\square

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

CLUB BUILDING FOR THE PEORIA COUNTRY CLUB, PEORIA, ILL.

Cyclopedia

 of
Architecture, Carpentry, and Building

A General Reference Work
ON ARCHITECTURE, CARPENTRY, BUILDING, SUPERINTENDENCE, CONTRACTS, SPECIFICATIONS, BUILDING LAW, STAIR-BUILDING, ESTIMATING, MASONRY, REINFORCED CONCRETE, STRUCTURAL ENGINEER-
ING, ARCHITECTCRAL DRAWING, SHEET METAL
WORK, HEATING, VENTILATING, ETC,

Prepared by a Staff of
ARCHITECTS, BUILDERS, ENGINEERS, AND EXPERTS OF THE HIGHEST
PROFESSIONAL STANDING

Illustrated with over Threr Thousand Engravings

TEN VOLUMES

CHICAGO
AMERICAN TECHNICAL SOC:ETY

COPYRIGHT. 1907, 1909, 1912
BY
AMERICAN SCHOOL OF CORRESPONDENCE

COPYRIGHT, 1907, 1909, 1912
BY
AMERICAN TECHNICAL SOCIETY

Entered at Stationers' Hall, London
All Rights Reserved

Authurs and Collaborators

$11111 \div 1.11 .1 N 1$

 Warhinuton. D. C.

WALTER LURING WEBB, C. E.

-
J. R. COULIDGE, JR., A. M.

Architect, Fsestenn
President, ISoston Society of Architects
Acting Director, Museum of Fine Arts, Boston

Architect. ("hicago
E'resident. Chieagu Architectural C'lub

FRED T. HODGSUN

Architect and Fditor
Momber. Ontario Association of Architects
Author of "Modurn Carpentry," "Architectural I)rawing, Self-Tausht." | .. Sipuare," "Modern Estimator," ete.

GILENN M. HOBBS, Ph. D.
Sucretary. Amerienn School uf (iorresp umbence

FKANK O. DUFOUR, C. E.

 American Sesoety of C'ivil Eingineras

SIINBYT. SIIRICKI, ANI), S.B.

, W. 1 Ine J"els

WM. H. I IWRAVIF, R R

Authors and Collaborators-Continued

EDWARD NICHOLS

Architect, Boston
H. W. GARDNER, S. B.

Associate Professor of Architecture, Massachusetts Institute of Technology

JESSIE M. SHEPHERD, A. B.
Associate Editor, Textbook Department, American School of Correspondence

GEORGE C. SHAAD, E. E.
Professor of Electrical Engineering, University of Kansas

MORRIS WILLIAMS

Writer and Expert on Carpentry and Building

HERBERT E. EVERETT

Professor of the History of Art, University of Pennsylvania so

ERNEST L. WALLACE, B. S.
Assistant Examiner, United States Patent Office, Washington, D. C.
Formerly Instructor in Electrical Engineering, American School of Correspondence

OTIS W. RICHARDSON, LL. B.
Of the Boston Bar

WM. G. SNOW, S. B.
Steam Heating Specialist
Author of "Furnace Heating." Joint Author of "Ventilation of Buildings"
American Society of Mechanical Engineers
30
W. HERBERT GIBSON, B. S., C. E.

Civil Engineer and Designer of Reinforced Concrete

ELIOT N. JONES, LL. B.
Of the Boston Bar

R. T. MIIIFK, JK., A. M.. I.L. I:

Wッ NEUBECKER

WM. REALL R IRAY

EDWARD MAURER, B. C. E.

Architectural Ensineer
Member. American Society of Civil Finginmers

EIIWARD B. WAITE

Heal of Instruction Department. American School of Correspondence

ALVAH HORTON SABIN, M. S.

Lecturer in New York University
Author of "Technulogy of I'aint and Varnish." ete.
American Society of Mechanical Eingineers

GEORGE R. METCALFE, M. E.

 euring Co.

HFNRY M. HY゙DE

\because
CHAS. L. HUBHARD, S. B., M. E.

Authors and Collaborators-Continued

FRANK CHOUTEAU BROWN

Architect, Boston
Author of " Letters and Lettering"

DAVID A. GREGG

Teacher and Lecturer in Pen and Ink Rendering, Massachusetts Institute of Technology

CHAS. B. BALL

Chief Sanitary Inspector, City of Chicago
American Society of Civil Engineers

30

ERVIN KENISON, S. B.
Assistant Professor of Mechanical Drawing, Massachusetts Institute of Technology

CHAS. E. KNOX, E. E.
Consulting Electrical Engineer
American Institute of Electrical Engineers

JOHN H. JALLINGS
Mechanical Engineer

5
FRANK A. BOURNE, S. M., A. A. I. A.
Architect. Boston
Special Librarian, Department of Fine Arts, Public Library Boston

8
ALFRED S. JOHNSON, Ph. D.
Formerly Editor "Technical World Magazine"

30
GILBERT TOWNSEND, S. B.
With Ross \& McFarlane, Montreal

30
HARRIS C. TROW, S. B., Managing Editor
Editor-in-Chief, Textbook Department, American School of Correspondence

Authorities Consulted

THE editors have freely consulted the standard technical literature of America and Europe in the preparation of these volumes. They desire to express their indebtedness particularly to the following
 everyone connected with building.

Grateful acknowledgment is here made also for the invaluable co-

 thee in the design and construction of buildings; also for the valuable drawings and data, suggestions, criticisms, and other courtesies.
J. B. JOHNSON, C. E.

 tures"

JOHN CASSAN WAIT, M. C. E., LL. B.
Counselor-at-Law and Consulting: Enkineer: Furmerly Assistant E'rufessur of Einkineer-

Allthor of "Engineering and A rehitectural Jurisprudence"
T. M. CLANK
F.nllow of the Americun Institute of Architects

Author of "Building Superintendence," "Architect, Builder, and Owner befors the 1/4e"

FRANK E. KIDDER, C. E., Ph. D.
Fonmulting Architect and structural Finginesr: Fellow of the Amwrican lontatute of Architeves

AUSTIN T. BY゙RNE, C. E.
('ival Fingerners

Wi: W Il:1:

Authorities Consulted-Continued

CLARENCE A. MARTIN

Professor of Architecture at Cornell University
Author of "Details of Building Construction"

FRANK N. SNYDER
Architect
Author of "Building Details"

CHARLES H. SNOW

Author of "The Principal Species of Wood, Their Characteristic Properties"

OWEN B. MAGINNIS

Author of "How to Frame a House, or House and Roof Framing "

HALBERT P. GILLETTE, C. E.
Author of "Handbook of Cost Data for Contractors and Engineers"

OLIVER COLEMAN

Author of "Successful Houses"

CHAS. E. GREENE, A. M., C. E.
Formerly Professor of Civil Engineering, University of Michigan
Author of "Structural Mechanics"

LOUIS de C. BERG
Author of "Safe Building"

GAETANO LANZA, S. B., C. \& M. E.
Professor of Theoretical and Applied Mechanics, Massachusetts Institute of Technology Author of "Applied Mechanics"

IRA O. BAKER

Professor of Civil Engineering, University of Illinois
Author of "A Treatise on Masonry Construction"

GEORGE P. MERRILL
Author of "Stones for Building and Decoration"

FREDERICK W.TAYLOR, M. E., and SANFORD E.THOMPSON, S. B., C.E. Joint Authors of "A Treatise on Concrete, Plain and Reinforced"

Ambnalifa Conathléd-Cunthbea

A. W. BUEL and C. S. HHLL.

NEWTUN HARRISON, E, E.

FRANCIS B. CROCKER, E. M., Ph. D.
 American Institute of Electrical Einsinewra
Author of "Electric Lighting"
J. R. CRAVATH and V.R. LANSINGH

Joint Authors of " Practical Illumination"

$$
\therefore
$$

JOSEPH KENDALL FREITAG, B. S., C. E.
Authors of "Architectural Enkineerins," "Fireproofing o? Steel Ruildings"

WILLIAM H. BIRKMIRE, C. E.
Author of "Planning and Construction of High Office Buildings," "Architeocural Iron and Steel, and Its Application in the Construction of Buildings," "Compound Riveted Girders," " Skeleton Structures," etc.

EVERETT U. CROSBY and HENRY A. FISKE
Joint Authors of " Handbook of Fire Protection for Improved Risk"

CARNEGIE STEEL COMPANY
Authors of "Pocket Companion. Contnining Useful Information and Tablast Appertaninve to the Use of Sterel"
J. C. TRAUTWINE, C. E.

- .

AlPHA PIFI:1F JAMBGN, W. F

A...in... 1....

Authorities Consulted-Continued

HENRY McGOODWIN

Author of "Architectural Shades and Shadows"

VIGNOLA

Author of "The Five Orders of Architecture," American Edition by Prof. Ware

CHAS. D. MAGINNIS

Author of "Pen Drawing, An Illustrated Treatise"

FRANZ S. MEYER

Professor in the School of Industrial Art, Karlsruhe
Author of "Handbook of Ornament," American Edition

RUSSELL STURGIS

Author of "A Dictionary of Architecture and Building," and "How to Judge Architecture"
A. D. F. HAMLIN, A. M.

Professor of Architecture at Columbia University
Author of "A Textbook of the History of Architecture

RALPH ADAMS CRAM

Architect
Author of " Church Building"
C. H. MOORE

Author of "Development and Character of Gothic Architecture"

30

ROLLA C. CARPENTER, C. E., M. M. E.
Professor of Experimental Engineering, Cornell University
Author of "Heating and Ventilating Buildings"

WILLIAM PAUL GERHARD

Author of "A Guide to Sanitary House Inspection"

I. J. COSGROVE

Author of "'Principles and Practice of Plumbing"

CONSTRUCTION DRAWING
SHOWING
SHEET METAI DRUM AND VENTILATOR IN VENTILATION WORK

Joink between Venk. and Drum.

Sectional view showing ventilakion pipes connecked ro drum in arkic also skeam coils in drum to creake suckion.

Foreword

 variety of correlated lines. The Cyclopedia of Architecture,
 need.
4. There is tun indu-try that comparen with Building in the
 for example, who knows nothing of Steel or Concrete con--trution is today as mush ont of Mame on improtatat work

 ing: and the same is trun of all the craftemen whoso handiwork will anter into the completed structure.
 present work the most comprelonsive and mathoritative on the

expert, but one that will commend itself also to the beginner and the self-taught, practical man by giving him a working knowledge of the principles and methods, not only of his own particular trade. but of all other branches of the Building Industry as well. The rarious sections have been prepared especially for home study, each written by an acknowledged authority on the subject. The arrangement of matter is such as to carry the student forward by easy stages. Series of review questions are inserted in each volume, enabling the reader to test his knowlelge and make it a permanent possession. The illustrations have been selected with unusual care to elucidate the text.
(1. The work will be found to cover many important topics on which little information has heretofore been available. This is especially apparent in such sections as those on steel, Concrete, and Reinforced Concrete Construction: Building Superintendence: Estimating; Contracts and specifications, including the principles and methods of awarding and executing (rovernment contracts; and Building Law.
(1. The Cyclopedia is a compilation of many of the most valuable Instruction Papers of the American School of Correspondence, and the method adopted in its preparation is that which this School has developed and employed so successfully for many years. This method is not an experiment, but has stood the severest of all tests-that of practical use - which has demonstrated it to be the best yet devised for the education of the busy working man.
(1. In conclusion, grateful acknowledgment is due the staff of authors and collaborators, without whose hearty co-operation this work would have been impossible.

Table of Cいいでいた

Villilm1 is

EIS：TH：is 18：10．

 －⿰亻 for Feyders and Mainn－Location of Cutout Cabinets and Distributins＇enters
Testing Alternating－Current Circuits Droys in A．C．Linex－Wiring an Olliee

－Cartridge Fusen－Electric 13ell Wirins：

K1．1，11：1，1．A．11110．1
1：，1；，，1．．．．：H．．．
 Voltage and Candlepower－Efficiency－Sclection－Distribution of Lisht－ Mretallic－Filament Iamps－Tantalum Lamp－Tungsten Lamp－Osmium Lams －Heliun Lamp－Nernat Lamp－Mercury－Vapor Lamp－Moore－Tube Lisht－ Are Lamps－Arc－Lamp Mechanisms－Flaming－Arc Lamp－Power Diatribu－ tion Illumination－Ressidence Lishting－Lighting of Public Halls and Gfficess －Table of Lighting Data

Skylight Bars－Condensation Gutters－Reinforcing Strips－Weipht of Glmss－ Single－Pitch and Double－Pitch Skylights－Hip，Monitor Skylight－Ventilation－ F＇lat Extension Skylisht－Metal Roofs－Roof Mensuration－Corrugatesl Iron Ruoting and Siding－Members of Cornice－Brackets，Trusses－Raking Mold－ ings－Miter Cuttink－Development of Blanks for Curved Moldings

P1：－T1：には，

Interior Plastoring－Lathing－Plaster Materials－－Slaking and Working Lime－ Murtar－Rough I＇lastor Finish－Patent Plasters－Back Plastering－Plaster f＇racks－Dryink I＇laster－Plaster Moldink－Exterior Plastering

Data of Cowt－Cremoting－Priming Coat－1rainta－Oil Finish－I Linsees Oil－－ Mixing and Grinding－Thinnersand Dryern－White Land－White Zine－Adulter－ ants－Tintins Colors－Brushes－Fillers－House Prainting－－Paintins Plasseros
 Shellac－Drmar－Finamell＇aints－Flowr Finishine－Gilnzimg

[^0]

ELECTRICAL KITCHEN IN EDISON BUILDING, CHICAGO

ELECTRIC WIRING

HITHODS OF: WIRIオ

 2theral hranl-at follow-:

WIRES R(VCONCEMIEF IN COND)(ITS

Inder this general head, will be included the following:
(a) Wires run in rigid conduits.

(6) Imaneri, nhte.

Wires Run in Rigid Conduit. The furmuin ricid meval comblait thes

 atwl, in other ca-1... is gulsanizel. İif. I -hose min maher

 linesl) comduit.

pipe being unlined. The introduction of improved devices-such as outlet insulators, for protecting the conluctors from the sharp edges of the pipe, at outlets, cut-out cabinets, etc-also decreases the necessity of the additional protection afforled by the interior paper lining.

Rigid conduits are made in gaspipe sizes, from one-half inch to three inches in diameter. The following table gives the various data relating to rigid, enameled (unlined) conduit:

TABLE I
Rigid, Enameled Conduit-Sizes, Dimensions, Etc.

Standard Pipe Size	Thickness	$\begin{gathered} \text { Nominal } \\ \mathbf{W}_{\text {Fingrit }}^{\text {PRRR }} \\ 100 \mathrm{FEET} \end{gathered}$	Number of Thrfads per INch of Screw	Actual Outsine Diameter nches	$\begin{aligned} & \text { Nominal } \\ & \text { INBIDE } \\ & \text { DIAMETER. } \\ & \text { INCHES } \end{aligned}$
$\frac{1}{2}$. 109	84	14	. 84	. 62
$\frac{3}{4}$. 113	112	14	1.05	. 82
1	. 134	167	$11 \frac{1}{2}$	1.31	1.04
114	. 140	224	$11 \frac{1}{2}$	1.66	1.38
$1 \frac{1}{2}$. 145	268	$11 \frac{1}{2}$	1.90	1.61
2	. 154	361	111 $\frac{1}{2}$	2.37	2.06
$2 \frac{1}{2}$. 204	574	8	2.87	2.46
3	. 217	754	8	3.50	3.06

Tables II, III, and IV give the various sizes of conductors that may be installed in these conduits. (aution must be exercised in

TABLE II
Single Wire in Conduit

1 \131.1. III
I wo Wires in Once condwit

TABLE IV
Three Wires in one cinduit
-18 WI $13.8: 4$
+1, 1.

ㅇ.1 1:
1
il

einter

Nu.

using these tables, for the reason that the sizes of conductors which may be safely installed in any run of conduit depend, of course, upon the length of and the number of bends in the rum. The tables are based on average conditions where the run does not exceed 90 to 100 feet, without more than three or four bends, in the case of the smaller sizes of wires for a given size of comluit; and where the run does not exceed 40 to 50 feet, with not more than one or two bends, in the case of the larger sizes of wires, for the same sizes of conduit.

Unlined conduit can be bent without injury to the conduit, if the conduit is properly made and if proper means are used in making the bends. Care should be exercised to atooid flattening the tube as a result of making the bend over a sharp curve or angle.

In installing iron conduits, the conduits should (ronss sleepers or beams at right angles, so as to reduce the amount of cutting of the beams or sleepers to a minimum.

Where a number of conduits originate at a center of distribution, they should be run at right angles for a distance of two or three feet from the cut-out box, in order to obtain a symmetrical and workmanlike arrangement of the combluits, and so as to have them enter the cabinet in a neat mamer. While it is usual to use red or white lead at the joints of conduits in order to make them water-tight, this is frequently umecessary in the case of emameled conduit, as there is often sufficient enamel on the thread to make a water-tight joint.

When iron conduits are installed in ash concrete, in Keene cement, or, in general, where they are subject in any way to corrosive action, they should ine coated with asphaltum or other similar protective paint to prevent such action.

While the cost of circuit work run in iron conduits is ustally: greater than any other method of wiring, it is the most permanent and durable, and is strongly recommended where the first cost is not the sole consideration. This methood of wiring should always be used in fireproof buildings, and also in the better class of frame buildings. It is also to be recommended for exposed work where the work is liable to disturbance or mechanical damage.

Wires Run in Flexible Metal Conduit. This form of conduit, shown in Fig. 2, is described by the manufacturers ats a conduit composed of "concave and convex metal strips wound spirally upon each other in such a manner as to interlock several concave surfaces and

 out."

 cases where the rigid conduit - ..ndill nost Jro i1.1y h.1. e.mployed. Its use is 16 |ne remall nemital a lon: .

Table V gives the inside diameter of various sizes of flexible conduit, and the lengths of tandard coils. inside diameter of this

 it possible to pull in slightly larger sized conductors.

Table V
(ireentichat llexible steel conduit

This conduit should, of course, be first installed without the conductors, in the same manner as the rigid conduit. Owing to the flexibility of this conduit, however, it is absolutely essential to fasten it securely at all elbows, bends, or offsets; for, if this is not done, con-

Fig. 3. Use of Elbow Clamp for Fastening Flexible Conduit in Place. siderable difficulty will be experienced in drawing the conductors in the conduit.

The rules governing the installation of this conduit are the same as those covering rigid conduits. Double-braided conductors are required, and the conduit should be grounded as required by the Code Rules. As already stated, the conduit should be securely fastened (in not less than three places) at all elbows; or else the special elbow clamp made for this purpose, shown in Fig. 3, should be used.

In order to cut flexible steel conduit properly, a fine hack saw should be employed. Outlet-boxes are required at all outlets, as well as bushing and wires to rigid cunduit. Fig. 4 shows a coil of flexible steel conduit. Figs. 5,6 , and 7 show, respectively, an outlet box and cover, outlet plate, and bushing used for this conduit.

Armored Cable. There are many cases where it is impossible to install a conduit system. In such cases, probbably the next best results may be obtained by the use of steel armored cable. The rules gov-

Fig. 4. A 100 -Foot Coll of Flexible Steel Conduit. Courtesy of Sprague Electric Co., New York, N. Y. erning the installation of armored cable are given in the National Electric Code, under Section 24-A, and Section 48; also in 24-S. 'This cable is shown in Fig. 8.

Steel armored cable is made by winding formed steel strips over the insulated conductors. 'The steel strips are similar to those used

 1 ssaitil.

the conduit ratios comld not be male of any lempet; but theme actual

cable is made in single conductors from No. 1 to No. 10 B. \& S. G.; in twin conductors, from No. 6 to No. 14 B. \& S. G.; and three-conductor cable, from No. 10 to No. 14 B. \& S. G. Table VI gives various data relating to armored conductors:

TABLE VI
Armored Conductors-Types, Dimensions, Etc.

$\begin{gathered} \text { Size } \\ \text { B\&\& } \\ \text { GUuGe } \end{gathered}$	Typeand Number of Conductors	Outsine Diampter (Inches)
No. 14	BX twin conductor	. 63
"12	" ${ }^{\text {a }}$ "	. 685
" 10	" " "	. 725
" 8	" " "	. 875
" 6	" " ${ }^{\text {a }}$	
	BM twin conductor (for marine work-ship wiring)	. 725
" 12	"، "، "1	. 725
" 10	"	. 73
" 14	BX3 three conductor	. 71
" 12		. 725
" 10	" " ${ }^{\text {c }}$. 73
" 14	BXL twin conductor, leaded	725
" 12	"، "6 " ${ }^{\text {c }}$. 725
" 10	" ، " ،	. 87
	BXL3 three conductor, leaded	. 90
" 12	"، " " ${ }^{\text {" }}$. 90
" 10	"	. 94
" 10	Type D single conductor, stranded	. 550
" 8	". " 	. 550
	" " "	. 575
" 4	" " " "	. 700
" 2	" " "	. 900
${ }^{6}$	" " " "	. 965
	Type DL single conductor, stranded, leaded	. 625
	" " " " ${ }^{\text {" }}$. 710
" 6	" " " ${ }^{\text {" }}$. 700
" 4	" " " ، "	. 760
" 2	" " " ،	. 920
" 1	" "	. 910
	Steel Armored Flexible Cord	
	Type E E twin conductor	. 40
" 616		. 40
* 18	Type EM twin conductor, re-inforced	. 575
"16 16		. 585
		. 595

In Table VI, Types D (single), BX (twin), and BX3 (3 conduc-

 for damp places, such as breweries, stables, and similar places.

 will lue ablijo 1 bo wery mugh hambling.

While this form of wiring has not the advantage of the conduit

 Las- many of diestumbers of the flevible stel combuit and it has

 conduit or flexible steel conduit without disturbing the flewrs or walls to an extent that would be objectionable.

Armored conductors should be continuous from outlet to outlet,

 sheathing.

Armored cable is less expensive than the rigid comduit or the flexible steel combuit, but more expensive than cleat wiring or knot, ant whe whimes and i stronely fornomentel in pmiomer is the latter.

WIRLARUNIN MOLIDING

Moulding is very extensively used for electric circont work, in

It seems almost unwise to place conductors carrying electric current, in wood casing; but this method is still permitted by the National Electric Code, although it is not allowed in damp places or in places

Fig. 9. Two-Wire Wood Moulding. where there is liability to dampness, such as on brick walls, in cellars, etc.

The dangers from the use of moulding are that if the wood becomes soaked with water, there will be a liability to leakage of current between the conductors rum in the grooves of the moulding, and to fire being thereby started, which may not be immediately discovered. Furthermore, if the conductors are overloaded, and consequently overheated, the wood is likely to become charred and finally ignited. Moreover, the moulding itself is always a temptation as affording a good "round strip" in which to drive nails, hooks, etc. However, the convenience and popularity of moulding camot be denied; and until some better substitute is found, or until its use is forbidden by the Rules, it will continue to be used to a very great extent for ruming circuits outside of the walls and on the ceilings of existing buildings. Figs. 9, 10, 11, and 12 show two- and three-wire moulding respectively; and Table VII gives complete data as to sizes of the moulding required for various sizes of conductors.

While the Rules recommend the use of hardwood moulding, as a matter of fact probably 90 per cent of the moulding used is of whitewood or other similar cheap, soft wood. (ieorgial pine or oak ordinarily

Fig. 10. Two-Wire Woud Monldiug.
costs about twice as much as the soft woord. In designing moulding work, if appearance is of importance, the moulding circuits shonil. be, laid out so as to afford a symmetrical and complete design. For

1: 4. 1:
 increases the cost but little amd adds greatly to the appearance.

Moulding is freguently userl in combination with other methows
 pubing. In many instances, it is possible to fish tubing between leams or studs rumning in a certain direction; but when the conduc-
 studs, exposeal work is necessary. In such cases, a junction-box or outlet-box must he placerl at the point of connertion between the moulding and the armored cable or steel tuhinge.

Where circouts are run in moulding, and pass through the foor,

to protere the monding. As a male, it is better for use combluit for all prortions of monditige within six feet of the flewer, so ass to avenit the pressibility of injury to the cironits. Where a comblanatom of iron

TABLE VII
Sizes of Mouldings Required for Various Sizes of Conductors

$\frac{0}{\mathrm{Z}}$	$\left\|\begin{array}{cc} 4 & 0 \\ 0 & 2 \\ \omega \\ 0 & 0 \\ 0 & 0 \\ -2 & 0 \\ - & \Sigma \end{array}\right\|$		MAXIMUM SIZE OF WIRE band S. Gauge		DIMENSIONS IN INCHES									
$\frac{\mathbb{U}}{u}$			SOLID	STRANDED	A	Aa	Ab	Ac	B	Ba	B6	Bc	C	Ca
9	A-2	2	12	14	$1 \frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{27}{32}$	$\frac{5}{8}$	$\frac{7}{32}$	$\frac{1}{4}$	$1 \frac{1}{8}$	$\frac{3}{15}$
9	A-4	2	8	10	$\frac{11}{16}$	$\frac{1}{2}$	$\begin{array}{\|c\|} \hline \frac{5}{16} \\ \hline \end{array}$	$\frac{9}{32}$	$\frac{29}{32}$	$\frac{11}{16}$	$\frac{7}{32}$	$\frac{5}{16}$	$1 \frac{5}{16}$	$\frac{3}{15}$
9	A-6	2	4	5	2	$\frac{1}{2}$	$\frac{7}{16}$	$\frac{5}{16}$	$1 \frac{1}{16}$	$\frac{13}{16}$	$\frac{1}{4}$	$\frac{7}{16}$	$1 \frac{9}{16}$	$\frac{7}{32}$
9	A-8	2	1	2	$2 \frac{3}{8}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{3}{8}$	$1 \frac{3}{16}$	$\frac{15}{16}$	$\frac{1}{4}$	$\frac{9}{16}$	$1 \frac{13}{16}$	$\frac{9}{32}$
9	A-9	2	-	3/0	3	$\left\lvert\, \begin{gathered} 5 \\ \frac{5}{8} \\ \hline \end{gathered}\right.$	$\frac{3}{4}$	$\frac{7}{16}$	$1 \frac{13}{32}$	$1 \frac{1}{8}$	$\frac{9}{32}$	$\frac{3}{4}$	$2 \frac{7}{16}$	$\begin{aligned} & \frac{1}{32} \\ & \hline \end{aligned}$
10	A-10	2	-	$\begin{gathered} 250.000 \\ \mathrm{C.M} \end{gathered}$	$3 \frac{15}{16}$	$\frac{11}{16}$	$\frac{7}{8}$	$\frac{3}{4}$	$1 \frac{11}{16}$	$1 \frac{3}{8}$	$\frac{5}{16}$	$\frac{7}{8}$		
10	A-11	2	-	$\begin{gathered} 400,000 \\ \text { C.M. } \end{gathered}$	$4 \frac{7}{8}$	$\frac{15}{16}$	1	$\frac{31}{32}$	$2 \frac{3}{16}$	$1 \frac{7}{8}$	$\frac{5}{16}$	1		
11	B-2	3	12	14	$2 \frac{3}{16}$	$\frac{7}{16}$	$\frac{1}{4}$	$\frac{9}{32}$	$\frac{27}{32}$	$\frac{5}{8}$	$\frac{7}{32}$	$\frac{1}{4}$	$1 \frac{13}{16}$	$\frac{3}{16}$
11	B-4	3	8	10	$2 \frac{1}{2}$	$\frac{15}{32}$	$\frac{5}{16}$	$\frac{5}{16}$	$\frac{29}{32}$	$\frac{11}{16}$	$\frac{7}{32}$	$\frac{5}{16}$	$2 \frac{1}{8}$	$\frac{3}{16}$
11	B.6	3	4	5	$2 \frac{7}{8}$	$\frac{13}{32}$	$\begin{aligned} & \frac{7}{16} \\ & \hline \end{aligned}$	$\frac{3}{8}$	$1 \frac{1}{16}$	$\frac{13}{16}$	$\frac{1}{4}$	$\frac{7}{16}$	$2 \frac{3}{8}$	$\frac{1}{4}$
11	B-8	3	1	2	3 8	$\frac{19}{32}$	$\frac{9}{16}$	$\frac{3}{8}$	$1 \frac{3}{16}$	$\frac{15}{16}$	$\frac{1}{4}$	$\frac{9}{16}$	$3 \frac{1}{16}$	$\frac{9}{32}$
11	B-9	3	-	3/0	$4 \frac{5}{16}$	$\frac{9}{16}$	$\frac{3}{4}$	$\frac{15}{32}$	$1 \frac{13}{32}$	$1 \frac{1}{8}$	$\frac{9}{32}$	$\frac{3}{4}$	$3 \frac{3}{4}$	$\frac{9}{32}$
12	B-10	3	-	$\begin{gathered} 250,000 \\ \text { C.M. } \end{gathered}$	$5 \frac{1}{2}$	$\frac{23}{32}$	$\frac{7}{8}$	$\frac{23}{32}$	$1 \frac{11}{16}$	$1 \frac{3}{8}$	$\frac{5}{16}$	$\frac{7}{8}$		-
12	B-11	3	-	$\begin{gathered} 400000 \\ \mathrm{C.M.} \\ \hline \end{gathered}$	$6 \frac{3}{4}$	$\frac{15}{16}$	1	$\frac{15}{16}$	$2 \frac{3}{16}$	$1 \frac{7}{8}$	$\frac{5}{16}$	1	-	

braided conductors are required with moulding, double-hraided conductors are required with unlined conduit, and if double-hraided conductors were not used throughout, it would be necessary to make a joint at the outlet-lox where the monlding stopped and the conduit work commenced. Where the conductors pass through floors, in moulding work, and where iron comduit is used, the inspection authorities, in order to protect the wire, usimatly rectuire that a fibrous tubing be used as additional protection for the conductors inside of the iron pipe, although, if double-hraided wire is used, this will not usually be required. Fig. 13 shows a fuseless cond rosette for use with moulding work. Fig. 14 shows a device for making a tup in moulding wiring.
7.Toulding work, under ordinary conditions, costs about one-half as much as circuit run in rigid conduit, and about to per cent, under

 have mot met with the sumeess which they deserve.

This methoxl of wiring is still allowed by the National Electric Corle, although many vigorous attempts have been made to have it abxlisheth. Fach of these attempts has met with the strongest
 fowns and villages, the argmonent for this methex treing, that it is the
 which are wired acourling to this methoul would not be wirest at all, and the use of electricity would therefore le much restricterl, if not antirely done away with, in such commonities. 'Ihis argament, however, is only a temporary make shift obstraction in the way of ine vitahle progress, and in a few ears, umboubtedly, the concealeyl kmoh and

 of the cost of circuits man in rigid comblat, and almut ome-half of the

is rapidly replacing knob and tube wiring, and justly so, wherever the additional price for the latter method of wiring can be obtained. As the name indicates, this method of wiring employs porcelain kinobs

Fig. 15. Knob and Tube Wiring.
and tubes, the circuit work being run comecaled between the floor beams and studs of a frame building. The knobs are used when the circuits run parallel to the floor beans; and the porcelain tubes are used when the circuits are run at right angles to the floor beams.

Fig. 15 shows an example of knob and tube wiring. In concealed knob and tube wiring, the wires must be separated at least ten inches from one another, and at least one inch from the surface wired over, that is, from the beams, flooring, etc., to which the insulator is fastened. Fig. 16 shows a good type of porcelain knob for this class of wiring. For knob and tube wiring, it will be noted that, owing to the fact that the wiring is concealed, the conductors

Fig. 16. Porcelain Knob. must be kept further apart than in the case of exposed or open wiring on insulators, where, except in damp places, the wires may be run on cleats or on insulators only one-half inch from the surface wired over.

 between the wires is not over 300 volts, and if the wires are not sub-

 tubing.

Fibrous tubing is requirexl at all outlets where conduit or armored

 beyond the outlet. Fig. 17 shows one make of fibrous tubing.
 braided) which may be installerl in fibrous conduit.

TABLEV VIII
sizes of Conductors in Fibrous Conduit

$\begin{array}{c\|c} \text { imels } \\ 1 \\ 1 & \\ 1 \\ 1 & \\ \vdots \\ \therefore & \end{array}$	inil	No. In

WIRES RUN EXPOSED ON INSULATORS

This method of wiring has the adrantages of cheapness,durability, and accessibility.

Cheapness. The relative cost of this method of wiring as compared with that of the concealed conduit system, is about fifty per cent of the latter if rubber-covered conductors are used, and about forty per cent of the latter if weatherproof slow-burning conductors are used. As the Rules of the Fire Lnderwriters allow the use of weatherproof slow-burning conductors in dry places, considerable saving may be effected by this method of wiring, provided there is no objection to it

F1g. 1x. Large Feeders Run Exposed on Insulators.
from the standpoint of appearance, and also provided that it is 11,1 liable to mechanical injury or disarrangement.

Durability. It is a well-known fact that rubher insulation has a relatively short life. Inasmuch as in this method of wiring, the insulation does not depend upon the insulation of the conductors, but on the insulators themselves, which are of glass or porcelain, this system is much more desirable than any of the other methods. Of course, if the conductors are mechanically injured, or the insulators broken, the insulation of the system is reduced; but there is no gradual deterioration as there is in the case of other methods of wiring, where

lamel. -ika. - -ifiaitit .

 (I)VIIANい, い!!!

This methoxl of wiring is espercially recommembed for mills, factories, and for large or long feeder comblurtors. Fig. 1s shows ex-
 large feetler conductors, installed in the New York Iife Insurance Building, New York City. For small conductors, up to say No. $6 \mathrm{~F} 13 . \& \mathrm{~S}$ Gauge each, porcelain cleats may be used to support one, two,

tors is at least 21 inches in a twowire ststem, and $2!$ inches ixetween the two outside conductors in a three-wire system where the protential between the outsile comblactors is not over isen volts. 'The cheat mast hold the wire at leant one-half imeh from the surface to which
 least one inch from the surface wirel wer. "For latger comblacturs,
from No. 6 to No. $4 / 0 \mathrm{~B} . \& \leftrightarrow$. Gauge, it is usual to use single porcela in cleats or knobs. Figs. 19 and 20 show a good form of two-wire

Fig. 22. Iron Rack and Insulators for Large Conductors. Courtesy of General Electric Co., Schenectady, N. Y.
cleat and single-wire cleat, respectively.
For large feeder or main conductors from No. $4 / 0$ B. \& S. Gauge upward, a more substantial form of porcelain insulator should be used, such as shown in Fig. 21. These insulators are held in iron racks or angle-iron frames, of which two forms are shown in Figs. 22 and 23. The latter form of rack is particularly desirable for heavy conductors and where a number of conductors are run together. In this form of rack, any length of conductor can be removed without disturbing the other conductors.

As a rule, the porcelain insulators should be placed not more than $4 \frac{1}{2}$ feet apart; and if the wires are liable to be disturbed, the distance between supports should be shortened, particularly for small conductors. If the beams are so far apart that supports cannot be obtained every $4 \frac{1}{2}$ feet, it is necessary to provide a running board as shown in Fig. 24, to which the porcelain cleats and knobs can be fastened. Figs. 25 and 26 show two methods of supporting small conductors. For conductors of No. 8 B. \& S.

Fig. 23. Elevation and Plan of Insulators Held in AngleIron Frames.

 call frace.

Wi.are the. If... tance between the -19pmot. lamever. is greater than 4 ! fien. if is Itavally nece-..s to to provid. intermelint. alp prott. . A. dinery is

 $-1=146$.
 may be used, where beams are further than 41 feet apart, is to

 have the individual circuits run between and paralled to the beams.

In lowereiling romos, where the combluetors are Jiatile to injurs,
 of the combluctors, as slowwn in l゙ige 2s.

Where the conductors pass through purtitions ur walls, they must
he protected by porcelain tubes, or, if the conductors be of rubber, by means of fibrous tubing placed inside of iron conduits.

All conductors on the walls for a height of not less than six feet from the ground, either should be boxed in, or, if they be rubber-covered, should (preferably) be run in iron conduits; and in conductors having single braid only, additional protection should be provided by means of flexible tubing placed inside of the iron conduit.

Where conductors cross each other, or where they cross iron pipes, they should be protected by means of porcelain tubes fastened with tape or in some other substantial mamer that will prevent the tubes from slipping out of place.

TWO=WIRE AND THREE=WIRE SYSTEMS

As both the two-wire and the three-wire system are extensively used in electric wiring, it will he well to give some consideration to the advantages and disadvantages of each system, and to explain them somewhat in detail.

Relative Advantages. The choice of either a two-wire or a threewire system depends largely upon the source of supply. If, for example, the source of supply will always probably be a 120 -rolt, twowire system, there would be no object in installing a three-wire system for the wiring. If, on the othier hand, the source of supply is a 120 240 -volt system, the wiring should, of course, be made three-wire. Furthermore, if at the outset the suppl! were two-wire, hut with a possibility of a three-wire system being provided later, it would be well to adapt the electric wiring for the three-wire system, making the neutral conductor twice as large as either of the outside conductors, and combining the two outside conductors to make a single conductor until such time as the three-wire service is installed. Of course, there would be no saving of copper in this last-mentioned three-wire system, and in fact it would be slightly more expensive than a two-wire system, as will be shortly explained.

The object of the three-wire srstem is to reduce the amount of copper-and consequently the cost of wiring-necessary to transmit a given amount of electric power. As a rule, the proposition is usually one of lighting and not of power, for the reason that by means of the three-wire system we are able to increase the potential at which the durent is transmitted, and at the same time to take advantage of the

 welyth of mpor If, however, we inreame the soltorer (1) limpl. on thal that they are not so efficient, nor is their life man lis. 11 ish

 the ramflan! atmon
 life, requires about 10 to 12 per cent more current than the corresponding 120-volt lamp. Furthermore, in the case of the more efficient lamps recently introxlucerl (such as the 'Tantalum lamp,
 sible, to make them for pressures atove 125 volts. For this reason the three-wire system is employed, for ly this methoxl we can use $2 f 11$ volts across the outside conductors, and by the use of a nentral conductor ohtain 120 volts between the nentral and the outside conductor, and thereby be enabled to use 12() -volt lamps. Furthermore, if a

 volt system would he introluced, and $2\{(1)$-volt lampes used. As a

 matter of fact, this has lans stest ita several cities-and potisionlafly ie Provbienor. IUasio 1 Jand. 1 a mbs, lonserver, tim (illo wit brop. heo bor
found se much more salisfactory as rogats life, edticiency, ete., that it is nearly always cmployerl.
 whatever is reguirenl concerning it.
'The threewire system, however, is somenhat confusing, mbe will :mes 'a . monilemi.

Details of Three-Wire System. The three-wire system may be considered as a two-wire system with a third or neutral conductor placed between the two outside conductors, as shown in Fig. 29. This neutral conductor would not be required if we could always have the lamps arranged in pairs, as shown in Fig. 30. In this case, the two lamps would burn in series, and we couki transmit the current at double the usual voltage, and thereby supply twice the number of lamps with one-quarter the weight of copper, allowing the same loss in pressure in the lamps. The reason for this is, that, having the lamps arranged in series of pairs, we reluce the current to one-half, and, as the pressure at which the current is transmitted is doubled, we can again reduce the copper one-half without increasing the loss in lamps. We therefore see that we have a double saving, as the current is reduced one-half, which reduces the weight of copper one-half, and we can again reduce the copper one-half ly doubling the loss in volts without increasing the percentage loss. For example, if in one case we had a straight two-wire system transmitting current to 100 lamps at a potential of 100 rolts, and this system were replaced by one in which the lamps were placed in series of pairs, as shown in Fig. 30, and the potential increased to 200 rolts- 100 lamps still being usedwe should find, in the latter case, that we were carrying current really for only 50 lamps, as we would require only the same amount of current for two lamps now that we required for one lamp before. Furthermore, as the potential would now he 200 instead of 100 volts, we could allow twice as much loss as in the first case, becanse the loss would now be figured as a percentage of 200 volts instead of a percentage of 100 volts. From this, it will readily be seen that in the second case mentioned, we would require only one-quarter the weight of copper that would be required in the first case.

It will readily be seen, homever, that a system such as that outlined in the second scheme having two lamps, would be impracticable for ordinary purposes, for the reason that it would always require the lamps to be burned in pairs. Now, it is for this rery reason that the third or neutral conductor is required; and, if this conductor be added, it will no longer be necessary to burn the lamps in pairs. This, then, is the object of the three-wire system-- to emable us to reduce the amount of copper required for transmitting current, without increasing the electric pressure employed for the lamps.

 any reason either of the outside conductors became disconmectent, the

 fire. For outside or underground work, however, where the fire
 be reduced in size; and, as a matter of fact, it is made smaller than the outside conductors.

The three-wire system is sometimes installeal where it is desired to use the system as a two-wire, 125-volt system, or to have it arranged
 system. Of course, in order to do this, it is necossary to make the

 recommended except in such instances, for example, as where an

 system. In surch a case ats this, however, it would be leetter, where

 size as each of the two outside conductors.

The weight of copper reduired in a three-wire system where the nevtral combuctor is the same size as cither of the twon outside conduce ors, is ${ }^{3}$ of that repuireyl for a corresponding two-wire system using the same voltage of lamps.* It is abvious that this is true, Ineramse.

[^1]as the discussion proved concerning the arrangement shown in Fig. 30 , where the lamps were placed in series of pairs, we found that the weight of copper for the two conductors was one-quarter the weight of the regular two-wire system. It is then of course true, that, if we had another conductor of the same size as each of the outside conductors, we increase theweight of copper one-half, or one-rguarter plus one-half of one-quarter-that is, three-eighths.

In the three-wire system frequently used in isolated plants in which the two outside conducters are joined together and the neutral conductor made equal to their combined capacity, there is no saving of copper, for the reason that the same roltage of transmission is used, and, consequently, we have neither reduced the current nor increased the potential. Furthermore, though the weight of copper is the same, it is now divided into three conductors, instead of two, and naturally it costs relatively more to insulate and manufacture three conductors than to insulate and manufacture two conductors having the same total weight of copper. As a matter of fact, the three-wire system, having the neutral conductor equal to the combined capacity of the two outsile ones, the latter being joined together, is about \& to 10 per cent more expensive than the corresponding straight two-wire system.

In interiar wiring, as a rule, where the three-wire system is use? for the mains and feeders, the two-wire system is nearly always employed for the hranch circuits. ()f course, the two-wire branch circuits are then balanced on each sile of the three-wire system, so as to obtain as far as possible at all times an ergual balance on the two sides of the system. 'This is done so as to have the neutral conductor carry as little current as possible. From what has already been said, it is obvious that in case there is a perfect halance, the lamps are virtually in series of pairs, and the neutral conductor does not carry any current. Where there is an mbalanced condition, the neutral conductor carries the difference between the current on one side and the current on the other side of the ststem. For example, if we had five lamps on one side of the system and ten lamps on the other, the neutral conductor would carry the current corresponding to five lamps.

In calculating the three-wire system, the neutral combluctor is disregarded, the outer wires heing treated ats a two-wire circuit, and the calculation is for one-half the total number of lamps, the per-

 current secondary wiring, as nearly all transformers are haile with three-wire connections.

While unbalancing will not atfect the total loss in the outside conductors, yet it does affect the loss in the lampsis, for the reason that the system is usuatly calculated on the hasis of a perfect halance, and the loss is divided equally between the two lamps (the latter beemg considered in series of pairs). If, however, there is urlatatacing to a great degree, the loss in lamps will be increased; and if the entire load is thrown over on one side, the loss in the lamps will lee dombleal on the remaining side, because the total losis in voltare will now oreur in these lamps, whereas, in the case of perfect balance, it would bee equally divided between the two groups of lamps.

CALCULATION OF SIZES OF CONDUCTORS

The formula for calculating the sizes of conductors for direct currents, where the length, load, and loss in volts are given, is an follows:


```
\[
\begin{equation*}
\cdots=-\quad 1630 \tag{1}
\end{equation*}
\]
in which \(C=\) ('urrent, in atuperes;
```


The constant (21.fi) of this formula is deriverl from the resistance

 ater and one foot long, is 10.5 at the temperature and combluetivity mamed. We multiply this figure (10.s) hy 2. as the lengert of at cirenat is usually given as the distance one way, anm in oreler to whtain the resistance of troth combluctors in a twe-nite cirent, we must maltiply lyy 2. 'The formula as atovere given, therefore, in for a fwor wire circont; and in caloulating the sizo of comblactor- in a threx-wire
 plameal hereimafter.

Formula 1 can be transformed so as to obtain the loss in a given circuit, or the current which may be carried a given distance with a stated loss, or to obtain the distance when the other factors are given, in the following manner:
Formula for Calculating Loss in Circuit when Size, Current, and Distance are Given

$$
\begin{equation*}
\mathrm{V}=\frac{C \times D \times 21.6}{C M} \tag{2}
\end{equation*}
$$

Formula for Calculating Current which may be Carried by a Given Circuit of Specified Length, and with a Specified Loss

$$
\begin{equation*}
C=\frac{C M \times V}{D \times 21.6} . \tag{3}
\end{equation*}
$$

Formula for Calculating Length of Circuit when Size, Loss, and Current to be Carried are Given

$$
\begin{equation*}
D=\frac{C .1 I \times 1}{C \times 21.6} \tag{4}
\end{equation*}
$$

Formule are frequently given for calculating sizes of conductors, etc., where the load, instead of being given in amperes, is stated in lamps or in horse-power. It is usually advisable, however, to reduce the load to amperes, as the efficiency of lamps and motors is a variable quantity, and the current varies correspondingly.

It is sometimes convenient, however, to make the calculation in terms of watts. It will readily be seen that we can obtain a formula expressed in watts from Formula 1. To do this, it is advisable to express the loss in volts in percentage, instead of actual volts lost. It must be remembered that, in the above formulæ, I represents the volts lost in the circuit, or, in other words, the slifference in potential between the begiming and the end of the circuit, and is not the applied E. M. F. The loss in percentage, in any circuit, is equal to the actual loss expressed in volts, divided by the line voltage, multiplied by 100; or,

$$
P=\frac{V}{E^{2}} \times 100 .
$$

From this equation, we have:

$$
V=\frac{P E}{100} .
$$

If, for example, the calculation is to he made on a loss of 5 per cent, with an applied voltage of 250 , using this last equation, we would have:

$$
V=\frac{5 \times 250}{100}=12.5 \text { volts. }
$$

Substituting the equation $\quad V^{\prime}=\frac{P E}{100}$ in Formula 1, we have:

$$
\begin{aligned}
& =1211-21-2018
\end{aligned}
$$

$$
\mathrm{C}=\mathrm{W}
$$

 of currome thu:
in which $\mathrm{W}^{\circ}=$ Power in watts transmitted;
 comductor;
$P=$ Figure representing the percentage loss;
$E^{*}=$ Applied voltage.
All the alove formular are for calculations of two-wire circuits. In making calculations for three-wire circuits, it is usual to make the
 wire calculations, the atrove formulae can lee useel with a slight monlification, as will be shown.

In a three-wire circoit, it is ussually assmmed in making the calcolation, that the load is equally balaneerl on the two sides of the neutral conductor; and, as the potential acronsis the ontside comducturs is double that of the corresponding potential actoss a two-wire cire mit. it is evident that for the same size of combereor the tenal loss in volte could be doubled without inereasing the pereontage of loss in lamps. Furthermore, as the load on one side of the newtral combuctor, when the system is balmenerl, is virtually in series with the hoal on the thind side, the current in amperes is usually ome-half the sum of the

[^2]current in amperes (that is, the sum of the current required by all of the lamps) in Formula 1, we shall have to divide this current by 2 , to use the formula for calculating the two outside conductors for a three-wire system. Furthermore, we shall have to multiply the voltage lost in the lamps by 2 , to obtain the voltage lost in the two outside conductors, for the reason that the potential of the outside conductors is double the potential required by the lamps themselves. In other words, Formula 1 will become:
\[

$$
\begin{align*}
C M & =\frac{C \times D \times 21.6}{2 \times 2} \\
& =\frac{C \times D \times 21.6}{41} \tag{6}
\end{align*}
$$
\]

in which $C=$ Sum of current required by all of the lamps on both sides of the neutral conductor;
$D=$ Length of circuit-that is, of any one of the three conductors;
$V=$ Loss allowed in the lamps, i. e., one-half the total loss in the two outside conductors.
In the same mamer, all of the other formula may he adapted for making calculations for three-wire systems. Of course the calculation of a three-wire system could be made as if it were a two-wire system, by taking one-half the total number of lamps supplied, at one-half the voltage between the outside conductors.

It is understood, of course, that the size of the conductor in Formula 6 is the size of each of the two outs de ones; but, inasmuch as the Rules of the National Electric Code reguire that for interior wiring the neutral conductor shall he at least equal in size to the outside conductors, it is not necessary to calculate the size of the neutral conductor. It must be remembered, however, that, in a three-wire system where the neutral conductor is made equal in capacity to the combined size of the two outside conductors, and where the two outside conductors are joined together, we have virtually a two-wire srstem arranged so that it can he converted into a three-wire sustem later. In this case the calculation is exactly the same as in the case of the two-wire circuits, except that one of the two conductors is split into two smaller wires of the same capacity. This is frequently done where isolated plants are installed, and where the generators are wound for 125 volts and it may he desired at times to take current from an outside three-wire 125 -250-volt system.

METHOD OF PLANNING A WIRING INSTAILATION

 wiring and the mamer in which the comluetors atre te lxe installeyl. 'These data will inclule: Kind of bmilling; construction of building; space availahle for combluctors; sumere and syivem of electrice-urrent supply; and all details whirh will determine the method of wiring to be employed. These last items materially atfect the cost of the work, and are usually determinesl by the character of the buihling and by commercial considerations.

Hethod of Wiring. In a moxlern fireproof buikling, the only: svistem of wiring to be recommended is that in which the conductors are installed in rigid conduits; although, even in such cases, it may be desirable, and economy may be effected therehy, to install the larger
 slow-hurning wire. 'This latter methex should be used, however, only where there is a convenient rumway for the conductors, so that they will not be crowded and will not cross pipes, dacts, etce. and also will not have too many bends. Also, the local inspection atuthorities should be consulted before usimg this methorl.

For mills, facturies, etc., wires exposed on cleats or insulators are usually to be recommended, althongh rigid conduit, flexible condhit, or armoreal cable may be desirable.

In finisherl buildings, and for extensions of existing ontlets, where the wiring could not readily or conveniontly be concealerd, moulaling is gencrally used, particularly where cleat wiring or other exposerl methoxls of wiring would be objeetionathe. However, as
 is any liability to dampuess.

In finisherl buildings, particularly where they are of frame con-
 15. witel.

 Where the guestion of lirst enst is of prime impertames. While armenerl

tube wiring, the former method is so much more permanent and is so much safer that it is strongly recommended.

Systems of Wiring. The system of wiring-that is, whetherthe two-wire or the three-wire system shall be used-is usually determined by the source of supply. If the source of supply is an isolated plant, with simple two-wire generators, and with little possibility of current being taken from the outside at some future time, the wiring in the building should be laid out on the two-wire system. If, on the other hand, the isolated plant is three-wire (having three-wire generators, or two-wire generators with balancer sets), or if the current is taken from an outside source, the wiring in the building should be laid out on a three-wire system.

It very seldom happens that current supply from a central station is arranged with other than the three-wire system inside of buildings, because, if the outside supply is alternating current, the transformers are usually adapted for a three-wire system. For small buildings, on the other hand, where there are only a few lights and where there would be only one feeder, the two-wire system is used. As a rule, however, when the current is taken from an outside source, it is best to consult the engineer of the central station supplying the current, and to conform with his wishes. As a matter of fact, this should be done in any event, in order to ascertain the proper voltage for the lamps and for the motors, and also to ascertain whether the central station will supply transformers, meters, and lamps-for, if these are not thus supplied, they should be included in the contract for the wiring.

Location of Outlets. It is not within the scope of this treatise to discuss the matter of illumination, but it is desirable, at this point, to outline briefly the method of procedure.

A set of plans, including elevation and details, if any, and showing decorative treatment of the various rooms, should be obtained from the Architect. A careful study should then he made by the Architect, the Owner, and the Engineer, or some other person qualified to make recommendations as to illumination. The location of the outlets will depend: First, upon the decorative treatment of the room, which determines the resthetic and architectural effects; second, upon the type and general form of fixtures to be used, which should be previously decided on; third, upon the tastes of the owners or

 the plans.
 centers of distribution, the available puints for the risers or feenters, and the available space for the branch circuit combuctors.
 lowing precautions should lee used in selecting chases:
 mains likely to rise at that given point. This seems trite and unnemenary. but it is the most usual trouble with chases for risers. Formerly arehiterts and huiders paid little attention to the requirements for chases for electrical work ; but in these later days of 2 -inch and 21 -imeh conduit, they reabize that these piqes are not so invisible and mysterious as the foree they serve to distribute, particularly when twenty or more such comluits must be stowed away in a building where no special provision has been made for them.
2. If possible, the space should be devoted solely to ededric wiring. Steam pipes are objectionable on account of their temperature; and these and all other pipes are objectionable in the same space ocecupied hy the electrial conduits, for if the space proves too small, the deet rice comduits are the tirst to be crowaled sute.

The chase, if possible, should be continuous from the cellar to the roof, or as far as nerded. This is necessary in order to avoinl ummeressary hends or dhows, which are objectionable for many reasons.

