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ABSTRACT

Model management is an important but, as yet, poorly-

researched area in decision support systems. One difficult issue

in developing a model management system is to build automatic

modeling capabilities which can create ad hoc models by

integrating existing models and provide advice regarding

effective use of models. This paper presents a software

architecture and a graph-based framework for developing such

capabilities. The architecture consists of three major components

model utilization subsystem, modeling subsystem, and inference

engine. The core of the system is the inference engine which

applies the graph-based framework to drive the process of model

integration and selection. The graph-based framework includes a

graph-based model representation scheme and reasoning mechanisms

for model integration and selection. The representation scheme

represents a set of data as a node and a set of functions as an

edge. Since a model can be decomposed into two sets of data

(inputs and outputs) and a set of functions for converting data,

it is represented as a combination of two nodes and one edge

connecting the two nodes. Based on this scheme, mechanisms for

model integration and selection are developed. These mechanisms

enable a model management system to create ad hoc models

automatically. A prototype implemented in PROLOG is also

presented to demonstrate the graph-based framework.
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INTRODUCTION

In the past decade, much effort has been spent developing

decision support systems (DSSs) to support semi-structured or

unstructured decisions. A DSS is usually composed of three major

components: data management, model management, and user interface

Since good models can significantly improve the performance of

human decision-making by facilitating understanding about the

decision problem, examining more alternatives, or enhancing

prediction (Little, 1970) , a model management system (MMS) that

supports the development of decision models and their subsequent

use has been considered crucial to the success of DSSs (Alter,

1980, Bonczek, Holsapple, and Whinston, 1981b, Keen and Scott

Morton, 1978, Sprague and Carlson, 1982)

.

Previous research in MMSs primarily focused on two issues:

model base organization and model representation. A model base

is a repository of decision models. On the one hand, because the

model base and the data base are similar in many aspects,

researchers have studied the application of data models, such as

the relational model (Codd, 1970) , to the development of MMSs

(Blanning, 1982,1983,1984,1985, Donovan, 1976). On the other

hand, some researchers concentrated on adopting knowledge repre-

sentation techniques to represent models in the model base. The

model representation schemes developed include Si-net (Elam,

Henderson, and Miller, 1980), knowledge abstractions (Dolk, 1982,

Dolk and Konsynski, 1984, Konsynski and Dolk, 1982), predicate

calculus (Bonczek, Holsapple, and Whinston, 1980, 1981a) , and

frame-based systems (Watson, 1983). In developing an MMS, both a
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model base organization for model storage and an appropriate

technique for model representation are essential.

In addition to these two issues, however, it is very

important for an MMS to have the following two capabilities:

1. Providing advice regarding effective use of existing
models, and

2. Integrating existing models to support ad hoc decisions
automatically.

The advising capability helps the user to figure out which model

in the model base can be applied to solve a particular problem.

The capability of model integration allows an MMS to create

complicated models by integrating existing models in the model

base. In this case, the models stored in the model base are not

only stand-alone decision models but also building blocks for

creating new models. It will substantially enhance the capability

of an MMS to meet unanticipated requirements. Since

decomposition and integration are widely used strategies for

offsetting human limitations in the human modeling process, the

power of an MMS will be very limited unless it has these

capabilities (Simon, 1981, Liang and Jones, 1986) .

The purpose of this paper is to introduce an expert systems

approach to building such capabilities in MMSs, with emphasis on

the design of reasoning mechanisms that drive the process of

model integration and selection. Models are usually knowledge-

intensive and composed of many complicated and inter-related

functions for data transformation. Developing mechanisms for

providing advice and integrating models in MMSs is, therefore,

much more difficult than implementing data management functions

in data base management systems. This paper takes advantage of
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recent progress in artificial intelligence and graph-based

models in operations research to develop an architecture for MMSs

and mechanisms for model integration and selection.

The remainder of this paper is organized as follows. First,

background of MMSs and an architecture for MMS design are briefly-

described. The architecture consists of three major components:

model utilization subsystem, modeling subsystem, and inference

engine. Then, a graph-based approach for designing the inference

engine is presented. It includes a graph-based representation

scheme and mechanisms for model integration and selection. In

this approach, a set of data is represented as a node. A set

of functions for converting a set of data to another set of data

is represented as an edge. Each basic model, a model stored in

the model base, is a combination of two nodes and one edge

connecting the two nodes. A modeling process is defined as a

process that searches a graph capturing all possible alternatives

for producing the desired information and then find a path to

generate the information. According to this representation

scheme, mechanisms for model integration and selection are

developed. These mechanisms enable an MMS to automatically

combine basic models to provide ad hoc support. Finally, TIMOS

(The Integrated Modeling System) , a prototype implemented in

PROLOG, is described to illustrate the graph-based approach.

Sample consulting sessions are also presented. Successful

implementation of the architecture and mechanisms in PROLOG has

not only demonstrated the feasibility of building advising and

model integration capabilities in MMSs but also indicated a
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promising integration of operations research, DSSs and expert

systems research.

1. KNOWLEDGE-BASED MODEL MANAGEMENT SYSTEMS

A model is an abstraction of a specific problem or a class

of problems. Because of human cognitive limitations, such as

limited short-term memory and bounded rationality, people usually

use models to help them understand, organize, study, and solve

problems (Simon, 1981). Most models designed to support today's

human decision-making are complicated, knowledge-intensive, and

implemented on computers.

A model base is a collection of those computerized models.

In general, a model base is both integrated and shared. By

"integrated" we mean that the model base may be thought of as a

unification of many otherwise distinct models, with redundancy

among those models partially or wholly eliminated. By "shared"

we mean that any individual model in the model base may be called

by more than one integrated model and may be accessed by any

authorized user.

A model management system is a software system that handles

all access to the model base and provides information to users on

demand. Because of the similarity of the data base and the model

base, early research in MMS considered models as data or

subroutines and proposed that an MMS must support the following

functions (Sprague and Carlson, 1982, Sprague and Watson, 1975,

Will, 1975):

1. Creation of new models: providing an environment to
support the model builder so that models can be developed
with minimum effort;
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2. Storage of existing models: maintaining a model base in
which decision models are stored;

3. Access and retrieval of existing models: facilitating the
utilization of decision models in the model base;

4. Execution of existing models: executing an existing
model and reporting outputs of the model; and

5. Maintenance of existing models: supporting the update and
modification of the existing models in the model base.

Although these traditional functions may suffice for the

need of model management in some systems, such as institutional

DSSs which deal with decisions of a recurring nature, they are

not sufficient for ad hoc DSSs which are concerned with problems

that are not usually anticipated or recurring (Donovan and

Madnick, 1977)

.

For example, a model base contains an economic order

quantity (EOQ) model and three demand forecasting models. The

EOQ model computes the optimum order quantity for a specific year

from the demand, holding cost, and ordering cost for that year.

Each of the three demand forecasting models employs the

regression, demand function, and moving average approaches to

forecast future demand respectively. Suppose one needs to know

the economic order quantity for 1987, but one does not have

information about the demand for 1987, a required input for

executing the EOQ model . There are two ways for the user to

produce the desired output in a traditional MMS : first, create a

new model that has functions for both demand forecasting and EOQ

computation; and second, manually go through the following

process:

1. Search the model base and find those demand forecasting
models and the EOQ model;
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2

.

Select one among those available demand forecasting
models and get the input data required for executing the
model

;

3

.

Execute the selected demand forecasting model and then
feed the forecasted demand to the EOQ model ; and

4. Execute the EOQ model to produce the desired information.

The former approach needs effort to create a redundant

model, which is the integration of two existing models; while the

latter approach needs effort to integrate models by the user

manually. Neither has effectively used existing models. Although

this example is straightforward and can be solved easily by the

user or any model builder, it does indicate that a powerful MMS

needs ad hoc modeling capabilities, which provide advice

regarding effective use of existing models in the model base.

Namely, it needs the following two capabilities:

1. Model integration

A mechanism for integrating existing models so that each
model in the model base is not only a stand-alone model
but also a module for creating ad hoc models which are
built in case of need. In this example, the MMS must be
able to integrate the demand forecasting models and the
EOQ model automatically.

2

.

Model selection

A mechanism that figures out what models are available to
produce the requested information and then automatically
selects or allows the user to select a model for
execution. In this case, the MMS must be able to inform
the user of all available combinations of the EOQ model
and demand forecasting models and allow the user to
select one for execution or to execute more than one
model and then compare the results.

Since modeling knowledge is essential to the operations of

model integration and selection, a model management system with

the capabilities of model integration and selection is called a

knowledge-based model management system. The major characteristic
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that differentiates a knowledge-based MMS from a traditional MMS

is its capability of figuring out what, when, and how to

integrate models in the model base.

2. ARCHITECTURE FOR A KNOWLEDGE-BASED MMS

Since the process of model integration and selection

involves reasoning and judgment, an architecture different from

traditional DSS architectures must be used to develop a

knowledge-based MMS. In this section, a software architecture

adopted from expert systems, as illustrated in Figure 1, will be

presented.

INSERT FIGURE 1

In order to support both model creation and model

utilization, a Knowledge-based MMS needs two major subsystems:

one is the modeling subsystem, and the other is the model

utilization subsystem. The modeling subsystem focuses on

improving the productivity of model builders; whereas the model

utilization subsystem concentrates on effective use of models.

In addition, an inference engine is required to drive the

processes of model integration and selection and to integrate

three basic components: model base, data base, and knowledge

base. Basic models are stored in the model base; data pertaining

to a decision-making are stored in the data base; and the

knowledge regarding effective use of the models in the model base
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and the data in the data base is stored in the knowledge base.

2.1 Model Utilization Subsystem

To support effective use of models the model utilization

subsystem of an MMS should be able to accept user queries, report

results to the user, and provide helpful messages in the course

of consultation. In other words, it should have three major

functions: query processing, report generation, and help. The

query processor is the interface between decision makers and the

system. It translates a user's query into a set of commands

understood by the system. The report generator provides the

requested output in a format the user prefers. The help module

provides helpful messages such as how the results were generated.

Since the model utilization subsystem focuses on supporting

decision makers, who use the produced information to improve the

performance of decision-making, its primary concern is how to

generate useful information instead of where the information came

from. It would be very useful if the system can provide a

unified language that can both retrieve data in the data base and

execute models in the model base. The advantages of this language

are three-fold.

1. The data base and the model base are integrated and the
process for generating the requested information becomes
transparent to the user. The user does not need to
remember all models stored in the model base in order to
use them. Of course, if the user wants to know more
about how the information was generated, the help module
should be able to provide an explanation,

2. Once a model is developed and stored in the model base,
all authorized users will be able to use it without the
need of a lengthy process to inform them. This guarentees
maximum use of existing models, and
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3. Once a model is updated, all users will use the updated
version of the model. This reduces possible information
inconsistency.

Developing such a natural language processor is an

interesting research area (Blanning, 1984) . It is, however, not

the main concern of this research because it has little effect

on the core of the research, development of reasoning mechanisms

for model integration and selection. At the current stage,

because natural language processing is still more a research area

in laboratories rather than a practically applicable technique, a

good interactive language may suffice. Once natural language

techniques become mature, a pre-processor can be added to the

top of the query processor. In later sections, a SEQUEL-like

language implemented in the prototype will be described.

2.2 Modeling Subsystem

The modeling subsystem is designed to support the model

builder, who is responsible for developing useful models. It

should have three major functions: knowledge acquisition, user-

assisted modeling, and automatic modeling. The MMS acquires

knowledge of models, such as integrity constraints, through the

model acquisition module; whereas the model builder interacts

with the user-assisted or automatic modeling modules to create

new models or modify existing models.

In the user-assisted modeling mode, the model builder edits

existing models by performing a set of model manipulation

operators, such as decomposition and integration. In the

automatic modeling mode, the model builder specifies the

information the new model must produce, and the MMS will try to
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create the model by editing existing models automatically. In

order to support automatic modeling, the inference engine of the

system must have a mechanism able to integrate basic models in

the model base to create new, more complex models automatically.

2 . 3 Inference Engine

The inference engine is the heart of a knowledge-based MMS

.

It performs two major functions: inference and control. The

model utilization or modeling subsystem translates a user's

request into commands understood by the system, and then

activates the inference engine to process the commands, control

the access of the data base and the model base, retrieve knowledge

from the knowledge base, or make inference if necessary. After

obtaining the required information or proving that it is not

available, the inference engine passes messages back to those two

subsystems and then reports the result to the user.

The inference engine of a knowledge-based MMS needs three

major inference mechanisms:

1. Integrating the data base and the model base,
2. Integrating models in the model base, and
3. Controlling the execution of the selected model.

The first mechanism controls the access of the data base and

the model base. For any query, the MMS first searches the data

base. If the information is available in the data base, it will

be retrieved. Otherwise, the system will search the model base

and see whether there is a set of models available for producing

the information. If there is any model available, the mechanism

will check the availability of its inputs and then retrieve the
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inputs to execute the model (Liang, 1985)

.

If no basic model in the model base is available to produce

the required information, the second mechanism will take over and

try to develop executable integrated models. A detailed

discussion of a graph-based mechanism will be presented in the

next section.

After the model for producing the desired information is

chosen, the mechanism for model execution, which schedules the

integrated models and makes sure that they are executed in a

proper sequence, will be activated.

3. A GRAPH-BASED INFERENCE MECHANISM

The discussion in the previous section has indicated that

the mechanism for integrating models is at the heart of a

knowledge-based MMS. Although research in MMSs has increased

dramatically in the past decade, most of it was concentrated on

either the application of existing data models, such as the

relational model (Blanning 1982) and the network model (Stohr and

Tanniru, 1980) , or knowledge representation schemes. Few

mechanisms that provide advice about model integration and

selection have been developed.

Recently, Geoffrion proposed an approach called structured

modeling, which focused on exploring functional relationships

among the modules constituting a model during the modeling

process (Geoffrion, 1985) . Although this approach may have

significant impact on the development of MMSs, it was not

specifically developed for model management. Nor did the

approach provide mechanisms for model integration or model
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selection if more than one model is available to support a

specific decision.

In this section, a graph-based framework for building the

capabilities of model integration and selection is presented.

The framework covers the following three essential issues:

1. Representation of models,
2. Algorithm for integrating models, and
3. Algorithm for selecting models.

3 . 1 Graphical Representation of Models

In order to build model integration and selection

capabilities, the first issue to be considered is how to

represent models in the model base. Unless a model has been

properly represented, an MMS will not be able to access it.

This section introduces a graph-based approach to representing

models in the model base. The advantages of this approach are as

follows:

1. It is easy to understand;

2. It is compatible with the model integration and selection
mechanisms to be discussed in the next section; and

3. Given the graphical representation, many heuristics and
algorithms developed in graph theory can be applied to
model management.

As problem solving is often described as a search through a

vast maze of possibilities (Simon, 1981) , so can the process of

human modeling be described as a search through a number of

possible relationships in order to find a route which can convert

the initial state (available information) of a problem to the

desired final state (output information) . By this concept,

models in the model base can be represented by two basic
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elements: nodes and edges. The modeling process can be formulated

as a process that creates a directed graph and selects a path on

the graph. The directed graph, called a model graph, represents

all possible alternatives for solving the problem; and each path

in the graph represents a model. They can be defined as follows.

Definition 1: Node

A node, N, represents a set of data attributes. It could be
the inputs or the outputs of a set of models.

[Example] In Figure 2a, node A represents a set of data including
the demand, holding cost, and ordering cost. Node B repre-
sents the computed economic order quantity.

INSERT FIGURE 2

Definition 2 : Edge

An edge, e, represents a set of functions that convert a set
of input data (the starting node of the edge) to their
associated output (the ending node)

.

[Example] The edge el in Figure 2a represents the function which
computes EOQ from the demand, holding cost, and ordering
cost.

Definition 3 : Connectivity

Two nodes are connected if there exists at least one edge
that converts the data in one node to that in another.

[Example] Node A and B in Figure 2a are connected because edge
el converts the demand, holding cost, and ordering cost in
node A to the EOQ in node B.

In practical applications, both nodes and edges should be

nonempty sets. A combination of two connected nodes and one edge

connecting the two nodes constitutes a basic model, the smallest
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unit in the model base.

Definition 4 : Basic model

A basic model, Mb, is a combination of two nodes and an edge
connecting the two nodes. The starting node of the edge
represents the inputs of the basic model, and the ending node
of the edge represents the outputs of the basic model. Hence,
a basic model can be represented as a triple, <Nl,e,N2>.

[Example] The combination of <A,el,B> in Figure 2a is a basic
model.

Each basic model in the model base is a stand-alone model,

but it is also a basic element for automatic modeling. Since

there is usually more than one way to convert a set of inputs to

a set of outputs, the edge between two nodes may not be unique.

That is, a model base may have more than one model for solving a

particular problem. For example, if one wants to forecast demand

for the next year based on the demand data in the last 15 years,

one may use the moving average, exponential smoothing,

regression, or the Box-Jenkins approach, as illustrated in Figure

2b. In other words, four basic demand forecasting models in the

model base, <C,a,D>, <C,b,D>, <C,c,D>, and <C,d,D>, are available

for forecasting the future demand.

In addition to the case where more than one model is avail-

able to produce a set of required outputs, it is possible that a

set of basic models, in combination, produce the required

outputs, but each individual model produces only a subset of the

required outputs. In order to differentiate these two

situations, we need to define two types of nodes: AND nodes and

OR nodes.
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Definition 5: AND node

An AND node, Na, is a node that is the ending node of more
than one basic model. Each model produces a subset of the
required output, but the combination of these models
produces the whole set of the required outputs. An AND node
is true only if all edges ending at the node are true.

[Example] Node D in Figure 2c is an AND node because the model
<A,a,D> produces the demand information, the model <B / b / D>
produces the holding cost, and the model <C,c,D> produces the
ordering cost. Therefore, the three models, in combination,
produce the information contained in node D, but each
model produces only a subset of the information. In this
paper, an AND node is represented as a circle.

Definition 6; OR node

An OR node is a node that is the ending node of more than one
basic model; each model produces the entire set of required
information. An OR node is true if at least one edge
ending at the node is true. In this paper, an OR node is
represented as a square.

[Example] Node D in Figure 2b is an OR node because there are
four models ending at node D and each of which can produce
the forecasted demand.

In the human modeling process, an AND node represents a

union point where more than one set of output data is combined to

formulate the required output; and an OR node represents a

decision point where one or more models are selected among those

available models.

Because all of the four forecasting models represented in

Figure 2b produce the same set of outputs, and no output of a

model becomes an input of another model in the graph, it can be

called a one-stage graph. However, not all modeling problems are

as simple as this example. Rather, many problems may need

integration of various kinds of models. By "integration", we

mean that two or more models are combined to become an integrated

model in which the output of a model is fed into another model.

For example, Figure 2d illustrates a two-stage graph. It
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represents an integration of the EOQ and demand forecasting

models described in the previous section. In the figure, the

output of the demand forecasting models (Al, A2 , or A3) are fed

into the EOQ model (Bl) . Because the model base has one model

for EOQ computation and three models for demand forecasting,

there are three paths (1*3), i.e., three different models, for

producing the desired information. Formal definitions of the

path, integrability and integrated model are as follows.

Definition 7: Path

A Path, P, is a finite sequence of edges of the form that

(1) these edges are connected,
(2) at each OR node, only one edge that enters the node is

true,
(3) at each AND node, all edges that enters the node are

true.

Definition 8 : Integrability

Two basic models are integrable if the input of one model
and the output of the other share common data attributes.

Definition 9; Integrated model

An integrated model, Mi, is a model which integrates
a set of basic models.

According to the definitions previously described, the

concept of a model graph and the modeling process can be defined.

Definition 10: Model graph

A model graph, G, is a graph which represents all possible
models, including basic models and integrated models, for
producing the requested information. Each path in a model
graph represents a model. A model graph must be acyclic.

[Example] Figure 2d is a model graph which represents models for
computing EOQ. The model graph is composed of three integrated
models. For example, path Al-Bl is the model which forecasts
demand by using the moving average technique (edge Al) and then
computes the EOQ by using the EOQ model (edge Bl)

.
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Definition 11: Modeling process

A modeling process is a process that includes two phases:
the formulation of a model graph and the selection of one or
more paths in the formulated model graph.

The modeling process is a logical process that formulates a

model graph capturing all possible paths for producing the

requested outputs and makes selection in the graph. Because a

model graph clearly represents the relationships among relevant

basic models, it becomes much easier for the system to provide

advice regarding model integration and selection. Based on the

model graph, an MMS may either perform model integration and

selection automatically (the automatic modeling mode) or provide

advice about model integration to the user and then allow the

user to create integrated models (the user-assisted modeling

mode) . For implementation purpose, each model graph must be

acyclic. Otherwise, the modeling process may become an infinite

process.

Each path in the graph implies an appropriate model; but it

does not guarantee that the model will generate a feasible

solution. For example, if a model base contains a capital

budgeting model which uses the integer programming technique to

determine the best combination of projects for investment, the

model graph only indicates the existence of this model, but it

will not be able to tell the user whether the model can produce a

feasible solution until the model is actually executed.

After formulating a model graph and choosing a path in the

graph, the MMS also needs a process for executing the selected

path. In graphical terms, the model execution process can be

defined as follows:
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Definition 12 ; Execution process

The model execution process is a process that activates a
path and then executes the models constituting the path in an
appropriate sequence in order to generate the output.

3 . 2 Implementation of the Graph-based Representation

Concerning the implementation of a model representation

method, a model can be portrayed by the following five categories

of information:

- The output of the model,
- The input required to produce the output,
- The computational procedures used in the model,
- The integrity constraint of the model, and
- The validity of the model.

In other words, a basic model can be represented by a set of

five relations: relations between the model and its inputs,

outputs, integrity constraints, validity evaluation, and

computational subroutines, as follows:

INPUT (Modelname, Inputs)
OUTPUT (Modelname, Outputs)
OPERATION (Modelname, Functions)
INTEGRITY (Modelname, Constraints)
VALIDITY (Modelname, Evaluation)

Each relation in the scheme represents a unique character-

istic of a model. They should be read as "the inputs of

<modelname> include <inputl, input2 , . . >" , "the outputs of

<modelname> include <outputl, output2 , . .>" , and so forth. The

first four relations are important to the formulation of a model

graph, and the fifth relation (validity relation) is important to

the selection of models.

The advantages of this scheme are two-fold. First, it is
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non-procedural, i.e., the model builder specifies what the model

is rather than how the model computes data. Second, it can be

implemented easily in a symbolic language, such as PROLOG.

Corresponding to the graph-based representation, the input

and output relations are nodes for formulating a model graph.

The operation relation is represented as an edge. It specifies

computational functions used in a model and is part of the

interface between the logical integration of models indicated in

a model graph and the actual execution of the selected model. A

basic model, identified by a unique name, is a combination of one

operation relation (an edge) and its associated input relation

and output relation (two nodes)

.

The integrity relation of a model specifies constraints that

must be satisfied before the model can be considered applicable

to a specific problem. For example, the least squares linear

regression technique requires that the number of cases must be

larger than the number of independent variables plus two. Unless

this constraint is satisfied, the sales forecasting model using

the regression approach should not be considered in formulating

the model graph.

The validity relation indicates a measure of the fitness of

a model to a particular problem. Because the validity of a model

can only be assessed after it has been implemented, the validity

value in the relation usually represents the historical validity

of the model in a specific context. In other words, it

represents a kind of subjective confidence in the model, based on

a pre-defined model evaluation function or previous experience in

that specific context. For example, in the case of forecasting
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future sales, our experience indicates that the accuracy of the

moving average technique is poor for identifying the turning

point in a trend (Chambers, Mullick, and Smith, 1971) , the model

should have a low validity value when it is considered for

forecasting the turning point.

Measuring validity is important to the automation of model

selection. If more than one model is applicable to a specific

problem, the MMS needs their validity values to make selection

automatically. For implementation considerations, we need a

quantitative measure of validity. A model evaluation function

that determines the validity of a model based on a set of pre-

determined criteria is required. The reason for quantifying

validity is that the validity value can be manipulated and

calculated to facilitate model selection in a model graph. For

example, different modeling strategies, including optimizing and

satisficing, can be implemented in the automatic modeling

process. The optimizing algorithm selects the best model among

all alternatives for the user based on the expected validities of

available models; whereas the satisficing strategy selects the

first model whose validity is higher than the satisfactory level.

Because of space limitation, it is difficult to provide a

complete discussion on the development of model evaluation

functions in this paper. In general, the following three issues

should be considered:

1. What are proper criteria for determining validity value?
There are at least five possible criteria: (1) accuracy
of the model, (2) the user's preference for the model,
(3) distance from producing the desired information, (4)

number of models integrated, and (5) total cost.



Page 21

2. How can several validity values be combined to get the
overall evaluation of an integrated model?

3

.

When should a model be evaluated?

Further discussions about these issues can be found in (Liang and

Jones, 1986)

.

Figure 3 is a sample representation of the EOQ model. The

model has an integrity constraint that both the holding cost and

ordering cost must be constants in the period. If the integrity

constraints are satisfied, the validity of the model is 0.8 on a

0.0 to 1.0 scale.

INSERT FIGURE 3

3 . 3 Mechanism for Formulating a Model Graph

The major motivation for developing the graph-based model

representation scheme is to build consulting capabilities in

MMSs, which can provide advice concerning model integration and

selection. To develop such capabilities we need a mechanism to

formulate model graphs, the basis on which advice is generated.

Formulation of a model graph involves extensive search in

the data base and the model base. Many heuristics have been

developed for creating and traversing a search tree (see Busacker

and Saaty, 1965, Carre, 1979, Rich, 1983 or other books in graph

theory or artificial intelligence for a review) . These include

depth-first search, breadth-first search, and best-first search.

For creating a model graph the depth-first search and the best-

first search strategies are better than the breadth-first search
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strategy because they support both the optimizing and the

satisficing modeling strategy. An MMS generates a satisfactory

model in the satisficing strategy but selects the model with the

highest validity in the optimizing strategy. In this section, an

algorithm for formulating the model graph will be presented.

This algorithm is based on the depth-first search strategy and

compatible with the graph-based model representation scheme. The

application of different modeling strategies will be discussed in

the next section.

The basic idea of the depth-first search is to pick up an

alternative at every node arbitrarily and work forward from that

alternative. Other alternatives at the same level are completely

ignored as long as there is any hope of reaching the destination

using the orginal choice. If the original choice is proved

impossible to lead to a solution, then go back one level to work

on another alternative.

Suppose a user has placed a query and the requested

information is not directly available in the database, procedures

for applying the depth-first search to formulate a model graph

are as follows:

Step 1: Search OUTPUT relation in the model base to see whether
there is a model that produces the output.

Step 2: If no model is found, then stop searching and report
that no model is available in the model base. The system
may ask the user to develop a new model.

Step 3: If a model is available, then search INPUT relation of
the model to find the input data required for execution.

Step 4: Repeat the following process until all inputs are
obtained or one input is proved unavailable:

4.1: Pick up an input, check whether it is an output of its
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preceding models (check for acyclicity)

.

4.1.1: If it is true, then drop this model and go to
step 3

.

4.1.2: IF it is not true or the model does not have
any preceding model then skip this procedure.

4.2: Search the data base for availability.

4.2.1: If the input is available in the data base, then
retrieve its value and go to step 4.1.

4.2.2: If the input is not available in the data base,
then go to step 4.3.

4.3: Search OUTPUT relation of the model to see whether it
can be produced by a model in the model base.

4.3.1: If no model is available, then go to step 4.4.

4.3.2: If a model is found, then go to step 4.5.

4.4: Prompt the user for the input.

4.4.1: If it is provided by the user, then obtain its
value and go to step 4.1.

4.4.2: Otherwise, drop the model.

4.5: Search the INPUT relation of the model to find input
data required for execution. Repeat step 4 until all
input data have been obtained or one input is proved
unavailable.

Step 5: If all input data are available, then check integrity
constraints.

5.1: If any integrity constraint is not satisfied, then drop
the model

.

5.2: If all constraints are satisfied, then add the model to
the model graph.

Step 6: Check whether there is another model for producing the
desired information.

6.1: If there is another model, then go to step 3.

6.2: Otherwise, stop the process and then provide advice
based on the formulated model graph.

Figure 4 illustrates the process for formulating a model
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graph. The circled numbers in the figure are corresponding

steps. A prove of the generality of this mechanism is presented

in Appendix 1.

The procedures of the best-first search are basically the

same as that of the depth-first search, except that the former

employs an evaluation function to evaluate the potential of all

possible paths before further investigation and gives higher

priority to better paths in order to make sure that models with

higher validities will be examined earlier. There are certainly

other possible approaches for building model graphs. They will

not be discussed here, however, because they may be derived from

the procedures described before.

INSERT FIGURE 4

In this mechanism, if the operation that picks up an input

of a model and searches for the availability of the specific

input is considered a basic operation in the model base and

represented as an edge, then the formulated model graph will be

an alternate AND/OR tree.

Definition 13 ; Tree

A tree, T, is a graph containing one or more nodes such that

(1) there is a specially designed node called root,
(2) the remaining nodes are partitioned into n (n>=0)

disjoint sets Tl,...,Tn where each of these set is also
a tree. Tl,...,Tn are called the subtrees of the root.

Definition 14: AND/OR tree

An AND/OR tree is a tree that includes both AND nodes and OR
nodes.
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Definition 15; Alternate AND/OR tree

An alternate AND/OR tree is a tree in which the AND node and
OR node appear at alternate levels. In other word, if nodes
at level m are AND nodes, then the nodes at level m+1 must be
OR nodes.

[Example] Figure 5 illustrates an alternate AND/OR graph. It is
the model graph formulated by the above algorithm for providing
advice about the EOQ and demand forecasting problem described
in the first section.

INSERT FIGURE 5

Proposition 1: The model graph formulated in the above algorithm
is an alternate AND/OR tree .

A prove of this proposition is in Appendix 2.

3.4 Strategies for Model Selection

Given the formulated model graph for producing the desired

information, there are two different strategies for providing

advice: optimizing and satisficing. The optimizing strategy

requires that an MMS formulate a model graph and then evaluate

all paths in the graph to find the best alternative. The

satisficing strategy, on the other hand, requires that each path

be evaluated immediately after it is found and accepted if it is

satisfactory. Therefore, a complete model graph may not be

necessary in the satisficing strategy.

If validities of all models in the model graph are

available, then the optimizing strategy is simply to maximize the

validity of the selected path. This can be formulated as a

maximum validity flow problem subject to the constraints of
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modeling time, modeling costs, and other considerations. In this

case, most algorithms for finding the best path in graph theory

can be applied to solve the problem.

Although the optimizing strategy guarantees that, given the

criteria, the formulated model is the best available, the

combinatorial explosion sometimes makes it unrealistic and forces

a system to adopt the satificing strategy. In the satisficing

strategy, the MMS follows the same procedure to formulate a model

graph except that every path is evaluated at the time it is

formulated. If a satisfactory path has been found, the process

for formulating the model graph will be terminated and the path

will be chosen to produce the desired information. Figure 6

briefly illustrates the modeling process for implementing the

satisficing strategy.

INSERT FIGURE 6

No matter whether the satisficing or optimizing strategy

is chosen, heuristics must be used to reduce the complexity of

the process. The following is a sample heuristic for model

selection:

Step 1: Determine the validity of each edge (a model) in the model
graph.

The system retrieves the validity of each selected member
model by searching the VALIDITY relation of the model or
executing the evaluation function if appropriate.
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Step 2: Simplify the problem by removing dominated alternatives.

If more than one edge is connecting two nodes, i.e. more
than one model is available to convert a set of inputs to
its associated outputs, then select the one with the
highest validity and ignore the rest.

Step 3: Calculate validities for all possible paths from the
initial state to the final state.

The validity of a path equals the product of the validities
of its member edges.

Step 4: Select the path with the highest validity.

The selection may be constrained by some other non-
technical constraints, such as the computational cost,
modeling time and so forth. Therefore, it may also need an
integer program to determine which path is the best one.
However, because of the screening procedures described in
steps 1-3, the new formulation should be more efficient
than the original one.

4. IMPLEMENTATION OF THE FRAMEWORK

The graph-based framework described in the previous section

has provided a sound basis for developing model integration and

selection capabilities of a knowledge-based MMS . In this section

a prototpye implemented in PROLOG, called TIMOS (The Integrated

Modeling System) , is presented to demonstrate the feasibility of

the framework.

TIMOS is an integrated system with the model integration

capability. By "integrated system" we mean it supports the

following three functions:

1. Retrieval of data in the data base.
2. Retrieval and execution of models in the model base.
3. Formulation and execution of an integrated ad hoc models.

4 . 1 Architecture of TIMOS

The architecture of the system is quite similar to that
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illustrated in Figure 1. In other words, TIMOS has two major

subsystems: one is the model utilization subsystem, and the other

is the modeling subsystem. A graph-based inference engine drives

the integration among models and between the model base and the

data base.

4.2 Model Utilization Subsystem

The model utilization subsystem has three major functions:

query processing, report generation, and help. TIMOS provides an

interactive query language, TQL (The Query Language) , in which a

user can access both the data base and the model base without the

need to identify where the information is stored beforehand.

TQL is a SEQUEL-like language. The system maintains a data

dictionary to facilitate understanding of terms used by users.

In using TQL, a user first specifies the category of the required

output, such as "sales". Then, the system will retrieve the

associated attributes from the data dictionary (for "sales" these

might be "product" and "year") , prompt for their values and

process the query. For example, the query for getting the

information, "sales for toy for 1987", is as follows:

SELECT: sales
WHERE

PRODUCT = toy
YEAR = 1987

In addition to TQL, TIMOS has a report generator for

producing formatted information, and a help module to provide

helpful information if requested to do so.
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4.3 Modeling Subsystem and The Inference Engine

TIMOS employs the graph-based framework as its inference

engine. Since it is implemented in PROLOG, a logic-based

programming language, the theoretical foundation for inference is

predicate logic. The graph-based inference mechanism is on top

of predicate logic.

In order to implement the alternate AND/OR tree, TIMOS uses

a recursive structure named "path". A technical description of

the path structure is in Appendix 3 . By implementing the path

structure, the system supports the formulation of model graphs

and a simple satisficing strategy that the system will provide

advice based on the first alternative available. If the user

does not like the first piece of advice and asks for more, the

system will then provide the next alternative, if available, to

the user. This process can go on until no alternative is

available.

INSERT FIGURE 7

Figure 7 is a sample session of consultation for integrating

the EOQ and demand forecasting models to produce the EOQ for

product "a" for 1987. The user specifies the desired

information, the system first searches the database and reports

that it is not available in the database. Then, the system

searches the model base, formulates a model graph as previously

illustrated in Figure 5, and then informs the user that the
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integration of the EOQ model and a demand forecasting model will

be able to generate the desired information. The user may accept

that advice and execute the integrated model, as shown in the

session, or request more advice. The path structure for this

query is illustrated in Appendix 3.

5. CONCLUDING REMARKS

One of the most important but difficult research issues in

developing model management systems is how to develop model

integration and selection capabilities. This paper has presented

a graph-based approach to building such capabilities in MMSs.

With these capabilities a knowledge-based MMS can integrate basic

models in the model base to formulate ad hoc decision models.

The models in the model base are not only considered as basic

models for decision support but also treated as building blocks

for creating complex models.

In order to build such capabilities, a software architecture

adopted from expert systems and a graph-based inference framework

were developed. The architecture consists of three major

components: model utilization subsystem, modeling subsystem, and

inference engine. The inference engine is the core of the

system. It adopts the graph-based framework to drive model

integration and selection processes. In the framework, a set of

data is defined as a node, a set of functions for converting data

is defined as an edge, and a basic model is represented as a

combination of two nodes and one edge connecting the two nodes.

Based on this graphical representation scheme, mechanisms for

model integration and selection have been presented. Successful
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implementation of the architecture and the graph-based framework

in PROLOG has indicated a promising integration of operations

research, expert systems and DSSs research.
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Appendix 1: Prove of the Model Integration Mechanism

To be useful the mechanism must fulfill two requirements:

1. Completeness: it must be able to build a graph that capture
all models for producing the desired information; and

2. Termination: the process must stop after finding all
candidates.

1. Completeness

(i) Assume a model base, MB, has one model (M(l) = <I1,P1,01>)

for producing the desired output Df, and the mechanism cannot

find it. If we use CI to represent the integrity constraints of

M(l) , MB to represent all models in the model base, DB to

represent the data in the data base and UR to represent the data

provided by the user, then the following statements are true:

(1) M(l) <= MB,
(2) Df CT 01,
(3) lid DBUUR,
(4) CI is satisfied, and
(5) M(l) is not in the model graph.

By examining the mechanism, statement (5) is true if and only if

one of the following conditions is true:

(6) M(l) ^ MB, (step 2)

(7) Df<£01, (steps 2 & 4.3)
(8) IlgtDBUUR, (step 4.2 & 4.4)
(9) CI is not satisfied, (step 5)

These conflict with our original assumptions. Therefore, if

there is one model in the model base and it fulfills conditions

(1) - (4) , then the mechanism must be able to add it to the model

graph.

(ii) Assume a model base has m models (M(j) = <Ij,Pj/0j>

where j = l..m) for producing the desired output Df, and the

mechanism can build a model graph capturing all m models.

However, when one more model for producing the desired output is
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added into the model base, the mechanism will not be able to find

m+1 models. There are two situations under which the mechanism

will not be able to find m+1 models:

1. The mechanism fails to add one of the models,
M(l) , . . ,M(m) , to the model graph; and

2. The mechanism fails to add model M(m+1) to the model
graph

.

Since we assume the mechanism can build a model graph capturing

all m models, the first situation is not true. In addition, we

have proved in (i) that if there is one model for producing the

desired information Df , then the mechanism will be able to add it

to the model graph. The second condition is not true either.

