*

KNOWLES JACQUARD SILK LOOM
(rompton \& Kinowles Loom Work

yclopedia
 of
 extile
 ork

ON COTTON, WOOLEN AND WORSTED YARN MANCFACTVRE, WEAVING, INESIGNING, CHENISTRI AND UYEING, FINISHING, KNITTING, ANL ALLiED SUBJECTS.

TEXTILE EXIERTS ANE LEADING MANLFACTUKERS

SEVEN VOLUMES

CHICAGO

AMERICAN SCHOOL OF CORRESPONDENCE
$1 \mathrm{NO}_{7}^{7}$

Copyright, 1906, 1\%0

Ey
AMERICAN SCHOOL OF CORRESPONDENCE.

Copyright, 1900, 190%
BY
AMERICAN TECHNICAL SOCIETY.

Entered at Stationers 'Hall, London.
All Rights Reserved.

FENWICK UMPLEBY

Head of Department of Textile Design, Lowell Textile School.

LOUIS A. OLNEY, A. C.
Head of Department of Textile Chemistry and Dyeing, Lowell Textile School.
M. A. METCALF

Managing Editor, "The Textile American."
H. WILLIAM NELSON

Ilead of Department of Weaving, Lowell Textile School.

JOHN F. TIMMERMANN

Textile Expert and Writer.
Formerly with Central Woolen Co., Stafford Springs, Conn.

WILLiAM R. MEADOWS, A. B., S. B.
Director, Mississipni Textile School.

MILES COLLINS

Superintendent of Abbott Worsted Co., Forge Village and Graniteville, Mass.

CHARLES C. HEDRICK
Mechanical Engineer, Lowell Machine Shop.

OTIS L. HUMPHREY

Formerly Head of Department of Cotton Yarn Manufacturing. Lowell Textile School.
C. E. FOSTER

Assistant Superintendent, Bigelow Carpet Co., Clinton, Mass.

WILLIAM G. NICHOLS

General Manufacturing Agent for the China Mfg. Co., the Webster Mfg. Co., and the Pembroke Mills.
Formerly Secretary and Treasurer, Springsiein Mills, Chester, S. C.
Author of "Cost Finding in Cotton Mills."
B. MOORE PARKER, B. S.

Head of Department of Carding and Spinning, North Carolina College of Agriculture and Mechanic Arts.

I. WALWIN BARR

With Lawrence \& Co., New York City.
Formerly Instructor in Textile Design, Lowell Textile School.

EDWARD B. WAITE

Head of Instruction Department, American School of Correspondence.
American Society of Mechanical Engineers.
Western Society of Engineers.

WALTER M. HASTINGS

Assistant Agent, Arlington Mills, Lawrence, Mass.

GEORGE R. METCALFE, M. E.
Head of Technical Publication Department, Westinghouse Elec. \& Mfg. Co.
Formerly Technical Editor, Street Railway Review.
Formerly Editor of Text-book Department, American School of Correspondence.

ALFRED S. JOHNSON, Ph. D.
Editor, "The Technical World Magazine."

HARRIS C. TROW, S. B.
Editor of Text-book Department, American School of Correspondence. American Institute of Electrical Engineers.

CLARENCE HUTTON

Textile Editor. American School of Correspondence.

IIE editors have freely consulted the standard technical literature of Europe and America in the preparation of these volumes and desire to express their indebtedness, particularly to the following eminent authorities, whose well known treatises should be in the library of every one comected with textile manufacturing.

Grateful acknowledgment is here mate also for the invaluable co-operation of the foremost manufacturers of textile machinery, in making these volumes thoroughly representative of the best and latest practice in the design and construction of textile appliances; also for the valuable drawings and data, suggestions, criticisms, and other courtesies.

WILLIAM G. NICHOLS.

General Manufacturing Agent for the China Mfg. Co., the Webster Mfg. Co., and the Pembroke Mills.
Formerly Secretary and Treasurer, Springstein Mills, Chester, S. C.
Author of "Cost Finding in Cotton Mills."

THOMAS R. ASHENHURST.

Head Master Textile Department, Bradford Technical College.
Author of "Design in Textile Fabrics."

J. Merritt matthews, Ph. D.

Head of Chemical and Dyeing Department, Philadelphia Textile School. Author of "Textile Fibers," etc.

J. J. HUMMEL, F. C. S.

Professor and Director of the Dyeing Department, Yorkshire College, Leeds. Author of "Dyeing of Textile Fabrics," etc.

WILLIAM J. HANNAN.

Lecturer on Cotton Spinning at the Chorley Science and Art School. Author of "Textile Fibers of Commerce."

roberts beaumont, M. E., M. S. A.

Head of Textile Department, City and Guilds of London Institute. Author of "Color in Woven Design," "Woolen and Worsted Manufaciure."

Author of "The Manufacturing Processes of Woolen and Worsted."

W. S. BRIGHT McLaren, M. A.

Author of "Spinning Woolen and Worsted."

CHARLES VICKERMAN.

Author of "Woolen Spinning," "The Woolen Thread," "Notes on Carding," etc.

WILLIAM SCOTT TAGGART.

Author of "Cotton Spinning."

HOWARD PRIESTMAN.
Author of "Principles of Wool Combing," "Principles of Worsted Spinning," etc.

H. NEVILLE.

Principal of Textile Department, Municipal Technical School, Blackburn. Author of "The Student's Handbook of Practical Fabric Structure."

FRED BRADBURY.

Head of Textile Department, Municipal Technical Schools, Halifax. Author of "Calculations in Yarns and Fabrics."

E. A. POSSELT.

Consulting Expert on Textile Manufacturing.
Author of "Technology of Textile Design," "Cotton Manufacturing," etc.

H. A. METZ.

President, H. A. Metz \& Co.
Author of "The Year Book for Colorists and Dyers."
T. F. BELL.

Instructor in Linen Manufacturing, etc.. City and Guilds of London Institute. Author of "Jacquard Weaving and Designing."

M. M. BUCKLEY.

Head of Spinning Department, Halifax Municipal Technical School. Author of "Cone Drawing," "Worsted Overlookers Handbook," etc.

FRANKLIN BEECH.
Author of "Dyeing of Wonlen Fabrics." "Dyeing of Cotton Fabrics," etc.

WALTER M. GARDNER, F. C. S.
Professor of Chemistry and Dyeing in City of IFradford Technic:al Collese.
Author of "Wool Dyeing," ete.

ALBERT AINLEY.
Author of "Woolen and Worsted Loomfixing."
G. F. IVEY.

Author of "Loomfixing and Weaving."

ERNEST WHITWORTH.

Formerly Principal of Designing and Cloth Analysis Department, New Bedford Textile School. Author of "Practical Cotton Calculations."

DAVID PATERSON, F. R. S. E., F. C. S.
Author of "Color Printing of Carpet Yarn," "Color Mixing," "Color Matching on Textiles," etc.

HE (yclopedia of Textile Work is compiled from the most practical and comprethensive instruction papers of the American School of Corvespondente. It is intended to furnish instruction to those who cannot take a correspondence comre, in the same manmer as the American School of Correspondence affords instruction to those who camot attend a resident textile school.

The instruction papers forming the Cyclopedia have been prepared especially for home study by acknowledged authorities. and represent the most careful study of practical needs and comlitions. Althongh primarily intended for correspondence study they are nsed as text-books by the Lowell Textile Sehool, the Textile bepartment of the Clemson Agricultural College, the Textile Depart. ment of the North Carolina College of Agriculture and Mechanic Arts, the Mississippi Textile School, and for reference in the lead. ing libraries and mills.

Years of experience in the mill. laboratory and chass room have been required in the preparation of the varions sections of the Cyclopedia. Each section has been tested by actual nse for its practical value to the man who desires to know the latest and best practice from the card room to the finishing department.

Numerous examples for practice are inserted at intervals. These, with the test questions. help the reader to fix in mind the essential proints, thus combining the advantages of a textbook with a reference work.

Gratefnl acknowledgment is due to the corps of anthors and collaborators, who have prepared the many sections of this work. The hearty co-operation of these men - mannfacturers and educators of wide practical experience and acknowledged ability -.. has alone made these volmmes possible.

The Cyclopedia has heen compiled with the idea of making it a work thoroughly technical, yet easily comprehended hy the man who has but little time in which to acguaint himself with the fundamental branches of textile manufacturing. If, therefore, it should benefit any of the large number of workers who need, yet lack, technical training, the editors will feel that its mission has been accomplished.

VOLUMIE I!1.

Design Paper Page* 11
Color Effects 39
Drafting and Reduction . . ." 5
Ply-Clothis " 121
Double Plain 175
Spot Weales" 179
Pile or Plush Fabrics . . . " 185
Jacquard Designing 202
Leno Designing" 237
Textile Coloring 281
Cost Finding 291
Review Questions " 337
${ }^{+}$For Page numbers see foot of pages.

ROYLE'S AUTOMATIC POSITIVE ACTION REPEATER WITH DOUBLE EXTENDED AND REVERSE CYLINDERS

TEXTILE DESIGN.

PART I.

There are three primary elements in textile design.
Fir:st, the weave.
Sicomd, amalgamation and combination of weaves.
Third, the mixing and blending of colors as applied to textile fabrics.

The object to which a design is to be applied is of the utmost importance; the designer must first know the intended uses of the fabric. When a draftsman makes the drawings of a machine, or an engineer of a bridge, he first studies the conveniente of armangement, the comblitions as to strength, durability and utility. It is neeessary to eonsider all these particulars in the construction of a piece of choth. Therefore a textile design, or the design of a woven fabric and its specifications, is, when complete, a perfeet working plan, - descriptive and illustrative of the arrangement and character of all the eomponent parts ant processes. It describes the different materials, as to quality, kind, chanacter, size, or counts and eolor of the yam; it gives the armagement of the threads, also quantities and proportions. The design illustrates the construction of the fabric, and the lay-out describes special processes and operations. To be complete and perfect, it should be so comprehensive that any qualified manager could produce the desired fabric without further instruetions.

USE OF DESIGN PAPER.

These papers are ruled with a heavy line to represent squares, and the sides are again divided by fainter lines into eight, ten, twelve or more divisions as required.

Fig. 1 represents a portion of design paper ruled $12 \times \mathbf{1 2}$. The use of ruled paper is exceedingly simple if the first principles and rudiments are eomprehended. To have a clear and proper
"omerption of the nse of desigin paper, it will be meressaty for the sturdent to divide the sinares into two distinct systems. Fiost, superse that there is a series of vertical lines and mo horizontal lines (som Fig. …) Sorome that there is a series of horizontal lines and no vertical lines (see Fig. 3.)

It is universally under-

Fig. 1. stood that woven fahrics in general have two systems of threads: first, the warp threats; secomt, the weft or woof. The weft is commonly called the filling threads. These are the two most important things to form the phanest of woven cloth.

Warp is the set of threals that rum lenytherise in wown goods, that is, if you had a piece of rloth four yards long there would be four yards of wapp. Warp is represented on the design baper he the vertical or perpendionlar series of small spuares. The weit or filling is the set of threats that interlace the warp at right angles, and is represented on the design paper by the transverse or horizontal series of small spatares. The weft roms across the width of the cloth. It should be dearly maderstood that these two systeme, warle or vertical mpares, and filling or transverse squares, form the fabrie or design.

One object of puint paper designing is to reproduce an imitation of the cloth and show the methor of inter-

Fig. 2. lacing in the fabrice, another object of the ruled paper is to show a phan of the falmie exactly as it would appear if looking down uponit.

The error that is usmally made by hecrimers is that each small sfuare is considered by itself, withont taking into comsideration that eath lime of spares, either vertical or horizontal, forms the desien. This will he more readily understond by an examination of Fig. 4. Marks of any deseription-crosses, dots or eireles represent the rased warp thrads, maless otherwise specified.

Fig．：

F゙ゅ． 4.
interwaving of one thread of blling orer aml maler the war

 5,7 ，and sink $2,4,6,8$ anl put in amother thean on piok of filling IS ；the third piek is like the firve amd the formth piek is like the serond．These two movements are bepated wer and over again matil the weh or warp is woven ont．This constitutes a plain or cotton wave，amt the alr peanalue of the enlanged diagram （Fig．is）is somewhat like the inter－ lacines of the strips of willow in the making of baskets aml mats．

To thomoughly comprehend the nse of design paper，the main fact to be borme in mind is the contimaty of every individual thread，either in the wan，or filling．In making a twill design，the leading eonsidemation is that it shall he so armanged that

Fig．： whatever the pattern it shall be comamons and manokrn，wh the same principles that when we cover walls with prater or flows with anpet，the design must join perfertly amd he eontimons．on the broken，irregular design will offend the ere．I How this affects the design will be hest maderstool by a careful stuly of Fig．i；
\because and 4 are a repetition and continuation of 1 and 2,5 and 6 a continution of 3 and 4 , and 7 and 8 of 5 and 6 , and so on.

Fig. 7 illustrates the principles amd construction of the vertical and transverse lines of the design paper. The vertical stripes in Figs. 4, 5 and 7 correspond with the warp threads 1 to 8 in mach design ; also the transverse or filling

Fig. 6. threads A to H correspond in Figs. 4, 5 and 7.

If point paper were ruled after the mamer of Fig. 7, it would be difficult to see a pattern at a glance, as the many lines would be confusing. To overcome this, the paper is ruled without the spaces between the threads as shown in Fig. 7, but the spaces are represented with the faint lines as in Fig. 1. Fig. 8 shows the section of the first pick A of Fig. 6. We most moderstand that the lines do not represent threads but indicate the divisions hetween the threads, amd it is this that enables an accurate plan of cloth to be mate. When this stripe arrangement is fully understood, the first alifficulty of textile design has been overcome.

Points to be remembered.
First, That light lines represent places of intersection.
Second, A mark, cross or dot on one of the small squares indicates that the thread is raised - the filling is under and the warp on the surface.

Third, An empty space or momarked square shows that the filling is on the surface, thereby covering the warp.

Fourth, 'That the heavy dark line surroumting a series of sumall synates is for convenience in counting.

Fifth, That the design must be continnous and mbroken.

PLAIN CLOTH.

A plain cloth makes a very strong and firm fabric, bat neither very close nor heary, because the threads are not as close or compact as they are in other weaves. In a plain fablore, if the cloth is not slamk or fulled in the finishing processes, the fabrie is perforated more or less, acording to the size and twist of garns used. These perforations vary greatly under different conditions: if ray heary, coarse thrads are used, the perfora-
tions will be large ; if finer threads, the perforations will be smaller. There are also other eomditions which may change the texture of the plan weave; if the threads are twistal hamb, the cloth will be wirey and open. In making any fathio the twint of the yarn must be comsidered. For example, when two piemes of heary rope or cond of the same twist are woven, they will interlay or become embedled with eath other, hat if ropes of comtrary

Fig. 7.

fig. s.
twist are used, they do mot lay close or eompact and the ferforations are large, lecamse the filges of the twist eamont become compact.

TWILLS AND DIAGONALS.

After the phan weave is thoronghly materstood. the next step is the study of twill weares. These are weaves in which the intersections of the warp and filling threads are such that they produce lines diaconally arross the fabric, either from right to left or from left to right, at an angle of 45 degrees. The simplest trill weave that can be constructed is one for three harnesses, varionsly known as the 3-hnoness twill, pruella twill, and 3 -hamess doeskin. These names vary according to the nature of the material or the relation of warp

Fig. 9. and filling employed in the construction of the particular kind of falluic.

Fig. 9 is an illustration of this simple twill weare. It shows the three different positions of the threads to form the twill and, as in plain cloth, whenever the wap is ratised an indication is made in the corresponding small square on the design
paper, thms denoting which thread has to be lifted when the filling piek or thead is inserted.

Fig. 10 shows an enlarged diagram of a fathic woran upon this principhe. It will benticed that the warp thead 1 is mised as indieated by the mark in the small square at the left-hand lower comer in Fig. 9. The tirst

Fig. 10. pick A prasing mater it amb over 2 and 3 . For the second pick, the mank is on the second threarl, consequently the tilling threat B passes over 1 , under 2 and over 3 . For the thind pick, the mak is on the third threat, therefore the thind filling threat passes over 1 and -2 , and muler No. 3.

In this design (Fig. 11) the twill is complete within a given space, and if we extend the design, it will be a contimons and mbroken repetition of the first three throads, 1.2 .8 , also the first three pieks as shmwn in design Fig. 11. Let us go mre step farther and examine Figs. 12 and 13 ; the conditions are quite opposite; this is a simple reversal of the twill, that is, the warl

Fig. 12.

Fig. 11.
is lifted two thearls, on each piek of the complete design, viz.: the first two threads are mised as imdieated by hark splates,
 reverse of Figis. ! ! 10 :mall 11.

In these examples, every ther threarls amp pirks are an wand repetition of the first three, and any momber of threads may be taken from one side and plated on the other side, of they mas be taken from the bottom and vice-versa. The twill will lx. (antinnons and manoken. In the absence of design paper there are other methorls of indicating a weare. Take the platin wave as the

First Example. It can be stated thas $\frac{1}{1}$, or written 1 up and 1 down.

Second Example. The three-hamess twill, fillinir Hash, w 1 $\frac{1}{2}$, or 1 up and 2 down.

Third Example. The three-hamess twill, wath Ihata, or 2 $\underset{1}{2}$, or $-\underline{1} \mathrm{l}$, and 1 down.

The word up, or figure above the line, indicates the number of threads to be raised on eaeh piek, while the word down, or fignre below the line, signifies that such threads must be depressed for the filling to pass over.

The 45 -degree twills are divirled into two classes, those which are even-sided and those whieh are meven-sided. The even-sided twills are those in whieh the warps and fillings are evenly bal-

Fig. 13. ancel. By an examination of Figs. 14 and 15, it will he notired that the number of threats raised is equal to the mumber of threads depressed. Also notice that it is a fomr-hmess twill, and that each succeeding fom threarls and picks are a repetition of the first fons. The line of twill is rontimoms ame mbonern.

called the four-hamess common twill, cassimere twill and shalloon twill.

The meven-sided twills are of two kinds, - those that are on an even number of harnesses and those that are on an meven number of larnesses.

Fig. 16 represents an meven-sided twill on an even number of harnesses. This weave is called the 4-harness swamslown ; it has three-fourths of the filling on the surface. Formula $\frac{1}{3}$.

Fig. 14.

The reverse of this weave would be the $\frac{3}{1}$, and would indicate the warl surface weave, commonly called the crow weare.

Fig. 17 represents an meven-sided twill on an meven number of hamesses. On this weave, it will be noticed that there are only two threads raised, while there are three threads depressed; formmal $\stackrel{\stackrel{2}{3}}{3}$. This weave can be reversed so that the conditions would be opposite; formula $\frac{8}{\square}$

Attention is again called to the angle of the twill. It is continnons and mubroken and at an angle of 45 degrees. In designing twills always leagin at the lower lefthand corner of the design and make out angle of twill for full momber of threats, lwoth warp and filling. 'Thas, a full weave for an eightharmess twill would reguire eight threads and eight picks, requiring eight small squares each way of the design paper. The student
shonk run ont ead design whally twide the origimal momber of threads and picks. Study earh side, top and bottom, also stury the termanation when a design is complete. Tha mumber of

Fig. 17.

Fig. 16.
threals and pieks to complete the design shomld be seren at a glance and to be sume that in repetition it will be continnous and unbroken.

EXERCISES FOR PRACTICE.

Copy Figs. 11, 12, 14, 16 and 17 and extem then over at least double the manber of threads in earin diametion, taking care to work upon squares which represent the momber of threats ocenpied by the original design, filling each in suceession, amb paying no attention to the thick lines upon the paper. At first, do not lee in a hury to carry the design in a straight line oner the whole space, lont work strictly in the squares as shown in the above examples.

1. Make all the 45° twills possible upen four threads, and repeat them after the mamer shown in Figs. 11 and 12 , to be certain that the pattern will be complete and rontimous for an indefinite length.
\because. Make all the 45° twills possible upon in, 6 and 7 themats respectively, after the manner suggested in No. 1.

Note. In working out these Exareises the ehief objects are first, to dotermine when a pattern is eomplete amb. to be eertain theit this is the case, the stment might cut a protion from one side and place it on the opposite side, to see if the design
really fits together. A little practice in eomparing one silla with the other will som enalle him to diseern this without entting. The spromed object is to aseertain the momber of threats in the design when complete to prepare for the lessons in drafting, and drawing the warp threads through the hed

Fig. 15.

Fig. 10.
with the fewest momber possible. The comparison of designs is of great importance, as a knowledge of their relations will lre itequired in sulseguent work.

FANCY 45 DEGREE TWILLS.

The student must not confine himself to what are commonly known as simple twills, but shomel find out how many designs

Fig. 20.

Fig. 21.
and what variety he call produce upon a given momber of theads. The best plan in going about this work - amd this boble good in
 mathorer.

This expersion ${ }^{*}$ regnlar wills" mast he melemstome as it is in the tarle, waplly to twills rmming at an angle of his deemo. ant with no femey lignre acompanying it.

It shomld be notieed that all 4 -hegree twills move or ant vance 1 thread to the right matil the full repeat of the weave has

Fig. 2z.

Fig. 23.

 pick of cauls desien which is a 4.jedegree twill, hut when the twill is irmoular there must be another methon of imficating the weave.

For instance, Fig. 18 is on 5 harmoseses amd comha bre imhicated $1+f^{\prime \prime} 1+1+1+1+1$ or 1 , the move mumber. ar $t^{1} 1$.

Fig. 24.

Fig. 25.

The weare on 4 hamesses as shem at Fig. Ot is known as the Foblegree step twill, the written fommatis $1+0+0$.

The terms $1+0+0$, ete., refer to the position of the points in a base with reforme to one amother, comed horizontally in
the example given. Thus, in Fig. It the mark on the first pick is placed in the first point or small square, that on the second pick moved in position 0 , $i . e$., in the same position; that on the third pick moved 0 , that on the fourth moved 1 and so on throughont.

Fig. 25. weave commencing on 1st pick.
$1+1 \quad$ Ond pick moves 1 forward.
$1+1-1 \quad 3 r d$ pick moves 1 in opp. direction.
1 tth pick moves 1 forward.
$1+1 \quad 5$ th pick moves 1 forward.
$1+1-1 \quad 6$ th pick moves 1 in opposite direction, and so on mont the weave begins to repeat. Similarly $3+3-5$ may be commenced at any point as shown at Fig. 2f; weave on 9 harnesses +3 1st thread and 1st pick.

- 5 moves 5 in opposite direction.
+3 moves 3 forward.
Take Fig. 26 as an example. The weave is on ? threads, therefore the counting or moving must be worked from 1 to !.

Fig. 26. Commencing at the first thread a point is placed on the 1st square, the 2nd pick is marked - 5 or 5 in the opposite direction, or, $9,8,7,6,5$, hence the next point is on thread 5 . The 3rd pick is marked +3 or 3 forward, or $6,7,8$, the third point on the Sth third; the fourth pick is marked +3 or 3 forward, then $9,1,2$, fourth point on ond thread, 5th pick is marked - 5 or 5 in opposite direction, then, $1,9,8,7,6$, fifth point on 6 thread and so on thronghont mutil the weave repeats.

The next step in the work is to produce as many designs as possible upon any given number of threads, and in doing so proceed systematically, as in the five-harness eximples, first with 1 point, then with \because, and so on, until a romplete series of simple lines as in Figs. 18 to 23 has been run
through, and, aceording to the momber of threarls, open out the space between the lines of twill. Make light and heary lines and vary them until there is no further room for variation, observing the repetitions of the pattern in the reverse order, both in the

Fig. 27.
quantity of material which comes to the surface, and in the position of the twill.

Diagrams for illustrating the construction of reelining and steep twills are shown in Fig. 27.

Steep and Reclining Twills.

The 15° reclining twill is formed by moving + points. Fig. .

"	$2)^{\circ}$	-	\cdots	\cdots	،	\cdots	.	3	.	.	?!
"	27°	*	\cdots	\cdots	\cdots	\cdots	-	\because	..	-	:31
"	38°	\cdots	-	-	\cdots	\cdots	.	1		.	: 1
46	45°	Regular	*	-	.	-	\cdots	1	.	\cdots	3
*	$52{ }^{\circ}$	Steep	.	\cdots	"	.	-	$1+$		\cdots	$3:$
-	63°	..	*	-	\cdots	.	-	$1+$		\cdots	34
"	70°	.	"	-	"	-	-			\cdots	35
	75°	-	-	\cdots	*	*	\cdots	$1+$	+0		36

Fig. 2 s.

Fis. 30.

Fig. :31.

Fig. 32.

Fig. : : 3.

Fig. 34.

Fig. 35.

Fig. : 6.
 ing to the repuimenents of kesign.

INTERSECTIONS, INTERLACING. AND CUT SECTIONS.

 Weaving? 'Take the phan weare for an example. 1 , If we

 labine or interweaving the ware theark. What womld be the result: Fig. :, ithastates the seretion of \& wap threats in a

Fis. : З C. Cut Lertion.
phan eloth, interworen with one pick of filima, A. Wr have 1st thereal mp, then an intersection of lilling. And thrad down, then an intersection of filling. In Fig. :3, theme aro 8 wap threads and S intersections of filling. $=16$ mits.

The answer to the above question is: Interlacing aml interwesting is inserting the filling between two or more sysums of wap theark. while the intersection is the space occuphed by the warp or tilling betwern any mumber of threats, warp or filling.

23
Fig. 3-. ('ut Section.
()" the design paper the spaces represent the warp and filling, while the lines represent the intersections.

Take the next example. the three-hamess $\frac{1-2}{-2}$ will: whe threal up and one intersection, two threads down and ome intersection, threads 2 and 3 lying rlose together and no imtersertion. Fig. :38 shows ? threads and \because intersections $=5$ mits.

We will now examine the cassimere or shallown twill $\stackrel{-}{\square} \quad$. (See Fig. 15.) We notice that the filling threal interwaves
alternately over and under two warp threads as slown in Fig. 39, ant in the same order the warp threads interlace over and under two illling threals, (Fig. 40); but by sturlying Fig. 15, we find that each succeding filling thread does not pass orer the same two war , threads, nor does each consecutive warp thread intmbace orer or moder the same two filling theads, nor are they alternate as in plain cloth, but they change in regular consecutive

Fig. 39. Cut Section.
order That is, if the 1st piek, A, interweaves over the threads Nos. 1 and 2, and under Nos. 3 and 4 ; the 2 nd pick, B, will pass under Nos. 1 over 2 and 8 and moler 4 : the $3 r d$ pick. $(1$, will pass under 1 and 2 , and over 3 and 4 : the 4 th pick, 1). wilh pass over 1 under 2 and 3, and over 4 . The Sth piek, E. is a repetition of No. 1, and so on. The design is continnons and mbroken, eath thread and pick adrancing one before it rises to the sumface or passes to the back of the fabric. It is this order of intertacing that gives the effoct of prochucing in the cloth distinct twills or diagomal lines at an angle of 45 degrees. This mole of interweaving is called the even, or balanced system. There are, as in the plain weave, as many of each system of threads on the face of the cloth as there are on the back. The longer the floats or intervals that we interweave and interlace the warp and filling, the greater the amonnt of material that ran be introdnced Fig. 46 , the greater the gain in weight and substance.

Wre will now examine the three weares umbler consideation. Plain weave one $\quad \mathrm{p}$, and one intersection, one down and one intersection or two threads and two intersections.

We have ahealy learned in sturlying the phan weave that when constructed on the truest principles, wapl and tilling of the same size or eomits, momber of threads and picks being equal, it will make a doth more or less perforated according to the material used. The fabric would be built to withstand wear and tear and friction, but we conld not olatain bulk and compactness.

LNGWHOVILLV GNIHOVW פNITTVG aNV TヨコYO HLIM צGdyVM

Now let us examine the threr-harness twill, ${ }^{1}$, lög. 41 . We have two intersections in every three threark, as one up and one intersection, two down and one intersection, therefore allow-

Fig. 4. ('nt serotion.
ing threats $\because=$ and 8 to lie close together withont any perforations.
In the fom-hamess ("assimeme or shalloon twill, $\xlongequal[\sim]{\square}$, Fig. 4.2, we find that there are only two intersections on every four threads; two threads up and one intersection. and two thrads

Fig. 42. C'ut Section.
down and one intersection, thas giving still more opportmity to gain weight and eompactness of texture, as an examination of Fig. 4^{2} will show: On the first pick the first and second theads are lying close together, then an intersection; third and fomth threads lying together, then an interseetion, and so on, consecutively and eontimously.

Fig. 4;, r'ut section.
The three weares on twelve threads, their intersections ant units stand as follows:

Plain weare Fig. 40, 1ٌ theads and $1 \ddot{2}$ intersections $=-24$ mits. Threeharness twill Fig. 41, 12 threads and 8 intersec-

Fig. 44. Cut section.
tions $=20$ mits. Four-hamess 1 will Fig. 42, 12 threads and 6 intersections $=18$ units.

Take another example, Fig. 44: The fom-harmess filling-hnsh twill, commonly called the swansdown weave; one uip and three down, or the warp-llush twill Fig. 45 ; one down and three up, commonly known as the crow weave.

In these two weaves there are only two intersections on four

Fig. 45. Cut Section.
threads, and there are three warp threads lying close together, either on the fatee or back of the eloth. These weaves give us more liberty to use heavier material or a greater momber of threads in the warp or filling, according to the weave used.

These intersections, units and warp or filling flushes are items that must be considered when designing textile fabrics.

The following will show how an examination question or exercise should be answered.

Question. Write in your own words an explanation of the use of design paper. What do you mean liy the dots placed upon it and how does it convey your ideas to others?

Answer. Design praper is used to represent woven cloth as follows: The series of squares ruming vertically represent the warp threads in the loom and the series of squares rumuing ho:izontally represent the filling, weft, woof or piek threads inserted by the shuttle. If the warp threads are to show on the face of the cloth, the filling or weft threads must go under them. A dot or eross placed in a square indicates that the warp thread is on the surface and vice versa a blank square means that the filling or weft is on the surface and the warp under the filling.

Suppose the wapp threads are black and those to be put in by the shuttle are white. A back and white design, or fabric to be woven, is slown on the design paper by indicating by a cross or dot placed in the siquare what warp threads are to show on the surface. Imagine that each small square on the design paper is rednced so small that it can contain only a needle point. It is then readily seen that a design is traced by a suceession of mimute dots. The dexign paper thas used will give a very good initation of a woven fabric.
Move numbers for ale regllar weaves dp to io tireins.

			VIEM	Mov	5	-	OUB	BLE	VE	OS	-	-	-	-	-	- TRE	LE M	E NOS						RRESULPR
2	Number of picks	1				$1+0$ 4							$1+0+0$ 6											
3	Number of picks	3				6							$1-1+1$ 9	$1+1+0$ 9										
4	Number of picks		2			$\begin{gathered} 2-1 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2+0 \\ 4 \\ \hline \end{gathered}$						$2-1+0$ $2-2+1$ 12	$2+0+0$ $2-1+1$ 6										$2+1+2-1$
5	Number of picks	5	5			10	10	$\begin{array}{\|r\|} \hline 2+1 \\ 10 \\ \hline \end{array}$					15	$\begin{gathered} 2-2+2 \\ -15 \\ \hline \end{gathered}$	$\begin{gathered} 2+1+0 \\ 2+2-1 \\ 15 \end{gathered}$	$\begin{gathered} 2+1+1 \\ 2+2+0 \\ 13 \end{gathered}$	$2+2+1$							
6	Number of picks	6	3			$\begin{gathered} 3-2 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 3-1 \\ 6 \\ \hline \end{gathered}$	$3+0$			-		$\begin{array}{\|c\|} \hline 3-1-1 \\ 3-2+0 \\ 3-3+1 \\ -3+2+2 \\ 18 \\ \hline \end{array}$	$\begin{gathered} 3-1+0 \\ 3-2+1 \\ 3-3+2 \\ 9 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 3+0+0 \\ 3-1+1 \\ 3-2+2 \\ 6 \\ \hline \end{array}$	9	18			.				$\begin{gathered} 3+1+1+3-1-1 \\ 3-1+2+1+2-1 \\ 3+2+2+3-2-2 \\ 6 \\ \hline \end{gathered}$
7	Aumber of picks		77			14	14	14	$\begin{array}{\|c\|} \hline 3+1 \\ 14 \\ \hline \end{array}$	$\begin{gathered} 3+2 \\ 14 \\ \hline \end{gathered}$			21	21	$\begin{array}{\|c\|} \hline 3-3+3 \\ 21 \\ \hline \end{array}$	$\begin{gathered} 3+1+0 \\ 3+2-1 \\ 3+3-2 \\ 21 \end{gathered}$	$\begin{gathered} 3+1+1 \\ 3+2+0 \\ 3+3-1 \\ 21 \end{gathered}$	$\left\{\begin{array}{c} 3+2+1 \\ 3+3+0 \\ 21 \end{array}\right.$	$\left\|\begin{array}{l} 3+2+2 \\ 3+3+1 \end{array}\right\|$	$\begin{gathered} 3+3+2 \\ 21 \end{gathered}$				
8	Number of picks			5^{4}			4-2	$4-1$	$4+0$	16			$\begin{array}{c\|} 4-2-1 \\ 4-3+0 \\ 4-4+1 \\ -4+3+2 \\ 24 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4-1-1 \\ 4-2+0 \\ 4-3+1 \\ 4-4+2 \\ 4+3+3 \\ \hline 12 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4-1+0 \\ 4-2+1 \\ 4-3+2 \\ 4-4-3 \\ \\ 24 \\ \hline \end{array}$	$\begin{gathered} 4+0+0 \\ 4-1+1 \\ 4-2+2 \\ 4-3+3 \\ 6 \end{gathered}$		12	24					$\left\lvert\, \begin{gathered} 4+2-1+2+4-2+1-2 \\ 4+2-3+2+4-2+3-2 \\ 4+1+1+1+4-1-1-1 \\ 4-1+3-1+4+1-3+1 \\ 4+1+2-1+4+1-2-1 \\ 3-1-1+3+3-1-1+3 \\ 8 \\ \hline \end{gathered}\right.$
9	Number of pichs			9		18	18		18	$\begin{gathered} 4+1 \\ 18 \\ \hline \end{gathered}$	4+2		27	27	9	$\begin{gathered} 4-4-4 \\ 27 \\ \hline \end{gathered}$	$4 \begin{gathered} 4+1+0 \\ 4+2-1 \\ 4+3-2 \\ 4+4-3 \\ 27 \end{gathered}$	$\begin{gathered} 4+1+1 \\ 4+2+0 \\ 4+3-1 \\ 4+4-2 \\ 9 \end{gathered}$	$\begin{gathered} 4+2+1 \\ 4+3+0 \\ 4+4-1 \\ 27 \end{gathered}$	$\left\lvert\, \begin{gathered} 4+2+2 \\ 4+3+1 \\ 4+4+0 \\ 27 \end{gathered}\right.$	$4+3+2$ $4+4+1$	$\left\{\begin{array}{c} 4+3+3 \\ 4+4+2 \\ 27 \end{array}\right.$	$\begin{gathered} 4+4+3 \\ 27 \\ \hline \end{gathered}$	
10	Number of picks		10			$5-4$ 20	$5-3$ 10	$5-2$ 20	$\begin{gathered} 5-1 \\ 10 \\ \hline \end{gathered}$	$5+0$ 4	10	$\begin{array}{r} \\ 20 \\ \hline \end{array}$	$\|$$5-2+2$ $5-3-1$ $5-4+0$ $5-5+1$ $-5+4+2$ $-5+3+3$ 30	$\begin{array}{\|c\|c} \hline 5-2-1 \\ 5-3+0 & 5 \\ 5-4+1 & 5 \\ 5-5+2 & 5 \\ -5+4+3 & 5 \\ 15 \\ \hline \end{array}$	$\left[\begin{array}{c} 5-1-1 \\ 5-2+0 \\ 5-3+1 \\ 5-4+2 \\ 5-5+3 \\ 5+4+4 \\ 30 \\ \hline \end{array}\right.$	$\begin{array}{\|c\|} \hline 5-1+0 \\ 5-2+1 \\ 5-3+2 \\ 5-4+3 \\ 5-5+4 \\ \\ 15 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5+0+0 \\ 5-1+1 \\ 5-2+2 \\ 5-3+3 \\ 5-4+4 \\ 6 \\ \hline \end{array}$	15	30	'	30		30	$\begin{array}{\|l} 5+1+1+1+1+5-1-1-1-1 \\ 5-3+2+2-3+5+3-2-2+3 \\ 5+3-1+3+5-3+1+1-3 \\ 5-1+2+2-1+5+1-2-2+1 \end{array}$

SELECTED ORDERS FOR WEAYING ON 2 TO 10 THREADS.

$\begin{aligned} & \text { Number } \\ & \text { threads } \end{aligned}$	For all move nos.					For double move nos only		For treble move nos. only	
2	$\frac{1}{1}$								
3	$\frac{1}{2}$								
4	$\frac{2}{2}$					$\frac{2}{2} \& \frac{11}{11}$		$\frac{2}{2} \& \frac{11}{11} \& \frac{2}{2}$	$\frac{11}{11} \& \frac{2}{2} \& \frac{11}{11}$
5	$\frac{2}{3}$	$\frac{11}{12}$				$\frac{2}{3} \& \frac{11}{12}$		$\frac{2}{3} \& \frac{11}{12} \& \frac{2}{3}$	$\frac{11}{12} \& \frac{2}{3} \& \frac{11}{12}$
6	$\frac{3}{3}$	$\frac{21}{12}$				$\frac{3}{3} \& \frac{2}{12}$	$\frac{21}{12} \& \frac{21}{21}$	$\frac{3}{3} \& \frac{21}{12} \& \frac{3}{3}$	$\frac{21}{12} \& \frac{3}{3} \& \frac{21}{21}$
7	$\frac{3}{4}$	$\frac{21}{13}$	$\frac{21}{22}$	$\frac{111}{112}$		$\frac{21}{13} \& \frac{21}{31}$	$\frac{21}{13} \& \frac{21}{22}$	$\frac{21}{13} \& \frac{21}{22} \& \frac{21}{31}$	
8	$\frac{4}{4}$	$\frac{22}{13}$	$\frac{31}{13}$	$\frac{211}{121}$	$\frac{211}{112}$	$\frac{31}{13} \& \frac{31}{31}$	$\frac{22}{13} \& \frac{211}{121}$	$\left.\frac{31}{13} \& \frac{2}{13} \& \frac{31}{31} \right\rvert\,$	$\frac{211}{112} \& \frac{211}{121} \& \frac{211}{211}$
9	$\frac{4}{5}$	$\frac{22}{23}$	221	$\frac{1111}{1112}$		$\frac{31}{32} \& \frac{31}{23}$		$\frac{31}{14} \& \frac{22}{23} \& \frac{31}{41}$	
10	$\frac{5}{5}$	$\frac{41}{14}$	$\frac{32}{23}$	$\frac{221}{122}$	$\frac{1121}{1112}$	$\frac{41}{14} \& \frac{41}{41}$		$\frac{221}{113} \frac{311_{8}}{131} \frac{212}{311}$	

EXERCISES IN PLAN MAKING.

Work out weare from the following:

$$
\begin{aligned}
& \text { (:) } \begin{array}{lllll}
1 & \because & : & : & 1
\end{array} \\
& \text { (1) } \begin{array}{llll}
1 & \because & : \\
& 1 & \because & : \\
& & ;
\end{array} \\
& \text { (i) } \because \because \quad \because \quad \because \quad 1 \\
& \text { (i) } \begin{array}{llll}
\because & \because & \because & \\
& 1 & 1
\end{array} /
\end{aligned}
$$

$$
\begin{aligned}
& (1:)-17)^{\because} \underset{1}{\because} \because: / 1,2,: 3,4, \pi .
\end{aligned}
$$

$$
\begin{aligned}
& (\because 2-2) \stackrel{2}{-2} 11,2,2,4
\end{aligned}
$$

MAKE ONE COMPLETE REPEAT OF EACHI OF THE FOLLOWING I ESIGNS.

\exists

				ㅇㅏㅏ	-	앙		-		-	-	\cdots			0	10			-				-
,	-		.			-	- 0			-	-			-		-	-	-			-	-	
	- 0	,	-		-	- ${ }^{-1}$	-		-		-	-	-			-	-			-			0
				-			- 0	1			-	-					-	-	-			-	

MAKE ONE COMPLETE PATTERN WITHOUT REPEAT OF EACH UF THE FULLUWING.

7

8

9

(Continued on next page.)

11

12

13																											
0																1					\cdot						
-							$\bullet \cdot$				\bullet					-				-					-		
		\bigcirc	-			-	-		-	-	\cdots				\cdot				\bullet	-					-		
		-							\cdots	-				\bullet					-			-					
					\bullet				\cdots					-			-	-				-					
								-				-	\cdots				-					-				-	
								\cdot								-									-	\cdot	
			\cdot				$\cdot \cdot$				-				-	-										-	

30 EXERCISES IN SPOT WEAVES.

COMPLETE THE WEAVES FROM THE ACCOMPANYING PORTIONS.

(Contimed on next page).

14

15

16

17

18

19

28

MAKE ONE COMPLETE REPEAT OF EACH OF THESE DESiGNS.

(Continued on next page.)

12

15

COLOR EFFECTS.

Influence of Color on Weaves, or the Application of Color to Fabrics.

The great variety of patterns produced in all lines of fabrics, are many of them made on the same weave, the change in the pattern being obtained in the arangement of the colors in the walp and filling. To moderstand how this change is matle, it is only necessary to bear in mind that where warp is raised that color will appear, and where filling is on the surface that color

Fig. 46. will appear. These changes are called color effects, and the simplest form which can be designed is the common hair-line, which shows in the pattern one thread of a light color and one thread of a dark color, rumning lengthwise of the fablic. It is made on the plain weave. By careful study the methorl will be learned quickly, so that any number of effects can be produced.

These color effects are mate to get an idea of the appearance after weaving of any arrangement of colors on a certain weave. In making these color patterns, decide what weave is to be used. To commence, we will use the plain weave, Fig. 46. Next indicate the weare on the design paper by a small dot or faint mark, Fig. 47, which will serve as a guide which thread must

Fig. 47.

Fig. 48.
be raised. Then indicate at the top, and right-hand side of the design, the arrangement of colors (see Fig. 47) which we will assume to be one thread red and one thread green in the warp, and one thread green and one thread red in the filling. After having indicated the weave and the arrangement of colors, the next operation is to mark where the warp is raised as indicated
by a small dot, the mark or square to be filled with such color as indicated by the color on the top of design as shown in Fig. 48. When this has been done, mark every filling pick as indicated ly the squares being left blank, which indieates the wap down, with such color as represented on right-hand side of design, Fig. 4!.

This pattern in color is ealled "The Hair-line." The simplest change from this hair-line pattern is to produce the line effect across or in the width of the fabric; this effect is made on

Fig. 49.

Fig. 50.
the same weave and arrangement of color in the warl, the only change being in the filling, which is one of red amb one of green (see Fig. 50). The chief characteristic of such har-lines and stripes, is that each color must cover its own or like color, that is, if red warp is down a red filling must cover it.

These color effects are the most important in designs for dress goods and in cotton, woolen and silk fabrics. Constan:t pratice in making them will be of great assistance to the stulent, as an excellent experience will be obtaned in regarl to the various effects, and hy the use of several colors the effect as in the cloth will be obtained.

Erptanution of Fiag. for'. The design is 8 threads by \& pirks, all phain or coton weave. The small dots indicato which wan threads mast lee on the surface, the manks on the top indicate the color of such threards in the wanp which mast appear on the surface of the fabric. In this instance we will suppose the wapp is dressed 1 thread back and 1 thead white all the way aross. 'The marks on the right-hand side of lig. 47 indicate the color of the weft or filling which must appear on the surface of the fathric.
F.rplantion of Fig. 4s. Fig. 4 S is like Fig. 17 , with the warp threats lifted, squares dilled out, showing the colons whith are on
the surface. In Fig. 47, the first thenell and tirst pick is repme
 Fig. 48 the comesponding square is filled inp hark, which is ther color on the surface of the fabrice, the end thread amel 1st pirk is represented by \square, which imlicates such thead to be down, amb would be covered by the filling and the surface of the cloth wonld

Fig. 51.
be the color of the filling. The secomel piek: the 1st threal is represconted as down []. this would be covered ly the filling ; thesecome thread on- second piek is represinted hy m^{2}, which indicates the thread to be on the sumpere The color mark over the secomd thrad in Figs. 47 and 48 is white, therefore, white will he on the surfice of the cloth.

Explamation of Fig. 49. This is like Figs. 47 and 48, hut interwoven with the filling as shown at the right-hand side.
Detail: 1st pick white: under black and over white altermately. 2nd pick hack: over black and moler white alternately. 3rd piek like the 1st, th piek like the 2nd, amd so on, thas forming the "Hair-line" pattern, one dark line and one liglat line down the cloth. In the hair-line design hack eovers hatek and white covers white.

Erplametion of Fig, so. The particulars for the warp eolors and weave are identieal with Figs. 47, 48 and $4!$, but the interweaving of the filling is important.

The first pick is black in place of white. The seeond pick is white in place of black, or black covers white and white covers hatek, thus making the dark line across the falnie as shown in Fig. 50.
E.rplatetion of Fig. im1. This shows the effect of thre phain weave, warp solid black, filling solid white.

Fig. 52 is an example of the plan weave on s threals amb 8 picks, arranged in the following manner:

Explanation: 1st section consists of t threads, s picks high divided into two parts, 4 threands and + pieks regular $\frac{1}{1}$ phan $^{\text {bain }}$ weave

1st pick - t threads, 1st up, 2ud down, Brd up, tht down.

Brd " - t " 1st up, 2nd down, Sed up, the down.
th ". - t " 1st down, 2nd up, Brd down, th up. This is the first part of 1 st section. See the first t threads and picks 1 to 4 and picks A to D , Fig. 52.

Fig. 53.

Seemen part of 1 st section reads, 4 thrads and + picks, phain weave, momencing with the second threal of the plan weave, which will read on the design paper:

 completes the first seetion, $\&$ threats and a picks.

Now take the second section of + threads, Nos. \quad, 6,7 and s, in Fig. 5e. Finst part reads t theads and 4 picks, pain weave eommenobig with the second thead of the plan weave, which will read on the design paper:

1st pick - Sth threal down, 6th up, 7th down, 8th up.
Qud - - Sth ". up, ith down, 7th 川p, 8th down.
3rd -. - Sth ". down, 6th up, 7th down, 8th up.
4th .. -5th " י1p, 6th down, 7th up, sth down.
Second part of section 2 reads 4 threads and 4 picke, plain weave, which reats on the design paper:

5th pick - 5th thread up, 6th down, 7th up, 8th down.
6th " - 5th " down, 6th up, 7th (lown, 8th "1).
7th .- -5th •• up, fith down, 7th up, sth down.
8th .. - 5 th ${ }^{-6}$ down, 6th יp, 7th down, 8th up.
Fig. 58 is the same weaving plan as given in Fig. 52.
The wap is dressed 1 black and 1 white.
The filling is interwoven 1 white and 1 black.

Fig. St.

Fig. 5\%.

Fig. it. The design is on 8 threads and spicks all plain weare, $\frac{1}{1}$.

The warp is dressed 1 black, 1 white, 1 hack, .2 white, 1 black, 1 white, 1 hack; $=8$ threads.

The filling is interwoven, 1 white, 1 back, 1 white, 2 back, 1 white, 1 black, 1 white $;=8$ picks.

Fig. 55. This design is shown on 12 threads and 12 picks, all plain weave.

The warp is dressed 1 black, 2 white, 2 batk, -2 white, 2 black, 2 white, 1 black: $=12$ threads.

The filling is interwoven, 1 white, 2 black, $\because \underset{\sim}{2}$ white, $-\underset{\sim}{\text { black, }}$ 2 white, 2 black, 1 white $;=12$ picks.

EXERCISES FOR PRACTICE.

All on the Plain Weave.
watip.

1. 1 Red $\left.\begin{array}{l}1 \text { Black }\end{array}\right\} 16$ Threads.
$\left.\therefore \quad \begin{array}{rl}1 & \text { Red } \\ & 1 \text { Rlack }\end{array}\right\} 16$ Threads.
2. $\left.\begin{array}{l}1 \text { White } \\ 1 \text { Black } \\ 2 \text { White } \\ 1\end{array}\right\} 20$ Threads.
3. 2 White $\begin{array}{r}2 \\ 1 \text { Black }\end{array}$ Threads.
4. 2 Black $\} 16$ Threads

2 (ireen

FII.I.ING.
$\left.\begin{array}{l}\text { 1 Black } \\ 2 \text { Red }\end{array}\right\} 16$ Picks.
$\left.\begin{array}{l}1 \text { Red } \\ 1 \text { Black }\end{array}\right\} 16$ Picks.
$\left.\begin{array}{ll}1 & \text { Black } \\ 1 & \text { White } \\ 1 & \text { Black } \\ 2 & \text { White }\end{array}\right\} 20$ Picks.
$\left.\begin{array}{l}2 \text { White } \\ 1 \text { Black }\end{array}\right\}$ 12 Picks.
$\left.\begin{array}{l}2 \text { Black } \\ 2 \text { Green }\end{array}\right\} 16$ licks.

EXERCISES FOR PRACTICE.

Sketch on point paper the effect produced by the following weaves amd colorings.

WEAVE.

WARI。
$\left.\begin{array}{l}\text { Cobor- } \\ \text { Gromind-1 }\end{array}\right\}=2$
$\left.\begin{array}{lr}\text { Color- } & 2 \\ \text { Gronnd- } & 2\end{array}\right\}=4$
$\underset{\text { Color- }}{\text { Cround-2 }}\}$
Color- 4$\}=$
as wary
(5) same as (1)
$\left.\begin{array}{lrr}\text { Color-round-1 } & 2 & 3 \\ \text { Ground }\end{array}\right\}=8$
$\underset{\text { Crombith-4. }}{\text { Corm }}\}$
$\left.\begin{array}{ll}\text { Color- } \\ \text { Gromm- }\end{array}\right\}=8$
as wary

WとAVE．
（7）

> W. \l:r.

Color－ $111=4$
Grommd－：．）
（s）same as（6）
（9）

（10）

$\left.\begin{array}{l}\text { Grommd－} \\ \text { Nu．} 1 \text {（ } 10 \text { olor－1 }\end{array}\right\}=4$
No． 2 （olor－：

$\begin{aligned} & \text { Grommd-111)} \\ & \text { Color- } 2 . \end{aligned}$	as waty
$\left.\begin{array}{l} \text { (round-? } \\ \text { (olor- } 3 \end{array}\right\}=6$	
$\begin{aligned} & (\text { iromut-3) } \\ & \text { (olor- } 3) \end{aligned}=\{$	$\begin{aligned} & (\text { rromnd-1 } \\ & (\cos)=2 \end{aligned}$
$\begin{aligned} & \text { (romud-. } 1 \\ & \text { Color- } 2 .\} \end{aligned}=3$	$\left.\begin{array}{l} (\text { Crombl-1 } \\ \text { Color-1 } \end{array}\right\}=2$
$\begin{aligned} & \text { Ground- } 1) \\ & \text { Color- } 2 .) \end{aligned}$	
$\begin{aligned} & \text { Ground-1 } 11: 3: 2 \\ & \text { Color- } 11 \end{aligned}$	$\begin{aligned} & \text { (iround-1 } \because: 3 \\ & \text { (olno- } 1: 31 \end{aligned}$
	$\left.\begin{array}{l} \text { (rromul-: } 1 \\ (\text { color- } 2 . \end{array}\right\}=3$
$\left.\begin{array}{l} \text { Gromin-2 } \\ \text { Color- } \\ \text { Col } \end{array}\right\}=6$	as warl
$\left.\begin{array}{l} \text { No. } 1 \text { Color- } 1 \\ \text { No. } 2 \text { Grond -1 } \\ \text { Nor } \end{array}\right\}=16$	No． 2 Grommal－11］

$$
\left.\begin{array}{l}
\text { No. } 1 \text { Color- } 1 \\
\text { No. } 2 \text { Ground-1 } \\
\text { N }
\end{array}\right\}^{\prime}=16 \quad \text { No. } 2 \text { Gromud- } 111
$$

4 times twice
$\left.\begin{array}{l}\text { Color－} 11 \\ \text {（inonnd－2 }\end{array}\right\}=4$

Crommd－2 2$\}=8$ Color－4．j

No． 1 Color－$\quad 11122$ ？
No．： $11122=24 \quad$ No．Brommal－ 111

No．3（round－22222）
No． 1 Color－$\quad 22!=心$
as watl
$\left.\begin{array}{l}\text {（in）} 19 \mathrm{r}-1\end{array}\right\}=2$

（irouthl－1．）

No．＇2 Groumel－1 \because ）

はいいまし！
（11）sime as（10）
（12）same as（10）
（13）same as（10）
（14）same as（10）
（15）simme as（10）
(16) same as (10)
（17）same as（10）
（18）simle as（ 10 ）
（19）

（20）same as（19）
（21）same as（19）
（22）same is（19）

WEAVE.

(24) same as (23)
(25) same as (2:3)
(26) plain
(27) same as (26).
(28) same as (26)
(29) same as (26)
(23)
(2)

WAにV。
FIGILN:
 t times

No. I Color-1
No. $2\left(\begin{array}{ll}3 \\ \text { (irumal-1 } & : 3)\end{array}=: 3\right.$
No. 1 Color- 2!
No. 2 (rround-1) $=3$
6 times 4 times

4 times 4 times
Gromm- $\left.\quad \begin{array}{rr}1 & 1 \\ \text { No. } 1 \\ 4 & 1\end{array}\right\}=20$
4 times 4 times

$$
\begin{aligned}
& \text { No. } 1 \text { Color-2. } \underbrace{12 .} \\
& \text { ? times twice }
\end{aligned}
$$

Nketch on point paler the effects prodnced by weaves 80 and :31 warped and picked 1 color

$$
\frac{1}{2}
$$

30

31

Design from a written formula. Suppst a dsisult is su quired similar to Fig. Sti. The list question is; law many threads and picks ane nomessary to form the full lesign? second: how manc threals and pieks ate necessary for the later borly square at the lower lefthand corner". 'Thirt; how many threats ame picks are necessany for the small borler stuares: Fourth: what wave will be the most suitable for the required falmic?

A design should mever be made withont taking into considuration the requirements of each operation and the effert to be protuced. In the main body sighare of Fig. it the twill is rmming at an angle of 45°. and in the small squares the twill is ruming to the right and left in altermate squares. We will make our finst design on $2 t$ thenadi $X \because \Delta$ picks in one repeat of the design.

First. Mark off design paper to the reduired di-

Fig. 26.

Fig. 57. mensions.

Serombl. Itow many threats amp pirks arr necessary for the large body symare A at the lefthand lower comer" In this instance 18×18 are reguired. Mark off the design paper to the reguired number of threats and picks (See Fig. iss).

I'hird. How many threals and pieks are nectsiany lor the
small horder squares B and (? ? In this case we will divide the border into four parts of 6 threads $\times 6$ picks each way (See Fig. 59).

Fonitl. On examination of the skeleton design of Fig. 59, we

Fig. 58. notiee that it can be divided into four sections, 1, 2, 3, 4 , as shown in Fig. 60.

Fifth. Decide what weaves will be most suitable for the required fabric. This design Fig. 56 shows a fine twill or diagonal, therefore we will use the 3-hamess twill, filling flush 1_{a} to right and which we will call class weave " B 1 ," also the 3 -harness twill, warp flush $\underline{2}_{1}$ to left, and which we will call class weave "B2."
Now to construct the design from a written formula or problem.
PROBLEM.

Dress Goods Design.

24 threads and 24 picks.

Harness, Heddles and Eyes or Mails. At this point the studentshould begin to examine into the practical carrying out of his designs at the loom. The first step in this direetion is to deal with the arrangement of the warp threads in the heddles on
the hamesses, or, as it is termed, "warping and dressimg:" and the next will the the method of adolating the hamesses by means of a chain, or order to produce the required pattern.

In this, ats in all other work, there must be some recognized means of conreying or indicating the orler in whieh the threads mast be drawn through the harness.

When the weaver is standing in front of the loom, whether hamd or power, the hamesses are in front of him, as in Fig. (i2, which represents a common hand loom, such as is adapted for plain weaving. It consists of four wooden posts framed together at the top by two long cross pieces. The two long pieces ($($ are called the rapes of the loom. Between the two pairs of posts, forming the ents of the loom, are placed two eylindrical beams: the beam A leeing the wayp beam, upon which the wally is womd, and I) the eloth beam, upon which the cloth is wound

Fig. 59.
 as it is woven.

The warp threads are phaced parallel to each wher as before described, and are carried from the wap lowan I ame attached to the eloth beam B. This is done by threading the
knotterl ends of the threads upon a small rod, and werlging it into the slot or groove formed in the beam for that purpose, as shown at X in Fig. 68.

In order to keep the threads in their relative positions and parallel to each other, two rods D D are inserted hetween the warp threads in such a manner that each thread passes over one of the rods and under the other alternately, as shown. 'Thus a cross or leese is formed by the threads between the two rods, which not only keeps the threads in proper order, but enables the

Fig. 61. weaver to detect with ease the proper position of any broken thread that he may have to repair. This arrangement of the threads is formed during the process of warping or warp dressing and slashing.

After the warp has passed the leese it is then passed through the heddles, as shown at H in Figs. 62 and 68. The herldles are composed of a number of threads or wires threaded between laths or hamess shafts. Eacll wire or thread has a loop in the middle, or, instead, an eye called a mail or heddle eye is threaded upon it, throngh which the warp thread passes. There are two hedrles shown at II II, one of which receives every alternate thread of the warp, and the other receives the remainder. Consequently, if either of them be raised, it will also maise the wapp threads which have been threaled through the heddle cye or mails.

The arrangement of the warp threads, and the varions parts of the loom which operate them may be best understood by refrring to Fig. 6t, which is a diagram showing each warp theat separately.

In Fig. 6t the hamess shafts are shown comected and balanced by cords passing over pulleys, I' I', and the lower part
 consequently it raises the other treatle ant the hamest. Thme

Fig. 62.
half of the warp can be altemately mised for the pasiager of the shuttle.

The wap is kept in tension by means of weights commeeded

Fig. 63.
to a rope passing once or twice round the wap leam. The cloth beam is provided with a ratelet wheed amel pand M. also with a handle Z, for winding on the cloth as it is wowen.

In Fig. 6t only one each of the leeses is shown, lut as
there must be onc to each pair of warp threards, the required mumber must be provided for. Thms, if there are five lmmatred threads per inch in the width of the cloth, there must be 250 leeses per inch in the warp, or 250 threadis per inch on each hamess. But as the hedilles are composed of material much

Fig. 64.
thicker than the warp theark, they necessarily take u^{\prime} more room, ant could not be phated upon one pair of harnesses in weaving fine wapls. In such cases more hamesses are used, each having its share of the threarls, and half of them are rased at onve so as to raise onc-half of the warp threads.

Problem 1 of the Examination l'aper carried ont to its full extent, called one repeat of the design.

123456789 ம1112131415161718192021222324

TEXTILE DESIGN.

PART II.

ACTUATING THE HARNESSES.

Drafting and Reduction. This is an important part of designing, and necessary for the prodnction of extended patterns on a limiterl number of hamesses.

Althongh presenting no great diffieulty to those wishing to understand the operation, yet it is surprising that so much ignorance exists in reference to it, even by those conversant with other aspects of the art of weaving. In the design for the pattern, drafting deals with 2 or more threads which are fomm to be always working alike, that is, always up and always down together, throughout the weaving operation. This unites them in one motion or harness, instead of 4 employing separate harnesses for each individual thread. By this means a great variety of effects may be

Fig. 6\%. mbtained, and large patterns produced in looms having the simplest appliances. Especially is this the case in the weaving of stripes, in looms capable of allowing only a limited number of harnesses, and with only one shattle. But for the production of checks and stripes requiring a large number of picks and threads before the pattern repeats, the Johby head or an equivalent motion is necessary. For this reason, although a design may be drafted so as to employ but few harnesses. yet the number of pieks camnot be reduced, but must be fully carried out to the extent of the design.

For the purpose of representing the harnesses, draw horizontal lines after the manner of Fig. 65, and then adopt a system of indicating the warp threads. A good, neat method is shown in Fig. 66. Here the horizontal lines represent the harness shafts. and the vertical lines the warp threads. The point at which the
vertical line stops indicates the heddle throng! which the warp thread is drawn. This form indieates at a ghance the order of the draft. Another method is shown in Fig. 67, but as will be presently shown, this is not as convenient, and it is hetter to employ this manner of marking for another purpose. A third form (see Fig. 68) employs numbers instead of the vertical lines; this form
 is commonly used, and is very convenient. A still more convenient method is to use design paper; this will be resorted to later on, but, for the beginner, it is better to work on the plan shown in Fig. 66. When Fig. fig. he has thoroughly mastered the sys. tem of drafting, he can resort to whatever method he fimls most convenient.

Let us turn to the actuating of the hamesses to produce the design. It will be most readily dealt with hy following the method employed by hand-loom weavars, as this will enable the question of drafting and the actuating of the harnesses to be considered at the same time. Suppose a phain eloth is to be woven. Where every altemate thread is alike, as explained moter the head of plain cloth, there would be only 2 harnesses required, one to actuate the first, thirl, fifth, cte., and the other to actuate the second, fourth, sixth, ete., threads.

Fig. 67.

Fig. 内゙.

The draft and treading phan as made for the hand-loom weaver is shown in Fig. 69. The horizontal lines represent the hamesses; the vertical lines at the left the warp threads; the vertical lines at the right the hand-loom treadles; the cross at each intersection indicates the hamess to be raised by the treadle ; and the numbers upon the vertieal lines at the right indicate the order in which the treadles are to be depressed. In this case the weaver depresses his right foot for the first piek, his left for the
second, and so on. For a phan cloth this is exceedingly simple, more espeeially when only $\ddot{\sim}$ harnesses are \quad mphoyed, hut sometimes t or more are used.

It will be well to cxamine the drafts for the use of 4 or more hamesses, as it will be the simplest means of making the sulject clear and preparing the way for more advanced work.

Let us turn to Figs. 70

Fig. 6!. and 71. They are both plans for weaving plain cloth upon t harnesses, the first by what is known as the straight draft, and the second by a cross draft. This means that in the first case the warp threads are drawn through each of the heddes consecutively, and in the other that they are crossed from the first to the third and second to fourth. Now, if the threals are to be raised altemately, the harnesses carrying the alternate threads must be raised at the same time, no matter what position they oceupy in the series. This first portio: must be thoroughly understood. The student must accustom himself to following the threads, and actuating the hamesses which carry them in exactly the order required.

In Fig. 70, treadle No. 1 is attached to the first and third harnesses, always counting from front to back or from that nearest you. These 2 hamesses carry hetween them alternate threads. Treadle No. 2 is attached to the second and fourth harnesses and actuates the threads not touched by No. 1 ; consequently by depressing the treadles alternately, plain cloth will result. In Fig. 71, the first and second hamesses are attached to No. 1 treadle, and the third and fourth to No. 2 ; the reason for this
will be apparent on examining the draft, for the first and sceond harnesses in this case carry the threads corresponding to those carried by the first and third in Fig. 70, so that the result will be the same.

An explanation must be made here to those who have some knowledge of power looms. The system of attaching jacks and vibrators of the hanesses in power looms is different from attaching the treadles in the hand loom. 'Thus, in making the plans, it would appear at first sight that the process in one case is exactly the reverse of that of the other. In the power loom there is a separate jack and vibator attached to each harness, while in the hand loom each treadle is attaehed to as many har-

nesses as are required to be raised or depressed at once. The difference is: the hand-loom weaver depresses one treadle only for one pick, whereas the power loom depresses as many jacks or vibrators as there are harnesses to be acted upon. Thus the handloom treatle represents one piek of filling or one horizontal line of the design. 'This apparent confusion is overeome by reading horizontal for vertical, and vice versa. This, however, will be more fully explained later.

Now leaving the plain eloth drafting, let us consider twilled fabmics. What is known as the 3 -hamess or prunella twill is dealt with in the same manner as the phan weave, ?nt 3 harnesses or sometimes 6 are employed instead of 2 , thus simply donbling the mumber, as has been shown in the plain weave. ln working tharness twills the same principles apply, but there is a little more eomplication of detail.

Take first the ordinatry f-hamess $\frac{1}{3}$ twill: suppose we wish to work with the draft given in Figs. 70 and 71, becanse it is
quite clear that as there are only t threads in the design it can be woven on 4 harnesses. We must now look to the orlar of treading, or building the harness chain, as it is trrmed, or rasing the harnesses. To follow out the principle explaned in connection with Figs. 70 and 71 it would be necessary to laise the harnesses in the order shown in Figs. 72 and 73.

It is necessary to follow each thread, and ascertain whether or not they follow in the odder required.

Having rednced the design to the least number of requisite harnesses, the working plan or chain is foumd by taking the consecutive numbers from No. 1 to the highest figure shown beneath the design and placing them side by side in their order, according

Fig. 74. to the requirements of the design, so that they shall read $1,2,8$, $4,5,6,7,8$ and so on. This will be seen in Fig. 74, which is given to show the principle of drafting and reduction in its sinplest form. It is, however, the same as applied to the more elaborate patterns. The numbers beneath the design are used for the purpose of obtaining those threads that are working alike, and also to obtain the nature and extent of the draft.

Fig. 75 shows the drafting or the threads drawn through the hamesses, as taken from the design, and the numbers beneath correspond with those found under the design. The horizontal lines represent the harnesses, and the vertical lines represent the threads.

Fig. 74 represents a diamond pattern of which the design stands uron 8 threads. See numbers on top. Begin at the bottom at the left-hand corner, and note the dotted spaces of each thread, which means their manuer of working, from the bottom to the top. When $\boldsymbol{2}$ or more threads are marked exactly alike, the same number at the bottom represents all of that kind. Thus the 1st thread is marked No. 1, and, of course, will requise one harness to work it: the $2 d$ thread is working differently from the 1 st, and will require another hamess, marked No. 2; the Brl, 4 th and 5th threads are also different from any of the others, and so will require different harnesses for eath. They are marked Nos.

3,4 and 5 . The Gth thread is marked 4 becanse it is working like the preceding thread marked 4 , the 7 th thread is marked 3 becanse it is like the preceding thread marked 3; and the 8th thread is marked 2 for the reason that it is working like the first thread marked 2. The numbers under the design now read $1,2,3,4,5,4,3,2$; therefore the highest number is 5 , which means that the design requires 5 harnesses to weave it. What-

Fig. 75.

Fig. 76.
ever the highest number may be, it represents the number of harnesses required. In this instance five parallel lines are drawn for the harnesses and marked up the side $1,2,3,4,5$. Now proceed to draw vertical lines to represent the threads drawn through the harnesses, indicated by the numbers muder the design, and

Fig. 77.
just in the order in which they stand. No. 1 is drawn upon the first harness, No. 2 upon the second, No. 3 upon the third, No. 4 upon the fourth, No. 5 upon the fifth, No. 6 again upon the fourth, No. 7 mpon the thirl, and No. 8 upon the second. (See Fig. 7\%.) Having tinished the draft, the next proceeding is to obtain the working plan or chain, which is a reduction of the design, so far as the threals are concerned. In this case the consecutive numbers from 1 to 5 are fomd together, so that the only requirement is to cony exactly the first 5 threads of the design as they stand, as shown in Fig. 76.

The next examplas eomprise mixed weaves and are of a more extended and practical character. For the purpose of maming the working plan from them, use the comseentive mmmbers from No. 1 to the highest. These are not all together as in Fig. 7 t .

Fig. 78.
Fig. 77 consists of $2 t$ threads and 4 picks, and is mate $י$ up of three different weaves. Each weave is repeated, so that the first four numbers moder each different weave must be taken for the working phan or ehain, which gives the numbers consecutively, $1,2,3,4,5,6,7,8,9,10,11,12$. Fig. 78 represents the Drawing Draft. This design requires 12 hamesses to weare it. (See the chain draft of Fig. 79.)

There is another consideration in reference to drafting which ought to be understood, and that is, that frequently the full design is not given, only the draft and working plan, so that the weave intemded to be prodneed is not always intelligible. Many designers adopt this method for the prorpose of economizing time, and in practical work in the mill it may lee recommended, not

Fig. 79. only for concealment, but becanse the draft and working plans are all that are necessary for the pattern weaver, chain builder or loom fixer.

In order to obtain the full design from the rednced working plan and drawing-in draft, reverse the method adopted in the previous examples and follow the draft and chain in the same maner as with the design when making a rednetion. Number
the threads consecutively at the top of the drawing-in draft, so that the phace for each particular thread in the extended design will be indicated. A simple illustration will explain this. In this pattem (see chain draft, Fig. 80), 6 hamesses are required,

Fig. 80.

Fig. 81.
on which are drawn 12 threads to complete the pattern. (See drawing draft, Fig. 81.) 'Thus the working plan contains 6 threads. Another method sometimes adopted shows the working chain of the design, as in Fig. 80, but has the draft indicated by figures, and not on parallel lines. For

Fig. 82. instance, take the draft for Fig. 81, the numbers for which would read $1,2,3$, $4,5,6,3,2,1,6,5,4$. To make this clear, draw as many horizontal lines as represented by the highest number, which in this ease is 6 ; then number the lines consecutively, and proceed to draw the vertital lines upon them according to the numbering of the threads. This gives the draft as in Fig. 81. For design represented by these drafts, see Fig. 8. Examples. Reduce Figs. 8:), 84 and 85 to the fowest possille momber of hamesses.

TWILLING.

Flushes. Diagomal twills or cords that rm obliquely across the cloth may vary in size acording to the nomber of harnesses on which they may be drawn in consecutive order. 'This manner of drawing is techmically termed a straight over-draw. Twills are generally named aceording to the number of threats that will
complete the design. This is techmically temed a repeat. Thus, weave $\frac{1}{2}$ is known as a : $;$-hamess twill, filling flush; the weave $\frac{2}{1}$ is called the : $:$-hamess twill, warl- flush. It may be stated here that when practicable, the smallest number of harnesses

Fig. 83.

Fig. 84.
should be raised and the greatest number depressed in weaving special makes of cloth. In this maner the wear and tear of the yarn is much reduced; the only objection to this, being that in a warp flush face weave, the surface of the goods is woven face down and cannot lee seen by the weaver.

The 4 -harness twill, filling flush, is formed ly the filling passing over 3 threads of warp and interweaving at the fourth

Fig. 85.
thread. The 5 -harness twill, warp flush, is formed by the filling passing over only 1 thread of warp, interweaving at the second thread and passing under 4 warp threads. The 5 -harness twill, filling flush, is exactly the reverse of the warp flush. Fig. 86, plain weave ; Fig. 87, 3-harness twill ; Fig. 88, 4-harness
twill ; Fig. 89, 5-harness twill; Fig. 90, 6-harness twill. It should be monderstood that all marks, unless otherwise explained, are risers, and all blanks or spaces are sinkers: therefore, in Figs. $87,88,89,90$, the fillings predominate on the face and are called respectively $3,4,5$ and 6 harness filling flush weaves. If the weaves had been reversed, that is, if crosses or black marks had been put in the squares which are now blank, the weaves would be wap, fluslo weaves. We now understand a regular twill to run in small diagonal lines, lars or cords, at an angle of 4.5 degrees or obliquely across the falmic. It may be a filling flush, warp flush, or an even-balanced twill, according to the weave used.

When the consecutive liftugg of the hamesses or scheme of successive interlacing with filling is changed, so as to raise the harnesses at intervals of 1,2,3 or more from each other, the twill or diagonal stripe is said to be broken, and it will be observed that the flushing does not run at an angle of 45 degrees, but is broken according to the intervals of interlacing and the disposition of the harnesses.

We must now consider this broken effeet as compared with the regular disposition of the harnesses ruming in consecutive order. When the harnesses can be raised regularly, at interials of 2,3 or more from each other, the weave is said to be a sateen of a perfect order ; but if the intervals camot be so arranged, or the weave will not admit of this regular intermission, then the weave is mot a true sateen, althongh we find many of these imperfect weaves forming the groundwork of many falmies.

The smallest momber of threads that can be arranged to make a true sateen is the 5 -harness twill, the arangement of which is $1,3,5,2,4$. Six hamesses do not admit of such a disposition. The 7 -hanness twill is perfect, admitting an interval of

1 or 2 hamesses. Eight harnesses is the lowest mumber used in making an evenly numbered weave that can be transformed into a true sateen. By experimenting we find that bey an interval of 2 we have a most perfect sateen. The 9 -harness twill is perfect, each altrmate hamess lifting. The 10 -hamess t will is a grood -ateen, every third hamess being raised. The same order of interwearing is shown by the 11 -hamess twill, which makes a perfect sateen. The 10 -harness weave is formed hy mising evory third. The 15 is made ly lilting every other third haness. The 16 -hanness sateen is made by omitting 2 or \pm thread. It may

Fig. 91.

Fig. 92.

Fig. 93.

Fig. 94.
be remarked here that all twills of an uneven mumber, except the 3 -harness twill, will produce perfect sateen arrangements. With the even numbers imperfections are often fonnd. The preceding remarks apply either to the filling or warp flush weaves, where 1 thread is either up or down and the remaining number covered either by filling or warp.

Owr next consideration will be fancy tuills, or effects that are obtained by using any number of harnesses in any fixed weave. For instance, to make the tharness twill, 1 up and 3 down, into another variety or effect, we can take 2 up and 2 down. This is called the 4 -hamess Cassimere or Shalloon twill. With a larger twill the flushing can be varied by interspersing the weave with plain texture, as, for instance, the 7 -hamess changed to 1 up 1 down 1 up 1 down 2 up and 1 down, and so on.

Fancy Twills. Examples are here given (Figs. 91 to 100) of what are termed fancy twills, and it will be seen how an endless variety of patterns may be obtained from them.

Twills that rum obliquely will form the gromalwork for wave effects, either in the direction of the filling, across the fabric, or in the direction of the warp, that is, with the length of the
fabric. Take, for example, the 4-harness twill, filling flush ; draw this straight over on 4 harnesses and raise the harnesses as shown in Fig. 101. By studying this wave weave, we find that it is the eommon 45 -degree twill for 4 picks and that it then twills to the left, thus: $1,2,3,4,3,2$, which makes a zigzag on wave effect in the direction of the warp. If we use the 4 -harness $\frac{1}{3}$ twill and draw the threads through the harness, 1, 2, 3, 4, 3, 2 (see Fig. $10 \ddot{\sim})$, which is the same order as given in the preceding example,

Fig. 95.

Fig. 96.

Fig. 97.

Fig. 98.
the effect or result in the fabric is a zigzag across the piece or in the direction of the filling.

Reverse Twills. In all the regular twills, as shown in Figs. 87 to 90 , the filling predominates on the face of the cloth, and the warp on the back of the cloth. Take the 5 -harness twill for an example; if the warp is of one color and the filling another, as there is 1 thread up and 4 threads down, it follows that four-fifths of the filling will be on the face and one-fifth on the back, thus changing the appearance of the filling from one side of the fabric

Fig. 99.

Fig. 100. to the other. This is called reversing the twill. It is very extensively applied in different branches of weaving, particulaty in the cotton and linen trades. We will take for example the reversing of the 4 -hamess twill, and make a stripe of 12 threads warp flush and 12 threads filling flush. In this example (Fig. 103) we notice that it takes 4 extra hamesses, that is, 4 harness for the filling flush and 4 harness for the warp flush weaves. Patterns of this deseription may be extended to any width of stripe, as they are formed and regulated
entirely by the quantity of warp drawn on each set of hamesses. These examples will be suffieient to show the natare of reversed twill stripes, the varieties of which may be increased at phasure by means of additional hamesses, amb loy varying the sizo of fone or both stripes.

The next variation of the reversed twill is to form on the same stripe, the wan'p flush and filling flush effect altemately. (Fig. 10t.) We find that there are

Fig. 101. 12 picks filling flush weave and 10 picks wap flush weave. We will now go a little farther with these examples, combining the two systems so as to make a checker or diee board effect. In making desions of this eharacter, attention should he drawn to the divisions of the two weaves. Where they

Fig. 102. unite, the line must be distinctly defined, that is, to make them mite in a perfect cut. This will he better understood by referring to Fig. 104, at the extreme sides of which, top and bottom, it will be found that the raising marks of

		- \times										1			8			8			8		
																				7			
		x																	6				
													5			5							
						3			3^{4}		3	4											
								2			3												
					${ }^{2}$			2		$1{ }^{1}$													\square

Fig. 103.
one division fall exactly on the sinking marks of the other compartment. This figure represents a perfect cut.

DIAPER WORK AND POINT DRAWS.
Damask. From what has been said in regard to fancy twills,
and from examples that have been worked out, it will not be difficult to mulerstand the drafting of the cloth known as Damask. Instead of straight-over drafts, damask desigus are usually woven by means of what is termed a diamond draft; that is, a draft that runs from the front hamess to the back harness and then returns to the front in the opposite order, thus forming a zigzag figure on the hamess. Sometimes there are patterns of a more complex character woven on this system of drafting. 'This will he explained under the head of double, triple and alternate diamond drafts.

Fig. 104.

The length or number of pieks in the repeat of the design is worked out on the same principle as the draft for the warp. (See Fig. 105.) Whatever variety, therefore, is adopted for the ground work or plan, aceording to the foregoing explanations, the result of the extended pattern will be nearly double the number of

-			.		-						-		C	3		-															8				
	-		c			6				-		-	-		-															7		7			
			Q	C	\%		-		-		-			-															6			6			
			C			-		-		3		-	-															5					5		
©					-		-		-		-					-											4							4	
	-					ف		,		-					-											3									3
-			-				6		-					-		-									2										2
	.			.				-					-		-									1											
								8																											
										6					2	1																			
									7	6	5	4	43	32																					■

Fig. 105.
ends in the warp. The additional threads and formation of twill will be in direct opposition to the original ground plam. As the filling is also carried out on the same principle as the warp, the design is nearly doubled by the pieks, the resulting design or twill
being run in the opposite direction. Thus a stuare on diamome figure is comamony prodmed. It must be paticulaty moticel that there is only one theat drawn on the first amd last hamess, and that the filling returns on the same scheme, son the whole design will be nearly four times the original figure.

Fig. 106.
Fig. 107.
The smaller weaves of this kind prodnce only a limited number of figures, generally a small diamond with a dot in the center, which gives the resemblance of an eye; hence this variety of design is ealled a Bird's-eye. But when we use 8 hamesses or more, they admit of considerable diversity in flushing, twilling and the addition of plain texture, thus deviating from the formal

Fig. 103. DOCBIEE DRAFT.
Bird's-eye. The design now assmmes the appearance of damask work.

Double Draft. These examples show what a great variety of figures can be woven on the damask work principle, especially those of a large gromud or original figure. All of these figmes are produced by the extension of the diamond draft. As the resources of fancy weaving are inexhaustible, various other changes can be effected by merely diversifying the order or succession of the draft indepentently of the position of the filling.

As every extension of the draft in this manner enlarges the figure in a duphiate proportion, that is, as the square of the number of theads in one set of the draft, such patterns, when the harnesses are momerous, will oecupy a considerable space on design paper. In all double drafts it should be mulerstood that the filling on piclis are extended in the same order as the wap draft.

DOUBLE DRAFT.

Fig. 10 .

The double draft, Figs. 108 and 109 , with any system that may he adopted, always produces two square or diamond effects. These are formed one within the other, and are again sumomoted by others of the same character.

Triple Drafts. Fig. 110. A triple draft enlarges the dimensions of these patterns still further, producing three similar designs, one within the other. 'These figures are generally termed concentric designs. From this example it will appear that any momber of concentric fighres may be formed by repeating the draft any number of times straight over the hamesses in one direction, and ly returning in the opposite direction an equal nmber of times.

Alternate Drafts. Fig. 111. Another method of diversifying the drafts of lined work patterns is by dividing the hamesses into two sets. Take 10 harnesses, for example, which, when divided,
should form 2 sets of 5 each. On either set we can make a diamond point, double or triple draft. 'This arrangement throws the group of small figures produced by each set of harnesses into altemate squares, somewhat resembling the draft-board pattern, each square again being eomposed of diaper or damask work. The

Fig. 110. thiple draft.
following draft is an explanation in itself. To find the number of harnesses required for any lined work design, either from the fabric or design paper, count the threads from the center of one figure to the center of the surrounding figure. 'This will give the number of hamesses. If a square be formed of which this is a diagonal, and is repeated four times, but inverted so that any one

Fig. 111. alternate draft.
corner of the design may be a common center, and allowing only one thread for each of the points, both by the warp and filling it will give one complete set of the design.

Damask work designs are used to considerable advantage in the linen trade, and also to some extent in cottons. This class of work makes good designs for the shawl trade, provided the warl is of one color and the filling of some darker shade of another color.

EXERCISES ON DAMASK PATTERNS.

1. Form a dheck from the ateompanying damask stripes $a b c d e f$.

b

2. Make damask stripe desigus on ts ends from weave ! and h.
3. Make cherk designs from thred stripes ((2nestion o).
4. Make two original damask stripe and comesponding eheck designs.

9

h

EXERCISES FOR PRACTICE.

1. Work out the designs from the following drafte amil (hain phans.
 with drafts (: II, K, L.
2. As No. 2, but with chain plan N.

								\cdots					\cdots					+					-														-
			-				-					-					-					6					-										-
		-					-				-					-			-					-					-					-			
	\bigcirc					-									-				,					-									-				
	-				-					-				-	-						-					-					-					-	
-					1				\bigcirc					1						-					-					-					1		-

A

B

C

D

L

K

E

F

F

M

N

EXERCISES IN DRAFTING.
Reduce each of the following designs to weave on the fewest possible number of shafts, giving draft and ehain.

5

EXERCISES FOR PRACTICE.
D):aft eall of the following designs on fewest possihle shafts and give chain.

EXERCISES FOR PRACTICE.

Make draft and chain plan for each of the following designs, giving good workable drafts.

EXERCISES FOR PRACTICE.

1. Make good working drafts and chain plans for designs A and B and supply chain plans for two original designs to weave in the same draft.
2. Make one draft to work the two accompanying designs C and D and give the chain plan for each.
3. Run out the accompanying design E until complete, then draft on 28 shafts and give chain plan.

4. Give draft and chain plan to weave design F on the fewest possible shafts ; also give chain plan to weave it with draft G.
5. Give two original designs and chain plans to weave with draft $(\mathrm{r}$.
6. Give chain plan to weave design II with draft (x.

LL

σ

EXERCISES FOR PRACTICE.

Give designs and warping and wefting plans to prodnce the following effects in single cloth.

EXERCISES FOR PRACTICE.

1. Make designs, drafts and chain phans for two-stripe patteris, thus:
2. 39 ents of plan " "," 13 ents of plan " "' reversed in twill 13 ends of 1 lan " a," 13 ends of plan " "" reversed in twill
3. 24 ends of plan " b, ," 12 ends of plan " b " reversed in twill 24 ends of plan " b, , 48 ends of plan " b " reversed in twill
4. Make designs, dafts and chain plans for two-stripe patterns, thus:
5. 24 ends of plan " c, " 12 ends of phan " c " reversed lack to face 24 ends of plan " ${ }^{\prime}$," 12 ends of plan " c " reversed back to face
6. 8 ends of 2 and 2 twill, 16 cmis of plan " l " 8 ends of 2 and 2 twill, 8 ends of plan " l " 16 ends of plan " d " reversed back to face, 8 ends of phan " a "
7. Give designs ant chain phans for three-stripe figures to weave in the acompanying thaft "e," suplying your own weaves.
t. Do you comsider that the following combination "f" would give a perfect cloth? If not, give two perfect combinations introducing one of these weaves in each.
8. Give design, draft and chain phan to produce a stripe figure similar to the aroompanying suggestion "!," supplying four own weaves.

EXERCISES FOR PRACTICE.

1. Fill in the accompanying Fig. 1 with the following weaves : A: 2 and 2 twill to right. B: 2 and 2 twill to left. ($: ~ 2$ and 2 hopsack. Make elean cuts at the joinings and give draft and chain plan for gour design.
\because. Make a design with draft and chain-plan to produce the accompanying Fig. 2, using your own weaves.
2. Make a check figure by a combination of plans $\Lambda, \mathrm{B}, \mathrm{C}$, giving draft and chain plan for your design.
3. Make a design for a cheek figure to weave in same draft and to be eomposed of same weaves as accompanying stripe design 1).
4. As No. 4 , but with stripe design E.
5. Make one check and one stripedesign to weave in the acompanying draft F and to lave the same weaves.

C

Fig. 2.

EXERCISES FOR PRACTICE.

1. Fill up the vacant space in plan B with weave Λ, joining equally at woth edges, and rim out to form a diagonal figure.
2. Make two desigus for diagonal figures, using pan C as the basis for each.
3. Make a design to produce a diagonal figure on 24 ends and 48 picks by a combination of weaves D and E .
4. Give design to produce diagonal Fig. F, supplying your own weaves.
5. Make an original design for diagonal figure to weave on 36 threads.

B

A

D

E

C

SATEEN WEAVES.

Satin. Real satin is a silk fabric in which the warp is allowed to float over the filling in such a manner as to cover it entirely and present a smooth, lustrons face.

Satinet is a mixture or union cloth in which the face shows only a woolen filling, the cotton warp being covered by it. Fig. 113 is the weave for a cheap imitation satin, known in some districts as "Kentucky Jean."

These weaves produce what their name implies, a satin effect. They are very extensively used in cotton, linen and silk goods, also in woolen and worsted fabrics. In the manufacture of

Fig. 112.

Fig. 113.

Fig. 114.

Fig. 115.
damask and linen table-covers they form nine-tenths of the product. In cotton goods they are used for making stripes, and in woolen gools they form such cloths as venetians, doeskins, beavers and kerseys. They are constructed usually from a twill weave, and this principle of interweaving is sometimes employed where the object is partly ornamental, as in satins that are used largely for trimmings and for ladies' dress goods. In such cases the first object is to produce a highly lustrous surface, perfectly smooth and showing no pattern.

If we take one elass as typical, in order to show the peeuliar arrangement and its effects upon the fatoric, it may serve as a guide to us when dealing with patterns for ornamentation. These weaves are of two distinct elasses; those in which the warp predominates on the face, called the warp finsh sateen, and those in which the filling predominates on the face, known as the filling flush sateen.

The peeuliarity of this kind of weave is that the order of interweaving the two sets of threads does not follow consecutively, but at definite intervals; especial care is taken that they do not follow conseentively at any point.

An example of the simplest kind, and one most commonly emploged, is derived from the 5-harness common twill (Fig. 114), where the filling predominates on the face and rums to the right at an angle of 45 degrees. Consecutively this is $1,2,: 3,4,5$, but by changing this weave over to a sateen wave (see Fig. 115), it will be observed that the order of interweaving is at set intervals.

To obtain the combination from which to design a satecn, take the momber of hamesses of the original twill weave on which it can be woven, and divide it into two parts. These mast be neither equal nor must one be the maltiple of the other, nor should they be divisible hy a third mumber. In constructing the weave (Fig. 115) in accorlance with the ruke, the mamber of harnesses on which the twill (Fig. 114) is woven, in this case five, is divided into two parts, thns giving two and three.

Fig. 116.

Fig. 117.

Fig. 118.

Fig. 119.

The method of constructing sateen by means of these two figures is to use either the two or the three as the number with which to count. If we use three as the mmber, it will be found that the picks of the twill would be used in the following order: A, D, B, E, C., which produces the sateen weave shown in Fig. 115. This is a filling flush sateen weave and the reverse of the Warp flush weave (Fig. 116). This latter is constructed after the same manner as the filling flush weave, except that the one down and four up warp flush weave is used.

From a 6-harness twill no regular sateen can be made, the number of harnesses not being divisible according to the rule. An irregular weave can be produced, but it is not desirable, as there will be two threads or two picks ruming consectitively in some parts of the weave. The best combination is mate by using the threads of the twill in the following order: $1,3,5,2,6,4$. (See Figs. 117 and 118.)

The 7 -hamess sateen can be oltained according to rule. (See Figs. 119 and 122.)

As a further demonstration, let us take the 8 -harness filling flush twill, 1 up and 7 down. (Fig. 120.)

According to the rule the numbers in this case are 3 and 5. Four and 4 would be equal, 6 and 2 would be divisible lyy a third mumber; eonsequently they would not be correct. Take 3 as the number for comong. The first pick of the sateen is the first pick of the twill; the second pick is found by adding 3 to the fisst pick, which makes it the fourth pick of the regular twill; then add 3 to 4 , which makes it the seventh pick of the twill; to this 7,3 is added, which shows that the fourth pick of the sateen is the tenth of the twill, but as the twill repeats on 8 picks, the second corresponds to the tenth and is the fourth

Fig. 120.

Fig. 121. of the sateen ; to the second pick 3 is added, which makes it the fifth of the twill and also the fifth of the sateen; to the fifth pick 3 is arded, which makes the eighth of the twill the sixth of the sateen; to the eighth 3 is adderl, which makes 11; the third pick is equivalent to the eldenenth and seventh of the satcen ; to the third 3 is added, so that the sixth of the twill is the eighth of the sateen. If 3 is again alded, the first pick of the twill will he the next one to be usod, thus showing that the repeat of the woave has been oltanach. The 8 -hamess sateen is formed ly using the picks of the twill in the following order: $1,4,7,2,5,8,8,6$. (See Fig. 121.)

In laying out a eloth of this description the number of threals in both the warp and filling is of the greatest importance. 'The warp threads in a warp flush weave should be phaced as close together as their diameters will permit, and as the filling is inserted, one thread will be withdrawn from the surface of the labrie and will hemd around the filling at the back. As the next pick is inserted, another thread will be withdeawn, the first one

retuming to its original position. As the threads are mot withdrawn in regular or consecoutive order, the filling does mot lwal around the warp in a great degree, but remains straight, the wap oniy being drawn out of its course. Under this condition the filling theals camot be marle to lio elose together, lout are always separated from each other by at least the diameter of the wat thread ; therefore, in this class of fablife, we should always bave a greater momber of warp threarls per inch than filling picks.

If the fabrie is to bre dumble, we mast take care that the material which is present in least quantity, whether it he filling or wairp, shall be of sufficient strength to compensate for the absence of quantity, otherwise the fabrie will be able to bear strain in one direction only, whereas by proper attention to the strength of the material employed we may make it able to bear the requisite strain in both directions. If it is desired to produce on the fabrie a smooth, unbroken surface with no visible pattern,

Fig. 122. the warp threas may be placed so closely together that as one is withchawn to bend around the filling, those on each side of it will close over the vacancy and completely hide the point where it has interwoven with the filling.

In that case the number of warp threads shond be increased in proportion to the number in the filling, and consequently the fabnic will be capable of bearing an increased strain upon the warp, hat a deereased strain in the direction of the filling. Exactly the same prineiple will apply to fabrics where a filling surface is desired; the warp threads are then set sneh a distance apart as will permit of the filling threads passing readily between and bending around them. The filling threarls ane inserted as closely as their diameters will allow, and in some cases pass over and hide the point where the filling has bent aromed the warp; and again, in many eases, they are inserted so closely that the filling is compressed and loses its cylindrical form. In such fabrics the greatest strength is in the direction of the filling just in proportion to the quantity of material employed.

EXERCISES IN SATEEN WEAVES.

(A) Work out weaves from the following:
(1) $\frac{\begin{array}{l}3 \\ 2 \quad 1 \quad 1\end{array} 1}{2}$
(2) $\frac{2 \quad 2 \quad 2}{2 \quad 1 \quad} / 5$
(3) $\frac{1 \quad 2 \quad 3}{1-3} / 1$
(4) $\frac{123}{123} / 5$
(5) $\frac{22^{2}-2}{1-14} / 1$
(6) $\frac{2-2 \quad 2}{1} 1 \begin{array}{ll}2 & 4\end{array} 5$

(7) | 3 | 3 | 1 |
| :--- | :--- | :--- |
| 3 | 2 | 2 | 1

(8) | 3 | 3 | 1 | |
| :--- | :--- | :--- | :--- |
| 3 | 2 | 2 | |$/ 2$

(9) $\left.\begin{array}{cccc}3 & 3 & 1 & 1 \\ \hline 3 & 2 & 2\end{array}\right]$

(10)	3	3	1
3	2	2	$/ 4$

(11) $\frac{3}{3} \quad 3 \quad 1 \quad\left[\begin{array}{lll}3 & 1 & 2\end{array}\right.$
(12) $\frac{3 \quad 31}{32} \div / 10$
$(13)^{2} \frac{2}{1} 13 / 1$
(14) $\frac{22^{2}}{113} / 2$
(15) $\frac{22^{2}-2 / 3}{1-12}$
(16) $\frac{2}{2} 2_{1}^{2} \quad 3 / 4$

(17) | 2 | 2 | 2 |
| :--- | :--- | :--- |
| 1 | 1 | 3 | 5

(18) $\frac{3 \quad 3}{122} / 5$

(19) | $? 1 \quad 1$ |
| :--- |
| $\because \quad 1 \quad 2$ | 3

(20) $\frac{42}{2 \quad 2} / 2$
(21) $\frac{1 \quad 1}{1 \quad 3 \quad 1} /-3$
(22) $\frac{3 \quad 3}{2}+/-5$
(23) $\frac{3 \quad 3}{24} / 2$
(24) $\frac{3}{2}: 3$
(1) Write the order of weaving, and move numbers for each of the following weaves 25-30, both warp way and filling way.

28

29

30
(C) Make plans with hases 31-.3.3 and order of weaving $\frac{4-2}{2 \quad 2}$ and with bases 34-38 and order of weaving $\frac{4}{1} \frac{1}{2} 1$.

31

32

33

36

37

38
(Exercise continued on next page.)
(I) Make two plans on each of the accompanying bases 39-41.

39

40

41
(E) Run out plans $42-45$ to one complete pattern of each.

42

43

44

45
(F) Give two bases on 13 threarls and run out two plans on each base.
(C^{\prime}) Make plans as follows:
(1) $\frac{411}{2 \quad 2 \quad} / 3-1$
(2) $\frac{411}{2 \quad 2} / 4-2$
(3) $\frac{ \pm 11}{2}, 5-3$
(4) $\frac{2 \quad 2 \quad 2}{11 \quad 4} / 2+0$
(5) $\frac{\because 2-2}{1} 1 /: 3-1$
(6) $\frac{2}{1} \frac{2}{2} / 4-1$
(7) $\underset{1}{2} \underset{1}{2} / \pi-3$
(S) $\frac{3 \quad 2 \quad 2}{2 \quad 1 \quad 2} / 5-1-1$
(9)

$$
\because \underset{2}{2} \frac{2}{2} / 3-2+2(10) \frac{3}{2} \frac{2}{1} / 4-3+2
$$

(II) Give order of weaving and move of the following phans
(11) $\frac{32}{2} 12 / 4-2+1$
$(12) \underset{\sim}{\sim} / 0+2$
(13) $\frac{3}{3} / 0+0+3$
(14) $\frac{3}{\because} / 0+3$
(15) $\frac{311}{13} /-1+3$
(1ii) $\frac{3 \quad 1}{1}: 31 / \cdots+i$
$\frac{411}{2 \quad 2 \quad 2} / 5-1-1$
(18) $\frac{3}{3} \quad 2 \quad 1 \quad / \pi-1-1$
(19) $\frac{2 \quad 2 \quad 2}{11+5-1-1}$
$(20) \frac{1 \quad 3 \quad 1}{1} 15 / 5-1-1$

A

C

B

D
(Exercise continued on next page.)
(I) Make two plans on each of the accompanying lases 31-40.

31

32

33

34

35

36

37

38

39
(Exercise continued on next page.)
(J) Run out plans 41-46 until complete.

(K) Give one complete repeat of plans $47-53$ and write order of weaving and move number for each.

49

51

52

53

50

SATEEN STRIPES.

In designing fancy fabries for the white cotton tralle the desigher is frequently compelled to depend almost entirely upon the weave to whtain different effects. When the wat and filling are both white, this becomesa necessity. There is another method, however, and it is one that is often useful, namely, the mamer in which the warp is reeded. In some patterns it is necessary to have some parts of the warp reeded in greater mumbers than in other sections, that is, in some parts of the reed each dent contains 2 threads, while in other sections the reed may contain $8,4,5$ or even 6 in one dent. Six is genemally considered the highest mumber, but in some rare cases even 8 or 10 threads are put in the same dent.

Nearly all the faney white goods that are made have for the borly or gromudwork of the fabric the regular plain or cotton weave, 1 up and 1 down. The stripe in the warp will be either a twill, broken twill, or sateen weare, warp flush, and the overcheck will be a satcen weave, filling flush. The sateen weate is generally combined with other weares to make stripes and chectis.

Stripes consist of bands or lines, varying in width and eolor, ruming lengthwise of the cloth, viz., in the direction of the warp. The distinctive character of this make of goods is its line-like composition. All pattems of this orter are nothing more than a blend of lines of varions shades and weaves. They are of varying widthis and extend from one end of the fubric to the other. Athough this form of pattern is well adapted to tronserings, shirtings and some styles of dress and mantle cloths, it is not suitable fon coatings and even smitings when extended bevond a very minnte stripe of the hair line description.

The variety of these stripes is very extensive, both as to shade and eolor, commencing with the single thread hair line, mat interasing in size motil a stripe or band several inches wide is obtainerl.

The prominence of the different weaves employed, the bands or lines of eolor, their distinctuess, solidity, their intermittent chamoder, and thrir subdued tone aspect, are all ghalities depending on the structure of the fabric and its weave composition.

The pattern in striped styles is principally at wap prodnct and the filling in surh cases only of secondary consideration. 'The filling is employed, first, to biad the wap threads togrdier and thas form a wearable fabric second, to constitute an approprate groundwork on which the warp colorings may be corredty exposed.

Proper emphasis of the colors composing the stripes is acequired by employing a suitalle slade of filling, and by ardopting that system of crossing or interweaving which will, in addition to yielding the requisite strength and firmness of falmic, suficirntly interfere with the continuity of the faney shates intronduced into the warp.

Some are mere lines, no wider than the diameter of the threats employed, while others are several incles wide. Two colors may be introduced to form stripes of different widths: for example, black and a dark mix may be combined to give stripes of many descriptions.

We conkl use 1 thread of black and 1 thread of dark mix, which wonld make a stripe of the hair-line description, using the plain weare for the intercrossing; or 2 threads of black and 1 thread of dark mix, using the B-harness twill for the interweaving. Thus we might continue on these pinciples and form sets of stripes of variable widths or sizes. The chanacter of these styles to a very great extent is governed by the class of texture in which they appear. Examples of this occur in the various fabrics produced by the loom. 'Take, for example, stripes for tronserings, which are generally small to medium size, softly and neatly toned in coloring. In dress goods, mantlings and ulsterings are found much broader effects, more elaborate in arrangement, and which require much greater force of coloring.

In cotton shirtings small, neat styles are considered the best, but in cotton dress goods there appears to be no definite limit, either as to the width of the stripe or to the radical plan of coloring. For aprons, children`s dress goods and such fabrics as tickings and awnings, stripes are used to a considerable extent. To form a practical idea of what is meant by a sateen stripe the following particulars should be thoroughly understood.

Sateen Tick Stripe. When the name "Sateen Tirk" is used, the general impression is that of a line of goods or a fabric
which in some way resembles a sateen. But a sateen tick is in mo way like a satin, being used for an entirely different purpose. These goods are made entirely of eotom, and are used lor mpholstery; the mane "Sateen Tick" being taken from the weare, which is a sateen weare.

There is quite a demand for this falnje, but the manfature of it is chiefly in the hands of a few large mills, which monort olize the industry. In many mills in which this fabric has beern attempted a 2 -ply yarn has been used for the warp, and this has made the goods harsh in feeling, and unfit for this purpose. The only proper way to make them feel soft. is to use combed totton yarn for the warp and the same stock for the filling, but having the filling twisted harder than the warp. The best fabrics on the market have 98 threads to the inch of single 7 s and about $5:$ picks of single 14 s. The wave whieh is used, and from which the fabrie obtained its name, is the sateen weave, warp flush, which throws the warp entirely on the face. It makes a smooth fare, free from twill lines, with the points of interscetion evenly distributed. The 5 harness sateen is the simplest kimd. As before stated (see page 37) these waves are comstroted by taking the momber of harnesses to le used for the sateen, and dividing it into two parts, neither of which are equal, nor one a divisor of the other; still further, neither divisible ly a third number.

The stitching for the weave, or the interlating of the wapl, is oltained in the following mamer:

The first intersection will be on war threarl No. 1: the next intersection will be either on the third or fonith wap threat, aceording to whether the weave is comed by twos or he thees. If comnted ly twos the intersections will be as follows: $1,: z, 5,2,4$. Almost all of these goods are woven on this weave, but in some cases the 8 -hamess sateren shown in Fig. 121 is used. The intersections are as follows: $1,4,7,2,5,8,3,6$. This is comstructed on the same principle as the 5 -hamess sateen, but there are fower intersections of the

8 II. Siteen. wall; consequently this allows more pieks and makes a heavier fabric. These sateens are very desirable
gools, as they may be woven easier and faster on account of the weave. The line of colors shonld be as simple as possible, beeanse the fewer the eolors the loss the expense. The following is a line of colors in use in one of the largest mills in the comntry: back, white, red, very light tan, medimm tan, dark blac, brown and light bown. These colors, if made in light shades, ean be combined in a great variety of effects and prochee immomerable patteris.

The following will give grood results and splendid combinations, and will also give the size and style of the stripes. An attractive effect having a very loroad stripe can be prodnced by 120 threads of red, 10 white, 60 light tan, 4 dink blue, 10 mediun tan, 4 dark blae, 10 medium tam, 4 dark blue, 10 medium tan, 4 dark bhe, 60 light tan and 10 white.

This can be raried and will make another very effeetive style hy using 120 threads of dark blue in place of red, the rest remaining the same. Another good coloring is marle as follows: 10 threads red, 10 dark blue, 88 red, 10 dark bhe, 10 red, 50 white, 6 dark bher, 10 dark tan, 6 dark blue, 10 dark tan, 6 dark blue, 10 dark tam, 6 dark blne, 50 white, 2 dark blue, 16 red, 2 dark blue, 50 white.

In all these dressings the color can be varied ; the number of threads may also be increased or decreased at pleasure. The principle effeet desired is contrast of color, combined with harmony. There is no limit in the range of design.

COTTON SATEEN STRIPE.

The yarn used for this class of fabrie varies from 40 's to 70 's, although a large proportion is between 50 's and 60 s. There are also large quantities of $2-\mathrm{pl}, 4$, 4 ly and sometimes $6-p l y$ yarn used in eotton cords and stripes. The filling for such goods will range from 60's to 90 's.

The texture of the fabric in the plain part, that is, the part between the sateen stripes, will vary from 60 threads $\times 60$ picks to 96 threats x 80 picks. The width of the goods is generally from 27 to 28 inehes, though goods made especially for aprons will run from 40 to 42 inches.

For an illustration let us make a cloth 28 inches wide, having
for the design a sateen stripe, with plain stripe ground for $\mathbf{1}$ inch; sateen or broken 6-hamess twill, $\frac{1}{4}$ inch; plain ground, $\frac{1}{4}$ inch; broken twill, $\frac{1}{4}$ inch. Total width of stripe to be $1 \frac{3}{4}$ inches.

28 inches $\div 1.75$ inches $=16$ repeats or designs across the cloth. Suppose we make the hody of the warp, or what we have already called the plain or gromed work, 80 threads to the incli. Then we have:
$1 / 4$ inch broken twill
$1 / 4$ inch groundwork
$1 / 4$ inch brokentwill
1 inch groundwork

It is to be divided into a reed with 40 dents to the inch, or as is usmally understood, a 40 's reed $; 2$ threads in one dent $=80$ threads per inch. When making a pattern with one part of the design larger than the other, divide the larger portion into two parts, so that the design will commence at one side of the cloth and will be equal to the design at the extreme edge or other side of the cloth. Onr typical design has one inch of plain or ground which we divide into two equal parts.

The way to lay out this piece of cloth will be as follows:

$1 / 2$ inch plain	20 dents	2 threads in one dent $=40$ threads
$1 / 4$ inch stripe	10 dents	6 threads in one dent $=60$ threads
$1 / 4$ inch plain	10 dents	2 threads in one dent $=20$ threads
$1 / 4$ inch stripe	10 dents	6 threads in one dent $=60$ threads
$1 / 2$ inch plain	20 dents	2 threads in one dent $=40$ threads
	70	

Thus it will he seen that one pattern ocenpies 70 dents, and as we have already decided that there are to be 16 repeats of the pattern, we shall require $16 \times 70=1,120$ dents exchusive of selvalge. Add 10 dents on each side for selvedge, this making total of 1,140 dents.

$$
1,140 \text { dents } \div 40=28 .
$$

The reed must be 28.2 inches wide.
Two handred and twenty threads in one pattorn $\times 16=3,520$ threats. The selvedge is eomposed of 20 double threats, 2 in a dent on each side.

Left selvedge 20 double threads $=\quad 40$
Borly of watp $=3,520$
Right selvedge 20 double threads $=40$ Total number of threads $=3,600$

Fig. 12:3 repesents a gool weave for a th-hamess bokent twill. This weate is especially recommended for this purpose.

The next thing to make is the drawing-in draft, on hamess dralt and chain.

Also leave for selverlges 10 empty herddes on the right and left sides of the 4 fromt hamesses.

The first 40 threads on the t front hamesses, which are forming a plan weave; the second section of threads which are drawn on the 6 back harnesses, and are weaving a G-harness broken twill; the thind section of

Fig .123. the threads, which are drawn on the t front hamesses; the fonth section of threads, which are drawn on the 6 hack harnesses: and the last section of 40 threads on the 4 front hamesses, make one repeat of the pattern or 2.20 threats. This operation is repeated 16 times, and when finished will have completed the borly of the warp, or 3,520 threals. Now

Fig. 124.
Fig. 125.
draw in the double threads for the selvedges on each side of the warl. The foregoing is a systematic way of obtaining the layout of a design, chain, and harness daft; but in some mills the drawing-in or harness draft would be laid out as follows:

There is another very important matter to which particular attention must be paid; that is, the question of how many wires or heddles must be placed on each harness shaft, thas preventing any possibility of overcrowding the wires or heddles on any or all of the hamesses. Take our previons example for illustration.

$$
\begin{aligned}
& \text { On the 1st harness } 2.5 \text { threads } \times 16 \text { patterns }=400 \text { heddles } \\
& \text { On the 2nd harness } 25 \text { threads } \times 16 \text { patterns }=400 \text { heddles } \\
& \text { On the Brd harness } 25 \text { threads } \times 16 \text { patterns }=400 \text { heddles } \\
& \text { On the th harness 2.5 threads } \times 16 \text { patterns }=400 \text { heddles } \\
& \text { On the 5th harness } 20 \text { threads } \times 10 \text { patterns }=320 \text { heddles } \\
& \text { On the 6th harness } 20 \text { threads } \times 16 \text { patterns }=320 \text { hed des } \\
& \text { On the } 7 \text { th harness } 20 \text { threads } \times 16 \text { patterns }=320 \text { heddles } \\
& \text { On the 8th harness } 20 \text { threads } \times 16 \text { patterns }=320 \text { heddles } \\
& \text { On the gth harness } 20 \text { threads } \times 16 \text { patterns }=320 \text { heddles } \\
& \text { On the } 10 \text { th harness } 20 \text { threads } \times 16 \text { patterns }=320 \text { heddles }
\end{aligned}
$$

In this cloth we will suppose there are 72 picks per inch.
In weaving this class of fabric, there is often much tronble caused ly filling kinks. The filling is apt to catch on the sateen stripe, and unless the shed is perfect and clear there will be trouble of this kind. Under these ciremmstances it is necessary that the harnesses are properly hung, and that they are making a clear, even, open shed. Almost all mills engaged in weaving this class of goods use a head motion known as the dobly. The (rompton, Knowles and Stafford being the most popular. As the goods are woven with one shattle the looms can be rum at a very high rate of speed, for which the dobby or head motion is especially aldipted. These dobbies are made to fit any kind of loom, and it is quite eommon for mills to put them on their plain looms, to be used thereafter for fancy weaving. But as the loon can weare with but one slunttle, it is confined to striped goods.

Overchecks. In making patterns for plails, procerd in the Same mamer as with the stripes to find the number of warp threads. It is the filling cheek or overplaid that will give most of the trouble in these patterns.

To get the stripe or overeheck in the filling of the same density as the broken twill or sateen stripe in the warp, the take-up motion must be prevented from working, so that the lilling
threads may be beaten up closely, to correspond with the loroken twill in the warp. To aceomplish this a wire is attached to the pawl that pashes or pulls the ratchet gear, and is fastencel at the other end to one of the levers that work the harnesses. Wherever the take-up motion should stop, a pin is inserted in the chain at the proper place. The pin, in lifting the lever, pulls the wire that is fastened to the pawl, thus lifting it up and thereby stopping the take-up motion.

Fig. 126.

The question now arises of how often the take-np motion should be stopped while weaving the check.

Wre will again take our example: to make the filling compare with the warp, there will need be as many picks in $\frac{1}{4}$ inch as there are in the corresponding stripes in the warp, which is 60 . It will be found, howcer, in practice, that 54 will be suffieient. Supposing there are 72 picks per inch, in $\frac{1}{4}$ of an inch there would be 18 , but the overplaid calls for 5t. The ratchet gear is taking up 1 tooth every 2 picks, thus moving 9 teeth for every $\frac{1}{4}$ of an ineh of cloth woven; therefore, to

Fig. 127. get $5 t$ picks in that space, there must he 6 picks for every tooth taken up, so it follows then that out of every 6 bas in the pattern chain, 4 of them will have to contain pins in order to stop the take-up motion.

The best weave for the stripe or overplaid, when there are an
even number of threats in a dent, is the f-harness broken twill, or C'rowfont weave. In making the design for a filling stripe of this description, and in order to have the warp stripe pass smoothly over the filling check, the weave mast be made donble What it is in the piain part; if we are using a 5 up and 1 down weave, it must be made to rman exactly domble, that is, 10 mp , and 2 down, when it comes to the filling stripe. Fig. 126 will explain.

There must be 2 extra hamesses allowed for selvelges on patterns of this nature, otherwise there will be a bad solvedge where the filling stripe is being woven. Fig. 127 slows the harness chain complete for weaving a plaid from the stripe pattern just explained.

PLAIN AND IRREGULAR RIB WEAVES.

After the plain, twill, and sateen weaves have been studied, the next class is the derivative weaves, or those which are designed by msing one of the foregoing weaves as a basis. The simplest class of these weares is the ribbed. This is formed hy using theplain or cotton weave as a foundation.

Fig. 128 is an enlarged

Fig. 129. diagram of a fabric woven on the simplest rib weave that can be constructerl. It is made by raising 1 warp thread for 2 consecutive picks, and lowering the same warp thread under the next 2 picks; the second thread being exactly the reverse of the first.
By a careful study of Fig. 128 and Weave 129 , a clear idea of the dexigning of these waves will be obtaned. The warl thread No. 1 is mised when the pick Λ is inserted, and the same position of wary threads is oltained in the ease of the second pick, l\%. When (and I) are woven, the warp thead No. 1 passes mater them, the warp thread No. 2 passes mader A and B and orer (: and I), which is the reverse of the intersections on thread No. 1.

It will be seen that this weave is nothing more than the

plain weare, with an adilitional pick made in the diredion of the tilling. This catses the warp to cower the filling. 'This rffot is called a rib, amd is made by the warp. These weaves ate calbed wapribl weares, becanse the rib is formed by the warp, hat the ribl line rums across the piece or width of the falbir. In the fill-ing-effeet weaves, the rib lines rum in the direction of the wanp. but are formed loy the filling. The threads ? and t are the duplicates of 1 and 2. This weave repeats on 2 harmessos and + picks, Fig. 128 being the design for the enlarged sertion of the fabric.

The warp-rib weaves do not have the extemed use which the filling ribs do. Thess are also an enlargoment on the plan weave basis, but instead of being in the direction of the filling, the rib is

Fig. 130.

Fig. 131.

Fig. 132.
in the dircetion of the warl. Fig. 130 and Weave 181 illustrate the simplest filling-rib, weares that can be constrneted. Fing. 130 is the enlarged section of the fatmic, ant Fig. 131 is the design for Fig. 130. The pick A is over the two threads 1 amd \because and under the two threals 3 and t; the seeond pick, 1 , is the reverse of A , and the third and forth picks, (and I), arw the duplicates of A and B. The weave repeats on 4 wanp threads and 2 picks. In the fabrics woven on this pinciple, the face rib is formed by the filling, and it covers the warl almost antirely. On account of this characteristic, these weaves are used largely in the manufacture of woolen and cotton union falbrios, that is, a cotton warp with woolen filling; but becanse of the slippery character of the cotton wap, and the filling erossing cach bunch or set of threads in the same manner, it is foumd that in the fabric the filling will slip or pull on the warl amb form open spaces. This defect can be remedied to some extent ly using such a weave as is shown by Fig. 132. In this weave it will be
noticed that a warp thread is lowered on every ril) or cord; this additional intersection loolds the filling and keeps it from slipping on the warp.

From the plain rib wates the

Fig. 133.

Fig. 134. fancy and irregnlar rib weabes are made. These consist of the combination of two or more rib weaves of various wi九this in one design. Fig. 133 shows the design for a weave of this class, which repeats on 3 threads and 2 picks. Fig. 134 is the same idea designed for a warp rib.

EXERCISES FOR PRACTICE.

1. Make designs for warp-ril, weaves to repeat on 2 harnesses and 6 picks, for 2 harnesses and 8 picks; also for 2 harnesses and 10 picks.
2. Make designs for filling-rib weaves to repeat on 6 threads and 2 picks; also 8 threarls and 2 picks; also 10 threads and 2 picks.
3. Nake designs for irregular rib weaves of this chatacter, consisting of the combining of those weaves where the filling crosses 2 threads and 3 threads, 3 threads and 1 thread, 4 threads and 2 threads, and 4 threads and 1 thread.
4. Make designs where the warp

Fig. 135. threat crosses the same number of picks as the warp theads in the above examples.
5. Make a diagram of each weave amd a cut section of the first and second pieks of each design.

WARP EFFECT, FIGURED RIS WEAVES.

The first step in making figured rib weaves is to loreak the rib line or to change it after a certain number of warp ends. The method of designing these weaves is shown in Fig. 185, where the rib line on the first 6 warp ents is the same, then by mising the intersection 1 piek, the rib line is broken from a straight
line aeross the falnic. On this break it also cowors 6 emds, so that the weave repeats on 4 picks and warp ents. This weave can be raried considerably hy using a different number of wap ends in the ehange of the ril) line, such as using 12 ends for the first direction of rib line, and then a smatler number for the second direction.

Fig. 136 is the combination of the 4 up and 2 down rib wate, using 6 ends for each change of the rib line; this makes a broal and anarow ribline, and is a very good fancy effect. It repeats on 12 ends and 6 picks. By using various rib weaves and ehanging the armagement of the momher of threads used fer several widths, a great variety ean be produced.

Fig. 136.

FILLING=EFFECT, FIGURED RIB WEAVES.

These weaves are designed on the same principle as the warpeffeet rib weaves, except that the rib line runs in the direction of the warp instead of the filling. Fig. 137 shows the narrow and wide rib weaves combined, the rib line rmning for 6 pieks, then changing on the next

Fig. 137.

Fig. 138. 6. This will produce an altemating wide and narrow rib effect.

The filling effects, as in the warp effects, can be varied hy using various wilths of rib weaves and different numbers of pieks for the various widtlis.
The next class of figured rib weaves combines the warp and filling effects in one weave. This is usually done in the shape of block effects, using the warp or filling effect for the ground, and the opposite of what is used for the groundwork of the pattern for the figure. Fig. 188 is the combination of the 2 up and 2 down, using the filling effect for 6 ends and 6 pieks, and the
warp effect for 6 ends and 6 pieks; this repeats on 12 ends and 12 pieks.

Fig. 139.

Fig. 139 is an idea for a weave of this character, each square representing 8 ends and 8 pieks. Where W is marked, use warp-face and in those marked F filling-face rib weave.

EXERCISES FOR PRACTICE.

1. Nake this weave (Fig. 139), which will require 32 ends and 32 picks; also make two other designs of this same class.
2. Nake designs for three of the figured warp-effect rib and three of the figured filling-effeet, marking number of ends used for each weave. Eight designs in all.

OBLIQUE RIB WEAVES.

These weaves are a combination of the warp and filling effect rib weaves, and are used principally in the manufacture of what are called hird's-eye effects. They produce a square pattern in the cloth, which fact will be readily observed from a careful study of the weaves.

To design these weaves first mark off on the design paper the repeat of the weare; that is, if it must be woven on 8 harnesses, mark a square containing 8 ends and 8 picks ; subdivide this square into eight parts, as shown in

Fig. 140. Fig. 140 ; number each triangle in rotation $1,2,3,4,5,6,7,8$. To design an oblique rib weave, mark in cach meven numbered square the warl-effeet rib weave (see Fig. 141), and in each even nombered square the filling-effect rib weave, which prohuces the completed oblique rib wave (Fig. 142). This procedure can be reversed ; that is, the filling-effert rib can be designed in the meven mombered triangles, and the warp-effect rib in the even mombered triangles, which will produce the finished weave (Fig. 143).

All weaves of this class are designed either commencing rib effects alternating with filling or the reverse.

These weaves are also combined with plain rib woaves for producing checks, usnally using the oblique rib weave as the gromotwork of the check, and the phain rib weave as the overplaid or check. A weave of this class is shown in Fig. $14 t$, where the groundwork of check is the 8-harness oblique rib)

Fig. 141.

Fig. 142.

Fig. 143.
weave designed by commencing with the filling-effect ril, in fiist triangle; the 4-harness rib filling effect for the warp overchecking, and warp effect for filling overchecking.

These combination weares are simple, the only difficulty being experienced where the warp and filling effects of overchecking join. At this point care should be taken that the weaves come together, preserving as nearly as possible the effect of both. These weaves are principally used in the mamufacture of piece dyed worsteds.

Fig. 144.

EXERCISES FOR PRACTICE.

1. Make designs for $6,8,10,12,14,16$ harness weaves of this chas, using warp-effect rib in first triangle; also make 6,8 , $10,12,14,16$ harness weaves, using-filling effect rib in first triangle.
2. Design two weaves of this class, combining the 10 and 12 harness oblique weave with warp and filling effect rib weave.

BASKET WEAVES.

The common weaves of this class are simply an enlargement of the plain or cotton weaver, in that the intersections are 1 end up and 1 end down, and 1 pick up and 1 pick down. To enlarge on this requires that the number of ends and picks on the same intersection must be made larger. The plain weave consists of 1 end and 1 pick each way, and to enlarge on this arrangement the number of ends and picks must be inereased. It

is obvious that the next ehange would be 2 ends and 2 picks each way. This produces the simplest hasket weare that ean be constrncted, shown in Fig. 145, of which Fig. 146 is an enlarged section of a fabric woven on this weave. 'This basket is the 2 and 2.

Fancy basket weaves are constructed from the plain or com-

Fig. 148. mon basket weaves. These are solely the combination of two or more weaves of the common basket, or a basket and the plain combined.

Fig. 147 is an illustration of these weaves. There is combined the plain and the two basket to form a weave which repeats on 3 ends and 3 pieks. Fig. 148 shows the combination of a more eomplicated weave of this class. It is the 1,2 and 3 combined, and eonsists of three changes. It repeats on 12 ends and 12 picks. In designing these weaves always commenee at the left-hand eomer and tom the weave across the paper to the upper right-hand square. Two repeats of the originai weaves are necessary before a eomplete repeat of the weave
is seemed. After designing these on paper, fill in the rest of the wave, always comnting the ehanges the same both warp and filling way.

EXERCISES FOR PRACTICE.

1. Nake the designs for example 1,3 and 3 ; example 2,4 and 4 ; example 3,5 aml 5 .
2. ('ombine the following in fancy basket waves: example $4, \underset{-}{2}$; example $\delta, 1-4-2$; example $6,2-3-1-0-1$; (ximple 7 , 1-1-2-2-3; example 8, 2-3-4.

CORKSCREW AND DOUBLE-TWILL WEAVES.

These weaves are chiefly used in the mamfacture of worsted suitings and trouserings, and in some branches of silk manufatcture. They are similar to oblique warp-effect ril, weaves, in that they require a fine or close set, since the warp forms to a great extent the surface of both face and back of the cloth, the filling being merely embedded between altemate wap threads.

We shall now describe the construction of a few of these weares, a close study of which will readily demonstrate the conless variety of new designs to be made in this mamer.

With reference to the theory of constructing this class of weare, the true corkserew is mate from the regular twill weaves on an meven momber of hamesses, liy using the regnlar tis-legree twill for a chain, and drawing the threads throngh the harnesses in the same order as the intersections would oceme in any given sateen weave on that momber of harnesses.

In order to provide for the equal overlaping at the juncture of the corkscrew twill, the warp section of the 45 -degree twill must use one point in excess of the filling section or sinkers, thas:

$$
\frac{3}{2}=5 \text { threads; } \frac{4}{3}=7 \text { threads } ; \frac{5}{t}=9 \text { threads }
$$

If the overlapping of flonts at the jumeture of the two twills is more than one point, the effect of this style of weave will be lost. This exphans the reason why this mothod of drafting is impraticable on weaves of an even mmber of hamesses, as an even mumber camot lie divited into two mequal parts, one of which will exceed the other by one point only. The fewest
number of harnesses to make a corkscrew weave is the 5harness $\frac{3}{2}$ 4i)-degree twill; the 13 -harness being the largest corkserew weave in practical use.

Fig. 149 is the 5 -hamess 45 -degree twill.
Operation: Divide the number of harnesses into two parts, one of which will exceed the other loy one point or unit; thus, 3

Fig. 149.

Fig. 150

Fig. 151.
and 2 equal 5 . The drawing-in draft to be made on the same principle as a sateen weave, always commencing with the first thread on first or front harness, using one of the numbers to count with as a move number, thus: first thread on first harness, second thread on fourth ; that i., first and move 3 , - this move will place the third thread on the second harness; second and move 3 , - this move will place the fourth thread on the fifth harness ; fiftl and move 3,- this move will place the fifth thread on the thind harness; third and move 3 , - this move places the sixth thread on the first harness and determines one repeat of the weave. This draft shows a straight draw for 5 harnesses, consider-

Fis. 153.

Fig. 154.
ing every other warp thread only, viz. : wery meven warp thread, $1,3,5,7,9$, etc., cte., calling in turn respectively for the first,
second, third, fonth and difth harnesses; the even warp number 2 commenees on the fourth harness ; eonsidering again every other wap thread only; viz, every even warp thrad, mumbers $2,4,4$ and so on, calling in tum respectively for hamesses mumbers $4, i, 1$, 2,3 . The draw or daft completed will read $1,4,2,5,3,1,4,2$, 5, 3. A study of Figs. 150 and 151 will explain. Explanation in detail:

> 1st thread on No. 1 harness, count off 3 places
> $2 d$ threal on No. 4 harness, count off 3 places
> 3t thread on No. 2 hamess, count off 3 places 4th thread on No. 5 hamess, count off 3 places 5 th thread on No. 3 harness, comnt off 3 phaces 6 th thread on No. 1 hamess, count off 3 places 7th thread on No. 4 harness, count off 3 places 8th thread on No. 2 hamess, count off 3 phaces 9th thread on No. 5 harness, count off 3 places 10th thread on No. 3 harness, count off 8 phaces

Fig. 151 shows the corkscrew weave carried to its full extent. It will be noticed that in the first lalf of the draft, the first or odd thread commences the draw, whereas in the second part of the draft it is the sixth thread or even number that commences the draw. The draft must be extended to double the original weave to make one full repeat.

Fig. 152 is a 7 -hamess weave. Seven

Fig. 155. divided into two parts, one of which will exceed the other by one point only, 4 and 3 equal $7 . \frac{4}{3} 45-$ degree twill.

Fig. 153 represents the harness draft, and Fig. 154 is the extended design or corkscrew twill; 4 is the move number.

Fig. 155 is a 9 -harness weave. Nine divided into two parts, one of which will exceed the other by one point only, 5 and 4 equal $9 . \frac{5}{4} 45$-degree twill, with 5 for the move number. Fig. 166, harness draft. Fig. 157, extended design.

Uneven batanced weaves will abays produce more perfect
corkscrew weaves than the even-sided twills, since it is only possible with the nneven-sided twills to balance the cut-off of the double twill. The direction of the twill will be reversed by using the lesser number.

Fig. 156.

Fig. 157.

Corkscrew uenves on an even number of harnesses. No matter what even-harness 45 -degree twill is used for the foundation for an even-harness corkscrew weave, the junction of

Fig. 158. the two twills will be faulty. There is not the equal cut-off as produced with weaves having an meven number of harnesses for repeat ; but sometimes a corkscrew weave on an even number of hamesses is required, especially with fancy effects, in which corkscrew weaves are used in combination with other weaves. For instance, a case may oecur in which a corkserew weave for an even repeat of harnesses is required to comect with a 6 -harness twill. Fig. 158 is the 3 $\frac{3}{3} 4 \tilde{5}$-degree twill.

Fig. 159.

Fig. 160.

Fig. 159, drawing-in draft. Fig. 160, extended design.

It will be noticed that with this weave there is mot the perfect junction when the two sections meet, as there is in the \bar{b}-hamess weave, and this is always the case with an even-sided fordegree twill.

Fig. 161.

Fig. 162.

Fig. 163.

There is no true corkscres weave on an even mumber of threads less than 12 ; and this weave is composed of two 6-harness twills, viz. : $\frac{3}{3}$ (Fig. 161) and $\frac{4}{2}$ (Fig. 162) twills. To obtain the even cut-off of the two twills, commence with the first thread of the $\frac{3}{3}$ twill and the fourth thread of the $\frac{4}{2}$ twill,

Fig. 164.

Fig. 165.
then take the threads alternately from each twill; thms, $1,4,2,5$, $3,5,4,1,5,2,6,3$ (Fig. 163); this weave repeats on 12 threarls and 6 picks, having a balanced cut-off between the double twills, howerer, showing two slightly different sizes of twill effects, that is, a 4 -float alternating with a 3 -float.

Again, such corkscrew weaves do not permit of a rerluction of harnesses, which is a serious defect. The above example cannot he reduced to less than 12 , whereas the uneven-number corkscrew weave can be reduced to the number of the original 45 . degree twill.

When corkscrew weaves are made from weaves exceeding 9 threads and picks, the interlacing of warp and filling is very hose, so that the falbric is not merchantable, as the warp will slip on the filling. To remedy this without changing the face of the fabric, the warp floats upon the back must be reduced by adding one or more points of interlacing.

Take an 11-harness 45 -degree $\frac{6}{5}$ twill. To change this twill so that it will bind firmly, the five sinkers which go to the back must be made to interlace $\frac{1}{2 \quad \ddot{2}}$; this changes the 45 -degree twill to interlace $\frac{6}{2} \quad 1 \quad 2=11$ harness.

Figs. 164 and 165 illustrate the 7 -harness weave constructed the wrong way. Compare these Figs., 164 and 165 with 153 and 154.

Fig. 27.

Fig. 28.

TEXTILE DESIGN.

PART III.

CLOTHS BACKED WITH FILLING.

This branch of weaving has not had a very extensive use in the cotton trade, but in the woolen and worsted industries it has a very wide applieation.

The term, single cloth, is generally applied to a fabrie that is interwoven with one set of threads for the warp and one set of picks for the filling. This may be a cloth in which the weave will allow the warp and filling to be equally divided hetween the face and under surface of the fabrie, or such cloths as sateens and doeskins where the warp or filling predominates on the face.

A fabric which has an extra layer of threads woven on the under surface or back of the cloth, and which is distinct from the face, is called a backed cloth. These extria threads may be in the direction of the warp, or they may be in the direction of the filling.

Backed fabries of this deseription are not what is moderstool as double cloths. There is as much difference between a backed eloth and a true double cloth as there is between a single cloth and a eloth backed with either warp or filling.

To retain the fine surface and appearance of a light-weight pattern on the face of a fabric, and at the same time to incre ise the weight or bulk of the fabric, a lining or back must be interwoven on the under surface of the eloth. This back can be interwoven either in the direction of the filling or warp.

Double cloths are composed of two distinct sets of threads, both in the warp and filling. They are two separate eloths, interwoven at various intervals to form one compact falrie.

Sometimes one fabric is superior to the other in quality ; in such cases the fine fabrie is called the face and the inferior fabrie is called the back; or it may be that the two eloths are of the
same quality and material, but of different colors, one cloth forming the outer garment, while the other cloth forms the lining. The face of one cloth may be of a very fine surface and of one color; the lining of such a cloth can be composed of a fancy weave, and the pattern and coloring of several bright and radical colors.

There are three methods of backing a fabric:
First, by having one warp, with two fillings; one filling for face and the other for back.

Fig. 16 fi.
Second, by having one filling and two sets of warp threads; one set for the face, the other set for lack.

Third, ly having two distinct sets of warp and filling, interwoven so as to make two different falrics, bound together at certain intervals.

Those backed with filling are usually low or medium grades of cloth. This system is probably the best for such fabries, as it allows the warp threads to be set close together, and also allows the manufacturer to use heavier yarn in the filling at the lack of the cloth. But this system of backing does not allow the lack to assimilate with the face, as all the yarn at the back is in the direction of the filling. Cloths backed in the direction of the warp can be made to correspond with the face of the fabric, especially in stripe effects. Some of the finest of worsted cloths backed on this system are as neatly colored on the back as on the face of the fabric.

DOBBY SILK LOOM FOR TAFFETAS AND OTHER BROAD SILKS

Fabrics backed with two sets of filling threarts and one sut of warp threads may be divided into two classes: first, those with one pick of face and one pick of back; second, with two picks of face and one pick of back.

In designing a fabric on any one of these systems it is very essential that the peint or position where the face warp interweaves with a backing pick, or dice verse, should be very carefully placed.

Fig. 166. A is the face of the eloth, B is the back, (' represents the two cloths combined. Take note of every dotail. A is a filling flush, f-harness twill, while the back is a warp twil on 4 harness. Study where these two wases can be joind togrother, so that the point of intersection or binding will not show on the face.

When binding a flush weave, the point of intersection should alwass be at the phate where the thread has just been dowa in one pick and will le down at the next. pïck (see Figs. 166 , ('). It will be noticed that the face filling floats over three warp threads, and in the center of these at the backing pick is where the two weaves are amalgamated. This, the point of introrsection, is covered by the filling on cach side of the back pick, so that when the eloth is completed the warp is entirely covered, and the two surfaces presented, which may be of two indifferent colors, show only the filling. In this make of eloth the hacking filling mast not be much heavier than the face yarn. Otherwise the face yarn cannot cover the intersecting or binding points of the backing pick.

In order to have an even face on cloths backed with filling it is necessary to have the same number of picks on the face as on the back; that is, if in a given sample of single cloth there are 30 picks per inch, the backed choth would require 60 picks per inch, as, for instance, a cloth composed of the thamess cassimere twill for face weare, and the t-hamess crow weare for back.

Fig. 167 shows a moit satisfactory binding for coarse and medium set goods. It will be noticed that the backing pick floats under three warp threads and interweaves at the fourth thread. Notice also the point of intersection or tie. The first pick of face, $3 d$ and 4 th thread down. The first pick of back, 4 th thread
down or stitch. The 2 d pick of face, 4th and 5th threads down.
Thus, the first hacking pick in Fig. 167, C, takes down the fourth thread, which has been depressed by the first face pick and

Fig. 167.

Fig. 168
also followed by heing depressed at the second face pick. Thus the flushing on each side of the back pick by the first and second face picks conceals the stitching point or binding.

Fig. 168 represents a cloth composed of the same two weaves as those at Fig. 167, but the point which unites the back to the

Fig. 169.
face is not in a position where it ean br covered on both sides by a filling flush.

Fig. 169 is the very best way in which a filling back can be woven to a cassimere twill weave. The hacking is an 8 -hanmess sateen weave. It will be observed again here that the points of intersection on the face are depressed previous to, and after the intersection of, the backing pick. The S-hamess sateen baek prodnces a soft and full texture.

Backed cloths in the proportion of two picks of face and one pick of back. There is one important fact with this system; that is, that the backing pick camot be bound as satisfactorily ats in the one-and-one system. Fig. 170 shows that only crery alternate thread is interwoven with the back. To have a thoroughy even balanced eloth, every thread should have the same amount of binding, otherwise the thread that has the greater momber of interlacings must necessarily "take ny" the quickest in weaving; therefore, in making an meven fathric, to have ach thread take up equally, the warp should be dressed on two beams.

There are cloths woven on this principle which have only one beam, but the fabrie i not satisfactory, especially when the backing filling is much heavier than the face filling. After a certain length of cloth has been woven, the threads with which the backing has been interlaced most frequently will work tight and canse streaky places to appear in the cloth.

It must be thoroughly understood that whenever the structure of the design will admit of the arrangement of backing ties, these should always be preceded and followed by flushes of face filling. This is the secret of good binding.

In making figured designs, the same principles will apply. Fig. 171 is a checker-board battern, the weave of which ents at every eight

Fig. 170. threads and pick. Therefore, as the design stands, two face pieks then one of back, it would be impossible to arrange it in such a way as to have the filling flush on each side of the binding point if the first and sixth picks were not coupled together.

Fig. 172 shows the wrong way, and Fig. 173 illustrates the correct method to arrange such weaves.

Fig. 174 represents a figure warp-surface weare. It is a design which illustrates the irregular system of binding; this figure is bound at two points on the filling pick and only one on the warp thread.

There is one other class of goods that has had a considerable
sale, and the designing principles of which are very similar to those just referved to ; cotton warp, worsted or woolen face, woolen back. The weave is generally a filling flash, as repre-

Fig. 171. stnted in Fig. īt. The chief object in this class of work is to hide the cotton wap, so that the face representis a perfect and smooth worsted or woolen surface. As the weare is made of long filling flushes, it is nut a very difficult matter to fund a suitable place to join the back and face to the cotton wap.

Fig. 176 represents a class of goods which is made in direct opposition to the previons example. The cloth is made from worsted warp.

Fig. 172.

Fig. 173.

Cotton filling and woolen back. These designs are more diffient to bind than the preceding examples, as there are no filling flushes. 'The binding is done with the watp threads, on the reverse principle to the filling flosh. When hinding with a warp threat, the threal previous to the binding and the thread after the binding mast be clevated, so that the point of interlaneme is between two warp flashes. This chameter of fabric must have the warp threats set compactly in the loom.

CLOTHS BACKED WITH WARP.

This type of fabric can be backed ly two methods: hy the one-and-one principle aml also by the two-and-one system. The example Fig. 177 illustrates a cloth backed with filling and requiring only five harnesses to weave the design, hut the cloth when backed with warp requires an extra set of harnesses, and generally requires twice the number of harnesses as there are threads in the face weave. For instance, with the four-harness cassimere twill and the eight-hamess sateen for the hack, twelve harnesses are required to complete the full draft. Four hamesses for the face and eight for back equals twelve. The arrangement upon paper for the design is exactly the reverse of the fabric backed

Fig. 175. with filling.

Fig. 177 represents a cloth backed with filling, while Fig. 178 illustrates a fabric batcken with warp. On careful cxamination it

Fig. 174.

Fig. 176.
will be found that the risers and sinkers on each design are nearly the same ; therefore the explamations that have been given for the one fabric will hold good for the other fabric. There is, however,
ome advantage to be gained by using an extra warp; on each side of the fabric an entirely different design ean be made, and as it takes extra harnesses to weave a warp back, the designer can utilize them to vary the figure. There is not much diversity applied to the moder surface. This is usually of a sateen character, but the face weaves have every variety of design. The point of tie is as important in this type of cloth as in the previous one; the binding should fall in sueh positions as have face warp threads elevated on both sides, exactly as flushes of face-filling we necessary to effect the successful binding when backing with filling. Flushes of face

Fig. 177.

Fig. 178. warp are as essential to cover the ties when backing with warp as are filling flushes when backing with filling. The order of laying out this class of fabric is on the one-and-one principle. To arrange the threads on the two-and-one system, would necessitate the use of a heavier yarn for the back, and even then would produce a rather open texture on the under-surface. The yarns used for warp lacks are, as a rule, about the same size of thickness as those used for the face fabric ; the yarn is set elose in the reed, and the warp contains a harge number of threads per inch in proportion to their counts or sizes.

EXERCISES FOR PRACTICE.

1. Back plans 1 and 2 with weft 3 picks face to 2 pieks lack ; plans 3,4 and 5,2 picks face to 2 picks back.
2. Back plans 6 and 7 with weft, 3 picks face to 1 pick back.
3. Point ont any defect in plans 8 and 9 and give connerted plans.
4. Plans 10 and 11 show two methorls of backing the same weave with warp \because and 1 . Which do you consider the better of the two and why?
5. Back pan 12 with warp, 2 ends face to 1 end back so that thore may be one pick only in each shed.
6. Would the face weave in plan 1:3 be affected in any waty by the stitehing of the backing weft?

Give the reason for your answer and make a plan of this weave stitched eorrectly.

EXERCISES FOR PRACTICE.

1. Back with warp 1 face to 1 back, plans $1-6$, stitching firmly.
2. Back with weft 1 face to 1 hack, plans $\bar{i}-12$, stitching once in the repeat.
3. Back with warp 1 face and 1 back, plans $13-18$, stitching so that the back will be like the face.
4. Back with weft 1 face to 1 back, plans $19-24$, stitching so that the back will be like the face.

1

3

10

13

19

5. Back plan A with warp, 2 ends face to 1 end back, and give peg plan to weave it with draft 13 .
6. Back plans C D and E with warp, 3 ends face to 2 ends back.
7. Back plan F with warp, 2 ends face to 1 end back, so that there may be one pick only in each shed.
8. Give draft and peg pan to weave design (i with a wap back, 1 end of face to 1 end of back.

G

9. Back phan II with warp end and end and give peg plan to weave your design with draft J.

EXERCISES FOR PRACTICE.

1. Back platis $1-6$ with warp 2 face to 1 back, stitching each backing end once in a repeat of the face weare.
2. Back plans $7-12$ with warp 2 face to 1 back, stitching twice in a repeat.
3. Back plans $13-18$ with weft 2 face to 1 back, stitching twice in a reprat.
4. Back plans 19-2t with warp end and emd.
5. Back phans 2.5-30 with warp end and end, stitching so that the bark will be like the face.
6. Back plans $81-33$ with weft, 1 face to 1 back.

10

11

12

13

14

15

19

17

18

22

23

21

20

28

29

24

EXERCISES FOR PRACTICE.
PAGE 125.

1. Put a wap lack on plans 1-3t, binding with a firm stitch. 1 end face to 1 end back.
2. As No. 1, but 2 face to 1 back.
3. Put a weft back on pans $1-3$, bimbing with a loose stitch. 1 pick face to 1 pick hark.
4. As No. 8, Jut 2 picks fare to ! pick back.

EXERCISES FOR PRACTICE.

PAGE 126.

1. Back plans $1-5$ with warp, end and end, and with weft 2 picks fare to 1 pick back.
2. Back phans 6 and 7 with wap end and end, stitching firmly, and give draft and peg plan for yom answer.
3. Back phans 8 and 9 with warp end and ent, stitehing loosely, and give draft and peg phan for your answer.

EXERCISES FOR PRACTICE.

PAGE 127.

1. ('omplete design 1, of which 8 pirks are given, and back with weft \because fice to 1 back.
2. Back plan 2 with warp, 2 face to 1 back, and give draft and perg plan.
3. Back plan 3 with wapp, 2 face to 1 back.
4. Give draft and peg plan to weave design 4 with a warp back. 1 end of face to 1 end of back.

KNOWLES AXMINSTER CARPET LOOM
Crompton \& knowlen loom Works

$\stackrel{\sim}{\stackrel{\sim}{L}}$

EXERCISES FOR PRACTICE. PAGE 128.

1. Make a design for a single cloth to weave on one beam and appear like plans a, b, e and d, in the stme set.
2. Nake a design with single weave to imitate the warpbacked design, e.
3. Make designs with single weaves to imitate designs f and g, then back your designs with weft \mathcal{Z} picks face to 1 pick burk, so as to hide the barking weft as much as possible.
4. Back designs hand k with warp, 2 fate to 1 back, then make single cloth designs to imitate them, giving suitable setting and counts of yarn for cach.
5. Back design 1 with warp, 2 face to 1 back, then make a single cloth design to imitate your backed design and to weave on 30 shafts or less.
6. Mrike designs for backed cloths to give the nearest effect to plans mand n.

DOUBLE CLOTH.

The next step is to make two separate and distinct fabrics employing two warps and two fillings. Cloths of this kind may be made with either both sides alike, or totally different : that is, each of the separate cloths may be of the same pattern and made from the sume yarns and the same quantity of yara in eath, or one cloth may be much timer than the other, and of totally different patterin.

Double cloths are merely two separate and distinct single fabrics woven on the same loom at the same time. but during the weaving process, so bound together as to appear like one fabric. The two fabries may be illentical in appearance and make-up, or one may be a eourse fabmic and the other a fine one with the weaves and color armagement differing radically without interfering with each other. Designs for such fabrics are made on design paper just the same as for single cloths, but the threads and picks on the design paper are divided into two sets, one for face threads and picks, and the other for back threads and picks. A good practice to adopt for distinguishing one set from the other is to shatle the threads and picks to be used for the back clotl, in their proper arrangement, with a light wash of color or by fine lines. Different
proportions of face ant back may be used, as one threarl of face to one of back, two threads of face to one of hark, two throats of fane to two threads of back, thare threads of fice to one of back, or any other arrangement which may suit any partionar design. Whaterer the system adopted, it is customary to stat the design with one thrath of face. In the case of two of face and one of hark amangement, the orlor womld be one face, one back and onte face, repeated to the full extent of the design.
smpose, for instmee, that it is required to make a donble cloth, eath fabric to be a simple four-hamess cassimere twill, as shown in Fig. 179. The wap threats would follow in the harnesses alternately, one of face amb one of back, and the filling threats would appear in the same mamer. Seeing that alternate

Fig. 179.

Fig. 180.

Fig. 1 s1.
throuls on this paper represent two different cloths, the stmbent should rum a faint wash of color, or shate with fine lines, wrer one of the sets of threats, so that when putting the design on paper there will he little liability to confusion (see Fig. 180). Now prococd to put the face weave mon one of the systems of threads, an shown by sequres in Fig. 181 ; then put the back weatre on the other system of threals, as shown in Fig. 182 by the ohligue erosses, rmembering all the time that the shating pat \quad pon one set of threats pessesses uosiguificance but to guide him. If divested of the shaded lines and color, the weave will now have the appearance of a simple eight-harness twill, as shown in Fig. 18\%, amb if woven as given here wond produce a simple twill and mot a double choth. Then something more must be done. When the face filling is being put in, all the batek warp must be loft down for the shuthe to prass over, and when the bate filling is put in, the face warp threards must be lifted for the shattle to pass under. 'This is quite ensy of acomplishment. Simply add to Fig. 18.O the marks which
will raise the face warp when the bark pick is going in, ats shown in Fig. 184 by the cireular marks.

One thing mast be made perfectly dear at this print: the crosses or marks camot be subject to ally variation; they must be put on the back pick and upon every fate thread. There will b. some apparent interference with this when liminge or stitrong the two eloths together, but in the mantime the male must be held to be absolute. Now suppose the matter is carrited a step, further. and the twill is to be userl for the face cloth only and the back 1 , made phan, as in Fig. 185. This arangement of design is quitn simple and easy. Each weave is pat on paper mpen its own threads only, and then the marks are inserted to eanse each filling to interweave with its own wap only.

Fig. 182.

Fig. 183.

Fig. 184.

Attention mast be directed to the probabilities in dealing with such a design as this. Here the threads of the two cloths are alternate, but their weaves are different. It reguires little ingonuity to point out, and but little knowledge on the part of the student to maderstand, that if one cloth be woven twill and the other plain, and the yarns of the two are the same, one cloth must be much finer than the other. So that if any fatbric is woven to this design and each cloth is intended to be equal in structure, as regards the relationship of yarn to weare, then that of the twilled cloth mast be thicker in proportion than the plain cloth, and that proportion will be governed by the order of interaction. It is mot often that this is done. Generally, in cloths of this kiml, the two are of the same weare and quality, and consequently there is little tronble on that account. They may, of course, be of any pattern, such ats that in Fig. 186, which consists of two six-hamess twills, or they may be of faney weares.

Generally speaking, this kind of double eloth is male when it
is desired to have both sides of the fabrie of the same texture, but perhaps of different colors. They are seldom marle use of exeept in simple pattorns, such as twills of the simplest kinds. Fancy designs, so far as the interweaving is concemed,

Fig. 185. are seldom used, the variety of pattems desired leeing generally produced in colors, whieh may be in stripes, cheeks or over-plaids.

Attention must now be directed to double cloths in which fancy designs and weaves are required, the backing, as in most ciouble-filling fabrics, heing for the purpoie of giving bulk and weight to the fabric. The conditions of arangement are somewhat similar to those of cloth backed with filling, but there are two warps, and of course loth have to be taken into account. Take, for example, the pattern given in Fig. 187, which consists of the four-harness cassimere twill for face and the two-harness plain cotion weave for back; there are two thrands of face to one thread of back. the face weave being shown in Fig. 188 and the back weave in Fig. 189. As will be noticed, the same practice is followed ont as in the one-and-one system. The face weave is first put upon its own series of threads, and then the back weave is dealt with in like mamer; when both weaves are completed the lising marks are put on the back pick and upon the face threads, to cause a separation of the two eloths.

Fig. 186.

Now, to cary this ont to a greater length, make a six-harness twill face and a plain back, as shown in Fig. 190, with face weave in Fig. 191. In this case, if the pattern is only carried wut onee, there wonld be but three threads of backing, and as a pain cloth is not complete mon three threads, the whole mast be carried out to donble the length, so that twelve threals of face and six of batek must be employed. In such a case as Fig. 192, there would be no necessity for a repeat of the weave; as the face pattern in Fig. 193 ocempies eight threads, four threads wonld be required for back, and consequently the whole would be complete on twelve threads.

It will be well to keep the practical application amd the
arrangement side by side. For instance, the question of drafting will come forward, becanse in many cases the face pattern will be a very elaborate one and the back may be perfectly phain, or a simple twill, and eonsequently does not require many harnesses to

Fig. 187.

Fig. 188.

x^{x}

Fig. 189.
weave it. In the design, Fig. 187, there would be mo reduction, because the face weare occupying four threads and the back weave two threads, there would of necessity be six harnesses required, but the matter of arranging the harnesses must be considered; that is, the arrangement

Fig. 190. of the clraft must have particular attention, not only so as to know how the threads will be drawn through the harnesses, but also to determine the actual positions of the face threads and the back threads. Draw the face threads on the four front harnesses and the back on the two back harnesses, as in the draw in Fig. 194 and chain in Fig. 195; then reduce Fig. 190
to the smallest possible number of harnesses, as in the draw in Fig. 196 and chain in Fig. 197 ; next reduce Fig. 192 to its lowest number of harnesses, as in the draw at Fig. 198 and chain in Fig. 199.

Binding. So far, the designs give two entirely separate fabrics, and to complete the double fabrie it is necessary to bind the two together. To accomplish this binding, which is also termed stitching,

Fig. 191. tacking, etc., either one of two systems may be adopted. The two eloths may be bound together by lifting a back thread orer a face pick at certain intervals, or by sinking a face thread under a back pick at certain intervals, one system being
exactly the reverse of the other. Several eomsiderations monst be taken into aceount at this time, however, for if these binding points are sefected indiserimimately a fanlty piece of choth is sure to lesult.

To bind correctly by lifting a back thread wer a face piek, it shonld be lifted between two risers of face and either between two risers or next to a riser of back on the bark thread. It is usually possible to lift between two back risers, hut when a plain weave is used for the back, it is lifted next to a riser as the thread is not lifted over two consecutive picks. If, when binding in this mamer, the back thread is lifted over a face pick at a point where

a sinker of face weave would come on either or both suldes, the thread lifted would float over the face filling which is on the surface at this peint and consequently the back wan' threat would be bronght to the face at this point, and if, as is often the case, the two cloths were of different color, the result would be a plainly discemible imperfection.

By lifting the back warp thread between two face threads which are lifterl, the two fare threals come into chose contact and cover the bark thread completely. It is necessary to lift the bate threal between two risers or mext to a riser, beranse, if the batek threat were weaving on the unter surface of the back choth and carried directly though to the fire of the choth, it wonld earry the face pick through to the back in such a manner as to make it show on the back, cansing a similar imperfeetion on the bark to that which was eaused on the face. The seeomd system of binding leing just the reverse of the first, the point selecter for the binding should be just the reverse in remy particular for similar reasons to those just given for the first system.

The binding points in a design are genmally amanged in some defmite order, such as a twill or sateen, so ats to distribute them evenly thronghout the cloth, but this orler mast suit the other requirements mamed. Taking now the design in Fig. 18t, which requires only the binding to complete it : suppose it is to be bound by the first system, the binding points to be distributed

Fig. 196.

Fig. 197.
in the order of a $\frac{1}{3}$ four-harness twill. By the rule, the first peint must come where a face pick crosses a back thread between two risers of face and between two risers or next to a riser of back. The only point on the first face pick answering these requirements is where the first face pick crosses the first back thread, as indicated by the diamond-shaped mark in Fig. 200. Letting this mark indicate a riser, it shows the back thread lifted over a face pick, thus binding together the two cloths. Following out the binding points in the order as decided upon, the next point will come where

Fig. 198.

Fig. 199.
the second pick crosses the second back thread, this point coming in consecutive order, and answering all the requirements. By indicating all the binding points in their order as the firit have been indicated, the design will apear as in Fig. 200; and if a fabt ric were woven with this design, it would be a donlle cloth with cassimere twill face and back, and bound together by interwearing the face-filling with the back warp in the order of the $\frac{1}{3}$ twill. This binding would be very close and firm, and in most cases it is
desirable that the binding should be distributed at greater intervals, as further examples will show. Fig. 201 is a cut section of the first two picks of Fig. 184, and Fig. 202 is a eut section of the first two picks of Fig. 200, showing the binding, and Fig. 203 in a diagram of the complete weave.

For a further illustration of binding, suppose a cloth is desired with the same face and back weaves as were used in the previous example; but this fahric is to be bonnd by the second system, with the binding points arranged in the order of an eightharness sateen. As the binding is to be done with the face threarls, and eight threads are required for the face, with the design arranged in the proportion of one thread of face to one of back, there would necessarily be eight threarls required for back, giving sixteen threads and picks required for a full repeat of the design.

Fig. 200.

Fig. 201.

Fig. 202.

Rule.-To find the dimensions of a ply or multiple fabrie, find the least common multiple of the nomber of threads required for each of the single weaves to be employed, inchading the binding motive, and maltiply by the namber of threads in one repeat of the ply dressing ; i. e., if the cloth is arranged one of faee and one of back and one of face, multiply by three, ete. A double cloth arranged in the proportion of one thread of face to one of back is called a one-and-one double cloth, or a donble choth arranged on the one-and-one system: and a donble eloth arranged in the proportion of two threals of fate to one of back is called a two-amd-one double eloth, or a double cloth armaged on the two-and-one system.

Itaving fornd sixteen threads by sixteen picks to be the dimensions of the design given, shate off the design paper and pace upon it the face and back weaves and the face lifters on the
back picks, each of the two weaves being carriod ont twice in each direction, as in Fig. 204 . To select the first binding point, the requirements are to sink a face thread under a baek pick between two sinkers on the lanck pick and between two sinkers or next to a sinker on the fiace thread. On the first back piek two such points may be fomm, the first on the fourth face thread and the second on the cighth face thread. both of which are equally goorl. Taking the point where the first back piek erosses the face thread as the first binding point, the face thread is found to be lifted hy the system of lifting all of the face threads on the back pieks; in this ease the threard most not be lifted, lout must be

Fig. 203.

Fig. 204.
sank um ler the back pick to effect the binding. This being the case, the mark indicating a lifter must be remored, and the space left racant showing the thrad to be sumk, but for convenience in showing the binding armagement, the point is indicated by a circle, as in the design.

Now as an eight-harness sateen is to be nsed for a binding motive, and as either five or three may be used as move number to produce an eight-harness sateen, it must be decided which number will give the proper arrangement to suit the other requirements. Using three as a move number, and counting off from the first point ahready selected, the next binding point would enme where the fourth back pick crosses the fifth face thread, and as this point is surrounded hy risers of both face and back weaves, it is obviously incorrect for this system of binding. Then using five instead of three as a move number, the next point would
come where the sixth back pick crosses the fifth face thread, and as this point is a good one in all respects five may be accepted as a move number for the sateen, as it will distribute the binding points in correct positions all over the design, as shown by circles in Fig. 204. Fig. 185 should be hound with the same motive as Fig. 18t; Fig. 186 may be bound in a similar manner to Fig. 184 , using instead of the one up and three down binding motive, the one up and five down, commeneing at a similar point; Fig. 187 could not be suitably bound without a further extension, as there are only two back threads; Fig. 190 could be bound with the same motive as Fig. 186 ; and Fig. 192 with the same motive as Fig. 184. Any ehanges made in the design by inserting or removing risers for binding purposes will, of course, necessitate a corresponding ehange in the drawing-in draft and chain.

Fig. 205.

Fig. 206.

It will be noticed that the last three examples are arranged in the proportion of two threads of face to one of back. With designs arranged in this manner, the first system of binding is always preferable beeause the addition of binding points womld be likely to so complicate the face weave as to necessitate the use of more harnesses.

With the design arranged one of face and one of back, there would be no choiee of binding systems, except in a case where the face weave were a fancy one with a plain or simple twill back. Then the binding should be done by the second system, as it wonld not inerease the number of harnesses required, beeanse the face weave would probably occupy a greater nomber of hamesses than the back. Suppose for example the face weave is an eightharness fancy twill and is to be backed by a fom-lanmess twill, the binding motive to be an eight-hamess sateen. If the binding
were done by the first system, it would require eight back threads to repeat the binding, and as the back weave would repeat on four, it would prevent any reduction of the momber of hamesses for the back weave. If the binding were done by the second system, as the face is composed of eight face threads, the binding wonld not increase ; the number of harnesses would then be reduced to fome.

As a further illustration of weaves and binding, suppose that Fig. 205 is to lom the face fabric, and that there must be a back doth woven upon it, and also suppose that the eassimere twill in Fig. 200 is the batek weare, and that there are two threats and picks of face to one cach of back. What would be the relations of the two weaves to each other? The face pattern oceupies twelve threads and the back weave occupies only four threads, consequently, there being two of face to one of back, when the face pattern is complete there would be six threads, or one repeat and a half of the back weave, so that to make the whole complete the face must be repeated and the back continned until there are twenty-four of the face and twelve of the back, as shown in Fig. 207. When this is done, it must be evident that the relations of the two weaves must be different in the first half and the second half respectively.

Now suppose that in the design given in Fig. 207, a binding point were fomd as indieated on the second face pick and first hack thread; the corresponding point in one repetition would not bear the same relation to the face and back respeetively, as is shown on the seventh back thread and second face pick, by the hollow diamond. The correct arrangement is shown fully carried out in the design, but not in the chain and draft. It will be seen that at the point of binding when the bick filling is over one of the threads of its own cloth, and the next pick of the face following immerliately upon it is passing under the same threat, there is a great probability of one showing through to the surface of the other.

In hinding two eloths together, there must be some attention paid to the distribution of the bindings, exacioy as uere is when backing with warp or filling only, and this may materially affect the number of hanesses employed. If the binding is to be donn by the second system, then in all probability there would be no
necessity to incroase the number of hanosses employed, because at the point of hinding any one of the hamesses carying the warp thread selected for binding could be left down at the desired proint for the back filling to pass over, and the distribution could be arranged according to the character of the design; if, however, the first system is used, then for the purpose of obtaining the desired distribution there must be more backing harnesses employed.

Fig. 207.
Look for example in Fig. 207. the daft of which is given in Fig 208 and the chan in Fig. 209; there are fomr back harnesses only. There cond le no proper distribution of a reasomahle character if the binding were done on the batc warp theats, therefore there most be an extension. Take for example Fig. 210, which is the same face design with a plain hark, with the draft in Fig. 211 and the chain in Fig. 212; here it would be ahsolutely impossible to bind the two eloths together in anything like a reasomalde manner with the face filling passing moder a bateing
warp. hecause there are only two batking harnesses usert, athl therefore it could only be on alternate threads. The practical

Fig. 208.

Fig. 209.

Fig. 210.

Fig. 211.
course in this case would be to increase the number of backing
harnesses, so that the distribution conld take place in aceordance with the requirements of the pattern.

To bind this design a $\frac{1}{5}$ motive should be used, starting on the first back thread and second face pick. The complete chain, inclading the binding, is shown in Fig. 211 and the draw in Fig. 212.
ro Lay OUt a double-cloth design.

First: Oltain complete dimensions and mark off.
Second: Shade the back threarls and pieks with light blue.
Third: Place the face weaves on the face threads and picks with black.

Fig. 212.

Fourth: llace the back weaves on the back threads and picks with red.

Fifth: Raise all the face threads on the back pieks with green.

Sixth: Stiteh by lifting a back thread hetween two risers of face and next to a riser of back, indicating with yellow ; or

Seventh: Stiteh by simking a face thread between two sinkers of back, indicating with a circle.

REAR HARNESS-END VIEW OF HEAVY WORSTED LOOM
Crompton-Thayer Loom Cu.

EXERCISES FOR PRACTICE.
 PLATEA.

1. Stitelaplans 1-i) for choble choths. using both warp and weft for this prurpose.
2. Complete fans 6-9 for double roths, using hoth hacking warp and weft for stitching.
3. Make 4 plans for double choths from the following particulas:

Plan of Fiar Wiave

Plan of Batk Wrave.

Plan of Bark W'arp stitch.

Plan of Back Weft stitch.

4. Make plams for domble cloths with 1 end and pick of face to 1 emel and piek of Jork, using both backing watp and weft for stitching: with plan 10 for face and phan 11 for back: plan 12 for face and plan 1: for bark; plan 1:' for face and pan 14 for batck.

pateb.

5. Complete plans 1-4 for donble cloths, using both backing way and weft for stitching.
6. Complete plans 5-8 for double cloths, using the backing wary for stitching.
7. Make plans for double choths 2 face to 1 back in warp and weft, with plain backs, and weares 9,10 amd 11 for fate.
8. Make phans for double choths 2 face to 1 bark warp and weft, with twill backs, and weaves 12 , IS and $1+$ for face.
9. l'oint out any defect in pan 15 , and give corrected plan.
10. Analyze plans 16 and 17 . amd give farr and hack weaves, stitching and separating plans.

PLATE 1.

PhATEB.

EXERCISES FOR PRACTICE.

1. Plan A is a perg plan for draft B; work out the design that would be produced, amalye it ame reseribe its construction.
2. Give designs for domble eloths, 1 and 1 warp and weft with (1) phan ($:$ for face and back, (2) phan I) for face and back, also give peg phans to weane them with draft B.

3. Make draft and peg plan to weave design E, lacking healds to he in front, and wive two peg phans for origimal designs to be wovell in the same draft.

t. Put a plain hark om plans F, (i, II, 2 ends and picks of face to 1 end and pick of back; give peg plans to weave all in same draft.
4. Make plans for double cloths with weaves K, L, M for face and same for latek, 1 end ant pick of face to 1 end and pick of back, and make a diagram showing soction between $2 d$ and $3 d$ picks of plam M.

F

M

H

EXERCISES FOR PRACTICE.

1. Nake plans for donble cloths with phans A, B, C for face and D for back in each case; 1 end face to 1 and back, and 2 picks face to 1 pick lauck.

2. Wake a donble eloth with desigu E for fare and a wadded satin batek.
3. Give design, draft and peg plan for a donhle doth, 2 face to 1 bark, with wiginal cleck plan for face and a back which will hide the hacking weft as much as possible.

E
4. Make designs for double clothis 1 to (i with the following woaves: 1 fread fare to 1 thread back, wap and weft, using extra warp for stitching.

5. Rearrange the double eloth designs F and G with z ends and picks of face to 1 end ame pick of back, the stitehing warp to have the same nmmber of colds as the backing warp.
6. Analyze plan II, showing on point paper the face and back weaves, stitching plam, ete.
7. Point ont any defeet in the plans k and L for double cloths, and give the comect plan in cach case.

8. Make a 2 and 2 twill double eloth stiteling by means of an extra stitching pirk.

EXERCISES FOR PRACTICE.

1. Supply -2 singla weaves for each of the acompans ing designs, $1,2,3$ and $\&$ to weave with the same set and in phate of the portions in crosses (X).

 !owing waphing and wofting:

5
3. With a similar design. make an origimal rolon fionme.
4. Color design 6, thas showing the effect produred in a cioth weren ats follows:

6

EXERCISES FOR PRACTICE.

1. Make phans to imitate phans a, b, r, in a weft-batked clotli.

2. Make phans to imitate plans d, e, f, g, in a simele cloth.
3. (iive tateked or double clothes of which plans h, k, l, m, n, are imitations.
t. Back planns l' and r with wall 1 and 1 , and make single cloth watres to imitate them in the same sattings.
\therefore. Point ont any defeets in the designs 1 to 7 fur double cloths, and correct.
(i. Dakephans fora double reversible 6 amd 6 twill and 8 amd 8 twill, stitehed as lightly as possible.
4. Analyze the aceompanying plans 8 and 9 for donble cloths, wiving face a a d batek weares and stiteling phans.
s. Describe the comstrit:tion of design 10 amd amalyze it, giving sparate flans of each compornent part.
5. In amalyzing a double cloth the face weave is fomml to be plan 11, amet the bark weave plain; make peg plan to wave the cloth with a draft separating the back and face healds.

THREE-PLY OR TRIPLE CLOTHS.

Having treated with double rathes, the mext fabrice to be considered is threeply or triple cloth. Triple eloths are fabrics having three distinet sets of warp and filling, constructed in a similar manner to double cloths. There are three different fabries, called the face, middle and back, boumd together at certain intervals so as to form one complete fatbric. The linding is done by the principles as employed in binding double cloths, amb, in fact, any of the principles used in the eonstruction of domble cloths apply equally well to the construction of all multiple fal)ries. There is ordinarily an equal proportion of face, middle and batk employed, i. e., one thread of fate, one thread of middle and one thread of batk, with the filling in the same order.

Yarus differing greatly in size may not be used for the different fabries of a three-ply eloth maless the weares employed are such as will permit of a variation in the diameter of the yarn. For instanee, if a plain weave is being used for one fabric, and it is desired to increase the fabric in weight and yet retain the same number of threads per inch, coanser yarn could be useal, but the weave would have to be changed to one with longer floats and fewer intersections, so as to accommodate the increased diameter of the yarn. Of course the same number of threats per inch must be retained so as to correspond with the other two fabrics.

The opposite will hold true about changing the weaves, as any radieal difference in the weaves used would result in a difference in texture, i. e., making it either eloser or more open, accorl ing as to whether the ehange would be made from a long that weave to one with shorter floats, and a greater number of intersections. For this reason either a finer or a coarser yan would be required to make up for suth a differenee, unless the number of threads per inch could be changed.

In these triple eloths the waves generally used are the plain weave, simple twills and basket waves combined in various ways. Different effects in such eloths are usmally produced by the coloring, whieh may vary extensively in different cluths, and sometimes differs entirely on the two surfaces of the same fabric.

The face and back fabries are often of a very similar quality,
with an inferior class of material fon the midulle fabric. In finesurface lighter weight goosls of high quality the mimble rloth wonld pobably be of fine worsterl wapl with a medimm wowlen tilling, but with the chapure clase of gronds, where a gotol surface is also required with a somewhat greater weight, a cotton or "heap) woolen middl: wapl would be employed, with a coarse and chay) woolen filling.

Fig. 213.
Now suppose it is desired to make a three-ply cloth with face and back of an equal quality, with a coarser middle eloth. For the face and back the cassimere twill weare $\stackrel{?}{2}$ may be used, and for the midhle eloth the $\frac{?}{3}$ six-hamess twill may he employed so as to permit the use of coarser yarn. It may also be the twelve-harness twill $\frac{1}{11}$. Knowing the weaves to be
amplowed, tugether with the binding motive, the dimensions of the complete design may now be ascertained.

The least common multiple of the fare and hack weaven, 6, the midhle weave, and 12 , the hinding motive, is 12, and ats it a three-ply aloth, maltiplyg by 3 will give 3 , threals ant pirks, the dimensionts of the complete design. Having fomen the dimensions required, the rlesigh paper may be sharled to indicate tha different sots of threuls aml pheks, as was done with dombla Woths: but, an in this ease there are three different sets of thrads, wo different kimh of shatling must be used, one for middie and one for hack, the face being lelt mshated. For the midhe a light wash of yellow may be used, and for the batek a light wash of han; or the middle may be shaded with broken fine lines, and the bar li

Fig. 214.
 with unbroken dine lines, as show」in Fig. 218. By the useof rither of these methols. eonfusion is a voided.
Next place the hafersht weaves on the shaded paper, indiating the face weave with fall sumares, the midlle weave with straight -rosses and the bate weare with oblighe remses, as shown in Fig. 214 . This being done, the weaves for the different fabrices ane all indirated, but mothing has been done to separate the three fabrics, i. e., to prevent the filling intender for one cloth interweaving with the other warls. When the fae filling is being interworen, the midhle and back wamp must be left down, and as these waps have not been rasised on the face piek, mo change is necessary on that piok. When the midnte pirk is being interwoven, the face wayp most all be lifted amd the bark wap masi, all be left down, so on this piek the fare wald is lifterl, as shown by the romal mates in Fig. 21:3. When the bark piek is lering inserted, both the face and middle warge monst be lifted out of the way of the bark filling, amb this is dome as imdicated by the round marks on the back piek in fig. -213 . Now all the weaves are inlieated, amd the lifters whith separate the three clothe are also imdicated, the binting only being meressary to complete the design, beranse the design withont the bimling womld produce three distinctly separater abthe mot joined together at ally point.

The best results in hinding threwhly efothe ane obtamed by
 rhoths in such a mamer as to lning all the himling on the midhle threads. This is aceomplished hey liftiog a midhle thread wor a face pick at a suitable point, thus himling the fare and midnlle Gloths together, ame by bimling the midhle amd back together. loy sinking a midelle thread under a bate piek at a suitable point.
 ply, the same as with double rlothe. Oerasimatly athereply
 but manes this is made neeessary hereme fartionlar matom, it sinould not be done. Now to biml thr dexign above: lirst hime

Fig. 215.
the face and middle together hy lifting a midna therad wor a fare pick. Refering to the desion, it will her seen that on the tirst face pick there is but one point which answers the requirements necessary to prodnce a perfect bimling. This print is where the first face piek crosses the first midelle thereal, amd it will be noticed that the face thread on eald side of this perint is lifted, and also the middle thread is lifted orer the middle pick preembing and the middle pick following this point, thas making it a perfeet binting point in every way. This may be taken an the first point, and as the face amt midhle weares are regular twills, the binding motive also being a regular twill, the conserotive hinting points will eome at positions goremed by the same eomblitions,
i. ©., at the point where the second face piek crosses the thind middle thread, etc. These points are indicated ly the diamondshaped marks in Fig. 213, making the binding of the face and middle complete. To complete the design, it is only necessary to bind the middle and back fabrices together by sinking a middle thread under a back pick. As all the middle threads have been lifted over the back picks loy the circular marks in the same design, it is necessary to remove one of these marks wherever the binding makes it necessary, or such point may be indicated with a eircle, this circle to indicate a sinker. This binding point must come where the back filling crosses the middle warp, with a sinker of back on each side and a sinker of middle lonth on the preceding middle pick and on the middle prick following.

Fig. 216.

Referring to the design, it will lne seen that there is but one peint answering this description on the first bark piek, and that is where it arosses the last middle thead. This point has a siuker of lack on each side of it, and a simker of middle preseding amd following it, answering fully the remured combitions. Taking this puint as the first, inticate it with a circle, as shown, and following out the binding points in conserntive order the next comes where the seeond back pick crosses the first middle thered, ctc., eontimning until all the peints are indiented hy these oircles. The design is now fully eompleted, the there different weaves lowing indicaterl, also the face lifters on the middle picks. and the
face and middle lifters on the batek picks, the three fabrics thas being bomed tosether.

The dramingin datit for the above design is given at Fig. 215, with the chain-1halt at Fig. 216 , and a cut section of the first thee picks at Fig. $\because 17$. Fig. 21 is is a design composed of the same there fommation weares as before and is like Fig. 218 in every way hut the binding. In this ease the binding is done ly lifting a middle thead over a face pick to lind the middle and fare together, amd hy lifting a back thread over a midelle pick. The himding motive is a twelve-hamess twill $\frac{1}{11}$ and the hinding is indicated in the design by the diamomeshaped marks, Fig. Ols. The thrads are mombered underneath the design in the order of the drawing-in draft, and as this design would require twentreight hamesses as compared with twenty for the previons example, it shows elearly the adrantage of doing all the

Fig. 217.
bimling with the midlle warl as in Fig. 213. The difference of dight hamesses is often the difference between a design which may be patacably woven and ome which my not, and in this rase may be troly said to be so.

In many mills moths are woven which have two fillings interworen with theer walls, the middle warp being employed only for the purpose of himding the face and back fabric together. This warp, which is called the stitehing or hinding warp, would, in the finer class of gooks, pobably be made of fine worsted, and in the cheaprer class of erools be made of cotton.
'The alvantage or ming this midnle warp is that a doublefare cloth using such a wark is nsually of a moch softer and fuller textme than a donble eboth in which the two fabrics are boumd directly together, and there is less damger of the colors of one eloth showing throngh the face of the other. The superior trexture of a eloth made with a binding warp is due to the shrink-
age of the wool in the face and back fabrice during the fulling process, which affects the worstod very little, or the cotton not at all, thus cansing the worsted ar cotton warp to kink enough to allow the face and back falmics to separate slighty, amb in this way rause the extra softness, where in the ondinary double eloth the two fabrics would be firmly felted together.

Fig. 218.
A design for this kime of fabric is given at lig. $21!$, where the fare and batek weaves are both the fomr-hamess cassimere twill \because
 pirk, and then sinking it mular a back pirk at such points as meet the proper requirements, at other points it merely thating between the lawe and hatk fabrics.

The bimeling motive is an righthamess sateren, as indieated by the diammen-shaperd matks where the bimding theards are lilted

HEAVY WORSTED LOOM WITH 82-INCH REED SPACE
wer the face picks, and by the cimen where they are sumk matur the lanck picks.

Other matiple elothis maty be male in the same mamore an those alreaty deseriberl, in varing popertions, as two waps with two or three fillings ; three wank with two, there or four fillings; form wathe with there fom or live fillings, ete. For falmies used for chothing amything over threeply is rame matre hat as a

Fig. 219.
to lay out a triple cloth design.
First: Ohtain complete dimensions ambl mank off.
secomd: Shate the middle thearls and pieks with light wash of yellow.

Thind: Shate the back threads aml picks with light howe.
Formth: Plate the face weare on the fare theads and pieks with black.

Fifth: Plate the middle weare on the middle threats and picks with bue.

Sixth: Place the back weare on the batck theads and pioks with red.

Seventh: Raise all the face thatals on the middle pieks, and all the face threads on the bark pieks, with green.

Eighth: Stitel by lifting a midnle or bark thead betwera two risers of face or middle, and next to a riser of middle or bark, indicating with yellow; or

Ninth: Siteh by sinking a face or middle thead between two sinkes of midill we back, indicating with a circle

Tenth: In some triple cloths where an exta heary middle cloth is used to gain weight, the bek thead should be lifted right through to the face to perent any possibility of thr stitehing showing, as would be likely if the midne wall were used for that purpose.

EXERCISES FOR PRACTICE.

1. Wake a design for a three-fold rloth with $a \because$ and $\mathscr{2}$ twill for fare amb hogsack hark.
\because. Make a dexign fan a doth with 4 wajp amd $:$ wefts, with a promelle twill for lite ame hatk.
B. Analye the thesign A. giving diagtan of a seretion of the cloth weft way.

A

*
4. I)exmibe the eonstrnetion of the designs I) and $(6$, and mark the emols in the phan which ron would phe on the same bean.
5. Make a design for a doulde : and $:$? will, same face as back, with a thitw wap in the midhle hatige half the momber of threats of the face wial.
6. Make phans for 3-fold (roths with designs 1) aml E for face and hatck, and with a phan cloth in the middle.
$C \quad D$
E

THE INDEPENDENT BATON CYLINDER MOTION WITH 624 SINGLE LIFT MACHINE

TEXTILE DESIGN

P.NA'T IT

DOUBLE PLAIN

"Double plain," as the name implies, means a double fabric composed of two warps and two fillings, the face warp and filling weaving pain, and the back wap and filling weaving plain. 'This class of weaves is chiefly used to produce fancy effects by combining or interchanging the single cloths. If one color of yarn is used for both face and back cloths, two fabrics of the same color and construction will be produced; while if the odd-numbered threads and picks are one color and the even-numbered threads and picks are a second color, two separate cloths of different colors will result. Assuming that the first color is black and the second color is red, the fabric will have a black face witl a red back or lining.

It will not be difficult to understand that if the face and back choths are interchanged; i. c., if the back face yarn is woren on the bate, and the red back yarn is woven on the face, at predetermined mervals, a variety of stripes and figures may be formed. It is on this principle that the characteristic domble plain patterns are made.

Construction. Designs of this class differ from the usual double and triple cloth designs chiefly in the manner of binding the cloths. Where a twill, hopsack, or some other weave with floats of two or more threads, is used for the face cloth, it is a very simple matter to produce perfect binding by lowering a face thread under a back pick, or beraising a back thread over a face pick. 'These methodsare impracticable in constructing double plain designs, because the plain weave, one up, one down, does not contain floats of two threads, consequently the plan of binding would be plainly visible on the face of the fabric. This would be especially true when different colors of yarns were used for the face and back cloths. However, the manner of stitching the cloth is of secondary consideration, for when the face and back fabrics are interchanged, they are, of course, bound together.

The first step in laying out a design is to shatle the back threads and pieks, then placing the face and back weaves on their respective threads, and raising the face threads on the back pieks. This is plainly shown in Fig. 219, which gives the successive steps in laying

12345678
Fig. 219.
out a simple double plain design. If this design were woven with one shuttle, two separate choths bomal only at the selieedges would he woven. If two shuttes were used, two choths, intependent of each other in every way, woud be porahced.

The diagran, Fig. 20, shows the threads intertaced in regular plain order and gives the relative positions of the face and back eloths. It also emphasizes the statement made above to the effect that a double plain design does not permit of perfect binding hy the methods used on the usual ply falnies. By careful attention to Fig. 22. 1 it will be seen that the face and back choths may reatily be woren in sold eolors without interfering with each other in any way.

Fig. 220 'This figure shows a cut section of the first four picks, and represents two plain cloths one over the other.

The forerong explains the principle of double plain construction, but, excepting in the manufacture of seamkess hags and pockets, it is not mised to any extent. It is used here to illustrate the possibilities of double plan designs ant the impossibility of obtaining good results by attempting to bind them by ordinary stitehing. With these points clearly understood, those that follow will present few difficulties.

The simplest pattem that may be produced is the "Inairline" or very fine stripe effeet in solid colors, the effect being prodnced by the face and back dothe interehamging. 'To explain how this is done, it will be best to select a pattern and illustrate the successive steps
necessaty for its proluction. Fion example, aname that a pattern must be made with altemate stripes of hatek ant red on the face, the batek stripe to le six threali wide and the red stripe to ocerper two threads. When the cloth is tumed were the color eflect will be rerersed, showing sis threats of real and two threads of hatek.

 produce double phain cloth. Thaese threads give the batek stripe on

Fis 221.
the face of the choth and the red stripe on the back. So fitr no change has been made from the methorl purssed in Fig. 2l! , but it wevisent that something must be done to reverse this orler and make the red stripe appear on the face. This is acemplisherl as follows:

Those picks and threads that were shated for the bate cloth are now used for face, and vice versa. The wapp heing dressed one bath, one red, the opposite color will be raisal to the face. The even numbered threads and picks are now the face threads and face picks, and therefore a sold red stripe is formed at this section of the design.

Fir. 29.2
The eomplete design also i.s show in Fig. 2n. . After the threads are shaded, the design is completed be putting the plain weave on both fate and back embs and pieks, and rasing the fitce warp on the back picks in the usual mammer.

The cut section in Fig. 20?3 shows the first four picks. It will be noted that the odd picks, which are back, interlace only with the oddnumbered threads, while the even-mminoren picks, which are red, interiace only with the same color of warp. The cloths are bound together at the point where the interchanging takes phace, which in
this design is at threads $11,12,13$, and 14 . If the design were carried out one more repeat, it would, of course, be bound at threads $1,2,15$, and 16 , as the black face cloth returns to its normal position.

For a further example of double plain stripe patterns, refer to Fig. 224. The warp for this design is dressed one black, one red; and the filling pattern also is one black, one red. When woven, the face

Fig. 223.
pattern of the cloth will he six black, two red, two black, two red. Of course, the under surface of the cloth will he the reverse, or six red, two black, two red, two black. The chief ohject of this design is to show how the face cloth is returned to the face of the fabric after wearing on the back.

Examples of stripe patterns formed on this principle could be multiplied, but the principle is the same in all. 'The important points to be remembered are to shatle the threads and picks as in the case of double cloth, interehanging the cloths by bringing two back or two face threads together.

Check patterns are made bextending the principles used in the production of stripe effects. This is itlustrated by the shaded design paper shown at Fig. 2.2.5. It will he noted that not only do two fare and two back threals come together. ats at BB and FF, hut two face

Fig. 2.2.
and two back picks aljoin as at $b b$ and $i f$, reversing the chothe at these points which, of eourse, are the hinding points of the fabric. To better explain the construction of check patterns it will be best to work out from the begiming a decign of this dass.

The first step is to select a suitable pattern, which in this case is a black and white checkerbond effect to repeat on twenty-four threads
and twentr-four picks. The watp with be dressed one batek, and one white, and the tilling will be woven one back, one white. After determining tise area the design is to ocomper the ends monst be shated and the face weave placed on the face threads and picks. This is shown at Fig. 2o6. 'The plain weave must now be plated on the back threath and picks, and risers: be filled in to lift the face warp over the back picks. The complete design is shown at Fig. 2.27, and if woven the effect would be altermate squares of back and white, each

Fig. 225. square occupying six threats and six picks.

Spot effects or florad designs may be protuced upon the same principle by allowing the back cloth to weave on the face to form the required spot or floral effect.

SPOT WEAVES

This class of weares is used to a large extent in manufacturing cotton and worsted fabries, as the nature of spot weares makes them

Fig. 226.

Fig. $22 \overline{7}$.
especially adapted to the production of large varieties of neat effects.
It will be readily understood that it is necessary to hare some of the yarn float on the face of the cloth where it is desired to form a spot;
also that the manner in which the yam is allowed to forat determines the shape and appearance of the figure.

Spot effects may be prorluced in three ways; first, by forming the spot of the same yarn that forms the borly or gromed work of the elotis; second, by employing an extral wap which does

Fig. 208. not in any way affect the gromm wease, but is brought to the face at regular intervals to form the figure; third, by the use of an extra filling which, like the extra warp, floats on the back of the cloth when not weaving on the face to make the pattem. The first method limits the pattem to the colors used in the gromul, while the secomed and third methods permit the use of different material of any color desired.

It is unnecessary to take up the first methon very fully as it is similar to many of the simple weaves already exphimed, and also because it is taken up on a larger seale moter the heading "Jaconard Designing." It will be sufficient to state that spots. formal by the yarn that composes the body of the choth are produced bintroduciner, at the point where a spot is desired, a second method of interameing

Fig. 2.9.

Fig. 230 .
the threads. For instance assmone that a diamomel pot is required on a plaingromed (that is, the gromal to he woven with aphan weave), the spots to be aranged in phan order, and the full design to repeat on twelve threads and twelve picks.

The first step is to mark oflt the extent of the desigi or the area it is to occupy, amd as the sots are to be armaged in pain orrer, to
 This is shown at Fig. 2es. As the spots mast have the same relative position it will be helpful to matre one of the small squares that the
spots may be filled in with redation to these supares. 'This also is shown at Fig. 22)
'The next step is to fill in the spots and place the grommel weave aromud them as shown at Fig. ges. Careful attention must be wiven to the arrangement of the figures and the manner of filling in the ground weave, otherwise the effect shown at Fig. 230 will be produced.

Fig. 231.

Fig. 232.

A carcful study of Fig. 230 in comection with Fig. 229 will emphasize the value of a careful disposition of the spots with regarl to facilitating the work of adding the ground weave. Note how the dear cut appearance produced by Fig. 229 is destroyed by the ground weave being run into the figure as at Fig. 230.

The second method of making spot designs, i. e., by the use of extra warp threads to form the figure, presents no difficult features to those who have mastered warp-backed cloth designs for it is similar in every detail. Assume that a design is being laid out for back eloth,

: anornañ

Fig. 233.
but that the backing threads are silk or fine quality cotton or worsted, and instead of being earefully stitched so that ther will not show on the face they are floated on the face to form spots. This clearly explains the construction of spot designs by this method.

Attention must be given to the disposition of the spots, as regards the distance they are placed from each other, and the order in which they are arranged, such as plain, sateen, etc. For an example of this method see Figs. 231 and 232. 'The small figure in Fig. 231 represents
the spot which is to be superimposed upon a plain ground. The first operation is to shade the extra threads, or those which represent the extra warp threads, and fill in the plain weave on the ground threads. This is shown at Fig. 231. The figure must now he placed on the shaded threads and the design is complete as shown at Fig. 232. Fig.

Fig. 234. 233 shows a cut section of the first and second threads interlacing with the filling.

This pattern, when woven, will not have the appearance suggested by Fig. 233 as the ground threads will, of course, close over the spaces which represent the extra threads and they will be entirely hidden from view.
It must not be supposed that the ground effect is limited to the plain weave for any of the simple weaves such as twill, sateen, etc., may be used. These figures are not given because of their value as designs but to illustrate the principles on which these effects are laid out.

As a further example of the spot effect produced by extra warp, and one which is of a more practical nature, refer to Figs. 234 and 235.

Fig. 235.
Fig. e3. 3 represents a spot which must be produced on a cansimere twill gromed, once every twenty-four picks. The ground warp and filling are red and the extra warp is white mercerized cotton. The gromul cloth comits forty theals to the inch and there must be onehalf inch between the rows of spots.

As in the previons example the extra threads are shated and the gromed weare, which in this case is the cassimere twill, is pacerl on the gromel threads. The next step is to place the figme on the extra threads. Apparently the design is now complete, ant in fact it would produce good cloth. However, a designer should seek means to produce the best that is possible and in this case something more may be done to improve the design. The first and last extra threals are interlaced once in twenty-four picks, or in the full repeat of the design. This means that they will float on the back of the cloth for twentythree eonsecutive pieks if some method is not devised to prevent it. For this reason the extra threads are stitched at comenient plares as shown in Fig. 23.

As the ground yarn is red and the spot or extra threads are white, it must be understood that eare should be exercised in the selection of binding places or the stiteh will spoil the face effect. The rule given

Fig. 236.
for stitching backed fabries applies equally well here and is as follows: 'The extra thread must be raised over a pick of the face filling at a point where the threads on each side of it are raised.

The drawing in draft and harness chain for Fig. 23.5 are given at Figs. 236 and 237. These are mate in the manner common to hacked and ply-eloths, the ground threads being drawn in on the front harnesses as they are so greatly in excess of the extra threads. This facilitates the operation of weaving the cloth as, there being so many more gromml threads, there will be more breakage among them and ther may be more readily tied up if drawn in on the front hamesses.

The formation of spot designs by the use of extra filling is the third and last method in our elassification. It is cxactly the reverse of the second method and the principles involved are very similar to
those employed when constructing filling backed fabrics. It is not difficult to understand that the bank symares on the shaded picks in Fig. 238 will make a filling spot of the same character as the small figure at the left of the lesign. Of course,

Fig. 237. the crosses represent that the other threads will be raised so that the extra pick, which may be of a radically different color from the ground, will not show on that part of the cloth. If the distance between the figure is so great that the extra filling will float loosely on the back of the cloth, it may be stitched in the same manner that the back filling is fastened to the face cloth in a filling backed design, i.e., by lowering a ground thread under it between the two floats of the ground filling.

To explain the meaning of arranging spots in sateen order Figs. 239 and 240 have been prepared. It should be understood that although this design is of the extra filling class the arrangement of spots secured may be obtained equally well on both the other methods.

The small figure at the left of Fig. 239 represents the spot which it is desired to produce in five harness sateen order on a three harness twill ground, the spots to be placed as close together as practicable. Fig. 239 shows the design laid out with the spot figure arranged on the extra: filling picks, and Fig. 240 shows the design complete, with the ground weave filled in on the ground picks. Fig. 241 shows al cut section of the first

Fig. 238 and seeond picks interlacing with the warp.

In all spot designs the gromed weave must repeat on the extent of the deesign, on the arrangement of the figures must be changed to occupy a momber of threads and picks which is a multiple of the
theads and pickiomernerl by the weases. 'Take for example Fig. 240 which. repeats on fiftom hreats. If the plan weave were used for the gromed in thisdesign, the first and fifteenti threads would be the same,

Fig. 239.

Fig. 240.
and when the design is repeated would come together to form a double thread. 'This would be a serions defect, and would make the design practicall! valueless.

PILE OR PLUSH

Fabries mate by this class of weaves differ both in structure and appearance from all others as their surface presents a series of short threads which issue from the borly of the cloth. These loops formed by the yarn are termed pile.

Phashes may be divided into two classes, i. co, warp pile and filling pile. The former is eloth in which the loop is formed by the

Fig. 211.
warp, while in the latter the loop is formed by the filling These two classes may be subdivided into eut and ment, or cut and loop pile.

Filling Plush. 'This is the simplest of all pile fabrics. As suggested by the mame, the doth is formed by a series of filling threads floating on the surface. 'The operation consists of weaving a ground cloth, plain or otherwise, and weaving a filling floating loosely over the surface and bomd into the ground at certain regular intervals. This surface filling is then cut as nearly as possible in the center of the float, and stands ip from the body of the doth, thes forming a cut pile.

The diagram shown at Fig. $2 \dot{4} 2$, is a cut section of a common velveteen, the weare being shown at Fig. 243. 'Two picks are shown in the diagram, one of ground and one of pile. The gromd filling, B, in conjunction with the warp forms guite a plain fabric, while the pile filling, A, passes under one warp thread and ower five. The letter C shows the pile filling ent at one of the floats. An examination of Fig. 243 , will show that the ground weave is plain while the pile picks are bound down once erery six threads, there heing three picks of pile filling to one pick of ground. The pile picks are marked P, and the ground picks are marked G.

The structure of the cloth must be carefully considered in order todetermine the best method of binding the pile into the cloth, and also the best distribution of the pile over the surface of the fabrics. If the pile is not firmly bomd it will not permit of its being cut, and if it were cut the yarn would constantly be pulling out in wearing as there would be no power to resist friction.
'The firmness of the binding is rlepentent upon the compactness of the fabrie and the manner in which the pile filling is interworen with the ground, and in the case of Fig. 243, where the pile filling passes arond hat one warp thread, it makes little difference how the hinding point is distributed, hecanse it will have to depend entirely upon the pressme of the ground picks on each side to secme it firmly in the fabric.

In the design shown in Fig. 244, the pile filling interweares with three warp threads, which, of comrse, increases the holding power of the gromed doth. The ground pieks are marked (rand the pile pieks are manked P. As in Fig. 24B, there are three picks of pile filling to one piek of gromad, however, in this design the pile filling floats oree !ine conserentive threals, making a longer loop. The diagram at Fig. : - 4.$)$ shows a cut section of two picks in this pattern and has been prepared

EMBROIDERY LOOM DESIGNED TO WEAVE A RAISED FIGURE OF ANY DESIRED PATTERN
Crompton \& Finowles Loom Works
to show the increased hodding power of this methot of hinding. The pick marked ${ }^{2}$ interneaves with the fifth, sixth and sermonth theads. In this instance the gromad filling wonld not have to be beaten up se firmly to proxhae a goorl dooth.

It is sometimes fommed diflent to ohtain the reguisite weight of texture in phoshes made with a plain gromm weare, or sometimes for
parinarinar

Fig. 242.
other reasons the construction must be changed. At such times the gromod may be twill instead of plam and the same plan of distribution followed. However, great care must be exercised in arranging the binding, se as to make it firm.

The tiagram at Fig. 24.; shows a method of binding into more than one thearl upon a plaing ground. The same rule will apply to twill grounds, but instead of interweaving with three threats it would be necessary to use four or more as shown in Fig. 246.

In all the examples given there have been three picks of pile to one pick of groumd. In order that the impression may not be given

Fig. 213

Fig. 24.
that this is the only construction that may be used, Fig. 247 has been prepared with five picks of pile filling to one pick of ground. This of course gives a much denser pile. It will also be noted that in this design every warp thread is used to bind the pile filling, this being necessary where a large number of pile picks are used to give a dense fabric.

Corduroy. In addition to being distributed equally over the face of the cloth, piles are made in stripe or cord form which are termed corduroy when they run in the direction of the warp. The binding differs from that of plushes in that it is confined to a few ends,
the object being to present the appearance of ribhed cloth, the rib to stand out very prominently.

Referring to Fig. 24s, and comparing it closely with Figs. 243 and 244 , it will be readily noted that there is no difference between velvet-

: nonnano

Fig. 245.
eens and corduroys, except in the manner of binding the pile filling; the object in the former being to distribute it as crenly as possible over the entire surface of the cloth, and in the latter to confine it to a

Fig. 246.
few threads that it may run in lines and thus form cords. There are two picks of pile to one of ground and the binding is done by the first, second, sixth and seventh threarls.

Another corduroy weave is shown at Fig. 249. In this plan it will be noted that there are eight warp threads, and the four harness cassimere twill is used for the ground. Of these eight threads only two are interwoven with the pile filling, leaving threads one, two, three, four, seven and eight, to form the space between the pile after the filling is cut. The special feature of this pattern is that

Fig. 217. but one pick of pile is used for one pick of ground. This is due to the fact that the cassimere twill is nsed for ground, which allows a much larger mumber of picks to be beaten in than the phain weare would under similar circumstances.

Fig. 250 represents still another corduroy weare. The gromed weare is a three hamess twill, two up, one down, and there are three picks of pile filling to one of groumd. 'The himding is done on the first, second, eighth, and ninth threads.

In all these examples of corluroy weaves, the two loops correspond to two cords in the cloth in each repeat of the pattern. In Fig. 250 the first, third, sixth, ninth, and eleventh picks of pile filling float over seven threads for the first cord: and then over three picks for the
second cord, while at picks two, five, efe., the pile filling floats over five threads for each cord. This, in addition to facilitating the binding, gives a rounded cord whieh is much desired.

There is very little art in making desigus for filling plushes and corduroys. The chief oljects to be kept in view are, in the former, to produce a firm binding to fasten the pile to the ground and a proper distribution of the binding positions over the surface, while in the latter the binding must be as firm as possible and must be confmed to such threads that

Fig. 248. it will make a prominent corl. However, very frequently figured patterns are made with filling piles by allowing the filling to float on the surface for the space required to form the fignre and then bindiug it into the cloth after the manner of fancy ordinary weaving.

Fig. 219.

Warp Plush. The principles involved in the formation of pile of this description are sumilar to those in filling pile, yet the treatment and method of constructing the design are different. In the construction of the latter two fillings and one warp are employed, while in the former two warps and one filling are used.

The filling pile is woren in the same manner as an ordinary fabric, and when it is to be cut this operation is performed after the cloth leares the loom. Warp pile is both woven and cut on the loom. Having defined the similarities and differences of these two fabries, it will be easy to understand how warp pile is made.

Warp pile fabries are constructed by raising the pile threads and inserting a wire, then lowering the pile threads and interlacing them with the ground weave.

The loops formed by the yarn passing over the wire may be cut to form common velvet, or may be left ment for 'Terry cloth. If the reivet effect is desired, the wire over which the warp passes,

Fig. 250. is equipped at one end with a knife which cuts the pile as it is withdrawn. If Terry is desired, a plain wire is used which, when withdrawn, leaves the loops standing. It will be understood that if velvet is to be produced the loops are cut, while if Terry is desired, the
loops are left intact. Fig. 251 represents a weare for a 'Terry fabric.
Fig. 252 shows a velvet weave and that this principle may be thoroughly understood it will be analyzed in conjunction with the cut section shown at Fig. 253. Referring to Fig. 252, it will be noted that there is one pile thread for every two gromod threads and a wire for every two ground picks. One-half of the pile warp

Fig. 251. is lifted over the first wire that is inserted, the other half being lifted over the second wire, and so on. The object of rassing one-half of the pile warp at a time is that if all the warp were raised it would cause rows of pile, which would be visible as lines across the cloth. The object of velvet being to produce a perfertly even face, this, of course, would be a defect.

As shown in the cut section the pile warp is raised from and returns to the cloth between two ground picks which are in the same shed. It then passes over two picks which are in the same shed (and between which the other half of the pile is raised) and being lowered under the next pick, is again lified over a wire. This constitutes the principle of weaving warp pile.

When a number of the wires have been woven into the cloth the first one put in is withdrawn (cutting the loops) and inserted again, then the second is withdrawn in the same manner and inserted again. The third follows in like manner and so on, this cycle of movement being contimued as long as the loom is operated.

In many cases all the pile warp is lifted over one wire as shown in Fig. 2.2t, but as stated above, this to some extent gives the pile the appearance of being in rows which is overcome hy raising onc-half the pile waip over each wire. The pile must be bound into the

Fig. 252. ground as firmly as possible. It will be understood that owing to the loops being formed wholly by the pile warp, it takes up much faster than the ground, consequently the pile warp must be woven from a separate beam to which very little tension is applied.
'There are other methods of foming pile which are more or less important. One of these is the method of mamfarturing 'Turkish towels, the pile being formed by a cotton warp which is formed into loops on the surface of the cloth. This is done without the assistance
of wires bey having a special device attardhed to the reed, whirlo a!lows the filling to be beaten up to a point some distance from the doth for several pieks and then beating up these pieks ower the interveming space to the cloth, thus camsimg the loose pile warp to rise and fom at loop. 'The distance between the binting pieks and the eloth, betore they are beaten together, determine the lengeth of the loop.

This kime of pile presents a very irrequar appearame; the loops

Fig. 2.33.
do mot stand up well, are of varions lengths, and intermixel to a great extent. For these reasoms this method ammot be used for better grates of goorls.

Another form of pile is the one used in the mamufacture of Brassels carpets. In this case the pile warp weaves in the gromml when not required on the face to form the pattern, the recpuiced eolor being

Fig. 254.
brought to the surface over wires in the order reguired to form the pattern. If the pile is cont it forms a Wilton carpet, as Wiltom bears the same relation to Brusse's that velvet hears to 'lemy doth.

CHINCHILLA

This doth derives its name from a small ammal native to Sontin Americal, whose fur it is supposed to imitate. Chinchilla is a very heary falmie with a long nap on the surface which is rolled into corls in the finishing operation, by the use of what is known ats a chinchilla machine. The eloth is used ehefly for heary doaks or orercoats being much too heavy for other articles of clothing.

Construction. There are several grales of chinchilla cloth, the construction depending upon the prality desired. The following constructions are in common use: a, one warp and one filling; b, one warp and two fillings; c, two waps and two fillings; d, two warps and three fillings; e, two warps and four fillings. When more than one warp is used as at c, d and c, the different threads are designated as
face threads and back threads. When four fillings are nsed as at e, the varions sots are designated as pile filling, groumd filling, stuffing filling and back filling.

The purpose of the pile filling is to form the face of the goods and it gives the long nap necessary for the chinchilla finish. For this reason it is interwoven with the face warp by means of a wave that will give a long filling float on the face of the goorls. 'The pile filling is generally a soft spom thread of fine stock.

The ground filling is to give the fatbre the reguired fimmess. It, of course, interlaces with the face wapp by means of a much closea weare than is used for the pile filling.

The stufling filling, sometimes known as the wadding fillins", enters the fabric between the face and batk warps, not interweavin with either, its purpose being to adh weight amb hilk to the fabric.

The hack filling interlaces with the hark warp hemeans of weaves

Fig. 2.55.
which are either even-sided or which present a filling effect on the bork.
These facts being molerstood a chinehila weare wial be whstructed, every operation being explamed in its thrn. As in many other classes of fabrics the principles of double cloth construction are used, being extended or modified as required by the peentiarities of the doth under consideration. In this instance every step from shading the design paper to binding the doths together can be easily traced to the double cloth principle, and if looked upon in this light will make the construction of dinchillas very simple incleet.

The three weaves shown at Fig. 25.) are to be used in the construction of a chinchilla design. For the purpose of simplifying the explanation they will be termed ground weave, pile weave, and hack weave. (Note that the pile weave has long filling floats ats explained in the explanation giver above.) These weaves are to be nsed to form a design having fwo face warp threads to one batck wapp thread on the
one face, one batk, whe face system. 'The filling is to be arranged as follows; one pile, one back, and one gromud.

Fig. ofe shows the dexign paper of the areat regaired, with the
 the pile weare on the fate warp threads amp pile pieks. At Fig. e.an is given the gromml weave on the face threads and gromml picks.

A little stody at this point will reveal a departure from double cloth primipies. In domble eloth the face weave is placed on the face threads and the lane filling is the ondy yam that interweanes with this warp (excepting the binding peints). In chanchillas the pile filing
 the same mamer ats the extra filing is added to the back of a filling

Fig. 256.

Fig. 257.
baded doth. For this reason neither the pile nor ground filling is referred to as face filling, for it might canse some confusion, it being much simpler to give them their proper tems. Before procecoling further the relation of the pile and ground picks must be thoroughly understoon.

The statement that both weaves are on the same set of warp threads hut on different pieks exphains this fully and Figs. 256 and 2.57 should be carefully studied mil this is firmly fixed in mind.

The design at Fig. 2.s shows the back weave placed on the hack threads and picks, and Fig. 259 shows Figs. 2.06, 2.57 and 2.58 combined. with the risers adkled to raise the face warp on the back picks, ant the binders to stitch the ground filling to the back warp. 'Jhe dia-
mond shaped dots represent risers for lifting the face warp over back picks, and the binding places are inclicated by the upright erosses. Fig. 260 represents a cut section of the first three picks of Fig. 2.59 and illustrates very clearly the relative positions of the different sets of threats. It also gives especial prominence to the long filling float of the pile filling. The points marked II show the binding platers of the eloth and eorrespond to the upright crosses on the third pick of Fig. 250.

To expain the use of the stuffing or wadding filling and the method of procedure when the ground filling is omitted another example will be worked out. In this instance a twelve harness double sateen is used for the pile weare, and the back weave is a cassimere

Fig. 258.

Fig. 259.
twill. The two doths are to he stitchel in twelve harness sateen order. 'The warp arrangement is one face, one back, and the filling is arranged with one double pick of pile, one stuffing or wadding pick, and one back pick.

It should be stated that in binding chinchilla choths the same method is pursued as in binding double cloths, that is, by raising a back thread over a gromed piek or pile piek, between two risers on the face warp and next to a risor on a back warp. In this particnar instance the binding is accomplished by raising a back thread over one of the stuffing picks.

The weaves to be nsed are shown at Fig. 261, and it should be noted that the pile weave has the long filling floats as in the previous example. The first step is to shate, on the design paper, every even
numbered warp thread for bark, and to shate the picks for two pile, one stuffing, one back. 'The pile weave is then placed on the face threads amd the batek weare is placed on the hack threads. Fig. of f e shows the operation up to this point. 'The letters at the left indicate

Fis. Min
to which set each pick belongs, I'meaning pile; S, stufling; and B, hack.

In completing the design there is one thing that must be done which was not met ia the previons example. I eference is made to the stuffing pick which should be put in the cloth when all the face warl is raised and all the back warp is down, as it is not interworen in any manner with either set of threads. 'This is accomplished in exactly the same mamner as raising all the face warp when a bark pick is placed in the back doth, except that in the latter instance some of the back wap also is raised, while in the former no interlacing is desired, so every thread of the face warp is raised and every thread of the back warp is down.

The complete design is shown at Fig. 263. . The letters at the left of the design are the same as at Fig. 262, being used to

Fig. 261. designate to which dats each piek betongs. The upright erosses, on the first of each pair of staffing picks, indicate the binding points.

PIQUE

This is a cotton fabric but the principles upon which it is constructed are applicable to Matellasse and other worsted and silk fabrics which require raised patterns. The chiof characteristic of this chass of cloth is its embossed effect, the pattern being in relief, the stitching forming the outline of the figure.

In all the double cloth fabrics explained heretofore, the necessity
of selecting binding perints where the stitching wend be imvisible on the face of the cloth has been impressed very foreibly upen the mind of the student. 'This is exactly reversed in the present ease for' the stitelinge, of at least the effere of the stitchinge, minst be paimly visible upon the face of the falbrie to protuce the reanired effect.

The first choth prexheed with pattems in relief wis probably

Fig. 202. theokdyuiltsmande hestitching two doths tergether ly hame the slightly raised parts between the depressions. calused by the stiteles forming the patterns. 'The principle is the same to-day, but the two doths are wowen at the same time and stitched as recuired ly interweaving face ant back yarns. Ia many instanters the makers of old hamemade puilts spread a laver of cotton batting between the two clothes to increatse the weight and holk of the quilt. 'The same thimg is dene to-day by introducing a stuffing or waddling filling. but the object is to produce a more rased pattern.

Construction. Piftuci Weaves may be comstruted in varions wass acoording to the quality of the doth, but the common aticle is weren with face and back warps, amd face, back, stufling, and binder fillings.

The aftand operation of making a dexign is not so formidable as the above would indicate, iu liad, most all chothes matle with more than ane wap and filling are merely varations of tomble doth, and if the principhes of the latter are themonghty mastered the former will present few dithenticos. 'Theonly principle employed in making piquédesigns
 bimder piek. 'The face and bath rhothe are matw in the watal way, and the statling filling is (omphoyed in the same mammer as explamed in the lesson on ('himedullas.

The binder piek is interworen with buth wape It intorates
 dition to this, the hark warp is ratised ower it, which has the efleet of alepressing the face colothat thispoint. This depressionis furtherexamer ated be the stallingryick elsvating the rilge or ribline.

The following points shomid be eomstantly kept in mind: The fate filing always weares plan with the face warp; the back liaing when nsed, always weaves pain with the back warp; the stuffing filling, when used, enters between the face and back wapp; and the binder filling mites the fate and back dothe, or the face choth ant back warp according to the construction of the fabric. If a latek filling is not used the hinder of comse mites the hack warp with the face cloth.

Tir. 20. 23.

To illustrate the different chases of pinge thee examples will he taken. The first will have fare and hack wande, face, hatk, and himker fillings, the way to be arranged one face, one hack, one face, and the filling to be arranged two face, one back, iwn fare, one batck, two face, and two binder.

The first step is the ome which is eommon to all choths comtaining two or more waps or filing: i.e., shate that protion of the de ign
paper that indicates the hack threads or picks. 'The next step is to place the plain weave on the face threads and face and binder picks. (The hinder picks are always considered face picks when laying out the face weave, the difference being that they are also used as binders.)

Fig. $26 t$ shows the problem worked to this point and gives two

Fig. 264.

Fig. 265.
repeats cach way. The back weare is now put on the batck threads and the face warp lifted over the back picks. 'This is shown at Fig. 265.

U \quad, to this point there has been no deviation from the method of constructing a double phain design excepting that the back doth is of very loose texture. It is very evident that something must be added or taken ayay to produce a piqué effect of what is

Fig. 2liti. now a double plain design. In this instance something must be added to make the depression or recess which is characteristic of these doths. The back warp is raised over the two binder pieks as indicated by the upright crosses in the complete dexign at Fig. 266 , and as these picks interweave with the face warp in the plain weare order the face cloth is slightly depressed at this point.

The letters at the left of the design show to which class each pict belongs. Those marked F are fare picks; B , are back picks; and $\stackrel{\text { a }}{ }$, are binder picks. The diagram at Fig. 260 shows a cut section of the first three threards for two repeats of the weave or for the extent of Fig. 2bit. The end secetons of the two hinder picks are shown at s. It will be noted
that the back thread, 2 , passes ower the e picks while the face threads, 1 and 3 , eath pass mader one of them, which gives the neressary depression.

The second example will be very similar to the one just explained, but in this case the ridges, cansed hy the portion of the face weave that is not loond, must be more rombled and more prominent. To produce this result the following arrangement will be used: Warp-

Fig. 267.
one face, one back, one face. Filling-two face, one back, two face, one bark, one face, one stuffing or wadding, one face, one bark, two face, one back, four face. It will be monecessary to work out plans showing the various steps in the construction of this design as it is similar to Fig. 266 in every detail excepting the stuffing pick. The complete design is shown at Fig. 268. Note that the only risers on the stuffing pick are to raise the face warp, for this pick lies between the face and back cloths. The system of binding is the same as in the previous example.

It must not be supposed that more than one stuffing pick could not have been put into the design, for one or two more might easily have been included at such places as between the fourth and fifth, and the eleventh and twelfth pieks.

Fig. 268.

The letters at the left of Fig. 268 show to which set each pick belongs, F meaning face, B meaning back, W meaning waddling or stuffing, and S meaning binder.

In manufacturing the cheaper grarles of this cloth it is customary to omit the back picks, allowing the back warp to float on the back of the cloth between the binding points. In designs of this class, one or more stuffing picks are generally used. Fig. 269 shows the design paper shaded for a fabric of this construction with the plain weave on the face threads, and face and bimker picks. The arrangement is one face, one back, one face, in the warp; and two face, one

Wadling, two face, one wadtling, two fare, two hinder, in the filling. The shated pieks in this design are the watding picks. These are marked W. 'The face picks are maked F , and the binding picks are marked IS.

The eomplete design is shown at Fig. 270. It will be noted that the face warp is raised on the stufling pick in the usual manner and

Fig. 269.

Fig. 270.
that the binding is acomplished by raising the back threads orer the binding pieks am interwearig the face warp with them in the plan weare order.

When weaving this srame of pique it is a good policy to have a large amont of tension on the hack warp and to we very coarse yarn for the stuffing pick, otherwise the face eloth will not be deflected and the pattem will not be very promomeet. The diagram shown at Fig. 271 represents: a cut ection of a fabric woren with this design and show the long toat of the back wapp.

Figured Pigue. The eflect of a figured pigue relies chiefly for its value unon the ststen of bimdinge, all other features being secondary

Firs. 2. 1.
to this. In combtrating a figured pigne design the principles of double cloth eomatmen ane followed very dosely, less the nse of the stufling or walling pidk and the method of linding being the onty differences. Waddme lilling is not indi,pensible, but as previonsly explaned it mathes a move mived patherm.

The first step) in making there dexigns is a departure from the primary operations of other dothe. In this case it is merestary to make a motive wheld deteminme the extent of the design. 'This
motive is nothing more than a sistem of binding. For instance, if one of these designs were bomd in twill order or with twate harness sateen, the twill or sateen would be termed the motive. It should be kept in mind that the motive shows the plan of binding and as the binding fomms the outline of the figures, the motive represents the effect.

For example suppose a cloth is desired with small squares ruming diagonally arooss the eloth. The first step is to make a motive that will give this effect. Fig. 2-2. is the result. Hawing ob tained the motive, it is now necessary to make the design. As each binding point spreads over

liig. 272. three picks, the design must cover three times the area covered by the motive or 36×36 squares. If stuffing or wadding pirks were used in the design the extent in the filling direetion wombl of comrse

Fig. 273.
be a trifle larger, or to be exact, as much larger as the mumber of wadding picks. The design paper is sharled in the reqular mamer fo: one face, one back, one face, in both warp and filling and the plain
weave put on both systems of threads. 'The risers are now put in to lift the face warp on back picks.

All that hat been done so far would be done in the same manner on several other kinds of cloth, but the next step is peculiar to this class of fabrics. Reference is met to the hinding from a motive. 'The rule which applies in this case is as follows: Raise a back warp thread over a face pick on each side of the backing pick and next to a riser on the back warp.

The upright crosses in Fig. 273 show this rule put into effect. In this example a wadding pick is not used but one could be inserted between any of the two face picks, and the same principles would apply as in making plain piqué.

JACQUARD DESIGNING

In all the classes of designing explaned up to this point it has been necessary to limit the designs to those that could be woven on the ordinary shed ling or harness motion. In almost every instance, they repeat on from two to twentr-four or thirty threats, ame when they exceed this number a drawing-in draft can be arranged to weare them on a practical mmber of harnesses. Jaccuard designing inchudes those designs which are too large to be woven on the orlinary harmess motion.

Before attempting to make jachuarl designs, it is necessary to form a clear idea of the principles on which the jacpuard machine operates. Figure 274 represents a section of a jacguard machine, showing the mechanism for lifting the warp threads. To each of the mpright hooks A is attached a neck corl, which takes the place of the harness in an ordinary loom, and from cach nork cord are suspended the harmess cords through which the warp theads are drawn. A weight is attacherl to the botom of the hamess corl for the purpose of bringing the harmes corl, and thas the neek cord amb hook A, to its origimal position after being lifterl.

The position of the hooks (whether raised or lowered) on eath piek is determined by the action of the ards upon the needles or wires B. As this is the fomdamental principle of jachuard weavinge, it shomlal be thomonghly mastered. 'Fo make this principle

on which one pick of the dexign is cont, just as one piek of an ordinary design is pheded on one hat of the harnest ehain. This
 mammer ats a bat the ortinary hamess chain pases ored the cham barrel.

The eylintur has a reepprocatime movement, coming in con-

Fior. $2 \overrightarrow{7} \mathrm{t}$
tact with the ends of the nerdhes B : the ends of the medles entering the holes in the celimtere. Now, if a hank card is phaced on the eylinder. the holes will be cowered and all the needles will be pressed back, carrying their upriwht hooks ont of the path of the
griffe (, as shown by the dotted line in Fig。 2it. The griffe consists of a mmmber of iron bars which have a vertical reciprocating movement and are the direct means of forming the shed.

If a card on which the pattern has been cut, such as the one shown at Fig. 275, is placed on the cylinder, those needles which correspond with the holes in the card, will not be pressed back, and the griffe in its upward movement will lift the upright hooks.

The springs D force the needles and hooks back to their orig. inal position after the pressure of the cylinder is removed.

The above are the principles of jacquard machines. A hole in the card always represents a riser, as its corresponding hook will he raised and, throngh the connections, will raise the warp thread. The usual practice in tying up the harnesses is to take

Fig. 275
the first hook in the row nearest the cylinder head and connt that the first hook in the machine. The other hooks in the same row will be counted as the second, thirt, form, fifth, sixth, seventh, and eighth hooks. The next row follows on consecutively; the first hook being comnted the ninth. This is continued until the full extent of the machine is reached.

This arrangement of the machine necessitates, for the convenience of the card cutter, as well as for the designer, a special armagement of the design paper. Each small square of the design paper represents one of the upright hooks (1 in Fig. 2\% 4) and consequently the warp therads which are actuated by that hook. These smatl squares are divided by a heavier line, according to the number of hooks in one row of the machine. Thus, the number of small spuates contained in eath large square represents the number of hooks in each row.

A thorongh umberstanding of the above is very essemtial to ensure a knowhedge in the use of the design papre. As an example, take a machine that has eight hooks in a row (and so is necessarily tied up in rows of eighti) and design paper which has eight small squares in each direction between the large squares; in other worls $8 \times s$ paper. Begriming at the left, the first small square represents the first hook, the next square represents the second hook, and so on to the extent of the eight hooks whieh form the first row of the cylinder and the first eight squares of the design paper. A heavy line follows the eighth small square, and is in turn followed by eight more small squares in a horizontal line; these represent the second row of hooks in the machine. The small squares between the thirl and fourth heary lines represent the third row of needles, and so on till the full extent of the

Fig. 276.
machine is reachect.
It will be muderstood that each division of the hermontal lines and small squares represents one row of upright hooks in the jacquard machine, and the number of small squares between the heary dividing lines correspond with the number of uprighthooks in each row. This arrangement is for the bencfit of the card cutter, each division representing a row of holes on the card and the keys in the cutting machine. To make this clearer, an explanation of card cutting is given.

Card Cutting. In designing juequard designs, the same condition is necessary which is common to all branches of textile designing, i.e., the design must join correctly on all four sides, so that, when repeated, the pattem will be continuons and perfect. But in this instance, there is one essential condition which is not necessary in designing for harness looms. That is, the pattern must he repeated a sufficient number of times to begin and end
with full sumares．＇This is primarily for the convenience of the card cutter．

In Fig． 276 is shown a design which ocrupies one full square and six extrat threads．It will be inconvenient and very impratcicable to work from this．

It has been explained that the reason for dividing the paper by means of heary lines，is to make each division of sutuares corre－

Fig． 277. spond with a row of hooks in the jacguard machine，and the holes in the cylinder， therefore，it is apparent that when work－ ing on a machine that has eight hooks in a row，the card cutter，after cutting the first row in Fig．27－，womld read for the second row and find only six threads，or two less than the number reguired．This would necessitate taking two threads from the begiming of the dexign to complete the second row，consegucutly， there wonld ler fomr threals short on completing the fourth row； and so on．Thas would result in a great deal of confusion and jerthaps a large momber of mistakes．＇To ohriate this difficulty，the design is carried ont matil it repeats on even sets of eight threarls，ats shown at Fig．．2－s．

The rule for determining the number of sfuares on which a design will repeat evenly is as follows：Find the least common mul－

Fig．ンスッ．
tiple of the number of threals occopied by the design and the momber of hooks in eath row on the colineler；（or the momber of statres in eatel division of the design paper．）

It is not meressary to arry ont the design in the direction of

disension, there womble benty fomern camde requited, as there are but fomreen pieks in whe repeat of the dexign.

Another example of this mature is shown al fig. 2repeat of the design ocenpies cighteen theads and eighteren pieks. This, of course, mast be extemeled mat it repeats on exen splatres of $A x$ daper, as the mathine on which it is to he wowen has eight hooks in a row. 'Tlar
 oलवpies seventr-two threals, this mun:ber being the least common maltiple if eight amb cighteem.

Amother paint in ranmerdion with design paper that shomble be thomentily mastered is the proportion the momber of sphares in one direction beats to the

Fig. 279. number of squares in the other direction, and its influence upon the fabrie. If the design is made upon paper which is ruled spare, that is, $8 \times$, or 12×12, the cloth should have the same proportion of warp abd filling. But suppose that it is necessary to elange the construction of the cloth so that the filling is reduced in the proportion of eight warp threads to six filling threads, and the design for this construction is placed on $s \mathrm{x}$: paper. It would, of course,

Fig. 2xo
be ont of propertion, the figure being elongated by the reduction in the nomber of pieks per inch.

If the original design on $A x$ apaper ocempied eighty threads in each direction, and the eloth eontained that momber of threads and pieks per inch, the design would be one imelh spuare; hat if the - same cloth were constructed with eighty threads and sisty pieks
per inch, the design would be one inch wide and $1 \frac{1}{3}$ inches long. 'To overcome this difficulty, the design must be drawn disproportionately, or the design paper must be ruted similar to the construction of the cloth. 'The latter alternative is the better.

In the instance mentioned above, where eighty warp threads and sixty picks are used per inch, the heavy lines would be ruled square, but instead of eight small squares being ruled in each direction, there would be eight squares in a horizontal direction and six squares arranged vertically. 'This is shown at Fig. 281.

It is sometimes necessary to construct a cloth with a larger number of picks than warp threads. In this instance, it will be necessary to have more squares in the direction of the filling, or vertically. If the proportion is ten to eight, or one hundred picks to eighty warp threads, the design paper would be ruled as shown at Fig. 282.

EXAMPLES FOR PRACTICE

1. Continue Fig. 283 on 8×8 design paper until it repeats on even squares.
2. Determine a method of calculating the momber of spuares on which a design would be complete.
3. What design paper would you use for a cloth constructer! with seventy-two threads per inch and fifty-four picks per inch, if the design were to be woven on a jacquard machine which hats dight hooks in a row?
4. What design paper would you use if the above cloth were woven on a jacquard machine which had twelve looks in a row?
5. When it is decided to raise a thread on a specified pick, how is this brought about?

Casting Out. Casting out means omitting some of the hooks and harness cords from the calculations, when arranging a pattern to be woven on the jacquard machine. 'The hooks are mot actually cast out of the machine, and in fact, the harness cords hamg from these hooks the same as if they were in use, but no watp is drawn through them.
'To make this condition clear, assmme that a loom is wearing a pattern on rightecn harnesses. and it is desired to watwe a pattern on sixteen harnesses. Ordimarily the two extra hamesses would
be removed. But suppose these two hamesses are fixtmes in the foom and camot be remosed. The only thing that ean be done in such a case is to withdraw the warle from the heddles, allowing the harnesses to hang idle in the loons. 'The foregoing is exatedy paralled to the condition fomed in the jacepuard machine when some of the hooks are not used, or "ceust out."

As previonsly explained, the hooks in the jateguat mathime represent a mumber of hamesses or their equisalent, and from the nature of the machine the hooks which are mot reduired eamot be removed. Ihowerer, the presenee of hooks and harness cords does

Fig. 281.

Fig. 252.
not make it necessary to use them, any more than the presence of the two extra hamesses in the ordinary loom makes it noeressary to draw in the warj on them. In both cases the extra hooks or the extra hamesses are treated as having no existence.

The necessity for casting ont, or leaving a portion of the mathine idle, may be brought about by two canses. If the number of threads occupied hy the pattern is one which will not divide into the number of hooks which the machine contains, withont a remainder, a number of hooks as large as the remander must be cast out or left idle.

What is known as the "there humdred" jacequard machine contains three hundred four hooks, or thirty-ejght rows with eight hooks in each row. 'The "four hundred" jacepuard machine contains foai" hundred eight hooks. The "sior hundred" jacquarl madhine contains six lomelred eight, or six humdred twelve hooks, aceording to whether there are eight or twelve hooks in each row. In the former there are serenty-six rows and in the latter fifterone rows,
which make this machine erpal to two "three humdred" jatequards.

When one of these mathines is tied up to its full capacity (that is, every hook having meck and harness cords attached) and the pattern designed to be woven oceupies twenty threads, some of the hooks would have to be cast out, as twenty will not divide evenly into the total number of hooks. If the machine contained three

Fig. 2×3. hundred four hooks, there would be four hooks cast out, as three humdred four divided by twenty equals fifteen with four remamins:- $\quad(304 \div 20)=$ $1.50^{4}{ }_{0}$.) If the four hundred eight machine were used, eight hooks would he cast out; and so on.

In many cases, however, the number to be cast out would not be so small as four or eight hooks. The pattem may occupy éghteen threads and have to be woven on a machine that has three hundred four hooks In this instance, it would be necessary to cast out sixteen hooks. If these hooks were not cast out an imperfect pattern would be formed at every division of the harness; or at every three hundred four threads. If the eighteen thread pattern had to be woven on a four hundred machine, there woukd Ie twelve threads left over. It will be understood that only complete patterns, or as many hooks as will work a number of complete prittems, must be employed.

There is another olject in easting out, in addition to adapting a machine to weave complete repeats of a design. When a jarcuard machine is tied up; i. c., when the hamess cords are arramged in the machine; it is arranged for a certain number of theads per incli. When all the hooks are employe the number of threads cammot be increased, but it may be reduced by having some of the hooks remain idle. To make this clear, assume that a loom is working with fone ordinary harnesses on each of which there are fifteen heddles per inch, or a total of sixty heddles per inch for the four hamesses. If only fifty-two threads per inch were required, two heddles per inch on each harness wonld be taken off. If it were impossible to remove the extral beddles, the same result could be ohtained by not drawing the wapp threads through them. 'The latter method is the one adopted on the facepuard
machines. 'The corts hamge idle in the loom, no watp theat being drawn throngh them, conseguenty the "seff" or momber of threads per inch is reduce l.

The whole matter may be readily smmarized as follows: If the full mumber of hooks contained in the mathine are not employed, the munber of theads per inch is reduced, but there is a consequent limitation of the pattern producing power, in extent, of the machine.
(asting out is resorted to for two purposes: first, when the mumber of threads ocerupied by the pattern camot be divided eventy

Fig. 294.
into the machine, and, second, when it is desired to reduce the sett or number of threads per inch carried by the harnesses. The first has the disadvantage of reducing the sett when this may not be necessary nor adrisable. 'The second has the disadvantage of reducing the pattern producing power of the machinc. However, these difficulties are part of jacquard designing and must be overcome, as it is impracticable to tie up the machine every time a new pattern is made.

To calculate the effect of casting out and thus enable the designer
to obtain correct conclusions as to the sett and mmmber of hooks available for the production of patterns, it is neressary to find a rule which will give the exatet momber of threads per inch, and the momber of hooks that may be used. The question is one of simple proportion, for when there must be casting out to suit the pattern, the threads per inch are reduced in direct ratio.

For an example, suppose a machine contans three humdred four hooks, and is tied up for sixty threads per inch, sixtern of the hooks being idle. Three hundred four minus sisteen equals

Fig. 285.
two humbred eighty-cight. ($304-16=285$.$) 'This meams that$ there are two humdred eighty-eight hamess cords, of the three humdred four, available for actual work, and if the full momber gives sisty threals per inelh, the required number must give less, in the proportion of three humdred four to two humdred eighty eight: or
 be woven would be one with approximately fifty-seven threads per inch.
'This of course would not be a serious matter, if the drawing amounted in the aggregate to a portion of an inch or any other small amomet, but if multiplied, as it would be im most cases, it would berome quite serious and for this reason the designer monst pay careful attention to this question.
'To emphasize the results of casting out and the methords and calculations involved, we will take Fig. 2St and find how many

Fig. 286.
hooks most be cast out to weave it on the different madhines, and the result upon the number of threads per inch which may be wowen in the cloth.

The design shown at Fig. 2st repeats on thirtr-five threads, so to weave this on a machine contaning three hmolred four hooks, it will be necessary to cast out twenty-four hooks; ($304 \div 3.5=\mathrm{s}$ and 24 remainder).

If the machine were tied up for eighty threads per inch, a smaller number of threads monst be nsed on aceome of some of the hooks, and eonsecuently the harness eords, being east ont. 'The number of threads per inch which could he used bears the same proportion to the momber for which the marhine was tied up, as the number of hooks in use bears to the total number of hooks in the
machine. Substituting the mmbers and letting X mean the required number, the calculation would be as follows: 304 : 2. 50 : : s0 : X. It will be fomel that X equals approximatele 73^{2} threats, which means that that number of threads conkd be used in each inch of cloth.

If a machine with four humdred and cight hooks were used, it would be necessary to cast wut twenty-three hooks (408 $\div 3$.) $=$ 11 and 23 remainler). If this machine also were tied up for eighty threads per inch, it would be possible

Fig. 2 os . to have between seventy-five and serentysix threads per inch in the cloth (tos : $3 \mathrm{~B},: 80: 75 \frac{1}{2}$.

Distribution of Pattern. Having dealt with problems of arlapting the machine to the pattern, both in extent and texture, it is necessary to deal with the arrangement and distribution of patterns and their arrangement upon the design paper.
In preparing the design upen the design paper, the first consideration must be as to how the figure is to be formed. In the explanations of various kinds of designs previously given, it is explained that there are many ways of changing the order of interweaving the warp and filling threads, which will produce a variety of figures upon the faloric ; also that in many cases this production of figures necessitates a change in the structure of the gromind cloth.
'The design shown at Fig. 2ex is an illustration of a simple styde ol figure prepared for jaceparel work. 'This design could be wowen on a doble loom or head motion, as only sixteen harmesses are refuited, but it will answer the pupese of illustrating a simple explanation of the subjeret.

There are two important peints to lne eonsidered in deating with a design of this kind: first, the nature of the grommed fabrice; and secomd, the arrangenent and disposition of the figmes, and the determination of the areas they may exeripe.

It witl be best first to consider the influenere of the gromed weave and its prohable interference with the figure. It shouk be understood that the figure is formed by either the filling floating
loosely orer the warp, or wide arser. In the illnstration shown at Fig. 287, the blank squares represent the area oroupind by the ground weave and the squares which are blocked in represent the figure.

It is apparent that if the filling flonts moler the stuares which are blocked in, and orer the bank spaces, ats is usually the case in twilled fabries, the cloth will be very loose in texture, anless very bulky yarn is employed or a large number of threals per inch in each direction are used. Eren these would not always meet the repuirements of the case for a light cloth cond mot be mate unden these conditions; and furthermore, the figure would not have that

Fig. 2 ss.

Fig. 289.
degree of prominence which is so desirahle. Therefore, there should be a grombd weave, and this must be varied according to the character or weave of the eloth to be prodnced.

For the purpose of making this matter clearer refer to Figs. 2SS and 289. In Fig. DhS the gromm wease is plan, as indicated by the crosses, and it works around the figure in such a maner as not to interfere with it, but rather to give it additional prominence. Of course, the blocked-in squares and the crosses, in the illustration, both represent risers and are merely raried in form to show clearly which is the true figure and which is the ground. It is perfectly clear that the gromal or plain weave never cones in contact with the figure, but works aromed it withont interference, so that the outlines of the figure will be clearly defined and the pattern will be perfect.

To appreciate the sioniticance of the above remarks, refer to Fig. 289. In this design the gromed is shown to he a three har-
ness twill, and it will be seen at once that the figure interferes with the clear formation of the main figure, so there conld not possibly be that sharp, definite form as at Fig. 288. If this pattern were made with a four harness cassimere twill for gromed, the result would be even more disastrons to the prominence which should be given the figure.

From the above it will be molerstood that the designer must pay particular attention to the gromen weave; also that if the design is one which is loose in the order of interweaving, there should be more material, or the cloth shonld be finer. In all cases, the ground weare must be arranged around the figure in the best possible mamer considering the size of the figure and the form required.

EXAMPLES FOR PRACTICE

1. State generally the reasoms why easting ont in jacquards is resorted to amd its effect mpon the structure of cloth which may be woren.
2. Determine on which machine Fig. 2S5 conld be woven by casting ont the smallest mumber of hooks. Assmme that the machine was tied up for ninety threads per inch and find the nomber of threads which could be used per inch.
3. Find how many hooks wonld have to be cast out of a "fomr hendred" machine to weare the pattern shown at Fig. ZSf, and the number of threads which conld be woren per inch if the machine were tied up for sixty threads per inch.
4. Work ont a design similar to that given at Fig. ご, using a plain weave for the gromad.
5. Make an original design in which a twill may be nsed for the gromd withont interfering, to any extent, with the figure.

Areas. Special attention shonld now be given to the distribution of the main fignres and the areas ocenpied by them. The design shown at lig. 257 represents two parallelograms placed side hy side in such a position that they form a square. These are placed at right angles to each other in such a manner that they form diagronal lines in both direetions. (These lines would be much more pronomuced if the design were repeated several times.)

For many purposes, and more especially for this form of figure, this arrangement is an admirable one, hut for other purposis and other figures this arangement is not at all suitable. Moreover, the number of threads oceupied by the complete design may not be suitable for the number of hooks in a jacquard machine, or for the number of hooks being used. For example suppose that the design shown at Fig. 2ss was to be worked with three hundred hooks instead of with three hundred four hooks, which would be the case if the ground were a three harness twill as shown at Fig. 259. The figure, ocoupying sixteen threads, is not a factor of three humdred; that is, it cannot be divided into three hundred without leaving a remainder, therefore some change would have to be made. If the gromnd weare was a five harness sateen, the same rule would apply.
'There is still another difficulty to be overcome; the design occupies sixteen threads in each direction and the twill ground weave repats on three threads, which is not a factor of sixteen. Therefore the design shown at Fig. $2 s 9$ camot be repeated on less than forty-eight threads. 'This areates another difficulty, as fortyeight will not divide evenly into three humbred.

Having eonjured up all the difficulties possible, we shatl endeavor to explain how easily they may be overcome. It will be understood that some change must be made, bat ordinarily all these difficulties conld be met by a slight alteration in the cast out. In this instance, howerer, it will be assmmed that the ehange in the distribution of the figures is for the purpose of dhanging their positions in relation to each other.

The first matter to be taken up is the order of distribution, and the next is the space to be allotted. The latter will be dependent upon the character of the eloth, and the former upon the position in which it is desired to place the figures in relation to each other. The form of the figures will in many cases affert their relative positions. The most useful methols of distribution and those most commonly resorted to are based upon sateen orters.
'To make the foregoing clear, all other considerations should be set aside and several methods of distributing the same figure should be worked so as to ascertain the effects produced, and to determine the methods of procedure. In all probability the
altered armagement would require that the same area should be allowed to each figure; that is, there should be the same space surrounding each figure as there is in the original. Taking this as a basis, the mumber of threats upon which to work must be ascertained.

In the design shown at Fig. 2s7 there are two figures occupying sixteen threads and sixtecn pieks. Sixteen times sixteen equals two humbed fifty-six $(16 \times 16=2.56)$, therefore the two figures occupy two hundred fifty-six small squares, which gives an area of one hundred twenty-eight small squares to each figure. Assmme

now that fire figures are to be distributed in sateen order.' Then, five times one humdred twenty-eight eghals six lmondred forty ($5 \times$ $125=640$), or six humdred forty spuares will be refuired for five figures similar to those shown at Fig 2. $\mathbf{S i}^{7}$. As the original is on a square space, the new distribution will be armaged in a square, so to find the number of threads and picks the design will ocelupe, the square root of 640 should be extmated. This being 2.i, a space upon the design paper of twenty-five squares in eadel direction is marked ofil.

This is the area required for five figures similar to those given at Fig. $2 s 6$ to be amanged in five harness sateen order. Before platiog the figures upon this space, it must be divided into five parts in cald direction, and when so divided the divisions on one side should be mambered in sateen order and the divisions on the
bottom mmmbered in comsecontive onder. 'Then suppost (and of these divisions to have lines enelosing as share at the interseretion corresponding to the mmblers. The process worked up to this point is shown at Fig. ?!n).

From this point the most convenient mothof of procedmre is to find the center of the figure or some point as near the ceenter as possible. A mark should now be placed at any peint within the enclosed square and used to represent the center of the intended figure, (shown at Fig. D90). (are should le used that whaterem

Fig. 291.
position is used for the first figure a corresponding position mast be sclected for each of the others. The figures are now formed around this mark.

The example shown in Fig. 290 serves as a simple ilhustration of the methods employed in determining the area, but it would be rather difticult as a first example of the methods employed in arranging the order of figmers. For this reason, we will use the same figure as in the previous example and distribute eight figures in eight harness sateen order.

Referring back to the previons example, it is found that one figure occupies one hundred twenty-eight squares, so eight figures
will occupy 8×128 or $102 t$ squares. The square root of 1024

Fig. 292.

Fig. 293.
is 32 , so that the area will be 32×32 squares. Marking off this area and dividing it into eight spaces (as there are eight figures),
and nmmbering these divisions in consecutive amd sateen order we have Fig. 291 . The points aromel which each figure mat be filled in are also shown in Fig. 29.

Fig. atid shows the figures filled in with relation to the stant.

C

Fig. 294.
ing points; and in Fig. 293 the design is shown completed with the plain weare added for the ground weare.

Fig. 294 shorss another design with the spots arranged in rery good order. A, is the spot which must be developed in fire end sateen order (shown at B) on 40×40 squares. Following the methods ontlined above the design is worked ont as shown at \mathbf{C}.

A number of ground weaves might be used with good success in this design, but to get the best effects a filling flush weave should be used, as this would give a greater contrast with the warp figure.

Arrangement of Figure. Following the questions of distrihution and the methods of determining the areas, attention must be directed to the arrangements most suitable for figures of different forms, for, as suggested, these affect the appearance of the pattern to a more or less extent, according to the form of the figure.

When the figure forms a perfect square and is placed diagonally upon the paper, as was the case in Fig. 2S7, there is little

Fig. 295.
difficulty in forming a suitable arrangement, as almost any form will make a very good appearance. Of course, some methods would give better results than others, but the ordinary purchaser would probably not notice such a small difference. 'This, however, is not the case when dealing with other forms of figures, as in many cases the result would be practically valueless as a design. For instance, if we find the number of threads and picks which would be required for five figures (similar to those shown at Fig.

Fig. 296.

Fig. 297.
295), allowing each figure the same area as is given in Fig. 295 and using the same order of distribution, some of the figures will overlap each other if their positions are reversed, consequently this is an impracticable arrangement.

The arrangement at Fig. 296 shows six figures placed in the best possible order of a broken sateen. Of course, the sateen order for sis figures must be irregular, but it is very useful for some purposes. In this case, the figures are almost touching each other. Compare this carefully with Fig. 295 in which there is ample space

Fig. 298.
all around the figures, yet the area allowed in each case is practically the same. Note also that the plain weave could not be used for the ground in Fig. 296 unless every alternate figure were moved one thread, so as to prevent interference with the ground weave. No arrangement could be made which would be satisfactory, so this arrangement may be condemned as impracticable.

Now study the arrangement given at Fig. 297, which consists of ten figures in sateen order, and contrast this aramgement with the previous example. This arrangement is excellent hut it presents a very different appearance to the one given at Fig. 295.

The figures are eloser together at their extremities and endose a larger square of gromid cloth. It wonk, of course, be a matter of consideration which of the two would be best suited to the purpose for which it might be intended, but it is quite clear that neither one could be substituted for the other as the appearance of the two patterns is so totally different.

Still another arrangement is given at Fig. 298. It will be noted that this consists of eight figures in sateen order. This arrangement more nearly approaches in appearance Fig. 29.). The area is distributed in almost the same proportions and one might almost be substituted for the other. There is, however, the same fault here as regards the plain weave as at Fig. 296, which arises from the manner in which the total space must be divided. 'The area ocempied is 36×36 squares, which, of course, cannot be divided evenly by eight (which is necessary on account of there being eight figures), so the divisions must contain four and five squares alternately. This, of course, makes an irregularity which prevents interference.
'The question must be considered as to whether the number of threads occupied is suitable for the number of hooks employed in a jarcquard machine. Figs. 295, 296, 297, and 298 occupy such widely different numbers, with the exception of Figs. 295 and 29S, that they could not be worked on the same machine, so the designer would have to take this into consideration in determining which of the arrangements it would be best to adopt.

EXAMPLES FOR PRACTICE

1. If two figures occupy three hundred thirty small squares, what is the area of each figure?
2. Nake an original design with five figures arranged so that a plain ground weave may be used.
3. Make designs for five, cight, and ten figures, using a figure similar to the one in Fig. 294.
4. How would you proceed to distribute figures in sateen order?
5. Why should a filling flush ground weave be used in a design where the figure is formed by the warp?

Figures Formed With Both Warp and Filling. Ittention must now be directed to another feature which is always present in the arrangement of small figures, and for the purpose of explaining this thoronghly the figures given represent the most difficult type of patterns.

In designing figured goods, it is quite common to have figures formed with both warp and filling at the same time, and not with but one material, as is the case in all previous examples. In this case it is essential that the figures be so arranged that there will be no possibility of the pattern forming stripes in any direction; in other words, that there shall be perfect distribution. Take for

Fig. 299.
example Fig. 290 , and assume that the warp and filling arediffer. ent colors, say black and white, and that the solid black squares of the design represent where the warp comes to the surface, while the circles represent where the filling comes to the surface.

It will be noted at once that were cloth woven from this design, the resnlt would be alternate stripes of black and red running in the direction of the warp. The form of the figure tends to make this defect more prominent. It must be assumed that the filling figure and the warp figure are placed at right angles to each other and must always be in the same relative position to form one figure. For the purpose of alternately placing the figures in reversed positions, and following the plan adopted in previous lessons, the whole figure may be supposed to be contained in
a parallelogram, as shown by the erosses. If this is dome and the figures are turned upon their centers, the two figures are appanently placed in their proper positions; however, this is not the case as the filling figures will overlap each other to a large extent, while the warp figures also will overlap slightly.

The cause of this is at onee apparent from the form and posi-

Fig. 300.
tion of the two portions of the figure in their relation to the parallelogram. Thus it will be seen that the arrangement of the figures is very imperfect, while the form of the figure also may be improved. In this arrangement of the two figures the parallelograms are placed as near to each other as possible, thus tending to increase the difficulties when other orders of arrangement are resorted to.

We will now take up the suitability of other orders of ar-
rangement. In Fig. 300 the arrangement consists of five spots in sateen order, which is repeated four times, so as to obtain the best order of reversing the figures. This arrangement is far superior to the one shown at Fig. 299, and for many designs of this class is very suitable, hit it is not perfect, as indeed no order of arrangement could be with this type of figure.

It will be noted that the filling portion of the figures, which are indicated by crosses, come together in pairs. This in itself is not necessarily ol,jectionable, in fact, in some cases it gives a good effect to the pattern, but on examining the design closely the

Fig. 301.
appearance suggests the formation of a diagonal pattern. This might be considered an objectionable feature and must carefully be krpt in view. It need not in all cases be looked upon as a defect, but should be guarded against in such cases where it might be considered defective.

The design shown at $\mathrm{Fig}_{\mathrm{g}}$. 301 shows an arrangement of eight figures alternated in pairs. The result of this arrangement is to form groups of three figures, with the filling portions coming together, and two figures which are isolated from the gronps. It requares but a glance to see that in this design a distinet stripe would be formed in the cloth, as at some points only the warp comes to the surface over a mumber of threads, and at other points
there is a great preponderance of filling. Other orders of atrames ment of eight figures might be adopted, but there wonk lee fanlts of one kind or another, and most likely strijes wonk be formerl.

If an attempt be made to arrange ten figures in sateen order in a small area, the fignres will overlap each other, but if the area be increased, good arrangements may be made. As previously stated, the areas in these examples have been reduced to the lownst possible point, so as to increase the difficulties amd therehy assist in making elear the defects which are inseparable from this class of designs. I slight increase in the area wonld remove many of the difliculties, but they would still exist to some extent.

Fig. 302.
Figures Not Square. In the previons examples, the number of threads and picks have been equal, but there are some forms of figures which should not occupy a square space. If the figure shown at Fig. 30\% were placed on the same number of threads and picks, the result would be most unsatisfactory, as will be shown later. When the form of the figure is such that when laid upon design paper more threads than pieks are ocenpied, or vice versite; and when two figures alternate in the manner shown at Fig. 30), the space occupied by each figure should be a parallelogran of the character shown in the illustration. If this were not so, the tig. ures wonld overlap at the ends, or there wond be a elear blank space between them, caused by one terminating before the other commenced.

If this rule applies to the sprete oceupied by two figures, it
should also apply for any number of figures. This shows the necessity of a rule to calculate the area for any other number of figures than two, and to determine the respective number of threads and picks to be occupied.

There are two methods which might be adopted for ascertaining these particulars. The first one is to find the total number of small squares occupied, in the same manner as if the area were to be a small space. To illustrate this, take Fi . 302 as an example. There are thinty threads and twenty-four picks oceupied by two

Fig. 303.
figures. Multiplying these together we find that 720 small suares are required for two figures, which is equivalent to 360 stpuares for each figure. If five figures were to be distributed 1 NOO small spuares would be rexpired ($360 \times 5=1800$).

To fund the number of threads and picks required it wonld be necessary to treat the matter as a problem in proportion, as follows: $30: 24: 1400: 140$. The square root of 1440 is 3 ', so there will be 34 picks required.
'To find the mmber of warp threads the problem would be $24: 30: 1800$: 2.250 . The suture root of 2250 is 45 , so there would be th theads required. To prowe the above, the number of wap and filling threads may be multiplied together. $3 \times \times \operatorname{lN}=$ 1く2 t, the slight difference being due to the use of full numbers insteard of fractions.

The seeond methon is to square each set of threads separately and treat the problem in the mamer shown on Page D0: F Following this method the thereads would be: $30 \times 30=!00 \div \div:=$ 450. For five figures, 450 $\times 5=2.50$, which when the spare root is extracted gives 4 y warp threads.

The picks would be found in the same manner $2 t \times 2 t=$ $576 \div 2=2.29$. For fire figures, $2 \triangleleft 9 \times 5=1440$, the square root of which is 35 , the same as obtained by the first methot.

A design for eight figneres is shown at Fig. 30:3. The design is extended in the same manner as in previous lessons, so as to

Fig. 304.
alternate the figmres. Fig. 304 shows a design of ten figures carried out in the same manner.

A feature of these designs is the different order of arrangement. This must be studied in order to master the principles of making designs of this nature. It will be excellent practice for the student to use the figure shown in these illustrations to form a design on a square space, comparing the results obtained with these illustrations.

Diagonals. With a view to dealing with patterns which run all over the cloth it will be helpful to consider the arrangement of
figures which rmin in a diagonal direction, as in most cases this class of patterns has some definite order of arrangement as its base.

The illustration at Fig. 305 shows a simple diagonal design which repeats on thirty threads and thirty picks. In a design of this kind, the first matter which requires attention is the determination of a complete pattern. This is governed by the relationship of the figure moning between the diagonals and the total mm. ber of threads ocenpied lyy the diagonal. A diagonal pattern rumning atross the paper at an angle of forty-five degrees must occupy exactly the same number of threads in each direction, and if

Fig. 305.
extended beyond the number of threads necessary for a repeat, there must be a complete repetition or the pattern will not join properly. It is just as essential that the figure also should join perfectly.

There is one point here to which partienlar attention is called, so as to facilitate a thorough moderstanding of the reasons which will be given for determining the completion of the patterns. Knowing that the diagonal most occupy a square space, it is quite immaterial whether the threads are connted in a horizontal, vertical, or diagonal direction, but with the fancy figures rmming between the diagonal lines, this is not the case, as it is repeated
continmonsly in a diagonal direction only, therefore, it can the comnted only in the direction in which it runs.

Keferring to Fig. 306, it will be readily seen that there is 1:0

Fig. 306.
possibility of counting the distance from one figure to another except in a diagonal line, because there is no repetition in either a horizontal or vertical direction, until the whole design is completed. It should be understood that the meaning of the distance from one figure to another, in a diagonal diaection, does not mean
the open space between one figure and the next, but it does mean the slistance from any point in one pattern to the same relative point in the next repeat of the pattern. This is indicated by the diamond shaped space in the figuro.

If the design shown at Fig. 305 be counted, it will be found to occupy fifteen threads from the center of one dianond shaped figure to the center of the next similar figure, and as the diagonal ocenpies thirty threads each way, and as fifteen is half of that number, the figure is repeated twice within the square occupied by the diagonal, consequently there is no difficulty. But a reference to Fig. 306 will show that the figure occupies twelve threads, and as twelve will not divide evenly into thirty, the design must he car. ried to a greater extent before arriving at a point where the figrure is complete.

Referring back to the statement mate above to the effect that if the diagonal is carried beyond one complete pattern it must be carried to another complete pattern, it will be understood why the design does not repeat on a smaller area. In this instance, the design must be extended to ocempy sixty squares in one direction or the other.

The foregoing may be stated in this form: Both the figure and the diagonal must be continued until a number of squares has been reached into which both the number of squares oceupied by the diagonal and the number of squares oecupied by the figure will divide withont leaving a remainder. In this case when the diag. onal has been repeated twice, the number of picks occupied will be sixty, and as twelve will divite into sixty, the design is complete on that number.

Assuming that the nomber of threats from a point in the one figure to a similar point in the next figure was fourteen instead of twelve, it wonld be necessary to carry the design to the extent of two hundred ten squares in one direction and thirty squares in the other. If the distance between similar points was thirteen threads, the design would require three handred ninety squares in one direction.

MASON DOBBY WITH CAPACITY FOR 24 HARNESSES
Mason Machine Co.

'TEXTILE DESIGN

PAR'T Y

GAUZE AND LENO

The principle of crossing one set of wapp threads over a secomb set of warp threals-or cross-wcaring, as it is commonly termedrepresents the last and perhaps the highest type of woven-fabric structure. Cross-woven fabrics may easily he distinguished from fabrics belonging to other divisions of woren cloth loy their characteristic lace-like texture; in fact, they are termed the connecting link between ordinary woven cloth and lace.

In order to aroid confusion, the whole range of fabrics in which one or more of the warp threads are crossed will be classified as crossworen fabrics; and this general heading will be subdivided into plain ganze, full gauze, and leno fabrics.

PLAIN GAUZE

Construction. The simplest kind of gauze or cross-wearing is termed "plain ganze." Fig. 307 shows the manner in which the threads interlace, the upper diagram being a plan of the cloth, and the lower diagram showing a sectional cut. It will readily be seen that there are two sets of warp threads and one set of filling threads. The warp threads marked A are termed ground threads, and those marked B are crossing threads. The filling threads are marked H. The straight warp thread A is always under the filling, while the crossing thread B is raised over every pick of filling. The crossing thread passes under the straight warp thread bet ween every two picks; being interwoven on the right side of the straight or ground thread at one pick, and on the left side at the next pick. As the plain gauze weave repeats on two picks, the third and fourth picks are a repetition of the first and second.

To produce this effect, a special arrangement of harnesses and heddles is required. The ground thread A will, of course, require one harness, while the crossing thread B will require a barness to lift
it on one side of the ground thread and a standard and doup to lift it on the other side of the ground thrad. The standard and doup are shown in Fig. 30s; and for comparison, a regular heddle-such as is used on the harness for the ground thread-is shown in Fig. 309. The standard and doup is a combination of a regular harness and a halfharness.

Standard and Doup. The doup is a silk or linen cord made in the form of a loop and attached to the lower frame of a harness shaft. Referring to Fig. 30S, it will be noted that one end of the cord is

Fig. 307.
fastened to the frame at 3, while the other end is passed through the eve of the standard heddle at 4 . It is then passed back through the space 5 , which is above the eye, and fastened to the frame at 3 . The (rossing thread is drawn through the doup) as shown by the sectional (uit 6 .

Fig. 310 shows the threads drawn through the harnesses and illustrates the method of crossing the thread B to the doup and standard harness. 'Two ground harnesses and a standard and doup are reguired to weave plain gauze. The warp is first drawn in on the two harnesses marked 1 and 2, then the crossing thread B is passed under the eromud thread A and through the loop formed by the doup and standard harness. The two threads are then drawn in the same dent in the reed. This operation is repeated for every pair of threads in the warp.

As the method of drawing in the warp threads is the fundamental
principle of cross weaving, it is essential that it be thoroughly understood before any designs can be mate; therefore, it will be explained in a different mamer, as follows: There are two sets of harmesses. The back set consists of two regular harnesses throngla which the warp is drawn as required for phain cloth. These are marked 1 and 2 . The front set consists of a standard hamess S, which is the same in every way as an ordinary harness, and a skeleton or domp harness D. The first thread A is a gromed thread and is drawn through the harness 1 , while the seeond thread B is a crossing thread and is drawn

Fig. 30s.

Fig. 309.
through the harness 2. The second thread B is then passed under the first thread A and drawn through the doup, the two threads being drawn in through the same dent in the reed. Therefore, all the oddnumbered threads are ground threads, and all the even-mmbered threads are crossing threads.

Too much emphasis cannot be laid on tive statement that each pair of threads should be drawn in the same dent in the reed, for it is evident that if they are crossed behind the reed and drawn through different dents, the crossing could not take place in the cloth.

It follows that with the arrangement given above the crossing thread B is capable of receiving movement at two places; i. e., at C and at E. If lifted at E, by raising the standard and doup, the thread will be drawn on one side of the ground thread A, while if lifted at C by the harness 2 , it will be

Fig. 310. lifted on the other side of A, or parallel to it.

But it will be understood that if C is raised, the crossing thread must raise at E , or in other words, it must be released at E , to form the shed for the shuttle to pass through. This is shown at Fig. 311. The crossing thread B is lifted by the harness 2 , and the doup also is lified, which allows E to slide up through the standard heddle with the result that the crossing thread B is parallel to the ground thread A, instead of being crossed under it. II shows the filling which was put into the cloth when the threads were crossed.

The formation of the cross shed (the one in which pick H is placed in Fig. 311) is shown at Fig. 312. It has already been explained that the standard and doup mast be raised to eross the threads. The harnesses 1 and 2 are down and the crossing thread
B is raised at the point E.
These two movements represent the whole prineiple of cross weaving and if thoroughly understood will make the explanations of the more generally used and more useful leno fabries, which are given later on, seem very simple indeed.

As may be seen by referring to Fig. 312 there is a great strain on the crossing thread B when the standard and doup are lifted, by reason of its being passed under the gromm thread A. 'To ease this strain there is an attachment placed on the loom for "easing" the crossing
threads on this pick, but as this work does not assume to cover the processes of weaving we shall not take up any more of that subject than is necessary for a thorough explanation of cloth construction and designing.

The harness chain and the drawing in draft for plain gatuze is shown at Fig. 313. Ietters D and S and numbers 1 and 2 illustrate

Fig. 311.
the harnesses shown in Figs. 310, 311, and 312, and the crosses indicate which harnesses the threads are drawn through. The ground thread A is drawn through the harness 1 (also shown in Figs. 310, 311, and 312), as indicated by the cross, and the crossing thread B is drawn through the back harness 2, then crossed under the thread A and drawn through the doup.

For the first pick the doup harness and the crossing harness (or No. 2 in the diagrams) are raised, so the ground and crossing threads lie in a parallel position. On the second piek the doup and standard harnesses are raised, so, of course, the crossing thread is drawn under the ground thread to the other side. The third pick is the same as the first, and the fourth pick is like the second.

FULL GAUZE

Construction. In plain gauze, all the crossing threads work in the same direction; every crossing thread is exactly like every other crossing thread, the pattern

Fig. 312. repeating on one ground thread and one crossing thread. In full

Fig. 313.
gauze, two crossing threads and two ground threads are required for a repeat; one crossing thread being drawn to the left of the ground thread and the other being drawn to the right. The gromed threads weare in the same manner as in plain galuze.
The illustration in Fig. 314 is a plan of full gauze, and by comparing it with Fig. 307 the difference between the two cloths may be obscrved. In plain gauze all the crossing threads pass under the ground threads to the right on the same pick, and pass back to the left of the gromed thread on the next pick. In full ganze the first crossing thread passes under the gromed thread to the left, while the
second erossing thread passes under the next ground thread to the right, on the same pick. On the next pick both crossing threads return to their origimal positions.

The illustration shown in Fig. 315 represents the drawing-in or hamess draft, harness chain, and the manner of crossing the crossing thread under the ground thread to the doup, also the plan of a full ganze cloth. The first thread is a ground thread and is drawn in on the gromed harness G. The second thread is a crossing thread and is drawn in on the back harness C , which is the crossing harness. The scoond thread is then passed under the first thread to the left, and drawn through the doup, D. The third thread also is a crossing thread so is drawn through the back harness C. The fourth thread is a ground thread so is drawn in on the ground harness G. The third thread is then passed under

Fig. 314. the fourth thread to the right and drawn through the doup. 'This is a full repeat of the draft.

When drawing the threads throngh the reed it will, of course, be necessary to draw the first and second threads in one dent, and to draw the third and fourth threads in another dent, or, as explained in Plain Gauze, no crossing can take place. The effect of this cloth is that one crossing thread crosses to the right and the other to the left on one pick, and this order is reversed on the next pick.

This style of weaving is more effective if heavy, or rather coarse, filling is used. Different sizes of warp used alternately or in any systematic method is also very useful in the production of many fancy effects on this weave.

The harness chain shows how the harnesses are lifted to give the effect. For the first pick the crossing threads are on the doup side of the ground threads so the standard and doup are lifted. For the second pick the crossing threads are parallel to the ground threads, so the back or crossing harness and the doup are lifted. The third pick is like the first, and the fourth is like the second.

This is exactly the same as the provious example, except that in the plain gauze figure the plan commences with the erossing thread
parallel to the ground thread. Thus the only difference between plain gauze and full gauze is that in the latter the threads cross in opposite directions. This result is caused by having the doup and standard at the left of every alternate ground thread and at the right of the other ground threads.

LENO DESIGNS

The combination of gauze and other methods of interweaving is perhaps where the greatest value of cross weaving lies. If plain gauze and full gauze are thoroughly mastered, their combination with

Fig 315.
Other weaves to form leno effects will not prove a difficult subject. The illustration shown in Fig. 316 has been selected as an example of a simple leno effect.

Comparing Figs. 313 and 316 the following similarities and differences between plain gauze and leno may be noted: The same number and order of harnesses are used, and the method of drawing in the warp threads and crossing them is practically the same. In Fig. 316 the crossing threads have been crossed to the left, but this is not a serious difference as the crossing threads in Fig. 313 could be crossed in the same manner. Thus the same arrangement of threads and method of drawing-in is used. The phan of the cloth, however, is different, so the method of lifting the harnesses also must be different.

The harness chain shows that the standard and doup are raised for the first pick, which of course raises the crossing thread over the first pick of filling and on the doup side of the ground thread. (On the second pick the ground harness only is lifted, and the crossing thread passes under the filling while the ground thread passes over it. On
the third pick the standard and doup are again lifted; thus raising the crossing thread over the filling.

The crossing and gromen threals have thes woven plain cloth for the first three picks. On the fourth pick the crossing harness and doup are raised which draws the crossing threal muler the gromm thread to the other side, where it passes over the filling. 'The next

Fig. 31 i .
four picks are repeats of the first four. The crossing thread is on the right side of the ground thread for only one pick, and weaves plain on the left side for the remaining three picks; thus forming a leno design by combining plain wearing with plain gatuze.

Attention is called to the fact that the crossing thread passes over picks 3 and 1 , which are on each side of pick 4 , where the crossing takes place. If this were not done the gauze erossing would not be so clear and decisive. It may be taken as a general rule for ieno designs that to have an uneven number of picks for plain work between the gauze crossings is convenient as it will allow the crossing thread to be raised over the picks on each side of the gauze crossings. This is not absolutely necessary and may not be followed in all cases, but it is a safe rule to follow for the present.

The illustrations shown in Figs. 317 and 318 are variations of the principle of combining the plain weave with ganze.

In Fig. 317 the usual arrangement of harnesses is used and the crossing threads are passed under the ground threads to the left, and drawn through the doups in the usual manner.

Referring to the harness chain, the first pick shows that the crossing and doup harnesses are raised, which of course weaves the crossing thread on the right of the ground thread. On the second pick the standard and doup are raised, which weaves the crossing thread on the left or doup side of the ground thread. The third and fourth picks are the same as the first and second, while the fifth also
 is like the first. On the sixth pick the ground harness only is raised, so the crossing thread is under the filling. 'The seventh and ninth picks are the same as the first and the eighth is like the sisth.

Up to this point there have been four ganze crossings and five picks on which the threads have woren plain. The tenth, elerenth, twelfth, and thirteenth picks show crossings, and the plain weave effect is given on the remaining five picks, but the crossing thread is on the left of the ground thread.

Fig. 318 shows the crossing threads weaving plain on the left of the ground thread for three picks and then changing over to the right for three picks, the pattern repeating on six picks. 'The pattern chain shows how this is accomplished. The explanation will not be repeated for this design as it is the same as in Figs. 316 and 317.

The next question is the power of producing a variety of designs upon the harnesses employed, and with as little trouble as possible by using one doup. It is very clear that if a crossing an be produced so readily, that is, if a gauze crossing can be obtained by the simple lifting of the rloup once on each side of the ground thread, there must be a wide field for varying the design, and that the characteristic openness of gauze and leno fabrics can be infinitely varied.

The designs explained up to this point have been ones that wonld make stripes of plain and gatuze aross the cloth only. This will be varied and the designs produced which will make patterns in the direction of the warp.

Fancy Leno Designs. There are two methods of forming fancy leno designs, which are as follows; first, where the figure is formed by gauze on a plain ground; and second, where the figure is formed by plain on a gatuze ground. This, however, important as it is, must be considered secondary to the arrangement of patterns for as few doups as possible. The significance of this statement is at once apparent when it is remembered that, among other complications, each doup must have an easing arrangement to reduce the strain caused by the raised position of the standard and doup.

The illustration shown in Fig. 319 represents a design that forms a diagonal pattern of gauze across

Fig. 31ヶ. the fabric; and also shows the drawing-in draft and harness chain. The usual method of allowing each thread to work in its normal position, when plain cloth is desired, is adopted, and the crossing thread is lifted by the standard and doup when the gauze crossing is required. By using this method, four doups and four standards are used with eight ground and crossing harnesses.

This seems a large number of harnesses for a simple pattern, especially as there are more harnesses than there are threads in one repeat of the pattern. The number of harnesses, doups, and easing rods would be much more formidable than the pattern, but they are all required to prochuce the actual effect shown in the figure, because each pair of threads works independently and in no case do two threads cross at the same time.

The first doup and standard marked D^{1} and S^{1}, and the first crossing and ground harnesses marked C^{1} and G^{1}, may be referred to indepentently of the remainder of the chain and it will be a simple matter to see how the harnesses are raised for the first pair of threads.

On the first pick the first standard and doup are lifted and the first crossing and gromnd harnesses are down, which, of course, erosses the thread to the domp side of the ground thread. Reference to the plan will show this to be the case for the first erossing threat is erossed to the right side of the first ground thread on the first pick. On the second pick the donp and erossing harness are raised, which changes the erossing threal to the left again, as explaned in previous examples. So each pair of threads may be followed in the plan and in the harness chain independent of the other threads.

Examining the standard and doup $\stackrel{N}{n}^{\prime 2}$ and I) ${ }^{2}$ in conjunction with the crossing and ground harnesses (" ${ }^{2}$ and C^{2}, the manner of lifting the harnesses for the second pair of threads may be followed. Each

Iig. 319.
of the remaining two pairs of threads may be followed in the same manner by considering them the only threats in the pattern, and their respective harnesses the only ones in the harness chain for the time being. It will be molerstood that in this pattern each pair of threads requires its individual doup, standard, crossing, and ground harnesses, just as the first example of leno required them.

To show how an eflect which is practically the same and which is certainly as good, may be produced with one donp and standard, Fig. 300 has been prepared.

A hasty comparison of Figs. 319 and 320 might not show any difference in the two designs; both have the standard and doup lifted over the odd-numbered picks, and the ganze erossings form a sort of diagonal rumning from left to right. The plain weare is used on all the threads and picks, except where the crossings take place, as may be proved by examining the picks.
()n the first pick all the threads are working plain-i. $f_{\text {. }}$, one up, one down-except the first pair. All the threads are working plain

Fig. 320.
On the second pick, just as in a piece of plain cotton eloth. On the third pick the second pair of threads form a ganze crossing, the others weaving plain. The fourth pick is plain; and so on.

In all the above details, the two designs are identical, yet one requires four standards and four doups, and the other is woven on one standarl and one doup; consequently, there must be some methor of arranging the designs and lifting the harness to reduce the number of standards and doups necessary.

The ground and crossing threads in Fig. 320 are drawn through the harnesses in the usual manner, the crossing thread being drawn to the right the same as in Fig. 319. However, the crossing thread is at the right of the ground thread when weaving plain, and changes to the left to form the gauze crossing; while the crossing thread is at
the left of the ground thread when weaving plain in Fig. 319, and crosses to the right to form a gauze crossing.

The side on which the crossing thread weaves when making the plain cloth is of no importance so far as the appearance of the design is concerned, but it makes a difference of three doups and standards if woven on the same side as the crossing harness, as will be noted by a careful comparison of the two illustrations; consequently, it is impracticable to make a design like Fig. 319, and use sixteen harnesses for its production, when the same effect may be produced on ten harnesses.

Analyzing Fig. 320 in conjunction with the harness chain. it will be noted that the doup, first crossing harness, and the second, third, and fourth ground harnesses are raised on the first pick, which has the effect of drawing the first crossing thread to the left of the first ground thread (which in this instance is the same side as the crossing harness) and raising the second, third, and fourth ground threads, as shown in the first pick of the plan of cloth.

If the previous explanations have been thoroughly studied, the reason why this is the case will be apparent, but as the construction of leno design is so much different than other divisions it may be profitable to repeat the explanation.

Each ground and crossing thread should be looked upon as a pair of threals, so to speak, and in determining how they are worked, the harnesses on which they are drawn should be considered quite apart from the other harnesses. On the first pick of the harness chain the first crossing harness and the doup are lifted. There are other harnesses lifted on this pick, but these have no connection with the first pair of ground and crossing threads, so should be ignored for the present. As is stated above the first crossing harness and the doup are raised, which has the effect of lifting the crossing thread on the same side of the ground threat as the crossing harness is on, as explained in plain ganze.

Considering the second pair of threads, the gromed thread is raised, and the crossing thread is down, so the second crossing harness is not lifted while the second ground harness is lifted, as is shown in the harness chain. The third and fonrth pairs of threads are the same as the second; the third and fourth ground harnesses being lifted and the crossing harnesses being down.

REAR VIEW OF FINE INDEX DOUBLE LIFT SINGLE CYLINDER JACQUARD MACHINE

The second pick weaves plain, passing over every gromud theal and under every erossing threal. Reference to the secomb pick of the chain shows that the standard and domp are lifted and atl the ground and crossing harnesses are down. In the explanation of plain gauze, a statement is made to the effect that where the standard and doup are lifted, the erossing theads are raised ower the filling, and on the doup side of the ground thread. The plan of the eloth shows this to be the ease.

Fig. 321.
On the third pick the first ground thread is raised and the first crossing thread is down. The second pair of threads forms a gauze crossing in the same manner as the first pair of threads formed a erossing on the first pick. The third and fourth pairs of threads are weaving plain. Reference to the third piek of the chain shows that the doup, first ground harness, second crossing harness, third ground harness, and fourth ground harness are raised. A careful study will reveal that the gauze erossing is made by the same method explained in connection with the crossing on the first pick and also in Plain
(iouze; i. e., the crossing harness and doup being raised, raises the crossing thread on the side that the crossing harness is on.

The fourth pick is the same as the second, passing over every gromed thread and under every arossing thread, the standard and doup being the only harnesses that are mased.

The third and fourth pairs of threads form gauze erossings on the fifth and seventh picks respectively, by having their crossing harnesses ratised in conjunction with the doup, in the same manner as

Fig. 322.
explained in connection with the first and seeond pairs of threads. 'The sixth and eighth picks are plain.

Summarizing the above, every even-mmbered pick weares plain with the wap threads, and on the odd-mmmered picks ganze erossings are made in progressive order. 'The crossing threads are ahways on the right or doup side of the gromnd threads when weaving plain and cross to the crossing thread side, or what was termed the position parallel to the afromed thread in the simple explanation used in the Plain (ianze.

To establish more forcibly the possibility of reducing the number of harnesses employed for an effect, when apparently the number of harnesses canot be reduced, Figs. $82 I$ and 322 have been prepared. This is ahmost a parallel case to the one just explaned. Fig. 321 occupies sixteen harnesses, and practically the same effect is shown in Fig. 320 on ten harnesses. Both effects are the same, except that the threads weave plain with the crossing thread on the right or doup side in Fig. 32, while they weave plain with the crossing threat on the crossing harness side in Fig. 321.

It will be unnecessary to go into the letails of these two designs, as the comparison may be made by the same method used on the two previous figrures. Examples of this kind might be multiplied, but in the estimation of the writer this method has been made very clear by these explanations. Further examples will be marle with as few doups and standards as possible, as in practical use the doups are a source of considerable expense for repairs, and complicate the weaving operation.

EXAMPLES FOR PRACTICE

1. How do cross-woven fabries differ from ordinary woren cloths?
2. Describe the interlacings of the warp threads in both plain gauze and full gauze.
3. How are the crossings of the warp threads held in place, or bound into the fabric?
4. Write a description of the doup inchuding the following features: Of what material is it made: How is it comnected with the standard harness? Why could not an ordinary heddle be used in its place?
5. Make a sketch illustrative of the method of drawing in the crossing and ground harnesses for full gauze.
6. When reeding a warp, what must receive special attention? Why is this necessary?
7. What effect is produced by lowering the crossing thread and lifting the standard and doup?
8. Nake from memory enlarged diagrams of plain gauze and of full gauze.
9. By what is the power of producing fancy patterns limited?
10. In plain work between ganze crossing, should an odd or an even number of picks be used?

Diamond Patterns. The diagonal pattern, formed by the use of one doup and standard, does not limit the variety of fancy effects possible on this arrangement, for with the possibilities of one doup and standard in mind, one may lay out a practically unlimited number of patterns.

The structure of the cloth is limited to plain gauze and the regular plain weave, and it is necessary to lift the standard and doup on every alternate piek and to lift the doup on the other pieks so that gauze or plain may be formed, as desired, by lifting either the crossing or ground harness of each pair of threads in conjunction with the doup. Particular attention is called to this, so that the student will not think that the range of patterns made with one doup and standard is unlimited. Extensive and claborate designs may be made, as shown in the illustrations, but they bear a marked smilarity to each other, compared to the infinite number of leno effects that may be made on more complicated arrangements of the harnesses. For instance, one of the most valuable methods adopted by the leno designer to get special fancy effects, is to have more than one pick in the same shed. This camot be done in the one-doup-one-standard arrangement.
'There are immmerable other characteristic features of cross weaving that are not practical on the present arrangement; therefore, it may be stated that the number of patterns, which are possible on one doup and one standard combined with any number of ground and (rossing harnesses, is practically unlimited, yet the construction of the cloth must be confined to plain gauze and phain cloth, and composed of a warp or filling figure, if a figure is desired. If a filling figure were heing producerl, a special arrangement must be mate, such as weaving the cloth wrong side up. 'This is often resorted to, yet in some cases the doup is reversed to weave the pattern right side up. By reversing the doup is mant to have the cord hanging down from a harness placed abowe the yam instead of below, as is the common eustom.

Perhaps the simplest form of figure next to those of the diagonal character, are the ones in which a diamond outline in gatuze is formed. An example of this effect is shown in Fig. 323. 'The gauze cloth rums diagomally in each direction, and encloses a diamond-shaped space of plain cloth. Of course, if the design were repeated a number of

Fig. 323.
times, the figure would be more plainly visible, but little difficulty will be experienced in recognizing the outline of the figure. The design repeats on twenty-four threads and twenty-four picks.

The method of producing these diamond effeets is very simple, being a further utilization of the principles employed in Figs. 319 and 320. The ground threads are drawn in on the ground harnesses and the crossing threads are drawn in on the crossing harnesses, as indicated by the crosses. Each crossing thread is then passed under its

Fig. 324.
companion ground thread (to the right in this instance) and drawn through the doup. Each pair of threads is then drawn through the same dent as previously explained.

The harness chain is shown in Fig. 324. The doup, standard, crossing, and ground harnesses are marked in the mamer adopted for previous examples, and the pieks in the chain correspond to the picks in the plan. The circles are ahways on the crossing harnesses and indicate where a ganze crossing takes place. On every pick where a circle is found the donp also is lifted, so the erossing thead crosses over to the left of the gromad thread. A careful examination of the disposition of the circles will show an outline like that formed in the plan by the gauze crossings.

Analyzing the harness chain in Fig. 324 in conjunction with the plan in Fig. 32:3, the following partieulars are found. (On the first pick of the chain the standard and doup are lifted, which, of course,
raises the erossing threads over the filling and on the donp sitle of the ground thread. None of the gromad harnesses is lifted so the first piek is perfectly plain, passing over every gromed thread and ander every erossing thread.

On the seeond pick of the ehain, the domp is lifted, also the first, second, and twelfth (rossing harnesses. 'This, of eourse, draws those threads to the left of the gromud threads and over the filling. In the remaning pairs of threads: i. ϵ., the thirel to eleventh, inclusive, the gromed threads pass over the filling and the crossing threads pass under it. Reference to the chain shows that the ground harness in eath of these pairs is raised, and that the crossing harness is alown therefore, there are three ganze crossings (made by three erossinge hamesses ant the doup being lifted) and nine pairs (:r eighteen threads weating plain, on the second pick.

On the third pick the stambard and domp only are lifted, the same as in the first pick, and of comrse with the same result; the filling passing over every gromed thread and moler every erossing thread, and the erossing threats being on the domp side of the gromed threal.

The fourth pick shows gatuze crossings on the second, third, eleventh, and twelfth pairs of threals, the remaining threads weaving plain. Reference to the thain shows that the second and thirt, and eleventh and twelfth erossing hamesses are lifted in conjunction with the doup, which of course forms qauze crossings. The first, and the fourth to the tenth, inclusive, ground harnesses are raised, so the filling passes over the crossing threats and unter the ground threads at this part of the design.

The fifth pick is the same as the first and third, the standard and doup being the only harnesses lifted.

It is so simple to eompare eath pick in the plan with the corresponting pick in the harness chain, that we will not contimue this explanation for each of the twentr-four picks in the design. On every odd-numbered pick the standard and doup are lifted, and on the even-mmbered pieks, the doup and crossing, and the ground threads required to form the pattern, are lifted.

There is, however, one feature of the chain which might tanse unnecessary trouble. Epon close examination, it will be noted that at some points on the even-mumbered pieks a square and a cirele come together, as at the fourth and fifth squares of the fourth piek in Fig.

Fig. 325.
324. At other points two blank spares adjoin as in the sixth and serenth squares of the second pick. These would seem to suggest either a break in the plain weare or some sort of interference witi. the gamze, when as a matter of fact meither is the rase.

In the course of varions explanations, the threads have been refered to as working in pairs, and it will be found upon earefnlly examining the design that where two marks or two bank spaces come together, one of the blank spaces or marksbelongs to one pair of threads and the other belongs to the next pair of threads, or the gromed thread of one pair is lifted and the rossing thread of the next pair, or vice cersa. It is obvious that it would not be correct to maise both the ground and crossing threads in one pair, or to leave hotli down; that is, it would not be correct in this design, hut it might be done in forming a warp figure. 'This, however, will come under a different heading, and will be taken up later.

Another design on the same general principles as Fig. 323, is shown in Fig. 32.5, with the harness chain or design in Fig. 326. In the former instance, a diamond-shaped space of plain cloth is outlined by plain game, while in the latter there are two solid diamondshaped spaces of plain gauze and phain cloth respectively.

We will not take up much space in explaining the method of drawing in the warp, as it is the same in every respect as in Fig. 3.3. 'Twelve ground harnesses and twelve crossing harnesses are required with one standard and doup. The design repeats on twenty-four threads and twenty-four picks.

The small circles in Fig. 326 show where the crossing harnesses are lifted, and correspond to the gauze crossings in the plan. 'The blocked-in squares show where the ground harnesses are lifted, and represent that portion of the plan oceupied by the plain cloth.

An analysis of the first two picks of the tlesign, in conjunction with the plan, will be sufficient to show the method of making this effect. On the first pick the standard and doup are lifted, which raises all the crossing threats on the doup side of the ground thread.

On the second pick, the doup, first ground hamess, and the last eleven crossing harnesses are raised, which make.s the first pair of threads weave plain, and forms gatuze crossings on the other eleven pairs of threarls.

The third pick is plain; the formth pick has three pairs of threads
weaving plain, and nine pairs forming gatze. The fifth is plain; and so on, till the space ocerpied by ganze tapers off to a point at the twelfth pick. From this point it gradually widens, until, at the twentyfourth pick, it takes in every pair of threats in the design.

From the above examples it will be understool that the requirements, when working figured leno of this character with one doup and standard, are to lift the doup and standard on each alternate pick, weaving plain on the doup side of the ground thread; to lift the crossing harnesses and doup on the other picks, to form the crossings; and to lift the ground harnesses when plain cloth is desired.

Fig. 326.
When sturlying any combination of weaves, it is an excellent plan to find the kinds of cloth and the classes of designs they are most suitable for. In this combination of plain toth and gauze, the very manner in whith the pattern is formed seems almost to suggest that the most suitable figures will be ones which have a geometrical base. Although patterns of a more or less floral charater may be produced, there is a great tendency to produce an meven apparance where curved lines are attempted, while this difficulty is wholly avoided in making figures of a geometrical form.

Note that the crossing threads pass over the picks on each side of the gatize crossings, thus forming clear definitions of the pattems.

Warp Figures with (anze. Considering the designs taken up thus far, the suggestion is implied that in weaving leno designs with
one doup and standard, the only effects which may be prothced are combinations of plain cloth and plan ginze. 'This, however, is not the case, for various kinds of figures may be woven between lines of ganze.

For the purpose of producing variety of patterns or designs in leno fabrics, warp and filling figures are produced; i. e., figures where the warp or filling floats loosely on the surface to form the desired figure.

In weaving ordinary spot or figured designs, there is no difficulty in floating either warp or filling threads on the surface of the cloth, but in cross weaving the method is not quite so simple.

As shown in the figures illastrating the methods of combining plainganze and phain eloth with one doup and standard, the crossing thread works in the crossed position (which is the doup side) to form plain cloth, at all times except where the gauze crossings are formed. The crossing threarl then passes from the crossed position to that which it woukd occupy in ordinary weaving, or if the standard and doup were not used, and prassing back again to the erossed position makes a complete ganze crossing.

There is another feature which must be considered before passing further. By this methorl of working, the doup forms the ground on the altemate picks where the doup and standard are lifted, and the gauze crossings take place, not when the standard and doup are lifted, but on the picks where the standard is down; the object being to make it a matter of choice whether the harness carring the crossing thread (t) which we have previously alhuded as the crossing harness, and which is marked (in previons illustrations) shall be raised to form a crossing or whether its companion thread shall be raised to form plain.

From this it will be seen that the doup and standard must be raised together on every alternate pick. There can be no departure from this, consequently a filling figure cannot be formed on the face of the eloth, because it is necessary that a number of threads shall stay down for a number of picks when the filling is interworen, so that the filling can float orer them to make a filling figure. 'This, of course, is impossible when using a principle where the standard and doup must rise at every alternate pick, so it is clear that a filling figure cannot be formed on the face of the cloth.

Warp figures can be formed, however, so it follows that if the warp is floated over the filling to make a warp figure, the filling most float under the warp to form a filling figure on the back of the cloth; therefore, filling figures can be made by weaving the cloth face down. 'This being understood, the warp figure will be explained, remembering that a figure of the same characteristics is being formed by the filling foating underneath.

The illustration in Fig. 327 shows a design or harness ehain for two diamond-shaped warp figures on a plain gatuze gromed The arrangement of harnesses, drawing-in draft, and plan of the cloth are shown in Fig. 32s. Before making a careful study of the chain and pan, the fact should be firmly fixed in mind that the standard and doup must rise at every alternate pick; of course raising the crossing thread; and for the formation of gauze the crossing thread is raised at the next pick by the crossing harness. For plain cloth the companion or ground thread is lifted by the ground harness, so that the plain (Woth and gauze are made in the same manner as previonsly explained.

Now, in the formation of a warp figure, all threads must be raised so the filling will pass under them. When the standard and doup are lifted, all the crossing threads are raised without lifting any of the (rossing harnesses, and the ground threads may be raised by lifting the ground harnesses. On the picks where the standard is not raised, the required threads are lifted by lifting the crossing and the gromad harnesses.

This will be made clearer by reference to the third and fourth pieks in Fig. 327. On the third pick the doup is lifted, hut of course this will not lift any threads if either the standard or crossing hamesses are not also lifted; consequently, the first seven crossing harmesses are lifterl as indicated by the small circles. In the figme five gromed hamesses are lifted and two more crossing hamesses, making a total of fonteen harnesses, in addition to the doup, that are lifted on the third pirk.

On the fourth pick the standard and domp are lifted, so none of the arossing hamesses is lifted, there being as many threads raised hy lifting the standard and domp and three gromed harnesses as were lified on the previous pick with fourtecn hamesses. 'This illustrates the reason why the odd-mmbered picks in Fig. 327 have so many more risers than the even-mmbered picks.

The circles indicate where a crossing harness is raised on the pick where the domp also is raised and shows where ganee crossings take place.

To become familiar enough with this principle to be able to tell at a glance to which set each thread belongs, and whether it is forming plain, ganze, or figure, it will be profitable to examine several picks of Fig. 32s, in conjunction with the chain or design shown in Fig. 32?.

On the first pick, the crossing threads of the first cight pairs are at the left of the gromed thread and pass over the filling. In the

Fig. 327
ninth, tenth, and eleventh pairs, the ground threads are over the filling, and the crossing threads are at the right of the ground threads and under the filling. The last pair of threads is like the first nine. Reference to the first pick of the chain shows how this is brought about. The first eight crossing harnesses, being raised in conjunction with the doup, draw the crossing threads from the doup side and over the filling. The last crossing harness works in the same manner. The ninth, tenth, and eleventh ground harnesses are lifted, so these ground threads are raised, while their companion erossing threads remain down.

On the second piek, the standard and doup are lifted which, of course, raises every erossing thread, and on the doup side of the ground

Fig. 328.
thread. 'The tenth ground harness also is raised on this pick, which lifts the tenth gromud thread over the filling.

The third piek is similar to the first; the first to the serenth crossing threads being drawn to the left of the gromud thread and over the filling, while the eighth, ninth, and twelfth crossing threads are at the right or domp side, and pass muler the filling, their companion ground threads being raised. In the tonth and cherentla pairs of threads, however, both the ground and the erossing threads are raised.

Reference to the thir! pick of Fig. 327 will explain how the positions of the various threads are brought about. 'The first seven crossing threads in conjunction with the doup eance the ganze crossings on the first seven pairs of threads. 'The eighth, ninth, and twelfth ground harnesses are raised, while their companion crossing threads are down, which gives the relative positions of these threads, and the tenth and eleventh ground and crossing harnesses are both lifted which raises both ground and crossing threarls wer the filling, and forms part of the warp figure. The filling floating under these threads will, of course, form part of a filling figure.
'The fourth piek is similar to the second, there being three ground harnesses, in addition to the standard and doup, raised on this pick.

The other picks may be followed in a similar manner, comparings the effect, as shown in the plan of the cloth, with the method of lifting the harnesses as shown in Fig. 327.

The principle of foating the warp on the surface may be used to form diagonal patterns, as is shown in the design at Fig. 329 and the plan of cloth in Fig. 330. Twenty-four threads and picks are required for one repeat, and the arrangement of harnesses and drawing-in draft is the same as in the previous example. The small circles on the even-mumbered picks are abwas on the crossing harnesses and show where the crossing thread is lifted to form a ganuze crossing, the same as in Fig. 32s.

It will be unnecessary to go into a detailed explanation of this design, as it is made on exactly the same principle as Fig. 32s. It will, however, be excellent practice for the student to carefully trace the interlacings of each thread and follow the risers in Fig. 329. It should be noted that the standard and doup are raised on the first pick of the design, while Fig. 328 commences with the doup and crossing harnesses raised.

There are other considerations relating to this class of designs which demand attention. It is generally recognized that where a figure is formed by the same warp or filling that forms the ground floating over a number of threads, the texture, or number of threads per inch, shoukd be sufficiently close to produce a compact fabric, or one which will have the appewrance of compactness. This makes the use of a large number of threads and picks, or heavy yam, necessary.

In both Figs. 228 and 230 there are long floats between the series of gauze crossings, so as many threade and picks per inch as possible should be used, but from the nature of cross wearing a large number of threads and picks cannot be userl. If a hearier yarn is used, the number of threads and picks per inch will be reduced in proportion to the increased size or diameter of the yarn, because the crossing takes place between the picks and each pick will be separated from the next by at least the diameter of the yarn which is used. This difficulty will be met in making any kind of figures with plain gauze, and care should he used to select designs in which it may be overcome to at least some extent.

Another feature of plain gauze is that one of the chicf objects is to produce as much contrast as possible between the gauze ground and the figure. Todo this two things are necessary; first, to form a close compact figure; and second, to have the texture of the ground as open as possible.

It has just been shown that it is rot an easy matter to obtain a close figure by any of the methots described up to this point, because of the influence of the crossing. At the same time, it is not an easy matter to obtain the desired degree of openness in the gauze because of the thickness of the yarn, or the attempt to press it closely together to improve the appearance of the part that is not gamze. The fact may be stated generally that, with the method of working just explained, the two important conditions, i. e., openness of ganze and compactness of the rest of the cloth, cannot be obtained with any degree of perfection. It is, therefore, necessary to resort to other means.

There are two distinct methods of obtaining the requisite openness in the gauze, and a close texture in the plain and figure, and they may be employed either separately or combined. 'The first is to introduce more than one pick of filling into one shed between the

IMPROVED DOBBY WITH ATTACHMENT FOR LENO WEAVING
(rompton \& Knowles Loom Works
crossings, and the second is to callse the crossings to take phare with more than two threads, as has always been the (ase mptonow.

It is very practical to take four, six, or ahost any other reasonable number of threads and ross two over two, three over three, or in any manner desired to produce the requisite opemess, because by so doing there is greater bulk at the point of crossing and of necessity there is a greater space between the threards so crossed than if they had simply been crossed in pairs.

Taking up the first method, it is quite clear that if only one doup is employed, and if that domp has to share in the formation of plain,

Fig. 329.
that more than one pick camot be inserted between the crossings, because of the doup having to rise at alternate picks. It is therefore clear that the method of working with one doup crossing one thread is out of the question. It is equally clear that if more than two threads are to cross each other a different system of douping must he resorted to.
'The following chapter takes up this matter and explains methods of combining parallel and cross-woven methods of interlacing so as to produce any texture reguired.

Open-Work Leno Designs. The need of other methods of crossing in addition to the one-thread-crossing-one system has heen shown by the effect of this method on the texture. Furthermore,

Fig. 330.
many patterns are formed by varying the methods of erossing, mo attempt being made to form figures, such as produced by ordinary weaving. 'This class, however, is the highest type of eross-woren fabrie, or any other class of woven fabrie, and has the appearame of lace, the filling and warp both being deflected to form the characteristic open work. The largest class of leno designs is between the fine lace-like patterns and those mate on the one-thread-crossing-one system.
(rossing threads may pass over or under any practical number of threads, as easily as they eross one thread, and these crossings may be the groundwork for figured cloths, or they may form figures. If they form ground for figures, the latter may have a compact texture, becaluse the threads which are worked together in the arossings may have different methods of interlacing in the figures. This system may be applied equally well when the crossings form the figure and the gromed is a compact weave, by ruming several threads together to form the ganze.

These are perhaps the most useful applications of the one-threarl-crossing-more-than-one principle; i. c., to form a compact figure on an open groumd or to form an open figure on a compact groumd. Other useful features will become apparent in the course of the explanation.

Following the same methods as were used in plain gauze, the system will be taken up in a graded manner, the simplest principles being illustrated and explained with a view to establishing firmly the differences between one thread crossing one, and one thread crossing more than one.

The illustration in Fig. 331 shows one thread crossing three others, which are interlaced in plain order between the crossings. Other illustrations show twills combined with eross weaving. Each individual thread in these designs should be followed, and esperial fttention should he given to the interlacing of the crossing threads.

Assume that it is necessary to form a pattern in which plain and cross weaving are combined, the effect to be alternate stripes of plain and cross weaving rumning aeross the cloth. 'This pattern is shown in the section on simple cross weaving, but the eross-woren effect in the present instance is to be of a more open character than the previons example. From previons remarks it will be inferred that the open
effeet can be obtained only by having a larger number of crossing threads, or by having a larger momber of threads erossed by them. It may be obtained by one thread rrossing two threads, by one thread crossing three, by wo threads crossing two, or by any similar arrangement.

For a first example, it will be convenient to deal with one thread crossing three, as by that method the general principles can be bronght out in such a manner that the details will be thoroughly understood.

Fig. 331 shows a pattern which consists of five picks of plain cloth and one pick on whith the crossing takes piace. To make the space

Fig. 331.
between the erossing piek and those on each side of it larger than it would be with one threal arossing one, the crossing thread crosses three threads. To prochace this effect, the method: of drafting and domping the pattern is different from any of the examples previously explained, and will perhaps require a little study.

The illustration shows a plan of the cloth, also the arrangement of harness, drawing-in draft, and chain. The ground harnesses are marked (i, crossing harness is maked (', and the stamdard and doup are marked is and l) respeotively. The ground threads are drawn in on the gromad hamesses and the erossing thread is drawn
in on the crossing harness, then passed under the three gromul threads and drawn through the donp).

Analyang the plan in conjunction with the harness chain, the effect of lifting the hamesses is found to be the same as in previons examples, except that the standard and doup being lifted, draws the crossing thread under three threads instead of under one. 'This is due to the doup being at the right of three threads instead of being only one thread to the right.

It is equally impossible for the crossing thread, drawn in on the arrangement where the doup is one thread to the right of the arossing harness, to cross moler three threats, as it is for the crossing thread drawn in on the present arrangement to cross under only one thread. 'Therefore, it may be accepted as a general rule that when the crossing thread is drawn moder the ground threads, it must be drawn under as many threads as it is crossed under when passed from the heddle on the erossing harness to the doup.

Returning to the analysis of the plan and harness chain, it will be noted that the first pick on the harness chain has the doup, crossing, and the second ground harness lifted, which raises the crossing thread over the filling on the left of the ground thread, and also raises the second ground thread, as this is the one drawn in through the second ground harness.

On the seeond pick, the doup and the first and third ground harnesses are lifted, which of course lifts the first and third ground threads over the filling. The crossing thread and second ground thread are under the filling, as neither the standard nor crossing harness nor the second ground harness is lifted.

The third and fifth picks are like the first, and the second pick is like the fourth. The crossing takes place on the sixth pick hy raising the standard and doup in just the same manner as in plain gauze weaving.

The first pick afte" the sixth is like the first pick at the bottom of the design, and shows how the crossing thread is drawn back to the left of the ground threads by raising the crossing harness and doup. Two repeats of the pattem are given in the direction of the filling, and three repeats in the warp, the object being to show the continuity of the pattern and to give a better idea of the effect.

There is one feature of this design which merits special attention. In the pages on simple leno effects, it is stated that there should be an umeren number of picks of plain between the erossings so that the (rossing thread may pass over both the pick preceding and the pick following the crossing. Note that this plan is followed, as is shown at picks five and one.

Summarizing the operation of making this pattern, and comparing it with others mate on the one-thread-crossing-one system,

Fig. 332.
the differences are as follows: 'The arrangement of harnesses and the operation of drawing-in the warp are different, and when the standard and domp are lifted the erossing thread crosses three gromed threads instead of one. 'The latter is a direct result of the former, so practically the only new feature is the method of drawing in the warp threar!s.

When four harnesses in addition to the standard and doup are employed, as in Fig. 331 , it is not necessary to confine the ground to the phain weave, as other weaves may he combined with this priaciple of (rossing. As there are four harnesses, a four harness twill may be used, as shown in Fig. 332 , the ground weave in this ilhstration being the one up three down suansdown weave. Note that the crossing
thread is over the picks on eath side of the arossing, as in previous examples.

A careful study of Fig. 332 shows that the arrangement of harnesses and drawing-in draft is the same as in Fig. 331 , the difference in the plan of cloth being due to the harness chain. Referming to the chain we find the one up, three down weave on the gromat and crossing harnesses, the crossing bemg formed by lifting the standard and donp in the usual mamer. (of course, the gromm woave might be repeated any number of times between the crossings, if this were

Fig 333.
necessary, but it woukd be a good plan to have one pick more than even repeats, so that the picks on each sirle of the crossing would be the same.

The illustration, Fig. 333, is another example of the four harness ground weare combined with a crossing. In this instance the fourharness cassimere twill, two up, two down, is used. The methorl is the same as in previous examples, so it will be unnecessary to go into details. It will be valuable to study these illustrations comparing the plan and drawing-in draft with the harness chain or design, for the principles illustrated in these three examples are extensively used in leno designing. The methorl of crossing one threal muler more than one may be extended and used in comection with other weaves
to produce more elaborate pattems by the use of a larger number of harnesses.

Leno Stripes. It has been previousi! stated that large varieties of patterns can be formed by simply varying the momber and position
of the ground and the erossing picks, and it is menecessary to illustrate this further, but most of the patterns formed in this mamer would show stripes crossing the eloth. While this is mot abway objectionable, stripes rmming lengthwise or in the direction of the warp may be more desirable. 'These are made by the arrangenent shown in Fig. 3:34.

The threads which are to form the eross-woren portion of the pattern are drafted and douped in the mamer shown in the illustration, while the threads forming the ground between the stripes are drawn in on the ground harnesses in the usual mamer. 'This necessitates the use of what are known ats stripe harnesses and doups, which are harnesses arranged in such a mamer that there will be a mumber of heddles at specified distances, and then a space in which there are no heddles. The spates on some of the harnesses correspond to the places where there are heddles on other hamesses, which gives the required number of heddles for each repeat of the pattern.

The plan of the cloth shows a combination of leno, sateen, and plain weaving. 'The threads forming the leno stripe are drawn in on the doups, ground and arossing hamesses, which are marked 1), (G , and $('$, respectively. The threads forming the sateen stripe are drawn in on the harnesses marked B, and the threals for plain are drawn in on the harnesses marked P.

Two doups and standards are reguired, as the first and fourth pairs of crossing and gromd threads do not "work" in the same mamer as the second and third pairs. In fact, the first and fourth pairs, although drawn in on the same hamesses, do not work the sume, hont the difference is merely a difference in the side of the ground thread on which they weare, the first crossing thread being on the right side of the first ground thread when the fourth crossing thread is on the left side of the fourth ground thread, and vice versa. This is obtained on the full gauze prineiple, one erossing thread being drawn through the doup at the right of the ground thread and the other being drawn through the doup on the left of the ground thread.

The same difference will be noted in the second and third pairs of threads. Two harnesses are allowed for the plain weare, and three harnesses are allowal for the threads weaving in sateen order, which makes a total of nine harnesses, in addition to two stamdards and doups.

The harness chain is shown in Fig. 335. The letters correspond to the letters on the harnesses in the phan, and the numbers correspond to the figures on the picks. A cursory examination of the chain shows nothing musual, except perhaps that there are no risers on the first ground harness. The gromd threads in the first and fourth pairs of threads forming the leno stripe are drawn in on this harness, and a reference to the plan shows that they are never raised over a pick of filling, so of course the harness on which they are drawn is never lifted.

An analysis of the first two picks would show the following: On the first pick of the chain, both doups, the first three harnesses marked B , the first harness marked P , and both crossing harnesses are lifted. The result as shown in the first pick of the plan is that every oddnumbered thread in the first ten, which are wearing plain, is lifted; four threads on each side of the leno stripe are raised; the crossing threads are all on the crossing harness side of the ground threads and lifted over the filling; and the last ten threads weare in the same manner as the first ten.

On the second piek of the chain the domps, second and third harnesses marked B , second harness marked P , and the crossing harnesses, are raised. The effect as shown in the plan is to raise the even-mmbered threads of those weaving plain. The first, second, and fourth of those forming the sateen stripe, and the crossing threads on the same side of the ground threads as in the first pick. Other picks may be followed in the chain and plam in the same manner.

The stripes of plain sateen or leno may be varied in width and texture, or other weaves may be added at the designer's pleasure.

In laying out an original design of this mature, it would be necessary to take into consideration the textures of the various weaves. For instance, the leno stripe would, of course, be as open as possible. The plain cloth ought to be quite firm, so would require a medium number of picks per inch, depending upon the size of the yarn. The sateen stripe would be "crowded" in the reed to give the characteristic sate eflect.

In the arrangement of harnesses in Fig. 334, only two harnesses are allowed for the plain weave. In some instances, where there is a large mumber of threads per inch, consequently a large number of heddles on the harnesses, it might lee neeessary to increase the number
of harnesses used for the plain choth to four, in order to avoid excessive breakage in the warp.

In combining leno stripes with stripes of other weaves, the (rossing thread usually crosses more than one gromed thread. When one thread crosses three or five ground threads, better effects are possible, beeause the chicef object is to obtain as much contrast as possible between the openmess of texture of the leno stripe and the closeness of the other sections of the pattern. 'This result is obtained by inserting more than one pick in each shed of the cross weaving, so as to allow a large number of picks to be used, and having the other stripes woven with the twill or any weave which will make a eompact texture. 'This arrangement will give a

Fig. 335. marked contrast between the cross woven and the ordinary woven stripes.

The limit of variation has not been reached with varying the texture, however, for the threads which are forming the leno stripe may change from cross weaving to ordinary weaving, and form plain, twilled, or even figured cloth. 'This simply means that, as shown in previous examples, the crossing harnesses would work in the same mamer as regular harnesses, just as though the doup had no connettion with the pattern.

The form of cross weaving might also be changed, thus forming different degrees of opemess in the leno stripe. It will be understood that the jacquard may be used in the same manner as an ordinary loom, when the patterns are too elaborate to be woven or a practical number of harnesses. The threads would be drawn through the eyes of the harness cords in the usual manner and those which are to form leno would be drawn through a doup, just as if a dobby or head motion were being used.

The jacquard is not used, however, except when it is impossible to produce the patterns on harnesses, on aecount of the expense of operating the jacquard machine. Patterns which are seemingly bevond the range of harnesses may be woven on them by a juticious arrangement of the harnesses.

The illustration Fig. 336 shows a design which consists of cross
weaving, plain cloth, and small figures. The plan of the cloth and the drawing-in draft are shown in Fig. 337. It might be supposed that this design is beyond the range of a dobly or head motion, but by careful arrangement it may lee woven on sixteen harnesses with one standard :und doup, ats shown ly the harness chain in Fig. 338.

Fig. 336.
Reference to the drawing-in draft shows that every arsing thread is drawn under three ground threads, and the chain shows that the standard and doup are lifted at every altemate pick, to weave plain cloth between the crossing places. This is similar to previous examples, and limits the design to one pick in each shed. Sufficient openuess of the texture is oltaned, howere, ly the erossing thread passing muler three gromul threads.

If this pattern refuired the crossing thread to be on the crossing hamess side of the ground threads when weaving plain, more har-

Fig. 337.
nesses would be needed than could be operated by a harness motion, consequently the jacrpuard machine would have to be used.

It is umecessary to explain how each crossing is formed, as the full design, chain, and drawing-in draft may be compared, and the result observed by studying the enlarged plan of cloth. The circles show where the crossing harnesses

Fig. 338. are lifted and the crosses in the full design, Fig. 336, are on the standard and doup, as these are not, strictly speaking, a part of the design.

On the first pick of the harness chain, the doup, third, and fourth crossing harnesses and the first, third, and seventh ground harnesses are raised. The result shown in the first pick of the enlarged plan is as follows: 'The crossing threads drawn in on the third and fourth crossing harnesses-the sixth, serenth, eighth, ninth, and tenth-are raised over the filling at the left of the three ground threads with which they work. The ground threads drawn in on the first, third, and fifth ground harnesses (shown in the drawing-in draft at the top of Fig. 337) are raised to form plain cloth. All other threads are moler the filling and the crossing threads which are not rossed; i. e. . those drawn in on the first and second crossing harnesses, form part of the plain cloth.

On the second piek, the standard and doup, and the secomd, fourth, and sixth gromm threads are raised. 'The eflect shown in the second pick of the plan is as follows: All the crossing threads are on the doup side of the gromm threads and raised over the filling. 'The gromid threads drawn in on the seoomd, fourth, amd sixth gromud harmesses also pass over the filling. The third pick is like the first and the fourth is like the second.

From this point other crossing and gromm harnesses are raised with the effect shown in the plan. Each threat shonld be carefnlly followed and the two small warp figmes, on the third and ninth sets of threads respectively, noted in their relation to the harness chain.

TEXTILE COLORING

Up to this point, with the exception of a few patres in l'art I in which the method of forming simple stripe and cheek effects by eombing various colored warp and filling threads with suitable weaves, the weave or eombination of weares used in textile dexigning have received most of our attention. 'The mamer of intertating the threads does not, however, represent all that requires attention, for in many cases the colors are quite as important as the texture or form.

By most textile writers the elements of woven patterns are stated as weave and color. The first is the basis of cloth manufacture and relates to the huild or structure of the fabric. Though weave may be regarded in textile designing as a constructive and not an ornamental component of the pattern, there are mmerons examples in which it possesses both these characteristics. For instance, the gataze and leno designs explained in precions pages do not rely upon schemes of color for their effect. The structural phan of the cloth is such that a firm and even eloth, which is decorated with a pronounced and decided pattern, is prochuced. Common twills, pigue designs and other combinations of weaves also have this combination of eonstructive and ornamental powers.

Color is very differently related to textile design. Its specifie province is to brighten and improve the qualities of the design produced by the weave.

An analysis of woven cloths will show the extensive use of color in textiles. In some branches, such as woolen goods, it is the distinguishing element of the floth. 'Io remove color from sum grools as cassimeres, shawls, or rugs would remove the chief qualities of the cloth, so in this instance, color is at least as important as weave. In other instances color is a supplementary element giving precision to the composition of the wease.

Theory of Color. 'The seience of color teaches the nature and causes of color, their distinctions, their relations to each other, their
classification, the mental effects that attend them, and the causes and laws of color harmony.

There are two important theories of color: i. r., the pigment theory and the light theory. 'The light theory will he explaned first for it deals with the phenomena of color and explains the laws which control the modification of the intensity, tone, and hue of colors.

In the light theory, white light is said to be pure light and to contain all colors. By a simple and inexpensive experiment it is possible to acquire a useful knowledge of the composition of white light. A glass prism is fixed in a darkened room so that a ray of light may pass through it. This gives an analysis of light which shows it to be composed of different colors. Thus, when the ray of light passes through the prism it is bent out of its path, and thereby decomposed, producing what is termed a spectrum. The spectrum shows every gradation of color but the following division is generally aecepted as most satisfactory: red, orange, yellow, green, hhe, and violet.

The results obtained by this prismatic experiment form profitable and suggestive exercises in color combinations. They are always harmonious and the colors are much richer than those obtained by pigments.

The pigment theory deals with color as an active element in decorative design and is adopted in the applied arts. It is the theory that can be worked out in practice. According to its principles, red, yellow and blue are separate pigments and by mixing them in variable proportions, and, of course, toning and tinting with white and black, every possible tone and hue of color may be obtained. Thus yellow and blue give green; yellow and red give orange; and red and blue give violet.

Classification of Colors. All colors beleng to one of two distinct classes: i. e., Simple Colors and Componnd Colors. Simple colors camot be divided into other hues or colors; in other words they are individual colors. Compound colors, being the result of combining two or more other colors, may be divided into their constituent colors. Various writers on the subject do not agree on the classification of colors, but when the color is considered with a view to its practical application it is necessary to base all combinations on New-

ROYLE'S POWER PIANO CARD CUTTING MACHINE
ton's theory, that red, blue, and yellow are simple colors and all other colors are the result of mixing these three in varions proportions.
'There are two classes of compound colors, namely, Scomdary Colors and Tertiary Colors. The Secondary Colors are green, orange, and violet; and the Tertiary Colors are russet, citrine and olive. 'The constituent parts of these colors will be taken up later.

The principles and classification of colors being understood we will confine our attention to the color pigments in their relation to textiles. To know the value of color it is necessary to learn something of the laws which govern color harmony. The influence of one color over another as to whether the effect is pleasing or otherwise is the subject which occupies the attention of the textile designer, for the success of his patterms depends upon a judieious selection and use of materials.

There are two reasons for applying colors: first, to give objects a better appearance; and second, to assist in the separation of oljects, or parts of objects, thus giving assistance to form. The truth of the first reason is self-evident and need not be discussed. 'The value of the second reason is evident, but a brief explanation may make it clearer.

If objects of the same, or nearly the same, color are placed near one another, there will be more or less diffieulty in determining the boundaries of each object. If widely different colors are used, there will be no difficulty in determining the extent of the figures or objects.

Thus color assists in the separation of form, or renclers form apparent. In textile goods, this applies to almost all patterns where there is a ground fabric with some form of ornamentation.

The following axiomatic statements will serve to explain the subject of color and make following statements clear.
(a) Regarded from a scientific point of view there are but three colors; i.e., blue, red and yellow.
(b) Blue, red and yellow are termed primary colors, as thes cannot be formed by the admixture of any other colors.
(c) All colors except blue, red and yellow result from the admixture of the primary colors.
(d) By mixing blue and red, purple is formed.
(c) By mixing red and yellow, orange is formed.
(f) By mixing yellow and blue, green is formed.
(g) Colors resulting from the mixture of two primary colors are termed secondary colors. Thus, purple, orange, and green are secondary colors.
(h) Colors formed by mixing two secondary colors are termed tertiary colors.
(i) By mixing purple and orange, russet, the red tertiary, is formed.
(j) By mixing green and purple, olive, the blue tertiary, is formed.
(k) By mixing orange and green, citrine, the yellow tertiary, is formed.

The diagrams A, B, and C in Fig. 339 will he found useful in studying the various colors. Diagram A represents the primary colors. Diagram B shows the secondary colors in their relation to the primary colors. For instance, orange is formed by the mixture of red and yellow, so that orange is represented between red and yetlow. Diagram C shows the secondary and tertiary colors in their proper positions with relation to the manner in which they are formed.

Relation of Color to Textiles. There are peculiarities of textile manufacturing which make impracticable many of the rules which apply in ordinary surface decoration. The structure of the cloth and the purpose for which it is to be used determine the coloring and the systems of distribution. An arrangement of colors might be excellent for a rug or carpet which would hardly become fashionable in clothing.

The effects of the various animal and vegetable fibers on colors also are interesting. On cotton colors are dull; on woolens color has a peculiar depth; on worsteds they are bright and definite; while on silk they are brilliant. These results are due to the properties of the various fibers, therefore, it is clear that while ordinary surface decorating has laws which are impracticable in textile designing, the latter also has laws which do not apply to the former.

In addition to the method of forming simple stripe and check effects, as explained in Part I, by employing various colored threads in the warp and filling with suitable weaves, there are three other methods of employing color as follows:
(a) By blending various colors of material in the raw state.
(b) By combining colors to form twist and novelty yarns.
(c) By using an extra set of warp or filling threads.

In the first mothor, the materials are combined before carding, being thoromghly mixed in the carding operation. 'This systen of

Fig. 339.
forming mixtures protuces yarns in which the separate particles of color are uniformly distributed. The mechanical arrangement of
carding offers every facility for obtaining perfectly mixed and softtoned blents.

The second method produces yarns in which distinct colors are visible, while the third method is used in making spot designs by employing extra yarns.

To become a gool colorist one must have the ability to discriminate between good and inharmonious combinations, and one of the best methods of acquiring this quality is to form collections of the best fabrics of each season. This method is helpful also because a designer is, to a large extent, governed by fashion, and fashions move in cycles.

The primary and secondary colors are very potent and are generally mixed with white or black to reduce their intensity. They are seldom used for the ground work patterns, their chief use being in the form of fancies to give additional tone to the pattern.

A list of the characteristics of the varions colors will be given to guide the efforts of those who are not familiar with the qualities of colors in woven fabric structure.

Colors of the Spectrum. By passing a beam of light through a glass prism a spectrum is formed, as previously explained, by the white light being divided into its constituent colors. These colors are the primary and secondary colors, previously explained on the pigment theory. As it is necessary to adopt a standard of color, the six colors of the spectrum, i.. , red, orange, yellow, green, blue, and violet, are sometimes referred to as colors, and all variations in tints, shades and hues are considered modifications of these six colors.

The colors of the spectrum are referred to by different writers as standard, spectral, positive, pure, full, and saturated colors. The name normal is generally accepted as it expresses the natural condition of color when affected by light.

Tones. The term tone covers the entire scale of color from the darkest shade to the lightest tint, so in a perfect scale of tones the grading from one shade to another or from one tint to another, would he so slight that it would be almost imperceptible. A scale of tones ends in white in one direction and in black in the other direction. It follows that tones are produced by adding white or black to the normal color.
'Tint is a tone which is lighter than the normal color. 'Tints are produced by adding white to the nommal color. Shade is a tone which
is darker than the normal color. Shades are produced by adding black to the normal color.

Hue. 'This term is applied to a color when the normal color has been modified or changed by the addition of another normal color. For example, if a small amount of blue is adked to red, a blue-red would he formed. This hue-red would be a hue of red. If a small amoment of green is added to blue the result would be a green-hhue. The last name indicates the normal eolor in the sale and the prefix is the color added.

Broken Colors are the normal colors dulled more or less hy the addition of a gray.

J alue is the laminous intensity of a color, tone or hue in its relation to other colors, tomes or haes. It is very necessary to keep the values of the various colors used in composition to produce a harmonous balance of tone or intensity so that the combined effect will not be injured by an excess of any color.

For example, a light blue and a pink will combine and harmonize as far as values are concerned. However, equal guantities of a nommal red and light hue would not harmonize in value because the greater intensity of the red would orerpower the light blue. When the intensities differ the quantities used must be in proportion. It is very selfom that equal quantities of two or more colors can be used in combination to produce a harmonious effect.

Potentiality is the power of a color, tone, or hue to affcet other colors, tones, or hues, when associated with them. The degree of potentiality of the six normal colors is in the following order: yellow, orange, red, green, blue and violet.

Scaling is the arrangement of colors in the order of their intensity. It may be by colors, tones, or hues, or by these combined. 'The saale of the normal colors consists of their regular spectrum arrangement; i. e., red, orange, yellow, green, blue, violet. A seale of tones would be as follows: lighter blue, light blue, blue, dark blue, and darker blue.

While the term tone covers all the variations of a color that may be produced by adding black or white to the normal color, but one of these may he added otherwise the result will he a broken color. A scale of hues consists of a normal color and its hes: The scale of hues of red would be violet-red, red, and orange-red.

Luminous Colors are those that reflect light in large quantities.

Yellow, orange, red, and green reflect the largest quantity of light and of these yellow is the most luminous color.

Neutral Colors. 'The effect of these colors is most important. Assume that alternate stripes of red and green are used, or that red figures are used on a green ground, or vice versa. The result would be a blurring sensation if the combination were looked at for several minutes. But if the two colors are separated by black or white, or by a tertiary or neutral color, the sensation of blurring will be avoided. In the same mamer, if blue and orange are placed next to each other, a blurring sensation will result. The use of dividing lines of neutral colors will prevent this. If violet and yellow are placed together the effect is not so unpleasant, because the two colors although complimentary are more nearly allied to darkness and light respectively. Yet even in this instance the effect is improved by the presence of tertiary or neutral colors.

In addition to this quality of modifying the effect of complementary colors, neutral colors also possess the property of modifying the effect of other colors, possessing the same common element. As is stated above, colors placed side by side have the effect of detracting from each other, but if separated by black or white, or by neutral colors, this mutual detraction is prevented or modified. If, for example, green and blue are placed together, one color will partly destroy the other and the point of junction of the two will hardly be discernible, but if separated by a suitable method the effect is improved, In the same manner any other powerful or bright colors may be dealt with, with the same result.

Combination of Colors. A study of the following combinations will be helpful, and will at least serve as a basis for a more extensive knowledge of the effeets produced by varions combinations of color.

Red and Blue. In small (quantities this is a usefnl combination, but if used in large quantities the good effect is spoiled. "The action of the colors upon each other is that red assmmes a bluish east, or what is termed crimson, while the blue assumes a greenish cast.

Red and Yellow. 'This combination is very powerful, and great care and skill is needed to use it successfolly. Red appears searlet and yellow assumes a greenish color.

Yellow and Bhae. Each color increases in liminosity, hastre and depth. Being contrasting colors, yellow and blue do not sulfer much
change in hue by association. In such combinations one color gives precision to the qualities of the other.

Red and Grecn. Red appears exceedingly bright, the lastre and fullness of the hue being emphasized. The softness of hue is emphasized in the green. Being complementary colors, they also give precision to the qualities of cach other.

Red and Violet. Red becomes more scarlet and assumes a yellowish cast, while the violet assmes a greenish rast. 'This combination cannot be used to good adrantage.

Red and ()range. 'This is a very powerful blend, and therefore is little used. Red becomes more violet and orange becomes yellowish.

Yelkow and Violet. This is an excellent combination, both colors gain in lustre, luminosity, and strength, and form a perfect or eomplete contrast.

Blue and Orange. Both colors are increased by association, but must be used with great eare.

Orange and Green. This is a very strong contrast; orange appears scarlet, and the green assumes a violet cast.

Violet and Green This is not a good combination, although it is used to a great extent. Violet assumes a reddish cast, while the green appears yellowish and much flatter in tone.

Violet and Orange. This is considered an excellent and effective combination. The violet is slightly greenish and the orange becomes more luminous or yellowish.

The following qualities of colors should be kept in mind when they are being used. Blue is a cold color and appears to recede from the eye. Red is a warm color and is exeiting; it remains stationary as to distance. Yellow is the color nearest to light and appears to advance to the eye. At twilight blue appears much lighter than it is, red appears much darker, and yellow appears much darker. By ordinary gaslight, red becomes brighter and yellow becomes lighter. Thus it will be noted that the color is determined by the nature of the light and the physical properties of the material to which the color is applied.

150 H. P. INDUCTION MOTOR DRIVING LAPPERS
Aamomet Mills

COST FINDING

One needs but a casual acpuaintane with the industrial word of the present day to be aware that the astomishing progres.s of the past few decades is due to the application of scientific and exact methots. One of the latest manifestations of this spirit is in the attention paid to, and the interest shown in, accurate and economical systems of accounting, and precise methods of determining costs of production or operation. No: can the latter be separated from the former. It must be stated at the outset and with emphatsis, that a proper and accurate system of book-keeping lies at the foundation of any reliable cost determination. It is therefore fitting to preface a study of cost finding in textite mills by some consideration of the methods of keeping books and accounts.

It is a primary purpose, in keeping the accounts of a business, to maintain a record of its receipts and expenditures, its assets and obligations, so that a statement can be made as often as necessary, showing the condition of the business, the quality and nature of its resources and liabilities, and the amount and source of its gains and losses.

These records may also be so extended as to be useful in showing the particular sort of product which is most profitable, the exact department where economy or extravagance is practiced, the present costs of departments or products as compared with former costs. of similar work, the places where expense should be eurtailed, and a basis on which to estimate new work.

When the Interstate Commerce Commission began its work, hefore any substantial progress could be made, it was found necessary to prescribe for the use of all railroads a mothod or system of keeping accounts which should be made obligatory in the preparation of reports, as no comparison could be marle under the various sustems formerly in practice. For instanee, in the classification of operating expenses there are now four main divisions, and fifty-three headings of accounts. Some other kinds of business
making government reports are similarly standardized; and, as these systems have been devised by experts in consultation, they are doubtless effective in accomplishing the desired object. If we were to compare methods of bookkeeping in textile mills, we shouk find equally various illeas worked up, and doubtless some curious evolutions.
'To illustrate this, take the manner of charging up the purchase of oils. Some mills carry an Oil account, into which are charged purchases of castor oil, cylinder oil, lard oil, dynamo oil, spintle oil, and perhaps others, every one of which may be used for a different purpose and in a different department. Another mill will charge them all to supplies and perhaps charge to each department the amount used of various kinds. Another will reason thus: Cylinder oil is used in producing power and is as properly chargeable to Power account as the labor of the engineer or the fuel used. Lard oil is used on cutting tools in the repair shop, and therefore chargeable to repairs. Dynamo oil is used only on Jynamos and therefore should be put into Lighting account. And so on. (Of course, if all oils are charged to Oil account or moter any other title, and a record kept of the quantities and kind delivered each department, these amounts may be charged against such department and the same ends will be served.

It is a valid principle that materials and supplies should be charged to the operations or departments in which they are used, rather than to an account of their own. For example, in a mill finishing its own goods, and buying starch for that purpose and for warp sizing, the starch purchased and used should be charger to each operation in either of the ways suggested above, rather than to a Starch account without proper division.

Perhaps the bills embraeing the widest variety of accounts are those for freight, and they are also those which can be most cortainly and satisfactorily divided and charged. A general Freight account is an abomination, and freight on a mill's produrt shouhl in particular be separated from all other items, as it is not a charge mpon manufacture but upon distribution.

The same principle applies also to labor. If in the outside yarl department, one man is kept busy packing waste, a second is engaged in the care of tenements, two more in unloading coal, while
another set is handling cotton, the cost of this work should be charged to Waste account, Tenement Maintenance account, and Cotton account, or whatever titles may represent these acoounts, rather than be charged in a hmps sum to Outside Labor aceomint. The ascertainment of such charges is one of the purposes of bookkerping.

The number of expense accounts which a mill should carry on will depend upon the character of its product. A mill making an ordinary variety of goods may make at least such divisions as follows and as many more as desired: Cotton, Waste, Mamufacturing Labor, Supplies, Repairs, Sizing Materials, 'Taxes and lnsurance, Lighting, Power (with subdivisions Fuel, Supplies, Labor), Salaries and Office Expense, General Expense. 'There are alwits some unclassified minor expenses which may be charged thus with propriety, but the temptation to make the Expense account a refuge for carelessness in analyzing expenditures should be resisted.

A cash book with separate columns for each of the principal accounts will save labor in posting, and the aceompanying table (See pages 4 and 5) show's how one may be arranged.

It will be noticed that there are two sets of columms on both the debit and credit sides. One set is for a record of the eash, and the other is for the distribution of the charges and credits to the various ledger titles and accounts. One column in the cash record is for the cash in the drawer, and the other one (or as many more as may be necessary) may be used for a check register. No check book with stubs is needed, as checks are entered directly on the cash book.

The second set of columns is for such accounts as may have a considerable number of entries each month. On the debit side there are illustrated one for Rents and one for Cloth Sales. On the credit side are a number, such as Adranced Parments to Employees, Cotton, Sizing Materials, etc. The colmmns are footed and carried forward to the end of the month, when the footings of these colmmos are posted to the ledger.

It is not worth while to provide a column for any account in which the labor of posting each entry would be less than that of carrying forward the footings. One or more columns may be left vacant in the heading to be used when any account is receiving temporary money charges, such as Construction or Machinery.
CASII

$\begin{aligned} & \text { M NAF'D } \\ & \text { Cwod } \end{aligned}$	hext	$\begin{aligned} & \text { TriNis- } \\ & \text { FERR } \end{aligned}$	$\begin{aligned} & \text { sici- } \\ & \text { DRIES } \end{aligned}$	$\begin{aligned} & \text { Locs } \\ & \text { Bani } \end{aligned}$			J)ate	$\begin{aligned} & \text { Vou. } \\ & \text { No. } \end{aligned}$		Extlanation	Folio	(1)
478	6.) 41	79640	947 16		S2	24180	Oct. 5		Amounts	Brought forward		(2)
			100000	1000			6		To.John smith	Deposited to our ('r.	:47	(3)
	$\therefore 40$					5) 40			" Sundries	Jas Kent to bate		(4)
1041						10.41			"	Cloth Rold		(5)
							7	916	By "	13. \& M. Ry to 6th		(6)
									". Machinery			(7)
								93	" J. Russel	On Aceount	:31	(s)
		1010				10000		96.)	" Cash	Withdraw for J rawer		(9)
								966	" Sundrien	Paid J. Wagner		(10)
								967	"	" B. Cotrin		(11)
			. 500000	5000	00				Tor Bills Payable	Discounted Note No. 17	10\%	(12)
								968	By sundries	Local Bank 4 mos.		(13)
								969	"	Eastern Coal Co.		(14)
		1400101				1400 (0)	8	97.1	"Cash	Drew for Pay Roll		(15)
								971	" Sundries	Pay Roll to Oct. 1		(16)
									'. Mrig Labor		47	(17)
			6993						To Ads. Pmos.	Collections on lay koll	142	(18)
410	81.0								" Rent ${ }_{\text {c }}$ "		(19)
												(20)
6254	12: 31	20? 240	201649	14.547	\because	175841			Amount,	Carried forward		(-1)

RECORD

The simn of the footings of account columns on the credit side should equal the sum of the cash footings on the same side. The work may thus be checked for accuracy as it proceeds. In order io maintain this equality, however, it is necessary to provide a column for Transfers of Cash from Drawer to Bank, or vice versa.

The debit side of the cash may be proved in the sume way, but due allowance must be made from the eash columns for the amount on hand when the month's business was begun.

Dany mill men never realize the difference in the nature of the accounts of expense and income, which they carry upon their books. Probably a majority of establishments have at least three, and sometimes more of these various kinds of accounts.

1. Costs of Manufacturing, ineluding Material, Labor and Supplies.
2. Costs of Distribution, such as Commissions and Freight on Product.
3. Expenses and Income not directly connected with manufacturing, such as Repairs to Tenements, Rent, Storage, etc.

It is not an musual sight to see mill statements with these accounts reported upon in a confused manner. For instance, Rent account may be made to appear as a profit on Manufacturing.

For a proper system of cost finding it is necessary in addition to the books of debit and eredit to maintain careful records of machinery. In each department there should be a permanent daily record of the amount and kind of machinery run on each class of work, and of the amount of work of each kind produced thereon. 'There should also be a record of all material used, such as cotton, yarn, etc., and of all the kinds of waste made and the amomet of cadh kind. The pay-roll should be propery classified and the ocropation of each employee designated. 'There will, of course, be a record of the product invoiced from the mill, but there should also be a record of its weight before any finshing or aging operation has added to or reduced it.

With these preliminary observations, we may take up the actual work of applying to the results of a period of manfacturing the necessary methools of examination and analysis of the expenses to approximate the costs of mannfacture.

As by a mere deseription, without illustration, it would be
difficult to explain the working out of the varions processes with sufficient cleamess, it will be best to take an inaginary mill, which we will name the Enterprise Cotton Mills, and a supposititious state ment of its operations and expenses. These mills had beren recently started, and run only about three months, when the manager directed that an imbotory be taken of the stock in process of manufacture and of the supplies, fuel, packing, oil, repairs, cotton, waste, etc.; that all hills le paid; that the books of aceoment be closerl, and a statement of expenses and income he prepared, and also a statement of the financial condition of the mill.

The bookkeeper was without former experience in cotton mill accounts and some time after the inventory had been eompleted he came to the manager with an anxious face and reporterl that while he had not completely closed the books, he hat marle at frow figures in advance and believed the mills were doing business at a considerable loss.

The manager replied that it was quite possible as expenses were heavy in starting up, but that he had expected that there would be a slight profit. He asked the bookkeeper to go over with him the work done in closing the books that he might set a few prices on stock in process.
'The bookkeeper replied that he had taken the stock in process at the value per pound of the cost of the cotton userl.
"That is not fair," replied the manager, "because for every ninety pounds of roving now on hand, we have used over a humdred pounds of cotton, and every eight hundred and fifty pounds of yarn has taken nearly a thousand pounds of cotton from the warchouse. So that your books show that cotton used cost us about ten cents a pound, while the cotton in every pound of yarn on hand is worth more than that, for it took nearly fifteen per cent more cotton to make it. It has lost that in waste."
"But," replied the bookkeeper, "we have sold the waste for money or we have it on hand, and I have it also in the inventory."
"That is true," was the reply; "but the value of the waste is small as compared with its cost. The balance of the cost of the cotton used in making the stock in process shoukd be added to the inventory value of the stock in process. Do it this way: In settmer a value on the stock in process, make it, say, twelve per cent per
pond more than the cost of the cotton. 'Take fine roving at, say, ten per cent above cotton, and the balance of the card-room stock at five per cent per pound above cost of cotton. The full value of the cotton or stock in process shoald be charged to Imentory, and credited to Cotton account. More than that, we started fom months ago with no work in process. We now have a mill full of partially manfactured stock. Some nearly ready for market. Some seareely advanced from the raw material. We must make an estimate of the cost of labor bestowed on the unfinished material and make it a part of the inventory. Furthermore a considerable amount of power has been expended in bringing this cotton to its half-eompleted stage. Also make an entry covering this, crediting Power and charging Inventory account for its estimated cost. There have been other expenses, but they are of less importance, not so easily estimated, and we shall neglect them."
"This will make a decided difference in our statement," said the bookkeeper, "but I see that it is right and shall make entries to effect the change."

This having been done, the mill showed results of the three months run as follows:

DOUBLE LIFT SINGLE CYLINDER JACQUARD MACHINE

As there was hut one kind of product, and practically all of this sold, it is only neecesary to divide the items of expense by the product in pounds to ohtain the cost per pomme of each item, and to add these together, or to divide the total expense, to get the total cost per pound.

Surh simplicity of comblitions is mot often met with, bowever. Even yarn mills commonly have a diversity of product, and when amother six months had rolled arouml, an inventory had been taken, and the accounts were reaty to close, the bookkeeper called on the manager for directions, presenting the following statement of operations, after having eharged to Inventory the value of the cotton, amed the labor on stock in process.

The manager called for the superintendent and showed him the sheet saying "We want now to find out what we have made on these rarns which we cannot do until we know what each eost. Can you show us how to get at it?"
"Why I think it is easy to do that," was the answer; "the estab-
lished mothod of distributing cost is from the basis of the average number. First, ascertain what processes and expenses are common to all the varicties of the product, such as ('arding, Spiming, Repairs, Insurance, ete. These are termed Costs in Common. Secoud, separate the processes and expenses undergone be portions of the product alone, such as reching for the skein yarn, sizing materials for cloth, different commissions for yarn and cloth, etc., and find how many pomeds have been submitted to earh special cost. Third, aseertain the aserage nmber of the mill product submitted to each special cost. Fourth, divirle the sum total of the costs in common by the total pounds produced. This is the cost per pound in common, of the average number. This cost per average number is thus distributed over the whole product: each kind of product bearing the cost per pound in proportion to the mumber of the yarn. The special costs are divided in the same manner ower the kinds of product they affect, through the medium of the arerage number of the products affected."

Following this method these costs must be rearanged, and some of them, as Power, Repairs, and Commissions must be divided. They are common to all, but Power and Repairs have a special cost for weaving, which we will estimate and set apart as a special cost, dalucting it from the totals, and consider the remainders as common costs.

The Manufacturing Costs may then be listed as follows:

LABoli, Carding		\$11,680.00
" Spinning		$1: 3,140.00$
" Packing Room	$81,80.00$	
STPJLIEs, Packing Room	6-2.00	2,4500
Labor, Repairs, $94{ }_{0}$	2,520.101	
Lurplites, Repairs, 94\%o	7,32:.11)	10,142.00
L.Abor, Y'ard		1,675.00
، Power, 96%	1,776.00	
Suprlats, Power, 96%	7,055. 00	8,831.00
Insbrance and Taxes		2,800.00
INTEREST		3,000.00
		2,900.00
Explense Account		975.00
		57,593.00

The total costs in common to all the product was s.jn, $393.00 \div$ $1,460,000$ (pounds produced) $=3.9447$ rents per polnul of yarn of the average number (2f.ci(i) .

We proceed on the hyothesis that the cost of making yarns varies in the same ratio as the number. If the costs in common for No. $26.866=3.9447$ rents per pound, then to find the cost for No. 10) yarn
$26.866: 3.9447$ conts : $: 10: 1.468$ conts per pound.
In the same way we find the costs in common per poind to be:

For No.		Yarn	3.680	nts
"	98	"	4.110	،
'6	30	"	4.404	"
،	36	"	5.255	-

The special costs may be classified as follows, and the pounds subjected to each operation are tabulated for convenionce of analysis, with the exception of the special costs on print, which are dealt with in bulk.

The rule for finding the average number of a plain fabrie, is based upon the principle of reducing the yarns to an equivalent weight of number one yarn, and then dividing again into the same number of threads, as the previous comnts, but all of an cqual size.

The rule is expressed as follows: Divide the threads per inch of warp, by the number of the warp yarn, and add the quotient to the picks per inch divided by the number of the filling yarn. Divide the sum of the picks and sley by the sum of the two quotients, above
deseribed, and the result will be the arerage size or number of the yarli.

The same idea will emable us to find the average number of the mill product as follows:

	10					$80,0001154.810$	800,000
'،	25	،	Warp Chains	325,000	1s.		
"	25	،	Skeins	880,000			
"	25	،	$z^{2} 5$ Chains	150,000	"	855,000 1bs. x 25	$\because 1,375,000$
"	28	"	$\frac{2}{28}$ Skeins	175,000			
"	29	،	Print Clotl Warp	128,800		$808,80111 \mathrm{~s}$. x 28	8,506,000
"	30	"	$\frac{2}{30}$ Skeins			120,000 Jfs. x	303,600,000
،	36	"	Skeins	50,000			
،	36	"	Print C'loth Filling	101,200	"	151,200 Jbs. $\times 36$	5,44:,200
						1,460,000 lhs.	$39,204,600$
:39,2	+	0	$1,460,000=26.8662=$	Averag	e 1	mber spun.	

	Sboolina	W'ARPING	Twnstax:	Remeling
$\frac{2}{10}$ Nkein Yarn as ${ }_{10}^{10}$	30,000 lbs.	$1 \mathrm{bs}$.	Jlos.	11ss.
" ${ }^{\text {\% }}$ - ${ }^{\text {a }}$			30,000	30,000
25) Warp (hains	325,000	325,000		
${ }_{2}^{2} 5$ (hain as $\frac{1}{2} 5$	150,000			
" ${ }^{2}$	150,000	150,000	150,000	
25 Kkeins				.380,000
${ }^{2} \times 6$ as ${ }^{2}$	175,000			
،			17.,000	175,(0)0
$\because 8$ l'rint ('loth Warl	128,400	128,000		
$3_{3 \prime \prime}^{\prime \prime}$ Skein as $\frac{1}{30}$	120,0010			
" ${ }^{\text {a }}$			120,000	$1 \because 0,000$
36 Skein				50,1000
	1,078,800 ll)s.	603,800 1bs.	$4.5,00011 \mathrm{~s}$.	75.5,(000 llss.

'The eost per pound of each of these operations on each variety of product is estmated after the same mamer, as the eost in common. 'This we will illustrate in the cost of epooling. It will be noticed that the two-ply waps malergo spooling twice, first as single yarn, and again as double varn. In determining costs, ply
yarns are considered simgle rarns of erpal weight, that is z^{2} s. is treated as single 14 s .

SPOOLIN:


```
    " 号Warp (hain
    " ('hatins as, !
```



```
    " %%kkein as % 175,000 ..
    8:5,000)|s.
```



```
    150,(1)0)" }\times1.2.5=1,875,00
"28 Print Cloth Warp 103,800 " 303,500 " }\times2.28=8,50%,40
```



```
    Total Pound= Spooled
        26,156,400\div1,075,8"# = -4.246 Average Number Yam Spooled.
```

The total cost of spoling was $8,507.00$ which divided by $1,075,800$ equals the cost fer pound of soobling the average number or 419% cents per pound for spooling No. 24.246 yam.
.4196 cents $\div-2.246=.017306$ eents cost per unit of number, or cost per hank of spooling number one yam.

.017:06 $\times 2.5=4: 265$	"	"	.	"		2	"
. $017306 \times 12.5=.216 \% 2$	"	"	"	"	"	${ }^{2}$	،
.017:06 $\times 2.945457$.	\cdots		.	'	\because	"
. $017306 \times .31=.51918$	"	"			'	:31)	.

The correctuess of these figures can be proved as follows:

:30,010	Hus.	of	No.	11	Yam	Spooled	at	.17:010	Cost	851.92
475, 0100	"	"	"	2	"	"	"	.4925	"	$\because 0.155 .08$
150,000	"	"	"	-	.	.		.216; 2	"	3:4.58
303,500	"	"	"	28	"	"	"	. 48457	"	1,47.. 12
120,000	"	"	"	30	"	"	"	. 51918	"	623.02
										$84,5 \div 6.62$

By the same methods we find the cost of the special costs of Warping, Twisting and Reeling to be as follows:

Cost		Warping	No.	Varn	. 1856	cents:	per	pentid
"	"	,	" $\frac{2}{20}$	-	.1194;	"	.	،
"	"	"	"	"	. 112	"	.	.
Cost		Twisting	No. ${ }^{\circ}$	ları	.	cents		\%um,
" 1434	..	"	،
"	"	.	.	"		"	"	"
"	"	-	\% ${ }^{2}$	\cdots	. $7: 30$		"	6

$=$	$\begin{aligned} & \therefore-10 \\ & \therefore \text { KEIN: } \end{aligned}$	$\stackrel{8.5}{\text { Sieins }}$	$\stackrel{\square-}{\square .}$	$\stackrel{3-2 \overline{5}}{\text { Cimans }}$	$\xrightarrow[\text { SKEINS }]{2-2 S}$	$\stackrel{230}{\text { Sikeina }}$	$\begin{gathered} 36 \\ \text { skeins } \end{gathered}$	
Cotton	5.00)	1.0\%co	10.0100	10.000	10.000	10.000	10.0000	10.000
Strppinge	3.000							
	s.0\%)	10.0010	10.000	10.(0)6)	10.000	10.000	10.000	10.000
Less Wiaste Value	$\therefore 2 \ddot{1}$. 484	. 484	. 4.54	. 48 t	. 484	. 484	. 484
	7.75	9.516	! 1.516	9.516	9.516	9.516	9.5115	\$.516
								2.809 wp
Costs in Common	1.465	3.670		3.670	4.110	4.404	5. 28.5	$2.31+$ fill
Spooling as Singre Y'am	$.1 \pi$		$4 ;: 3$. 4×3	$.485$. 519		.273
.. .. Inouble ..				$\therefore 16$				
Warpiner			. 1.59	(1)94				. 119
Twisting	2.87			.64;	. 21	.772		
Reeling	. 08.3	.412			. 21	.248	.594	4.105
Dreswing etc., Print (loth								
	9.789	13.598	13.808	14.5:	15.063	15.459	15.395	15.6:3
Freight	. 591	. 591	. 591	. 591	. 591	. 591	.5:1	. 6.0
	10,330	14.159	14.3019	15.1613	15.654	16.0.30	15.986	191.246
Comminsions	1.018	1.399		1.494	1.542	1.581	1.5%	. 3 \%
Full ('ost of Each Product	11.348	1.5 .588	14.3:3:	16.657	17.196	17.6.:1	17.561	19,661

('ost		Reeling	No. $\frac{0}{10}$	Yarn	.0825	cents	per pound
"	"	"	"	"	.2310	"	的
"	"	"	" ${ }^{\text {a }}$	"	$\therefore 475$	"	" "
"	"	"	" 25	"	.4125	"	" "
"	${ }^{6}$	"	36	"	. 59411	.	* ${ }^{6}$

$89,44.94 \div 230,000=4.1050$ cents per pound.
The stock used in these yams and goods is the same, exerpting that the $\frac{2}{10}$. k kein Yarn has been made one-half of cotton and onehalf card strippings.

The balance of Cotton account showing the cost of cotton for the mill is therefore divided by the total product, less one-half the amount of $\frac{2}{10}$ skein marle.
$1,460,000-1.5,000 \mathrm{lbs} .=1,445,000 \mathrm{lbs}$.
$\$ 144,500.00 \div 1,44,000=10$ cents per pound for cotton for cach pound of yarn made, excepting $\frac{-2}{10}$ skeins. The $\frac{2}{110}$ skeins were one-half strippings worth 60% of the cost of cotton, or for the whole amonnt of yarn made:

$15,000 \mathrm{lbs}$. (1610 ceuts for cotton	\$1,500.00
15,000 " " 60 \% of 10 cells	900.00
30,000 lhs, at an a ererage price	$52,400.00$

The value of the strippings used should therefore be added to the value of waste sold. That much of waste used not having been credited to waste account, previously, it should now be credited to the products made from elean cotton.

A deduction for the value of waste may now be made from the cosi of cotton.

Waste sold $86,100.00$ plus 8900.00 waste also made but used $=$ $\$ 7,000.00 . ~ \$ 7,000 \div 1,445,000=.484$ cents credit to cost cotton per pound of product for waste sold. (Only one-half of this per pound of $\frac{2}{15}$ skein.)

The only two items now remaining molistributed are the Freight on product and Commissions.

The freight paid in this case is more on the print cloth than on the yarn, per pound, being 65 cents per handred, and the balance divided among the other products, equally. Of commissions it should be said, before the division of the cost, that those on the print
cloth amount to above 2% of the eost, the No. 2.5 chain warps were sold direct, and no commissions were paid on these, while the batance amoming to about 9.85% was divided among the other products on a percentage basis of the cost as shown beiow.

At this stage the proof of the aceuracy of the mathematical work may be had thus:

the work to further decimals.
The bookkeeper having worked out the costs of manufacturing as above under the supervision of the superintendent, the processes and results were shown to the manager. The costs of some of the yarns were more and of others less than he expected, and after an examination of the tables, the manager once more sent for the superintendent.
"I have examined the way you get at the cost of the diflerent numbers of yarn, ete., and think I understand it, and believe it is about right. But there are one or two incuiries I wish to make. First, the idea underlying the whole operation seems to me a mere assmmption that the cost will vary as the number or fineness of the yam. This may be so or it may not. I do not see anything to prove it. Inow do yon know this, or don't you know it" There may be some reason for believing so; if there is, I wonld like to know it, but I confess that it seems to be taking a great deal for granted."
"'The average number system of cost fincting," replied the superintendent, "was not original with me. For many years it
has been bised be mill mon as a cembenient amd really way of rerkoming eosts and making estimates on cotton goods. I hate been told that early New Englamd mannfacturers adopled it after a careful examination in detail of the eost of varions operations on different organizations of gomls. I suppose they were satisfied of its approximate acemracy. Some justification is afforded by such figures as the following, which represent actual results in a large mill in New Hampsime for the six monthe ending May 2, 1s心, This ompany operated three mills, making varions organzations, amel you will mote that the total manufacturing labor costs vary very neaty as the aterage mambers. In fict, do not vary from this stansam more than the same mill might vary ite own record in the changing vicissitudes of contimoms operation."

Arerave No. of Proluct $26.8 ;$
Labor, ('aming 1.181 et
" W:arр Spinning .⿹66
" Willing

Based on the cost of the average number for the whole plant, the rosts would he as follows:

$$
\begin{array}{lll}
\therefore .457 & 4.680 & 8.705
\end{array}
$$

by these ligures it wilh he seen that the variations of the actual cost from the estimated cost hy the aterage nomber is as follows.

$$
\begin{array}{ccccc}
\text { No. } & \text { is.12 } & .059 & \text { cents per pound } \\
\text { " } & 20.53 & .128 & 6 & " \\
" & 26.53 & .029 & " & " \\
"
\end{array}
$$

The greatest variation is therefore less than three-tenths of one per cent.
"Further than this, I think I ean show you why this method hats some basis of reason in it. As you are well aware, a most important clement in the cost of any product is the amount that can be produced in a given time. If I were spinning, saty, momber 30 yarn, ahil some one shonld come along with an invention which wombl emable me, other factors remaining the same, to domble the production per spindle, the cost of spiming would be reduced nearly onehalf. So, if I shouk change to a coarser vam the production would
he increased, and the cost per pound decreased. Not proportionately decreased, but in nearly that ratio. As the amount of product increases, however, there is so much more material to be handled, so that there is more expense for labor in attendance and handling.
"If yon examine the tables of prodnction of spinning frames you will find that the pounds per spindle decrease as the yarn grows finer, in a ratio somewhat exceeding the reverse ratio of the change in number. For example, one of the production tables in common use gives the production in pounds per spindle per day as follows:

No. 8	Yarn	1.052	lhs.	
$"$	16	$"$.497	$"$
$"$	24	$"$.294	$"$
$"$	32	$"$.200	$"$
$"$	40	$"$.152	$"$

"It will be noticed that 8 (yarn) is one-fifth of 40 (yarn) but the production of N No. 8 is rather more than fire times as great. This increase in ratio approximately covers the increased cost of attendance and handling of the coarser yarns. It is thas that it comes about that the cost of manufacture varies in nearly the same ratio as the number. To be sure the spiming frame is not the only machine in a mill, but it is to a considerable degree the gauge of the production, and the elementary principle holds in all departments that the higher the number of yarn the greater the cost of prodnction and manipulation. Labor Costs are not the only ones affected by production. The cost of Power. Taxes, Insurance, Salaries, Repairs, Interest, and some other items of expense are similarly affected by the rate of proluction.
. \quad The same New Hampshire mill I have mentioned had a prace tice of charging Interest, Insurance, Taxes, General Expense and Salaries at an equal amomnt per ponnd whether the average number were 17 or 27 , and whether the production were conseduently greater or less. This seems to me denying the primeiple in its most evident application. For an increase or loss in production wouk not affect the gross amomit of these expenses, but the more pounds produced the more te divide them among and proportionately the less per pound."
"I concede the force of much you hative satid," answered the manager, "and I imagine that for mombers of a moderate range such a system might be very convenient and as eflicient ats any
that could easily be devised. I can also see that it might fime a widespread and proper application in mills under the circumstances apparently prevailing in the mill yon instanced where there are a mmmber of organizations not widely dissimilar, and withont a wide range in the mumbers of yarns spun. Its weakness lies in there being no means of proving its results, no certainty that its limitations have been observed, and no recognition of varying conditions.

- As an illnstration of my first objection, you cannot, in any way, prove that the costs of Reeling, as distributed by you over the yarn made into skeins the last six months, are just. In fact they do not very well agree with the prices per pound we pait for the work. This also illustrates my second point. Further, I do not suppose you would clain that making mumber 100 yarn would cost just ten times as much as making number 10 yarn. That is, there is a limit to the average number method of reckoning costs.
\cdots And lastly, suppose two sateens, woven, one with a warp face. and another of a similar organization but with a filling face. They would both have the same average number, but would both cost the same? And two fabrics of utterly dissimiliar organization might have the same average number and according to your theory would have the same cost per pound, which I do not think probable.
- Furthermore, the changes and extensions we propose in this plant will bring in such varying factors, that onr past methods will be crude and incomplete. It has been so, to some extent, already, for our weaving has introduced an element which along with, and in addition to, our yarn, makes the separation of expenses of operating the departments a problem for serious study.
"I have been thinking and enquiring abont this matter for some time and I propose in another six months to install a system by which I may lomor what our goods cost, prove the estimates to my own satisfaction, and challenge any one to dispute their acenracy.
"In the first place, I propose to separate the Manufacturing and the Distributing expenses. We have been fortmate in our short experience in disposing of our product as fast as made, but this
will not alway be our happy lot. Yoder these past circmonstances the expense of Freight and Commission might, with fairness to the results, be considered costs along with other expenses, but they are different in their nature, belonging to the commercial department of our business along with such charges as advertising and bad delbts. If we, in the next six months, find ourselves with a lot of unsold goods, on which we have paid no freight or commissions, the amount of these charges which we have paid must not be charged into mannfacturing, with labor and supplies, but kept in a separate account.
.W We shall have a plant selling a part of its product as yarn, and weaving the remainder of its yarn into cloth. We may even be compelled to purchase some yarns. Under these conditions the ${ }^{2} p p^{\circ}$ rtionment of the expense of Repairs, Supplies, Power, Insurance, Taxes, etc., shonld not be left to guesswork, even thongh we style the guess an estimate, but shonld have some basis in accomnting of the amome chargeable to each department. This the methorl we have just followed does not afford."

The manager at once put in operation a series of reports for the purpose of affording detailed information regarding the cost of each opration, which were placed on record, and made a basis for making up the estimates of eost at the end of another six months' perior.

In the meantime there had been completed some changes and additions for the purpose of putting a part of the mill on colored work, and a coarse cheviot was made in this portion of the mill. so as to utilize the waste.

Pronect of the Enterphise Cotton Mill

Six months ending Dec. 29, was as follows:
102,000 Hos. Cheriot
160,0000 " Print ('loths.
2.00,0)0 " Xarlias

100,0000 " $12 . \pi$ long chain Warp Yarns
120,000 " 1-2s skeins
(0,0000 " $2-29 \quad$ "
sle,000 " 'lotal

The organization of the chothe was as follows:

	$\begin{aligned} & \text { Warp } \\ & \text { Yarn } \end{aligned}$	$\begin{aligned} & \text { Filling } \\ & \text { Yarnt } \end{aligned}$	sles	Picks	Widths	$\begin{aligned} & \text { Yols. } \\ & \text { Per li. } \end{aligned}$	Warp	Fillint	$\begin{aligned} & \text { si,ing } \\ & \text { Win } \\ & \text { Win } \end{aligned}$
Cheviot	8	12	66	15	29	2.15	70	30	(i)
Print Cloth	28	36	64	64	28^{6}	7.00	Sf	14	19
Madras	25	32	56	60	29	6.00	180	111	1

The weight of the cloth given above is as it comes from the looms. There are several factors tending to modify this weight, as eompared with the weight of the yarn originally consumed in the making of the cloth.

The principal of these are, the weight added by sizing. the effects of coloring and beaching, and the loss in waste.

If the mills were making but one grade of goods, these would be of no special importance. But comparing the weight of woven goods with the weight of yarns, it is worth while to consider whether some allowance shonld not be made in order to put the yarns sold on a just footing with the cloth woven.

As concerns the sizing, the weight of starch and other compounds used equals about six percent of the weight of yarn dressed. This is equivalent to approximately four percent of the weight of the cloth. And if no other factor entered into the calculation it would be necessary to rednce the weight of warp yarn used in weaving by this six percent, in order to place it on a parity with other yarns. But since spooling, in the operation of warping, beaming, dressing, drawing-in and weaving, there has been a further loss of weight in waste. This loss has been greater on the warp yarns than on the filling, becanse of the more handling of the chains and the chating of the warl. This loss is greatest on the yarns which have been sized, and may have amonnted to one and one-half percent in weare room sweepings alone; a loss partly of warp and partly of sizing. On the whole, the waste in operations subsequent to spooling. is sufficient to largely offset the gain in sizing, and we make no allowance for the weight added in sizing.

Furthermore, dyeing and bleaching affect the weight of cotton. The madras is largely white with colored stripes. This white yarn or cotton is bleached, which canses a loss in weight.

Bit there has been an increase of weight in dyeing the colored yarn, varying according to the nature of the dye, and the depth of shade. In this instance we will estimate that one offsets the other, so that no allowance need be made either way for dyeing or bleaching. In the case of the cheviots, there is no bleached stock of conseqnence used in them, but the colors, both warp and filling, are mostly heavy or dark ones, and it is thought well to make an allowance of two percent from the weight of the cloth, in estimating the amome of gray yarn or cotton used in their mannfacture.

The cheviots for purposes of cost estimate will therefore be $100,000 \mathrm{lbs}$. instead of $102,000 \mathrm{lbs}$.

The cheviots were a coarse colored fabric, mannfactured to utilize card strippings and flyings. The yarn being composed of ahout seventy percent waste of this character, with some cleanings from picker motes. These were dyed in the loose cotton or waste, and spon thas, into colored yarns. The goods were finished and shipped in bales.

The print cloths were the same organization as before and shipped in rolls.

The madras were a medim grade fabrie, with bleached and colored warp yarns. The bleached warp was span from bleached cotton, but the colored warp was spun in the gray and made into long chain warps, dyed, beaned again, and dressed on a slasher. A portion of the warp yarn for these goods was of printed yarn, and as the mill did not care to purchase a machine for this Purpose, the yarn was bought, printed, in long chain warps, amomeng to 10,000 pounts. A portion of these goods, also, was woren on drop box looms for the pmrpose of making check patterns. The filling in all the stripes was bleached, and this with the bleached and colored filling in the checked patterns was spun from heached or colored cotton. Only a small amount of colored filling was used, as the filling stripes of color were mostly small. ${ }^{\text {a }}$ The warp in these groods was irregular, some of the patterns having small cords where several warp threads were woren as one.

For the goods described above, and the yarns sold, the follow. ing yarns were required:

No. is Yam, Cheriot	Warp	70,000 lhs
" 12	Filling	30,000

No． 25	＂Madras Warp	150，000 lb	
＂ 2.5	＂Warpe Soll	100，000－	
＂ 2.5	Total		250，000 1ts．
＂ご	Print（loth Witr）	89,600 1br．	
ご	1－2s ckeins	120，000 ${ }^{\text {－}}$	
＂ 29	－－2－2s Skeins	80，000－${ }^{\text {a }}$	
－＂ご	－Total		26！， 0000
＂：32	Filliner for Marlras		190．0100
－ 3 l	．．${ }^{\text {a }}$ Print（loth		70．100）
			S10，000） 11 s

Wre may divide the cost into three divisions． 1－t，The stock of Material．
Zad，The Labor in Manufacturing．
Brd，The Cencral Charges，Supplise．Power，Etre
We will take these up，in the order named．
The Stock or Material put in process for these yarns and geods was，as previonsly stated，

```
1920 Bales of Cotton, 00:3,614 lbs. costing S%2,259.12
    77 ." ". strippings, 35,000 ." ." 1,N20.00
No. 2.) Printed Yarn 10,000 * ." . 2,500.00
```

Passing hy for the present the Printed Yarn，we recall that seventy percent of the cheviot，and all of the other ontput of the mill，are made from the same general quality of cotton．We may therefore separate the stock nsed into these two classes，and on the assumption that the proportion of waste made has been the same in both classes，proceed to find the percentage of waste，and then work hack by means of this to estimate the amome of waste and cotton originally put in process，in each class of stock．For it has not been practicable muder the eiremmstances to keep an ac－ corrate weight of it．We then approximate the value of the waste used which was made in the mill，and credit the cost of clean cot－ ton with this amomnt．The waste nsed has been from clean un－ colored cotton．This value of the waste sold is then credited to each class．This value is either divided according to records of waste made，or on a percentage basis in absence of data．

The details are worked out as follows：

The Stock in process，Dec． 29
July 30
Excess Stock in Process Dee． 29
Product（Less Yarn Purchased）

$$
\begin{gathered}
91,100 \mathrm{lbs} . \\
76.700 \\
\hline 17,100 \mathrm{lbs} . \\
\frac{800,000}{} 817,400 \quad \mathrm{lbs} .
\end{gathered}
$$

Cotton Put in Process
Wiaste Purchased and Put in Process
Total Material Put in Process
Less Produret Plas Ciain in Prooress Gross Waste

Product of Cheviot 100.000 Hs .
In Procesi Iboc. 29, (heriot stock
$903,61+\mathrm{lbs}$.
35,000 '.
$93 \times, 61+1 b$. s 17,400 "
$121,21+1 \mathrm{bs}$.

$$
\text { in proeres ioce. } 29, \text { nergot sock }
$$

$109,000+14.83 \%=125,164 \mathrm{lbs}$. estimaterl amount of stock, made up of good eotton (30%), purchased waste and in the mill (70%) both together making the $125,164 \mathrm{lb}$. estimated as started in process for the cheviots.
Total Cheviot Stock

$125,16+\mathrm{lbs}$.
37,550
87,614
35,000
32.6
$52,61+\mathrm{lbs}$.

Less Gund ('otton (30 ${ }_{c}$)
Waste Cised-Purchased, and Made (70r,
Waste Purehased
Waste Made and Used in Cheviots
Stock in Process July 1, all Good Cotton
Cotton Put in Process, for Goods other than Cheriot
$76,700 \mathrm{lbs} . \$ 8.437 .00$
S666,064 " 09,25.5.1兰
$912,46+1 \mathrm{nss} .575,722.12$

Cotton Used for Cheriot	$37,000 \mathrm{lbs}$.	$\$ 3,004.00$
W'aste Purchased	35,000 "	1, ¢20.00
". Made and Used	52,614 '	2,735.93
	125,164 Ibs.	-57,550.93

". Made and l'ied, $\mathrm{Cr} \quad 52,6 \mathrm{I} 4$ "6 2,635.93

Wraste accounted for and not 16,164 " $323.2 \mathrm{~S} \quad 105,050 \quad$ " $2,101.00$
Total net Cost of stock $\overline{100,000 \mathrm{lbs} . ~ \$ 6,693.05} 700,000 \mathrm{lbs} .565,396.39$
By these processes we arrive at 6.693 cts. per lb. as cost of material for Cheviot, and ($65,396.36 \div-700,000$) $!.342$ cts. for all other product, excepting Madras, to which there is a further charge for $10,000 \mathrm{lb}$, of Printed Iarn costing $\$ 8,500.00$, used only on this work. This is equivalent to 1.00 ets. per pound of all Madras; but as only $8,000 \mathrm{lbs}$ were consumed, $\underset{\sim}{\sim}, 000$ pounds being in process, the cost for yarn was .800 cts. per ponnd.

This yarn has been neglected heretofore. becanse in this instance it is a small amomut in proportion, and the waste made from it, is inconsiderable. If larere amonnts of yarn were purchased in different shapes, it might be necessary to separate the different departments, charoing to each its material used and waste mado and crediting the output.

KNOWLES SWIVEL LOOM FOR WEAVING A SURFACE FIGURE ON A PLAIN GROUND
(rompton\&

THE MANUFACTURING LABOR

The basis for the apportionment of the habor cost. consists of a sories of wexky reports from ath department, covering the amomet of machinery rmming and the amomet of prodnct, and the cost of eath opration as computed immediately upon the making up of the pay-roll. These reports are tabulated, and at the end of the six months, or other perion, when the costs are made up, their totals are compared with the amonnt of work nltimately proxhceat hy the mill. The costs are based upon the production of the room; but on account of the loss by waste and other canses, the final ontput of the mill, upon which the cost must lee reckoned, is less than the room product. The reported costs are, therefore, less than the actual costs, and are subject to the revision noted abore.

Pay-rolls are sulaject to change, and the total labor cost of each depariment on the reports. is corrected by the actnal amoment expended.

This is exemplified in the case of the Card Room as follens: A single weekly report is shown, and the summary of the work for the six montles.

EATERPISE (OOTTON MHLS

('ost of Rowing for Week enting ()ct. Bd, 'Of.

llank lioving	1.00	1.30	S.20	(i.10)
Fly Frame spindles lima				
Pounds lioving Made.	3150	1272	2.9100	1.70
Pirking	82.25	. 90	13.00	3.37
Carding amd Drawing	86.00	2.5?	50.40	9.45
*inbler.	-1.50	. 90	2 Sc .60	7.5.5
Inter. Frames.	-2.60	1.50	1.).16	11.10
Fly Frames			77.15	19.92
General Loom bxpence	-1.60	.75	41.20	8.20
Total Wages.	\$13.9.)	6.57	260.81	59.89
rost per poun	. 440	. 517	. 103	.152
-cmamhy for the Snd Mosthe				
Ilank Roving	1.00	1.50	5.20	6.00
Total pounds yarm and cloth				
Add Inventory Ine. ag	1.100	900	S-. (0)	3,300
	76,100	30.900	655, 000	103,300
Deduct Inventary June 30			51700	
	76.100	30,900	(6) 1,100	103,300

The sum of the cost from the weekly reports, during 8350.16 the six monthis is	\$156.5s	86,680.27	\$1.230.26
These make a total of ss, 117.27 . The corrections and changes in the card- room payroll after leaving the room, have been such the to make the rorected $\quad \$ 348.16$	\$155.68	$86,536.36$	81.223 .16
total as shown by the ac(ount books $88,203.36$ and the necessary correction reduces the costs to			

The revised cost of making the roving shonld be obtained next, and if these total costs are divided liy the sum of the goorls sold plus the increase of the stock in process the results will give the actual cost per jomud.

```
$ 348.16 % 76100 = .157e Cost per Pound of No. 1. Hank Roving
    155.65\div30900= .50t " " ". ." " 1.50 "، "
```



```
    1293.16\div103300=1.184 " " ." " " 6. ،. "
```

The value of the labor on the roving and yarns in process at the end of the six months is now tomputed.

This. with the value of labor in subsequent operations bestowed on the stock in process, as disclosed by the inventory, is credited to Manufacturing Labor in closing the account books, or retained as the balance of the account, before charging off the remainder into Manufacturing Aecomnt.

The further uses of the cost of rovings in the yarn and cloth ontput of the miil, will be illustrated later.

A table shonld be prepared showing the stoek in process in each department, of the amomet of stock of each kiod on hamd, both at the beginning and end of the period, but is omited from this illustration.

The summaries of the Labor Costs in each department or opreation mast be treated in a similar manmer. It will mot always be the case that the garn on hand at the cond of the period will be greater than at the beriming. They are as often less. By the system ontined above this will adjust itself.

It will be noticed that the pounds of roving made. obtained from the weekly reports, vary abont six percent from the roving aceounted for by the product of the mill plus the inventery, but in later operations where there is less subseguent wate, this difference shonld be considerably rednced.

TABLE G.
ENTERPRISE MILLS. SPINNING ROOM REPORT.
Cost per pound of Spinning for week emding heptember 2.2.

Number of Yarn	$\stackrel{\text { Warp }}{ }$	$\stackrel{8}{W^{\prime}: k r p}$	$\stackrel{10}{\text { Fill }}$	$\stackrel{85}{\text { Wiap }}$	$\frac{32}{\text { Fill }}$	$\begin{gathered} 3 i \\ \text { Fill } \end{gathered}$	Total
Spindles Rnn	8.060	+1k	221	5.600	3.8000	2.688	$20,3 \geqslant 0$
No. of Pounds Spun	11,200	2,6009	900	9,600	1,200	$3.11(\%)$	31.500
Wages							
Spinners.	4tis. 0	± 360		+40 45	*21.60	\$1800	
Doffers.	9340	$\stackrel{015}{0}$	1.87	11,36	7%	T 80	
(ieneral hoom Expense.	3214	2.83	1.80	24.67	13.50	960	
Total Wages.	\$121.68	48. 43	45.4	*29.48	\$し2.30	431.80	- 20.13
Cost per pound, cts	1086	321	638	824	1.010	1.160	

TABLE H.
ENTERPRISE MILLS. WEAVING ROOM REPORT.
Cost per pouncl for weating, week ending September $22,190 \%$.

Kind of cioods	Cheriot.	Print	Madras Plain Loom:	Madras (heck Looms	Total
Looms Run.	27	150	150	7.5	402
Pounds Woven.	4,000	6,400	7,350	3,393	$\because 1.058$
C'uts Woven	$\because 010$	8,100	735	330	
Wages Weavers. Other IIancls..	$\begin{array}{r} 84.90 \\ \quad 6.10 \end{array}$	$\begin{array}{r} 8175.60 \\ 2.8 .5 \% \end{array}$	$\begin{array}{r} 3230.85 \\ 31.15 \end{array}$	$\begin{array}{r} 8119.54 \\ 29.92 \end{array}$	
Total Wages	\$54.00	8195.43	8262.00	8149.46	Sti63. 59
cost per pound, cts...	1.35	3.10	3.56	4.45	

Weekly cost reports of the same general diseription are made for each department. Samples of these for the spiming and Weave rooms are given in Tables G and II.

Passing over for the present the further consideration of Labor Costs, we take ${ }^{11}$, the cost of Repairs. Power, ete., and find the following charges to be divided among the product and the inventoried stock.

L.abor	Repairs Machinery	S1368.20	
"	Boilers and Engine Room	12×6.93	
"	liapairs Buildings	60.00	
"	Watch	350.00	
،	Eleetric Lights	212.50	,
"	Mosisteners	20.	- 3,297.6i3
Materima	Repairs Machinery	$\therefore 11 \times 3.37$	
"	- Buildings	120.	
-	Fucl	7000 .	
.	Fire Protection	70.	
"	Supplies, Store Room	1.576 .32	
"	" Special	6, 95.5 .33	16.511 .02
Tixes			万, O (0)
Insurdonce			(1)0.
Salarieg 1	Nd Office Expense		1,000.
Expente, M	Iincellaneous		500.
Yird			(60)
Interent			3,600
			5.211.65

In addition to these there shonld be a sum set aside or rharged off for depreciation of the Machinery and Buildings which will be estimated later.

An analysis of these expenses for the purpose of classification will disclose that they may be fairly gronped in three general divisions.

First: Those which are incured in maintaining the plant in good repair and condition, protecting it from danger of fire and robbery and providing the necessary supplies for operation, Maintemance, Protection and Supplies.

Secomel: Expenses incurred in the generation and transmis. sion of Power, and of Steam for other uses than Power.

Thimet: The cost of administration of the general combluet of the business.

Cuder the heading Maintenance and supplies, we collect first the cost of Mantenance in gemeral, dividing betweon Machinery and Buildings and exchading the particular repairs of whieln a separate account has been kept. These include, Taxes on the value of Machinery, Insmrance on Machinery, Fire Protection and Watchmen in their proportion, and Depreciation.

For the purpose of subdivision of these expenses make a detailed list ol machinery in the form shown in Table M, giving in appropriate columas the value of each machine, and of the total
value for each operation. By this means we find the grame total value of machinery to be $\$ 2.50 .000$. A conservative estimate for depreciation may be set at four percent, or $\$ 10,000$. This com phetes the items of General Maintenance, which are plated in the box at the heal of the colmmes, and foot up \$15, 000. This amount is divided upon the machinery in proportion to the value of cach operation. The percentage this bears to the total is set in Column $\overline{6}$. and the amonnt of the corresponding pereentares in
 at the top, showing the work to be correct.

We next take the items chargeable to the Maintenance of Buildings, inchding the furnishings. These items of expense are made "p of the dae proportion of those which have just now been charged to Mathinery, with the addition of Repairs in Material and Labor, an account which is supposed to have been kept. In the distribution of these items, first set down the approximate floor space ocenpied hy each operation, next the estimated or known cost per square foot of construction, adding the aceessories, antomatic sprinklers, hmmiditiers, piping, wiring, etc. The cost of building will rary considerably, and some departments will have more or less furnishings than others. The I ye Ionse will nave a cost for piping. but no hmmiditiers, and the store honse will have neither one, nor wiring for lights. The floor space is then multiplied by the total cost per square foot, and the products put down in Column 13. By the footing of this columm, the total value of construction, etce, is found to be $\$ 100,000$. To the items charged at the head of the colmmn. We now add one percent for depreciation, making a total of $\$ 3,000$. The percentage of this amoment to each operation is then added in Columm 14 , and the actual charge, obtained by taking the percentage of $\$ 3.000$, is set in Colmm 1.5. This column is then footed to prove the work correct.

In the Repair Shops, a detailed account has been kept throngh the six months of the labor and material expended or used for each department and operation. (Total Labor $\$ 1,094.56$. Total Material \$1,074.55.) This cannot include the supervision of the work ($\$ 273.64$), so that at the end of the period, having ascertained the percentage which the whole bears to the hitherto recorded cost in

detail (25%), the same is added to the cost of repair lator expended on each operation in the mill. In this supervision is included also the labor on the repair department itself. These amounts are then entered in their proper place in the table (Colmon 16) amounting to $\$ 1,365.20$.

There is also an maccounted-for balance of charges ($\$ 107.49$) for material, but before this is distributed there may be added a charge of $\$ 40.00$ for power. This is estimated and will be delucted from Power account before distributing, later.

By the portion of the table already constructerl, we find the cost of Maintenance of the Repair Plant to be $\$ 800.00 \mathrm{for}$ Mar chinery, and $\$ 37.50$ for Buildings, etc. These three items, with the maccounted-for balance of Repair account, are then added to the detailed materials cost, on a percentage basis, in the same manner as the general labor, and the amounts set down in Column 17. These amount to $\$ 1319.87$, and prove the work correct.

From the Storeroom there have been delivered miscellaneous supplies, oil, brooms, crayons, loom strapping, pickers, picker sticks, shottles, travelers, packing, etc. An accomnt of these has been kept, and the value delivered to each department entered in Column 18.

In addition to these lighter supplies from the Storeroom, a large amount of money has been spent in paying bills for supplies of a heavier nature, such as card clothing, hobbins, spools, harnesses, roll covering, starch, and the like. In the column in which these are also included some items especially applied to particular classes of costs, may be disposed of, such as packing cases, bauds. burlaps, cloth boards, cones, ete., with a notation of the amommt. The amomen of all the items chargeable to each department or operation, may perhaps be most easily ascertained by an inspection at the end of the period of the bills charged to this account.

In ('olumn 20 are the expenses of Lighting (Š1ヶ.3ij) as summarized in the box at the head of the colmm. The items include Maintenance of Machinery $\$ 06.00$, and Buildings $\$ 7.4 t$, as taken from Columns 6 and 15 of this table. Repairs amd supplies from Columns $16,17,18$ and 19 amoming to $\$ 146.68$, and the cost of I'ower as later ascertained $\$ 355 . \% \pm$ and Labor $\$ 212.50$ from the division of general Labor, already given. This cost is divided
among the departments in proportion to the light of current used, omitting the Powe amd lapair departments, as these camot bo closed and divided up, motil after all items have been determined. On the other hame the eost of Liohting camot be settled until the expense of hepairs and Iower has been ascertained. Is the costs of these latter are more important than the former, the lighting of Liepairs and Power lepartments is passed over.

The cost of Immidifying is determined and distributed in a similar wat. It will be noticed that this expense applies to hut. a portion of the mill.

The costs of Pbiwer and Steam are next worked up. As a considcrable amonnt of the steam gemerated at this plant is used for dyeing. drying. warp dressing, and finishing, a separation is made between the Boiler and Engine Installations, and with the cost of roming the latter is included the care and mantenance of shafting.

The cost of Steam is made up of Fnel \$7.000.00, Labor $\$ 445.93$ (both taken from the records). The Repairs and Supplies as taken from this table amoment to $\$ 4.98 .00$, and the Mantenance of Machinery $\$ 5 \pi 6.00$, and Buildings $\$ 152.37$. Of the total $\$ 8,8,3.30$ thus olstaned, estimated amounts are apportioned in Column 24, to Dreing, Dressing and Finishing, to cover the cost of these processes.

The remainder of the cost of Steam is added to the cost of Labor Stit0.00), Repairs, cte., $\$ 48.52$ and Maintenance of Machinery $\$ 70200$, also Buildings $\$ 114.27$, applicable to the Power Plant.

In Column 2.2 is set down the estimated average power consmand in each operation. The total is 700 horse power. The percentage of cath operation is extended in Column 23. The total cost of Power, including the balance of Fuel is then divided according to the perecntage of power used and carried out into Cohmn 24. 'This colmmn, including the amomets already allotted for Steam, will now foot $u p$ to the sum of cost of Steam and Power, $810,905.19$.

Excluding steam, Power, Lights, Repairs, and Humidifying, which have been redistributed, the General Expense of Maintenance, Supplies, Power, cete., are then added across the page, horizontally and enumerated in Column 25.

We have now the means of uniting the Labor Cost with that of Maintenance, Supplies and Power, hereafter abbreviated to M.s.
and P., for the same departments, and dividing the combined amounts among the various kinds of product. This is aceomplished in a series of forms such as follow:

Semi=Annual Cost Sheet, Card Room.

As a basis of division of cost, at the top of the form are given the pounds of roving contained in the finished product of the mills, and this is then corrected to the amount passed through the card room, by adding the inventory at the end of the period and dedurting that at the beginning. The corrected labor costs are then inserted.

The total cost of M.S. and P'. of Picking is then entered from Table M, and divided according to the pounds of cach hank roving made. The M.S. and P. of Waste Picking is entered and divided among the two rovings containing waste. 'The M.S. and P'. of the varions processes of roving frames are then taken separately, and divided according to the spindles occupied on each roving. By this
means the cost of 1 . hank roving in the departanent of carding is found to $6: 1.2$ fi: conts per pound.

$$
\begin{aligned}
& 1 \text { io hank roving. . . } 1 \text { :310 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \mathrm{j} \text {.. } \quad . \quad \text {....2.3.) }
\end{aligned}
$$

By a smilar mothod, the tabatar forms for the Spimning leom, Spooling Roon, Reeling Room, Warping Room, 'Twisting Roon, Raw Stock Dyeing, (hain D) eing, Beaming Room, Dressing Room, Weaving Room, Finishing Room and Storage are cotered up and figured out.

Semi=Annual Cost Sheet, Spinning Room.

Semi=Annual Cost Sheet, Spooling Room.

Semi=Annaal Cost Sheet, Reeling Room.

Semi=Annual Cost sheet, Warping Room.

No, of Yarm No. of Matrhints rim		8		25		88	
		5		5		1.5	
jomndis Warped Yarn in Cloth and Siam				240.0			
Add Inveltory Dece ed......		${ }^{6}, 700^{\circ}$		23.500		10.500	
Dedmet Inventory June 30...		\%3,700		262,500		$\begin{array}{r} 100.100 \\ 00.040 \end{array}$	
		73.700		26:3,200		80,104	
Labor rosts. erorrected.......	11.097.24	+92.12 . 125 c		\%708. 5	.270c	12:35,37	. 370 c
Manntainamee, Smplies and Power	113.14	$\stackrel{99.51}{ }$. 010	295.10	.112	68. 53	. 110
	+1,510.3K	8121.63	. $165{ }^{\circ}$	1,0133.85	38.20	+381.90	. 510

Semi=Annual Cost Sheet, Twisting Room.

Semi=Annual Cost Sheet, Raw Stock Dyeing.

Semi=Annual Cost Sheet, Chain Dyeing.

Semi=Annual Cost Sheet, Dressroom.

Semi=Annual Cost Sheet, Weave Room.

Nind of fiond	Total	Cheviot		Print		Madra-		Chock N	Natra
No. of Looms run		2i		153		150		\%)	
Found of ('both woten		100,000)		160,000		120,000		80,600	
Labor (oost, corrected.	\$15,860.00	T1,380.00	1.380c	+4,880.00	3,050)	85.120 .00	3.8000	3, 12.00 4.3ioc	
M. S. \& P. Plain	3.870 .95	316.71	. 318	1,794.69	1.12	1.350.5.	1.030	
M. S. \& P. (heck lorms.	1,269.64				1.969.41 1.5s?	
	+21.000.59	\$1.666. 1	1.6988	6.621 .69	1.1200		$4.635{ }^{\circ}$	-4.714.6)	5.930

Semi Annual Cost Sheet, Finishing Room.

Kind of (iorols....	Total.	$\begin{aligned} & \text { Yarn. } \\ & 300,000 \end{aligned}$		Cheviut.		Jrint.		Matlras,
No. of Pounds.	810,000			100,000		160.0		250,000
No. of Yards.				215,10		1,100,600		1.500 .000
Labor Cost. sewing. Main. Gup.and Power Brushing, Main.. sup. and Power Tentering, Nain. Sup. and Power Calentering, M'n. sup. and Power Folding. Main., Sup. and Power Winding, Main., sup. and Power Cloth Pressing, Main., Sup. and Power. Yarn Pressing. Main., Sup. and Powss.	*2.060.00	\$610.10		\$150.00		\$240. 10		\$1,100.00
	52.85			4.00		29.00		26.55
	115.83	- \ldots. ${ }^{\text {c. }}$		8.40		46.90		61.83
	1,240.36							1.240 .36
	141.83					60.48		81.85
	32.02					13,80		18.92
	93.13						293.13
	1,316.91			225.11		173.00		918.80
	289.88	289.88						
	*5.565. 81	488.9.88	. 8440	+387.51	. $3 \times 8 \mathrm{c}$	\$550.48	. 345	*3.309.241.

Semi=Annual Cost Sheet, Storage.

Kind of Gronds Stored.	Cotton.	Cheviot.	Nadras.	Skein V rn	Total.
Percentage of Space Used.	100%	$80^{\circ} \mathrm{c}$	$60{ }^{\circ}$	20°	
Ponnds Storend. Conton Wiarelhouse Croods	\$139.41	+13.95	\$11.83	\$13.95	+69.\%
Cost per pound Finishet Goods.	. 0180	. 014 c	.017e	.005c	

It is unnecessary to follow in detail all the calculations of these forms. Concerning the distribution of M.S. and P. it should be understood that as a rule it is to be divided according to the proportion of machinery run, rather than the pounds produced. For example, in the Spinning Room, one thousand spindles will require about the same floor space, oil, and power whether run on No. S yarn or on No. 36 yam, but the production in pounds will be far different. It is, therefore, contrary to good reasoming, to divide this expense on the basis of so much a pound, but rather should it be on se much a spindle, and the pound cost will take care of itself. The force of this is seen again, in the Weave Room, where the madras is divided into two portions: that woven on plain looms, and that woven on drop box looms-with a decided increase in cost of the
latter-and again in the contrast of the cost of the eheviot and print cloth.

The last expression of the Cost is mate on the Assembling Sheets, of which we may conveniently make two, one for yarn and one for cloth. As the name implies the departmental costs are here assembled under proper headings to obtain the full gross costs of manufacturing.

Assembling Sheet Yarn.

Number	2.3 Warp	2-sketh	2_{2}^{2} Skein
Carding	2.2.4c	$\because .2540$	
Spinning	$\because .178$	2.357	\because
Spooling	. 551	.55\%	
Warping	.882		
'Twisting			1.915
Reeling		653	.4,0)
Finishing	894	$\therefore 24$. 29
Storage, Iarn		. 0105	.005
Storage, Cotton	.1118	. 018	. 015
	$5.57-3$	6.0.	7.32
General Expense and Interest.	. 598	.67\%	.830
Cotton.	9.342	9.342	9.34%
	15.512	16.236	17.500
Freight.	2	.390	
Commission.	1.900	1.680	1.760
'Total Cost Varns.	17.364	15.246	19.901

Taking the ease first of No. 25 warp yarn; we find this to be marle from 5.20 hank roving, and the department cost of carding this, from the Semi-Annual Cost Sheet, is found to be 2.2.5t, which is set down in the proper space. The other sale yarns are also mand. from the same size roving, and are similarly entered.

From the Spinning Room Cost sheet we find the cost of spinning No. 2.5 yarn to be 2.073 cents, now to be entered below the carding.

After the same manner we obtain and enter the costs of Spooling, Warping and Finishing. We omit Twisting and Reeling as having no part in the cost of single warp. We omit also Storage of Yarn as this yarn was shipped promptly upon being packed. 'The storage of cotton, however, is a part of the cost, and is included.

Following the same steps with all the yarns, we find the sum of the costs, thus far attained, to be

```
No. 25 Yarn....................5.5%2 cts.
No.28 Skein \arn . . . . . . . . . . ;.2n!2 "
No.\frac{2}{84}" " ...........7.326 "
```

These figures include all the costs of manfacturing proper except the stock, and certain general expenses which are not assignable to any department, nor can they be divided among the products by any system by which it is possible to say: "We know that so much money was expended for Salaries, Postage, or Cleaning up the Yard, and the expense is directly caused hy such a kind of goocis or yarn, and chargeable to it."

These unassignable expenses as shown by the mills aceounts, are

This sum is found to be $11 \frac{1}{3} \%$ of the amount of other expenses, excluding cotton and yarn purchased, and is divided among the products on this percentage plan. It may farly be assumed that those departments having a higher labor cost and using more supplies, will call for more supervision, more correspondence and offiee expense, more general labor and money borrowed. Charges of interest on money used in the purchase and earring of cotton, may previously be calculated and added to Cotton account, or the cost of interest on funds invested in cottom and fimished goods may be added to the Semi-Anmual Storage Report, if thonght more convenient.

This percentage of general expense shonld be added before the inclusion of the eost of stock, since the latter bears no relation to it and, varying from season to season, would vary the proportion of expense to each product withont grod reason.

We have abready found the cost of stock used in all yames sold to be 9.342 cents, and having added this to the previonsty ascertamed cost, the full manufacturing cost, with the exeeption of the important one of profits, is completed.

As the purpose of all manufacturing is same ame the mility of cost investigation lies in showing" where, and how much of that gan

VIEW IN TEXTILE DEPARTMENT OF CLEMSON COLLEGE SHOWING COMBING, DRAWING AND ROVING MACHINERY
has resulted or will result, profits may be considered legitimately an clement of cost. It is often easier to determine what it ought to be, than to obtain it moder adverse market conditions, and it is oceasionally obtainable to a greater degree than is necessary for an average retmon on capital invested. 'The return on capital investment, however, is the only hasis, when considered as a cost. If there is no wide variation in product, such as would be the ease if the yarns already considered were the only product, the necessary profit might be reckoned from the production per spindle of each kind of yarn, but in such a combination of departments and processes as arise in a spiming and weaving mill, a better rule is to calculate the gross profit desired, and add the necessary percentage to the eosts, again excluding the stock used.
'The cost of the stock used shoukd be omitted beeanse it is such a variable element. Depending upon conditions of the crop and markets, it may vary fifty per cent in price, while the margin necessary for fair returns would be unchanged. Of two kinds of groods having a very different cost of stock, the one costing more might, on aceount of greater production per unit of loom or spintle, require less margin of profit than the other.

The Manufacturing Costs having now all been obtained, the additional expense of marketing and distributing goods must be had. These include Freight, paid on goods shipperl, Commissions, for selling, and sometimes Advertising, Traveling Expense, and other items.

In these tables the net Commissions are added as a percentage, varying according to the contract with the selling house, or with trade custom. The estimated amount which will have to be paid for freight is added. It must be borne in mind that these items are hased on the actual cost per yard or pound of the product under estimate.

Unlike other factors this cost per pound cannot be taken from the net expense incurred during the periods. It is quite usual for goods to be stored in large quantities, so that the expense of distrib, uting is a very variable one, so far as amount of charges in any length of period is concerned.

Groods which it took most of the time for six or nine months to manufacture, may be stored and then eleared out in one or two
months, and all the charges for selling and shipping, concentrated in a short time.

ASSEMBLING SHEET, CLOTH.

	Cheviot			Print Cloth			Madras		
	Warp No. 8 No. 1 h.r F"1ll No. 12, 1.50 Yards. jel lb., 2.15			WarpNo.28, No.5.20h.r Fill No. 36. 5. 30 Y゙ards, per 1b. 7.00			$\begin{aligned} & \text { WarpNo. } 25, \text { No. } 5.20 \mathrm{~h} . \mathrm{r} \\ & \text { Fill No. } 82,600 \\ & \text { Yards, per } 1 \mathrm{~b} .6 .00 \end{aligned}$		
	$\begin{gathered} \text { Cost } \\ \text { per } \\ \text { pound } \end{gathered}$	$\begin{aligned} & \text { Per } \\ & \text { cent } \\ & \text { used } \end{aligned}$	$\begin{gathered} \text { Cost } \\ \text { per } \\ \text { pound } \\ \text { Cloth } \end{gathered}$	$\begin{gathered} \text { Cost } \\ \text { per } \\ \text { pound } \end{gathered}$	$\begin{aligned} & \text { Per } \\ & \text { cent } \\ & \text { used } \end{aligned}$	$\begin{gathered} \text { Cost } \\ \text { per } \\ \text { pound } \\ \text { Cloth } \end{gathered}$	Cost per pound	$\begin{aligned} & \text { Per } \\ & \text { cent } \\ & \text { used } \end{aligned}$	$\begin{aligned} & \text { Cost } \\ & \text { perr } \\ & \text { pound } \\ & \text { Clooth } \end{aligned}$
Labor Cost, corrected									
	1233	30	884	224	56	1.268	2301	56	1.239
Carding lilling.	1310	30	393	2254	44	69\%	≥ 359	40%	. 942
Spinning warp	. 630	70	141	2387	56	1337		56 \%	1177
Gpinning fillmg	1180	30	354	3023	4	1330	274	10	1.115
Spooliner warp	199	70	159	. 588	56	830	5il	$5{ }^{51} 8$. 313
Warping.	16.5	70	106	. 481	56	269	$3 \times$	568	217
Beaming.							935	0	281
Raw Stock Dyeing	1.148	100	111 x				1144	80	794
Chain Dyeing							2. 314	26.8	620
Dressing.	. 22	70	. 509	N 47	56	502	$1: 218$	60	731
Weaving			1698			4172			4635
Finishing			$3 \wedge 8$			317			4.496
Storage, Cotton			018			. 018			018
Storage Goods			014						017
Total Mill Expense		(1.112		-	10.55	\cdots	\ldots	13635
General Expense and Interest $111 / 3 \%$..			693			1. 203		..	1.565
			6.805			11.758			15200
$\begin{aligned} & \text { Cotton } \\ & \text { Yar'u. } \end{aligned}$			6693			9342			8968
									800
			13498			21100			24968
Freight Commissions.			5tio			. 80			720
			. 850			. 350			1500
			14908			21.690			37188

The above cost of Madras is for 170.000 lbs. woren on plain looms. The 80,000 lbs. Woven on drop box loms cost per Weare Room ('ost sheet) 5 tar cents per pound for wraving instead of 4635 cents as above. The total cost of manufacturing the eheck goods was therefore 28,490 cents per pound instemb of 21 .9f8 cents.

In the assembling sheet for woven goods, we have a similar work to that on yarns, with additional elements. The Cheviot is made of 70% warp and 30% filling, made from different rovings, and therefore having different card room costs. 'The warp earding 1.263 cents per lb., and each pound of doth contained $70-6$ warp. The cost per pound of cloth for earding warp, was therefore, 70% of 1.263 cts., or .SSt c.t. per lb). The cost per pound of cloth for carding filling is 30% of 1.310 cts., the cost of the filling. For convenience these assembling sheets for cloth are provided with separate commens for each of these three items, and earch process is entered up for the extent to which it enters into the make-up of the fabric. 'There is no division of the cost of weaving and subsequent operations.

In the cost of warp for Madras it will be noted that only . $\operatorname{si} . \mathrm{s}_{\%}$ of the cloth is rarded and spmer warp. 'The filling is 40% of the eloth. The balance, 3.2 ér , is the yarn purchased which did not pass through the carding and spiming in the Enterprise Mills, and therefore is climinated from the labor costs of those departments.
()nly one half of the warp is beamed, the other half being warped from yarn sum from bleached cotton. One half the warp makes $30{ }_{3}^{*}$ of the cloth.

The yarn purchased was dyed previonsly, and amounted to $3.2 e^{\prime}$ of the cloth. As atrearly stated (i0 ${ }^{r}$ e of the Madras was warp. One half of this, or 30% of the eloth, less 3.2% purchaserl, equal to 20. S^{\prime} / r of the cloth, was d!ed by the long chan system. The balance or 70% was dyed in raw stock.

The adrlition of Gencral Expense, ete., is also on the same plan, as with the cost of yarn, and also the cost of Stock, excepting that in the Madras the item of the additional cost of the sam purchased solely for these goods. Derlucting the value of the inventory of yarn the amount used was equal to .sol cent per pound.

There were also two kinds of Madras, one woven on plain looms, and one on drop box looms, hut ahke in all other respeets, and having the same cost except for weating.

Having summed up the Mamfactmring Costs, we may add Freight and Commissions. These differ from the Manufacturing Gost items in that they shonld equal the expense that has been, or will be incurred in the distribution of the grools, whether it has already been paid ont or not.

The total costs per pomed for cloth, less margin for profit, are:

As $170,000 \mathrm{lb}$ s. of Madras were woven on phain looms, and 80 ,000 lbs . on check looms, but were atl sold at the same price, we are interested to find the average price of Madras:
$(27.185$ cts. $\times 170,000)+(25490 \times 80,000) \div 250,000=27$ (604 cts. per H) .
The cost per yard may be obtained from the cost per pound by dividing he the yards per pound, as follows:
(heviot $14.905 \div(2.15+2 r=2.193)=6.80$ (.ts. per yard.
Print ('loth $21.690 \div 7=3.10$ rts. per yard.
Madras $22^{-} .604 \div 6=1.60$ ets. per yard.
'These yards per pound are the figures obtained ly dividing the pounds from the loom by the fimished yards. And 2% is added to the cheviot beeause 2% has been gained in weight in process through the mill above the original proportion of stock, as previously noted.

The computations have been long, eomplicated and haborions, and it is well to prove the substantial accuracy of the mathematical work, which may be done as follows:

The manager of the Enterprise Mills, having devised in outline the method above deseribed, harl it carried into effect, at the end of the half year. He discovered, however, that the bookkeeper, though efficient, wats not sufficiently informed upon the mill work and processes to carry out the seheme, without his own persomal, strict supervision, and that on the other hand the elerical work was far too great for him to do alone.

One afternoon he called the smperintendent and showed him the results, and asked him what he thought of them.
"Well!" was the reply, "I recken they are all right, but it seems to be a mighty lot of work."
"Yes," replied the manager, "it is. But I think in our condition it is worth it. I would not bother with such fine points if we were making only a few yarns, as we began. But I want now, not ant estimate of what goods have cost, but a computation. And while this mothod is not pertect, and we may yet improve it, no ome ean say that we have not considered pratetically all the items of cost in
a rational way. Moreower, it has proved an "eyeopener" to me in many ways. We strive to keep down the labor costs, amd rightly, and think the card room pay-roll a heary one, but do you raalize that the Deprectation, Maintenance, supplies and Power cost equally as muth. Spimming Room labor cost is considerable, but its Maintenance, Supplies and Power are half as much again. In the light of these facts, how important it is to ohtain and maintan the highest efficiency and production of our machinery and help.
"We direct our energies to keep down the cost of supplies for the weave room, but their importance dwarfs in comparison with a ten per cent increase in the spimning room production, and, if this new method teaches us something of true values, it will not be in rain."

REYIEW QIESTIONS.

PRACTICAL TEST QUESTIONS.

In the foregoing sections of this Cyclopedia numerous illustrative examples are worked out in detail in order to show the application of the various methods and principles. Accompanying these are examples for practice which will aid the reader in fixing the principles in mind.

In the following pages are given a large number of test questions and problems which afford a valuable means of testing the reader's knowledge of the subjects treated. They will be found excellent practice for those preparing for Civil Service Examinations. In some cases numerical answers are given as a further aid in this work.

トリにな 1 ．

＊PROBLEM 1．Make the following designs ：

The complete design is on 24 thread $x^{\prime} 12$ picks．
12threats $\times 12$ picks No． 1 B．

Mark No． 2 B with red，and the risers on the 5 th and tith threads with bue．

PROBLEM 2．Stripe Trousering．

24 threads $\times 12$ pieks．

Mark No． 2 ls with rel，and the risers on the 6 th and 7 th threads with blac．

NoTlCE Thew problems are made from warp than amb filling than weaver．Take partimbar motice how they join．Make two miginal＇stripe designs，usin！ F No． 1 amd B No．\because ．

PROBLECI 3.

Stripe．
ti threals $\times 12$ jicks．

Mark No． 2 B with red，mark the tith，sth，30th and 32nd threads with blue．
＊See page ${ }^{4}$

TEXTILE INESICN．

PROBLET1 4．Check Trousering and Coating．
4が1hreald．tipitks．

	hrear	36	$\mathrm{i} \cdot \mathrm{k} \cdot$						
${ }^{6}$	＇．	$(i$	－	－	\because				
（	－•	${ }^{\text {i }}$	＂	＂	1				eft
6	－	：31	－	＂	1	＇			
6	＂	6	．	＂	1	＇	،	－	－
18	\cdots	1	．	＂	\geq	＇			
－		－							
i	＂	$\because 6$	＊	＇	1	\cdots			
i	\cdots	6	－ 6	＂	2	\cdots			
（i	－	${ }^{1}$	＂	＂	1	\cdots	＂	\cdots	＇
－－		－							
19	＂	： 3	－	．	1	．			
i	－	${ }^{\text {i }}$	＂	＂	1	\cdots	＂	＇	＂
15	：	6	－	＂	2	＂			
－		－							
1	－	36	\cdots	＂	1	＂			
i	－	i	－	－	2	\cdots			
$1{ }^{\text {i }}$	\cdots	$1{ }^{1}$	＂	－	1	＂	＂	＇	،
－		－							
${ }^{1}$	－	23	＂	\cdots	1	\cdots			
1	\cdots	4	\cdots	\cdots	1	\cdots	\cdots	،	＇
1	\cdots	6	\cdots	－	\because	\cdots			
－		－							
（i）	－	1	\cdots	\cdots	\because	\cdots			
${ }^{\text {i }}$	\cdots	6	＂	－	1	－	－	－	＂
${ }^{\text {i }}$	＂	6	＂	－	2	\cdots			
6	＂	1	－	＂	1	\cdots	－	\checkmark	＇
6	＂	19	．	\cdots	2	\cdots			
1	－	1	＂	＂	1	\cdots	，	－	،
${ }^{6}$	＂	1	＂	\cdots	2	\cdots			
${ }^{6}$	＊	6	－	－	1	＂	－	－	\cdots
－		－							
f	،	4	＂	\cdots	1	\cdots	\cdots	\cdots	‘
6	،	6	＂	＂	2	\cdots			
（	،	（i）	\cdots	＇	1	．	－	＂	＂
if	＂	f	＊	－	2	－			
f	＂	（i）	\cdots	＂	1	\cdots	\checkmark	\cdots	＂
6	－	i	\cdots	＂	2				
f	－	i	－	＂	1	．	＂	＇	＂
（	．	6	\cdots	＂	\geq				

PROBLEM 5.
Woolen or Worsted Stripe．
24 thread．x or picks．

		s		\％．	1					
4		\％						\bullet		－$\cdot \bullet$
4	\cdots	\＆	\cdots		2			－		－\cdot
1		く								－．-
4	‘	R	،		1	\cdots				－－
4	＇	β	‘	．	2		$1 C$			$2 C$

\therefore THE - HBAECOT OF


```
PARTII.
```

1. Sketch a black anl white color effect, weave $\frac{2}{2}$ Cassimere twill. Wiap and filling, 2 , hack, 2 white, 2 black, 2 white, 4 black, 2 white, 2 biack, 4 white.
2. Design a hering-lone stripe, the weaves to make a perfect cut when they come tugether. Dimensions of stripe, 4δ threads per inch. Use Shalloon twill, $\frac{1}{2}$ meh to right, $\frac{1}{4}$ inch to left, $\frac{1}{8}$ right, $\frac{1}{8}$ left.
3. Use the following weaves, Crow, Swansdown, Crowfoot, warp-flush, and Crowfoot filling-flush, and design a cut figute or check, eacli thread in the warp to have an equal number of risers on the face, and each pick of filling to have an equal number of risers on the face, each check to lee 8×8.

Fig. 1.

Fig. 2.

Fig. :3.

Fig. 4.

Fig. 5.

Fig. 6 .
4. Design an overplaid for worsted dress goods; use Cassimere twill. Fig. 1 is commonly known as the Crowfoot weave filling-flush. Fig, e is the warp-flush crowfont weave.
5. What is a warp-flush and w int is a filling-flush wave?
6. What are the techaical manes for weaves in Figs. 3, 4, 5 and 6 ?
7. What are the chief characteristics of weaves in Figs. 7, 8,9 and 10 ?

TENTILE DESIGN.

8. Make a herring-hone stripe on 12 threads and 12 picks.
9. Make a 27 -degree twill. Make a 45 -degree twill. Make a $52-r$ legree twill. Make a 63 -degree twill. Make a 70 -legree twill all from Fig. 11, first pick.

Fig. 7.

Fig. 8 .

Fig. 9.

Fig. 10.
10. Write in your own words an explanation of the use of design paper.
11. Make a stripe design, using weaves Figs. 12 and 13. The design to be 24 threads ly 12 picks.
12. Make a cut section of the first pick of design of Question 2.

\section*{| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Fig. 11.

Fig. 12.

Fig. 13.
13. Weave at Fig. 12; twill this weave to the left, commencing with the third thread. Weave Fig. 13 ; twill this weave of the right, commencing with the second pick. Each design to be 12 threads by 12 picks.

Fig. 14.
14. Design an oblique rib weave on 16 threads and 16 picks.
15. What are the chief characteristies of the regular and irregular rib weaves? Give two examples of each; warp and filling rils.

REVIFWQUH心NIONか


```
PAIRT 1II
```

1. Give your opinion on the subject of why clothe are backed, and explain the grood features of each system.
\therefore Explain why it is necessary to lind the back yarn as tamght in the lesson on backed cloths.
2. Name and explain the important steps in the construction of a domble cioth design.
3. Inow many threads and picks wond be reduised for each of the following donble cloth designs; on in other words, what would be the extent of each design ; all designs to be constructed on the plan of 1 face, 1 back: J end sateen for face t emd twill for back; 6 end twill for face, 3 end twill for loick; $>$ end twill for face, 3 end twill for back. 16 end fancy weave which repeats on 16 ends and $1:$ picks for face, and a 4 end twill for back.
4. Give the extent of the following donble cloth desings constructed on the \mathbb{Z} face, 1 back principle: 4 end twill for face and back; send twill for face, 4 end twill for back; 18 end twill for face, 8 end twill for back; fancy weave repeating on izt ends and 4) picks for face, and s end twill for back.
5. Give the extent of the following triple eloth designs constracted on the prineiple of 1 face. 1 middle, 1 batk; 4 end twill for face and middle, 2 end plain weave for back; 6 end will for face, 4 end twill for middle, and 6 end twill for mack; 16 end twill for face, 8 end t will for middle, and 4 end twill for batek.
6. Give the several important steps in the production of a triple cloth design.
. Can the relative position of the binders, or the system of binding used, affect the number of harnesses on which a design may be woren?
7. Explain why the binding should be distributed evenly.
8. Nake an original filling backed design and bind the back filling perfectly.
9. Make a filling backed design which if woven with a cotton warp and two wool fillings wonld hide the cotton; in other words, make a filling flush reversible.
10. Nake an original design to show a fancy twill on the face, and backed with filling, on the 2 face, 1 back system. This design to repeat on 18 picks or more.
11. Make an original warp back design, using the 1 face, 1 back system. Bind perfectly, and give the drawing in and chain drafts.
12. Back the design shown at Fig. 171 with warp on the 1 face, 1 back system. Gice drawing in and chain drafts.
13. Back the design shown at K, Page 128 , with warp using 2 face, 1 back system. Give drawing in and chain drafts.
14. Make an original donble cloth design; warp-1 face, 1 back; filling-1 face, 1 back. Give chain and drawing in draft, also a cut section of the first two picks.
15. Make a double cloth design on the 2 face. 1 back sys. tem, using Fig. 17, Page 123, for fate weare, and the three harness pronella twill for back weave. Bind in the best possible manner.
16. Make a donble cloth on 2 face, 1 back system, using Fig. : P, Page 129, for both face and back weave. Bind in ${ }^{1}{ }_{4}$ twill order. Give drawng in and chain drafts on lowest possible number of harnesses.
17. Make an original triple cloth design. Give chain and drawing in drafts, also a cut section of the first three picks.
18. Nake a triple cloth design on 1 lace, 1 middle, 1 back system, using lig. 205, Page 138, for face weare; Fig. 1: Page 1:5, for middte weave; and Fig. 19, Page 1D:3, for back weave. This design should be perfectly loound.

on the a Uhafotof
'TEXTILEDESIGN.
```
1'Al'l'1 b
```

1. Explain the method of making double plain designs, illnstrating your exphanation with an original design.
2. Nime the different methods of making spot designs and give an example of each method.
3. Write about 200 words, discussing the various kinds of pile fabrics, giving at least four original designs.
4. Make a spot design on 32×32 sfuares on the extra warp principle; effect to be two spots arranged in plain order. (ive drawing-in draft and harness chain.
5. (a) Ciive a comparison of piqué cloth and other fabries (b) Make an original piqué design using face and back warps, and face, batk, and binder fillings.
6. Why is it necessary to contimue a jaefuard design until it repeats on even spuares?
7. (a) How many hooks would have to be cast out of a "three hundred" jaecpuard machine to weave the design shown at Fig. 293? (b) Iow many would be cast out to weave Fig. 294?
S. Give a complete description of the method yon woukd follow in distributing figures in sateen order.
8. Make a diagonal jactuard design similar to Fig. 306, being careful to make the figures and the diagonal repeat.
9. Make an original design showing both warp and filling figures. Give the mumber of hooks on which it conkl be woren, and the mumber of hooks which would be cast out if a "four humdred" machine were used.

REVIHWRUENTIONS
 onthe adibector
 TENTILEDENIGN。

P.ARTV.

1. Give a general classification of cross-woven fabries. In what respect does each division differ from the others?
2. How many picks are there in one repeat of plain gauze, and what are the positions of the harnesses on cach pick?
3. Give twelve threads and eight picks of a plain gauze design, showing chain, harnesses, drawing in draft, and plan of eloth.
4. In what respect does a full ganze differ from a plain ganze?
5. Make a design with alternate stripes of plain gauze and full gauze. Each stripe should be at least eight threads wide.
6. Give the chain and plan of an original leno design similar to Fig. 316.
7. Write about three humdred words on the respective merits of Figs. 321 and 322.
\&. Make an original design similar to Fig. 32, but occupyiar a larger number of threads and picks.
8. Make a design similar to Figg 325, but limiting it to a smaller momber of threads and pieks.
9. What is the chief objort of (rossing the erossing threat under more than one gromul theread?
10. Make an miginal design on the one-threalderossing-more-than-one prine iple.
11. Nake an original design combinins a leno stripe with stripes of phain or twilled doth.
12. How many methots are there of using aolor in textile designing"
尼
