DESIGN \& DETAILS OF A SINGLE TRACK SINGLE LEAF TRLINNION BASCULE BRIDGE

H. C. ANDERSON
H. W, SCHLINZ
T. E. RICHARDS

ARMOUR INSTITUTE OR TECHNOLOGY
1909

Illinois Institute of Technology Llbraries

FAT 128

FAnderson, H. C.
[Design and general details for a single track, single

THESIS

DESICN ATT GENFRAT, THTAITS
FOR
A SIWCTE TRACK, SINGTE TFAR, TRUNVION BQSCUTFF BRIDGE.

GENGRAT DIMFNGIONS
Length of trusses - 150'-0", (center ilne to center Iine) Span-120年 (centor line to center line) 5 pancls at 24^{\prime} or total of 120'-0".
1 panel at 30'
Required clear channel of stream - 100'-0 0^{\prime}.
Required river clsarance - 14'- $6^{\prime \prime}$.

ILLINOIS INSTITUTE OF TECHNOLOGY PAUL V. CALVWUBRARY 35 WEST JURD STFEET CHICAGO, IL 60616

A, Di, Thomin

The main object to be ritained by this somewhet peculine desicn is to avold the hoavy ateol bolstars which are commony employed for supportine the trunnions of this type of hridere. As will be roadily seen from the drawines, this object is realized by uelne a slotted abutment to accomodate the tail end of the trugses when the bridee is Ifftari, the tall and of the floor remalnine stationary.

It is easy to see that in debienine a bridee of this type, parts of which aremore or less uriginal and gomewhat, complicated, constacrable experience in hridee vork would be necresary in ord r to arrive at an econonical and practical dossicn. Alone this life we have been vory fortunate in havine the kind essistance of Professor 2 . 3 . Weils, to whom we ait iniebtod for many 1 deas and practioal hints whith regard to design and detail of of the structurae

IOADINK AND SPHCIEICATIONS.

A dead load of 22500 pounds was acsurned at each panel point and the live lond at each pmeiwass fitgured ans 67800 pounds, usine Coopers 550 loadine. The stregses were then calculatod whin thene londs as explainod in a lator maracraph on "Stresses" and the rembers and the weicht of each was then colculated from this data. Taklne into constanation tho floor symben, mewberis, visnd brecinf, etc., and rouchly estimatine connection gheters, the drad printe losid at each nanel point vas rioured, with tersult 3inown on drawincshent Hy Whth those values for dead load at each panel point, tho dead load stressen were refitured, and utur propez combininco or wind, dean ant liva atreasen, the mambers wore ficured.

The dead panol loads were ftmured in the same manner ass befort but by urine the new welehts of mambers, these loads carae so ciose to the former calculation, that the difforence mould not warrant, an entire recalculation of stresses, so these dead manel loads were used in the final chlculation of atresses.

The wind strosses were ficured for the bridee with a movine load of 450 pounds per foot or brifee and a doad load of 150 pounds per foot of briden, considorine brider as fo sample span and ciosed. Then with a load of 200 pounds per foot of loneth the top and battom braeing and chord wind streases were flenred, the briden actine as a cantilever. The angle whion the brifte will make with the horizontal when up is 70 degrees, but according so freen, when fleuring wind strosbes on a surface leavine an angle groator than 60 deerees, the vind is consldered as actine at richts angles to that gurface so a wind lond of 25 zounds por square root was considered fatiner alone the track and the effect on the tru:sses calculated. Considering that an pen floor bystem is used and that there is traffic in the riter the year round, no snow load was taken into consideration in the loadine. In retailine and destenine members, portals, gway and latrral tracine, floor beams and strinpors, etc., Coopers Gencral Specifications for Stcel Rallroaci Bridens and Viaducts
(1906 Edition) wore followed excoptine in combinine streoses in cortain caserj as shown latrr.