In similar manner, the location of cut-out coblinets or distributing centers should fulfil the following requirements:

1. They should be acecessible at all times.
2. They should be phaced sufficienty dene thenther to prevent the circuits from being (on long.
3. Wo not phace them in too prominent apmaition, as that is objectionable from the Irehitect's preint of view.
4. They should be placed as near as phosilshe to the risimg chases in order to shorten the fereders and mains supplying them.

Having determined the system and methoul of wiring, the foxation of outlets and distributing centers, the next step is to lity out the branch circuits supplying the varions outlets.

Before starting to lay out the branch circonts, at drawing showing the floor construetion, athe showing the space letween the tope of the
 peret. Inr prowf buiblings of iron or sted comstrmetion, it is abmost

conduits oves the beams, under the rough flooring, carrying them between the sleepers when ruming parallel to the sleepers, and notching the latter when the conduits run across them (see Fig. 31). In wooden frame buildings, the conduits run parallel to the beams and to the furring (see Fig. 32); they are also sometimes run below the

Finished Floor

Fig. 31. Running Conductors Concealed under Floor in Fireproof Building.
heams. In the latter case the beams have to be notched, and this is allowable only in certain places, usually near the points where the beams are supported. The Architect's drawing is therefore necessary in order that the location and course of the conduits may be indicated on the plans.

The first consideration in laying out the branch circuit is the number of outlets and number of lights to be wired on any one branch circuit. The Rules of the National Electric Code (Rule 21-D) require that "no set of incandescent lamps requiring more than 660 watts, whether grouped on one fixture or on several fixtures or pendants, will be dependent on one cut-out." While it would be possible to have hranch circuits supplying more than 660 watts, by placing various cut-outs at different points along the route of the branch circuit, so as to subdivide it into small sections to comply with the rule, this methorl is not recommended, except in certain cases, for exposed wiring in factories or mills. As a rule, the proper method is to have the cut-outs located at the center of distribution, and to limit each branch circuit to 6 fici0 watts, which corresponds to twelve or thirteen 50 -watt lamps, twelve being the usual limit. Attention is called to the fact that the inspectors usually allow 50 watts for each socket connected to a branch circuit; and although s-candle-power lamps may be placed at some of the outlets, the inspectors hold that the standard lamp is approximately 50 watts, and for that reason thom is always the likelihood of a lamp of that capacity being used, and their mspec-
RESIDENCE OF B. J. ALLAN, BEVERLY, MASS.

 still further, so as tomake allowance for future extemsuns or to increase the number of lamps that may tre placed at any outlet. For this reason, it is wise to keep the mumber of the outlets on at cirenit at the lowest point consistent with economioal wiring. It has been proven
 number to five or six outlets on a branch circuit. (of course, where
 reasons of economy, to increase this number to eight, ten, and, in some cases, twelve outlets.

We have already referred to the location of the wires or conduits.
 tion of the building. It is necessary to know this, however, Inefore
 a circuit.

Now, as to the course of the circuit work, little need be said,

 Between the outlets, it will have to loe decidesl, buwever, whether the circuits shall ron at right angles to the walls of the buikling or room, or whether they shall run direct from one froint to athother,

tubes are bent, however, instead of using elbows, the difference in cost is usually very slight, and probably does not compensate for the disadvantages that would result from running the tubes diagonally. As to the number of bends, if branch circuit work is properly laid out and installed, and a proper size of tube used, it rarely happens that there is any difference in "pulling" the branch circuit wires. It may happen, in the event of a very long run or one having a large number of bends, that it might be advisable to adopt a short and most direct route.

Up to this time, the location of the distribution centers has been made solely with reference to architectural considerations; but they must now be considered in conjunction with the branch circuit work.

It frequently happens that, after running the branch circuits on the plans, we find, in certain cases, that the position of centers of distribution may be changed to advantage, or sometimes certain groups may be dispensed with entirely and the circuits run to other points. We now see the wisdom of ascertaining from the Architect where cut-out groups may be located, rather than selecting particular points for their location.

As a rule, wherever possible, it is wise to limit the length of each branch circuit to 100 feet; and the number and location of the distributing centers should be determined accordingly.

It may be found that it is sometimes necessary and even desirable to increase the limit of length. One instance of this may be found in hall or corridor lights in large buildings. It is generally desirable, in such cases, to control the hall lights from one point; and, as the number of lights at each outlet is generally small, it would not be economical to run mains for sub-centers of distribution. Hence, in instances of this character, the length of runs will frequently exceed the limit named. In the great majority of cases, however, the best results are obtained by limiting the runs to 90 or 100 feet.

There are several good reasons for placing such a limit on the length of a branch circuit. To begin with, assuming that we are going to place a limit on the loss in voltage (drop) from the switchboard to the lamp, it may he easily proven that up to a certain reasonable limit it is more economical to have a larger number of distributing centers and shorter branch circuits, than to have fewer centers and longer circuits. It is usual, in the better class of work, to limit the

 circuit 100 feet long (using No. 1\& B. \& S wire) is four ; or in the case of outlets having a single light eatch, fiew outlees maty be connected on the circuit, the first being (i) feet fre:n the cut-ont, the whers being 10 feet apart.
'These examples are selecterl simply to show that if the branch circuits are much longer than $1(0)$ feet, the loss must lee increaserl to more than one volt, or else the number of lights that may le cronnected to one circuit must be reduced to a very small quantity, pruFided, of course, the size of the wire remains the same.

Either of these alternatives is objectionable-the first, on the

 on is four volts (assuming an extreme case), the voltagre at which a
 momber of lights hominer at a time. 'Thif. of ante. will ante the

 thereby increasing their cost.

If the number of lights on the circuit is decreased, we do not use to gool advantage the available carrying capacity of the wire.

Of course, one solution of the problem would be to inerease the
 however, would not be desirable, except in certain cases where there were a few long circuits, such as for corridor lights or other sparial ontrol circuits. In such instances as these, it wombld be lwelter (o)

B. \& S. Gange combuctors, than to increatse the number of cemters
 the number of lamps (or loss) within the limit.
'I'he methex of cateulating the foss in comduceors has leem given

lations must be made for each portion of the circuit. That is, a calculation must be made for the loss to the first outlet, the length in this case being the distance from the center of distribution to the first outlet, and the load being the total number of lamps supplied by the circuit. The next step would be to obtain the loss between the first and second outlet, the length being the distance between the two outlets, and the load, in this case, being the total number of lamps supplied by the circuit, minus the number supplied by the first outlet; and so on. The loss for the total circuit would be the sum of these losses for the various portions of the circuit.

Feeders and Mains. If the building is more than one story, an elevation should be made showing the height and number of stories. On this elevation, the various distributing centers should be shown diagrammatically; and the current in amperes supplied through each center of distribution, should be indicated at each center. The next step is to lay out a tentative system of feeders and mains, and to ascertain the load in amperes supplied by each feeder and maii. The estimated length of each feeder and main should then be determined, and calculation made for the loss from the switchboard to each center of distribution. It may be fom that in some cases it will be necessary to change the arrangement of feeders or mains, or even the centers of distribution, in order to keep the total loss from the switchboard to the lamps within the limits previonsly determined. As a matter of fact, in important work, it is always hest to lay out the entire work tentatively in a more or less crude fashion, accorling to the "cut and dried" method, in order to obtain the hest results, because the entire layout may be modified after the first preliminary layout has been made. Of course, as one becomes more experienced and skilled in these matters, the final layout is often almost identical with the first preliminary arrangement.

TESTING

Where possible, two tests of the electric wiring equipment should be made, one after the wiring itself is entirely completed, and switches, cut-out panels, etc., are comected; and the second one after the fixtures have all been installed. The reasom for this is that if a ground or short circuit is discovered hefore the fixtures are installed, it is more easily remedied; and secondly, because there is no division of

 or ground is one or more of the fixtures. As a matter of fact, it is a
 deliverel at the building and before it is installerl.

While a saymens is largeiy umal tor the perpane of in tinh it is

 circuit, or not. In some instances, moreover, a magneto test has

 turnt, it may sumertme happern prationlarly in fonge calde. .and r-perinlly where them is a leat thealbing on dow enthe thent the

 to ring. Of course, this defect in a magneto could be remerlied by

A portable galvanometer with a resistance box and Wheatstone
 Berause it requires a special instrument which cannot lee userl for
 to use than the voltmeter methed, which will mow le describert.
'The advantage of the voltmeter methen is that it requires meroly. a direet-eurrent voltmeter, which can tre usey for many wher purpuses, and which all engineers or contractors should passesse, together with a box of cells having a potential of preferably over 30 volts. 'I'he volemeter shombl have a sale of not ower line volts, for the maven that if the soale on whic! the hattery is usey coners tox) wite a ramge (say

curate. A good arrangement would be to have a voltmeter having two scales-say, one of 60 and one of 600 -which would make the voltmeter available for all practical potentials that are likely to be used inside of a building. If desired, a voltmeter could be obtained with three connections having three scales, the lowest scale of which would be used for testing insulation resistances.

Before starting a test, all of the fuses should be inserted and switches turned on, so that the complete test of the entire installation can be made. When this has been done, the voltmeter and battery should be connected, so as to obtain on the lowest scale of the voltmeter the electromotive force of the entire group of cells. This connection is shown in Fig. 33. Immediately after this has been done, the insulation resistance to be tested

Fig. 33. Connections of Voltmeter and Battery for Testing Insulation Resistance. is placed in circuit, whether the insulation to be tested is a switchboard, slate panel-board, or the entire wiring installation; and the connections are made as shown in Fig. 34. A reading should then again be taken of the voltmeter; and the leakage is in proportion to the difference between the first and second readings of the voltmeter. The explanation given below will show how this resistance may he calculated: It is evident that the resistance in the first case was merely the resistance of the voltmeter and the internal resistance of the battery. As a rus, the internal resistance of the battery is so small in comparison with the resistance of the voltmeter and the external resistance, that it may be entirely neglected, and this will be done in the following calculation. In the second case, however, the total resistance in circuits is the resistance of the voltmeter and the hattery, plus the entire insulation resistance on all the wires, etc., connected in circuit.

To put this in mathematical form, the voltage of the cells may be indicated by the letter E; and the reading of the voltmeter when the insulation resistance is connected by the circuit, by the letter E^{\prime}. Let R represent the resistance of the voltmeter and R_{x} represent the insulation resistance of the installation which we wish to measure.

 resistance: that is, the greater the resistance, the lower will be the

 formula, we have from the theory of proportion:

$$
8+11 \div 4=2.8 \cdot 1:
$$

ur,

$$
14-1 m-1 \pi
$$

Transpesing.

$$
\left\|N_{n}=1\right\|=\|-\|!-F
$$

and

$$
\therefore+\frac{R\left(E-E^{\prime}\right)}{E^{\prime}}
$$

 ance of the volt1.a wer rautizuial l.y the difference between the first reading (or the voltage in the cells) and the second reading (or the reating of the voltoneter with the insulation re-

 the voltmeter.

 tion resistance test of a wiring installation, including switchlnard,

 in il. Emombla

$$
l=\ldots \frac{R\left(E-E^{\prime}\right)}{l:}
$$

 resintane commerterl is \bar{b}, we have:

short circuit, the location of the trouble may be determined by the process of elimination-that is, by cutting out the various feeders until the ground or leakage disappears, and, when the feeder on which the trouble exists has been located, by following the same process with the branch circuits.

Of course, the larger the installation and the longer and more numerous the circuits, the greater the leakage will be; and the lower will be the insulation resistance, as there is a greater surface exposed for leakage. The Rules of the National Electric Code give a sliding scale for the requirements as to insulation resistance, depending upon the amount of current carried ly the various feeders, branch circuits, etc. The rule of the N'ational Electric Code (No. 66) covering this point, is as follows:
"The wiring in any building must test free from grounds; i. e. , the complete installation must have an insulation between conductors and between all conductors and the ground (not including attachments, sockets, receptacles, etc.) not less than that given in the following table:

"The test must be made with all cut-outs and safety devices in place. If the lamp sockets, receptacles, electroliers, etc., are also connected, only onehalf of the resistances specified in the table will be required."

ALTERNATING-CURRENT CIRCUITS

It is not within the province of this chapter to treat the various alternating-current phenomena, but simply to outline the modifications which should be made in designing and calculating electric light wiring, in order to make proper allowance for these phenomena.

The most marked difference hetween alternating and direct current, so far as wiring is concerned, is the effect produced by selfinduction, which is characteristic of all alternating-current circuits. This self-induction varies greatly with conditions depending upon the arrangement of the circuit, the medium surrounding the circuit, the devices or apparatus supplied by or connected in the circuit, etc.

 number of turns in the coil, whether it is wombl on iron or some wher non-magnetic material, ete.

It will be seen from this example, that greater allowance shoukt

 be appreciable.

On account of self-induction, the two wires of an alternatingcurrent circuit must never be installed in separate iron or steel con-

 is iron or steel, whenever the salid circuit is intended to carry, or is

 given phase must be placed in the same conduit. If, however, the

 three-wire three-phase system. (of course, in a simgle-phase two- or
 comduit.

In calculating circuits carrying alternating current, no allowance usatally should be mate for self-imduction when the comductors of the same circuit are placed close together in an iron comblait. When, however, the conductors are rum exposed, or are separated from eath other, catenlation should ter mate for determise if the efferets of selfinduetion are great enough to canse an appreciable inductive dryp. 'Ihere are several methots of calculating this drop dhe to self-induc-tion-one loy formala, and one ly a mathematioal methol which will the , fisullimel.

Skin Effect. Skin effect in alternating-current circuits is caused by an incorrect distribution of the current in the wire, the current tending to flow through the outer portion of the wire, it being a wellknown fact that in alternating currents, the current density decreases toward the center of the conductor, and that in large wires, the current density at the center of the conductor'is relatively quite small.

The skin effect increases in proportion to the square of the diameter, and also in direct ratio to the frequency of the alternating current.

For conductors of No. 0000 B. \& S. Gauge, and smaller, and for frequencies of 60 cycles per second, or less, the skin effect is negligible and is less than one-half of one per cent.

For very large cables and for frequencies above 60 cycles per second, the skin effect may be appreciable; and in certain cases, allowance for it should be made in making the calculation. In ordinary practice, however, it may be neglected. Table IX, taken from Alter-nating-Current Wiring and Distribution, by W. R. Emmet, gives the data necessary for calculating the skin effect. The figures given in the first and third columns are obtained by multiplying the size of the conductor (in circular miis) by the frequency (number of cycles per second); and the figures in the second and fourth columns show the factor to be used in multiplying the ohmic resistance, in order to obtain the combined resistance and skin effect.

TABLE IX
Data for Calculating Skin Effect

Pronuct of Circular Mils \times Cycles per Sec.	Factor	Pronuct of Circular Mils \times Cycles per Sec.	Factor
10,000,000	1.00	70,000,000	1.13
20,000,000	1.01	80,000,000	1.17
30,000,000	1.03	$90,000,000$	1.20
40,000,000	1.05	100,000,000	1.25
50,000,000	1.08	125,000,000	1.34
60,000,000	1.10	150,000,000	1.43

The factors given in this table, multiplied by the resistance to direct currents, will give the resistance to alternating currents for copper conductors of circular cross-section.

Mutual Induction. When two or more circuits are run in the same vicinity, there is a possibility of one circuit inducing an electromotive force in the conductors of an adjoining circuit. This effect may result in raising or lowering the E. MI.F. in the circuit in which a

 said circuits.

Under ondinary conditions, and except for long cirenits carrying

 to prevent mutual induction, the comfuctors constituting a given

five arrangements of two two-wire circuits; and show how relatively small the effect of first induction is when the combuctors are properly arranged, as in Fig. 38 , and how relatisely large it may the when improperly arrangeal, as in Fig. 39. 'These diagrams ate taken from
 mission, issued by the Wistinghonse lilectric \& Mannfacturing f.mpura.:
 except in long transmission lines where high protentials are nael; inn calculations or allowatere need be made for capacity, for undinary circuits

Calculation of Alternating=Current Circuits. In the instruction paper on "Power Stations and Transmission," a method is given for calculating alternating-current lines by means of formulæ, and data are given regarding power factor and the calculation of both single-phase and polyphase circuits. For short lines, secon, 'ary wiring, etc., however, it is probably more convenient to use the chart method devised by Mr. Ralph D. Mershon, described in the Am.rican Electrician of June, 1897, and partially reproduced as follows:

DROP IN ALTERNATING=CURRENT LINES

When alternating currents first came into use, when transmission distances were short and the only loads carried were lamps, the question of drop or loss of roltage in the transmitting line was a simple one, and the same methods as for direct current could without serious error be employed in dealing with it. The conditions existing in alternating practice to-day-longer distances, polyphase circuits, and loads made up partly or wholly of induction motors-render this question less simple; and direct-current methods applied to it do not lead to satisfactory results. Any treatment of this or of any engineering subject, if it is to benefit the majority of engineers, must not involve groping through long equations or complex diagrams in search of practical results. The results, if any, must be in available and convenient form. In what follows, the endeavor has been made to so treat the subject of drop in alternating-current ines that if the reader be grounded in the theory the brief space devoted to it will suffice; but if he do not comprehend or care to follow the simple theory involved, he may nevertheless turn the results to his practical advantage.

Calculation of Drop. Most of the matter heretofore published on the subject of drop treats only of the inter-relation of the E. MI. F.'s involved, and, so far as the writer knows, there have not appeared in convenient form the data necessary for accurately calculating this quantity: Table X (page 47) and the chart (page 46) include, in a form sutable for the engineer's pocketbook, everything necessary for calculating the drop of alternating-current lines.

The chart is simply an extension of the vector diagram (Fig. 40). giving the relations of the E. MI. F.'s of line, load and generatos. In

 is drawn with a radius e, and the other with a radius E.

The chart is mate by stribing a stece ion of sirulat ans - with () as a center The radius of the smallest circle corresponds to ε, the F: M. F. of the load, which is taken as 100 per cent. The rauliinf the sur reeding circles increase by 1 per cent of that of the smallest circle; and, as the radius of the last or largest circle is 140 per cent

 and reactance E. M. F., refer, of course, to the voltages for overcom-

 some time ago by Messrs. Houston and Kiomellys. The remainder were obtained lyy using Maxwell's formula.

The explamation giten in the bative amompangag the flum

Chart for Calculating Drop in Alternating-Current Lines.

1ABI．I：X

Hata fur calculating Urop in Alternating－current lines

1 $=$			 Viperfghres are Reactance．Volots in 1.000 fl ．of Line $(=$ 2.000 ft ．of Wirc）for Oue Amperte at 7.900 Alternations per Ninute（80（Yyeles per Second）for the distance gived betweed inuters of conductors．										
				！＂					0	\cdots	$24^{\prime \prime}$	$3 r^{\prime \prime}$	－
1月， 4 ）	4i:3!	018	.046 243	$\begin{gathered} 0 \%! \\ 11 \end{gathered}$	$\begin{array}{r} 111 \\ .5 \times 4+1 \end{array}$	$.130$	$\begin{array}{r} .161 \\ \sin 0 \end{array}$	$\begin{gathered} .151 \\ 851 \end{gathered}$	$\begin{gathered} 165 \\ 106 \end{gathered}$	$\therefore 1 \ddot{10}$	$\begin{aligned} & 10 . \\ & \hdashline 110 \end{aligned}$	$\because 35$	$\begin{array}{r} 14 \\ 18 \end{array}$
（itis）	$\therefore 117$	124	．11．3	16）	． 116	． 135	． 167	．141	．1199	217	$\therefore 3$	$\therefore 11$	$\because 419$
			275	38.	． 613	． 113	Re2	，	1 us	115	$1=$		
（ii）	112：	1515	．11．7	． 0 9\％	． 121	． 141	．17－	． 114	$\therefore 114$	．2．20	． 236	$\therefore+1 ;$	$\therefore \therefore 4$
		02	34	in	（4）	733	$3=$	10	10 N	1119	4 C	1	4 is
11	$81!9$	197	（6）	a	．127	．145	． 177	． 119	$\therefore 19$	ㅍ．34	．2 91	$\therefore \sim$	－$\because=0$
		18	32	ज川	$6{ }^{6} 1$	（12．	．133）	144	110	123	15	10	135
1	$\because \because$	is	5004	． 1101	15 E	． 151	． $18:$	． 201	．214	．23i3	$\therefore+4$	．2\＃i	$\therefore 65$
		111	$\underline{4}$	1		． 897	कe	1 （1）	113	873	H13	1.6	43
：	$\vdots 11$	：31：	iril	$1+1{ }^{1}$	14	．154	． 154	$\therefore 117$	$\therefore \therefore 11$	37.8	\therefore 二口	$\therefore \mathrm{H}^{2}$	$\therefore \square \square$
		1 15	11	Sula	$1 \rightarrow$	$x=1$	P\％	1 1e	110	123	14	1 m	10
13	$15!$	i	IT，	．112	． 143	． $11 i^{\circ}$	． 191%	$\therefore 1 \ddot{ }$	…s	$\therefore 14$	\therefore 二小	$\therefore 1$	$\therefore \%$
		18	$1: 7$		洮	＋	168	12	110	$1=$	18	141	4＊＊
1	1：30	4π	11.	11：	11.	． 167	．1：151	$\therefore 17$	\therefore	4＊3	4 y	㫛ご	4
			113	818	TVF	El	10	111	121	（ 01	418	14	1＊
$\stackrel{ }{ }$	115	$6_{2}^{2} 7$	（1）N1	．1－1	．1－1	．172	2111	2	4．	21	3.	B：－	i．
			10		181	10	Tisid	417	1 H	17	1 ${ }^{4}$	＋	18
－	.	$\begin{aligned} & 791 \\ & i \end{aligned}$		515	$1 \times$	174	213	E．	\＄ 31			\checkmark	1
			nill	Ari	13	－	110	1 in	1	$1 \times$	814	＋	18.
，			11.	$1=$	124	1 ．	－11		411	75	4 T	2－	．
				0.1	4	4	111	A ${ }^{\text {a }}$	1 In	Ciar	117	$1 \pm$	16
．		415	10	14	1.1	145	：3010	，		－ 7	－4	3.	36
			46	iv	4＊	－	16	$1+$	18	1.	1	$1 \times$	11.

(Table \mathbb{X}) is thought to be a sufficient guide to its use, but a few examples may be of value.

Problem. Power to be delivered, 250 K.W.; E. M. F. to be delivered, 2,000 volts; distance of transmission, 10,000 feet ; size of wire, No. 0 ; distance between wires, 18 inches; power factor of load, .8 ; frequency, 7,200 alternations per minute. Find the line loss and drop.

Remembering that the power factor is that fraction by which the apparent power of volt-amperes must be multiplied to give the true power, the apparent power to be delivered is

$$
\frac{250 \mathrm{~K} . \mathrm{W} .}{.8}=312.5 \text { apparent K.W. }
$$

The current, therefore, at 2,000 volts will be

$$
\frac{312,500}{2,000}=156.25 \text { amperes }
$$

From the table of reactances under the heading " 18 inches," and corresponding to No. 0 wire, is obtained the constant .228 . Bearing the instructions of the table in mind, the reactance-volts of this line are, 156.25 (amperes) $\times 10$ (thousands of feet) $\times .228=356.3$ volts, which is 17.8 per cent of the 2,000 volts to be delivered.

From the column headed "Resistance-Volts" and corresponding to No. 0 wire, is obtained the constant .197 . The resistance-volts of the line are, therefore, 156.25 (amperes) $\times 10$ (thousands of feet) $X .197=307.8$ volts, which is 15.4 per cent of the 2,000 volts to be delivered.

Starting, in accordance with the instructions of the table, from the point where the vertical line (which at the bottom of the chart is marked "Load Power Factor". .§) intersects the inner or smallest circle, lay off horizontally and to the right the resistance-E. M. F. ir. per cent (15.4); and from the point thus obtained, lay off vertically the reactance-E. M. F. in per cent (17.8). The last point falls at about 23 per cent, as given by the circular ares. This, then, is the drop, in per cent, of the E. M.F. delivered. The drop, in per cent, of the generator E. M. F. is, of course,

$$
\frac{23}{100+23}=18.7 \text { per cent. }
$$

The percentage loss of pouer in the line has not, as with direct current, the same value as the percentage drop. This is due to the fact that the line has reactance, and also that the apparent power

LIVING ROOM IN UWELLLING FOR MR. W. W. WIILITS, HIGIIIAND PARK, ILL.

 by multiplying the resistance-volts hy the equrant.

 percentage loss is

$$
\frac{45.1}{2(1)}-16: 14 \% 1=1
$$

Therefore, for the problem taken, the drop is 1s. it per cent, and the
 drop, it must be solved lyy trial. Assume a size of wire atod calculate the drop; the result in connection with the tathe will show the direction and extent of the change neeressary in the size of wire to give the reguired (trop).

The eflecet of the line reactance in increasing the drop should be noted. If there were no reactance, the drop in the aldowe example would be given by the point ohtained in laving off on the chart the resistance-E. M. F. (15.4) unly. This puint falls at 12.4 per cent,

$$
\begin{array}{r}
12.4 \\
1124
\end{array}-11 \text { permind insions of is } \because \text { geriond. }
$$

Anything therefore which will reduce reactance is desirathle.
Reactance can be reduced in two ways. ()ne of these is to diminish the distance between wires. 'Ther extent to which this can be carriey is limited, in the case of a pole line, to the least di-tance at which the wires are safe from swingring togrether in the midelle of the span; in inside wiring, by the danger from fire. 'The other way of rembacing reatetance is to split the (s)pper up into at greater number of rerenits, and arramge these ceremits so that there is mo inductive interaetion. For instance, suppuse that in the example workeyl out almove,
 voles would be prate teally the same, lut the reatednce-obles would Ix.

 is alse shown if in the example given it is desimed tor reybue the "loup
to, say, one-half. Increasing the copper from No. 0 to No. 0000 will not produce the required result, for, although the resistance-volts will be reduced one-half, the reactance-volts will be reduced only in the ratio $\frac{.212}{.228}$. If, however, two inductively independent circuits of No. 0 wire be used, the resistance- and reactance-volts will both be reduced one-half, and the drop will therefore be diminished the required amount.

The component of drop due to reactance is best diminished by subdividing the copper or by bringing the conductors closer together. It is little affected by change in size of conductors.

An idea of the manner in which changes of power factor affect drop is best gotten by an example. Assume distance of transmission, distance between conductors E. M. F., and frequency, the same as in the previous example. Assume the apparent power delivered the same as before, and let it be constant, but let the power factor be given several different values; the true power will therefore be a variable depending upon the value of the power factor. Let the size of wire be No. 0000 . As the apparent power, and hence the current, is the same as before, and the line resistance is one-half, the resistanceE. M. F. will in this case be

$$
\frac{15.4}{2} \text {, or } 7.7 \text { per cent of the E. M. F. delivered. }
$$

Also, the reactance-E. M. F. will be

$$
\frac{.212 \times 17 . \mathrm{S}}{.228}=16.5 \text { per cent. }
$$

Combining these on the chart for a power factor of .4 , and deducing the drop, in per cent, of the generator E. M. F., the value obtained is 15.3 per cent; with a power factor of.δ, the drop is 14 per cent; with a power factor of unity, it is \& per cent. If in this example the true power, instead of the apparcont power, had been taken as constant, it is evident that the values of drop would have differed more widely, since the current, and hence the resistance- and reactance-rolts, would have increased as the power factor diminished. The condition taken more nearly represents that of practice.

If the line had resistance and no reactance, the several values of drop, instead of $15.3,14$, and 8 , would be $3.2,5.7$, and 7.2 per cent respectively, showing that for a luad of lamps the drop will not

 permit.

When there is a transformer in circuit, and it is desired to chotain the combined drop of transformer and line, it is necessary to know the resistance- and reactance-volts of the transformer. 'The resist-ance-volts of the combination of line and transformer are the sum of the resistance-volts of the line and the resistance-volts of the trans-
 are the sum of their respective reactance-volts. 'The resistance- and
 the makers, and are ordinarily given in per cent.* 'These per-
 when the transformer delivers its normal full-load current; and they express these values in terms of the normal no-load E.. M. F. of the transformer.
('onsider a transformer built for transformation between 1,1 (K) and 100 volts. Suppose the resistance-and reactance-F. M. F. 's given are 2 per cent and 7 per cent respectively. 'Then the corresponding woltages when the transformer delivers full-load current, are 2 and 7 volts or 20 and 70 volts aceording as the line whose drop is repuiresd is connected to the low-voltagre or high-voltage terminals. These values, $2-7$ and $2(0-70$, hold, no matter at what voltare the trans-

[^3]former is operated, since they depend only upon the strength of current, providing it is of the normal frequency. If any other than the full-load current is drawn from the transformer, the reactance- and resistance-volts will be such a proportion of the values given above as the current flowing is of the full-load current. It may be noted, in passing, that when the resistance- and reactance-volts of a transformer are known, its regulation may be determined by making use of the chart in the same way as for a line having resistance and reactance.

As an illustration of the method of calculating the drop in a line and transformer, and also of the use of table and chart in calculating low-voltage mains, the following example is given:

Problem. A single-phase induction motor is to be supplied with 20 amperes at 200 volts; alternations, 7,200 per minute; power factor, 7s. The distance from transformer to motor is 150 feet, and the line is No. 5 wire, 6 inches between centers of conductors. The transformer reduces in the ratio $\frac{2,000}{200}$, has a capacity of 25 amperes at 200 volts, and, when delivering this current and voltage, its resistance-E. M. F. is 2.5 per cent, its reactanceE. M. F. 5 per cent. Find the drop.

The reactance of 1,000 feet of circuit consisting of two No. 5 wires, 6 inches apart, is .204 . The reactance-volts therefore are

$$
.204 \times \frac{150}{1,000} \times 20=.61 \text { volts }
$$

The resistance-volts are

$$
.627 \times \frac{150}{1,000} \times 20=1.88 \text { volts }
$$

At 25 amperes, the resistance-volts of the transformer are 2.5 per cent of 200 , or 5 volts. At 20 amperes, they are $\frac{20}{2.5}$ of this, or 4 volts. Similarly, the transformer reactance-volts at 25 amperes are 10 , and at 20 amperes are S volts. The combined reactance-volts of transformer and line are $8+.61=8.61$, which is 4.3 per cent of the 200 volts to be delivered. The combined resistance-volts are 1.ss +4 , or 5.88 , which is 2.94 per cent of the E. M. F. to be delivered. Combining these quantities on the chart with a power factor of .78 , the drop is 5 per cent of the delivered E. M. F.,

$$
\text { or } \frac{5}{105}=4.8 \text { per cent }
$$

of the impressed E. M. F. The transformer must be supplied with

$$
\because(8 \pi) \quad \because 1191 \text { nols }
$$

 For other distances between centers of conductors, interpolate the values given in the table. As the reactance values for difierent sizes of wire change by a constant amount, the table can, if desired, be readily extended for larger or smaller conductors.

The table is based on the assumption of sine currents and E. M. F.'s. 'The best practice of torlay proxluces machines which
 above methoxls are well within the limits of practical requirements.

Polyphase Circuits. So far, simgle-phase circuits only have been dealt with. A simple extension of the methoxls given above

 (as to size of wire, distance between wires, current, and E. M. F.)
 in beth cases there is no inductive interatetion leetween circuits. 'Iherefore, to calculate a four-wire, quarter-phase transmission, compute
 the same voltage. The guarter-phase transmission will reguire two stheh cirenits.

A three-wire, thece-phase transmission, of which the conductors are symmetrically relateyl, mayy, so far as loss amd regulation are concerned, be: replaced by two simgle-phase cirenits having no inductive interaction, and identical with the three-phase line as to size, wire, and distance leetween wires. 'Therefore, to calculate a three-phase transmission, caleulate a simghe-phase vironit to cary one-hatf the load at the same voltage. 'The three-phase tramsmission will reguire three wires of the size and distance Inetwern centers as whtabued fore the single-phase.

exactly as regards loss, and approximately as regards drop, in the same way as for three-phase. It is possible to exactly calculate the drop, but this involves a more complicated method than the approximate one. The error by this approximate method is generally small. It is possible, also, to get ar somewhat less drop and loss with the same copper by proportioning the cross-section of the middle and outside wires of a three-wire, quarter-phase circuit to the currents they carry, insteal of using three wires of the same size. The advantage, of course, is not great, and it will not be considered here.

WIRING AN OFFICE BUILDING

The building selected as a typical sample of a wiring installation is that of an office building located in Washington, D. C. 'The figures shown are reproductions of the plans actually used in installing the work.

The building consists of a hasement and ten stories. It is of fireproof construction, having steel heams with terra-cotta flat arches. The main walls are of brick and the partition walls of terra-cotta blocks, finished with plaster. There is a space of approximately five inches between the top of the iron beams and the top of the finished floor, of which space about three inches was avalahle for running the electric conduits. The flooring is of wood in the offices, but of concrete, mosatic, or tile in the hasement, halls, toilet-rooms, etc.

The electric current supply is derived from the mains of the local illuminating company, the mains being brought into the front of the building and extending to a switchboard located near the center of the basement.

As the building is a very substantial fireproof structure, the only method of wiring considered was that in which the circuits would be installed in iron conduits.

Electric Current Supply. The electric current s upply is direct current, two-wire for power, and three-wire for lighting, having a potential of 236 volts between the outside conductors, and 118 volts between the neutral and either outside conductor.

 tial across the two outside conductors, or between the nentral con-

 to offices rented to outside parties. The total number of motors
 2,400 incandescent lamps and 4 arc lamps.

Feeders and Mains. Th.e armongement of the vemol- frolis

 cut-out panels.

 to the combined capacity of the two ontsite comductors, so that
 the feerlers.

Basement. 'Thee plan of the Dasement, l"igg f'?, shows the braneh circuit wiring for the ontlets in the basement, and the leration of the main switehtratal. It alsa slows the tranh cathes for the inter-

Fig. 41. Wiring of an Office Building. Diagram Showing Arrangement of Feeders and Mains, Cut-Out Centers, etc.

[^4]tickers, messenger calls, etc., in all the rooms throughout the building, as will be described later.

To avoid confusion, the feeders were not shown on the basement plan, but were described in detail in the specification, and installed in accordance with directions issued at the time of installation. The electric current supply enters the building at the front, and a service switch and cut-out are placed on the front wall. From this point, a two-wire feeder for power and a three-wire feeder for lighting, are run to the main switchboard located near the center of the basement. Owing to the size of the conduits required for these supply feeders, as well as the main feeders extending to the upper floors of the building, the said conduits are run exposed on substantial hangers suspended from the basement ceiling.

First Floor. The rear portion of the building from the basement through the first floor, Fig. 43, and including the mezzanine floor, between the first and second floors, at the rear portion of the building only, is utilized as a press room for several large and heary, modern newspaper presses. The motors and controllers for these presses are located on the first floor. A separate feeder for each of these press motors is run directly from the main switchboard to the motor controller in each case. Empty conduits were provided, extending from the controllers to the motor in each case, intended for the various control wires installed hy the contractor for the press equipments.

One-half of the front portion of the first floor is utilized as a newspaper office; the remaining half, as a bank.

Second Floor. The rear portion of the second floor, Fig. 44, is occupied as a composing and linotype room, and is illuminated chiefly by means of drop-cords from outlets located over the linotype machines and over the compositors' ("ases. Separate ${ }^{1}$-horse-power motors are provided for each linotype machine, the circuits for the same being run underneath the floor.

Upper Floors. A typical plan (Fig. 45) is shown of the upper floors, as they are similar in all respects with the exception of certain changes in partitions, which are not material for the purpose of illustration or for practical example. The circuit work is sufficiently intelligible from the plan to reguire no further explanation.

Interconnection System. Fig. 46 is a diagram of the interconnection system, showing the main interconnection box located in the

[^5]

Fig. 44. Wiring of an Jftce Buitding. Plan of Second Floor. Rear Portion Oceupied as a Composing and Linotype Room.

[^6]

- CABLES.

- Emptr conduit only

Fig. 46. Wiring of an Offce Building. Diagram of the Interconnection System.

 ticker circuits. A separate interconnection cable rums to cach flemer,

 to several points symmetrically located on the various floors. From

 walls. All the main cables and subsidiary wires are connecterl with

 rables are run in iron conduits.

OUTLET=BOXES, CUT=OUT PANELS, ANI) OTHER ACCESSORIES

 walls and ceilings were plastered. With the intrexluetion of irom cunduits, however, the necessity for outlet-hose's was realizeyl; and the Rules of the E゙ire I'nderwriters were modified so ats to require their use.

 rables. A pertion of the rule reguiring their use is as follows:

 lase
"In buildings already constructed, where the conditions are such that neit her outlet-box nor plate can be installed, these appliances may be omitted Ly special permission of the inspection departnent having jurisdiction, pre viding the conduit ends are bushed and secured."

Fig. 47 shows a typical form of outlet-hox for bracket or ceiling outlets of the universal type. When it is desired to make an opening

Fig. 1\%. U'nisernal and Fnock-()ut Ty ut of Outlet Box. for the conduits, a blow from a hammer will remove any of the weakened portion of the wall of the outlet-box, as may be required. This form of outlet-box is frequently referred to as the knock-out type. Other forms of outlet-boxes are made with the openings cast in the box at the required points, this class being usually stronger and better made than the universal type. The advantages of the universal type of outlet-box are that one form of box will serve for any ordinary conditions, the openings being made according to the number of conduits and the directions in which they enter the box.

Fig. 48 shows a waterproof form of outlet-box used out of doors, or in other places where the conditions require the use of a watertight and waterproof outlet-box.

It will be seen in this case, that the box is threaded for the con-

Fig. 48. Water-Tight Outlet Box. Courtesy of H. Krantz Manufacturing Co., Brooklyn, N. 1.
duits, and that the cover is screwed on tightly and a flange provided for a rubber gasket.

HOUSE FOR CHAS. A. DOUGZAS, ESQ., WASHINGTON, D. C.
Wood, Donn \& Deming, Architects, Washington, D. C.
An Interesting Example of an Open-Court Treatment Applied to a Narrow City Lot. Built of Stucco of White Marble Grit, with
Wide, Projecting Eaves and Elaborate Supporting Rafters and Beams Stained a Dark Color.

 which the extension is made in the conduit to the desk or talle. When the floor outlet connection is not required, the stem cover maty be removed and a flat, blank cover be used to replace the same.

A form of outlet-box used for thexible steed cables and stext ar-

There is hardly any limit to the number and variety of makes of

 typical forms.
 conduits entering junction-boxes, ontlet-loxes, or cut-mit calinets
 from alma ion.

Fig. 51 shows a typical form of conduit bushing. '1hhis bushing is sereweed on the end of the comblut after the latter hats been intro-
 insulated oritice to protect the wire at the puint where it leavess the eombluits, and to prevent ahrasion, grommels, shore circuits, ele. A Leal the conduit is placed in the outcet-lax or cout-ont cabimee, amd this

53 shows a terminal bushing for panel-boxes used for flexible steel conduit or armored cable.

The Rules of the National Electric Code require that the metal of conduits shall be permanently and effectually grounded, so as to

F'ig. 51. Conduit Bushing. insure a positive connection for grounds or leaking currents, and in order to provide a path of least resistance to prevent the current from finding a path through any source which might cause a fire. At outlet-hoxes, the conduits and gaspipes must be fastened in such a manner as to insure good electrical comection; and at centers of distribution, the conduits should be joined by suitable bond wires, preferably of copper, the said bond wires being connected to the metal structure of the building, or, in case of a building not having an iron or steel structure, being grounded in a permanent manner to water or gas piping.
Fuse-Boxes, Cut-Out Panels, etc. From the very outset, the necessity was apparent of having a protective device in circuit with the conductor to protect it from overload, short circuits, etc. For this purpose, a fusible metal having a low melting point was employed. The form of this fuse has varied greatly. Fig. 54 shows a characteristic form

Fig. 53. Panel-Box Terminal Bushing. Courtesy of Sprague Electric Co., New York, N. Y. of what is known as the link fuse with copper terminals, on which are stamped the capacity of the fuse.

The form of fuse used probably to a greater extent than any other, although it is now being superseded by other more modern forms,

Within the last four or five years, a new form of fuse, known as

 fua-atripe, atnl alon the devire for itulimatige when the fore har bown. This form of fuse is made with various kimds of terminals: it cath be Heal will pring vigs in sumb sizes, and with a post screw contact in larger sizes. For ordinary low potentials this fuse is desirable for currents up to 2.) amperes; but it is a dehatable question whether it is desirable to use an enclosed fuse for heavier currents. Fig. 89 shows a cutout box with Ealisom plug fuse-blocks used with knob and tube wiring. It will the seen that there is no connection compartment in this fuse-box, as the circuits enter directly opposite the terminals with which they connect.

Fig. 60 shows a cut-out panel adapterl for enclosed fuses, and is tallent is a mber ille having a molBeation wompar. Hent. Is a ill lat acen irobs the cal. 1he tal,he it, lf is ammanalal ont the
 four sides by slate,
 be of wowl linerl with sheet iron, or it may In of iron. Fing dil

the door opens only on the center panel, and that the trim covers and conceals the connection compartment. The imner side of the door should be lined with slate, and the inner side of the trim should be lined with sheet iron. Fig. 62 shows a sectional view of the cabinet and panel. In this type of cabinet, the conduits may enter at any

Fig. 59. Porcelain Cut-Outs in Wooden Box. Courtesy of II. T. Paiste C'o., Philadelphia, Pa. point, the wires being run to the proper connectors in the connection compartment.

Figs. 63 and 64 illustrate a type of panelboard and cabinet having a push-button switch connected with each branch circuit and so arranged that the cutout panel itself may be enclosed by locked doors, and access to the switches may be obtained through two separate doors provided with latches only. This type of panel was arranged and designed by the author of this instruction paper.

OVERHEAD LINEWORK

The advantages of overhead linework as compared with underground linework are that it is much less expensive; it is more readily and more quickly installed; and it can be more readily inspected and repaired.

Its principal disadvantages are that it is not so permanent as underground linework; it is more easily deranged; and it is more unsightly.

For large cities, and in congested districts, overhead linework should not be used. However, the question of first cost, the question of permanence, and the municipal regulations, are ustally the factors which determine whether overhead or underground linework shall be used.
 le. brienly whtheol?

138%
 they are placed too close togrether, the cost is unnecessarily increaserl. 'The size and mumber of comdurtors, and the potential of the line-

$\Gamma \mathrm{ra}=$ work, determine to a great extent the distance between the proles; the smatler the size, the less the mumWer of conductors; and the lower the protential, the greater the distance between the poles may be male. (of comrse, the exact location of the proles is subjeret (o) variation Ixecanse of trees, Imilalings, or other ofstractions. 'Iher usual methox employerl in lacatiog proles, is first (o) make a map) on a fairly large scale, showing the course of the lime-
 arnulitions.

Poles. Poles should be of selected quality of chestnut or cedar, and should be sound and free from cracks, knots, or other flaws. Experience has proven that chestnut and cedar poles are the most durable and best fitted for linework. If neither chestnut nor cedar poles can be obtained, northern pine may be used, and even other timber in localities where these poles cannot be obtained; but it is found that the other woods do not last so long as those mentioned,

Fig. 63. Cut-Ont Panel with Push-Button Switches. Cover Remored.
and some of the other wools are not only less strong initially, but are apt to rot much quicker at the "wind and water line"-that is, just above and below the surface of the ground.

The proper height of pole to be used depends upon conditions. In country and suburban districts, a pole of 25 to 30 feet is usually of sufficient height, unless there are more than two or three cross-arms required. In more densely populated districts and in cities where a great number of cross-arms are required, the poles may have to be

IABI.F $\lambda 1$
Pole Data

 the diameters given in the abowe table by $3,1 / 10$, the mensurements may be reducest

 on the petential carried hy the cirenits; the larger the conductors
 the lop of the prole.

I'oles should be shaverl, houserl, and gatieyl, also cleaneyl and ready for painting, leffore erection.

Poles should usatly lxe painteyl, not only for the satie of appearance, but also in orter to presserve them from the weather. It is pardioularly impertant that they should be patectent at their hutt comb, mot omly where they are sursemmed by the gromad, hout for a fext or two almove the gromal, as it is at this print that proles nsabally deterionate
 of tar, pitch, or creesate. 'The life of the prele ant he incoraseyt (x)n-

Before any poles are erected, they should be closely inspected for flaws and for crookedness or too great departure from a straight line.

Where appearance is of considerable importance, octagonal poles may be used, although these cost considerably more than round poles. Gains or notches for the cross-arms should be cut in the poles before they are erected, and should be cut square with the axis of the pole, and so that the cross-arms will fit snugly and tightly within the space thus provided. These gains should he not less than $4 \frac{1}{2}$ inches wide,

Fig. 64. Cut-Out Panel with Push-Button Switehes. With Cover.
nor less than $\frac{1}{2}$ inch deep. Gains should not be placed closer than 24 inches between centers, and the top gains should be at least 9 inches from the apex of the pole.

Pole Guying. Where poles are subject to peculiar strains due to unusual stress of the wires, such as at corners, etc., guys should be employed to counteract the strain and to prevent the pole from being bent and finally broken, or from being pulled from its proper position.

ELECTRIC BELL WIRING.

 not exist as in the case of wiring for lierht and juwer, Inecanse the current strengrth is so smath. Neither is the bell-fitter resipensible to city inspectors or fire underwriters. On this account, Irell fitting is too often done in a careless and slowenly manner, cans. ing the apparatus to grive unsatisfactory results and to require frequent repairs, so that the expense and inconvenience in the end
 work. Hence, at the outset it is well to state that as much care should be taken in the matter of joints and insulation of bell wiring as in wiring for light or power.

If properly installed, the electric bell forms an reliable and yet inexpensive means of signaling, and is far superior to any other. () n this account practically every new huilding is fitted thromerh. ont with electrice bells.

In addition to the necessity of thoromerhesis already men. tioned, care shonk he taken to use only reliahle apparatus which must lee installed in aceordance with the fundamental principles on which its satisfactory operation depenels.

WIRI.

Thee common sizes of wire in use for bell wors are Nos.
 factory as it is usually sufliciently large, while in ma, y conses No. 2: 2 is not strong enongh from a mechanical stamlpoint.

It is impertant that the wires should be well insulated to pre

! - 1
vent accidental contacts with the staples or othor wires. Firat of all the wire should bee timmet, as this prevents the copper from
 itabes sollaring. 'The inner coating of insulation shonlel lav of
india rubber, surrounded by several longitudinal strands of cotton, outside of which are wound several strands of colored cotton laid on spirally. This is next immersed in melted paraffin wax and polished by friction. A short length of approved electric bell wire is shown in Fig. 1.

When ordering wire, it is well to have it furnished in several different colors as this greatly facilitates both the original installation and later repairs, becanse in this way one line may be distinguished from another, taps from main lines, etc. Moreover, a faulty wire having been found, it is possible to identify it at any desired section of its length.

METHODS OF WIRING.
In running wires, the shortest and most direct route should, of course, be taken between the battery, bells, and bell pushes. There are two cases to be considered. The better method is that in which the wires are run before the building is completed, and the wiring should be done as soon as the roof is on and the walls are up. In this case the wires are usually run in zinc tubes secured to the walls w th nails. The tules should be from $\frac{3}{6}$ inch

Fig. 2. to $\frac{1}{2}$ inch in diameter, preferably the latter. It is better to place the wires and tubes simultaneously, but the tubes may be put in place first and the wires drawn in afterward, although this latter plan has the objection that the insulation is liable to become abraded when the wires are drawn in. In joinine up two lengths of tube, the end of one piece should be opened up with the pliers so that it may receive the end of the other tube. which should also be opened up, but to a less extent, to prevent wear upon the insulation. Specially prepared paper tubes are sometimes substituted for the zinc.

If the building is completed before the wiring is done, the concealed method described above cannot be used, and it is necess. sary to run the wires along the walls supported hy staples, where they will be least conspicuous. Fig. ¿~ shows ordinary double. pointed tacks, Fig. 3 shows an insulating saddle staple which

 of slem eflame Witis is fithts

 mouldinge alones the shieting bomen,
 it is imporsahlue to conceal it, a lighit ornamental casing to mateln the

Fig. 3

 baying them in notehes in the topes of the joists or in heses bored ahout two inches helow the tops of the joists.

. IOMTS.

 clean connecetion, both mechanically and electrically, and this must always be soldered to prevent corrosion. The insulation should the stripped off the emels of the wires to he joined, for a distance of ahout ": inches, sud the wires made bright hy seraping or sandpa-

 - Blinwn in I g. 1.
 meressary if a permanent joint form an elecetrical stampuint is en
 sonnel at first, but its resistance rapially incereasess, due for deteri. oration of the joint. As has alrombly leen seaterl, the wiress should tre made bright sumb chean before they are twisted togrether.

 'Thee soldering shomidi nlways hee dose with a conduer hit rather than with a blowpiper os wiremanis toreh.

A convenient form of soldering tool consists of a small copper bit having a semicircular notch near the end. This bit should, of course, be well tinned. It is then heated over a spirit lamp, or wireman's torch, and the notch filled with soft solder. Lay the joint, which has previonsly been treated with the flux, in this notch and turn it so that the solder runs completely around among the spirals of the joint. The loose solder should be shaken off or removed with a bit of rag. When the joint is set, it should be insulated with rubber tape, so that it will be protected as perfectly as the other portions.

It is often possible to save a considerable length of wire and amount of labor by using a ground return, which, if properly arranged, will give very satisfactory results, although a complete metallic circuit is always to be preferred. Where water or gas mains are available, a good ground may be ob-

Fig. 5. tained by connecting to them, being sure to have a good connection. This may be secured by scraping a portion of the pipe perfectly bright and clean and then winding this with bare wire; the whole is then well soldered. An end should be left to which the wire from the bell circuit is twisted and soldered. If such mains are not arailable, a good ground can be o! tained by connecting the wire from the bell circuit, as described above, to a pump pipe. In the absence of water and gas mains, and of a pump pipe, a ground may be obtained by burying beneath permanent moisture level a sheet of copper or lead, having at least five square feet of surface, to which the return wire is connected. The ground plate should be covered with coke nearly to the surface; the hole should then be filled in with ordinary soil well rammed.

OUTFIT.

The three essential parts of the electric bell outfit are the bell push, which furnishes a means of opening and closing the circuit at will, the battery, which furnishes the current for operating the

 1:... ineliviuisa! parte in amine.

A bell push is slosea dingrammation! in ing. is. In olofe ilhermeive !' is the pursh hamose; whan this is pressed upon it brings the point of the spring S in contact with the metal strip R, thus closing the circuit with which it is connected in series. Normally the springs are separated as shown, and the circuit is accordingly open.

Bell pushes are made in varions çe-

IIf. 1 . signs and styles, from the simple wooden

 erate price.

$1: 5$

Dry Batteries are also frequently used for bell work, their principal advantage being cleanliness, as they cannot spill. Dry cells are really a modification of the Leclanche type, as they use zinc and carbon plates and sal-ammoniac as the exciting agent. The Burnley cell, which is one of the principal types of dry cell, has an electrolyte composed of sal-ammoniac, chloride of zinc, plaster, flour, and water. This compound when mixed is a semiliquid mass which quickly stiffens after being poured into the cup. The depolarizing agent is peroxide of manganese, the same as is used in the Leclanche cell, this being packed around the carbon cylinder. The top of the cell is sealed

Fig. 8. with bitumen or some similar substance.

For very heary work the EdisonLalande and the Fuller types of cell are best suited, while for closed circuit work the gravity cell is most satisfactory.

Bell. It is a well-known fact that if a current of electricity flows through a coil of wire wound on an iron core, the core becomes magnetized and is capable of attracting any magnetic substances to itself. The operation of the electric bell, like that of so many other pieces of electrical apparatus, depends upon this fact. A diagrammatic representation of an electric bell is shown in Fig. 8, in which \mathbf{M} is an electromagnet composed of soft-iron cores on which are womml coils of insulated wire. The armature is momed upon a spring ki, and carries a hammer H at itsend for striking the grong. ()n the back of the armat ure is a spring which makes contact at D with the back stop T. The action of the bell is as fullows: When the circuit is closed throurh the bell a current flows from terminal 1 , around the coils of the magnet, through the spring K and contact point I, through the back stop T, to terminal $\underset{\sim}{2}$. In flowing around the electromagnet the current magnetizes its core, which consequently attracts the armature. This causes the hammer II to strike the gong. While in this position the contact at D is broken, the current ceases to tlow

 ring as long as the circuit is closent．
 used．Such bells are made in a great varicty of shapes and styles， the prices varying accordingly．It is important that platinum

$1: \because$

1 橧 10

 ＊hown is Fig．！，and a highor grmber bell of the iron frame skeleton eyper is shown in Figg．10．Ibella withont covers shomld never lne usead． as dust will settle on the contactas and interfore with their aetion：

Cたいいい。

＇The prossible comhinations of the varions purts inte complete cirenits are se varied that it would lxe impessible to deserilne then
all; in fact, almost every one is to a certain extent a special problem. It is, however, possible to give typical circuits the underlying principles of which can be applied successfully to any particular case.

Fig. 11 shows a bell circuit in its simplest form, in which P represents the push, B the bell, and C the battery; all connected in series. The circuit is normally open at P, and hence no current flows to exhaust the batteries.

Fig. 11. When P is pressed, the circuit, otherwise complete, is closed and current passes through the bell causing it to ring, as already explained. For instance, the push might be located beside the front door, the bell in the kitchen and the battery in the cellar; the location depending on the results desired and conditions to be met. The wire between I ' and ('may, if necessary, be dispensed with and connection made to ground at G and G, as shown by the dotted lines.

Fig. 1: shows an arrangement by means of which one bell P

Fig. 12.

Fig. 13.
may be controlled by either of the pushes P or P '. This system may be extended to any mumber of pushes similarly connected.

A method for ringing two bells simultaneously from one push is shown in Fig. 13, where both bells B and B^{\prime} will ring from push P. Bells, if connected in this manner, should have as nearly as possible the same resistance, otherwise the bell of lower resistance will take so much current that there will not be a sufficient amount left for the other. Also, the batteries must be of greater current capacity as the amount of current taken is, of course, doubled. This system can be extended to any number of bells connected in this way, up to the limit of capacity of the battery to ring them. Figs.

SIMPLE COMBINATION GAS AND ELECTRIC FIXTURE IN A DINING ROOM

DLTAIL OF DISISG-ROOM TABLE I.ANTERS IN HOUSE AT WAUKEGAN, II I.

14 11

 it would be impossible to time them so that the vibrations would keep step, hence only one bell should the of the vibrating type, and the others should have the circuit breakers shortcircuited, the vibrating bell serving as interrupter for the whole series. Ohviousiy alohs system Tequires a higher wibl

11915
agge than parallel connertion, and the colle mout to of sallequs 1. 11.1 . If.

 Ahatrul. ap, the the lomit of voltace of the. butcol).

ily in

several floors, or the bell in the office of a hotel may be rung from any one of several different rooms. In this case it is neossary to have some device to indicate from which push the bell was rung. The annunciator furnishes this information very well. A threestation anmunciator is shown in Fig. 16. The connections for an annunciator are shown in Fig. 17 where A represents the anun--iator, If the bell, (the hattery, and $P^{\prime \prime}, P^{2}$, and P^{3} the pushes. l'or instance, when P^{1} is pressed, the current passes through the electronagnet controlling point 1 on the annunciator which causes

Fig. 17.
the arrow to be turned and at the same time the bell rings. After the attendant has noted the signal, the arrow is restored to its no mal position by pressing a lever on the bottom of the annunciator box.

The electric hurglar alarm furnishes a rery efticient protece. tion and is an application of the principles already described. The circuit, instead of being completed ly a push, is completed by contacts phaced on the doors or windows so that the opening of either will catrse the bell to ring. The satme device may be used on money-drawers, safes, etc.

In the case of the electric fire alarm, the signal may be given either automatically when the temperature reaches a certain decreee. or pushes may he placed in convenient locations to be operated mannally. The pushes should be protected by glass so that they will not be tampered with, it being necessary to break the glass to give the alarm.

LIVING ROOM IN RESIDENCE OF J. R. CRAVATH, CHICAGO. ILL.
A good Arrangement for Reading and General Lighting in a Small Room.

ELECTRIC LIGHTING

 formed a feature of the International lexposition at laris in 1his. Ip to this time, the electric light was known to hut few investigators,
 the first are of any great magnitule. It was then called the voltuic arc, and resulted from the use of two woxd chareoal pencils as electrodes and a powerful battery of voltaice cells as a source of current.

From lafo to 15.59, many patents were taken out on are lamps, most of them operated hy clockwork, hut these were not successful, due chiefly to the lack of a suitable source of current, since all depended on primary cells for their power. The interest in this form
 until the advent of the (iramme dymamo.

The incandescent lanp, was but a piece of laboratory apparatus
 spiral in a vacuum, as a source of light, the platimum being rembered incandescent by the passage of an clectric corrent through it. 'The first sucesesful carthon filament was made in 1×59, this filament lecing formed from strips of hambeo. The names of Eatison and swam are intimately commected with these carly experiments.

From this time on, the development of electric lighting has leen very rapid, and the comsumption of imandescent lamps alone has reached seseral millions each year. When we compare the small amome of lighting dome by means of electricity twemty-five years ago with the comemons extent of lighting syotems and the numerons applications of ofectric illumination as they are torlay, the groweth and deverhpment of the art is seen to lee very great, and the value of

cases electricity is not the cheapest source of power for illumination, its admirable qualities and convenience of operation make it by far the most desirable.

CLASSIFICATION

The sulbject of electric lighting may be classified as follows:

1. The type of lamps used.
2. The methods of distributing power to the lamps.
3. The use made of the light, or its application.
4. Photometry and lamp testing.

The types of lamps used may be subdivided into:

1. Incandescent lamps: Carbon, metallic filament, Nernst.
2. Special lamps: Exhausted bulb without filament, such as the CooperHewitt lamp and Moore tube lamp.
3. Are lamps: Ordinary carbon, flaming are.

INCANDESCENT LAMPS

'The incundescent lamp is ly far the most common type of lamp used, and the principle of its operation is as follows:

If a current I is sent through a conductor whose resistance is l, for a time t, the conductor is heated, and the heat generated $=$ $I^{2} R t, I^{2} R t$ representing joules or watt-seconds.

If the current, material, and conditions are so chosen that the suhstance may be heated in this way until it gives out light, becomes incandecent, and does not deteriorate too rapidly, we have an incambescent lamp. Carbon was the first suceessful material to be chosen for this conductor and for ordinary lamps it is formed into a small thread or filament. Very recently metallic filament lamps have heen introduced commereially with great success but the carbon incandescent lamp will continue to be used for some time, espectially in the low candle-power units operated at commercial roltages. Carbon is a successful material for two reasons:

1. 'The material must be capable of standing a very high temperature, $1,280^{\circ}$ to $1,330^{\circ} \mathrm{C}$., or even higher.
2. It must be a conductor of electricity with a fairly high resistance.

Platinum was used in an early stage of the development, but, as we shall see its temperature camot be maintained at a value high emough to make the lamp as efficient as when carbon or a metal

 the methexl of manufacture will be con-ideresl.

Manulacture if Carbon Incandesent Lamps. Promerntime of
 prepared be treating absorbent cotton with zince chloride in proper proportions to form a uniform, gelatine-like mass. It is customary to stir this under a partial vacum in order to remove bubbles of air which might be contained in it and destroy its uniformity. This

alcohol serving to harden the soft, transparent theads. These threads are then thoroughly washed to remove all trace of the zine chloride, dried, cut to the desired lengeths, wound on forms, and carhonized hy heating to a high temperature away from air. 1)uring carthonization, the cedlulose is transformed into pure carthon, the volatile matter leing driven off hy the high temperature to which the filaments are sul jeeted. The material becomes hard and stiff, assuming a permanem form, shrinking in both lemgth and diatmeter- the form labing vereially constructed so as to allow for this shrimkige. 'The forms are made of carlom blocks which are placeel in plumbagen erowilhes amel patcheal with powhered cartom. The erncibles, which are covered with bexsely fitting carton cowers, are gradually heroghth to a white heat, at which temperature the cedlubese is chameed to carlum, and then ullowed to conel. After condinge, the filamente are remmed, measured, and inspereded, and the few defective ones dixarated.

In the early days, these filaments were made of cardboard or bamboo, and later, of thread treated with sulphuric acid.

A few of the shapes of filaments now in use are shown in Fig. 1, the different shapes giving a slightly different distribution of light. As here shown they are designated as follows: A, U-shaped; B, single-curl; C, single-curl anchored; D, double-loop; E, doublecurl; F, double-curl anchored.

Mounting the Filament. After carbonization, the filaments are mounted or joined to wires leading into the globe or bulb. These wires are made of platinum-platinum being the only substance, so far as known, that expands and contracts the same as glass, with change in temperature and which, at the same time, will not be melted by the heat developed in the carbon. Since the bulb must remain air-tight, a sulstance expanding at a different rate from the glass cannot be used. Several methods of fastening the filament to the leading in wires have been used, such as forming a socket in the end of the wire, inserting the filament, and then squeezing the socket tightly against the carbon; and the use of tiny bolts when cardboard filaments were used; but the pasted joint is now used almost exclusively. Finely powdered carbon is mixed with some adhesive compound, such as molasses, and this mixture is used as a paste for fastening the carbon to the platinum. Later, when current is sent through the joint, the volatile matter is driven off and only the carbon remains. 'This makes a cheap and, at the same time, a very efficient joint.

Flashing. Filaments, prepared and mounted in the manner just described, are fairly uniform in resistance, but it has been found that their quality may be much improved and their resistance very closely regulated hy depositing a layer of carbon on the outside of the filament be the process of flushing. By flashing is meant heating the filament to a high temperature when immersed in a hydrocarbon gas, such as gasoline vapor, under partial vacuum. Current is passed through the filament in this process to accomplish the heating. (ras is used, rather than a liquid, to prevent too heary a deposit of the carbon. Coal gas is not recommended because the carbon, when deposited from this, has a dull black appearance. The effects of flashing are as follows:

1. The diameter of the filament is increased by the deposited carbon and hence its resistance is decreased. The process must be

 prints.
2. 'The character of the surface is changed from a dull black
 hareder and which increases the life and efficiency of the filament.

Erxhasting. After flashing, the filament is sealed in the bulb,

lamp in different stages of its manufacture. 'The exhanstion i. atromplatient ly meatre of mechanical air pumps, sup)plemented by Sprengle or mercury pumps and chemicals. since the degree of exhatstion must be high, the bulb should be heated during the process so as to drive off any gas which may cling to the glass. When - hemienle ase ia-ti. is i- hase almost universally the case, the ehemical is placed in the tube A and, when heated, serves to take up) much of the rematining gas. Exhanstion is necessary for several reasons:

After exhmsting, the tube A is sembed off and the lamp com-

Voltage and Candle-Power. Incandeseent lamps of the carlunn type vary in size from the miniature hathery and candelabra hamps to these of several hamelred samdle-power, thomgh the lateer are very sedfom used. 'Ilhe more common values for the candle-penwer are
$8,16,25,32$, and 50 , the choice of candle-power depending on the use to be made of the lamp.

The voltage will vary depending on the method of distribution of the power. For what is known as purallel distribution, 110 or 220 volts are generally used. For the higher values of the voltage, long and slender filaments must be used, if the candle-power is to be low; and lamps of less than 16 candle-power for 220 -volt circuits are not practical, owing to difficulty in manufacture. For series distribution, a low voltage and higher current is used, hence the filaments may be quite heary. Battery lamps operate on from 4 to 24 volts, but the rast majority of lamps for general illumination are operated at or about 110 volts.

Fig. 3. Several Forms of Completed Lamps.
Efficiency. By the efficiency of in incandescent lamp is meant the power required at the lamp, terminals per candle-power of light given. Thus, if a lamp giving an average horizontal candle-power of 16 consumes $\frac{1}{2}$ an ampere at 112 volts, the total number of watts consumed will be $112 \times \frac{1}{2}=56$, and the watts per candle-power will be $56 \div 16=3.5$. The efficiency of such a lamp is said to be 3.5 watts per candle-power, or simply watts per candle. Watts economy is sometimes used for efficiency.

The efficiency of a lamp depends on the temperature at which the filament is run. In the ordinary lamp this temperature is between $1,280^{\circ}$ and $1,330^{\circ} \mathrm{C}$, and the curve in Fig. 4 shows the increase of efficiency with the increase of temperature. The temperature attained

 the chit anvery of ifh serfar.

By emissivity is meant the number of heat units ermitted from unit surface per degree rise in temperature almove that of surroumbing berlies. The bright surface of a flathed filament hats a lower emissivity than the dull surface of an umbeated filament, hence less energe is lost in luat mallition and the - theicuey of tie flamen is increased.

As soon as incambesemee is reached, the illumination inerasas

ofference shewn in F゙ig. \&. Were it not for the rapid disintegration of the carbon at high temperature, ath efficieney higher that 3.1 watts could tee obtained.

By a special treatment of the carlon filaments, the nature of the earbon is so chamged that the filaments may be run at a higher temperature and the lamps still have a life comparable to that of the 3.1 watt lamp. Lamps msing these speeial carbon filaments are known
 will be described more fully later.
 the useful life of a lamp, is meant the lengeth of time a lamp will hurn Irefore its camble-power has deoreased tos such a value that it would fe more eesonomical tor replace the latep with a new one than to eone time (o) use it at its decreared value. A decrease to str"; of the intial candle-pemer of curlant lampes is now takon as the proint at which at

neighborhood of 800 hours. To obtain the most economical results, such lamps should always be replaced at the end of their useful life.

In Table I are given values of efficiency and life of a 3.5 -watt, 110 -volt carbon lamp for various voltages impressed on the lamp. These values are plotted in Fig. 5. 'The curves show that a 3 , e increase of voltage on the lamp reduces the life hy one-half, while an increase of 6% causes the useful life to fall to one-third its normal value. The effect is even greater when 3 . 1 -watt lamps are used, but not so great with 4 -watt lamps. From this we see that the regulation of the voltage used on the system must be very grool if high efficiency lamps are to be used, and this regulation will determine the efficiency of the lamp to be installed.

Selection of Lamps. Ordinar!y ('arlon T!!pe. Lamps taking 3.1 watts per candle-power will give satisfaction only when the regulation of voltage is the best-practically a constant voltage maintained at the normal voltage of the lamp.

TABLEI
Effects of Change in Voltage
Standard 3.5-Watt Lamp

$\begin{aligned} & \text { Vortage } \\ & \text { Per Cent. of } \\ & \text { Nobman. } \end{aligned}$	Cundit-Powfic Per Cent. of Normal	Watts Per Candle-Power	Life PerCent. af Nomars	Deterioration Per Cent. of Normal
90	53	5.36		
93	56	5.09		
92	61	4.85		
93	65	4.63		
94	69	4.44	394	25
95	73	4.26	310	32
96	78	4.09	247	41
97	83	3.93	195	51
98	88	3.78	153	65
99	9 t	3.64	126	79
100	100	3.5	100	100
101	106	3.38	84	118
102	111	3.27	68	146
103	116	3.16	58	173
104	123	3.05	47	211
105	129	2.95	39	253
106	137	2.85	31	316
107	143	2.76	26	380
108	152	2.68	21	47!
109	159	2.60	17	575
110	167	2.53	16	$6: 37$

Lamps of $3 . \overline{5}$ watts per candle-power should be used when the regulation is fair, say with a maximum variation of ${\underset{\sim}{C}}_{i}$ from the normal voltage.

 s prafed to that of the 1 lif-volt lamp, and if such a filament is run at a high temperature its life is short. 'Ther 2en)-vole hamp is usced to sotne

Lamps should always be renewed at the end of their useful life. this point being termed the smashing-point, as it is cheaper to replace the lamp than to run it at the reduced candle-power. Some recommend running these lamps at a higher voltage, but that means at a reduced life, and it is not good practice to do this.

Fig. 6 shows the life curves of a serics of incandescent lamps. These curves show that there is an increase in the candle-power of some of the lamps during the first 100 hours, followed by a period during which the value is fairly constant, after which the light given by the lamp is gradually reduced to about 80% of the initial candlepower.

 this cande-power rating is the one generally assumed for the ordinary
 gives us the mean vertical sande-prower, hut this value is of liete use.

Mean Spherical Candle=Power. When comparing lamps which give an entirely different light distribution, the mean horizontal candle-power does not form a proper basis for such comparison, and the mean spherical or the mean hemispherical candle-power is used instead. By mean spherical candle-pouer is meant a mean value of the light taken in all directions. The methods for determining this will be taken up under photomctry. The mean hemispherical candlepower has reference, usually, to the light given out below the horizontal plane.

The Gem Metallized Filament Lamp. When the incandescent lamp was first well established commercially, the useful life of a unit, when operated at 3.1 watts per candle, was about 200 hours. The improvements in the process of manufacture have been continuous from that time until now, and the useful life of a lamp operated at that efficiency to-day is in the neighborhood of 500 hours. Experiments in the treatment of the carbon filament have led to the introduction of the gem metallized filament lamp. This lamp should not be confused with the metallic filament lamps, to be described later, because the material used is carbon, not a metal. As a result of special treatment the carbon filament assumes many of the characteristics of a metallic conductor, hence the term metullized filament. The word graphitized has been proposed in place of metallized.

TABLE II

* Data on the Gem Metallized Filament Lamp

Watts	Horizontal C. \mathbf{P}.	Watts prk Candle:	\dagger Spherical Reduction Factor	$\begin{gathered} \text { UI } \mathrm{SFFUL} \\ \text { LIFE } \end{gathered}$
10	16	2.5	. 816	450 hrs .
50	20	2.5	. 825	450 -
80	32	2.5	. 816	4.50
100	40	2.5	\pm	460 -
125	50	2.5	\pm	451 -
187.5	7.5	2.5	\ddagger	450 .
250	100	2.5	+	450 -

[^7]

LIVGG ROOM IN HOLSE FOR MR. W. F. DUMMER. AT CORONADO BEACH, IAL.

1. • '

 before it is flasherd, as well as to the treated filament, causes the cohd resistance of the carbon to be very materially decreased and the filament, as used in the lamp, has a peositive temperature coreflecentrise in resistance with rise in temperature-a desirable feature from
 lamps are operated. 'The high temperature also resules in the driving off of considerable of the material which, in the ordinary lamp, canses the ghese to hacken after the lamp has lxeen in use for some fime.

for the decrease in candle-power of the incandescent lamp. The metallized filament lamp is operated at an efficiency of 25 watts pet candle with a useful life of about 500 hours. The change in candlepower with change in voltage is less than in the ordinary lamp on account of the positive temperatire coefficient of the filament. These lamps are not manufactured for very low candle-powers, owing to the difficulty of treating very slender fila-

Fig. 10. Round Bulb Tantalum Lamp. ments, but they are made in sizes consuming from 40 to 250 watts. Table II gives some useful information in connection with metallized filament lamps. The filaments are made in a variety of shapes and the distribution curves are usually modified in practice by the use of shades and reflectors. The general appearance of the lamp does not differ from that of the ordinary carbon lamp. Fig. 9 shows typical distribution curves of the metallized filament lamp as it is installed in practice.

Metallic Filament Lamps. The Tantalum Lamp. The first of the metallic filament lamps to be introluced to any considerable extent commercially was the tantalum lamp. Inr. Bolton of the siemens \& Halske Company first discovered the methods of obtaining the pure metal tantalum. This metal is rendered ductile and drawn into slender filaments for incandescent lamps. Tantalum has a high tensile strength and high melting point, and tantalum filaments are operated at temperatures much higher than those used with the carbon filament lamp. On account of the comparatively low specific resistance of this material

Fig. 11. Tantalum Filament Before and After 1,000 Hours' Use. the filaments for 110 -volt lamps must be long and slender, and this necessitates a special form of support. Figs. 10, 11, and 12 show some interesting views of the tantalum lamp and the filament. This lamp is operated at the efficiency of 2 watts per

118.1"

 tain; it is much more satisfactory for operation on direct-urrent rireuits. 'Tables 111 and IV give some general data on the tantalum lamp, and Figs. 13 and 14 show typical distribution curses for the anits as installed at present.

TA131.1: 111
Data wn lantalum I.amp

$$
\therefore .156511 \text { । } 1.15+10611 \cdot \theta+1 n=
$$

TabLE IV

Data on the Life of a $25=\mathrm{C}$. P. Unit

No. of Hours Burned	Candle-Power	Watts Per Candiee
0		
25	23.8	2.17
50	23.1	1.865
125	22.3	1.90
225	22.4	1.98
350	22.3	1.96
450	22.2	1.98
550	19.2	2.05
650		2.20

Fig. 13. Vertical Distribution Curve Without Reflector.
The Tungsten Lamp). Following closely upon the development of the tantalum lamp came the tungsten lamp. 'Fungsten possesses a very high melting point and an indirect mothod is employed in froming filaments for incandescent lamps. 'There are several of these methods in use. In one method a fine carlon filament is flashed in an atmosphere of tungsten oxychloride mixed with just the proper proportion of hydrogen, in which case the filament gradually changes

 cases metallic. The peowdered tumgseen is mixed with the binding material, the paster squirted into filaments, and the himeling material is then expellecd, usually hy the aid of heat. Amether methexl of mam-

,
 edectrie carrent through the filaments.

The tumgeten lamp has the highest efficiency of any of the come mereial forms of metallic filament lanps new in nse, abome 1.25 wates per candle-power whenoperated so ats to give a mormal life, amil lamps
 put on the market. A en-watt lamp for this same molage apparas to
 power lacanse of the diflientey of manufaenring the wember tilamente required for the low condle-power lamps.

The advantages of these metals, tantalum and tungsten, for incandescent lamps are in the improved efficiency of the lamps and the good quality of the light, white or nearly white in both cases. In either case the change in candle-power with change in voltage is less than the corresponding change in an ordinary carbon lamp. The disadvantage lies in the fact that the filaments must be made long and slender, and hence are fragile, for low candle-power units to be used

Fig. 15. Multiple Tungsten Lamp.

Fig. 16. Series Tungsten Lamp.
on commercial voltages. In some cases tungsten lamps are constructed for lower voltages and are used on commercial circuits through the agency of small step-down transformers. Improvements in the process of manufacture of filaments and of the method of their support have resulted in the construction of 110 -volt lamps for candlepowers lower than was once thought possible. Figs. 15 and 16 show the appearance of the tungsten lamp, and Figs. 17 and 18 give some

 Pattery damp.
 lasup, the Osmin lamp, cte:, are all tungroen lamps, the filaments
 thomblatione of faom.

TABLE V
Tungsten Lamps
MULTIPLE

Watte	Volts	CandlePower	Watts PER C. P.	Tip CandlePower	Spherical Reduction Factor
40	100	32	1.25	5	76.3
60	125	40	1.25	5.6	76.3

TABLE VI
Tungsten Lamps
SERIES

Amperes	Vulim	Candle-Power	Watts per C. P.
4	13.5	40	1.35
	20.25	60	
5.5	9.8	40	1.35
6.6	14.7 8.2	40	1.35
	12.3	60	
7.5	7.2	40	1.35
	10.8	60	

The ()smium Lamp). Very efficient incandescent lamps have been constructed using osmium for the filament. An indirect method is resorted to in the formation of these filaments. Osmium lamps have not been sucersful for commercial voltages because the filament is too fragile if it is made to have a high resistance, so these lamps must he operated in series or through the agency of reducing transformers if they are to be applied to 110 -volt circuits. At 25 volts, lamps are constructed giving an efficiency of about 1.5 watts per candle-power with a life comparable to that of a 3.5)-watt carbon lamp. Owing to the introduction of the tungsten lamp, the osmium lamp will probably never be used to any great extent.

Other Matallic Filament Lamps. Table VII gives the melting points of sereral metals which are highly refractory and those already mentioned are not the only ones which have been successfully used in incandescent lamps. Titanium, zirconium, iridium, etc., have been successfully employed, but the tantalum and tungsten lamps are the only ones which are used to any extent in the United States.

TABLE: VII
Welting louitt of sume Wel.1)

2104.6	Mase bugit.
i ${ }^{\text {a }}$.	M1 - *1E
1 I allue	4*a)
tantslimb	, 1
	TMEs
\| atilialsi	171
Alı"шinte	In
silicon	Wh
	1081

 ment composed of a carlons core more or less impregnated with silicon and coated with a metallic laver is formed. The emissivity of such a filament is high, the light is white in color, and the filament is strong. The efficiency of the heliom filatment as far as it has been developeed is bigher than that of a carbon filament when operated at the same temperature. At 1 , 5000 degrees C. the efficiency of the hedion filament is 2.15 watts per camellepower, while for a carbon filament it is about 3.5 watts per candle-power. Filatments of this type have leeen mate whith
 air without immediate destruction. 'This

The Nerne Lamp. The Norme ham.

 is still agotar form of inconile ant lamp, several types of which are shown in J゙igs 19, 20), :21, and 2.2.

ing process forming the filament or glower material of the lamp as represented by the lower white line in Fig. 23. The more recent glowers are made hollow instead of solid. The glowers are cut to the desired length and platinum ter-

Fig. 20. Sectional View of MultipleGlower Westinghouse Nernst Lamp. minals attached. The attachment of these terminals to the glowers is an important process in the manufacture of the lamp. The recent discovery of additional oxides has led to the construction of glowers which show a considerable gain in efficiency over those previously used. The glowers are heated to incandescence in open air, a vacuum not being required.

As the glower is a non-conductor when cold, some form of heater is necessary to bring it up to a temperature at which it will conduct. Two forms of heater have been used. One of them consists of a porcelain tube shown just above the glower, Fig. 23, about which a fine platinum wire is wound; the wire is in turn coated with a cement. Two or more of these tubes are mounted directly over the glower, or glowers, and serve as a reflector as well as a heater. The second form of heater consists of a slender rod of refractory material about which a platinum wire is wound, the wire again being covered with a cement. This rod is then formed into a spiral which surrounds the glower in the vertical glower type, or is formed into the urafer heater, Fig. 24, now universally employed in the Westinghouse Nernst lamp with horizontal glowers. The wafer heater is bent so that it can be mounted with several sections parallel to the glower or glowers.

 flows through this magnet as soon as the fower hecomes a conductor,

 contarets in the heater circout are
 force of gravity:
'The comblutivity of the ghower increases with the increase of tem-perature-the material has at megadive temperature coedficient-henee
 tial circuit directly, the current and temperature would continus (o) rise until the glower was deroged, Tor promem il. vermen

from increasing beyond the desired value，a ballast resistance is used in series with the glower．As is well known，the resistance of iron wire increases quite rapidly with increase in temperature，and the resistance of a fine pure iron wire

F゙った。W．Wrestinchouse Nerust Norew Burner with cilohe Removed， Showing Cilower and Tubular Heater． is so adjusted that the resistance of the combined circuit of the glower and the ballast becomes constant at the desired temperature of the glower．The iron wire must be protected from the air to prevent oxidization and too rapid temperature changes，and，for this reason，it is mounted in a glass bulb filled with hydrogen．Hydrogen has been selected for this purpose because it is an inert gas and conducts the heat from the ballast to the walls of the bulb better than other gases which might be used．
All of the parts enumerated，namely，glower，heater，cut－out，and ballast，are mounted in a switable manner；the smaller lamps have but one glower and are armoged to fit in an incandescent lamp socket， while the larger trpes are constructed at present with four glowers

Fiz．24．Wafer Heater and Monnting．
and are arranged to be supported in special fixtures，or the same as small are lamps．All parts are meechanically arranged so that renew－ als may be easily made when necessary and it is not possible to insert a part belonging to one type of lamp into a lamp of a different type．

 that allowing itr athphion to prow tieally all classes of illuminations.

The laume is cunserteone leor

 i. s. . 1 es a $1 \| 11$-vill cimait al almil tatefornur. matmonly valleal a converter coil, ligig. 25, is utilized to raise the voltage at the lamp ter-
 minals to about 220 volts.

Data on the Nernst lamp in its present form are given in 'Table

TABII: VII

(ieneral llatat on the Vern-t lamp

$\begin{gathered} 1 . . \\ 1 . \Delta r 1 \\ 1.11 .0 \end{gathered}$,						
(ii)	110	11	7:	(1)	185		
*-	- 71	.	103:	\because	12		11.
$1: 11$	111	1%	1.1:	\cdots I	1.		1. .
12,	11.8	$1 \therefore$	14	111	$4 \because$		
21.4	y27	1 2	835	$\therefore 11$	12	-11』里	
16.	Y/2,	14	- . ${ }^{\text {c }}$	12.19	18.	ABL-ar	
-1	--1.	- 4	3.1	S11	1.	+11006et	

 direet comparison of the different types of incamberent lamps cangot tre made hat it is desirable at this time to note the followime prints: "The fampes which are comsidered eommerrial in the I'nital state y

given, approximately $3.1,2.5,2,1.25$, and 1.2 watts per candle respectively. The figure of 1.2 watts per candle for the Nernst lamp is based upon the mean hemispherical candle-power and it should not be compared directly with the other efficiencies. The color of the light in all of the above cases is suitable for the majority of classes of illumination, the light from the higher efficiency units being somewhat whiter than that from the carbon lamp. All of these lamps are constructed for commercial voltages and for either direct or alternating current. The use of the tantalum lamp on alternating (urrent is not

1.1g. 26. Inistribution Curve of 132 -Watt Type Westinghouse Nernst Lamp. Single Glower.
always to be recommended as the service is matisfactory in some cases. The minimum size of units for 110 volts is about 4 candlepower for the carbon lamp, 20 candle-power for the metallic filament lamp, and 50 candle-power (mean hemispherical) for the Nernst lamp. Some of the metallic filament lamps are constructed for a consumption of as high as 2.50 watts, while the largest size of the Nernst lamp uses Ews watts. The light distribution of any of the units is subject to considerable variation through the agency of reflectors, but the Nernst lamp is ordinarily installed without a reflec-

famps they are not made for low candle-powers at commercial voltages. 'The introbluction of transformers for the purpose of chamging the circonit voltage to one suitable for low camelle-pewer units has not become at all gemeral as yet in this conntry

SPECIAL LAMPS

The Hercury lapor Lamp. 'Th. neremer myer limen! in thit
 and it is buing used to at considerable extent for industrial illumination.
 of an eleceric current throngh it, is the source of light. In its atandared form this lamp consists of a long ghass tulne from which the air has |xern carefully exhamsted, and which contains as small amomet of

the tube and forms the negative electrode in the direct-current lamp. The other electrode is formed by an iron cup and the con nections between the lamp terminals and the electrodes are of platinum where this comnection passes through the glass. Fig. 28 gives the general appearance of a standard lamp having the following specifications:

Total watts (110 volts, 3.5 amperes $)=385$
Candle-power (M. H. with reflector) $=700$
Watts per candle $=0.55$
Length of tube, total $=55 \mathrm{in}$.
Length of light-giving section $=45 \mathrm{in}$.
Diameter of tube $=1 \mathrm{in}$.
Height from lowest point of lamp to ceiling plate $=22$ in.
For 220 -volt service two lamps are connected in series.
The mercury vapor, at the start mat the formed in two ways: First, the lamp may be tipper no that at seam of merchir makes contact between the two elec-

Fig. 2s. ('ooper-Hewitt Mercury Vapor Lamp. irs,des and mercury is vaporized when the stream breaks. Second, by means of a high inductance and a quick break switch, a very high voltage sufficient to pass a current from one electrode to the other through the vacuum, is induced and the conducting vapor
is formed. The tilting methoni of starting is preferred and thas tilting is brought about automatically in the more recent types of lamp Fig. 29 shows the comnections for antomatically starting two lamps in series. A steadying resistance and reactance are connected as shown in this figure.

The mercury rapor lamp is constructed in rather large units, the 55 -volt, 3.5 -ampere lamp being the smallest standard size. The color of the light emitted is objeetionable for some purposes as there is an entire absence of red rays and the light is practically monochromatic. Thie illumination from this type of lamp is excellent where sharp contrast or minute detail is to be brought out, and this fact has led to its introduction for such classe's of lighting as silk mills and cotton mills. On account of its color the application of this lamp is limited to the lighting of shops, offices, and drafting rooms, or to dis-

GOOD METHOD OF LIGHTING UP A DRESSER.

 Special reactances must be provided for a moroury are lamp operating on single-phase, alternatimy-enrent circuits.
the Howre Iube light. Tlis Wiopm liathe malh one of the familiar Ceissler tube diseharge-alischarge of deetricity thromgh a
 of this discharge to a system of lighting has involved a large amoum

of consistent research on the part of the inventor amb it has now leen
 The system has many interesting features.

In the normal method of installation, a grase tula 13 inches in diameter is made up by comereting stambaril longeths of glass tuling together until the total desired lempth is reacheol, ame this combumems tube, which forms the souree of light when in operation, is memented in the desired presition with resperet to the phane of illumination. In

provide an electrical discharge through this tube it is customary to lead both ends of the tube to the high tension terminals of a transformer, the low tension side of which may be connected to the alter-nating-current lighting mains. This transformer is constructed so that the high tension terminals are not exposed and the current is led into the tube by means of platinum wires attached to carbon electrodes. The electrodes are about eight inches in length. The ends of the tube and the high tension terminals are enclosed in a steel casing so as to effectually prevent anything from coming in contact with the high potential of the system. As stated, the low tension side

Fig. 30. Diagram Showing Essential Features of the Moore Light. 1. Light ing Tube; 2. Transformer Case; 3. Lamp Terminals; 4. Transformer ; 5, 6, 7, 8, Regulators. of the transformer is connected to the usual 60-cycle lighting mains. If direct current is used for distribution, a motorgenerator set for furnishing alternating current to the primary of the transformer is required. Any frequency from 60 cycles up is suitable for the operation of these tubes. At lower frequencies there is some appreciable variation of the light emitted. One other device is necessary for the suitable operation of this form of light and this is known as the regulator. In order to maintain a constant pressure inside the tube, and such a constant pressure is necessary for its satisfactory operation, there must be some antomatic device which will allow a small amount of gas to enter the tube at intervals while it is in operation. The regulator accomplishes this purpose. Fig. 30 shows a diagram of the very simple connections of the system and gives the relative positions occupied by the transformer, tube, and regulator. Fig. 31 gives an enlarged view of the regulator, a description of which and its method of operation is given as follows:

A piece of $\frac{7}{8}$-inch glass tubing is supported vertically and its bottom end is contracted into a ${ }_{5}^{3}$-inch glass tube which extends to the main lighting tube.

[^8]| TABLE IXData on the Moore Tube Light | | | |
| :---: | :---: | :---: | :---: |
| | $\underset{\substack{\text { Cafacity }}}{\text { Trangformer }}$ | Powfr Factor of Circuit | Voltage at Lamp Terminals |
| 40-70 fi. | $2 \mathrm{kw} \text {. }$ | 65-84\% | 3,146 for $40-\mathrm{ft}$. tube, at 12 hefners per ft . |
| 80-125 " | $2.75{ }^{\prime \prime}$ | | |
| 130-180 " | 3.5 " | | |
| 190-220 " | 4.5 | | 12,441 for 220 - ft . tube, at 12 hefners per ft . |

Pressure in tube, about $\left.{ }^{\prime}\right\} \mathrm{m} . \mathrm{m}$.
Watts per hefner, 3.2 for 20 -foot tube including transformer.
Watts per hefner, 1.4 for 180 -foot tube including transfo-mer.
Hefner per foot, normal, 12.
Note that one hefner equals 0.88 candle-power.

ARC LAMPS

The Electric Arc. Suppose two carbon rods are connected in an electric circuit, and the circuit closed by touching the tips of these rods together; on separating the carbons again the circuit will not be broken, provided the space between the carbons be not too great,

Fig. 32. The Electric Arc between Carbon Terminals. but will be maintained through the arc formed at these points. This phenomenon, which is the basis of the arc light, was first observed on a large scale by Sir Humphrey Davy, who used a battery of 2,000 cells and produced an arc between charcoal points four inches apart.

As the incandescence of the carbons across which an arc is maintained, together with the arc itself, forms the source of light for a large portion of are lamps, it will be well to study the nature of the arc. Fig. 32 shows the general appearance of an are between two carbon electrodes when maintained by direct current.

 the temperature at which the carton vaporizes, and gives fully sol to Ar ${ }^{-}$c of the light furnished by the are. 'The negative carlmon Incomes
 the crater, and it is also incamdesceent but not to as great a degree as
 light, the are proper, and this is surrounded by a luminous zone of a golden yellow color. The are proper does not furnish more than $\tilde{j}_{i}{ }_{c}$ of the light - mibal when pura calmu electrodes are used.

The carbons are worn away or consumed by the passage of the current, the positive carbon being consumal atasm ewion as rapilly as the negative.

The light distribution - brve bi a thatagereul un.

 taken in a vertioal plane, is
 is given off at an argle of about 5$)^{\circ}$ from the vertical, the negative
 ward from the crater.

If altermating current is used, the upper carbon lexeomes punitive and mepative altermately, and there is no chance for a crater to be formed, both carbons giving off the same amount of light and lweing eonsumed at about the same rate. 'The light distribution curve of an mhermotrou"

the current to them and for maintaining them at the proper distance apart. The carbons are kept separated the proper distance by the operating mechanisms which must perform the following functions:

1. The carbons must be in contact, or be brought into contact, to start the are when the current first flows.
2. They must be separated at the right distance to form a proper are immediately afterward.

Fig. 34. Distribution Curve for A. C. Arc Lamp (Vertical Plane).
3. The carbons must be fed to the arc as they are consumed.
4. The circuit should be open or closed when the carbons are entirely consumed, depending on the method of power distribution.

The feeding of the carbons may be done by hand, as is the case in some stereopticons using an arc, but for ordinary illumination the striking and maintaining of the are must be automatic. It is made so in all cases by means of solenoids acting against the force of gravity or agrainst springs. There are an endless number of such mechanisms,
 into three elasses:

1 Howie meline.
$\therefore \quad-1 n=$ mantos.

 2ry. ar formul. Ill of the cinerent must pass through this coil at first, and the plunger of the solenoid is arranged to draw the carbons together, thus starting the are. 'The pull of the solenoid and that of the springs are adjusted to maintain the arc at its proper length.

Such lamps have the disadvantage of a high resistance at
 and are difficult to start on series circuits, due to the high voltage required. They tend to maintain a constant voltage at the are, but do not aid the dymamo in its remulation, so that the ares are liable to bee a little unsteady.
 the series-lamp mechanism, the
 (arbons are together when the lamp is first started and the current, flowing in the series coil, separates the electrontes, striking the are When the are is t on longe, the resistance is inereased and the current lowered so that the pull of the solemoid is weakened amed the cartmons
 protential sysums.
 diagram is illastrative of the connertion of one of the lamps mane-

constant-potential system. The symbols + and - refer to the terminals of the lamp, and the lamp must be so connected that the current flows from the top carbon to the bottom one. R is a series resistance, adjustable for different voltages by means of the shunt $G . \quad F$ and D are the controlling solenoids connected in series with the arc. B and C are the positive and negative carbons respectively, while A is the switch for turning the current on and off. $I I$ is the plunger of the solenoids and I the carbon clutch,

Fir. 36. Differential Merhanism for D. C. Arc Lamp. this being what is known as a carbon-feed lamp. The carbons are together when A is first closed, the current is excessive, and the plunger is drawn up into the solenoids, lifting the carbon B until the resistance of the arc lowers the current to such a value that the pull of the solenoid just counterbalances the weight of the plunger and carbon. G must be so adjusted that this point is reached when the are is at its normal length.

Differential Mechanisms. In the differential lamp, the series and shunt mechanisms are combined, the carbons being together at the start, and the series coil arranged so as to separate them while the shunt coil is connected across the are, as before, to prevent the carbons from being drawn too far apart. This lamp operates only over a low-current range, but it tends to aid the generator in its regulation.

Fig. 36 shows a lamp having a differential control, this also being the diagram of a Western Electric Company are lamp for a directcurrent, constant-potential system. Here S represents the shunt coil and $I I$ the series coil, the armature of the two magnets A and A^{\prime} being attached to a bell-crank, pivoted at B, and attached to the carbon clutch ('. The pull of coil S tends to lower the carbon while that of M raises the carbon, and the two are so adjusted that equilibrium is

 Lamps using a rod feed have the upper carbons supported bey a conducting row, and the me culating tma haviem onh pa this rol, the current being fed to the rod by means of a sliding contact. Fig. 37 shows the arraygerment of lli y ype of ficed. The rod is shown at R, the sliding contact at B, and the cartoon is attached to the rox at 1 :

These lamps have the advantage that carbons, which do not have a unifurm (rosissection or smonth exterior, may be used, but they possess the disadvantage of being very lang in amber to samomiamete the ral. Tla real ammateatio.

 ghend contact with the hrush.
 merhanism acts on the cartons dieectly theough some form of chuch such as is shown at (' in Fig. 38. 'This clamp grips the cartam when it is lifted, but allows the carlone to slip through it when the tenvien is roleased. For this type of feed the cartum mose be straight and have a unifurm cronsesertion as wedl as a smomber evterior. 'The
 dion cetion hobla.

TYPES OF ARC LAMPS

Arc lamps are constructed to operate on dircet-current or alter-nating-current systems when connected in scries or in multiple. They are also made in both the open and the enclosed forms.

By an open are is meant an are lamp in which the are is exposed to the atmosphere, while in the enclosed arc an inner or enclosing

Fig. 38. Enclosed Arc Lamp with Carbon-Feed Mechanism.
globe surrounds the are, and this globe is covered with a cap which renders it nearly air-tight. Fig. 34 is a good example of an enclosed arc as manufactured by the General Electric Company.

Direct=Current Arcs. Open Types of Ares for direct-current systems were the first to be used to any great extent. When used they are always connected in series, and are run from some form of
 of Dymanis Neomi- Mia-hiner "'

 of lamps that may be connected to one machine is limited by the
 as many as 125 lamps are run from one madhine, but even this size of generator is not so efficient as one of greater capacity. Such generaturs are ustally wound for 6.6 or $9 .(f$ amperes. Since the carlmons
 that they be renewed daily for this type of lamp.

Doublecarbon arcs. In order to increase the life of the early
 type was introuluced. This type uses two sets of carbons, both sets

 all forms of the "quon ame limp, hase di apparal on aroment of the better service remdered by the enclosed are.

 usually constructed for from 5 to of.S amperes. They also require a
 current circuits.
 series with them to keep the voltage at the are at its proper value.
 any circnit. Its location is clearly shown in Fig. 3s, one coil being loxated above, the other below the operating solemoids.

Atternating-Current Arcs. These do not differ greatly in construction from the directernerent ares. When iron or other metal parts are used in the controlling meedanism, they must be lamimated or so constructed as to keep down imdaced or eddy currents which mighe lee set up, in them. For this reason the metal spends, on which the solemoids are wound, are sloted at some print to proveme them from forming a clocel secondary to the primary formed he the solen-

in place of a part of the resistance for cutting down the voltage at the arc.

Interchangeable Arc. Interchangeable arcs are manufactured which may be readily adjusted so as to operate on either direct or alternating current, and on voltages from 110 to 220. Two lamps may be run in series on 220 -volt circuits.

The distribution of light, and the resulting illumination for the different lamps just considered, will be taken up later. Aside from the distribution and quality of light, the enclosed are has the advantage that the carbons are not consumed so rapidly as in the open lamp because the oxygen is soon exhausted from the inner globe and the combustion of the carbon is greatly decreased. They will burn from 80 to 100 hours without retrimming.

TABLE X
Rating of Enclosed Arcs

Rating of Arc Lamps. Open arc's have been classified as follows:

 and less than this if the mean spherical candle-power tre taken. For this reason, the ampere or watt rating is now used to indicate the

 on constant-potential circuits.

Direct-Current Are (enclosed) 2.9 watts per camlle-power.

Direct-Current Arc (open) .6-1.25 watts per camdle-power.
Carbons for Are Lamps. Cartrons are vilior momlidal or firmed

 *star ath-

 the forced carbons, the powder is formed into cylinders which are
 dis to give the desired diameter. The forced carbons are often made with a core of some special material, this core being added after the carbon proper has been fimished. The carbons, whether moubled or forced, must be carefully baked to drive off all walatile matere The foreed carlon is always more miform in qualiey and crossseection, and is the type of carbon which must be useel in the carlonfeed lamp. 'The adding of a core of a dillerent material seems to
 the are from wathering.
 sanabled forms for the purpense of increasinge the comblutivity, and, by protecting the cartan near the are, prolonging the life:

The Flaming Arc. In the carbon are the are proper gives out but a small percentage of the total amount of light emitted. In order to obtain a light in which more of the source of luminosity is in the are itself, experiments have been made with the use of electrodes impregnated with certain salts, as well as with electrodes of a material different than carbon. The result of these experiments has been to place upon the market the flaming are lamps and the luminous are lamps-lamps of high candle-power, good efficiency, and giving various colors of light. These lamps may be put in two classes: One class uses carbon electrodes, these electrodes being impregnated with certain salts which add luminosity to the

Fig. 39. Diagram of Bremer Flaming Arc. are, or else fitted with cores which contain the required material; the other class covering lamps which do not employ carbon, the most notable example being the magnetite arc which uses a copper segment as one electrode and a magnetite stick as the other electrode.

Flaming ares of the first class are made in two general types: One in which the electrodes are placed at an angle, and the other in which the carbons are placed one above the other as in the ordinary are lamp. The term luminous are is usually applied to ares of the flaming type in which the electrodes are placed one above the other. The minor modifications as introduced by the varions manufacturers are numerous and include such features as a magazine supply of electrodes by which a new pair may be automatically introduced when one pair is consumed; feed and control mechanisms; ete. The flaming are presents a special problem since the vapors given off hy the lamp may condense on the glassware and form a partially opayue coating, or they may interfere with the control mechanism.

Bremer Arc. The Bremer flaming are lamp was introduced commercially in 1899 , and since some of its principles are incorporated in many of the lamps on the market to-lay, it will be briefly described here. The diagram shown in Fig. 39 illustrates the main features of

 flector, throwing the light downwarel. The ecomonizer serves to limit the air supplied to the are and thes inereases the life of the elece frodes. The inclined position of the carhoms was suggented by the fact that in the impregnated carbons a slay was formed which gave
 using the electrodes in this position there is little if any obstruction to the light which passes directly downward from the are.

Mremer's oricinal chentrondes contaimed composumds of calcium, strontium, magnesium, etce, as well as boracie aril. I.lon umalo an amployed in the various lamps to-day differ greatly in their make-up.

 carbons, whers use cartoms with a core containing the flaming materials, and metallic wires are added in some cases. 'The life of
 fand somewhat upon the type of lamp. The maximum life of the treated carloons is in the meighborhoen of 20 hours.

The color of the light from the flaming are is yellow when calcium salts are used as the main inpregnating compond, and the majority of the lamps installeod use edectrodes giving a syellow light. By employing more strontim, a red or pink light is prowluecel, while if a white light is wanted, barium salts are nsed. (alceum gives the
 The distribution curves in Fige 40 illustrate the relative exomemies
of the different materials. Modern electrodes contain not more than 15% of added material and it is customary to find the salts applied as a core to the pure carbon sticks. The electrodes are made of a small diameter in order to maintain a steady light and this partially accounts for their short life.

The feeding mechanisms employed differ greatly. They may be classified as: Clock, gravity-feed, clutch, motor, and hot-wire mechanisms. Fig. 41 illustrates a clock mechanism. This is a differential mechanism in which the

Fig. 41. Clock Feeding Mechanism for Luminous Arc Lamp. shunt coils act to release a detent f which allows the electrodes to feed down and when they come in contact the series coils separate them to the proper extent for maintaining a suitable arc. In the gravity feed an electromagnet is used to operate one carbon in springing the arc and the other carbon is fed by gravity, it being prevented from dropping too far by means of a special rib formed on the electrode which comes in contact with a part of the lamp structure. Gravity feed is also employed in the clutch mechanism but here the carbons are held in one position by an electrically operated clutch which releases them only when the current is sufficiently reduced by the lengthening of the arc. In the hot-wire lamp, the wire is usually in series with the are; the contraction and expansion of this wire is balanced against a spring and the are is regulated by such contraction or expansion of the wire. Such a lamp is suitable for either direct or alternating current. In the motor mechanism, as applied to alternating-current lamps, a metallic disk is actuated by differential magnets and its motion is transmitted to the electrodes to lengthen or shorten the are accordingly as the force exerted by the series or shunt coils predominates.

Magnetite Arc. The magnetite are employs a copper disk as

[^9]

purposes. A greater amount of light can be obtained from a single unit than is practical with the carbon arc. The disadvantages lie in the frequent trimming required and the expense of electrodes. Flaming ares have been introduced abroad, especially in Germany, to a much greater extent than in the United States.

TABLE XI
General Data on Flaming Arcs

Volts	Amperes	Watts	Mean Spherical Candle-Power	Watts per Mean Spherical c. p.
55	6	330	480	68
	8	440	800	55
	10	550	1100	5
	12	660	1300	5
	15	825	1700	49
	20	1100	2250	48

POWER DISTRIBUTION

The question of power distribution for electric lamps and other appliances is taken up fully in the section on that subject, therefore it will be treated very briefly here. The systems may be divided into:

1. Series distribution systems.
2. Multiple-series or series-multiple systems.
3. Multiple or parallel systems.

They apply to both alternating and direct current.
The Series System. This is the most simple of the three; the lamps, as the name indicates, are connected in series as shown in Fig. 45. A constant load is necessary if a constant potential is to be used. If the load is variable, a constant-current generator, or a special regulating device is necessary. Such devices are constantcurrent transformers and constant-current regulators as applied to alternating-current circuits.

The series system is used mostly for are and incandescent lamps when applied to street illumination. Its advantages are simplicity and saving of copper. Its disadvantages are high voltage, fixed by the number of lamps in series; the size of the machines is limited since they cannot be insulated for voltage above about 6,000 ; a single open circuit shuts down the whole system.

Alternating-current series distribution systems are being used to a very large extent. By the aid of special transformers, or regulators,

 number of lamps.

Fig. 45 gives a diagram of the connection of a single-coil transformer in service. The constant-current transformer most in use for lighting purposes is the one manufactured by the Cieneral Electric Company and commonly konwo at at tok tomar-

 removed from the case.

connected to the lamps. There is a repulsion of the coils B by the coils A when the current flows in both circuits and this force is balanced by means of the weights at I^{\prime}, so that the coils B take a position such that the normal current will flow in the secondary. On light loads, a low voltage is sufficient, hence the secondary coils are close

Fig. 4.5. Wiring Diagram for single- wil Transformer. together near the middle of the machine and there is a heavy magnetic leakage. When all of the lamps are on, the coils take the position shown when the leakage is a minimum and the voltage a maximum. When first starting up, the transformer is short-circuited and the secondary coils brought close together. The short circuit is then removed and the coils take a position corresponding to the load on the line.

These transformers regulate from full load to $\frac{1}{3}$ rated load within $\frac{1}{10}$ ampere of normal current, and can be run on short circuit for several hours without overheating. The efficiency is given as 96% for 100 -light transformers and 94.6% for 50-light transformers at full load. The power factor of the system is from 76 to 2 SC; on full load, and, owing to the great amount of magnetic leakage at less than full load - the effect of leakage being the same as the effect of an inductance in the primary-the power factor is greatly reduced, falling to 62% at $\frac{3}{4}$ load, 44% at $\frac{1}{2}$ load, and 24% at $\frac{1}{4}$ load.

Standard sizes are for capacities of 2.5-, 3.5-, 50)-, 分-, and $1000-6.6$ ampere enclosed ares, and they are also made for lower currents in

the neighborhood of 3.3 amperes for incandescent lamps. The low power factor of such a system on light loads shows that a transformer should be selected of such a capacity that it will be fully or nearly fully loaded at all times. The primary winding can be constructed for any voltage and the open circuit voltages of the secondaries are as follows:

25	light transformer,	2,300	volts.	75 light transformer,			
35	6,900	volts.					
50	$"$	3,200	$"$	100	"	"	
50	$"$	4,600	$"$				
5,200							

The 50 -, 75 -, and 100 -light transformers are arranged for multiple circuit operation, two circuits

Fig. 47. Current Regulator for A. C. Series Distribution Systems. used in series, and the voltages at full load reach 4,100 for each circuit on the 100 -light machine.

The second system, used for series distribution un alternating-current circuits consists of a constant-potential transformer, stepping down the line voltage to that required for the total number of lamps on the system, allowing 83 volts for each lamp, and in series with the lamps is a reactive coil, the reactance of which is automatically regulated, as the load is increased or decreased, in order to keep the current in the line constant. Fig. 47 shows such a regulator and Fig. 48 shows this regulator connected in circuit. The inductance is varied by the movement of the coil so as to include more or less iron in the magnetic circuit. Since the inductance in series with the lamps is high on light loads, the power factor is greatly reduced as in the constant-current transformer; and the circuits should, preferably, be run fully loaded. 60 to 65 lamps on a circuit is the usual maximum limit.

While used primarily for arc-light circuits, the same systems,

 direct current for their operation has led to the mee of the mereury arc rectifier in connection with series circuits on alternating-eurrent systems. A constant-current tramiformer is used to regulate for the proper constant current in its secomulary winding, and this secondary current is rectified by means of the mercury are rectifier for the lamp circuit. In the
 immersed in oil for cooling. While this rectifier was first introduced for the operation of luminous are lamps, there is no reason why it should not be used with any series lamp requiring direct current, provided the system is designed for the current taken by sur h lamps. With this system any commercial frequency may be used. Sets are constructed for 2.5-, 50 -, and 75 -light circuits. 'They have a combined efficiency, transformer and rectifier tube,

 gives a diagram of the circuit and
 witu muill

teson antlliellanout thealken
 soveral lamps in series, and these series groupe in multiple, or several lamps in multiphe and these multiple groups in series, reppectively. They have but a limited appliation.
 number of lampes in servier are commeened to pratallel syatems of diseribution. In this system, the units are comenemed anrose the limes A eading (o) the bus hars at the station, or toe che steromaries of con-

pends directly on the number of lamps connected i:1 service, the voltage of the system being kept constant.

Inasmuch as the flow of current in a conductor is always accom-

Fig. 49. Wiring Diagram for A. C. System Showing Iutroblution of Mercury Arc Rectifier. panied by a fall of potential equal to the product of the current flowing into the resistance of the conductor, the lamps at the end of the system shown will not have as high a voltage impressed upon them as those nearer the machine. This drop in potential is the most serious obstacle that we have to overcome in multiple systems, and various schemes have been adopted to aid in this regulation. The systems may be classified as:

1. Cylindrical conductors, parallel feeding.
2. Conical
3. Cylindrical " anti-parallel feeding.
4. Conical

In the eylindrical conductor, parallel-feeding system, the conductors, A, B, C, D, Fig. 50 , are of the same size throughout and are fed at the same end by the generator. The voltage is a minimum at the lamps E and a maximum at the lamps F; the value of the voltage at any lamp being readily calculated.

By a conical or tapering conductor is meant a conductor whose diameter is so proportioned throughout its length that the current, divided by the cross-section, or the current density, is a constant

Hultiple-ll ire systems. In unler un whe ablantuge of A in 1. .

 outside conductor to the middle neutral conductor leing the same as for a simple parallel system. Fig. \therefore giors a diagram of thi. By this system the amount of copper required for a given number of lamps is from five-sixteenths to threeeighths of the amount required for a two-wire distribution, depending on the size of the neutral con-
1.4. Wh Fand.a Noelion tiv.
 Alebor The basiote of

ILLUMINATION

 which aids in the discrimination of outline and the preverpetion of color. Not only the quantity, but the quality of the lighe, as well as
 of the abljew of illemismsione

Unit of Illumination. 'The unit of illumination is the fortcondle and its value is the amoment of light falling on at surface at at distance of one foot from a soluree of light one candle-power in value. 'The law of inverse squares- namely, that the illomination from a giver souree varies inversely as the spuate of the distance from the

single candle-power unit is .25 foot-candles. For further consideration of the law of inverse squares, see "Photometry."

Illumination may be classified as useful-when used for the ordinary purposes of furnishing light for carrying on work, taking the place of daylight; and scenic-when used for decorative lighting such as stage lighting, etc. The two divisions are not, as a rule, distinct, but the one is combined with the other.

Intrinsic Brightness. By intrinsic brightness is meant the amount of light emitted per un't surface of the light source. Table XII gives the intrinsic brightness of several light sources.

TABLE XII
Intrinsic Brilliancies in Candle-Power per Square Inch

Source	Brilliancy	Notes
Sun in zenith	600,000)	
Sun at 30 degrees elv.	500,000 $\}$	Rough equivalent values, tak-
Sun on horizon	2,000	ing account of absorption
Are light	10,000 to	Maximum about 200,000 in
Are light	100.0001	crater
Calcium light	-, 0000	
Nernst " glower"	1,000	Unshaded
Incandescent lamp	200-300	Depending on efficiency
Enclosed arc	75-100	Opalescent inner globe
Acetylene flame	75-100	
Welsbach light	20 to 25	
Kerosene light	4 to 8	Variable
Candle	3 to 4	
Gas flame	3 to 8	Variable
Incandescent (frosted)		
Opal shaded lamps, etc.	0.5 to 2	

Regular Reflection. leegular reflection is the term applied to reflection of light when the reflected rays are parallel. It is of such a nature that the image of the light source is seen in the reflection. The reflection from a plane mirror is an example of this. It is useful in lighting in that the direction of light may be changed without complicating calculations aside from deductions necessary to compensate for the small amount of light absorbed.

Irregular Reflection. Irregular reflection, or diffusion, consists of reflection in which the reflected rays of light are not parallel but take various directions, thus destroving the image of the light source. Rough, unpolished surfaces give such reflection. Smooth, unpolished surfaces generally give a combination of two kinds of reflection.

 (1) - [+ . 115

 its nature by the absorption of some of the colors. Sinere, as has beren satil, in imeriog lighting the wile mell high farmes brog pari if the
 and the color of the refleceting surfaces.

Whenever light is reflected from a surface, either by direct or

 materials.

TABLE XIII

Relatlve Reflecting Power

Miteral	:
White blotting paper	\because
White cartridge paper.	\cdots
('hrome yellow paper..	\cdots
(1)	Sis
	11
1 \%hy jomb jome	a
Btore imatmar ${ }^{\text {a }}$	i91
Light bue cardheard..	$2 \cdot$
Emerald green paper..	1.
1)ark brown paper..	1.1
Intmilion paien	12
Blue-green paper.	13
luan path	
11anh wlol	

From this table it is seen that the lightecolored papers reflee the
 high coefficient of reflecetion. Black velvet has the lowest value, hue this onls holds whon the matorial if ime fowo then kowe sith
 seen later.
 heads:

1. Residence Lighting.
2. Lighting of Public Halls, Offices, Drafting Rooms, Shops, etc.
3. Street Lighting.

RESIDENCE LIGHTING

Type of Lamps. The lamps used for this class of lighting are limited to the less powerful units-namely, incandescent or Nernst lamps varying in candle-power from s to 50 per unit. These should always be shaded so as to keep the intrinsic brightness low. The intrinsic brilliancy should seldom exceed '2 to 3 candle-power per square inch, and its reduction is usually accomplished by appropriate shading. Are lights are so powerful as to be uneconomical for small roons, while the color of the mereury-vapor light is an additional objection to its use.

Plan of Illumination. Lamps may be selected and so located as to give a brilliant and fairly uniform illumination in a room; but this is an uneconomical scheme, and the one more commonly employed is to furnish a uniform, though comparatively weak, ground illumination, and to reinforce this at points where it is necessary or desirable. The latter plan is satisfactory in almost all cases and the more economical of the two.

While the use of units of different power is to be recommended, where desirable, lights differing in color should not be used for lighting the same room. As an exagrerated case, the use of are with incandescent lamps might be mentioned. The ares being so much whiter than the incandescent lamps, the latter appear distinctly yellow when the two are viewed at the same time.

Calculation of Illumination. In determining the value of illumination, not only the candle-power of the units, but the amome of reflected lisht must be considered for the given location of the lamps. Following is a formula based on the corfficient of reflection of the walls of the room, which serves for preliminary calculations:

$$
\mathrm{I}=\begin{aligned}
& \left(\cdot \cdot i^{\prime} \cdot\right. \\
& 1-k \\
& d^{2}
\end{aligned}
$$

$\mathrm{I}=$ Illumination in foot-candles.
$c . p .=$ Candle-power of the unit.
$k=$ Coefficient of reflection of the walls.
$d=$ distance from the unit in feet.
 fionomb lic.ontr

$$
1-+\frac{1}{d}-\frac{1}{H_{1}}-\frac{1}{i_{1}} \quad 1
$$

or. \quad c.p. $=\frac{1}{\frac{1}{y}+\frac{1}{n}-\frac{1}{1}-1}+\frac{1}{1}$

The above method is not strictly acourate because it does not take account of the angle at which the light from each one of the

then the formula becomes $I=c \cdot p . \times$ cosine a . Therefore, by d^{2}
 tion of the illuminated point by the cosine of each angle a, a more accurate result will be ohtaimed.

It is readily seen that the efleect of refleceted light from the cerilimes is of more importance than that from the floor of a room. 'The value of k, in the abowe formula, will vary from fiof e, to $10{ }^{\circ}$, but for rooms with a fairly light finish sofi may be taken as a gromel average value.
'The amount of illmmation will dejernd on the nse to lxe mate of the room. ()we foot-candle gives suflicient illumination for easy reading, when measured normat to the paree, and probably an illumi-
 rexent gronmel illuminations. 'Ihee illumination from sumlight refleeted from white clonds is from 2e) foseteramdles up, while that due to mome
 pronluce artificially a light equivalent to daslight on acomant of the
great amount of energy that would be required and the difficulty of obtaining proper diffusion.

The method of calculating the illumination of a room that has just been described is known as the point-by-point method and it gives very accurate results if account is taken of the angle at which the light from each source strikes the plane of illumination and if the light distribution curves of the units, and the value of k, have been carefully determined. Under these conditions the calculations become extended and complicated and methods only approximate, but simpler in their application, are being introduced. One method, which gives good results when applied to fairly large interiors, makes the flux of light from the light sources the basis of calculation of the average illumination.

Flux of light is measured in lumens and a lumen may be defined as the amount of light which must fall on one square foot of surface in order to produce a uniform illumination of an intensity of one footcandle. A source of light giving one candle-power in every direction and placed at the center of a sphere of one foot radius would give an illumination of one foot-candle at every point in the surface of the sphere and the total flux of light would be 4π, or 12.57 , lumens since the area of the sphere would be 4π, or 12.57 , sq. ft . A lamp giving one mean spherical candle-power gives a flux of 12.57 lumens and the total flux of light from any source is obtained by multiplying its mean spherical candle-power by 12.57 . In calculating illumination it is customary to determine the illumination on a plane about 30 inches from the floor for desk work, and about 42 inches from the floor for the display of goods on counters. If we determine the total number of lumens falling on this plane and divide this number by the area of the plane, we obtain the average illumination in footcandles. This of course tells us nothing about the maximum or minimum value of the illumination and such values must be obtained by other methods if they are desired. Reflected light, other than that covered by the distribution curve of the light unit including its reflector, is usually neglected in this method of calculation.

We may assume that in large rooms the light coming from the lamp within an angle of 75 degrees from the vertical reaches the plane of illumination. In smaller rooms this angle should be reduced to about 60 degrees. In order to determine the flux of light within this

 mean value, multiplied ly 12.9π, will give the flux of liphe in lumerns. This method of calculation, tugether with some guides for its rapid application, is described by Messts. (ravath and Lamsumht in the "Transactions of the Illuminating Engineering Sorefey, 1!日) ," The same authorities give the following usiful data:
To determine the watts reguired per siquare foot of floor areat,
 as follows:

INTENSITY CONSTANTS FOR INCANDESCENT LAMPS

$$
\begin{aligned}
& \text { Tungsten lamps rated at } 1.25 \text { watts per horizontal candle--power; dear } \\
& \text { prismatic reflectors, cither bowl or concentrating; large room; light } \\
& \text { ceiling; dark walls; lamps pendant; height from s to } 15 \text { feet }
\end{aligned}
$$

sume with very light walls 20
Tungsten lamps rated at 1.25 watts per horizontal candle-power: pris- matic bowl rellectors enameled; large room; light ceiling; dark walls; lamps perndant, height from 8 to 15 feet 29
Same with very light walls. 23
Gem lamps rated at 2.5 watts per horizontal candle-power; clear pris- matic reflectors cither concentrating or bowl: large room; light ceiling: dark walls: lamps pemdant; height from s to 15 feet 55
sime ent mellatit 85
Carbon filament lamps rated at 3.1 watts per horizontal cample-power: clear prismatic reflectors bither bowl or concentrating; light ceiling: dark walls; large rowm; lamps pethlant; height from s to 15 feet 65
Same with very light walls 55
Bare carhon filament lamps rated at 3.I watte per horizontal camdle- power: no reflectors; large room; very light ceiling and walls: luright from 10 to 14 feet. 75 in 1.5
Same; small room; medium walls. 1.25 to 2.0
Carbon filament lamps rated at 3.1 watts per horizontal camdle-pwwer; opal dome or upat cone reflectors; light ceiling: dark walls: large 为
$\therefore .4 n-1(1) t-1 t$ (i)
IVII.VSIIY LUVSIANIS JOR IRC LAMPS
 hath linime thas ione if in 4

limited to chandeliers, side lights, or ceiling lights, in the majority of cases, with table or reading lamps for special illumination.

When ceiling lamps are used and the ceilings are high, some form of reflector or reflector lamp is to be recommended. In any
 case where the coefficient of reflection of the ceilings is less than 40%, it is more economical to use reflectors. When lamps are mounted on chandeliers, the illumination is far from uniform, being a maximum in the neighborhood of the chandelier and a minimum at the corners of the room. By combining chandeliers with side lights it is generally possible to

Fig. 53. Diagram Showing Method of Calculating Room Illumination. get a satisfactory arrangement of lighting for small or medium-sized rooms.

As a check on the candle-power in lamps required, we have the following:

For brilliant illumination allow one candlepower per two square feet of floor space. In some particular cases, such as ball rooms, this may be increased to one candle-power per square foot.

For general illumination allow one candle-power for four square feet of floor space, and strengthen this illumination with the aid of special lamps as required. The location of lamps and the height of ceilings will modify these figures to some extent.

As an example of the calculation of the illumination of a room with different arrangements of the units of light, assume a room 16 feet square, 12 feet high, and with walls having a coefficient of reflection of 50%. Consider first the illumination on a plane 3 feet above the floor when lighted by a single group of lights mounted at the center of the room 3 feet below the ceiling. If a minimum value of .5 footcandle is required at the corner of the room, we have the equation (first method outlined):

$$
.5=c \cdot p \cdot \frac{1}{12.8^{2}} \times \frac{1}{1-.5}
$$

Since $d=\sqrt{8^{2}+8^{2}+6^{2}}=12.8$ (see Fig. 53)

Fig. 54 Diagram for Four 8-c. p. Lamps on Side Wall.

HBEARY IV ALPMA DELTA PHI CHAPTER-MOUSE AT UORSELL UNIVERSITY, ITHACA. N. Y

1. $\cdot \cdots ;$

 well.

$$
1=1 \times \frac{1}{1, i} \times \frac{1}{1} \quad \text { i. } \quad=
$$

 corners of the room.
 walls 8 feet above the floor, as shown in Fig. jt. Calculating the illumination at the antery of the remen on at plame time for debo Lle Howr, we hatro:

$$
\begin{aligned}
& 1=-\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 \\
\vdots! & \ddots & \ddots & \ddots! & 1 & \vdots
\end{array} \\
& \text { 1:- } \because-1 i 1 \quad \therefore-1
\end{aligned}
$$

$$
\begin{aligned}
& 1>\begin{array}{ccccc|c}
1 & 1 & ! & 1 & ! \\
\vdots! & \vdots 4 i & i t & i
\end{array}
\end{aligned}
$$

In a similar manmer the illumination may be calculated for any

 same illumination. Where refined colculations are desired, the dine

 the Meridian lamp as mannfactured by the Coneral E:lectric C'unpany. 'Ihis is a form of reflecetor lamp mate in two sizes, 2.is or int

 mamofactureal by wher cotspmaies.

Table XIV gives desirable data in connection with the use of the Meridian lamp.

Fig. 55. Illumination Curves for a G. E. Meridian Lamp.

TABLE XIV

Illuminating Data for Meridian Lamps

Class Service	Light Intensity in Footcandles	No. 1 Lamp (60 Watts)		No. 2 Lamp(120 Watts)		Watts per Sq. Ft. of Area Jighted with either Lamp
		Height of Lamp and Diameter "f L'niformly Lighted Area	Distance between Lamps when Two or more are Used	Height of Lamp and Diameter of Uniformly Lighted Area	Distance between Lamps when Two or more are Used	
Desk or Reading Table	$\begin{aligned} & 3 \\ & 2 \\ & 1! \end{aligned}$	$\begin{gathered} 2.9 \text { feet } \\ 3.5 \quad \ddot{ } \\ t \quad n \end{gathered}$	$\begin{aligned} & 4.9 \text { feet } \\ & 6 \\ & 7 \\ & \hline \end{aligned}$	$\begin{array}{cc} 4 & \text { feet } \\ 5 & \because \ddot{ } \\ 5.75 & \end{array}$	$\begin{array}{lc} 7 & \text { feet } \\ 8.5 \\ 9.8 \end{array}$	$\begin{aligned} & 2.50 \\ & 1.66 \\ & 1.25 \end{aligned}$
General Lighting	11 3 \vdots 1	$\begin{array}{ll} 5 & \\ 5.75 \\ 7 & \\ \hline \end{array}$	8.5 4 12		$\begin{array}{ll}12 & " \\ 13.9 \\ 11 & \text { " }\end{array}$	$\begin{aligned} & 0.83 \\ & 0.62 \\ & 0.41 \end{aligned}$

By means of the Weber, or some other form of portable photometex, carves as plotted from calculations may be readily checked after the lamps are installed. When lamps are to be permanently located, the question of illumination becomes an important one, and it may be desirable to determine, be calculation, the illumination curves for each room before installing the lamps. This applies to the lighting of large interiors more particularly than to residencer lighting. The point-by-point method of calculation is used for

 (1.0 ! Mo klai souk.

 lightime

TABLE XV
Kesidence lighting bata

(10\%	,	I!	3i	Sis V	10. $=0 \times 4$
4.01. 18 i.hrary lacuption romern Uy lember mus \| \quad - filliaral roum, $1 \bar{s}^{\prime}$, 20^{\prime} 1) - ryarir a $10=18$ Whathromme (3) s^{\prime} - 10' wilniatrin' io'? 11.115 - 1 bir $11=18$	I11	11 1 3 4	\because	$\begin{array}{ll} 1 \\ \vdots & 1 \\ \vdots & 11 \\ \because & 7 \\ 1 & 11 \\ 1 & 7 \\ 8 & 11 \end{array}$	
Tasal	04	31	-		

LIGHTING OF PUBLIC HALLS, OFFICES, ETC.

Lighting of public halls and other large interiors differs from the illumination of residences in that there is usually less reflected light, and, again, the distance of the light sources from the plane of illumination is generally greater if an artistic arrangement of the lights is to be brought about. This in turn reduces the direct illumination. The primary ohject is, however, as in residence lighting, to produce a fairly uniform ground illumination and to superimpose a stronger illumination where necessary. An illumination of .5 foot-candle for the ground illumination may be taken as a minimum.

In the lighting of large rooms it is permissible to use larger light units, such as arc lamps and high candle-power Nernst or incandescent units, while for factory lighting and drafting rooms, where the color of the light is not so essential, the Cooper-Hewitt lamp is being introduced. High candle-power reflector lamps, such as the tungsten lamp, are being used to a large extent for offices and drafting rooms.

The choice of the type of lamp depends on the nature of the work. Where the light must be steady, incandescent or Nernst lamps are to be preferred to the are or rapor lamps, though the latter are often the more efficient. When ares are used, they must be carefully shaded so as to diffuse the light, doing away with the strong shadows due to portions of the lamp, mechanism, and to reduce the intrinsic brightness. Such shading will be taken up under the heading "Shades and Reflectors." Ares are sometimes preferable to incandescent lamps when colored objects are to be illuminated, as in stores and display windows.

In locating lamps for this class of lighting, much depends on the nature of the building and on the degree of economy to be observed. For preliminary determination of the location of groups, or the illumination when certain arrangement of the units is assumed, the principles outlined under "Residence Lighting" may be applied. It has been found that actual measurements show results approximating closely such calculated values.

When arcs are used they should be placed fairly high, twenty to twenty-five feet when used for general illumination and the ceilings are high. Ther should be supplied with reflectors so as to utilize the light ordinarily thrown upwards. When used for drafting-room

 named arrangement of lights is one that may le made artiotic, bue it is uneconomical and when used should serve for the gromed illominafion only: Reflector lights may lxe useel for this seyle of work and the lights may be entirely concealed from view, the reflecting propmy of the walls taing nuilisal for dientantue thou lieht whem owabl

Ceiling lights should preferably be supplied with reflectors, espectially when the ceilings are high.

Indirect lighting is employed to some extent. By indirect

 wal's, or ceilings, or other surfaces; or in which the light sources are
 app ears to be the source of light. In some cases the walls themselves

 the side walls and ceiling, are made portions of the lamp fixtures.

Tables XVI and XIII pive data on are and mercury-vapor
 actually installect.

TABI.E XV'

Cimper llewitt Lamps

*上\%			 10 parawt
numile	(6) 1511	4E	'nu1
Mavau ater	\% in	9in	
1	\% ${ }^{3}$	\%18	${ }^{18}$
(tmitle momion	\%	\%0	\cdots
- 1 il \%	(10) 11.	ail	\% 1
- ilinary Latar	IIIT	Timi	14.
, imaty	$\because 10$	(171)	(\because, \ldots

TABLE XVII
Lighting Data for Arc Lamps

Place Lightid	$\begin{aligned} & \text { Clithino }^{\text {store }} \\ & \text { stole } \end{aligned}$	Weave Room	Erectina Room	$\begin{gathered} \text { Machine } \\ \text { Shup } \end{gathered}$	Draftina Rоом	Drafting Room	Ship Shed	$\begin{gathered} \text { Cataloging } \\ \text { Dept. } \end{gathered}$	Jewflry Store
No. of sq. ft. place lighted	41000	14400	2\$1600	42250	6275	56:10	69000	4136	4000
No. lamps used	12	50	200	42	27	24	50	17	6
Circuit....	1. C. Mult	J. C. Mult	D. C. Mult.	D. C. Mult	A. C Series	1. C. Mult	D. C. Mult	D. C. Mult .	D. C. Mult.
Cycles.	60				60				
Volts line	104	110	120	120		120	220	110	110
Amperes	6	31	6.2	62	7.5	4	6	$4 \frac{1}{2}$	
Volts at are	72	75	80	80	72	S0	S0	S0	80
Power factor of lamp	69				S6				80
Watts per lamp	430	337	744	744	490	4.0	660	495	550
Watts per st. ft. term.)	1.29	1.24	53	. 74	$\because 11$	$\because 02$. 47 s	2.03	850.5
Kw. at term. whole installation).....	5.16	17 \&	148.8	31.25	1322	1152	33	8.42	
Kw. at arc whole installa(ion)	4.62	1225	992	20.8	12.42	175 -65	33	8.42	3
Sq. ft. lighted per lamp	33.3	$2 S 8$	140 S	1006	23:	2:37	1380	243	
Sq. ft. lighted per amp	556	S8.6	227	162	31	592	230	541	$13: 3.5$
Enclosing glohe	Opal.		Opal.	Opal.	Opal.	Opal.		$O_{\text {pal }}$	Opal.
Height and st yle of ceiling	$\begin{aligned} & 12^{\prime} \text { white } \\ & \text { steel } \end{aligned}$	Saw Tonthed	Trussed	Trussed	12^{\prime} White	Trussed	160^{\prime} Trussed	$13^{\prime} 9^{\prime \prime}$ Maroon	$16^{\prime} 10^{\prime}$ White
Reflector system usend	Concentric	Adjust.			Concentric	16 Adj Ihif		Concentric	Concentric
	Diffuser	Liffuser	$9^{\prime \prime}$ Mirror	$9^{\text {² }}$ Mirror	1)iffuser	S Con.l)if	$12^{\prime \prime}$ Mirror	Diffuser	Diffuser
Height of arc from flom	$9^{\prime} 6^{\prime \prime}$	12'10 15^{\prime}	46^{\prime}	47^{\prime}	9^{\prime}	15^{\prime}	150 '	$10^{\prime} 7^{\prime \prime}$	13' $3^{\prime \prime}$
Distance between lamus	14^{\prime} to 18^{\prime}	24^{\prime}	32^{\prime} to 38^{\prime}	$30^{\prime} 9^{\prime \prime}$	15^{\prime}	12^{\prime} to 25^{\prime}	17^{\prime} to 20^{\prime}	14^{\prime} to 18^{\prime}	16^{\prime} to 25^{\prime}

SKYLIGHT WORK*

Abstract

 $0^{\prime} 0^{\prime \prime}$ on a horizontai line. Five hars are required, making the glass 15 inches wide A working section through . 113 and (1) is shown helow.

It will be moticed in the section through IB that the flathing is lowked to the roofing and flanged around the inside of the angle iron comstruction; over this the curb of the skylight rests, bolterd through the angle iron as shown, the bolt being (apped and soldered to atwoid leakage.

The same construction is used in the section through ('l), with the exception, that when the flashing cannot be made in one piece, a cross lock is placed in the manner indicated, over the firepromf hacks.

[^10]CONSTRUCTION DRAWING SHOWING LAYOUT OF FLAT SKYLIGHT AND METHOD OF FASTENING FLASHING ON AMGLE IRON CONSTRUCTION.

Curb measure $6^{\prime}-0^{\prime \prime} \times 7^{\prime}-6^{\prime \prime}$
Five bars spaced $1^{\prime}-3^{\prime \prime}$ apart

Section through lower
end of curb A-㚗

Secrion rhrough upper end of curb $\mathrm{C}-\mathrm{D}$

SHEET METAL WORK

1) \1:1

SKYI.I(ill WORK

 tion proof, and being less clumsy, admit more light.

The small inmly of revel it si it the oun trumion of the her and

 from different material.

CONSTRUCTION

 if the patterns for the various intersections are properly developed. For example, the har shown in Fig. 145 consists of a piece of sheet metal having the
 and bent by special machinery, or on the regular cornice brake, into the shape shown, which repse -ate imvergit and rigillity will the least amount of weight. A A represent the combensation gutters to receive the moldensation

1141

145.146.

two walls O O together and impart to it great rigidity. When skylight bars are required to bridge long spans, an internal core is made of sheet metal and placed as shown at A in Fig. 147, which adds to its weight-sustaining power. In this figure B B shows the glass laid on

Fig. 147. a bed of putty with the metal cap C C C , resting snugly against the glass, fastened in position by the rivet or bolt D D. Where a very large span is to be bridged a bar similar to that shown in Fig. 148 is used. A heavy core plate A made of $\frac{1}{4}$-inch thick metal is used, riveted or bolted to the bar at B and B. In construction, all the various bars terminate at the curb shown at A B C in Fig. 149, which is fastened to the wooden frame D F.
'The comelensation gutters (' (' in the har b, carry the water into the internal gutter in the curb) at a, thence to the outside through holes provided for this purpose at F F. In Fig. 150 is shown a sectional view of the construction of a double-pitched skylight. A shows the ridge bar with a core in the center and cap attached over the glass. B shows the cross bar or clip which is used in large skylights where it is impossible to get the glass in one length, and where the glass must be protected and leakage prevented by means of the cross bar, the gutter of which conducts the water into the gutter of the main bar, thence outside the curb as before explained. C is the frame generally made of wood or angle iron and covered by the metal roofer with flashing as shown at F. D shows the skylight bar with core showing the glass and cap in position.

Fig. 148. nthere curb against which the bars terminate, the condensation being let out through the holes shown.

In constructing pitched skylights having double pitch, or being hipped, the pitch is usually one-third. In other words it is one-third

 or iron frame and a flat skylight laid over it. 'The ghlass used in the construction of metallic skiv-

 heavier glass is used.

If for any reason it is desired to know the weingt of the various thickness of glass, the following table will prove valuable.

We゙にht of Rewgh (flacs Per Square Foot.
Thickness in inches.
4. A. | 11 | 1. |.

Weight in promuls.

SHOP TOOLS

In the smaller shops the bars are cut with the hand shears and formed up on the ordinary cornice brake. In the larger shops, the strips required for the bars or curbs are cut on the large squaring shears, and the miters on the ends of these strips are cut on what is known as a miter cutter. 'This machine consists of eight foot presses on a single table, each press having a different set of dies for the purpose of cutting the various miters on the various bars. The bars are then formed on what is known as a Drop Press in which the bar can be formed in two operations to the length of 10 feet.

METHOD EMPLOYED IN OBTAINING THE PATTERNS

'The method to he employed in developing the patterns for the various skylights is by parallel lines. If, however, a dome, conservatory or circular skylight is recuired, the blanks for the various curbs, bars, and ventilators, are laid out by the rule given in sheet Metal Work, Part IV, under "Circular Work".

VARIOUS SHAPES OF BARS

In addition to the shapes of hars shown in Figs. 145 to 148 inchusive, there is shown in Fig. 151 a plain bar without any condensation gutters, the joint being at A. B B represents the glass resting on the rabbets of the bar, while (shows another form of cap which covers

Fig. 151

Fig. 152.

Fig. 153.
the joint between the bar and glass. Fig. 15) gives another form of bar in which the condensation gutters and bar are formed from one piece of metal with a locked hidden seam at A. Fig. 153 shows a bar on which no putty is required when glazing. It will he noticed that it is hent from one piece of metal with the seam at A, the glass B B resting on the combination rabbets and gutters C C. D is the cap which is fastened by means of the cleat E . 'These cleats are cut about $\frac{1}{2}$-inch wide from soft $14-0 z$ copper, and riveted to the top of the bar

 raised are so cronstructerl that a water-tight joint
 156 , which is an enlarged section throngh A B in Fig. 155. 'Thus in Fig. 156, A A represents the two half bars with condensation gutters as shown, the lo.. hast wam taking plate is I: li. '' 'repres

Fig. 154. sent the two half bars for the raising sash with the (aps I) I) attached to same, as shown, so that when the sash C (' is closerl, the (apss

IIV. 85

 protect the joints between the glass II II and the har: $C^{\circ}(\therefore$

$1=11 \%$

III live 15% I
 Whiols ies llas if rempsion with flat skylights. I in Fis 1.70 shews the anth for the theres. sides of a flat skidisht, formond in orfe pieqee with a joint at 13, while ('shows the cap), fensemed as previonsly describerl. " I' shoms the

another form of skylight formed in one piece and riveted at B; a shows the height at the lower end. In the previous figures the frame on which the metal curb rests is of wood, while in Fig. 1.59 the frame is

Fig. 157.

Fig. 158.

Fig. 159.
of angle iron shown at A . In this case the curb is slightly changed as shown at B; bent in one piece, and riveted at C. In Figs. 160, 161, and 162 are shown rar'ous shapes of curbs for pitched skylights in addition to that shown in Fig. 149. . in Fig. 160 shows a curb formed in one piece from a to b with a condensation hole or tube shown at B .

Fig. 160.

Fig. 161.

Fig. 162.

In Fig. 161 is shown a slightly modified shape A, with an offiset to rest on the curb at B. When a skylight is to be placed over an opening whose walls are brick, a gutter is usually placed around the wall, as

 at d. The condensation from the guter c in the lar, drips inte the gutter f, out of the tube d, into the main gutter 13 , from which it is comveved to the outside by a leader.

In Fig. 1633 is shown an enlarged section of a raising sath, taken throngh C D in Fig. 155. A in Fig. 16:3 shows the rilpe har, 13 the lower curb and C I) the side sections of the hars explaineed in cromection with Fig. 156. F, F in Fig. 163 shows the upper frame of the raising sash, fitting onto the half rilge bar A. On each raising sash, at the upper end two hinges II are riveted at E and I , which allow the sath to raise or close by means of a cord, roorl, or gearings. J K shows the lower frame of the sash fitting
 puncherd at a to allow the condensation to escape into b, thence to the outside through

Iis. $113: 3$
C. Over the himge If a hoond or cap is phaced which prevemts reakage. Fig. 164 shows a section through A 13 in lige. $16 i z$ amd reprresents a hipped skylight having one-third pitch. 13y a skylighte of one-third pitch is meant a skylight whose altitule or heighe I 13, ie ery uad to one-thiral of the span (D D). If the skylight was to have a pitech of one-fourth or one-lifth, then the altiende I I3 womble equal one-fmorth or one-fifth respertively of the span (1).
 ridge ventilater which will he briedly descrilued. ('1) in the curb; E: E:

glass at a. G shows the hood held in position by two cross braces H . J represents a section of the common bar on the rabbets of which the glass K K rests. L shows the condensation gutters on the bar J,

Fig. 164.
which are notched out as shown at M, thus allowing the drip to enter the gutter N and discharge through the tube P . The foul air escapes under the hood G as shown by the arrow.

Fig. 165.

DORMER ON MUSEE DE CLUNY, PARIS, FRANCE
Built in the Fifteenth Century. Note the Figure Sculpture at Sides of Dormer.

MAUTH GBAUDE, SURNBERG, GRIMASY

174 16...

 one or more lights by means of gearings, as shown in Fige 15\%.

Fig. 166 shows a double-pitch skylight. Ventilation is obtained by placing louvres at each end as shown at A. Fig. 167 shows a skylight with a ridge ventilator. The corner bar C is called the hip har; the small har D, mitering against the corner bar, is called the jack bar, while E is called the common bar. Fig. 168 illustrates a hip monitor skylight with glazed opening sashes for rentilation. These sashes can be opened or closed separately, by means of gearings similar to those shown in Fig. 177 In Fig. 169 is shown the method of raising

Fig. 169.
sashes in conservatories, greenhouses, ete., the same apparatus being applicable to both metal and woorlen sashes. Fig. 170 shows a view of a photographer's skyight; if desired, the vertical sashes can be made to open.

In Fig. 171 is shown a flat extension skylight at the rear of a store or building. The upper side and ends are flashed into the brick work and made water-tight with waterproof cement, while the lower side rests on the rear wall to which it is fastened. In some cases the rear

 set ellgeways flush with the inside of the wall, as shown at B. The two planks are not reguired when a cast ironguter is used.

Fig. 173 shows a hipped skylight without a ridge ventilator, set on a metal curb in which louvres have been placent. 'These lousres may be made stationary or movalle. When mate movable, they are

Fie, 17.,

 fants attached to the upright lars a and b, which in curn are pulled up and down by cords or chains worked from below. When a shylight
 176, in which A represemes a 'T'-hemu which con he truserd if neecessary: "This comstruction allows the water to cesaper from the lentem of the "pperer light to the omeside of the tope of the hawer shy lighte, the curl) (of the upper light fitting over the eurt, I3 of the lower light.

In Fig. 177 is shown the method of applying the gearings A shows the side view of the metal or wooden sash partly opened, B the

Fig. 171.
end of the main shaft, and C the binder that fastens the main shaft to the upright or rafter. D shows the quadrant wheel attached to main shaft and E is the worm wheel, geared to the quadrant D , communicating motion to the whole shaft.

Fig. 172. F is a hinged arm fastened to the main shaft B and hinged to the sash. By turning the hand-wheel the sash can be opened at any angle.

DEVELOPMENT OF PATTERNS FOR A HIPPED SKYLIGHT

The following illustrations and text will explain the principles involved in developing the patterns for the ventilator, curb, hip bar, common bar, jack bar, and cross bar or clip, in a hipped skylight. These principies are also applicable to any other form of light, whether flat, double-pitch, single-pitch, etc.

IM 10:
will have mo diflionly in hathe ont any patton- mo mater what the

 C'4, equal to 12 indtes Asmming that the lizho is to have one-thand

17. 171

 and the inside section of the ventilator from Fi to (i at the tops. At
pleasure draw the section of the outside vent shown from h to l and the hood shown from m to p. X represents the section of the brace resting on $i j$ to uphold the hood resting on it in the corner o. The condensa-

Fig. 175.
tion gutters of the common bar E are cut out at the bottom at $5^{\prime} 6^{\prime}$ which allows the drip to go into the gutter $d e f$ of the curb and pass out of the opening indicated by the arrow. Number the corners of each half of the common bar section E as shown, from 1 to 6 on each side, through which draw lines

Fig. 176. parallel to $\mathrm{D} 4^{\prime}$ until they intersect the curb at the bottom as shown by similar numbers 1^{\prime} to 6^{\prime}, and the inside ventilator at the top by similar figures $1^{\prime \prime}$ to $6^{\prime \prime}$. This completes the one half-section of the skylight. From this section the pattern for the common bar can be obtained without the plan, as follows:
At right angles to D 4' draw the line I J upon which place the stretchout of the section E as shown by similar figures on I J. Through these small figures, and at right angles to I J, draw lines, and intersect them by lines drawn at right angles to D 4^{\prime} from similarly numbered intersections 1^{\prime} to 6^{\prime} on the curb and $1^{\prime \prime}$ to $6^{\prime \prime}$ on the inside ventilator. Trace a line through points thus obtained; then $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1} \mathrm{D}^{1}$ will be the

 developerl hy taking the stretchome of the varions comeres in the curl).

 angles to A B draw lines which intersect with lines drawn at right angles to C ' 4 ' from similar puints in the curb section a f. 'Trace a line
 the curb shown in the half section. Vrepresents the comblensation hole

Fig. 177.
the radins r strike the semicrole shown. Alswe this semicircle phmed the lole 5
 quarter plan view must lee comstructed which will give the penints of intersections between the hip, har and curh, hetween the hip har and vent, or ridge har, and between the hip and jack har. 'Therefore, from
 As the skylight forms a right angle in plan, draw from K , at an angle of 45°, the hip or liagemat line $\mathrm{K} 1^{\circ}$. 'Take a trameng of the common bar seetion ह: with the varimus ligures on same, and phace it on the hip, line $\mathrm{K} 1^{\circ}$ in phan so that the peints 11 crome direetly on the hip as

Fig. 178.

 seetion hase similar mambers，and if the sumbent sill camflly fillos

 sertion of the hip har and pattern are ohtainel．＇To du this thas ang
 tion as the base line $\mathrm{C} 4^{\prime}$ has in the half section．From the varions

 instance from the line（＇Ψ^{\prime} in the half section take the varions distances
 and 6^{\prime} at the hottom，and plawe them in the diagonal elevation now－

 the hottom．Through the pmints thos oltaited staw the nute lher

 curb and vent，or ridge．＇To ohtain the true section of the hip，har，

 $1^{\top} 1^{\prime \prime}$ as shown．From the various points in the section E：＇at right
 diagonal elevation as shown from 1 to 6 on either side．Commert there points as shown；then le＇will he the true protile of the hip har．Note the difference in the two protiles；the mormal E and the modified $E:$ d

Having ohtainest the true profile E：the pattern for the hip har is obtainest by drawing the stretchout line（）1＇at right amgles I＇ 1^{r} ．

Take the stretchout of the profile E^{4} and place it on O P as shown by similar figures. Through these small figures and at right angles to O P draw lines which intersect by lines drawn at right angles to $1^{\mathrm{T}} 1^{\mathrm{P}}$ from similarly numbered points at top and bottom, thus obtaining the points of intersections shown. A line traced through the points thus obtained, as shown by $\mathrm{H}^{1} \mathrm{~J}^{1} \mathrm{~K}^{1} \mathrm{~L}^{1}$ will be the pattern for the hip bar.

For the pattern for the jack har, take a tracing of the section of the common har E and place it in the position in plan as shown by E^{2} being careful to have the points. 1 and 4 at right angles to the line $1^{x} 1^{\circ}$. It is immaterial how far the section F^{2} is placed from the corner 2° as the intersection with the hip bar remains the same no matter how far the section is placed one way or the other. Through the various corners in the section E^{2} draw lines at right angles to the line $1^{\circ} 1^{\mathrm{x}}$ intersecting one half of the hip, bar on similarly numbered lines as shown by the intersections $1^{\mathrm{L}} 2^{\mathrm{L}} 3^{\mathrm{L}} 4^{\mathrm{L}} \cdot 5^{\mathrm{L}} \cdot 4^{\mathrm{L}}$ and $1^{\mathrm{L}} 2^{J} \cdot 3^{\mathrm{J}} 4^{\mathrm{L}} 5^{\mathrm{J}}$ and 6^{3}; also intersecting the curb in plan at points. 1^{x} to f^{x}. 'The intersection between the jack bar and curb, in plan is not necessary in the development of the pattern as the lower cut in the pattern for the common bar is the same as the lower cut in the pattern for the jack bar. However, the intersection is shown in plan to make a complete drawing. At right angles to the line of the jack bar in plan, and from the various intersections with the hip bar, erect lines intersecting similarly numbered lines in the section as shown. 'Thus from the various intersections shown from 1^{L} to f^{2} in plan, erect vertical lines intersecting the bar in the half section at puints shown from $1^{\text {L }}$ to 6^{L}. In similar manner from the varions points of intersections. $3^{3}, 5^{3}$, and 6^{3} in plan, erect lines intersecting the har in the half section at points shown be $3^{4} 5^{-1} 6^{3}$. Connect these points in the half section, as shown, which represents the line of joint in the section between the hip and jack bars.

For the pattern for the upper cut of the jack bar, the same stretchout can he used as that used for the common bar. Therefore, at right angles to I) 4^{\prime} and from the various intersections $1^{\text {L }} 2^{2} 3^{L} 4^{L 5} 5^{5}$ and $6^{\text {L }}$ draw lines intersecting similar numbered lines in the pattern for the common har as shown les similar figures. In similar manner from the various intersections: $3^{3} .5^{3}$ and 6^{3} in the one half section, draw lines at right angles to I) t^{\prime} intersecting similarly numbered lines in the pattern as shown by $3^{3} 5^{3}$ and 6^{5}. Trace lines from point to point, then the

 to I B and drough the -mall leftere draw line. mahime then, crinal in

 shown itn Fig. 179, which is the half pathern for the wel of tien thend. For the half pattern fin the end of the mander vomblame, talee the

1..17.1

1:-101.

$1.1-1$

 lines making them in lemgh, measming from I If. Wgal bes simblan
 the print-as shown in Fige. I 4 (1 whish is the de iral hatf guscern. In

 amal $1=0$.

Fig. 182. Let A represent the section of the main bar, B the elevation of the cross bar, and C its section. Note how this cross bar is bent so that the water follows the direction of the arrow, causing no leaks because the upper glass a is bedded in putty, while the lower light b is capped by the top flange of the bar C (See Fig. 150). Number all of the corners of the section C as shown, from 1 to 8 , from which points draw horizontal lines cutting the main bar A at points 1 to 8 as shown At right angles to the lines in B draw the vertical line D E upon which

Fig. 182.
place the stretchout of the cross bar C, shown by similar figures, through which draw horizontal lines, intersecting them with lines drawn parallel to D E from similar numbered intersections against the main bar A, thus obtaining the points of intersections 1^{\prime} to 8^{\prime} in the pattern. Trace a line through points of intersections thus obtained which will be the pattern for the end cut of the cross bar.

In Fig. 183 is shown a carefully drawn working section of the turret sash shown in Fig. 168 at A. These sashes are operated by

 hutt miters which the student will have on tromble in developing. providing he understands the cronstrucfimm: 'This will ber mele oten by the forllow ite explanathan:

A B represents the upper part of the turret proper with a drip, bent on same, as shown at B, against which the sashes close, and a double seam, as shown at A , which makes a tight joint, takes out the twist in bending, and avoids any soldering. 'This upper fart i B is induame hey in Fig. 16S, over which the gutter B is placed as shown by X U Y in Fig. 183. C D represents the lower part of the turret proper or base, which fits over the wooden curb W , and is imflicated ing D in Fiz. . Wh. F: in Fig. 183 represents the mullion made from one piece of metal and double seamed at a. This mullion is joined to the tup and bettom. The pattern for the top end of the mullion would simply show a square cut, while the pattern for the bottom would represent a butt miter

lie. 18:

 are shown in prsition in Fig. 16S hy E. E, etc:

 upene the upper half of the sides turn tomand the mole in dimen to
the arrow at the top, while the lower half swings outward as shown by the arrow at the bottom. When the lower half closes, it locks as shown at F , which makes a water-tight joint; but to obtain a water-tight joint for the upper half, a cap is used, partly shown by L M, into which the upper half of the side of the sash closes as shown at M. This cap is fastened to the upper part of the mullion E with a projecting hood j which is placed at the same angle as the sash will have when it is opened as shown by $e e^{\prime}$ and $d d^{\prime}$ or by the dotted lines.

The side of the sash just explained is shown in Fig. 168 at H. The pattern for the side of the sash has a square cut at the top, mitering with H I at the bottom, in Fig. 183, the same as a square miter. H I represents the section of the bottom of the sash. Note where the metal is doubled as at b, against which the glass rests in line with the rabbet on the side of the sash. A beaded edge is shown at H which stiffens it. This lower section is shown in Fig. 168 by G and has square cuts on both ends. N O in Fig. 183 shows the section of the top of the sash shown in Fig. 168 by F. The flange N in Fig. 183 is flush with the out-

Fig. 184. side of the glass, thereby allowing the glass to slide into the grooves in the sides of the sash. After the glass is in position the angle P is tacked at n. A leader is attached to the gutter Y as shown by B° in Fig. 168. While the method of construction shown in Fig. 183 is generally employed, each shop has different methods; what we have aimed to give is the general construction in use, after knowing which, the student can plan his own construction to suit the conditions which are apt to arise.

In the following illustrations, Figs. 184 to 187, it will be explained how to obtain the true lengths of the ventilator, ridge, hip, jack, and common bars in a hipped skylight, no matter what size the skylight may be. Using this rule only one set of patterns are required, as for example, those developed in connection with Figs. 178, 179, 180, and 181, which in this case has one-third pitch. If, however, a skylight was required whose pitch was different than one-third, a new set of patterns would have to be developed, to which the rule above mention-

 where the bettem of the bar E in the half sertion mee the the line of the curl) $c 4^{\prime}$ at 4^{\prime}, and the ridge at the top at 4'. 'Therefore when laying

 4 of the bar E from 4^{\prime} to $4^{\prime \prime}$ on the patterns, as will he explained as we proceed.
'The first step is to prepare the triamgle, from which the lengths
 bars. After the drawings and patterns have been laid out full size
 triangle in the half section 1) (4 'and place it as shown by . 112 O, in Fig. 1st. Divile () 12, which will be 12 inches in full size, into quarter, half-inches, amd incher, the same as on a 2 -foot rule, as shown by the figures () to $1 \underline{2}$. From theae divisums ereet lines
 which completes the triangle for ohaining the true lemgeths of jack and common hars for any size skylight. In similar manner tahe tracing of N 12 \&" in the diagonal devation in Fig. 1is ambl phace it as shown tey 13120 in lige. 1sis. Thae lengath 12 () then hecemes the buse of the trimughe for the hip har in a skyplighe whese

as shown in Fig. 184, the heights A 12 in Fig. 184 and B 12 in Fig. 185 being equal. Now divide 12() in 12 equal spaces which will represent inches when obtaining the measurements for the hip bar. Divide each of the parts into quarter-inches as shown. From these devisions erect lines intersecting the hypothenuse or pitch line BO as shown.

To explain how these triangles are used in practice, Figs. 186 and 187 have been prepared, showing respectively a skylight without and

Fig. 187. with a ventilator whose curb measures 4 ft . x 8 ft . Three rules are used in connection with the triangles in Figs. 184 and 185 , the comprehension of which will make clear all that follows.

Rule 1. To obtain the length of the ridge bar in a skylight without a ventilator, as in Fig. 1sif, deduct the shost side of the frame or curb from the long side.

Example: In Fig. 186, take 8 feet (long side of frame) - 4 feet (short side of frame) $=4$ feet (length of ridge bar $a b$).

Rule 2. To find the length of the ventilator in a skylight deduct the short side of the frame from the long side and add the width of the desired ventilator (in this case 4 inches, as shown in Fig. 187).

Example: In Figure 157 take 8 feet (long side of frame) -4 feet (short side of frame) $=4$ feet. 4 feet +4 inches (width of inside ventilator) $=4$ feet 4 inches, (length of inside rentilator $a^{\prime} b^{\prime}$). 'To find the size of the outside ventilator $h l$ and hood $m p$ in Fig. 178 simply add twice the distance $a b$ and $a c$ respectively to the above size, 4 inches, and 4 feet 4 inches, which will give the widths and lengths of the outside vent and hood.

Rule 3. To find the lengths of either common or hip bar (in any size skylight) deduct the width of the ventilator, if any, from the length of the shortest side of frame and divide the remainder by two. Apply the length thus obtained on the base line of its respective triangle for common or hip bars and determine the true lengths of the desired bars, from the hypothenuse.

Example: As no ventilator is shown in Fig. 186, there will be nothing to deduct for it, and the operation is as follows: 4 feet (short-

THE "NASSAUER HAUS" IN NÜRNBERG, GERMANY
Built at the End of the Thirteenth Century. Railing or Gallery underneath Red-Tiled Roof is Decorated with Coats of Arms. In the Niche over the Fountain at the

Lower Right, is a Statue of King Adolf von Nassau.

TERRACE OF HOUSE AT MONTEGITO, (ALIFBRNIA

 (5) 1.42*

 both of which are added together for the full length.

The lenghts of the common and hip hast sill be Alomto. in Hig

 al parts of an inch occur. In laying out the patterns according to these measurements use the cuts shown in Figs. 178, 179, 180, and 181, being careful to

It will be noticed in Fig. 178 we always measure on line $\&$ in the pattern- for the hip, abmum, and jack bars. This is done because the line 4 in the protile $1:$ and $1:$ anne lirealy on the sant lime of the triangles which were traced to Figs. 1st and 185 and from which the true lengths were ohtained. Where a remt, might he ital, as diown in Figa. 1s5.
 whirls would brius the Imotum lime of the laur If
 using the size of 4×8 feet as the basis of mentisurements derduct is inches on each side, making the hasis of measoliemenes : 8 ft . ! inchess

R00FING

A good metal covering on a roof is as important as a good foundation. There are various materials used for this purpose such as terne plate or what is commonly called roofing tin. The rigid body, or the base of roofing tin, consists of thin sheets of steel (black plates) that are coated with an alloy of tin and lead. Where a first-class job is desired soft and cold rolled copper should be used. The soft copper is generally used for cap flashing and allows itself to be dressed down well after the base flashing is in position. The cold-rolled or hard copper is used for the roof coverings. In some cases galvanized sheet iron or steel is employed. No matter whether tin, galvanized iron, or copper is employed the method of construction is the same, and will be explained as we proceed.

Another form of roofing is known as corrugated iron roofing, which consists of black or galvanizel sheets, corrugated so as to secure strength and stiffness. Roofs having less than one-third pitch should be covered by what is known as flat-seam roofing, and should be covered (when tin or copper is used) with sheets 10×14 inches in size rather than with sheets 14×20 inches, because the larger number of seams stiffens the surface and prevents the rattling of the tin in stormy weather. Steep roofs should he covered her what is known as standingseam roofing made from $14^{\prime \prime} \times 20^{\prime \prime}$ tin or from $20^{\prime \prime} \times 2 \aleph^{\prime \prime}$. Before any metal is placed on a roof the roofer should see that the sheathing beards are well seasoned, dry and free from knots and nailed close together. Beforelaying the tin plate a good building paper, free from acid, should be laid on the sheathing, or the tin plate should be painted on the underside before laving. Corrugated iron is used for roofs and sides of buildings. It is usually laid directly upon the purlins in roofs, and held in place by means of clips of hoop iron, which encircle the purlins and are riveted to the corrugated iron about 12 inches apart. The method of constructing flat and double-seam roofing, also corrugated iron coverings, will be explained as we proceed.

TABLES

The following talles will prove useful in figuring the quantity of material required to cover a given number of square feet.

 (ull

Referring to the table for J'hat seam konfing, 1 (MA) sipuare feet require
 94(1) sherots.

 the sheets are laid on the romif.

E:rample. What quantity of 20 x 2s-inch tin will her repuired to

 tern. neal MS limet

STANDING-SEAM ROOFING

Table showing the quantity of 20×28-inch tin in boxes, and sheets required to lay any given standing-seam roof.

SQ. FEET	sheets	SQUARES	SQ. FEET	boxes	sheets	SQUARES	boxes	SHEETS
1	1	\ldots	68		21	35	9	77
2	1	69	21	36	9	108
3	1		70		22	37	10	27
4	2	7	…..	22	38	10	58
5 6	2		73	22	39	10	89
7	$\stackrel{2}{3}$		73		$\stackrel{20}{ }$	40	11	8
8	3	.	75	.	$\stackrel{23}{23}$	41	11	${ }_{70}^{39}$
9	3	if	23	43	11	101
10	4	..	77	24	44	12	20
11	4	78		24	4.5	12	51
13	4	.	79	.	24	46	12	83
13	$\stackrel{4}{5}$		80 81	25	$4{ }_{4}^{48}$	13	1
15	5		8	...	$\stackrel{25}{25}$	48	13 13 13	32 63
18	5		$\times 3$		25	50	13	94
17	6		87		26	51	14	13
18	6		85		26	53	14	44
19	${ }_{6}$		86		26	53	14	75
20	7	\%		27	54	14	106
${ }_{21}^{21}$	\div	.	\times	$\stackrel{27}{ }$	55	15	25
23	\%		(19)	...	38	56 57	15	87
24	8		$4!$		$2 \times$	58	16	6
25	$\stackrel{4}{4}$		92		28	59	16	37
26	8		93	,	28	60	16	68
27	9		94		29	61	16	99
28	9		45		29	62	17	18
29 30	${ }_{10}^{9}$		6		29	6.3	17	49
30 31	10 10		\%	\ldots	30 30	64	17	80
32	10		99	\ldots	30	66	18	30
33	10		100	31	$6 \hat{}$	18	61
34	11	1		31	68	18	92
35	11	\because	\ldots		62	69	19	11
36	11	3			93	70	19	42
37	12	4	1	13	71	19	73
38 39	12	5 6	1	4	-	19	104 24
40	13	7	. \cdot....	1	105	74	31	54
41	13	8		2	24	75	?	85
42	13	9	3	55	76	\cdots	4
43	13	10	.	\%	86	77	$\because 1$	35
14 45	14	111	...	3	${ }_{3}^{5}$	78	9	66 97
46	14	13	\ldots	3	67	81	\cdots	16
47	15	14	.	3	98	81	\because	47
48	15	15		I	17	$\times 2$	\because ?	78
49	15	16	4	48	83	\%	109
50 51	16 16	11 18	4	119	81	33	28 59
52	16	19		5	29	86	23	90
53	16	20	$\ldots .$.	I	60	7	24	9
54 55	17	21	.	5	91	88	24	40
56	17	23		6	41	89 90	$2 \pm$	102
57	18	24		${ }^{\text {A }}$	T2	91	25	21
58	18	$\stackrel{5}{5}$	$\stackrel{6}{\square}$	103	92	25	52
59 60	18 19	${ }_{27}^{26}$		\div	23	94	${ }_{26}^{25}$	83
61	19	2		.	81	95	20	33
${ }_{63}{ }^{6}$	19	98	.	8	3	96	26	64
${ }_{6}^{63}$	19 20	30 31		8	34	97 98	26	95
65	20	32		8	96	99	$\stackrel{27}{27}$	14
68	20	33			15	100	27	76
67	21	31	9	46			

Size of sheet before working, 20×28 inches. Exposed on roof $27 \times 17 \frac{3}{4}$ inches. Square inches per sheet exposed $479 \frac{1}{4}$ inches. Sheets per box 112 .

$11-11=20.112$

$\mathrm{N}=1$			36	P10	10	\cdots						
Wrighe im									is			

$-11 \because 1.11111111 .111-1.11 .11711-1+11811$ it1-

OTHER FORMS OF METAL ROOFING

There is another form of roofing known as metal slates and shingles, pressed in various geometrical designs with water-tight lock attach -

Fig. 189. ments so that no solder is required in laying the roof. Fig. 189 shows the general shape of these metal shingles which are made from tin, galvanized iron, and copper, the dots a a a a representing the holes for nailing to the wood sheathing. In Fig. 190, A represents the side lock, showing the first operation in laying the metal slate or shingle on a roof, a representing the nail. B, in the same figure, shows the metal slate or shingle in position covering the nail b, the valley c of the bottom slate allowing the water, if any, to Glow over the next lower slate as in A in Fig. 189.

In Fig. 191 is shown the bottom slate A covered by the top slate B, the ridges a a a keeping the water from backing up. Fig. 192 shows the style of roof on which these shingles are employed, that is, on steep roofs. Note the construction of the ridge roll, A and B in Fig. 192, which is first nailed in position at $a a$ etc., after which the shingles B are slipped under the lock c. Fig. 193 shows a roll hip covering which is laid from the

SHEATHING BOARD
Fig. 190. top downward, the lower end of the hip having a projection piece for nailing at a, over which the top end of the next piece is inserted, thus

Fig. 191.
covering and concealing the nails. Fig. 194 represents a perspective view of a valley with metal slates, showing how the slates A are locked to the fold in the ralley B. There are many other forms of
 1.mbight furome.

1001S RLOUIREU

Fig. 112.
stretch-awl, shears, hammer, and dividers. In addition to these hand

tixe tor

shecets, and rowfing folders are re quired for edging the sheets in thatseam roofing, and hand double seamer and roofing tongs for stamding-sean roofing. 'The roofing double seamer and splueezing tonge can be used for stamdingresean roofing (in place of the hamd donble semater), which allow the

laying the various kinds of roofing, there are some, however, who do not understand how to figure from architects' or scale drawings the amount of material required to cove: a given surface in a flat, irregular shaped, or hipped roof. The modern house with its gables and va-

Fig. 195.
rious intersecting roofs, forming hips and valleys, render it necessary to give a short chapter on roof measurement. In Figs. 196 to 198 inclusive are shown respectively the plans with full size measurements for a flat, irregular, and intersected hipped roof, showing how the length of the hips and valleys are obtained direct from

Fig. 196. the architects' scale drawings.

The illustrations shown herewith are not drawn to a scale as architects' drawings will be, but the measurements on the diagrams are assumed, which will clearly show the principles which must be applied when figuring from scale drawings. Assuming that the plans from which we are figuring are drawn to a quarter-inch scale, then when measurements are taken, every quarter inch represents one foot. $\frac{1}{8}$ inch $=6$ inches, $\frac{1}{16}$ inch $=3$ inches, etc. If the drawings were drawn to a half-inch scale, then $\frac{1}{2}$ inch $=12$ inches, $\frac{1}{4}$ inch $=6$ inches, $\frac{1}{8}$ inch $=3$ inches, $\frac{1}{16}$ inch $=1 \frac{1}{2}$ inches, etc.

A B C D in Fig. 196 represents a flat roof with a shaft at one side as shown by $a b c d$. In a roof of this kind we will figure it as if there was no air shaft at all. Thus 64 feet $\times 42$ feet $=2,688$ square feet. The shaft is 12.5×6 feet $=75$ square feet; then 2,688 feet -75 feet $=$

 being irrezular, forming an ivregular fiapos! roof. The rule for obtaimng the area is similar to that used for Fig. 190 with the exceptom that the area of the irrerplar shaft $x \times x \times$ in Fig. 197 is determined differently to that of the
 feet $=4,4(j 0$ square feet. Find the area of b, c
 square feet. "I'o find the area of the irregular shaft, bisect $x x$ and $x x$ and ohtain a, measure the length of a a which is 48 feet, and muliply by it. Thom is $4=112$ aml 412 $+365.375=757.375$. The entire roof minus the shafts $=4$,N(i) square feet $-777.375=$ $4,052.625$ square feet of surface in Fig. 197.

Fig. 197.

10. 106

up by the intersection of the wing. While it may appear difficult to some to figure the quantities in a hipped roof, it is very simple, if the rule is understood. As the pitch of the roof is equal on four sides the length of the rafter shown from O to N in front elevation represents the true length of the pitch on each side. The length of the building at the eave is 90 feet and the length of the ridge 45 feet. Take $90-48=42$, and $42 \div 2=21$. Now either add 21 to the length of the edge or deduct 21 from the length of the eave, which gives 69 feet as shown from S to T. The length of the eave at the end is 42 feet and it runs to an apex at J. Then take 42 feet $\div 2=21$, as shown from T to U. If desired the hip lines A I, J B and J C can be bisected, obtaining respectively the points S, ' Γ, and U , which when measured will be of similar sizes; 69 feet and 21 feet. As the length of the rafter O N is 30 feet, then multiply as follows: $69 \times 30=2070 . \quad 21 \times 30=630$. Then $630+2,070=2,700$, and multiplying by 2 (for opposite sides) gives 5,400 square feet or 54 squares of roofing for the main building. From this amount deduct the intersection E L F in the plan as follows:

The width of the wing is 24 feet 6 inches and it intersects the main roof as shown at E L. F. Bisect E L and L F and obtain points W and V , which when measured will be 12 feet 3 inches or one half of HG , 24 feet 6 inches. The wing intersects the main roof from Y to F^{1} in the side elevation, a distance of 18 feet. Then take $18 \times 12.25=220.5$. Deduct 220.5 from $5400=5,179.5$. The wing measures 33 feet 6 inches at the ridge L MI, and 21 feet 6 inches at the eave F G, thus making the distance from V to $\mathrm{X}=27$ feet 6 inches. The length of the rafter of the wing is shown in front elevation by PR , and is 18 feet. Then $18 \times 27.5=495$, and multiplying by 2 (for opposite side), gives 995 sq. ft . in the wing. We then have a roofing area of $5,179.5$ square feet in the main roof and 995 square feet in the wing, making a total of 6,174.5 square feet in the plan shown in Fig. 198.

If it is desired to know the quantity of ridge, hips, and valleys in the roof, the following method is used. The ridge can be taken from the plans by adding $48^{\prime}+33^{\prime} 6^{\prime \prime}=S 1^{\prime}-6^{\prime \prime}$. For the true length of the hip I D in the plan, drop a vertical line from I^{\prime} in the front elevation until it intersects the eave line 1°. On the eave line extended, place the distance I D in the plan as shown from 1° to D° and draw a line from D° to I^{1} which will be the true length of the hip I D in the plan. Multiply this length by 4 , which will give the amount of ridge capping re-

 from I^{2} to D which is the desired lengeth.

For the length of the valley I F F in the plan, drop a vertical line from F^{1} in the side eleration until it intersects the eave line at F°.
 and draw a line from I° to F^{1}, which is the trase length of the valley shown by I F in the plan. Multiply this lengeth by 2, which will give the required number of feet of valley required. 'This lempth of valley
 roof of the wing, shown ly $\mathrm{F}^{\circ} \mathrm{F}^{2}$ in the sile elevation, and placing it at right angles to F I , in the plan, from L to F^{2}, and draw a line from F^{2} to F which is the desired length similar to $\mathrm{F}^{31} \mathrm{~L}^{\circ}$ in the side elevation.

The first step necessary in preparing the plates for Hat seam roofing is to notch or cut off the four cormers of the plate as shown in Fig. 199 which shows the plate as it is taken from the box, the shaded errners a a a a representing the corners which are notched on the notching machine or with the shears. Care must be taken when cutting off these corners not to cut off ton little otherwise the sheets will not edpe well, and not to cut off too much, otherwise a hole will show at the corners when the sheets are laid. 'To find the correct amount to be cut off proceed as follows:

Fig. Wh

Assuming that a $\frac{1}{2}$-inch edge is desired, set the dividers at $\frac{1}{2}$ inch and serobe the linesb a and a con the sheet shown in Fig. 199, and. where the lines intersect at a, draw the line de at an angle of 45 degrees, which represents the true amomut and true angle to $1 x$ e cut off on each corner. After all the sheets have been moteched, they are edged as shown in Fig. 20(0), the homg sides of the sheet being bent right and left, as shown at a, while the short sitle is bent as shown at b, making

 sheets be: painted on the umberside before laying. 'This is usually

are not soiled with paint, which would interfere with soldering. Before laying the sheets the roof boards are sometimes covered with an oil or rosin-sized payer to prevent the moisture or fumes from below from rusting the tin on the underside. As before mentioned, the same method used for laying tin roofing would be applicable for laying copper roofing, with the exception that the copper sheets would have to be tinned about $1 \frac{1}{2}$ inches around the edges of the sheets after they are notched, and before they are edged.

In Fig. 201 is shown how a tin roof is started and the sheets laid when a gutter is used at the eaves with a fire wall at the side. A repre-

Fig. 201.
sents a galvanized iron gutter with a portion of it lapping on the roof, with a lock at C. In hanging the gutter it is flashed against the fire wall at J ; after which the base flashing D D is put in position, flashing out on the roof at E , with a lock at F . Where the base flashing E miters with the flange of the gutter B it is joined as shown at b, allowing the flange E of the base flashing as shown by the dotted line a. As the water discharges at G, the sheets are laid in the direction of the arrow H, placing the nails at least 6 inches apart, arways starting to nail at the butt $c c$, etc. Care should be taken when nailing that the nail heads are well covered by the edges, as shown in W, by a. Over the base flashing D D J the cap flashing L. is placed, allowing it to go into the wall as at O .

 a. Jlewn at 1). nlay'. wall homen no.!
 make a tight joint. Flashings of this kind should always be painted on the undersides, and paper should be placed between the brick work and metal, because the moisture in the wall is apt to rust the tin. This method of putturg in thashing is not advisable in new work,

140101

danger of leakage.

The proper method of putsing in thatin. - and nue which allos. for the expancion and oxntrat tion of the meal and the a fle thent of the

810 71

In mis
panke.

Where the cost is not considered and a good job is desired, it is better to use sheet lead (ap flashings in place of tin. 'They last longer, do not rust, and can be dressed down well to lay tight onto the base flashings. Into the lock C the sheets are attached. After the sheets are laid the seams are flattened down well hy means of a heary mallet,

Fig. 205. with slightly convex faces, after which the roof is ready for soldering. When a base flashing is required on a roof which abuts against a wall composed of clap boards or shingles as shown in Fig. 204, then, after the last course of tin A has been laid, the flashing B with the lock a is locked into the course A and extends the required distance under the ioards I). The flashing should always be painted and allowed to dry before it is placed in position. In the previons figures it was shown how the sheets are edged, both side- heing edged right and left. In Fig. 205 is shown what is known as a valley sheet, where the short sides are edged both one way, as shown at a a and the long sides right and left as shown at $b b$. Sheets of this kind are used when the water runs together from two directions as shown by A in Fig. 206. By having the bock, a and a turned one way the roof is laid in both directions.

Fig. 207. Ahom: a part phan of a roof and chimney A, around which the flashing B ('I) E is to be phaced, and explains how the corners ('

Fig. 207. and D are double seamed, whether on a chimney, bulkhead, or any other object on a roof when the water flows in the direction of the arrow F. The first operation is shown at a and the final operation at b. Thus it will he seen that the water flows past the seam and not against it. In laving flat seam rooting especially when copper is used, allowance must be made for the expansion and contraction of the sheets.

 sheers. 'The lock on the (leat I) is locked into the erlpe of the shierets

115 -

 and contraction of the metal. 'The closer these cleats are placed, the firmer the roof will be and the better the seams will hold. By using

will raise the seams, cansing a succession of buckles, which retard saddering and require 10 per cent more solfer. When the seams are maled or cleated close it lays flat and smoxeth and the soldering is done with ease atol less solder.

When a conmeretion is to be mate beetween metal and stone or terra crota, the methed shown in Fig. 20)? is employert. 'This illus tration shows a stene or terratenta cornice. A. 'The heany line a bed
represents the gutter lining, which is usually made from $20-\mathrm{oz}$. coldrolled copper. If the cornice A is of stone, the stone cutter cuts a raggle into the top of the cornice A as at B, dove-tail in shape, after which the lining $a b c d$ is put in position as shown. Then, being careful that there is no water or moisture in the raggle B, molten lead is poured into the raggle and after it is cooled it is dressed down well with the caulking chisel and hammer.

By having the dove-tail cut, the lead is secared firmly in position, holding down the edge of the lining and making a tight joint. Should the cornice be of terra cotta this raggle is cut into the clay before it is baked in the ovens. This method of making connection between

Fig. 210.
metal and stone is the same no matter whether a gutter or upright wall is to be flashed. When a flashing between a stone wall and roof is to be made tight, then instead of using molten lead, cakes of lead are cast in molds made for this purpose, about 12 inches long, and these are driven into the raggle B as shown in Fig. 209 at̂ X.

The most important step in roofing is the soldering. The style of soldering copper employed is shown in Fig. 210 and weighs at least 8 pounds to the pair. When rosin is used as a flux, it is also employed in tinning the coppers, but when acid is used as a flux for soldering zunc or galvanized iron, salammoniac is used for tinning the coppers. lt will be noticed that the soldering coppers are forged square at the ends, and have a groove filed in one side as shown at A . When the copper is turned upward the groove should be filed

Fig. 211. toward the lower side within $\frac{1}{\frac{1}{4}}$ inch from the corner, so that when the groove is placed upon the seam, as shown in Fig. 211, it acts as a guide to the copper as the latter is drawn along the seam. The groove a being in the position shown, the largest heated surface b rests directly on the seam, "soaking" it thoroughly with solder. As the heat draws the solder between the locks, about 6 pounds of $\frac{1}{2}$ and $\frac{1}{2}$ solder are required for 100 square feet of surface using 14×20-inch tin Tbe 15e of acid in soldering seams in a tin roof is to be avoided as acid coming in contact with the
House at Montecito, Cal.
Myoon hunt thmer Grev. Apchitects.
Los Amgeles.

 tinned with rosin.

Itis 210

 whlering, would flas hownand, by having the shbering owpper bu-

 then thoroughly soaking the seam, and then placing ridges of solder across it to strengthen the same In using the soldering copper it should be held in the position shown by C , which allows the solder to flow forward and into the seam, while if the copper were held as shown by D, the solder would flow backward and away from the seam. In "soaking" the seam with solder the copper should be placed

$1=82$

 ence where this cross joint oceurs; the same methots are used.

paint is applied to the rosin, the latter, with time, will crack, and the rain will soak under the cracked rosin to the tin surface. Even when the surface of the roof is dry, by raising the cracked rosin, moisture will often be foumd underneath, which naturally tends to rust the plate more and more with each storm. If the rosin is removed, the entire tin surface is protected by paint.

One of the mos: difficult johs in flat-seams roofing is that of covering a comical tower. As the roof in question is round in plan and tapering in elevation, it is necessary to know the

Fig. 214. method of cutting the various patterns for the sheets. In Fig. 214 A B C shows the elevation of a tower to be covered with flat seam roofing, using 10×14-inch tin at the base. Assuming that the tower through B C is 10 feet 6 inches, or 126 inches, in diameter, the circumference is obtained by multiplying 126 by 3.1416 which equals 395.8416 , or say 396 inches. As 10×14-inch plate is to be used at the base of the tower the nearest width which can be employed, and which will divide the space into equal spaces, is $13 \frac{1}{5}$ inches without edges, thus dividing the circumference in 30 equal spaces. This width of $13 \frac{1}{6}$ inches together with the length of the rafter A B or BC in elevation, will be the basis from which all the patterns for the various courses will be laid off.

At any convenient place in the shop or at the building, stretch a piece of tar felting of the required length, tacking it at the four corners with nails to keep the paper from moving. ['pon the center of the felting strike a chalk line as A B in Fig. 215, making it equal to the length of the rafter A B or A C in Fig. 214. At right angles to A B in Fig. 215 at either side, draw the lines B D and B C each equal to 6_{5}^{3} inches, being one half of the $13 \frac{1}{5}$ above referred t. From the points C and D draw lines to the apex A (shown broken). As the width of the sheet used is 10 inches and as we assume an edge of $\frac{3}{8}$ inch for each side, thus leaving 9_{4}^{1} inches, measure on the vertical line A B lengths of $9 \frac{1}{4}$ inches in succession, until the aper A is reacherl, leaving

 exurses. 'laker the shears and out ont the
 required.
 Xis. 1, place it on a sheet of tin as shown in

 on the tin pattern "No. 1, 29 more", as 30 sheets are reguired to gor aromal the tower. and cut 29 more for course No. 1. 'Treat all of the paym palmone imon Nin 1 to ithe apeex in similar manner. Of course where the patterns become smaller in size at the top, the waste from other patterns can be used.
 hoald ter alemb, alway bethe corriut in have the narrow side towards the top, with the edge toward the outside, the same as in flat seam roofing. Iay the sheets in the usual manner, breaking joints as in general practice. As the seams are not soldered

714 $9{ }^{5}$ care must be taken to lock the erlges well.
After the entire roof is laid and hefore closing the semms with the mallet

! 2 y

Fig. 217. take a small brush amel paint the lowks with thick "hite lead, then close with the mallot. This will make a water-tight phi. Shar Alor weit $=$

As the methexl need for whatinge the paterne for the varions sheete in Fige 21.5 is losest upen the primeiple "ased in obtaining the

terns the line from (' to D and all following lines should be curved, as if struck with a radius from the center A, and not straight as shown. To those the writer would say that the curve would be so little on a small pattern, where the radius is so long, that a straight line answers the purpose just as well in all practical work; for it would amount to considerable labor to turn edges on the curved cut of the sheet, and there is certainly no necessity for it.

When different metals are to be comnected together, as for instance tin roofing to copper flashing, or copper tubes to galvanized iron gutters, or zinc flashings in comection with copper linings, care must be taken to have the copper sheets thoroughly timed on both sides where it joins to the galvanized iron, zinc, or other metal, to avoid any electrolysis between the two metals. It is a fact not well known to roofers that if we take a glasis jar and fill it with water and place it in separately, two clean strips, one of zinc and the other of copper, and connect the two with a thin copper wire, an electrical action is the result, and if the connection remains for a long time

Fig. 218. (as the action is very faint) the zinc would be destroyed, because, it may be said, the zinc furnishes the fuel for the electrical action, the same as wood furnishes the fuel for the fire. Therefore, if the copper was not tinned, before locking into the other metal, and the joint became wet with rain, the coating of the metal would be destroyed by the electrical action hetween the two metals, and the irom would rust through.

While the roofer is seldom called upon to lay out patterns for any roofing work occasion may arise that a roof flashing is required around a pipe passing through a roof of any pitch, as shown in Fig. 218, in which A represents a smoke or vent pipe passing through the roof B B, the metal roof flashing leing indicated by (' ('. If the roof B B were level the opening to be cut into the flashing (' (' would simply be a true circle the same diameter as the pipe A. But where the roof pitches the opening in the flashing hecomes an ellipse, whose minor axis is the same as the diameter of the pipe, and whose major axis is

 will always have handy.
 then make the pipe of the de-iren size passing through this line at its propere saghe if. the omb line. Next draw the eenter He.e. I: - of the [घ] ... domsi. 'all the point where this line intersects the roof line, I, and the points where I) E and (C
 spectively. Through Idraw A 1 meriehts aughtos ar I 16 . making K I and I I. each equal to the half diameter of the pipe. Having estahlished the minor axis K 1 . and the major axis (i H. the ellipse is made by taking I II, or half the major axis, as a radius, and with L as a center strike ares in-

ris - 10 tersecting the major axis, at points M and \mathcal{X}. Drive a small mail in each of these two puint. and attach a strimg to the nails as shown ty
 placest in the string it will reach K. Nove the pencil along the string, keeping it tatut all the time until the allipse K II I. (A is olr
 4, dian if © 0

Smother form of metal rowfing is that homw at vameling vem. Which is used on steep rowfo mot less than of pitch, or of the width of the buildinge. It comsista of metal sheedo whese eross or horizontal

220 to 229 inclusive. Assume that 14×20-inch sheets are used and the sheets are edged on the 20 -inch sides only, as shown by A in Fig. 220 , making the sheet 13×20 inches. After the required number of sheets have been edged, and assuming that the length of the pitched roof is 30 feet, then as many sheets are

Fig. 220. locked together as will be required, and the seams are closed with the mallet and soldered. In practice these strips are prepared of the required length in the shop, painted on the underside, and when dry are rolled up and sent to the building. If desired they can be laid out at the building, which aroids the buckling caused by rolling and transportation from the shop to the job.

After the necessary strips have been prepared they are bent up with the roofing tongs, or, what is better and quicker, the roofing edger for standing-seam roofing. 'Ihis, is a machine into which the strips of tin are fed, being discharged in the required bent form shown at A or B in Fig. 221, bent up 1 inch on one side and $1 \frac{1}{4}$ inches on the other side. Or the machine will, if

Fig. 221. desired, bend up $1 \frac{1}{4}$ inches and $1!$ inches, giving a ${ }_{4}^{3}$-inch finished doubled sean in the first case and a 1 -inch seam in the second. When laving standing-seam roofing, in no (ase should any nails be driven into the sheets. This applies to tin, copper or galvanized iron sheets. A cleat should be used, as shown

Fig. 222. in Fig. 222, which also shows the full size for laying the sheets given in Fig. 221. Thus it will be seen in Fig. 222 that $\frac{1}{1}$ inch has been added over the measurements in Fig. 221, thus allowing edges.

These cleats shown in Fig. 222 are made from scrap metal; they allow for the expansion and contraction of the roofing and are used in practice as shown in Fig. 223, which represents the first operation in laying a standing-seam roof, and in which A represents the gutter with a lock attached at B. The

148 릉․
 D. 'This holds the sheet C in position. Now take the next sheet E,

in $\because 1$

apart and by using them it will he seen that mon mait have heen driven through the sheets, the entire row foeing hehd in position by means of the etcats maly.
'The second operation is shown in Fige 221. By means of the hand domble seaner and matlet or with the rowling domble semmers and squeezing tomps, the single seam is mate as shown at a. 'The thiral and last operation is shown in l"̈g. 22e. where hy the use of the same
 finish is mate with a comb ridgee at the eop). 'The sheets A A A have
on the one side the single edge as shown, while the opposite side B has a douhle edge turned over as shown at a. Then, standing seams $b b b$ are soldered down to e.

In Fig. 227 is shown how the side of a wall is flashed and counter

Fig. 226.
flashel. A shows the gutter, B the leader or rain water conductor, and (' the lock on the gutter A, fastened to the roof boards by cleats

Fig. 227.
9s shown at D. 'The back of the gutter is thashed up against the wall as high as shown lyy the dotted line F . F represents a standing-seam strip locked into the grutter at H and flashed up against the wall as high

 hase flashing a distance indicated he J.J and cosers in I. I. tie comem in mondion mamol of
 gutter slawing low the tube and lowlen are joined. The tube N is flanged out as shown at $i i$, and soldered to the gutter; the leader
 and fastened.

In the section on Flat-Keam Roofing it was explained how a conical tower, Fig. 214, atolld be conecol. It aill lwe thous mas how this tower would be covered with stand-ing-seam roofing. As the circumference of the tower at the base is 3996 inches, and assuming that 14×20-inch tin plate is to be used at the base of the tower, the nearest width which can be employed and which will divide the base into equal spaces is $172^{5} 3$ inches, without edges, thus dividing the circumference into 23 equal parts. Then the width of $17_{2}{ }^{5} s$ inches and the length of the rafter AB or A C in elevation will be the basis from which to construct the pattern for the standing seam strip, for which pro-

10 . read as fullows:

 right angles to If F on cither site Irnw F () and F I. making cach

From points I, and O draw lines to the apex H (shown broken). At right angles to H I , and H O draw lines II Pequal to $1 \frac{1}{4}$ inches and H s equal to $1 \underline{2}$ inches respectively. In similar manner draw L D and () C and connect by lines the points P D and S ('. Then will P s C D be the pattern for the standing seam strip, of which 22 more will be required. When the strips are all cut out, use the roofing tongs and bend up the sides, after which they are laid on

Fig. 229. the tower, fastened with cleats, and double seamed with the hand seamer and mallet in the usual manner.

If the tower was done in copper or galvanized sheet iron or steel, where 8 -foot sheets could be used, as many sheets would be crosslocked together as required; then metal could be saved, and waste avoided, by cutting the sheets as shown in Fig. 229 in which A B C D shows the sheets of metal locked together, and E and F the pattern sheets, the only waste being that shown by the shaded portion. Where the finial D in Fig. 214 sets over the tower, the standing seams are turned over flat as much as is required to receive the finial, or small notches would be cut into the base of the finial, to allow it to slip over the standing seams. Before closing the seams, they are painted with white lead with a tool brush, then closed up tight, which makes a good tight job.

CORRUGATED IRON ROOFING AND SIDING

Corrugated iron is used for roofs and sides of buildings. It is usually laid directly upon the purlins in roofis constructed as shown in Figs. 2:30 and 2.31, the former being constructed to receive sidings of corrugated iron, while in the latter figure the side walls of the building are brick. Special care must he taken that the projecting edges of the corrugated iron at the eaves and gable ends of the roof are well secured, otherwise the wind will loosen the sheets and fold them up. The corrugations are made of varions sizes such as $\overline{-}$-inch, 21 -inch, $1 \frac{1}{4}$-inch and ${ }_{3}$-inch, the measurements always being from A to B in Fig. 232, and the depth being shown he (". The smaller corrugations give a

 upart.

$101-9$

Ith 明

la
 proferably he bexs tham this.

TABLES

The following tables will prove of value when desiring any information to which they appertain.

MEASUREMENTS OF CORRUGATED SHEETS
Dimensions of Sheets and Corrugations.

	$\begin{aligned} & = \\ & =E \\ & \vdots \\ & =E \\ & =E \end{aligned}$					
5 inch.	5 inch.	1 inch.	6	2tinch.	9\% inch.	10 feet.
$2^{1} \frac{1}{2}$ inch.	$\because{ }^{\prime} \leqslant m \mathrm{ch}$.	${ }^{1} \mathrm{~F} \mathrm{H}^{\text {c/ }}$, inch.	111	$2 \pm$ inch.	2time int.	13 feet.
1 t inch.	1, inn h.	W ${ }^{\text {a }}$ inch.	$1: 412$	94 inch.	$3{ }^{3}$ inch	10 feet.
3.4 inch	\therefore inth	$1 / 4$ inch	$34^{1} 2$	25 inch.	215 inch.	8 feet.

RESULTS OF TEST
of a corrugated sheet No. 20), 2 feet wide, if feet long between mupportr, loaded uniformly with fire clay.

Load per square foot. lb.	Deflection at center under load. Inches.	Permanent Deflection, load removed.
;	1	$1)$
10	$\frac{1}{3}$	0
15	1	0
20	11	0
25	$1 \frac{1}{7}$	0
30	1	1
35	21	$\frac{1}{3}$
40	\cdots	${ }^{\frac{3}{1}}$
45	$3!$	11
50	4	1 $1 \frac{1}{2}$
55	$15 \frac{1}{2}$	Not noted.
60	Broke down.	

The foilowing table shows the distance apart the supports should be for different gauges of corrugated sheets:

 ...nticsime

1.1) 1 (

 hole; the washer being soft it easily shape itself to any curve. In Fig. 233 is shown how these wathers are used; A shows the full size nail

170. 3 N
and washer. When layinge commenoe at the left hame cormer of the eave and end of the buiding. ('ontime laving to dhe rider by lapping

Should the gable have a fire wall, then let the sheets A butt against the wall and flash with (orrugated flashing as shown in Fig. 2:3), over which the regular (ap) or counter flashing is placed as explained in connection with Fig. 227. Should the ridge of the roof A butt against a wall, as shown at B in Fig. 230, then an end-wall flashing is used as is shown in Fig. 236 which must also be capped, by either using cap flashing or allowing the corrugated siding to overlap this end-wall flashing

Fig. 235.
as would be the case at B in Fig. 230. Now commence the second course at the eaves, giving one and one half corrugations for side lap, being careful that the side corrugations center each other exactly and nail with washers as shown in Fig. 237. Nail at every other corrugation at end laps,

Fig. 236. and at about every 6 inches at side laps, nailing through top of corrugation as shown in Fig. 237. Continue laying in this manner until the roof is covered.

The same rule is to he observed in regard to laps and flashing if the corrugated iron were to be fastened to iron purlins, and the method of fastening to the iron frames would be accomplished as shown in Figs. 238 to 240 inclusive. Assuming that steel structures are to be covered, as shown in Figs. 230 and 231, then let A in Fig. 238 be the iron rafter, B

Fig. 237. the cross angles on which the sheets D are laid, then by means of the clip or clamp C, which is made from hoop iron and bent around the angle B, the sheets are riveted in position. In Fig. 239 is shown another form of clamp, which is bent over the bottom of the angle iron.

$10-3$

1- \quad.

If there are hips on the roof, the corrugated iron should be carefully cut and the hip covered with sheet lead. This is best done by having a wooden cove or filler placed on the hip, agrainst which the roofing butts. Sheet lead is then formed over this worden core and into the corrugations, and fastenerl by

8if sell mespls of wood screws through the lead cap into the worden core. The lead being soft, it can be worked into any desired shape. When a valley occurs in a hipped roof, form from platn shoet iron a valley as shown in Fig. 24.3, heing sure to give it two crats wf paint lefore laying, and make of Eriom Bhimalife wife A... thotime up 12 iselfere mis andi anl. Fit it in the vatlev, and
 corrugated iron over the valley from ditus inches.

the flashing to turn up under the corrugated iron at the top about 12 inches and over the corrugated iron at the bottom about the same distance. At the side the flashing should have the shape of the corrugated iron and receive a lap of about 8 inches, the entire flashing

Fig. 212.
being well bedded in roofer's cement. When a water-iight joint is required around a smoke stack, as shown in Fig. 245, the corrugated iron is first cut out as shown, then a flashing built around one half the upper part of the stack to keep the water from entering inside. This

Fig. 243. is best done by using heavy sheet lead and riveting it to the sheets, using strips of similar corrugated iron as a washer to avoid damaging the lead. Before riveting, the flashing must be well bedded in roofer's cement and then make a beveled angle of cement to make a good joint. After this upright flashing is in position a collar is set over the same and fastened to the stack by means of an iron ring bolted and made tight as shown. Cement is used to make a watertight joint around the stack. This construction gives room for the stack to sway and allows the heat to escape.

Sumetimes the end-wall flashing shown in Fig. 236 can be used

FRONT AND REAR VIEWS OF RESIDENCE OF MRS. H. M. COBB, MAGNOLIA DRIVE, CLEVELAND, OHIO

 CIEVEL.AND, OH1O
Mally

1w ！！

$1=110$

These ridges are fastened direct to the roof sheets ly means of riveting or bolting.

LAYING CORRUGATED SIDING

Before putting on any corrugated siding or claphoarding, as

$1!: \quad \therefore 1$
hanging gutter or a plain (ornice, shown in Fig. : 4 ? 9 , which is fastened to the projecting woonlen or iron rafters. 'This method is generally used on elevators, mills, factories, harns, ett., where comugated iron, crimped iron or claphoards are used for either roofing or siding. This

$1 \because \because:$
style of cornice covers the eaves and gahle projections, so as to make the building entirely ironclad. When laying the siding commence at the left hand corner, laving the courses from base to cornice, giving the sheets a lap of two inches as the comb amblom and ont hath antuga-

Fig. 248.
tions at the sides. Nail side laps every finches and end laps at every other corrugation, driving the nails as shown in Fig. 250.

Where the sheets must be fastened to iron framing luse the same method as explained in (mbertion with Figs. 2.が, 23! and 240. In this case instead of nailing the sheets, they would her riveted. If sidinge
 ding the same distance apart as the lay inge wilth of the iron aner. In

 and a two-inch lap, at the emb. Nail or rivet in every corrugation 3 inches from the lower end of the sheet; this allows for settling of the building.

When any structure is to he covered on two or more siles, corner casings made of flat Iman are ampluinal, of a shape similar to that shown at

 $18: \because 6$

1 an 0n
siding. 'Ihis makes a neat finish on the ornerete and hides phee rough exges of the sibling. If a wimbow opernimg is to hase
 bet at a to receive the siding, and a spmare lient at b to nat against the

bent so that a is nailed to the window or other frame at the botiom, while b forms a flashing over which the siding will set. Fig. 253 shows the sill of a window, which has a rabbet at a, in which the siding is

Fig. 252.

Fig. 253.
slipped; then b forms a drip, and any water coming over the sill passes over the siding without danger of leaks; c is nailed in white lead to the window frame.

Another use to which corrugated iron is put is to cover sheds and awnings. Sheets laid on wood are nailed in the usual manner, while sheets laid on angle iron construction are fastened as explained in the

Fig. 254.
preceding sections. In Fig. 254 is shown an awning over a store laid on angle iron supports. In work of this kind, to make a neat appearance, the sheets are curved to conform to the iron bracket A.

CORNICE OVER BRICK BAY *

 or flanges for soldering are to be allowed on the 3 feet 2 inch pheces and no laps on the S inch and 5 feet 10 inch pieces. The lorokouts or iron braces are indicated in the plan liy the heary dashes making a total of 9 remuired.

Ifter the detail section is drawn and knowing the angle of the bay in phan, the angle is placed as shown hy AB('), being careful to place ('B on a line drawn vertically from 3-1 in the seection. The miter line is then drawn as shown by 131), the section divided into equal spaces, and vertical lines dropped to the miter line 13I) as shown. At right angles to BC the girth of the section is drawn as shown by similar figures from 1 to 20, through which points at righ: angles to 1-26, lines are drawn and intersected by similar numbered lines drawn from the miter line 181) at right angles to 1BC, thus obtaining the upper miter cut shown. Sow using this miter cut in practice, make the di-tance from either points 25 or 24 (which represents the line of the wall) equal to 8 inches, 3 feet 2 inches and 5 feet 10 inches. The 3 feet 2 inches und 5 feet 10 inches have opporite miter cuts as shown.

As will be seen by the plan, two eight inch pieces wall tee required, one right and one left and two 3 feet 2 inch and one 5 feet 10 inch picees. Nine iron looknuts will be required formed to the shape shown in the detail sections where holes are punched for loriting as there indicatel.

[^11]
SHEET METAL WORK

1：11｜ 11

Abstract

（いたべ，Wいたに tim－shop business．sheet－metal cornice work，including under that title every brand of architectural sheremetal work，has hecome one of the substantial industries of the country，comparing favorably with almost any other mechanical branch in the hmibling trates．Nor is this worbs ronfined（1）the larger cities．In the smatler towns is shown the proge－

(1)

Sheet－metal cornices have heretofore，in a great measure，leem duplications of the dexigns commonly employed in word，which，in turn，with minor moditications，were imitations of stone．

With the marked advancement of this industry，however，this nead mo longer be the case．A sheet－metal cornice is not now innta－ tive．It pussesses a variety and heanty perouliarly its own．No pat－ erm is tou complex of tou diflicult．I herigns atre satisfactorily exeroterd in sheet metal which are impessible to prohluee in any other material． By the free ambl julicions application of pressed metal wramemes，a

 ！． 1460

known as the cornice. The term "entablature" is seldom heard among mechanics, a very general use of the word "cornice" having supplanted it in the common language of business.

An entablature consists of three principal parts-the cornice, the frieze, and the architrave. A glance at the illustration will serve to show the relation that each bears to the others. Among mechanics the shop term for architrave is foot-moulding; for frieze, panel; and for

Fig. 255.
the subdivisions of the cornice, dentil course, modillion course, ned mould, and croun-mould. In the modillion course, are the modiltionband and modillion-mould; while in the dentil course are the dentilband and dentil-mould. Drips are shown at the bottom of che crownand foot-mould fascias, and the ceiling under the crown mould is called the planceer. The edge at the top of the comice is called a lock, and is used to lock the metal ronfing into, when covering the top of the cor-

 bracket. Iarge terminal brackets in
 moublings, and against which the
 front and a side view of which are
 above a common bracket against which the moulding ends, is called a stop block, a front and a side view of

. 16 ain whith an liown in Fig. 2ss.

SIDE

$$
1 i f \because
$$

lig. ens! is the front elevation of a cornice, in which are shown the truss, the hracket, the modillion, the dentil, and the panel. It is sometimes the case. in the construction of a cornice. that a bracket or montillion is called for, whose front and sideare carved as shown in the fromt
 that case, the brackets are oh-
 ornaments, who make a sperialey of this kind of work. 'The' same applies to caphitals which would be reguired for pilasters or col-
 redoumes would low fosames up) in sheet metal, and the raphal purchased and solAered in pesition. In Fïg. 200. 1 Iopy an isedine! monkling, which, as far as wermod patilion is rans

FRONT

Raking mouldings are those which are inclined as in a gable or pediment; but, inasmuch as to miter an inclined moulding (as A) into a horizontal moulding (as B and ('), under certain conditions, necessitates a change of profile, the term "to rake," among sheet-metal work-er-, has come to mean "to change profilas" for the accomplishment of

FRONT ELEVATION
 Fig 2.59

such a miter. Itence the term "raked mouhling" means one whose profile has been changed to admit of mitering.
 ing at any angle.

FRONT ELEVATION
SIDE ELEVATION
Fir. : 2 ,
 object, on a plane perpendicular to the horizon-as, for example, Figs. 2al and 2tis. Elevations are ordinarily drawn to a scale of $\frac{1}{4}$ or

1"is. : 2;

11 l

 ketiomp prints.

A few words are necessary on the subject of fastening the cornice to the wall.

Sheet-metal cornices are made of such a wide range of sizes, and are required to be placed in so many different locations, that the methods of construction, when wooden lookouts are employed and

Fig. 264.
when the cornice is put together at the building in parts, are worthy of the most careful study. 'The general order of procedure in putting up, is as follows:

The foot-moulding or architrave $a b$ (Fig. 264) is set upon the wall finished up to f, the drip a being drawn tight against the wall. The brickwork is then carried up, and the lookout A placed in position, the wall being carried up a few courses higher to hold the lookout in position. A board B is then nailed on top of the lookouts (which should be placed about three feet apart); and on this the flange of the foot-mould b is fastened. The frieze or panel $b c$ is now placed into the lock B, which is closed and soldered; when the lookout C and the board D are placed in their proper positions, as before described.

 Hance of the dripeat 1 , aml at the thpat. The jentit lethern lenkter
 taken that they are joined so neatly as to hide all indications of a seam when finished and viewed from a short distance.

If brackets or modillions are to be placed in position, they are riveted or bolted in position; or sometimes the back of the cornice is blocked out with wood, and the brackets screwed in position through their flanges.

While a galvanized-iron cornice thus ennstructed on wooden lookouts will resist fire for a long time, a strictly fireproof cornice is obtained only by the use of metal for supports and fastenings, to the entire exclusion of woot. 'This fireproof method of eonstruction is shown in Fig. 26is. In-

1 $12 \mathrm{~B}:$

 dicated at b and c, with a lock at d. Band iron supports and braces are used, formed to the general contour of the parts as shown by A B C, and bolted direct to the cornice, ass shown, before hoisting.

When the cornice sets on the wall ats at $($ C anchors are fastemeal

 his wall, which holds the eornice in a firm pexition. 'Thee eop and

roofer. In constructing cornices in this manner, the mouldings are run through solid, hehind all hrackets and modillions. 'The brackets and modillions are attached by means of riveting through outside flanges.

SHOP TOOLS

One of the most important tools in cornice or architectural sheetmetal working shop is the lorake. On those operated by hand, sheets are bent up to \& feet in one continuous lengt'i. In the larger shops, power presses or hrakes are used, in which sheets are formed up to 10 feet in length, the press heing so constructed that they will form ogees, squares, or acute bends in one operation.

Large s- or 10 -feet squaring shears also form an important addition to the shop, and are operated by foot or power.

When cornices are constructed where the planceer or frieze is very wide, it is usual to put remped metal in, to aroid the waves and hurkles showing in the flat surface; for this purpose the crimping marhine is used.

In preparing the iron hraces for use in the construction of fireproof cornices, a muchiny machine and slittin! shours are used for cutting the band iron and punching losles in it to admit the bolts. While braces are sometimes hent in a vise, a small machme known as a brace bender is of great value in the shop. In large fireproof building constructions, it is necessary that all doors, window frames, and even sashes be covered with metal, and made in so neat a manner that, when painted and grained, no differences will be apparent to indicate whether the material is wood or metal, the smallest hends down to $\frac{1}{8}$ inch being obtained. 'This, of comrse, camot he done on the brakes just mentioned, hut is done by means of the draw-hench, which is constructed in length.s u, to 20 feet and longer, operated by means of an endless chain, and capahle of drawing the sheet metal over any shaped wood mould as tightly as if it were cast in one piece. 'The smaller tools in the shop are similar to those described in the Instruction Papers on Tinsmithing and sheet Metal Work, Part I.

METHOD EMPLOYED FOR OBTAINING PATTERNS

The principles applied to crlinder developments as explained in the 'Tinsmithing and sheet Metal Work courses, under the heading of "P'arallel-Line levelopments," are also applicable for obtaining
 coll

 2bifi. The first stop necressan? would be to bisert the given angle atif sumant the wime line amb cut each piece su that diex walif bien tegether If a

 in the miter-hox, and cont one piere ripht and one piece left att an angle. of 40°, and he would he carefne to hold the mombling in its proper persition liefore sawing: or else he maty, instead of having a return miter

$$
14 \Rightarrow \pi
$$

 - formere fhami aveir iof M

 is formeal, place it is the miterbox to colt the miter, hut must layy it out-or, in other words. develop it -on a flat surface or

carefal to place the prosite in its proper position with the miter-
 will have a face miter as shown in lige 2lit. If he lays mut his work correeply, lac can then cut iwn piewes, form one right amb the wher left, When at miter will ronalt hetween the two pieme of mombling and will

 uni Dh:
or otherwise. The method of raking the mouldings-or, in other words, changing their profile to admit the mitering of some other moulding at rarious angles-will also be thoroughly explained as we proceed.

VARIOUS SHAPES OF MOULDINGS

The style of mouldings arising in the cornice shop are chiefly Roman, and are obtained by using the ares of a circle. In some cases, Greek mouldings are used, the outlines of which follow the curves of conic sections; but the majority of shapes are ares of circles. In

Fig. 268.

Fig. 269.

Figs. 268 to 272 inclusive, the student is given a few simple lessons on Roman mouldings, which should be carefully followed. As all pat-tern-cutters are required to draw their full-size details in the shop from small-scale drawings furnished by the architect, it follows that they must understand how to draw the moulds with skill and ease; other-

Fig. 270.

Fig. 271.
wise freeland curves are made, which lack proportion and beauty.
In Fig. 268, A shows the mould known as the cyma recta, known in the shop as the ogee, which is drawn as follows:

Complete a square $a b c d$; draw the two diagonals $a c$ and $b d$, intersecting each other at c. Through c, draw a horizontal line intersecting $a d$ at f and $b c$ at h. Then, with f and h as centers, draw respectively the two quarter-circles $a e$ and $e c$.

Cupples Hall, No. 2. Building is 207 Feet Lomg. 4 f Feet Wide. First Floor Devoted to Mechanical Engineering; Second Floor, to Electrical Engineering.

The Library. The Building is 25% Feet Long. 46 Feet Wide. "The Reading Room is 100 Feet by 41 Feet. The Stacks for Books Have Room for Over 400,000 Volumes. Cost of Building, $\$ 250,000$.

Busch Hall, the Chemical Laboratory. The Building is 290 Feet Long, 60 Feet Wide. Cost $\$ 110,000$. THREE FIREPROOF BUILDINGS OF THE UNIVERSITY OF WASHINGTON, ST. LOUIS, MO. Illustrating the Restful Effect of a Long, Almost Unbroken Roof-Line.

 t. as. 1

 round, which is constructed similarly to C in Fig. 270, with the exception that 3 in Fig. 271

16 is used to obtan the curve ac.

E in Fig. 2-2 is known as the torus, known in the shop, as a beadmould. A given distance ab is bisected, thus obtaining c, which is the center with which to describe the semicircle a b.

All of these profiles should be drawn by the student to any desired scale for practice. In preparing moublings from sheet metal,

 richoments, which are usatly obtained fomm deatem in stamperl or
 view of actown mond whose agee is enridhed. the serthon of the emp
richment being indicated by $a b$ in the section, in which the dotted line d c shows the body of the sheet-metal moulding bent to receive the pressed work. In Fig $2 \overline{7} 4$, H represents part of a bed-mould in which

Fig. 27.
egre-and-dart enrichments are placed. In this case the body of the mould is bent as shown hy c d in the section, after which the eqg-anddart is soldered or riveted in position. J in Fig. 275 represents part

Fig. 275.
of a foot-mould on which an emriched bead is fastened. The body of the mould would be formed as indicated by c in the section, and the head ab fastened to it. 'This same general method is employed, no matter what shape the pressed work has.

PRACTICAL MITER CUTTING

Under this heading come the practical shop problems. The problems which will follow should be drawn to any desired scale b:y the student, developed, and hent from stiff cardboard to prove the accuracy of the pattern. If the student cannot use the small brake in the shop and test his patterns cut from metal, he can use the dull blade of a table knife, over which the bends can be made, when using cardboard patterns. 'This at once proves interesting and instructive. Should there be any problem which is not clear, he should write at once for further information; or, should any problem arise on which he desires

 hitu.

 nee imas com mulowit of ne
 methend which will he described is the "long" method, in which are set forth all the principles applicable to ohtaining pattermis for mondings, no matter

Fig. 276

11 mi
rule generally employed in the shop, which, however, can be used only when the angle H G F in plan is 90°, or a right angle.

To ohtain the pattern hy the first method, proceed as follows: First, draw the elevation of the mould as shown by $1, B, A, 11$, drawing the coves by the rule previonsly given. Divide the curves into equal spaces; and number these, including the corners of the fillets as shown by the small figures 1 to 11 . In its proper position below the elevation, draw the soffit plan as shown by C D E F (i II. Bisect the angle H G F by the line $G D$, which is drawn at an angle of 45°. From the rarious intersections in the elevation, drop lines intersecting the miter-line as shown. At right angles to I (r, draw the stretchout line $1^{\prime} 11^{\prime}$, upon which place the stretchout of the mould 111 in elevation, as shown by similar figures on the line 1' 11^{\prime}. At right angles to 1^{\prime} 11^{\prime}, and from the numbered points thereon, draw lines, which intersect by lines drawn at right angles to H (i from similarly numbered intersections on the miter-line (i I). 'Trace a line through the intersections

Fig. 278.
thus obtained, as shown by J G. 'Then will 1' G J 11 ' be the desired pattern. 'This gives the pattern by using the miter-line in plan.

In developing the pattern by the short method, on the other hand, the plan is not required. At right angles to 1 B in elevation, draw the stretchout line $1^{\prime \prime} 11^{\prime \prime}$, upon which place the stretchout of the profile 111 in elevation, as shown by similar figures on $1^{\prime \prime} 11^{\prime \prime}$, at right angles to which draw lines through the numbered points as shown, which intersect by lines drawn at right angles to 1 B from similarly numbered intersections in the profile in elevation. Trace a line through points thus obtained, as shown by Gr K. Then will $\mathrm{C}_{\mathrm{x}} 1^{\prime \prime} 11^{\prime \prime} \mathrm{K}$ be similar to J G 1' 11' obtained from the plan.

n= —.
ohtaining a pateern of this kind is shown in Fige 2-0.9. 1 ect I I3 (' I) represent the elevation of the return, \& I) represemting the pitch of the rouf. In its proper position as shown, draw the section 1 11, which divide into equal spaces as shown, and from which, parallel to I B . draw lines intersecting the slant line . I I) from 1 to 11 ans aheme. A right angles to A B areet the strenchout line 1' 11', upwn which place the strecthout of the seetion as shown lye similar liguren on 1' 11^{\prime}. At right amples to $1^{\prime} 11^{\prime}$, and thromgh the mmbereed pmint sherem, draw lines, which intersect hy lines draw on at right amglen (1) I If from

the rarious intersections thus ohtained, draw E F. 'Then will E F $11^{\prime} 1^{\prime}$ be the desired pattern.

It is sometimes the case that the roof against which the moulding butts, has a curved stirface either concave or consex, as shown by B C in Fig. 280, which surface is convex. Complete the elevation of the moulding, as I) E; and in its proper position draw the section 19 , which divide into equal spaces as shown by the small figures, from which draw horizontal lines until thes intersect the curved line B C, which is struck from the center point A. At right angles to the line of the mouking erect the line $\left.1^{\prime}!\right)^{\prime}$. upon which place the stretchout

Fig. 280.
of the section, as shown hy the figures on the stretchout line. 'Through the numbered points, at right angles t: 1^{\prime} ! 9^{\prime}, draw lines, which intersect by lines drawn at right angles to 2 I) from similarly numbered intersections on the curve B (', thas resulting in the intersections $1^{\prime \prime}$ to
 ductions of the arcs 23 and 79 on B C. These arcs can be fraced he atur convenient method; or, if the radus. I ('is not too longr to make it inconvenient to nse, the ares in the pattern may be obtained as follows: ["sing A ("as radins, and $\mathrm{J}^{\prime \prime}$ and $\mathrm{s}^{\prime \prime}$ as centers, describe ares intersecting each other at Λ^{\prime}; in similar manner, using $2^{\prime \prime}$ and $3^{\prime \prime}$ as centers, and with the -mme radins, lescribe arcs intersecting each

 desired pattern.
 panel for which a miterecon is desired on the line a b-knawn as a "panel" or "face" miter. The rule to apply in obtaining this pactern on theom in Ti_ ? A shows the part elevation of the prosed ol ant and. the ouiror-luen trawn at amptes of 45\%. In its proper position with the lines of the inouldlag. Jtan die proilh. IS, ila. surve or mould of which divide into equal spaces, as shown by dhe figuma I in 7 . and fown the points thus ohtained, par.1ll.| to. 1/. Alraw limes memer

In 4, 1

(1) 11
serting the miter-litie ab as shown. From these intersections, parallel to bd druw lines intersecting alson od. At right angles to bid draw the stretchout line $1^{\prime} a^{\prime}$, upen which plate the stretchome of the provile B. At right angles (1) $1^{\prime} 7^{\prime}$, and through the mumberest prints of division, draw lines, which interocet hy linesa drawn at right
 linees ab and ed. 'Irace lines through the varims perints of imtereection in the putiernas shown. 'Then will ('1) İ: F' he the reypureyl on far shem anibur the pand?

Fig. 2s1, it being necessary only to make D E in Fig. 28:2 that length when laying out the patttern on the sheet metal.

Where the miter-cut is required for a panel whose angles are other than right angles, as, for example, a triangular panel as shown in Fig. 2s3, then proceed as shown in Fig: 2st. First draw the elevation of the triangular panel as shown by ABC, the three sides in the case being equal. Bisect each of the anglesiA, B, and C, thus obtaining the miter-lines $A c, B b$, and $C^{\prime} a$. In line with the elevation, place in its proper position the profile E , which divide into equal spaces as shown; and from the numbered division points, parallel to A C, draw lines cutting the miter-line $\mathrm{C} a$. From these intersections, parallel to C B, draw lines intersecting the miterline, b B. At right angles to C B draw the stretchout line $1^{\prime} 7^{\prime}$, upon which place the

Fig. 283.

Fig. 284.
stretchout of the profile E . 'Through the numbered points of division and at right angles to $l^{\prime} r^{\prime}$, draw lines as shown, which intersect by liness drawn at right angles to (' B from intersections of similar numbers on the miter-lines a (and b B. Through the points thus obtained, trace the pattern F G H I.

It makes no difference what shape or angle the panel may have; the principles athore explained are applicable to any case.

In ornamental sornice work, it often happens that tapering moulded panels are used, a plan and elevation of which are shown in Fig. 285.

ili \quad.
 -paces, indicated respectively by $1,2,3,4$, and 5 , and $6,7, \infty$, and ! 1 . From these points, draw lines to the apex a. As the pattern will be de-

T8 7 m

lengths $a^{\prime} 1$, $a^{\prime} 2, a^{\prime} 3$, etc., to $a^{\prime} 9$, and with any point, as a^{\prime} in Fig. 288 as center, describe the various ares shown from 1 to 9 . From any point on the are 1 draw a line to a^{\prime}. Set the dividers equal to the spaces contained in the

Fig. 287 curve 15 in Fig. 286; and, starting from 1 in Fig. 288 step from one are to anothe. having similar numbers, as shown from 1 to 5 . In similar manner, take the distance from 5 to 6 and the spaces in the curve 69 in Fig. 2N(6 , and place them on corresponding ares in Fig. 2Sx, stepping from one are to the other, resulting in the pointe .j to 9. 'Trace a line through the points thus obtained. Then will $a^{\prime} 1569 a^{\prime}$ be the quarter-pattern, which can be joined in onehalf or whole pattern as desired.

In Fig. 289 is shown a perspective of a mould-

Fig. 288. ing which miters at an angle other than a right angle. 'This occurs when a moulding is required for over a bay window or other structure whose angles vary. The rule given in Fig. 290 is applicable

Fig. 289. to any angle or profile. First draw a section or an elevation of the moulding as shown by A B 14 1. Directly below the moulding, from its extreme point, as 23 , draw a plan of the desired angle as shown by C 2 D. Bisect this angle by using 2 as center and, with any radius, describing an are meeting the sides of the angle at (and E . With the same or any other radius, and with ('and E as centers, describe ares intersecting each other in \mathbf{F}. From the comer 2, draw a line through F . Then will ? II be the

$1-301$

II in para from I in. I: in shimwn At right amgles to (' 22, draw the line .J K^{-}, upen which place the stretchout of the profile in clevation as shown by similar figures on the setchont line, throught whith itrop
 intersect with lines drawn paralled un 1 K frem amilarly numbenvl prists of intervertion on the miter-
 [1. 1 ...

with D , two distinct operations are necessary, which are clearly shown in Figs. 292 and 293. The first operation is shown in Fig. 292, in which C represents the elevation of an ogee moulding which is to miter at right angles with a moulding of different profile as shown at D. Divide the profile C into equal

Fig. 292.
points indicated by the figures, draw lines, which intersect with lines drawn parallel to AB from similarly numbered intersections in the profile D . Trace a line through the points thus obtained, as shown by $\mathrm{E} H$. Then will E F G H be the pattern for C in elevation.

To obtain the pattern for D , spaces, from which points draw horizontal lines intersecting the moulding D from 1^{\prime} to 10^{\prime}. At right angles to the line of the moulding C, draw the line AB, upon which place the stretchout of the profile C as shown by similar figures on AB. At right angles to AB, and through the

Fig. 293. draw the elevation of 1) (Fig. 293), which is to miter at right angles with a moulding whose profile is C. Proceed in precisely the same manner as explained in connection with Fig. 292. Divide the profile D in Fig. 293 into equal parts, as shown, from which draw horizontal lines cutting the profile C. At right angles

 intersections in the profile ('. Through these peoints of imtersection

It should be understood that when the patterns in Figs. 202 and 29.3 are formed and joined together, they will form am inside miter, as 10 diamen in hig. son, If, however, an outside maner wert emplimal. it vosult to Deac.any mily fo use the reverse cuts of the patterns in Figs. 202 atel - "an a dawn by K. J 11 in lï. 202 for tor mond! 1 : mulfla ill

When joining a

4. . . .
 tion even though the curved or straight mouldings cach have the same profile, it is necessary to estahlish the true miter-line hefore the pattern can be correctly developerd, an example being given in Fig. 204, which shows an clevation of a curved moulding which is intersected by the horizontal monldings $I 13$. The method of obtaining this miter-line, also the pattern for the lorizontal pieces, is cearly shown in Fig. 29.). First draw the profile which the horizontal mondting is to have, as 110 . I eet the distance ! I bee established. Theon, with C on the center line as center, and 1 ('as rmlins, deveribe the are 13 A. From any point on the lime ! 13, as a ereet the vertical lime ab. 'lhamgh the varions divisions in the protile I 10, draw horizontal lines intersecting the vertical lise ah fron 1 (1) 10 ans shown.
 Sow take the various divisions on ab, and place them from of tod as shown by puints I'to 10)'. 'I'hen, using ('as ceenter, with radii deter-

these points of intersection, draw the miter-line shown. The student will note that this line is irregular.

Having obtained the miter-line, the pattern is obtained for the horizontal moulding by drawing the stretchout line E F at right angles to 9 B . On E F lay off the stretchout of the profile 110 ; and through the numbered points and at right angles to E F draw horizontal lines, which intersect with lines drawn at right angles to 9 B from similarly numbered in-

Fig. 2! ! tersections in the miter-line determined by horizontal lines already drawn through the vertical line $a b$. Trace a line through the points thus obtained, as shown by H I J K, which is the desired pattern.

Fig. 296.
In Fig. 294 is shown a shaded view of a gable moulding intersecting a pilaster, the gable moukling B cutting against the vertical pilaster A, the joint-line being represented by abc. To obtain this joint-line, without which the patiem for the wable moulding cannot be developed, an operation in propection is required. This is explained in Fig. 297. in which B (' I) shows the plan of the pilaster shown in elevation by E . In its proper position in plan, place the profile of the gable moulding, as shown he A , which divide into equal spaces as shown by the figures 1 to x, through which draw horizontal lines intersecting the plan of the pilaster B (C D as shown by similar figures. For convenience in pro-

 tracing of the profile A in plan, with all of the
 same, and place it in
 A^{1}. placing the line 18 at lither andia in 11 F 'Through the varions inenesections $1,7^{\circ}, 4^{\circ}, 3^{\circ}$, 2 3, 4.8.16.5. and - in 1'ase prondit in F 11 . draw lines indefinitely, which intersect by lines drawn ar nigh angle in (' B in plan from similarly numbered intersec ${ }^{-}$ tions in the pilaster (' I) B, thus obtaining the prints of intersection 1^{x} (t) s^{x} in elevation.

For the pattern, proeceel as follows: At right angles to II F , draw the coscimention i K. Mo.t which place the stretchout of the profile Aor A^{\prime}, with all the points of inservection on the wash

대 헤
 lines as shown, which interseet he line drawn at right angle to 11
 Through the points thus ohtained, trame hee mitereront II © O) 'Then will b, If NO) P' be the pattern for the pallite momillinge.

mouldings A A intersect at any desired angle the wash B. In this case, as in the preceding problem, an operation in projection must be gone through, before the pattern can be obtained. This is clearly shown

Fig. 298. in Fig. 299. Draw the section of the horizontal moulding B^{1} with the wash $a b$. From this section project lines, and draw the part elevation D C. Knowing the bevel the gable is to have, draw C B, in this case the top line of the moulding. Draw a section of the gable mould, as A , which divide into equal parts as shown from 1 to 8 ; and through the point of division draw lines parallel to B (", indefinitely, as shown. Take a tracing of the profile A. and place it in section as shown by A^{1}. Divide A into the same

number of spaces as A ; and from the various divisions in A^{1} drop vertical lines intersecting the wash $a b$ as shown, from which points draw horizontal lines intersecting lines drawn parallel to BC through similarly numbered points in A , at 1° to 8°. Trace a line through these intersections as shown, which represents the miter-line or line of joint in elevation.

For the pattern, draw any line as E F , at right angles to B C, upon which place the stretchout of the profile A, as shown by similar figures on the stretchout line E F. Through the numbered points of division and at right angles to E F, draw lines as shown, which intersect ing

 sists in obtaining the developments of the gable
 this pattern, the half-elevation only is required. as shown in Fig. 301, in which first draw the center line E F; then establish the half-width of the turret, as C D, and draw the rake B C. At right angles to the line $\mathrm{B} C$, and in its proper position as shown, draw the profile A, which divide into equal spaces as shown by the figures

Jiv. We

 Now take a tracing of the profile A, and place it in position as

 the two gables.

For the pattern, take a stretchout of A , and place it on the line

 on F B and $1^{\circ} 6^{\circ}$. Trace a line through the puints thus ohtainet,

If the roof shown by B in Fig. $3(0)$ is desiresl to be addeal to the pattern in Fig. 301 , then, at right angles to $\mathfrak{F}^{\circ 0}\left(f^{\circ}\right.$, draw the line $\mathrm{F}^{\circ} \mathrm{F}^{2}$
 patterin.

In Fige. 30? is shown front view of an amgular parliment with hori-

pattern for the returns can be developed. In other words, a new profile must be developed from the given or normal profile before the patterns for the required parts can be developed. It should be understood that all given profiles are always divided into equal spaces; therefore the modified profiles will contain unequal spaces, each one of

Fig. 301.
which must be carried separately onto the stretchout line. Bearing this in mind, we shall proceed to obtain the modified or changed profiles and patterns for the horizontal returns at top and foot of a gable moulding, as at B and A in Fig. 302, the given profile to be placed in the gable moulding C. In Fig. 303, let C represent the gable moulding

 towards the top and botton of the whing mombling I aumbug that ibe
 of the profile A , and place it in a vertical position below at A^{\prime} and alpove at A^{2}, being careful to have the point.

118.02: tical position below the points 6^{x} and 6°, as shown. From the va-
 same number of spaces as the given profile A), erect vertical lines
 end from 1^{x} to 10^{x}, and at the upper end from 1° to 11°. 'Trace a line

 for the upper borizontal return.

Note the difference in the shapes and spaces between these two

 from ; x to 10 .

For the pattern for the gable mouldinge proceed as follows: At

 J K. 'Through these figures, at right angles to .J K. draw lines as shown, which intersect with lines drawn at right angies to E. F' from similarly numbered intersections in $1^{\circ} 1()^{\circ}$ at the top and $1^{x}\left(i^{x}\right.$ 10^{\prime} at the lower end. 'Prace a line throngh the intersections thins ob-

 110 on B , with its varions intersertions, an exact reproduction of

by lines drawn parallel to s IR from similarly numbered perints in the profile in B. Trace a line through points thus obtained. Then will U V 101 be the pattern for the return B.

In similar manner, draw the side view of the lower horizontal return as shown at D, making the projection W 10 equal to P R

in B. The profile shown from 1 to $10 \mathrm{in} \mathrm{I)} ,\mathrm{with} \mathrm{all} \mathrm{its} \mathrm{divisions}$, to be an exact reproduction of the profile 1^{x} to 10^{x} in elevation. Extend the line II X as X Y, upon which lay off the stretchout of the profile 110 in D, being carefut that each space is measured separately. as they are all unequal. 'Though the figures on X Y' draw lines as

 V 10 the pattern for the return D .

In Fig. 304 is shown a front view of a sgrmental pertiment with upper and lower horizontal returns. This presents a problem of obtaining the pattern for horizontal returns at top and foot of a segmental pediment. shown respectively at A and B, the kivm pmonice in iseplacel in C. The
 principles used in obtaining these patterns are similar to those
 ing is curved in elevation. In Fig. 305 the true method is chearly

 given profile of the corved moulding as shown hy A, which divide inen
 angles to I' (i, draw lines intervereting the center line |) 13 as shown.

Then, using B as center, with radii of various lengths corresponding to the various distances obtained from A, describe ares as shown, extending them indefinitely below the foot of the pediment. The point C or $6^{\prime \prime}$ being established, take a tracing of the profile A , with all the various points of intersection in same, and place it as shown by A^{2}, being careful to have the point 6 in A^{2} come directly below the point $6^{\prime \prime}$ in elevation in a vertical position. Then, from the various intersections in A^{2} erect vertical lines intersecting similarly numbered ares drawn from the profile A. Trace a line as shown from $1^{\prime \prime}$ to $10^{\prime \prime}$, which is the modified profile for the foot of the curved moulding.

Establish at pleasure the point 1^{\prime} at the top, and take a tracing of the given profile A placing it in a vertical position below 1^{\prime}, as shown by A ${ }^{1}$. From the various

Fig. 306. intersections in A^{1} erect vertical lines intersecting similarly numbered arcs as before. Through these intersections, shown from 1^{\prime} to 10^{\prime}, trace the profile shown, which is the modified profile for the top return.

The curved moulding shown in elevation can be made either by hand or by machine. The general method of obtaining the blank or pattern for the curved moulding is to arerage a line through the extreme points of the profile A, as 1 J , extending it until it intersects a line drawn at right angles to D B from the center B , as B H , at K .

We will not go into any further demonstration about this curved work, as the matter will be taken up at its proper time later on.

To obtain the pattern for the upper and lower return mouldings, proceed in precisely the same manner as explained in connection with returns B and D in Fig. 303.

In Fig. 306 are shown the plan and elevation of a gable moulding in octagon plan. This problem should be carefully followed, as it presents an interesting study in projections; and the principles used in solving this are also applicable to other problems, no matter what angle or pitch the gable has. By referring to the plan, it will be seen

The method of proceeding with work of this kimd is explained in
 A B C D E represent a plan view of the wall, weer which a galle

110 :3:
 \therefore diown by diow fiy figures mentoned, Iraw lines indelintely as shown. Bivere the angle

tion shown by R S in plan, dividing it into the same number of spaces as L M. Through the figures in the profile R S , and parallel to D C, draw lines intersecting the miter-line $C Q$, as shown. From the intersections on the miter-line, and parallel to $C B$, draw lines intersecting the surface $\mathrm{B} A$. Now, at right angles to C D in plan, and from the

Fig. 308.
intersections on the miter-line (\mathbf{C} Q, draw vertical lines upward, intersecting lines of similar numbers drawn from points in profile $\mathbf{L} \mathbf{M}$ in elevation parallel to J G. A line traced through points thus obtained, as shown from 1^{\prime} to 8^{\prime}, will be the miter-line in elevation.

For the pattern for that part of the moulding shown by C D E Q' in plan, and $H_{r} S^{\prime} 1^{\prime}$ in elevation, proceed as follows: At right angles to 1 H in elevation, draw the line T C , upon which place the

 from intersections on the miter-line 1^{\prime} 'r $^{\prime}$ and from interantions against the vertical surface II (i. Iines traced thromgh prints thms ohtained, as shown by V' WX X', will he the pattern for that part of

In Fig. 301s, on the other hand, the position of the plan in champed. so as to bring the line A (Q horizontal. At right anglen to B (• draw the vertical line C E, on which locate any print, as E. In the same manner, at right angles to (' B, draw the vertical line 13 J imdefinitely. From the point E, parallel to B C, Iraw the line E S", intersecting the line J B, as shown. Now take the distance from s" to J in elevation, Fig. 307, and set it off from s" toward J in Fig. 30s. Draw a line from J to E, which will represent the true rake for this portion of the moulding. Now take the various heights shown from 1 to sh on the line Z Z in elevation in Fig. 307, and place them as shown by Z. Z in elevation, Fig 30s, being careful to place the puint s of the line Z Z on the line $\mathrm{s}^{\prime \prime} \mathrm{E}$ extended. At right angles to $\%$ Z, and from points on same, draw lines, which intersect with lines drawn at right angles to BC from intersecfions of similar numbers on C (Q in plan. A line traced through points thus obtained, as shown by I) E: in elevation, will be the miter-line on C' Q in phan.

From the intersections on the miter-line I) E, and parallel to E J, draw lines, which intersect with line Atrawn frone imuratame of simalas mundert inf 1 if il
 thes ohtained, as shown be F J, will be the miter-line

Fig 30n. or line of joint against the pier shown in plan by 13 A.

Before ohtaining the pattern it will he necemary to whatan a true sertion or profile at right amgles to the moulding F' I). To don so, pror

 the intersections in the prodite L. draw lines imeremetime thene of simi-

tained, as shown from 1 to 8 , thus giving the profile M , or true sections at right angles to F D.

For the pattern, proceed as follows: At right angles to F D, draw the line H K , upon which place the stretchout of the profile M , as shown by the figures. At right angles to $\mathrm{H} \mathbf{K}$, and through the figures, draw lines, which intersect with those of similar numbers drawn at

Fig. 310.

Fig. 311.
right angles to F D from points of intersection in the miter-lines D E and J F , as shown. Lines traced through points this obtained, as shown by N O P R, will be the pattern for the raking moulding shown in plan, Fig. 307 , by A B C Q'.

In Fig. 309 is shown a view of a spire, square in plan, intersecting four gables. In practice, each side A is developed separately in a manner shown in Fig. 310, in which first draw the center line through the center of the gable, as E F. Establish points B and C, from which

 as dinwo toy similar levers on the vertival lime IS 1 in Piza 311. It ritho angle.

 dhown, mationg B II somi is H^{1} on the one hand, and $A N$ and $\mathrm{A} O$ on the other hand, equal respectively to 13 H and A N in elevation in Fig. 317 Theo. in Fis.

104 11.

17818 11%
 sents the pattern for one side.

In Fig. 312 is shown a perspertive view of a drop B mitering against the face of the bracket ('as indicated at A. 'The principles for developing this problem are explatined in Figs, 318, and can be ap)plied to similar work no matter what the profiles of the drop or hracket

 of the face, as I) C, into equal spacers, ass shomon hy dow figutes I to 7 on either side, from which points draw horizomal limes erossimg If (; in side view and interseecting the face II I of the bracher at points I' 0 7^{\prime}. In line with II (\mathbf{i}, draw the line I $\mathrm{K}^{\text {, }}$, upen which plate the wreteh-

will 3 K I , be the pattern for the return of the drop on the face of the bracket.

In Fig. 314, A shows a raking bracket placed in a gable moulding. When brackets are placed in a vertical position in any raking moulding, they are called "raking" brackets. B represents a raking bracket placed at the center of the gable. The patterns which will be developed for the bracket A are also used for B , the cuts being similar, the only

Fig. 314. difference being that one-half the width of the bracket in B is formed right and the other half left, the two halves being then joined at the angle as shown.

In Fig. 315 are shown the principles employed for obtaining the patterns for the side, face, sink strips, cap, and returns for a raking bracket. These principles can be applied to any form or angle in the bracket on gahle moulding respectively. Let is L' V'T' represent part of a front elevation of a raking cornice placed at its proper angles with any perpendicular line. In its proper position, draw the outline of the face of the bracket as shown by E G II (). Also, in its proper position as shown, draw the normal profile of the side of the bracket, indicated by $6-\mathrm{I}-2-1.5$; the normal profile of the cap-mould, as W and I ; and the normal profile of the sink strip, as indicated hy $1010^{\prime} 15{ }^{\prime} 15$.

Complete the front elevation of the bracket by drawng lines parallel to E () from points 7 and 9 in the normal profile; and establish at pleasure the width of the sink strip in the face of the bracket, as at J K and L II. 'To complete the front elevation of the cap-mould of the bracket, proceed as follows: Extend the lines (i F and M () of the front of the brackets, as shown by E 6 and () 6 , on which, in a verticai position as shown, place duplicates $\left(W^{1}, W^{2}\right)$ of the normal profiles W and X , divided into equal spaces as shown by the figures 1 to 6 in W^{1} and W^{2}. From these intersections in W^{1} and W^{2}, drop vertical lines, shich intersect by lines drawn parallel to E () from similarly numbered intersections in X , and trace lines through the points thus obtained. Then will R E and O P' represent respectively the true elevations, also
 figmenif

and $10^{\prime} 10^{\prime \prime} 155^{\prime \prime} 15^{\prime}$ the pattern for the sink strip shown by the lines K L and H J in the front.

For the pattern for the face strip B , draw any line, as $\mathrm{A}^{1} \mathrm{~B}^{1}$, at right angles to G MI, upon which place the stretchout of 1015 in the normal profile, as shown from 10 to 15 on $\mathrm{A}^{1} \mathrm{~B}^{1}$. Through these points, at right angles to $\mathrm{A}^{1} \mathrm{~B}^{1}$, draw lines as shown, which intersect with lines drawn from similar intersections on the lines F G and H J. Trace a line through points thus obtained as shown by $\mathrm{F}^{\circ} \mathrm{G}^{\circ} \mathrm{H}^{\circ} \mathrm{J}^{\circ}$, which will be the pattern for the face B, B.

For the pattern for the sink-face C, draw $\left(^{1} \mathrm{D}^{1}\right.$ at right angles to GMI, upon which place the stretchout of $10^{\prime} 15^{\prime}$ in the normal profile as shown from 10 to 1.$)^{\prime}$ on $\left({ }^{1} 1\right)^{1}$, through which, at right angles to $\mathrm{C}^{1} \mathrm{D}^{1}$, draw lines, which intersect by lines drawn from similar intersections on K L and H J. Trace a line through the points so obtained as $\mathrm{J}^{\circ} \mathrm{K}^{\circ} \mathrm{L}^{\circ} \mathrm{H}^{\circ}$, which is the pattern for the sinkface C .

The pattern for the cap D and the face A will be developed in one piece, by drawing at right angles to EO the line $\mathrm{E}^{1} \mathrm{~F}^{1}$. At right angles

Fig. 316.

Fig. 317.
to $\mathrm{E}^{1} \mathrm{~F}^{1}$, and through the figures, draw lines, which interseci with lines drawn at right angles to EO) from similarly numbered intersections on REF and NOP. A line traced through the points thus obtained, as shown by $\mathrm{R}^{\circ} \mathrm{E}^{\circ} \mathrm{F}^{\circ}$ and $\mathrm{N}^{\circ} \mathrm{O}^{\circ} \mathrm{P}^{\circ}$ will be the pattern for D and A .

For the patterns for the cap returns R E and O P, draw any line at right angles to 11 in the normal profile, as $\mathrm{H}^{1} \mathrm{G}^{1}$, upon which place the stretchouts of the profiles R E and () P, heing careful to carry each space separately onto the line H^{1} (i^{1}, as shown respectively by (;) 1^{v} and $6^{x} 1^{x}$. Through these points draw lines at right angles to ($i^{1} \mathrm{H}^{1}$, which intersect by lines drawn at right angles to 11 from

 turn, P ().

 10 represent the section of the eave-trough with a bead or wire

 to 10. Draw any vertical line, as A B, upon which place the stretchout of the gutter as shown by similar letters and numbers on A B , through which, at right angles to I R, imas limes whids interect ing

ITv 11.

100 5

 pattern for the outside angle shown in Fig. 3lf.

If a pattern is required for an interiororinside angle, as is shown

 E. If be the pattern for the inside angle shown in Fig. 31s.

In Figg. 319 are shown a plan and elevation of a moulding which
 represents the plan of a brick pier, around which a cornice is to be
 profile in edevation being shown by (${ }^{3}$. 'The projection of the front in phan is alsen expal to C, ass shown by ('? . The projection of the left

tain this true profile and the various patterns, proceed as shown in Fig. 330, in which A B C D represents the plan view of the wall, against which, in its proper position, the profile E is placed and divided into equal spaces, as shown by the figures 1 to 12. Through 12 , parallel to C D draw GE. Locate at pleasure the projection of the re-

Fig. 320.
turn moukd, as B II, and draw II (; parallel to B C, intersecting F G at (i . 1) raw the miter-line in plan, (C C. From the various divisions in the profile E, draw lines parallel to C D, intersecting the miter-line C (A as shown. From these intersections, erect vertical lines indefinitely, as shown. Parallel to these lines erect the line K J , upon which place a duplicate of the profile F, with the various divisions on same, as shown hey E^{1}. 'Thrombh thee divisions draw horizontal lines in-

 AVISUI. (IIbIIANか, OHIO

For the pattern for the return II © ("B in phan, extemt the line

 down ly figume I' on I a' om \I I :

At right angles to this line and through the figures, draw lines,
 print: on (C . Tra... line through the puints thus ohtainerl. 'I' hen will $\mathrm{H}^{1} \mathrm{G}^{1}\left({ }^{1} \mathrm{~B}^{1}\right.$ be the paltem İopil.e mums mould.

The postern fior die. -... mons! (i, (1) lf is whtionol ly 1 bl.inza stretchout of the profile IS and phain- if on the.

$1=-11$

I6
vertical line I' (), as shown by similar figures, thromsth, which, at might angles to P' (), draw lines interiecting similarly mumbered lines previonsly extemberl from (' (i in plan. 'Trace a lime thmugh these
 amealel.

In F̈gg. 821 is shown in perapertive view of a gare pieere 1 jomed

sheet-metal work, the development of which is given in Fig. 322. Let I B C D show the elevation of the corner on which a gore piece is required. H 7^{\prime} E in plan is a section through C D, and E F G H is a section through X I, all projected from the elevation as shown. The profile 17 can be drawn at pleasure, and at once becomes the pattern for the sides. Now divide the profile 17 into an equal number of spaces as shown, from which drop vertical lines onto the side $7^{\prime} \mathrm{E}$ in plan, as shown from 1^{\prime} to 7^{\prime}. From these points draw lines parallel to F G, intersecting the opposite side and crossing the line $7^{\prime} 1^{\prime \prime}$ (which is drawn at right angles to FG

Fig. 323. from 7^{\prime}) at $1^{\prime \prime} 2^{\prime \prime} 3^{\prime \prime} 4^{\prime \prime} 5^{\prime \prime} 6^{\prime \prime}$. Draw any line parallel to C D , as K J , upon which place all the intersections contained on 7^{\prime} $1^{\prime \prime}$ in plan, as shown by 1° to 7° on $\mathrm{K} \mathrm{J}$. From these points erect perpendicular lines, which intersect by lines drawn from similarly numbered points in elevation parallel to C D. Through the points thus obtained trace a line. Then will 1^{V} to 7^{V} be the true profile on $7^{\prime} 1^{\prime \prime}$ in plan.
For the pattern for the grore, draw any vertical line, as A B in Fig 323, upon which place the stretchout of the profile $1^{v} 7^{v}$ in Fig. 322, as shown by similar figures on A B in Fig. 323.3. At right angles to AB , and through the figures, draw lines as shown, Now, measuring in each instance from the line $7^{\prime} 1^{\prime \prime}$ in plan in Fig. 322, take the various distances to points 1^{\prime} to 7^{\prime}, and place them in Fig. 323 on similarly numbered lines, measuring in each instance from the line A B, thus locating the points

Fig. 324. shown. Trace a line through the points thus obtained. Then will F G 7 be the pattern for the gore shown in plan in Fig. 322 by FG7'.

In Fig. 324 is shown a face view of a six-pointed star, which often arises in comice work. No matter how many points the star has, the principles which are explained for its development are applicable to any size or shape. 'Triangulation is employed in this problem, as shown in Fig. 32-5. First draw the halt-outline of the star, as shown by A B C D E F (x . Above and parallel to the line AG, draw JH of similar length, as shown. Draw the section of the star on $A G$ in plan,

 erect a line cutting J II in section at b.
 tran Ination 11

Fine the prateoth, pleant an shown in Fig. 32f. I) raw any line, a K IS, apme in fonglif in K I I m! -
 K in Fig. 32ld as center, describe the
 an are (; ($;$ struck from II as center and with F G in plan in Fig. 32.5 as radius. Draw lines in Fig. 326 from

70
 of the star of which 6 are reguired.

When bemding the points on the line IIK, it is necessary to have a stay or profile so that we may know at what angle the bend should be made. 'Io ohtain this stay, erect from the corner IB in Fig. 3:5.5 a line intersecting the hase-line J II at e, from which point, at right angles to JK, draw od. I sing óas center, and ocd as radins, strike an are intersecting J II at ρ. Frome édrop a vertical line meeting A (; in plan at
 from B to d^{\prime} to B^{\prime}, which is the true profile after which the pattern in Fig. $32 t$ is to be bent. If the stay in lig. 32: has been (w) rectly developed, then $d^{\prime} B^{1}$ or $d^{\prime} \mathrm{B}$ must expual a a in Fig. B2lion hoth sides.

In Fig. 3:2 is shown a finisherd devation of a hipped roof, on the four corners of which
 and rats off on at verticat line at the louttom, as ("and (「. 'Toultain the true protile of this hipe ridge, tugether with the tope and lower couts and the prateras for the lower heads, proweed as shown in lige 32 s , Where the front elevation has leeen mattent, this not heing newesary, as only the part phan and diagomal elevation are seypured. Fiarst draw
the part plan as shown by A B C D E F A, placing the hip or diagonal line F C in a horizontal position; and make the distances between the lines F A and C B and between F E and C D equal, because the roof in this case has equal pitch all around. (The same principles, however, would be used if the roofs had unequal pitches.) Above

Fig. 327. the plan, draw the line G H. From the points F and C in plan, erect the lines F G and C I, extending C I to C^{1} so that I^{1} will be the required height of the roof above GI at the point C in plan. Draw a line from G to C^{1}, and from C^{1} draw a horizontal and vertical line indefinitely, as shown. Then will I C (${ }^{1}$ be a true section on the line of the roof on F C in plan.

The next step is to obtain a true section of the angle of the roof at right angles to the hip line (f (${ }^{1}$ in elevation. This is done by drawiug at right angles to FC in plan. any line, as $a b$, intersecting the lines F A and F E as shown. Extend ab until it cuts the base-line G I in elevation at c. From c, at right angles to $\mathrm{G} \mathrm{C}^{1}$, draw a line, as $c d$, intersecting $C_{f}{ }^{C 1}$ at d. Take the distance $c d$, and place it in plan on the line F C, measuring from i to d^{\prime}. Draw a line from a to d^{\prime} to b, which is the true angle desired. On this angle, construct the desired shape of the hip ridge as shown ly J , each half of which divide into equal spaces, as shown hy the figures 1 to 6 to 1 . As the line GC^{1} represents the line of the roof, and as the point d^{\prime} in plan in the true angle also represents that line, then take a tracing of the profile J with the varions point; of intersection on same, together with the true angle a $d^{\prime} b$, and place it in the elevation as shown by J^{1} and $a^{\prime} d^{\prime \prime} b^{\prime}$, being careful to phace the point $d^{\prime \prime}$ on the line GC^{1}, making $a^{\prime} b^{\prime}$ parallel to $G C^{1}$. From the various points of intersection in the profile J , draw lines parailel to F C , intersecting B C and A F at points from 1 to 6 , as shown. L. both sides of the profile J are symmetrical, it is necessary only to draw lines through one-half.

upon which place the stretchout of .J in plan or . J^{1} in elevation, as shown by the figures 1 to 6 to 1 on OP; and through these mumbered points, at right angles to O P , draw lines, which intersect by lines drawn at right angles to $\mathrm{G} \mathrm{C}^{1}$ from similar intersections in the lower miter-line K L and upper miter-line NM. Trace a line through the points thus obtained. Then will R S T U be the desired pattern.

In practice it is necessary only to ohtain one miter-cut-either the top or the bottom-and use the reverse for the opposite side. In other words, $U^{\prime} T$ is that part falling out of $R s$, the same as $R S$ is that part which cuts away from L' T. 'The upper miter-cut butts against B in Fig. 327; while the lower cut requires a flat head, as shown at C. To obtain this flat head, extend the line I Gr in Fig. 32s, as I W, upon which place twice the amount of spaces contained on the line A F in plan, as $6,3-5,4,1,2$, as shown hy similar figures on either side of 6 on the line V W. From these divisions erect vertical lines, which intersect by lines drawn parallel to $1 /$ Wrom similarly numbered

Fig. 329. intersections in the miter-line K L G. A line traced through the points thus obtained, as shown by X Y Z, will be the pattern for the heads.

Where a hip ridge is required to miter with the apron of a deck moulding, as shown in Fig. 329, in which B represents the apron of the deck comice, A and A the hip ridges mitering at a and a, a slightly different process from that described in the precerling problem is used. In this case the part elevation of the mansard roof must first he drawn as shown in Fig. 330. Let A B C K represent the pact elevation of the mansard, the section of the dect moulding and apron being shown hy I IS F. Draw E X paralle. to B C. E X then represents the line of the roof. In its proper position, at right angles to B C, draw a half-section of the hip noould, as shown hy F (r, which is an exact reproduction of BE of the deck mould. Through the corners of the hip mould at I and G, draw lines parallel to BC , which intersect hy lines drawn parallel to BA from V, W, and E in the deck cornice. Draw the miter-line II I, which completes the part elevation of the mansard.

 (K as shown. 'Take the projertion d to ("in l'ig. 830), and place it as

 of either, and place it as shown hy 1) and I) respertively in lögs (3:31. Divide both inte the same mumber of caplat vpeses, as showne. Biseet

by describing ares intersecting at c; then draw $d \mathrm{~B}$, which represents the miter-line. Through the points in D and D^{1}, draw lines parallel to their respective moulds, as shown, intersecting the miter-line B d and the base-line $\mathrm{C} \mathrm{C}^{1}$.

For the pattern for the hip, draw any line, as E F , at right angles to B C, upon which place twice the stretchout of D, as shown by the divisions 6 to 1 to 6 on EF. Through these divisions draw lines at

Fig. 331.
right angles to E F , intersecting similarly mumbered lines drawn at right angles to $B C$ from the divisions on $B d$ and $C C^{1}$. 'Trace a line through the points thus ohtained. Then will G II J L be the pattern for the hip ridge.

When bending this ridge in the machine, it is necessary to know at what angle the line 1 in the pattern will be bent. A true section must be obtained at right angles to the line of hip, for which proceed as shown in Fig. 330. Directly in line with the elevation, construct a part plan L MIN O, through which, at an angle of 4. degrees (because the angle L O N is a right angle), draw the hip line OMI. Establish at pleasure any point, as P^{1} on () MI , from which erect the vertical line into the elevation crossing the base-line C K at P and the ridge-line $\mathrm{C} B$ at R. Parallel to $\mathrm{O} M$ in plan, draw $\mathrm{O}^{1} \mathrm{P}^{2}$, equal to $\mathrm{O} \mathrm{P}^{1}$, as shown. Extend $\mathrm{P}^{1} \mathrm{P}^{2}$ as $\mathrm{P}^{2} \mathrm{R}^{1}$, which make equal to PR in elevation.

 C:31 firmial.

 ridge shown by n II 16.

In Fig. 332 is shown a front elevation of an eve-brow dormer. In

Tife lat.
 lone II J in elevation is shown at the right; I. II shows the roof of the dormer, indicated in the section by N ; while the louvers are shown in elevation by () P and in section by R'

In Figg. 3333 is shown how to ohtatin the varions patten no for the various parts of the dormer. ABC Cegresents the halfeclevation of the dorner, and EF(i a side view, of which E(i is the line of the domer,
 the dormer is required to miter.

The front and side views being placed in their proper retative

From these intersections, and parallel to EF, draw lines intersecting the roof-line GF at $1^{5}, 2^{5}, 3^{5}$, etc. Parallel to EF, and from the point

Fig. 333.
G, draw any line indefinitely, as G H. At right angles to EF, and from the point E , draw the line EH , intersecting lines previously drawn,

 A B. 'Trace a line thromgh the points of intersection thas obtained. Then KI.NI.J will he one-half the true profile on the line EE II in side
 of the pattern.

For the pattern for the roof of the dormer, draw at right angles to FF in side view the line $\mathrm{N}^{\circ} \mathrm{O}$, upon which phace the stretchout of
 $1^{1}, 2^{4}, 3^{6}$, etc. 'Then, at right angles to NO O, and through the figures, draw lines, which intersect with those of similar numbers drawn at right angles to EF from intersections on Ed and GF. 'Trace a line through the points thus obtained. Then will PlRS' represent onehalf the pattern for the roof.
'To obtain the pattern for the shape of the opening to be cut into the ronf, transfer the line (iF, with the various intersections thereon, t.1) any sertioal lime. : 1 1..... dowem by the figures $1^{6} .2^{6}, 3^{0}$, etc. In similar manner, transfer the line (CB in front view, with the varions intersections on same, to the line ZW, drawn at right angles to ['V. as shown by the figures $1,2,3$, etc. At right angles to ['T', and from the figures, draw lines, which intersect with those of similar numhers drawn at right amples to 1%. Through these points, trace a line.

15081
'Then will "XY'/ be the half-pattern for the shape of the "perning to be cut into the mation rowf.

For the patters for the ventilating slats or lowern, should they be reppuireal in the dommer, proweed as strown in Fige :331. In this

terns for all louvers are alike, the pattern for louver No. 4 will illustrate the principles employed. Number the various bends of louver No. 4 as shown by points $6,7,8$, and 9 . At right angles to A B, and from these points, draw lines intersecting the curve $\mathrm{A} \mathrm{C} \mathrm{as} 6^{1}, 7^{1}, 4^{1}, 8^{1}$, and $9{ }^{1}$. On B A extended as E D, place the stretchout of louver No. 4 as shown by the figures on ED. Since the miter-line AC is a curve, it will be necessary to introduce intermediate points between 7 and 8 of the profile, in order to olfain this curve in the pattern. In this instance the point marked 4 has been added.

Now, at right angles to DE, and through the figures, draw lines, which intersect with those of similar numbers, drawn parallel to AB

Fig. 335. from intersections 6^{1} to 9^{1} on the curve AC. A line traced through the points thus obtained, as FKJH, will be the half-pattern for louver No. 4. The pattern for the face of the dormer is pricked onto the metal direct from the front view in Fig. 333, in which A 8 $B C$ is the half-pattern.

In laying out the patterns for bay window work, it often happens that each side of the window has an unequal projection, as is shown in Fig. 335., in which DEF shows an elevation of an octagonal base of a bay window having unequal projections. All that part of the bay above the line AB is oltained by the method shown in Fig. 290, while the finish of the hay shown hy ABC in Fig. 335 will he treated here. In some cases the lower ball (C is a half-spun ball. $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{~F}^{1}$ is a true section through A B. It will be noticed that the lines $\mathrm{Ca}, \mathrm{C} c$, and $\mathrm{C} d$, drawn respectively at right angles to $a b$, $b c$, and $c d$, are each of different lengths, thereby making it necessary to obtain a true profile on each of these lines, before the patterns can be obtained. This is clearly explained in connection with Fig. 3366, in which only a half-elevation and plan are required as both sides are symmetrical. First draw the

 in plan, as FK; and in its proper ponition in relation to the line ('1) in elevation, draw the desired half-plan, as shown hy (illl.J. From the

 From these peints drop vertical lines intereering ehe miter-line Fill in plan, as shown. F'rom these interaedtoms, parallel on 101 , draw lines intervecting the miter-lines $1 \mathbb{F}^{\circ}$, from which prints, parallel to I.J.
 proints of intersection in 1)E, draw horizontal lime imbetmitely righe mel fidi at dimes.

If for any reason it is desired to show the elevation of the miterline FI in plan (it not being necessary in the development of the pattern), then erect vertical lines from the various intersections on FI, intersecting similar lines in elevation. To avoid a confusion in the drawing, these lines have not been shown. Trace a line through points thus obtained, as shown by $\mathrm{D}^{1} 13$, which is the desired miterline in elevation.

The next step is to obtain the true profile at right angles to HI and IJ in plan. To obtain the true profile through No. 3 in plan, take a tracing of J F , with the rarious intersections thereon, and place it on a line drawn parallel to CD in elevation, as $\mathrm{J}^{1} \mathrm{~F}^{1}$, with the intersections 1 to 13 , as shown. From these intersections, at right angles to $\mathrm{J}^{1} \mathrm{~F}^{1}$, erect lines intersecting similar lines drawn through the profile DE in elevation. Trace a line through the points thus obtained, as shown by 1^{\prime} to 13^{\prime}, which represents the true profile for part 3 in plan. At right angles to IH in plan, draw any line, as MIL, and extend the various lines drawn parallel to III until they intersect LXI at points 1 to 13 , as shown.

Take a tracing of LMI, with the various points of intersection, and place it on any horizontal line, as $\mathrm{L}^{1} \mathrm{MI}^{1}$, as shown by the figures 1 to $1: 3$, from which, at right angles to $\mathrm{L}^{1} \mathrm{MI}^{3}$, erect vertical lines intersecting similarly numbered horizontal lines drawn through the profile IE. 'Trace a line through the points thus obtained. Then will $1^{\prime \prime}-13^{\prime \prime}$ he the true profile through No. 2 in plan at right angles to HI.

For the pattern for No. 1 in plan, extend the line FK, as NO, upon which place the stretchout of the profile DE as shown by the figures 1 to 13 on N() . At right angles to N() , and from the figures, draw lines, which intersect with lines (partly shown) drawn parallel to FG from similar intersections on the miter-line FH. Trace a line through the points thus obtained; then will 1 P $1: 3$ be the pattern for part 1 in plan.

At right angles to HI I, draw any line, as T U', upon which place the stretchout of profile No. $\xlongequal{2}$, being careful to measure each space separately, as they are all unequal, as shown by the small figures $1^{\prime \prime}$ to $133^{\prime \prime}$ on 'TL'. Through these figures, at right angles to 'TL', draw lines as shown, which intersect by lines (not shown in the drawing) drawn at right angles to I H from similar points on the miter-lines HF and FI.
 the patsern lur part ב ins plan

 for part 3.

DEVELOPWEAT OF BLANKS FOR CLRVII) リ()(I.I)IViS

 tion in this case would then be as shown in Fig. 33s, which shows an enlarged section through $a b$ in Fig. 337. Thus the strips a, b, and c in Fig. 33 s would be cut to the required size, and would be nothing more than straight strips of metal, while $d d^{\prime}$ would be an angle, the lower side d^{\prime} being notched with the shears and turned to the required circle. The face strips c, f, and h would represent ares of circles to correspond to their various diameters obtained from the full-sized elevation. These face and sink strips would all bee

H18 17 TH

 the averaged lines would be drawn as shown by i I for the ogee and
 other moulds will be explained as we proceerl.

mould can be hammered in one piece, S feet long or of the length of the sheets in use, if such length is required, the machine taking in the full

Fig. 338.

Fig. 339.
mould from A to B . The pattern for work of this kind is areraged by drawing a line as shown by ('I). This method will also be explained more fully as we proceed.

SHOP TOOLS EMPLOYED

When working any circular moukl hy hand, all that is required in the way of tools is various-sized raising and stretching hammers, square stake, how-horn stake, and mandrel including raising blocks made of wool or lead. I first-rate knowledge must be employed by the mechanic in the handling and working of these small tools. In a thoroughly up-to-date shop will be found what are known as "curved moulding'" machines, which can be operated hy foot or power, and which have the advantage over hand operation of saving time and labor, and also turning out first-clasis work, as all seams are avoided.

PRINCIPLES EMPLOYED FOR OBTAINING APPROXIMATE BLANKS FOR CLRVED MOULDINGS HAMMERED BY HAND

'The governing principles underlying all such operations are the same as every sheet-metal worker uses in the laying out of the simple patterns in flaring ware. In other words, one who understands how to lay out the pattern for a frustum of a cone understands the principles of cleveloping the blanks for curved mouldings. The principles will be described in detail in what follows.
()ur first problem is that of obtaming a hlank for a plain flare, shown in Fig. :340. First draw the center line A B, and construct the half-elevation of the mould, as (' I) E F. Extend D E until it inter-

RESIDENCE OF DR. FOLTZ, CHESTNUT HILL, PHILADELPHIA, PA. George T. Pearson, Architect, Philadelphla, Pa.

Planned to Meet the Requirements of a Phystcian's Residence and Offce. The Exterior Treatment, as Indicated by the Timber S. Truncation or Roof, etc.is in the Dutch Style, the Base being Stone. Then a Band of Flemish-Bond, Dark

 with radii equal to ($;$ E and (i I), desoribe the ares I) $\overline{\prime \prime}$ and E E. E°. Firom any point, as 1^{\prime}, draw the ratial line 1^{\prime} (8 , intersecting the inner

1. 31

 if reguired in one piece, join fonm piecoss.
 Fio work this protile, the hlank mast be serecthed with the serecthing

a to e. Through the center of the cove c draw a line parallel to $e a$, extending it until it meets the center line A B at G, which is the center point from which to strike the pattern. Take the stretchout of the cove $c e$ and $c a$, and place it as shown by $c e^{\prime}$ and $c a^{\prime}$. When stretching the flare $a^{\prime} e^{\prime}, c$ remains stationary, e^{\prime} and a^{\prime} being hammered towards e and a respectively. Therefore, from c erect a vertical line intersecting H 1, drawn at right angles to A B , at 1 . Using H as center and H 1 as radius, describe the are 17 , which divide into equal spaces as shown. With G as center,

Fig. 342. and radii equal to $\mathrm{G} a^{\prime}, \mathrm{G} c$, and $\mathrm{G} e^{\prime}$, describe the arcs $e^{\prime \prime} e^{\prime \prime}, 1^{\prime} 7^{\prime}$, and $a^{\prime \prime}$ $a^{\prime \prime}$. Draw a line from $e^{\prime \prime}$ to G , intersecting the center and lower ares at I^{\prime} and $a^{\prime \prime}$. Starting from 1^{\prime}, lay off the stretchout of the quarter-section as shown from 1^{\prime} to 7 '. Through 7 ' draw a line towards G, intersecting the inner arc at $a^{\prime \prime}$; and, extending the line upward, intersect the outer are at $e^{\prime \prime}$. Then will $a^{\prime \prime} e^{\prime \prime} e^{\prime \prime} a^{\prime \prime}$ be the quarterpattern for the cove E D in elevation. If the quarter-round NO were required in place of the cove E D , then, as this quarter-round would require to be raised, the rule given in the former Instruction Paper on Sheet Metal Work would be applied to all cases of raised mouldings.

In Fig. 342 is shown a curved mould whose profile is an ogee. In this case as in the preceding, draw the center line and half-elevation, and divide the ogee into a number of equal parts, as shown from a to h. Through the flaring portion of the ogee, as ce, draw a line, extending it upward and downward until it intersects the center line A B at G. Take the stretchouts from a to c and from e to h and place them respectively from c to a^{\prime} and from e to h^{\prime} on the line $h^{\prime} G$. Then, in working the ogee, that portion of the flare from c to e remains stationary; the part from e to h^{\prime} will be stretched to form $e h$; while that part shown from c to a^{\prime} will be raised to form $c a$. From any point in the stationary flare, as d, erect a line meeting the line H 1, drawn at right

 starting at 1', lay off the stretchout of the section as shown from I'to \bar{i} '. 'Through \bar{i} ' draw a line to (i, as before desaribed. 'Then will $h^{\prime \prime} a^{\prime \prime}$ n° he be the quarter-pattern for the ogee E I).

In Fig. 343 is shown how the blanks are developed when a bead moulding is employert. As before, first draw the denter line $A^{1} B^{1}$ and the
 1. Hee heat taher-1p ;
 ace, F :and at the parttern for $f s$ will be the same as for $e c$, then will the pattern for $c e$ only the shown, which can also be used for ef f. Bisect a c and $c e$, obtaining H.e print la aml d. wheth reperesent the stationary points in the 1.a11erms Take Her

 b to e, and place them

 d. Fixtend the lines $e^{\prime} e^{\prime}$ and a^{\prime} a' until they infersert the croneror

B^{\prime}, at 14 and 1 respectively. C'sing G as center, and with radii equal to G 14 and G 1, describe quarter-sections, as shown. Divide both into equal parts, as shown from 1 to 7 , and from S to 14 . With E as center, and with radii equal to $\mathrm{E} c^{\prime}, \mathrm{E} d$, and $\mathrm{E} \varepsilon^{\prime}$, describe the $\operatorname{arcs} c^{\prime \prime} c^{\prime \prime}, d^{\prime} d^{\prime}$, and $e^{\prime \prime} e^{\prime \prime}$. From any point on one end, as $e^{\prime \prime}$, draw a radial line to E, intersecting the inner ares at d^{\prime} and $c^{\prime \prime}$. Now take the stretchout of the section from 1 to $\overline{7}$, and, starting at d^{\prime}, lay off the stretchout as shown from 1^{\prime} to 7^{\prime}. Through 7^{\prime} draw a line towards E , intersecting the inner are at $c^{\prime \prime}$ and the outer one at $e^{\prime \prime}$. Then will $c^{\prime \prime} e^{\prime \prime} e^{\prime \prime} c^{\prime \prime}$ be the quarter-pattern for that part of the bead shown by $c e$, also for
 $e f$, in elevation. For the pattern for that part shown by $a c$, use F^{1} as center; and with radii equal to $\mathrm{F} a^{\prime}, \mathrm{F} b$, Fig. 344. and $\mathrm{F} c^{\prime}$, describe the arcs $a^{\prime \prime} a^{\prime \prime}, b^{\prime} b^{\prime}$, and $c^{\prime \prime} c^{\prime \prime}$. From any point on the arc $b^{\prime} b^{\prime}$, as 8^{\prime}, lay off the stretchout of the quarter-section 814 , as shown from 8^{\prime} to 14^{\prime}. Through these two points draw lines towards F^{1}, intersecting the inner arcs at $a^{\prime \prime} a^{\prime \prime}$; and extend them until they intersect the outer arc at $c^{\prime \prime}$ and $c^{\prime \prime}$. Then will $c^{\prime \prime} a^{\prime \prime} a^{\prime \prime} c^{\prime \prime}$ be the desired pattern.

In Fig. 344 is shown an illustration of a round finial which contains

Fig. 345. moulds, the principles of which have already been described in the preceding problems. The ball A is made of either horizontal or vertical sections. In Fig. 345 is shown how the moulds in a finial of this kind are averaged. The method of obtaining the ti:e length of each pattern piece will be omitted, as this was thoroughly covered in the preceding problems. First draw the center line A B, on either side of which draw the section of the finial, as shown by C D E. The banks for the ball a will be obtained as explained in the Instruction Paper on sheet Metal Work. The mould l, is averaged as shown by the line $e f$, extending same until it intersects the center line at h, e ! representing the stretchout of the mould obtained, as explained in the

 this also until the center line is intersecterl at n. 'Then $i j$ and $/ \mathrm{m}$ represent respectively the stretchouts of the mould $c^{\circ} c^{\prime}$, the blanks c°
 $b^{\prime} b^{\prime \prime}$ also has a seam, as shown hy the dotted line, the momlds beimg averaged by the lines p o and $s t$, which, if extemdend, intersect the center line at r and u. 'These points are the centers, respectively, for

110. 18.

By_{y} referring to the various rules given in previous problems, the true length of the blanks can be obtainerl.
'The principles nsed for blanks hammered by hamd (an be upplied to almost any form that will arise, as, for example, in the case shown in Fig. 344 , in which A and B represent circular leader hemds; or in that shown in Figg. 347, in which A and B show two styles of hatusters. a and b (in both) representing the square tops and bases. Another example is that of a round finial, as in Fig. :3.ts, A showing the hered which slipss over the apex of the roof. White these forms ame be Prought, yet in wome cases where a speecial alesign is hought out hy the architert, it is neressary that they be mate hy hamd, esperially when but one is respuiresl.

plained later on, while the bottom B is the problem before us. The plan, it will be seen, is the arc of a circle; and, to obtain the various blanks, proceed as shown in Fig. 350, in which A B C is the elevation of the bottom of the bay, I J K being a plan riew on A C, showing the

Fig. 347.
curve struck from the center H. In this case the front view of the bottom of the bay is given, and must have the shape indicated by A B C taken on the line I J in plan. It therefore becomes necessary to establish a true section on the center line S K in plan, from which to obtain the radii for the blanks or

Fig. 349.

Fig. 348.
patterns. To obtain this true section, divide the curve A B into any number of equal parts, as shown from 1 to 6 . From the points of division, at right angles to A C, drop lines as shown, intersecting the wall line I J at points 1^{\prime} to 6^{\prime}. Then, using H as center, and radii equal to $\mathrm{H} 6^{\prime}, \mathrm{H} 5^{\prime}, \mathrm{H} 4^{\prime}, \mathrm{H} 3^{\prime}$, and $\mathrm{H} 2^{\prime}$, draw ares crossing the center line D E shown from $1^{\prime \prime}$ to $6^{\prime \prime}$. At any convenient point

bered points in plan and place them upon lines of similar numbers，measuring in every instance from
 S K in plan，and place it as shown from the line ＇1＇C＇to K^{-1} ；then again，take the distance from s to 2＂ in plan，and place it as shown from the line＇T［＇to $2^{\prime \prime}$ on line 2 in section．Proceed in this manner until all the points in the true section have been obtained．＇Trace a line as
 line $S \mathrm{~K}$ in plan．

 the moulding into such parts as can be hest raised or stretched．As－ among that the has been ，lour bathe she the cater from It bu plate on the center point II，and place it as shown from $1^{\prime \prime}$ to I ，in section． From the point I，draw a vertical line I．M．as shown．For the pat－ tern for the mould $1^{n} 2^{n}$ ，average a line through the extreme prints， as shown，and extend the same until it meets I．M at X．＇Thees，

the blank shown. The length of this blank is obtained by measuring on the arc $1^{\prime} 1^{\prime \prime}$ in plan, and placing this stretchout on the are $1^{\prime \prime}$ of the blank. The other blanks are obtained in precisely the same manner. Thus P is the center for the blank $2^{\prime \prime} 3^{\prime \prime} ; \mathrm{R}$, for the blank $3^{\prime \prime} 4^{\prime \prime}$; O, for the blank $4^{\prime \prime} 5^{\prime \prime}$; and M, for the blank $5^{\prime \prime} 6^{\prime \prime}$.

The moulds $1^{\prime \prime} 2^{\prime \prime}, 2^{\prime \prime} 3^{\prime \prime}$, and $3^{\prime \prime} 4^{\prime \prime}$ will be raised; while the blanks $4^{\prime \prime} 5^{\prime \prime}$ and $5^{\prime \prime} 6^{\prime \prime}$ will be stretched.

approxi mate blanks For curved mouldings HA MMERED BY MACHINE

The principles employed in averaging the profile for a moulding to be rolled or hammered hy machine do not differ to any material extent from those used in the case of mouldings hammered by hand. Fig. 351 shows the general method of aver-

Fig. 351. aging the profile of a moulding in determining the radius of the blank or pattern. It will be seen that $A B$ is drawn in such a manner, so to speak, as to average the inequalities of the profile D C required to be made. Thus distances a and b are equal, as are the distances c and d, and e and f. It is very difficult to indicate definite rules to be observed in drawing a line of this kind, or, in other words, in averaging the profile. Nothing short of actual experience and intimate knowledge of the material in which the moulding is ± 0 be made, will enable the operator

Fig. 352.
to decide correctly in all cases. There is, however, no danger of making very grave errors in this respect, because the capacity of the machines in use is such, that, were the pattern less advantageously planned in this particular than it should be, still, by passing it through the dies or rolls an extra time or two, it would be brought to the required shape.

 joining two horizontal pieces A and ${ }^{\circ}$, the trme section of all the mould being shown by I).

In this connection it may be proper to remark that in practice, no miters are cut on the circular hlanks, the miter-conts being placed on
 iseen formest up).

In Fig. $3 \bar{\circ} \mathrm{i} 3$ is shown the method of ohtaming the banks for

may be. Finst draw the center fine A B, and, with the desired center,
 position, draw a section of the protile as shown by (1). From the varions members in this section, project lines on the center line A B. ass $1,2,3$, and 4 ; and, using B as center, describe the varions ares and

 profle ('I) by the line ed, extending it until it intersect- the line drawn

center, with radii equal to $\mathrm{E} d, \mathrm{E} r$, and $\mathrm{E} c$, describe the ares $d^{\prime} d^{\prime \prime}$, $e^{\prime} e^{\prime \prime}$, and $c^{\prime} c^{\prime \prime}$. Draw a line fron c^{\prime} to E , intersecting the middle and inner arc at e^{\prime} and d^{\prime}. The arc $e^{\prime} e^{\prime \prime}$ then becomes the measuring line to obtain the length of the pattern, the length

Fig. 354. being measured on the arc 2 in elevation, which corresponds to the point e in section.

In Fig. 354 is shown the elevation of a moulding A curved in plan B, the arc being struck from the given point α. This is apt to occur when the moulding or cornice is placed on a building whose corner is round. To obtain the pattern when the moulding is curved in plan, proceed as shown in Fig. 355. Draw the section of the moulding, as A B , A C being the mould for which the pattern is desired. C B represents a straight strip which is attached to the mould after it is hammered or rolled to shape. In practice the elevation is not resuired. At pleasure, below the section, draw the horizontal line E I). From the extreme or outside edge of the mould, as b, drop a line intersecting the horizontal line ED at E. Knowing the radius of the are on b in section, place it on the line E D, thus obtaining the point D. With D as center, describe the are E F , intersecting a line drawn at right angle to E D from D . Average a line through the section, as G H , intersecting the line D F, drawn vertical from the center D, at J. Establish at pleasure the stationary

Fig. 355. point a, from which drop a line cutting F I) at a^{\prime}. Using D as center, and with D a' as radius, describe the arc $a^{\prime} a^{\prime \prime}$, which is the measuring line when laying out the pattern. Now take the stretch-

 ar. Ci Cis.an aml|| |1 O! the are $a^{\prime} a^{\prime \prime}$. Her panema if meatured on arte-pmole of the arr á $a^{\prime \prime}$ in plan.

In Fig. 3irf is shown at front view of an ornamental bull's-eve window, showing the circular mumblar I 11, whith in the case we desire to lay out in one piece, so that, when hammered or rolled in the machine, it will have the desired diameter. 'The same principles can be applied
 nead in conmertion with Friz. \therefore and an:

1.. . . 31
'To obtain the blank for the bull's-eve window shown in Figs. 3ise

VIE. 75

the center line B D at J. Where the average line intersects the mould at a, establish this as a stationary point; and take the stretchouts from a to I and from a to H , and lay them off on the line $\mathrm{H}^{1} \mathrm{I}^{1}$ from a to I^{1} and a to H^{1} respectively. As 1

Fig. 358. 5 in elevation represents the quarter-circle on the point a in section, divide this quartercircle into equal spaces, as shown. Now, with radii equal to $\mathrm{J}^{1}, \mathrm{~J} a$, and $\mathrm{J} \mathrm{H}^{1}$, and with J in Fig. 358 as center, describe the arcs $\mathrm{HH}, a a$, and I I. From any point, as H, on one side, draw a line to J, intersecting the middle and inner ares at a and I. Take the stretchout of the quarter-circle from 1 to 5 in elevation in Fig. 357, and place it on the are $a a$ as shown from 1 to 5 . Step this off four times, as shown by $5^{\prime}, 5^{\prime \prime}$, and $5^{\prime \prime \prime}$. From J draw a line through $5^{\prime \prime \prime}$, intersecting the inner and outer ares at I and H . Then will H a $a \mathrm{H}$ be the full pattern.

. if 11 a

PLASTERING

 seribe some of the varions ways of fimishing in cement plaster the lunse exterior.

INTERIOR PLASTERING

The installation of interior plasterimy marks the division between the completion of the rough work on the residence, and the very Ingimbing of the placine of tion Mash that is for fillows.

The plastering cannot be started until the walls and ceilings lave been lathed, and the ceilings must be furred before even the
 of the rough studding, framework, and partitions must be set in

 lathing or furring can be started.

The apparent break in the progress of huilding necessary to lath, plaster, and dry out a house, need not be altopether time lost for any of the various trales. 'Ihose unable to resume work until this intermediary process has been completed, can be secoring their necessary materials and fixtures and arranging them realy for installation. The carpenter can tre getting out his mill work atml finish, tre ready (6) put in his window-sash, set his standing finish in place aroumd doons and windows, lay the "pper floors, efce, and complete the pemather of his contract. 'The painter and paperer then commenere their work; the electricians, plambers, and hathigg contratore install

'The studs of a lomilimg are spaced sistoen ine hes apmet on crenters. sol that each lath reveives four mailings. Fiach emel of the lath mestis upron the eenter of a stad: and the two intermediate studs provite

customarily furred to provide lath nailings, four-and in better work, five nailings to the lath, with furrings seven-eighths of an inch thick and one and one-quarter inches or more wide, running crosswise of the floor joists. This furring is intended to level up the bottom of the joists, and distributes the unequal result of their skrinkage or uneven settlement from the weight above, thus preventing plaster cracks.

Before beginning lathing, the carpenter should see that each partition, at its intersection with another wall, is started with a stud nailed directly against the crossing studding. This makes it impossible for the lather to run the ends of his laths in behind or over the partitions-a careless practice that provides a very unstable internal plaster angle. The carpenter also sets plaster furrings, three-quarters of an inch thick, around all window and door openings and around the walls at the height of the top of his base skirting, so as to mark the points where the work of both plasterer and lather end, and to provide nailings for the finish woodwork. It is essential for the carpenter to place any necessary furring for comices, door-caps, etc., before the lathing is begun; also any other furrings blocks that may be required by the plumber to secure the settimg of his fixtures or to support and carry his pipes.

LATHING

Wood Laths. Wood laths are put up in bundles of 100 laths; and are nailed upon the studdings of the wooden frame, with a space of one-guarter inch between them. 'This distance is sufficient to allow for lath shrinkage or swelling, and still provide a firm clinch for the plastering. If the space is much less than this, the plaster dinch will be weakened. If much more, the laths may possibly sag down on the ceilings with the extra weight of plaster. In no instance should these spaces between laths exceed a width of three-eighths of an inch.

The clinch, or key, of the plaster is formed by the mortar being pressed through the spaces between the laths and then spreading out hack of the laths upon both sides of the crack, so forming a tie, or clinch, that holds the mortar firmly and securely in place.

It occasionally becomes necessary to lath on very thin furrings to corer over a heating pipe, a brick or iron support, or some other such exceptional instance of construction. In that case a wider space

RESIDENCE OF C. D. DU BOIS, MONTCLAIR, NEW JERSEX

 finm

 knots. Both bark and knots are likely to lexsem from the surrounding wood and so destroy the hold of the plaster; while the face of the phaster is oecasionally stamed from pitchy knotheles, hark, or sap. All laths are now machine-sawn. The old-fashioned split lath has mot laeen in the market for now moere than fife sears.

If the laths are tex dry, the wet mortar is likely to canse them to warp and twist; and if it hardens or sets before the laths leerome saturated, their swelling is likely to produce parallel phaster cracks. Better resultes can be obtained by using wet laths, when leoth mortar and laths dry out tougether.

In specifying the mailing of wood laths, it is sometimes thought to ensure hetter work if two nailings are reguired at each end of the lath, either upon the weiling alone or upon both wall and ceiling. It is more than douhteful if this requirement produces the desired result, as two nails in the lath end are likely to start a split, which may be inereased hy the pressure necessary in applying the mortar, until the entire end
 plastering is all upen the wall. Large lath nails, instead of making the work more secure, waken it in the same way. The exomononsized inch-andeme-righth long- "three-pemany fine"-mails fasten the lathis securely, ewen the ceiling mails rarely pulling out. Alowt five perumbs of nails will be neressary to eath one thousamd laths.
'Thu joints of laths are ordinarily broken every eight courses. JJhis means that mot more than cight adjoining lath couls ane mailed "pron onu stud or furring, the next cight laths, in lueth directions, leeing carried log, ending upen the next wall stud or ceiling furring to cither
 of ath extemted crack oecouring at the line of lath jointure. Some bathers find a small hamalful of these laths more esomemient to hamelle. than a larger hmatle, in which case it is simpler and casier for them (t) brak juints cevery six luthis which is espually grom ernstruction. Ocoasionally studding is placed twelwe inelues apart, and the lath joints broken for ewery wher hath. Such preatutions, however, are
not necessary in the ordinary dwelling. They increase expense; and the closer spacing of the studs, especially, provides more undesirable weight to be carried by the house frame.

Wherever the wood studding of partitions comes up against the brickwork of chimmeys or a terra-cotta or brick wall, strips of expanded metal or wire-mesh lath should be employed, extending seven or eight inches over upon either side of such a joint; and, if such a joint occurs in an internal angle, future cracking from a difference in settlement or shrinkage may be prevented by cutting through each plaster coat, when soft, with a sharp trowel.

Metal Lath. Of late years many varieties of metal lath have been placed upon the market. The use of such lath is generally required on boiler-room ceilings, and in other places exposed to strong artificial heat. Many varieties of metal lath-including all those made of wire -require supports at closer intervals than is provided by the studling, nine inches being generally considered the best distance. This necessitates either a closer spacing of studs than is otherwise necessary or desirable, or a series of furrings fastened to the wali studding.

There are some metal laths-generally those made on the expanded principle-that are sufficiently stiff, in one direction, to allow of a spacing of supports greater than nine inches; but, for ordinary wire cloth, no wider distance should ever be allowed, unless the cloth is itself artificially stiffened. All metal lath should be securely fastened by staples, and stretched before nailing, to increase its stiffness as much as possible.

In using metal lath, care should be taken to prevent plaster cracks along the line of jointure. The use of metal lath also requires three coats of plaster, in order to stiffen the lath sufficiently to resist the pressure required to finish the last coat.

Lathing and plastering are generally estimated, and the various materials are all figured, hy the square yard. In small work, no openings are deducted unless they exceed sixty square feet in area. In figuring up plaster by quantity, when openings are allowed for, it is sometimes customary to add half of the contents when measuring closets; while small triangular wall pieces are figured as though square, in order to make up for the extra amount of lahor required in plastering such restricted or odd-sized surfaces.

The use of expanded metal or wire lath is frequently demanded

 framing. ()ne coat of plaster-in threeremat work-may then bee dispensed with. These boards save time, lefing rapidly set in place
 rapilly. 'They are, however, freyuently the canse of cracks that appear in the finished plaster where the exlges of the lowards come together-sometimes even after the wall has been papered.

PIASTKR HATIRIAIN

Plaster is principally composed of lime, sand, hair, and water.
Lime is ohtained in diflerent sections of the country from calcined limestone, the cartonic acid and moisture contained in the stone

 reeombination, when distributed upon the walls of a house, into

 upon the wall in several conts is to present that moch more surface to absorb the carbonic acid -of which it was originally depriverd in burning-from the air. 'The thinner the eonats and the barger their
 constituent. For this reason-and soldely for this reason-is threecoat plaster work to be eronsilereal as lefter that two.

Properly burnt lime slakes easily and eomplately, when water is adferd, until it is converted inter at fine dast, which, in its durn, is mosistened and turned into a paste enter atetion of the water, which bubhles and hissess with the heat generaterl hy the process. 'This is What is called the slaking of lime. Very rich and pure lime- the leest for plastoring - increases to about twice its origital loulk by lwing shaked, and is theon almose pure white in color. Lime shomblalways lx as fresh as possible, and must lxe delivereyl in tighty sameyl harrols. (are should abse tre tahen to aseretain that it has leeot harmed with

Sand is broken or rotten rock which has become decomposed spontaneously or by the action of running water. 'That made by running water, or from stones worn small by rolling over and over upon the beach, is composed of particles so nearly round in contour and so lacking in angularities of surface that they are not mood material for mixing in any mortar where strongth is a requisite or necessity. 'The particles of rotten rock decomposed by exposure are better adapted to make good sand for mising with mortar, their shape being more irresular, with many sharp and angular corners. Sand obtained from ledge stones contains the essential elements of those stones, quartz, feldspar, and mica being present in granite formations, and lava, olsidian, ete., in volcanic sand. The sand coming from the softer stones is generally more thoroughly disintegrated, being frequently so rotten as to be entirely unsuitable for use in plastering. In most parts of the country the principal supply of sand now comes from the beds of ancient lakes or rivers, and is called pit sand. True sand, no matter how fine, may always be distinguished from dust by dropping it into a cllass of water, as it will invariably sink to the bottom without leaving any appreciable dirt upon the surface.

For plastering purposes, sharply angular sand is not absolutely essential. Good river sand, the coatser the hetter, is ohtained so easily, and is so clean and free from dirt, clay, and carth stains, that it is most generally employed for plaster.

The third necessary constituent is hair. The best hair upon the market is eattle hair obtained from the tanneries. The hair should be of good length; and, if too lumpy or clotted, it should be separated by soaking in water the day before mixing it with the mortar, as this method of separating the hair is less dusty and more healthful than beating or whipping it dry to obtain the same result.

Occasionally brick dust is added to the mortar for coloring, when it is likely that the mortar will set more raphidly- especially if the dust is mixed in shortly before using and is dry at the time of mixing. All brick dust should be sifted through a fine sieve. Besides brick dust, a variety of colorings for mortar are used-such as lamphlack, ivory black, powdered charcoal, Spanish brown, raw umber, burnt umber, red aniline, Venetian red, Indian red, vermilion, ultramarine blue, indigo blue, chrome vellow, and, occasionally, puberized clay. Mineral colors should be preferred to earth colorings. The latter

It is impessible to state arhitrary, set, hard-athl-fast propmortions for the mixing of plastering for either exterior or interior work. 'Tlue different makes of lime amd grades of samd alone, vary sufficiently to make any such statements exceedingly inadvisable; while the purpose and conditions under which the plaster is to be used, freyucntly oecasion considerable changes in its propertions.
"Working" the Lime. 'Ihe first process in the making of plaster is the slaking of the lime. 'This consists, ats already said, in simply reduceng the hard, britte hamps of its original form to a smoneth paste by mixing it with water. It is of the utmost importance that the lime should be entirely and completely slaked, and the paste smoothly and esenly worled, lefore adding any of the other ingredients.

The lime is slaked in a merfur-herl, a box of loards about 4 feet wide and 7 feet long, and a foot to eighteen inches high, set in some eonvenient location with its bottom about levelwith the top of a secomed fox placed at one end, and about two feet lower in grade. Both mortar and lime-slaking heds should have tight lootoms and strong sides, well hraced to resist the pressure that will come upen them when they are full. A quantity of sand already sereemed should also be near at hamd. Poorly sereened samd later camses extra trouble and work. (iravel in the mortar delays workmen while plastering and Iloating, and much pood plaster material will he lost in hurriedly: throwing or piaking ont these gravel stomes in the rush of applying the momtar on the wall.
 penered on while a workman breaks up the lumps and works the mans iarack and furth in varions directions with a hoes. 'The therough working of the material at this atage is meresary the emsure its complete slaking. 'The tembelly of the carctese wombatm is to hoe hack and forth in the center of the heed without any regard as to whe here hee is stirring

 combinteney thromgheme, if the water is mot conducted to every partiche of lime, or if the where ingeredientes are mivent in laffore the paste is
evenly prepared, the lime will be apt to blister and slake out unevenly, causing trouble after it is upon the wall. If the corners, for instance, are imperfectly mixed, lumps of clear lime will afterward appear. Many of these lumps will pass umoticed under the hoe of the workman tempering the mortar, and will not be found until they are flattened out under the wall trowel of the plasterer.

If too much water is used in slaking the lime-especially if a too great amount is added at once--the pile is chilled and forms into lumps that slake too tardily. If too little water is added, the lime is left so dry (burns, as the plasterers call it) that many small particles entirely fail to slake through lack of sufficient moisture. When too much water drouns the lime in the first place, it becomes so thoroughly chilled that a considerable portion of its strength is lost; and the process of slaking is, hy the very excess of water, much retarded. The process is also slowed up if very cold water is added, although the water soon becomes heated from the reaction of the lime. At the start, just enough water should be put on to initiate the slaking process. After this, as the slaking proceeds, more water shoukd be added as needed, taking care to keep the lime thoroughly moist at all times. A very active and quick slaking lime should be covered with water from the very begiming, to guard against the posisibility of burning. If the lime once burns, it will afterward be impossible, by any amount of working, to get out all the fine lumps, that are then caused. Rich lime will afterwards work cool, is little likely to crack, and bears troweling when being finished, without the surface peeling off, blistering, or staining.

If lumps of unslaked lime escape through the screen when the lime is run off, and get mixed into the mortar, it becomes very difficult to eradicate them afterward. It is not possible for the plasterer to get these lumps out of the mortar when working it on the wall; and the results of their afterwards slaking out will continue to appear long after the house is fimished. If they occur in the first coat, at various times after the work is completed-frequently extending throughout the entire first year-these lime lumps will suddenly blow or expand, forcing out the surface plastering outside them and making a large blister or lump, generally about an inch in diameter, which, if upon the ceiling, almost invariably falls off. If this unslaked lime gets into the final coat, much the same result occurs, although the particles

 of the head of at pin, and the emtire surface of the plastering is fre-
 the shape of a white dust.

In the brown roughteroat, the spots of white, unslaked lime are quite easy to see, ats they are often the size of a bean or pra. However, in the final white coat, these spots, treing smaller and of the same color as the rest of the mortar, do not show.

After it has once begrun to warm up, the lime should tee workent or stirred thoroughly during the process of slaking, so that, after the action has been completed, it will be of the consistency of a pasty cream. After slaking, the lime should be run off through a fine sieve (No. 5 screen) put at the end of the slaking low, into the next lower

 thoroughly mixed hydrate to be admitted to the beed.

When drawing or running off the lime, a large supply of sand already sereened should be at hand to scatter in the lrottom of the mortar-bed and to use for stopping leaks that may appear as the loox gradually fills. This screened sand should be sufficient in amount to complete the mortar misture. An ample supply of water, either in barrels or in hose piperl from a hydrant, should also be realy at hand-to avoid any possibility of the lime burning.

For the putty or finish coat, the paste should tee made even thinner before rumning off, and may be of the consisteney of milk. The sieve through which it is stramed should alsin lee finer, of atwont the mesh
 ohtained by ruming off the lime a second time, as by this means a coksler working putty is seceured.

The lenght of time that mortar for plastering slumbld lxe mived hefore being used, is a much-lisensised ynestion. It is gemembly stated in architectural speceifications, that "the mortar should the
 reqpuirement is not always cither wise or desirable. It is true that, in ohd lemglish work, lime mortar was left emoereal over with carth to stand for long perionls of time, offen six months to three years clapsing
before it was used. In this country, such slow-going methods are not to be expected. While lime does gain in strength by standing in this thin putty state before sand or other materials have been mixed with it, yet three or four weeks, at the least, are necessary before the increase becomes very apparent. It is also necessary that the paste should remain moist, by being kept covered all the time. At the curd of the fourth month its strength will have increased about one-fifth, and most of this gain has been made during that month. From then on the gain continues, but gradually decreases in amount.

It is more economical for the plasterer to use a lime that has been slaked for some weeks, as, when tempered down, it will work freely 1 with the admixture of a much larger proportion of sand than is taken up by lime mixed as soon as it can be readily workerl. 'This extra amount of sand does not add to the strengeth of the mortar; but, ass it causes the lime to cover a greater surface, it is a considerable economy for the contractor, made, however, at the expense of the quality of his work.

Lime mortar need be left standing only long enough for all its particles to be thoroughly slaked, and, if properly mixed and wet down in the first case, a great deal of time need not be required to effect that result. This once secured, the quicker the mortar is mised and put upon the building, the better and stronger will be the plasteringer that is obtained. It is further claimed that the accompanying loss of limewater is also very harmful, as this water-from the properties which it has already absorbed from the lime-is much better suited for carrying on the process of mixing than newly added clean water. Yet, if the lime has been long standing, it may he necessary to add clean water to replace the water lost by evaporation or seepage, although mortar mixed with clean water never hecomes so hard as that mixed with the water obtained in slaking the lime.

The sand and hair are next added, the hair being put in before the mortar becomes too stiff to work readily. After the sand is mixed, the mortar should not be left to stand for any length of time, as it would become considerably set and a loss of strength would result. If the mortay does become set in the bed, reworking wotld be necessary before it could be put upon the walls. 'The strength then lost bears a direct relation to the length of time it has stood, and the solislity it has attained, before this final working up.

 when the mortar is first mon off, while it is in at very thin paste. If, affer a lime-and-samd mixture hat heen standing for some months, it were attempted to bring it to a susfieiently fluid state tor rexidive the hair properly, by wetting it down a secomel time a considerable proper-
 be sacrificed.

Bearinge these faces in misel-once certain that the lime is slaked- it would appear leetter that not more than a week should elapse lxefore the use of this mortar; and a less time than that is, under matny circumstances, undoubtedly desirable. It is evident that no more lime-amdsand mortar should be mixed at one time that can be used within a few days at the most. 'The lengrth of time that mortar should be allowed to stand, is determined more or less by the dryness or monsture of the atmosphere. 'The dryer the atmosphere, the shorter the time,
 out, or evaporation, of the urater of erystallization, ass it is calleal.

It has alrealy been sat that limes made in different parts of the country vary extensively in their chemical composition and properties. A knowledge of the chemical composition of lime mortars and the indivitual peroulatrities of the lime loxally used, is mecessary brefore applying or attempting to utilize the principles here set forth. In the eastern part of the I "nited states, the limes fremuently contain from at third to a half of carlomate of magnesiat and the mortar in which surh limes aree ermplosed sets very readily.
'Ton sum up, the lime shoubl he slaked as evenly and thoroughly

 While the origimal misture is suflicemely monist to take upe ant work

 chamit

upon the quality and thickness of the lime paste, and also upon the nature of the work for which the mortar is intended. With exceptionally rich limes, sand to the amount of about two times the bulk of the lime-measuring the slaked lime in the form of a rather firm paste-may be added. As will be seen, this is a most uncertain proportion, for a great deal depends upon the firmness of the lime paste alone. Allowing for variation in size of the lumps of lime and their closer or looser packing together, it may perhaps be better to say that the sand should bear a relation to the lime, before it is slaked, of from three to four and one-half times its bulk.

The richer the lime and the finer the particles of sand, the more of the latter should be employed, although the finer sand does not make as hard or as geod mortar as the coarser variety. If both are dean and sharp, the finer and coarser varieties of sand may be mixed together with good results. Most laborers are apt to stop adding sand, merely because the mortar mixture becomes hard to work when the paste becomes too thick. This is poor poliey, inasmuch as the mixture hecomes much harder to work when the tempering is partly completed, a day or two later.

The fineness of the sand is an important factor. A rather coarse as weil as sharp sand is comsidered best, as the amount and capacity of the voids leit in such a mixture woukd be of such size as, without any dould, would provide space to contain lime sufficient to cement this granular mass very firmly together. The close pressure and contact of the sand particles would also lessen the possibility of settlement or shrinkage, with accompanying map-cracks. The hair may be mixed in either before the adding of the sand or when but a very small proportion of the latter has heen worked into the lime mixture. The hair is generally mixeel with the mortar heyeans of an iron rake. It should be thoroughly mixed, and enough shoukd be used to make it impossible to find any small sections of the mortar in which the hair cannot be seen. This will require from one and one-half to two bushels of hair to a cask of lime.

If the mortar is to be used as a first coat on stone, brick, or similar surfaces, it will carry more sand, and hair is not considered so essential. a half-hushel to the harrel of lime being generally ample. If too littie sand is used, the plaster i.s liable to dry too quickly when setting, and, after it is dry, will crumble very easily, showing up too white, or ashy

 finish）but very little sand is used．The harker the fini－h，the leas the amount of samd．For this coat，the sand is mised at the time when the putty is run off．For hard finish，when marhle dust，hrick dust，or anything of that sort is added，it is gemerally mixest tugether on the mortar－looard immediately before applyinge Situeco，or phaster of Paris，is never mixed with putty until immediately lefore using，on account of its rapid setting，which occurs in a few moments after mixing．When once set before being applied，it becomes useless． No more water than is necessary should be added，either in the mix－ ing of the mortar at first or in its subsequent tempering，as over－much wetting of the lime deprives it of a considerable propertion of its

 zation．

 cubic fect．A barrel of sand is supposed to contain ：3 cubice feet of

 pounds to the culic fort．

To summarize－one barrel of lime， $2(K)$ peutuls，will take almut a cubic yard of sand．In most localities a load of samd is suppement to contain twenty－seven cubic feet，or a cubic yard；but it is freyucutly less than this，extending down to two－thirds of the amement．＇To the bared of lime should also be used ahout two hareels of water amd－atwe haveseen－upwards of two bushels of hair for a first cont．Thaironmes
 containing enough hair to lxat up，inte a measurvel hushel．＇This

 mortar；and the amome should cover ahout fto spare yanls of lathed area，reegnimg about（ikn laths to surface．

The final skim crat is mixal remghly to the following propertions： A cask of lime to a half－tut of water，which shoulat take up atwout a
barrel of the hard, clean sand used in the surface coat. Generally the plasterer uses a larger barrel or hogshead for water, than the cask in which the lime is delivered. Also, in some localities, the lime will run somewhat more than 200 pounds to the barrel, Maine lime from Rockland being supposed to average 220 pounds. Rockland lime is considered in the East good lime for scratch and brown coats, but many masons prefer Jacob's lime for the finish coat.

It should be remembered that the bulk of the completed nortar mixture does not equal the total combined bulk of its various ingredients, but is less than the aggregate bulk by about one-quarter.

PLASTERING

Interior plastering is now applied either in two or in three coatings. Three coats are always necessary on metal or wire lath, the first coat being required to stiffen the body of the material sufficiently to allow thorough working of the remaining coats. Even upon wood laths, three coats make a better job of plastering than two. Extra strength and body are ohtained by the addition of the extra coat, provided time be allowed to dry out each of the coats thoroughly before the next coating is added. It has now, nevertheless, become the general custom to employ but two coats on the less expensive grades of residence work.

The plaster mortar is applied to the walls with a hand trowel of steel, about four and one-half inches wide by twelve inches long, having a wooden handle that is parallel with the back of the blade. After the mortar is put on and roughly smoothed out with the steel trowel, the darby, a long wooden trowel, about four inches wide and three feet in length, is taken by the workman and used - with a scouring motionto level the plaster surface and work it to an even thickness and uniform density. The flat part of the darby is generally of hard pine, a half-inch or slightly more in thickness.

Three-Coat Work. 'The best interior plaster work always used to be put on in three coats, and was worked to a final thickness of about seven-eighthes of an inch. Of the three coatings, the first is the thickest, so that, when dry, it may be strong emough to resist the pressure of working the coat or coats to follow. A large part of the advantage of threc-coat plastering is obtained by thoroughly drying each coat out hefore applying another, thus securing the added dens-

 it at the time when it is first applied.

 phaster behind the edges of the woxken laths, through the crevices between which it has been forced. Before this comat thoromghly dries. the surface is seralched (hence its name) with a tool designed for that purpose. The surface of the second coat also is sometimes serateheal with mails set into a wooken float or darhy like that used to rub over the surface, before adding the finish coat. When one coat is entirely dried out before another is applied, this serateching is always neceseary, the seratches forming a clinch or tie permitting the sulsespuent corat to unite the more firmly to the preceling.

The second coat generally contains a larger proportion of sand and much less hair than is necessary in the first coan. The surface of this secome coat-or broun coat, as it is called-must be brought up true and even, especially at all angles, and be plumb upon the walls. Before the finishing coat is applied, lumps must be removed and all other imperfections corrected, and the mortar must become sufficiently set to allow the entire surface to be rubbed up with a float or darly and so mad compact and firm.
'To save time, the plasterer adopted the custom of putting his second coat on over the first while the latter was still greeen. The combined mass (practically one thick coat) was then darbieal and treated the same as in two-coat work, over which alome the onlv advantage of this method was in providing a rougher samd surface on the seerond eoat than was possible when more hair (ahways neereseary in first conat) was included. (Otherwise, sulstamtially the same resultes as are secoured by thus working two coats thgether are whtaineal in the first conat of ordinary twonome work, at a saving of layth latwor and time. While this methed does mot furnish so gerent or so permabent a joh of plastering, it is monlernly comsidered as meeting the ruquirememts of threvernat work, when so squeitieyl.
'The suving in this surt of three-romt plastering is made chiefly by the plasterer, in the expense of doing his work. The owner pays
more money than a two-coat job would cost him, and actually receives sulsistantially the same grade of work. The second coat, too, dries more slowly when applied before the first coat is dry and hard, and there is therefore not so much saving in time as is generally believed. If three-coat work is attempted at all, it should be insisted that the first coat be thoroughly dry before the second is added.

The final coat is generally composed of lime putty, with a small proportion of white, clean sand, gauged with plaster of Paris. 'This gives the whitest finished surface. If a color is considered desirable, a colored sand may be used. All lath cracks or settlement cracks occurring in the previous coats should be cut out and patched before the last coat is applied. The final coat is about one-eighth of an inch thick, and the surface is burnished with the steel trowel to an even and straight surface, and worked sufficiently to free it from chip cracks or other surface defects. The lime for the white finish mortar should be run through a sieve of not less than ten meshes to the inch.

From thus combining the first two coats when green, the next step naturally, in the development of methods of work, was to apply but one coat, making it of increased thickness, and seratching it ready to receive the finish skim or white coat, except when it was desirable to finish the plaster with a rough surface, or to sand-scour it, as the last process is sometimes called.

Rough Plaster Finish. If the mortar is to be finished with a sand or rough finish, two coats are applied.

The second coat-which should be put on only after the first is thoroughly dry-is substantially the same as the brown coat described above, the rough finish being secured by working the surface of the second coat, before it dries, with a soft-faced float and a mixture of sand with some lime added. Sometimes the surface of the float is of carpet or felt, sometimes of cork or other soft wood. Only so large a surface as may be readily covered at one time, can be floated, darbied, ete., before it has time to set. In this catse no hair whatsoever is put in the second coat, as the hair destroys the evemess of the surface that is obtained ly the scouring action of the particles of sand rolling around between the surface of the float and the face of the plaster. A long float is generally used for scouring, and the surface is worked to an even and true face, care being taken not to leare any marks from the instrument itself.

 the first coat. If one-coat finish is emphesed, hair most he used, and the consistency of the coat must remain much the same, whe ther it is surface-finished or not. In that caste, however, it is not poesible to work the surface as true and as even as the surface of a seemol cont.

Two-Coat Work. Most plaster work now comsists of only two coats.

The brown mortar employey for the first coat should be make of fresh lime used as soon as it is stiff enough to be worked, with strong. Well-distributed cattle hatir and conarse, chan sand. 'Ilhe first conat of mortar must always be put on with suflicient pressure to force the plaster through between the laths, and so consure a grond clinch. 'The face of this coat must be made as true and even ats possible ons surfaces

 pine about the size of the trowel. Sometimes the face of this fleat is covered with felt or other material to pronluce at rough textural treatment on the plaster surface. The first coat should run a strong fiveeighths inch in thickness, and should be thoroughly dried out.

It is generally inadvisable to attempt to trowel a two-coat jol, very smonthly. If the attempt is made to float the first coat when it is too thin or insufficiently set, the instrument is likely to leave marks on the wall, and the plastering is itself likely to crack. It is better to err on the side of catution, as, if the plaster hats beeome slighty tow dry, it may easily be dampened by sprinkling water upen it with the phasterer's broad calcimine brush and following it innmealiatoly with the float. 'The use of water in this way hats acomphanying alvantages in that it tends to harden the plastering and to prevent the hairs gathering along the extge of the float, when otherwise they would have to be shaten off every few moments to prevent their rolling umber the instrument and treing pressed into the surface of the platerer in tufte and rolls, in such at way as to show through even the fini-h coate
('are should toe taken to see that cath conat invarially is absolutely Ary and hard trefore the addition of amother cont is altompteal. ()therwise the later crat wifl fall alf, in greater or less part, and it will twe

happen that the first coat is only partially dry when the second is applied, it will be seriously injured by the pressure brought upon it when floating. Its clinch to the lath is thus often partially or wholly broken, sometimes the plaster falling entirely off, leaving the laths exposed.

The finish second coat in two-coat work is the same as the final skim coat in three-coat work.

The Finish Coat. The finish, skim, or white coat should never be applied until the earlier coat or coats are thoroughly dry and hard, as it is liable to crack if put on before-quite aside from the possible danger of injuring the first-coat work by the pressure of troweling before it is entirely dry and set. A simple putty coat should carry more sand than when the finish is hardened by the addition of plaster. If plaster is used, the mortar should always be gauged (that is, plaster should be mixed with the putty) after it is placed on the mortar-loard. The usual process of gauging consists. in making a hollow with the trowel in the midst of the pile of lime putty lying upon the mortarboard. This hollow is filled with water, and the plaster sprinkled upon it, the whole then being mixed rapidly with the trowel and put upon the wall immediately, before the plaster has time to set. The proportion of lime and plaster, while variable, averages probably onefourth to one-fifth plaster.

The finish is skimmed in a very thin coating that is generally less than one-eighth of an inch in thickness. It is immediately troweled several times, dampened with a wet brush, and thoroughly troweled to smooth up the surface and prevent it from chipping or cracking. The water prevents the sted trowel staining the surface, but the plaster should not be too wet, as it will then blister or peel. The whole surface of the fimish coat, whether of putty or hard finish, should finally be hrushed over once or twice with a wet brush; while, if a polished (or buffed) surface is required, it may be gained hy brushing -without dipping the brush into the water-until a glossy surface is obtained.

Especial care should be taken, in the final coat, to finish all joints smoothly and evenly so that the point of jointure will not be apparent. The ceilings are completed first; then the upper part of the wall; and lastly the bottom portions which can be reached from the floor and thus more carefully finished up to the joint.

SHAKESPEARES hOUSE AT STRATFORD-ON-AYON

 joint is likely to show-which is, of course, nen serious unless the walls

 at the same lum

If the old-fashioned wooden angle-treads are used, the plaster should be neatly cut out from each side, forming a small \mathbb{V}-sunk angle that prevents the thin edge rumning up, against the corner-bead from breaking off. As a matter of fact, the use of a metal corner-head
 afterward tear or break the papering when it is put upen the wall.

As the hair is used principally to insure a clinch back of the lath, if plaster is applied on a stone or brick wall, a seratech cout is seddom necessary; and the conat of brown mortar is very often used without hair amd of about the composition of brick mason's mortar. If a seratch coat is used under these conditions, it is generally mixed with more sand and less hair than when put upon laths.

For a fimish where plaster mouldings are to be used, or when for
 is reyuired, threverome work, put on in the old-fashoment manner, should be demanded. 'This is mecessary in order to get a surface sufficiently level and true to rom plaster mouldings evenly, and to avoid the inerguatities that are almost certain to oce our in all two-cont phasteringe

The secomal amd third conats allow opportunities to obtain a straight and level phater surface. Tudividual spots are hrought up to ath even surface, the phaster then being added and carefully workerl beetween atad amongst them, bringing it all to the same face the means of the straight edge. (Ocrasionally it happens that the rough come is so tumesen that some filling in is atsolutely necensary to make the wall

If no finish coat is to be put on, the surface should be troweled smoothly as the mortar is applied, care being taken to leave no marks, hollows, or uneven places; but if the wall is to be finished or frescoed, it should be left with a floated surface.

Patent Plasters. Patent plasters, such as adamant, etc., are not often employed for private dwellings, being chiefly suitable for mercantile purposes. The patent plaster has certain advantages that are self-evident-such as quick drying and hardening. Its surface hardens more quickly and resists abrasure longer than the ordinary lime plastering However, a break once occurring, the extreme stiffness of the mixture makes it liable to extend further and to be of a more serious nature than if the softer, more flexible lime plaster covering had been injured in the same manner.

The extra stiffiness of most patent plasters is caused by the cement that generally forms an important part of their composition. These plasters are sold ready for use, requiring inerely the addition of a sufficient amount of water. They are therefore especially adapted for use by the inexperienced, and are valuable for executing small pieces of work, as they do not present the liabilities to failure, or loss of time and delay, occasioned by mixing up batches of lime mortar.

Back Plastering. Occasionally a wood-framed house is backplastered for warmth. This process consists in nailing a strip of seven-eighths inch furring against the inside of the boarding on each side of the studs. The space between the studding is then lathed (of necessity a slow and bothersome job) and plastered one rough coat of hair mortar, which should be allowed to dry before any lathing is placed over it on the inside face of the studding. As a matter of practice, the efficiency of back plaster is much injured by the fact that the studding, in seasoning after the plaster is set, is likely to shrink away from the plaster, leaving a narrow perpendicular crack on each side of the stud, which permits of the passage of cold air.

Plaster Cracks. Cracks in plaster occur from several causes. If the distance between the ends of the laths, where they join on the studding or furring, is too great, the larger amount of plaster in that place, when drying out, may canse a short crack. Any such spaces should, however, be filled by the lather before plastering is begun. Sometimes, too, especially in the first coats, cracks are caused by the shrinkage or expansion of the wooden laths after the mortar has

 ing up the conat before it finally sets. If wide or deop, however, they should be cut out to a wideh of an inth or so, and filleal in with new mortar before addling the last coat.

 draughts, and using less fire in his drying stoves. In green work,

Cracks sometimes occur in the angles at the ceeiling or corners of

 I" rpe ndicular ample where a woul pratrition is bomele up agate a
 a brick supporting wall.

Cracks oceur in the final finish when the putty is not gamgerl
 and when too litele sund has beern used. 'These cracks are ealleal chipped cracks. Plaster, when apparently perfert and withent cracks. will sometimes cramhle, either from low raphid drying or from the use
 injures the stengils of matath

If unclean sand, dirt, or clay has become mixed with the mortar, it not only weakens the lime hut prevents its allhesion to the sand partickes, so that no real set of the mortar ever occurs. (Of course, at all times, poor materials - sand, lime, or hair-may be responsible for defects in plastering. Plaster occasionally falls off even when apparently hard and good, if the laths are too near together, if there is insufficient hair, if the mortar is too rich or too sandy, or if it had not been pressed against the laths with sufficient force when being applied; or it may hecome loosened hy the springing of the laths under the pressure of floating it too hard. On brickwork the mortar requires considerable more sand than for application on laths.

Lime must have time to set before it dries out. Therefore, to last well, it should dry slowly: A stiffer working mortar makes better and harder plaster than thin or wet material, provided, of course, it is thin enough to clinch well to the lath in first-coat work, or to adhere to brick and dry seratehed surfaces, and to spread erenly, in secondcoat work. Stiffer mortar can safely be applied upon wet mortar than on dry ; and wide-spaced lathing will take stiffer mortar than close-laid laths. When two coats of mortar have been put on, and the last coat falls from the first, it is gemerally becanse the first coat was not wholly dry when the second was applied. The coats must either be entirely dry or quite envern to be sucerestully combined.

If possible, it is better to have the workman mse makes of materials, especially lime, having those properties with which he is acguainted. Attention has already been called to the fact that different makes of lime vary considerably in their chemical composition. It is not even certain that lime of the same make will always rum even in production, year after year. ()f course, lime that has been slaked be exposure to air or water while in the barrel, and before it is used, is worthless. As this occasionally happens, it is well to be watchful and see that such bad material is never added to the plaster bed.

As a final warning, be certain that the last conat of plaster has dried out hard and strongr before any wood finish is installed, as otherwise the wool will absorl, the moisture from the plaster, causing it to swell and therefore opening cracks that are never likely afterward to be altogether closed. All wood finish should also be kept out of the house while plastering is going on, as it will absorb moisture from the air around it. The reason that sash are not ordinarily set until after

 heat, or than it would dry if thesse "penenings were chemerd ley solid deners and glazell sash. In very had weather the sereen of cotton may bx. slightly stremgthened, if necessary, hy the application of a coat of whitewash on the inner side. Contrary to what might be suppeseed, the eloth
 and frost as is the glazed window, althengh the current of air passing through the eloth meshes of these sereens into and out of the house,
 required to dry out a plastered building. In groxl dryinge weather, these screens should be taken out and left out during the day, but should be replaced at night or in damp, weather, when the phaster otherwise is likely to reabsorb, moisture from the air and so delay the time of its final drying out.

If avoidable, the artificial drying of plaster hy salamambers should not be emplovel; natural drying by sum and air is, umber all circumstances, preferable. The salamander not only dries the romen in which it is placed, too quiekly-especially the ceiling almove-hut fills the air and the plaster itself with gras fumes, amd, ly steaming, is frepuent! the cause of the rotting of plaster or hair, thas reducine its vitality
 regularly installerd heating plant, is preferable to the use of salamambers, the chief objection in this case being oscasioned by the unduly rapid dryingentut of wall plaster back of or ahoove registers and radiators. The situation is helped if the radiator is set out from the wall and wome sereen is placed tretween it and the phanter. A sereem maly also be
 means of protecting the plaster of wither side of a partition thomeh
 severoly strained by la-ing dried tox puichly:

If planter is frozen wheon wer, it is lihely when lom und injure the whole mass so the it may evemtmally fall whe 'The ctleet of frewzing are less tromblewome if the wall in frozen after it in dried and

floated again, it may often be saved, the effect in that case being not much different from what it would be if the wall had been surfacemoistened and refloated.

Plaster Moulding. Plaster mouldings upon ceilings and walls are less frequently employed now than a few years ago, when, especially at the intersection of wall and ceiling, a heavy cornice of plaster was the common method of finish. Nowadays a cornice of wood is more commonly used.

Briefly described, the rumning of a moulded plaster cornice is as follows: Two parallel strips, or screeds, are run on the ceiling and the side wall, with their nearer edges evenly straightened. These edges are then fitted to the mould-a piece of metal cut out to a reversed section of the cornice outline. The mould is rum along the strips fastened to the wall for guiding it, the lower edge being cut out and fitted to run upon them.

The plaster necessary to fill up the mouldings of the cornice may be tied hack to the wall and ceiling by rows of nails driven so as to stand at about the location of its greatest thickness; while a strip of metal lath, filling in the angle upon projecting furrings, will offer the best possible clinch, and will help to reduce the thickness of the plaster and render its drying and shrinkage more equable and its surface less likely to crack.

When all is ready, cough putty and plaster are ganged in about equal parts to run the cornice down the length of one side of the room. The moulding form is then rested upon the supporting and guiding strip against the wall, and drawn along from right to left, pressed against the mass of mortar which is thrown into the angle just ahead of it by the trowel, the space immediately in front of the moulded strip being kept sufficiently full of plaster mortar to fill out the moulding entirely at all times. When the length is completed, or the gauged material is used up, the mould is moved back and forth along the length of cornice that has just been run, scraping away all the plaster except that included within the outline of the mould.

Where hollows occur, the gauged material scraped off by the mould shouk at once be thrown on again at these places, so that they may be immediately filled and brought up to the right section outline hy again rmming the mould over these portions. The ganged putty will set in a few moments, and each side of the room or section of the
\&

 age, is better suited than plaster to this purpose.

 conditions set by circumstances, a circular moulding around the

 processes described.

Cast ornaments are made separately in moulds, into which the
 hardened with glue or shellace, or surfaced with heeswax, and are
 place with fresh plaster or ghae; occasionally a few serews are used, in which case the heads should tre countersunk and covered in with plaster so as mot to show.

EXTERIOR PIASTERING

 in Viarope for many vears, it has lout rementy met with favor in this eommery. In Italy, plaster, or stueen, upplied in larger, umbroken

 staineal or cenlored and worked up, into diflerent icsigns. In Einglamel.

nection with a half-timbered frame, although these countries also contain instances of its use in large, unbroken, simple surfaces.

In modern American work, it is not often that a brick wall is covered with plaster, as the asthetic possibilities in the use of rough hard-burnt brickwork have now long been recognized; and when this-the cheapest brick-building material-is employed upon a dwelling, it is itself utilized for the exterior surface and to obtain the exterior effect of the structure.

Plaster has been used in this country in imitation timbered houses for some years; but recently its employment in large, simple surfaces, unbroken by the cross-barring strips of dark wood, has become popular -a treatment much more appropriate to this country. We also possess some examples of brick and stone houses, two hundred years old or thereabouts, that were covered and surfaced with white plastering; but in the most recent of American plastered dwellings, this effect has been simulated by applying the plaster to a wooden frame lathed with a fine-meshed wire cloth.

In any plastered building, the cornices should he projected sufficiently far to protect the walls and all exposed upper surfaces of the plastering. 'The farther this projection, the more certain the safety of the plaster, especially in the northern sections of the country.

The essentials for suceesfully-wearing exterior plaster applied in modern fashion, are: A well-seasoned, shrumk, and settled frame; a solid, immovable foundation; and a carefully applied and thoroughly worked job of plastering. The framework should be somewhat better constructed and more carefully arranged to prevent movement or settlement than on an all-wooden buiding. ()ther than this, the dwelling to be plastered outside does not differ, in any part, from the ordinary house, until the structure has been framed and boarded in. For plastering, the boarding is then cowered with a slightly better and more waterproof grade of paper than if shmgling or claphoarling were intended. (Outside of this papering, the house is furred with strips of furring, seven-eighths of an inch thick hy one and one-eighth to one and one-guarter inches wide (for metal lathing they are to be placed nine inches apart, for wood lathis twelve inches, on centers), and the lathing is applied upon these strips.

111111.1 .1111

 ure to the elements or damage from vater and ruse, even if the plater surface should leak sufficiently to culmit water behind this coverimg.
 considered so good a material, from the fact that it is imporssible to

 bility of rusting.

Occasionally, on a small, low homse of mot over a story and a-half of

 and in to insure its absolute protection from damage by water. Itow-

 provilus The omi-aim of the mure heandera alou somewhat myens the stiffness of the house, as a frame constructerl in this way is not so w.ll bracel as when the Inawhing is appliel. Xather an ilonfwelter
 second air-space obtained between the papering and the exterior
 house more equably warm in winter and enol in summer.

In the use of metal lath, it is always to be rememhereet that the absolute essential is to protect the lath from the atetion of water and rust. This once done-in whatever fashion- a permanemt and lasting plaster surface is ensured. Sometimes the metal lath is wired and fastemed to perpendicular iron furringe of tew-imms or angles. hath to the wook frame with staples or some similar fastening, allowing any prossible mowement of the frame to oxecur withont alferting or straining the plaster surface, which is by this means disessosciatest from, while directly supporeat ley, the homse frame. Crachs anomend

it is a more expensive form of construction, and is not now employed except in the larger and more expensive residences.

From the use of wire lath, there are occasionally obtained small surface cracks, especially if the lath joint happens to come at a place where some strain is afterward placed upon it, and particularly where it is weakened from the movement of adjacent portions of the building. For instance, if a perpendicular lath lap is made on the line of the edge of the window finish, a crack on the line of this joint is almost certain to appear in the plaster, extending both above and below the wood-surrounded opening. Care should be taken to cut the strips of lathing so that the joint will come at least nine or ten inches on either side of the edge of the window or door finish. All furrings should also be kept away and back from all angles, internal or external, upon the walls, so that a certain clinch may be effected by the plastering at these important points.

WOOD LATH

Wood lath is occasionally used, and, in certain seetions of the country, apparently with good results. It may he employed in two ways -one, in the ordinary maner, only spacing the laths somewhat further apart than would be advisatble on the interior of the dwelling. The other method consists in laying the laths diagonally over the building in such a manner as to form a criss-cross lattice-work. In this case the distance between the laths is from three-quarters to seveneighths of an inch, so as to allow the plaster to enter casily and form a solid clinch behind these lattice openings. The purpose of the diagonal criss-crosis lattice is to provide more or less flexibility for the wall covering, so as to take up, without injuring or cracking the plastering, a certain amount of the movement that may always be expected in a wooden-framed dwelling. 'This method of emploving lath, by the way, is in most localities almost as expensive as the use of wire or metal lath, which is probahly a sater and surer material to employ. As large and ast good a quality of heary wood lath as can be secered, should be provided for exterior work. Lath cracks are also then to be expected, from the same reasons that apply to interior work; while the mortar should be somewhat softer and slower drying when used upon this material than when employed upon a metal surface.

If pessible, it is advisable so to arrange the work upon the house that, after the completion of the frame, some time will still elapse

 placed inside of the building is then alsen instatlend hefore the exterior
 expecterl afterward to affect it than would be probable under the "ppocilco. .ondition.

 equally important over woond lath. 'This first exat should be seratchend or roughened while drying, and must lee thoroughly dry lefore the second coat is applied. A greater time ought to clapse between the applications of exterior than of interior plaster conats, imasmuch as it then becomes possible to cut out many of the larger and more import-
 the second coat is put upen the honse. 'The second or homwn ceat is then the less likely to crack; and, if a further extra time is alloweyt the
 final slap-rash or finishing coat is put upon the walls. 'This slower progress aids in giving a more permanent joh and one that is at the same time less likely to give ammeance from surface eracks afterwand making their appearance in the finish plasteringe.

The question of propertion in mixing the plaster is quite as
 impersiblde to give absolutely detinite direetions. Difterent phamerers. each being guideyl by the experienee obtainesl from worhing in different sextions of the comutry, prefer their imdividually ditferent ways of propertioning or miving their materials. In the fires conat, cetment is addeal to the lime mortar in propertions varying latween ten and forty per cent of the mixture shme phasterers prefor that the fint ceat should he leas stifterned with cement than the secomel. With wethers the reverse is truc: while, conerary th the gemeral appmaition, the exterior coat appars in the majority of cases forentain onls that abmont of cement mexesanry to pron ite the teme or coler that is desireal
for the exterior treatment. ('onditions also greatly affect these proportions. When the plaster is added last on a well-seasoned and shrunk frame, for instance, it is worked stiffer than when the building is newer and still far from finished.

The final coat for exterior plaster is generally applied as a slapdash finish, the surface texture being given by the throwing of handfuls of variously sized pehbles or gravel upon the fresh outer coat, thus pitting or marking np its surface. The smaller the size of the particles employed for this purpose, the more likely they are to stick and remain in the fresh putty, slightly tinting the surface with the color-if anyof the gravel employed.

The coloring of exterior plastering is done in much the same way as when it is used inside the dwelling. As a rule, it may be said that not sufficient comsideration is bestowed in this comntry upon the possihilities provided hy the use of color for exterior plaster work.

It is agreed that the utmost care to prevent absolutely any leakage is necessary on the part of the workman in the carrying out of this class of work; and it is here that the surecess or failure of exterior plastering most often hinges. ()f course, the joints oceasioned by the juxtaposition of the wood fimish and platere around window and door openings offer many opportunities for leakige. 'The plaster should here be carefully flashed; and, if pessible, an outer architrawe backband should afterward he put on at as to cover and protect this joint. ()therwise, a key should be prowided for the plastering, by rutting away or hollowing out a space near the imner colge of the wood facure, into which the plaster may be pressed hy the workman, and leakage thos prevented even if the wood, as is quite likely, shrinks slightly away from the plaster after it has been put in place.
'The prohlem of making tight this exterior plaster wall is complicated and rembered more difficult when it is divided into panels by a so-called halj-timiter treatment. In this style of design, a great number of joints hetween plaster and wood are occasioned where the wide wood hoards are almost certain to shrink away from the plastering, and where, too, it is impossible to protect these joints by outer applied battens in any way capainle of covering such an opening as may occur. Thorough flathing on all upper exposed surfaces, assisted by protecting overhang of the roof eaves, and broad kevs provided for the entrance of
 latwital uger

 Water could pessibly premetrate the surfaer. Livery care and equleaver
 which will, in every presible way, throw off and provent moisure In-ing admiteed into the space hack of the plaster conating -that volturablibe portion where its attark is most efferetually concerabel and mont to be dreadeyl.

 importance. Here, however, it is but necessary to nise the cemont as nearly neat as pressible, addling lime or a make of white cememt in wase a brighter surface color is desirable. 'The problem of the ienthe tic treatment of conerete construction is one that reypuires apparate amb particular consideration. Its solution has, ats yet, heon hardly attempted. Hollow terrateotta tile is amother material that is lwing
 plaster surface finish.

The student desiring to ohtain a wider knowlealge of the intriate subject of exterior planturing, may lae referreal th seweral articles pub)-
 a work treating historically and practically of the entire art and eraft of plastering-within and without the dwelling sew Mr. William Millar's treatise "Ilaster, llain amd Ineeorative." It would bee as well to remember, in consulting the latter volume, that it wan isneal in las. and that the subjeet is treateal from the peine of view of an F:nglide
 from thase common in American practice:

PAINTING

 may be painted or varnished. Some houses have their walls partly

 that is, the boarding about the eaves, windows, doons, the basc--brearel. and corner-pieces-is painted. Shingles, either wall or romf, are often stainerl with a crensote stain consisting of a coloring matter disenderd

 shingles that were never staineel are still doing grond service although believed to be now two hundred and fifty years ohd, yet the use of
 it is noxious to insect life and a powerfuld deterrent of natural decas:
 four or five years wall-shingles take on a beautiful, soft color. 'The question of staining shingles is a matter of taste.

Most houses are exteriorly paintell with paint hased on white lead or zine. Some idea of the cost may perhaps be gaineyd from the following considerations:

clean wooden surface; it differs from the other coats in containing more oil, because the wood will soak up the oil and leave the coloring matter of the paint on the outside.

To make the paint for the priming coat, take a gallon of the paint already described and mix with it a gallon of raw linseed oil. Paint thus made is, of course, lower in price; it is also much thinner; but such is the absorbent power of the wood, that the priming paint does not cover as much surface as the succeeding coats per gallon. A gallon of this thin priming coat covers 300 to 400 sq. ft., while a gallon of second or third-coat paint, well brushed out, will cover about twice this surface; this is because the surface for all but the first coat is hard and non-absorbent. Priming coats are used for both outside and inside work, as will be described later.

The dark-colored paints are usually cheaper than those made from lead and zinc, and if made of good materials are not inferior in durability; the extraordinary claims made hy the zine and lead manufacturers are to be received with much doubt. Some of the darkcolored paints are the most durable that can be applied on wood. The chief cost of painting is, however, that of labor, which varies according to locality and other conditions, seldom being less than twice that of materials.

For light-colored paints, it is better to use raw linseed oil to which pale japan dryer may be added, as described later; for dark colors, either this or boiled oil, boiled oil heing darker in color. The cost is practically the same; also the durability.

On inside work may be used either oil or enamel paint, as described later, the former heing the cheaper, the latter the handsomer and slightly more durable; or the wood may be finished in its natural color, by rarnishing it either with an oleo-resinous varnish or with shellac varnish. The oleo-resinous varnishes darken the wood very appreciably, while white shellac varnish keeps it more nearly in its natural color; although the latter does not prevent the natural darkening action of light, it may retard it. Shellac varnish is the more expensive finish of the two, if well applied. What is sometimes called oil finish generally consists in the application of a cheap varnish calleri hard oil, which is usually made of common rosin, linseed oil, and benzine. Its only merit is that it is cheap.

FIRST FLDRR PLAN

SECOND FLORR PLAN

SUMMER HOME OF DR. J. B. McFATRICH, LAKE GENEVA, WIS.
W. Carbys Zimmerman, Architect, Chicago, Ill.

Frame House Built in 1906. Ilan is Conditioned by Narrowness of Lat overlooking the Lake. The Interesting Feature is the screened-in Porch, which, hy a series of Folding Doors, can be Made Part of the Living Room. The High Frieze in the Living Room is Decorated with Woodland Scenes Showing the Lake and Hills in the Distance. Exterior and

Interior Views Shown on Page 328.

 The, ate of impunt imomels nilot whil a masume of aymal pant boiled sil and turperntine.

It is the purpose of this Instruction l'aper to describe only grond

 rubbed between coats, even if so contracterl; but this is the right
 four. No one, however, needs to be told these things. The methonds

 structures.

If :- \& finisherd in varnish, and the kitchen and pantry painterl with oil

 because color eflecets are desired to harmonize with the furnishings; and hathrooms are almost always done in enamel for sanitary eonsiderations. 'The taste and inclination of the owner are to bee conwhed ion r-and to all tho manery

 solid suhstance with a liguid which, when spread on at solid surface with a brush or otherwise, will adhere and in a shore time form - اyy evaporation, or more commonly by oxidation-a somewhat hand and tough film. 'The finely divided solid is catherl the pigment: the liepuid part, the whirle' 'The most common vehole is linseed wit. 'This is

absorption and chemical union of the oxygen of the air, whereby the weight of the oil is increased about one-fifth or one-sixth. It is therefore a mistake to suppose that oil paint gets dry as whitewash does, ly the evaporation of the liquid. Instead of that, it gets heavier. There are some other vegetable oils which have this property in some degree, but none which are used for paints to any considerable extent; some are used a little for artists' colors.

Linseed oil should stand at least a month or two before using. It should then be perfectly free from sediment or cloudiness; if it is not so, this is a sign that the oil has not been properly aged, and such oil is not fit for making paints. In this natural state, it is called raw oil; and the price of linseed oil as commonly quoted refers to raw oil. Boiled oil is this raw oil which has heen heated, usually to 4.50° or 500° F., with the addition of a small amount of oxide of lead or oxide of manganese, or a mixture of the two (occasionally some other lead or manganese compounds are useri). Boiled oil is darker (browner) in color than raw oil, but differs from it chiefly in that it dries five to ten times as rapilly. A thin film of raw oil on a glass or metal surface will dry at ordinary temperatures in five or six days, so as to feel no longer greasy; but boiied oil will do the same in a day or half a day. Oil dries best in warm, dry weather and out of doors.

The pigment is mixed with the oil by stirring the two together. This is usually done hy power, in a vessel called a paint mixer. The mixture should then be run through a paint mill; some paint mills are of steel, but the best have a pair of mill-stones, between which the paint is ground and most thoroughly mixed. Paints mixed in this manner are much better than those which are mised only by stirring.

Besides oil and pigment, paint sometimes contains a volatile thinner, the most important thinners being turpentine and benzine. Turpentine is a well-known essential oil, volatile, boiling at about $320^{\circ} \mathrm{F}$., but evaporating at ordinary temperatures when exposed to the air. Benzine is a mineral oil, lighter than kerosene and heavier than gasoline; the kind used in paint and varnish is called " 62 -degree benzine," its specific gravity being 62° on the Baumé scale for liquids lighter than water. Linseed oil weighs 7.7 lbs . per gallon; turpentine, 7.2 lhs .; and 62° henzine, 6.1 lhs . But linseed oil is sold by the oil makers and dealers on the basis of 7.5 lhs . per gallon.

 those which are paler, especially if the latter do not contain rosin. The buyer should always ask for a guarantee that the dryer is free

 Slowly drying paints are more durable than ruick ones.

In house painting, the white pigments are the most important, lecause they are the base of all light-colored paints. The most important white pigment is white lead. 'This is sold either as a dry powder, or (more commonly) as paste white lead, which is made of (a) 1bs. dry white lead and 10 lhs . linseed oil. This can be thinnerd with boiled oil to make a white paint. White lead is a very heavy fiembnt; ant will a given puanity of nil, mam of it can lim mian than of any other pigment, except red lead. It has great opacity, or covering power. It is discolored by gases containing sulphur.
 beromes yellowish even in pure air. It is better if it has been mixed with the oil for some time-a year or more.

IVhite zine is a somewhat purer white than white lead; not so opargue. Three eonats of lead are reckoned espual to five conats of zine.

 on its surfare, and chaths.

A mixture of two parts of lead amd one of zime is much likert. Zine-lead, however, is the name of an ontirely different pigment, ma le by furnacing ores combaning about equal parts of lead and zime: in which the lead is pressent as a sulphate. 'This pigment is free from the liahility to turn brewn if expmesel to sulphur gases; it is satid to ln .

pigment, but is coming rapidly into use, heing somewhat cheaper than the others. Lithopone is another white pigment of ennsiderable merit.

Adulterants. All these pigmenti may be alultorated with barytes, or with terra alba (sulphate of lime), sometimes with whiting (carbonate of lime). These adulterants are powdered minerals. Barytes is a good pigment, so far as protective action goes; and terra alba is thought by some good authorities to be unobjectionable; but whiting is injurious. All of them are transparent in oil, and lessen the opacity or whitening power of the paint.

From these white paints, colored paints are made by adding tinting colors, of which the yellow is chiefly chrome yellou, or chromate of lead; the blue may be either ultramarime or prussian buc; and the green is chrome green, a mixture of chrome yellow and prussian blue. The reds are (in house paints) made from coal-far colors, and most of them are now fairly fast to light. some dull yellow eolors are made from ochers, which are clays tinted with iron oxides, roasted and ground. These are permanent colors.

The dark-colored paints may not contain lead or zinc at all. 'The deep yellows, greens, and hlues are made from the colors already named as tinting colors, nome of which are entirely fast to light ; the dark reds and browns are chiefly irom orides, which are a valuable clasis of paints, very permanent on wool. 'The blakis are either lampblack or drop-black thone-hlark) and other (arbon colors; and these are often added in small quantity to secure some desired tone or shate of color.

The zine and lead pigments have some action on oil, and in their case it is considered the best practice to apply thin coats; lut the dark pigments do not act on oil, and, of these, thick coats are best for durability.

Paint and Varnish Brushes. I brush that has only a low price to recommend it will prove a poor insestment. If properly cared for, brushes last a long time, and it pays to have grod ones. The first sign of a good brush is uniform quality from chtside to comter. Inferior brushes have inferior bristles in the middle, and some poor brushes are actually hollow. For ordinary oil painting, the hristles on a large new brush should be five or six inches longe, uniformly flexible, and as stiff as can be found; they will be flexible emouch anyway, but all should be alike.

 inches wide) is a highlly satisfactory toul to use in gerneral painting, and is the brush reemmended by the paint committer of the American suceicty for 'Testing Materials. It is worth moting that this crommitter, made up expally of expert paint manufacturers and experts cmployed by the large consumers, unanimonsly agreed that mo larger brush than this should loe used in making paint tests.

The use of hrushes five inches wide is common for outside work; but while such brushes may be hat of the best quality, they are heave and laterions to use, and the workman who uses such a brush will nowt hrush the paint sufficiently to get the hest result. If a flat brush is used, it should not exceed 3 ! inches in widh; and three inches is better. A growl 2 !-inch oval varmish brush is a most execellent brush for all large work in either paint or varnish. The painter should also have a drowd $1 \frac{1}{2}$-inch oval hrush for smaller work, and a number of mound or oval brushes, called sash tools, of different smaller sizes, for more delicate work, such als sash aml frame painting. Stiff-hristle brushes, which have heen worn off short, are suitahbe for such work as rubbing-in filling. For varnishing larere surfaces, flat bristle brushes
 inch wite are useful. All flat brushess should have chiseled edteres. For flowing varnish, it is neressary to hase thick, flat, camel's-hair hrushes, romoing up to 3! inches in width, although most house varnishing maty be done with brushes not ower 2! inches wide.

Besides paint brushes, the workman will need some ordinary
 surface properly chamed.

Sterl-w ire hrushes, with atill sterl wire instead of hristles, shaperl like serublhing hrustus, are usel for cheming off old paint atul for chanime struetmral metal work. These are of varimes sizes and the ated wires are of differemt lemplonand sizes, hence differing in stifteres. They may he haul at hampare when.

and soft; this can be done by care and faithfulness. They should not be allowed to become dry with paint or varnish in them. To prevent this, wash them out in oil or turpentine as soon as you are through using them; or they may be left in the paint or varnish for a few days. They may be kept over night by wrapping them very closely in paper if they have been used in a slow-drying material; in this way they may be carried from one place to another. Brushes should not be left to dry with even clean oil or turpentine in them; if they are to be put away, they should be well washed first with soap and water, then with clean water, then hung up until thoroughly dry.

In use, brushes are best kept in what is called a brush safe. A deep wooden pail, with nails driven in its sides at different distances from the bottom, and with a close cover, makes a good receptacle for brushes. The brushes have holes in their handles, or loops of cord tied to them, and are hong on these nails; their bristles dip into some turpentine or oil in the hottom of the pail; they are so hung that they do not dip into the liquid above where the bristles project from the binding. If brushes are left standing on the bristles on the bottom of a vessel, they soon become onc-sided and distorted in shape. Tin brush-safes may be bought of any large dealer in brushes.

A brush which has dried with paint or varnish in it, may be recovered by soaking it in a non-alkaline varnish-remover. 'This will in time soften it so that it may be used again, hut it is not improved by such treatment. Brushes used in shellac should be washed out with alcohol instead of turpentine or benzine. No brush is good unless it is clean.

Fillers. Fillers are of two kinds-paste and liquid. Paste fillers are something like a very thick paint, and are composed of some solid powdered substance, usually silica or powdered quartz, mixed with a quick-drying varnish thinned with turpentine or benzine. This is applied to the dry surface of the wood with a stiff, short-bristle brush, or is put on with a clean, white cotton cloth, and well rubbed into the pores of the wood. After half an hour or so, the surface of the wood is wiped off with a wad of excelsior or a clean cloth or a piece of felt. A liquid filler is a quick-drying varnish; and most of the liquid fillers on the market are cheap rosin varnishes loaded with dryers, and should never be used. Paste fillers are the best in almost all cases.

HOISE リUNIIいい

 raw oil，with five to ten per ceent of dryer；and shombl be almost all oil，with very little pigment．＇Iurpentine is not a gomel thing in a priming coat，because the object is to fill the pores of the wookl，and turpentine evaporates．As soon as this is dry to the touch，all holes are to be filled with putty．The hest puty for this purpose is white lead putty，made by mixing a little raw oil with dry white lead， or by adding dry lead to paste lead until it is of the right con－ sistency．＇This kind of putty hardens quickly as compared with common putty，and is the best for this purposec．A steel putty－knife should not be used on interior wooklwork，ats it is almost certain to serateh it；a hardworel stick，suitalily shaperd，shombt be used．All eracks，joints，and nail－holes should be carefully filled．All knots and sapply places should be varnished with shellace varnish；this pre－ vents the pitch and moisture from attarking the paint．＇The sheflace should be applied where it is needed，hefore the priming conat．＇The priming coat should be given time to get quite dry ；at least a day－two days，if possible；and a week is better yet．＇Then it is realy for the second conat．＇This should contain a considerathle amomont of turpermine． If no turpentine is used，the surfaee is likely to he ghlossy，and the next cont of paint will not adhere well；hut hy replaceing part of the oil with turpentine，we grot what painters call a flat coot－that is，otre which is not ghossy；if this is made from paste lead or any paste paint，it can be proxluceal by thimning the paste with a mixare of oil und enrpentine in erpual propertions；seme painters prefer one－thind oil and two thirds turperntine．＇Ihis is for inside work only：＇IThis cont should be allowed to dry thoroughly ；if it tahes ten hours for the patat to la dry emongh to hamble，then at least four times ten hours additional
 and as much mene time as pessible shombld be allowert．If the finish
is to be ordinary oil paint, the next coat may be paint, thimed with about half as much turpentine as before, or with no turpentine at all. In the latter case, when the coat is thoroughly dry, it must be carefully examined, and, if glossy, it should be rubbed with something to take off the gloss; curled hair is often used, or a light rubbing with pumice and water. Then the final coat, which has no turpentine in it, may be applied.

But if the finish is to be with an enamel paint, the second coat, when quite dry, should be very lightly sandpapered with fine sandpaper, and the third coat should be of like composition to the second, treated the same way; then the enamel paint is applied. For a really first-class job, when this is quite dry, it should he rubbed down with curled hair or pumice and water, and another coat of enamel put on. This may be left with the natural gloss if desired; or it may he rubbed with pumice and water to a flat (dull) surface.

Painting Plastered Walls. Old plasterel walls may be painted with oil or enamel paints as though they were wood, remembering that the priming coat will have almost all of its oil absorbed be the plaster. New plastered walls do not take paint well, on account of their alkaline character, which gradually disappears with exposure to the atmosphere. It is well to let a wall remain mupainted at least a year. But if it is necessary to paint a freshly plastered wall, the wall is prepared by some painters by washing it with a solution of sugar in vinegar, the sugar uniting with the lime to some extent; or more commonlyby washing it first with a strongesolution of common alum and then with a solution of soap. After this is dry, it is washed with clean water, allowed to dre, and then painted. The alum and soap, form an insoluble compound which closes the pores of the plaster to some extent, and prevents the lime from acting on the paint.

Outside Work. Exterior paints are more elastice, ats they need to be far more lasting, than those used on interiors, since the effect of exposure to the sun and rain, destroys paint more than almost anything else does. Paint on the interior of a house will last almost indefinitely; but on the outside the best paint is not very durable. 'The surface, if new, should be cleaned hy brushing; knots should bee shellacked: after which the priming coat should be applied. This may be the same paint which is selected for the finish. only thimed with boiled oil (or raw oil and dryer), using one to one and a-third

 many experts advise the addition of half a pine of turpemtine to the grallon of paint; whers make now addition to it. 'The thind coat is applied after the seromed is thoromphly dry; if a week or a mometh can elapse hetween these coats, so much the better.

Repainting. If the old paint has been on a long time, it is liable to be permeated by minute cracks, which admit monsture to the surface of the wood and lonsen the paint. If now we paint over this, the new
 course the whole peels off in patches. If the old paint is in this state, it must be removed before the new paint is applierl. This can tre
 which is a lamp hurning alcolool, gasoline, or kerosene, and is so constructen that a blast of flame can be directed agrainst the surface. This melts or softens the old paint, which is then immediately scrapeyl off with a steel scrapere. 'The paint is mot literatly burned, but is softenerl by heat so that it can be seraped off. In some cases it is sufficient to remove as much as ponssible with at steel brush; this is a boush like a serubbing hrush, with steel wires instead of hristles, and, when vigorously used, will take ofl the lowse paint.

Ohd paint, however, is not always in this combition. If it adheres well, it may be cleaned with an ordinary serubbing hrush and water, and when it is quite dry, the new paint may he applied. Sometimes the paint seems in grond condition, only it has fadeyl amd lost its luster: in such cases a conat of lwiled oil, or raw oil with dryer, is all that is ntwies.

It is well to paint the trim-that is, the wimber-ansings, dewercasings, cormer-pieces, and the like Infore painting the laxly of the honser ; then the paint can low appliest to the flat surfaces mone neatly than is wherwise likely to bee dome. I'aint should he appliay in thin
 proberant migles while it is still growl on flat surfaces, lexame it was ditliente to lernsh the paint properly in those phames. 'Thene is it great dilference in durability between a thin paime thowed on with a lanze.
flat brush, and one of proper consistency well brushed out with a brush of medium size. In all painting on wood, it is desirable to brush it on with the grain of the wood; and by painting only a few boards at once, we may avoid laps by painting the whole length. Rough surfaces hold paint hetter, and more of it, than smooth. A gallon of paint will cover, one coat (on a painted or well-primed surface), about 600 square feet, not flowed on, hit well brushed out in a thin film. The priming coat will not cover more than 300 or 400 square feet to the gallon. In measuring the outside of a house for surface, make no deductions for doors and windows; if the trim is to be painted a different color, from one-sixth to one-third of the paint will be required of that color. Paint should be stirred frequently while using. A coat of dry paint is from $\frac{1}{\delta 00}$ to $\frac{1}{1,0 \pi 0}$ of an inch in thickness.

Roof Painting. lioof paints should contain a larger proportion of oil to pigment than other paints, and less dryer (or none at all). Many think that the addition of ten to twenty per cent of fish oil to a paint for roofs is advantareous; fish oil greatly retards drying and prevents the paint from becoming hrittle. Tin roofs, if new, should be thoroughly scrubbed with soap and water, or with pieces of harsh cloth, such as burlap, well wet with benzine. They may then be painted.

Paint dries relatively fasi on roofs; but as a roof paint is very slow-drying, plenty of time must be allowed hetween coats. A new rocef should receive three coats. Metal grutters and spouts are to be treated the same way. I o not forget that new tin or galvanized iron is difficult to paint; have it very thoroughly serubbed, even though it looks perfectly clean, and then rub the paint on well with the brush. Metal spouts will usually be painted the same color as the wall of the house.

Sometimes shingle roofs are painted with fireproof paint. This is not really fireproof, but considerably retards the spread of fire, after it has become thoroughly dry; when fresh, it does not even do that; nor does it have much effect after it has been on a year or so. It may be made by adding to a gallon of any good paint about a pound of powdered boracic acid. When strongly heated, this material fuses and forms a sort of glass, which keeps the air from the wood. It is after a time washed out by the rain.

Canvas roofs are prepared in the following manner: The canvas

 thoroughly wet; it shrinks, and all the litele wrinkles diapppear. It is a common practice to paint it while it is still wet, this being an excerp) tion to all other practice; but some wat until it is dry: 'The writer has been accustomed to the latter methonl, amd has not fonmel that the canvas shows wrinkles on drying, while the reables are all that can lre desired. A well-painted camas roof is very durable amd satisfactory.

PAINIVG STRICTIKAI. HIT UI.

Steel is a more perishable material than wowl, and more differult to paint. Without regrular expenditure for maintenance, worelen bridges last longer than steel ones; there are wowlen roof beams a thousand years old; and iron moofs are so short-lived that they are used only over furnaces and the like, where wooken ones womld take fire The painting of structural steel is therefore impertant ; and it is also difficult, if we are to judge by results.

In the first place comes the preparation of the surface. When we paint woond, we have the surface clean and dry: and then we soak it with oil, so as to have the paint bound to it in the most imtimate manner. Iron and steel, on the other hamd, always come to us dires, and covered with oxide; and as the surface is not prorous, the paint does not penctrate it, hut has to stick on the ontsibe the hest way it can. If we paint over the dirt and scale, and that ever comes alf, the paint eomes off with it ; if the metal is actively rusting, and we paint ower the rust, the corrosion is perhapps mate slower, hout it does mot stop).

Air and moisture canse rast ; if we can keep them away, the metal will last; but, unfortumately, all paint is very slighty pormus, and if expersed to the weather it in time deteriorates. 'Ihe most assential
 merliate coating.
 pickling it in dilute acid (usually 10 to 20 (ex ceme sulphurie anill. followed by washing tor remove the acid; and the other is by the use of the sumb-blast. Xeither of these prexerses is available to the on linary painter, who manst der the next best thing. 'Ihis is to remeve abosolutely all dirt and! all lemse scale and onvele. Fïrst clean olf the dirt, if any,
with brushes, as it would be cleaned off any other surface. Then, with scrapers and steel-wire brushes, clean off all the scale which will come off. If there is any new rust (not mill scale), it must be well scraped out and cleaned off. 'This is indispensable. When this is done, immediately paint it, before it begins rusting again.

One of the most popular materials for a first coat is red lead in oil. This must be mixed on the spot, shortly before it is used, because it will harden into a cake in the pail or can if allowed to stand very long. From 30 to 33 pounds of dry red lead is to be mixed with each gallon of oil-not less than 28 in any case. This is immediately painted on the metal; if it is put on in too thick a coat, it will run and be uneven. Some use raw oil, others boiled oil; it does not make much difference which is used. The paint dries rapidly; and as soon as it seems hard, a second coat of the paint can be applied. Red lead is different from all other paints in this, that it will finish hardening just as well away from the air. This is because it does not dry by oxidation, as other paints do, but hy the lead combining chemically with the oil, just as water combines with Portland cement. In the opinion of the writer, red lead should have one or two coats of some good paint, other than red lead, over it. But red lead is not the only first coating which may be used. Any grod paint may he used-a good graphite paint, or other carbon paint, or some of the varnish-like coatings containing linseed oil and asphaltum which are made for the purpose. It is important, in using any of these, to let plenty of time for drying elapse between coats. Not less than two coats is permissible, and three are desirable.

Projecting angles, edges, and bolt and rivet heads are the places which first show rust through the paint. This is partly because the brush draws the paint thin at such places. 'To overcome this, it is now becoming common practice to go over the work after the first coat, and paint all edges for about an inch from the edge or angle, and all bolt and rivet heads, with an extra or striping coat; then, when the second coat goes on over the whole, there is the equivalent of two full coats everywhere.

Painting on iron, as on wood, should he done in dry weather, when it is not very cold-at any rate not below $50^{\circ} \mathrm{F}$. Full, heary coats should be used, and well hrushed on. Care must be taken to get the paint into all cracks and corners.

1 1R\1>11

 the surface. Shellace is a resin which comes on the market in large,
 in the following manner:

 of alcolosi, thet put on the cover atal lease it mat masating IW sot on any aceount stir it. In the morning the flakes of shollace will be

 the mass with a wooden stick once every hour or so; do not put any

 varnish is milky or cloudy; it is, however, realy for use. As the aleolobl is volatile, the jar should be kept covered; and after it is mate, the varnish should be put in glass bottles or cleam tin cans.

There are many grades of shellace gum, the best beeing known by the letters i) ('; hut there are others nearly as peod. 'The common shellace is brownish yellow, and is called orenger shellac: this is the natural shedlae color. White shellate is made from this hy beaching with phlorine; but it is mot of sor geot quatity as the mobleacherl; it has, of erourse the advantage of being much paler in color. White shellate gum will, on long stambug, sometimes berome insoluble. Shellae

[^12]varnish may be thinned with alcohol, and often this is necessary. Shellac is too often adulterated with common rosin, which greatly lessens its value. This is easily detected by a chemical test.

Damar is a white resin which is soluble in spirits of turpentinefive or six pounds of resin to a gallon of turpentine. It is the most nearly colorless varnish we have, but never becomes very hard. It is used to a considerable extent as a vehicle for white lead and zine, to make a very white enamel paint. It is not durable if exposed to the weather.

More important than spirit varnishes are the oleo-resinous varnishes, which consist of certain resins dissolved in linseed oil, the mixture being thimed with turpentine or benzine. In making these, the resin is put in a copper kettle and heated until it is thoroughly melted; then some hot oil is added to it, and the mixture cooked until the whole is thoroughly combined. 'The kettle is then taken from the fire, and when partly cool, the turpentine is stirred in. The resin makes the film hard and lustrous, and the oil makes it tough. Thus the larger the proportion of resin, the harder and more brilliant will be the film; the larger the proportion of oil, the tougher, more elastic, and more durable it will be, and the slower it will dry. Nost of the color of varnish comes from the resin; the paler this is, the paler will be the varnish. The pale gums are higher in price than the dark ones, but are no better in any respect except color. Dark varnishes may be just as good (except in color) as pale ones-in fact may be better, for the dark resins are often harder and better than the pale ones of the same sort. The hard and quick-drying varnishes are suitable for furniture; the medium, for interior house-varnishes; the slow and elastic, for exposure to the weather.

Varnishing. The wood should be dry. For this reason it is better, if necessary to clean it, to avoid washing as much as possible, using sandpaper instead, which will also make it smooth. Of course the carpenter is supposed to do this, but the painter must not neglect it on that account. When in proper condition, it first receives, if it is an open-grain wood, a coat of paste filler. The open-grained woods in most common use are oak, chestnut, and ash. The woods classed as close-frain woods are white pine, maple, birch, yellow pine, whitewool, cherry, and sycamore. 'These latter do not need filling. If filler is used, it should be well rubbed in with a short, stiff brush; and

 stand 24 to 45 hours.

 used, as they tend to raise the grain of the wookl.

In cleaning off the filler, be careful to clean out corners and mould-
 use any steed tool.

Where rooms are to be finished in the matural color of the wookl, it is nevertheless a common practice to stain the window-sashes; a
 used on close-grain woods; but this is not advisable, as they tend to prevent the varnish from getting a good bold on the wookl.

Next comes the varnishing. Window-sills, jambs, inside hlinds, and other surfaces exposed to the direct rays of the sun, are to be treated as exterior wootwork, and are not varnished with the ordinary interior varnish used on the rest of the work. 'The flowors also atre left out of account for the present. 'The rest of the wordwork reveives its
 wood, brushing it out well in a thin coat. 'Ihe varmish ought to dry dust free (i.e., so that dust will not stick to it) over night; but at least five days should elapse between coats. When dry, it should he rubberl with curleat hair or exedsior enough tor remove the ghoss, ste that the ne te coat of varnish will allore properly; a hetter result will In hatel if it is lightly sandpapererl with 00 paper. 'Ther second coat is treaterl lihe
 Ahe fourthor finishing cont may be left with the natural ghoss, ore if preforreal, it maty le rubhed with fine pumice amit water to at smouth, dull

put on it; and the rubbing is done with this. The varnish must be quite hard and dry before this is attempted. Varnishing, if properly done, is slow work; that is, much time must be allowed for each coat to dry thoroughly.

The varnish which is used on interior woodwork should not dry too quickly; it should dry enough over night so that dust will not stick to it, and in twenty-four hours should be hard enough to handle freely; but if a chair, for example, were varnished with it, it would not be entirely safe to sit on it for a week. It should, however, finally become perfectly free from tack, which it will not do if it is a rosin varnish. At present prices (and it is not probable that they will ever be lower) varnishes for interior woodwork are sold, according to color and quality, at prices ranging from $\$ 2.50$ to $\$ 1.00$ a gallon. It 1 is in the lighest degree inadmissible to use a cheap varnish for undercoats; theouter coats will crack if this is done. A good varnish that dries too quickly, such as what is called a rubbing varnish, or one intended for furniture, has not the durability needed for this work. It is economy to use a good varnish. The writer has, in mind a house which was properly varnished eighteen years ago and has been constantly occupied by a large family, yet the varnish is still in fair condition; if it were lightly sandpapered and one new coat applied, it would he like new-as good as it is possible for a surface to be. Cheap rosin ramishes never look well, even when new, never keep clean, and deteriorate rapidly.

Shellac. Interiors are sometimes finished with shellac. This varnish is not used on exterior work, but it is a good varnish for interiors. All varnishes containing oil darken the color of wood; but white shellac is comparatively free from this objection; at any rate it does it less than anything else. Orange shellac i.s a dark varnish, and even white shellac darkens with age to an appreciable degree. Orange shellac is more durable than white, and should be used wherever admissible, rather than white; but it is usually necessary to use white shellac for this service. If shellac is made up as heary as has been described-five pounds to a gallon of alcohol, and this is the standard -it should be thimed considerably with aleohol before using on interior woodwork. It must he applied in thin coats, and given plenty of time to dry. It is rery deceptive about this; it appears to be dry and hard in an hour, and it is hard enough to handle freely; hut if we apply coat after coat, even six hours apart, we shall find that the wood is

but tronble. 'The first erat sinhs paphilly inew the wemel; a serond erate
 between coats. Shellace maties at very thin coat ; so it is necessary to apply a large number of coats, at least twice as many as of olen) resinous varnishes, to get a sufficiont thickness of coating. Beceanse of this labore, shellace is an expernsive finish; hut it is hamelsome and durable. 'The treatment of it, as regards rubbinge, ete., is the same as has been deseribed for wher varnish.

Varnish makers msually advise that shellate hamble mever be used as a priming coat for other varmish; this is probathly leceanse they wish to sell mere of their own groods, for shellate is really ath exeellent first cosat, except for exterior work, where it shomblant lee used. ()f course wood should be filled before sheflateking, the same as forother varnish. Viarnish does not, however, wear well over at heavily shellateked surface. Shellace makes a grood floor vamish, discoloring the wool very little, and wearing fairly well. After the floor has been well varnisheyl with it, very thin conats, applical rather frepuently-say excery one to four months, aceording to use-will keep the floor in fine condition; and after applying one of these thin coats (of thinued shellate), it will be dry enough to use in an hour. 'I'his ean be applied with a very wide, flat hrosh, and a man can got over the fleore of an orelinary room in at few minutes. Shellate hrushes shouhd he washerd ont with aleohol ime lably atry maty
E.aterior Varnishing. Vimnishes dry much more rapidly out of dours than within, so that it is pratereahle to nse more dastie and durable materials. 'Ilhe eomblitons, in fact, ate so severe that the best are not prome conough. In the lirst place, do not wise any filler on
 shellate; as atn undereate expmeded the the heme it will suftern and hhater. Lise omly the bese sperer éurnish, such as is made for varnishinge the spars of gadhts; fill the womel with it: satupaper lighely Ixetween eroats, just emongh se that cach sumereding coat will take fohd well: finioh with a come well howed mot atml heave it with its natural ghlosis, which is mome lasting thath a rublued surface. 'lhis is

not last on an outside door more than one-twentieth as long as it will on an inside door. Never use interior varnish for outside work.

ENAMEL PAINTS

Varnishes are all more or less brownish yellow or yellowish brown. Therefore a coat of varnish applied over a paint obscures and changes its color to some extent. To overcome this as much as possible, the ramish, instead of oil, is mixed with the pigment, as a vehicle. In this way the pigment comes to the surface and displays its color. These paints, if made with grool varnish, are durable; the method of application has already been described. If necessary to thin them, do it with spar ramish instead of oil; a grood interior varnish may be used, but it injures the flowing yuality of the paint somewhat.

White lead and zine are sometimes mixed with damar varnish. This makes the whitest enamel paint, but it never gets very hard, never has much luster, and is not very durable. It is very white, is easily applied, and dries quickly.

A NEW VARNISH FINISH

A method of finishing open-grained interior woodwork, which has been practiced for a few years, consists in first staining the wood with a water-stain-dyeing it, usually-and then, when it is dry, filling the pores of the wood with a paste filler which has been colored by the addition of a pigment. For example, the wood may receive a stain of any dark color, and the wood-filler be mixed with white lead. This shows the open or porous part of the grain in white on a dark background. By using artistic combinations of color in the stain and filler, very beautiful effects can be procluced, and this finish has been used in some of the most handsome and costly pullic and private buildings. Thus, if a room is to be decorated in green, the woodwork can be made to harmonize with the prevailing color. An oil stain must not be used on the wood, as it will not work well with the filler. The colored filler is applied and rubbed off in the same way that any paste filler is used, and then the varnish is applied over it in the usual way.

FLOOR FINISHING

The primary trouble with floors is that people walk on them. If they did not, there would be no trouble at all. Four coats of varnish,

 Susitheal

 varnish; an ordinary oil paint is not hard emongh. If an wil paint is used, it must be heavily charged with dryer, for a flewer paint should dry in twedve hours. (iond quick-lrying flom paints are in the market.

Flowrs of choice woond, however, are not usally paimed they may be either varnished or waxed. If they are of oath or other onsengrained woend, they must be filled with a paste filler"; cetherwise the varnish is applieyd directly to the wood. Flower varnish is quickere in dryinge and harder than interior finishing varnish, hut should not he so harel ats to be brittle; rubbing varnish is tow harel. If the flowe is to low stained. this is done with an oil stain before varnishing; if it is a floor which has previonsly heen varnished, so that the stain will not pernetrate the wood, the stain may be mixed with the varnish, althomgh the effeet is not then so growl.

Flomer wax is not made of heeswax, hut of a hariler vegetalile was, and is solld hyall paint dealers. 'The flow shombld reeceive one enat of shellate; then the fleme was may lee rubleed on with as stifl hernsh, and when it is dry, which will bee is a few hours, it may lex perlishat by rublineg with a clean cloth or with a heasy, werghted flow hrosis mate for the purpose. It should receive amother conat every werk nutil four or six coats have been applied; after this a litthe of the Heor was, thinneal if newessary with turpentine, shmuld la applical often emongh to kexp the flemer lowking well. Alkalies dismbe the was, amel in cheming the fleme only a litter soap shombl be used in the water with which the fleer is washed. A was fimish kepe pelisherd with a peolishinge brosh, is the hatulsomest sturface than can be obtaineod for a flower; but it is so slippery that it is somewhat damgeroms. It dons met discoler the wond. laterier trim that not hamd-rails) is sometimes wanfinisherl. 'this finish requires a monel deal of care, ase it is lihely to esath dhast; otherwise it is hamelame :and durathe.
()h flemers which require chaming and revarnishinge hombld have

after a short time, removed with a scraper. The last of the varnishremover is taken out with a rag wet with turpentine or benzine, care being taken that there is no fire of any sort in the room or any neighboring room. This will not only take off the old varnish, but the old filler also; and the floor must be treated like a new floor. Any stains on the floor may be treated with a hot solution of oxalic acid, one part to ten of water; when the stains disappear, wash well with clear water; let the flow dry a day; sandpaper; and it is ready for vamishing again. This treatment-removal of old paint or varnish hey a liquid varnish-remover--is applicable to all varnished or painted work. The outside of a house could have the old paint taken off in this way, but burning off is cheaper and quicker. These varnish-removers are mixtures of benzole, acetone, aleohol, and other liquids, and the hest of them are patented.

ALUMINUM AND BRONZE PAINTS

Radiators and pipes are often painted with aluminum or bronze paints. 'These consist of metallic powders, in fine flakes, mixed with some varnish-usually with a pyroxylin varnish, which is a thin solution of a varicty of sum-cotton in a suitable solsent. generally acetate of amyl. If one of these paints-which smell somewhat like bananasbecomes thickened in the can by evaporation, it can usually be thimed wihh acetate of anyl, if some of the special thimer cannot be had; hmshes can be washed out in the same. A grood aluminum paint is durable, even exposed to the weather. One coat is usually enough, two certainly so.

GLAZING

House painters are usually expected to understand the art of setting window-glas: ; it is not difficult to learn. Cilass is classified as shect or coplinder glass ambl plate glass. Sheet glass is made, at the glass works, by hlowing a cuantity of glass, first, into a hollow globe; then, hy more blowing and manipulation, this is stretched out into a hollow eylinder perhaps a foot in diameter and five feet long; this erlinder (whence the name "celimber glass") is cut open, and, after reheating, is fiatiened out into a sheet, whence the name "sheet glass;" after anncaling, it is cut up into convenient sizes. It is made of two

 to this it is graderl as first, seromd, and third puality; in . Imerioan gh these grades are ustally marked "AA," "A," and "B;" and anythins peorer than "B" is calleyl stock shorts. Fooreign eglasis is mot thas markend, each maker having his own arhitrary marks. Simglo-thick ghass is used for size's not greater than atwot 24 by 3.t inches; donhlethick, up to to by bo. For larger sizes, plate ghasis only is used; lout of course either plate or double-thick can be used for smatl siza= if desired.

Plate glass is cast in plates; the liquid grass is poured ont on an iron table, about 1.5 feet wide and 2.5 feet longr, and smontheqd down to at uniform thickness of half or fivereighthes of an inch bey passing a roller over it, like rolling pie-crust; after this it is ground down with sambl, emery, and polishing powder to a quarter or five-sixteenths of an inch in thickness. It is therefore much more costly than sheet inlass, hut is also more perfect.

Crystal is a very thin plate glass, about one-righth of an inch thick, and is used where ordinary plate is too heary, as in movabhe sanh. It is the finest of all window glass. 'There are two grates of plate oflan. known as glazing (for windows) and silvering (for miryors), the latter being the best. In the first place, the sash is prepareal for the ghass. It must receive a priming coat; if it is to be painted, it is primed with white lead and boileal linseed oil, the mixture having very little or mo turpentine adderl; if it is to be varnished, it is primed with lwilad wil alone. If it is not primed, the putty will not stick; the wond will Iraw the oil out of the putty and leave it crumbly. Next, the erlass in fieted to the sash. It is cut cither with a ghasis-cutter's diamomel or with a wheed cotter, the later beeng a little sharphedered steel wheed set in a hatudle. If wedl made, the wheeds may be beoght separate and atre replaceable. 'The wheel coutters are generally used on I \& 1 If plate ghass is cout only with a diamond, which mathes a deaper cont. 'The wheeds are kept wet with kerosene; the workman has a litale hente or cup of kerosene on the lerehe and dips the whey in it.

rest. This is called bedding the glass, and should always be done. It is not uncommonly omitted with pine sasis ; but it ahsolutely must be done with all hardwood sash, metal or metal-lined sash, and for all plate and crystal glass; and it ought to be done in all cases. Them the glass is gently pressed into place, after which it is fastened with glaziers' points, which are triangular hits of metal. No. 2 peints are used on single-thick, and No. 1, which are larger, are used on double-thick glass; they are put in ! to 12 inches apart. 'They are driven, not with a hammer, but with the thin side of a two-inch chisel, the flat side of which lies on the glass, the edge of the chisel away from the surface so as to avoid scratching it. The chisel is also useful for adjusting the position of the pane; if it is smalier than the sash, it is so placel that when the sash is in its natural upright pesition the pane of glass wili rest with it: lower edge hearing on the wook. The points are commonly of zine, which bends casily; and when the pane is properly placed, if there is on one side a space between it and the wood, the chisel is hedd over this crack, and with its celge an indentation or crimp is made in the little triangular zine point which has already been driven; this crimp prevents the glats from sliding back against the woorl. This is the reason zine is used for the peints; it will bend. Steel points are sometimes used for phate glass, because of their greater strength, the glass being heary. To dirive through the sheet metal of metal-covered sash, steel shugs are used ; thess are ahout $z^{2} \|$ inch thick, about ₹ inch long, and , ${ }^{7}$, inch wile at the wide end, triangular, and sharp-pointed.

There is a machine for driving points, hut it is not much used except on small glass set in soft-wood sash.

The glass being properly secured hy points, it is ready for puttying. To do this, the professionals set the sash up in a nearly vertical position on an easel; the glasis is puttied on the righthand side and across the hottom; then the sash is turned the other colge up, and the operation is repeated. This finishes the work.

The most important things alout glazing are to hise a sufficient number of points and to use good putty. ()rdinary (pure) putty is made of whiting, which is pulverized chalk, mixed with enongh linseed oil to give it the consistence of stiff dongh. The workman can make it from these materials with his hands; everyone can make his own putty. As a matter of fact, however, the putty of commerce is made liy ma-

 materials cheap enomgh; and in ratiey pmete can be sold for alome three cents a pound, or sixty dollars a ton; and a dullar's worth will putty all the glass in an ordinary house. P'ure putty, howeser, is ahmost imposithle to get. Narble duat is subatituterl for whiting, and a mixture of rosin and minemal wils for the oil, and the cont reducent alxout half. It is the use of this mierpable stuff which cames ninefenthe of the trombles with windows. If the glazier (ammen bee sure of his putty otherwise, he should make it himself.

The best putty for glazing is a mixture of pure whiting putey with one-tenth white leal putty. 'This makes it set a litule more guickly, and it becomes harder. P'ure white lead puty grets tow hard; it is tow difficult to remove it in case of hreakage of glats.

If the glass has not beem hedded in putty, it is customary to go around the indoors side of the glasis, and crows some putty inte the crack between it and the sash. 'This is callewl harking the ghass. I airgu plates of plate glass are not puttien, hut are hehd in place with strips of moulding nailesl on the sash, in which case the crack between the glass and the moulding is lacked with putty.

REVIETV QTENTIONS.

PIRACTIC.AL TEST (2けに-TION:

In the foregoing sections of this Cyclopedis numerous illustrative examples are worked out in detail in order to show the application of the various methods and principles. Accompanying these are examples for practice which will aid the reater in fixing the principles in mind.

In the following pages are given a large number of test questions and problems which afford a valuable means of testing the reatur's knowledge of the subjects treated. They will lee found exeellent practiee for those proparing for College, Civil \&ervice, or Eugineer's I.icense. In some cases mumerical answers are given as a further aid in this work.

1:1,1.1"1゚1:11 い1:1N1;

4. What is the principal difference between alternating amd direct-current circuits, so far as concerns the wiring system?
5. Compare the advantages of the two-wire and three-wire sywens iff wiviys
(i. Inder what general heads are approved methends of wiring classificel?
7. A single-phase induction motor is to be supplied with 2.5 amperes at 220 volts; alternations 12 , (1) 0 per minute; power factur s. The transformer is 200 feet from the motor, the line comsisting of No. 4 wire, 9 inches between centers of conductors. The transformer reduces in the ratio $2,5(3)$, has a capacity of 30 ampreres at 2200 2.01
 M. F. of 2 .isper cent, and a reactance E. MI. F. of 5 pere ceat. ('alculate the drop. (T'se talde and chart.)
s. What are the distinetise features of the different kinds of metal condnit?
 delisered, 2.200) volts; distance of tramsmiswion, 1.5,(нк) feet; size of wire, No. (0); distance between wires, 21 inches: peower factur of hamb.
 in per cent of E. M. F', delivered. (I'se table amb chart.)

12. Describe three different methods of testing? Which is to be preferred?
13. What conditions determine whether a two-wire or three-wire system of wiring should be used?
14. In locating cut-out cabinets and distributing centers, what requirements should be fulfilled?
15. What is "knob and tube" wiring". Explain its use and discuss its advantages or disadvantages.
16. How far apart should insulators be placed?
17. What tests should be made before an electric wiring equipment is finally passed for acceptance? Give reasons.
18. What regulations govern the use of fibrous tubing?
19. What is meant by mutual induction?
20. What are the adrantages and disadvantages of overhead linework as compared with underground linework?
21. Deseribe and illustrate hy sketches proper methods of supporting and protecting conductors.
22. Discuss the alvantages of ruming conductors exposed on insulators.
23. Illustrate by dianram, proper and improper methods of grouping conductors of two two-wire circuits.
24. What dangers are inherent in the use of moulding? What precautions should be taken to avoid them?
2.). Describe the proper methods of laying out branch circuits, (a) in fireproof buildings; (b) in wooden frame buildings. Give sketches.
26. What methots of installing wiring are best adapted for the following classes of huildings, (($)$ fireproof structures; (b) mills, factories, etc.; (c) finished buildings; (d) wooden frame buildings:
27. What is skin effect? Its bearing on the problem of wiring?
24. In selecting runway for mains and feeders, what precautions should be taken?

R1:V11:11 ,111:-11.N:

3. Give the main points of difference levtween the thre forms of are lamp mechanism.

5. Inescribe with sketch the anti-parallel systenn of feediner.
6. Prove the law that illumination varies inversely with the square of the distance.
\%. Why is are light photometry a more diflicult froblem than incambesent!
8. Cabenlate the illumination three feet alowe the flowe at the center of a room 14 feet square and 12 feet high, lighted by four 10-camdle-power lampis ! feet above the floor at the center of the side walls, assiming the coedtieient of redtection to bee oll \quad.
9. What material is used for the filament of incamderoment l.uype: P'apolaco aliy.
10. Firom the curve griven in Fig. 4 , determine the efleciency which corresponde to the temperature of $1: 300$ ('entierambe.

12. What is meant hy menan iphorical camble power !

 residumecen!

ELECTRIC LIGHTING

17. In a direct-current are lamp, which carbon bums away the more rapidly?
18. How are arc lamps rated?
19. What are the important advantages of the two-wire parallel system of distribution?
20. Name and describe the most desirable standard for photometric measurements.
21. How many measurements should be taken in the determination of spherical intensity?
22. What is meant by flashing? Explain.
23. Define emissivity.
24. If the voltage of an incandescent lamp be increased 4% above normal, what is the effect on the candle-power, efticiency and light?
25. Explain the (ooper- Ifewitt lamp, stating the two methods of starting.
26. Compare the open and enclosed are lamps.
27. Why is the positive carbon placed above the negative in a direct-current are lamp?
28. Sketch and name the different forms of incandescent lamp filaments.
29. Thder what combitions can a :3.1-watt incandescent lamp be used?
30. What is the function of the arc lamp mechanism?
31. What are the advantages of the three-wire system?
32. Why is it necessary to exhast the hull, of an incandes. cent lamp?
33. At what point in their life should incandescent lamps be replaced?
34. What is the object of a resistance in series with the are lamp in constant-potential direct-current systems?
35. Name the advantages of the Nernst lamp.

3!. What sort of lamps and of what candle-power should be used in residence lighting?
37. Give the characteristics of the Cooper-Hewitt lamp.
38. What will be the external resistance on a 110 volt con-stant-potential system, if the load consists of 437 lamps of 16 candle-power?

 wonal larl.

 for both interior and exterior plastering.
4. How are estimates for lathing and plastering made?
5. What precautions are absolutely necessary in the placing of metal lath?
6. If wood lathing is used on exterior work, how should it be laid?
7. When, if ever, is wire lath preferable to expanderd metal?
8. Describe in detail the process of slaking the lime and
 houses. What precautions are to be observed?
9. Should mortar be used as soon as mixed? Iiscuss this question in all its bearings.
10. How would you mix the mortar for exterior work?
11. If lime is not thoroughly slaked, what trouble is likely to durlap:
12. What will be the effect of using too much lime in mixing murtar? low math matl
13. What are the essemtials for durable exterior phastering?
14. I)iscoss the relative advantages of threverobat abd tworome work. In what kind of work are three conts always nexessary?
15. In interior work, what precamtions mast le ohservert in laying the sucesssive conts of plaster? In experior work?

REVIEW QUESTIONS

PAINTING

1. What is the difference between raw and boiled oil? When is one preferable to the other?
2. What would you consider a grood hrush outfit for painting and varmishing the interior woodwork and exterior finish of a modern frame dwelling?
3. How would you make ?our own putty if you could not buy a satisfactory grade?
4. Describe the principal ingredients wsed as pigments. As vehicles.
5. What are thinners? Dryers? Fillers?
6. How are painters' brushes kept in good condition?
7. How are paints adulterated?
8. Describe the process of mixing the successive coats of paint for ordinary interior (not floor) amel exterior woodwork.
9. Describe the process of preparing the woodwork and applying the suceessive coats of paint in ordinary interior (not floor) and exterior work.
10. What points reguire particular attention in the repainting of an old job?
11. Describe the process of painting a plastered wall.
12. Describe the material and methots of work in roof painting.
13. What is enamel paint? How would you do a job of enameling the woodwork, say, in a bathroom?
14. Describe in detail the process of painting structural metal.
15. How are varnishes classified?
16. Describe the mothod of preparing and applying shellac varnisn.

INDEX

Wriek duat

Burglar alarmi elocerio
1trublious
-.
'1.1 Os, Ithas .-
nounsting the thament .. \because.('hart for calculating ilrog in ulternating-current IIn心c'onductons, caleulathan of stato of4
(cmorn bantion1.$\because 7$$-$
mintorn

 $5=$
(irrigkicil froin rixilite1(4)a!
leatrosil in

Page			Page
D		Electric wiring	
Direct-current ares	132	for office building	64
constant-potential	133	outlet boxes	73
double-carbon	133	overhead linework	78
enclosed	133	polyphase circuits	63
open types	132	systems	30
Distribution of light	105	testing	46
Double-pitch skylight	172	Elevation	228
Drop in alternating-current lines	54	Enclosed arcs	133
chart for calculating	56	Enclosed fuse	77
table	57	English candle	151
Dry batteries	88	Entablature	226
		Exterior plastering	321
E		metal lath	323
Echinus	235	putting on	325
Efficiency of incandescent lamp	100	wood iath	324
Electric bell wiring	83-92	F	
batteries	87		
bell	88	Feeders and mains	46
bell push	87	Fibrous tubing	25
circuits	89	Fire alarm, electric	92
joints	85	Flaming arc	136
methods of	84	Bremer	136
wire	83	magnetite	138
Electric burglar alarm	92	Flat extension skylight	172
Electric fire alarm	92	Flat-seam rooflng	197
Electric lighting	95-160	covering conical tower	204
arc lamps	126	soldering	202
classification	96	Flexible armored cable	17
history and development	95	Flexible metal conduit, wires run in	14
illumination	147	Flexible steel conduit, 100-foot coil of	16
incandescent lamps	96	Flux of light	152
intensity constants for are lamps	153	Fuse-boxes	76
intensity constants for incandescent			
lamps	153		
offlce lighting	$15 \times$	(ialvanometer	47
power distribution	140	Gem metallized filament lamp	106
for public halls	158	H	
residence lighting	150	Helion lamp	115
special lamps	121	Hip bar	179
types of arc lamps	132	Hipped skylight 169.	173
Electric wiring	11-82	development of patterns for	174
bushings	75		
cutout panels	76	I	
fuse-boxes	76	1llumination	147
installation	39	intrinsic brightness	148
methods of	11	irregular reflection	148

Note.-For page numbers see foot of pages.

ハリI

	1%
146	
S..asel bean +1,	11.1
1.1. 4.6	4
	14.
	117
	$1:$
	(13)
	\therefore
tantabum lamp data	$10 \cdot 1$
	1.11
tungsten lamp data	111
	16.
Tantalum lamp	$1 .$.
lieme phate nowtra	16,
	1.1
Thiree-wire system, electere wiring	. 11
Tungsten lamp	1111
	1-2
	\cdots
1	
	(19)
Voltmetor	17
W	
Water-tight outlet box	;
Wires run concealeal in condutt:	11
armorest cable	15
flealble metal conduat	11

[^13]
ratiobly 11

8.
rheaphieasan
Wheas run in moldimge 1.
いonse

....1. 1a.. hlialla.... I.
.1...6. I. —lluitr bell wir-ina '-
Wirlog invallation *.
branch elrcults 4
feeders and main. : 0
 4
focation of outlets (6)
methesi of whime -
swstems of wiring 31
Wiring an oflece buthtamg -
basement plan -
character of loast \cdots
rlectrle current supphly -
fierlors and malasfien flewr-

...estan! …. -

-
Wiond lathe 2943:3
683017

TH $145 \quad . \mathrm{C} 81912$ v. 9 SMC

Cyclopedia of architecture, AKK-2252 (sk)

[^0]:
 frunt of velume．

[^1]:

[^2]: 1 ใ 1 -

[^3]:

[^4]:

[^5]:

[^6]:

[^7]: * These lamps are normally rated at three voltages, 114, 112 , and 110 volts, but data referring to the highest voltage only are given.
 \dagger By spherical reduction factor is meant the factor by which the horizontal candlepower must be multiplied to obtain the mean spherical candle-power.
 \ddagger The larger units are almost invariably used with reflectors, hence no spherical reduction factor is given.
 § The life of the lamps when operated at the lower voltage is increased to about 950 hours, and the efficiency is changed to 2.83 watts per candle.

[^8]:

 lightimg tube conneeted to ther lower cond of thee
 above it. This carbon phug is normally comphetely covered with what would correspmol to a thimbleful of mercury which simply samas the prores of the carbon phug, and therefore has
 properties of the gas in the main tube which produces the light. Partly immersed in the mercury and concentric with the carbon phag, is another smaller and movable glass tube, the upper end of which is filled with soft iron wire, which acts as the core of a small semenciic conneeted in series with the transformer. The action of the solenoid is to lift the conementre glass tube partly out of the mercury, the surface of which falls and thereloy causes the minute tip of the conical shaped carbon plug to be slighty exposed for a second or two.

 earbon plug is again sealed. 'The process above described takes place at intervals of about one minute when the tube is in

 tube depends upon the gas used in it. The regulator is fitted with some chemical arrangement whereby the proper gats is admitted to it when the tube is in operattion. Nitrogen is cmployed when the tule gives the highest efficiency and the light - milual when thir gas i nerdi volbwili in color. Airgives a pink appearance (o)
 the tube and carton dioxide is comploged when a white lighe in devimel.
 advantages claimed for this light are: Wigh etlicieney, genel color, and low intrinsic brilliancy.

[^9]: living room in alpha delta phi chapter-house at cornell university, ithaca, n. Y.
 (282 "II

[^10]:

[^11]:

[^12]:

[^13]:

