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PREFACE

This text-book on the Differential and Integral Calcu-

lus is intended for students who have a working know-

ledge of Elementary Geometry, Algebra, Trigonometry,

and Analytic Geometry.

The object of the text-book is threefold :

By a logical presentation of principles to inspire confi-

dence in the methods of infinitesimal analysis.

By numerous problems to aid in acquiring facility in

applying these methods.

By applications to problems in Physics and Engineer-

ing, and other branches of Mathematics, to show the prac-

tical value of the Calculus.

The division of the subject-matter according to classes

of functions, makes it possible to introduce these applica-

tions from the start, and thereby arouse the interest of

the student.

The simultaneous treatment of differentiation and inte-

gration, and the use of trigonometric substitution to

simplify integration, economize the time and effort of the

student.

P. A. LAMBERT.
v
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DIFFERENTIAL AND INTEGRAL
CALCULUS*

CHAPTER I

ON FUNCTIONS

Art. 1. — Definition of a Function

A constant is a quantity which retains the same value

throughout a discussion.

A variable is a quantity which has different successive

values in the same discussion.

If two variables are so related that to every value of the

first there correspond one or more determinate values of the

second, the second is called a function of the first.

Denote the variables by x and y, and let the relation between

them be expressed by the equation y = mx + «, where m and

n are constants. If in a particular discussion m = 3 and

n = 5, the equation becomes y = Sx-\- 5. Arbitrary values

may be assigned to x, and the corresponding values of y calcu-

lated. If in another discussion m = — 2 and n = 6, the equa-

* The Differential and Integral Calculus was invented independently

by Newton and Leibnitz, Newton antedating Leibnitz by several years.

Leibnitz published his method in the "Acta Eruditorum" of Leipzig, in

1G84 ; Newton published his method in his " Natural Philosophy," in 1687.

B 1



2 DIFFERENTIAL AND INTEGRAL CALCULUS

tion becomes y = — 2x + 6. Again, arbitrary values may be

assigned to x, and the corresponding values of y calculated.

The variable x, to which arbitrary values are assigned, is

called the independent variable. The variable y, whose value

depends on x, is called the dependent variable or function.

In the equation y = Sx -f 5, if x increases, y increases ; if x

decreases, y decreases. This fact is expressed by calling y an

increasing function of x.

In the equation y = —-— , if x increases, y decreases : if x
x + b

decreases, y increases. This fact is expressed by calling y a

decreasing function of x.

Art. 2.— The Indefinitely Large and Indefinitely

Small

The term of the geometric progression 1, 2, 22
, 2

3
, 2\ 25

,
...

continually increases, and becomes larger than any number

that can be assigned when the progression is extended suffi-

ciently far.

The term of the geometric progression 1, -, —, — , —, —, • • •

z z z z z

continually decreases and becomes smaller than any number

that can be assigned when the progression is extended suffi-

ciently far.

A variable quantity whose numerical value continually

increases and becomes larger than any quantity that can be

assigned is said to become indefinitely large.

A variable quantity whose numerical value continually

decreases and becomes smaller than any quantity that can be

assigned, is said to become indefinitely small.

3
If y = -, and x is positive and becomes indefinitely

x-\- 5
large, the corresponding value of y is positive, and becomes
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indefinitely small. If x is negative, and starting from zero

continually approaches — 5 in such a manner that the differ-

ence between the value assigned to x and — 5 becomes indefi-

nitely small, the corresponding value of y is positive and

becomes indefinitely large. If x continues to decrease beyond

— 5,y becomes negative and its numerical value decreases,

becoming indefinitely small when the numerical value of x

becomes indefinitely large.

All quantities which lie between those which are indefi-

nitely small and those which are indefinitely large are called

finite.

If e denotes an indefinitely small quantity, and n is finite,

the product n-e must also be indefinitely small. For, if

n - e = m, and m is finite, e =—, the ratio of two finite quanti-

ties. Hence c would be a quantity whose value can be as-

signed, which is contrary to the hypothesis.

Since y (x + 5) = 3 is always true if y = -, and when x

becomes indefinitely large, y becomes indefinitely small, it fol-

lows that the product of an indefinitely small quantity and an

indefinitely large quantity may be finite.

The sum of a finite number of indefinitely small quantities

is indefinitely small. For if e is the largest of the n indefi-

nitely small quantities cj, e2, es, e4, •••, en, their sum

cannot be greater than n • c, which is indefinitely small when

n is finite.

Art. 3.— Limits

If one quantity continually approaches a second quantity in

such a manner that the difference between the two becomes
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indefinitely small, the second quantity is called the limit of

the first.

For example, if y = 5 + - when x becomes indefinitely large,

3
x

- becomes indefinitely small, and by the definition 5 is the
x
limit of y.

The limit of. a quantity which becomes indefinitely small is

zero.

The limit of a quantity which becomes indefinitely large is

called infinity, and is denoted by the symbol oo.

This conception of a limit is used in elementary geometry

when the circumference of a circle is proved to be the limit of

the perimeter of the inscribed regular polygon when the num-

ber of sides becomes indefinitely large ; when the area of a

circle is proved to be the limit of the area of the inscribed

regular polygon when the number of sides becomes indefinitely

large ; when the volume of a triangular pyramid is proved to

be the limit of the sum of the volumes of inscribed triangular

prisms of equal altitude and with bases parallel to the base

of the pyramid when the number of prisms becomes indefi-

nitely large.

In elementary algebra, the sum of n terms of the geometric

progression a, a • r, a-r2
, a-r3, a «r4,

••• is proved to be

a — a-i* a a-f
1 — r 1 — r 1 — r

If r is numerically less than unity and a is finite,
a ' r

be-
1 — r

comes indefinitely small when n becomes indefinitely large.

Hence when n becomes indefinitely large, the limit of sn is,

a

l.-.f
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If r is positive, the successive values of sn as n increases all

lie on the same side of the limit ; if r is negative, the succes-

sive values of sn oscillate from one side of the limit to the

other. For example, the limit of the sum of an indefinitely

large number of terms of the geometric progression 1, — i,
J,

1 1 1 1 1 1 1 !,„ ifl J TVlP firQf
¥> TF> "3~2"> 6"¥> T2 8> "2 56"? "3T2"> ' J

lb 3' xne niSt

ten successive approximations are sx = 1, s2 = i, s3 = |, s4 = |,

Q — 11 o — 21 q — 43 o — 85 o — 171 o 3 41 TTia

approximation sn is larger than the limit when n is odd,

smaller than the limit when n is even.

x2 — 1
If y = -, y has a determinate value for every value of

OS — J.

x, except for x = 1. When a = 1, ?/ takes the indeterminate

form -, which may have any value whatever. The true value

of y when x = 1 is defined as the limit of the values of y cor-

responding to values of x whose limit is 1. For example,

when = 1.1, 1.01, 1.001, 1.0001, 1.00001, 1.000001, •••,

y = 2.1, 2.01, 2.001, 2.0001, 2.00001, 2.000001, ....

Hence 2 is the true value of y when x = 1, and for all values

rjfi i

of x, including x= 1, y = = x + 1.

Art. 4. — Corresponding Differences of Function

and Variable

If y = a2
, when g = - 4, - 3, - 2, - 1, 0, 1, 2, 3, 4,

2/= 16, 9, 4, 1, 0, 1, 4, 9, 16.

Starting from x = 0, a difference of +1 in the value of x

causes a difference of -f 1 in the value of y ; starting from
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x = -f- 1, a difference of + 1 in the value of x causes a differ-

ence of -h 3 in the value of y ; starting from x = — 3, a dif-

ference of -f 1 in the value of x causes a difference of — 5 in

the value of y. Observe that the same change in the value of

the variable in different parts of the function causes different

changes in the value of the function.

In general, if y = x2
, and starting from any value of x the

corresponding differences of y and x are denoted by Ay and

Ax, so that x + Ax and y -\- Ay must satisfy the equation

y = x2
, by subtracting the equations y + Ay = (x + Ax) 2 and

y = x2
, there results Ay = 2 x • Ax 4- (Ax) 2

. The difference in

the value of y corresponding to a difference of Ax in the value

of x is seen to depend on x and on Ax.

Art. 5.— Classification of Functions

A function is called algebraic if the relation between func-

tion and variable can be expressed by means of a finite number

of the fundamental operations of algebra, addition, subtrac-

tion, multiplication, division, and involution and evolution

with constant indices.

For example, y = x* — lx + 1 explicitly defines y as an

integral, rational, one-valued, algebraic function of x. The

equation x2
-f y

2 — 9 implicitly defines y as a two-valued alge-

braic function of x. The relation y =—^-- defines y as a
1 + ff*

fractional, irrational, one-valued function of x.

All functions not algebraic are called transcendental. The

expression of transcendental functions by means of the funda-

mental operations of algebra is possible only in the form of

the sum of an indefinitely large number of terms, or in the

form of the product of an indefinitely large number of factors.
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The elementary transcendental functions are :

The exponential function y = ax and its inverse the loga-

rithmic function x = loga y.

The trigonometric or circular functions y= sin a;, y = tan x,

y = sec x, together with their complementary functions ; and

the inverse functions x = sm~ A

y, x = tdirrl

y, x=sec~1
y.

In general, the fact that y is an explicit function of x, with-

out specifying the nature of the function, is denoted by writing

y =f(x), or y = F(x), or y = <£ (x) ; the fact that y is an im-

plicit function of x is denoted by writing f(x, y) = 0, or

F(x,y) = 0, or <f>(x, y) = 0.

PROBLEMS

1. Determine the values of the function y = 3x2 — 5 cor-

responding to x = 0, 1, 2, 3, 4, 5.

x2 — A
2. Find the true value of y = when x = 2.

x — 2

a? — 1
3. Find the true value of y = when x = l.

x — 1

4. Starting from x = 3, calculate the difference in y cor-

responding to a difference of 2 in the value of x if

y = x2 -5x + 12.

5. Starting from x = 2, calculate the difference in y corre-

sponding to a difference of —2 in the value of x \fy = 1 x — 3x*.

6. Find the limit of the sum of an indefinitely large num-

ber of terms of the series 1 + \ + -J-
+ <fa + -fa H .

7. Find the limit of the sum of an indefinitely large num-

ber of terms of the series ft + T^ + T^ + TTFihnF + -••••
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8. Show that any difference in the abscissa of the straight

line whose equation is y = mx + n causes a difference m times

as large in the ordinate.

9. Show that the ordinate of the straight line whose equa-

tion is y — yo = m(x — x ) changes m times as fast as the

abscissa.

10. If y = Sx2 — 7 x, determine the change Ay in the value

of y corresponding to a change of Ax in the value of x.

11. Compare the values of Ay corresponding to A#=l,
starting from x = 0, 1, 2, 3, if y = x2 — 3# + 10.

12. If y = ax2 + bx + c, where a, b, and c are constants and

when x = x
, y — y , determine the change Ay in the value of y

corresponding to a change of Ax in the value of x, starting

from x as x .



CHAPTER II

THE LIMIT OF THE KATIO AND THE LIMIT OP THE SUM

Art. 6.— Direction of a Curve

Let (x ,y ) be any point of the curve whose equation is

y = x2
. Let (x + Ax, y -f- Ay) be any other point of the curve,

Ax and Ay representing corresponding differences in abscissa

and ordinate. The ratio —^ is the slope of the secant line
Ax r

through (x
, y ) and (x -f- Ax, y + Ay), that is, the tangent of

the angle of inclination of the

secant to the X-axis. The equa-

tion of the secant is

V Ax
x ).

Fio.l.

This is true whatever may be

the magnitude of the corre-

sponding differences Ax and

Ay.

Now the tangent to a curve

is defined as the limiting posi-

tion of the secant whose two points of intersection are

made to continually approach each other. If the point

(x + Ax, yQ -f- Ay) continually approaches the point (a?
, y ), the

limit of Ax is zero, and the corresponding limit of the ratio —J-
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is the slope of the tangent to the curve at (x
, y ). This limit

of the ratio is to be determined.

By hypothesis, y +Ay = (xQ + Ax)2
, yQ

= x 2
; whence

Aff _ (xo + Aa 2 — xo
2

.

Ax Ax

The limit of this ratio, when the limit of Ax is zero, cannot

be found by placing Ax = in this value of the ratio. For

this makes the ratio take the indeterminate form - as it ought

to, for the two points are made coincident, and through one

point an infinite number of straight lines may be drawn. By

performing the operations indicated in the numerator of the

value of the ratio — and then dividing out the factor Ax com-
Ax b

mon to numerator and denominator, there results

-^- = 2xq -\-Axq.
Ax

If now Ax becomes indefinitely small, that is, if the limit of

Ax is zero, the limit of the ratio —^ is 2 xn .' Ax °

Denoting by a the angle of inclination to the X-axis of the

tangent to y = x2 at (x ,y ), tan« = 2x and the equation of

the tangent is y — y = 2x (x - x ). At the point (2,4),

tan a = 4 and « = 75° 58'. The tangent makes an angle of 45°

with the X-axis if 2x = tan 45° = 1. Solving the equations

2 x = l and yQ =x 2
, the point of tangency is found to be

»o = |> #o = i-

If the curve whose equation is y = x2
is generated by the

continuous motion of a point, when the generating point passes

the point (x
, y ) of the curve it tends at that instant to move

along the tangent y-y = 2x (x — x ) at the point (xQ,y ).
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Hence the direction of the tangent to the curve at any point

is called the direction of the curve at that point.

If a point moves along the straight line y — y = 2 x (x — x ),

the ordinate changes 2x times as fast as the abscissa. When
2# is positive, the ordinate is an increasing function of the

abscissa; when 2x is negative, the ordinate is a decreasing

function of the abscissa ; when 2 a? = 0, the line is parallel

to the X-axis and a change in the abscissa causes no change

in the ordinate.

Hence, when the point generating the curve y = x2 passes

the point (x
, y ), the ordinate of the curve is at that instant

changing value 2x times as fast as the abscissa changes. At

the point (J, \) ordinate and abscissa are changing value at

the same rate
; at the point (2, 4) the ordinate is increasing 4

times as fast as the abscissa increases; at the point (—2,4)

the ordinate decreases 4 times as fast as the abscissa increases.

By precisely the same analysis it is proved that the slope of

the tangent to the curve whose equation is y =/(») at any point

(x, y) of the curve is tan a = limit— = limit————-*—"-Sv
'
9J Ax Ax

when the limit of Ax is zero, and that the limit of this ratio

measures the rate of change of ordinate and abscissa at (x, y).

It is essential to remember that in the calculation of this

limit Ax must start from some finite value and then be made

to approach the limit zero.*

PROBLEMS

1. Find the slope of the tangent to y = x3 — Sx at x = 5.

2. Find the direction in which the point generating the

graph of y = Zx2 — x tends to move, when x = 1.

*The tangent problem prepared the way for the invention of the

Differential Calculus, in the seventeenth century.
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3. Find the rate of change of ordinate and abscissa of

y = Sx2 — x at x = l.

4. Find at what point of the curve whose equation is

y = 4 x2 the tangent makes with the X-axis an angle of 45°.

5. Find the equation of the tangent to y = 2x2 — 5x at

x=3.

6. Find where the ordinate of y = Sx — 4#2 decreases 5

times as fast as x increases.

Art. 7.— Velocity

Suppose a locomotive to start at station A, to pass station B
distant s miles from A after t hours, and station C distant

s miles from A after t hours. The average velocity per hour

--So *i C

.§ j
to t\

Fig. 2.

from B to C, that is, the uniform number of miles per hour

the locomotive must run from B to C to cover the distance

s — s miles in t — tQ hours, is
s ~ °

. Calling the difference of
t — £

distance As and the difference of time A£, the average velocity

is — . The equal ratios — = 9 determine the average
A*

* At t-t 5

velocity of the locomotive during the interval of time

At = t — 1 , whatever may be the magnitude of this interval

of time.

Now if station O is taken nearer and nearer station B, the

interval of time At becomes indefinitely small and has zero
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for limit. The average velocity from B to C continually

approaches the actual velocity at B, since the interval of time

during which a change of velocity might take place continu-

As
ally decreases. Hence the limit of the ratio — when the... At
limit of At is zero is the actual velocity of the locomotive

at J3.

This analysis shows that if the relation between distance s

and time t of the motion of a body is expressed by the equa-

tion s =f(t), and the velocity at any time t is denoted by v,

v = limit r \
"*"—) ~J\ ) when the limit of At is zero.

At
For example, in the case of a freely falling body, starting

from rest, s — 16.08 t
2
, where s is distance measured in feet,

and t is time measured in seconds. Here

v = limit
16.08(* + A*)'- 16.08*'

At

= limit 16.08 (2 1 + At) = 32.16 1,

when the limit of A* is zero. Hence the velocity at the end of

the third second is 96.48 feet per second.

Velocity is seen to be the rate of change of distance per

unit of time.

PROBLEMS

1. If s = %gt 2
, where g is a constant, determine the velocity

at time t.

2. If s = 10 £ + 16.08 1
2
, calculate the velocity at time t.

3. If s = ut — ^gt 2
, where u and g are constants, determine

the velocity at time t.

4. If s = ut + \gt2
, where u and g are constants, determine

the velocity at time t.
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Art. 8.— Rate of Change

In the function y = x2 — 5 x let x
, y and x -f Ax, y + Ay

be two sets of corresponding values of variable and function.

That is, starting from x
, y to a change of Ax in the value of

the variable there corresponds a change of Ay in the value

of the function. The ratio of the corresponding changes of

function and variable —^ determines the average rate of change
Ax

of the function throughout the interval Ax; that is, the uni-

form change of the function for change of the variable by

unity which in the interval Ax causes a change of Ay in the

value of the function. This is true for all values of the

interval Ax.

Now, if Ax becomes smaller and smaller, the ratio —'- con-
' ' Ax

tinually approaches the actual rate of change of the function

at x , since the interval Ax during which the rate of change

might vary continually decreases. Hence the actual rate of

change of the function y = x2 — 5x at x
, yQ is

limit ^L = limit
Oo + *XY ~ 5 (xo + Aft) - (x,

2 -5x )

Ax Ax

= limit (2x — 5 + Ax) = 2xQ
— 5,

when the limit of Ax is zero.

The function y = x2 — 5x increases 3 times as fast as x

increases when 2 x — 5 = 3, that is, when xQ = 4 ; the function

decreases 5 times as fast as x increases when 2a* — 5 = — 5,

that is, when x = ; the function is stationary, that is, it is

neither increasing nor decreasing, when 2 x — 5 = 0.

. This analysis shows that for any value of x the limit of

•' ^x *" X ~~J{X) when the limit of A# is zero, measures the
Aa;
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rate of change of f(x) for that value of x. If this limit is

positive, f(x) is an increasing function of #; if this limit is

negative, f(x) is a decreasing function of x\ if this limit

is zero, f(x) is stationary.

The calculation of the limit of the ratio
/(«+Aa?)-/(a?)

Ax
when limit Ax = for all functions f(x) is the fundamental

problem of the Differential Calculus.

PROBLEMS

1. Calculate the rate of change of Ax + 7.

2. Find the rate of change of y = Xs + Sx.

3. Calculate the rate of change of Sx — x2 at a?= 1.

4. Find where the function x2 — 2x increases twice as fast

as x increases.

5. Find where the function x2 — 2x decreases twice as fast

as x increases.

6. Find where the function x2 — 2x is stationary.

Art. 9.— The Limit of the Sum

Let y=f(x) be the equation of the given curve. Denote

by A the area of the surface

bounded by the curve, the

X-axis, and the lines x = a,

x — b. Divide the portion of

the X-axis from x = a to x = b

into any number, say 5, of

equal parts, and call each part

Ax. Constructing rectangles on

each Ax, as indicated in the

figure, and denoting by A' the
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sum of the areas of the rectangles,

A' =/(a) • Ax 4-/(0 + Ax) • Ax +/(a + 2 Ax) . Ax

+/(& - 2 Ax) • Ax +f(b — Ax) • Ax,

which may be written A' = 2/(x) • Ax. Now, as the number
x = a

of equal parts into which b — a is divided is indefinitely in-

creased, Ax becomes indefinitely small, and A' continually
3=6

approaches A. Hence A — limit of %/(%) • Ax when the limit
x= a

of Ax is zero. The calculation of this limit of the sum is one

of the fundamental problems of the Integral Calculus.*

In some simple problems

the limit of the sum may
be calculated by means of

the formula for the sum

of n terms of an arithmetic

progression

a+(a+ d) -f (a+ 2d) +•••

+ (l-2d) + (l-d) + l,

namely, $=(a+ t)^-

Fig. 4.

For example, let it be

required to calculate the area of the surface bounded by the

straight lines y = x + 2, x = 1, x = 5, and the X-axis. Divid-

ing the distance from x = 1 to x = 5 into n equal parts and

calling each part Ax, Ax = -, and

* Historically the calculation of the areas of surfaces bounded by

curved lines* led to the invention of the Integral Calculus.
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2= 4

A = limit 2/(#) Ax
1=1

-iw{3+ (.+g+ (.+g+(»+ 2)+-~

= limit J6 + (n-l) -!?.- = limit 2^10 --^ = 20
( n ) 2 n \ nj

when n is indefinitely increased. This agrees with the result

obtained by elementary geometry.

Art. 10. — General Theory of Limits

Let u denote a function of x whose limit is U when the

limit of x is a. This relation may be denoted by the equation

u(x=ak8) = U± c, where e must become indefinitely small

when 8 becomes indefinitely small.

Limit of the sum.— Suppose that when the limit of x is

a, limit u x
= U\, limit u2 = U2)

limit n3 = TJZ. The hypothesis

is equivalent to

Ul(x= a±&) = R ± Clj ^2(a: = a±S) = C/g ± 62,
W3 (x= a ± j) = U3 ± €3,

whence (ux + w2
— w3) (x=a ± n = £7i -f {72— C/"3 ± «! ± e2 T c3 - Since

when 8 becomes indefinitely small, e1? e2, c3 each become indefi-

nitely small, ± cj ± c2 =F €3 for all combinations of signs also

becomes indefinitely small. Hence when the limit of x is a,

limit (ux + u2
— w3) = Ui + Ui—Us= limit ux + limit u2

— limit w3 .

That is, the limit of the algebraic sum of a finite number of

quantities is the like algebraic sum of their limits.

Limit of the product. — If, when the limit of x is a, limit

^ = ^1 and limit u2 = U2 , «**<»«•**) = Ut ± €% and u2(x=a±s)

= U2 ± «2- By multiplication,

(iii • w^)
{,„#iW = Ui • U2 ± U2 • e, ± Ux

• c2.

c
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Hence if Ui and U2 are finite, when the limit of x is a, limit

(id • u2) = Ui- U2 = limit u
x

• limit u2 . That is, the limit of the

product is the product of the limits.

Limit of the quotient.— If, when the limit of x is a, limit

uL = Ux and limit u2 = U2, u1^tmtl±Si^U1±€h u2{x^ aiz ^ = U2±e2.

By division,

VV(x = a±S) C^2±«2 ^2 U2 ± C2 U2

= U1 ,±U2j_^TU11 t2

U2 U2 (U2 ±c2)

Hence if R and U2 are finite, when the limit of x is a,

limit

-

1 = -^^ hlmt ^1
. That is, the limit of the quotient is

u2 U2 limit u2

the quotient of the limits.*

Art. 11.— Continuity

The function y=f(x) is said to be continuous at x — x if

the limit of the difference f(x ± Ax) —f(x ) is zero when the

limit of Ax is zero. This definition may also be written

[/(aJb + Aa;) —f(x )^\ Ax==:kS
= ± e, where c must become indefi-

nitely small when 8 becomes indefinitely small. The function

is said to be discontinuous at x = x if e does not become

indefinitely small when 8 becomes indefinitely small.

For example, if the curve in the figure is the graph of

y =f(x),f(x) is continuous at all points except at x = l and

* Jordan, in his Cours d'analyse, Paris, 1893, perhaps the most com-

plete treatise on the Calculus ever written, says : "Arithmetic and Algebra

employ four fundamental operations, addition, subtraction, multiplica-

tion, and division. A fifth can be conceived of, consisting in replacing

a variable quantity by its limit. It is the introduction of this new opera-

tion that characterizes the Calculus."
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/
330 A

-4c

;n,2)

x = — 3. Starting from (1, — 2), f(x) is continuous for in-

creasing values of x ; starting from (1, 2), f(x) is continuous

for decreasing values of x. Y

Starting from (1, 2), limit

[/(l + Ao;)-/(l)]=4 when

limit Ax = 0. Starting from

(1,-2),

limit[/(l-Aa)-/(l)]= -4

when limit Ax = 0. Starting

from (—3, oo),

limit[/(-3 + Aa;)-/(-3)]

= — CO Fig. 5.

when limit Ax = 0. Starting from (—3, -co), limit

[/(- 3 - Ax) -/(- 3)] = + oo when limit Ax = 0.

Starting from (1, 2),

limit
/(i-Aa)-./Xl) _ tan 60

o when limit Ax =
— Ace

00 when limit Ax = 0.limit /fl +^WW
Ax

Starting from (1, — 2),

limit /(
1 + Aa;)-/(1) = tftn 33()

o when limit Aa . = Q
Aa?

limit
/(l - A*) -/(l)

Aa?
CO when limit Ax = 0.

Hence it is evident that, at points of discontinuity of f(x),

the limit of the ratio^ + Aa?
)
~^°) when limit Aa =

A#
is not independent of the algebraic sign of Ax. At points of

continuity, the limit of this ratio generally is independent

of the sign of Ax.
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Example. — Show that log x is a continuous function of x.

Here limit [log (x ± Ax) — log x~] = limit logf 1 ±— 1 = 0,

when limit Ax = 0, except for x = 0.

PROBLEMS

Show that the following are continuous functions of x :

1. 3x? — 5a + 2. 2. sinsc. 3. e
x
.

Find the points of discontinuity of

4. 5^±1. 5 . tana.
#

5x-T



CHAPTER III

DIFFEKENTIATION AND INTEGRATION OF ALGEBRAIC

FUNCTIONS

Art. 12.— Differentiation

The function of x which is the limit of the ratio

f(x + Ax)-f(x)
Ax

when limit Ax = 0, is called the first derivative of f(x) with

respect to x, and is denoted by the symbol — /(#)> ov /'(«).

If f(x) is denoted by y, the first derivative is denoted by -^«

The operation of forming the first derivative, denoted by the

symbol — , is called differentiation. General rules for the
dx

differentiation of algebraic functions are to be established.

I. Let u represent any continuous function of x. Represent

by Au the change in the value of u corresponding to a change
flti /A 7/

of Ax in the value of x. By definition, — = limit — when
dx Ax

limit Ax = 0.

*The notation ^ was invented by Leibnitz (1646-1716). Newton

(1642-1727) denotes — by s, a notation still used in mechanics. La-

grange (1736-1813) denotes the first derivative of f(x) by/(x), Cauchy

(1789-1857) by Df(x).

21
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II. Let u = c, where c is a constant, that is, a change in the

value of x does not cause a change in the value of c. Then

— =— = limit — = when limit Ax = 0. Conversely, if
dx dx Ax

— = 0, that is, identically zero, u is independent of x. For
O.X

— = means that a change in x causes no change in u.
dx

Hence u is independent of x.

o

dx dx Ax
III. Let u = x. Then — =— = limit— = 1 when limit

Ax = 0.

IV. Let /(x) = C'U, where c is a constant and u represents

a continuous function of x. Forming the first derivative,

—f(x) = limit—i—: '- = limit c = c
da; Ax Ax dx

when limit Ax = 0. Hence the first derivative of a function

multiplied by a constant is the constant times the first deriva-

tive of the function.

V. Let /(x) = u + v — w, where u, v, iv represent continuous

functions of x. Denoting by Au, Av, and Aw the changes in

the values of u, v, and w, corresponding to a change Ax in the

value of x,

A f(x\ _ limit
u + Au + v + A^ ~ w ~ Aw ~ ^ + v ~ ?<?)

daT W Ax

= limit S« + limit ** - limit *5= **+ ft-^
Ax Ax Ax dx dx dx

when limit Ax = 0. That is, the first derivative of the alge-

braic sum of a finite number of functions is the like algebraic

sum of the first derivatives of the functions.

If two functions f(x) and <£ (x) have the same first deriva-
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tive, their difference f(x) — cj> (x) is a constant. By hypothesis,

hence f(x) — c/> (x) = c.

VI. Let /(a;) ss m • v, where w and v represent continuous

functions of x.

— f (a;) =— (w • V) aa limit *—

—

' v ^

daT
w dx

K J Ax

= limit (it -f Ait) 1- limit v — u \- v—
Aa; Aa; dx dx

when limit Aa; = 0. Hence the first derivative of the product

of two functions is the first function times the first derivative

of the second function plus the second function times the first

derivative of the first function.

In like manner it is proved that

d / s dw . dv . du
{U'V'W) —U'V \-U'W \-V'W

dx dx dx dx

VII. Let f(x) = - , where u and v are continuous functions

01 X.

u + An u

g^/(^)^-4ffl-^M^i^ + *, «
dx dx \vj Aa;

Aw Av du dv
V U V' u

.. ,, Aa; Aa; dx dx= limit—2— as
ir + v • Av vl

when limit Aa; = 0. That is, the first derivative of the quo-

tient of two functions is the divisor times the first derivative

of the dividend minus the dividend times the first derivative

of the divisor, divided by the square of the divisor.
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_ dv

If f(x)= -, where c is a constant, — [ - )
=

5 HenceJ v J v dxyvj v2

the first derivative of a fraction whose numerator is constant

and whose denominator is a function of x, is the numerator

with its sign changed times the first derivative of the denomi-

nator divided by the square of the denominator.

VIII. Let f(x) = u 11

, where u is a continuous function of x,

and n is any finite, positive integer.

£.f(x\ «-*«•« limit
dx

J K } dx

(u -f Aw)
M — un

Ax

= limit -j n « un
'

[f

4- » • u • (A%)"-2 + (A?*)"- 1

„ i du

dx

Aw
Ax

when limit Asc = 0. Hence the first derivative of a function

affected by a finite, positive, integral exponent is the product

of the exponent, the function with its exponent diminished by

unity, and the first derivative of the function.
r

If f(x) = v = u% where r and s are finite, positive integers,

vs = ur
. Forming the first derivatives of both sides of this

equation, s • v8-1— = r • ur~l
•— • Solving for —, there re-

cto dx dx

u dv r ur~l du r ur~x du r 7-1 du „
suits — =

;
— = = -•?** Hence

dx s v'~
l dx s r -t dx a dx

d 7 r JJ-i du— • u" = - • ug
;

dx s dx
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that is, the first derivative of a function affected by a finite,

positive, fractional exponent is the product of the exponent,

the function with its exponent diminished by unity, and the

first derivative of the function.

If f(x) = u~n
, where n is finite and either integral or frac-

tional, f(x) = — , and

dx
J w dx\un

J

du

dx __ , du— = — n • u n
•—
dx

Hence the first derivative of a continuous function affected

by any finite constant exponent is the product of the expo-

nent, the function with its exponent diminished by unity, and

the first derivative of the function.

If u = x, — xn = n • xn
~l

.

dx
If y is a continuous function of x, x is also a continuous

function of y. From the equation y =fl(x) an equation of

the form x = f2(y) is obtained. Differentiation gives -^ and

dx ... ^x
—. The relation between these derivatives is to be found.

The equation — = 1 is true for all values of Ax. hence* Ax Ay

t ., A?y Ax v ., A?/ v ..Ax dy dx ^
limit— = limit— • limit— as -£ = 1

Ax Ay Ax Ay dx dy

when limit Ax = and limit Ay = 0. There results — =—
;

dx dx

dy
that is, the first derivative of y with respect to x is the recip-

rocal of the first derivative of x with respect to y.

If y is a continous function of z, y =fx (z), and z is a contin-

uous function of x, z =f2 (x), y is also a continuous function of

x. The derivative -^ is to be calculated.
dx
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The equation —* = —£ • — is true for all values of Ax.
Ax Az Ax

When limit Ax = 0, limit ^ = limit ^- limit — : that is,

, , 7 Ax Az Ax
dy _ dy_ dz_^

dx dz dx

The rules of this article are sufficient for the differentiation

of all algebraic functions.

Example I.— Form the first derivative of

5x*-7x2 + 12x-15.

~ (5x? - lx2 + 12 a? - 15) = 5— a? - 7 -^-x2 + 12-^-x--^-15
dx dx dx dx dx

= 15x2 -Ux-\-12.

Example II.— Form the first derivative of (2 — 5 x2
)*.

This expression has the form un whose derivative is

dx dx

In the problem u = 2 — 5 x2
, n = f . Hence

A (2 - 5b2

)
1 = f(2 -5^ -|-(2 - 5a?2) =- 15a?(2 -5a2

)*.
(XX (XX

Example III.— Form the first derivative ® of the implicit

function x2 + y
2 = 9.

dx

Forming the first derivative of both sides of this equation,

2x + 2y%>=<>, whence &=-* and *-=_2.
dx dx y dy x

Example IV. — If ^ = -— and x2 = z
2 + 1, form ^L

<fe (2» + i)f ax

From x2 = z
2 + 1, — = - • Hence
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dy _dy dz _ z* x _ z
2 -x _ (xP— Vj-x _ 1

dx dz dx /
z
2 _j_ -j\| z /z

2 i ^\ § x2 x

Example V.— Form the first derivative ofy = ~ x
.

(1 + »*)*

Applying the rule for differentiating the quotient of two func-

tions,

(1 + rf.l(l _ aj) - (1 - a>)— (1 + x2)*
dy dx

K J K ) dx
K

_
;

dx 1 + x2

- (1 + s2
)* - a; (1 - ap (1 + x2)~^

1 + x2

— 1— X2 — x-\-x2 _ 1+x
(1 + x2

)* (1 + «0j

PROBLEMS

Form the first derivative of,

*.»•+ & 6. -L-.
r

12. (3 + 5x)"i.
1 — ar !

2. 2a2+ 7a + 3. 1 + a2 13
* (fX^)

*

' 1 — x2

3. 3 a* -8. „ N9
14. (5a; -7a2

)
1

.

8. (1 — x) 2
.

4. -A— 9. a-x2

)
2
.

15
-
(i-«+ aOf-

1 + x.
K J

10. (l-a;)~ 2
. 16. (a + bxn

)
m

.

5. i±* .
-

1 — x 11. (1 — a;
2
)*. 17. (a + &af)tt

.

± — x2 2
18. Form the first derivatives of and -, and

1 _i_ x^ 1 \ x
find the difference of the functions.
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In the following equations y is an implicit function of x.

Form
dX
dx

a2 b
2 a2

b2

22. x2y-\-y — a; = 0. 23. a? - 3xy + f = 0.

Determine the rate of change of function and variable of

24. f(x) = 2 x - x2
. 26. fix) = (1 - a2

)* at *= f

25. f{x) = T-—J 27. /(*) = (4 - x2^ at * =2.

28. Find at what point of the circle x2 + y
2 = 9 the ordinate

increases twice as fast as the abscissa.

29. Discuss the rate of change of ordinate and abscissa of

^4-^=1 for different points of the ellipse.

The rate of change of ordinate and abscissa is measured by

-S5L= When x and y have like signs the ordinate is a
dx dry

decreasing function of x; when x and y have unlike signs the

ordinate is an increasing function of x ; when x =
?
the ordi-

nate is not changing value ;
when y = 0, the ordinate changes

infinitely more rapidly than the abscissa. These results agree

with the results obtained by examining the ellipse.

30. Determine the rate of change of area and side of an

V5
equilateral triangle. Area = -—- x2

, x being a side.

31. Find the rate of change of area and radius of a circle

when the radius is 10.

32. A man walks on level ground towards a tower 80 feet

high. When 60 feet from the foot of the tower find the rela-

tive rate of approaching the top and foot of the tower.
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Calling the man's distance from the top of the tower y, his

distance from the foot of the tower x, y
2 = x2 + 6400.

Find the slopes of the tangents to the following curves at

the point (x, y) of the curve

:

2 2

33. y = ±x2
. 34. y = 6x-x2

. 35. —--L = l.
a2

b
2

36. Find the slope of the tangent to y = 8 x — x2 at x = 1.

37. Find where the point generating the circle x2
-f y

2 = 4

tends to move parallel to the X-axis. Where parallel to the

F-axis.

Determine the velocity at time t supposing the relation

between s the distance and t the time to be expressed by the

folloAving equations, where a and u are constants

:

38. s = £ at
2

. 39. s = ut + \ at2
. 40. s = ut — \ at

2
.

41. If ^ = z
2
(l + z)\ and 1 + z = x2

, find &
dz dx

42. If ^ = and 1 + z = x*
r
find JL

d* VI + z d>x

Art. 13.— Integration

The difference between two functions which have the same

first derivative is constant. Hence, if the first derivative of a

function is known, the function itself is known, except for an

additive arbitrary constant. The process of obtaining a func-

tion f(x) from its first derivative —f(x) is called integration,/ax
The operations denoted by

the symbols — and
f
neutralize each other

;
that is,

f±m-fto+0 and £/>(*)=/(*),
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where C is an arbitrary constant. Hence the rules of integra-

tion are at once inferred from the rules of differentiation.

The result of integration is called an integral, and the integral

is correct if the derivative of the integral is the expression

which was integrated.

The rules of algebraic integration, obtained from the rules

of algebraic differentiation of Art. 12, are expressed by the

formulas

:

i. C^ = u+a in. Ci = x+a
J dx J

II. fo = <7. IV. Ca .— = a>u+C.
J J dx

•s V UjJU UjJLi llJU

VI Cf .— 4- .—
J \ dx dx

du dv
V u

_____ \X*Ju LtJO

u*v +C.

/ax dx u . n
S» ~v+a

VIII. fun
•— = -^1 -f- G. When u = x, this formula be-

J dx 71 + 1/xn+1

xn — 4- C. When n = — 1, this result is
n + 1

comes

absurd.

The rule of formula VIII. may be stated, the integral of any

function affected by an exponent other than — 1, multiplied

by the first derivative of the function, is the function with its

exponent increased by unity divided by the increased expo-

nent, plus an arbitrary constant.
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Since la-— = a-u+C and a I — = a-w+Cf
, a constant

J dx J dx

factor may be shifted from one side of the sign of integration

to the other, without affecting the result.

By formula V. the integral of the algebraic sum of a finite

number of functions is the like algebraic sum of the integrals

of the functions.

Example I.— Find the function of x whose first derivative

is 4 a2 — 5 x. Denoting the function by f(x), —f(x) = 4 a?
2 — 5a?

and f(x) = I (4a;
2 — 5x) = A I x2 — 5 I x = ^x?— fa2 + C, where

the arbitrary constant C is called the constant of integration.

This integral is called the indefinite integral. If f(x) is re-

quired to have a given value for a given value of x, for

example, if f(x) = 10 when x = 1, the value of C is found

from the equation f(x) =|a^ — fx
2 + C to be Hi. Hence

under the given conditions f(x)=^x3 — ^x2 + ll^. This re-

sult is called the corrected integral.

Example II.— Find the function of x whose first derivative

is x (1 + x2
)^. Denoting the integral by f(x),

f(z)=fx(l + «?)*.

This integration can be performed by means of the formula

/un
-—= —-—- + C if x (1 + x2y can be separated into factors
dx n + 1

of the form un and — . Placing u = 1 + x2
,
— = 2 x. Hence

dx dx
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Example III.— If ^ = 10 (x - 2) (a* - 4 x)~l
}
find y.

ctx

Placing u = x2 -±x, — = 2x-4,
da;

and 2/ = 10 C(x - 2) (a2 - 4 a)""*

= 5 f(z2 _4a;)-|— (a;
2 -4a;) = 10 (a2 - 4 a)i -f 01

*/ da;

Example IV.— Determine the equation of a curve such that

the slope of the tangent to the curve at any point (x, y) is the

negative ratio of the abscissa to the ordinate.

The condition of the problem is expressed by the equation

-^ = — -, whence y^- = — x. Integrating, -y2 = — -x2
-\- C or

dx y dx 2 2
x2 + y

2 = 2 C. This equation represents any circle with center

at the origin of coordinates. If the circle is required to con-

tain the point (3, 4), the value of 2 C must be 25, and the

problem has the determinate solution x2 + y
2 = 25,

PROBLEMS

Find the f(x) whose first derivative is,

1

.

2 + x, knowing that f(x) = 7 when x = 2.

2. 3 — 5 x2
, knowing that f(x) = 20 when x= 5.

3. 1 + x + x2 + Xs
, knowing that f(x) = 12 when x — 1.

4. aA 5. 3afi 6. x% + 5. 7. 2a* — aA

8. (1 — #) (2 + x2
). Multiply out and integrate term by

term.

9. (3z-5)(2a-3a;2
). 12. (2 s + 3) (x2 + 3 x)i

10. (1 + a2

)
(3ar> + 2). 13. (3a2 - 10a?) (x3 - 5^)1

11. (4a;-5)(2a;2 -5a;)l 14. (2x + 5)(x2 + 5x -7)i
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15. (l-f9a?)f 17. 15 (3 x2 -8 x) (3 a? -12 a?
8
)*

16. (a + fcu)*. 18. (a2 + 3 as -5) (2 a? + 9 a2 -30 a)I

Find the equation y=f(x) of a curve such that the slope

of the tangent at any point (a, y) is,

19. 3x — 7.

20. 2 a + 5, the curve passing through (5, 0).

21. a^-f 5 a?, the curve passing through (0, 0).

b2 x
22. - •-, the curve passing through (a, 0).

a2
y

23. For the cable of a suspension bridge with load uni-

formly distributed over the

horizontal,
dy — 'X, where w

11

J&F^
y

Fig. 0.

dx vQ

is the uniform load per hori-

zontal linear unit and t is the

tension at the lowest point.

Find equation of curve assumed

by cable.

24. Find the function of x whose rate of change is 2x — 5.

Find the relation between s and t, knowing that s = when

t = 0, and that the velocity is,

25. u-\-at. 26. u — at.

Find the relation between x and y, knowing that,

07 dy_ — ®!_ oa <%_ !— 3a-f5a2

dx y dx y — ^y3

28. 32~i±iL 31. ^= JL.
cfa 1 — 2/ da? a2

2/
3

29 . 3SU-*.
da 1 + y

2
32. ar^= 5

da 2/



33. f *
34. f £—r 35. f(l-^)3

.

36.
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Find the values of the following integrals

:

:

*
. 34. r a

sVl - x2 J
(1 - ^)f

f(l±^)\ 37. f- -.
J\ X J J (2ax- x2

)*

Multiplying numerator and denominator by (x~ 2)~2 =x~5
,

the problem becomes

f — = -i f(2 ax-1 - l)-f—(2 ax- 1 - 1)

= - (2 ax- 1 - l)-i + C= + C.
a aV2 ax — x2

38< rV2 ax - x2
. 39 r—i— 40# r g .

J x3 ^ (a2 + x2
)* ^ Vl + x

Calling the integral y, the problem is, given -^, to find y.
ax

By the substitution 1 + x = z
2
,

dy = dy dx = x ,o z = 2z^ ~^ =2z2 -2.
dz dx dz Vl+~a; *

o
By integration y = v z* — 2z + C,

hence y = |(1 + x)f - 2(1 + x)i + C.

41. fx2 (l+x)l 42. f —-•
J J (x2 + 1)

!

Art. 14.— Definite Integrals

If
J-
*» =/(»), j7(x) = F{x) + C If *\x) + G is

evaluated for x = 6 and x = a and the second result subtracted

from the first, the final result F(b) — F(a) is called the defi-
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nite integral of f(x) between the limits x = a and x = b. This

operation is denoted by writing

J7<*)=[*
F(x) + C = F(b)-F(a),

where a is called the lower limit and b the upper limit of the

definite integral.

From this definition it follows that

and also that, if & — a = (b — c) + (c — a),

m=j
c
/(*)+)/(*)

Example.— Find the value of the definite integral

f
5

(3 x
2 - 5 x + 7).

C\3x2 -5x + 7)=[x'i -%x2 + 7x+cY~ =63.

PROBLEMS

Calculate the definite integrals,

1. f
2

(3^-5). 6. C
2

x(4,-x2)K

2. f
5

(2x2 H-4x-6).
«/2

7. Cx(l-x2
)?.

3. j'
+1
^(4-orJ

). 8. fa (a
2 -a2

)*.

4. ^
4

(i + ^)a-^2
)- 9.

J
a^cfaj.

5. Jfd-rf).
/•« 2

10. 1 3x*dx.
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11. fVs/l + a. Write -s^VT+J and determine ^
Jo dx , , , e?z

when 1 + m.= z
2

. There results — = — • — = 2 2
2
(z

2 - l)2
.

dz dx dz

Since z = l when x = 0, and 2 = 2 when x = 3,

u = C*a?y/T+x = f
2

2 z
2
(z

2 - I) 2 = 16.1.

12. If s is the distance in feet and t the time in seconds of

a body's motion, find the distance the body moves from the

end of the third to the end of the fifth second, knowing that

— = 32.16*.
dt

Art. 15.— Evaluation of the Limit of the Sum
x= b

The value of S = limit 2/(x) • Ax when limit Ax = 0, where
x= b x= a

2/(#) • Ax stands for
x= a

f(a) • Ax+f(a+ Ax) - Ax-] hf(p— 2 Ax) • Ax+f(b— Ax) • Ax,

is to be determined. Suppose F(x) to represent a continuous func-

tion of x whose first derivative is f(x), that is, — F(x) = /(x).

This means that —^———-^JZ—Li =y(#)^ Cj where e be-

comes indefinitely small when Ax becomes indefinitely small.

From the last equation, /(x) • Ax = F(x -\- Ax) — F(x) ± c • Ax.

Whence by substituting for x successively a, a + Ax, a + 2 Ax,

•••, ft — 2 Ax, b — Ax,

/(«) • Ax = F(a + Ax) —F(a)±£1
- Ax,

f(a + Ax) • Ax as F(a + 2 Ax) — F(a + Ax) ± c2 • Ax,

/(a + 2 Ax) • Ax = F(a + 3 Ax) - F(a + 2 Ax) ± e3
- Ax,

f(b - 2 Ax) • Ax = JF(6 - Ax) - F(b - 2 Ax) ± en_ x
. Ax,

f(b-Ax)-Ax =F(b)-F(b-Ax)±en .Ax.
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x = l

By addition, %f(x) • Ax = F(b) - F(a) ± 2e • Ax. Since F(x)
x = a

is continuous, each c becomes indefinitely small when Ax be-

comes indefinitely small. Denoting by E the numerically

largest e, %e-Ax ^E"XAx = E(b — a), which becomes indefi-

nitely small when E becomes indefinitely small, since b — a is

supposed to be finite. Hence

8 = limit %f(x) • Ax = F(b) - F(a),
x=-a

when limit Ax = 0. But F(b) — F(a) is the value of the defi-

f(x), for by hypothesis —F(x)=f(x). Hence,
« dx

finally, if ^-F(x)=f(x), S= limit'I /(») Ax= f/(«) when

limit A# = 0.

If the summation limits are a and #, the result obtained

becomes S=
J
f(x) =F(x) — F(a). Forming the derivative

oiS,— = —F(x)= f(x).9

dx dx w Jy J

Art. 16.— Infinitesimals and Differentials

A quantity which becomes indefinitely small is called an

infinitesimal.

If several infinitesimals occur in the same problem, any one

may be chosen as the principal infinitesimal. Denote the

principal infinitesimal by a.

Infinitesimals whose ratio to a is finite are said to be of

the first order.

An infinitesimal /3 whose ratio to the nth power of a is

finite is said to be of the nth order. If n is positive and

larger than unity, ft is said to be of a higher order than a.

Denoting the finite ratio of B to an by r, -£ = £ r=fi
an a an

~l



38 DIFFERENTIAL AND INTEGRAL CALCULUS

whence ^=?-.«r,_1
, an infinitesimal, and - = -, an inden-

ts fi
r-a11' 1

nitely large quantity. Hence, if /? is an infinitesimal of a

higher order than a, /? = e- a, where e is an infinitesimal.

The laws governing the use of infinitesimals are contained

in the following two propositions.

I. In the limit of the ratio of infinitesimals any infinitesimal

may be replaced by another infinitesimal differing from it by

infinitesimals of higher orders.

Let a and p represent any two infinitesimals, and consider

the ratio

r ~ A,-p + Br /?
2 + Cr P

3 + A- P
4 + •-

a A + B-a+C'a2 + D'a3 + ->

where the coefficients B, C, D, ••• and B
lf Clf A? ••• are finite.

Let M be the numerically largest of the coefficients B, C,D,---,

My the numerically largest of the coefficients B
1} Clf A? ••••

Then B . a+ C> «2+ D • a3 + —>M(a + a?+ a3+ ».) =M
an infinitesimal, and

Brp+Cr p
>2 + D1 .p

3 +:.>M
1 (p + p

2 + p
3 +>..)=Mir-tL

l-V

1-/*'

another infinitesimal. Hence in the limit

a A + B-a + (7-

a

2 + #• <*
3 + •• _Aa

r
~~pA1 + Bl .p+Cl

>'p + D1 .IP+..> Bp

II. In the limit of the sum of infinitesimals, provided this

limit is finite, any infinitesimal may be replaced by another

differing from it by an infinitesimal of a higher order.

Suppose limit fa + a2 + «3
-\ ) = c, a finite quantity, and

let ft = ai + «i
• «i, ft — «2 + €2 • «2, ft = «3 + e3 • a3 ,

•••, where
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ci> c2> c3> »•• are infinitesimals of which e is the numerically

largest. Adding

= («1 + «2 + <*3 H ) + («1 * «1 + C2 ' «2 + C3 * «3 + •••)•

Now c1 .«1 + e2 .«, + e3 .a3 4-'->«(«i+«2 + «2H ) = e • e, an

infinitesimal. Hence in the limit

ft 4- ft + ft + - = «i + «2 + *» + ••••

This proposition is true even when c is indefinitely large, pro-

vided e • c is an infinitesimal.

If the limit of the ratio of two infinitesimals is unity, the

infinitesimals can differ only by infinitesimals of higher orders.

For if limit - = 1, — = 1 ± e and B = a ± e • a, where c is an

infinitesimal. Hence the rules governing the use of infinitesi-

mals may be stated, in the limit of the ratio and in the limit

of the sum any infinitesimal may be replaced by another

infinitesimal, provided the limit of the ratio of the two infini-

tesimals is unity.

Since infinitesimals of higher orders disappear from the

limit of the ratio and from the limit of the sum, the solution

of problems involving the limit of the ratio or the limit of the

sum may be simplified by dropping infinitesimals of higher

orders at the start.

If y=f(x) is a continuous function of x whose first deriva-

tive is /'<c, —^ ==f (x) -f e, whence Ay = f'x • Ax + c • Ax, where
Ax

Ay is the difference in the value of the function corresponding

to a difference of Ax in the value of the variable, and c be-

comes an infinitesimal when Ax becomes an infinitesimal.

When the difference Ax becomes an infinitesimal it is denoted

by dx, which is read differential x. The change in the value
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of y corresponding to dx is f (x) • dx -\-e-dx. Defining dy,

read differential y, by the equation dy =/' (a?) • dx, dy differs

from the change in the value of y corresponding to a change

of dx in the value of a; by e • dx, an infinitesimal of a higher

order than dx. Hence in problems involving the limit of the

ratio or the limit of the sum the actual change in y may be

replaced by dy =/' (x) • dx.

The first derivative of a function is therefore the factor by

which the differential of the variable must be multiplied to

obtain the corresponding differential of the function. This

explains why the first derivative of a function is frequently

called the differential coefficient of the function.

The operation of finding the differential of a function corre-

sponding to the differential of the variable is called differentia-

tion. It will be observed that differentiation as here defined

is performed by the rules established for differentiation as

defined in Art. 12.

For example, if y = Xs — 7 x2
-f 15 x -f 10,

dy = j- (x3 - 7 x2 + 15 x + 10) dx = (3 x2 - 14 x + 15) dx.

If F(x) is a continuous function of x whose first derivative

is f(x), &F(x) = F(x + Aaj) — F(x) =f(x) • Ax + e • Aaj, where

AF(x) and c become infinitesimals when A# becomes an infini-

tesimal. The sum of the elements AF(x) of F(x) from x = a
x=x

to x = x is 2^(aj) — F(a) = 2 [/(» . Aa? + c . Aaj], and the sum
z= a

of the elements Aa; of x from x = a to a; =x is a? — a. This

is true for all magnitudes of Aa;. When the element Aa;

becomes the infinitesimal element dx,

F(x) - F(a) = i\f(x) .&-f £ . dx].
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Supposing x — a to be finite, in the limit

F(x) - F(a) ="?/(*) • dx,
x= a

since e-dx is an infinitesimal of a higher order than dx.

Calling the operation of finding the limit of the sum integra-

tion and denoting it by the symbol
j

, and indicating that the

sum is to extend from x = a to x = x by writing
| , the result

fix) • dx = F(x) — F(a). Now

F(x) — F(a) was found in Art. 14 to be the value of the defi-

f(x), provided — F(x) =f(x).
a> dX

In general, if y=f(x) and ^-=f'(x), in the notation of
dx ,,

differentials dy=f (x) • dx and y = (/'(#)• ^ —f(x) + &
Differentiation and integration as defined in this article are

again inverse operations.

It will be observed that integration as here defined is per-

formed by the rules established for integration in Art. 13.

For example, if

dy= (3x2 -5x + l0)dx, y = X* -fa;2 + 10a; -f O;

the sum of the elements of y from x = to x = x is

CiSx2 - 5 x + 10) dx = [a? - fa;
2 + 10a; + C~]'

q

=x3_fa;2 + 10a,.

the sum of the elements of y from x — to x = 4 is

f
4

(3 a^ - 5 a; + 10) dx = [a;
3 - f x

2 + 10 a; + c]
]
= 64.

While the method of differentials is based on the method of

limits, the method of differentials has two decided advantages :

first, calculations are simplified by dropping differentials of

higher order at the start ; secondly, the successive steps in the
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application of the method of differentials, especially in sum-

mation problems, are more directly intelligible than is the case

when using the method of limits. Hereafter the derivative

and differential notations are used interchangeably.

PROBLEMS

Form the differentials of the functions,

x2 -!
1. y = Sx2 — 5. 3. y =

x2 + l

2. y=(l —

a

2
)*. 4. y=—

Find the functions whose differentials are,

5. dy=(2xi -5x)dx. 6. dy = (1 + x2
) dx.

7. dy=(l + xydx.

Evaluate the definite integrals,

8. C(4:X-5)dx. 9. C\2xi -6x)dx.

10. C\x2 -3x + 5)dx.

11

.

Cx* (x2 + 1)~* dx. Placing x2 + 1 = z
2
, dx = - dx, and

xs (x2 + l)~^dx = xZ 'Z-3 '~'dz = x2 'Z-2 -dz
X

= (z
2 -l)-z-2 -dz = dz-^v }

z
2

While x takes all values from to 3, z takes all values from 1

to 10. Hence

£V (x2 + iy-i dx= £°fdz - £?\=

r

9 +|+ cT°= 8.i.

12. C a?(l + x)ldx. -



CHAPTER IV

APPLICATIONS OF ALGEBRAIC DIFFERENTIATION AND
INTEGRATION

Art. 17.— Tangents and Normals

The slope of the tangent to the curve whose equation is

y =f(x) at any point (x
, y ) is the first derivative of y = f(x)

evaluated for x = xQ, y = y . This is denoted by writing

tana = -^. The equation of the tangent TT' to y=f(x) at
dx ,

(a?
, y ) is y-y = Jh(x-Xo).

ax
The intercept of the tangent

on the X-axis, found by

placing y = in the equa-

tion of the tangent and solv-

ing for x, is AT= x —y©~?;

the intercept on the Y-axis

is AT' = y« — x
dx

The portion of the tangent
FlQ 7

bounded by the point of tan-

gency and the point of intersection of the tangent with the

X-axis is called the length of the tangent. From the figure

43
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the length of the tangent is PT= y yjl + f|&Y The projec-

tion of the tangent PT on the X-axis is called the subtangent.

dx
From the figure the subtangent is Z>jT = 2/

—°-

dy

The equation of the normal NN' to y=-.f(x) at (a*,, y ) is

y — y = — =5? (x — x ). The intercept of the normal on the

X-axis is AN=x + y -^', tne intercept of the normal on
dx

the F-axis is AN' = 2/o + ^o-r9.

The portion of the normal bounded by the point (x
, y ) and

the intersection of the normal with the X-axis is called the

length of the normal. From the figure the length of the

normal is PN= 2/0 \/l -f [
—

] . The projection of PN on

the X-axis is called the subnormal. From the figure the sub-

normal is DN= 2/0—

•

dx

Example.— Find the equations of tangent and normal to

x2 -\-2y2 — 2xy — x = at the point (1, 1). Also the length

of tangent and subtangent, and of normal and subnormal.

Differentiating x2 + 2y2 — 2 xy — x = with respect to x,

2*-My&_2y-2 i3Ul«0, whence *SL=l±M=M
dx dx dx 4 2/

— 2x

At the point of tangency x = 1, y = 1, ^ = -, —° = 2.
dx 2 dy

Hence the equation of the tangent is y — 1 = \{x— 1), reducing

to y = ^x + £ ; the equation of the normal y — 1 = — 2 (a; — 1),

reducing to y = — 2 x + 3 ; the length of the tangent is V5 >

the length of the subtangent 2; the length of the normal

^ V5 ; the length of the subnormal ^-
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PROBLEMS

5. Find the subtangent of the ellipse — +—
2
= 1.

1. Find the equations of tangents and normals to

x2
y + y — x = at x = -\-l and at x = — 1.

2. Find the equations of tangent and normal to xy = 4

at x = 2.

3. Find equation of tangent to x* + y* — a¥ at (x
, y ).

4. Show that the sum of the intercepts of the tangent to

x^ + y^ = a* is the same for all positions of the point of

tangency.

6. Find the subnormal of the parabola y
2 = 2px.

7. Find the length of the normal to 4 x2 + 16 y
2 = 100 at

x = 3.

8. Find the length of the tangent to 4ar -f- 16/ = 100 at

x = 3.

9. Find the length of the subnormal to x2 + y
2 = 25 at

(3, 4).

10. Determine the curves whose subnormal is constant.

The hypothesis is expressed by the equation y— = a, where

a is the constant length of the subtangent. From this equa-

tion — = 2 or adx = ydy. By integration ax = \y2
-f- C

dy a
or y

2 = 2 ax — 2 C. This equation represents a system of

parabolas.

Art. 18.

—

Length of a Plane Curve

Denote by s the length from x = a to x = b of the plane

curve whose equation is the continuous function y=f(x).
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Divide ab into any number of equal parts Ax, and draw ordi-

nates at the points of division of ab. Draw the chords of

the arcs As into which these

Y ordinates divide the curve AB.

At the ends of any one of these

arcs, such as mn, draw tangents

to the curve AB. Assume as

axiomatic that chord mln < arc

mn < broken line mkn. Prom

the right triangles Mm and Mn,

km = Im - sec kml,

kn =ln ' sec knl.

** L -^ R

m AV
A x

A/

C I>

Fig. 8.

These relations are true for all magnitudes of the chord mn.

As the length of the chord mn is diminished, the angles kml

and knl approach zero and their secants approach unity.

Hence km = Im (1 -+- cx) and kn = In (1 + c2), where cj and e2

approach zero when mn approaches zero. Adding,

km + kn = (Im + foi) — (cj • Zm + c2 * &*)•

When the chord mln becomes an infinitesimal, Im, In, ely and c2

become infinitesimals. It follows that

broken line mkn — chord mln = ex • Im + c2 • Zn,

an infinitesimal of a higher order than the chord mln. Hence

the difference between the infinitesimal arc mn and its chord

mln is an infinitesimal of a higher order than the chord, and

in problems involving the limit of the ratio or the limit of the

sum, the infinitesimal arc may be replaced by its chord.

It follows at once that the length of the curve is the limit

of the length of the inscribed broken line when the number of
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parts into which ab is divided is indefinitely increased, which

is equivalent to saying when limit Ax = 0. That is,

s = limit'i^Az2 + Ayrf = limitsYl + ^Y • Ax
x= a x= a\ Ax2

)
when limit Ax = 0.

Hence S = fYl +^-rf* and £= (l+f^J a V doer J ax V dx

2M

dx2

) dx \ ' dx2

;

Since -^ = tan a, where a is the angle of inclination to the
dx

X-axis of the tangent to the curve y —f{x) at (x, y),

/Jo 1 fit*— = (1 -f tan2 aY = sec a, whence cos a =—

•

dx
v J '

ds

Since sin a = tan a • cos a, s'mu =~— = -^. These results,
dx ds ds

obtained by the method of limits, may be roughly inferred

from the figure. As Ax approaches zero, the element of curve

As approaches equality with its chord and becomes a part of

the tangent. Hence in the limit, when Ax, Ay, and As become

the infinitesimals dx, dy, and ds,

=dx2 +c¥=(i+|^y^ d,s=(i+<¥Y^ --A.*,-

, dy . dy dx
tan « as -2-

3 sin a =— , cos a =—
dx ds ds

Example.— Find the length of the semi-cubic parabola

y
2 = 4 x3 from x = 5 to x = 10.

From the equation of the curve, y = 2 x 2 and -^ = 3 x\
dx

Xio , r . -iio

(l + 9z)*.cfa = _2T (l + 9a^ + <7 =31.07.

The length of the curve from the origin (0, 0) to any point
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The length of the curve between any two points x = a and

x = b is

8= f(l + 9a0*.cte= AC1 + 9&)f -iM1 + 9ot)
f

-

PROBLEMS

1. Find the length of y = 2x from # = 5 to a = 10.

2. Find the length of y = 3 x + 5 from a = 5 to re = 20.

3. Find the length of 9/ = lar5 from (0, 0) to (x, y).

4. Find the length of 9 y
2 = 4 ar

5 from a; = to a; = 10.

5. Find the length of 9 y
1 = 4 x* from a = 5 to X — 15.

Art. 19.— Area of a Plane Surface

Denote by A the area of the surface bounded by the continu-

ous curve whose equation is y=f(x), the lines x = a, x — b,

and the X-axis. Divide the portion of the X-axis from x = a

to x = b into any number of

equal parts Ace. Construct rec-

tangles on each Ace and the adja-

cent ordinates as indicated in

the figure. Denote by AA the

portion of A included between

two successive ordinates. Then

LA = y • Ace -f $ • Ace • Ay, where 6

is less than unity. This is true

for all magnitudes of Ace. When Ace becomes an infinitesimal,

Ay also becomes an infinitesimal. Hence the infinitesimal

element of area differs from the area of the infinitesimal rec-

tangle by an infinitesimal of a higher order, and it follows that

x=b r*h

A = limit % y • Ax = I y-dx when limit Ace = 0.

A8

Fig. 9.
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Example.— Find the area of the surface bounded by the

parabola y
2 = 4 x, the X-axis, and the lines x = 4c, x = 9. For

this curve
Y

A

4 AX

Fig. 10.

y = 2 a£ and ^1 = 2 f a^ • cfo =

The area from the vertex to the point (as, y) is

.4 = 2 fV .(fo=fa>*

= 28.

The area from a; = a to a? = b is

J. = 2 f ^ . da? = | (6
f - a 1

).

The area of the surface bounded by the parabola y
2 = 4 a;,

the F-axis, and the lines y = 4, ?/ = 6 is

4 =£xdy = f£V ' % - tV[V7= 12 -67-*

* The areas of surfaces bounded by curves whose equations are not

known may be found mechanically by means of an instrument called the

planimeter.



50 DIFFERENTIAL AND INTEGRAL CALCULUS

PROBLEMS

1. Find area bounded by y = 3x, the lines x = 0, x = S

and the X-axis.

2. Find area bounded by y = 5x, the lines x = l, # = 4

and the X-axis.

3. Find area bounded by y = mx + n, the lines x = a,

x = b and the X-axis.

4. Find area bounded by y — mx -f n, the lines y = a,

y = b and the y-axis.

5. Find area bounded by y
2 = 9x, x = 0, # = 4 and the

X-axis.

6. Find area bounded by the parabola y
2 = 2px, the or-

dinate of the point (x, y) of the parabola and the X-axis.

7. Find area bounded by the parabola y
2 = 2px, the ab-

scissa of the point (x, y) of the parabola and the F-axis.

8. Find area bounded by »* + y'2 = a2 and the coordinate

axes.

9. Find area bounded by y
2 = 9 x, y = x and x = 4.

10. Find area bounded by y
2 = 9 x, y = 2 x and y = 6.

1 1

.

Find area bounded by y
2 = 4 a and ?/ = ^ ic.

12. Find area bounded by the parabolas y
2= 4 x and x2=Ay.

Art. 20.— Area of a Surface of Revolution

Denote by A the area of the surface generated by the revo-

lution of the continuous curve y = f(x) from x = a to x = b

about the X-axis. A is the limit, when limit Ax = 0, of the

sum of the areas of the frustums of cones of revolution
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generated by the revolution of the parts of the broken line

ANB. Hence A W*+
S
+Ar

)
(i+g)**i

=H y 'i+^*-<to

Fig. 11.

when limit Aa; = 0.

Example.— Find the area

of the surface generated by

the revolution of the line

y — 2x about the X-axis and

bounded by planes perpen-

dicular to the X-axis at x = 3

and x — 8.

Here

A = 2tt C
8

2x(1 + 4)1 • dx = 4 V5tt f^do; =i^J x2

= 2 V5 tt • 55 = 110 V5 tt = 755.592.

PROBLEMS

1. Find the area of the surface generated by the revolution

of the line y = 3 x + 5 about the X-axis and included by the

planes perpendicular to the X-axis at x = 0, x = 5.

2. Find the area of the surface bounded by the revolution

of the line y = c about the X-axis and bounded by planes

perpendicular to the X-axis at x = a, x = b.

3. Find the area of the surface of revolution generated by

the line y = mx + n revolving about the X-axis and included

by planes perpendicular to the X-axis at x = a, x — b.

4. Find the area of the surface generated by the revolution

of x% -f- 2/3 = a? about the X-axis.
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Art. 21.— Volume of a Solid of Revolution

Denote by V the volume of the solid bounded by the

surface generated by the

revolution of the contin-

uous curve y =/(#) about

the X-axis and planes per-

pendicular to the X-axis

at x= a, x = b.

Denoting by AFthe vol-

ume of the part of the

solid included by planes

perpendicular to the X-axis

at x and x + Ax,
Fig. 12.

and

Try
2

• Ax < AV< it (y + A?/)
2

. Ax,

AV- try
2

- Ax = 6Tr(2y-Ay + Ay2
) Ax,

where $ is less than unity. When Ace becomes an infinitesi-

mal, Ay also becomes an infinitesimal. Hence in the limit

when limit Ax = 0,

AV= Try
2 Ax, and V= ^-n-y

2 Ax-£y
2
dx.

Example. — Find the volume of the prolate spheroid. The

prolate spheroid is gener-

ated by the revolution of

the X-axis. The entire

spheroid is comprised be-

tween x= -f- a and x = — a.

Hence,

the ellipse — 4- *- = 1 about
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/,+°/)2 h2 r ~i +a

PROBLEMS

1. Find the volume of the solid generated by the revolution

of the ellipse — -f ^- = 1 about the Y"-axis. This is called the
a- b2

oblate spheroid.

2. Find the volume of the part of the sphere x2
-f- y

2
-f z

2 = 25

between x = 2 and x = 4.

3. Find the volume of the solid bounded by the surface

generated by the revolution of the parabola y
2 = 2px about

the X-axis and the plane x = a-

4. Find the volume of the solid bounded by the surface

generated by the revolution of '— — —
%
= 1 about the X-axis and

the planes x — c, x = d, where c and d are greater than a.

5. Find the volume of the solid bounded by the surface

generated by the revolution of y = 3x + 2 about the X-axis

and planes perpendicular to the X-axis at x = 2, x = 7.

6. Find the volume of the solid bounded by the surface

generated by the revolution of x* + y^ = a2 about the X-axis

and the planes x = 0, x = a.

Art. 22.— Solids Generated by the Motion of a Plane

Figure

Example.— The ellipsoid — -f -L-\- — = 1 may be generated
a2

b
2

c
2

by an ellipse whose center moves on the X-axis, whose plane
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is perpendicular to the X-axis, and whose axes in any position

are the intersections of the

plane of the generating ellipse

with the fixed ellipses,

a2 +b2 ~ 'a^c2
' 1 '

The area of the generating

ellipse in any position is

A» -n-rs-rt. Since (x, rs, 0) and

(as, 0, rt) are points in the

L+ f!-|-^= l, rs = -(a2 -^and rt = -(a2 - ar
2

)*.

a2
b~ cr a a

Hence, denoting the area of the generating ellipse in terms of

x by X,

X=^(a2 -x>).
a2

Denoting by AF the volume of the part of the ellipsoid

included by the generating ellipses at x and x + Ax,

Fig. 14.

9?

and

X Ax > AV> (X - AX) Ax,

AV=XAx-6>AX-Ax,

bewhere AX represents the change of X = ir — (a2 — x2
) corre-

sponding to a change of Ax in the value of x and 6 is less

than unity. Since AX becomes an infinitesimal when Ax
becomes an infinitesimal, in the limit, when limit Ax = 0, the

volume of the ellipsoid is

F= limit ~2X.A.c= C
+
*X-dx

x=—

a

c/—

a

be r+a
= 7T— I (a2 — a2

) dx = 1 7T a&c.
(X %) -a
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PROBLEMS

1. Find the volume of the part of the elliptic paraboloid

- -\— = 2 x included between the planes x = and x — 5.

9

2. Find the volume of the solid bounded by the hyperboloid

of one sheet +K-* 1 and the planes z = 3, z = 5.

Fig. 15.

9 ' 4

3. Two equal semi-circles x2 = 2 ?-z — z
2
, y

2 = 2 ?-z — z
2
lie in

the perpendicular planes XZ,

YZ. The solid generated by the

square whose center moves on

the Z-axis, whose plane is per-

pendicular to the Z-axis, and

whose dimensions in any posi-

tion are the chords of intersec-

tion of the plane of the square

with the fixed semi-circles, is

called a semi-circular groin. Find

the volume of this groin.

Notice that the groin might be defined as the solid which

the two cylinders x2 = 2 rz — z
2 and y

2 = 2 rz — z
2 have in

common.

4. Two semi-circles x2 = 2 rx z — z
2

, y
2 = 2 r2 z — z

2 of unequal

radii lie in the perpendicular planes XZ, YZ. Find the

volume of the groin generated by the rectangle whose plane is

perpendicular to the Z-axis and whose dimensions are the

chords of intersection of the plane of the rectangle with the

given semi-circles. Take depth of groin d.

5. The two parabolas x2 = 2 px z, y
2 — 2p2 z lie in the per-

pendicular planes XZ, YZ. Find the volume of the groin
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generated by the rectangle whose plane is perpendicular to

the Z-axis and whose dimensions are

the chords of intersection of the plane

of the rectangle with the given parab-

olas. Take depth of groin d.

6. Two circular cylinders have equal

bases and equal altitudes. Their lower

bases are tangent to each other, their

upper bases coincident. Find the vol-

ume of the solid common to the two

fig. 16. cylinders.



CHAPTER V

SUCCESSIVE ALGEBKAIO DIFFEKENTIATION AND
INTEGKATION

Art. 23.— The Second Derivative

The first derivative of /(*), denoted by —f(x) or f'(x), is

(XX

in general a function of x. The first derivative of the first

d r d ~\ d2

derivative, — —fix) , is denoted by — f(x) or /"(#), and is

dx[_dx J dx2

called the second derivative of f(x). If f(x) is denoted by y,

the first and second derivatives are written -2 and J-
dx dx*

For example,

if f(x) = xi -7x + 7, f'(x) = 3x2 -7, f"(x) = 6x.

Geometrically ^ measures the slope of the tangent to the

curve whose eoit is „ =/(*) at (*,,). Hence£» -g
. dx\dxj dxr

measures the rate 01 change
Y

of the slope of the tangent.

When —| is positive, -^
dx2 dx

or the slope of the tangent

increases as x increases.

From the figure this is seen

to be the case for the part

cde of the curve, that is,

when the curve is concave Fig. 17.

57
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upward. When ^ is negative, the slope of the tangent ele-

cta
2

creases as x increases. This is the case for the part abc of the

curve; that is, when the curve is convex upward. When

—^ = 0, the tangent is stationary. A point of the curve where
(XX>

the tangent is stationary is called a point of inflection, since

at such a point the curve changes its direction of curvature.

If the relation between the distance passed over and the

time of the motion of a body is expressed by the equation

s = fit), — is the velocity at any time t. If the velocity has
(XL

different values for different values of t, represent the velocity

at time t by v , at time t by v. The average rate of change of

velocity in the interval of time t — t is — ° » Calling the
* ~~ ^° Av

interval of time At, the change in velocity Av. the ratio —
At

measures the average rate of change of velocity in the interval

of time At This is true whatever may be the magnitude of

the interval of time At. The limit of this ratio when limit

At = is the actual rate of change of velocity at time t, for

the interval of time during which the rate of change of

velocity might vary continually decreases. The actual rate of

change of velocity is called acceleration. Hence acceleration

,. ., Av dv d ds d2s ^ , .„ h~^o,9= limit — =— = — — = —. For example, if s = 16.08 1
2
,

At dt dt dt dt2 ^ '

denoting the acceleration by a, a = 32.16.

As a direct consequence of the definition

b^-sGb'w} lt foIlows ^/J>>=I'<'>+<*

For example, let it be required to find the function whose

second derivative is 2x — o. Denoting the function by fix),

-fr2f(x)
= 2x + 5. Integrating, -£-/(«) = x2 -5x+C

1
. Inte-

CiXi CiX
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grating again, f(x) — \t? — ^x2
-\- Cx x -\- C2 - C\ and C2 are two

arbitrary constants of integration, whose values become known

if the function and its first derivative are required to take

given values for given values of x. For instance, if it is re-

quired that fix) — 10 when x = 2 and —f(x) = 1 when x = 0,
(XX

Cx
— \. and C2 = 15

J.
Under these conditions, if

£j(x) = 2x- 5, /(*) = i^-f^-f x + 151.

PROBLEMS

Find the first and second derivatives of,

1. 3X2
. 2. 4ar>-5. 3. 2x3 -7x.

1 k 1 a4. —

•

5. • 6.
X 1 — X 1 + X2

Find between what values of x the curves which represent

the following equations are convex upward, concave upward,

and find the points of inflection,

7. 2, = ^ -7* + 7. s. y=~7 9 - y=f-^+ 2-

Determine the first and second derivatives of y with respect

to x in the implicit functions,

10. x2 + y
2 = r

2
. The first derivative is -»=

dx y

Differentiating both sides of this equation with respect to x,

d2
y da;

dx2 ~~
?/
2

Substituting ^ =
dx

x d u
, there results —% =

y dxr

r2

a2 62
12 .

%-t 1.

a2 bs
13.13. y

2 = 2px.
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Find ^1 from the following equations,
dx2

!4. fM\ =1/3. Differentiating both sides of this equation

with respect to x, 2
j|g = 3

y*
J| whence g= | y\

15. ^ =
2/

2
. 16. ft.* 17. f=ldx dx dx x

" (%}-> '• (I)"-"
20. The equation f(x, y) = defines ?/ as a continuous func-

tion of x. Consequently it also defines a; as a continuous

function of y. It has been shown that -/ = —-• Prove that
9 dx dx

^ dy
d2

y _ dy2

dx2 ~ fdx^ z

Afj
A body moves in such a manner that the relation between

s and t is expressed by the following equations. Find velocity

and acceleration at time t. a and u are constants.

21. s = u-t + ±a-t2
. 23. s = u-t2 + a>t\

22. s = u-t — \a>t2
. 24. s = u-t2 -a-f.

Determine the functions whose second derivatives are,

25. 3 a; + 2, knowing that when 8 si, f(x) = 10; when

26. ox — lx1
, knowing that when

* = 0, /(») = <>, £/()- 1.

27. Find the curve through the origin and making an angle

of 45° with the X-axis at the origin, knowing that ~^=2x + 5.
dx2
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28. Find the curve through (5, 7) and parallel to the X-axis

d2v
at x = 3, knowing that —2 = 2 x2 — 4 x.

dx2

29. A body starts moving with a velocity u and has a

uniform acceleration a. Find the relation between s and t.

The conditions of the problem are expressed by — — a, and

ds
^

when t — 0, s = 0, — —u. By integration

^ = a't+ Ci, s = -i a .*2 + Ci-* + <72 .

Since s = and — = u when t = 0, Ci = w and C2 = 0. Hence
dt

the result is s = ut + \ at2.

30. A body starts moving with a velocity u and has a

uniform acceleration — a. Find the relation between s and £.

31. A horizontal beam has one end fixed. The bending of

the beam due to a weight P causes an elongation of the upper

surface of the beam and a com-

pression of the lower surface. j^
Some intermediate surface re- J^_Z___ZZZZ—
mains unchanged in length and J-

,

i

j

is called the neutral surface. l_i_*

The figure shows a vertical f?%
longitudinal section of the ^^

Fig. 18.

upper, lower, and neutral sur-

faces of the beam. This section of the neutral surface is

called the elastic curve. In text-books on Strength of Mate-

rials it is proved that for any point (x, y) in the elastic curve,

d2vEI -— = — P- x, where E is a constant depending on the mate-
dx2

rial of the beam, I a constant depending on the cross-section

of the beam. By the nature of the problem y = when x — 0,
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and.
ty = when x = Z. Determine the equation of the elastic

dx

curve and the maximum deflection of the beam.

32. Suppose the load uniformly distributed over the beam

of Problem 31. If the load per linear unit is w and the origin

,

-, of coordinates is taken at the

i"T~j~ free end of the beam, it is

't^'IQOQQQQq^q-^ proved in Strength of Materials

ii i

——"^^^rc^Qcx ^a^ ^or any p°^n^ (
x

> y) m *ne

i i 2/t^i^7 d2v — w • x2

i ^1 elastic curve EI—^- =

fig. 19. By the nature of the problem

-^ = when x = I, and y = A when x = I, where A represents
dx
the deflection of the free end. Determine the equation of the

elastic curve.

33. A horizontal beam rests on two supports the distance

between which is I. If a load P is placed at the middle of the

beam and the origin of coordinates is taken at the left support,

it is proved in Strength of Materials that for any point (x, y)
d?v Px

in the elastic curve j£7^ = —-. By the nature of the prob-
dr 2

'

lem -^ = when x = Xl, and y = when x—0. Find the
dx

equation of the elastic curve and the maximum deflection.

34. The beam of Problem 33 supports a uniform load. If

w is the load per linear unit, it is proved in strength of mate-

rials that for all points in the elastic curve

jPT^
2

y — ?£l® — wx2

dx^~~Y 2
'

By the nature of the problem -^ = when x = \l, and y =
dx
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when x = 0. Find the equation of the elastic curve and the

maximum deflection.

35. A circular disc whose weight is W is free to turn about

a horizontal axis through the center of the disc and perpen-

dicular to the plane of the disc. A cord wound around the

circumference of the disc has a weight

P attached to its free end. In Mechan-

ics it is proved that

dM = P-r-g
dt 2 W>k2 + P-r*

where g is the earth's gravity constant,

r is the radius of the disc in feet, k is

a constant depending on the size of the

disc, and is the angle in radians

through which the disc turns in t seconds,

between 6 and t.

In the following problems find -f-
dx

d2v
36. —4= y*. Multiply both sides of the given equation by

dx2

® and integrate. There results
dx

Fig. 20.

Find the relation

dy
i

d2
y

dx dx2

dy

dx
tf.?2. and ifan-J^+a#Y_ 1 ,A

dxj

37. ^ = 2^ + ^.
dx2 dx

38.
dx2

2y2 -5y.

Art. 24.— Maxima and Minima

A continuous function f(x) increases as x increases when its

first derivative —f(x) is positive, and decreases as x increases

when its first derivative is negative. If f(x) changes from an
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increasing to a decreasing function when x = x , the value of

fix) is greater when x = x than it is just before x reaches x
,

and also greater than it is just after x passes x . This is

expressed by saying that f(x) has a maximum value when

x = x . At a maximum value of f(x) therefore the first

derivative — fix) changes sign from + to — for increasing
dx

values of x.

If fix) changes from a decreasing to an increasing function

when x = x , the value of fix) is less when x = x than it is

just before x reaches xQ and also less than it is just after x

passes Xq. This is expressed by saying that fix) has a mini-

mum value when x = xQ . If fix) changes from a decreasing

to an increasing function, the first derivative must change sign

from — to -K Hence at a minimum value of fix) the first

derivative —fix) changes sign from — to + for increasing
dx

values of x.

An algebraic function can change sign only by passing

through zero or by passing through infinity. Hence when/(#)

has a maximum or a minimum value, —f(x)=Q or —f(x) = ao.

d
dx dx '

If —f(x) = and fix) has a maximum value, — f(x)
dx dx

changes sign from -f to — by passing through zero. Hence

— f(x) is a decreasing function, and its first derivative, which
dx

2

is the second derivative of f(x), that is —-^f(x), must be

negative.
d7?

If -j-f(x) = and f(x) has a minimum value, —fix)
dx dx

changes sign from — to + by passing through zero; hence

—f(x) is an increasing function, and its first derivative, which
dx
is the second derivative off(x), must be positive.

These results, obtained analytically, may also be directly
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obtained from the graph of y = f(x). For increasing values of

x the point generating the continuous curve which represents

the equation y =f(x) can cease moving away from the X-axis

and start moving towards the X-axis only in one of two ways,

either by tending to move parallel to the X-axis, as at Plf

Fig. 21.

which requires that -^ = 0, or by tending to move parallel to
(XX -j

the Y-axis, as at P2, which requires that -^=oo. At P3,

j dx
while — = 0, y is neither a maximum nor a minimum. At P4,

dx

while -&= oo, v is neither a maximum nor a minimum. An
dx '

*

examination of the figure shows that in all cases for increasing

values of x the slope of the tangent, that is — , changes sign
dx

from -f to — at a maximum, from — to -f- at a minimum.

At a maximum, when -j- = 0, the curve is convex upward, and

hence —| is negative ; at a minimum, when -^= 0, the curve

is concave upward, and -^ is positive. From the figure it is
(xx~

evident that maximum and minimum values must occur alter-

nately and that a minimum may be greater than a maximum.

From this investigation is inferred the following method of

examining a function of one variable fix) for maximum and
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minimum values. Find the roots of the equations — f(x) =
d

and — f(x) = ao. If, for increasing values of x, — /(as)
dx dx

changes sign from -f- to — when x passes one of these roots,

this root makes fix) a maximum, if —f(x) changes sign
dx

from — to -f- when x passes one of these roots, this root makes

fix) a minimum ; if — fix) does not change sign when x
dx

passes through one of these roots, this root makes fix) neither

a maximum nor a minimum.

The roots of the equation , - = which make *^ ' nega-
dx dx2

tive make f(x) a maximum ; the roots of -J-LJ. = o which

d2
f (x) •

make J K ' positive make fix) a minimum.
dx2

Example I.— Examine x* — 7 x -f 7 for maximum and

minimum values. Here f(x) = x3 — 7 x -j- 7,
' = 3 x2 — 7,

d2
f(x)

•j\

'

= 6 x. Equating the first derivative to zero, Sx2 = 7
— d2

fix)
and x = ± V|. x == -f Vj makes ,* positive and f(x)

.- d2
fix)= — .145, a minimum. # = — V-J

makes \ , negative and

/(#) = 14.145, a maximum.

/«. _i_ o\3

Example II. — Examine y = v
'

'

for maxima and
(x - 3)-

minima. Here ^ = (a?+
/

2)2(a
l~

13)
. The first derivative

dx (x — 3)
3

equated to zero gives x = — 2, x = -f 13 ; the first derivative

equated to infinity gives x = + 3. When a; is just less than

— 2, the signs of the three factors of -M. are "* and _^ is

positive; when a is just greater than —2, the signs of the

factors of ^ are itn and ^ is still positive. Since ^
dx — dx dx
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does not change sign when x passes through — 2, y is neither

a maximum nor a minimum when x = — 2.

When a; is just less than +13, the signs of the factors of

_Z are and -? is negative; when a; is just greater than
do? + da; ,

_
,

+ 13, the signs of the factors of JL are
*"

and -M. is posi-
, da; + dx

tive. Since -^ changes sign from — to + when x passes
(XX

through 13, y is a minimum when x = 13. This minimum is

2/ = 33|.

When x is just less than -j- 3, the signs of -~ are and

-3t is positive ; when x is just greater than + 3, the signs of
da;

~ are and -~ is negative. Since -~ changes sign from
dx -f- dx dx

+ to — when x passes through +3, y is a maximum when

x = -f- 3. This maximum is y = oo.

PROBLEMS

Examine the following functions for maximum and mini-

mum values

:

1. a*— &»+&
g

x-1

2. ar
3 —4*4-7. (x + 2f

3. 2a?-5x.
10. (a;-l) 4

(a; + 2)
3
.

4. xi -2x\ 11. y = 2 X — X2
.

5. ix*-§tf-i x2 + 2x. 12. y = 2 Rx — x2
.

6. tf-5x2 -10x + 4:. 13. y =
2̂
(2ax-x2

).

7.
(x-1)2

(x + lf
X

14.

IS.

CI

y — a? + 3x— 5*.

3a;-5
?/ =3

1 + ar*
' (2a;-3)a
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16. y = 10 V8 x — x\ Suggestion. 10 V8 x — x2
is a maxi-

mum when 8 a — x2
is a maximum, a minimum when Sx — x2

is a minimum. Hence constant factors may be dropped and

the radical sign removed before forming the first derivative.

17. -VStf-lOx + G. 18. J-—!• 19. 3vW-10a>».
* x -f- o

20. Show that x3 — 3 x2 + 6 x has neither a maximum nor a

minimum value.

21. Show that 9^SZ— is a maximum value of ax2 + 2 bx + c
a

when a is negative, a minimum value when a is positive.

22. Divide a into two parts whose sum is a minimum.

23. Divide a into two parts such that the sum of their

squares is a minimum.

24. Divide a into two parts such that their product is a

maximum.

25. Divide a into two parts such that the sum of their

square roots is a maximum.

26. From a square sheet of tin 18 inches on a side equal

squares are cut at the four corners. From the remainder of

the sheet of tin a vessel with open top is formed by bending

up the sides. Find side of small squares when the vessel

holds the greatest quantity of water.

27. From a rectangular sheet of tin 3 feet by 2 feet equal

squares are cut at the four corners and a box with open top

formed by turning up the sides. Find sides of squares cut

off when contents of box are greatest.

28. A box, square base and open top, is to be constructed

to contain 108 cubic inches. What must be its dimensions to

require the least material ?
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29. A circular cylindric standpipe is to be built to hold

10,000 cubic feet of water. Find altitude and diameter of

base which require least material.

30. Find the shortest distance from (3, 5) to the line

? _ V = 1
2 3

31. Find the shortest distance from (7, 8) to the parabola

y
2 = 4 x.

32. Find the shortest line that can be drawn through (a, b)

meeting the rectangular axes.

33. A Norman window is composed of a rectangle sur-

mounted by a semicircle. Find the dimensions of the window

so that with a given perimeter the window admits the greatest

amount of light.

34. Two trains are running, the one due east at 30 miles

per hour, the other due north at 40 miles per hour. When
the first train is 30 miles from the intersection of the tracks

the second is 20 miles from this point. Find the least dis-

tance between the trains.

35. A person in a boat 3 miles from the nearest point of

the beach wishes to reach in the shortest time a place 5 miles

from that point along the beach. If he can walk 5 miles an

hour, but row only 4 miles an hour, where must he land ?

36. The strength of a rectangular

beam varies as the product of the

breadth and the square of the depth.

What are the dimensions of the

strongest beam that can be cut from

a log whose cross-section is a circle

18 inches in diameter? Strength pre-

vents breaking. Fig. 22.
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37. The stiffness of a rectangular beam varies as the product

of the breadth and the cube of the depth. Find the dimen-

sions of the stiffest beam that can be cut from a log whose

cross-section is a circle 18 inches in diameter. Stiffness pre-

vents bending.

38. The bending moment of a simple beam whose length is I

when the uniform load per

; linear unit is w is

Sl' M =b \ wlx — \ wx2

,

~r at the point whose distance

from the left support is x.

Find where the bending moment is a maximum.

39. The distance between two lights A and B is d. The

intensity of A at unit's distance is a, of B is b. If the inten-

sity of a light varies inversely as the square of the distance,

find the points between the lights of maximum and minimum

illumination.

40. If the illumination varies as the sine of the angle under

which light strikes the illuminated surface divided by the

square of the distance from the source of light, find the height

of an electric light directly over the center of a circle of radius

r when the illumination of the circumference is greatest.

t
2

41. If c
2
r-f-- is the total waste per mile going on in an

r

electric conductor, r resistance in ohms per mile of conductor,

c the current in amperes, t a constant depending on interest on

investment and depreciation of plant, find the relation between

resistance and current when the waste is a minimum.

42. If v is the velocity of an ocean current in knots per

hour, x the velocity of a ship in still water, and if the quantity

of fuel burnt per hour is proportional to x3
, find the value of x
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which makes the consumption of fuel a minimum for a run of

s miles.

43. Given n voltaic cells of E. M. F. e and internal resist-

ance r, to find the way in which the cells should be arranged

to send a maximum current through a given external resist-

ance R.

Let x cells be placed in series, then the current I
xe

x2
r
+ n

44. The equation of the path of a projectile is

y = x tan 6
2w2 cos26>'

where is the angle of projection, u the velocity of projection,

g = 32.16. The range, the value

of x when y = 0, is
n'

2 sm(20)

9

Fig. 24.

a. Find the greatest height.

b. Find the angle of projec-

tion which gives the greatest

height for a given velocity.

c. Find the angle of projection which gives the greatest

range for a given velocity.

45. Find the dimensions of the isosceles triangle of maxi-

mum area that can be inscribed in a circle of radius r.

Calling altitude of triangle x, base 2 y, y
2 = 2rx — x2

)
and

area A = x V2 rx — x2
. A is a maximum

when A' = 2 rx3 — x4
is a maximum.

dA'

dx
= 6rx? —Ax3

,

which is zero when x= f r. The first

derivative changes sign from + to —
when x passes through j-r. Therefore
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the area of the inscribed triangle is a maximum when its alti-

tude is § r.

46. Find the dimensions of the rectangle of maximum area
x2 v2

that can be inscribed in the ellipse —\-<L — l. The area of
or ¥

the rectangle is A = 4xy,

which is a maximum when

A' = xy is a maximum.

dA' dy
,= flj-i -f- y.

dx dx

Fig. 26.

From the equation of the

4'—$* By sub-ellipse
dx ay

dA' d2
v
2 — tfx2

stitution, = —-

—

-—'—. Hence A' is a maximum when
dx ay

a2y2 _ yLrg _ o Combining this equation with the equation of

the ellipse, x = -^ y =—~, and the area of the maximum
V2 V2

rectangle is 2ab.

47. Find the area of the maximum rectangle that can be

inscribed in the parabola y
2 = 2px whose limiting coordinates

are a, b.

48. Find the dimensions of

the cylinder of revolution of

maximum volume that can be in-

scribed in a sphere of radius r.

Calling the radius of the base

of the cylinder x, the altitude

^ V> (x, V) is a point of the circle

x* + V
2 = 9

s which generates the

Fig. 27. sphere. Calling the volume of
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the cylinder V, V— 2 nyx2 = 2 try (r
2 — y

2
). V is a maximum

d V t
when — = 2 ttt

2 — 6-n-y
2 = 0, that is when y =— , since this

dy
d>V ^

value of y makes —- = — 12 -n-y negative. The maximum is

4
dy

V= z.irr
3

. The ratio of the volume of the maximum
3V3

1
inscribed cylinder to the volume of the sphere is

V3
49. Find the cone of maximum volume that can be inscribed

in a sphere of radius r.

50. Find the cylinder of maximum volume that can be

inscribed in a cone, altitude h, radius of base r.

51. Find the maximum cylinder that can be inscribed in

the prolate spheroid.

52. Find the maximum cylinder that can be inscribed in

the oblate spheroid.

53. Find the cone of maximum volume that can be in-

scribed in a paraboloid of revolution, the limiting point of the

generating parabola y
2 = 2px being (a, b), the vertex of the

cone at intersection of axis of paraboloid with base of

paraboloid.

54. Of all right circular cones whose convex surface is the

same find the dimensions of that whose volume is greatest.

dV , f0n,
dyV=\ 7ry

2
x, —- = liT[2xy^- + x2

) and vyVx2 + y
l = constant.

dx \ dx J

arV + v
4 = constant, and -^ = t—-% • /j\

dx xr + 2 y
l

/ JL \
Hence ^^\J2-tlzft\. Equating the / \\dx \ x2 + 2y2

J I \

first derivative to zero, x = y V2, which / ^_j___^ \

makes V a maximum since — changes sign C ^--y—

3

dx \^ ^
from -f to — when x passes through y V2. Fig. 26.
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55. Of all right circular cylinders whose convex surface

plus the surface of the lower base is constant, find the dimen-

sions of that whose volume is greatest.

56. The distance between the centers of two spheres of

radii r and R is d. Find on the line joining the centers the

point from which the greatest amount of spherical surface is

visible.

57. Find the axis of the parabola of maximum area that

can be cut from a right circular cone, radius of base r,

altitude h.

Art. 25.— Derivatives of Higher Orders

It has been found convenient to call the first derivative of

the first derivative of f(x) the second derivative of fix), and
d2

to denote it by —-

2
f(x) or f"(x). In like manner it is found

convenient to call the first derivative of the second derivative

the third derivative of fix), and to denote it by the symbol
d3

-—/(») or /'"(#). By an extension of the same notation
&Xi

fiv
(x)> fv

(®)> —f /"(*) denote the fourth, fifth, ••, nth deriva-

tives of f(x).

For example, if fix) = x4 + 3 X* - 7 x2 - 27 x - 18,

/'(*) =±x3 + 9xi -Ux-27,

fix) =12z2 + 18z-14,

/'"(*) = 24*+ 18,

f»(x) = 24,

JT(*) =0.

It follows immediately from the definition that the integral

of any derivative is the next lower derivative.
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For example, if

fly(x) = 24:X-lS,

f"'(x) = 12xi -18x + Cl ,

f"(x) =4rXs -9x2 +C1 -x+C2,

f(x) = i«" - fa4 + i Q • a8 + J 2 • a? + C3
• x + C4 .

The arbitrary constants (7W <72, <73, C4 become known if the

function f(x) and its first three derivatives f'(x), /"(#), f'"(x)

are required to take given values for given values of x.

The successive derivatives f'(x), f"(x), f'"(x), • ••, are called

derivatives of the first, second, third, • • •, orders. If fn(x) is

given, f(x) is found by n successive integrations, and the

general expression for f(x) must therefore contain n arbitrary

constants.*

PROBLEMS

Form the derivatives of the first three orders of,

1. ^_6a2 + 15. 2. 3x2 + 4z-7. 3. —!—

•

1 — a;

Find f(x) when,

4. f'"(x) =x2 -5x. 6. f"(x) = 16 a? + 7.

5. /IV
(«) = ! + x. 7. /"(») = 10.

Art. 26.— Evaluation of the Indeterminate Form -

The ratio - may have any value whatever; that is, the

value of the ratio is indeterminate. If, however, the ratio of

*In Lagrange's notation the successive derivatives of f(x) are denoted

by /'(»), /"(*)i /'"(*)•"'> in Cauchy's notation, by Df(x), D2f(x),

Dzf(x) • • • . Newton denotes —- by s.
cit
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two functions "^ takes the form - for some special value

#M ° /(a?)

of x, such as a; as a, the true value of tjtt when a; = a is

denned as the limit of the ratio /(a + Ax
) when limit Ax = 0.

<£(a -f- Ax)

Since by hypothesis /(a) = and
<f>

(a) = 0,

/(q + AaQ-/(tt)

limit J
) ^ { = limit —,———

r

TT^^Trri'
<f>(a -f Ax) <fr(tt + Aff)-<fr(g) <£'(a

)

Ax

when limit Ax = 0. Hence by the definition the true value of

£+-t when x = a is ^-^, where /'(a) and fi(a) denote the
<f>(x) <j>'(a)

values of f'(x) and <j>'(x) when a is substituted for x.

If |TW _ the same analysis shows that the true value of
<£'(<x)

/(a) =/M-£M in general, the true value of^ is the
0(a) *'(«) *"(«) *A

, .

*(a)

first determinate ratio ^ ^ ' of derivatives of the same order.
r(a)

Ex.— Find the true value of f~? X + 2
'when a?= fc

or — ar — x + 1

-„. /(») ar>-3a; + 2 0, ,Here ^-^ = -- —-^—- = -, when x = 1

;

£(a>) x^-tf-x + l 0' '

*'(*) ~3^-2*-l~0'
Wliena; " 1

'

f"(x) 6x 3 , .
•'

,,) / = = -, when x = 1.
^"(a?) 6 a? -2 2'

Hence £ is the true value of — —X— when a? = 1.
ar — ar

2 — a; + l
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PROBLEMS

Find the true values of,

x2 -Ux + 24
when x = 2.

a2 -16 , ,

2. when # = 4.
a* + x _ 20

0^ — 1
3. — when x = l.

x2 — 1

4. — _!__, when x = l.
7x2 -9x + 2

aJ
4 -2a8 -t-2aj-l , .

6 . i+;;-^;iiiiBi.&
z4 -3ar} -7a;2 + 27a;-18

7. —~r when a= 1.

„ x" — or -,

8. when x — a.
x — a

x-2
(x _ 1)2 _ i

when x = 2.

10.
v -r v when x = a.

y/x2 — a2

11. * —4- when a = a. Here Z-LEi = _ when # = a for

all values of n and the true value of the ratio cannot be found

by the method of derivatives. The removal of the factor

(a — »)» from numerator and denominator leads to a deter-

minate result.



CHAPTER VI

PARTIAL DIFFERENTIATION AND INTEGRATION OP

ALGEBRAIC FUNCTIONS

Art. 27.— Partial Differentiation

If to pairs of arbitrarily assigned values of x and y there

correspond one or more determinate values of z, z is called a

function of the two independent variables x and y. This is

denoted by writing z =f(x, y).

The function z = f(x, y) is said to be continuous at x
, yQ if

limit f(x -f 8X, y + 82) — f(xo, 2/o) = when limit 8j = and

limit 82 = 0. It follows that if f(x, y) is a continuous func-

tion of x and y, it is also a continuous function of x and y

separately. The converse is

not necessarily true.

The equation z = f(x, y),

where x and y are independent

variables and z is a continuous

function of both x and y, when

interpreted in rectangular space

coordinates represents a curved

surface. Let (x
, y , zQ) be any

point in the surface. If x re-

—

X

Fig. 29.

tains the fixed value the

equation z =f(x , y) represents the projection on the ZF-plane

of the intersection of the plane x = x with the surface

78
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z = f(x, y) . If z = f(x , y) is differentiated with respect to

y, the result is called the partial derivative of z =f(x, y) with
dz

respect to y, and is denoted by the symbol — . Denoting by

dz dz y dz—9 the value of — when x = x
, y = y , z = z ,

—^ is the slope

of the tangent to z =f(x , y) at (y , z ) and measures the rate

of change at (x
, y , z ) of z when the point (x, y, z) moves

along the curve of intersection of x = x and z=f(x, y).

If y retains the fixed value y , the equation z =f(x, y ) rep-

resents the projection on the ZX-plane of the intersection of

the plane y = yQ with the surface z =f(x, y). If z =f(x, yQ)

is differentiated with respect to x, the result is called the

partial derivative of z — f(x, y) with respect to x, and is de-
f/2 f}% f)%

noted by the symbol — . Denoting by —- the value of —
dx ~ dx dx

when x = xQ, y = y , z = zQ,
—- is the slope of the tangent to
dx

z=f(x} y ) at (^ , x ) and measures the rate of change at

(x
, y , z ) of z when the point (x, y, z) moves along the curve

of intersection of y = yQ and z =f(x, y)*

The equations of the straight line tangent to the curve of

intersection of the plane x = x and the surface z =f(x, y) at

dz
(x

, y , z ) are x = x and z — z = —" (y — yQ) ; the equations of
dyo

the straight line tangent to the curve of intersection of y — y
dz

and z =f(x, y) at (x
, y , z ) are y = yQ and z — z = —^(x — x ).

dyo

The plane containing these two tangent lines is the tangent

plane to the surface z=f(x, y) at (xQ, y , z ). In the analytic

geometry of three dimensions it is proved that the plane

A (x — x ) + B (y — 2/ ) + G (z — z ) = through the point

(xo> 2/oj zq) contains the line x — x = a(z — z )y — yQ =b(z — z ),

*The use of d to denote partial differentiation was introduced by

Jacobi (1811-1851).
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when Aa -f- Bb + C = 0. Hence the equation of the tangent

plane is found to be z — z
()
= —(x — x ) H (y — ?/ ).

d#o dy

Denoting by Z the angle made by the tangent plane with

the XY^plane, cos Z =

V dx 2 dy 2
J

The normal to the curved surface z =f(x, y) at (x
, y , z ) is

the line through (x
, y , z

)
perpendicular to the tangent plane

at this point. Hence the equations of the normal are

X-X =-^(z-Z ), y-y =-^(z-Z ).
ox dy

For example, let it be required to find the equation of the

tangent plane and the equations of the normal to the sphere

a2 + V
2 + z

2 = 14 at (1, 2, 3). Differentiating, regarding y con-

dz
stant, x-{-z— = 0. Differentiating, regarding x constant,

dz
y -\-z— = 0. At the point of tangency

*.], 2/ = 2, , = 3, §&=-i f&--i
dz 3 52/o 3

Hence the equation of the tangent plane is

z-3 = -Kz-l)-fG/-2),

reducing to x + 2 y + 3 z = 14 ; the equations of the normal are

x — 1 = £ (z — 3), ?/ — 2 = | (z — 3), reducing to x = i z, 2/ = J z.

If the altitude of a right circular cone is y and the radius of

its base is x, denoting the volume by V, V=^nx2
>y. The

variables x and y are independent, for a change in x does not

cause a change in y. Suppose the radius to remain unchanged

while the altitude varies. Differentiating partially with respect
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to y. — =\ 7rx2
. This shows that if the base of the cone

dy

remains constant the volume changes ^ttx2 times as fast as

the altitude. If the altitude remains constant and the base
«J
yr

changes, — = § wxy. That is, the volume changes § irxy times
ox

as fast as the radius of the base.

PROBLEMS

In the following functions x and y are independent variables.

Form — and —

.

dx dy

1. z = xy.

2. z = x2 + y
2
.

3. z=2xy2+5x?y+6x-8y.

4. z = (x2 + s/

2
)!.

5. * = *
2/

11. Find the equation of the plane tangent to

x2 -±y2 + 2z2 = 6 at (2,-2,3).

12. Find the equation of the normal to x2 — 4?/
2 + 2z2 = 6

at (2, 2, 3).

13. Denote the base of a triangle by x, its altitude by y.

Find the rate of change of area when the base remains

unchanged.

14. The pressure of a gas on the containing vessel varies

directly as the temperature and inversely as the volume.

That is, denoting pressure by p, temperature by t, and volume

by v, p = c-, where c is a constant. Find the rate of change

6.
1 +x
1-2/

7.
x — y

z = ~.

x-\-y

8. x2 + y
2 + z

2 =r2
.

9. z = ax2 + by2
.

0.
v1

+y
2

4-*
4

-l
a? b2

c
2
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of pressure when the volume is constant. Also the rate of

change of pressure when the temperature is constant.

Art. 28.

—

Partial Integration

dz
Example.— Find z by integration when —- = 3 yx -j- x? -f- y

2
.

dx
dz

Since y is considered constant in forming —, terms of z con-
dx

d>
taining only y and constants have no effect on the value of —

.

dz
dx

Hence the integration of —, considering y constant, gives all
dx

the terms of z which contain x, but it is necessary to add an

arbitrary function of y, f(y), to cover the terms of z which do

not contain x. This integration gives

* = f afy + i«
4 + y

2% +f(y)-

If the value of z is known for some special value of x, the

value of f(y) becomes known and the result is determinate.

For example, if z = 3 y + 5 when x = 0, f(y) = 3 y + 5 and

z = fafy + \x* + y
*x + 3y + 5.

ntegrate,

dx
J

PROBLEMS

3. ^- = Xy
2 -Sx.

dy

dz o
. — = xy£ -

dx
U -3a;. a OZ 2 .24. — = y

2 — X2
.

dy

5. A.
dx

-x + \y\

dz
6. — = Sx2 — 5y, knowing that z = 3 y

2 - 7 when x = 0.
dx

dz
7. z— = 2 y

2 — x, knowing that z
2 = 10 + t/

5 when a = 2.
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Art. 29.— Differentiation of Implicit Functions

Represent by Ax and Ay the corresponding changes in the

values of x and y when y is a continuous implicit function of x

denned by the equation f(x, y) = 0.

By hypothesis f(x, y) = and /(as + Ax, y + Ay) = 0. By
subtraction f(x + Ax, y + Ay) —f(x, y) = 0, whence, by adding

and subtracting f(x, y -f- Ay),

[/(a? + Ax, y + Ay) -/(», y + Ay)]

+ C/(^y + Ay)-/(aj,y)].= 0.

Dividing the last equation by Aa; and then multiplying numer-

ator and denominator of the second term by Ay, there results

(1
\ /(«? + Aa;, y + Ay) -fix, y + Ay)

V } Ax

/O, y + Ay) -/(a?, y) Ay _ Q
Ay Aa;

Now since by hypothesis y is a continuous function of x,

f(x + Ax, y + Ay) -f(x, y + Ay)

Aa;

= f(x + Ag, y) -/(a?, y) ±
Aa;

where c has zero for its limit when limit Aa; = 0. Hence when

limit Aa; = 0, (1) becomes
d/Q, y)

a/foy) df(x,y) dy = Q and *y = dx

dx dy dx dx df(x, y)

dy

Eepresenting f(x, y) by u, this result becomes

du

dy_ _^£ #

dx~ du

dy
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Denoting by — and — the values of the partial derivatives

3 a dx dy
— and — when x — x

, y = y , the equation of the tangent to
dx By
the curve whose equation is u =/(x, y) = at the point (x

, y )
fj/i fill

is (y — ?/ )
—9 -f (x — x )

—- = ; the equation of the normal is

dy dx

e-*>t-<»-*>£=°-
Let z be a continuous implicit function of the independent

variables x and y defined by the equation f(x, y, z) = 0.

Denoting by Ax and Az the corresponding changes in the

values of x and z when y remains unchanged,

/(x + Ax, y, z + Az) -/(», y, z) = 0,

whence

f(x + Ax, y, z + Az) —/(a, y, g + Az)

Ax

/O, ?/, g + Az) -/(a;, y, z) Az = Q
Az Ax

When limit Ax = 0, this equation becomes

3/(x, y, Z)
+

3/(x, y, Z) gz = whence
gz = dx

dx Bz dx dx df(x, y, z)

dz

In like manner, denoting by Ay and Az the corresponding

changes in y and z when x remains unchanged, and passing to

the limit when limit Ay = 0,

df(x, y, z)

dz_ = dy

dy df(x, y, z)

dz
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Representing f(x, y, z) by w, these results become

du du

3£ =_^ and £— ft.
dx ou dy ou

dz dz

Denoting by —,
—

-, and —- the values of the partial
dx dy dz

j . ,. du du du , ,, ,.
derivatives —-,

—
-,
—- when x = x

, y = y , z = z , the equation
ox oy dz

of the tangent plane to the surface whose equation is

u=f(x, y, z) = Q at the point (x
, y , z ) is

the equations of the normal are

(*-* )g-(*-*o)f;=o, (y-^g-(,_^=o.

Denoting by X, 6
y, Z the angles made by the normal with

the rectangular coordinate axes X, Y, Z respectively,

du

/i dx
cos ex = - p

(
du

{? dul duly
\dx 2 dy 2 dz 2

J

with corresponding values for cos 9
y , cos Z

-

Example.— Find equations of tangent plane and of normal

to | +f + z
2 = l at (2,l,*Vll).

Writing_f +^,-l = 0,£4^g =||= 2,

Hence when

o -i , /re 5^o_4 Buq_1 dn _ 1 /tt
xQ = 2, 2/ = l, *b = *Vll, 5^-9' ^"2, ^~^
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The equation of the tangent plane is

£(*-2)+K2/-i)+ivn(z-ivn) = o.

The equations of the normal are

and jVll(2,-l)-K3-iVlI) = 0.

For this normal

cos 0, = .3233, X = 71°8'; cos 0, = .3638, y
= 68°2O';

cos Z = .8341, 0, = 33°29'.

PROBLEMS

1. Find equations of tangent and normal to

y
3 — 3 xy + Xs = at (x

, y ).

2. Find equation of tangent plane and normal to

x2 + y
2 -z2 = at (3,4,5).

3. Find angles made by normal to x2 4- y
2 — z

2 = at (2, 0, 4)

with the coordinate axes.

4. Find equation of tangent plane to xyz = 8 at (2, 2, 2).

5. Find angle made by plane tangent to z = 2 a,-
2
4- 4 y

2 at

(2, 1, 12) with Xr-plane.

Art. 30.— Successive Partial Differentiation and

Integration

If z=f(x, y), the partial derivatives of z with respect to

x and y, — and —, are in general functions of x and y. The
dx dy dz .

partial derivative with respect to a; of — is called the second

partial derivative of z with respect to x, and is denoted by the
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symbol — ,. Hence by definition —- =— —-. The partial
dx2 dx2 dx dx

dz
derivative with respect to y of —- is called the second partial

ox
derivative of z with respect to x and y, and is denoted by the

symbol . Hence by definition == . By a like
byox dydx dy dx

. ,. d
2
z d dz d2

z d dz A , £ ,,.
notation — =

,
= . An extension of this

dy2 dy dy dxdy dx dy

. . • . d3z d d2
z d3z d d2

z d3z d d2
z

notation gives —- = , = =
,

dx3 dx dx2 dydxr dydx-' dxdydx dxdydx
and so on.

For example, if z = x3
-f 3 xy2

-f yx2
,
— = 6 x2

-j- 3 y
2 + 2 yx,

dx

P: = 12x + 2y, J?L. =s 6y+2x, —=6xy+x2
, —=6y+2x.

dx" dydx dy dxdy
d 2
z d2z

In this example =—— . It is to be proved that this is
dxdy dydx

always true. The proposition may be formulated thus:

If the function z = f(x, y) and its partial derivatives
dz dz d z d 2z—, —-, , have determinate finite values, and z,

dx dy dxdy dydx
dz dz d z b2z—, — are continuous functions of x and y,
dx dy dydx dxdy

By hypothesis
S1 = f{x + l^x, y) - f(x,y) ± where f de_

dx Ax
pends on x, y, and Ax, and approaches zero with Ax. It is

convenient to write e = e1f1 (x, y), where ^ depends only on

Ax and approaches zero with Ax while fx (x, y) must be finite.

Similarly

d2
z _ f(x-\-Ax, y + Ay)— f(x, y -f Ay)—f(x -f Ax, y) +f(x, y)

dy dx Ax Ay

± € M*,y + ±y)-M*,y) ±^ {Xy y)i
Ay

where limit /i(^ .V + A.v) -/ife ^ wiien limit Ay = 0, must
Ay
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be finite, e2 must vanish with Ay, and fa (x, y) must be finite by

hypothesis.

In like manner —= f^ y + Ay
) ^I^ill ± Hffa y\ ana

by Ay

d2z = + Ax, y + Ay) - f(x + Ax, y)-f(x, y+Ay)+f(x, y)

dxdy Ay Ax

where c3 must vanish with Ay, e4 must vanish with Aa;,

limit f*(x + *x>y)-f*(x>y) when limit Aa? = must be finite,
Ax

and fA (x, y) must be finite. It follows that when limit Ax =
and limit Ay — 0,

limit /(> + As, y + Ay) -/(a; + Aa;, y) -/(a;, y + Ay) + /(a, y)

AyA#
dh dh

dxdy dydx

PROBLEMS

Form — — d*
z — — d*

z
of

dx dx* dydx dy dy2' dxdy

1. z = a2+y2
. 2. « = a^y. 3. z = ^±^. 4. 2 = #(y-2).

5. 2 =
a+y

6. 2 = #2

y
2
. 7.2 = a?'y*. 8. 2 = x*y~K

d2
z

Integrate 9. — = x?y + 3 x — 5 y + 2. Integrating, con-

dz
sidering y constant, —- = | ar*y + § a?

2 — 5 ya? + 2 a; +/x (y).
oa?

Integrating again, considering y constant,

2 = TV x*y f J x* - I yx> + x2 + /1 (y) • * + /, (y).

The arbitrary functions /,(y) and /2 (y) become known if 2 and

— are known for some value of x. Suppose that when x = 0,
dx
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« = V + 3, ||= 2/

2 + 5. Then /&) = ?/
2 + 5, /8 (y) = y + 3,

and the result becomes

z = tV x*y + i^ + 1 2/^ + v? + ^2/
2 + 5 * +2/ + 3.

d2
z

10.
dxdy

xy + 2x — 7 y -\- 5, knowing that, when x = 0,

dz
z = y — 2 and when y = 0, — =2x?.

dx

11.
a*?

14.

dydx
3xy2

. 12.
d2
z

5a;6?/
= (*_3)(y-2).

as^-2. 13. ||=^_/.

15
- ;nr =a,&- 5)-

5?/dx

Art. 31.— Area of Any Curved Surface

Let the equation of the curved surface be z=f(x, y) con-

tinuous in x and y. Planes perpendicular to the X-axis at

intervals of Ax divide the given surface into strips of surface

CDEF. Planes perpendicular to the F-axis at intervals of

Ay divide these strips into elements of surface abed. The
y= BG

strip CDEF = 2 abed, and the given surface
y=

x=OA x=OA y— BG
4 = 2 CDEF = 2 2 abed.

as=0 x = y =

This summation holds what-

ever be the magnitude of Ax

and Ay. The projection of

the element of surface abed

on the XF-plane is the rec-

tangle ajbtfidn whose area is

Ax Ay. The plane through ad

and the line ab' parallel to

afa intersects the prism which Fig. 80.
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projects abed on the .XF-plane in the parallelogram ab'c'd.

Denoting by 6'
2 the angle made by the plane of ab'c'd with

the XF-plane, area ab'c'd = J « When Ax and Ay ap-
cos 6 e

proach zero, the plane of the parallelogram ab'c'd approaches

the tangent plane to the curved surface at a, and the paral-

lelogram ab'c'd approaches the surface element abed. Hence,

when limit Ax = and limit Ay = 0,

x=OA y = BC x=OA y= BG

A = 2 2 abed = limit 2 2 ab'c'd
x= y= x— y=0

x=OA y = BG
limit 2

A.tAi/

y = COS0'a

Example.— Find the area of the groin formed by the inter-

section of the semicircular cylinders x2
-J- z

2 = r2
, y

2 +z 2 = r2.

One-eighth of the surface of the groin is bounded by the

cylinder x2+z2=r*, the ZX-plane,

the Xy-plane, and the intersec-

tion of the cylinders, which

intersection lies in the plane

y—x. Hence for this part of

the surface of the groin

dz_ _ _x dz

dx z ' dy

and

0,

Fig. 31.

8/Jf*x
= r S*y

i= Jy == (r

dxdy __ /**=r

l — x2)^ J*=0 I

xdx

(r
2- xrf

= _8rj(r2 -ayJ)*+C 8r
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Art. 32.— Volume of Any Solid

Denote by V the volume of the solid bounded by the con-

tinuous surface z=f(x,y) and the coordinate planes IT,
XZ, YZ. Planes perpendicular

to the X-axis at intervals Aa*

divide the solid into laminae

LL'; planes perpendicular to

the Y"-axis at intervals Ay divide

these laminae into prisms PP*\

planes perpendicular to the Z-axis

at intervals Az divide these

prisms into elements of volume

aa'. The volume of

aa' Aa? • Ay • Az
;

the volume of PP' = 2 Aa; • Ay • Az— • A# • Ay • Az, where

is less than unity. When Aa*, Ay, Az approach zero, volume
x= PD

of PP' = 2 dX'dy'dz — 6-dX'dy- dz. Since 6 • dx • dy >dz is an

z = PD

infinitesimal of a higher order than 2 dx -dy >dz = PD • dx • dy,
z =

dX'dy • dz.

y =BC
The volume of the lamina LL' = 2 PP' ; the volume of the

solid is

y=

V=2 LL'=5 2 PP'.
x=0 x=0 y=0

Hence in the limit

J (
dxdydz.

x=0 c/tf= i/?=
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Example.— Find the volume of the solid bounded by the

ZX-plane, the XF-plane, and

the planes x=a,y=b, z—mx.

In this problem

J<+x
= a S*y = b S»z = mx ,

clxdydz

S»x = a /-*y = b

= m I I xdxdy
c/x = */y =

/»x= a

— mb | xdx =
Jx=

\mbar.

Art. 33.— Total Differentials

Let u =f(x, y) represent a continuous function of the inde-

pendent variables x and y. Let Axu denote the change in the

value of u corresponding to a change of Ax in the value of x

when y remains unchanged; A
y
u the change in the value of u

corresponding to a change of Ay in the value of y when

x remains unchanged : Au the change in the value of u corre-

sponding to a change of both x and y by Ax and Ay respectively.

Then

(1) A^ =^ + A^>-/^>Att,

(2)

Ax

Ay *

(3) Au =f(x + Ax,y + Ay) -f(x, y)

= f(x + ^x
> y + A-y) -f(x> y + Ay) Aaj

Ax
f(x,y + Ay)-f(x,y)

Ay y

= /(a? + AX, y) -/(a, y) ± e^
Ax

+ /fo y + Ay)-/(g
t y) A

Ay
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where c vanishes when Ay approaches zero. If Ax and Ay are

indefinitely decreased, becoming dx and dy, and the correspond-

ing values of Axu, Ay
u, Au are denoted by dxu, d

y
u, du respec-

tively, equations (1), (2), and (3) become

dxu = ~dx, d
y
u = -^dy, du= -— dx «f

—

dy= dmu+ d9u.ox ay ox ay

The quantity dxu is called the partial differential of u with

respect to x ; d
y
u the partial differential of u with respect to y ;

du the total differential of u. The equation du = dxit + cZ
y
w

expresses the fact that the total differential equals the sum of

the partial differentials.

For example, if

u = x2 + y
2 — xy, dxu =— dx = (2 x — y) dx ;

ax

d
y
u = -^dy = (2y- x) dy,

dy

du = ^dx +^dy = (2x-y)dx + (2y-x) dy.
ox ay

The differential expression (4) du = Pdx -f- Qdy, where P
and Q are functions of the independent variables x and y, is

said to be exact if it can be obtained by differentiating some

function (5) u=f(x,y). The differential of (5) is (6)

du = ^dx +— <fy,and if (6) is identical with (4), (J)— = P,
ox ay ax

(8) f* = Q. The partial ^derivative of (7) is -^- = — : the
dy aydx dy

partial o-derivative of (8) is ^-= |S. Since J!lL = J!lL
oxoy ox aydx dxdy

the hypothesis that (4) is exact leads to the condition — = —-*.

dp so .

d,J Sx

Conversely, if — = —-, the differential expression
dy ox

du = Pdx + Qdy can be integrated. All the terms of u which
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contain x are found by integrating Pdx, considering y constant.

That is, (1) ?* =
j Pdx + Y, where Y stands for the terms of

u which do not contain x. To find Y from the ^/-derivative of

(1), —- =— I Pdx +——. If the expression du = Pdx -f Qdy

can be integrated, -^=Q. Hence — | Pcto H = Q, and

**_* a r
dy dyJ dy

~t~ — H ~ ~q~ I Pdx. Y can be found by integration if

Q — —- I Pcfcc is independent of #. Forming the ^derivative
dyJ

of this expression,

\ ayJ J ox ox oyj

da; di/ da\/ d# 6?/

by hypothesis. Hence Y" can be found by integration and the

integral of the given differential expression becomes known.

Consider, for example, the differential expression

du = (Sxy2 - x2
) dx - (1 + 6y2 - 3a%) dy.

This can be integrated since — = 6 aw = —^. Integrating the
dy dx

first term of dw, considering y constant, u = $ a%2 — A a? + F.

Differentiating partially with respect to ?/,

Whence 1I=_1_62/2 and r=-y-2y8 +(7.

Finally w = fafy
2 - -^ar

5 - ?/ - 2 y
3 + O.
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PROBLEMS

Form the total differential of

x o x2

1. u = xy. 2. u=-. 3. u = x*y. 4. w = —

.

y y

5. The pressure of a gas on the containing vessel varies

directly as the temperature and inversely as the volume;

that is, p = c-, where c is a constant. Find the change of
v

pressure when the temperature remains constant; the change

of pressure when the volume remains constant ; the change of

pressure when temperature and volume both change.

Integrate the differential expressions

:

6. du = (3x2 + 2ax)dx+ (ax2 + 3y*)dy.

7. du=(x* + 3xy2)dx + (y
3 + 3x2y)dy.

8. du = (x2 — 4 xy — 2 y
2)dx + (y

2 — kxy — 'lx2
) dy.

9. u = ax*yz . Show that x— -f-
?/—-'= 5 w.

ax dy

10. u = ax2
?/* + bxy\ Show that x— + w—=5w.

ox dy

11. u = F(x, y), where F(x, y) is homogeneous of degree n.

Show that x—- -\-y-— = ri'U.
ox oy

The terms of F(x, y) are of the general form ur
= Ax(n ~ r)

y
r

.

For all terms of this form #—

-

- +y~ = n • wr, and the truth
ox oy

of the proposition follows directly. This is Euler's theorem

on homogeneous functions.

12

.

If du = fx (x, y) dx -f- f2 (x, y) dy is exact and homogeneous

of order » •— 1, show that n • u = xfx (x, y) -\- yf2 (x, y) + G.

Denoting the integral of the given differential expression

by u = f(x, y), where f(x, y) must be homogeneous of degree
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n, since differentiation diminishes by unity the degree of an

expression, du = -^dx -f -^dy and n • u = x— + y— • In the
ox dy " dx dy
fill fj?/

given expression — = fx (x, y), — =f2 (x, y). Hence

n • u = xf^x, y) + yf2 {x, y).

Integrate the following expressions

:

13. du = (2y
2x + 3

y

3

)
dx + (2 afy + 9 a^

2 + 8?^) dy.

14. du = (y
2 + 6xy)dx+(2xy + 3x2)dy.

15 . dw = (1 af"*y + 6 y*) c?» + (a?* + 3 ic?/

-
^) dy.

Art. 34.— Differentiation of Indirect Functions

If z =f(x, y) and y — F{x), z is said to be a function of x

directly and also indirectly through y. Denoting by Ax, Ay,

and Az the corresponding changes in the values of x, y, and z,

Az=f(x + Ax,y + Ay)-f(x,y) and Ay = F(x + Ax)-F(x),
whence

Az_ /(a; + Aa;, y+Ay)-/(a;,y+Ay) f(x,y+Ay)-f(x,y) Ay
Ax Ax Ay Ax

and —^ as ^a?
~

i

~—^^—a2L Passing to the limit when
Ax Ax

limit As = 0, ^ =^+ |i^ and &=*»(*).
aa; da; oy da; da;

Example.— A point moves along the intersection of the

paraboloid z = 3 x2 + 5

y

2 and the plane y = 2x. Find the rate

of change of 2 and x. Here — = 6 a;, — = 10 y, and ^/ = 2.
, 5a; dy dx

Hence — = 6a; + 20y.
da;
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PROBLEMS
dz

Determine — when
dx

1. x2 + y
2 + z

2 = 25 and y = 2x + 3.

2. x2 + y
2 + z

2 = and 2x-3y = 0.

3. -
2
+ £ + -

2
= l and^ +^r2

.

a2 62
c
2

4. ^ + |] + -' = 1 and tf-3xy + x* = 0.
a2 b2

c
2

5. Determine —- and ~ when u = z3 and z = x-\-y.
ox oy

Art. 35.— Envelopes.

The equation f(x, y,a) = represents a curve whatever the

value of a. By assigning to a all real values an infinite system

of curves is obtained. The locus to which every curve of this

system is tangent is called the envelope of the system of

curves. The equation of the envelope is to be determined.

Let (1) f(x, y,a) = and (2) f(x, y, a -f- Aa) = represent

any two curves of the system. Their points of intersection

approach the points of

tangency of f(x, y,a) =
with the envelope when Act

approaches zero. Hence

the envelope may also be

defined as the locus of the

ultimate intersections of

f(x, y,a) =

and f(x, y,a + Aa) =

when Aa approaches zero.

Fig. 84.

The points of intersection of (1) and
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(2) satisfy f(x,y,a) = and £<& & " + Act
) -f^V, «) = p,

Aa
These equations, when Aa approaches zero, become

/(», y,a) = and t-/(«, 2/> «) = 0.

The elimination of a from the last pair of equations gives the

equation of the envelope.

In like manner the envelope of the singly infinite system

of surfaces f(x, y, z,a) = is found by eliminating a from

f(x> V) h a) = and ^-/fo V, *> ») = 0.

The envelope of the doubly infinite system of surfaces

f(x, y, z, a, b) = is found by eliminating a and b from

f(x, y, z, a, b) = 0, —f{x, y, z, a, b) = 0, —f(x, y, z, a, b) = 0.

Example.— Find the envelope of the system of circles with

centers on the X-axis and radii one-third of the distance of

center from the origin.

a 2

The equation of the system of circles is (x — a)2 + y
2 = —,

j

where a is the distance of center from origin. Differentiating

with respect to a, —2(x — a) =— . Eliminating a from the

equations (x - a)2 + y
2 = |L and -2(x-a) =—

, y
2 = \x*>

the equation of the envelope. This equation represents the

two straight lines y ——— x and y = x.

2V2 2V2

PROBLEMS

1. Find the envelope of the system of lines ^ + ^ = 1

when a + b = c, where c is a fixed constant.
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2. Show that the envelope of the normals to the parabola

if = 2px is a semi-cubic parabola.

3. Find the envelope of the system of ellipses —(-^- = 1

for which the area nab is constant.

2 2

4. Find the envelope of the system of ellipses — -f«
7
^- = l

for which a+b = c, where c is a fixed constant.
a2

52

5. Find the envelope of the system of planes —
-f- — -t— — = 1

when abc = m, where m is a fixed constant.

6. Find the envelope of the system of spheres whose

centers lie in the XF-plane and whose radii vary as the dis-

tance from origin to center.



CHAPTER VII

CIRCULAR AND INVERSE CIRCULAR FUNCTIONS

Art. 36.— Differentiation of Circular Functions

Denote by x the circular measure of an angle less than a

right angle. From the figure triangle OPD < sector OPA
< triangle OTA. Hence

-J?*

2
• sin a; • cos x < i r2 • x< £

r

2
• tana;

x . 1
and cos#< < This in-

sin x cos x

equality is true for all values of x

less than -• When x approaches

zero, cos x approaches unity. Since

lies between two numbers,
x

sin a;

cos a; and , whose common limit is unity when x ap-
cosa;

proaches zero, limit -^—= 1 when limit x = 0. This limit is
sin a;

fundamental in this chapter.

Denote by u a continuous function of x which changes by

Au when x changes by Ax. Then

T d v .. sm(u 4- Au) — sinw Au
I. — sin it = limit—*—-2- L

dx Au Ax

— V -mit *
S ^n J— '

C°S
^^ - ~ ^?^

•
—

A Aa;

100
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. Au
sin

,. 2 / Au\ Au= limit—r cos u + —— ]

Au \ 2 J Ax
2

= cos u when limit Ax = 0.
dx

dx dx \2 J V J dx\2 J

du
sb— siiim •—

dx

d . d
cos u— sm u — sm u— cos u

TTT d . d smu dx dx
III. — tan u = =

dx dxcosu cos'u

2 du . • o du du
cosJ

i£ h sir w •— —
dx dx dx 9 du— =—— = sec^u*—

•

cos2 w cos2 w dx

IV. Acotw =A tan^-^ = sec2^-wV—(*-*}
dx dx \2 J \2 J dx\2 J

2 du= — cosec^M
dx

du

xt d d 1 ax
V. —secw = - = —

ax dxcosu cos'u

smu 1 du . M„ du= tan u • sec u
cos u cos u dx dx

dx dx
VI. -^cosecu = -^-sec

/7

»(l-)-"(l-)s(f-)
= — cot u ' cosec u

dx
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VII. — vers u = — (1 — cos u) = sin u • -^«
(fcc d# dx

VIII. — covers w = — (1 — sin w) = — cos u •— •

da; da? da;

Example I.— Differentiate cos (3 x
2
).

— 008(3^) = -sin (3 x2
) . — (3 a;

2
) = - 6 » • sin (3 x2\

dx dx

Example II.— Assuming that the relative rate of change

of cos x and x remains the same as at 30° throughout the next

10', calculate cos 30° 10',

sin 30° = .5, cos 30° = .86603, and — cos x= - sin x.
dx

Hence at 30° the relative rate of change of cos x and x is

— .5. Since x is the circular measure of the angle, it is

necessary to express the increment of the angle in circular

measure. The circular measure of an angle of 10' is

f
14159 = .0029088. To a change of .0029088 in the value of

180 x 6
x there corresponds a change of — .0014544 in the value

of cos x under the assumption of the problem. Hence

cos 30° 10' = .86458.

^mtm PROBLEMS
Differentiate,

1. sin (a?
2
). 8. sinaj • cos(3#). 15. cos* (5a?).

2. sin (5 a). 9. 7 x . tan (3 x) . 16. tan (a;*).

3. sin (7 a). 10. cot2
(2 #). 17. sin7

a.

4. 2(sin#)2
. 11. sec (x2). 18. cos4

a,-.

5. sin (3 a) 2
. 12. covers (3 x -f 5). 19. sin (3a?)*,

6. 4sin/-\ 13. sin(2# — 7). 20. tan3
a.

7. 5cos 2 (2a). 14. tan (3 — 4a;). 21. cot5
#.
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22. Find the rate of change of sin a; when x = 45°.

23. Find the rate of change of tana; when x = 45°.

24. Find the rate of change of cos x when x = 240°.

25. Find when sin a; changes half as fast as x.

26. Find when cos x decreases half as fast as x increases.

27. Find when tana; changes four times as fast as x.

28. Assuming the rate of change of sin a; to remain the same

as at 60° throughout the next 5', calculate sin 60° 5'.

29. Assuming the rate of change of tan x to remain the same

as at 45° throughout the next 2', calculate tan 45° 2'.

30. ® = (a2 - x2
)? and x = a . sin 0. Find %

dx dO

Since
dy = cly.<te and ^= (a? - x2

)? = acos<9, ^=acos0,
dO dx dd dx

K J d6

^ = a2 -cos2
0.

dO

31 .
%L = x (x2 + a2)* Find % when x = a- tan 0.

dx
K }

dO

32. ^-=x2 (x2 -a2
)^. Find ^ when a = a.sec0.

dx
K J

dd

33. ^ = a;
2 (2aa'-aM Find % when a; = a (1 - cos 0).

dx
K )

dd
v }

34. Form -^ and —\ for circle x = B'COS0, y=B-smO.
dx dx2

Since x and 2/ are continuous functions of 0, if Ax, Ay, and A0

denote corresponding changes in x, y, and 0, limit Aa? = and

limit Ay = when limit A6 = 0. For all values of AO,

Ay dy

*!Up. Hence when limit A0 = 0, & = ^.
Aa; Aa; dx dx

A0 d$
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35. Form ^ and ^ for cycloid x = R0-R$m0,
dx dx2

y = E— RcosO.

36. Form ^ and ^ for cycloid x = R-Rcos6,
dx dx2

y = R6 + RsmO.

37. Show that 2 tan x — tan2# has a maximum value when

4

38. Show that tan x + 3 cot x has a minimum value when

39. Find the maximum radii vectores of r = a sin (3 0).

40. Examine sin x cos3
a; for maxima and minima.

41. Examine since + cos a; for maxima and minima.

Fig. 36.

42. Find the length of the arc of the sector which must be

cut from a circular piece of sheet iron so that the remainder

may form a conical vessel of maximum capacity.

V= -r3 sin2# cos x.

o

43. A steamer whose speed is 8 knots per hour and course

due north sights another steamer directly ahead whose speed

is 10 knots and course due west. What course must the first
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steamer take to cross the track of the second steamer at the

least possible distance from her ?

Find the true values of,

A . 1 — cos x , A . „ x — sin x cos x -l ^
44. when x=0. 47.

45.
x ~ smx when a = 0. 48.

ar

46 .
^M when a> = 0. 49.

ar
3

tan a? — a?

a; — sin x
when aj == 0.

#sin# ,

;
— when x

x — 2 sin a;

= 0.

50. Show that the radius of curvature of the cycloid

x = RO — R sin 0, y = R — R cos is twice the normal.

Art. 37.— Evaluation of the Forms oo • 0, co — oo, —
GO

If f(x) •
<f>

(x) when x = a takes the form go • 0,

f{x) . +(») =!M= <> when s = a,

and the true value of the expression may be found by the

method of Art. 26.

If f(x) — <f>
(x) takes the form co — oo when x = a,

1 1

f(x)-Hx)=^-^^^Kl^enx = a,

f(x) +@) /(xj^j

and again the method of Art. 26 may be applied. The reduc-

tion of the form co —

effected more directly.

tion of the form co — co to the form - can frequently be
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1

If y== /M = ^ when a = a, y =^ = £ when x = a, and

the method of Art. 26 gives

Hence, y = y ,; j and w = Z^2 = / A / when a; = a. That

is, the form — is evaluated in precisely the same manner as

the form -•

Example I.— Evaluate (a2 — x2
) tan— when x = a.v ; 2a

(a2 — x2
) tan^— = • oo when x = a.

Z a

/ 2 tv i 7r# a2 — x2
t

(a2 — ar) tan— = = - when x — a.
* 2 <* cot^ °

2a

Hence, (a2 — x2
) ta,n~ = — =— when x = a.

2« __ZL COSec2^ *
2a 2a

Example II.— Evaluate sec x — tan x when x = -•
2

sec x — tan x = oo — oo when <c = -•
2

sec a; — tan x = —

—

= - when # = -•
cos a; 2

Hence, sec x — tan a; =
~ G0SX — o when a; = -•
— sin x 2
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PROBLEMS

Evaluate, 1 . (1 — x) tan —- when seal,

1 7T

2. when a; = 0. 3. x sin2- when a; = oo«

cot^ x
2

4. x cot a; when a; = 0. 5. sec (3 a;) cos (5«) when x = -•

6. 2 a; tan a; — 7r sec a; when a; = -•

2

7 . (1 — tan x) sec (2 a;) when x = j-

Art. 38. — Integration of Circular Functions

The eight formulas of Art. 36 may be written,

I. I cos u • — = sin u + (7, III. | sec2w •— = tan u -f (7,

*/ da; J dx

II. I sinw-— = — cosw + (7, IV. I cosec2^-— = — cotw-f-O,
J dx J dx

V. ( tan w • sec u •— = sec u -f C,
J dx

VI. I cot u • cosec u •— = — cosec u -f C,
J dx

VII. I sin u • -— as vers ^* -f C,
J da;

VIII. fcos tc . — = - covers u + C.
J dx

Example I.— Integrate ^ = x • sin (2 a;
2
),

da;

This derivative has the general form smu— . Placing

du
dx

u = 2x2
,
— = 4 x, and the given derivative may be written
(XX
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-£ = J . sin (2 cc
2
) • 4 x. Hence, by the formula,

cix

/-sin w •— = — cos u -h C, y = — \ cos (2 cc
2

) + O.
dec

dy • 5•~ — cm 'Example II.— Integrate — = sin x • cos x.

dx

Since —sin x= cos cc, — = sin5 cc— since, and ?/=isinc
cc-f (7.

dx dx dx

lit

PROBLEMS
egrate,

1. ^=cos(4cc).
dx

7.
dy 1 1
-T = _.cos-.
aa; or x

2. ^=cos(2cc-5).
dx

v J 8. ^ = 3sin(5ec-7).

3. ^=^.cos(^ + 2).
dx

9.
dy • o— = snree • coscc.
dec

4. ^/=sec2 (3cc + 5).
da;

10.
dy . i

-^ = S1I12 X • COS X.
dx

5. £-*©• 11.
dy o— = cos^ec • since.
dec

6. ^= cos (fee), cot (fee).
dx

V2 y V2 '
12. -M = tan5

ec • sec2
x.

dx

Frequently an expression containing circular functions, when

not directly integrable, may be transformed into an expression

which can be integrated by means of the trigonometric rela-

tions sin2
ec + cos2

ee = 1, sec2
ec = 1 + tan2

ec, sin2
cc = % — i cos (2 ec),

cos2
ec = | + | cos (2 cc), sin ec cos x — ± sin (2 ec).

The last three relations are special cases of the formulas

sin cc sin y = -J
cos (x — y)— \ cos (x + y),

cos x cos y — \ cos (x — y)+\ cos (ec -f- ?/),

sin x cos 2/ = \ sin (cc + ?/) + -| sin (cc — y),

which are frequently useful.
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Example I. — Integrate -& = sin5
a; • cos2

a;.

dx

Write — = sin5 x • cos2 x = sin4 x • cos2 x • sin x
dx

= —(1 — COS2
#)

2 -COS 2 X— cos a
dx

= — cos2a?— coscc-f 2 cos4
a;— cos a; — cos8

a;—cos a;.

dx dx dx

Integrating term by term, y — — i cos3
a; +

-f
cos5

a; — \ cos9
a; +C.

Example II.— Integrate -^ = tan4
a;.

dx

Write — = tan4 x = tan2 x (sec2 x — 1)
dx

= tan2
a; • sec2 a; — tan2

a; = tan2
a; • sec2

a; — sec2
a; + 1.

Integrating term by term, y = | tan3 x — tan x + x + C.

Example III.— Integrate -^ = sin4
a;.

dx

Write ^ = sin4 aj = Ji-icos(2aj)} 2

ctx

= J - i cos (2 a?) + J cos2
(2 a?)

= J - |cos(2a;) + i {* + £cos(4ar)}

= t ~~ i cos (^ *) + i cos (^ a;)-

Integrating term by term, y = f x — £ sin (2 a;) +^ cos (4 a;) + (7.

Example IV.— Integrate *fe= !***£.

da; cos4
a;

Write ^ = ^H^ = ?H^.-V = tan2 aj.sec2
a;. Integrating,

da; cos4 a; cos2
a; cos2

a;

y = Jtan3 a;H-C
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Example V.— Integrate -^ = sin2 x • cos2
x.

dx

"Write -^ = sin2 x • cos2 x = 1 sin2
(2 #)

dx

= i I i - i cos
(
4 *) !

= i -

1

cos (4 ?)«

Integrating, ?/ = -|- a; —^ sin (4 x) + C.

Example VI.— Integrate -£ = sin x cos 4 x.
dx

Write -^ = sin x cos 4 a; = i sin 5 96 — 4- sin 3 a;. Integrating,
dx

y= — y
1^ cos 5 a? + |- cos 3 x + 0.

PROBLEMS
Integrate,

1. ^ = sin2
(3 x). cos3

(3 x). 8. ^ = sin3 x • cos3
a;.

2. ^ = sin3 (ia;). 9. ^ = sin4

dx
V2 '

do;
jura- cos4

#.

3. ^ = cos2
(2 a). 10. ^ = tan5

a.
dx dx

4. ^ = tan3
(2 a?). 11. &*- cos5

(3 x).
dx dx

5. ^ = 3cos3
a;. 12. ^ = 3a>sin2 (a^ -cos3

(a;
2
).

dx dx

6. ^ = 5sin2
(£a;). 13. & = a;

2 sec2
(3 x3

).
(Xaj otaj

7. ^ = sm'x.cos'x. 14. *y= sJH*l.

dx dx cos2
a;

Show that, m and ?i being positive integers,

X2tt
/»2ff

sin (mx) *dx = 0. 16. I cos (mx) >dx = 0.
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X2rr sin (mx) • sin (nx) -dx = 0, m =£ n.

X2;r cos (mx) • cos (n#) • dx = 0, m =£ n.

X
27r

cos (rax) • sin (nx) • dx = 0.

J^2tt
/»2n-

cos2 (mx) -dx = iT. 21 . I sin2 (mx) • dx = -jr.

»y0

Art. 39.— Integration by Trigonometric Substitution

First derivatives with, respect to x involving Va2 — x2 may

be transformed into trigonometric derivatives by the substitu-

tion x = a • cos ; those involving Va2 + x2 by the substitution

x = a • tan ; those involving Vx2 — a2 by the substitution

a = a • sec 6 ; those involving V2 ax — or* by the substitution

x = a (1 — cos 0).

dv 1
Example.— Integrate

da; aj^-a*)*

Placing a; = a • sec 0, — = a • sec • tan 0, (x2— a2
)? = a • tan 0.

d0

Hence, ^/ = 4/ .
d* 1. cos2 = i{± + icos(2tf)J.

' dd dx d6 a* a3 * 2 2 v "

Integrating, y = — J
1 -f -^ sin (2 0) j -f- 0. From a; = a • sec 0,

= sec"1
-, sin (20) = 2 sin0 cos = 2-Yl -^ = ^4(x2-a2

)
i

-

a x\ x2
J x2

Finally,
J/
= -L . sec" 1* +-^(x2 - a2f + C.

2 a? a 2a2x2

PROBLEMS
Integrate,

d.V___! 9 dy_
1. Z2.-: : 2.

dx (a2 -x*)% dx x2
(l + x2

)*
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Q
dy= x5dy _ 1

dx

dy_

a?(x2 -l) }*

dx
(1

3

dx
(1 - x2

)^

7 .

dv = g? .

8 .
^i=—^—.

dx
(2 + ar

2

)*
' tfa Vl+¥2

9. ^=^(l-^)i
dx

10. lfe=r - -
*

• Substitute x = a- tan 6.

dx (a? + ar)
2

u. gg = ! .

<to (1 - ar
2

)
2

12. |^= ^Lz^. Substitute »* = sin ft

13. Find the area of the circle x2
-f- y

2 — r2.

A = 2 I (r2 — x2
)^ • dx. Substituting cc = r • cos 0, and

noticing that when x runs through all values from + r to — r,

runs from + £ to — jj,
there results

cos2 0.d0 = 7r.rJ

.

14. Find the area of the ellipse —a -\-^-—l.
a2 b

2

15. Find the area of the hypocycloid x$ + y$ = a*

16. Find the volume of the solid generated by the revolu-

8 a3

tion of v = = about the X-axis.9
x2 + 4a2

x*
17. Find the area bounded by the curve y

2 = and the

3
2 a —

x

line x — 2a. A = I -• Substitute x = 2 a • sin2
0.

Jr-*2a

(2 (*-•»)*
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Art. 40.

—

Polar Curves

Tangents and Normals.— Let r = f(0) be the equation of a

continuous plane curve, P(r, 0) any point in the curve, and

P'(r-\-Ar, 9 + A0) any other point in the curve. The ratio

measures the average rate of change of r in the interval
Ar

A0
A0, and — = limit— when limit A0 = measures the actual

9

d$ A0
rate of change of r at the point (r, 0).

The secant through (r, 0),

(r + A?*, + A0) approaches

the tangent to the curve at

(?', 6) as A0 approaches zero.

Hence the angle AP'S ap-

proaches the angle APT= <£

included by the tangent at

(r, 0), and the radius vector

to the point (r, 0) when A0

approaches zero. Drawing a

perpendicular from (r, 0) to

AP',

tan <j> = limit tanAP rS = limit

= limit

r • sin A0

r + Ar — r • cos A0

sin A0

A0

A0rsm—

-

2 . A0 . Ar

—

X

— r
eZ0

dr
when limit A0 = 0.
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The distance AT from the pole to the tangent measured on

the perpendicular to the radius vector to the point of tangency

is called the polar subtangent ; the

distance AN from the pole to the

normal measured on the same per-

pendicular is called the polar sub-

normal. From the figure subnormal

AN=—; normal PN =(W dr*\l

dp)''

subtangent AT-.= r>
dO._; perpen-

dicular from pohj to tangent

AD -= p =
r2

7* +
vie2

)

Asymptotes. — When in a polar curve r=f(0), for some

finite value of 6 = , r becomes infinite and the subtangent is

finite, the tangent to the curve at infinity passes at a finite

distance from the pole and is called an asymptote. If the sub-

tangent is positive, lay it off to the right of the radius vector

looking towards the infinitely distant point of the curve ; if neg-

ative, lay off the subtangent to the left of this radius vector.

Example.— Examine r — - for asymptotes.

For = 0, r = oo. The subtangent = i* .^=
dr

a. Hence

for 6 = 0, subtangent = —a, and
===

the asymptote is obtained by

laying off on the perpendicular

— to the polar axis at the origin to

the left when facing in the direc-

tion $ = the distance a and drawing the perpendicular PT.

Fig. 89.
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PROBLEMS

1. Find the subtangent of r = a-$.

2. Find the subtangent of r2 = a2
• cos (2 0).

3. Examine r = — for asymptotes.

4. Find the angle under which the radius vector cuts

r= P -
1 — cos

5. Show that the radius vector cuts r = ae under a constant

angle.

Length.— Denoting the length of the curve r=f(ff) from

= $ to 6 =
1} by 8

Fig. 40.

= 0i

= limit S Vr2
• sin2 A0 + (r + Ar - r • cos A0)2

— 0o

- limit's*JrfmM)
%

+ I'd- «* **) ±±L\
2

Ae
0=00 * \ &0 J \ A0

J

= f * \/^ + ^=
• ^j when limit A# = o.

Je=e * d$2
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Area.— Denoting the area bounded by the curve r =/(#)

and the radii vectores to the points (r , ), (fa 0j) by A,

A = limit i 1 i*.A$= 4 f r*. d0.
= 00 c/00

Example.— Find the length and the area of the cardioid

r = a (1 + cos 6).

The length

s = 2 fYr2 +^|V . d0 = 2 f*
|
(a + a- cos 0)

2 + a2
- sin2 <9Ud0

= 2a f'
r

V2(l+cos^).^=4a-cosi^.d^=8a(sini^=8a.

The area A = 2 . \ fV • tf0 = a2 C* (1 + cos 0)
5

= a2 r*(l + 2cos<9 + cos2
0) -d0

= a2 f
7r

(§ + 2cos0 + icos20)d0

=a2
|fl9 + 2sin0 + ^sin20r = f73

PROBLEMS

1. Find the area of the lemniscate r2 = a2
• cos 2 0.

2. Find the area of r = 2 a • sin 0.

3. Find the length of r = a • sin3 -.

4. Find the area of one loop of r = a • sin (2 0).

5. Find the area of r = a • sec2 - from = to = -.

L 1
;
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Art. 41.— Volume of a Solid by Polar Space

Coordinates

The polar space coordinates of a point are r, <j>, and 6. The

conical surfaces corresponding to 6 and + A0 include a

conical wedge of the volume

to be determined. The planes

corresponding to <£ and
<f>

-\- /\cj>

cut from this wedge a solid of

the nature of a pyramid. The

spherical surfaces corresponding

to r and r + Ar cut from this

pyramid an element of solid

which, when A?*, A<j>, and A0

are indefinitely decreased, ap-

proaches as its limit the rec-

tangular parallelopiped whose

ad = r • cos 6 • A<£, ac= r • A0. Hence in the limit the element

of volume = r2 • cos 6 • dr • d<j> • dO,

the pyramid =1 r2
• cos 9 • dr • d<f> • d0,

•/r=

the wedge =1 I r2
• cos • dr - d<f> > d$,

J<})=0 Jr=0

and the entire volume

Fig. 41.

dimensions are ab = Ar,

I ( r2 • cos (9 • dr . dd> • dO.
= c/0=O c/r=

For example, let it be required to find the volume of the

trirectangular spherical pyramid, the radius of the sphere

being a. In this problem r extends from to a, 6 from to ^,

<£ from to |. Hence,
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V= (
2

I

2

( r».cos0.dr.(fy.d0

3 /»0= - /»<*> = -
2
cos 0-d<£-d0

a3 p=f '

3»/0=o c/<^=o

I . d0 «

2

66 */e=o

Art. 42.— Differentiation of Inverse Circular

Functions

To differentiate y = sm-1
w, where w is a continuous function

of jc, write sin y = u, and differentiate with respect to x.

du

There results cos y • 2a=— , whence — =
; and, since

dx dx dx cosy'

du

du d . _i da;
cosy = VI — sin2y— Vl — w2

,
-^ =— sin *w
da; da; yi _ u*

du du

T ,., d % dx d. . da;
In like manner — cos

-1 w = ; —-tan l u
dx™ VI -u2 ' dx 1+w2 '

du du

d l i *» d , dx— cot
_1 w = — rr-.—5; —sec- 1 ^

da; 1+u*' dx uVw'-l'

_du du

d ,
da; d 1 da;— cosec

-1 u =
, ; — vers

-1 u =
da; tfc Vw2 -l «f V2w-w2

_dw
d _i da;

covers l u
dx V2w
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2 x
Example.— Differentiate tan x

1-x2

. o (l-x2
).— (2x)-2x~ (1-x2

)
d 2x v J

dx
K }

dx
K )

d. -i_2x__ dxl-x2 (1-x2

)
2

tan
dx 1—x2

-. / 2 x V
^ , 4^2a? V

l-a?V " ' (1-a2

)
2

= 2(l-a^)+4a;2

= 2(1 +ft2
) 2

(l-^)2+4«2 l+2x2 + x* 1 + x2
'

d 2 x d
It appears that —tan-1 - = 2— tan_1 #, which is as it

dx 1 — x2 dx

2x
ought to be, since tan * = 2 tan" 1 x by trigonometry.

J. — X>

)ifferentiate,
PROBLEMS

1. sin" 1
(3 a;).

A 4- I
2 ®

4. tan 1—

•

o
7. sec

-1
(a;

2
).

2. 3 sin- 1 ??. 5. 5vers-1--

5
8. COt-g).

3. sin" 1

(3 x +5). 6. 3^2 + 2 cos
-1

x.

10. cot-1

^

-
^.

9. 5 tan-1—
X

1 1

.

Show that — sin- 1
(3 z - 4 Xs

) = 3— sin"1
x.

dx dx

12. Form -^ and —| of equation of cycloid
cix dx

x = r vers
-1 - — V2 ry—y2

.

r

Here ^ = j , henee & = J?H^.
<*S» ^/2ry-y' dx v y

Squaring, fg- ?T- 1. Differentiating, 2&g = - ?T&
dx2 y dx dx2

y
2 dx

Whence, ^1 = -L.
dx2 y2
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13. Form

— and — of cycloid y = r> vers
-1 - -f- V2 rx — x2

-

dx dx2 r

14. Find length of cycloid y = r • vers
-1 - + V2 rx — x2

.

x

r

15. On a pedestal 25 feet high stands a statue 11 feet high.

Find the distance from the base of the pedestal of the point in

the horizontal plane through the base at which the statue

subtends the greatest angle.

Art. 43.— Integration by Inverse Circular Functions

The results of the preceding article when - is substituted

for u may be written in the form,

du du

T r dx . ,u
,
~ TTT f dx 1 .ti

I. I . = sin"1- + C-, III. I -5-—5 = -tan-1- + C:
J ^/a2 — u2 a J a2 + u2 a a

_du _du

II. I
;

= cos
-1- + C\ IV. 1-2-—s = -cot-1-+C;

J Va2 - u2 <*> J a2 + u2 a a '

V. I —
;

= -sec-1- -f- C;

<2tt

VI. I

—

= -cosec~ 1- + C;
J u-Vu2 - a2 a «

VII. f -

dx = vers
-1 - +(7;J V2 aw - u2 a

du

VIII. f -
da; = covers-1- + a

J V2au-u2 a
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Example.— Integrate -^ =
. This derivative has

dx V2 - 4 ar
3

du

the general form —— Placing w2 = 4a^, w = 2a;* and
V a2 — u2

j .

f!= a**. Writing ^ =—^ =i-^=>
c?a?

&
d« V2-4JB8 3 V2-4«*

?/ = -^ sin"
1 (V2-a;f) + C.

PROBLEMS
Integrate,

dy_ 3 %
cto 4 + 9 a;

2
da; 1 + a4

2. ^ = __J__. 4 . ^ = 3

*» a;V3a;2 -5' " *c V5a;4 -2a/

d?/ x
5 . -£ = —

. Reduce improper fraction to mixed number.
cix 1. -j— xr

6 ^ — x a dy _ tan-1 a;

da; a?
4 + 4 ' dx 1 + x2

7. <fy= 1
10# ty = sin

-1
a;

dx VGaj-ic2 *» Vl-ar8

o #_ a; dy _ sec
-1 x

dx Vl — x4 ' d® a^Var2 —

1

— (a;-3)

12 <*? = 1
Since ^/ =__J_ = i^ ,

da; ^-6^ + 11 da; 2+ (a;-3) 2 2+(a;-3) 2

2/
= ^tan-1^ + 0.

V2 V2

X3 .
^/__ _i_ _.
*B Vl+3a;-a^
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14. The time of descent of a body down the arc of the

vertical frictionless cycloid x = r • vers
-1 ^

-f- V2 ry — y\ from

Fie. 42.

y = h to the vertex, is t = ( -
J

2

( . Show that the

time is the same for all positions of the starting point.

15. A body is suspended on a frictionless horizonal axis,

turned through a small angle O, and then left free under the

action of gravity. This constitutes a

compound pendulum. The relation be-

tween 0, the angle the pendulum in any

position makes with the vertical and

the time t measured in seconds after the

pendulum is started, is expressed by

the equation
ah

0, where g is

Fig. 43.

complete oscillation.

dO

dt

dtf h* + kf
the acceleration of gravity, h and kx are

constants depending on the shape and

material of the pendulum and the posi-

tion of the axis. Find the time of a

In this problem, when t = 0, 6 =
,

0.
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16. In strength of materials it is

proved that for any point (x, y) of the

elastic curve of a long column

EI fy_.
dx2

-P-y,

where E and / are constants depending

on the material and cross-section of

the column; P is the load. Calling

the maximum deflection A, when y = A,

-^ = 0, and when x = 0, y = 0. Find
dx
the equation of the elastic curve.

Art. 44.— Eadius of Curvature

If a point moves in the circumference of a circle, the

tangent to the circle at this point changes its direction. Sup-

pose the point to start from A. When it reaches B, the tangent

has turned through the angle .

T'ST=AOB. The ratio of the

angle AOB to the distance AB the

point has moved along the circle is

called the rate of curvature of the

6 1
circle, and equals—- = -• That is,

9 * r-B r

the rate of curvature of the circle

is the reciprocal of the radius of

the circle.

If a point moves along any curve y=f(x), the ratio of

the angle through which the tangent turns to the distance

the point moves is called the average rate of curvature of the

curve for the distance the point moves. Denoting by A<£

Fig. 45.
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the angle through which the tangent turns while the point

moves a distance As along the curve, the average rate of cur-

vature is —& The actual rate of curvature at any point {x, y)

of the curve is the value at (x, y) of limit —* = --2 when

limit As = 0.

The reciprocal of the rate of curvature at any point (x, y) of

the curve is the radius of the circle which has the same rate

of curvature as the curve at the point (x, y). The reciprocal

of the rate of curvature is called the radius of curvature, and

is denoted by p, so that p = — . Now <£ = tan-1-^, hence
d<f> dx

ds ds dx

ds

dx (»+» (+£)'
p

dcj>~ dx d<f> ~d$
=

dx

d2
y -

dx2

dx2

d2
y

dx2

The analysis supposes that the curve is such that y is a

continuous function of x, and
<f>

a continuous function of s.

If the equation of the curve is given in the form x=f1 (t),

dy

"*» 1=.* and
dx

dt

d2
y d dt

dy d2
y

t
dx d2x

t

dy

d dt 1 dt2 ' dt dt2 ' dt

dx2
' dxdx~

dt

dt dx dx~ dx3

dt dt d?

Hence P =

(dx* df\\
[dt2 T dt2

)

dt2 "di df "dt
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For a polar curve r =/(0), x=r-cos$, y = v sin 0. Hence

|=-,.sin, + cos,.|,

§=,.cos*+sin*.|,

tf0
2
= — r-sin0 + 2sin0

d0^ d02

Hence for a polar curve p=
T

d02 d02

A circle of radius p, placed so that the circle and curve

V —f(x) have a common tangent at (x, y) and lie on the same

side of the common tangent, is called the circle of curva-

ture of y — f(x) at (x, y) ;

the center of the circle is

called the center of curva-

ture of y=f(x) at (x, y).

Denoting the coordinates of

the center of curvature by

a and /?,

(1) a — x — p • sin
<f>

dx\ dx2

) t

da2

(2) = 2/ + p ' cos <£ = y +
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The locus of the center of curvature as the point (x, y) traces

the curve y=f(x) is called the evolute of y = f(x). The

equation of the evolute is found by solving (1) and (2) for x

and y in terms of a and /3 and substituting in y = f(x).

Example I.— Find the radius of curvature, coordinates of

center of curvature, and evolute of the parabola y
2 = 2px.

Heref^, f*=-& hence „ = - i^+f^ a = 3x+p,
ax y ax* y* pz

(3 = — ^ ; the evolute is ft
2 = T̂ (a —pf, a semi-cubic parabola.

The radius of curvature to the parabola at the vertex (0, 0)

is p; at the extremity of the latus rectum (^p, p) the radius

of curvature is 2 V2 -p.

Example II.— Find the radius of curvature of xy — 4 at

the point (1, 4).

For this curve ft— 4, ^= 1 At (1, 4), ft= -4,
dx x2 dx2 x3 dx

g=8. Hence P = i (2)1.

PROBLEMS

Find the radius of curvature of

1. jf = 4*at(l,2); (0,0); (4,4).

2. •| + l
2

= lat(3,0); (0,2).

a2
6
2 a2 62

5. x = r • vers
-1 V2 r?/ — ?/

2
.

6. x = t>.*, y = %g>l2
.

7. x = acos<j>, y = b sin $.

8. x = R'0-R-$me,y = R-K-cos$.
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9. 2 xy = a2
. 12. r = a (1 — cos 0).

10. <e* + y* = ai 13. r2 = a2
• cos (2 0).

11. ?/ = sin #. 14. r = a .



CHAPTER VIII

LOGARITHMIC AND EXPONENTIAL FUNCTIONS

Art. 45.— The Limit of 1 1 -J-
-

J
When Limit z = cc

Assume first that z takes only positive integral values m.

By the binomial formula,

\ mj m 1-2 m2

. m (m — 1) (m — 2) 1_
•

1-2-3 m3 + '"

. m (m — 1) (m — 2) • » (m — n + 1) 1

. m (m — 1) (m — 2) > • (m — n + 1) (m — ?i) 1

l-2.3.4.»n.(n + l) mn+1

, m(m — l)(m — 2) ... jm — (m — l)j J_
1 • 2 • 3 • 4 • • • ra mm

= 1-1 .

m V m)\ mj
1.2-3 +

+KX m
1-2. 3- ..7i

128
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\ mj\ mj \ m J\ m \ mj\ in J+ 1-2.3-n U+l +
(7i+ l)(n+2) +

V mj\ m J \ m
+

(n + l)(n + 2)-..m J

This expansion is true for positive integral values of m how-

ever large m may be taken. Denote by S the sum of the first

Ti + 1 terms of the expansion, by R the sum of the remaining

terms. Then the equation

limit [ 1 + -
J
= limit S + limitRK)'

is always true. When m is indefinitely increased,

limit^ = l + l + -J-+^4-^+ , } n T+
1-2 1-2-3 1-2. 3-4 1.2- 3- 4- ..n

+
(n + 1)" r

when m is indefinitely increased, limit R <
n(1.2-3...n)

Now n may be taken so large that limit R becomes less than

any quantity that can be assigned. Hence, when limit m = oo,

lir»it(l +I)™

= limit
j
1 + 1+ _^ + _

T|_ +i
_-l_ + ...

i23
l

4
—

}

when limit n = oo.

K



130 DIFFERENTIAL AND INTEGRAL CALCULUS

The value of limit
f
1 -\— ] when limit m = oo to nine

decimals is 2.718281828. This limit is the base of the Napier-

ian system of logarithms and is denoted by e.

Next assume that z may take fractional as well as integral

positive values as it approaches infinity. Denote any one value

of z by s, and let m be an integer such that m < s <[ m + 1.

Then
(
1+

riT)"
<
(
1+

«)

,<
(
1+y1

'

whi°h may be

/ 1 \m+l

„1„„t^_<
(
1+ ij<

(
1+ i)-. (l+ i).

ra +

1

When limit s = go, limit m = oo. Hence when limit s = oo,

limit fl-h-] lies between two quantities whose common

limit is e. Consequently limit (l + -j = e when limit s = oo.

Lastly assume that z — —r, and that limit r=oo. Now

limit (l-^^limit^-^limit^J

= limit(l + -A
IJ-

1

.(l +-l
y)
= e

when limit r = oo.

It appears that in every case, when limit z = oo, limit

(l + -Y = e = 2.718281828. This limit is fundamental in this

chapter.
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Art. 46.— Differentiation of Logarithmic Functions

Let u represent a continuous function of x, and denote by

Au and Ax corresponding changes in u and x. Then, if a is

the base of the system of logarithms used,

Afc>g.u - Hmit
log.(" + Au)-log.u

.

*u
dx Au Ax

log,
u 4- Au

limit
Au

Au
Ax

= limit -•log [ 1
u \

= limit - • loga
u

1 +
U

Au

Ax

a^ Au
Au

loga e

du

dx
when limit Ax = 0.

For by the nature of logarithms the difference of the loga-

rithms of two numbers is the logarithm of the quotient of the

numbers, and the logarithm of a number affected by an ex-

ponent is the exponent times the logarithm of the number.

Since u is a continuous function of x
f

limit Au = when

limit Ax = 0. Writing — = z, when limit Au = 0, limit z — oo.

Au

Hence limit 1 +
u

Au

when limit Ax — equals limit
(
1 -f- )

when limit % = oo •

Calling, as is customary, loga e the modulus of the sys-

tem of logarithms whose base is a, and denoting it by M,
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du

d dx— loga « = M— ; in words, the derivative of the logarithm of
dx u

a function of x is the modulus of the system of logarithms

times the derivative of the function divided by the function.

In the Napierian system of logarithms — loge
M=i-— •

dx u dx
Unless otherwise specified, the Napierian system is to be used.

Example.— Differentiate log a/ ~ x
.

*1 + a:

^\l-x 1 + s) 1-
-1_
x2

'

PROBLEMS
Differentiate,

1. logo2
. 4. log(a^). 7. log tan a?.

2. log-. 5. log2 *.
8 - logVl-ar*.

X j n

3. log (3* -5). 6. log sin*. 9
'

logI^-
10. log tan i*.

mmi .
* 13. log

11. 1ogJl-cos«
.

\1 +

12. log

- cosx 14. iog(» + vrr5).

cos x 15. log (x + V*2 + a2
)-

16. log^ + Va^-a2
).

Find the true value of,

17. J5£» when 0.1 18. *2££ when x = l.

(1 - »)i * - 1
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19. SKI when x=cc. 22. a;
m logna; when x = 0.

xn °

20
- Si when = °- 23- ^i ".*§=

when * =

L

_, log tan (2 as) -. A _. log sin a; , tt
21. —2 i—* when a;=0. 24. —^——-— whena; = -.

log tan x {Tr—2xy 2

Art. 47.— Integration by Logarithmic Functions

The result of the preceding article may be written

du

/"*-/-•£-*•«

Example.— Integrate -*
da; 1 -f- x

2

The first derivative of the denominator is 2 a?, hence

— (1 + a,-
2

)

PROBLEMS
Integrate,

1
dy_ l + 3a; dy _ 2 g + 3

da; 2 a; + 3 a;
2
*

' dx x2 + 3x

ft.
*/= 3^_. 6. * = tan*.
da; ar + 7 da;

3
dy^nxdx

6 ^ = cotx
da; a2 + a^ da;

7. &= J_. Writing &=J-=
daj sin a; da; sin x 2 sin £ x • cos J a;

d /, „x d
sec2 ^a;— (±x) — tan^a;

.
£"*!*= _^ =^__)2/ = logtan^+a
tan^a; tan^a; tan^a;
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dy_ 1
8 .

dy =J_
dx cos x dx x(l + x2)'

Substitute x = tan 6.

10. 4 =
dx Va;2

Write Va2 + a2 = z — x, whence

/-n——o dx z — x dy dy dx
z = x+-Vx2 + a2

,
— =

, -f-=-f-.
— =

dz z dz dx dz

y = log.z + C=\ogM (x+Vrf + c?) + (7.

1 z — # ' 1 a= -, and
z — x z z

11. ^ =—

J

*» Va2 - a2

Writing

12. 4-
da Vz2 + 2a

d

# C?#
(•+1)

Vz2 + 2a V(>+1) 2-1 <** V(x' + 1)
2 -1

i and

y = log {(a + 1) + vV + 2sj + C.

13 ^.V = 2 + 3^
'

da? 1 + x2

term by term.

dy _ m -\-nx

Write ^ =dy_ 2
+

3*
da; 1 + a2 1 + ar

and integrate

14.

17.

dx a2 + x1

dy _ x3

dx x* + 1

dy_ log2
a;

dx x
16.

dy

_

logw x

dx x

Keduce
&

to a mixed number.

Fig. 47.

a^ + l

18. Find the area of xy — 1 from # = to

x = x\

r 19. If A is the cross-section of a bar of

1 uniform strength at a distance y from the

(1 j\ 7/i .yd
lower end, — =

, where w is the weight
1 dy 8

of the bar per cubic foot, and S is a constant

depending on the material of the bar and the

area of the lower end. Find the relation

between A and y.
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Art. 48.— Integration by Partial Fractions

F(x)
The function of x denned by —j-f is called a rational frac-

tion when x does not occur affected by a fractional exponent

or under a radical sign.

If the numerator of the rational fraction —^2 is not of

lower degree than the denominator, the given fraction may

always be transformed by division into the sum of an integral

function F(x) and a rational fraction J K J
, whose numerator is

of lower degree than its denominator. For example,

a2 + l~ a^ + 1

f(x)
Consider the rational fraction 2-^2 whose numerator is of

.(*)
lower degree in x than the denominator. Suppose the denomi-

nator <£ (x) to be of degree n, then f(x) cannot be of higher

degree than n — 1. By a theorem in algebra
<f>

(x) can be

resolved into n factors of the first degree, and imaginary fac-

tors must occur in conjugate pairs. The product of a pair of

conjugate imaginary factors of the first degree,

(x-c-d V^l) (x - c + d V^l) = (x- c)
2 + d 2

,

a real factor of the second degree. Hence <£ (x) can be resolved

into real factors of the first and second degrees.

Let <£ (x) = (x - a) (x - b)*\(x - cf + d*\\(x-e)* +f2
\'- It

is proposed to break up the fraction 21? into the sum of par-

tial fractions whose denominators are the factors of
<f>

(x), and

in every partial fraction the numerator is to be of lower degree

than the denominator.
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Assume

f(x)__ A B, B2 B Cx + D
~<f>

(x) x ~a (x-b) s (x- by-1 x - b (x - c)
2 + d 2

E,x + Fx E2x + F2 E
t
x + Ft ,

\{x- ef+f\<
"*"

l(x-ey+f2

l<-^ (x - e
2

) + /2

The number of undetermined constants,

A, Bl7 B2, -", Bs, C, D, E1} Flf E2, F2,
• ••, E

t , Ft

introduced equals the degree of cf>(x). Multiplying both

members of the identical equation by <£(#), the right hand

member will be of degree n — 1 in a;, while, by hypothesis,

f(x) cannot be of a higher degree than n — 1. Collecting the

terms of like powers of x in the right hand member, the co-

efficients of the resulting n terms are linear in the n undeter-

mined constants. Hence, by equating the coefficients of

corresponding terms of both members of the identity, there

result n equations linear in the n assumed constants.

These equations determine the assumed constants uniquely.

fix)
Hence the fraction J

\ { can be broken up into partial frac-
as)

tions of the form assumed and in only one way.

A few examples will explain the process of breaking up a

fraction and show the importance of partial fractions in

integration.

Example I.— Integrate -^ = —-1
dx x2 — 4

3j3 I
ic
3 — 1 4,x— 1

Transforming — to a mixed number, — = x + ——- -

x2 — 4 x2 — 4 x2—4

A 4a-l A . B
Assume — = -f

aj2 _ 4 x + 2 x-2'

whence ±x-l = (A + B)x+(-2A + 2B).
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Equating the coefficients of like powers of x,

A + B = 2, -2A + 2B = -1, and^ =
f, B=\-

ttq nt%
dy x>-l .Ax-1 ,9 1 ,7 1

Hence, -£ = — = as H— = x-\
' dx ar>-4 a;

2 -4 4a> + 2 4a>-2

Integrating, y = | + J log (x + 2) + J log (a? - 2) + G

Example II.— Integrate ^= 5a? + 1
6

da; a^ + a? - 2

Assume 5aJ+ 1 ^ B
x? + x -2 a; - 1 a; + 2'

whence 5 x + 1 = A (x + 2) + B(x — 1).

This identity is true for all values of x. When x = 1, A—2\
when a; = - 2, £ = 3. Hence, ^ =-^— +—— Integrat-

ed x — 1 a; + 2
ing, y = 2 log (as — 1) + 3 log (a? + 2) + 0. This result may also

be written,

y = log (a; + l)2 + log (a? + 2f + log c

= log{c(a;-l) 2
(a; + 2)

3
|.

Example III.— Integrate ^= a^ + 4a;-2
5

dx l+x + tf + x?

Assume / + 4 g -2 ^_ +^ + C
1 -f a + a;- + ar

3 1 + aj 1 + x2

whence ar
2 + 4 a; - 2 = (^ + B)x2 + (5 + 0)as + A.

Equating the coefficients of like powers of x, A = — 2,

£+0=4, A + B = l, whence ^ = - 2, B = 3, 0=1.

Hence, ^ =^! + ^L_ +_L_ ;

(to l + a> 1 + a;
2 1 + a^

5
'

and y = — 2 log (1 + a?) + f log (1 + af) + tan" 1
a; + C.
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Example IV.— Integrate ^l =t± -1
dx (a2 + 2)

2

A x* + x — l _ Ax + B |
Cx+ D

Assume
(x* + 2y

=
(^T2)"2

+
~^T2"

By clearing of fractions and equating the coefficients of like

powers of x, it is found that A = — 1, B = — 1, (7=1, Z> = 0.

Hence
dy = ~ x ~ 1

i g = ~ x
i g 1

9

dx (x2 + 2)
2

ar> + 2 (ar
2 + 2)

2
ar

2 + 2 (ar
2 + 2)

2

The first two terms are directly integrable. To integrate the

last term substitute x = V2 • tan 0.

PROBLEMS
Integrate,

dx x*

2. ^ =

3. ^

dy _ 2a + 3

dx x3 + X2 — 2x

dy _
dx

a

x2 — a2

dy _ 2-Sx2

dx (x + 2)
2

dx

X2

x4 + x2 -2

dy _ 1

dx x*-x2 + 2x-2
dy _

dx

1

Sho

du

wthat C
dx -

dy _ 1

dx x (1 + x2

)

o dy _ x

dx x4 — x2 — 2

. &= i
da! oj (1 + a;)

2

dy _ 3 x +

1

5. ^ = - ^— -• 11

6. 2* = „ • 12.

cfcc a;
4 — 1

d?/_ a;
4

dx x2 — 1

.,
= 77- log \- G, u being a con-

J ft — or 2 a u + a

tinuous function of x. This result is very useful.
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14. Integrate ^=-=-| -• Writing f=^\~ . ,

dx x>-6x + 5 dx (x— Sy — i

by Prob. 13, y = | log |*~g~* + C= J log|^|+ 0.

15. Integrate 1 =^^.
Art. 49.— Integration by Parts

From — (u • v) = u • — + v • — is obtained by integration
cte

v
' dx dx

J &

Ju-— = u*v — I v-—, which is called the formula for inte-
rs; J dx

gration by parts. The following examples will show the

application of this formula.

Example I.— Integrate -^ = x-log#.
dx

Writing u = log x, — = x, whence — = -, v — A a;
2

-j- Cl}
the

dx dx x

application of the formula gives

y^fx.logx^tf+CJ-logx-fdxt + C,).!

= %x2 .logx+C1 '\ogx-%x2 -C1 -logx+C

= %x2 -logx — {x2 + C.

CL the constant of the integration | — , always eliminates as
J dx

in this example. It may therefore be neglected.

Example II.— Integrate -^ = a; • sin x.
dx

di) flu
Writing u — x, — = sin x, whence — = 1 and v = — cos x,

dx dx
the application of the formula gives

y =
J

a: • sin a; = — a; • cos x -f- I cos x = — x • cos x + sin x -f G.
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Example III.— Integrate -^ = x • sin
-1

x.
dx

Writing u=sm~ 1
x, — = x, whence — =—

—

=== and
dx dx -y/J _ x2

v — \ x
2
, the application of the formula gives

y = I x • sin
-1

a; =|- a,
2

• sin
-1 s— j- I

-
•

dlJ '
fly

Write — = and substitute a? = sin 0. There resultsax -y/i _ #2

%'= ^' ^ = in2
(

dO dx dO
22V /j

and y' = \0-\ sin (20) + C= \Q - isin0 • cos0 + C.

Substituting sin = x, cos = Vl — x*, = sin
-1

x,

y' = l. sin
-1

a; — |- a, • Vl — a2 + (7,

and y = ^ar2
• sin

-1
a; + i sin

_1
a; — i a; • Vl — a2

-{- C.

Example IV.— Integrate -^ = sec3
a;.

dx

Writing u = sec x, — = sec2
a,, whence — = sec x • tan a; and

da; dec

w ss tan x, the application of the formula gives

y as
J
sec3

a; = sec a; • tan a; — I sec a; • tan2
a;

= sec a? • tan x — I sec3
a; -|- j

*/ •/ cos a;

Hence 2 | sec3
a; = sec a? • tan a; + I—

—

»/ J cos a?

= sec a; • tan x — log tan
[
- — -

)+ Q

= sec x • tan a; + log (sec x — tan x).
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fly

Example V. — Integrate ^= Va2 + x2
.

dv -, i _ _ du
Writing u = Va2 + x*. — = 1, whence —- =—==== and

dx dx Va2 + x2

v = x, the application of the formula gives

J
x2

VOLTS'"

dy a? + 3? a' . a?
A lso

— ==— —=— — -j- — —
dx Va2 + a^ ^/a* + rf Va2 + x2

,

/
x2

Adding (1) and (2) and solving for ?/,

2/ = - Jaj. Va2 + ar* + ^ log (a + Va2 + a;
2
) + (7.

PROBLEMS
Integrate,

i. &=*.log* 5. ^ = 121^.
da; da? ^f

2. ^=o».cosa. 6. ^ = loga;.
da; dx

&

3. ^ = tan-a;. 7. ^ =_^M^.
da; da; ^ +^

. dv , 2 o dto a? tan-1 a;
4. -^ = a;- tan2

a;. 8. -f- = — —

.

dx dx 1 + x2

9. Find the area of the cycloid,

x = r • 6 — r • sin 9, y = r — r • cos 0.

10. Find the area of the cjcloid,

x = r — r • cos 0, 2/ = *" • 4- J* • sin 0.

11. Find the volume of the solid generated by the revolu-

tion of the cycloid x = r • 6 — r • sin 6, y = r — r • cos 6, about

its base.
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12. Find the volume of the solid generated by the revolu-

tion of the cycloid x = r — r • cos 6, y = r • 6 + r • sin 0, about

its axis.

13. Find the length of the parabola y
2 — 2px from sc =

to x = x'.

14. Find the length of the spiral r — a • 6 from r =
to r = r'.

15. Find the area bounded by the hyperbola x2 — y
2 — a2

, the

X-axis, and the ordinate to the point (x, y) of the hyperbola.

16. Show that the area bounded by the hyperbola x2—y2=a2
,

the X-axis, and the line from (0, 0) to the point (x, y) of the

x + yhyperbola is — loge
—?-

Art. 50.— Integration by Kationalization

A derivative -f- containing the binomial a -f bx affected by
dx

fractional exponents may be transformed into a rational de-

rivative -2 by the substitution a + bx = zn, where n is the
dz

least common multiple of the denominators of the fractional

exponents.

Example I.— Integrate
-f-
= j

dX rj>$ gj$'

dx a k dv dy dx 6 26 6 z4

Substituting «=*•, ^=6**, &=&.«5=-Ji_=
dz dz dx dz z3 — z

2
z — 1

= 6z3+6z2+6*+6+ JL-
z—1

Integrating, y = f zA + 2zs + 3z2 + 6z -f 61og(z - 1) + C;

whence, y« | a£ -f 2 a?* -f 8 x* + 6 «* 4- 6 log («* - 1) + (7.
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Example II.— Integrate -^ =
** (i + xy + (i + xy

Substituting l+* = *°, |=2, g«|.g=£_= *_.

Integrating, y = 2 tan-1 z -f (7; whence, y = 2 tan-1 (1 +<c)*4- (7.

A derivative -^ containing only the surd Va + bx + x2 may
da;

r7

be transformed into a rational derivative — by the substitu-
dz

J

tion Va -f bx -f- cc
2 = z — x.

dyA derivative -^ containing only the surd Va + bx — x2 may
(XX -j

be transformed into a rational derivative ^ by the substitu-
dz

J

tion Va + foe — x2 = V(# — ^) (r2 — «) = («— rx) • 2.

Example III.— Integrate ^ = V^as-j-a^

da; a;
2

Writing

V2^T^ = z-*, * = -^-, ^ = ^+4_z ,-^*±2*.
2z+2' dz 2z + 2' 2z + 2

Hence,

(fy= <fy dx= z2+±z + 4: = z2 4(g + l) _ 1 4

dz dx dz z
2
(z + l) z

2
(z + l) z

2
(z + l) z+ 1 z*

Integrating,

?/=log(z+l)-- + C=log(tf+l+V2a+z2
) +C.

* X+V2X+X2

Example IV.— Integrate ^ =— 1

dx xV2 + x - x2

Writing V2 +x - x2 = V(2 - x) (1 + x) = (2 - *) . z,

T _ 2*2 -l ^ = _6z_ and
dy = 2

"
z
2 + *-' cto (z

2 + l) 2'

dz 2z2 -l
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By partial fractions, -^ =—=
dz 2V2-1 2V2 + I

Integrating, y = -L log (V2 2 - 1) L log (V2 . a + 1) + 0.

V2 V2

PROBLEMS
Integrate,

da? ^» ajt + i

2
dy = a*

m
dy

==_J_.
dx V«-l *

da; ^ 4. a-l

3. 4=: *-—
<fy V6^^"2

* (1 + 4*)*
8

- £- ~
x

4. 4= I o dy_
9. ^ :«

dx aj-vi + a?
' dx (2 -f- 3 a? — 2 aj

8
)*

<fy = 1
10 (fy^ 1

da; aj+VaT^l ' dx xVx2 +2x-l

Art. 51.— Evaluation of Forms I
00

,
00

°,
0°

If y = /(a;)* (x) = 1°° when x = a,

loge y = <f>
(a?) • loge/(#) = oo-0 when a; = a.

If ?/ =/(a;)* (ac) = oo° when x = a,

loge 2/ — (*) kfc/O5) = • 00 when a; = a.

If ?/ =/(a?)* (x) = 0° when a; = a,

log* 2/ = <£ («0 * l°ge/(#) = • go when a? = a.

The true value of \oge y is found by evaluating the form

00 • 0, and the true value of y becomes known.
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Example.— Find the true value of
(

_ + l) when x = oo.

Here,

y ==( -+1 J =1* and log
e
y=x- log

e (- +1
J
= oo • when x = cc.

a

Mi + I+ 1
a

Hence, I0& y = ^ J- = r- = = a when x = oo.

JC X2 X

Since loge y = a, 2/ = e
a

.

PROBLEMS

Find the true value of,

1. ( 1 + ~i ]
when x = cc. 5. (1 -f »#)• when a; = 0.

_2_ 6.
J
cos (az) j

cosec2 (c*> when a;=0.
2. xl~x when a? = 1.

3. (sin x)™* when x = 0.
7

' Q when * = °-

4. (sinxVanat when # = -• n , n \\ r. av y 2 8. (cos 2 a,-)*
2 when a? = 0.

9. (log a;)*
-1 when x = 1.

Art. 52.— Differentiation of Exponential Functions

The logarithm of the exponential function au is

loge a
u = u-\og

e a.

Differentiating,

I . A a« = l0ge a . f* ;
whence, —

a

w = aw . log, a • —

•

aM da; dx dx dx

That is, the derivative of an exponential function with a con-
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stant base is the product of the exponential function, the

logarithm of the base, and the derivative of the exponent.

If a = e, — e
u = e

u
• —

dx dx

Example.— Differentiate, y = of.

Here -^ = of • log, a • — x2 — 2 x • of • loge a.

PROBLEMS
Differentiate,1.1
1. y = a*. 2. 2/ = ai-». 3. y = asinx

. 4. y = at&n x
.

5. y = e
ax

. 6. y = e
(1+x2)

. 7. y = e
9in
~lx

.

8. Show that — e
ax = aM • e

ax
.

dxu

Differentiate, 9. y = af . Here log?/ = a; • logo?, and by dif-

ferentiation 1 . ty- - i + log #. Hence,
c^ = tf (1 + log aj).

10. 2/ = e
eZ

. 11. i/ = e
xX

. 12. y = xx*.

Find the true value of,

e*_ e-*_2a;

a; — sin x
13. (e* + l) x when a> = 0. 16 - " ~r- ~ when x = 0.

14
' ^" Wh6n * = °-

17.
X- when z = ao.

15. when x=a. , «-
(a; — a)* 1 ^* ex ' s^n * when a; = 0.

19.
e" e * when jj = o
sma;

i

20. Show that xx
is a minimum when x = e.

21. Find the least value of aekx + &e~*x
.
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Art. 53.— Integration of Exponential Functions

The results of the preceding article may be written

J dx loge a J dx

Example.— Integrate -f- = e3
*-2

.

dx

Writing u = Sx-2, — = 3 and ^ =4^ •— (3 a;- 2).
dx dx dx

Integrating, y = \ • e
3x~2

-}- O.

PROBLEMS
Integrate,

1. ft.£ 4. ^= x.<?\ 7. *> = a\
dx dx dx

2. <k = e*. 5. ^ = ar<. e
*3

. 8. ^= a~.
da; da; da;

3. ^= e~. . 6. * = *-«.^ 9. &= <*•«.
c?a; da; da;

10. ^ = a3-5*. 11. ^ = e*.sina;.
da; da;

Applying the formula for integration by parts by writing

dv

dx
', -^- = e

x
, y = I e

x
• sin a; = e

x
• sin a; — I e

x
• cos a;.

Applying the formula to I e
x

• cos a; by writing u = cos a;,

-^ = e
x
,

J
e
x

• cos a; = — e
x

• cos x + I e
x

• sin x,

Hence I e
x

• sin x = e
z

• sin a; + e
x

• cos a; — I e* • sin a-,

and y = I e
1

• sin a? = ^- e* • sin a; + \ex
• cos a; + C.
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12. ®=
dx

e • COS X. 13.
dy _
dx

: e* • a;
2

. 14.
dy

dx

5.
dx

e>>x\ 16.
dx

= e"" -Xs
.

Art. 54.— The Hyperbolic Functions

The functions \ (e* + e~x
) and J (e

x — e
-z

) are called the

hyperbolic cosine of x and the hyperbolic sine of x respectively,

and are denoted by the symbols cosh x and sinh x. Hence by

definition cosh x = \ (e
x + e

-1
), sinh x — \{ex — e~x). It follows

at once that (cosh x) 2 — (sinh x) 2 = 1.

The inverse hyperbolic functions are denoted by cosh-1 x and

sinh-1 #, so that y = cosh-1 x and y = smh.~1 x are equivalent

to # = cosh?/ and x = sinh?/ respectively.

The hyperbolic functions have been calculated and tabulated.

Example I.— Find the derivative ofy = sinh x.

Differentiating,

^= 4- sinh x = 4-i (e* - e
-
*) = I (e* + e

-
*) = cosh x.

dx dx dx
2K / 2v /

Example II.— Differentiate y = sinh-1 x.

Writing x = sinh y and differentiating,

1 = cosh y • -^, whence —=
dx dx cosh?/ Vl + sinh2

?/ yi + ar'

Hence — sinh-1 a;

*» VI + a*

PROBLEMS

1. Show that — cosh x = sinh x.
dx

2. Show that —sinh-1- =
dx a ya2

_f- x
2
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3. Show that A cosh"1-
dx

1

a y^2
a~

4. Find the minimum value of cosh a;.

5. An inextensible, perfectly flexible, homogeneous string

fastened at two points in the same horizontal is acted on by

gravity only. It is shown in

mechanics that for any point

(x, y) in the position of equi-

librium -2- = -, where s is the
ax c

length of string from the low-

est point to (x, y), and c is the

length of string whose weight

equals the tension at the low-

est point. Find equation of

position of equilibrium.

The ^-derivative of ^ = -

dx
ds

is S-t-hM5 whence

Fig. 48.

d dy

dx dx

Integrating, sinlr1^= *
-f Cx.

dx
When a>= 0,^ =

dx
0, hence

dy
Ci = 0, and -*- = sinh -. Integrating again, y = c- cosh - + C2.

dx c c

In the figure, for x = 0, y = c, hence C2

y

0, and finally

c • cosh-, the equation of the catenary. Using exponential
c

functions,
2/ = |(*

c + 0-

6. Find the length of the catenary y — c- cosh - from x —
c

to x — x'.

7. Find the radius of curvature of the catenary.
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e~x
• dxArt. 55.— The Definite Integral I

%J— oo

J»+

00

e
-*2

• dx is very important in
- 00

mathematical physics and the theory of probability. Its

value may be determined by the following analysis, due to

Poisson.

X+
00 ,

e~x
• dx,

e~
yi

• dy, where x and y are assumed to be indepen-

dent variables. Hence,

e~** >dx> I e-S -dy=\ e~^ +

"

2)
dfe cZy.

oo %J

—

a> */y= — oo %Jx-= — 00

Now, 2; = e
-(**+»") represents the surface of revolution whose

generatrix in the ZX-plane is 2; = e
-*2 and axis of revolu-

Jr»y

= + oo •»x= + ao

e-(*
2

+y*Kdxdy is the
y= — 00 c/x= — 00

tion the Z-axis. Hence
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volume bounded by this surface of revolution and the

XF-plane.

An element of the volume of this solid is the cylindric shell

of thickness dr, radius r, altitude e~ (x2+y2) = e~''
2

. Hence the

volume of the solid is 2 it I e~r~
• rdr = ir. Therefore, A2 = -n-

and A — | e~x*
• dx — ^/tt.

To determine (
" e

-(*2 +2a*)
.^ wrjte ^2^2 «#= (a+a) 2-a2

;

«y — 00

whence, (
+
°V(*

2 + 2«x)
. dx _ ^ f "^-(a+a) 2^.^ = ^- ,^

»/ — 00 c/— 00

Art. 56.— Differentiation of a Definite Integral

/* 3

Denoting the definite integral I a2
• x2

• cfcy by ^1, ^4 = 3 a2

cZ^l
*

and -— =6 a. Differentiating a2
• x2

• c?a? with respect to a,
da

and integrating the result with respect to x between the limits

— (a2x2 dx) = I 2 ax?dx = 6 «. Hence for this

d C 3 r 3 d
special definite integral, — I a2

• x2
• dx = I — (aWdx).

da Jo Jo da
That is, to differentiate the definite integral with respect to a

parameter, differentiate the function under the sign of integra-

tion with respect to the parameter.

To prove this proposition in general, consider the definite

integral A = I f(x, a) dx. If f(x, a) is a continuous function

of a, I f(x, a) dx is also a continuous function of a. For,
• /

c

denoting by A^L and Aa the corresponding changes of A and a,

\f(x, a -f- Aa) —f(x, a) \ dx = e I da = e (6 — c), where

c is a quantity which approaches zero when Aa approaches

zero. Hence A is a continuous function of a. The deriva-

tive of A with respect to a is
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d_A _ Hmit p/fo«+Ag)--/(s,a) = /- d_
,

which proves the general proposition.

By this proposition the values of definite integrals of a

general form may be found from known special definite

integrals.

J"

00 "I

e~ax *dx= —
o a

Differentiating with respect to a,

a? - e~ax • dx = ±—-,
a3

'xn .e-ax .dx= 1 ' 2 ' 3>'~n
m

Example II.— The definite integral f"_^_= 2T. i,5
Jo a^ + a2 2 a

Differentiating with respect to a
}

J™
dx ^tt 1 1 r™ dx = 7T 113

o (a;
2 + a2

)
2 2^*2' Jo (a2 + a 2

)
3 2Y2*4'*"'

da; tt113 2n-l

•»oo

j as • e-°* • da; =
1V X

j
ic
3

• e- fla :

.a*a; =
1.2-3

~ a4 '"-jf

X' (a^ + a2

)
n+1 2 a 2 4 2n

Art. 57.— Mean Value

Let it be required to determine the mean or average value

of the continuous function f{x) from x = a to x = b. This is

equivalent to finding the mean ordinate of the curve y =/(#)
from x — a to x = b. Divide the portion of the X-axis from

x = a to x = b into n equal parts Aa;, and draw an ordinate of

yz=zf(x) at the end of each Aa; nearest the origin. Denot-

ing the sum of these ft ordinates by 2y, their mean value is

—^ = —&-! This is true for all values of n. When n is

n n • Aa;
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indefinitely increased Ax becomes dx, % becomes the sum of

all the ordinates of y =/(#) from x = a to x = b, and the mean

X6
S*b

ydx I ydx— = *y > since

n • Ax = 6 — a for all values of n.

Example. — Find the mean ordinate of the sine curve

y = sin x from x = to x = tt.

J
sin ic • dx q

Here mean ordinate = *& = —

PROBLEMS

1. Find mean ordinate of circle x2 + y
2 = r

2 from x = + 7 to

# = — r.

2. Find mean ordinate of ellipse — + ^- = 1 from # = + a
a- b2

to x — — a.

3. Find mean value of sin2 # from x — to x = 7r.



CHAPTER IX

CENTER OP MASS AND MOMENT OP INERTIA

Art. 58.— Center of Mass

If the mass of a body is divided into infinitesimal elements

of mass dm and the coordinates of dm are x, y, z, the center

of mass of the body is the point (x, y, z) so situated that x

multiplied by the entire mass of the body is equal to the sum

of the products of each element of mass dm by the distance

of this element of mass from the YZ-plane, with like defini-

tions for y and z. Hence the coordinates of the center of

I xdm I y dm I zdm
mass of a body are x = —

, y = —
, z = *—

, the

I dm I dm I dm

integration extending over the entire mass of the body.*

Eepresenting the magnitude of the element of mass dm by

dM
y
its density by D, dm — D • dM, and the coordinates of the

center of mass become

* In this chapter differentials are used directly. Lagrange says in the

preface to his Mecanique Analytique (1811), "When we have properly

conceived the spirit of the infinitesimal method, and are convinced of the

exactness of its results by the geometrical method of prime and ultimate

ratios, or by the analytical method of derived functions, we may em-

ploy infinitely small quantities as a sure and valuable means of abridging

and .simplifying our demonstrations."

154
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CxDdM fyDdM Cz DdM

CDdM C DdM (

%

DdM

the integration extending over the entire magnitude of the

body.

If the body is homogeneous, D is constant, and

CxdM fydM CzdM
x=^-

, y — ^-
, z = ^-

CdM CdM CdM

The center of mass now becomes the center of figure. If

the YZ-plane is a plane of symmetry of the body, to every

term + xdM of
j
xdM there corresponds a term — x dM.

Hence x = ; that is, the center of mass lies in the plane

of symmetry of the body. In like manner it is shown that

the center of mass lies in the axis of symmetry of the body

and at the center of symmetry of the body. Unless otherwise

specified, the density is assumed uniform ; that is, the body is

homogeneous.

In mechanics it is proved the center of gravity of a body

coincides with its center of mass.

Art. 59.— Center of Mass of Lines

Example I. — Find the center of mass of a straight line of

length I, whose density varies as the distance from one end.

Denoting by dx an element of

the length of the line, by x the dis-

tance of dx from the end A, by k

the density of the line at unit's dis-

tance from A, whence

&.

AX

—t—
Fig. 50.
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D x _ £ kx • x dx

£ kx'dx

_ 2 7

Example II.— Find the center of mass of the arc of a

Y
circle.

Take as X-axis the axis of

AS symmetry of the arc. The ele-

ment of magnitude is

From the equation of the cir-

cle x2 + y
2 = B2

,

Fig. 51.

R

dx __ _y
dy x

Hence ds = —dy, and x =
x

«c
+ J chord

dy
radius x chord

arc arc

PROBLEMS

1. Find the center of mass of the straight line of length I,

whose density varies as the square of the distance from

one end.

2 . Find the center of mass of the entire cycloidal arc.

3. Find the center of mass of the length of one loop of the

lemniscate r
1 = a2 cos (2 0), calling the length of the loop 2 1.

Here dM= ds = (^ + ^*V • dO and x = r . cos 0.

V MJ

4. Find the center of mass of the quarter of the curve

x 3 + 2/3 = a» included by the coordinate axes.
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5. Find the center of mass of the helix x — a • sin
<f>,

y = a • cos <£, z = c •
<f>,

from <j> = to <j> = <£'.

Here cOf= * = /^ + <^ + **V . d*
d$a

' fZ<^
2 d^V

6. Find the center of mass of a triangle.

Break up the triangle into infinitesimal strips by lines

parallel to the base at intervals clx measured on the median

to the base, and call the distance

from the vertex to any strip meas-

ured on the median x. The median

is an axis of symmetry of the triangle,

and the center of mass must lie in

the median. Concentrate the magni-

tude of each strip on the median, and

the median becomes a line whose

density varies as the distance from

the vertex. Hence, k representing the density at unit's dis-

rkx • xdx

Fig. 52.

tance from the vertex, x =

£ kx • dx

— 21

Art. 60.— Center of Mass of Surfaces

Example I.— Find the

center of mass of the sur-

face bounded by the

parabola y
2 = 2px, the

F-axis, and the abscissa

to the point (x
, y ) of the

parabola.

The surface is broken

up into strips of breadth

dy by lines parallel to the

(Xo.y )^

Ay
AM
r—
! „

/ '

X

A Fio. 53.
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X-axis; each strip is broken up into elements of area dA
by lines parallel to the F-axis at intervals dx. Hence

d3I=dA = dxdy and

P =y
° fX=jrp

xdxdy
_ «/y=0 J x = Qx = r

3
u^(= -At X,

— __ Jy= Q Jx =

y ,. s*~

2p y dx dy

y=0 Jx-.

J/1
ip dx dy

= !?/o,

A a?

since the object of the cc-integration is to sum up the products

ydxdy for the elements of area dxdy forming the strip, and

the object of the ^-integration is to sum up the strips forming

the given surface.

Example II.— Find the center of mass of the surface of

the cycloid

x = r — r - cos 6, y = r-0 + r • sin 0.

The center of mass lies on the

X-axis and

2xydx

f* f*(l -cos 6) (0 + sin 6) sin dd

Fig. 54. = 6 r*

Example III.— Find the center of mass of the circular

sector whose angle is 2 o and whose density varies as the

square of the distance from the center.

-Xa;
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Here it is advisable to use polar coordinates. Drawing radii

at angular intervals dO, the sector is broken up into infinitesi-

mal sectors. Call distances

measured out from the center

p and draw circles concentric

at A at intervals dp. Each

infinitesimal sector is divided

into elements of area

dA = pdQ-dp

and x = p- cos 0.

Denoting the density at unit's

distance from center by k,

^ = £-
2

andZ>:
k 1

C
+6

° C
R
k.p2 .p.d6dp

5 6

J-6o Jo

Example IV. — Find the center of mass of the eighth of

Z

Fig. 55.

Hence

Fig. 56.

the surface of the sphere a? + y
2 + z2

coordinate planes.

R2 bounded by the
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Here dA = (l +g +g)*** - f
<fedy,

_ Jo Jo z
Xy

2 f/H*-& xdxdy
hence a? = :—

™

—-^s I I
=

J-t-B *RJ J* ^/R?-x2 -y2

x dxl sin-1 sl
J

\ (#2 - a?
8
)Vo

= 2tt rxdx=z i K
2ttRJo 2

By the nature of the problem x — y = z.

PROBLEMS

1. Find the center of mass of the circular sector.

2. Find the center of mass of the quarter of the circle

x2 + y
2 = B2 included by the coordinate axes.

3. Find the center of mass of the quarter of the ellipse

x u— -f *- = 1 included by the coordinate axes.
a? b2

J

4. Find the center of mass of the surface bounded by the

parabola y
2 = 2px and the double ordinate to the point (x, y).

5. Find the center of mass of the circular segment bounded

by y
2 = 2 Rx — x2 and the double ordinate through (x, y).

6. Find the center of mass of the surface bounded by the

circle y
2 — 2 Rx — x2

, the y-axis, and the abscissa to the point

(x, y). This surface is called the circular spandrel.

7. Find the center of mass of the part of a circular annulus

bounded by the circles r = R, r= R', and the radii vectores

= —
,
= -f- .

8. Find the center of mass of the surface bounded by

x* + y* = a* and the positive coordinate axes.

9. Find the center of mass of the area of one loop of the

lemniscate.

10. Find the center of mass of a zone.
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Art. 61.— Center of Mass of Solids

Example I.— Find the center of mass of the half of the

X2

ellipsoid — + + 1 lying
a" b2 c

to the right of the Z F-plane.

The X-axis is an axis of

symmetry, and

dM= ttvs -rt-dx

^{a2-x2)dx.
a2 Fig. 57.

Hence

-
9
C(a?-x2)dx

a2Jo
x =

abc
= *a.

Example II.— Find the center of mass of the eighth of

the sphere x2
-f y

2 + z
2 = E2 included by the coordinate planes,

the density varying as the square of the distance from the

center.

Here it is advisable to use polar coordinates. Passing

planes through the Z-axis at angular intervals d<f>, the solid is

divided into spherical wedges. Passing conical surfaces with

vertex at 0, and whose elements Z

make angles with the XF-plane

increasing by d6, each wedge is

divided into pyramids. Passing

spherical surfaces concentric at

0, and whose radii increase by

dp, each pyramid is divided

into elementary parallelopi-

peds, whose dimensions are dp,

p cos 6 dd>. p dO. Hence, Y'

r ^ ; r 7
Fig. 58.

dM= p
2 cos dp d<f> dO, x = p cos cos <p, D — kp2

,
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where k is the density at unit's distance from the center.

Finally,

IJl k • p
5

> cos2
• cos <£ • d<f>- d6 -dp

x =

n»2
f*R

&y • cos • d<£ • cZ0 • dp

=**

PROBLEMS

1. Find the center of mass of a hemisphere.

2. Find the center of mass of the paraboloid of revolution

generated by revolving y
2 = 2 px about the X-axis, and in-

cluded by the planes x = 0, x = x'.

3. Find the center of mass of the solid generated by re-

ar
2 v2

volving half the ellipse — + —
2
= 1 from x = to x = a about

the X-axis.
a b

4. Find the center of mass of the rectangular wedge.

Art. Theorems of Pappus*

:jl ds

Multiplying both sides of the equation y = ** by 2 its,

2 iry • s = 2 7T I y • ds. The right-hand member of this equa-

Y 3$C 7Y~ ti°n rePresents the area of

the surface generated by the

revolution of the line s about

the X-axis; the left-hand

member is the length of the

line s multiplied by the cir-

cumference of the circle de-

scribed by the center of mass

Fig. 50. of the revolving line.

* First published by Pappus of Alexandria about the end of the third

century of our era.
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This furnishes a convenient determination of the center of

mass of the line when the area generated is known, or of the

area generated when the center of mass of the line is known.

Example I.— Determine the

center of mass of the circular

arc.

The arc revolving about the

X-axis generates a zone whose

area is 2 ttR • chord. Hence,

2 iry • arc = 2ttR • chord, and

R • chord

Fig. 60.

y =

as before found.

arc

Example II.— Find the area of the surface generated by

revolving the cycloid y = r vers-1- -fV2 rx — x2 about its base.

The distance of the center of mass of the cycloidal arc from

the base is f r, the length of the cycloid is 8 r. Hence,

area = 2 tt • % r • 8 r = -\4- -n-r
2

.

PROBLEMS

1. Find the area of the surface generated by the revolution

about the X-axis of the circle of radius r, distance of center

from X-axis a, where a > r.

2. Find the area of the surface generated by the revolution

of a semi-circumference of radius r about a tangent at its

middle point.

Multiplying both sides of the equation,

Cyydxdy \\yL dx

A
y =

I dxdy
by 2 irA, 2 iry -A—J> dx.
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The right-hand member of this equation represents the

volume of the solid generated by the revolution of the area

A about the X-axis; the left-hand member is the area A
multiplied by the circumference described by the center of

mass of A. This furnishes a convenient determination of the

center of mass of the area when the volume generated is

known, or of the volume when the center of mass of the area

is known.

Fig. 61.

Example I.— Find the volume generated by the revolution

about the X-axis of the ellipse whose axes are 2 a and 2 b,

distance of center from X-axis c. V = 2 ire • -n-ab = 2 nhtbc.

Example II.— Find the center

of mass of a circular sector.

The volume generated by the

circular sector whose angle is

2 Oq, radius R, revolving about a

diameter parallel to the chord of

the sector is 2 -n-R • 2 R sin O
• \ R,

the area of the sector is R2
•

o .

Hence, y-|SgA :

Fig. 62. 3 Q
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PROBLEMS

1. Find the volume generated by revolving the cycloid

y = r • vers
-1-

-f- V2 rx — ar about its base.

2. Find the distance of the center of mass of half the
x2 v2

ellipse '-- + •—„= 1 bounded by x = 0, x = a, from the center
a2

b
2

of the ellipse.

Art. 63.— Moment of Inertia

If the mass of a body is divided into infinitesimal elements

of mass, and each element is multiplied by the square of its

distance from a fixed line, the sum of all these products is

called the moment of inertia of the body with respect to the

straight line as axis. Denoting the infinitesimal element of

mass by dm, its distance from the axis by y, and the moment

of inertia by I, /= I y
2

- dm, the integration extending over

the entire mass of the body.

Representing an infinitesimal element of the magnitude of

the body by dM, the density of this element by D, dm—D - dM,

and the moment of inertia becomes I=
J y

2
• D • dM, the in-

tegration extending over the entire magnitude of the body.

The moment of inertia occurs very frequently in Strength of

Materials and in the Theory of Eotation of Bodies. For

example, in Problems 31, 32, 33 of Article 23, i" is the moment

of inertia of the cross-section of the beam.

If the material of the body is of uniform unit density, which

is always assumed unless the contrary is stated, D-dM= dM,

and the moment of inertia depends only on the shape of the

body.

The moment of inertia is one of the elements used in select-

ing shapes for engineering structures.
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The moment of inertia divided by the mass of the body is

called the square of the radius of gyration of the body for the

moment axis used and is denoted

I y'1dm
by k2

. Hence k2 =' k is the

distance from the moment axis to the

point where the mass of the body

must be concentrated so that the

moment of inertia of the concen-

trated mass shall equal the moment

of inertia of the mass distributed

throughout the body. In Problem

35 of Article 23 and in Problem 13 of Article 43, k2
is the

square of the radius of gyration of the turning body.

Denote by Ia the moment of inertia of a body for any

moment axis AA, by Ic the moment of inertia of the same

body for a parallel moment axis

through the center of mass of

the body. Through C, the

center of mass of the body, pass

a plane US perpendicular to

the line AC. Denote by D the

distance between the two axes,

by r the distance of dM from

the axis AA, by r' the distance

of dM from the axis CO. By

: I r'
2

• dM. From the triangle

Fig. 64.

-Sdefinition Ia = f
r2

• dM, I
c

ACP, r2 = r'
2 + D2 + 2 r'D sin 6. Hence

(1) Cr2dM= Cr' 2dM+D2 CdM+ 2 D Cr ' sin 6 . dM.
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Now r' sin 6 = PE = y and I r' sin6-dM= i y dM.

CydM
But y = ^— = 0, since y is the distance of the center of

mass of the body from the plane RS, and this plane is drawn

through C perpendicular to the line CA. Hence (1) becomes

Ia = Ic + D2
- M, which may be written Ic

= Ia — D2
- M, and is

known as the reduction formula. Stated in words, this formula

reads the moment of inertia of a body for any moment axis

equals the moment of inertia for a parallel moment axis through

the center of mass of the body plus the square of the distance

between the two axes into the mass of the body.

Denoting the radii of gyration for the axis AA and the

axis CC by Ka and Ke respectively, Ia — M- Ka
2
, Ic = M-K 2

,

and by the reduction formula K 2 = K 2 + D2
.

Art. 64.— Moment of Inertia of Lines and Surfaces

Example I.— Find the moment of inertia of a straight line

of length I for moment axis perpendicular to line through one

end of line.

Denoting an element of the line

by dy, the distance of this element

from the moment axis by y,

The radius of gyration is found from
A

7 o -o I . 79 Fig. 65.
k2 =^-=\l\

The moment of inertia for a parallel axis through the center

of mass of the line is Ic
= ^ Z

3 — \ I
s = T

J
Y Z

3
. The radius of

gyration for this axis is found from ft
2 = -^

I

2
.

-V-

AV
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Fig. 67.

Example II.— Find the moment of inertia of a triangle for

moment axis through vertex parallel to base of triangle.

Breaking up the triangle into strips by lines parallel to the

moment axis at intervals cly, calling the length of any strip x,

and its distance from the moment
axis y, dM= x dp, and from simi-

lar triangles - = — Hence,

The radius of gyration is found

from *=!£=**•
The moment of inertia for a parallel axis through the center

of mass of triangle is

Ic = JM3 - ±bd (j d) 2 = ^ bd3 and kc

2 = TV d\

The moment of inertia for the base of triangle as axis is

Ia = h bd* + it>d($ df = t
l bd* and kj = | d\

Example III. — Find the moment of inertia of a circle for

axis through center perpendicular to plane of circle.

Y
Here it is advisable to use

polar coordinates. dM = pdOdp,

and the distance of dM from

the axis AP is p. Hence,

J p
3 d0dp = ±7rlt*,

and kp
2 = ±R2

.

Fig. 68.

Ip is called the

polar moment of inertia of the

circle.

Denoting by Ix the moment of
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inertia of the circle for axis AX, by I
y
the moment of inertia

for axis AY,

Ix = fy*dM, I
y
=Cx*dM,

and Ix + I
y =jV + f)dM=§P*dM= Ip .

Since the circle is placed in exactly the same manner with

respect to each of the diameters AX and AY, Ix = I
y

. Hence,

2/
a;
= i

p
= |7ri24

, and Ix = {ttR\ k*=\R\

PROBLEMS

1. Find moment of inertia of a rectangle base b, altitude d

for base of rectangle as axis.

2. From Problem 1 find by reduction formula the moment of

inertia of rectangle for axis through center of rectangle parallel

to base.

3. Find moment of inertia of rectangle for axis through

center perpendicular to plane of rectangle.

4. Find moment of inertia of isosceles triangle for axis of

symmetry as moment axis.

5. Find moment of inertia of ellipse for major diameter as

moment axis.

6. Find moment of inertia of ellipse for minor diameter as

moment axis.

7. Find moment of inertia of ellipse for axis through center

of ellipse perpendicular to plane of ellipse.

8. Find moment of inertia of parabolic segment for axis of

parabola as moment axis.

9. Find moment of inertia of circular spandril for diameter

as moment axis.
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Art 65. — Moment of Inertia of Solids

Example I.— Find the moment of inertia of the rectangular

parallelopiped whose dimensions are b, d, h for axis through

centers of two opposite faces.

Break up the solid into laminae by planes perpendicular to

the axis at intervals dx and call the distance of any lamina

Sftt
H-1-

-b*4

Fig. 69.

from one of the faces x. The lamina may be broken up into

elements dxdydz, and the moment of inertia of the lamina

= dx I I p
2 dydz = moment of inertia of base of lamina mul-

tiplied by the thickness of the lamina. Hence the moment
of inertia of the lamina is ^(b2+d2)bddx, and the moment of

inertia of the parallelopiped is

I= T
L

(p
2 + d2

) bdC dx = ^{b2 + d2
) bdh.

The radius of gyration is found from

&°=^ (b
1 + d2

) bdh

bdh
= TV(&

8 + <P).

Example II.— Find the moment of inertia of a cone of

revolution for axis through center of mass of cone parallel to

base of cone.
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Break up the cone into laminae by planes parallel to the

base at intervals dy. Call the distance of any lamina from the

vertex y, the radius

of the base of the T
lamina x. The mo-

ment of inertia of the

lamina for axis X' X'

through the center of

the lamina and paral-

lel to the axis XX is

\irx*dy, the distance

from X'X' to XX is

\H—y. Hence by the reduction formula the moment of

inertia of the lamina for axis XX is \irx*dy + irxP^H—yydy,

and the moment of inertia of the entire cone is

I=f*\\«*dy + Tr^Cftf- yfdyl .

By similar triangles ~=— , hence

Fig. 70.

PROBLEMS

1. Find moment of inertia of the sphere for diameter as

axis.

2. Find moment of inertia of cone of revolution for axis

of symmetry as moment axis.

3. Find moment of inertia of cylinder of revolution for

axis of symmetry as moment axis.

4. Find moment of inertia of cylinder of revolution for

axis through center parallel to base.
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5. Find moment of inertia of spherical cap for axis of

symmetry as moment axis.

6. Find moment of inertia of ellipsoid for longest diameter

as moment axis.

7. Find moment of inertia of the segment of a paraboloid

of revolution for axis of symmetry as moment axis.



CHAPTER X

EXPANSIONS

Art. 66.— Convergent Power Series

The identical equation (1 — x)'
2= 1 — 2 x + x2

is true for all

values of x.

Expanding the fraction into a series by division, there
jl — x

results the identical equation

-5L = i+ x+ x2+xs+xA+ ...xn
- 1+ xn+xn+1+xn+2+xn+!i+ ....

1— x

where the number of terms in the series is infinite. This

identity is not true for all values of x. For example, if x = 2,

the fraction equals — 1, the series equals infinity. To
JL — X

determine for what values of x the identity is true, denote the

sum of the first n terms of the series by sn, the sum of the

remaining terms by rn . Then = sn + rnt and if rn can be
1 — x

made less than any assigned quantity, however small, by tak-

ing n sufficiently large, = limit sn when limit n = oo
1 — x

and the series is said to be convergent. Now

rn = xn
(l +8 + ar

J + ar
B + a4

H ).

When x < 1, rn = -1— , and limit rn = when limit n = oo
1 — x

1
Hence when x < 1, the value of the fraction is correctly

1 — x v

represented by the infinite series

173
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(1) 1 + x + x2 + x? + oj
4
H af

1-1 + xn + #n+1 + a;
n+2

H ,

and sn approaches the value of the fraction more and
1 — x

more closely the larger n is taken. For example, when x = \,

the fraction equals 2, while s4 = *f = 1.8889, s8 = f|f = 1.9914.

This infinite series is convergent when — 1 < x < 1 and con-

verges towards 2 when a; =
-J-.

The totality of values of x for

which the infinite series is convergent is called the region of

convergence of the infinite series.

=1 i ±i

Fig. 71.

The heavy portion of the straight line shows the region of

convergence of the infinite series (1).

In general, the infinite series

a + a,! > x + a2 • x2
-\- a3 > x? + a4 -

x

4
-\- • • •

+ «n-i • ^n_1 + an • xn + an+1 • xn+1 + • • -,

where the coefficients are finite and independent of x, is called

a power series. Denoting the sum of the first n terms of the

power series by sn , the sum of the remaining terms by rn,

a -f a • x + a.2 • x2 + a3
• Xs

-f-
• • •

+ a„_i • a;"-
1 + aw • xn + an+1 xn+1 -f-

... = sn + rn .

For each value of x for which limit rn = when limit

n = «x, the power series is convergent and has a determinate

finite value, which is the limit of sn when limit n = oo. Hence

within its region of convergence the power series defines a

function of a? and may be denoted by /(a).

A convenient test for the convergence of a power series is

Cauchy's test, which reads

:

A power series is convergent if from and after some fixed
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term the ratio of each term to the preceding term is always

numerically less than some number numerically less than unity.

For suppose that from and after the m + 2 term, m being

finite, of the power series

a + ax
• x + a, • x2

-\ am • xm + am+1 • xm+1 + am+2 . zTO+2 + ...

the ratio of each term to the preceding term is numerically

less than r, and that — 1 < r < 1. Denote the sum of the first

m terms of the series by sOT, the sum of the next n terms by

sn, the sum of the remaining terms by rn, the sum of the

entire series by s. Then s = sm + sn + rn,

sn + rn = am • xm + am+1 • xm+1 + am+2 • xm+ 2 + am+3 . xm+s + ...

< a„ • am(l +r 4-

r

8+ f* H ?*n + ?'n+1 4- ?"n+3 H )

by hypothesis. Hence rn < aw • xm -
, and limit rn=

1 — r

when limit n = oo, since am and a? are by hypothesis not

infinite and r is assumed less than unity. Hence the sum

of the series s = sm + limit sn when limit n = oo ; the series is

convergent and Cauchy's test is proved.

For example, in the series l-f-sc-l-a^ + a^-f- ..-a;
n
-f x

n+l
-\ ,

the ratio of each term to the preceding term is x, and by

Cauchy's test the series is convergent when — 1 < x < 1.*

Art. 67.— Taylor's and Maclaurin's Series

The values of explicit algebraic functions can be directly

calculated for arbitrarily assigned values of the independent

variable. For example, if y = x* — 1 x + 7, any value may be

assigned to x, and the corresponding value of y becomes

known.

* Euler seems to have been the first to call attention to the fact that

infinite series can be safely used only when convergent.
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Consider the function f(x) = xm, when m is assumed to be

a positive integer. When x=b = a -\- h, whence h = b — a,

f(b) = (a+h)m = am + m • am
~l -h + m (m - 1) am

-2
£-

+ m(m-l)(m-2)aw-3
^- + ...

ol

by the binomial formula. This result may be written,

(1) /(b) =/(« + ft) =/(a)+/'(a). h
^

+/"(«) •§+/"<•) -|+-
or (2) /(&) = /(a) +/(«)• (6 -a)

+/"(«) • ^fr
12
+/"<«) • ^=p^ + -,

where f(a), /'(a), f"(a), f'"(a), -~, are the values of the suc-

cessive derivatives of f(x) — xm when x= a.

The symbol n\ stands for 1 • 2 • 3 • 4 • 5 • ••• n, and is read

factorial n.

It is proposed to derive a general series of the same form as

series (1) and (2) for the approximate calculation of any func-

tion f(x) for arbitrarily assigned values of the independent

variable. The problem may be thus formulated : Let f(x)

and its successive derivatives f'(x), /"(#), f'"(x), •••, be finite

and continuous from x = a to x=b, and denote by f(a), f'(d),

f"(a), /'"(a), ---, the values of these functions when x = a.

The value of f(b) is to be found in terms of /(a), f(a), f"(a),

/'"(a), ••-, and the powers of b — a.

The investigation is based on the following proposition,

known as Eolle's theorem

:

If the function cf> (x) and its first derivative <f>'(x) are finite

and continuous from x = a to x = b and
<f>

(a) = and cf> (b) = 0,

the first derivative <j>'(x) must vanish for some value of x

between a and b.
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If
<f>'

(x) is identically zero, the truth of the proposition is

evident. If </>' (x) is not identically zero, $' (x) must change

sign between x = a and x = b, for otherwise cj> (x) would either

continually increase or continually decrease from a; = a to

x = b, and in neither case could </> (a) and
<f>

(b) both be zero.

Hence <£' (x) must change sign between x = a and x = b.

Since <£' (a;) is assumed to be finite and continuous from x = a

to x = b, </>' (x) can change sign only by passing through zero.

Therefore </>'(#) must vanish for some value of x between

x = a and x = b. Denoting this value of x by a + 6(b — a),

where 6 must be less than unity,
<f>'\ a + 6(b — a) } = 0.

Now assume f(b)= f(a) + kx(p — a), where kx is a constant to

be determined. Write
(f)l

(x)= f(b) — f(x) — kx(b — x) and form

the first derivation <£/(#)= — f'(x)+ kx . Since by hypothesis

<f> x
(x) and <f>i(x) are finite and continuous from x = a to g = 6

and
<f>x
(a)=0 and <£i(&)= 0, <£i'(#) must vanish for some value

of x between a and b. Denoting this value of x by

a + x(b - a), kx =f\a + ^(6 - a) j.

Hence f(b)=f(a) +f\a + x(b - a)\(b - a).

Next assume f(b)= f(a)+f'(a) • (6 - a)+k2
. (b ~ a

)

2

-

Write ^(«)s/(6)-/(«)-/(»). (6 -a?)-^.^^ and

form the first derivative <£</(#) = — (& — #)/"(#) + fc«(6 — a>).

Since by hypothesis 4>2(x) and <£2 '(#) are finite and continuous

from x = a to a? = & and <£2(a)=0 and <£2(&)=0, <£2'(;c) must

vanish for some value of x between a and b. Denoting this

value of x by a-\-02(b — a), k2 —fu \a-\-B2(b — a)\. Hence

/(6)=/(a)+/'(«) • (6 - «)+/> + 2(& -«)f -^fp^
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Assume

f(b)=f(a)+f(a) • (5 - a)+f%a) :£=& + h- (J

~f£-
Write U*)= fQ>)-f(x)-f'(x) -(b-x)

J
2! 3!

and form the first derivative

Since <£3(#) and <£3'(#) are by hypothesis finite and continu-

ous from # = a to x = b and
<f)S(a)=0 and <£3(6)=0, <£3 '(a;)

must vanish for some value of x between a and 6. Denoting

this value of x by a + 3(6 — a), k3 =f" { a -f 3(6 —a)}. Hence

f(b)=f(a)+f(a) • (6 - a) + /"(a).^I2

(6 - a)3

+/*!« + «*- a) J

Kepeating this operation n times, there results

(1) /(6)=/(«)+/<(a) Q>-a)+f(a).(t=«t + r(a) .(tz^f

J W
4

!

7 w
(« - 1)

!

+f>\a + 6(b-a)\- (-h -«)"
,

n !

where < 6 < 1.

The error committed by placing f(b) equal to the sum of

the first n terms of series (1) is rn =fn \a + 6(b - ft) j
(b ~ a^ -

If this error can be made indefinitely small by taking n suffi-

ciently large, the series is convergent and can be used to cal-

culate the value of /(d) to any required degree of accuracy,

provided /(a), /'(a), /"(ft), /'"(a), ••• are known. When n
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becomes indefinitely large, the series becomes an infinite series

and the region of convergence is most readily determined by

Cauchy's test.

In (1) place b — a = h, whence b = a + h. There results

(2) f(b) =/(a + A) = /(«) + /'(<*) • h +r(*)~ +/"'(<*)~

This is Taylor's series. In (2) place a = 0. There results

(3) f(h) =/(0) +/'(0) • h +/»(0) -|+/'"(0) -|

This is Maclaurin's series. The only restrictions on a and h

in these series are that f{x), f'(x), f"(x), f'"(x), -••f
n~x

{x)

must be finite and continuous from x = a to x = a-\-h and
hn

that /" (a + 07*)— must become less than any assignable

quantity when n is indefinitely increased. Since the quantities

represented by a and h are not fixed, they may be denoted by

x and y respectively, when Taylor's and Maclaurin's series

become

f(x + y)=f( x)+f(x). y+f" (*).£+/»(*).£+..

.

f(y) =/(0) +/' (0) • y +/" (0) -£ +/"< (0)£+ -

*Taylor (1685-1731) published his series in his " Methodus incremen-

torum." Maclaurin published his series in his "Treatise of Flexions"

1742. The expansions effected by these series had been previously

obtained by laborious processes.
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Taylor's series expands a function of the sum of two varia-

bles in the ascending powers of one of the variables; Mac-

laurin's formula expands a function of one variable in the

ascending powers of that variable.

Example I.— Expand log
e (1 -f y).

This expansion is effected by Maclaurin's series since

log,. (1 + y) is a function of one variable. Forming the succes-

sive derivatives,

2!
fi3f) = log. (1+30, f'"(y) =

(1 + y)

f'(y) =A-> /"&)=
'

hence /(0) = 0, /'(0) = 1, /»(0)=-l, /'"(0) = 2!,

jT(0)=-3!, ... /»(0) = ±(n-l)!.

Substituting in Maclaurin's series,

loge (l +2/)^,-J-f|-J +f-J+ ^-...

^ y"-1

T y
n 1

(n-l)l »!(1 + fy)
n

By Cauchy's test this series is convergent for values of y
numerically less than unity. Hence this series may be used

to calculate the Napierian logarithms of numbers from to 2.

-1 o +1

Fro. 72.

Taking y=.5 and n = 13, log, 1.5 = .40546914 with an

error between .000000053 and .0000093.
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The region of convergence of this expansion of loge (1 + y)

is indicated graphically by the heavy line of the figure.

From this expansion of loge (1 + y) an expansion of

loge (1 + z) with an enlarged region of convergence is obtained

by the following analysis :

for - 1 < y < 1.

ge{ V) ~ f
2 3 4 5 6 7 8

for - 1 < y < 1.

By subtraction,

\oge (l + y)-log,(l-y) = log,^±^ = 2(y+t + t + l + ...\

for — 1 < y < 1. Substituting

y = ^—, \±lwmi±l
%
and when - 1< y <1, * >0.

L z + 1 1 — 2/ z

Hence loge (1 -f- z) = loge z

Lfl/Li_ j 1
,

1
i

1
i

>
\2z + l 3(2z + l)3 ^5(2z-f l)5 ^7(2z+l) 7 ^

J

for 2 > ; a convenient formula for the calculation of the

Napierian logarithms of numbers.

By Maclaurin's series

loga (l +2/)^loga eJ2/-|
2

-f|-^ + |
5

-|+-..},

that is, loga (1 + y) = loga e • log, (1 + y)- Placing 1 + y = o,

loga a = loga e.loge a,

whence loga e =- and loga (l+y) = - loge (l + ?/).

log
e a loge a

The factor , by which the Napierian logarithm of a
loge a

number must be multiplied to obtain the logarithm of the same
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number in the system whose base is a, is called the modulus of

the system of logarithms whose base is a. In the common

system a = 10, and —-— = .43429448.
log e

10

Hence log 10 (1 + y) = .43429448 log, (1 + y).

Example II.— Expand loge y.

Here f(y) = log
e y, f (y) = * f" (y) = - i, f"> (y) =% - , .

y y y

f'iy)=± ^^. Hence,/(0)=-oc, f{0)=a>, /»(0)«-cd>

/'"(0) = oo, •••, /
H
(0) = ±co. The function log

e y cannot be

expanded by Maclaurin's series into a power series in y.

However, writing log y = log \ 1 -f- (y — 1) |
, Exainj)le I. gives

a power series in y — 1 convergent when < ?/ < 2.

Example III.— Expand (x -f ?/)™, where m represents any

finite number, positive or negative, integral or fractional.

This expansion is effected by Taylor's series.

Here f(x) = xm
, f (a?) = mxm~\ f" (x) = m (m - 1) xm

~'2
,

• • •

/"- 1
(x) = m (m - 1) ••• (m — n+ 2) .T

m-"+1
,

/" (a;) = m(m-l)...(m-n + 2) (m — n + 1) as"*"*,

Substituting in Taylor's series,

(x -f y)
m = xm+ m • xm

~ l
.
2/ +

m (m "~ *)
a*-

Y

m(w-l) 0-2) ^,3 .

3!
ro(m-l) — (ro-n + 2) +1 +1

(•-1)1
'

[

m(m - 1) ...
(m - n + 2) (m - n + 1)^^, + ....
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The ratio of the nth. term to the (n — l)tli term is

r = /m+l_ iy gince m ig finite the factor
m+ l_

j
\ n Jx n

approaches unity when n is indefinitely increased. Hence if

- < 1, the ratio r becomes less than unity when the series is
x
sufficiently extended, and the series is convergent by Cauchy's

test. This proves the binomial theorem for all finite ex-

y
ponents, provided — 1 < - < 1.

x

Example IV.— Expand (2 — x + y)"~* in ascending powers

of y.

Substituting v = 2 — x, (2 — x + y)~ 2 becomes (y + y)~ *. By
Taylor's series,

(v+ y)
"* = v~* +— (v"h • y +— (v'h • ^ +— (v~h£ +...

5 v~i _ J v
-l . i/ +

1

W"i . ^2 _ _5_ „-* . y» + ... .

whence, (2—x+y)~'2 = (2 — xf* — £ (2 — a?)"* • y

+ f(2-a;)^. 2/
2 -

T̂ (2-^.^+...,
y

convergent when — 1 < s _ < 1.

PROBLEMS

Expand and determine the region of convergence,

1. sin y. 5. sin(x — y). 9. log (# + #).

2. cosy. 6. cos(# — y). 10. tan
_1

#.

3. sin(x + y). 7. ey . 11. sin
_1

#.

4. cos(aj + y). 8. <ry
. 12. log \x + VI H-o58

}.

13. sinh # = £ (e
x — e~x). 14. cosh# = A-(ex +e~*).

15. e^sina. 18. tana;. 21. (1 — x + y)K

16. e-8in-1 *. 19. logcosx. 22. (a2 — f)~
l

.

17. (l-sin2 a)~*. 20. cot?/. 23. log (a3 — y
2
).
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10°
24. Compute sin 10°. Here x = •

o» .o

25. Compute sinh .2.

26. Compute loge 2 and log10 2. 27. Expand e
-*2

.

Art. 68.— Euler's Formulas for Sine and Cosine

Let the series e-s 1 +* + g+g+J +S+S + '"'

which is the development by Maclaurin's formula of e
z when

z is real, be adopted as the definition of e
z for all values of z,

real and complex. Placing z= ix, where i stands for V— 1,

whence i
4n = 1, ^

4n+1 = i, i
u+2 = — 1, i^+3 = — i for all integral

values of n,

(1) e
ix = 1 + ix -— - i— +— + i— -— - i— + • • • •v ;

2! 3! 4! 5! 6! 7!

In like manner, placing z = — ?'#,

v ;
2! 3! 4! 51 6! 7!

Taking half the sum of (1) and (2),

(3)
e + e EEl-^+^-^ + ^-..-^cosa;w 9 9! 4. fit «f

dividing half the difference of (1) and (2) by 2z',

e««_ e
-fa of aj

8
a;

7
. a;

9

(4 ) =# ••• = sm x.w 2i 815! 7! 9!

In general, sin (n#) =i
J
e
fna: - e-'

na:

J
, cos (nx) = } [ e

1*"* + <r*" 1 •

2i

These results are known as Euler's formulas for sine and

cosine.

These formulas are useful in trigonometric transformations
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and in integrating derivatives involving trigonometric and

exponential functions.

Since the i in u = ix is of the nature of a constant factor,

du_ .

dx

Example I.— Find the value of cos5
a; in terms of the

functions of the multiples of x.

cos5 x = {%(eix + e-ix

)\
5

=^ei5x + 5 e*x + 10 e
ix + 10 e~ix + 5 e"'

3* + *-*»}

= tV i
&«*" + e~i5x

)+ !(*"" + ^,-3x

)+W +O J

= 3^ {cos (5 ic)+ 5 cos (3 x)+ 10 cos a;}.

Example II.— Integrate -^ = sin2
ic • cos2

a;.

dx

Substituting for sin x =— (e
ix — e _£z) for cos x = %(eix + e _fa

),

*=-JL (««- + at*" - 2)= - I cos (4 x)+ L Hence
dx

y = -Tfesin(4»)+|a> + a

Example III.— Integrate -^ = e
-p

* sin (pt), where P and p
ctz

are constants.

Substituting sin (pt)=—(eipt — e~ipt

),
Z i

dt
=
2i

16 *
s '

hence 9 2i\-P+ip P+ip
J
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PROBLEMS

Find in terms of the functions of the multiples of x,

1. sin4
a;. 2. sin7

a;. 3. sin2 # • cos2
(2 a;).

Integrate, 4. -^=sin3
#. 5. -^=sin4

#.
dx dx

6. ^=cos2
x. 7. ^=sin6

#. 8. -^ == e
2* • sin2

a;.

dx dx dx

9. Show that e
ix = cos x -f- i sin x, e~ix = cos x — i sin x.

Art. 69.— Differentiation and Integration of Power
Series

Consider the power series,

(1) f(x) = a +a1 'X + a2 -x
2

-\

an • xn + an+1 • xn+l + aH+2 • xn+2 H ,

and denote the sum of the first n terms by sn (x), the sum of

the remaining terms by rn (x).

Absolute Convergence.— Denote the numerical or absolute

value of any quantity z by the notation \z\. So that
|

— 5
|
= 5,

Suppose in the power series (1), denoting \an \
by An, that

AnX H < M, where M is a finite quantity, for all values of n.

:z
Xo O +Xo_

Fig. 78.

M
Take

|
x

\
= X < X ; then, since A n < —- by hypothesis,

A +Ai +AlH-iJH-
xj \xj T \xj T

$ince by hypothesis Jf is finite and •— < 1, by Cauchy's test
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the right-hand member of the inequality, and consequently the

left-hand member, is a convergent series. That is, the sum of

the absolute values of the terms of the original power series

is convergent for
|
x

|
< X if AnX n < M. This is expressed

by saying that the given power series is absolutely convergent

within the region — X < x < X .

Example.— In the expansion,

(1 -x^-i = 1 +J +K + A*6 + t
sA*8+ t¥i*

,°+ -,

when x = 1, each term is less than 2. Hence, the series is

absolutely convergent for — 1 < x < 1.

Uniform Convergence.— Writing

i +i1i+Ai2+-A^ n+A+i^+,4--W+^(i),
rm (x) > Rn (x) <

^(§J+
M

(
JY

+1

+ - for
|
^

|
= X < X .

—(SMD"+Jf(r+ "-*(i)nr
Now, n may be taken so large that, for all values of X < X ,

Jff —
J

— for the same value of n becomes less than c,

however small c may be assumed. Consequently, since

rn (x) > Rn (X), for all values of x between — X and -f- XQ

the expression rM (x) can be made less than c for one and the

same value of n. This fact is expressed by saying that

the power series is uniformly convergent in the region

- X < x < X .

Example.—The power series l-h^+^+^H af+of~1
H

is absolutely convergent for
|
x

\
< 1. Assuming c = .000001,
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determine n so that for this value of n rn (x) < c for all values

of x between — \ and -f \.

Since rn = , by the conditions of the problem rn<(|)
n_1

.

J. — X
The conditions of the problem are satisfied when (£)

n~1=.000001,

that is, when n = 22.

Continuity.— Denote by x and x any two quantities numeri-

cally less than X . Since f(x) — sn (x) + rn (x),

f(x) -f(x ) = \sn (x) - sn (x )} + \rn (x) - rn (x )\.

Since n, however large, is supposed to be finite, x may be

taken sufficiently near x to make
|

sn (x) — sn (x ) I < e, however

small c may be assumed ; and since by hypothesis x and x

are within the region of uniform convergence of the power

series, n may be taken so large that
|
rn (x)

|
and

|
rn (a?

) |
each

become less than e. Consequently
|
f(x) — f(x ) |

< 3 c, and

the function defined by the power series is continuous in the

region of uniform convergence.

Integration.— To show that between limits within the region

of uniform convergence the limit of the sum of the integrals of

the terms of a power series is the integral of the limit of the

power series, write

Jf(x) dx = I a • dx +
J

ax
• x dx -f | a2

• x*dx -\

+J rn (x).dx,

where a and /3 lie within the region of uniform convergence of

f(x) = a + «i • a + «2 • & + «3 •
'& H

Now
J

rn (a;) • dx < e | dx = e(fi — a), where c is a quantity

which approaches zero as n approaches infinity. This proves

the proposition.
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The series

f(x) =<h-$ (x) + a1 -il/(x).<l>(x)+a2 '*lt (a?) •
\_<f>

(x)']
2 + ...

may be integrated term by term between the limits x = a and

x — fi provided a and /3 lie within the region of uniform con-

vergence of the series a + aL
•

<f>
(x) + a2

• [<£ (#)]
2 + • • • and

if/ (a?)

is finite from x = a to x =
ft.

Example I.— Expand tan-1 a; into a power series by inte-

gration.

— tan- 1 * =—!—

^

= 1 - x2
-f- a

4 - a6 + x* - x10 + ....

cfo 1 + a2

a power series uniformly convergent for
|
x

|
< 1. Hence term

by term integration gives a valid result, and

/y»3 />i5 a»7 /x»9 /\i 1

1

taa-»»=*_|+|-|+|_g+ ... for |*|<i.

From this expansion is obtained Euler's series for the calcu-

lation of ». Writing

tan u = £ and tan v = J, tan (w -f v) = 1 = tan^.

Hence j = ti -f- v = tan _1
£ -f- tan

-1
£,

and |=g-^+^~...J+(s
_
§
__+_-...)

\2 3) 3^2" 3V SV2* 37
Example II.— Find the value of t when

V2^^« ^/(h-y)(2ry-y2
)

Here £ is the time of vibration of a simple pendulum of length r,

the bob starting at a distance /i above the horizontal through

its lowest position.
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Substituting y = h- sin2
0,

2 7i • sin • cos 6 • d$= 4r Cl

V2 g J» Vh • cos sin V2 rfc - /i
2 sin2

2^
Sm * <W#V*?Tr-#

<

+I.I.I.(^.^ + ...J»

WiiKlJi+ (H)'(r

-'iiD'^y- •••}

If 7i is small compared with 2r, t = 2wd- is an approxima-

tion sufficiently accurate for most purposes.

Differentiation. — To find under what conditions the sum of

the derivatives of the terms of a power series,

f(x) = a + ax
• x + a2

• x2 + a3
• x3 + ••• an • o?

n
H ,

uniformly convergent for
|
a;

|
< X , is the derivative of the

function defined by the power series, write

<f>
(x) = ax + 2

a

2
• x -f-

••• ?i • an • #n-1 4- (?i -f 1) • aM+1 • xn + •••.

By hypothesis the series defining f(x) is uniformly convergent

for
|
x

|
< X . If from and after some fixed term the ratio of

the corresponding terms of <f>(x) and f(x) is not greater than

unity,
<f>

(x) is uniformly convergent when f(x) is uniformly
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convergent. The ratio of the (n + l)th terms of </> (x) and

f(x) is n[-*\ — , where x$ and xf denote respectively the
\xj x+

variables of the
<f>
and / series. Hence <£ (x) is uniformly con-

vergent when
XfJ Xq

•<\/>

>\x<t>\. If> 1, that is, when w

aty is taken less than xf , limit n(—
J
=0 when limit n = go.

Hence </> (#) is uniformly convergent for
|
x

|
< X, when X

lies within the region of uniform convergence of f(x). For

these values of x, <£ (cc) may be integrated term by term, and

f(x)—
f

</> (as) dx = a + % • a + a2 • a2 + a3 • a3 + • • •, when a

and /? lie within the region of uniform convergence. Differ-

entiating this result, f'(x) — <£ (x) = ; hence

f'(x) = a1 + 2a2 -x-\ (- n • aB • »M_1 H .

That is, a uniformly convergent power series may be differ-

entiated term by term as long as x is within the region of

uniform convergence of the power series.

Example.— The expansion

(1) (l-rf)-*-al+i^+i^+i-»-t^+i-f-|-i^+-
is uniformly convergent for

|
x

|
< 1. Obtain the expansion of

(1 - x?)~% and (1 - x2)"^ by differentiation.

Differentiating (1) and dividing by x,

(2) (1-^-1 = 14-1^ + -^ x* + ffa
6 +...;

differentiating (2) and dividing by 3 x,

(3) (1 - x2)-* = 1 + 1 a2 + ^5- x4 + .-.

PROBLEMS
Expand by integration,

1. log(l + #). 2. log(l — x). 3. sin-1
^.
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From the expansion of (1 — a?)
-1 obtain by differentiation the

expansion of,

4. (l-x)~2
. 5. (l-x)~3

. 6. (l-x)-\

7. Find the length of the ellipse x = a cos
<f>, y = b sin <£.

If the arc is measured from the end of the major axis,

s = a I VI — e
2 sin2

<j> d<f>,

where e is the eccentricity of the ellipse.

The entire length is 4a
J
VI — e

2 sin2
<j>d<f>.

8. The discharge of water per second through a circular

orifice of radius r, the plane of the orifice being vertical,

when h is the head of water on the center of the orifice, is

Q = 2 C
+r
V^^? -\/2g(h-y) dy. Find Q.

X
+ h

e~x
• dx. This is

called the probability integral.

XI
/»* g—

3

c?ic. Expand e
x and e

-
* separately,

and express in the form of an infinite series.
x

Art. 70.

—

Expansion of n 1 =f(x-{-h, y + k)

Let u=f(x, y) denote a continuous function of two inde-

pendent variables. Denote by u1 =f(x-{- h, y + k) the value

of u when x and y are increased by h and k respectively. ux

is to be expanded into an equivalent series in the ascending

powers of h and k.

Denoting by u the value of u when x is increased by h and

y remains unchanged, by Taylor's series,

r/ , 7 v . du , . d 2u h2
. d3u h3

,
d*u hA

,

o j\ t ,*; -r^
^do2 2! da3 3! dz4 4!
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Now Ui is the value of u when y is increased by k, x remain-

ing unchanged. Hence Vq =f(x + h, y + k)

«o + ^-°-fc +

sw +

5«o

da

By2

7 I
^

dy

d2u

dxdy

dy2

2r
ax

ft* &u
2! dar

1

/jft-f

5!

2!

a»w

da;-d?/

d3w

da;d#2

+ H

A? d4
ll

3!
+

dif

ft? &u
3! da;

4

4!

ft*

4!

dar% 3!

3*u ft
2&2

2!

2! da;%

V 3!
£ + d4u

2 2!

tod?/3 3!

dtf
*4!

+

+ •

+

+

+ •

For example, in the sphere x2 + y
2 + z

2 = 25, at the point

(0 + /i, 4 + &, «), ^ = 3-|A;-i/i2 -iA;2
. If h = .5

and ft=.l, z = 2.78.



CHAPTER XI

APPLICATIONS OF TAYLOR'S SEKIES

Art. 71.— Maxima and Minima by Expansion

If the function y = f(x) is continuous in the neighborhood

of (x
, 2/ ), and yl denotes the value of y corresponding to

x = x ± h, by Taylor's series,

(1) 2/i - ft = /'(*) (±K)+f'%)^f+ /'"
(«.)^f+-

If h approaches zero, y x
— ?/ approaches the term of the

right-hand number of (1) which contains the lowest power of

h. Hence, if f'(x ) =£0, y1 — y changes sign with h, and y is

neither a maximum nor a minimum ; if f'(x) = and f"(x )

is negative, y — y is negative for + h and — h, and y is a

maximum ; if /'(# ) = and f"(x ) is positive, yx —yQ is posi-

tive for + h and — 7i, and y is a maximum ; if /'(# ) = 0,

f"(x ) = and f'"(x ) ^ 0, yl
— y changes sign with h, and

y is neither a maximum nor a minimum.

In general, if the first derivative in the expansion (1) not to

vanish is of an odd order, the function is neither at a maxi-

mum nor at a minimum ; if the first derivative not to vanish

is of an even order, the function is at a maximum if this

derivative is negative, at a minimum if this derivative is posi-

tive. This agrees with the results of Art. 24.

194
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If the function u = F(x, y) is continuous in the neighborhood

of (x
, y ), and u denotes F(x

, y ), ux denotes F(xQ ± h, y ± k)
j

by Taylor's series,

(i)„1
-« =|(;0+g(fc)

d2F , 9 , o d2F 77 ; d2F
2 \dx 2 dx dy dy 2

j

1{&
3!{dz 33! (day5 day%o dx d

2

y
2 dy

, d^ a^ dip , , of dF d 2F ,

where — ,—, —-, ••• denote — ,—,—, ••• when x=x
, y=yQ.

dxQ dy oxj ox dy dar

If h and k approach zero, wx
— u approaches the sum of the

terms of the right-hand member of (1) which are of the lowest

dimensions in h and k. If either or both — ,
—- are different

dx dy

from zero, ux
— u has different signs for different values of

h and k, and u is neither a maximum nor a minimum. If

dF A dF A , d2^ d2^ 6 2jP . ,— = 0, — = 0, and —, , — are not each zero, u is

da? dy dx 2 dx dy dy 2

ri hi ci ri ci ti

a, maximum if —Ji2 + 2 hk H -k2
is negative for all

d2^ 72 , o d2^ 77 ,
d2^— , h2 + 2 hk H

oa©
,
&» d?/o

, W
signs of h and fe, a minimum if this expansion is positive for

all signs of h and k.

Writing g.»+t" .» +".»

day* da;„d?/ / (day* d?/
2 \dx

()

2 dy 2

J \

dxf

it is seen that iq — w is negative for all values of h and k, and

ponsequently u is a minimum, when — and —
a

are both
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negative, and -— > f
-—

j : ux
— w is positive, and w

c

d#o dyo \dx dy J

d2F d 2F
a minimum, when — and —- are both positive, and

dxQ
2 dyQ

2

d2F d2F / d 2F V
dx 2 %o2 \dx dy J

Example.— Find the dimensions of the rectangular parallel-

opiped of maximum volume, sides parallel to the coordinate

axes, that can be inscribed in the ellipsoid — -f-
^- + — = 1.

a2 62
c
2

The volume of the parallelopiped is

Z

Fig. 74.

V=Sxyz = Sexy
\ a2

b2

J

If F is a maximum, Vx = x?y2 — ^-| 1- is a maximum,
a2 &2

and vice versa. Forming the partial derivatives of Vi,

^^_ 2
o_4^2 2xy*

dx

32/

2a^2

2afy

62 '

^^,00 ,12 «y 2.y*

a»2 * a2
&
2 '
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d2
Fi o i

2

a

4 12 aY2^-^.-
a/ a2

62
'

d2
Fi , 8a^y 8JBV8

to% * a2
62

The conditions ^ = 0, ^J = make x=-^-, y = -^-.

These values of oj and y make

52F1== _86_2 ^F1= _8^ d 2V1 =
4afr

6^ 9 '

fy
2 9 ' tocty 9

'

Fi is a maximum. Hence the dimensions of the maximum

parallelopiped are —— , — , —^.

PROBLEMS

1. A box with open top in the form of a rectangular paral-

lelopiped contains 108 cubic inches. What must be its dimen-

sions to require the least material in construction ?

2. Find the point (x, y, z) the sum of the squares of whose

distances from (a1} bX} Ci), (a2, b2, c2), (as, b3, c3) is a minimum.

3. The sum of the three dimensions of a rectangular

parallelopiped is a. Find the dimensions when the volume is

a maximum.

4. Find the dimensions of the cistern of maximum capacity

that can be built out of 3000 square feet of sheet iron, the

cistern being of the form of a rectangular parallelopiped and

without lid.

5. The sum of the three dimensions of a rectangular

parallelopiped is a. Find the dimensions when the surface is

a maximum.
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Art. 72.— Contact of Plane Curves

Plot the curves representing the equations Y= F(X) and

y =f(x) to the same coordinate axes, and denote by 5^ and y

the values of Y and y corresponding to X: : Xi), x - x , by Y1 and yx

the values of Y and y corresponding to X=x ±h, x = x ±h.

By Taylor's series,

Ti = F dY
0( h

. d2Y (±h)2 <PY (±h)> d*Y (±hy
dX K J dX 2 2! dX 3 3! dX * 4!

Vi = y + P(±h) +
d\(±hy d*!h (±hf d%(±hy

Hence
dx dx 2 2!

+
dx 3 31

+ +

ri-2/i = (iro-2/o) + p\±h) +
dY*
dXQ dx J

d*Y d%\(±hf
dxf) 3!

dx * 4

!

#K d*y \(±hy
dxQ

2

J 2!

dX *

The curves Y= F(X), y=f(x) have a common point if

Y = y when X =av The difference between the ordinates

' Y

Fio. 75.

corresponding to x ± h when h approaches zero is of the first

dY dv
degree in h if —5 ^ _^P . £ ^g secon(j degree in h and the

dXQ d x
curves are said to have contact of the first order, if

dY _ dy
A d2Yn d2

y .

dX dx dX 2 dx
()
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of the third degree in h and the curves are said to have con-

tact of the second order if ^ = *fo d?Y« = d%
and

ds
Yo d3

yo
dXo dxo dXd d®o

]X 3
^

~M*' "^n Seneralj the difference between the ordinates

is of the (n + l)th degree in h and the curves are said to have

contact of the ?ith order when the first pair of corresponding

derivatives not equal are of order n -f- 1.

If the contact of the two curves Y=F(X) and y=f(x) at

(# , y ) is of an even order 2 m,

Y-v = (
d2m+1Y

Q ^tm+\\(±h)am+1

1 Ul \dX 2m+1 d^+V(2m + l)

Hence Yx
— y1

changes sign with h and the curves intersect.

If the contact is of an odd order, the curves do not intersect.

Suppose the equation y=f(x) to be completely determined,

while the equation Y=F(X) involves arbitrary constants,

that is, parameters. The condition necessary for the inter-

section of the curves represented by the equations Y— F(X)
and y =/(#) when X = x , namely Y = yQ, determines one of

the parameters of Y— F(X)-, the conditions for contact of

the first order when X = x , namely Y = y ,
——? = -^,
dX (xXq

determine two parameters of Y=F(X)-, the conditions for

contact of the second order YQ = y ,
——

° = -% ——f = —

^

dX dx dXo dx<f

determine three parameters of Y= F(X). In general, con-

tact of the nth order determines n+1 parameters of Y=F(X).

It is also evident that the highest order of contact Y= F(X)

can in general have with another curve y=f(x) is one less

than the number of parameters of 7= F(X).

Example I.— Determine the order of contact of 4 y = x2 — 4

andar2 + 2/
2 -2i/ = 3.
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The common point is (0, — 1). For this point the first equa-

boa gives ^ = 0, gmf ^=0, ^=0, ..., the second

equation 2 = 0, g =
|, g=0, g—| Hence there

is contact of the third order.

Example II.— The equation y=f(x) represents a fixed

curve, (X — m)2 + (Y— n) 2 = R2
is the equation of any circle.

The parameters m, n, R are to be so determined that the circle

has contact of the second order with y = f(x) at the point

0»o, 2/o).

The problem requires that

m\ Y = v
dYo = d]k d2Y _ <$%w ° *• dX dx ' dX 2 dx£

when X = x . Differentiating the equation of the circle twice

in succession,

(X- m) 2 + (F- n) 2 = R2

,
(X- m) + (F- n)g = 0,

By the conditions (1), these equations become

(a> -m) 2 + G/ -n) 2 = i22
,

(a* - m) + (y - n)* = 0,
&Xq

Whence

l+^+(2/o-»)
2̂
=0.

&yi

n I dab*/ V dxo
2Jdx

,
rifo

2

d% d% d2

yQ

dx 2 d.r
{)

2 dx 2
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This circle is called the osculating circle at the point (x
, y )

of the curve y = f(x), and by comparison with the results of

Art. 44, this circle is seen to be identical with the circle of

curvature.

PROBLEMS

Determine the order of contact of

1. y
l — ^x and x2

-\-y2 = 4: x.

2. x2
y -f y — x = and y=0.

3. — + ?/
2 = 1 and x2 + y

2 +6y - 7 =0.

4. Show that at a point of inflection the tangent y = mx -f- n

has contact of the second order with y =f(x).

5. Show that at a point of maximum or minimum curvature

of y =f(x) the osculating circle has contact of the third order.

Art. 73. — Singular Points of Plane Curves

Let (xq, ?/o) be any point of the plane curve F(x, y)= 0,

(x + h, y + k) any other point. By Taylor's series

ox oy

\dx 2 dx dy dy J

Denoting the point (Xq+ H, y + fy by (a?, y), this series

becomes

(x-x
)
2 + 2

1̂
(x-x )(y-y )+ r̂2

(y-y»y
[
dx * dx dy dy

+ i

+ ...:
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If either or both — , — differ from zero, when (x, y) in-
dx dy

definitely approaches (xQ, y ), (1) approaches

dF , N . dF, v A

the tangent to F(x, y)=0 at (x
, y ).

If = and -— = 0, (1) approaches
dx dy

This equation is homogeneous of the second degree in (x— *r
)

and (y—yo), and therefore represents two straight lines through

(#<»> 2/o)- This means that at the point (x
, y ) of the curve

Fig. 76.

F(x, 2/)=0 two tangents can be drawn to the curve. If the

curve stops at (x
, y ) and the tangents are real and distinct,

the curve is said to have a salient point at (x
, y ) ; if the tan-

gents are real and coincident, the curve is said to have a cusp
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at (# , y ), of the first species when the two branches of the

curve lie on different sides of the common tangent, of the

second species when both curves lie on the same side of

the common tangent.

If the curve does not stop at (x
, y ) and the tangents are

real and distinct, (x
, y ) is a point where the curve crosses

itself, called a node.

If the tangents are real and coincident, two branches of the

curve are tangent to each other at (x
, y ), and (x

, y ) is called

a tac-node.

If the tangents at (x
, y ) are imaginary, (x

, y ) is an isolated

point, called a conjugate point of the curve.

An ordinary or regular point of a curve is a point (x
, y ) for

which — and — are not both zero; all other points are
dx dy ,2

singular. The points of inflection of a curve, where —\ = 0,
dx2

are also classed as singular points.

Example I.— Examine x* — 3 xy -f- y
3 = for singular

points. Here

dF=3x*-3y, ^=-3x+3y*
f
^=6x,

dx dy oar dy2 dxdy

The conditions —- =0, — =0
dx dy

determine the singular point

(0, 0). For the point (0, 0),

<PF « d 2F « d2F
dx2

= 0,^=0,
dy2 dx dy

= -3.

Hence the two tangents at

(0, 0) are x = and y = 0,

the coordinate axes. Plotting

the curve in the neighborhood

of (0, 0), it is seen that the

origin is a node. Fig. 77.
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Example II.— Examine y
2 — x3 + 2 x2 = for singular

points. Here

dF o 2 , a dF o &F a , a &F o ^ A— = _ 3 #2
_|_ 4 #

?
— = 2 y, —- = — 6 x + 4, —- = 2, = 0.

dx dy oar dy2 dxdy

The conditions — = 0, — = determine the singular point
dx dy

(0, 0). For this point ^?= 4, ^=2, ^L = 0. Hence
dx2 dy2 dxdy

the tangents at (0, 0), represented by 4 x2 + 2 ?/
2 — 0, are

2/ = ±V— 2«ic, and the point (0,0) is an isolated point of

the curve.

Example III. — Examine y
2 = x3 for singular points.

jt dF o , dF d 2F r d2F d2F
rtHere — = — 3 x2

,
— — 2y, —- = — 6 cc, —- = 2, = 0.

dx dy dx2 dy2 dxdy

The conditions — = 0, — =0 determine the singular point
dx dy

(0, 0). For this point — = 0, — = 2, -^- = 0. Hence thev
'

J F
dx2

' dy2
' dxdy

two tangents at (0, 0), represented by 2 y
2 = 0, coincide with

the X-axis. Plotting the curve in the neighborhood of (0, 0),

it is seen that the origin is a cusp of the first species.

PROBLEMS

Examine for singular points,

1. x?+3x2-y2+3x+4:y-l=0. 4. y
2 = x2 + 2x*.

2. (y — x2

)
2 = x\ 5. y

2 = x4 + x5
.

3. y
2 = -£-• 6. (x2 + y

2

)
2 = a2 {x2 - y

2
).

X Li

7. (^ + l)2 +(a-l) 3 (*-2);=0.

8. y
2 = x4 — af\



CHAPTER XII

ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER

Art. 74.— Formation of Differential Equations

An equation containing ordinary derivatives

=F(x, y, %
\ dx dx2

is called an ordinary differential equation.

An equation containing partial derivatives

ujf dz dz d2
z d2z\ A

*(* * *> as w w wr°
is called a partial differential equation.

The order of a differential equation is the order of the

highest order derivative occurring in the equation.

The degree of a differential equation is the greatest expo-

nent of the highest order derivative when the exponents of all

derivatives in the equation are positive integers.

Example I.— The equation (x — c)
2 + y

2 = \ c
2 represents

all circles with center in the X-axis and with radius ^ the

abscissa of the center. Differentiating this equation with

respect to x, x — c + y— = 0. Eliminating c from this result

and the given equation, 3y2-^- — 2xy^- + 4:y
2 — x2 = 0, the

dx2 dx

differential equation of the given system of circles. Solving

205
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the differential equation for -^, -£ =

—

&-=
7
-—£ 2-.

dx dx b y
1

Hence for every point (a?, y) of the plane where 16 x2

y
2—48 2/

4 > 0,

the differential equation determines two unequal values for

— ; where 16 x2

y
2 — 48 y* = 0, the two values of

-f-
are equal;

dx dy dx
where 16 x*y2 — 48 ?/

4 < 0, the two values of j? are imaginary.

Geometrically these results mean that through points (x, y)

for which —< y < -\ two circles of the system pass

V3 V3
and their tangents at (a*, y) have different directions; through

Y

points (x, y) for which y = ± —- pass two circles which have

a common direction at this point ; and through points (x, y)

x3

for which y
2 > — no circles of the system pass.

o

If x, y, -*- satisfy the differential equation, (x,y, -*-
]
de-

(Xx v dxJ
notes a point in the circumference of one of the circles of the

system and moving along the circumference. If !x, y, —J
V • (XXJ

moves along in obedience to the differential equation, changing

its direction continuously, it describes the circumference on

which it started.
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If, however, (x, y, -^
) denotes a point in either of the lines

A dxJ
y = ± —-, it may move along in obedience to the differential

V3
equation without a discontinuous change of direction, and

describe the straight lines y = ±—-. These straight lines are

V3
the envelopes of the system of circles (x — c)

2 + y
2 = \ c

2
.

The equation (x — c)
2 + y

2 = \ c
2

is called the general solu-

tion of the differential equation

3y2%£-2xy^ + ±y2 -x2 = 0.
dx2 dx

The solution obtained by assigning to the arbitrary constant

in the general solution some particular value is called a par-

ticular solution of the differential equation and represents a

particular circle of the system.

The solution y = ± -^, which cannot be obtained from the

V3
general solution by assigning a particular value to the arbi-

trary constant, is called a singular solution of the differential

equation. If the differential equation is written F(x, y, p)= 0,

where p = -^, the preceding analysis shows that the singular
dx

solution is the p-envelope of the equation.

Example II.— Form the differential equation of the sys-

tem of circles x2
-f y

2 — 2 ax — 2 by + c = 0.

Differentiating three terms in succession,

w u dx dx '

w x +{£)+yd- bd= or —Hj,—

=

6
-

cfa
2
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(3) 3^(^Y-^-^Yd^=0.
^ ' dx\dx2

J dx? \dxj dar3

Observe that in Examples I. and II. the order of the differ-

ential equation is the same as the number of arbitrary con-

stants in the general solution. This is always the case.

The solution of a differential equation is also called the

primitive of the equation. The differential equation is ob-

tained from its primitive either directly by differentiation or

by the elimination of constants from the primitive and its

derivatives. The process of finding the primitive of a differ-

ential equation is called solving the equation.*

PROBLEMS

Form the differential equations of the following primitives,

1. y = cx + c-<?. 2.
;
?/ = c1ar

} + ^-

3. (y -\- c)
2 = 4: ax. 4. y = cxe

ax + c2e~
ax

.

5. y = d cos (ax + c2). 6. y = c^2* + c2e~
3x

-f- c3e
x

.

7. Form the differential equation of the system of straight

lines y = mx + n.

8. Form the -differential equation of the system of circles

concentric at the origin.

9. Form the differential equation of the system of parabolas

y
2 = 2px.

* The mathematical expression of every physical law leads to a differ-

ential equation. For example, the relation between current i and time t

in a circuit whose constants are R, L, C is expressed by the second order

differential equation — + - — -f— = !/'(*), where f(t) is the elec-
(It L (It .L/C L

tromotive force expressed as a function of time.
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10. Form the differential equation of the system of ellipses

?+P '

11. Form the differential equation of the system of tangents

y = sx ± Vl -f- s
2 to x2 + y

2 = 1 and find the singular solution

of the differential equation.

12. A point (x, y) generates a curve. Write the differential

equation which expresses the fact that the angle the line from

the origin to (x, y) makes with the X-axis is the supplement

of the angle the direction of the point (x, y) makes with the

X-axis.

Art. 75.— Solution of First Order Differential

Equations of First Degree

First order differential equations which are readily solved

occur in the following standard forms

:

Standard I.—XY&+X1Yl
= 0, where X, Xr are fimc-

dx
tions of x only; Y, Yy functions of y only. Dividing the

equation by XYlf -H -=0, the variables are separated
Yx dx X

and each term may be integrated.

Example.— Solve (x2 - yx2
)
dl + y

2 + xy2 = 0. Writing the
, -

, dx
equation J~

y
h

+ x
dx = 0, and integrating term by

y
2 (l-y) x

term, log ^—!— == c.

y %y

Standard II.—$? = f]^ y\ where fx (x, y) and f2 (x, y) are
dx f2 (x,y)

homogeneous functions of the same degree. .Now, a homo-

geneous function of degree n,
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axn + bxn l

y + cxn
~2
y

2 + ••• hx2

y
n- 2 + fcasy*-1 + ly

n
,

may be written

Hence, ft-^fe^..^ Substituting ?=*, £-.+•£>
dec /a (a?, y) \xj & x dx dx*

the given equation becomes z-\-x— =F(z), whence — =
dx x F(z)—z'

where the variables are separated.

Example.— Solve y
2 + x2 -^- = xy~-9
. dx y dx

Here^ =

dx xy — x2
'

X>

y—l
X

the given equation becomes

z + zfU
dx

z
2

z-1'

« i i-i n V dy dz
Substituting - = z, -j- = z + Xy-

;

X CIX (IX

whence — = ( 1 \dz.

xz
Integrating, log x = z — log z -f log c, or — = e

z
. Substituting

y c
V I

z = -, y=c-ec
.

x

Standard III.— (ax -\- by -\- c)^- -\- Ax -\- By -\- C — 0, where
dx

a, b, c, A, B, C are constants. Substituting (1) x = x + x1}

i-ft+fewtog.jfc

j (««,+ty + c)

+

(ob,+hy,)]^+ (Ax,+ By,+G)+ {Ax,+ By,)= 0.

Determining x
, y so that ax + by + c = 0, ^4x + 2fy + (7=0,

whence x ==
c ~

yfl
— a ~ c

the equation becomes
Ab-aB' m Ab-aB 1 4

da

first degree.

{axi + 62/j)^ + Axx -f- 5?/! = 0, which is homogeneous of the
axi
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The substitution (1) is impossible when Ab — aB = 0.

a a
In this case, writing — = — = ra, the given equation becomes

, a b

(ax +5?/ + c)-f + m (ax + by) + O=0?
where the variables are

ax
separated by the substitution ax -f by = z.

Example.— Solve (3?/-7a; + 7) + (7 2/-3a + 3)^=0.
dx

Substituting x=x +x
1) y=y +yi, the given equation becomes

\(7yo-Sx + 3) + (7yl -Sx l)\^
+ l(3y -7x + 7) + (3y1 -7x1)l = 0.

Writing 7 y — 3 x + 3 = 0, 3 y — 7 x + 7 = 0, whence a\, = 1,

y = 0, there results (7 yx
— 3 a^)~ + 3 yx

— 7 xx = 0. This

equation may be written -Ml = -. which, by the substi-

a?,

tution — = z. -~ = z -f a;,— , becomes — = =-^ =r dz. In-
Xi ' dx1 dx±

' xx 7(1 — sr)

tegrating by partial fractions,

logs, = - flog (1 + z)— ^log (1 - z) + log c.

Substituting z =—, there results, finally,
x±

(x + y -iy(x-y + iy=a

Standard IV. ^ + I1 2/ = I2) where Xl
and X2 are func-

dx
tions of x only. Since this equation is of the first degree in y

and its derivatives, it is called the linear equation of the

first order.

Consider the equation ^ + X$ = 0. Writing this in the
dx
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form -^f = —Xx dx and integrating, y=c • e~SXldx or y • e/Jl cfa=c.

Differentiating this result, eS**(& + Xfl)=0.
\CtX J

To solve -* + X,2/ = X2, multiply both sides of the equa-
dx

tion by e^ dx
. which gives el***($L + X2?A = e$

XldxX2 . Inte-

r V^x /
grating, y • e^1 *2 = I eJ"

XldxX2 cZx + 0, whence

y m «rM-*T fe/Xld*X2 da; + <7~|.

n dy= dL f ndy=_9
dx dxJ* dx 1

The equation -^ + X^ = X^71
is reduced to the linear form

dx ,

by dividing by y
n

. This gives ?/""— +X1 ?/
1_n =X2 . Now

n(fy_ 1 d
tl .

Hence the given equation becomes

±f-" + (1 - n) X, •
2/
1"" = (1 - n) X,,

which is linear if y
Y~n

is considered the dependent variable.

Any equation of the form f'(y)-^+ Xxf{y) = X2 becomes
(XX

linear by the substitution z =f(y), —=f'(y)^-.
dx clx

Example I.— Solve (1 + x2
) -^ — xy = a.
dx

Writing the equation JL — y =—-— , it is seen to be* dx 1 + aT 1 + x2

linear with Xx
= -^—

, X2 = :

a
. Hence

1 + x2 1 + x2

Cxx dx = log(l + a2)"* and e^* 6 = (1 + a2)"*.

* Leibnitz seems to have been the first to obtain this formula.
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Substituting in the formula,

»-(l+^*f f «*»
m + 0\. Nowf ad* ax

,

\
J

(1 + a2

)
1

J
J

(1 + *0* (1 + «0*

found by substituting x = tan 0. Finally y = ax+C(l + x*)k

Example II.— Solve ^+y = xy3
.

dx

Dividing by y
3
,
y~3^- + y~2 = a Writing y~3^- » A (- J j^,

otic otic rtic

the equation becomes —(—
2/
2
) — 2y~2= —2 a; and

2/-2 =e!2d*Ce-f2dx (-2x) dx = e
2 * Ce~2x (-2x) dx.

Integrating by parts,

2/-
2 = e

2 * (axr2 * + J<r«- + O) = a; + J + Ce2 *.

Example III. — Solve 3 y
2^ - ay3 = a; + 1
eta;

Writing this equation — (i/
3
) — a?/

3 = # 4- 1,
eta/

.«-[/, (a + l)<fa;+<7 Cfe-_*±1_1

Standard V.— Exact equations. A differential equation

is said to be exact when it can be obtained directly by the

differentiation of its primitive. By Art. 33 the equation

Pdx + Qdx = 0, where P and Q are functions of x and y, is

exact if — = —£• The primitive is found by the method of
dy dx

r J

Art. 33.

Example.— Solve x (x2 + 3 y
2
) dx + y (y

2 + 3 x2
) dy =

A(a^ + 3aW2
) = 6a:2/ =f (f

ay dx

exact. Considering y constant,

— (x3 4- 3 a*/
2
) = 6 a??/ =— (y

3 + 3 afy), hence the equation is
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Differentiating this result partially with respect to y, and

equating to coefficient of dy in given equation,

3^y + ^My) = y
3 + 3xi

y,
ay

whence £/, (y) = f and /, (y) = \y*+C.
dy

The primitive of the given equation is iy
A+%x2y*-\-\x4+C= 0.

Standard VI. — Integrating factor. If the equation

Pdx -|- Qdy = is not exact, a factor //. may be found for

which the equation fxPdx + fxQdy = is exact, /x must satisfy

the equation — (xiP) =— (/xQ).

If /x is a function of # only, this equation becomes

§£„ dQ+Q<!R whence l^ =I/^-^A
d# d# d#' /x da; Q\cty day

and ti = e
J « v^ *° ;

.

If the equation Pdx + Qdy = is homogeneous of degree

m and the integrating factor /x homogeneous of degree n, the

equation fxPdx + nQdy = is exact and homogeneous of degree

m + ?i. Hence, by Problem 12, Art. 33,

/iJRu + fiQy = (m + » + 1)0.

Since O is an arbitrary constant, (m + n -f 1) C may be taken

equal to unity and the integrating factor u =
Px+Qy

Since - d (xmy
n
)
k = a,-*"

1-1
?/*

n~ 1(my dx + nx dy), the differential

expression xayP(mydx + nxdy) is rendered exact by the factor

gjcm-a-iykn-p-i^ wnere ft js anv number whatever.
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Example I. — Find the integrating factor of the linear

equation -^ -f X-aj = X2.

dx

Supposing the factor to be a function of x only,

P= (X,y - X2), Q = 1, and /x = e /**.

Example II.— Find the integrating factor of the homo-

geneous equation (xy + y
2)dx — (x2 — xy)dy = 0.

1 1
The factor is (x =

y?y + xy2 — x?y -f- xy
2 2 #?/

Hence ^ +* +^-^ =
2x 2y 2y 2y2

is exact. Writing this equation — 4- ^ + yda; ~ xdy = Q

a
x y y

2

and integrating, log (a;?/) -f - = (7.

Example III.— Solve (2 arty
2 + y)dx — (arty — 3 x)dy = 0.

Break up the equation into two parts of the form

ary^my dx + nx dy), arty(2 ydx — x dy)+ (ydx + 3x dy)= 0.

r^k-Zy-k-2
is an integrating factor of the first part, a^i-ty^i- 1

an integrating factor of the second part. These factors are

the same when 2^ — 3 = ^ — 1, — k — 2 = 3^ — 1, whence

k1
= — $ and the common integrating factor of both parts of

the equation is af m/"*
-

. Multiplying the equation by this

factor and integrating,
-J
x ^y~^ — J x~*y* — C, whence

4a% = 5 + CaM*.

Standard VII.— The equation fx(xy)y dx +f2(xy)xdy=0
may be solved by the substitution xy = v, whence

, xdv—vdx
dy =—

—

-
9
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v xdv d dx
The equation becomes fi(v)-dx+fa(v) = 0, reduc-

. dx Mv)dv ,!•!-,mg to — = — where the variables are separated.

Example.— Solve (x2

y
2 + xy)y dx + (x2

y
2 — T)x dy = 0.

xdv fi) dx
Substituting xy = v, dy = , the equation becomes

x

/ 2 i
\Vj 1/2 t\Xdv — vdx . . . . , L dx dv

(v
2 + v) -dx + (v2 — 1) = 0, which reduces to— =—

.

x x xv
Integrating, log x = log v + log c, x = e

cv and finally x = e
cxy

.

In attempting to solve a differential equation, determine

what standard applies and proceed by the method of that

standard.

PROBLEMS
Solve,

1. x
2<^--y2 -xy = 0. 2. %L — y = b.
dx

y y
dx l-x y

3. (l-x) 2ydx + (l+y)x2 dy = 0.

4. ft+y.'qf. 9. (y-3x+S)^-=2y-x-4: .

(XX CLX

5. *22_j,=v?^?. io. 4«jL
a>"

i% =6. (l+3*)-a^ = 0. n (x + yy?z = aa
.

dx dx

7. *+»-«-. 12. &+£-»
dx dx x

8. x2ydx-(xz +f)dy = 0. 13. x^-y^Vx^ff
dx

14. (ar
J + l)^ + 2aw=4a2

.

die

15. sec2
a; • tan?/ • d# 4- sec2

y • tana; • dy = 0.

16. (y- x)^ + y = 0.
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17. dy=x*f- Xy. 18. ^-=ay2
x.

(XX (XX

19. (Vxy — l)xdy — (Vary -f l)y dx = 0.

20. (xy-x2)^ = y
2
.

dx

21. xy dy — y
2 dx = (x + y)

2
e

x dx.

22. (x-y)2 + 2xy
C^ = 0.
ax

23. (x2 + 2xy-y2)dx=(x2 -2xy-y2)dy.

24. 1%^ +2^-^Lo. 25. &=^±£
x y \y x J dx 2 xy

26. y(xy -\-2 x^y2
) dx + x (xy — afy

2
) dy = 0.

27. — cosic-f- vsina; = 1.
dx

28. (x? + 3xy2)dx+(yi + 3x2y)dy = 0.

29. (^-2?/a;2)da; + (2a'?/
2 -iB3)^ = 0.

30. (x+y)^-+x-y=:0. 31. ^ + 2/ cos x = sin (2 x).
dx dx

32
dy = l + y + y

8
,

da; 1 + a; + ar
2

33. a;(^-32/2)+2/(3a;2 -2/2)^=0.

34. dy+ex
y = e

x
y
2

. 36. (1 + a^)^+ aw -- = 0.
eta c?a: a

35. -2. = —^_!__!__. 37. y-Z + by2 = a cos x.
dx 3x + 5y + 6

s
dx

9

38. (1 + xy)ydx + (1 — xy)xdy = 0.

39. Determine the curve whose subtangent is constant.

40. Determine the curve whose subnormal is constant.

41. Determine the curve whose subtangent at any point

equals the sum of the coordinates of that point.
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42. The radius vector cuts a curve under a constant angle.

Find the equation of the curve.

43. Find the system of curves which intersect all parabolas

y
2 = 2px at right angles.

Through every point (x, y) of the plane there passes one

parabola, whose direction at this

dii T) ii

point is — = - = ^-. For the curve
dx y Zx

which cuts this parabola at (x, y) at

right angles.
dy

dx

2x
y

'

Integrating,

Fig. 79.

1, a system of ellipses.

44. Find the system of curves in-

tersecting the hyperbolas xy — a2 at

right angles.

Art. 76.— Equations of First Order and Higher
Degrees

Case I.— Suppose the equation of the nth degree

dtf

dx2

dyn
,

dyn
~l

,
dyn

~ 2
. . dy2

. dy
, A

dxn ' * dxn~l
dx'

to be resolvable into n factors,

dx

dy

dx *)(I-*)(S-*)-(2- ?")= a

The given equation is satisfied only when one of these factors

vanishes. Eepresenting by

/i(»> V> c = °> Mx
t Vi <%> = 0, >~fn (x, y, c) =

the primitives of the n first degree differential equations
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obtained by equating to zero the n factors, the product of these

n primitives

/i («, y, Ci)/2 («, 2/> c2)/3 («j .V, c3) • • ./n (a, y, cn) =

includes all the partial solutions of the given equation. Since

in each partial solution the constant may have all values from

+ co through to — oo, all possible values of the partial solu-

tions are included in the product

/i fc y> <>i)fi 0> y, c) —/„ (x, y, c) = o,

where c is an arbitrary constant. This last product is the

general solution of the given equation.

Example I.— Solve St — ax = 0.
dx2

Write the equation ^ + ayY^-a%^= 0, and sol
\ClX J \CIX J

the equations ^ + aV = 0, ^-#^ = 0. The product of
dx dx

these solutions, (y + f a?x% -f c) (?/ — -§ e**»* + c) = 0, reducing

to (y + c)
2 — f ax

3 = 0, is the general solution of the given

equation.

Example II.— Solve y
(

ô + 2x^-- y = 0.
dx2 dx

vc

Solving for % *—g±2^Z whence £**±^Utfe.
dx dx y y ±^/x2+y2

Integrating, ± (ar
2
-|- ?/

2
)^ = a?+ c Hence the general solution

is
j (as + c) + (x* + 2/

2

)*J |
(* + c) - (x

2 + y
2
)%\ = 0, reducing to

y
2 = 2 ex -f c

2
.

Case II.— Suppose the equation (1) f(x, y, p) = 0, where _p

stands for -%-. can be put into the form (2) y = F(x,p).
dx

Forming the ^-derivative of (2) gives an equation of the form
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(3) p = Fx fx, p,

'

2j. If the primitive of (3) is (4)^ (x, p, c)= 0,

the elimination of p from (1) and (4) is the solution of (1).

In like manner if (1) f(x, y, p) = can be put into the form

(2) x=F(y,p), the ^/-derivative of (2) is (3)
1
L = F (y

i ^
d£

P \ dy
If the primitive of (3) is (4) fx (y, p, c) = 0, the elimination of

p from (1) and (4) is the primitive of (1).

Example.— Solve y =p2
-f 2ps

.

The ^-derivative of this equation is p = 2p-^ + 6p2 -^,
dx dx

whence c -f x = 2p -f- Sp2
. Hence x = 2p-\-3p2 — c and

y =p2 -\-2ps for every value of p determine a pair of corre-

sponding values of function and variable of the solution of

the given equation.

Case III.— If the equation F(x, p)=0 cannot be readily

solved for x or p, try the substitution p = xz.

Example.— Solve x* + 1£ - ax^L = 0.
dx3 dx

The substitution p = xz gives x3
-f x^z2 — ao?z = 0, whence

az XT dy dy dz

*=T+* ^wp==
dx
=

IzdTx
=^

dz l + ^dz^l + zy (1 + z3
)
3 >

whence & = JgL A f_ggL_\m^ -^
" dz\l + zy

2z2 — 1
and by integration y = \ a

2——— + \ a
2—

-

5
+ C.

Function y and variable x are now expressed in terms of the

same quantity z.

Case IV.— If the equation F(x, y, p)=0 is homogeneous

in x and y, substitute y = xz.
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Example.— Solve (2p + l)x%y = x*p2 + 2 i/i

The substitution y = zx, & = z + x— gives — ± -^— = 0,
da; dx x z — z^

whence ex -f (z- — l) 2 = 0, and ex + (z* — 1)~2 = or

ex2 + (y* - a;*)
2 = and c + (y* - a;*)"

2 = 0.

Case V.— Clairault's equation, y =px -\-f(p)>

The x-derivative of this equation is p=p + #— +/'(.P)—

»

_ CLX (XX
dp

which reduces to (1) y \x +f\p)\ = 0. Equation (1) is satis-

fied by (2) 3£ - o or (3) x +/'(»= 0. From (2) p = c and
dx

the general primitive of Clairault's equation is y = ex +/(c).

The elimination of p from the given equation and (3) gives a

singular solution of Clairault's equation.

Example I.— Solve y=px -\-p —p3
.

The general primitive, found by substituting p = c, is

y = ex + c — c
3

.

Example II.— Solve ar*(i/ — pa;)= #p
2

.

Multiply the given equation by y and substitute u = y
2
,

^= 2 2/^. There results wa;
2 - i a?— = i^- Substituting

aa? da; da; dar

x* = v, whence ^i = 2x^, u = v— +—n, a Clairault's equa-
da; dv dv dv2

tion whose primitive is u = cv + c
2
. Hence the primitive of

the given equation is y
2 — ex2 + c

2
.

PROBLEMS
Solve,

1. ^-7^+12=0. 3. f^xXl+p2
).

dx2 dx

2. 4 y = x2 + p2
. 4. y

2 + a;#p — a^>2 = 0.
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5. y = xp + sin
-1

p. 7. y
2(l —p2)=6.

6. a? + ,

P = a. 8. *= «*+ -*
Vl+i?2

J>

9. Sp2
y

2 — 2 xyp + 4 ?/
2 — sc

2 = 0.

10.
dy + 2xy = x2 + y\ 14. arp2 = l + »2

.

eZcc

11. a/(p2 + 2)=2p*/3 + or
J
. 15. x%=l-x.

dxr

12. a;
2 + 2/=p2

. 16. x2

p
2 + 3xyp + 2y2 =Q.

13. £?£_« = 0. 17. ^!(^ + l) 3=l.
dxr x dx2

18. ^+24-, = 0.
dxr dx

19. (ar
2 -l)^-2^^=l-?/2

. Show that the singular
dxr dx

solution is x2
-f y

2 = 1.

20. Find a curve such that the area bounded by the tan-

gent and the coordinate axes is always a2
.

Art. 77.— Ordinary Equations in Three Variables

If the differential equation (1) Pdx+ Qdy -J- Bdz = Q can

be solved, it may be rendered exact by some factor fi. If

(2) «=/(», y,«)=0 is the solution of (1), ^dx+— dy-\-—dz=0
dx dy dz

and fxPdx -f fiQdy + fiRdz = are identical,

whence |^P, f^ MQ, |«=„fl.
dx dy dz

The identities J*L = J* pL^llL, &L^ J^L lead
dxdy dydx dxdz dzdx dydz dzdy

to the identities
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(5) "(-s- dz j dz dx'

Multiply (3) by R, (4) by P, (5) by Q, and add the products.

There results

« *(S;-fMf-SMf-S)-».

the condition under which (1) can be solved.

Example I. — Solve (y + z)dx + dy -f- dz — 0.

Here P = 2/ + z, Q = 1, i2 = 1,

5P=1 ap=1 5Q =0 i2 =0 M = o *?=0,
dy 5^ '5a; dz dx ' %

and condition (6) is satisfied.

Considering x constant, the given equation becomes

dy 4- dz = 0, whence y + z -\- X = 0, where X must be so

determined that the ^-derivative of y -f- z -f X is y -f z.

Hence ^=?/ + z = -X, i^=-l, logX= c-x, X=ec~*.

dx X dx
Finally, y + z + e

c 'x = 0, the solution required.

Example II.— Solve

2(y + z)dx + (x + 3y + 2z)dy + (x + y)dz = 0.

Here P=2(y + z), Q = x + 3y + 2z, R= x+ y,

^?=2 — = 2 ^2=1 ^2=1 — = 1 ^?=1
dy dz dx dz ' dsc dy

and condition (6) is satisfied.
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Considering y constant, the given equation becomes
2 dx dz

2(y+z)dx+(x+ y) dz = 0, or -\——- = 0. Integrating,

log (x + y)
2 + log (y + z) = log Y, whence (x + yf (y + z)= T,

where Y must be so determined that the ^-derivative of

(x + y)
2
(y + z)-Y is (x + 3y + 2z)(x + y). Hence

2 (?< + y)(y+z) + (x+yY-^= (*+3jH-2*)(a>+ y), ^1=0,

F= G. Finally, the required solution is (x + y)
2
(y -\-z) = C.

PROBLEMS

Solve, 1. (y-\-a)2 dx + zdy — (y + a)dz = 0.

2. daj + cfo/ + O + 2/ + z + l)dz = 0.

3. 2/z <i# -f zx dy + a^ cte = 0.

4. (?/ + z)da; + (z + a)efa/ + (a + #)dz = 0.

5. zydx — zxdy + y
2 dz = 0.



CHAPTER XIII

OEDINAKY DIFFERENTIAL EQUATIONS OP HIGHER ORDER

Art. 78.

—

Equations of Higher Order and First

Degree

Standard I.— The primitive of an equation of the form
dnv—?- =f(x) is found by n successive integrations ; the primitive

d^v
of an equation of the form —% =f(y) is found by multiplying

dv dx
both sides by -£ and integrating, then solving for — and

dx dy
integrating again.

Example.— Solve J= w.

dxr

d*y

Multiply by %t,^= V%

Integrating, |^Y = \tf + Clf whence ^= Vs/
2 + 2GV

Solving or
dx dx 1

^y dy vy + 2 c\

Integrating, x = log \y + vV + 2Cij + <72 .

Standard II. — Equations of the form f* +/i (x)^ =/2 (x)
dx2 dx

become linear by the substitution ~^ = », —\=z-£..
dx dx1 dx

Q 225
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Example. —Solve (1 - x2

)
^ - x^- = 0.

dx2 dx

Substituting —=p, ^ = ^, the given equation becomes
dx dx2 dx

l^ =_a_ Integrating, ^=C1 (1-^2H Integrating
p dx 1 — x2 dx

again, y = CX sin
-1

a; -+- C2 .

Standard III.— The equation

P dn
y p dn~ ]

y p dn~2
y p Q

linear in y and its derivatives, the coefficients P , Plf P2,-"Q

being independent of y, is called the linear equation of order n.

Suppose the coefficients P , Pl5 P2,
• • • Pn constant and Q = 0.

When ?i= 1, the equation becom esP -^ -fP: 2/= and ?/= e p°
x

,

dx
which has the general form y = e

mx
. Substituting y — e

mx in

(1) p^ +p^V + ...pny =y J
°dx» 'dx*-1 T

there results (2) P mn + I\mn~l + P2mn~2 + • • • P„ = 0,

which shows that ?/ = e
wx

is a solution of (1) for the n values

of m which are roots of (2). Representing these n roots by

m
Jf m2, m3 , ra4,

••• ran, y, = e
mix

, ?/2 = e™2
*, y3

= e
m
**, ...^ _ e

«»x

are solutions of (1). Consequently

(3) y=Cr emx + C2
• e

m2* -f C3
• e

m3X
-\ Cn • emnx

,

where C1} C2, C-i,-"Cn are arbitrary constants, is a solution

of (1). Since (3) contains n arbitrary constants, it is the gen-

eral solution of (1). The values of these n constants become

known if the values of y and its first n — 1 derivatives are

known for some value of x.
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If the roots of equation (2) are real and unequal, (3) is a

satisfactory form of the solution of (1).

If equation (2) has pairs of conjugate imaginary roots,

m x
= a + b V— Ij m2 = a — b V— 1, or mx = a + ib, m2 = a — ib,

the corresponding terms of (3) are

= e
ax

\ C1 (cos 6a; + t sin &a?) + C2 (cos 6a; — t sin bx)
\

by Problem 9, Art. 68. This result may be written

e"*
J (d + C2) cos 6a; + i (Ci - C2) sin 6a;

}

,

which, by placing Cl
= ^(A — iB), (7,= } (A + iB), becomes

e
ax (A cos bx+B sin 6a;). Finally, placing A= Ksin &, B=Kcos k,

the result becomes K

e

ax sin (A; -f- 6a;), where K and A; are

arbitrary constants.

If equation (2) has equal roots ml
= m2, (3) contains less

than n arbitrary constants and is no longer the general primi-

tive. In this case write ra2 = mx -f h and the problem reduces

itself to determining the form of the general primitive

y = C\ . e
mi*

-f C2
• e

(mi+h)x
-f C3

• e
m*x

-\ Cn • "*,

when h approaches zero. Now

Cx
. e

mix
-f C2

• e
(mi+h)x = e

miX
((71 + C2

• e»
x

)

ss^}Cr

1+0/(l-h^+^+-)i

by Maclaurin's series. When h approaches zero, this becomes

eP*\(Gi + G2) + C2hx\ = emiX(A -f Bx), such values being as-

signed to the arbitrary constants C± and C2 that Ci -f C2 = ^4,

C2/i = -B when 7i approaches zero.

If equation (2) has three equal roots, mx
= ra2 = m3 , a like

analysis shows that the corresponding part of the general

primitive is e
miX(A -f- Bx + Car2

).
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If equation (2) has equal imaginary roots, for example

mx
= m2 = (a -f ib) and ms = mi = a — ib, the corresponding

terms of the general primitive are

e
ax

\
(A + Bx) cos bx + (C + Dx) sin bx

]

.

Equation (2) is called the auxiliary equation of the differ-

ential equation (1).

Example I.— Solve ^- + 6^ + 13 y = 0.
dx2 dx

Substituting y = e
mx

, the auxiliary equation is found to be

m2
-f 6 m -f- 13 = 0, whence m1

= — 3 -f- 2 i, m2 = — S — 2i and

y = e'^lA cos 2 x + B s'm2 x\.

Example II.— Solve ^ -3^ + 4 ?/ = 0.
dx2 dx2 u

The roots of the auxiliary equation m3-3m2 + 4 = are

— 1, 2, 2. Hence the general primitive is

y = C • e~ x+(A+Bx)e2x
.

Standard IV.— Linear equations with second member not

zero.

Form the successive ^-derivatives of

until either the second derivative becomes zero or the elimina-

tion of X from the given equation and the derivative becomes

possible.

Example.— Solve —% -f a2y = sin bx.
dx2 u

The second ^derivative of this equation is

dx4 dx2
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Eliminating sin bx from this derivative and the given equa-

tion there results —^ + (a2 + b
2
)
—* -f «

2
&1/ = 0. The auxiliary

OtiC Ota?

equation of this linear differential equation is

m* H- (a2 + b
2)m2 + a2

6
2 = 0,

whence m1
= ai, m2

= — gw, m3
= hi, m4 = — 6i. The general

primitive is y= Cx cos (ax)+ C2 sin (ax)+ 3 cos (&•#) -J- (74 sin (£&').

This value of y is a solution of the given second order differ-

ential equation if Csa
2
b — C±a2

b
2 = 0, — Csb

2 — CJ) = 1, whence

C3 = -r_
rr2'

C*
= - j,m , »V The re(luired solution is,

1 -f- 0(1 + ^)
therefore,

y=d cos (ooj)+ C2 sin (ax)-——cos (6a>)-
^

sin (6a?).

Standard V.— Change of the independent variable.

In the equation —^-\-P—+Qy = 0, where P and Q are
dx2 dx

functions of x, change the independent variable from x to z

by the relations ^=^ . —, ^ =• d̂ - f—Y +^ . *L. There
da; cfo da;' dx2

iz
2 \dxj dz dx2

results, (1) g(4Y+ftf* + J»» + Qy = 0. Now deter-
dz2 \dxj dzydx2 dx)

mine g so that — + P— =0, whence (2) 2= CeSpdx -dx.
dx2 dx J

The elimination of a; from (1) and (2) gives an equation whose

solution leads to the solution of the given equation.

Example.- Solve %+ *• & +—L = 0.
dx2 l + x*dx (1 + x2

)
2

e-fp*x . fa — I e
J l+x2 . $# = tan-1 a;, whence

a; = tan 2;. The transformed equation is —*• -f y = 0, whence

?/ = Ci • cos 2 -f- C2
• sin & Substituting for z,

y = d • cos 2 + C2 • sin 2 = d—= + C2

V 1 + x2 Vl + x2
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PROBLEMS
Solve,

1. g = sin»x. 12. &=%+ y.
aar dx- dx

2 .
<§M + 5 <k + iy = . 13. f|_3^ + 2/

= 0.
aar dx dx3 dx

3. rfjgUl. 14. fiU^.,+ 1.
da4

da;
2 *

4. f^ = 0. 15. &+,-«»»
da;

2
y
2 dx2

5. ^+6^+ 9j,= 0. 16. ?l-3'*l + 2y = x.e'
dor dx dxr dx

6. ^L]l-m2
y = 0. 17. ^ + 3 2/ = sin (ma;).

dx2 a
dx2 u s ;

7. —? = x2
• sin x. 18. —^ + 4?/ = cos (we).

clar dx2

dx3 dx2 dx dx2 dx

9 . ^+2^_ 82/= o. 20. a_*-+4*-*
aar dx* dx* dx

io. g^8fij+ 4f-ft 2i. gw§*v+i.
dx* aar dx' \dxj

11. &-'•'.V. 22. **? +&=*.
dar dar da;

Art. 79.— Symbolic Integration

If u, v, w are any symbols whatever obeying the funda-

mental laws of ordinary algebra, namely

:
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the associative law, u + v 4- w = (u+v)+w, uvw = (uv)w
;

the commutative law, u-\-v + w = v + u + w, uvw = vuw
;

the distributive law, (u -f- v) w = uw -\- vw
;

the law of indices, umun = um+n
;

any algebraic transformation of expressions involving u, v, w
gives a valid result.

Denoting the operation of forming the first derivative by D,

that of forming the second derivative by D2
, that of forming

the third derivative by D3
,

•••, so that Dy =% D2
y = ^,

d3v
D*y = —^, •••; and denning the symbol D~ l by the equation

D(D~ J

y) = y, whence D 1
is equivalent to the symbol of

integration I , it follows that

:

I. D • Dy = D2
y, D • D2

y = &y, D"1
• D2

y = By,

D~2
• Dy = D~l

y ; that is, the law of indices of algebra holds

for D affected by integral exponents.

II. (a + bD- cD2

)
y=\(a + bD)-cD2

\y; that is, the

associative law of algebra holds for D combined with

constants.

III. (aD + bD2
) y = D(a + bD)

y

; that is, the distributive

law of algebra holds for D combined with constants.

IV. (a + bD) y = (bD + a) y, aDy=D ay ; that is, the com-

mutative law of algebra holds for D combined with constants.

Since the operator D obeys the fundamental laws of algebra,

the result of any algebraic transformation of expressions con-

taining D and constants, is valid. For example, by Maclaurin's

series,

Hence f(D)y=%An > D»y. If /(D) y = X, y = -^X This

is the definition of the operator inverse to f(D).
f(D)



Hence — ± (2 x3 - 23 x2 + 49 x- 31) = 2 a? - 5 x2 + 7*.
2>

2 -3i> + l
v 7
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For instance,

(Z)
2 - 3D + 1) (2 ar> - 5 x2 + 7 x) = 2 x3 - 23 x2 + 49 a? - 31.

1_
* +

Example L— Show that (D2 - D-2)y = (D+ l)(D-2)y.

(̂ _i,_ 2)!,sg_|_2y .

(D_ 2)ys|_2s, and

(i,+i) (i>_2)ys(i,+i)(|- 2y
)
sg- 2|+|_ 2!,

_«S_^_ 2 «.
do2

da;

Example II.— Show that /(D) e
ax =/(a) e

az
.

/(D) = 2A#" and ADM
e
aac = An a

n
e
ax

.

Hence f(D)eax =f(d)eax
. Inversely —=— e

ax = -=—eax
.K } W J

/(D) /(«)

Example III.— Show that ——=-—- ?/ = [
—i —5—

] y.D2 -D-2 J \D+1 D-2J
y

Performing the operation D2 — D — 2 on both sides of the

assumed identity,

(j)
2-D- 2) 1 y = (D2 -D- 2)(—i i—\

or 2/= {
— -|-D-f-f-f-iD-}-£|?/==2/, which proves the assumed

identity correct.

Example IV.— (D2 -2D + 2)y = 6x-9x2+ 2xs
. Find?/.

y = - (6x-9x2 + 2xi

)9 D2 -3D + 2
V T J

= -J—(6x-9x2 + 2x3)-—l—(6x-9x2 + 2xi

)
1 — 1) £ — D

= (1 + D + D2 + D3 + D4 + •••) (6x- 9X2 +.2 a?)

(\ ,
D

,
D2

. D3
. D4

.
N,* Q 2 , ,,

= ar>.
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This is a particular value of y since it does not contain arbi-

trary constants.

Example V.— y = [0]. Find y.

This is equivalent to (D — 2) y = 0, which is the same as

the linear equation -^ — 2 y = 0. Whence y=e2x
.

CLX

PROBLEMS

1. Show that /(D) [ea*X] = e
az -f(D + a) [X], and conse-

quently —— [e
axX] = e

ax [XI.4 J
/(I>)

L j /(Z> + a
)

L J

2. (Z>
2 + D + l)2/ = e

a;^. Showthat2/ = ex^-»2 + |a; + ^\

3. Show that f(D2
) sin (ma?) =/(— m2

) sin (ma;) and conse-

quently —-—- sin (ma;) = — sin (mx).

4. Show that /(D2
) cos (mx) =/(—

m

2
) cos (ma;) and conse-

quently — cos (mx) = —- — cos (mx).4 y
f(D2

)
V ; /(-m2

)
V ;

5. Show that ^^« =-£-*

6

.

Show that — e
2x sin x = — e

2x sin x.
D2 -4Z) + 4

8

.

Show that ——- e
x sin x = e* (sin a; — cos a;).

9. (D - m) ?/ = 0. Show that y = ?
-i— [0] = e~.
U Tib

10. Show that y = °
[0] = e

mx
((7, -f (%*).

( jl/ — //I

)
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Art. 80.

—

Symbolic Solution of Linear Equations*

Writing the linear equation P^ + pi^ri+ — J\V =
ctx ax

with constant coefficients and second member zero in the form

(P D» + P,D^ + P2D"-
2 + - Pn) V = 0,

V = P D» + Pj*=* + PnD»~
2 + ... Pn

[°] *

Factoring, P Z)
n + P^D""1 + P2Dn ~ 2 + —Pn

= (D- mx) (Z) - m2) (Z> - m3)
... (D - mn).

Decomposing into partial fractions,

y=7i^-[0]+7^-io]+7r^-[0] + ...+-S_[d]
)

D—rrii D—m2 D—mz D—mn

hence, ?/ = CieTOl* -f Cge™** -f- C3e
TO3X

H h Cne
mnx

.

C
If mj = m2, a partial fraction of the form occurs.

The value of -—- JO] is (Cj + C^c)e^x
.

(D — ?%)*

In general, if m1 = m2 = m3 = • • • rar, a fraction of the form
(7 C

occurs. The value of — [0] is
(D - m1)

r (D - mj

(Ci + C^ + C3«
2 + - CU**"* + Cr

_^-2 + 0,0 *•*".

If m x
= m2 = a -j- bi, m3 = ra4 = a — bi, the corresponding

terms of the solution of the differential equation are

reducing to {Axx + B{) cos (bx) -+- (A 2 + B&) sin (&#).

The solution of (1) P ^l1 -{. p1
^—]i + ... +P«=X, with

* Maclaurin introduced the symbolic solution of differential equations.
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coefficients constant and right-hand member a function of x,

is y = Y+ u, where Y, called the complementary solution

of (1), is the solution of P^ + P^-^ + ••• + Pjl -0, and
dxn dxn~x

u is any particular solution of (1). For substituting y = Y+ u

in(l)
!
(i> |^+ P1|J+ ... + P„r

which is a true equation by the hypothesis.

d4vExample I.— Solve —?-— y = x4
.

dx4 9

Writing the complementary equation (D4 — 1) Y = 0, or

(D+1)(D-1)(D+V^1)(D-a/~^1)Y=0, the complemen-

tary solution is found to be y=01e
x+C2e~x+C3 sin;c4-(74Cossc.

The particular solution is

u =—^—x4
as (- 1 - D4 - B* ) x4 = - x4 - 24.

D4 — 1
J

Hence the general solution of the given equation is

y = dex
-f (72e

_a:
-f (73 sin x -\- C^cosx —

x

4 — 24.

Example II.— Solve ^-2^ + 2/ = ^.
cZar dec

The solution of the complementary equation

(D2 -2D + 1)Y=0 is F= 6»(Ci+Ci»).

The particular solution is

1

D2 -2Z> + 1
(a*?

3
*)

gji
= 2 = ^EEC3*-

(Z> + 3)2 _ 2 (Z> + 3) -f 1 (2 + £>)
2
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The general solution is

y =e-(G1 + C&) + \e**(2x> - 4 a + 3).

Example III.— Solve ^ +^ + y = sin (2 a).
dor2

das

The solution of the complementary equation

(D2 + D + 1)Y=0 is F= e^C1 cos^a>+(72sin^A
The particular solution is

u = — sin (2 a;) = sin 2 a = „ sin 2 a?

= _
1
J
5 ( JD + 3)sin2ic= -^ (2 cos 2 as + 3 sin 2 a?).

Hence the general solution is

y = e~\(cx cos^x + <72 sin^a) - TV (2 cos 2 a; + 3 sin 2 as),

PROBLEMS
Solve,

1. ?LM + y = l +x + x>. e. g-2|M2/=e*cosz.

2. §-2^ + 2/ =e*. 7 . g +32/ = sin^.
c?ar da; dar T

3. 3^ + 2/ = cosa;. 8. -^+ 4?/ = cos(naj).
dar dar

4. ^-3^ + 2y = a»ta
. 9. ^2{+ y = xsm2x.

dx2 dx dx2

5. ô + 4?/ = a;sin2
a;. 10. ^ + 4 v = 2 aj

3 sin2 x.
dx2 dx2

11. ^+2^+2y = e
ae

sina> + cos».
dar da;

12. f 4̂
+ 2^+2/ = a;

2 cosa;.

da;
4 dx2
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Art. 81.— Systems of Simultaneous Differential

Equations

Let P c-^-=Q, P1-^-=Q1, where x is the independent
dx dx

variable and y and z are the dependent variables, and P, Q,

Plf Qi are functions of x, y, z. It may be possible by combin-

ing the given equations with their derivatives to obtain an

equation in which one dependent variable and its derivatives

do not appear.

Example.— Solve ^-7x + y = 0, ^-2x-5y=0.
dt dt

9

Form the ^-derivative of the first equation,

d2x „dx dy _r.

di? dt dt~

and eliminate y and -^ from this equation and the two given

equations. There results the linear equation

^-12— + 37a = 0,
dt2 dt

'

whence x = e
6
'(Ci • cos t + C2

• sin t). Substituting this value

of x in the first of the given equations,

y = e
6

< j(Q - Q cos* + (ft + C2) smt\.

If the given equations can be written in the form

dx_ dy _ dz

P~ Q~B'

each of these equal ratios equals ^ + m(fy + ncfe
and theH H IP+mQ + nR '

last ratio implies the same relation between x, y, and z as the

three given ratios. If I, m, n can be so determined that
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IP + mQ -f- nil =0, it follows that I dx + m dy + n dz = 0.

The integral of the last equation is an integral of the given

system of equations.

Example.- Solve^ =^= ^.
y
2
z xz i/

ttt -i ®dx dy dz Ixdx + mdy + ndz
Write —— = -»=—=

\ *J .

Placing l = — x, m = y'2
, n = 0, Z?/

2
2 + m#2 + w?/

2 = 0, whence

— x2 dx-\-y2 dy = and y
3 — Xs = Ci.

Placing Z = — 1, m = 0, n = z, ly
2
z + ra#z + ny2 = 0, whence

— xdx -{-zdz=0 and z
2 — x2 — C2.

PROBLEMS

Solve
'

1-f+l +2a;+2'= 'l +5a; + 32' =0 -

„ dx _dy _ dz

x2 y2 xy

32/ + 4z 2y + 5z

5 * 5- 3aj + 4 2/ + 3 = 0,g +aJ 4-y + 5 = 0.

eft
2

eft
' dt2 dt 7 *



CHAPTER XIV

PARTIAL DIFFERENTIAL EQUATIONS

Art. 82.— Formation of Partial Differential

Equations

Example I.— Form the partial differential equation of the

system of spheres (1) (x — a) 2
-f- (y — b)

2
-f z

2 = R2
, whose

centers (a, b, 0) lie in the XF-plane and whose radius is

constant.

Consider z the dependent, x and y the independent variables,

and denote — by p, — by q.
dx

J
dy

J H

Differentiating (1) partially with respect to x,

(2) («-a)+zp = 0;

differentiating (1) partially with respect to y,

(3) (y-b)+zq = 0.

Eliminating a and b from (1), (2), (3), z
2
(l +p2 + q

2)= R2
,

the partial differential equation required.

Example II. — Form the partial differential equation of

the expression z = fa(y + ax) -f cf>2(y — ax), where
<f>x

and
<f>2

are arbitrary functions.

Writing the given expression z = (fr^v^-t- <f>2(v2), which

requires that vx = y + ax, v2 — y — ax, and differentiating

239
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twice in succession partially with respect to x and also with

respect to y,

g= a.^00- a^(v2), g= a2
• +»,(«,)+ a2

• *«,(«<>>

d2
Z 32

ZBy division, —- = a2
•——, the partial differential equation

dx2 By2

required.

Observe that partial differential equations result either

from the elimination of arbitrary constants from a function

and its successive partial derivatives, or from the elimination

of arbitrary functions from an expression and its successive

derivatives.

PROBLEMS

Form the partial differential equations of the following

expressions

:

1. z = ax + - + b. 3. z = ax + by -\- ab.

2. z — ax + dl

y
2
-\-b. 4. z — <£(?/ -f- mx).

5. y —bz = cf>(x — az).

6. z + ay + bx=<j>\(x-a) 2 +(y-P)2 + z
2
\.

Art. 83.

—

Partial Differential Equations of First

Order

Standard I.— Equations of the form F(p, g)= 0.

Try a solution of the form z = ax + by -f c. Since p = a

and q = b, z = ax-\-by + c is a solution of F(p, #)=0 if

F(a, b)=0. Denoting by /(a) the value of b obtained from
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the equation F(a, 6) = 0, the solution of F(p,q) = is

z = ax+f(a)'y + c.

Example.— Solve p
2 + q

2 = m2
.

Here a2 + b2 = m2
, whence 6 =Vm2 — a2

, and the solution is

z = ax -fVm2 — a2
• y + c.

Standard II.— Equations of the form F(z, p, q) = 0.

Try a solution of the form z — <j> (x + a?/). Writing

, / N . dz dv dz -, dz dv dzz=4(v), v = x+ay, p =—~ =— and ? =— . =«—

.

ay ax av dv oy dv

By substituting these values of p and q the given equation

becomes in z, —, a— )=0, an ordinary differential equation
V dv dv)

whose solution leads to the solution of the given partial differ-

ential equation.

Example.— Solve 9 (p
2
z + q

2
) = 4.

Writing z — cf> (v), v = x+ay, whence p ==— and q = a—,
dv dv

the given equation becomes

\Z
dv
2+a

dv2)-*> and
dv~3^f^'

Integrating, } (v + c) = | (a + a2
)* or (x + ay + c)

2= (* + a2

)
3

.

Standard III.— Equations of the form F1 (x,p) =F2 (y, q).

Assume (1) Fx (x, p) = a, (2) F2 (y, q) = a, where a is an

arbitrary constant. Integrating (1), z =/x (x, a) + Y, where T
represents the terms of z which do not contain x\ integrating

(2), z =f2 (y, a) + X, where X represents the terms of z which

do not contain y. Hence z =/i(#, a) +/2 (2/, a) + C is the

required solution.
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Example. — Solve p
2 + q

2 = x + y.

Write this equation p2 — x = y — q
2 — a, whence

p = |* = (« + »)* and g=^.= (y_a)l.
ox oy

Integrating, z = |(a+ ^)f + T, z = ±(y-a)* + X,

and za | (a + a)1 + | (2/
- a)? + Q

the required solution.

Standard IV.— The analogue of Clairault's equation

z=px + qy + <f>(p, Q)- The solution of this equation is

z = ax + by + <f>(a,b), for ~=p = a, -^- = q=b.
ox oy

Example.— Solve z —px + qy + (1 -j-p2 + q
2
)*.

The solution is z = asc + by + (1 + a2
4- 62

)^.

Standard V.— Lagrange's solution of (1) P— + Q— =j?,
bx by

where P, Q, R are functions of x, y, z.

Suppose (2) u = F(x, y,z) = a to be a solution of (1).

Differentiating (2) partially with respect to x and y t

•o\ bu bu bz_ _ r. ,., bu bubz _ ^
d# 5g bx by bz by

Solving (3) and (4) for -^ and -^ and substituting in (1),
ox oy

there results (5) P~ + Q^ + u£H= 0. Hence a solution of
bx by bz

(1) is also a solution of (5), and conversely.

Writing the system of equations

bu , . bu , . bu ,—- ax -f —- <% H dz
dx_dy_dz bx by bz

P~ Q~~ R~ p^iq^,^^'
bx Cy bz



PARTIAL DIFFERENTIAL EQUATIONS 243

it is evident that if u = a is a solution of the system of

fl'7* fill fl%
equations — = -^ = -—

-, it must also be a solution of
Jr ty It

p du
+ q

dJijrR djL = o
i
and consequently of P^+Q?1=B.

ox By Bz Bx By

If u — a and v = b are two independent solutions of the
fJnf rffi nSL

system of equations — = -^ =— , f(u, v) = 0, where / repre-
JT (q£ a

sents an arbitrary function, is also a solution of (1). Fox

P£f(«, v) + Q±f(u, v) + B !/(«, v)

jy B j,, v Bit
t n 9 »t v dv , * d ., , Bus P

Yu
f{u

'

v)
'Tx

+ P
d-/

(w
>

V)
'TX + Q

Yu
f{u'

v)

8i,

+ Q
Tv
f{U

'

V)
-6y + STu

f(U
' ?> *5* B lTv

f(u
> ^ * &

+if^{pt+ QTy
+Rd

i}=° h* h™othesis -

The solution f(u, v) = may be written u =
<f>

(v), where
<f>

represents an arbitrary function.

Bz Bz
Example. — Solve xz • — + yz • — = xy.

ox By

The system of equations — =— =— is satisfied by - = a
•

* xz yz xy y
and xy — z^—b. Hence the general solution of the given

equation is xy — z
2 =

<f>

PROBLEMS
Solve,

1. pq = k. 2 q = xp + p'\ 3. z = px -f qy + pq.
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I I r» n dz . dz
4. p* + q* = 2x. 9. z— + V-Q- = x.

5. p> + q> = nPq .

io> B
* +f* + a

6. p
2 = z

2 (l—pq).
dx dy

U. ^^_^^ + 2/
2 = 0>

7. i?(l + g) = g». 5aj %

8. 0=^ + ^ + 3pV. 12
' ^Yx

+y2Y = Zi
'

Art. 84.— Linear Equations of Higher Order

Standard I.— All derivatives of the same order.

Example.— Solve
9̂ + 3-^- + 2p- = 0.

ox2 ox dy dy2.

Assume z = $(y + ma), where
<f>

represents an arbitrary

dz
function. Writing z— <f>(v) and v = y + wiaj, — = m<f>'(;u),

B—^^ S=w*" (w)
' ir*'^ |r *"<«>• Sub-

stituting in the given equation, (m2 + 3m + 2) <£"(V) = 0.

Hence z = 4,(2/ + ma) is a solution of |^ + 3-^- +2— =
oar da; 01/ dy2

if m2 + 3 m + 2 = 0, that is if w = — 1, m =— 2, The required

solution is therefore z = ^(y — x)-{- cf>2(y — 2 #).

Standard II.— General linear equation.

Example. -Solve *L-**-3*+s£-«
oar o?/^ da; oy

Assume 2 = *"+», whence — = memx+ny
, — = m2

e
mx+By

,

da; ' dx2

dz d27

a?/ dy2
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Substituting in the given equation,

(m2 — n2 — 3 m + 3 7i)e
mx+nv = 0.

Hence z = emx+nv is a solution of the given differential equa-

tion if m2 — n2 — 3 m -f 3 ?i = 0. Solving this equation for m,

m — n
y
m = 3 — n. Hence zx = e

n(*+,° and z2 = e
3* • e

n{y~x) are

solutions of the given equation for all values of n, and in

general % = 2J.ne
M(*+y) + e

&2.Bne
n(y ~ x)

, where n, An1 and i?„ are

arbitrary constants is a solution of the given equation. Since

^Ane
n{x+y) and %Bne

n{y~x) are arbitrary functions of x + y and

2/
— a? respectively, this solution may be written

PROBLEMS
Solve,

1. f^ + 5_^_+6— = 0. 3. ^=a2^-
Sic

2
da?d?/ 3?/

2 3£2 3a?
2

32
z 3 2

z 3z _ 3z _ ^
c^z _ 32

z 3z _ ^
6a;

2 3x3?/ 3a; 3# dx2 dxdy By

6. 2^-3-^--2^
dx2 dx dy By2
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