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project reported here. The Douglas Fir Plywood Association,

Tacoma, Washington, provided the plywood used.

This framework of a small experimental swine shelter shows the type of
rigid-frame design being developed. (Fig. 1)
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Design of Nailed and Glued Plywood
Gussets for Lumber Rigid Frames

By J. O. CURTIS, Assistant Professor of Agricultural Engineering

IN
RECENT YEARS rigid frames have been used in increasing numbers

in the construction of farm buildings. Most of the major fabri-

cators of steel farm buildings have developed rigid-frame designs. The

glued, laminated, wooden arch, which has been widely used in farm

building construction, may be classified as a three-hinged rigid frame.

In 1955 the Plywood Manufacturers Association of British Columbia

prepared a series of designs, "Rigid Frames for Fir Plywood Struc-

tures." (l)
a

There are several reasons for the increased use of this system of

framing. Since no interior supports, braces, or ties of any type are

required, the entire space within the building is free from obstructions

and usable. The system of framing is simple, requiring a compara-

tively small number of different sizes and shapes of structural members.

It compares favorably from an economic standpoint with other systems
of clear-span construction, such as trusses.

In the summer of 1957, the Department of Agricultural Engineer-

ing at the University of Illinois decided to undertake the development
of additional rigid-frame designs. The work started with gable-shaped

designs consisting of dimension lumber for framing members, a verti-

cal stud, and nailed and glued plywood gusset plates. The frame was

planned for construction mainly by home or local labor and from stock

lumber materials, whereas the steel rigid frames and glued laminated

lumber frames have been developed primarily for factory fabrication.

The design differs from those of the Plywood Manufacturers Associa-

tion of British Columbia in three ways: First, it has a vertical instead

of an inclined stud member. Second, the gusset plate is both nailed

and glued instead of being nailed only. And finally, the gusset extends

inward from the outer edge of the stud rather than outward from the

inner edge, as in the Canadian design.

To evaluate this system of framing in a preliminary way, a small

swine shelter 18 feet wide and 24 feet long was designed and built on

the University farm in the fall of 1957. The framework of this struc-

ture is shown in Fig. 1.

In designing the framing for the swine shelter, accepted procedures

" Numbers in parentheses refer to references on page 18.



BULLETIN No. 654 [March,

of structural analysis were used to determine stresses in members. No
established procedure could be found, however, for designing the

nailed and glued plywood gussets, which were subjected primarily to

a bending load. Work done by Radcliffe (2) at Purdue in designing

nail-glued plywood gusset plates was helpful, but it involved a some-

what different type of problem. His procedure was primarily for use

in designing gusset plates connecting truss members, where the mem-
bers being connected are subjected primarily to axial loads, whereas

the gusset plates used in constructing rigid frames connect members
that are subjected to large bending moments.

In December, 1958, Petry (3) of the Douglas Fir Plywood Associa-

tion suggested a procedure for designing nailed plywood gusset plates

for rigid frames. There was still, however, no established procedure
for designing nailed and glued plywood gusset plates that are subjected

primarily to bending loads as they would be when forming the joints

of a rigid frame.

This bulletin reports the development of a procedure for the design
of nailed and glued plywood gussets for lumber rigid frames. Load
tests were made on a series of full-scale joints formed with nailed

and glued plywood gussets. The results of these tests were used as a

basis for establishing the joint design procedure.

P= EXTERNAL LOAD APPLIED
BY HYDRAULIC CYLINDER

S= DIMENSION USED TO DESIGNATE
GUSSET PLATE

2 X4 BLOCK USED TO PREVENT
BUCKLING OF EDGE OF 3/8" GUSSETS

Layout of the joints tested and the system of loading. (Fig. 2)
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Load Tests on Rigid Joints

Load tests were performed on 88 rigid joints formed with plywood

gusset plates nailed and glued to the framing members. The general

layout of the joints and how they were loaded are shown in Fig. 2.

Materials Used

Construction-grade Douglas fir lumber was used. Moisture content

of the lumber was measured with a Delmhorst moisture detector at the

time the joints were load-tested. It averaged about 14.5 percent.

Douglas fir plywood used for the gussets was C-C exterior-sheathing

grade. Two thicknesses of plywood were used: ^ inch and ^ inch.

Random measurements indicated that the actual thickness of the ply-

wood averaged about 1/32 inch less than the nominal thickness, so the

actual thickness of the ^-inch plywood was 0.344 inch and the ^-inch

plywood 0.594 inch. The five plies of the ^g-inch plywood were ap-

proximately the same thickness. The center ply of the ^-inch plywood
was thicker than the two face plies, random measurements indicating

that the center ply was approximately 0.151 inch thick and each face

ply approximately 0.0965 inch thick.

The glue used was Type II casein, which is mold- and water-

resistant. It was mixed at the rate of one pound of glue to two pounds
of water, in accordance with manufacturer's instructions.

Details of Joints Tested

In addition to some preliminary tests, 22 different types of joints

were fabricated and tested (Fig. 3). The variables included in the

various joints were size of framing lumber, thickness of plywood in

gusset, size of gusset, and orientation of grain of the face plies of the

gusset. Sizes of framing lumber were 2x4, 2x6, 2x8, 2x10, and

2x12 inches. Two gusset plate thicknesses were included: ^ inch

and ^8 inch. Sizes of the gusset plates, designated in inches according

to the detail shown in Fig. 2, were 6, 9, 12, 18, and 24. Orientation of

the grain of the face plies of the gusset was designated in degrees with

respect to direction of grain in the stud member. Orientations included

in the tests were 0, 22.5, 45, 67.5, and 90 degrees.

Each joint was described in accordance with the following exam-

ple: 2x8-^-12-45. The designation "2x8" indicated size of

framing lumber; "^$" designated plywood thickness; "12" designated

gusset plate size; and "45" designated orientation of the grain of the

face plies of the gusset.

The joints were all detailed as shown in Fig. 2. They were built
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Twenty-two different types of joints were tested. Twenty-one are shown
here. (Fig. 3)

in the laboratory, where temperatures were 70 F. or warmer. Glue

was applied with a brush to one surface of the members being joined.

It was then struck off with a notched scraper to make the rate of

application reasonably uniform. A scraper was selected that would

apply just enough glue to cause a small amount to squeeze out when
the joint was assembled. Rate of spread was calculated to be about

10 square feet of glue area per pound of mixed glue. Nails were used

to apply pressure while the glue set. Recommendations of Radcliffe (2)

were used as a basis for nail size and spacing; 4d common nails were

used with ^-inch gussets and 6d common nails with ^-inch gussets.

Nails were placed roughly y inch from the edge of the members and

gussets and 3 inches apart in each direction (Fig. 4). The average

glue area per nail was 7.8 square inches, and the maximum was 10.4

square inches.

The preliminary tests indicated that the unsupported edges of the

^-inch gussets required support in order to prevent them from

buckling (Fig. 5), so a 2 x 4 block was nailed between the unsupported

edges. No support was provided for the edges of the ^-inch gussets
since the preliminary tests indicated that none was required.
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Typical joint showing approximate arrangement of the nails used in fabri-

cating it. (Fig- 4>

The compression edge of f^-i

gussets must be supported
to prevent buckling failures

of the type shown. (Fig. 5)
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Table 2. Joints Tested to Evaluate Effect of Orientation

of Grain of Plywood
(Loaded to produce compression in unsupported edge of gusset)
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tested to evaluate the effect of a direction of load that produces tension

rather than compression in the unsupported edge of the gusset.

All joints were load-tested one week after fabrication. The system
of loading and the test machine that was used are shown in schematic

form in Fig. 2 and in photographic form in Fig. 6. The lower end of

the stud member was held by the machine, and a load was applied to the

rafter member by using a hydraulic cylinder. In the test shown in

Fig. 6, the cylinder was exerting a pull on the rafter member and thus

producing compression in the unsupported edge of the gusset. The
machine was modified so that it exerted a push on the rafter for the

tests where tension was desired in the unsupported edge of the gusset.

Data were recorded on the load applied by the cylinder at failure

(Load "P") and the method of failure of the joint. Load at failure

was measured with a strain gage dynamometer that was inserted to

measure the force exerted by the hydraulic cylinder. As a check it was
also calculated from pressure readings from the hydraulic loading

system. Pressure readings alone were used for the tests where the

cylinder exerted a push on the rafter.

^^^^^^^^i^^^^HBH^^^HHB^^^^HBHI^BI^^^^^^^H
Test equipment used in making the load tests on the joints. (Fig. 6)
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Development of Joint Design Procedure

The goal was to develop a joint design procedure that would make

it possible to determine analytically the details of the joint required.

In developing the design procedure, a tentative design procedure was

formulated first, and then the procedure was verified by trying it on

the joints tested.

Tentative Design Procedure

The tentative design procedure was formulated on the basis of

general knowledge of the behavior of structural members under load

and on the basis of observations of the behavior of the joints tested.

Test results are recorded in Tables 1, 2, and 3. The joints tested were

observed to fail in one of the following three ways:

1. Stud or rafter failed in extreme fiber owing to combined bending
and axial load (Fig. 7).

2. Gusset failed in extreme fiber along a line approximately

through the junction of the stud and rafter (Fig. 8).

3. Gusset failed in rolling shear in a plane parallel to the plane

of the glue line (Fig. 9).

It seemed reasonable therefore that the design of the joint should

involve checking the three types of stresses corresponding to the ob-

Typical extreme fiber failure in the stud member due to combined bending
and axial load. (Fig- 7)
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Typical extreme fiber failure in the gusset due to combined bending and

axial load. (Fig. 8)

served methods of failure. Also it seemed reasonable that the basic

criterion of a satisfactory joint should be a joint strong enough to

develop the full strength of the framing members being joined. On
this basis then a satisfactory joint should:

1. Develop the maximum fiber stress expected at failure in the

members being joined.

2. Have plywood gussets of such size and thickness that the stress

in extreme fiber in the gussets would not be excessive.

3. Have plywood gussets of such size that shear stress parallel to

the glue line would not be excessive.

Before attempting to apply the above proposal to the design of

joints, it was necessary to establish acceptable values for the three

types of stresses involved. Ultimate stress values were selected rather

than working stress values since the plan was to verify the procedure

by checking it on the joints that were load-tested. Since only the load

at failure was recorded in the tests, only ultimate stress values could be

calculated for the joints tested.

The maximum fiber stress expected at failure in the members being

joined was calculated on the basis of data from the Wood Handbook

(4) and other sources. The modulus of rupture for Douglas fir, coast

type, was multiplied by the strength ratio for construction-grade Doug-
las fir. The value used for modulus of rupture was 7,600 pounds per
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Typical shear failure in gusset in plane parallel to the glue bond. (Fig. 9)

square inch (p.s.i.). The appropriate strength ratio was determined

from the grading rules to be 57 percent. Multiplying 7,600 by 57 per-

cent gives 4,330 p.s.i. as the fiber stress expected at failure in the

framing members for the grade of lumber used, if in the green con-

dition. Since the lumber used was not green but had an average mois-

ture content of 14.5 percent, the fiber stress expected at failure would

be somewhat higher than 4,330 p.s.i. because lumber becomes stronger

as it dries. On the basis of work reported by Snodgrass (5) of the

Oregon Forest Products Research Center, an increase in strength due

to drying of about 20 percent appeared reasonable for the grade and

moisture content of the lumber used. Thus a value of 5,180 p.s.i. was

established as the fiber stress expected at failure in the framing
members.

The maximum acceptable value for ultimate stress in extreme fiber

in the gussets was established by comparing the recommended working
stresses in plywood and in construction-grade Douglas fir. Since the

allowable working stress in extreme fiber is 1,875 p.s.i. for the grade

of plywood used compared with 1,500 p.s.i. for construction-grade

Douglas fir framing members, it seemed safe to use an ultimate ex-

treme fiber stress in bending for the plywood equal to that assumed

for the framing members. A value of 5,180 p.s.i. was therefore estab-

lished as the maximum acceptable value for ultimate stress in extreme

fiber in the gussets.

The maximum acceptable value for ultimate stress in shear parallel

to the glue line was established as 317 p.s.i. This value was selected

on the basis of work done by Radcliffe (2).
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The tentative design procedure then may be summarized as follows:

1. The joint must be strong enough to develop in the members being

joined an extreme fiber stress of 5,180 p.s.i.

2. The calculated maximum extreme fiber stress in the gussets

must be not over 5,180 p.s.i.

3. The calculated maximum shear stress parallel to the glue line

in the gussets must not be over 317 p.s.i.

Verification of Tentative Design Procedure

The tentative design procedure was checked by trying it on the

joints that were load-tested. This was done to attempt to determine

whether the proposed analytical design procedure could be used to

accurately predict the behavior of the joints. In order to try the de-

sign procedure on the joints, it was necessary to calculate the maxi-

mum extreme fiber stress in the stud, the, maximum extreme fiber

stress in the gusset, and the maximum shear stress in the gusset in a

plane parallel to the glue bond.

The maximum extreme fiber stress in the stud is simply the result

of the combined bending and axial stresses produced by the system of

loading. The maximum extreme fiber stress in the stud was calculated

for each joint tested, and it is recorded in Tables 1, 2, and 3 as

"Maximum 'f in stud." (See Appendix and Fig. 10 for an example
of calculation.)

In order to calculate the maximum fiber stress in the gusset, it was

necessary to make three assumptions. First, only plies with direc-

tion of grain approximately parallel to direction of maximum fiber

stress were considered effective. Second, the effective depth of the

gusset was considered to be the distance a +b along the assumed

line of failure as indicated in Fig. 10. This assumption was based on

observations of joint failures. Finally, it was assumed that the block

used to prevent buckling of the unsupported edge of the ^-inch

gussets carried no stress. The maximum fiber stress in the gusset was
calculated for each of the joints listed in Table 1 and recorded in

Table 1 as "Maximum 'f in gusset." An example of calculation of

"Maximum 'f in gusset" is also given in the Appendix.
There was no established analysis procedure for determining the

maximum shear stress in a plane parallel to the glue line. It was

known, of course, that the axial and bending loads in the framing
member were transferred to the gussets through shear stresses in the

glue line. However, since the shear stresses produced in the glue line

by the bending load in the members were not uniformly distributed, it
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was necessary to make some assumptions regarding their distribution.

It seemed reasonable to assume that the component of the shear stress

produced by the bending load in the framing members might be cal-

Tc
culated by using the standard torsion formula s = =- . The shear

stress required to transfer the axial load in the framing member was

assumed to be uniformly distributed over the glue line area. On the

basis of these assumptions, the maximum shear stress in a plane parallel

to the glue line was calculated for each of the joints of Table 1 and

recorded as "Shear 's' in glue line" (see example in Appendix).
After the theoretical stresses at the time of failure for all joints

tested were calculated, the next step was to determine whether the be-

havior of the joints could have been predicted by applying the tentative

design procedure. This was done by comparing the calculated stress

at failure from the tests with acceptable stress values as established in

the tentative design procedure (Table 1). Each joint was rated as

satisfactory or unsatisfactory on each of the three design criteria as

proposed in the tentative design procedure. Note that in applying the

criterion for "f" in gusset to the test joints it was necessary to com-

pare "f" in gusset with "f" in stud rather than to use the value of

5,180 p.s.i. as allowable. An examination of the data for the second

joint in Table 1 illustrates why this procedure was necessary. Notice

that at failure "Maximum 'f in gusset" was 5,579 p.s.i., which is over

the established allowable value of 5,180 p.s.i. However, note also that

"Maximum 'f in stud" at failure was 6,373 p.s.i., which is consider-

ably in excess of the average expected strength of such a member,

5,180 p.s.i. Obviously at the time the stress in the stud was 5,180

p.s.i., the stress in the gusset would be less than 5,180 p.s.i. since the

two are directly related. Therefore the design procedure is satisfied

on this point if "f" in gusset is less than "f" in stud.

In order for one of the tested joints to receive an over-all or com-

posite rating of satisfactory, it had to receive a rating of satisfactory
on each of the three criteria of the design procedure. Four joints

numbers 4, 5, 10, and 14 developed high enough stresses in the stud

to receive a satisfactory rating on this point, but they received a com-

posite rating of unsatisfactory because calculated stress in either "f"

or "s" in the gusset was above established maximums. This means
either that the established maximums are a little low or that these

particular joints were stronger than average. If the established maxi-

mums are a little low, this is not serious because it is a good idea to be

on the conservative side with the design of the gussets.

Notice that in every case where both "f" in the gusset and "s" in
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the gusset are rated satisfactory, the joint received an over-all rating

of satisfactory. Thus the tentative design procedure could have been

used to correctly predict the behavior of each of these joints.

Final Design Procedure

In working with the tentative joint design procedure and verify-

ing it on the joints that had been load-tested, ultimate stress values

were used. These were used because only ultimate stresses or stresses

at failure could be calculated for the joints that were load-tested since

only the load at failure was available from the test data. While ulti-

mate allowable stress values could be used in design by applying appro-

priate factors of safety, it is more common and probably simpler to

use allowable working stresses. Therefore the suggested final design

procedure in terms of working stresses is as follows:

1. Joint must be strong enough to develop the allowable working
stress for the grade of framing being used. For example, de-

sign specifications would commonly suggest a value of 1,500

p.s.i. for construction-grade Douglas fir.

2. The calculated maximum fiber stress in the gusset must not be

over the allowable fiber working stress for the grade of ply-

wood used. For C-C exterior-sheathing-grade plywood, design

specifications would commonly suggest a value for allowable

fiber working stress of 1,875 p.s.i.

3. The calculated maximum shear in a plane parallel to the glue
line must not be over the allowable working stress value. On
the basis of work reported by Radcliffe (2), a value of 90 p.s.i.

is suggested for allowable working stress in shear in a plane

parallel to the glue line.

Other Test Results and Observations

Effect of Orientation of Grain of the Plywood
Data for the joints that were load-tested to evaluate the effect of

orientation of the grain of the plywood gussets are shown in Table
2. Five orientations of the grain of the plywood with respect to the

grain of the stud member were included: 0, 22.5, 45, 67.5, and 90

degrees. The value for "Maximum T in stud" was used as a meas-
ure of the relative strength of the joints. An analysis of variance

indicated that the orientation of the grain of the plywood had a signif-
icant effect on the strength of the joint at the 1-percent level. The least

significant difference between mean values of joint strength was found
to be 686 p.s.i. at the 5-percent level.
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Examination of the mean values of joint strength for the various

angles of grain indicates the 22.5-degree orientation to be the strongest

with the 0-degree orientation being somewhat weaker. Assuming that

the maximum fiber stress in the gusset acts in a direction normal to the

"assumed line of failure" of the gusset, as indicated in Fig. 10, the

average direction of the maximum fiber stress in the joints tested was

inclined about 10 to 12 degrees to the axis of the stud. One would

expect therefore that the gussets having grain inclined at and 22.5

degrees to the axis of the stud would be of about equal strength and

would be the two strongest joints of those tested. No explanation can

be given for the fact that joint appears to be somewhat weaker than

joint 22.5. Joints with 45, 67.5, and 90 degree orientations of grain

are weaker joints, as one would expect.

On the basis of these tests, it is reasonable to conclude that gussets

having orientations of grain of the face plies that are inclined more

than perhaps 15 to 20 degrees to the direction of maximum fiber stress

are appreciably weaker than gussets having grain of face plies approxi-

mately parallel to the direction of maximum fiber stress.

Effect of Direction of Load on Joint Strength

The joint design procedure was established on the basis of tests

that produced compression in the unsupported edge of the gusset. This

is, of course, the type of load that would be produced by snow or dead

load on the roof of a structure. Under some conditions, however, wind

loads may reverse the direction of the load on the joints and produce
tension in the unsupported edge of the gusset. For this reason a series

of joints were tested to determine the effect of direction of load on

joint strength (Table 3).

The joints included in the tests reported in Table 3, Part A, were

exactly the same as seven of the joints listed in Table 1. The only
difference between these tests and those reported in Table 1 was in the

direction of loading. A comparison of values for "Maximum T in

stud" for the joints of Table 3, Part A, and for the corresponding

joints of Table 1 shows that on the average the stress in the stud at

failure was approximately the same in both tests. It seems reasonable

to conclude that the joints have about the same strength regardless of

direction of loading.

The joints included in the tests reported in Table 3, Part B, were

exactly the same as the joints listed in Table 2. The only difference

between the tests was again in the direction of loading. A comparison
of values for "Maximum 'f in stud" in the two test series indicates

that in every case the joint was somewhat stronger when loaded as the
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joints in Table 3 were loaded. It seems reasonable to conclude that

the joints are at least as strong when loaded to produce tension in the

unsupported edge of the gusset as when loaded to produce compres-
sion in the unsupported edge of the gusset.

Buckling of the Edge of the Plywood Gussets

As mentioned earlier, a 2 x 4 block was nailed between the un-

supported edges of the ^-inch gussets to support these edges against

buckling. This system of support proved to be entirely satisfactory.

No support was provided for the edges of the ^s-inch gussets, and

the tests verified the fact that none was required.
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Appendix

Calculations Sheet for Joint: 2 x 8-%-l 8-0 (see also Fig. 10)

Maximum "f" in Stud

M P 115,900 2,307 P = 2,307 lb. = Applied external load

S
' A 15.23

f= 7,799 p.s.i.

12.19

Maximum "f '

in Gusset

M = 115,900 in. Ib.

P= 2,307 Ib.

M
.
P 115,900=-+ =

S A
f = 7,397 p.s.i.

16.5

2,307

6.18

M = Maximum moment in stud

M =
2,307x(54.0 ^-)= 115,900 in. Ib.

\ * /

S= 15.23 cu. in. = Section modulus of 2 x 8

A= 12.19 sq. in. = Area of 2x8

Assume that critical section is at assumed
line of failure.

d =a+b= 16.0 in. effective depth of gusset
t=.0965X4= .386 in. thickness of four ef-

fective plies

.386X16.02

-f- = 16.5 cu. in. section

modulus
A= 16 X.386= 6. 18 sq. in. effective cross-

sectional area

Shear "s" in Plane Parallel to the Glue Line

M = 115,900 in. Ib.

P= 2,307 Ib.

c= V3.752+9.02

c= 9.76in.

Tc

J

T 7.5X18.0 (7.5
2+18.02

) vx0

12

J
= 8,556 in.

4

115,900X9.76

8,556

st=132 p.s.i.

P
Sp= A

Consider load to be transmitted from stud

to gusset.

Moment in stud produces shear stresses in

plane parallel to glue bond which form a

resisting couple (Fig. lOa).

These shear stresses are assumed to vary
from zero at center of effective glue line

area to a maximum at distance "c" from

this center.

Maximum shearing stress required to form

the resisting couple may be calculated

from the torsion formula.

St= Component of shear due to twisting

moment
T = M = Twisting moment

bh(b2+h2
)

12
-X2 = Polar moment of in-

2,307

270
= 8.5 p.s.i.

ertia of effective glue line area of two

gussets

sp
= Component of shear stress required to

resist load P
A= 2X7.5Xl8.0 = 270sq. in. glue line area

s= 136.5 p.s.i., resultant shear from components st and sp



20 BULLETIN No. 654

Summary

Rigid frames are well suited for farm-building construction and

have been used in such construction in increasing numbers in recent

years. Most of the rigid frames used in the past were factory-

fabricated from steel or laminated wood. There is a need for designs

for frames that can be constructed by local builders from stock lumber

materials.

In the summer of 1957, work was begun on the development of de-

signs for lumber rigid frames. The objective of the first phase of

this work was to develop a procedure for designing plywood gussets

used to form the joints of lumber rigid frames. Load tests were made

on 88 full-scale joints formed with nailed and glued plywood gussets.

The results of these tests were then used as a basis for establishing a

joint design procedure.

The study indicated that nailed and glued plywood gussets can be

satisfactorily used to form rigid joints between straight dimension-

lumber members of rigid frames.

The required size and thickness of the plywood gussets needed for

a given rigid frame design can be determined analytically. The gussets

should be designed to develop the allowable working stress in the fram-

ing without the gusset plate stresses in extreme fiber or in shear par-

allel to the glue line being above allowable working values.

Although the design procedure was developed on the basis of tests

made of joints fabricated with ^- and ^g-inch plywood, there is no

reason why it would not apply equally well to i/^-inch plywood.

Support against buckling is not required for the unsupported edges

of *H$-inch plywood in the range of gusset plate sizes included in these

tests, but is required for the ^-inch gussets. This support may be

satisfactorily provided by nailing a 2x4 block between the unsup-

ported edges of the two gussets required for a joint.

The technique for making nailed and glued joints as proposed by
Radcliffe (2) and used in these tests was found to be entirely

satisfactory.

When joints are loaded to produce tension in the unsupported edge
of the gusset, they are at least as strong as when loaded to produce

compression in the unsupported edge.
The orientation of the grain of the face plies of plywood gussets

has a significant effect on strength of the joint. Orientations that are

inclined more than perhaps 15 to 20 degrees to the direction of maxi-

mum fiber stress in the gusset are significantly weaker than orienta-

tions that are approximately parallel to the direction of the maximum
fiber stress.
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