

UNIVERSITY OF
ILLINOIS LIBRARY

AT UR3ANA-CHAMPAIGN
ENGINEERING

NOTICE: Return or renew all Library Materialsl The Minimum Fee lor

each Lost Book is $50.00.

ing this^hmFriif iPreJ^SflibThe person charging this matCTiai irreipQuible for

its return to the library from which it was withdrawn
on or before the Latest Date stamped below.

Theft, mutifati<u(, tnO utKlerliniiig oj b0|bla gr^^afliaps for discipli-

nary actioijar^ j|^''|fgi||^4f&n{^^|!^^p|gi||iiversity.
To renew i

UNIVERSITY ILLINOIS LIBRARY URBANA-CHAMPAIGN

L161—O-1096

/?/ o. ENGINEERING LIBRARY
-^ ^"

UNIVERSiiy OF ILLINOIS
7 URBANA, ILLINOIS

•j^ f^ ?< 5

utation

CAC Document No. 257

The Data Interchange File

:

Progress Toward Design and Implementation

Richard C. Roistacher

Center for Advanced Computation
University of Illinois

Urbana, IL 618OI

Table of Contents

Abstract 1

INTRODUCTION 1

Card image files 2
Self- described files 3

SUPPORT FOR A DATA INTERCHANGE FILE 4

The CONDUIT conference 5

The LEAA Research Support Center 5

DESIGN CONSIDERATIONS 5

Character format 6

Separate dictionary and data files 6

Card image dictionaries 7

Free format dictionary records 7

Machine readable file documentation 8

Variable length data records 8

Structure definition 9

Standards of Good Practice 9

AN IMPLEMENTATION OF THE INTERCHANGE FILE 10
The Dictionary 10

Documentation records 10

Variable description record 11

Missing data record 13
Category label record 14

Structure Description techniques 14

Rectangular files 15
Hierarchical Files 15

Network Data Bases 18
Relational Data Bases 19
Matrices and Tables 19
Structure and Record Definition Records 20

Record definition record 20
Structure definition record 21

Entry definitions 22
Data Standards and Conventions 23
Interchange File Creation and Conversion 23

Manual Creation 23
File Conversion Programs 23

Machine Readable Documentation 24
Codebooks 24
Information retrieval keywords 24

GLOSSARY 25
REFERENCES 26

Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://archive.org/details/datainterchangef257rois

Ths Data Interchange File:
Progress Toward Design and ImplementationC 1

]

Richard C. Roistacher
Center for Advanced Computation

University of Illinois
Urbana, IL 61801

Abstract

Most self described data files are designed for maximum
efficiency in processing with a particular data management
or analysis system. This paper outlines a design for a Data
Interchange File for the transfer and archiving of machine
readable data. The primary design criteria of the
Interchange file are generality, simplicity, and
ex tendibility . The file will accept rectangular and
hierarchical files, matrices and tables of arbitrary
dimensionality, as well as data from network and relational
data bases. The file is self described and will accept
machine readable documentation as archival data. Strategies
are also outlined for the technical and organizational
implementation of the Interchange file.

INTRODUCTION

An increasing amount of scientific research activity
involves the dissemination and secondary analysis of machine
readable data files. Some of these data files are produced
by individual research projects, some, like the Uniform
Crime Reports are produced by organizations in the course of
their operations; some, like the National Crime Panel
Victimization Data, are produced as part of a special
research project; while others, such as the National
Election Studies, are produced by ongoing data collection
efforts funded by a consortium of data users.

A data collector who is also the data's end user has
many options for file construction and documentation. In
the limiting case, a producer can maintain data in a

completely undocumented deck of punched cards, relying
solely on memory or a FORTRAN format statement for

[1] This work was originally supported by Grant
75-NI-99-0077 from the National Institute of Law Enforcement
and Criminal Justice, and is currently supported by Grant
77-SS-99-6021 fr^m the National Criminal Justice Information
and Statistics Service, Law Enforcement Assistance
Administration

.

The Data Interchange File
Progress Toward Design and Implementation

information about the file. Standardized documentation is
not always crucial where data are transferred through
personal contact between producers and users, although it is
not uncommon to discover a colleague who would be happy to
share a file, but who has forgotten its format.

An increasing number of files, however, are transferred
not by personal contact between producers, but through
dissemination by a central archive. National archives such
as the Inter-University Consortium for Political and Social
Research and the Roper Public Opinion Center receive data
from their original collectors, transform files to a

standard form, write appropriate descriptions of files, and
fill user orders for data and documentation. Even though it
is sometimes possible to refer a client's question to the
original producer, no archive can afford to omit information
transmitted by the producer from its own file; nor can an
archive afford to produce documentation which is anything
less than a complete summary of the original producer's
documentation

.

Card image files . The archivist's problem has in some
respects been simplified, and in other respects complicated
by the development of integrated statistical systems, self-
described files, and machine readable documentation. The
universal coin of machine readable data exchange is the deck
of punched cards or the unlabeled, unblocked card image
tape. The most common representation of data in such files
is as numeric characters, with missing data indicated either
by blanks or by some arbitrary code, such as a field of
nines. In some cases, alphabetic characters are used to
indicate valid data values, with "-"s and "&"s used to
indicate missing data. A few punched card files contain
data coded using tabulating machine methods, in which a data
item is always represented in a single column. Arbitrary
combinations of multiple punches are used when the standard
character set has been exhausted.

Several archives, e.g., the Roper Public Opinion Center
and the California State Data Program, maintain their data
in card image files after converting alphabetic and multiple
punched data items to numeric character form. Almost
without exception, data archives will continue to produce
card image files for export, even where their internal files
are maintained in other formats.

Documentation for card image files is most often in the
form of printe-^ entries, giving the name, deck and column
numbers, missing data values, and where appropriate,
category labels for each variable. Some archives have
produced machine readable documentation by punching their
codebooks onto cards, which can then be stored and

The Data Interchange File
Progress Toward Design and Implementation

reproduced with the data files to which they refer. Such
documentation is both easier to reproduce and more difficult
to lose than is paper documentation.

Self -described files . Originally, data files were
analyzed with individually written programs designed to no
particular standard. Beginning with the Biomedical Data
Analysis Program library, (Dixon, et al

.
, 1967), libraries

of computer programs with similar control languages and
input formats were written at many universities and research
centers. In most of these program libraries, and indeed,
for many currently used programs, the input data are
described with a FORTRAN format statement which is included
by the user with the program setup. Such programs and
libraries expose the user to the inconvenience and possible
error inherent in transcribing codebook information each
time a program is used.

Most modern statistical and data management systems use
self-described files, which contain program readable
documentation. The user of such a system refers to
variables by name or number rather than by location in the
input record. The analysis program retrieves codebook
information from the program readable file description
stored with the data. Such systems locate data, provide
appropriate handling of missing values, and label both
printed and machine readable output with much less user
intervention than would be required if a self-described file
were not employed.

Even though self-described files make life easier for
the user of a particular data management system, they
complicate matters for the data archivist, or for the person
who wishes to transmit data to someone who uses a different
data management system. Most self-described files have been
designed to maximize processing efficiency in their "home"
systems. In many cases, data are stored in a non-printing
internal form, with a high degree of machine and program
dependence. Missing data are sometimes represented in
program dependent forms which do not fit into the computer's
standard set of numeric or character representations. Such
files can be called "esoteric," not because they are
necessarily incomprehensible, but because they are designed
to be read from within a particular system rather than being
generally readable. Files which can be interpreted by a

simple character dump and which can be read using a

FORTRAN-type format statement will be called "exoteric."

A common way of transferring esoteric files is to
process them with programs which transform the data into
card images and the dictionary into a printed codebook.
However, the production of such card-image transfer files

The Data Interchange File
Progress Toward Design and Implementation

undoes much of the work and nullifies much of the value of
building the self-described file in the first place. The
recipient of a card image transfer file is either reduced to
writing FORTRAN format statements, building a new self-
described file from the printed documentation, or using a

program which attempts to reconstruct a new self-described
file from the printed output. The SPSS WRITE FILEINFO
subprogram is an attempt to make the process of degrading
and transferring an esoteric file as painless as possible.
The SPSS procedure, however, is designed to facilitate the
transfer of esoteric SPSS files between SPSS installations
on different computers, rather than to make the full self-
described file available to other data analysis systems.

Other data analysis systems using esoteric files are
SAS, the Statistical Analysis System developed at North
Carolina State (Barr and Goodnight, et al

.
, 1975), and

IMPRESS (Meyers, et al.,1969). A somewhat less esoteric
file structure is used by OSIRIS, (University of Michigan,
1976), which stores an esoteric dictionary separately from
its data, which are stored as an exoteric file of fixed or
variable length character records.

SUPPORT FOR A DATA INTERCHANGE FILE

An increasing number of data management and analysis
systems generate and use self-described data files. The
development of new systems should be encouraged, for it
fosters a healthy diversity and spirit of innovation.
Several considerations render impractical any attempt to
standardize a common self-described file for all data
analysis systems. Several statistical systems which use
esoteric files have been in use for many years, and have
been used to produce thousands of self described files. It
would be impractical to require the users of such systems to
learn and adopt a new file format solely for the sake of
standardization with other systems. In addition, the use of
a standard file for internal processing might require
extensive rewriting of existing systems, with the risk of
degrading of their internal processing efficiency. Finally,
it would be foolish to attempt to restrict the designers of
future statistical systems to the limitations of today's
data processing techniques.

A better solution is to design an exoteric file capable
of supporting most of the features found in all statistical
systems, and designed specifically for the exchange rather
than for the processing of machine readable data. Such a

file should be designed for simplicity, generality, and
extendibility , rather than for data processing efficiency.
Designers of statistical systems can accommodate such an

The Data Interchange File
Progress Toward Design and Implementation

Interchange file by writing procedures which convert their
own esoteric files to and from data Interchange files.
Thus, a data analysis system's own files can be designed to
maximize processing efficiency within the system and, can be
transformed to Interchange format for transfer and archival
purposes

.

The CONDUIT conference . In 1974, CONDUIT, the
educational computing consortium, held a conference for the
purpose of designing a data Interchange file. The
conference laid the technical and political ground work for
such a file, but lacked the funding for its further
development and implementation.

The LEAA Research Support Center . In 1975 the
University of Illinois* Center for Advanced Computation,
under a grant from the National Institute of Law Enforcement
and Criminal Justice, funded a research and development on
techniques for archiving and using machine readable social
data. One of the tasks of the new Research Support Center
was to define an archiving format for data of interest to
criminal justice researchers. The best way to accomplish
this task was to continue work on the technical and
institutional development of a standard data Interchange
file. Accordingly, in January 1976, a conference on the
exchange of machine readable data was held at Itasca,
Illinois. The conference was attended by representatives of
the Center for Advanced Computation; the National Institute
for Law Enforcement and Criminal Justice, LEAA; the National
Criminal Justice and Statistical Service, LEAA; SPSS, Inc.;
the Inter-University Consortium for Political and Social
Research, developers of the OSIRIS III data analysis system;
the Survey Research Center, University of California,
Berkeley; The Institute of Statistics at North Carolina
State University, developers of SAS; the National Archives;
the Bureau of the Census; and DUALabs.

This is the second in a series of reports resulting
from the Itasca Data Interchange Conference. The
Interchange file is intended to be used as a standard format
for data archives and for the exchange of data between
users, regardless of the computing hardware available to
them or the data analysis systems they wish to use.

DESIGN CONSIDERATIONS

Several maj-^r considerations govern the design and
implementation of the data Interchange file. The first
consideration is that the file is designed to maximize its
utility for data archiving and transmittal rather than for
data processing. The file is designed to support arbitrary

The Data Interchange File
Progress Toward Design and Implementation

data structures and missing data representations. It is
designed to support more extensive variable and category
labeling than is found in most data analysis systems.
However, the data Interchange file is not designed to
support all features of all existing statistical systems; in
particular its features are not necessarily the union of all
features to be found in the systems produced by the
participating organizations.

The interests of simplicity dictate that the
Interchange File support only the minimal number of program
readable features. However, it can carry arbitrary textual
information in its documentation records. Documentation
records can be marked to indicate that they contain
information which is not part of the interchange standard,
but which is readable to a particular data management
system. For example, the documentation records of an
Interchange file produced with IMPRESS may carry information
on the "standard dichotomy" of each variable. Such
information may be read as text by users of systems which do
not use such a standard recode, but may be read back into a

receiving IMPRESS system. The Interchange standard includes
a method for marking documentation records to indicate the
presence of program readable information. However, the
format of such information is the concern of those
responsible for the design of the particular data management
system

.

Several characteristics are basic to the design and
implementation of the Interchange data file.

Character format . Interchange files will be
transmitted entirely in character form. It remains to be
decided whether both ASCII and EBCDIC will both be allowed
as character formats. If there is to be a single character
set then obviously it will have to be the American standard
ASCII. However, if the capability of almost all machines to
understand IBM is granted, then either character set can be
allowed. Both the dictionary and the data file will be
composed entirely of printing ASCII (or EBCDIC) characters.

Separate dictionary and data files . Each Interchange
data set will be transmitted as two separate files, a

dictionary and a data file. Thus, it will be possible to
separate the dictionary from the data without the use of
special programming facilities, and to read and operate on
the data either with or without the mediation of the
dictionary. On^, of the major reasons why most self-
described files are esoteric is that dictionary and data are
written into a single file. Special programming, intrinsic
to a particular data management or analysis system, is
required to read and interpret the dictionary, and to

The Data Interchange File
Progress Toward Design and Implementation

determine where the dictionary ends and the data begins.
Only by storing dictionary and data in two separate files
can the need for special programming be eliminated.

Card image dictionaries . Most users of machine
readable data have facilities for creating new data
variables, facilities which may range from a ten line
FORTRAN program to an extensive recode language. However,
it cannot be assumed that all users of machine readable data
will have access to similarly powerful facilities for
modifying and editing dictionaries. Therefore, it seems
wisest to maintain the Interchange dictionary in the form of
eighty-column card image character records with five-digit
sequence numbers in columns 76-80. Although it is hoped
that more elegant facilities will be available, in the last
resort a user should be able to produce and edit Interchange
dictionaries with tools no more complicated than a set of
card listing and punching routines and a key punch.

Free format dictionary records . All dictionary records
will have a type identifier in column 1, a variable number
in columns 2-6, a file identification in columns 73-75, and
a sequence number in columns 76-80. Wherever possible,
columns 7-72 will be used to record dictionary information
in free format. The use of a free format for recording
missing data information, variable, and category labels
allows both greater ease of file creation, and greater
flexibility in adapting to the characteristics of new
statistical systems as they appear on the scene. Free
format is obviously easier for someone who must create a

dictionary by hand, and is irrelevant to a dictionary
creating program. Free format dictionary information is
probably easier reading for the person who must interpret
the dictionary manually.

It is sometimes argued that the reading and processing
of free format information requires unduly sophisticated
software and inordinate extra expense. Such criticisms are
simply no longer valid. Any reasonable computer system has
available the software to do simple parsing of text. The
additional expense entailed by the one-time use of parsing
programs in converting an Interchange file is negligible in
comparison to other expenses incurred in obtaining and
processing the file. The length of a dictionary is
determined by the width of its data file i.e., the number of
variables and their range of codes. Extremely large and
expensive files usually contain large numbers of cases as
well as large numbers of variables. Thus, dictionary
processing expenses for files with large numbers of cases
are relatively small in relation to data processing
expenses; dictionary processing expenses for one-time
conversion from Interchange to some other self-described

The Data Interchange File
Progress Toward Design and Implementation

file format will be negligible in comparison with other
expenses incurred in acquiring and processing the data.

cons
poss
prod
Inte
reco
info
date
file
orde
othe
shou
whic
to p

Machine readabl
equence of r

ible is th
uced and t

rchange diet
rds giving
rmation shou
, the file'
was origina

r used in
r technical
Id also in
h produced i

ass on to fu

ecord
at e

ransm
ionar
tech

Id in
s log
lly c

the
proc

elude
t , as
ture

e fj.

ing in
xtensi
itted
y will
nical
elude
ical s

reated
file,

essing
an a

well
users

.

le
format io
ve file
in mac
contain
informa
the fi

true ture
, the ch
global
inform

bstract
as any n

documentatio
n in

do
hine
a s

t ion
le's
, th
arac
tre

atio
of t

otes

free
cumen
read

et o
on
nam

e sys
ter s

atmen
n .

he fi
the

n. A direct
format wherever

tation can be
able form. Each
f documentation
the file. Such

e and creation
tem on which the
et and collating
t of blanks, and
The description
le and the study
producer wishes

There are two main reasons why such documentation need
not be program readable. First, it is impossible to tell
what information producers of Interchange files will want to
include in their file description records. Second, most of
the information contained in the header records will
probably require human intervention in any case. Thus, the
interests of flexibility dictate that basic information on
such things as a file's name and creation date be acted on
by the user, rather than interpreted by a computing system.

Si
transpa
diction
documen
The inc
records
placeme
text w
that ca
print
preclud
beyond

nee the co
rent to th
aries, the
t Individ
lusion of
, in add
nt in the
ill be i

n be guara
all docum
e users fr
that requi

ntents
e prog
re is
ual V

a vari
ition
dictio
n wha
nteed
entati
om inc
red by

of
rams
no r

aria
able
to t

nary
teve
is

on
ludi
the

doc
whi

easo
bles
num

he s

fil
r fo
tha

reco
ng P
Int

umentat
ch read
n why t

and pa
ber f i

equence
e . Sin
rmat th
t conv
rds

.

rogram
erchang

ion
and

hey
rts
eld
num

ce
e pr
ersi
Howe
rea

e fo

rec
wr i

cann
of t

on
ber

,

the
oduc
on
ver

,

dabl
rmat

ords wil
te Interc
ot be use
he dictio
document
allows u

document
er wishes
programs
this doe

e inform

1 be
hange
d to
nary .

at ion
nique
ation
, all
will

s not
ation

Variable length data records . Interchange data records
will be of variable length in order to support files with
more than one type of record. A number of questions
regarding data record formats remain to be answered.
Although the canonical structure of Interchange data sets is
hierarchical, many, if not most. Interchange data sets will
be rectangular. Should rectangular data sets be allowed to
use fixed length records, or should all Interchange files,
regardless of their structure, use variable length records?

Another unresolved question concerns the labeling of

The Data Interchange File
Progress Toward Design and Implementation

Interchange data sets stored on tape. If an IBM tape file
is assumed, then it would be expected that IBM labeled,
format VB files would be acceptable. If, however, the ANSI
tape format is to be used, should the canonical Interchange
data format be an ANSI labeled, fixed-length record, blocked
file for the dictionary; and an ANSI labeled, variable-
length record, blocked file for the data? The problem of
users' computers not being able to handle such labeling or
deblocking can be solved by writing the labeling and
deblocking routines into the programs which import and
export Interchange files.

Structure definition . The Interchange dictionary will
carry not only a description of each separate type of data
record, but also a program readable description of the
file's logical structure. A user should be able to obtain a

rectangular file based on the lowest level of analysis;
e.g., a file in which data from the record on a household
has been duplicated and appended to the record of each
person in the household.

Standards of Good Practice

Since the Interchange file is designed to maximize
flexibility, it will support many options which are not
presently in use, and some options which probably should
never be used. The final specification of the Interchange
data file should implicitly support some rules of good
practice, rules whose violation can be supported by the
Interchange data structure, but which should be discouraged.
While a full list of such rules is probably infinitely long,
some rules come immediately to mind.

Although the Interchange data set will store alphabetic
data, variables should be stored in numeric form wherever
possible. In particular, missing data information should be
numeric rather than alphabetic. In some cases it may be
necessary to have a variable whose value represents some
attribute of a particular value of another variable. For
example, variable one may have the value "1" in observations
in which the value of variable two is an estimate, while
variable one has the value "0" in observations where the
true value of variable two has been obtained. Such cases
are rare and should be made as rare as possible, since they
invariably require some receding before the file is usable.
In most cases identical information can be transmitted using
ordinary missing data conventions.

Creators of Interchange data sets should also be
sparing in the number of exact-match missing data codes used
in the file. Most users receiving a file having, for

The Data Interchange File 10
Progress Toward Design and Implementation

instance, eight exact-match missing data codes per variable
will be forced to spend considerable time collapsing such
codes into a more manageable number. File producers should
also be discouraged from using mid-range missing data codes.
A variable ranging from to 9 should be given a missing
data code outside this range, even if a value within the
range is unused

.

AN IMPLEMENTATION OF THE INTERCHANGE FILE

The Dictionary

All dictionary records are 80 character records
containing a type identifier in column 1 , a variable number
in columns 2-6, a file identifier in columns 73-75, and a

sequence number in columns 76-80. The format of columns
8-72 is different for each type of dictionary record.

The sort order for dictionary records should by
variable number and then by sequence number. Such a sort
order will allow intervals to be left in the original
sequence numbers for the insertion of new records.

Documentation records . Documentation records contain
free format text giving information about the file as a

whole, about sections of the file, and about individual
variables and responses. Documentation records dealing with
the file as a whole should probably have a variable number
of 00000. Since the contents of a documentation record is
transparent to the Interchange format, the variable number
of a documentation record can indicate the number of the
variable to which the record applies, or can be used as
indicator of the record's position in the file.

an

It seems reasonable that some users would make certain
documentation records readable by some receiving programs.
For example, a data analysis system which produced value
labels longer than twenty characters long might write
shortened labels for the Interchange value label records,
while inserting the original longer labels in documentation
records. The original labels can be marked so that they are
automatically recovered if the Interchange file were
converted back to its original type. These documentation
records would in no sense be a replacement for the
Interchange value label records, but would serve as
additional documentation for most users, and as a way of
allowing some us^rs automatically to recover the original
labeling

.

Column 7 of the documentation record is used to
indicate the presence of text which is program readable. A

The Data Interchange File 11

Progress Toward Design and Implementation

blank in column 7 indicates that the record carries no
program readable information. A printing character in
column indicates that the record carries information which
is program readable to some data management or analysis
system. The file's producer must indicate in the
documentation which characters are used to mark data for
which systems.

This strategy has been chosen in order to minimize the
number of elements which require standardization. Designers
of data systems may develop their own conventions for the
transfer of program readable information, but these
conventions are transparent to the Interchange standard.
There is little to be gained by establishing any common list
of data system identifiers to use in column 7 of the
documentation record. It is easy for a user to look in the
file documentation, while it is difficult to maintain and
update a list of standard identifiers.

Variable description record . The variable description
record stores a variable's number, name, location and width,
label, level in the file, and whether the variable is to be
considered a number or a character string. Since the
recording of missing data values may require more space than
will be available on the variable description record, all
missing data information will be placed on a separate
dictionary record.

The format for the variable description record is:

Column Information

1 Record type: V

2-6 Variable number.
The variable number will be the basic data identifier
in the Interchange file.

7-9 Relation number.
A relation is a set of variables referring to the same
type of observation. A relation could also be called
a record type. Examples of relations are information
about a single household, or information on a single
individual in one wave of a panel study. Rectangular
files will have only one relation.

10-17 Variable name.
This fielu is designed to carry variable identifiers
generated by systems which refer to variables by
alphabetic names. The field can also be used to hold
an OSIRIS reference number, which also serves as a

variable name independent of the ordering of variables

The Data Interchange File 12
Progress Toward Design and Implementation

in the file.

18-19 Record number.
This field allows the support of data on cards or
other unit records. Interchange dictionaries and data
files stored on disk and tape will usually have only
one record per observation. However, when a file is
stored on cards, this field will indicate the the
sequence order of the card carrying the variable. A

blank in this field should probably be allowed to
indicate that the observation is stored on one and
only one record .

20-24 Location.
This field records the location of the leftmost
character in the variable, counted from the left edge
of the record. The count includes all linking
information required to associate a record with
records in other groups, but does not include the
binary length field which is part of the format VB
record. Thus, the location field will give an
accurate account of the variable's position once the
record has been deblocked.

25-28 Width.
This field records the width of the variable in
characters

.

29 Field type.
This field is a "0" for numeric data, a "1" for purely
alphabetic data, and a "2" for variables which are
numeric in some observations, and alphabetic in other
observations. The latter case can occur in systems
which generate alphabetic missing data codes for
numeric variables.

30-31 Number of decimal places.
This field has two columns to accommodate very large
numbers, and numbers with a negative number of decimal
places. The latter case can occur where income is
being stored in hundreds of dollars. Since all data
are in character, rather than in binary form, E-format
should be allowed for the representation of very large
and very small numbers.

32 Spare place for later expansion.

33-72 Variable label.
The maximum length of a variable label is forty
characters. An interpolated set of documentation
records may be used to extend the variable labeling
information, but only the forty characters on the

The Data Interchange File 13
Progress Toward Design and Implementation

variable description record will be considered program
readable for Interchange purposes.

73-75 File identification.

76-80 Sequence number.

Missing data record . The missing data record contains
missing data specifications for the variable in columns
7-72. Since missing data specifications vary widely among
systems, it seems best to allow the greatest possible
flexibility in the specification of missing data. The most
general way of specifying missing data would be as a Boolean
expression describing which numbers and character strings
will be used to represent missing values.

In this instance, the full Boolean format can be
abbreviated. The "or" connective can be implied by a simple
sequence of values. The statement, "If V is missing, then V
equals 7 or V equals 8 or V equals 9," is well defined by "7

8 9". "If V is missing" is implied by the missing data
record itself. The phrase "[or] V equals" can be used as
the default meaning of a delimiter. If a fuller
representation is desired, the missing data example above
can be rendered as "7 OR 8 OR 9". If the "OR" default is
used, then the necessary connectives are "AND", "(", ")",
and "'". The relational operators, "LT" , "LE" , "EQ", "NE",
"GE" , and "GT" complete the set of primitives needed to form
a missing data language. (It is not clear that "NE" has any
real use in such a language.)

Examples of missing data codes in most systems are easy
to express in this language. Some examples are:

SPSS "77 88 99"
OSIRIS "99 GE 77"
PICKLE "LT 10 GT 90"
SAS ".A .B .C .D .F .G .H"

Things are relatively simple when missing data codes
are entirely numerical. However, there is some question of
whether ranges of character strings ought to be allowed in
missing data expressions. To do so implies that there is a

common collating order. If this is the case, then the ASCII
collating order could be specified as the order underlying
such expressions as "(GE .A AND LE .Z)", which would neatly
express all of the SAS internal missing data codes. The use
of collating order ranges for alphabetic missing data codes
is attractive, but may violate the primary criterion of
relentless simplicity which underlies the design of the
Interchange file.

The Data Interchange File 14
Progress Toward Design and Implementation

One way to express a set of universal missing data
codes might be to specify all missing data codes for the
file with a single set of missing data records with a

variable number of 00000. Thus a SAS data set in
Interchange format would have a single set of missing data
records spelling out the 26 SAS missing data codes. This
single set of records would apply to the entire file. The
description of global blank treatment follows immediately
from this procedure. Global treatment of blanks as missing
data is indicated by a missing data record with a variable
number of 00000 which carries a blank between primes. The
file standard should probably state that variables with
local missing data declarations are exempted from any global
missing data declaration.

Category label record . The category label record
contains a value for a categorical or discrete variable, a

label of up to 20 characters, and an optional frequency
count for the category. It seems simplest to have a single
category on a card, with the first character string in the
field interpreted as the code value, the second string
interpreted as the label, and the third string interpreted
as the frequency count. This set of conventions will allow
the correct interpretation of.

and of

2 FEMALE

2 FEMALE 500

if blanks are allowed as string delimiters. However,
additional delimiters are required for the proper
interpretation of such label data as

3 FATHER'S HOUSE 405

It seems best to require that all labels containing blanks
be enclosed in primes so that frequencies can be added
without having to reformat the record.

Structure Description techniques

The Interchange dictionary describes each of the
several types of records contained in the data file and the
structural relation between record types. The structure
definition facilities of the Interchange file will support
rectangular files, hierarchical files, generalized network
data bases of the CODASYL type, and relational data bases.

The Data Interchange File 15
Progress Toward Design and Implementation

Rectangular files

Rectangular data files contain only a single type of
record, and thus require no explicit structure definition.
Where an interchange file is being used to store data from a

DBMS or a set of files, a rectangular file may be stored as
a single relation.

Hierarchical Files

While the Interchange file will store data bases of
arbitrary structure and complexity, most complex data
structures cannot be processed without being reformatted and
restructured onto direct access devices. Such restructuring
is the province of the receiving data base management
system. rather than the Interchange file or its supporting
software. All that the Interchange file can do is to store
a description of the original structure along with the data
records. The receiving data base management system must
then create its own internal data structures from the stored
description

.

However, it is possible to store tree structured data
in a form which may be processed directly from a sequential
Interchange file. Since most users will be using sequential
processing systems, it is advisable to provide an actual
data structure for tree structured files within the
Interchange file, as well as a structure description.

While data base management systems could reconstruct a

tree structure from the structure description alone, most
sequential processing systems would require a set of
pointers on each data record. It thus makes sense to
provide information which will allow the sorting of the file
into meaningful order. The most robust linkage method is to
give each record a complete set of upward pointers.

The Data Interchange File
Progress Toward Design and Implementation

16

1 . Neighborhood

ID = 21

Figure 1: A hypothetical data structure

For example, consider Figure 1, which r

having six types of records in three hi
Every record in this Interchange file
identification numbers, one for each typ
record will carry the identification varia
under which it can be structured. Th
child will carry numbers identifying the
family, neighborhood, class, and school,
will carry missing data in the field car
pointer, since children are not subordinat

epresents a file
erarchical levels.

will carry six
e of record. Each
ble of all records
us the record of a

records of its
The child's record
rying a "parent"
ed to parents.

It should be noted that the structure in Figure 1 is
not a tree, but a lattice, a structure with more than one
root. The file may be sorted into either of two trees. One
tree consists of the "neighborhood", "family", "parent" and
"child" structure. The other tree consists of the "school",
"class", "child" structure. While either of these trees may
be created by an appropriate sort of the file, only one may
be processed in any one pass of the file.

The Data Interchange File
Progress Toward Design and Implementation

17

Pointer #

2 3

Record Type

1 21 - -- --

2 -- 5 — --

3 21 - 36 --

4 -- 5 — 16

5 21 - 36 —
6 21 5 36 16

724

103

Figure 2: Pointer array for the data structure in Figure 1.

Pointer is the record type.

All possible linkages may be represented by such sets
of upward pointers. The assignment of levels does not
always imply that records at a lower level are
disaggregations of records at a higher level. In some cases
the specification of levels is simply to resolve which
record is pointing at which.

Although the set of pointers in Figure 2 is implied by
the linkages in Figure 1, it would be difficult to infer
those linkages solely from analysis of the pointers, since
to do so would require reading the entire file. The
structure can be inferred from the information that parents
and children never point to each other but both point to
families, and that families point to neighborhoods, while
neighborhoods do not point anywhere.

The structure definition, however, should be provided
explicitly, so that both the user and the file importer know
what to do with the data. Thus the Interchange dictionary
should have an explicit structure definition record as well
as a set of record definitions giving pointer information.
The person creating an Interchange file must choose an
identification variable for each type of record. People
should, in general, be discouraged from creating records
without identification variables. If no variable is

The Data Interchange File
Progress Toward Design and Implementation

18

appropriate as an identifier, then the file exporter should
supply an arbitrary sequence number for each record. The
sequence number need not be unique within the file, but only
within the level at which the record enters the structure.

For example, the records of children in Figure 1 may
carry unique identification numbers, but if they do not, a

simple sequence number within each family will suffice.
Each of the N types of records in a tree structure will be
prefixed by N+1 identification variables, consisting of a

record type identifier and N pointers, one for each type of
record in the file. Where two records are connected by more
than one link, then more than one pointer will be required.
Hopefully, people will be sparing in their use of multiple
identification fields.

It shou
record is
the record,
syntax of
control of t

in the Inter
as a missing
record , but
section, it
Interchange
that pointer
blanks in
data indicat
1976, for a

Id be noted that at 1

a simple duplication
The duplication is j

the pointer variabl
he file exporter, and
change format. The u

data indicator in
when that identifier

will be subject to co
data standard. Such

s have only numeric v

pointers, and that a

or be used . (See Ts
fuller exposition of

east one
of one of
ustified i

es be com
thus abso

ser may us
the data
is copied

nventions
convent io

alues, th
part icula

ichr itizis
hierarchic

pointe
the V

n orde
pletel
lutely
e almo
porti
into

specif
ns sho
at th
r type

and
al dat

r on each
ariables in
r that the
y under the
canonical

St anything
on of the
the pointer
ied in the
uld require
ere be no
of missing
Lochovsky

,

a bases .

)

Network Data Bases

A network data base is a generalization of the
hierarchical file. In the hierarchical file, records are
related to each other in only one way, by being subordinate
or superordinate to each other. In the example above,
children are subordinate to families, who are subordinate to
neighborhoods

.

Suppo
of which
record con
variable
his or her
"child" re
linkage mu
in the s

the variab
no way i

hierarchy

se that the file contained a set of records each
held information on a hobby, and that each "child"
tained a variable called "favorite hobby". This
is a link between the child and information about

favorite hobby. Thus, the "hobby" and the
cords need share no sorting information, but their
St still be documented. The linkage is documented
tructure definition by naming it and by indicating
les which link the two records. However, there is
n which hobby records can be sorted into the
of neighborhood, family, and child. (See Taylor

The Data Interchange File
Progress Toward Design and Implementation

19

and Frank, 1976, for a fuller exposition of network data
bases .

)

Relational Data Bases

Rela
files
Relationa
simple a

there are
data base
base is a

variable .

uses no
"relation
terminolo
on the ba

tional
which
1 data
nd gen
at pre
system
rectan

The
system
s" as

gy, are
sis of

data
hav

base
eral
sent
s

.

gula
rel
of
they
lin

iden

bases
e un
s hav

Th
relat

Each d

r fil
ationa
point
are

ked by
tif ica

are
ique
e ad
eir
ively
ata s

e wi
1 da
ers

.

call
a pr

tion

const
ide

vanta
prese
few

true t

th a

ta b

The
ed i

ocess
n urn be

ructed
nt if ic

ges i

nt d i

implem
ure in

uniq
ase is
se da
n dat
of so

rs

.

from
at ion
n bein
sad vant
entat io
a rela

ue ide
simple

ta str
a base
rting a

rectangular
variables

.

g uniquely
age is that
ns of such
tional data
ntif icat ion
because it

uctures or
management

nd merging

As long as the proper conventions of uniqueness of
identification variable are maintained, the interchange file
will support relational data bases in the form of
heterogeneous records with no explicit hierarchical
relation. Each relation a relational data base is simply
assigned a relation number in the interchange file. (For a

fuller exposition of relational data bases, see Chamberlin,
1976, and Teitel , 1977.)

Matrices and Tables

The interchange file stores matrices and
multidimensional tables in straightfo;rward fashion. A
matrix or two dimensional table may be stored as a

rectangular file. A table of higher dimensionality may be
stored in either "row" or "cell" fashion. An n-dimensional
table stored in "row" fashion is treated as an n-1 level
hierarchical file with a single record type. Each record in
a "row" file is a vector from the table, labeled with its
coordinates in the table.

A 3 X 4 x 10 table could be stored as a file of 12
records, each of which contained 10 variables. Each or the
records would be treated as the third level of a

hierarchical file, and would have pointers indicating the
row and plane of the table to which it belongs. Such a file
could easily be sorted by row and plane. However, a sort by
column would have to be performed by reformating the
records

.

A seemingly more clumsy, but preferable way of storing
a table is in "cell" form, in which each cell of the table

The Data Interchange File
Progress Toward Design and Implementation

20

is labeled with its coordinates. The coordinates are in
canonical form as pointers rather than variables, and are
thus provided by the exporting program, rather than by the
user. Although a "cell" file might appear quite bulky in
relation to the original table, it provides the advantages
of being totally open in format and of being possible to
manipulate without reformatting records.

Since even huge tables are relatively small in relation
to huge files, "cell" files should not be particularly
expensive or clumsy to handle. Since these files will be
written and read by table producing and handling systems,
the disaggregation and labeling of "cell" files will be
invisible to the average user.

Structure and Record Definition Records

Record definition record . The record definition records
constitute a dictionary for the rectangular subfile formed
by the type identifier and vector of pointers. The format
for the record description record is:

Column Information

1 Record type: R.

2-6 Variable number.
The variable number has no direct application to the
record definition record but is used solely for
sequencing in the file. Thus, any variable number
less than the smallest variable number can be used.
Users should probably be encouraged to number
variables in a way which helps identify their record
type, such as having variables in record type 5 begin
with 501

.

7-9 Relation number.
Several options are available for the form
relation numbers. One option is that
Interchange specification require that the f

columns of every data record be a re
identifier. The second alternative is
location of the record type identifier be i

everything ahead of the first pointer field,
the pointer for the lowest record type
column three, columns one and two of the r

assumed to be the record type. A third, a

the most suitable alternative, is that the
of record type zero indicate the locat
record type indicator.

atting of
the data

irst three
cord type
that the
nferred as

Thus, if
begins in

ecord are
nd perhaps
definition
ion of the

The Data Interchange File
Progress Toward Design and Implementation

21

10-11 Level.

12-31 Name.

32-36 Pointer location.

37 Pointer width.

38-46 Pointer missing data value.

47-55 Pointer inappropriate value.
It has been suggested that separate missing data and
inappropriate codes are not needed for pointers. A

missing data code in a pointer to a higher level can
be interpreted as actual missing data, while a missing
data code in a pointer to the same level or to a lower
level can be inferred as inappropriate. It has not
yet been decided whether or not inappropr lateness
should be explicit or inferred.

56-60 Pointer variable number.
This field indicates the variable number in the record
type which has been used as the pointer. A variable
number of zero indicates that the file exporter
produced an arbitrary sequence number for the record.

61-65 Number of variables in the record.

66-70 Aggregate record length.
These two fields would be helpful in allowing the
importing program to allocate work space for
reformatting the file. However, they may require two
passes through the file to create the dictionary and
might be omitted from the record definition record.
Further discussion of whether or not to include them
is necessary.

73-75 File identification.

76-80 Sequence number.

Structure definition record . The structure definition
provides an explicit indication of the links between record
types. The structure definition consists of a set of free
format expressions indicating the equivalence between
pointers in different relations. The format for the
structure description record is:

The Data Interchange File 22
Progress Toward Design and Implementation

Column Information

1 Record type: S.

2-6 Variable number.
The variable number has no direct application to the
record definition record but is used solely for
sequencing in the file. Thus, any variable number
less than the smallest variable number can be used.

7-72 Structure definition expressions.
Free format expressions showing the logical structure
of the file and the variables linking different
relations

.

73-75 File identification

76-80 Sequence number.

A suggested syntax for structure description
expressions is:

<name>:<rectype>(<var#>) = <rectype>(<var//>)

In the case of hierarchical records, it would be nice to
require that the direction of the expression go from lower
level to higher level in order that the hierarchy in the
file be inferrable without reference to the level numbers
contained in the record definition records. Hierarchical
files do not need explicit names for pointer relationships.
However, names are necessary to clarify the relations
between the records of a generalized network data base. The
strtTcture of the file in Figure 1 could be indicated (using
arbitrary variable numbers within record types) as:

5(2)=3(1) 6(2)=3(1) HOME_ROOM:6(3)=^(1)
3(2)=1(1) 4(2)=2(1)

This structure definition allows both the user and the
importing program to recover the original structure of the
file.

Entry definitions . Following the OSIRIS convention, an
entry is defined as the rectangularized file actually read
and analyzed by a program. The OSIRIS structured file
carries with it a default entry definition which is used in
the absence of a'^y specification by the user. There is some
question as to whether the Interchange file should carry a

default entry definition with its dictionary. If the
importing system uses a hierarchical file, then the importer
could simply transform the Interchange file into an esoteric

The Data Interchange File 23
Progress Toward Design and Implementation

hierarchical file. However, it can be expected that many
importing systems will not support hierarchical files, and
that the file must therefore be rectangular ized . Perhaps
the most reasonable course is to include a verbal summary of
some entry definition and leave the actual construction of
the entry to the user and the file importer.

Data Standards and Conventions

Perhaps the only restriction on the data is that they
be in the form of printing ASCII or EBCDIC characters.
While there are many rules of good practice regarding the
choice of coding schemes and the layout of data, most of
these rules have no effect on the syntax of the Interchange
file.

Interchange File Creation and Conversion

Manual Creation

Proper design of the Interchange dictionary will allow
many Interchange files to be constructed without the use of
special programs. Rectangular files will require the
addition of an observation identifier, something which
should probably be there in any case. Once such a data file
h^s been produced, a valid Interchange dictionary can be
produced by hand

.

File Conversion Programs

In order for the Interchange file to succeed,
statistical systems must have facilities for converting
their own esoteric files to and from Interchange format.
File importers will probably need special care in their
design, since they must be capable of correcting the file
producers' deviations from good practice. Importers will
probably require not only extensive recoding techniques for
converting such things as missing data codes, but also
reasonably powerful text editing techniques in systems which
will not support the long labels of the Interchange
dictionary. In the long run, it would be far better to
increase the labeling capabilities of other systems to the
SPSS standard, than to degrade one of that system's most
pleasant and useful features. The design of an Interchange
file importer for each statistical system is a problem whose
difficulty should not be minimized. Hopefully, much of the
work of civilizing files which violate rules of good
practice will be done by data archives.

The Data Interchange File
Progress Toward Design and Implementation

24

The task of designing a file exporter seems somewhat
simpler than that of designing an importer. The Interchange
dictionary can be written from the system's esoteric
dictionary, and the pointer section of the data records
written without much difficulty.

Machine Readable Documentation

readabl
compute
transcr
transmi
highly
basical
OSIRIS
edit .

OSIRIS
new OSI

Codebooks .

ode b

ext p
ons o

e c

r t

ipti
ssio

de
ly a

cod
Few
syst
RIS

n with
velope
pr imi

e book
users
em , wh
code b

At present, the development of machine
ooks considerably lags the present state of
rocessing. Most code books are simple
f paper code books to punched card for easy
the data. The OSIRIS code book, the most

d of machine readable code books, is
tive form of document processor manuscript,
s are laborious to prepare and difficult to
employ the subsetting facilities of the
ile even fewer ever edit, expand, or create
ooks

.

The fu
a machine
carried on
these reco
into subset
book info
flexibility
Code book
manuscript
addition t

as automati
automatic t

11 data I

readable
the docum
rds can
s. Howev
rmat ion
afforded
informa

can be ea
he docum
c resolut
able of c

ntercha
code bo
entatio
even b

er, tra
in 1 i

by com
tion s

sily ed
ent pro
ion of
ontents

nge
ok.
n re
e su
nsmi
tera
pute
tore
ited
cess
tabl
and

file
Code

cords
bsett
ssion
1 fo
r doc
d as
, sub
or wi
e and
cros

should pro
book info
in liter

ed as the
and sto

rm loses
ument proc

a docum
setted and
11 provide
variable

s referenc

bably include
rmation can be
al form, and
file is broken
rage of code
most of the
essor systems.
ent processor
modified . In
such features

numbers and an
e

.

Future work on the data Interchange file should include
the selection of a document processing language. In the
meantime, documentation on the Interchange file should
probably be stored in literal form.

Information retrieval keywords .

documentation
Program readable

can be supplemented with key information so
that the interchange dictionary can be read directly into an
information retrieval system.

Keywords could be appended to the file description and to
each variable, using documentation records marked as
containing program readable text. The dictionary could then
be read into r*^ information retrieval system such as SPIRES
(the Stanford Public Information Retrieval System) which
would reformat the documentation into internal structures
referenced by the keywords.

The Data Interchange File 25
Progress Toward Design and Implementation

GLOSSARY

This glossary is intended to clarify certain terms
which are used in new or unusual ways in this paper. It is
not meant to be in any sense a complete glossary of terms
relating to the Interchange standard.

Cell file . A file each of whose records consists of a

single cell from a table and and the indices of the cell in
the table. Several tables with the similar structures can
be stored in a single cell file.

Data set . A file or set of files containing complete
information on a set of self-described data. An SPSS data
set consists of one file, while an OSIRIS data set can
consist of two or three files.

Dictionary . A program readable set of information
describing a machine readable data file.

Entry . The data vector created from a hierarchical
file which is actually read and analyzed by a statistical
program

.

Esoteric file . A file which cannot be interpreted with
simple printed dumps and read by simple FORTRAN style format
statements. Esoteric files must be read by specially
designed software. SAS and SPSS files are both esoteric.

Exoteric file . A file which can be interpreted with
character format dumps and which requires only a simple
format statement for interpretation. Card image files are
exoteric

.

Exporter . A program or subprogram built into a data
analysis system which generates Interchange data sets from
the system's native data set.

File . A set of machine readable data organized as a

unit with respect to a computer system. A file need not be
coterminous with a data set. For example, several SAS data
sets can occupy a single IBM file, an SPSS data set is
coterminous with an IBM file, while an OSIRIS data set
requires two IBM files.

Importer . A program or subprogram built into a data
management and analysis system for converting Interchange
data sets into the system's native data format.

Interchange data set . A dictionary file and data file
constructed according to the standards outlined in this

The Data Interchange File 26
Progress Toward Design and Implementation

paper and agreed on by the working group.

Literal text . Text which is printed exactly as it is
stored on the machine readable medium without reformatting.

Machine readable . Information stored on punched cards
or magnetic media which can be interpreted by a computer.
Machine readable data, e.g., literal text, is not
necessarily in a form which can be interpreted by processing
programs and should be distingushed from program readable
data.

Pointer . The vector of identification variables
prefixed to each Interchange format data record.

Program readable . Machine readable data in a form
suitable for interpretation and processing by a computer
program. For example a set of keywords punched on cards are
both machine readable and program readable, while a comment
statement is merely machine readable.

Row file . A file each of whose records consists of a

row of a table and the indices of the row in the table. A
row file of a two dimensional table is an ordinary
rectangular file.

REFERENCES

Barr, J., and Goodnight, J. SAS progress report. Paper
presented at the SAS Users' Group meeting, Orlando, FL,
January, 1976.

Buhler, R. The P-STAT system. Pp. 283-286 in
Proceedings of Computer Science and Statistics : 7th Annual
Symposium on the Interface , Iowa State University, 1973.

Chamberlin, D. G. Relational data base management
systems. Computing Surveys . (8), 43-66.

Dixon, W. J. (Ed.) BMP Biomedical Computer Programs .

Berkeley, CA: University of California, 1975.

Meyers, E. D. Jr. Project IMPRESS: Time-sharing in the
social sciences. AFIPS - Conference Proceedings . (3^),
673-680, 1969.

University of Michigan. OSIRIS III : Volume I^, system
and program description . Ann Arbor, MI: Author, 1976.

Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbrenner

,

K. , and Bent, D. SPSS: Statistical Package for the Social

The Data Interchange File 27
Progress Toward Design and Implementation

Sciences . New York, McGraw-Hill, 1975.

Roistacher, R. C. The data interchange file: A first
report. Center for Advanced Computation. (CAC Document No.
207), 1976.

Spires 1970 - 1971 Annual Report. SPIRES BALLOTS,
Stanford University, Stanford, CA, December 1971.

Design of SPIRES II. SPIRES BALLOTS, Stanford
University, Stanford, CA, July 1971.

Taylor, R. W. and Frank, R. L. CODASYL data base
management systems. Computing Surveys . (8), 67-104, 1976.

Teitel , R. F. Data base concepts for social science
computing. Proceedings of Computer Science and Statistics :

9th Annual Symposium on the Interface . Harvard University,
1976.

Tsichr itizis , D. C, and Lochovsky, F. H. Hierarchical
data-base management. Computing Surveys . (8), 105-124,
1976.