Therefore, we can conclude that given the condition that the

mechanism can build a model graph capturing m models, it will be

able to build a model graph including m+1 models if the model

base has m+1 models for producing the desired output.

Based on mathematical induction, we can conclude that the

mechanism can build a model graph that captures all models for

producing the desired output in the model base.

2 . Termination

Assume we have a model base containing finite number of

models and the mechanism will not stop in the course of

formulating a model graph. Since the number of models in the

model base is finite, there is only one situation under which the

assumtion is true: a model needs the output of its preceding

models as input. In this case, a cyclic graph is formulated.

Since the mechanism includes a procedure to detect cyclicity (step

4.1), a cyclic path will be dropped as soon as it is detected.

Therefore, we can conclude that the mechanism is a finite process.
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Appendix 2: Prove of Proposition 1.

The algorithm employs two kinds of operations: one is

picking up an input, the other is finding possible models that

produce the input. If the former operation is performed on a

node, then the node becomes true only if the operation has

been successfully applied to all inputs (i.e., this node is an

AND node) . If the latter operation is performed, then the node

becomes true if any model in the model base is available

(i.e., this node is an OR node). Since these two kinds of

operations are applied alternately in the propagation process

of the model graph, the formulated graph must be an alternate

AND/OR tree.
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Appendix 3 : Path Structure

"Path" is a list composed of three elements: the desired

output, name of the model for producing the output, and the paths

for providing the required inputs of the model (these paths are

again represented in the "path" structure; this situation is

called recursive) . For example, a model, that forecasts future

demand (its output) by the price of the product (its input) , can

be represented as follows:

path(demand, [path (price, [database] ,[])] , d_function)

/ / t \
output input source model name model name

N

v
'

path for producing inputs

In the example, the "d_function" is the name of the model. The

path in the square bracket represents a well-formed list. A list

is a common data structure which has two elements: head and tail.

A well-formed list is a special kind of list whose tail is a

list; the tail of the tail is, in turn, also a list, and so on.

The well-formed list, "[database]", in the input path means that

the price is retrieved from the data base; whereas the "[]"

(nothing in the square bracket) means that no model execution is

required since no model is included in the input path. The path

structure illustrated in the following represents the model graph

shown in Figure 5.
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[path(eoq(a,1987,X) ,

[path(h_cost(a,5)
,
[database]

, [ ] )

,

path ( o_cost (3,20) , [ database

]

, [ ]

)

,

path (demand (a, 1987, Y)

,

[path (demand (a, 1986, 158) ,
[database]

, [ ] ) ,

path (demand (a, 1985, 145) ,
[database]

, [ ] )

,

path (demand (a, 1984, 132) ,
[database]

, [ J )

]

M4)],
Ml)

,

/* First Path */
path(eoq(a, 1987, X)

,

[path(h_cost(a,5)
,
[database]

, [ ] )

,

path ( o_cost ( a , 2 ) ,
[ database ] , [ ] )

,

path (demand (demand (a, 1987, Y)

,

[path (demand (a, 1986, 158) ,
[database] , [ ] )

,

path (demand (a, 1985, 145) ,
[database]

, [ ] )

,

path (demand (a, 1984 , 132) ,
[database]

, [ ] )

,

path (demand (a, 1983 , 123) , [database] , [ ] )

]

M3],
Ml)

,

/* Second Path */
path(eoq(a,1985,X)

,

[path(h_cost (a, 5) ,
[database]

, [ ] )

,

path ( o_cost ( a , 2 ) ,
[ database ],[]),

path (demand (a, 1987, Y)

,

[path(price(a,10)
,
[user] ,[])],

M2)],
Ml) ]

.

/* Third Path */

This structure includes three paths that produce EOQ for

product "a" for 1987: integrating models M4 and Ml, integrating

models M3 and Ml, and integrating models M2 and Ml. In the path

structure, "[user]" means that the information is provided by the

user.
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Figure 1. A Software Architecture for MMS
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Figure 2. Graph-based Representations



OUTPUT (EOQModel, [Economic order quantity])
INPUT (EOQModel, [Demand, Ordering cost, Holding cost])
OPERATION (EOQModel, [EOQ subroutine])
INTEGRITY (EOQModel, [Constant (Ordering cost, Holding

cost) ]

)

VALIDITY (EOQModel, [0.8])

Figure 3. Representation of the EOQ model



Figure A. Process for Formulating a Model Graph
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Figure 5. An Alternate AND/OR Graph
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Figure 6. Process of the Satisficing Strategy



**********************************************************
**

**

** TIMOS : QUERY PROCESSING SUBSYSTEM
**

• *
**********************************************************

Please specify the information you need:

OUTPUT: eoq
WHERE:

product = a

year = 1987

Please wait while checking the database

'eoq for a for 1987' is not available in the database

I am checking the model base

demand for a for 1987' is needed but not available in the database

Could you provide it (y/n) ? n

•price for a for 1987' is needed but not available in the database

Could you provide it (y/n)? v

Please enter the value: 10_

MY SUGGESTIONS

There are three ways to produce the requested information

The first is:

Integrating model 'Ml' and model '142'

Model 'Ml' can generate 'eoq for a for 1987'

The execution of 'Ml' needs the following 3 inputs:

— holding_cost of a
-- ordering_cost of a

— demand for a for 1987

The database has holding_cost of a = 5

The database has ordering cost of a - 20

'demand for a for 1987' can be produced by executing model 'M2'

The execution of 'M2' needs the following 1 input:

— price of a

You provided price of a = 10

Do you want to execute this model (y/n) ? y_

** eoq of a = 12

More suggestions (y/n) ? n

THANK YOU

Figure 7. A Sample Session
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