STRUS §is.
In computing the stronaes in the truss mombrre, the live load wars taken at 67500 pounds per panel per truss, thl beince the same as the maxtrua shar in stringer, al though bhe naximum liye lond concontration which can occur at a pancl 1 o 92500 pounds, this strens havdne been combined with the dond loan strens in the design of the hip vortical. This hovevol would hover hern ioo ereat to be used ass the panel lond throushout the triage. Inpact due to Ilve load was not considerers in the design, the Ifve load allow abla streas brine taken at one halif of the value vinlch would be uscd If impact were considoreci. In the deston of menbers, Coner'g Spocifications for Railway Priderg were used throuphout except as notad horewth: All culculationis of membors were made with the live load unit strasses as a busis, the dend nnd wind laud stresses beine reduced to Ilye lode eruivalont. Thus is/s of doad lond stresses and $1 / 2$ of wind lateral Btrosees wero combined With the Itve lond Btres ess, algeurialcallu. If wind loar stresses were less than 30 prer cent of the other comblned strosses they weror nefloctod entirely.

Rivots in members whore reversal of istress occumed aue to wind lowd only varn figured merely for the warimum combined strese, the reversal belne neglected. (SBe snecirications).

In calculating the daad load istresses, the hridee was considerod as a cuntilever, that is, the counteraeleht was t, oken an just balanoinc the drad rescht of the novable leaf, his woleht hevinc at that time bren found only tentativaly. The concurreri, stresises were than combined and an apyroximate dabien of mambre obtained, allowanccs belng maric for connection plates, latrals lacing, ctc., When the aproximate wothta of members varo found. In this way the corrected pancl weiphts ware found and the stresses and eizes of nembers reain calculated, the wefthts of members belne ficured accurately.

The floor syatem and floor beaus were desifned acooldine to Cooners E 50 loadine. The wights of erach member of the 5100 c syetem were foind as vell as the centar of pravity of thr whole. The center of eravity of the truss members fore also obtalned and this comblad with the corrosponding valuea for the floor syster pave the point at which the mass of the bridere mipht be consid red as concentrated. Knowing this, the anount and disitibution of countervelight was found, the cent or of gravity of the latter belnes on the Ine joinlne the center of eravity of brider and trinnion, produced. By loosting the centor of crevity of the comptcrueicht on this ine and making the moment of the countriveleght about the trunnion equal to total emount, of the dend load on the moving ? af, the bridere would be balninced in noy position and the power nooressnry io raise the घam would be reduced to the amount necesmary to overcoine wind load ecar losses and jowrnal filctior.

The countermeicht end of the loyer chord $\% 2$ ciestenod to take the comyrossion which rould come on it with the hridee in at horizontal position, ant also to trke the entirn tenistan du\% to the counterwelpht when the bridpe mas raisoत.

Mabres	DEAD IOAD, BRIDCE AS CANTITAYER	$\begin{aligned} & \text { MAX. ITVE } \\ & \text { IOAD. } \\ & \text { MHIDGES } \\ & \text { CTASED } \end{aligned}$	WIND IOND In nlume- TION OE TRACK BBIDRES UP		$\begin{aligned} & \text { TAMPRAT, } \\ & \text { WTVD IMAD } \\ & \text { MRRITGE } \\ & \text { UP } \end{aligned}$	
AI	+14100		+2200	$+22.200$		
$A B$	32000	-172900	-2200	-22200		-177500\%
A	32000	-162000	+ 5800 -5600	10 -7200		
136	+32000	-16\%00	- 5600	+7200		-14.7100
cD	$+70400$	-162000	-5600 12600	-7200		-147100\%
c.	+70400	-152000	12600 -12600	-	$\begin{array}{r} 1,43200 \\ -43200 \end{array}$	1.36200\%
DI	+200300	,	35000			-13.3300
H2	+283100	0	-35000 +49500			1888
			-49500			1880
e2	+300000	0	+35000			
de	-200800	${ }^{\circ} 8000$	35000 +22400			240300卷
	-125600		-22400	-64800	- ${ }^{1} 7500$	-12940类
cd		1108000	23.2400	+ 5.3200		+105:00
	-125600		-22400	-64800		-175000
bc	-'70400	+168000	+12600 -22600	+64000 -64800		+163300
ab		$+108000$	- 2800	+53200		+123800
I	-8800		-1400	-54800		- 58900
10	-8800	+108000	1400	0		$+12.5100$
Ab		$+103700$	+5700	-5.300		-58320
	-37200		-13700			-7560
Cb	+51500	$\begin{array}{r} +51900 \\ -57000 \end{array}$	$+11200$			$+92900$
Cc		$+40500$	+8800			
	-48000	-40500	-8500			-72.500
Dc	+88400	103700	+15700			- 147900
		-17300	-15700			
Dd	+22000	+59100	$\begin{array}{r} +3500 \\ -3500 \end{array}$			70100
De			+20100	+29000		
	-124200	-175000	-20100	-22000	-69100	-273900
Y'z	$+5000$	+ 16900	$\begin{array}{r} +1000 \\ -1000 \end{array}$			+20900
dz	0					
	0	-10800				-10800
Ee		C	$+3500$		1	
	-200800	0	-3500			-1.33900
A^{2}	18000	92500	$\begin{aligned} & 3500 \\ & -3500 \end{aligned}$		1	$+104500$

* Members indicated by ast. risk should De figured for reversal of atress in rivels. (Sre suecillations)

The part of the 10% chord marked Y_{B} on the atrens sheet wa designed as a beam fixed at the outor end, to take lower latoral stresses. The top lateral stresses were calculated for two positions of brides:- let, closed (in which crise the bridee was constdered as supported at both onts in rosistine latnral forces). 2nd, as just off the abutments (In which case the bridge acted as a cantilevor, and all lataral foroes were transferred to the trunnion throurg the momber De). The first case produced maximum atressos in all laterals excent these in panel DC. For this panel the stresges of case ? wore put on the stress sheet for these memoses, which for the other panels the stresses of case 1 where taken.

OFHRATLNG MACHIMFRY.

The operatint machinery will be located between the two approved "irciers and beneath the track. Id will be protected from the weathon by the wets of the eirders and by a solld floor built on that part of the eirder. The power will be furnished by a ampound D.C. Mator of 130 Ho se Power, runnine at 600 R.P.M. under ordinary conditions when there is littig or no wind to oppose the lifting of the bridice. The powar necessary to ldft bridge has been figured on the essumption of a wind mressure of 15* per sq. foot of exposed area, the wind comine in a direction parallel to the track, and the briace to be ratsed in 40 seconds. This wind velocity roduces a gtress in the rack, at pltch line, of 21000 非 on each truse which mast be counteracted by the motor. The efficioncy of the entife mechandma was assumed at 60 per cent, this includine lobses in rears, ear shaft journels and trunnion bearines.

To raise the bridge in 40 seconds through 70 degrees vould require a speed along the pitch Ine of 55 feet per minute. Thenallowing on per cont efficiency, the foot, pounds per minute at, the motor would be $55 \times 21000 \times 100 / 50=1,925,000$ foot pounds which is equivalent to 58.3 Horse Power for each truss or a total of 116.6 Horse Power.

For the desicy of the teeth of rack, and on the engaging pinion the maximum wind stress of 35000 was used, the tensile strength of cast steel being taken at 5000\#1 por Sq. inch in the Aesign. With a rack 18" wide, this gives teeth havine a pitch of 6.5" and a height of $4.5^{\prime \prime}$. The pinion operating the rack has 10 teeth, the dameter beine 20.7n on the attch circle. On the same ghaft with this pinion is a gear of $10^{\prime \prime}$ face and $4^{\prime \prime}$ pitch and $2.75^{\prime \prime}$ height of tooth. It has 75 teeth and is encered by a ginion of 10 tonth mounter on a 5° shaft. On this same shart is placed a fear of 95 teeth havine an $8 "$ face and $3^{\prime \prime}$ pilich. Divine this is a gear on the motor ghaft. This has a $3^{\prime \prime}$ pitch and 1sil-1/2" in dianter.

