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Abstract

In practical econometric analysis we are very often faced with the

problem of how to specify structural equations. The conventional t-test

of coefficients is apparently inappropriate. The largest root, say X,

of a certain determinantal equation provides us with a basis for the

test of over-identifying restrictions. The preliminary test, based on

X, may give us a possible decision rule for the choice of the most

adequate structural equation from given nested alternatives. However,

ambiguity remains about how to choose the significance level. As an

alternative procedure, we apply the minimum Akaike Information Criterion

to our problem. This gives us a quite simple decision rule based on the

comparison of X's. Moreover, we propose another decision rule called

the unbiased decision rule; unbiased in the sense that we reach a

correct decision with more than a half probability. Applications of

these newly developed procedures are exemplified by Klein's Model I.





1. Introduction

tix recent years, much emphasis has been laid on the problem of

statistical model identification: how to identify a model statistically

when it cannot be completely specified from a priori ground. In fact,

a considerable number of works have been done in the last decade with

regard to the choice of the most adequate regression model. The purpose

of the present paper is to extend the statistical procedures developed

for the choice of regression models to a simultaneous equations system.

When we discuss the model identification, we must fix the idea about the

adequacy of a model. That is, we need to introduce a suitable measure

of the discrepancy or the distance of a model from the unknown true

structure. Different measures lead us to different procedures, of

course

.

It is ordinarily expected that the more complicated model will

provide the better approximation to reality. However, on the contrary,

the less complicated model would be preferred if we wish to pursue

accuracy of estimation. In general, closeness to the truth is

quite likely to be incompatible with parsimony of parameters. That

is, if one pursues one of the criteria, the other must be necessarily

sacrificed.

Akaike [1] has proposed a widely applicable statistic that incor-

porates these two criteria ingeniously. As it is based on Kullback-

Leibler's information measure for discrimination of two probability

distributions, Akaike 's statistic is called the Akaike Information

Criterion and is abbreviated as the AIC. It is defined as minus twice

the maximized likelihood function plus twice the number of parameters
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in a model. (See equation (3.1).) Given a set of alternative models,

we choose the one which gives the smallest AIC. The procedure is called

the Minimum AIC (MAIC). The advantage of this procedure is its appli-

cability to any statistical problem so long as each of the alternative

models well defines the likelihood function.

Following Akaike, Sawa [8] has recently developed another informa-

tion criterion aimed specifically for the choice of linear regression

models. This criterion is also based on Kullback-Leibler's information

criterion.

Mallows [7] proposed a criterion called the C statistic which

defines another procedure for selecting the optimal linear regression

model. The C statistic is defined to be the residual sum of squares
P

(RSS) plus twice the number of parameters (p) multiplied by an unbiased

"2
estimate co of the true variance of error terms:

(1.1) C = RSS + 2pa) .

P

Obviously, the first term measures the accuracy of a model, and the

second term stands for the penalty paid for increasing the number of

parameters. We note that application of the MAIC to linear regression

yields an asymptotically equivalent decision rule as Mallows' C .

Sawa and Takeuchi [9] proposed another criterion for choosing an

optimal regression equation. The decision rule defined by this criterion

is called the unbiased decision rule: unbiased in the sense that it

leads us to the choice of the most adequate model with probability

greater than one-half, when we compare two alternatives.
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In Section 2, models and notations are described. In Section 3,

we develop the MAIC procedure for selecting the most adequate structural

equation. This gives us a quite simple criterion, so long as we define

the AIC in terms of concentrated likelihood function for the limited

information maximum likelihood estimate (Anderson and Rubin [2]). More-

over, the implication of the MAIC procedure will be discussed in the context

of conventional hypotheses testing. In Section 4, we define a specifi-

cation error of a structural equation in terms of identification condi-

tions. We examine the distribution of the AIC criterion when both of

the structural equations, being compared, are incorrectly specified.

In Section 5, we propose Mallows' type risk function of postulating a

particular structural equation as a model. Based on this risk function

and the distribution theory developed in Section 4, the unbiased decision

rule is derived. Critical points of unbiased decision rule are numerically

evaluated and tabulated. In Section 6, a numerical example will be

given

.

