

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

A LABORATORY HANDBOOK FOR DIETETICS

The Nixo.

THE MACMILLAN COMPANY
new york - boston - chicago - dallas
ATLANTA • SAN FRANCISCO
MACMILLAN \& CO., Limited
london - bombay calcutta
melbourne
the macmillan co. of Canada, ltd.
toronto

A LABORATORY HANDBOOK FOR DIETETICS

BY
MARY SWARTZ ROSE, Ph.D. ASSOCIATE PROFESSOR DEPARTMENT OF NUTRITION, TEACHERS COLLEGE, COLUMBIA UNIVERSITY

REVISED EDITION

2veu fark
 THE MACMILLAN COMPANY 1921

$$
\begin{aligned}
& 1 \times 53 \\
& R 74 \\
& 1921
\end{aligned}
$$

Copyright, 1912 and 1921, By THE MACMILLAN COMPANY.

Set up and electrotyped. Published November, 1912.
Revised Edition, July, 1921.

PREFACE TO THE FIRST EDITION.

Investigations into the quantitative requirements of the human body have progressed so far as to make dietetics to a certain extent an exact science, and to emphasize the importance of a quantitative study of food materials. It is the purpose of this little book to explain the problems involved in the calculation of food values and food requirements, and the construction of dietaries, and to furnish reference tables which will minimize the labor involved in such work without limiting dietary study to a few food materials.

Only brief statements of the conditions affecting food requirement have been made, the reader being referred to general textbooks on the subject of nutrition for fuller information, but such data have been included as seem most useful in determining the amount of food for any normal individual under varying conditions of age and activity.

Most of the available information in regard to food values is in terms of percentage composition, or of a single unit, as the $100-$ Calorie portion or the individual serving. The two latter are very useful, but too limited in scope and too inelastic in form to serve the needs of the general student. The first involves calculations which are always tedious and rob the student of time for a more comprehensive comparative study of food values. To lighten this labor, tables are included, giving the food values for the 100 -Calorie Portion, which is taken as the Standard Portion in the sense that it serves as a convenient unit in building up a day's ration to yield a stated number of Calories; for the gram, which is the unit of weight for all scientific workers; for the ounce, the common unit of the small family group; and for the pound, the unit of the large family or institutional group. These tables have been in practical use for several years in the author's classes, and their value in relieving the student of monotonous clerical labor has been demonstrated.

While it is desirable to encourage the use of labor-saving devices, the student of dietetics ought to know the processes involved
in dietary calculation, for these must be applied frequently in estimation of the food values of mixtures of food materials. Experience has shown that every step must be explained in detail, and no apology is offered for the exceeding simplicity of some of the problems presented.

Little attempt has been made to give measures corresponding to different weights of food materials, because this is properly a part of laboratory work in dietetics, and ample space has been provided for records of original observations. Such data must always be used with caution, for there is great diversity in the capacity of measuring vessels unless officially standardized, and much more in foods of different qualities, localities, and seasons.

The author gratefully acknowledges the helpful criticism of Professor Henry C. Sherman in the preparation of this work.

PREFACE TO THE SECOND EDITION.

Among the recent advances in the science of nutrition, none is more notable than the recognition of three vitamines as essential to the continued well-being of mankind, both in childhood and in adult life. It is not yet possible to speak of these systematically in quantitative terms, although much knowledge has already accumulated as to their occurrence in food materials, and it is possible to grade many foods as to the relative richness or poorness of their yield of the different vitamines. A table has been prepared which indicates roughly the vitamine content of a number of common food materials. This table is necessarily far from complete, but it represents fairly our present state of knowledge.

Owing to the increasing interest in the nutrition of children, the section furnishing data for the estimation of their energy requirements has been extended, both in the direction of more material on weight and height relationships and of tables of energy requirements for different ages.

The tables on energy requirements of adults have been amplified and, it is hoped, put into more convenient form for practical use.

Dietary standards for calcium, iron, and phosphorus have been somewhat modified by recent experimental work, and the revised data have been tabulated with the idea of facilitating their use. The tables giving the ash content of food materials have been revised in accordance with the tables in the Second Edition of the Chemistry of Food and Nutrition, with the kind permission of the author, Professor Henry C. Sherman.

An abridged method of dietary calculation, designed to reduce the labor where large quantities of food are involved, as in institutions, has been described in detail. Thanks for permission to use this method are due to Dr. A. R. Rose.

Several new reference tables, furnishing additional data on the composition of food materials and on the relation of weight
to measure in food, will, it is hoped, make this book still more useful than the first edition.

The author wishes to thank Miss Grace MacLeod, Miss Harriet Barto, and Miss Margaret Sandels for their generous help in bringing this material up to date.

TABLE OF CONTENTS.

PART I.
Food Values and Food Requirement 1
The Composition of Food Materials 1
The Functions of Food 5
Food as a Source of Energy 6
Food as Building Material 7
Food in the Regulation of Body Processes. 8
Food Requirement 9
The Energy Requirement of Normal Adults 9
The Energy Requirement of Children 12
The Energy Requirement of the Aged 17
The Protein Requirement 18
The Fat and Carbohydrate Requirement 19
The Ash Requirement 19
The Vitamine Requirement 21
PART II.
Problems in Dietary Calculation 25
Studies in Weight, Measure, and Cost of Some Common Food Materials 25
Relation Between Percentage Composition and Weight. 59
Calculation of the Fuel Value of a Single Food Material. 60
Calculation of the Weight of a Standard or 100-Calorie Portion 61
Food Value of a Combination of Food Materials 62
Distribution of Foodstuffs in a Standard Portion of a Single Food Material 63
Calculation of a Standard Portion of a Combination of Food Materials 64
Calculation of the Percentage Composition of a Food Mixture 65
The Calculation of a Complete Dietary 66
Scoring of the Dietary 74
Abridged Method of Dietary Calculation 77
PART III.
Reference Tables.
Page
Refuse in Food Materials85
Measures of Weight, Metric System 87
Equivalents for Metric Units 87
Weight of Food per Cup and Tablespoon 87
Weight of Food per Bushel 89
Conversion Tables-Ounces and Pounds to Grams 90
Conversion Tables-Grams to Ounces 91
Food Values in Terms of Standard Units of Weight. 92
Food Values of Some Less Common Food Materials 126
Energy Content of Foods Sold by Confectioners 132
Ash Constituents in Percentage of the Edible Portion 133
Ash Constituents in Standard or 100-Calorie Portions. 139
APPENDIX.
The Equipment of a Dietetics Laboratory 144
Index 147

LIST OF TABLES.

Table. Page.
I. Table of Weight and Height for Men at Different Ages 9
II. Table of Weight and Height for Women at Differ- ent Ages 10
III. Daily Energy Allowance per Unit of Body Weight for Young and Middle Aged Adults 11
IV. Energy Expenditure per Hour Under Different Conditions of Muscular Activity 11
V. Daily Energy Requirement According to Occupa- tion 12
VI. Average Daily Requirement of Children per Unit of Body Weight 13
VII. Average Total Energy Requirement of Children 13
VIII. Average Weight and Height of Children from Birth to the Fifth Year. 14
IX. Average Weight and Height of Boys at Different Ages 15
X. Average Weight and Height of Girls at Different Ages 16
XI. Average Rate of Growth of Boys and Girls at Differ- ent Ages 17
XII. Von Noorden's Reductions in Energy Requirement in Old Age 18
XIII. Dietary Standards for Calcium, Phosphorus, and Iron 20
XIV. Distribution of Vitamines in Investigated Food Materials 22
XV. Food Values of Food Materials Requiring Study of Weights and Measures 27
XVI. Approximate Amount of Refuse in Common Food Materials as Purchased 85
XVII. Measures of Weight, Metric System 87
XVIII. English Equivalents for Metric Weights and Meas- ures 87
Table. Page.
XIX. Weights Corresponding to Common Measures of Food Materials 87
XX. Weight Per Bushel of Some Common Food Materi- als 89
XXI. Conversion Table, Ounces and Pounds to Grams 90
XXII. Conversion Tables, Grams to Ounces 91
XXIII. Food Values of Food Materials Used Chiefly by Weight 92
XXIV. Food Values Per Gram and Per 100 Calories of Some Less Common Food Materials 126
XXV. Energy Content of Foods Sold by Confectioners 132
XXVI. Ash Constituents of Food in Percentage of the Edi- ble Portion 133
XXVII. Protein, Calcium, Phosphorus, and Iron in Grams Per 100 Calories of Food Material 139

A LABORATORY HANDBOOK FOR DIETETICS

PART I.

FOOD VALUES AND FOOD REQUIREMENT.

THE COMPOSITION OF FOOD MATERIALS.

The nutritive value of any food material depends largely upon its chemical composition. Through food must be supplied all the elements which enter into the structure of the living body, which afford energy for its activities, and which so regulate the vital processes as to produce that harmonious interaction which means health. The chief elements which food must furnish are carbon, hydrogen, oxygen, nitrogen, sulphur, phosphorus, iron, sodium, potassium, calcium, magnesium, and chlorine. The body can use these elements only in the form of certain definite compounds; charcoal and diamonds are forms of carbon, but no one would take them for food. The most important combinations of elements or chemical groups available for the welfare of the body are shown in the following table:

Carbon	
Hydrogen	forming Carbohydrates.
Oxygen	
Carbon	
Hydrogen	forming Fats.
Oxygen	
Cárbon	
Hydrogen	
Oxygen	forming Proteins.
Nitrogen	forming Proteins.
Sulphur	
Phosphorus	(sometimes)
Hydrogen	forming Water.
Sulphur	
Phosphorus	
Chlorine	which exist partly as
Sodium	mineral salts and
Potassium	partly in combination
Calcium	with carbohydrates,
Magnesium	fats, proteins, and
Iodine	other organic com-
Silicon	pounds.

With the exception of water, whieh can be supplied independently of other substances in such quantities as may be necessary, the essential constituents of food are proteins, fats, carbohydrates, ash constituents, and vitamines.

These six chemical groups,-proteins, fats, carbohydrates, ash constituents, vitamines, and water-afford all the materials essential to an adequate diet.

In case of many food materials, there is more or less inedible material, such as the rind of fruits, the shells of nuts, bone, connective tissue, and sometimes fat in meat, which is discarded as refuse. It is customary for food analysts to report their findings on a food which contains refuse in two ways:

1. As Purchased, the amount of material which is ordinarily rejected being included in the total weight on which the percentage of each constituent is calculated.
2. Edible Portion, the refuse being entirely discarded before taking the weight on which the calculations are made.

A single example will serve to make this clear. An average banana, weighing about five and one-half ounces, will lose on peeling nearly two ounces, or approximately thirty-five per cent of its original weight. The total weight of each of the foodstuffs in such a banana is as follows:

Water,	Protein,	Fat,	Carbohydrate,	Ash,
ounces	ounces	ounces	ounces	ounces
2.69	0.04	0.02	0.79	0.03

If these values are expressed in percentages of the original weight of the unpeeled fruit (5.5 ounces), the results are reported "As Purchased":

Refuse,*	Water,	Protein,	Fat,	Carbohydrate,	Ash,
per cent					
35.0	48.9	0.8	0.4	14.3	0.6

If they are expressed in terms of the peeled fruit (3.57 ounces) the results appear somewhat different, and are reported as "Edible Portion":

Refuse,	Water,	Protein,	Fat,	Carbohydrate,	Ash,
per cent					
	75.4	1.1	0.6	22.1	0.8

In which of the above ways food values shall be expressed is merely a matter of convenience, provided the amount of refuse is not far

[^0]from the average. A greater degree of accuracy as to nutritive value is insured by first removing the inedible portion, and then basing calculations on the weight of edible substance, but it must be borne in mind that the refuse affects estimations of cost made in this way. Thus if three bananas are purchased for five cents, and are found to weigh one pound in their skins, the weight of edible material will be about ten ounces; at the rate of ten ounces for five cents, the cost por pound of edible material will be nearly eight cents. Knowing the percentage of refuse, we can convert the weight of edible material into weight as purchased by the following proportion:

Weight of edible portion : Per cent of edible portion : : $x: 100$. $x=$ weight of material as purchased.
Thus, in the case above, Weight of edible portion Per cent of edible portion
10.4 ounces $: \quad 65$
$x=16$ (ounces of material as purchased).

Water is present in all food materials, with the exception of a few pure fats, sugars and starches. The amount may be anywhere from two to ninety-five per cent, crackers averaging about seven per cent, bread about thirty-five per cent, most meats from sixty to seventy-five per cent, and fresh fruits and vegetables from seventy-five to ninety-five per cent. Since water can be added to the diet without cost, its presence or absence is most significant from the economic standpoint. A pound of fresh tomatoes and one of rolled oats can often be bought for the same price, but the tomatoes will contain fifteen ounces of water and one ounce of dry matter, whereas the oats will furnish fifteen ounces of dry matter and one ounce of water; in other words, the dry matter in the tomatoes in this case may cost eighty cents per pound, while that in rolled oats costs five and one-third cents per pound.

Protein is not determined directly, but is estimated from the amount of nitrogen which the given material contains. The average amount of nitrogen in protein is estimated as about sixteen per cent. If we assume that sixteen parts of nitrogen correspond to one hundred parts of protein, then for one part of nitrogen, there will be six and one-fourth parts of protein. Analyses made
in this way report the crude protein as " $\mathrm{N} \times 6.25$." This method is not strictly accurate for two reasons; first, because the nitrogen present may not be altogether in the form of true proteins, but partly as simpler compounds of lower value; second, because individual proteins differ considerably in the per cent of nitrogen which they contain, some having as low as fifteen per cent, and a number having seventeen to eighteen per cent. Hence, to secure strict accuracy, different factors are needed for the different food materials; but inasmuch as calculations of food values made on average analyses are only approximately correct in any given case, the convenient factor 6.25 has been widely adopted, and is satisfactory if it be borne in mind that estimations of protein in food materials made in this way tend to indicate somewhat more protein than is probably available to the body. For such reasons as these, it is customary in experimental work, to compare the intake and output of nitrogen rather than to try to express that in food in terms of protein.

Fat is determined by extraction of the food material with ether, and hence is more accurately designated "ether extract." Besicies true fat and fatty acids, this extract may contain other acids, waxes, coloring matter or other substances. Thus the amount of fat is exaggerated, especially in some food materials low in fat, such as fresh fruits and green vegetables, in which as much as fifty per cent of the ether extract may be substances other than fat. In cases where the amount of fat is relatively greater, errors due to this cause are practically negligible.

Carbohydrates, as ordinarily reported, are estimated "by difference," that is, by subtracting the sum of the percentages of protein, fat, ash and water from one hundred. Here again, the results are only approximately accurate, partly because all the errors in the other estimations are charged against the carbohydrates, and partly because carbohydrates may be included which are not available for food, as woody fiber and certain gums.

Ash is obtained by burning off all the combustible substances and weighing the residue. It is chiefly significant in showing what proportion of a dry foodstuff is not available for fuel; consequently reports of total ash are not very important in dietary calculation. The nature of the mineral matter is, however, a matter of considerable importance, and while it is not necessary to calculate
the total amount of every one of the different mineral constituents in every dietary, familiarity with their distribution in food materials should be acquired by frequent reference to such data as in Tables XXVI and XXVII.

Vitamines exist in very small quantities in food materials and their exact chemical composition is not yet known; they can, however, be extracted from the materials in which they occur by suitable chemical methods. The kind and the amount of any vitamine in a given food material are at present most satisfactorily determined by experiments in feeding animals. When any one of the vitamines is withheld from the diet there is a loss of health with characteristic symptoms of the deficiency disease associated with such absence, and in case of two of the three known vitamines there is in the young animal interference with normal growth. By starting with a diet known to be lacking in just one vitamine, and adding to this different amounts of a food containing the lacking dietary essential, it is possible to find out just how much is needed to maintain a normal rate of growth. For example; a diet of casein, starch, butter fat, and suitable mineral elements, with water to drink, is adequate for a rat except for one vitamine. This lacking substance may be found in the tomato, and addition to the diet of half a gram of dried tomato per day will result in normal growth. When such information has been secured, the way is open for comparative studies of the amounts present in food materials. The same vitamine which served in the experiment just outlined is present in the carrot, one gram of suitably dried carrot serving to promote growth as well as one-half a gram of dried tomato. It is evident that one would draw from such an experiment the conclusion that the dried tomato is twice as rich as the carrot in this particular vitamine.

At the present time we recognize three vitamines, known by various names, (1) The "A" Vitamine (Fat-soluble A) sometimes called the Antixerophthalmic Vitamine; (2) The " B " Vitamine (Water-soluble B) or the Antineuritic Vitamine; (3) The "C" Vitamine (Water-soluble C) or the Antiscorbutic Vitamine.

THE FUNCTIONS OF FOOD.

The human body is a working machine, for which the fuel is food; it is an aggregation of living cells in which chemical changes are continually occurring, old material being thrown out to be replaced by new, which must be obtained from food; it is an organism
capable of building itself up from a single cell by conversion of food into body substance. It cannot, however, perform these functions without the proper balance of chemical compounds in all its tissues and fluids, and these compounds must be derived from a well-balanced diet. It may be said, therefore, that food has three important functions; namely, to supply energy; to build body substance; and to regulate body processes.

Food as a Source of Energy.

Proteins, fats and carbohydrates have the great common function of supplying the body with energy, which is the power to do work. This power is manifested in various ways, such as motion, heat, light, chemical or electrical activity. Our bodies are energytransformers; their sole source of energy is food, and the most important result of the changes which foods undergo in the body is the evolution of energy in the form of work or heat. The work may be internal, as that of digestion, respiration, circulation, and muscular tension; or external, as in walking, running, or other muscular activity; the heat is chiefly a by-product of these various forms of work, but under certain circumstances, when heat loss is very rapid, energy may be converted into this form, to maintain the normal body temperature.

Since energy is easily transformed into heat, and this form is readily measured, a heat unit, the Calorie, has been adopted as the most convenient measure of energy. One Calorie is the amount of heat required to raise one kilogram (2.2 pounds) of water one degree Centigrade, or one pound of water four degrees Fahrenheit. Expressed in terms of work, it represents that required to lift one pound through the distance of 3087 feet, or 3087 footpounds.

The total energy value of each of the fuel foodstuffs (proteins, fats, and carbohydrates) has been determined by burning it in a calorimeter in pure oxygen, under such conditions that all the heat evolved is taken up by water surrounding the vessel in which the combustion occurs, and the increase in the temperature of the water measured by a delicate thermometer. In the body, combustion of protein is not quite so complete as in the calorimeter, and there are usually some losses due to failure of complete digestion of each kind of foodstuff, so that the available energy is somewhat less than the total energy value. In a healthy human
being, on an ordinary mixed diet, the fuel value of each foodstuff is on the averáge as follows: *

> Protein, 4 Calories per gram, Fat, 9 Calories per gram, Carbohydrate, 4 Calories per gram.

Knowing the percentage composition of any food material, it is possible by means of these factors to compute its probable yield of energy to the body, as illustrated in Problem III, page 60.

Food as Building Material.

During the period of growth, which extends over the first twenty-five years of life, the body increases in weight usually from fifteen to twenty times. The source of the new body substance is food. In adult life, growth ceases, except in special cases, as when the body tissues have been depleted through disease or accident or where unusual exercise or pregnancy induces muscle formation; but in all living substance there is a constant loss of old material, to be replaced by new, small in amount, but essential to life. Hence there is never a time when building material can be dispensed with entirely, though it becomes less prominent after maturity. The foodstuffs which play a specific rôle in body building are the proteins and certain ash constituents, the most important being phosphorus, iron, and calcium.

Protein supplies nitrogen, essential for the protoplasm of all active cells and especially for the making of muscle. It is also a source of sulphur for body protein.

Phosphorus, like nitrogen, is essential to the development of every cell. It is also one of the chief elements giving rigidity to the bones. It occurs in chemical combination with protein and fat in milk and eggs, as simpler organic compounds in grains and legumes, and chiefly as inorganic salts in meat, fish, fruits, and green vegetables. While all kinds are useful, the organic forms, especially phospho-proteins and phospho-fats, seem to be used to the best advantage by the young.

Iron is an essential element of the hemoglobin of the blood and of all cell nuclei. Oxidation and cell development are therefore

[^1]dependent on its presence. Food iron is in the form of iron-protein compounds, found especially in egg yolk, green vegetables, fruits, legumes and whole grains.

Calcium as building material is found chiefly in the bones and teeth. It occurs in food in combination with protein, as in milk, or as inorganic salts in whole grains, legumes, fruits, and vegetables.

Food in the Regulation of Body Processes.

The chief constituents of food participating in the regulation of body processes are the ash constituents, vitamines, and water.

The most important mineral elements besides phosphorus, iron, calcium, and sulphur are magnesium, potassium, sodium, iodine, and chlorine. Upon the presence of the salts formed by these elements depend the neutrality of the blood, the acidity or alkalinity of the digestive juices, the solvent power and osmotic pressure of different body fluids, and the elasticity and irritability of nerve and muscle. They form such combinations as tend to protect the body against harmful substances when present and to aid in their elimination.

Vitamines are essential to growth in the young and to good health in all.

The "A" Vitamine (Fat-soluble A) is necessary for growth. Furthermore, animals deprived of it for some time develop a characteristic eye disease known as xerophthalmia in which the eyes become inflamed, swell shut, and finally go blind; hence it is sometimes called the Antixerophthalmic Vitamine. Other signs of failing health are loss in weight and deterioration of the hairy coat. Human beings also develop xerophthalmia under certain dietary restrictions. These things lead us to believe that this vitamine is very essential to human health. It occurs in liberal amounts in such foods as egg yolk, milk, cream, butter, fish oils, and green leaves, though it is found in various animal and plant foods in small quantities.
The "B" Vitamine (Water-soluble B) is needed for growth in considerable amounts. When it is absent from the diet, a disease results known as beri-beri in human subjects and polyneuritis in other animals. This vitamine, on account of its preventive and curative properties, is also known as the Antineuritic Vitamine. It occurs in egg yolk, milk, whole grains and many vegetables and fruits.

The "C" Vitamine (Water-soluble C) is not so essential to
growth as the other two vitamines, but is equally important for health. Human beings deprived of it only a few weeks develop scurvy; accordingly this vitamine is known as the Antiscorbutic Vitamine. It is found in various fresh fruits and vegetables, especially worthy of mention being oranges, lemons, tomatoes, and potatoes. It is readily affected by heat, by aging, by drying, and by alkalies; hence the desirability of avoiding possible deficiency through knowing which foods retain their antiscorbutic property best, or by having a variety of fresh foods in the diet.

FOOD REQUIREMENT.

The Energy Requirement of Normal Adults.

The first requirement of the body is for energy to replace that lost in its constant internal work and more or less irregular and variable external work. The greater the amount of muscular work, the higher the energy requirement. By use of the following tables it is possible to determine with considerable accuracy the energy requirement of any adult.* Tables I and II give the average

TABLE I
Table of Weight and Height for Men at Different Ages \dagger

Height	19 yrs .	20	21-22	23-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59
	107	110	114	118	122	126	128	131	133	134	135
	112	115	118	121	124	128	130	133	135	136	137
	117	120	122	124	126	130	132	135	137	138	139
	121	124	126	128	129	133	135	138	140	141	142
	124	127	129	131	133	136	138	141	143	144	145
	128	130	132	134	137	140	142	145	142	148	149
	132	133	136	138	141	144	146	149	151	152	153
	136	137	140	142	145	148	150	153	155	156	158
	140	141	143	146	149	152	155	158	160	161	163
	144	145	147	150	153	156	160	163	165	166	168
	148	149	151	154	157	161	165	168	170	171	173
	153	154	156	159	162	166	170	174	176	177	178
	158	160	162	165	167	172	176	180	182	183	184
6 ft. $\begin{array}{r} \\ \\ 1 \\ 2 \\ \\ 3 \\ 4 \\ \\ \\ 5\end{array}$	163	165	167	170	173	178	182	186	188	190	191
	168	170	173	176	179	184	189	193	195	197	198
	173	175	178	181	184	190	195	200	202	204	205
	178	180	183	186	189	196	201	206	209	211	212
	183	185	188	191	194	201	207	212	215	217	219

In ascertaining height-measure in shoes; stand erect, and press measuring rod down against scalp. Weigh yourself in indoor clothing and shoes. Subtract one inch for height, if measured in shoes.

[^2]TABLE II.
Table of Weight and Height for Women at Different Ages *

Height	19 yrs .	20	21-22	23-24	25-29	30-34	35-39	40-44	45-49	50-54
4 ft .10 in .	98	102	106	110	113	116	119	123	126	129
11	103	107	109	112	115	118	121	125	128	131
5 ft .	109	112	113	115	117	120	123	127	130	133
1	113	115	116	118	119	122	125	129	132	135
2	116	118	119	120	121	124	127	132	135	138
3	120	121	122	123	124	127	130	135	138	141
4 "	123	124	125	126	128	131	134	138	141	144
5	126	127	128	129	131	134	138	142	145	148
6^{6} "	129	130	131	133	135	138	142	146	149	152
7 "	131	133	135	137	139	142	146	150	153	156
8 "	135	137	139	141	143	146	150	154	157	161
	138	140	142	145	147	150	154	158	161	165
10 "	141	143	145	148	151	154	157	161	164	169
11 "	145	147	149	151	154	157	160	164	168	173
6 ft .	150	152	154	156	158	161	163	167	171	176

In ascertaining height-measure yourself in shoes; stand erect, and press measuring rod down against scalp. Weigh yourself in indoor clothing and shoes. If shoes have sensible heels, subtract one inch for height; if heels are "high," subtract two inches.
weight in proportion to height, for men and women of different ages, and Tables III, IV, and V afford data for calculating the energy requirement according to this weight. Thus a man weighing 70 kilograms, at light exercise, will require 2450-2800 Calories according to Table III, or if we state his day's activity more definitely, assuming that he sleeps 7 hours, works at his desk 10 hours, does light exercise equivalent to walking 7 hours, we may then calculate his requirement according to Tabłe IV:

$$
\begin{array}{lr}
\text { Sleeping, } & 7 \times 65 \text { Calories }= \\
\text { Sitting, } & 10 \times 155 \text { Calories. } \\
\text { Exercise }, & 7 \times 100 \text { Calories }=1000 \text { Calories. } \\
\text { Total for day, } & \underline{1190 \text { Calories }} \mathbf{2 6 4 5 \text { Calories }}
\end{array}
$$

If the subject under consideration is an adult of normal physique but weighs more or less than 70 kilograms, the total energy requirement is calculated as proportional to weight. Thus for a person of 55 kilograms (man or woman), with the same degree of activity, the proportional energy requirement would be 2078 Calories. In the strictest sense the smaller subject would probably have a somewhat larger energy output per unit of weight, as metabolism is more nearly proportional to surface than to weight.

[^3]TABLE III.
Daily Energy Allowance Per Unit of Body Weight for Young and Middle Aged Adults.
(Approximate Averages.)

	Calories per Kilogram	Calories per Pound
Without Exercise:	30-35	14-16
With Light Exercise.	35-40	16-18
With Moderate Exercise.	40-45	- 18-20
With Hard Muscular Labor	45-50	20-23
With Very Severe Labor.	50-60	23-27

TABLE IV.

Energy Expenditure per Hour Under Different Conditions of Muscular Activity.*

Form of Activity	Calories per Hour		
	Per 70 Kilo- grams (Average Man.	$\begin{gathered} \text { Per } \\ \text { Kilogram } \\ \hline \end{gathered}$	$\xrightarrow{\text { Peor }}$
Sleeping.	65.	0.93	0.43
Awake lying still	77°	1.10	0.50
Sitting at rest... .	100	1.43	0.65
Reading aloud.	105	1.50	0.69
Standing relaxed	105	1.50	0.69
Hand sewing.	111	1.59	0.72
Standing at attention.	115	1.63	0.74
Kmiting (23 stitches per minute on sweater)	116	1.66	0.75
Dressing and undressing.	118	1.79	0.81
Singing.	122	1.74	0.79
Tailoring.	135	1.93	0.88
Typewriting rapidly.	140	2.00	0.91
Ironing (with five-pound iron)	144	2.06	0.93
Dishwashing (plates, bowls, cups and saucers)	144	2.06	0.93
Sweeping bare floor (38 strokes per minute).	169	2.41	1.09
Bookbinding..	170	2.43	1.10
"Light exercise"	170	2.43	1.10
Shoe making.	180	2.57	1.17
Laundry work (towels rubbed on a board without water, 35 times per minute)	182	2.60	1.18
Walking slowly (2.6 miles per hour)..............	200	2.86 3.43	1.30 1.56
Carpentry, metal working, industrial printing. .	240 29	3.43 4.14	1.56 1.88
Walking moderately fast (3.75 miles per hour)	300	4.28	1.95
Stoneworking:.	400	5.71	2.60
"Severe exercise"	450	6.43	2.92
Sawing wood.	480	6.86	3.12
Swimming.	500	7.14	3.25
Running (5.3 miles per hour).	570	8.14	3.70
"Very severe exercise"..	600	8.57	3.90
Walking very fast (5.3 miles per hour).	650	9.28	4.22

* Calculated from data from the following sources, taking 100 Calories per man per hour as the standard for "quiet living":

Sherman, Chemistry of Food and Nutrition, p. 186, (Revised Edition, 1918).
Benedict and Johnson, Energy Loss of Young Women During the Muscular

TABLE V.
Daily Energy Requirement According to Occupation.
(Approximate Averages.)

Men	Calories per Kilogram	Calories per 70 Kilo. grams (per Man)
Tailor. .	33-37	2300-2600
Weaver.	34-39	2400-2750
Shoomaker.	38-42	2700-2950
Bookbinder.	40-41	2800-2850
Metalworker.	48-56	3350-3950
Carpenter.	40-50	2800-3500
Farm lahorer.	45-60	3150-4200
Painter..	50-54	3500-3800
Excavator.	60-70	4200-4900
Stoneworker.	66-67	4600-4700
Lumberman.	70-76	4900-5300
Women -	Calories per Kilogram	Calories per 56 Kila grams (per Woman)
Hand sewer. .	27-30	1500-1700
Machine sewer.	32-40	1800-2250,
Bookbinder.	38-40	2100-2250
Waitress.	43-53	2400-3000
Washerwoman	50-60	2800-3350

The Energy Requirement of Children.

The energy requirement of children is higher in proportion to body weight than that of adults. In youth the metabolism is more intense and there is a great storage of fool materials in the body in the process of growth, as is evident from the fact that a baby doubles in weight in the first 180 days of life. The muscular activity of children is also frequently greater than that of adults, so that their food requirement may be increased further in this way.

To calculate the energy requirement of any child, it is necessary to know the requirements per unit of weight at different stages of growth, i. e., different ages, and the weight of the normal child at corresponding periods. Such data will be found in Tables VI-XI. Thus a normal boy, five years old, 42 inches high, should weigh 41 pounds or 18.6 kilograms, and will require at least 80 Calories per kilogram, making a total per day of 1488 Calories.

[^4]With more than moderate activity, as much as 90 Calories per kilogram may be required, a total of 1674 per day.

If a child is below normal weight, he should not be fed according to his present weight, but regarded as undernourished and treated as nearly as possible in harmony with what his weight ought to be. Standards for children should in general be considered as representing the minimum rather than the maximum food requirement.

TABLE VI.
Average Daily Energy Requirement of Children per Unit of Body Weight.

Age in Years	Calories per Kilogram	Calories per Pound
Under 1	100	45
$1-2$	\ddots	$100-90$
$2-5$	$90-80$	$45-40$
$6-9$	$20-70$	$40-36$
$10-13$	$75-65$	$36-32$
$14-17$	$65-50$	$34-30$

TABLE VII.
Average Total Energy Requirement of Children.*

AGE	CALORIES PER DAY	
	Girls	
Under 2	$900-1200$	$900-1200$
$2-3$	$1000-1300$	$980-1280$
$3-4$	$1100-1400$	$1060-1360$
$4-5$	$1200-1500$	$1140-1440$
$5-6$	$1300-1600$	$120-1520$
$6-7$	$1500-1700$	$1300-1600$
$7-8$	$1500-1800$	$1380-1680$
$8-9$	$1700-1900$	$1460-1760$
$9-10$	$1000-2000$	$1550-1850$
$10-11$	$2100-2400$	$1750-1950$
$11-12$	$2300-2700$	$1850-2150$
$12-13$	$-2500-2900$	$1950-2250$
$13-14$	$2600-3100$	$2050-2350$
$14-15$	$2700-3300$	$2250-2450$
$15-16$	$2700-3400$	
$16-17$		

[^5]TABLE VIII.
Average Weight and Height of Children from Birth to the Fifth Year*

AGE	BOYS		GIRLS	
	Height	Weight	Height	Weight
Birth	$\begin{gathered} \text { Inches } \\ 20.6 \end{gathered}$	$\begin{gathered} \text { Pounds } \\ 7.6 \end{gathered}$	Inches 20.5	Pounds 7.16
3 mos .	$23^{1 / 2}$	13		
6 "	261/2	18	$25^{7} / 8$	$16^{3} / 4$
7	$27^{1 / 4}$	$19^{1 / 8}$	$26^{1 / 2}$	$17^{3 / 8}$
8	$27^{5} / 8$	$19^{3 / 4}$		$18^{1 / 4}$
9	281/8	$20^{3 / 8}$	$27^{5} / 8$	191/8
10	281/2	$20^{7} / 8$	$27^{7 / 8}$	191/2
11	29	$21^{3 / 8}$	$28^{3} / 8$	$20^{1 / 8}$
12	$29^{3 / 8}$	$21^{7 / 8}$	$28^{7 / 8}$	$20^{3 / 4}$
13 "	297/8	$22^{7} / 8$	$29^{3} / 8$	
14 "	$30^{1 / 4}$	23	$29^{1 / 2}$	$21^{5} / 8$
15	$30^{3 / 4}$	$23^{5 / 8}$	$30^{1 / 8}$	$21^{7 / 8}$
16	$31^{1 / 8}$	$24^{1 / 8}$	$30^{1 / 2}$	$22^{5} / 8$
17	$31^{3 / 8}$	$24^{1 / 2}$	$30^{3 / 4}$	$22^{7 / 8}$
18	$31^{3 / 4}$	$24^{5} / 8$	$31^{1 / 8}$	$23^{3 / 8}$
19	$32^{1 / 4}$	$25^{1 / 2}$	$31^{1 / 2}$	$23^{3 / 4}$
20 "،	$32^{5 / 8}$	$25^{3 / 4}$	32	$24^{1 / 8}$
21	$32^{7} / 8$	$25^{3} / 4$	$32^{1 / 4}$	$24^{3 / 4}$
22	$33^{1 / 4}$	$26^{7} / 8$	$32^{5 / 8}$	$25^{1 / 4}$
23	$33^{5 / 8}$	27	$32^{7 / 8}$	$25^{5 / 8}$
24	$33^{3 / 4}$	$27^{1 / 8}$	$33^{3} / 8$	$26^{3} / 8$
25 "	34	$27^{7} / 8$	$33^{3 / 4}$	$26^{7 / 8}$
26 "،	$34^{1 / 8}$	$28^{1 / 4}$	$33^{7} / 8$	$27^{1 / 4}$
27 "	$34^{3} / 4$	29	$33^{7 / 8}$	$27^{1 / 4}$
28 "،	$35^{1 / 8}$	$29^{1 / 8}$	$34^{5 / 8}$	$27^{3 / 4}$
29 "	$35^{3} / 8$	$29^{1 / 4}$	$34^{3 / 4}$	$27^{3 / 4}$
30 "،	$35^{3} / 8$	$29^{1 / 2}$	$34^{7} / 8$	$28^{1 / 4}$
31 "،	$35^{1 / 2}$	$30^{1 / 2}$	$35^{1 / 8}$	$28^{3} / 4$
32 "،	36	$30^{5} / 8$	$35^{3} / 8$	
33 "،	$36^{1 / 8}$	$30^{5 / 8}$	$35^{5} / 8$	$29^{1 / 8}$
34 "،	$36^{1 / 2}$	$31^{1 / 8}$	$36^{1 / 2}$	$30^{1 / 8}$
35 36	$36^{3} / 4$ $37^{1 / 8}$	$31^{7 / 8}$ $322^{1 / 4}$	$3{ }^{361 / 2}$	$301 / 4$ $301 / 2$
37	$37^{3} / 8$	$32^{1 / 4}$	$36^{3 / 4}$	$30^{3 / 4}$
38	$37^{1 / 2}$	$32^{3 / 8}$		31
39	$37^{7 / 8}$	$33^{1 / 8}$	$37^{1 / 4}$	$31^{5} / 8$
40	$38^{1 / 2}$	$33^{1 / 2}$	$37^{1 / 2}$	32
41	$35^{5} / 8$	$33^{5 / 8}$	$37^{3 / 4}$	$32^{1 / 4}$
42	$38^{5} / 8$	$33^{3 / 4}$	38	$32{ }^{1 / 2}$
43	$38^{3} / 4$	$33^{3} / 4$	$38^{1 / 4}$	$32^{3} / 4$
44	$38^{7} / 8$	$34^{1 / 4}$	$38^{1 / 2}$	33
45	39	$34^{1 / 2}$	$38^{1 / 2}$	$33^{1 / 4}$
46	39	$34^{3} / 4$	$38^{3 / 4}$	$33^{1 / 2}$
47	$39^{1 / 4}$	$35^{3} / 4$	$38^{7 / 8}$	$33^{1 / 2}$
48 ¢ "	$39^{1 / 2}$	$35^{7 / 8}$	39	$33^{3 / 4}$
5 yrs.	41.6	41.1	41.3	39.7

[^6]TABLE IX.
Average Weight and Height of Boys at Different Ages.*

Height inches	($\begin{gathered}5 \\ \text { yrs. }\end{gathered}$	($\begin{gathered}6 \\ \text { yrs. }\end{gathered}$	7 yrs.	$\begin{array}{\|c} 8 \\ \text { yrs. } \end{array}$	$\begin{gathered} 9 \\ \mathrm{yrs} \end{gathered}$	$\begin{array}{\|c\|} \hline 10 \\ \text { yrs. } \end{array}$	$\begin{gathered} 11 \\ \text { yrs. } \end{gathered}$	$\begin{gathered} 12 \\ \text { yrs. } \end{gathered}$	$\begin{gathered} 13 \\ \text { yrs. } \end{gathered}$	$\begin{aligned} & 14 \\ & \text { yrs. } \end{aligned}$	15 yrs.	16 yrs.	${ }_{\text {yrs. }}^{17}$	18 yrs.
39	35	36	37											
40	37	38	39											
41	39	40	41											
42	41	42	43	44										
43	43	44	45	46										
44	45	46	46	47										
45	47	47	48	48	49									
46	48	49	50	50.	51									
47		51	52	52	53	54								
48		53	54	55	55	56	57							
49		55	56	57	58	58	59							
50			58	59	60	60	61	62						
51			60	61	62	63	64	65						
52			62	63	64	65	67	68						
53				66	67	68	69	70	71					
54				69	70	71°	72	73	74					
55					73	74	75	76	77	78				
56					77	78	79	80	81	82				
57						81	82	83	84	85	86			
58						84	85	86	87	88	90	91		
59						87	88	89	90	92	94	96	97	
60						91	92	93	94	97	99	101	102	
61							95	97	99	102	104	106	108	110
62							100	102	104	106	109	111	113	116
63							105	107	109	111	114	115	117	119
64								113	115	117	118	119	120	122
65									120	122	123	124	125	126
66									125	126	127	128	129	130
67									130	131	132	133	134	135
68									134	135	136	137	138	139
69									138	139	140	141	142	143
70										142	144	145	146	147
71										147	149	150	151	152
72										152	154	155	156	157
73										157	159	160	161	162
74										162	164	165	166	167
75.					,						169	170	171	172
76											174	175	176	177

[^7]TABLE X.
Average Weight and Height of Girls at Different Ages.*

Height inches.	5 yrs	$\left\lvert\, \begin{gathered} 6 \\ \text { yrs. } \end{gathered}\right.$	$\begin{gathered} 7 \\ \mathrm{yrs} . \end{gathered}$	$\begin{gathered} 8 \\ \text { yrs. } \end{gathered}$	$\left\lvert\, \begin{gathered} 9 \\ \mathrm{yrs} . \end{gathered}\right.$	$\begin{array}{\|l\|l\|} \hline 10 \\ \mathrm{yrss} \end{array}$	$\begin{gathered} 11 \\ \text { yrs. } \end{gathered}$	$\begin{gathered} 12 \\ \text { yrs. } \end{gathered}$	13 yrs.	$\begin{gathered} 14 \\ \text { yrs. } \end{gathered}$	$\begin{array}{\|c\|} \hline 15 \\ \text { yrs. } \end{array}$	$\begin{gathered} 16 \\ \text { yrs. } \end{gathered}$	$\begin{gathered} 17 \\ \text { yrs. } \end{gathered}$	18 yrs.
39	34	35	36											
40	36	37	38											
41	38	39	40											
42	40	41	42	43										
43	42	42	43	44										
45	4	45 47	4	48	49									
46	48	48	49	50	51									
47		49	50	51	52	53								
48		51	52	53	54	55	56							
49		53	54	55	56	57	58							
50			56	57	58	59	60	61						
51			59	60	61	62	63	64						
52			62	63	64	65	66	67						
53				66	67	68	68	69	70					
54				68	69	70	71	72	73					
55					72	73	74	75	76	77				
56					76	77	78	79	80	81				
57						81	82	83	84	85	86			
58						85	86	87	88	89	90	91		
59						89	90	91	93	94	95	96	98	
60							94	95	97	99	100	102	104	106
61							99	101	102	104	106	108	109	111
62							104	106	107	109	111	113	114	115
63							109	111	112	113	115	117	118	119
64								115	117	118	119	120	121	122
65								117	119	120	122	123	124	125
66								119	121	122	124	126	127	128
67									124	126	127	128	129	130
68									126	128	130	132	133	134
69									129	131	133	135	136	137
70										134	136	138	139	140
71										138	140	142	143	144
72											145	147	148	149

[^8]TABLE XI.
Average Rate of Growth of Boys and Girls at Different Ages (Manny).

AGE			BOYS		GIRLS	
			$\begin{aligned} & \text { Increase per } \\ & \text { Year } \end{aligned}$	Increase per Week	Increase per Year	Increase per Week
6 months.			Pounds 16.90	Ounces 5.19	Pounds 16.68	Ounces 5.11
1 year			9.00	2.75	8.60	2.65
2 "			6.00	1.83	5.70	1.76
3 "			4.70	1.45	4.50	1.38
4	4		3.80	1.16	4.00	1.23
5 " 6 mos .			4.13	1.27	3.87	1.20
6	6	"	4.00	1.23	3.60	1.09
7	6	"	4.30	1.34	4.30	1.34
8	6	"	5.00	1.55	4.80	1.48
9	9	"	5.10	1.59	4.90	1.52
10	6	"	5.80	1.80	5.50	1.69
11	6	"	5.30	1.62	6.60	2.05
12	6	"	6.20	1.91	9.20	2.82
13	6	"	7.90	2.43	10.00	3.07
14	6	"	10.40	3.21	9.60	2.96
15	6	"	12.20	3.77	8.40	2.57
16	، 6	"	13.60	4.20	5.60	1.73

The Energy Requirement of the Aged.
In old age, the activity of the cells diminishes, decreasing the rate of metabolism and the amount of internal work. External work is usually less than in niddle life, and the ability of the body to deal with an excess of food is lessened. For these reasons, the energy requirement per unit of weight gradually declines as old age comes on, usually after the 60th year, and sometimes earlier. While senility cannot be measured exactly in years, we may, for convenience, divide this period into three parts, (1) from 60 to 70; (2) from 70 to 80 ; (3) from 80 to the end of life, as a basis for estimating food requirements.

The energy requirement is most satisfactorily calculated by using one of the methods suggested for obtaining the energy requirement of an adult.* when the weight of the individual is known and suitable allowance is made for lessened activity. After the requirement has been calculated as if for a middle aged person, a deduction should be made for the decreased metabolism according to the following table, adapted from suggestions by Von Noorden.

[^9]TABLE XII.

Von Noorden's Reduction in Energy Requirement in Old Age.	
Age in Years	Per Cent of Reduction
$60-70$	10
$70-80$	20
$80-$	30

The Protein Requirement.

The protein requirement cannot be stated with the same exactness as the energy requirement. We know that some proteins will support growth; others serve merely to maintain the body at constant weight, and still others will by themselves neither maintain nitrogen equilibrium nor support growth. It is necessary therefore to choose proteins with some care if we try to limit the amount very closely, especially in childhood when they are so important for growth; or to take food materials of many kinds, so that different types of protein are represented in the diet.

The total amount of protein required is independent of the amount of muscular activity. In the adult it depends rather upon the amount of active tissue in the body. In the case of an adult man of ordinary physique weighing seventy kilograms, while the energy requirement may vary from 2400 to 4000 Calories according to occupation, a protein supply of about one gram per kilogram of body weight per day will be liberal. In the child the requirement is much higher in proportion to weight, owing to the use of protein as building material, especially for the muscles. At the time of most rapid growth nature provides about two and one-half grams of protein per kilogram of body weight per day. This is about ten per cent of the fuel requirement per kilogram, and it will be observed that a man at moderately active work, taking one gram of protein per kilogram is also getting about ten per cent of his calories in the form of protein. In old age, when new body substance is not being built, the existing cells are less active and the body is less capable of disposing of an excess, so that less than one gram per kilogram of body weight is needed, we find that there is also a decreased demand for total fuel, affording again a parallelism between energy and protein requirement. It seems safe to say, therefore, that except at complete rest from ten to fifteen per cent of the total fuel in the form of protein is sufficient for any age when the energy requirement is fully met.

When the protein in the diet is excessively high, it raises the metabolism without any beneficial and possibly with harmful
effects. It is at least a wasteful excess, and should be avoided. On the other hand, while it is possible to satisfy the requirements for nitrogen with less than ten per cent of the fuel in the form of protein, such a supply does not afford much reserve for such emergencies as loss in digestion, or inability of the body to utilize to good advantage the type of protein supplied, and is usually inadvisable.

The Fat and Carbohydrate Requirement.

Assuming that from ten to fifteen per cent of the total fuel is derived from protein in satisfying the nitrogen requirement of the body, the remainder of the daily supply will have to be provided from carbohydrates and fats. The amount of fat which can be digested differs with the individual and the form in which it is taken, but the average man's maximum capacity for digestion of fat is about 200 grams per day, and he does not seem to maintain his best health with less than about 75 grams (2.5 ounces) of fat per day. Within these limits, much variation is possible. The amount of carbohydrates which can be taken to advantage depends largely ùpon the form, starch being capable of good digestion in amounts up to or even above 500 grams per day. The assimilation limit for sugar varies with the kind, but is lower than that for starch.

Under certain circumstances carbohydrates have a greater protein-sparing power than fats, but unless more than one-half of the total calories of the day's ration be derived from fats the protein-sparing action of a fat calorie or a carbohydrate calorie is practically the same. In the ordinary diet of a healthy individual the carbohydrates tend to predominate, so that there is seldom necessity for estimating fat and carbohydrate separately; the relative proportions will be determined largely by questions of bulk, ease of digestion, and the need for the fat-soluble vitamine, which may be associated with the food fat. In special cases it is sometimes necessary to calculate each separately, as in diabetes where the foodstuffs may all have to be carefully measured. The tables of food values will make these calculations comparatively simple.

The Ash Requirement.

In a diet selected from a wide range of food materials, or a more limited one containing some kind of fruit and some green vegetable
every day and having milk as a prominent constituent, the needs of the individual for body-building and body-regulating ash constituents will probably be satisfactorily met. The ash requirement has now been determined for calcium and phosphorus with the same accuracy as the protein requirement. There is abundant evidence that attention must be paid to the mineral elements of the diet, some of which are as indispensable as protein even though needed in much smaller amounts. The ones which it seems most unwise to leave to chance are phosphorus, iron, and calcium, diets which supply protein and fuel in adequate amounts not necessarily carrying a sufficiency of all of these. Generally diets having enough calcium and iron will also supply sufficient phosphorus. The quantities per day believed to be desirable in feeding a family are as follows:

TABLE XIII.
Dietary Standards for Calcium, Phosphorus, and Iron.

CALCIUM		
	$\begin{aligned} & \text { As Oxide (CaO) } \\ & \text { Grams } \end{aligned}$	$\begin{gathered} \text { As Element } \\ \text { Grams } \\ \text { (Ca) } \end{gathered}$
Per 3000 Calories, or per man. Per 100 Calories.	$\begin{aligned} & 1.0 \\ & 0.032 \end{aligned}$	$\begin{aligned} & 0.67 \\ & 0.023 \end{aligned}$
PHOSPHORUS		
	$\begin{aligned} & \text { As Pentoxide }\left(\mathrm{P}_{2} \mathrm{C}_{5}\right) \\ & \text { Grams } \end{aligned}$	$\text { As Element }(P)$
Per 3000 Calories, or per man..... Per 100 Calories.	$\begin{aligned} & 3.0 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.32 \\ & 0.044 \end{aligned}$
IRON		
	As Element (Fe)	As Element (Fe) Milligrams
Per 3000 Calories, or per man...... . . Per 100 Calories .	$\begin{aligned} & 0.015 \\ & 0.0005 \end{aligned}$	$\begin{array}{r} 15.0 \\ 0.5 \end{array}$

As the calculation of the ash constituents is laborious, it is often simpler to see that the foods rich in these elements are abundantly represented, i.e., milk, eggs, whole grains, peas, beans, green vegetables, and fruit, any excess of ash not being likely to do harm.

When for any reason there is scarcity of the above foods, or a diet especially rich in any particular ash constituent is desired, the quantitative estimations of the various elements should be made by means of Tables XXVI and XXVII.

The Vitamine Requirement.

The necessity for at least three different vitamines in the diet has been demonstrated by experimental work with animals. It has also been confirmed for human beings by the cure of beri-beri, a disease due to lack of the " B " vitamine (Water-soluble B or the antineuritic vitamine); by the cure of scurvy, a disease due to lack of the "C" vitamine (Water-soluble C or the antiscorbutic vitamine); and apparently by the cure of xerophthalmia, a disease produced experimentally in some animals by withholding from the diet the "A" vitamine (Fat-soluble A or the antixerophthalmic vitamine), and reported as cured in children subsisting on an inadequate diet by adding to their ration foods rich in this vitamine, such as butter fat and chicken livers.

Other evidence that health depends on a suitable amount of each of these vitamines is afforded by experiments showing accelerated rate of growth in infants when the amount of the " B " vitamine in their diet is increased, and general improvement in their physical condition through increase in the amount of the "C" vitamine when, though not having acute scurvy, they have been receiving too little of this dietary essential in their food. The suggestion has also been made that a lack of the " A " vitamine may be a contributing factor in the susceptibility of the poor and undernourished to tuberculosis.

There is, then, abundant evidence as to the need for certain amounts of these known vitamines, but scientific investigation has not yet gone far enough for any one to state definitely how much of each is required either for adults or children. On a diet which meets all other nutritive requirements and in which milk, vegetables, and some fresh food are a regular part of the menu there is little likelihood of deficiency in any of the vitamines. The " B " vitamine is so widely distributed in fruits and vegetables that a diet containing these in addition to milk will be adequate as regards this dietary factor. The " A " vitamine is also found in sufficient quantity in milk not deprived of its natural fat, in eggs, butter, and green leaves; wherefore the presence of these in the diet is a guarantee of safety so far as this vitamine is concerned. The " C " vitamine is more readily destroyed by heat, aging, and drying than the other vitamines, from which it follows that the best general protection against shortage is in a fairly regular supply of
fresh food, and especially of fresh fruits and vegetables. Some information about the distribution of these vitamines in different foods may be secured from the following table:

TABLE XIV.

Distribution of Vitamines in Investigated Food Materials.

+ indicates that the vitamine is present.
++ ". " " " " " "
++ "
$+(?)$
+

\times

TABLE XIV-Continued.

Source	A	B	C
Grapes.	\times	$+$	$+$
Heart.	+	$+$	+(?)
Herring.	+	$+$	+(?)
Hickory nuts.	\times	+ +	
Honey. .	-	$+$	-
Kidney.	++	+ +	+(?)
Lard.	-(?)		-
Lemon juice.	-	$t+$	+ + +
Limes. . .	-	\times	+ +
Lettuce.	+ +	+ +	+++
Liver.	+ +	+ +	+(?)
Maize, white.	-	$+$	\times
yellow	+	+ +	\times
Milk, fresh.	+ +	+ +	+ Amount depends on cow's diet
condensed.	+ +	$+$	cow's diet $+(?)$
dried, skim.	$+$	++	+ (?) Depends
dried, whole.	+ + +	++	+(?) Depends
			on process
skimmed.	$+$	+	+ Amount
			depends on
Meat, muscle.	-	+(?)	+(?)
Nut margarines (vegetable fat)	-	-	
Oats.. .	$+$	+ +	-
Oleomargarine (animal fat).	+	-	-
Olive oil.	-	-	-
Onions. .	\times	++	++
Oranges.	$+$	+ +	+ + +
Pancreas.	-	+ + +	+(?)
Parsnips.	-	++	\times
Peanuts.	+	+t	\times
Pears. .	-	$+$	\times
Peas, dry	$+$	++	-
fresh	\pm	+ +	+++
Pecans..	\times	$+$	\times
Pig heart. liver.	$\pm+$	$+$	$\stackrel{\times}{\times}$
Pine nuts.	\times	$+$	\times
Potatoes, sweet. . .	+	+	\times
white, raw	$+$	+ +	+ +
white, boiled 15 minutes	\pm	+ +	+
Prunes. . . .	\times	+	
Rice, polished. . . whole grain	+	++	二
Roe, fish.......	+	++	+(?)
Rutabaga.	-	+ +	$++$
Rye, whole grain	$+$	+ +	\times
Spinach.	$t++$	+ + +	+++
Squash, yellow .	+ +	\times	\times
Sweetbreads (thymus gland).	-	-	-
Tomatoes. . . .	+ +	+ + +	$t++$
Turnips, swede.	-	++	$+$
Walnuts.	\times	++	\times

TABLE XIV-Continued.

Source	A	B	C
Whale oil.	+ +	\times	-
Wheat kernel.	$+$	$++$	-
embryo	+	$++$	-
Whey. . . .	+(?)	+ +	+(?)
Yeast.	-	+ + +	-

PART II.

PROBLEMS IN DIETARY CALCULATION.

PROBLEM I.

STUDIES IN WEIGHT, MEASURE AND COST OF SOME COMMON FOOD MATERIALS.

In the following table (XV) are grouped those common food materials which are purchased and used by measure more frequently than by weight. The food values are given for all the customary units of weight: namely, the gram for scientific accuracy; the ounce for the small family; and the pound for the larger institution; the data being calculated, unless otherwise stated, from Bulletin 28, Office of Experiment Stations, U. S. Department of Agriculture, using the Atwater factors for energy values. Since estimates of food values made on average proximate analyses cannot be absolutely accurate, the number of digits in this table (and in Tables XXIII, XXIV, and XXV) has been limited to one or two decimal places except on the gram, where the food values serve also to indicate the percentage composition as given in the original report. These can be used in cases where the closest concordance in results is desired.

For weighing the food materials, a Harvard Trip Scale with weights from one gram to one-half kilogram will be found most satisfactory, although any reliable household scale accurate to one-fourth ounce can be used. A number of standard or 100Calorie portions of food materials representing the different classes of foodstuff should be weighed, carefully measured, and the result recorded in the blank space provided in the measure column of the tables. The total weight of the market unit, as the quart, can or package, should also be recorded in the blank space under the data on food values, and the cost of this and the 100-Calorie portion recorded in the cost column. Other useful data are the weight of one cupful or one tablespoonful, etc., of foods used by these measures in cookery, such as flour, sugar, butter, and milk. Comparison of the cost of 100 -Calorie portions will give a true idea of
the relative economy of the different food materials as sources of fuel, and will save much time in dietary calculation. A complete record of a food material will appear as follows:

Example of a Food Record.

Food Material	$\begin{aligned} & \mu_{i} \\ & \dot{\infty} \end{aligned}$	Welght			$\begin{aligned} & \text { Pro- } \\ & \text { tein, } \\ & \text { Grams } \end{aligned}$	Fat, Grams	Carbohydrate, Grams	Fuel Value, Calories	Cost, Dollars	Measure
		lb.	oz.	gms.						
Bread, white, miscel-laneous.				1	0.093	0.012	0.527	2.59		
			1		2.63	0.34	14.94	73.4	0.0041	
		1			42.18	5.44	239.05	1174	0.0666	
	1	---	1.36	38.6	3.6	0.46	20.39	100	0.0056	$\left\{\begin{array}{r}1 \text { thick } \\ \text { slice }\end{array}\right.$
		---	12.00	340.0	31.56	4.08	179.28	880	0.05	1 loaf

TABLE XV.

Food Valdes of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis cf Fuel Value.

Calculated principally from Bulletin 28, Office of Experiment Stations, U. S. Department of Agriculture.
A. P. denotes "as purchased."
E. P. denotes "edible portion."
S. P. denotes "standard" or "100-calorie" portion.

The Per Cent of Refuse in common food materials is given in Table XVI.
When it is impractical to weigh certain food materials some idea of the relation between weight and measure may be gained by reference to Tables XIX and XX, or to "Feeding the Family," Rose, New York, 1916.

Food Material	$\stackrel{\Delta}{\circ}$	Weight			Protein, Grams	Fat, Grams	Carbo- hydrate, Grams	$\begin{gathered} \text { Fuel } \\ \text { Value, } \\ \text { Calories } \end{gathered}$	Cost, Dollars	Approxi-mateMeasure
		lb.	oz.	gms.						
Almonds, A. P.			1	1	$\begin{array}{\|c} 0.115 \\ 3.26 \\ 52.16 \\ 3.23 \end{array}$	$\begin{array}{r} 0.302 \\ 8.56 \\ 136.96 \\ 8.49 \end{array}$	$\begin{gathered} 0.095 \\ 2.69 \\ 43.09 \\ 2.67 \end{gathered}$	$\begin{array}{r} \cdot 3.56 \\ 100.9 \\ 1614 \\ 100 \end{array}$		
		1		28.1						
	1		0.99							
Almonds, E. P.			1	1	$\begin{gathered} 0.210 \\ 5.95 \\ 95.25 \\ 3.24 \end{gathered}$	$\begin{gathered} 0.549 \\ 15.56 \\ 249.03 \\ 8.48 \end{gathered}$	$\begin{gathered} 0.173 \\ 4.90 \\ 78.47 \\ 2.67 \end{gathered}$	$\begin{gathered} 6.47 \\ 183.5 \\ 2936 \\ 100 \end{gathered}$		
		1								
	1	---	0.54	15.5						
						.				
Apples, dried, A. P.				1	0.016	0.022	0.661	2.91		
			1		0.45	0.62	18.74	82.4		
	1	1			7.25	9.93		100		
			1.21	34.4		0.75	22.74			

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values ce Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, anb of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, any of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

* Ont. Dept. of Agr., Bull. 162.

4

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measurei, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, ane of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Valdes of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

$\underset{\text { Material }}{\text { Food }}$	$\begin{aligned} & \text { A } \\ & \text { ó } \end{aligned}$	Welght			Proteln, Grams	Fat, Grams	Carbohydrate, Grams	Fuel Value, Calories	$\begin{gathered} \text { Cost, } \\ \text { Dollars } \end{gathered}$	$\begin{aligned} & \text { Approxi- } \\ & \text { mate } \\ & \text { Measure } \end{aligned}$	
		bb.	oz.	gms.							
Olives, green, A. P.				1	$\begin{aligned} & 0.008 \\ & 0.23 \end{aligned}$	0.202	0.085	2.19			
		-.	1			$\begin{array}{r} 5.72 \\ 91.60 \end{array}$	2.41	62.1			
		1			0.23 3.63			993			
	1	---	1.61	45.7	0.36	9.22	3.88	100			
Olives, green, E. P.				1	0.011	0.276	0.116	249			
			1		0.31	7.82	3.29	84.8			
		1			4.99	$\begin{array}{r} 125.18 \\ 9.23 \end{array}$	52.61	$\begin{array}{r} 1357 \\ 10 n \end{array}$			
	1		1.18	33.4	0.37						
Olive oil.				1		1.000		9.00			
			1	----.-.-.--							
		1.				28.35453.6011.11		$\begin{gathered} 255.1 \\ 4082 \\ 100 \end{gathered}$			
	1		0.39	11.1	----.-....---						
Onions, fresh, A. P.				1	$\begin{aligned} & 0.014 \\ & 0.40 \end{aligned}$	0.003	0.089	0.44			
		----	1			0.09	2.52	12.4			
		1				1.36	40.37	199			
	1		8.03	227.6	3.19	0.68	20.27	100			
Onions, fresh, E. P.				1	0.016	0.003	0.099	0.49			
			1		0.45	0.09	2.80	13.8			
		1			7.26	1.36	44.80	220			
	1	7.24		205.4	3.30	0.62	20.33	100			

TABLE XV.
food Values of Food Materials Requiring study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Fuod Values of Food Míterials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

"TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Meabures, an of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, alfb of Comparative Cost on the Basis of Fuel Value.-Continued.

TABLE XV.
Food Values of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value. -Continued.

TABLE XV.
Food Valdes of Food Materials Requiring Study of Weights and Measures, and of Comparative Cost on the Basis of Fuel Value.-Continued.

PROBLEM II.

GIVEN THE PERCENTAGE COMPOSITION, TO FIND THE WEIGHT OR PROTEIN, FAT, AND CARBOHYDRATE RESPECTIVELY, IN ANY WEIGHT OF FOOD MATERIAL.

In studying food values, it is necessary to be able to uranslaie percentage quickly into terms of weight and vice versa. This is simple if it be clearly understood at the outset that percentage means parts per 100 parts, without regard to whether these parts be taken by English or Metric system. Cows' milk has the following percentage composition:

Proteln	Fat	Carbohydrate
o 3.3 per cent	4.0 per/cênt	5.0 per cent

If we take as the basis for calculation a unit of weight, as one pound, we shall find the following weight of protein, fat and carbohydrate yielded by this amount of milk:

Protein	Fat	Carbohydrate
0.033 pound	0.04 pound	0.05 pound

The scientific unit of weight is the gram, and the food-stuffs are commonly reported in terms of this unit. In one gram of milk there will be by weight, according to the above analysis:

Proteln	Fat	Carbohydrate
0.033 gram	0.04 gram	0.03 gram

In other words, dividing the figures representing the percentage composition by 100 (i. e., moving the decimal point two places toward the left) will give the weight in grams of protein, fat and carbohydrate in one gram of any food material.

The number of grams of protein, fat or carbohydrate in one ounce of any food material may be found most easily by multiplying the values for one gram by 28.05 , the number of grams in one ounce. Thus one ounce of milk yields:
Protein
0.9355 gram
(0.033×28.35)
Fat
1.134 grams
(0.04×28.35)

Carbohydrate
1.4175 grams
(0.05×28.35)

The number of grams of protein, fat, or carbohydrate in one pound will be found by multiplying the values for one gram by
453.6, the number of grams in one pound. Thus one pound o! milk yields:

Protein	Fat	Carbohydrate
14.9688 grams	18.144 grams	22.68 grams
(0.033×453.6)	(0.04×453.6)	(0.05×453.6)

In general, to find the weights of foodstuffs in any given amount of food material, find the weight of the material, express this in grams, and multiply the result by the food values for one gram. For example, to find the weight of each of the foodstuffs in quart of milk.

First, ascertain the weight- 34.4 ounces.
Second, express this weight in grams- $34.4 \times 28.35=\mathbf{9 7 5 . 2 4}$ grams.

Third, multiply the weight in grams by the food values for one gram, as follows:

In actual practice it is not necessary to retain all of these figures in the decimal fractions, which imply greater accuracy than is possible in estimating food values from average analyses of the food materials, as already stated in Problem I. The discrepancies which occur from dropping decimals are within the limits of accuracy in this method of determining food values.

PROBLEM III.

TO FIND THE FUEL VALUE OF ANY GIVEN WEIGHT OF FOOD MATERIAL.
Since fuel values are expressed in terms of Calories per gram, one gram of protein yielding 4 Calories, one gram of fat 9 Calories, and one gram of carbohydrate 4 Calories, it is necessary to find first the amount of each nutrient in the given weight of food material in grams, and then to multiply these results by the respective factors for fuel values, the sum of the products being the total fuel value. For example, one gram of milk yields 0.033 gram of protein, 0.04 gram of fat and 0.05 gram of carbohydrate (cf. Problem II). Then

$$
\begin{aligned}
& 0.033 \times 4=0.132 \text { Calories from protein. } \\
& 0.04 \times 9=0.360 \text { Calories from fat } \\
& 0.05 \times 4= \\
& \text { Total, } \\
& \quad 0.200 \text { Calories from carbohydrate } \\
&
\end{aligned}
$$

Similarly, the total fuel value for one quart of milk is obtained as follows:

Weight of protein	$=32.18$ grams;* $\quad 32.18 \times 4=129.72$ Calories
Weight of fat	$=39.01$ grams;* $39.01 \times 9=351.09$ Calories
Weight of carbohydrate	$=48.76$ grams;* $48.76 \times 4=195.04$ Calories
Total fuel value of one quart of milk	$=675.85$ Calories

PROBLEM IV.

TO FIND THE WEIGHT OF A STANDARD OR 100-CALORIE PORTION OF ANX SINGLE FOOD MATERIAL.

In order to obtain an intelligent idea of the relative value of different kinds of food materials, it is necessary to establish some common unit on the basis of which they may be compared. With regard to fuel value, such a unit has been devised in the Standard Portion, which is the amount of any food capable of yielding in the body energy equivalent to 100 Calories. Every student of dietetics should we familiar with the Standard Portions of all common food materials, and of the dishes which most frequently appear upon the table.

To find the weight in grams of any Standard or 100-Calorie Portion:

Determine the fuel value for one gram.
Divide 100 by the fuel value per gram, or in other words, solve the following proportion:

1 gram : Calories in one gram $\cdot: x$ grams : 100 Calories.
Thus in the case of cows' milk, the fuel value per gram is 0.692 Calorie. \dagger
'Then $100 \div 0.692=144.5$ grams; or,
1 gram : 0.692 Calorie : : x : $1 Q 0$ Calories.
$0.692 x=100$
$x=144.5$ grams, weight of One Standard Portion of Milk.
Inasmuch as foods are purchased by English measure, it is necessary in estimating cost to express the Standard Portion in

* Cf. Problem II.
\dagger Cf. Problem III, and Table XV.
ounces (or sometimes in pounds). This can be done by dividing the number of grams by 28.35 (the number of grams in one ounce), but much time can be saved by using Table XXI for converting grams to ounces. By reference to this table, we find that 144.5 grams equal 5.1 ounces.

PROBLEM V.

TO FIND THE FOOD VALUES FOR ANY COMBINATION OF FOOD MATERIALS.
In ordinary dietetic practice, it is necessary to deal frequently with combinations of two or more food matcrials. Sugar is added to fruit, milk and butter to vegetables, anc. the products of cook book recipes are of ten quite complex mixtures. To ascertain the food values of such dishes it is necessary to proceed as follows:

First, determine the weight of each ingrodien'ن in grams.
Second, compute separately the protein, fict and carbohydrate in grams, and the fuel value for each food material.

The sum of these will give the food values for the whole dish, as the following illustration will show:

One Egg Care.*

$\frac{1}{\frac{1}{2}}$ cup of butter	$\frac{1}{2}$ cup of milk
$\frac{1}{2}$ cup of sugar	$1^{\frac{1}{2}}$ cups of flour
1 egg	$2 \frac{1}{2}$ teaspoons of baking powder
ton Cooking-School Cook Book.	

* Boston Cooking-School Cook Book.

The butter weighs 57 grams; calculating the nutritive value according to Problems II and III (or referring to the food values of one gram Table XV) we have the following results:

Protein,	Fat, Grams	Grams
0.57		48.45

Carbohydrate。 Grams	Calories
-	438.3

The other food materials are weighed and their food values calculated in similar fashion. The sum of the values for each food as tabulated below will give the value of the whole dish. The cost may be calculated for each ingredient and recorded at the same time.

Food Values of a Recipe.*

Material	Measure	Welght		Pro- tein, tein, Gm.	$\stackrel{\text { Fat, }}{\sim}$	Carb.,	Cal-	Cost, Dollars
		Oz.	Gm.					
Butter..	$\frac{1}{4}$ c. \dagger	2.0	57	0.57	48.45		438.3	0.0450
Sugar.	$\frac{1}{2} \mathrm{c}$.	3.9	105			105.00	420.0	0.0137
Egg.	1	2.0	57	6.78	5.30		74.8	0.0300
Milk (skimmed) .-.-.	$\frac{1}{2} \mathrm{c}$.	4.3	122	4.15	0.36	6.22	44.7	0.0050
Flour...	$1 \frac{1}{2} \mathrm{c}$.	6.0	172	17.26	1.72	128.73	607.8	0.0132
Baking powder	$2 \frac{1}{2}$ tsp. \dagger	0.5	15					0.0156
Totals (uncooked) \ddagger...	3 c .	18.7	528	30.76	55.83	239.95	1585.6	0.1225

* For other dietary recipes see Food for The Worker, Stern and Spitz, Boston, 1917, and Feeding the Family, Rose, New York, 1916.
\dagger c. denotes cup; tsp. denotes teaspoon.
\ddagger It is usually more satisfactory to take total weight and measure after the dish is cooked, so as to know the food value of a given amount of the finished product.

PROBLEM VI.

TO FIND THE DISTRIBUTION OF THE FOODSTUFFS IN A STANDARD PORTION of a Single food material.

While the standard portion is of most convenience in estimating the total energy value of a given dietary, it may also serve as a means of indicating the amount of protein, fat or carbohydrate furnished, if we calculate the weight of each foodstuff in the standard portion itself., Having determined the weight of each nutrient in one gram of the food material (according to Problen II), it is simply necessary to multiply these values by the weight of the standard portion in grams. Thus in the case of cows' milk,

Proteln, Gm.	Fat, Gm.	Carbohydrate, Gm.
Weight of each food-stuff in one gram....0.033	0.04	0.05
Weight of one Standard Portion.-...-....-144.5 Gm:		
Total weight of each foodstuff in one		
	5.780	7.225

These results may be verified by multiplying the weight of protein, fat and carbohydrate by the factors for fuel values (cf. Problem III); the sum of the products will be 100 Calories.

It is often convenient to express the distribution of foodstuffs
in a standard portion entirely in terms of energy value. From the calculations above it is evident that a standard portion of milk will yield, in round numbers, the following:
$\left.\begin{array}{cccc}\text { Calories from } & \text { Calorles from } & \begin{array}{c}\text { Calories from } \\ \text { Proteln }\end{array} & \text { Fat }\end{array}\right)$

PROBLEM VII.

to find a standard portion of any combination of food materials.
Standard portions of single food materials which are fairly constant in composition, may be permanently tabulated for reference, but in the case of mixtures great variation in food value is possible, even in recipes containing only three or four different ingredients, and the comparison of Standard Portions of various dishes in which the food values are purposely modified (as by using skim milk for whole milk, half water and half milk instead of milk only) is most profitable. It is necessary, therefore, to be able to calculate the food values for a standard portion of any mixture of food material.

The first step is to determine the total food values for the recipe, as described in Problem IV.

Having ascertained the total fuel value, the per cent of the whole required to give 100 Calories is found by dividing 100 by the total number of Calories yielded by the recipe. Taking this per cent of the total weight, measure, food values, etc., of the recipe, will give the measure, weight and distribution of foodstuffs in the Standard Portion.

For example, take the recipe for One Egg Cake in Problem V. The totals are as follows:

Measure (Uncooked)	Weight (Uncooked), Ounces	Grams	ProteIn, Grams	Fat, Grams	Carbo- hydrate, Grams	Calorle	Cost
3 c.	18.7	528	30.76	55.83	239.95	1585.6	$\$ 0.1225$

Dividing 100 by 1585.6 , gives 0.063 , i.e., 6.3 per cent of the whole is required to yield 100 Calories.

Multiplying the totals by 0.063 , we have the value for one Standard Portion, as follows:

Measure (Uncooked)	Weight (Uncooled). Ounces	Protein, Grams	Fat, Crams	Carbo- hydrate,	Calories	Cost	
$\frac{1}{5}$ c.	1.18	33.3	1.94	3.52	15.12	100	$\$ 0.0077$

The total weight of the finished product is not the same as the combined weights of the ingredients in most cases, on account of changes in water content, but if the same proportion of the total weight or measure of cooked material is always taken for the

Recipe:	One Egg Cake.			Date:		Carb.,Gm.	$\begin{gathered} \text { Cal- } \\ \text { ories } \end{gathered}$	$\underset{\text { Dollars }}{\substack{\text { Cost }}}$
Material	Measure	Welght		$\begin{aligned} & \text { Pro- } \\ & \text { teln, } \\ & \text { Gm. } \end{aligned}$	$\underset{\mathrm{Gm} \text {. }}{\mathrm{Fat}}$			
		Oz.	Gm.					
Butter	${ }^{\frac{1}{4}} \mathrm{c}$.	2.0	57	0.57	48.45	-	438.3	0.0450
Sugar	${ }^{\frac{1}{2}} \mathrm{c}$.	3,9	105	-	-	105.00	420.0	0.0137
Egg.		2.0	57	6.78	5.30	-	74.8	0.0300
Milk (skimmed)	$\frac{1}{2} \mathrm{c}$.	4.3	122	4.15	0.36	6.22	44.7	0.0050
Flour.	$1 \frac{1}{2} \mathrm{c}$.	6.0	172	19.26	1.72	128.73	607.8	0.0132
Baking powder .-.-	$2{ }^{\frac{1}{2}} \mathrm{tsp}$.	0.5	15		-	-	-	0.0156
Totals (uncooked)	3 c.	18.7	528	30.76	55.83	239.95	1585.6	0.1225
Standard Portion	Per cent of recipe 6.3	1.18	33	1.94	3.52	15.12	100	0.0077
1 Serving .-.-	12.5	2.34	66	3.84	6.98	29.99	198.2	0.0153

Computed by:
standard portion, no serious difficulties will be encountered. When a recipe is made, it is also well to consider the number of ordinary servings which it will make, and to calculate the food value for the individual portion. Such records are very usefui in planning dietaries, saving time in calculation, especially if kept on uniform cards in a file. The foregoing shows a complete record on a convenient model.

PROBLEM VIII.

TO FIND THE PERCENTAGE COMPOSITION OF A FOOD MIXTURE.
Since the feeding of infants is commonly conducted according to the percentage method indicated in Problem IX, the ability to determine the percentage of each of the foodstuffs in any prescribed diet is as necessary as ability to modify milk according to a prescribed formula.

Given, for instance, such a prescription as the following, what per cent of protein, fat, and carbohydrate does it contain?

[^10]It is first necessary to determine the total amount of each of the foodstuffs, as in Problem V. The results are as follows:

Food Material	Measure	Weight		Proteln, Grams	Fat, Grams	Carbohydrate, Grams
		Ounces	Grams			
Milk.	2 cups	17.2	487.60	16.09	19.50	24.38
Barley flour .-	$\frac{1}{2}$ tbsp.	0.25	7.08	0.74	0.16	5.10
Milk sugar.-.-	3 tbsp.	1.0	28.35	\cdots	-	28.35
Water-.-...-.-.--	2 cups	16.0	453.60	-	-	-
Totals...-		34.45	976.53	16.83	19.66	57.83

Having the total weight of the mixture, it is now a simple matter to determine what per cent of this is represented by each ingredient:

$$
\begin{array}{ll}
\text { Protein: } & 16.83 \div 976.53=0.0172 \text {, or } 1.72 \text { per cent. } \\
\text { Fat: } & 19.66 \div 976.53=0.0201 \text {, or } 2.01 \text { per cent. } \\
\text { Carbohydrate: } 57.83 \div 976.53=0.0592 \text {, or } 5.92 \text { per cent. }
\end{array}
$$

PROBLEM IX.

TO MAKE A COMPLETE DIETARY RECORD.

) The dietary may be considered from two points of view: first, as a record of food actually consumed by a given number of persons in a given period; second, as a prescription of the food to be provided for certain individuals for a stated time. In either case, its value is increased by so arranging the report as to show not only the nutritive value of the diet, but also its cost and menu, thus presenting as clear a picture as possible of the food consumed, or a definite working plan for preparing the diet proposed. Since the data are frequently numerous, the work is much facilitated by suitable blanks, a convenient set consisting of six sheets, whose use is shown in the example of a complete dietary below.

Sheet Number I gives general information with regard to the subjects of the study; it shows their individual requirements and affords a means of comparing one study with another by reducing both to a uniform basis, either "per capita" or "per man" per day. The tables in the section on Food Requirements (Tables IXIII) will be of assistance in determining food requirements of individuals of different ages, weights and muscular activity.

Sheet Number II is designed to give as accurately as possible a picture of how the food will appear upon the table. The amounts
should be stated for each dish in some way which will make the plan easy to follow in preparing the meals. Ordinarily, common measures (cups, tablespoons, etc.) will be most satisfactory, but in the laboratory it is frequently desirable that weights be stated, especially when several persons are engaged in preparing the day's ration, to avoid discrepancies due to inaccurate measurement. This careful statement of amounts serves also as a check against omitting in the computation of food values articles essential to the success of the menu.

Sheet Number III indicates the total quantities of each kind of material required for the dietary, summarized from sheets IV and V, and the market prices upon which the actual cost of the food materials on Sheet IV is based, giving the market unit which it is necessary to purchase in order to obtain these prices. Thus it may serve to show the different results of buying in large and small quantities, if the net weight of the food materials is taken at the time of purchase. It also provides a useful check on the accuracy of the calculations of the cost of small quantities. The statements as to the place and date of purchase afford criteria as to whether good judgment has been exercised in marketing, inasmuch as cost varies so greatly with locality and season.

The special aim of this sheet is to furnish a convenient marketing list and to guard against attractive menus with that underestimation of cost which tends to discredit dietary calculations as impractical, especially among those who do not realize how much can be accomplished by skillful choice and preparation of food materials. When the dietaries are to be prepared and the students do not buy the materials, Sheet III can be used to advantage as a requisition sheet.

Sheet Number IV is the detailed statement of the proteiu. calories and cost of the whole dietary. Where cost is involved, it is usually easier to make the calculations on food materials as purchased; if the food values are for edible material this should be definitely stated. At the end, space is arranged for a summary and comparison with the standard proposed on the first sheet. Differences of not more than five per cent may be considered negligible, but a slight excess is always better than a deficit, especially if no allowance is made for kitchen or table waste, which often amounts to ten per cent or more.

Sheet Number V provides for a statement of food combinations used in the menu, and if the calculations on the original food materials are tabulated on Sheet IV nothing more than weights and measures of the different ingredients will be required. If the recipe is calculated in detail on this sheet, then only the totals need be copied on Sheet IV. When recipe cards are on file, they may be referred to by number. Without this sheet, it is difficult for any one but the persons who planned the dietary to know how the different dishes proposed are to be made, and often important ingredients are omitted entirely'.

Sheet No. VI provides for the calculation of calcium, iron and phosphorus in the dietary. Since a surplus of any or all of these elements is not usually disadvantageous so far as we know, it is more important to see whether the requirement is met than to determine the precise amount of each element present. This may be done by selecting from the dietary for calculation those foods which are the main sources of the element in question. If these supply enough to meet the requirement, calculalations on the remaining foods need not be made. If the foods selected for calculation do not yield enough, the work should be continued until the requirement has been met or the dietary has been shown to be actually deficient in the element under consideration. If the dietary should prove deficient, it should, of course, be revised to meet the standards set for the ash constituents.

In the sample dietary sheet on page 74, this method of estimating the ash constituents is well illustrated. Milk alone yields more than enough calcium and phosphorus to meet the standards set, and consequently calculations on other foods are not made for these elements; but the dietary is barely adequate in iron, hence it was necessary to continue calculation till every food used was included.

At the present time it is not possible to set quantitative standards for the vitamines. The best thing to do until research develops further is to see that some food or foods rich in each vitamine is present. A list of vitamine containing foods in the illustrative dietary used here is appended to Dietary Sheet No. VI.

An Example of a Complete Dietary.

DIETARY SHEET No. I.

Persons served: One Child.
No. meals served: Flux.
No. days: One.
Place: New Took City.
Date: August, 1911.
Method of Estimating Food Requirements.
For energy: 70 Caloxies piex Kilogram.

For protein: 10-15 Mex cent of total fuel in form of STations.

Proposed Individual Standards.

Proposed Standard Per Capita

Per Day. | $\begin{array}{c}\text { Protein, } \\ \text { Ems. }\end{array}$ | $\begin{array}{c}\text { Fuel Value, } \\ \text { Calories }\end{array}$ | Dost, |
| :---: | :---: | :---: |
| | | |

DIETARY SHEET NO. II.

Menus.

Meal	Dishes	Amounts
©Breahfast, 8:00 A. M.	Canteloupe	$1 / 2$ small one
	Taxina	3/4 c.* cooked
	Toph milh fox mush	2/3c.
	Toast	2 slices lexead
	©bultex	3/4 l6.*
	Nilk to dxink	$2 / 3 \mathrm{c}$.
Dinnex,		
12:00 ¢P. M.	Cxeamed halibut	$3 / 4 \mathrm{c}$.
	Satied potato	1 medium
	Sliced tomatoes	1 small one
	©xread	1 slice
	Bultex	1/2 th.
	Nills shexbet	$3 / 4 \mathrm{c}$.
Lunch,		
3:00 PPM.	$\mathscr{B x}$ ad	1 slice
	Bullex	3/4t6.
Suppex,		
6.00 ¢P. M.	Poached egg on	1 egz
	Toast	1 slice bxead
	Apple sauve	1/2c.
	Bxead	1 slice
	Builtex	$1 / 216$
	Connstaxch blano mange	$2 / 30$
	Milk.......2/3 c. sugax	$1 \mathrm{la} / \mathrm{c}$

* c. denotes cup; tb. denotes tablespoon.

DIETARY SHEET NO. III.

Price List.

DIETARY SHEET NO. IV.
Nutritive Value and Cost.

Material

Protein,	Fuel Value,		
Ems.	Calories.	\quad	Cost,
:---:			
Dollars			

0.54	33.6	0.0400
3.04	100.0	0.0049
18.09	337.5	0.0450
10.52	293.6	0.0164
0.35	272.4	0.0195

11.45
$210.5 \quad 0.0881$ See
Sheet $\%$.
See
See Sheet $\%$. She e
She e

Sheet W.	
4.00	118.4

$$
\text { Oz. } \quad \text { Weight } \text { Gms. }
$$

170.00
27.60
487.50
113.40
42.6

118.4
56.7
6.7
7.1

DIETARY SHEET NO. V/
Recipes.

* As purchased.

CHIEF SOURCES OF VITAMINES IN THE DIETARY.
$\underset{\text { (Fat-soluble) }}{\text { A }}$
Malk Eigs
$\underset{\text { (Water-soluble) }}{\text { B Vithe }}$
Mulk
©9gs
Pepates
Stypes
Tomates

C Vitamine
(Water-soluble)

©buttex

Potatoes

- Apples

Tomatoes

> Lemon juice
> Cantelouphe

Lemon picico

DIETARY SHEET NO. VI.

Ash Constituents.

Materials	Measure	$\begin{gathered} \text { Weight** } \\ \text { Gms. } \\ \text { E. P. } \end{gathered}$	Calories	$\begin{gathered} \mathrm{Ca} \\ \mathrm{Gms.} \end{gathered}$	$\underset{\mathrm{Gm}}{\mathrm{P}}$.	$\begin{gathered} \mathrm{Fe} \\ \mathrm{Gms} . \end{gathered}$
CBread, Graham *	$\frac{1}{3}$ loaf	113.4	295	***	***	0.0028
Cantuloufe.	$\frac{1}{3}$ melon	84.0	34	***	***	0.0003
Ög\%	1	48.0	71	***	***	0.001/4
Matibut		38.4	38	***	***	00006
Lemon juice.	1 Cluh .	14.2	6	***	***	00001
Appinle.	1	$\lambda^{\frac{31}{63.6}}$	40	***	***	$00^{\circ} 03$
Taxina.		27.6	100	***	***	O OCO2
Polata.	1	91.5	76	***	***	0.0012
Tomata.	1	56.7	13	***	***	0.0002
thill	1 gt	975.0	673	1.170	0.907	00023
Totals. .				1.170***	$0.907^{* * *}$	0.0093
Standard.				0.460	0.880	0.0100

* With white bread this dietary is inadequate in iron.
** Either this column or the calorie column may be used, referring to Tables XXVI and XXVII respectively.
*** Since the milk alone furnishes sufficient calcium and phosphorus the calculation of these elements in the other foods is omitted.

PROBLEM X.

TO SCORE A DIETARY.

In the laboratory it is frequently desirable to set out and compare two or more dietaries at the same time, and inasmuch as there are many factors to be taken into consideration besides supplying a specified amount of fuel at a given price, such as the adaptation of the diet to the locality, season, idiosyncrasies of the individual, availability of the food materials as prepared for the table, some of these factors often being overemphasized at the expense of others more important, it is believed that a dietary score card will help to give a clearer idea of the relative importance of the points which must generally be taken into consideration.

Total Score- 100 Points.

	Possible Score	Points Deficit	Actual Score
FOOD VALUE 60 Points			
Fuel Value. 30 Points Consider adaptation to weight, age, and amount of muscular activity of each individual.	30		
Protein (considered as the source of nitrogen)	10		
Is it suitable in kind and amount with regard to age and weight?			
Ash Constituents. 10 Points	10		
Are the following adequate?			
Phosphorus			
Iron			
Calcium			
V'itamines........................... . 10 Points	10		
Are the following adequately represented? A. (Fat-Soluble, Antixerophthalmic). B. (Water-Soluble, Antineuritic). C. (Water-Soluble, Antiscorbutic).			
FOOD SELECTION 22 Points			
Adaptation to Individual..... 10 Points	10		
Digestibility-ease, rapidity, etc. Variety-in food materials, form, color, etc.			
Quality of food materials-sanitary conditions, etc. Bulk			
Adartation to Income.................. . 12 Points	12		
Is return on investment good?			
Is expenditure proportioned properly to total income?			
Is undue amount spent for flavor, form, color?			
FOOD PREPARATION AND SERVICE... 18 Points			
Cookery. 12 Points Does it increase or decrease digestibility?	12		
Is there a waste of materials? (through under or over-cooking?)			
Is there a waste of time and of energy? Are flavor, form, and color preserved?			
Мепи. 3 Points	3		
Are combinations good physiologically and esthetically?			
Are sequences of dishes good, considering distribution of nutrients, form, color, and flavor?			
Service. \qquad 3 Points Is it regular? neat? orderly?	3		

In judging the menus, the following general rules for the making of a menu should be borne in mind:

1. Conceive of the whole day as the unit, rather than the individual meal.
2. Endeavor to distribute the protein, fat and carbohydrate through the day, so that no meal will have a striking preponderance of one kind of foodstuff.

For example, meat served with macaroni and cheese concentrates the protein in one meal, potatoes with rice concentrate the starch, and fried potatoes and pie concentrate the fat.
3. With the exception of a few such staples as bread, butter and milk, try to avoid serving any food in the same form twice in the same day and serve it preferably only once in any form.
4. Try to avoid serving any food which gives character to a dish twice in the same meal, even in different forms. Do not, for instance, select tomato soup and tomato salad for the same meal.
5. At each meal, seek contrasts between successive courses, a bland course being followed by a more highly flavored course, and vice versa, to give a pleasing rhythm.
6. In each course endeavor to have harmonious combinations, as to flavor, color, form and texture.
7. As the number of courses increases, decrease the number of dishes and size of the servings in each.

Distribution of credits to the sub-topics has been left to the judgment of the person using the score card.

PROBLEM XI.

TO ABBREVIATE DIETARY CALCULATIONS WHEN LARGE QUANTITIES OF FOOD ARE INVOLVED.*
When dietary calculations are to be made on large quantities of food, as for example in an institution, the food consumed running into hundreds or thousands of pounds, it is possible to apply some "short cuts" which materially lessen the labor involved, without introducing any great amount of error. The scheme proposed here is one of the most accurate of its kind, and has the advantage of so grouping foods for calculation of total calories, protein and fat calories (carbohydrate calories being easily determined by taking the difference between total calories and the sum of the protein and fat calories) that one can subsequently analyze the dietary quite readily as to its content of milk, of fruits and vegetables, of meats, of cereals, of fats, or other items, to see whether these are so proportioned as to insure a liberal supply of ash constituents and vitamines, palatability without excessive cost, ease of digestion, laxative properties, etc.

In this scheme all the food materials are listed by groups according to certain marked similarities in chemical constitution and these groups are gathered into seven classes, the resemblance in distribution of protein, fat, and carbohydrate being strong within each class. The seven classes are as follows:

Class	I. Cereals and cereal products.
Class	II. Dried legumes and shelled nuts.
Class III. Vegetables and fruits.	
Class	IV. Sugars, syrups, jams, candies, starches (foods yielding carbohydrates
almost exclusively).	
Class	V. Fats and oils (including separator cream and very fat meats).
Class	VI. Milk (all kinds except skimmed), gravity cream, ice cream, chocolate,
cocoa (foods with little carbohydrate but rich in both fat and protein).	
Class VII. Meats, eggs, cheese, skim milk (all animal foods not listed in Classes	
V or VI).	

Within each class, some staple food is taken as the "standard" or "type." Thus for Class I, Cereals and Cereal Products, wheat is designated as the type. Wheat and wheat products have fuel values per pound differing only a little from each other. These have been averaged (weighting the average to take acount of those occurring with greatest frequency, as wheat flour for example) and the averages are called the "type factors" for Class I. To use these, one adds together the original weights in pounds of

[^11] A. R. Rose, The Modern Hospital, Volume 14, Number 6, (1920). A still more abbreviated method may be found in the original paper.
all the wheat products which have been used in the dietary, and multiplies this total weight once for all by the "type class factors," viz., for total calories, 1620 ; for protein calories, 210 ; for fat calories, 40.

Oatmeal has a slightly higher fuel value per pound than the wheat group, and ordinarily one would get the total calories per pound by multiplying the total number of pounds by 1800 . But the labor will be lessened by altering the original weight of the oatmeal so that when this "adjusted" weight is multiplied by the same factor as is used for the wheat group the total calories yielded will be correct. This may be accomplished by multiplying the original weight of oatmeal by 1.1 , adding its weight to the wheat group, and getting total calories for both in one operation. In other words, the weights of different kinds of food within a class are so adjusted either singly or in groups that they may be added together and one multiplication by the "type class factor" determine the total calories for the entire class.

Similar adjustments are made to enable one to use a single factor for determining the protein calories of a class. Thus in the case of oatmeal the percentage of protein is considerably higher than the percentage average for the wheat group. But by increasing the weight 40 per cent the same factor can be used for both wheat and oatmeal. In like manner a weight-adjustingfactor can be applied to the determination of the fat calories. To carry out the method in detail a set of such weight-adjustingfactors must be at hand, and one which is the result of much careful study of the whole situation is given below.

WEIGHT-ADJUSTING FACTORS.

To Permit the Use of "Type Class Factors" for the Calculation of the Total Calories, Protein Calories, and Fat Calories for a Specified "Class" of Food Materials.

CLASS GROUP	$\begin{aligned} & \text { TOTAL } \\ & \text { CAL- } \\ & \text { ORIES } \end{aligned}$	$\begin{aligned} & \text { PROTEIN } \\ & \text { CAL } \\ & \text { ORIES } \end{aligned}$	$\begin{aligned} & \text { FAT } \\ & \text { CAL- } \\ & \text { ORIES } \end{aligned}$
I. Cereals and Cereal Products.			
1. Wheat and wheat products.	1.0	1.0	1.0
2. Rice and rye.	1.0	0.7	0.3
3. Corn, meal and flour, corn flakes, post toasties, and similar ready-to-serve patented products, hominy, barley and buckwheat.	1.0	0.7	1.4
4. Oatmeal	1.1	1.4	7.0
5. Bread.	0.7	0.8	1.5
6. Bakery products:			
a. Crackers, toasted breads .	1.1	0.9	8.0
b. Home-made cookies and fried ca	2.0	0.6	20.0
c. Cakes and bakery cookies.	1.0	0.6	11.0
II. Dry Legumes and Shelled Nuts.			
7. a. Beans, peas and lentils.	1.0	$1.0{ }^{1}$	$1.0{ }^{2}$
b. Baked beans.	0.33	0.33	1.33
8. Shelled nuts ${ }^{3}$.	1.7	0.9	30.0
III. Vegetables and Fruits.			
9. a. White potatoes.	1.0	1.0	
b. Sweet potatoes.	1.5	1.0	. . .
10. Roots.	0.5	0.6	
11. Stem and leaf types, incl. onion and mushroom	0.4	0.6	. .
12. Green vegetables in pod and seed ${ }^{4}$.	0.8	1.5	. . .
13. Fruit served as vegetable (e. g., squash)	0.3	0.6	. . .
14. Sweet fruits:			
a. Fresh.	0.8	0.5	. .
b. Canned	1.3	0.5	\ldots
c. Dried.	4.4	2.2	
IV. Sugars, Syrups, Starches, etc.			
15. Sugar, candy, starch, etc....	1.0
16. Syrups, jellies, jams, preserves, etc.	0.75 ${ }^{\text {P }}$
V. Fats and Oils.			
17. Lard, suet, vegetable oils, butter, very fat bacon and pork.	1.0	...	1.0
18. a. Less fat bacon and pork	0.7	. . .	0.7
b. Separator cream and salad dressings, etc...	0.5	\ldots	0.5
VI. Foods Rich in Fat and Protein-little Carbohydrate.			
19. Milk-fresh, whole	1.0	1.0	1.0
20. Milk-evaporated.	2.0	2.0	2.0
21. Milk-desiccated; cocoa, and chocolate.......	7.5	6.5	7.5

[^12]| CLASS GROUP | $\begin{aligned} & \text { TOTAL } \\ & \text { CAL-- } \\ & \text { ORIES } \end{aligned}$ | $\begin{aligned} & \text { PROTEIN } \\ & \text { CAL- } \\ & \text { ORIES } \end{aligned}$ | $\begin{aligned} & \text { FAT } \\ & \text { CAL- } \\ & \text { ORIES } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 22. a. Condensed milk | 2.3 | 3.0 | 2.4 |
| b. Condensed milk-sweetened | 4.7 | 2.6 | 2.1 |
| c. Gravity cream. | 2.7 | 0.7 | 4.5 |
| d. Ice cream | 1.6 | 1.0 | 0.5 |
| VII. Animal Products Exclusive of Whole Milk and Fats. | | | |
| 23. Beef, veal, liver, pigs' feet, tripe, etc. | 1.0 | 1.0 | 1.0 |
| 24. Ham, pork, lean salt pork, pork-beef sausage. . | 2.2 | 1.3 | 2.8 |
| 25. Mutton, lamb, corn beef, beef sausage. | 2.0 | 1.3 | 2.2 |
| 26. Sausages of fatter types than those above, fat pork and ham, bacon too lean for Class V, deviled ham, bead cheese. | 3.0 | 1.3 | 4.0 |
| 27. Fowl ${ }^{5}$ | 1.0 | 1.0 | 1.0 |
| 28. Fresh fish, entrails removed | 0.5 | 0.7 | 0.3 |
| 29. Preserved fish | 1.0 | 1.4 | 1.1 |
| 30. Shell fish | 0.3 | 0.3 | 0.0 |
| 31. Eggs ${ }^{6}$ | 1.0 | 0.6 | 1.0 |
| 32. Cheese. | 3.0 | 1.7 | 3.0 |
| 33a. Milk-skimmed | 0.3 | 0.25 | 0.0 |
| b. Milk-skimmed-desiccated. | 2.6 | 2.0 | 0.3 |

${ }^{5}$ If broilers, use only half the value of these factors.
${ }^{6}$ If desiccated, use eight times these factors.
With the above list as a guide, the various food materials composing the dietary are set down in their respective classes and groups, the weight of each being stated in pounds, and all the foods of a group being added together. Then the weight-adjusting factors are applied to these totals. For example, we have in our list 833.5 pounds of wheat flour and 91.7 pounds of cream of wheat; both of these, being cereal products, belong to Class I; being wheat products they belong to Group I within the class and, since wheat is the "standard" from which all the weight-adjusting-factors are derived, the weight-adjusting-factors for this group are all unity. If, furthermore, we have 111.2 pounds of oatmeal, this also belongs to Class I, but to Group 4, and the adjustments are made thus:

Food Material Original Weight		Adjusted Weights for Calculating		
	Pounds	Total Calories	Protein Calories	Fat Calories
Oatmeal	111.2	$111.2 \times 1.1=$ 122.32	$111.2 \times 1.4=$ 155.68	$11.2 \times 7.0=$ 778.4

When all "group" adjustments are made, the sum of the weights in each class, now adjusted for "total calories," are added together. This sum, multiplied by the proper "type class factor," (see table
below) gives the total calories for the class. Protein and fat calories are calculated in similar fashion.

TYPE CLASS FACTORS.
For Calculating Fuel Values from Adjusted Weights.

CLASS GROUP	FOR TOTAL CALORIES	$\begin{aligned} & \text { FOR PROTEIN } \\ & \text { CALORIES } \end{aligned}$	$\begin{aligned} & \text { FOR FAT } \\ & \text { CALORIES } \end{aligned}$
I. Cereals and cereal products....	1620	210	40
II. Dried legumes and shelled nuts.	1580	400	70
III. Vegetables and fruits.	300	30	-
IV. Sugars, syrups, etc..	1800	-	-
V. Fats and oils.	3500	-	3500
VI. Foods rich in fat and protein	315	60	160
VII. Animal foods not in Classes V or VI	- 600	300	350

When the calories have been determined for each of the seven classes in this way, their respective sums will give the total calories, protein calories, and fat calories of the whole ration. The calculations at this point will appear as follows:

EXAMPLE OF ADJUSTED WEIGHTS, TYPE CLASS FACTORS, AND CALORIES FOR EACH CLASS OF FOOD MATERIALS.
(Taken from an actual dietary.)
For Total Calories.

CLASS	ADJUSTED WEIGHT	TYPE FACTOR	CALORIES
I	1230	1620	$2,092,600$
II	87	1580	137,460
III	2062	300	618,600
IV	244	1800	439,200
V	107	3500	374,500
VI	792	315	249,480
VII	1953	600	$1,171,800$
Total			$5,083,640$

For Protein Calories.

CLASS	ADJUSTED WEIGHT	TYPE FACTOR	CALORIES
I	1233	210	258,930
II	87	400	34,800
III	1985	30	58,550
VI	736	60	44,160
VII	1747		524,100
Total			920,540

TYPE CLASS FACTORS-Continued.

For Fat Calories.

CLASS	ADJUSTED WEIGHT	TYPE FACTOR	CALORIES
I	2058	40	82,320
II	87	70	6,090
V	107	3500	374,500
VI	740	160	120,400
VII	1848	350	647,700
Total			$1,231,010$

A good idea of the labor saving in the use of the abbreviated method as compared with the usual one may be made by a survey of the figures for a single class of food materials (Class I), taken from an actual dietary. It is estimated that the accuracy is nearly as great in the second method as the first, unless large quantities of very unusual foods occur. These might best be calculated separately and added to their respective classes.

A COMPARISON OF THE LABOR INVOLVED IN CALCULATING DIETARIES BY THE USUAL METHOD AND AN ABBREVIATED METHOD.

Food Materials by Groups		$\begin{aligned} & \text { Cal. } \\ & \text { per } \\ & \text { lb. } \end{aligned}$	Tutal Calories	$\begin{array}{\|l\|l} \text { Cal. } \\ \text { per } \\ \text { lb. } \end{array}$	$\underset{\text { Protein }}{\text { Calories }}$	$\begin{aligned} & \text { Cal. } \\ & \text { per } \\ & \text { lb. } \end{aligned}$	$\underset{\text { Calories }}{\text { Fat }}$
1 Wheat flour	1633	1620	2617700	203	331500	41	66953
Cream of wheat.	229	1641	375870	200	45800	48	10992
Puffed wheat	4	1656	6624	220	880	44	176
Shredded wheat.	102	1628	166056	220	22440	74	7548
Macaroni.	122	1626	198372	227	27694	41	5002
Total pounds in group 1.	2090						
2 Rice.	833	1580	1324470	146	121615	13	10829
3 Corn meal.	283	1630	461290	167	47261	78	22074
Corn flakes	89	1631	145159	101	8989	54	4806
Hominy.	9	1609	14474	151	1359	25	225
Post toasties.	124	1637	202988	92	11409	81	10044
Grape nuts.	8	1765	14120	248	1984	205	1640
Total pounds in group 3.	513						
4 Oatmeal.	321	1803	578763	303	97363	298	95658
5 Bread.	4353	1184.	1151395	170	740010	53	230709
6a Crackers.	71	1863	132202	187	13277	358	25418
6b Cookies.	12	1527	18324	128	1536	395	4740
Calories in Class I			11409782		1473016		496726

* Same foods as in Groups above.
\dagger Weight-adjusting factor.
\ddagger In practice the weights of items with repeating correctional factors are added and a single multiplication made.

THE DISTRIBUTION OF CALORIES IN THE DIETARY.

When the fuel values of the dietary have been calculated in this way it is a simple matter to study the distribution of the food through the seven classes into which it has been divided by determining the percentage of the total calories contributed by each class. The calories derived from cereals (Class I) may range from 25 to 50 per cent of the total calories, but it is doubtful if a diet having more than 45 per cent of its total calories derived from cereals will be adequate in mineral constituents and vitamines and sufficiently palatable. Again, it would seem desirable to have not less than 8 per cent of the total calories derived from milk, and not less than 15 per cent from vegetables and fruits. It is difficult to make more than 2 or 3 per cent of dried legumes acceptable; ordinarily nuts form so small an item in an institutional ration as to be practically negligible. In Class IV (sugars, jams, starches, etc.), the sweet foods are apt to exceed greatly the starches and it seems generally desirable that the calories of this group should not exceed 10 per cent of the total calories, as high figures here tend to low values for mineral constituents and vitamines. Excessively high fat is not very common in dietaries for large groups,
but since food materials are calculated on the "As Purchased" basis, due regard must be had for the actual consumption of fat as compared with that purchased. Dietaries too high in fat will be difficult to digest, and those too low tend to be low in total fuel value and to lack palatability. It must also be borne in mind that some of the fat in the dietary occurs in the milk and meats, accounted for in other groups. It would seem desirable that the fat represented in this group should fall between the limits of 5 and 10 per cent. Meats and other high protein foods, relatively less in need of emphasis than several of the other groups, may fluctuate within rather wide limits, depending in part on the money left after such foods as milk and vegetables are provided for, and in part on the proportion of protein derived from the rest of the dietary. In general, it would seem wise not to have the protein calories as a whole less than 10 or more than 15 per cent of the total calories.

PART III.

REFERENCE TABLES.

TABLE XVI.

Approximate Amount of Refuse in Common Food Materals as Purchased.*

BEEF.
Brisket, medium fat 23
Corned 8
Chuck, lean 20
Flank, lean 1
Flank, medium fat 10
Heart 6
Kidney 20
Liver 7
Loin, lean 13
Loin, medium fat 13
Neck, lean 30
Neck, medium fat 28
Plate, medium fat 17
Porterhouse steak 13
Ribs, medium fat 21
Round, medium fat 7
Rump, lean 14
Rump, medium fat 21
Shank, fore, medium fat 37
Shank, hind, medium fat 54
Sirloin steak 13
Top sirloin 3
Tongue 27
EGGS.
Hens' 11
FISH.
Bass, black, whole 55
Bass, striped, whole 55
Blackfish, whole 60
Fredits.
Apples 25
Apricots 6
Bananas 35
Cherries 5
Dates, dried 10
Grapes 25
Lemons 30
Muskmelons 50
Nectarines 6
Oranges 27
PER CENT. PER CENT.
Peaches 18
Pears. 10
Plums 5
Prunes, dried 15
Raisins, dried 10
Strawberries 5
Watermélons 60
LAMB.
Breast 19
Chops (broiled) 14
Leg, hind, medium fat 17
Loin 15
Neck 18
Shoulder 20
mutton.
Chuck, medium fat 21
Flank, medium fat 10
Leg, medium fat 18
Loin, medium fat 16
Neck, medium fat 27
Shoulder, medium fat 22
nUTS.
Almonds 45
Beechnuts 40
Brazil nuts 50
Butternuts. 86
Chestnuts, fresh 16
Chestnuts, dried 24
Coconuts 48
Filberts 52
Hickory nuts 62
Peanuts 25
Pecans 46
Walnuts, black 74
Walnuts, California 73
PORE.
Bacon, smoked, medium fat 8
Feet, fresh 74
Feet, pickled 36
Ham, fresh, lean 1
Ham, fresh, medium fat 11

* The figures are taken to the nearest whole number from Bull. 28, Office of Experiment Stations, U. S. Dept. Agriculture.
PER CENT.
Ham, smoked, lean 11
Ham, smoked, medium fat 14
Head cheese 12
Loin chops, medium fat 20
Shoulder, fresh 12
Shoulder, smoked 18
Side (not including lard and kidney) 12
POULTRY AND GAME.
Chicken Broilers 42
Chicken, dressed 18
Fowl 26
Goose, young 18
Turkey 23
SAUSAGE.
Bologna 3
Summer 7
VEAL。
Breast, medium fat 20
Chuck, medium fat 19
Leg, medium fat 14
Loin, lean 22
Loin, medium fat 16
Neck 32
Rib, medium fat 25
Rump 30PER CENT.
Shank, fore 40
Shank, hind, medium fat 62
Shoulder, lean 18
Shoulder, medium fat 23
vegetables.
Beans, butter, green 50
Beans, lima, fresh 55
Beans, string 7
Beets. 20
Cabbage 15
Carrots 20
Celery 20
Corn, green 61
Cucumbers 15
Lettuce 15
Okra 12
Onions 10
Parsnips 20
Peas, green 45
Potatoes 20
Pumpkins 50
Radishes 30
Rhubarb 40
Rutabagas 30
Squash 50
Turnips 30

TABLE XVII.

Measures of Weight, Metric System.	
10 milligrams (mg.)	$=1$ centigram (cg.)
10 centigrams.	$=1$ decigram (dg.)
10 decigrams	$=1$ gram (g.)
10 grams	$=1$ dekagram (Dg.)
10 dekagrams	$=1$ hektogram (Hg.)
10 hektograms	$=1$ kilogram (Kg.).

TABLE XVIII.
Englisi Equivalents for Metric Weights and Measures

1 meter	$=39.37$ inch.	
1 centimeter	$=0.3937$ inch.	
1 inch	$=2.54$ centimeters.	
1 liter	$=1.0567$ quarts.	
1 gram	$=0.0353$ ounces.	
1 kilogram	$=2.2045$ pounds.	
1 ounce	$=28.35$	grams.
1 pound	$=453.6$	grams.
1 cup of fluid	$=236.0$	cubic centimeters.
1 tablespoon of fluid	$=15.0$	cubio centimeters.
1 teaspoon of fluid	$=1.0 \quad$ cubic centimeters.	

TABLE XIX.
Weights Corresponding to Common Measures of Food Materials.*

Material	Weight in Ounces	
	1 Cup	1 Tablespoon
Almonds, chopped. shelled.	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	
Apples, dried.....	3	
Apricots, dried.		
Baking powder.		$3 / 8$
Barley, flour. pearl.	$\begin{aligned} & 8 \\ & 71 / 2 \end{aligned}$	3/5 $1 / 2$
Beans, navy, dried.		
lima, dried.	51/2	
Bran.... .	$21 / 2$	
Bread crumbs, oven dried.	$31 / 2$	
soft.	2	
Butter. ${ }^{\text {stale }}$		1/2
Buttermilk.	$81 / 2$	
Celery, cut in $1 / 4$ inch pieces.	$41 / 2$	
Cheese, American, grated, dry .	2	$1 / 8$
fresh	4	1/4
Chocolate, unsweetened, grated		1/6
Citron, chopped. Coco		
Cocoa.	$41 / 2$ $2^{4} / 5$	$1 / 4$
Coffee. .	4	$1 / 4$
Corn, canned	9	
fresh.	7	
Cornmeal.	5	1/3

* Adapted from Rose's Feeding the Family.

TABLE XIX-Continued.

TABLE XIX-Continued.

Material	Weight in Ounces	
	1 Cup	1 Tablespoon
Sugar, brown .	$5^{4 / 5}$	1/3
granulated	$72 / 5$	1/2
powdered.	6	1/2
Tapioca.	61/2	$1 / 2$
Tea....	21/2	1/6
Tomatoes, canned.	9	
Turnips, $1 / 2$ inch cubes .	$43 / 4$	
Walnuts, English, chopped.	3	
Wheat, flaked.	3	

TABLE XX.
Weight Per Bushel of Some Common Food Materlals.*

Food	Pounds per Bushel	Food	Pounds per Bushel
Apples.	44-50	Peaches.	48-50
Beans.	60	Peanuts.	20-25
Beets.	50-60	Pears.	45-58
Carrots.	50	Peas (dried).	60
Cranberries	32-40	Potatoes (white)	60
Cucumbers.	48-50	Potatoes (sweet)	50-56
Onions.	50-57	Tomatoes.	50-60
Parsnips. .	42-50	Turnips.	50-60

* U. S. Bureau of Standards, Washington, D. C.

TABLE XXI.

Conversion Tables-Ounces and Pounds to Grams.
A. Ounces to Grams.

Ounces	Grams	Ounces	Grams
$1 / 16$	1.77	2	56.70
$1 / 15$	1.89	3	85.05
$1 / 14$	2.02	4	113.40
$1 / 13$	2.19	5	14175
$1 / 12$	2.36	6	170.10
$1 / 11$	2.58	7	198.45
$1 / 10$	2.84	8	226.80
$1 / 9$	3.15	9	255.15
$1 / 8$	3.54	10	283.50
$1 / 7$	4.05	11	311.84
$1 / 6$	4.73	12	340.20
$1 / 5$	5.67	13	368.54
$1 / 4$	7.09	14	396.90
$1 / 3$	9.45	15	425.25
$1 / 2$	14,17	16	453.60
1	28.55		

B. Pounds to Grams.

Pounds.	Grams.
1	453.6
2	907
2.2	1000
3	1361
4	1814
5	226%
6	272%
7	3175
8	3629
9	4082
10	4536

TABLE XXII.
Conversion Table-Grams to Ounces.

Grams	Ounces	Grams	Ounces
1	0.035	56	1.975
2	0.071	57	2.010
3	0.106	58	2.046
4	0.141	59	2.081
5	0.176	60	2.116
6	0.212	61	2.151
7	0.247	62	2.187
8	0.283	63	2.222
9	0.317	64	2.257
10	0.353	65	2.293
11	0.398	66	2.328
12	0.423	67	2.363
13	0.458	68	2.398
14	0.494	69	2.434
15	0.529	70	2.467
16	0.564	71	2.504
17	0.599	72	2.539
18	0.635	73	2.575
19	0.670	74	2.610
20	0.705	75	2.645
21	0.741	76	2.681
22	0.776	77	2.716
23	0.811	78	2.751
24	0.846	79	2.786
25	0.882	80	2.822
26	0.917		2.857
27	0	82	2.892
28	0.998	83	2.927
29	1.023	84	2.963
30	1.058	85	2.998
31	1.093	86	3.033
32	1.128	87	3.068
33	1.164	88	3.104
34	1.199	89	3.139
35	1.234	90	3.174
36 37	1.269		3.210
37 38	1.305	92	3.245
39	1.376	93	3.280
40	1.411	95	3.351
41	1.446	96	3.386
42	1.481	97	3.421
43	1.517	98	3.457
44	1.552	99	3.492
45	1.587	100	3.527
46	1.622	113	
47	1.658 1.693	200	7
48 49	1.693 1.728	227	8
50	1.764	300	10.5
51	1.799	400	14
52	1.834	453.6	16
53	1.869	500	17.6
54	1.905	907	32
55	1.940	1000	35.2

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.*

Food Material	0	Weight			Protein, Grams	Fat, Grams	Carbohydra•e, Grams	Fuel Value, Calories	Cost, Dollars
	$\dot{\sim}$	lbs.	oz.	gms.					
Bass, striped, whole, A. P.				1	0.088	0.022		0.55	
			1		2.49	0.62		15.6	
		1			39.92	0.98		249	
	1	. .	6.41	181.8	16.00	4.00		100	
Bass, striped, whole, E. P.				1	0.186	0.028		1.00	
			1		5.27	0.79		28.2	
		1			84.38	12.70		452	
	1	. .	3.54	100.4	18.68	2.81		100	
Beans, br...ed, canned				1	0.069	0.025	0.196	1.29	
			1		1.96	0.71	5.56	36.5	
		1			31.30	11.34	88.90	583	
	1		2.74	77.8	5.37	1.95	15.25	100	
Beans, kidney, red, canned,				1	0.070	0.002	0.185	1.04	
			1		1.98	0.06	5.24	29.4	
		1			31.68	0.91	83.84	470.08	
	1	...	3.39	96.1	6.73	0.19	17.78	100	
Beans, string, canned				1	0.011	0.001	0.038	0.21	
			1		0.31	0.00 0.45	1.08 17.23	${ }_{93} 5.83$	
	\cdots		17.21	487.8	5.37	0.48	18.53	100	
Beef, cor_ced, A. P.				1	0.143	0.238		2.71	
			1		4.05	6.75		76.5	
		1			64.86	107.96		1231	
	1		1.30	36.8	5.27	8.77		100	
Be fi, corned, E. P.				1	0.156	0.262		2.95	
			1		4.42	7.13		84.5	
		1			70.76	118.84		1353	
	1	. .	1.18	33.5	5.23	8.79		100	
Beef, flank, medium fat, A. P.				1	0.170	0.190		2.39	
			1		4.82	5.39		67.8	
		1			77.11	86.18		1084	
	1		1.47	41.8	7.11	7.95		100	
Beef juice				1	0.049	0.006		0.25	
			1		1.39	0.17		7.0	
		1			22.24	2.72		113	
	1		14.11	400.0	19.60	2.40		100	
Beef, kidney, A. P.				1	0.137	0.019		0.72	
			1		2.88	0.54		20.4	
		1			62.14	3.62		326	
	1		4.91	139.1	19.06	2.64		100	

* Calculated principally from Bulletin 28, Office of Experiment Stations, U. S. Department of Agriculture. For other foods see Tables XVI, XXIV, and XXV.

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weiget in Terms of Standard Units.-Continued.

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

Food Material	A	Weight			Protein, Grams	Fat, Grams	Carbohydrate, Grams	Fuel Value, Calorles	Cost, Dollars
	0	lbs.	6z.	gms.					
Beef, porterhouse steak, E. P.				1	0.219	0.204		$\begin{gathered} 2.71 \\ 77.1 \\ 1230 \\ 100 \end{gathered}$	
			1		6.21	5.78			
		1			99.34	92.53			
	1		1.30	36.9	8.07	7.52			
Beef, rib roll, lean, A. P.				1	0.202	0.105		$\begin{gathered} 1.75 \\ 49.7 \\ 795 \\ 100 \end{gathered}$	
			1		5.73	2.98			
		1			91.62	47.63			
	1		2.01	57.0	11.52	5.99			
Beef, rib roll, medium fat, A. P.				1	0.193	0.167		$\begin{gathered} 2.28 \\ 64.5 \\ 1032 \\ 100 \end{gathered}$	
			1		5.47	4.74			
		1			87.54	75.75			
	1		1.55	44.0	8.48	7.34			
Beef, ribs, lean, A. P,				1	0.152	0.093		$\begin{aligned} & 1.45 \\ & 40.97 \\ & 655 \\ & 100 \end{aligned}$	
			1		4.31	2.64			
		1			68.95	42.18			
	1		2.44	69.2	10.52	6.43			
Beef, ribs, lean, E. P.				1	0.196	0.120		$\begin{gathered} 1.86 \\ 52.8 \\ 845 \\ 100 \end{gathered}$	
			1		5.56	3.40			
		1			88.90	54.42			
	1		1.89	53.6	10.51	6.44			
Beef, ribs, medium fat, A. P.				1	0.139	0.212		$\begin{gathered} 2.46 \\ 69.9 \\ 1118 \\ 100 \end{gathered}$	
			1		3.94	6.01			
		1			63.03	96.16			
	1		1.43	40.6	5.64	8.60			
Beef, ribs, medium fat, E. P.				1	0.175	0.266		$\begin{gathered} 3.09 \\ 87.7 \\ 1403 \\ 100 \end{gathered}$	
			1		4.96	7.54			
		1			79.38	120.66			
	1		1.14	32.3	5.66	8.59			
Beef, round, lean, A. P.				1	0.195	0.073		$\begin{gathered} 1.44 \\ 40.7 \\ 652 \\ 100 \end{gathered}$	
			1		5.53	2.07			
		1			88.45	33.11			
	1		2.45	69.6	13.57	5.08			
Beef, round, lean, E. P.				1	0.213	0.079		$\begin{gathered} 1.56 \\ 44.3 \\ 709 \\ 100 \end{gathered}$	
			1		6.04	2.24			
		1			96.62	35.84			
	1		2.26	64.0	13.63	5.05			
Beef, round, medium fat, A. P .				1	0.190	0.128		1.91	
			1		5.39	3.63		54.2	
		1			86.18	58.06		867	
	1		1.85	52.3	9.94	6.70		100	

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

Food Material	ค	Welght			Proteln, Grams	Fat, Grams	Carbohydrate, Grams	Fuel Value, Calories	Cost, Dollars	
	$\dot{\sim}$	lbs.	oz.	gms.						
Beef, round, medium fat, E. P.			1	1	$\begin{gathered} 0.203 \\ 5: 76 \\ 92.07 \\ 9.96 \end{gathered}$	$\begin{gathered} 0.136 \\ 3.86 \\ 61.69 \\ 6.68 \end{gathered}$		$\begin{gathered} 2.04 \\ 57.7 \\ 923 \\ 100 \end{gathered}$		
	1		1.73	49.1						
Beef, rump, lean, A. P.		1	1	1		$\begin{aligned} & 0.110 \\ & 3.12 \end{aligned}$		$\begin{array}{r} 1.75 \\ 49.7 \end{array}$		
						49.90		796		
	1		2.01	57.0	10.89	6.33		100		
Beef, rump, lean, E. P.	1		1	1	0.209	$\begin{aligned} & 0.137 \\ & 3.88 \end{aligned}$		$\begin{array}{r} 2.07 \\ 58.7 \end{array}$		
			5.93							
				94.80	62.14		938			
			1.70	48.3	10.10	6.62		100		
Beef, rump, medium fat, A. P.		$\left\|\begin{array}{c} ---- \\ \hdashline-\cdots \\ 1 \end{array}\right\|$		1	1	$\begin{aligned} & 0.138 \\ & 3.91 \end{aligned}$	$\begin{aligned} & 0.202 \\ & 5.73 \end{aligned}$		$\begin{gathered} 2.37 \\ 67.2 \\ 1075 \\ 100 \end{gathered}$	
			91.62							
			1.49	42.2	5.82	8.52				
Beef, rump, medium fat, E. P.		1	1	1	$\begin{gathered} 0.174 \\ 4.93 \\ 78.92 \\ 5.82 \end{gathered}$	$\begin{array}{\|c} 0.255 \\ 7.23 \\ 115.68 \\ 8.53 \end{array}$	--------------	$\begin{gathered} 2.99 \\ 4.8 \end{gathered}$		
			1.18	33.4						
Beef, shank, hind, medium fat, A. P.	$\left\|\begin{array}{c} \cdots-\cdots \\ \hdashline-\cdots \\ \hdashline \cdots \\ \hline 1 \end{array}\right\|$	\cdots	1	1		$\begin{aligned} & 0.053 \\ & 1.50 \end{aligned}$		$\begin{gathered} 0.86 \\ 24.4 \\ 391 \\ 100 \end{gathered}$		
						$\begin{array}{r} 24.04 \\ 6.16 \end{array}$				
			4.09	116.1	11.15					
Beef, shank, hind, medium fat, E. P.	$\left\|\begin{array}{c} -\cdots-- \\ \cdots---- \\ \hdashline-1 \end{array}\right\|$	-------	1	1	$\begin{gathered} 0.209 \\ 5.92 \\ 94.80 \end{gathered}$	$\begin{gathered} 0.115 \\ 3.26 \\ 52.16 \end{gathered}$		$\begin{gathered} 1.87 \\ 53.0 \end{gathered}$		
								849		
			1.88	53.4	11.17	6.15		100		
Beef, shoulder and clod, lean, A. P.	$\begin{aligned} \mathbf{- \cdots - -} \\ \hdashline \cdots \\ \hdashline-\cdots \\ \hline 1 \end{aligned}$	------	1	1	$\begin{gathered} 0.164 \\ 4.65 \\ 74.38 \\ 15.59 \end{gathered}$	$\begin{gathered} 0.044 \\ 1.25 \\ 19.96 \\ 4.18 \end{gathered}$	$\begin{array}{r} 1.05 \\ 29.8 \\ 477 \\ 100 \end{array}$			
			3.35	95.0						
Beef, shoulder and clod, lean, E. P.		1		1	0.204	0.054		1.30		
			1		5.78	1.53		36.9		
					92.52	24.49		591		
			2.71	76.8	15.67	4.15		100		
Beef, shoulder and clod, medium fat, A. P.	-	1	1	1	$\begin{gathered} 0.164 \\ 4.65 \\ 74.38 \\ 10.59 \end{gathered}$	$\begin{gathered} 0.098 \\ 2.78 \\ 44.45 \\ 6.33 \end{gathered}$		$\begin{gathered} 1.55 \\ 43.9 \\ 702 \\ 100 \end{gathered}$		
			2.28	64.6						

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

Food Material	aiwi	Welght			$\underset{\substack{\text { Proteln, } \\ \text { Grams }}}{\text { P }}$	Fat,	Varbohydrate, Grams	$\begin{gathered} \text { Fuel } \\ \text { Value, } \\ \text { Calories } \end{gathered}$	Cost, Dollars
		1bs.	oz.	gms.					
Beef, top sirloin, E. P				1	0.138	0.437		4.49 127.1 2034 100	
			1		3.91	12.39			
		1			62.60	198.21			
	1		0.79	22.3	3.08	9.74			
Blackberries, canned, A. P.				1	0.008	0.021	$\begin{gathered} 0.564 \\ 15.98 \\ 255.83 \end{gathered}$	2.487124100	
			1		0.23	0.60			
	1	1	1.43	40.4	3.63 0.32	9.53 0.85			
Blueberries, canned, A. P.				1	0.006	0.006	0.128	$\begin{gathered} 0.59 \\ 16.7 \\ 268 \\ 100 \end{gathered}$	
			1		0.17	0.17	3.63		
		1			2.72	2.72	58.08		
	1		5.98	169.5	1.02	1.02	21.70		
Bluefish, fresh, entrails removed, A. P.				1	0.100	0.006		$\begin{gathered} 0.45 \\ 12.9 \\ 206 \\ 100 \end{gathered}$	
			1		2.84	0.17			
		1			45.36	2.72			
	1		7.77	220.4	22.04	1.32			
Bluefish, fresh, entrails removed, E. P.				1	0.194	0.012		$\begin{gathered} 0.88 \\ 25.1 \\ 401 \\ 100 \end{gathered}$	
			1		5.49	0.34	-----		
		1			87.99	5.44			
	1		3.99	113.1	21.95	1.36			
Bouillon				1	0.022	0.001	0.002	$\begin{array}{r} 0.11 \\ 2.98 \\ 47.6 \\ 100 \end{array}$	
			1		0.62	0.03	0.06		
		1			9.98	0.45	0.91		
	1		33.6	952.0	20.95	0.95	1.90		
Brazil nuts, A. P.				1	0.086	0.337	0.035	$\begin{array}{\|c\|} \hline 3.52 \\ 99.7 \\ \hline \end{array}$	
			1		2.43	9.55	0.99		
		1	1.01	28.4	2.44	9.58	15.88	$\begin{array}{r} 1595 \\ 100 \end{array}$	
	1						0.99		
Brazil nuts, E. P.				1	0.170	0.668	0.070	$\begin{array}{r} 6.97 \\ 197.6 \end{array}$	
			1		4.81	18.93	1.98		
		1			77.11	303.10	31.75	3162	
	1		0.51	14.3	2.44	9.58	1.00	100	
Bread, brown				1	0.054	0.018	0.471	2.26	
			1		1.53	0.51	13.35	64.1	
		1			24.48	8.16	213.60	1026	
	1	-	1.56	44.2	2.39	0.79	20.82	100	
Bread, corn				1	0.079	0.047	0.463	2.59	
			1		2.24	1.33	13.13	73.5	
		1			35.83	21.32	210.00	1175	
	1	,	1.36	38.6	3.05	1.81	17.87	100	

TABLE XXIII.
Food ${ }^{\text {j}}$ blues of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

TABLE XXIII.

Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

Food Materlal	avi	Weight			Protein, Grams	Fat, Grams	$\begin{aligned} & \text { Carbo- } \\ & \text { hydrate, } \\ & \text { Grams } \end{aligned}$	FuelValue,Calorles	Cost, Dollars
		lbs.	oz.	gms.					
Buckwheat, farina and groats				1	0.041	0.004	0.841	$\begin{gathered} 3.56 \\ 101.0 \\ 1617 \\ 100 \end{gathered}$	
			1		1.17	0.11	23.84		
		1			18.59	1.81	381.48		
	1		0.99	28.1	1.15	0.11	23.60		
Butterfish, whole, A. P.				1	0.103	0.063		$\begin{gathered} 0.98 \\ 27.8 \\ 444 \\ 100 \end{gathered}$	
			1		2.92	1.79			
		1			46.74	28.58			
	1		3.61	102.2	10.52	6.43			
Butterfish, whole, E. P.				1	0.180	0.110		$\begin{aligned} & 1.71 \\ & 48.5 \\ & 776 \\ & 100 \end{aligned}$	
		1			82. 64	49.90			
	1		2.06	58.5	10.53	6.43			
Butter milk,				1	0.030	0.005	0.048	$\begin{gathered} 0.36 \\ 10.1 \\ 162 \\ 100 \end{gathered}$	
			1		0.85	0.14	1.36		
		1			12.51	2.27	21.82		
	1		9.86	279.6	8.59	1.40	13.42		
Butternuts, A. P.				1	0.038	2.083	0.005	$\begin{gathered} \quad 0.92 \\ 26.1 \\ 417 \\ 100 \end{gathered}$	
		1	1		1.08	$\begin{array}{r}2.35 \\ \hdashline 7.65\end{array}$	0.14		
	1		3.84	108.8	4.14	-9.03	0.54		
Butternuts, E. P.				1	0.279	0.612	0.035	$\begin{gathered} 6.76 \\ 191.8 \\ 3068 \\ 100 \end{gathered}$	
			1		7.91	17.35	0.99		
		1			126.55	277.60	15.86		
	1		0.52	14.8	4.13	9.05	0.52		
Calf's-foot jelly, A. P.				1	0.043		0.174	$\begin{gathered} 0.87 \\ 24.6 \\ 394 \\ 100 \end{gathered}$	
			1		1.22		4.93		
	1		4.06	115.2	4.95		20.05		
Catfish, A. P.				1	0.116	0.166		$\begin{gathered} 1.96 \\ 55.5 \\ 888 \\ 100 \end{gathered}$	
			1		3.29	4.71			
	1	1	1.80	51.1	52.62 5.92	75.30 8.48			
Catfish, E. P.				1	0.144	0.206		$\begin{gathered} 2.43 \\ 68.9 \\ 1102 \end{gathered}$	
			1		4.08	5.84			
	1	1	1.45	41.2	6.08 5.93	$\begin{array}{r} 93.44 \\ 8.48 \end{array}$			
Cereal coffee (infusion)				1	$\begin{aligned} & 0.002 \\ & 0.06 \\ & 0.91 \\ & 3.13 \end{aligned}$		$\begin{gathered} 0.014 \\ 0.40 \\ 6.35 \\ 21.88 \end{gathered}$	$\begin{gathered} 0.06 \\ 1.8 \\ 29 \\ 100 \end{gathered}$	
			1						
	1		55.06	1561.0					

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

REFERENCE TABLES.
TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units. - Continued.

Food Material	$\dot{\sim}$	Weight			$\begin{gathered} \text { Protein, } \\ \text { Grams } \end{gathered}$	Fat Grams	Carbohydrate, Grams	$\begin{gathered} \text { Fuel } \\ \text { Value, } \\ \text { Calories } \end{gathered}$	Cost, Dollars
		lbs.	oz.	gms.					
Clams, long, in shell, A. P.				1	0.050	0006	0.011	0.30	
			1		1.42	0.17	0.31	8.4	
		1			22.68	2.72	4.99	136	
	1		11.87	335.6	16.78	2.01	3.69	100	
Clams, long, in shell, E. P.				1	0.086	0010	0020	0.51	
			1		2.44	0.28	0.57	14.6	
		1			39.01	4.53	9.07	231	
	1		6.86	194.6	16.74	1.95	3.89	100	
Clams, round, in shell, E. P.				1	0.065	0.004	0.042	0.46	
			1		1.84	0.11	1.19	13.1	
	1	1	7.61	215.5	29.48 14.01	1.81 0.86	19.05 9.05	210 100	
Cocoanut, prepared, A. P.				1	0.063	0.574	0.315	6.68	
			1		1.79	16.27	8.93	189.3	
		1			28.58	260.35	142.88	3028	
	1		0.53	15.0	0.94	8.59	4.69	100	
Cocoanuts, A P.				1	0.029	0.259	0.143	3.02	
			1		0.82	7.34	4.05	85.6	
	1		1.17	33.1	0.96	-8.58	4.74	100	
Cocoanuts, E. P.				1	0.057	0.506	0.279	5.90	
			1		1.62	14.34	7.91	167.2	
		1			25.85	229.50	126.55	2675	
	1		0.60	16.9	0.97	8.58	4.73	100	
Cod, dressed, A. P.			1	1	0.111	0.002		0.46	
		1	1		50.35	0.91		210	
	1		7.63	216.4	24.02	0.42		100	
Cod, salt, A. P.				1	0.190	0.004		0.80	
		1	1		86.18	1.81		361	
	1		4.43	125.6	23.87	0.50		100	
Cod, salt, E. P.				1	0.254	0.003		1.04	
			1		7.20	0.09		29.6	
	1		3.38	95.8	24.33	0.29		100	
Cod, steak, A. P.				1	0.170	0.005		0.73	
			1		4.80	0.14		20.6	
		1			77.11	2.27	-	329 100	
	1		4.86	107.9	23.44	0.65	---	100	

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

Food Material	Ai	Weight			Proteln, Grams	Fat, Grams	$\begin{aligned} & \text { Carbo- } \\ & \text { hydrate, } \\ & \text { Grams } \end{aligned}$	$\begin{gathered} \text { Fuel } \\ \text { Value, } \\ \text { Calories } \end{gathered}$	$\begin{aligned} & \text { Cost, } \\ & \text { Dollars } \end{aligned}$
		lbs.	oz.	gms.					
Doughnuts, A. P.				1	0.067	0.210	0.531	$\begin{gathered} 4.28 \\ 129.4 \\ 1942 \\ 100 \end{gathered}$	
			1		1.89	5.95	15.05		
		1			30.39	95.25	240.83		
	1		0.82	23.4	1.56	4.91	12.40		
Eels, dressed, A. P.				1	0.148	0.072		$\begin{gathered} 1.24 \\ 35.2 \\ 562 \\ 100 \end{gathered}$	
			1		4.18	2.04			
		1			67.13	32.66			
	1		2.85	80.6	11.94	5.81			
Eels, dressed, E. P.				1	0.186	0.091		$\begin{gathered} 1.56 \\ 44.3 \\ 709 \\ 100 \end{gathered}$	
		1	1		5.27 84.36	2.58 41.27			
	1		2.26	64.0	11.90	5.82			
Egg plant, E. P.				1	0.012	0.003	0.051	$\begin{aligned} & 0.28 \\ & 7.9 \end{aligned}$	
			1		0.34	0.09	1.44		
		1			5.44	1.36	23.11	$\begin{aligned} & 127 \\ & 100 \end{aligned}$	
	1		12.64	358.4	4.30	1.08	18.28		
Fig bars or biscuits, A. P.				1	0.046	0.066	0.698	$\begin{array}{r} 3.57 \\ 101.2 \end{array}$	
			1		1.30	1.87	19.79		
		1			20.86	29.92	316.61	1619	
	1		0.99	28.0	1.29	1.85	19.55	100	
Filberts, A. P.				1	0.075	0.313	0.062	$\begin{gathered} 3.37 \\ 95.4 \\ 1526 \\ 100 \end{gathered}$	
			1		2.13	8.87	1.76		
		1			34.04	141.98	28.12		
	1		1.05	29.7	2.23	9.30	1.84		
Filberts, E. P.				1	0.156	0.653	0.130	7.02199.13185100	
			1		4.42	18.51	3.69		
		1			70.76	296.20	58.97		
	1	--	0.50	14.2	2.22	9.30	1.85		
Flounder, entrails removed, A. P.				1	0.064	0.003		$\begin{gathered} 0.28 \\ 8.0 \\ 128 \\ 100 \end{gathered}$	
			1		1.81	0.09			
		1			29.03	1.36			
	1		12.45	353.4	22.61	1.06			
Fowl, A. P.				1	0.137	0.123		$\begin{gathered} 1.66 \\ 46.9 \\ 751 \\ 100 \end{gathered}$	
			1		3.88	3.49			
		1			62.14	55.79			
	1		2.13	60.4	8.27	7.43			
Fowl, E. P.				1	0.193	0.163		$\begin{gathered} 2.24 \\ 63.5 \\ 1016 \\ 100 \end{gathered}$	
			1		5.47	4.60			
		1			87.54	73.94			
	1	---	1.58	44.7	8.62	7.28	--------		

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weiget in Terms of Standard Units.-Continued.

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

Food Material	\&i	Welght			Proteln, Grams	Fat, Grams	Carbo-hydrate,Grams	$\begin{gathered} \text { Fuel } \\ \text { Calue, } \\ \text { Calories } \end{gathered}$	Cost, Dollars
		lbs.	oz.	gms.					
Haddock, entrails removed, E. P.				1	0.172	0.003		$\begin{gathered} 0.72 \\ 20.3 \\ 324 \\ 100 \end{gathered}$	
			1		4.88	0.09			
		1			78.02	1.36			
	1		4.94	139.9	24.06	0.42			
Haddock, smoked, A. P.				1	0.158	0.001		$\begin{gathered} 0.64 \\ 18.2 \\ 291 \\ 100 \end{gathered}$	
			1		4.48	0.03			
		1			71.67	0.45			
	1		5.50	156.0	24,65	0.16			
Haddock, smoked, E. P.				1	0.233	0.002		$\begin{gathered} 0.95 \\ 26.9 \\ 431 \\ 100 \end{gathered}$	
			1		6.61	0.06			
		1			105.69	0.91			
	1		3.71	105.3	24.53	0.21			
Halibut, smoked, A. P.				1	0.193	0.140		$\begin{gathered} 2.03 \\ 57.6 \\ 922 \\ 100 \end{gathered}$	
			1		5.47	3.97			
		1			87.54	63.50			
	1		1.74	49.2	9.50	6.89			
Halibut, smoked, E. P.				1	0.207	0.150		$\begin{gathered} 2.18 \\ 61.7 \\ 988 \\ 100 \end{gathered}$	
			1		5.87	4.25			
		1			93.89	68.04			
	1		1.62	45.9	9.50	6.89			
Halibut, steak, A. P.				1	0.153	0.044		$\begin{gathered} 1.01 \\ 28.6 \\ 457 \\ 100 \end{gathered}$	
			1		4.33	1.25			
	1		3.49	99.2	69.40 15.18	19.96 4.37			
Halibut, steak, E. P.				1	0.186	0.052		$\begin{aligned} & 1.21 \\ & 34.4 \\ & 550 \\ & 100 \end{aligned}$	
			1		5.27	1.47			
		1			84.36	23.58			
	1		2.93	82.5	15.34	4.29			
Ham, boneless, A. P.				1	0.143	0.275		$\begin{gathered} 3.05 \\ 86.4 \\ 1382 \\ 100 \end{gathered}$	
		1	1		4.05 64.84	7.80 124.74			
	1		1.16	32.8	4.69	9.03			
Ham, deviled				1	0.190	0.341		$\begin{gathered} 3.83 \\ 108.5 \\ 1737 \\ 100 \end{gathered}$	
			1		5.39	9.67			
	1		0.92	26.1	86.18 4.96	154.68 8.91			
Ham, fresh, lean, A. P.				1	0.248	0.142		$\begin{gathered} 2.27 \\ 64.4 \\ 1030 \\ 100 \\ \hline \end{gathered}$	
			1		7.03	4.03			
		1			112.50	64.41			
	1		1.55	44.1	10.93	6.26			

TABLE XXIII.

Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

TABLE XXIII.
Food Valdes of Food Materials used Chiefly by Weiget in Terms of Standard Units.-Continued.

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

Food Material	si	Weight			Protein, Grams	Fat, Grams	Carbobydrate, Grams	Fuel Value, Calories	Cost, Dollars
	6	lbs.	oz.	gms.					
Lamb, loin, A. P.				1	0.160	0.241		$\begin{gathered} \hline 2.81 \\ 79.6 \\ 1274 \\ 100 \end{gathered}$	
			1		4.54	6.83			
		1			72.58	109.30			
	1		1.26	35.6	5.70	8.58			
Lamb, loin, E. P.				1	0.187	0.283		3.30	
			1		5.30	8.02		93.42	
		1			84.82	128.37		1495	
	1		1.06	30.4	5.67	8.59		100	
Lamb, neck, A. P .				1	0.146	0.204		2.42	
			1		4.14	5.78		68.6	
		1			66.22	92.53		1098	
	1		1.46	41.3	6.03	8.43		100	
Lamb, neck, E. P.				1	0.177	0.248		2.94	
			1		5.02	7.03		83.3	
		1			80.28	112.49		1334	
	1		1.20	34.0	6.02	8.43		100	
Lamb, shoulder, A. \mathbf{P}.				1	0.144	0.236		2.70	
			1		4.08	6.69		76.5	
		1			65.31	107.05		1225	
	1		1.31	37.0	5.33	8.74		100	
Lamb, shoulder, E. P.				1	0.181	0.297		3.40	
			1		5.13	8.42		112.5	
		1			82.10	134.70		1541	
	1	----	1.04	29.4	5.33	8.74		100	
Lamb, tongue, canned, A. P.				1	0.135	0.173		2.10	
			1	-----	3.83	4.91 78.47		59.4	
	1	1	1.68		61.24 6.44	78.47 8.25		951	,
	1		1.68	47.7	6.44	8.25		100	
Lemons, A. P.				1	0.007	0.005	0.059	$0.31{ }^{\prime}$	
			1		0.20	0.14	1.67	8.8	
		1			3.18	2.27	26.76	140	
	1	------	11.41	323.6	2.27	1.62	19.09	100	
Lemons, E. P.				1	0.01	0.007	0.085	0.44	
			1		0.28	0.20	2.41	12.6	
		1			4.54	3.18	38.56	201	
	1	7.96	225.7	2.26	1.58	19.24	100	
Lcoster, canned, A. P.				1	0.181	0.011	0.005	0.84	
			1		5.13	0.31	0.14	23.9	
		1			82.10	4.99	2.27	382	
	1	-...--	4.30	118.6	21.47	1.31	0.59	100	

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

Food Material	$\stackrel{4}{4 i}$	Weight			Protein,	Fat,	$\begin{gathered} \text { Carbo- } \\ \text { hydrate, } \\ \text { Grams } \end{gathered}$	$\begin{gathered} \text { Fuel } \\ \text { Falue, } \\ \text { Calories } \end{gathered}$	Cost, Dollars
		Ibs.	oz.	gms.					
Lobster, whole, A. P.				1	0.059	0.007	0.002	0.31	
			1		1.67	0.20	0.06	8.70	
		1			26.76	3.18	0.91	139	
	1		11.48	325.7	19.22	2.29	0.65	100	
Lobster, whole, E. P.				1	0.164	0.018	0.004	0.83	
			1		4.65	0.51	0.11	23.6	
		1			74.38	8.16	1.81	378	
	1		4.23	119.9	19.66	2.16	0.48	100	
Macaroons, A. P.				1	0.065	0.152	0.652	4.24	
			1		1.84	4.31	18.48	120.1	
		1			29.48	68.95	295.75	1921	
	1		0.83	23.6	1.54	3.59	15.39	100	
Mackerel, fresh, whole, A. P.				1	0.102	0.042		0.79	
		1	1		2.89 46.27	1.19 19.05		22.3	
	1		4.49	127.2	12.98	5.34		100	
Mackerel, fresh, whole, E. P.				1	0.187	0.071		1.39	
			1		5.30	2.01		39.3	
	1		2.54	72.1	13.48	+ 5.12		100	
Mackerel, fresh, entrails removed, A.P.				1	0.116	0.035		0.78	
			1		3.29	0.99		22.1	
	1		4.51	128.4	14.89	10.87 4.49			
Mackerel, salt, canned, A. P.				1	0.196	0.087		1.57	
			1		5.56	2.47		44.4	
		1			88.89	39.47		711	
	1		2.25	63.8	12.51	5.55		100	
Mackerel, salt, dressed, A. P.				1	0.139	0.212		2.46	
			1		3.94	6.01		69.9	
	1		1.43	40.6	63.05 5.64	96.16 8.60		1100	
Mackerel, salt, dressed, E. P.				1	0.173	0.264		3.07	
			1		4.91	7.48		87.0	
	1	1	1.15	32.6	5.64	8.61		100	
Mushrooms, A. P.				1	0.035	0.004	0.068	0.45	
			1		0.99	0.11	1.93	12.7	
		1			15.88	1.81	30.85	203	
	1	--	7.86	223.2	7.81	0.89	15.18	100	

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

Food Materlal	Ai	Weight			Protein,	Fat, Grams	$\begin{aligned} & \text { Carbo- } \\ & \text { hydrate, } \\ & \text { Grams } \end{aligned}$	$\begin{gathered} \text { Fuel } \\ \text { Value, } \\ \text { Calories } \end{gathered}$	Cost, Dollars
		1bs.	oz.	gms.					
Mutton, chuck, A. P.				1	$\begin{gathered} 0.117 \\ 3.32 \\ 53.07 \\ 3.69 \end{gathered}$	\square		$\begin{gathered} 3.17 \\ 89.8 \\ 1437 \\ 100 \end{gathered}$	
			1						
	1		1.11	31.6					
Mutton, chuck, E. P.				1	$\begin{gathered} 0.146 \\ 4.14 \\ 66.22 \\ 3.75 \end{gathered}$	$\begin{gathered} 0.368 \\ 10.43 \\ 166.80 \\ 0.45 \end{gathered}$		3.90110.41767100	
			1						
	1		0.91	25.7					
Mutton, flank, medium fat, A. P .				1	$\begin{gathered} 0.138 \\ 3.91 \\ 62.60 \\ 3.56 \end{gathered}$	$\begin{array}{\|c} 0.369 \\ 10.46 \\ 167.38 \\ 9.53 \end{array}$		$\begin{gathered} 3.87 \\ 109.8 \\ 1757 \\ 100 \end{gathered}$	
		1	1						
	1		0.91	25.8					
Mutton, flank, medium fat, E. P.				1	$\begin{gathered} 0.152 \\ 4.31 \\ 68.94 \\ 3.75 \end{gathered}$	$\begin{array}{\|c\|} 0.383 \\ 10.86 \end{array}$		4.06115.01839100	
	1.		0.87	24.7		9.44			
Mutton, leg, hind, lean, A. Γ.				1	0.165	0.103		1.59	
			1		4.68	2.92		45.0	
	1		2.22	63.0	10.40	6.49		100	
Mutton, leg, hind, lean, E. P.	\mid			1	0.198	0.124		1.91	
			1		5.62	3.52		54.1	
		1			89.82	56.24		865	
			1.85	52.4	10.38	6.50		100	
Mution, leg, hind, medium fat, A. P.	,		1	1	0.151	0.147		1.93	
		1			68.50	66.68		874	
			1.83	51.9	7.84	7.63		100	
Mutton, leg, hind, medium fat, E. P.				1	0.185	0.180		2.36	
		1	1		5.24	5.10		66.9	
			1.50	42.4	7.84	8.63		100	
Mutton, loin, free fat removed				1	0.237	0.185		2.61	
		1	1		6.72 107.50	5.25		74.1	
			1.35	38.3	9.07	7.08		100	
Mutton, loin, medium fat, A. P.				1	0.135	0.283		3.09	
			1		3.83	8.02		87.5	
			1.14	32.4	4.37	$\begin{array}{r}128.17 \\ \hline\end{array}$		100	

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

Food Material	$\begin{gathered} \infty \\ \dot{s i} \end{gathered}$	Weight			Proteln,	Fat,	Carbohydrate, Grams	$\begin{gathered} \text { Fuiel } \\ \text { Value, } \\ \text { Calorles } \end{gathered}$	Cost, Dollars
		1bs.	oz.	gms.					
Mutton, loin, medium fat, E. P.				1	0.160	0.331		3.62	
			1		4.55	9.38		102.6	
	1	1			72.58	150.14		1642	
			0.97	27.6	4.42	9.15		100	
Mutton, neck, medium fat, A. P.				1	0.123	0.179		2.10	
			1		3.49	5.07		59.6	
	1		1.68	47.6	5.85	8.51		100	
Mutton, neck, medium fat, E. P.				1	0.169	0.246		2.89	
			1		4.79	6.97		81.9	
	1				76.66	111.58		1311	
Mutton, shoulder, medium fat, A. P.				1	0.137	0.155		1.94	
			1		3.88	4.39		55.1	
	1	1	1.82	51.5	62.14 7.05	70.31 7.96		881 100	
Mutton, shoulder, medium fat, E. P.				1					
			1		5.02	5.64		70.8	
		1			80.28	90.26		1133	
	1		1.41	40.0	7.08	7.96		100	
Nectarines, A. P.				1	0.006		0.148	0.62	
		1	1		0.17		4.20	17.5	
	1		5.71	162.3	0.97		24.02	100	
Nectarines, E. P.				1	0.006		0.159	0.66	
			1		0.17		4.51	18.7	
	1	1	5.34	151.5	2.72 0.91		72.12 24.09	299 100	
Oatmeal				1	0.161	0.072	0.675	3.99	
			1		4.56	2.04	19.13	113.2	
	1	1	0.88	25.1	73.02 4.03	32.65 1.80	306.18 16.90	1810	
Okra, A. P.				1	0.014	0.002	0.065	0.33	
			1		0.40	0.06	1.84	9.5	
		1			6.35	0.91	29.48	152	
Oleomargarine, A. P.	1	----	10.54	299.4	4.19	0.60	19.46	100	
				1	0.012	0.830		7.52	
			1		0.34	23.53		213.1	
	1		0.47	13.3	0.16	11.04		100	

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weiget in Terms of Standard Units.-Continued.

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

TABLE XXIII.

Food Values of Food Materials used Chiefly by Weiget in Terms of Standard Units.-Continued.

TABLE XXIII.

Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

Food Materlal	~i	Weight			Proteln, Grams	Fat, Grams	Carbohydrate, Grams	Fuel Value, Calories	Cost, Dollars
		lbs.	oz.	gms.					
Rolls, French				1	0.085	0.025	0.557	2.79	
			1		2.41	0.71	15.79	79.2	
		1			38.56	11.34	252.55	1267	
	1		1.26	35.8	3.04	0.90	19.94	100	
Rolls, Vienna				1	0.085	0.022	0.565	2.80	
			1		2.41	0.62	16.03	79.4	
		1			38.56	9.98	256.28	1269	
	1	---	1.26	35.7	3.04	0.79	20.19	100	
Rolls, water				1	0.090	0.030	0.542	2.80	
			1		2.55	0.85	15.37	79.3	
		1			40.82	13.61	245.82	1269	
	1	-..-	1.26	35.7	3.22	1.07	19.37	100	
Rutabagas, A. P.				1	0.009	0.001	0.060	0.29	
			1		0.26	0.03	1.70	8.1	
		1			4.08	0.45	27.22	129	
	1		12.37	350.9	3.16	0.35	21.06	100	
Rye flour				1	0.068	0.009	0.787	3.50	
			1		1.93	0.26	22.31	- 99.3	
		1			30.88	4.08	357.00	1588	
	1	----	1.01	28.5	1.94	0.26	22.48	100	
Salmon, whole, fresh, A. P.				1	0.153	0.089		1.41	
			1	-------	4.34 69.40	2.52 40.37		40.1	
		1			69.40	40.37		641	
	1		2.50	70.8	10.83	6.30		100	
Salmon, whole, fresh, E. P.				1	0.220	0.128		2.03	
		1	1		6.24 99.80	3.63 58.06		57.6 922	
	1		1.75	49.2	10.83	6.30		100	
Sausage, bologna, A. P.				1	0.182	0.197		- 2.50	
			1	-------	5.16	5.59		70.9	
		1			82.56	89.36	---7-1	1134	
	1	----	1.41	40.0	7.28	7.88		100	
Sausage, bologna, E. P.				1	0.187	0.176	0.003	2.34	
	--		1	------	5.30	4.99	0.09	61.5	
		1			84.82	79.83	1.36	1063	
	1		1.50	42.7	7.98	7.51	0.13	100	
Sausage, frankfort, A. P.				1	0.196	0.186	0.011	2.50	
			1		5.56	5.27	0.31	70.9	
		1			88.90	84.37	4.99	1134	
	1	----	1.12	40.0	7.83	7.43	0.44	100	

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

Food Materlal	si	Welght			Proteln,	Fat, Grams	$\begin{aligned} & \text { Carbo- } \\ & \text { hydrate, } \\ & \text { Grams } \end{aligned}$	$\begin{aligned} & \text { Fuel } \\ & \text { Value, } \\ & \text { Calories } \end{aligned}$	$\underset{\text { Collars }}{\text { Cost, }}$
		Ibs.	oz.	gms.					
Sausage meat, pork, A. P.				1	0.174	0.325		3.62102.41642100	
			1		4.93	9.21			
		1			78.93	147.41			
Sausage, pork, A. P.				1	0.130	0.440	0.011	$\begin{gathered} 4.52 \\ 128.3 \\ 2052 \\ 100 \end{gathered}$	
			1		3.69	12.47	0.31		
		1			58.97	199.60	4.99		
	1		0.78	22.1	2.86	9.73	0.24		
Sausage, summer, A. P.				1	0.245	0.421		$\begin{gathered} 4.77 \\ 135.2 \\ 2163 \\ 100 \end{gathered}$	
			1		6.95	11.94			
	1		0.74	21.0	5.14	8.83			
Sausage, summer, E. P.				1	0.260	0.445		$\begin{gathered} 5.05 \\ 143.0 \\ 2289 \\ 100 \end{gathered}$	
			1		7.37	12.62			
		1	0.70	19.8	117.93 5.15	201.86 8.82			
Scallops, A. P.				1	0.148	0.001	0.034	$\begin{gathered} 0.74 \\ 20.9 \\ 334 \\ 100 \end{gathered}$	
			1		4.20	0.03	0.96		
		1			67.13	0.45	15.42		
	1		4.79	135.7	20.08	0.14	4.61		
Shad, whole, fresh, A. P.				1	0.094	0.048		$\begin{gathered} 0.81 \\ 22.9 \\ 367 \\ 100 \end{gathered}$	
			1		2.67	1.36			
	1		4.37	123.8	11.63	5.94			
Shad, whole, fresh, E. P.				1	0.188	0.095		$\begin{gathered} 1.61 \\ 45.6 \\ 728 \\ 100 \end{gathered}$	
			1		5.33	2.69			
	1		2.19	62.2	85.12	43.04 5.91			
Shad roe, fresh, A. P.				1	0.209	0.038	0.026	$\begin{gathered} 1.28 \\ 36.3 \\ 581 \\ 100 \end{gathered}$	
			1		5.93	1.08	0.74		
	1	1	2.75	78.0	94.72 16.30	17.12 2.96	11.79 2.03		
Shrimp, canned, A. P.				1	0.254	0.010	0.002	$\begin{gathered} 1.11 \\ 31.5 \\ 504 \\ 100 \end{gathered}$	
			1		7.20	0.28	0.06		
	1	1	3.17	89.8	115.20 22.71	4.53 0.90	1.81 0.18		
Smelt, whole, A. P.				1	0.101	0.010		$\begin{gathered} 0.49 \\ 14.0 \\ 224 \\ 100 \end{gathered}$	
			1		2.86	0.28			
	1	1	7.14	202.4	45.83 20.44	4.53 2.02			

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

Food Material	$\stackrel{\sim}{\sim}$	Weight			Proteln, Grams	Fat,	Carbohydrate, Grams	$\begin{gathered} \text { Fuel } \\ \text { Value, } \\ \text { Calories } \end{gathered}$	Cost, Dollars
		1bs.	oz.	gms.					
Tripe, A. P.				1	0.117	0.012		$\begin{gathered} 0.58 \\ 16.3 \\ 261 \\ 100 \end{gathered}$	
			1		3.32	0.34			
		1			53.07	5.44			
	1		6.12	173.6	20.31	2.08			
Trout, salmon: or lake, fresh, A. P.				1	0.091	0.051		$\begin{gathered} 0.82 \\ 23.3 \\ 373 \\ 100 \end{gathered}$	
			1		2.58	1.45			
		1			41.28	23.13			
Trout, salmon or lake, fresh, E. P.				1	0.178	0.103		$\begin{gathered} 1.64 \\ 46.5 \\ 743 \\ 100 \end{gathered}$	
			1		5.05	2.92			
	1		2.15	61.0	80.64 10.86	46.72 6.28			
Turkey; A. P.				1	0.161	0.184		\qquad	
			1		4.56	5.22			
		1			73.03	83.46			
Turkey, E. P.									
			1	1	0.211 5.98	0.229 6.49		$\begin{array}{r} 2.91 \\ 82.4 \\ 1318 \\ 100 \end{array}$	
		1			95.71	103.88			
	1		1.21	34.4	7.26	7.88			
Turtle, green, whole, A. P.				1	0.047	0.001		0.20	
		1	1		1.33 21.32	0.03		5.6	
	1		17.90	507.6	23.86	0.51		100	
Turtle, green, whole, E. P.				1	0.198	0.005		0.84	
			1		5.61	0.14		23.7	
		1			89.81	2.27		380	
	1		4.21	119.4	23.66	0.60		100	
Vanilla wafers				1	0.066	0.140	0.716	4.39	
			1		1.87	3.97	20.30	124.4	
		1			29.94	63.50	324.75	1990	
	1		0.80	22.8	1.50	3.19	16.31	100	
Veal, breast, lean, A. P.				1	0.157	0.062		$\begin{gathered} 1.19 \\ 33.6 \\ 538 \\ 100 \end{gathered}$	
		1	1		4.45 71.05	1.76 28.14			
	1		2.97	84.3	13.24	5.23			
Veal, breast; lean, E. P.				1	0.212	0.080		$\begin{gathered} 1.57 \\ 44.5 \\ 711 \\ 100 \end{gathered}$	
			1		6.01	2.27			
	1		2.25	63.8	13.52	5.10			

TABLE XXIII.
Food Values of Food Materials dsed Chiefly by Weiget in Terms of Standard Units.-Continued.

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

Food Material	\&í	Weight			Protein, Grams	Fat, Grams	Carbohydrate, Grams	Fuel Value, Calories	Cost, Dollars
		lbs.	oz.	gms.					
Veal, leg, medium fat, A. P.				1	0.155	0.079		$\begin{aligned} & 1.33 \\ & 37.7 \\ & 603 \\ & 100 \end{aligned}$	
			1		4.39	2.24			
		1			70.24	35.84			
	1		2.65	75.1	11.64	5.93			
Veal, leg, medium fat, E. P.				1	0.202	0.090		1.62	
			1	------	5.73	2.55		45.9	
		1			91.68	40.80		734	
	1		2.18	61.8	12.48	5.56		100	
Veal, liver, A. P.	$\left\lvert\, \begin{gathered} -\cdots-- \\ \hdashline-\cdots- \\ \hdashline-1 \end{gathered}\right.$			1	0.190	0.053		1.24	
			1		5.39	1.50		35.1	
		1			86.24	24.04		562	
			2.85	80.8	15.36	4.28		100	
Veal, loin, lean, A. P.	$\left\lvert\, \begin{gathered} -\cdots \\ \cdots-\cdots \\ \cdots \\ \cdots \end{gathered}\right.$			1	0.159	0.044		1.03	
			1		4.51	1.25		29.3	
		1			72.12	19.96		468	
			3.42	96.9	15.41	4.26		100	
Veal, loin, lean, E. P.	$\left\lvert\, \begin{gathered} ------ \\ \hdashline---\mid \\ \hline 1 \end{gathered}\right.$			1	0.204	0.056		1.32	
			1		5.78	1.59		37.4	
		1			92.53	25.40		599	
		------	2.67	75.8	15.46	4.25		100	
Veal, loin, medium fat, A. P.				1	0.166	0.090		1.47	
			1		4.71	2.55		41.8	
		1			75.30	40.82		669	
	1		2.39	67.8	11.25	6.10		100	
Veal, loin, medium fat, E. P.				1	0.199	0.108		1.77	
			1		5.64	3.06		50.1	
		1			90.24	48.99		798	
	1		1.99	56.6	11.25	6.11		100	
Veal, neck, A. P.				1	0.139	0.046		0.97	
			1	----	3.94	1.30		27.5	
		1			63.05	20.87		440	
	1		3.63	103.0	14.33	4.74		100	
Veal, neck, E. P.				1	0.203	0.069		1.43	
			1		5.76	1.96		40.6	
		1			92.07	31.30		650	
	1	---	2.47	69.9	14.19	4.82		100	
Veal, rib, medium fat, A.P.				1	0.155	0.046		1.03	
			1		4.39	1.30		29.3	
		1			70.30	20.87		469	
	1	---	3.41	96.7	14.98	4.45		100	

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

Food Material	$\underset{\sim}{\alpha}$	Welght			Protein, Grams	$\underset{\text { Fram }}{\text { Fat }}$	$\left.\begin{array}{\|} \text { Carbo- } \\ \text { hydrate, } \\ \text { Grams } \end{array} \right\rvert\,$	$\begin{gathered} \text { Fuel } \\ \text { Value, } \\ \text { Calories } \end{gathered}$	Cost,
		1bs.	oz.	gms.					
Veal, rib, medium fat, E. P.				1	0.207	0.061		1.38	
	---		1		5.87	1.73		39.0	
		1			93.88	27.67		625*	
	1	--	2.56	72.6	15.03	4.43		100	
Veal, rump, A. P.				1	0.138	0.113		1.57	
			1		3.91	3.20		44.5	
		1			62.60	51.26		712	
	1		2.25	63.7	8.79	7.20		100	
Veal, rump, E. P.				1	0.198	0.162		2.25	
			1		5.61	4.59		63.8	
		1			89.82	73.48		1021	
	1		1.57	44.4	8.79	7.19		100	
Veal, shank, fore, A. P.	\ldots			1	0.122	0.031		0.77	
		1	1		3.46 55.34	0.88 14.06		${ }_{347}^{21.7}$	
	1		4.60	130.4	15.91	4.04		100	
Veal, shank, fore, E. P.	---			1	0.207	0.052		1.30	
			1		5.87	1.47		36.7	
	1		2.72	77.2	15.98	23.58		100	
Veal, shank, hind, medium fat, A. P.	\mid			1	0.077	0.017		0.46	
			1		2.18	0.48		13.0	
		1			34.93	7.71		209	
Veal, shank, hind, medium fat, E. P.				1	0.207	0.046		1.24	
			1		5.87	1.30		35.2	
		1			93.89	20.87		563	
	1		2.84	80.5	16.66	3.70		100	
Veal, shoulder, lean, A. P.				1	0.169	0.039		1.03	
		1	1		4.79 76.66	1.11		29.1	
	1		3.43	97.4	16.46	3.79		100	
Veal, shoulder, lean, E, P.				1	0.207	0.046		1.24	
			1		5.86 93.88	1.30		35.2	
	1		2.84	80.5	16.67	3.70		100	
Veal, shoulder, medium fat, A. P.	-			1	0.151	0.110		1.59	
			1		4.28	3.12		45.2	
		1			68.48	49.90		723	
			2.21	62.7	9.47	6.90		100	

TABLE XXIII.

Food Values of Food Materials used Chiefly by Weight in Terms of Standard Units.-Continued.

Food Materlal	¢i	Weight			Protein, Grams	${ }_{\text {Fat, }}$ Grams	$\begin{gathered} \text { Carbo- } \\ \text { hydrate, } \\ \text { Grams } \end{gathered}$	FuelValue,Calories	Cost, Dollars
		lbs.	oz.	gms.					
Veal, shoulder, medium fat, E. P.	1			1	0.197	0.144		2.08	
			1		5.58	4.08		59.1	
		1			89.36	65.32		945	
			1.69	47.9	9.45	6.91		100	
Walnuts, black, A. P.				1	0.072	0.146	0.030	1.72	
			1		2.04	4.14	0.85	48.8	
	1	1			32.66	56.22	13.61	781	
			2.05	58.1	4.18	8.48	1.74	100	
Walnuts, black, E. P.	1			1	0.276	0.563	0.117	6.64	
			1		7.82	15.96	3.32	188.2	
		1			125.19	255.38	53.06	3012	
			0.53	15.1	4.16	8.48	1.76	100	
Watermelons, fresh, A. P.				1	0.002	0.001	0.027	0.13	
			1		0.06	0.03	0.77	3.5	
		1			0.91	0.45	12.25	57	
	1		28.22	800.0	1.60	0.80	21.60	100	
Watermelons, fresh, E. P.				1	0.004	0.002	0.067	0.30	
			1		0.11	0.06	1.90	8.6	
	1		11.68	331.1	1.82	0.91 0.66	30.38 22.19	137 100	
Weakfish, whole, A. P.				1	0.086	0.011		0.44	
			1		2.44	0.32		12.6	
		1			39.01	4.99		201	
	1		7.96	225.7	19.41	2.48		100	
Weakfish, whole, E. P.				1	0.178	0.024		0.93	
			1	--	5.05	0.68		26.3	
	1		3.80	107.8	80.74 19.18	10.61 2.59		$\begin{aligned} & 421 \\ & 100 \end{aligned}$	
Wheat, cracked and crushed				1	0.111	0.017	0.755	3.62	
			1		3.15	0.48	21.40	102.5	
		1			50.34	7.71	342.50	1641	
	1		0.97	27.6	3.07	0.47	20.87	100	
Wheat, parched and toasted				1	0.136	0.024	0.745	3.74	
			1		3.85	0.68	21.14	106.0	
		1			61.68	10.88	337.80	1696	
	1	.-...	0.94	26.7	3.63	0.64	19.89	100	
Whey, A. P.				1	0.010	0.003	0.050	0.27	
			1		0.28	0.09	1.42	7.6	
		1			4.54	1.36	22.68	121	
	1	---	13.2	374.5	3.74	1.12	18.73	100	

TABLE XXIII.
Food Values of Food Materials used Chiefly by Weiget in Terms of Standard Units.-Continued.

Food Materlal	¢	Welght			Proteln,	$\underset{\text { Frams }}{\text { Gat, }}$	Carbohydrate, Grams	$\begin{aligned} & \text { Fuel } \\ & \text { Value, } \\ & \text { Calories } \end{aligned}$	Cost,
		1bs.	oz.	gms.					
Whitefish, fresh, whole, E. P.				1	0.229	0.065		1.50	
			1		6.49	1.84		42.5	
	1	1			103.84	29.44		680	
			2.35	66.6	15.26	4.33		100	
Yeast, compressed				1	0.117	0.004	0.210	1.34	
			1		3.32	0.11	5.95	38.1	
		1			53.04	1.81	95.25	610	
	1		2.62	74.4	8.70	0.30	15.62	100	

TABLE XXIV.
Food Values per Gram and per 100 Calories (S. P.) of Some Less Common Food Materials.

Food Material	Weight		$\underset{\text { Protein }}{\text { Prams }}$	$\begin{aligned} & \text { Fat } \\ & \text { Grams } \end{aligned}$	Carbohydrate Grams	$\begin{gathered} \text { Fuel } \\ \text { Value } \\ \text { Calories } \end{gathered}$	Cost Dollars
	S. P.	Grams					
Almond butter		1	0.216	0.615	0.116	6.86	
	1	14.58	3.15	8.97	1.69	100	
Almond meal		1	0.264	0.017	0.568	3.49	
	1	28.76	7.58	4.80	16.34	100	
Angelica		1	0.001	0.001	0.873	3.50	
	1	28.57	0.01	0.02	24.94	100	
Apricots, canned		-1	0.009		0.173	${ }_{100}^{0.73}$	
Arrowroot starch		1			0.975	3.90	
	1	25.64			25.00	100	
Artichokes, A. P.		1	0.026	0.002	0.167	0.79	
	1	126.60	3.29	0.25	21.13	100	
Asparagus, canned, drained		1.	0.027	0.005	0.035	0.29	
	1	346.0	9.34	1.59	12.12	100	
Bacon, broiled....		1	$0.23)$	0.670		6.95	
	1	14.39	3.31	9.64		100	
Barley flour		1	0.105	0.022	0.728	3.53	
	1	28.32	2.98	0.62	20.62	100	
Beef, fat flank, stewed		1	0.200	0.342		3.87	
	1	25.81	5.16	8.82		100	
Beef, lean, round, 1 inch thick, pan-broiled		1	0.225	0.098		1.78	
	1	56.11	12.63	5.50		100	
Beef, lean round, pot roast		1	0.345	0.097		2.25	
	1	44.44	15.35	4.29		100	
Bread, toasted, white, 20.0% water loss			$\begin{aligned} & 0.116 \\ & 3.59 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.46 \end{aligned}$	$\begin{gathered} 0.658 \\ 20.36 \end{gathered}$	${ }_{100}^{3.23}$	
	1	30.95	3.59	0.46	20.36	100	
Bread crumbs (oven dried, water content 6\%)			0.131	0.018	0.759	3.72	
	1	26.87	3.52	0.48	20.39	100	
Bread crumbs, stale, water	1	$\begin{gathered} 1 \\ 35.63 \end{gathered}$	$\begin{aligned} & 0.10 \\ & 3.563 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.50 \end{aligned}$	$\begin{gathered} 0.570 \\ 20.32 \end{gathered}$	${ }_{100}^{2.81}$	

TABLE XXIV.
Food Values per Gram and per 100 Calories of Some Less Common Food Materials.-Continued.

Food Material	Weight		Protein Grams	Fat Grams	Carbohydrate Grams	$\begin{gathered} \text { Fuel } \\ \text { Value } \\ \text { Calories } \end{gathered}$	Cost Dollars
	S. P.	Grams					
Buns, cinnamon		1	0.094	0.072	0.591	3.39	
	1	29.52	2.77	2.13	17.45	100	
Buns, currant		1	0.067	0.076	0.576	3.26	
	1	30.71	2.06	2.33	17.69	100	
Chicken, canned, boned		1	0.277	0.128		2.26	
	1	44.25	12.26	5.66		100	
Chicken, meat		1	0.226	0.101		1.81	
	1	55.16	12.47	5.57		100	
Chicken meat, visible fat removed		1	0.218	0.025		1.10	
	1	91.14	19.87	2.28		100	
Chicken, potted		1	0.194	0.203		2.60	
	1	38.41	7.45	7.80		100	
Chicken, soup, canned		1	0.029	0.033	0.051	0.62	
	1	162.1	4.70	5.35	8.29	100	
Chocolate, milk *		1	0.080	0.350	0.511	5.52	
	1	18.13	1.45	6.35	9.26	100	
Citron		1	0.001	0.001	0.776	3.11	
	1	32.10	0.03	0.02	24.92	100.	
Corn oil		1.		1.000		9.000	
	1	11.11		11.11		100	
Corn, puffed		1	0.073	0.003	0.842	3.76	
	1	26.60	2.46	0.67	22.39	100	
Corn syrup	1	1 29.41			0.850 25.00	$\begin{gathered} 3.400 \\ 100 \end{gathered}$	
Cottonseed oil		1.		1.000		9.000	
	1	11.11		11.11		100	
Crab meat, canned		1	0.158	0.015	0.007	0.80	
	1	125.80	19.87	1.83	0.889	100	
Cream, 25%		1	0.028	0.250	0.040	2.52	
	1	39.66	1.11.	9.91	1.58	100	
Cream, 32\%		1	0.024	0.320	0.035	3.12	
	1	32.09	0.77	10.27	1.12	100	
Crisco		1		1.000		9.000	
	1	11.11		11.11		100	

* Av. 10 brands, Conn. Exp. Sta. Dept. 1911.

TABLE XXIV.
Food Values per Gram and per 100 Calories of Some Less Common Food Materials.-Continued.

Food Material	Weight		Protein Grams	$\begin{gathered} \text { Fat } \\ \text { Grams } \end{gathered}$	$\begin{aligned} & \text { Carbo- } \\ & \text { hydrate } \\ & \text { Grams } \end{aligned}$	$\begin{gathered} \text { Fuel } \\ \text { Value } \\ \text { Calories } \end{gathered}$	$\begin{gathered} \text { Cost } \\ \text { Dollars } \end{gathered}$
	S. P.	Grams					
Dextri-maltose	1	$\begin{gathered} 1 \\ 26.88 \end{gathered}$			$\begin{aligned} & 0.930 \\ & 25.00 \end{aligned}$	$\begin{array}{r} 3.72 \\ 100 \end{array}$	
Duck, A. P.	1	$\begin{gathered} 1 \\ 48.63 \end{gathered}$	$\begin{aligned} & 0.154 \\ & 7.54 \end{aligned}$	$\begin{aligned} & 0.160 \\ & 7.78 \end{aligned}$		$\int_{100}^{2.06}$	
Duck, E. P.	1	$\stackrel{1}{40.95}$	$\begin{aligned} & 0.183 \\ & 7.49 \end{aligned}$	$\begin{aligned} & 0.190 \\ & 7.78 \end{aligned}$		${ }_{100}^{2.44}$	
Duck, breast	1	$\begin{aligned} & 1 \\ & 83.89 \end{aligned}$	0.223 18.71	$\begin{aligned} & 0.033 \\ & 2.77 \end{aligned}$		$\int_{100}^{1.19}$	
Grapefruit	1	1	0.008 1.72	$\begin{aligned} & 0.002 \\ & 0.45 \end{aligned}$	$\begin{gathered} 0.104 \\ 22.10 \end{gathered}$	${ }_{100}^{0.47}$	
Guinea hen, A. P.	1	$\begin{gathered} 1 \\ 79.23 \end{gathered}$	$\begin{aligned} & 0.194 \\ & 15.37 \end{aligned}$	$\begin{aligned} & 0.054 \\ & 4.28 \end{aligned}$		$\left.\right\|_{100} ^{1.26}$	
Guinea hen, E. P.	1	$\begin{gathered} 1 \\ 66.28 \end{gathered}$	$\begin{gathered} 0.231 \\ 15.31 \end{gathered}$	$\begin{aligned} & 0.065 \\ & 4.31 \end{aligned}$		100	
Ice cream (commercial)	1	$\stackrel{1}{45.72}$	0.025 1.13	0.151 6.90	$\begin{aligned} & 0.182 \\ & 8.32 \end{aligned}$	$\frac{2.19}{100}$	
Ice cream cones (without ice cream	1	$\begin{gathered} 1 \\ 25.27 \end{gathered}$	$\begin{aligned} & 0.166 \\ & 4.20 \end{aligned}$	0.026 0.65	$\begin{gathered} 0.765 \\ 19.35 \end{gathered}$	100	
Jelly, cherry	1	$\begin{gathered} 1 \\ 31.93 \end{gathered}$	$\begin{aligned} & 0.011 \\ & 0.35 \end{aligned}$		$\left\lvert\, \begin{aligned} & 0.772 \\ & 24.65 \end{aligned}\right.$	${ }_{100}^{3.13}$	
Kidney beans, E. P.	1	1 28.82	0.411 11.83	$\begin{aligned} & 0.016 \\ & 0.47 \end{aligned}$	$\begin{array}{\|c} 0.421 \\ 11.85 \end{array}$	100	
Kohl rabi, E. P.	1	$\left\lvert\, \begin{gathered} 1 \\ 323.60 \end{gathered}\right.$	$\begin{aligned} & 0.020 \\ & 6.47 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.32 \end{aligned}$	$\begin{gathered} 0.055 \\ 17.80 \end{gathered}$	100	
Lactose	1	$\begin{gathered} 1 \\ 25.00 \end{gathered}$			${ }_{25.00}^{1.000}$	100	
Lamb, leg, roasted	1	$\begin{aligned} & 1 \\ & 51.78 \end{aligned}$	$\begin{gathered} 0.197 \\ 10.21 \end{gathered}$	$\begin{aligned} & 0.127 \\ & 6.58 \end{aligned}$		$\left.\right\|_{100} ^{1.93}$	
Malt breakfast food	1	$\begin{gathered} 1 \\ 28.39 \end{gathered}$	$\begin{aligned} & 0.118 \\ & 3.36 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.14 \end{aligned}$	$\left\lvert\, \begin{gathered} 0.753 \\ 21.39 \end{gathered}\right.$	$100^{3.53}$	
Milk, dried skim	1	$\begin{gathered} 1 \\ 27.57 \end{gathered}$	$\begin{array}{\|c\|} \hline 0.377 \\ 10.40 \end{array}$	$\begin{aligned} & 0.014 \\ & 0.37 \end{aligned}$	$\begin{gathered} 0.499 \\ 13.77 \end{gathered}$	$100^{3.63}$	
Milk, dried whole	1	$\begin{gathered} 1 \\ 19.68 \end{gathered}$	$\begin{aligned} & 0.250 \\ & 4.92 \end{aligned}$	$\begin{aligned} & 0.280 \\ & 5.51 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.390 \\ & 7.68 \\ & \hline \end{aligned}$	$\begin{gathered} 5.08 \\ 100 \\ \hline \end{gathered}$	

TABLE XXIV.
Food Values per Gram and per 100 Calories of Some Less Common Food Materials.-Continued.

Food Material	Weight		Protein Grams	Fat Grams	Carbo hydrate Grams	Fuel Value Calories	Cost Dollars
	S. P.	Grams					
Milk, human		1	0.015	0.033	0.065	0.617	
	1	162.10	2.43	5.35	10.53	100	
Milk, malted		1	0.138	0.030	0.768	3.894	
	1	25.68	3.59	0.77	19.72	100	
Milk, upper: 1 ounce *		1	0.028	0.225	0.040	2.30	
	1	43.53	1.22	9.80	1.74	100	
Milk, upper 2 ounces		1	0.028	0.215	0.040	2.21	
	1	45.31	1.27	9.74	1.81	100	
Milk, upper 4 ounces		1.	0.028	0.200	0.040	2.07	
	1	48.26	1.35	9.65	1.93	100	
Milk, upper 6 ounces		1	0.029	0.170	0.042	1.81	
	1	55.13	1.60	9.40	2.30	100	
Milk, upper 8 ounces		1	0.030	0.140	0.043	1.65	
	1	60.53	1.82	8.47	2.60	100	
Milk, upper 10 ounces		1	0.030	0.115	0.043	1.33	
	1	75.36	2.26	8.67	3.24	100°	
Milk, upper 12 ounces		1	0.031	0.098	0.045	1.19	
	1	84.29	2.61	8.26	3.79	100.	
Milk, upper 16 ounces		1	0.031	0.076	0.046	0.99	
	1	100.80	3.13	7.66	4.64	100	
Milk, upper 20 ounces		1	0.032	0.062	0.047	0.87	
	1	114.41	3.66	7.09	5.38	100	
Milk, upper 24 ounces		1	0.032	0.052	0.048	0.79	
	1	126.90	4.06	6.60	6.09	100	
Milk, upper 28 ounces		1	0.033	0.045	0.048	0.73	
	1	137.20	4.54	6.77	6.58	100	
Mince meat		1	0.067	0.014	0.602	2.802	
	1	35.69	2.391	0.4996	21.48	100	
Orange marmalade		1	0.006	0.001	0.845	3.41	
	1	29.29	0.18	0.03	24.76	100	
Oyster plant, (salsify) fresh, E. P. Paté de fois gras		1	0.043	0.003	0.069	0.47	
	1	211.00	8.99	0.70	14.45	100	
		1	0.136	0.382	0.043	4.15	
	1	24.07	3.27	9.20	1.04	100	

* From a quart bottle after standing from 12 to 24 hours.

TABLE XXIV.
Food Values per Gram and per 100 Calories of Some Less Common Food Materials.-Continued.

Food Material	Weight		Protein Grams	Fat Grams	Carbohydrate Grams	$\begin{gathered} \text { Fuel } \\ \text { Value } \\ \text { Calories } \end{gathered}$	Cost Dollars
	S. P.	Grams					
Pea meal		1	0.359	0.175	0.280	4.13	
	1	24.21	8.69	4.24	6.78	100	
Peanut oil		1		1.000		9.00	
	1	11.11		11.11		100	
Peas, canned, drained		1	0.030	0.002	0.083	0.47	
	1	212.70	6.38	0.43	17.66	100	
Peppers, green, fresh, E. P.		1	0.016	0.002	0.045	0.26	
	1	386.10	6.18	0.58	17.53	100	
Persimmons, fresh, E. P.		1	0.008	0.007	0.315	1.36	
	1	73.80	0.59	0.52	23.25	100	
Pheasant, A. P.		1	0.215	0.042		1.24	
	1	80.78	17.37	3.43		100	
Pheasant, E. P.		1	0.244	0.048		1.41	
	1	71.04	17.34	3.41	100	
Pigeon, A. P.		1	0.197	0.001		0.80	
	1	125.50	24.74	0.12		100	
Pigeon, E. P.		1	0.228	0.001		0.92	
	1	108.50	24.73	0.12		100	
Quail, A. P.		1	0.223	0.061		1.44	
	1	69.39	15.47	4.23		100	
Quail, E. P.		1	0.250	0.068		1.61	
	1	62.04	15.51	4.22		100	
Rice, boiled		1	0.018	0.001	0.213	0.93	
	1	107.60	1.91	0.06	22.95	100	
Rice, puffed		1	0.083	0.003	0.837	3.70	
	1	27.02	2.23	0.07	22.61	100	
Rye, cream of		1	0.116	0:015	0.731	3.52	
	1	28.40	3.30	0.42	20.78	100	
Soy beans		1	0.365	0.175	0.308	4.27	
	1	23.44	8.56	4.10	7.22	100	
Soy bean meal		1	0.400	0.191	0.251	4.31	
	1	23.18	9.24	4.42	5.82	100	
Squab, A. P.		1	0.157	0.186		2.30	
	1	43.44	6.82	8.08		100	

TABLE XXIV.

Food Values per Gram and per 100 Calories of Some Less Common Food Materials.-Continued.

Food Material	Weight		Protein Grams	Fat Grams	Carbo hydrate Grams	Fuel Value Calories	Cost Dollars
	S. P.	Grams					
Squab, E. P.		1	0.186	0.221		2.733	
	1	36.59	6.81	8.09		100	
Squash, fresh, E. P.		1	0.014	0.005	0.090	0.46	
	1	217.40	3.04	1.09	19.56	100°	
Tomato soup, canned *		1	0.015	0.007	0.095	0.50	
	1	199.30	2.97	1.40	18.89	100	
Tuna fish, A. P.		1	0.217	0.041		-1.24	
	1	80.85	17.55	3.32		100	
Turkey, dark meat, cooked		1.	0.392	0.043		1.96	
	1	51.16	20.05	2.20		100	
Turkey, dark meat, raw		1	0.214	0.206		2.71	
	1	36.90	7.89	7.60		100	
Turkey, light meat, cooked		1	0.346	0.049		1.83	
	1	54.79	18.95	2.69		100	
Turkey, light meat, raw		1	0.257	0.094		1.87	
	1	53.37	13.72	5.02		100	
Turkey, potted		1	0.172	0.220		2.67	
	1	37.48	6.45	8.25		100	
Wheat, cream of	\cdots		0.110	0.009	0.786	3.66	
	1	27.31	3.00	0.25	21.44	100	
Wheat, puffed		1	0.162	0.018	0.732	3.74	
	1	26.76	4.33	0.482	19.58	100	

* Average of 3 brands.

TABLE XXV.
Energy Content of Foods Sold by Confectioners.*

Food Material	$\underset{\text { Gram }}{\substack{\text { Calories per } \\ \hline}}$	Weight to yield 100 Calories, Grams	$\begin{gathered} \text { Cost of } \\ \text { Market Unit, } \\ \text { Dollars } \end{gathered}$
Chocolate, nut (sold in bars)	5.70	17.54	
Chocolate, plain sweet (sold in bars)	5.60	17.85	
Almonds, chocolate	6.40	15.63	
Almonds, salted	7.54	13.26	
Almonds, sugar	4.30	23.26	
Caramels	4.50	22.22	
Cocoanut bars	4.10	24.39	
Crackers, fruit	4.00	25.00	
Crackers, sweet	4.50	22.22	
Filberts, salted	7.89	12.68	
Gum drops	3.40	29.41	
Jelly beans	3.60	27.77	
Licorice bars	3.40	29.41	
Marshmallows	3.30	30.31	
Mints, chocolate cream	$3.80{ }^{-}$	26.31	,
Mints, cream	3.60	27.77	-
Nougatines, chocolate coated	4.50	22.22	
Peanut bar	5.90	16.94	
Pecans, salted	7.67	13.04	
Peppermints, chocolate coated	4.50	22.22	
Peppermints, molasses	3.80	26.31	
Stick candy	3.70	27.03	
Suckers (lollypops)	3.80	26.31	
Pretzels	4.87	20.53	
Wafers, fancy sugar (average)	5.00	20.00	

* Adapted from The Energy Content of Extra Foods, Benedict and Benedict, Boston Medical and Surgical Journal, Vol. 179 (1918), pp. 153-162; Vol. 181 (1919) pp. 415-422.

TABLE XXVI．＊

Ash Constituents of Foods in Percentage of the Edible Portion （Compiled from Various Sources）

Pretugg

Food				態		包 이ㅇㅡㅜ	品 号 员	或区
Almonds	． 239	． 251	．741	． 019	． 465	． 037	． 160	． 0039
Apples	． 007	． 008	． 127	．ori	． 012	． 005	． 006	． 0003
dried	． 032	． 037	（．623）	（．050）	． 048	（．025）	？	（．0015）
Apricots	． 014	． 010	． 248	． 038	． 025	． 002	． 010	（．0003）
dried	（．066）	（．047）	（1．157）	（．177）	（．117）	（．009）	？	（．0014）
Asparagus	． 025	． 011	． 196	． 007	． 039	． 039	． 041	． 0010
Bacon（See Meat）	－．							
Bananas ．	． 009	． 028	．401	． 034	．031	． 125	． 010	． 0006
Barley，entire	． 043	．131	． 477	． 076	． 400	． 016	． 153	． 0041
－pearled	． 020	（．070）	（．24I）	（．037）	．181	（．016）	（．120）	（．0020）
Beans，dried	160	． 156	1.229	． 097	．471	． 032	． 215	． 0070
kidney，dry	．132	． 139	1.144	． 041	． 475	． 041	． 227	． 0072
Lima，dry	． 071	． 188	1.741	． 249	． 338	． 026	．161	． 0070
Lima，fresh	． 028	（．070）	（．613）	（．088）	． 33	（．009）	（．057）	． 0020
string，fresh	． 046	． 025	． 247	． 019	． 052	． 024	． 030	． 0011
Beef（See Meat）								
Beer	． 004	． 008	． 058	． 013	． 028	． 006	15	． 0001
Beets	． 029	． 021	． 353	． 093	． 039	． 058	． 016	． 0006
Blackberries．	． 017	． 021	． 169	（．007）	． 034	（．oro）	． 020	． 0006
Blood（avg．）	． 008	． 004	． 075	．261	． 031	． 280	． 137	． 0526
Blueberries	． 020	． 007	． 051	． 016	． 008	． 008	． 11	． 0009
Bluefish（See Fish）								
Bread，								
Boston brown	． 129	． 078	（．232）	（．394）	． 185	（．607）	． 201	（．0030）
＂entire wheat＂	（．05）	（．05）	（．208）	（．394）	（．175）	（．607）	（．120）	（．0016）
graham	（．05）	（．05）	（．291）	（．394）	（．218）	（．607）	． 150	（．0025）
rye ．	． 024	． 039	．151	． 701	． 148	1.025	． 104	（．0016）
white	． 027	． 023	． 108	（．394）	． 093	（．607）	． 105	． 0009
Rreadfruit	． $084{ }^{\circ}$	． 007	． 235	． 027	． 068	． 100	． 049	
Brussels sprouts	． 027	． 040	． 375	． 004	． 120	． 040	． 194	（．0011）
Buckwheat flour	． 039	． 048	． 130	． 027	． 22	． 012	． 071	． 0012
Butter	． 015	． 001	． 014	（．788）	． 017	（1．212）	（．010）	． 000
Buttermilk	． 105	． 017	．151	． 064	． 097	． 099	． 026	． 00025

[^13]TABLE XXVI．－Continued．

Food		$\begin{aligned} & \text { 自感 } \\ & \text { 发花 } \end{aligned}$	$\begin{aligned} & \text { 为 } \\ & \text { 包 } \\ & \text { an } \end{aligned}$			思		秶
Cabbage	． 045	． 015	． 247	． 027	． 029	． 024	． 066	． 0011
Cabbage greens	． 106	． 030	．512	． 025	． 099	． 068	． 73	． 0018
Cantaloupe	． 017	． 012	． 235	．061	． 015	． 041	． 014	． 0003
Capers	22	． 022	． 209	．051	． 062	－		
Carp（See Fish）								
Carrots	． 056	． 02 I	． 287	．101	． 046	． 036	． 022	． 0006
Cauliflower	． 123	． 014	． 222	． 068	． 061	． 050	． 086	． 0006
Caviar	． 137	． 022	． 422	． 874	． 176	т．819	－	－
Celery	． 078	． 014	． 316	． 084	． 037	． 56	． 022	． 0005
Chard ．	． 150	． 07 I	． 318	． 086	． 040	． 039	． 124	（．0025）
Cheese	． 931	． 037	． 089	． 606	． 683	． 880	． 263	． 0013
Cherries	． 019	． 016	． 213	． 023	． 031	． 014	． 011	． 0004
Cherry juice	． 017	II	． 200	． 013	． 018	． 003	． 006	（．0003）
Chestnuts	． 034	． 051	． 560	． 065	． 093	． 006	． 068	． 0007
Chicken（See Meat）								
Chocolate	． 092	（．293）	（．563）	． 012	． 455	（．051）	． 085	（．0027）
Cider	． 008	． 011	． 095	． 020	009	． 006	． 006	（．0002）
Citron	． 121	． 018	． 210	． 011	． 033	． 003	． 02	
Clams，round	． 106	． 098	．131	． 705	． 046	1.220	． 224	－
soft，long	． 124	． 079	． 212	． 500	． 122	． 910	． 213	
Cocoa ．	．112	． 420	． 900	． 059	． 709	． 05	． 203	． 0027
Coconut，dried	． 059	． 059	． 597	． 073	． 55	． 239	（．056）	－
fresh	． 024	． 020	． 3	． 036	． 07	． 120	． 028	
Coconut milk	． 020	． 009	． 144	－	． 010	－	． 008	
Cod（See Fish）								
Corn（maize），mature	． $020{ }^{\circ}$	．I	． 339	． 036	． 283	． 045	．151	． 0029
meal	． 018	． 084	． 213	． 039	． 190	． 146	．111	． 0009
sweet	． 006	． 033	．r13	． 010	． 103	． 014	． 046	． 0008
sweet，dried	． 021	． 12 I	． 414	． 146	． 376	． 050	． 167	． 0029
Cotton－seed meal	． 265	． 462	1．390	． 234	1．193	． 037	． 485	－
Cowpeas ．	． 100	． 208	1.402	．161	． 456	． 040	． 240	－
Crackers ．	． 022	． 011	． 100	（．594）	． 102	（．910）	． 125	． 0015
Cranberries	． 018	． 007	． 077	． 010	． 013	． 009	． 007	． 0006
Cream	． 086	． 010	． 126	． 035	． 067	． 080	． 030	． 00022
Cucumbers	． 016	． 009	． 140	． 010	． 033	． 030	． 020	． 0002
Currants，dried	． 082	． 044	． 873	．081	． 195	． 060	． 044	（．0025）
fresh	． 026	． 017	． 211	． 007	． 038	． 006	． 014	． 0005

TABLE XXVI－Continued．

Food	包気気			$\begin{aligned} & \text { 를 } \\ & \text { íz } \\ & \text { in } \end{aligned}$	苞き			琢
Currant juice	． 021	． 010	． 185	（．006）	． 018	． 004	． 005	－
Dandelion	． 105	． 036	．461	． 168	． 072	． 099	． 017	． 0027
Dates ．	． 065	． 069	．6II	． 055	． 056	． 228	． 070	． 0030
Duck（See Meat）								
Eggplant ．	． 011	． 015	（．140）	（．010）	． 034	． 024	． 016	． 0005
Eggs	． 067	． 011	：140	． 143	． 180	． 106	． 195	．0030
Egg white	． 015	． 010	． 160	． 156	． 014	． 155	． 216	．0001
Egg yolk ．	． 137	． 016	． 115	． 075	． 524	． 094	． 166	． 0086
Endive	． 104	． 013	． 380	．ro9	． 038	． 167	． 035	－
Farina	． 021	． 025	． 120	． 065	． 125	． 076	． 155	． 0008
Figs，dried	． 162	． 071	． 964	． 046	． 116	． 043	． 056	． 0030
$\begin{aligned} & \text { fresh } \\ & \text { Fish } \end{aligned}$	． 053	． 022	． 303	． 012	． 036	． 014	． or －	－
Flaxseed	． 204	.252	．901	． 050	． 627	． 022	． 170	－
Flour，buckwheat	． 01	． 048	． 130	． 027	． 176	． 012	． 071	． 0012
＂entire wheat＂	． 031	（．090）	（．274）	（．037）	． 238	（．070）	（．180）	． 0025
graham	． 039	（．133）	（．457）	（．037）	． 364	（．070）	． 183	． 0037
white	． 020	． 018	． 115	． 060	． 092	． 074	． 177	．0010
rye ．	． 018	．081	． 463	． 019	． 289	． 055	． 123	．0013
Fowl（See Meat）								
Gluten feed ．	． 247	． 221	． 250	． 420	． 542	． 090	． 558	－
Gooseberries	． 035	． 014	． 197	． 038	．03I		． OII	． 0005
Grapefruit	． 02 I	． 009	．161	． 004	． 02	． 005	． 0	． 0003
Grapejuice	． OII	． 009	． 106	． 005	． 0	． 002	． 009	． 0003
Grapes	． 019	． 010	． 197	． 015	． 031	． 005	． 024	． 0003
Guava	． 014	． 008	． 384	－	． 030	． 045	－	－
Haddock（See Fish）								
Halibut（See Fish）								
Ham（See Meat）								
Hazelnuts ．${ }^{\text {a }}$	． 287	． 140	．618	． 019	． 354	． 067	． 198	．0041
Herring（See Fish） Hominy								（．0000）
Hominy		． 058	． 174	． 020	． 144	． 046	（．136）	（．0009）

[^14]TABLE XXWI－Continued．

Food					就気			発®
Honey	． 004	． 018	． 386	． 001	． 019	． 029	． 001	． 0007
Horseradish ．	． 096	． 039	． 468	． 062	． 076	． 016	． 190	－
Huckleberries	． 020	． 007	． 051	． 016	． 008	． 008	． 011	． 0009
Huckleberry wine	． 009	． 004	． 042	． 006	． 004	． 001	． 006	
Jam＊								
Jelly ．	． 014	（．010）	（．100）	（．013）	． 008	（．004）	（．007）	（．0003）
Kohl－rabi	． 077	． 030	． 370	． 050	． 071	． 053	． 057	． 0006
Lamb（See Meat）								
Leeks ．	． 058	． 014	． 199	．081	． 006	． 024	． 072	－
Lemons	． 036	． 007	． 175	． 004	． 022	． 002	． 011	． 0006
Lemon juice．	． 024	． 010	． 127	． 009	． 010	． 003	． 006	－
Lemon，sweet	． 030	． 006	．442	－	． 042	． 013	． 016	－
Lentils，dry ．	． 107	．10	． 877	． 062	． 438	． 050	． 277	． 0086
Lettuce	． 043	． 017	． 339	． 027	． 042	． 074	． 014	． 0007
Limes	． 055	． 014	． 350	． 062	． 036	． 039	． 010	－
Lime juice		－	－	－	－	－	． 003	－
Linseed meal	． 413	． 432	1.083	． 251	．741	． 085	． 396	－
Lupins，dry	．r9r	． 191	． 840	． 073	． 520	． 034		－
Macaroni	． 022	． 037	． 130	． 008	． 144	． 073	． 172	． 0012
Mackerel（See Fish）								
Mamey	． 009	． OI 2	． 345	－	． 028	． 140	－	
Mango	． 021	． 007	． 235	－	． 017	． 019	． 013	－
Mangolds	． 026	． 030	． 334	．07i	． 038	． 082	． 026	－
Maple syrup	． 107	． 034	． 208	． 010	． 013	（．010）	（．005）	（．003）
Meat \dagger								
Meat extract，solid	． 085	． 363	7.347	2.394	2.800	3.117	－	－
Meat peptone	． 025	． 124	2.440	．64I	1.130	． 561	． 22	－
Milk（cow＇s），whole	－ 120	． 012	． 143	． 051	． 093	． 106	． 034	． 00024
（cow＇s），skimmed	（．122）	（．012）	（．149）	（．052）	（．096）	（．110）	（．035）	． 00025
densed	（．300）	（．032）	（．374）	（．134）	． 235	（．280）	（．090）	． 0006

[^15]TABLE XXVI－Continued．

Food							$\begin{aligned} & \text { 号 } \\ & \text { 号 } \\ & \text { 号 } \end{aligned}$	盗気
Milk－Cont．								
	． 203	． 016	． 099	． 038	． 125	． 062	－	－
camel＇s	． 143	． 02 I	． 114	． 019	． 098	． 105	－	
goat＇s	． 128	． 013	． 145	． 079	．103	． 014	． 037	
human	． 034	． 005	． 047	． 010	． 015	． 035	－	
mare＇s	． 083	． 007	．08I	． 010	． 054	． 029		
sheep＇s．	． 207	． 008	． 187	． 030	． 123	． 071	－	
Millet	． 014	． 167	． 290	． 085	． 327	． 019	－	
Molasses	． 211	． 068	1． 349	． 019	． 044	． 317	． 129	． 0073
Mushrooms	． 017	． 016	． 384	． 027	． 108	． 021	． 051	－
Muskmelon	． 017	． 012	． 235	．061	． 015	． 041	． 014	． 0003
Mustard	． 492	． 260	．761	． 056	． 755	． 016	1.230	
Mutton（See Meat）								
Oatmeal ．	． 069	． 110	． 344	． 062	． 392	． 069	． 202	． 0038
Okra	． 071	． 010	． 035	． 043	． 019	－	－	
Olives ．	． 122	． 002	1． 526	． 128	． 014	． 004	． 027	． 0029
Onions	． 034	． 016	． 178	． 016	． 045	． 021	．070	． 0006
Oranges	． 045	． 012	． 177	． 012	． 021	． 006	． 011	． 0002
Orange juice	． 029	1	． 182	． 008	． 016	． 003	． 009	． 0002
Oysters	.052	． 037	． 091	． 459	． 155	． 590	． 187	． 0045
Paprika	． 229	． 164	2.075	． 178	． 341	． 155		
Parsnips	． 059	． 034	． 518	． 004	． 076	． 030	． 036	． 0006
Peaches	． 016	． 010	． 214	． 022	． 024	． 004	． 009	． 0003
dried	． 034	． 056	（．830）	． 082	． 146	－	． 2	（．0012）
Peanuts	． 071	． 180	． 654	． 050	． 399	． 056	． 224	． 0020
Pears	． 015	． 01	． 132	． 016	． 026	． OII	． 010	． 0003
Pear juice	． 009	． 008	． 140	－	． 011	－	． 009	－
Peas，dried	． 084	． 149	． 903	． 104	． 400	． 035	． 219	． 0057
fresh．	． 028	． 038	． 285	． 013	． 127	． 024	． 063	． 0017
Pecan nuts	． 089	． 152	（．332）	－	． 335	． 050	．113	． 0026
Pepper，green，fresh	． 006	． 010	（．130）	－	． 026	． 013	． 014	． 0004
Pepper，black，dry	． 440	． 156	1．140	．131	． 188	． 312	－	－
Pepper，white，dry	． 425	．113	－	－	． 233	． 029	－	－
Perch（See Fish）								
Persimmons．	． 022	． 009	． 292	． 011	． 022 I	． 002	． 005	－
Pineapple	． 018	． 01 II	． 32 I	． 016	． 028	． 051	． 009	． 0005
Plums．	． 020	． OI I	． 203	． 019	． 032	． 002	． 009	． 0005

TABLE XXVI－Continued．

Food	麀			毕高				資运
Pomegranate	． 011	． 005	． 063	． 085	． 105	． 003	－	． 0004
Pork（See Meat）								
Potatoes ．．．．	． 014	． 028	． 429	． 02 I	． 058	． 038	． 030	． 0013
sweet	． 019	． 028	． 397	． 039	． 045	． 094	． 024	． 0005
Prunes，dried	． 054	． 055	1.030	． 069	． 105	． 017	． 037	． 0030
Pumpkin ．	． 023	． 008	（．320）	． 065	． 059	－	． 021	（．0008）
Radishes	． 021	． 012	． 218	． 069	． 029	． 054	． 041	． 0006
Raisins	． 064	． 083	． 820	． 133	． 132	． 082	． 051	． 0021
Raspberries	． 049	． 024	． 173	－	． 052	－	． 017	． 0006
Raspberry juice	2	． 016	． 134	． 005	． 012	－	． 009	－
Rhubarb ．	． 044	． 017	． 325	． 025	．031	． 036	． 013	． 0010
Rice，brown	－	－	－	－	． 207	－		． 0020
white	． 009	． 033	． 070	． 025	． 096	． 054	．117	． 0009
Romaine（salad）	． 045	． 032	． 306	． 016	． 053	． 073	． 019	－
Rutabagas	． 074	． 018	． 399	． 083	． 056	． 058	． 083	－
Rye，entire （See also Bread and Flour）	． 055	．130	．453	． 035	． 385	． 025	． 170	． 0039
Salmon（See Fish）								
Sapato •－．	． 026	． 008	． 179	－	． 006	． 087	－	－
Shredded wheat	．041	． 144	－	－	． 324	－	－	． 0045
Shrimp	． 096					－	－	
Soup，canned	． 036	－	． 033	－	． 030	－	－	－
canned vegetable	． 025	． 013	101	－	． 038	－	． 025	
Spinach ．．	． 067	． 037	． 774	． 125	． 068	． 074	． 038	． 0036
Squash，summer， seeds removed	． 018	． 008	． 150	． 002	－	－	－	（．0006）
with seeds	． 024	． 0	． 180	． 004	－	－	－	（．0006）
Squash，winter	． 019	． OII	． 320	． 004	－	－	－	（．0006）
Strawberries	． 041	． 019	． 147	． 050	． 028	． 006	． 014	． 0008
Tamarind	． 007	． 021	－	－	． 072	． 007	． 009	－
Tapioca	． 023	－	－	－	． 090	． 018	． 029	． 0016
Tomatoes	． 011	0	． 275	． 010	． 026	． 034	． 014	． 0004
Tomato juice	． 006	． 010	． 310	． 015	． 015	． 055	－	－
Truffles	． 024	． 018	． 404	． 077	． 062	． 039	－	－
Turnips	． 064	． 017	． 338	． 056	． 046	．041	． 065	． 0005
Turnip tops	． 347	． 028	． 307	． 082	． 049	． 168	． 069	

TABLE XXVI－Continued．

Food				苞	菷氠		$\begin{aligned} & \text { 跂 } \\ & \text { 号 } \\ & \text { n } \end{aligned}$	第区
Veal（See Meat）								
Vinegar（cider）	． 016	． 008	． 165	－	． 013	－	． 017	（．0003）
Walnuts	． 089	． 134	（．332）	－	． 358	． 040	． 172	． 0021
Water cress	．187？	． 034	． 287	． 099	． 005	．061	． 167	． 0019
Watermelon	． 011	． 003	． 073	． 008	． 003	． 008	． 007	
Wheat，entire ． （See also Bread and Flour）	． 045	． 133	． 473	． 039	． 423	． 068	．181	． 0050
Wheat bran ．	． 120	． 511	1.217	． 54	1．215	． 090	． 247	． 0078
Wheat germ	． 071	． 342	． 296	． 722	1.050	． 070	． 325	－
Wheat gluten	． 078	． 045	． 007	． 028	． 20	． 050	． 920	－
Whey ．－．	． 044	． 008	． 157	． 038	． 035	． 119	． 009	？
Whortleberries，en－ tire	．031	． 021	．261	． 021	． 042	－．	－	－
flesh only ．	． 020	． 011	． 087	－	． 018	－	－	
Wine（avg．）．	． 009	． 010	． 104	． 008	． 015	． OII	． 015	（．0003）

TABLE XXVII．＊

Protein，Calcium，Phosphorus，and Iron in Grams per ioo Calories of Food Material
（Estimated from data compiled from various sources）

| Food | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[^16]TABLE XXVII-Continued.

Food	Proten	$\begin{aligned} & \text { CAL- } \\ & \text { CIUM } \\ & \text { (Ca) } \end{aligned}$	$\begin{array}{\|c} \text { PHos- } \\ \text { PHorus } \\ \text { (P) } \end{array}$	$\underset{(\mathrm{Fe})}{\mathrm{IRoN}}$	CaO	$\mathrm{P}_{2} \mathrm{O}_{5}$
	Grams	Grams	Grams	Grams	Grams	Grams
Bananas	1.32	. 009	. 031	.00061	. 012	. 072
Beans, dried	6.52	. 047	. 137	. 00203	. 065	. 314
kidney	5.83	(.040)	(.143)	(.00216)	(.056)	(.326)
Lima	5.80	. 020	. 096	. 00200	. 028	. 221
string	5.55	110	. 126	.00265	. 154	. 289
Beef (See Meat)						
Beer	-	. 008	.061	. 00217	. 011	. 140
Beets	3.47	. 064	. 084	. 00130	. 089	. 193
Blackberries	2.25	. 029	. 058	. 00104	. 042	. 133
Blueberries	(0.8)	(.027)	(.011)	(.0012)	(.038)	(.025)
Bluefish (See Fish)						
Bread, Boston brown .	2.64	. 056	. 082	(.0013)	. 079	. 187
"entire" wheat .	3.95	(.020)	.071	(.00065)	(.028)	(.163)
graham	3.42	(.020)	. 084	(.00096)	(.028)	(.192)
rye	3.54	. 009	. 058	. 00039	. 013	. 133
white	3.58	. 011^{1}	. 035	. 00035	. 015	.081
Brussels sprouts	(7.30)	(.086)	(.380)	(.00349)	(.121)	(.870)
Buckwheat flour	1.85	. 011	. 065	. 00034	. 015	. 148
Butter	0.13	. 002	. 002	. 00003	. 003	. 005
Buttermilk	8.40	. 294	. 271	. 00070	. 411	. 621
Cabbage	5.07	. 143	. 092	. 00349	. 200	. 210
Cantaloupe	${ }^{1} .51$. 044	.038	.00071	.06I	. 088
Carp (See Fish)						
Carrots	2.42	. 124	. 101	. 00133	. 173	. 232
Cauliflower	5.90	. 403	. 2	. 00197	. 564	. 459
Celery .	1.28	. 421	. 201	. 00270	. 589	. 460
Chard	8.37	. 393	. 105	(.00655)	. 550	. 240
Cheese	6.05	. 212	. 156	. 00030	. 297	. 357
Cherries	1.20?	. 025	. 039	.00051	. 035	. 090
Chestnuts	2.55	. 014	. 044	. 00029	. 019	. 088
Chicken (See Meat)						
Chocolate .	2.11	. 015	. 075	(.00044)	. 021	. 171
Citron	0.15	. 037	. 010	. 00099	. 052	. 023
Clams, long	19.82	. 285	. 282	(.00970)	. 399	. 645
round	14.01	. 229	. 100	(.00970)	. 321	. 228
Cocoa	4.35	. 023	. 143	. 00054	. 032	. 327
Coconut	0.95	. 006	. 018	(.00030)	. 009	. 041
Cod (See Fish)						

TABLE XXVII-Continued.

Food	Protein	Cal- CIUM (Ca)	$\begin{array}{\|c} \text { PHos- } \\ \text { PHORUS } \\ \text { (P) } \end{array}$	$\underset{(\mathrm{Fe})}{\mathrm{Iron}}$	CaO	$\mathrm{P}_{2} \mathrm{O}_{5}$
	Grams	Grams	Grams	Grams	Grams	Grams
Corn	3.06	. 006	.102	. 00079	(. .008)	(.233)
Corn meal	2.59	. 005	. 053	. 0003	. 007	. 121
Cotton-seed meal	12.80	. 066	. 298	-	. 092	. 682
Cowpeas	6.20	. 029	.132	-	. 041	. 303
Crackers, "soda"	2.37	. 006	. 025	. 00036	. 008	. 057
Cranberries	0.85	. 039	. 027	. 00129	. 054	. 062
Cream, 18.5 per cent fat	1.27	. 050	. 044	. 0001	. 072	. 100
40 per cent fat	0.58	. 020	. 020	. 00005	. 032	. 045
Cucumbers	4.60	. 090	.191	. 00115	. 126	. 437
Currants, dried (Zante)	0.75	. 026	. 061	. 00087	. 036	. 139
fresh .	2.62	. 045	. 066	. 00087	. 063	. 150
Dandelion greens	3.93	. 172	. 117	. 0044	. 241	. 269
Dates .	0.60	. 019	. 1016	. 00086	. 026	. 037
Duck (See Meat)						
Eggplant .	4.30	. 041	. 12	. 00184	. 057	. 280
Eggs	9.05	. 045	. 122	. 00205	. 063	. 279
Egg white	24.12	. 020	. 022	. 00020	. 028	. 050
Egg yolk	4.32	. 036	.118	. 00230	. 050	. 270
Farina	3.05	. 006	. 035	. 00022	. 008	. 079
Figs	1.35	. 051	. 037	. 00095	. 072	. 084
Fish (See footnote on page423)						
Flour, buckwheat	I. 84	. 01	. 065	. 00034	. 015	. 148
"entire" wheat	3.85	:009	. 066	. 0007	. 012	. 152
graham.	3.71	.ori	. 101	. 00100	. 015	. 232
white (wheat)	3.20	. 00	. 026	. 00023	. 008	. 060
rye	1.95	.005	. 082	. 00037	. 007	. 188
Fowl (See Meat) Goose (See Meat)						
Grapefruit	1.15	. 040	. 036	. 00058	. 056	. 083
Grapes	1.35	. 019	. 032	. 00031	. 027	. 074
Grapejuice	0.35	(.ori)	. OII	. 0003	. 015	. 025
Haddock (See Fish) ${ }^{\text {a }}$						
Halibut (See Fish)						
Ham (See Meat)						
Hazelnuts . ${ }^{\text {d }}$	-	. 041	. 050	. 00057	. 057	. 115
Herring (See Fish)						
Hominy	2.35	. 002	. 027	. 00025	. 002	. 063

TABLE XXVII-Continued.

Food	Protein	$\begin{aligned} & \text { CAL- } \\ & \text { CIUM } \\ & \text { (Ca) } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { PHOS- } \\ \text { PHORUS } \\ \text { (P) } \end{gathered}\right.$	$\begin{aligned} & \text { Iron } \\ & (\mathrm{Fe}) \end{aligned}$	CaO	$\mathrm{P}_{2} \mathrm{O}_{5}$
	Grams	Grams	Grams	Grams	Grams	Grams
Honey	0.12	. 002	. 00	. 0003	. 002	. 013
Huckleberries	0.82	. 027	. 01	. 0012	. 038	. 025
Kohl-rabi	6.48	. 249	. 186	.00194	. 349	. 426
Lamb (See Meat)						
Lemons	2.25	.081	. 049	.00135	.113	. 11
Lemon juice	-	. 060	-	-	. 084	. 059
Lentils	7.37	.03I	. 126	. 00247	. 043	. 288
Lettuce	6.27	. 224	. 224	. 00785	. 314	. 513
Linseed meal					-	
Lupins.	-	-	-	-	-	
Macaroni	3.70	. 006	. 040	. 00033	. 008	. 092
Mackerel (See Fish) Maple syrup.	-	. 037		(.001)	. 053	
Meat (See footnote on page 424)						
Milk, whole	4.75	. 174	. 134	. 00035	. 243	. 308
- skimmed	25	(.331)	. 262	(.00068)	(.463)	(.600)
condensed, sweetened	2.70	(.096)	. 072	(.0002)	(.135)	. 165
condensed, unsweetened	5.75	.189	. 146	(.0004)	(.264)	. 335
Molasses	0.83	. 074	, 015	. 00255	.102	. 035
Muskmelon	1.51	. 043	. 038	. 0008	. 060	. 088
Mution (See Meat)						
Oatmeal	4.20	. 017	. 099	. 00096	. 024	. 226
Olives .	0.37	. 041	. 004	. 00097	. 057	. 010
Onions	3.30	. 069	. 093	-10	. 097	. 212
Oranges	1. 55	. 088	. 040	. 00039	. 123	. 091
Orange juice .	I. 44	. 067	. 037	. 00046	. 093	. 082
Oysters	12.30	. 106	. 306	. 00893	. 149	. 702
Parsnips	2.47	. 091	. 117	. 0009	. 128	. 268
Peaches	1.70	. 038	. 057	. 00073	. 053	. 130
Peanuts	4.70	. 013	. 073	. 00036	. 018	. 166
Pears	0.95	. 024	. 041	. 00047	. 033	. 093
Peas	6.92	. 026	120	. 00165	. 036	. 274
Pecans.	I. 30	. 012	. 045	. 00035	. 017	. 104
Pepper, green	4.59	. 034	. 145	. 00222	. 047	. 333
Perch (See Fish)						
Persimmons	-	-	-	-	-	-
Pineapple, fresh	0.92	. 041	. 064	. 00116	. 058	. 146

TABLE XXVII-Continued.

Food	Protein	Cal- CiUM (Ca)	$\left\lvert\, \begin{gathered} \text { Phos- } \\ \text { PHorus } \\ \text { (P) } \end{gathered}\right.$	$\underset{(\mathrm{Fe})}{\mathrm{IRoN}}$	CaO	$\mathrm{P}_{2} \mathrm{O}_{5}$
	Grams	Grams	Grams	Grams	ns	Grams
Plums	r. 20	. 024	. 038	. 00059	. 033	. 087
Pork (See Meat)						
Potatoes .	2.65	. 016	. 069	. 00156	. 023	. 158
sweet	. 45	. 016	. 037	. 00041	. 23	. 084
Prunes .	0.70	. 018	. 035	. 00100	. 025	. 080
Pumpkin .	3.90	. 089	. 229	(.00130)	. 125	. 525
Radishes	4.42	. 073	. 098	. 00205	. 102	. 225
Raisins	0.75	. 019	. 038	. 00139	. 026	. 088
Raspberries	2.57	. 074	. 078	.00091	. 104	. 178
Rhubarb	2.60	. 189	. 134	. 00433	. 264	. 307
Rice, brown	2.52	(.003)	. 060	. 00058	(.004)	. 138
white .	2.27	.001 ${ }^{+}$. 027	. 00026	. 003	. 063
Rutabagas	3.15	. 185	. 140	-	. 259	. 322
Rye, entire	-			-		
Salmon (See Fish)						
Shredded wheat	3.50	. 011	. 089	. 00123	. 016	. 203
Spinach	8.79	.28I	. 285	. 01506	. 393	. 653
Squash, summer	3.05	. 039	. 035	(.0013)	. 054	. 080
winter .	3.10	. 040	. 061	(.0013)	. 056	. 139
Strawberries	2.56	. 104	. 072	. 00205	.146	.164
Tapioca	0.11	. 004	. 025	. 00045	. 006	. 058
Tomatoes	3.95	. 050	. 113	. 00175	. 070	. 259
Turnips .	3.30	.161	. 117	. 00127	. 226	. 269
Turnip tops	-	-	-	-	-	
Veal (See Meat)						
Vinegar (cider).		. 111	. 090	. 0021 ¹	. 156	. 206
Walnuts, California or English	2.60	. 013	. 015	.00030	. 018	. 116
Water cress				,		-
Watermelon .	I. 32	. 038	. 010	(.00099)	. 053	. 023
Wheat, entire	3.63 ?	. 013	.118	.00140	. 018	. 270
Wheat germ .				-		
Wheat gluten	-	-	-	-	-	-
Whey .	3.74	.165	. 131		. 231	. 300
Whortleberries				-		
Wine (average, io per cent alcohol).	-.	. OII	. 021	.00106	. 016	. 047

APPENDIX.

THE EQUIPMENT OF A DIETETICS LABORATORY.

It is essential that laboratory practice with actual food materials accompany instruction in the quantitative aspects of dietetics, and it is advantageous even in considering the qualitative side to present a dietary in concrete form. A place must therefore be provided where weighing and measuring of food materials and cooking and serving of days' rations for individuals and groups can be done by a whole class. The ordinary cooking laboratory can be made to answer the purpose by a few additions to its ordinary equipment, but a room definitely planned for the special problems involved is more satisfactory, and it is hoped that the following description of a laboratory which has been found to meet these needs will be suggestive to others.

The floor plan is shown in the accompanying drawing. The room is thirty-nine feet long and twenty-eight and one-half feet wide, and accommodates a class of thirty students.

One side of the room is occupied by three cooking tables with sinks at each end. These tables have on each side five drawers and five cupboards for utensils, and three deeper drawers for supplies such as flour and sugar. On each table are conveniently arranged five two-burner school stoves, and six Harvard trip scales with brass weights from one gram to five hundred grams. The usual individual arrangement of utensils in the desks has not been followed, owing to the fact that many problems in dietetics involve group work, but the three tables are equipped in identical fashion, so that three groups may prepare at once three family dietaries without students of one group having to go to another table for utensils, thus saving time and avoiding confusion. In each utensil drawer are placed knives, forks, spoons, holders and brushes, towels being provided from a common rack. In each cupboard is a single kind of utensil (or a group of small articles), the contents being plainly indicated on the door. This arrangement not only makes the different articles easy of access but also easy to replace.

The other side of the room is supplied with eight portable oak

tables three by four and one-half feet, with a single large drawer in each for storing paper, charts, cook books and other reference material. These tables serve a double purpose, being used for writing in the lecture hour, or for calculations, to which much time must be given in spite of all devices to eliminate mere clerica \bar{i} labor, and also affording space for the proper display of food materials, whether for the simple comparison of standard or 100Calorie portions or for a critical study of days' rations for several families. The size of the tables makes the system very elastic. In setting out family dietaries one table will accommodate each meal for the group; by putting two together end to end, four individual days' dietaries can be set out parallel for comparison; two set side to side make a dining table of attractive shape for a meal to be eaten by a small group; or three side to side provide a large table of good proportions. For accommodating such a system doilies are more satisfactory than table cloths. Enough linen, silver, glass and china are provided that the whole class can be served in three groups to breakfast, luncheon and dinner at the same time, but no provision is made for elaborate service or fancy cookery.

A large amount of blackboard space is highly desirable for the purpose of recording the results of laboratory experiments or writing the menus and other details of dietaries which are being displayed. In this laboratory a single long board is provided (see drawing). Besides the blackboard a large cork bulletin board behind the instructor's desk affords a place to post charts, dietaries and other data.

The character of the equipment is shown in the following classified lists.

Silver.

Doilies, round, 10 inches in diameter. \qquad	3 dozen
Doilies, round, 12 inches in diameter \qquad	$\frac{1}{2}$ dozen
Doilies, oval, 8×12 inches..	$\frac{1}{2}$ dozen
Doilies, oval, 10×15 inches..	dozen
Lunch cloths, 30 inches square. \qquad	
Towels, hand.	6 dozen
Towels, dish	6 dozen
Dishcloths	6 dozen

China.

Bowls....................................... $\frac{1}{4}$ dozen
Butter dishes, individual....... $1 \frac{1}{2}$ dozen
Cups and saucers, after dinner coffee....................... 1 dozen

INDEX.

Abridged method of dietary cal- culation 77
Activity, influence on energy re- quirement, table 11
Adults, energy requirement of 9
weight and height of, tables . 9,10
Aged, energy requirement of 17
Almond butter 126
meal 126
Almonds . . . 22, 27, 85, 87, 133, 139
chocolate. 132
salted 132
sugar 132
American cheese. .22, 35, 87, 134, 140
Angelica 126
Apples. .22, 27, 28, 85, 87, 89, 133, 139
Apricots... .28. 85, 87, 126, 133, 139
Arrowroot starch 126
Artichokes 126
Ash constituents, elements in. 1
function of 7
how determined 4
in 100-Calorie portions, table 139in percentage of edible por-tion, table. 133
requirements for 19
Asparagus 29, 133, 139
canned 29, 126

- Bacon $29,85,139$
broiled 126
Baked beans, canned 92
Baking powder 87
Bananas. .22, 29, 30, 85, 133, 140
Barley, flour. 87, 126
pearled 30, 87, 133
whole. 22, 133
Bass, black 85
striped 85, 92
Bean meal, soy 130
Beans, baked 92
butter 86
kidney, canned 92
dried....22, 128, 133, 140
Lima.......30, 31, 87, 133, 140
soy 22
meal. 130
string 31, 86, 133, 140
canned 92
white (navy), dried. . 22, 30,
87, 89, 133, 140
Beechnuts 85
Beef, brusket 85
chuck 85
corned 85, 92
dried. 31, 32
fat. 22
flank 85, 92, 126
heart 22, 85
juice. 92
kidney 22, 85, 92, 93
liver. $22,85,93$
loin 85, 93
lungs. 93
marrow 93
navel 93, 94
neck 85, 94
plate. 85, 94
porterhouse steak $85,94,95$
pot roast 126
refuse in 85
rib rolls 95
ribs 85, 95
roast 32, 95
round $85,95,96,126$
rump 85,96
shank 85, 96
shoulder and clod. 96, 97
sirloin steak 85, 97
Beef, suet 32, 88
Butter, almond 126
sweetbreads 23, 97
crackers 104
tenderloin 97
tongue 85, 97
peanut 49top of sirloin97, 98
Beer 133, 140
Beets. $22,32,86,89,133,140$
Black bass 85
Blackberries 33, 133, 140
canned 98
Black fish 85
Blueberries 98, 133, 140
Bluefish 98
Bologna sausage 86, 117
Boston crackers 104
Bouillon 98
Boys, weight according to age
and height, table 15
Bran 23, 87, 139Brain22
Brazil nuts .22, 85, 98
Bread, brown 98, 133, 140
corn 98
crumbs 87, 126
gluten 99
graham 99, 133, 140
home-made 99
milk 99
rye. 99, 133, 140
rye and wheat 99
toasted white. 126
white, cream 99
milk 99
miscellaneous. .22, 33, 99, 133, 140
Vienna 99
whole wheat 22, 99, 133, 140
Breadfruit 133
Brisket, beef 85
Broiled lamb chop 42, 43, 85
Brown bread. 98, 133, 140
sugar 119
Brussels sprouts 133, 140
Buckwheat, farina and groats. . . 100
flour 88, 99, 133, 140
Buns 127
Bushel, weight of foods per 89
Butter. $22,33,87,133,140$
Butterfish 100
Buttermilk 87, 100, 133, 140
Butternuts $85,100,133$
Cabbage. $22,33,86,134$, 140
Calcium, body requirement 20
occurrence. 8
Calculation of fuel values 60
of food values of mixtures. 62
of percentage composition of food combinations. 65
of weight of standard or 100 - Calorie portion 61, 64
Calf's foot jelly 100
Calorie, definition 6
Candied cherries. 101
Candies 132
Canned asparagus 29, 126
baked beans 92
blackberries 98
blueberries. 98
cherries 101
chicken, boned. 127
consommé. 104
corn 36, 87
kidney beans 92
lamb's tongue 110
Lima beans 30
losbter 110
mackerel 111
oysters 114
peaches 48
pears 49
peas 50, 130
pineapples. 88
salmon 54
sardines 55
shrimp 18, 138
string beans 92
tomatoes 56, 89
Cantaloupe. 45, 85, 134
Capers 134
Caramels 132
Carbohydrates, body require- ment 19
Carbohydrates, elements in 1 Chuck, veal. 86, 121
how determined 4 Cider 134
Carrots.22, 34, 86, 89, 134, 140 Cinnamon buns 127
Catfish 100 Citron, dried. . 87, 102, 127, 134, 140
Cauliflower 22, 34, 134, 140 Clams 103, 134, 140
Caviar 134 Cocoa 36, 87, 134, 140
Celery..........22, 34, 87, 134, 140 Coconut bars 132
Cereal coffee. 100
milk 134
Cerealine 101
Chard 22, 134, 140
Cheddar cheese 101
Cheese, American pale. .22, 35,87, 134, 140
Cheddar 101
cottage 101
Fromage de Brie 101
full cream 101
head 86, 108
Neuchatel 35
pineapple 101
Roquefort 101
Swiss. -101
Cherries $35,85,134,140$
candied 101
canned 101
Cherry juice 134
Chestnuts.....22, 85, 102, 134, 140
Chicken, broilers 86, 102
canned, boned 127
gizzard 102
heart 102
liver 102
meat. 127
potted 127
soup 127
Children, energy requirement of12, 13
rate of growth, table 17
weight according to age and
height, tables......14, 15, 16
Chocolate 35, 87, 134, 140
almonds 132
cream mints 132
milk 127
nut bars 132
sweet 132
Chuck, beef 85
mutton. 85, 112
oil. 22
Coconuts. . 22, 85, 87, 103, 134, 140
Cod 22, 103
salt 36, 103
steak 103
Cod liver oil 22, 103
Coffee 87
Composition of food stuffs 1
of food materials used chiefly by measure, table. 27
of food materials used chiefly by weight, table 92
of foods sold by confection- ers, table 132
of less common food materi- als, table 126
Condensed milk.....23, 44, 88,136, 142
Confectionery 132
Consommé, canned 104
Conversiontable, grams toounces 91
ounces and pounds to grams 90
Cooked meat....126, 127, 128, 131
Corn. 23, 134, 141
bread 98
canned 36, 87
dried 134
flakes 37
flour 104
green 36, 86, 87
meal 37, 134, 141
oil. 22, 87, 127
-puffed 127
syrup 127
Corned beef 85, 92
Cornstarch 37, 88
Cottage cheese 101
Cottolene 88, 104
Cotton seed oil 22, 127
'meal 134, 141
Cowpeas, dried 134, 141
Crab meat 127
Cracker meal 104
Crackers, butter 104
Boston 104
cream 104
crumbs 88
fruit 132
graham 37
oyster 37
saltines 55
soda 38, 134, 141
sweet 132
water 104
Cranberries......38, 88, 89, 134, 141
Cream. .22, 38, 88, 104, 127, 134 141
cheese, full. 101
crackers 104
of wheat. 131
white bread 99
Crisco 88, 127
Cucumber pickles 104
Cucumbers.... .38, 86, 89, 134, 1 41
Currant, buns 127
juice 135
Currants 39, 134, 141
dried 39, 88, 134, 141
Dandelion greens..22, 106, 135, 141
Dasheens 22, 88
Dates, dried $39,85,135,141$
Dextrimaltose 128
Doughnuts 105
Dried beef 31, 32
chestnuts 102
citron. . .87, 102, 127, 134, 140
corn 134
cowpeas 134, 141
currants. 39, 88, 134, 141
dates 39, 85, 135, 141
figs 40, 88, 135, 141
lentils. 43, 136, 142
milk 22, 88, 128
peas 50, 89, 137, 142
prunes 23, 52, 85, 138, 143
Duck 128
Edible portion, definition 2
Eels 105
Eggplant $105,135,141$
Egg, hen's..22, 39, 40, 85,135, 141
white

$$
40,135,141
$$

yolk 22, 40, 135, 141
Elements in foods 1
Endive 22, 40, 135, 141
Energy, requirements of adults. 9
requirement, influence of occupation, table 12
requirements of aged 17
requirements of children.. 12, 13
unit of measurement 6
Equipment for a laboratory 144
Farina 40, 88, 135, 141
Fat, body requirement 19
elements in 1
how determined 4
Fig bars 105
Figs, dried. 40, 88, 135, 141
Filberts 22, 85, 105
salted 132
Fish, ash constituents in. 135, 141
Flaked wheat 58, 89
Flank, beef 85, 92, 126
mutton 85, 112
veal 121
Flaxseed 135
Flounder 105
Flour, barley 87, 126
buckwheat....88, 99, 133, 140
corn 104
entire wheat 58, 135, 141
glutẹn. 106, 135, 141
graham 41, 88, 135, 141
rice. 88, 116
rye 88, 117, 135, 141
wheat, roller process..58,88, 135, 141
Food as body regulating mate- rial. 8
as building material 7
as a source of energy 6
factors for fuel value 7
Food combinations, food values of 64
percentage composition of. 65
Food materials, ash constituents Game, refuse in 85
in 100-Calorie portion 139 41, 88
ash constituents in percent-Ginger, crystallized106
age of edible material 133 Gingersnapscommon measures of87
weights per bushel 89
Girls, weight according to age and height, table. 16
Food requirements, of adults. 9 Gizzard, chicken 102
of aged 17 Gluten bread 99
for ash 19
flour. 106, 135, 141
for carbohydrates 19
Goose 86, 106
of children 12, 13 Gooseberries 135
for fat 19 Graham bread 99, 133, 140
for protein. 18
for vitamines 21
Food values, of a recipe 62
of a single food stuff 60
of combination of food ma- Granulated sugar 56, 89terials62
Tables. 27, 92, 126, 132
Grape juice $22,106,135,141$
Food stuffs, composition of . . . 1 Grapenuts. 1 42
determination in food ma-terial3
distribution in 100-Calorieportion63
energy values for 6 Guava 135
37
37
crackers:
crackers: 141
Grams, conversion to ounces, table. 91
Grapefruit $22,128,135,141$
Grapes. $22,41,85,135,141$
Green corn 36, 86, 87
Greens, dandelion 22, 106
functions of 5 Guinea hen 128
41 Gumdrops. Force
69
Forms, dietary
food record 26
recipe card 65
score card 75
Fowl 86, 105
Frankfort sausage 117
French roll 117
Frog's leg. 106
Fromage de Brie. 101
Fruit crackers 132
Fruits, refuse in 85
Fuel value of foods 6
abridged method of calcu- lation 77
calculation for a single food material 60
calculation for a com-bination of food mate-rials.62
Tables 27, 92, 126, 132
Full cream cheese 101
Haddock 106, $107{ }^{\circ}$
Halibut. 107
Ham, boiled, smoked 42
boneless 107
deviled 107
fresh 107, 108
smoked 108
Hazelnuts 108
Head cheese 86, 108
Heart 22
beef 85
chicken. 102
pig. 23
Height and weight of adults, tables , 10
of children, tables $14,15,16$
Hen's eggs..22, 39, 40, 85, 135, 141
Herring 109
Hickory nuts 109
Hominy $42,88,135,141$
Honey 22, 109, 136, 142
Liver, chicken 102
Horse radish 136
Hourly factors for energy re-quirement, table11
Huckleberries 136,142
Ice cream 128
cones 128
Iron, occurrence 7
requirement. 20
Jelly 128, 136
beans 132
calf's foot 100
Kohlrabi 128, 136, 142
Kidney beans. .22, 92, 128, 133, 140
beef. $22,85,92,93$
veal 22, 121
Koumiss 109
Laboratory equipment 144
Lactose128
Lady fingers 42
Lamb, breast 85, 109
chops, broiled 42, 43, 85
leg. 85, 109
loin 85, 110
neck 85, 110
roast 128
shoulder 85, 110
tongue, canned 110
Lard 43, 88
Leeks 136
Leg, lamb 85, 109
mutton 85, 112
veal 85, 122
Legumes, germinated 22
Lemon juice... .22, 43, 88, 136, 142
Lemons $43,136,142$
Lentils 43, 136, 142
Lettuce. 22, 43, 44, 136, 142
Licorice bars 132
Lima beans. . . .30, 31, 87, 133, 140Limes22, 136
Linseed meal 136
Liver 23
beef 85, 93
veal 121
Lobster 111
canned 110
Loin, beef 85, 93
lamb 85, 110
mutton 85, 112
pork 85, 115
veal. 86, 122
Lollipops (suckers) 132
Lungs, beef 93
Macaroni 44, 88, 136, 142
Macaroons 111
Mackerel 111
Maize, see corn
Malt breakfast food. 128
Malted milk 129
Mamey 136
Mango 136
Mangolds 136
Maple syrup 136, 142
Marmalade, orange 129
Marrow, beef 93
Marshmallows 132
Meal, corn 37, 134, 141
almond 126
cottonseed 134, 141
cracker 104
pea 130
soy bean 130
Measures, of common food ma- terials, table 87
metric and English systems, table 87
Meat, ash constituents in... 136, 142
cooked 126, 127, 131
Men, weight according to age and height, table 9
Menus, rules for 76
Metric system, table 87
Milk, ash constituents in..136,137, 142
buttermilk....87, 100, 133, 140
condensed. .22, 44, 88, 136, 142
dried 22, 88, 128
human 129, 137
malted 129
Milk, skimmed. .23, 44, 88, 128, 100-Calorie portion, food values136, 142
sugar 128
top. 129
whole.23, 45, 88, 136, 142
Millet 137
Mince meat 129
Mints, chocolate 132
cream 132
Molasses $45,88,137,142$
Muscle 23
Mushrooms 111, 137
Muskmelons. .45, 85, 133, 137, 142
Mustard 137
Mutton, chuck 85, 112
flank 85, 112
Pancreas. 23
leg. 85, 112
Paprika 137
loin. 85, 112, 11385, 113
85, 113
Navel, beef 92, 94
Neck, beef. 85, 94
lamb 85, 110
mutton 85, 113
veal 86, 122
Nectarines 85, 113
Neuchatel cheese 35
Nitrogen, factor for protein 4
Nougatines 132
Nut margarine 23
Nuts, refuse in 85
Oatmeal 88, 113, 137, 142
Oats, rolled $22,45,88$
Occupation, influence on energy requirement, table 12
Oil, coconut 22
cod liver. 22, 103
corn 22, 87, 127
cottonseed 22, 127
olive 23, 46, 88
peanut 130
whale 24
Okra 86, 113, 137
Oleomargarine 23, 88, 113
Olive oil 23, 46, 88
Olives, green 46, 137, 142
ripe 114of, tables. . . $27,92,126,132$
methods of calculation. . 61, 64
Onions.23, 46, 86, 89, 137, 142
Orange juice.88, 114, 137, 142
marmalade. 129
Oranges $23,47,85,137,142$
Ounces, conversion to grams,
table. 90
Oyster crackers 37
plant. 129
Oysters, canned 114
in shell 47
solids 47, 137, 142
Parsnips. .23, 47, 48, 86, 89, 137, 142
Paté de fois gras 129
Peaches $48,85,89,137,142$
Pea meal 130
Peanut bars 132
butter 49
oil. 130
Peanuts. 23, 48, 85, 88, 89,137, 142
Pearled barley 30, 87, 133
Pear juice 137
Pears.......23, 49, 85, 89, 137, 142
Peas, canned 50, 130
cow 134, 141
dried. $23,50,89,137,142$
green...... . 23, 50, 86, 137, 142
Pecans....23, 85, 88, 114, 137, 142
salted 132
Peppermints 132
Pepper. 137
Peppers, green 142
Percentage composition, in re- lation to weight. 59
of a food mixture, calcula- tion. 65
Perch, yellow 114
Persimmons $130,137,142$
Pheasant 130
Phosphorus, body requirement. 20
occurrence 8
Pickerel, pike. 114
Pickles, cucumber 104 143
Pigeon 130 143
Pigs feet, pickled
Pigs feet, pickled 114 114
Pike, pickerel 114
Pineapple cheese 101 Recipe, model card 65
Raspberries.53, 116, 138,
Raspberry juice 143
juice 115 Refuse, amount in food materials 85
Pineapples 50, 51, 137, 142
canned 88 19
bohydrates
Requirements of body, for car-
Pine nuts 23, 115
Pistachios 115
Plate, beef 85, 94
Plums 51, 85, 137, 143
Pomgranate 138
Pop corn. 115
Porgy 115
Pork, chops 115
fat, salt 116
ham 85
lean 115
loin. 85,115
refuse in 85
salt, fat 116
sausage 118
shoulder, smoked 86, 115
side 86
tenderloin 116
Porterhouse steak. 85, 94, 95
Potato chips 52
Potatoes...23, 51, 86, 89, 138, 14 43
sweet. $23,52,89,138,143$
127
Potted chicken
126 Rules for menu. Pot roast, beef 76 6
86
Poultry, refuse in
Pounds, conversion to grams, veal. 123table90
Pretzels 132 Rye
Protein, as building material. 7
body requirement of. 18
elements in 1
how determined. 3
nitrogen factor for 4
Prunes $.23,52,85,138$, 143
Puffed corn 127
rice. 130
wheat 131
Pumpkin......86, 88, 116, 138, 143
Quail 13086 Rump, beef85, 96
Rhubarb.......54, 86, S8, 138, 143
19
for ash

9

9

for energy, adults

for energy, adults 12,13 12,13
children.
children. 都
17
aged
for fat 19
for protein 18
for vitamines 21
Rib rolls, beef

Ribs, beef 85, 95
veal. 86, 122
Rice. $23,54,88,138$, 143
boiled. 130
flour 88, 116
puffed 130
Roast beef 32, 95
lamb. 128
Roe, shad 23, 118
Rolled oats 22, 45, 88

Rolls 117
Romaine 138
Roquefort cheese. 101
85, 95, 96, 126
Round of beef .

Salmon.
can
trou
Salsify.
Salt....
Saltines
Sapato.

Salmon.
can
trou
Salsify.
Salt....
Saltines
Sapato.

Salmon.
can
trou
Salsify.
Salt....
Saltines
Sapato.

Salmon.
can
trou
Salsify.
Salt....
Saltines
Sapato. 117 117 117 117

[^17]canned

canned

canned

canned 54 54 54 54

trout

trout

trout

trout 120 120 120 120
Salmon.
can
trou
Salsify.
Salt. . .
Saltines
Sapato.
Salmon.
can
trou
Salsify.
Salt. . .
Saltines
Sapato.
Salmon.
can
trou
Salsify.
Salt. . .
Saltines
Sapato.
Salmon.
can
trou
Salsify.
Salt. . .
Saltines
Sapato. 129 129 129 129
Salmon.
can
trou
Salsify.
Salt....
Saltines
Sapato.
Salmon.
can
trou
Salsify.
Salt....
Saltines
Sapato.
Salmon.
can
trou
Salsify.
Salt....
Saltines
Sapato.
Salmon.
can
trou
Salsify.
Salt....
Saltines
Sapato. 88 88 88 88 88
Salmon.
cann
trout
Salsify.
Salt....
Saltines
Sapato.
Salmon.
cann
trout
Salsify.
Salt....
Saltines
Sapato.
Salmon.
cann
trout
Salsify.
Salt....
Saltines
Sapato.
Salmon.
cann
trout
Salsify.
Salt....
Saltines
Sapato. 55 55 55 55
Salmon.
can
trou
Salsify.
Salt. . .
Saltines
Sapato.
Salmon.
can
trou
Salsify.
Salt. . .
Saltines
Sapato.
Salmon.
can
trou
Salsify.
Salt. . .
Saltines
Sapato.
Salmon.
can
trou
Salsify.
Salt. . .
Saltines
Sapato. 138 138 138 138 138

[^18][^19] 9

[^20][^21]
Abstract

[^22]
Rutabagas....23, 86, 117, 138, 143
e.
e. 23,138
and wheat bread 99
bread. $99,133,140$
cream of. 130
flour. $88,117,135,141$

[^23]

[^24]

[^25]Sardines, canned 55 92
String beans, canned
Sausage, bologna 117 Sturgeon 119
Frankfort 117
Suet, beef 32, 88
meat 118
pork. 118
refuse in 86
summer 118
Scallops 118
Score card for dietary. 75
Shad 118
roe 23, 118
Shank, beef 85, 96
veal. 86,123
Shoulder, beef 96, 97
lamb 85, 110
mutton 85, 113
pork, smoked 86, 115
veal. 86, 123
Shrcdded wheat 58, 138, 143
Shrimp, canned 118, 138
Sirloin steak 85, 97
Skimmed milk. .23, 44, 88, 128, 136, 142
Smelt 118, 119
Soda 88
crackers 38, 134, 141
Soup, canned, vegetable 138
chicken 127
Soy bean meal 130
Soy beans 130
Spinach 23, 55, 88, 138, 143
Squab 130
Squash. .23, 55, 86, 88, 119, 131,138,143
Standard portions, calculation of. 61, 64
ash in, table 139
weight of, tables. . 27 , 92 , 126, 132
Starch, arrowroot 126
corn 37, 88
Steak, beef 85, 97
cod 103
halibut. 107
Stick candy 132
Strawberries $56,85,138,143$
Strawberry juice 119
String beans. 31, 86, 133, 140
Sugar, brown 119
maple 119
granulated. 56, 89
maple 119
powdered 89
wafers 132
Sweetbreads 23, 97
Sweet crackers. 132
potatoes. . .23, 52, 89, 138, 143
Swiss cheese 101
Syrup, corn. 127
maple 136, 142
Tables I 9
II. 10
III, IV 11
V. 12
VI, VII 13
VIII 14
IX. 15
X. 16
XI 17
XII 18
XIII 20
XIV. 22
XV. 27
XVI. 85
XVII, XVIII, XIX 87
XX. 89
XXI 90
XXII. 91
XXIII 92
XXIV 126
XXV 132
XXVI 133
XXVII 139
Tamarinds 138
Tapioca 143
Tea. 89
Tenderloin, beef. 97
pork. 116
Terrapin 119
Toast, white bread 126
Tomatoes.23, 57, 89, 138, 143
canned 56,89
Tomato juice 138
Watermelon 85, 124, 139, 143
soup. 131
117Tongue, beef85, 97 Weak fish
pickled. 97
lamb's, canned 110
Top milk, composition of 129
Top sirloin. 97
Tripe. 120
Trout, salmon. 120
Truffles. 138
Tuna fish 131
Turkey. 86, 120, 131
Turnips....23, 57, 86, 89, 138, 143tops138
Turtle. 120
Vanilla wafers. 120
Van Noorden on energy require- ments of old age 18
Veal, ", ‘east. 86, 120
chuck 86, 121
flank. 121
kidney. 22, 121
leg 86, 121, 122
liver. 22, 122
loin. 86, 122
neck 86, 122
refuse in 86
ribs 86, 122, 123
rump 86, 123
shank 86, 123
shoulder 86, 123, 124
Vegetables, refuse in. 86
Vienna rolls 117
bread 99
Vinegar 139, 143
Vitamines 8
distribution of 22
requirements for 21
Wafers, fancy 132
vanilla 120
Walnuts 23, 139, 143
California..57, 85, 89, 139, 143
black 85, 124
Water as a constituent of food. 3
Water crackers 104
cress 139, 143 Zwiebach 58

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE.

YC 93673

[^0]: * The average per cent of refuse in a number of the more common food materials is shown in Table XV.

[^1]: * Most of the calculations of fuel value previously made are slightly higher than those in this book, owing to the use of Rubner's factors (protein 4.1, fat 9.3, carbohydrate, 4.1) which are now known to allow too little for losses in digestion.

[^2]: * For detailed discussion of the factors influencing the energy requirement and interpretation of the terms indicating different degrees of muscular activity consult Sherman's Chemistry of Food and Nutrition, or Lusk's Science of Nutrition.
 \dagger Private communication, printed by permission of Thomas D. Wood, M. D., Professor of Physical Education, Columbia University.

[^3]: * Private communication, printed hy permission of Thomas D. Wood, M. D., Professor of Physical Education, Columbia University.

[^4]: Activity of Light Housework, Proceedings of the American Philosophical Society, Vol. 58 (1919), pp. 89-96.

 Langworthy and Barott, Energy Expenditure in Household Tasks, American Journal of Physiology, Vol. 52 (1920), pp. 400-408.

[^5]: * From Sherman and Gillett's Food Allowances for Healthy Children.

[^6]: * Reprinted by permission of the Children's Bureau, United States Department of Labor.

[^7]: * Reprinted by permission of Thomas D. Wood, M. D., Professor of Physical Education, Teachers College, Columbia University.

[^8]: * Reprinted by permission of Thomas D. Wood, M. D., Professor of Physical Education, Columbia University.

[^9]: * Cf. Tables I-V.

[^10]: Whole milk, 16 ounces (by volume).
 Barley water, 16 ounces (containing 0.25 ounce of barley flour).
 Milk sugar, 1 ounce.

[^11]: *Adapted from "Abridged Dietary Calculations for Rations in Quantity,"

[^12]: ${ }^{1}$ For large amounts of kidney beans use 1.8 for protein.
 ${ }^{2}$ For soy beans use 6.0 for fat.
 ${ }^{3}$ Nuts are almost negligible in ordinary diets; usually deducting half the "as purchased" weight for shell will be sufficiently accurate. For chestnuts use the factors $1.1,0.4,4.0$, in place of those given in the table if they are stored; if fresh, only half these factors.
 ${ }^{4}$ Including canned goods; e. g., peas, corn, etc.

[^13]: ＊Reprinted from The Chemistry of Food and Nutrition，Revised Edition， by Henry C．Sherman，by permission of author and publishers．

[^14]: ＊Average fish is estimated to contain per roo grams of protein as follows： 0.109 gram Ca；0．133 gram Mg；1．671 grams K； 0.373 gram Na；1． 148 grams $\mathbf{P} ; 0.528 \mathrm{gram} \mathrm{Cl} ; 1.119$ grams $\mathrm{S} ; 0.0055$ gram Fe ．

[^15]: ＊The percentages of the ash constituents in jams are believed to average about two thirds those of the corresponding fruits．
 \dagger Average meat is estimated to contain per $\mathbf{1 0 0}$ grams protein as follows： 0.058 gram Ca ； 0.118 gram $\mathrm{Mg} ; 1.694$ grams $\mathrm{K} ; 0.421$ gram Na； 1.078 grams $\mathrm{P} ; 0.378$ gram $\mathrm{Cl} ; 1.146$ grams $\mathrm{S} ; 0.0150$ gram Fe．

[^16]: ＊Reprinted from The Chemistry of Food and Nutrition，by Henry C． Sherman，by permission of author and publishers．

[^17]:

[^18]:

[^19]: +

[^20]:

[^21]:

[^22]:

[^23]:

[^24]:

[^25]:

