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PREFACE

OF THF

PNIVFTiSTTV

The Differential and Integral Calculus is justly con-

sidered the most difficult branch of the pure Mathematics.

The methods of investigation are, in general, not as

obvious, nor the connection betv^^een the reasoning and

the results so clear and striking, as in Geometry, or in

the elementary branches of analysis.

It has been the intention, however, to render the sub-

ject as plain as the nature of it would admit, but still,

it cannot be mastered without patient and severe study.

This work is what its title imports, an Elementary

Treatise on the Differential and Integral Calculus. It

might have been much enlarged, but being intended for

a text-book, it was not thought best to extend it beyond

its present limits.
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The works of Boucharlat and Lacroix have been

freely used, although the general method of arranging

the subjects is quite different from that adopted by

either of those distinguished authors.

MlLITART ACADEMT,

West Point, October, 1836.
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DIFFERENTIAL CALCULUS.

CHAPTER I.

Definitions and Introductory Remarks.

1. There are two kinds of quantities which enter into

the Differential Calculus : variables and constants.

The variable quantities are generally designated by the

final letters of the alphabet, x, y, z^ &c. ; and any values

may be attributed to them which will satisfy the equations

in which they enter.

The constant quantities are designated by the first

letters of the alphabet, «, 6, c, &c. ; and these preserve

the same value throughout the same investigation, what-

ever values may be attributed to the variables with which

they are connected.

2. If two variable quantities are so connected together

that any change in the value of the one will necessarily

produce a change in the value of the other, they are said

to hQ functions of each other.

Thus, in the equation of a given straight line

y = ax-{-bf
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if we change the value of the ordinate y, the value of x

will also undergo a change : hence, y is a function of a:,

or a: a function of y.

This general relation, which merely implies a depen-

dence of valucy is expressed by

y = F{x\ or, x = F{y);

and the equations are read, y a function of x^ and x a

function of y. This dependence of value may also be

expressed by the equation

F{x,y) = 0,

which is read, function of x, y, equal to 0, and merely

implies, that x depends for its value on y, or y on x.

3. The letter which is placed in the first member of the

equation is called the function, and the one in the second

member is called the variable. In the equation

y = F{x\

y is the function and x the variable, and in the equation

X =^ F{y\

X is the function and y the variable.

4. In the equation of the straight line

y = ax -\-bj

it is plain that if the value of x is increased the value of

y will also increase, or if x be diminished the value of y
will diminish : hence, y and x increase together, or de-

crease together, and y is then said to be an increasing

function of the variable x.
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In the equation of the circle

aJ'-\-y'' = R\ or y'' = B?-o^,

the value of y increases when x is diminished, and de-

creases when X is augmented : when this relation subsists

between y and x, y is said to be a decreasing function^

of the variable x.

5. If in any equation of the form

y = F{x\

the value of y is expressed in terms of x and con-

stants, as for example, if

y — ax^, or y — SaP -\- bx^, &c.,

7/ is then said to be an explicit function of x.

But if the value of the function is not directly expressed

in terms of the variable on which it depends, as in the

equation

y^ — 3 axy + or' == ;

or if the dependence is expressed by means of an inter-

mediate variable, as in the equations

y = F{u), u = F(x),

y is then said to be an implicit or imphed function of a?.

The roots of an equation, for example, are implicit func-

tions of the coefficients.

6 In every equation of the form

y = F{x),

either the function y, or the variable x, may be made to
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change its value according to any law whatever, and the

corresponding change which takes place in the other, will

be determined by resolving the equation. Thus, in the

equation of the circle

if we change the value of either a? or y by a quantity

± A, the corresponding value of the other variable may be

determined from the equation, and the difference between

it and the primitive value, will express the change of

value.

The law of change is generally imposed on the variable

X, and as this law is arbitrary, x is called an independent

variable*.

It simplifies the operations of the calculus, to increase or

diminish the variable x uniformly; that is, to change it

from one state of value to another by the addition or sub-

traction of a constant quantity; and since the law of

change is arbitrary, this supposition does not render the

calculus less general.

7. Although the values of the variable quantities may be

changed at pleasure without affecting the values of the

constants with which they are connected, there is, never-

theless, a relation between them which it is important to

consider.

If in the equation

y = F[xl

a particular value be attributed either to x or y, the other

will be expressed in terms of this value and the constant

quantities which enter into the primitive equation. Thus,
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in the equation of the straight line

if a particular value be attributed to x, the corresponding

value of y will depend on a and h ; or if a particular

value be attributed to ?/, the corresponding value of x Vi^ill

hkewise depend on a and h. The same will evidently be

the case in the equation of the circle

or in any equation of the form

y = F{x).

Hence, we see that, although the changes which take

place in the values of the variables are entirely indepen-

dent of the constants with which the variables are con-

nected, yet the absolute values are dependant on the

constants.

8. Since the relations between the variables and con-

stants are not affected by the changes of value which the

variables may ^perience, it follows that, if the constants

be determined for particular values of the variables, they

will be known for all others.

Thus, in the equation of the circle

x^-\-y''^R\

if we make a? = 0, we have

y=±R;

or if we make y = 0, we have

x=±R,
2
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and tlie value of R will be equal to the distance from the

origin to the point in which the circumference cuts the co-

ordinate axes, whatever be the value of x or y.

9. The function y, and the variable a?, may be so re-

lated to each other as to reduce to at the same time.

Thus, in the equation of the parabola

y^=2pxy

which may be placed under the general form

F(x,y) = 0, or y = F{x\ /

if we make a? = 0, we have y = 0, or if we make

y = 0, we shall have a; = Q.

10. We have thus far supposed the function to depend

on a single variable ; it may however depend on several.

Let us suppose for example, that u depends for its value

on Xy y, and z^ we express this dependence by

u = F(x,y,Zy)

If we make a? = 0, we have

u = F{y,z);

if we also make y = 0, we have

u = F^z);

and if in addition, we make z = 0, we have

u=:a constant,

which constant, may itself be equal to 0.

11. Let us now examine the change which takes place
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in the function for any change that may be made in the

value of the variable on which it depends.

Let us take, as a first example,

u — ao?^

and suppose x to be increased by any quantity h. De-

signate by u' the new value which u assumes, under this

supposition, and we shall have

u'—a{x-\-'Kf,

or by developing

u'= ax^+ 2axh + a7i^.

If we subtract the first equation from the last, we shall

have

u^—u = 2 axk + ah";

hence, if the variable x be increased by h, the function

will be increased by 2axh -\-ah^.

If both members of the last equation be divided by h,

we shall have

—-

—

=z2ax+ah, (1)

which expresses the ratio of the increment of the function

to that of the variable.

12. The value of the ratio of the increment of the func-

tion to that of the variable is composed of two parts, 2 ax

and ah. If now, we suppose h to diminish continually, the

value of the ratio will approach to that of 2aXj to which

it will become equal when ^ = 0. The part 2 ax, Avhich

is independent of h, is therefore the limit of the ratio of
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the increment of the function to that of the variable. The

term, limit of the ratio designates the ratio at the time

h becomes equal to 0. This ratio is called the differen-

tial coefficient of u regarded as a function of x.

We have now to introduce a notation by which this

ratio may be expressed. For this purpose we represent

by dx the last value of h, that is, the value of h which

cannot he diminished according to the laio of change to

which h is subjected^ without becoming ; and let us

also represent by du the corresponding value of w : we

then have
du , ,^ = 2ar. (2)

The letter d is used merely as a characteristic, and the

expressions du, dx, are read, differential of u, diffe-

rential oi X.

It may be difficult to understand why the value which h

assumes in passing, from equation (1) to equation (2), is

represented by dx in the first member, and made equal

to in the second. We have represented by dx the

last value of h, and this value forms no appreciable part

of h or X. For, if it did, it might be diminished without

becoming 0, and therefore would not be the last value of h.

By designating this last value by dx, we preserve a trace

of the letter x, and express at the same time the last

change which takes place in h, as it becomes equal to 0.

13. let us take as a second example,

u — aoi?.

If we give to x an increment h, we shall havq

u' = a{x-\- hY = ax^-{-Z ahaP' + 3 ah^x + ah^.

hence, w' — w = 3 ahx^ -f 3 al^x + ah^^
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and the ratio of the increments will be

3aa^ + SaJix + ah^,
u ^u

and the limit of the ratio, or differential coefficient,

ax

In the function

u — nx^, we have
du

dx

14. We have seen, in the preceding examples, that the

differential coefficient, or hmit of the ratio of the increment

of the function to that of the variable, is entirely indepen-

dent of the increment attributed to the variable.

Indeed, when the ratio is obtained as in the examples

already given, and the increment made equal to in the

second member, it is plain that the. first member can no

longer depend upon the increment. As this, however, is

an important principle, we shall add another proof of it ; in

the course of which we shall discover the value of the dif-

ferential coefficient under particular suppositions, and also

the form under which the new value of the function u may
be expressed.

Every relation between a function u and a variable a?,

expressed by the equation

u = F{xl
will subsist between the ordinate and abscissa of a curve^

Fjor, let A be the origin of the rectangular axes, AX, A Y^
In the equation y

u z= F{x\

make a? = 0, which will

give

u = a constant

:
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lay oS AB equal to

this constant. Then

attribute values to a?,

from to any limit,

as well negative as

positive, and find from

the equation

u = F{x)y

the corresponding values of u. Conceive the values of x

to be laid off on the axis of abscissas, and the values

of u on the corresponding ordinates. The curve described

through the extremities of the ordinates will have for its

equation

u = F{x). (1)

15. Let X represent any abscissa, AH for example,

and .
u the corresponding ordinate HP.

- If now we give to x any arbitrary increment hj and

make HF= h, the value of u will become equal to FC,

which we will designate by u^. We shall then have

u'=F{x-\-h).

But F{x + h) = HP+CDy and HP = u = F{x).

. Now, for a given value of ^, CD will vary if P be

moved along the curve: hence, CD will depend for its

value on x and h, atid we shall have

CD = F{x,h):

the notation, F\ P\ &c., designating new, or different

functions of x.
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But since CD becomes 0, when h = 0, h must be a

factor of the second member of the equation, and we may

therefore write,

Hence, w'= F{x + A) = F(,x) + P'{x, h)h, (2)

and transposing F{x) = w, we have

u'-u = P'{x,h)h. (3)

But since u'—u-= CD = tang CPD. h, we have

uf-u = tang CPD. h = F" {x, h) h :

hence, --^ = tang CPD = F" {x, h). (4)

If now we suppose h to diminish continually, the point

C will approach the point P, the angle CPD will be-

come nearer and nearer equal to the angle PTH, which

the tangent line forms with the axis of abscissas. If we

pass to the limit of the ratio, we shall have

^ = XBngPTH=F'f'{x); (5)
CLX

and it remains to show that, this differential coefficient is

independent of h.

To prove this, we will observe, that whatever value may

be attributed to h, a secant line, APC, can always be

drawn through P and the extremity of the corresponding

ordinate. The ratio of the increments of the ordinate and

abscissa may then be expressed by the tangent of the an-

gle CPD ; and since any secant will become the tangent

PT, when we pass to the limit, it follows that, the limit
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of the ratio which is represented by the tangent of the

angle PTH, is independent of the increment h.

When, therefore, we pass from equation (4) which

expresses the ratio of the increment of the function to that

of the variable, to equation (5) which expresses the limit of

that ratio, the second member of equation (4) must be

made independent of ^, which is done by making A = ;

and since the second member itself does not become 0, it

follows that there is at least one term in F"{xy h) which

does not contain h.

If then, we divide the second member of equation (4)

into two parts, one independent of h, and the other con*

taining A as a factor, it may be written under the form

P'{x, h) = F"'{x) + F'\x, h)h.

Substituting this value of F^^{Xf h) in equation (2),

we obtain

m'= Fix) + F''{x)h + F'^{x, h)h\

or, u'=u-\- F" {x) h + F'^{x, h) h\

or by omitting a part of the accents,

u'=u + F{x)h-\-F'{x,h)h^, (6)

Hence, also,

-^^^ = F(«) + F'(x,A)A, (7)

and by passing to the limit

-|-= F(.). (8)

16. Let us now resume the discussion of equation (6),

u'=u + F'{x)h + F'(,x,h)h\ (9)
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This equation expresses the relation which exists be-

tween the primitive function u, and the new value u'

which it assumes, when an increment h is attributed to

the variable x. We see that the new value of the func-

tion is composed of three parts.

1st. The primitive function u.

2d. A function of x multiplied by the first power of the

increment h.

3d. A function of x and h multiplied by the second

power of the increment h.

We may also remark that, the coefficient of h in the

second term, is the differential coefficient of the function

u, and that the third term will vanish when we pass to the

limit or make h = 0.

In order to render the form of the equation as simple as

possible, let us make

F'{x) = P, and F'\x,h) = P';

the equation will then become

u^=u + Ph + P'h\ (10)

or, u'^u = Ph + P'h^.

The coefficient P is in general a function of x, yet the

relation between u and x may be such as to make P a

constant quantity, in which case P^ will be 0, or the

relation may be such as to render P' constant. These

cases will be illustrated by the examples.

17. If we take equation (8), which is
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and multiply both members by dx, we have

du=zPdx:

hence, the differential of a function is equal to its dif-

ferential coefficient multiplied by the differential of the

variable.

18. The differential of the function may also be ex-

pressed imder another form. For, if we multiply both

members of the equation

by dx, and omit to cancel dx in the first member, we shall

have

—r—dx = PdXi
dx

in which either member expresses the differential of the

function u.

19. We may conclude from the preceding remarks that

the differential of a variable* function, is the difference be-

tween two of its consecutive values, by which term we

mean to designate that difference which cannot be dimin-

ished according to the law of change to which thefunction

has been subjected, without becoming 0.

20. We also see that, the Differential Calculus is that

branch of mathematics, in which the properties of quan-

tities are determined by means of the changes which take

place when the quantities pass from one state of value to

another.

21. If two variable functions u and v^ are so connected



DIFFERENTIAL CALCULUS. 23

together as to be always equal to each other, whatever

value may be attributed to either of them, their differ-

entials will also he equal.

For, suppose both of them to be functions of an inde-

pendent variable x. We shall then have (Art. 16),

u'~u = Ph^Pni\

v'-v=Qh+Qlt'.

But, since u' and v' are, by hypothesis, equal to each

other, as well as u and v, we have

Ph-^P'h^=Qh+Q:h\

or by dividing by h and passing to the limit

P=Q,

hence,
du dv

dx ~ dx'

and,
du J dv .~-dx — -j-dx,
dx dx

that is, the differential of u is equal to the differential of v

(Art. 18).

22. The reverse of the above proposition is not gene-

rally true : that is, if two differentials are equal to each

other we are not at liberty to conclude that the functions

from which they were derived are also equal.

For, if we have the function

hu-\-a = F{x\

the values of a and h will not be affected by attributing
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an increment h to x : we shall therefore have (Art. 16),

6m'4- a=bu + a-\-Ph-\' Fh\

or, h^jl^^p.,P%

or by passing to the limit

6-7— = P, hence, bdu = Pdx.
ax

Now, hdu is the diflferential of the function hu as

well as of the function hu + a: and hence we may

conclude

1st. That every constant quantity connected with a

variable by the sign plus or minus will disappear in the

differentiation.

2d. That the differential of the product of a variable

quantity by a constantj is equal to the differential of the

variable multiplied by the constant.

3d. That the differential of a constant quantity is

equal to 0.
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CHAPTER II.

Differentiation of Algebraic Functions— Succes-

sive Differentials— Taijlofs and MaclaurirHs

Theorems.

23. Algebraic functions are those which involve the sum

or diflference, the product or quotient, the roots or powers,

of the variables. They may be divided into two classes,

real and imaginary.

24. Let it be required to find the differential of the

function.

u = ax.

If we give to x an increment h, and designate the

second state of the function by u\ we shall have

u'= ax + ah = u -\- ah,

hence, du^^adx, or -j—dcc^adoc,
dec

25. As a second example, let us take the function

u = ax^.
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If we give to a? an increment h, we have

—7— = 2aa:4- ah:
n

hence, du = 'ilaxdx.

26. For a third example, take the function

u = aoi?:

giving to X an increment h, we have

—-—= Zax^-\-^ axh + ah^f
h

or passing to the hmit

—r— = 3aa?^ ; hence, du = Saa^dx,
ax

27. Let us now suppose the function u to be composed

of several variable terms : that is, of the form

u = 2/-\-z — w = F (a?),

in which y, Zj and w, are functions of x.

If we give to x an increment h, we shall have

u^— u = (y'— y) + (z^— ^ ) — {w^— w)

:

hence, (Art. 16),

u^-u = {Ph + Fh') + {Qh-{- Qh^) - (Lh + Vh^l

or, !fJZi^=:(P+p/^) + (Q+Q'^)_(L + L'A),

or by passing to the limit
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and multiplying both members by dx, we have

-^r-dx = Pdx-i- Qdx — L dx.
dx

But since P, Q, and L, are the differential coefficients

of y, z, and lo, regarded as functions of a?, it follows (Art.

17) that, the differential of the sum, or difference of any

number of functions, dependent on the same variable, is

equal to the sum or difference of their differentials taken

sepa7'ately.

28. Let us now determine the differential of the product

of two variable functions.

If we designate the functions by u and v, and suppose

them to depend on a variable x, we shall have

u^ = u-\-Ph + P'h\

v'=:v^Qh+Q'h\

and by multiplying

mV =:{u + Ph^ Fh^) {v+Qh+ Qh^) ;

if we perform the multiplication, and omit the terms which

contain 1^, which we may do, since these terms will vanish,

when we pass to the limit, there will result,

U'V' — UV ^ ^ n

T = vP-{-uQ-{-<^c.

or passing to the limit,

d(uv) „ _

therefore, d{uv) — vPdx + uQdx = vdu + udv.

Hence, the differential of the product of two functions

dependent on the same variable, is equal to the sum of the
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products which arise by multiplying each by the differ-

ential of the other.

29. If the differential of the product be divided by the

product itself, we shall have

d{uv) _ du dv
7717"— ~7. ' r~">uv

that is, equal to the sum of the quotients ivhich arise by

dividing each differential by itsfunction.

We can easily determine, from the last formula, the

differential of the product of any number of functions.

For this purpose, put v = ts, then

dv _ d{ts) _ dt ds

V ~i ts ~ t s *

and by substituting for v in the last equation, we have

d{uts) _ du dt ds
^

' — r —~ r >

uts u t s

and in a similar manner, we should find

d(utsr . . . .) du , dt , ds , dr „~i— ^ = + -- + + &c.
utsr .... u t s r

If in the equation

d(uts)_du dt ds
7— — 1 T 1 f

uts U t S

we multiply by the denominator of the first member, we

shall have

d{uts) = tsdu + usdt + utds ;

and hence, the differential of the product of any number

of functions, is equal to the sum of the products which
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; arise by multiplying the differential of eachfunction by

i the product of the others.

I
dO. To obtain the differential of a fraction of the form

! — we make

u
j

— =^t, and hence u = tv.

i Differentiating both members, we find

!i

du = vdt + tdv

;

I

finding the value of dt^ and substituting for t its value

—, we obtain
V

7 du udv
~ V v^

^

or by reducing to a common denominator

vdu — udv
dt =

hence, the differential of a fraction is equal to the deno^

minator into the differential of the numerator, minus the

numerator into the differential of the denominator, divided

by the square of the denominator.

31. If the numerator u is constant in the fraction t — —

,

V
its differential will be (Art. 22), and we shall have

j^ udv dt u
dt= 5-, or -=-= 2-

v'^ dv v^

When u is constant, ^ is a decreasing function of v (Art.

4), and the differential coefficient of t is negative.

This is only a particular case of a general proposition
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For, let w be a decreasing function of x. Then, if we

give to X any increment, as + /*, we have

or, u'-u = Ph-VP'h\

But by hypothesis uyu' \ hence, the second member

is essentially negative ; and passing to the limit,

du _ p
dx

hence, a decreasingfunction and its differential coefficient

will be affected with contrary signs.

32. To find the differential of any power of a function,

let us first take the function m", in which n is a positive

and whole number. This function may be considered as

composed of n factors each equal to u. Hence, (Art. 29),

diuT) _ d{uuuu . . . .) _du du du du

w" ~~ {uuuu . . .
.)~ u u u u

But since there are n equal factors in the first member,

there will be n equal terms in the second ; hence,

c?(w**) _ ndu

therefore, d (w") = nif^du.
If

If n is fractional, represent it by —, and make

r

v = M • , whence, w'" = v*

;

and since r and s are supposed to represent entire num-

bers, we shall have

rf/^^du = sv'^^dv ;
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om which we find

dv =—T—rdu =— du,
SV'~^ -(—1)

su*

or by reducing

dv:=—u' du;
s

which is of the same form as the fmiction

d{vr) = nyr-^duj

T
by substituting the exponent — for w.

s

Finally, if n is negative, we shall have

u
1

which we have (Art. 31),

<^(-")=<i=)=^^=
— nvT'^ du

hence, by reducing

d{u~'')— — nu""'^ du.

Hence, generally, the differential of any power of a

function, is equal to the exponent multiplied hy the func-

tion with its primitive exponent minus unity, into the

differential of the function,

33. Having frequent occasion to differentiate radicals of

the second degree, we will give a specific rule for this

class of functions.

Let V = -y/u^ or v = u^

;

then, dv^-r-u^ du = -^u ^du— .— ;
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that is, the differential of a radical of the second degree^

is equal to the differential of the quantity under the sign,

divided hy twice the radical.

34. It has been remarked (Art. 2), that in an equation

of the form

u = F{x),

we may regard u ^s the function, and x as the variable,

or X as the function, and u as the variable. We will

now show that, the differential coefficient which is obtained

by regarding u as a function of x, is the reciprocal of

that which is obtained by regarding x as afunction of u.

If we consider u as the function, the ratio of the in-

crements will be represented by

u'-

x^-

-u 1

-x~ x^ — x^

u'-u

(1)

or since a/--.x = h, we have (Art. 16),

u'-u
h

= 1 1

h 1

Ph + FA^ P^P'h

or by passing to the limit

du 1

dx~ \'

P

But when we pass to the limit, the denominator of the

O/X
second member of equation (1) becomes -z-; hence,

dx _ \ __ \

du ^ P / du\

\d^)
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To illustrate this by an example, let

u = aPj whence x='\/ir==u^'

du a

Now, — = 3a;2^32^8.

but regarding x as the function

^_J_ -|_ 1

du~~ Z^ ~"o T
*

35. If we have three variables w, y, and a7,.which are

mutually dependant on each other, the relations between

them may be expressed by the equations

u = F(y), and y = F'{x).

If now we attribute to x an increment h, and designate

by kj the change which takes place in y, we shall have

(Art. 16),

uf=U + Pk + P'k\ y^=y-^Qh+ Q!h\

and '!!Lz]L^pj^pfh, t:zy-:^Q^Q}i,

If we multiply these equations together, member by

member, we shall have

^x^-=^-(P + A)(Q + Qi^);
k ti

but k = y^ —y ; hence, by dividing and passing to the

limit, we have

du du dy

dx dy dx
^

and hence, if three quantities are mutually dependant on
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each other, the differential coefficient of the first regarded

as afunction of the third, will he equal to the differential

coefficient of the first regarded as afunction of the second,

multiplied by the differential coefficient of the second re-

garded as a function of the third.

36. Let us take as an example

V = bi^f u = aa^y

we find

du ax

But, ^=-^x-^ = SMx2ax= 6abu'x;
dx du dx

and by substituting for u^, its value aV,

4^ = Qc^haP, and dv = ea^ha^dx.
dx

EXAMPLES.

1. Find the differential of u in the expression

«^= y/a^-^.

Put a^— 3? = y, then u = y^, and the dependence be-

tween u and X, is expressed by means of y, and u is

an implicit function of x. Differcntiatmg, we find
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by multiplying the coefficients together we obtain

= (or — of) 2 2a? =
da: 2' Va'-a^'

hence,
— a?c?a?

du~

2. Find the differential of the function

Place a-\-hx'' = y : then u = y'^ ; and

hence,

— = mnh (a + fea?") a?"""*

<iw = 77171& (a 4- ta?") x'^'^dx.

3. Find the differential of the function

u = x{c? + 0?) Vo^^^^^T

dw = ((a^ + a^)V?^^)dx^x ^/'^F^^ d^a"+ ^),

-[x{a^-\-x^)d^/a'-x',

in which the operations in the last two terms are only

indicated. If we perform them, we find

d{a''-\-x') = d{x') = 2xdx,

d(— x^) ^ xdx
d V ^2 — a;2

_
^Va^-x" Va^-oe^'
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Substituting these values, we find

or, reducing to a common denominator and cancelling the

like terms,

4. Find the differential of the function

u =
a* + aV + a^'

from which we find

5. Find the differential of the function

''-^{-''-^,^^fW=^)\

Make y = -4=' z^y/{(?-^o?f,
Vx

then we shall have
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we therefore have (Art. 32),

37

du = --{a -y + zY d{a-y + z),

= -^i^-]/ + ^) '{-dy + dz\

_ — 3c^y + 3c?z

4V<2— 7/4-0

But from the equations above, we find

h \ ^d \fx~ — hdx
dy = d(—^]= —h —

7=;

dz = dic^ - x^y =^{c^- o?Y ' d{(?- ^),

2 11— (c^ — a?) ^ X —2xdx
4:xdx

S^/c^-ar''

Substituting these values of dy and dz, in the ex-

pression for du, we fmd

du
\

3 b 4:X

2xVx V^c^ —
o^

\/a ^ + -^(6-^-0:7

dx.

6. M =—

,

a?

du = dx

x"
•

7. tt = , —ndx
du = —TJ
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o n:. T , {a-\-x)dx
S. u= V2ax + x^y du = \ ^ ,

9, u = {a" + a^f

,

du=:6 {a" + a^fxdx.

10., u = a^+S a*a^ + 3aV + x\ du = 6 {a" + x'fxdx,

11 .. ^ J ^dx
11. u= , , du = -^

VI3^'
(i-^)»

12. w = C?M =

/ ^\3 3 (a 4- -v^) c£r

13. M = ^a 4- v>j

,

du = —

^

--=4
.

sVa?

—o \dxr /—^T ^n"^v^'~
14. w= L^a +y ^>--5

,
<^^=

-

15. w = ccF'y^ du = 2ari/dy + 2i/xdx.

,^ a?" , ??.r"~*c?a:

(1+^)"' (1 + ^)"+'

^8. « = |±4. ^" =
4a'<fa7

ly. u— ^ ,
aw -5^
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Vl-\-x—Vl-x x'^Vl—cc^

21. Find the diiFerential coefficient of

F{x) = Sx''-Sa^-5x

Ans. S2cc^ — 9af^ — 5.

22. Find the differential coefficient of

Fix) = {a^ + a)(3a^-\-b)

Ans. 15x'^ + Sa^b-\-6ax.

23. Find the differential coefficient of

F{x) = {ax-\-x^f,

Ans. 2{ax-\-oir^){a-\-2x).

24. Find the differential coefficient of

Ans.
Vl-ar'{l-]-2.xVl-a^)

Of Successive Differentials.

37. It has been remarked (Art. 16), that the differ-

ential coefficient is generally a function of x. It may

therefore be differentiated, and x may be regarded as the

independent variable. A new differential coefficient may
thus be obtained, which is called the second differential

coefficient.
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38. In passing from the function u to the first differ-

ential coefficient, the exponent of a? in every term in

which X enters, will be changed; and hence, the rela-

tion which exists between the primitive function u a-nd

the variable x, is different from that which will exist

between the first differential coefficient and x. Hence,

the same change in x will occasion different degrees of

change in the primitive function and in the first differential

coefficient.

The second differential coefficient will, in general, be

a function of x: hence, a new differential coefficient

may be formed from it, which will also be a function

of X ; and so on, for succeeding differential coefficients.

If we designate the successive differential coefficients

by

p, q, r, s, &c..

we shall have

du dp da - :;

di=P' di='^' £='• ^'-
I

But the differential of p is obtained by differentiating {

its value — , regarding the denominator dx as con-
ax

stant ; we therefore have

,/du\ , d^u J

and by substituting for dp its value, we have

d^u

5^ = ^-
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The notation d'^u, indicates that the function u has

been differentiated twice, and is read, second differential

of u. The denominator da?" expresses the square of the

differential of x, and not the differential of o^. It is

read, differential square of x, or differential of x squared.

If we differentiate the value of q, we have

dq;

I

<S)=--dq. or.
d'

do

hence,
d'u

dcc'~
rr. &c.,

and in the same manner we may find

-•

d'u

dec'
= s,

dH
The third differential coefficient -j-g, is read, third

differential of u divided by dx cubed; and the differ-

ential coefficients which succeed it, are read in a similar

manner.

Hence, the successive differential coefficients are

du _ d'^u _ d'^u _ d'u _ „

d^-P' d^-^' 1^-''' d^~^'
^''"

from which we see, that each differential coefficient is.

deduced from the one which precedes it, in the same

way that the first is deduced from the primitive function.

39. If we take a function of the form

u = ax

,

4*
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we shall have for the first differential coefficient,

du „ .

-r- = nax .

ax

If we now consider w, a, and dx, as constant, we
shall have for the second differential coefficient

^ = n(n-l)aa?" \

and for the third,

^• = 7i(n-l)(n-2)aa7'' ',

and for the fourth,

It is plain, that when 72 is a positive whole number, the

function

u = ax"*,

will have n differential, coefficients. For, when n dif-

ferentiations shall have been made, the exponent of a; in

the second member will be ; hence, the nth. differentia!

coefficient will be constant, and the succeeding ones will

be equal to 0. Thus,

'^ = n{n-l)in-2){7i-3) a. I,
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Taylofs Theorem.

40. Taylor's Theorem explains the method of de-

veloping into a series any function of tlie sum or difference

of two variables that are independent of each other..

41. Before giving the demonstration of this theorem,

it will be necessary to prove a principle on which it de-

pends, viz : if we have a function of the sum or difference

of two variables of the form

u = F{x ± y\

the differential coefficient will be the same if we suppose x

to vary and y to remain constant, as when we suppose y
to vary and x to remain constant.

For, make x±y — a/

:

we shall then have

and

If we suppose y to remain constant and x to vary,

we have

do(/ = dx,

and if we suppose x to remain constant and y to vary,

we have

dj/ =: dy.

But since the differential coefficient p is independent

of da/ (Art. 15), it will have the same value whether,

da/ = dx, or, da/ = dy.

u = F{a/)

du

da/
=p.



44 ELEMENTS OF THE

To illustrate this principle by a particular example, let

us take

u = {x + y)\

If we suppose x to vary and y to remain constant,

we find

and if we suppose y to vary and a? to remain constant,

we find

the same as under the first supposition.

42. It is evident that the

F(x + y\

must be expressed in terms of the two variables x and y,

and of the constants which enter into the function.

Let us then assume

F{x + y) = A + By"" + Cy' + D/ +, &c.,

in which the terms are arranged according to the ascend-

ing powers of y, and in which A, B, C, D, &c., are inde-

pendent of y, but functions of x, and dependant on all

the constants which enter the primitive function. It is

now required to find such values for the exponents a, 6, c,

&c., and the coefficients A, J5, C, D, &c., as shall ren-

.der the development true for all possible values which

may be attributed to x and y.
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In the first place, there can be no negative exponents.

For, if any term were of the form

By-%

it may be written

B_

and making y — 0, this term would become infinite, and

we should have

which is absurd, since function of w, which is independent

of y, does not necessarily become infinite when y = 0.

The first term A, of the development, is the value

which the primitive function assumes when we make

y = 0. If w^e designate this value by w, we shall have

If we make

and differentiate, under the supposition that oc varies and y
remains constant, we shall have

di/^_dA dB_^ d£ , dD ^^ ^

dx ~ dx dx dx dx ^

and if we differentiate, regarding ?/ as a variable and x

as constant, wx shall find

-^'=«%''-^ + 6Cy'-' + c%^-' +, &c.

:

ay

But these differential coefiicients are equal to each other

(Art. 41); hence, the second members of the equations
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are equal, and since the coefficients of the series are

independent of y, and the equahty exists whatever be the

value of y, it follows that the corresponding terms in each

series will contain like powers of y, and that the coef-

ficients of y in these terms will be equal (Alg. Art. 208).

Hence,

a — 1 = 0, 6 — l = a, c — 1 = 6, &c.,

and consequently

= 1, 6 = 2, c = 3, &c.

;

and comparing the coefficients, we find

dx
^

2 dx
^

S dx
'

And since we have made

F{x) = A=u, and F{x + y ) = w',

we shall have

y^ du ^ d^u ^ d^u
A = u, B = -j-y C = - ;-r-, D

dx' l,2da^' 1.2. Sdx"'

and consequently,

, du , d^u y^ , d^u y^
,

fi

43. This theorem gives the following development for

the function

u'={x-\-yY,

du __. d^u , ,\ „_i e
u — oT, -^j— = nx^ , -r-9- = n(n — 1 ja?" \ &c.

:

' dx do^ ^ '
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hence,

1 . <w

+ -A__.i\_ ^x- Hf^, &c.

44. The theorem of Taylor may also be applied to the

development of the second state of any function of the

form

u = F{x\

when X receives an arbitrary increment h^ and becomes

a? + A. For, if we substitute h for y, we have

hence, the difference between the two states of the func-

tion is

,
c?w, , du^ h^

,
d^u h^ , „

dx da? 1.2 dx^ 1.2.3^'

in which the difference is expressed in terms of the

differential coefficients and the ascending powers of the

increment.

If we now suppose h to diminish continually, the sign of

the limit of the series will depend on that of the first term

•—/i, or if li is positive, on that of the coefficient -p-.

dx , dx

For, by dividing by 7i, we have

7/— w __d.u d^u h d?u ^^
, «,
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and by passing to the limit

ax

hence, when a series is expressed m the powers of a

variable which we suppose to be continually diminished,

the sign of the limit of the series will depend on the sign

ofthe term which contains the lowest power of the variable.

45. Remark. The theorem of Taylor has been demon-

strated under the supposition, that \\\Qform of the function

is independent of the particular -values which may be

attributed to either of the variables x or y. Hence, when

we make y — 0, and obtain

F{x) = u;

this function of x ought to preserve the same form as

F{x -\- y) ; else there would be values of x in one of the

functions,

u'=F{x-\-y\ u = F{x\

which would not be found in the other, and consequently

some of the values of x would be made to disappear when

a particular value is assigned to y, which is entirely con-

trary to the supposition.

If the function be of the form

u'=h-\- Va — x-^yy

we shall have

w = & + Va — X.
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If we now make x = a, we shall have

in which we see, that u^ and u are expressed under dif-

ferent forms ; and hence, the particular value of y =
changes the form of the function, wliich is contrary to the

hypothesis of Taylor's theorem. When, therefore, the.

function

shall change its form by attributing particular values to

oc or y, the development cannot be made by Taylor's

theorem.

46. The particular supposition which changes the form

of the function will, in general, render the differential

coefficients in the development equal to infinity.

If we have

then, u =c-{- yZ+a?,

dii 1

d'u _ 1

^ 2x2(/+^)l

fFu 1 . 3

"^^ 2x2x2(/+.r)T

&c. &c,

in which all the coefficients will become equal to infinity

when we make ~ x =f.
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47. If we have a function of the form

u^ = h-\- Va — x-\-t/y

in which n is a whole number, all the differential coef-

ficients for x = a will become infinite. For, we have

hence,

U:= b+V^— X-= 6 + (a--^)",

du_
dx~

1

n .

(a

1

d^u (1- n) 1

re
(«-.

2n-l'

r) "

&c. &c.

all of which become infinite when we make a? = a.

MadaurirCs Theorem.

48. Maclaurin's Theorem explains the method of

developing into a series any function of a single variable.

Let us suppose the function to be of the form

u = F{x).

It is plain that the value of F(x) must be expressed in

terms of a?, and of the constants which enter into F{x).

Let us therefore assume

u = A-{-Bx''-{-Cx'' + Dx''-{', &c.,

in which the terms are arranged according to the ascend-

ing powers of x, and in which A, J5, C, D, &c., are
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independent of x, and dependent on the constants which

enter into F{pc).

It is now required to find such values for the exponents

a, 6, c, &c., and the coefficients A, i5, C, D, &c., as

shall render the development true for all possible values

which may be attributed to x.

If we make x — ^^u takes that value which the F{x)

assumes under this supposition, and if we designate that

value by V we shall have

The first differential coefficient is

f^ ^ aBx""-' + bCx'-'-\- cDx'^-' + &:c,
ax

and since this does not necessarily become when we

make x = 0, it follows that there must be one term in the

second member of the form a?" : hence,

a — l=Oj or a = l;

and making x — 0, we have

ax

The second differential coefficient is

= b{b - l)Cx'-' + c{c-l)Dx'"-'' + &c.;
d^u

but since the second differential coefficient does not neces-

^rily become 0, when x=zO, we have

b — 2 = 0, or 6 = 2:
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hence, by making x = 0, we have

-7-2- = 2 C, or C = -y~^--,
da? da? 'H

We may prove in a similar manner that

c = 3 and D = -^r^ , &;c.
dd? 1.2.3

If then vv^e designate by U what the function becomes

when we make a? = 0, and by U, U'\ V", &c., what

the successive differential coefficients become under the

same supposition, we shall have

49. The theorem of Maclaurin may be deduced imme-

diately from that of Taylor.

In the development

, ,
du d^u iP" , d^u ij^ , e

dx^ dor 1.2 dor 1.2. S

the coefficients w, -7—, -3-^, &c.,

are functions of x, and also dependent on the constants

which enter into F{x-\- 1/).

If we make x = 0, the F{x -f- y) becomes F(y), and

each of the differential coefficients being thus made inde-

pendent of Xf will depend only on the constants which

enter into F(x-\-y), and which also enter into F(y).

Hence, if we designate by

U, U\ U'y U", U"", &c,
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the values which the coefficieii'ts assume under this

hypothesis, we shall have

F(y)= U+ U'y+ U"^ + V"'y^+ V"":^^^+&c.

50. If we take a function of the foriP

w =r (a 4- xf,

we shall have

&c. = &c.

which become, when we make x = 0,

U=a% U^nlf-\ lJ" = n{n-\)ar-\ &c.

hence,

I

{a-\-xy = d' + na^-'x-\-'^-^—?ia"-V+&c.

51. Remark 1. The theorem of Maclaurin has been

demonstrated under the supposition that the F{x) reduces

to a finite quantity when we make x = 0. The case,

therefore, is excluded in which x — renders the function

infinite. Thus, if we have

u = cot Xj u = cosec x, or u = log x,

and make x = 0, we find u= co; hence, neither of these

functions can be developed by the theorem of Maclaurin.
5*
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Remark 2. Wc have already seen (Art. 45.), that the

theorem of Taylor does not apply to those cases in

which the form of the function is changed by attributing

a particulfir value to one of the variables : the theorem

therefore fails for particular values, but is true for all

others, and hence, the general development never fails.

In the theorem of Maclaurin the failure arises from the

form of the function : hence, it is the general development

w^hich fails, and with it, all the particular cases.

EXAMPLES. .

1. Develop into a series the function

2. Develop into a series the function

u= ^{a^-x'f=a^[l-^)\

3. Develop into a series the function

a-\- X \ a J

4. Develop into a series the function

u=--L=. = a-'(\-\-~\ \
ya''-\-x'' ^ a^
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CHAPTER III.

Of Transcendental Functions.

52. If we have an equation of the form

u — a'',

in which a is constant, it is plain that u will be a function

of X ; and if a be made the base of a system of logarithms,

X will be the logarithm of the number u (Alg. Art, 240).

When the variable and function are thus related to each

other, u is said to be an exponential or logarithmic func-

tion of X.

53. The functions expressed by the equations

M == sin 37, u= cos Xy u — tang x^ u= cot x^ 6cc.,

are called circular functions.

The logarithmic and circular functions are generally

called ti'anscendental functions, because the relation be-

tween the function and variable is not determined by the

ordinary operations of Algebra.

Differentiation of Logarithmic Fmictions.

54. Let us resume the function

u=:a'.
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If we give to x an increment hy we have

and u'- w = a'** - a'= a'(a*- 1).

In order to develop a\ let us make a = 1+6, we shall

then have

hence,

1 1 . /^ 1 . 2 . «3

V 1 1 2 1.2 3 J'

from which we see, that the coefficients of the first power

of h will be

h W . W
Vl 2 3 /

replacing h by its value a — 1, and passing to the limit,

we obtain

du _ da" _ x/«-~l (a — If ,

(a — 1)^ « \

d~x-~d^~'' \~i 2~"^
3 ~ "^""'r

or if we make

—— = Aa*, or da' = ka'dx ;
ax

in which k is dependent on a.
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The successive differential coefficients are readily found.

For we have
da'

hence,

dx ~
-ati)

'(%>= da'k =za'kHx;

d^a''

dx"
'--a'h\

d^a'

da^
~--arTi\

&c. &c.

d^a''

dx""
= a'^k".

55. It is now proposed to find the relation which exists

between a and k. For this purpose, let us employ the

formula of Maclaurin,

u = F{x) = U-h U'^ + U"-^ 4- 'U^"^r4^ + &c.

If in the function

and the successive differential coefficients before found,

we make a? = 0, we have

£7=1, V'^k, U"=k\ U''=k\ &c.;

hence,

_ _ KX K OCT K X . o

" =i+t+t:2+t:21-+ ^"

If we now make x = ^r-i we shall have
k

a'*=14-— + -^ +—^— + &c.;
1 1.2 1.2.3
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designating by e the second member of the equation, and

employing twelve terms of the scries, wc shall find

• 6 = 2.7182818;

hence, a* =6, therefore a = e*.

But, 2.7182818 is the base of the Naperian system of

logarithms (Alg. Art. 255) ; hence, the constant quantity

k is the Naperian logarithm of a.

By resuming the result obtained in Art. 54,

da' = a'k doc,

we see that the differential of a quantity obtained by

raising a constant to a power denoted by a variable ex-

ponent, is equal to the quantity itself into the Naperian

logarithm of the constant, into the differential of the

exponent.

56. If now we take the logarithms, in any system, of

both members of the equation

we shall have

kle = la, or k = -—

,

te

da' = ka'dx = --a'd^

;

le

whence,

or by recollecting that

u = a',

we have

du _ ^^ ^,
dx le
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or, if we regard x as the function, and u as the variable,

we have (Art. 34),

dx _le 1

du la a""'

Let us now suppose a to be the base of a system of

logarithms. We shall then have x= the logarithm of

u, la — I, and le= the modulus of the system (Alg.

Art. 255); and the equation will become

d{lu) = le—

,

that is, the differential of the logarithm of a quantity is

equal to the modulus of the system into the differential of

the quantity divided hy the quantity itself.

57. If we suppose a = e the base of the Naperian

system, and employ the usual characteristic V to desig-

nate the Naperian logarithm, we shall have

, , du
dUu) = —

;

u

that is, the differential of the Naperian logarithm, of a

quantity is equal to the differential of the quantity divided

hy the quantity itself.

The last property might have been deduced from the

preceding article by observing that the modulus of the

Naperian system is equal to unity.

58. The theorem of Maclaurin affords an easy method

of finding a logarithmic series from which a table of

logarithms may be computed. If we have a function of

the form,

u = F{x) = Ix,
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we have already seen that the development cannot be

made, since F{x) becomes infinite v^hen a? = (Art. 51.)

But if we make

the function will not become infinite when a? = 0; and

hence the development may be made.

The theorem of Maclaurin gives

u = F(x)= U+ 1^^+ U"^+ U"'-4-^+Slc.

If we designate the modulus of the system of the loga-

rithms by yl, we shall have

dx l + x ^ ^ >' '

da^- ^(1-1-^)^- ^^1+^) >

dx^ {l-{-xy V
1 y

If we now make x = 0, we have

U=0, U' = A, U"=-A, U"' = 2A,&iQ.',

hence,

Z(l+.) =A(.-| +^-^ + ^-&c.)

This series is not sufficiently converging, except in

the case when a? is a very small fraction. To render the

series more converging, substitute —xioxx : we then have
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and by subtracting the last series from the first, we obtain

Kl+.)-Z(l-.) = ^(i±^) =3A(±44+ &c.)

If we make

— l-\ , we have x

and by observing that

we have

l{n-\-z)—ln= 2A "^
3 \2n-{-z)~^ 5 \2n+z)'^ J

from which we can find the logarithm of 7i-\- z when the

logarithm of n is known. This series is similar to that

found in Algebra, Art. 253.

If we make n = l, and z=\, we have Zl = 0, and

If we make the modulus A = 1, the logarithm will be

taken in the Naperian system, and we shall have

Z^2:= 0.693147180,

2Z^2 = Z^4 = 1.386294360;

and by making 2r = 4, and n = 1 , we have

Z^5 = 1.609437913,

and l'2 + Vb = V\0 = 2.302585093.

6
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If wc now suppose the first logarillims to have been

taken in tlie common system, of which the base is 10, we

shall lUive, by recollecting, that the logarithms of the same

number taken in two different systems are to each other

as their moduli (Alg. Art. 250),

no : Z^O :: A : ly

or, 1 : 2.302585093 : : A'. 1

;

"^^"'=«' ^-
2.30358509

="-'^^'^^^^^^^-

Remark. To avoid the inconvenience of writing the

modulus at each differentiation (Art. 56), the Naperian

logarithms are generally used in the calculus, and when

we wish to pass to the common system, we have merely

to multiply by the modulus of the common system. We
may then omit the accent, and designate the Naperian

logarithm by /.

59. Let us now apply these principles in differentiating

logarithmic functions.

1. Let us take the function u = l(—j==).

Make z= , —=,

dz
and we shall have du =—

,

z

cZo? yoN-^ —
cc^dx

but dz =
Va^-^a^ Mx

a^-f^
(a^+o^)
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aHcG

x{a^+c(?)

2. Take the function u = f ^^I±l~^ ^( 2̂
Lvi + a?— Vi — x

and make \/l-{-w-\- ^l—x='i/, vT+^— ^l—x=z,

which gives

u = I (^^ = ly — Iz, and du — -^ .

\z J y z

But we have

, dx dx — dx I /— /- v

2Vl + a7 2^1-07 2Vl-a^^ /

^/\-\-x 2yi-a? 2Vl-a?2\ /

2Vl-a^'

dx dx dx

2Vr+

_ ydx

Whence,

(Zy (^.0 _ zdx ydx

y ^~~2yVr=^~27VT=^'

2 3/2: Vl — 07^

and observing that y^-{-z'^=^ and yz=z2xy

we have da=: 7 .
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3. w = /(a^+ Vl+P), du= :.
^ ' Vl + ar

5. w = Z /
* aM = —,

\ ^Ja^^x^r ^/a—oc\
, acZo?

6. u — l\ -—p 7 , aw= ,

LVfl + a?- Va-a^J x^/a^^olP

60. Let us suppose that we have a function of the form

u = {Ixy.

Make Ix = z, and we have

u = z% du = nz'^'^dz,

and substituting for z and dz their values,

61. Let us suppose that we have

w = Z(Za7).

Make Ix = z, and we shall have,

, T dz J dx
u = lz. du = — , dz=z —

;

z X

hence, - - €?«:=
xlx
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62. The rules for the differentiation of logarithmic func-

tions are advantageously applied in the differentiation of

complicated exponential functions.

1 . Let us suppose that we have a function of the form

u = z\
^

in which z and y are both variables.

If we take the logarithms of both members, we have

lu = ylz

;

, du T J ,

dz
hence, — = aylz~it- y— ;

or, du = ulzdy + uy—

,

z

or by substituting for u its value

du = dz^ = zHzdy + yz^~^dz.

Hence, the differential of a function which is equal to

a variable root raised to a power denoted by a variable

exponent, is equal to the sum of the differentials which

arise, by differentiating, first under the supposition

that the root remains constant, and then under the sup-

position that the exponent re?nains constant (Arts. 55,

and 32).

2. Let the function be of the form

u = a^".

Make, b' = y, and we shall then have (Art. 55),

u = a^, du = aHady ; but dy = b'lbdx,

X

hence, du = a^ b'lalbdx.

6*
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3. Let us take as a last example

u = Z^f

in which z, t, and s, are variables.

Make, f = y, we shall then have

u = z", du — z^ Izdy -\-yz^~^ dz.

But dy = fltds + sf-'^dt

;

hence, du = z^lz{fltds + sf~^dt) + fz''-'dz,

du
slzdt .

dz\
==/f(ltlzds + '^-^^)

Differentiation of Circular Functions.

63. Let us first find the differential of the sine of an

arc. For this purpose we will assume the formulas (Trig.

Art. XIX),

. f , ,. sin a cos 6 + sin 6 cos a
sm (a + 6) =

sin (a — 6) =

R
sin a cos 6 — sin & cos a

R
If we subtract the second equation from the first,

2 sin 6 cos «
sin (a + 6) — sin (a — b)

R

and if we make a -f- 6 = a? + A, and a — b = x, we shall

have

2 sin— 7tcos (x-\ hj

sm (a? + ^) — sma? = ~
,R
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and dividing both members by h,

. ,
.

,- . 2s,m-—}ico^(x-\--—h\
sm{x-\- h) — s,mx _ 2 \ 2 /

h
~

hR '

* * -1 /In
sin

—

h cosfa?H hj

2

If we now pass to the limit, the second factor of the

second member of the equation will become .

sm

—

h
2

In relation to the first factor —r
its limit will be unity,

^
¥^

-r^ jRsina , sina cosa
For, tang a = , whence = —-—

•

cos a tang a R

Now, since an arc is greater than its sine and less than

its tangent*

sina ^ ^ J sina ^ sin a
< 1, and >

a a tanga

* The arc DB is greater than a straight Hne

drawn from D to B, and consequently greater

than the sine DE drawn perpendicular to ^B.

The area of the sector ABD is equal to

l-ABX BD, and the area of the triangle ABC

is equal to -ABXBC. But the sector is less ^ E B

than the triangle being contained within it : hence,

^-ABXBD^^JiBX.

consequently, BB < Bd,
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hence, the ratio of the sine divided by the arc is nearer

unity than that of the sine divided by the tangent. But

when we pass to the hmit, by making the arc equal to 0,

the sine divided by the tangent being equal to the cosine

divided by the radius, is equal to unity : hence the limit

of the ratio of the sine and arc, is unity.

When therefore we pass to the limit by making ^ = 0,

we find

dsinx _cosx
^

^~dx"~ R '

cosxdx
hence, dsmx =

R

64. Having found the differential of the sine, the diffe-

rentials of the other functions of the arc are readily de-

duced from it.

cosa? = sin (90° —x), dcosx = (^ sin (90° — a?),

and by the last article,

(^ sin (90° -x) =^ cos (90° - x)d{90° - a?),

= — —cos (90° — x)dx :K

. , smxdx
hence, a cos a? = ^— ;

the differential of the cosine in terms of the arc being

negative, as it should be, since the cosine and arc are

decreasing functions of each other (Art. 31.)
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65. Since the versed sine of an arc is equal to radius

minus the cosine, we have

, . , , „ .sin ocdoo
a ver-sm x = a{K— cos oc) = ——

.

R

66. Since tanga?== , vi^e have (Art. 30),
cos X

7, R cosxd sinx — R s'mxd cosx
a tang x =

cos il?

(cos\v-{- sm^x)dx

cos^a?

but cos^o? + s'm^x = R^ :

hence,
, , R'dx
d tango? = 5~

cos^a?

67. Since
R^

COt^'=: .

tang a?

we have

, RH tanff x RHx
d cota? = — s_ — _

2^ _but, tang^^

hence, a cot a?
—

r-;

—

tang^a? tang^a? cos^a?

R^ sin^a?

which is negative, as it should be, since the cotangent is a

decreasing function of the arc.
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68. Since seca? = , we have
cos a?

J R^d cosa? R s'mxdx
a secx= =

, , R smx ^ J R^
but, = tang a?, and = seca;;

cos X cos X

, , scca? iansxdx
hence, • d sec a? = —2 .

R^
69. Since coseca7 = —

^

, we have
sin a?

, R^. sina? R cosxdx
a cosec x= r-^^ = —

;

. 'j cosec a? cot a? (ia?

hence, a cosec a? =
R'

70. If we make R = l, Arts. 63, 64, 65, 66, 67,

will give,

J sina?= cosa^cZa? (1),

dcosx= — sinxdx (2),

d ver sin a? = sinxdx (3),
«

c?tanga? =—

^

(4),
cosa?

c^ cot a? = r-r- (5).
sirfa?

The differential values of the secant and cosecant are

omitted, being of little practical use.

71. In treating the circular functions, it is found to be -

most convenient to regard the arc as the function, and the
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sine, cosine, versed-sine, tangent, or cotangent, as the

variable. If we designate the variable by u, we shall

have in (Art. 63) sin x=:u, and

, Rdu Rdu
ax

cos a? Vr^—u^'

I If we make cosx = u, we have (Art. 64),

, _ Rdu _ Rdu
~

sina? ~ VW^^

)
If we make ver-sina; = u, we have (Art. 65),

, Rdu
ax = —:

.

sma?

But, smx= ^/R^— cos% and cosx=R—u,

therefore, cos^^ = R^ — 2Ru + u\

hence, sin x = ^2Ru — u\

Rdu
and consequently, dx =

V2Ru — u^'^

If we make tang x = u, we have (Art. 66)

, cos^x du
ax R

, coso? R , cos^o? R^ R
but —57~ = > hence

R sec 07
'

R^ sec'^a? I^t^+tang^a?'

Rhlu
hence, - dx =

K' + u^
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Now, if we make i? = l, the four last formulas

become

, du J du
docz= —. . cte= —

-^l-u^
'

Vl-w^
'

J du J du
dx=— cte =

V2U-U' 1+^
•

and these formulas being of frequent use, should be care-

fully committed to memory.

72. The following notation has recently been introduced

into the differential calculus, and it enables us to designate

an arc by means of its functions.

sin~V= the arc of which u is the sine,

• cos~^u = the arc of which u is the cosine,

tang~'w — the arc of which u is the tangent,

&c. &c. &c.

If, for example, we have

du
07 = sin \ then, dx

vr

73. We shall now add a few examples.

1. Let us take a function of the form

Make cosx = z, and smx = y;

then, u = z^, and (Art. 62);

du = z" Izdy + ijz^'^dz:
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also, dz= — sin 07 c?^, and dy = cosxdx

:

hence, du = z^ flz dy -\-— dz\

/ sm oc \= cosa?""*( Zcosajcosa? \dx.
\ cos^ /

2. Differentiate the function

, mdu
dx~

vr •rr^u:

3. Differentiate the function

X — COS" M M y 1 — W^j

4. Differentiate the function

_, M , 2du
a7 = tanff '—

-, dx = - -.
"^ 2 4 + w^

5. Differentiate the function

X = sin~^ (2w Vl — w^), dx — ,

6. Differentiate the function

, X , ydx — xdy
M = tanff —

,

du — ^—5-—5-^.

y y^ -\-oir

74. We are enabled by means of Maclaurin's theorem

and the differentials of the circular functions, to find the

7
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value of tlie principal functions of an arc in terms of the

arc itself.

Let u = F(x) = smx: then,

du

dx

d'u

dx'
~ — cos 07,

dx'
= d^u

+ cosa7.

If we now render the differential coefficients independent

of X, by making a? = 0, we have (Art. 49),

hence, sm x-= &c.
1 1.2.3 1.2.3.4.5

75. To develop the cosine in terms of the arc, make

u = F{x) = cos X ; ther>,

du . d^ii d?u
-;-=— sma?, T^ = — cosa?, ——T = %mXy
dx dor dx^

d^u d^u
-T—- = cosa7, -—-r
dx'^ dx^

and rendering the coefficients independent of x^ we have

hence, cosa; = 1 - y^ -\-

^ ^^ ^

- &c.
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The last two formulas are very convenient in calculating

he trigonometrical tables, and when the arc is small the

series will converge rapidly. Having found the sine and

cosine, the other functions of the arc may readily be

calculated from them.

76. In the two last series we have found the values of

the functions, sine and cosine, in terms of the arc. We
may, if we please, find the value of the arc in terms of

any of its functions.

77. The differential coefficient of the arc in terms of

its sine, is (Art. 71),

du Vl-u

developing by the binomial theorem, we find

dx , , 1 2 ,
l-3,,4

,
1.3.5 6 ,

.

du 2 2.4 2.4.6

In passing from the function to the differential coeffi-

cient, the exponent of the variable in each term which

contains it, is diminished by unity ; and hence, the series

which expresses the value of x in terms of u, will contain

the uneven powers of w, or will be of the form

x = Au-\-Bu^-\-Cu^ + Du'+ &c.;

and the differential coefiicient is

^ = A-\-SBu'+5Cu' + 7Du'-\-6cc
du
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But since the differential coefficients are equal to each

other, we find, by comparing the series,

2.3' 2.4.5' 2.4.6.7'

hence,

. , w
,

1 m\ l.Su^
,

1.3.5 , ,
„

1 2 3 2.4.5 2.4.6.7

If we take the arc of 30°, of which the sine is —
2

(Trig. Art. XV), we shall have

arc 30° = --\ =^ =- + &c.;
2 2.3.2"^ 2.4.5.2^ 2.4.6.7.2^

and by multiplying both members of the equation by 6,

we obtain the length of the semi-circumference to the

radius unity.

78. To express the arc in terms of its tangent, we have

(Art. 71),

d^ 1

(1 + ^^^) \
du \-\-u'

^Vhich gives

du

hence the function x must be of the form

x-Au-\-Bu^-\- Cu^ + Du',

and consequently

due
y- = A -\- SBu'' -\- 5 Cu* + 7Du^

;

du
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and by-comparing the series, and substituting for A, B, C,

&c., their values, we find

X = tang u = - _. +__+ &c.
1 o 5 7

If we make x = 45°, u will be equal to 1 ; hence,

arc450r=l-i- + -i--i+&c.
o 5 7

But this series is not sufficiently convergent to be used

for computing the value of the arc. To find the value

of the arc in a more converging series, we employ the

following property of two arcSj viz.

:

Four times the arc tvhose tangent is — , exceeds the
o

arc of 45° by the arc whose tangent is —— *.

+ Let a represent the arc whose tangent is — . Then (Trig. Art

XXVI),
^

„ 2 tang a 5
tang2a= ^-r- =—

,

^
1— tang^a 12

'

2 tang 2a 120
tang4a=_^-j-^=—

.

The last number being greater than unity, shows that the arc 4 a ex-

ceeds 45°. Making

the difference, 4 a—45°= .^—B=b, will have for its tangent

r X / /I «x tang.^— tangB 1
tang 6= tang (.^—5) =—r-^ —^-^= ^^77;^ ^^ ^ 1 -f tang ./2 tang £ 239 '

hence, four times the arc whose tangent is —, exceeds the arc of 45° by an,

1
^

<arc whose tangent is a^K'*
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^^5 5 3.53 ' 5.6^ 7.5

1.1 1
I J8

1 1 _ 1

^g ^7^=7;^- ' +
'

239 239 3(239)3 5(239f 7(239)'
7+ &c.;

hence,

arc 450

.fj_ L-i-JL 1
I

\
V5 3. 53 ^'S. 5*^7. 7^ "^J

-(± L_ +—^^ '—+)
\239 3(239)3 5(239? 7(239)^ /1(239)3 ' 5(239)^ 7(239)'

Multiplying by 4, we find the semi-circumference

= 3.141592653.
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CHAPTER IV.

Development of any Function of two Variables

—Differential of a Function of any number

of Variables—Implicit Functions—Differential

Equations of Curves—Of Vanishing Fractions.

79. We have explained in Taylor's theorem the method

of developing into a series any fmiction of the sum or dif-

ference of two variables.

We now propose to give a general theorem of which

that is a particular case, viz :

To develop into a series any function of two or more

variables, and find the dijferential of the function.

80. Before making the development it will be necessary

to explain a notation which has not yet been used.

If we have a function of two variables, as

u = F{x,y),

we may suppose one to remain constant and differentiate

the function with respect to the other.

Thus, if we suppose y to remain constant, and x to

vary, the differential coefficient will be

%= F'i.,y); (1).
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and if we suppose x to remain constant and y to vary,

the differential coefficient will be

%=P'(^.y)- (2).

The differential coefficients which are obtained under

these suppositions, are called partial differential coef-

ficients. The first is the partial differential coefficient

with respect to x, and the second with respect to y.

81. If we multiply both members of equation (1) by

dxj and both members of equation (2) by Jy, we obtain

— dx = F' {x, y) dxy and —dyz^F" (a?, y ) dy.

The expressions,

du J du J

are called partial differentials; the first a partial diffe-

rential with respect to x, and the second a partial diffe-

rential with respect to y : hence,

A partial differential coefficient is the differential co-

efficient of a function of two or more variables, under

the supposition that only one of them has changed its

value : and,

A partial differential is the differential of a function

of two or more variables, under the supposition that only

one of them has changed its value.

82. If we differentiate equation (1) under the suppo-

sition that X remains constant and y varies, we shall have

.dy
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and since x and dx are constant

-,/du\ _ d(du)

\dx) dx

which we designate by

d^^
dx

'

d^u
hence, -j

—

:r—F"^{x,y).
dxdy ^

The first member of this equation expresses that the

function u has been differentiated twice, once with respect

to X, and once with respect to y.

If we differentiate again, regarding x as the variable,

we obtain

which expresses that the function has been differentiated

twice with respect to x and once with respect to y. And

generally

dx^'dy^'

indicates that the function u has been differentiated n-\-m

times, n times with respect to x, and m times with respect

to y.

83. Resuming the function

u = F{x,y),

if we suppose y to remain constant, and give to x an arbi-

trary increment h, we shall have from the theorem of Taylor,

ry, , T . ,
dull ,

d^u h^
,
d^u h^

,
.



CW ELEMENTS OF THE

, . , du d^u d^u

are functions of x and y, and dependent on the constants

which enter the F{xjy).

If we now attribute to y an increment /c, the function

M, which depends on y, will become

du, dhi k^
,

d'-^u k^,
uu , 10 u n, ' u, u n, . „

and the function -r^- will become
ax

du d?u k d'u k^ d^u P
dx dxdy 1 dxdy^ 1 .2 dxdy^ 1.2.3'^ '

/

and the function , _ , will become
dar

dhi d?u k d^u W- d^u 1^ „

d^'^d^T'^'d^U2^dx'dy^ 1.2.3 ^ ^''

d?u
and the function -j-^i will become

d?u d'u k d'u k^ d^u P
da^'^dx'dy 1

"^
cZo^rfy^ 1.2 t^o^^c^y^ 1.2.3

^''

&c. &c. &c. &c.

Substituting these values in the development of

F{x-\-h, y),
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and arranging the terms, we have

F{x-\-h,y-\-k)~u-{-- —— \-— h &c.,

(^i< /^ d?u hk cPu hk^ „

(Pu h\ (Pu h^k

+ da? 1.2.3
+^^-

which is the general de\^elopment of a function of two

variables, when each has received an increment, in terms

of the increments and differential coefficients.

84. If we now transpose u = F{x, y) into the first

member, and pass to the hmit, we find

d[F{x^ y)] — du = ~dx-\- -^dy.
cLx dy

The differential of F{x, y) — du, which is obtained under

the supposition that both the variables have changed their

values, is called the .total differential of the function.

85. If we have a function of three variables, as

u^F{x,y,z\

and suppose one of them, as z, to remain constant, and

increments h and k to be attributed to the other two, the

development of F {x -\- h^ y -\- k, z) will be of the same

form as the development of F {x -{- h, y -\- k) ; but u and

all the differential coefficients will be functions of z.
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If then an increment I be attributed to z, there will be

four terms of the development of the form

du, du, duj
' dx * dy * dz

'

If u were a function of four variables, as

there vtrould be five terms of the form

dUj du, dUj du ^

' dx * dy ^ dz ^ ds *

and a new variable introduced into the function, would

introduce a term containing the first po\ver of its increment

into the development.

If we transpose u into the first member, and pass to

the limit, we shall have

and

from which we may conclude that, the total differential

of a function of any number of variables is equal to the

sum of the partial differentials.

86. The rule demonstrated in the last article is alone

sufficient for the differentiation of every algebraic function.

1 . Let u = oi? -\-y^ — z ; then

du
j-dx=2xdx, 1 st partial differential

;

ax
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-—dy^ ^y^dy, 2d partial differential

;

dy

^dz=-dz, 3d
dz

hence, du = 2xdx -{- Sy'^dy — dz.

2. Let u = xy ; then,

du

dx

du

dy

dx = y dx,

dy — xdy

:

hence, du = ydx-\- x dy.

3. Let u=:x"*y" ; then,

du

dx
dx — mx^ ^y'dxj

du— dy — ny^ ~ ^ x'^dy : hence,

du — mx'^~^y"'dx + ny''~^x'^dy — x'^~'^y''~^{mydx + nxdy).

4. Let u~— ; then,

y

du 7 dx—dx = —,
ax y

du J xdy

hence, du = ydx — xdy
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6. Let u = -
.

^^ = ay (or^ + y2) ^ ; then,

c?w , _ ayxdx

dUj _ ady f^y^dy

, J ayxdx — ao?dy
hence, cm = ^^ j-^.

C^ + y')^

6. Let w = xyzt ; then,

cfi/ = yztdx +xztdy + ary^(?2; + xyzdL

7. Let u = zv ; then,

-^dy = z^lzdy (Art. 55),

~dx=^yzy-'dz (Art. 32):
aa? -

hence, du — zvlzdy-{-yz'^~^ dz.

Remark. In chapter II, the functions were supposed

to depend on a common variable, and the differentials were

obtained under this supposition. We now see that the dif-

ferentials are obtained in the same manner, when the func-

tions are independent of each other, and unconnected with

a common variable.

87. We have seen (Art. 39), that a function of a single

variable has but one differential coefficient of the first

order, one of the second, one of the third, &c. ; while a
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function of two variables has two differential coefficients

of the first order, a function of three variables, tluree ; a

function of four variables, four ; &c.

It is now proposed to find the successive differentials

of a function of two variables, and also the successive

differential coefficients.

We have already found

^ du -, du Jdu =z —- dx -\- -rr- ay,
dx dy

Since -- and —- are functions of x and y, the
dx dy ^

du du
differentials —-dr, j-dy, must each be differentiated

with respect to both of the variables; dx and dy being

supposed constant : hence,

jfdu , \ d'^u , o
, d'^u J J

and since the second differential cf the function is but the

differential of the first differential, we have

d u d u d ij

If we differentiate again, we have

''W''J-^''''+^ dy
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and consequently,

It is very easy to find the subsequent differentials, by

observing the analogy between the partial differentials and

the terms of the development of a binomial.

We also see that, a function of two variables has two

partial differential coefficients of the first order, three of

the second, four of the third, &c.

88. There are several important results w^hich may be

deduced from the general development of the function of

two variables (Art. 83).

1st. If we make x=:0, and y = 0, u and each of

the differential coefficients will* become constant, and we

shall have

i.(M) =«H(&^&)dy

+ &c.,

which is the development of any function of two variables

in terms of their ascending powers, and coefficients which

are dependent on the constants that enter the primitive

function.

2d. If, in the general development, we make y = 0, and

A = 0, we shall have
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which is the theorem of Taylor.

3d. If we make y = 0, k = 0, and x = 0, we have

^,,. ,
du h , d^u h^ , d?u h^

,
.

which is the theorem of Maclaurin.

Implicit Fumtions.

89. When the relation between a function and its

variable is expressed by an equation of the form

y = F{x)

in which y is entirely disengaged from x, y has been

called an explicity or expressed function of x (Art. 5).

When y and x are connected together by an equation of

the form
F{x,y)^Q,

y has been called an implicit^ or implied function of x

(Art. 5.)

It is plain, that in every equation of the form

F{x,y) = ^,

y must be a function of x, and x of y. For, if the

equation were resolved with respect to either of them, the

value found would be expressed in terms of the other

variable and constant quantities.

8*
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90. If in the equation

u = F{x,y) = 0,

we suppose the variables cc and y to change their values

in succession^ any change either in x or y, will produce a

change in u : hence, i^ is a function of x and y when

they vary in succession. The value, however, which u

assumes, -when x ox y varies, will reduce to when

such a value is attributed to the other variable as will

satisfy the equation

F{x,y) = Q,

Now the partial differential

du J-^ax.
ax

represents the limit of the change which takes place in the

function u under the vsupposition that x varies (Art. 81);

and the partial differential

du ,

is the limit of the change which takes place in the function

u under the supposition that y varies. But the change

which takes place in u when x and y both vary is :

hence, -rr-dx -]--=- dy = 0.
dx dy

91. In discussing the equation

F{x,y) = 0,
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it is often necessary to find the differential coefficients of

one of the variables regarded as a function of the other,

and this may be done without resolving the equation. For,

from the last article,

du ,dudy_
'

dx dy dx

du
'

dy dx
hence, -p- =——,

dx du

dy

Hence, the differential coefficient of y regarded as a

function of x, is equal to the ratio of the partial differen-

tial coefficients of u regarded as a function of x, and u

regarded as a function of y, taken with a contrary sign.

Let us take, as an example, the equation of the circle

F{x,y)^ a? -V
y"" - B? = u ^0;

1 du ^ 1 du ^
then, -- = 2x, and -— — 2y:

dx dy ^

, dy X
hence, -f-= .

dx y

Although the differential coefficient of the first order is

generally expressed in terms of x and y, yet y may be

eliminated by means of the equation F{xjy)=:0, and the

coefficient treated as a function of x alone. In the circle,

we have

y= Vr^-x\
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hence,
dy _ X

92. If it. be required to find the second differential

coefficient, we have merely to differentiate the first diffe-

rential coefficient, regarded as a function of Xy and divide

the result by dx. Thus, if we designate the first diffe-

rential coefficient by p, the second by q, the third by

r, &c., we shall have

dp_

dx'
= 9' &c.

93. To find the second differential coefficient in the

circle, we have

dx

X

J'

•

, /'dy\ — ydx -\- xdy

hence,
d'y -^ + 4.,
dx" /

for ~ its value
dx

X
>

y
we have

d^y x^^y^
dx'~ f '

1. Find the first differential coefficient of y, in the

equation

y^ — 'Zmxy -{- aP — a^ = u = 0,

du « . ^ du ^ ^— z=z — 2my + 2x, -j- = 2y — 2mx:
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hence, ^ = - \zll!!l±l±\= Sll5

.

dx L 2y — 2»ia7j y — mx

2. Find the first differential coefficient of y in the

equation

y^ + 2xy -^x^-a^^O.

dx

3. Find the first and second differential coefficients of y,

in the equation

y^ — S axy + o?^ = 0,

^^ r. 9 « du ^ ^ ^-— = ^x^ — 3ay, -— = 3y^ — Sax,
dx dy

hence,
dy^_3o^-3ay^ay-^_
dx 3y^~ Sax y^ — ax

For the second differential coefficient, we have

da^ (y2 _ Q^y-i

or, by substituting for -~ its value, and reducing,

d^y _ 2xy^ — 6 aa^y^ + 2 y^* + 2 c?xy

d^~ {if'-ax)''
'

_ 2xy {y^ — 3 axy + a?^) + 2a^xy
^~

(y^-axf
'

but from the given equation

y^—Saxy-{-a^ = 0.

d^y 2a^xy

&»

hence,
d^ {y^— axf'
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Differential Eqimtions of Curves.

94. The Differential Calculus enables us to free an

equation of its constants, and to find a new equation which

shall only involve the variables and their differentials.

If, for example, we take the equation of a straight line

y = ax-\-bf

and differentiate it, we find

dy _ .

dec

and by differentiating again,

^ = 0.
dx"

The last equation is entirely independent of the values

of a and 6, and hence, is equally applicable to every

straight line which can be drawn in the plane of the co-

ordinate axes. It is called, the differential equation of

lines of the first order.

95. If we take the equation of the circle

^ + 2/^ = J?^

and differentiate it, we find

xdx + ydy = 0.

This equation is independent of the value of the radius

R, and hence it belongs equally to every circle whose

centre is at the origin of co-ordinates.
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96. If the origin of co-ordinates be taken in the circum-

ference, the equation of the circle (An. Geom. Bk. Ill,

Prop. I, Sch. 3) is

from which we find

X

and by differentiating,

_ x(2ydy -\- 2xdx) — {y^ -\- a^)dx

or by reducing

(ap-— y^) dx-\-2xydy = 0,

which is the differential equation of the circle when the

origin of co-ordinates is in the circumference.

The last equation may be found in another manner.

If we differentiate the equation of the circle,

y''=:z2Rx-x',

we have, after dividing by 2

ydy = Rdx — xdx ;

. „ ydy 4- xdx
hence, it = •

^
.

If this value of R be substituted in the equation of the

circle, we have

{a^ — y'^)dx + 2xydy = 0;

the same differential equation as found by the first method.
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97. If wc lake llie general equation of lines of the

second order (A.n. Geom. Bk. VI. Prop. XII, Sch. 3),

and differentiate it, we find

2ydy = mdx + 2nxdx

;

differentiating again, regarding dx as constant, we have,

after dividing by 2,

dy^ + y(^y — ''^da^'

Eliminating m and n from the three equations, we obtain

y'^da? + oi?dy'^ —2xydxdy-{- ya^d^y = 0,

which is the general differential equation of lines of the

second order.

98. In order to free an equation of its constants, it will

be necessary to differentiate it as many times as there are

constants to be eliminated. For, two equations are neces-

sary to eliminate a single constant, three to eliminate two

constants, four to eliminate three constants, (fee. : hence,

one constant may be eliminated from the given equation

and the first differential equation ; two from the given equa-

tion and the first and second differential equations, &c.

99. The differential equation which is obtained after the

constants are eliminated, belongs to a species or order of

lines f of which the given equation represents one of the

species.

Thus, the differential equation (Art. 94),
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belongs to an order or species of lines of which the

equation

y = ax-\-h,

represents a single one, for given values of g and 6,

The equation of a parabola is

if — 2px,

and the differential equation of the species is

2xdy — ydx = 0, or dif -{- yd?y = 0.

100. The differential equation of a species, expresses

the law by which the variable co-ordinates change their

values ; and this equation ought, therefore, to be indepen-

dent of the constants which determine the magnitude, and

not the nature of the curve.

101. The terms of an equation may be freed from their

exponents, by differentiating the equation and then com-

bining the differential and given equations.

Suppose, for example,

P and Q being any functions of x and y.

By differentiating, we obtain

nP^-'dP^dQ:

by multiplying both members by P, we have

nP"dP = PdQ,

and by substituting for P" its value,

nQdP=PdQ,
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The same result might also have been obtained by

taking the logarithms of both members of the cqiiaUon

P"=Q.

For, we have

nlP = lQ,

and (Art. 57).

dP (IQ
"" p = q'

hence, nQdP = PdQ.

Of Vanishing Fractions, or those which take the

form —

.

102. It has been shown in (Alg. Art. Ill), that — is

sometimes an vmdetermined symbol, and that its value

may be 0, a finite quantity, or infinite.

This symbol arises from the presence of a common

factor in the numerator and denominator, which, becoming

for a particular value of the variable, reduces the fraction

to the form —-

.

If we have, for example, a fraction of the form

P{x-dT

in which P and Q are finite quantities, and make x = a,

we shall have

P{x-aT
Q(a7~a)" 0*
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The value of this fraction will, however, be 0, finite or

infinite, according as

??i > 7z, m = n, m<^n,

for under these suppositions, respectively, it takes the form

P(^-af-" P . P

Let the numerator of the proposed fraction be desig-

nated by X, and the denominator by X\ and let us sup-

pose an arbitrary increment h to be given to x. The

numerator and denominator will then become a function

oi X -^-h, and we shall have from the theorem of Taylor

dX_h d?X h^ (PX h^
,

„

^ ^ dx l^ daP 1:2"^ dx' 1.2.3"^ '

yf.dXh ,
d'X h^

,
d'X h'

,^ ^ dx 1'^ dx^ 1.2"^ da^ 1.2.3^^'"'

If the value of x — a^ reduces to the differential

coefiicients in the numerator as far as the mth order, and

those of the denominator as far as the /ith order, the value

of the fraction will become,

d'^x ir .

jp

dx"^ 1.2.3.4....m

^^.JL _+&c
dx"" 1.2.3.4....n

If we make /^ = 0, the value of the fraction will be-

come 0, finite, or infinite according as

w > ?z, m=in, m < w,

and hence, if the value x = a, reduces to the same

number of differential coefiicients in the numerator and
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denominator, the value of the fraction will be finite

and equal to the ratio of the first differential coefficient*

which do not reduce to 0.

103. Let us now illustrate this theory by examples.

1. If in the fraction

1-af

we mak^ x=lj we have — . But

dX
dx

'= - nx"-
1

>

dX _
dx

~ -u
in which, if we make x.= I, we have

dX
dx

= -71, and

dX

dX
dx

~ -1,

hencCy
dx

dX
dx^

-.n.

therefore, the value of the fraction when x =1, is + 7i,

2. Find the value of the fraction

ao? — 2acx-\- a(? •,

T—

5

r r-T> when x = Cy
ho?-%bcx^h&'

-r— = 2aa? — 2ac. —^— = 2 6a? — 26c,
oa? dx

both of which become 0, when x = c. Differentiating

again, we have

^X ^ d^X „,.

d:^
' d^

ct

hence, tlie true value of the fraction when x = c is -r-,
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3. Find the value of the fraction

^ , when x = a.

Ans. 0.

4. Find the value of the fraction

ax — cc^ ,—, when x=za.
a'' — 2a?x-{-2ax^ — x'^

Ans. 00.

5. Find the value of

, when x = 0.
X

Ans. la — lb.

6. What is the value of the fraction

1 — sina7H-cos^ , .__
.-. , when a? = 90°.
sma7 + cosa? —

1

Ans. 1

.

7. What is the value of the fraction

a — x — ala + alx ,

J- J
when x = a.

a— V2 ax — of'

Ans. — 1.

8. What is the value of the fraction

when x=l.
1 — x-{-lx

Ans. — 2.

9. What is the value of the fraction

a'^ — x"
when x=.a.

la — Ix'

Ans. na"*,

9*
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104. It has been remarked (Art. 47), that the theorem

of Taylor does not apply to the case in which a particular

value attributed to x renders every coefficient either or

infinite. Such functions arc of the form

(x — aY^

in v\^hich m and n are fractional.

In functions of this form we substitute for x, a-{-h,

which gives a second slate of the function. We then

divide the numerator and denominator by h raised to a

power denoted by the smallest exponent of h, after which

we make ^ = 0, and find the ratio of the terms of the

fraction.

When we place a -i-h for a?, we have in arranging

according to the ascending powers of h,

F(a-^h) _ Ah'' + Bh' + Cli' + &c.,

F'{a + h)
~

A^h"' + Bh'' + CJf + &c.

Now there are three cases, viz. : when

'
a'y a\ a — a'^ a < a!

.

In. the first case the value of the fraction will be 0; \\\

the second, a finite quantity ; and in the third it will be

infinite.

105. In substituting a-\-'h for a?, in the fraction

{x-aY
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we have ^^

\
—— = {2a-{-hY,
2

and by making h = Q^ which renders a? = a, the value of

the fraction becomes

(2ay. f^ o^ THK

2. Required the vahie of the fraction
'^^f'cA; o'^/ '>^

when x — a.
(a?2-3a^+2a2)3

(^^-a^y

Substituting a + A for :r, we have

— — — —

h'' (3a2 + Sa/i + h^y (3a2 + 3a^+ Z^^)'

which is equal to 0, when h = 0.

106. Remark. The last method of finding the value of

a vanishing fraction, may frequently be employed advan-

tageously, even when the value can be found by the

theorem of Taylor. -

107. There are several forms of indetermination under

which a function may appear, but they can all be reduced

to the form —

.

1st. Suppose the numerator and denominator of the

fraction

X
X"

to become infinite by the supposition of a? = a. The

fraction can be placed under the form
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X

which reduces to —-, when X and X' are infinite.

2d. We may have the product of two factors, one of

which becomes and the other infinite, when a particular

value is given to the variable.

• In the product PQ, let us suppose that x = a, makes

P = and Q = Qo . We would then wrrite the product

under the form,

PPQ =

which becomes — when x = a.

108. Let us take, as an example, the function

(l-^)tang— ^-a?;

in which.
?r designates 180°.

If we make x^l, the first factor becomes 0, and the

second infinite. But

tang
1
-.X-.

1

"
1

cot 7FX
2

hence, (1-•a?) tang
1 \-x

1 '

cot— TO?

2
the value of which is — when ^ = 1

.

a-
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CHAPTER V

Of the Maxima and Minima of a Function of a

Single Variable.

109. If we have

u = F{x\

the value of the function u may be changed in tvro ways :

first, by increasing the variable x ; and secondly, by dinain-

ishing it.

If we designate by u' the Jirst value which u assumes

when X is increased, and by u^^ the Jirst value which u

assumes when x is diminished, we shall have three con-

secutive values of the function

Now, when u is greater than both u^ and u^^, u is said

to be a maximum : and when u is less than both u^ and

u'\ it is said to be a minimum.

Hence, the maximum value of a variable function is

greater than the value which im.mediately precedes, or the

value that immediately folloios : and the minimum value

of a variable function is less than the value which imme-

diately precedes or the value that immediately follows.

110. Let us now determine the analytical conditions

which characterize the maximum and minimum values of

a variable function.
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If in the function

u = F{x),

the variable a? be first increased by ^, and then diminished

by h, we shall have (Art. 44),

f r^r , L\ ,
du h

,
d^u h^

,
d^u h^

,
„

„"=F(.-;o=«-£A +^^^-
d?u h^

,
.

-d^l.2.Z-^^'-'

and consequently,

, du Ji dj'u W
,

d?u '''
1 &c" "-(ixl ' <fe» 1.2 ' dx' 1.2.3 '

*'''

„ du h d?u le d?u '''
1 &c" "~ dxl ^ dx" 1.2 da? 1.2.3 '

^''-

Now, if u has a maximum value, the limits of u'—u
and u"— w, will both be negative ; and if w is a minimum,

the limits of u'—u and u"—u will both be positive.

Hence, in order that u may have a maximum or minimum

value, the signs of the limits of the two developments must

be both minus or both plus.

But since the terms involving the first power of ^, in

the two developments, have contrary signs, it follows that

the limits of the developments will have contrary signs

(Art. 44) ; hence, the function u can neither have a maxi-

mum or a minimum unless

dx
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and the roots of this equation will give all the values of

X v^hich can render the function u either a maximum or

a minimum.

Having made the first differential coefficient equal to 0,

the signs of the hmits of the developments will depend on

the sign of the second differential, coefficient.

But since the signs of these limits are both negative

when w is a maximum, and both positive when w is a

minimum, it follows that the second differential coefficient

will be negative when the function is a maximum, and

positive when it is a minimum. Hence, the roots of the

equation

ax

being substituted in the second differential coefficient, will

render it negative in case of a maximum, and positive in

.case of a minimum; and since there m.ay be more than

one value of x which will satisfy these conditions, it fol-

lows that there may be more than one maximum or one

minimum.

But if the roots of the equation

ax

reduce the second differential coefficient to 0, the signs of

the limits of the developments will depend on the signs

of the terms which involve the third differential coefficient

;

and these signs being different, there can neither be a

maximum or a minimum, unless the values of x also reduce

the third differential coefficient to 0. When this is the

case, substitute the roots of the equation
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du

in the fourth differential coefficient ; if it becomes negative

there will be a maximum, if positive a minimum. If the

values of x reduce the fourth differential coefficient to 0,

the following differential coefficient must be examined.

Hence, in order to find the values of x which will render

the proposed function a maximum or a minimum.

1 St. Find the roots of the equation

du

ax

2d. Substitute these roots in the succeeding differential

coefficients, until one is found tvhich does not reduce to 0.

Then, if the differential coefficient so found he of an odd

order, the values of x will not render the function either

a maximum or a minimum. But if it he of an even

order, and negative, the function will he a maximum ; if

positive, a minimum.

111. Remark. Before applying the preceding rules to

particular examples, it may be well to remark, that if a

variable function is multiplied or divided by a constant

quantity, the same values of the variable which render the

function a maximum or a minimum, will also render the

product or quotient a maximum or a minimum, and hence

the constant may be neglected.

2. Any value of the variable which will render the func-

tion a maximum or a minimum, will also render any root

or power a maximum or a minimum ; and hence, if a func-

tion is under a radical, the radical may be omitted.
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EXAMPLES.

1. To find the value of x which will render y a maxi-

mum or a minimum in the equation of the circle

y^ + a^ = R\

dy _ X

ydx

making = 0, gives x — O.

The second differential coefficient is

cPy _ _ x' + ?/

da^
~

y^^ '

and since making x = 0, gives y = R, we have

d'y _ 1

doi?
~ R

which being negative, the value of a: = renders y a

maximum.

2. Find the values of x which will render y a maximum

or a minimum in the equation,

y = a — bx -\- a^,

differentiating, we find

|=-6 + 2., and g = 2,

making, ~ b + 2x = 0, gives x = -—;

and since the second differential coefficient is positive, this

value of X will render y a minimum. The minimum
10
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value of y is found by substituting the value of a?, in the

primitive equation. It is

3. Find the value of x vf\\\ch. will render the function

w = a* -h h^x — c^x^j

a maximum or a minimum,

-— = 1^ — 2 ex, hence x = ——^
;

dx 2(?

hence, the function is a maximum, and the maximum

value is

4. Let us take the function

viQ find -7- = 9aV — 6*, and a? = ± --.
aa? 6a

The second differential coefficient is

d'^u ,„ 2^ = 18«'-

Substituting the plus root of x, we have
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which gives a minimum, and substituting the negative

root, we have

which gives a maximum.

The minimum value- of the function is,

9a

and the maximum value

9a

112. Remark. It frequently happens that the value

of the first differential coefficient may be decomposed into

two factors, X and JC, each containing x, and one of

them, X for example, reducing to for that value of a?,

which renders the function a maximum or a minimum.

When the differential coefficient of the first order takes

this form, the general method of finding the second diffe-

rential coefficient may be much simplified. For, if

^ = XX',
ax

we shall have

d^u _ X'dX XdX''^

daf^ dx dx

But by hypothesis X reduces to for that value of x

which renders the function u a maximum or a minimum :

,

'

d^u X'dX
hence, TO= —3

—

>

dor dx
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from which wc obtain the following rule for finding the

second differential coefficient.

Differentiate that factor of the first differential coef-

ficient which reduces to 0, multiply it by the otherfactor,

and divide the product by dx.

5. To divide a quantity into two -such parts that the mth

power of one of the parts multiplied by the wth power of

the other shall be a maximum or a minimum.

Designate the given quantity by a and one of the parts

by Xy then will a — x represent the other part. Let the

product of their powers be designated by u ; we shall then

have

u = af"{a — xY,

whence, -j- = ma?*""^ {a — xf — luxf" {a — xY-\
ax

= {ma— mx — nx)x"'~^ (a — a?)""*,

and by placing each of the factors equal to 0, we have

ma
x = 0, x = a.

m-{-n

The second differential coefficient corresponding to the

first of these values, found by the method just explained, is

g=-(m + n)^»-(«-^r-';

and substituting for x its value, it becomes

(?w + w)"*+'

hence, this value of x renders the product a maximum..

The two other values of x satisfy the equation of the
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problem, but do not satisfy the enunciation, since they are

not parts of the given quantity a, '

Remark. If m and n are each equal to unity, the quan-

tity will be divided into equal parts.

6. To determine the conditions which will render y a

maximum or a minimum in the equation

y^ — 2mxy -\- or — €? = 0.

The first differential coefficient is

dy _ my — x
_

dx y — mx *

hence, my — x=:Oj or y =—

.

m

Substituting this value of y in the given equation, we

find

ma
X —

Vl-TTi^

and the value of y corresponding to this value of x is

a
y^

-y/l — m^

To determine whether z/ is a maximum or a minimum,

let us pass to the second differential coefficient. We have

-£^
= {my-x){y-mx)-'',

(4:-o
hence, ^ ^

doc^ y — mx

W
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and since
dx

= 0, we

d^y,

da?

have

1

y-— mx

and by substituting for y and X their values, we have

m
d^y_
da?

1L

aVr-m^'

hence, y is a maximum.

7. To find the maximum rectangle which can be in-

scribed in a given triangle.

Let h denote the base of the triangle, h the altitude,

y the base of the rectangle, and x the altitude. Then,

u = xy =^ the area of the rectangle.

But h : h ;
'. y : h — x:

bh — bx
hence, y =— ,

and consequently,

bhx — ba? b ,j ^
u = = ^^{hx — ar).

Ii h

and omitting the constant factor,^

du T ^ h
-rr- = h — 2x. or x =—

:

dx • ^. 2'

hence, the altitude of the rectangle is equal to half the

altitude of the triangle : and since

the area is a maximum.
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8. What is the altitude of a cylinder inscribed in a given

right cone, when the solidity of the cylinder is a maximum ?

Ans. One third the altitude of the cone.

9. What are the sides of the maximum rectangle in-

scribed in a given circle ?

Ans. Each equal to R V2.

10. A cylindrical vessel is to contain a given quantity

of v^^ater. Required the relation betvs^een the diameter of

the base and the altitude in order that the interior surface

may be a minimum.

Ans. Altitude = radius of base.

11. To find the altitude of a cone inscribed in a given

sphere, which shall render the convex surface of the cone

a maximum. .

Ans. Altitudes

—

R.
3

12. To find the maximum right-angled triangle which

can be described on a given line.

Ans. When the two sides are equal.

13. What is the length of the axis of the maximum

parabola that can be cut from a given right cone ?

Ans. Three-fourths the side of the cone.

14. To find the least triangle which can be formed by

the radii produced, and a tangent line to the quadrant of a

given circle,

Ans. When the point of contact is at the middle of the

arc.

15. What is the altitude of the maximum cylinder which

can be inscribed in a given paraboloid ?

Ans. Half the axis of the paraboloid.
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CHAPTER VI.

Application of the Differential Calculus to the

Theory of Curves.

113. It has been shown in (Art. 13), that every relation

between a function and a single variable on which it

depends, may subsist between the ordinate and abscissa of

a curve. Hence, if we represent the ordinate of a curve

by a function y, the abscissa may be represented by

the variable x.

Of Tangents and Normals,

114. We have seen (Art.

15), that if y represents

the ordinate and x the ab-

scissa of any curve as CP,

the tangent of the angle

PTA, which the tangent

forms with the axis of ab-

scissas will be represented
R N

by dy

dy and dx being the differentials of the ordinate and ab-

scissa of the point of contact P,
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But we have (Trig. Th. II),

I : TR :: tangT : RP;

that is, 1 : TR :: ^ : y:

doc
hence, TR —y-—z=z sub-tangent.

115. The tangent TP is equal to the square root of

the sum of the squares of TR and RP ; hence,

/ ds^
TP =yy 1+^,= tangent.

116. From the similar triangles TPR, RPN, we have

TR : PR :: PR : RN,
doc

hence, y— -. y : : y : RN,

consequently, RN=y~= sub-normal.

117. The normal PN is equal to the square root of the

sum of the squares of PR and RN ; hence,

PiV^yVl + -^^ normal.
^ ^

doer

118. Let it be now required to apply these formulas to

lines of the second order, of which the general equation

(An. Geom. Bk. VI, Prop. XII, Sch. 3), is,

2/2 = mx + nx".

Differentiating, we have

dy _m + 2nx _ m-\-2nx

dx 2y 2 Vmx-\-nx^

'
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substituting this value, we find

sub-tanffent TR = v -r- = —^^ -j^ ^ dy m + 2nx

TP = y

^ 1 r»Ar dv TTL -\- 2nx
sub-normal RN=y-^ =

,^dx 2

PiV=Vl+S=\/:mx -\- noc^ + —{m-\- 2nxf.

By attributing proper values to m and w, the above

formulas will become applicable to each of the conic

sections. In the case of the parabola, w = 0, and we have

TR = 2x, TP=z^/mx^-4:x\

RN = m PN Vmx H m^
4

119. It is often necessary to represent the tangent and

normal lines by their equations. To determine these, in

a general manner, it will be necessary first to consider the

analytical conditions which render any two curves tangent

to each other.

Let the two curves, PDCf
PEC, intersect each other at

P and C.

Designate the co-ordinates of

the first curve by x and y, and

the co-ordinates of the second by

a/, y. Then, for the common

point P, we shall have
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If we represent BG^ the increment of the abscissa, by

h, we shall have, from the theorem of Taylor (Art. 44),

cG-P5 = cF=^A + g^+^-i^+&c.,
dx 1 (i^l.2 da? 1.2.3

CG-PB=CF=%^ +%l^+%J^^ &c.;
da/ 1 da/^\.2 da/'\.2.^

hence, by placfng the two members equal to each other,

and dividing by h, we have

dx^ d^\.%^ '~ dx' ^ dx'^ 1.2 ^

If we now pass to the limit, by making h = 0, we shall

have

dy _ dj/

dx dx!

in which case the point C will become consecutive with P,

and the curve J^ILC tangent to the curve PDC. Hence,

tivo lines will he tangent to each other at a common point,

when the co-ordinates and first differential coefficient of

the one, are equal to the co-ordinates and first differential

coefficient of the other.

120. The equation of a straight line is of the form

y — ax -{-h,

hence, -^ — a,
dx

But the equation of a straight line passing through a

given point, of which the co-ordinates are x!'
, y" , is (An.

Geom. Bk. II, Prop. IV),

y-y"-a{x~al'\
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or by substituting for a its value, we have, for the equation

of a straight line passing through a given point,

y-y"=J(^-a/')-

This line may be made tangent to a curve at any point

of which the co-ordinates are a/', y" ^ by substituting for

-J-
the first differential coefficient found from the equation

of the curve, and making od'^ y" ^ equal to a/', y" of the

curve.

121. Let it be required, for example, to make the line

tangent to a circle at a point of which the co-ordinates are

a/', y" . Since the co-ordinates of this point will satisfy

the equation of the curve, we have

x"''^y"'' = m,

and by differentiating,

dy" _ a/'
,

da/'
"*

y"
'

and by substituting this value in the equation of the line,

and recollecting that x"^ -\-tj"^~ i?^ we have

yy"+xx"=R\

wliich is the equation of a tangent line to a circle.

122. A normal line is perpendicular to the tangent at

the point of contact, and since the equation of the tangent

is of the form
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the equation of the normal will be of the form (An. Geom.

Bk. II, Prop. VII, Sch. 2),

and this Hne will become normal to a curve at a point of

da/'
which the co-ordinates are x", y" ^ if the value of -r—7 be

dy"
found from the equation of the curve, and substituted for

-7- , and the co-ordinates a?^^, y" of the straight line be

made equal to x"
,
y" of the curve.

The equation of the normal in the circle will take the

form,

123. To find the equation of a tangent line to an ellipse

at a point of which the co-ordinates are 01/', y'^, we have,

AY^ + B'^x"^ = A^B\

By differentiating, we have ^^,^-^ b h a p ^
df__ B'^x/'

^ fUNIVIBSITY

hence, we have

da/' AY ' Voy^ K.^^

which becomes, after reducing,

A^yy" + B''xa/'=A^E'.

The equation of the normal is

II
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124. To find the equation of a tangent to lines of the

second order, of which the equation for a particular point

(An. Geom. Bk. VI, Prop. XII, Sch. 3) is

By differentiating, we have

dyl' _ 771 + 2 7w/'

dctJ' ^y"

hence, the equation of the tangent to a hne of the second

order is

y-y =—^77—(^-^)»

and the equation of the normal

Of Asymptotes of Curves.

125. An asymptote of a curve is a line which continually

approaches the curve, and becomes tangent to it at an

infinite distance from the origin of co-ordinates.

Let AX and AY he

the co-ordinate axes, and

the equation of any tan-

gent line, as TP. — „
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If in the equation of the tangent, we make in succes-

sion y = 0, x=0, we shall find

If the curve CPB has an asymptote RE, it is plain

that the tangent FT will approach the asymptote RE,

when the point of contact P, is moved along the curve

from the origin of co-ordinates, and T and D will also

approach the points R and Y, and will coincide with

them when the co-ordinates of the point of tangency are

infinite.

In order, therefore, to determine if a curve have asymp-

totes, we make, in succession, a? = qd and y = oo in the

values of A T, AD. If either of these become finite, the

curve will have an asymptote.

If both the values are finite, the asymptote will be in-

clined to both the co-ordinate axes : if one of the distances

becomes finite and the other infinite, the asymptote will

be parallel to one of the co-ordinate axes ; and if they both

become 0, the asymptote will pass through the origin of

co-ordinates. In the last case, we shall know but one

point of the asymptote, but its direction may be deter-

mined by finding the value of -^, under the supposition

that the co-ordinates are infinite.

126. Let us now examine the equation



124 ELEMENTS OF THE

of lines of tlie second order, and see if these lines have

asymptotes. We find

m-\-2nx m-\-2nx *

.^ mx+2nx^ mxAD = y-
2y 2 Vmx + na^

'

which may be put under the forms

AT= -""
, AD= '"

m

and making a? = oo , we have

^72=-;^, and AE = -^.
2n 2Vn

If now we make n — 0, the curve becomes a parabola,

and both the limits, AR, AE, become infinite: hence,

the parabola has no rectilinear asymptote.

If we make n negative, the curve becomes an ellipse,

and AE becomes imaginary : hence, the ellipse has no

asymptote.

But if we make n positive, the equation becomes that

of the hyperbola, and both the values, AR^ AE, become

finite. If we substitute for n its value -—,, we shall have

AR=-A, and AE=±B.
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Differentials of the Arcs and Areas of Segments

of Curves.

127. It is plain, that the chord and arc of a curve will

approach each other continually as the arc is diminished,

and hence, we might conclude that the limit of their ratio

is unity. But as several propositions depend on this rela-

tion between the arc and chord, we shall demonstrate it

rigorously.

128. If we suppose the ordi- N
,iiate PR of the curve, POM to

be a function of the abscissa, we

shall have (Art, 16),

and

in which

PQ = h,

MQ = (P+P'h)h;

P = ^.
dx'

M

Q

R

Hence, PM= Vh^+{P^'P'hfK'=h-Vl-\-{P-\-P'hf,

We also have NQ = Ph ;

hence, PN==V¥+PV^ = hVl-\-P\ '

NM=NQ-MQ=-^P^h':

hence, we have

PN+MN hVYTP^-P^h^ VT+P^-P'h
PM hVl + (P-\-P^hf Vl+{P + P'hf'

11*
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of which the limit, by making ^ = 0, is

But the arc POM can never be less than the chord PMy
nor greater than the broken line PNM which contains it

;

hence, the limit of the ratio

POM
PM 1;

and consequently, the differential of the arc is equal to the

differential of the chord. But when we pass to the limit

of the arc and chord, PM becomes the differential of the

chord, and PQ and QMy become the differentials of x

and y ; hence, if we represent the arc by z, we shall have

dz = ^/dx^^dl/:

that is, the differential of the arc of a curve, at any pointy

is equal to the square root of the sum of the squares of

the differentials of the co-ordinates.

129. To determine the differential of the arc of a circle

of which the equation.is

x'^-y^ = R\

ocdoc
we have xdx + ydy = 0, or dy = ;

/ Cu dsu dx
whence, dz = \/ da? -\-—2~ =— ^^ + y^>

_ Rdx Rdx
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the same as determined in (Art 71). The plus sign is to

be used when the abscissa x and the arc are increasing

functions of each other, and the minus sign when they

are decreasing functions (Art. 31).

M.130. Let BCM be any segment

of a curve, and let it be required C^

to find the differential of its area.

The two rectangles DCFE, B
DGME, having the same base /

DE, are to each other as DC to

EM; and hence, the Hmit of their -D ^
ratio is equal to the limit of the ratio of DC to EM,
which is equal to unity.

But the curvelinear area DCME is less than the rect-

angle DGME, and greater than the rectangle DCFE :

hence, the limit of its ratio to either of them will be

unity. But,

DCME DCME DEFC ^^ DCME
X ^__^ =DC XDE DE DEFC DEFC

or by representing the area of the segment by 5 and the

ordinate DC by y, and passing to the limit, we have

ds

dx
= y, or ds = ydx

;

hence, the differential of the area of a segment of any

curve, is equal to the ordinate into the differential of the

abscissa.
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131. To find the differential of the area of a circular

segment, we have

ar^ + y2 = i22, and y^^W^^\

hence, ds = dx Vr^ — a^.

The differential of the segment of an ellipse, is

B
A

and of the segment of a parabola

ds = dx V2px.

Signification of the Differential Coefficients.

1 32. It has already been shown that, if the ordinate of

a curve be regarded as a function of the abscissa, the first

diflferential coefficient will be equal to the tangent of the

angle which the tangent line forms with the axis of abscis-

sas (Art. 15). We now propose to show the relation

between a curve and the second differential coefficient,

the ordinate being regarded as a function of the abscissa.

Let AP be the abscissa

and PM the ordinate of a

curve. From P lay off

on the axis of abscissas

PP' = h, and PP" = 2h.

Draw the ordinates PM,

FM^P^^M^^• also the lines

MMN, MM"; and lastly,

MQy M'Q!, parallel to the

M'/

J\

w^N

t====="

Q

p//_
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axis of abscissas. Then will MQ = NQ!, and we shall

have

PM=y,

^y h^pfM^=y^$l +
doc 1 dcc^ 1.2

+ &c.,

^"^"=^^l?+#4?+*-

P'M'
dx 1 dor 1.2

P'fM"-P'M^M^Q!=^h^-%~+ &c.
dx dor 1.2

M''Q'-M'Q=+M'^N= -^h^^- &c.
dx'^

Now, since the sign of the first member of the equation

is essentially positive, the sign of the second member will

also be positive (Alg. Art. 85). But if we pass to the

limit, by diminishing h, the sign of the second member

will depend on that of the second differential coefficient

(Art. 44) : hence, the second differential coefficient is

positive.

If the curve is below ^ ^' ^"

the axis of abscissas,

the ordinates will be

negative, and it is easily

seen that w^e shall then

have

M"<^-MQ^--M"N^-^li'-\- &c
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Now, since the first member is negative, the second

member will be negative : hence we conclude that, if a

curve is convex towards the axis of abscissas^ the ordi-

nate and second differential coefficient will have like signs.

133. Let us now con-

sider the curve CMM'M'y
which is concave towards

the axis of abscissas. We
shall have.

PM= y,

P'M'- PM = M'Q =f^A +^^ + &c.,
dx I dxr 1.2

V"M"--p'M!=M!'a=^^4^^ ^A
?^' + &c,

dx dar 1.2

M^Q!^MQ=^-NM"=-^h^^ &c.
car

But since the first member of the equation is negative,

the essential sign of the second member will also be

negative: hence, the second differential coefficient will

be negative.
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If the curve is below the

axis of abscissas, the ordi*-

nate will be negative, and it

is easily seen that we should

then have

P P 1 _p II

A

M
Q....VX Q'

M'^^XXWr
N

M'Q!-MQ = 4- NM'= ^^K' + &c.

;

hence we conclude that, if a curve is concave towards the

axis of abscissas, the ordinate and second differential

coefficient will have contrary signs.

The ordinate will be considered as positive, unless the

contrary is mentioned.

134. Remark 1. The co-ordinates x and y, determine

a single point of a curve, as M. The first differential of

y is the limit of the difference between the ordinates PM,
P'M', or the difference between two consecutive ordinates.

The second differential of y is the hmit of M'^N, and

is derived from M'Q or dy, in the same way th^t dy is

derived from the primitive function. The abscissa x being

supposed to increase uniformly, the difference, and conse-

quently the limit of the difference between PP' and P'P'^

is : therefore its second differential is 0. The .co-ordi-

nates X and y, and the first and second differentials deter-

mine three points, M, AT, M", consecutive with each other.

135. Remark 2. When the curve is convex towards

the axis of abscissa, the first differential coefficient, which



132 ELEMENTS OP THE

represents the tangent of the angle formed by the tangent

Hne with the axis of abscissas, is an increasing function of

the abscissa : hence, its differential coefficient, that is, the

second differential coefficient of the function, ought to be

positive (Art. 31).

When the curve is concave, the first differential coeffi-

cient is a decreasing function of the abscissa ; hence, the

second differential coefficient should be negative (Art. 31).

Examination of the Singular Points of Curves.

136. A singular point of a curve is one which is distin-

guished by some particular property not enjoyed by the

points of the curve in general : such as, the point at which

the tangent is parallel, or perpendicular to, the axis of

abscissas.

137. Since the first differential coefficient expresses the

value of the tangent of the angle which the tangent line

forms with the axis of abscissas, and since the tangent is

0, when the angle is 0, and infinite when the angle is 90°,

it follows that the roots of the equation

T = ^'
ax

will give the abscissas of all the points at which the tan-

gent is parallel to the axis of abscissas, and the roots of

the equation

dy dx ^
^=00, or ^ = 0,
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will give the abscissas of all the points at which the tan-

gent is perpendicular to the axis of abscissas.

138. If a curve from being convex towards the axis of

abscissas becomes concave, or from being concave becomes

convex, the point at which the change of curvature takes

place is called a point of inflexion.

Since the ordinate and differential coefficient of the

second order have tlid same sign when the curve is convex

towards the axis of abscissas, and contrary signs when it

is concave, it follows that at the point of inflexion, the

second differential coefficient will change its sign. There-

fore between the positive and negative values there will be

one value of x which will reduce the second differential

coefficient to or infinity (Alg. Art. 288) : hence the roots

of the equations

dry d?y

will give the abscissas of the points of inflexion.

139. Let us now apply these principles in discussing

the equation of the circle •

x'Jry'' = B?.

We have, by differentiating,

dy _ X

dx y
*

and placing

X '

= 0, we have a? = 0.

y

Substituting this value in the equation of the curve, we

have

y=:±R;
12
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hence, the tangent is parallel to the axis of abscissas at

the two points where the axis of ordinates intersects the

circumference.

If we make

dy _ CO _ .^y_ — c\

dx y
^

06 ^

we have y = ; substituting this value in the equation,

we find

x=±R,

and hence, the tangent is perpendicular to the axis of

abscissas at the points where the axis intersects the cir-

cumference.

The second differentia! coefficient is equal to

which will be negative when y is positive, and positive

when y is negative. Hence, the circumference of the

circle is concave towards the axis of abscissas.

If we apply a similar analysis to the equation of the

ellipse, we shall find the tangents parallel to the axis of

abscissas at the extremities of one axis, and perpendicular

to it at the extremities of the other, and the curve concave

towards its axes.

140. Let us now discuss a class of curves, which may

be represented by the equation

y — h±:c{x — aY,

in which we suppose c to be positive or negative, and

different values to be attributed to the exponent m.
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ist When c is positive, and m entire and even.

By differentiating, we have

dy

dx
— mci^x —ay ,

^z/_
dx"

= m{m — l)c{x — ay

If we place the value — = 0, we find x = a, and sub-
dx

«tituting this value in the equation of the curve, we find

t/ = b :

lience, x — a, y — h, are the co-ordinates of the point

at which the tangent line is parallel to the axis of

abscissas.

Since m is even, m — 2 will

also be even, and hence the second

differential coefficient will be posi-

tive for all values of x. The curve

will therefore be convex towards

the axis of X, and there will be

no point of inflexion.

The value oi x = a renders the ordinate y a minimum,

since after m differentiations a differential coefficient of an

even order becomes constant and positive (Art. 110).

The curve does not intersect the axis of X, but cuts the

axis of Y at a distance from the origin expressed by

yz=h-\-ca'
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141. 2d. When c w negative, and m entire and even.

We shall have, by diflferentiating,

dy _

and

dx
= --mc{x—ay

m(?7i — l)c(a7— a)*"'

The discussion is the same as

before, excepting thai the second

differential coefficient being nega-

tive for all values of x, the curve

is concave tovyrards the axis of

abscissas, and the value of a? = a, —

renders the ordinate y a maxi-

mum (Art. 110).
»?.

•'"
I

^ Ji42* 3d. When c is plus or minus, and m entire and

uneven.

We shall have, by differentiating,

-^ = ±i mc{x ^ aY~\
dx

and
dx"'

zt m{m — \)c{x — aj

The first differential coefficient will be 0, when x = a;

hence, the tangent will be parallel to the axis of abscissas,

at the point of which the co-ordinates are x = a, y — b.
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/

Since the exponent m — 2 is

uneven, the factor {oo—ay~^ will

be negative when a7<<2, and

positive when a?> a ; hence, this

factor changes its sign at the

point of the curve of which the

abscissa is x = a.

If c is positive, the second differential coefficient will be

negative for x < a, and positive for ^ > a ; hence there will

be an inflexion when x = a. If c were negative, the curve

would be first convex and then concave towards the axis

of absciissas, but there would still be an inflexion at the

point x — a. At this point the tangent line separates the

two branches of the curve.

There will, in this case, be neither a maximum nor a

minimum, since after m differentiations a differential coef-

ficient of an odd order, will become equal to a constant

quantity (Art. 110).

143. 4th. When c is positive or negative, and m a

. , . ,
. 2

fraction having an even numerator, as m — -j-.

o

By differentiating, and supposing c positive, we have

2cdy 2 , .-

~^ = --c{x — a)
dx 3 ^

^

S{x-ay

dx^

2c

I'
9{x-ay

If we make x = a, the first differential coefficient will

become infinite ; and the tangent will be perpendicular to

12*
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the axis of abscissas, at the point of which the co-ordinates

are a: = a, y = h.

In regard to the second differen-

tial coefficient, it will become infi-

nite for a? = a, and negative for

every other value of a?, since the

factor {x — a) of the denominator

is raised to a power denoted by an

even exponent. Hence, the curve

will be concave towards the axis of

abscissas.

If we take the equation of the curve

y = b-{-c{x — ay,

and make x = a + h, and x = a — hj we shall have, in

either case,

yz=b-\- ch^
;

and hence, y will be less for x = a, than for any other

value of Xy either greater or less than a. Hence, the

value x = a, renders y a minimum.

If c were negative, the equation would be of the form

y = h — c{x--uY;

and we should h ave, by differentiating,

dy_
dx

2c

«F

and
^y_
d^~

2c
"T*

9{x-ay
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The first and second differen-

tial coefficients will be infinite for

x = a, and the second differential

coefficient will be positive for all

values of x greater or less than a

;

and hence, the curve will be con-

vex towards the axis of abscissas.

If, in the equation of the curve

y = b — c{x ay,

we make x=za-\-h, and x — a — h, we shall have, in

either case,

y = b — ch^;

and hence, ij will be greater for x = a, than for any other

value of X either greater or less than a. Hence, the

value X = a, renders y a maximum.

144. Remark. The conditions of a maximum or a

minimum deduced in Art. 110, were established by means

of the theorem of Taylor. Now, the case in which the

function changes its form by a particular value attri

buted to X, was excluded in the demonstration of that

theorem (Art. 45). Hence, the conditions of minimum

and maximum deduced in the two last cases, ought

not to have appeared among the general conditions of

Art. 110.

We therefore see that there are two species of maxima

and minima, the one characterized by

~ = 0. the other by -^ = oo .

dx ^ dx
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In the first, we determine whether the function is a

maximum or a minimum by examining the subsequent

diflferential coefficients ; and in the second, by examining

the value of the function before and after that value of x

which renders the first differential coefficient infinite.

The branches DE, ME, which are both represented by

the equation

are not considered as parts of a continuous curve. For,

the general relations between y and x which determine

each of the parts DE, ME, is entirely broken at the

point M, where x = a. The two parts are therefore

regarded as separate branches which unite at M. The

point of union is called a cusp, or a cusp point.

145. 5th. When c is positive or negative and m a

fraction having an even denominator, as m = —-.

Under this supposition the equation of the curve will

become
Q

y = b± c{x— ay,

and by differentiating, we have

dy_
dx~

4(a7 — «)<

and
d^y_

dx"'

3c
— ~T-

4A(x~a0*
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M

The curve represented by this

equation will have two branches

:

the one corresponding to the plus

sign will be concave towards the

axis of abscissas, and the one cor-

respondnig to the minus sign will be

convex. Every value of x less than

a will render y imaginary. The co-ordinates of the point

My are x = a, 2/ = b.

146. 6th. When c is positive or negative and m a

fraction having an uneven numerator and an uneven de-

nofuinator. as m=—

.

5

Under this supposition the equation will become

ay,ij =zb± c{x

and by differentiating, we have

3c

1 *

5{x-ay

3.2c

dx

^y --
~d^ ~ "^ ~

'

I '

from which we see that if we use the superior sign of the

first equation, the curve will be convex towards the axis

of abscissas for x<ia, that there will be a point of inflexion

for X — a, and that the curve will be concave for ^ > a.

If the lower sign be employed, the first branch will become

concave, and the other convex.

147. The cusps, which have been considered, were

'ormed by the union of two curves that were convex lo-
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wards each other, and such are called, cusps of the first

order.

It frequently happens, however, that the curves which

^ unite, embrace each other. The equation

furnishes an example of this kind. By extracting the

square root of both members and transposing, we have

y = oc^ zt x^

;

and by differentiating

2 2

We see by examining

the equations, that the curve

has two branches, both of

which pass through the

origin of co-ordinates. The

upper branch, which corres-

ponds to the plus sign, is constantly convex towards the

axis of abscissas, while the lower branch is convex for

^< and concave lor a?> and a? < 1 . At
225

'

225
the last point the curve passes below the axis of abscissas

and becomes convex towards it. If we make the first dif-

ferential coefficient equal to 0, we shall find a? = 0, and

substituting this value in the equation of the curve, gives

y = ; and hence, the axis of abscissas is tangent to both

branches of the curve at the origin of co-ordinates. At

this point the differential coefficient of the second order

is positive for both branches of the curve, hence they
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are both convex towards the axis. When the cusp is

formed by the union of two curves which, at the point

of contact, He on the same side of the common tangent, it

is called a cusp of the second order.

148. Let us, as another example, discuss the curve

whose equation is

y — h {x — a) V^

By differentiating, we obtain

dy

c.

dx
— dt^/l c-±

X — a

2 V^ — c

We see, from the equa-

tion of the curve, that y will

be imaginary for all values

of X less than c.

For x=zCj we have y— h;

and for a? > c, we have two

values of y and conse-

quently two branches of

the curve, until x^a when they unite at the point M,

For ^ > a there will be tw^o real values of y and conse-

quently two branches of the curve. The point M, at

which the branches intersect each other, is called a mul-

tiple point, and differs from a cusp by being a point

of intersection instead of a point of tangency. At the

multiple point M there are two tangents, one to each

branch of the curve. The one makes an angle with the

axis of abscissas, whose tangent is

-i- ^/x — c-\-
X — a

2 ^/x



144 ELEMENTS OP THE

the Other, an angle whose tangent is

— Vd7 —

c

2 yx—c

149. Besides the cusps and multiple points which have

already been discussed, there are sometimes other points

lying entirely without the curve, and having no connexion

with it, excepting that their co-ordinates will satisfy the

equation of the curve.

For example, the equation

a-tf" — a?^ + 6a7^ = 0,

will be satisfied for the values

a? = i: 0, y = =t ; and hence,

the origin of co-ordinates A^ _
satisfies the equation of the

curve, and enjoys the property

of a multiple point, since it is

the point of union of two values '

of vT, and two values of y.

If we resolve the equation with respect to y, we find

=..v^
and hence, y will be imaginary for all negative values of

a?, and for all positive values between the limits a? = and

x — h. For all positive values of x greater than 6, the

values of y will be real.

The first differential coefficient is

dy _ 07(307— 2&)

.^^~2Vaa72(o'-^/)
'
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or by dividing by the common factor a?,

dy _ 2x — 2h

dx 2 Va{x — b)

and making a? = 0, there results

dt/

_

2b

dx~ 2 V-ab'

which is imaginary, as it should be, since there is no point

of the curve which is consecutive with the isolated or con-

jugate point. The differential coefficients of the higher

orders are also imaginary at the conjugate points,

150. We may draw the following conclusions from the

preceding discussion.

1st. The equation -^ = 0, determines the points at

which the tangents are parallel to the axis of abscissas.

2d, The equation -^=00, determines the points of

the curve at which the tangents are perpendicular to the

axis of abscissas. The two last equations also determine

the cusps, if there are any, in all cases where the

tangent at the cusps is parallel or perpendicular to the

axis of abscissas,

3d. The equation -^ = 0, or —J= 00 determines

the points of inflexion,

4th. The equation -^ = an imaginary constant, in-

dicates a conjugate point. .

13
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CHAPTER VII.

Of Osculatory Curves—Of Evolutes.

151. Let PT be tangent to the curve ABP at the point

P, and PN a normal at the same point : then will PT
be tangent to the circumference of every circle passing

through P, and having its centre in the normal PN.

It is plain that the cen-

tre of a circle may be

taken at some point C,

so near to P, that the cir-

cumference shall fall with-

in the curve APB, and

then every circumference

described with a less ra-

dius, will fall entirely

within the curve. It is

also apparent, that the centre may be taken at some point

C\ so remote from P, that the circumference shall fall

between the curve APB and the tangent PT, and then

every circumference described with a greater radius will

fall without the cufve. Hence, there are two classes of

tangent circles which may be described ; the 'one lying

witliin the curve, and the other without it.
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ACE

152. Let there be

tliree curves, APB,

CPD, EPF, which

have a common tan-

gent TP, and a com-

mon normal PN ; then

will they be tangent to

each other at the point

P. It does not follow,

however, from this cir-

cmnstance, that each curve will have an equal tendency to

coincide with the tangent TP, nor does it follow that any

two of the curves CPD, EPF, will have an equal ten-

dency to coincide with the first curve APB.
It is now proposed to establish the general analytical

conditions which determine the tendency of curves to

coincide with each other, or with a common tangent.

Designate the co-ordinates of the first curve APB by

x and v. the cc-ordir.ates of the second CPD by x\ y',

and the co-ordinates of the third EPF by x", y" . If we

designate the common ordinate PR by y, y'
,
y" , we shall

then have

^ ^^ dx \ ^^^1.2^ c?^ 1.2.3

sB! y'^%h
d^y' h^

dx'H.2

d?y' h^

dx'n.2.3

+ &c.,

+ &c.;

.i,.^,.+4^;^+
^y'^^' d?y" h^

dx". I ' dotJ'"- 1.2 ' dx"n.2.'3
-f &c.

But since the curves are tangent to each other at the

point P, we have (Art. 119),
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y = y' = r, and 'i =% =%: Keuce,
dx da/ dccf'

^V dW\ h?

^ \da^ da/y 1.2^ Kdar' da/' J

I

2.3
-f- &c.

^ \da^ da/^yi.2^\dx' «?a/'Vl.2.3^

Now, in order that the first curve APB shall approach

more nearly to the second CPD than to the third EPF,
we must have

d<d^r

and consequently,

in which we have represented the coefficients in the first

861 ies by A, B, C, (fee, and the coefficient© in the second

byA^^^C^&c.
Now, the limit of the first member of the inequality will

always be less than the limit of the second, when its first

term involves a higher power of h than the first term of

the second. For, if A = 0, the first member will involve

the highest power of h, and we shall have ^

and by dividing by h\

B -A_ + &c., <:a'—-{-B'-^ + &c.,
1.2.3 .' 1.2 1.2.3

and by passing to the limit
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But when ^ = 0, we have

and hence, when three curves have a cohimon ordinate, the

first will approach nearer to the second than to the third,

if the number of equal differential coefficients between the

first and second is greater than that between the first and

third. And consequently, if the first and second curves

have m + 1 differential coefficients which are equal to

each other, and the first and third curves only m equal dif-

rential coefficients, the first curve will approach more

nearly to the second than to the third. Hence it appears,

that the order of contact of two curves will depend on

the number of corresponding differential coefficients which

are equal to each other.

The contact which results from an equality between the

co-ordinates and the first differential coefficients, is called

a contact of ihe, first order, or a simple tangency (Art. 119).

If the second differential coefficients are also equal to each

other, it is called a contact of the second order. If the first

three differential coefficients are respectively equal to each

other, it is a contact of the third order; and if there are m
differential coefficients respectively equal to each other, it

is a contact of the mth order.

153. Let us now suppose that the second line is only

given in species, and that values may be attributed at

pleasure to the constants which enter its equation. We
13*
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shall then be able to establish between the first and second

lines as many conditions as there are constants in the

equation of the second line. If, for example, the equation

of the second line contains two constants, two conditions

can be established, viz. : an equality between the co-

ordinates, and an equality between the first differential

coefficients ; this will give a contact of the first order.

If the equation of the second curve contains three con-

stants, three conditions may be established, viz. : an equality

between the co-ordinates, and an equality between the first

and second differential coefiicients. This will give a con-

tact of the second order. If th^e are four constants, we

can obtain a contact of the third order ; and if there are

m + l constants, a contact of the mth order.

It is plain, that in each of the foregoing cases the highest

order of contact is determined.

The line which has a higher' order of contact with a

given curve than can he found for any other line of the

same species^ is called an osculatrix.

Let it be required, for example, to find a straight line

which shall be osculatory to a curve, at a given point of

which the co-ordinates are a/', y"

.

The equation of the right line is of the form

y — ax-^h^

and it is required to find such values for the constants a

and h as to cause the line to fulfil the conditions,

x= a/', y = f, and g =g.
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By differentiating the equation of the line, we have

dy _
dx

and since the line passes through the point of osculation

y-2/"= g(*-a/').

Substituting for -j- its value -rjr^ ^^ }\^\Q

for the equation of the osculatrix.

In the equation of the circle

- . dy" a^'
we find

-dlJT^-Y'

hence, the equation of the osculatrix of the first order, to

the circle, is

or 'by reducing yy"+ xdd'— W.

154. If (*> and /3 represent the co-ordina.tes of the centre

of a circle, its equation will be of the form

If this equation be twice differentiated, we shall have,

{x — eC)dx^{ij — f)dy — ^, '
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and by combining the three equations, we obtain

R

_ dy /dx^ -h dif
~ dx\ d^y

{da? + dff

)•

dxd^y

If it be now required to make this circle osculatory to

a given curve, at a point of which the co-ordinates are a/',

y" ^ we have only to substitute in the three last equations,

the values of

dx

dy"

da/''

dy__
da? da/12 *

deduced from the equation of the curve, and to suppose, at

the same time, the co-ordinates x and y in the curve to

become equal to those of x and y in the circle.

If we suppose a/', y"^ to be general co-ordinates of the

curve, the circle will move around the curve and become

osculatory to it, at each of its points in succession.

155. If the circle CD
be osculatory to the curve

iJF, at the point P, we

shall have

for li positive ; and

+ &;c..

9V=Cx _--^ + &c.,
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for h negative : hence, the two hnes qs, q^s^, have contrary

signs. The curve, therefore, Hes above the osculatory cir-

cle on one side of the point P, and below it on the other,

and consequently, divides the osculatory circle at the point

of osculation. Hence, also, the osculatory circle separates

the tangent circles which lie without the curve from those

which lie within it (Art. 151).

In every osculatrix of an even order the first term in the

values of qs, q's\ will, in general, contain an uneven power

of h ; and hence the signs of the limits of their values will

depend on that of h. The curve will therefore lie above

the osculatrix on one side of the point P and below it on

the other ; and hence, every osculatrix of an even order

will, in general, he divided by the curve at the point of

osculation.

156. The first differential equation of Article 154,

{x — cc)dx + (y— ^)dy =
may be placed under the form

dx^ .

If we make the circle osculatory to the curve we have

x = o[/\ y = y" , and

dx dx"
^=^; hence,

which is the equation of a normal at the point whose co-

ordinates are x" y" (Art. 122). But this normal passes

through the point whose co-ordinates are c*- and ^. Hence,

tlie normal drawn through the point of osculation, ivill

contain the centre of the osculatory circle.

157. It was shown in (Art. 155) that the osculatory cir-

cle is, in general, divided by the curve at the point of oscu-
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lation. The position of the curves with respect to each

other indicates this result.

For, the osculatory circle is always symmetrical with

respect to the normal, while the curve is, in general, not

symmetrical with respect to this line. If, however, the

curve is symmetrical with respect to the normal, as is the

case in lines of the second order when the normal coincides

with an axis, the curve will not divide the osculatory circle

at the point of osculation ; and the condition which renders

the second differential coefficients in the curve and circle

equal to each other, will also render the third differential

coefficients equal, and the contact will then be of the third

order.
'

158. The radius of the osculatory circle

dx(Py

is affected with the sign plus or minus, and it may be well

to determine the circumstances under w^hich each sign is

to be used.

If we suppose the ordinate to be positive, we shall have

(Art. 133)

j^, and consequently dj^y

negative when the curve is concave towards the axis of

abscissas', and positive when it is convex. If then, we

wish the radius of the osculatory circle to be positive for

curves which are concave towards the axis of abscissas, we

must employ the minus sign, in which case the radius will

be negative for curves which are convex.
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159. If the circumferences of two circles be described

with different radii, and a tangent Hne be drawn to each, it

is plain that the circumference which has the less radius

will depart more rapidly from its tangent than the circum-

ference which is described with the greater radius ; and

hence we say, that its curvature is greater. And gener-

alty, the curvature of any curve is said to be greater or less

than that of another curve, according as its tendency to

depart from its tangent is greater or less than that of the

curve with which it is compared.

1 60. The curvature is the same at all the points of the

same circumfei;ence, and also in all circumferences described

with equal radii, since the tendency to depart from the tan-

gent is the same. In different circumferences, the curva-

ture is measured by the angle formed by two radii drawn

through the extremities of an arc of a given length.

Let r and r^ designate the radii of two circles, a the

length of a given arc measured on the circumference of

each ; c the angle formed by the tv/o radii drawn through

the extremities of the arc in the first circle, and c' the

angle formed by the corresponding radii of the second.

We shall then have

29rr 360° : c, hence, c

also.

25r/ : a : : 360° : c', hence, c'

=

and consequently

c : c/ : :

I.

36QOa

27rr

360° g

25r/
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that is, the curvature in different tircumferences varies

inversely as the radii.

161. The curvature

of plane currcs is meas-

ured by means of the

osculatory circle.

If we assume two

points P and P', either

on the same or on dif-

ferent curves, and find

the radii r and / of the circles which are osculatory at

these points, then

_L . -1curvature at P : curvature at P'

that is, the curvature at different points varies inversely

as the radius of the osculatory circle.

The radius of the osculatory circle is called the radius

of curvature.

162. Let us now determine the value of the radius of

curvature for lines of the second order.

The general equation of these lines (An. Geom. Bk. VI,

Prop. XII, Sch. 3), is

t/^ = mx + na^,

which gives.

.^ {mA-2nx)dx ^^
^
.^^ [^y''-^(m+ 2nxf]d^

« 2ny docP'—{7n-\-2 nx) dx cZy _ [4 ny"^— (m+ 2 nxf] da?
ay-. ~ -_ : — .
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Substituting these values in the equation

dx^y '

we obtain

„ Wmx + no?) -f (m + "^nxfY
^ = 2m^

'

which is the general value of the radius of curvature in

lines of the second order, for any abscissa x.

163. If we make x = 0, we have

K — — in=:-— ;

2 A

that is, in lines of the second order, the radius of curva-

ture at the vertex of the transverse axis is equal to half

the parameter of that axis.

If be required to find the vahie of the radius of curva-

ture at the extremity of the conjugate axis of an ellipse,

we make (An. Geom. Bk. VIII, Prop. XXI, Sch. 3),

A'
m ——— , ?z = -^ , and x = A,

which gives, after reducing,

hence, the radius of curvature at the vertex of the cmju-

gate axis of an ellipse is equal to half the parameter of

that axis.

In the case of the parabola, in which ?i = 0, the general

value of the radius of curvature beconies

14
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R = (m^ 4- 4 mxY
2m^

164. If we compare the value of the radius of curvature

with that of the normal line found in (Art. 118)^ we shaU

have

„ (normal)^
iC = -j '

that is, the radius of curvature at any point is equal to

the cube of the normal divided by half the parameter

squared : and hence, the radii of curvature at different

points of the same curve are to each other as the cubes oj

the corresponding normals.

Of the Evolutes of Curves.

165. If we suppose an os-

culatory circle to be drawn at

each of the points of the

curve APP'B, and then a

curve ACC'C^ to be drawn

through the centres of these

circles, this latter curve is

called the evolute curve^ and

the curve APP'B the invo-

lute.

166. The co-ordinates of the centre of the osculatory

circle, which have been represented by u and p, are con

Rtant for given values of the co-ordinates x and y of the
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involute curve, but they become variable when we pass

from one point of the involute curve to another.

167. We have already seen that the osculatory circle is

characterized by the equations (Art, 154)

{x->^r-\-{y-^f = R\ (1)

{x~cc)dx-\-{y-^)dy~0, (2)

dx' + dy''-Y{y-9>)cPy^0. (3)

If it be required to find the relations between the co-

ordinates of the involute and the co-ordinates of the

evolute curves, we must differentiate equations (1) and (2)

under the supposition that « and /3, as well as x and y,

are variables. We shall then have

{x — a)dx-\-{y — f)dy — {x — ci)dcc — {y — ^)d^ = RdR^

dx^ + dy"^ + {y — ^) d^y — d(«dx — dfidy = 0.

Combining these with equations (2) and (3), we obtain

-(y-li)d^-{x-oi)dct = RdR, (4)

— dccdx — d^dy = 0.

The last equation gives

d^ _ dx , .

Tc^-'Ty' ^^^

But equation (2) may be placed under the form

dx

,

.

which represents a normal to the involute (Art. 1 22), and

which becomes, by substituting for — j- its value —

,
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y-^ = g(.-.), (6)

or .6-y =— («_a7)
(l/Ct

This last is the equation of a straight line passing

through a point whose co-ordinates are x and y, and tan-

gent to the curve whose general co-ordinates are « and /3

;

hence, a normal line to the involute curve is tangent to

the evolute.

168. It is now proposed to show, that the radius of cur-

vature and the evolute curve have equal differentials.

Combining equations (2) and (5) we obtain

(^-«) =
(j,-^)J,

(7)

or by squaring both members,

combining this last with equation (1) we have

i^£^iy-,f = R'. (8)

Combining equations (4) and (7), we have

-{y - ^)dfi-{y - ^)^ = RdR,

or -i^!t^iy-,, = RdR;
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or by squaring both members

Dividing this last by equation (8), member by member,

we have

or dR = VdUf+W.

But if s represents the arc of the evolute curve, of which

the co-ordinates are » and /3, we shall have (Art. 128),

ds=:^ VdJTWT
hence, dR = ds

;

that is, the differential of the radius of curvature is ^qual

to the differential of the arc of the evolute.

169. It does not follow, however, from the last equation,

that the radius of curvature is equal to the arc of the evolute

curve, but only that one of them is equal to the other plus

or minus a constant (Art. 22). Hence,

R = s -\- a

is the form of the equation which expresses the relation

between them.

14'
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If we determine the radii

of curvature at two points of

the involute, as P and P\

we shall have, for the first,

R = s -\-aj

and for the second

hence,

R'-R = s'-s=C'C'';

and hence, the difference between the radii of curvature at

any two points of the involute is equal to the part of the

evolute curve intercepted between them.

170. The value of the constant a will depend on the

position of the point from which the arc of the evolute

curve is estimated.

If, for example, we take the radius of curvature for lines

of the second order, and estimate the arc of the evolute

curve from the point at which it meets the axis, the value

of s will be when R =—m (Art. 163): hence we

shall have

—m = + a
2

or m:

and for any other point of the curve

R = s-\-—m.
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Either of. the evolutes, FE,

FE', FE', or FE, corres-

ponding to one quarter of the

ellipse, is equal to (Art. 169)

B
B^
A

171 . The evolute curve takes

its name from the connexion which it has with the corres-

ponding involute.

Let CC'O' be an evolute

curve. At C draw a tan-

gent A C, and make it equal

to the constant a in the equa-

tion

R^s + a.

Wrap a thread ACaO'
around the curve, and fasten

it at any point, as C.
Then, if we begin at A,

and unwrap or evolve the

thread, it will take the positions PC, P'C", &c„ and the

point A will describe the involute APP' : for

pa-AC^ CO and P'O' - AC = CC'O', &c

172. The equation of the evolute may be readily found

by combining the equations

y-/3 _ _dy{d^jrdf)
dxd?y

'

with the equation of the involute curve.
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1st. Find, from the equation of the involute, the values of

^ and d?y,

and substitute them in the two last equations, and there

will be obtained two new equations involving «, p, x and y.

2d. Combine these equations with the equation of the

involute, and eliminate a? and y : the resulting equation

will contain «, /3, and constants, and will be the equation

of the evolute curve.

173. Let us take, as an example, the common pjirabola

of which the equation is

y'^ = mx.

We shall then have

and hence

and by observing that the value of a? — « is equal to that

of y— fi multiplied by — -=^, we have

4 v^ + ?w^
x — ec= ;

2m '

hence we have.

— fi = -V and x — ec= ^
:

rrr m 2
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substituting for y its value in the equation of the involute

— -mSo^ay — m'x

we obtain

-P = if! m•«=-2—2-;

and by eliminating x, we have

27m\ 2 J*

which is the equation of the evolute.

If we make li — 0, we have

1

and hence, the evolute meets the

axis of abscissas at a distance from
( C^>

the origin equal to half the param-

eter. If the origin of co-ordinates

be transferred from A to this

point, we shall have

1

and consequently

m.

The equation of the curve shows that it is symmetrical

with respect to the axis of abscissas, and that it does not

extend in the direction of the negative values of oef
. The

evolute CO corresponds to the part AP of the involute,

and CO^ to the part AP'

.
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CHAPTER VIII.

Of Transcendental Curves.—Of Tangent Planes

and Normal Lines to Surfaces.

174. Curves may be divided into two general classes :

1st. Those whose equations are purely algebraic ; and

2dly. Those whose equations involve transcendental

quantities.

The first class are called algebraic curves, and the

second, transcendental curves.

The properties of the first class having been already

examined, it only remains to discuss the properties of the

transcendental curves.

Of the Logarithmic Curve.

175. The logarithmic curve takes its name from the

property that, when referred to rectangular axes, one of

the co-ordinates is equal to the logarithm of the other.

If we suppose the logarithms to be estimated in paral-

lels to the axis of y, and the corresponding numbers to

be laid off on the axis of abscissas, the equation of the

curve will be

y = h3c.
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176. If we designate the

base of a system of loga-

rithms by «, we shall have,

(Alg. Art. 241)

and if we change the value

of the base a to a\ we shall

have

It is plain, that the same value of x, in the two equations,

will give different values of y, and hence, every system of

logarithms ivill give a different logarithmic curve.

If we make y — 0, we shall have (Alg. Art. 240)

x~l\ and this relation being independent of the base of

the system of logarithms, it follows, that every logarithmic

curve will intersect the axis of numbers at a distance from

the 07ngin equal to unity.

The equation

ay = x,

will enable us to describe the curve by points, even with-

out the aid of a table of logarithms. For, if we make

t/ = 0, y
3

4' &c.,

we shall find, for the corresponding values of x,

x — \, x~^fa^ x — ay/a, x — y/a &c.

177. If we suppose the base of the system of logarithms

to be greater than unity, the logarithms of all numbers less
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than unity will be negative (Alg. Art. 239) ; and therefore,

the values of y corresponding to the abscissas, betv^reen the

limits a? = and x = AE = \y will be negative. Hence,

these ordinates are laid off below the axis of abscissas.

When x = 0, y will be infinite and negative (Alg. Art.

247). If we make x negative, the conditions of the equa-

tion cannot be fulfilled ; and hence, the curve does not

extend on the side of the negative abscissas.

178. Let us resume the equation of the curve

y = lx.

*

If we represent the modulus of the system of logarithms

by Ay and differentiate, we obtain (Art. 56),

, , dx
ay = A—

,

X

dy _ A
dx X

'

But -— represents the tangent of the angle which the
(LX

tangent line forms with the axis of abscissas : hence, the

tangent will be parallel to the axis of abscissas when

a: = 00 , and perpendicular to it when ^ = 0.

But when x — 0, y = — od ; hence,' the axis of ordinates

is an asymptote to the. curve. The tangent which is

parallel to the axis of X is not an asymptote : for when

a? = 00 , we also have y :^ od .

179. The most remarkable property of this curve be-

longs to its sub-tangent TR[, estimated on the axis of

logarithms. We have found, for the sub-taiigent, on the

axis of X (Art. Ill),



DIFFERENTIAL CALCULUS. 169

and by simply changing the axes, we have

ax

hence, the sub-tangent is equal to the modulus of the

system of logarithms from which the curve is constructed.

In the Naperian system M— \, and hence the sub-tangent

will be equal to 1 =: AE.

Of the Cycloid,

180. If a circle NPG be rolled along a straight line

AL, any point of the circumference will describe a curve,

which is called a cycloid. The circle NPG is called the

generating circle, and P the generating point.

It is plain, that in each revolution of the generating circle

an equal curve will be described ; and hence, it will only

be necessary to examine the properties of the curve

APBL, described in one revolution of the generating circle.

We shall therefore refer only to this part when speaking

of the cycloid.

181. If we suppose the point P to be on the line AL
at A, it -Mil be found at some point, as L, after all the

15
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points of the circumference shall have been brought in

contact with the line AL. The line AL will be equal to

the circumference of the generating circle, and is called

the base of the cydoid. The line BM^ drawn perpen-

dicular to the base at the middle point, is equal to the

diameter of the generating circle, and is called the axis of

the cycloid.

182. To find the equation of the cycloid, let us assume

the point A as the origin of co-ordinates, and let us sup-

pose that the generating point has described the arc AP.

If N designates the point at which the generating circle

touches the base, AN will be equal to the arc NP.

Through N draw the diameter iVG, which will be

perpendicular to the base. Through P draw PR perpen-

dicular to the base, and PQ parallel to it. Then, PR—NQ
will be the versed-sine, and PQ the sine of the arc NP.

Let us make

ON:=r, AR = x, PR = NQ = y,

we shall then have /

PQ= ^2ry-y\ x=: AN- RN= aicNP - PQ:

hence, the transcendental equation is

X = ver- sin ' y — y 2 ry — y^.
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183. The properties of the cycloid are, however, most

easily deduced from its differential equation, which is

readily found by differentiating both members of the trans-

scendental equation.

We have (Art. 71),
•

(Z(ver-sin~^2/) = —
,

y 2r?/ — 3/^

hence,

or dx
ydy

V2rz/ —7 - y

which is the differential equation of the cycloid.

184. If we substitute in the general equations of (Arts.

114, 115, 116, 117), the values of dx, d.y, deduced from

the differential equation of the cycloid, we shall obtain the

values of the normal, sub-normal, tangent, and sub-tangent.

They are,

normalPN= v2ry, sub-normalRN = V^ry — y^,

imgentPT=-^-^^^, sub-tangent Ti? rr: ,——= '

y^ry — y^ y2ry — y"^

These values are easily constructed, in consequence of

their connexion with the parts of the generating circle.

The sub-normal RN, for example, is equal to PQ of

the generating circle, since each is equal to ^2ry — y"^

:

hence, the normal PN and the diameter GN intersect

the base of the cycloid at the same point.
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Now, since the tangent to the cycloid at the point P is

perpendicular to the normal, it must coincide with the

chord P6r of the generating circle.

If, therefore, it be required to draw a normal or a tan-

gent to the cycloid, at any point as P, draw any line, as

ng, perpendicular to the base AL, and make it equal to

the diameter of the generating circle. On ng describe a

semi-circumference, and through P draw a parallel to the

base of the cycloid. Through p, where the parallel cuts

the semi-circumference, draw the supplementary chords

pUf pgf and then draw through P the parallels PN^ PG,

and PN will be a normal, and PG a tangent to the cycloid

at the point P.

185. Let us resume the differential equation of the

cycloid

V2ry — i/^

which may be put under the form

dy ^ V2ry-^^ /2r ^

dx V V w 'y ^ y

If we make y = 0, we shall have

dx

and if we make y = 2r, we shall have

f=0:ax
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hence, the tangent lines drawn to the cycloid at the points

where the curve meets the base, are perpendicular to the

base; and the tangent drawn through the extremity of the

greatest ordinate, is parallel to the base.

186. If we differentiate the equation

dx =_ ydy

V 2 ry — y^

regarding dx as constant, we obtain

y'Zry — y^

or by reducing and dividing by y,

= (2ry - y'^)^y + rd;y^,

whence we obtain

J 2ry — y^

and hence the cycloid is concave towards the axis of

abscissas (Art. 133).

187. To find the evolute of the cycloid, let us first sub-

stitute in the general value of

dx d^y
'

the value of dj^y found in the last article : we shall then

have

R=:2^{ryY=z2-\/2ry:

hence, the radius of curvature corresponding to the ex-

tremity of any ordinate y, is equal to double the normal.
15*
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The radius of curvature is when y = 0, and equal to

twice the diameter of the generating circle for y = 2r:

hence, the length of the evolute curve from ^i to ^4' is

equal to tv^^ice the diameter of the generating circle.

Substituting the value of (Py in the values of y—^,

x — tt (Art. 172), we obtain

y-fi = 2y,

hence we have

X— « 2V2ry — y^

y=- x = cc— 2V — 2n3—

^

Substituting these values of y and x in the transcen-

dental equation of the cycloid, we have

ver-sm (i+ V-2r^-/3'

which is the transcendental equation of the evolute, re-

ferred to the primitive origin and the primitive axes.

Let us now trans-

fer the origm of co-

ordinates to the point

A^, and change at

the same time the-A
A

direction of the posi-

tive abscissas : that

is, instead of estima-

ting them from the ^'

left to the right, we will estimate them from the right

to the left. Let us designate the co-ordinates of the

evolute, referred to the new axes A' M, A^X^, by ««^ and ^'.
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Since A'X!— AM— the semi-circumference of the gene-

rating circle, which is equal to rsr, we shall have, for the

abscissa A'B! of any point P^,

A!K'— a! zzz YTi: — cc^ hcncc, a. — r-ytr — at! \

and for the ordinate, we shall have

' R'P'=:^':=z R'E - P'E =z2r-{~^) = 2r + /3,

hence, /3 = — 2r + /S^, or — /3 = 2r — /3^

Substituting these values of a and /3 in the transcen-

dental equation of the evolute, we obtain

r^r — «'= ver-sin-^ (2r — /3') + VsT^^— /3^2,

or cc^= r-r — ver--sin~^ (2 r — ^') — y 2 r^'— ^''\

But the arc whose versed-sine is 2r — .5^, is the supple-

ment of the arc whose versed-sine is jS^, hence

a! — ver-sin ~^ ^'— V2r/3' — /s'^,

which is the equation of the evolute referred to the new

origin and new axes.

But this equation is of the same form, and involves the

same constants as that of the involute : hence, the evolute

and involute are equal curves.

Of Spirals.

188. A spiral is a curve described by a point which

moves along a right line, according to any law whatever,

the line having at the same time a uniform angular motion.
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Let ABCheti straight

line which is to be turned

uniformly around the

point A. When the

motion of the Hne be-

gins, let us suppose a

point to move from A
along the line in the

direction ABC. When
the line takes the posi-

tion ADE the point will

have moved along it to some point as D, and will have

described the arc AaD of the spiral. When the line

takes the position AD'E' the point will have described

the curve AaDD', and when the line shall have comple-

ted an entire revolution the point will have described the

curve AaDUB.
The point A, about which the right line moves, is

called the pole ; the distances AD, AD', AB, are called

radius-vectors, and if the revolutions of the radius-vector

are continued, the generating point will describe an in-

definite spiral. The parts AaDD'B, BFF'C, described in

each revolution, are called spires.

189. If with the pole as a centre, and AB, the distance

passed over by the generating point in the direction of the

radius-vector during . the first revolution, as a radius, we

describe the circumference BEE', the angular motion of

the radius-vector about the pole A, may be measured by

the arcs of this circle, estimated from B.

If we designate the radius-vector by u, and the measur-

ing arc, estimated from B, by t, the relation between u
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and t, may in general be expressed by the equation

u — af

,

in which n depends on the laiv according to which the

generating point moves along the radius-vector, and a on

the relation which exists between a given value of u and

the corresponding value of t.

190. When n is positive the spirals represented by the

equation

u — aV,

will pass througii the pole A. For, if we make ^ == 0, we

shall have u — 0.

But if n is negative, the equation will become

a
u = at ", or u = -—f

in which we shall have

u= (X) for ^ = 0,

and u = for ^ r= oo

:

hence, in this class of spirals, the first position of the

generating point is at an infinite distance from the pole :

the point will then approach the pole as the radius-vector

revolves, and will only reach it after an infinite number of

revolutions.

191. If we make n=:l, the equation of the spiral be-

comes

u = at.

If we designate two different radius-vectors by u^ and

u^'f and the corresponding arcs by t^ and t^\ we shall have

u^ = afj and u^^ — af\
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and consequently

that is, the radius-vectors are proportional to the measur-

ing arcs, estimated from the point B. This spiral is

called, the spiral of Archimedes.

192. If we represent by unity the distance which the

generating point moves along the radius-vector, during one

revolution, the equation

u = at,

will become

1 =at, or
a

But since t is the circumference of a circle whose

radius is unity, we shall have

and consequently.1 = 2,
a 25r*

193. If the axis BD, of

a semi-parabola BCD, be

wrapped around the circum-

ference of a circle of a

given radius r, any abscissa,

as Bh, will coincide with

an equal arc BU, and any

ordinate as ha, will take the

direction of the normal Ah'a\
_ ^,

The curve Ba'c', described

through the extremities of the ordinates of the parabola, is

called the parabolic spiral.

The equation of this spiral is readily found, by observing

that the squares of the lines Va^, c d, (fee, are propor-

tional to the abscissas or arcs Bh' , Be .

N C'
1.

D

y

/
"

/

C
/

{
!

!

' lA "b jy^

\
A B

\
/
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If we designate the distances, estimated from the pole

A, by u, we shall have h'a! = u — r: hence,

is the equation of the parabolic spiral. \ UNlVEf-
If we suppose r=:0, the equation becomo^^c-^,

u^ — 2pt.

If we make n~ — \, the general equation of spirals

becomes

This spiral is called the Jiyperholic spiral, because of the

analogy which its equation bears to that of the hyperbola,

when referred to its asymptotes.

194. The relation between u and t is entirely arbitrary,

and besides the relations expressed by the equation

u = afj

we may, if we please, make

t = \ogu.

The spiral described by the extremity of the radius-vec-

tor when this relation subsists, is called the logarithmic

spiral.

195. If in the equation of the hyperbolic spiral, we

make successively,

t=l, =-, =-, ^-,&c.,

we shall have the corresponding values,

u = a, u = 2a, u~Sa, w = 4a, &c.
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Through llie

pole A draw AD
perpendicular to

AB, arid make

it equal to a :

then through D
draw a parallel

to AB. From

any point of the

spiral as P draw PM perpendicular to AB, we shall

then have

PM= u sinMAP = u sin t.

If we substitute for u its value — , we shall have
t

PM=a smt

Now as the arc t diminishes, the ratio of will ap-

proach to unit)", and the value of the ordinate PM will

approach to a or CM: hence, the line DC approaches

the curve and becomes tangent to it when ^ = 0. But

when i = 0, u = cc-, hence, the liiie DC is an asymptote

of the curve.

196. The arc which measures the angular motion of the

radius-vector has been estimated from the right to the left,

and the value of t regarded as positive. If we revolve

the radius-vector in a contrary direction, the measuring

arc will be estimated from left to right, the sign of t will

be changed to negative and a similar spiral will be de-

scribed. The line DC is an asymptote to the hyperbolic

spiral, corresponding to the negative value of t.
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197. Let us now find a general value for the subtangent

of the spirals. The subtangent is the projection of the

tangent on a line drawn through the pole and perpendicular

to the radius-vector passing through the point of contact.

The equation of the spirals may be written under the

form

u = F{t),

in which we may suppose t the independent variable, and

its first difi'erential constant.

Let AO=l be the radius of

the measuring circle, PT a tan-

gent lo the spiral at the point P,

and A T drawn perpendicular to

tlie radius-vector AP, the sub- /

tangent.

Take any other point of the

spiral as P\ and draw AP^.

About the centre A describe the

arc PQ, and draw the chord PQ.

Draw also the secant PP^ and

prolong it until it meets AT\

drawn parallel to QP, at T.
From the similar triangles QPP^, A T'P'^ we have

PQ : QP^ :: AT' : AP'

\

hence,
QP'

PQ
AP'

AT''

But when we pass to the limit, by supposing the point

P' to coincide with P, the secant TPP' will become the

tangent PT, and AT will become the subtangent AT.
16
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But under this supposition

the arc NN^ will become equal

to dtj the arc PQ to the chord

PQ (Art. 128), AP^ to u, and

the line QP^ to du.

To find the value of the arc i

PQt, we have

1 : NN' :: AP : arc PQ

;

hence,

i : dt : : u : arc PQ,

and PQ = udt.

Substituting these values, and passing to the limit, wc

have

du _ u

udt '^ AT'

hence, we have the subtangent

u^dtAT
du

198. If we find the value of u^ and du from the gen-

eral equation of the spirals

u = at^.

we shall have

AT=—r*\
n
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In the spiral of Archimedes, we have

n = lj and a= ——

;

f
hence, AT=-—.

If now we make t = 2'r= circumference of the mea-

suring circle, we shall have

AT= 2"^ — circumference of measuring circle.

After m revolutions, we shall have

/ — 2m^,

and consequently,

AT= 2m^yr = m .2m^

;

that is, the subtangent, after m revolutions, is equal to

m times the circumference of the circle described with

the radius-vector. This property was discovered by

Archimedes.

199. In the hyperboHc spiral a = — 1, and the value of

the subtangent becomes

AT:=^~a;

that is, the subtangent is constant in the hyperbolic spiral.

200. It may be remarked, that

AT _udt
AP ~'du

expresses the tangent of the angle which the tangent makes

with the radius-vector.
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In the logarithmic spiral, of which the equation is

t=]ogUf

we have dt = A—

;

u

, AT udt ,

that is, in the logarithmic spiral, the angle fonned by the

tangent and the radius-vector passing through the point of

contact, is constant; and the tangent of the angle' is equal

to the modulus of the system of logarithms. If t is the

Naperian logarithm of w, the angle will be equal to 45°.

201. The value of the tangent in the spirals is

PT= y/^p' + A7^:=w\/i +
u'dt^

202. To find the differential of the arc, which we will

represent by z, we have

PP^=.^yQP^'+QF';

or, by substituting for QP^ and PQ their values, and

passing to the limit, we have
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203. The differential of the

area ADP when referred to the

polar co-ordinates, is not an ele-

mentary rectangle as when re-

ferred to rectangular axes, but

is the elementary sector APP'.

The limit of the ratio of the

sector APP' with the arc NN\
will be the same as that of

either of the sectors APQj
AP"P' between which it is

contained, with the same arc

NN' . Hence, if we designate

the area by s, and pass to the limit, we shall have

APxPQds

dt 2NN'
—— or

7 u^dt

which is the differential of the area of any segment of a

spiral.

Of Tangent Planes and Normal Lines to Surfaces,

204. Let u = F{x,y,z)=:0,

be the equation of a surface.

If through any point of the surface two planes be passed

intersecting the surface in two curves, and two straight

lines be drawn respectively tangent to each of the curves,

at their common point, the plane of these tangents will be

tangent to the surface.

205. Let us designate the co-ordinates of the point at

which the plane is to be tangent by oc", y", z"

.

16*
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Through this point let a plane be passed parallel to the

co-ordinate plane YZ. This plane will intersect the

surface in a curve. The equations of a straight line tan-

gent to this curve, at the point whose co-ordinates are

s!'yy",2!', are

the first equation represents the projection of the tangent

on the'co-ordinate plane ZX, and the second its projec-

tion on the co-ordinate plane YZ (An. Geom. Bk. IX.

Art. 70).

Through the same point let a plane be passed parallel to

the co-ordinate plane ZX, and we shall have for the

equations of a tangent to the curve

The coefficient -^ represents the tangent of the angle

which the projection of the first tangent on the co-ordinate

plane YZ makes with the axis of Z ; and the coefficient

— represents the tangent of the angle which the projection

of the second tangent on the plane ZX makes with the

axis of Z (An. Geom. Bk. VIII, Prop. II).

But these coefficients may be expressed in functions of

the surface and the co-ordinates of its points. For, we

have

u = F{x,i/,z) =0,

and if we suppose x constant, we shall have (Art. 87)

du = -r dy -\- -r dz = 0:
dy "^ dz
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du

lience,
dz~

dz^

du'

dy

and if we suppose y constant, we shall find, iin a similar

manner,

' dx

dz~'

du

Tz

du
'

dx

hence, the equation of the projectiorI of the first tangent on

the plane of YZ becomes

du

dy

and the equation of the projection of the second tangent

on the plane di ZX is

du

x-x"^--^{z-z").
du

dx

The equation of a plane passing through the point whose

co-ordinates are a/', y" ^ z" is of the form

A{x -o/O -h B{y - y") + C{z - z^') = 0,

C
in which— —will represent the tangent of the angle which

the trace on the co-ordinate plane YZ makes with the

C
axis of Z, and—j-^^'^^ tangent of the angle which the

trace on the plane of ZX makes with the axis of Z.



du

c dz

B~ du'

dy

du

C dz

A~ ~
du'

dx
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But since the tangents are respectively parallel to the

co-ordinate planes YZ, ZX^ their projections will be

parallel to the traces of the tangent plane : therefore,

du

hence, — B=—~ C ;
du

d^

du

= — -^, hence, — A = 5— C.
du

dz

Substituting these values of B and A in the equation

of the plane, and reducing, we find

which is the equation of a tangent plane to a surface at a

point of which the co-ordinates are a/', y', z".

206. A normal line to the surface being perpendicular

to the tangent plane at the point of contact, its equations

will be of the form

du du

dz dz
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Integration of Differential Monomials,

207. The Differential Calculus explains the method of

finding the differential of a given function. The Integral

Calculus is the reverse of this. It explains the method

of finding the function which corresponds to a given

differential.

The rules for the differentiation of functions are explicit

and direct. Those for determining the integral, or func-

tion, from the differential expression, are less direct and

are deduced by reversing the process by v^rhich we pass

from the function to the differential.

208. Let it>be required, as a first example, to integrate

the expression.

We have found (Art. 32), that

d{x^*^)— (m-\-l)x'"dx,

whence, x'^dx = = d
( )

,

m + 1 Vm + l/'
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and consequently --—
-,m + l

is the function of which the differential is x'^dx.

The integration is indicated by placing the character /
before the differential which is to be integrated. Thus,

we write

from which we deduce the following rule.

To integrate a monomial of the form x^dx, augment

the exponent of the variable by unityy and divide by the

exponent so increased and by the differential of the

variable.

209. The characteristic / signifies integral or sum.

The word sum^ was employed by those who first used the

differential and integral calculus, and who regarded the

integral of

x'^dx

as the sum of all the products which arise by multiplying

the mth power of x, for all values of x, by the con-

stant dx.

dx
210. Let it be required to integrate the expression -5-.

We have, from the last rule,

--=jaxx =.___ =_=__.
In a similar manner, we find

Jdxyx''=zjx^dx
X^ 378 3a73

3+^ 1-
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211. It has been shown (Art. 22), that the differential

of the product of a variable multiplied by a constant, is

equal to the constant multiplied by the differential of the

variable. Hence, we may conclude that, the integral of

the product of a differential by a constarit, is equal to the

constant multiplied by the integral of the differential

:

that is,

fax'^dx — afx'^dx ~ a
m + l

Hence, if the expression to be integrated have one or

more constantfactors, they may be placed as factors with-

out the sign of the integral.

212. It has also been shoAvn (Art. 22), that every con-

stant quantity connected with the variable by the sign

^lus or minus, will disappear in the differentiation ; and

hence, the differential of a -f j?'", is the same as that of

x"" ; Viz. 7nx^~^dx. Consequently, the sam.e differential

may answer to several integral functions differing from

each other in the value of the constant term.

In passhig, therefore, from the differential to the integral

or function, we must annex to the first integral obtained,

a constant term, and then fmd such a value for this term

as will characterize the particular integral sought.

For example (Art. 94),

-^ = a, or dy = adx,
ax

is the differential equation of every straight line which

makes with the axis of abscissas an angle whose tangent

is a. Integrating this expression, we have
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fdy = afdx,

or y=zax,

or finally, y = ax -\-C.

If now, the required line is to pass through the origin

of co-ordinates, we shall have, for

a? = 0, y = 0, and consequently, C = 0.

But if it be required that the line shall intersect the axis

of y at a distance from the origin equal to + 6, we shall

have, for

x = 0, y = -\-h, and consequently, C — +b

;

and the true integral will be

y z=zax-\-b.

If, on the contrary, it were required that the right line

should intersect the axis of ordinates below the origin, we

should have, for

x = 0, y = —b, and consequently, C =: —b;

and the true integral would be

y = ax — b.

213. It has been shown (Art. 95), that

xdx 4- ydy =

is the differential equation of the circumference of a circle.

By taking the integral, we have,

/ xdx 4- fydy = 0, or x^-{-y^=0,

or finally, x^ + y^ + C = 0.
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If it be required that this integral shall represent a given

circumference, of which the radius is R, we shall have,

by making

and hence, C = — R^;

and consequently the true integral is

a^ + y^-R-'^O, or x^ + y^ ^ R\

The constant C, which is annexed to the first integral

that is obtained, is called an arbitrary constant, because

such a value is to be attributed to it as will cause the

required integral to fulfil given conditions, which may be

imposed on it at pleasure.

The value of the constant must be such, as to render

the equation true for every value wJiich can he attributed

to the variables.

214. There is one case to which the formula of Art. 208

does not apply. It is that in which m— — I. Under this

supposition,

fcc^dx =^^ = ^^^^ =— = — =oo.
•^ m-fl -1 + 1

But when m——\.
Ax

Jx'^dx = Jx-\lx= J X

and f— = \ogx-^C. (Art. 57).

215. Since the differential of a function composed ol

several terms, is equal to the sum or difference of the diffe-

rentials (Art, 27), it follows that the integral of a differen-

17
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tial expression, composed of several terms, is equal to the

sum or difference of the integrals taken separately. For

example, if

odx
du =adx -3- +oc\/xdXi we have

fdu =f{adx 3-+ ^ yCTa?), and

16 2 -

2ar 5

216. Every polynomial of the form

(a 4- bx + ca^ -|- &ic.ydx,

in which n is a positive and whole number, may be inte-

grated by the rule for monomials, by first raising the poly-

nomial to the power indicated by the exponent, and then

multiplying each term by dx.

If, for example, we make n = 2, and employ but two

terms, we have

f{a + bxfdx =J{aHx + 2abxdx -\- b^x^dx\

3

Integraiimi of Particular Binomials.

217. If we have a binomial of the form

du z= {a ^ bx^^Yx""^ dx \

that is, in which the exjwnent of the variable ivithout the

parenthesis is less by unity than the exponent of the van-

able within, we may make
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a-\-bx" = z, which gives

_ dz
nhx"" ^dx = dz, or x" ^dx = —r;

no

whence du = z —j-, or u = -—
,

. , ;

nb (m-{-l)nb

and consequently

{m-\-\)nb

Hence, the integral of the above form, is equal to the bino-

mial factor with its exponent augmented by unity, divided

by the exponent so increased, into the exponent of the vari-

able within the parenthesis into the coefficient of the

variable.

For example,

J\a + 3ar^)' xdx = (|±^* 4. C; and1ml
/(a + bx'Y mxdx = —^{a ^bc^f + C.

218. A transformation similar to that of the last article

will enable us to integrate certain differentials correspond-

ing to logarithmic functions. If we have an expression of

the form

adx
du =

c-{- bx

dz
make c-\-bx = z, which gives dx — —, and by sub-

stituting, we have

/adx Cadz a Cdz a ,
. ^
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and by substituting for z its value

adx ayad
\og(c + hx)+C.

hoc h

In a similar manner, we should find

/;

in which the integral is negative, since d{—x)= —dx.

We can find, in a similar manner, the integral of every

fraction of which the numerator is equal to the differential

of the denominator, or equal to that differential multiplied

hy a constant.

If, for example, we have

7 _ (6 4- Sea?) mdx
^

a + bx -\- cap"
*

make a-{-hx + ca^ = z, which gives, hdx 4- 2cxdx = dz,

and hence,

^ mdz
,

*
du = , or u = miogZy ,

and by substituting for z its value

u — mlog(a 4- ^^ 4- ca?).

Of Differentials whose Integrals are expressed hy

the Circular Functions.

219. We have seen, Art. 71, that if x designates an arc

and u the sine, to the radius unity, we shall have

y du
ax = —7=z .

Vl-w^
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du
hence, / , =x-{- C

;

or adopting the notation of Art. 72,

du

fvrr sin u+ C.

If the arc expressed in the second member of the equa-

tion be estimated from the beginning of the first quadrant,

the sine will be 0, when the arc is 0, and we shall have,

for u =
du

f-
= 0, and consequently C = 0,

Vl-u"

and under this supposition, the entire integral is

dur du _
J vTz^~

To give an example, showing the use of the arbitrary-

constant, let us suppose that the arc which is to be ex-

pressed by the second member of the equation, is to be

estimated from the beginning of the second quadrant. This

supposition will render

du

fVI^T^
for u = l

But when m = 1, sin ^w =—^; hence,

J-«. + C = 0, or C = -— »r

:

2 2

and we have, for the entire integral, under this supposition,

/
du . _, 1

—7= = sm u ?r,

Vi-y 2

17*
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220. It frequently happens that we have expressions to

integrate of the form

dz

Let us suppose, for a moment, that a is the radius of a

circle, and z the sine of any arc of the circle ; and that u

is the sine of an arc containing an equal number of degrees

in a circle whose radius is unity : we shall then have,

hence. tt =— , and

: z;

, dz
au =—

;

a

and consequently,

du/au _ r

dz

a

^
/dz

du dz. r du r dz , z
hence, / , = I -7= = sm —

:

the arc being still taken in a circle whose radius is unity.

221. We have seen (Art. 71), that if x designates an

arc, and u the cosine, to the radius unity, we shall have

du

hence, /

dx= —

du

Vl-u"'

= x + C;
Vi-u

or adopting the notation of Art. 72,

/- du

VT
cos~^u-\- C.
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If the arc be estimated from the beginning of the first

quadrant, it will be equal to — ?r for u = 0; hence, the
2

1
first member of the equation becomes equal to — jr when

1 ^
w = 0. But under this supposition, cos ^u=—^ : hence,

C ~0, and the entire integral is

dz
f-

Vl-u'

222. By a method analogous to that of Art. 220, we

should find

- dz _, z
J 7 — COS ,

the arc being estimated to the radius unity.
^

223. We have seen (Art. 71), that if x represents an

arc, and u its tangent, to the radius unity, we have

, du
dx = ;

l-fw^
'

hence, /
-——^ = x + C :

or, adopting the notation of Art. 72,

If the arc is estimated from the beginnmg of the first

quadrant, we shall have

/du
2 = ; hence, C = 0,

i -|- w
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and the entire integral is

du

A -5 = tang-'M.

2!H. Ta integrate expressions of the form

dz

let us suppose for a moment that a is the radius of a circle,

and z the tangent of any arc, and that u is the tangent

of an arc containing an equal number of degrees in a circle

whose radius is unity : we shall then have

1 : u : : a : z

;

z z^ dz
hencej w =— , u^ = —.j and du=—

,

a a^ a

^nd consequently,

/du r dz . z

hence, by dividing by a,

/dz 1 _iZ

the arc being estimated to the radius unity.

225. We have seen (Art. 71), that if x represents an

arc, and u the versed-sine, to the radius of unity, we have

, du
ax =

V2u-u^'

du

V2u — u^
hence, /

,""*— =x = ver-sin~ ^u-\- C

,

J
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and if the arc is estimated from the beginning of the first

quadrant, C = 0, and we shall have

/du . _,
. —r = ver-sm u.

y 2w — u^

226. To integrate an expression of the form

dz

y/2az — z^

Suppose, as before, a to be the radius of a circle, and

we shall have (Art. 224),

z , dz

and consequently,

C du _ c dz •
A
z= ver-sin-'—

J V2u — u^ J y2az — z^ «

to the radius unity.

Integration by Series.

227. Every expression of the form

Xdxj

in which X is such a function of x, that it can be developed

in the powers of x, may be integrated by series.

For, let us suppose

X= Aa?" + Bx' + CV + Dx" + &;c., then,

Xdx = Ax^dx + Bx^'dx + Cx'dx + BxHx + &c.,

fXdx=-^x'^^^-\--^x'^'^-S-x'^^^^^^^^^
a+\ 6+1 c+1 c?+l
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Hence, the integration by series is effected by develop-

ing the function X in the powers of x, multiplying the

series hy dx, and then integrating the terms separately.

Let us lake, as a first example, ,

a-f- J? -

dx X = dx{a + x)" ',

a-\- X a-{- X

, , 1 X x^ c^ ,

a a^ a^ a*

and consequently,

/dx /*/ 1 7 xdx
,
o?dx a^dx

, « \=
I {—dx 5-H ^ j- + &;c.|:

a-^x J \a a^ «•* - a* /

and integrating each term separately, we obtain

/\hX X XT OCT
r j8 i /^

= log (a + a:) (Art. 218),
a ~f" ii7

we have

"'S(« + -) =|-A + 34-^^ + *'^- + ^-

To determine the value of the constant, make a:=0,

which gives

log a = -h C, or C = log a ; hence,

log(a + ^) = loga +^-^, + ^3-£j+&c.,

log(a+..) - loga=log (l +
I-)

=^ - ^, +^- &c.,

a result which agrees with the development in Art. 58.
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dx
228. Let us take, for a second example ^ .

dx

l + oc"

We have, -^-^ ^ dx{\ + x^Y' ;

and by developing and integrating,

dx -^ -^ -'

J 1 + ^2 3
-T-

5 7
-^

When we make x=zO, the arc is ; hence,

_, X^
,
X^ ^^

, e
tang x=x 1 -—-{-6CC.;

a result v^^hich corresponds with that of Art. 78.

dx
229. If, in the expression :^, we place x^ in the

1 ~p X

first term of the binomial, and then develop the binomial

^ + 1, we obtain

J x^ -f 1 J \x" x^ x^ x^ J

and by integrating, we have

tang ^^__ +^-— + &C. + C.

To find the value of the constant C, let us make the

arc r= 90° — --k. This supposition will render the tan-

gent X infinite, and consequently every term of the series

will become 0, and the equation will give

i-^=0+C, or C =— 5r.

2
'

2
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Making this substitution, we have, for the true integral,

/:
(ir , _, 1 1,1 1 , .

230. The two series, found from the expressions ^
dx

l^-af

and -^ , are, as they should be, essentially the same.
ar 4-

1

For, the tangent of an arc multiplied by its cotangent,

is equal to radius square or unity (Trig. Art. XVIII).

Hence, if we substitute for a?, in the first series, -, we
w

shall have, for the complemental arc,

and subtracting both members from -«,

1 .-,1.-1 1 1,1 1
,

,

-.-tang - = tang . =_.__+—_ _+&c.

231. We have found (Art. 71),

sin-'a::^. f .

^
={\-a?)~^dx;

and by developing, we find

(i-a-n=i+-i-^+-i-|-^+i-fl"'+'^'=' 1
multiplying by dx^ and integrating, we obtain,
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the constant being when the arc is estimated from the

beginning of the first quadrant.

If we take the arc of 30°, the sine of which is equal

to half the radius (Trig. Art. XIV), we shall have

• -lono 1 , 1 1 1 ,'1 3 1 1, 1 3 5 1 1 „

hence,

^ • -loAo ^/l l-l-l 1-3-1.1 1.3.5.1.1
, „ N

^ = 6sm^30o = 6( -4- - + ,-\ r+^c.),

and by taking the first ten terms of the series, we find

?r = 3.1415962,

which is true to the last decimal figure, which should be 5.

232. We will add a few more examples.

dec
1. To intefrrate the expression —7-

.

By making Vic = 11, we have

dx dx 2 du

Vx — x'^ VxVl—x Vl—U^

But from the last series

r 2du ^f ,
1?/

, 1 ^w' 1 3 5w\ „ \
,
_

J Vl-u^ V ^2 3 ^2 4 5 ^2 4 67^ J^

hence

,_ .
=2 1+--4--. — .-. h &c. ]-y/oo+C.

Vx-x^ V 23 24 5 2467 J^

, 11/ r \1
2. dxy/2ax-x^ = {2aYx''dx\\ j^.

IS
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But

0-^)'== 1-
la? 11a? 1.1.3 a?

2 2a 2'44a'^ 2.4.6 Sa^
&c.;

hence

s

- / 9 » 19 T^'^ 1 1 9
7

2 4 6 9 Sa"^ /
^

and consequently .

ri FT. -z
/I 11a? 1 1 1 a?^

/Ja?V2aa?-a?^ = (---.----.-.--^

1 1 3 1 a?3 \ ^-

—

.— .— . -— &c. |2a?v2«a?4- C.
2 4 6 9 8a-^ /

^

If the radius of a circle be represented by «, and the

origin of co-ordinates be placed in the circumference, the

equation will be (An. Geom. Bk. Ill, Prop. I, Sch. 3),

if—2ax — c?\ hence y ~^J~2ax — o?^

and consequently (Art. 130)

dx 's/2ax--x^ = ydx

is tiie differential of a circular segment.

If we estimate the area from the origin, where a? =
we shall have C = 0. If then we make x = a, the series

will give the area of one quarter of the circle, if we make

x = 2a, of the semicircle.

^ C dx Ix^ 1.3a:'' 1.3.5a?' ,

^-
^7TT^^""2y+2:4y-2:4:6y+^^'+^-
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f
dx

1
1-3 1.3.5

hitegration of Differential Bifiomiah.

234. Differential binomials may be represented under

the general form

p

in which, without affecting the generality of the expres-

sion, m and n may be regarded as entire numbers, and n

as positive.

For, if m and n were fractional, and the binomial of

the form

1 i £

make x = z^, that is, make the exponent of z the least

common multiple of the denominators of the exponents

of X, and we shall then have

1 If. £
x'^ dx{a + boc'^y =6z''dz{a-{-b2^)^, '

in which the exponents of the variable are entire.

If n were negative, we should have,

x^^'dxia + bx-y,

and by making x== — ^ we should obtain
z

-z-'^-'dzia + bz'^y,

the same form as before.
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Furtliermore, the binomial

p

may be reduced to the form

by dividing the binomial within the parenthesis by a?', and

multiplying the factor without by a: ' .

235. Let us now determine the cases in which the

binomial x"~^dx{a + bx")'' has an exact integral.

.
Make a + bx" = z''; we shall then have

and by differentiating,

hence

x'^'^dxi.a + bxT)^ = l^z^+'-'dzi^—^X
,

no \ J

which will have an exact integral in algebraic terms when

— is a whole number and positive (Art. 216). If — is

n n
negative see Art. 260.

Hence, every differential binomial has an exact inte-

gral, when the exponent of the variable loithout the paren-

thesis augmented by unity, is exactly divisible by the

eocponent of the variable within.

Thus, for example, the expression

aida{a-^bx')^
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has an exact integral. For, by comparing it with the

general binomial, we find

m = 6, n — 2, and consequently, — = 3,

and the transformed binomial becomes

2

26 \ h )

236. There is yet another case in which the binomial

x"'~^dx{a + hx^'Y has an exact integral.

If we multiply and divide by ^", we have

af^'^dxia + 6a;")' = x'^'^lxKax"" + 6)^]'

E. HE

== x'"~^dx{ax~'" + 6)' 0?

'

m+— -1 —
= x * dx{ax~'' -\- b)\

Now, if we add unity to the exponent of x without the

parenthesis, and divide by — n, the quotient will be

— ( ^ p ^^^^ ^^^^ expression will have an exact

integral when this quotient is a whole number (Art. 235).

Hence, every differential binomial has an exact integral,

when the exponent of the variable without the parenthesis

augmtmted by unity and divided by the exponent of the

variable ivithin the parenthesis, plus the exponent of the

parenthesis, is an entire number.

237. The integration of differential binomials is effected

by resolving them into two parts, of which one at least has

a known integral.

We have seen (Art. 28) that

d{uv) = udv -h vdu,
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whence, by integrating,

uv =fudv -\-fvdu,

an^, consequently,

Judv = uv —fvdu.

Hence, if we have a differential of the form Xdx, in

which the function X may be decomposed into two factors

P and Q, of which one of them, Qdx, can be integrated,

we shall have, by making / Qdx = v and P = Uj

JPQdx = Pv^JvdP,

in which it is only required to integrate the term fvdP.

238. To abridge the results, let us write p for — , in

9

which case p will represent a fractiofi, and the differential

binomial will take the form

x^-^dxia + bx'^y.

If now, we multiply by the two factors a?" and a?"", the

value will not be affected, and we obtain

x'"-"x"-'dx(a + bx''y.

Now, the factor x"~^dx(a-{-bx"y is integrable, whatever

be the value of p (Art. 217) ; and representing this factor

by dv, we have

^ =\\,\ ^
and 2^ = 0^'"-%

(p-\-l)nb

and, consequently,

fx'^-'dxia-hbxy^

ar-^{a-^bx''y*' m-n
(p+l)?i6 ~ {p-^\)nb

I

Jx^^-'^-^dx^a^bxy^K
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But, fcc"'-''-'dx{a -I- hary*' =

afx'"-''-'dx{a + bxy + bfx''-'dx{a + bx^
',

substituting this last value in the preceding equation, and

collecting the terms containing the integral

Jx^^-^dx^a + bx^'Y,

we have

^'"-"(a _l_ hx"y*' — (^{^n — n) f x""-"-' dx{a_j-bxy_
,

{p+l)nb '

whence,

formula (A.) fx'^-'dx^a + bx^ =

cc"'-"(a 4- bxy^' - Q(m - n)fx"'-''-'dx{a + 6a?")^

b{pn-\-m)

This formula reduces the differential binomial

Jx^'-^dx^a-^-bxy to that of Jx'^-^'-^dxia-^bxy ;

and by a similar process we should find

fx"'-"-'^dx{a + bxy to depend on J x"^-^""^ dx{a + bx"")"
-,

and consequently, each process diminishes the exponent

of the variable without the parenthesis by the exponent

of the variable within.

After the second integration, the factor m — n, of the

second term, will become m — 2n\ and after the third,

m — ^n, &CC. If m is a multiple of n, the factor m — n,

m — 2n, m — Sn, &cc., will finally become equal to 0, and

then the differential into which it is 'multiplied will disap-
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pear, and the given differential will have an exact integral,

which corresponds with the result of Art. 235.

239. Let us now determine a formula for diminishing

the exponent of the parenthesis.

We have

Sx'^-^dx{a + hxy = fx'^-^dx[a + ho^y-\a + 6^?") =
ajx'^-^dxia + hx^-^ + hf x''''''-^dx{a + ho(ry-\

Applying formula (A) to the second term, by placing

m-\-n for m, and p—\ for p, we have

fx''*''-^dx{a + hxy-'' =
a?"(g + hxy - amfx'^-'dxia + hx^-^

b(pn + m)

Substituting this value in the last equation, we have

formula (B) fx'^-'dxia + bxy =
x'^ja + bx'^y + pnafx'^-^dxia + bx"")"-^ .

pji + ?n
*

which diminishes the exponent of the parenthesis by unity

for each integration.

240. By means of formulas (A) and (B), we reduce

fx'^-'dx{a^-bxy to far-'"'-^dx{a + bxy-'
',

rn being the greatest m.ultiple of n which can be taken

from m—\, and s the greatest whole number which can

be subtracted from p.

For example, Jx'^dx{a + bx^ is reduced, by formula

(A), to

- . i.

fa^dx{a + ba^Y, and then to fxdx{a + baP')^

:
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and by formula (B) Jxdx{a + hx^Y, reduces to

1 1
fxdx{a + hx^)\ and finally to fxdx{a + hx^Y .

241. It is evident that formulas (A) and (B) will only

diminish the exponents m — 1 and p, when m and p are

positive. We will now determine two formulas for dimin-

ishing these exponents when they are negative.

We find from formula (A)

fx''-''-^dx{a^-hxy =

ar-^(a + bx^y-^' -b(m + np)fx"'-'dx(a + hx^y
,

a{m — n)

and placing for m, — m + n, we have

formula (C) fx-'^-'dxia + bary^i

x-^{a + bxy-^'-\- b{m — n — np) f x-'^'^''-'' dxja + 6a?y

— am

in which formula, it should be remembered that the nega-

tive sign has been attributed to the exponent m.

242. To find the formula for diminishing the exponent

of the parenthesis when it is negative.

We find, from formula (B),

Jx''-'dx{a^bxy-' =

ar{a + bx'^y — {m-\- np)J x"^'^ dx{a + hx'^y

pna

writing for p, —p-{-\, we have

formula (D) Jx'^-^d,x{a-\-bx^)-^ =
x'^^a + &a?")-^+^ -{m-^n- np)fx"'-'dx{a + fca?")-^+^

(p—l)na
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This formula does not apply to the case in which p = l.

Under this supposition, the second member becomes infi-

nite, and the differential becomes that of a transcendental

function.

243. It is sometimes convenient to leave the variable in

both terms of the binomial. We shall therefore determine

a particular formula for integrating the binomial

V2ax— x^

This binomial may be placed under the form

_JL J.

fx ''dx{2a-x)~^,

and if we apply formula (A), after ms(king

m = q+—, n = l, p=-~, a = 2a, 6=-.l,

we shall have

9-1 1
fx ^dx{2a-x)'''' =

q q '
^ ' '

and if we observe that

,_1 ,.i i 5-1 ,_j _1
X ^ =x a?2 X ^ =x X ^y

and pass the fractional powers of x within the parentheses,

we shall have

^dx
formula (E) j

•

V2ax— a^

af-W2ax-x^ {2q-l )a C x'^-'dx

9. <l
J V2ax-a^
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which diminishes the exponent of the variable without the

parenthesis by unity. If g is a positive and entire num-

ber, we shall have, after q reductions

/ = ver-sm ^— . (Art. 226).
y/2ax — a? «

Integration of Rational Fractions.

244. Every rational fraction may be written under the

form

P x""-^ + Q x''-'' + Rx + S ,

PV + QV-^ ^IVx^S'
""'

in Vv^hich the exponent of the highest power of the varia-

ble in the numerator, is less by unity than in the denomi-

nator. For, if the greatest exponent in the numerator was

equal to or exceeded the greatest exponent in the denomi-

nator, the division miglit be made, giving one or more

entire terms for a quotient and a remainder, in which the

exponent of the leading letter would be less by at least

unity, than the exponent of the leading letter in the divisor.

The entire terms could then be integrated, and there

would remain the fraction under the above form.

Place the denominator of the fraction equal to : that

is, make

PV+ QV-' R^x^-S' = 0,

and let us also suppose that we have found the n binomial

factors into which it may be resolved (Alg. Art. 264).

These factors will be of the form x — a, x — b, x — c,

X — d, &c. Now there are three cases :
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1st. When the roots of the equation are real and

unequal.

2d. When they are real and equal.

3d. When there are imaginary factors.

We will consider these cases in succession.

1st. When the roots are real and unequal.

adx
245. Let us take, as a first example,

By decomposing the denominator into its factors, we

have

adx _ adx

ct^ — d^ {x — a){x-\-ay

and we may make

^ =.f_A.+_^^^^
{x — a).{x -\- a) \x — a x-{-aJ

'

in which A and B are constants, whose values are yet to

be determined. In order to determine these constants,

let us reduce the terms of the second member of the'

equation to a common denominator ; we shall then have

adx (Ax + Aa-\- Bx — Ba) dx

{x — a){x-\-a) (x — a){x-{-a)

In comparing the two members of the equation, we find

a = Ax + Aa + Bx — Ba
;

or, by arranging with reference to x,

{A -\- B)x + {A - B - l)a = 0.

But, since this equation is true for all values of x, the
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coefficients must be separately equal to (Alg. Art. 208)

:

hence

A-\-B = 0, and {A-B-l)a = 0,

which gives

2' 2'

Substituting these values for A and B, we obtain

adx -doc ^dx
z T = - ~—— ; >^^\.\br4a

ar — a^ x — a x-{-a f^ op thk

and integrating, we find (Art. 218) ^^'^C^/ ipr>R'

Z^^:^ " "2 ^""^ ^"^ ~ ""^ ~
i'^''^

^"^ "^ ""^ "^ ^'

and, consequently,

adx/•_a<fc^ = llogf^:^:^) + C = log (^-^V+ C.J x^ — d" 2 ^ \:c + a/ ^ Va? + a/

246. Let us take, as a second example, — -dx,
crx — x^

The factors of the denominator are x and a^ — jt^ ; but

a^ — a? ~{a-{-x){a — x)\

hence, the given fraction becomes

d'-^ho?

x{a — x^j{a -\- x')

Let us now make

dx.

a}^h:^ A B C
x{a — x){a-{-x) X a — x a-\-x

19
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reducing the terms of the second member to a common

denominator, "we have

a" + hx^ Ad?- Aa^+ Bax + Boc^+ Cox - Ca^

a:{a—x){a + x) x{a — x){a-\-x)

and, comparing the hke powers of x (Alg. Art. 208),

B-A-C = b, Ba+Ca = 0, Aa' = a\

From these equations, we find

2 ' 2 '

and substituting these values, we obtain

a? H- ba^ , dx
, a -^b j a + b ,

—5 ~ax = a 1 ; -ax ; -ax ;
a'^x — ar x 2(a — x) 2{a-^x)

and integrating (Art. 218),

/a^-\-ba^ , , a + b, , .

.^—-^dx = a\ogx —\ogia-x)

T^\og{a-{-x)+C

= alogx— ^^^[log(a -x) + log{a + x)]+C

= aloga: — ~ log(« ~ x){a-\- x)-\-

C

<^

= aXogx log(a^— ar^ -f- C

— a\ogx — {a-\-b)\og^/c?-':^-\-C.

3^ 5
247. Let us take, for a third example, —, dx.

^ a7^~6a^4-8
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Resolving the denominator into the two binomial factors

(Alg. Art. 142), ix—2), (oc — A), we have ,

Sx-5 _ A B
henc€

a^-6x-h8 x-2 x-4.'

3a? — 5 Ax-4:A-^Bx- 2^.
a^-6x + 8^ x'- 607 + 8

>

and by comparing the coefficients of a?, we have

-5=-4A-25, S = A-^B,

which gives

-i. - 1

" 2'

and substituting these values, we have

J a?-6x + 8 aJx-2 2Jx-4

= ^iog(^ - 4) - i-iog(x - 2) + a

^48. Let us take, as a last example, .

xdx

a?-\-^ax —W
Resolving the equation

a?2 + 4«a?-62 = o,

we find

r=r-2a+ V4a^-(-6^ x= -2a- ^/TcFT^,

and consequently, for the product of the factors,

{x^2a+^/IcFT^){x-^2a-^/I¥Th^)=3c^+^ax--^}^.
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To simplify the work, represent the roots by — J5l and

— X, and the factors will then be

x-\- Kf x + L,

and we shall have

X A ^ B ,

H — : hence
ai^ + ^ax — b^ x-\-K x -\-

L

X Ax-\-AL-{-Bx-\-BK

ar^^-4aa?-62~
•

whence,

AL + BK == 0, A + J5 = 1,

and, consequently,

A- ^ B L
K-L'

hence,

f -d. __ K ,
rr,r4- rn ^ inar

a^^4,ax-b^ K-L °'
'

' K-L\og{x+L)-^C.

249. In general, to integrate a rational fraction of the

form

Px""-'-^ Q^"-" +Rx+S ,

x"" -\-Q'x"'-' -}-R'x+S' ""'

1 St. Resolve the fraction into m partial fractions, of

which the numerators shall he constants, and the denomi-

nators factors of the denominator of the given fraction.

2d. Find the values of the numerators of the partial

fractions, and multiply each by dx.
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3d. Integrate each partial fraction separately, and the

sum of the integrals thus found luill he the integral

sought.

250. The method which has just been explained, will

require some modification when any of the roots of the

denominator are equal to each other. When the roots are

unequal, the fraction may be placed under the form

{x — a){x — b) {x — c){x — d) {x — e)

A . B . C , D , E+ r + : +
b X — c X — d X — e

if several of these roots are equal, as for example,

a = 6 r= c, the last equation will become

Px^ -\- Qx"" ^- 6cc. _A + B-\-C D
,

E
i^x — af{x — d){x — e) x — a x — d x — e*

in which A + 5 + C may be represented by a single con-

stant A!

.

Now, in reducing the second member of the equation to

a common denominator with the first, and comparing the

coefficients of the like powers of x, we shall have five

equations of condition between three arbitrary constants,

A' , D, and E : hence, these equations will be incompati-

ble with each other (Alg. Art. 103).

If, however, instead of adding the three partial fractionsABC
-b X — c

which have the same denominator, we go through the
19*
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process of reducing them to one, their sum may be placed

under the form

A' + B'x+ax'
(x-af '

or, by omitting the accents,

(x-af '

251. Let us now make

X— a = z, and consequently, x = z -^ a;

we shall then have

A + Bx-^-Cx" A -\- Ba -{- Ca^ + Bz + 2Caz + Cz"

(x-af

A + Ba+Ca^ .B-\-2Ca C
^

z^ z^ z

substituting for z its value, and representing the numera-

tors by single constants, we have

A + Bx+Cx" A'
,

B'
,
a

(x — af (x — af (x—af x — a^

the form under which the fraction may be written.

Since the same reasoning will apply to the case in

which there are m equal factors, we conclude that

Px"^-' 4- Q^""' -f-Rx + S _'

(x-af
~

A A! ^ A!' ^ A''../.
+ ^:r-z^—i+7Z—T^^2"^' +

(x-a)"* ' (x-a)"^-' ' (x-ay-' x-a

252. In order, therefore, to integrate the fraction

Pa7*4-QV-|-&c. ^^
(x — af (x — d)(x— e)
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place it equal to

A ^ A! A!' D ^ E
H-n:—r^+-—- + -—:> + -

—

{x — af {x — df x — a x — d

then, reducing to a common denominator, and comparing

the coefficients of the like powers of x, we find the values

of the numerators of the partial fractions. Multiplying

each by dx, and the given fraction may be written under

the form

A ^
,

A' . A" . ^
D . ^

E .

7 ^^^ + 7 ^"^ + 7 '\^^ "< 3^^ -1 ^'
{x—ay {x—ay {x—a) x—d x — e

The first two fractions may be integrated by the method

of Art. 217, and the three last by logarithms. Hence, finally,

/
Px^ + Qx^ 4- Rcc'' +Sx^ T ^^ _ _ __A A^

{x — ay{x — d){x — e) 2{x — aY x — a

+ A^^\og{x - a) + Dlog(x -d)-\- E\og{x -e)+ C.

253. Let it be required to integrate the fraction

2 ax

{x + af

We have

dx.

2 ax A A!

{x-\-aY {x-\raY x -\-

a

reducing the fractions of the second member to a common

denominator, and comparing the coefficients of x in the

two members, we have

2a = A' and A + A^a - :

hence,

A=— 2a^ and A' = 2a;
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and, consequently,

2axdx _ 2aVa? , 2adx ^
(x + ay~~{x-\-ay {x-i-a)

*

hence, (Arts. 217 & 218),

2axdx 2c?

h{p? -\- ay x-\-a

254. Let us find the integral of

+ 2a\og(x-\-d).

x^ — ao^ — c^x 4- d^

'

By placing the denominator equal to 0, we see that, by

making x = a, the terms will destroy each other : hence, a

is a root of the equation, and x—a a. factor. Dividing by

x — a, the quotient is a;^ — a^ : hence, the fraction may be

placed under the form

Mx a^dx

(ar'-a')(x--a) {x -\- a){x — a){x — a)

x^dcn

~ {x — ay(x + a)'

^et us now make

• 0^
.=, \.+^^+ ^

.

{x — ay{x -\-a) {x—ay {x — a) x-{-a

Reducing the terms of the second member to a common

denominator, we have

x" A{x~{-a) + A' {x" -a^)-\-B {x - a)

{x — a)'^(x + a). {x — ay{x-{-a)
*

and developing, and comparing the coefficients of the like
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powers of a?, we obtain the equations

A^-\-B=l, A-2Ba==:0, Aa- A^a^ + Ba^ = 0.

Multiplying the first equation by a^ and adding it to the

third, we have

Aa + 2Ba^ = a'^;

then multiplying the second by a, and adding it to the last,

we have

a^ = 2Aa, and consequently, A=—a;
i

substituting this value of A, we find

B =— and A' = -^.
4 4

Substituting these values of A, A\ and jB, we have

a^dx adx ^dx dx

{x — aY{x-\ra) 2{x — af 4:{x — a) 4(a? + a)'

and consequently,

/Mx a
, 3 , , .

-^}-hg{x-\-a)+C.

255. We can integrate, in a similar manner, when the

denominator contains sets of equal roots. Let us take, as

an example,

adx _ adx

{af'-iy^ix-lYix-^-iy'
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Make

+^ +,_^., B'

{x-\)\x+\f (07-1)2' a?- 1 '(a:+l)'^r+r

reducing the second member to a common denominator,

we find the numerator equal to

and comparing the coefficients with those of the numera-

tor of the first member, we have the following equations :

A +A'-\- B-B' = 0,

'2A -A'-2B^B' = 0,

A _A'+ B + B' = a.

Combining the first and third equations, we find A = B;

and combining the second and fourth, gives 2A -f 25 = a:

hence, we have

A-B-^ A'--— B'-— '

consequently, the given differential becomes

\ yT dx dx dx dx 1^

T L(a7-l)2"^(a;+l)2~^3T'^^TTJ*

and by integrating,

256. If an equation of the second degree has imaginary

roots, the quantity under the radical sign will be essentially



INTEGRAL CALCrLUS. . 227

negative (Alg. Art. 144), and the roots will be of the form

x= =Fa + &V— 1> x= ^^a — h^/ — if

and the two binomial factors corresponding to the roots

will be

{x±a—h^/—\){x±:a-\-h y^-l ) — ci?±2ax + a^ + W.

Hence, for each set of imaginary roots which arise from

placing the denominator of the fraction equal to 0, there

will be a factor of the second degree of the form

0^2 ± 2aa7 + a^ + &^.

257. If the imaginary roots are equal, we shall have,

a = 0, x=. -\-h y/~^^^, x= —b -y/— 1,

and the factor will become x^^ + ¥.

In the equation,

a^~6cx+10c^ = 0,

the roots are,

a? = 3c + cy — 1, x = Sc — c^— I;

comparing these values of x with the general form, we

have

a= —Sc h — Cy

and the given equation takes the form

x^—Qcx + 9c2 + c^ = 0.

Comparing the roots of the equation,

a?2 4- 407+12 = 0,

with the values of x in the general form, we have

a = 2, 6^/8,
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and the equation may be written under the form

258. Let us first consider the case in which the deno

minator of the fraction to be integrated contains but one

set of imaginary roots. The fraction will then be of the

form,

P + Qx -\- Rx" -\- Sa^ -\- 6ic.

(x-a) {x-b) {x - h){x^+ 2ax -\- a^ -^ b^)

which may be placed under the form

dx.

Adx Bdx Ildx Mx-\-N ,

x — a x — b ' ' x — h 07^+ 2ax -f a""^ + b^

The first three fractions may be integrated by the methods

already explained : it therefore only remains to integrate

the last, which may be written under the form

Mx-\-N J
,ax.

(x-i-af^l^'^

If we make x-{-a = Zj the expression beeomes

Mz-^N-Ma ^
z'i-b'

'

and making N— Ma = P, it reduces to

Mz-^P,

which may be divided into the parts,
^

Mzdz Pdz

which may be integrated separately.
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To integrate the first term, we have

I'Mzdz _ f zdz _M r 2zdz

J z' + b''~'^'^J z' + h'~ 2J z^ + U''

in which the numerator, 2zdz, is equal to the differential

of the denominator: hence (Art. 218),

rMzdz M, , ',
, ,2\

z^ + b'

or by substituting for z its value, x-\-a,

rMzdz M, r, ,
vo

. L21

M
lii

=M log ^cc'-^2ax-i-a^ + l^.

Integrating the second term by Art. 224, gives

r Pdz P -i/ z\

or by substituting for z its value, a? + o, and for P,

N— Ma, we have

r Pdz N—Ma _^/x + a\

and finally,

/
Mx-\-N

:dx =
a^ + 2ax-\~a^^b^

MlogV^T2^^T^HT' +^— tang-'
(^T^)'

259. Let us take, as an example, the fraction

c+fx ,

20
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in wliich, if +1 be substituted for x, the denominator

will reduce to 0: hence, x—\ is a factor of the denomi-

nator. Dividing by this factor, the fraction may be put

under the form

(a:-l)(ar^ + a7+l)
dXy

m which a? + x-\-l is the product of the imaginary

factors. Placing this product equal to 0, finding the roots

of the equation, and comparing them with the general

values in the form

a^+2aa^ + «' + i^=0,

we find

a=— b= /^" 2 V 4'

We may place the given fraction under the form

c-\-fx _ A Mx-\-N
^

(j;- 1) {a^-\-x+\)~ x-\ ar^ + a; + 1
'

reducing the second member to a common denominator,

and comparing the coefficients of x in the numerator with

those of X in the numerator of the first member, we obtain

3 3 3

Substituting these values of M and N, as also those of a

and 6, in the general formula of Art. 258, and recollecting

that

J x-\ 3 J x-1 3 °^ ^
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we find

/ aP— 1 3 "^^ 3 ^

-'-Tt-'-iwiy'---

260. The equation which arises from placing the de-

nominator of the fraction equal to 0, may give several

pairs of imaginary roots respectively equal to each other

In this case, the factor x^ ± 2 ax -\- a^ -\- W will enter

several times into the denominator, or will take the form

{oi^^-2ax-\-ar-^h''Y\

and hence, that part of the fraction Avhich contains the

pairs of equal and imaginary roots, must be placed under

the form (Art. 251)

H^-Kx H + K^x

{x'-\-2ax + d'+h'y {x' + 2ax-\-d' + by-'

H" + K"x i?" + K^'x
~l / 9 . ^ . 9 , 1 0\ n— 'l "T"

(^2+2«a7 + a2 + />2)p-2 o(^^2ax^a^ + }>''

Now, reducing to a common denominator, and comparing

the coefficients, we find the values of the constants

H, K, H, K', H\ K" JI", K"" ...

after which, multiply each term by dx, and then integrate

the terms separately.

Since all the terms are of the same general form, it will

only be necessary to integrate the first term, which may
be written under the form

H^Kx
[(^ + a)'^ + 62]'

dx

;
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which, if we make a: + a = z, will reduce to

H-Ka + Kz

and making M=H— Ka^ it will become

M+Kz , Kzdz , , Mdz
(JJ^ + zy {h'^z'Y (6'' + ^7

The first term of the second member may be placed undei

the form

Kf{h''-\-z')-''zdz,

and integrating by the fonnula of Art. 217, we have

Kzdz 1 K 1

i Tn+C.

It then only remains to integrate the second term

By comparing the second member of this equation with

formula (D), Art. 242, we see that it will become identical

with the first member of that formula, by supposing

771=1, a = h\ b=lj and n = 2;

and hence, by means of that formula, the exponent —p
may be successively diminished by unity until it becomes

— 1, when the integration of the term will depend on

that of

dz

But we have already found (Art. 224),

r dz^ 1 ^,fz\
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and hence the fraction may be considered as entirely in-

tegrated.

261. It follows, from the preceding discussion, that the

integration of all rational fractions depends on the follow-

ing forms

:

1st. fx'^dx = .

•^ m+1

/ — ± loff (a ± x).2d

3d. r-^^ltang-(^).
J or -\- or a ° \a/

Integration of Irrational Fractions.

262. The method of integrating rational fractions having

been explained, we may consider an irrational fraction as

integrated when it is reduced to a rational form.

263. Every irrational fraction in which the radical

quantities are monomials, may be reduced to a rational

form.

Let us take, as an example,

_ L
^Jx — \a x^—jG— ax, or ~i j-.

V 37 V '^ rjno ^t

Having found the least common multiple of the indices

of the roots, (which indices are the denominators of the

fractional exponents,) substitute for x a new variable, z,

with this common multiple for an exponent, and the frac-

tion will then become rational in terms of z.
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In the example given, the least common multiple is 6 ;

hence we have

x=i7^ and ^/x = z^, y/'x — ^, dx = ez^dz
;

and substituting these values, we obtain

f-i^ ^^ez^dz='-^^-^dz;

an expression which may be integrated by rational frac-

tions ; after which we may substitute for z its value, ^/x.

264. If the quantity under the radical sign is a polyno-

mial, the fraction cannot, in general, be reduced to a

rational form. We can, however, reduce to a rational

form every expression of the form

X( VA + Bx±C^)dx,

in which X is supposed to be a rational function of x.

If wc write a denominator 1, and then multiply the

numerator and denominator by Va -\- Bx± Ca^, the

expression will take the form

Xdx

in which X' is a rational function of x : hence the two

forms are essentially the same.

If now, we can find rational values for VA-{- BxzLCoc^

and for dx, in terms of a new variable, the expression will

take a rational form.

There are two cases to be considered: 1st., when the

coefficient of a^ is positive ; and, 2d, when it is negative.
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Let us consider them separately. First, make

= VC Va + bx-^a^y

in which a = —-, b = —-.

G G
In order to find rational values for dx and y/a+ bx-\-a^,

place

Va + bx + a^ = x + z, (1)

from which, by squaring both members, we find

a-\-bx = 2xz + z'^, (2)

and hence,

-^.' (^)

and substituting this value in equation (1),

/ J
T, z^ — a

,Va + bx + x" = -— + z
;

b — 2z

and by reducing to the same denominator,

z^ — bz -\- a
Va + bx + a»=- ^

,

"\^'^
. (4)— /i/ z

Let us now find the value of dx in terms of z. For this

purpose we will differentiate equation (2), we then find

bdx = 2xdz + 2zdx + 2zdz

;

whence we have

(6 — 2z)dx = 2{x-{- z)dz

;
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and by subtracting equations (1) and (4), and substituting

for a? -f z the value thus found, we have

{b-2z)da:=-
^_^^

Ldz,

and dx= \-—--^dz. (5)

265. Let us take, as an example,

dx

xVA-^-Bx+Car"'

which may be written under the form

dx

VC X X Va^TbxT^
'

and substituting the values of Va + bx-\-aP and dxj from

equations (4) and (5), we have

dx 2dz

Va + bx-^x^ b—2z'

and multiplying the denominator by the value of a?, in

equation (3),

dx _ 2dz

xVa + bx + x^~ z^-O'
'

and then by Vc, we have

dx ' dx 2dz
:, or

VC X X Va-^-bx + x" xVA+Bx-\-Cx^ {z^-a)VC

which is a rational form, and may be integrated by the

methods already explained.
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266. Let us take, as a second example,

dec

which may be placed under the form

dx

v^cx/4 +^

and comparing this with the form of Art. 264, gives

c = Vci 6 = 0, -^ = a.
c

Hence, /dx __ I r dx

Having placed

Va-\-a^ — z-\-x,

we found, Art. 264, equations (5) and (4),

d^=--^d^^ ^'' + '^ = ^-2r
hence

dx r dz/dx _ r az _ ,

z.

Substituting for z its value, and multiplying by —, we
c

have

and substituting for a its value, -g, v^re have
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J Vh + c'x' c ^L c
' 'J

— log log(vT-r?^— ca?)4- C.
c c c

But since the difference of the squares of the two terms

within the parenthesis is equal to h, it follows that if h,

be divided by the difference of the ternns, the quotient will

be their sum (Alg. Art. 59). But the division may be

effected by subtracting their logarithms. Let us, then,

add to, and subtract from, the second member of the equa-

tion, — log^. We shall then have,
c

/
- =—log logAh—logA

—

\og{^Ih\&3^—cx)\C\
V^+c'^ar* c c c c c '

or by representing the .three constants — log log^,
c c c

and C, by a single letter C, we have

rdx^^ liog( vrr?^ ^cx) + c.

267. Let us take, as a third example,

dxy rn^ -{- 0?

.

Comparing this with the general form, we find

a = 7r? and 6 = 0;

hence (Art. 264),

^fHFT-^^tlrt and <te=_i£±^&;
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and consequently,

dx y m'^ -\-
x'^ — — ^r-^—dz,

which is rational in z ; and, having found the integral in z,

substitute the value of z in terms of x.

268. Let us now consider the case in which the coeffi-

cient of x"^ is negative. We have
'O'

vcx/JVA-^Bx -Cx'=zVC\/ ^-{-^-x"

== V7J Va -i- bx — a^.

If now, we make as before,

Vci -\-bx— x^ = x-\~ Zj

and square both members, the second powers of x in each

member will not cancel, as before ; and therefore, x can-

not be expressed rationally in terms of z. We must,

tlierefore, place the value of the radical under another

form. We will remark, in the first place, that the bino-

mial a + bx — x^, may be decomposed into two rational

factors of the first degree. For, if we make

a^ — bx — a = 0,

and designate the roots of the equation by « and <«', we*

have (Alg. Art. 142)

(aF' — bx — a) — {x — «) {x — «^),

and consequently, by changing the signs,

{a + bx — aj^) ~ —{x—a){x— a!) = (a? — «) {«! — x)
;
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and placing the second member under the radical, we

may make

V{x-cc)(cc'-x) = {x->^)z; (1)

squaring both members

(37 _«)(*' -07) = (a? -*)V,

and by suppressing the common factor a? — »,

»'-x = {x-c,)z\ (2)

whence,

x =

and

or by reducing,

"-' = 11:^' (3)

which, being substituted in the second member of equa-

tion (1), gives

V(a; --)(»'- a:) = j-j-^z; (4)

and by differentiating equation (3), we obtain

269. To apply this method to a particular example of

the form

dx

Va + bx — a^
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substitute the values of -yj a-^hx — o? and doc^ found in

equations (41 and (5) : we find

dx _ '^{ot! — tt)z , _ 2dz

hence /dx ^ 1 ^-7===-= -2tang-^2:4- C;
ya-\- ox — or

or, by substituting for z its value from equation (1),

y Va + 6a?-rr^^ V {oc - u) J

=:C-2tang-u/?^.

270. If, in the last formula, we make /T o^ thk

UNIVERSITY
))G=l and h — 0, Voa- 'a^.

the trinomial under the radical will become 1—^anT
the roots of the equation oc^ —\ —0 are

« = — 1 and cc' z=.\.

Substituting these values, and the general formula becomes

r_^^C-2tang-./IE?;

ind if we suppose the integral to be when x=zOy we
«nai\ have

0=:C-2tang-'(l)

= C- 2(45°) (Trig. Art. VIII)

= C-90O: hence C = —

.

2
21
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Substituting this value, and we have

-^=== = --2tang
v^-^-j-.

271. We have already seen (Art. 219) that

/dx . _,— = sm 'a?;

and hence,

*" ,. -1 /I —X

should also represent the arc of which x is the sine.

To prove this, we have (Trig. Art. XXV)

tang2A = :; ^-^-.^ 1— tang^A

/J ^
Substituting for tang A, v/ , and reducing, we have

V 1 -J- ^

tang 2A

that is, twice the arc whose tangent is a/ is equal
V 1 -j- X

- - . Vl — 3^
to the arc whose tangent is

a?

But the arc whose tangent is , is the com-
X

plement of the arc whose tangent is ,
,

(Trig.

V 1 — o^

Art. XVIII) ; and this arc has x for its sinp. Hence,

either meniber of the equation
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/doc 5^ ^ _i /I— X

represents the arc whose sign is x.

272. Let us take, as a last example, the differential

docy2ax — ar^.

In comparing this with the general form, we find (Art

268)

«=:0 and x^ = 2a;

and Art. 268, equations (4) and (5), give

Substituting these values, we have

dxV2ax — a^
(i +^V

which may be integrated by the method of rational

fractions.

Rectification of Plane Curves.

273. The rectification of a curve is the expression of

its length. When this expression can be found in a finite

number of algebraic terms, the curve is said to be rectifiahle,

and its length may be represented by a straight line.

274. The differential of the arc of a curve, referred to

rectangular co-ordinates, is (Art. 128)

dz = '\/ da? -^-dtf.
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Hence, if it be required to rectify a curve, given by its

equation,

1st. Differentiate the equation of the curve.

2d. Combine the differential equation thus found with

the given equation, and find the value of dx^ or dy^ in

terms of the other variable.

3d. Substitute the value thus found in the differential

of the arc, which will then involve but one variable and

its differential. Then, by integrating, we shall find the

length of the arc, estimated from a given point, in term

of one of its co-ordinates.

275. Let us take, as a first example, the common para

bola, of which the equation is

y^ = 2px.

Differentiating, and dividing by 2, we have

ydy =pdcc,

and consequently,

substituting this value in the differential of the arc, we

have

dzz^\Jdy'-\-t^dy'

=l—dy^/f~+f;

which, being integrated by formula (B) Art. 239, gives,

by supposing m = 1, a =p^ 6=1, /i = 2, P = -t-
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and integrating the second term by the formula of Art.

266, we have, after maiung A ==p^ (?—\y

and consequently.

If we estimate the arc from the vertex of the parabola,

we shall have

y — ^ for z = 0: hence

0=:-|-logp+C or C=-^\ogp;

and consequently,

^ ^ yVp^ + y'
P_wf_vF±Z±y_N .

2p 2 ^V p /'
.

and hence, the value of the arc, for a given ordinate y, can

only be found approximatively.

276. The curves represented by the equation

are called parabolas. This equation may be placed under

the form
i- n

y=p"x";

or by placing p" =p\ and — =< we have

yzzzpfx""';

21*
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or finally, by omitting the accents, the form becomes

By differentiating, we have

dy = npx'^^^dx,

and by substituting this value of dy in the differential of

the arc, we have

z=f{l-\-nya^"-''Ydx.

The integral of this expression will be expressed in a

finite number of algebraic terms when is a whole^ 2n— 2

number and positive (Art. 235). If we designate such

whole and positive number by i, we have for the condition

of an exact integral in algebraic terms,

1 2z+l
= tj or n= -

2n-2 '

2i
'

and substituting for w, we have

2i+ l
,

y—px =^' ' or y^'=p^'oc^''^\

which expresses the relation between x and y when the

length of the arc can be found in finite algebraic terms.

There is yet another case in which the integral will be ex-

pressed in finite and algebraic terms, viz. when ^+"^

is a positive whole number (Art. 236 and 235.)

3
277. If we make i=\, we have n=—, and

which is the equation of the cubic parabola.
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Under this supposition, the arc becomes (Art. 217)

and hence, the cubic parabola is rectifiable (Art. 273).

If we estimate the arc from the vertex of the curve, we

have x — 0, for z — 0: hence

0=A.^+C, or C=-^,;

and consequently,

V 9 xi -|

^ ~ 27p'

278. If the origin of co-ordinates is at the centre of "he

circle, the equation of the circumference is

and the value of the arc, ,

^ r dx

If the origin be placed on the curve

y^. = 2Rx-x\

dx
and z = R

J V2Rx-x^

both of which- expressions may be integiated by s^iies,

and the length of the arc found approximatively.

279. It remains to rectify the transcendental cur" s.

The differential equation of the cycloid is (Art. 182)

dx =
V 2ry — y^
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dai"
yHf
2ry-f

Substituting this value of doc^ in the differential of the

arc, we obtain

dz
2ry — y^ 'Zry-'f

But (Art. 217)

2r

2r — y
= {2ry{2r'-y) Hy.

f{2r-y) 'dy = -2{2r-yy + C;

and hence,

z=-{2ry2^/2r-y+ C

If now, we estimate

the arc z fipm B, the

point at which y ~2r,

we shall have, for z = 0,

y = 2r; hence A F M
= + C, or C=0,

and consequently, the true integral will be

z=-2V^r{2r-y);

the second member being negative, since the arc is a

decreasing function of the ordinate y (Art. 31).

If now, we suppose y to decrease until it becomes

equal to any ordinate, as DF = ME, DB will be repre-

sented by z, or by 2V r{2r — y\ and BE = 2r — y.

But 'BG=BMxBE: hence

BG=V2r{2r-y\



INTEGRAL CALCULUS. 249

and consequently,

BD = 2BG;

or the arc of the cycloid^ estimated from the vertex of the

axis, is equal to twice the corresponding chord of the

generating circle : hence, the arc BDA is equal to twice

the diameter BM ; and the curve ADBL is equal to four

times the diameter of the generating circle.

280. The differential of the arc of a spiral, referred to

polar co-ordinates, is (Art. 202)

dz z= V5^?Ti^w;

Taking the general equation of the spirals
,

u — at",
' *

we have du^ ^ n^aH^^'-'^df
',

and substituting for du?' and u^ their values, we obtain

dz^af-'df/rfT^.

If we make n — \, we have the spiral of Archimedes,

(Art. 191), and the equation becomes

dz = adt^/\-^f',

which is of the same form as that of the arc of the com-

mon parabola (Art. 275).

281. In the logarithmic spiral, we have ^ = logM, and

the differential of the arc becomes

dz — duV2-{-C',

and if we estimate the arc from the pole,

z = uV2.
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Consequently, the length of the arc estimated from the

pole to any point of the curve, is equal to the diagonal of

a square described on the radius-vector, although the

number of revolutions of the radius-vector between these

two points is in&iite.

Of the Quadrature of Curves.

282. The quadrature of a curve is the expression of its

area. When this expression can be found in finite alge-

braic terms, the curve is said to be quadrahle^ and may be

represented by an equivalent square.

283. If s represents the area of the segment of a curve,

and X and y the co-ordinates of any point, we have seen

(Art. 130), that

ds = ydcc.

To apply this formula to a given curve

:

1st. Findfrom the equation of the curve the value of y
in terms of x, or the value of dx m terms of y, which

values will he expressed under theforms

y = F{x), or dx = F{y)dy.

2d. Substitute the value of y, or the value of dx, in the

differential of the area : we shall have

ds = F{x) dx, or ds = F{y) dy

:

the integral of the first form will give the area of the

curve in terms of the abscissa, and the integral of the

second will give the area in terms of the ordinate.
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284. Let us take, as a first example, the family of para-

bolas of which the equation is

we shall then have

and

fF(x)dx=fp"x"dx——^x " = —xy+C;
J \ y J

1

m-\-n m -\-n •"

i. H
by substituting y for its value, p"a?".

If, instead of substituting the value of y in the differential

of the area

ydx,

we find the value of dx from the equation

y''=px'^,

we have

and consequently,

''^ ~ m J ~ '^ ~ m -\- n - ~ m-[-n ^
'

n

by substituting x for its value, -7, which is the same re-

suit as before found.

Hence, the area of any portion of a parabola is equal

to the rectangle described on the abscissa and ordinate
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multiplied by the ratio . The parabolas are there-
m + n

fore quadrable.

In the common parabola, n = 2, w = 1 , and wo

have

fF{x)dx = — xi/y

that is, the area of a segment is equal to two thirds of

the area of the rectangle described on the abscissa and

ordinate.

285. If, in the equation

we make w = 1, and m = 1, it will represent a straight

line passing through the origin of co-ordinates, and we

shall have

fF{x)dx = —xy,

which proves that the area of a triangle is equal to half

the product of the base and perpendicular.

286. It is frequently necessary to find the integral or

function, between certain limits of the variable on which

it depends.

A particular notation has been adopted to express such

integrals.

Resuming the equation of the common parabola

y = 2px,

and substituting in the equation ijdx the value oi dx -= =--^,

we have

P ^P
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or, if the area be estimated from the

vertex A, we have C = 0, and

253

Mr
M^.

I
11If now, we wish the area to terminate

at any ordinate FM— h, we shall then

take the integral between the limits of y ~ and y = h

;

and, to express that in the differential equation, we write

pj 3p

which is read, integral of y^dy between the limits y =
and y = h.

*

If we wish the area between the ordinates MP = b,

M'P' = c, we must integrate between the limits y = bf

y =^c. We first integrate between and each limit, viz.

:

AMP = ~I y^dy=^-

AMM'P' ---—/' ^ yHy ^—
pJ 0^ ^ Sp

we then have

PMlWP = AMiWP' - AMP
jfl^'"^^

Sp

P 1

Sp Sp
^

^

287. Let us now determine the area of any portion of

the space included between the asymptotes and curve of

an hyperbola.

22
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The equation of the hyperbola referred, to its asymp-

totes (An. Geom. Bk. VI, Prop. IX,) is

xy M.

In the differential of the area of a curve ydx, x and y

are estimated in parallels to co-ordinate axes, at right an-

gles to each other.

The differential of the

area BCMP, referred to

the oblique axes AXy

A y, is the parallelogram

PMM'F, of which

PM=y and PF :=^dx.

If we designate the

angle YAX=zMPX hy

/S, we shall have

area PMM'P = ydx sin ^ ;

M
and substituting for y its value

the area BCMP by s, we have

and representing

ds = Msme>—

,

X

Cdx
and s = Msin/3 I — = Msinjeloga? + C.

•/ X

If AC is the semi-transverse axis of the hyperbola, and we

make AB—\^ and estimate the area s from BC, we shall

have, for 0? == 1 , 5 = 0, and consequently C = ; and the

true integral will be

5 = Msin/3 log a?.
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But, since ABCD is a rhombus, and M= AB X BC (An.

Geom. Bk. VI, Prop. IX, Sch. 2), and since AB — 1, we

have Af= 1, and consequently,

s = sin/3log^.

Now, since s, which represents the space BCMP for any

abscissa iv, is equal to the Naperian logarithm of x multi-

plied by the constant sin/3, s may be regarded as the loga-

rithm of X taken in a system of which sin/3 is the modu-

lus (Alg. Art. 251). Therefore, any hyperbolic space

BCMP is the logarithm of the corresponding abscissa

AP, taken in the systern ivhose modulus is the sine of the

angle included between the asymptotes.

If we would make the spaces the Naperian logarithms

of the corresponding abscissas, we make sin/3 = 1, which

corresponds to the equilateral hyperbola. If we would

make the spaces the common logarithms of the abscissas,

make sin/3 =z 0.43429945, (Alg. Art. 255).

288. The equation of the circle, when the origin of co-

ordinates is placed on the circumference, is

y"^ = 2rx — x^j or y — V^^ — a?^,

and hence, the differential of the area is

dx y2rJ? — x^
;

and this will become, by making x — r — u^

-Jdu{i''-u^Y.

If we integrate this expression by formula (B) Art. 239,
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we have

But we have (Art. 253)

and placing for u its value

/cZa?-v/27"a? — jj?^ =

til tit ^ T y

and taking this integral between the "limits x = and

X = 2r, we shall have the area of a semicircle.

For X = 0, the area which is expressed in the first

member becomes 0, the first term in the second member

becomes 0, and the second term also becomes 0, since

the arc whose cosine is 1, is 0: hence the constant

C = 0.

Tf we now make x — 2i% the term

— (r — x)V 2rx — x^

reduces to 0, and the second term to

—^cos-^- 1) = —^-'^ (Trig. Art. XIV),

and consequently, the entire area is equal to r^sr, which
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corresponds with a known result (Geom. Bk. V, Prop. XII,

Coi. 2).

The equation of the eUipse, the origin of co-ordi-

nates being at the vertex of the transverse axis (An. Geom.

Bk. IV, Prop. I. Sch. 8), gives

A

and consequently, the area of the semi-ellipse will be

equal to

Jydx — —-
I
dxV^AvC—aP.

Integrating, as in the last example, between the limits

x — 0, and x = 2A, and muhiplying by 2, we find AB-r

for the entire area. This corresponds with a known result

(An. Geom. Bk. IV, Prop. XIII).

289. The differential equation of the cycloid (Art. 183) is

dx='
ydy

'^'iry — y^

whence

Jydx = C-
V2rz/-/

and applying formula E, (Art. 243) twice, it will reduce to

f ,

^'^
-

; and (Art. 226)
J V2ry — y'^

/-7^= = ver-si„-(^).
^ V 2ry -if ^ ^ ^

But we may determine the area of the cycloid in a more

simple manner by introducing the exterior segment AFKH,
22*
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Regarding FB as a

line of abscissas, and de-

signating any ordinate as

KHj by z = 2r — y, we

shall have

But

whence

zdx

d{AFKH) =

(2r-y)ydy

zdx.

V2ry-y
dyV^ff^,

AFKH= fdy'y/2ry—y'' + C.

But this integral expresses the area of the segment of a

circle, of which the abscissa is y and radius r (Art. 288):

that is, of tlie segment MIGE. If now, we estimate the

area of the segment from M, where y = 0, and the area

AFKH from AF, in which case the area AFKH= for

y = 0, we shall have

AFKH= MIGE;

and taking the integral between the . limits y = and

y = 2r, we have

AFB = semicircleMIGBy

and consequently,

area AHBM= AFBM- MIGB.

But the base of the rectangle AFBM is equal to the semi-

circumference of the generating circle, and the altitude is

equal to the diameter, hence its area is equal to four times

the area of the semicircle MIGB ; therefore,

2iTe2iAHBM=SMIGBy
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and consequently, the area AHBL is equal to three times

the area of the generating circle.

290. It now remains to determine the area of the spirals.

If we represent by s the area described by the radius-vec-

tor, we have (Art. 203)

, u^dt

and placing for w its value ar (Art. 189)

, aH'^'^dt , a¥"+^
, ^ds = and s — - + G,

2 47Z + 2

and if n is positive C = 0, since the area is when ^ = 0.

After one revolution of the radius-vector, t — ^^^^ and we

have

__^(2^r)^
*~

4/2 + 2 '

which is the area included within the first spire,

291. In the spiral of Archimedes (Art. 192)

a —— and n — \\
2x

lience, for this spiral we have

24^^

which becomes -;-, after one revolution of the radius-
__

vector ; the unit of the number — being a square whose
o

side is unity. Hence, the area included by the first spire,

is equal to one third the area of the circle whose radius is

equal to the radius-vector after the first revolution.

In the second revolution, the radius-vector describes a
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second time the area described in the first revolution ; and

in any revolution, it will pass over, or redescribe, all the

area before generated. Hence, to find the area at the end

of the mXh revolution, vi^e must integrate between the limits

t = {m—l)27r and ^ = m.25r,

which gives

m^^{m-- If
i —7r.
3

If it be required to find the area between any two spires,

as between the mth and the {m-\-l )th, we have for the

whole area to the {m-\- 1 )th spire equal to

{m-\-lf — ?n^

3 "^

and subtracting the area to the mth spire, gives

3

for the area between the mth and (m + 1 )th spires.

If we make m = l, we shall have the area between the

first and second spires equal to 2^: hence, the area be-

tween the mth and (m + 1 )th spires, is equal to m times

the area between the first and second,

292. In the hyperbolic spiral n =: — 1, and we have

ds = dt and s= .

2 2t

The area s will be infinite when ^ = 0, but we can find

the area included between any two radius-vectors b and c

by integrating between the limits t — b, t = Cj which will

give

aV 1 1 \
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du
293. In the logarithmic spiral t — \ogu\ hence, dt =—

,

i?dt _udu

udu
hence,

/udu w
, ^

and by considering the area s — ^ when w = 0, we have

C = and

Determination of the Area of Surfaces of

Revolution.

M'

M

B

294. If any curve BMM^, be re-

volved about an axis AX, it will de-

scribe a surface of revolution, and

every plane passing through the axis

AX will intersect the surface in a me- /
ridian curve. It is required to find the

differential of this surface. For this A P P' X
purpose, make AP — x, PM =z

j/, and PP^ — h : we shall

then have

PM =F{x) = y,
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In the revolution of the curve EMM',
the extremities M and Af of the ordi-

nates MP, M'P\ will describe the cir-

cumferences of two circles, and the

chord MAr will describe the curved /

surface of the frustum of a cone. The

surface of this frustum is equal to

(Geom : Bk. VIII, Prop. IV.)

{circ.MP+ circ.M'P^)
X cho7'd MM'

(2;riWP4-25rM'P')

Mf

M

P Pf X

that is, to

X chordMM'=T{MP-{-MP') X chordMM*;

and by substituting for MP, AfP' their values, the expres-

sion for the area becomes

' (^y +1* +Sfi- + ^') ^'"^'^ MM'-

If now we pass to the limit, by making h = 0, the chord

MM' will become equal to the arc MM' (Art. 128), and the

surface of the frustum of the cone will coincide with that

of the surface described by the curve at the point M. If we

represent the surface by s and the arc of the curve by 2,

we have, after passing to the limit,

ds = 27rydz,

and by substituting for dz its value (Art. 128), we have

ds = 2n-y y/do? + d'lf-

:

whence, the differential of a surface of revolution is equal

to the circumference of a circle perpendicular to the axis,

into the differential of the arc of the meridian curve.
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Remark, It should be observed that X is the axis about

which the curve is revolved. If it were revolved about

the axis Y, it would be necessary to change x into y and

y into X.

295. If a right angled triangle CAB be revolved about

the perpendicular CA, the hypothenuse CB will describe

the surface of a right cone. If we represent the base BA
of the triangle by b, the altitude CA by h, and suppose

the origin of co-ordinates at the vertex of the angle C, we

shall have

X : y : \ h : h: hence

y = —-X and dy — -—dx.
^ h ^ h

Substituting these values of y and dy, in the general for-

mula, we have

f27ry^/~d:x^+d^''==zJ2'^^^dx^/¥+W

and integrating between the limits a? r^ and x = h, we

obtain

surface of the cone = ^rbVh^ + l>^ — 2'rh x
2

-
J-.

CB= circ.AB X
2

296. If a rectangle ABCD be revolved around the side

AD, we can readily find the surface of the right cylinder

which will be described by the side BC.

Let us suppose the axis AD = Ji, and AB = h : the

equation of the line DC will be y — h : hence, dy ~ 0.

Substituting these values in the general expression of the

differential of the surface, we have

/25ry V^F-Mp :=/2^6(Za7 = 2:rZ>^ 4- C;
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and taking the integral between the limits a? = 0, x-=h,

we have

surface =2^bh = circ.AB x AD.

297. To find the surface of a sphere, let us take the

equation of the meridian curve, referred to the centre as

an origin : it is

cc' + y^ = R\

and by differentiating, we have

xdx + ydy = ;

hence

ay = and dy^ ——-—

.

y f
Substituting for dy its value, in the differential of the

surface

ds — ^-ny -yjda? + dy^^

we obtain

s = J2^y y dx^ ^ —d,x^ = f2TT Rdx = 2TrRx-[- C.

If we estimate the surface from the plane passing through

the centre, and perpendicular to the axis of X, we shall

have

s = for x = 0, and consequently C = 0.

Now, to find the entire surface of the sphere, we must

integrate between the limits x= -\- R and x= — R, and

tlien take the sum of the integrals without reference to

their algebraic signs, for these signs only Indicate the po-

sition of the parts of the surface with respect to the plane

passing through the centre of the sphere.
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Integrating between the limits

30 = and x= + R,

we find

and integrating between the Hmits x = and a? = — 72,

there results

s=-2^R^;
hence,

surface = 4:^R^ = 27rRx2R;

that is, equal to four great circles, or equal to t^'^ mrved

surface of the circumscribing cylinder.

298. The two equal integrals

s = 2itR^ and s==:-2^R^

indicate that the surface is symmetrical with respect to the

plane passing through the centre.

299. To find the surface of the paraboloid of revolution,

take the equation of the meridian curve

y^ = 2px,

which being diffesentiated, gives

p p

Substituting this value of dx in the differential of the sur-

face, it reduces to

^'yyifi^) '^y' = ^-^y^y Vy'+f-
23
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But we have found (Art. 217)

hence,

and if we estimate the surface from the vertex at which

point y = 0, we shall have,

^ 27rp2 ^
, ^,

2n-»2
= -^ + C, whence, C= - -^,

and mtegrating between the limits

we have

* = g[(i' +/)'-/]

300. To find the surface of an ellipsoid described by

revolving an ellipse about the transverse axis.-

The equation of the meridian curve is

whence
, B^xdx B xdx
ay -

substituting the square of this value in the differential of

the surface and for y its value

we have

ds^% TT^^dx y/A'-{A^-~B')x',



INTEGRAL CALCULUS. 26T

and * = 2-|,/^^^^B'/<^*Vl^.-^;

and if we represent the part without the sign of the inte-

gral by D, and make

A'

we shall have

- 7?2R\

s = Dfdxy'K'-a^.

But the integral of dx '\/R^ — aP' is a circular segment

of which the abscissa is x, the radius of the circle being

R. If, then, we estimate the surface of the ellipsoid from

the plane passing through the centre, and also estimate the

area of the circular segment from the same point, any

portion of the surface of the ellipsoid will be equal to the

corresponding portion of the circle multiplied by the con-

stant D. Hence, if we integrate the expression

s==fdx^/R^-ar'

between the limits x = and x = A, and designate

by D' the corresponding portion of the circle whose

radius is R, we shall have

— surface ellipsoid = D x ly,

hence, surface ellipsoid — 2Dx D'.

301. To find the surface described by the revolution of

the cycloid about its base.

The differential equation of the cj^cloid is

V 2ry — if-
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Substituting this value of dx in the differential equation

of the surface, it becomes
3

^^ ^ 2^y/2ry'^dy

'}/2ry — y'^

Applying formula (E), Ajt. 243, we have

But,

C—£M=:= f jL.=fdy{2r-y)-^ = -2(2r-y)i;

hence,

s = 2n^/2r\~-^y\/2ry-y'-^r{2r-y)'^l-{- C.

If we estimate the surface from the plane passing through

the centre, we have C = 0, since at this point 5 =
and y — 2r. If we then integrate between the limits

y = 2r and y = 0, we have

s =— surface =—j-tt?-^; hence,
« 3

s= surface = tt?^,

3

that is, the surface described by the cycloid, when it is

revolved around the base, is equal to 64 thirds of the

generating circle.

The minus sign should appear before the integral, since

the surface is a decreasing function of the variable y
(Art. 31).
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Of the Cuhature of Solids of Revolution.

302. The cubature of a solid is the expression of its

volume or content.

303. Let u represent the volume or C M"
solidity generated by the area ABMP, m
when revolved around the axis AX. If

we make AP = x, PP' — h, we have y

M^P^—cc-{- h; and the solid generated /

by the area ABMM^P\ will exceed the

solid described by the area ABMP, by ~a P~ P' X
the solid described by the area PMMP'.
The solid described by the area ABMP is a function of

X, and the solid described by the area ABMM'P' is a simi-

lar function of {x + h). If we designate this last by u',

we have

u' —u-^—-li
ax

d?u h^
+

c]?u W
doc" 1.2 dx^ 1.2.3

+-&C.;

hence, the solid described by PMM'P' is

,
<iw, , d?u W- , ^u W ,0
dx dx^ 1.2 dx^ 1.2.3

Let us now compare the cylinder described by the rectan-

gle P'M with that described by the rectangle FC. The

equation of the curve gives

MP = y = F{x) M'P'= F{x + h)
;

hence, since PP' — h,

cylinder described by P'M= '^[F{x)fh,

cylinder described by P'C ='r^[F{x + h)fh;
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and the ratio of the cyhnders is

[F{x)y *

the limit of which, when A = 0, is unity.

But the soHd described by the area PMMP^ is less

than one of the cylinders and greater than the other;

hence, the limit of the ratio, when compared with either

of them, is unity. Hence,

du , ,
d'^u h^

, B du
,
d^u h

,
„

i^^^d^T:2^^'' _i^^d^Tj^^'\
'^[F{x)Yh ^[F{x)y

the limit of which, when A = 0, is

whence

du

dx
- 1

1-[F{x)f -- •>

du

dx'
= n[F{x)f--= ^y\

and finally

du = ny^dx
;

the differential of the solidity Try^dx being a cylinder whose

base is Try^ g^d altitude dx.

804. Remark. The differential of a solid, generated by

revolving a curve around the axis of Y, is

'Koc^dy.

305. Let it be required to find the solidity of a right

cylinder with a circular base, the radius of the base being
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r and the altitude h. We have for the differential of the

soHdity

and since y = r, it becomes

Trr^dx

;

and taking the integral between the limits x =0 and x = hj

we have

which expresses the solidity.

306. To find the solidity of a right cone with a circular

base, let us represent the altitude by h and the radius of

the base by r, and let us also suppose the origin of co-or-

dinates at the vertex. We shall then have

y=:—-x and 'iP- — -—x\

and substituting, the differential of the solidity becomes

—na^dx,

and by taking the integral between the limits x = and

X = h, we obtain

— 7^Trh = izr^X —

;

3 3

that is, the area of the base into one third of the altitude.

307. Let it be required to find the solidity of a prolate

spheroid, (An : Geom : Bk. IX, Art. 33).

The equation of a meridian section is
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which gives

hence the difTerenlial of the solidity is

du = 'K—^^A? — oc^)dXy
A

and by integrating

= --j(3A^^-^)+C.

If we estimate the soHdity from the plane passing through

the centre, we have for x — O, u = 0, and consequently

C = ; and taking the integral between the limits x=:0

and a? = i4, we have

1 8— sohdity = —7rB^xA;

and consequently

2
solidity =— TT^^X 2A.

But TT^ expresses the area of a circle described on the

conjugate axis, and 2A is the transverse axis : hence,

the solidity is equal to two-thirds of the circumscribing

cylinder.

308. If an ellipse be revolved around the conjugate axis,

it will describe an oblate spheroid, and the difierential of

the solidity would be

du = rra^dy

:
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and substituting for o?, and integrating, we should find

2
solidity =— ttA^ x 25 ;

o

that is, two-thirds of the circumscribing cylinder.

309. If we compare the two solids together, we find

oblate spheroid : prolate spheroid \\ A \ B.

310. If we make A — B^ we obtain the solidity of the

sphere, which is equal to two-thirds of the circumscribing

cylinder, or equal to

311. Let it be required to find the solidity of a para-

boloid. The equation of a meridian section is

y^ — 2px,

and hence the differential of the solidity is

du — 2 Tzpxdx ; hence

u = irpx^-\- C

;

and estimating the solidity from the vertex, and taking the

integral between the limits x = and x = h, and designa-

ting by b the ordinate corresponding to the abscissa x = h,

we have

u = '^ph^ = ^b'^ X —

;

that is, equal to half the cylinder having an equal base

and altitude.

312. Let it be required, as a last example, to determine
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the solidity of the solid generated by the revolution of the

cycloid about its base.

The differential equation of the cycloid is

hence we have

V2ry-

du=
"y'^y

V2 ry-y'

which, being integrated by formula (E) Art. 243, and then

by Art. 226, we find the solidity equal to five-eighths of

the circumscribing cylinder.

Of Double Integrals.

313. Let us, in the first place, consider a solid limited

by the three co-ordinate planes, and by a curved surface

which is intersected by the co-ordinate planes in the curves

CBy BD, DC.

Through any point of

the surface, as M, pass

two planes HQF and

EPG respectively paral-

lel to the co-ordinate planes

ZXy YZ, and intersect-

ing the surface in the

curves HMF and EMG.
The co-ordinates of the

point M are

AP=x, PM=y, MM=z./C
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It is now evident that the solid whose base on the co-ordi-

nate plane YX is the rectangle AQAfP, may be extended

indefinitely in the direction of the axis of X without chang-

ing the value of y, or indefinitely in the direction of Y
without changing x. Hence, x and y may be regarded

as independent variables.

If, for example, we suppose y to remain constant, and x

to receive an increment Pp — /?, the solid whose base is

the rectangle AQM^P, will be increased by the solid

Avhose base is the rectangle M^m'pP ; and if we suppose

X to remain constant, and y to receive an increment

Qq — k, the first solid will be increased by the solid whose

base is the rectangle Qqyi'M'.

But if we suppose x and y to receive their increments

at the same time, the new solid will still be bounded by

the parallel planes epg, hqf, and will difier from the prim-

itive sohd not only by the two solids before named, but

also by the solid whose base is the rectangle n'M'm'N'.

This last solid is the' increment of the solid whose base is

the rectangle M'Ppm', when we suppose y to vary ; or

the increment of the solid whose base is the rectangle

Qqn^M\ when we suppose x to vary.

Let us represent by u the solid whose base is the rect-

angle A QM^P ; u will then be a function of x and y, and

the difference between the values of u, under the supposi-

tion that X and y vary separately ; and under the supposition

that they vary together, will be equal to the solid whose

base is the rectangle n'M'm'N'. By taking this difference

(Art. 83) we have

solid„'JV™W'. . .JVI=^A^+l^«+i^..^ +&C.

:
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hence,

hk ~~d^^'2dcc'dy^'^~2d^dy^'^'^ '

and passing to the hmit, by making A = and /c =0, the

second member becomes , , .

dxdy

As regards the first member, the rectangle

n'N'm'M = hxh

and the altitude of the solid becomes equal to M'M= z

when we pass to the limit : hence

dxdy
~

314. Although the differential coefficient

dxdy
=zZ.

has been determined by regarding w as a function of two

variables, we can nevertheless return to the function u by

the methods which have been explained for integrating a

function of a single variable.

For we have

d(—\
dJ^u _ \dx) _
dxdy dy

hence

\dx/ , ,—^dy = zdy;

and integrating under the supposition that x remains con-

5
*
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Slant, and y varies, we have

whence

— dx = dxfzdy + X^ dx

;

and if we integrate this last expression under the supposi-

tion of X being the variable, and make JX' dx = X,

u^Jdxfzdy + X^-Y.

It is plain that the constant, which is added to complete

the first integral, may contain x in any manner whatever;

and that which is added in the second integral, may contain

y : the first loill disappear when we differentiate with

respect to y, and the second when we differentiate with

respect to x.

The order of integration is not material. If we first

integrate with respect to x, we can write

dj^u _ \dy)

.

dxdy dx

and by integrating, we find

-—=fzdxj u=fdyfzdx:

hence we may write

* uzrzjfzdydx, or u = ffzdxdy,

which indicates that there are two integrations to be per-

formed, one with respect to a?, and the other with respect

to y.

24



278 ELEMENTS OF THE

315. If wc consider the differentials as the indefinitely

small increments of the variables on which they depend,

we may regard the prism whose Jbase is the rectangle

n'N'm'M'y as composed of an indefinite number of small

prisms, having equal bases, and a common altitude dz.

Each one of these prisms will be expressed by dxdydzj

and we shall obtain their sum by integrating with respect

to z between the limits zz=0 and z = MM', which

will give

J dxdydz = zdxdy.

316. It is plain that zdx is the differential of the area

of the section made by the plane HQF parallel to the

co-ordinate plane ZX ; and consequently

/zdx =zai'C'd of the section HQF.

Hence, {/zdx)dy is equal to the elementary solid in-

cluded between the parallel planes HQF, hqf, or

f{fzdx)dy =ffzdxdy

is equal to the solid which is limited by the surface and

the three co-ordinate planes. If we consider a section

of the solid parallel to the co-ordinate plane YZ, we have

fzdy = area of the section EPG, and ffzdxdy — solidity

of the solid.

317. Let us suppose, as a first example, that

_ 1

we shall then have
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Let us now integrate under the supposition that x is con-

stant ; we then have

/•^ = ltang-'iL + Z',
J OCT -\-y^ X X

in which X' represents an arbitrary function of x. If we

now make JX'dx = X, and integrate again under the

supposition that a? is a variable, we have

_ rdx

J X

y

1 y'^'^tang-^-^ +X
X

dx
The integral of — tang~^^ is obtained in a series byXX
substituting the value of (Art. 228),

tancr-^l---^ y—j^JL ^4-&c •

^^^^ X- X 30.^ + 50^ Ix'^^''"

and since, in integrating with respect to a?, we must add

an arbitrary function of y, which we will represent by Y,

we shall obtain

f fdxdy__ y_ _f yl_s_t_ ^^
J J ^\-y^~ '^ x'^ %^ 25a;^'^49^^

We shall obtain the same result by integrating in the in-

verse order, viz., by first supposing y to be constant.

Under this supposition

J ar + 3f y y
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then integrating with respect to a?,

/^y/^=/^.[ytang-^+F]

= r^tang-^+y.
J y y

But by observing that (Trig. Art. XVIII),

we shall have, after the second integration, and the addi-

tion of an arbitrary function of a?,

and as we can include the term — logy in the arbitrary

function F, this result may be placed under the form

ff^ X+Y- 3
JJar-\-y^ J y

•^tang-'-^,

which is the same as the result before obtained, as may be

shown by placing for tang" — its value, multiplying each

term by -^, and mtegratmg.

318. When we consider

JJzdxdy

as expressing the solidity of a solid, it is necessary to con-

sider the limits between which each integral is taken, and

these limits will depend on the nature of the solid whose

cubature is to be determined. Let it be required, for ©x-



INTEGRAL CALCULUS. 281

ample, to find the solidity of a sphere, of which the centre

is at the origin of co-ordinates. Designating the radius

by R, we have

a^^y^ + z^ = R^,

and consequently,

ffzdxdy =ffdxdy VR^ - a}" -y"".

If now, we suppose y constant, and make R? — y'^ = R'^^

and then integrate with respect to x, we have

Jdx Vr^ -oj^-y^ =fdx Vr'^ - a?2,

and integrating this last expression, first by formula (B)

Art. 239, and then by Art. 220, we have

fdxVR''-x^^ =— VR'^-a.^ +— R''sm-'-^^+Y;

and substituting for R^^ its value, we obtain

It should be remarked, that fzdx expresses the area of

a section of the sphere parallel to the co-ordinate plane

ZX, for any ordinate y = AQ, and to obtain this area we

must integrate between the limits x:=zO and x = QF.

But since the point F is in the co-ordinate plane YX,

we have for this point z = 0, and the equation of the sur-

face gives

QF=x=VR^-f;

therefore, for every value of y the integral fzdx must be

taken between the limits x = and x = yR^ — y^. Inte-
23*
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grating between these limits we have

since, sin~\l) =—

:

*^

hence,

fdyjzd^ = ^/dy(R' - f) = ^(/J^ - ^) 4- X

,

and taking this last integral between the limits y = and

y = AC = R^ we obtain

7rR3

6
'

which represents that part of the sphere that is contained

in the first angle of the co-ordinate planes, or one-eighth

of the entire solidity. Hence,

4 1
solidity of the sphere z=z—-B?'^ = —IP'^.

O D

We might at once find the solidity of the hemisphere

which is above the horizontal plane YX, by integrating

between the limits

x= — -y/W" — if' and a: = + yW^-y^

Taking the integral between the limits

a? = and x= — ^/W' — y^

we have fzdx = —— {B? — y^)

;

and between the limits

a: = and a? = + y/ B? — y^^
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we have fzdx =—{R^ — y^)\

hence, between the extreme hmits, we have

Then taking the integral

fdy;zdz = ^fdy{B?-f)

between the limits

y = — R and y = + /?,

we find the solidity to be

or the solidity of the entire sphere is,

4

3
R'

BRA
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