2. Models and Notations

Suppose N alternative structural equations are given, and we are

facing a problem: how to identify the most adequate one therefrom.

The i-th equation is written as

(2.1) y = Y^3^ + Zrr^ + au^ , i = 1, .... N ,

where y and Y are T x 1 and T x G. matrices, respectively, of observa-

tions on the endogenous variables; Z. is a T x K. matrix of observations

on the K. exogenous variables; 6. and y are, respectively, G -dimensional

and K. -dimensional column vectors of unkno^^m parameters; u. is a
i >x
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T-dimensional column vector of disturbances. Note that every alternative

equation shares a common explained endogenous variable. The components

of u. are independently normally distributed with mean and unit variance,

and a is a (small) positive number. The reduced form of the complete

system of equations includes

(2.2) y = Zir* + crv= Z.tt. + Z.-n. +av ,

1 ^„ - -i~i ~i~i

(2.3) Y. = zn* + aV. = z_,n. + Z.n^ + aV. ,

where Z is a T x K matrix of observations on all the predetermined vari-

ables in the system; Z. and Z. are T x K. and T x (K-K.) matrices of^1 ^i 1 1

observations, respectively, on the included and excluded predetermined

variables in the i-th equation (2.1); it* is a K-dimensional vector of

reduced form coefficients subdivided conformably with Z; 11* is K x G.

matrix of reduced form coefficients subdivided conformably with Z; v

is a T-dimensional vector and V. is a T x G. matrix of disturbances.
1 i

Without losing any generality, we may assume

(2.4) Z^ Z^ = .

Each row of (v V.) is independently normally distributed with mean

and (nonsingular) covariance matrix

(2.5)

0) U)! ^

11

If we post-multiply (2.3) by -3^^ and add it to (2.2), we have

(2.6) u^ = V - V^B.
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In order that (2.1) be properly written with Z. omitted.

(2.7)

^1

n.
-.1 _i

Ti

If IT. = n.B. permits a unique solution for g., then (2.1) is said to be

identifiable.

We define the minimum variance ratio for the i-th equation as

(2.8) X. =
1

(y - Y^6^)' P^ (y - Y.B^)
~ ~ i ~

^Z
- !i?i^ ' ^z ^! - !i!i^

— -1 "

where P_, = I - P,, = I - F(F'F) F' and B. is the LIML estimator of B..

Note that X. never falls below unity.

3. Decision Rule by the Akaike Information Criterion (AIC)

In this section, we first derive the AIC for a structural equation,

which provides us with a decision rule to identify the most adequate

structural equation from a given set of alternatives. Then we consider

about the implication of the MAIC procedure in the context of conven-

tional hypotheses testing. For this purpose an extensive use is made

of the small-a asymptotic expansion originated by Kadane [4,5].

The AIC is generally defined for a particular model with well-

defined likelihood function as follows:

(3.1) AIC = -2 log (the maximized likelihood) + 2 (number of

parameters)

The concentrated likelihood function for the i-th structural equation

(2.1) is
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T
(3.2) constant - -r log A. ,

where X is the minimum variance ratio for the i-th model. (See Koopmans

and Hood [3], pp. 166-8]. Hence we have the following propositions.

Proposition 3.1 : The AIC for the i-th structural equation is

(3.3) AlC(i) = T log X^ + 2(K^ + G^) .

The first term is interpreted to measure the degree of goodness-of-

fit; it decreases along with the augumentation of the model. More pre-

cisely, if we augument the right-hand-side variables in (2.1), X.

approaches one, and it is exactly equal to one whenever (2.1) is just-

identified. The second term stands for the penalty for losing degrees-

of-freedom by increasing the number of unknown parameters. Hence the

AIC is said to be a statistic that takes into account the trade-off

between the two desirable properties of statistical models; i.e., goodness-

of-fit and parsimonious use of parameters.

The MAIC procedure is described as follows:

Proposition 3.2 (Decision Rule) : We choose the j-th structural equation

if and only if

AIC(j) £AIC(i) for i = 1, 2, ..., N .

Now we consider about the statistical implication of the MAIC

procedure. Let us confine ourselves to the case when N = 2; i.e., two

alternative equations, say Ml and M2, are given. We assume that Ml is

nested in M2. We note that in conventional hypotheses testing Ml is



5o ssissb i

. M ,..

ei X.M jBd3 t^'



-7-

taken as a null-hypothesis and M2 as an alternative hypothesis. Accord-

ing to Proposition 3.2, we choose Ml over M2 if

(3.4) T log (A^/X^) < 2 P^2 "^^h P^^ ^ S '^ ^2 ~ \ ~ ^1 '

and vice versa . The statistic T log (A /X ) is asymptotically distributed

as X (^io) when Ml is true (Anderson and Rubin [2]). Then the decision

rule defined by (3.4) is asjnnptotically equivalent to the classical pre-

test procedure with significance levels given in Table 3.1.

Table 3.1 : Significance Levels Implied by the MAIC Procedure

^12 1 2 3 4 5

% 17 16 15 8 7

The significance level is fixed at, for example, 5% or 10% in a con-

ventional pre-test regardless of the value of ?,«• However, the

MAIC procedure adapts it to the degree of freedom.

More precise finite-sample distribution of the relevant statistic

was given by Kadane [6]. Theorem 2 of Kadane [6] is worth citing as a

lemma

:

Lemma 3.1 (Kadane) : As o goes to zero

T—K —G X

(3.5) "4^^^"'^ '^^^'12' ^"VV '

if Ml is true .

Combining (3.4) and (3.5) yields a decision rule such that if



u
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(3.6) F^2 ""

p
[exp (^) - 1]

or approximately

T-K-G
(3.7) F^2 < 2 ^ ,

we choose Ml, where

T-K-G X

(3.8) F = / ^A
- 1> •

If (3.6) does not hold, we choose M2.

It may be of some interest to compute the critical points of the

MAIC procedure and examine the implied significance levels on the basis

of the approximate F-distribution. However, this will lead us to

virtually the same results that Sawa [8] has obtained with regard to

linear regression. As usual, Kadane's small-o asyraptotics justify in

dealing with a structural equation as if it were a linear regression if

the disturbance variance is relatively small.

4. Specification Error and Non-Central F-Distributions

In this section we give a definition of a specification error

occurring in a structural equation. In most practical situations it is

quite likely that all of the alternative equations are incorrectly

specified. Therefore, it would be worthwhile to derive the distribu-

tion of the AIC statistic when every alternative is more or less mis-

specified.

Definition 4.1 : The structural equation (2.1) is said to be

incorrectly specified if
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(4.1)

TT.
,1

!i

"i'

f >

1

—

11, A
+ an.

where n . is a column vector with at least one nonzero element among

the last K „ elements .

We note that (2.7) is an a priori restriction on the reduced-form

coefficients, which must be taken into account when we maximize the like-

lihood function to obtain the limited information maximum likelihood

estimate (Anderson and Rubin [2]). In order to identify a structural

equation, we need to impose these a_ priori restrictions, even if we are

uncertain about the validity of them. In any case, our a priori

knowledges about the economy are described in terms of restrictions

such as (2.7). Therefore, it would be reasonable to define specifica-

tion errors of a structural equation in such a way as Definition 4.1.

The specification error term n^ is multiplied by a. This amounts to

assuming that the specification error is in its magnitude of comparable

order with disturbance teirms in the equation.

Using (4.1) and post-multiplying 1 and -6. to (2.2) and (2.3),

we can write the true structural equation as

(4.2) y = Y.e. + Z.Y. + aZn. + au

To illuminate the implication of our defining specification errors as

such let us suppose that the true structural equation includes some extra

endogenous and exogenous variables, say Y and Z ; i.e..

(4.3)
1 ^i^i .1^1 ^s^s ,sls
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The neglected terms in mis-specified equations (2.1) are assumed to be

of comparable order with disturbances. Substituting

(4.4) y = zn + aV ,_s _,s ^s

into (4.3) yields

(4.5) y = Y 6 + Z Y. + aZ(n B + I Y ) + an

2
where terms of 0(a ) are neglected, and I is a K x s matrix such that

Z = Z I . Comparing (4.5) with (4.2), we see that

(4.6) n, = n^B^ + I3Y3 .

Further we see that

(4.7) au = av - aV.B. - o V g ,

where au is the disturbance of the true structural equation (4.3).

Combining this with (2.6), we have

(4.8) au, = av. - aV.B. = ou + 0(a ) .

Hence (2.1) and (4.3) have the same disturbance term up to order 0(a)

in small-a asymptotics sense.

Lemma 3.1 was obtained assuming that the null model Ml is true.

However, if a true structural model is (4.2) or equivalently (4.3) in

small-a sense, noncentral parameters must be included in the F-distribution.

Theorem 4.1 : As goes to zero

^"S~^2 ^1 ,222
(4.9) -p^ (l^- 1) - F(^2' T-VG^h^-S^. 6^)

,
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(4.10) ^k =
i":' \^.%'

and

(4.11)
!k

zn, *
, k = 1, 2

This theorem will be proved in the Appendix. The distribution in

2 2 2
(4.9) is a doubly noncentral F with noncentral parameters 6.-6. and 6..

A version of the above theorm is as follows:

Lemma 4.2 . As o goes to zero

(4.12) 1=^ (A^ - X^) -^ F(Pi2' T-k| 6^-62, 0) .

The proof will also be given in the Appendix. This distribution

2 2
includes only one noncentral parameter S^-S^. On the other hand, we lose

some degrees of freedom in denominator since K >_ K„ + G„.

Noncentral F distributions derived in this section will be used in

the next section to obtain unbiased decision rule for choosing one from

two alternative equations.

5. Mallows' Risk and Unbiased Critical Points (UCP)

Following Mallows [7], we choose

(5.1) Wi=E |ly°-y,l|2

as a risk of postulating a structural equation (2.1), where

(5.2)
„ ^ .

y = Ztt* + ov
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is a vector of new independent observations on y for the same set of

predetermined variables Z; y. is a vector of predicted values for y

based on the limited information maximum likelihood estimation of the

equation (2.1): i.e.,

(5.3) ;. = Z^;. + Z^t. . P^_ y + P^ (y - Y.B.) p.

1 ~ 1 ~

where

(y-Y.6.)'P„y

(5.4) p, = ~.~^~^ ~^^
. ,

(y-Y 8 )'P (y-Y 3 )

TT. and II are the limited-information maximum likelihood (LIML) esti-
X i

mators of it. and ir. (Anderson and Rubin [2]).

It was proposed by Takeuchi [10] to make use of the LIML estimators

of the reduced form coefficients to make predictions. The method is

adequately called the single equation method of prediction in analogy

with the single equation method of estimation.

We now evaluate W. asymptotically as o goes to zero. The proof of

this theorem will be given in the Appendix.

Theorem 5.1 : As o goes to zero

2

(5.5) W. = o^^{T + (1 - rh"^^ K + [r^ - ~^] (K^ + G^)

2
2 1-r 2 "^

2
where 6 is defined in (4.10), oj is defined in (2.5) and

, E(u'v)^
(5.6) r^ -

E(u'u)E(v'v)
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is the square of the correlation coefficient between the structural dis-

turbance u and the reduced-form disturbance v for y.

Suppose that we must choose one from two alternative structural

equations, say Ml and M2, the former of which is nested in the latter.

Let W and W„ be the risks of postulating the models Ml and M2, respec-

tively. Our decision is correct if we choose Ml when W _< W„ and M2

otherwise. Approximating W. (j = 1, 2) by their small-a asymptotic

expansion given by (5.5), we can easily show that the inequality W, <_ W^

is equivalent to:

(5.7) 6? - 6^ < s P,
1 2 - 12

where

(5.8) , . <T-K-l)r^ - 1
^

(T-K-3)r + 1

2
We note that £ s _< 1 and s = 1 only when r =1, which is the case

when no endogenous variables are included in a structural equation (4.3).

For simplicity let us confine ourselves to a class of decision

rules based on a ratio or difference of A and X . That is, we decide

to choose Ml if ^,/^^ (or A - X ) is less than some preassigned constant

c and choose M2 otherwise. Each decision rule is simply characterized by

a constant c, which we call the critical point . The MAIC decision rule

is a member of this class with c equalling the right-hand-side of (3.6).

A decision based on Kadane's [6] preliminary test is also a member of

this class, the critical point of which is determined depending on a

preassigned significance level.
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In what follows we will derive another member of the class which has

a desirable property of unbiasedness. The definition of unbiasedness is

as follows:

Definition 5.1 : A decision rule with a critical point c* is said to be

unbiased, if

(5.9) P(F^2 1 ^^l^i 1 "2-* - '^

and

(5.10) P(F^2 > C*|W^ > W^) > .5 ,

where F, „ is a test statistic found in either (4.9) or (4.12).

In words, if a decision rule leads us to the correct choice with

probability greater than one-half, then it is said to be unbiased.

Since F is continuously distributed, the conditions (5.9) and

(5.10) are equivalent to an equality:

(5.11) P(F^2 1 c*l"i = ^2^ '^ -^ •

From (5.7) we see that W^ = W„ if and only if

(5.12)
"^l

" "^2 " ^ ^12

We note that the left-hand-side of (5.12) is one of the non-

centrality parameters in the noncentral F distribution of F^ „ (see

Theorem 4.1 and Lemma 4.2). The coefficient s depends on the unknown

2correlation coefficient r given by (5.6), which must be estimated from

sample observations.
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Now we propose two decision rules, which are based on small-a

asymptotic distributions in Theoreiin 4.1 and Lemma 4.2, respectively.

Decision Rule I : We choose Ml if

T-K^-G- X,

(5.13) p (^ - 1) < c ;

otherwise we choose M2, where c. Is the median of the noncentral F

distribution F(Pi2> T-K2-G2IS P
,, 0) where s is the right-hand-side

of (5.6) with r^ substituted by its maximum likelihood estimate .

The noncentrality parameter in the denominator is equated to zero.

This is justifiable when St^ = 0(o"). This simplifying assumption must

2
be inevitably made, because there is no way of estimating 6-, which

measures the distance of the postulated model M2 from the true equation

2
(4.3). It should be noted that equating &„ ^° ^^^° implies that the

augumented model M2 is virtually true in sraall-a sense.

Decision Rule II : We choose Ml if

(5.14) ^ (A. - XJ < c ,

*^12 ^ ^

where Cp is the median of F (P,2' T-KJs P,2> 0); we choose M2 if (5.14)

is not satisfied .

The small-a asymptotic distribution of the statistic on the left-

hand-side of (5.14) is a singly noncentral F as was shown in Lemma 4.2.

Therefore, in order to justify the decision rule II, we need not assume

that the augumented model is true. In this sense the decision rule II

might be preferred to the decision rule I which is based on a strong

assumption that the augumented model is true in small-a sense. How-

ever, it would be fair to note that in large econometric models K is
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far greater than K„ + G^ and hence the degree of freedom in the denom-

inator is drastically reduced by switching from the decision rule I to

the rule II.

6. Numerical Example

The unbiased critical points (UCP) are computed and tabulated in

Tables 2 and 3 for various values of P , n = T-K^-Gj (or T-K) , and

s = 0.2(0.2)0.8. We observe that these UCP's are smaller than Sawa

and Takeuchi's [8] UCP's for linear regression models. Significance

ievels implied by the unbiased decision rule are also tabulated in

Tables 4 and 5.

As an example of application, we compare two alternative struc-

tural wage functions in Klein's model I (T = 21, K = 8):

>a: W = 1.37 + 0.58X, A, = 2.47

(6.1)
M2: W = 1.50 + 0.44X + 0.13t + 0.146X_j^, X^ = 3.25

where W is the private wage bill, X is the private total production,

and t is the time trend. The estimates of s are 0.87 for Ml and 0.68

for M2. Klein chose M2 as his wage function.

We base our decision on either

T—K„— G^ A,

(6.2) F = / (-A _ 1) = 2.69
1^ ^12 ^2

or

<^-^> ^1*2=1^(^1- V =^-°«
•

The MAIC critical point is 1.784; the unbiased critical points when

s = 0.7 are 1.303 for F , and 1.320 for F* ; the critical point of
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Kadane's [5] 5% level pre- test is 3.59. Therefore, our decision rules

developed in this paper strongly support Klein's choice of the wage func-

tion, while the conventional pre-test procedure leads us to the choice

of the null-model Ml.
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Appendix

Kadane [4] is followed for proving Theorems 4.1 and 4.2. The sub-

script i in each lemma as well as theorem is for i = 1, ..., N.

Lemma A.l; X, =0 (1) as a -»
.iii

j^
p-i

—

e.

(y - Y 6 )'P (y - Y 3 )

Proof ! 1 jl ^j = niln

6, (y - Y 6 )'P (y - Y 6 )

However, y - Y.B. = Z.y. + oZr\. + an from (4.2). Hence

(A.l) ll^il
(u -K Zn.)'P„ (u -t- Zn.)

1

u'P u
QED.

Lemma A. 2; For any k-class estimator

?i

Y..

f ^

^i

!i

-1- a(X'. X.) x: (u. -I- Zn.) ^- (o )
\.i ,1 ^x \,x „^x p

if k = (1) • [In particular , k = 1 and k = X]

The proof is straightforward from Lemma 2 of Kadane [4]

Lemma A. 3

(u -H Zti^)'?^ (u + Zn^)

A, = i -1- 0^(a)
^ u'?, u P

Proof ; P (y - Y 6.) = P„ (y - Y 8. - Z y,)
X X



[Al

I ...

'!
s.'.

•:
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= P {y - Y.3 - Z.Y. - aP (u. + Zn.)}+ (a^) (from Lemma A. 2)
— Zi, ^ ^X^X ^X^X —X. -.X -^.^X p

1 1

= a P„ P^ (u + Zn.) + O(a^) (from (A.l))
1 i

= a P (u. + Zn.) + (a ) .

.X^ ~i --1 P

= o PY (u + Zn.) + O^(a^) ,

1

since u. = u + (o) from (4.4) .

-1 . p

Similarly, P„ (y - Y,6,) = a P„ ? (u + Zn,) + O(a^)
-^i^ ~, ^X^X ^/«.^A.* -^ -„__X P

= a P„ u + (a^) .

-Z ^ p

QED.

Proof of Theorem 4.1 :

By Lemma A . 3 , we have

^ (u + Zn^
) 'P„ (u + Zn, )

-i= + o„(^) •

2 (u + Zn,)'P7 (u + ZnJ P

— Z. - ') ~ -~-i-

However

,

(A. 2) (u + Znj^)'P2 (u + Znj^) ^ X (T-Kj^-Gj^|6j) k = 1, 2
,

~ k
~

and (P - P ) Is orthogonal to P .12 2

Proof of Theorem 4.2:

5ED.

By Lemma A. 3,

(u + Zn, )'P„ (u + ZnJ - (u + ZnJ'P„ (u + Zn„)

X - X = i
^^

? + (a) ,



•, S .1 - .1
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where P and (P - P^ ) are orthogonal. Also (A. 2) holds for each term

in the numerator of the ratio. On the other hand,

u'P„ u ^ X^(T-K) .

QED .

Proof of Theorem 5.1

From (5.2) and (5.3)

w. =E||y°-yili'

= E| |Z (tt. - ^.) + Z. (7 - 7.) + av°| 1^
.

Expectations of cross products between any two of three terms in the

above equation are zero since v and v are independently distributed,

and Z. and Z. are orthogonal. Then

(A. 3) \J^ = o^eIIv^II^ + e||z^(tt. - ^.)||^ + E||Z.(u^ - t^)\\^ .

It is easy to show

a^Ellv^ll^ = o^ T u) .

From (2.2), (5.4), and the orthogonality between Z. and Z ,

^'l?i(!i - 5i)|l^= ^^ eIIp^ v||2 = aVa, .

Hereafter we derive the expectation of the third term in (A. 3).

From (2.2), (5.3;, (5.4), and the orthogonality between Z, and Z , , we have

(A.4) e|1z. (7^ - w.)||^ = EllaP^ v - P^ (y - Y.6.)pJ 1^ . -

~ I ~ ~ X ~ ~~

Following the proof of Lemma A. 3,

(y - Y R )'P y = a^(u + Zn,)'P„ v + (a^)
^i^i -Z _ ^ ^^1 ,Z ^ p

= cT^u'P„ V + (a^) ;

, >/ ~ p



ita'

012

^li^.. - (1;^ -,^)

.. t{T ,l^^o;

. ui T "* = j i

" VII "I

U) > 17 !^
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(y - Yi.)'P„ (y - Y.6 ) = 0^ u'P u + (a^) ,

Then

u'P V
(A. 5) p . = I + (a) .

u'P_ u P

Similarly following the proof of Lemma A. 3,

(A. 6) P7 (y - Y.e.) = a P^ P^ (u + Zt\ -) + (a ) .

i -1-1

Using (A. 5) and (A.6)» (A. 4) is

u'P V
oH\ |P^ V - P^ Pjj (u + Zn^) ~

I^
~

|

1^+0 (a-^) .

~i~ ~i~i ~ u'P u

_ u'P V _ u'P V
(A.7) =a^E||Py {v - P^ u ~ _ -} - {P- P^ Zn. ~ _ - }|r+ (a"^) .

1 ~ ~^i ~ u'P„ u ~^i ~^i --"- u'P„ u
^ -^^ ^ ^ —"^ —

Expectation of the cross product between the first and the second brackets

is zero since only odd moments are included therein. In order to take

expectations of squares of the first and the second brackets, we introduce

a vector random variable w which is independent of u.

(A. 8) w = V - pu ,

where p = E(u'v) E(u'u)~ •

r

The expectation of the squre of the first bracket in (A.7) is

u' P V u'P V

(A.9)a2E||P- v||2+a^EllPy P^ n =--^\f -lo'^ Y.\\y- P uv'P^ --:=^--|

-^i ~ ~^i -\ ~ u'P^ u ~^i ~\ -~, ^iu'P_ u

Then we have for the first term of (A. 9)

E||p^ v|| = (o(K-K.) ,

-^i ~
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and for the second term of (A.9),

trace E {P;;- P„ u u'Py P7 -^""Z—^^
i 1 11 (u'P u)

(u'P^ w)2
= trace E {P=- P„ u u'P„ Y^ -=^—=—=^}

i i 11 (u'P„ u)

+ p^ trace E {P77 P^ u u'P^ P^ } (from (A. 8))11 11
= (w - p ) trace E {P- P^ u u'P^ P^ /u'P„ u}11 i 1

2 —
+ p trace (P- P^ Prr )ill
(c - p2) trace {P^ P^ [_1_ p^ + _i_ (i . p^)] p^ p- }11 11
+ p^ (K-K^-G^)

i u P u

(A. 10) li
P^ = ^. - Fz.n, , and Eww'= (w - p^) I

i 1 1 1 i ^^

Finally for the third term of (A.9)

E||P- P u v'P^ "-^—"I
i" i~ "~ iu'P„u

= e||p^ P^ u u'P^ w w'P^ /u'P^uI
I

+ p2 e| |P- P^ u u'P^
I

= p^ trace (P^ P^^ P^ )

~ i - i ~ i
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= p^ (K-K^-G^) . (from (A. 10))

Similarly the expectation of square of the second bracket in (A. 7) is

u'P V
(A.ii)E||p^ p^ zn^ ~ ~

~
\r11 u P_, u

u'P„ V
= ^1 ?' ^X. ^. ^X, ??i E(-;z^)'

~i~i~i u'Pu

u'P w
= 5^ {p^ + E (

~ 1^ ~ )^} (from (A. 8))

= S^ {p^ + (o) - p^) E (u'P„ u)"^} (from (A. 10))

-^2,2.(0-0,

since

ll ?' !x. !^. !x. ?!li
= ]! r ?X. ? ']i

=
!!l ^!z. - !z.n.^!!i (from (A. 10))

Combining the above terms, we have

2

W^ = a^ {Tw + Ka) + i^^f^^T ' P^^ (^-K.-G.)

= a^ {103 + (o) - p^) l^lfi K

2 2
Since r = p /u), Theorem 5.1 is proved.

QED.
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