$-A g 8: 3465$

Bulletin 465

Cytological and Genetic Studies of Sterility in Inbred and Hybrid Maize

Frances. J. (lame

Commertirat
Agrirultural Gxpuriment Station
Alear Thatacn

CONTENTS

Page
Istruptction 705
Asyatapsis 709
Inversions 71
Translocations 716
Pollex and Oycle Semit-Lethals 718
Degener.mite: Changes 720
Discussion 723
Summary 724
Literlitcre: (itel) 725

Cytological and Genetic Studies of Sterility in Inbred and Hybrid Maize ${ }$

Frances J. Claris

Adiscussion of sterility in maize has applications to both practical and theoretical problems. One aspect is related to the increased growing of hybrid corn in recent years entailing more extensive breeding programs for the production of inbreds and hybrids. It is of practical value to determine and eliminate causes of sterility in inbred lines in order that uniform production may be assured in hybrid corn.

Partial or complete sterility may be manifested in corn by poorly filled ears, aborted pollen, and defective seeds, or a combination of these effects (Figures 1 and 2). Hereditary and non-hereditary failure of seed formation have been described by Mangelsdorf (22). Certain environmental conditions, such as relative growth rates of tassels

Figures 1 and 2.
Figure 1. Photomicrograph of pollen, stained with a weak solution of iodine, showing two types of aborted pollen grains. Smaller grains are darker in the photograph, and empty grains have no included starch. The large grains are normal.

Figure 2. Semi-sterile ear (right) and normal ear of maize. The semi-sterile ear has about 50 percent aborted ovules.
and ears, insect injury, diseases and growing conditions, may also change the development of ears and tassels. Usually such factors may be separated from sterility caused by aberrant chromosome behavior or genetic factors for lethal effects on gametes. However, if the silks receive insufficient pollen, the resulting ear often cannot be distinguished from a partially sterile one. Sterility which is inherent in the genetic or chromosomal constitution of the plant will be transmitted to succeeding generations through the pollen or egg cells

[^0]or thromgh both. and usually reants in relatively consistent percent-

The reants of inbreeding and of rrosing intned lines have been
 (18). Anmone (3) and others. The problem of hybrid vigor and a-pects of heterosis have been reviewed by East (10). Singleton (35) and . Joner (17). I decrease in size and vigor of a plant gemerally areompanies inbreeding and the approach to homozarosity. Cortain lincs of maize become difficult to maintain because of such weakening. amd are particulary susceptible to matarable wrowing emblions. Hybrids from such inbreds may, however. be quite rigomons. This fact has been given theoretical consideration by Jones (15). Canses of poorly filled ears of corn and particmarly weak plants have been determined for some stocks by detailed genetic and chromosomal analrese but wath methods have not been generally applied in corn hrexding programs.

Problems of theoretical interest are also assoriated with a cytological study of sterility in maize Singleton (3.5) amd Dohzhansky and Rhomes (!) have mgoested eytological and genetic techniguefor determining and locating factors responsible for heterosis. Burnham and Cartledge (\bar{r}) have outherd a mothod for locating factorm insolved in resistance to disease. Theoretical significance can also be given to the variations fome among a large momber of plants, as in a breeding program. Types of plante that are aberrant in leaf growth. chlorophyll patterns. plant form and fortility of gametes are often ohserved. The freptomer of ocemrence of such changes constitutes a -peedal problem to be attaded only in experiments clexgmed for the phrpose. IIowerer, when large mmbers of plants are grown it is possible to observe the kinds of changes which oceme and to investigate the calleses.

The following report comsiders cytological amd wemetice studies of - ome lypes of therility encomener in inheds amb hybids. Most of the report is hased on progenies fom semi-sterile cars diseovered in a

 mithed to - merereling

in a general way only with values fomed in experiments designed to determine the frequency of maturally ocemring mutational changes. The cytological and genetic analyses of the progenies from the semisterile ears were made in order to determine the kinds of naturally occuring changes which may be detected more particularly with cytological methods.

Another series of semi-sterile ears used in this investigation was obtained from rarious hybrids grown in other test plots. Six of these were from hybrids with the inbred Connecticut 243 ; five were from other field corn hybrids, and one was from a sweet corn hybrid. The sterility was found to be transmitted to six of the progenies grown. Five of the progenies showed no transmission of the sterility, and one a possible transmission of the sterility. The progeny from the semisterile ear having questionable transmission in this group of hybrid ears is difficult to classify both geneticaly and cytologically since this hybrid, one with Connecticut 243 , segregates a striped plant which is partially ear-sterile. does not always mature and is not inherited as a simple recessive.

The transmissible sterilities identified in the two groups of semisterile ears were found to be due to three general causes: (a) translocation between non-homologous chromosomes, (b) inversions of regions of chromosomes and (c) genetic factors for pollen or orule semilethals in which no cytological change could be found. A summary of the results obtained in these series of semi-sterile ears is given in 'Table 1. Six different translocations have been found one inrersion and three definite pollen or orule semi-lethals, with the addition of three possible semi-lethals. The progenies in which transmission of the sterility was definitely established showed semi-sterility in approximately 50 percent of the plants, whereas in progenies with doubtful transmission of the sterility about 25 percent of the plants were classified as segregating defective gametes.

The translocations and the inversion that have been identified are different from any that hare been previonsly reported. This indicates that the changes are of a spontaneous nature and not due to any contamination from genetic stocks grown at the same time.

Five inbred lines of dent corn have also been examined. Hybrids with one of the inbreds were found to be semi-sterile, and two of the inbreds were characterized by some pollen abortion. A cytological examination was made to determine the causes of the sterility. Two inbreds were found to hare variable amounts of asynapsis; one was found to have a small inversion: one was found to be homozygous for a translocation, and one was found to be mosaic for a chromosomal change. The last inbred is also characterized by degenerative changes in ear development. but any relation between such derelopment and the cytological changes has not been established. One of the inbreds having asynapsis has also been found to segregate a plant with a striped chlorophyll pattern. but the segregation is not that of a Mendelian recessive.

	Field corn test 1938			Other hybrids		
	$\begin{gathered} \text { Semil- } \\ \text { sterility } \\ \text { transmitted } \end{gathered}$	Doubtful transnission	$\begin{gathered} \text { No } \\ \text { transmission } \end{gathered}$	$\begin{gathered} \text { Semi- } \\ \text { steritity } \\ \text { transmitted } \end{gathered}$	$\begin{gathered} \text { Doubtful } \\ \text { transmission } \\ \hline \end{gathered}$	$\begin{gathered} \text { No } \\ \text { transmission } \\ \hline \end{gathered}$
Nimber of cars tested	12^{2}	3	9	6^{1}	1	5
Number of plant: examfined (1 millen and cars)	+81	70	103	74	40	47
- Werage pereent oi plants having semi-sterility	45.8	29.5	0	51.1	22.5	
Tramslocations	4 +	0 1 1	0 0	\cdots	0 0	11
Inversions	+	3	0 0	1	$1^{\prime \prime}$	()
Pollen or orule lethal. Number of plants examined eytologically	-	0	10	5	3	0

The results of the cytological and genetic study of the inhrens and hybrids will be discussed under the following divisions: asynapsis, inversions, translocations, pollen and ovule semi-lethals, and degenerative changes. Unless otherwise noted, all preparations made were aceto-carmine smears from anthers fixed in a tixing solution composed of 3 parts 95 percent ethyl alcohol and 1 part glacial acetic acid. according to the method of McClintock (24).

ASYNAPSIS

The failure of the chromsomes to maintain close synapsis in the meiotic divisions has been found in a number of plants ($3,11,12,19$. $20,28,31$). Beadle $(1,2)$ found such a condition in maize to be inherited as a simple recessive gene (αs). Variable numbers of gametes are aborted as a result of the action of this gene since one or more chromosomes fail to be included in the nuclei of part of the developing gametes. An examination of the pollen in inbred C243 revealed that about 50 percent of the pollen was of aborted grains-small or without any included starch grains. A cytological examination of meiosis indicated that the cause of this partial pollen sterility was in the lack of complete synapsis of the chromosomes. It is doubtful whether this condition is the same as that reported by Beadle, referred to above, since the asynapsis is not as complete, and the ears show very little if any sterility. Counts of microsporocytes at the diakinesis stage of meiosis are given in Tables 2 and 3.

Table 2. Counts of the Numbers of Cells Having Univalents at Diakinesis and Metaphase. From Two Plants of Inbred C243.

Plant	Number of cells with 10 bivalents	Number of cells with univalents	Total cellis	Percent of cells with asynapsis
38-392-1				
Diakinesis	107	234	341	68.6
Metaphase	25	138	163	84.7
42G 17-3				
Diakinesis	26	34	60	56.7

Table 3. The 406 Cells From Column Two of Table 2 Classified According to the Number of Univalents.

Plant	Number of univalents							
$38-392-1$	178	130	48	13	1	1	1	
$42 \mathrm{G} 17-3$	20	10	3	1	0	0	0	

It is evident that most of the cells had only one or two chromosomes which did not maintain their synapsis up to the time of diakinesis and metaphase. In many cells in which complete separation of some homologues was observed there were also one or more of the bivalents associated only at the ends. The number of chromosomes with partial asynapsis had no relation to the number of uniralents in the cell. When univalents are present in the meiotic divisions, they are
"ften not inchaled in either of the two damghter madei due to their lageing on the -pindle or bemg left off the spimalle figme. Small miorommelei which become pyonotic derelop from mivalents exchaded from developing telophase nomele This is similar to the beharion of frament chromosomes (20). Quartets that were cominted with refarence to the presence of micronndei are tabulated in Table 4.

Tible 4. Ňubers of Qurtets with Micronuclei ANo the Nomber of MickNuclei in the Microspores.

The number of micrommelei in a quartet is indicative of the amomnt of pollen abortion to expect. althomon a chamomome left out in a previons division is distributed at random to one of fom microspores and may be inchaded in a developing mucleas. Two pollen coments were made of two plants of ($\because 43$) one having $\begin{gathered}\text { (} ; \text { perent small and emptr }\end{gathered}$ grans, the other having to perent smatl and empty grans. The poitlen abortion resulting from spore which failed to recerve a complete chemosome complement may he variable if the amonnt of aspanpsis is depement upon emvirommental conditions. Some indication of this wat fomm in comparing phants grown in the fied and in the green-
 aspolapsis in mata may depend on emvirommental romditions.
 asyangesis as deseribed above inhoed ('1t. three plants of which were "xamimel, was fomm to hate some aspanpis. Fome plats of the hy-

aborted pollen. A $1: 1$ ratio would be expected from a simple gene ratio. Transmission is effected through both pollen and eggs but, since these numbers are small, it cannot be stated definitely that the inheritance is that of a simple recessive gene. Partial asynapsis seems to occur frequently in inbred plants and may well have some physiological basis for expression.

INVERSIONS

Two inversions were found during the examination of the inbreds and hybrids. One of these included the centromere, as was found by the prophase synapsis of the chromosomes and by the absence of bridges and fragments in the meiotic divisions. The other inversion does not include the centromere, as was shown by the cytological examination. Types of crossovers in inversions, and gametes produced are discussed by McClintock (26), Darlington (8) and Sturtevant and Beadle (39).

The inbred Iowa La has been grown for about 14 years. Cytological examination of plants of this inbred indicated that a small inversion was present although the inbred might have been expected to be free from aberrations after the period of inbreeding. One plant was examined cytologically in the summer of 1938 to determine the morphology of the chromosomes. Bridges and small fragments were found at the meiotic divisions, and it was concluded that the plant was heterozygous for a small inversion. The progeny of this plant was grown and 10 plants of the next generation were also found to be heterozygous for an inversion since bridges and fragments were found. It was concluded that the inversion is a short one since the fragment is so small, but the location on the chromosomes was not observed. There is some evidence that it may be the small terminal inversion, not including the centromere, on the short arm of chromosome 8 (previously reported by McClintock, 25), and the amount of crossing over is similar to that observed for the chromosome 8 inversion. The frequency of crossing over in this inversion was determined by counts of the types of bridges and fragments observed at the meiotic divisions (Table 5).

Table 5. Counts of Bridges and Fragments at the First Meiotic Division in Four Plants Having a Small Heterozygous Inverstoa.

Plant no.	Non-cross- overs	Bridge plus fragment	Bridge, no fragment	Fragment, no bridge	Two fragments	TotalPercent cross- overs	
Anaphases	46	13	2^{1}	4	$1+1 ?^{2}$	67	29.9
$836-6$	34	3	1^{1}	2	0	40	15.0
-7	7	2	0	0	0	9	22.2
-9	38	8	$1+1 ?$	2	0	50	22.0
-11			17	1	48	2^{3}	390
Telophases	322	7				17.4	

[^1]
1.16.1815: ! (0-15.
(1)

A single crossover within the inverted region is represented in these counts by a bridge and a fragment. If the fragment is included in one of the developing telophase nuclei, only a bridge is observed; if the bridge should break early, only a fragment would be observed. A double crossover (t-strand) is represented by a bridge and two fragments at the first meiotic division. The occurrence of other types of crossovers cannot be demonstrated from the division I configurations, but the presence of bridges in the second meiotic division indicates that they may occur in this small inversion (Figures 10 and 11). Six cells were found (of a total of 140 counted) having a bridge in one of the sister cells resulting from the first meiotic division. A threestrand double crossover, one crossover in the inversion and one crossover outside the inversion, results in a bridge in one of the sister cells at the second meiotic division. A triple crossover results in a bridge in both sister cells of division II, one sporocyte of this type being observed among the 140 counted. It is erident that numerous crossovers take place within the limits of this small inversion,

The second inversion was found during the examination of the semi-sterile ears from the field corn test described above. The inversion was found in the following hybrids: $4-8 \times \mathrm{R} 4,540 \times 4-8,187-2$ $\times 4-8 \mathrm{~A}$ and lowa Hybrid 13. Since $4-8$ was one parent of the first three hybrids, it may be that this inbred carried the inversion and that it was found in the open pollinated ear of Iowa Hybrid 13 through contamination. Further examinations of the inbreds used in the making of these hybrids will have to be made before it is certain that the inbred 4-8 was heterozygous or homozygous for the inversion, or whether it occurred spontaneously in a generation prior to making the hybrids.

The limits of the inversions are shown diagramatically in Figure 3, and photographs are shown in Figures 12 and 13. Since the inversion includes the centromere, crossovers do not result in bridges and fragments at the meiotic divisions. However, duplicated and deficient gametes are formed as a result of crossing over, and aborted pollen grains and semi-sterile ears are characteristic. Inversions

Frgure 10. Chromosome bridge at anaphase of the second meiotic division in one of the sister cells. See text for explanation. Plant 40-836-5 (Pedigree Iowa La.) Magnification $\times 500$.

Figure 11. Bridges at anaphase of the second meiotic division in both sister cells. See text for explanation. Plant 40-836-5. (Pedigree Iowa La). X 500 .

Figures 12 and 13. Two sporocytes heterozygous for the inversion on chromosome 1. The loop configuration is at the lower part of each photograph. The arrows point to the centromeres. Plant 39-1428-2. (Pedigree $4-8 \times$ R4). $\times 950$.

Figure 14. Heterozygous translocation between chromosomes 1 and 2. A drawing of this translocation is given in figure 9. Plant 38-382-1. (Pedigree 237 Q2L4A). $\times 750$.

Figure 15. Photomicrograph of a sporocyte from the same plant which had the sporocyte shown in figures 9 and 14. In this cell there was no translocation between chromosomes 1 and 2. The numbers 1 and 2 ' on the photograph are placed by the respective chromosomes. The arrows point to the centromere regions. Plant 38-382-1. (Pedigree 237 Q2L4A). $\times 750$.

Figure 3. A. Normal chromosome 1. The arrows mark the approximate limits of the inversion.
B. Inverted chromosome 1.
C. Outline drawing of synapsis of normal and inverted homologues at mid-prophase of meiosis. Plant 42G 8-1 (Pedigree $540 \times+8$).

The centromere region in all drawings is indicated by the lighter open circle.
inchuding centromeres are rarely reported (Sturterant and Beadle 39, p. 139). 'They may ocour as freguently as other inversions, but the method of detecting them in maize by the presence of anaphase bridges and fragments does not allow the identification of those inversions including the centromere. The amount of pollen abortion in plants from two of the hybrids is given in Table 6.

Table 6. Counts of the Polee Pronleg by Four Plants Haming a Heterozygous Intersion on Chromosomie: 1.

Pedigree	Plart	Normal pollen grairis	Empty grains	small grains	Total	Percent aborted
187-2 $\times 4-8 \lambda$	$40-899-15$	(9)1	209	6	966	28.5
		6.17	252	12	911	29.0
		780	318	11	1115	29.5
540×4.8	+29: 2 -3	5.39	3×5	38	942	$+2.8$
	42: 8-1	768	146	-	914	10.0
	8-3	813	227	-	1040	23.10

Table 7. Progeny of Plants Heterozygous for Inversion on Chromosome 1.

Type of cross	No. of plants without inversion	No. of semisterile plants	Total	Percent with inversion
Hybrid ear open- polinated				
$4-8 \times \mathrm{R} 4$	11	8^{1}	19	42.1
$540 \times+4$	22	18^{2}	40	45.0
$187-2 \times 4-8 \mathrm{~A}$	15	14^{1}	29	48.3
Iowa Hybrid 13	22	3	25	12.9
Selfed ears from 151				
$187-2 \times 4-8 \mathrm{~A}$	${ }_{10}^{2}$	15 6	17	88.2 37.5
	5	7	12	58.3
	3	9	12	75.0
Heterozygous inversion				
X or on normal	11	8	19	42.1
	$\begin{array}{r} 14 \\ 8 \end{array}$	$\begin{array}{r} 7 \\ 11 \end{array}$	21 19	$\begin{aligned} & 33.3 \\ & 57.9 \end{aligned}$
Totals	123	106	229	46.3

${ }^{1}$ One plant examined cytologically.
${ }^{2}$ Two plants examined cytologically.
in a cross with a normal stock, one-half the resulting progeny should be heterozygous for the inversion and one-half should have normal chromosomes. When any of these three types of crosses is made, there should be one-half the progeny with normal pollen and one-half the progeny with pollen segregating aborted grains, the latter representing plants heterozygous for the inversion. Ears of most plants heterozygous for this inversion are recognizable as semi-sterile. Transmission of the inversion was tested by making the crosses described above. The data are given in Table 7. Classitications were based on

Figure 4. Outline drawing of the synapsis at midprophase of meiosis in a plant heterozygous for a translocation between chromosomes 1 and 2. An inbred (696-3c) was found to be homozygous for the translocation. Chromosome 1 has prominent chromomeres at the end of the short arm and a heterozygous knob on the short arm. Chromosome 2 has a homozygous knob on the long arm. Plant 38-1210-8 (Pedigree 696-3c X Pamunkey).
pollen or ear examinations and in some instances were rexified by crtological examination. Crosses between the inversions from difterent sources will be made to determine if they are identical. A further proof of this would be in finding the inversion in the inbred 4-8.

TRANSLOCATIONS

Seren different translocations have been identified during the analysis of the semi-sterile ears. One of the translocations is of particular interest since 696-3c, a Lancaster field corn inbred, was found to be homozygons for it.

It was observed that all plants resulting from crosses with this inbred had semi-sterile ears. The hybrid 696-3c \times Pamunkey was examined cytologically, and the translocation was found to be present in the heterozygons condition (Figure 4). Approximately 0.4 of the short arm of chromosome 1 was exchanged with about 0.5 of the long arm of chromosome 2. The transiocation had occurred in the inbred and became homozygons during inbreeding. Since no apparent growth change occarred in the inbred as a result of the translocation it was not detected until hybrids with it were grown and the translocation hecame heterozygons. Roberts (32). however, found eridence statistically that some homozygous translocations may affect the derelopment of the maize plant in the rate of maturing and total growth.

Figures 5, 1 ani 7.
()utline drawings of symaper chromosomes at the mid-prophase of meiosis.
 The transbeation weourred bear the ends of each chromosome. Chromosome 6 , is attacheal to the moleolns and is characterized in this plant by a -mall and a large kom on the long arm. 1'lant fo-894-10. (Vedigree 683-8c -21.3).
 The trambecation wemred abont mid-way on the long arm of chromosome

 $47+7 \because 47-5)$.

Figure 8. Photograph of "streaked dwarf" type of plant. The upper leaves show the typical streaking and the lower leaves are normal. This plant had not yet lost the upright habit of growth. Plant 38-15-8. (Pedigree 243×14) .

In a breeding program small changes would probably not influence the selection within inbred lines.

The six other translocations were found in the progenies of the semi-sterile ears. A sweet corn hybrid was found to have a translocation between chromosomes 6 and 9 . Translocations found among the field corn hybrids were between chromosomes 1 and 6,1 and 7 . 2 and 5.4 and 6 . and 6 and 8 (Figures 5, 6 and 7). The presence of chromosone 6 in four out of six of the translocations oceuring spontaneonsly may sngest that the naturally occuring breakage and reattachment of chromosomes is not random. Each of the 10 chromosomes would be expected to occur 1.2 times in six translocations taking place at random between the chromosomes. The presence of chromosome 6 in four of the translocations is significant ($\mathrm{P}<.02$). but the number of translocations should be increased before any general conclusion may be drawn.

The disjunction of the chromosomes haring translucated regions usually results in approximately 20 percent of the gametes containing duplications and deficiencies, although some low-sterile translocations have been reported (4). The disjunction of translocated chromosomes in wheat may not be random according to the report of Thompson and Hutcheson (40). Their calculations of the effect of crossing over on sterility, however, do not take into account that crossing orer occurs in a four-strand stage. A representative count of the pollen produced by plants heterozygous for the translocation between chromosomes 6 and 4 is given in Table 8.

Table 8. Types of Pollen Prodeced dy a Plant Fron loweath Hybrid 129. Heterozygols for a Translucition.

Plant	Normal pollen	Small grains	Empty	Total	Percent aborted
$42 \mathrm{G} 11-1$	476	248	231	955	50
$11-2$	1,64	235	188	1087	39
$12-1$	470	154	176	500	41

Gne of the cars harvested in the fied com test and classified superlicially as semi-sterite appeared to he a mosatic. Half the ear was well filled with kernels while the other hald was only partially filled. Seed from both hates of the car was phanted, and althom if phants were examined extologically (at diakinesis) and pollon was examined from 20, phats, there was no widence of any somi-sterility. Ears from these phants were nomal. It wats condeded that the apparent semi-sterility of part of the ear was due to chrifommental of phesor logical canses.

POLLEN AND OVULE SEMI-LETHALS

latanmes of at tyw of semi-ateritity in which rertain proportion-

linkage with known genes, and may themselves be nsed as genetic characters useful in locating other genes. Three types of semi-lethals similar to those reported by others and not associated with detectable chromosome aberrations were found in the inbred and hybrid ears examined.

One of the pollen-segregating types was from the variety Kato. In the first generation from the open-pollinated ear there were 13 plants with normal pollen and one plant that was segregating empty pollen. In succeeding generations there were obtained 11 plants with segregating pollen (eight of these coming from a cross with the pollen parent having the segregating type) and 11 plants with normal pollen. Three of the segregating plants were examined cytologically, and it was found that the chromosomes were all apparently normal with no evidence of any deficiency, inversion or translocation. Any classification for the semi-sterility is based on pollen examinations since plants segregating empty pollen have normally filled ears. The pollen is about 30 percent aborted. Since it was found that the factor causing aborted pollen is transmitted through the pollen, it is suspected that a chromosomal aberration is present that may be small and was not detected in the cytological examinations.

From the hybrid W209-13K \times Multiple Leaming 1936, a smallpollen type was isolated. In this instance plants that are segregating the small pollen (smaller in size than normal pollen grains but well filled with starch) also have some orule abortion and produce ears appearing semi-sterile. From the open-pollinated ear of the hybrid, there were 11 plants with normal pollen and eight with segregating pollen. There were 16 plants with normal pollen and five with segregating pollen in the next generation from a selfed ear. A cross by stb gave 18 plants with normal pollen and two with segregating pollen. As shown in Table a. there is no alteration of the expected 1:1 ratio

Table 9. Crosses of su \times Two Plants Segregating Small Pollen and su.

Plant	Su kernels	su kernels	Total
$41-559-3$	202	177	379
-28	95	92	187
Total	297	269	560
Expected	288	288	

indicating no linkage of the factor for small pollen and su. This factor for small pollen is different then from that reported by Singleton and Mangelsdorf, referred to abore, as $s p_{1}$ reported by them is closely linked with su.

There was no evidence of any chromosomal deficiency. inversion or translocation from a cytological examination of a plant segregating the small pollen.

Another type of semi-sterility. similar to the lethal orule (lo) factor reported by Singleton (33) and Singleton and Mangelsdorf
(36) was found in the hybrid $676 \times 112-1$. These inbred parents are the same as those from which Burnham isolated the pa gene (5, 6). The semi-sterility found here was characterized by ears which are semi-sterile in appearance due to the abortion of about 50 percent of the orules, but the pollen produced by these plants is normal. It was determined that this is not the same lo previonsly reported by making crosses with su. There was no disturbance of the Su: su ratio indicating no linkage with su on chomosome 4 . The numbers obtained were $227 S_{u}$ and 76 su (25.1 percent).

In addition to the three types of pollen and orule lethals just discussed, there were also three types which hare not been grown beyond the first generation from the open-pollinated ears. For this reason they were classified in Table 1 as having questionable transmission of the sterility factors. From the hybrid La (Idt) \times Kr (Osf) there were obtained 12 plants with normal pollen and two plants haring some anthers with normal pollen and others with empty pollen. Twenty-two normal plants and four plants segregating empty and small grains were obtained from the hybrid 244 . From another hybricl. Iowealth Hybrid $\Lambda Q, 18$ normal plants were obtained and nine plants with small or empty pollen grains. Some of the latter plant. were very small with narrow leaves, and these may have represented deficiencies of some sort since no matme seed was obtained from them.

DEGENERATIVE CHANGES

In addition to a reduction in size and vigor of maize plants during inbreeding. abnomalities such as small seeds, chlorophyll deficiencies, dwarfed phants, sterile tassels and silkless ears may be found. Some of the rarations indicate that matational changes have occorred since the inheritance is that of simple recessive or dominant genes. When such types of phants occur during inkreeding, they may m may not be eliminated depending mpon whether plants arrying the factors in the heterozyous condition are selected for continuing the lines. Other abommalities oreur sporadically, do not behave in inherdance as Mendelim recessives of dominants and may result ultimatery in the loses of a particular inbred line.

An example of the batter trepe of change appeared in line 1- $-1-1-2$.
 ly remmbling a disamed combition, amd the line was mlimately lost Conther 1!pe al streakine of the leares has appeared in the inhred

stripping and bending are manifent. The plants are shorter than their normal sibs.

A preliminary histological examination showed that cell divisions were normal in yomg leat sheaths and there was no evidence of any small ring chromosome whose loss might account for the variegation (27). It was observed that cells surrounding the vascular bundles in the leaf may become abnormal in appearance and partially filled with an opaque substance. The subsequent death of these cells conld account for the streaking and lack of stiffness of the leaves since in later stages some of the streaking resembles a necrosis.

Five plants which were the characteristic "streaked dwarf" type have been examined cytologically. Three of these were from hybrids with 243 , two of which had 243 as the pollen parent (Ldg $\times 243$ and $782-54 \times 243$) and one with 243 as seed parent (243×14). The other two were in the inbred C 23 T and a related hybrid, $615-11 \mathrm{D} \times$ 615-9. Pollen from these plants and three additional streaked plants was essentially normal with no segregation type of pollen grain being present. The chromosomes were all apparently normal at the midprophase of meiosis, and there was no evidence of any deficiency, inversion or translocation. In addition two normal sib plants were examined cytologically. They were also found to have normally synapsed chromosomes and no chromosome aberration in the heterozygous condition. Pollen from these plants was normal with the exception of a few smaller pollen grains.

The "streaked dwarf" type of plant does not occur in a ratio expected on the basis of a simple recessive gene as shown in Table 10. Seven streaked plants were selfed. In the progeny of these there were 59 normal plants, and none was streaked.

Table 10. Numbers of Streaked and Normal Plants Resulting fron Crosses with the "Streaked Dwakf" Type of Plant.

Plant	Normal	Streaked	Normal Backeross Streaked	
40-127	4	0	-	-
174	10	0	-	-
814-12	8	1	-	
$815-9$	38	1		
$814-6 \times 2$	-	-	14	,
Total Expected	60 46.5	$\stackrel{2}{15.5}$	$\stackrel{14}{8.5}$	$\stackrel{3}{8.5}$

Another type of degenerative change was found in the line 1-7, C237, (16). At the seventeenth generation of inbreeding two sib lines were separated in this inbred. Ears of one line are more poorly filled than those of the sib line, resulting in a significantly lower yield of grain. Plants with the poor ears are taller than the sib line. Two plants of this poor-ear line were examined cytologically. One of these had sporocytes in which no chromosomal changes could be observed. and the synapsis of homologous chromosomes was normal. The other
plant was examined more completely and there were fomm a few figares of heterozgous translocations. On eight preparations from different anthers. a total of 642 chromosomes conld he identified in 137 sporocytes. Of these five sporocytes had a heterozyens tramslocation between chromosomes 1 and \because (Fignres 9. 14 and 15). and five sporncytes had heterozgoons translocations that were not definitely iflentified, but were probably between chromosomes + and is and chromusomes t ard 10 .

Figure 9. Heterozegons translocation betwern chromosomes 1 and 2 Found in a ien sporseyter of atm imther. A photograph of the sporocyte from which the drawing was made is shown in figure 14 . The translocation occurred near the kiob on the long arm of chamomome 2 and abont mid-way on the longe arm of chromosome 1. Plant 3א-3Sコ-1. (1'ediprere 2.37 () 21. 1 1).

 mimal plante.

Since a cetological examination is made of reatively few sporocytes, and part of the tassel is left to derolop matme pollen, it is diflicult to estimate the ferquency of ocemrence of any chromomomal changes taking phace in soorocytes or pre-meiotic rells from an analysis of the chronosomes. However, if any changes are present in the pollen, they shombl be detected in the next generation. I coment was made for any transmission of semi-sterility after using a pant from a (ross with the poor-car line as the pollen parent. From plants of this cross 50 normal ears were obtained and one semi-sterile. Another (ross had 30 normal ears, one semi-sterile and one with a portion of the ear appearing semi-sterile. These have not as yet been examined cytologically to determine if any chromosomal change had been transmitted. These numbers are still too small to enable a determination of the frequency of occurrence of any chromosomal changes to be made.

DISCUSSION

In the foregoing accoms of sterility in inbred and hybrid maize the emphasis has been placed on the kind of change observed rather than on the frequency of occurrence. Any precise determination of the frequency of mutational or chromosomal changes must be made in experiments designed for such a purpose.

In each of the groups of semi-sterile ears used, 50 percent of the ears had no transmission of the sterility or doubtful transmission to succeeding generations (Table 1). This is in agreement with the observation that many poorly filled ears of corn are manifestations of envirommental conditions and are not due to any inherent chromosomal changes which affect the fertility of the gametes. That chromosomal alterations do occur was shown by finding translocations and inversions in the succeeding generations from half the progenies grown.

The translocations reported here have arisen withont any treatment and are thus considered of naturally occurring origin. They are different from any previously reported translocations. Burnham $(5,6)$ found a sterility in maize in inbred material, and Lindstrom (21) has emphasized that mutations may be readily isolated from inbred lines of maize. A comprehensive analysis of defective types of endosperm development originating in rarieties, inbreds and hybrids has been presented by Mangelsdorf (22).

The frequency of spontaneous chromosomal changes (translocations and inversions) is not known for maize, but Stadler (38) found 0.9 percent of the control plants in an experiment with X-rays and ultra-violet radiation to hare segregation for defective pollen. "In totalling the ears harvested in the field corn test reported in this discussion, there was found a maximum of 0.11 percent plants with semisterile ears, those segregating defective ovules. Since many different lines were totalled in determining this value, it cannot be considered one derived from a "control".

If there is no deficiency asociated with a translocation. or no selection against ganctes carring it, lines homozrons for a change are automatically establishet durme inbreeding in the same manmer that agene for a plant character is obtaned homozgous in an inbred line. The inbred tan-3c was found to be homozrgous for a tramslocation between chromosomes 1 and 2 . Another, a sweet corn inbred. was previously found at the Connecticut Experiment Station to produce all semi-sterile ears when crossed with other inbreds. This wats also homozrgous for a translocation (identified by Burnham). Inbreds homozyons for translocations are not detected, until crosses are mate with them mules there is some effect on the growth of the plants. They are nseless in the production of hyrbids since all the resulting crossed progeny is semi-sterile.

The type of sterility which is transmitted either throngh the pollen or throngh the egg cells is also octasionally found in inbred and hyrbid stocks. When the pollen is segregating defective types but the cars are normal, the condition camot be recognized by field examination. An inbred carrying a factor for pollen abortion would be at no serious disadrantage if it were normal in other respects and produced adequate amounts of pollen in spite of the sterility. When a factor for orule abortion is present and the pollen is normal, the condition would be easily recognized by the semi-sterile cars produced, and the line would be discarded for commereial production.

Degencrative changes which oceur sporadically in inbed material are of interest in theoretical probiems but are a hindrance in a practical breeding program. Many of these may hare physiological or enrirommental bases for expression. They are dillicult to analyse genotically and there is a possibility that the presence of modifying factors may aflect the phenotype, partienarly in instances in which the ratios differ significantly from theoretical Mendelian ratios. When sib lines difter after a number of years of intheeding. as was found to be the case in line C $2: 3$, the inferences may be drawn that the inbred. mas be very suseptible to critical envirommental comditions that homoxtionity has not been attained or that the frequency of changes afreating the phemotye of the phant is relatively high. In the line
 of charonosomal changes.
 -hown that many of the chamges had ocemered withom producing any

SUMMARY

doubtful transmission of the sterility and 14 had no transmission of the sterility.

Six translocations, an inversion and three factors for lethal gametes were found among the progenies in which the sterility was transmitted to succeeding generations.

Five inbred lines of dent corn were analyzed cytologically to determine the causes of sterility in the inbreds and in hybrids with them. Two were characterized by variable amounts of asynapsis. One was found to have a small inversion and one was found to be homozygous for a translocation. The fifth inbred was studied in relation to a degenerative type of ear development and was found to have anthers with the majority of the sporocytes with normal chromosomes. A few sporocytes were found having heterozygous translocations.

LITERATURE CITED

1. Beadle, G. W. Genetical and cytological studies of Mendelian asynapsis in Zea mays. N. Y. (Cornell) Agr. Expt. Sta. Mem. 129. 1930.
2. Further studies in asynaptic maize. Cytologia 4 :269-287. 1933.
3. Bergner, A. D., J. L. Cartledge, and A. F. Blakeslee. Chromosome behavior due to a gene which prevents metaphase pairing in Datura. Cytologia 6:19-37. 1934.
4. Burnham, C. R. An interchange in maize giving low sterility and chain configurations. Nat1. Acad. Sci. Proc. 18 ;434-440. 1932.
5. Abnormal genetic ratios in chromosome 1 of maize associated with pollen abortion. Amer. Nat. $69: 60$ (Abstract). 1935.
6. Cytogenetic studies of a case of pollen abortion in maize. Genetics 26:460-468. 1941.
7. and J. L. Cartledge. Linkage relations between smut resistance and semi-sterility in maize. Amer. Soc. Agron. Jour. 31 :924-933. 1939.
8. Darlington, C. D. Recent advances in cytology. Second edition. P. Blakiston's Son and Co. Philadelphia. 1937.
9. Dobzhansky, Th. and M. M. Rhoades. A possible method for locating favorable genes in maize. Amer. Soc. Agron. Jour. 30:668-675. 1938.
10. East, E. M. Heterosis. Genetics $21: 375-397.1936$.
11. Goodspeed, T. H. Chromosome unbalance and the asynaptic condition as induced in Nicotiana by X-radiation. Sixth Int. Cong. Genetics Proc. 2:67-69. 1932.
12. Hirschmorn, E. Observaciones sobre la meiosis normal y un caso de asinapsis en Sisyrinchiunn. Rev. Argentina de Agron. 1:66-75. 1934.
13. Jenkins, M. T. The effect of inbreeding and of selection within inbred lines of maize upon the hybrids made after successive generations of selfing. Iowa State Col. Jour. Sci. 9:215-236. 1935.
14. Jones, D. F. The effects of inbreeding and crossbreeding upon development. Conn. Agr. Expt. Sta. Bul. 207. 1918.
15. The attainment of homozygosity in inbred strains of maize. Genetics 9:405-418. 1924.
16. Continued inbreeding in maize. Genetics 24:462-473. 1939.
17. -_-_ Chromosome degeneration in relation to growth and hybrid vigor. Nat1. Acad. Sci. Proc. 28:38-44. 1942.
18. and P. C. Mangelsdorf. The improvement of naturally crosspollinated plants by selection in self-fertilized lines. I. The production of inbred strains of corn. Conn. Agr. Expt. Sta. Bul. 266. 1925.
19. Koller, P. C. Asynapsis in Pisum sativum. Jour. Genet. 36:275-306. 1938.
20. Levan, A. The cytology of Allium amplectens and the occurrence in nature of its asynapsis. Hereditas $26: 353-394.1940$.
21. Lindstron, E. W'. Some new mutants in maize. Iowa State Col. Jour. Sci. $9: 237-2+6 . \quad 1935$.
22. Mhagensore. P. C. The genetics and morphology of some endosperm characters in maize. Comn. Agr. Expt. Sta. Bul. 279. 1920.
23. -. Mechanical separation of gametes in maize. Jour. Hererl $23: 289-295.1932$.
24. McClistock, B. A cytological demonstration of the location of an interchange between two non-homologous chromosomes in Zca mars. Natl. Acad. Sci. Proc. $16: 791-796.1930$.
25. C. Cytological observations of deficiencies involving known genes, translocations and an inversion in Zca mays. Mo. Agr. Expt. Sta Res. Bul. 163. 1931.
26. - The fusion of broken end of sister half-chromatids following chromatid breakage at meiotic anaplases. Mo. Agr. Expt. Sta. Res. Bul. 290. 1938.
27. -_ The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaper chromosomes. Genctics $23: 315-376.1938$.
28. Myers. II. M. and L. Powers. Meiotic instability as an inherited character in varieties of Triticum acstiz'um. Jour. Agr. Res. $56: 4+1-452.1938$.
29. Powers, L. and A. O. Dahl. Failure of diakinesis and metaphase pairing and the behavior during meiosis of mivalent chromosomes in Zea may's. Jour. Agr. Res. 54:655-668. 1937.
30. Rhoades, M. M. and V. H. Rhoades. Genetic studies with factors in the tenth chromosome in maize. Genetics $24: 302-31+.1939$.
31. Richardsos, M. M. Meiosis in Crepis. 11. Failure of pairing in Crepis cupellaris. (L.) Wallr. Jour. Genet. $31: 110-1+3.1935$.
32. Roserts, L. MI. The effects of translocation on growth in Zea mays. Genctic: 27:58t-603. 19+2.
33. Singleton, W. R. Complete elimination of certain classes of gametes in Zeu Sixth Int. Cong. Genet. Proc. 2:182-18t. 1932
34. —_-_ Influence of female stock on the functioning of small pollen male gametes. Natl. Acad. Sci. Proc. 26:102-104. 1940
35. Hybrid vigor and its utilization in sweet corn breeding. Amer. Nat. $75: 48-661.19+1$.
36. - and P. C. Mavgelsnorf. Gametic lethals on the fourth chromosome of maize. Genctics $25: 366-390.1940$.
37. Smager, G. F. Hybrid vigor and growth rates in a maize cross and its reciprocal. Jour. \gr. Res. $53: 819-830$. 1936.
38. Staner, L. J. The comparison of ultraviolet and X-ray effects on mutation. Cold Spring Harlor Sym. on Onant. Biol. $9: 168-177$. $19+1$.
39. Stretemavt. A. H. and G. IV. Beamp. An introtuction to genetics. IV. B. Saunders Co., Philadelphia. 19-10.
fo. Thombon, IV. P. and I, Hutcheson. Chromosome behavior and fertility in diphoid wheat with transhocation complexes of fone and six chromosomes. Canarl. Jour. Res. $20: 2(7)-281.19+2$.

[^0]: 1 This investigation was supported in part by a grant from the Rockefeller Foundation.

[^1]: ${ }^{1}$ Fragment possibly attached to bridge.
 ${ }^{2}$ No bridge; bridge in one?
 ${ }^{3}$ One with bridge; one with no bridge.

