is also very beneficial. It lessens disease.
The price at which Lettuce can be grown at a profit is a question very difficult to answer, but by the figures made by some of the members of the Boston MarketGardeners' Association it was decided that for midwinter crop the Lettuce must be sold at 50 cts . per dozen to return any profit to the grower. W. W. Rawson.

LEUCADENDRON (Greek, white tree). Protedeea. This genus includes the celebrated Silver Tree of the Cape of Good Hope (see Fig. 1268), which has a strikiug and unique habit. Its Ivs. are densely covered with white silky bairs. This tree grows wild only on Table Mountain. In the first quarter of the century it was considered of great importance for firewood. It is said to grow poorly away from the C'ape, except in S. Calif. where it generally does well outdoors. It is also rarely cuit. in the East in tubs, being protected in a cool greenhouse during winter and placed on the lawn in summer. The Silver Tree attains 30 ft . at the Cape. The trees are practically male and female, the fls. being diacions by abortion. The female tree is cult., being prop. by seeds imported from the Cape. The

1268. Silver tree, Leucadendron argenteum. young seedlings are very difficult to raise. There is no monograph of this genus since Meisner's in DC.Prod. Vol. 14, 1856, but the genus will be reviewed in a forthcoming volume of Flora Capensis.
argénteum, R.Br. Fig. 1268. Branches densely leafy: lvs, sessile, $3-6$ in. long, $1 / 2-1$ in. wide, callous and blackish at the apex, lanceolate, acute, silvery white and silky: involucres spreading. longer than the slobular head of fls.: nut ventricose, turgid, wingless, the whole style and calyx persisting with it, obovate. B.R. 12:979. V.5:282, 283.

LEUC库NA (probably from Greck, leukos, white: referring to the fls.). Leguminòse. This includes a tree knowu in S. Fla, as the White Popinac, a rapid grower, with acacia-like foliage and whitish fls. It is also cult. in S. Calif. The genus has about 9 species, found in

Mexico, Guatemala, Peru, and Pacific islands, but L. glauca is found in the tropics of hoth worlds. It grows wild in the West Indies and in western Texas. The trees and shrubs of this geuus have the habit of Acacia, but belong to the Minusa tribe, which is characterized by stamens 10 or less. Generic characters are: calyx 5 -dentate: stamens 10, not glandular: pod broadly linear, stalked, flat-compressed, chartaceous, 2 -valved : seeds compressed. Acacia trichodes is L. trichodes, Benth., but it is not in the trade.
glaùca, Benth. (Acàcia frondìsa, Willd. A. glaùea, Moench). Spineless: branches and petioles powdery: pinnæ 4-8-paired; Ifts. 10-20-paired, oblong linear, glaucous below: pod $5-6 \mathrm{in}$. long.

LEUCHTENBERGIA (after Prince Leuchtenberg). Cactdcere. Agave Cactus. Stems in age forming a trunk 2 in . or more in diam., by the shedding of the lower tubercles: tubercles triangular-acuminate, spreading, 2-4 in.

(Adapted from Botanical Magazine.)
long, $1 / 2-3 / 4 \mathrm{in}$. wide, with twisted papery spines: fls. funnelform, widely expanded, borne near the apex of young tubercles: fr. gray, ovate-elliptical, 1 in . long, covered with scales and crowned by the persistent flower: seeds dark brown, minutely tuberculate. Only 1 species, closely related to Eehinocactus, but of remarkably different form. The plant is readily grown in the manner of Echinocactus and Mamillaria.
principis, Hook. \& Fisch. Fig. 1269. Radial spines $6-8$, the central one usually solitary, longer, sometimes 8 in . long: fls, yellow. B.M. 4393 . A.G. 11: 464.

Katharine Brandegee.

LEUCOCRINUM (Greek, white lily). Liliàcece. SAND LiLy of Colorado. A hardy bulbous plant growing a few inches high, with narrow foliage and clusters of pure wbite, fragrant fls, borne just ahove the ground in early spring. The fls, are funnel-shaped, having a slender tube 2-4 in. long, the greater portion of which is below the surface of the soil, and 6 lobes, each $3 / 4-1 \frac{1}{2}$ in. long. They are borne in clusters of 4 -many fis., and maintain a succession for several weeks. They should be desirable
for edging walks and bulb beds. They have a deep-seated rhizome and fleshy roots. The bulhs are procurable from Colorado and California, either as collected or nur-sery-grown stock. Tbe geuus has only one species. It belongs to an anomalous group, characterized hy almost total lack of stem and fls, solitary or clustered among the radical lvs. From the other members of this group it is distinguished by the Irs. not 2 -ranked, and an indefinite number of ovules in each locule. Perianth segments narrowly lanceolate, persistent: stamens 6: style persisteut, slightly 3 -lobed.
montànum, Nutt. Sand Lily of Colorado. Lvs. 8-12 or more, flat, ratber thick, 4-8 in. long, 1-3 lines wide: pedicels $1 / 2-1 \frac{1}{2} \mathrm{in}$. long.
J. H. Cowen.

LEUCOJUM (name explained below). Also written Leucoium. Amarylliddcer. Snowflake. The Snowflakes are hardy bulbous plants growing a foot or less high and bearing dainty, nodding, 6 -parted Hs., which are white, tipped with green, yellow, or a tinge of red. They are less popular than snowdrops (Galantbus), to which they are closely related, and have larger fls., with all the segments of equal size. There are 8 species, uatives of Europe and the Mediterranean region, 4 of which are cult. Perianth-tube none; segments ovate or ohlong. Baker, Handbook of the Amarylidew, 1888. The name Leucojum was given by Linneus, hut be did not explain the application. The old Greek name, Leucoion, was given by Theophrastus to a plant now supposed to be a crucifer, like some stock or wallfower. Leucoion is from leukos, shining, white, and ion, violet. Snowtlakes appear about the same time as white violets, and sometimes have a delicate odor, resembling that of the violet, but the form of the fls. is very different. For culture, see Bulbs.

A. Blooming in Maveh.

vérnum, Linn. Spring Sxowplake. Bulb globose, $3 / 4-1 \mathrm{in}$. in diameter: lvs, strap-shaped, fiually $6-9 \mathrm{in}$. long, 4-6 lines wide: scape $1 / 2-1 \mathrm{ft}$. long, usually 1 -fid.: perianth segments white, tipped green: seeds with a pale, memhranous coat and conspicuous stropbiole. Central Eu., France to Bosnia and Tyrol. B.M.46. G.C. 11. 11: 399; 21: 341; 23:341. P.G. 5: 47. Gn. 25, p. 335, and 29, p. 607. V. 8:69. Var. Carpáthicum, Herb., has perianth segments tipped yellow. B. M. 1993. J.H. 111. 32: 169. G.M. 39: 105. A choice form, usually bearing 2-4 fls.

AA. Blooming in April and May.
æstivum, Linn. Sommer Snowflake. Bulb ovoid, $1-1^{1 / 2}$ in. in diameter: 1 ss . strap-shaped, $1-1^{1 / 2} \mathrm{ft}$. long: scape 1 ft . long, $4-8$.fld.: perianth segments white, tipped green: seeds with a black, hard-shelled coat and no strophiole. Blooms end of April and beginning of May. Central and S. Eu. Mn.9:45. P.G.1:7. V. 3:342 - and 8:70.
pulchellum, Salish., differs from L. astivum by its smaller fls, and capsule, narrower lvs, and fls, afortnight earlier. Sardinia and Balearic Isles.

AAA. Blooming in autumn.

autumnàle, Linn. (ìcis uutumnàtis, Salisb.). AUtumin Snowflake. Bulb glohose, $1 / 2 \mathrm{in}$. in diameter: lvs. thread-like, usually produced after the fls.: scape very slender, $3-9$ in. long, $1-3$-fld.: perianth segments white, tinged with red: stamens half as long as segments. Portugal and Moroceo to lonian 1slands. B.M1. 960.Not satisfactory everywhere.
rosseum, Martin. Bulb globose, $1 / 4-1 / 2 \mathrm{in}$. in diam.: peduncle shorter and usually 1 -fld.: perianth segments $1 / 3 \mathrm{in}$. long, rose-red, oblanceolate: stamens $1 / 6 \mathrm{in}$. long. Corsica.-Usually difficult to grow, and little known horticulturally.
J. N. Gerard and W. M.

LEUCOPHYLLUM (Greek, white leaf). Scrophularid. cea. This includes a rare shrub from southern Texas, tbe leaves of which are covered beneath with silvery white wool. It has showy violet-purple, bell-shaped fls. an inch across, borne in spring. In cultivation it flowered for the first time in 1890, at Augusta, Ga., with P.J. Berckmans, It is now eult. in S. Fla, and deserves cultiration everywhere in the South. According to C. S. Sargent, "There is no shrub of the desert portions of

LEVISTICUM

the valley of the lower Rio Grande more generally distributed, and certainly there is not one of them which more delights the traveler in the early spring months, when the large, violet-purple flowers of this plant heighten the effect of its brilliant silvery foliage." (G.F. 3: 488.)

Leucophyllum has only 2 species. Lvs. all alternate, ovate or obovate : calyx 5 -cut ; corolla tube broad and short; lobes 5, rounded ; stamens 4, didynamons, included, fixed at the base of the corolla: ovary 2-celled; ovales numerous: capsule 2 -valved: seeds oblong.

Texànum, Benth. Loose-growing, straggling shrub, 4 or 5 ft . high in the wild, $8-10 \mathrm{ft}$. high in cult. Lvs. $1 / 2-1 \mathrm{in}$. long, obovate: fls, axillary, slightly hairy within. G.F. 3: 489 .

LEUCOSTEGIA (Greek, white roof; alluding to the indusia). Polypodidcece. A small genus of Indian ferns allied to Davallia, with a small, narrow, thin indusium attached by its base, with the apex and sides free. The leaves are mostly tri-quadripinnate. For cult., see Dacallia.
párvula, Wallich. Rootstocks wide-creeping, sealy: lvs. nearly sessile, deltoid, less than 1 in . long, half as wide, usually tripinnate. Singapore and Borneo.
L. M. L'nderwood.

LEUCOTHOË (Greek mythological name; danghter of Nereus). Ericàcea. Jncluding 1 garista. Ornamental low evergreen shrubs, with alternate, short-petioled, usually serrate lvs. and with white, rarely pink or scarlet, usually nodding fls., in terminal or axillary racemes, appearing mostly in spring. The S. American species, which are very rare in cultivation, though they surpass the other in beauty of the fls., are hardy only south, while the other species can be grown as far north as Mass. and western N. Y., the evergreen ones in sheltered positions or with slight protection during the winter. They are very handsome for borders of shrubberies or as nndergrowth in open woods. They thrive best in somewhat moist, peaty or sandy soil, and prefer shaded or partly shaded situations, but also grow in full sun if the soil is not too dry. Prop. usually by seeds sown in peaty, sandy soil in pans or boxes in spring, and treated like those of Azalea or Rhododendron; also by layers or division; the evergreen species grow from cuttings under glass in late summer, but root rather slowly. About 35 species in N. and S. America, Madag., Himal. and Japan, formerly often united with Andromeda. Lvs. evergreen or deciduous : fls. in axillary or terminal racemes ; calyx 5 -parted, imbricate; corolla ovate or cylindrical; stamens 10 ; anthers obtuse or 2-pointed at the apex: capsule separating into 5 valves; seeds minute, irregular. Most of the allied genera differ by the valvate calyx, and Chamædaphne by the valves of the capsule separating into 2 layers, the inner one 10 -valved.
A. Lns. evergreen; racemes axillary, sometimes clustered, shorter than the les.
B. Racemes dense, sessile, many-fld.: pith of branches solid.
axillàris, Don (Andrómeda axillàris, Lam.). Shrub, to 5 ft ., with spreading and usually recurving branches, puberulous when young: Ivs, with short pubescent petioles, oval to oblong-lanceolate, shortly acuminate, serrulate toward the apex, glossy above, pale and sparsely pubescent beneath when young, $2-4 \mathrm{in}$. long: racemes 1-2 in. long: sepals broadly ovate; corolla white, usually greenish in bud, $1 / 4 \mathrm{in}$. long. April, May. Va. to Fla. and Ala. - Var. longifolia, Pursh. Lis. linear-lanceolate. B.11. 2357.

Càteshæi, Gray. To 6 ft ., similar to the former, with glabrous, slender and more arching branches: ivs, longer-petioled, ovate-lanceolate to lanceolate, ciliately appressed-serrate, glossy above, usually light green beneath, glabrous, $3-\bar{i} \mathrm{in}$. long: racemes larger: sepals narrower; corolla over $1 / 4 \mathrm{in}$. long, white, usually reddish in bud. April, May. Va. to Ga. B.M. 1955. L.B.C. $14: 1320$. This species is handsomer than the former, and also somewhat hardier: lvs. and fl.-buds assume a beantiful purple hue, late in fall which is retained through the winter.

Bb. Racemes peduncled, with rather few, slenderpediselled fls.: pith laminate.
acuminàta, Don (L. populifollia, Dipp. Andrómeł̉a acumindte, Ait.). Shrub, to 12 ft ., with spreading branches: 'Ivs. short-petioled, ovate-lanceolate, acuminate, entire or obscurely serrulate, glabrous, 2-4 in. long: pedicels as long as corolla : calyx very short ; corolla eylindrical, over $\frac{1}{3}$ in. long. June. S. C. to Fla.
AA. Lvs. deciduous: racemes mostly terminal, seeund, longer than the les. (Subgenus Eubotrys.)
racemòsa, Gray (Andrómeda racemòsa, Linn. L. spicàta, Don. Lyònia racemòsa, Don). Shrub, to 10 ft ., with mostly erect branches: Ivs. oblong to ovate, acute, serrulate, pubescent beneath, at least on the reins, $1-3 \mathrm{in}$. long: racemes erect, $2+\mathrm{in}$. long: corolla cylindrical, $1 / 2 \mathrm{in}$. long. April-June. Mass. to Fla. and La. Em. 423.
recurva, Gray. Similar to the last, but lower and more spreading: Ivs. elliptic-ovate to elliptic-lanceolate, acuminate : racemes spreading and recurved : capsule depressed and strongly lobed. April-June. Va. to Ala. G.F. 9:225. - It grows in drier situations, but otherwise it is not superior to the former ; the foliage of both assumes a splendid scarlet color in fall.
L. Davisie, Torr. Evergreen shrub, to 5 ft .: lvs. oblong, obtuse, crenately serrulate: racemes slender, many-fld., clustered in terminal panicles. May, June. Calif. B.M. 6447 - L. Grayana, Maxim. Half-evergreen: lvs, large, broadly oval, ap-pressed-pilose : racemes terminal, slender: fls, rather small. June. Japan, - L. nerifolia DC. (Agarista nerifolia, Don). Evergreen, glabrous shrub, with ovateoblong, acuminate lvs. and bright scarlet fls. in erect, slender racemes at the end of the branches. Brazil. B, M. 4593. - L. puilchra, DC. (Agarista pulchra, Don). Evergreen shrub, 2 ft , or more high, glabrous: ivs, ovate, mucronate, about 1 in. long: Hs. white, in spreading, peduncled, slender racemes, much longer than thelvs. Caracas. B.M. 4314.- L. populifolia, Dipp.- L. acuminata, in main list.

Alfred Refder.

Leucothö̈ Catesber is one of our most ornamental and popular hardy broad-leaved shrubby evergreens. It is used for massing in connection with Rhododendrons, Kalmias, etc., serving as a base for these taller varieties. The shiny dark green leaves are borne with regularity on a recurved stem often $2-3 \mathrm{ft}$. long, and sometimes coloring brilliant bronze and claret sliades in autumn when exposed to the direct rays of the sun. Lencothoë sprays are largely used by florists in making up designs and in connertion with Galax leaves, nsnally, however, in the more informal pieces. They were introduced to the trade about 1890. The fragrant flowers are in the leaf axils, borne along the stem in early spring, and are usually conspicuons, considering the fact that the leaves are persistent. It is this graceful evergreen spray effect, with the good color and dense habit, that makes Leucothoë so desirable as a plant for massing, and also the fact, perhaps, that it is fairly easy to transplant. Seeds are produced freely, and can be sown in sphagnum moss and sand under glass, as Rhododendrons and Azaleas are grown, pricked off in flats and planted outdoors in early spring, when the plants are a few inches high. Lencothoë is also propagated by division, underground ranners and cuttings, the latter being plunged in sand on the bench and given moderate bottom heat. It is usually collected, however, in its native habitat, in small plants, transplanted to nursery rows and grown for several seasons. Harlan P. Kelsey.

LEVERW00D. Ostrya Firginica.

LEVISTICUM (a modification of a name given by Dioscorides to some umbelliferous plant). Cimbellifera. Lovage is a plant grown for its aromatic seeds, which are nsed in confectionary. The leaf-stalks were formerly blanched and eaten like celery. It is a tall, hardy perennial herb, with large, 2-3times divided radical Ivs. The plant may be propagated by seed sown as soon as ripe, but when plants are already established root-division is less troublesome and risky. Division may be made in the autumn, but better in the spring. The divided plants and the seedlings, when 2 or 3 in . tall, should be set in checks 3 ft . apart in deep, rich soil. When well established the plants remain profitable for many years, demanding but little attention. The genus
has only one species, and is distinguished by having the bracts of its involucel grown together.
officinale, Koch. Lovage. Tall: lvs, dark green, shining; segments wedged shaped at the base, cut toward the aper: fls. yellow: seeds 3 -ribbed, hollow and boat-shaped on one side, convex on the other. S. Eu.

LEWISIA (after Meriwether Lewis, of the famous Lewis and Clark expedition across the continent to the Pacific in 1804). Portulacacer. The Bitter-root, L. rediviva, is au odd and interesting plant. It has a thick-branched root : Irs. like a Portulaca, fleshy and linear, and handsome fls, borne 3 or 4 iu . above ground. The tls. are 1-2 in. across, rosy, varying to white, red or purplish, with 8 - 14 petals. The plant has been thoroughly tested in the East, and is desirable for rockeries, needing perfect draiuage, a sunny position and careful watering while in flower. One of those perennials that should be planted in groups for best effect, and also as a precaution to prevent loss by oversight in careless weeding during flowerless period.
The starchy root is dug by the Indians in spring, and eaten. The bark is ordinarily very bitter, but at flowering time it is said to slip off easily, and the root when boiled has little of the bitter taste. The roots from which the plant was described showed signs of life after heing in the herbarium for several years. Pursh planted them, and they grew for a year. This event suggested the name redivicu. The fine fls. figured in B.M. 5395 came from a root which had been immersed in boiling water in order to make an berbarium specimen. The root is called spatulum or spatlum by the Indians. The Lewis and Clark expedition was planned in the house of Bernard M"Mahou, an early American horticulturist. (See M'Mahon). A full account of this plant is giveu by Pailleux and Bois in Le Potager d'un Curieux; also in R.H. 1892, p. 298. Generic characters are: sepals $5-8$, persistent; stamens numerous: style 6-8-parted: capsule circumscissile. The genus has 2 species.
rediviva, Pursh. Fls. June-Aug. Wash. and Calif. to Nev. B.M. 5395 . R.H.1892, p. 298. V. 2:306. Mn. 2, p. 85.
J. Woodward Manning and W. M.

LIATRIS (a name of unknown derivation). Compósitr. Blazing Star. Button Snakeroot. A genus of hardy perennials, confined to eastern and southern N. America. Fifteen or more species have been recognized, all of which are best adapted to the wild-flower border. The most showy are L. elegans and L. pyenostachya. All produce their Howers in wand-like spikes or racemes, the petaloid coloring of the involucral bracts often adding to the effect of the usually bright rose-red or purple flowers. Their flowers are produced in late summer and autumn. They multiply by offsets from their corm-like base, or may be grown from seed, which should be sown in autumn. They will grow and produce flowers in poorer soil than most garden plants, but thrive best in good, rich garden soil, and require no special care. When grouped in masses they give best results.

AA. Bracts of involucre obtuse.

B. Heads hemispherical, $1 / 2-1 \mathrm{in}$. broad, 15 - 45 -flowered, and peduncted.
scariossa, Willd. Stem stout, 1-5 ft. high: lower lvs. spatulate or oblong-lanceolate, $4-6 \mathrm{in}$. long, $1 / 2 \mathrm{in}$. wide; upper narrowly lanceolate: heads large, numerous, in a relatively loose spike; involucral bracts ofteu tinged with purple: fls. purple: pappus bristles minutely barbellate. Throughout the U. S. and Can., east of the Rocky Mts. B.M. 1709. B.R. 7:590 and 20:1654. G. C. III. 14:593. D. 271. P.M. $5: 27$ (as L. borealis).-Next to L.elegans and pycnostachya, perhaps the most desirable species for ornamental purposes.
bв. Heads oblong, s-4 lines broad, 5-15-flowered.
c. Bracts not punctate.
D. Heads sessile.
spicàta, Willd. Stem stout, rather tall, 2-5 ft ., and very leafy: Ivs, all linear, the lower larger and broader than the upper, which are gradually reduced to the linear-subulate bracts of the spike: heads 8 -13-fld., $3 / 2 \mathrm{in}$. long, closely sessile, and forming a dense spike
from $6-12 \mathrm{in}$. long; involucral bracts rounded cbtuse, with usually purplish margins. In the Atlantic and Gulf states, from Mass. to La. B.M. 1411.

Var. montàna, Gray (L. pìmila, Lodd.). Fig. 1270. Lower, $10-20 \mathrm{in}$. high: lvs. broader, the lower ones $1 / 2-3 / 4$ in. broad, and obtuse at apex : spike proportionately short and heads larger. Va. and N. Car., in the mouutains. L.B.C. $2: 14 \bar{i}$,
nn. Heads distinetly pedicelled.
E. Le's, oblong-lanceolate, relatively short.
grácilis, Pursh (L. pauciflosertòsa, Nutt. L. lunceolàta, Bertol). Stem slender, $1-3 \mathrm{ft}$. high: lower lvs, oblong lanceolate, upon distinct petioles, upper reduced to small linear bracts: heads in a loose raceme, $3-\overline{5}$-fld. ; bracts of the involucre few and rather loosé. Georgia, Ala. and Fla.
Ee. Les. attenuate-linear, the radical 8-12 in. long.
tenuilolia, Nutt. (L. loveigata, Nutt.). Stem slender, 2-4 ft. high: Irs. without distinction of blade and petiole, only a line or two wide: heads in a strict raceme, a foot or more long. about 5 -fld. : pappus strongly barbellate. N. Car. to Fla.

cc. Bracts punctate: heads

 peduncled.graminifolia, Pursh. Stem comparatively slender, 2-3 ft. high: lvs. ciliate toward the base, with scattered hispid hairs: spike less dense, often becoming racemose: head $1 / 2$ in. long; bracts of involucre punctate, rounded at the apex. Atlantic states, Va. to Fla.
AA. Bracts of involncre acute or mueronate.
B. Heads $15-60-\mathrm{fld} .$, cylindrical or turbinate.
c. Bracts with lanceolate, spreading, rigid tips.
squarròsa, Willd. Stem stout, $6-20 \mathrm{in}$. high: Ivs, linear and rigid, the lower elongated and grass-like: spike variable in length, bearing few to many beads, the larger heads 1 in . long; involucral bracts lanceo-

1270. Liatris spicata, var. montana ($\times 1 / 2$). late, rigid, and usually bearing pointed tips, squarrose. Eastern U. S., as far west as Neb. and Tex. B.R. 11: 948 is var. intermedia of this species.

cc. Bracts with closely appressed, mucronate tips.

cylindràcea, Michx. Stem 1 ft . high: 1vs, and spike as in last species: heads few, 16 -20-fld.; bracts of involucre abruptly mucronate. Upper Can. to Minn. and Mo.
BB. Heads 3-6-fld., oblong or narrouly campanulate. c. Inner bracts much longer than the fls.
elegans, Willd. Stem 2-3 ft.: 1vs. linear, the upper soon reflexed: spike dense and wand-like, $3-20 \mathrm{in}$. long: heads $1 / 2 \mathrm{in}$. long; inner involucral bracts prolonged into spreading, petaloid appendages, which surpass the flowers and pappus. Va., to Fla. and Tex. B.R. $t: 267$. cc. Inner bracts not longer than the fls.
D. Pappus bristles very plumose: bracts appressed.
punctàta, Hook. Stem stout, $10-30 \mathrm{in}$. high: Jvs, and involueral bracts punctate and rigid: spike long and
wand-like, dense and leafy; heads $4-6-\mathrm{fld} ., 3 / 4 \mathrm{in}$. long; bracts of involucre oblong, rather abruptly cuspidate, eiliate on its margins: phppus plumose. Saskatchewan and Minn. to Tex. and Mex.

DD. Pappus bristles merely barbellate.

E. Invalucral bracts spreading.
pycnostàchya, Michx. Stem stout, 3-5 ft. high: Ivs. crowded throughout, the lower lanceolate, the upper narrowly linear: spike densely flowered, $5-18 \mathrm{in}$, long: beads about $1 / 2 \mathrm{in}$. long, all sessile; involuce with squarrose tips acute, purplish: pappus copious, minutely barbellate. 111, and la., to Ark. and Tex. R.H. 1883:324. Gn. $55: 1217$. - One of the ehoicest and boldest species.

EE. Involucral bracts appressed.

Chápmanii, Torr. \& Gray. Stem a foot or two high, strict and rigid: Ivs, short, the lower oblong-linear, the opper small and awl-shaped: spike densely flowered. often 1 ft . long: heads about 3 -fld.: fls. large for the size of the head: pappus grayish, the bristles minutely barbellate, about $1 / 2$ in, long. Fla. W.W. Rowlee.

LIBERTIA (Marie A. Libert, a Belgian woman, who wrote on liverworts, about 1820). Iriddeea. This includes some tender bulbous white-fld. plants procurable from Dutch dealers, but for northern gardens inferior to our common hardy Blue-eyed Mary (Tradescantia Virginica). The fls. appear to be 3-petaled, the showy parts being the inner segments of the perianth. The fls, are about 1 in . across, and numerous in large clumps of certain species. Rhizome short: Ivs. linear, equitant: perianth without any tube above the ovary; seg. ments obovate, the 3 outer usually shorter, firmer and less showy than the inner, more or less green or brown; stamens inserted at the base of the segments: filaments free or connate toward the base: orales many, superposed: capsule small, leathery, loenlicidally 3 -ralved: seeds 3-cornered.
The genus has 8 species, found in Australia, New Zealand, Tasmania and Chile. All are white-fld, except L. cerulescens, which is blue. Botanically it is nearest to Diplarrhena, but in the latter the inner segments are shorter than the outer ones and connivent. Libertia belongs in the same subtribe with our blue-tyed grass (Sisyrinchium), but in the latter case all the perianth segments are about equal in size. Baker, Handbook of the Iridea, 1892.
A. Clusters tax: pedicels longer than the bracts.

B. Lus. i-6 in. long, entirely green.

pulchélla, Spreng. Lis not rigid: stem $1 / 2-1 \mathrm{ft}$. long: inflorescence of 1 or few clusters, which are 2-3-11d. S. Australia, Tasmania, New Zealand.
BB. Lrs. 1 tt. or more long, with a broad pale midrib.
ixioldes, Spreng. Stem 1-2 ft. long: inflorescence an ample panicle with numerous peduncled, 2-6-fld. umbels. New Zealand.

AA. Clusters dense: pedicels shorter than the bracts.
formoss, Grah. Lvs, rigid, $1-11 / 2 \mathrm{ft}$. long: stem $2-3 \mathrm{ft}$. long: inflorescence of many sessile umbels. Chile. B.M. 3294. B.R. 19:1630. Gn. 4., p. 192 (fine habit sketch) and 40 , p. 441
W. M.

LIBOCEDRUS (libas, drop, tesr, and Cedrus; alluding to the resinous character of the trees). Conifera. Syn., Heyderia. Incense Cedar. Ornamental, tall evergreen trees of pyramidal habit, with frond-like arranged, mostly flattened branchlets, small, scale-like, opposite lvs., and rather small, orate or oblong cones. None of the species is quite hardy North, but L. decurrens thrives in the vicinity of the city of New York, and even in sheltered places in E. Mass. It is a valuable park tree, forming a symmetrical, narrow pyramid, with bright green foliage. It is also an important timber tree, the wood being light, soft, close and straight-grained, is very durable in the soil, and is used for fencing, for shingles, for the interior finish of houses, and also for ship and boat building. The other species are hardy only South, and, though very ornamental trees, they are hardly cultivated in this country; they are all important timber trees in their native countries. The Incense

Cedars thrive best in a well-drained soil, and prefer open situations; they are liable to lose their lower branches rather early. Prop. by seeds sown in spring: also by cuttings under glass in late summer or fall, which root rather slowly; sometimes grafted on Thuya and Chamaeyparis. Eight species in W., N. and S. America, Aus tralia and S. W. China. Allied to Thuya. Branchlets flattened, rarely quadrangular, frond-like in arrangment: lvs.scale-like, with decurrent base, with or without glands: fls, moncecious or diecious, terminal, similar to those of Thuya: cones oblong to ovate, with 4 , rarely 6 , woody scales, the lower pair sterile, small and short, the seeond one much larger and fertile, each scale bearing two long-winged seeds, the third pair, if present, connate into a woody septum.
decurrens, Torr. (Thùya Craigiàna.Murr, T. gigantèa, Carr., not Nutt.). White Cedar. Tree, to 100 ft ., with erect or spreading, short branches, forming a rather narrow, feathery head ; bark bright cinnamon-red : branchlets much flattened, bright green on both sides: IFs. oblong-ovate, adnate, with long decurrent base, free at the apex and neuminate, glandular on the back: cones obtong, $3 / 4-1 \mathrm{in}$. long, light reddish brown; seales mu cronate below the apex, a third connate pair separating the 2 fertile ones. Oreg, to Calif. and W. Nev. S.S. 10:534. F.s. 9. p. 199. (in. 29, pp. 266, 267. - In cult, the young trees are conspicuous by their bright and deep green foliage, while the trees in their native localities are mostly of a light yellowish green. Var. compácta, Hort. Dwarf compact form of glohose babit. Var. glauca, Hort. With glaucous foliage.
L. Chilensis, Endl. Tree, to 60 ft , with compact, pyramidal head; branchlets much compressed: lvs. plaucous green, small, erect-spreading, ohtuse, with a silvery line beneath: cones ovate oblong, $1 / 2$ in. long. Cbile. P.F.G. 1, p. 47. G.C. 1850, p. 439 . R.H. 1867, p. 410. Gn, 30, D. 552.-L, Doniana. Endl. (L. plumosa. Sarg.). Tree, to 100 ft ., with dense, pyramidal head: similar to the former, but lvs. larger, more closely set and more spreading, without any silvery line beneath: scales of the cone with a large, curved spine on the back. New Zealand. N. 2:261. This species is the most tender of this genus.-L. tetragona, Endl. (L. cupressoides, Sarg.) Tree, to 100 ft ., with compact, pyra midal head, sometimes shruhhy: branchlets almost tetragonal: lvs, ovate or ovate-lanceolate, with slightly spreading and acute apex: cones ovate; scales with a large, curved spine on the back. C'hile to Patag. Gi.C. 1850, p. 439. (in. 30, p. 552.

Alfred Rehder.

LIBONIA floribunda and Penrhosiensis. See Jacobinia.

LICUÀLA (Molueca name). Palmàcea. Low, shrubby fan palms: stems solitary or in groups: lobes of the Ivs. long, wedge-shaped, plicate, truncate and variously lobed or split, deeply and irregularly divided; rachis very short; ligule short: sheaths fibrous: fls. large. Species 36 or more, from trop. Asia to trop. Australia. Allied genera in cult. are Brahea, Serenoa, Erythea, Pritchardia, Livistona, Trachycarpus, Rhapis, From these Licuala is distinguished by the earpels of the ovary 3-angled, slightly coherent; style single, filiform: albumen equable: embryo dorsal.

> A. Les, with lobes more or less grown together: lobes very broad.
> B. Marginal teeth very large, the upper edges bent whder.

Rumphii, Blume. Petiole spiny below: segments $12-15$, the inner ones 2 ft . long and 1 ft . wide at the apex, the lateral ones 16 in . long and 4 in . wide, oblique: marginal teeth broadly ovate, obtuse, shortly bifid. Celebes. Cult. in S. Fla.

BB. Marginal teeth with upper edges not bent under.

grándis, H. Wendl. (Pritchárdia grándis, Bull). Erect palm, the stems clothed above with dead sheaths: Ivs. very many, erect-spreading; petiole $3 \mathrm{ft} .$, slender, glabrous, witb stout, short, straight or curved spines along the margins below the middle; blade orbicular or semiorbicular, very closely plicate, wedge-shaped or truncate at the base, concave, the margins with many short lobes which are obtusely 2 -fid: ligule thick, short, acute, broadly ovate. New Britain. I.H. 28:412 and 41, p. 82. f.C. II. I:415. B.M. 6704. A.F. 7:1145. F.E. 7:982. S.H. I:344.

AA. Lis. digitately divided: lobes narrow. B. Lobes less than 12.

Jeanénceyi, Sander. A dwarf, rapidly growing palm: lvs. deep shining green; lobes blunt, 5 to 8 . New Guinea. Gn. 55, p. 71. F.E. $11: 291$. G.M. $41: 341$.

BB. Lobes 12 or more.

c. Pelioles without spines in the upper parl.
élegans, Blume. Stems thick as a man's body, 4 ft . high, prominently scarred: petioles $3-4^{1 / 2} \mathrm{ft}$. long, the margins with brown hooked spines to just above the middle; Ivs. orbicular; lobes very graceful, the linearlanceolate lateral ones gradually decreasing to 11 in., obliquely truncate, with acute teeth, the middle lobes 16 in. long, truncate, with broader obliquely ovate obtuse teeth, lobes with only 2 or 3 folds. Sumatra.

1271. Lícuala peltata.
cc. Petioles spiny throughout. D. Lvs. ascending.
peltàta, Roxb. Fig. 1271. Lvs. 3-5 ft. diam., orbicular; lobes very variable in length and width, manytoothed at the apex, the teeth $1 / 2-2$ in.; petiole stout, $3-4$ ft . long. The lobes of the lvs. droop very gracefully. G.C. 1872:1657. India. - Adv. 1895, by Pitcher \& Manda. Fig. 1271 is redrawn from Martius.

Abstract

DD. Lus, horizontally spreading. spinòsa, Wurmb. (L. hórrida, Blume). Lvs. 3 ft . or more in diam., orbicular-reniform ; inner lobes 18-22 in. long, $41 / 2-5$ in. wide at the apex, 10 -11-toothed; outer lobes 15 in. long, $11 / 2-2$ in. wide, 4 - 6 -toothed; teeth rather large, triangular-ovate, bifid; petioles obtusely 3 -angled, $4-5 \mathrm{ft}$. long, with brownish hooked spines. Java, Moluceas.

Jared G. Smith. Licualas are very handsome warmhouse palms of moderate growth, several species of which have been grown to some extent commercially. They delight in a tropieal temperature and abundant moisture, and should also be shaded from strong sunshine in order to produce foliage of the deep, rich shade of green that is common to this genus.

The most attractive species is L. grandis, which has been until recent years a costly species owing to its comparative rarity in cultivation. It is probably within ten years that the first consignment of seeds of this species was received in America.

The large fan-shaped leaves of the Licualas are somewhat tender and easily injured, which makes them of

 less value for house decoration, but as exhibition plantsthere are few palms more striking than L. grandis, and L. elegans. L. spinosa and L. peltata are also well worth cultivation, though objection is sometimes found to the strong hooked spurs with which their leafstalks are armed.
W. H. Taplin.

LIGULARIA. All referred to Senecio.
LIGUSTICUM (Latin, referring to the ancient province of Liguria, where a plant was gathered which was something like this and used in medicine.) Umbellifera. This includes a native bardy berbaceous plant suitable for naturalizing with aquaties and bog plants. It has a bold babit, grows 2-6 ft. high and has ternately decompound foliage. Offered by dealers in native plants. The genus has about 20 species scattered in the northern hemisphere. They have large aromatic roots, mostly no involucre, involucels of narrow bractlets and white fls. in large, many-rayed umbels. Consult our manuals or Coulter and Rose's "Revision of North American Umbelliferm," 1888.
actæifolium, Michx. Stem stout, branched above: lvs. 3-4-ternate; lfts. 2-5 in. long, coarsely serrate, broadly oblong: umbel $10-20$-rayed: fruiting rays $1-2$ in. long. July, Aug. Rich ground, S. Pa. to Gulf of Mex. B.B. 2:519.-Int. by H. P. Kelsey.
W. M.

LIGÛSTRUM (ancient Latin name). Oledcec. Including Visidnia. Privet. Prim. Ornamental shrubsor trees with deciduous or evergreen opposite, entire lvs., white or whitish, mostly fragrant As. in terminal panicles, and decorative, usually black berries, of ten remaining on the branches through the whole winter. Some deciduous species, as L. vulgare, Ibota, ciliatum and Amurense, are hardy North, while others, like L. ovalifolium, Sinense and Quihoui, can not be considered quite hardy north of Long Island. The evergreen species are only half-hardy or tender, but L.Japonicum may be grown as far north as Philadelphia. They are all very valuable for shrubberies, with their clean, dark green foliage, which is rarely attacked by insects and keeps its green color mostly unchanged until late in fall, though L. ciliatum sheds the lvs. rather early and $L . I b o t a$ and sometimes L. ovalifolium assume a pretty purplish hue; in mild winters some of the deciduous species hold part of their foliage until almost spring. L. vulgare, ovalifolium and others stand dust and smoke well and are valuable for planting in cities. L. ovalifolium is one of the best shrubs for seaside planting, growing well in the very spray of the salt water (known as California Privet). Some are handsome in bloom, especially L. Sinense, Ibota, Japonicum, lucidum and most of the other evergreen species; all are conspicuous in autumn and winter from the black berries, or in some vars. of L. vulgare, whitish, greenish or yellowish. L. vulgare, ovalifolium and also L. Amurense are well adapted for ornamental hedges. The Privets grow in almost any kind of soil, and eren in rather dry situations and under the shade und drip of trees. Prop. by seeds sown in fall or stratified, sometimes not germinating until the second year; usually increased by euttings of hardwood or by greenwood cuttings in summer under glass; vars, are sometimes grafted on L. vulgare or L. ovalifolium. About 35 species, chiefly in E. Asia and Himalayas, distributed south to Australia, one in Europe and N. Africa: from allied genera distinguished by the terminal inflorescence and from Syringa by the berry-like fr. Lvs. short-petioled, estipulate: fls. perfect, small; calyx campanulate, obscurely 4 -toothed; corolla funnel-shaped, with mostly rather short tube and with 4 spreading lobes: stamens 2: fr. a 1-3-seeded berry-like drupe.

Alfred Rehder.
California Privet for Hedges. - First method.Cuttings 8-14 inches of l-year wood are made in fall or winter, preferably the former, as they are oceasionally damaged by the winter, even as far south as Alabama. These are tied in bundles and buried during winter. In the spring they are stuck in rows $2-6$ inches by $2-31 / 2$ feet, and kept cultivated. They are sold at 1 year, when $1-21 / 2$ feet high, or at 2 years, when 2-4 feet higb. If not sold at 2 years the plants are sometimes cut back to 3 inches to sprout again. They are dug by spade or treedigger. These closely grown plants will make a hedge,
as shown in Fig. 1272, especially if dug with spade and given short roots. lf 3 -year plants, not cut back, are used, the base is open, as the old wood at the lower part of the piant has had its side branches weakened or killed by erowding and they do not readily branch out. Plants

1272. Comman methnd nf making Privet hedge. (Scale $1 / 2 \mathrm{in}$. to ft .)
grown by this method are frequently planted in a double row.

Second method. - Cuttings of 5-6 inches of stout, 1-year wood, are made in November. The cuttings are made short so that the roots will not be cut off by the treedigger. The loaves are stripped off, and the cuttings tied in small bundles, as large bundles mold. These are buried, tops up, over wiuter. In the spring, before growth starts, they are plauted in rich, mellow land 4 inches apart, with rows 8 inches apart. To plant, a back furrow is plowed in the center of the block, the top raked off, a line stretched and pegged down. The cuttings can then be inserted nearly full length. The trampling of the row settles the soil enough to expose the top buds. With a one-horse plow the bottom of the furrow is loosened where the planters have packed the soil, and new furrows are made around the strip planted. The cuttings are tilled during summer with a wheel-hoe or hand-plow. To make wide plants, the tips of the shoots are pinched when they are about 3 inches long. This is repeated at intervals of about three weeks during the summer. Nitrate of soda may be used to hasten growth. This method produces a plant as shown in Fig. 1273.

The plants may be dug in the fall and heeled-in, to prevent possible winter-killing. They are then sorted into grades and planted in the spring $11 / 2-2$ feet apart in rows 3-4 feet apart against the land side of a deep furrow, and a littie soil kicked over the roots. The filling is completed with a one-horse plow. Before filling, fine manure may be spread near the piants.

The plants should be straightened up and trampled firm. When finished, they should have the lower branches covered and the lower end of the cutting not below the level of the tree-digger. The pinching-back process may be continued, or the tips may be cut with a sickle during the early part of the season, especially on plauts of the smaller grade. To get more roots on the branches the plants may be hilled-up. They are cultivated with a one-horse cultivator or a two-horse riding cultivator. At two years these will make plauts $21 / 2-3 \frac{1}{2}$ feet high and $11 / 2-2$ feet wide at the base.

Dig with a tree-digger that operates on one or both sides. The plants may be set 12 15 inches apart, 4-6 inches deeper than before, and produce a hedge as shown in Fig. 1974. A smaller number of plants is required than when plants grown by the first method are used.
As there are numerous vigorous buds near the ground, the growth is very dense at the base. After planting, the tops may be cut off to an even height.

Various forms of hedge are used, as shown in Fig.
1275. No, a is used on Long Island; b is used at Newport. At Newport, by repeated clipping, the leaves become very small and the growth dense, resembling a wall. Nos. d and e frequently result from using narrow plants and ailowing them to grow at the top.

Third method. - At Biltmore Nursery, North Carolina, the Privet cuttings are run through a stalk cutter and the pieces sown in a furrow.

Henry Hicks.

INDEX.

Alivoni, 7.
Amurense, 4.
angustifolizm, 1.
anreo-marginatum, anrecr
5,
.
Californicum, 5.
buxifolium, 10.
Chinense, 11.
ciliatum, 2.
coriaceum, 8 .
excelsum, 7.
Fortunei, 11.
glabrum, 6.
glaucum, 10.
Ibota, 2, 3, 4.
Italicum, 10 .

Japonicum, 5, 6, 7. Ketlerianzem. 6. Kellermanni, 6. longifolium, I and supp. list. lucidum, 7, 8. macrophyllum, 7 . magnolioefolium. 7. Massalongianum, 1. meadia, 2. medium, 2, 5 . myrtifolium, 1. Nepalense, 9. obtusifolium, 3 . ovalifolium, 5. peudulum, 10 .

Quihoui, 12.
Regelianum, 3. robustum, 7 . rosmarinifolium, 1. sempervirens, 10. Sicboldi, 6.
Sinense, 7, 11 spicatura, 1, 6. 7, 9. Stauntoni, 11 and supp. list.
syringaflorum, 6. tricolor, $5,7$. variegatum, 5, 10. villosum, 11. vulgare, 10.
A. Corolla with the tube 2 or 3 times longer than the limb.
B. Les. linear-lanceolate or linear, evergreen.

1. Massalongiànum, Vis. (L. longifolium, angustifolium, myrtifolium, rosmarinifolium and spicàtum, Hort.). Erect shrub, to 3 ft. , with warty and pilose branchlets: lvs, tapering at both ends, glabrous, $11 / 2-3$ in. long: panicles much branched, many-fld. with rather small pedicelled fls., $21 / 2-3 \frac{1}{2} \mathrm{in}$. long. July, Aug. Himal. G.C. 11. 16:149.-Graceful half-hardy shrub.

2. The Privet hedge at final transplanting.
(Scale $1 / 2$ in. to ft .)
BB. Les, oblong to ovate or oval.
c. Foung branchlets and inflorescence pubescent: lis. deciduous.
3. ciliàtum, Blume (L. Ibota, Sieb. \& Zuce. L. Ibòfa, var. ciliàtum, Dipp. L. mèdium, Hort., not Franch. \& Sav.). Shrub, to 6 ft , with erect and spreading branches: Ivs. rhombic-ovate or ovate-lanceolate, acute at both ends, appressed pubescent near the margin and finely ciliate and pubescent on the midrib beneath, 1-2 in. long: panicles small, erect, about 1 in . long: fls, almost sessile; calyx glabrous: fr. shining. June. Japan. This is one of the least decorative species; it has been introduced under the erroneous denomination of L. medium, which is sometimes misspelled L. meadia.
4. Ibòta, Sieb. (L. obtusifolium, Sieb. \& Zuce.). Fig. 1276. Shrub, to $10 \mathrm{ft}$. , with spreading and curving branches: Ivs. elliptic to oblong-obovate, acute or obtuse, usually only pubescent on the midrib beneath, $1-2$ in. long: panicles nodding, small, $1-1 \frac{1}{2}$ in. long, numerous along the branches on short branchlets: fls. short-pedicelled; calyx pubescent: fr. With slight bloom. June, July. Japan, China. G.F. 6:425. M.D.G. 1899:218, -Graceful shrub, hardy North. Var. Regeliànum, Rehder (L. Regelidnum, Hort.). Low, dense sbrub with almost horizontally spreading branches and oblong or obovate, usually more pubescent lvs.
5. Amurènse, Carr. (L. Ibòta, var. Amurénsis, Hort.). Shrub, to $15 \mathrm{ft} .$, with upright branches: Ivs. oval or oblong, usually obtuse, somewhat glossy above, glabrous except the midrib beneath, $1-21 / 2 \mathrm{in}$. long: panicles erect, often rather many-fld., $1-21 / 2$ in. long: fis, short-pedicelled: calyx glabrous or slightly pubescent near the base. June, July. Japau, China. R.H. 1861, p. 352.Similar in habit to the following and almost half-evergreen.

cc. Foung parts glabrous: lis. half-evergreen.

5. ovalifolium, Hassk. (I. Californicum, Hort. L. Jıpónicum, Hort., not Thunb., and probably L. mèdium, Franch. \&Sav.). CALifornia Privet. Shrub of upright babit, to 15 ft ., quite glabrous: 1vs, cuneate at the base, elliptie-ovate or ellipticoblong, acute, dark green aud glossy ahove, yellowish green beneath, $11 / 2-21 / 2$ in. long: panicles ereet, many-tld., rather compact, to 3 in. long: fls. almost sessile. July. Japan.-A very bandson:e shrub, but of somewbat stifi habit: well adapted and much used for hedges (see Mn. 6, p. 9). Var. aureo - marginàtum, Hort. Lvs. edged yellow. Var. variegatum, Hort. (var. robustum variegùtum, Hort.). Lvs, variegated with yellow. Var. tricolor, Hort. Lvs. variegated with yellowish and white, pinkish when young (Mn. 2, p. 42).

AA. Corolla with the tube as long as the limb or shorter. B. Foung growths glabrous: lys. evergreen.
6. Japònicum, Thunb. (L. glàbrum, Hort. L. Kelleriдиum, Vis. L. Kéltermanni, Sièboldi, spicàtum and syringaflorrem, Hort.). Busby shrub, to 10 ft.: 1 vs. roundish-ovate to ovate-oblong, acute or obtusish, with reddish margin and midrib, veins beneath not distinetly marked, $2-31 / 2 \mathrm{in}$. long: panicles broad, rather loose, to $41 / 2 \mathrm{in}$. long; tube usually somewhat longer than calyx. July, Aug. Japan. - Very bandsome evergreen shrub, but in colder climates often losing the lvs. in fall; often confounded with the following, and also with the former.
7. lùcidum, Ait. (L. Japónicum macrophýllum, L. magnoliafòlium, L. Sinénse latifòlium robústum and L. spicatum, Hort.). Large shrub or tree, to 20 ft ., witb somewhat spreading branches, similar to the former: ivs, larger, ovate to ovate-lanceolate, acute or acuminate, distinctly veined beneath, $3-5 \mathrm{in}$. long: panicles less loose, with almost sessile fls.: tube about as long as calyx. July, Aug. Japan, China. B.M. 2565; 2921 (as L. Vepalense glabrum). G.C. II. 10:753.-Larger leaved than the former, but more tender. It yields the white wax, an exudation of the branches, caused by an insect, Coccus Pe-lah; therefore cult. in China. Var. Alivòni, Arb. Kew. (L. Japónicum, var. Alivòni, André). Lvs. ovate-lanceolate, to 8 in . long, acuminate, sometimes with yellowish variegation when young. Var. aureo-marginatum, Hort. (L. excelsum aureum, Hort.). Lvs, margined yellow. Var. tricolor, Arb. Kew. (L. Janónicum tricolor, Hort.). Lvs. with yellowish variegation, pink when young.

1275. Conventional forms of California Privet hedges.

8. coriàceum, Carr. (L, lùcidum, var. coriàceum, Deene.). Dwarf, dense shrub, with short, rigid branches, to 6 ft, , very leafy: lvs. orbicular or orbicular-ovate, convex, dark green and shining above, $11 / 2-21 / 2$ in. long: panicle compact, 2-4 in. long, with sessile fls. July. Cult. in Japan, not known wild. B.M. 7519. R.H. 1874, p. $418 ; 1888$, P. 440 . F. 1876, p. 65.

BB. Foung branchlets antl inflorescence pubescent or puberulous.
c. Lus, evergreen, $2-5 \mathrm{in}$. long.
9. Nepalénse, Wall. (L, spicàlum, Don). Erergreen shrub or tree, with pubescent branchlets: 1vs, oblong or oblong-ovate, acuminate, pubescent beneath, $2-5$ in. long: panicles rather large and broad, interspersed with petioled bracts. July, Aug. Himal.
cc. Lus. deciduous or half-evergreen, 1-21/2 in. long.
10. vulgàre, Linu. Common Privet or Prim. Shrub. to 15 ft .: branclilets and panicles puberulous: Ivs. oblong-ovate to lanceolate, obtuse or acute, glabrous: panicle rather dense, pyramidal, $11 / 2-21 / 3$ in. long: stamens sborter than the limb. June, July. Eu., N. Afr., W. Asia. Naturalized in some places, chiefly in the East. B.B.2:604.-Many garden forms. Var. buxifollum, Nichols. Lvs. ovate or oblong-ovate, obtuse, half-evergreen.

Var. glaùcum albo - marginàtum, Hort. Lvs. bluish green, with narrow white margin. Var. Itálicum, Kirchn. (L. Italicum, Mill. L. sempérvirens, Pieri.). Lvs. linear-lanceolate, almost evergreen, Var. pendulum, Hort., with pendulous branches. There are also vars. witb fruits of different colors, as var. chlorocarpum, Loud., with greenish, var. leucocarpum, Loud., with whitish, and var. xanthocarpum, Loud., with yellowish fruits. Of the variegated forms, var. aurreum, Hort., with yellow foliage, and var. variegatum, Hort., with the lvs. blotehed yellow, are the most important,

1I. Sinénse, Lour. (L. F'orthmei, Hort.). Slirub, to 8 ft., with slender spreading branches: branchlets pubescent: lvs. oval to ovate-lanceolate, pubescent along the midrib beneath, at least when young: panicles pubesbent, loose, to 4 in . long, with distinctly pedicelled fis. China, Corea. Two forms can be distinguished. Var. villosum, Rehder (L. villòsum, May). Lvs, oral to ovate-lanceolate, obtuse oc acute, pubescent beneath, especially along the midrib: panicle narrow. G.C. 1858 , p. 621. Var. Staùntoni, Rebder (L. Staùntoni, DC.). Less high and more spreading: lvs. oval to ovate, obtuse or emarginate, pubescent on midrib beneath, panicle broader and more loose. G.C. 11. 10:365. G.F. 3:213.
12. Quihoui, Carr. Shrub, to 6 ft ., with spreading branches: branchlets and panicles finely pubescent: Ivs. elliptic-oblong or narrow-oblong, obtuse, glabrous, somewhat coriaceous, 1-2 in. long: fls, almost sessile, in small clusters, forming at ends of the brancbes long, panicled spikes. June-Aug. China. G.C. 11. 18, p. 277.
L. brachystachyum, Decne. Closely allied to L. Quihoni, but of upright habit, with larger lvs. and shorter, more compact panicles.-L. compáctum, Hook. f. \& Thomps. (L. lancifolium, longifolium, lineare and Simoni, Hort.). Evergreen shrub, quite glabrous: lvs. lanceolate, to 6 in.: panicle large, compact tube short. Himalayas. $-L$. insulere, Decne. (L. Stauntoni, Hort., not DC.). Shrub, to 6 ft ., allied to L. vulgare: lvs. ellipticovate to linear-lanceolate, yellowish green, often pendulous. 2-3 in.: panicles rather large. Origin uncertain. - P. Lehinénse, Hort. = Syringa Pekinensis. $-L$. strongylophýllum, Hemsl. Evergreen shrub or small tree, ahmost glabrous: Ivs, orbicular or obovate, $1 / 2-1$ in.: panicle rather loose. Cbina. - L. Walker, Decne. Allied to L. Nepaleuse: Jvs, ovate to lanceolate, gla brous, to 3 in.: panicle large, to 6 in . Ceylon, Neilgherries, G.C. III, 24:282. G.M. 41:683.

Alfred Rehder.
LILAC. See Syringa.

LILIUM

LILIUM (ancient Latin name). Liliderere. Lily. The Liltes have always been looked upon as amongst the noblest of garden plants. Their conspicuous flowers, striking colors, and their stately forms appeal strongly to the eye and to the imagination as well. They are among those good "old-fashioned" plants which frequently and justly come newly into vogue. Lilies are less understood and less discriminatingly appreciated than almost any other plants of prominence. The Tiger Lily is a favorite and old-fashioned flower, to be found in many of the mosr homely and unpretending gardens. Now and theu one finds a good group of the Madonna Lily, very rarely a cluster of the beautiful little Coral Lily, and sometimes the landscape gardeners furnish free-handed clients with masses of the Gold-banded Lily in the shrubbery borders. The Easter Lily is largely forced by the florists, as are also certain varieties of the Speciosum group. But aside from tbese, no Lilies can at present be classed as real farorites of the American public, while dozens of magnificent kinds are practically unknown.

In the opinion of the writer, the three best Lilies for everybody to grow are L. ligrinum, var. splendens: L. speciosum, var. rubrum; and L. tenuifolium. To these the following species may be added as well worthy of general culture, at least in the eastern states (the order given is approximately that of the writer's preference): L.elegans (many varieties, all good), auratum, concolor and its var. partheneion (the Coridion Lily), Brownii, Henryi, Chalcedonicum, testaceum, candidum, maculatum, puberulum, Japonicum var. roseum, longiflorum, pomvonium. The connoisseur should not be without L. Maximowiezii, Canadense, Parryi, Nepalense, monadelphum, pardalinum, superbum, Washingtonianum, Grayi, Wallichianum, Philadelphicum, Columbianum, Neilgherrense. All these will succeed fairly well, and many of them are of the easiest possible culture.
Lilies are ornamentally useful principally for their flowers. Their foliage is seldom of a character to assist in any scheme of garden decoration. Certain species bear flowers in such quantity and of such pronounced colors that they make very effective masses. Such strokes of color can best be worked into the garden picture at carefully chosen points in the horders, especially where the rich sunlight of early morning or late afternoon takes its rest. For fine mass effects of this kind the divers varieties of L. elegans, particularly var. fulgens, are excellent. L. tigrimum, var. splendens and L. lentifolium are also striking; while other sorts which mass well, but are of more modest colors, are L. speciosum, auratum, Chatcedonicum, concolor, and Brownii. Lilies of many sorts are highly agreeable when scattered-not massed-somewhat freely through shrubbery borders, or with large hardy perennials. Almost any Lily is satisfactory when so placed, but the varieties must not be mised, and there should be enough plants to avoid a feeling of thinness and isolation.
Lilies are native to the north temperate zone. The majority of our best garden Lilies, such as L. tigrimam, auratum, speciosum, and the fine new Henryi, come from western Asia, whereas none of the American species is especially successful in our gardens. Throughout Japan, eastern and southern China and Burma, and the adjacent islands, are found dozens of the most gorgeous species.
The genus Lilium is the type of the order Liliacere, a family crowded with plauts of garden value. The family has over 2,000 well-known species, and of the 187 genera probably balf are in cultivation. There are many monographs of the genus Lilium in rare and costly works and in various languages. The latest and most sumptuous one is "A Monograph of the Gienus Lilium," by Elwes, published in 1880, with magnificent colored plates. It is referred to below by the ahbreviation El. Unfortunately, there is no recent book on Lilies in the English language which combines the borticultural and botanical points of riew. The latest botanical review of the whole genus will be found in the "Botanical Gazette" 27:235 (1899), to which the student is referred for fuller descriptions than those given below.
F. A. Walgh.

Cultcre. - In the growing of a large collection of Lilies in the open air, the hest results can be obtained only
with a variety of soils and conditions. Heavy soils are not suited to many of the Lily tribe. Afew species, like L. superbum, Canadense and tigrinum, may do well in heavy soil, but a light soil with sand and gravel intermixed, one from which any excess of moisture runs off, is much better for a large collection. Drainage is of great importance. The slope of a hill, if not too steep, affords a chance for varied degrees of drainage; the

upper portions are suited to such as prefer the driest ground, as L. Philadelphicum, concolor and Washingtonianum, while at the bottorn, if the drainage be good, L. auratum, testaceum. candidum and others would thrive. No general rule for the culture could be given for all. A slate ridge seems to be well suited to some Lilies. L. concolor, Philadelphicum, Grayi, the varieties of elegans, Washingtonianum, puberulum, Columbia num, Marimowiczii and others seem to like such soils, and with deep planting will stand more drought than in lighter soils.
Lilies like some shelter from severe winds as well as midday sun. They do finely among Rhododendrons. The point is not so much to shade the stems and foliage as to keep the ground over the bulbs cool and moist. An open frame is an admirable place for planting Lilies, with 3-4 in. of peat or leaf-mold over the bed, which keeps them cool. Peat is very beneficial also when mixel with the soil about the roots.

The scales of Lily bulbs shrink by exposure to air, and in this way the bulb is weakened. Bulbs with shrunken or flabby outside scales are less valuable than with firm and plump ones. They may be kept in damp soil, boxed tightly for some time, but many of the store bulbs have lost much of their ritality by the time they reach the purchaser. It is not rare for such bulbs to fail to grow until the second season. L. monadelphum, maculatum and Brownii frequently do not appear above ground until the second season, if their scales have been dried to any considerable degree.

Among the kinds which seem to do well in any ordinary light soils, and which, as a rule, may be grown with least \in ffort, are L. auratum, Chalcedonicum, candidum, elegans and its common varieties, testacerm, maculatum, Henryi,tigrinum, Martagon, Masimowiczii, longiflorum, monadelphum, and the varieties of speciosum. L. superbum and fanadense are also easily grown and do well with considerable shade. L. Philippense, 'atesbei and Neilgherrense are not suited to outdoor culture in the Nortb. L. Nepalense and sulphureum may be grown in Vermont with fairly good results, but should not be allowed to freeze during winter. All Lilies are hetter if their bulbs are not frozen. Most of them will stand some frost at a good depth, but frost seems to weaken them and Lily diseases attack the weaker plants first.

The Lily blight or disease, which seems to affect Lilies in much the same way that the potato rust does the potato, is more damaging to some species than to others. Those from the Pacific coast seem to be more subject to
this disease than the Japan species. The disease is common in our wild Lilies and is sometimes found on them in their natural habitat. In cultivation the disease often ruins flowers, foliage and the stalks of L. Canadense without seeming to affect the bulbs. It is common on L. candidum, and we now seldom find bulbs eutirely free from it. The Bordeaux mixture has been found beneficial in fighting the Lily disease, but the best results are attained by using it as a preventive, applying it to the foliage before any blight appears.

In planting new bulbs, it is well to use ground that has not had Lilies for some years. All stalks and foliage affected by blight should be removed and burned, and blighted bulbs and scales, especially such as are worthless from decay, shonld be burned, as these may belp to propagate the disease.

As a rule, Lilies like a rich soil, but it seems to be the general opinion of all who bave had expertence in growing them that manures (particularly fresh manures) should not be allowed to come in contact witb the bulbs. Many advocate the application of all manures as a mulch, letting the rains carry down their fertilizing ingredients. Wheo the enrichment is not allowed to come in contact with the bulbs, but is placed within the reach of the extended roots from the bulb, well corpposted manares seem not injurious. Lilies, as a rule, do better when set at considerable depth. They seem to resist drought better, and the bulbs are no doubt kept cooler in hot weather. Most Lilies throw out many roots along their stems between the top of the bulb and the surface of the soil, and deep setting is rather necessary to this root-growth. Deep spading should go with deep setting, and it is not too much to say that the ground should be spaded twice as deepas the bulbs are placed. Sphagoum moss bas been fornd beneficial to some species. Among such are L. auratum and candidum. Two or three inches of the frest moss may be placed under the bulhs. It bas been used with success uuder others, and is especially good for L. testaceum.

Lilies are propagated from seed, from scales and from offsets. With one or two exceptions, the production of bulls from seed is a very tedious process. Several species seldom, if ever, produce seed in this country. Among these may be mentioned L. candidum, speciosum, testaceum, maculatum, Brownii, tigrinum, Chulcedonicum, and some varieties of elegans. Some species, such as L. auratum, seldom germinate until the second summer after planting. L. lemuifolium is, however, an exception to most species, for not only does the seed germinate the first year, but it is not rare for some of the bulbs to bloom the second summer.

In growing Lilies from scales, it is a good plan to remove outside scales from strong bulbs when quite ripe or in early spring, and plant these scales where they will be kept moist and warm. They generally change into bulblets the first season and make a fairly good growth by the second autumn. If well cared for they are large enough to sell by autumn of the third season. Lilium tigrinum, bulbiferum and sulphureum have bulblets in the axils of their leavex, which, if gathered as soon as mature, may be planted, and with good care usually bloom the third or fourth year. In many other kinds offisets form along the stems beneath the surface and down to the bulb, which, when planted out, make good bulbs in about 3 years.

Lilium longiflorum, Maximoreiczii, especially the red variety, and most of the varieties of elegans, have a large number of offsets aloug their stems under the surface of the ground. The number is larger in seasons when plenty of rain comes during their growth than in dry seasons. L. candidum is set with best results as soon as the foliage begins to turn in August; and it is at this same season that its scales should be planted for propagation. When good, healthy scales of this species are planted out early, they usually change the same autumn into bulbs, and most of them will send ap leaves before winter.
F. H. Horsford.

Lilies in Canada. - Some of the species generally recommended for garden culture as hardy do not stand at Ottawa. Those that have failed are L. condidum (of late years from disease), Krameri, cordifolium, speciosum. Kratzeri, Canadense, Harrisii, auratum, and vars. pictum, platyphyllum, hyemale, Hittei. Those
that bave held their own, but have not increased, are L. Maximowiczii, pomponium, Pyrenaicum, elegans semi-pleno and elegans incomparabile. Those that have increased and been perfectly bardy are L. *longiflorum, *Brownii, *croceum, *Batmannia, * Wallacei, maculatum, *Duhuricum, elegans and rars. *citrinum and others, L. "tigrinum, tigrinum, var. Fortunei and flore-pleno, L. speciosum vars, album, *roseum, rubrum and *Melpomene, L. *Martagon, *superbum, "pardalinum, "testaceum, "pomponium. Those starred (*) are the most satisfactory. It would be well to warn growers that in the average garden L. aurafum, in all its varieties, will not last more than 2 or 3 years witbout renewing. Some of the more expensive rarieties flower only once.
An important characteristic of Lilies is perfume, a point in which they differ very much. It is rery strong in L. candidum, longiflorum and the auratums, and the atmosphere is full of the delicious odor on a quiet evening. It is fainter in L. testaceum, and rank in L. crocerm and related species, and a positive stench in L. pomponium-almost unendurable in the garden and unbearable in the house. Beautiful as \boldsymbol{L}. pomponium is in color and habit, the odor outweigbs these good points, and makes it undesirable and not to be recommended.
R. B. Whyte.

The Easter Lily.- In North America a tall and large-flowered torm of Lilium longiflorum, and one that can be readily forced in a relatively bigh temperature, has come to be known as the Easter Lily. This variety was introduced from Bermuda. About 1875, a Philadelphia woman, is returning from Bermuda, brought with ber two Lilies in bloom and presented them to a local florist. The bulbs were increased to one hundred in the next three or four years, when the plants were seen by W. K. Harris, an enterprising Philadelphia florist. The earliness of blooming and prolificacy of the bulbs were striking featares, and led to their purchase by Mr. Harris. In 1882, the Lily was introduced under the name Lilium Harrisii. It bad been exhibited previously in New York and Philadelphia, where its early flowering brougbt it into prominent notice. While the Lily was being increased prior to its introduction, other florists who had seen it were gathering bulbs in Bermuda and

1278. Lilium Japonicum $(\times 1 / 3)$.
endeavoring to secure a stock. In 1882, it was also introduced by a Pbiladelphia florist under a long Latin name, and later by a New York florist as the Bermuda Easter Lily. Practically all of the names except Lilium Harrisii have been discarded. To botanists it is known as L. longiflorkm, var. esimium. The distinguishing trait of L . Harrisii-and this gives it its emphatic commercial value-is its power to stand a bigh temperature, allowing it to be forced into bloom
throughout the winter. A second favorable feature is the production of an unusually large number of flowers from each bulb, and a third, the large size of the flowers. It is practically impossible to obtain uniform and good stock of the true variety from Bermuda at the present time.

The propagation and general management are not unlike that given other bulbs of its class. It is multi-

1279. Lilium Philadetphicum $(\times 1 / 3)$.

plied by offsets, in whicb the variety is prolific, a hulb sometimes producing as many as fifty. When first introduced, the stock was increased from the bulb scales, and from cuttings of the stem before the plant had bloomed.

The Easter Lily is not difficult to grow under glass, if one has strong and healthy bulbs. The perplexity in its culture, of which one sometimes hears so much, is due to the fact that bloom is usually wanted at definite seasons, as New Year's, Easter, Decoration Day. Now, the time at which any bulbous plaat will bloom depends to an important extent on the age, size, fresbness and degree of maturity of a given bulb. Each bulb is to a great degree a law into itself. This explains why it is so difficult to secure uniform bloom at a definite time. The dates of pottiag and shifting which give satisfactory results one season may give unsatisfactory results the following season. What the gardener does, therefore, is to start bis bulbs early, and then retard or force them by varying the temperature, as the crop and occasion may demand. He grows them in pots, so that he may shift them from house to house.

In common with all hardy or spring-blooming bulbs, Easter Lily bulbs should be kept cool uotil roots have formed, when they may be brought into heat for flowering. Secure the bulbs as early as possible. Place your order in early summer. You will do well if they are received in early September. Keep them moist: if they become dry and shrivelled, much of their vigor is lost. There are three leading commercial grades, measured by the average circumference in inches of the bulbs, the $5-7$'s, $7-9$'s, $9-11^{\prime} s$. The $7-9$ is usually the most ser-
viceable and economical grade for the commercial florist. It is best to put them into small pots (usually 4 ia.) to form roots, and to transfer them, when growth has begun, to the pots in which they are to bloom. Handling them at first in small pots saves labor, economizes room, and may give stockier plants. By growing them in pots, the plaots may be shifted from cool to warm parts of the bouse, thereby insuring greater uniformity of season; and all diseased plants are readily detected and easily discarded.

In September or Octoher, then, the bulbs are firmly potted. If the soil is rather beary, set the bulb on a eushion of sand (see Fig. 990, p. 192). The top of the bulb should be about level with the surface of the soil. The best earth is one which is light and rather fibrous, devoid of clay. A good potting soil (see Potting) will answer. The 5-7 and $7-9$ sizes may be put in 4 - or $41 / 2$ inch pots, and the $9-11$ in 5 -inch. Plunge them in a frame in the open, covering with sifted coal ashes or excelsior; or put them in a cool cellar. Here they may remain (in New York) until the 10 th or 15 th of Decemher. Protect them from very severe weather and from beating rains. By early December they should bave made good balls of roots, and a little top growth. Bring them in, and shift into 6 -inch or 7 -inch pots, one bulb in each. For decoration, 3 to 5 small bulbs may be put in 8 - to 10 -inch pots, choosing bulbs of equal strength in order that the bloom may be simultaneous. None of them will need transferring again. For eariy results for cut-flowers, it is customary to put the $5-7$ bulbs at first into 5 -inch pots and to put them at once on the benches, keeping them rather cool for a time. Flowers may then be secured for the holidays.

Keep them cool. A carnation temperature suits tbem well until they begin to bloom, when a higher temperature is desirahle. Start with a night temperature of 45° to 50°, increasiog to 60°. If the flowers begin to open too soon, remove to a cooler house which is partially shaded, where they may be retarded as much as two weeks. If they are too late, give more heat. The electric light run at night will hasten the bloom perceptibly. Rarely ean more than 80 or 90 per cent of a crop be made to bloom simultaneously, Following are the dates of a crop which was forced for Easter (at Cornell) :

October 9. Bulbs received and potted, and plunged in frames.
December 11. Brought into house.
December 12. Shifted to permanent pots, and plunged in a bed in a house having night temperature of 50°.
February 5. First buds seen; some of the pots transferred to a warmbouse (temperature for tomatoes).
March 20. Plants in bloom in warmhouse.
April 15. Easter. Plants io full bloom in coolhouse.
Give Easter Lilies plenty of light. Keep down the aphis by fumigating with nicotine rapor oace a week. If the bugs get a start, give them a little very weak tobaceo water. Stake the plants when about 2 feet higb. A good plant from a 7-9 bulb should bave 3 to 5 flowers open at once, and $1-3$ buds. After flowering, the bulbs are practically worthless. They may be planted in the border and may give a few flowers that season; and if well protected they may gife some satisfaction for sereral seasons. If the bulbs are to be planted in the bor der, ripen them up in the pots by gradually withholding water. In rare cases they bave been forced again the second winter, but the attempt is not to be advised except for experiment.

All the above remarks are intended for the true Easter or Harrisii Lily. Lately L. longiflorum itself bas come into use for greenhouse work. It is usually more uniform, of lower growth, and a neater plant. It does not force so well, however, and is usually difficult to get for an early Easter. It should be io prime for Decoration Day. Some of these Longiflorums come from Bermuda and otbers from Japan. The Bermudagrown Lilies are less reliable than formerly. It is probable that Cuba and the southern parts of the U.S. will grow the stock in time.
L. H. B.

The genus Lilium is distinguished by baving flowers with the perianth of 6 distinct segments, deciduous, clawed, the claws usually distinetly grooved; stamens

6, equal, slightly adhering to the ovary below; anthers attached near the middle, dehiscent along the edges; style clavate, more or less curved: ovary sessile or nearly so, 3 -celled, with many horizontal orules. Succulent herbaceous plants, with scaly bulbs and leafy, upright stems: lvs. scattered or whorled: fls. showy, solitary, umbellate or racemose.
Subgenus 1. Eulirion. Perianth funnel-shaped, with oblanceolate segments, which are recurved only at the tip: Ivs. linear or lanceolate, sessile or nearly so.
Subgenus 11. 1solirion. Fls, usually single or umbellate; perianth erect, spreading; segments recurved only in the extended flower, but not revolute; stamens diverging from the straight style.

Subgenus 11I. Archlirion. Perianth broadly funnelform at the base; segments finally broadly spreading or twisted, revolute, usually promiuently papillose within; stamens diverging from curved style.

Subgenus IV. Martagon. Fls. strongly nodding, with perianth segments very revolute; stamens diverging; style curved.

Suhgenus V. Pseudomartagon. Inflorescence usually paniculate, with fls tending to be erect or only slightly nodding; perianth funnelform; segments slightly recurved at the tip, or finally recurved from the middle. American species.

Subgenus V1. Cardiocrinum. Lus. stalked, cordateovate: perianth funnel-shaped, usually more or less irregular; segments oblanceolate, recurved only at the apex.
album, 22, 25. Alexandre, 6. alutaceum, 17. angustifolium, 28. Armeniacum, 17. atrosanguineum, 17. aurantiacum, 15, 17. anratum, 21. autumnale, 27.
Batmannice, 17.
bisolor, 17.
Bloomerianum, 24
Brownii, 7.
bulbiferum, 15.
Californicum, 24. 28.

Canadense, 36, 37. candidum, 8.
Caroliniannm, 27. Catesbæi, 18 Chalcedonicum, 33. citrinum, 17. Colcbesteri, 6, 7. Colcbesteri, 6, Columbianum, 23. concolor, 14. cordifolium, 38 coridion, 14. eroceum, 16. Dahuricum, 13, 17. Dalhansomi, 25. Dalmaticum, 25. Davuricum, 13. elegans, 17. excelsum, 31. eximium, 5 . formosum, 17.

1NDEX.
Fortunei, 19.
fulgens, 17 .
giganteum, 39. Grayi, 35. hematocrorum, 17. Harrisii, 5. Hansoni, 26.
Heldreichi, 33. Henryi, 20. Humboldtii, 24. Isabellinum, 3 I Japonieum, 6. Kraetzeri, 22. Krameri, 6. lancifolium, 29. Ledebouri, 29. Leichtlini, 30. teucanthemum, 7. Lishmanni, 19. Liu Kiu, 5. longifforum, 5. maculatum, 8, 26. Martagon, 25. Masseyi, 13 . Massey, 13 . Melpomene, 22. monadelphum, 29. montanum, 13. Neilgherrense, 4. Nepalense, 9. ochroleucum, 3. pardalinum, 28. Parryi. 11. partbeneion 14, parviflorum, 23. parvum, 36. Philadelphicnm, Philippense, 1.
plenescens, 19. [8. pleno-monstrosum, pomponium, 32. pracox, 22. Pseudo-tigrinum, 30.
paberulum, 24. pulchellum, 14. purpureum, 12. Pyrenaicum, 32. rosenm, 6. rubellum, 10. rubescens, 12. rubrum, 22, 32. sanguineum, 17. Sayi, 23.
Sinicum, 14. speciosum, 8, 22. spicatnm, 8 . splendens, 19. striatum, 8. sulphureum, 3. superbam, 27. Szovitzianum, 29. Takesima, 5. tenuifolium, 34 . testaceum, 31. Thunbergianum, 17. tigrinum, 19. umbellatum, 17. Walkeri, 36. Wallacei, 17. Wallichianum, 2. Warei, 28.
Washingtouianum, Wilsoni, $5 . \quad[12,28$. Wittel, 21.

SUBGENUS I. EULIRION.
A. Tube scarcely widened from base to middle.
B. Les. linear, 1-nerved.
c. Height 2 ft. or less 1. Philippense
cc. Height 3 Il. or over.
D. Fls. while; anthers
yellow
2. Wallichianum
DD. Fls. purplish or yellowish; anthers
bгожп. 3. sulphureum
вв. Lvs. lanceolate, s-nerted or more. c. With creeping subterranean stem cc. Stem usually erect from the bulb. 4. Neilgherrense ce. Sthe bulb............. 5. longiflorum

AA. Tube widening gradually from base to neck.
B. Lvs. narrow-lanceolate,

1-nerved, not whorled.
c. Fls. white or pink...... 6. Japonicum
cc. Fls. purplish, especially outside........ 7. Brownii
Bb. Lvs. broad lanceolate, s-7-
nerved, not whorled.
c. Fls. in spike, usually white $\ldots \ldots \ldots \ldots \ldots$. 8. candidum
cc. Fls. few or solitary, yellowish or purplish... 9. Nepalense
cce. Fls. fex or sereral, pink.10. rubellum
BBB, Lus. in whorls.
c. Fls. clear lemon-yellow.11. Parryi
cc. Fls, whitish or pinkish or spolled.............12. Washingtonianum

1. Philippénse, Baker. Bulb perennial, oroid: stem $11 / 2-2 \mathrm{ft}$. high, slender, erect: Ivs. $30-40$, scattered: fls. solitary, horizontal, white, tinged with green toward the base outside, 5-6 in. long, trumpet-shaped. Philippine 1slands. EI. 3. Gn. 50:1097 (fine). B.M, 6250 (good). I.H. 41: 16. - Little known in cult., but a promising species.
2. Wallichiànum, Schult. f. Bulb large, long: stem 4-6 ft. high, stiff: lvs. $50-60$, scattered, sessile, 3-5nerved: fls, usually solitary, sometimes 2-3, horizontal or nearly so, white, slightly tinged with green, fragrant. Central Himalayas. EI. 4. B. M. 4561. Gn. 10:44.Somewhat difficult to grow, and on that account not popular; but a noble species well worth the pains of the amateur. Suitable for growing in shrubbery borders.
3. sulphùreum, Baker. Bulb large, globose: stem erect, $4-8 \mathrm{ft}$. high: lvs. numerous, scattered, linear: fls. usually $2-3$, pendent on long peduncles, fragrant, sulfuryellow, tinged with red outside, 4-7 in. long. Burma. B. M. 7257. Gn. 54, p. 259 (as L. ochroleucum). R. H. 1895:541. - This is new to the trade, but promises to be a favorite with the amateurs.
4. Neilgherrénse, Wight. Fig. 1277. Bulb globose: stem 1-2 ft. high, creeping at the base: 1vs. 30-40, crowded, 3-5-nerved: fls. 1-3, ascending, white, fragrant, $5-6 \mathrm{in}$. long. India. El. 6. F.S. 22:2266-67. Gn. 27:488. B.M. 6332. F.M. 1876:237.-A beautiful Lily, too little known in America. Difficult of cultivation.

5. Lilium elegans ($\times 1 / 4$). No. 17.
6. longiflòrum, Thunb. Bulb globose: stem $1-3 \mathrm{ft}$, high, erect: Ivs. 20-40, scattered : fls. often solitary, sometimes 2-3 or more, nearly horizontal, fragrant, waxy white. Temperate regions of Japan, China and Formosa.

LILIUM

El. 7. A.F. $11: 1311$; 12:1104. B.R. 7:560. L.B.C. 10:985. A.G. 19:709. Gn. 48, p. 386.-One of the bestknown Lilies in cult. It has been used extensively for forcing, but for this purpose it is now generally superseded by the following variety:

Var. exímium, Nichol. (L. exímium, Court. L. Hárrisii, Cart.). Bermuda or Easter Lily. Usually bears more and larger flowers than L. longiflorum, on more leafy stems. A.G. 18:297. A.F.
 49, p. 481 and 52, p. 217. F.R. 1:679. G.C. I11. 22:91. R.H.

1281. Lilium tigrinum. ($\times 1$-5.) No. 19.

Vars.Takésima, Wilsoni and Liu Kiu are offered. They are not sufficiently different from the type for ordinary cultivation.
6. Japónicum, Thunb. Fig. 1278. Bulb globose: stem 1-3 ft. high: lvs. 12-20, scattered, lanceolate, 5-7-nerved: fls. often solitary, sometimes 2-3, white on the inside, more or less tinged with pink or purple on the outside, frazrant, $3-5$ in. long. Japan. El. 14 B. M. 1591. L. B.C. 5:438. - A fine, graceful species, much grown in gardens. There are several varieties, of which (excepting roseum below) Alexandra aud Colchesteri are the best. G.C. 111.14: 243 .

Var. róseum, Hort. (L. Krà.
 meri, Hort.). More slender and graceful than L. Japonicum, with heautiful pale rose-colored fls. B.M. 6058. F.M. 1874:105. F. 1874:13. F.S. 20:2061. - One of the most attractive flowers in the genus.
7. Brownii, Poit. (L. Japanicum, var. Brownii of many writers). Differs from L. Japonicum in having a more robust, vigorous habit, with leafy stalk and large fls., which are white inside and deep rich vinous purple outside. E1. 8. Gn. 29:540 (as L. Japonicum); 38, p. 173; 47, p. 97. F.S. 21:2248, 2193 (as L.Japonicum Colchestrii). Gng. 4:193. - A farorite in gardens, and deserving of general culture. Specially recommended to beginners. Var. leucánthemum is offered. Gn. 47:1000.
8. cándidum, Linn. Manonna Lily. Bulb ovoid, large: stem-IFs. scattered, sessile, acute, bract-like above: stem $2-4$ in. high, erect, stiff: fls. 6-25 in a raceme, $3 \frac{1}{2}-5$ in. long and wide, pure white, fragrant. Southern Eu. El.9. Gng. 6:369. G.C.III. 21:161. Gn. 45, p.281: 53, p. 188; 56, p. 255. - One of the most orna-
mental species, and an old favorite, though considerahly subject to disease. The following varieties are offered: 11. pl., maculàtum, pleno-monstrosum, speciosum, spicàtum, striàtum.
9. Nepalénse, D. Don. Stem $1-2 \mathrm{ft}$. high, stiff : lvs. scattered, lanceolate or linear, 5-7-nerved: fls, few or solitary, nodding, slightly fragrant, yellowish white, more or less tinged with purple, often with small seattered dots inside. Himalayas. El. 5. A.G. 13:249 (poor). Gn. 35:684. B.M. 7043. R.B. 22:3.-A magnificent Lily, suitable for the collector.
10. rubéllum, Baker. Bulb glohose: stem slender, bearing about 20 obseurely petioled bright green ivs., which are $5-7$-nerved: fls. pink, unspotted, about 3 in . long and broad. Japan. Gn. 54:1197. G.C. 111. 23:321 and 335. G.M. 41:477. A.G. 20:31.-Recently introduced to English and American gardens, and very favorably received. Promising. Said to force well.
11. Parryi, Wats. Bulb small, with jointed scales: 1vs. linear-oblanceolate, usually seattered: fls, horizontal, pale yellow, about 4 in. long, with spreading, recurved tips. San Bernardino county, Calif. E1. 12. Gin. 18:264 (not typical) ; 49, p. 410. B.M. 6650. I.H. 33:595. G.C. III. 18:209 (habit not correctly shown). - Not uneommon in cult., and probably the finest yellow Lily of easy growth.
12. Washingtoniànum, Kellogg. Bulb oblique, somewhat rhizomatous: stem $2-5 \mathrm{ft}$. bigh: Irs. in several whorls of 5-12 each, or sometimes a few scattered: fls. few, or sometimes as many as 20 , on ascending pedicels, white, tinged with pink or red and dotted with purple, fragrant. Calif. E1, 10. Gn. 20:310; 27, p. 344. J.H. 111. 33:113. - One of the best Californian species for eastern gar-

Var. purpùreum, Mast. (L.rubéscens, Wats.). Smaller and more slender, with smaller, more pinkish fls. and perianth segments less acute.

El. I1. F.S. 19:1975. .Gn. 20:310.-A striking variety which should perbaps be regarded as a separate species.

SUBGENUS II. ISOLIRION.

[^2]DD. Stem not buthiferous... I6. croceum co. Fl. smooth inside, or
nearly so.
D. Le's. broad lanceolate, crowded17. elegans
DD. Les. linear, scattered ..18. Catesbæi
13. Philadélphicum, Linn. Fig. 1279. Bulb annual, rhizomatous, small, with few thick, brittle scales: stem $1-3 \mathrm{ft}$. high, slender: 1vs. 10-40, thin, glabrous, more or less whorled: fls. 1-4, terminal or umbellate, bright red, marked with scattered darker spots toward the center. From Canada to N. C. and west to the Rocky Mts. E1. 17. B.R. $7: 594$. L.B.C. $10: 976$. B.M. 872 (as Pennsylvanicum) and 579. G.W. F. A. 6, - L. mortanum, Nelson, seems to be a western form, with broader Ivs. L. Masseyi is a southern form, with narrower perianth segments. This is the most characteristic and widely distributed of our native Lilies. A charming wild flower. In fact, it is so acceptable simply as a wild flower that it has seldom been cultivated, though it takes readily to the garden. it is a very variable species. Some, at least, of the L. Davuricum, or L. Dahuricum, in the nursery trade belongs with L. Philadelphicum.
14. cóncolor, Salisb. Bulb perennial, ovoid, small: stem slender, 1 ft . or more high: lvs. 20-30, scattered, lanceolate, obscurely 7 -nerved: fls. 1-3, erect, I-2 in. long, spreading, bright scarlet, unspotted. China. E1. 18. B.M. Il65.-One of the best for garden cult.; thrifty and easy to grow. Of graceful, upright habit and good for cutting.
Var. Sinicum, Hook. Taller, with larger bulb: fls. more numerous; perianth segments a little wider, bright scarlet with black spots. Southern Siberia. B. M. 6005. L.B.C. 17:1628 (as L. Buschianum).

Var. pulchellum, Baker. A slender yellow-fld, var., perhaps belonging with the next.

1284. Lilium speciosum $(\times 1 / 4)$. No. 22 .

Var. parthenelon, Baker (L. coridion). A fine yellow - fld. var. One of the very best for cultiration.
15. bulbiferum, Linn. Bulb ovoid, perennial : stem 2-4 ft. high: lvs.

1286. Lilium Martagon ($\times 1 / 14$). No. 25.
in. long, bright orange, conspicuously lamellar-papillose inside. Switzerland, France, northern Italy. Much cult., especially in Eu. E1. 22. L.B.C. 8:784 (poor).Closely related to L. bulbiferum, with which it is often confused. It seems to be confounded with L. etegans, also, at times. It is distinguished from the former by having stems devoid of bulbels, and from the latter by having the flower more distinctly papillose inside.
\qquad

1285. Lilium puberulum ($\times 2 / 2$). No. 24.
17. Élegans,Thunb. (L. umbelld̀tum, Hort., not Pursh. L. Dahùricum, in part. L. Thunbergidnum, Schultes, and many other synonyms). Fig. 1280. Bulb perennial, ovoid: stem $1-2 \mathrm{ft}$. high, stiff, erect, slightly cobwebby, or sometimes nearly glabrous: lvs. 20 30, scattered or crowded, 5-7-nerved : fls. J-5, spreading, usually self-colored in some brilliant shade of yellow, orange or red. Japan. Sundry varie: ties are illustrated as follows: E1. 19 and 20. Gin. 47, p. 415. F. 1868:121. F. S. I6:1627 as (L. Thunbergianum). Gn. 38:778. P. M, 6:127 (as L. auranscattered, the upper ones often bearing bulbils in the axils: fls. 1 to many, umbellate or somewhat racemose, on short, stout pedicels ; perianth $11 / 2-2 \mathrm{in}$. long, erect, spreading, bright red or dark orange, usually with some dull spots, papillose toward the ceuter. Cent. Eu. E1.23. B.M1. 36. -This is one of the oldest in cult., and has run into many horticultural varieties, few of which, however, are known in this country. The only one named in American trade catalogues is anrantiacum, In Europe the species seems to be more commonly cultivated.
16. cròconm, Choix. Bulb perennial, globose: stem $2-4 \mathrm{ft}$. high, vigorous: lvs. numerous, crowded, linear or lanceolate, $3-5$-nerved, not having bnlbels in the axils: pedicels ascending, white-cobwebby: fls. solitary, or 10-15, in an umbellate raceme, erect, funnelform, $21 /-3$
tiacum). I. H. 12:459 (as L, formosum). - Probably the most useful hardy species for general garden use. Very variable, with many striking varieties. Following are the hest:

Var. fülgens, Baker (L. Bátmannico, Wallace. L. fûtgens, Morren. L. sanquineim, Hort.). A fine orange or salmon-red var., with perianth segments rather narrower than the type. One of the finest Lilies for colormassing. Thrifty and clean in the garden. Var. atrosanguineum, Bak. \& Dyer. Very deep dark red. I.H. 14:503 ? (as L. heematocroum). Var, alutà ceum, Bak. \& Dyer (var. Armeniacum, var. citrinum, etc.). More or less clear yellow. F.S. 22:2319. Var. bicolor, Moore. Yellow at the center and reddish outwards. Var. plènns, Waugh. More or less double. F. 1871, p. 83. Var. Wీ1lacei, Waugh (L. Wallacei). Small, dwarf, usually 1 Hld., pale red; segments rather acute. There are dozens of other horticultural varieties, among which the best. are Alice Wilson, Best Red, Incomparable, Van Houtte. These varieties are rather more distinct than in most species of Lilies.
18. Cátssbæi, Walt. Bulb like that of L. Phitadelphicum: stem 1-2 ft. high, slender, erect: lvs. 20-30, scattered, lanceolate: fls. usually solitary, erect. bright orange red, spotted; segments lanceolate, with longattenuate tips. N. Car. to Fla. and west to Ky. El. 25. B.M. 259 (good). L.B.C, 9:807. R.H. 1868:431 (poor).-

A pretty plant, but not successful in cult., at least not in the northern states.

SUBGENUS III. ARCHLIRION.

A. Les. sessile 19. tigrinum
AA. Los. shorl petiolate.
B. Fls. dull reddish. 20. HenryiBB. Fls, white, yellowish, or pinkish.C. F'ls. open funnelform, onrather short, straightpedicels 2.21. auratum
CC. Fls, on long, twisted pedi-cels; segments lwisted revolute.22. speciosum
19. tigrinum, Andr. Tifer Lily. Fig. 1281. Bulb perennial, globose: stem $2-5 \mathrm{ft}$. high, somewhat whitish cohwehby: lvs. scattered, rich green, 5 - $\overline{\text {-nerved, the }}$ upper ones shorter and bearing bulbels in their axils: fls. 3-10, or sometimes more, in a wide raceme, nodding, hright red, thickly spotted with large purplish spots; perianth

1287. Lilium maculatum ($\times 1-5$). No. 26 .

1288. Lilium superbum $(\times 1 / 3)$. No. 27 .
pearance, it stands midway between L, tigrinum and L. speciosum. Its free and easy unconventionality of habit will endear it to the heart of tbe artist flowerlover. In this respect, it surpasses even L. speciosum.
21. auràtum, Lindl. Gold-banded Lily. Japan Lily. Fig. 1283. Bulb perennial, globose: stem 2-4 ft. high: 1vs. 20-30, scattered, 5-nerved: fls. in a short raceme, with bracteolate pedicels, spreading; segments much reflexed and somewhat twisted, white, more or less marked with hands of yellow and spots of purple, strongly papillose. Japan. la suadry varieties illus trated as follows: Gn. 15:183; $16: 212 ; 39$, p. $455 ; 50$, p. 148. R.B. 21:25. F.M. 1871:514. R.H. 1875:10; 1867:371. E1. 15. B.M. 5338. A.G. 20:525. A.F. 7:43. Ging. $2: 167 ; 4: 53$, G.C. 111. 25:303.-Several garden varieties have been described with botanical names, though none seems to be equal to the distinction. Trade varieties are: imperiale, macránthum, pictum, platyphýllum, rubro-vittàtum, rübrum, spsciosum, virginàle, virginale album, Wittei. The Gold-banded Lily is a favorite in American gardens, where it is used in large quantities. It appears to best advantage massed and scattered amongst moderately tall-growing shrubs. It is of comparatively easy culture, but

1289. Lilium pardalinum $(\times 1 / 4)$. No. 28.

El. 38. B.M. 1237. F. 1873:13.-A thoroughly oldfashioned and remarkably useful plant. It lives and thrives from year to year in the open border, where it should be planted in masses.

Var, spléndéns, Lpicht. A fine variety of more robust habit, with longer-flowering spikes. Gn. 27:480 and p. 152. F.S. $19: 1931$ (too dark colored). This is to be highly recommended. In most, gardens it should he substituted for the ordinary Tiger Lily.

Var. plenéscens, Waugh. An odd double var. R.H. 1873:10 (good). F. 1871:25. F.S. 19:1995. Other vars. are Fortunei and Lishmanni.
20. Hénryi, Baker. Fig. 1282. Bulb glohose: stem 2-6 ft . high: lvs. lanceolate below, more ovate above: inflorescence a lax corymb of $4-8 \mathrm{fls}$, bracteate at the base: fl . dark reddish yellow, marked with a few irregularly scattered brown spots. Ichang, western China. Gn. 40:830 (fine) ; 55, p. 233 (fine). G.C.II1. 8:380. B.M. 7177 (too light-colored). - Recently introduced to cult., and unquestionahly one of the best Lilies known for general garden culture. The price of the bulhs still keeps many persons from planting it, and many others from massing it in large quantities, as it should be used for the best effect. Still it propagates so freely and proves so hardy that it will undoubtedly soon become cheaper, and find its way into common use. In habit and general ap-
does not live and thrive indefinitely, as L. speciosum, Henryi and tigrisum do.
23. speciosum, Thunb. (L. lancifolium, Hort.). Fig. 1284. Bulh perennial, globose: stem 2-4 ft, high, stiff: lvs. 12-20, seattered, very short-petiolate, oblong-lanceolate, 5 - 7 -nerved: fls. $3-10$, racemose, on divaricate, bracteate pedicels, white, more or less suffused with pink and dotted with red, strongly papillose toward the center; perianth segments much revolute. El. 13. B.M. 3785. Gin. $25: 425 ; 33$, P. $289 ; 45: 947$ and p. 90 (fine) ; 45, p. 91 ; 47, p. 19. R.H. 1843:492. B.R. 23:2000. This is probahly the best species of all for general cult. It is thrifty and hardy, especially var. rubrum. The hahit of the plant and flower is delightfully free and informal. The white and the red varieties are both grown extensively by the florists, and eut for sale. It has been extensively imported from Japan. There are numerous trade names current, most of which do not stand for important varieties. The ones of greatest concern are Mel-pomene and Krætzeri. The Lily known as "Opal" is a form of this species.

Var. rùbrum, Hort., is a fine, extra strong growing sort, with darker pinkish red fls., and is the best for garden culture. Gn.36:726.

Var. álbum, Hort. (L. precox, Hort.), is white or nearly so and less thrifty. P.M. 8:127.

subgenus iv. Martagon,

A. Foliage mostly uhorled.
B. Lis. in small whorls of lese
than 8 or partly scattered...23. Columbianum
BB. Les. nearly all in larye whorls
of 8 or more.
c. Bulb large, horizontally
elongated..................24. puberulum
cc. Bulb small, globose.

D, Fls. purphish or whitish.25. Martagon
DD. Fls. yelloue, spotted.....26. maculatum
DDD. Fls. mostly reddish or
dark orange.
E. Color reddish or yellowish, dull black-
spotted27. superbum
EE. Color orange-yellore, with distinct round
durk spots..........28. pardalinum
AA. Foliage not whorled.
B. Form of les. lanceolate; nerves many29. monadelphum
BB. Form of les. linear; nerves one or fer.
c. Lis, crourded.
D. Perianth segments rather broad.
E. Fls, red or yellow....30. Maximowiczii EE. F'ls.creamy white....31. testaceum DD. Perianth segments netrrow.
E. Fls, whitish outside..32, pomponium

EE. F'ls, red outside33. Chalcedonicum
cc. Lis.scattered................34. tenuifolium
23. Columbiànum, Hort. (L. Sàyi, Nutt. L. parviflorum, Holz.). Bulb perennial, ovoid, small: stem $11 / 2-3 \mathrm{ft}$. high, slender: lvs. few, mostly in whorls of 4 or 5 , the upper ones frequently scattered, oblanceolate, acute: ths. 2-3 or more, umbellate, on slender nodding pedicels; perianth $11 / 2-2 \mathrm{in}$. long, bright orange, thickly spotted with small purplish dots; segments lanceolate, reflexed. Ore., Wash. E1.31. F.M. 1874:136, as L. parwiflorum (not characteristic). - Not uncommon in garden collections, where it succeeds as well as any of the Pacific coast species. It is so slender of stem, sparse of foliage and small of flower, as grown in eastern gardens, that it does not give any mass effect. It looks best mixed in the border with hardy perennials.
24. pubérulum, Duchr. (L. Califórnicum, Hort., not Domb. L.Húmboldiii, Roez.d Leicht. L. Bloomeridnzm, Kell.). Fig.1285, Bulb large, thick: stem 3-5 ft. high: Ivs. in 4-6 large whorls of $10-15 \mathrm{lvs}$, each: fls. $6-10$ or more, in a large panicle, on nodding, divaricate pedicels, bright orange-red, thickly marked with dark spots; segments strongly reflexed. Calif. E1. 32. F.S. 19:1973. Gn. 20:314 and p. 568.-A noble, dignified, commanding plant, and one whichought to be cult, oftener. Rather formal in appearance.
25. Mártagon, Linn. (L. Dalmáticum, Vis.). TURK's Cap Lily. Fig. 1286. Bulb perennial, ovoid: stem $21 / 2-5 \mathrm{ft}$. high: lvs. in 2-4 whorls of $6-9$ each, sometimes a few scattered, sessile, with 7-11 nerves: Hs. 3-20, in a long, loose, bracteate raceme, nodding, fragrant, varying in color from purple to dirty white, spotted or unspotted; segments lanceolate, strongly revolute. E1. 33. Gn. 23:371; 38, p. 393; 44:927 (as L. Dalhansoni). B.M. 872 and 1634. F.M. 1874:136. F.S. $20: 2127$ (as Martagon Dalmaticum).-Much cult. in Europe, less in America. It bas many horticultural varieties, but the only one in our catalogues is album. The plant is vigorous, upright and thrifty, with good foliage, but the fls, are small, dull-colored and not showy, as compared with our more popular kinds.
26. maculàtum, Thunb. (L. Hánsoni, Leicht.). Fig. 1287. Bulb perennial, globose, compact: stem $3-4 \mathrm{ft}$. high: Ivs, oblanceolate, acute, frequently in a single whorl of $8-12$, or some scattered, sometimes several whorls: fls, 4-12, in a loose raceme, on erect, spreading pedicels, bright orange, conspicuously spotted with purple on the lower half. Japan. E1. 34. B.M. 6126 (good). Gin. 29, p. 287. R.H. 1883, p. 290.-One of the thriftiest
and hardiest species known. It is a trifle bigh-priced for general plantiug, but is worthy a place in every garden. It is one of the most formal and dignified of Lilies.
27. supérbum, Linn. American Turk's Cap Lilv. Fig. 1288. Bulb large, globose: stem $3-6 \mathrm{ft}$, , tall, erect: Ivs. often in whorls, sometimes more or less seattered, 3-5-nerved: fls. 6-12, or even more, paniculate, bright reddish orange, conspicuously spotted; perianth segments lanceolate, acute. Canada to Georgia and west to the Mississippi river. E1. 26. B. M. 936 (good). L.B.C. 4:335 (as L. autumnale). Gn. 30, p. 8 (fine); 30:551 (fine) ; 38:781. Mn. 8:1 (fine).-Frequently cult. Useful in borders.

Var. Caroliniànum, Chapm. (L. Caroliniànum, Micbx.). Smaller, more slender, with fewer fls, and broader lvs. A southern variety, in dry woods, Va, to Fla., and west to La.
28. pardalinum, Kellogg (L. Califórnicum, Domb.). Fig. 1289. Bulb short, rhizomatous: stem 2-3 ft. high: Ivs. mostly near the middle of the stem, in 3-4 whorls of 9-12 lrs. each, with a few scattered: fls. 3-10, loose corymbose, on long, nodding pedicels, bright red with orange toward the center, strikingly marked with large purplish brown spots; perianth segments strongly revoIute, somewhat papillose. Calif. E1. 28 and 29 . F.M. 1872:33 (as L. Washingtonidnum). Gn. 20:312 and p. 526. -A magnificent garden flower, not commonly grown, though adapted to general cult. Var. angustifolium, Kellogg, has narrow, scattered Ivs. Var. Warei, Hort., has yellow fls. (in. 29:547.
29. monadélphum, Bieb. (L. Szovitzituzm, Fisch. \& Lall. L. Cólchicum, Hort,). Bulb perennial, ovoid: stem 2-5 ft, high: Ivs. $30-50$, scattered, linear-lanceolate or oblanceolate, many-nerved: fls. 2-12, sometimes 20-30, in a raceme, nodding, bracteate, fragrant, yellow, with a few small spots, and tinged at the base and tip with

1290. Lilium pomponium $\left(\times \frac{1}{3}\right)$. No, 32 ,
purple. Persia. El. 36 and 37. B.M. 1405. Gn. $9: 9$ (as L. Szovitzianum) ; 39:796. G.C. 111. 16:129.-A pretty species, but not much frown in this country. Var. Ledebouri, Baker. Dwarfer than the species, with narrower linear Ifs. Caucasus.
30. Maximówiczii, Regei (L. Lelchtlini, Hook. I, Pseudo-tigrinum, Carr.). Bulb globose: stem 2-3 ft. high, slender, decumbent at base: 1vs. 30-40, seattered, linear, 3-nerved: fls. few, in a loose corymb, on spreading pedicels, bright lemon-yellow, light orange or red, thickly dotted with dark purple and tinged with purple on the 8 utside; segments strongly revolute. Japan. E1. 39 and 40. B.M. 5673 . I.H. 15:540. R.H. 1867:410. F.S. 17:1736, yellow variety. Gn. $21: 331$, yellow variety; 42 p . 193 (not typical). - A fine garden plant having much the same habit and cultural qualities as L. tigrinum, but

1291. Lilium parvum. Nat. de3. No. 36.
1292. Lilium Canadense. An old Hower. ($\times 1 / 3$.)
grant, creamy yellow, with sometimes a few minute reddish dots. El. 44. B.R. 29:11 (too bighly colored). P.M. 10:221. - Not known in the wild state, and generally said to be a bybrid between L. candidum and chalcedonicum. If this is a true bybrid it is the only one known in cult. A fine, stately flant, with nousually attractive flowers.
32. pompònium, Linn. (L. rùbruns, Lam.). Fig. 1290. Bulb ovoid, with several lanceolate ecales: stem 2-3 ft . bigh, thick, stiff: lvs. 100 or more, scattered, narrowlinear: fls, 2-15, racemose, nodding, often bracteolate, cinnabar-red, thickly spotted and papillose within, fragrant. N. Italy and S. France. G.C. 111. 8:51. Gn. 20:307 (fine). El. 45.-Adapted to the hardy border. where it shows well in masses or scattered. An excellent Lily for garden planting, especially the yellow var. aureum, Hort.
Var. Pyrenàicum, Baker (L. Pyrendicum, Gouan). A more robust plant, with wider lvs. distinctly 3 -nerved: fis. larger, yellow. Pyrenees. El. 46.
33. Chalcedonicum, Linn. Bulb ovoid: stem 3-4 ft. bigh, stiff: irs. 100 or more, crowded, 3-5-nerved, with the edges and veins below distinctly papillose: fis. few in a raceme, nodding, bright red, unspotted, or sometimes with minute dots, rarely yellow. Greece. El. 43. F.S. $21: 2160$. B.M. 30.-An excellent garden plant, and
destined to become more popular in America. Here belongs L. Meldreichi.
34. tenuifolium, Fisch. Siberian Coral Lily. Bulb small, globose: stem 1-2 ft. high, slender: 1rs. 20-50, scattered, very narrow-linear, with revolute margins: fls. 1-20, racemose, nodding, rich scarlet, self-colored; segments much revolute. Siberia. E1. 42. B.M. 3140 . L.B.C. $4: 358$, as L. pumilum (poor). - A deserving favorite. Very easily prop. either from seeds or bud scales. Fine for massing. Especially suitable for beginners.
sebgents v. psecdomartagon.
A. Periauth narrow: segments only slightly spreading at the tip.
B. F'ls. dull reddish brown35. Grayi - BB. Fls. bright reddish brown..........36. parvum

AA. Perianth spreading: segments rotate
spreading or slightly recurved.....37. Canadense
35. Gràyi, Wats. Lys, lanceolate, in whorls of 4-8: fis, few or solitary, $11 / 2-2$ in. long, dull reddish brown or orange, covered inside with purplish spots. Va. and N. Car. G.F.1:19. B.M. 7234.-Becoming somewhat common in gardens. Closely allied to L. Canadense, but thoroughly distinct as a garden plant. Not showy, but attractive to the amateur. Of easy cult.
36. párvum, Kellogg (L. Canadénse, var. Wàlkeri. L. Cenadénse, var. p(irrum). Fig. 1291. Bulb of L. C'anadense: stem 1-2 ft. high: lvs. partly whorled, or the upper ones scattered: fls. few or many, upright or nearly so, bright reddish orange, thickly dotted. Sierra Nevada, Calif. El. 30. B.NI. 6146 . F.S. 21:2192. J.H. 111. 31:113 (poor).-A pretty and interesting species, but not sufficiently showy in cult. to suit the average gardener. Var. flore pleno is offered.
37. Canadense, Limn. Fig. 1292. Bulb annual, rhizomatous: stem $1-4 \mathrm{ft}$. high, slender, erect: lvs. oblanceolate, acute, 5-7-nerved, usually mostly in whorls: fls. 1 to several, usually somewhat umbellate, $2-3 \mathrm{in}$. long, in various shades of yellow, orange and red, with numerous dark spots. Eastern N. A., from New Brunswick to Ga. and west to the Mississippi river. El. 27. Gn. 29:543 (good) ; 34, p. 182. B. M1. 858 (poor).-A good species for garden use. Excellent for massing or for scattering in borders of shrubhery or of hardy perennials. Variable. Var. rubrum has red fls. Var. flavum (or luteum) bas yellow fls. B.M. 800.

subgents vi. cardiocrinum.

A. Lower lus, tinged with red.........38. cordifolium AA. Lower les, clear green39. giganteum 38. cordifollium, Thunb. Bulb perennial, globose: stem $3-4 \mathrm{ft}$. high : 1vs, at the base cordate, long-petiolate, tinged with red; stem-Irs. cordate-orate, short-petiolate: fls. 3-10 in a short raceme; perianth narrow, fundelform, $3-5$ in. long, white, with large, violet-brown patches on the lower half of the outer segments. Japan. El. 1. (i.C. 111. 8:41. B.MI. 6337.-Sometimes found in colleetions, but difficult of cult., particularly in this country.
39. giganteum, Wallich. Bulb globose: stem 4-10 ft. high: radical lvs. green; stem lvs, 12-20, scattered, ovate, acute, deeply cordate at bave. reticulate veined, petiolate: fls, $12-20$ in a raceme, slightly nodding, white, tinged with purple inside and green outside, fragrant, $4-5$ in. long. Himalayas. E1. 2. G.F. 6:376. B.M. 4673. F. 1874 , p. 79 (poor). R. H. 1861, p. 310 . 1. H. 1, p. 11. G.C. 111. 8:47 (good); 16:754. Gn. 8, p. 504 (c. p.); 34, p. 269 (good) ; 52, p. 226 ; 54, p. 186 (doubtful).-Found only in large collections. Very difficult of cult.
L. avenàceum. Fisch. One-2 ft. higb: lvs. few, scattered or somewhat whorled: fis. few, nodding, small, revolute, bright reddish yellow, with a few fine dots. Gn. 24, p. 85. Japan, Kamchatka and vicinity. - L. Bakerianum. Coll. \& Hems. An Indian species not yet in cult. Belongs in subgenus Isolirion.L. Boldanderi, Watson. Bulhovate: stem 6 in. to 3 ft . high: fle.1-2, horizontal or slightly nodding, dingy purple or dark brownish red, dark-spotted, about 1 in . long. Calif, Rare, A fine cariosity for the collector, but not a gardener's plant.- L. callor sum, Sieb. \& Znce. Bulb small, perennial: stem 1-3 ft.: Ivs. 30-40, scattered, linear, 3-5-nerved: fls. 2-1? in a narrow raceme, on
short nodding pedicels, hright scarlet. Japan and Loo-Choo 1slands. $-L$. Carniólicum, Berah. Bulb ovoid: stem $2-3 \mathrm{ft}$.: ivs. 30-40, scattered, many-nerved, with ciliate margins: fls. racemose, nodding, 2 in . long, orange or red. Europe. Rare in eult. E1, 45,-L. Claptonense, Hort. = L. primulinum,-L. Davidi, Duch. Known only in herbarium. - L. Delavayi, Franchet. A Chinese species recently discovered, and not yet offered for sale. Fls, wine red, somewhat the form of L. longiforum. $-L$. Fargesi, Franchet. Small, long, yellow tis. Subgenus Martsgon. Receutly from China, and not yet in the trade, -L. formbun. Franchet. A species recently discovered in China, resembling L, buibiferum and elegans, but having white fls. Not introduced. $-L$. Lankongènse, Eranchet. Newly discovered in Yun-nan, China. Not introduced. Subgenus Martagon. $-L$, Lowi, Baker. A new Burmese species, having $2-3$ white fls. somewhat resembling L. candidum. Not yet introduced. B.M. 7232. Gn. 45:953. G.C. III. 14:121,-L. maritimum, Kellogg. Bulb small, conical: stem low: lvs, usually scattered, narrow, often obtuse: fls, solitary or few, horizontal, 1-2 in. long, deep reddish orange, spotted. Calif.-L, medeoloides, Gray. Stem. slender, $1-2$ ft.: lvs. several, sometimes whorled, sometimes scattered: fls, $1-3$, with short, erect pedicels, funnel-shaped, bright orange-red with a few spots. Japan, Korea. Rare or unknown in eult.-L. mirabile, Eranchet. A new species of the subgenus Cardiocrinum recently found in Su-Tehuen, Cbina. Not introduced.-L. myriophýllum, Franchet. Recently discovered in Cbina. Said to be a "magnificent species, recalling L. Wallichiannm." Not yet in the trade.-L. nitidum, Hort. Balb oblong, subrhizomatous, with crowded appressed lanceolate seales: stem 18-24 in. bigh: lvs. lanceolate, scattered and in whorls: fls. 10-30, bright yellow with many red-brown dots. Not in American gardens,-L, occidentàle, Purdy. Bulb rhizomatous: stems 2-1 ft.: lvs. scattering below, but in whorls at the middle of the stem, lanceolate, acute: fls, few to 15, orangered, with crimson tips and black spots. Calif,-L. ochraceum, Franchet. Chinese, recently discovered, not introduced. $-L$. oxypétaluon, Baker. One $-1 \frac{1}{2} \mathrm{ft}$. tall: lvs. $20-30$, seattered, lanceo-late-linear: fl. wide tunnel-shaped, or nearly rotate, purplish, tinged with green beneath, somewhat dotted inside. Western Himalayas. Not in cult. El. 5.-L. papilliferum, Franchet. A recently named species from Yun-nan, Cbina. Not in the trade, Fls. dirty red. Belongs with L, speciosum, etc.-L. polyphýltum, D. Don. Three- 4 ft . high: lvs. 40-60, scattered: fls. 4-10, in a loose raceme, on nodding pedicels, yellow, with purplish spots. Himalayas. I.H. 32:565,-L. primulluum, Baker. A uew species from Burma, with pale yellow fls., somewhat resembling L. Nepalense. B.MI. 7227.-L. Puirdyi, Waugh. Bulb like L. Columbianum: stem $2-5 \mathrm{ft}$, high: lvs, lanceolate, mostly in whorls: fls. few to 10 , horizontal, orange-red, thickly dotted, fragrant. Washington and British Columbia.-L. Sutchuénse, Franchet. A new lily of the tenuifolium style, with $1-4$ reddish orange flowers spotted with black. Recently discovered in SuTchuen, China ; not introduced. B.M. 7715.-L. Taliénse, Franchet. A recently discovered species of the subgenus Martagon. Fls, white or whitish. China. Not in commerce. $-L$ Furnanénse, Franchet. A white-fld. species, somewhat resembling L. Japonicum recently discovered in Cbina. Not yet in the trade.
F. A. WAUGE.

LILAC. See Syringa.

LILY, in the narrowest sense, is restrieted to the genus Lilium, but the popular names given below also include plants outside the family Liliacea. Many of them belong to the Amaryllis family. African Blue L., Agapauthus umbellatus, African Corn L., Ixia. Amazon L., E'ucharis Amazonica. American Turk's Cap L., Lilium superbum. Atamasco L., Zephyranthes Atamasco. Barbadoes L., Hippeastrum equestre. Belladonna L., Amaryllis Belladonna. Bengal L., Crinum longifolium. Bermuda L., Lilium Harrisii. Black L., Fritillaria Camtshatcensis. Blackberry L., Belemeanda Chinensis. Bourbon L., Lilium candidum. Brisbane L., Eurycles sylvestris. Calla L., Richardia Ethiopica. Cape L., Crinum Capense. Checkered L., Fritillaria Meleagris. Climbing L., Gloriosa and Littonia. Common White L., Lilium candidum. Day L., the blue aud white ones are Funkias; the yellow and orange ones Hemerocallis. Easter L., Lilitm Harrisii. Fairy L., Zephyranthes rosea. Fayal L., Ornithogalum Arabicum. Gol-den-banded L., Lilium auratum. Golden-rayed L., Lilium auratum. Guernsey L., Verine Sarniensis. Jacobean L., Sprekelia formosissima. Kaffir L., Schizostylis coccinea. Mariposa L., Calochortus. Martagon L., Lilism Martagon. Orange L., Lilium croceum. Peruvian Swamp L., Zephyranthes candida. Plantain L., Funkia. Pond L., Nuphar advena. Sacred L. of China, Nareissus Tazetta, var, orientalis. Spider L. St, Bernard'a L., Anthevicum Liliago. St. Bruno's L., Paradisea Liliastrum. St, James' L., Sprekelia formosissima. St. Joseph'a L., Lilium candidum. Tiger L.,

Lilium tigrinum. Turban L., Lilium pamponizm. Turk'a Cap L., Lilium Martagon, Water L., Nymphea. White L., Lilium candidum.

LILY-0F - THE - INCAS. Alstromeria Pelegrina. See, also, Hymenocallis (1smene).

LILY-OF-THE-PALACE. Hippeastrum aulicum.

LILY-OF-THE-VALLEY. Convallaria majalis.

LIMATODES (probably from the Greek for meadore, referring to the habitat of the plants). Orchiddcear. Similar to Calanthe, but the spurred labellum is not adnate to the column but closely wrapped around it. In Phajus, and in Calanthe also, the lvs. are not articulated to the stem and therefore wither on the plant instead of falling.

After resting season of Limatodes is over, say from February to May, shake off the old potting material. If plants are large, divide them and pot them moderately tight. For the American climate, chop finely some good, turfy loam well mixed with old rotten cow manure and a little leaf mold aud sharp sand and place in a shaded house, temperature 70° to 90°. Do not water till roots are well out, and sparingly till leaves are well started. After that and during flower-sheath growth, they will enjoy profuse waterings and spraying-water with weak liquid at intervals of 10 days or so, and every plant will be a marvel of beauty.
ròaea, Lindl. (Calánthe ròsea, Benth.). Pseudobulhs 4-8 in. long, pyriform or fusiform, grooved: Ivs. $8-18 \mathrm{in}$. long, elliptic-lanceolate, acuminate, plicate: scape from the base of the pseudobulb, I2-18 in. long, slender, bearing a many-fld. villous raceme: fls. large, rosy, $11 / 2 \mathrm{in}$. across ; sepals ovate-lanceolate; petals oblong, acute ; lip $1 \frac{1}{2}$ in. long, with a large obovate-oblong midlobe; base yellow, edged with scarlet. Jan. Burma. B.M. 5312. - A hybrid of this species and Calanthe vestita, Lindl., is common in cultivation under the name Calanthe Feitchii, Lindl., which see. John Saul said L. rosea bore fls. as large as those of Calanthe Jeitchii, and more brilliant in color.

Hetnrich Hasselbring and Wm, Mathews.
LIME. The use of Lime in agriculture antedates the Christian era. In modern times it has been an indispensable adjunet to potassic, phosphatic and nitrogenous manures in restoring and maintaining the fertility of immense areas of soil derived from sandstone, granite, mica scbist and certain shales and slate. Without its use tbe wonderful transformation of Limousin in France, the sandy regions of Germany, and particularly the reclamation of the sour peat (Hoch-moor) soils of northern Germany would have been difficult or impossible. Even limestone soils sometimes become so lacking in Lime near the surface that they stand in great need of its application.
The necessity of Lime as a direct food for the higher orders of plants has been indisputably demonstrated. Its physiological role is of the greatest significance. It serves also as an indirect food by transforming or setting free other soil ingredients which plants require. (1) It aids in transforming the nitrogen of organic matter and ammonium salts into nitric acid, which, in combination with potash, soda, Lime and magnesia, furnishes most plants the major portion of their nitrogen. (2) It appears probable that liming favors symbiosis and the consequent assimilation of atmospheric nitrogen in the case of clovers, alfalfa and certain other legumes, while it may have an opposite effect upon others, among which may be mentioned serradella and lupines. (3) Lime attacks certain more or less inert combinations of potash and of phosphoric acid which exist in soils, thereby rendering their manurial constituents more readily assimilable.

Noxious iron compounds in soils are so acted upon by Lime as to overcome their poisonous tendency. The presence of carhonate of lime in soils prevents the formation of sour humus and consequent injury to a large class of agricultural plants. Liming makes clays more friable and sandy soils more compact, thus im-
proving the textare of each. By the flocculation of the fine particles of the former, water drains eff more readily, and the danger of serious washing is thus diminished. Soluble phosphates are less liable to be lost or changed into unassimilable forms in soils containing Lime. Large quantities of Lime should not be employed upor sandy soils in a single application. The repeated use of highly magnesian Lime is fraught with danger, though, applied occasionally in the place of ordinary Lime, it may prove beneficial. The use of Lime, whether in wood ashes or from other sources, increases the tendency to alkalinity of the soil, and heuce makes it more favorable to the development of petate scab, provided the fungus which causes the discase is already in the soil, or is introduced into it upon the "seed" tubers. The disease which develops upon turnips and certain other plants, known as "elub foot" or "elub reot," is lessened to a marked degree by the use of Lime apon the soil.

Lime is usually applied to land at rates ranging from balf a ton to two and one-half tons per acre, and at intervals of from four to six years. It should be thoroughly worked into the surface soil after plowing. Upon sandy soils it is applied with the greatest safety after composting with organic matter.

The value of Lime in preparing composts has long been known. Mixed in layers with loam, weeds, muck, coarse stahle mauure and ether vegetable or animal matter, it forms in a few months, if kept moist, an excellent material for the use of gardeners. If worked over a few times at intervals, the operation is materially hastened. The introduction of a little common salt or of muriate of potash facilitates the process by virtue of the formation of carbonates of soda or of potash. In order to prevent loss of ammonia, compest heaps are usually kept covered with moist earth with which gypsum or land plaster may often be advantageously mixed.

The influence of Lime on plant-growth is often astounding. Lettuce, spinach, beets, onions, muskmelons, asparagus, clevers, timothy, Kentucky blue grass and poppies are almost failures upon very acid soil until liming is practiced. Watermelons, lupines, serradella, cranberries, rhododendrons, azaleas, the Norway spruce and other plants might be cited that are known to be injured or ruined by considerable applications of Lime. Their natural home is upon a sour soil. The Early Richmond cherry, though helped somewhat by liming, succeeds upon very acid soil, while the Black Tartarian fails under similar circumstances. The Delaware grape is more in need of Lime than the Concord. Blackcap raspherries do not seem to be helped by liming, even upon very acid soil, though the Cuthbert, a red raspberry, responds to the treatment in a marked manner. The quince is more in need of Lime upon acid soils than the pear, apple or peach. The American linden and American elm are thankful for Lime upon acid soils, while the white birch shows utter indifference to it. The success of the beech upon the limestone soils of Europe indicates its natural home. Chestnut trees are said not to thrive well on limestone soils. Gooseberries and currants are moderately helped by liming on very acid soils. Strawherries exhihit this characteristic only in a slight degree.

Rhode Island owes its reputation as the home of Rhode Island bent to the fact that this grass can persist upon soil where many other grasses fail, and hence it has won in the struggle for existence. Had the soil been well supplied with Lime it is not probable that such would have heen the case. Upon very acid soils, there is little fear that the poppy would ever become a pernicious weed, as is the case in many of the wheat fields of Europe. Such soils are, however, the natural bome of common sorrel. The conditions favorable to the poppy are also favorable to wheat. Barley fails upon very sour soils. Oats succeed except upon extremely acid soil, though even soils of that character produce good crops of rye and Indian corn.

He who will use Lime intelligently must study carefully the peculiarities of his soil, and of the plants that are to be grown.
H. J. Wheeler.

LIME (FRUIT) of literature is mostly Citrus Limetta of Risse, or Sweet Lime, which is now regarded as a form of C. Medica. The Sour or West Indian Lime (dis-
cussed below) is a much sourer fruit and is Citrus Me. dica, var. acida (see p. 325, Vol. I), Fig. I293.

The sour Lime is a useful member of the orange tribe, valuable for its acid truits, which are prized above lemons in trepical countries for making coeling drinks and for cookery. Limes are also largely used in the manufac ture of citric acid. The tree is low, much branched and very thorny, thriving on poorer, rockier soil, and in closer proximity to salt water than other members of the citrous tribe. In orchard planting the trees are set ahout 15×25 feet apart, and cultivation given them the same as for leinon and orange trees.

The variety most commonly grown is a small-fruited, very prolific sort, ordinarily grown from seed and called "West Indian." The fruits of this sort are shipped from

1293. Sour Lime-Citrus Medica, var. acida ($\times 1 / 3$).
lower Florida and the West Indies to Atlantic coast cities in quantity during summer and autumn. There are several geod varieties beside the cemmon "West Indian," all of which are propagated by budding or graft ing on strong stocks of varieus kinds, but especially upon rough lemon and sour orange. Among the best known and valuable may be named Tahiti, which has large, smooth fruits almost the size of lemons and Sour Rangpur, the "Mandarin Lime," in shape and character of fruit much like the China Mandarin, but with intensely acid juice. There are a number of sorts from India being experimented with in Florida, hut which are not as yet well tested. The Lime, in almost all varie. ties, is more tender as regards cold than even the lemon, not beiug able to withstand sharp frosts without damage. The Sour Rangpur (from India) is an exception, and has proved to be almost as hardy as the sweet orange tree, and has fruited freely in the upper orange helt of Florida. Doubtless by budding or grafting Limes on the Citrus trifoliata as a stock, the trees will be able to stand more severe frosts than when worked on more tender roots.
E. N. Reasoner.

The Lime is but little grown in California. In early days it was freely planted, largely in hedge form around orange groves. Its susceptibility to injuries from low temperatures, which did not harm the orange and lemon, cansed its abandonment in our chief citrous fruit regions, and no effort was made to restore the acreage in frostless localities, because the supply from Mexican regions keeps local prices so low as to offer no profit to California grewers. At present the Lime has no commercial standing as a California fruit, though several varieties are grown in a few places for home use.
E. J. Wickson.

LIMNANTHEMUM (Greek, marsh flower). Including Iillírsia. Gentianècere. Floating Heart. About 20 species of aquatic plants, widely scattered in tropical and temperate regions. They have 5 -petaled white or yellow fls., horne in spring and summer. Floating or ereeping: lvs. ovate or orbiculate, heart-shaped at the base, rarely peltate, with a closed sinus, entire or slightly wavy: peduncles with 1,2 or many fis.: corolla wheel-shaped, deeply 5 -cut; lobes fringed or not; stamens 5, fixed at the base of the corolla. Distinguished from Menyanthes by having the capsule 4 -valved instead of irregularly 2 -valved. Four hardy kinds are procurahle from dealers in aquatics and native plauts.

Limnanthemums are most useful ornamental aquatic plants, and are represented in cultivation by but four species. L. lacunosum-Floating Heart-is the bardiest of American species; its mottled, variegated leaves, about 2 in . broad, are very attractive, regardless of its dainty, white, miniature flowers. It is best grown under natural conditions, in pools and still water, and in water about 2 ft . deep. It may also be grown in tubs, as a surface covering, with a few tall plants in the center. L. trachyspermum, commonly known as the Fairy Water-Lily, is a much stronger grower; lys, deep green, and, when grown in natural ponds, attain large proportions, $4-6 \mathrm{in}$. hroad, and bears innumerable flowers, more like flakes of snow. It is also raluable for tub culture, similar to the preceding variety. L. Indicum, commonly called Water Snowflake, is undoubtedly the most interesting and attractive of any, and deserving of most general cultivation. The leares are of a light green color, beart-shaped, and it produces flowers in greater abundance, which are much larger and covered completely with hirsute glands. These, like the other varieties, are produced in clusters on the petioles, near the surface, and, although they are of but one day's duration, they are produced in such quantities that there is never any lack of these delicate flowers all through the season. In tub culture, this variety (or species) will soon crowd itself over the edge of an ordinary tuh, and, although the leaves no longer float on the surface, it does not affect the growth or the proliferousness of its flowering. When grown in tubs, the latter should be filled two-thirds with moderately rich, loamy soil, covered with sand, and filled and kept filled with water. All three species, when strong enough to produce flowering leaves or petioles, produce new sboots, as each cluster of flowers apparently terminates with a bud and produces leaves; these, when strong, produce flower buds and leaf buds again, and thus soon reproduce themselves. L. trachyspermum produces a cluster of fleshy roots, with a bud from single leaves in fall, which are plentiful in Florida in the season. These are excellent for distribution, and can be sent safely a great distance. The petioles are very brittle and easily snap off, but the floating leaf soon emits roots at the broken end as well as where the flower buds are located; thus it is very free and proliferous. These are very desirable aquatic plants.

The fourth species, L. (or I'illarsia) nymphoides, is a rampant, weedy plant, although its mottled foliage is beautiful and the flower is much larger than those of the above plants. Its habit of growth is also different: it produces runners, and rambles over an immense space; it also produces seed in great quantity, which, when ripe, floats on the surface for a short time, then sinks to the bottom; it is best confined to the limits of a tub, where it grows freely and produces its large yellow flowers in profusion. It is hard to eradicate when once establisbed, as it is perfectly hardy.

> A. Color of fls, yellow.
B. Fls, accompanied by clusters of tubers.
lacunòsum, Griseb. Stems sometimes 10 ft . long: 1 fs. purplish beneath, 1-2 in. long: fls. 3-6 lines across; segments ovate, acute: seeds smooth. July, Aug. Ponds, Nova Scotia to Fla, and La., west to Minn. B.B. 2: 622 .

B8. Fls. not accompanied by clusters of tubers.
nympholdes, Hoffmg and Link. (Also written L. nymphroides.) Lrs. $2-4 \mathrm{in}$. broad: fls. 1 in . across or more; segments obcordate, short-fringed. May-July.

Eu., Asia; naturalized in District of Columbia. B. B. 2:623. Gin. 24, p. 535.-Simulates Limnocharis Humboldtii in babit.

> As. Color of fls. white.

B. Seeds rough.

trachyspérmum, Gray. Stonter and larger than L. lacunosum: lvs. cordate orbicular, thick, entire or repand, 2-6 in. long, spongy: tubers thick: fls. 6-10 lines broad. Apr.-July. N. J. to Fla, and Tex. B.B.2: 623. -"Fairy Water Lily" is a nursery catalogue name.

Bb. Seeds smooth.
Indicum, Thw. Water Snowflake. Fls, white, yellow towards the base within; segments fimbriated, densely papillose, without a longitudinal fold down the middle. Tropies. Not B. M. 658, which is a yellow-fld. species.

Wat. Thicker and W. M.
LIMNANTHES (Greek, marsh flower). Geraniàear. Two or 3 species of Americau annuals growing near the water. Low, diffuse, rather fleshy: Jvs. pinnate: fls. white, yellow or rosy, solitary on axillary peduncles, I in. across: fls. regular, the parts in 5's; sepals valvate in the bud; glands alternating with the petals; stamens 10: carpels distinet, at first fleshy, at length hard and wrinkled, indehiscent, separating from the short axis: ovule solitary.

Douglasi, R. Br. LFs. pinnate; lits, sharply lobed or parted; lobes linear: petals oblong-spatulate, notched at apex, more or less yellow, white toward the tip: fr. smooth or slightly corrugated. Calif. B.M. 3554 . B.R. 20: 1673.

LIMNOBIUM (living in pools, from the Greek). Including Iriànea. Hydrocharidàcea. Three or four American aquatic herbs, oue of which is in the Amer. trade. Stemless plants, spreading by means of runners, the large leaves floating. Moncecious, the fls, arising from spathes borne on the rootstock, the pistillate single from a spathe and the staminate $2-4$ from a spathe, all with 6 white segments or petals, the inner ones being very narrow; stamens in a columa, bearing anthers at unequal heights: ovary with several (6-9) locules and as many stigmas, ripening iuto a manyseeded berry.

Bósci, Rich. (L. Spóngia, Steud.). American Frog'sbit (the European Frog's-bit is Hydrocharis). A neat floating plant, with purplish, banging, hairy roots and long-stemmed, cordate or ovate 1rs. 1-2 in. long and purplish beneath, Lake Ontario, south and west. Good for the aquarium.
Limnobium Bósci, while it is hardy southward, does not appear to be so in New Jersey. Its mottled foliage and silky rootlets are very attractive and make it valuable in the aquarium, but when grown out-of-doors in summer in tubs or pools, it is very vigorous and soon becomes crowded; the leares, instead of floatiug, then appear in an erect state, the spongy condition of floating leaves having disappeared, the plant haring no need of such. It is really a floating plant, propagated by division of runners, and should not be placed in shallow water, where it can readily root into the soil.

Trianea Bogotense is mentioned as synonymous with L. Bosci, but it is more sturdy in habit, of a lighter color-especially in winter-does not make such long runners, and forms more compact and attractive ro. settes of leares.

WM. Thicker and L. H. B.
LIMNÓCHARIS (from Greek for swamp-loving). Alismàcere. Four species according to the latest monographer (Micbeli in DC. Monogr. Phaner. 3) in tropical America. Perennial aquatic herbs, stoloniferous, with ovate, petiolate, floating or emersed lys., and perfect. with 3 outer and 3 inner parts, fertile stamens about 20 , and several or many ovaries. Excellent minor aquatics for greenhouse culture or for plauting out in warm summer ponds.
Húmboldtii, Rich. (L. Cómmersoni, Spreng. L. nymphóides, Micheli. Hydrócleys Cómmersoni, Rich.). Water Poppy. Fig. 1294. Stem prostrate and rooting: lvs. broad-cordate-oval, thick, mostly floating: fls. and

LINARIA

lvs. arising from bracted nodes, both long-stalked: fls. $2-21 / 2 \mathrm{in}$. across, with 3 obovate-rounded light yellow petals: carpels 5-7, not united. S. Amer. B.M. 3248 . B.R. 19:1640.-A handsome plant with the yellow fls. (lasting

1294. Limnocharis Humboldtii (\times / $/ 4$).

1 day) standing well above the water. In babit, remarkably like Limnanthemum nymphoides. Grows well in an aquarium or in shallow water. Continuous bloomer.
emarginata, Humb. \& Bonpl. (L. Plumièri, Rich. L. nàva, Buch.). Stouter: lvs. long-cordate-ovate, docklike, standing out of the water: fls, on long-winged stalks, the yellow petals much contracted below: carpels $15-20$, scarcely cohering. S. Amer. B.M. 2525.Less frequent than the last.
The culture of Limnocharis Humboldtii is of the simplest. When grown in tubs, fill the latter two-thirds full of moderately rich soil, covering with sand and fill up with water. Two or three plants planted in the center will, in a short time, furnish the tub with its bright glossy green Ivs. and numbers of its bright cheery yellow fis., which continue late in the season. In natural ponds, planted on the edge the plants grow very rapidly, and spread over a large surface of water. In artificial ponds, plant in tubs or boxes and place in shallow water or stand the tub or box on some stand, allowing 6-9 inches depth of water.

1295. Linaria Cymbalaria, or Kenilworth Ivy. ($\times 1 / 2$.)
Limnocharis emarginata, or L. Plumieri, is entirely distinct from the preceding. The light green oblong, blunt lvs. are very characteristic and ornamental; petiole
triangular, 1-2 in. high: the fls., produced on a seape, are pale yellow bordered white. Seed is produced very freely, and as the seed matures the scapes fall to the water, the seed ripens and sinks to the bottom, and Where grown out-of-doors, grows freely the following season. The flower-scape, as soon as it rests on the water, throws up a shoot, which produces another plant in a short time, which again produces flowers, seeds and shoots, and so on. The plant may be grown in pots or tubs or planted out in shallow water in early summer.

Wh. Tricker and L. H. B.
LINARIA (Linum, the flax, which the lvs. of some species resemble). Scrophulariàcea. Low herbs, sometimes subshrubs, of $130-150$ species, widely distributed in extra-tropical regions, several species cult, for the oddly-irregular fls, and others for the festooning foliage. Lvs. alternate, or sometimes subverticillate, in the erect-growing species mostly narrow and entire: fis. solitary in the axils, or in terminal racemes, yellow, white, blue or purple; corolla personate or grinning, 2 -lipped, usually 1 -spurred at the base (in rare or socalled Peloria states 5 -spurred); stamens 4, ascending in 2 pairs, slender; style I: fr. a dry capsule, opening by slits or pores near the summit.
Occasionally the fls. of the common toad flax (Linaria vulgaris) are regular. When Linnous discovered this form, he took the plant to be of another kind and made for it the genus Peloria. This word Peloria is now used generically for the regular state of any normally irregu-

lar flower. Such monstrosities occur now and then, particularly in the Scrophulariaceæ.

In America, Linarias are little known as garden plants, although they are worthy greater attention. They are of two general classes, - the hardy perennials and the annuals. The perennials are prop. by seeds and by division, usually the latter. All the species are of easiest culture in any ordinary soil and exposure, and are largely able to shift for themselves when once established. The annuals may be started indoors; or in warm situations they may be sown where the plauts are to stand.
A. Plant trailing: les. palmately veined and lobed (subgenus C'ymbalaria).
Cymbalària, Mill. Keniltorth Itr. Mother-ofThousands. Fig. 1295. Perennial tender glabrous berb, but sowing itself freely from seeds, long-trailing and rooting at the joints: lvs. cordate-orbicular or reniform, 5-7-rounded-lobed, on slender stalks longer than the blades: fls, solitary in the axils, on slender stems, small but pretty, lilac-blue with a yellowish throat: capsule globular, splitting from the top. Eu.-It sometimes has white tls. There is also a variegated-lvd. variety. The Kenilworth Ivy is one of the most familiar of trailers on greenhouse bottoms and in odd corners; also as a trailing basket plant in greenhouses and dwelling houses. It is of the easiest culture, particularly in a moist and partially shaded place. Prop. by division of the long stems, or by seeds. It will not stand frost, but the plant will spring up year after year from seed, becoming essentially annual. It has become established in the open in many parts of the East. Continuous bloomer. A good basket plant for poorly lighted places.

As. Plant erect or nearly so: les. long. B. Flowers yellow.
vulgàris, Mill. Toad-Flax. Butter-and-Eggs. Fig. 1296. Vigorous perennial, spreading freely by underground stems and in time forming large and persistent patches: stems strict, nearly or quite simple, slightly glaucous, 1-3 ft. high : Ivs. many, scattered, linear, somewhat narrowed below: fls. in a terminal spicate raceme, erect-spreading, with hanging nectary spur, sulfur-yellow, but orange on the bearded palate. Eu. A.G. 13: 469.- Extensively naturalized, and commonly regarded as a bad weed; but it infests cbiefly waste places, and although difficult to eradicate it does not spread very rapidly. Now and then it appears as an ornamental plant. It is more interesting to the general plant-lover than to the gardener. A double-fld. form is figured in G.C. III. 18: 554. The Peloria forms may have 5 spurs, or no spurs at all (R.H. 1851: 433).

Macedonica, Griseb. Robust perennial, 2-3 ft . bigh, branching: Ivs. narrow-ovate or the upper ones lanceolate, somewhat cordate at the base, nearly or quite sessile, entire: fls. bright yellow, with deeper color on the palate, in long wand-like terminal racemes. Macedonia, Gn. 45:948, J.H. III. 30:469. - A showy plant, hardy, bearing its snapdragon-like fls. most of the season. Perhaps a wide-leaved form of L. Dalmatica, Mill.

Bb. Flowers blue or purple.
C. Perennial border plants.
alpina, Mill. Compaet-tufted plants, 6 in . or less high, with weak and spreading flower stems: lvs. linear or lanceolate, mostly in 4's: fls. in short racemes or beads, blue with an orange-colored palate, the straight or slightly curved, sharp spur as long as the corolla. Alps. F.S. 20:2128. G.C. 11. 14:105. -A pretty little alpine, blooming in July and Aug.
triornithophora, Willd. Glaucous, $2-3 \mathrm{ft}$. tall: 1vs. ovate-lanceolate, in 3's or 4's: fls. about 3 in a whorl (bence the name, bearing three birds), rather large, slender-stalked, violet- aud purple-striped, with orange palate, about 1 in . long, the spur inflated above and exceeding the lobes. Spain, Portugal. F.S. 22:2297.-A handsome and interesting plant, rarely seen in American gardens.
cc. Annual plants of the flower garden (See R. H. 1896, pp. 371-374).
bipartlta, Willd. A foot high, erect, branching, with scattered or verticillate linear lvs.: fls. large, iu a long racemose spike, violet-purple, with the palate orange-colored above and whitish towards the base, the spur curved, about as long as the corolla, standing oblique or borizontal; upper lip parted. Portugal, N. Afr.-Old-time annual, but it bas never been popular in N. Amer. Var. alba, Hort., has yellowish white fls. Var. splendida, Hort.. has handsome deep purple fls. There is also a var. striàta, Hort.
Maroccàna, Hook.f. Fig. 1297. Spike much shorter and denser: fls, bright violet or rose, with a whitish palate, the spur long, pointed, as long as the pedicel and sometimes hanging nearly parallel with the axis of the spike: lvs, many, linear, scattered or whorled, hairy. Morocco. B.M. 5983.
reticulàta, Desf. Fls. pubescent, purple, reticulated with purple, the palate yellow or copper-yellow, the spur pointed and shorter than the corolla and pointing downward: spike short: lvs. linear, scattered or verticillate. Portugal. - An old garden plant, but little known in America, Runs into two or three forms.
L. aparinoides, Dietr. See L. heterophylla.-L, Broussonnéttii, Chav. (L. multipunctata, Hoffmg.). Low annual, with yellow, hlack-spotted fls,, orange on the palate, and lanceolate or
linear lvs.: $5-8$ in. high, mostly upright. Spain.-L. Canadensis, Dum., is a weedy native plant, of no value to the garden. It is annual or biennial, striet, $1-2 \mathrm{ft} .$, with very small blue fls. - L. Dalmatica, Mill., is a yellow.fld. perennial: see L. Macedonica, in the main list.-L, hepaticufflia, Stend. A good alpine, making a very low mat: Hs. purple: lvs. cordate or reniform, lohed. Corsica, Sardinia.-L. heterophÿlla, Desf. (L. apaform, 1ohed. Corsica, sardinia,- L, heterophyita, Dest. (LL aparinoides, Dietr.). Annua, erect, with seattered linear ivs.: fils.
straw-colored, with a yellow palate, in spicate racemes. straw-colored, with a yellow palate, in spicate racemes. Mo-
roceo. B.M. 6041.-L. multipunctata, Hoffmg.-L. Brousson-nettii.-L, purpürea, Mill. Erect perennial, with long racemes of purple-bearded fis. and linear whorled lvs. Eu. Of little value.-L. saxátilis, Hoffmg. \& Link. Rockwork perennial, trailing, with thickish lanceolate lvs., and yellow fls, in short clusters Spain.
L. H. B

LINDELOFIA (Friedrich von Lindelof, of Darmstadt, a patron of botany). Borraginàce. Two species of hardy berbaceous perennials from the Himalayas, one of which is cult. It grows 1-11/2 ft , high, and in June and July bears racemes of drooping, oddcolored fls, about three-fourths of an inch long, with a pale blue tube and 5 deep rose or purplish lobes. The racemes are about 6 in. long, and have $8-12$ fls. The plant is likely to be winter-killed unless given a sheltered place, good drainage and winter covering. It is not fastidious as to soil. Easily prop, by division. It seeds freely and flowers the second year from seed.
Like Solenanthus, this genus has the babit and nutlets of Cynoglossum, but the stamens of Cynoglossum are included, while those of the other two genera are exserted. Solenanthus differs from Lindelofia in having a more tubular flower, the lobes being relatively shorter and erect or slightly spreading.
spectábilis, Lehm. Pilose: lvs. oblongacuminate, the upper ones heart-shaped or clasping at the base: racemes bractless. B. R. 26:50 (Cynoglossum longiflorum). J.H 111. $31: 235$.
J. B. Keller and W. M.

LINDEN. Tilia.
LINDERA, See Benzoin.
LINDS库A, or Lindsaya, is a genus of about 50 species of tropical ferns, none of which are advertised in America. Schneider, in his Book of Choice Ferns, says they usually die soon after importation, even if apparently in good condition on arrival. In their native babitat, he says, these ferns usually creep about in poor, stony soil, which is frequently drenched and wasked away by rain. They need a bigh temperature and humid atmosphere. Lately some success bas been attained by placing Lindsæas in pots nearly filled with crocks, in which they are firmly ($\times 1 / 2$.) held by 2 or 3 pieces of turfy loam, and by imitating in other ways the natural conditions described above.

LIN N庆A (named after Linnæus, at bisown request; it was his favorite flower). Caprifolidece. Hardy evergreen trailing subshrub with opposite,small lvs. and light pink, campanulate, nodding fls. in pairs on slender upright stalks. A graceful, dainty plant for rockeries, preferring a shaded position and porous, peaty soil. Prop. usually by division or cuttings of soft or half-ripened wood under glass. Only one species in the colder regions of the northern hemisphere. Calyx 5 -parted; corolla campanulate, 5 -lobed; stamens 4 : ovary 3 -celled: fr. dry, indehiscent, 1-seeded. By some botanists Abelia is united with this genus.
borealis, Linn. Twin Flower. Fig. 1298. Stems slender, slightly pubescent: Ivs. short-petioled, roundish or obovate, with few crenate teeth, $1 / 4-3 / 4$ in. long: fls. pedicelled in 2's at the top of slender, upright pedun-
cles ; corolla rose-colored or white, about $1 / 2 \mathrm{in}$. long, fragrant. June-Aug. In N. Amer, south to Md., and Calif. in the Mts. B.B. 3:235. Gn. 24, p. 177.

Alfred Rehder.

1298. Linnæa borealis ($\times 1 / 4$).

LINOSPADIX (Greek, linear spadix). Palmàcear. L. Petrichiano is a pinnate-leaved palm from New Guinea, int. 1899 by Sander \& Co., who say: "The slender, alternate pinnæ are slightly arched. The base is netted with brown fiber, small, hair-like glumes of the same color being apparent on the younger fronds and leafstalks. The young fronds are colored similarly to those of Areca Ilsemanni, and when developing have the luster and brilliancy of new copper."

Linospadix contains about 4 species of dwarf, unarmed palms, all from New Guinea, varying considerably in foliage. The genus is allied to Bacularia, hut Bacularia has premorse leaf segments and erect anthers fastened at the base, while Linospadix has acuminate leaf segments and versatile anthers fastened on the back. Linospadix is distinguished from Howea (which see) by the stamens $6-9$: pistillate fls, with $6-9$ staminodes: orule parietal.

Petrickiana, Sander. Pinna once cut from the apex to a third or fourtb the length of the pinna; laterally cut about six-sevenths of the way from the tips of the segments to the rachis: premature basal lvs. cut once from the apex to half their length, the 2 lobes uncut. G.C. 111. $24: 299 .-T h i s$ is a handsome pinnate-leaved palm of compact growth and well furnished with foliage, at least whilein a young state. In its juvenile condition, the leaves of L. Petrickiana are simply bifid, the pinnate form gradually appearing as the plant attains age. Cultural conditions suited to the needs of Calamus and Damonorops will be most likely to succeed with Linospadix, and include a temperature of 70°, plenty of water, and some shade throughout the year.
W. H. Taplin and W. M.

LINOSY゙RIS (Linum and Osyris, which genera it resembles). C'omposita. One species, L, vulgdris, Cass., of Europe, is a good hardy perennial, growing $11 / 2-2 \mathrm{ft}$. bigh, and bearing numerous small pale yellow heads: stems strict (from a hard root). striate, finely pubescent, bearing many alternate, small, linear, entire lvs. It is an excellent late summer and fall bloomer, thriving well in any good garden or border. Prop, by division.

The genus Lynosyris is now referred to Aster by many botanists, the ahove species then becoming Aster Linosyris, Bernh. It is also known as Chrysocoma rulgaris, Gueld. Horticulturally, it is distinct, with its yellow heads and peculiar habit. From Aster it differs technically in the absence of rays and in yellow fls.
L. H. B.

LiNUM (classical name). Lindeen. Flax. Temper-ate-region plants of both hemispheres, of 80 or 90 spe cies, herhs or sometimes subshrubs. They are erectgrowing plants, with narrow alternate (rarely opposite)
and mostly entire lvs., and showy 5 -petaled fls. which open in the sunshine. Stamens 5 and alternate with the petals, usually united at the base: ovary 1, 3-5-loculed, bearing as many styles as locules, and ripening into a dry capsule which may or may not be dehiscent. The fls. are borne in terminal racemes or cymes, and, altbough rach flower may be short-lived, the continuity of bloom makes the plant showy. There are two horticultural sections, - the annuals and perennials. All are of easy culture in an open and warm place, fully exposed to the sun. Seeds of the annuals may be sown where the plants are to bloom or they may be started under glass. The perennials often bloom the first year from seed, and seeds are often used to propagate them; but the plants may be divided. There are several native Linums, some of which are small-fld., weedy plants.

A. Plant annual: fls. red or blue.

B. Bloom red.

grandiflorum, Desf. Flowering Flax. Figs. J299, 1300. Erect, branchy, $1-2$ ft., glabrous: 1vs. many, alternate, broadly lanceolate to oblong, sessile or nearly so: fls. terminating very slender pedicels which are 1-3 in. long, the ohorate petals wide-spreading (fl. $1-1 \frac{1}{2} \mathrm{in}$. across, and something like a single-fld. piuk) and much exceeding the pointed scarious-edged sepals. N. Afr. B.M. 4956. R.H. 1848:401. - Very serviceable garden annual, and popular for its glossy bright fls. The color varies in the shades of red. Var. rùbrum has bright red fls. Var. kermesinum is crimson. L, coceineum, Hort., is a scarlet-fld. form. In a warm, sunny place, the Flowering Flax makes a very satisfactory plant. It is not adapted to cutting, since the fls, are not durable. Will not stand frost.

bs, Bloom bluc.

usitatíssimum, Linn. Flax. Much cult. for linseed and for tiber, and running wild along railroads and in fields : 2-3 ft. high, very slender-branched, glabrous: Ivs. small, linear or lanceolate, acute, alternate : fls. about $1 / 2 \mathrm{in}$. across, light blue, soon withering: pod large, mostly exceeding the scarious-edged sepals, nearly or quite indehiscent. L. humile, Mill., also cult, and some-

1299. Linum grandiflorum. Natural size.
times run wild, is lower and has a dehiscent capsule; it is probably only a form of the above. - Flax has beez zult. from time immemorial, and it is unknown in an originally wild state. Some authorities consider it to be 2 modified form of L. perenne.

AA. Plant perennial: fls. yellow or blue (white vars.). B. Bloom yellow (L. trigynum, which may be sought here, will be found under the genus Reinvardtia).
flàvum, Linn. Erect from a somewhat woody base, glabrous, $1-2 \mathrm{ft}$.: Ivs. lanceolate or linear, alternate: fls golden yellow, in a much branching cyme, the showy petals much exceeding the glandular-ciliate sepals. Eu. B.M. 312.-A good half-hardy perennial, but not popularly known in this country.

BB. Bloom blue (or white).

perénne, Linn. Fig. 1301. Erect-growing and branchy, glabrous, 1-2 ft. tall: lvs. linear and acute, alternate: Hls, rather small, azure blue (there is a wbite-fld. form), on the ends of slender pedicels, the styles and stamens of different lengths (fls. heterogonous) in different fls.: capsules ovoid, debiscent, on inclined pedicels. Eu.Wortby hardy perennial, summer-blooming, often flowering the first year from seed.

Léwisii, Pursh (L. perénne, var. Léwisii, Eaton \& Wright). The West American representative of the above, and searcely distinguishable from it except that the fls, are not heterogonous, pedicels more erect in fruit, calyx nerves not evident. Fls. $11 / 2 \mathrm{in}$. across, clear skyblue, very pretty. B.R. 14:1163 (as L. Sibiricum, var. Lewisii).
Austriacum, Linn. (L. perénne, var. Austrlacum, Voss). Lvs. linear, punctate: fls, rather small, violetred or light blue: fruiting pedicels horizontal or reflexed. Austria. - Hardy North, growing 1-2 ft, high and blooming all summer.
Narhonnénse, Linn. One to 2 ft , high, forming a spreading clump, glabrous and slightly glaucous, and very handsome for rockwork: lvs. linear-lanceolate, pointed, alternate: fls. $11 / 2 \mathrm{in}$. across, on slender pedicels in loose panicles, azure blue, with white eye and white stamens. Eu. Gn. 52, p. 401.-Blooms in late spriag and early summer.
L. H. B.

LION'S EAR. Leonotis. L. Foot. Leontice; also Prenanthes serpentaria. L. Tail. Leonotis Leonurus.

LIPARIS (Greek, fat, shining). Orchiddeec. A large genus, containing over 100 species, distributed over the warm and temperate regions of the entire earth. The plants grow erect, with stems in some species 1 ft . high, bearing 1 or several lvs, and a terminal raceme of small, rarely medium-sized fls. Herbs, terrestrial or epiphytic: stems sometimes thickened at the base into a small pseudobulb, sheathed by scales: lvs. few, broad, contracted into sheathing petioles: fls. whitisb, greenish yellow or purplish; sepals and petals nearly equal, linear, spreading; column long; lip nearly plane, often with two tubercles above the base.
L. liliifolia should be planted in well-drained soil; a shady bank is preferable. L. Læselii delights in a wet situation, just at the edge of the water.

1300. Linum grandiflorum.
liliifolia, Rich. Twayblane. Plants 4-10 in. high: lvs. oval or ovate, 5 in . long: raceme with many purplish fls.: labellum large, wedge-obovate. Succeeds in welldrained soil on shady banks; woods and thickets, eastern N. Amer. B.B. 1:476, A.G. 12:153 and 13:517.- Procurable from Dutch bulh dealers and dealers in native plants.

Lœsélii, Rich. Plants 2-8 in. high: lvs, elliptic-lanceolate, $2-6 \mathrm{in}$. long: raceme with few greenish fls.: lip obovate pointed. In wet thickets, N. Amer. and Eu. B. B, 1:477. G.C. 11. 21:144.
L. atropurpùrea, Lindl. Plants 1 ft . or more bigb: lvs. 2-4. nearly round, acuminate plicate, near together at the upper part of the stem: raceme many-fld.: fls, chocolate-purple; lip oblong, obtuse, recurved. June. Ceylou. B.M. 5529 .-The most ornamental of the genus.

Edward Gillett and Heinrich Hasselbring.

130t. Linum perenne $(\times 1 / 2)$.
LIPPIA (August Lippi, French traveler, 1678-1704). Syn., Aloysia. lerbendcea. The Lemon Verbena is an old-fashioned favorite, witb delightfully fragrant foliage, a sprig of which was often included in mixed bouquets. It is a low-growing, tender shrub, with long, narrow, pointed, entire lvs., wbich are usually borne in 3's. In summer, it bears minute fis. in a delicate, pyramidal panicle, composed of many-flowered spikes, which appear in groups of three at decreasing intervals along the main axis. The Lemon Verbena comes from South America, and in the North is deciduous. In northern gardens it needs a winter overcoat of straw. In S. Calif. it attains a large size out-of-doors. Full cultural directions are given at the end of this article.
The genus Lippia is botanically nearer Lantana than Verbena, though the common forms of all three genera are very unlike horticulturally. Some species of Lippia have their spikes crowded into dense heads, like Lantana. The drupe in Lippia is dry, but in Lantana it is often juicy. About 90 species, chiefly American, ta few African. Shrubs, subshrubs or rarely herbs, hairy or not: Ivs. opposite or in 3's, rarely alternate, entire, toothed or lobed, flat or wrinkled: calyx small, 2-4-cut; corolla with a cylindrical tube, and 4 lobes.
Under the name of L. repens, Franceschi introduced into S . California in 1900 an interesting perennial plant designed as a substitute for lawn grass in the South. It makes a remarkably dense mat, and bears numerous tiny flowers an inch or so above the ground. The fls. are borne in a dense, bud-like head, covered with many tigbtly overlapping bracts. The fls. appear in rings, beginning at the base of the little bead. Franceschi writes of this plant that it thrives in any
soil no matter how poor, rapidly covers the ground, smothers weeds, stands trampling, requires much less water than grass, needs no mowing, can be easily taken out if desirable, and is used in southern Europe for tennis grounds. Voss pictures this plant with an erect and tufted habit, and refers it, together with L. cunescens, to L. nodifloru. These two names were kept distinet by Schancr in De Candolle's Prodromus, and specimens of Franceschi's plant come nearer to L. canescens than to L. nodiflord. Schaner's distinctions are given below, but there is doubt as to the chief point of difference; viz., whether any of the plants are annual. They all take root at the joints.

AA. Plant annual.

nodiflòra, Rich. Stems herbaceous: calyx 2-parted, slightly 2 -keeled, keels puberulous; the whole corolla a little more than one-twelfth of an inch long. Banks and sandy shores in the torrid zone and warmer parts of the temperate zone.

A. Plant perennial.

canéscens, Kunth. Stem somewhat woody at the base: calyx 2-toothed, 2-keeled, the keels slightly villous; corolli conspicuously larger than in related species, rosy, with a yellow throat. S. America, in dry, grassy places.
citriodorara, Kunth (Aloǵsia cilriodòra, Orteg.). Lemon Verbena. Livs. in whorls of 3 or 4 , lanceolate, shortstalked, glahrous, densely covered beneath with glandular dots: spikes whorled and axillary or collected in terminal panicles, which may be 3 in . long and wide. B. M. 367 (Verbena triphylla). Gn. $56: 1460$ G. C. 11. 11:30I.

A florist should always have a few Lemon Verbenas, Save a dozen plants in spring, shift them on as required, and in the summer plunge the pots outside. At the approach of frost bring them into the greenhouse, stand them under the lightest and coolest bench, and give them water enough merely to keep the wood from shriveling. In early February shake the plants out of the pots, shorten the unripened and weak wood, repot in fresh soil, using 4-inch pots, and start the plauts into fresh growth in a temperature of 55°. In a few weeks they will be covered with new growths suitable for cuttings. Cuttings root readily in about 3 weeks. The sand of the cutting-bench should be a little warmer than the air. Water the sand twice a day, and keep it well soaked. Never allow the cuttings to wilt from sunshine or dryness. Transfer the cuttings when rooted to 2 -inch pots, and in April shift to 3 -ineh pots, plunging them in a mild hotbed, where by the middle of May, with one pinching, they will have become fine, bushy plants. They need frequent syringing to prevent attacks of red spider.

Wis. Scott and W. M.
LIQUIDAMBAR (a compound of the Latin liquidus, fluid, and the Arabic $a m b a r$, sunber, the name given by the Spaniards in America from the fragrant sap which exudes from the tree). Hamamelidaceor. A genus of about 4 species, the one commonly known being the Sweet Gum or Liquidambar of the middle and southern states, a most interesting tree from its symmetrical head, star-shaped maple-like lustrous lvs., brilliant antumnal color, deep furrowed bark and corky winged branches. Its branches are short in proportion, and slender, giving it, when young, a narrow, pyramidal head, which becomes, when old, a narrow, oblong erown. Its foliage in autumn usually assumes a deep crimson. Its corky branches, not a wholly constant character, add to its picturesqueness and lend to its interest in winter. In the southern states, where it frequents river bottoms and is one of the most common trees, it reaches the height of 80 ft , or more. Farther north, where it is found on the borders of swamps and is rarer, it reaches the maximum of $60-70 \mathrm{ft}$. On drier and higher ground, it remains a small tree. In cultivation it is of moderate growth, thriving both in low, damp places and on higher grounds, reaching a height of $30-40 \mathrm{ft}$. Beautiful at every stage, its habit adapts it to both informal and formal planting, in the latter respect particularly to street and park planting, under which conditions it succeeds well. One of the most valuable
trees in cultivation in the middle and southern states; its lack of hardiness farther north torbids its use there. It is free from insects and diseases, and is said to withstand salt air. Its resin resembles the liquid storax of the Orient, It is propagated by seeds, which should be stratified as soon as ripe, many of them lying dormant until the second year. It requires close pruning when transplanted.
styraciflua, Liun. Sweet Gum, Bilsted, Starleaved or Red Gum. Alligator Tree. A native tree, $80-140 \mathrm{ft}$. high: Ivs. simple, alternate, generally rounded in outline, deeply and palmately $5-7$-lobed, serrate, aromatic, deciduous, glabrous below except a pubescence in the axils of the veins; lobes triangular-ovate, acute; petioles $6-7 \mathrm{in}$. long, slender: fls. apetalous, monceious, in globular heads, the staminate heads greenish, $1 / 4 \mathrm{in}$. in diameter, in terminal racemes, the pistillate heads solitary, long-peduncled, at length drooping, $I-1 \frac{1}{2}$ in. in diameter, hanging all winter: staminate fls, have no calyx, but numerous stamens intermixed with small scales; pistillate fls. cohere as to their ovaries, forming glohular heads which harden in the fruit, having scales for sepals, 4 rudimentary anthers and 2 -celled ovaries, 1-2-seeded: eapsules 2-beaked at the summit, forming together a dense spinose head. March-May. Conn. and southern N. Y. to Fla., 1Il., Mo. and Mex. G.F. 2:235.〕.G. 3:111. (i.C. I1. 14:633. Mn. 4:117. (in. 24, pp. 166, 167 and 38, p. 208.
L. orientàlis, Mill. (L. imberbis, Ait.). A tree of Asia Minor. Very similar to L . styracillua and differing in that the lvs. are smooth in the axils of the veins. A. Phelps Wrman.

LIQUORICE. See Glycyrrhiza.

LIRIODENDRON (lirion, lily, and dendron, tree; referring to the shape of the flowers). Magnoliacea. Tulip Tree. Whitewood. Yellow Poplar. Hardy ornamental, deciduous tree of pyramidal habit, with alternate, long-petioled, rather large lvs. of uusual shape, and large tulip-like greenish yellow fls. appearing iu spring. A very beautiful tree for park-planting and for aveuues, with bandsome, clean foliage of rather light bluish green appearance, rarely attacked by insects or fungi, assuming in fall a brilliant yellow color; the fls., though of not very showy color, are conspicuous by their size and shape. The Tulip Tree is also an important forest tree, and the soft, fine-grained, light yellow wood is much used in carpentry for furniture,boat-building and the manufacture of small articles; it does not split easily but is readily worked and bent to any required shape. The inner bark is said to have medical properties. The Tulip Tree grows best in deep, rich and somewhat moist soil. Transplanting is not easy; it is best done in spring, just before the tree starts into new growth. Prop. by seeds sown in fall or stratified and sown in spring; varieties are usually grafted or budded on seedling stock, rarely prop, by layers. The seeds are sometimes hollow, especially those grown along the eastern limit of the species. One species in N. America from R. I. and Vt, to Wis., south to Fla. and Miss.; also oceurring in China. Lvs, with conspicuous deciduous stipules cohering when young and inclosing the next leaf: fls. terminal, solitary, with 3 spreading sepals and 6 erect, broadly ovate petals; stamens numerous, with long and linear anthers; pistils numerous, forming a narrow column, developing into a light brown cone, at maturity the carpels, each consisting of a long, narrow wing with a 1-9-seeded nutlet at the base, separate from the slender spindle. The Liriodendron is one of the noblest trees of the American forest.

Tulipifera, Linn. Fig. 1302. Tall tree, to 150 , rarely to 190 ft ., with a trunk to 10 ft , in diam., often destitute of branches for a considerable height, glabrous: lvs. about as broad as long, with 2 lobes at the truncate and notched apex and $2-4$ lobes at the base, bluish green above, pale or glaucous beneath, $5-6 \mathrm{in}$. long: fls, greenish yellow, marked orange within at the base, $11 / 2-2$ in. long. May, June. S.S. I:13. Em. 2:605. B.M. 275. (ing. 7:259. A.G. 1892:485. Mn. 2, p. 4; 6, p. 145. Gn. 34, p. 42. V. 20:86. - Var, pyramidale, Lav, (var. fastigidtum, Hort.). With upripht branches, forming a narrow pyramid. Var, integrifolium, Kirchn. Lvs. rounded at the

base without lobes. Var, ohtusilohum, Pursh. Livs, with only one rounded lobe on each side of the base. There are also several vars. with variegated lvs., of which var.

-In the middle West, Liriodendron is universally known as Whitewood. To lumbermen in the East it is known as Poplar and Tulip Poplar.

Alfred Rehder.

LIRIOPE (named after the nymph Liriope). Hcmadoràcew. A tender, hulhous plant from China, growing a foot bigh, with grass-like foliage and 1 or 2 scapes overtopping the lvs., which bear from July to Septemher as many as 90 violet-colored tis. in a spike-like raceme $6-12 \mathrm{in}$. long and 1 in . wide. The fls, are less than $1 / 2 \mathrm{in}$. across, 6 -parted and arrauged in groups of $3-5$ along the raceme. They vary from dark purple through violet to whitish. The deepest color is the finest, and is set off hy the yellow anthers. The genus has only one species and has heen referred to 5 different families. The plant has a short, thick, stoloniferous rbizome, no stem: no perianth tube, and hypogynous stamens. It is procurable through Dutch hulh growers, and should perhaps be grown in the greenhouse the year round.
spicàta, Lour. (L. graminifolia, Baker). Lrs. all radical, linear-lanceolate, obtuse, 3 -nerved, with a few brown scales at the base: stamens 6: style columnar: ovary 3 -celled. B.M. 5348 , B.R. 7:593, and L.B.C. 7:694, all as Ophiopogon spicatus. - Var. densiflora (L. graminifolium densiflorum, Hort. Van Tubergen) is presumahly the best form.
W. M.

LISIANTHUS (Greek, smooth flower). Gentiandeea. The choice and rare plant known to catalogues as L. Russellianus is one of the largest-flowered species of the Gentian family. It is a tender annual from Texas and Mexico, and grows $11 / 2 \mathrm{ft}$. high, producing its 5 -lobed, purple, dark-eyed fls, in summer and fall. Under favorable conditions the fls, are 4 in . across, as many as 10 or 11 on a plant, and individual blossoms have been known to last three weeks. The proper name of this plant is Eustoma Russelliana. In Lisianthus, the ovary appears to be 2 -celled, because the placentre are connirent in the middle of the cell, hut in Eustoma the placenter are separated from each other by a considerable space. Lisianthus has about 60 species, all tropical American; Eustoma only 2 species.

Russelliànus, Hook. (Properly Eustòma Russeliànum, G. Don). Glaucous: stem simple, or with a few opposite hranches: lvs. opposite, connate, ovate or ovate-ohlong, 3 -5-ncrved: fls. panicled, as large as a tulip; lobes ohovate, spreading; stigma of 2 very large, green, velvety, spreading plates: pod oblong; seeds minute, pale brown. B. M. 3626. G. C. Ill. 4:240. R.H. 1863: 51 and 188I, p. $189 . \quad$ W. M.

This fine plant is difficult to grow in America. In the old World it is usually treated as a cool greenhouse subject, being sown in early spring for summer and autumn bloom. The writer has not grown it for thirty years, but in view of the renewed interest in this plant, his experience may be useful. The seed should be sown carefully, and at every stage of the plant's growth over-watering should be guarded against. The seedlings are very likely to damp-off. When they are ready for trans-planting from the seed-beds, use small pots. When larger plants are needed, place them in a light, airy place and give generous bottom heat, For soil, use good loam, sand and well-rotted manure.
F. L. Harris.

LISSOCHILUS (Greek, smooth lip). Orchiddeec. This genus contains ahout 30 species dispersed in tropical and S. Africa. Some of them are very handsome, but they seem to be little cultivated in America, only a single species being advertised here. The plants are terrestial berhs, distinguished from their near allies by the dissimilarity of the sepals and petals, the latter being much larger and wider and usually of a different color. The lvs. are plicate and prominently veined, long and narrow: stems very short, leafy, finally thickened into pseudobulbs: raceme simple: scape long, stout, sheathed hut leafless, growing beside the pseudohulh: labellum spurred or saccate, joined to the base of the column. The plants may be grown in a compost of fibrous loam, leaf-mold and sand. During the growing season they require plenty of water, but during three months of winter they should he allowed to rest and be kept dry.
Krébsii, A. Rich. Lvs. in tufts on the young stems, elliptic-lanceolate, $8-12 \mathrm{in}$. long: scape $2-3 \mathrm{ft}$. high: raceme $12-18 \mathrm{in}$. long, with $20-30 \mathrm{fls}$, : sepals linear-ohlong, hent back, green, with dull purple blotches; petals much larger, golden yellow; lip yellow, pendulous, saccate hetween the small, rounded lateral lohes; middle lobe orbicular, notched in front. Flowers from May to Oct., the fls, remaining a long time. Natal. B.M. 5861. -Adv. 1895 by Piteher \& Manda.
L. gigantèus, Welw. \& Reichb.f. A gigantic orchid whose lvs. are said to grow to a length of 8 ft ., with flower spikes twice as high: sepals linear, curled backward; petals oblong-quadrate, $11 / 2$ in. across, pinkish rose; labellum 3 in . long, with a long spur ; middle lobe trowel-shaped, purple, striped with darker lines, Congo. G.C.II1.3:617. S.H.2:355, I.H.35:53.- L. Hórs. fallii, Batem. A robust plant, with plicate lvs. $2-3 \mathrm{ft}$. long and $5-6 \mathrm{in}$, broad, sharp-pointed: flower stalk twice the length of the lvs., with many large fls. 3 in . in diameter: sepals reflexed. rich purple-brown on the upper side; petals much larger, almost square, white, suffused with rose. B.M. 5486. Handsomer than the first. $-L$. roseus, Lindl. Lvs. broad and stiff: stem 3-4 ft. high: sepals brown; pe als and labellum fine rose-colored. B.R. $30: 12$. Also a showy plant. - L. speciòsus, R. Br. Pseudobulbs nearly underground: lvs, dark green, ensiform: scape $2-4 \mathrm{ft}$. high, with fragrant fls, 2 in, accoss, sepals small, green, reflexed: petals large, yellow; lip mostly yellow, anparently on the upper side, due to the inversion of the fis. June July. Cape. B.R. 7:573 (erroneously numbered 578). P.M.B. 4:25.

Heinrich Hasselbring.
LISTERA (after Martin Lister, $1638(?)-1712)$. Orchidacea. Small, slender, erect herbs, with fihrous or sometimes fleshy roots, hearing a pair of opposite green lvs. near the middle, and 1 or 2 scales near the base of the stem: fls. small, spurless, in a terminal raceme; sepals and petals similar, spreading or reflexed; labellum rather longer, narrow, entire or 2 -lobed. Ahout 10 species, natives of the north temperate zone.
convallarioldes, Torr. Stem $4-10 \mathrm{in}$. high, with smooth, round-oval, ohtuse, cuspidate lvs.: raceme 2-3 in. long. bearing 3-12 greenish yellow fis. June-Ang. In woods, Nora Scotia to Alaska and Calif.; south to N. C. in the Mts. B.B. 1:473.
cordàta. Very slender, $3-10 \mathrm{in}$. bigh: lvs. cordateovate, mucronate: raceme 1-2 in. long, with 4-20 minute purplish fls. June-Aug. In moist woods, Nova Scotia to Alaska aud Ore., south to N.J.; Eu. B.B. 1:473.

Heinitich Hasselbring.
LITHOSPERMUM (Greek, rack seed; the seeds like little stones). Borragindेcece. This includes a few lowgrowing hardy herbaceous perennials of minor importance. The best known is L.

A. Color of fls. blue or purplish.
B. Habit trailing: tube of corolla densely hairy, thrice as long as the caly.
prostràtum, Lois. Gentian Blee Gromwell. Suhshrub: Ivs. lanceolate-linear, margin somewhat revolute: tube of corolla pubescent outside, densely villous at apex. S. Eu. This is presumably the plant in the trade, since L. prostratum, Buckl., is a white-fld. annual properly called L. Matamorense. However, L. prostratum, Lois., is referred by Index Kewensis to L. fruticosum, which see. Gn. 45, p. 135. J.H. 11I. $32: 475$.
br. Hubit erect: tube of corolla not hairy.
fruticossum, Linn. Distinguished as above by DeCaudolle, and apparently more of a shrub, with the leaf margins decidedly revolute. S. Eu.-Not cult.

AA. Color of fls, pale yellow, yellow or orange.
B. Size of fls. small; tube about as long as the calyx: roots not red.
c. Inflorescence sparse: throat of corolla crested with appendages.
officinàle, Linn. Gromwell. Much branched, 2-3 ft. high: lvs. lanceolate or ovate-lanceolate, 2 in. or less long: fls. dull white. Along N. E. roadsides, but naturalized from Eu.
cc. Inflorescence dense: throat of corolla nearly devoid of appendages.
pildsum, Nutt. Mostly unbranched, 1 ft . high: 1 vs , linear and linear-lanceolate, $2-4 \mathrm{in}$. long: fls. dull greenish yellow, crowded in a leafy thyrse. Western N. Amer.
BB. Size of fls. large, showy: tube of corolla much longer than the calyx: roots red, long and deep.
c. Floral leaves reduced to bracts no longer than the culyx.
multiflorum, Torr. Height 1-2 ft.: Ivs. linear: fls. light yellow, spicate. Rocky Mits. to W. Tex.

> cc. Floral leaves much longer than the calyx.
D. Tube of corolla $1 / 2-2$ times as long as the calyx: crests of throat little if at all projecting or arching.
E. Fls. nearly without pedicels: glondular ring at the base naked.
canéscens, Lehm. Pucroon, of the Indians. Red Root. Indian Paint. Fig. 1303. Height 9-12 in. or more: fis. orange. Plains and open woods, in sandy soil, upper Canada to Ala., west to Ariz. B.M. 4389.
Ee. Fls. mostly, pedicelled: glandular ring at base within bearing 10 rery hirsute lobes or feeth.
hirtum, Lehm. Height 1-2 ft.: fls. bright orange. Jine barrens, Mich. to Fla. and Colo.
DD. Tube of corolla 2-1 times as long as the calyx. crests of the throat conspicuous and arching.
angustifolium, Miclix. Fig. 1304. Height 9-12 in. or more: Ivs. all linear: fls. of 2 sorts, the earlier and conspicuous kind bright yellow, with corolla tube 1 in . or so long, later ones and those of the more diffusely branching plants with inconspicuous pale corolla, without crests in the throat and probahly cleistogenous. Apparently all grades between early large fls. and late small ones. Prairies. D. M. Andrews says it has pale cream fis. Yar. longiflorum (L. longiflorum, Hort., D. M. Andrews) is said to grow 1 ft . high, with larger, pale lemon fls. and comes true from seed. Grows wild in Colo.
W. M.

LITTAA. See Agave.

LITHREA (Chilean name). A nacardideer. A genus of small South American trees related to Rhus, and by Bentham and Hooker included in that genus. The plant cult. by some under this name seems not to he true to name, as it is a tree with undivided Ivs., while the true plant is as hrub with $1-3$ pairs of Ifts, and odd pinnate. D. C. Mon. Phan. vol. 4.

Aroeirinha, March. (L. molleoldes, Engl.). Shrub, 9-12 ft. high: Ivs. of 5 lanceolate lfts., the rachis and
petiole narrow-winged; lfts. $2-3 \mathrm{in}$. long, glahrous, with small panicles of greenish yellow ds, and almost white drupes 1-2 lines in diam. Brazil.

J. B. S. Norton.

LITTONIA (Dr. Samuel Litton, professor of botany in Royal Duhlin Society). Liliacere. Littonia and Gloriosa are called Climbing Lilies. They are tender, tuberous plants, with glossy, lanceolate 1 rs , which curl at the tips into tendrils, enabling the plants to reach $6-8 \mathrm{ft}$. The fls. are 6 -parted, but in Littonia the segments are not reflexed like a Cyelamen, as in filoriosa. Fls. nodding, bell-shaped, orange, 1 in, or more across; segments oblong, acuminate, $1 \frac{1 / 4}{} \mathrm{in}$. long: capsule long, 3 -celled; seeds scarlet, about the size of a sweet pea, round, arranged in 2 series. The odd-shaped tubers are about $11 / 2 \mathrm{in}$. across and may be planted outdoors in May. There are 4 species, 1 from Arabia, 1 from S. Africa and 2 from tropical Africa.
modésta, Hook. Lower Irs. in 3's, upper ones alternate: perianth segments provided with a small oblong nectary, partially closed by a ciliated scale on each side: style 3-cut. S. Africa. B.M. 4723. Var. Keltii, Hort., is an improved form, with larger and more abundant fls.

John Endicott and W. M.
LIVE-FOREVER. Sedum Telephium and other Sedums.

LIVERLEAF. Hepatica.

LIVERWORT. A general name for a group of cryptogamia (flowerless plants), somewhat allied to mosses and known as Hepaticæ. Conocephalus and Marchantia have heen offered by dealers in native plants as suitable for rockwork and hog gardeus. Lunularia is a common weed in greenhouses.

LIVING ROCK. Consult Anhalonium.

LIVISTONA (Patrick Murray, Baron of Livistone). Patmàcea. Ahout 14 species of fan palms from tropical eastern Asia, Malaya and Australia. Trunks usually tall, stout, ringed below, clothed above with dead leafsheaths: lvs, spreading, orbicular, plicate, split to the middle or below; the segments bifid, infolded, naked or fibrous along the margins; rachis short; ligule small, cordate, free; petiole long, stout, flat or rounded above, convex helow, often spiny along the margins; sheaths margined with reticulate fihers : spadices long, at first ascending, pendent in fruit, longpeduncled, loosely branched, the branches slender: spathes many, long, tubular, compressed, sheathing the peduncle, thick, coriaceous, bifid or 2 -lipped, 2 -keeled or ancipital: no bracts or bractlets: fls. greenish: fr. smooth and shining, oblong-globose or ellipsoidal, black, blue, yellow or brown.
From the seven allied genera mentioned under Licuala, Livistona is distinguished by the following characters: fls. hermaphrodite: carpels of the ovary glohose, distinct or slightly cohering: styles short, distinct or cohering: albumen not twisted, broadly scooped out on the ventral side: branches of the spadices not bracted or the lower ones hracted.

A. Le's. giaucous beneath.

Jenkinsiàna, Griff. Lrs. 5-6 ft. broad, reniform, flabellate, $70-80$-fid, glaucous beneath, the divisions very narrow, straight, shortly and obtusely 2 toothed. Assam.

> As. Li's. not glaucous beneath.
> B. Petiotes without spines.

Woodfordii, Ridley. Petioles slender, without thorns, only $1 / 4 \mathrm{in}$. thick: Irs. orbicular, quite thin, 2 ft . long, 18 in . wide, split into very narrow acuminate lohes, the lower ones free almost to the base, the inner ones split
only one-fourth of the way down: spadices very slender, the short slender branches protruding from the mouths of tubular hrown sheaths: drupe glohose, $3 / 8 \mathrm{in}$. in diam., bright red. Polynesia. First described in G.C. 111. 23:177. - Nearly related to L. australis, but more graceful, with smaller flowers and fruit.

```
BB. Petioles spiny below the middle.
C. Length of spines \(1 / 4 \mathrm{in}\). or less.
```

olivæfórmis, Mart. (Corypha Gebánga, Hort., in part). Stems medium: lvs. glabrous; petiole somewhat 3angled; spines retrorse, 1-3 lines long; segments 12-15 in. long, deeply bilobed, the lohes very long, acuminate, linear, pendent, with or without very short filaments: fr. olive-shaped, solitary, or twin and connate to the middle. Brazil.

$$
\text { cc. Length of spines } 1 \text { in. or more. }
$$

D. Shape of les. reniform.

Chinénsis, R. Br. (Latània Borbónica, Hort., not Lam.). Stem 6 ft . high, more thau 1 ft . thick, gray, with approximate rings: Ivs mauy; petiole equaling the blade, covered to ahout the middle with retrorse hrown spines, 1 in . or more long; blade reniform, 4-6 ft. in diam.; segments linear-lanceolate, long-pendulous, deeply forked, filiferous, the lower 1-2 ft. long, 1-2 in. wide, the middle 3 ft . long, the lobes acuminate, 4-8 in. long. China.

DD. Shape of lvs. arbicular.

rotundifolia, Mart. (Chamerops Birod, Sieh. C. Byr$r h \delta$, Hort.). Stem $40-50 \mathrm{ft}$. high, $1-1^{1 / 2} \mathrm{ft}$. in diam., erect or subflexuous, hrownish hlack, obscurely ringed; petiole 6 ft ., with recurved spines $11 / 2$ in. long at the base; blade $3-5 \mathrm{ft}$. in diam., suhorhicular, at length somewhat peltate through reversion of the lowest lobes; segments $60-90$, connate for one-third their length, bifid to the middle, the lobes long-acuminate. Java. R.B. 21:110. F.R. 1:301. S.H. 2:28.

Bbв. Petioles spiny from base to apex.

E. Segments of the lvs. free one-third of the way down.
altissima, Zoll. Lvs. bright shining green, 11/2-2 ft . long; segments free one-third of the way down, hifid at the apex; petiole $2-6 \mathrm{ft}$., upper part green, hrown toward the base, inclosed in a reddish hrown network of woody

1305. Livistona humilis.
fibers, armed on the margins with stout black recurved spines. Java.

EE. Segments free nearly to the base.
F. Position of segments rigid, not drooping.
austràlis, Mart. (Corỳpha austràlis, R. Br.). Stems $40-80 \mathrm{ft}$. high: lvs. in a dense crown, orbicular $3-1 \mathrm{ft}$. in diam., divided to or below the middle into 40-50 narrow, plicate, acuminate segments, either entire or 2 -cleft at the apex. Australia. B.M. 6274. Gn. 26, p.337. V.9:328

fr. Position of segments drooping.

G. Vumber of segments 10-12.

Hodgendorpii, Hort. Stem tall, cylindrical, with triangular leaf-scars: petiole rounded on the back, $3-5 \mathrm{ft}$. long, red-brown at the base, olive-green above: spines stout, recurved, $1^{12 / 2}-21 / 6$ in. apart, $3 / 4-21 / 2$ in. long: leaf suborbicular, $4^{1 / 2}-6 \mathrm{ft}$. in diam.; segments plicate, cunenate, pendulous at the apex and $5-7$-lobed, the lobes acute. Java. 1.H.21:174. F.R. 1: 427. Gn. 25, p. 392.

Gg. Number of segments more than 12.

hùmilis, R. Br. (L. Maric, F. Muell.). Fig.1305. Stems $4-16 \mathrm{ft}$. high: 1vs. at length orbicular-cordate, 3 ft . in diam., deeply divided; segments narrow, plicate, acuminate, the filaments between the lobes altogether wanting or very minute or 1 in . long; petiole much flattened, with acute edges bordered with small prickles intermixed with larger ones, of en $1 / 2 \mathrm{in}$. long. N. Australia. -Fig. 1305 is redrawn from Martius.
subglobòsa, Mart. A medium-sized palm: lvs. glabrous, the rays $10-12 \mathrm{in}$. long, 2 -parted nearly to the base, the lobes linear, very acuminate, pendulous: fr. subglobose. Java. - Known in Java as "Sedangan."

Jared G. Smith.

This is the most extensively grown genus of fanleaved palms in commercial horticulture of the present day, its commonest representative being the well-known "Chinese Fan Palm," L. Chinensis, which is also known to the trade, and improperly, as Latania Borbanica. In general, the members of this geuus are by no means difficult to grow, though it is well to make some distinctions in culture between such strong-growing and comparatively hardy palms as L. Chinensis and L. australis, and the more tender species from Java and northern Australia, arnong which L. humilis, L. oliveformis and L. rotundifolia are prominent.

For those of the first section a strong loamy soil well enriched with thoroughly decayed stable manure, good drainage, an abundance of wati-r and a night temperature of 60° will provide satisfactory conditions for sturdy growth.
The more tropical species, of which L. rotundifolia is a good example, make better progress in a somewhat lighter soil and a higher temperature, 65° to 70° being more congenial to them than the cool treatment accorded their stronger relatives. More shade is also required for the warmhouse species, in order to retain the rich green color that a healthy Livistoua should present.
Red spider and white scale are two of the most troublesorue insects to the grower of Livistonas, the first being controlled to a great extent by thorough syringing, while the latter may be eradieated by the carefnl use of various insecticides, though avoiding the frequent application of extract of tobacco, the continued use of the latter substance often resulting in injury to the foliage of Livistonas.
L. anstralis is a more stubby-growing plant than L. Chinensis, the fan-like leaves are stiffer and less graceful, and the footstalks are more thoroughly armed with stout spines, while the leares are also smatler in propertion to the plant than those of L. Chinensis. L. Hoogendorpii and L. oliveformis are somewhat alike in young plauts, but the first has many more and coarser spines on the footstalks, and the stalks of L. Iongendorpii are generally longer, the leares of both being much divided. L. rotundifotia and L. altissima are much alike in a small state, and the writer is inclined to think that the seeds of the latter are sometimes substituted for those of L. rotundifolia. The leaves of L. rotundifolia are flatter and more even in outline, those of L. altissima being sormewhat undulated, as though they were crowded on the stalk. In fact, small plants of L. rotundifolia are usually more symmetrical, and also bave longer footstalks.
W. H. Taplin.

LLOYDIA (after Edward Lloyd, who found the plant in Wales). Liliacea. About 4 species of bulbous plants, of which L. alpina was said by Baker to have the widest distribution of any plant in the lily family. Dwarf plants, with hard, grassy lvs. and small, whitish, longlasting fls.: perianth 6-parted; segments withering and
persistent ; stamens 6, hypogynous, shorter than the perianth: capsule obovoid; seeds flattish.
alpina, Salisb. (L. serótina, Sweet). Distinguished from the other species by having an oblique, somewhat rhizomatous rootstock and glands on the claws of the perianth segments. Radical lvs. 2-4, linear, convolute: stem usually 1 -fld., 3-9 in. tong: Ivs. 3-4, small, linear: tls. whitish, yellowish purple at its base. Mts. of Wales to Sicily, Himalayas, Colorado.-Adv. 1889 by. F. H. Horsford.

LOASA (South American name). Loasàcea. These plants are too much like nettles to deserve cultivation, though their fls, are odd and interesting. The pair from their pricks lasts several days. Each of the 5hooded petals contains a bunch of stamens. They are treated as half-hardy annuals. (See Annucils.) A genus of about 50 tropical American herbs, erect or twining: lvs, alternate or opposite, entire, lobed or decompound: capsule $3-5$-valved from the apex, rarely twisted: ovary 1 -celled; ovules numerous. The allied genus Blumenbachia differs in having capsules which are longitudinally $5-10$-valved and most frequently spirally twisted.

1306. Loasa tricolor (\times 3/4).

A. Sepals as long as petals.

trícolor, Lindl. Fig. 1306. Annual, 2 ft . high: lvs. opposite, bipiunatifid, very prickly: sepals as long as the petals; petals yellow: crown red: filaments white. Chile. B.R. 8:667.

AA. Sepals shorter than petals.
 B. Petals yellow.

hispida, Linn. Annual, $11 / 2 \mathrm{ft}$. high: Ivs, alternate, 5 in . long, $3^{1 / 2} \mathrm{in}$. wide, pinnatifid; segments lobed: sepals much shorter than the petals; petals yellow, over 1 in . long. June-Aug. Peru. B.M. 3057. G.C. 111. 22:291. Gin. 25, p. 451.-Cult. in pots abread.

вв, Pefals white.
vulcánica, André (L. W'állisii, Hort.). Erect, bushy annual, 2-3 ft, high: lvs. 3-6 in. broad, 3 -parted: seg. ments serrate, each with a long stalklet, the lateral ones often divided into 3 lfts.: sepals shorter than the petals; petals white: eve of fl. of 2 concentric red
bands, with 5 yellow spots outside. New Grenada. B.M. 6410. I.H. 25:302. R.H. 1894, p. 233.

BB. Petals brick-red.

lateritia, Gill. Without stinging hairs: stem scarcely any: lvs, opposite, long-petioled, pinnatisect; segments rotundate, crenately lobed: peduncles twin, 1-fiai.. terminal, about as long as the leaf: calyx lobes oval. Ionger than the corolla tube, half shorter than the corolla. Chite. The above description is from the original one. A much confused plant (see addenda of lnd. Kew under Loasa and Blumenbachia; also equivocal passages in Engler \& Prantl PA. Fam. 3:Ga:118, 119, Lieferung 100). The stinging vine $10-20 \mathrm{ft}$. high pictured in B.M. 3632 as L. lateritia, is a Blumenbachia, of the section Raphisanthe. L. aurantiaca, Hort., is usually given as a synonym of L. Iateritia in botanies. but is kept separate in the trade.

LOBELIA (Matthias von Lobel, or L'Obel, 1538-1616, a Flemish botauist and author. Latinized Lobelius). Lobeliaceas (by some combined with the Campanufacer). More than 200 herbs (or sometimes subshrubs in the tropics) of wide distribution in temperate and tropical regions, comprising many species with very showy flowers. Corolla gamopetalous and tubular, split down one side ; lobes 5 , the 3 on the lower side (as the fl. stands) somewhat united and forming a lip, the other 2 (1 on either side of the cleft or split) erect or turned back; calyx short-tubular or globular, joined to the ovary, short-toothed; stamens 5, united into a tube around the single style, the tube often protruding from the cleft into the corolla; fr. a 2 -valved capsule. The flowers are blue, red or yellowish, on 1 -fld. pedicels, which are arranged in a terminal raceme. Lrs. alternate, mostly narrow.

There are two horticultural groups of Lobelias, - the annuals and the perennials. The annuals are low, normally blue-fld. species suitable for bedding and edgings. They are of the easiest culture either from seeds or cuttings. See L. Erinus (No. 1). The perennials are again of two types, - the hardy and the half-hardy or tender. The hardy kinds are natives, of which L. cardinalis and L. syphilitica are the leading representatives. These inhabit bogs and low places, and the best results under cult. are to be expected in moist and cool spots. The half-hardy sorts are chiefly derivatives of the Mexican L. fulgens, a plant which is deservedly popular in the Old Worle, but which has not attained great favor here. These species may be bedded out in the northern states. They are carried over winter in pots or in a cellar. They usually give good results the first year from seed, if started early; or seeds may be sown in the fall and the plants carried orer in a frame. The bardiness of the hybrid peremnial Lobelias in this country is yet to be determined. It is prohable that forms of L, fulgens will stand outdoors in the middle states if given winter protection. In the latitude of Washington they are hardy in winter but are scarcely able to withstaud the summers.

INDEX.

alba, 1 c, 6.
atrosanguinea, 9 bicalor, 1 . cardinalis, 7. Cavanillesii, 13. compacta, 1 a. erecta, 1 a. Erinus, 1. Feuillei, 14. formosa, 9 . fulgens. 9 . Gerardi, 11. glandulosa, 6 .

Goldelse, 1 b .
Golden Queen, 1 b. gracilis, 1, 2. grandiffora, 1 c . heterophylla, $1,3,4$. hybrida, 10. Kalmii, 5 . Kermesina. 1 c . laxifora, 13. Lindleyana, $1 c$. Lugdunensis, 11. marmorata, 1 c . Nanseniana, 9.

Paxtoniana 1 c . perennis 10. Queen Victoria, 9 ramosa, 4. ramosa, ${ }^{4}$, ${ }^{\text {Rivoirel, }} 12$. speciosa, 1 c . splendens, 8 . syphilitica, e. tenuior, 4. tricolor, 1 c. Tupa, 14.
A. Plant annual (or so treated), low and diffusegrowing.
B. Beards or hairy tufts on only the two lower anthers.

1. Eribus, Linn. (L. heterophylla, Hort., sometimes, not Labill. L. gricilis, Hort., not Andr. L. bicolor, Sims). Figs. 1307-8. Diffuse and half-trailing annual or perennial, much used for edgings. Glabrous or slightly hairy below, $6-12 \mathrm{in}$. high: lvs, variable, the lower ones ohtuse and obovate or spatulate and crenate-toothed, the upper ones oblanceolate or oblong (becoming linear
and acute near the top of the stem, and mostly sharp-angle-toothed: fls. $1 / 2-3 / 4 \mathrm{in}$. across, on slender pedicels, light blue with a lighter center; the calyx lobes awllike, spreading, as long as the corolla tube; 3 lower lobes of corolla large and spreading. S. Atr. B. M. 514, 901. - One of the commonest of all annual edging plants, particularly for early season effects. In our hot climate, it often ceases blooming in midsummer, but with good soil, plenty of water, and occasional cutting back, it will bloom till frost. Seeds sown in January and February will give blooming plants by April and May. For fls. alone, rather than for edgings, the seeds may be started later, or even sown in the open ground. For definite results iu edgings, however, it is usually better to start from cuttings. In the fall, lift the best plants and grow them in pots through the winter as stocks from which to secure cuttings. Cuttings taken in late January or February should give blooming plants by May.

2. Lobelia Erinus. Natural size Scedlings vary, and one cannot rely on them for specific effects in design work, although they may be best for the amateur who desires only fls. Some strains of seeds, however, come very true. Lobetia Erinus is also a good pot-plant for the winter conservatory.
Lobelia Erinus is exceedingly variable. The forms fall into three groups:
(a) lariotion in habit: Var. compácta or erécta, dense-growing forms suitable for low, close edgings: subvarieties are blue, white, etc. The most popular bedding forms belong to this strain. The name erecta is often used for the taller strains. Var. grácilis, with slender growth and suitable for vases or baskets : blue. Var. pùmila. Very dwarf.
(b) Variation in color of foliage: Folden Queen and Goldelse, with yellowish foliage. Also forms with bronzy foliage, but not constant.
(c) Variation in color and size of fis.: Yar. alba, white. Var. flòre plèno, double. R.H. 1875:71. Var grandiflora. Various large-fld, forms. Var. Kermeslna. Crimson. Var. Lindleyàna. Rose-color, with white eye. Var. marmoràta, Fls. marbled. Var. Paxtoniana. Light blue with white eye: growth straggling. Var. Royal Purple. Purple-blue. Var. speciosa. Large-fld., light azure blue, with white eye. Var. tricolor. Fls. blue or pink, with white eye and carmine spots.
bв. Beards or hairs on all the anthers. The three following species are probably not in the Amer, trade, although they are known as cult. plants. The names sometimes occur, but the plants which they represent are probably forms of L. Erinus. But the descriptions will enable the student to distinguish whether the species occur.
3. grácilis, Andr. A foot or less high, slender, decumbent at the base, glabrous: lower lvs. ovate and deeply cut, the upper ones narrower and pinnatifid (becoming

4. Lobelia Erinus.

One of the most popular edging plants.
Linear and entire at the top of the stem): (fs. $1 / \mathrm{q}-3 / 4 \mathrm{in}$. across, blue with a whitish eye, the middle lower lobe strongly obovate, the 2 upper lohes small and curred and usually hairy: H.-cluster long and open, more or less 1-sided: seed angled, not winged. Austral. B.M. 741.
3. heterophylla, Labill. Much like the last, but fls larger, (the middle lobe nearly 1 in . long) and the lower leaves parted into linear lobes: seed winged. Austral. B.R. 23:2014. P.M. 9:101.
4. ténuior, R. Br. (L. ramdsa, Benth.). Erect or ascending, 12-18 in., pubescent: lower Ivs. small, mostly ternately divided, the upper Ivs. linear and mostly entire: fls. rather large, bright blue, borne far apart on very slender pedicels, the middle lobe much the largest and obovate: seed smooth and sbining, compressed. Austral. B.M. 3784 (as L. heterophylla). B.2:93. R.H. 1856:281. G.C. II. 15:105.
AA. Plant perennial (rarely biennial), usually tall or strict-growing.
B. Corolla very unequally bilabiate or 2-lipped, the lower lip 8 -lobed and deflexed, the upper lip very small.
c. Species: fls. blue (sometimes varying to white).
5. Kalmii, Linn. A slender perennial (sometimes biennial ?), 6-18 in. high, glabrous, branched: lvs, nar-row-spatulate to linear at the top of the stem, remotely denticulate: fls, small ($1 / 3 \mathrm{in}$. long), very light blue, in a long, loose raceme, on filiform pedicels. On wet banks and slopes and margins of bogs, in N. states: propagating by offsets. B.M. 2238. - Sold by dealers in nativ plants. Useful for bog planting.
6. syphilitica, Linn. Strong, weedy berh, 2-3 ft., glabrous or nearly so, mostly simple: lvs. thin, oblongoval to lanceolate, attenuate to the apex but the point mostly blunt, small-dentate or crenate-denticulate, narrowed into a very short petiole: fls, about 1 in . long in a long, wand-like, racemose spike, blue or purplish, the tube about $1 / 2 \mathrm{in}$. long; calyx hairy and enlarging in fruit, the lance-acuminate

1309. Lobelia cardinalis. ($\times^{1 / 3}$.) lobes conspicuous, and bearing auricles in the sinuses. Moist places, E. states. B. R. 7:537; 32:6 (as L. glandulosa). Mr. 7:61.Var. álha, Hort., has nearly white fls. Interesting plant for bog gardens and moist borders. In dry soils it will grow, but with less vigor.
c2. Species: flowers in shades of red (or yellow or very rarcly white).
7. cardinàlis, Linn. CARdinal Flower. Indian Pink. Fig. 1309. Straightgrowing, glabrous or very nearly so, 2-4 ft. tall, usually unbranched: liss. narrow, varying from oblong-orate to lanceolate, tapering both ways, the petiole very short or none, margin irregularly serrate: fls. bright intense cardinal (rarely varying to white), the tube 1 in . long, the 3 lower lobes very narrow, the fls. borne in a long racemose spike in which the bracts are mostly very narrow and the upper ones little exceeding the pedicels; calyx hemispherical, the tube much shorter than the long-linear lobes: seeds distinctly tuberculate. Wet places, as in swales, eastern N. Amer. B.M. 320. G.W. F. 41. - One of the most showy of all native flowers, and worthy of cult. in any moist border. It has been long in cultivation, but has probably given no important horticultural forms.
8. spléndens, Willd. Like L. cardinalis, but more slender, the lvs. narrower and glandular denticulate,
mostly sessile: seeds little tuberculate. Wet places, Tex., W. and S.-Once adv. by Saul.
9. fülgens, Willd. (L. formòsa, Hort. L. cardinàlis, Hort., in part). Very like the last, but fls. larger, deeper red and more showy, the 3 lobes of the lower lip broader: plant mostly pubescent (at least the foliage), and variously tinged or spotted with brown or bronze: bracts more leafy. Mex. B.M. 4002 (as L.splendens, var. atro-sanguinea).-Long in cult. and a most desirable plant. Not hardy witbout protection in the N. It has given rise to many borticultural forms, some of which (as "Queen Victoria") are commonly referred to L.cardinalis. The trade name L. cardinalis atrosanguinea probably belongs to this species. The recent L. cardinalis Nanseniana, a purple-carmine sort, is probably L. fulgens. In Europe, this Lobelia is one of the popular bedding plants, but it has never gained popularity in Amer. In this country it is usually grown in pots and treated as a conservatory subject.
ccc. Species-hybrids or derivatives: fls, mostly in shades of red, pink or parple.
10. hỳbrida, Hort. The hybrid Lobelias are mostly of French origin, and they are little known in the Amer. trade, although they are occasionally imported by amateurs. It is doubtful if they will endure the winters of the northern statex, although they make excellent pot subjects for blooming in the summer border. They may also be
 planted in the open and lifted on 1310. Lobelia Rivoirei. the approach of winter: or new stock can be raised from divisions of the old plants, or from offsets, or from seeds. Many of these hybrids are most showy, and they should be better known in Amer. It is probable that they are derived chiefly from L. fulgens, although they are said to come largely from L. cardinalis, but L. fulgens and L. cardinalis are confused amongst gardeners. L. syphilitica has also, apparently, entered into some of these hybrid derivatives, particularly those with blue or purple colors. These hybrids are sometimes known collectively as L. hybrida and L. perennis hybrida. Two recent forms deserve separate mention:
11. Gerárdi, Hort. Habit of L.fulgens or L.cardinalis: 1vs. lanceolate or lance-oblong, glabrous, denticulate: fls. in a heavy terminal spike or raceme, rich violet, $11 / 2 \mathrm{in}$. or more long. Obtained by Chabanne and Goujon of the Botanic Garden of Lyons, and introduced to the trade in 1895 by Rivoire Pére et Fils, Lyons. The hispid calys suggests L. syphilitica. R.B. 22, p. 112 , 1.H. 42, p. 268. -It varies into rose-color (var. Lugdunénsis) and into coral-red, violet-purple, and the like. The pistillate parent was a form of L.syphilitica and the staminate parent was the "Queen Victoria" form of L. fulgens. The plant was named for M. Gérard, director of the botanical collection at Lyons.
12. Rivòirei, Hort. (Fig. 13I0), comprises still more recent types, with very large rose or pink fls. Gin. 56:1238, which plate represents several derivative Lobelias. G.C. I11. 24:233.

BB. Corolla somerehat equally 2-lipped, the lower lip ouly notched, the upper onc 2-parted.

13. laxiflòra, HBK. (L. Cavanillesii, Mart. Syphocampylus lícolor, Don). Tall, branching herb or subshrub, with thinly hairy stems: Ivs. lanceolate or ovate lanceolate, acuminate, sharp-denticulate: fls, nodding, on long, axillary pedicels, $1 \frac{1}{2} \mathrm{in}$. long, cylindrical, the stamens projecting from the side, red and yellow, pubescent. Mex. B.M. 3600. G.C. 111. 1:585. - An old plant requiring cool greenhouse culture, or thriving in the open in pots. It may also be planted out like L. fulgens.

BBB. Corolla with all the lobes united by the tips into one lip.
14. Tùpa, Linn. (Tùpa montàna, Hort. L. Feuillei, Don). Very strong herb or subshrub ($4-7 \mathrm{ft}$, tall), erect and mostly simple: Irs, oblong-oval, mostly acuminate, rugose, tomentose, denticulate: fls. in a long, terminal raceme, blood-red, 2 in . long, the hooded lip curving downwards and the column of stamens ascending; calyx lobes short. Chile. B.M. 2550. R.H. 1898, p. 189.-Cool greenhouse; hardy in southern states with protection.
L. aměna, Michs. Much like L. syphilitica, bnt the calyx plain and not hispid. N. C., south. - L. anceps Thunb. Perennial, blue-fld., with somewhat fleshy lvs, and 2 -winged stem. \& Afr. B.M. 2277, as L. decumbens, and 2519, as L. rbizophyta.L. coronopifolia, Linn. Somewhat shrubby, with pinnatifid, hairy lvs. and handsome blue fils. (sometimes 1 in. long), on long scapes. S. Afr. B.M. 64t. G.C. II. 15:105.-L. Dortmanna, Linn. Water Lobelia. Aquatic peremnial, 1 ft . or less, with lvs. radical and submerged, and small pale blue fls, on a scape. Useful amongst aquatic plants. Native. - L. hortensis, DC is a hybrid form of L. amena, probably not in cult. now. $-L$. in. flàta, Linn. Indian Tobacco. Annual. of N. Amer., with ovate, puhescent, denticulate Ivs.. ereet babit, and small blue or whitish fls.: herbage very acrid: plant formerly a domestic remedy.- L. subnuda, Benth. Annual from Mex., with radical lyrate ivs. and small pale blue fls, on long pedicels. G.C.Ill. 2:304.
L. H. B.

LOBLOLLY BAY. Gordonia Lasianthus.

LOCHERIA (probably a personal name). Comprises a few species, which are now referred to Achimenes. In the trade are 2 species, L, heterophýlla, Oerst., or L. ignéscens, Klotzsch (see Achimenes heterophylla, p. 18), and L. hirsìta, Regel (see Achimenes hirsuta, DC., p. 18, suppl. list).

LOCO WEED. See Astragalus.

LOCUST. Common Locust is Robinia Pseudaracia. Honey L. =Gleditschia triacanthos. Swamp or Water L. $=$ G. aquatica.

LODEMAN, ERNEST GUSTAVUS (Plate X), horticultural investigator and writer, was horn in Neufchatel, Switzerland, May 3, 1867, and died Dee. 2, 1896, when connected with Cornell University, Ithaca, N. Y. His parents eame to America when he was two years old, his father becoming, in 1870, professor of modern languages in the State Normal School of Michigan. The son entered the Agricultural College of Michigan, where he graduated in 1889. It was in this institution that the writer made his acquaintance. Modest and lacking in self-assertion, he needed encouragement and stimulus to make a strong investigator and teacher. In a real estate venture in Florida, before bis entering the Agricultural College, he became interested in agricultural problems and resolved to derote his life to them. In 1890 he undertook work as private assistant to the writer; and from this he became assistant and instructor in Cornell University. In the extension work amougst New York farmers he hal charge of the investigations on grapes and strawberries. He was the originator of the spray-calendar idea. In 1896 he published "The Spraying of Plants," which is yet the fullest presentation of the subject. This was prepared after a most thorough traversing of the subject, both as anthor and experimenter, including a visit to Europe for the purpose of tracing the French history of the subject. He was an accomplished scholar, speaking German and French with fluency and possessing a working knowledge of other languages. His early death deprived American horticulture of a promising leader.
L. H. B.

LODOICEA. The double cocoanut or coco de mer, as L. Sechellarum (properly L. Callipyge, Comm.) has been termed, is one of the giants among palms, its straight and smooth trunk frequently reaching a beight of 100 feet, and it is also a centenarian before its full growth is attained. The seeds of Lodoicea are probably the largest known, the individual nuts being said to weigh sometimes 40 pounds, though the largest seen by the writer weighed about 15 lbs ., and bore some resemblance to a malformed cocoanut. The formation of such
gigantic seeds requires a considerable period of time, and from the time of flowering to the full maturity of the seeds is said to cover a period of nearly ten years. The germination of such seeds is not an easy process. requiring much room and strong heat, the radicle being correspondingly large and ruuning down for 3 ft , or more before the top growth begins. These first steps in the life of Lodoicea develop some very tender processes. Young plants of this palm require a strong and moist heat: and a considerable amount of root room, in combination with a light but rich compost, is best adapted to their needs. Seeds sometimes require 3 years to germinate. They are not advertised for sale at present, but bave been sold as curiosities now and then in America. Their germination is a great event, but the plants are never grown to any considerable height, as they require too much care and room. See G.C. 11. $26: 181$; 111. $4: 732$; 8:417. F.S. 5:523. W. H. TAPLIN.

LeSELIA (John Lœsel, an early Prussian botanist). Polemoniacea. Very close to (tilia, and often confounded with it. As finally outlined by Gray (Suppl. Syn. FI.), it is confined to Mexico and includes perhaps a dozen species. It somewhat resembles the Ipomopsis section of Gilia in habit. "Fls, involucrate or involucellate; both bracts and calyx wholly or partly scarious; corolla funnelform, either regular or one or two sinuses deeper; seeds winged or margined, the surface becoming mucilaginous when wetted. Suffruticose, rarely annual, with spinulose-toothed Ivs."
L. coccinea, Don, is a bandsome coolhouse plant with brilliant rose-red tubular-trumpet-shaped fls, an inch long in terminal fascicles or compound bracted racemes, with stamens and 3 -lobed stigma exserted: 1rs. small and stiftish, oval or cuneate-oval, sharply and often spinulose dentate, grayish green: plant strict, pubescent, woody, perennial. Winter bloomer. It does not appear in Amer. trade lists. L. tenuifolia, Gray, and L. effusa, Gray, of S. Calif., are phlox-like plants offered by Orcutt, in 1891. The former, Gray subsequently referred to Gitia tenuifolia, Gray, and the latter to Gitia Dünnii, Kellogg.
L. H. B.

LOGANBERRY. The Loganberry is a valuable hybrid produced at Santa Cruz, California, in 1881, by Judge J. H. Logan, from a seed of the Aughinbaugh blackberry, accidentally fertilized from an adjacent raspberry, supposed to be the old Red Antwerp. The Aughinbaugh is a pistillate variety of Rubus vitifolius, the extremely variable wild blackberry of California, and was a chance seedling found beneath the oaks of Alameda, about 1860. It is a strong-growing, dark green rine of the dewberry type, but with fruit of the true wild blackberry flavor. The Loganberry fruit has many characteristics of both parents. It is a rich, dark red color when ripe, and sometimes is an inch and a quarter in length. The plant has been widely disseminated throughout the United States and Europe since 1893; when the California Experiment Station, after five years; testing, first distributed stock. G.F. 7: 466 .
The Loganberry is propagated from stolons developed in the autumn at the end of the canes, or from singleeye hardwood cuttings. Seedlings are especially unreliable. Plants should be trained upon a wall or trellis, keeping the berries from the ground. Two adjacent vines at Berkeley, California, cover 12 square yards and yielded four gallons of fruit in 1899. If careful winter protection is given, the plants can be grown in many parts of New Eugland and the middle states, according to Bulletin 45 of the Rhode Island Experiment Station and Bulletin 147 of the New York (Genera) Station.
The value of the Loganberry for the home garden wherever it is sufficiently hardy is generally recognized, but its value as a standard market crop bas yet to be determined. It proves difficult to transport to the Los Angeles and San Francisco markets except when grown within a short distance, and dealers prefer the standard berries. When it can be gathered near the time of greatest perfection and delivered directly to the consumer, it becomes a very popular fruit.

Chas. H. Shinn.
The Loganberry in the East.-In the East the Loganberry has not met the expectations at first entertained for
it. It is reported tender in nearly all localities, requiring the best of winter protection, and even then often being injured. Thorough covering with earth in late autumu is the most satisfactory method of doing this and is absolutely essential. The berries are large, but the plants, at best, are only moderately productive. In quality the fruit ranks low, though apparently improved by cooking. Few persons like the Havor of the fresh fruit. It now seems unlikely that the Loganberry will ever become prominent in the East.

Fred W. Card.
LOISELEURIA (after J. C. A. Loiseleur-Deslongchamps, physician aud botanist in Paris, 1744-I849). Syn., Chumalèdon, Chamacistus. Erieacea. Procumbent hardy evergreen shrub with very small, mostly opposite, closely set, entire lvs., and with small, usually rose-colored fls, in terminal, few-fld. umbels. Well adapted for rockeries, forming depressed tufts, but not easy to grow and rarely cult. It grows best in a sunny or partly shaded position in a porous, peaty and sandy soil, which is well drained and has a constant but moderate smpply of moisture. Prop. by seeds treated like those of Azalea or by cuttings of half-ripened wood under glass. Only one species in the subarctic regions and high mts. of the northern hemisphere, formerly included under Azalea, but more closely allied to Kalmia: corolla broadly campanulate, 5-cleft; stamens 5: capsule 2-3celled.
procúmbens, Desv. (Azatea procúmbens, Linn.). Only a few inches high, quite glabrous: lvs. petioled, oval to narrow oblong, revolute at the margin, about $1 / 4 /$ in. long: fls, $1-5$ on rather short pedicels, pink or whitish, about one-fifth in. across. July, Aug. L.B.C. 8:762.

Alfred Rehder.

LOLIUM (the ancient Latin dame). Graminea. Dar. nel. Rye-Grass. Includes about 6 species of the Old World grasses, 2 of which are introduced in the eastern states and 2 are familiar fodder grasses of the same region. Perennial Rye-grass was probably the first pasture grass to be cultivated in Great Britain, and is grown there yet to a considerable extent, where it is said to occupy the same relative position of importance that Timothy does here. A weedy species, L. temulentum, is supposed to be the "tares" of scripture. It is the Darnel, although that name is sometimes, but perbaps erroneously, applied to otber species. Spikelets sev-eral-flu., sessile, and placed edgewise on opposite sides of a zigzag axis, forming a narrow spike. Our 2 cult. species are short-lived perennials or the second scarcely more than an annual, not to be recommended for permanent pasture or lawn, but are frequently employed for hay or annual pasture. They are successful only in the moist regions of the eastern states. Seed sown in autumn or early spring, 25 to 30 pounds to the acre.
perenne, Linn. Perennial Rye-grass. One to 3 ft . high, with flat, shining lvs. and a slender spike, t-10 in. long: spikelets 8-16-fld., awnless or only short awned.

Itálicum, A. Br. Italian Rye-grass, Considered by many as a variety of the preceding. Differs chiefly in haring longer awns to the florets. A. S. Hitchcock.

LOMARIA (Greek, Loma; a forage). Polypodiàcer. A genus of rather coarse ferns occasionally with a short caudex, allied to Blechnum. Sori arranged in lines, parallel with the midrib, and oceupying nearly the entire space between the midrib and the margin of the leaf. Lvs of 2 sorts. Some 35 species are known, largely from the southern hemisphere.
L. M. Cnderwood.

Lomaria gibba is one of the most distinct and symmetrical ferns in cultivation. It includes several raluable varieties. The terminal cyea-like crowns are most beautiful and graceful. In their young state Lomarias make good plants for table decorations, principally as center pieces, but after they begin to form a stem or trunk-like base, they make fine decorative house specimens. Var. intermedia is somewhat coarser than L. gibba and of more erect habit. Var. crispa differs only in the pinnæ being more or less erested and wrinkled.

It does not grow quite as fast or as strong as either L. gibba or var. intermedia. There are several other rarieties of less commercial value.

Propagation is entirely from spores, which are produced freely on the second or third course of fronds. These spores must be treated much like other fern spores. They should be sown or laid upon very fine peaty soil or fine leaf-mold with a good portion of very fine silver sand, in shallow pans, boxes or flats, and kept in a warm and close atmosplere, well shaded from the sun. A temperature of 75° to 80° is best suited to them. The pans or boxes should be covered with a pane of glass, and this must be removed at intervals in order to keep the germinating spores from damping-off. After the young plants are large enough to be handled with the assistance of a small stick, they may be pricked off and transferred into fresh soil of the same quality, with perhaps a little loam mixed in and again placed in a congenial, warm, moist place in the propagating-or warmhouse, and again covered with glass. Give air and ventilation to keep them from being attacked by fungus. After producing the first two upright fronds, they may be put into thumb-pots. The soil now should be one-half loam and one-half peaty or leaf-mold soil, with plenty of sharp sand. Ample drainage must be afforded, and the plants kept in a temperature of not less than 60° to 65°.

The Lomarias, above all other ferns, must never be allowed to get thoroughly dry. They love abundance of water. Under proper treatment, they will soon make fine specimens. When the plants are of good size, they may be grown into miniature tree ferns, and as they make quantities of roots and soon get pot-bound, they can be reduced and rout-pruned and put back into smaller pots. With gentle bottom heat, they soon make a new set of roots and new crowns or tops. When thoroughly established in this shape. they make fine decorative plants. Lomarias should never be exposed to the full sun.

Henry A. Siebrecht.

> A. Plant with a distinet caudex or trunk.
B. Lus, 6-12 in. long.
ciliàta, Moore. Caudex 6 in . high, I $1 / 2$ in. thick: stipes blackish: 1 rs. $8-12 \mathrm{in}$. long, the upper pinnte with a ronnded auricle at the lower side of the base; fertile 1rs. narrow-linear. New Caledonia.
lanceolàta, Spreng. Caudex elongate, densely clothed with dark brown scales: 1vs. 6-12 in. long, $2-1$ in. wide, with close, slightly falcate pinns; texture leathery; fertile pinnæ linear spreading. Australia and Polynesia.

> BB. Liss. $11 / 2-8$ ft. long. c. Lower pinnwe connected at base.
discolor, Willd. Candex ascending: stipes black, glossy, with dense scales at base: lys. $\mathrm{I} 1 / 2-3 \mathrm{ft}$, long, 4-6 in. wide, with pinnæ narrowed suddenly toward tbe point: fertile pinna narrower and shorter. Australia and New Zealand.
gibba, Labill. Caudex 2-3 ft. high: stipes short, with black scales: $1 \mathrm{rs} .2-3 \mathrm{ft} . \mathrm{long}, 6 \mathrm{in}$. wide; fertile piuna narrower, 4-6 in. long. - Var. platy pters, is advertised. L. intermèdia, Hort., may be derived from this species. New Caledonia.

ce. Lower pinna narrowed at base and distinct.

Boryana, Willd. Caudex stout, erect, 1-2 ft. high, woody, densely sealy; 1vs. $11 / 2-2 \mathrm{ft}$. long, $6-8 \mathrm{in}$, wide, narrowed and sometimes nuricled at base; fertile pinna narrow-linear, close. West Indies to Patagonia, Mauritius and S. Africa. - Probably includes 2 or 3 species, among them L. zamiafolia, Hort,

AA. Plant with a stout, short, creeping rhizome.
Spicant, Desv. Sterile Irs. lanceolate, 6-9 in. long, 1-I $\%$ in. wide, gradually narrowed below; fertile lvs. I ft . long, with longer stalks ($6-9 \mathrm{in}$.) and narrowly linear pinna. Eu., western N. Amer.-The large Californian form with $1 \mathrm{vs}, 2-3 \mathrm{ft}$. long is possibly a distinet species. The European plant was early called Struthiopteris spicant hy Scopoli, by which name it is now cited
as the earliest generic name. Hardy; needs deepest shade.

Nippónica, Kunze. Lvs. 15-20 in. long, abruptly pointed at the apex, the lower divisions gradually reduced and strikingly surcurrent; texture thick; fertile lvs, with pinnæ $1 / 2$ in. apart, narrow-linear, scarcely forming a wing to the rachis: indusia forming pod-like structures, tough, persistent. Sometimes referred to the last species. Japan.
L. M. Underwood.

LOMARIOPSIS. Consult Acrostichum sarbifolium.

LOMATOPHYLLUM is a genus of the lily family with $3-5$ species in the Mascarene 1slands. They have the habit and perianth of Aloe, but differ in the redmargined leaves and fr. a berry. They are fleshy subslirubs with hermaphrodite fls. and introrse anthers as in Sanseviera, but differ in having declined hypogynous stamens and several ovules in a cell, whereas Sanseviera has erect stamens inserted on the throat of the tube and solitary orules. Not cult.

LONAS (possibly a recombination of some of the letters of Santolina). Compósitce. This includes an unimportant, hardy, yellow-flowered "everlasting" known to the trade as the African Daisy or Athanasia anииа. The heads are about three-eighths of an inch across, and composed entirely of disk tis. There are 14 or more heads in the largest corymb, which may be 2 in . across. This plant was removed from Athanasia largely because it is an annual herb, while the Athanasias are shrubs or subshrubs. A more fundamental reasou for giving this plant a separate genus is that it has a cup-shaped pappus, while in Athanasia the pappus is absent or consists of small, rather bristly chaff or else of byaline hairs.
inodòra, Grertn. (Athand̀sia ánmea, Linn.). African Dass. Fleshy, branching, 1 ft . high: lvs. alternate, pinnatifid, the divisions linear, entire, remote: corymbs dense: seeds 5 -ribbed, not hairy. Mediterranean region. B.M. 2276. J.H. 111. $31: 281$.

LONDON PURPLE. See Insecticides.

LONGWORTH, NICHOLAS (1783-1863) has been called the "father of American grape culture." Plate X. He was born in Newark, N. J. He early went to Cincinnati, then in the young and growing West, and engaged in banking and other business. He early hecame interested in agricultural affairs, and particularly in the grape. From John Adlum he received the Catawba, and became the means of making grape-growing a commercial success in the Ohio valley. He was a leader in the company of horticultural experts and writers which made Cincinnati famous in the middle of the century. Longworth was one of the first to perceire that many strawberries are infertile with themselves, and to suggest the planting of pollinizers, although the imperfect nature of the strawberry blossom had been known long before his time. He also introduced the Ohio Everbearing raspberry, the first improved variety of Rubus occidentalis. Longworth was a pioneer of horticulture in the expanding West, and, more than that, he was a guiding spirit in horticultural affairs of national importance. In 1846 he published a pamphlet on "The Cultivation of the Grape, and Manufacture of Wine. Also, Character and Habits of the Strawherry Plant." He also contributed a chapter ou the strawberry to Buchanan's "Culture of the Girape." For further notices, see Hovey's "Magazine of Hort." 29:160, "Evolution of Our Native Fruits," and our article on Horticutture. The portrait in Plate X shows Mr. Longworth at 74 years of age.
L. H. B.

LONICERA (after Adam Lonicer or Lonitzer, a (G er mau physician and naturalist, 1528-1586). Including Caprifotium, Xylósteum, Vintòa and Champcérasus. Capriotidecce. Honeysuckle. Ornamental deciduous, rarely evergreen, shrubs of upright or climbing habit, with opposite, entire lvs. and tubular, mostly 2 -lipped fls. of white, yellow, pink, scarlet or purple color, often fragraut, appearing ia axillary pairs or in terminal
spikes or clusters; the red, yellow, blue or black berries are in many species very decorative. The Upright or Bush Honeysuckles are very valuahle for shrubberies, and the low procumbent species, like L. spinosa and rupicola, are well suited for rockeries. Most of the cultivated species are hardy North, but L. Standishi, fragrantissima, nummularifolia, Ledebouri, quinquelocularis, Webbiana, rupicola, and other Himalayan species are less hardy and need sheltered positions or protection North. Some of the handsomest in bloom are the well-known L. Tatarica, floribuda, spinosa, Maackii, Morroui, Ledebouri; for the sweet-scented early fls., L. Standishi and fragrantissima are to be recommended. Honeysuckles with very decorative fruits are L. Morrowi, Tatarica, gracilipes, alpigena, chrysantha. Loniceras thrive in almost any good garden soil, and prefer mostly sunny position, but L. culiata, nigra, Ledebouri, hispida and Xylosteum grow as well or better in partly shaded situations. Pruning may be done during winter except in the early-flowering species,

1311. Fly Honeysuckle, Lonicera ciliata.
($\times 2 / 3$.)
like L. Standishi, fraqrantissima, gracilipes and hispida. The Climbing Honeysuckles are well adapted for covering walls, arbors and other trelliswork; they have mostly handsome and often sweet-scented fls., but are somewhat deficient in foliage, with the exception of L. Japonica, and apt to become leafless and unsightly at the base, and therefore may be mixed with other climbers, like Ampelopsis, Akebia, Clematis. They perhaps show their beauty to the best advantage when allowed to ramble over shrubs and small trees. Those of the Caprifolium group are mostly hardy North, with the exception of the southern European species and L. hispidula, while of the Nintoa group L. Japanica is hardy North, at least in a sheltered position; this species makes also a very handsome ground cover, and, like L. Periclymenum, grows well in shade, but the others prefer sunny positions. Prop, by seeds sown in fall or stratified and by cuttings of ripened wood; also by green-wood cuttings under glass in summer, but L. Caprifolium, sempervirens and allied species grow less readily in this way. L. spinosa is sometimes grafted bigh on stems of L. Tatarica, thus forming a small weeping tree. About 140 species throughout the north-

LON1CERA

ern hemisphere, more than 60 of which, besides many bybrids, are in cultivation. Lvs, sometimes sinuately lobed, in a few species with distinct stipules, mostly deciduous: fls. in axillary peduncled pairs or in sessile whorls at the end of the branches; ealyx 5 -toothed; corolla with short or slender, often gibbous tube, 2 lipped or almost equally 5 -lobed; stamens 5 : ovary inferior, usually 2-3-celled: berry few- to many-seeded.

1NDES.

alba, 17,26. Alberti, 1. alpigena, 12. angustifolia, 17 aureo-reticulata, 19. Belgica, 22. brachypoda, 19 Browni, 30. Californiea, 34. Canadensis, 8. Caprifolium, 25, 26. Cautcasica, 13. Chinensis, 19. ciliata, 8. ciliosa, 35. carulea, 6 diolea, 33. Douglasi, 32. Etrusea, 23, 25. flava, 28, 30 . flava nova, 36. flavescens, 3. flexuoss, 19. floribunda, 18. Fraseri, 28. fragrantissima, 11. fuchsioides, 36 . gigantea, 23. glauca, 33. glaucescens, 32.
graciliflors, 6.
gracilipes, 7.
gracilis, 17.
grandiflora, 17.
arata, 26.
Halliaust, 19.
Heekrott1, 24.
Hildebrandiana, 21. hirsuta, 34. hispida, 5 .
hispidula, 32. implexa, 27. intermedia, 4 involuerata, 3. Italica, 25. Japonica, 19.
Karelini, 6 . latifolia, 17. Ledebouri, 4. longiflora, 20. Magnerillea, 36. media, 33. minor, 36. horrowi, 15. Niaguarilli, 11. oblongifolia, 9 . occidentalis, 35. orientalis, 13. pallida, 26.
parvifolia, 17. and suppl.
parviflora, 33.
perfoliata, 26.
Periclymenum, 22.
Phylomelow. 7.
Phylomelar, 7. 30.
procos, 26.
pubescens, 31.
pulcherrima, 17.
quercifolia, 22.
reticulata aurea, 19. rubella, 25. rabitlora, 17. rupicoln, 2.
Ruprechtiana, 16. semperflorens, 22. sempervirens, 36. serotina, 22. Sibirica, 17. S'inensis, 10. speciosa, 17, 36 . spinosa, 1.
splendens, 17.
Standisbi, 10.
Sullivanti, 29.
Tatariea, 17.
vacillans, 34.
villosa, 6 .
Xylosteum, 14 .
A. Habit upright: fls. in pairs, rarely solitary. B. F'ls. with almost regular 5-lobed limb.
c. Corolla not gibbots at the base: lowe shrubs, with slender, recurving or prostrate branches and small les.

1. spinòsa, Jacq. (L. Albertii, Regel). Shrub, to 2 ft., with slender branches; rigid and spiny in bigh alpine regions, glabrous: lvs. linear or linear-lanceolate, sometimes with 2-4 teeth at the base, glaucous or bluish green, $1 / 2-1^{1 / 1 / i n}$. long: fls. on slender, erect peduncles, rosy pink, fragrant, with slender tube ; stamens exserted. May, June. Turkestan, Himal. 1it. 30:1065. B. M. 7394.
2. rupícola, Hook. f. \& Thoms. Low and almost prostrate: lvs, often in 3's, oblong to oblong-ovate, glabrous or tomentose beneath, about $1 / 2 \mathrm{in}$, long: fls. short-peduncled, light pink, with short tube; stamens and style included. June, July. China, Himal.

cc. Corolla more or less gibbous: erect shrubs: les. larger.
 D. Bracts at the base of fls. large, orate or cordate.

E. Color of fls, yellow or scarlet.
3. involucràta, Banks (L. flavéscens, Dipp.). Shrub, to 3 ft ., with upright branches, glabrous or somewhat pubescent: lvs, elliptic-ovate to oblong-lanceolate, bright green, thin, slightly pubescent beneath when young, $2-5$ in. long: fis. erect, long-peduncled; corolla yellowish or slightly tinged red, viscid, pubescent, with short erect lobes, about $1 / 2 \mathrm{in}$. long: berries black, shining, almost enclosed by the enlarged purple bractlets. May-July. Ontario to Alaska, south to Utab and Calif. B.R. 14:1179. B.B. 3:242.
4. Ledehoùri, Eschsch. (L.intermèdia, Kellogg). Similar to the former, but more vigorous, branches sometimes sarmentose, to 15 ft . long: lvs, of firmer texture, dark green above, pubescent beneath: fls. more salvershaped, with rounded, spreading lobes, scarlet-red outside, $3 / 4 \mathrm{in}$. long; stamens shorter than lobes. MayJuly. Calif. (it. 2:64. R.H. 1843:373.-Much bandsomer than the former, but more tender.

LON1CERA

EE. Color of fls. white.

5. hispida, Pall. Shrub, with spreading branches. bristly-hispid: winter-buds larige, 2 -ralved: lvs, obovate to oblong, ciliate and hirsite, at least when young, sometimes glaucous beneath, $11 / 2-91 / 2$ in. long: fls. nodding, white, salver-shaped, hisid, $1-1 \frac{1}{2}$ in. long: bractlets none: fr, oblong, bright red. April, May. Altai, Himalayas. - Distinct and handsome with its rather large white flowers.

DD. Bracts small and narroue.

6. cærulea, Linn. Mueb-branched erect or spreading shrub, to 3 ft ., with glabrous or pubescent branchlets: lvs. often stipulate oval or obovate to oblong-lanceolate, pubescent or almost glabrous, pale or glaucous green, 1-2 in. long; fls, short-peduncled, yellowish or greenish white, $1 / 3-1 / 2$ in. long: fr. blue, bloomy; berries connate only at the base, but wholly covered by the connate bractlets and bence seemingly connate. April, May. N. Eu., N. Asia and in N. America sonth to Tenn., Wis. and Calif. B. M, 1965. - Var. villosa, Torr, \& Gr. Branchlets and Jvs, villous pubescent. Var. graciliflora, Dipp. (L. Karelini, Hort., not Bge.). With upright rather slender, bright red branches, slightly pubescent: fls. with sleuder tube.
7. gracilipes, Miq. (L. Phylomèla, Hort.). Shrub, to 6 ft ., alnost glabrous: lvs, roundish-ovate to oblongovate, ciliate, bright green often with reddish margin, 1-21/2 in. long: peduncles slender, nodding, usually 1-fld.: corolla pink, rarely white, $2 / 3$ in. long: fr. rather large, pendulous, bright red. April, May. Japan. G.F. 10:265. - A graceful species; one of the earliest to bloom, and very handsome in June with its pendulous scarlet fls.
8. cilıàta, Mublenb. (L. Canadénsis, Marsh.). Fig. 1311. Shrub, to 5 ft : lvs, ovate or oval, rounded or cordate at the base, ciliate, pubescent beneath when young, $1^{11 / 2-3} \mathrm{in}$. long: fls. slender-peduncled, always in pairs, yellowish, sometimes slightly tinged red, $2 / 3 \mathrm{in}$. long: fr. light red. April, May. Canada to Pa. and Mich. B.B. 3:241.

BE. F'ls. 2-lipped.

c. Oraries and frs. connate or partly connate, only occasionally separate: tls.rather small.
D. Bractlets none: Als. white or yellowish.
9. oblongifolia, Hook. Shrub, to 5 ft .: Ivs. almost sessile, oval-oblong, obtuse, pubescent beneath, $1-21 / 2$ in. long: fls. slender-peduncled; corolla hairy outside, yellowish white, sometimes tinged purplish: berries dark red. May, June, Quebee to Manitoba, south to Pa. and Mich. B.B. 3:240.

1312. Lonicera Xylosteum $(\times 2 / 3)$.
10. Stándishi, Carr. (L. Sinénsis, Hort. L. fragran$t i s \operatorname{sim} \alpha$ of some). Half-evergreen shrub, with spreading branches, to $6 \mathrm{ft} .:$ branchlets with reflexed bristly hairs: lvs. coriaceous, oblong-ovate to ovate-lanceolate, acuminate, ciliate, bristly hairy on hoth sides or glabrous above, 3-4 in. long: fls, on rather short curved peduncles, white or slightly blushed, very fragrant, $1 / 4-1 / 2$ in. long: fr. searlet. March, Apr. China. B.M. 5709. G.C. 111. $5: 245$. R.H. 1873 , p. 148 .
11. fragrantissima, Lindl. (L., or Caprifolium, Niaguarilli, Hort.). Similar to the former, hut with long and slender recurving and almost glabrous branches: lvs. broadly ovate or obovate, acute, almost glabrous, hut bristly on the midrib beneatb and ciliate, $1-21 / 2 \mathrm{in}$. long: corolla glabrous outside. March-May. G.C. 111 . $5: 245$. R.H. 1873, p. 169.-Less hardy than the former. Both have bandsome half-evergreen foliage and very early, sweet-scented, though not very showy flowers.

DD. Bractlets present, small, glandulur: fls, dull violet or brownish red.
12. alpigèna, Linn. Shrub, to 8 ft ., with stout branches; ivs. oblong-obovate or ohlong, short acuruinate, glossy and dark green above, light green and often pubescent beneath, 2-4 in. long: As. long-peduncled, with short usually yellowish green tube and brownish red limb: fr. bright scarlet, shining. April, May. Mts. of M. Eu. and W. Asia. - Very handsome in fruit.

1313. Lonicera Tatarica $(\times 2 / 3)$.
13. orientàlis, Lam. (L. Caucásica, Bieb.). Shrub, to 10 ft ., almost glabrous: 1rs. elliptic or ovate to ob-long-ovate, rarely oblong-lanceolate, dark greeu above, pale or glancescent beneath, $2-4 \mathrm{in}$. long: fls. short-peduncled, pale violet or pinkish: fr. black, wholly connate. May, June. W. Asia to Kamschatka. Gt. 11:359. -Fls, and frs. not very conspicuous.

cc. Oraries and frs. separate.

D. Fls, white or yellowish white, changing to yellow: branches pubescent.
14. Xylosteum, Linn. Fig. 1312. Shrub, to 10 ft .: lvs. broadly oval to ohovate, acute, dull green, pubescent above, usually glabrous at length, $1-3$ in. long: fls. peduncled, yellowish white, often slightly tinged red, hairy outside: hractlets pubesceut, about half as high as ovary: berries dark red. May, June. Eu., W. and N. Asia, sometimes escaped from cultivation. B.B. 3:241.
15. Mórrowi, Gray. Shrub, to 6 ft ., with wide spreading branches: lvs, oval or oblong-ovate, dark green above, grayish tomentose beneath, $1-2$ in. long: fls. peduncled, pure white at first, puhescent outside, upper lip divided nearly to the base, with spreading lobes: bractlets pubescent, about as long as ovary: fr. bloodred. May, June. Japan. A.F. 11:1267. Gng. 5:329.Very decorative, with its bright red fruit from August until late in fall. There is also a var, with yellow fruit.
16. Ruprechtiàna, Regel. Shrub, to 12 ft .: Ivs, ovatelanceolate to lanceolate, acuminate, usually dark green above, grayish pubescent heneath, $2-4$ in. long: fls. on rather long peduncles, pure white at first, glabrous outside: bractlets only glandular-ciliate, small, about onethird of the ovary: fr. red or sometimes yellow. May, June. Manshuria. Gt. 19:645. - This species and the preceding are likely to hybridize with the following; these hybrids are very common, and may be recognized by the glabrescent foliage and the tinge of pink in the fls. The true L. Ruprechtiana is much rarer than its byhrids.

DD. Fls, pink or red, sometimes white, but not changing to yellow.

17. Tatárica, Linn. Fig. 1313. Shrub, to 10 ft ., almost glabrous: lvs. cordate or rounded at the hase, ovate to ovate-lanceolate, ciliate, sometimes slightly pubescent beneath when young, $1-2 \frac{1}{2} \mathrm{in}$. long: fls. slender-peduncled, pink, crimson or white, the upper lip deeply divided, spreading: bractlets small, glabrous: fr. red, rarely yellow. May, June. S. E. Russia to Siberia. B.R. 1:31. R.H. 1868:392. Gt. 18:627. - Variable in size and shade of fls. Var. alba, Regel (rar, alba grandiftora, Hort.). Fls. white, large. Var. angustifolia, Kirchn. (L. angustàta, Wender.). Lvs, narrow-lanceolate: fls, bright pink. Var. latifolia, Lond. (var, grandiflora and var. grandiflöra rùbra, Hort.; var. speciosa, var. pulcherrima, Hort.). Large-leaved form, with large pink fls., the lobes bordered lighter pink. R.H. 1844:109. A form of this with deeper pink fls. is var. speciosa, Carr. (var. spléndens, Regel). R. H. 1868:392. (テ̇t. 18:627. Var. parvifolia, Jäger (var. grácilis, Carr.; L. parvifolia, Hayne, net Edgew.). Lrs, smaller, obtuse: fis, pure white, small, with broad and short lobes: fr. orange-red. Var. rubriflòra, DC. (L. Sibirica, Hort.). Fls. deep pink.
18. floribúnda, Boiss. \& Buhse. Shrul, to 8 ft .; finely tomentose: Ivs. roundish ovate to oval, ohtuse, pubescent on both sides, bluish or grayish green, 1/2-11/2 in. long: fls. slender-peduncled, light pink, upper lip divided (not beyond the middle), with ovate erect lohes: bractlets small, pubescent: fr, red. June. Transcauc., Persia. Gt. 42, p. 103, Figs. 4-6. - Very free-flowering shrub, with distinet, bluish green foliage.

AA. Habit climbing, rarely almost shrubby.
B. Fls. in pairs, Q-lipped, sometimes crouded at the end of branches; tube slender. (Nintoa.)
19. Japónica, Thunb. Fig. 1314. Climbing, to 15 ft . high: branchlets usually puhescent when young: lvs. half-evergreen, roundish ovate to oblong, pubescent beneath or almost glabrous, $1^{1 / 2-3}$ in. long: fis. short-pedicelled, white, changing to yellow, often purplish outside, very fragraut, glandular-pubescent outside, $11 / 2-2$ in. long: fr. black, separate. June-Aug. China, Japan; naturalized in some places from N. Y. to N. C. B. B. 3:240.-Var. aüreo-reticuläta, Arb. Kew. (L. reticulata aürea, Hort. L. brachýpoda reticulàta, Hort.). A form of var. flexuosa, with the smaller and shorter lvs. handsomely netted yellow. B.H. $21: 59$. Var. flexudsa, Arb. Kew. (L. flexudsa, Thunb. L. brachýpoda, DC.). Less high elimbing: lvs. ovate or oblong, obtusish, mostly ouly pubescent on the veins beneath: peduncles usually as long as petioles or shorter: corolla $1-1 \frac{1}{2}$ in. long, with the limb shorter than tube: bractlets broad, as long as ovary. Var. Chinénsis, Bak. (L. Chinénsis, Wats.). Lvs.ovate, acute, ciliate and pubescent only at the veins beneath, often with purplish hue beneath: peduncles usually longer than petioles: corolla $1 \frac{1}{2}-2 \mathrm{in}$. long, tube about as long as limb: bractlets narrow, about half as long as ovary. B.R. 9:712. B.M. 3316. L.B.C. 11:1037. Var. Halliana, Arb. Kew. (L. flexuд̀sa

Commonly known in this country us L. Halliana.
Halliàna, Dipp. Caprifòlium Halliànum, Hort.). Of vigorous growth: lvs, usually pubescent on both sides when young, oblong-ovate, acute, to $2^{1 / 2} \mathrm{in}$. long: fls. short-peduncled; tube as long as limb: bractlets broad, half as long as ovary. Flowering in fall, otherwise hardly different from the type. A.G. 12:6i63. Gng. 3:293.
20. longiflora, DC. Climbing shrub, glabrous: Jvs. oblong-lanceolate, shining above, pale beneath, $2-2 \frac{1}{2}$ in. long: fls. in short-peduncled pairs, sometimes crowded towards the end of branches; corolla wbite, changing to yellow, fragrant, $3-4 \mathrm{in}$. long, with very slender tube: oracts small, subulate: fr.white. S. China. B.R. 15:1232 (as Caprifolium longiflora).-Tender. lut. 1900, by Franceschi.
21. Hildebrandiàna, Coll. \& Hemsl. Climbing shrub, glabrous: lvs. broadly ovate or elliptic-ovate, abruptly pointed, 4-6 in. long: fls. on stout peduncles; corolla $5-7$ in. long, glabrous outside, yellow at first, changing to orange-red, with long and slender tube. Summer. Upper Burma. G. C.111. 24:219. B. M. 7677.-This has the largest flowers of auy species, but is not bardy North.
BB. Fls. sessile, in usually 6-fld. whorls at the end of the branchlets, forming terminal spikes or clusters: upper les, mostly connate, usually climbing. (Caprifolium.)
C. Corolla dislinelly 2-lipped.
D. Tube of corolla slender, 1 in. or more long, glabrous

E. Whorls of fls. forming a peduncled head or spike. bractlets large.
22. Periclỳmenum, Linn. (Caprifolium Periclỳmenum, Roem. \& Schult.). Woonbine. Fig. 1315. Climbing several ft. higb: Ivs. all distinct, ovate to oblongovate, acute, $11 /-3$ in. long, dark green above, pale or glancous beneath and sometimes sparingly pubescent: fls. in a peduncled dense head, very fragrant, yellowish white, usually carmine or purple outside and glandular pubescent, $11 / 2-2$ in. long. June-Sept. Eu., N. Afr.. W. Asia. - Var. Bélgica, Ait. Of more vigorous growth, sometimes shrubby: fls. bright red outside; blooming all summer. Probably var. sempérlorens, Hort., figured in (in. 45:306, is not very different. Var. quercifolia, Ait. Lys. sinuately lobed; a curious but less desirable form. Var. serotina, Ait. Similar to var. Belgrea, but flowering in fall.
23. Etrúsca, Santi. Climbing: Ivs. broadlyoval to obovate, usually obtuse, the upper ones connate into an oval obtuse disk, rarely distinct, $1-3 \mathrm{in}$. long, glabrous or pubescent: ti-beads dense peduncled, often in 3's: corolla yellowish white. usually tinged red, fragrant, $11 / 2-2 \mathrm{in}$. long, with very slender tube. May-July. Distributed through the whole Mediterranean region iu many different forms. - Var. gigantea, Hort. Of vigorous growth, with large pubescent leaves.
24. Heckrotti, Hort. Not much climbing: lvs, elliptic or oblong-elliptic, acute, almost sessile, the upper pairs connate, glaucous beneath, glabrous, about 2 in . long: fls. in peduncled spikes with few somewbat remote whorls, purple outside and sparingly glandular, $11 / 2-2$ in. long: bractlets about half as long as ovary. Origin unknown, probably garden bybrid of L. Strusea and an American species.

EE. Whorls of fls. all, or at least the lower ones, in the axils of connate lis.
25. Itálica, Scbmidt (L. Etrùsca, Hort. L. Caprifollium, Auth.). Climbing: Ivs. broadly oval to oblong obovate, the upper connate, glabrous, $2-4 \mathrm{in}$. long; the upper whorls without connate Jvs, at the bave, somewhat crowded: fls. yellowish, usually purple outside andglabrous, fragrant, to 2 in . long: bractlets about half as long as ovary, smaller on the upper fis. June-Aug. Probably hybrid of L. Etrusea and L. Caprifolium, much cultivated, mostly under the name of the latter. Gn. 45 , p. 307 (as L. Etrusca and L. Caprifolium); 54, p. 26. F.S. 11:1120 (as L. Caprifolium major). Var. rubella, Tausch. Fls. dark purple outside.
26. Caprifollium, Linn. (Caprifolium horténse, Lam. C. perfoliàtum, Roebl.). Fig. 1316. Climbing: lvs.
oval to oblong, the upper connate into a roundish cup, almost glabrous, $2-4$ in. long: whorls usually 2 or 3 , each in the axils of connate Ivs.: fls. yellowish wbite, mostly purplish outside and often slightly bairy, to 2 in. long, fragrant: bractlets very small or none. May, June. M. Eu. to W. Asia. N. 2:296. B.B. 3:237.-Sometimes escaped from cultivation and described under the name L. grata, Ait., as an American species. Var. álba, Ait. (L. pallida, Hort. L. precox, Hort.). Fls, white, appearing early. R.H. 1856:141.
27. impléxa, Ait. Much branched but less high climbing, evergreen: lvs. oval to oblong-lanceolate, sessile, the upper connate into an elliptic, acute or mucronate disk, glaucous, glabrons, 1-2 in. long: fls. in several whorls, eacb in the axils of connate lvs., scentless, yellowish white; tube slightly hairy within; limb rather short; stamens little exserted. May, June. S. Eu., N. Afr. B.M. 640.

DD. Tube of carolla gibbous or more or less ventricose. less than 1 in. long, pubescent within, but almost glabrous within and slender in No. 28.

E. Bractlets small or none.

F. Disk of connate lvs. mostly roundish, often emarginale at the ends.
28. flàva, Sims (Caprifolium Fràseri, Pursh). Climbing to $10 \mathrm{ft} .:$ Ivs. broadly oval to elliptic, the upper counate, bright green above, glaucous beneath, glabrous, $11 / 2-3 \mathrm{in}$.: ths, in a peduncled head, bright or orangeyellow, fragrant, $1-1 \frac{1}{4}$ in. long; tube slender, longer than limb. April, May. N.C. to Ky., Ga. and Alab. B.M. 1318. L.B.C. 4:338. G.F. 3:190. Gn. 45, p. 307. -This species is rare in cultivation and mostly the following is cult. under this name.
29. Súllivanti, Gray (L. flàva, Auth., not Sims). Fig. 1317. Climbing about $4-5 \mathrm{ft}$, very glaucous: Ivs. oval or obovate, the upper connate into a large disk, becoming thickish and rery glaucous above, often finely pubescent beneath, $2-4 \mathrm{in}$. long: fls. in shortstalked or almost sessile spikes; corolla pale yellow, often marked purplish outside, about 1 in . long; tube gibbous, only little longer than limb. May, June. Ontario to Manitoba, south to Tennessee. R.H. 1856:221 (as L.flar(a). G.F.3:191. - V'ery bandsome in fall with the abundant scarlet berries.
30. Browni, Carr. (L.sempervirens Browni, Hort.). Probably bybrid of L. sempervirens with L.Sullivanti or glauca: Ivs. oval to oblong, glaucous beneath, tbe upper connate, glabrous: tls. in peduncled beads, orange-scarlet, scentless; tube gibbous at the base, longer than
Lonicera Periclymenum. ($\times 1 / 3$.)
limb. Of garden origin. F. S. 11: 1133.-Var. Plantierensis, Hort. (L. Plantierénsis, André). Fls, larger, more orange-colored and less deeply 2 -lipped. I.H. 18:86.
FF. Disk of conuate li's. more or less elliptic, pointed or mucronate at both ends. See also No.
 30.
31. hirsùta, Eat. (Caprifolium pubéscens, Goldie). High climbing, with usually hirsute branchlets: Jvs. petioled, broadly oval or ovate, obtuse, the upper connate and abruptly poiuted, dark green above, pubescent on botb sides when young, $2-4$ in. long: fls. in short, mostly peduncled spikes, scentless, brigbt or orangeyellow, pubescent without, about 1 in. long, with the
tube gibbous at the base: ovary and bractlets usually glandular. June, July. Vt. to Msnitoba, south to Pa. and Ohio. B.M. 3103. Gn. 45, p. 307.

1316. Lonicera Caprifolium ($\times 1 / 2$).
32. Doủglasi, Hook. (L.glaucéscens, Rydb. L.glaùcu, var. Doúglasi, A. Gray, partly). Climbing: branchlets glabrous: 1vs. short-petioled or almost sessile, the upper connate, oval to obovate, glabrous above, pubescent beneath, $11 / 2-3 \mathrm{in}$. long: ffs. in short, almost sessile spikes; corolla yellow, mostly reddish outside and hairy, $1 / 4-1 \mathrm{in}$. long; tube gibbous, longer than the limb: ovary and bractlets glabrous. May, June. Ontario to the Saskatchewan, south to Pa. and Neb. B.B. 3:238.Rare in cultivation, but sometimes a hybrid of L. hirsuta and Sullivanti is found under this name in gardens. It is figured in G.F. 9:345.
33. diòica, Linn. (L. glaùca, Hill. L. mèdia, Murr. L. parvillòra, Lam.). Usually shrubby, with slender, sarmentose branches, rarely climbing, glabrous: Ivs. short-petioled or almost sessile, the upper connate, oval to oblong, obtuse, with nsually undulate and transparent margin, very glaucous beneath, $11 / 2-3 \mathrm{in}$. long: fls. in sessile or short-stalked spikes, greenish or whitish yellow, often tinged purplish, glabrous outside, $1 / 2-8 / 4$ in, long, the tube gibbous, about as long as limb. May, June. Quebec to Manitoba, south to Ohio and N. C. B.R. 2:138.

Ee. Bractlets as high as ovary or slightly shorter, roundish.
34. hispidula, Dougl. Bushy shrub with sarmentose branches, rarely twining, usually hirsute: 1vs. oval to ovate, rounded or cordate at the base, often with foliaceous stipules, the apper connate or sometimes distinct, usually small, rarely to $21 / 2 \mathrm{in}$. long, ciliate and pubescent, rarely glabrous. fls. in slender-peduncled and often panicled spikes, pink or yellowish, glabrous or hirsute, $1 / 3-1 / 2$ in. long, with short gibbous tube. June, July, Brit. Columb, to Calif. B.R. 21:1761.-Var Californica, Greene (var. vácillans, A. Gray). Of more vigorous growth, with large lvs. to 3 in. long: corolla glandular-puhescent outside. Calif.
co. Corolla with almost regular or slightly 2-lipped limb: limb several times shorter than tube.
35. ciliòsa, Poir. (L. occidentàlis, Hook.). Low sar mentose shruh: lvs. petioled, ovate or oval, glaucous
beneath, glabrous but ciliate, the upper connate, 2-4 in. long: fls. in short-peduncled beads of one or few whorls; corolla slightly 2 -lipped, with ventricose-gibbous tube, yellow to orange-scarlet, sometimes birsute outside, $11 / 4-13 / 4$ in. long. June, July. Brit. Col. to Calif. and Ariz.
36. sempérvirens, Linn. (Caprifolium sempervirens, Michx.). Trumpet Honexsuekle. Fig. 1318. High climbing, glabrous; evergreen southward: Ivs. oval to oblong, glaucous beneath, the upper connate, $2-3$ in. long: fis. in peduncled interrupted spikes; corolla with almost equal limb; tube slightly ventricose, glabrous, $11 / 2-2 \mathrm{in}$. long, scarlet or orange-scarlet, rarely yellow. May-Sept. Conn. to Fla., west to Neb, and Tex. B.M. 781. R.H. 1856:361. Gn. 45, p. 307. - Var. flava, Regel
 fuchsioides, Hort. (L. luchsioides, Hort., not of Hemsl., which is a Chinese species of the Nintoa group aud not yet introduced). Similar to var. minor, but tube more expanded above, bright scarlet. Var. minor, Ait. Lvs. oblong or narrow oblong: fis. more slender, orange-red or orange-scarlet. Very free-flowering, but more tender. B.M. 1753. B.R. 7:556. Gn. 34:300. Var. speciosa, Carr. Differs from the type by more briliiant scarlet fls. F.S. 11:1128. Sometimes cult. as L. Magnevillea, a name also applied to L. dioica, and a darker red form of L. Capritolium.
L. angustifolia, Wall. Erect shruh, to 10 ft . : lvs. lanceolate: fls. long peduncled, white, fragrant, with regular 5 -lobed limb. Himal. F.S.4, pp. 407, 408 b. Tender. - L. arborea, Boiss. Erect shrub or small tree, to 30 ft .: lvs. roundish ovate, pubescent: fls. short-peduncled, 2 -lipped, pinkish, small. Spain.- L. bella, Zabel (L. Morrowi \times Tatarica). Intermediate between the two: fls. white to pink. Garden origin. - L. biflöra, Desf. \Rightarrow L. canes-cens.- L. canéscens, Schousb. Climbing, grayish tomentose: lvs. ovate, small: fls. in pairs, white, 2 -lipped, with slender. long tube, fragrant. Spain, N. Afr.- L. chrysontha, Turez. Allied to L. Xylostenm, higher: Ivs. larger, acuminate: fls. larger, ehauging to bright yellow. N. E. Asia. Gt. 12:404. Handsome hardy shrub, with rather light green foliage and bright coral-red berries. - L. confüsa, DC. Allied to L. capescens, but fls, and lvs.

1317. Lonicera Sullivanti $(\times 2 / \mathrm{s})$.

somewhat larger and ovary glabrous. Japan, China. B.R. 1:70 (as L., Japonica). Gn, $45, \mathrm{p}, 807$. Has been often contounded with L. Japoniea, but is easily distinguished by the small subu-

1318. Lonicera sempervizens ($\times 1 / 2$).
late bracts. - L. canjugiàlis, Kelloge. Erect shrub: lvs, oval or ovate, pubescent : fls. slender-peduncled, small, 2-lipped, dark purple. Washington to Calif.-L. depressa, Royle. Low shrub, with small oval to oblong, glabrous lvs.: fls, pednueled, light pink, with short tube and regular limb, small. Himal. Var. Mlyrtillus, Clarke. Fls. short-peduneled: braets narrower.L. diversifolia, Wall. $=$ L. quinquelocularis. - L. gibbiflora, Maxim. $=$ L. chrysantha. - L. gibbiflora, Dipp. Probably bybrid of L. Ruprechtiana aud ebrysantha: L. notha is also sometimes met with under this name,-L. Ibérica, Bieb. Erect shrub, to 8 ft .: lvs, roundish ovate, pubescent: fls. short-peduncled, 2-lipped, small, yellowish; berries bright red. N. Persia, Caucasus.- L. Kamschätica, Hort $=$ L. Kesselringi- L. Késselringi, Regel. Closely allied to L. orientalis: Ivs, elliptie-lanceolate: fls, with aarrow, not gibbous tuhe. Kamschatka. Git. 40, p. 124.-L. Korolkowi, Stapf. Closely allied to L. floribunda, bnt filaments much longer and hairy and upper lip more deeply divided. Persia. G.F 7:35. Hardy and free flowering.-L. Maácki, Maxim. Sibrub, to 10 ft .: lvs, oblong-ovate: Als, short-peduncled, white, fragrant, 2 -lipped, about 1 in . long. June, July. N. China, Amurland. Gt 33:1162. Handsome bardy shrub, flowering after the other Bush Honeysnckles.- L. Maximdxiczi, Maxim. Shrab, to 6 ft .: lvs. oblong-elliptic: fls. peduncled, purplish violet, 2-lipped, rather small, N, E. Asia. Gt. 17:597,- L. micräntha, Regel $=$ L. floribunda, - L. micrántha, Dipp. Hybrid of L. Tatarica and Xylosteum ; oi no decorative ralue. Garden origin.-L microphylla. Willd. Erect shrub, to 3 ft .: lvs, oval,
 white, small: herries connate, orange-red. Altai to Himal. $ᄂ$ L. Mundeniensis, Rehder (L. bella \times Ruprechtiana). Lvs, ob-long-ovate, dark green above: fls white. Garden origin. Gt. 42, p. 101, Figs. 4-6. - L. Muscaviénsis, Rehder (L. Morrowi \times Ruprechtiana). Similar to L. Morrowi, but of more upright and vigorous habit. Garden origin. Gt. 42, p, 101, Figs. 1-3. - L. Myrtilus. Hook. f. \& Thoms $=$ L. depressa vars. - L. nervisa, Maxim. Shrub, to 10 ft ., with slender dark purple branchlets: lvs, ovate, with purple veins: fls. small, pink, long-peduacled, 2-lipped: fr. black. China. Hardy, graceful shrmb,-L. nigra, Linn. Shrab, to 5 ft : lvs, elliptic to elliptic-lanceolate: fls, slender-peduncled, pink, small: fr, black. Mts. of M1. Eu.-L. nottha, Zabel (L. Rupreehtiana \times Tatarica). lutermediate between the two: fls, white to pink. Garden origin.- L. nummulariifolia. Janb. \& Spach. Similar to L. floribunda, but fls, shortpeduncled or almost sessile. W. Asia to Afghan.-L obovata, Royle. Similar to L. mierophylla: lvs. very small. obovate: fis. small, with almost regular limb, yellowish white. Himal.L. parvifolia, Edgew. = L. depressa. - L. propinqua, Zabel (L. alpigena \times Ledehouri). An interesting hyhrid, in one form more like the first, in the other more like the second parent. Of
garden origin, - L. Pyrenaica, Linn. Erect sbrub, almost glabrous: lvs. enneate-ohlong: fls, slender-peduncled, tubular-cam panulate, regularly 5 -lobed, white, $3 / 4 \mathrm{in}$. long. Pyren. Mts.L. quinqueloculdris, Hardw. Shrub, to 10 ft ., with slender, spreading branches, similar to L. Xy losteum: fls, almost sessile, larger, yellowish: berries white. Himal. B.R. 30:33 (as L. diversifolia).-L. Regeliàna, Dipp. Probably hybrid of L. chrys. antha and Xylosteum, - L. Schmitziana, Dipp, not Roezl= L. orientalis.-L. Segreziénsis, Lav. Closely allied to L. Xylosteum: Ivs, more pubescent, dark bluish green: Hls. short-peduneled, yellowish. Supposed to be a hybrid of L. quinquelocularis and L. Xylosteum. - L. splendida, Boiss. Allied to L. implexa and Etrusca: glabrous, glaucous : fls. in a many-fld., sessile head, yellowish white, tinged purple. Spain. F. S. 11:1130.L. Tanguitica, Maxim. Slender shrub, with small, obovate or oblong lys.: fls. slender-peduncled, small, with 5-lobed limb, pale pink. China. Gt, 40, p. 561.-L, tomentélla, Hook.f. \& Thom. Erect shrub, to 12 ft .: lrs small, orate to oblong pubescent: fls. short-peduncled, nodding, small, regular, white, Himal. B.M. 6486. Tender. - L. translucens, Hort.=L. quin-quelocularis.-L. Webbiana, Wall, Allied to L. alpigena. Lvs larger, acuminate, puhescent: fls, paler: ovaries separate. S.E. Eu. to Himal. - L. Zabeli, Rehder. Allied to L. floribunda, but guite glabrous aud lvs. somewhat larger. Prohably hybrid of L. floribunda and Tatariea. Gt, 42, p. 103, Figs. 1-3. Very freeHowering and handsome.

Alfred Rehder.

LOOSESTRIFE. See Lysimachia and Lythrum.

LOPEZIA (after the Spaniard Lopez, who wrote on the natural history of the New World). Onagracea. About 21 species of herbs from Mexico and Central America. Ereet, branching, glabrous or pubescent: lvs. alternate or the lower opposite, dentate: fls, usually small, in leafy racemes or subcorymbose at the ends of branches, slender-pedicelled; ealyx limb 4-parted, inequal, deciduous, linear-lobed; petals 4 , short- or longclawed, inequal, the posterior ones narrower, the claws glandular at the apex: stamens 2, attached to the pistil, one anther-hearing, the other petal-like: orary 4 -celled: capsule glohose, leathery: seeds ohovoid, with a leathery, granulated coat.
albiflora, Schlecht. Fig. 1319. Suffruticose, diffuse, $2 \mathrm{ft} . \mathrm{high}$: young hranches somewhat villous: lvs, cuneate at the base, ovate-lanceolate, irregularly serrate or remotely dentate, largest $1 \frac{1}{2} \mathrm{in}$. long: pedicels horizontally spreading, slender: petals white, often tinged slightly pinkish at hase, larger ones obliquely spatulate, ohtuse and mostly notched, smaller ones linear, ohtuse, as long as sepals. Mex. - Cult. at Harvard Botanic Garden, where the plant differs from the original description by the lvs, being usually orate or perhaps oblongovate, and the smaller petals longer than the sepals. It seems to flower through the winter.

1319. Lopezia albiflora ($\times 1 / 2$).
coronàta, And. Annual: Ivs, scattered or in whorls, glossy, glahrous: two upper petals linear, bright lilac; two side ones larger; lamina roundish obovate, light lilac, with dark red mark at base. Mex. S.B.F.G. I. 2:108.-Cult. in S. Calif.

LOPHANTHUS (Greek, crested flower; application not evident). Labidte. Of this genus we cultivate 2 species of bardy herbaceous perennials, which are rather tall and coarse and bear spikes of more or less purplish fls. in summer. The genus contains 7 species, all from America or N. E. Asia. Lrs. serrate, veiny, petioled, lower usually subcordate and upper ovate: fls. small, in dense sessile whorls crowded into termiual spikes, which may be interrupted below; stamens exserted; anthers separated or distant, not approximate in pairs, their cells parallel or nearly so. Of minor value.
anisàtus, Benth. Giant Hrssop. Height $2-3 \mathrm{ft}$.: Ivs. ovate, auise-scented when crushed, white beneath: fls. blue; ealyx teeth tinged purple or violet. July, Aug. Prairies, Wis. to Rockies. B.R. 15:1282. - This species grows $3-5 \mathrm{ft}$. high, on dry hills, and bas pale purple flowers.
scrophulariæfolius, Benth. Height 4-6 ft.: 1vs, not anise-scented, not white beneath: fls. dull purplish; calyx teeth whitish. Borders of thickets, N. Y. to Wis. and N. C. -This plant grows 2 ft . bigh and bas laven-der-blue flowers in June.

LOPHOSPERMUM. See Maurandia.

LORDS AND LADIES, Arum maculatum.

LOQUAT, See Eriobotrya Japonica.

LOTUS meant several things to the ancients: (1) the Greek Lotus, a leguminous plant on which horses fed. This was probably what we call to-day Lotus corniculatus, the common Bird's-foot Trefoil of temperate regions. (2) the Cyrenean Lotus, an African shrub, the fruit of which was eaten by certain North African tribes who were called Lotus eaters. The fruit was said to be honey-sweet, the size of an olive and in taste like a date. This was probably Zizyphus Lotus, a prickly shrub whose fruit is, however, considered inferior to tbat of the common jujube, Zizyphiss sativa. Other conjectures have been: Celtis anstralis, a tree which bas a small, sweet berry; Nitraria tridentutu, a thorny desert shrub whose succulent fruit has a stimulating quality, and Rhamuus Lotus, another North African plant. European Lotus is a name for Diospyros Lotos, a kind of date plum which is cult. iu S. Eu., but the fruit is hardly edible. (3) The Egyptian Lotus or Sacred Lily of the Nile. This is Nymphea Lotus, which, like the Hindu Lotus, has rose-colored as well as white flowers. American cultivators at the present time almost nniversally consider that the true Egyptian Lotus is Nelumbium speciosum, now called Nelumbo, but Nelumbium speciosum is not a native of Egypt. (4) The Hindu and Chinese Lotus, also called the Sacred or Pytbagorean Bean. This is Velumbo Indica, better known as Velumbium speciosum. The name Lotus was doubtless used for other water lilies, particularly the blue-flowered Nymphea cariutea. These plants are described in this work. See Netumbo and Vymphra.
Lotus of the botanists is a genus of $50-100$ species, found in temperate regions: herbs or subshrubs, glabrous, silky or hirsute: lvs. with 3 lfts. crowded at the apex of the petiole and commonly 2 joined to the stem and resembling stipules: fis. pea-shaped, yellow, red, rosy or white, often in axillary, few-fid. umbels, rarely solitary; calyx lobes longer than the tube; keel beaked: pod oblong or linear. Legiminosw.

A. Les. thread-tike: fls, odd, not pea-shoped.

Bertholètii, Masf. (L. peliorhýncus, Hook. L. pelyorensis, Hort.). Small, mucb-branched, slender bush, with a silvery bue: lfts. whorled, $8-9$ lines long: $\mathrm{Hls} .11 / 2 \mathrm{in}$. long, in loose clusters of about 20 toward the end of the branches, short-pedicelled, scarlet or crimson fading to orange; standard recurved like a horn; keel acuminate, longer than the wings. Cape Verde, Canaries. B.M. 6733. R.H. 1895:308. - Peliorhyncus means bruised or discolored nose. Called "Coral Gem" in catalogues. Grown chiefly in hanging baskets. Prop. by division or cuttings.

AA. Lis, not thread-like: fls. pea-shaped.

B. Fls, yellow.

corniculàtus, Linn. Bird's-FOot Trefoil. Babies' Slippers. Perennial, prostrate or ascending, a few in. to 2 ft . bigh, glabrous or hairy: 1 fts . obovate or ovate, $1 / 2 \mathrm{in}$. long, the 2 stipular ones broader and very oblique: fls. yellow, often tiuged bright red, 5-10 in an umbel; calyx lobes about as long as the tube. Temp. regions and Australia. Var. flore-pleno has showy double fls. A hardy trailer for covering dry banks and rockwork, blooming all summer and autumin. Also grown for forage.

BB. Fls. pink or white.

australis, Andr. Perennial, diffuse, sometimes subsbrubby, glabrous or pubescent: Ifts, narrower than in L. corniculatus, and the stipular ones less dissimilar. but varying from obovate and under $1 / 2 \mathrm{in}$. long, to linear and $1-1 \not / 2$ in. long: tls, usually pink, but varying from white to purple-red. Australia. B.M. 1365. L.B.C. 11:1063 and B. 5:2I1 (as L. albidux), -lnt. I900 by Franceschi.

BBB. Fls. dark purple or dark red.

C. Lfts. linear-lanceolate.

Jacobæus, Linn. Perennial, subshrubby: fls, about 3 in a flat-topped cluster, dark purple, almost black. Cape Verde. B.M. 79.-Treated as a tender annual bedding plant.
cc. Lfts. obovate to elliptic.

Tetragonólobus, Linn. Winged PeA. Annual trailer: fls. solitary or twin, purplisb cardinal-red. Mediterranean region. B.M. 151. - Tetragonolobus was once considered a separate genus, largely because of the 4 leafy wings of the pod. Grown chiefly for food, the pods being eaten when young and the seeds, when roasted, substituted for coffee. Seeds sown in drills in April. Plants require no care except water during drought.
L. Balambénsis, a pink-fld. Abyssinian plant, was int. to American trade hy Franceschi, who says it was originally sent ont by Dammann \& Co., Naples, Italy, and is not worth cult. L. Canariensis floribundus is not in Index Kewensis. Franceschi writes that it has yellow fls. and is desirable for rockeries and hanging baskets; that it is not far from L. corniculatus, but has a different habit: and that it was offered many years ago by Wildpret of Orotana and later by Albert Scheubel of Hamburg.
W. M.

LOUISIANA (Fig. 1320) is situated at the extreme lower limit of the great Mississippi system, bordering on the Gulf of Mexico. These bodies of water bave an important bearing upon the climate, and make it possible to grow some of the subtropical fruits. The prevailing wind is from the south, somewhat cool and always laden with moisture, and the southern portion of the state, being only about 30 feet above the sea level, receives the beaviest rainfall, 70 inches, while the northern portion, being more elevated and further from the gulf, has an annual rainfall of 45 to 50 inches. This is, as a rule, well distributed throughout the state, the seasons of greatest drougbt being early spring and early autumn. The highest recorded summer temperatures run from 98° along the Gulf coast, to 102° in the northern part of the state, while the average winter temperature is 56°. Occasionally a northwestern blizzard reacbes down into the state, causing a heavy fall in temperature, accompanied with sleet, and once in a great while, snow. There was a temperature of 9° in 1895 , and 13 incbes of snow. A minimum of 15° below zero was subsequently recorded in northern Lonisiana. These occasional blizzards have forced the culture of tropical fruits down to the section immediately hordering on the Gulf. As the soil has such an important bearing on the character of the fruit, a rough classification of the different kinds is here giren.

First: The Sandy Hills and Uplands.-These occupy the nortbwestern portion of the state, along with a section in the eastern part, south of the state of Mississippi. The lands are characterized by sandy soils, with pine and oak forests, and produce the best apples, stonefruits and berries.

Second: The Bluff Lands.-These oceupy a broken strip, running parallel with the Mississippi, from 30 to

LOUISIANA

50 miles from its western bank, and disappear near the Gulf in what are known as "islands," sueh as "Avery's 1sland" and "Jefferson's 1sland." There is also another section of these lands on the east bank of the river immediately south of the Mississippi state line. These lands are characterized by a yellow clay loam, very fertile, and by forests of magnolia, gums, oaks, etc. They produce some of the stone-fruits well, and an abundance of pears, berries and figs.

Third: The Prairie Lands.-These occupy a pertion in the central southwestern part of the state, are treeless, low and are also known as rice lands. The soil is

bushels of radishes. Hundreds of car-loads of these vegetables are sent to the Chicago, Cleveland and St. Louis markets during the months of March, April and May. This section also produces enormous quantities of early strawberries, as hundreds of acres are planted each year, and shipments are sent by car-load lots frem the stations on this line in Tangipahoa parish. The plants are set in August and September of each year, and, as a rule, are kept but one season. Abundance of pine straw is used for mulch, and when an early spring frost threatens, this mulch is also used to cover the plants as well, oftentimes protecting them so that the first and most valuable fruits escape and mature, thus insuring the most profitable picking. The varieties grown are: Cloud, Michel Early, Niller, Bubach, Gandy, Seltzer and Creole Beanty. The Japan plums are also grown in this section extensively, the most desirable varicties being the Abundance and Burbank. A few peaches and Japan persimmons are grown, but not so as to become a commercial product.

Another great truck section is found in the immediate vicinity of New Orleans, and along the river towards the Gulf on the New Orleans, Fort Jackson and Grand lsle railroad. New Orleans is supplied mainly from this source, and at the same time enormons amounts are sent North. The truck grown for the latter purpose consists of cabbages, onions, tomatoes, beans, peas, eggplants and cantaloupes. Cucumbers are also grown, both in the hotbed and in the open, oftentimes bringing high returns when sent North, the winter prices ranging from 30 cents to $\$ 2.50$ per dozen.

The lower pertion of this seetion contains also the great orange groves of the state. They are located all along the river, and it is only when a belated blizzard visits this section that a crop failure is experienced. Some of these orchards contain more than 100 acres. The stocks now used are almost entirely the common sour and Citrus trifoliata. Occasionally the sweet seedlings and lemons are used, but net to any extent. The first two mentioned are the hardiest stocks known, and
poor but improves with cultivation, and gradually the planting of figs, pears, peaches, plums and grapes has been extended.

Fourth: The Allurial Lands.-These make up all the ether portions of the state not mentioned, including the river bottoms. The seil is generally dark, ranging from black to light red, very fertile and abounding in an abundant growth of timber. They produce the heary yields of cotton and cern in the northern portion, and the sugar cane, oranges, lemons, persimmens, figs and bananas, as well as other tropical fruits, in the southern part.

The leading varieties of vegetables are grown in every section of the state, and the home gardea furnishes an abundant supply during all seasons of the year, under proper management. Those regetables most popularly grown for home consumption are as follows: Asparagus (on the sandy soils only), artichoke (both Globe and Jerusalem) , bean, beet, cabbage, earrot, collard, corn, cress, cucumber, cashaw (pumpkin), endive, eggplant, kohlrabi, leek, lettuce, melon, mustard, okra, onion, parsley, pea, pepper, Irish potato (two crops), sweet petato, radish, spinach, tomato, turnip and rutabaga. Occasionally there is found the vegetable pear (Sechium edule), martynia, brussels sprout, celers, chervil, garlic, kale, salsify, parsnip, cauliflower and field pumpkin. The majority of these vegetables may be sown several times during the year. Celery and cauliflower, however, are sown early in August in order to mature by the Christmastide.

The commercial truck sections are found in various sections of the state. Along the lllinois Central railroad a direct line to Chicago from New Orleans, which runs through the warm sandy pine lands, the most extensive truck farms are to be seen. The vegetables grown are radishes, beans, cantaloupes, cucumbers and tomatoes. The town of Roseland alone, in 1898, shipped 50,000
mature their wood, making a more desirable tree. The varieties grown are: Satsuma, Boone Early, Sweet Seville, Parson Brown, Brazilian, Baldwin No. I, Creole, Homosassa, Washington Navel, DuRoi Blood, Hart Tardiff, Rivers Enknown and Schonberger. Besides these, large quantities of mandarins, tangerines and Kumquat oranges of various varieties are grown. The various scale insects, so serious when no care is given, are, as a rule, kept in complete control by the careful use of insecticides, and the laws governing the importation of infected trees are rigidly enforced. As oranges in Louisiana are grown on such different soil from the orange sections of other states, one or two points must always be kept in view. Beds should be raised before the trees are set, and the crown reots of the young tree should be just at the surface of the ground. These requirements are neressary on the alluvial lands of the lower Mississippi. The Satsuma. Kewochai and Dai Dai are Japanese varieties, and when worked upon C'itrus trifoliafa stock will stand much more cold than the sweeter oranges. The Satsuma thus worked is the most desirable and will stand a temperature of $13^{\circ} \mathrm{F}$. without injury. The orange industry is increasing annually, the crop for 1898 being upwards of 300,000 bexes.

Another truck section is fonnd along the Iron Mountain railroad north of Alexandria; it is limited to only a few crops, such as melons, tomatoes and Irish potatoes. Along the Vicksburg, Shrevesport and Pacific railroad large quantities of Irish potatoes are grown, while along the Kansas City, Pittsburg and Gulf railroad and the Mississippi Valley railroad, only limited quantities of truck have been sent out. From reliable statistics it is found that the ammual output of Louisiana approximates 40,000 tons θ_{i} fruit and 60,000 tons of vegetables. The varieties of these regetables grewn for the Northern markets are as follows: The Acme and Beauty
tomatoes, the Chartier radish, the New Orleans Market eggplant, the Peerless and Triumph Irish potatoes, the New Orleans Harket and White Spine cucumbers, the New Orleans Market eautaloupe, the Drumheads, Flat Dutch, Succession, All-Seasons and Nonesuch cabbages, the Italian and Berruuda type of onious, the First and Best and Alaska peas, the Early Mohawk aud Valentine beans. In the nerthern part of the state large quantities of lrish potatees are grown, and oftentimes the second crop is very profitable. The first crop is planted in January or February aad harvested in May and Juue. The seed for the second crop is prepared for planting by special treatment, censisting of gradually expesing the tubers to the light and moisture, which matures them and excites the eyes into growth. As soon as this is accomplished they are ready for planting, which is usually during August. They are harvested in November.

Upwards of $3,500,000$ bushels of sweet potatoes are grown annually, the varieties best known being Pumpkin, Creole, Califormia, Bermuda, Red and Yellow Nansemond, Hayman, Providence, Y ellow Jersey, Southern Queen and Vineless. The last variety is one of the mest desirable of the newer sweet potatoes.

The culture of fruit, other than oranges and strawberries, has been neglected in great measure. Apples do fairly well in the nerthern part of the state, the desirable varieties being Smith, Horse, Red June, Magnum, Early Harvest, Cullasago, Shannen, Shockley and Red Astrachan. Grapes are grown but sparingly, as the long,warm, moist season offers the best conditions under which the grape diseases develop, and the frequent rains hinder the use of fungicides; however, in the northern and southwestern portions of the state the following varieties have been found desirable: Champion, Diamond, Eaton, Niagara, Concord, Delaware, Brighton, Sweet Meuntain, Herbement and Jacques, Only the Chinese type of pears is at all grewn, as it offers more resistance to the blight than the others. The desirable varieties are Le Conte, Kieffer, Simith, Garber, Dai Dai, Golden Russet and Mme. Von Siebold. The European varieties of plums do not sueceed, but many of the American and Japanese sorts de well. The desirable varieties are Burbank, Abundance, Satsuma, Kelsey, Chabot, Wild Goose, Robinsou and a few others. The fig is grown universally in all sections of the state, the best varieties being Celeste, Brunswick, White Ischia, Magnolia, Angelique, Lemon, Mission and Reine Blanche. The Japan persimmons are being set extensively, using chiefly the Hyakume, Kurokume, Nero Zami, Hachiya, Tsuru and Among. These fruits are large, showy, and will stand transportation well. The Elberta, Sneed, Peen-te (in the south) and Chinese Cling peaches prevail.
The other fruits, grown in a limited way, are quinces, goumi, blackberries, dewberries, a very few raspherries, pomegranates, bananas, jujubes and pawpaws. There are a few other tropical fruits that are grown only for specimens.

Leuisiana abounds in beautiful flowering shrubs and wild flowers. The plauting of all kinds of ornamentals is very extensive, roses bloom throughout the season, and the camellia finds a congenial home throughout the southern part of the state. In and areund New Orleans the finest ornamental plantings will be found, St. Charles avenue, the principal residence street, being especially beautiful, with its palms, roses, camellias and ornamental vines. This is not contined to the wealthier classes, for nearly all these ornamentals grow readily from cuttings with little care, and even the poorest people oftentimes have the choicest flowers and roses around their doorstep.
F. H. Burnette.

LOUSEWORT. Pedicularis.

LOVAGE. Levisticum.

LOVE APPLE. First popular name of the Tomate, now dying out in America. Love-in-a-mist. $=$ Nigella. Love-lies-hleeding. Amarantus caudatus.

LOXOSCAPHE (Greek, an oblique boat). Polypodiàcere. A small genus of southern hemisphere ferns, related to Davallia. Indusium forming a compressed,
suborbicular or cup-shaped sac, open only at the top: lvs. with linear segments. For culture, consult Davallia.
thecifera, Moore (Davállia concinna, Schrad.). Stipes 3-4 in. long: lvs. 6-9 in. long, bipinnate; divisions 2-3 lines long, $1 / 2$ line wide. S. Amer. and Africa.
fœniculàcea, Moore (Davállia faniculd̀cea, Hook.). Stipes 6-8 in. long: lvs. 9-18 in, long, quadripinnate; divisions less than $1 / 2$ line wide. Fiji lslands.
L. M. Underwood.

LUCERNE. See Alfalfa and Medicago.

LUCULLIA (probably adapted from a native name). Rubiacea. A genus of 2 species of tender shrubs frem the Himalayas, bearing in winter terminal corymbs sometimes a foot across, compesed of $20-40$ pink or white, fragrant, salver-shaped fs. with 5 rounded lohes, each fl. being $11 / 2-2 \mathrm{in}$. acress. A plant of L. gratissima is on record which attained $61 / 2 \mathrm{ft}$., bearing 24 bunches of fls , each 2 ft . in circumference, beside 30 smaller bunches. Calyx tube top-shaped; lebes unequal, decidnous; stamens 5, inserted on the tube of the corolla; filaments very short: disk annular: ovary 2-celled: style 2-branched.
L. gratissima is one of the most beautiful winterflowering shrubs for house decoration, and deserves to become more popular with florists fer Christmas sales. The wood ripened after flowering furnishes the best cuttings. Newly rooted plants require a night temp. of 60° at first, but the temp. should be gradually reduced and the plants hardened off before they are planted outdoors for the summer. Young plants should never be allowed to get dry from the time of first petting until they are taken outdoors. For potting a light seil is desirable. When the pots are well filled with roots, apply liquid mauure two or three times a week until the buds appear. During the summer the plants should be syringed daily, as they are subject to red spider. The plants should be lifted, potted and brought indoors the last week of Aug. If left out later they do not set flower buds as well. As soon as the buds appear the plants should be moved to a warmer house, with a night temp. of 55°. After flowering the plants should be trimmed somewhat, given less water, kept in a night temp. of 45° and syringed daily. They start slowly, but make hardy growths for planting out.
gratissima, Sweet. In the wild a tree attaining 16 ft .: lvs. opposite, ovate-obleng, acuminate, acute at the base, 4-6 in. long: panicle deeussately branched: fls, pink or rose, forming a gorgeous rounded mass; corolla lobes imbricated in the bud; stamens inserted in the tube, slightly exserted. S.B.F.G. 145. B.M. 3946. G.C. 111. 21:81. R.H. $1843: 385$ and $1890: 180$. Gn. 35, p. $58 ; 41$, p. 469 ; 55, pp. 42, I07. A.F. $7: 443$ and $10: 679$.
L. Pinceana, Hook. Lvs, oval: fls, in a componnd eyme, the lobes pure white ahove, ehanging to a cream, with a rosy tinge, outside rosy and the tuhe red. Distinguished by the presence outside rosy and the tube red. Distinguished by the presence
of 5 pairs of tubercles at the base of each sinus. B.M. 4132. Gn. 35, D. 59 and 41, p. 469.-L. speciosa, Hort., is not in Index Kewensis. H. A. Siebrecht writes that it is in every way like L. gratissima, except that the fis, are much larger and of a deeper eolor. He says it is a stronger grower and just as fragrant.

Geo. McWilliam and W. M.
LUCÜMA (Peruvian name). Sapotdece. About 50 species of trees and shruhs, largely S . American, two of which are tropical fruit trees. L. Rivicoa produces the Egg Fruit, or Ti-es, which is about the size and shape of a hen's egg, and tastes like the yolk of an egg sweetened with sugar. As cult. in S. Fla. and S. Calif. it makes a large evergreen bush or small tree. It is related to the Sapodillo, but the floral parts of the laiter are in 6's instead of 5's. L. mammosa produces the Marmalade Plum (Fig. 1321), which has a rough and rusty skin and russet-colored edible pulp. This fine fruit grows wild in the West Indies and the Philippines.
mammòsa, Gærtn. Marmalade Plum. Fig. I321. Lvs. obovate-oblong or spatulate, chartaceous, 6-8 iu. long, $2-3$ in. wide, mucrenate: calyx segments $9-10$, inner ones targer and notched: ovary 5 -celled: fr, usually l-seeded by abortion. S. America, West Indies, Philippines.

Rivicòa, Gærtn. Lrs, elliptic-obovate, ohtuse, membranous, $4-8 \mathrm{in}$. long, $11 / 2-3 \mathrm{in}$. wide: ealyx 5 -parted: ovary 5-celled: seed ovoid-globose. Brazil, French Guiana. - Var. angustifolia, Mart., is the Egg Frut or Ti-Es of the W. Indies, It has elliptic-lanceolate lvs.. acute at both ends. Fig. J322. Cult. in S. Fla, and S. Calif.
W. M.

1321. Lucuma mammosa ($\times 1 / 6$).

Lucuma mammosa, the "Mammee Sapota" of Jamaica, is the fruit of a tree found wild also in Cuba and the northeastern part of S. America. The tree is oruamental, about 30 feet high, of a pyramidal shape. It is occasionally seen where it was originally planted in pastures near dwelling houses, hut except for the droppings from cattle and horses, it receives no other cultivation. It requires a good deep soil and an annual rainfall of about 70 inches. The flowers are cream-colored, about 1/9 inch long, springing directly from the bark. The fruit is about 6 inches long, with usually only I seed. It has a russet-colored rough skin. The flesh is of a dark yellowish red color, soft and sweet; it has been compared to a very ripe pear, hut is more luscious. Marmalade is made from the fruit, whence the name of "Marmalade Plum."

Wis. Fawcett.
LUDWIGIA (C. G. Ludwig, botanist and botanical author at Leipzig, I709-1773). Onagràceo. About 25 species of aquatic or semi-aquatic small herbs, widely distributed in temperate and warm climstes. Fls. small and inconspicuous in the axils of the leaves, the parts usually in t's. Lis. mostly small and mostly entire or very nearly so, usually not distinctly petioled. The stems are often creeping, sometimes floating. The op-posite-Ivd. species are by some referred to the genns Isnardia. The Ludwigias have little standing as horticultural subjects. They are sometimes useful in bog gardens, and one is advertised for aquaria. Three species are in the Amer, trade.

> A. Leaves opposite.
palústris, Ell. (Isnárdia palústris, Linn.). WATER Purstane. Trailing in muddy places or floating on shallow water, rooting at the joints: Ivs, oval or oval-ob-
long, narrowed into a short petiole: fls, very small, usually reddish. - Widely distributed in this country; offered as a bog plant.

Mülertii, Mulertt. Lvs. lance-oblong, usually narrowed intoshort petioles, entire: fls. yellow: fr. oblong, truncate on top, $3 / 8 \mathrm{in}$. long.-Int. from S. Amer, by Hugo Mulertt, then of Cincinnati, and described in "1sis" (published in Germany) in 1880 or 1881, and also in the "Aquarium," Vol. I11. p. 43, 64. It is now widely distributed amongst growers of aquarium plants. It seems not to have been studied by systematic botanists. It is prized for its graceful habit and because it is evergreen. Grows well from cuttings and from seeds.

AA. Leaves altemate.

alternifolia, Linn. Seed-box, or Rattle-hox. An erect shrub, $2-3 \mathrm{ft}$. or more tall, in appearauce not unlike an Epilobium: Ivs. lanceolate or oblong-lanceolate, narrowed below, entire or sometimes with mere suggestions of teeth: fls, large for the genus ($1 / 2 \mathrm{in}$, across), with yellow caducous petals: capsules large, square in cross-section. Bogs in eastern states.-Interesting, but not showy.
L. H. B.

LUEHEA (F. Karl van der Lïke, Austrian botanist interested in the Cape of Good Hopel. Tilidecer. About 16 species of trees and tall shrubs from the waruer parts of America with usually toothed lvs. and handsome white or rosy fls, horne in a terminal panicle, or sometimes in the axils; sepals and petals 5 ; stamens numerous, the outer ones often without anthers: ovary 5celled: capsule rather woody, loculicidally semi-5-valved. An undetermined species is advertised in Santa Barbara, 1900, from Paraguay. Franceschi writes that the inner bark is used generally in Paraguay instead of string. Luehea is also spelled Luhea, and the genus of this name of the Verbenacea is a South African genus referred to Stilbe.
LOFFA (Luff is the Arabic name). Cucurbitacea. rag Gourd. Disholoth gourd. Vegetable sponge. Six species (according to Cogniaux, Vol.3, DC. Monogr. Phaner.) of annual tendril-climbing herbs, inhabiting the tropies of the Old and New Worlds. Fls. monocions, the staminate ones in a long-stalked raceme or cluster, the pistillate ones solitary and shorter-peduncled; calyx bell-shape or top-shape, strongly 5-lohed; corolla of 5 soft yellow or whitish petals, sometimes ragged-edged; stamens usually 3 , borne in the calyx tube: fr, a long, gourd-like pepo, becoming dry when ripe and the fibrous interior sponge - like. Known south as "California Okra."
Of late years, the Luffas have come into prominence in American gardens, being an importation from the tropics and China and Japan. In other countries, the fruit is eaten when young, being cooked like squash or served in soups and stews. The young fruit is sometimes sliced and dried. (See Georgeson, A.G. Sept., I892, and Bailey, Bull. 67, Cornell Exp. Sta.) In this country, Luffas are grown mostly for curiosity and ornament. The fibrous interior of the dried fruit, when bleached and prepared, is used as a sponge for the bath and for scrubbing (whence "Vegetable Sponge"). The culture is the same as for cucumbers and melons. They are tender plants, ruuning 10 to 15 ft . The Luffas are widely dispersed in the tropics as cultivated plants. The genus divides itself into 2 groups, -those species (L. Egyptiaca and L. acutangula) with fruits not spiny or tuberculate, and those with spiny fruits. Only the following species are known to be in cult. in this country:
Egyptiaca, Mill. (L. cylindrica, Roem. L. Petòla, Ser. L. Veitchii, Nand. L. fetida, Hort. [at least in part], not Cav. L. Fabiàna, Japónica, Mexicàna [?] and noctiflòra dilba, Hort.). Naga ito-tri of Japanese. SuaKwa of Chinese. The commonest Dishcloth Gourd: stems slender-running, furrowed, roughened: ivs. roundish in outline, mostly 15 -lobed, coarsely toothed, very scabrous above and beneath: staminate fls. 2-3 in. across. wilting in the sun: ovary cylindrical or clavate, pubescent, destitute of distinct ridges, ripening into a slender, cylindrieal, curved fruit I-2 ft, long. Prohably native to the Old World, but widely distributed in the tropics. A.G. 13:526.
acutángula, Roxbg. (L, fietida, Cav.). Sing-kwa of Chinese. Fig. 1323. Lrs. rounded, scarcely lobed, very coarsely toothed: ovary 10 -ribbed, ripening into a strongly ribhed fruit. Tropics. Gt. 48, p. 136. L.H.B.
because the seeds can be seen through the pods. Prop. by seeds; or the second species rarely by division. The species sometimes escape from gardens.
ánua, Linn. (L. biénnis, Monch). Fig. 1324. Loose-

LUfSIA (after Don Luis de Torres, of whose personality little is known). Orchiddcee. Curious epiphytic herbs, with simple or branched erect stems, bearing alternate, elongated, fleshy-terete lvs.: fis. sessile, on short lateral spikes; sepals and petioles sub-similar, connirent or halfspreading; labellum adnate to the column, somewhat concave, with small lateral lobes and a large, spreading, entire or bifid middle lobe; column short; pollinia 2, on a hroad, short pedicel. About 10 species. These plants are rarely cult. Tbey grow well in any warm or intermediate house.
tères, Blume. Spike few-fld.: lateral sepals narrower than dorsal, which is similar to the petals: labellum bi-auriculate, oblongsulcate, apex bifid.
L. tères, Lindl,=Sarcanthas teretifolius.

Heinrich Hasselbring.

LUNARIA (Luna, Latin for moon; name referring to the silvery white partition of the large pods). Crucifeve. Moonwort. Honesty. Two herbs of Europe and W. Asia, both cult. in old gardens. Lvs. rather large, simple, broad or more or less cordate: tis. purple, in terminal racemes or panicles, rather large and showy: fr. stalked in the calyx, becoming a very large, flat, diskshaped silicle, with deciduous valves and a thin, persistent septum: seeds winged, 2-4 in each compartment. The plants are easy of cultivation under any ordinary garden conditions. They are interesting for their showy ils., but are grown mostly for their great flat pods, which are used in winter bouquets. They are called "Honesty"

1322. Lucuma Rivicoa, var. angustifolia ($\times 1 / 3$).
hairy plant, $11 / 2-21 / 2 \mathrm{ft}$. tall, branching as it matures: Ivs. somewbat cordate or halberd-cordate, coarsely and irregularly toothed, stalked: fls. numerous, pink-purple, fragrant, in late spring or early summer: pods about 2 in. long and somewhat narrower, very flat, rounded at the ends, tipped with the persistent style. Europe. R. H. 1857, p. 30. - Frequent in old-fashioned gardens. There is a recent form with handsomely variegated ivs.; also a white-flowered form. Annual and biennial.
rediviva, Linn. Differs from the last in being perennial, the fis. smaller and lighter colored (often grayish purple), and the pod elliptic or lance-elliptic, and tapering to either end. Europe.-Less common and less valuable than the other.
L. H. B.

LUNGWORT. Mertensia.

LUPINUS (from the Latin lupus, a wolf; because a crop of Lupines was supposed to destroy fertility). Leguminosar. Lupine. A group of about 80 species mostly confined to western N. America, a few growing in eastern N. America and in the Mediterranean region. Most are annuals or berbaceous perennials, one species in cult. being shrubby. All are showy plants with conspicuous flowers in terminal racemes, those of the species in cult. being mostly verticillate. The flowers are blue, white or yellow, or a union of these, papilionaceous and free-blooming. All are of easy cult. in any garden soil, except that they are said not to succeed in soil containing lime. They are adapted to borders in masses, and to all places in which low-growing showy herbs would be found. Some make good bedding plants, others cut-flowers. They are propagated by seed, the perennials also by division. They do not bear transplanting when once established, hence it is recommended to sow seed where the plants are finally desired. A few species are of value economically for soiling or plowing under. Leaves usually digitate, with 5-15 entire leaflets: flowers with calyx deeply bilabiate, 5-toothed, unequal; corolla with simple erect, broadly ovate standard, having strongly reflexed sides; wings united at the apex and enclosing the keel; stamens
united into a closed tube: pod 2-valved, flattened, enclosing several large seeds. A very variable genus in the garden.

There are numerous garden hybrids of unknown parentage. Some of these names will be found in the supplementary list. Voss groups these under the name of L. hybrialus, Hort., or Florists' Lupines. They have variegated flowers.

In addition to those described below the following native species have been advertised, mostly by Gillett, in 1881, for western collections. Probably they are not in cult. They are mostly described in Bot. Calif.: L. albicaulis, Chamissonis, densiflorus, lepidus, leucophyllus, ornatus and villosus.

INDEX.

affinis, 13.
albo-coccinens, 20.
albiflorus, 6.
albus, 14, 15, 20.
arboreus, 1.
argenteus, 5. bicolor, 6 .
Crucksbanksii, 18.
Crucksban
diffusus, 2.
folis roseis, 14 . grandiflorus, 6 . Hartwegii, 17. hirsutus, 14. luteus, $1,10$. micranthus, 12. mutabilis, 18. mutabilis, Nootkatensis, 7. parviflorus, 4.
perennis. 3 .
pilosus, 11.
Plattensis. 8.
polyphyllus, 6.
pusillus, 16. ruber, 14.
Snow Queen, 1. subearnosns, 19. sulphurens, 9 .

A. Perennials.

 B. Plants shrubby. \qquad 1. arboreus вв. Plants herbaceous. c. Lvs, with 1 leaflet............... 2. diffusus Cc. Lvs. with several lfts., digitate. D. Foliage not conspicuouslyhairy above.
E. No. of lfts. 5-9.
F. Lifts. shorter than petioles.
G. Pod $1 / 2 \mathrm{in}$. long. .. 3. perennis GG. Pod $3 / 4 \mathrm{in}$. long... 4. parviflorus FF. Lfts. as long as petioles..................
5. argenteus

EE. No. of lfts. 10-16........... DD. Foliage conspicuously hairy
or silky above.
E. Fls. parti-colored, striped.
7. Nootkatensis
ex. Fls. light blue, with a dark spot on the standard.
8. Plattensis

AA. Annuals. B. Fls. yellow.
C. Vo. of lfts. $18-15 \ldots \ldots . .$. . . 9. sulphureus
cc. No. of lfts. 7-10.
10. luteus

Be. Fls. blue, white or red, but selfcolored.
c. Arrangement of fls, in whorls.

DD. No. of lfts. $5-7$.
E. Plant villors.............12. micranthus

EE. Plant merely puberulent.13. affinis
cc. Arrangement of fls. scattered.
D. Lits. hairy on both sides ...14. hirsutus

DD. Lfts. not hairy above.
E. Color of fls, white....... 15. albus

EE. Color of fls, blue.........16. pusillus
BBB. Fls. of 2 or more colors.
c. Foliage hairy on both sides ...17. Hartwegii
ce. F'oliage not conspicuously
hairy above.
D. Height about $5 \mathrm{ft}$. . . . 18, mutabilis

DD. Height 1 ft . or less.
E. Arrangement offls. alter-
 whorled.
.20. namus

1. arbòreus, Sims. Tree Lepine. Lifts. 7-11, lanceo-late-linear, acute, silvery downy below, entire: fis, somewhat verticillate, in tall, loose racemes, sulfur-yellow, fragrant : pods pubescent, $11 / 3-3 \mathrm{in}$. long. July-Sept. Common in Calif. B.M. 682. Gn. 30, p. 289 and $47: 1017$. -Shrub, 4-10 ft. bigh, somewhat pubescent, not hardy at the north. Var. Snow Queen or Queen of the Snow is pure white. Var. lùteus has been advertised.

LUPINUS

2. diffùsus, Nutt. DeEr CABBAGE. Stem decumbent and many-brancbed, $1-2 \mathrm{ft}$., somewhat woody at the base, densely silky: lys. large, oval or oblong-orate, obtuse, mucronate, on long, soft-silky petioles: fls. more or less alternate, on a very long ($6-12$ in.) spike, ligit blue, the standard with a greenish yellow center: pods oblong, flattish, very woolly. April. Saudy barrens, N. Car. to Fla.-Hardiness North not determined.

1324. Lunaria annua ($\times 1 / 3$). (See p. 949.)

3. perénnis, Linn. Sun-Dial. Common Wild Lupine. Stem erect, $1-2 \mathrm{ft} . \mathrm{high}$, ratber stout, minutely pubescent: lvs. long-petioled, soft-downy; Ifts. 7-9, obovateoblong to lanceolate, obtuse, glabrous above, soft-downy below: fls, in large, loose terminal spikes or racemes, alternate, blue, varying to white. June, July. Canada to Fla. B.M. 202. Mn. 6:101. B.B. 2:269.-Desirable species, growing in the poorest soil, preferring sandy land. Grows from subterranean rootstorks.
4. parviflorus, Nutt. Fig. 1325. Fls.light blue, smaller than in L. perennis. Columbia river to Yosemite and Wahsatch.-Fig. 1325 is from a photograph by D. M. Andrews.
5. argénteus, Pursh. Fls, blue or cream-colored. West ern N. Amer. B.B.2:269.
6. polyphyllus, Liadl.(L. grandifiorus, Lindl.). Stout, erect species, forming tufts $2-5 \mathrm{ft}$. high: lvs. distant, mostly radical, long-petioled; lfts, lanceolate, glabrate above, silky liairy below, 2-6 in. long: fls. on long stalks, alternate, pedicelled, deep blue: pod $1-11 / 2 \mathrm{in}$. long, narrow. June-Sept. Washingtou to Calif. S. B.F.G. II. 355. Gn. 45, p. 459 and $55: 215$. - A cormmon garden species of merit, succeeding in any good soil. Var. albiflorus, Hort. (var. $a(b u s)$, is wbite, bold and showy. Var. bicolor, Hort., is variegated blue and white.
7. Nootkaténsis, Don. Stem hairy, decumbent, with long, spreading hairs, $2-3 \mathrm{ft}$. high: Ifts. $5-9$, narrowly obovate-oblong, smooth above, hairy below, mucronate; stipules lanceolate, nearly as long as the lfts.: fls, in dense racemes, blue, variegated with red and yellow, with large veins, variable. May-July. Nootka Sound. B.M. 1311 and 2136.-Coarse, stocky species, said to be unsuitable for small gardens, but of merit.
8. Platténsis, S. Wats. June, July. Neb., Wyo., Dak. B.B. 2:269.
9. sulphùreus, Dougl. Stem very erect, white silky: lfts. narrowly lanceolate, densely hairy on both sides, shorter than the petiole: fls. in tall, dense racemes, sul-fur-yellow: pods woolly, 1 in. long. July, Aug. Mts. of Oregon. R.H. 1890, p. 252. - Strong species branching above, bare below.
10. Iuteus, Linn. Yellow Lupine. Fig. 1326. Stem erect, nearly simple, hairy, 2 ft . high: 1 fts . lanceolate, acute, hairy: fls. on pubescent stalks longer than the

Ivs., verticillate, yellow, fragrant: pod oblong, flat. June, July. S. Eu. B.M. 140.-Succeeds in the poorest soil. Useful for cut-flowers, for the border, for fodder or for plowing under to improve sandy soils. As a fodder, it may be fed green or as hay.
11. pilòsus, Linn. Stem hairy, 2-4 ft. high: 1 fts . ob-long-lanceolate, bairy: fls, verticillate, pedicelled, rose, the middle of the standard red. S. Eu.
12. micránthus, Dougl. Stem slender, 3-12 in, high, hairy: Ifts. linear, $1 / 4-1 \mathrm{in}$. long: fls, in short, dense racemes, somewhat verticillate, very small, violet, standard and wings narrow: pod linear. Gravelly places, Ore. to Calif,-A slender plant of branching babit:
13. afflnis, Agardh. Stem rather stout, 8-10 in., pubescence very short: Ifts. broadly wedge-obovate, obtuse, long, more or less smooth above; stipules one-half the length of lvs.; petioles twice longer than the lfts.: fls. on a long stalk, deep blue: pod linear. Early spring. Calif.-A free, bardy species, often growing very rank.
14. hirsùtus, Linn. Blue Lupine. Stem hairy, 2-3 ft, bigh, branching toward the top: lfts. 7-9, ohlong or oblong-oval, hairy, long-petioled: As, somewhat verticillate or scattered, large, mostly purple, sometimes variegated with blue or violet: pod large, very bairy. July, Aug. S. Eu.-Used ornamentally and as an economic plant for the same purposes as L. luteus. It is valuable for fodder and for plowing under. Var. albus, Hort., has white fls. Var. rủber, Hort., and var. folliis roseis are advertised.
15. álbus, Lidn. White Lipine. Erect stem, 11/2 ft. bigh: lfts. obovate-oblong, 5-7, hairy below, $11 / 2-2$ in. long: fls. alternate stalked, on erect stems, quite large. white: pods large. Summer. Asia and S. Eu.-A good fodder plant said to be of greater thrift than L. luteus, and remaining green longer. Succeeds well on the poorest soil and is valuable for plowing under. Seeds are sown April-July, the plants plowed under when in flower.
16. pusillus, Pursh. Lfts. about 7, mainly oblong, acute: fls, blue or purple. Prairies. B.B. 2:270.
17. Hártwegii, Lindl. Stem erect, $2-3 \mathrm{ft}$, bigh, somewhat branching: Ifts. $7-9$, oblong, obtuse, very bairy: fls. in many-fld. elongated racemes, blue; standard whitish, then reddish. June-Sept. Mexico. B.R. 25:31.Var. albus is also sold. Possibly a perennial but cult. as an annual.

1325. Lupinus parviflorus.
18. mutábilis, Sweet. Stem ereet, branched, somewhat woody, 5 ft . tall: Ifts. 7-9, lanceolate, obtuse, bairy below and somewhat glaucous: fls. large, somewhat verticillate, fragrant; standard white mixed with blue, becoming blue with a large yellow mark in the center; wings and keel white. June-Aug. Mts. of S. America. S.B.F.G. 130. B.M. 2682.-Attractive species, erect and branching but half-bardy.

Var. Cruckshanksii, Hook. (L. Cruckshanksii, A. Gray). Fls. large, fragrant, white, the standard yellowrose, becoming violet. B.M. 3056.
19. subcarnòsus, Hook. Stem 8 - 10 in. high, ascending, silky pubescent: lfts, $5-7$, oborate-lanceolate obtuse,

1326. Lupinus luteus.
somewhat fleshy, smooth above, silky below and on margins: fls. in pyramidal racemes, alternate; standard orbicular, deep blue with a white spot in the center divided by a longitudinal fold: pod linear-oblong, silky. Spring. Texas. B.M. 3467.-Spreading species of merit.
20. nànus, Dongl. Stem slender, $1 / 2-1 \mathrm{ft}$., often branching from the base, hairy: Ifts. 5-7, linear to oblanceolate pointed, pubescent both sides, stalks 1-3 times longer: fls. in elongated, loose racemes, verticillate on slender stalks, large, white, pointed with clear blue, edged with deeper blue; wings bluish, hiding whitebrownish keel: pod hairy. June, July. Calif. S.B.F.G. 11. 257. B. R. 20:1705. - This species and its varieties are very floriferous, giving a fine effect in masses and in the border. Var. álbus, Hort., white, tinged with lilac. Var, albo-coccineus, Hort. A very compact variety, the lower half of the spike rosy red, the upper white; forms compact tufts and is called a superior variety.
L. angustifolius, Linn., with blue ffs.. is much grown in Eu. as a fodder plant and for plowing under: annual. Native to the Mediterranean region.
The following are garden hybrids of unknown origin. They mostly have variegated fls, and are common in cult.: L. atroviolaceus. Perennial, 2 ft . high. Fls, dark violet, striped with white and yellow.-L. colestinus. Annual, 2 ft . high. Fls. light blue,-L. Dtinnetti. Fls. lilae-purple, gold and white. According to Voss, this is the same as the kinds known to the trade as superbus, insignis (Vilmorin, not Dippe), tricolor elegans, and superbus Dunnetti. There is also a double form. $-L$. hybridus. Probably mixed kinds.- L. pubéscens, Bentb. Perennial or subshrubby, the pubescence short spreading hardly silky in the new parts: lfts. $7-9$, oblong-lanceolate, acute, shorter than the petiole, pubescent on both sides: fls. loosely arranged almost in whorls; pedicels shorter than the calyx: pod hirsnte, $4-6$-seeded. The above is from the original description. Bentham neglects to state the color of the fls., but an allied species has blue fls. Mottet must be in error in calling this an annual. Mex., Central Amer., Colombia-L, tricolor. See L. Dunnetti.
A. Phelps Trman.

LYCASTE (fanciful name). Orchiddeer. This genus contains about 30 species, all natives of S. Amer., Mexico and the West Indies. The flowers are freely produced and remain in good condition on the plant for several weeks. They are normally borne singly on erect or suberect bracted scapes, but sometimes twin-flowered stalks occur. Pseudobulbs ovate or oblong-ovate, bearing 1several plicate leaves at the summit, and sheathing leaves from the base: sepals sub-similar, spreading, the lateral pair united with the base of the column and forming a spur-like chin or mentum; petals smaller, projecting forward, with the tips often recurved; labellum 3 -lobed, the lateral lobes erect, middle lobe ascending or recurved, with a fleshy, tongue-like callus on the disk: pollinia 4. In Lycaste the scape arises from the very young leafy axis, which does not develop until several months later. Tbe scape, therefore, appears from the base of the bulb. Among the species, L. Skinneri is a favorite orchid with growers. The species of Lycaste

LYCASTE

are very distinct from each other and do not fall readily into natural groups. This was probably the cause of Reichenbach's complaint that "it is nearly as satisfactory to study this group as it is to brush bedgebogs." The arrangement in the key is purely artificial, and does not indicate close relationship among the species grouped together.

Heinrich Hasselbring.
The genus Lycaste is closely allied to Naxillaria and has a similar geographical range, being found from Mexico and the West lndies to Peru and southeastern Brazil. Notwithstanding this wide distribution, however, they readily subject themselves to one general mode of treatment, and may be grown in a brigbt, cool portion of the Cattleya or warm end of the Odontoglos. sum department, where they should receive plenty of indirect solar light, moisture and sufficient ventilation to ensure an active atmosphere.
During winter, the night temperature should range from 50° to 55° Fabr., and that of the day 60° to 65°, or a few degrees higher, with sun heat and ventilation. lo summer, the air should be as cool as possible, and contain plenty of moisture.

When Lyeastes are growing they need a good supply of water at the roots, and should never be allowed to remain dry for a long time, even wheu at rest. Light syringing overhead is beneficial at all times in bright weather when air can be admitted. The deciduous species, however, must be carefully watered when at rest, for it must be remembered that in casting their foliage they lose most of their active radiating surface, thus reducing evaporation to a minimum.

For special treatment, they may be divided into three groups, L. aromatica, L. costata and L. Harrisona forming good types. The L, aromatica section embraces besides the type L. candida, L. cruenta, L. Deppii, L. lasioglossum, L. macrobilbon and kindred sorts, all more or less deciduous. These grow best in pots in a mixture of equal parts chopped peat fiber and sphagnum moss, with a small quantity of leaf-mold added. About one-tbird of the pot space should be devoted to drainage of broken charcoal or potsherds, and the compost must be carefully and rather firmly pressed in about the roots, leaving the base of the pseudobulbs on a level with or a little below the rim of the pot. The best time for transplanting is just after the plants start into new growth, at which time give a more abundant supply of water.

The L. costata group includes, besides the type, such species as L. lanipes, L. locusta and L. Skinneri, which, excepting the last, are but semi-deciduous, large-growing species. They succeed best under pot enlture, and sbould be grown in a compost of about equal parts chopped sod, from which some of the fine soil has been removed, and decomposed leaves, adding a little chopped live sphagnum to keep the soil porous and to retain moisture. The compost should become nearly dry occasionally to prevent it from becoming sour.

The L. Harrisonce section is small; the type and L. tetragona are good examples; all are sempervirent aud grow best under basket culture in porous material consisting of chopped peat-fiber and live sphagnum, well mixed and interspersed with nodules of charcoal. The compost should be pressed in moderately firm about the roots to keep the plant steady, and newly imported pieces sbonld be held in place by copper or brass wire crossed between the psendobulbs.
Lycaste stock is usually supplied hy new importations, but plants may be increased by eutting through the rhizome between the pseudobulbs, two at least being left to each piece.

Robert M. Grey.
alba, 10, 14, 16. albo-sanguinea, 10. aromatica, 13, i4. Barringtonia, 8. Bifrenaria, 16, 17. candida, 7, 10. Colax jugosus, 1. citrina, 16. costata, 8.
cruenta. 13.
delicatissima, 10 .
Deppii, 15.

Maxillaria, 9, 10, 12, 13. 15, 16.

Measuresiana, 11.
plana, 11
punctatissima, 15.
purpurata, 10.
rosea, 10.
rosea, 10.
rubra, 7.
Rubra, ${ }^{\text {Suilleriana, }}$
Skinneri, 10. superba, 10. tetragona, 12.
L. cristata $=$ Paphinia cristata. - L. Harrisiana is probably an error for L. Harrisoniz.
A. Scape originating in the axil of a leaf above the new leafy axis: lubellum with transverse furrows. (Colax.).
AA. Scape originating in the axil of a leat below the young leafy axis: labellum usualiy with longitudinal crests or callosities.
B. Pollinia seated on a common stipe.
C. Scape erect or suberect, normalty 1-fld. (Lycaste.)
D. Middle lobe of the labellum semi-oblong, rounded, etc., usually obtuse or truncate. E. Pilose, with long hairs.. 2. lasioglossa EE. Smooth or pubescent.
F. Sepals oblong-lanceo. late, spreading.
3. gigantea
4. Schilleriana
5. lanipes
6. locusta
7. candida
8. costata
9. macrobulbon

FF. Sepals oblong-orate,
spreading or half-
spreading.
10. Skinneri
11. plana
12. tetragona
13. cruenta

DD. Middle lobe of the labellum spatulate.....................
DDD. Hiddle lobe orate-acumi-
nate $\ldots \ldots \ldots \ldots \ldots \ldots . .15$. Deppii
c. Se a pe pendulous, normally
several-fld. See Paphinia.

BB. Pollinia seated on 2 distinct
stipes. (Bifrenariu.) 16. Harrisoniæ 17. inodora

1. jugòsa, Nichols. (Colax jugòszs, Lindl.). Pseudobulbs $2-3$ in. Jong, with lanceolate-acuminate ivs. 6-9 in. in length, springing both from the apex and base: scape clothed with large bracts, and bearing $2-3$ fls., which are subglobose when fully expauded: sepals broadly oblong, obtuse, cream-colored to waxy white; petals ovate-oblong, obtuse, marked with black-purple, transverse bands; labellum smaller, velvety and covered with fleshy ridges: sido lobes longitudinally streaked, and middle lobe streaked and splashed with dark purple. Jan.-May. Brazil. B. M. 5661. Gn. 16, p. 77 and 49, p. 294. -Fls. persistent for many weeks.
2. lasioglossa, Reichb. f. Pseudobulbs 3 in. long, oroid, compressed: Ivs. 8-12 iu. long, elliptic-lanceolate: scape 1 -fld.: fls, 5 in. across; sepals spreading, narrowly oblong, dull brown or greenish brown; petals one-third as long, erect, concave, obtuse, golden yellow; labellum as long as the petals, llso golden yellow: lateral lobes short, obtuse; middle lobe oblong, covered with long, soft hairs; callus orate, notehed. Autumn and winter. Guatemala. B.M. 6251. - Very odd but not showy.
3. gigantèa, Lindl. Pseudobulbs ofted 6 in . bigh, bearing $2-3$ oblong-lanceolate lvs, $1 \frac{1}{2}-2 \mathrm{ft}$. long: scape 1-fld., somewhat shorter than the lvs.: sepals orate to lanceolate, 3 in . long, rather olive-green; petals somewhat smaller, lanceolate, spreading, of the same color ; labellum oblong-lanceolate: side lobes acute; middle lobe ovate, acuminate, serrate, rich maroon bordered with a narrow orange margin; erest fleshy, emarginate. The fl.-stems are said to attain a height of 2 ft ., with a single large flower. In most of the specimens in eult. the lip is abruptly rounded off. June-Aug.; Nov, Dec. Widely dispersed in Cent. Amer. B.M. 5616. B.R. $31: 34$.
4. Schilleriàna, Reichb. f. Plant resembling L. Skinneri in babit: pseudobulbs 2-lvd.: Ivs, elongate-lanceolate, up to 2 ft . long: scape 1 -fld., suberect, 8 in. long : sepals large, spreading. oblong-lanccolate, 4 in. long, brown: petals erect, with recurved tips, small, $1 \frac{1 / 2}{}$ in. long, white, speckled with brown on the back; labellum as long as the petals, white, speckled and tinged with rose: side lobes small; middle lobe ovatequadrate,
crenulate; callus tongue-shaped, concare. Often the parts of the flower are more or less spotted and hairy in places. July, Aug. Colombia. Gt. 1321.
5. lénipes, Lindl. Pseudobulbs large: lvs. lanceolate, $12-18 \mathrm{in}$. long: fls. solitary, as many as 15 on a plant, creamy white; sepals and petals oblong-lanceolate; labellum smooth: lateral lobes ovate-obtuse; middle lobe oblong, obtuse, serrate, with a concave, ribbed callus. Oct. Ecuador.-Liadley says the fls. are pale green, $21 / 2 \mathrm{in}$. loug before they expand, without a trace of any other color.
6. locusta, Reichb. f. Pseudobulbs pyiiform: lvs. oblong-ligulate, acute: fls, smaller than those of L. Deppii, all green except the white column; the odd sepal oblong, obtuse; the lateral ones linear-oblong, acute; petals bent down inside of the lateral sepal; labellum with acute side lobes and a semi-oblong, fleshy, convex middle lobe, all green; on the disk are 2 narrow keels, confluent behind into a fleshy emarginate callus. Peru.
7. cándida, Lindl. Pseudobulbs ovoid, much compressed: Ivs. oblong-acuminate: fls. about 2 in . across; sepals spreading, reflexed and acute at the apices, oblong, slightly woolly at base, yellowish green, sometimes dotted with light rose; petals whitish, revolute, obtuse; labellum white, with a few rose-colored spots: disk plate obtuse emarginate at the apex; columu bairy on the inner surface. Costa Rica. - Var. Lawrenceana, Hort. Sepals and petals tinted with rose, otherwise the fls. are like those of the type. Var, rubra has been offered.
8. costàta. Pseudobulbs oblong, compressed, 3-5 in.
loug: $1 \mathrm{ss}, 2-3$ at the apex, 6-10 in. loug, broadly oblong-lanceolate, acuminate: scape erect, as loog as the pseudobulb: fls. large, nearly white or creamy yellow; dorsal sepals oblong lanceolate, the lateral sepal similar but falcate, united with the column to form a blunt spur; petals smaller, somewhat undulate; lateral lobes of the labellum small, erect; middle lobe ovate - rotund, toothed. Peru. B.ML. 5706 (as L. Barringtoniw, var. grandiftora).
9. macrobúlbon, Lindl. Pseudobulbs very large, ovate, compressed, with several large, oblong, acute lvs.: scapes usually 2 from each pseudobulb, much shorter than the lrs.: fis. large, yellow; sepals ovate-obloug, spreading; petals shorter, some. what concare, with recurved tips; labellum oblong, as long as the petals, spotted on the disk with brown. Colombia. B. M1. 4298 (as Maxillaria maerobullon).
10. Skinneri, Lindl. Pseudobulbs oblong-ovate, 3-5 in. high, 1-2-Ivd.: lvs. oblong-lanceolate, $9-12 \mathrm{in}$. long: scapes $5-6 \mathrm{in}$. long, each bearimg a single waxy flower 5-6 in. in diam.: sepals ovate-oblong, white tinged with rose ; petals balf as long, broadly ovate, pointing forward with acute, reflexed tips, striated and tinged with dark rose; lateral lobes of the labellum erect truncate; middle lobe oblong-ovate, recursed, with a fleshy tongue-shaped callus on the disk, dark crimson-purple. The most useful of the genus. Spring. Guatemala. B.M. 4445 . P.31. 11:1 (Maxitlaria Skinneri). Gn. 25: 440:30, p. 374; 37:397. F. 1861:65 (var.). A.F. $4: 519$. J.H. I1I. $34: 367$. A.G. $14: 433$. - The following varieties are advertised:

Var. álba, Hort, A large-fld. white variety with a tinge of yellow at the base of the labellum and a yellow, tongue-shaped appendage in its throat. I.H. 27:405.

Gn. 25:440. F.MI. 1872:35. G.C. 111. 7:424. A.F. 6:631 Var, albo-sanguinea. No description. Var. cándida Hort. White. Var delicatissima, Hort. Fls. large, rose white; labellum white blotched with rose. Feb. Var. grandiflòra. No description. Var. purpurata, Hort. Sepals and petals rose-white; labellum crimson-purple. Var. rosea, Hort. A heautiful variety with deep rose fls. and a white labellum spotted with crimson. Var. supérba. Sepals and petals white; labellum crimson.
II. plàna, Lindl. A robust plant, with large ribbed pseudobulbs and ample pointed oral Ivs.: tls. 3-4 in. across; sepals oblong, plane, rich madder-red inside; petals smaller, with recurved tips, white, tipped with crimson; labellum smaller, white spotted with crimson; side lobes crenulate; middle lobe rounded, obtuse, serrate, crested. Winter. Boliria. B.R. 29:35. - Var. Measuresiàna, Williams. Sepals reddish brown, tipped with green; petals and labellum white spotted with bright rose, except on the margins of the petals. Autumn.
12. tetrágona, Lindl. Pseudobulbs ovate, tetragonal: lvs. solitary, ovate-lanceolate: scape 1-4-fld.: fls, greenish streaked with crimson; sepals and petals oblongovate, ratber obtuse, half-spreading, the 2 lower forming a blunt, projecting angle at base; labellum smaller, white and purple or green and purple, with a shovel. shaped appendage on the disk. Fls. not beautiful, but very fragrant, remaining fresh for two months. June. Brazil. B.M. 3146 and B.R. 17:1428 (both as Maxillaria tetragona).
13. cruénta, Lindl. Pseudobulbs compressed: Ivs. many, oblong, memhranaceous: scape bearing 1 yellow flower (rarely 2), much larger than those of L. aromatica:

1327. Lycaste aromatica ($\times 1-5$).

1328. Lycaste Harrisoniz, var. eburnea ($\times 1 / 2$).
sepals ovate, obtuse; petals similar, erect and smaller; labellum half as long as the sepals; lateral lobes rounded; middle lobe rounded-truncate, crisp on the margin, pubescent; crest small, tleshy. Like L. aromatica, but the Ivs. much broader, fls. larger, and the labellum of different shape and somewhat spotted with purple. Mar., Apr. Guatemala. B.R.28:13 (Maxillaria cruenta). Gn. 44:933 (Lycaste aromalica).
14. aromática, Lindl. Fig. 1327. Pseudobulbs ovate, compressed: lvs. many, sheathing, oblong-lanceolate: scape erect, 1 -fld., shorter than the lvs.: fls. yellow, $21 / 2$ in. across; sepals and petals ovate-oblong, acute; the latter smaller and pointing forward; lateral lohes of the labellum with narrow, projecting blades; middle lohe spatulate, dentate, recurved, and having a large truncate plate as a crest. Winter and spring. Mexico. B.R. 22:1871.-Floriferous.
15. Déppii, Lindl. Pseudobulbs ovate, elustered: Ivs. $3-4$, broadly elliptic-lanceolate, $1^{1 / 2}-2 \mathrm{ft}$. long: scape erect, bearing 1 or 2 fls. 4 in . in diameter: sepals oblong-lanceolate, dingy green, spotted with chocolatepurple ; petals smaller and cuculate, white; labellum bright yellow, with a few purple spots; lateral lohes small, rounded; middle lobe ovate-acuminate, recurved, waved, with a yellow callus. Vigorons and free-flowering. Aug, to May and June. B.M. 3395. L.B.C. 17:1612 (hoth as Maxillaria Deppii). P.M. 2:268 (Maxillaria Deppei), - Named after Deppe, but originally spelled Deppii. Var. punctatissima, Hort. Fls, much spotted with dark purple. Guatemala,
16. Harrisoniæ, G. Don. Some authors prefer to call this Bifrendria Harrisomie, Reichb. f. Pseudobulbs 3-4 in. high, 4-angled: Ivs. solitary, lanceolate: scape erect, 1-2-fd.: fls. 2-3 in., cream-colored; sepals spreading. oval, the 2 lower forming a kind of open spur at their united bases; petals oval, spreading; lateral lobes of lip rounded, crenate; middle lobe rounded-emarginate, crenate; all beautiful purple; inside tawny, with purple lines, and an orange callus. Spring. The fls. last a
long time. Brazil. B.R. 11:897. B.M. 2927. P.M. $2: 196$ (all as Maxillaria Harrisonue), Var, álba, Kränzlin. Sepals white, tinged with pink; petals pure white; labellum yellow, with purple veins; front of middle lobe white, with rose veins. Aromatic. Fls, last about three weeks. Gt. 38:1312. G.C. 11:25:437. Var. eburnea, Hert. Fig. 1328. Sepals and petals white; labellum white, richly streaked with carmine; throat yellow. April, May. Brazil. A.G. 12:407. Var. citrina, Hort. (L. citrina, Lindl.). Fls. large, fleshy; sepals and petals lemonyellow; lip white, stained with lilac. Brazil.
17. inodora, Lindl. (Bifrenùria inodòra, Lind!.). Pseudobulbs usually orate-oblong, 4 -angled, 3 in. high: 1vs, solitary, short-stalked, oblong-lanceolate, 1 ft . long and 4 in . wide: scape half as long as the pseutlobulb, bearing 1-2 large, spreading, brownish green fis. with red hairy lips: sepals roundish oblong, tinged with red, the lateral ones ending in a spur-like projection at base; petals ovate-acuminate, all recurved at the tip: middle lohe of the labellum roundish oblong, undulate, having an elevated process at the center. Resembles L. letragona, but its As. are not frragrant. Spring.

Since these descriptions were put in type, we learn that Lager \& Hurrell have in stock Lycaste fulvéscens, Hook. Following is a description from the "Orebid Grower's Mannal" (see also B.M, 4193): "Pseudobulbs large, broadly ovate, somewhat membraneous plicate lanceolate lesves two or more from their top, and handsome, tawny yellow flowers, on slender radical scapes. The towers bave lanceolate sepals $21 / 2 \mathrm{in}$, long, the lateral ones falcate, connate at the base inte a blont spur; the petals are similar, bnt slightly smaller; and the orange-colored lip is oblong, 3-lobed, with an emarginate appendage on the disk, and an ovate-obtnse front lebe, beautifully fringed at the margin with wavy hairs. Colombis."

Heinrich Hasselbring.
LYCHNIS (from the Greek word for lamp, in allusion to the tlame-colored fls, of some species). Caryophyl. ldcer. As commonly understood, Lychnis includes 30 to 40 small herbs of the temperate parts of the nortbern hemisphere. The technical generic cbaracters are so variable and unimportant, however, as to allow the genus to be thrown inte silene or to be broken up inte 7 or 8 distinct genera (for the latter, see Williams, Journ. Bot. 31:167), according to the point of view of the particular anthor. They are annuals, biennials or perennials, of easiest culture in ordinary garden soil. They are plantswhich like the sun. They are mostly erectgrowing, and the leaves are opposite and entire. The capsule usually has but one locule or compartment, and the seeds are horne on a central or axile placenta(Fig. 1329). The styles are usually 5 or rarely 4, in this differing from silene (in which the styles are 3), and the calyx teeth are commonly 5. In some species, the styles are 3 and the capsule is more than 1-loculed at base, but in these cases the habit of the plant and minor technical

1329. Capsule and seeds of Corn-cockle ($\times 11 / 2$). Showing axile placenta. charactersenable one to refer them to Lychnis rather than to Silene. The stamens are 10; and the petals 5 and usually with a 2 -cleft scale or a pair of teeth at the base of the blade. In the following synopsis of the garden kinds, little attempt is made to follow technical botanical divisions.

Some of the species of Lychnis are amongst the best known of old-fashioned flowers, as the Mnllein Pink, Maltese Cross and Ragged Robin. These are essentially flower-garden snbjects. Others, as L. alpina, are better known as border or rockwork plants. All species are easily grown from seeds, the biennials and perennials blooming the second year. The perennials are often propagated by dirision.

INDEX.

Agrostemma, 1, 5, elegans. 10. 6, 7. alba, 9 .
alpina, 4.
Chalcedonica, 2.
Coli-rosa, ? Coronaria, 5. coronata, 12. diojea, 8.
diurna, 8 .
fimbriata, 7 .
Flos-cueuli, 11. Flos-Jovis, 6. fulgens, 3, 12. Githago, 1. grandiflora, 12. Haageana, 13. ocnlats. 7 . plenissima, 11.
semperflorens, 11.
Kenuo, 14.
Sieboldii, 12.
silene, 7.
speciosa, 12.
splendens, 10.
Suecica, 4.
tomentosa, 5.
nespertina, 9.
Viscaria, $7,10$.
A. Calyx lobes long and leafy: petals not erowned.

1. Githàgo, Scop. (Agrostemma Githago, Linu.). Corn-cockle. Figs. 1329-30; also 825. An annual weed in wheat-fields, and difficult to eradicate because the seeds are not readily screened from the wheat in the thresher or fanning-mill: plant strict, $2-3 \mathrm{ft}$, tall, whitehairy: Irs. nearly linear: fls. long-peduncled, red-purple and showy, the obovate
 entire petal limbs exceeded by the narrow calyx lobes - these lobes falling when the frnit is ripe. Eu.-Rarely cult. in old gardens.
AA. Calyx lobes not prolonged and leafy: petals usually crouned.
B. Fls, 1 in. or less across, in dense, terminal cymes ar umbellate heads. (Forms of No. ${ }_{12}$ moy be sought here.)

2. Chalcedónica, Linn.

 Maltese Cross. Jerusalem Cross. Scarlet Lightnino. Fig. 1331. Perennial 2-3 ft. tall, usually loose-hairy, the stems simple or nearly so: lvs. oblong or cor-1330. Flower of the Corn-cuckle date-lanceolate, clasping (upper ones often narrow and tapering), shortpointed, hairy: fls. 1 in. long, with narrow upward-enlarging ribbed calyx and spreading, obcordate-notched limb. June. B.M. 257. - Probably Japanese, but long in cult., and one of the best of all old-fashioned flowers. The fls, are usually brick-red to scarlet, hut there are varieties with rosecolored, flesh-colored and white blossoms; also with double fls. The arrangement of the petal-limbs suggests the Maltese cross, hence one of the common names. Rarely persists for a time as a weed.
1331. fulgens, Fischer (not Hort.). An erect-stemmed perennial, hairy: Ivs. ovate to ovate-oblong, roughish, tapering below but scarcely petioled; fls. few, in a rather dense terminal cluster, bright scarlet, each petal divided into two broad lobes, on the outer side of which are two other and very narrow lobes, the ends of the main lobes slightly toothed; calyx oblong or ovate, 10 -ribbed, with erect teeth. Siberia, China, Japan. B.M. 2104. B.R. 6:478. - Perhaps not in cultivation in this country. The plant that passes under this name is probably a form of I. coronata. From L. Chalcedonica it is distinguished by lower stature, much larger fls., and the well-marked side teeth or lobes on the petals.
1332. alpina, Linn. Glabrous, tufted, a ft, or less talllrs, mostly at the base, thickish, Iinear or oblong : fls. pink, with 2 -lobed petals (segments linear), and short,
broad calyx with red teeth. N. Asia., Eu., and Amer. B.M. 394. L.B.C. 9:881 (as L. Suecica).-An attractive alpine.
BB. Fls, maslly larger, borne singly or in loone clusters, or at least the clusters not all terminal.
c. Plant white-roolly throwghout.
1333. Coronària, Desv. (Agrostémma Coronària, Linn. Corondria tomentosa, A. Br.). Mellein Pink. DU'sty Millef. Rose Campion. Fig. 1332. Biennial or perennial, $1-21 / 2 \mathrm{ft}$. tall, forking towards the top: lrs, oblong, oblongoval or oblong-spatulate, the lower ones obtuse or nearly so, tapering to a more or less clasping base: fls. large ($11 / 2$ in. across), circular in outline, crimson or rose-crimson, horne singly on the ends of the branches; petals with appendages at the throat; calyx with filiform teeth. Eu. and Asia. B. M. 24,-A common plant of old gardens, and sometimes escaped. The glowing fls, and white foliage make it a conspicnous plant. A hybrid of this and L. Flos-Jovis is figured in G.C. III. 2, p. 101.
1334. Flós-Jòvis, Desv. Perennial, $12-18$ in., making a clump: Ivs, in a rosette, also cauline, oval-lanceolate, more

1335. Lychnis Chalcedonica,
($\times 1 / \mathrm{a}$.) or less clasping: fls. small ($1 / 2 \mathrm{in}$, or lesa across), brigbt red or rose, in a rather dense, umbel-like cluster. Eu. B.M. 398 (as Agrostemma Flos-Jovis).-Hardy perennial, rarely seen in old gardens.

cc. Plant not white-woolly, green.

D. Petals 2-notched or 8-cleft. (Forms of No. 12 may be sought here.)
E. Aunuals.
7. Cœèli-ròsa, Desv. Rose of Heaven. Fig, 1333. A very floriferous annual, $12-18$ in., glabrons: Ivs. linear, long-acuminate and very sharp-pointed: fls, on slender

1332. Lychnis Coronaria.
stems, about an inch across, the petals only slightly notched, rose-red, with a linear bifid scale at the throat; calyx club-shaped. Mediterranean region. B.M. 295 (as

LYCHNIS
Agrostemma Cipli-rosa).-A popnlar garden annual, loving the sun. There is a white-fld. form; also var. fimbriata, Hort., with toothed petals. The species is known also as Silene Creli-rosa. For an account of the leading garden forms, see Rehder, M.D.G. 1897, p. 346.

Var. oculàta (L. oculìta,

1333. Lychnis Cceli-rosa. Natural size. Backh. Viscaria oculata, Liudl.), is a handsome form with purple-eyed fls. B.R. 29:53. B.M. 4075.

EE. Biennials and perennials.
8. diòica,Linn. (L.diurna, Sibth.). Ren or Mornino Campion. Coarse, hairy and usually somewhat viscid, $1-$ 2 ft . tall, forking above: lrs. ovate-lanceolate or obloug, the cauline ones broadbased or clasping: fls, normally red (varying to pink and white), in loose, elongating or forking clusters (or at first single on the ends of the branches), opening in the morning, not fragrant, more or less dicecious: calyx oblong, reddish, not exceeding $1 / 2$ in. in leugth: fr. or capsule large and globose, wide-mouthed, the teeth recurved. Eu. and Asia. Frequent in old gardens, and also run wild in waste grounds in the eastern states. There are doublefld. forms.
9. álba, Mill. (L. vespertina, Sibth.). White or Evenino Campion. Very like the last, and perbaps not specifically distinct, but more viscid: lys, longer: fls. usually white and fragraut and opening at evening; calyx longer and green: capsule orate to conical, with teeth erect or spreading, not recurved. May, June. Eu. - In old gardens and also escaped. There is a double-fld. form. This and the last are easily grown perennials or bieunials.
10. Viscària, Linn. GERman Catchfly. Interesting bardy perennial, $6-20 \mathrm{in}$. high, glabrous, but with viscid patches beneath the fl.-elusters: lvs. long-linear, the lower ones tapering towards the base: fls, not large, red, in opposite sbortstalked clusters, which form an interrupted glomerate panicle; calyx 3/in. long, reddish, usually somewhat swollen above the middle, with short teeth. Eu., N. Asia. G.C. III. 20:122. - Sometimes seen in old gardens, aud a useful plant with a tufted habit; a most profuse bloomer in sunuy places. There are forms with deep red and white fls.; also double-fld. Tar. splendens, Hort., has rose-piuk fls. Var. élegans. Hort., bas scarlet and white-striped fls.

DD. Petals 4 -lobed or parted.
I1. Flós-cùculi, Linn. Ragged Robin. Cuckoo Flower (whence the Latin name). Perennial, slender, $1-2 \mathrm{ft}$, tall, slightly roughened, and glandular above: root-lvs. oblanceolate; stem-lys. lance-linear to linear and rather small: fls, in a loose, cymose-paniculate cluster, red or pink, the petals eut into 4 linear segments; calyx short-oblong, 10 -ribhed. Eu., N. Asia. -

LYCLUM

Common in old gardens and also naturalized in parts of the eastern country. The donble form (red or white) is prized for its close-packed, fimbriate fls. An old-time and deserving favorite, blooming profusely and for most of the season. Hardy.

Var. plenissima, Hort. (L. plenissima semperflèrens, Hort.), is an excellent very double form, blooming from spring till fall, and also forcing well.
nDD. Petals several-toothed or fimbriate, but not lobed.
12. coronàta, Thunb. (1. grandiflora, Jacq.). Perennial, or often biennial under cultivation, erect, glabrous: Irs. oval-elliptic aud acnte, the cauline ones sessile or nearly so: fls, very large (nearly or quite 2 in. across), the wide-spreading petals sharply several-tootbed or somewhat laciniate, brick-red or cinnabar, scattered or in an open panicle. China, Japan. B.M. 223. L.B.C. 15:1433. F.s. 10:979.-Half-hardy or tender pereunial, growing $1-1$ fat, bigh, mostly a spring and summer bloomer. Of this handsome plant there are various forms, and to at least some of them, the name L. futgens is frequently applied.

Var. speciòsa (L. speciòsa, Carr. L. fúlgens, var. speciosa, Voss). Usually not so tall, very bushy: Ivs. narrower and sharper: fls. very large and redder (usually scarlet), the petals less toothed and indistinctly 2 notched. R.H. 1870-I :530.

Var. Sieboldii (L. Sièboldii, Van Houtte. L. fülgens, var. Sieboldii, Hort.). Fls, large and pure white, with lacerate and obscurely 2 -notched petals.
13. Haageàna, Lem. Hybrid of L. fulgens and L. coronata, and a good intermediate, the fls, being large, with 2 -notched petals and 2 short side teeth or lobes and dentate ends to the large lobes. It is a hardy or half-hardy perennial, 12 in . or less high, in summer producing large clusters of orange-red, scarlet or crimson fls., which are nearly 2 in. across. Very desirable. J.H. 6:195. F.S. $22: 232.2$.

I4. Sénno, Sieb. \& Zucc. Erect-growing, villous perenuial, with sessile, ovate or lance-orate Irs. and 1-3 large fls. at the euds of the branches, deep carmine for in some forms with striped fls.), the petals deeply cut into several divisions which are again toothed at the ends. Japan. - Little known in this country.
L. H. B.

LYCIUM (Greek, Lykion, a name given to a Rhamnus from Lycia, transferred by Linnaus to this genus). Solandcew, Matrimony Vine. Box Thorn. Ormamental deciduous or evergreen shrubs, with usually spiny and

1334. Old-time garden Tomato, Lycopersicum esculentum. (See p. 958.)
often slender and sarmentose stems and with alternate or fascicled, short-petioled, entire Ivs.; the whitish violet or purple fis, are funnelform aud appear in axillary clusters or solitary, and are followed by usually very decorative berries of scarlet or red, rarely yellow or black. Most of the species are tender, but L. halimifolium, L. Chinense, and also L.Turcomanicum and L. Ruthenicum are bardy North. The two first named are especially attractive in fall, when the long and slender branches are loaded with searlet or bright red frs., which contrast well with the green foliage. The leaves remain fresh and unchanged in color until they drop, after severe frost. The species are well adapted for covering walls, fences, arbors and other trellis work, but are, perhaps, most beautiful when the branches are pendent from rocks or from the top of walls. They are also used sometimes for hedges, and for warmer regions especially L. Afrum may be recommended. It is much used in S. Africa for this purpose under th \ni name of Caffir Thorn. The Box Thorns grow in almost any soil that is not too moist. They should not be planted near flower beds or similar places, where the suckers are apt to become troublesome. Prop. readily by hardwood cuttings or suckers; also by layers and seeds. About 70 species distributed through the temperate and subtropical regions of both hemispheres. Lvs. mostly rather small, often fleshy: fls. axillary, solitary or clustered; calyx campanulate, 3 -5-toothed; corolla funnelform, with usnally 5 -lobed limb; stamens mostly 5: fr. a berry, with few to many seeds.
A. Lvs. rather large: corolla 5-lobed, dull purplish.
halimifolium, Mill. (L. vulgàre, Dun. L. flúccidum, Koch). Shrub, with long and slender, spiny or unarmed branches, recurving or sarmentose, glabrous: lvs. cuneate, narrow, oblong-lanceolate, acute or obtuse, grayish green, $11 / 2-2$ in. long: fis. 1-1, long-pedicelled; corolla $1 / 2 \mathrm{in}$. across, limb about as long as tube; filaments hirsute at the base: fr, oval, orange-red or sometimes yellow, to $1 / 2 \mathrm{in}$. long. May-Sept. China to S. E. Eu. Gn.3], p. 334 and 34, p. 63. B.B. 3:138. - This species and also the following are often confounded with L. Europieum and L. Barbarum, which are chiefly distinguished by the filaments being glabrous at the base, by the longer tube and by the narrower and smaller lvs. They are not

1335. Upright Tomato, Lycopersicum esculentum, var. validum.
hardy North and are rare in cultivation, while L. halimifolium and the following are hardy.

Chinénse, Mill. Similar to the former, of more vigorous growth: branches to 12 ft . long: Ivs. ovate to lanceolate, bright green, $11 / 2-3$ in.: fls. somewhat larger: fr. scarlet or bright orange-red, ovate to oblong, sometimes almost I in. long. June-Sept. China. G.F. 4:102. - The larger fruited form is sometimes distinguished as var. megistocarpum, Hort. (var. mucrocírpum, Hort).
AA. Lrs. small, 34
in. long or shorter.
Chilense, Bert Shrub, with slender, often procumbent and mostly spineless branches: lvs. cuneate at base, oblong, glandular - pubescent on both sides, grayish green, $1 / 3-3 / 4 \mathrm{in}$. long: Als. usually solitary; pedicels longer than the 5 -lobed, whitish pubescent calyx; corolla about $1 / 3$ in. long, pubescent and yellowish outside, limb 5 -lobed, purplish within, about as long as tube: fr. orangered. July-Oct. Chile -The grayish color and glandular puhescence gives the foliage a frosted appearance. Int. 1900 by Franceschi, Santa Barbara, Calif.

1336. Leaves of Tomatoes. 1, Lycopersicum esculentum, var. grandifolium.
2, var. vulgare; 3 , cross of the two,

Richii, Gray. Shrub, with slender spiny branches: Ivs. sbort-petioled, cuneate, obovate, obtuse, glabrous or minutely puberulous when young, about $1 / 2 \mathrm{in}$. long: fls, usually $2-3$; calyx as long as pedicels, with elongated teeth; corolla $1 / 2 \mathrm{in}$. long, tube longer than 4 -lobed limb: fr. globular, bright red, $1 / 4 \mathrm{in}$. across. May-Sept. S.Calif.
horridum, Thunb. Erect, spiny, much-branched shrub, to 3 ft., glabrous: lvs. sessile, spatulate, glabrous, about $1 / 4 \mathrm{in}$. long : fls, sbort-pedicelled, small, whitish, with rather slender tube and 3 -4-lobed limb. S. Afr.As I have seen no specimens of the plant in trade under this name, I am not sure whether it is the true L. horridum of Thunberg described above, or perhaps L. Afrum, which is much used in S. Africa for hedges; the latter is easily distinguished by its large purple fis.
L. Írum, Linn. Cpright, rigid, spiny: Ivs. linear-spatulate, small: fls. solitary, tubular, with short limb, purple, 1 in. long. N. and S.Afr. B.R. 5:354. S.B.F.G. 11. 4:324,-L. Barbarum, Linn. Spiny or nuarmed slender shrub. Similar to L. halimifolium: fis. 3-6; tube inside and filaments at base glabrous, tube longer thav limb. N. Afr.- L. Europceum, Linn. (L, Mediterraneum, Dun.). Spiny shrub, with spreading branches: Jrs. spatulate, thickish: fls, short-pedicelled, with the slender tube much longer than limb. Mediter, region- - L. fuehsioides, HBK. $=$ Lochroma fuchsioides. $-L$. ovátum, Dun. (L. rhombifolinm, Dipp.). Allied to L. Chinense, Lus rhombic-ovate: fr. oblong. large, with concave apex. - L, pallidum, Miers. Spiny spreading shrub, to 3 ft .: lvs. spatulate, glaucous, $1-2 \mathrm{in}$. long: fis, pedicelled, pale greenish purple, funnelform, almost 1 in. long: fr . globular, bright red. Ariz. and Utab to Mexico. G.F. 1:341. Has proved liardy in the Arnold Arboretum.- L. Ruthenicum, Murr. Upright spiny shrub: lvs. linear, small, thick: Als. small, with rather long tube: fr. globnlar, black. - L. Turcomanicum. Turcz. Slender spiny shrub, allied to L. halimifolium: Ivs. and fls, smaller, tuhe more slender and longer: fr. globular. Turkestan, N. China.- L. subglobosum, Dun. Allied to L. halimifolium, dwarfer, more erect, less spiny: Ivs, smaller: fr, subglobose, small. S. Europe. Alfred Rehder.

LYCOPERSICUM (wolf peach; probably an allusion to its inferiority as compared with the peach). Solanacea. Tomato. Perhaps nearly a dozen herbs of the western side of S. America, two of which are in common cultiva-

LYCOPODIUM

(in red and yellow), which are often 2-loculed: plant less large and dense-foliaged, the lvs. smaller, grayer: growth more erect.- Probably a very close approach to the wild plant. Fruits used for pickles and conserves.

Var. pyrifórme, Hort. (L. pyrifórme, Dunal). Pear and Plum Tomato. Differs from the last only in having pear-shaped or oblong fruits. Probably occurs wild in very nearly the form seen in old gardens.

Var. válidum, Bailey. Upright Tomato. Fig. 1335. A remarkable cultural form, of low, stiff, erect grow th, and small, condensed, curled Ivs.Originated as a chance seedling in France about 50 years ago. Looks like a potato plant.
Var.grandifolium, Bailey, Larae-leay Tomato. Lvs, very large, plane, the 1 fts . few (about 2 pairs) and large, with margins entire or very nearly so, and secondary lfts. nsually none.-Of seedling origin about 30 years ago. The Mikado and Potato Leaf are the leading varieties at present. In very young plants, the leaves are nsually entire. This race has produced crosses of commercial value with var, vulgare. In Fig. 1336, No. 2 is a leaf of var. vulgare, No. 1 is var. grandifolium, and No. 3 is a leaf of a band-made eross between the two.
pimpinellifòlium, Dunal (L. racemígerum and racemifórme, Lange. Solanum racemiflòrum, Vilm.,not Dunal). Clrrant Tomato. Fig. 1337. Plant weaker, very diffuse and twiggy, scarcely pubescent ; lvs. with small, ovate, nearly entire lfts., and very small secondary lfts.: racemes elongating, distichous, bearing $10-10$ small, currant-like, red berries. S. Amer.-Grown as a curiosity and for ornament. The plant makes an excellent summer cover for brush or rubbish piles. The fruits are edible, but are too small for domestic use. However, it has been introduced as a garden regetable under the name of German Raisin Tomato. It hybridizes with L. esculentum (see Fig. 1338).

The other species of Lycopersicum are unknown in cult. Some of them are very like aboriginal forms of L. esculentum, and it is doubtful whether they are sufficiently distinct to be worth keeping as species. Pictures of other Lycopersicums will be found in Essay 4, "Sursival of the Unlike."
L. H. B.

LYCOPODIUM (Greek. wolf-foot). Lycopodiàcera. Club-moss. Ground-pine. Running-pine. A genus of fern allies, with erect or trailing stems, narrow lvs., arranged in 4 to many ranks, and bearing spores in sporangia, located either in the axils of ordinary lvs. (Fig. 1339) or in the axils of modified lvs, clnstered in spikes (Fig. 1340). About 100 species are known. Commonly used for holiday decorations. The spores of some species form the officinal Lycoporlium powder. The plants which florists grow as Lycopodiums are Selaginellas (which see).

A. Les. many-ranked.

B. Sporangia in the axils of unaltered les.

Selàgo, Linn. Stems erect, 3-9 in. long, dichotomously branched: lvs, axeending, bollow at base, glossy green, not reflexed. Northern hemisphere, usually in bigh altitudes.
lucldulum, Michx., is more common in lowlands, and has lrs , wide in the middle and erose.
squarròsum, Forst. Stems pendulous, 1-2 ft. long, 2-3 times dichotomously branched: lvs. firm, dark green, spreading, $1 / 2-3 / 4 \mathrm{in}$. long: sporangia in the axils of reduced lrs., forming a spike. East lndies.

BB. Sporangia aggregated in terminal spikes. c. Stems pendulous: lrs. acute.

Phlegmảria, Linn. Stems $1 / 2-2 \mathrm{ft}$. long, dichotomously forked: Irs. $1 / 2-3 / 4 \mathrm{in}$. long, ovate: spikes copious, lax, 3-6 in. or more long. Tropics of Old World.

cc. Stems erect, tree-form.

cérnuum, Linn. Stems erect, reaching $3-\frac{1}{\mathrm{ft}}$., copiously branched: Ivs. crowded, linear: spikes sessile, $1 / 4-3 / 4 \mathrm{n}$. long, curved downward. Tropies of both hemispheres, occasionally in our gulf states.
ohscùrum, Linn. (L. dendroideum, Michx. L. Japónicum, Tbunb.). Stems 6-12 in. high, much-branched: lvs. loose, erect: spikes erect, $1 / 2-11 / 2 \mathrm{in}$. long. Temperate N. Amer, to Japan.-The common Ground Pine.

1338. Lycopersicum esculenturn beneath; L. pimpinellifolium at top: hybrid between.
coc. Stems (main ones) wide-trailing, with erect branches.
annótinum, Linn. Stems trailing, often several feet long, with numerous ascending branches 6-8 in. high, which bear sessile, solitary spikes. Arctic and north temperate zones of both hemispheres.
clavàtum, Linn. Main stem trailing to the length of several feet, usually much branched: spikes $1-4$ on an elongated peduncle. Arctic and north temperate regions of both hemispheres.-The common Club-Moss.

AA. Les. s-ranked, on fan-like branches.
complanàtum, Linn. Fig. 1340. Stems trailing on the surface of the ground: branches spreading out in a horizontal plane: lvs. of the under side of stems reduced to slender, spreading, cuspidate apices: first and second forks of peduncles approximate. Northern hemi-sphere.-L. Chamocyparissus, R. Br., is an allied species, with stems growing underground.

L. M. Underwood.

LYCORIS (named after a nereid in Greek mythology). Amarylliddace. A genus of 5 species of remarkable bulbs from China and Japan, with large, 6-parted flowers. Four species are in cultivation, two of which are bardy in New England. Two bloom in summer and two in early autumn. Two have red fls., one has lilac or purple fls., one yellow or orange. Three have the perianth segments more or less recurved and fluted or crisped at the margin. In all cases the fls, appear without foliage, being borne on a scape $1-3 \mathrm{ft}$. long, in um-
bels of 4-12 fls, each 3- 4 in . across. The white filaments and yellow anthers are conspicuous features. The leaves make their growth, die down, and after a long rest the bulbs send up flower-stalks alone. These plants are highly esteemed in China and Japan, and bulbs are constantly being sent to the western world, but with us they seem to be wayward and uncertain, particularly as to the time of blooming. Lycoris aurea reverses the cnstom of nature. It rests in the wet season aud flowers in the dry season. How the bulbs can remain dormant during the early; Chinese summer, with the thermometer at 85° in the shade and a yearly rainfall of 100 incbes, is a mystery. Botanically this genus is placed next to Hippeastrum, an American genus, in which the seeds are numerous in a locule, and usually flat, while in Lycoris they are few in a locule and turgid. Horticulturally Lycoris is most nearly comparable to Nerine, but the seeds of the former are black and of the latter green. Baker, Handbook of the Amaryllideæ, 1888.
A. Blooming in July and August.

B. Fls. dull red.

sanguinea, Maxim. Bulb ovoid, 1 in . in diam.; neck 1-2 in. long: lvs, linear: stamens shorter than the perianth segments. Japan. - The only species with segments neither wavy nor reflexed. Baker says the fls, are bright red. The Yokohoma Nursery Co. is prohably mistaken in giving the blooming period as May and June. They also advertise var. alba. J. N. Gerard says the lrs. of this and the next appear in March; also that the fls. of L. sanguinea are dull brownish red.

> BB. Fls. rosy lilac.
squamigera, Maxim. (Amarýllis Hállii, Hort., at least in part). Fig. 1341. Bulb globose: lvs. produced in spring, 9-12 lines wide: fls. rosy lilac, banded yellow. Japan. B.M. 7547. G.C. 11I. 21:137. G.F. 3:177.-The only fragrant kind. Var. purpurea, Hort., introduced about 1898. This species is hardy in New England.

AA. Blooming from Sept.-Nov.
B. F'ls. orange-colored.
aürea, Herb. (Nerine aìrea, Bury). Golden Spider Lily. Bulb2in. in diam.: lvs, swordshaped, 6-9 lines wide, glaucous, produced in

1339. Lycopodium lucidulum.
Common in cool woods. Sporangia in the axils of foliage leaves.

1340. Lycopodium complanatum.
Denizen of dry banks. Sporangia in spikes.

May. China. B.M. 409 and B.R. 8:611 (as A maryllis aurea). G.C. I11, 17:263 and 18:545. (in. 47:997. - Baker says it blooms in Aug. and has bright yellow fls., but all the colored plates show orange-colored fls.

BB. Fts. bright red.

radiàta, Herb. (Verine Japónica, Miq.). Bulb globose, $11 / 2$ in. diam.; neek short: Irs, produced in winter, linear: stamens much longer than the perianth segments. China and Japan. B.R. 7:596 (as Amaryllis radiata). A.G. 13:211.-The perianth segments are more recurved than in any other species. The tube is rery short, while in all the other kinds here described it is $1 / 2 \mathrm{in}$. long.
W. M.

Lyeoris aurea has been cultivated for many years in American gardens, though it is not a common plant. Lately, with large importations of L. radiata, the interest in the genus has widened. These species have the handsomer flowers, and are prefersbly cultivated under glass, though the bulbs are probably hardy in warm, protected borders; at least they have more than once

LYON, THEODATUS TIMOTHY (Plate X), pomologist, was born in Lima, N. Y., January 13, 1813, and died in South Haven, Mich., Febrnary 6, 1900. He was the son of a farmer. His school going was very limited. In 18:8, his parents went to the territory of Michigan, where he was employed in many pioneer pursuits, as farming, lumber-making, post-boy, tanner, merchant. He became more and more interested in farming, and in 1844 started a nursery on the farm at Plymouth, Mich. He collected varieties from the local orchards, and found their names much confused. His interest was cballenged, and gradually he became absorbed in a study of pomology, which in that day meant mostly knowledge of varieties. Articles on the varieties of Michigan apples in the "Michigan Farmer" attracted the attention of Charles Downing, and a correspondence and exchange of varieties resulted. His name appears in the list of correspondents in the revised editions of Downing's "Fruits and Fruit Trees." For some years, Mr. Lyon was president of a railway company. 1 n 1874 , be moved to the "fruit belt" of southwestern Michigan, where be became president of the Michigan Lake Shore Nursery Association, and where helived until his death. The nursery association was not successful financially. In 1888 , Mr. Lyon wrote a full (412 pp .) and careful "History of Michigan Horticulture," which was published in the seventeenth report of the State Horticultural Society, a society of which he was president from 1876 to 1891, and honorary president until his death. In 1889, he took charge of the South Haven sub-station of the Michigan Experiment Station; and here, with his fruits and trees, he lived quietly and happily to the last.

Mr. Lyon was one of the last of the older generation of pomologists. Like his colleagues, be was an expert on varieties. He was one of that sacred company which placed accuracy and cautiousness before every consideration of ambition or personal gain. His friends knew that he had not the temper of a commercial man. At one time it was said of him that he was the most critical and accurate of American pomologists. The fruit lists of the Michigan Horticultural Society, his labors in revision of nomenclature for the American Pomological Society, and his various bulletins of the Michigan Experiment Station, show his keen judgment of varieties. Personally, he was retired, modest, cautious iv speech, geverous, simple in habit and manner.
L. H. B.

LYONIA (after John Lyon, who introduced many American plants into England, died before 1818 in Asheville, N. C.). Syn., Xolisma. Ericicea. Ornamental evergreen or deciduous shrubs, with alternate shortpetioled lrs., and small white fls. in clusters, usually forming terminal racemes or panicles. Only the deciduous L. Iigustrina is hardy North, but is less desirable than other bardy species of allied genera. It prefers moist, peaty soil, while the evergreen tender I. ferruginea thrives best in a sandy, well-drained soil. Cult. and prop. like Lencothoë and Pieris. Ahout 10 species in E. N. Amer.. W. Indies and Mexico. Allied to Pieris and often included under Andromeda. Calyx lobes 4-5, valvate; corolla globular or urceolate, pubescent; stamens 8-10: capsules 4-5-valved, with ribs at the sutures; seeds numerous.
ligustrina, Muhl. (Andrómeda paniculàta. Ait. L. paniculàta, Nutt.). Deciduous, much-branched shrub, to 10 ft .: lvs, obovate to oblong-lanceolate, entire or obscurely serrate, pubescent beneath, 1-2 in. long: fls . in leafless racemes, forming terminal panicles; corolla globose, whitish, one-sixth in. long. May-July. Canada to Fla., west to Tenn. and Ark. B.B. 2:570.
ferruginea, Nutt. (Andrómeda ferruginea, Walt.). Evergreen shrub or small tree: 1vs. cuneate, obovate to oblong, with revolute margin, scurfy when unfolding, especially below, 1-2 in. long: fls, nodding, globular, white, in clusters in the axils of the upper Irs. Feb., March. S. C. to Fla. S.S. 5:234. L.B.C. 5:430.-Handsome evergreen shrub, but rarely cult., hardy only south. Var. arboréscens, Michx. (Andrómeda rggida, Pursh). Of vigorous growth, more rigid and with crowded lvs., growing into a small tree. Var. fruticoss, Michx. (A, rhomboiddlis, Nouv. Duh.). Shrubby: Ivs. sparser, conspicuously reticulated. Alfred Rehder.

LYONOTHÁMNUS (Lyon's shrub; named for W. S. Lyon, who seut specimeus to Asa Gray from Sauta Catalina 1sland, California). Saxifragdcea. A monotypic genus confined to the islands of the Santa Barbara channel, and represented by two forms, - L. floribundus as described by Gray, and L. asplenifotius as described by Greene. These forms differ only in the structure of the lrs., as the species is dimorpbic. Locally the tree is known as ironwood. It is rather plentiful in Santa Cruz lsland, attaining 40 and 50 ft . in height. It is less frequent and more dwarfed in other islands of the group.

Fls. hermaphrodite; calyx 1-3-bracteoled; tuhe bemispherical; lobes 5; disk lanate; petals 5, orbiculate, imbricate in the bud; stamens 15 , inserted with the petals on the margin of the disk: carpels 2 , free: orules 4: stigma subcapitate.
florihundus, Gray. Lvs, opposite, lanceolate, petiolate, subentire, oleander-shaped: tls. white, rery numerous in a large, flattish, terminal cyme. - Highly praised for outdoor culture and for pots. The clusters are $4-5 \mathrm{in}$. across. The form asplenifolius bas pinnate lvs. with pinne cut to the rib.
F. Franceschi.

LYSICHITUM (Greek, a loose or free cloak; probably referring to the spathe). Also written Lysichiton. Aràcece. A genus of one species, a plant resembling the skunk cabbage, offered in 1892 by Oregon dealers. Nearly stemless swamp herb with large lvs. from a thick, borizontal rootstock; spathe sheathing at base, with a broad colored lamina or none, at first enveloping the cylindrical spadix, which becomes long-exserted upon a stout peduncle: fls, perfect, crowding and covering the spadix; perianth 4 -lobed; stamens 4 : ovary 2-celled, 2 -ovuled: orules horizontal, orthotropous.

Camtschatcénse, Schott. Lrs. 1-21/2 ft. long, 3-10 in. wide, oblong-lanceolate. May, June. E. Siberia, Japan, Ore., Calif.

LYSILOMA is a small leguminous genns allied to Acacia, but not in cultication. They are tender trees and shrubs, with flowers in heads or in cylindrical spikes. The pods are straight and flat, and the ralses open away from the persistent sutures. Some of these plants are often called Acacias. Thus A. Acapulcensis $=L$. Acapulcensis, Benth.; A. divaricata $=L$. Schiedeana, Benth.; A. latisiliqua =L. latisiliqua, Benth.

LYSIMACHIA (probably after King Lysimachus). Primnliceor. Loose-strife. Found in temperate and subtropical regions of all parts of the world. Erect or creeping leaty berbs, with opposite or whorled, entire, usually black-punctate lrs., spicate, racemose or solitary fls., a rotate, 5 -parted corolla with an equal number of slightly monadelphous stamens opposite the lobes, a 1-loculed capsule, and many seeds on a central placenta. Only a few in cultivation, and these all perennials. Tbey differ from related genera in the absence of staminodia between the stamens, which are usually slightly united.

> A. Flowers yellow.

B. Stem creeping: lus, round-ovate, obtuse.

Nummulària, Linn. Money-wort. Creeping Charlie. Creeping Jenny. Glabrous, forming large patcbes: Ivs. opposite, rarely cordate. petiolate, $1 / 2-1 \mathrm{in}$. long: tis. $8-12$ lines broad; sepals cordate or lanceolate, acute, half as long as the 5 oval, sparingly dark-dotted corolla lobes; filaments glandular. June-Aug. Europe; also natural ized extensively in the eastern U. S. R.H. 1891, p. 303. B.B. 2:589. - Very useful for rustic rases and baskets, also for carpeting ground in shady places. Var. aùrea, Hort. Less. all or in part bright vellow.

BB. Stem erect: les. lanceolate, acute.
\therefore Plant glabrous or nearly so: Its. 3-6 lines broad.
stricta, Soland. Simple or branched, glabrons, 8 in. to 2 ft . high; Ivs. opposite, lance-linear, acute at both ends, glaucous beneath, scarcely veiny, 1-3 in long: fls. 3-5 lines broad, very numerous, in a distinct, elongated, termiual raceme; pedicels 3-9 lines long, slender; corolla lobes elliptical, streaked with purple; flaments
glandular. Common on moist ground in the eastern U.S. B.M. 104 (as L. bulbifera). D. 141. B.B. 2:568.Often bears bulblets in the leaf-axils after towering.
quadrifollia, Linn. Usually simple, sometimes slightly pubescent, $1-3 \mathrm{ft}$. bigh: lvs. verticillate, in 3 's-4's, rarely some opposite, lanceolate, oblong or ovate, acute, 1-4 in. long, green beneath, veiny: fls, axillary, $3-6$ lines broad, on very slender pedicels, which are $1 / 2-11 / 2$ in. long: calyx and corolla as in the last. Dry soil, eastern U.S. D. 139. B.B. $2: 588$
cc. Plant densely pubescent: fls. 9-12 lines broad.
vulgàris, Linn. Common Yellow Loosestrife. Tall and erect, $2-3 \mathrm{ft}$. high, and stout; branched above, downy, especially on the stem: Irs.verticillate, in 3 's-4's, ovate-

1342. Lythrum Salicaria $(X 1 / 3)$. (See p. 962.)
lanceolate or lance-oval, acute at both ends, nearly sessile: fls. in the upper axils, or densely paniculate at the summit; calyx often red-margined; corolla large, the lohes broad, glabrous. Europe, Asia. R. H. 1891, p. 303. - Quite showy when grown in clumps.
punctata, Linn. (L. verficillàta, Bieb.). Tall and stout: lvs, verticillate, in 4's, lanceolate, ovate or cor-date-ovate, acute, subsessile: corolla lobes oval. denticulate, glandular-ciliate, acute; stamens united. Very similar to L. vulgaris, but differs in the ealyx lobes not red-margined: fls, in axillary, equidistant whorls, not paniculate, and cocolla glandular. Eu. W. Asia. B.M. 2295 (as L. verticillaris).

AA. Flowers white.

elethroldes, Duhy. Tall and stout, 3 ft . high or less, sparingly puhescent, rarely glabrous: lvs. opposite, large, 3-6 in. long, and sessile, broadly lanceolate, attenuate at each end, radical spatulate: fls. $1 / 2$ in. in diaw., in a very long, slender, terminal 1 -sided spike, pedicels short, bracts subulate; corolla lobes ovate-lanceolate, obtuse; stamens not monadelphous. Japan. Mn. 8, p. 14]. -Fine for cut-flowers, also for horder.
L. baryistachys, Bunge (L. brachystachys. Carr.). Lvs. IanceoIate: H1s, white, dense. China. R.H. 1881-90.-L. ciliata, Linn, $=$ Steironema ciliatum.-L, Ephémerum, Linn. Lvs. linear: fls. white, dark eye. Eu. R.H. 1891, p. 303. B. M. 2346.- L. hỳbrida, Mite, dark eye. Eu, R.H. Se91, p.sos. B.M. Sanceolata, Walt. = Michx. = Steironema lanceoratum, L, Lanceotat, Lis, lanceoIate: fls, carmine. India, R.H. 1891, p. 303.-L nùtans, Nees. Lvs . lanceolate: fis, dark purple. Cape of Good Hope. B. p1. 4941.-L paridifórmis. Franch. Lvs oval: fls, yellow, axillary or in head. China. B. M. 7226.- L. polyántha, Fernald. Similar to L. quadrifolia, but fls, in a distinet terminal raceme. Eastto L. Quadrifolis, but its, in a distinet terminal raceme. Gastern lower lvs, often verticillate and raceme very leafy, bracts passing into the foliage-ivs. Eastern U.S.-L. thyrsifldra, Linn. $=$ Naumburgia thyrsiflora.
K. M. Wiegand.

LYTHRUM (Greek, blood; possibly from the styptic properties of some species, or the color of the fls.). Lythrd̀cec. About 12 widely scattered species of herbs or subshrubs, of which 3 are cult. in hardy borders. Branches 4 -angled: ivs, opposite or alternate, rarely whorled, linear-oblong or lanceolate, entire: fls, rosy purple or white, in the upper axils usually solitary,
lower down more or less whorled; calyx tube cylindrical, 8 -12-ribbed; petals 4-6, obovate; stamens as many or twice as uany: capsule 2 -celled, with an indefinite number of seeds.

Lythrums grow about $2-3 \mathrm{ft}$. high in the wild, but improve wonderfully in cultivation, often attaining $4-5 \mathrm{ft}$. and flowering freely. Some of them are called willowherbs or soldiers in England from their strong, erect habit and willow-like leaves. They are of easy culture in any moist soil, and are usually planted amid shrubbery, where they hold their own. They are denizens of low grounds, swamps and meadows. They flower in summer and are prop. by division. A nameless species from dapan has been considerably advertised of late, hut the specimen in the writer's hands is L, alatum.

> A. Stamens twice as many as the petals.
> B. Fls. in an interrupted, leafy spike.

Salicàia, Linn. Spiked or Purple Loosestrife. Fig. 1342. Height $2-3 \mathrm{ft}$. : Iss. opposite or sometimes in whorls of three, lanceolate, $2-3$ in, long: fls, purple; stamens barely if at all exserted. North temp. regions. Australia. B.B. 2:473.- Best of the gemus. Vars. supérbum and roseum, Hort, have rose-colored fls, Var. roseum supérbum, Hort., may be the same as the preceding varieties. It is large-fld.. rose-colored, more robust ($4-6 \mathrm{ft}$.$) , and somewhat later in blooming. It is$ an excellent form. It is generally sold as L. roseum superbum (not as a var. of L. Salicaria).

BB. F'ls, solitary in the upper axils, racemose.
virgatum. Linn. Lower J/s. opposite, rounded at the base: calyx not hracted. Eu., N. Asia.

AA. Stamens not more numerous than the petals.
alàtum, Pursh. Lvs, mostly alternate, obtuse: sta. mens exserted. N. Am. B.B. 2:472.
F. W. Barclay and W. M.

MAACKIA. See Cladrastis.
MABA (native name). E'benàcecr. A genus of about 60 species of trees and shrubs found in the warmer regions of the world. They mostly have hard, ebonylike wood. Closely allied to Diospyros, the floral parts mostly in 3's instead of 4's or 5's. The lrs. are usually smaller than in Diospyros. Liss. alternate: fls. axillary, solitary or in short cymes, usually diœcious; corolla bell-shaped ortubular.
Natalénsis, Haw. Much-branched shrub, with flexuous branches: lvs. $3 / 4-1 \mathrm{in}$. loug, 6-7 lines wide, ovate, oblong or elliptical, obtuse, dark green above, paler beneath, glabrons, netted-reined beneath: female fls. solitary; calyx cup-shaped, glabrous, entire; abortive stamens 6-7: ovary glabrous. Natal; offered in S. Fla.Presumably the plant in cult. is the female.
MACADAMIA (after John Macadam, M.D., secretary Philosophical Institute, Victoria, N. S. W.). Protedcea. Two or 3 species of Australian trees or tall shrubs, one of which produces the Australian nut, which bas a flavor like a filbert or almond, and is cult. in S. Calif. In favorable localities it bears in 7 years. The genus has no near allies of horticultural value. Lrs, whorled: fls. small, pedicelled in pairs, racemose, hermaphrodite; perianth not recurred; stamens affixed a little below the blades: disk ringed, 4 -lobed or 4 -parted.
ternifollia, F. Muell. Australian Net. Tree, attaining 60 ft .: foliage dense: lvs. sessile, in whorls of 3 or 4, oblong or lanceolate, serrate, with fine prickly teeth, glabrous and shining, a few inches to 1 ft . long: racemes often as long as the lvs.: fr. with a 2 valved, leathery corering; nut often over I in. thick. Australia. G.C. 1870:1181.

MACHERIUM Tipu. See Tipuana speciosa.

MACKAYA. See Asystasia.
MACLEANIA (after John Maclean, British merchant at Lima, Peru; patron of botany). I'accineaceer. About a dozen species of shrubs found in the mountains from Mexico to Peru. They are unknown to the American trade, but, judging from the pictures in the Botanical Magazine, should make fine hothouse subjects for our largest and finest conservatories. They have clusters of brick-red or crimson, tubular fls. each an inch or more long. A branch of M. speciosissima, which is probably the showiest kind, bears about 60 to 75 such fls. The young foliage appears to have a handsome reddish tinge. The corollas are strongly 5 -angled, and the 5 tips are short, triangular, erect or spreading and more or less yellow. Lrs. evergreen, alternate, short-stalked, entire: stamens 10, much shorter than the corolla. Macleanias are probably of difficult culture. Try M. speciosissima in a large pot on a shelf near the glass, so that jts branches may hang gracefully. M. pulchra has the same habit and color of fls., but is perhaps less desirable. M. purctata is perhaps the most desirable of those with erect branches and stiff habit. Try this in a warmhouse border, with good drainage and shallow soil, as some of these Macleanias hare thick, fleshy roots and the fibrous roots are said to keep near the surface.

MACLURA, or OSAGE ORANGE. See Toxylon.

M'MAHON, BERNARD (about 1775 to September 16, 1816), horticulturist, was born in Ireland and came to America, for political reasons, in 1796. He settled in Philadelphia, where he engaged in the seed and nursery business. He early began the collection and exportation of seeds of American plants. In 1804 he published a catalogue of such seeds, comprising about 1,000 species. He was the means of making many of our native plants known in Europe. He enjoyed the friendship of Jeffer-
son and other distinguished men, and his seed store he came a mceting place of botanists and horticulturists. He was interested in all branches of borticulture. It is thought that the Lew is \& Clark expedition was planned at his house. At all erents, M Mahon aud Landreth were instrumental in distributing the seeds which those explorers collected (see p. 767). In 1806, he gave to America its first great horticultural book, "American Gardener's Calendar" (see p. 760), which was long a standard eyclopedic work. The editor of the eleventh edition of this book (1857) makes the following reminiscence of M'Mahon:
"Bernarl M'Mahon was no common man. He sougbt the American shores from political motives, as is understood, but what these were has not been determined; most probably it was necessary to fly from the persecutiou of government. He found American gardening in its infancy, and immediately set himself vigorously to work to introduce a love of flowers and iruit. The writer well remembers his store, his garden and greenhouses. The latter were situated near the Germantown turnpike, hetween Philadelphia and Nicetown, whence emanated the rarer flowers and novelties, such as could be collected in the early part of the present century, and where were performed, to the astonishment of the amateurs of that day, successful feats of horticulture that were but too rarely imitated. His store was on Second street, below Market, on the east side. Many must still bealive who recollect its bulk window, ornamented with tulip-glasses, a large pumpkin, and a basket or two of bulbous roots; belind the counter officiated Mrs. M'Mahon, with some considerable Irish accent, but a most amiable and excellent disposition, and withal, an able saleswoman. Mr. M'Mahon was also much in the store, putting up seeds for transmission to all parts of this country and Europe, writing his book, or attending to his correspondence, and in one corner was a shelf containing a few botanical or gardening books, for which there was then a very small demand; another contained the few garden implements, such as knives and trimming scissors; a barrel of peas and a bag of seedling potatoes, an onion receptacle, a few chairs, and the room partly lined with drawers contaiuing seeds, constituted the apparent stock in trade of what was one of the greatest seed stores then known in the Union, and where was transacted a considerable husiness for that day. Such a store would naturally attract the botanist as well as the gardener, and it was

the frequent lounge of both classes, who ever found in the proprietors ready listeners, as well as conversers; in the latter particular they were rather remarkable, and here you would see Nuttall, Baldwin, Darlington, and other scientific men, who sought information or were ready to impart it."
M'Mahon's name was given to west-coast evergreen barberries by Nuttall in 1818, and these shrubs are still known as Mahonias to horticulturists, although united with Berberis by botanists.
L. H. B

MAGNOLLA

MACODES (from makos, length; on account of the long labellum). Orchidacear. Contains but 2 or 3 species of the habit of Ancectochilus, which see for culture. Sepals and narrower petals spreading: labellum ventricose, with 2 small lateral lobes and 2 calli inside, turned to one side: column short, twisted in the opposite direction, with 2 narrow, erect appendages. Terrestrial herbs, with few rariegated petioled Ivs, at the base, and swall fls. borne in a long raceme.

Pétola, Lindl. (Ancetochilus Ieitchiànus, Hort.). Fls. greenish, inconspicnons: 1vs. ovate, 2-3 in. long, reticulated with golden yellow veins. Java. R.B. $21: 61$.

Heinrich Hasselbring.

MACROCHORDIUM strictum, Beer, once advertised by Pitcher \& Manda, is referred by Mez to Echmea bromelicefolia, Baker. See p. 28, Vol. 1. It is Bromelia melanantha, Ker-Gawl, B. R. 9:766. The species is characterized by white-scurfy Ivs., simple dense, woolly spikes overtopping the foliage: fls. with yellowish green calyx and small exserted purple-black petals. S. Amer.

MACROSCEPIS (Greek, macros, long ; skepo, to cover). Asclepradàcea. A genas of about 8 species of tall, tropical American climbers, of which M. elliptica, Hort. Sander, was int. in 1899. Sander \& Co. describe it as "a new climbing stove-plant, with elliptic, light green leaves, which, together with the stems, are densely covered with soft, felt-like, yellow-brown hairs. The fls. are in clusters, each flower about 1 in . in diam., resembling in slape those of Hoya carnosa, and horne in similar bunches; they are of a soft, velvety, rich brown color. Every part of the plant, when bruised or pressed, is strongly odorous."

Generic characters are: 1vs. opposite, large, cordate: cymes crowded: fls, white; calyx abont 5-parted; corolla tube thick; limb spreading: scales of the crown 5 , inflexed under the throat of the fleshy corolla.

MACROTOMIA. Consult Arnebia.

MACROZAMIA (Greek, long Zamia). Cycadaceap. About 5-7 Australian cycads, which, like most of the members of this order, make noble foliage plants for private conservatories. They have the trunk and ivs. of Cycas, except that the pinnae have no midrib but are more or less distinctly striate, especially on the under side, with several parallel equal veins. the whole leaf occasionally twisted in some species, but not constantly so in any one.

The genns is more nearly allied to Dioon and Encephalartos, from which it is distinguisbed by the following characters: Irs. pinnate: scales of the female cones peltate, the shield thickened, asceuding, usually produced into an erect, acuminate blade. Botanically the group is very imperfectly understood. The writer has followed Bentham's account in Flora Australiensis 6:250 (1873).

Macrozamias are representative rather than useful subjects, and not frequently seen. They combine poorly in any scheme of plant and Hower decoration; but as single specimens, they always attract attention, and in a grouping of similar subjects, or with aloes, azave and yuccas they make an effective combination. Their culture is easy. Sandy soil, with charcoal to keep the soil sweet, ordinary greenhonse temperature, plenty of water during the growing season, which corresponds to our summer, and rest in winter, are the essentials.

At present M. spiratis is the only name in American trade catalogues, but the other kinds were offered in 1893 and 1895 by John Saul, and Pitcher \& Manda.
A. Pinne very narrou, offen nearly terete: cones small, rarely above $4 \mathrm{in} .:$ tr. very woolly.
Paulo-Guiliélmi, Hill \& Muell. (M. plumòsa, A. Mohr.). Trunk short: $1 \mathrm{rs}, 1-3 \mathrm{ft}$. long. R.H. 1877, p. 251.
As. Pinnce flat, inserted on the margins of the rachis, contracted at the base: cones $1-10$ in., glabrous.
B. Rachis of les. usually raised longitudinally between the pinne: cone scales much flattened.
spiràlis, Miq. Trunk short: Ivs. 2-4 ft. long: insertion of the pinns mostly longitudinal: points of the scales usually short. G.C. I1I. 13:ît-M. M. cylindrica, C. Moore.
is a distinct species according to Index Kewensis, but Bentham considered it a doubtfnl variety of M.spiralis, being smaller, with the narrow foliage nearly of \boldsymbol{M}. PauTo-Guilielmi, but with a glabrons trunk and more terete rachis.
вв. Rachis of lvs. very flat between the pinna and often broad: cone scales very thick.
Miquélii, DC. Cult. abroad. John Saul advertised M. Mrequi, presumably a typographical error either for M. Miquelii or else M. Macleayi, Miq., which $=M$. spiralis.
aAs. Pinnce inserted by their broad base along the center of the upper surface of the rachis, searcely separated by a rery narrow line: cones large, pubescent, the scale points broad and often recurced.
Peroffskyàna, Miq. (M. Perourskiana, F. Muell.). Largest and most distinct : trunk $18-20 \mathrm{ft}$, high: lvs. 7-12 ft. long.
T. D. Hatfield and W. M.

MADDER. The root of Rubia tinctorum.

MADEIRA VINE is Boussingazttia.

MADIA (Madi, the Chilean name of the common species). Compósiťe. Nine species of yellow-fld. herbs confined to the western part of the American continent. Their fls. are remarkable for closing in the sunshine, and opening in the morning or evening. They are all called Tarweeds from their glandular, viscid, heavilyscented foliage, the common Tarweed of Calif. being rar. congesta of \boldsymbol{M}. sativa, which is a useful annual plant for sheep pastures in dry, warm soil. M. eleguns is an ornamental annual which every one should try. It has a graceful open habit (see Fig. I343) and distinet fls. (Fig. 1344), which become more nomerous as the summer advances. The nearest genus of garden value is Layia, from which Madia is distinguished by the following characters: involucre deeply sulcate, bracts strongly involving the akenes of the rays: akenes of the disk fertile or sterile.
A. Rays showy.
B. Plant annual: les. chiefly alternate: pappus none.
elegans, D. Don. Figs. 1343-4. Height j-2 ft.: IFs. linear or lanceolate, mostly entire: rays acutely 3 -lobed. yellow throughout or with a brown spot at

1344. Madia elegans.

Natural size. the base. Ore. to Ner. B. M. 3548. B. R. 17:1458.Needs a shady place.

BB. Plant perennial: lis. mostly opposite: pappus present in disk tls.
Núttallii, Gray. Height $1-2 \mathrm{ft}$: Irs. linear-lanceolate, sometimes dentate. Woods, B.C. to Monterey, Calif. -Adv. 1881 by E. Gillett. Procurable from Californian collectors.

AA. Rays mconspicuous, about 2 lines long. sativa, Molina. Height $1-3 \mathrm{ft}$.: Irs. from broadly lanceolate to linear: rays 5-12. Ore., Calif., Chile. W. M.

MAGNOLIA (after Pierre Magnol, professor of medicine and director of the botanic garden at Montpellier, 1638-1715). Magnolideew. Highly ornamental and popular deciduous or evergreen trees or shrabs, with alternate large, entire leaves and large white. pink or purple, rarely yellowish flowers, often fragrant; the
cone-shaped fruits are often pink or scarlet and very decorative. Most of the deciduous species are fairly hardy, at least in sheltered positions, as far north as northern N. Y. aud Mass., and M. acuminata, Kobus and stelluta even farther north, while M. Campbelli is the most tender. Of the evergreen species, M. grandiflora, one of the most beautiful native trees, is precariously hardy north to Philadelphia. The Asiatic deciduous species are among the most showy and striking of the early-flowering trees and shrubs; the earliest is the shrubby M.stellata, blooming in mild climates in March, and after this M. Fulan comes in bloom, closely followed by M. Soulangeana and after this M. obovuta. The handsomest of the deciduous species is probably $M . h y$ polewca, with the very large leaves silvery white below and with showy, sweet-scented flowers; also the American M. macrophylle and tripetala are conspicuous by their very large foliage. The Magnolias are usually planted as single speciueus on the lawn, and there are, perhaps, no plants more striking against a background of dark green conifers. Some species, as M. grandiflora iu the South and M. acuminatu farther north, are fine aveuue trees. The Magnolias thrive best in somewhat rich, moderately moist and porous soil, preferring sandy or peaty loam, but some kinds which usually grow naturally on the borders of swamps, as M. glazea, thrive as well in moist and swampy situations. Transplanting is difficult and is most successfully performed just wheu the new growth is starting. Prop. by seeds sown immediately or stratified, and by layers of last year's growth put down in spring and tongued or notched. Layers are usually severed and transplanted the following spring, but as many of them die after transplanting, it is a safer way to take them off early in July, when the new growth has ripened, plant them in pots and keep in a close frame until they are established. Varieties and rarer kinds are often veneer- or side-grafted in early spring or summer on potted stock in the greenhouse or frame; as a stock M. tripetula is perhaps the best, on account of its better fibrous rogts, which render transplanting safer, but M. acumixata is also a good stock Sometimes increased by greenwood cuttings taken with a heel and handled under glass.

About 20 species in N. America, south to Mexico, Himalayas and E. Asia. Trees and shrubs, with rather stout branches marked with conspicuous leaf-scars; stipules usually adnate to the petiole and inclosing the young successive leaf: fls, terminal, solitary, the buds inclosed in a stipular spathe; sepals 3 , often petaloid; petals $6-15$; stamens and carpels numerous, the latter connate into a spindle, developing into a cone-like somewhat fleshy or leatbery fr., with dehiscent, 1-2-seeded carpels; the large, usually scarlet seeds often suspended for a time from the fr. by thin threads. The wood is close-grained, usually light and satiny, but not durable; that of M. hypoleuea is much used in Japan for laquered ware; the bark and fr. of some species have been used medicinally as a tonic and stimulant.

Alfred Rehder.
Among the finest Magnolias cultivated in the South are the two native evergreen species M. grandiflora and M. glauca, and the exotics M. pumila and fusoata, the last being now referred to Micbelia. Magnolia grandiflora is a noble tree. It is a native of the middle and southern sections of Georgia, South Carolina, Alabama, Louisiana and the upper distriets of Florida, and is recognized as one of the grandest of all broal-leaved evergreen trees. In its native habitat it attains a beight of from 75 to 100 feet, with very large, oval or lanceolate coriaceons leares. The latter vary, however, from very broad to rather narrow, some with a rusty under surface, others quite smooth. The flowers vary also in size, the largest frequently measuring $10-12 \mathrm{in}$. in dianeter when fully expanded; others do not attain more than half that size. They appear early in May, in some sections during the latter part of April, and continue until the end of June. Some trees produce a few flowers during August, and even as late as Octo-
ber, but these are exceptions. Each flower lasts from $2-4$ days, when the petals fall and the cone-like fruit appears. This gradually increases in size until September, when the bright coral-red seeds are detached and bang on long filaments. The seed should be gathered when fully ripe, put in dry sand until February in the S., then in moist sand for a week or 10 days, when the resinous cuticle can be removed by washing.
not sufliciently appreciated as an ornamental one in landscape gardening.

Magnotia pumila, or Talauma pumila, is a very dwarf Chinese sjecies, seldom growing more than 4 or 5 ft. high: lvs. smooth, elliptical, sharp-pointed, coriaceous: fls. 1-11/2 in. in diameter, white or slightly tinged green, with 6-9 flesby petals, which drop soon after the fls, expand. The fragrance is intense at night, and resembles a ripe pineapple. It thrives best in a rich, partially shaded soil, but a frost of 10° below the freezing point will injure it. It is therefore best to grow it as a conservatory plant. Prop. by ripened wood cuttings in bottom heat. As this plant is in bloom during nearly the whole year, and its delicate fragrance is unsurpassed, it is strange that it is so little known.
P. J. Berchmans.

INDEX.

acuminata, 13, 14. angustifolia, 18. auriculata, 11. Alexandrina, 5. Campbelli, 2. conspicua, 3 . cordata, 14. discolor, 6. Exoniensis, 18. fotida, 18.
Fraseri, 11. Galissoniensis, 18. glauea. $15,16$. gracilis, 6 . grandiflora, 18.

grandis, 5.

 Halleana, 1. hypoleaca, 9. Kobus, 4. lanceolata, 18. Lennei, 5. longifolis, 16. macrophylla, 12. major, 15. Norbertiana, 5. nigra, 5. obovata, 5, 6. parviflora, 7,8 . pumils, 17. ригрттеа, 6.pyramidata, 11. rosea, 1. salicifolia, 18 Soulangeana, 5. speciosa, 5. stellatia, 1.
Talauma, 17. Thompsoniana, 15. Thurberi, 4. tripetala. 10 . Tmbrella, 10 . Firginiana, 16. Watsoni, 8 . Yulsn, 3 .

A. Blossoms appearing before the lvs.

B. Petuts 9-18.

1. stellàta, Maxim. (M. Hatleana, Hort.). Shrub or small tree, with spreading branches: lvs. elliptic or ohovate to oblong-obovate, obtusely pointed, pubescent

2. Magnolia Soulangeana, var. speciosa $(X, 1 / 8)$.
beneath when young, $2-5$ in. long: fls. white, shortstalked, numerous, about 3 in. across, sweet-scented; petals narrow-oblong, $9-18$, spreading and afterwards reflexed: fr. with only few carpels ripening. Narch, April. Japan. B. M. 6370. R.H. 1878:270. Gn. 13:132. G,F.9:195, G.C.111. 7:617 and 17:521. Gng. 2:57. A.F. 6:305. F.E.9:611. G.M. 38:489. F.M. 1878:309.-Quite hardy and very free-flowering; it hegins to flower when
hardly 2 ft . bigh. Var. ròsea, Hort., has the fls, blushed outside.
3. Cámpbelli, Hook.f. \& Thoms. Tree, to 80 ft .: lvs. elliptic-oblong or ovate, abruptly acuminate, glaucous beneath and silky pubescent when young, 5-12 in. long: fls. cup-shaped, 6-10 in. across, white inside and pink, shaded with crimson, outside; petals oborate, 9-15: fr. greenish brown, $6-8 \mathrm{in}$. long. May. Himalayas. B. M. 6793. F.S. 12:1282-85. (in. 48:1028; 53, pp. 167, 305. G.C. Ill. 23:89. - Beautiful tree, hardy only South.

> Bв. Petals 6-9.

c. Fls. pure white.

3. Yülan, Desf. (M. conspicua, Salisb-). Fig. 1345. Tree, to 50 ft ., with spreading branches: Ivs. obovate or obovate-oblong, shortly pointed, pubescent beneath when young, $4-7 \mathrm{in}$. long: fls. large, campanulate, sweetscented, about 6 in . across; petals and sepals almost alike, 9 , concave, fleshy, $3-4 \mathrm{in}$. long: fr. brownish, 3-4 in. long, slender. April, May. Japan, China. B.M. 1621. L.B.C. 12:1187. G.C. I11.9:591. Gn. 21, p. 311; 23, p. 138; 24, p. 511; 31, p. 505; 34: 667; 45, p. 365: 46, p. 145; 51, p. 474. G. M. 31:289; 36:386.-One of the most showy species.
4. Kobbus, Thunb. (M. Thirberi, Hort.). Tree, to 80 ft., with narrow pyramidal head: branches short and slender: lvs. broadly obovate, abruptly pointed, tapering toward the base, pubescent below at first, $31 / 2-6$ in. long: fls, 4-5 in. across; sepals very small and narrow; petals 6 , spreading, thin, $2-21 / 2$ in. long: fr. slender, dark brown, 4-5 in. long. April, May. Japan. (i. F. 6:66. - One of the hardiest species but less showy; seems not to flower very profusely.

cc. Fls. purplish or carmine outside.

5. Soulangeàna, Soul. (M. obokàta \times Ỳ゙̀lan). Intermediate between the parents. Popular large shrub or small tree: lvs, obovate to ohovate-oblong: fls, large, campanulate, white, more or less purplish outside, often fragrant; sepals usually colored, sometimes almost as long, sometimes hardly half as long as petals, rarely small and greenish. May. A. (r. 15:283. B. R. 14:1164. Git. 5:166 and 168. S.B.F.G.1. 3:260. Var. Lennéi, Hort. More shrubby: fls, large, deep crimson outside, late. F. 1864:25. V. 5:196. Var, nigra, Hort. Fls. dark purple outside. There are many other named vars., like var. Alexandrina, grándis, Norbertiàna, speciosa (Fig. 1346), differing but little in color and flowering time, var. Alexandrina being one of the earliest, var. Norbertiana one of the latest in bloom. These hybrids are among the most popular Magnolias on account of their early, bright-colored fls. ; they are showier and hardier than the following species.
6. obovàta, Thunb. (M. díscolor, Vent. M. purpùrea, Curt.). Usually large shrub, with stout branches: Ivs. obovate or oval-obovate, acute or acuminate, pubescent beneath at first, 4-7 in. long: fls. large, campanulate, white inside, purple outside, scentless; petals broad, obtuse, somewhat fleshy, about $31 / 2 \mathrm{in}$. long; sepals small, ovate-lanceolate, greenish yellow: fr. brownish, orate-oblong. May, June. China, Japan. B. M. 390 . Gn. 22, p. 485; 24, p. 511 ; 46, p. 49. F.E. 9:611. Var. grácilis, Dipp. (M. grácilis, Salisb.).-Smaller shrıh, with slender branches, narrower lvs, and smaller fls., dark purple outside.

AA. Blossoms appearing after the les.
B. Foliage decidnous.

c. Fls. white.

D. Buds and branchlets glabrous or appressed pubescent: carpels glabrous.
E. Les. 4-7 in. long, seattered along the branches.
7. parviflòra, Sieb. \& Zucc. Small tree: branchlets and buds appressed pubescent: Irs, elliptic to ohovateoblong, obtusely pointed, glaucescent beneath and pubescent at first, $4-6 \mathrm{in}$. long: fls. long-pedicelled, cupshaped, white, with large pink sepals, $3-4 \mathrm{in}$. across, fragrant; petals usually 6 ; stamens crimson: carpels few. June. lapan. B.M. 7411. Gn. 54, p. 177. Gng. 1:8; 3:3. G.M. 38:66.
8. Watsoni, Hook. Closely allied to the former: almost glabrous, except lvs, beneath when young: lvs. obovate to oblong, 4-7 in. long: fls, short-stalked, 5-6 in. across, with 6-9 petals; carpels many. June. Japau. B.M. 7157. G.C. I1I. 16:189 and 17:517. Gt. 48:1459. Gng. 1:8. Gn. 24:417 (as M. parviflora) probably belongs here. G.M. 34:305. - Very handsonie in bloom; the beauty of the large, sweet-scented flower is much heightened by the crimson center, formed by the brightcolored stamens.
ee. Les. 8-20 in. long, mostly clustered at the end of the branches: buds and branches glabrous.
9. hypoleùca, Sieb. \& Zucc. Tree, to 100 ft . high, with broad, pyraruidal head: Ivs, obovate to obovate-oblong, obtusely pointed, glaucous and appressed pubescent beneath, 8 -14 in. long: fls. 6-7 in. across, cup-sbaped, fragrant, with 6-9 petals; stamens with scarlet filameuts: fr. oblong-cylindric, scarlet, to 8 in . Iong. May, June. Japan. G.F. 1:305. Gng. 1:8. Mn.3, p. 73.- One of the most beautiful of the deciduous species, the under side of the lvs. being almost silvery white; about as hardy as M. macrophylla.
10. tripétala, Linn. (M. Embrêlla, Lam.). Uubrella Tree. Tree, to 40 ft ., with spreading branches, forming an open head: lvs, tapering toward the base, oblongobovate, acute, pale and pubescent beneath when young, 12-24 in. long: tls. 8-10 in. across, of a disagreeable odor; petals $6-9$, oblong-obovate, $4-5 \mathrm{in}$. long; sepals recurved, light green: fr . rose-colored, ovate-oblong, $21 / 2-4 \mathrm{in}$. long. May. Pa. to Ala., west to Ark, and Miss. S.S. 1:9 and 10. Gn. 22, p. 27; 24, p. 509; 33, p. 539.
11. Fràseri, Walt. (M. aurienlata, Lam. M. pyramidda, Pursh). Tree, to 40 ft ., with wide-spreading branches, quite glabrous: lvs, obovate, cordate-auriculate at the base, acute, glaucescent beneath, $8-20$ in. long: fls, 6-9 in. across, sweet-scented; petals 6-9, ob-long-obovate, $4-5 \mathrm{in}$. long: fr. oblong, bright rose-red, $3-5$ in. long. Va. to Fla., west to Miss. S.S. 1:11 and 12. B.M. 1206. B.R. 5:407. L.B.C. 11:1092. Gn. 22:27; 24, p. 511 ; 44, p. 935.

DD. Buds and branches grayish tomentose: carpels woolly.
12. macrophýlla, Michx. Large-leaved Curumber Tree. Tree, to 50 ft ., with spreading branches: Ivs. ob-long-obovate, blunt, subcordate-auriculate at the base, glaucescent and finely pubescent beneath, $1-3 \mathrm{ft}$. long: fls. cup-shaped, fragrant, 10-12 in. across; petals 6, ob-long-obovate, thick, purplish at the base, $6-7 \mathrm{in}$. long: fr. broadly ovate, rose-colored, to 3 in. long. May, June. Ky. to Fla., west to Ark. and La. S.S. 1:7 and 8. B.M. 2981. G.F. 8:165. Gn. 22, p. 28; 24, p. 509; 33, p. 539 .
cc. Fls. yellow or greenish: petals $6,2-31 / 2 \mathrm{in}$. long.
13. acuminàta, Linn. Cucumber Tree. Tall, pyramidal tree, to 90 ft .: lvs, oval to oblong, shortly acuminate, rounded or acute at the base, soft pubescent and light green beneath, 6-9 in. long: fls. greenish yellow or glaucous green, ahout $2-31 / 2 \mathrm{in}$. high, with upright petals: fr. cylindric, pink, 3-4 in. long. May, June. N. Y. to Ga., west to III. and Ark. S.S. I:4 and 5. B.M. 2427. L.B.C. 5:418. Gn. 24, p. 509.
14. cordàta, Michx. (M. acuminàta, var. corddta, Sarg.). Similar to the former, but smaller: Ivs, more pubescent, oval to ovate, acute, rounded or sometimes slightly cordate at the base: fls, smaller, canary yellow. Ga. and Ala. S.S. 1:6. B.M. 2427. L.B.C.5:474. Gn. 22, p. 27; 24, p. 509.
BB. Foliage coriaceous, persistent, but deciduous North in Yos. 15 and 16.
c. Les. glabrous or silky-pubescent beneath: uswally shrubby.
15. Thompsoniàna, Sarg. (M. glaùca, var. mdjor, Sims. M. glaùca, var. Thompsoniana, Loud.). Probable bybrid of M. glauca and tripetala. Shrub or small tree: branches and buds glabrous: lvs. oval to oblong, acute, glaucescent beneath and pubescent when young, 5-9 in. long: fls, white, fragrant, 5-6 in. across; sepals shorter than the petals, yellowish. June, July. G. F. 1:269. B.M. 2164. Gn. 24, p. 511.-Of garden origin.
16. glaùca, Linn. (M. Virginiàna, Morong). Sweet, Swamp or Whate Bay. Beayer Tree. Fig. 1347. Attractive shrub or small tree, evergreen South: 1vs. oval to oblong-lauceolate, glaucous beneath and silk y-pubescent at first, $3-6 \mathrm{in}$. long: fls. white, globose, fragrant, $2-3 \mathrm{in}$. across; sepals nearly as large as petals, spreading; petals 9-12, roundish obovate: fr. pink, $1-2 \mathrm{in}$. long. May, June. Mass. to Fla. near the coast, in the South extending west to Texas. S.S. 1:3. Em. 2:603. L.B.C. $3: 215$. R.H. 1894, p. 34i. G.F. 10:403. Gng.

1347. Magnolia glauca ($\times 1 / 3$).

4:342.-A very desirable shrub, with handsome, glossy foliage and sweet-scented, creamy white fls. Var. longifolia, Loud., bas lanceolate lrs. and continues hlooming during a longer time than the type.
17. pùmila, Andr. (Talaùma pùmila, Blume). Shrub, to 12 ft .: lvs. elliptic-oblong, acuminate, glabrous, glaucescent beneath, $3-6$ in. long: fls, axillary, nodding on short-curved pedicels, globose-ovate, white, fragrant, about $11 / 4 \mathrm{in}$. aeross; petals 6 . Cbina. B.M. 977 .-Cult. South.

cc. Lvs. fermugineous, pubescent beneath; tree.

18. grandiflora, Linn. (M. fatida, Sarg.). Bull Bay. Tall evergreen tree, to 80 ft ., of pyramidal habit: branchlets and buds rusty-pubescent: lvs. thick and firm, oblong to obovate, glossy above, ferrugineous-pubescent beneath, sometimes glabrous at length, 5-8 in. long: fls, white, fragrant, $7-8 \mathrm{in}$. across; sepals large, petaloid; petals $6-12$, obovate; stameus purple: fr. oval
or ovate, rusty brown and pubescent, 3-4 in. long. MayAug. N. C. to Tex. S.S. 1:1 and 2.-Var, angustifolia, Loud. (var. salicifòlia, Hort.). Lvs. lanceolate, wavy. Var. lanceolata, Ait. (var. Exoniénsis, Loud.). Lvs. oblong-lanceolate or oblong-elliptic, less rusty beneath. B.M. 1952. L.B.C. 9:814. There are many otber named varieties, of which var. Galissomiensis, Hort., has proved the hardiest in Europe. For other pictures, see (in. 22, p. 28; 24, pp. 509,511; 33, p. 538.
M. compréssa, Maxim, =Michelia compressa.-M. fuscàta, Andr:-Michelia fuscata.-M, salicifòlia, Maxim, Small, de: ciduous tree: Ivs, ellintic to ovate-lanceolate, glaucous beneath, 4-7 in. long: fls. unknown. Javan. G.F. 6:67.

Alfred Rehder.

MAHERNIA (anagram of Hermannia). Sterculideea. More than 30 herbs and subshrubs of S. Africa, mostly with incised lvs. and droop-

1348. Mahernia verticillata. ($\lambda 1 / 2$.) ing, bell-shaped tis. Calyx campanulate, 5 -cleft; petals 5, with hollow elaws, twisted in the bud; stamens 5, opposite the petals, the filaments prominently enlarged or dilated at abont the middle (and thus diflering from Hermannia, which has no sudden enlargement in the filaments), the anthers long: ovary 5-loculed, ripening into a coriaceous capsule with many seeds. Monogr. in Harrey and sonder's Flora Capensis. By some the genus is united with Hermannia, A few of the Mahernias are cult, as potplants for the profusion of their bell-like fls. and the sweet odor.
verticillàta, Linn. (M. odorìta, Hort, not of botanists, which is Hermarnia Prestiana). Hosey Bell. Fig. 1348. Very common plant in conservatories, and sometimes seen in window-gardens (see House Plauts): half woody, very diffinse and straggly, not making a central leader, the terete crooked stems scabrous: Ivs. small, much cut into linear divisions, with deep cut stipules: fls. 3 in in. or less long, nodding, usually about 2 together, from axillary shoots, sweet, fragrant, honey-yellow. - Free bloomer in winter and spring. Of easycult. Prop. by cuttings. Mahemia verticillata is a very pretty twiggy bush for the cool greenhouse. The branches are long and flexible, so that specimens may be trained into any form. It may also be used for hanging baskets. It is of easy culture in pots, but lifts badly.
glabràta, Cav. Lvs, dentate or dentate-pinnatifid (not so finely cut as in the last), corered witb stellate dowu: trailing.-It is doubtful if the plant cult. under this pame is the M. glabrata of botanists.
L. H. B.

MAHOE, MOUNTAIN, See Hibiscus elatus.
MAHOGANY. See Sicietenia. Mountain Mahogany. See C'ercocarpus.

MAHONIA. Included with Berberis.
MAIDENHAIR FERN is Adiantum.
MAIDENHAIR TREE. See Ginkgo.
MAIANTHEMUM (Greek, May flower). Lilideear. M. Convallaria, Weber, is a pretty little native wild flower growing 3-5 inches bigh, with 1-3 heart-shaped sbining lvs., and a raceme about 1 in . long of small white tis., with 4 -parted perianth and 4 stamens. It grows in moist woods, and is fully described in our manuals. It has been offered by dealers in native plants under its synonyms, M. bifolium, Canadense and Smilacina bifolia. B. B. 1:431. B. M. 510. It is sometimes called False Lily-of-the-Valley or TwoLeaved Solomon's Seal. Foliage dies in midsummer. Useful for early effects.

MAINE

MAINE, HORTICULTURE IN. Fig. 1349. Maine, the most northeasterly of the United States, lies between latitudes $46^{\circ} 6^{\prime}$ and $47^{\circ} 27^{\prime}$ north and longitudes $66^{\circ} 56^{\prime}$ and $71^{\circ} 26^{\prime}$ west. The name was used by early explorers to designate the mainland as distinct from the numerous islands along the coast. Although its extreme breadth from east to west is but 270 miles, its coast line is so broken as to extend for 2,486 miles along the Atlantic. The total area of the state is 33,000 square miles, of which 3,145 is water surface. The surface of the state is disposed in two great slopes, separated by a broad plain from 1,000 to 2,000 feet above the sea (see the map). This plain, the eastern end of the Appalachian range, contains numerous hills and mountains, the highest of which is Mt. Katahdin, wath an altitude of 5,385 feet.

The slopes are much broken by hills and lakes, and vast areas are still covered by the primeval forest. Tbere is thus provided a wide diversity of soil and climatic conditions in different parts of the state, which affords opportunity fcr a considerable range in agricultural productions. Under these conditions, even from the earliest settlement of the state, agriculture bas received a fair share of attention. There were in 1892 , 65,000 farms, containing $6,500,000$ acres, representing a cash value of $\$ 102,500,000$, and an estimated value of farm products of $\$ 2,2,000,000$.

The forests, located mainly in the middle belt, form one of Maine's principal sources of wealth. In the northern part these consist chiefly of pine, spruce, hemlock and arborvita. Farther south, in addition to the conifers, red oak, beech, birch, maple, ash and elm abound. Butternut and hickory are follid, but are not abundant. The productions for which the state is especially noted, aside from lumber, are hay, potatoes, sweet corn and fruit. Of the first, from $1,500,000$ to $2,000,000$ tons are cut each year.

Potatoes form the staple crop in Aroostook county the "Garden of Maine"-though many thousand bushels are grown in the southern counties. The annual crop is

1349. Maine. To illustrate its horticulture.
not far from $10,000,000$ bushels: The greater portion of the potatoes grown in Aroostook county is converted into starch. The annual product of the starch factories is from $12,000,000$ to $15,000,000$ pounds. The average yield is about 120 bushels per acre, but as many as 500 and even 700 bushels have been obtained.

The productiou of sweet corn for canning has become an important industry in the southwestern and central parts of the state. The total pack in 1890 was about $12,000,000$ cans, representing 3,000 acres. In 1892, 18,000,000 caus were packed, while in 1897 the output was ahout the same.
The rocky billsides of southwestern Maine are especially suited for producing apples of superior color, flavor and keeping qualities. Pears aud plums are also grown to a considerable extent. The value of the orchard products is about $\$ 1,500,000$ annually. Desirable sites for orchards range in value from $\$ 5$ to $\$ 50$ per acre, according to the location and distance from shipping points.
Small fruits thrive over the greater part of the state, and find a ready market at the numerous summer resorts for which Maiue is noted.
The canning of blueberries is an important iudustry in some parts of the state. In Washington county about 120,000 acres, otherwise worthless, are known as the "blueberry barrens." The annual output of the canning factories is valued at $\$ 75,000$ to $\$ 100,000$, and 1,500 or 2,000 bushels are shipped while fresh. In other parts of the state there are many thousand acres that may be utilized in the same way. Some of the more important blueberry regions are indicated by the shaded areas on the map.
In providing for education along agricultural lines, Maine has not been behiud other states. While Arthur Young and uthers were striviug to improve the agriculture of Great Britain, leading citizens of the then District of Maine united in forming one of the first agricultural societies in America. As noted by Boardman: "The light stations first established in this country for the improvement and the diffusion of agricultural literature were at Philadelphia, Pa., in 1785 : Charleston, S. C., in 1785; Hallowell, Maine, 1787."
The first agricultural and industrial college in North America, the Gardiner Lyceum, was established at Gardiner, Me., in 1821, when a yearly grant of $\$ 1,000$ was made by the state. The purpose of the school was "to give mechanics aud farmers such a scientific education as would enable them to become skilled in their professions." This institution, under the patronage of the Vaughans and the Gardiners, flourished until 1835, when state aid was withdrawn, It was continued for two years at the expense uf Mr. Gardiner, and then closed. in connection with the Lyceum, a farm was utilized for experiments in agriculture, aud "to give the future agriculturist the knowledge of those principles of science npon which his future success depends, and an opportunity to see them reduced to practice.'
In 1865 the state College of Agriculture and the Mechanic Arts was established under the provisions of the "Morrill Act." This, in 1897, became the University of Maine, with a well-equipped agricultural department. The Maine Agricultural Experiment Station, established under the provisions of the "Hatch Act" in 1887, forms a department of the university. In addition to the work of the university, important educational work is carried on in the form of farmers' institutes by the State Board of Agriculture, consisting of one member from each county, with permanent headquarters at the capital. There are also two state agricultural societies, one state pomological society, and nearly 50 county and town agricultural societies which receive aid from the state.
MAIZE. See Com and Zea.
W. M. Musson

MAKART DECORATIONS and bouquets are dried grasses and everlastings, whether dyed or not. The celebrated painter, Hans Makart, once decorated his salon with dried palm leaves, pampas grass and the like, to the delight of the Emperor of Austria, who visited the artist's studio: hence the name. See Ererlastings and G.C. III. 6:714.

MALAY APPLE. Eugenia Jambos.

MALCOLMIA. See Malcomia.

MALCOMIA (Wm . Malcolm, English horticuIturist of the eighteenth century). Also written Malcolmia, but it was originally spelled Malcomia. Cruciferce. A genus of about 20 species, one of which is called the Virginian Stock, thuugh it is a native of the Mediterranean region. It is a charming hardy aunual of the easiest culture, growing about a foot high, with a more branching and open habit than the common stock (Matthiola), and 4petaled fls, each about ${ }_{3}{ }_{4} \mathrm{in}$. across. Red, white and crimson-fld. kinds are offered in America, while rose and lilac fls, appear in the mixtures. There seem to be no double forms. It is an excellent plant for the front of a border, as it may be easily had in bloom from spring to fall by means of successional sowings. Seeds are best sown iu the fall, as they give earlier bloom. Needs may be sown thinly. See Aunuals.

1350. Virginian Stock, Crimson King.

Malcomia is a genus of brauching herbs: branches often prostrate: Irs, alternate, entire or pinnatifid: fls. in a loose raceme; petals long and linear or long-clawed: pods rather terete, long or awl-shaped: seeds in 1 series or in 2 series at the base of the cells.
maritima, R. Br. Virginian Stock. Mahon Stock. Figs. 1350, 1351. Stem erect, branching: Ivs. elliptic, obtuse, entire, narrowed at the base, pubescence appressed, 2-4-parted : pedicels rather shorter than the calyx: pods pubescent, long-acuminate at the apex. B.II. 166 (as Cheiranthus maritimus, showing red fls., changing to purple before fading).
W. M.

MALLOTUS (Greek, woolly). Euphorbiàcer. Trees or shrubs, with broad opposite lvs., with small dicecious fls. in spikes or panicles: petals and disk absent; calyx 3-5-lobed; stamens numerous; styles 3, almost free, recurved; capsule spherical, splitting into 3 parts. About 80 species in the Old World tropics.

Japónicus, Müll. Arg. A small tree, with large, ovate, palmately nerved, nearly glabrous, sub-trilobed, longpetioled lvs.: spikes branched terminal: fls, 2-3 lines wide; stamens $60-70$, yellow; stigmas slightiy feathery: capsules pubescent, $1 / 2$ in. in diam. Japan and China. R.H. 1894, p. 103. - Cult. at Santa Barbara.
J. B. S. Nobton,

MALLOW. Malva rotundifolia.
MALLOW, FALSE. Matrastrum.
MALOPE (name used by Pliny for some kind of mallow). Maledece. A genus of 10 species of aunuals from the Mediterranean region, one of which is cult. under the name of M. grandiflora. It grows 1-3 ft. high, and bears red or white, 5 -petaled fls. $21 / 2-3$ in. across, in summer and fall. The genus is allied to Althæa, which it resembles in having solitary ascending ovules, but has the carpels crowded into a sort of head without order, while in Althæa the carpels are in a single whorl. Also, Malope has 3 bractlets, while Althæa has 6-9. Herbs
glabrous or pilose: lvs, entire or 3-cut: fls, usually violet or rosy; bractlets large, cordate; calyx 5 -cut; column of stamens divided at the top into filaments. Culture easy. See Anииals.
trifida, Car. Lvs. 3-nerved, 3-cut, dentate, glabrous; lobes acuminate: peduncles axillary, 1 -fld. Spain, N . Africa. - Var. grandiflora, Paxt. (M. grandiflora, F. G. Dietr.), is said to be much superior to the type, with fls. $21 / 2-3 \mathrm{in}$. across, deep rosy red, veined inside darker. Gn. 2I, p. 145. P.M. 1:177. M. grandiflora alba is also cult.

1351. Virginian Stock-Malcomia maritima. Natural size. (See p. 969.)
MALPIGHIA (Marcello Malpighi, 1628-1693, distinguished anatomistat Boulogne, who wrote on the anatomy of plants). Malpighiacee. About 20 species of small trees or shrubs, mostly natives of tropical America, one of which is the Barbadoes Cherry, M. glabra. The fruit is about the size and shape of a small northern cherry, but inferior in quality. It has an acid taste. It is borne on a shrub, which grows about 6 ft . high and has handsome crimson fls, of a distinct appearance. 'The fl. is about $3 / 4 \mathrm{in}$. across, and the 5 petals have a claw about as long as the fringed blade. This shrub is a native of the West Indies and is cult. in all the Islands as well as S. Amer. It is also offered in S. Fla.

Malpighias have opposite, short-stalked Irs., glabrous or tomentose, entire or spiny-toothed: fls, axillary, clustered or corymbose, rarely solitary, red, rose or white; calyx 5 -parted, 6-10-ylaudular; stamens 10: ovary 3 celled: styles 3 , distinct: drupe 3 -stoned, the stones with or without $3-5$ crests or wings on the back.
glàbra, Linn. Barbadoes Cherry. Lus, ovate, glabrous, entire, usually pointed, having a few biscuspidate hairs which disappear early: umbels 3 -5-fld.: calyx 6-8 glandular: stones obtusely 4 -angled. B.M. 813 . W. M.

MALUS. See Pyrus.
MÁLVA (old Latin name from Greek malache; referring to the emollient lrs.). Malvacea. About 16 :pecies of herbs, widely seattered, 4 of which are cult. in America and have escaped from old gardeus, while one, M. rotundifolia (Fig. 1352), the common Mallow, is a familiar weed. These plants are of the easiest culture, and hloom all summer and fall, having pink, rose or purple fls. sometimes 2 in. across. Malva is distinguished from numerous allied genera by the carpels in a single whorl: ovules solitary, ascending: bractlets 3, distinct: carpels not beaked or appendaged within. Malvas are hirsute or nearly glabrous: lvs. angled, lobed or dissected: fls. solitary, in the axils or clustered, sessile or peduncled; petals 5 , notched at the apex. In the first 2 species the pedicels are solitary in the upper axils; in the next 3 they are numerous and clustered.
A. Fls. large and showy, $11 / 2-2$ in. across.
B. Fruit downy, not wrinkled.
moschàta. Linn. Mesk Mallow. Perennial, 1-2 ft. high, less hairy than M. Alcea: stem-lvs. 3-many times parted, the lobes being linear: fls. rose or white; calyx with long, simple hairs. Eu.; cult. and escaped. R.H. 1851:381.

BB. Fruil glabrous, minutely wrinkled or veiny.
Alcea, Linn. Perennial, 2-4 ft, high: stem-lvs. parted almost to the base into $3-5$ divisions, which are again 3-5-cut, the lobes broad: fls, deep rose; ealyx densely stellate-pubescent. Eu.; cult. and escaped. B.M. 2297 (pink, veined deeper). - Var. Iastigiata, Koch (M. Morénii, Pollini). Lrs. less incised; upper stem-lvs. 3 -fid; intermediate unes 5 -fid; lobes oblong, unequally dentate. B.M. 2793.
bвb. Fruit prominently wrinkled-veiny.
sylvéstris, Linn. Biennial or perennial, $2-3 \mathrm{ft}$. high, rough-hairy, branching: 1vs. rather sharply 5-7-lobed: fls. purple-ruse. Eu., temp. Asia, waysides N. Amer. A.G. 13:471.-Not adrertised. See M. zebrina in supplementary list. Var. Mauritiana (M. Maurilidna, Linn.) has long been cult. in cottage gardens abroad as the Tree Mallow. It is taller, smoother and has more obtuse lobes.

AA. Fls. small, inconspicuous, rehilish.
B. Les. curled or puckered at the margin.
críspa, Linn. Curled Mallow. Unbranched annual, 4-6 ft. high, leafy from base to top: lvs.rounded, 5-7-lobed or angled: fls. clustered, almost sessile. Eu.; sparingly escaped from old gardens. Gn. 2 , p. 315. Vilmorin's "Vegetahle (iarden," p. 319. - No longer advertised, but procurable abroad and still cult. in America. No part of the plant is eaten, but the elegantly crisped leares are sometimes used for garnishing dishes. Generally self-sows in gardens.
BB. Liss. not crurled at the margins.
rotundifolia, Linn. Fig. 1352. Commo Mallow. Stems trailing from a strong, deep root: 1 rs . ronnded kidney-shaped, crenate; leaf-stalks very long: pednncles rather

1352. Malva rotundifolia ($\times 1 / 3$). A common weed. known as "Cheeses." slender, - Common biennial or perennial weed, not cult. The flat wrinkled fruits are known to ehildren as "cheeses." Also locally called "Sibirt-button plant."
M. minuita is a much confused name. In the Thorburn catalogte the plant in the American trade is said to be tbe same as Sphaeralcea Munroana, probably on the authority of E. S. Carman in A. $\mathrm{G} .11: 539$. M. miniata is also advertised by German dealers and is referred by Vilmorin's Blumengirtnerei to Sphasralcea miniata. Index Kewensis, however, refers M. miniata to Spheralcea cisplatiua. This riddle will, perhaps, be solved under Spharalcea. which see. - M. multffida alba, Hort., is probably a white-tld. form of one of the species above mentioned, with foliage many times divided. $-\boldsymbol{M}$. zebrina, Hort., is referred by Index Kemensis to M. sylvestris: by Vilmorin's Blumengärtnerei to M. Mauritiana. In Bridgeman's catalogue M. zebrina is described as a bardy annual, called "Striped Mallow,"growing 2 ft . high, with white and purple fls.

MALVASTRUM (name made from Malra). Mulvdcece. Sixty or more herbs and subshrubs in America and S. A frica, of which 2 or 3 are plants of minor itnportance in gardens. From Malva and its allies it differs in having short or capitate stigmas on the style-branches rather than longitudinal stigmas, also in having a solitary ovule in each carpel. From Malvaviscus it differs in having a dry rather than a baceate fruit, and in other characters. The garden species are perennials of easy culture, blooming iu the hot weather of summer.
coccfneum, firay. A tufted canescent plant, $5-10 \mathrm{in}$. or less high, with running rootstocks: 1va, not more than 1 in . across, pedately 3 -5-parted or divided, the narrow divisions again cut or cleft: fls, brick-red or coppery, in a short terminal raceme: carpels round-kidney-shaped, inclosed in the incurving ealyx lohes. Western Amer. B. M. 1673 (as Cristaria coccinea).-There is a var. grandiflorum in the trade, with "large deep acarlet tls."
campanulàtum, Nichols. Two ft. or less higb, hairy: lvs. pedately $3-5$-lobed, the lobes deeply cut and toothed, clasping: fls, rose-purple, an inch across. Chile. P.M. 9:173, and R.H. 1843:325 (as Malva campanulata).
spléndidum, Kell. Shrub, becoming 12 ft . or more, gray-tomentose: Irs. cordate-ovate, 5-lohed: fls, rosy pink, fragraut. Calif.
L. H. B.

MALVAVISCUS (Greek, sticky mallou'). Mitricea. About 25 species of tender shrubs from the warmer parts of America, one of which, M. arbovens, is known to the trade as Achania Matrariscus. It is a fine old greenhouse shrub with erect scarlet fls., which resemble an Abutilon and never open widely. Abutilon, howerer, has no involucre, while Malvaviscus has an involuere of 10-12 bractlets. Lrs. entire,

1353. Malvaviscus arboreus. ($\times 1 / 3$) dentate, angled or lobed: fls. red, usually peduncled; petals erect and connivent or spreading in the upper half; column of stamens truncate below the apex or 5-toothed: carpels fleshy outside, connateinto a herry, later separating.
arbóreus, Cav. (Achania Malvaríscus, Sw.). Fig. 1353. Tall shrub: Ivs. alternate, mostly 3 -lohed, acuminate, heart-shaped at the base, toothed: fis. convolute in the bud; bractlets erect. S.Amer. B.M.2305. - Cult. outdoors in S.Fla, and S.Calif.

Malvariscus arborens is one of the most satisfactory house plants that can be grown. It is not subject to insects of any kind, will stand a low temperature in winter, and blooms both winter and summer. When pot grown, the plant is usually about 2 ft . high, but outloors it makes a strong, branching growth, attaining 3-5 ft. The bright scarlet fls. remain a long time in perfect condition. The fls. open slightly at the top or not at all. This circumstance gave rise to the old name Achania, which means not opening. The plant needs a good light soll and thrives in a compost of fibrous peat and loam. Prop. by cuttings. The cultivators need not fear the appearance of white grains on the surface of the lvs., as they are a normal, waxy secretion of the plant.

James Vick.
MAMILLARIA, See Mammillaria.
MAMMĖA (from a South American name). Guttifero. Six specjes of tropical trees, one of which. M. Americana, produces the fruits known as the Nammee

Apple or St. Domingo Apricot. These are 3-6 in. iu diameter, round, russet-colored or brown, with a yellow juicy pulp, and 1-4 large, rough seeds. The skin and seeds are bitter and resinous. The fruits are eaten raw without flaroring, or with wine and sugar, or sugar and cream. They are also preserved. The taste for them does not have to be acquired. The tree is cult, in S . Fla, and S. Calif., and a few fruits are bronght from the West Indies to the U.S. The nearest ally of horticultural value is the Mangosteen, helonging to the genus Garcinia, characterized by having 4 sepals, while Mammea has a calyx which is closed before anthesis, and afterwards is valvately 2 -parted. Mammeas have rigid, leathery lrs., often dotted with pellucid glands: peduncles axillary, 1-fld., solitary or clustered: fls. polygamous; petals $4-6$; stamens numerous; stigma peltate or broadly lobed: ovary 2-4-celled.

Americana, Linn. Mammee Apple, St. Domngo Apricot. Fig. 1354. Tree, $40-60 \mathrm{ft}$. high: Ivs. obovateoblong, rounded at tip, $4-8 \mathrm{in}$. long: peduncles few or solitary: petals white, fragrant ; anthers oblong, laterally dehiscent. B.M. 7562.
W. M.

Mammea Americana is native from the West Indies to Brazil. The wood "s durable and well adapted for building purposes, poses and piles. It stands damp. It is beautifully grained az 3 is used for fancy work. The gum is applied to extract chigoes; dissolved in limejuice it destroys maggots in sores at a single dressing. An infusion of the bark is astringent and is useful to strengthen the recent cicatrices of sores. A liqueur has been ohtained by distillation from the flowers infused in spirits of wine, known in the lsland of Martinique by the name of "Creme des Creoles." The fruit is the size of a very large orange. It has a sweetish, somewhat aromatic taste and a peculiar odor. Not much use is made of it. Seeds germinate freely, and young plants are easily raised.
W. Harris.

MAMMEE APPLE. See Mammea.

MAMMILLARIA (Latin, mammila : referring to the nipple-like tubercles on these plants). Often but not originally spelled Mamillaria. Stems simple, branching or in clusters from the root, commonly hemispherical or short-cylindrical, but often depressed or sometimes much elongated; the surface entirely broken up into tubercles (mamillæ): fls, usually short-funnelform, with naked or nearly naked tube and ovary, borne in the more or less woolly axils between the tubercles, or at the inner extremity of a narrow groove on their upper surface: fr. globose to linear-clavate, nearly always smooth and berry-like. The first subgenus is rather indefinitely separated from the tuberculate Echinocacti by the smooth fruit, and by the character of the gronve, which in Mammillaria is hardly more than an impressed line, while in Echinocactus it is shorter and so broad as to be obviously a continuation of the spiniferous areola.

The cultivation of Mammillaria differs in no respect from Echinocactus, which see.

Review of Subgenera.

Subgenus 1. Coriphantha (flowering in tertex). Tubercles, at least the flowering ones, narrowly grooved on the upper side, from apex nearly to base, except in M. macromeris. Fls. showy. large for the gevus. Fruit green or greenish, except in M. tuberculosa and M. Missouriensis. Seeds brown, lightly reticulated and thinshelled, with ventral or subventral hilum, except in dasyacanthe and Missouriensis. Species Subgenus II. Dolicothele. Tubercles cylindricconical, long, loose and of soft texture. Fls. large, yellow, from the axils of the upper tubercles. Species
Subgenus III. Cocheviea. Stems elongated, forming large clumps: fls. in a crown near the apex, $I \frac{1}{2}-2 \mathrm{in}$. long, narrowly tubular-funnelform, somewhat eurred and bilabiate, with widely spreading sepaloid scales, the whole flower uniformly waxy red; stamens and style exceeding the petals: fr, red: one or more centrals hooked, except sometimes in M. Halei. All from Lower California and adjacent islands.

Species 26-29

1354. Mammea Americana-Mammee Apple, or St. Domingo Apricot ($\times 1 / 2$). (See page 971.)

Subgenus 1V. Eumamillaria. Fls, usually small, produced from the axils of μ rooveless tubercles, and nearly always remote from the vertex: fr. usually clavate and red, nearly always destitute of scales.............................. Species $30-77$

SUBGENUS 1. CORYPHANTBA.
A. Blossoms yellou: spines mostly y fllow or yellowish, one or more honey-glands usually found in the groove.
B. Fls. remote from the vertex. C. Glands one or two conspiczoms red or yellow, in the axils: stems long, in age making large clumps: spines rather slender: radials $1 / 3-1 / 2$ in. long, centrals $1 / 2-3 / 4$ in. long... 1. raphidacantha
2. macrothele
3. erects
4. recurvata
cC. Glands none in the axil... BB, Fls. central of nearly so: plants mostly glaboke or depressed, $1^{1}-3$ in. in diameter: radial spines laterally compressed near the base
5. Scheerii
6. robustispina
C. Stems nearly always simple: radial spines rather rigid and pectinately spreading: centrals $1-1$, the upper turned up umong the radinls, the lower deflexed or horizontal. Species closely related and perhaps confluent \qquad
9. echinus
10. scolymoides
cc. Centrals none 11, radians
12. pectinata
13. impexicoma
ccc. Stems cespitose from the grooves of the tubercles, often densely so: groore without glands but often spinose for most of its length: radial spines fewer and weaker: central solitary or rauting
14. sulcata
15. Nickelsæ
16. Missouriensis

AA. Blossoms purple or purplush: spines usually gray or glossy, the centrals and tips black or brown: ovary and fruit often scale-bearing.
B. Radial spines 10 or more, often very numerous, coutering the whole plant: centrals at maturity rarely less than 4.
c. Glands small in a chain in some of the grooves: spines long but weak, not obscuring the body
cc. Glands none in axil or groove so far as knou'n..18. conoidea
19. vivipara
20. radiosa
21. dasyrcantbs
22. tuberculosa

BB. Radial spines less than 10:
central solitary or wanting:
tubercles large and broad..23. cornuta
24. elephantidens

SCBGENUS II. DOLICOTHELE.
25. longimamma

SUBGENUS 111. COCHEMIEA.
26. Roseana
27. setispina
28. Pondii
29. Halei

SUBGENES IV.
A. Juice uatery: tubercles rarely angular.
B. Spines (hooked) none: fls. yellowish or whitish, with rosy strectied petals.
C. Stem s proportionately slen-
der: tubereles short-
ovate: radial spines
rigid, spreading, re-
curced so that the points
hardly project............30. elongata
31 Leona
cc. Stems low, usually broader
than high. No bristles in
the axils, except in M.
candida and M. plu-
mosa.
D. Radial :pines few, not hiding the body32, decipiens
33. fragilis

DD. Radial spines uumerous, s nowy whitc, covering and hiding the whole plant...........34. lasiacantha
35. plumosa
36. senilis
37. barbata
38. vetula
39. candida

BB. Spincs one or more hooked and central, except in M. pasilla and M, dioica insuluris.
C. Bristles one or more found in the axils betreen the tubercles.

40. pusilla
41. Bocasana
42. Wildii
43. tetrancista
4. dioica
45. armillata

C. Bristles none in the axils, except pertups in M. Car-
retii........................46. Wrightii
47. Goodrichii
48. Grahami
49. venusta
50. Mainæ
51. Carretii

AA. Juice milky none in the trebercles, bat found or to be suspected in the body. Fo hooked spines, Radial spines less than 15 ; centruls usually 1.
B. Fls. yellow 52 , eriacantha

BB. Fls. blood-red. 53. sphacelata

вBB, Fls, carmine.
.54. spinosissima 55. rhodantha 56. dolichocentra
57. discolor 58. Lesaunieri 59. Haagrana 60. elogans

AAA. Juice milky exuding from wounds in any part of the plant: stems not elongated: tubercles usually angular: no hooked spines, except in M. uncinata. Section Lactescentes.
B. F'ls. red or purple or carmine, - said to be yellow in Parkinsonii.
C. Spines terete: radials white, setacuous, numer. ous, interwoven and covering the plant: stems at length cylindricalor clueate: axils vooolly......... 6
61. bicolor 62. Parkinsonii 63. formosa
cc. Spines few, stouter, often angular, some of the centrals very long and more or less flexuous : tubercles rather large, angled: axils woolly \qquad 64. angularis 65. centricirrha 66. mutabilis 67. Heeseana

BB. Fls. whitish, yellou'ish or flesh-colar.
c. Radial spines 9-22, seldom less than 12: tubercles slender, scarcely angled.68. simplex 69. Brandegei 70. Heyderi
cc. Radial spines rarely as many as 9: body mostly depressed.................71. meiacantha
72. carnea 73. uncinata
74. Trohartii
75. sempervivi
76. Caput-Medusæ
77. micromeris

INDEX.
acanthophlegma, 60, aulacothele, 2.
Alversoni, 20.
ancistracantha, 1
angularis, 64.
applanata. 70.
arietina, 65. Arizonica, 20. armillata, 45.
aureiceps, 55. autumnalis, 66. barbata, 37. bicolor, 61 . Bocasana, 41. borealis, 20. Brandegei, 69.

Brownii, 6. calcarata, 14 . eandida. 39 . Caput-Medusze, 76. carnea, 72 ,
Carretii, 51.
centricirrha, 65. chlorantha, 20.
cirrhifera, 66.
conoidea, 18 .
cornifera, 7.
cornuta, 23.
crassispiaa, 55.
daimonoceras, 8 .
dasyacantha, 21.
decipiens, 32 .
deflexispina, 65.
densa, 30.
denudata, 34.
deserti, 20.
dioica, 44.
discolor, 57.
dolichocentra, 56.
echinaria, 30.
echinata, 30.
Echinus, 9.
elegans, 60,
elephantidens, 24. elongata, 30. erecta, 3 .
erecta, 3 .
eriacantha, 59
fissurata: See An
halonium.
formosa, 63.
Forsteri, 65.
fragllis, 33.
fulvispina, 55.
fuscata, 55.
Gabbii, 69.
Galeottii, 50, 56.
globosa, 25.
Goodrichii, 4, 47.
Grahami, 48.
Greggii, 77.
Guilleminiana, 32.
Haageana, 59.
Halei, 29.
Heeseana, 67.
hemispherica, 70.
Heyderi, 70.

Hirschtiane, 90. impexicoma, 13. insularis, $4 t$. Klugei, tio. Krameri, 65. lasiacantha. 34 , Lehmanni, 2. Leqmanti, 31 . Lesaunieri, 58. longimsmma, 25. macromeris, 17. macrothele, 2. Маina, 50 . meincantha, 71. melacantha, 71.
micromeris, 7. mieromeris,
minima. 30. Missouriensis, 16. multiceps, 40. mutabilis, 66. Neo-Mexicana, 20. Nickelse, 15. nivea, 61. Nogalensis, 4. Nuttallii, 16. Odieriana, 55. Palmeri, 44. Parkinsonii, 62. pectinata, $1 \geq$. Pectinata, 12. Pfeifferi, 55. phellosperma, 43. plnmosa, 35 . Pondii, 28 Potosina, 60. prismatica: See Anhalonium. pusilla, 10 . pyramidalis, 55 . radians, 11. radiosa, 20. Radliana, 26. raphidacautha, 1.
recurvata, 4. recurvispina, 4. rhodantha, fos. robustior, 16. robustispinti, 6 , Roseana, 26 , Rosearia, 26 sanguinea, 51.
Scheerii, 5 .
Schmidtii, 6.).
scolymoides, 10. sempervivi, 75 , senilis, 36 . semilis, 36 .
setispina, 27 . similis, 16 . simplex, 68. splascelata, 53. spharica, 25. spharotricha, 39. spinosissima, is. stella-anrata, 30 . stellaris, 40. stellatus, 40 . strobiliformis, 18,22. subangularis, 64. suleata, 14 temuis, 30. tetracautha, 56, 65. tetrancistra, 43 . Texana, 40. Trohartii, 74. tuberculosa, 22. uberiformis, 25. uncinata, 73. venusta, 49. vetula, 38 . vivipara, 19.
Fildiana, 12. Wildii, 42.
Wissmanni, 16.
Wrightil, 46.
I. raphidacántha, Lem. Stems becoming 1 ft , or more long, $2-3$ in. in diam., often clavate: tubercles erectspreading, somewhat flattened, often with 1 or 2 glands in the groove: spines yellow in the young state, soon gray; radials $6-10$; central 1 , longer and stouter, straight or hooked in the same plant: fls. about 1 in . broad. San Luis Potosi, Mex. - The more constantly hooked form is M. ancistracentha, Lem.
2. macrothèle, Mart. (M. aulacothèle, Lem. M. Léhmanni, Otto). Stems stout, attaining nearly 2 ft . in height by 4 in. in diam.: tubercles long, conical, at first upright, in age becoming even deflexed: spines all yellow; radials $6-8$, spreading; centrals $1-2$, longer and stouter: fls, $1 \frac{1}{2}-2$ in. broad. Central Mex.
3. erécta, Lem. Branching from base and from decumbent stems, attaining 12 in , or more in lieight by 3 in. iu diam., bright green: tubercles conical, short, upright: spines all yellow; radials $8-13$; centrals 4 or less: fls, $2-21 / 2$ in. in diam. Cent. Mex. - In the groove elose to the spines is often found, especially in the flowering area, a conspicuous honey gland.
4. recurvata, Engelm. (M. recurvispina, Eagelm. M. Nogalénsis, Runge). Stems depressed-globose and often deeply concave, $6-8 \mathrm{in}$. in diam., forming large masses $1-3 \mathrm{ft}$. in diam.: tubercles short, with usually a large gland in the groove near the apex: spines yellow or whitish, stiff, recurved-pectinate, interworen and covering the whole plant ; radials 18-20; central 1 , rarely 2 , recurved: fls, about $1 \mathrm{in} . \operatorname{long}$, brownish outside. Near Nogales, Arizona, and southward in Sonora.
5. Scheèrii, Muhlpf. Stems ovate-globose, 3-6 in. in diam., usually simple: tubercles large and distant, deeply grooved, with $1-5$ glands in the groove: spines stout, rigid, sometimes reddish; radials $6-16$; centrals $1-5$, stouter and longer, 1 rery stout and porrect: fls, 2 in. long: seeds large for the genus. S. WT. Texas and southward in Mexico.
6. robustispina, Engelm. (M. Brórnii, Toumey). Much like the preceding, but tubercles teretish, no glands in the groove or sometimes a single one at apex: spines very stout; radials $10-15$; central 1 , louger, straight, curved or even hooked, rarely an additional straigbt upper one: fls, 2 in. long, with very slender tube: seeds large. Babuquibari mountains south of Tueson, Ariz.

7 cornifera, DC. Tubereles ovate, thick, rather crowded: radial spines $15-17$, ashy white, 6 lines long; central 1 , longer and stouter, erect, somewhat curved. Mexico.
8. daimonocéras, Lem. Vertex impressed, very woolly tubercles erect-conical: spines grayish; radials 20 or more, the upper accessory ones fascicled; centrals usually 3 , stronger, the 2 upper divaricate and somewhat recurved, the lower horizontal or recurved. Mexico.
9. Echinus, Engelm. Differs from the above in the less depressed shape and rather more numerous spines. Southern Tex. to Mex.
10. scolymoldes, Scheidw. At length somewhat cespitose: tubercles conical, hent inwards and imbricated: radial spines $14-20$, whitish or horn-colored; centrals 1-4, longer and darker, the upper mingled with the upper radials, the lower stouter and bent downwards: fls. 2 in . in diam. Mex., south of the Rio Grande.
11. ràdians, DC. Stems simple: axils naked: tubercles oval, large: spines white, rigid, subtomentose. Mex.
12. pectinàta, Engelm. Stem simple: tubercles quadrangular at hase, conical above; areolæ round-obloug: spines 16-24, yellowish, laterally compressed at base, stiff, pectinate, somewhat recurved: fls. $21 / 2 \mathrm{in}$. in diam.; petals broadest ahove, obtusish. Pceos river and Leon Springs, Tex.
13. impexicòma, Lem. Vertex deeply impressed, densely woolly: tubercles somewhat anculate; areolæ round: spines 18-20, gray, rigid, covering the whole plant; very rarely a single porrect central. Mex.
14. sulcàta, Engelm. (M. calcaràta, Engelm.). Densely cespitose from the upper part of the groove: tubercles $7-9$ lines long, ovate-oblong, with dilated base, somewhat imbricate, spreading in age: spines gray, rigid, subulate; radials $12-15$, the upper $3-5$, fas cicled; central 1, recurved, wanting in younger plants: $\mathrm{fls} .21 / 2 \mathrm{in}$. in expansion, the tube red within; sepals not fringed. Tex., from the Brazos to the Nueces river.
15. Nickelsæ, Brandg. (M. Nickelsii, Hort.). Very near the preceding, hut radial spines more numerous, 14-18, the fascicled upper ones much longer than the lower, and no central. Mex., south of Laredo, Tex.
16. Missouriénsis, Sweet (M. Víttallii, Engelm.). Nearly simple, $1-2 \mathrm{in}$. in diam.: tubercles cylindricconical, loose and spreading, slightly grooved: spines white, weak, puberulent, not hiding the body; radials 12-17, spreading; central one longer and stouter, often wanting; fls, about 1 in . long, yellow to fawn-color, with reddish streak; sepals fimbriate; petals acute or acuminate: berry red, the shape and size of a small pea; seeds black and pitted. Mont. to Kans. and E. Colo.

Far. símilis, Engelm. Cespitose, in clumps often a foot broad: spines fewer: fl. aud fr. larger. Kansas river to Texas.

Var. robústior, Engelm. (M. Wissmannii, Hildm.). Almost simple: tubercles longer and looser: spines smooth, rather short aud stout; radials 10-12; central 1: fls, even larger than in M. simitis. Tex.
17. macromèris, Engelm. Fig. 1355. Low, usually soon proliferous, dark green: tubercles large and long. loose and spreading, but often incurved; groove rather short; radials 10-17, weak, slender and spreading; centrals at maturity usually 4 , somewhat stouter and much longer, sometimes more than 2 in . long: fls. purple, often 3 in . in expansion; petals erose, mucronate: fr with several scales on the ovary. Along the Rio Grande from New Mexico to Texas. See, also, Fig. $746 a$.
18. conoidea, DC. (M. strobiliformis, Engelm.). Ovate-conical, with densely woolly vertex : tubercles short, usually densely appressed-imbricate in 8-10 spiral, rib-like rows: radial spines $10-16$, straight and stout; centrals $3-5$, stouter, blackish, the upper ones erect-spreading, the lower stouter, borizontal or deflexed: fls, about 1 in . in expansion, deep purple, paler outside: fr. short, buried and bidden in the axillary wool. N. E. Mex.
19. vivipara, Haw. Fig. 1356. Low and depressed globose, usually cespitose, forming large masses: tu bercles terete and loose: radial spines 12-20, slender hut
stiff; centrals usually 4 , but sometimes as many as 8 , brownish, the upper erect-sprealing, the lower stouter and deflexed: fls. bright purple, $1-11 / 2 \mathrm{in}$. in expansion; stigmas mucronate. From southern Br. Am., through the upper Missouri region to E. Colo.
20. radiòsa, Engelm. Ovate or cylindrical, sometimes proliferous: tuhercles terete: radial spines $20-30$, white, with dusky apex, very unequad; centrals 4 or 5 , stouter aud longer, tawny, upper ones longer, lowest shorter and horizontal: fls. $11 / 2-2 \mathrm{in}$. in expansion; stigmas obtuse. Southern Tex. and northern Mex.
Var. Neo-Mexicàna, Engelm. (M. Hirsclitiàna, Haage, Jun.). Lower, more or less proliferous from the lower grooves: radial spines $20-40$, white; centrals $3-12$, white below, blackish ahove.
Var. borealis, Engelm. Ovate or subglohose : radial spines 12-20; centrals 3-6, purple-spotted. Very near M. vivipara.

Var. Arizónica, Engelm. Globose or orate, large: tubercles long-cylindrical: radial spines $15-20$, whitish; centrals 3-6, deep brown above: fls. large, rose-colored. N. Arizona.

Var, desérti, Engelm. Low, simple, with slender nearly cylindric tubercles: radial spines 15-20; centrals 8-10, reddish tipped: fls, straw-colored, with purplish tips. Ivanpah, Calif.
Var, chlorántha, Engelm. Cylindrical, sometimes as much as 9 in . high : radial spines $20-25$, almost in 2 series, gray; centrals $6-9$, stouter, $1 / 2-1$ in. long, reddish only at tip: fls. greenish yellow. S. Utah.
Var. Álversoni, Coulter. "Foxtall Cactus." Robust and branching, sometimes 10 in . long, glaucous: tubercles short and broad, somewhat angled, forming more or less distinct ribs: radial spines numerous; centrals 8-14, stout, spreading, blackish half-way down: fls. pink. S. E. Calif.
21. dasyacántha, Engelm. Simple, suhglobose: tubercles terete, loose: radial spines $25-35$, hair-like, white, with brownish apex; centrals $7-13$, bristle-like, pale below, brown above, longer, the most interior one borizontal, sometimes wanting: seeds black. with nearly basal hilum. Tex.

355. Mammillaria macromeris $(\times 1 / 2)$. No. 17 .
22. tuberculòsa, Engelm. (M. strobilifórmis, Scheer). Ovate or cylindric, rather slender, somewhat dry of texture, the spines falling from the older tubercles, leaving them as dry, corky protuberances: tuhercles short-ovate from a broad hase; axils densely woolly: radial spines $20-30$, slender, rigid, white; centrals 5-9, stouter. pur-
plish above, the upper longer, erect, the lowest horizontal or deflexed: fls. 1 in . iu diam., pale purple: fr . $3 / 4 \mathrm{in}$. long, red, with a conical cap formed of the withered remains of the flower: seeds brown. Tex.
23. cornùta, Hildm. Depressed-globose or hemispherical, small, grayish green: tubercles large, flattened and imbricated; areolæ round: radial spines 5-7, stout, short, compressed, radiant, grayish, the upper longer; central 1, stouter, as long as the radials: fls. rose-red. "ln age the spines fall off and the plant, covered with imbrieated, scale-like tubercles, reminds one of a pineapple." Mexico.

1356. Mammillaria vivipara ($\times 1 / 2$). No. 19.
24. elephántidens, Lem. Rather large, glaucous green: tubercles very large and thick, becoming borizontal or deflexed and somewhat bilobed: spines 6-8, all radi li, stout, yellowish or gray, appressed to the plant and somewhat recurved: As, rose-color, 3 in. in expansion. Mexico.
25. longimámma, DC. Cespitose, bright green, form ing large, low clumps: tubercles sometimes more than 2 inches long: spines straight, pubescent; radials 7-10; central 1: fls. 2 in . or more in expansion. Mexico.

Var, uberiformis, Schum. Tubercles darker green: radial spines seldom more than 4; centrals none.
Var. globòsa, Schum. Tubercles dark green, very long: radial spines as many as 12 ; centrals $2-3$.
Yar. sphǽrica, Engelm. Tubercles about 1 in . long. radial spines $12-14$; central 1. Tex.
26. Roseàna, Brandg. (M. Radlid̀na, Quehl.). Upright branches $1-1 \frac{1}{2} \mathrm{ft}$. long, $11 / 2-3 \mathrm{in}$. in diam.: tubercles rather remote, flattened aud appressed, later spreading: radial spines 8 ; eentral 1, brownish, strongly hooked, $1-2 \mathrm{in}$. long, twice as long as the radials: fr. bright red, flat on the broad top and much shorter than the tubercles.
27. setispina, Engelm. Upright branches 8-12 in. long, $2-4 \mathrm{in}$. in dian., forming dense clumps: tubercles rather erowded, ovate, short: spines white with black tips; radials $10-12$; centrals $1-1$, stouter, the lower one strongly hooked, often twisted, $11 / 2-2 \mathrm{in}$. loug, 2 or 3 times as long as the radials: fr. red, much exceeding the tubercles.
28. Pondii, Greene. Upright branches $10-15 \mathrm{in}$. long. $11 / 2-2$ in. in diam., making much smaller clumps than the two preceding: tubercles short, ovate, not crowded; axils setose: spines in three series, outer 15-25, short, white; inner $5-8$, brown, longer; central row 3, brown, usually 2 of them strongly booked, 1 in . or more in length, much exceeding the other spines: fr. oval or obovate, dull purplish red, $3 / 4 \mathrm{in}$. long.
29. Hàlei, Brandg. Upright branches $11 / 2-2 \mathrm{ft}$. high, 2-3 in. in diam.: tubercles rather crowded, short-conleal from a broad base: spines sub-3-serrate, outer $15-25$; centrals 6-9, darker, the lower one much stouter, an inch or more long, usually straight but sometimes hooked, twice as long as the other spines: fr. obovate, red.
30. elongàta, DC. (M. dénsa, Link \& Otto). Erect, $6-7 \mathrm{in}$. long, $1-1 \frac{1}{2}$ in. thick: radial spines $16-18$, yellow; centrals none: fls, white or yellowish. Central Mex.
Var. echinàta, Sehum. (M. echindta and M.echinaria, DC.). Radials as many as 20, yellow; centrals 2-3, brown. - A stout form.
Var. ténuis, Schum. (M. tínuis, DC. M. minima, Salm.). Radial spines about 20, pale yellow; centrals none-The most slender form, ouly $1 / 2$ in. thick.
Var. stélla-auràta, Schum. Stems somewhat thicker: spines golden yellow; 1 central usually present.
31. Leòna, Pos. Stems stouter, glaucous, upper axils woolly: radial spines about 30 , radiant, sleuder, white; centrals 6-12, much stouter; the upper ones longest, ivory white at base, dove-color or bluish above. Nuevo Leon, Mex.
32. decipiens, Scheidw. (M. Guilleminidna, Lem.). Irregularly cespitose, somewhat clavate, often rosy: tubercles cylindrical; axils sparingly bristly: radial spines $7-12$, whitish; centrals $1-2$, brown, longer; all slender. Mex.
33. frágilis, Salm. Stems low, usually as broad or broader than high, extremely proliferous, the offsets so lightly attached that they soon fall by their own weight: radial spines $12-14$, white; centrals none or 1 , rarely 2 , white, with dusky tip. Mex.
34. lasiacántha, Engelm. Low, usually globose or depressed-globose: tubereles slender, axils naked: radial spines as many as $40-80$, feathery; centrals none. Tex.

Var. denudàta, Engelm. (M. Rúngei, Hort.). Larger, both plant and tubercles: spines naked. Cact.
35. plumòsa, Web. Densely cespitose, at length forming masses $6-10$ in. in diameter; axils long-hairy: radical spines about 40 , featbered to the tip; centrals none.This and the preceding are like feathery balls. M. plumosa is sold usually under the name of M. lasiacantha, to which it appears to be rather closely related. North Mex.
36. senilis, Salm. "Proliferous at base: axils not setose: tubercles crowded: spines all white; exterior very numerous, erect-spreading, hair-like, flexuous ; centrals $4-6$, a little stronger, the upper and lower hooked." Chihuahua, Mex.
37. barbàta, Engelm. Globose-depressed: axils not setose: exterior spines very numerous, pilose; interior stronger, yellowish, 10-15; central solitary, stout-hooked, yellowish, not much longer than the others: fls. small, not remote from the center; sepals fimbriate: berry "green." Near Chihuahua, Mex.
38. vétula, Mart. Subglobose or hecoming subcylindrieal: axils not setose: radial spines bristle-like, at first $25-30$, obliquely spreading, later twice as many and horizontal ; centrals $1-3$, yellowish brown, scareely stouter or longer. Mex.
39. cándida, Scheidw. (M. spherotricha, Lem.). At length cespitose, globose, becoming longer: vertex depressed: axils setose: radial spines bristle-like, more than 50 , horizontal and interwoven; inner spines 8,10 , 12 , or more, a little stouter and upright: His. Hesh-color or pinkish.
40. pusílla, DC. (Cactus stellàtus, Willd. M. stellàris, Haw.). Low, globular, proliferous, making large masses: tubercles cylindrical, small and loosely spreading; axils with long, hair-like, tortuous bristles: radial spines $12-20$, very soft and flexuous; centrals $4-6$, yellowish, a little rigid, pubescent: fls. yellowish white. W. Indies.

Var. multiceps, Salm. Larger: tubercles upright, crowded: radial spines numerous; centrals 6-8, slender, pubescent, reddish yellow. Mex.

Var. Texàna, Engelm. Larger than the last: spines in 3 series; outer capillary, erisped, $30-50$; interior $10-12$, a little more rigid, pubescent, white; centrals 5-8, longer, stouter, pubescent, yellow at tip. Tex, and adjacent Mex. Cact.
41. Bocasàna, Pos. Depressed-globose, or a little lengthened, at length densely cespitose: axillary bristles as long or longer than the tubercles: radial spines 2.5-30, white, stiff at the base, ending in a tlexuous threal; centrals $2-3$, slender, porrect, short, all yellow with brown tips, the hooked one brown nearly to the base, pubescent. Nex.
42. WIldii, Dietr. (M. Wildiana, Otto). Cespitose, forming hemisplerical clumps: radial spines $8-10$, very slender, white, spreading; centrals usually $3-1$, a little stouter and longer, honey-yellow, brown at base, pubescent, 1 -hooked. Mex.
43. tetrancistra, Engelm. (M.phellospérma, Engelm.). Ovate or ovate-cylindrical, rather large, simple or sparingly branched from the base: young axils sparingly setose: radial spines $30-60$, in two series; exterior bristle-like, white; interior stouter and longer, dusky-tipped or purplish; centrals $1-4$, longer, brown or blackish, sometimes all hooked, the upper ones sometimes straight: seed partly immersed in a brown corky cup. S. Calif. to Utah. Cact.
44. didica, Brandg. (M. Goddrichii, of California). Simple or cespitose from the base, ovate to cylindrical, $3-8 \mathrm{in}$. high: tubercles somewhat angular and leathery: radial spines $11-22$, white, with brown or purple tips; centrals $1-1$, longer and darker, the upper turned up among the radials, the lower porrect and strongly hooked: fis often unisexual, yellowish white with rosy streak. Calif. and Lower Calif.

Var. insulàris, Brandg. (M. Pálmeri, Coult., not of Jac.). Stems densely cespitose, shorter: axils densely woolly: spines much whiter, usually all straight. San Benito Island.
45. armillàta, Brandg. Taller, often 1 ft . in height, branching at base and along the stem: tubercles erowded: radial spines $9-15$; centrals $1-4$, nearly twice as long: fls. small, yellowish, scarcely spreading. Lower Calif.-The plant is marked by darker circular bands.
46. Wrightii, Engelm. Flobose or depressed, topshaped below: radial spines $8-12$, white, pubescent; centrals 1-3, reddish black, seareely longer than radials, all hooked; fls, about 1 in . long, purple. New Mexico.
47. Goòdrichii, Scheer. Erect, cylindrical, branching at base; axils naked : radial spines about 12 , white; centrals 4, white below, brown ahove, the 3 upper erectspreading, the lower longer. Cedros Island and Lower California.
48. Gràhami, Engelm. Globose or ovate, somewhat cespitose: ralial spines $15-30$, white, often dusky at tip, the upper ones shorter; centrals usually 4, usually bluekish from a paler base, the 3 npper turned up among the radials, and, when pale, hardly to be distinguished from them; lower porrect: Hs: rose-colored, 1 in , in expansion: fr. nearly 1 in . long. From Texas to S. California aud adjacent Mexico.
49. venùsta, Brandg. Globose or hemispherical, small, of ten cespitose: tubercles very thick aud blunt, concave at the end, usually extremely glaucous: radial spines $9-15$, stout, from pure white to white below and brownish ahove; central commonly 1 , sometimes 2 or 3 , the lower little longer and darker than the radials: As, rosecolor, $1^{1 / 2}$ in. in expansion: fr. scarcely juics, nearly 1 in. loug, circumscissile near the base. So. Lower California.
50. Mainæ, Brandg. Hemispherical to ovate, usually simple: tubercles somewhat incurved, glaucous, the lower part and the axils often bright rose-red: radial spines $10-15$, yellowish becoming gray, the upper shorter; centrals $1-3$, the upper shorter and smaller, turned upward, one of them sometimes hooked, lower central stout, strongly hooked, somewhat twisted, yellowish below, black at tip: fls. flesh-color: fr. shorter than the tubercles. Vicinity of Nogales, Arizona.-Sent out as M. Galeottii.
51. Cárretti, Schum. Simple, depressed-globose, ratheI small: radial spines spreading-recurved and interwoven, rather long, yellowish ; central 1, slender, chestnutbrown, paler below : fl. whitish, with rosy streak in petals; sepals long-acuminate, Mex. - The only specimen seen has bristles in the axils.
52. eriacántha, Link and Otto. Cylindrical, elongated, $1 / 2 \mathrm{ft}$. and more in height ("reaching 20 inches") by $2-21 / 2$ in. in diam.: tubercles crowded, acutely conical: spines all pubescent ; radials 20-24, pale yellow, bristle-like; centrals 2, stronger, nearly twice as long as the radials, golden yellow, one directed, the other downwards: fls. yellow, small: fr. yellow. Mex.
53. sphacelàta. Stems cespitose, cylindrical, 6 in. or more long, 1 in . in diam.: tubercles short, conical from a broader, rhombic base: spines ivory white with blackish tips; radials $12-18$, horizontal-spreading; centrals 3-4, upright: fls. small, the petals acute. Mex. - The proper position of this and of the preceding species is still quite uncertain.
54. spinosissima, Lem. Stems cylindrical, reaching 1 ft . in height and $21 / 2 \mathrm{in}$. in diam.: tubercles short, ovate-conic, somewhat tetragonal: radial spines $20-25$, setiform, white, spreading; centrals 12-15, brownish red, stronger and twice the length of the radials. Mex.

Var. sanguinea, Hge. Stem somewhat clavate, rather shorter and stouter: radial spines $18-20$, spreading, white ; centrals 8 , only a little longer, but thicker and bulbous at base, white with brownish base and dark brown tip, the young ones dark blood-red. Mex.
55. rhodántha, Link aud Otto (M. Odieriàna, Lem. M. fulvispine, Haw.). Stem long-cylindric or clavate, reaching more than 1 ft . in height, usually 2 -parted: axils bristly: radial spines $16-20$, white, bristle-like, horizontal-spreading ; centrals t-6, rigid, white or yellowish, the upper black at tip. Mex.

Var, pyramidalis, Schum. Central spines dark brown, the young ones ruby red.

Var. Pfelfferi, Schum. (M. aurèiceps, Lem.). Radial spines 25 or more, yellow; centrals $6-7$, recurved spreading, golden brown.

Var. crassispina. Schum. Radial spines 24-27, whitish: centrals $6-7$, larger and stouter, more curved darker.

Var. fuscàta, Schum. Axils naked; tubercles 4-angnlar at base: radial spines $25-28$, radiant, bright yellowish brown : centrals 6 , stont, strongly curved, the upper very long.
56. dolichocéntra, Lem. (M. tetracíntha, Hook.). Subglobose (but said to reach a yard in height): tubercles somewhat 4 -angled; areolæ elliptic or rhombic: radial spines none; centrals 4 , slender, rigid, the upper curved upward, $1-1 \frac{1}{2}$ in. long, the three lower half as long, all grayish hrown. Mex.

Var. Galeóttii, Först. Radial bristles 8-14, very short, soon falling; centrals 4 , seldom 1 or 2 more, spreading, yellowish, with points, the upper and lower longest. Mex.
57. discolor, Haw. Globose or ovate, glaucous: outer spines $16-20$, white, radiant; interior 6 , rigid, recurved, white below, black above, upper and lowermost very long. Mex.
58. Lesaunièri, Schum. Hemispherical or very shortcylindrical (habit of $\dot{\boldsymbol{M}}$. Heyderi): spines brownish, short; radials 11-13; central upright, stronger.
59. Haageàna, Pfr. Cespitose: heads small, at length cylindrical, slender: tubercles small, crowded; axils woolly: radial spines about 20 , pure white, only about 11/2 lines long; centrals 2, black, slender, elongated, upper 3, lower 4 lines long. Mex.
60. elegans, DC. (M. acanthophteqma, Lehm. M. Potosina, Hort. M. Klügii, Ehrh.). Simple, then proliferous and densely cespitose, depressed-globose, later lengthened: tubereles erowded, very small: radial spines more than 20 , bristle-like, about 3 lines long, pure white, interwoven and covering the whole plant; central spines $2(1-3)$, with brown tips, the one directed upward, the other downward, about twice as long as radials, in the axils abundant long white wool. Mex.
61. hicolor, Lehm. Simple or proliferous: tubereles small, crowded, osate-pyramidal : radial spines $16-20$; centrals 2, less than 1 in. long, stouter, erect, blacktipped. Mex.

Var. nivea; Schum. Oborate proliferous tubercles conical: radial spines capillary; centrals 4 , white, with dusky apex, upper one incurved, 1 in . long.
62. Parkinsonii, Ehrh. At length dicbotomonsly divided: tubercles slenderly pyramidal; axils woolly and bristly: radial spines 20 or more, slender; centrals 2 , 3,4 , rarely 5 , brown-tipped, the upper ones $3-4$ lines long, the lower $1 \frac{1}{3}$ in. turned downward. Mex.
63. formósa, Scheidw. Nearly simple: tuhercles 4 -angled: radial spines $18-2 n$, rather rigid; centrals 6 , a little longer, stiffer, thickened at base, reddish or brownish tipped.
64. angulàris, Link \& Otto (M. subangulìris, DC.). Densely cespitose: axils of the young tubercles setose as well as woolly: radial spines $3-7$, the upper ones often very short, the lower one sometimes 3 in. long, occasionally a very long central present. Mcx.
6.5. centricirrha, Lem. (M. arietina and deflexispina, Lem. M. Fórsteri and Krameri, Mühlpf. M. Nchmidtii, Scke. M. tetracántha, Hort.). Copiously proliferous: tubercles pyramidal, 4 -angular: spines irregular, mostly 4-6 radials and 1 central, sometimes only 1 , sometimes 2 centrals with $1-2$ very short radials or none; radials very stout, straight or curved, awl-shaped, reaching $3 / 4$ in.; central stouter, sometimes nearly 2 in. long; young spines yellow. Mex.
66. mutábilis, Scheidw. (M. autımnalis, Dietr. M. cirmifera, Mart.). At length sparingly cespetose, de-pressed-globose or short-cylindric: tubercles pyramidal, 4-angled: axils with stont bristles in the wool: radial spines $1-6$, very small; centrals $1-1$, angled, flexuous, minch longer, particularly the upper one, which reaches 2 in. Mex.
67. Heeseàna, McDow. (M. Pètersonii, Hildm.). Simple, glancous or ashy green : tubercles pyramidal, t-angled: radial spines $10-14$, the three upper pure white and very short, the remainder longer and brownishtipped; centrals 4, the upper ones ereet and forming an elevated covering for the top of the plant, the lower one the longest, 2 in. long and projecting. Mex. - Varies in color of spines.
68. simplex, Haw. Globose or short-cylindric: radial spines $12-17$, the middle ones longest ; centrals $4-5$, somewhat longer, reddish to black: flower brownish green withont, yellowish or whitish green within: fr. red, $2 / 3$ in. long, clavate; seed "black." Cubar.
69. Brándegei, Coult. (M. Gábbii,Coult.). Depressedglobose to short-cylindric or clavate: tubercles slender: radial spines $9-16$; centrals $1-4$, sometimes shorter tban the radials, and stont, sometimes longer and slender, white to brown: fls. reddish brown without, brownish green within: fr. clavate, white, tinged lilac. Central lower Calif.
70. Heỳderi, Mnhlpf. (M. Texénsis, Lab.). Tubereles slender: spines short : radials $16-18$, short, slender, white; central 1, darker, shorter than the lower radials, brown: fls, yellowish, with pale rosy streak in the petals. Arizona to Texas.

Var, applanata, Engelm. Body much depressed, summit flat or concave: radial spines $15-22$. Texas.

Yar, hemisphǽrica, Engelm. Top rounded, radial spines 9-12. N. E. Mex.
71. meiacántha, Engelm. Fig. 1357. Usually simple: tubercles rather large, sharply angled and 4-sided, pyranidal: radial spines $5-9$, mostly 6 , white or yellowish; central 1, rarely a second, shorter and darker than the radials: fls. whitish, with reddish streak. Tex.
72. cárnea, Zuce. Body dark green: tubercles rather large, pyramidal, 4 -angled: radial usually none, rarely 1-2; centrals commonly 4 ,in upright cross, stiff, grayish, with darker tip, in young growth dark brown or reddish: fls, reddish flesh-color. Mex.
73. uncinata, Zuce. Depressed-glohose to subclavate: tubercles pyramidal, not strongly angled: radial spines

4-6, short, gray, dark-tipped; centrals 1 , rarely more, longer and stronger, strongly hooked, dark. Mex.
74. Trohártii, Schum. Globose or depressed, small: tubercles very small, conical, scarcely angled: radial spines 5 , white with dark hrown tips, the lower longest; central 1, dark brown, stiff. Mex.
75. sempérvivi, DC. Globose, blackish green, axils woolly: tubercles short, angled: radial spines 3-7, very short, only found on young tubercles; centrals only about 2 lines long, stout, conical, reddish, later gray: Hs. dull white with reddish streak. Mex.
76. Caput-Medusæ, Otto. Depressed-globose, dull, glancous green, small: tubercles slender, angled at base: spines 3-6, very short, subulate, straight, reddish when young, later gray, pubescent: fls. whitish, redstreaked. Mexico. Monog. ('act. fig. 95.

77. micromèris, Engelm. Cylindrical-clavate, 1-6 in. high, covered by white spines: tubercles only $1 / 2$ line long: spines on the body very short, many serial, successively shorter toward the center, not pungent; in the flowering area the upper tuft of spines having a clavate deciduons tip: fls. pinkish white, borne at tbe summit in a dense tuft of wool and spines, directly behind the apex of the tubercle: fr. red, smooth. Texas.

Var. Gréggii, Engelm. Larger in all its parts. This plant is not a Mammillaria, and has been recently named Echinocactus micromeris, Web.

Mammillarias, in common with other Cacti, run into many forms. Some of these forms may be valuable to the horticulturist, and yet not suffieiently distinet to warrant the giving of definite botanical names. The following names, not accounted for in the above review, are offered in the catalogues of American dealers: M. Brandi.-M. brunea. $-\boldsymbol{M}$. cirrhifera longispina (see No, 66),-M. Donati.-M. filipendula.-M. fuscata leona (see Nos, 55,31).-M. Lassomeri-M. Lesaunieri (?), -M. melnnacantha is an uncertain garcen name.-M. montana, $-M$. Nicholsoni=11. Nickelsw (?).-M. Rebsamiana. - M. recurvens. -M. rigidispina.

Katharine Brandegee.

MANDARIN ORANGE. See Citrus nobitis.

MANDEVILLA (Henry Jolin Mandeville, English minister at Buenos Ayres). A pocynàece. About t'species of tall climbers from tropical America with large, funnel-shaped, 5-lobed Hs, which are yellow, white or rarely tinged violet. \mathcal{M}. surveolens has fragrant white fls, and is cult, outdoors in S . Calif. Seeds are also procurable in the East. The plant closely resembles Dipladenia, which see for culture.

Generio cbaracters: Ivs. opposite: racemes simple, often 1 -seeded, loose, dense or reduced to 2 or 3 fls .: calyx 5 -parted, with several glands inside at the base or 5 scales; corolla tube cylindrical or ovoid; lobes 5 . broad, twisted to the left; stamens fixed at the apex of the tube, included; disk of 5 lobes or scales: ovary of 2 distinct carpels: stigma thick.
suavéolens, Lindl. Sometimes called Chilean Jasmine becanse of its climbing habit and large white fragrant fls. Lvs. cordate, stalked, glabrous abore, glancous beneath; stipules pectinate: racemes with about 9 fls.
each 2 in. across, Argentine Rep, B.R. 26:7. B.M. 3797. (in. 29, p. 537. G.C. I11. 2:817. P.M. 16:289. R.H. 1845:167.- Characterized by a pale, fleshy pectinate ring between the base of the calyx and corolla.
W. M.

MANDRAGORA (name used by Hippocrates; referring to its growing near stables in the market places). Solandeer. A genus of 3 species, one of which is supposed to be the Mandrake mentioned in (ienesis, chap, 30. In America the name Mandrake is applied to the Mayapple, Podophyllum peltatum, but the Mandrake of his-

1358. Mandrake.

From an old berbal (see Mandragora).
tory was a plant with a large spindle-shaped root which was supposed sometimes to become forked and resemble the human form. In this condition it was used as an aphrodisiac. The plant was also called Love-apple, and many superstitions about it stillsurvive. Theold herbals abound in fanciful pictures of the Mandrake, one of which is reproduced is Fig. 1358. M. officinarum is sold in America and may be cult, in the hardy border for its folk-lore interest. M. autumnatis is supposed by some to be the true Mandrake. Both are natives of the Mediterranean region. M. caulescens is found in the Himalayas.

Mandragoras are nearly stemless, perennial herbs with thick roots and large, stalked, wavy-margined lvs., the later ones being usually narrower and entire, and rather large fls, varying from whitish through bluish violet and purplish shades. The fts. are bell-shaped, about 5 -cut, netted-veined and borne in clusters among the tufted lvs. Calyx deeply 5-cut; sinus of the corolla induplicate hetween the lobes.
olficinàrum, Linn. (M. officinalis, Mill.). Mandrake. L.vs, ovate, the first obtuse, the rest acnminate: calyx teeth lanceolate, as long as the oblong berry. Woolson says it needs a shady place. R.H. 1897, p. 131. W. M.

MANDRAKE in America means the May Apple (Podophyllum) but the Mandrake of history is Mandragora.

MANETTIA (Xavier Manetti, of the botanic garden at Florence, born 1723). Rubidceo. This includes the common Manettia Vine, M. bicolor, which has scarlet,
tubular fls. an inch or more long, with 5 spreading yellow tips. It is a twining plant, and is often trained to pillars and trellises both indoors and out, as it blooms more or less the year round. It can also be trained into a bushy form. By lndex Kewensis M. bicolor is referred M. luteo-rHbra, although the former is the older name. William Watson writes of M. bicolor (Gn. 56, p. 6): "It has been in cultivation about fifty years, but until recently it was practically lost, and its place and name taken by a much inferior species, the correct name of which is M. Iutea-rubra. I believe we are indebted to Mr. Godseff for the recovery of the true plant, he having found it in cultivation in the United States a few years ago." Apparently the chief recorded difference between these two species is that the calyx-lobes of $M . b i$ cator are lanceolate or narrower, while tbose of M. I_{m} -teo-mubra are orate.

The Manettia Vine is a rather old-fashioned plant, and generally easy of culture. It is fairly satisfactory as a cool conservatory vine, but is an easy prey to red spider and mealy bug. The fls, are short-lived, and not the best for cutting. Some pardeners would rather have Cupheas or Jacobinia Penrhosiensis. Manettias are prop. by cuttings of young growth inserted in sand with hottom beat. For summer use the rines should have a sheltered but sunny position.

Manettia is a genus of about 30 species of twining herbs and slender subshrubs from tropical and subtropical America. Glabrous or villous: 1vs. usually longacuminate: fls. small or rather large, axillary, solitary or in short corymbs or panicles, white, blue or red; calyxlobes 4, rarely 5 , short or long, narrow or hroad; corolla tube short or long, terete or angled, straight or curved, glabrous or pilose within; stamens 4. "Matsea glabra or Manettia" is alvertised in Amer., but no Matsea appears in botanical treatises.
A. Fls, red, tipped yellow.
B. Calyx-lobes lanceotate, narrou.
bicolor, Paxt. Fig. 1359. Lvs. lanceolate acute, slightly glaucous: calyx of 4 or 8 reflexed lobes. Mts. near Rio Janiero. P. M. Vol. x. 27. (in. 56:1229. F.S.2:69. R.B.21:49. Gt. 47, p. 214.-Manettia bicolor is easy to grow, but it is short-lived and consequently must be renewed often. Welltrained specimens are very pretty.

BB. Calyx-lobes orateacuminate, leafy.
lùteo-rùbra, Benth. $\mathrm{Pu}-$ bescent: Ivs, ovate or oblong, acute, narrowed at the base, tomentose beneath: pedicels solitary : ealyx not toothed in the sinuses : corolla tomentose outside, equally tubular, straight. Brazil. - The above is a full translation of the original description.

AA. Fls. red.

cordilolla, Mart. (M.corddta, Hort.). Lvs. orate, cordate at base, finely pubescent on botb sides: pe-
 duncles axillary, I-fld. Brazil. B.R. 22:1866. B.M. 3202.-Cult. outdoors in Fla. and Calif., and makes a fine subject for planting out in the North.
W. M.

MANFREDA. See Agave.
MANGEL-WURZEL. A race of beets with very large roots, grown for fodder. Often called Beta culgaris, var. macrorhiza.

MANGIFERA (Latin, mango-bearing; Mango being the Hindoo name of the fruit). Anacardidece. A genus of 27 species of tropical Asian trees, of which M. Indica,
the Mango, is cult. everywhere in the tropics. The fruit (Fig. 1360) is large ($t-5 \mathrm{in}$. long) and kidney-shaped, the skin being smooth, rather soft, pale green, yellow or balf-red, and resinous. Inside is a large seed nearly as long as the fruit. The shell of the seed is rough and fibrous; the kernel is shaped like a bean and is sometimes roasted and eaten like chestnuts. In a poor variety of Mango the pulp is so full of fiber that the fruit is sueked rather than eaten, and beginners say it tastes like a ball of cotton soaked in turpentine and molasses. This is particularly true of the common or turpentine variety, but the improved kinds are not unpleasantly fibrous. There are said to be 130 or more rarieties cult. in India, where the Mango is most esteemed. All parts of the Mango tree have a sweet, resinous fragrance which suggests turpentine.
In the tropics the Mango is a staple article of food during the hot months. The ripe fruits are eaten raw, either plain or sliced with wine, sugar and nutmeg. The uripe fruits are made into jellies, preserves, tarts and pickles. Starch and glucose are also made from Mangoes. A wine is made hy adding vinegar to the juice of Mangoes. Various domestic animals are also fond of the fruit. As to quality, the Mango is ranked hy some next to the finest pineapples and the mangosteen.
The Mango is extensively cultirated in the West Indies, and slightly in S. Fla, and S. Calif. A sketch of its history in Florida is found in Bulletin J, Div. of Pomology, U. S. Dept. of Agric., from which the following facts are taken: No fruit stood bigher in the popular esteem in parts of south Florita than the Mango at the time when the disastrous freeze of January, 1886 , killed to the ground every or almost every tree north of Fort Myers. In 1884, 125,000 fruits were shipped from Jamaica to the United States, and brought $\$ 900$. In their eighth year from seed two Florida trees bore 19,000 fruits. Some of these fruits weighed a pound. In all cases where the trees were well cared for they produced from 4,000 to $9,000 \mathrm{Ma}$ goes each when once well in bearing. Mangoes were shipped to Chicago and brought 60 cents a dozen. The fruit ripens June-Sept. The only varieties adrertised in America in 1899 were the Common or Turpentine, Cole, Black, Long, No. 11, Apricot and Apple. The following have been advertised in the past: Alphonse, Banchore, Devambria, Green Nexican, Melachoton, Pirie, Yam. The Mango can be fruited under glass in the North. It requires a winter temperature of 60°.
The Mango tree is evergreen, grows $30-40 \mathrm{ft}$. high and makes a round, den e top (see Fig. 1361). The fls. are small and produced in terminal pyramidal panicles. A greenhouse specimen in England is said to bave borne 108 panicles, each containing 2,100 fls., or a total of a quarter of a million fis. The Mango is a native of the East Indies. W. M.

Mangoes in Jamaica.The Mango was first known in the New World in Brazil, whence it was brought to Barbadoes in the middle of the eighteenth century. In 1ise a French vessel on its way to Haiti was captured by one of Rodney's squadron and brougbt as a prize to Jamaica; the collection of economic plants on board was deposited in the Botanic Garden. Many of the plants were new to the island, and amongat these was the Mango. It is said that the book containing the local names of the fruits was thrown overboard. The plants were numbered, and
1360. Mangifera Indica. Nos. 11 and 32 have become famous varieties in the West Indies. The colored plate in the Botanical Magazine (4510) is supposed to represent No. 32.

1361. Mangifera Indica.

In Jamaica it has become thoroughly naturalized and one of the commonest trees. In wet districts it is liable to cease fruiting after a few years, probably on account of its vigorous growth. It is recommended to treat it as one would other fruit trees in temperate climates in similar circumstances. Propagation is effected either by sowing the seed of good varieties or grafting from a good variety on strong seedlings. The fruit on trees grown from seed is not true to the parent in every case, but the percentage is so large that this has been the usual method employed. The kind of grafting employed is that known as grafting by approach or inarching. Any kind of soil suits it.

WM. Fawcett.
Mangoes in Florida. - The Mango deserves to be planted on well-protected land all over south Florida. The best soil is ligh, well-drained, sandy land suitable for oranges, but the Maugo thrives also on black-jack, scrub at. ${ }^{2}$ spruce-pine lands, where most other trees are a failure. Any good fertilizer will make the Mango grow, but for fruit use plenty of ashes or sulfate of potash beside the usual manure. In case of a hard freeze cut the trunk back at once to sound, live wood. The Mango tree is rery handsome. The young growths are wine-colored.
E. N. REASONER.

Mangifera is a genus of 27 species according to the latest monographer. Engler in DC. Mon. Phan. 4: 195 (1883). They are all tropical Asian trees, their nearest ally of horticultural ralue being the Cashew, which is fully described under Anacardium. Lvs. alternate, stalked, leathery, entire: Hs. polygamo-dicecious; calyx 4-5-parted; petals 4-5, overlapping, the middle nerre usually thickened : fertile stamens 1 , or $4-5$: style filiform.
Indica, Linn Mango. Figs.1360-1. Lrs. thickish, 6-10 in. long, with about 15 pairs of lateral nerves: panicle longer than the Ivs., densely corered with short, yellowish hairs: disk tumid (not minute), 4-5-lobed, wider
than the ovary; petals inserted at the base of the disk, 5 , rarely 4 , with $1-5$ veins, which are prominent on the upper side but scarcely so at the apex; fertile stamens $1-2$, inserted at the base of the disk. B. M. 4010.
W. M.

1362. The beginning of germination in the Mangrove.

MANGO. Consult Mangifera.

MANGOSTEEN. Garcinia Mangostana.

MANGROVE (probably an altered Malayan name) is a name applied to species of Rhizophora (Greek, rootbearing). The Rhizophoras are perhaps 5 or 6 in number, and are widely distributed on tropical shores. The genus gives name to the family Rhizophoracea, which Bentham \& Hooker place in close relation to the Combrelaceo and Myr- facea. The common Mangrove, R. Margle, Linn., is one of the commonest plants on the swampy shores of tropical and suhtropical seas. It is not in cultivation, but its strange methods of propagation make it one of the most interesting of plants. The following account is reprinted from Bailey's "Lessons with Plants:"
The Mangrove grows on the low shores of tropical lands. It extends as far north as the twenty-ninth parallel in Florida, and occurs at the mouth of the Mississippi and on the coast of Texas. It is a spreading bush, reaching a beight of 15 to 25 feet upon the shores, hut becoming a tall tree in various places. It is an important agent in the extension of land into the sea. The means by which this result is accomplished are two. The fruit is small and capsule-like, but does not fall from the tree at maturity. A fruit is shown natural size in Fig. 1362. The seed is germinating, sendiug its caulicle out through the apex of the fruit. In Fig. 1363 the germination is further progressed. In Fig. 1364, germination is nearly completed. The seed has endosperm. The cotyledons do not unfold in germination, but a woody tube grows from them and projects from the fruit to the point a. Inside this tule is the plumule. The hypocotyl continues to elongate, becoming thick and heavy at its lower end. When 6 inches or a foot long, it breaks away from the joint a, carrying the liberated plumule with it, and strikes root-end down in the mud. Roots push out from the lower end, and the epicotyl rapidly elongates and rears itself above the water. A piece of a Mangrove branch is

1363.

The hypocotyl enlarging. shown natural size in Fig. 1365. An aërial root is pushing through the thick bark. The root makes a strong curve when it strikes off the branch, and then grows directly downward towards the water. The branch from which it springs may be only a few inches above the water, or it may be 10 feet; but the root pushes on until it inserts itself in the mud, and there makes a root system of its own. These long, lithe, descending roots (Fig. 1366), swaying in the wind, are characteristic features of the Mangrove swamp. Usually the banging roots are unbranched, but now and then the tip breaks up into short branches(Fig.1367) before it reaches the water. These long roots remain attached at the upper end, and become trunks. The Mangrove plautation, therefore, becomes an interwoven mass, and thus marehes on into the tidal rivers and the ocean, catching the flotsam and jetsam of the sea: and thereby it builds land and extends the
shores. In the quiet recesses of the Mangrove swamp aquatic and amphibious life hinds refuge. The shell-fish cling to the trunks and at low tide they are exposed, thus giving rise to the stories of the early explorers that oysters grow on trees. All this will recall tha accounts of the banyan tree, and there are wild fig trees (the banyan is a ft) in Florida and southward which behave in a similar way. It seems strange that roots shoutd strike out into the air, but the reader may have observed the "brace roots" near the ground on Indian corn; and many plants, as the ivy and trumpet-creeper, climb by means of roots.

1365. Ac̈rial root of Mangrove.
A

MÁNIHOT (native Brazilian name). Euphorbiàceo. About ou species of perennial herbs or shrubs, with milky juice, occurring in tropical America, mostly in Brazil. Nearly always smooth and blue-green colored: lvs. alternate, entire or palmately lobed or divided: fls . large for the order, racemose or paniculate, terminal or axillary, moncecous; calyx imbricate in the bud, campanulate or radiate, often petal-like, 5 -lobed; petals none; stamens few, in 2 whorls in the angles of the disk: capsules 3 -celled, 3-seeded. Not much grown in greenhouses, except in forms of M. palmata. The economic species may do well in the tropical parts of the United States, where they are being introduced. According to Nicholson, they are best grown in peat loam and sand, and propagated by cuttings of young, rather
fine shoots, rooted under a bell-plass in sandy peat, with bottom heat. The first species is grown in Florida, and all are procurable from sonthern California. The cultivation of Cassava is now attracting much attention in Florida.
Glaziòvii, Múll. Arg. Ceara Rubber Thee. Lvs. long-petioled, peltate, deeply 3-5-palmately parted, or the upper entire; divisions entire, broad, ovate-lanceolate: fls. paniculate: bracts small. Brazil; extensively grown in Ceylon and India. - Its juice gives the Ceara rubber.

1366.

The descending root.
utilissima, Pohl. Cassava, or Maniog Plant. Bitter Cassava. Figs. 1368-69. Roots Heshy, cylindrical, sometimes weighing as much as 30 pounds, and 3 ft . long, very poisonous: stems knotty, about 3 ft . high: lys, long petioled, not peltate, deeply $3-7$-lobed; lobes lanceolate, entire: bracts small, entire: calyx glabrous outside, pubernlent within, yellowisb, 5-parted; flaments glabrous; anthers short: capsule and orary distinctly wing-angled. July. Brazil. B.M. 3071.-Cultivated extensively in the tropics, where the C'ussara made from the roots is a staple food. Tapioca is matle from the root-starch by drying it in pellets on heated plates. The polsonous juice is pressed ont in preparation or rendered harmless by heating.
palmàta, var. Aipi, Miill. Arg. (M, A ipi, Pohl): Sweet Cassava. Closely related to the last, but the root more red-

1367. Multiple tips of a Mangrove root-branch.
dish colored and non-poisonons: anthers elongated: capsule only angular above, not winged. Brazil.-Used as the last, but not so extensively.
J. B. S. Norton.

The enltivation of Cassava is of the simplest description in the West. Indies. A piece of the stem, 2 or 3 feet long, is planted in somewhat sandy ground and left to its fate, with occasional hoeing of weeds. In suitable soils in the driest parts of Jamaica, it prodnces enormous crops witb little or no attention.

Ceara Rubber has not been cultivated in the West Indies to any extent, but it is like Cassava in its capa-
bility of growing in dry, sandy soil. It would prohably yield more rnhber if grown in districts where irrigation is possible.

Wm. Fawcett.

MANITOBA. See Canada.

MANNA. See Alhagi.
MANNING, ROBERT (Jnly 18, 1784, to Oct. 10, 1842), was one of the most thorongh and aceurate of American descriptive pomologists. In 1823 he established his "Pomological Garden" at Salem, Masu., for the purpose

1368. Flowers and fruit of Manihot utilissima. Enlarged.
of collecting and proving varieties of frnits. At the time of his death this garden contained more varieties of fruits than had ever been collected in America. Pears were his specialty, but he had all the frnits which would thrive in his climate. These fruits numbered nearly 2,000 varieties, of which about one-half were pears. These varieties were gathered from all parts of this country, and also from Enrope. The new pears of Van Mons, the Flemish scientist and propounder of a theory of plant variation (see "Survival of the Unlike," Essay V), were introduced largely by him. He also received valuable acquisitions from Robert Thompson, of the fruit department of the London Horticultural Society. In 1838, Manning published at Salem his "Book of Fruits, being a descriptive catalogue of the most valuable varieties of the pear, apple, peach, plum and cherry for New-England culture." It also contained bush-fruits, grape and hardy trees and shruhs. It was pnhlished as "First Series for 1838 ," which indicates that its anthor intended to issue other parts. All the descriptions were drawn from the fruits themselves. The hook was well illustrated. In this work be was assisted by John M. Ives: and Ives made a second edition of the work in 1814 ander the title "Book of Frnits," and a third in 1847 as "New-England Book of Fruits." At this day it is difficult to appreciate the work of a man like Manning. In those days, varieties were all-important. The scientific management of orchards had not yet arisen. Varieties were confnsed. Manning and his compeers opened the way for correct nomenclature and systematic pomology, and established the idea of testing varieties. His decisions on nomenclature were accepted as final. He was one of the founders of the Massachnsetts Horticnltural Society. For a reference to the position of Manning's work in our history, see the article Horticulture: also Tilton's Journ. Hort. 7, pp. 157-8. His son, of the same name, is secretary of the Massachusetts Horticultural Society.
L. H. B.

MAN-OF-THE-EARTH, Ipomaa pandurata.
MANURE (from old French manuerer, to cultivate by hand; Latin manus, hand, and opera, works). In the broadest sense, Manure is any substance applied to the soil for the purpose of increasing productivity. The excrements of animals, mixed or unmixed with straw or
other absorbents, are usually spoken of as barn Manures. Commercial Manures or "fertilizers" are usnally concentrated forms of nitrogen, potash and phosphoric acid, mixed or unmixed (see Fertilazers); green Manures are living plants plowed under to furuish humus and increase productivity; amendments are substances, such as lime, which may increase the growth and healthfuluess of plants by improving the physical conditoin of the soil and by setting free un-

1369. Manihot.

The plant whose roots produce tapioca.
(See p. 981.)
nures when spread over the mass from time to time in small quantities. The quantity and value of Manure made by domestic avimals is not realized hy those who allow it to be scattered over large, open barnyards or allow it to remain for cousiderable periods under the eaves of the barn. Extended experiments at the Cornell Experiment Station showed that the following amounts of excrements were produced daily for each 1,000 pounds of live weight of aninual:

Animals fed on a highly nitrogenous or narrow ration (as 1:4), as were the pigs in the above investigations. consume large quantities of water and produce a large amount of Manure, the weight of which often exceeds the amount of food consumed; while those fed on a carbonaceous or wide ration (as 1:9) consume comparatively little water and produce less weight of manure.
Some conditions affecting the production of Manure and its value may be stated as follows: If the plant-food value of Manure is computed at the price that is paid for the same constituents in fertilizers, it is found that the value of Manure produced by animals is equal to 30 to 50 per cent of the cost of their food. Young animals produce poorer Mavure than mature ones. The excrements of animals which give a product, as milk or young, are poorer than those from non-productive animals. The more abundant the ration the less complete the digestion and the greater the value of the Manure produced. Concentrated and nitrogenous foods result in richer and more valuable excrements than uneoncentrated or carbonaccous foods. Liberal salting and excessively succulent foods diminish the

Manure is used for hotbeds, while cow Manure, mixed with soil, is best for forming a moist, rich, potting earth. Dung, the solid voidings of animals, after weathering for a time, is also a valuable addition to potting earth. Florists often keep a number of dairy cattle that an abundant supply of bovine Manure, which is so valuable in floriculture, may be at hand. Commercial Nanures are used in small quantities, either direct or in solution. Nitrogen stimulates the vegetative system and tends to produce rapid growth and dark foliage. Phosphoric acid, among other effects, has that of produciug well-developed plump seeds and fruits; potash may augment these effects, as well as increase aud inteusify the color of the bloom.

Barn Manures are more highly prized than formerly. Waste of their valuable constitnents is now largely avoided either by applying them to the land day by day, as they are produced, or by more rational methods of caring for them until they are partly rotted or opportunity is afforded for most suitable application to the land. Covered yards or pits are now sometimes used for temporarily storing Manures, where they can have water allded if too dry and if likely to "firefang;" or absorbents, such as straw, dry muck, gypsum and the like, may be nsed if they are too watery. When bedding is abundant, the animals may take their exercise in the covered yard, as they will solidify the Manure by tramping it, thereby diminishing loss by too rapid fermentation. Salt aud gypsum both conserve plant-food in ma-
value of Manures. The amonnt and kind of bedding affect not only the quantity but the value per ton. Animals kept in cold quarters drink little water, digest their food closely and produce a Manure relatively smail in amount and poor in quality.
Rich Manures are relatively more valuable per unit of contained fertility than poor ones. Plants are most bencfiteb when they receive extra nourishment in the early stages of their growth. Coarse, low-grade Manures should be weathered or rotted to improve their availability, even though some loss may occur. A unit of plant-food in high-grade fertilizers or well-preserved, rotterl Manures is worth more than in low grades. The valuahle constituents in farm Manures are not soquickly available as they are in high-grade fertilizers, but they have an additioual value, since they furnish humus, lighten the soil and increase its power to hold moisture, while assisting in liberating the mineral constituents of the soil. The value of Manure as set down below is determined by investigations during the winter months, and the nitrogen, phosphoric acid and potash are computed at 15,6 and $41 / 2$ cents per pound, respectively. The indirect beneficial effects of Mannre are considered an equal offset for the slightly less availability of their plant food constituents as compared with fertilizers:

Find of Manure.
Falve per ton.

Limited amounts of bedding were used in the tests from which the foregoing figures were made.

Find of animal.
Falue per year.

Tsually these animals are kept in the stables but half of the year, and inevitably some loss will occur, therefore it will he safe to estimate the recovered value per year at one-third to one-fourth of the above.

Heretofore the waste of the valuable constituents of Manures in the United States has been very great. Until recently, large, open barnyards lave heen the rule. In the northern and central parts of the United States the rainfall exceeds 30 inches per annum. Many barnyards contain from a quarter to half an acre. One inch of rainfall equals 113 tons of water per acre. If this be multip:ied by thirty, a fairly accurate estimate is secured of the water which largely passes through or orer the Manure and carries off its most soluble and hence most valuable constituents. The loss of value in Manures exposed at Ithaca, in loose heaps of from two to ten tons, during six months, was as follows:

Even in horticulture, where a more liheral use of Manure than in general farming is admissable, too much reliance is often placed on Manures and too little on tillage. Manures may furnish plant-food, improve the physical condition of the soil, conserve aud increase heat and moisture. Ten to twenty times as much food as the plants can utilize is sometimes applied. Growth and development are more largely determined by the amount of moisture than by the amount of plant-food. Five tons of preserved barn Manure contaiu of nitrogen, phosphoric acid and potash, 60, 30 and 45 pounds, respectively. Twenty-five bushels of wheat, with straw, contain 45 Ibs , of nitrogen, 18 lbs . of phosphoric acid, and 27 lbs . of potash. Most soils contain large amounts of unavailable or difficnltly available plantfood. Manures should be used largeiy to feed plants between the time the nutrients in the seed have been exhausted and that when the plants hare secured a firm hold on the soil by manifold rootlets. Except where otherwise most suitable and convenieut, barn Manures should be spread thinly in the autumn or early winter on the surface where plants are growing, thus imitating nature s methods of maintaining and increasing productivity. 1. P. Roberts.

MAPANIA (aboriginal name). Cyperdeece. Perhaps 6 or 8 described species in tropical countries, comprising strong perennial herbs, with broad and strong liss. arising from the crown, and large fl. elusters on mostly leafless scapes: the small, perfect fls, contain nsually 6 hypogynous scales, usually 3 stamens, and 3 filiform stimmas: nutlet sessile, 3 -angled. The only species in the Amer. trade is M. pandanæfollia, Sander. Its nativity is not given, and it is possible that it does not belong to this genus (see Gt. 46, p. 522). The plant is represented as pandanus-like, 3-4 ft. high, with long, narrow, graceful, stiftish lts. G.C. III. 21:349. Gt. 4f, p. 523. In European garden literature, M. lucida, N. E. Brown, and M. humilis, Vill. (from Malaya), are also described. Index Kewensis regards these species as one, M. humilis being the older name. It is an erect-growing plant with oblong strong-ribbed lis., which are produced into long petioles and taper into long tail-like points. 1.H, 32:557. It is also knowu as Pardanophyllum Fendlandi, Hort.

L. H. B.

MAPLE. See Icer. Flowering M. $=$ Ibutilon.
MARANTA (B, Maranta, Venetian botanist died 1754). Scitaminacec. About 10 or 12 tropical Ameri an herbs, very closely allied to Calathea, but distinguishe ' amongst
other things by having 2 of the 3 locules in the fruit empty. Most of the plants cultivated as Marantas are Calatheas; and the true Marantas are treated the same as those plants. These plants are often named before the flowers are known, and some of the following plants may helong to the genus Calathea.
A. Leares green, pubescent beneath.
arundinàcea, Linn Figs. $1370-71$. Branched, 2-5 ft. high, tuberous: 1vs, ovate-oblong and pointed: fls. white in an open cluster, the upper lip roundish. Trop. Amer. B. M. 2307. - One of the sources of arrow-root (see Arroveroot), the plant being often called Bermuda Arrow-Root. The starch is obtained from the roots. It thrives along the Gulf coast, although little cultivated. There is a form with leaves variegated green and yellow.
AA. Lewves green, marked with strong, parallel lightcolored bars extending from midrib towards mar gin or with a whitish central stripe.
spléndida, Lem. Glabrous: lvs. 2 ft . or less long, large, oblong-lanceolate, with base subcordate or somewhat cuneate, short-acuminate at apex, above shining dark green and marked with pale green transverse bars, beneath violet-red. Brazil. 1.H. 13:467-8.-By some regarded as Calathea (C, splendida, Regel). Resembles Calathea Teitchiana. but more rohnst.

1370. Maranta arundinacea $(X 1 / /)$.

AAA. Leares blotched or banded with dark colors (sometimes contrasted with silvery colors).
undulata, Lind. \&André (propesly Colathèa undulata, Regel). Six to 8 in. high, compact: lvs, ovate-oblong, the blade about 4 in . long, subcordate and unequal at
base, very short-pointed, the surface undulate, beneath purplish, above deep sbining green, with a whitish feathery stripe through the center. Peru. I.H. 19:98.
leuconeùra, E. Morr. (M. Kerchoved̀na, E. Merr. M. Kerchovei,Hort. Calathéa Kerchovedra, Hort.). Dwarf, $6-8$ in.: Ivs, cordate-obleng, usually ebtuse or very short-acuminate, grayish green with oblong purple spots on either side of the midrib. Brazil. I.H.26:353.

Massangeàna, E.Morr. (Calathè Massange(\quad na, Hort.). Larger in all its parts than the last: los. elliptic-orate to obovate, reunded or truncate at base, the apex abrnptly shert-peinted, light purplish beneath, the upper part marked with three colors,-olive green towards the margin, broad central band of silvery gray, blotches of purple or maroon be tween the twe. Brazil. F. S. 22:2364-5 (as M. leuconeura, var. Missangeana). J.H. III. 30 : 499 (as var. florentina).
bicolor, Ker-Gawl. A foot high: lvs. roundish ovate, rounded or subcordate at the base, mere or less wary on the margin, abruptly shertpointed, light purple below, pale glacuous green above, with a relatively lightcelored central hand and very dark green or browngreen bletches midway between the rib and the margins. Brazil. B.R. $10: 786$. L.B.C. $10: 921$.

The following pames are found in American trade-lists: M. Baraquirii=Calathea Baraquini? - M. Goveniana.-M. ico. uifera, Hort, (a form of Calathea Makoyana 1), bas tvs about 6 in . long, obliquely oval, yellowish green, with oblong, deep green spots or hars. Brazil. M. Lúhersi. Foliage reticnlated with yellow-M. Musaica. Hort. Lvs, 6-8 in. Iong, obliquely cordate, shining green, marked with many transverse veins. Brazil,-M. Porteana. See Stromanthe,-M. Sagoriana, Hort. Dwarf: lvs, oblong, pale green, with oblong-oblique, deep green bars on each side of the midrib. S. America.-M. sangutnea. See Stromanthe.

See Calathea for the following names: allo-lineata, araurea. Bachemiana, Chimboracensis, eximia, fasciata, Fascinator, illustris, Lageriana, Leurelliana, Lietzii, Lindeni, Mokoyana, medio-picta, micans, nitens, ornata, princeps, pulchella, regalis, roseo-lineata, rosea-picta, smaragdina, tubispathn. Fandenheckei. Veitchiana, virginalis, Wagneri, Warscericzii. Wioti, zebrina.
L. H. B.

MARATTIA (name from J. F. Maratti, an Jtalian botanist of the seventeenth centnry). Marattidecor. A genus of large, coarse-leaved fern-like plants with the sporangia borne in large, boat-shaped conceptacles on the under surface of the leaf. The species are stronggrowing and ornamental, some of them reaching considerable size.
fraxinea, Smith (M. ćlegans, Endl.). Lvs, bipinnate, $6-\mathrm{I} 5 \mathrm{ft}$. long, on stalks often 1 in . or more thick ; pinnules 4-6 in. long, $1 / 2-1 \frac{1}{2} \mathrm{in}$. Wide, of a leathery textare and naked surfaces: receptacles submarginal. West Africa to Malaysia and New Zealand.
L. M. UNDERWOOD.

MARCGRAVIA is a genus of Ternströmiaceæ, but M. paradoru = Monstera acuminata.

MARCHÁNTIA Nicholax Marchant, Frencb botanist). Marchantidcew. A common liverwort, spreading its leaf-like forking thallus on moist earth. M. polymorpha, Linn., bas been offered by dealers in native plants, the sods of it being sold for colenizing in rock gardens. It ofted grews on damp sills and walls in greenhouses. The flat thallus is often $4-5 \mathrm{in}$. long and 1 in . or more wide, from which rise peduncles 1 in, bigh, bearing the antheridial disk or sbield and the star-like carpocephalum on similar stalks $1-3$ in. high.

MARRUBIUM

MARGUERITE or PARIS DAISY is Chrysanthemum frutescens. Blue Marguerite is Felicia amellodes. Reine M., of tbe French, is China Aster.

MARGYRICARPUS (Greek, pearly fruit; referring to the white berries). Rosacere. Five species of South American subshrubs, of which M. selosus is a heathlike plant calt, in rockeries for its numerous small white lverries, which are seen to best adrantage against dark background. The nearest genns of garden value is Acarna, which has fls. in beads, while those of Margyricarpns are solitary and axillary. Branching shrubs with inconspicuous fls. which are sessile and have no petals. Lvs. alternate, crowded, overlapping: calyx tube persistent; lobes 4-5: ovules solitary, hanging from the top of the cell.
setòsus, Rniz \& Pav. Low-grewing. Peru, Chile.Int. by Franceschi. Hardy in England. Sometimes called Pearl Fruit.

MARICA (meaning deubtful; the author of the genus did not explain). Iridacee. Eleven species of tropical American plants allied to Iris, but with shorter-lived flowers and convolute inner segments. Three species are precurable from Dutch dealers. The fls, are $2-4 \mathrm{in}$. across, the outer segments large, white or blue, the inner enes smaller, with complicated and beautiful celering. They are planted in the fall, and are hardy with winter cerering. The genus is nearest to Cypella, bnt the style erests are petal-like, while in Cypella they are spar-like or flattened. Reotstock a short rhizome: lvs. sword-shaped, 2-ranked: fls. blue, yellew or white. Baker, Iridea, 1892.

A. Outer segments pure white.

grácilis, Herb. Lvs. $1-11 / 2 \mathrm{ft}$. long, $1 / 2-1$ in, bread: fls. 2 in. acress. B.N. 3713 .

AA. Onter segments white, marked at the base with brow'n and yellow.
Northiàna, Ker. Lvs. $11 / 2-2$ in. brosd: fls, 3-4 in. across. B.M, 654. I.H. 42:40 (var, splendens).

AAA. Onter segments blue.

carulea, Ker. Lvs, $1-1 \frac{1}{2} \mathrm{in}$. broad: fls. $3-4 \mathrm{in}$. acress. B.M. 5612 (as Cypella cervlea). B.R. 9:713. Gin. 25, p. 313. K. W. I: 40 .
M. Califormica. See Sisyrincbium.

MARIGOLD. The oldest kind is the Pot Marigold, the dried H s. of which are used to season soups. It is also enlt. for ornament. See Calandula afficimalis. The French Marigold is Tagetes patula; the African, T. erectu. The African Marigolds are mostly pure lemonor orange-colored; the French ones have these colers and brewn alse, and are often striped. For Cape Marigold, see Dimorphotkera. For Fig Marigold, see Ifesembryanthemum. Marsh Marigold is Caltha palustris.

MARINE IVY. Cissus incisa.

MARIPOSA LILY. See Calochorfus.
MARIPOSA TULIP. Culochortus.
MARJORAM, SWEET. Origanum.
MARKERY, MERCURY. See ('henopodium.
MARROW, VEGETABLE. See Squash.
MARRUU̇BIUM (old Latin name of obscure meaning). Labiater. A genus of abont 40 Old World species, including the commen Horehound, a bardy, perennial, bitter-arematic herb, growing $1-3 \mathrm{ft}$. high, with whitish. hairy, crenate lvs., and axillary wherls of small whitish fls. It is a native of Enrope, Asia and northern Africa, now foun 1 as an excape from gardens in waste places of nearl every country of the world. Horehonnd is
used in large quantities for confections and medicines for coughs and colds.
Marrabiam comprises similar perennials branched from the hase, with wrinkled and crenate or cut lvs., and many-fld. axillary whorls of small white or purplish fls.: calys tubular, 5 -10-nerved and with 5 or 10 awlshaped teeth.
vulgàre, Linn. Common Horehound. Heigbt l-3 ft.: stems ascenting: Ivs, ovate, stalked: calyx with 10 recurved teeth, the alternate ones shorter: fls, white. Summer. B.B. 3:84.

Horehound (or Hoarbonnd) ia America has become a common weed in New England, Indiana and upon the Pacific coast, especially south of San Francisco. From the last region is obtained Horehound honey, a product considered useful in the treatment of coughs and colds. The leaves and tops have a bitter, peuetrating taste and a strong, not unpleasant odor, which is somewhat dissipated by drying. In addition to its well-known uses iu puimonary troubles, it is credited with tonic, laxative and, in domestic medicine, deobstrient properties. The plant prefers a dry, warm, rather rich, light soil. It may be readily propagated by division of the clumps or by seed sown iu the spring where the plants are to remain. The drills shonld he 2 feet apart and the plants 1 foot asnnder. With clean cultivation and moderate annual manuring two abundant cuttings should be obtained each year. Since the market is fully supplied by the wild plants and since, when once established, it will grow almost spontaneously, the cultivation of Horehound is not recommeuded except to supply private needs.
M. G. Kains and M. B. Coulston.

MARSDENIA (William Marsden, 1754-1836, wrote a history of Sumatra). Asclepiaddece. Ahout 50 species of tropical and subtropical shrubs, mostly twiners, of which about half a dozen species are cult. in Europe under glass. M. Roylei, a fiber and dye plant from the East lodies, was introduced by Reasoner in 1889, but is now lost. The genus is allied to Stephanotis, which has large white fis., while those of Marsdenia are usually purplish, Inrid, greenish or pallid. Lrs. opposite: cymes umbel-shaped, simple or branched, terminal or axillary: calyx 5 -parted: corolla bell-, urn- or salvershaped; lobes narrow or broad, overlapping to the right: crown of 5 scales: seeds comose.

Roylei, Wight. Lvs. 3-6 in. long, 2-4 in. wide, ovate cordate, acuminate, pubescent or tomentose beneath; petioles $1 \frac{1}{2}-2 \mathrm{in}$. long: cymes $1-1 \frac{1}{2}$ in. across: fls. $3-4$ lines in diam.; corolla somewhat bell-shaped; lobes large, fleshy; stigma not extended beyond the anthers: seeds $1 / 2 \mathrm{in}$. long.
L. H, B.

MARSHALLIA (Humpbrey Marshall, wrote Arbustum Americanum, 1785 , the first American work on our trees and shrabs; also founded one of the first American botanic gardens). Composite. About 9 species of perennial North American herbs, of which only one species, M. caspitosa, seems to hare been offered. Marsballias are tufted plants, growing about a foot high, with entire Ivs. and scapes bearing solitary rayless heads about $11 / 2 \mathrm{in}$. across. Somewhat like the common Scabious. These are rose-purple or white, with blue anthers, and appear in spring or summer. For fuller description, see our manuats.
cæspitòsa, Nutt. Tufted, glabrous: 1rs. spatulatelinear; upper ones linear: bracts of the involucre linear: disk-fls. pale rose or white: seeds inversely pyramidal, villous on the angles. Limestone soil, Ark. to Tex. B.M. 3704. B.B. 3:443.

MARSH MALLOW. Althea officinalis.

MARSILEA (Giovanni Marsigli, Italian botanist of last part of the eighteenth century, or Aloys Ferd., Graf von Marsigli, 1658-1730). Marsiledeet. Aquatic flowerless plants(about 40 species), with lvs.like 4-leared clover or oxalis, one species of which, M. quadrifolia, Linn., is sold and is also run wild in the eastern states. It is a creeping plant, rooting in the mud on the margins of ponds and making an attractive corer. The petioles grow $3-\overline{5} \mathrm{in}$. tall. or taller in the water, and bear at the
apex 4 bright green obcuneate or triangular leaflets. The sporocarps or fruits are nearly sessile at the base of the petioles. Prop. easily by pieces of the runners, and is likely to become a weed. The yonng leaflets close at night. Europe and Asia. Mo.6, p, 107.

MARTINEZIA (Rev. Dr. Baltasar Jacobo Martinez Companon, archbishop of santa F'e, who sent many early collections of plauts from Peru). Palmacea. Ornamental palms, with spiny ringed trunks: lvs. pinnate, the segments broad, wedge-shaped, altervate or grouped, the apex truncate and ragged: petioles and rachis spiny, as are also the spadiees and spathes of the inflorescence: fls. rather small: fr. globose, 1 -celled, orange, scarlet or rose-pink. species 7. Trop. Amer.

Jared G. Smith.
Martinezias are beantiful palms, and make fairly good house plauts. They must have a stove temperature. They do not require a great amount of soil. Light sandy loam, with plenty of sharp sand, is best. They need abundant moisture. They sometimes Hower in cultivation, but the 4 kinds given below are distinct by their foliage and spines. Like all armed palms, they are slow to germinate, but after the first or second year they grow fairly fast. The commonest and best kind is M. caryotofolia, which has fewer spines than the other species and, unlike many other palms, shows its true lys, at a very early stage. It resembles the fishtail palms (Caryota), but the lrs. are a lighter green and generally larger. M. erosa makes a better specimen at $\overline{5}-6 \mathrm{ft}$. than when small. It is much more jagged at the tips of the lvs. Being very spiny all over, it is less desirable. M. Lindeniana is more like the first. The spines are longer but not very numerous. M. Granatensis is of coarser habit and slower growth, and desirable only for large collections.
H. A. Siebrecht.

A. Lers. dirided into segments.
 B. Segments in groups.

c. Apex of segments 3-lobed.
caryotæfolia, HBK. Stems at length 30 to 50 ft . high: lvs. few, $3-6 \mathrm{ft}$. loug, light green; Ifts. in gronps, 6-12 in . long, $4-6 \mathrm{in}$. wide at the apex: stem, petioles, racbis and nerves below, deasely clothed with long black spines. Colombia. G.C. 1872:181. B.M.6854. F.R.2:49.
cc. Apex of segments with a point projecting from the upper margin.
Lindeniàna, H. Wendl. Stems 9-15 ft. high: pinnæ in opposite groups of 4 to 6 , the groups widely separated, long-wedge-shaped, $10-14$ in. long, $8-10$ times as long as broad, with a short, projecting point at the upper margin, the nerves ciliate-spiny toward the end: petiole deusely covered with grayish brown hairs, with many rather large black spines $\mathrm{J}-2 \frac{1}{2}$ in. long: rachis is also spiny above and below: midnerve of each segment a trifle shorter than the lower margin and spiny beneath, like the rachis and lateral nerves: lva. dark green above, lighter beneath; terminal segment broadest: fr. rose-red. Monutains of Colombia, at an altitude of $6,000 \mathrm{ft}$.

BB. Segments in 2-4 pairs.
erodsa, Linden. Lrs, with 2-3 pairs of narrow lfts, at base and a pair of broader ones at the apex, all oblique at the apex, bearing long, brown, needle-shaped spines on the veins and midrib; rachis cylindrical or obtusely angled, mealy, clothed with spines like those on the lrs. West ludies. G.C. 1872:1297.

AA. Li's. bifid at the apex.
Granaténsis, Hort. (M. Granadénsis, Hort.). Lrs. roundish oblong or roundish orate, entire at the base, bifid at the apex, evenly toothed along the edges: petjoles and rachis with dark brown, needle-shaped, spreading or reflexed spines, $1 / 2 \mathrm{l}$ in. long. Colombia.

Jared G. Smith.
MARTYNIA (John Martyn, 1699-1768, professor of botany at Cambridge, botanical author and editor of the largest edition of Miller's "Gardeners' Dictionary"). Pedalidcere About $\mathbf{1 0}$ species of coarse annuals from the warmer parts of America, a few of which are cult. for pickles or for ornament. They have large showy fls, much like those of Catalpa in form, the 2
upper lobes being smaller than the 3 lower. The fls are 2 in . or more across, chiefly lilac, purple or yellow but spotted and marked about the throat with other colors. They are heavily scented and interesting, but, like all other parts of the plant, they are clammy. The plants grow $11 / 2 \mathrm{ft}$. or more high, and should be started in a hotbed io early spring in tbe North and transplanted to the open. In the middle and southern states seed may be sown in the open 3 ft . apart each way where the plants are to remaio. The capsules are taken when small and tender and pickled like cucumbers. They have a very distinct appearance by reason of the longcurved horn which splits from the top as the capsule hardens.
The small family to which Martynia belongs is allied to the Bignonia family, and the fls. are much alike, but the babit and fruit are different. Martynias are either annuals or perennials, with large tuber-shaped roots, prostrate or suberect and elammy: Ivs.opposite or alternate, long-stalked, cordate, coarsely wavy-margined or toothed, or paimately lobed: fls. $5-8$ in a short, terminal raceme: capsules with 2 short or long horns.
The first three species described below belong to the subgenus Proboscidea, which has 4 perfect stamens and long-horned capsules. They vary considerably in the foliage, roundish or wider than long, 3 lobed, sharply 3 -cut or entire except the notch, which is always found at the base, margin toothed, angled or wavy.

1372. Martynia proboscidea $(\times 1 / 3)$,

A. Fls. lilac or dull white.

proboscídea, Glox. (M. Louisidna, Mill.). UNICORN Plant. Proboscis Flower. Fig. 1372. Lys. roundish, often oblique, entirely obscurely wavy-lobed, 4-12 in. wide: tls. also vary to light yellow. Banks of Mississippi; nat. near old gardens. B.M. 1056. V. 3:151.The picture (Fig. 1372) shows fruits one-third the size at full maturity. The right-hand specimen shows the woody part, after all the soft parts have been macerated.

AA. Fls. purple.

frảgrans, Lindl. (M. formòsa, Vilm.). Less stout than M. proboscidea: lvs.roundish to oblong-cordate, somewhat lobed and wavy-toothed, $3-\overline{3}$ in. broad. Mex. B.M. 4292. B.R. 27:6. R.H. 1843:248.

AAA. Fls. yellow.

lùtea, Lindl. Lrs. cordate-orbiculate, subdentate, glandular-pubesceut. Brazil. B.R. 11:934.

AAAA. Flts. white.

Craniolària, Glox. Properly Craniolaria ánuua, Linn., a genux distinguished by baving a very long and slender corolla tube, while in Martynia the corolla tube is swelled out at a very short distance from the base. Lvs. palmately lobed; margins dentate: corolla tube about 6 in. long. Colombia. - Some of the plants sold ander this name are M. proboscidea; others are M. fragrans.
W. M.

MARVEL OF PERU. Mirabilis Jalapa.

MARY, BLUE-EYED. Tradescantia Virginica,
MARYLAND, HORTICULTURE IN. Fig. 1373. All of this state lying south of Baltimore possesses notable horticultural possibilities. The lands are quite variable in composition, and are very sensitive and responsive to judicious aud rational treatment. In the production of early fruits and vegetables, the natural adaptability of suil, the mild and equable temperature resulting from tbe influence of the expansive waters of the Chesapeake bay, which euts the state in two, as well as from geographical location and convenient access to all the principal eastern city markets, are the conditions which combine in a presentation of rare inducements that are not fully appreciated by the rural citizenship of the locality. Fully three-fifths of the farms in Maryland, by circumstances as above briefly indicated, are specially adapted to horticultural pursuits. Tbe eight counties forming a tier, extending from east to west along the northern boundary of the state, do not enjoy so wide a range in horticultural favor as the central and southern counties. The wonderful development of the fruit and regetable packing or canoing industry in the state is to a very noticeable degree encouraging, and accomplishing a diversification for the promotion and betterment of horticulture. In the city of Baltimore the "packing" business has assumed huge proportions, hut independeut of this, the business has in the aggregate, throughout the several counties, reached a large volume, which is annually increasing. Caroline county, centrally located on the Eastern Shore, annually operates more than a score of such bouses. Strawberries, blackberries, peaches, pears, peas, tomatoes and sweet corn constitute the principal articles canned. No fancy prices for either fruits or vegetables are obtained in the local markets thus created, but a great good to horticulture growing out of these operations is that they are inducing many bard-worked and poorly paid tillers of the soil to climb out of the old ruts, giving them a practical education or training that enables them to grow and prepare products for the city markets in keeping with modern demands. Tbousands of acres in this state are now devoted to peas, tomatoes and sweet corn for the packing houses. Summarized, this means more manure - better methods-better land.

For many years the peach maintained undisputed supremacy in the fruit interests of Maryland. Entbusiasm extended the acreage beyond the capacity for proper care and culture, thus inviting the encroachment of disease and insect enemies to an extent that has served to circumscribe the misdirected ambition for large orchards, aud has robbed peach-growing of much of its fascination. In the aggregate, the orchard acreage is still immense; butold orchards are going out to a much greater extent than new ones are being planted. In the northers tier of counties, interest in apple-growing is increasing. Cherries, too, in many locations in this part of the state are successfully grown. Pears are more generally grown and satisfactory throughout the state than cherries. Kent and Queen Anne counties, of the Eastern Shore, excel in the production of pears, both in quantity and quality. Plums of the native and Japanese species receive considerable attention, and in many instances prove more remunerative than otber fruits. Small fruits of all kinds are grown in great abundance. The large fruit interests of the state create and maintain a large local demand for nursery stock, which is shared by the forty nurseries in various parts of the commonwealth. Several of these establishments make the propagation of peach trees a specialty, growing them by the hundreds of thousands, and disposing of them in a wholesale way to their fellow-nursersmen in localities less favored for propagating these trees. In a few of the Western Shore counties tobacco still figures to some extent in soil products; on the Eastern Shore tobacco has been superseded largely by sweet potatoes, to the decided benefit of both land and laudlord.
The division of the state by the Chesapeake bay kecps the Eastern Shore out of touch in more ways than one with the rest of the state. The experiment station is located on the Western Shore, where the borticultural
interests are on lines more or less distinct from those on the Eastera Shore. Greater harmony ebtains between the conditions of the Eastern Shore and of Delaware; hence it naturally follows that horticultural relations between the Eastern Shore of Maryland and the state of Delaware are closer and more intimate in many respects than those between the two "shores" of Maryland, and doubtless will remain so unless counteracted by the establishment of an active and well-equipped sub-station on the Eastern Shore. The entire peninsula, comprising Delaware's three, Maryland's nine and Virginia's two counties, should properly constitute one state, as nature seems to bave intended. If these fourteen peniasula counties were banded together by the ties of statehood, aud thus governed solely by their own citizens, it could not do otherwise than promote and accelerate the progress in horticultural advancement, and make it by concentrated art and practice what it is by nature, America's Ellen. It is eapable of supporting a population ten times as large as at present inhabits it, with an overtow sufficient to feed five times as many more in the large near-by cities with choice fruits and vegetables, easily grown in endless variety.

Maryland's metropolis, with its rapidly improving facilities for distributing to other cities and towns, affords much encouragement and gives impetus to all horticultural operations. Baltimore market is the main dependence of the Western Shore and western Maryland fruit-growers and truckers; while a large share of the horticultural products of the Eastera Shore, owing to convenient accessibility, are consigned to New York, Philadelphia and Wilmington. The General Assembly or Legislature of Maryland has never, until quite recently, done anything to promote or protect, by appropriation or otherwise, the great horticultural interests of the state, while it has expended hundreds of thousands of dollars to exploit and protect the oyster and fish industries. The value of the small-fruit crop reaches into millions of dollars annually. Add to this the peaches, pears, apples, plums, cherries, ete. - then couple to all the vast volume of vegetable production throughout the state-grasp all this, and crowd it into the two wordshorticultural interests, and bere are the data in the form of unmanufactured material, and the nearest approach to syathetical statistics that is available. That horticulture takes rank with the greatest industries of the state is obvious to any unclouded comprehension. The soil of fifteen of the twenty-three connties comprising the commonwealth, reveals unmistakable evidence that nature, in loving pride, planned a brilliant borticultural destiny for them, bolding out conspicuously, among numerous other incentives, a climate promotive of health, pleasure and prosperity. Violent extremes of heat aod cold, so troublesome, annoying, and even disastrous in many other sections, are rarely if ever experienced here. Industrial evolution is steadily giving trend toward higher development of horticulture in the state.
J. W. Kerr.

MASDEVÁLLIA (Joseph Masdevall, a Spanish physician and botanist). Orchid̀̀ceo, tribe Epidéndrea. Masdevallias are inbabitants of the American tropics. There are more than $1 \overline{5} 0$ species, and various hybrids and garden forms. They are not showy orchids, but are odd and often grotesque. The petals are small and usually hiddeu in the calyx-tube, but the 3 calyx-lobes are greatly developed and give character to the flower. Often these lobes end in slender tails several inches long. Lip of the corolla short, articulate with the base of the
winged or wingless column, in some species sensitive. Pollinia 2, without caulicles. The Masdevallias bave no pseudobulbs; the leaves are variable in size, oblong to linear, thick, sheathing at the base; the peduncles bear from $1-5$ or more flowers. The species of the M. coccinea group are relatively simple in form, but are usually prized

1373. Maryland. The strong line sets off the horticultural regions to the south.
for their brilliant coloring. Those of the M. Chimara group are remarkable for their fantastic shapes. Of late years many new kinds have been introduced, and the genus is somewhat confused as to the specific limits of the various forms. Masdevallias are polymorphous, and herbarium specimens do not show specific characters well. See "The Genus Masdevallia," by Florence H. Woolward (1896).
L. H. B.

Masdevallias are found growing at high elevations, ranging from 6,000 to 12,000 feet above sea level, in northwestern South America and Central America, with a few sparingly distributed elsewhere over tropical America. These regions are generally subjected to two rainy seasons annually, often with very short intermissions. The atmosphere, though somewhat rarified, is very humid, the temperature in the shade seldom rising above $65^{\circ} \mathrm{F}$., and often dropping to 40° in some districts. Heavy fogs are irequent, especially in the forepart of the day, and during the greater portion of the year the under-vegetation is in a saturated condition; the high winds prevalent in these districts, however, comnteract to a great extent any evil influence which might otherwise arise from it.

The heat of our summer makes it quite impossible to imitate wholly the above conditions, but with a proper house, such as is afforded Odontoglossums of the crispum section, very satisfactory results nay be obtained and the many species will be found of comparatively easy culture. A low, well-ventilated, half-span liouse of northeru exposure, with an upright stone or brick wall on the south side, is best adapted to them. The house should be provided with canvas roll-shading, supported on a framework elevated 15 or 18 inches above the glass in order that the cool air may pass freely beneath it. This will belp to guard against solar beat during summer. Houses built partly below ground are not to be recommended, as the atmosphere soon becomes stagnant and inactive, eausing the leaves to fall prematurely. Where it is conveaient, solid beds are preferable; benches, however, will answer the purpose very well, and when used should be covered about 2 inches deep with sifted ashes, sand or gravel; the benches andfloors should be hosed down once or twice daily to afford all the cool moisture possible.

In winter the temperature should range between 50° and $55^{\circ} \mathrm{F}$, at night and about 60° during the day or 5° more on mild days, with weak solar heat and ventilation. Artificial heat must be dispensed with as early in spring as possible, and during summer the temperature kept as low as the weather will permit, ventilating freely,
especially at night, when a light syringing overhead will also prove beneficial. Midday syringing in hot weather is often injurious and should be done with cantion if at all. More benefit will result from hosing down the shelves and paths at intervals of three or four hours, as it will belp to reduce the temperature.
Masdevallias need a great deal of water at the roots at all seasous, and the soil should never be allowed to dry out, as they have no fleshy pseudobulbs to protect them against extreme changes. Light syringing overhead during winter and spring in fine weatber will assist in checking thrip and red spider, and a weak solution of tobacco may be added with good effect.
The best season for repotting and basketing the plants is during November and December, and the bext general compost is a mixture of clean peat fiber and sphagnum moss chopped rather fine and well mixed, some sections requiring in addition a portion of chopped sod. About one-third of the space should be devoted to clean drainage consisting of either broken charcoal or potsherds.
M. coriacea, elephanticeps, Peristeria, Reichenbachiana, add kindred species, grow best in small pots, and should have one-third chopped sod added to their potting compost. M. macrura, Schlimii, Torarensis, amabilis, coccinea, Veitchiana, triangularis, polysticta, muscosa, and the numerous other allied species, grow equally well in either pots or baskets, but should the latter be used it would be well to add a small portion of chopped sod to the compost to make it more firm and less porous; the sod has a cooling effect on the roots. M. bella, Carderi, Chestertoni, Chimeru, Houtteana and their allies nearly all have pendulous flower-scapes, and should be suspended from the roof in baskets in a compost of equal parts chopped peat-fiber and live sphagnum, with a little leaf-mold added. The flower-scapes often penetrate through the compost; for this reason little or no drainage should be used, as it may retard their progress.

To increase the stock the plants must be divided during the early winter; this will give them a chance to reestablish themselves before the following summer. They must not be broken up into too small pieces, as it has a tendency to weaken them. Cult. by R. M. Grey.

Review of the Sections.

Section 1. Scape I-fld.: calyx-tube rather narrow, tubular or somewhat funnel-shaped: labellum plane..................................... Species Section II. Scape 1-fld.: calyx-tube broad, gibbous or basin-like: labellum plane......Species
Section 111. Scape several-fld.: labellum plane and narrowSpecies Section IV. Seape mostly 1 -fld., pendent or suberect: labellum saccate, or at least much broadened: tails very long.....................Species Section V. Scapes 1 -fld. This section differs from all the others by the subterete Ivs., and in having the tails inserted below the apex of each lateral sepal
.Species

INDEK.

abbreviata, 26. amabilis, 4 . atrosangtinea, 7 Armeniaca, 7. Backhonsiana, 38. Barlaana, 6.
bella, 43.
Boddserti, 9.
calopteris, 39.
ealura, 17 .
Carderi, 40 .
Chestertoni. 41 ,
Chimaera, is 43.
civilis, 11.
coceines, 7
corulescens, 7.
Crossii, 3:3.
conchiflora, 7.
coriacea, 10 .
cornicalata, 13.
Davisil, 5.
Denisoni, 7.
elephauticeps, 24.
Ephippinm, 39.
Estradie, 19.
grandiflora, 1, 2,7 Gravesive, 7. Harryana. 7. hieroglsphiea, 22. Hontteana, 39. ignea, 2.
inflata. 13 infracta, 37. ionocharis, 15. leontoglossa, 9 . Lindeni, 7. lineata, 4. macrura, 14. maculata, 36. Massangeana, 2. melanopus, 28. melanopus, 28 Militaris, 2. Mooreana, 24 . muscosa, 25 . nidifica, 16. nycterina, 42 . pachysepisla, 24. pachyura, 30. pachyura, pallidi, 20.12.
platyglossa. 8 polysticta, 27, 2x psiltacina, 39. rivemosa, 33. radiosa, 44. Reichenbachiana 35. Reezlii, 38. rosea, 3 . mufo-iutea, 11 rufo-lutea, 11
Schlimii, 34. Shnttlewortbii, 18. striata, 4. superba, 2, Tovarensis, 31. triaugularis, 21 triaristella, 45. trochilu8, 32. Yeitchianis. 1. Wageneriana, 23. Wiallisit, 38 . Winnimna, 38 xanthocorys, 18. santhina, 20.
section 1.
A. Calyx-lobes glandular with minute papille

1. Veitchiana

AA. Calyx-lobes not glandular.
B. Tail of the dorsal labe hanging forward.
2. militaris
3. rosea

BB. Tail of the dorsal lobe erect and straight.............................
4. amabilis
5. Davisii
6. Barlæana

BBB. Tail of the dorsal lobe reflesed and flexuous
7. coccinea

1. Veitchiàna, Reichb. f. Tufted: 1rs. 4-6 in. Jong, narrow: peduncle erect and slender, 1 ft . or more, with 2 or more bracts (the upper one remote from the flower): calyx with bell-shaped tube, the expanding lobes 3 in. across, orange-red, with purple shades, glandular-hairy, abruptly contracted into short, narrow tails ; petals white, bidden. Peru. B. M. 5739, - Var. grandillòra, Hort., bas a dense hairy covering on the dorsal lobe of calys; and also on the outer part of the lateral lobes, the inner part orange-scarlet.
2. militàris, Reicbb. f. \& Warscz. (M. Zgnea, Reichb, f.). Much like the last, but differs in having elliptic or elliptic-obovate lvs., which are long-petioled, and in the lateral calyx lobes being only prominently pointed, not tailed, the dorsal lobe very narrow and banging forward between the other two: color orange and scarlet; petals white, exceeding the column. Spring. Colombia. B. M. 5962. I. H. 26:333, - Var. Massangeàna, Hort. Lateral lobes longer: fls. larger. Var. Boddærti, Hort. Calyx yellow; lower lobes shaded with red on the upper surface. 1.H. $26: 357$. Var. grandiflora, Hort. Fls, rounded; lateral sepals brilliant vermilion, bordered with crimson and suffused with purple. Var. supérba, Hort., is advertised.
3. rosea, Lindl. Lvs, oblong-spoon-shaped, keeled: peduncle drooping and slender, bearing a single fl: calyx tube 1 in . long, red and violet; calyx-lobes roselilac, with red tails: petals yellow, the lip hairy at the apex. Ecuador. G.C.111. 16:657. July, Aug.-A pretty and free-llowering species.
4. amáhilis, Reichb. f. \& Warsez. Lrs. 4-5 in. long, oblong- or spatulate-lanceclate, about half the length of the erect, usually 1 -fld. peduncles: fls. varying from purplish crimson to yellow; lobes ovate-triangular, the lateral ones with short tails and the dorsal ones with a long and ascending tail; petals narrow, yellowish, longer than the column. Peru. Sept.-Dec.-Var. lineata, Linden \& André (var. stridta, Hort.), has yellowish fls., tinged and striped with red. 1.H. 22:196.
5. Dàvisii, Reichb.f. Densely cespitose: Irs. oblonglanceolate, $6-8 \mathrm{in}$. long, petioled, blunt at the apex: peduncle erect, about 10 in . long: calyx large, brilliant yellow, obscurely veined with deeper yellow; dorsal lobe triangular-ovate, prolonged in a tail; lateral lobes oblongovate, larger, united to below the middle, terminating in short tails; petals longer than the column, nearly hidden in the calyx-tube, pale yellow, the labellum yellow, shaded and spotted with red, with 2 obscure keels. Peru. B. M .6190 .
6. Barlæàna, Reichb. f. Lvs. spatulate, acute: peduncle slender, nearly 1 ft . long: fls. scarlet; calyx-tube curved; dorsal sepals short-triangular, produced into a long tail; lateral sepals larger, semi-ovate; petals ligulate, white. Peru.-Reicbb. states that the lateral sepals run internally one in another; they are connate in a straight line.
7. coccinea, Linden (M. Lindeni, Andre). Fig. 1374. Lvs, spatulate, obtuse or retuse, $6-10 \mathrm{in}$. long: peduncle 1 ft . or more long: calyx erimson-magenta; dorsal lobe with a small, triangular base, prolonged into a longtail; lateral lobesoblong-ovate, scarcely prolonged; petals white, longer than the column. May. Colombia. B 3. 5990. 1.H. 17:42. F.M. 1872:28. - Var. conchiflòra, Veitch. Fls. large; lateral lobes of labellum rotund, concare. Var. Harryàna, (M. Harryд̀̀a, Reichb. f.), Lateral lobes of calyx oval, falcate, the tips usually crossing or turned toward each other. May. F.S.

21:2250. Var. Armenlaca, Hort. Fls. apricot-yellow, veined with red; throat of the tuhe yellow. Colombia. Var. atrosanguinea, Hort. Fls. large, with the lateral sepals crimson spotted with magenta, points falcate, turned toward each otber. Colombia. Var. cerulescens, Hort. Lateral sepals broadly semi-ovate, apiculate, crimson-magenta spotted with bluish purple. Colomhia. Var, Gràvesiæ, Hort. Fls, white. Var. grandiflora. Fls. large, rose-purple. Columbia. Var. Dénisoni, Hort. Bull's Blood. Fls. crimsou-purple.

SECTION 11.

A. Habit of scape drooping or deflexed.
A. Scape about as long as the lus. 8. platyglosss

B8. Scape shorter than the les.... 9. leontoglossa As. Habil of scapes erect or suberect.
B. Scape shorter than the lrs.
c. Li's. linear to linear-oblong.10. coriacea
11. civilis
12. Peristeria
cc. Les, oblong to lance-oblong. .13. corniculata
14. macrura
15. ionocharis
16. nidifica
17. calura

BB. Scape longer than the les.
C. Fls. ther small, with a broad, basin-like tube:
plants dwarf18. Shuttleworthii 19. Estradæ 20. xanthina 21. triangularis 22. hieroglyphica 23. Wageneriana
cc. Fls. larger, with a broad, deep, gibbous tube24, elephanticeps
8. platyglossa, Reichb. f. Densely tufted: lvs. spatu-late-lanceolate, narrowed into petioles, 3-4 in. long, as long as or longer than the drooping bracted $1-2$-fld. peduncles: fl. small (1 in. long), pale yellow, nearly globular, the lobes pointed but not tailed, the dorsal one upcurved: orary red; petals linear, as long as the column. Colombia (?) B.M. 7185.
9. leontoglossa, Reichb. f. Tufted: Ivs, oblanceolate, short-petioled, spotted beneath with red: peduncle deflexed, mostly shorter than the odd fls.: calyx narrow, the lobes gradually narrowed into fleshy tails or long points, semi-transparent, all of them greenish yellow outside and more or less hairy, crimson-spotted within, the dorsal lobe not greatly unlike the others but often somewhat ascending; petals white with crimson lines. Colombia. B.M. 7245. - The specific name ("liontongued") refers to the bearded lip.
10. coriàcea, Lindl. Lvs. linear-lanceolate, usually somewhat surpassing the erect, 1-fld., spotted peduucles, which are about 6 in . bigh: fls. fleshy, the calyx-lobes nearly equal and wide-spreading, triangular at base but gradually narrowed into long points or short tails; lobes greenish yellow and dotted crimson inside; petals white and crimson. Colombia. G.C. 111. 21:95.-Lvs. 6-8 in. long, with purplish dotted petioles.
11. eivilis, Reichb. f. (M. Mufo-luten, Lind1.). Lvs. fleshy, linear, keeled, 5-6 in. long: peduncle less than 2 in. long, erect or nearly so: fl. solitary, rather large for the size of the plant, the deep calyx-tube purple at the base and yellow at the top, the long-pointed, flattened lobes yellow: petals small, white, the labellum dotted purple. Peru. B.M. 5476.
12. Peristèria, Reichb. f. Tufted: 1vs. oblanceolate, sometimes retuse at the apex, $4-6 \mathrm{in}$. long, twice longer than the rather stout, erect, 1 -fld. peduncles: fls. with 3 long, wide-spreading tails, which span $4-5$ in., the tuhe somewhat gibhous beneath; back of the fl. greenish yellow; tails honey-yellow ; throat and base of lobes spotted with crimson; petals linear-oblong, white. Colombia. B.M, 6159. F.S. 22:2346. -Named from its resemblance to the dove orchid, Peristeria.
13. corniculàta, Reichb. f. Stems short and tufted: 1vs, spatulate, very short-pointed, mostly exceeding the 1 -fd. peduncles: fis. with yellow, inflated calyx-tube,
which is spotted with brown and ribbed, hearing loug, very slender brown tails; petals yellow. Colombia. Var. inflata, Veitch. Paler in color, and with smaller spots; lobes broader and golden yellow. Colombia. B.M. 7476 .

1374. Masdevallia coccinea ($\times 1 / 3$).
14. macrùra, Reichb. f. Stems short and tufted, each bearing a solitary lf. and fl.: Ivs. broadly spatulate or broad-oblanceolate, very obtuse or even retuse: peduncles $8-10 \mathrm{in}$. high, erect: fls. with 3 long tails, which span 8 in . from top to bottom; calyx-tube red-purple on the outside; lohes triangular-ovate in the hasal portion, dull red and purple-spotted withiu, the cylindrical tails yellow, the lateral ones 7-ribhed; petals yellow, spotted brown. Colombia. B.M. 7164.
15. ionócharis, Reichb, f. Lfs, ovate-lanceolate, exceeding the erect peduncle: fl. whitish, purple-spotted at base, the lobes triangular-ovate, with yellow tails; petals cream-white. Peru.
16. nidifica, Reichb, f. L,vs, oval or oblong, about the length of or longer than the peduncle: fl. white, veined and dotted with erimson passing into yellow on the lobes, the lohes hairy and with long, slender tails, which are yellow in the lateral lobes and crimson in the dorsal lohe; petals white, with crimson lines. Ecuador.
17. calura, Reichb, f. Lrs. mostly shorter than the peduncles, oblong-lanceolate: f. glossy crimson, with slender, Hat tails; dorsal lobe somewhat triangular at base, the lateral ones round-orate; petals crimson, with white on tip and margins. Aug. Costa Rica.-A freeflowering species.
18. Shúttleworthii, Reichb. f. A small species, with 1rs, only 2 in . long, on distinet petioles of equal length:
peduncles several, 1 -fld., sometimes overtopping the lvs.: fls, large (1 in . across and the tails $2-3$ times as long), maure, dotted with crimson; tails all yellow in the upper half, very slender, the upper one sometimes bent or hooked at the top; petals white. Colombia, B. 31. 6372. 1.H. 28:435. Var. xanthocorys, Reichb, f., has smaller fls, of pale yellow, dotted with brown or rose.
19. Estràdæ, Reichb. f. Very densely tufted: lvs, and petioles 3 in . long, the blade broad, spoon-shaped, and often retuse at the apex: peduncle usually somewhat exceeding the lvs., erect, 1 -fld.: flower of marked col-ors-the upper concave lobe yellow at base and violetpurple above, the lateral lobes violet-purple at base and white or straw-colored above; tails filiform, yellow; petals white, very small. Colombia. B.M. 6171 .
20. xanthina, Reichb.f. Like the last, except that the flower is yellow, with a purplish spot on the lateral lohes. Var. pállida, Hort., has fls. almost white. Colombia.
21. trianguláris, Lindl. Lrs. oblanceolate: peduncle erect, about 4 in . tall: fls. yellow, marked or spotted with purple, the tsils dark crimson; lobes similar, tri-angular-ovate; petals white, the lip spotted with pink or purple and hairy. Venezuela.
22. hieroglýphica, Reichb.f. Lrs. oral or oblong: peduncle short (about 3 in , long): flower with tube yellowish at bottom, becoming whitish, marked with crimson; lobes triangular-ovate, all with long tails, the tail of the dorsal lobe hanging forward and marked with purple at its base; petals yellow. June. Colombia.
23. Wageneriàna, Linden. Very small, neat and attractive, tufted, 2-3 in. high: lvs, spoon-shaped: peduncles equaling or exceeding the lvs., nearly erect: fls. yellow and crimson-dotted, with slender yellow tails, tbe upper one inclined backwards; lobes broad, cordate or ovate; petals yellow, odd in shape, the lip rhomboid and toothed. Venezuela. B.M. 4921.
24. elephánticeps, Reichb f. An odd species: lvs, broad-spatulate, obtuse: peduncles 1 ft . long, erect: flower single, party-colored-the dorsal or upper lohe light yellow, the lateral ones ribbed and crimson; calyxtube grhbous at the base below, all of them gradually produced into stout yellow tails (one of them often crimson), arranged so as to suggest the tusks and raised trunk of an elephant (whence the specific name). Colombia. F. S. 10:997. Var. pachysépala, Reichb. f. (3 . Mooredna, Reichb. f.), has the dorsal lobe 3-nerved with crimson and the tuhe spotted.

SECTION 111.

A. Les. covered with round papicsf: scape hairy25. muscosa
AA. Lets. smooth.
3. Fts. smatl, in many-fld. racemes, angles of the orary irenulate or the petals twothed. 26. abbreviata 27. polysticta 28. melanopus 9. caloptera 30. pachyura

BB. Tls larger, often expanding in succession: raceme ser-crol-fld.: angles of the ovary and petals entire.
c. Color of fts, white31. Tovarensis
ce. Color of fls. yellow, dotted and shaded with brown or red.
D. Lateral sepals united. forming a boat-shaped енр................... DD. Lateral sepals nearly plane, at least not strongly cucullate. E. Tails of the lateral sepals very short or none............33. racemosa ee. Tails of the lateral sepals long.

MASDEVALLIA

F. Le's. broad, obo-vate-elliptic....34. Schlimii
FF. Les.oblong-lanceolate or oblanceolate.
G. Calyx-tubefun-
nel-shaped,
narroued at
the base33. Reichenbachiana
Gf. Calyx-tube
broader or
gibbous at the
base.........36. maculata 37. infracta

25. muscòsa, Reichb. f. Lvs. oval-oblong, papillose: peduncle hairy, 3 times exceeding the lvs., with 1 or more yellow fis.: lobes triangular, with reflexed tails; petals narrow and yellow with a brown line in the center, the lip hearing a raised yellow disk and moving upward with a jerk when this disk is touched. St. Domingo. - Fls, $1 / 2$ in. across.
26. abbreviàta, Reichb. f. Lvs. oblong-lanceolate: peduncle many-fld., about 6 in. long: fl. white and freely dotted with red, the tails all deep yellow, the lobes serrate on the edges; petals white, longer than the column, serrate. Peru.
27. polysticta, Reichb.f. Densely tufted: Ivs. narrowspatulate, obtuse and ofteu retuse: peduncle exceeding the lvs., about 8 or 9 in . tall aud many-fld.: fls. pale lilac, spotted with purple, the margins of the sepals ciliate but not serrate, the tails very slender and spreading (fl, 2-21/2 in. across) and yellowish; petals spatulate and serrate. Peru. B.M. 6368. 1.H.22:199. R.H. $1880: 250$.
28. melanòpus, Reichb. f. Much like MF. polysticta: fls. smaller, white specked with purple, the dorsal sepal keeled, the lobes not ciliate or serrate on the edges and very suddenly contracted into slender yellowish or darkcolored tails; petals linear-oblong, toothed below the apex. Peru. B.M. 6258 (as M. polysticta).
29. caloptera, Reichb. f. LFs. oblong-ovate: peduncle short (5 or 6 in .), many-fld.: fl. white with crimson streaks, the tails all slender and orange; dorsal lobe keeled and somewhat hooded; the lateral ones ovate-oblong; petals white, crimson-keeled, serrate. Peru.
30. pachyùra, Reichb. f. Lrs. oval-oblong: peduncle erect, slender: calyx with triangular, short-tailed lobes, yellow, with transverse bars and spots of reddish erimson; dorsal sepal triangular, with a thick tail equaling the sepal in length; petals pale yellow. Ecrador. G.C. 111. 22: 255.
31. Tovarénsis, Reichb. f. Lvs. rather small, oblongspatulate: peduncle 5 or 6 in . long, sometimes exceed. ing the Irs., 2-edged, several-fld.: fls. clear white and fragrant, the tails yellowish at the ends; dorsal lobe $11 / 2$ in. long, very narrow and produced into a reflexed tail; lateral lobes oral, gradually produced into tails shorter than that of the dorsal Sobe; petals white. Iec., Jan. Colombia, B.M. 5505 . I.H. $26 ; 363$. Gn. 48:384. G.C. 1865:914; 1871:1421. -One of the best of the genus.
32. Ephippium, Reichb. f. (M. trochlus, Linden \& And.). Lvs, broad, oblong, 5-7 in. long; peduncle erect, about a foot long, sharply $3-4$-angled, stout: calyx with the dorsal lobe cucullate, yellow, dotted with brown, $1 / 2$ in. in diam.; lateral lobes united, forming a deep boat-shaped, chestnut-brown eup, with several ridges which are greenish outside; all tbe lobes passinto yellowish tails about 4 in. long; petals white. Colombia. B.M. 6208. I.H. 21:180. - According to Index Kewensis, $M_{\text {. }}$ trochilus and M. Ephippium are distinct species. The former is described as haring terete stems.
33. racemòsa, Lindl. (M. Cróssii, Hort.). Stems ereeping: Ivs, oblong-ovate, much shorter than the sev-eral-fld. racemose peduncles: fls. membranaceous, orange with red lincs, erect, I in, across, tails very short or none; lateral lobes ovate, blunt-pointed, curving ontward so as to form a 2 -lobed limb, the dorsal lobe $1 / 2 \mathrm{in}$. long and pointed. Peru. - Not a popular species. Requires a coolbouse.
34. Schlimii, Linden. Tufted: 1vs, elliptic-obovate, petioled, a ft. or less long, half shorter than the severalflowered peduneles: fls, dull yellow, mottled witb bright brown, the tails yellow, about $1^{1 / 4}$ in. across without the tails; tails $2-3$ times longer than the body of the calyxlobes, very slender; petals pale yellow, linear-oblong, equaling the column. Venezuela. B.M. 6740 . G.C. 11. 19:532.
35. Reichenbachiàna, Endres. Densely cespitose: Ivs. oblanceolate, shorter than the several-fld. peduncles: flower dark red on tbe outside, yellowish, with red veins on the inside, all the lohes with turned-back tails, the lobes triangular. Costa Rica.
36. maculàta, Klotzsch \& Karst. Lss, narrow-oblanceolate, nearly or quite equaling the erect several-fld. peduncle (which is $8-10 \mathrm{in}$. tall): fls. yellow-tubed, suffused or dotted with red, all the lobes produced into orange-yellow or greenish tails 2 in. long; lateral lobes crimson, with yellow on the margin, the tails drooping; petals yellowish. Venezuela. F.S. $21: 2150$.
37. infrácta, Lindl. Cespitose: Ivs oblong-lanceolate to narrow-lanceolate: peduncle about 6 in . loug, severalfld.: calyx pink-purple; dorsal sepals cucullate, lateral sepals entirely united, forming a wide, gaping tube, with cucullate sides and apex, passing into slender, yellowish tails; petals whitish, dotted with pink-purple. Brazil. F.S. 23:2389.

SECTION IV.

38. Chimæra, Reichb. f. Fig. 1375. Tufted: 1vs. ob-lanceolate-obtuse, 1 ft . long and $11 / 2 \mathrm{in}$. wide: peduncle wiry, erect, lateral or pendent, several-fld., mostly shorter than the lrs.: fls. opening in succession; calyxlohes ovate, yellowish, much spotted with deep crimsonpurple, tapering into slender tails from 3-11 in. long, purple-brown; petals white, marked with erimson; labellum saccate, white, yellow or pinkish, very variable. Colombia. R.H. 1881:130. G. C. 1I. 3: 41.- One of the most fantastic of orchids, and the type of a most interesting group.

Var. Rózlii, Hort. (M. Râzlii, Reichb. f.). No long hairs on the calyx-lobes, the lobes very dark-colored, with short warts; labellum pink, not yellow. Color the darkest of the section. Often regarded as a good species. Sub-var. rubra. Spots on calyx lobe brown-crimson.

Var. Wállisii, Hort. (M. Wállisii, Reichb. f.). Calyxlobes with hispid pubescence, yellowish, spotted with brown-purple; labellum white, Jellow within.

Yar. Winniàna, Hort. (M. Winnidna, Reichb. f.). Calyx-lobes elongated, densely black-spotted. In part distinguished from var. Razlii by its longer tails.

Var. Backhousiàna, Hort. (M. Backhotsidna, Reichb. f.). Lrs. narrower than in the type: fls. large; ealyxlobes more round, paler, not so thickly spotted; tails short ; labellum nearly white. Perhaps a distinct species.
39. Hontteàna, Reichb. f. (M. psittacina, Reichb. f.). Densely cespitose: Ivs. linear to lance-linear, much exceeding the drooping or deflexed 1-fld. peduncles (which are $4-5 \mathrm{in}$. long): fls, creamy yellow, spotted with crimson, the long banging tails brownish red; calyx-lohes semi-ovate to triangular, somewhat hairy (as are also the tips of the tails) ; petals white or pinkisb. Colombia. F.S. 20:2106.
40. Cárderi, Reichb. f. Cespitose, with strong ascending foliage and hanging spotted 1-fld. peduncles: Ivs. oblanceolate, $3-5 \mathrm{in}$. long: peduncles green-bracted, 3 in . long: Hs. bell-shape, $3 / 4$ in. across exclusive of the tails, white, with purple and yellow bars at the base; tails rery slender and spreading, 1 in . long, yellow; petals small, white, linear-oblong and obtnse. Colombia. B.M. 7125.-A graceful and pretty species.
41. Cbéstertoni, Reicbb. f. Tufted: lvs. oblong or ob-long-spatulate, 5 in . long and nearly or quite 1 in . wide, somewhat longer than the pendent, much-bracted, 1-fld, peduncles: fl. $21 / 2$ in. across, greenish yellow, spotted and streaked with purple, and bearing 3 spreading, greenish, more or less hooked, flattened tails I in. long; petals yellow, very small. Colombia. B.M. 6977.-Odd and distinet.
42. nycterlna, Reicbb. f. Often confused with M. Chimera, but a smaller and less showy plant: tufted:
lvs, oblanceolate, somewhat fleshy, channelled, 6 in. long, not narrowed into a petiole: peduncle 1 -fid., 3 in. long, drooping: fl. triangular, 2×3 in., with tails 3 in . long, hairy inside, brown-yellow and purple-spotted; petals yellow, with red spots, pouch-like, serrate. Colombia. I.H. 20:117-18 (as M. Chimera).-Odd.
43. bélla, Reichb. f. Lvs, oblong-lanceolate, ehannelled, about 8 or 9 in. long, narrowing to the base: peduncle 1-fld., drooping or horizontal, $1 / 2 \mathrm{ft}$. long, slender: fls. large and spider-like, triangular in outline, 3 in. across, with stiffish tails 4 in . long, of which the dorsal is recurved and the others standing forward and usually crossed, the fl. pale yellow, spotted with purplish or brown ; petals white or yellowish. Colombia. Oct.-Dec.One of the best of the Cbimæras.

Masdevallia Chimara.

 ($\times 1 / 2$.)44. radiòsa, Reichb. f. // Lis, oblong or lanceolate : peduncle $2-3$-fld., drooping or deflexed: fls. yellow, dotted and splashed with purple, the prominent tails all purple; petals yellow, pur-ple-spotted, but the lip whitish. Colombia.

SECTION V.

45. triaristélla, Reichb, f. Lvs. about 2 in . long, in very crowded tufts: peduncles longer than the ivs., very slender, erect, wiry: dorsal lobe of calyx ovate, hooded, tall yellow; lateral lobes coloring throughout their length, linear, united, at length diverging into short yellow tails; petals yellow, with a red midline. Summer. Costa Rica.-One of the smallest of orchids.
The following have been offered in America, but most of them are imperfectly known. M. cheirophora. - M. Chélsoni-(M. amabilis \times Veitchiana) M. gibberòsa=Scaphosepalum. - M. Hendersoni.M. punctàta-Seaphosepalum.-M. trificàta.

Heinrice Hasselbring and L. H. B.
MASSACHUSETTS HORTICULTURE. Fig. 1376. The horticultural interests of Massachusetts are fully equal to those of agriculture proper, when we consider the production of fruits, vegetables, flowers, and the labor and expense applied to the growth of ornamental trees, shrubs and plants and their use in decorating the homes of her people, armong whom there are probably more comfortable, well-kept and beautiful bomes than can be found in any similar area in the world. The people of this state probably consume more of tbe luxuries of life than any other people on the same area, and among the so-called luxuries may be classed fruits, fancy vegetables and flowers.

The soil of Massachusetts is generally considered unproductive and poorly adapted to horticultural pursuits, and this is true in so far as it refers to large areas of exceptionally fertile land, of which that in the Connecticut valley is the only section of more than a few acres in extent. Everywhere about the state, however, there are small areas of land suited to the growth of almost every erop succeeding in similar latitudes. By business enterprise, persistent effort and skill, profitable horticuitural crops can be grown. The local products largely supply the markets in their season. Apples are also exported.

The amount of fruit produced within the limits of the state is not nearly up to the home consumption, except cranherries and possibly the apple in some seasons. Even

1376. Massachuset's.

Showing some of the leading horticultural areas.
in seasons of an unusual crop in the state, large quantities of apples from other states are shipped into our markets, because iu many cases they are of superior size and beauty. Pears are shipped into our markets from the soutbern states and California, and as the market for this fruit is limited, prices often rule very low. Eastern Massacbusetts is admirably adapted to pear-growing.

Peach trees can be growu up to about ten to fifteen years of age when given the proper attention, but the fruit buds are frequently killed in the winter, and not more than one crop may be produced in three years. However, even under these conditions, when the trees are planted on rather light land and well cared for, one crop in three years is often more profitable than most other fruit or vegetable crops. The fruit on trees properly cared for is large, of the finest color and quality, and the fresb, ripe condition in which the grower can put it into the local markets makes it quickly salable at the highest prices.

Plums are not grown to a great extent, the larger markets being supplied chiefly by New York and California. Few orchards remain productive longer than ten or twelve years, on account of the black-knot, leaf-blight and brown-rot. Within the past four or five years Japanese plums have been largely planted, but have borne little fruit up to this time, so that their status in the market is not fully established.

The cherry, owing to the attack of the black aphis, the plum curculio and brown-rot, is very little grown as an orchard fruit. A few vigorous and productive trees may be seen here and there by the roadsile, about old bomesteads or on the lawn, where they live longer and attain greater size than when grown under a bigh state of cultivation in the garden or orchard, because of the fact that when grown too rapidly the trunks crack on the south side and the trees soon die. Our markets are largely supplied with cherries from California, New York and other states.

Small fruits are more grown and more nearly supply local markets than do the large fruits. The supply of very early fruit comes from the southern states of the country, but home-grown fruit is so much superior in quality that it sells at reasonable prices, notwithstanding prices may have been very much reduced by an oversupply of the soutbern product. Of the smaller fruits, grapes are profitahle mostly when grown on rather light land and at high elerations with a southern exposure. The ebief obstacles to success are early frosts in the fall and late frosts in the spring. Currants are grown to a considerable extent, almost every garden containing more or less currant bushes for home supply, while many large plantations may be found near every large town or city. The couditions of success are a rather moist, rich soil, with the bushes trained into a very compact form and pruned so that the fruit will be borne on wood that is not over tbree or four years old. Gooseberries are little grown, although the demand is rather on the increase. The more hardy kinds can be as easily grown as the currant, while the European
sorts and their bybrids, many of them, require much care and skill. Like the currant, the blackberry is largely grown for home use, and also for market. It succeeds upon a great variety of soils, can be grown cheaply and sells at good prices. Few plantations will be profitable on the same land more than from five to seven years unless the soil is strong and rich. It is the practice of most growers to plant a new lot every six or seven years. The red raspherry is the most popular of the bush fruits, and when successfully grown is the most profitable. For success it requires a deep sandy loam, retentive of moisture, but plantations nust be renewed after six or eight years ${ }^{\prime}$ growth on one piece of land. The blackcap rasplerry has found less and less of favor each year with our people, and can only be sold at very low prices in our city markets.

The business of market-gardening bas made rapid strides in the state in the past ten years, and the demand for choice vegetables continues more or less the year round. Even in the matter of competition with vegetables from the South during the winter, our local growers have reached a good degree of success. In almost every part of the state may be found forcing-houses for the growth of lettuce, tomatoes, cucumbers, rhubarb, asparagus, etc., and notwithstanding the cost of such structures and the fuel to keep up the necessary heat, the increase in the number of forcing-houses within the past two years is a certain indication that the business is profitable.

It is perbaps in the growth of eut-llowers and house and decorative plants that this state excels in borticulture. As a rule, the largest establishments of this kind are located near the large cities, though in some cases they may be found in some of the more rural towns. The borticulturists of Massachusetts do not understand their advantages in having the best markets in the world at their doors, and a great variety of soils suitable for the growth of many of the raried crops. By persistent effort and superior skill they could supply these markets largely, and tbus retain within the state much of the wealth that now goes outside to pay for the produce that could be raised at bome.
S. T. Maynard.

In commercial horticulture, Massachusetts is not the equal of some other states, although its market-gardening and floricultural interests are large, but its influence on the borticulture of the country is more important than acres and tonnage. The best hortizulture is that which develops ander difficulties, because it develops the man. The love of the country and attachment to its own soil are strong in Massacbusetts. Individuality has full course. It is a land of bome-loving people. It bas developed the amateur borticulturist to perfection,the person who grows the plant and dresses the soil for the very love of it. There are many large collections of choice plants, and great numbers of artistic, compact and tidy garden-lomes. There is keen appreciation of the merit of well-grown things. The influence of the Massachusetts Horticultural Society has beed incalculable. Since 1829 it has bad its stated discussions, beld its periodical shows, collected its library and records. It is a center of education and culture. The establisbment of Mt. Auburn cemetery in 1831 was the beginning of the movement in this country for cemeteries in the open as distinguished from the churchyard.
L. H. B.

MASSÁNGEA comprises one species (M. musaica, Morr.), which is now referred to Guzmania, G. musaica, Mez. It is not known to be in the Amer. trade, although it is enlt. in the Old World. It is from Colombia. It is stemless, with 20 or less broad-strap-sbaped, entire-edged Ivs.. which are marked transversely with purple, and a bead of small fls. (corolla shorter than calyx) which are covered by very showy red hracts. B. M. 6675. I.H. 24:268. - Known also as a Tillandsia, Billbergia, Caraguata and Vriesia.

MAST. Englisb name for beechnuts; American for any woods-nuts eaten by swine.

MATRICARIA (mater, mother, from its use in diseases). Compósito. From Cbrysantbemum it differs mostly in the akenes, wbich are 3-5-ribbed on the interior
face and ribless ou the back; also in hariog a higher or more conical receptacle, and bracts in few rather than many series. Matricarias are annual or perennial weedy herbs, often hearily scented, about 25 species in many parts of the world. The foliage is much cut or divided into thread-like dirisions.
The Matricarias are border plants in cultivation, and others are iutroduced weeds. They are commonly confounded with species of Chrysanthemum and fererfew. The M. eximia plena of the trade is a form of Chrysanthemum Parthenium (var. tubulosum). It is a good hardy annual, with white, double heads, growing 2 ft . tall. Matricarias demand the care giren to annual Chrysanthemums. The two following are annuals or biennials.
inodora, Linn. (Chrysanthemum inodorrum, Linn. Pyrethrum inoddrum, Smith). Nearly or quite glabrous, branchy diffuse annual, 1-2 ft. tall, from Europe and Asia. Lrs many, sessile, 2-3-pinuately divided or dissected: heads $11 / 2$ in. across, terminating the brauches, with many acute white rays : akenes inversely pyramidal, with 3 conspicuous ribs. Not uncommon in fields eastward. Var. plenissima, Hort. (var. ligutôsa, var. múltiplex, M. grandiflora, Hort. not Fenzl.), is a common garden plant with very douhle, clear white, large heads. It is floriferous, and the tls, are fine for cutting. G.C. II. 12:753. - It often persists and blooms the seeond year. Foliage little or not at all scented.
parthenoldes, Desf. (M. Capénsis, IIort., not Linn. Anthemis parthenoides, Bernh. C'hrysinthemum parthenohdes, Voss). Anuual, or biennial under cultivation, 2 ft . or less high, soft-hairy when young, but becoming smooth, bushy in growth: Ivs. petiolate, twice divided, the ultimate segments ovate and often 3 -lobed: fl.-heads loosely corymbose, in the garden forms usually double, white.-A haodsome plant, probably of Old World origin, useful for pots, and blooming till frost.
Other introduced species from En. are M. Chamomflla, Liun., a glabrous, m:ich-branched annual, with fipely disseeted lvs., 10-20 truncate white rays, and an oblong, nearly terete akene with 3-5 raint ribs; and \mathbf{M}. discoidea, DU. (M. matriearioides, Porter), a very leafy and glabrous annual with no rays and a lightly perved oblong akene.
L. H. B.

MATRIMONY VINE. See Lycizm.

MATSEA. Consult Marettia.

MATTEU゙CCIA (from C. Matteuceí, ad Italian physicist). Polypodiàcear. A small genus of north temperate ferns, with leaves of two sorts, the sterile growing in crowns from erect rootstocks, and the fertile growing from the interior of the crown. Our species is known as the Ostrich Fero and is one of the most easily cultivated, as well as one of the handsomest of our native species. It multiplies rapidly by offsets sent ont from the rootstock. Commonly known as an Onoclea or Struthiopteris.
Struthiopteris, Todaro (Struthiopteris Germánica, Willd. Onoclèt Struthiópteris, Hoffun.). Ostrich Fern. Lrs. (sterile) $2-6 \mathrm{ft}$. long, with the lowest pinnee gradually reduced; fertile lvs. $10-15 \mathrm{in}$. long, pinnate, with the margins of the pinne closely jarolled and covering the sori. Eu. and northeastern N. Amer. - Wildenow regarded the American species distinct, but by most botanists it is considered as identical with the European species.
L. M. Underwood.

Matthiola (Peter Andrew Matthioli, 1500-1577, Italian plysician and writer on plants). Sometimes spelled Mathiola. Crucifere. Stock. Gilliflower, when used at the present day, means Matthiola or sometimes Cheiranthus; formerly it designated Dianthus Caryophyllus. From Cheiranthus, the wallfower, this genus differs in its winged seeds, which are as broad as the partition, the stigma lobes erect or connivent and often thickened on the outside, the silique not 4 -sided (terete or compressed). Of Matthiolas there are probably 30 species, widely distributed in the Old World and Australia. They are herbs or subshrubs, tomentose, with oblong or linear-entire or sinuate lvs., and large, mostly purple fis, in terminal racemes or spikes.

The true Stocks (Fig. 1377) are of this genus. The

Virginian Stocks are diffuse small-flowered annuals of the genus Malcomia (which see). Stocks are of two general types, - tbo autumn-blooming, Queen or Brompton Stocks, and the summer-blooming, Ten Weeks or Intermediate Stocks. By some persons these classes are made to represent two species-M. incana and \boldsymbol{M}. annua respectively. It is probable, however, that they are garden forms of one polymorphous type. Eveu if distinet originally, it is not possible now to distinguish them by definite botanical characters. Stocks are amongst the most common of all garden flowers. The two types cover the entire blooming season, particularly if the earlier ones are started indoors. Most of the garden forms are double, although some of the single types are desirable for the definiteness and simplicity of their outlines. The colors are most various, running from white through rose, erimson, purple and particolored. The fls, are fragrant. For culture, see Stock.

1377. Ten Weeks' Stock-Matthiola incana, var, annua ($X^{1} / 2$).
incàna, R. Br. Comston Autumnal or Brompton Stock. Biennial or perennial, becoming woody at base, but usually treated as an annual: erect-branching, closely tomentose-pubescent, the stems stiff and cylindrical: Irs. alternate, tapering into a petiole, long-oblong or ohlanceolate, entire, obtuse: fls, with saccate lateral sepals and large petals with long claws and wide-spreading limb, borne on elongating stalks in an open, terminal, erect raceme: siliques becoming 3-4 in. long, erect. Mediterranean region; also Isle of Wight. -M. glabrata, DC., is a glabrous form.
Var. annua, Voss (M. ámza, Sweet). Ten-Teeks, or Intermediate Stocks. Fig. 1377. Annual, less woody, blooming earlier.-A shining-Ivd. variety is known.
bicornis, DC. Half-shrubly, straggling nonual or biennial: fis. smaller than those of M. incana, purplish or lilac, fragrant by night, closing by day: pod terete, long, 2-borned: 1vs, pinnatifid, or tise appernost eutire. Greece, Asia Minor.
M. sinudta, var. Oyeinsis, Rony \& Fone., is figured in B. M. 7703 (1900), where it is said that "the name Oyensis has been corrupted ingardens to Ohiensis and Chinensis." The plaut is from the Ile d' Yeu (Insula Oya, whence the name) on the coast of France. It is an annual or biennial, with sinuate-toothed lvs., hairy, and with large white fragrant ts. Not known to be in cult. in this country.
L. H. B.

MAURANDIA (after Maurandy, professor of botany at Cartagena, Spain). Also written Maurandya. Scrophulariacea. About 5 species of Mexican climbers, with usually halberd-shaped Ivs. and showy, irregular trum-pet-shaped fls., white, rose, purple and blue, the throat usually white or light-colored. The fis. are somewhat 2 lipped. The commonest species is M. Barelaiara, which is procurable in a greater range of colors than the others. Mauraudias are desirable vines for winterflowering in cool greenhouses, but since they bloom the first year from seed, they are almost wholly grown for summer bloom outdoors and treated like tender annuals. They have a slender habit and grow about 10 ft . in a season? In the fall the vines may be taken up and removed into the house if desired.

Botanically, this genus is nearest to the snapdragon, though the throat of the flower is not closed. The plant known to the trade chiefly as Maurandia antirrhiniflora is now referred to Antirrhinum. (See Antirrhinum, where this plant is figured.) It is a climber aod requires the culture of Maurandia. Maurandias climb by the twisting of the leaf-and flower-stalks. They are glabrons or pnbescent: Ivs. alternate, or the lower ones opposite, halberd-shaped, angular-lobed or coarsely toothed: calyx 5-parted; segments narrow or broad: corolla tube scarcely bulged at the base; posterior lip 2 -cut; anterior lip variously parted: stamens 4-didynamous.

1378. Maurandia scandens ($\times 1 / 4$).
A. Seeds tubercled, wingless: calyx segments narrow: lvs. hastate, not serrate. (Subgenus Eumaurandia.) B. Caiyx distinctly glandular-pilose: segments longatlenuate.
Barclaiàna, Lindl. Usually, but not originally, written Barclayana. B.R. 13:1108. L.B.C. 14:1381. V. 5:353. -The following trade names advertised like speciesnames are presumably all color-varieties of this species: M. alba, albiflora, Emeryana rosea, purpurea grandiflora, varius. The last is a trade name for mixed varieties.

BB. Calyx glabrous, shorter.

sempérflorens, Ort. FIs. lavender-colored; throat white. B.M1. 460 - Cult. in S. Calif.

AA. Seeds with a larevated or irregular wing: calyr sigments leafy and broad: lus. lriangular-ovate, serrate. (Subyenus Lopliospermum.) B. Corolla lobes obluse or even notched.
erubéscens, Gray. Lvs. somewhat triangular in outline, serrate: fls, 3 in. long, rosy pink. B. N. $3037,3038$. B.R. 16:138I. GA'. 11. 20:501.-Cult. in 太. Calif.

BB. C'orolla lobes acute.

scándens, Gray (Lophospérmum scándens, D. Don). Fig. 1378. Perhaps ouly a botanical variety of the preceding. B.M. 3650.-A hybrid with the preceding is shown in B. 5:242.
W. M.

MAURITIA (after Prince Moritz, of Nassau, 1567-1665, patron of Piso and Marcgraf; by his aid a Natural His. tory of Brazil was published). Palmàcer. Very graceful fan palms, almost spineless: stems very slender, obscurely ringed: Irs, pinnately flabelliform, semi-circular, orbicular or wedge-shaped, the lobes lanceolate, acuminate; rachis long or short; petiole eylindrical : ovary perfectly 3 -celled. There are 6 or 7 tropical American species.
flexuosa, Linn.f. Moriche Palm. Stems without stolons: lys. $20-30$, erect-spreading, $9-16 \mathrm{ft}$. long; blade $21 / 2-4 \mathrm{ft}$. long, Jellowish beneath; lobes $2 / 2-1 \frac{1}{2}$ in. wide; petiole stout, rigid, semi-cylindrical, equaling the blade: fr. nearly 2 in. long, depressed-globose; seed $\mathrm{I}^{1} / 3$ in. long. Trop. Brazil. - Offered in 1889 by Reasoner Bros. In the Amazon delta this palm grows to 150 ft . or more in beight, with a trunk often 30 in . in diam, at base. "The fruit is spherical, the size of a small apple, aod covered with rather small, smooth, brown. reticulated scales, beneath which is a thin coating of pulp. A spadix loaded with fruit is of immense weight, of ten more than two men could carry between them. - Jallace, "Palms of the Amazola."

JARED G. SMITH.
MAXILLARIA (Latin, maxilla, jaw; referring to the mentmin). Orchiddeea, Mostly pseudobulbous, epiphytic orchids, resembling Liscaste in general appearance. The genus contains over 100 species, dispersed at various altitudes in Mexico, Brazil and the West Indies. About 15 species are offered by dealers in America. Many of these have small flowers and are of value only in collections. They are, however, easily grown, and blosson profusely. Among those given below, the large, white-flowered M. grandiflora and M. venusta, and the white and purple M. Sanderiana are probably the best species. Rhizomes short or long, creeping or erect, and clothed with distichons lrs.: pseudobulbs clustered or scattered on the rhizome, 1-2-1rd. or densely distichophyllous at the apex of the rhizome: Ivs. leathery or subfleshy, plicate or plane and keeled, distichous: sepals subequal, free from each other but united with the foot of the column and forming a projecting mentum; petals similar or smaller: labellum 3lobed, movably articulated to the foot of the column: lateral lobes erect; middle lobe with longitudinal eallosities. The scape arises apparently from the base of the pseudolulb, on the very young leafy axis, but lower down than the corresponding new growth. Pollinia 4 , seated on a broad, scale-like stipe. The distichous arrangement of the lvs. distinguishes this genus from Lycaste. For M. IIarrisonio and tetragona, see Lycaste.

Heineich Hasselbring.

Maxillarias are of easy culture, and can be grown under various methods of treatment with fair suceess. The best compost consists of clean peat fiber taken from the several species of Osmunda, and live sphagonm, both chopped rather fine and well mixed together. After the receptacle is half filled with clean draioage and the plant properly placed, the compost should be pressed firmly in around the roots, interspersing it with nodules of charcoal. In their native habitats, many of the finerooted species growon rocks and treeswith verylittle compost attached. The base of the pseudobnlbs or rhizome should rest on a convex surface raised a little above the
rim of the pot when finished. Naxillarius delight in a cool, moist, shaded location at all seasons where the winter temperature will not exceed $58^{\circ} \mathrm{F}$. by night and not over 60° or 65° by day. During summer they must be grown as cool as possible with rentilation at all seasons when admissible, especially in wet, heary weather. Water should be giren in abundance while the plants are growing and not too sparingly when at rest, as the plants are subject to spot if kept too dry. Weak liquid cow manure is beneficial occasionally during root action,

Maxillaria has two recognized horticultural groups or sections; viz., caulescent and stemless. The caulescent section embraces M.lenuifolia, M. variabilis and kindred species, haring scandent rhizomes and often obscure flowers. These should all be grown under pot culture and afforded supports to climb on, such as small eylinders or rafts of open woodwork with a little compost worked in the openings, or Osmunda rhizomes supported obliquely in the pots to which the plants can attach themselves as they grow upward, and thus be supplied with moisture for the young roots. To the stemless section belong those with clustered pseudobulbs, as M. Fuscata, M.grandiflora, M. luteo-alba, M. picta, M. Sanderiana and M. venusta. Some of these have very showy flowers. Nearly all do best under pot-culture. M. Sanderiana and others are exceptions, however, and grow best under basket culture, not too much compost and an airy position. Demand for Mlaxillarias not being great, the market usually relies on new importations, but stock may also be iucreased by dirision between the pseudobulhs as the plants start new action.

Robert M. Grey.

15DEX.

angustifolia, 12.
elegantula, 8.
fuscata, 6, 7. grandiflora, 2
Henchmanni, 12
Henchmanni, 12
Houtteans, 11.

Lehmanni, 3 . Lindenise, 5. luteo-alba, 9 picta, 6. rufescens. 7 .

Sanderiana, 4
striata, 10.
temuifolka, 13 variabilis, 12.
venusta. 1.
A. Psendobulbs clustered on the creeping rhizome.
B. F'ls.mostly white, large and showy. c. Sepals long-lanceolate.......... cc. Sepals broad, ovate, triangular or oblong.
D. Middle lobe of the labellum longue-like
DD. Middle lobe of the labellum rounded 3. Lehmanni
4. Sanderiana 5. Lindeniæ

BB. F'ls, yellow and brown. c. Sepals and petals nearly alike, oblong.
6. picta] 7. rufescens

C'C. Sepals and petals dissimilar, the latter smaller............ 8. elegantula 9. luteo-alba 10. striata

AA. Pseudobulbs more or less distant, on an ascending rhizome: les. grass. like: fls.small and numerous....11. Houtteana 13. variabilis 13. tenuifolia

1. venùsta, Linden \& Reichb.f. Pseudobulbs ohlong. compressed, 2-lvd.: lvs. oblong-lanceolate, acuminate, plane, 1 ft . long: scapes 6 in . long, bearing a single glistening white fl. 6 in . across: sepals and petals longlanceolate, acuminate, spreading ; the lateral sepals wider, labellum much smaller; middle lobe triangular recnrved, obtuse, sellow; lateral lobes very obtuse, bordered with red; disk with a rounded, hairy callus. Winter and spring. Colombia. B.M. 5296. G.C. III. 12:367 (abnormal).-A large-fld., showy species.
2. grandiflòra, Lindl. Fig. 1379. Pseudobulbs clustered, oval: lrs erect, plane, keeled, ovate-oblong, 1 ft . long: scapes erect, $3-6 \mathrm{in}$. long, bearing solitary, large white fls. $3-4 \mathrm{in}$. across; sepals broadly ovate to oblong; petals ovate acute, suberect, with recurved tips; labellum saceate, white, much-striped with purple on the sides; middle lobe tongue-like, white, bordered with
yellow. Aug. Peru and Colombia. 1.H. 17:14.-A rery showy and beantiful plant.
3. Léhmanni, Reichb. f. Fl.-stalks nearly 1 ft . in length, bearing white fls, nearly as large as those of Lycaste Skinneri; side lobes of the labellum light ochre outside and light reddish brown with chestnut veins inside; middle lobe triangular, wary, sulfur color. Ecuador. - Resembles M. grandiflora, but distinguished by the character of the lip.

4. Maxillaria grandiflora (X nearly $1 / 2$).
5. Sanderiàna, Reichb. f. Pseudobulbs orbicular to broadly oblong, 1-11/2 in. long: lvs. few, 6-10 in. long, oblanceolate, plane, keeled: scapes $2-3$ in. long: fls. 4 in. across, pure white, with the bases of the segments purplish red, broken upwards into blotches; dorsal sepals oblong-obtuse, concave; lateral sepals triangular-ovate, forming a broad mentum at base; lateral lobes of the labellum almost obsolete, middle lobe rounded, crisp, bright yellow, throat dark purple, with a club-shaped callus. Eenador. B.M. 7518 . R.H. 1894:526. J.H. III. 26:495. - The finest known species.
6. Lindeniæ, Hort. (M. Lindeniàna, Rich \& Gal,?). Plants resembling M. Sanderiand, but the fls, larger and more open: sepals triangular-lanceolate, spreading, 3 in . long, pure white; petals shorter and wider, erect, white; labellum fleshy, obovate, somewhat crisp, recurred, pale yellow, with 5-6 red lines on the lateral lobes. S.H. 1:219.
7. pícta, Hook. (M. fuscàta, Klotzsch). Pseudobulbs $11 / 2$ in. high, ovate, furrowed, bearing $1-2$ plane, strapshaped lvs. 1 ft . long: scape $5-6 \mathrm{in}$, high: fls, nodding; sepals and petals oblong-linear, acute, incurved, deep orange spotted with purple within, white with deep purple spots outside; labellumoblong, whitish, spotted; side lobes small, rounded; midlobe recurved, apiculate. Winter. Brazil, Colombia. B.M. 3154. B.R. $21: 1802 .-$ Handsome.
8. ruféscens, Lindl. (M. fuseàta, Reichb. f.). Pseudobulbs ovate, subtetragonal, 1-lvid.: lvs. lanceolate,

MAYTENUS

acuminate: scape short, with 1 small fl.: sepals and petals oblong obtuse, yellow-tinged and spotted with reddish orange; side lobes of labellum small, sharp; middle lobe elongate, sub-quadrate, emarginate; all yellow, spotted with crimson. Trinidad. B.R. 2: $: 1848 .-$ Not valuable.
8. elegántula, Rolfe. The bases of the segments are white, the onter halves pale yellow, marked with chocolate color. Nov. G.C. 111.22:420.-From the illustration, the sepals are ovate-lanceolate, wavy and recurved, the lower pair broader; petals smaller, pointing forward, concare, wary, with reflexed tips: Ivs. lanceolate-acute.
9. lùteo-álba, Lindl. Pseudobulbs long-ovate, 1-lvd., $21 / 2 \mathrm{in}$. high: lrs. broad, obtuse, narrowed at the base, 1 ft long: scapes 6 in . long: sepals $3 \mathrm{in} . \operatorname{long}, 1 / 2 \mathrm{in}$. wide, tawny yellow fading to white at the base, brown on the back, the lower pair drooping; petals erect, pointing forward, one-half as long, white to brown and yellow above; side lobes of the labellum yellow with purple streaks; middle lobe recurved, hairy, jellow, with white margins. Colombia.-A robust species, which soon fills large-sized pans, making very ornamental plants.
10. striàta, Rolfe. Scapes 6-8 in. Jong, bearing solitary fls, 4-5 in, across the sepals: dorsal sepals ovateoblong; lateral sepals ovate-attenuate, forming a broad mentum at the base, often twisted and recurved; petals narrower, wavy; both sepals and petals are yellow, striped with red-brown; lobes of the labellum crenatewavy, white with purple veins, the lateral ones reenrved. Ang. Peru. G.C. I11. 20:631. G.M1. 41:705.

1380. Maxillaria Houtteana (λ about ${ }^{1} / \frac{1}{3}$).
11. Houtteàna, Reichb, f. Fig. 1380. Rhizome erect or ascending, clothed with brown sheaths: pseudobulbs $2-2 \frac{1}{2} \mathrm{in}$. long, linear-oblong, compressed: lvs. solitary, 6 in . long, linear, obtnse, keeled: scape $11 / 2-2 \mathrm{in}$. long:
fls. nearly 2 in. across; sepals ovate-lanceolate, dirty yellow outside, red-purple within, with a yellow margin and spotted below; petals smaller, colored like the sepals; labellum without lateral lobes, oblong-obtuse, yellow with red-brown spots, and an ill-defined callus on the base. April. Guatemala and Venezuela. B.M. 7533. - Fls. last about a month in the coolhouse.
12. variabilis, Batem. (M, angustifólia, Hook.). Pseadobulbs oval, compressed: lvs, solitary, plane, linearoblong, obtuse or emarginate: fls, solitary, small, deep purple; sepals linear-oblong, acute, the lateral ones produced at the base; petals subsimilar; labellum oblong, retuse, fleshy, membranous at the base: disk with a small callus. Didwinter. Mex. B.M. 3614 (as M. Henchmanni).-A small plant, of interest only to collectors.
13. tenuifolia, Lindl. Rhizomes erect, bearing ovatecompressed pseudobulbs at irregular intervals: Irs. linear-lanceolate, acute, recurved, grass-like, plane: fls. small, spotted and shaded with purple and yellow; sepals ovate-lanceolate, margins revolute, reflexed; petals orate, acute, erect; labellum ohlong, reflexed, with an entire, oblong callns. Spring. Mex. B.R. 25:8.-Not valuable
M. dichroma, Rolfe. Allied to M. remusta, but the petals are suffused on the lower half with light piakish purple, the lip being margined with the same color; sepals white. Grows freely in a coolhouse, the fls. lasting for a long time.

Heinrich Hasselbring.
MAXIMILIANA (after Maximilian Josepl, first king of Bavaria, 1.56-1825, not Prince Maximilian Alexander Philipp, as said by some). Palmdcer. Tall, pinnateleared palms, spineless, with ringed trunks: Irs. with linear pinnm in groups, the midreins and transFerse nerves prominent; rachis bifacial, strongly compressed; petiole plano-convex. This genus is distinguished from Attalea as follows: petals of the male fls. minute, much shorter than the 6 exserted stamens: fr. 1-seeded; pinnoe in groups instead of equidistant. From Cocos and Scheelia it differs in the above floral characters and in the plano-convex instead of concavoconvex petioles. Fr. yellow or brown, ovoid, with fibrous or fleshy pericarp and bony endocarp, the latter 3 -pored at the base, acuminate at the apex. Species 3, St. Kitts, Trinidad and S. Am. For culture, see Palms.
A. Pinnar verticillate.

Maripa, Drude (Sttalèa Maripa, Mart.). Stem thick, very tall: lys. 15 ft . long; segments ensiform acute, divaricate, the lower 3 ft . long, 2 in . Wide, gradually diminishing upwards. Brazil.

AA. Pinne in opposite clusters.
règia, Mart. (Attalía anygadallna). Fig. 1381. Stem $15-20 \mathrm{ft}$. high, $12-16 \mathrm{in}$. thick at the base, 3 times as thick above hecause of the persistent petiole bases: 1rs. 15 ft . long; segments more slender, papery, disposed in opposite clusters, the upper as broad as the lower. Brazil. G.C. J11, 1:232.

Jared G. Simth.
MAY in English poetry refers to the flowers of the bawthorn, C'ratagus Oxyacantha.

MAY APPLE. Podophyllum. See also Pussiflora.
MAYBERRY, JAPANESE GOLDEN. Name proposed by Luther Burbank for Liubus palmatus.

MAYFLOWER of English literature is the same as the hawthorn, C'ratugus Oxyacantha; of New England is Epigaa repens; of the more western states, Hepatica.

MAY-WEED. Anthemis Cotrla.
MAYTENUS (from a Chilean name). Celastraceo. A genus of about 50 species of trees and shrubs mostly from South America, some from tropical America. Botanically they are near our common bittersweet, Celastrus scandens. Aside from habit, Maytenus differs from Celastrus in having the ovary confluent with the disk instead of free, and the cells are mostly l-ovuled instead
of 2 -ovuled. Maytenus consists of evergreen, unarmed plants: lvs, alternate, often 2 -rauked, stalked, leathery, serrate: fls. small, white, yellow or reddish, axillary, solitary, clustered or cymose; calyx 5-cut; petals and

MEDEDLA (named after the sorceress Medea, for its supposed great medicinal virtues). Liliàcea. Indian Cucember Root, from the taste of the edible root. This native perennial berb bas \& whorls of lvs, and bears small and not very showy fls. It is offered by some dealers in native plauts. Medeola is nearest to Trillium. The fls. are umbellate, the perianth segments all alike, colored and deciduous.

Virginiàna, Linn. Fig. 1383. Stem slender, $1-3 \mathrm{tt}$. high, clothed with flocculent deciduous wool : lower whorl of lvs $5-9$, obovate-lanceolate, pointed, netted-reiny, lightly parallel-ribbed, sessile; upper whorl of $3-5$, smaller, ovate Ifs. at top subteuding a sessile umbel of small, recurved fls. June. Boggy soil. New England to Minn., lnd. and southward. B.M. 1316. D. 129.
M. asparagoides, Linh-Asparagus medeoloides

MEDICAGO (name originally from the country Media). Leguminòsar. Forty to 50 herbs (rarely shrubs) in Europe, Asia and Africa, with small piunately 3 -foliolate lvs, and denticulate lfts., and mostly small, purple or yellow fls. in heads or short racemes: stamens 9 and 1, diadelphous: fr. a small spiral or curved, rough or pubescent indehiscent 1-to few-seeded pod: fl. with an obovate or oblong staudard and obtuse mostly short keel. Three or 4 species have become weeds in the East. A few are somewhat cult. for oroament. The one important species, from an agricultural point of view, is Alfalfa. Oue species (and perbaps more) is cult. for the odd pods, which are sometimes used by Old World gardeners as surprises or jokes, and are occasionally grown in this country as oddities. Some of the Medicagoes simulate clovers in appearance, but the twisted or spiral pods distinguish them.

A. Flowers purple.

sativa, Linn. Alfalfa. Lecerne. Fig. 1384. Perennial, glabrous, growing erect $1-3 \mathrm{ft}$. and making a

1382. Maytenus Boaria.

Showing the dehiscing fruit.
long tap-root: lfts, small, linear, oblong to ovate-oblong, prominently toothed towards the top: stipules awl-like, conspicuons, entire: fls. in short, axillary racemes:
pods slightly pubescent, with two or three spirals. Eu. -Now widely cult., particularly in dry regions, as a hay and pasture, being to the West what red clover is to the Northeast. See Alfalfa. A hardier and droughtresisting race (known as rar. Turkestánica, Hort.) was introduced from central Asia in 1898 by N. E. Hansen,

1383. Medeola Virginiana, the Indian Cucumber Root. ($\times 1 / 2$.) (See p. 997.)
under the auspices of the U. S. Dept. Agric. (see Hansen, Amer. Agric. Feb. 24, 1900; Circular 25, Division of Agrostology, U. S. Dept. Agric.).

AA. Fls. yellow.

B. Plant annual and herbaceous.
lupulina, Linn. Black or Hop Medick. Nonesuch. Diffuse, the branches often rooting and becoming 2-3 ft . long, deep-rooted, and difficult to pull up: plant gla-
brous or slightly pubescent: lfts, oval to orbicular toothed: stipules broad aud toothed: fis. small, light yellow, in pedunculate beads: fr. nearly glabrous, spiral, becoming black. Eu.-Extensively naturalized. Has the appearance of a clover. Tbe yellow clovers with which it is likely to be confounded have larger heads, which soon become dry and papery, and tle stipules are entire. It is sometimes used as a forage or hay plant Of no ornamental value.
prostràta,Jacq. Stem prostrate: Ifts. linear, dentate at the apex: stipules linear-subulate: pod glabrous, spirally contorted, 2 seeded, black. S. Eu. - Advertised as an ornamental plant. M.elegans, a name for a low, yellow-fld. species, is also in the trade; it may be any one of 4 or 5 species.
 ($\times 1 / 2$.)
scutellàta, Mill. Svails. Erect or spreading, softpubescent: Ifts. broadly obovate or the upper ones broadly oblong, prominently toothert: stipules falcate, toothed at the base: fls. small, solitary or nearly so: pod large and prominently reticulated, $1 / 2$ in. across, like a snail shell. Eu.-Grown for the odd snail-like pods, which are used as surprises. See the article Cuterpillars and Worms.
nB. Plant perennial and woody.
arbòrea, Linn. Tree Alfalfa. Moon Trefoil. Two to 8 ft . tall, with hard black wood: 1 fts , oval to obovate, light green, toothed at the top: stipules linear-acute, entire: fls, orange-yellow, in rather loose, asillary, peduncled clusters: pod spiral, 2-3-seeded. S. Eu. L., B.C. 14:I379.- Offered as an ornamental plant in S. Calif.
L. H. B.

MEDICK. Sce Medicago.
MEDINILLA (after José de Medinilla y Pineda, governor of the Ladrones). Melastomdcea. A genus of 98 species of tropical plants, mostly from the East Indies and Pacific islands. M. magnifica is one of the most gorgeous tropical plants in cultivation, and one of the most desirable for amateurs who have hothouses. It is a native of the Philippines. It has bandsome broad, shining, leathery foliage and coral-red, 5 -petaled fls., each about 1 in . across, which are borne in pendulous pyramidal panicles sometimes a foot long, and bearing $100-150$ fis. The axis and branches of the panicle are pinkish, and the same color tiuges the large, showy bracts, which are sometimes 4 in. long. Hooker says: "Its most beautiful state is, perhaps, before the full perfection of the fls., wben the large imbricated bracts begin to separate and allow the buds to be partially seen. As the expansion of the blossoms advances, the upper bracts fall off, but the lower ones remaiu and become reflexed." This truly magnificent plant flowers copiously when only 2 or 3 ft . bigh, and a large wellsept specimen in flower is a sight that is never to he forgotten. The numerous long, bent, purple anthers, with their yellow filaments, form an additional feature of interest.

Medinilla is distinguished from allied genera (none of which has garden value) chiefly by the curious appendages of the stamens. The stamens are 8, 10 or 12 , the anterior connective, 2-lobed or 2 -spurred, the posterior one usually setose or 1-2-lobed or 1-spurred. Medinillas are branching shrubs, erect or climbing: Ivs. mostly opposite or whorled, entire, fleshy: fls. white or rose, with or without bracts, in panicles or cfmes. Cogniaux in DC. Mon. Phan. 7:572-602 (1891). The 2
species described below are glabrous, with opposite, sessile lys, and long, terminal, pendulons, bracted panicles, with floral parts in 5 's.

A. Fls. coral-red or rosy pink.

magnifica, Lindl. Figs. 1385-6. Lvs. with 9-13 nerres, which run from various points along the midrib to the margin or apex, ovate or ovate-oblong: bracts $1-4 \mathrm{in}$. long. Pbilippines. B.M. 4533. F.S. 6:572 and $9: 968$ (splendid). Gin. 51, p. 394. G.C. I1. 2:421. R.H. 1857, pp. 319. 343, and 1896, pp. 102, 103. A.F. 7:1047.- Other interesting features are the whorled branches, each one 4 -ridged or winged, and the dense ring of sbort, feshy processes at the joints between tle lvs. It can be propagated by seeds or cuttings of young wood in heat.

> As. F'ls. white.

Curtisii, Hook. Lvs with 2 nerves beside the midrib which run from the base to the ajex of the leaf: bracts abont 3 lines long. Sumatra. B.M. 6730. G.C. II. 20:621.-John Saul says it blooms in autumn. W. M.

Medinilla magnifica is a fine stove plant, even when not in flower. It remains in bloom from April to July. The writer has kept a tree-shaped specimen for

1385. Medinilla magnifica. A young specimen.
it from that genus "by its thick perennial roots, its large, turgid, immarginate seeds and its thick, fleshy cotyledons which remain nnder ground in germination. The fruit in some species appears to be wholly indebiscent." There are five species described in the Botany of California. One of these, M. Californica, Torr, (Echinocystis fabacea, Naud.), is sometimes grown in tine collections and botanic gardens. It is a tendrilclimber, reaching 20 to 30 ft , in its native hannts: Ivs. deeply $5-\bar{\gamma}$-lobed: fls, monocious: fr . densely spinose, globose or ovoid, 2 in. long: seed obovoid, nearly 1 in. long and half or more as broad, margined by a narrow groove or dark line. S. Calif. Odd in germination (see Gray, Amer. Journ. Sci. 1877).

MEGASEA. See Saxifraga.

MELALEUCA (Greek, melas, black, and leukos, white; from the black trunk and white branches of one of the species). Myrticea. This genus comprises abont 100

1386. Medinilla magnifica ($\times^{1 / 3}$).
more than twenty years, during which time it has never failed to bloom annually. In alternate seasons the fis. bave been more abundant, showing that the plant needs a rest. Aftor flowering, the specimen may be placed outdoors in a partly shaded position, where high winds cannot damage the foliage. In September, it should be placed in a conservatory with a night temperature of 55°. When growing rigorously it likes plenty of weak liquid cow manure and guano alternately. It must be constantly watched for mealy bug, as it is almost impossible to dislodge this pest after the racemes have begun to form.
F. L. Harris.

MEDLAR. See Mespilus. The Loquat is sometimes erroneously called Medlar. For Japanese Medlar, see Photinia.

MEDUSA'S HEAD. Euphorbia Caput-Medusa.

MEGARRHİZA (Greek for big root). Cucurbitàcen. By Bentham ḋ Hooker, and alxo by Cognianx (DC. Monogr, Phaner. 3) this genus is referred to Echinoeystis, but Watson (Bot. Calif. 1, p. 241) distinguishes
species of Australian trees and sbrubs, many of which are considered useful for fixing coast sands and bolding muddy shores. The trees live in salty ground and water, mueb as mangroves do, and some are grown in swamps as a corrective of fever conditions. They transplant easily and have close-grained, hard, durable timber. Lrs, alternate, rarely opposite, entire, lanceolate or linear, flat or subterete, with 1-3 or many nerves: bracts decidnous: fls, in heads or spikes, each sessile in the axil of a floral leaf, their parts in 5's; calyx tube subglobose; lobes imbricate or open; petals spreading, deciduous; stamens indefinite in number, more or less united at their bases into 5 bundles opposite the petals; anthers versatile, the cells parallel and bursting longitudinally: ovary inferior or half inferior, enclosed in the calyx tube, usually with many ovules in each cell. Several species are cultivated in S. Calif. Sometimes called Bottle-brush trees, from their resemblance to the allied Callistemons. Flora Australiensis, 3:193.
A. Les. mostly alternate.

Leucadéndron, Linn. (M. Cajapùti, Roxb.). The Cajaput Tree. The most widely distributed of all the

MELASTOMA

species, with many changeable and uncertain variations, found throughout tropical Asia, especially the Indian Arehipelago. The plants range in size from shruhs to trees 80 ft . high, the large trees baving slender, pendulous branehes, the small trees and shrubs rigid, ereet branches: lvs. often vertical, elliptical or lanceolate, straight, oblique or falcate, acuminate, acute or obtuse, when broad $2-4 \mathrm{in}$. long, when narrow $6-8 \mathrm{in}$. long, narrowed into a petiole, thin or rigid: fl.-spikes more or less interrupted, solitary or 2 or 3 together, from less than 2 to more than 6 in . long: fls, numerous, white, elongated; stamens greenish yellow, wbitish, pink or purple, glabrous, $5-9$ in each bundle, less than $1 / 2 \mathrm{in}$. long; claws sometimes rery short, sometimes exceeding the petals, each with 5-8 filaments at the end. The lvs. yield the well-known green aromatic eajaput oil used in medicine. The bark is pale buff, in many thin, easily separated layers; it is very durable, lasting longer than timber, and is said to be almost impervious to water; it is valuable for packing fruits and is used for roofs and for boats. The tree withstands winds, drought and slight frosts and grows where the Eucalpytus fails. Von Miuller recommeuds it for planting where yellow fever occurs. Sometimes called the Paper Bark or Swamp Tea tree. G.M. 40:798.

AA. Le's mostly in whorls of 3-5.

micromèra, Schau. Lvs. elosely appressed, ovate, scale-like, bnt thiek, peltately attaehed, rarely above $1 / 2$ line long: fls. sulfur-yellow, the males small, in globular, terminal heads, the axils soon growing out into a leafy shoot: fruiting heads dense, globular, the calices open.

> AAA. Le's. mostly opposite. B. Margins of le's. recurred.
hypericifolia, Smith. Lus. opposite, lanceolate or ohlong, rather thin, with recurved margins and prominent midrib $3 / 4-1 \frac{1}{2}$ in. long: fls. large, rich red, in cylindrical or oblour dense spikes; stamens over $1 / 2$ in. long; staminal elaws long. L.B. C. 2:199,-This species belongs to a series in whieb the stamens are over $1 / 2 \mathrm{in}$. long, while in the other 6 series the stamens never exceed $1 / 2 \mathrm{in}$.

Bb. Murgin of les. not recurved.
decussàta, R. Br. Tall shrub, sometimes 20 ft . high: lvs. mostly opposite, often deeussate on the smaller branches, ohloug-lanceolate or linear, 3-6 lines long, rigid: As, rather small, pink; when in oblong or almost globular lateral heads or spikes are usually barren, and fertile when in oblong or eylindrical interrupted spikes forming the base of leafy branches; stameus not alove 3 lines long, very shortly united in bundles of $10-15$; calyx lobes more or less scarious and deeiduous or wearing off when in fruit, attached by the broad base, more or less immersed when in fruit in the thickened rachis. B.M. 2268. L.B.C. 13:1208.
M. B. Coulston.

MELANTHIUM (Greek, black flower: from the darker color whieh the persistent perianth assumes on fading). Lilideed. Leafy perennial berbs $2-5 \mathrm{ft}$. high, with thick rootstoeks: lvs, linear to oblaneeolate or oval: fls. greenish, white or eream-colored, borne in a large, open terminal panicle. The genus is nearest to Veratrum, but the sepals of the latter are not clawed as they are in Melanthium. Perianth segments usually oblong or oblanceolate, with or without glands at the top of the claw. Of 6 species, 2 are African, 1 Siberian and 3 North American, only 1 of the latter being in the trade.
Virgínicum, Linn. Bexch Flower. Stem rather slender, leafy: Ivs. linear, 1 ft . or less long: panieles 6-18 in. long: fls, $6-10$ lines aeross; double gland at top of claw. July. Marshy woodlands and meadows from New England to Fla, and Minn. to Tex. B.M. 985 (Helonias Firginica).-Iut. by H. P. Kelsey 1891. A showy and striking plant.
M. junceum is advertised by Krelage, of Haarlem, but its botanical position is to be determined,

MELASPH\&RULA (a little black sphere; referriug to the bulblets on the stem). Iriddcea. A genus of one species from the Cape of Good Hope, a small, rare bulbous plant procurable from Dutch bulb-growers. It be-
longs to the Ixia tribe, in whieh the flowers are spicate, not fugitive, and never more than I to a spathe. It resembles Ixia in having a regular perianth and simple style branches, but belongs to a different group of genera in which the stamens are one-sided and arched. Baker places it between Crocosma and Tritonia, differing from them in having a small periantl without any tube and very acuminate segments. Baker, Iridea, 1892, and Flora Capensis, vol. 6. For culture, see Bulbs and Ixia.
graminea, Ker. Corm globose, $1 / 2 \mathrm{in}$. in diam.: stem very slender, 1 ft , or more long: lvs, about 6 in a 2 ranked, basal rosette, linear, $1 / 2-1 \mathrm{ft}$, long: spikes fewfld., panicled: fls. yellowish green, veined with purplish black, $1 / 2-3 / 4 \mathrm{in}$. across. Spring. B. M. 615.

1387. Umbrella-tree-Melia Azedarach, var. umbraculiformis.

MELASTOMA (Greek for btack and mouth; alluding to the color left in the month when the berries of some species are eaten). This genus, which gives name to the great family Melastomacea, with 2,000 species, is little known in cult. It is not the most important genus of the family, either horticulturally or in number of species. Coguiaux, the latest monographer (DC. Monogr. Phauer. 7), admits 37 species. The larger part of melastomaceous plants are of tropieal Ameriea, but the true Melastomas ure natives to tropical Asia, Australia and Oceanica. They are shrubs or rarely small trees: Irs. opposite, petiolate, oblong or laneeolate, thiek and entire, strongly nerved lengtbwise, often handsouely eolored: fls. solitary or fascicled on the ends of the branehes, purple or rose (rarely white), large and showy; calyx mostly 5 -lobed; petals usually 5 and often unequal, ciliate on the back; stamens $I 0$ as a rule, very strongly unequal, part of them being short and small: fr. a leathery or fleshy berry, breaking irregularly, 5-7-loculed and containing many small spiral seeds. For eulture, see Medinilla. Nearly all tropieal melastomaceous plants require a bigh temperature, partial shade and considerable moisture. Prop. by cuttings of firm wood. Advertized in S. Calif.

A. Le's. strongly $\overline{5}$-nerved.

decemfidum, Roxbg. (M. sangníneum, D. Don. M. Malabithricum, Sims, not Linn.). Three to 4 ft .: branehes subterete and birsute: Irs. laneeolate or lanee-oblong. long-acuminate, the nerves (or at least some of them) and the petioles often red: fls. 1-3, large, nearly or quite 2 in. across, the petals rose-colored and retuse. Java to China. B.M. 599 and 2241.

AA. Le's. strongly 7 -nervel.
cándidum, D. Don (M. Malabálhricum, B. R. 8:672, not Linn.). Branches 4 -angled, the younger ones pubescent, as also the petioles: Ivs, ovate-aeute, setulose above, villose beneath: fls, $3-7$ in a cyme, rose-colored (sometimes white?), ahout the size of those of M. decemfidum; calys-lobes shorter than the tube. China

Malabáthricum, Linn. Differs from the last in having the calyx-lobes about equal to the tube, or sometimes even longer: lvs oblong or ovate-oblong, acute or shortacuminate, sparsely setnlose, above and beneatb: fls. corymbose, purple, much smaller than in the last two.
E. India to Austral. - Probably the M. Malabathricum of horticulturists is one of the above species. Not known to be in the Amer. trade.
L. H. B.

MELIA (ancient Greek name). Melideca. Trees, from 30 to 40 feet high: Jvs, deciduous, doubly pinnate as a rule, the lfts. acuminate, glabrous: fls. in graceful panicles; sepals $3-5$; petals 5 or 6 ; stamens monadelphous, $10-12$, of two different lengths: ovary with several locules, topped with a single style: fr. a small, indehiscent drupe. Species 2 or 3, of Asia and Australia.

A. Les, more than once-pinnate.

Azédarach, Linn. This is the typical species as introduced in the sonthern states early in the last century. It is a native of India and Persia, hence its various local names, as Pride of India, Indian Lilac, Chinaberry tree, etc. It has become naturalized throughout the South, the seeds germinating freely. It grows with great rapidity, and forms oue of the most desirable shade trees, both from the bright green tint of the foliage, which is retained until late in the autumn, and also from the fragrance of the numerous, lilac-colored flowers, which are produced during April. These are succeeded by an abundant crop of berries, of a yellowish, translucent color, which are readily eaten by cattle and birds. The wood, although coarse, is very durable. The tree can withstand a low temperature, but a cold of zero will injure it. Several forms have been found, a white-flowering and one with finely-cut leaves, with the segments of the lfts. cut in narrow divisions. These forms are not constant, the seedlings frequently reverting to the typical species. In all forms of M. Azedarach, the lvs, are 2- or 3-pinnate, the ultimate lfts. ovate or lanceolate, and varying from serrate to very nearly entire. B.M. 1066.
Var. umbraculifórmis, Hort. Texas Umbrella Tree. Fig. 1387. The first tree that came to notice was found

1388. Melicocca bijuga (sprays $\times 1 / 4$).
near the battle-field of San Jacinto, Texas, but with no record of its introduction there. If the flowers are not cross-pollinated with the common sort, the percentage of seedlings which reproduce the exact umbrella shape
seldom varies; hence it is supposed by some to be a distinct species. The Ifts, are less broad than in M. Azedarach, and the branches erect, and, in a manner, radiating from the trunk, the drooping foliage giving the tree the appearance of a gigantic umbrella. Mn. \&, p. 73.

AA. Leaves once-pinnate.

Azadiráchta, Linn. (M. Japónica, Hassk.). Large tree, sometimes $50 \mathrm{ft.:}$ lvs. broad, with $9-15$ lanceacuminate, oblique, more or less serrate lfts.: fls, white, fragrant; foliage crowded near the ends of the branches. India.-Not bardy in the Middle South.
19. Floribunda, Carr. (R. H. 1872:470) is probably a form of M. Azedararb. It is more precocious and yery thoriferous.M. sempervirens, Sw. From Jamaica. A low-growing tree with leaves deeply incised. Flowers in axillary panicles, small. light lilar, fragrant, in constant succession. A greenhoust species. Probably only a form of M. Azedarach. B.R. $8: 6+3$.
P. J. Berckmans and L. H. B.

MELIANTHUS (mel, honey, and anthos, flower). Sapindacer. About 6 species of evergreen shrubs, natives of South Africa. Can be grown out-of-doors in S. Calif. Foliage has a disagreeable odor when bruised: lvs. alternate, stipulate, odd-pinnate; lfts. unequalsided, toothed: fls. in axillary and terminal racemes, secreting honey plentifully; calyx laterally compressed, with or without a sac-like protuberance at the base, and a nectar-bearing gland within; petals 5 , the anterior one abortive; stamens 4, didynamous. M. Himalayanus is M, major, which has been introduced into S. Asia.

A. Calyx gibbous at base.

major, Linn. Stem flexuons, glabrous, sometimes 10 ft . or more in height, with a widely creeping root: Ivs. gray, a foot or more long, the upper ones smaller; stipules grown together into one large, intra-axillary piece, attached to the lower part of the petiole; 1fts. 9-II, 3-1 in. long, 2 in. wide: racemes densely-fld., 1 ft . or more in leugth: bracts ovate, acuminate: fls, red-brown, 1 in. long: capsule papery, 4 -lobed at the apex, $1-11 / 4 \mathrm{in}$. long: seeds 2 in each cell, black and shining. Cape. B.R. 1:45. R.H. I867, p. I31.

AA. Caly ${ }^{z} x$ not conspicuously gibbous at base.
minor, Linn. Lvs, 5-6 in. long; stipnles 2, subulate, lateral, free; lfts. $11 / 2-2$ in. long, $6-10$ lines wide: racemes 6-12 in. long, subterminal: fls, dull red: capsule obtuse at each end, scarcely 4 -lobed, 8 lines long. Cape. Not B.M. 301, which is M. comosus.
M. B. Coulston.

MELICOCCA (Greek, honey berry; referring to the taste of the fruit). Sapinddcea. Two or 3 species of tropical fruit trees, natives of Guiana and Trinidad. The Spanish Lime, M. bijuga, is cult. in S. Fla. and S. Calif. Its fruits are about the size and shape of plums, green or yellow, and have a pleasant, grape-like flavor. The large seeds are sometimes roasted like chestnuts. The tree grows slowly, attaining $20-60 \mathrm{ft}$, and bears freely. It can be fruited in the North under glass. Generic characters: lys. abruptly pinnate: racemes divided: calyx \ddagger parted; segments imbricated: petals 4; stamens 8 ; disk complete; stigma peltate, subsessile: ovary 2-celled: berry 1-2-seeded.
bijùga, Linn. Spanish Lime or Ginep. Fig. I388. Lfts, in 2 pairs, elliptical or ellip-tic-lanceolate, entire, glabrous: fls.whitish, in terminal racemes. Naturalized in the West Indies. Bears several degrees of frost. The foliage is distinct, the compound Ivs. with winged petioles resembling those of Sapindus sapouaria, the West Indian Soap-berry.

MELILOTUS (Greek for honey lotus). Leguminòso. Sweet Clover. Perhaps a dozen species of annual or biennial tall-growing, sweet-smelling herbs, widely distributed in temperate and subtropical regious. Lvs, pinnately 3foliolate, the lfts, tootbed and mostly narrow: fls, small, white or yellow, in slender, long-stalked, axillary racemes; calyx teeth short and nearly equal; standard
oblong or oblong-obovate; keel obtuse: fr. a small. few-seeded, not twisted, but more or less reticulated flattish pod. Two species, M. officinalis, Lam. (yellowfld.), and M. álha. Desv. (white-fld.), have become weeds along roadsides and in waste places.

The latter, M. alba, is the commoner. It is an erect herb, often higher than a man, flowering abundantly in spring and early summer. It is biennial. It is said to prefer soils rich in lime; and it thrives on poor and dry soils. Tnder the name of Bokhara clover and sweet clover, it is grown somewhat as a forage plant. Cattle come to like it for grazing, particularly if turned onto it early in the season, before other herbage is attractive. It may also be cut for hay, particularly the second year. About 10 lbs , of seed is required per acre. It is an excellent bee plant.
L. H. B.

MELISSA (Greek, bee; hecause the bees are fond of Balm). Labiàtoe. About 8 species of hardy perennial herbs from Europe and western Asia. M. officinalis is Balm (which see), a sweet berb, with white or pale yellow fls. A variegated form is cult. for ornament. It has silvery white markings. M. Patarina, Benth. $=$ Calamiwtha Patavina, Hort. This has light purple fls., and may be told from C. Irandiflora and officinalis by the calyx being bulged or gibbous at the base. Melissas have dentate lvs.: whorls few-fld., lax, axillary, secund: fls. white or yellowish; corolla tube recurved-ascending below the middle.

MELOCACTUS (melon-cactus, referring to the shape of the plant-body). Cactacere. Stems globose or ovoid, with vertical ribs, crowned at maturity with a "cephalium "-a prolongation of the axis densely covered with small tubercles, imbedded in wool and bearing in their axils small flowers and berries. The plant has the appearance of an Echinopsis surmounted by a Mammillaria.

1389. Melocactus communis ($\times 1-5$).
commùnis, Link \& Otto. Fig. 1389. Ribs 10-20, acute; areolæ nearly 1 in . apart: radial spines $8-11$, straight or curved, subulate; centrals 1-4: cephalium at first low, hemisplerical, becoming cylindrical in time, reaching a height of $8 \mathrm{in} . ;$ the dense wool of the cephalium is pierced by many red or brown bristles: fls, red, slender: fr. $2 / 3 \mathrm{in}$. long, crowned by the persistent remains of the flower, red. West Indian islands. Called tbere "Turk's Head." B.M. 3090.

Gatharine Brandegee.

MENISCIUM

MELON. See Muskmelon and Watermelon; also Citrullus and Cucumis. M. Papaw. See Caricu Papaya. M. Shrub, See Solanum muricatum. Chinese Preserving Melon is Benincasa.

MELOTHRIA (probably a nanie for a bryony-like plant; melon is Greek for apple, which may reter to the shape of the fruit). Cucurbitacet. About 54 species of slender herbaceous vines, climbing or trailing, annual or perennial, with small yellow or white fls., found in the warmer parts of the world. Three kiuds are known to the trade as M. scabra, Mukia seabrella and Pilogyne suavis, the last being perbaps the best. These three are slender, but rapid-growing, half-hardy, annual climbers, which may be grown indoors in winter, but preferably outdoors in summer for covering unsightly objects. They are presumably more attractive in fruit than in flower.

The latest monographer, Cogniaux in DC. Mon. Phan. Vol. 3, 1881, makes three sections of the genus. M. scabra belongs to the first, M. punctuta to the second and M. Maderaspatana to the third. M. punctata has sensitive tendrils.

Section 1. Ecmelothria. Fls. usually moncecious, males mostly racemose; anthers subsessile: fr. mostly with long and slender peduncles: sceds usually not margined.

Section II. Solena. Fls. mostly diœcious, males corymbose; anthers borne on rather long filaments, the connective not produced : fr. mostly short-peduncled: seeds mostly margined.

Section Ill. MCKIA. Fls, monocious, males clustered; anthers subsessile, the connective apiculate; fr, subsessile: seeds margined, usually pitted.
scàhra, Naud. Lvs, rigid, entire or acutely 5-labed; tendrils unbranched: anthers ronndish, with a wide connective, the cells straight, not plicate: fr. oroid or oroidoblong, obtuse, 3 -celled, rather large (1 in . long, $1 / 2 \mathrm{in}$. thick), with broad parallel stripes of white and green. Mexico.
punctàta, Cogn. (Pilógyne suàvis, Schrad.). Lvs, membranous, cordate, angled or slightly 3 -5̄-lobed, white-spotted above, pilose, short-bairy or scabrous below, margin remotely denticulate: fr. brown, lightly pitted, about 3 lines thick: seeds small, about 2 lines long, strongly compressed. S. Africa. - lnt. 1890 by Henderson \& Co. as the Oak-leaved Climber. Melothria punctata is a beautiful climbing herbaceous perennial, better known as Pilogyne suavis, and sometimes called Zehneria suaris. Even when protected, it is too tender to stand the northern winters. It blooms in clusters; fls, small, white and star-shape, with a strong musk fragrance: Ivs. green, small and glossy. Being a very rapid grower, it is dexirable for covering verandas or for house culture. It will do well in any part of a living room where it has light. It will grow as much as 16 feet high in one summer by having a liberal supply of water every day and liquid manure once a week. After growing outdoors it can be cut down to 6 inches, potted and taken into the house for the winter. In the spring it can be cut back, again planted out and it will do well. The roots can almost be called tuberous, and can be kept dormant during the winter, the same as Dahlias, buried in sand in a cool, dry place, free from frost. Rapidly increased by cuttings.

Maderaspátana, Cogn. (Mùkia scabrélla, Arn.). Lvs. scabrous or short-hairy beneath: fr, small, globose: seeds pitted. Trop. Asia and Afr. - "Fruits reddish when ripe." J. M. Thorburn d. ('o. James Vtck and W. M.

MENISCIUM (Greek, a crescent; referring to the shape of the sori). Polypodidece. A small genus of about 10 tropical species, with simple or pinnate lvs. and the main reins united by successive transverse arches, on which the naked sori are borne.
reticulàtum, Swz. Stalks 1-3 ft. long, stont: lvs, 2-4 ft. long, 1 ft , or more wide, pinnate; pinnæ $\mathbf{1 - 4} \mathrm{in}$. wide, With an acuminate apex, naked or slightly pubescent; main veins $1-1 \frac{1}{2}$ lines apart, with $8-12$ transverse arcbes. Mexico and W. Indies to Brazil. L. M. UnDerwood.

MENISPERMUM (Greek, moonseed). Menispermàcec. Moonseed. As conceived by the early botanists, Menispermum contained many species which are now referred to Cocculus, Abuta, Cissampelos, Tinospora, Anamirta and other genera. The genus is now considered to be bitypic, one species oceurring in N. America and the other in Siberia, China and Japan. Moonseeds are twining woody vines, with alteruate long-petioled lvs., which

13c0. Leaf of Menispermum Canadense ($\times 1 / 2$).
are peltate near the margin, and axillary or super-axillary panicles or cymes of small diocious Hs.: fr. a compressed berry-like drupe, containing a flattened crescentshaped or curved stone (whence tbe name Moonseed) : stamens $9-24$, with 4 -loculed anthers in the staminate fls., 6 and sterile in the pistillate fls.; pistils 2-1, with broad stigmas; sepals 4-8, in 2 series; petals $6-8$, shorter than the sepals. Both the Moonseeds are neat and interesting vines, and are hardy in the northern states and Ontario. Propagated readily by seeds; or plants of M. Canadense may be dug from the wild. Cuttiugs of ripened wood may also be used.

Canadénse, Linn. Common Moonseed. Fig. 1390. Stems slender and terete, flocculent-pubescent when young, but becoming glabrous, twining 10 ft . or more high: lvs. round-ovate to ovate-cordate, sometimes entire, but usually angulate-lohed, the long petiole attached just inside the margin: fls, greenish white, in loose, straggling panicles, the sepals and petals usually 6 , the stamens in the terminal fls. 17-20 and in the lateral ones 11 or 12 : fr. bluish black, 1 in. in diam., resembling small grapes. Rich soils in thickets and lowlands, Quebee to Manitoba aud south to Ga. B.M. 1910.

Daùricum, DC. In habit much like the above: lvs. smaller, deeper green, cordate and angular: fls, in cymes, yellowish, the terminal ones with 6 sepals, 9 or 10 petals and about 20 stamens, the lateral ones with 4 sepals, 6 petals and about 12 stamens. Eastern Asia. - Variable. Rarely planted in this country.
L. H. B

MENTHA (from the Greek name of the nymph Minthe). Labiata. The term Mint, often applied to various species of the Labiatæ, is most frequently used to designate plants of the genus Mentha. This genus is characterized by its square stems and opposite simple leaves, in common with others of the order, and especially by its aromatic fragrance, its small purple, pink or white flowers, with regular calyx, slightly irregular corolla and four anther-bearing stamens, crowded in axillary whorls and the whorls often in terminal spikes.

Some of the species hybridize freely, producing innumerable intergrading forms which make the limitation of certain species difficult. Many forms have been
described, and the synonymy is extensive. About 30 species are now recognized, all native in the north temperate zoue, 12 being native or naturalized in North America. Six species are cultivated more or less for the production of aromatie essential oil, which is found in all parts of the herb, and especially in minute globules on the surface of the leaves and calyx.

Peppermint, the most important economic species of Mint, rarks as one of the most important of all plants in the produetion of essential oils. It was originally native in (ireat Britain and possibly in continental Europe, but is now widely naturalized, growlng in many places on both continents like a native plant. There is no record of it in America previons to its introduction to Connecticut in the early part of the eighteenth century. From there it was taken to western New York and to the Wostern Reserve in Ohio, and in 1835 "roots" were taken from Ohio to Pigeon Prairie, in Michigan, where the industry has grown to larger proportions than anywhere else. Peppermint is now cultivated commercially in soutbwestern Michigan and adjacent parts of northern Indiana, Wayne county, New York, and in Mitcham, Surrey and Lincolnshire, England, and in Saxony.

Peppermint plants may be grown on any land that will produce good crops of corn, but its cultivation is most profitable on muck soils of reclaimed swamps. It is an exhaustive crop, and on upland is rarely included in the rotation more often than once in five years. On deep, rich muck soils it is often grown consecutively 6 years or more with no apparent diminution in yield. Peppermint is propagated by pieces of running rootstocks, commonly called "roots." These are planted, as early in spring as the ground can be prepared, in furrows 30 inehes apart. On upland two or three crops are usually grown from one setting of the "roots," but in the swamp lands the runners are plowed under after harvest, continning the crop indefinitely. (lean cultivation is required between the rows, and often it is necessary to boe the plants or pull weeds by hand, especially on land that has not been well prepared. Fireweed, horseweed, ragweed and other species witb bitter or aromatic properties are very injurious to the oil if cut and distilled with the peppermint.

The crop is cut either with scythe or mowing machine in August or early September, when the earliest flowers are developed and before the leaves have fallen. In long, favorable seasons a second crop is sometimes harvested early in November. After cutting, the plants are cured like hay, then raked into windrows and taken to the stills, where the oil is extracted by distillation

1391. A Mint Still.
with steam. A "Mint still" (Fig. 1391) usually consists of two retorts (used alternately), wooden or galvanized iron tubs ahout 7 ft . deep and 6 ft . in diam. at the top, each with a perforated false bottom and a tight-fitting, removable cover, a condenser of nearly 200 ft . of block
tin pipe immersed in tanks of cold water, or more fre. quently arranged in perpendicular tiers over which cold water runs, a boiler to furnish steam and a receiver or tiil can with compartments in which the oil separates by gravity. The yield of oil varies from 10 to 60 pounds per acre, averaging about 25 pounds for Black Mint, the variety now generally grown. Three kinds of peppermint are recognized : (1) American Mint, "State Mint" of New York (M. piperita), long cultivated in this country and occasionally naturalized; (2) Black Mint, or Black Mitcham (M. piperita, var. evelgaris), a more productive variety introduced from England about I889, and (3) White Mint, or White Mitcham (M. piperita, var. officindlis), less productive and too tender for profitable cultivation, but yielding a very superior grade of oil. Peppermint oil is used in confectionery, very extensively in medicines, and for the production of menthol, or more properly pipmenthol. Pipmenthol differs in physical properties from menthol derived from Japanese Mint.
Japanese Mint, M. areensis, var, piperascens, is cult, in northern Japan, chiefly on the island of Hondo ; not known in the wild state. It has been introduced experimentally in eult. in England and the United States, but has not been cult. commercially in these countries. Its oil is inferior in quality to that of Mentha piperita, but it contains a higher percentage of crystallizable menthol, of which it was the original source and for the production of which it is largely used. It is propagated by rootstock* carefully iransplanted and cultivated by hand-labor. Two crops, rarely three, are ohtained in a season, and by abundant fertilizing and intensive culture large yields are obtained. It is usually continued three years from one planting, and then a rotation of other crops follow for from three to six years. Three horticultural varieties are recognized, heing distinguished chiefly by form of leaf and color of stem. The variety known as "Akakuki," with reddish purple stem and hroad, obtuse leaves, is regarded as best.
spearmint is cultivated on peppermint farms for the production of oil. The plants are propagated and cultivated similar to peppermint and distilled in the same stills. The oil, for which there is a smaller demand than for peppermint oil, is used chiefly in medicine and to some extent as a flavoring ingredient in drinks. Spearmint is cultivated in the vicinity of many large cities to supply saloons, where fresbly cut sprigs of the plant are used in making the seductive and intoxicating drink known as "Mint julep." The plant is more widely known as an ingredient in "Mint sauce," the familiar accompaniment of spring lamb and green peas. To supply this demand it is often cultirated in the kitchen-garden. It is easily propagated by the perennial root-stocks, and persists year after year with little care, thriving in nearly all kinds of soil, providing it does not become too dry.

The Pennyroyal of the Old World is Mentha Pulegium.
A. Whorls of fls. in terminat spikes or some in the upper axils.

B. Spikes thick: lrs. petioled.

c. Lvs. lanceolate, acute.

piperlta, Linn. Peppermint. Perennial, by runners and rootstocks: stems erect or ascending, $\mathrm{I}-3 \mathrm{ft}$. high, hranched, glabrous: lvs. lanceolate, acute, sharply serrate, $1-3$ in. long, glabrous or pubescent on the veins beneath. punctate, with minute oil globules: Als. in thick. terminal spikes, $1-3 \mathrm{in}$. long in fruit, the central spike finally exceeded by tbe lateral ones; ealyx glabrous below, its sharp teeth usually ciliate; corolla purple, rarely white, glabrous. Introduced in cultivation from England and oceasionally naturalized in moist ground in various parts of the country. Known as "American Mint" or "State Mint" in New York.

Var, officinalis, Sole. White Mint. Slender, 1-2 ft. high: lvs. 1-2 in. long: stems and foliage light-colored. Not known in wild state; long cult. in Eng, and sparingly introduced into cult. in America.

Var. valgàris, Sole. Black Mint, Rather stout, 2-3 ft . high: lvs, $2-3 \frac{1}{2} \mathrm{in}$. long: stems usually purple and foliage dark-colored. Native in England. Cult, in recent years in England, Saxony and America,
cc. Lis. ozate or subcordate.
citràta, Ehrh. Bergamot Mint. Perennial, by leafy stolons, glabrous throughout: stem decumbent, $1-2 \mathrm{ft}$. long, branched: lvs, thin, broadly ovate and obtuse or the uppermost lanceolate and acute: fls. in the uppermost axils and in short, dense, terminal spikes; calyx glabrous, with subulate teeth; corolla glabrous. Sparingly naturalized from Europe, in New York. New Jersey, Florida and Ohio. -The fragrant, lemon-scented oil is distilled for use in making perfumes.

B8. Spikes slender, intermpted: lus. sessile or nearly so.
c. Plant glabrous: les. lanceolate.
spicata, Linu. (M. viridis, Linn.). Spearmint. Fig. 1392. Perennial, by leafy stolons: stem erect, with ascending branches $1-2 \mathrm{ft}$. high: Ivs. lanceolate, sharply serrate, $21 / 2 \mathrm{in}$. or less in length: whorls of fls, in narrow, interrupted spikes ?-4 in. long, the central spike exceeding the lateral ones; calyx teeth hirsute or glabrate. Widely naturalized ahout old gardens throughout the older settled portions of the Cnited States; native in Europe and Asia.
cc. Plant pubescent: les. elliptic or ovate-oblong. rotundifolia, Huds. Roend-Leaved Mint. Perennial, by leafy stolons, pubescent thronghout, somewhat viseid: stems slender, erect or ascending, simple or branched, 20-30 in. high: Ivs. subcordate at base, mostly obtuse, erenate-serrate, 1-2 in. long and about two-tbirds as wide, reticulated beneath: fls. in dense or interrupted spikes 2-4 in. long; calyx pubescent ; corolla puberulent. Naturalized in moist waste places from Maine to New Mexico,-Sometimes used as a substitute for peppermint or spearmint.

AA. Whorls of fls. all axillary.
в. Plants usually decumbent: fls. nearly sessile.
Canadénsis, Linn. American Wild Mint. Perennial, by runners and rootstorks: stem usually pubescent, with spreading hairs, erect or ascening, simple or branched, 6-30 in. high: Irs, orate-oblong or lanceolate, glabrous or nearly so, 2-3 in. long, slender-petioled, the petioles often exceeding the nearly sessile whorls of light purple fls.: calyx pubescent. In wet soll or in water at the margins of streams, New Brunswick to British Columbia and southward to Virginia and New Mexico, It is a common plant.-Often called peppermint, for which it is frequently mistaken and for which it is sometimes used as a substitute. It is variable in habit and also in the character of its oil.

BB. Plants somewhat rigidly erect: fls, distinctly pedicelled.
arvensis, var, piperáscens, Malinraud. Japanese Mint. Perennial, by running rootstocks, pubernlent or finely pubescent throughout: stems erect, with numerous branches, $2-3 \mathrm{ft}$. high: Ivs. lanceolate and acute to broadly oblong and ohtuse, narrowed at the base, $1 \frac{1}{2}-3 \frac{1}{2} \mathrm{in}$. long, sharply serrate, with low teeth: fls, in rather loose, axillary whorls, in distinctly pedicellate umbels, usually shorter than the slender petioles; calyx pubescent, its subulate teeth about half as long as the tube; corolla puberulent.

Lister H. Dewey.

MENTZELIA (Mentzel, an early German botanist). Loasicecr. About 50 species of erect, sometimes woody herbs, $1-5 \mathrm{ft}$. high, many natives of North America. Lvs. alternate, mostly coarsely toothed or pinnatifid: tls, solitary or in cymes, white, yellowish, yellow or red; petals 5 or 10 , regularly spreading, convolute in the bud, deciduous; stamens indefinite, rarely few, inserted with the petals on the throat of the calyx: seeds flat. They thrive in sunny, moist or dry situations sheltered from strong winds. M. Lindleyi, from Calif., is common in eastern garlens, where it is known as Bartonia aurea; the otber species are offered by western dealers, but are not generally in cult. They flower in summer. Althongh M. Lindleyi has long been a rather common plant in cultivation, it is little known in the wild, being probably a native of central Calif. The seeds should be sown where the plants are to remain, as they do not bear transplanting.
A. Color of fls, yelloue.
B. Fls. opening in bright sunskine.

c. Petals 1 in . long.

Lindleyi, Torr. \& Gray (Bartònia aùrea, LindI.). Fig. 1393. Annual: stem 1-3 ft. high, brauched and straggling: Ivs. 2-3 in. long: fls. about $2 \frac{1}{2}$ in. across, hright yellow, very fragrant in the evening, bracted; petals 5 , broadly obovate, nearly as broad as long, rounded at the apex except an abrupt short point. Prohably central Calif. B.M. 3649. B.R. 22:I83I.

$$
\text { cc. Petals } 2-21 / 2 \mathrm{in} . l o n g \text {. }
$$

lævicaùlis, Torr. \& Gray. Biennial: stem 2-3 ft . high: Ivs. $2-8$ in. long: fls. yellow, $21 / 2-3$ in. across, hractless; petals lanceolate, acuminate. Neb. to Calif. B.B. 2:459.

BB. Fls, opening towards night.
nùda, Torr. \& Gray. Biennial: stem somewhat slender, $1-5 \mathrm{ft}$. high: lvs. I-3 in. long: fls. creamy white, $I \frac{1}{2}-21 / 2 \mathrm{in}$, across, usually bractless; petals 10. Dakota to Kans., Colo. and Tex. B.M. 5483 (as Burtonia nuda). B.B.2:458.

AA. Color of fls. pure ublite.

ornàta, Torr. \& Gray. Annual: stem 2 ft . and more: Ivs. 2-6 in, long: fis. 5 in. accoss, opening towards night, fragrant, usually bracted; petals 10; stamens 200-300. Dakota and Mont. to Tex. R.H. 1878:430. B.M. I487 (as Bartonia decapetala'. B.B. 2: 459.
M. B. Coulston and W. M.

MENYANTHES (Greek, men, a month, and anthos, flower; perhaps becanse it flowers for about a month). Gentiandeer. Buckbean. A genus of 2 species of small perennial bog plants with creeping rootstocks and small, 5 -lobed white or purplish fls. horne in late spring. They are procurable from dealers in natire plants. The genus is one of the few aquatic groups in the gentian family. It is allied to Limnanthemum, but the fis, of the latter are not bearded or crested on the face as they are in Menyanthes. Lvs, all alternate, stalked: corolla somewhat funnel- or bell-shaped; stamens inserted on the tube of the corolla; hypogynous glands 5: style long.
trifoliàta, Linn. Buckbean. About 9-18 in. high: lfts. 3, oval or oblong-obovate, $1-1 \frac{1}{2}$ in. long: raceme about I2-fld. Bogs, north temperate regions. B.B. 2:622. V. 2:198 and 3:208. - The lvs. are said to be used in Germany as a substitute for hops in beer-making. A very interesting bog plant.

MERCURY. Chenopodium Bonus-Henricus.

MERENDERA (from quita meriendas, Spanish name of Colchium autumnale; some of these plants formerly considered to helong to Colchicum). Liliàcea. About Io species of bulbous plants, mostly natives of the Mediterranean region and Asia Minor. They belong to the same tribe with Colchicum and Bulbocodium, but Colchicum has a real corolla tube, while the other two genera bave 6 very long-clawed segments which are merely con-
nivent, forming a loose tube at first and afterwards separating. In Merendera there are 3 styles which are distinct from the base, while in Bulbocodium the style is 3 -cut only at the apex. Mereuderas are low, stemless plants with tunicated corms: Ivs. linear, appearing with the fls.: fls. $1-3$, appearing in spring or fall, mostly lilaccolored. The genus is divided hy Baker (Jonr. Linn.

1393. Mentzelia Lindleyi ($\times 1 / 3$).

Soc. 17:438, 1880) into two groups, based on the anthers. The 2 species described below belong to the group with small, oblong, versatile anthers, which are fastened at the middle rather than the hase. They are hardy springblooning plants with alrout 3 lvs., and fls. I-I $1 / 9 \mathrm{in}$. across. These rare plants are procurable from Dutch bulb-growers. They are pretty, small-fld., early-blooming, Lardy, fragile plants which persist well under good garden cultivation.
A. Blade of petals oblanceolate, obtuse.

Caucásica, Bieh. The 3 outer corolla segments appendaged on each side at the jnnction of blade and claw; new corms sessile. Cancasus, Persia. B.M. 3690.

AA. Blade of petals lanceolate, acule.
sobolifera, Fisch. \& Mey. Segments not appendaged: a very small new corm produced at the apex of a shoot. Asia Minor, Persia.
M. Ruthenica is advertised by Van Tubergen.
J. N. Gerard and TV. M.

MERTENSIA (after Mertens, a German hotanist). Borraginacew. About 15 species of perennial herbs, natives of the north temperate zone, the most popular of which is \boldsymbol{M}. putmonarioides, better known as M. Firginica, Virginia Cowslip, Blue Bells, and Virginia Lungwort. This grows 1-2 ft. high and hears more or less drooping clusters of blue-belled fls. in March to May (see Fig. 1394). The fis, are about I in. long, and 20 or more in a terminal group. They have a purple tube and blue hell of distinct shape, the lobes of the corolla being less pronounced than in the other species. Mertensias are allied to Puimonaria, but the fls, have no bracts, as in Pulmonaria. They are botanically nearer Myosotis, which centains the forget-me-nots. Mertensias are glabrous or pilose: lvs. alternate, often having pellucid dots: racemes terminal or the cymes loose, few-fld. I-sided, sometimes panicled: fis, hlue or purplish, rarely white ; calyx 5 -cut or 5 -parted; lohes 5 ; stamens fastened at the middle of the tube or higher.

The common Mertensia is one of the plants that should remain undisturbed for years, and bence is suited to the rockery. Its leaves die down soon after flowering time. The plant should have a sheltered position, full sumshine and rich, loamy soil. M. Sibirica is considered by some eren more desirable. The fls, are later, light blue, and not as distinctive in form. The foliage of M. Sibirica lasts through the

1394. Virginian Cowslip or Blue Bells -Mertensia pulmonarioides ($\times 13$). summer. Mertensias may be prop. by seed if sown as soon as ripe, but with nncertainty by division. Although of secondary importance, Mertensias add variety to the border and are nearly always attractive to plantlovers.
A. Fls. trumpetshaped, the open portion not prominently 5 lobed; filaments much longer than the anthers.
pulmonarioldes, Roth. (M. Virginica, DC.). VIRGINIAN COWSLIP. BLUE Bells. Fig. 1394. Very smooth and glabrous: Ivs, obovate or oblong, or the lowest large, rounded and longstalked; veins conspicuous: fls. generally more nodding than shown in Fig. 1395. Spring. N. Y. to S. C. and Tenn., usually inhabiting low or moist grounds. B.M. 160 (as Pulmonaria). B.B.3:60. Gn. 23, p. 463, and 32, p. 173. V. 3:181; 7:244; 11:180, and 12:140. Mn 4:33.

AA. Fls. with the upper portion more bell-shaped and prominent spreading lobes: filaments shorter than the anthers or only a little longer.

1. Tube of corolla 2 or \& times as long as the bell.
oblongifolia, G. Don. About 9 in, high, smooth: Ivs. mostly oblong or spatulate-lanceolate; reins inconspicuons: calyx lobes acute. Western N. Amer. - Not easy to cultivate.

BB. Tube of corolla not twice as long as the bell. C. Calyx-lobes obtuse, oblong.

Sibirica, G. Don. This and the next grow 1-5 ft. high and have broad, veiny lvs., the upper ones very acute or acuminate. M. Sibirica is pale, smooth and somewhat glaucous: stem-Irs, oblong- or lanceolate-ovate. E. Siberia, Rockies and Sierras. Gn. 18:259.-Offered by some American dealers.

cc. Calyx-lobes acule, lanceolate or linear.

paniculàta, G. Don. Greener than M. Sibirica, roughish and more or less puhescent: stem-Jys, ovate to ob-long-lancelate. Lake Superior and north, E. Asia. B.B. 3:60. B.M. 2680 and B.R. 2:146 (as Pulmonaria paniculata).
M. umbrátilis, Greenm.. from Oregon, a recently described species, is offered by Horsford. Allied to M. Sibirica, but has larger corolls and longer lanceolate-acnte calyx-lobes.
G. C. Woolson and W. M.

MESCAL BUTTON is Echinocactus Williamsii.

MESEMBRYANTHEMUM (Greek, midday flower : the Howers usually open in sunshine and close in shadow). Ficóidef, or Mesembryàcea. Fig Marigold. The type genus of a family of something more than 20 genera and about 500 species, widely distributed in dry tropical and subtropical regions. Of the other genera known to horticulturists, only Tetragonia and Sesuvium are prominent, and even these are relatively unimportant. Mesembryanthemum itself includes some 300 species, nearly all of which are Sonth African, according to Sonder "abounding throughout the arid plains and sands of the
whole country to the south of the Orange river and west of the Great Fish river," Four species are described by Bentham in Flora Australiensis. Two (M. evystalliниm and aquilaterale) are native in California. Others oceur in New Zealand, Canaries, Arabia and the Mediterranean region. They are succulent plants, mostly herbs, but some are shrubs. They are allied botanically to the cactaceous series, although lacking the spines of those plants and bearing true leaves. Horticulturally, they are fanciers' plants, and are classed with "succulents." Very few are in the general trade, although a number are advertised in California and others are in botanic gardens. Usually the flowers open only in bright sunlight, but there are a few evening-blooming species. As with most succulents, the species are not well understood botanically, owing largely to the difficulty in making herbarium specimens. Many of them are of odd and grotesque form. One species, M. crystallinum, is a common house plant, being known as lee Plant, but it is one of the least showy in flower. It is grown for the thick glistening foliage. It propagates readily by seed or division. The best available account of the Mesembryanthemums is Sonder's elaboration of the S. African can species (293 numbers) in Flora C'apensis, Vol. II (1861-2)
L. H. B.

In Mesembryanthenum the leaves are mostly opposite, entire or the margin somewhat spiny, fleshy and often subeylindrical or triangular in cross-ontline; flowers perfect and regular, axillary and solitary or somewhat corymbose; ealyx gamosepalons, usually with 5 unequal lobes and the tulie adnate to the orary; petals very many, in one or more rows, usually linear, white, yellow or rose-color; stamens very numerous : ovary most commonly 5 -loculed: fruit or capsule opening radially at the summit, hygroscopic: seeds very numerous, small. "The capsules are tightly closed in dry weather and open naturally after a rain," writes Sonder. "If thrown in water until it becomes thoroughly soaked and then remored, an old capsule will open ont its eapillary valves, radiating from a center like a star; and will close them again when dry. This experiment may he repeated several times without destroying their remarkable lygrometric property." The following species are S. African unless otherwise noted. Nostly perennials.

Mesembryanthemum, or Fig Marigold, is a large genus, and the majority of the species are natives of the Cape of Good Hope. They are found in their native habitats krowing most luxuriantly on dry, barren, rocky places and on dry, sandy plains. They are succulent plants with thiek, fleshy leaves, and are therefore able to stand the severe drought they have to put up with in those arid places. Knowing that these plants delight in dry, arid situations, this gives the key to their cultivation. When grown in pots, care should be tuken that the pots are well drained. A light, sandy loam, mixed with brick rubbish broken small, makes a good compost for them. In summer they can be placed out-of-doors in a slightly elevated and sumny position, where they will produce an abundance of their showy blossoms. On the approach of cold weather in the fall they may be placed in a cool greenhouse with a dry atmosphere and plenty of air. Very little water is needed during the dull months of winter. Some of the species make good window plants. M. cordifolium, var, variegatum is largely grown for edgings for beds. M. pomeridianum and M. tricolornm are good showy annuals. Propagation is effected either by cuttings or hy seeds. Cuttings should be dried in the sun for two or three days before they are inserted in sand.

Robert Cameron.
INDEX.
seinaciforme, 10 acutangulam, 22 *quilaterale, 12. albinatum, 3 . angustum, 4. anrantiacum, 14. aureum, 15.
barbatum, 31. blandum, 18. cordifoliam, 27. crystallinum, 24. cultratum, 6

densum, 33.

 depressum, 7. edule, 13. elegans, 28. felinnm, 2. floribundum, 30 geminatum, 2. glabrum, 26. inclandens, 17. lingureforme, 5 . mutabile, 16. muricatum, 20.pomeridianum, 25. pustulatum, 8 . rubrocinctum, 11. spectabile, 19. stellatum, 32. stipulaceum, 23. subcompressum, 29 . tigrinum, 1 tricolor, 9 .
tricolorum, 9 variegatum, 27
A. Epapclosa: Plant not bearing glittering papille or projections (species 1-23).
B. Plant stemless or nearly so.
c. Les. 4-6, semi-terete at the base, thickening and triquetrous at the apex.

1. tigrinum, Haw. Tiger's Jaw. Stemless or essentially so: Ivs. cordate-ovate. 2 in . or less long, glaucous green and marbled with white, the upturning edges with long, soft, ciliated teeth, the keel entire: fls, nearly sessile, large, yellow. B.R. 3:260.
2. felinum, Haw. Fig. 1395. Lvs, triquetrous, rbom-boid-lanceolate, 2 in . or less long, but uarrower than in the last, somewhat glaucous, faintly dotted with white, the edges with 8 ciliate teeth; keel entire: fls, nearly sessile, yellow.
cc, Les, 1-6, triquetrous, thickened from the base to the middle, but tapering to the apex.
3. albinàtum, Haw. Stemless: 1vs. cursed-triquetrous upwards, with a recurved mucro or spine at the apex, bearing elevated whitish dots: fls. sessile, yellow.
cce. Les. half-cylindricat, of various sizes or forms on the same plant, in alternate pairs.
4. angustum, Haw. Nearly or quite stemless, small: 1vs. 2-rauked, linear, tongue-shaped, long, keeled at the apex. somewhat unequal, one of them straight-acute and the other hooked: Hs. nearly sessile, yellow.
cccc. Le's. tongue-shaped, with one margin thicker than the other, of two or more forms, z-ranked.
D. Peduncle less than 1 in . long.
5. linguæforme, Haw. Lvs, unequally tongue-shaped, deflexed and somewhat falcate, becoming depressed when old, thattish above. obliquely attenuate: fls, yellow. Index Kewensis makes the M. linguo forme of Haworth synonymous with M. obriquum, Willd., and uses Linnæus' M. tinguiforme as a tenable name.
dd. Peduncle 1 in. or more long.
6. cultràtum, Salm-Dyck. Lvs. 2-ranked, thick, tongue-shaped and curved like a pruning-knife, blunt at the apex: fls. yellow, on a somewhat 3 -angled peduncle.
7. depréssum, Haw. Prostrate: 1vs. narrow, tongueshaped, recurved-depressed, acute: fls. yellow, with petals somewhat recurved.
8. pustulàtum, Haw. Lrs. 2-ranked, narrow, tongueshaped, long and ascending, blunt, bearing pustules near the base: fls. yellow.

BB. Plant with an evident erect or prostrate stem. c. Foliage les. distinct or essentially so (not truly perfoliate nor connate).
D. Stem or caudex prostrate.

E. Peduncte with 2 braets.

9. tricolorum, Haw. (M. tricolor, Hort.). Stem 1 ft . long: lvs. cylindrical, acute, green, $2-3$ in. long, minutely punctate: fls. yellow, blood-colored inside, the petals acute, the anthers brown. Gn. 24, p. 89.-There is a white-fld. form.
10. acinacifórme, Linn. Stem articulate, 2-3 ft, long, the young growth compressed: lvs, opposite, 2-3 in. long, simitar-shaped (curved and thicker on one edge), the keel dilated: fls. purple, about 4 in . across, "the largest in the genus," the stigmas 14: fr , size of a gooseberry, and eaten by Hottentots. - Handsome.
11. rubrocinctum, Haw.. is probably a form of the last, differing in having a red line on the keels of the 1vs. B.R. 20:1732.
12. æquilaterale, Haw. Differs from M. acinaciforme chiefly in thinner lvs. and smaller fls.: fls.. fragrant, $11 / 2$ in. across. Native to Australia, Tasmania, Chile and S. Calif.

ee. Peduncte without braets.

13. édule, Linn. Stem angular: Ivs, opposite, 3-4 in. long, triquetrous, curved, the keel serrate: fls, large, yellow or purple, the stamens 8: fr. edible, being one of the Hottentot Figs. Grows well on the sea cliffs in S. England, making long, hanging masses (Gn. 55, p. 235, with picture).

DD. Stem, or at least the branches, erect or prominently ascendeng.

E. Fls. yellow, orange or copper-color.

14. aurantlacum, Haw. Stem becoming 1 ft . or more high, much branched, sometimes decumbent at base, the branches somewhat compressed: lvs. 1 in . or less long, smooth and glaucous, bluntly triquetrous: fls. orange, with petals $3_{4}^{3} \mathrm{in}$. long and in about 3 series.
15. aùreum, Linn. Larger: 1vs. $11 / 2-2 \mathrm{in}$. long, cylindrically triquetrous, smooth and glaucous, mucronate: fls. golden, 2 in . across, the petals in many series. B.M. 262 . - In this and the last, the lower Ivs, are often nearly connate at the base.

EE. Fls, rose-color or purplish.
 F. Petals of two unlike kinds,-subulate and lineartanceotate.

16. mutábile, Haw. Witb straw-color or reddish tortuous, erect branches: 1 vs , about $1 / 2 \mathrm{in}$. long, com-pressed-triquetrous, incurved, the keel entire, apex acute: fls. mostly solitary on an upwardly thickened peduncle, rose-color, the inner short petals pale yellow.

17. Mesembryanthernum felinum ($\times 1 / 3$).
18. inclaùdens, Haw. Distinguished from the last by scimitar-shaped lvs. and broader petals: lvs. crowded, green, compressed-triquetrous and scimitar-shaped (thicker on one edge).

fr. Petals of one kind.

18. blándum, Haw. Two ft., with numerous branches: lvs. distant, 2 in. or less long, compressed-triquetrous, but with equal sides, narrow, minutely dotted, acutish: fls. 2 in. across, pale rose, the petals toothed. B.R. 7:582. L.B.C. 6:599.
19. spectábile, Haw. Stem prostrate, but branches ascending : lvs. $2-3 \mathrm{in}$. long, crowded, glaucous, incurved and spreading, triquetrous, attenuate and mucronate: fls. purplish; petals 1 in . long, the inner somewhat shorter. B.M. 396 .
20. mnricàtum, Haw. Stem suberect: plant bluish: lvs. less than $1 / 2 \mathrm{in}$. long. somewhat incurved, deltoid and toothed, very glaucous: fls, small and fragrant, the petals acute.

cc. Foliage lvs. truly connate or perfoliate.

D. Lis. triquetrous.

21. geminàtum, Haw. Dwarf: stem subshrubby, the branches procumbent: Irs. erect, glaucous white, the cartilaginous margins entire: fls, white (?).
22. acutángulum, Haw. Stem shrubby, with rigid and erect branches: 1vs, sheathing, $2 / 2 \mathrm{in}$. long and about as long as the internodes, glaucous green, triquetrous, compressed near the apex, somewhat incurved: fls. white, small, in a panicle.
DD. Le's. elongated, subutate or somewhat cylindricat.
23. stipulà ceum, Linn. Dwarf, with erect, decussate branches: lrs. $1 \frac{1}{2}-2$ in. long, very slender, crowded, spreading and recurved, very glaucous: fls. in the axils, mostly solitary, purplish.

MESPILUS

AA. Papulosa: Plant usually bearing glitlering papille, vesicles or projections on stems and les.,hence the popular name Ice Plant (species 24-33).
в. Root annual or biennial (cult. as annuals).
c. Fls. white or rose-color, sessile or nearly so.
24. crystallinum, Linn. lee Plant. Fig. 1396. A common plant in window-gardens and hanging haskets, and readily grown from seeds (which are offered by seedsmen), procumbent: lvs. flat, fleshy, ovate or longspatulate, usually clasping, undulate, covered with glistening dots or elevations: fls. sraall, whitish or va-

1396, Common Ice-plant-Mesembryanthemum erystallinum. ($\times 1 / 4$.)
rying to light rose-color. S. Afr., Greece, Canary lslands, S. Calif.-Grown for its glistening foliage. Fls. open in the sun.
cc. Fls, yellow, long-peduncled.
25. pomeridianum, Linn. Stem simple or forking, the branches ascending, hairy on brancbes, peduncles and calices: Ivs. lance-spatulate or spatulate, narrowed into a petiole, ciliate: 2 of the calyx lobes longer than the petals; petals linear-lanceolate.
26. glàhrum, Ait. flabrous: Ivs. lance-spatulate, petiolate and dilated at base: fls. straw-colored, darker at the eye; lohes of the calyx linear and unequal.
sв. Root perennial and the slem becoming somewhat woody.
C. Les. flat, petiolate.
27. cordifolium, Linn. Stems I-2 ft., diffuse, minutely papillose: lvs, opposite, 1 in . or less long and nearly as wide, cordate-ovate, somewhat papillose: fls. solitary, peduncled, purple, the petals short and lincar. A var. variegatum is in cult., and is a good half-hardy trailing plant.
cc. Lus. compressed-triquetrous, not petiolate.
28. élegans, Jacq. Shrubby, 6-12 in. or more tall, branchy, whitish or red: Irs. crowded, $1 / 3 \mathrm{in}$. long and very narrow, very glaucous, scabrous: fls, numerous, mostly panicled, pale red (or whitish), the petals $1 / 2$ in. long.

ccc. Li's. terete or nearly so.
 D. Branches hispid or brislly.

29. subcompréssum, Haw. Erect, 2 ft .: Irs, not crowded, $3 / 4 \mathrm{in}$. or less long, narrow, very blunt, greenish canescent, flattened-terete: fls. solitary, purplish; calyx lohes unequal.
30. floribúndum, Haw. Tortnous in growth, the branches not over 6 in. long, more or less decumbent: lvs. less than $1 \mathrm{in} . \mathrm{long}^{\text {, very }}$ narrow, terete, curved, ohtuse, a little thicker towards the apex: fls. small, axillary, rose-color, the 5 styles exserted, the petals twice longer than the calyx.

DD. Branches not hispid.

31. barbatum, Linn. A foot or more tall, diffuse and decurmbent: lvs, not crowded, $1 / 2 \mathrm{in}$. long, spreading, green and pellucid, semi-cylindrical, with 5 or 6 hairs at the end: fls. solitary, reddish, the petals entire and $2-3$ times longer than the calyx.
32. stellatum, Mill. Three or 4 in . high, fleshy and tufted: lvs. crowded, $1 / 2 \mathrm{in}$. long, glaucous, semi-cylindrical, scabrous, with many hairs at the apex: peduncles hairy: fls, reddish violet, the calyx campanulate, 1/4in. long.
33. dénsum, Haw. Much like the last: lvs. longer, flattish above and convex heneath, ciliate also at the hase: caly x longer: fls. reddish violet. R.H. 1869, p. 356.

Accessible pictures of Mesembryantbemums which are not mentioned in American lists, are as follows: M. Bolusiii, Hook. f. B. M. 6664.-M. Brownii, Hook. f. B. M. 6985.-M. criniflòrum, Linn. R. H. 1857, p. 122 (as M. cunetfolium)-- M. ficiforme, Haw. G. C. II. 25:373,-M. minutum, Haw. R. H. 1869, p. 356.-M. pugionifórme, Linn. R. H. 1857, D. 178.-M. ròseum, Willd. Gn. 52, D. 439.-M. testiculátum, Jacq. R. H. 1869, D. 35 (as M, octophyllum).
L. H. B.

MESOSPINIDIUM (fireek compound; meaning obscure). Orchiddeer. The plants cultivated as Mesospinidium are referred hy some to the genus Cochlioda. They have the habit of a slender Odontoglossum, with sheathing lvs, at the hase of the pseudohulhs. Fls. in racemes or panicles; sepals and petals sub-similar, expanded; lahellum with 2 longitudinal ridges, adnate to the column, with rounded lateral lobes and a narrow middle lohe: column long or short: pollinia 2, seated on a rhomboid pedicel. These plants are evergreen coolhouse orchids, and thrive well in baskets of peat and moss, with plenty of water. Cochlioda has about 5 species, of which the following is often cultivated:
sanguineum, Reichb. f. Pseudohulhs oval, 2-1vd., mottled: Ivs. ligulate, sharp-pointed, shorter than the many-fld, drooping panicle: fis, numerous, small, vivid rose; the lower sepals are partially united, oblong; petals cuneate-ovate. Peruvian Andes. B.M. 5627.
M. vulcanicum. Reichb, f , is described as Cochlioda vulcanica (p. 341), its proper name. Heinrich Hasselbrino.

MESPILUS (Greek, substantive name). Rosacere. Mespil. Medlar. From Pyrus, with which this genus is united by British authors, Mespilus differs in bearing the flowers singly on leafy growths of the season (the fruits, like the quince, having no true detachable peduncles as pears and apples do), and in haring the top of the ovaries not covered by the over-growing receptacle. There is but one species of true Mespilus, but some authors (e. g., Focke, in Engler \& Prantl's "Die Natürlichen Pflanzenfamilien") include some of the Cratagus species in the genus.

The common Medlar is Méspilus Germánica, Linn., native to Central Europe. To a considerable extent in parts of Europe it is grown for its acid fruits, but in this country it is very little known. It is perfectly hardy in central New York, and its cultivation requires no special treatment or skill. It makes a twiggy, tough-wooded bush or small tree, 10 to I5 feet high, bearing large white blossoms late in May or early in June, after the leaves are full size. The foliage is soft and luxuriant; leaves lance-oblong or long-ohlong, pubescent, simple,

Medlar-Mespilus Germanica.
Natural size. serrate. The fruit (Fig. 1397) remains hard and austere until mellowed by frosts. With the freezing and the incipient decay, the fruit hecomes brown and soft. It is usually picked after it is touched by frost aud laid away on shelves or in drawers in a cool, dry room; the ripening process which follows is known as bletting. When finally softened, it is agreeable for eating from the hand, particularly for those who enjoy fruit-acids. It also makes good preserves.

Medlars are easily raised from seeds, although seeds (like those of (ratagus) may not germinate the first year. On these stocks the named varieties may be grafted or budded. Medlars may also be worked on pear, thorn (Cratagus) or quince. The Dutch or Hollandish and the Nottinglam are the leading varieties. The fruit of the former is often $21 / 2$ inches in diameter. The latter is much smaller, but is better in quality. There is also a seedless variety.
M. grandifldra, Smith (M. Smithii, DC.) is Cratsegus grandiflora (see p. 397). (in. 22, p. 163 and 34, p. 66.
L. H. B.

MESQUIT of Mexico is Prosopis juliflora (Legnminosæ). A picture of a Mesquit forest is shown in (i. F. 1:116.

METROSLDEROS (Greek, heart of iron; this and other genera of the Myrtle family are called ironwoods). Myrtdeed. About 18 species of trees and shrubs, rarely climbers, mostly natives of the Pacific islands from New Zealand to Hawaii. They belong to the class of Anstralasian shrubs whose chief beauty lies in their long red anthers. They are somewhat grown for a fancy Easter trade by florists, largely from imported stock. In Metrosideros the flowers are borne in dense 2-or 3 -forked eymes, while in Callistemon they are borne in spikes. Leares mostly opposite: petals 5 , spreading; stamens 1 inch or more long, much longer than the petals. The species described below are coolhouse shrubs, and are rarely grown outdoors in the South.

Apparently the commonest of the Bottle Brushes in the trade is Callistemon lanceolatas, which is passing among florists as Metrosideros floribunda and M. robusta. In Fig. 320 (page 218) the plant is shown with apparently terminal inllorescence, but the branch is really terminated by some leaf buds, which develop later, as in Fig. 1398. The handsome plant figured in William Scott's "Florists' Manual," and to which be refers in the following paragraph as Metrosideros robusta, seems to be none other than Callistemon lanceolatus (see supplementary list).
W. M.

The plant known to the trade as Metrosideros robnsta has been grown for many years as a cool greenhouse plant, but it is only within a dozen years that Europeans have been sending American florists the compact little bushes that now arrive with our Azaleas. The city florist can perhaps dispose of one of these Bottle Brushes for every ten plants of Azalea Indica. Plants in 6 -inch pots, well flowered, fixed with a red ribbon and placed in a modern basket certainly look novel and attractive. The Belgians grow the young plants in peat, as they do most hardwooded plants, but they do very well in good turfy loam with a fourth of leaf-mold. Cuttings of the young growth may be struck in early spring and planted out in good soil by the end of May, but it is cheaper to import stock. When the plants arrive soak the ball of roots, pot firmly and place them in a honse of about 45°. Freshly imported plants cannot be forced in much heat, like Azaleas, or they will shed their flowers. Watch them carefully, give them more heat gradually and they will bloom for Easter.

Plants nnsold the first spring will be much more satisfactory the second year. By the end of April cut them back to within 1 or 2 inches of the old growth, put them in a good heat and keep them syringed. They will make a bushy growth, with a good number of shoots. Early in Jnne plange them in a sunny spot outdoors, with the rim of the pot well covered, and be careful that they do not suffer for water in hot weather. In July, or earlier, mulch the pots with an inch of half-decomposed cow manure. Before frost remove the plants to a temp. of 45°, or warmer if bloom is desired before Easter.

William Scott.

A. Flowers red.

robústa, A. Cunn. Lrs. opposite, elliptic-orate, obtuse, veiny, with an extra nerve near each margin and parallel, glabrous: inflorescence a 3-forked cyme: fls, red; calyx top-sbaped. New Zeai. B. M. 44न1 (erroneonsly as M. florida).

AA. Flowers yellowish.

florida, Sm. Lvs. opposite, obovate-oblong, veiny, glabrous: inflorescence a thyrse: fls, yellowish; calyx top-
shaped, minutely silky. New Zeal. Not B. M1. 4471, which is M. robusta. - The typical form is not advertised, but only var. variegata.
M. floribuinda is not advertised in America, but stock im ported by an 1thaca florist uuder this name from Belgium is Callistemon lanceolatus (Fig. 1398). M. fioribnnda, Smith, is

1398. Metrosideros floribunda of the trade, but Callistemon lanceolatus of the botanists.
thought to have white fls. Lvs. opposite, petiolate, ovate-lanceolate: fls, in an umbel-like, decussately brancbed panicle. Australia $-M$. semperflorens, Lodd. $=$ Callistemon lanceolatus. -M. speciòsa, Sims=Callistemon speciosus.
W.M.

MEXICAN TEA. Consult Chenopodium.
MEYENIA. See Thunbergia.
MEZEREUM. See Daphne Mezereum.
MICHAUXXIA (André Michaux, 1746-1802, French botanist, who lived for ten years in America and wrote much on American plants). Campanulacew. Abont 4 species of rather coarse-habited biennial herbs from the Orient, of which M. campanuloides is best known. It grows $4-5 \mathrm{ft}$. high, has irregularly toothed, bristly-hairy foliage and large, curious drooping fls., white, tinged with purple, wheel-shaped at first, later reflexed. The flower is parted nearly to the base into $8-10$ oblong segments, $1 \frac{1}{2}-2 \mathrm{in}$. long. This plant is a striking subject for the back of a hardy border. It is easily prop. by seeds (which should be fresh), and likes a well-enriched soil of a light nature. An American dealer offers a climber with bell-shaped fis. unier the name of M. campanulata but these plants are erect herbs.

Michanxia belongs, with Campanula and other genera of garden importance, to a group characterized by having the capsule closed at the top and opening laterally by little holes between the ribs or by small solitary valves. Michanxia is distinguished from the other genera of this group by the $8-10$-parted corolla with narrow, spreading, finally reflexed lohes and an 8 - 10 -celled ovary. Michanxias are erect plants, hispid or glabrous: lvs. irregularly toothed or lobed, the stem-lvs. few: fls, terminal or strung along the branches, the top ones opening first, peduncled or nearly sessile, white or pale rose.
campanuloides, L'Hér. LTs. lanceolate in outline; upper ones sessile, acnte, almost clasping: calys with reflexed appendages shorter than the lobes; stamens 8. Asia Minor. B.M. 219.
J. B. Keller and W, M.

MICHELIA (P. A. Micheli, 1679-1737, Italian botanist). Hagnolideec. Twelve to 17 species of temperate and tropical trees, mostly natives of mts. of India, 2 of which are cult. in our southern states for their handsome mag-nolia-like foliage and red or pale yellow, fragrant fls. Fls, mostly axillary, solitary; sepals and petals similar, $9-15$ or more, in 3 or more series; stamens as in Magnolia; carpels in a loose spike; stigma decurvent: ovales 2 or moore: fr. a long, loose or crowded spike of leathery carpels, which split down the back: seeds like Magnolia.

A. Fls pale yellow.

Champaca, Linn. A tall tree native of the Himalayas: IVs. ovate-lanceolate, tapering to a long point, $8-10 \mathrm{in}$. long, $2 \frac{1}{2}-4 \mathrm{in}$. hroad, shining above, pale and glabrous or puberulous beneath; petiole $11 / 2 \mathrm{in}$. long: fls. 2 in . across: sepals oblong, acute; petals linear: fr. 3-4 in. long.

AA. Flowers red.

fuscata, Blume. Lvs. elliptic-lanceolate: none of the sepals or petals linear. China. B.M. 1008 (Magnolia fuscata). M. B. Coulston.

Michelia fuscata is one of the most popular garden shrubs in the southern states. It is known as the Brownflowered or Banana shrub; also Magnolia fuscata. It is shrubby in habit, attains a height of 10 to 15 ft , and is perfectly hardy in the middle and lower South. The shining young twigs and petioles are covered with hrown tomentum. The fls, are $1-1 \frac{1}{2}$ in. across, brownish yellow, edged with light carmine, exhaling a strong banana fragrance. The Howering period extends from the end of April until June. Prop. by seeds as stated for Magnolia arandiflora, but as seed is somewhat scarce, the better method is from ripened wood cuttings, under glass and with bottom heat. The cuttings should have I or 2 lvs. left, and be cut before rery cold weather. It is a very desirable conservatory shrub in northern sections.

P. J. Berckmans.

MICHIGAN HORTICULTURE. Fig. 1399. The location of the lower peninsula of Michigan is a most fortunate one for the pursuit of horticulture. Flanked on either side by a great body of water, the elimate is modified materially both summer and winter, thus affecting the kind and quality of products that can be successfully grown. Peaches are regularly ripentd on a parallel that forms the northern boundary of Vermont; even figs have been ripened in the open air in the southwestern corner of the state. This modification of climate affects not only temperature, but humidity; and on the side of prevailing winds during the heated season there is greater immunity from drought as a result of the moisture-laden atmosphere.

Michigan is covered with drift, and the soil in the western portion is, in considerable measure, open and porous in character, but having as a constitnent properties admirably suited to the growth of trees. The kind of timber frowing naturally upon the soil of western Michigan has deceived many people with regard to the character of the soil. Elsewhere heavy timber has usually grown on clay loam, but some of our light, sandy soils were covered originally by a heavy growth of beech, maple and basswood. This peculiar adaptation of western Michigan to the growth of timber trees has been a strong factor in favor of orcharding, and some of the finest orchards are upon the lighter lands.

There was a wide range of wild fruits indigenous to Michigan, and the early seeds of apples and pears brought by the French missionaries produced trees of wonderful vigor and fruitfulness. Many of these trees are still standing in the vicinity of the old missionary stations. For a good many years after the early settlements in the state, fruit and garden products were raised simply as au accompaniment of the farm home or the town garden. Market horticulture has followed the rapid growth of cities and the development of modern methods of transportation.

The apple-growing repion covers the southern part, extending northward and covering what is known as the "Thumb" (south of Saginaw bay), reaching as far north on the Huron shore as the Straits of Mackinac, and on the western, with a somewhat wider belt, to and including the Grand Traverse region. This same area
is well adapted to the growth of the pear, cherry, and most of the small fruits. Peach-growing for profit is followed in a rather narrow belt along the west shore of Michigan, technically denominated the "peach belt," and upon reliefs of ground over a much wider area, extending even twenty to forty miles toward the interior from Lake Michigan; the northern terminus of this belt is Grand Traverse bay. At the date of this writing (1900) the most promising apple region lies in the middle-westem part of the lower peninsula. The aggregate acreage devoted to apple-growing in the 39 apple counties is 202,587 ; and the acreage of peaches in the 12 counties in which this fruit is grown commercially is 39,051 .

In the evolution of commercial horticulture in Michigan, specialties have been developed and we find the peach a leading product wherever it can be successfully grown. To illustrate the rapid increase of peach-growing in the state, it is enough to say that the average number of trees planted in the state annually, between 1890 and 1900 , was 750,000 . The shipments from the western part of the state are uniformly large, and the aggregates are often, in productive years, enormous. The color of the fruit is not as high as we find it in southern latitudes, but the quality is superior. From the lake ports a large proportion of the peach crop is shipped to Milwaukee and Chicago for distribution, but from the interior places of shipment, peaches are distributed in every direction by rail. The development of the small fruit interest for market has been in the region of large cities and lake ports. From the cities at the mouth of the St. Joseph river, in the height of the small fruit season, it is not rare to have the shipments aggregate 20,000 bushels a day. The grape industry is widely seattered over the southern half of the lower peninsula. The country bordering on Lake Erie, from the character of the soil, has produced the finest quality of fruit. In recent years a great impetus has been given to this industry in the vicinity of Lawtou, Van Buren county, from which point hundreds of carloads are shipped annually. Plums are grown over a large portion of the southern peninsula, and to some extent, in the northern peninsula, but the fruit rearhes its greatest perfection in Oceana and Mason counties.

The wide range of horticultural products grown in this state, and the wonderful derelopment of certain specialties, in localities suited to them, have been due to the admirable method of disseminating exact and valuable information upon horticultural subjects in every corner of the state. This has been accomplished by organization. The state horticultural society, with its numerous branches; the organizations devoted to commercial horticulture; granges, farmers' clubs and institutes, touching in their work, according to locality, the various branches of horticulture, have all been valuable means for disseminating information. The Fruit Catalogue of the Michigan Horticultural Socjety has been a text-hook for every planter; this, in recent years, has been supplemented by admirable bulletins from the horticultural branch of the state experiment station; and the men who have entered horticulture as a profession, becoming leaders, have been singularly public-spirited and well equipped. Michigan fruit-growers have never been guilty of neglecting to exhibit their products in attractive ways at connty, state, national, and even international expositions, thus creating a demand for information which could be readily supplied in the form of bulletius, reports, circulars, etc., by their progressive organizations.

Certain crops that were in early days considered to be simply garden products bave developed to such an extent that now they are field crops; this is notably true of celery, chicory, mint, potatoes, cabbages, tomatoes, cucumbers and melons. The quick and satisfactory communication from the lake ports with the large cities of Illinois and Wisconsin has stimulated the culture of the muskmelon and tomato to such an extent that they are not now reckoned as gardeu crops. Kalamazoo celery is shipped over a large area of the civilized world. The soil seems admirably adapted to the production of a high grade of product, and the method of growing and handling has reached far toward perfection. It is true, also, that other points in the state are developing as celery centers, and giving their names to the exported
product; this applies to Grand Haven, Muskegon, Tecumseh, Ypsilanti and lonia.

The lettuce industry, conducted under glass, has reached an extraordinary development in the vicinity of Grand Rapids, a variety having originated there admirably suited to the purpose, and at this writing half a million feet of glass are deroted to this crop. Recently, the plaster caves at Grand Rapids hare been found to be suited to the growth of mushrooms, and this is a growing horticultural industry. The glass structures devoted to lettuce are used for the growth of cucumbers, to supplement the lettuce crop, thus rendering it possible to utilize the glass for nine or ten months in the year. Parsley has also become a remunerative crop under glass, and the shipments to the large northern cities are rapidly increasing.
The flower trade is confined al most entirely to glass structures, and depends upon the wholesale market to take care of the output. Chicago seems to absorb everything of this kind in the western part of the state, while Detroit draws its supplies from the southeast portion. The carnation is the leading flower for export, and the soil of certain localities in western Michigan seems especially adapted to securing perfection in the flowers. Roses and violets in aggregate shipments follow the carnation closely.

The upper peninsula, as yet, is somewhat of an unknown quantity in horticulture, and still there are indications that in some localities the hardier fruits may be grown with the greatest success; from the market point of view, the small fruits, coming into the large centers late in the season, bring a remunerative price and extend the season. It is predicted by tboughtful borticulturists that because of the rapidity of development and marvelous growth in the short northern season, the upper peninsula will evolve a remarkably remunerative horticulture, peculiar to itself. The selection of varieties of the more perishable fruits, like berries and peaches, is modified largely by the fact that it is desirable to aroid competition with the flood of fruits from the South, so that the later ripening varieties are generally most popular with the market growers.

One of the important factors in fruit-growing along the shore of Lake Michigan is the tremendous volume of resort business. The whole shore, from St. Joseph to Mackinac, is dotted with resorts, and this population demands plenty of fruit of good quality, making the home market of no mean proportions. Nature designed Michigan for horticultural pursuits, and the progress of population has brought the right spirit into the culture of orchard and garden products. Everything indicates a most promising future for Michigan horticulture.

The soil and climate of Michigan are well adapted to the production of high-grade seeds of many of our garden regetables, and large areas are devoted to their cultivation. In 1899 a single firm of seedsmen had contracts with over 1,400 Michigan farmers for growing garden seeds of various kinds, and in 1900 contracts have been let to grow within the state at least 15,000 acres of garden varieties of peas, 10,000 acres of garden beans, 2,000 acres of sweet corn, 1,000 of cueumbers, 1,000 of melons, 500 of tomatoes, and smaller areas of onions, radishes, cabbage, etc., these crops being grown for seed alone. The seedsman contracts with farmers who are good cultivators and have good farms and buildings, to plant a certain area with choice selected seed fur-

Charles W. Garfield.

1399. Michigan, showing horticultural areas.
nished by the seedsman, who also does all necessary expert work in the roguing and cleaning of the crop and agrees to pay a specified price for all the seed produced. The seeds produced bitherto have proved of such exceptionally good quality that most American seedsmen are coming to depend largely upon this state for their supply of many sorts, and there is a steadily growing demand for Michigau seed for export. W. W. Tracy.
MICONIA (D. Micon, Spanish botanist). Melastomàcear. Cogniaux, the latest monographer (DC. Monogr. Phaner. 7) admits 518 species to this genus, including the plants known to the trade as Cyanophyllums. The most popular of these greenhouse plants, Cyanophyllum magnificum, is placed amongst the species which are imperfectly known and is not described in the monograph. It was first illustrated and deseribed as long ago as 1859. Miconia is a tropical American genus of trees and shrubs, with large and showy opposite or verticillate, strongly veined ivs. Petals 4-8, rounded at the apex, spreading or reflexed. Stamens variable in number and shape, but usually 8-16, the anthers polymorphous. Fr. a dry or leathery berry, 2-5-loculed, and few- or many-seeded. Fls, relatively small, usually corymbose or paniculate, white, rose, purple or yellow.
The Miconias of gardeners are conservatory or warmhouse subjects, grown for their large and striking foliage. They belong to the old genus Cyanophyllum, in which the anthers are subulate and incurved and with a single pore, the fls. large and the calyx oblong or campanulate and truncate or dentate. They propagate by cuttings of the firm wood over bottom beat. The plants should be screened from the direct glare of the sun, and be given abundance of water. Use a fibrous soil. Culture similar to that of Medinilla.
Since the plants are known to gardeners mostly for their foliage, it is probable that some of the trade species are referred to wrong genera. Flowers are not always known when the plants are named. Some of the names have no standing in botanical literature.
magnífica, Triana (Cyanophijlum magníficum, Groml.). Fig. 1400. Reaching several feet in height as grown under glass (probably a tree in its native place),

MIGNONETTE

robust: Ivs. very large (becoming $2-21_{3} \mathrm{ft}$. long), broadovate and wavy-edged, arched, rugose, upper surface lustrons green, lower surface red, the very prominent veins white or light-colored: Hs, small, panicled. Mex. R.H. 1859, p. 359.- Discovered by Ghiesbrecht and first shown by Linden in 1857. One of the best and most striking of all conservatory foliage subjects. Voss (Blumengärtnerei) revives for this species the genus Tamones and calls it T. magnifica, Voss. M. velutina, Lind. \& Rod. (1.H. 41:21), of Brazil, is perhaps a form of this species. Its lvs. are not arched and the colors are more bronzy.
spectánda, Rod, (Cyanophỵllum spectíndum, Nichols.). Lus, oval, $11 / 2 \mathrm{ft}$. or less long, $6-7$ in. broad in the middle, the upper surface dark lustrous green, the under side greenish red, the midrib prominent and gray. Brazil.

Assámica (Cyanophýllum Assámicum, Hort.) was once offered by Saul. Said to be "a very beautiful foliage plant, with large, fine foliage." Probably a smaller type of M. spectanda, but very pretty when the Ivs, are expanding. Said by Nicholson and Mottet to be much inferior to the above.
L. H. B.

MICROKENTIA (Greek, minute Fentia). Pal. mdeer. Here may belong the plant known to the trade as Kentia gracilis. Microkentia is a genus of 6 species of palms from New Caledonia. They are unarmed, with slender, bamboo-like, ringed trunks. The leaf segments are long-sword-shaped and distinct, or the upper ones grown together into a broad 2 -cut blade. The fruits in this genus are amongst the smallest in the palm family. The fls. also are minute. The true Kentias, of which perhaps none is cultivated, have larger fls, and fruits, the former white, the latter vermilion. The anthers are fixed at the base in Kentia, but dorsifixed and versatile in Microkentia. Microkentia is nearer Clinostigma and Cyphosperma, but in these the leaf segments are irregularly bitten off at the apex. Kentia gracilis, Brong. d Gris. = Mierokentia gracilis, Benth. \& Hook. It is possible that the Kpntia gracilis of the trade is Kentiopsis divaricata (which see).

MICROLEPIA (Greek, a small scale; alluding to the indusium). Polypodiacea. A genus of graceful greenhouse ferns, allied to Davallia, but having the shallow, half-cup-shaped, membranous indusium attached to the
sides as well as the base; the stalks are also continuous with the rootstock, and not joined to them, as in the true Davallias. Twenty or more species are known. For cultivation, see Davallia.
A. Livs once-pinnate.
marginàlis, Baker (M. scabra, Hort.). Lvs. rising from a creepiug rootstock, $18-24 \mathrm{in}$. long, $9-15 \mathrm{in}$. wide, with linear pinna, which are cut about half way to the rachis into bluntish, oblong lobes. C'eylon to China.

B. Lrs. tri-quadripinnatifid.

platyphylla, Don. L,vs. $3-4 \mathrm{ft}$. long. on stout stalks from a stour, sealy rootstock. tripinnatifid; ultimate divisions broad, bluntish, toothed, oblong, deltoid; sori 2-12 to a segment, one in each tooth. India to Japan.
hírta, Kaulf. Lvs. 3-6 ft. long, on stout stalks, triquadripinnatifid; ultimate divisious oblong, broadly toothed; rachises hairy or pubescent; sori 2-20 to a segment, 1 or more together at the base of the teeth. India and Polynesia. Var, cristata is also offered by the trade. F. 1878, p. 59. Gn. 31, p. 428. F. R. 1:769.-M. cristata, Hort., presumably belongs here.
M. hispida. Hort. $=$?
L. M. Underwood.

MICROMERIA (mikros, small, meris, a part: smallflowered). Labidtu. This genus comprises about 60 species of herbs and subshrubs, generally distributed in tropical and temperate regions, especially in the Mediterranean countries. Lvs, usually small, entire or toothed: whorls axillary or in termiual spikes: fls. small; calyx 13-nerved, 5 -toothed or 2-lipped, corolla 2-lipped, upper lip erect, flattish, entire or notched, lower spreading, 5-lobed; stamens 4.

$$
\text { A. F7s. } 1 \text {-3 in the axils. }
$$

Doùglasii, Benth. Yerba Buena. Perennial: stems long, slender, trailing and creeping, with sweet-scented round or oval lvs., 1 in. or less across: fls. purplish, mostly solitary in the axils, on long, 2 -bracted pedicels. Woodlands, from Vancouver's 1s. to S. Calif. Sandy soil.-Uffered by E. Gillett, l\&8l.

As. Fls. numerous in the axils.

rupéstris, Benth. A dense, low-growing perennial plant, woody at the base, with prostrate stems, which turn up at the extremities, giving a heath-like effect when in bloom. Lvs, have the odor aud taste of pennyroyal: fls, abundant, small, white, with lavender spots on the inner side of corolla lobes, borne for several inches along the stems. Prop. from cuttings and seeds. J. N. Gerard writes that it blooms from July until heary frosts, and proves very satisfactory for rockery and informal border. Not advertised in American catalogues, but is in cult, by amateurs. S. Eu. M. B. Coulston.

MICROSTYLIS (Greek, small style). Orchiddeea. About a dozen species of this gemus are in cultivation in the Old World. No species have found their way into the American trade. They are herbs of terrestrial habit, cult. for their richly colored lvs. The species in cult. are all from tropical countries, and require a close, damp house or, better, a Wardian case or bell-jar, within which the air may be kept moist enough for their requirements. The lvs, are more or less broadly ovate, rather succulent, with sheathing hases. They are mostly beantifully colored. The fls, are borne in terminal racemes, like those of Goodyera.

Heintich Hasselbring.

The Myerostylis are deciduous orchids. They grow well in the warm end of the eattleya department, or better still treated like thunias or calanthes, - a rather warm, moist atmosphere when growing in spring, reducing the same toward late summer as they begin to lose their foliage, and eventually resting them quite dry in a temperature of about $60^{\circ} \mathrm{F}$, during winter. They will probably suffer in a Wardian case or bell-glass. They certainly will after growth is completed, if not at all times.
R. M. Grey.

MIGNONETTE (Fig. 1401) is a universal favorite. Though there are many fragrant flowers of easy cultivation that exceed the Mignonette in beauty, it is prob-
able that no other flower is so generally grown for fragrance. No home garden is complete without some Mignonette. It needs a cool soil, only moderately rich, shade part of the day, and careful attention to cutting the flower-stalks before the seeds are ripe. It grows 1-2 tt. high, and is treated as a half-bardy annual. If a sowing be made in late April, followed by a second sowing in early July, the season may he extended until severe frosts. Those who wish to have home-grown Mignonette in the window during winter may sow seeds in pots late in summer. Few flowers will prove as disappointing if the treatment it needs is omitted.

Years ago Mignonette was one of the few fashionable flowers. Every florist grew a little. With the rise of florists' roses, caruations, violets and chrysanthemums the Mignonette lost some of its relative jmportance, but within recent years a new era has opened for it. It is now a highly specialized crop, being little grown by general florists, but grown on a large scale by a few specialists.
For the botanical status of Mignonette, see Reseda.

C. E. Hunn

Wholesale Cultivation of Mignonette.-Owing to improved methods of cultivation practiced in recent years, Mignonette has become a staple in the cosmopolitan markets. A few years ago growers contented themselves with little attention to the plant, letting it take care of itself after planting the seed in a row along the side of rose beds or benches. Now, however, certain growers haviug made its cutting and seed a specialty, the result has been the production of improved strains finding such favor that the old, careless methods are abandoned. As yet, well-grown plants in pots are not offered to the public, but the indications are that before long they will take their place as favorite Christmas and Easter plants, for which they are well fitted, since they are useful house plants in their keeping and odoriferous qualities.
Mignonettes in beds or benches for winter-flowering will succeed in almost any soil, but the best is a good, turfy loam, taken from an old pasture plowed as early as possible in spring after the grass begins to grow nicely. In the preparation of this soil, the pasture should be plowed abont 4 inches deep and the earth heaped up immediately after plowing. When heaping. a layer of soil should first be made, then a layer of manure, and so on until the heap is completed, the top rounded off a little so as to throw off the surplus water of heavy rains. One load of good cow manure to six of soil would be about the right proportion.
If the plant is grown in beds, eight inches of soil will be sufficient, and the beds should rise slightly from the sides to allow for settling. The rough parts should be raked off, and a board laid on the soil and tramped upon until the soil is firmed evenly. Rake it again to roughen the surface, mark out rows lengthwise a foot apart, with cross rows at the same distance. Sow the seeds in the corners of the square thus male, cover very lightly, and when the sowing is completed, give a light watering with a fine rose watering-pot to settle the soil around the seeds. After the plants are up and growing and have made their second leaves, thin out to one plant, leaving the strongest one. Care should be taken at this time not to over-water, as it is preferable to leave the soil rather dry than wet. As soon as the plants are large enough, stake them all and tie them loosely to prevent them from talling out.
If the seed is sown in July for a November crop, the ventilators must be kept open day and night so as to admit all the air possible, in order to keep the plants stocky and short-jointed. Temporary shading in the middle of the day when the sun is hot is very necessary.
After the plants begin to show the flower heads, all the side shoots should be removed from around the heads down to the stem. Leave three or four of the strong bottom side shoots to come on for a second crop, aud so on as the crop matures. Always have another crop coming on to take the place of the one that was cut. By keeping the plants neatly staked and tied there should be a continuous crop from November to May. When the plants have reached a good size, watering is of the utmost importance and should be done in the mornings and only on bright days, so that the
foliage may be dry before night; for if the water lies on the foliage for twenty-four hours the leaves will become spotted and a fungous growth started, to the ruin of the plant. A night temperature of 45°, with a rise of 10° or 15° in the day, suits the plant very well. Mignonette will succeed in almost any kind of a glass structure, but, of course, the better the house the finer the product.
The cultivation of Mignonettes in pots requires much attention, involving careful watering, staking and training of the plants into the shape required. All this takes time, but good specimen plants in pots of 8 inches, with $15-20$ heads of flowers to a plant, will repay the grower for all the attention bestowed. The best method for this kind of growing is to fill up 2 -inch pots with finely sifted soil from the compost heap deseribed before, then add one-third leaf-soil run through a sieve, with a little sand to make it porous, and then, pressing the soil firm, make a little hole with the finger in the center of the pot, drop in 2 or 3 seeds, cover lightly and water with a fine rose to settle the soil around the seed. After the plants are up thin out to one plant to a pot, leaving the strongest one. Keep all the plants as near the glass as possible to prevent them from becoming drawn. Be careful not to let the plants get dry at this time. If they receive a check at this or any time for want of water they get hard and will never make good plants afterwards.

1401. Mignonette-Allen's Defiance.

When the plants have filled the pots with roots shift to 4 -inch pots, nsing a little rougher soil. Never allow the plants to become pot-hound. Up to this time they will not require stakes if kept near the glass with plenty of ventilation and are carefully watered. When the young roots begin to show through the soil at the sides of the pot shift to 8 -inch pots, using good rough soil. Drainage must he provided at the bottom of the pots-broken bricks will answer the purpose. Cover this drainage
material with a little rough stuff from the potting bench and pot the plants firmly, leaving the space of an inch at the top of the pot for water. Watering should be done sparingly until the plants fill the pots with roots. By this time the plants should be 4 inches tall, and the center sfoot should now be pinched out to induce enough of the side shoots to form the foundation of the plants. The center shoot will produce 2 or 3 side shoots below where it was pinched, and with 6 or 7 bottom side shoots will form the basis of the plant. Rub off any other side shoots as they appear. After the plants have grown to a height of 6 or 7 inches they must be staked and tied; a stake in the center for the center shoot and one for the side shoots will be sufficient. After the plants have attained a beight of 10 or 12 inches, and before the flower heads begin to show, pinch the center out of all the shoots with the finger and thumb at the same time so as to induce the plant to flower all at one time, for if pinched two or three weeks apart the flower heads will come irregularly and the plants will not look so well. As soon as the flower heads begin to show the plants should have a little weak liquid manure twice a week and as they develop and the roots get crowded in the pots they will require more feeding. Put about a bushel of sheep manure in a bag and drop it in a barrel of water for two or three days before using. This makes a very good liquid food for the plants; also chicken manure treated the same way but used in lesser quantity - about a half a bushel to 50 gallons of water will be about right. If the plants have been carefully watered and attention paid to staking and training, the grower will be amply rewarded with nice specimen plants laving from 12 to 20 flower spikes to a plant.

Seed-saving. - Plants wanted for seed should be carefully selected. Only the very best plants with elean, healthy foliage and large bracts or flower heads, with the florets set close together, are the ideal plants for seed. If the plants are growing in a house or near other plants that are not so good they should be covered with mosquito netting to prevent the bees from cross-fertilizing them. After the heads have set, say from $20-25$ pods, the center should be pinched out, for if allowed to grow and set more the seed will be of an inferior quality. When the seed hegins to turn brown in the seed-pods the pods should be picked off and laid in an airy room for a day or two on paper, so that none may be lost. After the pods are dry, so that the seed will ruhout clean, the seed should be cleaned, put in a package and placed in tin boxes to keep from mice, as these pests are very fond of it.

Robert Mcmillen.

MIGNONETTE VINE. See Boussingaultia.

MIKANIA (Prof. J. G. Mikan, of Prague, or his son and successor, J. C. Mikan, who collected in Brazil). Compósitar. This includes M. scaudens, the Climbing Hempweed, a common natire weed, but a pretty one. It has distinct foliage, the lvs. being somewhat heartshaped or balberd-shaped, and long-acumiaate. The fls. are very small, numerous, pinkish, and borne in dense clusters 1-2 in. across. These clusters, as in all the species, are composed of many small heads, each containing $4 \mathrm{fls} .$, surrounded by an involucre of 4 bracts. The genus contains about 60 species, mostly found in the warmer parts of America. Shrubs or herbs, the latter twining, rarely ereet: 1 rs . opposite, usually stalked: heads spicate, racemose, corymbose or panicled: fls, mostly white or yellowish. Nearest to Eupatorium, but the latter has an indefinite number of involueral bracts instead of 4 , and contains erect plants.
scándens, Willd. Climbing Hempweed, Described above. Moist ground, New Eng, to Fla, and Tex. G.W.F. 34. - Very rarely offered by dealers in native plants.

Sánderi, Hort. Hothouse climbers, with variegated foliage. Int. 1899 by Sander \& Co., who say the lvs. are richly embellished with dark relvet-purple patches; veins of mature Ivs. white. The lvs. are about 6 in . long, 5 in. wide, boldly toothed.
M. violacea, offered by Pitcher \& Manda in 1895, is little known.

MILDEW, This name is given to a group of fungous diseases which attack leaves, shoots, flowers and fruits. The true or powdery Mildews (Erysipheæ) appear as a thin, white, powdery coating on the surface of the plants. The disease is usually accompanied by distortion and dwarfing, and often death of the affected parts. In some cases, however, as in the maple Mildew, the affected areas of the leaves retain their chlorophyl and remain green in the autumn long after the rest of the leaf is dead and yellow. The mycelium is always superficial, forming spots or more or less extended areas on the affected organs. The injury is done by numerous haustoria, which pentrate the cells of the host and ahsorb nutriment for the mycelium, and also serve as organs of attachment. During the summer Mildews are propagated by l-celled spores, many of which are cut off in succession from erect, simple branches all over the diseased surface. Other spores, by means of which the fungus passes through the winter, are produced in sacs inclosed within hollow spherical receptacles, called perithecia. These appear as minute black or dark brown specks over the diseased area. They are produced in the autumn, and remain on the fallen leares; but the spores within them do not ripen until the following spring, when they are liberated by the decay of the perithecia.

In the United States, considerable injury is caused by the following species: The rose Mildew, Spherotheca pannosa, on roses under glass; Erysiphe graminis on wheat and other grasses; the vine Mildew, Uncinula spiralis, producing the powdery Mildew of grapes; Podosphera Osycanthe on apples and pears; and Sphorotheea C'astagnei, the bop Mildew. The most successful mode of combatting the Mildews is by dusting with sulfur or spraying with Bordeanx mixture. Either of these fungicides kills the mycelium and spores of the fungus.

The downy Mildews or false Mildews belong to the Peronosporeæ, a group of fungi widely separated from the true Mildews. The myeelium is parasitic within the tissues of the host, only the fruiting branches appearing at the surface (see Fig. 879). The fruiting branches hare a characteristic form and method of ramification for each genus of the group. The spores, when they lodge on new host-plants, either produce an infecting thread directly, or, in most cases, the contents of the spore is discharged in the form of swarm-spores, which swim about for a time and finally come to rest and produce the infecting mycelium. Resting spores are produced sexually in this group within the tissues of the host.

This family contains about ten genera, of which the following are most commonly known: Phytophthora infestans, the potato blight; Plasmopara viticola, the downy Mildew of grapec; Bremia Lactucte, often causing great damage to lettuce in forcing-houses; Pythium D_{t} baryanum, causing damping-off of seedling cueumbers and various other seedling plant $=$; and Cystopus candidus, the common white rust of rrucifers. Modes of combatting these diseases are set forth for each specific case in the experiment station literature of the various states. See, also, Diseases.

Heinau'h Hasselbring.

MILFOIL, See Ackillea.

MILIUM (ancient Latin name of Millet, which, however, belongs to a different genus). Gramina. Millet Grass. Contains 5-6 species distributed through temperate Europe and Asia, one of which is also found in North America, and is occasionally cult. for ornament. Spikelets 1-fld., in diffuse panicles. Empty glumes awnless, the flowering glume coriaceous, as in Panicum. Farmer's Bulletin, No. 101, issued by the U., S. Dept. of Agric. is devoted to Millets (but not to Milium).
effusum, Linn. A smooth perennial, 3-6 ft. high: 1 rs . broad and thin: panicle $6-9$ in. long.
A. S. Hitchcoek.

MILK PEA. Galactia.
MILK VETCH, Astragalus.
MILKWEED. Asclepias in general; A. Cornuti in particular.

MILKW0RT. Polygala.

MILLA (J. Milla was head gardener at the Court of Madrid). Lilidece. Bentham \& Hooker restrict the genus Milla (as Cavanilles, its author, intended) to one species, M. biflora. From Brodiæa the genus differs in the fact that the pedicels are not jointed and the perianth segments are always 3 -nerved. Milla and Brodiza are native to the northern half of the western hemisphere. In South America is the genus Triteleia, which is by some referred to Milla, by others to Brodima, and by still others kept distinct. There is one Triteleia (T. reniflora) in common cultivation. In his monograph (Journ Linn. Soc. 11, p. 378), Baker refers the Triteleias to Milla, and this disposition is followed by Index Kewensis, but in a later account (G.C. 111. 20, p. 459) he refers them to Brodima. Watson (Proc. Amer, Acad. Arts. \& Sci. 9, p. 240) restricts Milla to one species. The North American plants which have been referred to Triteleia are perhaps best treated as Brodieas, and they are so considered in the accuant of that genus in Vol. 1 of this work. The South American Triteleias are described under that genus in Vol. IV.
Milla has a salverform perianth, with 3 -nerved segments which are separate nearly to the base, 6 nearly ses sile stamens in one row, sessile, oblong-obovate capsule. M. biflòra. Cav., has a scape 6-18 in. high from a small coated bulb, bearing $1-5$ (usually 2) star-like, waxy white, fragrant fls. $2-21 / 2 \mathrm{in}$. across, with oblong-lanceolate segments: lvs. rough nearly terete. S. Ariz. and New Mex. to central Mex. B.R. 18:1555. F.S. 14:1459. (in. 24, p. 155. Milla biflora is one of the best of the small hulbs. It known as Mexican Star, Mexican Star of Bethlehem, Frost Flower, and Floating Star, The fls. are of a charming waxy consistence, and are borne on long stems. They are excellent for cutting, and last several days. Planted in the border early in spring, they soon throw np their fls. and lvs. They should be allowed to remain until September or Octoher, when they may be taken up and stored for the winter. Our gardeners know Milla mostly as a pot bulb for flowering under glass late in winter or early in spring. It blooms readily in the conditions given to Freesias. Several lulbs should be placed in a pot, although several stalks will spring from one bulb.
L. H. B.

MILLER, DUSTY. See Lyclnis Coronaria.

MILLETS are important agricultural grasses. The true Millet or Broomicorn Millet of Europe is Panicum milaceum. The common Millets of the United States, the Foxtail Millets, are forms of Setaria Italica. African Millet, also called Black, Chinese, Indian, and improperly Pearl Millet, is Sorghum vulgare. The name African Millet is sometimes applied to Eleusine Coracana. Barnyard or Japanese Millet is Punicum Crusgalli. Pearl Millet is Pennisetum typhoideum.

A. S. Нitchсоск.

MILLETTIA (named in bonor of Dr. Millett, of Canton, China). Leguminòse. About 40 species of Old World tropical trees and large shrubs, usually climbers; differs from the Japanese and North American genus Wistaria only in the hard, usually flat and thick pod not opening so readily. Lrs. large, odd-pinnate; lfts. opposite, stipellate: fls. showy, in axillary racemes often fascicled, simple or paniculate and terminal, white, purple or reddish.

A. Fls. purple.

Cáfra, Meissn. Iron-wood. A South African tree, $20-30 \mathrm{ft}$. higb, with very hard, close-grained, brown word and dark, rough, rugulose bark. Lvs. on channeled petioles $6-8 \mathrm{in}$. long; lifts. lanceolate-oblong, acute, in $5-6$ pairs, $2-2 \frac{1}{2} \mathrm{in}$. long, 1 in . apart; slender stipules $2-3$ lines long: panicle 6-8 in. long: fr. leathery, relvety, used as a medicine by the Kaffirs. Int. hy Reasoner Bros., 1891.

AA. Fls. white.
Japonica, Gray. A Japanese woody climber. Livs. light green, odd-pinnate; lfts. narrowly ovate, $4-6$ pairs, $11 / 2 \mathrm{in}$. long, 1 in . apart: racemes simple, nodding, $5-8$ in. long. Probably not hardy in the North. Procurable of dealers in Japanese plants. S.Z. 1:43 (Wistaria Japonica).

MILTONIA (named for Lord Fitzwilliam, Viscount Milton, a patron of borticulture). (Wrchidacea. This group contains some of the most beautiful orchids in qultivation. The pseudobulbs are closely clustered and sheathed with long, graceful, dark green lvs., forming plants over 1 ft . in diameter, bearing nnmerous large fls. They are herbs with short pseudobulbs, bearing I-2 Ivs. at the summit and few or manv sheathing Irs.

1402. Miltonia vexillaria.
at the base: the inflorescence arises from the base of the psendobulbs, and consists of a single-fld. peduncle or of a loose raceme of long-perlicelled fls.: sepals subequal, spreading, free or the lateral ones slightly united; petals similar or a little wider; labellum not distinctly clawed, large, expanded, not 3 -lobed, but often bifid at the apex: both the segments and the labellum are expanded, forming a flat flower: column short. This gebus contains nearly 20 species, mostly from Brazil. They are closely related to Odontoglossmm and Oncidium, but may be distinguished by the characters given above. M. Rezlii, M. vexillaria, and some closely related kinds were until recently known in gardens as Odontoglossums. In the group containing the "true" Miltonias, the pseudobulbs are separated from each other on the rhizome, and bear 1-2 yellowish green lvs, at the summit and few sheathing lis. of the same color at the base. The fls of nearly all Miltonias remain on the plants in a fresh condition for a month or more.

Heinkieh Hasselbring.
The Colombian species of Miltonia, among which are M. vexillaria and M. Rozlii, grow best in a compost of well-chopped, turfy fern root and very coarse river sand or pulverized coal clinkers. Do not overpot. Finish with sphagnum, which should be kept growing. These species should have a temperature of 58° to 70°. They do not like a close atmosphere, lut a good aud constant circulation of air. Fumigate slightly once a week or scatter strong tobacco dust on the wet, hot pipes frequently to control thrips. After growth is finished, these orchids shonld be earefully rested in a temperature of 55° to 60°, but at no time should they become very dry.
All the Brazilian kinds enjoy plenty of diffuse, but not direct, sunlight. They need much water while growing. After growth is complete, gradually withhold water supply. The Brazilian kinds grow best in shallow perforated pans, with plenty of drainage, and potted in fern root mixed with coarse leaf-mold and sharp saud.
M. vexillariu, as grown by the respected William Gray, of Albany, was well worth a long journey to see. He had specimens in 12 -inch pans in perfect health and condition, which were a lovely sight. When asked for the secret of his notable success, Mr. Gray pointed overhead to the ventilators (outside temperature 20°), which were open just enough at top and bottom to allow a gentle circulation of air. Mr. Gray added that he kept up plenty of atmospheric moisture and was very eareful about overhead waterings on close, warm days.

Wm. Mathews.
Though the genus Miltonia is closely allied to Odontoglossum botanically, the cultural requirements are in many cases very different. species Nos. 1, 2, 3, 4 and 10 do well under the same general conditions of culture recommended for Odontoglossum crispum (which see), but 5° more heat during the winter months should be given them.
M. spectabilis and M. flavescens should be grown in baskets or pans suspended from the roof in a compost of clean, chopped peat fiber and live sphagnum, liberally interspersed with pieces of charcoal, to which the roots freely attach themselves. They can, if desired, also be grown on orchid rafts with a little compost between. They require stovehouse temperature, a moist atmosphere and a copious supply of water both at the roots and overhead when growing.
M. candidu, M. cuneata and allied species thrive best in liberally drained pots or pans in a compost of rough, chopped peat and sphagnum, interspersed with pieces of broken charcoal.

A warm, moist, shady location, such as is afforded in the Cattleya or C'ypripedium department, where the temperature can be maintained at 60° to 65° by night and about 70° by day during winter, suits Miltonias best. The compost should never be allowed to become dry during the growing season, and should never remain dry long even when at rest during winter. Overhead syringing is necessary at all seasons to keep down thrip, to which this group is subject. Weak liquid cow manure applied occasionally during the period of growth is beneficial. Cutting the rhizome between the pseudobulbs, partly through, at the beginning of the growing season will retard the sap and often induce the latent eyes to grow, after which time the pieces may be removed and potted up separately. By this means the stock is increased.
R. M. Grex.

1NDES.

alba, 1.
bicolor, 5 .
candida, 8.
Clowesii, 7
cuneata. 9.
Endresii, 3.
flavescens, 12
gignntea. 2.
grandiflora, 2, 12. tuxurians, 4. Moreliann, 5 Oncidivm, 10, 11. Pbalanopsis, 4. picta, 2. purptirea, 6. Fegnelli, 6.

Rœzzili, 1.
roser, 2.
Russelliana, 11. spectabilis, 5 . vexillaria. 2. Warscewiczil, 10. Weltoni, 10.
A. Psewdobulbs crowded, with numerous dark or gray-green sheathing les, at the luse.

1. Labellum sagittate at the base.
ne. Labellum not sagittate, conne. Labellum not sagittate, con-
stricted in the middle, i. e.,
broudly panduriform ne. Labellum not sagitate, con-
stricted in the middle, i. e..
broadly panduriform 1. Rœzlii
2. vexillaria
3. Endresii
4. Phalænopsis

AA. Pseudobulbs situated at intereals on the rhizome, with fere yellowish green tis.
B. Segments of perianth broad, orate to oblong.
c. Perianth uniformly colored white, rose or purple...... 5. spectabilis 6. Regnelli
cc. Perianth variegated, yellow and brawn or brown and green.
n. Labellum fiddle-shaped. . 7. Clowesii

DD. Labellam broadly obovate.
DDn. Labellum oblong 9. cuneata
10. Warscewiczii
11. Russelliana

BB. Segments of perianth linear-
lanceolate12. flavescens

1. Rézlii, Nichols.(Olontoglóssum Rúzlii,Reichb.f.). Pseudohulbs narrowly ovate, 1-2 in. long: lvs, numerous, slender, $8-12 \mathrm{in}$. long, narrowly linear-lanceolate: scapes about half as long as the lvs., bearing $2-3$ large fls.: fls. flat, $3-31 / 2 \mathrm{in}$. across, pure white, with a purple band at the base of the petals and a yellow stain, more or less marked with reddish brown, at the base of the labellum; sepals and petals ovate-oblong, acute; labellum large, broadly obcordate, with a tooth in the sinus, and a spur-like horn projecting backwards on each side of the column. Closely allied to M. vexillaria, from which it differs in color and by the more slender, nerved lvs. Flowers twice a year in winter and spring. Colombia. B.M. 6085. 1.H. 23:228. R.H. 1875:450. Gn. 4, p. 251; 10:31; 26:457.-Var. álba, Hort. Fls. Iarge, lacking the purple band on the petals. Gin. 26:457. F.M. 1875:164. A.F. 13:1453. Gng. 6:327.
2. vexillària, Nichols. (Odontoglóssum vexillarium, Reichb. f.). Fig. 1402. Pseudobulbs 11/2-2 in. long: lvs. $6-12 \mathrm{in}$. long, narrowly elliptic-lanceolate: scapes sometimes 6 from a single pseudobulb, slender, and longer than the lvs., 3-4-fld: fis, the largest of the genus, flat, about 4 in . long; sepals and petals ovate-oblong or oboFate, pale or dark rose, sometimes with white margins; labellum large, rounded, deeply emarginate, narrowed to a sagittate claw, deep rose, whitish at the base, streaked with yellow and red. The fls, are extremely variable in shape and color. Spring and early summer. Western slope of the Andes, Colombia. B. M. 6037 . I.H. 20:113. F.S. $20: 2058$. R.H. 1876:390. Gn. 9, p. 577; 10, p. 108; $17: 231 ; 35$, p. $268 ; 45$, p. 536 , G.C. $11.26: 145$; III. $18: 743$; III. $19: 755$; 27; May Suppl. J.H. III. $31: 301$. G.F. 8:195, G. M. 39:386. V. 5:138. A.F. 13:121.-One of the most popular of all orchids. There are several varieties of this plant. Vars, gigantè, grandiflora, picta, rosea, have been advertised under Odontoglossum.
3. Endresii, Nichols. (Odontoglóssum Warsceuíczii, Reichb. f.). Pseudobulbs small, tufted: Ivs. numerous, distichous, elliptic-lanceolate, about 1 ft . long: scape as long as the lvs., inclined or drooping, 6-8-fld.: fls, 2-21/2 in. in diameter, flat, white, with a yellow crest on the labellum and a rose-colored bloteh at the base of each segment; sepals broadly ovate; petals elliptic; labellum very broadly fiddle-shaped and 2-lohed. Feb. Costa Rica. B.M. 6163.
4. Phalænópsis, Nichols. (Odonteglóssum Phalonópsis, Lind. \& Reichb.f.). Pseudobulbs ovate, with grasslike lvs. $8-10 \mathrm{in}$. long at the base and apex: stalks $1-3-$ fld., shorter than the IFs.: fls. large, flat, white, with the labellum variegated and streaked with crimson; sepals 1 in , long, oblong, pointed; petals broader and rounded; labellum large, broadened and 2 -lobed in front, constricted near the middle and expanded above into 2 rounded lobes. The pseudobulbs are clustered, forming clumps 1 ft . or more across, with numerous fls. mingled with the long, grass-like lvs. Spring and summer. Colombia. I. H. 3:109. Gu, 18, p. 447; 26. p. 232; 35, p. $269 ; 36$, p. 315 . G.C. 11. 25:364. I.H. $28: 417$ (var. luxurians, more vivid).
5. spectáhilis, Lindl. Rhizome creeping, with the pseudobulbs placed about I in. apart, with 2 Ivs. at the apex and few sheathing lvs, at the hase: lvs. linearoblong, $4-12 \mathrm{in}$. long: scapes erect, sheathed, $6-8 \mathrm{in}$. long, bearing a single fl. about 4 in . in diameter: sepals and petals oblong, obtuse, slightly waved, white or creamcolored; labellum 2 in. long, very broad in front, pendent, somewhat uudulate, rose-purple, with darker veins. The first Miltonia introduced into cultivation. 1t blossoms in autumn, large plants bearing from $20-50$ fls., all opening at once and lasting about a month. Brazil. B.M. 4204. B.R. 23:1992. 1.H. 6:2I6; 12:446 (var. cereola) ; 14:524 (var, rosea); 15:573 (var. virginalis). P. M. 7:97. K. W. 1:45 (Macrochilus Fryanus). R. B. 1889:25. (v. M. 38:642. A.F.6:631. Var. bicolor, Hort. Fls. white, with a violet spot on the labellum. Large-fld. and vigorous. Aug. Var. Moreliàna, Hort. (M, Morelidna, Hort.). This variety is very distinct in color. Sepals and petals deep purple; labellum of the same color, veined and shaded with rose. In habit the plant is like the type in every detail. B.M. 4425 (as var. pur-pureo-violawea, Hook.). F.S. 10: 1008. I. H. 2: 71. Gn.
$31: 593$ (habit poor). F.M. 1874:143. G.Al. $40: 37$. F. 1850. p. 123 (outline). A.F. 6:633.
6. Régnelli, Reichb. f. Like M. candida in habit and foliage: lvs. 3 in . broad: scapes erect, bearing several large fls.over 2 in. in diam.: sepals and petals spreading, recurved at the apex, oblong, acute, wbite; labellum subpandurate, obtuse or emarginate, rose-purple, with deeper veins and 3 yellow keels at the base. Sept. Brazil. B.M. 5436. - Var. purpurea, Pynart. Sepals and petals tinted with rose, with white margins; labellum crimson, with a white erest. R.B. 17:253.
7. Cl6wesii, Lindl, Pseudobulbs ovate-oblong, leafy at the base and bearing 2 narrow ensiform lvs. at the apex: scape erect, 1 ft . long, many-fld.: fls. 3 in . across, orange-yellow, mottled with brown, the lip white with a violet base; sepals and petals spreading, lanceolate, acuminate; labellum fiddle-shaped, with a cordate base and a broadly rotund, acute terminal portion. Resembles M. candidt. Sept., Oct. Brazil. B. M. 4109. P. M. 9:241.
8. cándida, Lindl. Pseudobulbs ovate-oblong, 2-lvd., with few lvs. at base: lvs, oblong-linear, 1 ft , long, $11 / 3$ in, hroad: raceme erect, 1 ft . long, $6-8$-fld.: sepals and petals spreading, oblong, acute, somewhat wavy, brigbt yellow, with large red-browu blotehes; labellum large, broadly obovate, convolute, erenate and wary on the margin, white, changing to yellow, with a faint purple blotch. A strange species producing 5-6 racemes, each with $6-10$ fls, about $2 \frac{1}{2}$ in. across. Autumn. Brazil. B.M. 3793 (var. flavescens). P.M1. 6:241. Gn. 20, p. 463.
9. cuneàta, Lindl. Pseudobulbs ovate, clustered, 4 in . long, sheathed with lvs. at the base and 2-lvd, at the apex: lvs. dark green, strap-shaped, 1 ft . long: scape erect, 5 -8-fld. as long as the lvs.: fis. 3-4 in. across; sepals and petals lanceolate, spreading, mostly chocolate brown, greeuish yellow at the tips, and few spots of the same color; labellum obovate-rotund, slightly wavy, creamy white, with 2 parallel ridges on the crest. A robust, free-flowering plant of the babit of M. candida. Feb. Brazil. B.R. 31:8. 1.H. 7:237.
10. Warscewiczii, Reichb. f. (Odontoglóssum Weltoni, Hort. Oncidium fuscdtum, Reichb. f. Oncidinm Weltoni, Hort.). Pseudobulbs 3-5 in. long, much flattened: lvs, linearoblong, obtuse, 5-6 in. long: fls. 2 in . long from the tips of the lip to that of the upper sepal, numerous, borne in a branched nodding pani. cle; sepals and petals cuneate - obovate, waved and crisped, pale reddish brown, with whitisb tips; labellum oblong, fan-sbaped, bifid, white, with a large rose-purple disk on the center of which is a large, brownish yellow blotch. March. Peru. B.M.5843. F. S. 18:1831.
11. Russelliàna, Lindl. (Oncídirm Russelliànum, Lind1.). Pseudobulbs ovate, ribbed, 2-lvd.: Iss. narrowly lanceolate: flower stems dark purple, few-fld.: sepals and petals ovate-oblong, somewhat undulate, brownish purple with green margins; lahellum oblongcuneate, retuse. apiculate, violet, the crests or lamella on the disk margined with white. Fls, rather small and dull in color. Dee. Brazil. B.R. 22:1830. P.M. 7:217.
12. flavéscens, Lindl. Pseudobulbs narrow: lys linear-ensiform: raceme many-lid,, the stalk sheathed witb bracts: fis. stellate, yellow, with the labellum somewhat spotted with purple; sepals and petals linear-lanceolate, acuminate; labellum pandurate, undulate-acumiuate. June. Brazil. B.R. 19:1627. (Cyrtochitum flaves-cens).-Var. grandiflora, Regel. Fls. larger, white at first, becoming whitish yellow; labellum obtuse. Gt. 39:1328. Hort. (Miltonopsis Bleui, Bleu.). Garden hybrid between M vexillaria and M. Rezziii. Intermediate between the parents: fls. large, 4 in. across, white, with the bases of the segments tinged with rose-purple; labellum large, bilobed, veined with pink. The sepals and petals are well developed, making a full,
rounded flower. A.F. 6:631. G.F. 5:198, 199. A.F. 9:1087 (both var. splendens) $-\boldsymbol{H}$. Pinélli. No description available.

Heinrich Hasselbring.

MIMBRES. Chilopsis saligna.
MIMOSA (Greek, a mimic, alluding to the fact that the leaves of some species are sensitive). Legumindsa. What the florists know as Mimosas are Acacias (chietly A. armata). Mimosa has stamens $\mathbf{3 0}$ or less (once or twice as many as the petals); Acacia has numerous stamens. Of Mimosas there are between 200 and 300 species of tropical regions, chiefly of tropical America. Trees, shrubs or herbs (sometimes woody climbers), with bipinnate often sensitive lss. (sometimes the lvs. reduced to phyllodia): Hs, usually with 4 or 5 united petals, and a very minute or obsolete calyx: pollen granular: pod flat, oblong or linear, breaking up into 1 -seeded joints when ripe.

A. Herbaceous plants.

pùdica, Linu. Sensitive Plant. Humble Plant. Fig. 1403. Cult. as an annual, but probably perennial in the tropics, erect, branching, hairy and spiny: lys. longpetioled, with 2 or 4 sub-digitate pinnate linear-oblong lfts.: fls. many, in globular-oblong beads on elongating axillary peduncles, purplish: pods comprising 3 or 4 spiny joints. Brazil, but widely naturalized in warm countries. - Easily grown from seeds, which are sold by seedsmen. The plant grows readily in any place in which garden beans will thrive. It is grown for its sensitive foliage. The movements are usually quickest in young plants. When the lvs, are touched, the petiole falls and the leaflets close. Neither the mechanism nor the utility of these movements is well understood. M. sensitiva, Linn., is a distinet plant (B.R. 1:25). It is a half-climbing perennial with 2 unequally piunate lfts., not so sensitive as M. pudica. The word pudica is Latin for modest or retiring.

AA. Hoody plents.

B. Primary pinnoe 1 pair.

Spegazini, Pirotta. Spiny: pinna 2, bearing very numerous lfts.: fls, light purple, in glohular heads or
M. bfcolor and var. candida are advertised.-M. Bleuàna,
1403. Sensitive Plant $(\times 1 / 3)$.

> Normal position of the leaf is shown on the rigbt.

clusters: pod of 3 or 4 parts, spiny. Argentina. - Int. by Franceschi. Small tree.

$$
\text { BB. Primary pinne } 2 \text { pairs. }
$$

Guayaquilénsis, Steud. (Ac̀̀cia Guayaquilénsis, Desf.). Pinnæ 4, with 3-5 pairs of ovate-obtuse glaucous lfts., of which the lower ones are smaller: opposite stipular spines at the base of the leaf. Ecuador.

ввB. Primary pinnce 5 pairs.

Ceratonia, Linn. (Aedeia Ceratònia, Willd.). Pinnæ about 5 pairs; lfts, obovate: pods glabrous, somewhat articulate and spiny. Small, spiny tree from W. Indies.

```
bвbs. Primary pinne 6-8 pairs.
```

acanthocárpa, Poir. (Acàcia acanthocairpa, Willd. A. brachyacintha, Humb. \& Bonpl.). Pinnæ 12-14, with $6-15$ pairs of oblong-pubescent lfts.: stipular spines 2: fls. in heads on twin axillary peduncles: pod falcate, spiny. Mex.-Bush or small tree.
Dénhardti, Tenore. Ornamental shrub: branches glabrous or minutely hairy, striate, usually bent at each thorn: lvs, hairy, the pinnee 12-14, the ultimate Ifts. small ($1 / 8 \mathrm{in}$. long) and crowded and falcate-oblongacute: fls, in club-shaped, axillary clusters: thorns 1-3 in. long. S. Amer. - Cult. in S. Calif. Int. by Franceschi.
L. H. B.

MIMULUS (Latin, a litfle mimic, from the grinning fls.). Scrophulariàcea. This genus includes the Monkey Flower, M. luteus, and the Musk Plant, M. moschatus. Monkey Flowers are sorvething like snapdragous, though they do not have a closed throat. They are 2-lipped $\mathrm{fl}<$., with 2 upper and 3 lower lohes, which are all rounded and usually irregularly splashed and dotted with brown on a jellow ground. Though perennial, they are commonly treated as annuals and are considerably used for pot culture in winter, as well as for summer bloom outdoors. The Musk Plant is grown for its scented foliage and pale yellow fls. It is sometimes used in hanging baskets, but the foliage is so sticky that it gathers a great deal of dust.

Dimulus is a genus of about 40 species, mostly American: herbs, decumbent or erect, glalrous or pilose and clammy, rarely shrubby: 1vs. opposite, entire or toothed: fls. axillary, solitary or hecoming racemose by the reduetion of the upper Irs.: ealyx 5 -angled, with 5 short or long teeth; corolla tube cylindrical, sometimes swelled at the throat; stamens 4, didynamous: capsule oblong or linear, loculicidally debiscent.

The kinds described below are all perennial at least by underground parts, and most of them are natives of wet and shady places in northwestern America. Latest monograph by A. Gray in Syn. Flo. N. Amer., Vol. II, part 1, pp. 273, 442. They mostly grow $2-4 \mathrm{ft}$, high and bloom all summer. Mimulus Californica is advertised. Diplacus is generally referred to Mimulus. W. M.

The sight of Monkey Flowers al ways carries the writer back to boyhood days. A certain window on his way to sehool was brightened every spring by a fine display of Monkey Flowers and Musk. Though these two species were thus happily associated, it is doubtful whether the owner knew of their kinship. There is nothing difficult in the culture of Mimulus. Some of the finest plants have been self-sown on a rubbish heap. Abundance of water is essential. The seed has great vitality, and will germinate for many years in the place where once seeds have fallen. They are not hardy.
M. luteus, with its varieties and bybrids, particularly var. maculosus, is the best known. There are double ant hose-in-hose varieties, but the single"forms are the handsomest. It often self-sows in moist gardens. M. cardinalis, a handsome Califorvian perennial, is oceasionally hardy, but does best treated as an annual. M. glutinosa is a pretty shrubby species, with coppery fis., once a common greenhouse plant, but rare enough now to be almost a novelty.
T. D. Hatfield.
alatus, 10.
alpinus, 1.
aurantiacus, 6 cardinalis, 5 . Clevelandi, 7. cupreus. 2. gloriosus, 1. glutinosus, 6.

INDEX.
hybridus, 1. luteus, 1, 2. maculosus, 1. moschatus, 3. parvifforus, 8 quinquevulnerus. 1 ringens, 9.

rivularis, 1.

 Rozlii, 1 rosents. 4. tigridioides, 1. tigrinus, 1. variegatus, 1. Youngeana, 1.A. Color of fls, yellow, brown or brick-red. D. Plants herbaceous.
c. Foliage not sticky or clammy..

1. Iuteus 2. cupreus
cc. Foliage sticky aud elammy.
D. Stamens not thrust out of the corolla.
E. Lvs. pinnately reined.... 3. moschatus

EE. Lvs. parallel-veined
DD. Stamens thrust out of the
corolla 5. cardinalis
BB. Plants shrubby, at least at the base. C. Les. linear, minutely toothed or entire.
6. glutinosus
Cc. Lus, lanceolate, servate.
D. A'7s. yellore................... 7. Clevelandi DD. Fls. brick-red.................. 8. parviflorus
AA. Color of fls. violet, purple or lilac. B. Lrs. stalkless: pedicels longerthan fls.
9. ringens

BB, Les. stalked: pedicels shorter than the calyx..........................10. alatus

1. lùteus, Linn. Monkey Flower. Fig. 1404. Glabrous, the larger forms $2-4 \mathrm{ft}$. high: Ivs. parallel-veined,
sharply toothed, upper ones smaller: corolla $1-2 \mathrm{in}$. long. Alaska to Chile. B. M. 1501.- Monkey Flowers nearly always bave yellow throats with brown dots. The lobes are sometimes clear yellow. In var. rivularis, Lindl., only one lohe bas a large brown pateh. B.R. 12:1030. L.B.C. $16: 1575$. In var. Youngeana, Hook., every lobe has such a patch. B.M.3363. B.R. $20: 1674$. In the common strains these patches are more or less

2. Forms of Mimulus luteus ($\times 1 / \mathrm{a}$).
broken up and the fls. irregularly mottled and dotted. F. 1863:73 (as M. maculosus). V. 10:289 (as M. hybridus). A very distinct set of colors is represented by var. variegatus, Hook., the throat chiefly white, but with 2 yellow longitudinal lines dotted with brown on the middle lohe of the lower lip; all the lobes bright crim-son-purple, with a violet reverse. B.R. 21:1796. B.M. 3336. L.B.C. 19:1872. Modified as deseribed under var. Koungeana. R.H. 1851: 261. F. 1850:137. The pictures cited above bear various legends which are not here repeated. The varietal names given above do not appear in the trade, the leading current names being duplex (hose-in-hose), gloriosus, hybridus, hybridus tigrinus, hybridus tigrinus grandiflorus, quinquevelnerus maximus, tigridioides and tigrinus. Some of these names are advertised as varieties, but all of them usually appear as if they were species. For M. hybridus cupreus, Hort., see $\mathbf{M . ~ c u p r e u s . ~}^{\text {. }}$.

Var. alpizus, Gray (M. Rézzlii, Hort.). About 2-12 in. bigh. leafy to the tup: stem $1-4$-fld.: corolla $3 / 4-1 \frac{1}{4} \mathrm{in}$. long.
2. cùpreus, Regel (M. lùteus, var. cùprea, Hook.). A Chilean species, differing from M. luters in its tufted habit and the fls, yellow at first, finally becoming coppercolored, and the lobes possibly rounder and more nearly equal, the throat yellow, spotted brown. B. M. 5478 . (in. 24, p. 177. R.H. 1883, p. 284.
3. moschàtus, Dougl. Mesk Plant. Perennial, by creeping stems $1-3 \mathrm{ft}$. long: fls, pale yellow, lightly dotted and splashed with brown. B.C. to Calif. and Utah. B.R. 13:1118. - This and M. lutews have a broad throat. The fls, are normally about $3 / 4 \mathrm{in}$. across, but in F.M. 1877:248 (var. Harrisonii) they are $11 / 2$ in. across. Hardy, evergreen trailer for damp. shady spots. Fine for planting under cool greenhouse benches.
4. Léwisii, Pursh. A more slender plant than the next, greener, and merely pubescent: Irs minutely tootbed: fls, rose-red or paler, the lobes all spreading. Shady, moist ground, B. C. to Calif. and Utah. B.M. 3353 and B.R. 19:1591 (both as M. rosens).
5. cardinalis, Dougl. Villous: lvs, sharply toothed: fis, red and yellow, the upper lobes much grown together and reflexed, the whole limb remarkably oblique. Water-courses, Ore, and Calif. to Ariz. S.B.F.G. II. 358. B.M. 3560, R.H. 1857, p. 137. Mn. 8:161. F. 1813:193. - Hardy in Mass., with slight winter covering. Blooms first year from seed.
6. glutinosus, Wendl. Two to 6 ft . high, nearly glabrous but sticky: fls, orange or salmon to pale buff, rather obscurely 2 -lipped, the lobes toothed or notebed. Rocky banks; common from San Francisco south. B.M. $35 \pm$ (M. aurantiacus). A.G. 12:737. A.F. 12:1107.
7. Clèvelandi, T. S. Brandegee. Subshrubby, glandular pubescent: fls. golden yellow. G.F. 8:135.-('ult. only in S. Calif., where it is native. Not advertised.
8. parviflòrus (Diplacus parviflòrus, E. L. Greene). Rigidly shrubby, but tlowering at from 3 in. to 2 ft . Glabrous and glutinous: lrs. narrowly ovate, coarsely serrate: carolla 1 in . long, nearly tubular; lobes quadrate, very little spreading. Sauta Cruz Island, Calif.
9. ringens, Linn. Stem square: calyx teeth long and awl-shaped: fls. Violet. Wet places, Cautda to Iowa and Tex. B.M. 283. D. 251.

I0. alatus, Soland. Stem somewhat winged or angled: calyx teeth sbort and broad. Wet places, western New Eng. to Ill., south to Tex. L.B.C. $5: 110$. W. M.

MIMUSOPS (Greek, ape-like, but application not ohvious). Sapotacec. Tropieal trees, with milky juice, of both bemispheres, of sbout 30 species. Lvs. tbick and shining, simple and entire, alternate: fls, perfect, gamopetalous, the corolla of 6 or more lobes, but bearing twice as many appendages in the sinuses, the calyx of 6 or 8 sepals in two rows; stamens usually $6-8$, inserted on the base of the corolla; staminodia present: fr . a globose, I-6-seeded berry, sometimes edible. The Mimusops are fine evergreen trees, good for ornament in frostless countries, and yielding perfumery, rubber and otber produets. The fls, are small, white, and usually borne in axillary fascicles. Some of the species become more than 100 ft . bigh, and several of them yield bard and durable timber. A few species bare been somewhat advertised in S. Calif. and S. Fla., but their culture in this country is of small account. The Sapodillo is a closely allied tree.
A. Staminodia (or interior appendages) 2-toothed at the apex.
globosa, Garrtn. A large tree, yielding Balata rubber: liss, obovate or oblong, 2-6 in. long, retuse or apiculate, grayisb: ealyx of 6 parts, canescent; corolla segments as long as the appendages in the sinuses: fr. often 2 in. in diam., globose. West Iudies and Venezuela.

AA. Staminodia entire or only subserrate.

Siéberi, A. DC. Becoming 30 ft . tall: Ivs. elliptic to obovate, retuse, green, $2-4$ in. long, slenderpetioled: corolla segments 6 , oblong and exceeding the narrow appendages; fertile stamens 6 ; staminodia short-triangular, nearly entire: fr. nearly 1 in, in diam., brownisb or yellowish, said to be edible. Key West to Trinidad.

Eléngi, Linn. Tall tree (becoming 50 ft .) : Ivs, elliptic and short-acuminate $\left(3-3^{1 / 2}\right.$ in. long), rhomboid at the base, petiole $3 / 4$ in. long: corolla lobes about 6, narrow-lanceolate; fertile stamens 8; staminodia pilose, acute, entire or nearly so: fr. I in. or less, ovoid, 1- or 2 -seeded, yellow, edible. E. Ind.
dispar, N. E. Brown. Smaller tree than M. Elengi: Ivs. small, cuneate-oblanceolate, obtuse, rusty-tomentose when young, but become glabrousgreen, the petiole $1 / 3$ in. or less long, and the blade $3 / 4-2$ in. long: fls, 12-16, in umbels on the tips of the branches: sepals $6-8$, in two series: petals 18-24, in three series, linear-lanceolate, yellow : stamens $6-8$: staminodia lanceolate-acuminate, channelled: fr. size of an olive, yellow. Natal. - Int. by Francescbi.
L. H. B.

MINA lobata is Ipomaea versicolor. M. sanguinea is J. coccinea, var, hederifolia.

MINNESOTA, HORTICULTURAL STATUS OF. Fig. 1405. Ninnesota has an area of 84,287 square miles. The surface is gently undulating, except in the extreme nortbwestern portion, where, in the Red River valley, are large, fertile, level prairies. Its roughest agricultural land is found in the eastern portion, along the Mississippi river, and in many places the bluffs reach a beight of 400 feet above the ralley. About one-half the state, embracing the northeastern and eastern parts, was originally heavily timbered, and much timber still remains in the northeastern portion, while many scattered groves of timber will be found elsewbere, especially along the rivers.

There are many lakes, the number of which bas been estimated at 10,000 . They are especially numerous in the central aud nortbern portions, where they greatly modify the climate of lands in their vicinity. There are great variations of elimate between the extreme northern half, where the summers are very short, and the soutbern half, where killing frosts seldom occur before the Ist of October. The winters are generally pleasant, but occasionally severe, and 40° below zero is sometimes experienced.

The soil is generally rich and well adapted to a variety of crops, but it is very variable, and there are some very extended areas in the nortbern part where there is much sandy land that should never be used for agriculture. The undulating surface, variety of good soil and vegetation, and ahundance of lakes, afford many very picturesque and beautiful locations for successful borticulture.

Rainfall and Its Distribution. - The annual precipitation arerages about 25 incbes, and is well distributed during the growing season. The snowfall is ligbt, and what falls remains usually during the winter. The spring is generally open early, and the trausition from

1405. Minnesota.

Horticultural areas, shown ly degrees of shading
winter to spring is very rapid. The soil at St. Paul and southward can generally be worked by April 15, and frequently earlier. The sumuers and autumns are bright and sumuy, and regetation grows with great rapidity.

Currants, gooseberries, raspherries, blackberries, strawberries, juneberries, Americana plums, and the frost or ricer-bank grape are native fruits that are found wild in abundance in favorable locations throughout the state. Most of the well-known cultivated sorts of the
five species first named do well under cultivation, and large guantities are raised for home consumption and are protitably marketed. The Concord, Worden, Delaware, and grapes of similar character, are easily raised in the many good locations along the lake shores and the river bluffs, and this is an important industry notwithstanding the fact that they have to be covered in winter, which adds somewhat to the expense of culture. However, on account of the peculiar adaptability of the Delaware grape to some of our soils and to the climate, it is raised with profit in competition with the growers of the eastern states, though the Concord is not high enough in price by one cent a pound to permit of this to any great extent.

Apples are raised on a commercial scale in southern and eastern Minnesota, the high, rolling land in the southeastern portion being especially well adapted to their cultivation. The varieties of the eastern and central states generally prove a failure bere. The Duchess of Oldenburg is the standard of hardiness in apples, and can be grown successfully in good locations as far north as St. Panl, and in a small way 100 miles further north. The Talman Sweet is raised to some extent, but is liable to suffer in severe winters. The Minnesota seedling apple known as the Wealthy is generally the most profitable kind grown. (See Gideon, p. 642.) Much interest ceuters around the introduction of varieties of apples of unusual hardiness, and a few of the Russian sorts are proving very satisfactory. The hardiest variety of this origin so far found is the Hibernal, which represents a class of sour autumn apples that will thrive on suitable soil in almost any portion of the state. The Charlamoff is another very hardy early autumn apple of the same class. Such hybrid crabs as the Transcendent, Martha, Gideon No. 6 and Minnesota may be successfully grown in suitable locations and soil over most of the state.

The Americana class of plums is found growing wild all over the state, and the fruit is gathered in large quantities. The cultivated sorts of this class are easily grown everywhere. Wild plums can generally be obtained in abundance in autumn at about $\$ 1.50$ per bushel. There is no variety of any other class of plums that is appreciably cultivated, although in very favorable locations a few of the Japan and domestic sorts are generally grown.

Cherries may be successfully grown on a large scale in extreme southeastern Minnesota, and there are some commercial orchards; there but generally throughout the state the fruit buds are so injured in winter that the trees are unproductive, although they may make a very satisfactory tree growth.
Pears generally blight to death early, and there is no variety that is generally cultivated. Several of the Russian pears are as hardy as the Duchess apple, but they have died, so far as tried, from blight betore becoming very productive. Apricots are not sufficiently hardy.

The most common injury to trees is known as sunscald of the trunks, which often causes severe loss. It is easily avoided by shading the trunks. Blight seriously injures some varieties of apples. Winter protection of varions kinds is important and carefully attended to by our best horticulturists.

Vegetables of all the kinds grown in the northern states are very easily raised, and the display of these products in the large markets is very excellent. Cabbage, cauliflower, celery, peas, lettuce, potatoes, beans, corn, cucumbers, tomatoes, squash, watermelons, musk melons and eggplant are to he bad in ahnndance, and the markets are often glutted with them. Native muskmelons and tomatoes occasionally retail at 10 to 15 cts. per bushel. The canning of vegetables is becoming an important industry at several points. The climate seems to be especially favorable to vegetables, and there is much less trouble from diseases than in many more humid sections.
The demand for ornamental horticulture is consider able and rapidly increasing, giving investment to perhaps $\$ 200,000$ in the greenhouse business, and adds no small sum to the receipts of the several large and the many small nurseries in the state. The love for horticulture is also shown by the immense sums spent by the cities and small towns for public parks. St. Paul and

MIRABILIS

Minneapolis together have upwards of 3,000 acres in their public parks, which are well cared for, very beautiful, and visited by at least two million persons each year.

The Minnesota State Horticultural Society is a very strong and popular organization, having a membership list of about 800 , each of whom pay an annual memhership fee of \$1. It publishes, at the expense of the state, a monthly journal and an annual report. It also receises aid from the state to the amount of $\$ 1,500$ annually. It has recently offered $\$ 1,000$ for a seedling winter apple especially adapted to Minnesota conditions. Great interest is taken in the raising of seedling apples, and at some of the state fair meetings more than 300 separate varieties of Ninnesota origin have been shown.
The state experiment station is located near St. Paul and pays considerable attention to borticulture. It has

1406. Four-O'Clock-Mirabilis Jalapa.

Nearly nataral size.
four sub-experiment stations, located in various parts of the state. One of these is located at Owatonna, and is devoted almost exclusively to the raising of seedling apples. The Agricultural Department of the university had over five hundred in attendance in the school year of 1899-1900. Four hundred of these attended the agricultural high school, where, in addition to the other agricultural studies, much attention is paid to horticulture and forestry.

Samuel B. Green.
MINT. See Mentha.
MINT GERANIUM. Chrysanthemum Balsamita, var. tanacetoides.
MIRABILIS (Admirabilis, meaning Wonderful, strange: shortened by Linnæus to Mirabilis). Nyctaginàcea. About 10 species of the warmer parts of America,

4 of which are cultivated for their pretty or showy fls The fls. have no corolla, but the calyx is colored and tubular and exactly like a corolla in appearance. The fls. are surrounded by a leafy involucre, and sometimes (as in M. Jalapa) only one flower is borne in an involucre simulating a corolla in a 5 -cleft calyx. The stamens are 5 or 6 , as long as the perianth, their flaments united at the base. Style I, with a eapitate stigma. Fruit hardened, capsule-like and indehiscent. They are perennial herbs, although grown as annuals from seeds, with Ivs. petioled and opposite, and fls. solitary or panieulate and nearly or quite sessile in the involucres.
A. Involuere containing only one flower: plant glabrous or very uearly so.
Jalápa, Liun. Four-O'Clock. Marvel of Peru. Fig. 1406. Erect-bushy, quick-growing herb, germinating readily from the large, conical-oblong fruits, $2-3 \mathrm{ft}$. high, bearing profusely in late summer and fall longtuhed funnelform fls, in white and shades of red and yellow, and striped, opening in cloudy weather or late in the afternoon (whence the common name FourO'Clock), and closing in the morning. Lvs, ovate-lanceolate, short-petioled, acuminate, eutire: fls. in clusters amongst the lvs.; stamens not exserted. Tropical Amer. B M. 371.-Cultirated from early times, and always a favorite. In tropics it has tuberous roots, and these were once supposed to be the source of Jalap, whence the name Jalupa. There are dwarf and compact varieties; also forms with variegated foliage. The Four-O'Clock is an "old-fashioned flower." It is treated as a tender annual. Thrives in any garden soil. A useful plant for growing in a hedge (plants 1 ft . apart) at the rear of the flower-garden. It sometimes comes up in the spring from self-sown seeds. Even as far north as New York, it often produces tuberous roots large enough to be lifted and stored like dahlias.
AA. Involucre containing 1-3fls.: plant viscid-pubescent.
Californica, Gray. Plant 1-3 ft. tall, yellowish green, the many stems ascending from a somewhat woody base: Ivs, thick or almost fleshy, ovate-oblong to round-ovate, short-stalked: involueres 5 -eleft, short-peduncled, containing 1-3 rose-purple fls, a half-inch long, with stamens sometimes protruded. S. Calif, to U'tah and S.Little known in cultivation.
aAA. Involucre containing S or more long-tubed fls.
maltiflora, Gray. Stout and tall ($2-3 \mathrm{ft}$.$) , much-$ branched, somewhat pubescent or sometimes glabrous: lvs. rather thin, gray-green, lance-ovate to broad-ovate, more or less cordate, short-stalked, acute or acuminate: involucre $1 / 2 \mathrm{in}$. long, stalked: fls. 6 , with a tube ofteu 2 in. long, rose to purple, the style and the 5 stamens protruded. - Var. pubéscens, Wats. (M. Frabelii,Greene), is very pubescent throughout. The M. multiflora of B.M. 6266 is probably this variety. The species ranges from Colo. to S. Calif. and S. Little known in cult.
longiflòra, Linn. Plant $2-3 \mathrm{ft}$., glandular-pubescent above: Ivs. cordate and usually acuminate, short-stalked, puhescent: fls. pubescent, with a very narrow tube 5-6 in. long, and a small, flaring white, rose or violet limb, very fragrant at evening. Mexico.-An old garden plant, but less frequent than M. Jalapa. Easily grown from seeds. It has been hybridized with M. Jalapa.
L. H. B.

MISCÁNTHUS (Greek, mistios, a stem, and anthos, a flower). Graminea. Eulalia. Comprises about 6 species in southern and eastern Asia, several of which are cultivated for ornament. Tall perennial grasses with ample terminal fan-shaped panicles, allied to the sugar cane and Erianthus. Includes the Eulalias of the trade but not Eulalia, Kunth, which is referred to Pollinia, Trin., by Hackel. Spikelets 1 -fld., in pairs at the joints of the rachis, one nearly sessile, the other pedicellate, usually awned. Glumes 4. A cluster of silky hairs arises from the base of the spikelets, which gives the panicle its beautiful feathery appearance. Increased by seed or division of roots.

Although many progressive nurserymen now advertise these favorite grasses as Miscanthus, the name

Eulalia will probably remain in the English language as a thoroughly naturalized word, like Geranium and Chrysanthemum. Eulalias probably rank among the first half

1407. Miscanthus Sinensis.

Which, under the name of Eulalia, is one of the most popular of ornamental grasses.
dozen most popular grasses cultivated for ormament. They are remarkably hardy and are unirersal favorites for bedding. One of the commonest and best designs for a hed of ornamental grasses employs. Arundo Donax as a tall center piece, surrounded by Eulalias.
sacchárifer, Benth. (sometimes written saccharifldrus). Distinguished by its nearly or quite awnless spikelets. China. Gt. 1862:357. - Procurable of dealers in Japanese plants.

Nepalénsis, Hack. Himalaya Fairy Grass. Spikelets one-fourth as long as the brown juvolucral hairs. Lys. smooth on the margin. Occasionally cultivated. Himalayas.

Sinénsis, Anders. (Eulalia Japónica, Trin.). Figs. 1407, 1408. Spikelets about equaling the white or subviolet involucral hairs. Culm 4-9 ft .: 1vs. $2-3 \mathrm{ft}$, margins seabrous: pavicle 6-12 in., formed late in the season. Established plants form clumps as much as 18 ft . in circumference. The forms in cultivation are mostly the following varieties: Var. variegatus, with leaves striped; zebrinus, leaves banded. These two varieties are not quite so hardy as the type, and are usually propagated by division, as the seeds are not so sure to come true. Ging. 4:375; 6:107. B.M. 7304. Var. gracillimus (Eulalia gracillima univittìta, E.Japónica gracillima, etc.). Leaves much narrower thau the type. Gn. 50, p. 108. Gng. 5:273. R.B. 21, p. 179 .
A. S. Hitchcock.

MISSISSIPPI, HORTICUL-

1408. Variegation in Miscanthus Sinensis.
At the left, variegatus; middle, zebrinus; right, gracillimus.

TURE IN. Fig. 1409. Mis-

 sissippi extends about 325 miles from north to south and 175 miles from east to west. The surface is mostly undulating, with few abrupt hills, and the highest part of the state, the northeastern section, is less than 1,000 feet above the sea level. It has an anuual rainfall of about
MISSISSIPPI

45 inches in the northern part, the amount increasing to about 60 inches in the extreme south. The winter temperature is rarely as low as zero in any portion of the state, while the extreme summer heat rarely reaches 100° in the northern part; while near the Gulf coast 95° is the usual limit. The first frosts usually occur in November, and spring frosts are rare after the middle of March. The soil is extremely variable. The western portion of the state, known as the Yazoo Delta, has one of the tichest allurial soils in the world, and one well suited

for the growing of vegetables. The north-central part of the state consists largely of yellow clay hills, not very fertile and liable to serious injury from erosion, but with very fertile valleys between them, while the northeasteru section has a strong lime soil which is very productive. Nearly all of the southern half of the state has a sandy loam soil underlaid with clay at a depth of a few inches, making those lands among the most desirable for the cultivation of either fruits or vegetables.
Although both fruits and vegetables are grown for export in all parts of the state, there are three districts in which horticultural work is specially prominent. These are (Fig. 1409):

1. The northeastern district, covering the territory along the Mobile and Ohio railroad from Booneville south to West Point.
2. The central district, covering the territory along the Illinois Central railroad from Durant south to Brookhaven.
3. The Gulf coast district, covering the territory along the Louisville and Nashville railroad from Bay St. Louis east to Orange Grove.
Peaches are grown more extensively than any other fruit, and are shipped to northern markets from nearly or quite every county in the state. The long growing season enables the trees to come into bearing rapidly. and a small crop of fruit is usually gathered the second year from planting, while the trees often continue fruitful from 15 to 20 years. Although the trees themselves are never injured by cold. the fruit erop is occasionally cut short by spring frosts following warm winter weather, which sometimes brings the trees into bloom before the end of January. The early fruit is ready for market
about the last of May, and shipments continue from that time until August, or later. Elberta, Mountain Rose, Georgia Belle, Lilly Miller and Chinese Cling are among the more popular varieties.
Pears grow well in all parts of the state, and, until about 1895 , were planted more widely than any other fruit trees, but since that time the blight has been so widespread and so severe that very few new orebards have been planted. Fully nine-tenths of the trees are either Le Conte or Kieffer, the latter being the more resistant to blight.
Apple trees make a fair growth and bear well for some years, but become less vigorous with age. and are shorter lived than in more northern latitudes. Nearly all varieties ripen during the summer and fall, and very few, even of the "long keepers," can be preserved through, the winter. The fruit always commands a high price in the local markets, which makes the trees profitable, even though they last but a few years. Considerable fruit, mostly Early Harvest and Red June, is shipped from the northeastern district, but no other part of the state produces enough for a home supply.

Plum trees are of uncertain value. The Wild Goose and the Japanese varieties are the more common sorts, and while some trees and some orchards may grow well and bear heavily for many years, the majority succumb after producing two or three crops. Cherries are rarely successful. Figs are grown quite commonly for home use in the central part of the state, and in the Gulf coast district are an important market crop. The fig does not succeed under orchard conditions, but a few trees grown near the house do well, aud many of the older trees produce 1,000 pounds or more of fruit annually, aud this finds a ready market at the canning factories. The Celeste is the common variety, and the demand for the fruit at 4 cents per pound is far in excess of the supply. Oranges are grown along the Gulf coast, but even there the winters are occasionally so cold as to make them unprofitable.
Among the small fruits strawberries are the most important, being grown by thousands of acres. They are grown more extensively in the central district than else where, though there is a considerable acreage in the northeastern district also. In the Gulf coast district the plants grow well and bear abundantly, but the fruit grown there is usually softer and less desirable for shipping than that grown in drier localities. Bubach, Crescent, Gandy, Warfield and Michel are the favorite varieties. Shipments begin about the first of April, and the bulk of the crop is gathered during the next six weeks, though occasional shipments are made during every month of the year.
Grapes grow and bear as well as it is possible for them to do in any part of the country. The long season for growth develops very strong vines which are never injured by the cold of winter, and the latest ripening sorts have ample time for maturing. The early varieties ripen about June 20 in the Gulf coast district, and about July 10 in the northeastern district, and nearly all the crop is gathered by August 1. This early ripening of the fruit enables the grower to secure high prices for his early shipments, but a crop which matures in the heat of midsummer cannot be kept profitably, even in cold storage, but must be marketed at once, regardless of price. Champion, Ives, Delaware, Niagara, Perkins and Herbemont are among the more popular varieties. The Scuppernong (1'itis rotundifolia) is a valuable native species which is grown in all parts of the state for home use and for the manufacture of wine, but is not a shipping variety.
Blackherries and dewherries grow spontaneously in all parts of the state and have proved quite profitable in cultivation, the Lucretia, Dallas and other hybrids being the favarite varieties. Neither currants nor gooseberries do well in any part of the state, as they make a new growth and come into bloom soon after the fall rains begin, and soon become so weakened as to be worthless. Raspberries do well when planted on soils containiug sufficient moisture, but are seldom grown for market excepting in the northeastern district. Turner is the favorite variety, and the blackcaps are rarely seen.
The growing of early vegetables for northern market is followed more extensively and is more generally prof-
itable than is the growing of fruits. Field plantings of radishes, peas and other hardy sorts begin in January. Shipments begin by the first of March and continue until the melon crop is harvested in July. The first erop of Irish potatoes, mostly Early Ohio and Triumph, is ready for market in Nay, and in August a second crop is often planted which matures in November, when it finds a ready home market, or is left in the ground until early spring, when it is placed on the northern markets as "new potatoes just received from Bermuda," and brings a high price. This second crop, however, is uncertain, as it is difficult to secure a prompt growth if seed from the early crop is used, and it is often impossible to secure northern seed so late in the season. Sweet potatoes are grown in all parts of the state, and are shipped from July until Mareh. Asparagus is a profitable early crop which is grown quite largely in the central district, and seems wholly free from rust or other diseases. Rhubarb is unable to endure the heat of the long summer, and the roots soon decay. Beans, beets, cabbages, peas, radishes and turnips are all grown so largely as to be shipped in car-load lots from a number of towns in the northeastern and central districts. The crop grown more widely than any other is the tomato, which is grown in all parts of the state, and which is shipped by the car-load to all parts of the country from Boston to St. Paul, Omaha and Denver. Many single growers ship by car-lots, and in June from 10 to 20 cars are shipped daily from Crystal Springs, with nearly as many from Madison Station and Booneville, besides smaller shipments from many other points.

From the central district, shipments are made about as follows:

> Beans, May 10 to June 10. Beets, April 20 to June 15. Cabbage, May 1 to June 5. Carrots, April 20 to June 10. Melons (Gem), June 20 to July 20. Peaches, June 1 to August 1. Peas, March 25 to April 25. Potatoes, Irish, May 10 to June 15. Radishes, March 1 to April 15. Squash, Summer, May 15 to June 15. Strawherries, April 1 to May 10. Turuips, March 20 to May 15. Tomatoes, May 25 to July 4. Watermelons, July 1 to August 1.

There are a number of canneries in the state, the most successful being those at Booneville and Biloxi, but ordinarily growers find it more profitable to ship products to northern markets than to sell at prices which canners can afford.

No statistics are available on which definite statements of the total shipments from the state can be based. Crystal Springs, in the central district, probably ships more than any other single point. The shipments of fruits and vegetables from that place amounted to 638 cars in 1898 , while in the very unfavorable season of 1899 the number fell to about 400 . Partial reports from other points indicate that shipments, in car-lots, amount to not less than 5,000 cars annually, in addition to nearly as much more which is shipped in small lots. The northeastern and central districts ship principally to northern markets, while the Gulf coast district finds its markets in Mobile, New Orleans, and on the many foreign vessels loading in Ship Island harhor. Nearly the entire business has been developed in the last 15 years, and each succeeding year shows a marked increase in its volume. New localities are being opened, the work is becoming better organized, and, with the increase of the business the markets are becoming more steady, prices more uniform, and the profits more satisfactory than in the early days. The business has by no means reached its full development, and will not do so for years to come.
S. M. Tracy.

MISSOURI HORTICULTURE. Fig. 1410. Its central position gives Missouri a medium climate, favorable to the growth of a variety of horticultural products. The native flora embraces both northern and southern plants.

The wild American crab and the Juneherry, capable of enduring the rigors of a northern winter, flourish here in the same forests with the more southern persimmon and papaw. The northern grapes of the Labrusca type, like Concord, are among the standard varieties, while on the other hand, the more tender Vitis rotundifolia, of which the southern Scuppernong is the most familiar cultivated sort, grows wild in the rich river bottoms. While the berries and small fruits common to the northern states endure well the warmer climate of Missouri, the oriental persimmon and English walnut are hardy as far north as the central part of the state.

Missouri's central position is also favorable to the marketing of her fruit. Berries and peaches are sent to nearly all the principal markets east of the \mathbf{R} reky mountains from Boston and Baltimore on the east to Omaha, Denver and Pueblo on the west, and from St. Paul and Detroit on the north to Mobile, New Orleans and Galveston on the south. The grain-raising, mining and grazing states to the west and northwest, where but little fruit is produced, furnish a growing market for Missouri fruit. The Mississippi and Missouri rivers, touching the entire length and breadth of the state, give cheap freight rates north, sonth and northwest, while direet railroad connection with the Gulf ports affords cheap shipments of apples to European markets.

The following figures give the average monthly rainfall in inches for the past six years, recorded at Columbia by the U.S. Weather Burean:

1410. Missouri.

The diagonal shading in the southern half designates the Ozark nplift. The double-line shading along the Mississippi and Missouri rivers shows the loess formation. The short-line cross-shading designates the parts where fruit-growing is much developed.

Jan., 1.89; Feb., 2.57; Mareh, 2.97; April, 4.52; May, 5.87; June, 4.56; July, 4.85; Aug., 2.81; Sept., 3.60; Oct., 1.40; Nov., 2.87; Dec., 2.02.

While these figures show that the rainfall is ample, and well distrihuted throughout the year, the records also show that the percentage of sunny days in this immediate section is high. During August, September and Octoher especially, when most of our fruit is maturing, the average amount of bright sunlight is considerably higher than that of the majority of our orchard states. No doubt the intense sunlight and proximity to the airy prairies are important factors in producing the rich color and high flavor of Missouri fruit, and may also account, in part, at least, for its comparative freedom from many of the fungous diseases which are known to thrive hest in a moist, cloudy atmosphere.

The topography and soil of the state are both favorable to fruit-growing. The undulating areas, intersected by the Mississippi and Missouri rivers and their tributaries, are amply provided with both soil and atmos-

MITCHELLA

pheric drainage. The soil varies from the light, deep flinty soil of the Ozarks, and the drift of the "loess" formation (see Iowa), to the rich soil of the prairie openings and still heavier soils of the river bottoms, and the swamp lands to the southeast, affording choice for different purposes. The immense crops of corn and garden vegetables, sometimes grown in young orebards, and the clover and cow peas, grown to prevent washing of the soil in steep hillside orchards, prove (perhaps too frequently), that eveu the so-called "fruit lands" are capable of yielding a great variety of products. In

1411. Ben Davis $(\times 1 / 3)$.

One of the "big red apples " of the Ozarks.
fact, one great reason why Missouri has not earlier taken front rank as a fruit state is because natural conditions for general agriculture are too favorable. It requires too great an effort to exclude the encroaching blue grass and live stock from orchard areas where thrifty young trees fruit themselves to death in the unequal struggle for existence and the reproduction of their kind.
The last report of the Missouri State Horticultural Society (1897) contains Secretary Goodman's estimate of the quantity and value of fruit produced in the state that year, as follows: Apples-north Missouri, 2,500,000 barrels; central Missouri, 3,500,000; south Missouri, $3,000,000$; total value of apples, $\$ 12,000,000$. Peaches -north Missouri, 500,000 bushels; central Missouri, $1,000,000$; south Missouri,2,000,000; total value of pearhes, $\$ 3,500,000$. Total value of berries, $\$ 2,500,000$. Total value of pears, cherries, plums and grapes, $\$ 1.500,000$. These, with nuts and miscellaneous fruits, reach a total value of $\$ 20,000,000$ for the Missouri fruit crop for 1897. This report is based upon figures obtained from the various railroads and shippers, and may be relied upon as being approximately correct. Considering the fact that a few years ago Missouri could hardly lay claim to being a great fruit-producing state, the above figures indicate very rapid growth of the industry in recent years. In 1898 more young trees were planted than in any previous year, showing an accelerating tendency toward this line of business. A number of orchards in the state comprise over one thousand acres each. The size and number of these large orchards is annually being increased.
It will be sten that the apple is the leading fruit, exceeding in value all other kinds combined. Careful study shows that other things being equal, the best prices prevail in those parts of the state where the most apples are grown, and where, consequently, there is the sharpest competition among buyers. The peach ranks second in importance, and the berries third. The city of Sarcoxie shipped 239 car-loads of strawberries in 1897,
and now 1,500 acres of strawberries are growing in its immediate vicinity. Liberal is one of the largest blackberry centers. Hermann and several points in the Ozarks manufacture large quantities of grape wine.

Aside from the work of the Agricultural College and Experiment Station in the promulgation of horticultural work, the Missouri Botauical Garden at St. Louis, being of international influence and importance, cannot fail, with its splendid equipment and able management, to lend an especially strengthening influence to the horticulture of the state in which it is located. The Missouri State Horticultural Society, with nearly one hundred local societies as auxiliaries, under the competent leadership of its officers and organized effort of its members, is doing much toward the development of horticulture
While horticulture is already one of the leading interests of Missouri, the possibilities of the state in that direction have not yet even been approached. Only a small portion of the soil naturally well adapted to fruit culture has ever been cultivated, and there are many phases of horticulture that have not been developed. In recent years, however, steps in advance are rapidly being taken. The best growers no longer cling to ancient traditions and obsolete practices, but are evolving methods adapted to the new conditions of the West. Capitalists of extensive business training are invest. ing in orchards, and their business ability, combined with the skill of the practical grower, is resulting in better marketing and general management of the industry. New varietics, better adapted to local conditions, are being originated. Our native fruits and nuts are receiving attention, and improved varieties of these are already the result. The working up of surplus and inferior fruit by cauning, evaporating, cider and winemaking and distilling is increasing the value of the fruit product, and the canning of tomatoes, peas and other garden regetables is quite extensively carried on in some sections. In fact, the horticulture of the state is in a rapidly growing condition, and bids fair to reach very important proportions.
J. C. Whitten.

MISTLETOE of the Old World is I'iscum album; of America, Phoradendron flavescens.

MITCHELLA (Dr. John Mitchell, of Virginia, one of the first American botanists; correspondent of Linnæus). Rubiàcea. This includes the Partridge-berry, one of the prettiest and hardiest of native perennial trailers. It has small, shining, evergreen, roundish lvs., sometimes marked with white lines, and bright scarlet berries, often borne in pairs, which remain all winter and make a charming effect when peeping through the snow. This plant can be easily collected, and is also procurable from many dealers in hardy plants. It thrives under evergreen trees, forming dense mats. The fls., which are borne in spring, are small, white, with pinkish throats, and are fragrant. The berries are edible, but nearly tasteless, Fls. twin, the ovaries united into one; caly $\times 4$-toothed; corolla funnel-shaped, 4-lobed; lobes spreading, densely bearded inside, val-
vate in the bud: fr. a 2-eyed berry.
1412. Partridge-berry-Mitchella repens $\left(\times^{1 / 4}\right)$.
rèpens, Linn. Partridge-berry. Squatw-berry, Fig. 1412. Lvs. opposite, round-ovate, petioled, with minute stipules: fls. in pairs, on the apex of a peduncle. Nova Scotia to Minn., south to Fla, and Tex. G. W. F. 42. D. 81. Mn. 3:49. L. B. C. 10:979. - Attractive in halfshaded spots in the wild garden and rockeries. Propagated by division of roots.
M. ováta, DC., from Ecuador, is the only other species. It has solitary, sessile fls., and ovate, acutish lvs. Not cult.
M. B. Coclston.

MITELLA (diminutive of mitra, a cap; applied to the form of the young pod). Saxifragacec. Mitrewort. Bishof's-cap. Six or 7 species of low, slender perennials, with somewhat creeping rootstocks and racemes of small and greenish or white tls. Closely related to Tiarella, but the petals of the latter are entire, while in Mitella they are beautifully pinnatifid. Lvs. round, heart-shaped, alternate, except in oue species, on rootstock or runners, with slender petioles; those on flowering stems opposite, if anycalyx short, 5 -lobed, the lobes valvate in the bud, spreading; petals 5 , inserted on throat of calyx, very slender; stamens 10 or 5 , very short: fr. soon widely dehiscent. Natives of N . Amer., 2 species in E. Asia. -Offered by some dealers in native plants.
A. Scapes usually leafless. B. Fls, numerous.
trifida, Graham. Lvs. round-reniform or cordate, crenately tootbed and sometimes incised or lohed, 1-3 in. across: scape 9-12 in. long: fls, somewhat scattered on one side of spike; petals 3-5-parted, small; stamens 5 , opposite the calyx lobes. N. Calif. to Brit. Col. and Rocky Mits.

BB. Fls. few (about 5).
nùda, Linn. Fig. 1413. Lvs. rounded or kid-ney-shaped, deeply and doubly crenate: raceme $4-6 \mathrm{in}$. long. Does well in moist shady situations. May-July. Westward to Brit. Col. A. G. 13:518.

AA. Scapes bearing leaves.
B. Lirs. on scape alternate.
cauléscens, Nutt. Raceme loose: stamens alternate with the pinnatifid petals. Brit, Col, to Ore.
BB. Le's. on scape opposite.
diphylla, Linn. Lvs. acutely heart-shaped, somewhat 3-5-lobed, toothed: raceme 6-8 in. long. May. Eastern U. S. V. 12:189.-
1413. Mitella nuda. Nearly natural size.

A good plant for the rockery.
M. B. Coulston.

MITREWORT. Mitella. False Mitrewort is Tiarella.
MITRIOSTIGMA (Greek, mitre-slaped stigma; from the conspicuous stigma, which is club-shaped, the 2-cut summit suggesting a cap). Rubidcea. This includes the charming evergreen tender shrub known to the trade as Gardenia citriodora. It makes a low or mediumsized bush of compact and branching habit and bears a great profusion of fls. which resemble those of the orange in odor, size, color and general appearance. The fls. are white, salver-shaped, 5 -lobed, tipped with pink in the bud, and borne in dense axillary clusters. This delightful plant is a favorite in the South, together with the Cape Jessamine, but is little known in northern conservatories. The genus contains 2 specles. For distinctions from Gardenia and Randia, see Gardenia.
axillàre, Hochst. (Gardènia citriodəra, Hook.). Liss. opposite, petiolate, elliptic-lanceolate, subacuminate,
glabrous; stipules awl-shaped from a broad base: calyx not ribbed, lobes lanceolate, acuminate, equal: corolla tube twice as long as the calyx, lobes obovate, obtuse. S. Afr. B.M. 4987. R.H. 1859, p. 175; 1886:348 (excellent!). F.S. 12:1254.
W. M.

M'MAHON. See p. 963.
MOCCASIN FLOWER. North American name for species of Cypripedium.

MOCK ORANGE. See Philadelphus.

MOHRIA (from Daniel Mohr, a German botanist; died 1808). Schizcadcea. A genus of South African ferns, baving the habit of Cheilanthes, but the sporangia of the Schizæасеæ. A single species, M. caffrorum, is rare in cultivation in America. L. M. Underwood.
MCLE PLANT. Euphorbia Lathyris (see Fig. 800, p. 564).

MOLINIA (J. Molina, a writer upon Chilean plants). Graminece. A genus of perennial grasses allied to Eragrostis, containing a single species. Native of central Europe and temperate Asia, and sparingly introduced in the United States. Pauicle contracted: spikelets 2-4fld., more or less purplish: glumes somewhat unequal: fl.-glume 3-nerved, rouuded on back, pointed but awnless.
cærùlea, Moench (A ira carùlea, Linn.). Culms tufted, $1-3 \mathrm{ft}$. high: 1vs. rather rigid, slender pointed. The usual form in cult. is var. variegata, with striped lvs., used for bedding.
A. S. Нitchсоск.

MOLUCCA BALM. Moluccella lavis.

MOLUCCELLA (diminutive made from Molucea). Also written Mollucella. Lubiàta. This includes the Shell Flower, a quaint old annual plant, that self-sows

1414. Moluccella levis ($\times 1 / 3$).
in old-fashioned gardens, but is now rarely advertised for sale. Its chief feature is its great cup-shaped calyx an inch long, which is much larger than the inconspicuous corolla (See Fig. 1414.) Later four white seeds or

MONARDA

nutlets appear in the cup or shell-like calyx, and add to the interest. The corollas are gaping, the upper lip forming a sort of bood, which may be notched or not, the lower lip 3-cut, the side lobes being oblong and somewhat erect, the middle one larger, inversely heartshaped and deeply notched. Of 25 described names only 2 now remain in this genus as good species. Bentham \& Hooker place this genus near Lamium. Other genera of garden value in which the upper lip of the corolla is concave or vaulted and often villous within are Stachys, Leonurus and Phlomis. From these Moluccella is easily distinguished by its calyx. These plants are hardy annuals, flowering in midsummer. The Hs, are white, tipped pink, scarcely, if at all, thrust out of the calyx, and borne in whorls of 6-10.

A. Catyx not prickly.

lævis, Linn. Shell Flower. Molucca Balm. Fig. 1414. Height $2-3$ ft.: lvs, roundish, with coarse round teeth: calyx obscurely 5 -angled. W. Asia. B.M. 1852. -Fls. odorous.

```
        AA. Calyx beset with long prickles.
```

spinòsa, Linn. Height 6-8 ft.: 1vs. ovate, deeply and sharply cut: calyx with 1 long spine above and 7 others helow. S. Eu., Syria. B.R. 15:1244 (as Chasmonia in-cis(t).-Annual or biennial, with brownish red square stems, bristling calyx and gaping corolla. Said to bave been cult. in Eng. since 1596.
W. M.

M0M0RDICA (mordeo, to bite, since the seeds appear to have heen bitten). Cucurbitacec. There are 25 species of Momordica, chiefly African, according to Cogniaux (DC. Monogr. Phaner. 3). They are annual or perennial tendril-climbing herbs of tropical countries, some of which are cult. for ornament and also for the edible fruits. The fls. are monocious or diocious, the staminate solitary or panicled, the pistillate solitary. Corolla and calyx similar in sterile and fertile fls. : corolla segments 5 , often extending nearly to the base, making a rotate or broadly campanulate flower; stamens usually 3 , the short filaments free, one of the anthers 1 -loculed and the others 2 -loculed: style single and long, with 3 stigmas: fr. oblong or nearly spherical, small, often rough, usually many-seeded, sometimes splitting into 3 valves, but usually indehiscent: seeds usually flattened, often oddly marked or sculptured. Tendrils sim-ple-in this distinguished from Luffa, Momordicas are known to American gardens as ornamental vines, but the fruits of \mathbf{M}. Charantia are caten by the American Chinese. They are tender annuals. They thrive where cucumbers and gourds will. M. Elaterium of the catalogues is Ecballium, which see.

A. Bract about midxay on the peduncle, entire: all peduncles bracted.

Charántia, Linn. Balsam Pear, Running 10 ft . or more, the stem slightly pubescent and furrowed: lvs. roundish, dull green, pubescent beneath (at least on the ribs), 5-7 lobes with rounded sinuses, the lobes sharptoothed and notched: Hs. yellow, 1 in . across, both the sterile and fertile solitary: fr. yellowish, oblong, pointed, furrowed lengthwise and tuberculate, 6 or 7 in . long, at maturity splitting into 3 divisions and disclosing the bright scarlet arils of tbe white or brown carved seeds. Trop. Asia and Africa, and naturalized in W. Indies. B. M. 2455 . A. G. $13: 525$. R. H. 1869, pp. 630-1. - The Chinese abont the American cities grow this plant under the name of La-kwa, for the edible pulpy arils surrounding the seeds, and also for the edible fruit itself (which is prepared, usually by hoiling, before it is ripe). The rind is sometimes dried and used in medicinal preparations (see Bailey, Bull. 67, Cornell Exp. Sta., with illustr.). The odd seeds cause it to be called the "Art Pumpkin" by some.
AA. Bract of sterile perluncle near the top, toothed: peduncle of fertile flower bracted at base or not at all.
Balsámina, Linn. Balsam Apple. Slenderer and more graceful, bright green throughout, glabrous, the foliage smaller and neater: lvs. cordate-orbicular in outline, 3 in. or less across, 3-5-lobed, with rounded sinuses, the lobes and the few notches or teeth acute:
fls, solitary, nearly or quite 1 in. across, yellow, often with blackish center: fr. orange, $2-3 \mathrm{in}$. long, ovoid and more or less narrowed each way, smonth or tuberculate: seeds compressed, nearly smooth. Widely distributed in Africa and Asia, and naturalized in the W. Indies. G.C. 1848:271. R.H. 1857, p. 182.-A neat vine, growing $4-6 \mathrm{ft}$.
AAA. Bract near the top of the sterile peduncle, entire.
involucràta, E. Meyer. Much like M. Balsamina, but teeth of lvs. blunt, with a sbort muero, fis. larger, bract much larger: Hs, white or cream-white, often dotted with black: fr. sulfur-yellow, chanzing to scarlet, bursting, 2 in. long. S. Afr. R.H. 1865:350 (as M. Batsamina, var, teueantha). B.M. 6932.-A very slender and graceful climber, with the peduncle bract against the calyx, like an involucre. Int. to Amer. trade about 1890.
M. Cochinchinensis, Spreng. (M. mixta, Roxbg.), is a large species with 3 -lobed lvs., pale yellow, purple-eyed fls., 4 in. across, and an oblong, bright red fr. 4-7 in. long. Farther 1ndia. B.M. 5145. F.S. 14:1478. G.C. IIl. 16:531. G.M. 37:777.
L. H. B.

MONÁRDA (after Nicolas Monardes, a Spaniard, who published in 1571 a book containing the earliest picture of an American plant. See Fig. 1077). Labiàto. HorseMint. This includes the Oswego Tea (M. didyma), one of the most brilliant of our native wild flowers, being surpassed in the intensity of its red only by the cardinal flower. It is a rather coarse herb, with large heads of gaping, wide-moutbed fls., which have none of the refinement of our cardinal flower. For mass effects,

$$
\text { 14ts. Monarda didyma }\left(\times^{1 / 3}\right) \text {. }
$$

however, these plants are very striking. They grow wild along the banks of streams, lighting up the dark corners of the woods. This suggests their proper place in landscape gardening. They should be grown in masses, in wild spots against a dark background. However, they can, if desired, be grown in an ordinary sunny border without more moisture than usual. As a bedding plant they would be inferior to Salvia coccinen, the flowers being shorter-lived. The white-and rose-colored varieties are less desirable. M. fistulosa is the same type of plant, and is procurable in colors ranging from white, flesh color and lilac, through rose and crimson to deep purple, but not scarlet. This species is very variable iu height. The lighter colored varieties are usually less robust.
Monardas are easy of culture, thriving in any good soil. They spread quickly, and therefore need frequent separation, which operation is best done in the spring, as plants disturbed in the fall will often winter-kill.
Monarda is a genus of 9 species of aromatic American herbs: lvs. usually dentate: fls. often borne in dense beads, surrounded by an involucre of colored bracts; calyx tubular, 15 -nerved, with 5 nearly equal teeth; co-
rolla narrow or dilated at the throat, 2-lipped, middle lobe of the lower lip larger than the lateral; perfect stamens 2. There are 2 sections of the genus, the species here described belonging to Eumonarda, in which the heads are generally solitary and terminal, the stamens and style conspicuously thrust out, and the root perennial. The following grow $11 / 2-21 / 2 \mathrm{ft}$. high. One of the common Horse-Mints is M. punctata (A.G. 14:15), but it is not in the trade.
A. Calyx slightly hairy at the throat.
didyma, Linn. (M. Kalmiàna, Pursh). Oswego Tea. Bee-Bala. Fragrant Bala. Fig. 1415. Stem acutely 4 -angled: Irs. thin, ovate-lanceolate, acuminate. B.M. 145 (erroneously as M. fistulosa, var.), and 546 . Vars. alha and ròsea, Hort., are offered, but the latter should be compared with the next species. In 1893 John Sanl advertised M. Kalmiana as if horticulturally distinct, calling it the finest of Monardas.-Suited to moister positions than the others.

> AA. Calyx densely bearded at the throat. B. Less petioled.
fistuldsa, Linn. Wild Bergamot. Sometimes called Bergamot in nursery catalogues, but the Bergamot of the Old World is Mentha odorata. Stem mostly obtusely angled: lvs. firmer: fis. purple. July, later than M. didyma. Var. rübra, Gray. Fls. crimson or rosy red. Var. mèdia, Gray (var. purpùrea, Hort.). Fls. deep purple. S.B.F.G. 98 L.B.C. 14:1396 (as MG. purpurea). par. mólis, Benth. (M. móllis, Linn.). Fls. flesh-color to lilac. B.M. 2958 (as M. menthefolia). - Will grow in dry positions.

bв. Les, nearly sessile, at least below.

Bradburiàna, Beck. Fls, light purple, spotted darker on the middle lobe of the lower lip, which is mach larger than the lateral ones. June. III. to Tenn. and Kans. B.M. 3310 (erroneously as M. fisfutosa).-A dryish position suits it best.
F. W. Barclay and W. M.

MONARDELLA (diminutive of Monarda, having its aspect, inflorescence and calyx). Labiàte. Annual or perennial sweet-smelling herbs, natives of California. Lvs. entire or ohscurely toothed: fls, white, rose-color or purple, compacted in terminal heads with an involucre : calyx tubular, narrow or long, 10-13-nerved, 5 toothed; the teeth short, straight and nearly equal; the throat naked within; stamens 4, exserted. The following have been adrertised, and can be secured through western collectors.
A. F'ls. large, comparatively fex', loosely glomerate.
macrantha, Gray. Perennial, tufted, about 9 in. high : bracts of the $10-20-\mathrm{fld}$. head sometimes whitish or purplish tinged: corolla about $1 \frac{1}{2} \mathrm{in}$. long, glabrous, orangered, its tube fully twice the length of the calyx; the lobes lanceolate.

Var. nàna, Gray (M. nàna, Gray). Pubescent: bracts whitish or rose-color: fls. smaller; corolla not twice the length of calyx, white or tinged with rose-color, the slender tube pubescent.

AA. Fls.smaller, more numerous, densely capitate. B. Plants perennial.
c. Veins of lvs. numerous and prominent.
villosa, Benth. Bracts ovate, leafy, piunately veined. cc. Veins of les. not prominent.
odoratissima, Benth. Bracts thin, membranous, whitish or pinkish, inclined to parallel renation.

be, Plants annual.

lanceoladta, Gray. Lvs. lanceolate or oblong, 1-2 in. long, tapering below into slender petioles, the margins even and entire: bracts leafy, ovate or oblong, mostly acute, abnadantly veined between the ribs or primary veins by cross veinlets.
M. B. Coulston.

MONELLA. A section of Cyrtanthus.

MONESES (Greek, single delight from the pretty solitary flower). E'ricàcea. One-flowered Pyrola. A genus of one species, a low perennial herb: stem de-
cumbent: Irs, roundish, clustered at base: fts, single. drooping, from top of slender scape 2-6 in. long, white or rose-colored, 6 lines across; petals 5 , widely-spreading, orbicular; filaments awl-shaped, naked; anthers as in Pyrola, but conspicuously 2 -horned. M. grandifiora, S. F. Gray (M. uniflora, A. Gray), grows in moist woodlands from Labrador to Alaska, in middle states and westward along the mountains. It has been offered by one dealer in native plants.

MONEYWORT, or Creeping Charlie, is Lysimachia Nummularia.
MONKEY FLOWER. See Mimulus luters.
MONKEY PUZZLE. A raucaria imbricata.
MONKSHOOD. Iconitum.
MONOGRAMMA (Greek, a single line: alluding to the elongated linear sorus). Polypodiàcet. A tropical genus of several small species of grass-like ferus, rarely seen in cultivation.
L. M. Underwood.

MONOLENA (Greek words referring to the single spur-like appendage on the anterior side of the antherconnective), Melastomarea. About 4 species of stemless herbs from Colombia, one of which is a small hothouse foliage plant, cult. like Bertolonia, and known to the trade as Bertolonia primuleflora. It has metallic green lvs. $4-6 \mathrm{in}$. long, with $3-5$ parallel veins, the under surface of the lvs. a showy rosy purple. All the species bave a characteristic rootstock, composed of clusters of short, thick rhizomes, prominently scarred by the falling of the lys., and the fls. are namerous, and resemble a primrose. They are about 1 in . across, 5 petaled, pink, and borne on fleshy scapes. See Bertolonia.
primulæflora, Hook. f. (Bertoldnia primulaflora, Hort.). Glabrous: lvs. leathery, broadly elliptical: calyx lobes broadly ovate-ronnded. B.M. 5818. F.S. 18, p. 162. G.C. $1870: 309$, figs. 53,54 .

MONOLOPIA (Greek, one garment; referring to involucre, the scales of which are united at base or intoa cup). Compósitur. Fonr species of yellow-fld., woolly annuals from California, with $8-10$ pistillate rays which are 2-4-toothed or lobed. Lvs, entire or pinnately parted: peduncles terminal, solitary, 1 -td.: heads terminal, many-fld. : some of the disk rays sterile. Differs from Helenium in having no pappus.
màjor, DC. (Helènirm Doúglasi, Hort.). Small and woolly in the wild, green, and $2-3 \mathrm{ft}$. high in cult.: 1rs. entire or somewhat toothed, sessile, linear to broadly lanceolate: fls. 2 in. across, yellow: rays dilated, coarsely 3-4-toothed, appendaged at the base. B.M. 3839. Still advertised in American catalognes under its synonym. Said to bloom most of the summer. Lvs. $3-5$ in. long, reflexed: rays $8-9$, fertile, short, broad and coarsely toothed, bright, golden yellow.

MONOPANAX. Referred to Oreopanax.

MONSTERA (Latin, a monster). Aràcea. Monstera deliciosa is indeed a delicious monster in more senses than one. It is a favorite greenhouse climber, with huge perforated leaves, whose general appearance is sure to be remembered after the first look. (See Figs. 1416, 1417.) As the plant climbs,

1416. Leaf of Monstera deliciosa.
Grown under glass in the North. the stems emit long, aërial roots, many of which never reach the ground, but suggest the fingers of some fabulons monster. This grotesque, dragon-like aspect is very pronounced in a notable specimen in Philadelphia which has climbed into an upper gallery of the highest house in Horticultural Hall, Fairmount Park. Finally, this unique plant bears an edible fruit, which has a taste between a pineapple and a
banana. The fruit grows about $6-8 \mathrm{in}$. long, and looks like a long pine cone, the rind being composed of hexagonal plates, as shown in Fig. 1417. The Monstera is a satisfactory greenhouse subject, even in a young stage, and heing a great curiosity, excites much comment from visitors. It is generally kept in a hothouse, but succeeds in a coolhouse also. It is commonly allowed to grow in a spreading rather than climbing fashion; a noble

sperimen of this kind cultivated in Pittsburg is figured by Wm . Falconer in A,F. 7:253.

As a conservatory plant it does best when planted out in a bed of rich soil, where it can be kept within bounds by judicious pruning. It is not particular as to soil, as it fills the pots in which it is planted with thick, succulent roots in a very short time. It is one of the best plants for enduring the varying conditions of temperature in a dwelling house, as nothing short of a freeze seems to hurt it. Propagated by division of the stem, with part of the leaf attached while rooting.
In the American tropics Monstera deliciosa requires a very warm, moist climate for the production of fruit. Although it naturally grows by attaching itself to trees and creeping up, it appears to be more fruitful if compelled to grow on the ground without climbing. The fruit is green in color until it ripens, when there is just a tinge of yellow, and the outer rind comes off in bits at a touch.
Monstera acuminata is the correct name of the astonishing plant known to the trade as Marcgracia paradoxa. The adult lvs, are something like those of M. deliciosa, being now and then perforated, but generally pinnately cut. The young lvs, are utterly different, being much smaller, entire and heart-shaped. This is one of the most striking cases of dimorphism celebrated in horticultural annals, though that of Ficus repens is more familiar, and similar ones occur in Philodendron. In its young stage M. acuminata is a very handsome bothouse climber, with thick, roundish, waxy lrs., which
grow in two ranks and overlap one another. When the plant was introduced by Bull, it was shown growing on a board apparently in parasitic fashion, and emitting aërial roots. It seemed most like a Marcgravia, but when it flowered and fruited the first name was found to be one of the wildest possible guesses. Marcgravia is a dicotyledon and Monstera a monocotyledon, and the two genera are as far apart as is a Camellia from a Jack-in-the-pulpit. The Nonstera-like lvs. are likely to be developed when the plant reaches 15 ft . In the young stage the plant is generally allowed to clamber over a dead \log or tree-fern trunk, in the manner of Philodendron, which see for culture. Monstera is a genus of 13 tropical American climbers, with lvs. more or less densely 2-ranked. Engler in DC. Mon. Phan. Vol. 2. (1879).
deliciósa, Liebm. Ceriman. Figs. 1416, 1417. Young $1 \mathrm{rs}, 1-2 \mathrm{ft} .1 \mathrm{long}$, leathery, pinnately cut, perforated. A.F. 7:253. G.M. 41:329. Gin. 21, p. 39 (poor).
acuminàta, C. Koch (M. ténuis, C. Kocb. Marcarària paradóra, Bull). Shingle Plant. Young lys, a few in. long, waxy, eutire. Gn. 29, p. 290 (both kinds of tvs.). G.C. 11. 8:13.

Wh. Fawcett, G. W. Oliver and W. M.
MONTANA, HORTICULTURE OF. Fig. 1418. Montana, from all standpoints, is nothing if not unique. The third largest state in the Union (Texas and California being first and second respectively), there is added to the natural capacity for great local variation found in a state covering 145,310 square miles, the additional feature of it< being traversed by the main range of the Rockies. The eastern portion of the state is plains country, with a mean average altitude of 2,800 feet above sea level.
Aloug the southern boundary, perhaps 125 miles west of the state line, are the Wolf mountains, west of these the Rosebud and the Pryor mountains, toward the northern boundary and 175 miles west of the state line are the Little Rockies, west of these the Bear Paws, while dotted over the eastern central portion of the state are the Moccasins, the Big and Little Snowies, the Belts, the Highwoods and the Crazies. These, with the exception of the Belts, are isolated from other mountains, or detached spurs from the main range, and abound in the exceptional advantages which arise from good soil, farorable exposure and convenient means for irrigation.
About the center of the southern state line the main range of the Rockies is encountered. This range traverses the state from this point in a northwesterly direction, and after entering this range and proceeding westward oue is never out of sight of mountains until reaching the western confines of the state.
The summits of the main range vary from 7,500 to 10,000 feet abore sea level, and present mighty barriers to the winter storms which sweep madly over the country to the east and south of Montana, often bringing intensely cold weather in their wake. Then, too, the climate of the state is sensibly affected by chinooks, those much misunderstood currents of warm air which rob winter of all its terrors in regions risited by them. The botanist and horticulturist have much to learn, as yet, concerning the effect of altitude upon plant growth. In a zeneral way, it is supposed that 9,000 feet is the socalled limit of timber, though, as a matter of fact, it often happens that above this point the crowns of the mountains are composed of living rock devoid of soil and other needed adjuncts to tree growth. Illustrations of the unwillingness of plant growth to be circumscribed by altitudinal lines are found in the city of Denver, which lies 5,000 feet above sea level. There many trees have been successfully transplanted from their natural habitat at sea level along the shores of Puget Sound to a point nearly a mile aloft, and into a climate as naturally dissimilar as could well be found. In Cheyenne, Wyo., there is a luxuriant development of the black locust at an eleration of 6,100 feet. This is a tree that needs to be most carefully bandled to avoid winter-killing in Minnesota, 5,500 feet nearer to sea level. Another point in instance is found in the sugar beet chart of the Department of Agriculture. This is designed to show the belt of country in the L'nited States best adapted to
beet-culture. This starts on the Atlantic in the latitude of New York city, extends nearly due westward to the rvestern line of Wisconsin, and no drunkard ever pursued a more erratic course than it in making its way from the Great Lakes to the Pacific at the head of the Gulf of California.
Horticulturally speaking, Montana covers the entire scale of the limits of fruit production in the United States, except the citrous and other subtropical fruits. In no other state of the Union is there more need of the scientific experimenter, not so much to determine the species adapted to Montana as to wisely select the varieties of species that will give best results. There is one safe rule to observe in western fruit-tree planting, aroid alkali soil. After an active experience of 15 years of tree-growing in Minnesota and the Dakotas, the writer is convinced that more failures in orcharding resulted there from planting in alkali soil than from any other cause. It is easy, however, to determine such conditions; very much easier under irrigation, as the application of water brings the salts to the surface, where they are easily noted, as they rapidly erystallize when exposed to the air. Within the valleys and cañons leading out from the mountains it is rare that alkali is found on suitable orchard locations.

Montana owes much of its phenomenal success in fruit culture to natural conditions; most important of these is the abundant supply of water, easily available for irrigation. Irrigation in orcharding places the tree or plant under complete control. In the growing season, water can be supplied to supplement any existing lack of moisture, and by withholding this artificial aid in the latter part of the season, perfect ripening of the wood is accomplished and the tree placed in the best physical condition to endure sudden climatic changes. Again, it is customary to flood the orchard late in the season, after the foliage has fallen, with the result that root killing is absolutely unknown in Montana. So free is the state from disasters of this nature that budded trees are succeeding remarkably well wherever they have been set in close proximity to the mountains. Another decided advantage is in the physical formation of the state; the make-up of the mountains is not, as many suppose, a shaping up of every range and peak to a sharp rocky apex, but in all ranges there are vast expanses of open plateans extending back onto lower outlying spurs. Heading in the mountains, usually near the summits, are deep cañons leading down and out to the open plains country at the foot of the ranges, There is a constant movement of air from the upper to the lower plateaus through these cañons occasioned by the superheating of the air of the lower levels during the middle of the day. The heat, in rising, causes a partial racuum, and the cooler air of the apper levels flows down to occupy this. This is especially true in the earlier night hours. So common is this as to give the name "eañon breezes" to these currents, which are plainly to be felt miles away from every extensive cañon's mouth far out on the opeu plains. This constant current of air, passing over the surface of the earth, wards off frosts and gives fruit immunity from this great canse of loss to those growing fruit outside of mountain districts.

Early orebarding was attended with almost prohibitive conditions. In 1864, trees were set in Missouri valley by John G. Pickering, who is still living and planting. Some of the trees originally set are alive and bearing. Trees then came in by way of Utah on pack
horses, and were sold for from $\$ 2.50$ to $\$ 5$ each. The next plantings were made near the present site of Stevensville, in the Bitter Root valley, by Bass Bros. Their apple crop for 1898 was estimated at 10,000 boxes. The Bitter Root valley is in the southwestern part of Montana, and is about 100 miles in length, with an average width of perhaps 10 miles. This valley has been the scene of the greatest activity in orcharding to date. It has an altitude of about 3,200 feet, and as it lies to the westward of the main range of the Rockies, it possesses marked advantages over the country to the eastward. It also bas a soil exactly adapted to apples, pears, cherries, plums, grapes and small fruits. The soil is of decomposed granite, with an almost total absence of alkali. To the casual observer it appears to be light, stony, gravelly and comparatively worthless, but quite the reverse is the case. The main difficulty is to restrain undue growth of tree and superabundant fruitage. It is a soil that does not bake after irrigation, henee water can be freely used, and in a way stored, as evaporation does not occur from capillary attraction, as is always the case when there is too great a preponderance of elay in the texture of the soil. It is within bounds to state that upon soils carrying a beary percentage of clay, fully one-half of the benefits arising from irrigation are lost from the inability of the farmer to cultivate immediately after irrigation. Bitter Root orcbards range from 100 trees set for home use to 500 -acre blocks for commercial purposes. The main difficulty there experienced is in the selection of the best varieties for general planting.

The pomologist can find in this one valley every variety
1418. Montana.

The shaded parts show horticultural areas.

of apple that is now growing in the combined nurseries of New York state. The only bars there found to the successful cultivation of all standard and small fruits is the brevity of the growing season and the coolness of summer nights; owing to altitude the air is rare and does not retain beat after sundown, as is the case in the lower-lying and more humid sections of the United States. The clearness of the atmosphere and attendant brilliancy of the sun gives to fruit such coloring as is never noted, expept in similar altitudes; and while extended experiments have not been conducted along these lines, it is believed that the proper use of water in irrigation does not necessarily imply that the fruit thus grown carries an undue percentage of moisture when compared with fruits grown without irrigation.
In the phenomenally dry season of 1894, Early Rose potatoes grown in Wisconsin were analyzed, as also were Montana Early Rose grown under irrigation, and the moisture content of the Wisconsin potatoes was considerably higher than that of the Montana potatoes.
What has been done in the valley of the Bitter Root
is being attempted in Flathend valley, a large northwestern valley, with the best results. Tbe range of varieties is fully as wide as that of the Bitter Root, and as the altitude is about 400 feet less it is to be expected that fully as good results will eventually be attained.

Some difficulty is experienced from frosts in the Flathead country, but as the heavy growth of deciduous and conifer timber, which covers the majority of the bench lands in this region, is cut off, no doubt the increased circulation of air will prevent serious loss to fruit from frost. Among other valleys achieving marked success in fruit and vegetable culture, are those of the Gallatin, Yellowstone, Upper nind Lower Missouri, Clark's Fork of the Yellowstone, the Judith, Milk, Marias, Teton, Madison and Jefferson. In these valleys the better apples, cherries and plums are readily grown, and it is safe to say there are not 160 acres of farm lands in the state where, if the planter will avoid alkali soil and set trees with reference to the possibility of irrigating them, the Transcendant and Hyslop crabs, and the hardier of the standard apples, together with the small fruits, cannot be successfully grown.
S. M. Emery.

MONTBRETLA. See Tritonia.
MONTEREY CYPRESS. Cupressus macrocarpa.
MONTIA (Guiseppe Monti, professor of botany at Cologne in the first half of the eighteenth century). Portrlacdeea. About 18 species of American herbs, including the Winter Purslane, a salad or pot-herb known to the European trade as Claytonia perfoliata. This odd plant is perbaps cult, in America by a few fanciers of rarer kinds of vegetables. In hot countries it may be more desirable. It is an annual plant forming a compact tuft about 9-12 in. high. The lvs. are all from the root, tender, thick, fleshy, with a slender petiole about 2 in . long, nnd a blade about $1 / 4 \mathrm{in}$. long, which raries from lanceolate to rotund. The most remarkable feature is a sort of cup an inch or more in diameter, from which arise the racemes of small white fis. One of these cups crowns each of the stems, which are numerous, sleader, leafless, and about twice as long as the irs. The name "perfoliatn" is suggested by the resemblance of tbe cup to a perfoliate leaf. In \boldsymbol{M}. perfoliata the cup is usually 2 -lobed, and the species runs into \boldsymbol{M}. parriflora, which rarely has the cup transformed into two almost disjoined lvs. The Winter Purslane is now a weed in many parts of the world. The seed may be sown all through spring and summer where the plants nre to stand.

Montia cannot be distinguished from Claytonia by any one character, but the cultivated plants of both genera have been sufficiently discriminated bere and under Claytonia. The latest monograph is by B. L. Robinson in Syn. Flo. N. Amer., Vol. I, part I, fasc. II (I897).

> A. Stems without true les.

1. Pedicels short, seldom exceeding the fruiting calyx. perfoliàta, Howell (Claytonia perfoliata, Don). Winter Purslane. Rather coarse, green, often reddening with age. Banks of streams, Calif. to Ariz, and Mex., north to Brit. Col. ; common near Pacific coast. It grows wild in Cubs but is not native there, as often stated. B.M. 1336. R.H. 1897, p. 159.

BB. Pedicels in fruit 2-6 lines long, much longer than the calyx.
parviflòra, Howell (Claytonia parviflòra, Dougl.). More slender, green or slightly glaucous. Calif. to Brit. Col., east to Idaho and Ltah.

AA. Stems with numerous small alternate lrs.
parvifolia, Greene (Claytonia parrifolia, Moc.). Fls. rose-color to white. Plant has bulblet-like offsets. Moist rocks, Brit. Col. to Rockies in Mont. and Alaska. This and the preceding one have been advertised, but have little if any ornamental value.
W. M.

MOON DAISY. Name used in England for Chrysanthemum Leucanthemum.

MOONFLOWER in America always means Ipomaza Bona-Nox and relnted species; in England it rarely, if ever, menns this, but Chrysanthemum Leucanthemum our common white weed or ox-eye daisy. Moontlower
in England also means oecasionally Anemone nemorosa and Stellaria Holosteu.

MOONSEED. Menispermum Canadense.
MOONWORT. Botrychium; also Lunaria.
MOOSEW00D. Nirca palustris and Seer Pennsylvanicum.

MOREA (probahly named after Robert More, botanist, Shrewsbury, England). Iriddcea. Charming bulbous plants much like Irises, but unfortunately they are not so bardy as the common Irises and the individual fls. last only a day or so. Morea is a genus of about 60 species, 45 of which are S. African, while the rest are chiefly from tropical Africa. Moran is the African representative of Iris. No one character will separate the two genern. Mormas have no perianth tube, while Irises usually have one. The filaments are usually monadelphous in Moræa and free in Iris. Irises grow either from rhizomes or bulbs, wbile Moreas mostly grow trom corms, except the subgenus Dietes, which grows from a rhizome. Most of the showiest Moraas belong to the subgenus known as Moræa proper. Species 7-13, described below, helong to this group. There is another subgenus which differs from it in having the ovary exteuded into a long beak which looks like a perianth tube, but none of this group is cult. The Noreas proper are about as tender as other Cape bulbs. The amateur may find some suggestions as to their culture under Bulbs, Iris and Iria.

By far the largest and most remarkable plant of the genus is Morava Robinsoniama. This grows 6-8 ft. high and has the habit of the New Zealand flax, Phormirm lenax. A splendid specimen mentioned in B.M. 7212 bore 457 flowers between June 20 and Oct. I. The indiridual fls. are 4 in . across, fragrant and last only a day. At Kew this noble plant bas heen successfully grown in the south end of a house. The stately plant pictured in G.F. I0:255 grew in a Californian earden and was said to be I6 years old from seed. The finest picture, however, is that in G.F. 4:355.

INDEX.

bicolor, 3 .
Dietes, 10 edulis, 0. fimbrinta, 8 . glaucopis, 5. iridioides. 2.
juncea, 11.
longifolia, 9. Iutea, 4.
papilionaeea, 7.
Pavonia, 4.
polyanthos, 13.

Robinsoniana, 1.
spathacea, 10. tricuspis, 4, 6. tristis. 12. tristis, 12.
villosa, 4.
A. Rootstock a short creeping rizizome. (Subgenus Dietes).
B. Color of fls, chiefly uhite.
C. ITeight of plants 6-8 ft.
I. Robinsoniana CC. Meight of plants $1-3 \mathrm{ft}$. 2. iridioides

BR. Color of fls. ehiefly yellow...... 3. bicolor
AA. Rootstock a hunicated corm.
B. Inner segments inconspicuous. (Siubgenns I-usseuxia).
C. Color of fls . chiefly orangered cC. Color of fls. chiefly white. D. S゙pots blue..
4. Pavonia

DD. Spots brow't.
5. glaucopis
3. Inmer segments conapicuous. C. Height of stems 1 -3 in.
D. Lis. hairy all over....... 7. papilionacea DD. Lrs.hairy only at the edges. 8. fimbrnata
c. Height of stems more than 3 in.
D. Stcms provided wilh I long wiry leaf, just below the inflorescence.............. 9. edulis

DD. Stems not so provided.
E. F'ls. wsmally I or 2 on
a stem. I0. spathacea
EE. F'ls. loosely corymbose.
fls. small.
F. Spathes $1 / 3-3 / 4$ in.
long
FF. Spathes IT/a in.
long12. tristis
13. polyanthos

1. Robinsoniàna, Hook. (İris Robinsoniana, F. Muell.). Wedding Iris. Outer segments spotted red and yellow near base. B.M. 7212. G.F. $4: 355 ; 10: 255$. J.H. III. 32:569. G.M. 34:569. G.C. 1872:393; 11I 9:457.
2. iridioides, Linn. Stem 1-2 ft. long, with many short, sheathing, lanceolate bracts: Ivs. in fan-shaped hasal rosettes: fls, over 3 in . across, wbite, marked yellow on claws of onter segments; style crests marked with blue. B.M. 693. L.B.C. 19:1861 (Iris crassifolia).
3. bícolor, Steud. Habit of M. iridioides: fls. 2 in. across, yellow, with beautiful brown spots on the outer segments; style crests yellow. B.R. 17:1404. L.B.C. 19:1886. P.M. 9:29 (all as Iris bicolor).
4. Pavònia, Ker. (Íris Pavdnia, Linn. f.). Outer segments without a distinct claw, orange-red, with a blue-black or greenish black spot at the glabrous base. B.M. 1247, - Var. villosa, Baker. Lvs. pilose: onter segments bright purple, with a blue-black spot on the hairy claw. B.M. 571 (Iris villosa). Var. lutea, Baker. Los. glabrous: fls. yellow, unspotted. B.M. 772 (Morea tricuspis, var. lutea). In M. Pavonia and glaucopis the inner segments have a large central cusp and 2 lateral lobes, while in M. tricuspis the inner segments have 3 large cusps.
5. glaucopis, Drap. Outer segments white, with a blue spot. B.M. 168 (erroneously as Iris Pavonia).In this species the outer segments have a short, distinct claw, while M. Pavonia has node.
6. tricuspis, Ker. Outer segments whitish or lilac, with a purplish spot. B.M. 696.
7. papilionàcea, Ker. Fls. red or lilac, yellow on the claw; style crests erect. B.M. 750.
8. fimbriàta, Klatt. Fls. lilac. R.H. 1867:271.
9. édulis, Ker. Fls. lilac, spotted vellow. B.M. 613. - Var. odora has white tls, Var. longifolia has yellow fls. B.M. 1238.
10. spathàcea, Ker. Fls. yellow. B.M. 6174 (Dietes Huttoni).
11. júncea, Linn. Fls. lilac, in 2-3 clusters.
12. tristis, Ker. Lvs. 2-3, produced near the base, 1-2 ft. long: clusters of fls, 4-6: fls. dull lilac, ochre or salmon-colored, with a yellow spot. B.M. 577 (Iris tristis).
13. polý́nthos, Thunb. Les. about 3, one from near the base of the stem, the others from the lower forks, $1 / 2-1 \mathrm{ft}$. long: clusters of fls, 5-20: fls. lilac.
M. Macleaii, advertised 1899 by Van Tubergen, is said to belong to the subgenus Dietes. - M.Sisyrinchium $=1$ ris Sisyrinchium. W. M.

MOREL. See Mushroom.

MORINA(Louis Morin, a French botanist, 1636-1715). Dipsdceæ. Seven or \& species of perennial herbs in western and central Asia, from 3 in. to 4 ft . high. Lvs, opposite or whorled, narrowly oblong or linear, spinous-toothed: fls. whorled; whorls in spikes, surrounded by wide-based floral lvs.; bracteoles anong the fls. few, spiny.
longifolia, Wallich. A handsome plant 2 ft . high, with thistle-like foliage: lvs. 6 in . long. 1 in . across: fls. showy, deepening from white in the bud to pink and finally crimson, crowded in dense whorls near the top of stem. Hardy. Cult. in light, sandy soil, with partial shade. Prop. by seed and by division in early antumn. Useful in the rockery and border, and with other foliage plants. June-Aug. Himalayas. B.M. 4092. B.R. 26:36. R.H. 1857:514. - Whorl-flower is a catalogue name.

MORINDA (Latin, morts, mulberry, and Indica, Indian). Rubidcer. This includes the Indian Mulberry, M. citri-
folia, a tropical fruit tree cult. in S. Fla, and S. Calif. (see Fig. 1419). It has heads of small white fls. followed by globose or ovoid, berry-like fruits about 1 in. long. The genus contains about 40 species of shrubs, trees and climbers in tropical Asia, Australia and the Pacific islands, and 3 or 4 tropical American species. Lvs, opposite, rarely in 3's: fls. white, in axillary or terminal, simple, panicled or umbellate heads; corolla tube short or long; lobes 4-7, coriaceous, valvate in the bud.
citrifolia, Linn. Indian Mtlberry. Fig. 1419. A small tree, with shining, broad or narrow, oval lrs. on very short petioles: stipules large, broadly oblong or semi-lunar; fl.bead on solitary peduncles 1 in . long usually in the axil of every other pair of 1 vs : : calyx limb truncate: corolla $5-7$-lobed, tube about $1 / 2 \mathrm{in}$. long: fruits yellowish, fleshy, in a globose or ovoid head about 1 in . in diam. G.C. 11, 11:333.

Var. hracteàta, Hook. Stipules more acute: calys limb often with a lance- or trowel-shaped, white. leaty lobe, sometimes 3 in . long. Offered in S . Calif. and Fla.
M. B. Coclston.

MORINGA (altered from the native Malahar name). Moringdeer. Only three species comprise the family Moringaceæ, all members of the genus Moringa. They are small, spineless trees, with alternate, deciduous, pinnate ivs., axillary panicles of rather large, white or red fls., and long, pod-like fruits. They are native of N. Africa and the tropical parts of Asia. The position of the family Moringacea is difficult to determine. Bentbam \& Hooker ally it with Anacardiaceæ. Engler and Prantl place it between Resedaceæ and Sarraceniaceæ. Grisebach joins it to the Capparidacea. Others ally it

1419. Morinda citrifolia branch with leaves, flowers and fruit $(\times 2 / 3)$. Also vertical section of fruit (fruit sometimes larger) and enlarged flower below.
with the Leguminosx, which it resembles in external appearance. Fls, perfect, 5-merous; calyx cup-shaped, 5 -cleft, the lobes reflexing; petals 5 , one of them erect and larger; fertile stamens 5 , alternating with 5 or 7

1420. Moringa oleifera About natural size.

Avout natural size.

Mormodes are commonly found in poor condition among the collections, which is the result of neglect rather than difticulty of cultivation. They should be grown in small baskets suspended from the roof, in a compost of equal parts of clean chopped peat-fiber, sphagnum and sod, interspersed by nodules of charcoal, and the whole pressed in firmly around the roots. The roots like to work among the charcoal, and this also serves the purpose of dividing the compost, thereby allowing it to dry out more readily. Mormodes do not require an abundance of water at any time, and the compost should frequently be allowed to dry out during the growing season. When at rest, an occasional application will suffice to keep the soil moist and the pseudobulbs from shriveling. Rebasketing should take place at the commencement of new growth in spring. They all require warmhouse temperature; the Cattleya or Cypripedium department affords them a proper location regarding temperature and moisture.

Cult. by Robert M. Grex.
Colossus, Reichb. f. Pseudobulbs 6-12 in. long, clothed with hrown sheaths: lvs. elliptic-ovate, $10-15 \mathrm{in}$. long, plaited: raceme inclined, 2 ft . long, with the stalk: fs. $5-6 \mathrm{in}$. across; sepals and petals narrow-lanceolate, spreading or reflexed, with recurved margins, pink below, changing to yellow toward the upper portion; labellum ovate, long-acuminate, very revolute, yellow, somewhat sprinkled with pink dots. March. Cent. Amer. B.M. $5840 .-$ A plant of striking appearance.
pardina, Batem. Pseudohulbs $4-7 \mathrm{in}$. high, stem-like, sheathed by the bases of the lanceolate, striate lvs., which are 4 times as long: raceme nodding, many-fld., shorter thau the lvs.: fls. yellow, spotted with reddish purple, fragrant, crowded on the upper end of the stalk; sepals and petals ovate, pointed, convergent; labellum nearly like the segments but with 2 lateral acute lobes. July, Aug. Mex. B.M. 3900. F.C. 3:113.-A curious and rather rare plant. Var. unicolor, Hooker (Mar mòdes eitrina. Hort.). Fls. of one color, all yellow. B.11. 3879. I.H. 1:25. G.C. III. 14:181. Var. aurantlaca, Rolfe. Sepals and petals golden yellow; label. lum yellow. 1.H. 39:144.

Buccinàtor, Lindl. Plants $1-2 \mathrm{ft}$. high: lys. lanceolate, membranous, striate: fls, pale green, with an ivory white lip; sepals linear-oblong, the lateral ones reflexed; petals erect; labellum subrotund-cuneate, with the sides rolled back, giving it the appearance of a trumpet. April. Mex. B.M. 4455 (M. lentiginosa). - This plant is extremely variable in color, ranging from nearly white to chocolate-brown, the various forms being either spotted or plain. Its forms spotted or plain. Its forms at least 7 distinct specific names.
luxàta, Lindl. Pseudobulbs 4-6 in. long: sheathing Ivs. 1-2 ft. long, narrowlauceolate, plaited: raceme much shorter: fls. 2 in. in diam., rather fleshy and globular, lemon-yellow, with a dark brown streak down the labellum; sepals ovate-lanceolate; petals oblong, concave; labelluw hemispherical, concave, obsoletely 3 lobed. July, Mex. B. R. 29:33. R.H. 1889:132. - Very fragrant. The fls, are remarkably distorted. Var. ebürnea, Hort. Fls. creamy

1422. Staminate catkin of Russian Mulberry.
Natural size.

1423. Piatillate catkin of Russian Mulberry.
Natural size. white. This is a very effective plant, superior to the type. G.C. II, 18:145. I.H. $34: 35$.

Heinrich Hasselbring.

MORNING-GLORY. Ipомœа ригригеа.

MORRENIA (Professor Charles Morren, Belgian botanist). Asclepiadiceu. One or two pubescent twining shrubs of S. Amer., allied to Cynanchum, but differing in its convex 2 -lobed stigma (flat or concave in

Cynanchum) and the tubular corona, which is longer than the pistils, villose on the inside, and conniving over the pistils. The lvs. are opposite and hastate. M. odorata, Lindl., is offered by Franceschi. S. Calif. It has white fragrant fls. in dense cymes in the axils. De scribed by Lindley as long ago as $\mathbf{1 8 3 8}$, but appears never to have been brought into cultivation. Franceschi says it is "a noble vine; foliage very distinct." Argentine and Paraguay.

MORUS (the ancient Latin name). Urticacea or Mordece. Mulberry. About 100 species of Mulberry have been describer, hut the latest monographer (Bnreau, DC. Prodr. 17:237 [1873]) reduces them to 5 . Some of the names are now referred to other genera. Many of the names represent cultural forms of M. alba. Mulberries are grown as food for silkworms and for the edible fruits. The silkworm Mulberry of history is M. alba, and the fruit-bearing Mulberry of history is M. nigra. Y'et, strangely enough, the leading fruit-bearing varieties of North America are derived from M. alba (see Bailey, Bull. 41, Cornell Exp. Sta., and "Evolution of Our Native Fruits"). The native M. rubra has also given varieties which are grown for their fruits. The silkworm Hulberry of the Chinese is M. multicaulis, by some considered to be a form of M. alba. This was introduced into North America early in the century, and for a time there was the wildest speculation in the selling and planting of the Mulberry tree, and in the rearing of silkworms. These efforts have now largely passed away in North America. M. multicaulis gave rise to one variety which was prized for its fruits, the Downing. This variety is now little known, but the name has been popularly but erroneously transferred to a good variety of M. alba (the New American).

The Malberries are trees of the temperate regions of the Old and New World. The genus Morus usually has monocious flowers, both sexes being in small hanging axillary catkins, the males soon falling (Figs. 1422-23). The calyx is 4-parted: stamens 4, the filaments partially inclosed in the calyx-lobes (Fig. 1424). In the pistillate flower there is one ovary with 2 stigmas, and the 4 calyxlobes are adherent to the ovary (Fig. 1425). The pistillate flowers become fleshy and cohere into a long multiple fruit which suggests a blackberry in external appearance (Fig. 1426).

In North America the Iulberry is known chiefly as a fruit-bearing tree, although it is never planted extensively and the fruit is scarcely known in the market. Two or three trees about the home grounds are sufficient to supply a family. The fruits are sweet and soft. To many people they are too sweet. Because of their sweetness they are of little value for culinary uses. They usually drop when ripe. They are harvested by being shaken on sheets or straw. Birds are exceedingly fond of them. In the East and North, varieties of M. alba are chiefly grown, as the New Ameriaan (Downing of most present nurser-
1426. Fruit of Morus alba. Natural size. ies). Thorburn and Trowbridge. On the Parific coast and in some parts of the South, varieties of M. niqraare grown. particularly the Black Persian. In parts of the south forms of the native M. rubra are grown, as Hicks and Stubbs. These are popular for planting in hog pastures, as the animals like the fruits. The Mulberry thrives in any garden soil. It does well even on
thin gravels and rocky slopes. For fruit-bearing purposes, trees may be planted from 20 to 40 feet apart.

The Russian Mulberries are offshoots of M. alba. Their particularmerits are great hardiness to withstand cold, drought and neglect. They are useful for low wind-breaks and also for sheared hedges. They have become popular on the plains. They are readily propagated by seeds, and the resulting plants are variable. Now and then a large-fruited form appears and it may be nanced and propagated, but for the most part the Russian Mulberry has little merit for its fruits unless one desires to feed the birds.

Varieties of Mulberries are now mostly worked on seedlings of the Russian. One of the most successful grafts is S. D. Willard's method, shown in Fig. 14:7. The grafting is performed in spring when the bark will slip, using eions which have been kept perfectly dormant or on ice. a is the cion, the lower part being cut thin so that it will enter readily between the bark and wood of the stock. b is the stock, with an incision made through the bark essentially as for shield-budding, c shows the graft hound with raffia. d shows the completed operation, the work being covered with grafting wax. Morus multicaulis grows from cuttings in the South. These cuttings, with the huds removed to prevent sprouting, are often grafted hefore they are planted with a long cion of the desired variety (see Fig. 941). The cutting acts as a nurse, and the cion takes root of itself if set deep enough.

There are many Mulberries with ornamental forms. Of these, the most popular in America at present is 'Teas' Weeping, a chance seedling of the Russian Mul-

1427. A method of grafting the Mulberry.
a, the cion; b, matrix to receive cion; c, the graft tied; d, the graft waxed.
berry tribe. When grafted several feet high on straight Russian stock, it makes one of the best of small weeping lawn trees (Fig. 1428). It originated on the grounds of John C. Teas, Carthage, Mo., about 1883 . Various eut-leaved forms, mostly of $M_{\text {. alba, are seen in fine }}$ collections, of which the form known as M. nerrosa (Fig. 1429) is one of the best. The foliage of Mulberries is interesting because so variable. Even on the same tree there may be leares of several forms, while different trees of the same species may show strong individnal traits. The most striking variations are in the lobing of the leares.

A. Lis, mostly bright and glabrous above, and usually glossy.

B. Style very short or practically none.

álba, Lind. White Mulberry. Figs. 1430, 1432 B. Lvs. light green, rather small, smooth or very nearly so above and often shining, the reins prominent beneath and whitish, rariously lobed or dividel, the basal lobes unequal, the teeth large and for the most part rounded or nearly obtuse, the branches gray or grayish yellow: fr. variable, usually narrow, 1-2 in. long, white or violet, very sweet. China.-Morus alba has been cultivated from the earliest times, chiefly for feeding the silk worm. It is a frequent tree along roadsides and in the old yards in the eastern states, where the trunk sometimes attains a diameter of two feet. This half-wild form usually has rather small rounded shining leaves with very large rounded teeth, and bears little whitish or violet fruits, which are very sweet. Sometimes the
fruits are an inch long, but they are oftener only half that length, and one sometimes finds trees on which the fruits are barely a quarter of an inch in length. Now and then a tree bears fruit nearly or quite black. Birds, poultry and hogs are fond of these Mulberries. The trees are usually very thick-topped and bushy growers, but oceasionally one is seen which, when young, has branches as straight and trim as a Northern Spy apple. These half-wild trees are seedlings, and this accounts for their variability.
Var.Tatárica, Loudon (M. Tatirica, Linn.). Ressian Melberky. Figs. 1422-25, 1431. A hardy type of Morus alba which was introduced into our western
1428. Teas' Weeping Mulberry.
latifolia, Poir., which Bureau refers bere, is probably M. Indica, Linn.). Fig. 1432 A. A strong-growing small tree or giant shrub, with dull, rougbish and very large, long-pointed lvs.. which are seldom or never prominently lobed, and which are often convex above, bearing black, sweet fr.; style evident. China, where it is the chief silkworm Mulberry, - Once much grown in this conntry, but not now well known, particularly not in the Nortb.

nigra, Linn. Black Melberry. Lis, dark, dull green, rather large, tapering into a prominent point, commonly very rough above, usually not lobed, the base equal or very nearly so on both sides, the teeth rather small and close, the branches brown: fr. large, comparatively thick and fleshy, mostly dark-colored. The black Mulberry is a native of Asia, probably of Persia and adjacent regions. - This is the species which is cultivated in the Old World for its fruit. In America it is very little grown. It is not hardy, except in protected places, in New England and New York. The Black Persian Mulberry of the South and of California is probably of this species.
rùhra, Linn. Native Red MelBERRY. Fig. 14:33. Lrs. usually large, very various, those on the young shoots deeply lobed with very oblique and rounded sinsues, in the base of which there are no teeth, the upper surface rough and the lower one soft or variously pubescent, the teeth medium or comparatively small and either rounded or bluntish: fr. deep red, or when fully ripe almost black, variable in size, often very good, nearly always having an agreeable slight acidity. Mass, to Fla., Kans.

AA. Lvs. dull green, mostly rough or pubescent. B. Full-grow'n le's. more than 4 in. long. multiceùlis, Perr. (M. álba, var, multicaùlis, Loudon. M. alba, var. latifolia, Bureau. M. Sinénsis, Hort. M.
and Tex., mostly in rich soils and bottom lands. S.S. 7:320. - This native Mulberry bas been tried for the feeding of silkworms, but with indifferent suceess. At least three of the named fruit-bearing Mulberries belong to it, and a yellow-leaved Mulberry, which is
somewha grown for ornament, also appears to be of this species. The curious lobing of the Ivs. on the young growth is shown in the upper spray of Fig. 1433. The nearest approach to this lobing is in the Japanese (Morus Japonica), and this affords another of those interesting parallelisms which exist between the Japanese and eastern American floras. The red Mul-

1431. Russian Mulberry-Morus alba, var. Tatarica ($\times 1 / 4$).
berry is the largest tree of the genus. In the South it often attains a height of 70 ft . and a diam. of 3 or 4 ft . The timber is used for posts and light woodwork.

Var. tomentòsa, Bureau (M. tomentòsa, Raf.). Lrs. very soft-pubescent and whitish beneath, often glossy but rough above. Tex.-A large-fruited form of this was introduced in 1889 by T. V. Munson as the Lampasas Mulberry.

Bb. Full-grown lvs. usually 3 in. or less long.
celtidifdlia, HBE. (M. Mexicàna, Benth. M. microphyilta, Buckl.). Much smaller tree than M. rubra, rarely more than 25 ft . tall, and with smaller and smoother lvs. and smaller, sourer black fr., which ripens earlier and is not so good. Lrs. cordate-orate, more or less lobed, mucronate-serrate, nearly smooth on both sides: fr. shortovate or sometimes nearly globular. Tex. and Ariz. to Ecuador. S.S. 7:321.-Occasionally planted for its fruits.
L. H. B.
mosquito plant. See cynanchum.

MOSS. A general name for many humble green plants of the eryptogamia (flowerless plants), mostly with distinct stems and foliage leaves. In North America there
 are ahout 1,200 species, distributed in numerous families and four orders. They have solitary, mostly stalked spore-cases or capsules arising from the apex of a leafy stem (Fig. 1434). The capsule is covered with a thin cap
or calyptra (c) which is shed at maturity. The capsule opens hy means of a lid or operculum (o), and the orifice is usually guarded by one or two rows of teeth or a peristome. None of the Mosses are horticultural plants, although Sphaguum Moss is much used as a packing material and for holding moisture about pots, and as a medium in which to sow delicate seeds. It is collected from bogs. Club Mosses are not true Mosses, but lycopodiums (which see). The "Moss" on fruit and other trees is mostly lichen. The Florida or Spanish Moss is a flowering plant (see Tillandsia). L.H.B

MOSS PINK. Phlox subulata

MOTHER OF THOUSANDS.
Linaria Cymbalaria; also Hen-aud-chickens daisy (Bellis). and Saxifraga sarmentosa.

1432. Leaf of Morus alba at B: of M. multicaulis at A.

MOULDS. The term Mould is generally applied to any small fungous growth which appears on decaying organic matter, such as fruits, both fresh and preserved, vegetahles, etc. The Moulds are very simple fungi producing immense numbers of spores, a fact which accounts for their presence everywhere, in the air, in dust, and on all exposed bodies. As a rule these fungi are not directly injurious to plants; they are normally saprophytes and perform a great service in disorganizing organic matter which would otherwise accumulate on the earth. A few of the species may hecome parasitic. Thus, species of Botrytis often attack lettuce in forcing-houses which are too close and damp. Carnation huds and violet plants are also frequently injured by Botrytis. The mouldlike growths occurring on boards in damp cellars or in greenhouse benches are sterile mycelia of higher fungi. These do not attack plants, but sometimes, as in the case of riolets, grow over and smother the plants. (See also Diseases, Fungi.

Heinrich Hasselbring.
MOUNTAIN ASH. Pyrus Aucuparia. M. Cherry. Prunus angustifolia. M, Ebony, Beuhinia. M. Holly. Vemopanthes fascicularis. M. Laurel. Kalmia, par-

ticularly K. latifolia. M. Mahoe. Hibiscus elatus. M. Mahogany. Cercocarpus. M. Mint. Pycnanthemum. M. Rose. Antigonon.

MOURNING BRIDE. See Scabiosa.
MOVING PLANT, Desmodium gyrans.

MUCÜNA (Brazilian name). Legumindse. Between 20 and 30 mostly twining plants, widely distributed in the tropies, one of which is somewhat cultivated as a forage plaut. The genus is allied to Glycine, which ineludes the Soy Bean. The lvs. are large and 3 -foliolate: fls. long or oblong, large, usually dark purple (sometimes yellowish) but turning black when dried, the corolla much longer than the narrow-lobed calyx; the keel long, boat-shaped and usually twice or thrice longer than the obtuse standard and also longer than the wings: stamens diadelphous (9 and 1) the anthers not uniform in kind: pod usually hairy, bristly or pubescent, containing globular pea-like seeds. The Mucunas are either annuals or perennials. The fls, are borne in axillary clusters, and the pods are usually long and beset with stinging hairs.
prùriens, DC. (Dolichos prùriens, Linn. D. multifldrus, Hort.). Cowנtch, Cowage. Fig. 1435. Annual twiner, the branchlets somewhat appressed-hairy and the lvs, more or less silky-hairy beneath: petioles usually longer than the lvs.: Ifts. ovate or the lateral ones rhombicovate, obtuse but apiculate: fls. several to many, dull purple, $11 / 2-2$ in. long, in more or less drooping racemes: pods f-shaped (the ends curved in opposite directions), 2-4 in. long, ribbed, densely brown-or gray-bristly. - Tall-twining sine, common in the tropics of both hemispheres. The hairs or bristles on
1434. A true mossPolytrichum commune Nat. size. (See p. 1035.) phes. The hairs or bristles on the pods are dislodged by the touch and they are very irritating to the skin, often raising blisters. These hairs also constitute a remedy for intestinal worms, it being supposed that they kill the worms by irritating or stinging them. It is a variable species.

Var, ùtilis (M. ùtilis, Wall.). Velvet Bean. Banana Bean. A cultivated form, differing in the mostly shorter pods, which are only velvety (not bristly-hispid). Widely grown in the tropics.-Of late it has attracted attention in the Gulf states as a forage and green-manure crop, but its use is still in the experimental stage in most places. Cattle have been fed successfully on the meal inade of the beans ground in the pod, but people bave been made sick by eating the green cooked beans, and chickens have been killed by both raw and cooked beans. Because of its vigorous growth, the Velvet Bean promises well as a soil renovator, as the cow-pea does, although it ean not be be grown so far north as that plant. It is a good ornamental plant, growing $10-20 \mathrm{ft}$. high when supplied with support. The handsome globular beans ($3 / 8-1 / 2$ in. diam.) have markings which suggest the castor bean.
capitàta, Sweet. Cult. in India and Japan (A. (\mathcal{F}. $13: 728$) as a household vegetable (as a shell bean), but doubtfully distinct from the above: fls, usually fewer on erect or ascending peduncles: pod mostly larger and flatter, less hairy and becoming nearly or quite glabrous at maturity; bean larger, somewhat flattened. - Not yet reported in this country.
nívea, DC. Also eult. in India, and perhaps a cultural race of M. pruriens : fls. white: pod large, black, becoming glabrous.
L. H. B.

HUEHLENBECKIA (after Dr. Mueblenbeck, a Swiss physician). Polygonacer. A rather small genus of elimbing or erect, usually slightly shrubby plants, all inhabitants of the south temperate zone: lvs. alternate, with sheathing stipules at the base: fls. unisexual, small, fascicled in the leaf-axils; perianth with 5 nearly equal lobes; stamens 8: ovary l-celled, 1-ovuled: styles 3: akene obtuse or acute, 3 -angled, crustaceous, about equaling the sncculent perianth. All greenhouse plants, very various in appearance.
compléxa, Meissn. A twiuing or drooping, somewhat shrubby plant: stem slender and much-branched, glabrous except when very young: lvs, very small, $3-5$ lines long, light green, about equaling the petiole, mostly fiddle-shaped, rarely hastate; sheaths small, tubular, deciduous: fls, 1-6, in somewhat racemose, pubes cent clusters, green and inconspicuous: fr. with a sueculent, transparent, whitish, persistent perianth. New Zealand. - A graceful greenhouse basket plant, but may also be made to twine. Fruit clusters glistening, showy. Is sometimes called Polygonum by florists.
platyclàdos, Meissn. (Coccóloba platyclada, F. Muell.). A very interesting erect, shrubby plaut, with broad, flat, ribbon-like, glossy, delicately striate branches, replacing the lvs., which are scanty or entirely wanting: lis. membranous, oblong-lanceolate, sometimes hastate: bracts and stipules very short: fls, white, in few-fld. clusters: akenes included in the fleshy perianth, which at maturity is bright red or at length deep purple and quite showy. Solomon Isls. B.M. 538.- Frequently grown in greenhouses because of the odd flat stems and showy fruit.
M. adpréssa, Meissn. Large, diffuse, bushy plant, with small pink fls. in paniculate spikes; lvs, up to 2 in . long, broadly oblong, often cordate, glabrous. Australia. B.M. 3145 (as Poly. gounm). Cult. in Enrope.
K. M. Weigand.

MUEHLENBERGIA (Dr, H. Mühlenberg, who wrote a work upon American grasses in 1817). Gramíner. About 60 species. mostly American. Spikelets 1-tld. The following is offered by one dealer in native plants.
glomeràta, Trin. An erect perennial, with rather short appressed liss.: panicle contracted and spike-like: empty glumes nearly equal, 1 -nerved, extending into short awns: fl.-glame longer than empty glumes, except the awns. Wet ground, nearly throughout northern U.S.
A. S. Hitchcock.

MUGWORT. Artemisia vulgaris.
MUILLA (an inversion of Allium). Lilideea. A genus of one species, an unimportant plant advertised by one specialist in Pacific coast bulbs. It has a slender scape 3-12 in. high, bearing early in the year an umbel of 5-15 greenish white fis., each about $1 / 2$ in. across. The genus is close to Allium, but instead of a true bulb it has a fibrous-coated corm, and also lacks the onionlike odor. Generic characters are: perianth subrotate, persistent, of 6 nearly equal, slightly united segments: filaments slightly thicker at the base: ovules $8-10$ in a cell: style club-shaped, persistent and at length splitting.
marítima, Wats. Lvs. several, not sleathing at base, scabrous, as long as the scape. Calif., Nev.

MUKIA, See Melothria.

MULBERRY. Discussed under Morus. French M, Callicarpa Americana. Indian M. Morinda. Paper M. Broussonetia. The wild Rubus odoratus is improperly called Mulberry in some parts of the country.

MULCHING has four general objects: (1) to conserve moisture in the soil by preventing or bindering evaporation; (2) to protect plants from winter injury; (3) to keep the surface of the soil loose and friable; (4) to add plant-food to the soil.

The moisture which is available to agricultural plants is held in the soil by means of capillary attraction. The soil may be conceived to be full of irregular capillary tubes which have a general vertical direction. The upper ends of these tubes or spaces are in contact with the atmosphere, and they are constantly giving off moisture into the air. If the upper ends of these tubes are covered, as with a board or a mulch, the evaporation into the atmosphere is relatively slight. If they are covered with a mulch of ashes or sawdust, a similar result may be attained. This dry earth-mulch may be made on the spot by tilling the upper two or three inches of soil. The philosophy of summer tillage is to prepare and to maintain this mulch of soil, thereby interposing a relatively non-capillary stratum between the moist
soil and the air. This earth-mulch may itself be dustdry, but it protects the soil beneath. There is more or less evaporation into the interstices of the earth-mulch itself, and some of the moisture ascends through the mulch and escapes into the atmosphere; but it bas been found by long experience and by experiments that the earth-mulch greatly lessens evaporation. The frequent stirring of the surface soil in summer is said to make the land moist; as a matter of fact, it keeps it moist. When it is impracticable to keep a surface molch by means of tillage with horse tools or a rake, it is sometimes advisable to use straw or manure. Mulching newly set trees is often desirable when it is not possible to till the land or not practicable to water them. The ideal mulch to conserve moisture, however, is the loose soil, since the stirring of the soil not only affords the mulch but also sets at work various chemical and biological forces which make the plant-food more available.

All herbaceous plants and most shrubs are benefitted by a mulch in the fall, no matter how hardy they may be in the given locality. Nature's mulch is the debris of fallen leaves, grass and other litter. The autumn leaves which blow into the borders and the clumps of shrubbery, afford the very best winter mulch; and yet it is a common practice to scrupulously collect and burn these leaves in the fall, and then if the plants are mulched to apply manure. This is doubtful wisdom. The herbaceous border will be benefitted by a loose, open mulch, 6 to 10 inches deep. If the mulch is of such character as to become very hard and dense, and to hold too much water, it may be injurious. Leaf-mold, loose muck or peat, autumn leaves mixed with some litter which will prevent them from packing too hard, manure wbich is not too strong in nitrogen and potash, fine straw, sawdust, shavings, pine needles, evergreen boughs-these are some of the materials which may be

used as a mulch to good advantage. If the mulch has thoroughly decayed by spring, it may be left on the land and it will make a fine loamy covering which will be much like the vegetable mold found in the woods. Too often the passion for cleanness sacrifices the welfare of the border. Persons will collect and burn every stray autumn leaf, but will not notice many kinds of dirt which are really objectionable.

The mulch keeps the surface of the soil loose and mellow because it protects it from the beating of heary rains and the weight of snow. The vegetable fiber which works into the surface also prevents the particles of heary clay soils from running together or puddling. Soils which are covered with a mulch do not bake.
Whenever the mulch contains soluble plant-food, the soil receives the leachings and is enriched. Stable manure is an ideal mulch for enriching the soil, but if the manure is fresh aud strong, it is likely to injure the crowns of some plauts.
L. H. B.

MULLEIN. See lerbascrm. Mullein Pink. Lychuis
Coronaria. Coronaria.
MURRAYA (J. A. Murray, 1740-1791, professor in Göttingen). Rutàcece. Trees or shrubs without thorns: lvs. pinnate; lfts, ovate, rhomboid or elliptical-lanceolate, cuneate or oblique at base: fls. comparatively large, solitary and axillary, or in terminal corymbs or axillary cymes; sepals 5 , ovate or lanceolate, united only at the base or in the lower third; petals 5, linear-lanceolate, free, imbricate; stamens 10, free, inserted on an elongated disk, the alternate shorter: ovary ovate, $2-5$-celled narrowed into a long and finally deciduous style; stigma capitate; orules solitary or 2, superimposed or collateral in each cell: fr. a small elliptical or round berry. Four species in Indo-Malay region.
extica, Linn. Orange Jessamine. A very variable evergreen sbrub or small tree: young branches pubescent: Ivs. glabrous, $3-8$-foliolate ; 1fts. oblique, shortpetioled, about 1 in . long, obovate or elliptical, entire, shining abore: fls. campanulate, $1 / 2 \mathrm{in}$. in diam., pure white, very fragrant: ovary 2 -celled: fr. a small berry, elliptical, reddish, glandular-dotted, 1-2-seeded. ludia, China, Australia and the Pacific islands.-A tender tropical shrub, with dense foliage and of upright-bushy habit. Cultivated to some extent on lawns in southern Fla. and S. Calif., and in hothouses. A fine ornamental pot-plant, blooming when small. Murraya exotica "needs ample pot room and a liberal supply of plant-food. An annual application of bone-meal when repotting in February intensifies the color of the foliage, increases the size of the flowers, and causes it to bloom more frequently. When properly treated, the first crop of flowers usually appears here [Georgia] during May, another during July, and this is succeeded at intervals of from four to six weeks until fall. For winter, give it the temperature of a cool greenhouse, but during summer it tbrives best when given full sunshine outdoors." P.J. Berckmans, A.F. 11:1367 (picture).

Kánigii, Spreng. Lus.' $10-20$-foliolate, pubescent or rarely glabrous. Along the foot of the Himalayas in Iudia. - A small, strong-smelling tree. The bark, leaves and roots of this species are used in India as a tonic.
elongàta, DC. Lrs. 4-6-foliolate, glabrous; $1 \mathrm{fts} .4-5 \mathrm{in}$. long, much longer and more lanceolate than any form of M. exotica: bark on slender branches pale yellow. Burma.
paniculata, Jack. Satintwood or Cosmetic Bark Tree. Arboreous: corymbs few-fld, or fls, solitary. - The wood of this species is considerably used because of its strength and endurance and light yellow color. The bark is used as a cosmetic. By some considered to be a form of M. exotica.
H. J. Webber.

MÙSA (named after Musa, the physician of Augustus). Scitamind̀cep. BAnana. Plantain Tree. Large herbaceous or slightly shrubby plants with immense undivided leaves, forming a very conspicuous fea-
1435. Mucuna pruriens, or Cow-Itch ($\times 1 / \mathrm{a})$.
ture in the tropical forests of the Old World, where alone it is native. Characterized by the elliptical pin-nately-parallel-veined lvs. with the sheathing petioles forming a false stem-like structure: fls. unisexual, in clusters, each cluster subtended by a large, colored bract, and all arranged in a dense terminal panicle borne on a stalk rising through the center of the false stem; perianth of 6 parts, 5 of which are united in 1 piece, designated below for convenience as calyx, and 1 free, here termed the petal; perfect stamens 5: ovary inferior, 3-celled, many-seeded: fr. large, more or less elongated, indehiscent, pulpy or dry. Plants of great importance in the tropies, where the fruit is used for food. Bananas are imported into the UT. S. in great quantities from Cuba and Central America, and are also grown in the Gulf states (see Banana). Several species are grown extensively in the North solely for decorative purposes. Latest monograph of the genus by Baker, Annals of Botany 7:205 (1893).
K. M.Wiegand.

The principal species grown for its fiber is Musa textilis. Its cultivation is confined almost entirely to the Philippine Jslands, where it is grown in immense dense groves. The product of this fiber Banana is known in commerce as Matila hemp. This species is a very tallgrowing one, reaching a height of 20 or more feet. It produces an inedible fruit filled with seeds, from which it is readily propagated. It is little known in this country.

As decorative plants in landscape gardening few subjects equal the choicer species of Bananas. The immense leaves arching out gracefully from the top of the "stalk," which is in reality a bundle of long leaf-stems so closely united as to form, for prictical purposes, a real stem, give an effect of tropical luxuriance. As they are of really easy growth, their cultivation in temperate climates is on the increase. The smaller species, some of them with mottled or variegated foliage, are most useful for bedding purposes on a small seale.

Young plants may be obtained from nursery or florist firms in the spring or early summer and kept growing in pots in the conservatory or house until settled warm weather permits open-air planting. They should then be given considerable space in a well-enriched bed, having a situation sheltered from the prevailing winds and where water can be applied during dry weather. The Banana is impatient of shade, doing its best in strong sunshine. Heavy winds tear the large leaves, and hence a sheltered location is hest for preserving the beauty of the foliage. By autumn the plant will be large, and if desired to carry it on to fruiting, it should be carefully lifted into good soil in a large tub for growth under glass during winter. By the following summer it should be of sufficient age and size to bloom and fruit in the open ground. The plants may be stored in a light, frost-proof cellar during the winter, but by this means the foliage will be lost and the plant suffer a severe check. When it is desired merely to have their foliage for ornamental purposes, and fruiting the plant is not specially desired, the heavy tuberous roots may be deprived of tops and stored in dry sand tbrough the winter. In the spring these will throw up shoots, if given heat and moisture in the greenhouse or hotbed.
E. N. Reisoner.

INDEX.

Basjoo, 3.
Cavendishii, 1
Champa, 4. Chinensis, 1. coceinea, 8.
Dacea, 4.
Ensete, 5.
Japoniea, 3.

Martinf, 2. orientum, 4. palustris, 4. paradisizen, 4. rosacea, 10 . rubra, 4 sangrinea, 9 . sapientum, 4 .
seminifera, 6 .
Sinensis, 1.
Sumatrana, 7
Troglodytarum, 4. Cranoscopos, 4. vittata, 4. zebrias, 6.

> A. F'ruit edible, scedless (except ravely Yos. 3 and 4): petal orate, entire. n. Li*s. 2ns ft. loug: plant divarf, 4-6 ft. high: fr. 6 -ringled: fls. 1 in. long...........................
> $\begin{aligned} & \text { BB. Lis. }{ }^{5-9} \mathrm{ft} \text {. long: plant taller, } \\ & 8-30 \text { ft.: fr. } 3-5 \text {-angled: fls. }\end{aligned}$ $1^{1 / 2-2}$ in. long.
> C. Foliage very glancons beneath, firm: fls. rosr-red.
> 1. Cavendishii
> 2. Martini
cc. Foliage green on both sides (except one var. of No. 4), thin: fls. yellowish white, except in two forms of No. 4.

1. Fls. 2 in. long; bracts oblong, brownish: petal equaling the calyx: male nls. persisteat.
Dt. F'ls. $11 / 2$ in. long; petal half the length of calyx: bracts lanceolate: male fls. deciduous.
2. sapientum

AA. Fr. not edible: pulp scanty or none.
n. Plunt tall $(30-40 \mathrm{rt}$.$) , not stolon-$ iferous: petal s-toothed: fatsestem bottle-shaped: fr. very seedy...
3. Basjoo Plant lov ($2-8 \mathrm{ft}$.), stolon i erous: petal linear (orate in Fo. 6), cutire: false stem cylindrical.
C. Fls. about 12 to a bract; petal ovate.
6. seminifera
cc. Pls. only about 8-1 to a bract; petal linear.

1. Lus. large, 5-6 ft. lowg: fr. with stipe $1 / 2-1$ in. long... DD. Lvs. smaller, 2-4 ft. long: fr. nearly sessile.
E. Bracts bright red........ 8, coccinea 9. sanguinea

EE. Bracts pale blue or red-
dish lilac...............10. rosacea

1. Cávendishii, Lamb. (M. Sinénsis, Sagot. M. Chinénsis, Sweet). Chinese Dwarf Banana. Dwarf Jamaica. Stoloniferous: whole plant $4-7 \mathrm{ft}$. high: false stem eylindrical, 3-4 in, in diam.: Ivs, conspicuously spreading, ohlong, $2-3 \mathrm{ft}$. by 1 ft ; petioles short and stout; blade when young spotted and blotched with red, in age rather glaucous: panicle drooping: bracts ovate, dark reddish brown: male fls. persistent; calyx yellowish white; petal one-half as long: panicle very large, the fruits $200-250$, small, $4-5 \mathrm{in}$. by $1 \frac{1}{2} \mathrm{in}$. or more, yellow, slightly curved, broad, obtuse, narrowed to the sessile base; skin thick, flesh delicate and fragrant. Southern China. Int. from Mauritius in 1829. Gin. 32, p. 243; 40, p. $263 ; 44$, p. $496 ; 50$. p. 161. G. C.III. 22:167.-Stands more cold than most Bananas, and its dwarf growth readily allows of protection. Good for planting in the North ; good, also, for shipping. Grown extensively along the eoast of the southern states and in the West Indies.
2. Mártini, Hort. Similar in habit to M. sapientum: 1rs. oblong, long-petioled, quite thick and not easily broken by the wind; veins and stem commonly reddish: fruit rather small, vellowish. Int. from the Canary Isls. R.B. 18, p. 107.-A foliage plant good for exposed places.
3. Basjod, Sieb. \& Zuce. (M. Japónica, Hort.). Japanese Banana. Stoloniferous: whole plant $12-18 \mathrm{ft}$. high: false stem cylindrical, $6-8$ in. in diam.: lvs. oblong, thin, $6-9 \mathrm{ft}$. by $11 / 2-2 \mathrm{ft}$.; petiole about 1 ft . long: peduncle 1 ft . long: panicle dense, nodding: bracts dull brown: petal nearly equaling the ealyx: fr. $30-60$, oblong, pointed, 3 in . long, gradually narrowed to a sessile base, usually containing a few seeds, Liu-Kiu archipelago, cult, in Japan. B.M. 7182. R.B. 22, p. 152. R.H. 1896, p. 203. Gn. 55, p. 3.-Decorative; valuable because of its resistance to cold; may be planted at the North.
4. sapiéntum, Linn. Common Banana. Figs, 187, 188. Stoloniferous: plant20-30 ft.high: false stem cylindrical, $4-6 \mathrm{in}$. in diam.: lvs. oblong, thin, bright green, $4-7 \mathrm{ft}$. by $11 / 2-2 \mathrm{ft}$.; petiole slender, $\mathrm{I}-1 / \frac{1}{2} \mathrm{ft}$. long: panicle often 4-5 ft . long: bracts ovate-lanceolate: $\mathrm{fl} .11 / 2 \mathrm{in}$. long: fr . in the typical form, $3-1$ in. by $11 / 2-2$ in., forming $3-4$ bundles of about 12 each, rounded above, narrowed to a sessile base, bright yellow; flesh good, seedless. Native in India and E. Indian lsls. - Widely cult. throughout the tropics for the excellent fruit, and also more rarely for the fiber, which is inferior to that of M. textilis. Most of the commercial Bananas are obtained from the numerous varieties of this species. The Ori-
noco, Horse or Hog Banana, is probably very near the typical form of this species. It is very hardy, and much grown in Gulf states: fr. 6-7 in. long, not good unless ripened on the plant. The Fig Banana resembles var. Champa, but small fruit purplish: dark lrs. and stem often blotehed with black. Not hardy.
Var. Troglodytàrum, Hort. (M. Troglodytàrum, Linn. M. Uranoscòpos, Rumph, not Seem.). Rather dwarf : Ivs, narrow-oblong: bracts greenish: panicle in fr. erect: fr. small, $2-3 \mathrm{in}$. long, nearly globular, reddish yellow or orange, rarely with a few seeds; flesh yellow, sweet and mawkish. India and Pacific 1sls., rarely cult. in U. S.
Var. Dácea, Hort. (M. Dácca, Horan. M. palústris, Hort.?). Dacea Banana. Rather dwarf: stem glaucous: Ivs. pale green, glaucons beneath; petioles with red margins: fr. yellow, 4 in . long by 2 in , wide, its tip and base bright greeu; flavor good; skin thick.-Tender, not good for cool climates.
Var. Chámpa, Hort. (M. Chámpa, Hort. M. oriéntum, Hort.). Hart's Choice. Lady Finger, or Golden Early Banana. Chumpa. Stem and midrib of leaf tinged with red: fr. pale straw-yellow, about 6 in. long; skin very soft and thin; flesb luscious and delicate in flavor, ripens quickly. Hardy in eool elimates. Best of all for growing in Florida. Much grown in W. Indies.

Var. paradislaca, Hort. (M. paradislaca, Liun.). Plantain Banana. Cooking Banana. Adam's Fig. Male fls, more persistent: fr. $40-60$ on a panicle, very large, $7-14 \mathrm{in}$. long, cylindrical, yellow, acutish; pulp firm and less sacchariue, not very good unless cooked: $1 \mathrm{vs} .5-7 \mathrm{ft}$. and petiole 2 ft . long. India. R.H. 1888, p. 69. L.B.C. 7:684.-Cult. everywhere in tropics, espeeially in Cuba. Most commercial Bananas are of this variety. The Martinique Banana is probably merely a form with slightly smaller fruits ($7-8 \mathrm{in}$. long). Immense quantities grown in W. Indies and Cent. Amer. Fine for shipping.
Var. rùbra, Hort. (M. rùbra, Firming). Baracoa Banana. Red Jamaica Banana. Red Spanish Banana. Stem, petiole, fls. and midrib of leaf dull red: fr. large, $7-9$ in. long at first, dark red, ripening to a yellowish red, of very good quality. - This is the red Banana of commerce, formerly imported in large quantities from the W. Indies. Plant very large and stout, with erect lvs., and is one of the finest for decorative purposes, although not very hardy. The Golden Banana is intermediate between this and var. Champa: fr. golden yellow or reddish, 8-9 in. long, blunt.
Var. vittàta, Hook. Rather dwarf in habit: Ivs. and the long fruits copiously striped with white and often also rose; spathes bright red inside. B.M. 5402.-Very decorative.
5. Ensète, Gmel. Abyssinian Banana. Fig. 1436. One of the largest species, very luxuriant: lvs. oblong, acutish, bright green, up to 20 ft . by 3 ft .; petiole short and broad; peduucle short; panicle nearly globose: bracts ovate, dark claret-brown: fls. whitish, $1 \frac{1}{2}-2 \mathrm{in}$. long, 2 -ranked, 20 or less in each rank; calyx strapshaped ; apex 3 -lobed; petal short, central cusp longlinear: fr. coriaceous, dry, 2-3 in. long: seeds 1-4, black, glossy, nearly 1 in . broad. Abyssinia. G.C. 11. 15: 435; 21: 19; 111. 16: 696. Gn. 47, p. 5; 48, p. 406. B.N. 5223. R.H. 1888, p. 32. V. 5:53. F.E. 11:470.- Most commonly cult. of all decorative Bauanas, and probably the finest; also most hardy of all cult. forms, growing freely during the summer. Seeds germinate easily in botbed.
6. seminifera, Lour. The typical form is not in the trade. Var. zebrina, Hort. (M. zebrina, Hort.). Very similar to M. sapientum in vegetative characters, but much smaller: axis of the panicle velvety: fr. small, oblong, full of sceds and not edible, yellowish or greenish in color: lys, usually purple below and copiously hlotehed or striped with black or dark purple above.A very fine ornamental variety.
7. Sumatràna, Bece. False stem 3 ft. high: lvs. oblong, $5-6$ by $11 / 2 \mathrm{ft}$., glaucous, blotehed with claret-brown; petiole slender: peduncle hairy: paniele drooping, $1-11 / 2$ ft. long: male fis. deciduous: bracts short and rounded: female clusters few, distant: calyx 1 in . long: fr, cylin-
drical, eurved, $2-3 \mathrm{in}$, by $1 / 2 \mathrm{in}$., narrowed suddenly to a slender stipe. Sumatra, 1.H. 27:375.-Used for decorative purposes.
8. coccinea, André. False stem slender, 4-5 ft. by 2-3 in .: lvs. small, oblong, $2-3 \mathrm{ft}$. by $6-9 \mathrm{in}$; petiole long and slender: panicle dense, erect, 6 in. long: female clusters few: bracts lance-obloug, bright red, tipped with yellow: calyx yellow. 1 in . or more long: seeds very small, oblong, rarely produced in cult. S. China, B.M. 1559 . L.B.C. $5: 475$.- Very showy.
9. sanguínea, Hook. f. False stem slender, 4-5 ft. high: lvs. oblong, 2-3 ft. long, thin, bright green; petiole slender, 1 ft . long: panicle at first erect, finally drooping: female, clusters 2-6, each 2-3-fld.: male clasters few, dense: bracts lanceolste, somewhat persistent: bright red: calyx bright jellow, $11 / 2 \mathrm{in}$, long: fr, ob-long-trigonous, 2 in . long, rather pulpy, pale green, variegated witb red : seeds angled, small, black, tubercled. Assam. B.M. 5975. - Decorative and showy.
10. rosàcea, Jacq. False stem $3-5 \mathrm{ft}$, high, $3-4 \mathrm{in}$. in diam.: Ivs. narrow, linear-oblong, firm, 3 ft . long, 9 in . wide, purplish beneath; petiole long and slender, panicle drooping or erect, about 1 ft . long: bracts oratelanceolate; ro=y purple: male clusters more numerous than the female, deciduous: calyx yellow, 1 in . long: fr. oblong, obscurely $4-5$-angled, yellowish green, $2-3 \mathrm{in}$. long; pulp very scanty and scarcely edible: seeds 2 lines in diam., black, tubereled, rare in cult. India, B.R. 9:706. L.B.C. 7:615.-Int. into California.

M. Fehi, Vieill. (M. Seemanii, F, Muell.). Similar to M. sapientum. Lvs, larger and firmer: tr. 5-6 in. long, straight, yellow, edible, seedy. Cult, in Europe. G. C.111. 8: 182.-M. rùbra, Hort, differs from M. coecines in its short petal (one half length of ealyx). Cult. in Enrope. B.M. 7451 . - M. superrba, Roxb. Similar to M. Ensete: trunk often $7-8 \mathrm{ft}$. in circumference at base: panicle drooping, one-third length of stem: calyx of 3 loosely cohering parts. Cult. in Europe. B. M1. 3849,3850. R.H. 1877, p. 277; 1888, p. 33, F. 1873, p. 273.-M. téxtilis, Neé. Manila HEMP. Stem cylindrical, 20 ft . or more high: lvs. glancous heneath, oblong, firm: petal long: fr, on drooping axis, green, $2-3 \mathrm{in}$. long, harrowed to a short, stout pedicel, not edible, filled with seeds. Most important of cordage plants. Immense quantities exported from the Philippines. Int. hy Div, of Pomology, U. S. Dept. of Agric, in 1889, but no longer advertised.
K. M. Wiegand.

MUSCARI (Latin name referring to the musky odor of M. moschatum). Lilideen. Grape Hyacinths are charming, hardy, spriug-blooming bulbs (see Fig. 1439). They are something like a hyacinth, but the clusters are smaller, and the individual fis, are smaller and of different shape. The fis, are more or less urn-shaped, constricted at the mouth and bave 6 small teeth instead of
prominent perianth-segments, as in the true hyacinth. The common Grape Hyacinth, which every garden lover knows, is called \boldsymbol{M}. botryoides, which means "like a bunch of grapes." Everybody who has any ground for gardening should bave some bulbs of this common kind, both blue-flowered aud white. All the other kinds described below are fanciers' plants, interesting chiefly to skilled amateurs. Among them the most remarkable is the Feathered Hyacinth (M. comosum, var, monstrosum), which is a mass of lilac shreds (see Fig. 1438). Any species of Muscari is likely to bave some sterile fls. at the top of the cluster which are of ten of a different color, but in the Feathered Hyacinth there is no suggestion left of the urn-shaped flower, sterile and fertile fls, all being cut into fine strips. This attractive plant has lately been sold for fancy prices by a few progressive florists.

Ail Grape Hyacinths are very much alike and are very interesting, botanically, horticulturally and from the artistic point of view. There are perhaps 40 species in Europe, western Asia and northern Africa. The group needs botanical revision hadly. The chiefly literary sources are Baker in Jour. Linn. Soc. vol. 11 (1871), and in G.C. II. $9: 798$ (1878) ; also Boissier's Flora Orientalis. The width of the Ivs, is an important character, and Baker's measurements seem to refer to herbarium specimens. Live plants should be wider. (A line is a twelfth of an inch.)

Grape Hyacinths are neat little early flowering bulbous plants, good-sized colonies of which give dainty effects in the border from February to May. There are numerons species of these, flowering at different times. They are mostly dark purple in color, either self-colored or tipped with white. There are also a few white and yellow forms, and several species with true blue flowers, the rarest color among flowers, though this would never be discovered in catalogues. M. Szovitsiunum, one of the true blue forms, is quite the prettient of the genus. The plant known to the trade as M. lingulatum or Hyacinthus azureus has the true blue of \boldsymbol{M}. Szovitsianum, and is fully a month earlier. The usual forms grown in gardens are mostly blue (purple) and white forms of \boldsymbol{M}. botryoides. \boldsymbol{M}. conicum is very dark. The Dutch catalogues offer numerons kinds to suit purses in all stages of decrepitude. Muscari offer no difficulties in cultivation. A medium soil perhaps suits them best, but they are usually thrifty growers, and persistent in the garden if foliage is allowed to ripen. They mostly make offsets freely, and produce abundant seed.
J. N. Gerard.

index.

album, 4.
atrocceruleum, 15.
Aucheri, 6.
botryoides, 4.
carnetem, 4, 12. carruleum, 4 . comosum, 2, 15. commutatum, 15. compactum, 17. conicum, 8 .
dipcade, 1. flavum, 1.

Gracum, 3. grandiflortm, 4, 12. Heldreichii, 5. latifolium, 13 . Lelievrei, 4. teucophoum, 4. lingulatum, 6. macrocarpum, 1. major. 1. major. 1. majus, 4. minor, 1.

moschatum, 1.

 monstrosum, 2,15 . neglectum, 14 . pallens, 11. pallidum, 4 . paradoxum, 7. plumosum. 2, 15. polyanthum. 16. racemosum, 12. sucemosens, 1 Szaveotens, 1.Subgenus 1. Moscharia. Perianth urn-shaped, but with a relatively long-tubular base; segments minute, even for the genus, roundish, spreading and thickened on the back.
Sabgenus 1I. Leopoldia. Perianth obovoid-urn-shaped, grooved above, 3-4 lines long: segments triangular. reflexed, not thickened on the back: raceme loose, and longer than in the next. Particularly characterized by the conspicuous bearded appearance of the sterile fls. \qquad
\qquad
\qquad
Subgenus III. Botrvanthes. Perianth more or less urn-shaped, grooved or not above, $1-2$ or rarely 3 lines long; segments triangular, usually reflexed: raceme dense, $1-2 \mathrm{in}$. long. Sterile fls. inconspicuously bearded or hardly at all.
A. Fertile tls, a little longer than broad, i. e., obovoid-globose. B. Le's. 8-4: fls. 12-20.4. botryoides
BB. Le's. $5-6 ; \mathrm{fls} .8-12$. 5. HeldreichiiBBB. Les. 2-3: tls. 6-10.AA. F'ertile fls. $1 \frac{1}{2}$ times as long asbroad, i.e., obovoid-oblong.

1. Color of fls. bluck-blue.
2. paradoxum
BB. Color lively dark lilac or blue.
C. Lus. S-4 lines broad 8. conicum
cc. Les, 1-2 lines broad.
D. F'ls. violet, fragrant..... 9. micranthum
DD. Fls. blue, faintly odorous 1 10. Szovitsianum
BBB. Color nearly white. 1. pallens
AAA. Fertile $7 l s$. twice as long asbroad, i.e., obowid-cylindrical.B. Lis. almost cylindrical (sub-terete)
3. racemosum
BB. Li's, oblanceolate 13. latifoliumBBB, Lo*s. lorate, i.e., strap-shuped.14. neglectum15. commutatum16. polyanthum17. compactum
4. moschàtum, Willd. (M. suazèolens, Fisch.). Mt'sk Hyacinth. Lvs. 5-6, I ft. long, $1 / 2-3 / 4$ in. Wide: raceme loose, $1-3$ in. long: fls, 20-50, blue. Asia Minor. B.M. 734. Cu. 26, p. 137.-Has the odor of musk. Vars, màjor and minor are advertised. M. dipeade major and minor have appeared in the catalogue of J. M. Thorkurn \& Co. since 1878, hut these names are not in Index Kewensis. Thorburn \& Co. write that this is the Nutmeg or Musk Hyacinth, Mascari moschatum, and that M. dipcade still appears in Dutch catalogues.

Var. flàvum, Lam. (M. flàum, Van Tubergen. M. macrocárpum, Sweet). Fls. yellowish (Van Tubergen says clear yellow). B.M. 1565.
2. comòsum, Mill. Fig. 1437. Lvs. 3-4, 1-11/2 ft. long, $1 / 2-1$ in. wide: raceme loose, $6-12$ in. long, $40-100$-fld.: lower fls. fertile, olive, tipped brown, borne on long horizontal pedicels: apper fls. sterile, blue or violet, borne on long up-curved pedicels, making a corymbose cluster. Mediterranean region, Orient.
B N. 133 (as Hyacinthus comosus). - An interesting form, but rare in cult., being greatly surpassed in popularity by

Var. monstròsum, Hort. Feathered Hyacinth. Fig. 1438. All the fls, sterile, and cut up into fine shreds. Ging. 7:290. A.F. 14:1286. Gn. 26, p. 137. - A charming and novel plant. Also called Fair-haired or Tasseled Hyacinth, and Shredded Lilac. Sold also as M. monstrosum, M. plumosum, M. plumosum monstrosum, ete. For other trade synonyms, see under M. commutatum.
3. Græeum, Heldr. Differs from M. comosum in having its sterile fls, in a short, dense, conical spike, the pedicels of which are very short. Greece.
4. botryoldes, Mill. Com-

1437. Muscari comosum. (Adapted from Botanical Magazine.) mon Grape Hyacinth. Fig. 1439. Lvs, linear-lorate, 3-1 lines wide: scape $6-9 \mathrm{in}$. long: fls, pale blue, odorless. Eu., Orient. B.N. 157 (as Hyacinthus botryoides). A. F. 13:1197. Gn. 26:453. R.B. 20:3.-The following rarieties are offered: album, carneum, coruleum, leuco phatum. Lelierrei, majus, pallidum and pallidum grandiflorkm. These range from white through fleshcolor to sky-blue.
5. Héldreichii, Boíss. Lvs. linear-filiform, subterete, 13/2 lines wide: scape 4-6 in. long: fls, amethyst-colored, with conspicuous white teeth. Greece. Gn. 26:453.
6. lingulatum, Baker (M. Iùcheri, var. lingulàtum, Boiss.). Lvs. 3 lines wide: raceme ovate. Asia Minor,According to Index Kewensis this is a good species, but

1438. Muscari comosum, var. monstrosum. (Adapted from Gardening.)
J. N. Gerard says the plant sold under this name is the same as Hyacinthus azureus.
7. paradoxum, C. Koch. Lrs. 3, 1/2-3/4 in. wide. Armenia.
8. conicum, Baker. Lss. about 6, narrower: fis.violetblue. Habitat nnknown. Gin. 51:1106 (?).-Van Tubergen says fls. black-blue.
9. micránthum, Baker. Fls. bright violet. Habitat unknown.
10. Szovitsiànum, Baker. Fls. bright blue, considerably larger ($1 / 6 \mathrm{in}$. across, but only $1-12 \mathrm{in}$. across in M. micranthum). Persia, Caucasus. B.M. 6855.
11. pállens, Fisch. Lvs. numerous, filiform: scape 3-5 in. long: raceme 12-20-fld.: fls, white or nearly so. Caucasus, Iberia.
12. racemòsum, Mill. Lrs. 5-6, 5-6 in. long, 1-1 $1 / 2$ lines thick: fls, odorous, dark blue. Mediterranean, Caucasus. b.M. 122 (as Hyacinthus racemosus). - Vars. carneum and grandiflorum procox are offered.
13. Iatifflium, J. Kirk. Lrs, always solitary, 3/4-1 in. wide: sterile fls, 6-10, much paler than the others. Phrygia.
14. negléctum, Guss. Lvs. numerous, 9-12 in. long, $11 / 2-2$ lines thick: fls. odorous, dark blue. Mediterranean region. Gn. 26:453. - This differs from M. commutatum and M. polyanthum in having the segments of the perianth triangular and reflexed. M. negleetum multiflorium and M. neglectum Atlanticum are trade names. See supplementary list under M. Allanticum.
15. commutàtum, Guss. Lrs. 5-6, 5-6 in. long, 11/2-2 lines wide: fls, odorless, dark blue; segments very short, not recurved. Sicily.- Krelage advertises vars atro-

саruleum, comดsum, plumosum, plumnsum monstrosum, and plumosum cioluceum. It is apparent that he regards M. comosum and its forms as varicties of M. commutatum.
16. polýanthum, Boiss. Lrs. $2-3$ lines wide. Differs from M. neglectum and commutatum in having longer pedicels and the capsule a half smaller, not more than 2 lines wide.
17. compáctum, Baker. Described only as Botryanthus compuctus in an obscure work, which states that the fls, are nearly black, with whitish teeth which are semiorbicular, obtuse, spreading-recurved. Baker places M. compactum next to M. commutatum, in spite of the fact that the original description says the fls, are ohovate. Baker adds that this M. compactum is the M. neglectum of some authors in part. The plant in the trade as M. compartum may be a variety of some common species, since Van Tubergen says the fls, are pale blue.
M. Argiek, little known botanically, is said to be extra good. In tbe trade, M. Atlanticam is given as a synonym. Baker said he could not distinguish M. Atlantimum from it. neglectum.M. Atlinticum. Consnlt the preceding entry, i. Argei.- M. azureum, Hort., is said by Van Tuhergen to be the same as Hyacinthus azureus, which in turn is referred to H . ciliatns by Index Kewensis. Gn. $36: 713$. Van Tubergen also advertises var. amphibolis (M. Freynianum).-M. Motelayi is offered by Van Tubergen.

MUSENIUM (a name for fennel, another plant of this family). Cmbellifera. Three species of resinous perenial herbs in middle and western North America, stemiess or branching, decumbent or ascending. 2-12 in. high. Lvs, pinnately decompound: fls, yellow or white, in compound umbels: fr. ovate or ovate-oblong; ribs 5, filiform, slightly prominent, with 2 or 3 oil-tubes in the intervals. Coulter and Rose, Revision of North American Umbelliferæ, 1888.
trachyspérmum, Nutt. (M. divaricàhum, var. Hodkeri, Torr. \& (iray). Decumbent : ivs., except the radical, opposite, bipinnatifid: fis yellow: fr. scabrous. Spring. Saskatchewsn to the Upper Missouri, the Platte, and S. W. Montana. - Procurable from dealers in western native plants.

MUSHROOM. While the word Mushroom is now often used as a general term for a large number of the higher fungi, chiefly those belonging to the Agaricini, it is by some limited to the common edible species in cultivation and which also grows spontaneously in

1439. Muscari botryoides ($\times 1 / 3$).
lawns, pastures, ete. By others the word is employed for all edible species, while toadstool is employed to designate poisonous species; such persons usually make an incorrect application of these terms to many of the plants. The word is probably derived from the

French word "inousseron," und is sometimes pronounced "mushroons," or "musheroons" by English-speaking people in America. Mushroom and toadstool are sometimes used as synonymous terms, especially in speaking of the group as a whole. It is difficult, therefore, to give either a satisfactory definition of the word Mushroom, or satisfactorily to limit the range of forms for which the name may be used. In a horticultural sense

1440. The gardener's Mushroom. Agaricus campestris ($\times 1-5$)
color, and as the plant ages become purple-brown or hlackish in color, due to the immenso number of spores borne ou the surface. One can gain a good idea of the number of spores borne on a single plant by eutting a cap from a Mushroom, just at maturity, and placing it, sills downward, on a piece of white paper for a few hours. The spores fall from the gills and pile up in ridges, giving an exact print of the spaces between the gills.

The parts of the plants enumerated above are easily seen. Other important structural characters are seen with the aid ef the mieroscope. A thin section across the gills when seen with the microscope shows the structure as seen in Fig. 1442. The middle part of the gill is the trama. On either side of the trama is the subhymenium, composed of branches from the trama and forming short cells. The cells of the subhymenium in turn give rise to the basidia (hasidium), clubshaped bodies, whieh form a palisade layer of cells over the entire surface of the gill. This palisade layer of the basidia forms the fruiting surface, or hymenium.

At the end of each basidium are either 2 or 4 slender, pointed processes, the sterigmate (sing. sterigma). These bear each a single spore, the basidiospore. The usual number of sterigmata on the basidium in the Agaricini is 4; but in Agaricus campestris the number seems to vary from 2 to 4 . In plants grown in a Mushroom house, 2 have been found, while plants from the field show 4. Whether the number 2 for eultivated forms is constant, or 4 for the field forms, has not been determined.

Devetopment of Agaricus campestris. - The spores of the Mushroom in the fleld probably often germinate and produce new mycelium or "spawn," though this is not necessary for the continuance of the plant from one year to another, since the spawn can live through the winter in the soil, and the following year then spreads. In ordinary Mushroom culture, however, the spores probably play little part in the propagation of the plant, since this is accomplished by the growth and propagation of spawn. If the soil where plants are growing is carefully dig away there will be seen slender and irregular whitisn cords coursing through it, and some of them attached to the base of the stem. These whitish cords are what the horticulturist calls "spawn." They are cords of $m y$ relium, and are composed of numerous very slender and delicate whitish threads. This is the vegetative portion of the Mushroom. If the soil at the base of a tuft of

1441. Cultivated Mushroom, Agaticus campestris. ($\times 2 / 3$.)
young plants in a Musbroom bed be washed away, a large number of these cords will be exposed. This is the part of the plant which grows and spreads through the soil, absorbing solutions of the organic matter in the soil for food.

Button Stage. - After an abundance of the mycelium, or spawn, is formed there appear here and there on the
eords small rounded hodies formed by the upward growth of the threads of mycelium. These increase in size and grow toward the surface of the ground. Each one is the young stage, or button, of the Mnshroom. As it enlarges, the upper end appears as a round body on a short stalk, thus outlining in the embryonic stage the different parts of the mature plant. The gills are forming on the under side of the cap. They are at this time covered. They appear on the under side of the minute constriction at the junction of the eap and stem. At this stage they are covered by a loose growth of myceljum extending from the upper part of the stem to the margin of the cap. This forms the veil. The gills are formed by mycelium growing downward on the under side of the cap in radiating rows, thus forming the lamellia. The plant now continues to enlarge and the eap expands. Just about matarity the veil ceases to grow and the expanding eap thus stretches it until finally the veil is ruptured, usnally next the margin of the cap, and then it hangs as a collar or ring on the stem (seen at a, Fig. 1441).

Position of Agaricus campestris in Classification.One of the large snbdivisions of the bigher fnngi is mate up of the Mushroonus, toadstools, puff-balls, etc. All of these are characterized by a more or less welldeveloped fruiting surface, or hymenium. The struetural element of the hymenium is the basidium, and in the large number of the species the form of the basidium does not vary to any great extent from that of the common Mushroom. The basidium, then, is the characteristic frnit structnre of this large subdivision of the fungi. For this reason, the plants included in this suhdivision are termed the Basidiomycetes. The Basidiomycetes, taken iu the sense of the earlier students of the fungi, were divided into two orders, according to the condition of the fruiting surface at the maturity of the plant, namely the Hymenomycetes and the Gasteromycetes. In the former, the frniting surface is either exposed from the beginning, or if covered at first, is at last exposed before the maturity of the spores, just as the hymenium of Agaricus campestris, at first covered by the veil, is exposed hefore the maturity of the spores by the rnpture of the veil. The Mushrooms, toadstools, etc., belong, therefore, to the Hymenomycetes. In the Gasteromycetes, on the other hand, the spores are matured before the hymenium is exposed, as in the puffball, earth-star, etc., which open after the spores are ripe.

F'amilies of the Hymenomycetes. - The usage of the earlier hatanists in the arrangement of families will be followed here, since there is not an opportunity to properly set fortb the principles of classification adopted by some recent systematic works. The arrangement depends on the character of the frniting surface or bymenium.
A. Fruiting surface uneven; i. e., in the form of plates, tubes or spinous processes.

1. Agaricace w, fruiting surface in the form of plates or gills.
2. Polyporacea, fruiting surface in the form of pores or tubes.
3. Hydnacea, fruiting surface in the form of spinous or tubercular processes.
A.A. Fruiting surface even; i. e., not as in A, except in the case of plants of a gelatinous texture.
4. Clavariacea, plants more or less erect, standing out from the substratum, and covered on all sides by the hymenium.
5. Thelephoraces, plants either erect or diffused over the snrface of the substratum, one side only (in the case of erect plants usually the under side) covered with the bymenium.
6. Tremellinea, plants of a gelatinous texture, various in form.
Agaricace.e.-The common Mushroom, Agaricus campestris, belongs to this family. The family Agaricacers is made up of what are now popularly termed agarics. Very many of the species were once placed in the genus Agaricus. The genus hecame so large that it was subdivided into a large number of subgenera, many of which have recently been raised to the rank of genera. In thus subdividing the old genus Agaricus into a number of genera there has been a lack of uni-
formity on the part of systematists in the choice of a generic name for the common Mushroom. Saccardo retained the genus Agaricus for the common Mushroom and its near allies, although disearding the subgenus Psalliota. Some liave emploged the genus Agaricus, some Psalliota, others Pratella, and still others propose to restore the antiquated genus Fungus, and call our plant Fungus campestris. This is not the place for a

7. Section of a gill of Agaricus campestris, enlarged. Tr., trama: sh., hymenium; b., basidium; st., sterigma; sp., spore.
diseussion of the merits of any of these names, but it seems better in the present instance, at least, to use the generic name Agaricus with the limits of Psalliota Fries.

Other Species of the Gemus Agaricus.- There are a number of other species of the genus, as thus limited, which, because of their size and esculent qualities, are worthy of mention.

Agaricus arrensis, the Horse Mushroom, grows in grassy fields and pastures during the autnmn. It is a larger plant than the common Hushroom, has a thicker cap, longer stem, and the veil is double, the lower or outer portion splitting radially into a star-shaped fashion and remaining attached to the inner portion. Agaricus silvicolus, the wood-inhabiting Mushroom, grows in woods. The whole plant is whitish,but tinged more or less with yellow, the cap is smooth, and the long stem has an abrupt and broad bulb. The veil is thin, membranaceous, but iu some specimens shows a tendency to be double, as in Agaricus arvensis. Agaricus Fodmani grows along the streets of cities in the hard ground between the sidewalk and curbing, and similar places. It is entirely white, the cap thick and firm, the stem short, and with a short, thick, double annulus. Agaricus fabaceus (A. subrufescens, Peck) bas a light reddish brown cap, a long stem somewhat enlarged below, and a ring which has soft scales on the under side formed, much as in A. silvicolus, from the cracking or splitting of the outer layer. The plant has the taste and odor of almonds. It grows in greenhouses. It sometimes grows in compost heaps. It often forms large clusters of many individuals. It has been successfully cultivated. Agaricus salwaticus grows in woods during late spring and snmmer. It is a large plant, usually about the size of the Horse Mushroom, hut thinner, and with numerous minute dark scales on the surface of the cap, which form a solid patch of dark color at the center. In age, the cap is more or less flat, and it has bern called the flat-eap Mushroom (.1. placomyces). The stem is long, enlarged below, and the ring is double, exactly as in the Horse Mushroom. Agaricus comtuhts, a small species, rather rare, but with a wide distribution, is regarded with suspicion by some.

Coprinus. - In the genus Coprinus, 3 of the edible species are quite common. The spores are black and the gills and more or liss of the cap dissolve at maturity into a black fluid.

MUSHROOM

Coprinus comatus, the Shaggy-mane Mushroom, or Horse-Tail, occurs in richly manured lawns or parks in early spring or late autumn. It is white in color, with a cylindrical cap $3-4 \mathrm{in}$. long and I-2 in. in diameter. The cap is very shaggy, the seales often being black in color, while the gills are at first salmon color. The ring on the stem is free and movable. It is one of the hest of the edihle Muslirooms.

Coprinus atrementarius, the Ink-cap, grows in similar places. The eap is oval, from $1-3 \mathrm{in}$. long and nearly as wide. It is nearly smooth, and grayish in color. The ring is fixed and not at all prominent; hest seen just as the margin of the cap is parting from the stem.

Coprinus micaceus, the glistening Coprinus, grows about old stumps and from old roots or other huried and rotten wood. It is smaller than the two species enumerated ahove, and tan in color, the cap when fresh being cuvered with thin, louse, flaky scales which glisten in the sunlight like mica particles, but they are easily rubbed off or washed off by rains.

Lepiota. - Of the white-spored agaries the genus Lepiota, with an annulus on the stem and the gills usually free from the

1443. The deadly Amanita. Amanita phalloides. stem, contains several edihle species. Lepiota procera, the Parasol Mushroom, grows in pastures, lawns, and sometimes in gardens. Lepiota matina, the smooth Lepiota, grows in similar places and is entirely white.

AmANITA.-The genus Amanita is closely related to Lepiota, and contains, besides several edible species, a number of poisonons ones, a few of which are the most deadly of all the Mushrooms. Amanita possesses the characters of Jepiota, with the additional cliaraeter of a volva, or prominent universal veil, forming an outer layer of greater or lesser thickness and composition, which is ruptured as the cap expands and the stem elongates. In Lepiota the universal veil is not prominent, and it is further closely united with the surface of the cap. The volva in Ananita is often left as a prominent cup-like structure at the hase of the stem (see Fig. 1443), and because it is present in some of the poisonous species is known popularly as the "poison cup," "death cup," etc. It is present, however, in some of the edible species.

Amanita phalloides, the deadly Amanita (Fig. 1443), is one of the most fatal species. It is 4 to 6 in . high, and the cap is 2 to 4 in . in diameter. The cap is dark gray or umber, or whitish with a yellowish tinge, or quite yellow, or in some forms, especially European ones, the eap is green. In other cases the whole plant may be entirely white. The volva in typieal forms splits at the apex as the young plant is expanding, and is left as a cnp with prominent lubes, as shown in Fig. I443. In other eases the rolva is ruptured irregularly, so that portions of the universal veil are left on the surface of the cap. In still other cases the volva splits in a circumscissile fashion, that is, circularly or transpersely about the middle, the lower half remaining attached to the surface of the lonlb at the base of the stem, while the upper half remains loosely attached to the upper
surface of the cap, and is torn apart into seales as the cap expands. In these forms the volva forms a narrow rim or margin on the outer angle of the bilb, so that the latter appears saucer-shaped. The cap is rather slimy when moist. These great variations in this very polsomons species should make the novice very cantious regarding the species of Amanita, or indeed any species of Mushroom with which he is not quite familiar. This species of Amanita nsually oceurs in woods or groves or in the margins of woods, while the Agaricus campestris or the Lepiota naucina ocenr nsually in open grassy places. But these differences of habitat cannot be relied on altogether, for the deadly Amanita, expecially the white form, has been found in lawns far from woods, and in such eases might be mistaken for the smooth Lepiota, since this is white in color. The deadly Amanita is usually deeply seated in the ground, so that the stem might he broken in gathering it when the rolva would be left in the gronnd, and it might easily he mistaken for some species of Lepiota.

Amanita verna, the Destroying Angel, is by some regarded as only a white variety of A. phallvides. The entire plant is white, the volva splits at the apex, and thus a prominent free limb of about three lobes remains at the hase of the stem. The free limb remains more or less closely applied to the stem. The annnlus is broad and entire, and hangs down as a broad collar from the mpper part of the stem.

Amanita rirosa is very near A, vema. It is distinguished only by the torn reil, portions of which remain clinging to the margin of the cap, and by the scaly character of the stem, characters which show every gradation into -1 . verna. Both are deadly poisonous.

Amanita muscaria, the Fly Agaric, is also a poisonous species, though not so dangerous as those named ahove, since the prisonous effect can be counteracted if treatment is promptly employed. The volva splits transversely into several concentric, interrupted rings which persist as scaly rings on the upper part of the bulb on the base of the stem, and as scattered scales on the surface of the cap. The cap is yellowish or orange-yellow, sometimes red in eolor, and in age sometimes fades ont so that white forms appear. The gills are nsually white, as are also the ring and the stem. I manita Frostiana is a closely related species with the same color on the cap, but with yellowish gills and veil, though variations in the color are shown in different plants when the cap only may be yellow. The scales are usually yellow, bnt may also be white.

Of the edible species may be mentioned Imanita Cosarea, the "Royal Agaric"or "Casar's Agaric." The cap is bright orange or yellow, with prominent sirite or furrows on the margin. The gills are orange, though the spores are white. The reil and stem are often yellow, especially in the larger specimens. The volva splits at the apex and is loft at the base of the stem as a cup with a prominent free limb, which noually fits closely tos the stem. The volva is white, and rarely are portions of it left on the surface of the cap. It is a rery heantiful species, oceurring during late summer and autumn in woods, and is more common in the sonthern states than uorth.

Imanita rubescens, another edible species, has a volva which is more or less friable, that is, it crumbles more or less into loose particles which easily wash off from the cap as well as from the base of the stem. The entire plant has a dull reddish tinge, and when bruised or eut quickly changes to a deeper reddish color due to a reddish juice in the plant. Small forms of the species do not show the color so well.

Imanita sotitaria, the Solitary Amanita, is one of the largest species of the genns. It is almost pure white, the surface of the cap often being grayish, and sometimes with tints of brown in the scales, especially in old plants. It grows in rather open woods or hy roadsides in woods. The volra is entirely broken up into mealy particles wbich easily rub off, or there are conic scales, especially toward the center of the cap. The reil is very delicate and easily torn into shreds, which disappear soon. The stem has a large bulb, which tapers into a long, root-like process in the soil. The plant is said by some to be edihle. Amanita strobiliformis is a closely related species, if it is not identical with it, and is said
by some to be poisonous, so that caution should be employed in eating plants of this form unless one is certain of the species and of its edible qualities. A. strobiliformis is rarely found in this country, and judging from the characters of certain plants ttributed to it, there is a strong suspicion that it is only a form of A. solitaria with large scales.
Other native Mushrooms of economic importance may be mentioned:
Armillaria mellea, the Honey-colored Agaric, occurs in late summer and during the antumn about old stmmps, and from roots. The plants are clustered, the cap is more or less covered with pointed blackish erect scales, the gills are attached to the stem, and an annulns is present. The plant is also a parasite, especially on the roots of coniferous trees, in some instances killing the trees. It develops under the bark long black cords of mycelium. The plant is edible.
Pleurotus contains several edible speciex: the oyster agaric, P. ostrealus; the elm Pleurotus, P. ulmarius; and the sapid Pleurotus, P. supidus, all growing on tree trunks, stumps, etc., especially ahundant in the autumn.

Tricholoma personatum, "blewits," is regarded as an excellent edible species. It grows on the ground in woods. When young, the entire plant is of a pale lilac or violet color, the color fading out in age. The spores are of a light ochre color.
Cantharellus cibarius is the well-known chanterelle. It is yellowish in color. grows in woods on the ground, is somewhat irregular top-shaped, and the gills are mere folds, which run irregularly from the stem to the margin of the cap, and are much branched. It is one of the best edible species.
Marasmins oreades, the well-known Fairy Ring, or champignon, grows in lawns and pastures. It is white, with a cream-colored cap. It often grows in the form of rings on the ground, though not always.
The genus Lactarius contains a large number of species. The plants are more or less fleshy and are characterized by the presence of a milky juice contained in a system of tubes throughont the plant. This juice exudes in drops when the plant is bruised or ent. In the larger number of species the juice is white in color, in some it changes on exposure to the air to various shades of yellow, while in others the milk is orange, blue, etc., from the first. Lactarius deliciosus is one of the best of the edible species, as its name indicates. The milk is orange in color. The plant is dull orange in color and marked on the cap with concentric zones of darker color. In age bruises of the plant hecome more or less tinged with green. Lactarius volemus is dull orange in color, the color being uniform, the flesh quite firm, and the milk white, sweet and very abundant, quickly exuding in large drops or running from cut or cracked portions. Lactarius corrugis is closely related but darker in color, sometimes dark brown, the gills also being dark orbre-brown in color. Both species are excellent, and grow in the woods during summer and autumn. Lactarius piperatus is entirely white, with close and narrow white gills, and abundant milk which is very hot or peppery to the taste. It is said to be edible, but should not be confused with certain species having peppery milk, which are reputed to be poisonous. Lactarius resimus is another white species with white and very hot milk, which is suspected. Lartarius Indigo is of an indigoblue color, with faint zones of a darker color on the cap, and with a dark indigo-blue juice.
The genus Russula is closely related to Lactarius, but lacks the milky juice. In this genus oceur many of the brilliant-colored agarics. The entire plant is more or less brittle and easily breaks, the gills of many species crumbling easily when rubbed. Russula lepida, with reddish cap and stem, white gills with the red color from the cap extending a short distance on the ends of the gills, taste mild, is an edible species. Another edible species, Russula alutacea, has a reddish or purple cap, but the gills and spores are ochraceous in color. The taste is mild. Russula emitica is a poisonous species. The cap is rose-color or red, the cuticle easily peels off from the cap, the margin of the cap is deeply furrowed and warty along the ridges, the stem is white or reddish and the taste of the plant is peppery.
Of the tube-bearing Fungi (Polyporacece) the genus

Boletus contains a number of edible as well as poisonous species. In shape the plants are like the Mushroom, but they bave a porous surface instead of gills on the under side of the cap. Boletus edulis has a yellowish or dull brownish cap, pores white and closed at first, but yellowish or greenish yellow in age. Boletus felleus (poisonous) is of about the same size and resembles the edible species closely, but the tube surface is pink or flesh-color, and the taste is bitter. In the genus Polyporus most of the species grow on wood, trees, stumps, logs, branches, roots, etc. The sulfur polyporus, P. sulphurens, forms clusters of sulfur-yellow bracket-like caps, on various broad-leaved trees or stumps. Polyporzs frondosus grows from roots at the base of dead oak stumps, forming large irregularly branched leafy masses with gray caps and whitish stems and pore surface. Both of these are edible.
In the spine-bearing Fungi (\boldsymbol{H} ydnacece) the under surface of the cap presents numerous spine-like processes. Hydnum repandum, in shape like a Mushroom, with the cap more or less irregular, and of a buff or cream color, is an excellent edible species. The Coral Hydnum, the Bear's Head, the Medusa's Head, and Hydium ermaceum, all growing on trees, all white in color, and branched, or forming large masses from which long spines dangle, are all edible.
The Club Fungi (Clavariacea) are all said to be edible. The Horn of Plenty, Craterellus cornucopioides, funnelshaped, and smoky in color, with a smooth under surface, belongs to the Thelephoracere, and is edible.

Among the Puff-balls (Lycoperdaceae) all the species when young and white inside are edible, that is, they are not poisonous. Some are better to the taste than others. The two best ones are the Giant Puff-ball, Lycoperdon giganterm and the Lycoperdon cyathiforme. Both of these grow in lawns or fields, the former grows sometimes to a large size, several feet in diameter; while the latter is 4 to 6 inches in diameter.
Besides the Mushrooms proper which belong to the Basidiomycetas, certain of the large Ascomycetes are edible and are usually included in treatises on Mush rooms. In the Ascocomycetes the spores are borne on the inside of a club-shaped body called the ascus, and this is the chief point of difference in them from the Basidiomycetes. To the Ascomycetes belong the following. The Morels grow on the ground in damp places. They have a stout stem and a rounded or more or less elongated cap which is deeply and coarsely

1444. Morel-Morchella esculenta ($\times 1 / 3$).
pitted. Mforchella esculenta, represented in Fig. 1444, shows well the general character of the genus. In Helvella, containing several edible species, the cap is in the form of several (usually two) irregular flaps, sometimes free below from the stem, sometimes unived with it. Lastly, the Truffles might be mentioned. They are subterranean Fungi rounded or globose in form, firm,
and contain the spores inside of the rounded mass within sacs. Few have been found in this country, beeanse they have not been diligently searched for.

Geo. F. Atkinson.
Mushroom Culture. There is no science of Mushroom culture. That is to say, one does not know why he fails. This is equiralent to saying that he does not know why he succeeds. By practice and experimenting one hits upon or develops a method, and if he persists he may become very skilful, but it is next to impossible for him to impart his knowledge. If he writes an article, he describes his method in detail and deprecates other methods; but the learner will be as likely to succeed by some other method, and neither man will know why. There are few people, if any, who succeed nniformly with Mushrooms. Beds made the same day and of the same material, planted from the same spawn, and similarly cared for, may give very different results. One bed may fail outright, and another may produce a good crop. Persons who make uniform commercial success of Mushroom-growing accomplish it by having many beds or by proceeding on a rather large base: it is infrequent that all the beds fail. The biological problems concerned in the propagation, growth and appropriation of food of the Mushroum must be anderstood before one can lay down principles for the culture of Mushrooms.

Decaying vegetable matter, a uniform and rather low temperature, a uniform supply of moisture, - these are the general requisites for Mushroom-growing. The decaying matter is supplied by borse manure. The manure is allowed to heat and is turned several times before it is placed in the bed. The heating itself is probably of no advantage except as it contributes to the decay of the material: heat can be supplied by other means if necessary. The broken and decaying manure is placed a few inches or a foot deep in beds. When the temperature is reduced to 90° or less the spawn is planted. As soon as the bed has cooled sufficiently, it is corered with earth or litter to regulate the temperature and moisture.

The cultivated Mushroom is native in temperate climates. In the United States and Canada it grows naturally in fields and pastures. But it is grown indoors: this is because the conditions can be better controlled under cover, particularly the temperature. Now and then some one makes a success of growing Mushrooms out of doors, but this practice does not promise much for most parts of America. In parts of Europe, growing in the open is more successful. Cellars or pits are favorite places iu which to grow Mushrooms. The conditions are uniform. Caves are favorite places in which to grow Mushrooms, because of the slight fluctuations of temperature and moisture. Cellars and caves are dark: therehy has arisen a belief that darkness is essential to the growing of Mushrooms, but this is an

1445. A clump of young Mushrooms ($\times 1 / 3$).
error. They often grow well in an unscreened greenhouse. Pastures are not dark. Spawn may be planted in a lawn, and Mushrooms will sometimes come; but it is seldom that the conditions are right for a crop.

Mushrooms are in edible condition at any time from their first appearing above the ground to the time when the rim of the cap begins to turn up and the flesh to lose its softness. See Figs. 1440, 1441. For pickling, "buttons" are usually preferred; these are the young

Mushrooms (Fig. 1445) taken before the cap has expanded.

Mushrooms are propagated by spores and spawn, usually the latter. Spawn is the mycelium. It may be dried, and will resume growth when congenial conditions are given. It will keep for a number of years in a cool, dry place. Dryness is essential. This spawn may be secured from any place in which Mushrooms are growing. The soil or manure containing the mycelium

1446. Mushroom spawn.

English spswn, or "bricks," on the left; French or
"flake" spawn on the right.
is broken into large lumps or flakes, and is planted in the desired place; the mycelium spreads through the bed and in time bears the truiting stage or Mushroom. Formerly the spawn was gathered as needed, but since about 1830 it has been made or produced as a commercial product. For this purpose the spawn is grown is some prepared material, which may be dried and transported. The making of spawn is a business of itself. The English make and use the spawn mostly in brick-like masses of earth and manure (Fig. 1446). The Frencli use also a spawn borne in a loose litter-like material (Fig, 1446), although not all of the French spawn is made in France. The English or lrick spawn comprises nine-tenths of the spawn used in America. The brick is made of a mixture in about equal parts of horse mamure, cow manure and loam. These are wet and mixed until the material has the consistency of mortar. The material is then spread on a floor and is allowed to dry until it can be eut into pieces, or "bricks." While the bricks are still moist, a hole the size of a walnut is made in the brick and fresh spawn is inserted. The bricks are then placed under cover or in a mild hotbed, where they are given such conditions as will cause the mycelium to penetrate them thoroughly. When the mycelium has ramified throughout the mass, and the surface has a cloudy look, the brick is dried and stored. This brick may be likened to a yeast eake.

Expert Mushroom-growers believe that spawn which is made over and over again from the mycelinm tends to become weak and to produce small crops of thinfleshed Mushrooms. They believe that the spawn now and then should be inoeulated afresh from the spores. spawn made directly from the spores is known as "virgin spawn." It is made by incorporating the abundant spores of ripe Mushrooms with the material of which spawn is made. It is probable that many of the large, thick Mushrooms which come up iu odd places in the greenhouse arise from spores.

Mushrooms hare been known as edible products from very early times. Pliny mentions them, but his writings are mostly warnings not to eat them because they are poisonous. He places them "among those vegetable productions which are eaten with risk." The following are some of his remarks respecting the Mushroom:
"The generative principle of the Mushroom is in the slime and the fermenting juices of the damp earth, or of the roots of most of the glandiferous trees. It appears at first in the shape of a sort of viscous foam, and then assumes a more substantial but membranous form, after which, as already stated, the young Mushroom appears. In general, these plants are of a pernicious nature, and the use of them should be altogether rejected; for if by chance they should happen to grow near a hobnail, a piece of rusty iron, or a bit of rotten cloth, they will immediately imbihe all these foreign emanations and flavours, and transform them into poison. Who, in fact, is able to distinguish them, except those who dwell
in the country, or the persons that are in the habit of gathering them? There are other circumstauces, too, which render them noxious; if they grow near the hole of a serpent, for instance, or if they should happen to have been breathed upon by one when just beginning to open; heing all the more disposed to imbibe the renom from their natural affinity to poisonous substabees. It will therefore be as well to be on our guard during the season at which the serpents have not as yet retired to their holes for the winter. The best sign to know this by is a multitude of herbs, of trees, and of shrubs, which remain green from the time that these reptiles leave their holes till their return; indeed, the ash alone will be quite sufficient for the purpose, the leaves of it never coming out after the serpents have made their appearance, or beginaing to fall before they have retired to their holes. The entire existence of the Xushroom, from its birth to its death, is never noore than seven days."

Two hundred years and more ago Mnshrooms were cultivated. The following directions, given by Philip Miller in I754, are very like methods which are sometimes advised to-day, with the exception of the method of securing the spawn:
"In order to cultivate them, if you have no Beds in your own, or neighboriug Gardens, which produce them, you should look abroad iu rich Pastures, during the Months of August and September, uutil you find them (that being the Season when they are produced); then you should open the Ground about the Roots of the Mushrooms, where you will find the Earth, very often, full of small white Knobs, which are the Off-sets, or young Mushrooms: these should be carefully gathered, preserving them in Lamps with the Earth about them: but as this Spawn cannot be fouod in the Pasture, except at the Season when the Mushrooms are naturally produced, you may probably find some in old Dunghils, especially where there has been much Litter amongst it, and the Wet hath not penetrated it to rot it; as likewise, by searching old Hot-beds, it may be often found: for this Spawn hath the Appearaoce of a white Mould, shooting out in long Strings, by which it may be easily known, where-ever it is met with; or this may be procured by mixing some long Dung from the Stable, which has not been thrown on an Heap to ferment; which being mixed with strong Earth, and put under Cover to prevent Wet getting to it, the more the Air is excluded from it, the sooner the Spawn will appear: but this must not be laid so close together, as to heat; for that will destroy the Spawn: in about two Months after, the Spawn will appear, especially if the Heap is closely covered with old Thatch, or such Litter as hath lain long ahroad, so as not to ferment: then the Beds may be prepared to receive the Spawn: these Beds should be made of Dung, in which there is good Store of Litter; but this should not be thrown on an Heap to ferment: that Dung which hath lain spread abroad for a Month or longer is best: these Beds should be made on dry Ground, and the Dung laid upoo the Surface: the Width of these Beds at Bottom should be about two Feet and an half, the Length in proportion to the Quantity of Mushrooms desired: then lay the Dung about a Foot thick, covering it about four Inches with strong Earth: upon this lay more Dung, about ten Inches thick; then another Layer of Earth; still drawing in the Sides of the Bed, so as to form it like the Ridge of an House; which may be done by three Layers of Dung, and as many of Earth. When the Bed is finished, it should be covered with Litter, or old Thatch, to keep out Wet, as also to prevent its drying: in this situation it may remain eight or ten Days; by which time the Bed will be in a proper Temperature of Warmth to receive the Spawn; for there should be only a moderate Warmth in it, great Heat destroying the Spawn, as will also Wet; therefore when the Spawn is found, it should always be kept dry until it is used; for the drier it is, the better it will take in the Bed: for I had a Pareel of this Spawn, which had lain near the Oren of a Stove upward of four Months, and was become so dry, as that I despaired of its Success: but 1 never have yet seen any which produced so soon, nor in so great Quantity, as this.
"The bed being in a proper Temperature for the Spawn, the Covering of Litter should be taken off, and the sides of the Bed smoothed; then a Covering of
light rich Earth, about an Inch thick, should be laid all over the Bed; but this should not be wet: upon this the Spawn should be thrust, laying the Lumps two or three inches asunder: then gently cover this with the same light Earth, above half aut ioch thick; and put the Covering of Litter over the Bed, laying it so thick as to keep out Wer, and prevent the Bed from drying: when these Beds are made in the spring or Autumn, as the Weather is in those Seasons temperate, so the Sparn will then take much sooner, and the Mushrooms will appear perhaps in a Month after making: but those Beds which are made in Summer, wheu the season is hot, or in Winter, when the Weather is cold, are much longer before they produce.
"The great skill in managing of these Beds is, that of keeping them in a proper Temperature of Moisture, never suffering them to receive too much Wet: during the summer-season, the Beds may be uncovered to receive gentle Showers of Rain at proper times; and in long dry Seasons the Beds should be now-and-then gently watered; but by no means suttier much Wet to come to them: during the Wiater-sason they must be kept as dry as possible; and so closely covered, as to keep out Cold: in frosty or very cold Weather, if some warm Litter, shaken out of a Dung-heap, is laid on, it will promote the firowth of the Mushrooms: but this must not be laid next the Bed; but a Covering of dry Litter between the Bed and this warm Litter: and as often as the Litter is found to decay, it should be renewed with fresh: and as the Cold iucreases, the Covering should be laid so much thicker. If these Thiogs are observed, there may be plenty of Mushrooms obtained all the Year: and these produced in Beds are much better for the Table than any of those which are gathered in the Fields."

Probably the first book in Eaglish to be devoted exelusively to the Mushroom was writteu in 1779 by John Abererombie, London, and puhlished under the title of "The Garden Mushroom: Its Nature and Cultivation. A Treatise, exhibiting Full and plain Directions, for producing this desirable Plant in P'erfection and Plenty, according to the true successful Practice of the London Gardeners." Aside from the manner of securing the spawn, the advice given by Abercrombie would apply very well at the present day. He says that the spawn may be obtained from the dung of horse stables, from hotbeds, composts, cucumber and melon beds, old Mushroom beds, livery stable yards, horse mill-tracks, old dung-heaps where "some straggling Mushrooms are seen to rise naturally in the autumn," in kitchen-gardens in which Mushrooms have been seen, and in old pastures aod meadows. The best season to find the spawn is in the autumn and the early part of winter. The frequent occurrence of Mushrooms in the covered mill-tracks, where horses worked on tram-cars and on power machinery, led to the use of the thoroughly tramped manure as spawn. This spawn gave very excellent results, probably because it was partially seeded from the spores of the Mushrooms which ripened there and were tramped into it. It is probable that this mill-track spawn gave rise to the idea of the Mushroom brick, wheh is now the chief means-at least, in England and America-of growing Mushrooms. The name "mill-track" is still used as a trade name for Mushroom spawn, although very little, if any, of it really comes from nill-tracks.
In America there is only one book devoted wholly to the growing of Mushrooms. This is by William Falconer and known as "Mushrooms: How to Grow Them" (1891). The Department of Agriculture and one or two experiment stations have issued bulletins on the subject.
L. H. B.

For Mushrooms, a supply of fresh horse manure should be procured, if possible each morning, that from grain-fed earriage horses being the most desirable. The strawy portion we discard. The manure is thrown in a heap on the floor of an open shed, and is turned over each morning for a few days. Before the heat of the manure has subsided sufficiently to permit the bed being made, mix about one-third as much loam screened through a $3 / 4$-inch sieve as there is of manure. We have had better success with loam mixed with the manure than when it was not used. The rank heat having escaped from the heap, it can at ouce be made
into a bed, a depth of from 9 to 12 inches being about right. The mauure is placed in layers and pounded as hard as possible with a wooden mallet or brick; it can be well trodden where treading is possible. We spawn when the temperature of the bed has subsided to 90°. It is a little unsafe to spawn at a higher temperature, and if left until the heat drops below 80°, Mushrooms will be much more tardy in appearing and of poorer quality. English Milltrack spawn usually gives the best results. The spawn is broken into pieces as large as a walnut and inserted 2 or 3 inches deep, some 4 or 5 in. apart each way, pressing the surface firm after the insertion. Ten days later 2 inches of good loam is spread over the surface and pounded in bard. The beds are then covered with meadow hay or straw, and, given proper atmospheric conditions, should require no further attention until after Mushrooms have appeared, which may be in four weeks or not until four months later. The time when the first buttons will appear is very uncertain. It does not do to be of a highly strung nervous temperament in Mushroom culture. We have spawned beds aud despaired of suceess, when we have been gratified by getting a first-class erop thirteen to sixteen weeks after spawning.
A dry atmosphere is inimical to the well-being of Mushrooms, and success is uncertain where such conditions exist. It is generally conceded that watering the beds often does more harm than good, but it must be remembered that the fact of the bed becoming dry only retards the production of the crop, and does not lessen the chance of Mushrooms appearing once the bed has become sufticiently moist. If the beds are made very compact there is less probability of them drying out and less likelihood of their iojury by any sudden excess of either drought or moisture. When water has to be given we prefer to use it of a temperature of 85° to 90° and to water only the dry portions of the bed, which are wetted as evenly as possible.

When the first crop is exhausted and the bed has become somewhat dry, we use warm water and add a little nitrate of soda to it, covering the surface with hay after watering. This usually induces a good second crop to come.

We start to collect manure for the beds early in September, and continue to do so until early November. Usually the beds are made under the benches of some of the houses, where a temperature of 55° to 60° can be maintained, but any cellars or caves where such a temperature can be kept up are even better than greenhouses for Mushroom culture. The beds are always kept as dark as possible. Cockroaches, wood-lice and other pests must be poisoned or trapped, else they soon ruin a crop.
W. N. Craig.

Mushroom-growing is interesting work, and it is the uncertainty that is the cause of it. Most Mushroomgrowers are in doubt when spawning their beds as to whether Mushrooms will appear, or the work be a failure. The writer has had excellent success with Mnshroom culture and remarkable failures. Failures in a Mustroom crop are not easy to explain. The fault may be in making up the bed, or it may be in the spawn. A few years ago a bed was spawned with three lots of spawn; two beds were a success, while the other was a complete failnre, -a proof that the bed is not always the cause of failure. Mushrooms may be grown successfully uuder the greenhonse benches, providing the drip can be kept off the beds; also in cellars; but the preference is for a Mushroom house built for that purpose. The house of which the writer has charge is built into a bank in such a position as to require very little fire heat to keep up the temperature. Of course air-spaces must be provided in the walls, according to the size of the house.

Two methods of making the beds may be described: (1) Collect fresh horse manure until there is enough to make a bed. The manure should be kept where it can be protected from rains, an open shed preferred. Turn the manure every other morning for a week, or until danger of burning is over. In making the heds, from 9 in . to a foot of manure is used. Beds should be thoroughly firmed, putting in a layer of manure, then firming, then auother layer, until the desired depth is secured. Assuming that the bed goes up after making
to 100° or 110°, then gradually drops, it is safe to spawn at 90°. Spawn should be inserted in the manure say 2 or 3 in . deep, and about 5 in . apart. In a week or ten days after spawning, cover with 2 in. of good loam. Good loam from the pasture, soil from the garden, and also old rose soil have been used with good results. It is customary to mix a little soil through the manure before making the bed. After the soil is on the bed and firmed down, a covering of straw will be beneficial, as it prevents the beds from drying out. Should they dry out, water must be applied, which should be at a temperature of 75° or 80°. Mushrooms should be gathered from six to eight weeks after making the bed. Keep the house at a temperature of 55° to 60°. (2) The second method, which seems to be the better, is for every load of fresh horse manure to add a load of old thoroughly rotted manure, or a load of old Mushroom manure. The aim is to get enough old manure to prerent the other from burning. The two are mixed, and the following day the bed is made. This method does away with a great amount of labor turning the manure; the bed also has a tendency to hold the moisture a greater length of time. The details of making the bed are the same as in the other method. This is a simple way to make the beds, but the results will follow with as much certainty as with any other method.

William Tcrner.

The seriter's first trial with Mushrooms was made in a soap box under a bed, and the Mushrooms did well. That was 45 years ago. The next year he went into the bnsiness on a larger scale, growing them in the cellar, and a good crop was the result. He received $\$ 1.50$ a pound, or $\$ 20$ for the lot. A cellar under the parlor was devoted to the crop, and $\$ 350$ worth was sold. Then a place was built under the ground with good rentilation, but it was not a success. The drip was too much. A cellar under the carriage house, which had no drip, maule a good place, leading to the belief that a place with a Mushroom house under a building is the best place in which to grow them. They need a dry place. If we have a dry summer and light rains in September, or heary dews, we will pick plenty of Musbrooms in the fall outdoors. lu growing Mushrooms, we must imitate nature. The money that is wasted for spawn alone in one year wonld make a fortune for some persons. People get wild to grow Mushrooms. Some secure a crop, but others get nothing. The young man must try a little at a time. He should learn from the experiences of different men. A man can make moner in this business, and be can lose it. The writer has had failure and success, but he now grows two tons every year.
Mushroom spawn runs best in anything that is dry. It is difficult to find out what moisture is wanted, and to get the material in the right state. The writer prefers to secure his manure on the cars fresh from the stable. Turn it over eight or nine times, onee every day, so it will not burn, and put in dirt. To twenty tons add five cart-loads of earth. This earth is secured from sod from the hedges around the farm, taken the first of June and piled up to rot, so it will be ready for mixing in the manure. When the manure is in the right state, put it in beds 8 inches deep. The beds (made in houses) are made up like bunks on a ship and are 100 feet long, 4 feet wide and 3 feet between the beds to allow a man to go through with a wheelbarrow. One house is 20 feet wide. It contains 13 beds 100 feet long. It is heated by hot water and the temperature is kept at 60°. There are three large houses, and all of them with greenhouses on top, where lettuce, cauliflower, parsley, rhubarb and radishes are grown with the same heat that grows the Mushrooms. English spawn is used. It should be fresh and new. The spawn is placed 6 inches apart in the beds, in pieces the size of a black walnut. When the heat goes down to 90° the spawn is put in, and in six weeks the Mushrooms are ready for picking. The beds last from three to four months. The Mushrooms are packed in boxes and shipped to New York.
S. W. Wortman.

The Trade in Mushrooms, - The trade in Mushrooms has grown from a supply of 30 to 50 pounds a day to the enormous quantity of one-half to three-quarters of a ton. In fact, the trade has increased in proportion with

[^3]the price, according to demand and supply. The best season for the consumption of Mushrooms is the late fall and winter months, as they keep in the cool, dry weather for several days, and small dealers have no trouble with them spoiling on their hands. The price during these months varies according to supply and demand. In the summer months a few will do well, but they spoil so readily in the heat that dealers do not care to handle any stock; therefore, if there were a large supply from June until October they would surely go to waste. The growers generally take advantage of this and renew their beds in summer, and prepare for the coming season. One great mistake is that the small grower is too anxious to reach the consumer. He wants to sare the little which the middleman or distributer gets, and he gives them to the retailer, to restaurants, or to others, and these persons often take advantage of him. He is sometimes compelled to take from 25 to 50 per cent less than market price, and he injures the market as well. All classes now bny Mushrooms. If the supply is scarce and price high, they go only to the hetter class of hotels and restaurants; but as the price gradnally decreases the consumption increases and the poorer grade of hotels and restaurants and families consume them. The consumption of canned and dried Mushrooms is not increasing as rapidly as that of the freshgrown, and we are led to believe that in the near future our home-grown Muslurooms will be canned and dried as the foreign are; in fact, some of the canners are now making ketchup of the seconds and poorer grades. We believe that the consumptiou can be doubled and possibly trebled at a good profit if sold at half the present prices. We expect to hear before long of some house that will make a specialty of Mushrooms and sell nothing else.

Archdeacon \& Co.
MUSK. The common Mnsk Plant of the gardens is Mimulus moschatus, an American plant. The wild Husk Plant of Europe, however, is Erodium moschatum.
tender, soft and light green when put in the field will nearly always sufter, even though the weather is not cold thereafter. In hotbeds the plants are vearer the flass, and the sash may be stripped entirely on all fair days, therehy allowing the plants to become gradually inured to field conditions. Delons transplant with difficulty; therefore they are always grown on pieces of inverted sods or in some temporary receptacle. some growers employ pint and quart berry-baskets, such as are used for raspberries and strawberries. Others use a basket-splint which is ahout $3 \frac{1}{2} \mathrm{in}$. wide and 14 in . long, and which is cut in a hasket machine at such dis. tances that when the splint is bent it will make a fourcornered receptacle like a berry-box without top or hottom. The ends of this splint are held together by a single small tack. These forms mar be packed together tightly in the hotbed and filled with earth and two or three seeds planted in each. When the plants have aequired two or three rough leaves, they are ready to he placed in the field. The forms cau be taken from the hothed by running a spade or shingle underneath them. With the fingers, the box is pulled apart and the cubical mass of earth is dropped into the hole made for it, and the plant receives no check. There is so much loss from the depredations of the striped beetle and the fleabeetle that one must provide several times more plants than the area requires. The hills of melons are usually from 4 to 6 ft , apart either way, and two or three plants are sufficient for a hill; it is advisable, however, to place at least half a dozen plants in each hill if the insects are troublesome. It is an excellent plan to plant squashes in the field before the melons are transplanted and to gather the insects from them for a week or two. Spraying the plants with Borderux mixture will repel the insects to some extent. Dusting with tobacco dust or snuff will also prove more or less efficient. Land plaster in which there is a little kerosene or turpentine is also repellent. The insects are killed by Paris green, but because of the hairy nature of the melon leaf it is

MUSK HYACINTH, or Grape Hyacinth = Muscari moschatum.

MUSK MALLOW $=$ Hibiscus moschutus. The Musk seed of commerce is also Hi biscus moschatas. Marsh M. is Althera officinalis.

MUSKMELONS (Plate XIX) are now a very important commercial product in North America, and the cultization and use of them are inereasing rapidly. The hot, bright climate suits them well. Muskmelons thrive best iu a light and quick warm soil. Since they are rery susceptible to frost and are a long-season plant, it is important that they secure a foothold very quickly when put in the field; and this they are not able to do on lands which are not well prepared or which are naturally hard and clayey. If Muskmelons must he grown on such land it is advisable to make the hills. This is done by digging ont a half-bushel or bushel of earth and replacing it with well-mixed loam and short manure. The plants are then able to secure a quick hold on the soil and to become thoroughly established before the dry weather of July and August.

In the southern states, the seeds of melons are usually planted in the field where the crop is to mature. In the northern states, however, the plants are started in forcing-houses or hotheds. As a rule, hotbeds are more satisfactory than forcing-houses, since the plants can be hardened off better. In forcing-houses, the plants are likely to be too hot, even though there is no pipe heat, and they tend to become very soft. Plants which are

1447. A nutmeg Melon-the St. Laud.
almost impossihle to cover the foliage completely with the poison.

There are two general types of commercial Muskmelons in North A merica-the furrowed and hard-rinded kinds, which are known as cantaloupes, and the netted and softer-rinded types, known as nutmeg or netted melons (Fig. 1447). In the sonthern states the word cantaloupe is used generically for all melons, but this use of the term is erroneous (see Cucumis, page 408, Bailey, A. G. 14: 206; Waugh, G. F. 8: 183). The various strains of netted melons are the ones mostly grown in the North for the home garden and for early market. The cantaloupes are mostly longer-season varieties.

Two important strains of the netted melon type which have come into great prominence in recent years are the Osare, developed in southwestern Michigan, and the Rocky Ford, developed in Colorado. Another important strain of the same class is the Montreal Market, which has developed in Canada. These three melons are grown on a very large scale for the market, and there are middlemen who now make a specialty of the melon crop in its season.

Some of the forms of the Muskmelon species are very unlike the ordinary Muskmelons. Some of them are scarcely edible in their raw state, but are used for
d'Hirer à chair certe) of the French. It is variable in shape and size, but is commonly pyriform and clear yellowish green, with a green inodocous flesh of fair quality for its class.
"There are a number of good varieties in the second, or loose-seeded class. The one which we have liked best is the French Winter Climbing Nutmeg (Melon Brodé vert grimpant). It has a sweet and good green flesh. The seeds are very small. The fruit is small, ribbed and very dark green with yellow furrows. It keeps well nntil December. Another good melon is the White Antibes of the French (Melon Brode d' Autibes blane d' Hiver à chair verte). It is an egg-shaped melin of good size, bright green until full maturity, and hard shelled. It is a very long keeper. Tbe Redflewlied Maltese melon excels other melons of this class in quality, the flesh being aromatic and rich, but is not so good a keeper as the green-fleshed sorts.
"In general, these winter melons are worth growing for home use. The quality is not so good as that of the summer melons, but this defect is over balanced by their longkeeping qualities. Amongst prominent varieties are the Winter Climbing Nutmeg, the White Antibes and perhaps the Winter Pineapple. These melons are also useful for the making of conserves."

For other melon types and for a sketch of the botany of them, see the article in Vol. I on Cucumis.
L. H. B.

The Muskmelon, a fruit of
pickles and conserres. Of these are the so-called Snake Cucumber (Plate XIX) and the Orange or Chito melon (Fig. 1448). The latter has been much advertised in recent years as a preserving or mango melon (for making " mangoes" or mixed picklesl. It is a small-leaved slender vine as compared with the common Muskmelon, and it bears an abundance of yellow or orange fruits the size of a hen's egg or lemon. It requires no special culture. The Snake Cucumber is grown mostly as a curiosity in this country, hut it may be used for pickles and preserves.

Another type of Muskmelon is the winter melon. These are descriled as follows in an Experiment Station publication (Bailey, Bull. 95, Cornell Exp. Sta.) :
"There is an interesting class of melons, little known in this country, which gives fruits of long-keeping qualities. These are known as the winter or scentless melons. Tbey are mostly of an oblong shape, with green or grayish hard rinds and commonly a white or green flesh, which often lacks almost entirely the characteristic aroma of the Muskmelon. The leares are generally longer and greener than those of the common melons. The fruits are picked just before frost, when they appear to be as inedible as squashes, and are stored in a fruit-room to ripen. The true winter melons require a long season. We have planted them upon good soil on the first day of Jnne, and they have barely come to maturity before frost. There is little difficulty in keeping some of the varieties until Christmas, if they do not get too ripe in the field, if the fruits are not allowed to become frost-bitten, and if the room is cool and rather dry.
"There are two general types amongst the winter melons which we have grown. One trpe has a solid interior, like a cueumber, und the seeds are imbedded firmaly in the structure of the fruit. The other class bas a soft iuterior and the loose seeds of ordinary melons. To the first class belongs the Winter Pineapple, a variety which seems to me to be indistinguishable from the Green-fleshed Maltese melon (Melon de Malte
much commercial value, is grown in different localities under varied methods. Where they are grown in largest quantities, as in the South, the simplest methods are employed. There the seed is dropped in hills of well-enriched soil, three to five to each hill, and corered with about 2 in . of soil; when there is danger of chilly weather after planting, they are covered with litter or straw until the soil and temperature become warm. Among private gardeners throughout the country, and where climate and soil will admit, melon-growing is followed with a great deal of care and tronlle, mainly becanse the area which they require to produce a fair percentage of good fruit cannot be allotted them, and consequently close care and best cultivation are required. The first thing is to provide a frame or pit, in which, after a slight hotbed has been made, and upon which the soil to the thickness of about 2 in . lias been placed, the sash will be only 12 in . from the soil. Then place pieces of evenly ent sod 2 in. thiek by 4 in. square, with the grass side down, on the soil, laying them close together, the edges touching, and with a sharp-pointed trowel dig out the center of each piece of sod, barely penetrating through, and fill up the space dug out with good soil, somewhat sandy. In earh of these places drop two seeds, either of Musk- or Watermelon; keep slightly moist and alse well protected during night and cool days and when there is no sunshine. After they start special care must he exercised to keep them growing, but not too fast, as the roots will penetrate the sod, and the plants will wilt when transferred to the open ground. The matter of ventilating and other care is easily given, and they can be transferred at will when the weather permits, as they will bear the transplanting without being injured. The transferring must be done by taking out each piece of sod with a trowel and setting in the open ground where wanted, making the hills of Watermelons 6 ft . apart each way and the Muskmelons 3 ft . in the rows and 6 ft . between the rows.

Anotber excellent operation employed by gardeners for the quick growing and full derelopment of the finest
fruit is the placing of well-rotted manure at the bottom of each hill. It is necessary that this be thoroughly rotted, as the paramount idea is to feed the roots with moisture and nutriment which this will supply. The best plan of preparing for this manuring is to dig holes a full spade deep, then fill up to within 4 in . of the surface with the manure, then cover with 3 in . of soil. This can he done sereral days prior to putting out the melons. The object of this expensive treatment is to furnish the roots with food and moisture through the heated season and induce a free growth, which will overcome scalding and also attacks of enemies.

The above methods will apply to both Musk-and Watermelons. The soil best suited to melon-growing is a sandy loam. When the soil is of a clayey nature and heary, a free use of sand is beneficial. Muskmelonforcing is followed successfully on some of the large and fully equipped private places. For this only a limited number of varieties are used-principally the orange-fleshed sorts with prominent nettiug on the exterior. Growing by this method is treated under the head of Forcing.
Muskmelons are a staple article among the people of Persia, Italy and also the Egyptians. The thin-skinned Persian types are yet grown, and noted for being very sweet and of fine flavor, and are better grown ou rery light soil. The counties in southern New Jersey along the coast supply the large markets of eastern cities with the famous Cassaba, or Persian, the seed of this variety having been originally procured from Smyrua; the inland growers adhere to such rarieties as the famous Jenny Lind, Hackensack, Green Citron, Netted and Miller Cream. The varieties introduced in recent years of the orange-fleshed sorts are the Emerald Gem, Osage, Triunuph and Paul Rose, and the green-fleshed Rocky Ford. These are an acquisition, and find ready sale when properly grown, being of medium size and quite solid: they endure transportation well. The famous Montreal Market rariety, so much used in Boston, commands a rery high price. It is one of the best for transportation and for keeping qualities; of yellowish gold color and fine flavor. It can be found in all eastern Canadian markets.

Muskmelon growing is conducted on a large scale in the southern states, hut only for their local markets. The ralley of the Mississippi is particularly adapted for this industry. New Jersey supplies one-half of the Muskmelon crop; the seashore trade is the most extensive known, and as this market is so accessible to the grower, many farmers have their entire farms taken up for this purpose. They also have a method, not practiced elsewhere, which is a good one for extending the pieking season over a long period. Their first planting is $31 / 2 \times 5$ feet, and two to four weeks later they plant again between the hills, thus prolonging picking season in the same patch, and giving a full stand of plants in the field with minimum labor. The rarieties grown by the largest planters are the Jenny Lind, Golden Jenny, Netted Gem and Green Citron, and only in very recent years have they added such varieties as the Emerald Gem and Triumph.
J. Otto Thilow.

MUSTARD, species of Brassica (which see), chiefly B. alba, nigra, juncea and Japonica. There are two types of Mustard-growing, -for the leares, which are used as a vegetable; for the seeds, which yield oil and are used as a condiment. Table Mustard (the flour) is the product mostly of Brassica nigra, although seeds of B. alba and B. juncea are also used for making it. The Mustards often become prolific weeds, but since they are annual, they are easily kept in check by means of good farming (see Weeds).
As a culinary regetable, Mustard is used for "greens" (which see). For this purpose, the large soft basal leares are desired. These leares grow best in early spring, although they do fairly well in the fall. If sown late in the season, the plant makes few bottom leaves and run quickly to seed. Perhaps the best of the Mustards for greens in this country is Brassica Japonica (Fig. 266, Vol. 1.), a species which has long been grown in this country, but which has no other well-known name than "Mustard." This often seeds itself and comes up the following spring. Some of the large-leaved forms of Chinese Mustard (Brassica juncea) are excellent, and
should be better known. One of the oriental species (B. napiformis) makes an edible turnip-like root (Fig. 263, Vol. I.). Mustard needs a rich quick soil for the producing of the best foliage. Sow the seeds in drills 1 ft . or more apart, and thin to 6 in . in the row.
L. H. B.

MUSTARD, CLOWN'S. Iberis amara.
MYALL. See Acacia.
MYENIA of the trade is a misspelling of Meyenia. See Thunbergia.

MYOPORUM (Greek woris xeferring to the translucent resinous dots in the lvs.). Myopordcere. About 20 species of shrubs, ranging from Australia and New Zealand to China and Japan. One of them was once a favorite heath-like plant in France. Two others are quickgrowing shrubs, with a profusion of small, white, 5 lobed fis., and ornamental berries. These two are desirable for planting near the seacoast in S . Calif.
In 1883 it was stated in the Garden that for 20 years many thousand plants of M. parrifolium had been sold annually in the flower markets of Paris. One grower always had a stock of 30,000 plants. The plants were grown in small pots for room and window decoration in spring. An eye-witness said, "It is most beautiful as seen with its pale green branches drooping gracefully around the pot sides, and more especially so when the shoots are wreathed with sweet, snow-white blossoms." This species is practically unknown in England and America. Full details of the French method of culture are given in Gn. 24, p. 409. The American gardener may get some general suggestions from the experience recorded under Epacris and Erica.
Myoporums are erect and tall, or diffuse, glabrous or glutinous: Irs, alternate, rarely opposite, entire or toothed: fls, axillary, usually clustered, small or medium sized, usually white; calyx 5 -cut or 5 -parted, somerrhat bell-shaped or funnel-shaped, the tube very short or long: lobes usually 5 . The genus is divided into 5 sec-

1449. Myoporum latum $(\times 1 / 3)$.
tions based on the shape of the fls., the number of the corolla-lobes and stamens, which vary from $4-6$, and the number of cells in the ovary, which vary from $2-10$. Usinally the calys segments are small and narrow, but in one section they are large and leafy.

A. Lus. lanceolate.

lætum, Forst. f. (M. perfordtum, Hort.). Fig. 1449. Lvs. 2-4 in. long, lanceolate or obovate-lanceolate, acute or ohtuse, finely serrate above the middle, bright green, shining: fls. white, 4-9 lines wide, with rounded lobes, which are hairy inside. New Zealand.

AA. Lis. linear.

parvifolium, R. Br. (M. álbum, Hort.). Procumbent shrub: stems 2 ft . long or more: Irs. $3 / 4 \mathrm{l}$ in. long, linear or linear-spatulate, thick, sparingly dentate toward the apes: ds. with rather acute lobes which are woolly within. Austral. B.M. 1693. L.B.C. 9:837. Gn. 24, p. 361. V. 7:20.-Not advertised in America.
M. verrucosum, Poir., is offered. Franceschi writes that it is a quick-growing shruh, and among the best plants to grow near the sea. He says it has pretty white t1s, and purple berries. W. M.

MYOSOTIDIUM (Greek, like a forget-me-not). Borraginàcer. A genus of ouly one species, known as the Giant Forget-me-not. It comes from the Chatham Islands, off New Zealand, and is neither hardy nor suited to general greenhouse culture, but it should be tried by some of our expert southern amateurs. The individual fis, are ahout $3 / 4 \mathrm{in}$. across, and as many as $30-60$ in a cluster. A plant grown outdoors in Cortwall, England, had atrout 20 such clusters. The fls, are 5lobed and not a pure blue, being whitish towarll the margins. They are borne on a stout, succulent stem $11 / 2 \mathrm{ft}$. high. The root-lvs, are very large and numerous, heart-shaped, and with stalks 9 in . long.
This choice plant first flowered in Europe in 1858, but the whole stock died, apparently without flowering again. About 1883, fresh seeds were imported, and in a few favored localities in England the plant succeeded. In 1890 it was offered in America. Writers in "The (rarden "give the following hints as to culture: The plants require plenty of air and should be well syringed in warm weather and shaded from the midday sun in summer. They should be kept absolutely free from insects. particularly aphids. The fine specimen grown in the Cornish garden (Gn. 50, p. 150) was placed under a high wall with a southern aspect, and sea sand piled about the roots.

As a genus, Myosotidium is close to Myosotis, but Bentham \& Hooker consider its flowers nearest to Cynoglossum and its fruits nearest to Rindera.
nóbile, Hook. Giant Foraet-me-not. Root-lvs. glabrous, glossy, suceulent, parallel-veined, obtuse or retuse; petioles thick, groored above, B. M. 5137. (in. $30: 575$ and 50 , p. 150. G.C. II. 25:681; III. $21: 293$. G.M. $31: 219$. J.H. II1. 32:327.

MYOSOTIS (Greek, signifying mouse-ear, from the leaves). Borraginacea. Forget-me - not. Scorpion Grass. A large genus of low, perennial or annual, more or less hairy, branching, diffuse or erect herbs, inhabiting both the north and south temperate zones, but the cultivated forms coming mainly from Europe. Lvs. alternate, entire: fls. small, in 1-sided, bractless, at first recurved, terminal racemes; calys small, 5 -cleft; corolla salverform, 5 -lobed, the throat crested; stamens 5 , included: ovary of 4 almost separate lobes, in fruit forming 4 smooth nutlets attached to the receptacle by their bases. The following are all hardy at the North and are grown in America mainly for out-of-door planting. The fls. are normally blue, often purple when young and turning blue with age. White-fld. forms (var. alba) of all the species may occur. J, B. Keller writes that Forget-me-nots prefer moist, half-shady places, but that an open, sunny border will do if it is not excessively dry. The perennials are easily propagated by division or cuttings.

A. Hairs of the calyx all straight, appressed: perennials.

B. Lobes of the calyx much shorter than the tube.
palústris, Lam. Tree Foroet-me-not. Stems from slender, stolon-like rootstocks, slender, decumbent, and rooting helow, appressed, pubescent or nearly glabrous, $6-18$ in. long: Ivs, oblong-lanceolate or oblanceolate, nearly sessile: raceme loosely-fld.: pedicels in fruit much longer than the calyx, spreading; lobes of the calyx deltoid, acutish: corolla bright blue, with a yellow eye, limb flat,3-4 lines broad: nutlets angled and keeled on the inner side. May, June. Europe, Asia. G.C.III. 22:307. Fn. 52, p. 461.-Requires damp, shady ground. Escaped from cult. in the eastern states. Var. semper-
florens, Hort., is a dwarf form, 8 in . high, flowering all summer.

BB. Lobes of the calyx as long as or longer than the tube.
laxa, Lehm. Similar to the preceding species, and also rootiug at the lower nodes, pubescence all appressed and scanty or wanting: racemes even more loosely-fld. : ealyx lohes much longer, ovate-lanceolate, acute; corolla limb smaller and concave, about 2 lines broad, paler blue; throat yellow : nutlets equally convex both sides. May, June. North Europe, Asia, Amer.- (irows best in muddy places.

Azorica, H. C. Wats. Decumbent at the base and diffusely branched, 1 ft . high, densely setose-hispid, with reflexed hairs: lvs, oblong, obtuse or retuse, appressed hairy above, hirsute with reflexed hairs below: racemes sub-secund, dense: ealyx almost 5 -parted; teeth linear, spresding, clothed with erect, appressed hairs: pedicel about equaling the calyx: corolla larger than in the last, $3-3 \frac{1}{2}$ lines broad, deeper indigo-blue; throat with a whitish eye. Azores. B.M. 4122. Y.6:75.-Suitable for planting in damp, shady soil. Ver. cœléstina, Hort., is a form with light blue fls.
AA. Hairs of the calyx, or at least some of them, hooked, spreading.
B. Corolla small, about 1 line broad: limb concare: calyx hairs all hooked.
arvénsis, Lam. Annual or biennial, erect, branched, $7-20 \mathrm{in}$. high, hirsute-pubescent: lvs. oblong or oblanceolate, sessile, obtuse or acutish: raceme loosely-fld.: pedicels in fruit much longer than the calyx: ealyx deeply 5 -parted; lohes equal, linear, acutish; corolla blue or white, $1-1 \frac{1}{2}$ lines broad: nutlet convex outside, keeled inside. June-Aug. Eu., Asia. - Will grow well in dry ground.
BB. Corolla larger, s-4 lines broad: limb flat: calyx with only the lower hairs hooked.
sylvática, Hoffm. Perennial, hirsute-pubescent, and either green or cinereous, erect, 1-2 ft. high, brancled above: lvs. ohlong-linear or ohlanceolate, nearly sessile, acutish: pedicels usually much exceeding the ealyx: calyx deeply cleft, hirsute, the hairs, except a few at the base, erect and straight: racemes long and loose: corolla blue, $3-4$ lines broad, with a yellow eye: nutlets more or less margined and carinate rentrally, sessile. Spring. Dry soil, Eu., N. Asia. - Common in cultivation.

Var. alpéstris, Koch (M. alpéstris, F. W. Schmidt). Differs from the type only in its dwarf habit, $3-8$ in. high, more dense raceme, with shorter, thicker, ascend-ing-pedicels, rarely longer than the calyx: nutlets larger. Summer. Eu. G.C.11I. 17:650.-Flowers said to be fragrant in the evening. Var. stricta, Hort, All the branches ereet and strict: appearance peculiar. G.T. $45, \mathrm{p}, 609$. Var. aurea, Hort. Foliage golden yellow.
dissitiflora, Baker. Biennial: very similar in habit to M. syluatica, but lower, 6-8 in. high, whole plant clothed with erect-spreading or appressed short hairs: Iss. large, spatulate-oblong, acnte, bright green: fruiting racemes more elongated: pedicels ascending or incurved, 2-3 times longer than the calyx: hooked hairs almost absent: calyx segments lanceolate, much longer than the tube; corolla $4-5$ lines in diam. The most important difference is in the nutlets, which are distinetly stipitate. Spring. Switzerland. R.H. 1896, p. 278.Var. elegantissima, Hort. Lrs. white-edged. The name M, elegantissima has also been applied to forms of M. valustris and sylvatica.
K. M. Wiegand.

MYRİCA (ancient name of no application). Myricotcop. This includes a Japanese fruit tree which bears black or red fruits something like a blackberry. It was introduced to eult. in Calif. in 1889 under the name of M. rubra and fully described in the "Pacific Rural Press," from which the following account is chiefly derived. The tree attains $40-50 \mathrm{ft}$. The foliage is magnolia-like, evergreen and leathery. The fruit ripens in July. It is almost glohular, being about 1 in . long and $3 / 4 \mathrm{in}$. broad. It is densely covered with small elevations, and contains a single seed-stone of light weight. There are 2 varieties
of the fruit, the light rose-colored one being finer flavored than the dark red. The berries are vinous and sweet and used in all ways like our blackberries. The tree is supposed to be able to stand 15° above zero.
Myrica is a genus of about 35 species of trees and shrubs, often aromatic: Ivs. alternate, entire, or variously

1450. Myrica Nagi in flower ($\times 1 / 3$).

Natural size of the edible fruits is about an inch.
cut: male fls. borne in short catkins on the new growth; stamens 2-16, usually 4-6; female fls. mostly solitary: drupe globose or ovoid.

Nági, Thunb. (M. rùbra, Sieb. \& Zuce.). Fig. 1450. Bush or tree: lvs. $3-5 \mathrm{in}$. long, oblong-lanceolate, tapering at the base, entire or serrate: male catkins axillary, solitary, cylindrical, $1 / 2-11 / 2 \mathrm{in}$. long; stamens 6-10; female catkins shorter than the male, few-fld. Tropical and subtropical Asia. B.M. 5727.
M. asplenifolia. See Comptonia. W. M.

MYRIOCEPHALUS (Greek, ten-thousand-headed). Compósita. M. Stuartii is an odd sort of everlasting flower, known to the trade as Polycalymma Stuartii, being offered in only one of the largest American catalogues of annual fls. It is a half-hardy plant, growing about $11 / 2 \mathrm{ft}$. high and bearing yellow and white heads. Myriocephalus is a genus f about 8 annual or perennial herbs, all Australian, often hoary, especially when young: lvs. alternate, entire : elusters or compound heads terminal, usually globose or hemispherical: heads exeeedingly numerous and sessile on a broad, very flat receptacle, surrounded by a general involuere of numerous narrow bracts in many rows, each nsually with a scarious tip or radiating appendage. In M. Stuartii these appendages are 1-2 lines long, broad, white and very conspicuous. Flora Australiensis 3: 557 (1866).

Stùartii, Benth. (Polycalymma Stìartii, F. Muell. \& Sond.). Pubescent or woolly, not much brawched: Ivs. linear or lanceolate, 1-2 in. long: clusters hemispherical, 1 in . or more aeross: partial heads 5 - 8 -fld. : seeds woolly; pappus of numerous ciliate bristles.

MYRIOPHYLLUM (Greek, ten-thousand-leaved). Haloragdcec. The Parrot's Feather is a favorite aquatic plant, with delicate feathery foliage, composed of numerous whorls of finely cut lvs. The one which is
often seen in rases and fountains in public parks has the nncomfortable name of Myriophyllum proserpinacoides. It is a half-hardy plant from Chile, with weak stems which grow out of the water about 6 inches. It can be planted in a water-tight hanging basket, and if water can be kept standing on the surface, the plant will hang gracefully over the edges. The other species here deseribed are hardy plants, which are common in our eastern ponds. Any one of them can be gathered for the aquarium, and the two following are procurable from dealers in aquaties and aquarium supplies.
Myriophyllum is a gemus of about 15 species of aquatic herbs, found from the frigid zones to the tropies. Lvs. whorled, somewhat scattered or alternate, the emersed ones eutire, dentate or pectinate, the submerged ones pinnately cut into thread-like segments: fls. small.

A. Les, all alike.

preserpinaceides, Gill. Fig. 1451. Lvs, in whorls of 4 and $5,7-10$ lines long: segments $20-25$. Chile. Apparently established in Hopkins' pond, Haddonfield, N. J., having escaped from cult. B.B. $2: 505$. -Differs from the 2 following in being diocions. The female plant is the one in cult. Likely to become weeds.
AA. Lrs. above the surface of the water different from those belou. B. Les. whorted in s's and 1^{\prime} 's.
verticillàtum, Linn. Floral lvs, longer than the fls., peetinate: stamens 8: petals deciduous: earpels even. Native of Europe, but common in our ponds.

BB. Les. whorled in 4's and 5's.

heterophyllum, Michx. Floral Ivs. ovate, lanceolate, sharply serrate: stamens 4 : petals rather persistent: carpels 1-2-ridged and roughened on the back. Lakes and rivers. Ont. to Fla, and Minn.

Wm. Triceer and W. M.
MYRISTICA (Greek, alluding to the aromatic qualities of the plants): Myristicieca. Nutmeg. Myristicas are of many species (perhaps 80), but most of the Nutmegs of commerce are the product of M. fragrans, Houtt. (M. moschàta, Thunb.; M. officinàlis, Linn. f.; M. aromótica, Lam.), shown in Figs. 1452-3. This tree is cultivated and naturalized in the W. Indies. The genus Myristica is the only one in the family. It is essentially an Asian genus, although species occur in America and Africa, and one in Australia. The Myristicas are dicecious trees with alternate, entire, pinnate-veined lvs., and small fls. in axillary clusters. The perianth is $2-1$ (usually 3-) lobed, in a single series: anthers 3 or more, connate: ovary single, 1-loculed, ripening into a fleshy fruit. The Nutmeg of commerce is the seed. This is surrounded by a ruminated aril, which furnishes the

1451. Myriophyllum proserpinacoides $(\times 1 / 3)$.
mace of commerce. The fruit of \boldsymbol{M}. frugrans is short pear-shaped, $1^{1 / 2-2}$ in. long, hanging, reddish or jellowish, somewhat fleshy, splitting at maturity into 2 valves and disclosing the brilliant scarlet laciniated aril or mace. luside the aril is the hard nut or shell, and inside the shell is the Nutmeg. The details of the mace
and Nutmeg are shown in Fig. 1453. For a full illustrated and historical account of the Nutmeg, see B.M. 2756-7 (182 7).
L. H. B.

The Nutmeg tree requires a position in well-sheltered, hot, moist ralleys in the tropics from sea-level up to 400 or 500 feet: it will grow and produce fruit in Ja-

The upper sprays are from the staminate tree.
maica up to 2,000 feet, but the fruit is not sn abundant nor the uut so large as at lower elevation?. The soil must be a deep, rich loam, well drained. The seedlings have a tap-root which is very easily injured in transplanting. The method usually adopted for growing them is to sow the seeds in bamboo pots, one in each. When they are ready for planting in their permanent places, the bamboo is slit, and the soil, with the plant, gently put into the prepared hole. It is only when they first flower that it is possible to tell the sex of the tree. Nothing is known of the conditions which determine the sex. In (irenada, the usual proportion of male trees to female is said to be as 3 to 1 , though sometimes 40 or 50 trees close together will all be either male or female. As the trees generally flower when they are 6 or 7 years old, there is great waste in the growth of male trees. In the Botanic Gardens in Jamaica, it has been fouud possible to graft the Nutmeg, so that a loss of this kind should not occur again; the plan is, take young seedlings and graft, by approach, the thinnest twigs of a female tree. Wm. Fafcett.

MYRRHIS (from the Greek word for perfume). \quad Tmbelliferi. Myrrh. Sweet Cteely. One perennial herb native to Europe, and an immigrant to other countries, sometimes grown in gardens for its pleasing scent and anciently used as a flavoring in salads. In America Myrrhis is represented by Osmorhiza, which is known as Sweet Cicely. Two or three of the American plants have been named under Myrrhis, but Coulter and Rose (Revision N. Amer. Umbelliferæ, 1888) contrast the two genera and refer these species to Osmorhiza. Technical characters distinguish the two genera.

The Myrrh of the Arabs is the gum of Balsamodendron

Myrrha, a hurseraceous tree which is now referred (Engler in DC. Monogr. Phaner. 4) to Commiphora.
odoràta, Scop. Myrrh. Soft-hairy or pubescent, erect, $2-3 \mathrm{ft}$.: lrs. thin and soft, $2-3$-pinnate, with narrowtoothed or pinnatifid segments: fls, small, whitish, in a compound umbel which is devoid of a general involucre: fr. $1 / 2 \mathrm{in}$. long, longitudinally ribbed. Eu. - Herbage sweet-sceuted. Rarely seen in this country. L. H. B.

MYRSINE (an old Greek name for the Myrtle, of no applicatiou: the Myrtle is Myrtus communis). Myrsindece. About 80 widely scattered species of sbrubs or trees, of which M. floribunda has beeu offered in Fla., but is probably no longer cult. Glabrous or tomentose: lvs. leathery, mostly entire: fls. small, sessile or peduncled, in axillary clusters, polygamo-diocious; floral parts in 4-5's: fr. a pea-shaped drupe, dry or fleshy, 1-stoned: seed globose.
floribủnda, R. Br. (M. Rapànea, Roem. \& Schult. A. F'loridèna, A. DC.). Glabrous: ivs. 3-4 in. long. leathery, obovate, rounded or notched at top, revolute at margin, rusty and dotted beneath, devoid of pellucid dots: clusters of fls. peduncled : corolla imbricated. S. Fla. to Uruguay.

MYRSIPHYLLUM. Consult Asparagus.
MYRTLE. Myrtus communis. Crape M. Laqerstramia. Running M. Jinca minor and others. Sand M. Leiophyllum.

MYRTUS (Myrtos, the ancient Greek name). Myrtdcee. MyRthe. Mostly shrubs: lvs. opposite, entire, penni-veined, usually aromatic: fls. white or rosetinged, axillary, 1 to many, the central on short, lateral or loug pedicels ; calyx tube turbinate, 5 - (rarely 4-) lobed, usually persistent; petals 5 (rarely 4); stamens numerous, in several rows, free: ovale 2-3-celled: fr. a berry, adnate to, or included in the calyx-tube. A genus of perhaps 100 species, mostly subtropical natives of S. America and Australia.

Myrtles are grown in pots for greenhouse, window or room decorations, or, in Calif. and the South, as outdoor ornamental shrubs. They are easily cultivated and rcadily propagated from firm or partially ripened cuttings. They like an abundance of water in summer, and should never be allowed to get quite dry at the roots.
commùnis, Linn. The classic Myrtle. A handsome shrub, 3-10 ft. high, both fls. and lvs. strongly scented: lvs. small in the variety usually cultivated: peduncles solitary, 1 -fld., about the length of the Irs., bearing 2 linear bractlets below the fls.: berry black. July. S. Eu. - Several varieties are cult., which differchiefly in the shape and size of the lvs.: there is also a variegated form. Makes a good hedge in S. Fla. Everblooming in S. Calif.

Lùma, Berneoud (Eugènia apiculàta, DC. E. Lzma). Lema. Shrul, 3 ft . or higher: peduncles 3- to 5 branched: fls. larger than those of M. communis. S. Chile; hardy in S. Calif. and prohably northward.
Úgni, Molina (Eugènia Ćgni). Ugni or Chllean Guava. As usually seen under cult., this is a shrub 4 ft . high, but in its native habitat it is said to become a tree 100 ft . bigh: pedicels 1 -fld. : berry purple, glossy, edible, with a pleasant odor and taste. Wood very hard and heavy, much used in Chile for press-screws, wheelspokes and select implements. Chile; bardy in S. Calif. B.M. 4626 . R.H. 1879, p. 409.
M. toment $\partial s a$, Soland. $=$ Rhodomyrtus tomentosa.
J. Bertt Davy.

The Rural Science Series

EACH BOOK IS THE WORK OF A
COMPETENT SPECIALIST, UNDER
THE EDITORIAL SUPERVISION OF

PROFESSOR L. H. BAILEY, of Cornell University

The following volumes are now ready:
THE SOIL. By F. H. King, of the Lniversity of Wisconsin. 303 pp .75 ets.
THE SPRAYING OF PLANTS. By E. G. Lodeman, late of Cornell University. 399 pp. *1.
MILK AND ITS PRODUCTS. By H. H. Wing, of Cornell Univ. $311 \mathrm{pp} . ~ \$ 1$.
THE FERTILITY OF THE LAND. By I. P. RobERTS, of Comell University. $421 \mathrm{pp} . \$ 1.25$.
THE PRINCIPLES OF FRUIT-GROWING. By L. H. BAILEY. $516 \mathrm{pp} . \quad \$ 1.25$. BUSH-FRUITS. By F. W. Card, R. I. Agric. College. $537 \mathrm{pp} . \$ 1 . j 0$.
FERTILIZERS. By E. B. Voorhees, N. J. Exp. Sta. and Rutgers College. 335 pp . $\$ 1$.
THE PRINCIPLES OT AGRICULTURE. By L. II. BAILEY. $300 \mathrm{pp} . \quad \$ 1.25$. IRRIGATION AND DRAINAGE. By゙ F. II. KiNG, of the Univelsity of Wisconsin. $502 \mathrm{pp} . \$ 1.50$.
THE FARMSTEAD. By I. P. Roberts, of Cornell University. $3501 p . \quad \$ 1.25$.
RURAL WEALTH AND WELFARE. By GEorge T. Fairchild, Lx-President of the Agricultural College of Kimsas. $381 \mathrm{pp} . \$ 1.25$.
PRINCIPLES OF VEGETABLE-GARDENING. By L. H. BAILEY. 458 pp. \$1.25.
FEEDING OF ANIMALS. By W. H. Jordan, of New York State Experiment Station. \$1.25 net.
FARM POULTRY. By G. C. WATson, of Pennsylvania Sitate College. $\$ 1.25$ net.
So long as the demand warrants, new volumes will be added to the RURAL SCIENCE SERIES. Definite arrangements have been completed for the following:

Physiology of Plants. By J. C. Arthur, Purdue University.
Plant Pathology. By B. T. Galloway and associates, of U. S. Dept. of $\lg \mathrm{gr}$.
The Pome Fruits (Apples, Pears, Quinces). By L. II. Billey.
The Care of Stock. By N. S. Mayo, Killsas State Agricalture College.
The Principles of Stock-Breeding. By W. H. Brewer, Ph.D., Yale Lniversity.

[^4]
The Garden-Craft Series

WRITTEN BY
PROFESSOR L. H. BAILEY
Of Cornell University, Editor of the Cyclopedia of American Horticulture

P)RACTICAL handbooks for the horticnlturist, explaining and illustrating in detail the various important methods. They may be called manuals of practice, and, althongh nearly all are written by Professor Bailex, of Cornell University, they include the opinions and methods of snccessful specialists in many lines. The fact should be emphasized that the Carden-Craft Mandals are summaries of principles and of the best practice in the leading American horticulture methods.

The volumes are compact, uniform, and are illustrated as the subject demands. They are of conrenient shape for the pocket, and are bound in flexible green cloth.

THE HORTICULTURIST'S RULE BOOK. By L. H. Bailey 319 pp 75 cts. the nursery-book. By L. II. Balley. $365 \mathrm{pp} . \$ 1$.
plant-breeding. By L. H. Batley. $293 \mathrm{pp} . \$ 1$.
the forcing-book. By L. H. Balley. 266 pp. $\$ 1$.
Garden-making. By L. H. Bailey. 417 pp. \$1.
the pruning-book. By L. H. Balley. 545 pp . $\$ 1.50$.
the practical Garden-book. By C. E. Hunn and L. H. Balley. 250 pp . $\$ 1$.

Other Works by Professor Bailey

THE CYCLOPEDIA OF AMERICAN HORTICULTURE. + vols. sold by suidscription. \$20 net.
THE EVOLUTION OF OUR NATIVE FRUITS. $472 \mathrm{pp} . \$ 2$.
THE SURVIVAL OF THE UNLIKE. $515 \mathrm{pp} . \$ 2$.
LESSONS WITH PLANTS. $491 \mathrm{pp} . \$ 1.10$ net.
FIRST LESSONS WITH PLANTS. 117 pp. 40 cts. net.
botany: An Elementary Text for Schools. $372 \mathrm{pp} . \$ 1.10$ net

[^5](1)

[^0]: FOXGLOVE. Digitalis.

[^1]: 890. Whorled foliage of a Bedstraw-the native Galium Aparine. Natural size
[^2]: A. Les, more or less whorled.......13. Philadelphicum

 AA. Lis. not whorled.
 B. Style shorter than ocary.....14. concolor

 BB. Style longer than owary.
 c. F'l. papillose inside.
 D. Slem frequentiy bulbif-
 erous 15. bulbiferum

[^3]: Plate XIX. Types of Muskmelons
 In the fruit-dish, varieties of Forcing Melons In the opposite cornerx, Netted Melons. In the upper right-hand corner.

[^4]: "The 'Rural Science Series,' representing the truly scientific spirit which now pervades our leading schools ot agriculture, is an attempt to popularize thadamental agricultural laws, and at the same time to inculcate practical lessons in the art of tilling the soil."-Reviere of neviews.

[^5]: The Macmillan Company
 NEW YORK
 CHICAGO