The rsck and pinion are to be cast steal, the teeth not beine machined. The same applieg to the intermediato cears. The pinion on the motor shaft and the corresponding pear ale to be machined or cut.

No mention has here beon made of brakes, methoris of control,
-
\square
$\cdots \cdots$,
.
\square
:

OPERATING MAGFINERY (cont'd.)

signals and other devices whlch form part of the equipment in operating houses for bridees of this character, this beine too large a subject to be included in a civil encinerarine thesin of this kind.

Due to the position of the machinery a slot will probably have to be cut, in the rear wall of yasonry, but as the machinery is not fully desicned, this change in the masonry was not shown of the tracing.

Although a 120 Horse Power motor is to be installed, the power necessary to lift the bridge may at times of hich wind velocity be much more, but as a comp und motor will operate satisfactorily under an overload of 50 per cent this greater horse power is taken care of, and affecting the operation only in so far as it will take perhaps a minute to raise bridge. On the other hand under ordinary conditions the wind load will be considrrably less than was assumed and the power required, and al so the time of raising bridre, will be matrrially lessened.

LOCKING DEVICE.

In a bridge of this type, when the trusses are counterbalancod by a weight in such a way that the bridee will remain at any angle to bhe horizontal if no outside force is exerted upon it, it is necessary that the bridre be locked in some manner before trains or other traffic be allowed to enter upon it. If a locking system of some sort were not used, aside from the apparent. danger of a serious accident, there would be a tendency for the brides to rebound slightly just after a set of trucks had left it, assuming in this case that the train is coming off at the locked end, and by the time the next set came up there would be a tendency for the wheels to jump the small eap thus left with the result that there wide be a poundinc on the raibs such as ta'es place at rail joints on straleht track. This reboundine would be greatly increased if a wind of hirh velocity were blowing. With the train coming on the bridge there would be a pounding on the rails and an unnecessary jarring of the trusses. With a trdin goinc in the opposite direction the result would be practically the same excepting that the poundinc would be on the other side of the rail joint.

Without a locking device on the trusses themselves it would be necessary to have a locking device on the operating cears and this would necessitate desicning the machinery to take a great part of the live load, in fact we would have a continuous span, with three joints of support and the tooth that would be in contact with the operating rack would have to take all the live load reaction at that point. This would make necessary the designing of much heavier gears and this, along with the cost of replacing pounded rails very often, would increase the cost of construction and maintainance very noticeably.

The locking syster used in this case consists in the main of two 3 inch pins $2^{\prime}-3^{\prime \prime}$ long (one at each truss) which are operated by means of electric macnets. One of the macnets is placed on the masonry at each truss and the other on the truss, the
operator of the bridge bein able to throw whicheynr magnet he desires into action by turning a switch, the wirine to be done in suoh a mannor that only one marnet can be charged at a thee and the other is always chareded.

MASONTXY.

The substructure for supporting the beddee will be built of Portland cement, concrete reinforeed as shown on the drawines. The abutments are t,0 be also reinforced for temprature and shrinkage stresses. This roinforcing is not shown on the drawings but there is to be placed a $3 / 4$ inch enrruceted bar to every square foot of cross section. The abutments are assumed to rest on good clay subsoil with a bearine power of 4 or 5 tons per square foot. No plles are required, under the masonry as the pressure only comes up to about 2 tons per square foot. A row of protectinc piles is to be drlyen around the plers on the channel side. The clear channel will be finally about 101 feet.

MYTHOD OF BREAKING TRACK.
The way in which the track is to be broken is best shown by the sketches on the ftress sheet. In working out, the scheme used, attempt was made to make it as simple as poss ible and to support the rails as ricidly and as noar the ends as possible.
-

ATwennte

430リ

Demperye ol miontouber

Abinottil

ATsitous
grventuyz ol czomeliocr

(2)

ATBTOU

ki:

