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PREFACE

This book presents a first course in the calculus sub-

stantially as the author has taught it at the University of

Michigan for a number of years. The following points

may be mentioned as more or less prominent features of

the book. *

In the treatment of each topic, the text is intended to

contain a precise statement of the fundamental principle

involved, and to insure the student's clear understanding

of this principle, without distracting his attention by the

discussion of a multitude of details. The accompanying

exercises are intended to present the problem in hand in

a great variety of forms and guises, and to train the stu-

dent in adapting the general methods of the text to fit

these various forms. The constant aim is to prevent the

work from degenerating into mere mechanical routine, as

it so often tends to do. Wherever possible, except in the

purely formal parts of the course, the summarizing of the

theory into rules or formulas which can be applied blindly

has been avoided. For instance, in the chapter on geo-

metric applications of the definite integral, stress is laid

on the fact that the basic formulas are those of elemen-

tary geometry, and special formulas involving a coordinate

system are omitted.

Where the passage from theory to practice would be

too difficult for the average student, worked examples are

inserted.

It seems clear that so-called applications in which the

student is made to use a formula without explanation of

•laa^Q'T



vi PREFACE

its meaning and derivation, are of little value. In the

present text the non-geometric applications are taken sys-

tematically from one subject, mechanics, and the theory

is developed as fully as in the calculus proper.

A feature of the book is its insistence on the importance

of checking the results of exercises, either directly or by
solving in more than one way. The latter method is

largely used in the integral calculus, on account of the

variety of elementary transformations possible with defi-

nite integrals.

The answers to many of the exercises are given, but

seldom where a knowledge of the answer would help in

the solution, or where a simple means of checking the

answer exists.

Topics of minor importance are presented in such a way
that they may be omitted if it is desired to give a short

course.

The chapter on curve tracing is introduced as early as

possible, so that the results are available for use through-

out the course.

Some instructors will wish to begin the use of integral

tables immediately after the chapters on formal integra-

tion. This of course can easily be done.

In spite of obvious difficulties, a chapter embodying a

first treatment of centroids and moments of inertia is

introduced before multiple integrals have been defined.

By this arrangement the student is brought to realize

the fact that in most cases of practical importance mass-

moments of the first and second orders can be found by

simple integration, whereas from the usual treatment he

gets exactly the opposite idea.

In the chapters on differential equations, emphasis is

laid on those types most likely to be met by the student

of engineering or the mathematical sciences. In the last

chapter the average student will doubtless require con-
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siderable help from the instructor, but it is hoped that,

if properly presented, the chapter may give the student

some facility in writing and solving the simpler differen-

tial equations of mechanics and in interpreting the results.

To Professor Alexander Ziwet, who has read the entire

manuscript, the author makes grateful acknowledgment,

not only for valuable advice and criticism, but for his

unfailing encouragement and support. Thanks are also

due to Professor T. H. Hildebrandt, who has kindly

assisted in reading the proofs, and has made a number of

useful suggestions.

CLYDE E. LOVE.

Ann Arbor,

August, 1916.
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CALCULUS

CHAPTER I

FUNCTIONS. LIMITS. CONTINUITY

1. Functions. If a variable y depends upon a variable

X so that to every value of x there corresponds a value of

y, then y is said to be ?, function of x.

For example, (a) the area of a circle is determined by

the radius and is therefore a function of the radius

;

(S) the attraction (or repulsion) between two magnetic

poles is a function of the distance between them
;

(c) the

volume of a given mass of gas at a constant temperature is

a function of the pressure upon the gas.

A complete study of the properties of a function is

possible in general only when the function is given by a

definite mathematical expression. For this reason we
shall be concerned almost entirely with functions defined

in this way. Thus, in the examples above, we have

(a) A = 7rr2,

(c) for a "perfect gas,"

h
v = -.

V
But the existence of a functional relation between two

quantities does not imply the possibility of giving this

relation a mathematical formulation. If by any means
whatever a value of y is determined corresponding to

B 1



2 CALCULUS

everj ^^a«.ue of x und'3^ consideration, then y is a function

of X. For example, the temperature of the air at any

point of the earth's surface is a function of the time at

which the thermometer is read, although no mathematical

law connecting the two variables is known.

We often wish to express merely the fact that «/ is a

function of x^ without assigning the particular form of the

function. This is done by writing

y =/(^)

(read y equals / of a;). Other letters may of course be

used in the functional symbol, as F{x)^ </>(^)i '^C^)? ^tc.

The value of f(x) when x = ai^ denoted by the symbol

/(a). Thus, if

f(x)=x^-Zx-l,
then

/(a) = a2 - 3 a - 1,

/(2) = - 3,

f(^x + ii) = {x + hy - s(x + A)- 1.

Except where the contrary is explicitly stated, the vari-

ables and functions with which we shall have to deal are

restricted to real values. This restriction is introduced

for the sake of simplicity, and also because in the elemen-

tary applications only real quantities are of importance.

2. Geometric representation. The student is already

familiar with the geometric representation of a function

as the ordinate of a plane curve. Thus in (a) of § 1 the

graph is a parabola ; in (5) it is a certain cubic curve; in

(c) it is an equilateral hyperbola.

Even though no mathematical expression for the func-

tion is known, it may still be represented graphically. For

instance, to represent the temperature at a point of the

earth's surface as a function of the time, let a large number
of readings be taken, the corresponding points be plotted on

coordinate paper with time as abscissa and temperature as
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ordinate, and a smooth curve be drawn through the points.

This curve will represent approximately the variation of

temperature throughout the time-interval in question.

3. Independent variable. We usually think of x as

varying arbitrarily— i.e. we assign values to x at pleasure,

and compute the corresponding values of y. The variable

X is then called the independent variable^ or argument. But

it is clear that if y is a function of x^ x is likewise a func-

tion of y, and in general either one may be chosen as the

independent variable.

The values assigned to x must of course be compatible

with the conditions of the problem in hand. In most cases

X is restricted to a definite range or interval ; for instance,

if the function we are dealing with is «/ = V2;, we restrict

X to positive values.

4. Kinds of functions. We shall have to deal with both

algebraic and transcendental functions. The algebraic

functions are rational integral functions^ or polynomials

;

rational fractions^ or quotients of polynomials ; and irra-

tional functions, of which the simplest are those formed

from rational functions by the extraction of roots. The

elementary transcendental functions are trigonometric and

inverse trigonometric functions ; exponential functions., in

which the variable occurs as an exponent; and logarithms.

Function

algebraic transcendental

rational irrational elementary higher

integral fractional trigonometric exponential

inverse trig'c logarithmic

5. One-valued and many-valued functions. A function

y =f(x') is said to be one-valued, if to every value of x

corresponds a single value of y ; two-valued, if to every

value of X correspond two values of y, etc.

In the case of a many-valued function it is usual to
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group the values in such a way as to form a number of one-

valued functions, called the branches of the original func-

tion. Thus the equation

defines a two-valued function whose branches are

y = — '^x.

In dealing with many-valued functions, we shall in gen-

eral confine our attention to a particular branch.

/
EXERCISES ,

1. Express the surface and volume of a sphere as functions of the

radius ; the radius as a function of the surface and of the volume.

2. Express the surface and volume of a cube as functions of the

length of its edge.

3. Represent geometrically each of the functions of Ex. 2.

4. rind/(0,/(3),/(-l),/(0),/(:r + A),if

(a) f{x) = 2 a: + 5

;

{h) f{x) = x^ - 3 x + 3
;

(c)/(x) = sin7rx; {d) f{x) = 2\

5. Exhibit graphically each of the functions of Ex. 4.

6. Plot the graph of each of the functions (a), (6), (c) of § 1.

7. Restate the examples (a), (h), (^) of § 1 both in words and by

an equation, with the independent and the dependent variable inter-

changed.

8. Plot the graph of each of the following functions:

l-\- x^

(0 y = 7-^2' ("^^ y = r-^'1 + X^ 1 — X
f

9. Show that (a) the graph of a one-valued function is met by

any parallel to the y-axis in not more than one point
;

(b) the graph

of a many-valued function consists of a number of branches (not

necessarily disconnected), each of which has this same property.

Give examples.

10. Show that the equation i/^ = x'^ — a^ defines y as a two-valued

function of x, and draw the graph.
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11. The freezing point of water is 32° Fahrenheit, 0° Centigrade

;

the boiling point, 212^ F., 100° C. Express temperature in degrees

F. as a function of temperature in degrees C, both analytically and

graphically.

12. A sum of money is placed at simple interest. Express

the amount at any time as a function of the time, and draw the

graph.
,

6. Rate of change ; slope. A fundamental problem in

studying the nature of a function is the determination of

its rate of change.

Let P : (x^ y) be a point on the graph of the function

Assign to X an arbitrary change, or increment^ Ax (read

delta ic, not delta times a:), usually taken positive, and

denote by Ay the corresponding

change in ?/, so that the point

P' : (x -{- Aa:, y + Ay) is a second

point on the curve. The ratio

Fig. 1

—^ is the average rate of change
Ax
of g with respect to x in the in-

terval Ax; geometrically this

ratio is the slope of the chord

PP', If now we let Ax approach 0, the ratio —^ in gen-
Ax

eral approaches a definite limiting value, which is de-

fined as the rate of change of g with respect to x at the

point P.

The geometric interpretation is obvious : when Ax is

taken smaller and smaller, P' approaches P along the

curve, the chord PP' approaches the tangent at P as its

limiting position, and —^ approaches as its limit the slope

of the tangent. Hence the rate of change of a function is

the slope of its graph.
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7. Limits. From what has just been said, it appears

that the determination of the rate of change of a function,

or the slope of a curve, requires the evaluation of a certain

limit. It will therefore be well to introduce at this point

a brief discussion of the subject of limits.

When the successive values of a variable x approach

nearer and nearer a fixed number a, in such a way that the

difference a — x becomes and remains numerically less than

any preassigned positive number however small, the con-

stant a is called the limit of a:, and x is said to approach the

limit a— in symbols,

lim X = a.

Examples are easily found in elementary work

:

(a) If a regular polygon be inscribed in a circle, the

difference between the area Ap of the polygon and the area

Ac oi the circle becomes arbitrarily small (less than any

preassigned number) as the number of sides increases in-

definitely. Hence

Irm Ap = Ac
(6) We know from elementary algebra that the sum

Sn of the geometric series

IS

+
1

2n-l

2- 1

2n-l

is

1

1-i
The difference between 2 and S^ is

2n-l

This difference becomes arbitrarily small as the number of

terms increases indefinitely ; hence

lim S,, = 2.

((?) If a steel spring of length I suspended vertically be

stretched to a length I -{- a and then released, tlie end of
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the spring will oscillate about its original position.

The length x of the spring will be alternately greater and

less than the original length Z, but as the oscillations be-

come smaller the difference between x and I will become

and remain arbitrarily small. Thus

lim x — l.

In this example, the variable actually reaches its limit,

since the spring soon ceases to oscillate at all. In many

cases, however, the variable never reaches its limit.

This is true in (a) above, since no matter how many

sides the polygon may have, its area is always less than

that of the circle.

8. Theorems on limits. We shall have occasion to use

the following theorems on limits, which we assunae without

formal proof.

Theorem I* : The limit of the sum of two variables is equal

to the sum of their limits.

Theorem II : The limit of the product of two variables

is equal to the product of their limits.

Theorem III: The limit of the quotient of two variables

is equal to the quotient of their limits^ provided the limit of

the denominator is not 0.

f increases i

Theorem IV : If a variable steadily \ , \ but
I decreases j

never becomes . \ than some fixed number A., the vari-

able approaches a limit which is not \ \ than A.

Theorems I and II may evidently be extended to the

case of any number of variables.

* In theorems I, II, III it is of course implied that the limits of the two

variables exist. We shall see later (§§ 139, 140) that the sum of two vari-

ables, for instance, may approach a limit when neither of the two variables

taken by itself approaches a limit.
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9. Limit of a function. We have frequently to observe

the behayior of a function f(x) as the argument x ap-

proaches a limit. If, as x approaches a, the difference be-

tween f(x) and some fixed number I ultimately becomes

and remains numerically less than any preassigned constant

however small, the function f(x) is said to approach the

limit Z, and we write

Unless otherwise specified it is supposed that the same

limit is approached whether x comes up to a from the

positive or the negative direction. If we wish to consider

what happens when x approaches a from the positive side

only, we write ^^\ /(^) ; from the negative side only,

'""
fix).

10. Infinitesimals. An infinitesimal is a variable whose

limit is 0. Thus a constant, however small, is not an in-

finitesimal. An infinitesimal is not necessarily small at

all stages of its variation ; the only thing necessary is that

ultimately it must become and remain numerically less than

any assignable constant however small.

If one infinitesimal is a function of another, the inde-

pendent variable is called the principal infinitesimal.

In the problem of § 6, both Aa; and A^ are infinitesimals,

with ^x as the principal infinitesimal.

11. Limit of the ratio of two infinitesimals. We return

to the exceptional case of theorem III, § 8, in which the

denominator is infinitesimal. Given any fraction - in

which u approaches 0, two cases are to be distinguished

:

(a) V also approaches ;

(J) V does not approach 0.

It is clear that in case (6) the fraction — may be made
u

to assume values greater than any assignable constant by
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taking u sufficiently small ; hence the fraction can ap-

proach no limit. But consider case (a), in which both u

and V are infinitesimal. Theorem III does not apply; the

ratio of the limits is -, which is quite meaningless ; never-

theless the limit of the ratio may exist, as we shall find in

many cases in the next few chaj)ters.

The determination of the limit of the ratio of two

infinitesimals is a problem of the greatest importance

;

in fact, it is clear from the discussion of § 6 that this

problem always arises in finding the rate of change of a

function, or the slope of a curve.

EXERCISES

1. Determine (a) 1"^ (x^ - 3 x^ - 5 a: - 5) ;
"- ^ x>—

1

/j\ lim ^ — X — \

Which of the theorems of § 8 are needed?

2. Determine (a) ^i^]
x-^ - 3 a; + 2

(b)
l^^l

(sin X + cos x)
;

(c) lira ^. Ans. (c) -2

2x
Which of the theorems of § 8 are needed ?

3. Determine lim x'^ - 3 .r + 2 ^y^ich of the theorems of § 8
•^>l x -1

are used? Ans. — 1.

4. Evaluate ^i"^ ^ ~ ^'

•

5. Evaluate lim Vl - x\ ^^^^ 1 Vg

6. Evaluate J^^^^^- ^ns. 1.

^^^tan X

7. Evaluate ^i^ sin_2£. Ans. 2.
•^^0 tan X
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8. Evaluate ^"^ ^^^Ix
•^^0 sin X

9. Show that, if n is a positive integer,

lim x"" = (lini xy.

10. Show that, if P{x) is a polynomial in x,

11. Show that, if P^ix) and P2(x) are polynomials,

lim^iM = ^PiOO
^>« PaCa:) P2(a)'

provided PgC*^) =^ ^^

12. Under what circumstances may the limit in Ex. 11 exist when
P2(a) = ? Give an example.

13. Does the limit in Ex. 11 always exist when Pi(a) = P2(a) = 0?

Give examples.

12. Continuity. An important idea in the study of

functions is that of continuity.

A function /(re) is said to be continuous at the point

a; = a if

This means, first, that the function is jigfined when x = a^

and second, that the difference between /(a:) and /(a) be-

comes and remains arbitrarily small (numerically less than

any assignable constant) as x approaches a. The curve

y =f(x') passes through the point x = a without a gap or

break.

A function is said to be continuous in an interval of

values of the argument if it is continuous at all points of

the interval. ^

In the discussion of § 6, it is ta_citly assumed that the

function is continuous in an interval including the point

P\ this assumption is an essential part of the argument.

All the functions treated in this hook are continuous., ex-

cept perhaps for certain particular values of the variable,

and such values are either excluded or subjected to special

investigation.
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13. Infinity. The most important type of discontinuity

is that in which the function increases numerically without

limit, or, as we say, becomes infinite^ as x approaches a. In

this case we write

lim fix)=cc.

But it must be noted that this equation is merely symbolic,

for the reason that the symbol oo does not represeyit a num-

ber. The symbolic equation tells us, not that f(x) ap-

proaches some vague, indefinite, very large limiting value,

but that it increases beyond any limit whatever.

Graphically the occurrence of such a discontinuity means

that the curve y = f(x) approaches nearer and nearer the

line x= a^ usually without ever reaching it, at the same

time receding indefinitely from the a:-axis.

Examples: (a) As x approaches 0, the function

1

a;*

becomes infinite (Fig. 2)

linii =00.
a>>0 x^

Fig. 2

(5) The function

Fig. 3

y =
X
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becomes positively or negatively infinite according as x ap-

proaches 2 from the right or the left (Fig. 3)

:

lim ^ =+Q0, lira _l_ = _co.
x-^'i^ a; — 2 .r->2"' 2; — 2

14. Function with infinite argument. We have fre-

quently to investigate the behavior of a function as the

argument becomes infinite.

If when X increases indefinitely the difference between

f(x^ and some fixed number I ultimately becomes and re-

mains numerically less than any preassigned constant how-

ever small, we write

Graphically this means that the curve y = f(x) ap-

proaches nearer and nearer the line y = U usually without

ever reaching it, at the same time receding indefinitely

from the ?/-axis.

Examples : (^oC) As x increases indefinitely in either

direction, the function y = —^ approaches (Fig. 2):

lim 1 = 0.

1 + 1
(5) lim ^_+l_ lim ^ = 1.

1-
x

EXERCISES

1. Show that a polynomial is continuous for all values of x (see

Ex. 10, p. 10).

2. For what values of a: is a rational fraction discontinuous?-

3. For what values of x is the function discontinuous?
a;2-4

4. Evaluate lira -^

—

- Trace the curve y = ——r«

6. Evaluate («) ^''\ ^+i
;

(b) ^^"^ ^^^1.
x->0+ x x->0- X
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6. Evaluate l^n -r^^ll^.

7. Evaluate 4
X —

(a) lim 3^2+ 5x .

j-^ao a;2 — 3 a; — 1
(&) lim ^

a:->oo 3 x- - 4

(c) lim 10^

;

(^)
Urn 10-;

(e) lim a;2 + 3z+l.
x^^

a: - 5 '
(/)

lim tana:.

Ans. (a) 3; (c) 0; (/) non-existent.

8. Does sin x approach any limit as x becomes infinite ? Does
sin X q Dogg

tan x
^

X X

9. Show that as x approaches 0, the function sin - oscillates be-
X

tween — 1 and 1, without approaching any limit.

10. Discuss the behavior of tan - near the origin.

1

11. Discuss the behavior of 10* near the origin.

12. Evaluate lim
2- sin-.

13. Is the function

x-^ — 4

continuous at x = 2 ? Can/(2) be so defined as to make/(a:) contin-

uous?

14. If f(x) is continuous, is its square continuous? Is its

reciprocal ?

15. Given two continuous functions, what can be said of the con-

tinuity of theu' sum ? Their product? Their quotient?

16. Are the trigonometric functions continuous for all values of the

argument ? Discuss fully.



CHAPTER II

THE DERIVATIVE

15. The derivative. We return now to the problem

(§6) of finding the rate of change of a function, or the

slope of a curve.

Given a function

continuous at the point P : (x^ «/), let us assign to x an ar-

bitrary increment A2;, and compute the corresponding in-

crement ^y of y. We have

y + ^y^f(x + Lx),

so that

^y=Ax + Lx)-f(x).

Now form the ratio

Fig. 1
dkX Ax

The limit of the ratio —^ as Ax approaches is called the
Ax

derivative of y with respect to x.

The derivative is designated by the symbol -^

:

^= lim ^= lim fCx-hAx)-f(x)

Other commonly used symbols for the derivative are y'^

The operation of finding the derivative is called

differentiation .

14
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It follows from § 6 that the derivative of a function is

' identical with its rate of change. Geometrically the deriva-

tive of a function is the slope of its graph.

Only differeyitiable functions (i.e. those having a deriva-

tive) are considered in this hook. In some cases the de-

rivative may fail to exist for particular values of the

argument, but such values are either excluded or subjected

to special investigation.

To hnd th6 derivative of a given function, we have

merely to huild up the " difference-quotient " —^ and then

pass to the limit as Ax approaches 0. It will be remembered

that this is essentially the method used in analytic geometry

to find the slope of a curve. Since Ax and Ay approach

together, our problem is to find the limit of the ratio of two

infinitesimals (cf. §11). In general, this limit cannot be

evaluated until some suitable transformation, algebraic or

otherwise, has been applied to the quotient _^ •

Ax
The process of finding the derivative is illustrated by

the following

Examples : (a) Find the slope of

the parabola

y = 2x^-6x-[-4:

at the point (ir, 3/) ; at the point (1, 0).

If

y=f(x) = 2x^-6x + 4:,

then

y -\- Ay = f(x -\- Ax}
= 2(x -h Axy-6(x -h Ax} -h 4,

A^ = 4 xAx + 2 A? — 6 Ax^

^ = 4.x+2Ax-6,
Ax

y'= lini ^ = 4 a; _ 6.^ Ax^O Ax

Fig. 4
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Hence the slope at any point (x, y) is 4 a^ — 6 ; in par-

ticular, the slope at the point (1, 0) is — 2.

(5) Given
t dt

We have
1

* + ^'-« + A«'

A„_ 1 1

« + A« t

Reducing the fractions in the right member to a common
denominator, we find

^^ ^ ^ - (^ + AQ ^ -A/^

Whence
Ag^ -i
A^ " (^ + AO*'

^= lim 4^=_i.

Geometrically this means that the slope of the hyper-

bola s = - at the point (^, s) is —-•

Zl Li

(c) Find the rate of change of the function y = V^
at the point (rr, y); at the point (4, 2).

If

y=^x,
then

y -\- l^y = Va: + Aa;,

A?/ = Vo:; H- Aa; — Va:

= ( Va; 4- b^x — Va;)

_ (a: + Aa;) — a;

Va; + Aa:; 4- Va;

A^

Va; + Aa: + Va;

Va: + Aa: 4- Va;

Va: + Aa; + Va;
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^= liiii %^ 1 .

At the point (4, 2), the rate of change is

EXERCISES

^X 1^=4
!

Find the slopes of the following curves at the points indicated.

1. y = X — x^ 2ht (x, y) ; at :c = 2. Trace the curve.

2. 3/ = a:^ + 1 at (z, ?/). Trace the curve.

3. y = x^ — x^ at the points where the curve crosses the a:-axis.

Trace the curve.

4. 3/
= at X = 2.

' Ans.
X -\-\

6. y = — at a: = 2.

x^

6. y = a:^ - 3 a;2 + 2 at (a;, 3/).

7. 3/ = X + - at a; = 2

.

8. If 3/ = -, find '^.

a:^ 6/a;

9. li y = V3 — a:, find y'

.

Ans.
- 1

2\/3-x

10. If/(:c)= ^^ -,find/'(a:). Ans.
^

(1 - xy (1- xy
11. If s is measured in feet and t in seconds, find the rate at which

s is changing at the end of 2 seconds when

(a) s =- ^; (^) s =Vt -\- 1. Ans. (a) | ft. per second.

X 1
. . 12. At what points does the curve y = have the slope -?

a: + 1 4

Am. (1, i), (-3,1).

13. Differentiate 3/
= —-• Ans. ^^-.

Va; 2xi

^14. Find ^ if r = $1 Ans. ^oK
du

c
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15. Differentiate y =
^ (x-l)2

16. If f{x) = Vrt2 _ a;2^ find f'(x). Ans.
— X

Va2

17. Find the angle between the curve y = • and the line
a; + 1

y = X at each point of intersection.

16. Higher derivatives. The derivative of ^ with re-

spect to X is itself a function of x. The derivative of the

first derivative is called the second derivative^ and is written

—^ (read d second 7/ over dx square); the derivative of
(JiX

the second derivative is called the third derivative, written

^- etc

Other symbols for the higher derivatives are y", i/'^', • . •
;

D.%D.%...;f"(x-),f"'Cx%....
Example: In example (a), § 15, we found .

y' = 4:X — 6.

Hence
y + A^' = 4:(x -h Ax^ — 6,

Ay' = 4 Aa;,

Ax

y" = lim —^ = 4.
Aa:->0 Aa^

In this case all the higher derivatives are 0.

EXERCISES

1. Find y" and y'" in Exs. 2, 3, 5, p. 17.

2. In example (?>), § 15, find

3. In Ex. 10, p. 17, find/"(x).

4. In Ex. 11, p. 17, find how fast -y- is changing when t = 2 seconds.



CHAPTER III

DIFFERENTIATION OF ALGEBRAIC FUNCTIONS

17. Introduction. In this and a later chapter (V) we
develop certain standard formulas by means of which any

elementary function may be differentiated. The use of

these formulas effects a great saving of time, and obviates

the necessity of evaluating a special limit in every problem.

The formulas of §§ 19-20 are direct consequences of the

definition of the derivative, and are valid for all functions

{i.e. all functions that are continuous., one-valued.^ and

differentiahle ; see §§ 12, 5, 15).

18. Derivative of a constant. We note first that the

derivative of a constant is 0:

(1) ^=0.
^ ^

dx

For, if y = c, then no matter what the values of x and

Aa: may be, y will remain unchanged, and hence Ay = :

^ = 0,^= lim ^=0.
Ax dx Ax->o Aa;

The line ?/ = <? is parallel to OX ; its slope is everywhere 0.

19. Derivative of a sum ; a product ; a quotient. If u and

V are functions of ic, the following formulas are true by the

definition of the derivative :

•ON d . , N du
,
dv

dx dx dx

(3)

(4)
axw/

19

l(..)=
dv

,
du

dx dx

dx\vJ

du dv
V— — u—
^dx dx

v"
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These formulas may be stated in words as follows :

(2) The derivative of the sum of two functions is equal to

the sum of their derivatives.

(3) The derivative of the product of two functions is equal

to the first function times the derivative of the second plus the

second times the derivative of the first.

(4) The derivative of the quotient of two functions is equal

to the denominator times the derivative of the numerator

minus the numerator times the derivative of the denominator.,

divided hy the square of the denominator.

Proof of (2) ; Let x assume an increment A:r, and de-

note by ^u and Av the corresponding increments of u and v.

Then
y = U+ V^

y + Ay = u-\- ^u + V -h A?;,

Ay = Ai^ + Av,

Ay _ Aifc A?;

Aa; ^x A2;

^y — y ^y _d'^
,
dv

dx Ax->o Aa; dx dx

Proof of (3):

y = uv,

y -\- Ay = (^u + Aw)(v + A?;),

Ay = uAv H- vAii + AuAv^

Ay Av
,
Au

,
. Av

Ax Ax Ax Ax

^^ lim ^ = u—-{-v~
dx Ax->oA2; dx dx

Proof of C^):

u
y = -''

V

. u-\- Au
y + ^y= T. ^

V + Av

. u-\- Au u uv + vAu — uv — uAv
Ay = • -— = ——— -—

,

V -\- Av V {y -\- Av)v
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Au Av
V u—

A^ Ax Ax

Ax~ Qv + Av)v
du dv
V- u —

dg _ i[^^ A^ _ dx dx

dx~ A-^-^oAa: v^

Formulas (2) and (3) can be extended to the case where

n functions are involved. For three functions, (3)

becomes
d du , dv

,
dw—uvw = vw—~ +WU \- uv

dx dx dx dx

In the special case when t* = (?, a constant, (3) and (4)

become

(3') —cv=c--.
dx dx

dv

r4'^ -lf-__^
^ ^ dxv~ v''

'

20. Derivative of a function of a function. A function

is sometimes expressed in terms of an auxiliary variable

which in turn is a function of the independent variable

;

for example,

?/ = 5 w^ + 2 i*, where u = x^ -\- ox-{-l.

The variable u in the first equation may of course be

replaced by its value in terms of a:, and —^ can then be
dx

determined directly ; but it is desirable to have a formula

by which —^ can be found without eliminating u.
dX

Let y =f(u)^ where u = 4>(_x).

Assign to X an increment Ax, and denote by Au and Ai/

the corresponding changes in u and ?/. Then

A?/ _ A?/ Au
Ax Au Ax

and, passing to the limit, we find
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T Ay T Ay -,. Au
lim —^ = lim —^ • lim —

,

Ax->^Ax aj:->o A-w Ax->oAa;

or

^ ^ dx du dx

This very important formula is easily remembered from

the fact that inform it is a mere identity.

21. Derivative of jc**, n a positive integer. If

?/ = a;",

where w is a positive- integer, then

(1) 4^ 1=^^^'^"

For,

y +Ay=(x + Axy

= 3;"H-na;"-^A2;+
^^^^^ ~ ^^

x^'-'^Ax + ••• + A^",
2 I

Ay = na^"~iAa; + ^^^7—^^""^A^;^ + • • • + Ax"",
2

!

^ = nx'^-^ H-
^(^- ^)

a:^-2Aa; + -. + A^"-^
Ax 2!

—^ = lim —^ = na;'^"^
6?a: A^->.o Ax

In particular, if ?i = 1, i.e. ii y = x., .

dx __ H

dx

which is obvious geometrically.

By means of (4'), it can be shown that (1) is true when

w is a negative integer.

Examples: (a) Find the derivative of

y = ?>7^ + l x^+1.

dx dx dx

= 9 a:2 + 14 a:.

(5) Differentiate y =
x^

a;-f 3

I
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y
^

ax ax^
{x+-6f

_ {x + ^')2 X - x^ ^ x^ + Q X

(2; +3)2 ix+2>y

EXERCISES

Differentiate the following functions.

1. (a) y = bx^-2x; (b) s = t -'St^ + t^.

2. (a) ?/ = x4 - 3 x3 - 2 a:2 _ 1 ; (6) y ^ x\o x^ + 3).

,.3. (a) y = l-2x-3a;5; (6) y ={x^ - l)(x2 + 3x + 2).

1 +a:2

^ a;2-l (x2-l)2

- 5. y = L±2^LZL^. 6. 2/=(xB-l)(:.3+i).
x^ + 6

,7. v = ^^- 8. y = (l+^)a-2x).
1 - a: X

9. If ^^=
-^'-^

, find^. Am. -\
X dx^ x'

10. Find — (5 a:3 + 7 a:2 + 8 a:)(x2 + 3 x + 4).
dx

11. Differentiate ?/ =(a: + l)(a: + 2)(x + 3).

12. If a: = -, find — •

t^ dfi

_ /v^+i(1-0
13. If F{t) = {-!—Y, find F'(0. ^m.

9 3
14. Find the rate of change of s = t —- -\

t t^

15. In the proof of (1), § 21, why is n assumed to be a positive

integer?

16. Show directly from the definition of the derivative that for-

mula (1) of § 21 holds when n = ± I.

17. Find ^ if ^/ = 2 w^ _ 4, m = 3a;2 + 1.

dx

18. Find the slope of the curve y = x (x + l)(x + 2) at the points

where it crosses the x-axis. Trace the curve.
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19. At what points is the tangent to the curve y =:(x — 3) '-(a: — 2)

parallel to 0X1 Trace the curve.

20. Prove formula (l)of § 21 when n is a negative integer.

21. Given a polynomial of the n-th degree, prove that all the deriva-

tives after the n-th are identically 0.

22. Derivative of x^, n fractionaL By means of formula

(5), the power formula (1) of § 21 can be extended at once

to the case when n is a rational fraction.

If 2

where p and q are positive integers, then

y^ = xP.

Differentiating each member of this equation with respect

to x^ we find, by (5),

dx q y'^~^ q y'^

q x^ q

This shows that formula (1) of § 21 holds even when n is

a positive rational fraction.

By using (4'), the formula can be shown to hold when
?i is a negative rational fraction.

In more advanced texts it is proved that the power

formula holds when n is irrational, and hence is valid for

all values of n.

23. The general power formula. Suppose

y = u^^ where u = </)(^).

Then

du

and we have by (5)

(6) ^U^ = nu^-^~^
dx dx
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An important special case of this formula is the case

du

^«/x d .— dx
(6') ^^u =—-=.'

Example : Find the derivative of

This function is of the form w", with it = 3 a;^ -)- 1, ?i = 4.

Hence (6) gives

^ = 4(3 2;2 + 1)3 . 6 re = 24 a;(3 x^ + 1)3.
ax

EXERCISES

Differentiate the following functions.

1. 2/ =z a;3 + 3a;2. 2. y = —
X2 + 1

- 3. y=(2x+iy. Ans. /• = 10(2 x + l)^.

4. ?/ = (a;3 + 5 a;2 + 7)2. ^n.-?. y' = (Qx^ + 20 x) (x^ + 5x^ + 7).

. b. y — Vl — "d x^. Q. y = ———^

.

Va:^ — a:

7. ?/ = fj -ix"^ + 3 a:. 8. y =(x^ - 5xy(8x-7y.

- (3a;«-7a;+ 1)3 .. . „
, *^+

(1 — x)^

"11. ?/=(3x + 2)3 + (5x + 7)2. 12. Z/=^^ .+ 2x
2x

13. y = ^^^^^. 14. ^/ = (1 - x2)(l + x2)2.

>. 15. ?/
=

—

— • vlns. ?/'

=

V(a2_x2)3 - (a2-x2)l

16. Find the slope of the hyperbola x'^ — y^ = 12 at (4, — 2).

Ans. -2.

*47. If <^(y) =^
^

, find <^'(tO, <^"(0. <^"'(^')

8(1 -t;)2

18. Find 1 Vl - s • Vl + s^.

19. If y =2 V^, find v". 20. Find — (at - xl)i
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21. Differentiate ^ =( ) . Ans. y'

=

^

\^1 + Vl - x'^J x-\/l - a;2

22. Find the slope of the curve y = (x^ — l)^ at each of the points

where y" = 0. Trace the curve.

23. Draw the graph of the function y = a:" for n = i, 1, |, 2, 3.

24. Implicit functions. Up to this point we have been

concerned with functions defined explicitly by an equation

of the form
i/=f(x}.

It may happen, however, that x and i/ are connected by an

equation not solved for i/ ; for example,

x^ -^ y^ =. aP'.

In such a case y is called an implicit function of x^ and

the relation is expressed by writing

The definition becomes explicit if we solve for y ; in the

above example,

y = ± Va^ — x'^.

25. Differentiation of implicit functions. To find the

derivative of an implicit function, we proceed as follows :

Differentiate each term of the equation

Fix, y) = 0,

hearing in mind that^ owing to the equation^ y is a fu7iction

of X.

Example : Find the slope of the ellipse

x^ — xy + y"^ + x^l
at the point (a:, ?/).

We have d
{x^ — xyi-y^-^-x^^Oy

ax

or by (6) and (5)

2x-x^-y-h2y^ + l = 0,
dx dx

dy _ 2x — y -\-l

dx X — 2y
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26. Inverse functions. The equation

(1) y=/(^)
defines x implicitly as a function of y ; when solved for ^,

it takes the form

(2) ^ = <^(y>

The function (^(^) is called the inverse of the direct func-

tion f{x).

For example,

(a) if ^ = ^^ then x=^±. Vy ;

(J) \i y = ± Va^ — a:^, then a: = ± Va^

(c) if ?/ = «•% then x = log^-grT""'

In each case the second func-

tion is the inverse of the first.

To construct the graph of

the inverse function from

that of the direct function,

we have only to interchange x

and y^ which amounts to a

reflection in the line y = x.

This is shown in the figure

for example (a) above.

If f(x) and (f>(^y) are in-

verse functions, then

1

y

(3)

For, since

6.x
J_

Ay

Fig. 5

(*'(2/)^0).

we have, passing to the limit,

dy^l_
dx dx''

dy

which by (1) and (2) is the desired formula.
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EXERCISES

1. Express y explicitly as a function of x, when
(a) x^ — y^ — 1\ (6) 2 a;?/ + 2/2 — 4

I

(c) sin (x + 2/) = 1
;

{d) xa^ = 1.

Find the slopes of the following curves at the points indicated.

2. a;2 + 7/2 = 25 at (x, y) ; at (3, 4). Ans, - -; - -•

y 4

- 3. a:2 + x?/ + ?/2 = 3 at (1, 1). ^m. - 1.

4. 2 a:2 + 2 2/^ - 9 a:?/ = at (1, 2).

- 5. xy^ = 3 at (3, 1). Do this in two ways.

Find ^ in the following cases.
dx

^

6. 1-^^=1. Ans. —
a^ h^ a^y

7. {x — y) (x- + yy = a^. 8. x^ -\- y^ — 3 axy = 0.

,9. x-\- V(2x - 'dyy = 0. 10. x^y^ + 2 x^y - xy^ + 2 = 0.

11. a; = (1 — 3 ?/)2. Solve in two ways.

12. If i/2 = 4 ax, find 3/". Cf. Ex. 19, p. 25. Ans. -^.
yZ

~" 13. Prove that a tangent to a circle is perpendicular to the radius

drawn to the point of contact.

14. If a:2 + 2/^ = a", find y"

.

15. Show that
d'^y

d^x dx'^ f dv \

df
\dxl

16. Find the inverse of each of the following functions

:

(a)?/ = 3a:-4; (&)2/ = £z^;
X — 2

(c) y = (x2-l)2; (f7) 2/=logioa:.

17. In Ex. 16, are the direct functions one-valued? Are the in-

verse functions?

18. In Ex. 16 (a), (c), verify formula (3), §26.

19. In Ex. 16 (a), (c), verify that the graph of the inverse function

may be found from that of the direct function by reflection in the line

y = x.

20. In Ex. 16 (&), (c), discuss the continuity of the direct and in-

verse functions.



CHAPTER IV

GEOMETRIC APPLICATIONS

27. Tangents and normals to curves. It is known from

analytic geometry that the equation of a line through the

point (a^Q, y^) with slope m i%

(1) y-y^ = m(ix-XQ).

Let P : (a-Q, y^) be a point on the curve

F(x. y-) = 0,

and denote by ^q' the value of the derivative at the point

(a^Q, ?/q). The equation of the tangent to the curve at P
c^ then be written, by (1), in the form

The equation of the normal— i.e. the line perpendicular

to the tangent at the point of contact— can be found at

once from that of the tangent, by recalling that if two

lines are perpendicular, the slope of one is the negative

reciprocal of the slope of the other.

Examples: (a) Find the tangent and normal to the

ellipse

42:2 + 9^/2 = 40

at the point (1, — 2).

, t We have

Sx-hlSyy'=0,
hence

'^ = 2/0 = - 4:X'

(1, -2)

Therefore the equation of^the

tangent is

2/ + 2=f(a:-l),

that of the normal is

Fig. 6

y + 2 = -ICx-l).
29
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Fig. 7

(6) Find the equation of a tangent to the curve y = 7^

parallel to the line «/ = 3 :r + 1.

The slope of the required tangent is 3. But the slope

at any point (a;, ?/) of the curve y = 7?\'&

y=3a:2.

Hence the coordinates of the point- of

contact are found by solving the simul-

taneous equations

3 a;^ = 3, y =^Qi^.

This gives the points (1, 1), (— 1, — 1),

and the required tangents are

^ _ 1 = 3(^ _ 1), ^ + 1 = 3(a; 4- 1).

28. Length of tangent, subtangent, normal, and sub-

normal. Let P : {x, y} be a point on the curve

FCx, 2/) = 0.

The segment TP of the tangent intercepted between the

point of tangency and the 2:-axis is called the length of the

tangent; its projection TQ on OX is

called the length of the subtangent.

The segment iVP of the normal inter-

cepted between P and the a:-axis is

called the length of the normal; its pro-

jection $iV on the a:-axis is called the

length of the subnormal.

It is customary to consider all these

lengths as essentially positive. They are evidently de-

termined by the coordinates (a;, y} of the point P and the

slope at P.
EXERCISES

Find the tangent and normal to each of the following curves at the

points indicated.

1. (a) y = 1 — X — x^ at (1, — 1) ;

(c) x2 + y2 = 25at(-3, 4);

(b) xy = 2 a-2 at (a, 2 a)
;

{d) y = a: + - at (1, 2).

Ans. (a) ^ + 1 = - 3(a; - 1), i/ + 1 = \{x - 1).
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"^ x^ — 2 xy -\- 2 y^ — X = at the points where x = 1.

Ans. At (1, 0);

2y = x-l, i/-\-2x = 2; at (1, l):2?/ = a: + l, ?/ + 2a:=3.

"St y = — —
- at x = 2a. Ans. x-\-2u = ia, y = 2x — ^a.

4. Find the equation of the tangent to

(a) y^ = iax at (x^, y^) ; (&) ^^ ± |^
zz: 1 at (xq, y^)

.

Ans. (a) y,y = 2a(x + x,); (b) ^ ±M ^ i.

5. Find the subtangent, subnormal, tangent, and normal lengths

in each of the cases of Ex. 1. Draw a figure in each case.

6. Find the angle between the parabolas y^ = x, y = x^ at each of

their points of intersection.

7. Find the tangent and normal to the curve y"^ = 2 x^ — x^ at the

points X = 1. Ans. At (1, 1) :

^ 2y = x-{-l,y + 2x=3', at (1, - 1) : x + 2y + 1 = 0, y = 2x - 3.

_ 8. Show that the subtangent to the parabola y^ = 4: ax is bisected

at the vertex, and that the subnormal is constant. Hence give a

geometric construction for drawing the tangent and normal; also

show how to find the focus of a parabola if the axis is given.

9. Find a tangent to the parabola y^ = 4ax making an angle of

45"^ with the a:-axis. Ans. y = x + a.

10. Find the tangents to the hyperbola '^x^ — 9y- -{ 36 = per-

pendicular to the line 2 y \- 5x = 10. Ans. 2x— 5y=±8.
—11. Find a tangent to the curve y = 1 — x^ parallel to the line

X — 2 y = d.

12. Find a normal to the parabola y = x'^ perpendicular to the

line 3 X — 2 y = 1.

-13. Show that the portion of the tangent to the hypocycloid
2 2 2

x3^y'5 = «3 intercepted between the axes is constant.

14. Find the tangents to the circle x^ + y'^ = 5 which are parallel

to the line x -r 3 y = 0. Draw the figure.

Ans. y±iV2 = -l(x±iV2).
15. Find the tangents to the curve

y = \ x^ — x'^ -{- 5 X

which make an angle of 45° with the x-axis. Plot the curve.

16. Find the angle between the line y = — 2 x and the curve

y = x2(l — x) at each point of intersection.
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17. Find the equation of a tangent to the curve y^ = 1 — x parallel

to the ?/-axis. Trace the curve.

^18. Show that the area of the triangle formed by the coordinate

axes and the tangent to the hyperbola 2 xij = a^ is constant.

19. Show that the length of the normal is constant (equal to a) in

the circle

(x — c)^ + 7j'^ = a^,

where c is arbitrary, and explain geometrically.

20. Show that the sum of the intercepts on the axes of the tangent

1 1 1 .

to the parabola x^ + y^ = a^ is constant.

21. Show that, in the curve y"^ = ax, the subtangent is n times the

abscissa of the point of contact. Hence show how to draw the tan-

gent at any point of the curve y — ax".

22. Find the length of the tangent, subtangent, normal, and sub-

normal to the curve y = f(x) at the point {x, ?/). Ans. Tangent,

^ Vl + y''^\, subtangent, ^; normal, ^/Vl + y''^; subnormal, yy'

.

y' y'

29. Increasing and decreasing functions. In studying

the properties of a function

it is usually of great assistance to represent the function

graphically. In tracing a curve, it is well to begin by

locating several points, e.g. the intersections with the

axes, and finding the slope at those points ; it is also

useful to note the behavior of y for large positive and

negative values of x.

In addition to giving the slope at any point, the differ-

ential calculus is of assistance in a variety of other ways,

as will be shown in the next few articles.

We shall assume as usual that the function in question is

one-valued, continuous, and differentiable.

We note first that, as x increases, the curve rises if the

slope is positive, as on the arc AB (Fig. 9); it falls if the

slope is negative., as along BD

:

li y' > 0, ?/ increases
;

If y^ < 0., y decreases.
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At a point such as B (Fig. 9),

y

F

Fig. 9

Of course this also appears at once from the fact that y'

is the rate of change of y.

30. Maxima and minima.

where the function is al-

gebraically greater than

at any neighboring point,

the function is said to

have a maximum^ value

^

and the point is called a

maximum point. Simi-

larly, at a point such as D
the function has a minimum value. It is evident that at

such a point the tangent is parallel to OX ; i.e.

/ = 0.

But the vanishing of the derivative does not mean that

the function is necessarily a maximum or a minimum ;

the tangent is parallel to OX at ^, yet the function is

neither a maximum nor a minimum there. It appears

from the figure that the test is as follows :

At a point where ?/' = 0, if y' changes from positive

to negative (as x increases), y is a maximum ; if y'

changes from negative to positive, y is a minimum ; If

y' does not change sign, y is neither a maximum nor a

minimum.

Since the function is continuous, the maxima and minima
must alternate : between two maxima there must be a

minimum, and vice versa.

The points at which «/' = are called critical points,

and the corresponding values of x are the critical values

of X.

31. Concavity. The second derivative is the rate of

change of the first derivative. It follows that wKen ^ is

positive, y is increasing : as x increases the tangent turns

in counterclockwise sense and the curve is concave upward.
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When «/'' is negative, y^ decreases : the^curve is concave

downward.

At a maximum point the curve is concave downward, and

hence «/'^, if it is not 0, must be negative. At a minimum
«/", if not 0, must be positive. If the second derivative is

easily obtained and if it does not happen to be at the

critical point in question, it is usually more convenient to

determine whether we have a maximum or a minimum by

finding the sign of «/'' ; but the test of § 30 has the ad-

vantage of being perfectly general. However, in practice

other considerations usually enable us to distinguish be-

tween maxima and minima without the application of either

of these tests.

Example: Find the maximum and minimum values of

the function

y = x^ — '^ X.,

and trace the curve.

This curve crosses the a:-axis at a: = 0, ± VS. Since

^' = 3 2:2 - 3,

the slope at (0, 0) is — 3, at ( ± V3, 0) it is 6.

Setting

/ = 0,

we find the critical points (—1, 2), (1, —2). When x

is large and negative, y is large and negative ; when x is

large and positive, y is large and positive. It is therefore

clear that the curve must rise to a

maximum at ( — 1, 2), fall to a mini-

mum at (1, — 2), and then rise in-

definitely. These conclusions may be

verified as follows. The second de-

rivative,

y'^ = 6 a:,

is negative at a; = — 1, so that \ the

Fig. 10 point ( — 1, 2) is a maximum ; y\ is
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positive at x=l, hence (1, — 2), is a minimum. The
curve is shown in the figure.

EXERCISES

Examine the following functions for maxima and minima, and
trace the curves.

1. y = x{x + 5). 2. y = x^ - 2x'^ + x.

^3. y = x^x'^ - 8). 4. ?/ = (x2 - 4)2.

.. b. y = x^ +1. 6. ?/ = a;3.

9. ^ = ^,- -r 10. a: =0 + 1)3.

32. Points of inflection. A point at which the curve

changes from concave upward to concave downward, or

vice versa, is called a point of inflection. At a point of

inflection the tangent reverses the sense in which it turns,

so that y" changes sign. Hence at such a point y" ^ if it

is continuous, must vanish. In Fig. 9 the points (7, U, F
are points of inflection.

Since y^' — i.e. the rate of change of the slope—
vanishes at a point of inflection, the tangent is sometimes

said to be stationary for an instant at such a point, and in

the neighborhood of the point it turns very slowly.

Hence the inflectional tangent agrees more closely with

the curve near its point of contact than does an ordinary

tangent ; it is therefore especially useful in tracing the

curve to draw the tangent at each point of inflection.

33. Summary of tests for maxima and minima, etc.

The results of §§ 29-32 may be summarized as follows

:

Let the function y =/ (x) and its first and second

derivatives be one-valued and continuous.

(a) In an interval where y' > 0, the curve rises; where

y' < 0, the curve falls.

(J) A point where y' = is a maximum or a minimum
point., unless at the same point y" = 0, in ivhich case see (e)
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below. If y' > at the left* of this point and y' <0 at the

right., y is a maximum; if y^ < at the left atid y' "> at the

right., y is a minimum. Or., if y" <iO at the point, y is a

maximum; if y" > 0, ?/ is a minimum.

^c) Iri an hiterval where ^jy" > Q, the curve is concave

upward; where y" < 0, the curve is concave downwc^rd..

(c?) A point at which^['_==3^is a^^^ inflection., pro-

vided, y" changes sign as the curve ^(^sses through the point.

(g) A point at which both y' =^ and y" = is a maxi-

mum or a minimum if y' changes sign as the curve passes

through the point; it is a point of inflection with a horizontal

tangent if y' does not change sign.

Example: Trace the curve

y = x(x — 1)^.

This curve crosses the a;-axis at (0, 0), (1, 0). For

large positive or negative values of x, y is large and

positive. The derivatives are

y z= (^ _ 1)3 j^^^x(x- 1)2= (x - 1)2(4 X - 1),

y" = %x - 1)(4 a: - 1) + 4(a; - 1)2= 6(:r - 1)(2 x - 1).

The slope at (0, 0) is — 1 ; at (1, 0) it is 0.

The critical values are a; = 1, \. When a:=|, y" is

positive ; hence (^, — 2V6 ) ^^ ^ minimum point. When
2; = 1, y" = ' and the

test by the second de-

rivative fails. Since y'

does not change sign as

-X ^ passes through 1, the

function has neither a

Pjq jj
maximum nor a mini-

mum at that point.

The second derivative vanishes at (J,
— y^g), (1, 0) ;

these are points of inflection. The slope at (^, — y^g) is ^.

The curve is shown in the figure.

V * That is, immediately at the left.
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EXERCISES

Trace the following curves. Where possible, find the points of

intersection with the axes, determine the behavior of y for large

values of x, find the maxima and minima and points of inflection, and

draw the tangent at each point of inflection.

1. ^/ = a:3 - 6 a;2 + 9 a; + 3. 2. ?/ = 4 + 3 x - a;^.

/3. ?/ = x3 - 3 x^ + 6 a: + 10. 4. ^/ = (x - 3)2(x - 2).

5. y = (l- ^2)3. 6. ?/ = (4 - x^y\

/7. y={x- \y{x + 2)2. ^. y = a;3 - 3x2 - 9 x + 5.

9. y = x^. 10. y = x^.

11. y =x(x -l)(x-2). 12.?/=
^^^

14. y =

x2 + 4 a2

1

(1 +X2')2

15. Show that the curve y = has three points of inflection
x2 + a'^

lying on a straight line. Trace the curve.

16. Show that, for the curve y = x", where n = 2, 3, 4, •••, the

origin is a minimum or a point of inflection according as n is even or

odd.

34. Applications of maxima and minima. The theory

of maxima and minima finds application in a great variety

of problems. In the applications it is rarely necessary to

use either of the tests of ,§ 33 to distinguish between

maxima and minima ; the critical value that gives the

desired result can usually be selected by inspection of

the conditions of tlie problem.

It frequently happens that the function to be teste4 for

maxima or minima can be most simply expressed in

terms of two variables. When this is done, a relation

between the two variables must be found from the condi -

tions of the problem - By means of this relation one of

the variables can be eliminated, after which the maxima

'and minima can be found in the usual way. However, it

is often more convenient not to eliminate, but to proceed

as in example (5) below.
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Examples: (a) A box is to be made of a piece of card-

board 4 in. square by cutting equal squares out of the

corners and turning up the sides. Find the volume of

the largest box that can be made in this way.

Let X be the length of the side of each of the squares

cut out. Then the volume of the box is

(1) r=<4V-^^.2.
The derivative is

^={(4 _ 2 a;)2- 4 a;(4 - 2 z)

= (4-2:r)(4-6x).
Setting ^y

dx
we find

— 9 ^T- 2x^z ov
3

Since V vanishes when a; = and again when a: = 2, it

must reach a maximum at some intermediate point; it

therefore follows without the application of further tests

that the critical value x — ^ gives the required maximum
volume

:

F„»x. = |(4-|)^ = Wcu. in.

The graph of equation (1) is shown in the figure, the

F^-scale being one fourth as large as

the a?-scale. Since by the condi-

tions of the problem x is restricted

to values between and 2, the

dotted portions of the curve have

no meaning" in the present case.
Fig. 12

& r

(5) Find the dimensions of the

largest rectangle that can be inscribed in a given circle.

Take the coordinate axes parallel to the sides of the

rectangle. The area of the rectangle is

(2)
• A = 4.xy.
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This can be expressed in terms of x (or y) by means of

the relation

(3) x'^y'^a^

which gives

y = Va^ — a;^,

^ = 4 x^0^ — 2:^.

From this point the method is the same

as in {a). Fig, 13

The problem can be solved without

eliminating x or y, as follows: Differentiating equation

(2) with respect to x and setting the derivative equal tu

0, we have, since ?/ is a function of x^

^ = 4f^^+.Vo,
or

dx

dy

dx

dx

y.

X

Differentiating equation (3), we get

ax

or

dy _ x

dx y

Equating values of -^, we find
dx

_ ^ = _ ^,
X y

whence

y = x'.

the maximum rectangle is a square.

EXERCISES

1. What is the largest rectangular area that can be inclosed by

800 yd. of fencing?
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2. For a rectangle of given area, what shape has the minimum
perimeter ?

•f^ 3. Find the most economical proportions for a cylindrical tin cup

of given volume. Ans, Radius = height.

4. A rectangular field is to be fenced off along the bank of a

straight river. If no fence is needed along the river, what is the

shape of the rectangle requiring the least amount of fencing?

5. The equal sides of an isosceles triangle are 10 in. long. Find

the length of the base if the area is a maximum.

6. Find the rectangle of maximum perimeter inscribed in a given

circle.

^'7. Find the most economical proportions for a box with an open

top and a square base.

+ 8. Find the most economical proportions for a covered box whose

base is a rectangle with one side twice the other.

A ns. Altitude = | x shorter side.

•f-
9. Find the dimensions of the largest right circular cylinder that

can be inscribed in a given sphere. Ans. Diameter = V2 x height.

10. In Ex. 9, find the form of the cylinder if its convex surface is

a maximum.

•^11. Find the dimensions of the largest rectangle that can be in-

scribed in a given right triangle. Ans. x = ^ a.

-fl2. Find the most economical proportions for a conical tent of

given capacity. Ans. h =V2 r.

J^. A man in a rowboat 6 miles from shore desires to reach a point

on the shore at a distance of 10 miles from his present position. If he

can walk 4 miles per hour and row 3 miles per hour, where should he

land in order to reach his destination in the shortest possible time ?

Ans. 1.2 miles from his destination.

14. A rectangular field of given area is to be inclosed, and divided

into two lots by a parallel to one of the sides. What must be the

shape of the field if the amount of fencing is to be a minimum ?

15. A Norman window consists of a rectangle surmounted by a

semicircle. What shape gives the most light for a given perime'ter?

A ns. Breadth = height.

•f-16.
Find the most economical proportions for a quart can.

Ans. Diameter = length.
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"/---i7. The strength of a rectangular beam is proportional to the

breadth and the square of the depth. Find the shape of the strongest

beam that can be cut from a log of given diameter.

A ns. Depth = V2 x breadth.

18. Find the volume of the largest box that can be made by cutting

equal squares out of the corners of a piece of cardboard 6 x 16 in.

and turning up the sides. Ans. if^^ cu. in.

AS. A gutter is to be made of a strip of tin 12 in. \ /

wide, the cross section having the form shown in the V y
figure. What depth gives a maximum carrying \ 4 /

capacity?
' Fig. 14

20. Find the most economical proportions for a cylindrical cup of

given capacity, if the bottom is to be three times as thick as the sides.

21. Find the most economical proportions for an A-tent of given

volume, whose sides slope at 45° to the horizontal.

22. Find the dimensions of the largest right circular cylinder that

can be inscribed in a given right circular cone. Ans. Altitude = \h.

23. Solve Ex. 22 if the convex surface of the cylinder is to be a

maximum.

24. Find the right circular cone of maximum volume inscribed in

a given sphere.

25. Find the cone of minimum volume circumscribed about a given

sphere.

26. The base of a box is a rectangle with one side twice the other.

The top and front are to be made of oak, the remainder of pine. If

oak is twice as valuable as pine, find the most economical proportions.

27. A wall tent 12 x 16 ft. is to contain a given volume. Find the

most economical proportions. Ans. Height above eaves = 2 a/8 ft.

28. An oil can is made in the shape of a cylinder surmounted by a

cone. If the radius of the cone is three fourths of its height, find the

most economical proportions.

Ans. Altitude of cylinder = altitude of cone.

29. A cupboard 5 ft. high and having shelves 1 ft. apart is to be
made from a given amount of material. If a front, but no back,

is required, what shape gives the greatest amount of shelf room ?

Ans. Width =: twice depth.

30. A silo is made in the form of a cylinder, with a hemispherical

roof; there is a floor of the same thickness as the wall and roof.

Find the most economical shape. Ans. Diameter = total height.
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31. Solve Ex. 30 if the floor is twice as thick as the wall and roof.

Ans. Height of cylinder = diameter.

32. The cost of erecting an office building is $ 100,000 for the first

floor, $ 105,000 for the second, 1 110,000 for the third, etc. ; other ex-

penses (lot, plans, excavation, etc.) are $700,000. The net annual

income is 1 10,000 for each story. How high should the building be,

to return the maximum rate of interest on the investment?

. Ans. 17 stories.

35. Derived curves. The curves y z=zf'(^x)^ y =f"(x),

y =f^'^(jc)^ ... are called th.Q first., second., third., ... derived

curves^ corresponding
^ to the curve y =f(x)*

The relations be-

tween the given func-

tion and its first and

second derivatives,

which have been

formulated analytic-

ally in § 33, are well

brought out graphi-

cally by drawing the

original curve and its

first and second de-

rived curves. This

is shown in Fig. 15

for the curve

y =
X'^

x^

The work should be

arranged with the

several axes of ordi-

nates lying in the

same vertical line.

It often happens in practical work that a function is

defined in such a way— for instance by experimental data

Fig. 15
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— that no mathematical expression for it is known. If

then we wish to examine tlie behavior of one of the deriv-

atives, as is frequently the case, we plot the graph of the

original function from the given data, and construct the

required derived curve graphically. The process is ob-

vious. We can measure the slope at any point of the

original curve ; the number thus obtained is the ordinate

of the corresponding point on the first derived curve. In

this way as many points as desired may be plotted on the

first derived curve and a smooth curve drawn through

them, after which the second derived curve may be con-

structed in a similar way; etc.

EXERCISES

1. What can be said of the first derived curve

(a) in an interval where the original curve is < „ ,,. >?°
i falling J

(b) in an interval where the original curve is concave \
^

^ ?
[downward]

(c) at a point where the original curve has a < . . >?
[ minimum J

(d) at a point where the original curve has a point of inflection ?

2. What can be said of the second derived curve

(a) in an interval where the original curve is concave

J
upward | r,

\ downward j

(b) at a point where the original curve has a point of inflection?

(c) in an interval where the first derived curve is i ^^® I v

\ falling
J

*

(d) at a point where the first derived curve has a |
^^[^^cimum 1

i minimum J

'

3. What can be said of the original curve at a point where the

second derived curve touches the a:-axis without crossing it?

4. Plot the curve ij = x^ + x'^ and its first, second, and third

derived curves.

5. Plot the curve y = sin x, and construct the first derived curve.

What well-known curve does the latter resemble ?
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6. Draw a smooth curve, on a large scale, through the points

a- _4 _2 2 4 6 8 10 12 14 16 18 20 22 24

y 0-1-106 10 3 0-1-1-1 1 9 20 35

and construct the first and second derived curves.

7. The national debt of the United States at the indicated dates is

given in the accompanying table, the unit being $100,000,000. Con-

struct the curve showing the rate at which the debt has increased or

decreased.

Date

Debt

Date

Debt

1850

0.6

75
20.9

^55

0.4

'80

19.2

'60

0.6

'85

13.8

'61

0.9

'90

8.9

'62

5.0

'95

9.0

'63

11.1

'99

11.6

'64

17.1

1900

11.1

'68

24.8

I

'10

9.9 10.5

'65

26.8

'05

'70

23.3



CHAPTER V

DIFFERENTIATION OF TRANSCENDENTAL FUNCTIONS

I. Trigonometric and Inverse Trigonometric
Functions

36. Trigonometric functions. The student is already

familiar with the elementary properties of the trigono-

metric functions. They are one-valued and continuous for

all values of the argument a:, except that the tangent and

secant become infinite when a:=±(2?i + l) — , the co-

tangent and cosecant become infinite when x = ± wtt, where

n is a positive integer. The sine and cosine, and their re-

ciprocals, the cosecant and secant, are periodic with the

period 2 tt ^the tangent and cotangent are periodic with

the period tt.

y =. sin 9CX

Fig. 16

The properties just mentioned are well exhibited by the

graphs of the various functions. The graphs of the sine,

y = cos X
Fig. 17

cosine, and tangent are shown in Figs. 16-18 ; the student

should draw the graphs of the other functions.

45
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function by the general method

others can be obtained.

The derivative

is an important

aid in the fur-

ther study of

these functions.

Since all the func-

tions can be ex-

pressed in terms

of the sincj it will

be sufficient to

find the deriva-

tive of this one

from this result all the

37. Differentiation of sin x. The derivative of sin x

may be obtained directly from the definition of the deriva-

tive (§ 15). We have

y = sin X,

y + Ay = sin {x -\- Aa;),

A?/ = sin (x + A:r) — sin x^

t^y _ sin {x + A^;) — sin x

Ax Ax
Expanding sin (^x + Ax^ by the addition formula of trigo-

nometry, we get

Ay _ sin x cos Ax + cos x sin Ax — sin x

Ax Ax

By trigonometry,

so that

(1)

cos Aa: = 1 — 2 sin^ 1 Ax^

Ay _ cos X sin Ax — 2 sin x sin^ ^ Ax
Ax Ax

sin Ax . sin A- Ax . . .= cos X • — sin X ' —r-2 . sin ^ Ax.
Ax iAx
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It will be shown in the next article that

lim?i!l^=l.

Assuming this result for the moment, we see that

lim sin i AxT sin A:r -,

iim — = 1,
2

I Ax
= 1.

Ajr->0 Ax
Hence, passing to the limit in equation (1), we find

dy _ d

dx dx

In some applications, it is convenient to write this formula

in the form

sm X = cos X.

dx
sin X = sm x-\—

2

If u is any function of x^ it follows from formula (5) of

Chapter III that

du

or

(7)

d ' d .—- sin u = —~ sin u • -—

,

dx du dx

d . du .
, ,— sm z/ = cos w— = sin i/ +

TT\du

2Jdxdx dx

Example: Differentiate sin 5 x^.

By (7), with u = 5x^

—
• sin 5 a:^ = 10 a; cos 5 x^.

dx

38. Limit of sin a/a as a approaches 0. In the differen-

tiation of sin X we had to make use of the fact that

lim5iE^=l.
a-^0 a

This result may be obtained as follows.

Let P, Q be two points on a circle

such that the chord PQ subtends an

angle 2 a < tt. As a approaches 0,

the ratio of the chord to the arc

approaches unity :

a->o SLTcPQ Fig. 19
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But
chord PQ=2r sin oe,

and, if a is measured in radians,

arcP§ = 2ra.

Hence

T chord PO T 2 r sin « t sin a ^
lim —^ = iim = iim = 1;
a->.o arc PQ a->o 2 ra a->o a

When a is in degrees, the length of the arc is

arc PQ =2r ' a,^
180

and the formula for — sin x is much less simple than
dx

when radians are used (see Ex. 26, p. 50). For this

reason angles in the calculus are always measured in radians

unless the contrary is stated.

39. Differentiation of cosj:, tanjr, etc. The derivatives

of the other trigonometric functions can also be obtained

directly from the definition of the derivative, but they are

more easily found from (7).

To differentiate cos x^ we write

cos X = sm [ a; + —
],

d d ' (
,
nT\ f ,

TT— cos x =— sin [x -\- ~]= cos [x -{—
dx dx \ 2j V 2

= — sin X.

If u is any function of rr, we find by formula (5) of

Chapter III,

^o\ d . du f . 'TT\dU
(8) — cos w = — sin w — = cos M + - —
^ ^ dx dx \ 2jdx

The remaining trigonometric functions may be differen-

tiated by expressing them in terms of the sine and cosine.

The results are as follows :
'""^^-^

(1) — tan X = sec^ a;,

dx
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(2) — cot x = — cosec^ x^
dx

(3) — sec X = sec x tan x,
dx

(4) —- cosec x = — cosec x cot x.
dx

If u is aii}^ function of x, we find by formula (5) of

Chapter III,

(9) — tan u = sec^ u—

,

dx dx

d . n du— cot u = — cosec^ u—

,

dx dx

d . du—- sec u = sec u tan w—-,
dx dx

d , du—- cosec u = — cosec u cot u— •

dx dx

EXERCISES

1. Trace the curve // = sin x, finding maxima and minima and

points of inflection, and drawing the inflectional tangents.

2. Proceed as in Ex. 1 with the curves

(a) y = cos X
; j^ y = tan x

;
(c) y = sec x.

Differentiate the following functions.

3. (a) sin 2 x
; j^ cos -

;

j^) tan (tt + a:)
;

(d) X sec X
;

(e) a;^ cot a:; (^) (3 ^ + 1) cos 3 6;

(g) ^; (A) sin^o;; • (0 cos3 2^.

Ans. (h) —sin-; (K) 2 sin a; cos a-
; (/) — -6 cos^ 2 ^sin2 ^.

x^ X

4t. y = X tan 2 x + Vl + x'^.

I 4 X
5. ?/ = vl + sin a,-. * 6. ?/ = -; •

sm X

7. ?/ = cot^ 4 a:. vl ns. — 12 cot^ 4 a: cosec^ 4 x.

8. ?/ = sin3 3 e. 9. r ::= sec (2 ^ + 1).

Find ~ in the following cases.
dx

10. Q.O'&ly — .r- + 4. ,4rlr 3/ sin x = cos 2 x.

E
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12 y
sin 2 x 13. y ^ Vl + tan^x.

^ * "^ 1 + cos 2 a;

14. 3/2 ^ sin 2 X.
^5- 3/' -2/ = tan |-

16. If ^ = sin a;, find ?/",?/'",•••, 2^('*).

clx dP'x
17. If a; = cos a>/, find —-, ——-•

(1 X
18. If a: = ^ sin ^^ + 5 cos kt, show that —-r = — k'^x.

dt'^

19. Obtain each of the formulas (l)-(4), § 39.

20. From the trigonometric formula for sin {x + a), deduce by

differentiation the formula for cos (x + a).

21. Find the tangent and normal to the curve y = sin a: at x = — •

22. Find tangents to the curve y = tan x parallel to the line

^ = 2x4-5.

23. If /(x) = cos2 X, find/"(x),/'"(x), •••,/(")(a;).

d^y
24. If V = ^ sin X, find —^ •

^
dx^

d^x
25. If X = f cos kt, find ——- •

'

dfi

26. Show that if x is measured in degrees, the formula for the

derivative of sin x becomes

£sina; = j|5Cosx.

27. Differentiate cos x directly from the definition of the derivative.

Sill X
28. Writing tanx in the form tan x = , obtain the derivative

cos X

of tan X directly from the definition of the derivative.

29. Find the maximum rectangle inscribed in a circle, using trigo-

nometric functions.

30. Find the rectangle of maximum perimeter inscribed in a circle.

31. Find the right circular cylinder of maximum volume inscribed

in a sphere.

32. Find the largest right circular cone that can be inscribed in a

given sphere. Ans. V=^ira^.

33. A steel girder 30 ft. long is carried along a passage 10 ft. wide

and into a corridor at right angles to tlie passage. The thickness of

the girder being neglected, how wide must the corridor be in order

that the girder may go round the corner?
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34. A wall 8 ft. high is 27 ft. from a house. Find the length of

the shortest ladder that will reach the house when one end rests on

the ground outside the wall.

40. Inverse trigonometric functions. The symbol arc-

sin x^ or sin~i a;, denotes the angle ivliose sine is x:

y = arcsin x ii x= sin y.

That is, the function arcsin x is the inverse (§ 26) of the

function sin x. The graph of

1/ = arcsin x

is as shown in Fig. 20. It is of course the same as that

of sin a;, with the coordinate axes interchanged; i.e. it is

the reflection of the sine curve in the line i/ = x.

The functions i/ = arccosa;, ?/ = arctan2:, etc., are de-

fined in a similar way.

In §§ 41-42 we consider only the three principal func-

tions arcsin x, arccos x, arctan x. The other three func-

tions may be treated similarly.

41. Restriction to a single branch. The trigonometric

functions are one-valued : to a given value of the argu-

ment there corresponds one and but one value of the func-

tion. The inverse trigono-

metric functions, on the other

hand, are infinitely mani/- val-

ued : corresponding to a given

value of the variable there

are infinitely many values of

the function. Geometrically

this means that a line x = Xq,

if it meets the curve at all,

meets it in infinitely many
points ; the truth of this state-

ment is evident from a glance

at Figs. 20-22.

Following the rule of S 5,
7 ,, ,,

•^.
?/ = arcsin X

we snail confine our attention -pio '>o

-10
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y = arctan x

Fig. 22

to a single branch of each of these functions ; the branch

chosen is the one drawn full in each figure. Thus in our

future work the function arcsin x, for example, is restricted

to the interval

IT . . . TT— < arcsin x < — >

2= =2

This means that

arcsin (— 1) = IT

2'

IT
not -— ; etc. Similarly,

— < arctan x < —2= -2

therefore

arctan (— 1)= — — , arctan (— oo) = — —

etc.
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EXERCISES

\
In the following, the restrictions laid down in § 41 are assumed to

hold.

1. Find (a) arcsin |, (b) arcsin (— l), (c) arctan (— V.S), (d) arc-

tan oo, (e) arccos (— |), (/) arccos (-1).

2. Show that arcsin x + arcsin (— x) = 0.

3. Show that arccos x + arccos (— x)= tt.

4. Show that

(a) arccos x = - — arcsin x
;

Ch) arccot x = arctan x = arctan -

;

2 X

/ N 1 TT . 1
(c) arcsec x = arccos- = arcsm -

;

(a) arccosec x = arcsni -•
X

42. Differentiation of the inverse trigonometric functions.

To differentiate the function

?/ = arcsin a:,

let us pass to the direct form

sin y = X,

Differentiating by the rule for finding the derivative of an

implicit function (§ 25), we find

dii -,

cos y^ =1,
dx

dy ^ 1^ 1 ^ 1

dx cos^ Vl-sin2«/ VH^'

hence

or

d . 1
arcsin x =

dx ^i _ X-

It should be noticed that cos y is put equal to Vl — sin^ y

rather than — Vl — sin^ y. This is correct because, as

Fig. 20 shows, the slope of the curve y — arcsin x is posi-

tive at all points of the branch that we are considering.
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In a similar way we find

d -1
arccos x =

dx VI - a;2'

d , 1— arctan x —
r,

•

dx 1 + x^

By formula (5) of Chapter III we find that if u is any

function of a:,

du

rM\\ d dx
(10) — arcsin u —

dx Vl - 1/2

du

d dx
arccos w= —

dx Vl-i^2

da

(11) ^ arctan w = ^
dr 1 + 1/2

While in the above discussion we confine our attention

to a single branch of the function, it appears from Figs.

20-22 that if we know the slope at every point of one

branch, we can at once find the slope at every point of any

other branch.

EXERCISES

Find the derivatives of the following functions.

1. y = arcsin 2 x. 2.
1

?/ = arccos - •

^ X

3. y = arctan (1 + 2 a:). 4. y = arcsin Vx.

5. y = arccot (2 x + 5) 2.

8.

1
V = arccosec -— •

-^ 2x

7. s = t arcsin 3 t. p = Vl — arcsin v.

9. 2/ = (arcsin x) 2.

10. V- ^ 11.

Ans. 2 arcsin X

y = arctan i:

.

arctan x
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^2. 5 = Vl - 2t arccos V2T. 13. y = z arctan 4 r.

14. V = arcsin — •
Ans. - —-,

15. y = t"^ SLTcsin-- 16. y =
2 V arcsin 2 x

17. ?/ = arcsin x + arccos x. Explain the meaning of the result.

18. If y^ sin x + y = arctan x, find y'

.

19. Find tangents to the curve y = arctan x perpendicular to the

line 4 a: + 3/ = 0.

20. Obtain —• arccos x from the relation
dx

arccos x = arcsin x.
2

21. Show that

arctan x = arcsin

and obtain— arctan x from this fact.
dx

22. If 2/ = arcsin x, find ^-^, ^—^«
dx^ dx^

23. If ?/ = arctan x, find —^, —^

.

dx'^ dx^
24. Show that

d .
- 1 '

arccot x =

Vl + ;

rf 1— arcsec x

—

dx x^x'^ — 1

d ^ - 1— arccosec x =
dx xVx"^ - 1

25. Trace the curve y = arccot x.

26. Trace the curve y = arcsec x.

27. Trace the curve y = arccosec x.

- II. Exponential and Logarithmic Functions

43. Exponentials and logarithms. The number a"(a> 0)

is defined in algebra for all rational values of n. In the calcu-

lus it becomes necessary to attach a meaning to the function

?/ = a^ (a>0)
as X varies continuously.
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Let Xq be any given irrational number. It can be shown
that when x approaches Xq passing through rational values,

the function a-^ approaches a definite limit. This limit is

denoted by a^»

:

lim a^=^a-">.
X-^Xo

The function a-^ thus becomes defined for all values of x.

This function is one-valued and continuous, and obeys the

ordinary laws of exponents, viz.

:

(1) a^ ' a^ = ax+t

(«')' axt

The inverse of the exponential function is the logarithm^

defined by the statement that

y = \og„x '\{ x=^ dJf (a>l*).

This function is one-valued and^eonttnuous^for all positive

values of x. The number a is called the hase of the sys-

tem of logarithms.

The graph of the function

where g = 2.718..- (see §46), is shown in Fig. 23; the

graph of its inverse

y = log^a?

is shown in Fig. 24.

y = log X

Fig. 24

* The assumption a > 1 is introduced for simplicity ; this condition is

satisfied in all cases of practical importance.
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44. Properties of logarithms. For convenient reference

we recall the fundamental properties of logarithms :

( 1

)

log^a:// = log^x + log„?/,

(^) loga - = log«2: - log„^,

(3) logaX'' = it log„2;,

(4) log^a^ = X,

(5)
' a}''%''=x,

(6) log^a; = log^a; • log„^,

To prove (1), let

then we must show that

p = m -{- n.

Passing to the direct form, we have

x^ = a^, X = a"*, y = a",

so that

Hence, by (1) of § 43,

p z=z m + n.

Formulas (2) and (3) may be proved in a similar way.

Formula (4) is merely a restatement of the definition of

the logarithm ; formula (5) is the converse. To prove

(5), set

and take logarithms to the base a on each side

:

log^a: = log„^,

whence
t = X.

To prove (6), let m = log^a: and n = log^a; ; then .

x = a"^ — J".

If we take logarithms to the base a on each side of' the

equation
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it appears that

As a special case take x= a: the formula gives (7),

1
logft^ =

loga^

EXERCISES

1. Find X, if (a) log^^x = 2, (b) log^^x = - h (c) log^x = 4, (d)

logi„a;3= 4, (e) loga^; = 0, (/) \ogaX = 1.

2. Simplify (a) a^os^ (6) a'^'^ss^ (c) a^i^s^ (rf) aSiogx^ (•g) a'+iogx^

(/) «*"5^°^*, the logarithms being taken to the base a in each case.

Ans. (b) i.

3. Prove formulas (2) and (3) of § 44.

4. Show that negative numbers have no (real) logarithms,

5. Show that numbers between and 1 have negative logarithms

;

numbers greater than 1, positive logarithms.

6. Show that

lim logoa: = — oo .

7. Find the inverse of the function

a^ — a~*
y = •

a^ 4- a-^

8. For what two values of a: is a^ = (a*) ?

45. The derivative of the logarithm. To obtain the de-

rivative of the logarithm we proceed by the general method

of § 15 :

7/ = log„a:,

y + A?/ = log„(2; + Arc),

X -\- Ax
Ay = log„(2; + Ax) - \og^x = log„

by property (2) of § 44. Hence,

Ax Ax \ X J

X
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Let us multiply and divide by x and then make use of (3),

§44:

^ = l.flog/l +^
C^x X l\x \ X

=iiogii+^r.
X \ X J

Hence,

(1) f^ = lim ^ = 1 lim log/l +^f

(2) =- log„
X

Aa^V^
lim 1 +
Ax->0 V X J

It will appear in the next article that the limit

lim
(
1 4- - ) exists and is a number lying between 2 and 3.

This number is denoted by the letter e ; we shall find

later (Ex. 4, p. 230) that

e= lim Tl + -Y= 2.71828 •••.

n->-<x) \ 72/

X
Now, in the limit occurring in (1), let us put —- = n.

Since x is supposed to be different from 0, it follows that

when Ax approaches 0, n becomes infinite, and

Hence, assuming for the moment the existence of e, we
have from (2)

(3) ---log„2: = -log„e.
dx X

In case the base a ^f the system of logarithm? is the

number e, the numerical factor log^ e in formula (3) re-

duces to unity, and the formula takes a particularly simple

form. For that reason logarithms to the base e are used

almost exclusively in the calculus.
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Logarithms to the base e are called natural logarithms^ or

Napierian logarithms. In our future work the symbol log x^

in which no base is indicated, will be understood to mean

the natural logarithm of x. Thus we have from (3)

d , 1— log X = -'
dx X

By formula (5) of Chapter III, if u is any function of x,

du

(aj 1 ax 1

J- lOga U =— l0g„ e,

ax u
and

^-«N d . dx
(12) Si»g« = 17-

3xample : Find the slope of the curve

y = log Vl -\- '6 X

at the point (a:, y ).

Let us write y in the form

3/ = i^
log (1 -f 3 x\

Then

^ ~2 '

l + 3aj 2 + 62:*

46. The limit e. It will now be shown that the limit

limfl + iy^^

exists and that e is a number between 2 and 3. For the

sake of simplicity we shall prove this result only for the

case when n becomes infinite passing througli positive in-

tegral values, referring for the general proof to more

advanced texts.
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When n is a positive integer, we can expand the quantity

( 1 H- -
J
by the binomial theorem :

\ nj

V nJ

\nj 2 1 \nj 3

!

\nJ

n(n — 1^ • (n — 'n — 'i ) fVy
n ! \n

i_i ri-iYi-?
= 1 + 1+—— + -,

+
('-3-('-^)

As n increases the numb^i* of terms in the expansion in-

creases, and every term (except the first two) becomes

larger. Hence the quantity (1 + -) steadily increases

with n.

On the other hand, this quantity is always less than 3.

For, the 7^ -f- 1 terms in the expansion (1) are each less

than (or, for the first two terms, equal to) the correspond-

ing terms of the series

2 92 ' 2«-i

Remembering that, by elementary algebra, the sum of the

geometric progression (cf. § 7)

1+U4+-+ '

9 92 ' 9n-l

is 2
, we find

9n-l'

1 + ^Y < 3 - J- < 3.
n/ 2^-1
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We have now shown thatfl + -j steadily increases

with n^ but never becomes greater than 3. It follows by

theorem IV, § 8, that as n increases the quantity (1 + -)

approaches a limit e which is not greater than 3.

Since, in (1), the sum of the first two terms is 2 and the

succeeding terms are all positive, it follows that e > 2.

Hence e lies between 2 and 3.

As already stated, we shall see later that

e = 2.71828 ....

47. Differentiation of the exponential function. The de-

rivative of the exponential function «^ may be found as

follows.

If

y = a^,

then

(1) log„ y = x.

Differentiating (1) by the rule for implicit functions

(§ 25), we find ^
^

y ax

7 = z-^— = y loge a,
dx logo e

by (7), § 44 ; hence
d—- a^ = a^ logg a.
dx

For the case a = e, this formula becomes simply

dx

If w is a function of x^ we have

— a" = a" loge a '

dx dx

This formula, too, becomes simpler when a= e :

(13) -^6^* = ^**^".

dx dx
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EXERCISES

1. Show that common logarithms are transformed into natural

logarithms by the formula

log'io X = logio « • loge X

= 0.4343 logex.

2. Show that

logea; = 2.3026 l.ogiox.

3. By means of a table of common logarithms, show that

log2 = 0.693, log 3 = 1.099, log 5 = 1.609.

4. Using the results of Ex. 3, find log ^, log VS, log 6, log 0.1,

log ^9.

Find the derivatives of the following functions.

^5. y = log 2 X. 6. y = log(\ +2:2).

8.

10.

1
(l-xy

^-^"^1 + 2.-'7. y = log y/D — X.

9. ,.logV^. y = logio 2 X.

11. y = logio (X2 - 1). 12. y = log« a;2.

13. y = log sin x. 14. y = X log X.

15.
logx.

^ X
16. ?/ = (1 - x^) log a;.

17. y = log^ X. 18. ^ = log log x.

19. y = log log (1 - x). 20. y = e2x.

21. y = ex\ 22. y = xe-".

23. y = e'' log X. 24. y = 10-.

25. y = 2< 26. y = ee'.

27. r = eo^. 28. r = e^ cos 2 ^.

29. y = log cos 2 X. 30. ?/ = arcsin log x.

31. y = ecoss*^ 32. y = log

33. y = sin^ e". 34.

36.

tan ?

35. y = Vl + log X. y 3= arctan c*.

37. y=(il-e^r.
1
X-

38. y = log e^*.

39. liy = e - , find y.
40. If/ (6) = log log sin 2 (9, find /' (0) .
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(ly
41. Given log (^x + y)= x^ + y"^^ find —--

42. liy = log 2-, find ^/", t/'", •••, y(").

^ 43. li y = e% find ?/", y'", •-, ?/<^"^. .4ns. ?/(") = a"e°^.

44. Find the inverse of the function y = e^'°^.

45. Find the inverse of the function y = log cos 2 x.

46. Find the tangent and normal to the curve y = log x at

(a) y = 0; (b) y=-^] (c) x = e\

47. Show that the curve y =. e" has a constant subtangent. Hence

devise a simple geometric construction for drawing the tangent to

y — e'' dX any point.

48. Show how to draw the tangent to the curve y = log x.

49. Find the maximum and minimum points on the curve

y = X log X. Trace the curve.

50. Trace the curve y = e

51. li y = xe"", find y", y'", •••, ?/''\

52. Trace the curve y = xe^.

53. Find the equation of a tangent to the curve y =x log x parallel

to the line 3 x — 2y = 5.

64. In passing from (1) to (2), § 45, we make use of the principle

that

lim (log x) = log (lim x).

From which one of our assumptions concerning the logarithm does

this principle follow ?

48. Hyperbolic functions. A class of exponential func-

tions of frequent occurrence in some applications are

known as hyperbolic functions. They are denoted by' the

symbols sinh x (read hyperbolic sine of a;), cosh rr, and

tanh x^ and are defined as follows :

sinh X = ,
1-1

cosh x= ,

2

, 1
g^ — e~^ sinh X '

tanh X = =—
gx _j_ g X cosh X
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The reciprocals of these are cosech x^ sech x^ and coth x

respectively. Tables of hyperbolic functions have been

computed ; see, for example, Peirce's Short Table of In-

tegrals (Ginn and Co.).

The inverses of the hyperbolic functions are called anti-

Tiyperholie functions

:

y — sinli~^a; \i x=^ sinh ?/, etc.

The fundamental properties of the hyperbolic functions

are easily obtained from the definitions ; their derivation

is left to the student in the exercises below.

EXERCISES

1. Show that

cosh^ X — sinh- a; = 1,

1 — tanh^ X = sech^ x,

sinh 2 a; = 2 sinh x cosh x,

cosh 2 X = cosh- x -h sinh'^x.

2. Show that

—
- sinh X = cosh x, -z- cosh x — sinh x

ax fix

3. Show that

sinh-i X = log (a; + Vl + x-).

Fundamental Differentiation Formulas

(1) 1=0.

^«N tf , dv du
^ ^ dx dx dx

^«/x d dv

du dvy— — M—
/A\ d_u_ dx dx
^^^ dxv 7^ '
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^ ^ dxv~ v^dx'

^^ dx du' dx'

^ ^ dx dx'

du

(6') |^V^= -^,

(7) |sin.= cos.|.sin(.,-|)|,

(8) |cos. = -sin.|=cos(. + |)|,

(9) ^tanw=sec2z/^,
OAT dr

du

(10) ^ arcsin w = ^
fir Vl - 1/2

(11) -T-arctanw = = -^
^ ^ dx 1 + Z/2

du

(12)^log„=f,

(13) ^e^^e**^.

MISCELLANEOUS EXERCISES

Find the derivatives of the following functions.

1. sin3 -

.

2. log tan 3 x.

3. aretana:3. 4. (1 - xy-(2 x + Sy.

5. e'=°»=^. 6. Vl - c6t X.

7. X arcsin -- 8.
^

2 VI - a,-2

9. log^sin^. 10. arctan (1 - ^2).
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11. qos^2 X.

13. arcsin -

-- V3-4a:
10. •

17. log log cos X.

19. 22^.

21. X log Vl — X.

23. sin a: cos 2 x.

-.0 i

25.

xVx^ + 1

27.
(a: - 1)^

12
(3x2-4)2
x^+1

14. tan2(l - x).

X X

16.
€- —e ^

2

18. Cos2 (--x\
\4 1

20. Vsin x'^..

22. (e'' - 1)4.

24. arccos log x.

26.
2 2 3

(a3 _ j:^)2.

28
sin2 2 e

(1- cos 2^)2

30. logtan(| + |).

(a:2 + 3 a: + 3)^

29. log(e2x+ 1).

Find y' in the following cases.

31. sin (x + y) = cos (x - y). 32. e^^/ = a; -f ?/.

33. ^^ +^ = 3. 34. a:-?/ = tan(a:-?/).

35. Find ?/", if ay^ = x^ 36. Find y'", if a:2 - ?/2 ^ ^2.

Find the slope of each of the following curves at the point indicated.

37. (a: - 2/)2 = 3 a: + 4 ?/ - 14 at (2, 2).

38. y = log X at the point where y = — 2.

39. 3^ = e^ (a) at the point where y = 2
;

(b) at the point where

X = log 3.

40. arcsin a: + a;^ = 0, at the point a; = — 1.



CHAPTER VI

THE DIFFERENTIAL

49. Order of infinitesimals. We have found tliat in the

problem of differentiation the increments Ax and A?/ are in-

finitesimals, with Ax as the principal infinitesimal (§ 10).

An idea of fundamental importance in the study of in-

finitesimals is that of order. Let an infinitesimal v be de-

fined as a function of a principal infinitesimal u. If

where k=^0^ then u and v are said to be infinitesimal of

the same order ; if
—"-^^ - ».-'——^„ ..

lim !1 = 0,
«->o u

V is said to be of higher order than u. More precisely, if

a number n can be found such that

lim iL =. y^,

where A; =?^ 0, v is said to be infinitesimal of the n-th order

with respect to'u.

If u and V are of the same order, we may write

V = ku -\- eu^

where e is an infinitesimal. It is clear that when u ap-

proaches 0, the term eu approaches more rapidly than

does ku^ so that for small values of u the term ku is

numerically the larger. For this reason the term ku is

called the priyieipal part of v.

Example : When the side Z of a square increases by an

amount Al, the area increases by an amount

AA = {1 + Aiy- P =2lAl+ 'Af.

68
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If A^ approaches 0, AA does also.

The two infinitesimals are of the

same order, since

lim ^A = lim (2 I + Al) = 2 I.

^i-X) Al AZ->o

The principal part of AA is 2 lAl.

The figure illustrates the fact that

AA consists of a term of the first
Fig. 2o

and a term of the second order.

EXERCISES

1. What is the increase AV in the volume of a cube of edge / when

the side increases by an amount Al ? Show that if Al is infinitesimal,

•AFis infinitesimal of the same order, and find the principal^part^f

A V. Illustrate by a figure. Ans. A T'' =: 3 r^Al + 3 ZAI'^ + Al^-

2. Of the functions sin ^. sec 0, tan ^, 1 - cos ^, which are infini-

tesimal with respect to as the principal infinitesimal?

3. As the radius of a right circular cylinder of given altitude

approaches 0, the volume and the total surface do likewise. Show

that the volume is infinitesimal of higher order than the total surface.

4. Given a right circular cylinder and a right circular cone of the

same base and altitude, show that

(a) if the altitude is infinitesimal, the lateral surface of the cylin-

der is infinitesimal of a higher order than that of the cone;

(h) if the radius is infinitesimal, the lateral surfaces.of the cylinder

and cone are of the same order and (for small values of the radius)

the former is approximately twice the latter.

5. Is the sum of two infinitesimals itself infinitesimal? Is the

product? Is the quotient?

50. The differential. It follows from the above defini-

tion that Al/ and Ax are in general infinitesimals of the

same order. For, the limit of their ratio i^_^J/'^3'nd this

in general exists and.Js dii|erentJrom 0. Further, the

principal part of A^ is evidently y'Ax. It is easily seen

from Fig. 26 that the principal part of A?/ = QP' is QB,
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Fig. 26

the segment of A?/ cut off by the tangent at P. For, the

slope at P is

, _ QR _ QR
^ PQ Ax'

so that

QR = ^'Ax.

The principal part of Ay (the

length QR in Fig. 26) i% called

the differential'^ of y and is writ-

-X ten dy

:

dy = y'Ax.

Hence the increment Ay consists in general of the differ-

ential dy plus an infinitesimal of higher order. This is

illustrated by the example of § 49.

In particular, let y = a: ; then y' = 1, and

dy = dx = Ax ;

i.e. the differential of the independent variable is the incre-

ment of the variable. We may therefore write

dy^y'dx.

Thus the differential of any function is equal to its derivative

multiplied by the differential of the independent variable.

The derivative of ^ with respect to x may now be thought

of as a quotient — the differential of y divided by the

differential of x. This is the reason for using the symbol

-^ to denote the derivative. The symbol -^ may thus be
dx dx

considered as representing an actual division — the ratio

dy -i- dx. It must be kept clearly in mind, however, that

the derivative is a certain limit, viz.

^= lim ^.
dx A^-^-o Ax

If y = f (x)^ instead of writing

dx
* In case y' ^ 0. If y' = 0, then dii = 0.
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we may, and often do, write

dy=f'(x)dx.

Thus the fundamental formulas of differentiation are

often written in this so-called differential notation ; e.g.

d(x'^') = nx^~'^dx^ d(\og u) =— , etc.
u

Examples: (a) If ^ = sin 2 0, then

dy=2cos2edd,

(5) Find an approximate formula for the area of a

narrow circular ring.

The area of a circle of radius r is

A = 7rr2.

If the radius be increased by an amount Ar, the area is

increased by an amount AA whose principal part is

dA = 2 7rr dr.

Hence the area A^ of a narrow circular ring is approxi-

mately the product of the circumference * by the width w :

Af=2 irrw.

EXERCISES

Find the differential of each of the following functions.

1. (a) x2; (6) cos^; (c) ^^ _ i

;

(^) log a;;

(e) arcsm?/; (/) tan 2 a

;

{g) ^^—^; (^) sin2y.

Ans. (a) 2xdx\ (h) -sin 6 dO.

2. (a) (l-3a:2)2; (6) log (1 - cos2 ^) ;
(c) ue^;

(d) arctane'; (e) xVa-i-bx; (/) — •

Vx

vT
Z. y = x(l — x2)3. 4. y .

4: X

5. V = u sin2 u. Q. X = y log y.

7. y =—•
"

8. s = arcsin (1 — f).

* Either the inner or the outer circumference.
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ft cos 6 ^

-

. ,

9. r = —-^
— 10. y=e~'^^u\kx.

11. F = I irr^. 12. X = t sin aL

13. y =(1 + OL^) arctan «. 14. // = cos^2x.

15. Find the difference between dy and A?/, if ?/ = a:^. Draw the

figure.

16. Proceed as in Ex. 15 for the function y = x'^ — x'^.

17. If y = ^x, find A?/ and dy and show geometrically w^hy they

are equal.

18. If s = 16 /2 + 25 ^, find the difference between As and ds when
f = 12 and A« = .02.

19. Draw figures to show that dy may be equal to, greater than, or

less than A?/.

20. Show that the error committed in using the approximate

formula of example (6), § 50, is irw^. When r = 10 ft., what is the

greatest allowable value of ic if accuracy to within 5% is required?

Ans. About 1 ft.

21. If A is the area of a rectangle one of whose sides is twice the

other, draw a figure showing the difference between dA and A^
when the length of the side changes (cf. Fig. 25).

22. If V is the volume of a cube, draw a figure showing the differ-

ence between dV and AF when the length of the edge of the cube

changes.

23. Find an approximate formula for the volume of a thin cylin-

drical shell of thickness /. Ans. 2irrht.

24. Find an approximate formula for the volume of a thin spheri-

cal shell. What is the greatest allowable thickness for a radius of

5 ft. if accuracy to 1 % is required? Ans. About 0.6 in.

25. Find approximately the volume of wood required to make a

covered cubical box of edge 3 ft., using half-inch boards.

Ans. 2\ cu. ft.

26. Work Ex. 25 if the dimensions of the box are 6, 4, and 2 ft.

51. Parametric equations ; implicit functions. A curve

is frequently not determined by an equation between x

and y^ but by two equations giving x and y in terms of a

third variable, or parameter. These equations are called

parametric equations of the curve.
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For instance, the coordinates of a point moving in a

plane are functions of the time :

These two equations may be considered as parametric

equations of the path. Again, the equations of an ellipse

in terms of the eccentric angle
(f)

are

x= a cos
(f)^ ^ = b sin cf).

While it may be possible to eliminate the parameter,

thus obtaining the ordinary cartesian equation of the

curve, it is often more convenient not to do so.

When dealing with parametric equations, it is conven-

ient to use differentials in finding derivatives, particu-

larly the derivatives of higher order. The method is

illustrated by example (a) below.

Differentials can also be used conveniently in finding

derivatives when the relation between the variables is an

implicit one.

Examples : (a) Find —^ and —^ when
dx dx^

x=Zt^ y = t^ — ^.

We have

,_dgp = S dt^ dy = 2 t dt^ —^ = ^^

•

dx 3

To find —^, put (for convenience) -^=y'. Then
da^ dx

hence
dy' = I dt,

d^y _ dy' __ ^dt _ ^

dx^ dx Sdt ^'

(6) Find y' and y^' when x^ -^ y"^ = a^.

Differentiating both sides of the equation, we get

2 X dx + 2 y dy = 0, y' = — -;
y
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J ! _ y dx — X dy

dy x^— y + x-^ ~ y
yti ^§¥ ^ ^ ^ y_

dx y'^ y'^

_ — y*^ — x^ _ _a^-
^3 yZ

EXERCISES

Find -^ and —^ in the following cases.
dx dx^

1. (a) x=t'^, y = t -^] (b) x= fi + 1, y = t^',

(c) X = cos 2 0, y = sin 2 6 ;
(d) x = a cos^ 6, y = a sin^ 6

;

(e) X = e"^', ?/ = e« + 1

;

(/) a: = a (cos ^ + sin ^), y = a (sin ^ — ^ cos ^)

.

Ans. (a) ^ = -±-
^ ^ dx^ 4^3

2. (a) 2/2 = 4 ax; (b) x^ - y^ = 1 ;
(c) a:^ + y~^ = a^;

(^) xt + ?/^ = a^
;

(e) x-if = y^\ (/) x^ + ?/8 = 3 ^(a.^,.

. , . r/2y 4a2
Ans. (a) —^ = •

dx'^ 7/3

Find -^, using differentials.

3. 3x33/2 — x?/ + ^2 — ?/ — 5 = 0. 4. 7/ = cos (x - 2/).

6. e^'+y' = xy. 6. ^^^ + ?/2 = 5;
X + y

7. log V^MT' = X. Ans. ^ = ^' + y'-^

.

dx y

8. xy — x^y'^ -\- b y = 5. 9. x^ — 3 x^ + xy^ —2/2 = 0.
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CURVATURE

52. Differential of arc. Let s denote the length of the

arc of the plane curve

counted from some initial

point Pq up to the point

P : (x^ ^), and suppose for

detiniteness that s increases

as X increases. The arc s can

be regarded as a function of

ds
X. Its derivative — may be

found as follows :

Fig. 27

As

i^x

^__As_
^
Va2:' + A^As

pp i^x pp' ^x

where As is the length of the arc, PP the length of the

chord, from P : (x, y) to P' : (x + Aa:, y + A?/). Since, as

pointed out in § 38,

lim >«
,
= 1'

we have

(1)

Ax-^^PP

^ =3 lim f^ =
V'Hr

If s increases as x decreases, then

Ax \AxJ

75
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and

(2) ^=-Jl+(&f.
dx ^ \dxj

After squaring and clearing of fractions, equation (1)
(or (2)), becomes

i.e. ds is the hypotenuse of the right triangle whose sides

are dx and c?«/.

If the tangent to the curve at P makes an angle a with

OX^ then
dx . dy

cos a =— , sm a = -^ >

ds ds

53. Curvature. We say in ordinary language that a

curve whose direction changes rapidly has great curvature^

or is sharply curved. Thus a circular arc is said to have

greater curvature when the radius is small than when it is

large. This somewhat vague idea may be made precise as

follows.

Consider, first, two points P, P' on a circle, and denote

the arc PP' by As, the angle between the tangents at P,

P' by Aa. The quotient — is evidently the change in

the direction of the curve, per unit of arc* ; it is called the

curvature of the circle.

If now the curve in question is

not a circle, the direction of the

curve no longer changes uniformly,

and the quotient — represents
As

Fig. 28 merely the average curvature of the

arc As. But if P' be made to ap-

proach P along the curve, so that As and Aa approach 0,

the quantity — in general approaches a limit — , which

* It is easily seen that, in the case of the circle, this quotient is constant.
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is called the curvature at the point P

:

K= lim Aa^rfa^
As-^o As ds

The definition is of course independent of the particular

coordinate system used ; the angle a is the angle made by

the tangent at P with a7i7/ fixed line in the plane of the

curve. When the equation of the curve is given in car-

tesian coordinates, it is convenient to take a as the slope-

angle of the tangent— i.e. the angle between the tangent

and the a:-axis. The curvature fc is then easily expressed

in terms of the coordinates. For,

tan a = —^ = ?/',

ax

da

a = arctan y',

Also, by § 52,

Hence

(1)

ds = Vl -f y'^ dx.

da y"

ds (1 + y'2y

It is customary to consider fc as essentially positive, so

that, strictly speaking, we should write

K = da 1-'^

ds (1 + y'^y

where the symbol
|

a
\

means the absolute or numerical

value of a.

It should be noted that when ^' = 0, formula (1) re-

duces to

fC=l/"

Thus the value of the second derivative at any point is

equal to the curvature at that point when the coordinate

axes are so chosen that the first derivative is 0.
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54. Radius of curvature. The reciprocal of the curva-

ture is called the radius of curvature^ and is denoted by p :

_l _ds (1+ y'^y
^

^~K~da~ y^
*

This quantity is also to be considered as essentially

positive.

If a length equal to the radius of curvature p at the

point P be laid off on the normal from P toward the con-

cave side of the curve,

the extremity Q of this

segment is called the

center of curvature. It

can be shown that the

circle with radius p and

center Q represents the

curve near P more

closely than any other

circle. This circle is

called the osculating cir-

cle., or circle ofcurvature.

In general, the circle

of curvature crosses the curve at P, as is the case in

Fig. 29.

EXERCISES

1. Show that the curvature of a straight line is everywhere 0.

2. Show that the radius of curvature of a circle is the radius of

the circle.

Find the radius of curvature of the following curves.

3. y = x'^ (a) at any point
;

(b) at the vertex.

4. y'^ = 4: ax.

Fig. 29

4a2

5. The equilateral hyperbola 2 xy = a^ at (a, I a).

6. y = x^ + 5 x^+ Qx at (0, 0).

Ans. fVSa.

Ans. 22.51.

7. The ellipse ^4-^=1
a^ b^

(aV + Mx^)
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8. The hyperbola ^ - ^ = 1.

1

9. The hypocycloid a:^ + ?/^ = a^. Ans. ^(axy)^.

10. The ellipse x = a cos cf), y = b sin <^.

11. The curve x = t'^, y — \ — t^.

12. The curve x = ^t\ y = iM - t^. Ans. |(1 + t'^)'^.

13. The catenary y = ^\e'' -i- e V at the point (0, a). Ans. a.

14. Show that the curvature at a point of inflection is 0.

16. Find the point of maximum curvature on the curve y = e'.

Ans. (-0.347,0.707).

16. At what points of the curve y = x^ \s the curvature greatest?

17. Plot the parabola a:^ = 4 y accurately, on a large scale, in the

interval from a; = — | to a; = f , and draw the osculating circles at the

points a: = 0, X = I, a; = 1.



CHAPTER VIII

APPLICATIONS OF THE DERIVATIVE IN MECHANICS

55. Velocity and acceleration in rectilinear motion. If a

point P moving in a straight line describes equal spaces

in equal times, its motion is said to be uniform. Its dis-

tance X from the starting point is evidently proportional

to the time :

X = v^t.

The constant factor v^ is called the velocity of the moving

point ; it is equal to the space passed over per unit time.

If the motion is not uniform, we introduce the idea of

velocity at a jpoint or instant. Suppose that a distance ^x
including the point P is described

O P in time M : then the quotient —
Fig. 30 ^'

.
-; -

IS the average velocity during that

interval of time. If now A^ approaches in such a way that

P always remains in Aa:, the quotient —- approaches a limit

which is called the velocity at the point P. This limit is

of course the derivative of x with respect to t :

y^ lim ^^dx

Thus the velocity is the time-rate of change of space

described (cf. § 6).

The rate of change of the velocity is called the

acceleration

:

j=~
dt

80

d'^x

dt^
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If the acceleration y is constant, the motion is said to be

nn'^ormly accelerated. An important case of uniformly

ac^celerated motion is that of a body falling toward the

earth from a point near the earth's surface, all resistances

being neglected. The attraction of the earth gives the

body an acceleration ^, called the acceleration of gravity^

equal to 32 ft. per second per second'approximately.

Tn any problem, it is instructive to draw the graphs of

^ V;j^ and^^^as functions of
^^^^

In doing this, it should be

remembered that the graph of v is the first derived curve

(§35), the graph ofy is the second derived curve, cor-

responding to the graph of x.

EXERCISES *

1. A stone is thrown upward with a velocity of 64 ft. per second.

The distance from the starting point at the time t (in seconds) is

y = 16 r^ - 64 U

the positive sense being downward. Find the velocity and the

acceleration. How high will the stone rise and for how long a time ?

Where is the stone and what is its velocity after 5 seconds of motion?

What distance is covered in the sixth second V

2. In Ex. 1, draw the graphs of _?/, i\ and /.

3. A particle slides down an inclined plane. The distance from

the starting point at any time t is

a— 4 f2 _ 20 t.

Discuss the motion.

4. A point moves according to the law a; = 5 cos 2 t. Discuss the

motion. Draw the graphs of x, \\ and j.

5. A point moves according to the law ^ = 32 (1 — e-*). Discuss

the motion.

6. A point moves according to the law x — log (1 + 2 t). Discuss

the motion. Draw the graphs of x, i\ and/.

7. A point moves according to the law x — e~' sin 2 t. Discuss the

motion.

* The types of motion considered here will be discussed more in detail

in Chapter XXVII.
G
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8. The positions of a point at the ends of successive seconds are

observed as follows

:

t\0 1 3 4 5 6 7

X\0 -1 -A 32
'3

Fig. 31

-1 I 4 7

Draw the graphs of v and J, and find an approximate expression for

V andy in terms of t. ,

'

9fi^ Vectors. A right line segment of definite length,

direction, and sense is called a vector. Vectors are of great

importance in physics because they can be used to repre-

sent velocities, accelerations, forces, and other fundamental

quantities.

The resultant of two vectors AB, ^C^ is the diagonal

AD of the parallelogram having AB, AC SiS adjacent sides.

Two forces acting on the same par-

ticle are equivalent to a single force,

their resultant ; similarly for other

vectors. This is the parallelogram

law. The operation of finding the

resultant by the parallelogram law is called geometric

addition.

The original vectors AB, AC are called components of

AD. It is evident that any vector may be resolved into

cetpappnents in an infinite number of ways.

sV'i., Velocity in curvilinear motion. If a moving point

describes a plane curve, its coordinates are functions of

the time :

x=<j>{t), 7/ = ylr(t).

The distance s passed over along the

curve is also a function of the time.

The velocity at any point P is

defined as the vector, laid off on

the tangent to the path from P, of

magnitude

y^ lim As^Js
At^O ^f fit

Fig. 32
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^'\

The components of the velocity parallel to the coordi-

nate axes are

Vj. = v cos a, Vy= V sin a,

where a is the angle between OJTand the tangent at P.

By § 52,

ds dx dx • ds dv dy
V cos « = — • — =— , V sin a = — • -^ = -^

,

dt ds dt dt ds dt

so that ,

dx dy

dt ^ dt

Thus the rectangular components of the velocity of P
are the velocities of the projections P^ and Py of P on

the coordinate axes.

By § ^Q^ the total velocity v is

inclined to the ic-axis at an angle

V *

a = arctan -^ •

The equations

a: = </)(0, y = ir(t)

may be regarded as parametric equations (§ 51) of the

path in terms of the parameter t. The cartesian equation

may be obtained by eliminating the parameter.

58, Rotation. If a point moves in

a circle at a uniform rate, so that

equal angles are swept out in equal

times, the angle 6 swept out by the

radius vector in the time t is

6 = od^t.

The constant w^ is called the angular Fig. 33

velocity.

If the motion is not uniform, we are led as in § 55 to

define the angular velocity at a particular instant as

CD = .

dt
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Since ds = r dO, where r is the radius of the circle, it

follows that the linear velocity v = — and the angular

velocity co are connected by the relation

V = cor.

The rate of change of the angular velocity is called the

angular acceleration^ and is denoted by a :

dt df

'

EXERCISES

1. A man can row a boat 5 mi. per hour. Tf he pulls at right

angles to the course of a river 2 mi. wide having a current of 3 mi.

per hour, where and when will he reach the opposite shore ?

2. In Ex. 1, if the man wishes to land directly opposite his start-

ing point, in what direction must he row and how long will it take

him to cross? ^ns. 30 min.

3. A steamship is moving at the rate of 12 mi. per hour. A man
walks across the deck at right angles to the ship's course, at the rate

of 5 mi. per hour. If the deck is 40 ft. wide, how far is he finally

from his starting point ?

4. If a point moves so that

X = a cos t, y = a sin t,

find the total velocity in magnitude and direction at the time t.

What is the path described ?

5. Find the path and discuss the motion of a point whose co-

ordinates are

x = 3t, y = t — 7.

6. The equations of the path of a moving body in terms of the

time are

x = 20t, y = 16 fi.

Find the position of the body, its distance from the starting point,

and the magnitude and direction of the velocity when t = 2.

7. A flywheel 2 ft. in diameter makes 100 revolutions per minute.

Find its angular velocity in radians per second, and the linear velocity

of a point on the rim. What constant angular retardation (negative

acceleration) would bring it to rest in 10 seconds?
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8. A point moves in a circle in such a way that

^ = 4 f2 _ 3 ^

Find (u and a, and draw the graphs of 0, w, and a as functions of t.

9. Find the angular velocity in Ex. 4.

10. In Ex. 8, find Vj. and Vy when t = 1 if the radius of the circle is

10 ft. Ans. v^ = - 42.1, Vy = 27.0 ft. per sec.

59. Acceleration in curvilinear motion. Suppose the

velocity of the moving point P at the time t is v, at the

time t -\- At is v' = V + Av^ where Av is the vector which,

geometrically added

to V, produces 1)'. If

V and v' be laid off

from a common ori-

gin 0, the third sideW of the triangle

(Fig. 35) is evi-

dently Av. Now as

A^ approaches 0, Av
does likewise ; but Fig. 34

in general the ratio

Av
approaches a definite limit, and the direction of Av ap-

proaches a definite limiting

direction.

The vector of length

Av
J lim

A<->0 A^

laid off in the limiting direc-

tion of Av, is called the ac-

celeration ofP at the time t.

It is the so-called geometric

derivative^ or vector deriva-

tive, of v with respect to t.

To find an expression for j in terms of the coordinates

of P, we may resolve j into components jj. and jy parallel
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to the coordinate axes. Denoting by <^' the angle between

Av and the 2;-axis, let us project the triangle OFF' on OX :

Av cos </)' = vj — Vj. = AVj..

Dividing by Af, we get

Av ,, Av^— cos (p' =—-.

At ^ At

whence, in the limit when A^ approaches 0,

where <^, the limiting value of </>', is the angle between j
and the a:-axis. Similarly

. . . dv^ d?x
1 sin <h = —^ = -—.
-^ ^ dt dt^

Thus

7«=:
dV:,

dt

d^
dt^'

*'''
dt df

'

The total acceleration j is

inclined to the a^-axis at an angle

<f)
= arctan*^.

Jx

It is often more conven-

ient to resolve j into

components j^ and j^ along

the tangent and the nor-

mal to the curve at JP.

These components can be

found directly from the

definition of J ; for vari-

ety, liowever, we will find

them by projecting the components j^ and jy on the

tangent and normal.

Fig. 37
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If the tangent at P makes an angle a with the 2;-axis,

then

jt = jx cos a + jy sin a

_ dv^ dx dVy dy

dt ds dt ds

dv^ dx dVy dy

dt dt dt dt

ds

dt

dv_ dVy

^ dt ^ ' dt

V

But, differentiating the equation

with respect to ^, we find

»

dv

dt~

o dv.
, o dVy dv^

,
dv^

2V«>,2 + t,„2 V

Hence,
. dv

Again.
)

Jn = Jv COS a - j^ sin a

_ dVy dx dv^ dy

dt ds dt ds

By § 54, the radius of curvature of the path is

ds

P=da'
so that

p\dt da dt daJ
1 f dVy dv^

p\ ^ da ^ da

Now, differentiating both sides of the equation (§ 57)

a = arctan -^
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with respect to a, we find

dv„ dv

1

1 =
V

1 da da

so that

Hence,

V 2

dv^ dv^
V — V

da da

dv^ dv^ n
V — V —- = v^.

da aa

i;2

Jn —
P

Thus the acceleration j is equal to — 07dy in the case of

rectilinear motion; in curvilinear motion — represents
dt

the tangential component oi the acceleration.

EXERCISES

1. In Ex. 4, p. 84, find y^, y^, y^, y„. Find y, (a) as the resultant

of /j. andy^^, (&) as the resultant oi jt andy,i.

2. In Ex. 6, p. 84, find the total acceleration in magnitude and

direction when t = 2.

3. Show that in uniform circular motion the acceleration is

directed toward the center and -is proportional to the radius of the

circle.

4. In Ex. 8, p. 85, find ji and y„, if the radius of the circle is

10 ft.

5. A point describes the parabola ^/^ = 4 x with a constant velocity

of 6 ft. per second. Find v^, Vy, j\, andy^ at the point (1, 2).

/ 60. Time-rates. The question of determining time-

rates arises in a variety of problems beside those that have

been considered.

If in any problem the quantity whose rate gf cjiange is

to be found can be expressed directry as a function of

the time, the result can of course be obtained at once by
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differentiating with respect to the time. Frequently,

however, the problem is solved by expressing the quantity

in question Jii tgiuns of anotlier quantity whose rate of

change is known, and then differentiating the equation

connecting them. The methodTis best explained by an

JExample : Water is flowing into a conical reservoir

20 ft. deep and 10 ft. across the top, at the rate of 15 cu.

ft. per minute. Find how fast the surface is rising when
the water is 8 ft. deep.

' The volume of water is

r= i irr^h.

By similar triangles.

r 5

A~20'
*" v-

Hence

7rA3

48'

dV='^}Uh,
16

dV irh^dh

dt 16 dt

But we have given that

^^=15,
dt

so that

ttA^ dh _^r dh

16 dt~ ' dt

240

7rA2

When A = 8,

dh 15 , -i f\ £j^=— = 1.19 ft. per minute.
dt 4:77

^

EXERCISE

1. Water is flowing into a cylindrical tank of radius 5 ft. at the^

rate of 20 gallons per second. Find how fast the surface is rising.

2. In the example of § 60, find how fast the water is flowing in

if, when the water is 5 ft. deep, the surface is rising 2 ft. per minute.
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3. Water is flowing into an inverted conical tank 32 ft. deep

and 12 ft. across at the bottom, at the rate of 4 cu. ft. per second.

How fast is the surface rising ?

4. Two trains start from the same point at the same time, one

going due east at the rate of 40 mi. per hour, the other north 60 mi.

per hour. At what rate do they separate ? A7is. 72.1 mi. per hour.

5. Two railroad tracks intersect at right angles. At noon there

is a train on each track approaching the crossing at 40 mi. per hour,

one being 100 mi., the other 200 mi. distant. Find (a) how fast

they are approaching each other, (b) when they will be the nearest

together, and (c) what will be their minimum distance apart.

Ans. (b) 3 : 4.5 p.m.
;
(c) 70.7 mi.

6. A ladder 20 ft. long leans against a vertical wall. If the

lower end is being moved away from the wall at the rate of 2 ft. per

second, how fast is the top descending when the lower end is 12 ft.

from the wall ?

7. A man 6 ft. tall walks away from a lamp-post 10 ft. high at the

rate of 4 mi. per hour, (a) How fast is the further end of his shadow
moving? (b) How fast is the shadow lengthening?

8. A man on a wharf 20 ft. above the water pulls in a rope, to

which a boat is attached, at the rate of 4 ft. per second. At what

rate is the boat approaching the shore when there is 25 ft. of rope

out?

9. A kite is 120 ft. high, with 130 ft. of cord out. If the kite

moves horizontally 4 mi. per hour directly away from the boy flying

it, how fast is the cord being paid out ?

10. A stone dropped into a pond sends out a series of concentric

ripples. If the radius of the outer ripple increases steadily at the

rate of 6 ft. per second, how fast is the disturbed area increasing at

the end of 2 seconds? Ans. 452 sq. ft. per sec.

11. The path traced by a moving point is the parabola y = x^

+ 2x4-3. If y^ = 3 ft. per second, find Vj^ and the total velocity v.

Ans. Uj, = 6 a: + 6.

12. A point moves on the hyperbola x^ — y^ = 144 with v^ = 15 ft.

per second. Find v at the point (13, 5).

-f» 13. As a man walks across a bridge at the rate of 5 ft. per second,

a boat passes directly beneath him at 10 ft. per second. If the bridge

is 30 ft. above the water, how fast are the man and the boat separat-

ing 3 seconds later? Ans. 8i ft. per sec
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14. A light is placed on the ground 30 ft. from a building. A
man 6 ft. tall walks from the light toward the building, at the rate of

5 ft. per second. Find the rate at which his shadow on the wall is

shortening when he is 15 ft. from the building. Ans. 4 ft. per sec.

-15. Solve Ex. 14 if the light is 8 ft. above the ground.

16. An elevated train on a track 30 ft. above the ground crosses a

street at the rate of 20 ft. per second, at the instant that an auto-

mobile, approaching at the rate of 30 ft. per second, is 40 ft. up the

street. Find how fast the train and the automobile are separating

2 seconds later.

17. In Ex. 16, find when the train and the automobile are nearest

together. Ans. ^f sec.

18. A light stands 60 ft. from a building. A man walks along a

path 20 ft. from the building, at the rate of 5 ft. per second. How
fast does his shadow move on the building?

19. An arc light hangs at a height of 30 ft. above the center of a

street 60 ft. wide. A man 6 ft. tall walks along the sidewalk at the

rate of 4 ft. per second. How fast is his shadow lengthening when

he is 40 ft. up the street? Ajis. 0.8 ft. per sec.

20. In Ex. 19, how fast is the tip of the shadow moving?

21. A light stands 30 ft. from a house, and 20 ft. from the path

leading from the house to the street. A man walks along the path at

5 ft. per second. How fast does his shadow move on the waU when
he is 20 ft. from the house ?
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CHAPTER IX

CURVE TRACING IN CARTESIAN COORDINATES

I. Algebraic Curves

61. Introduction. In Chapter IV we learned how to

trace simple curves whose equations are given in the ex-

plicit form

and for which y, y\ and ^" are one-valued and continuous.

In the present chapter we shall attempt a more general

treatment of the subject of curve tracing.

In §§ 62-67 we confine our attention to algebraic curves

— i.e. curves for which the ordinate y is an algebraic func-

tion of X.

62. Singular points. If y is defined implicitly as a

function of x by the equation

F(x, y) = 0,

the derivative in general takes the form of a fraction

whose numerator and denominator are functions of both

X and y : say

, ^ A(x, y)
^ Bix, y)

If A(x., y') and B(x^ y^ both vanish at the point P : (x^ y)
on the curve, tlie slope at that point assumes the inde-

terminate form -. A point at which the derivative takes

the form - is called a singular point.

To find the singular points of a curve we must therefore
j

92
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find the values of x and y that satisf}^ the three equations

Fix, y) = 0,

A(x, y)=0,
B(x, y)=0.

As we have but two unknowns x and y to satisfy three

equations, it appears that a curve will have singular

points only under certain conditions.

It will be sufficient to consider an algebraic curve

having a singular point at the origin. If a singularity

occurs at any other point (A, ^), the origin may be trans-

ferred to that point by the substitutions

X = x^ -\- h^

y = y^ + k.

63. Determination of tangents by inspection. Let the

equation of the curve be written in the form

F(ix, y)= Uq +V + ^1^+ V^ + V^ + (^2^+ ••• + ^n^"= ^

Differentiating, we find

{bQ-\-2cQX-{- c^y + •..)c?2: + (^i + c^x -\- 2c\^y -i, )dy = 0,

dy^_ 6q+ 2cqX + ^1^ + '"

dx 5j + c-^x + 2 c^y + '"

The origin is on the curve only if a^ = 0. In that case

the equation of the tangent at (0, 0) is found by the

usual method (§ 27) to be

h^x + h^y = 0,

provided b^ and b^ are not both ; i.e. the equation of the

tangent at tlie origin may be found by simply equating to

the group of terms of the first degree.

In case a^, 6^ and b-^ are all 0, the origin is on the curve

and the derivative is indeterminate at that point; hence the

origin is a singular point. In this case the equation of

the curve evidently contains no terms of lower degree

than the second.
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For convenience let us put^

= ^2(^ - m^x)iy -m^x).

Then

The abscissas of the points of intersection of the line

y = mx

with this curve are given by the equation

Two roots of this equation are : every line y = mx inter-

sects the curve in two coincident points at the origin.

But the above equation in x also shows that if we let m
approach either m^ or ^2, the coefficient of oc^ approaches ;

i.e. a third point of intersection of the curve with the line

y = mx approaches the origin, and the lines

y = m^x^ y = m^
are both tangent to the curve at the singular point. These

lines may of course be real and distinct, real and coincident,

or imaginary.

Since

H^y - ^1^) (y - ^2^) =v^ + H^y + ^2^^

we see that the equations of the two tangents are obtained

by equating the second degree terms to 0, and factoring the

left member of the resulting equation.

The argument we have used can be extended to show
that if F{x^ ?/) has no terms of degree lower than the A;th,

any line through the origin meets the curve there in k

points, and the k tangents to the curve at the origin are

obtained by equating the group of terms of lowest degree

to 0.

* The argument is readily modified to take care of the case c^ — 0.
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64. Kinds of singular points. A point at which there

are two tangents (whether distinct, coincident, or imagi-

nary) is called a double point; one at which there are

three tangents is a triple point ; etc. It follows from § 63

that the origin is a double point if the equation F(x^ y) =
has terms of the second, but none of lower, degree; a triple

point if the equation has terms of the third but none of

lower degree ; etc.

If the tangents at a double point

are real and different, the point is

called a node : two branches of the

curve cross each other, as in Fisf. 39.
Ti- ^1 . . . , Fig. 39
It the tangents are imaginary, the

point is called an isolated or conjugate point : there are no

other points of the curve in its vicinity. Such a point is

F in Fig. 40.

If the tangents are real and coincident,

there are several possibilities. The simplest

singularity in this case is the cusp of the

first kind : two branches of the curve touch

each other, coming up on opposite sides of

Fig. 40 ' ^^6 cuspidal tangent, as in Fig. 41. At a

cusp of the second kind the two branches lie

on the same side of the tangent, as in Fig. 42. Fre-

quently the point is a double cusp^ or point of osculation,

Fig. 41 Fig. 42 Fig. 43

the commonest form of which is shown in Fig. 43. And
in some cases the point may be an isolated point.
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Example : Examine the curve y^ = 7? — x^ for singular

points.

Since there are no terms of lower than the second degree,

the curve has a singular point at the origin. The tangents

at that point are given by the equation

'if' = — 7?'
\

i.e. they are the lines

y = ix,

y — — ix.

These lines are imaginary, and the origin is an isolated

point.

There are no other singular points. For,

, Zx^ — ^x

and the coordinates of the singular point must satisfy the

three equations

Sx^-2x = 0,

2y = 0,

y^ z= a^ — x^.

The first two equations are satisfied by the coordinates

(0, 0), (|, 0), but the second pair do not satisfy the last

equation. (See also Ex. 20 below.)

EXERCISES

Show that the origin is a singular point for each of the following

curves, write the equations of the tangents there, and determine the

nature of the singularity.

1. The folium x^ + ^^ _ 3 f^j.^^ ^^^j Xode.

2. x'^y^ = a^(x'^ +11'^)-

3. y x+ y

4. The eissoid ?/ — ^^j^. Cusp of the first kind.
2 a — x

6. y^ =2 ax'^ — x^.

6. y^{x^ + y-) = a^x'^. Ans. Double cus]).

7. y\x- — a^) = x^. Ans. Isolated point.
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8. {y — x^Y = x^. Ans. Cusp of the second kind.

9. y'^ = x^ + x^.

10. x^ — xy'^ = y^. Ans. Triple point.

11. The leniniseate Qx~ -\-y^)'^z= a^(x^ — y^).

12. Show that the conchoid x^y'^ = (a + yy~(b'^ — y"^) has a node at

(0, - a) iib>a.

13. Show that the curve a(y — xy-=(x — ay has a cusp at (a, a).

Find the singular points of the following curves.

14. if =x(x - ly.

15. 2/2 ^ a:(2 x +1)2.

16. y^ = x(x^ — !)• ^^5- None.

17. ay^ = x\x - ay. Ans. Cusps at (0, 0), (a, 0).

18. y^ + y^= (x^ - 1)2.

19. xy^ + x^y = a^.

20. Prove that a cubic curve cannot have more than one singular

point.

21. Prove that the graph of a one-valued algebraic function

cannot have any singular points.

65, Asymptotes. As the point of contact of a tangent

to a curve recedes indefinitelj;.^from the origin, the tan-

gent may or may not approach a limiting position. If it

does, the line approached is called an asymptote.

For example, the hyperbola

has the lines

a

as asymptotes. On the other hand, the parabola has no

asymptotes, since as the point of tangency recedes the

tangent does not approach any limiting position.

Although general methods for finding asymptotes exist,

they are frequently difficult to apply. The following

.tests are sufficient in ordinary cases.



98 CALCULUS

(a) To find the conditions that must be satisfied in or-

der that the line

y — mx 4- k

shall be an asymptote to the algebraic curve

(1) F{x, y) = a^x^ -}- a^x'^-'^y + ... +«„?/» + h^^-'^

+ V"~^«/+ ••• = ^'

let us substitute mx + k for y in the equation of the curve.

This gives an equation of the nth. degree in x whose roots

are the abscissas of the n (real or imaginary) points of in-

tersection of the line with the curve.

It is shown in algebra that one root of the equation

A^x"" + A^x""-^ -f ^2^"~^ + . .
. H- J.^ =

becomes infinite if Aq approaches ; two roots become in-

finite if both Aq and A^ approach ; etc. Hence if we
equate to the coefficients of x^ and 2;"~\ we shall in gen-

eral determine values of m and k such that the line

y = mx + k

will intersect the curve in two infinitely distant points.

Such a line is in general an asymptote. Of course if the

coefficients of x"^ and x^~^ cannot both vanish, there are no

asymptotes (except such as may be given by (6) below).

Example : («) Find the asymptotes of the hyperbola

x^-y'^-2x-2y-[-l==0.

Substituting y = mx -f-A:, we get

x^ - (mx + k)^- 2x - 2(mx + A:) -|- 1 = 0,

or

(1 - m2)2:2H-(- 2mk-2m-2^x+ ... = 0.

Equating to the coefficients of the two highest powers of

a;, we find

1 - w2 = 0,

Whence
w = 1, ^ = — 2,

m = — 1, A; = 0,
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Fig. 44

and the asymptotes are

y = x-2,

y = -x.

The curve is shown in Fig. 44.

(5) Asymptotes parallel to the

?/-axis are not given by test (a),

since their equations cannot be writ-

ten in the slope form.

Let us arrange the equation of the curve in descending

powers of y:

F{x, y) = a^- + (a^x + ;5i)?/-i

+ (a^x^ + ^^x + 72)r"^ + ... =0.

If the term in y^ is present, every value of x gives n finite

(real or imaginary) values of ?/, and no line x= k can in-

tersect the curve in infinitely distant points. But if

a^ = 0, then every line x = k intersects the curve in one

infinitely distant point. If now the coefficient of y'^~^

involves x (i.e. if a^ ^ 0), that coefficient equated to

gives us the equation of a line parallel to the ?/-axis

which intersects the curve in tivo infinitely distant points,

and is an asymptote.

This result can be extended to the case when the co-

efficient of the highest power of ?/ is a polynomial of higher

degree in x. By equating this polynomial to we find

an asymptote parallel to 01^ corresponding to each real

linear factor of the polynomial.

Similarly, asymptotes parallel to OX may be found by

equating to the coefficient of the highest power of x.

Such asymptotes are detected in general by test (a), but

it may be easier to find them by the present method.

Example : (5) Test the curve (x^ — V)y'^ = 2^ for

•asymptotes.

Equating to the coefficient of the highest power of ?/,
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we find the lines

x^ — 1 = 0, i.e. X — ±\

as asymptotes parallel to OY. The coefficient of the

highest power of x cannot be equated to 0, so there are no

asymptotes parallel to OX.

To test for asymptotes oblique to the axes, put y =mx+ k :

{x^ — V){if)^7p' -f 2 mhx + A;2) = 7?.

Equating to the coefficients of the two highest powers of

x^ we find

m^ = 0,

2 mk — 1.

These equations are incompatible ; hence there are no

oblique asymptotes.

EXERCISES

Test the following curves for asymptotes

.

1. xy -\- X = b.

' 2. x^ -{- y^ = \. Ans. X \- y = Q.

x^
3. y^ = ax^ + x^. 4. The cissoid y'^ =

2 rt — X

5. x^ + 7 xy + 12 y^ + X -\- 4 y - 16 = 0.

Ajis. a; + 3 ?/ + 1 = 0, x -\- "1 y = 0.

6. x"^ — xy + y^ -\- 5 X = 0. Ans. None.

7. x'^y'^ = n^(x'^ + ?/-). 8. The folium x^ + y^ — 3 axy.

9. x'^y'^ + lx'^+ ?/- + X = 0. 10. x~y + xy'^ = a^.

11. x3 - 4 xy-^ - 3 x^ + 12 xy - 12 ;/2 + 8 x + 2 ?/ + 4 = 0.

A71S. a; + 3 = 0, X - 2 ?/ = 0, r + 2 ?/ = 6.

12. ay^ — ay'^ — x^ -\- ax^ + a^. .4ns. x = a, x ± y -\- a = 0.

13. a?/2 = x^ + xy^.

14. Prove that a parabola has no asymptotes, but that every line

parallel to the axis meets the curve in one infinitely distant point.

15. Prove that every line parallel to an asymptote meets the curve

in one infinitely distant point.

16. In example (h), § 65, prove that every line parallel to the*

ar-axis meets the curve in one infinitely distant point.
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17. Show that a curve of the n-th degree cannot have more than n

asymptotes.

18. Show that the curve

y = P(^),

where P(x) is any polynomial in x, has no asymptotes.

66. Exceptional cases. Exceptions may arise to the

theory of § 65. For instance, it may happen that the co-

efficient of x'^~^ vanishes identically for some value of m for

which the term in x"" disappears, so that all lines having

this value of m as their slope meet the curve in two points

at infinity. In this case there are in general two or more

parallel asymptotes having the given slope, and the values

of k are determined by equating to the coefficient of the

highest power of x that does not disappear identically.

The exceptional cases are rare and unimportant in

elementary work, and a fuller discussion of them is un-

necessary.

EXERCISES

1. Show that the curve

(a; + y)'^(x^ + xy -\- y'^) = a^y- + cfi{x — y)

has the pair of parallel asymptotes x + y = ± a.

2. Show that every line parallel to the x-axis meets the curve

y^ = x^ -{- X

in two infinitely distant points, but that the curve has no asymptotes.

67. General directions for tracing algebraic curves. The
following questions should be answered as fully as possible

before trying to trace an algebraic curve.

(1) Is the curve symmetric with respect to the coordinate

axes? (It is symmetric with respect to 01^ if the equation

is unchanged when x is changed to — rr ; etc.)

(2) Where does it intersect the axes ?

(3) Has it any asymptotes? If so, locate each of the

points where the curve intersects its asymptotes.

(4) Is it possible to determine certain regions of the plane

within which the curve must lie?



102 CALCULUS

(5) Has the curve any singular points ? If so, determine

the tangents at each point, and the nature of the singu-

larity ; draw the tangents if they are reaL

(6) Has it any maximum and minimum points ?

The above is only a general outline of the process to be

followed ; other steps will often suggest themselves. In

many cases the points of inflection should be found and

the inflectional tangents drawn, but this is not worth while

if the second derivative is complicated. Translation or

rotation of axes is occasionally useful. The elementary

method of tracing the curve by plotting points is too la-

borious to be used extensively, but it is frequently advis-

able to plot a few points, merely as a check on the analysis.

Examples : (a) Trace the curve ?/^ = 3 ax^ — x?.

(1) The curve is not symmetric with respect to either

axis.

(2) When a: = 0, ^ = ; when ?/ = 0, a; = or 3 a.

(3) By § ^b, the line

y ^ a — x

is an asymptote. Substituting a — x for y in the equa-

tion of the curve, we find

a^ — 3 c^x + 3 a:i^ — rr^ _ 3 ^^2_ ^3^

The highest powers of x drop out, as they should, and

we find that the curve crosses its asymptote at a; = -

.

o

(4) Writing the equation in the form

?/3 = x^{Z a — a:),

we see that 1/ > if a: < 3 «, ^ < if a: > 3 a. Hence the

curve is above the a:-axis at the left of a; = 3 a, below at

the right of that point.

(5) Since there are no terms of lower than the second

degree, the origin is a singular point. The tangents are

given by the equation

3 aa;2 = :
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they coincide in the ?/-axis. Since, by (4), the curve

near the origin cannot go below OX^ the point is a cusp.

For small values of x on either side of 0, y is real, hence

there is a branch on each side of OY^ and the origin is a

cusp of the first kind.

Since the curve is a cubic, there can be no other singu-

lar points (Ex. 20, p. 97).

(6) The derivative is

dy _Q ax — Sx^

dx 3 ?/2

The numerator vanishes when x = or 2 a. Rejecting

the value a; = 0, which gives the singular point, we
have a; = 2 a as the only critical value. It will appear

presently that the point (2 a, V4 a) is a maximum point.

To trace the curve, let us begin at the extreme left.

In that region, the curve must be just below its asymp-

tote, since it has to pass through the origin and can cross

a
the asymptote only at rr=-. It comes down to the

a 2 a\ T, .

-, — ). It IS now

origin tangent to the j/-axis, turns back on the other

side, and crosses the asymptote at

clear that the critical value

x=2 a corresponds to a

maximum point. Return-

ing from the maximum, the

curve crosses OX at (3 a, 0)

and again approaches the

asymptote.

The curve is shown in

the figure.

(5) Trace the curve
ap'y'^ = x^^cp' — dtp').

(1) The curve is symmet-

ric with respect to both axes.

Fig. 45
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(2) When a; = 0, ?/ = ; when 7/ = 0^ x = 0,'± a.

(3) There are no asymptotes.

(4) When x is numerically greater than a, 1/^ is negative

and ?/ is imaginary. Hence, the curve lies entirely be-

tween the lines x = ± a.

(5) The origin is a singular point. The tangents are

real and different,

hence the point is a node. There are no other singular

points.

(6) The first derivative is

dy _ 2 a^x — 4a^ _ x(^a^ — 2 x^^

dx 2 ^ y
This vanishes when

«2 _ 2 a;2 = 0, a: = ± -^

.

V2
Corresponding to each of these values the curve has, on

account of its symmetry, a maximum y =- and a mini-

amum %i
=^

2

The student may draw the curve.

EXERCISES

Trace the following curves.

\-x
1 + a;

a'-x A ,„ _ a.-^ + «'

1. ^ = rT-r2- 2. y = x{x - 1)2.

{x — a)'-^

5. ?/2 = 4- .r ^ yi ^ x^Cl + a,-)
,

^ 1 -a:

7. ?/ = 2 x3 - 9 a-2 + 12 a; - 3. 8. ?/ = a:^ - 3 a:^ + a:.

9. ?/2(a;2 + «2) ^ ^2^2. 10. ?/(a:2 _ ^2) ^ ^ _^ X.

11. a;3 + y3 3, 3 aa-y. 12. 3/2 ^ 3,(3,2 _ i).

13. 3/ = -/^- 14. 3/^ =
a:

a;2 — a^



16.
,_x^(x'^-n^)

^
x^ + a2

18. (a:^ — a'^)y'^ = ax^.

20. xy"^ + a;2?/ = a^.

22. xhf = (a; + a)2(4 a2 _-x^).

24. (^ — x^)^ = x^.

26. ay^ =(a;2 - a2)2.

28. V- ^^
.
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15. 3/2(a;2 + r/2) = arx'^.

17. (^ - a;)2 = a:3.

19. y= i^--y .

21. a;2/ = o:^{x'^ + y^).

23. (a:2 - ?/2) (a: - 3 ?/) = x.

25. y2 ^ 1 - a:
.

^ 1 + a;2

27. :.3^ = «2(^ + «)2. ,^

^^^^^^

II. Transcendental Curves

68, Tracing of transcendental curves. In tracing tran-

scendental curves, we follow much the same procedure as

m § 67, except in the matter of as3"mptotes and singular

points. While the definitions of §§ 62-65 hold for all

curves, the tests there given apply only to algebraic

curves.

We shall in this article confine our attention to tran-

scendental curves having no singular points. To find

asj^mptotes, the following rule may be used :

In general^ if y becomes infinite as x approaches a definite

limit a, the line x= a is an asymptote ; if x becomes infinite

as y approaches 5, the line y — b is an asymptote.

In rare instances, the derivative may behave in such a

way that although the conditions of the rule are satisfied,

the tangent does not approach any limiting position, and

hence there is no asymptote ; but the rule holds in all

cases that are apt to arise in practice.

Example : Trace the curve y = xe^.

(1) There is no symmetry.

(2) The curve crosses the axes at (0, 0).

(3) As X becomes large and negative, y approaches *
;

* This statement is easily made plausible ; a strict proof will be given

later (§ 140).
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hence the negative x-axis is an asymptote. When x is

large and positive, y is large and positive.

(4) Since e^" is always positive, y has always the same
sign as x : the curve lies in the first and third quadrants.

(5) Since y' = xe"" + e% the only

critical point is
[
— 1, ]. The slope

at (0, 0) is 1. ^ ^^

(6) y''= xe^ -\- 2e^. There is a

point of inflection at f — 2,
j ; the

slope of the inflectional tangent is

-e-2 = -0.14.

The curve is shown in Fig. 46.

Fig. 46

EXERCISES

Trace the following curves.

1. y = e-^\ 2. y = xe-^"". 3. y = tan x.

^. y = sec X.
- logx

X
6. y = e'\

7. y = sin^ x.

10. 2/2 = ^°§'^.

X

8. y'^ = sin x.

11. 2/2 = log X.

9.

12.

X
y =

logx

y = -'
X

13. y=,-^'
logx

16. Show that

14. y = g-^ sin x.

Urn 2 + sin.^^O;

16. y = X log X.

then show that the curve
2 + sin x^

furnishes an exception to the rule of § 68.

^' 69. Curve tracing by composition of ordinates. The

curve

can be traced very readil)^ U f (x) has the form
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where

are curves whose form is easily obtained. We have only

to add the ordinates of the two latter curves to obtain the

required curve.

Less frequently curves may be conveniently traced by

multiplying or dividing ordinates in a similar way.

W^ EXERCISES

Trace the following curves.

1. y = X + \ogx. 2. y = X -\

X

Z. y — e^ — X. ^. y = sin x + cos x.

6. y = X -\- sin X. Q. y = sinh x = •

„ sin X o cos X
7. y = 8. y =

X X

9. The catenary is the curve in which a homogeneous cord or chain

hangs when suspended from two of its points under its own weight.

The equation is

X a I ^ ^\
y = acosh-=-f ea_,.g-aj.

Ttace the curve.

70. Graphic solution of equations. The roots of the

equation

are the abscissas of the points where the curve y=f{x)
crosses the 2:-axis. Hence if we trace the curve y=zf{x)
and measure its intercepts on OX^ we have a graphic

solution of the equation /(a;) = 0. It is usually best to

get the general form of the curve by the methods of the

preceding articles, and then plot it carefully, on a large

scale, in the neighborhood of each of its a;-intersections.

The roots of the equation

(1) f {X-) = <f,ix-}

are the abscissas of the points of intersection of the curves

y = </>(^)-
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In case these two curves are easily traced, we thus ob-

tain with little labor a graphic solution of (1). This

method is frequently preferable to the first one mentioned

above.

Such methods may be useful in various ways. If no

high degree of approximation is required, the graphical

result may be sufficient in itself; it may be used as a

rough check on a more accurate result obtained in some

other way ; it gives a first approximation that may be

needed as a starting point for more elaborate methods,

or it may suggest some value of the variable which by

substitution is found to satisfy the equation exactly.

EXERCISES

Solve the following equations graphically.

1. a;4- 3a-3 + 3=0. 2. Sa:* - 2^3 - 21 x^ - 4x + 11 = 0.

3. X + 10"^ = 0. 4. a: + 2 cos x = 0.

5. X -\- logio X = 0. Q. X + cos X = I.

7. Trace the curve y = x sin x, locating maxima and minima
graphically.

8. Solve the equation x log x = 1.

9. A gutter whose cross-section is an arc of a circle is to be made
by bending into shape a strip of tin of width 8 inches. Find the

radius of the cross-section when the carrying capacity of the gutter

is a maximum. Ans. 2.55 in.

,71. The cycloid. In the remainder of this chapter we
consider several special tran-

scendental curves.

The path traced by any point

A on the rim of a wheel that rolls

without slipping along a straight

track is called a cycloid.

Let the circle of radius a roll

along the a:-axis, and take the

initial jiosition of A as origin.

Then, if (a:, ^) are the coordinates of A^



CURVE TRACING IN CARTESIAN COORDINATES "^l^

Y

Fig. 48

OB = arc AB = aO,

x= OB- AC=ae -a^m =^ a{6 - sin 6),

y = BO' - CO' = a-aGosd^ a{l - cos 6).

These are the parametric equations of the cycloid in terms

of the angle 6 through which the circle has rolled. The

coordinates of the center of the rolling circle are (a^, a).

The rate at which the center is advancing is

d r n\ du

at at

where o) is the angular velocity.

The curve is shown in Fig. 48.

72. The epicycloid. If a circle rolls without slipping

on the outside of a fixed

circle, a point on the

circumference of the roll-

ing circle generates an

epicycloid.

Let a and h be the

radius of the fixed circle

and that of the rolling

circle respectively, and

suppose the point A was

originally at E. Then
arc AL = a»rc UL,

or

hcj) = ad. I
Fig. 49

The equations of the path of A in terms of the parara-
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eter 6 may be obtained as follows

:

X = 0M= OF+FM= 0F+ DA
= (a + 5) cos 6 -\-h ^\n *-(!-.

jj
= (a + 6) COS ^ — 5 cos {6 + <^)

= (a + 6) cos 6> - 5 cos (<9 + 1^)

= (a 4- 5) cos 6 — h cos , ^ ;

y = MA = FI) = FO' -

= (a + 6) sin ^ — 6 cos

h

DO'

(9

= (a +5) sin (9 -5 sin ^4^(9.

"~73. The hypocycloid. A point on the circumference

of a circle that rolls on the inside of a fixed circle gener-

ates a hypocycloid.

Its equations are obtained in the same manner as those

of the epicycloid. They are

x = (a — h^ cos 6 -\-h cos —

-

a — h

0,

y = (^a — J) sin ^ — J sin '^^— 6.

EXERCISES

1. Show that the tangent to the cycloid passes through the highest

point of the rolling circle.

2. A wheel of radius 2 ft. rolls on a straight track with a velocity

of 6 ft. per second. Find jx, jy, j, jti and _/„ at the points ^= 0, ^ = ^,

^ = TT.

3. The highest point on an arch of the cycloid js called its vertex.

Show that by taking the origin at the vertex and replacing 6 by

01 — — TT, the equations of the cycloid become

x' = a(^' + sin^'),

y =- a(l-cos^'),
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or, if we change the sense of the ?/-axis and drop subscripts,

X — a(d -\- sin^),

y = a(l — cosO).

4. Sketch the epicycloid for which the rolling circle and the fixed

circle have the same radius. If -— = — radians per second, find v and
at 2

J, and also find between what limits these quantities will vary.

5. Show that the hypocycloid for which b = -r is a diameter of the

fixed circle.

6. Show that the equations of the hypocycloid of four cusps, for

which b = -, may be written

X = a cos^ 6,

y = a sin^ 0.

Hence find its cartesian equation. Trace the curve.

7. Give the cartesian equation of the cycloid.

8. Find the radius of curvature of the cycloid. Ans. 4 a sin -.

9. Trace the epicycloid for which & = - .
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CURVE TRACING IN POLAR COORDINATES

74. Slope of a curve in polar coordinates. We have

seen that in sketching a curve it is helpful to know the

direction of the curve at any point.

In cartesian coordinates the direc-

tion at the point P^ : (x^^ y^ is most

easily determined by giving the in-

clination of the curve to the straight

line y = y^— i.e. the "slope" of

the curve— since this is found by

a mere differentiation. Similarly,

given the equation of a curve in

polar coordinates, the direction at

the point Pq : (r^, 0^ is best found
Fig. 50

by means of the inclination to the curve r = r^,

of course a circle through P^ with center at 0.

reason the quantity tan (/>, where <^

is the angle between the curve and

the circle just mentioned, will be

called the polar slope.

To find the polar slope we proceed

as follows.' Consider a fixed point

P : (r, ^) and a neighboring point

P' : (r 4- Ar, 6 + A^) on the curve

(Fig. 51), and drop a perpendicu-

lar PJSr from P upon OP'. Let

<i>'
= ANPP'. Then

NP' OP' -

which is

For this

Fig. 51

tan (^' = ON
pjsr pjsr

112
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But

OP' =r + Ar, 0N= r cos A6>, PN= r sin A(9.

Hence

tan </>'

r + Ar — r cos A^
r sin A^

Ar + r(l — cos A^)

r sin A^

Ar + 2 r sin^ \ A(9

r sin A^

Ar ,
r sin i A^ . i * zi

A6> J A6>
2

sin A(9

I

When P' approaches P along the curve, </>' approaches

(/). By § 38,

sin a

Hence

lim
a->o a

= 1.

tan </) = lim tan
(f>'
=

dr

A0->O

or

4. JL ^1"
tan 9=—-.

The formula for tan cj) may be

remembered as follows. Strike

through P a circular arc PM with

center at (Fig. 52). Then
arc PM = rdO,

MP' = dr (approximately),

and
MP'

tan
(f)
= (approximately )

.

arc PM
This at once suggests the formula.

I

Fig. 52
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cliT
75. Maxima and minima. When -— = 0, <^ = 0, and in

du
general r is a maximum or a minimum, as at A and B^

Fig. 53. Just as in cartesian coordinates, there is a pos-

sible exception : the curve may have

the form shown at C. However, the

exceptional case is rare in the simpler

curves.

76. Curve tracing. Before sketch-

ing a curve whose equation is given

in polar coordinates, the following

questions should be considered* :

(V) Is the curve symmetric with

respect to the initial line ? (It is, if

the equation is unchanged when 6 is

replaced by — ^; other tests may frequently be used.)

(2) Is it possible to determifie any particular regions of

the plane within which the curve must lie ?

(3) At what poiiits is the polar slope ? Is the radius

vector a maximum or a minimum at each of these points f

The above discussion is frequently insufficient to deter-

mine the general form of the curve, in which case addi-

tional points must be plotted.

Example : Trace the lemniscate r^ = cl^ cos 2 6,

(1) The curve is symmetric about the initial line.

(2) cos 2 ^ is negative, and r is imaginary, when

also when

— < At) < -—, I.e. -T < c/ < —-;
2 2 4 4

A 2 4 4

Hence the curve lies entirely within the sectors AOB^
COD (Fig. 54).

* For brevity, the discussion of singular points and asymptotes is

omitted.
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(3) Since

r dr = — a? sin 2 6 dO^

- a^ sin 2 e
tan (^ =

0^ cos 2 ^
= - tan 2 e.

From this the direction of the curve at any point may be

found.

When
tan (^ = - tan 2 ^ = 0,

2 ^ = 0, TT, 2 TT, 3 TT,

and

2 2

Only the values and it give

real values of r ;
' at each of these

points r is a maximum, viz. r = a.

The curve passes through the

origin whenever r = 0; i.e.

when cos 2 ^ = 0, or ^ = — ,
——

,

4 4

etc. The curve is shown in Fig. 54.

EXERCISES

Trace the following curves.

I. r = 2 a cos d. 2. The spiral of Archimedes r = aB.

3. r = a sec ^. 4. r = a cos 2 6.

5. r^ = a^ sin 6. 6. r = a cos 3 ^.

7. r2 sin 2 ^ = a^.

8. The linia^on r=ft — acos^, (a) when h = 2a\ (h) when

J = a
;

(c) when h = \a.

9. The conic r = 7;, where e is the eccentricity, (a) if
1 — e cos^

e<l; (&) if e = l; (c) if e>l.

10. The logarithmic spiral r = e*^. Show that tan <^ is constant.

II. What is the form of the curve r = a cos nO, (a) when n is

even; (6) when n is odd?



CHAPTER XI

THE INDEFINITE INTEGRAL

77. Integration. We have been occupied up to this

point with the problem : Given a function, to find Its de-

rivative. Many of the most important applications of the

calculus lead to the inverse problem : Given the derivative

of a function, to find the function. The required function

is called an integral of the given derivative, or integrand^

and the process of finding it is called integration.

If f(x) is a given function and F(x') is a function

whose derivative is f(x)^ the relation between them is ex-

pressed by writing

F(x) = j'f{x)dx.

where the " integral sign "
j indicates that we are to per-

form the operation of integration upon f(x)dx. For

reasons that will appear later, it is customary to write

after the integral sign the differential f(x) dx, rather than

the derivative /(a:).

Examples: (a) Find the equation of a curve whose

slope at every point is equal to twice the abscissa of the

point.

We have to find a function y such that

-^ = 2 x^ or dy — 2 X dx ;

dx

hence

7/ = \ 2 X dx.

116
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It appears at once that 2 a; is the derivative of ^. Thus a

curve having the desired property is the parabola

y = x^.

But it is clear that if

(1) y = :r2 + 0, •

where is any constant whatever, we still have

dy = 2 X dx^

and our data are satisfied by any

one of the family of parabolas rep-

resented by (1). In order to obtain

a unique answer to our problem, we

must have some additional informa-

tion about the curve. Thus, if it is

to pass through the point P : (1, |),

we substitute these coordinates in

(1) =

and the answer is

y = x^-\-\.

(b) Find the velocity of a body falling freely under

gravity at the end of 5 seconds, if the initial velocity is

20 ft. per second upward.

Taking motion downward as positive, we have to find v

from the relation (see § 55)

Fig. 55

dv

Hence

V = i g dt = gt -\- C.

Making use of the fact that v= — 20 when ^ = 0, we get

- 20 = + C,

and the velocity at the time t is

i;=^^-20.
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At the end of 5 seconds we have, taking g = 32,

V = 140 ft. per second.

(f?) Find the space covered in the fifth second of the

motion in (5).

Here

v=—=S2t-20,
dt

X = r(32 t - 20}dt =16t^-20ti-O.

No data are given for determining O. But if we denote

by Xt the space covered in t seconds, the space described

in the fifth second is

2^5 - 2:4 = (16 . 25 - 20 . 5 + (7) - (16 . 16 - 20 . 4 + (7)

= 124 ft.,

the unknown constant having disappeared. In fact, is

merely Xq, the distance of tlie starting point from some

arbitrarily chosen origin, so that the distance passed over

between any two instants must necessarily be independent

of a
78. Integration an indirect process. Differentiation is a

direct process ; by means of the fundamental formulas

the derivative of any elementary function may be found.

On the other hand, to find an integral of a given function,

we must be able to discover a function whose derivative

is the given integrand, and this is always in the last

analysis a matter of trial. The problem can by no means

always be solved ; in fact, there are many comparatively

simple functions whose integrals cannot be expressed in

terms of elementary functions*.

79. Constant of integration. In each of the examples

of § 77, an arbitrary constant presented itself. It is clear

that this will be the case in general ; i.e. a function whose

* It will be shown in § 81 that for every continuous function an integral

exists^ although it may not be an elementary function.
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derivative is given is not completely determined, since it

contains an arbitrary additive constant, the constant of

integration.

On account of the presence of this undetermined con-

stant, the function if(x)dx is called the indefinite integral

oifix).

80. Functions having the same derivative. In § 79 it

was tacitly assumed that if the derivative of a function is

given, the function is determined aside from an additive

constant. That this is true follows from the

Theorem : Two functions having the same derivative

differ only hy a constant.

The theorem is almost self-evident. Let <i>(x) and ^(x)

be the two functions, and place

y = <i>ix)-^^r{x).

By hypothesis,

dx

The rate of change of y with respect to x is everywhere 0,

hence y is constant.

EXERCISES

Evaluate the following integrals, checking the answer in each case

by differentiation.

dx.

1. (rt)^^;^^; {h)^(2x-x'^)dx] (c) f (1 - 4/4)r7f

;

(r/)|(l + 3/)%; (6)0; (/)|(^^--^)

2. J^. 3. ^^inOdd. 4. rsin2^^^.

5. ( Vx + 1 dx. 6. j Vl - X dx. 7. i e'^dx.

8. ({l-\-2xydx. 9. JxVa^ + x^ dx. Ans. ^(a'^ + x^y + C.

10. Find the equation of the family of curves whose slope at every

point is equal to the square of the abscissa of the point. Exhibit

graphically.
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11. Find the equation of that one of the curves of Ex. 10 that

Ans. y = — — 14.
^ 3

passes through the point (8, — 5).

12. A body falls from rest under gravity. Find the velocity at

the end of 3 seconds, and the distance traveled in that time.

13. Find the equation of the curve for which y" = 4 at every

point, if the curve touches the line ^/ = 3 x at (2, 6).

Ans. y = 2 x'^ — 5 X -\- 8.

14. A body moves under an acceleration numerically equal to the

time. If the initial velocity is 10 ft. per second in the direction of the

acceleration, find v and x at the end of 4 seconds, x being measured
from the starting point.

15. In Ex. 14, find the initial velocity if the body moves 10 ft. in

the first second.

16. Find the equation of the curve for which y" = , if the
x'^

curve makes an angle of 45° with OX at the point (1, 0).

17. Find the equation of the curve through (1, 2) and (2, 3)

(«) if y" = 0; (b) if y" = Q x
;

(c) if y" =—. Trace the curve in
x^

each case. .4/^s". (6) y = x^ — 6x + 7.

81. Geometric interpretation of an integral. Consider

the area A bounded by the curve ^ ==y(a:), the a:-axis, the

fixed ordinate x = a^ and a vari-

able ordinate x = x. This area

is evidently a function of x.

We proceed to find the deriva-

f{x-\-Ax)
^i^® ^f -^ with respect to x.

When X is increased by an
^.^

2: ^ amount Ax^ A assumes an in-

crement A^, the area KLRN
in Fig. 56. It appears from the

figure that AA is greater than the area f(x)Ax of the

inscribed rectangle KLMN^ and less than the area

f(x-\- Ax^Ax of the circumscribed rectangle*:

f(x)Ax< AA<f(x + Ax^Ax.

* The argument is readily modified to fit the case when f{x) is a decreas-

insr function.

X

Fig. 56
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Hence

If now Ax approaches 0, f{x + A^:) approaches /(a:), and

AA
since always lies between /(:r) and/(2: + Aa;), it must

Ax
also approach /(a:). Thus

dA T A^ .. .— = lim =j{x).
dx Aar->0 Ax

Since the derivative of A is /(a:), it follows by the defi-

nition of the integral that

= jf(x)dx.

In case the position of the fixed ordinate x = a is given,

the constant of integration may be determined by the fact

that ^ = when x = a.

We have thus proved the following result

:

• ^]i£^irUf/n,ifji integral ifCx^dx represents the area hounded

hy the curve_]j =zJls)'> the Xj^JOlxis, a fixed_ordinate, and a

variabl£~M^dinate.

It is evident that if /(a:) is continuous, this area always

exists ; hence every contirmous functioyi has an integral

(cf. § 78).

"

Since

the formula for the area uiider the curve is frequently

written r/r{y \

ly A= \y^̂
Example: Find the area bounded by the parabola

y = x^^ the a^-axis, and the lines x = 1^ x = 4.

The area from a; = 1 to any variable ordinate is

A= \ ydx= \ x^dx= — -{- O.
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Since A = when a: = 1, we have

= 3^4-C, C = — 3,

or

"^-3
3

In particular, the area from a: = 1 to a; = 4 is

EXERCISES

In the following, find the area bounded by the x-axis, the given

curve, and the indicated ordinates. Check roughly by drawing the

figure on coordinate paper and estimating the area.

1. y = x^, X = 0, X =4:

.

Ans. 64.

2. The parabola y^ = 4i x and its latus rectum.

3. The hyperbola y =-, x = 1, x = 3. Ans. 1.099.
X

4. Find the area of one arch of the sine curve. Ans. 2.

5. Find the area bounded by the parabola y = 1 — x^ and the x-axis.

82. Variable of integration. In the last article we had

occasion to use the symbol j ?/ dx. In order that such a

symbol shall have any meaning, j/ must be directly or

indirectly a function of x. The variable whose differential

occurs is called the variable of integration^ any other

variables appearing under the integral sign must be

functions of the variable of integration, and their values

in terms of that variable must be introduced before the

integral can be evaluated.

Xhaiact that the differential occurring tells us which

variable is the variable of integration is one of the reasons

for using the notation i f(x)dx rather than the notation

J/(^).

83. Change of the variable of integration. If x is so re-

lated to y that

(1) (f>(x)dx = y\r(^y)dy,
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we may replace j (j>(x)dx by
j "^(^y^dy. For, let

^(x)= C(f)(x)dx,

^(^) = ffOj)dy.
Now ^

r:;?2; c?^ c^a; dx

The two functions therefore have the same derivative, by

(1), and hence differ only by a constant. Since each

function contains a constant of integration, these constants

inay_be„so_ chosen that

The device of replacing a given integral by an equiva- ^ 1

lent integral in a different variable is very useful in many
problems.

84. Integration by substitution. A change of variable

is usually brought about by means of an explicit substitu- ^^"'

tion

j^^^^dx = (^' (%i)du.

The process is called integration hy substitution^ and is

"^ighly'' important. It is tu be remembered that not merely

x^ hut dx as well, must be replaced by the proper value in

terms of the new variable.

Example : Evaluate \ x^l — x dx.

Let us put

1 — a; = w,

so that

a: = 1 — u, dx = — du.
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Then

j
xVl — xdx=— 1(1 — u)u^ du= — j (u^ — u^'ydu

= - 1(1 -2:)^ + 1(1 -2:)^+

a

EXERCISES

1. Work the above example by placing I — x = u\

2. Evaluate i x(3 — 2 x^)dx by substituting S — 2 x^ = u. Check

by expanding the given integrand and integrating directly.

Evaluate the following integrals by means of the indicated sub-

stitution, and check the results by differentiation.

3. I Va + bx dx, a + hx = u.

4. I sin^ 6 cos dO, sin 6 = u.

5. \z -:—;, 2 X = U.h + 4a:;2

6. CJ^A^, 1-x^ = u.

n ~Z—Z' l + tan^ =
•^ 1 + tan 6

8, J

7
J 1

u.

Vl - x^

9. If the velocity of a point moving in a straight line is given as

a function of the time, show that the distance covered may be found

by the formula

=J^ dt.

Given v = 10 t + 20, find x in terms of t by substituting the value of

V in the above integral ; also find x in terms of v by substituting for

dt. Show that the two values of x are equivalent.

10. Given x = t^, y = dt, find

A = \ y dx

as a function of t by substituting for y and dx their values in terms

of ^ Ans. A =:2t^ + C.
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11. In Ex. 10, find y in terms of x by eliminating t. Then express

yl as a function of x by substituting for y and integrating with re-
3

spect to X. Ans. A = 2 x^ + C.

12. In Ex. 11, find A as a function of y by substituting for dx.

Ans. A = ijy^ + C.

13. Show that the three values of A found in Exs. 10-12 are

equivalent.

14. By the formula

A = j ?/ dx,

find the area under the curve y'^ = x from x = to x = 4, («) by sub-

stituting for y in terras of x
; (&) by substituting for dx in terms of

y and dy.

15. Proceed as in Ex. 14 for the area under the curve y = e^ from

a; = to a: = 1.

16. Proceed as in Ex. 14 for the area of half an arch of the curve

y = \ sin 4 x. Ans. x\.



CHAPTER XII

STANDARD FORMULAS OF INTEGRATION

85. Standard formulas. If we were to try at present to

solve any but the simplest applied problems involving

integration, we must fail through inability to evaluate

the indefinite integrals involved. We shall therefore

devote this and the following chapter to the technique of

integration — the formal evaluation of indefinite integrals

— after which the question of applications will be treated

at some length.

As the first step toward facility in integration, the

student must become thoroughly familiar with the fol-

lowing

Fundamental Integration Formulas

(1) fdu=u + C.

(2) f(du -\- dv) =fdu + Cdv,

(3) Ccdu = cCdu,

/i,n+l
n-hl

(5) f^ = logu-\-Cr\

(6) fe^dw = e" + C,

(7) J cos w i/z/ = sin M + C = cos f M — ^ j
+ C,

126
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(8) \ sin u du = — cos u -\- C = sin I u — -]-{- C,

(9) j sec^ udu = tan w + C,

(10) /.
du . u

, ^= arcsin - + C,

Va^ - u^ a

<-'"> S^
du 1 4.« w

, ^= - arctan - + C,
+ w^ a

(12) j udv=uv— i vdu.

It is strongly recommended that each of the formulas

be written out by the student in words, and memorized in

that form.

The test of the correctness of an iiitegral is that its

derivative mustJjeJhe^^iven^ jntegrand. The above

formulas may be verified at once by differentiation.

86. Formulas (l)-(3). Formula (1) merely embodies

'the definition of an integral.

Formula (2) is readily extended to the case of any

number of terms. The formula shows that if the inte-

grand consists of a sum of terms each term may be inte-

grated separately.

Formula (3) says that if the integrand contains a con-

stant factor, that factor may be written before the integral

sign. As a corollary, we may introduce a constant facto?'

into the integrand^ provided we place its reciprocal before

the integral sign. But the student must beware of intro-

ducing variable factors by this rule.

87. Formula (4) : Powers. This formula evidently

fails when n = — l. The exceptional case I — is taken

care of by formula (5).
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Exaynples

:

(a) CU 2;3 4- 1 4- -^^dx = 8j"a;3 dx -\-Jdx + If
3^''^ dx

= —— -A-x — -X ^ + C'

4 2

4 2x

(b) Jx(l + :r2)2 dx =f(x +2x^-\- a^)dx

/VIM ry*^ /y»0

A better method : Introducing a factor 2 after the

integral sign and its reciprocal in front, we have

fx(l + x^)^dx =1/(1 + x'^y -2xdx.

Since 2 x dx is the differential of 1 -\- x^^ formula (4)

applies with u=l -\- x^^ n — 2. Hence

i fci + x^y .2xdx = ^il±^ + 6^= 1(1 + x'^y 4- C.
2^ 2 3 t)

In substance we have introduced a new variable u =4 i^^
as in § 84. But with a little practice one is able to think

of the quantity 1 -\- x^ directly as the variable of integra-

tion, without writing out a formal substitution, thus

effecting a great saving of time.

The student should compare the two answers that have

been obtained in this example.

Va -j- bx dx = - 1 Va -\-hx - h dx

_ 1 {a-\- hx) 2 ^

O

Here the quantity a -{- hx is taken as the variable of inte-

gration, the factor h is introduced to give the proper

differential, and (4) then applies with n= |.
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EXERCISES

Evaluate the following integrals; check the results by differen-

tiation.

1- 1(1+-,)''^- 2. j"(v';+2V^ + -i^)rfx.

'

3. j'-£i+ji±-lrf,, 4. j4(:.+ l)Vix.

6. ^(1 - 2 xyiJx. 6. ({X + \){x + 2) dx.

9. fx\/«2 + a--^/.r. 10. f-
-
^'^^-^

•

c/ ^ Vl - ^3

11. r(«2_a;2)2f/x. 12. f V(I+17)=^r/^

13. fe^vTT^'/y. 14. f(x- + l)(x2 + 2a:+ 6)r/a;.

J
2 2 3 -/,. 2 2 5

16. rsin2 6lcos^^/^. 17. r
^^"^-^

•

18. r(rt' -xh^f/x. 19. f— ^^^
•

*^ -^ V;^ - 4 X

20. (aVflj-vix. 21. I
—~

V "^ (1 -

8&N.,Formulas (5)-(6) : Logarithms and exponentials.

—
•

a^ -f ar

If the factor 2 be inserted under the integral sign, the

numerator becomes the differential of the denominator,

and (5) applies

:

— dx.
x + 1

K
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By division we find

= X— z -]

x+ 1 x-[-l

Whence

f^^dx= f(x-2-^^-)dx^ x-\-l ^ \ x + lj

x^

(<?) Evaluate I e^"" dx.

If the factor 3 be inserted, this is integrable by (6) ;

J'eS- dx = ije^- -^dx^^e^^^ C.

In (5) we have used a device that finds frequent

application

:

-4s the first step toward integrating a rational fraction^

carry out the indicated division until the numerator is of

lower degree than the denominator.

EXERCISES

Evaluate the following integrals ; check the results.

1. j"-^- 2. j"^^^-
-^ X -7 J VI - 4a:

3 f-^^. 4. f-^^-

^' J 1 -ix J

7.

VI + X

8. f tan 0^^. ^ws. - log cos 6 + C.

9. (ue^'-^du. 10. P^ ~ ^
^x.

/ 5 _?\

2

11. JV^'-^"V c/x. 12. I ax.
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x'^ + 2 a; — 1 ,^ i J fsin x dx

J \ + x' J cos^a:

15. r_S^^Mi^. 16. P'-'^^+^/g;.
J VI + tan <^

-^ 3x -4:

17 r^ 18 r e'^dx
' J e^'

' ^ (1 - e-^^)2*

19. Find the equation of a curve through (1, 1), if the slope at

every point is inversely proportional to the abscissa of the point

(;...i£y=^).

89. Formulas (7)-(9): Trigonometric functions.

EXERCISES

Evaluate the following integrals.

1. (^m2xdx. 2. fsec2^^^.

3. (x&inx'^dx. 4. ^cos ktdt.

5. I cos (log a:) — • ^- ) —^^

7. rtan2^r70. .4 ns. tan ^ - ^ + C.

sin 2 X dx

+ h cos 2 x
g C Hm2xdx

^ 9_ Ce^cose'dx.
J a -[• h cos 2 X -^

10. f sin3 u du. Ayis. - cos u -{- ^ cos^ w + C

11. f ^^^. 12. C sin cos edO.
J 1 + sin (9 ^

13. (e""^ * sin a; dx. 14. ftan 3 ^of^

15. Jsec^.^^. 16. J«i"^^^
COS" e

17. If the acceleration of a moving particle is

-— = — k^ cos kt,

dfi

the particle has simple harmonic motion (§ 229). Find v and x in

terms of t \i v =2 and x -I when f = 0. Show that x vanishes

periodically, hence the particle oscillates about the origin. Find the

maximum velocity.
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\
90. Formulas (lO)-(ll) : Inverse trigonometric functions.

Example :/dx C dx \ , X -\- 1
, ^

EXERCISES

Evaluate the following integrals.

^ C dx • r xdx
*^ V9 - x^ J Vl - x^

3. f

—

i£—. Ans. iarctan— +C.
-^ 4:x^ + Q 6 3

4. f ^^^ Ans. Arctan (2a: - 1)+ C.

^ x-^ + 4
-" Vl + x2

9. f ^-^'
• 10. r_^!!^.

' ^ VI - e"^"
*^ Vl - e^r

11 r ^^^ ^. 12. f--^^^
•^ Va:Vl - X -^ x{l + \og^x)

13 r ^^-^ 14 r 3:<^-y

91. Formula (12): Integration by parts. From the form-

ula for the differential of a product,

dQuv')=udv + V duy

we find, integrating both sides,

iiv = \ udv + IV du.

Transposing, we obtain formula (12) :

i u dv = uv — i V du.

Integration by this formula is called integration hy

parts. The use of the formula will be explained by the

following

Examples : (a) Evaluate j xe"" dx.
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Let

whence

Then

u = X, dv = e^ dxy

du = dx^ V = I e'^dx = e^.

I xe^'dx = xe"" — i e'^dx = xe^ — e^ -\- O.

(h') Evaluate
J
log x dx.

Let

u = log x^ dv = dx,

whence

J dx
au =— , V = X.

X
Then

/log xdx = X log X — \ X ' — = X log X —X -\- C.

Integration by parts is highly important, as it succeeds

in many cases when the methods of the preceding articles

fail. The success of the method depends as a rule on our

ability to choose u and dv so that the integral I v du is

easier to evaluate than the given one. No general direc-

tions can be given for choosing u and dv ; if the new
integral is no simpler than the original, we should begin

over again with a different choice of u and dv.

EXERCISES

Evaluate the following integrals.

1. yxe^'dx. 2. f ^ sin t dt.

3. (x^e^'dx. Ans. ia:V-^ - ^ xe^' + ^e^* + C.

^4. i arcsin x dx. Ans. x arcsin x + Vl — x^ + C.

5. ix^logxdx A71S. Yfloga:--J+C.

6. i uVl — u du. 7. \ x^ arcsin x dx.
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X tan^ X dx. A ns. x tan x — — + log cos x -\- C.

Cx^Va^- x^dx. Ans. - \x^{a^ - x'^y - j\(a^ - x^y + C.

(x^\/a^ - x^dx. 11. fcos^logsin^t/^.

(sec^ OdO. 13. (cos^Ode.

8.

9.

I

10.

12.

14.

16.

y *^ Va^ — y

xMx 4 r r x^ (Zz

J
(a2 _ ^.)f

'

• J (1 + :r2)-^

r__lML. ^ns. _ 2/2^0,2 - y2^i - |(a2 - 2/2)1 + C.
*^ Va2 - ^2

9X Integration by substitution.* An integral that can-

not be reduced directly to one of the standard forms may
often be evaluated by the formal substitution of a new
variable. If the integrand is algebraic, and rational ex-

cept for the presence of a single radical, it may frequently

be integrated by placing the radical equal to a new vari-

able. In general, if any simple function is especially

conspicuous in the integrand, substitution of a new vari-

able for that function is worth trying. However, no

general rules can be laid down ; skill in the use of sub-

stitutions comes only with practice.

/w X dx~ .

Let

Vx = w, x = u\ dx = 2u du.

Then

/Vxdx _ iy f u^du _ j^ /*/-! _ 1 \ 7

1-^X ~ "-'
1 -f- 2^2

~ "J V ~ I + UV
= 2u — 2 arctan u-\- O
= 2Vx — 2 arctan Va; + C.

'sin X cos X dx
(6) Evaluate f^^ 4- sin X

* At this point the student should re-read § 84.
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Let
sin X = u^ cos xdx = du,

whence

J
sin X cos X dx _ C u du _ Cf~, 1 \ ,

1 + sin X *^ 1 -\-u ^V l + 'w/

= u — log (\ -^ u) -\-

= sin X — log (1 + sin x) + 0.

EXERCISES

Evaluate the following integrals.

dx ft r a: + 3

^ 1 - Vx ^ VI + 2x
rfx.

3 C xdx feSxsine^^x.
^ (x + 1)2 J

5. fa-sVa^- a:2^/a:. 6. (x^e^'dx.

7. r_£!^^£__ 8. fsin Vx dx.
J (a- + x^y^' J

J -^ Vl + tan Q

MISCELLANEOUS EXERCISES

Evaluate the following integrals.

1. fcot^j^. 2. r
X dx

•2 _i_ o'2Va^ + a-

3. (
^ ~. -^

fix 4. i x cos 3 a; <ix.

•^2 + 3a: '
-^

5. r ^^"-^
e flos: X

dx.

7. y (l + cos^y sin ^ t/(9. 8. (x(l - x^)dx.

9- jxe-'^'dx. 10. rsin2 2 a: cos 2 a: (/x.

11. fi5Hi2ii^^. 12. fi^^,..
•^ 1 — tan 2 ^ J I ^ e-x

13. Jfl - ^)'^3/. 14. rx(i - x2)Va:.

15. r ^^^
. 16. r

^'^^^
..

•^ (1 - xy J (1- xy



i36 CALCULUS

17. \ . 18. i cot X log; sin x dx.
Jx^+d,x+20 J ^

19. f-i^. 20. f-4??^.
J X log- X *^ Vl — x®

21. fgSxVl - e^^dx. • 22. fcos~Jx.

23. Ce'^^'sec^tdt. 24 r?i±^i±-? rix

25. ^(J-yh'dy- 26. JI^+_^!>^.

27. f—^-i^. 28. f.fsec^x^/x.
^ f 1 - x^^ J

29. farctanx^/x. 30. (^^J^^^^ dx.

31. je^^rfx. 32. j*//(6-^)V

rf^2^^' 34. p-'(l +e-)3rfx.

35.
p(l +^'\

/x-. 36. fsec2^tan3^^l9.

37. Jci - x3)2^/x. 38. J(a - x^ dx.

39. Jx(«-x)t.x. ^O-L-^ + 10

41. J-^. 42.
J.^

log(l + .^)rfx.

43. f-^^^. 44. J-^^ 1 + X8
-^ 1 - d

e^ dx

3e*

45 f ^^—. 46. f^^ + ^^^'^'cZx.

47. flog^^^^-i'- 48. f
_^^'^

-^ -^ Vx(l + x)

49. /.=.-"</.. 60. 1^3-
51. Using the formula cos 2 x = 1 — 2 siii^x, show that

j sin2 jr (f;r = |;i: -
J
sin 2 a: + C,

J
cos- X dx = ^x + ^sm2 X + C.

52. By putting x = a sin ^, show that

J
Vfl^ - jt"^ c/j: = 2-^Va'^ - Jf^ + ^a^ arcsin'*^ + C.
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CHAPTER XIII

INTEGRATION OF RATIONAL FRACTIONS

93. Preliminary step. In dealing with tlie integral of

a rational fraction, or^iotient of two polynomials, the

first step (cf. § 88) is to carry out the indicated di-

vision until the numerator is of lower degree than the

denominator.

li 94. Partial fractions. If the denominator is of the

first degree, or of the second degree with complex roots,*

the integration can be performed by the fundamental

formulas. Many examples have already arisen : e.g.

Exs. 17, 33, 35, 40, p. 136. In other cases the integral

may sometimes be evaluated either directly or after a

suitable substitution, as in Exs. 15, 16, 27, 50, p. 135.

In general, however, we must resort to the method of

"partial fractions." The first step (after the numerator

has been made of lower degree than the denominator) is

to resolve the denominator into real linear or quadratic

factors.! I^ ^^i^ ^^^ t)e done, the given fraction can then

be expressed as a sum of partial fractions whose denomi-

nators are the factors of the original denominator. We
proceed to show how to do this.

95. Distinct linear factors. The simplest case is that

in which the denominator can be broken up into real

* That is, the denominator of the form ax^ -\- hx-\- c with &'-— 4 ac < 0.

t The term "quadratic factor" means here a factor of the second

degree whose linear factors are imaginary ; i.e. a factor of the form

ox2 + 6x + c with 62 _ 4 ^c < 0.

137
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linear factors, none of which are repeated. The process

will be explained by an

/'x^ 4- 2— dx.
x^ — X

By division we find

rrS + 2 -,
,

a: + 2= j_ -f-
•

a^ — X 7? — X

The factors of the denominator are x^ x-\-\^ x — \.

Assume

a:+2 ^A B
3? — X X X-\-\ X—1

where A, B^ 6^ are constants to be determined. Clearing

of fractions, we find

x + 1 = A(x^ -l)-^Bx(x-l)+ Cx{x + 1).

Since this relation is an identity^ it must hold for all values

of x. Hence,

putting a; = 0, we find ^ = — 2,

x=-\, B =
l,

x = h 0=^.
Thus

^x(x^-l} ^\ X 2 x^\ 2 x-lj
= x — 2 log X -\- ^ log (a: + 1) 4- 1 log (a; — 1) -f- O.

EXERCISES

Evaluate the following integrals.

1 r ^fx n C <ix

3
Cj^jIx_^

^^^ a;-log^^+C.
J x-'-4: ^ x-2

4.
r(22 x^ -\- x — l)dx

a;^ + a:^ — 4 a: — 4

Ans. 2x+ 1-1 log {x - 2) - V- log (a; + 2) + | log (x + 1) + C.

I
r xdx g C x^dx

Jl-x^' ' J x2 + 3 a: + 2

'
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x'^ dx

x^ -^ 2 x'^ — X — 2

r2 1 1 Ifi
Ans. -L^Ox + ^Jogix- l)-ilog(x4- l)+i^log(^ + 2)+C.2d 2 o

J

8. icosec 6 dO. (Note cosec 9 = ^ = -
1 sin sin

sin^ sin^^ 1 — cos^^

^ 1 1 1 — cos 6
, ^

2 ^ 1 + cos ^

10. \ sec ax dx.'I
96. Repeated linear factors. If the denominator con-

tains a factor (^x — «)% the above method fails, since there

would be r partial fractions with denominator a: — a, and

these could be combined into a single one. We can ob-

tain the desired result in this case by assuming, corre-

sponding to the factor (^x — ay, r partial fractions

^ + ,
^

, + - + ^^
(a; — ay (2: — ay ^ x — a

/' 2:^—1
-irr-^dx

x(x + 1.)^

Assume
7^-\ _A^ B C D

x{x ^Vf~ X {x^Yf {x^Vy x^-V
0:3 _ 1 = j^(^r^ 4. 1)3 j^Bx^- Cx{x + 1) + Dx{x -I- 1)2.

Put 2:=0:^ = -l,

a; = - 1 : ^ = 2.

To find Q and i>, we may assign any two other values to x^

say x= \ and x=% thus obtaining two simultaneous equa-

tions to solve for (7 and D ; or we may equate the coefficients

of like powers of x in the two members of the identity.

Equate coefficients oi x^ -. A + D = 1, D = 2.

Equate coefficients oi x^ : S A -i- + 21) = 0, O = -1.

Whence

= -log^- -^ +-l--+21og(.r+l)+C-'.
{X + 1)^ X -\-l
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EXERCISES

Evaluate the following integrals.

1 r dx 2 r dx

^ x^ — x^ •' (1 — x)^

o C xdx ^ C{3fi_j-_Y)dx

J (1 - .r^5*
• J .rr.x- 2^2

5

(1 - :c)S J x{x - 2)2

J

13 1
^ns. loq:a; log (x-\- 1) logCx — 1) h C.

4 * V -r
y ^ s V y 2(2' - 1)

a;4 + 12 x-3 + 52 a;2 + 96 a: + 64

A -5a:— 12
, oi a:4-4, ^Arts. + 2 log—

—

-\- C.
a:2 + 6a; + 8 ^a.-+2

7. C^^ Ans. i e-* - - + i log (e^ - 2) + C.

97. Quadratic factors. Corresponding to a factor in the

denominator of the form * ax^ + hx + c where ^^ — 4 ac < 0,

we assume the terms — ; ' ^H —
ax'^ + ox -\- c ax^ -{•bx-{- c

The case in which the denominator has repeated quad-

i-atic factors is of less importance, and will be omitted.

Example: Evaluate I
—— — dx.

Assume
x^Jr^x + lQ ^A BC2X+2) C
a^ -^ 2x^ -^ 5x X x'^ -\- 2 X -\- f) x^ -\- 2 x -^ 5

2^2 -I- 4 a; + 10 = A(2;2 + 2 a: + 5) + Bx(2 x-{-2)-{- Cx.

Put 2^ = 0: 5^ = 10, ^ = 2.

Equate coefficients oi x'^ : A -j- 2 B = 1, B = — ^.

Equate coefficients oi x : 2 A-\- 2 B -^ C = i, = 1.

* Of course such a factor might be broken up into complex linear fac-

tors, after which the process of § 95 would apply. The present method

has the advantage of avoiding imaginaries.
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Whence

J x^ + 2

2 + 43;+ 10
dx

-\-zx^-\- b X

= c(^-i. ^"+2 + I V--' \x 2 x'^-\-2x-\- b x^-[- 2 x-\- 0/

= 2 log x — ~ log (a;2 + 2 2: -h 5) + - arctan ^-^—h C.

EXERCISES

Evaluate the following integrals.

1. f ^'^^ ylns. x+ 21og(a:2-4a:+5)+3arctan(a:-2) + C.
-^ a:- — 4 x + 5

' J 1 + ^4* ' J a:3 + 4 a;2 + 8 x'

4. \ A ns. — log — arctan - + C

.

^ o^ - 2-4 4 a a - a; 2 a a

J.r dx g r X r/x

1 - a:^ J a;"^ + X + 1

•1^

6

xdx
x^-\-x'^ + '^x + 4

,4 „.5. J^ log (a:2 + 4) - i log (x + 1) + I arctan | + C.

Q r x^f/a: q C X dx
J (1 + x'-^)^' J x-^ - 2 a: + 2'

^ x3 -^ x%l + x^)

12. C—Jl A?is. 1^+ ^log(sin(9+cos(9)+ C.
*^ 1 + tan 6

MISCELLANEOUS EXERCISES

Evaluate the following integrals.

dx
1 r dx

2 r^
*^ (a + bx)'^

'

^ a + hx

g r xdx
^

C X- dx

-^ (« + x)2"
*

-^ (^/ + x)2

_ r xdx g r x dx

J (a + xy(h + x)' J (a- + x^yi'
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7. ('-^^^d.. 8. (• ^" .

^ «4 - a;4 ^ 2 a;2 + 8 a; + 1

1 - x^'
' J {2-x)

13

15
tan 6 — cot ^

f_^. 16. f

17. fi^i^iy.. 18 r^^ + i
rf^.



CHAPTER XIV

THE DEFINITE INTEGRAL

98. The definite integral. Let /(a:) be a given function,

F(x) an integral of f(^x')^ andjr== a and x=h two given

values of x. The change in the value of the integral F(x)

as X changes from a to 6 is called the definite integral of

/(a;) between the "- limits " a and 5, or simply the definite

integral from a to Z>, and is denoted by the symbol

Jf(jc)dx. Its value is evidently F{h^ — F(a^.
a

This change in the value of the integral between two

values of the variable is required in many important

problems. It is called the definite integral because its

value is independent of the constant of integration.

To evaluate a definite integral, we have merely to find

the indefinite integral, and then subtract its value at the

" lower limit 11, « ifrom its value at the '> ujipe^-limit " h.

It is custoniary to use the symbol F(x)
F(h)-F (a), „ .Thus ^-^--.^

fy(x)dx = F(x) '=F(b}-F(a).

Since the constant of integration disappears, there is no

object in writing it at all.

Examples : (o^) In (<?), § 77, we have for the space in

the fifth second
5

a

as meaning

s.
\^2t - 20)dt =zUt'^ - 20 t

= 300-176 = 124.

(h) r(.^l)5^,= (^±ll7=64_1^21
6

143

L
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EXERCISES

Evaluate the following definite integrals

21.

3.

6.

7.

9.

11.

13.

2

dx

dx

Vx\x + 2)dx.

\ co^-dd.
Jo 2

J-il

Ji a;

"

C 2 COS ^ 6?^

Jo l + sin2^'

i X sin 2 a; Ja;.

^ris. -\2-.

vlns. 2. 4,

/I TT

4
6.

8.

10.

Arts. ^' 12.

4

14.

J-n - X

r^ jcjix_

Jo 4 j^x^'

\ xe^ dx.

C^ x^dx
Jo a; + 1

"

i arcsin a;c^a;.

Jo

/•log 3

I e'^^ dx.
Jo

^ns. log 2.

Ans. I log 2.

^ns. 2.

^w.s. 1.568.

TT
^4/15. -

o
1.

^n.s. 4.

15. A body falls from rest under gravity. Find the velocity at

the end of 3 seconds, and the space described in the third second.

16. A flywheel, starting from rest, rotates under an angular

acceleration of tt radians per second per second. Find the number

of revolutions made in the fourth second of motion.

17. A point describes a plane curve, the components of its velocity

at the time t being
v^ = 5, tJy = 24 - 32 1.

Find the distance of the point from its original position at the end

of 2 seconds. Ans. 18.9 ft.

99. Geometric interpretation of a definite integraL It

was shown in § 81 that the indefinite integral \f(jc)dx

represents the area under the

curve y = f(x) between a cer-

tain fixed ordinate and a vari-

able ordinate x = x. In par-

ticular, the change in this area

as X changes from a to 6 is

-X the definite integral ) f(^x^dx.
•/a

Fig. 57 Hence

;

^=J
fix)dx

a



THE DEFINITE INTEGRAL 145

TTie definite integral I f^x^dx may he interpreted as the

area hounded hy the curve y =/(a;), the x-axis., and the lines

X = a, x= h.

EXERCISES

i. Find the area bounded by the parabola 3/^ = 4 ax, the x-axis,

and the lines x = 4:a, x = 9a. Ans. -^/ a^.

2. Find the area between the curve i/ = 4: — x^ and the x-axis.

3. Find the area bounded by the curve ?/ = log x, the x-axis, and

the line x = 2.

4. Find the area of one arch of the sine curve.

100. Interchanging limits. The effect of interchanging

the limits in a definite integral is to change the sign of

the integral. For,

JfCxyx = F{b) - i^(a),

jjix)dx = F{a-)-F(b);

i.e. I f(x)dx = — I
f(x')dx.

101. Change of limits corresponding to a change of

variable. In the definite integral
j f(x)dx it is of course

%y a

implied that a and h are the limiting values of the variable

of integration x. If we cliange the variable by a sub-

stitution

x=(j>(z^,

we must either return to the original variahle before substi-

tuting the limits, or change the limits to correspond with

the change of variahle. The latter method is usually

preferable.

The new limits are found, of course, from the equation

of substitution

X = (^(2),
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as in the following

Example : Evaluate j x^\ — x dx.

Let

1— x = z^x=l— z^ dx= — dz.

When
a:=-l, 2 = 2;

when
x=l, 2=0.

Hence

j xVl — xdx= —
j (1 — 2)2^ 6?2

= fee* - ^4)^^ = I ^^ - I
^']"= - t\V2.

EXERCISES

1. Work the above example, putting 1 — x = z^.

Evaluate the following integrals.

6. f'
^^-^

. .4m. J^. 7. T-^^.^ns. (|V2-2)a.

8.
J2 1 _x4' ®'

Jo "I

^ f/x

a:'^ + 1

10. The area bounded by the parabola 3/^ = 4 ax, the x-axis, and

the latus rectum is, by § 99,

A = £ydx.

Evaluate this integral (a) by substituting for y ;
(b) by substituting

for dx and changing limits.

11. Find the area under the curve y — e'' from x — to a: = 1 by

the two methods of Ex. 10.

12. Find the area of half an arch of the cosine curve by the two

methods of Ex. 10.
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13. Given y = sin x, evaluate i xdy in. two ways.

14. The velocity of a point moving in a straight line is

y = 4 cos - •

2

Find in two ways the distance from the starting point at the end of

- seconds,
o



CHAPTER XV

THE DEFINITE INTEGRAL AS THE LIMIT OF A SUM

102. Area under a curve. We have seen in § 99 that the

area ABQD bounded by the plane curve y =f(x), the a:-axis,

and the lines x= a^ x = b is given by the definite inte-

gral
I
f(x)dx. We will now obtain a new expression for

the same area.

In what follows, the functionj^(a:j is assumed to be one-

valued and continuous, and to have only a finite number^

of maxima and minima in the interval from x = a_to x==J>;

in fact, we may suppose for definiteness that the curve

rises throughout the interval. The argument is readily

modified to fit the case when the curve steadily falls,

or rises and falls alternately.

We may evidently get an approximate expression for

the area A by dividing the

base AB into n equal inter-

vals Ax, erecting the ordi-

nates at the points of di-

vision, and taking the sum
of the inscribed rectangles

AEFD, etc. The areas of

these rectangles are respec-

tivelyFig. 58

where
f(x^Ax, f(x^)Ax,'", f(xJAx,

X-, = a.

x^ = a -\- Ax,

Xn = a -\- 2 Ax,

x^= a -{- (ii — 1)A2:

148

b — Ax.
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Hence, approximately^

A =f{x^}Ax -^f(x^}Ax 4-

i=l

Now it is geometrically evident that this sum of rect-

angles may be made to represent the area A with an error

less than any preassigned constant however small, by

taking n sufficiently large. Hence, by the definition of

§ 14, we have exactly —^-^.^

(1) A= lim ^f(Xi)Ax.

Fig. 59

A formal proof of this state-

ment may be given as follows.

Let J.J denote the sum of the

inscribed rectangles, A^ the sum
of the circumscribed rectangles

(Fig. 59). Then for all values

of n
A^< A< A^.

Now the difference between A^ and A^ is the sum of the

shaded rectangles. Sliding all these across into the last

column, we see that

A^-A^ = IO.Ax = [f(b) -/(«)]A;r.

As n increases indefinitely Ax approaches 0, so that

A2 — A^ also approaches 0. Since A always lies between

A^ and ^.g, it follows that A^ and Ac^ approach A as their

common limit. Hence we have formula (1).*

The rectangles f(^x^Ax are called elements of area. As
n increases indefinitely, each of the elements approaches :

i.e. they are infinitesimals.

* The n parts into which AB is divided need not be taken all equal;

the same limit is obtained provided the width of each rectangle approaches

as the number of divisions is indefinitely increased. Further, it is clear

that we may take the limit of the sum of either the inscribed or the cir-

cumscribed rectangles, or of any set intermediate between these t^v^o.
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Questions like that of the present article, in which we
have to deal with the limit of a sum of infinitesimal ele-

ments, will arise many times in this and later chapters.

As in every case the existence of the limit will be evident

by geometric intuition, we shall in future omit formal

proofs.

103. Evaluation of the limit. Equating the values of A
found in §§ 99 and 102, we find

A = lim y/(a:,)Aa: = f(x)dx.

Thus the limit occurring in § 102 can always be evaluated

by a definite integration.*

The fact that the quantity f(x)dx appearing under the

integral sign represents the area of a rectangle of altitude

f(x) and base dx = Aa:, and thus suggests the sum from

which the integral was derived, is the chief reason for

using the notation
j
f(x)dx (see § 77). In fact, the inte-

gral sign j is historically a somewhat conventionalized S^

meaning sum.

104. The fundamental theorem. In § 102 we have ex-

pressed the area under a plane curve as the limit of a sum
of rectangles ; in § 99 we have found the same area as a

definite integral. It is clear that the arguments used

will hold no matter ivliat may he the geometric or physical

meaning of the given function^ for any function whatever

may be interpreted as the ordinate of a point on a plane

curve. We therefore have at once the following

Fundamental Theorem for Definite Integrals :

Griven a function /(a;), continuous in the interval from

x = a to X = h, divide this interval into n equal parts A2:,

* More precisely, the limit can always be expressed as a definite inte-

gral; the actual evaluation of the integral is often impossible (see § 78).
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n

and form the sum ^f(^Xi)Ax^ where x^ = a, x^ = a -

. .., Xn=' a +(n— l)Aa;. The7i

Hence^ if in any problem an arbitrarily close approxima-

tion * to the required quantity can be found by adding up

terms of the typef(x')Ax from x = a to x = b^ that quantity

is given exactly by the definite integral I f{x)dx.

We have now presented the ^efiiiite integral in two

distinct aspects : first, as the change in the value of tHe

indefinite integral between two values of the variable

;

second, as the limit of a sum of infinitesimal elements. The

great advantage of this latter point of view will become

apparent as we proceed.

It may be remarked that if

the function f(x^ has a finite

number of finite discontinuities

in the interval from a to 6, as

in Fig. 60, it can still be inte-

grated. For it will be con-

tinuous in a number of sub- ^^^' ^

intervals such as AO^ QD^ DB^ to each of which the

fundamental theorem can be applied and the results added.

105. Plane areas in cartesian coordinates. Not only the

area considered in § 102, but any plane area bounded by

curves whose equations are given in cartesian coordinates,

can be found as follows. Imagine inscribed in the area a

set of n elementary rectangles of altitude h^ and width AZ,
n

in such a way that the sum V ^^A^ may be made to repre-
<=i

* That is, an approximation in which the error may be made less than

any preassigned constant.
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Quer^e area to any desired degree of approximation by

hav" rising n. Then at once, by the fundamental theorem,

A= lim V7z,A/= ChdU

the limits being chosen in such a way as to extend the

integration over the whole area. Of course in any par-

ticular problem li and dl must be ex-

pressed in terms of the coordinates.

In every problem the student should

make a sketch of the area to be found,

draw an element in a general position,

and obtain the area of the element directly

from the figure, as in the following

Examples: (a) Find the area in the

first quadrant bounded by the parabola

?/2 = 4:ax, the a^-axis, and the line x— a.

An arbitrarily close approximation to

this area can be found by forming a sum
of rectangles of altitude y, base dx^ and area y dx^ as

shown in Fig. 61. Hence, we have exactly

ra /»«
2 2 i'A= \ y dx = 2 \ \:ax dx = ~ • - (ax^ ^

Jo "^ Jo [ ^a 3^ ^

(K) Find the area in the first quadrant

between the parabolas

(1) y^ = -^ ^^,

(2) ?/2 = 8a2:- 4^2.

Let us take as the element a rectangle

parallel * to OX. The area of the rect-

angle is evidently (x^ — x^dy, where x^

and x^ are the abscissas of the points on

the curves (1) and (2) respectively. The fig. 62

Fig. 61

= -a^

*That is, with its finite side parallel to OX.
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curves are found to intersect at (a, 2 a). Hence

A =r(r,^ - X,) dy=r(f + 5 -Pjdy
*^o ^0 V8 a 2 4 aj

'£
\:^ SaJ ^ 12 24a

2= - a^.
3

EXERCISES

1. Find the area bounded by the curve y = x^ and (a) the lines

y = 0, X = 2, (h) the lines x = 0, y = 1.

2. Solve example (a), § 105, taking the element parallel to OX.
Evaluate the integral in two ways.

3. Find the area bounded by the curve ay'^ = x^ and the line

X = '^a. Ans. i|^ a"^.

4. Find the area of a circle (see Ex. 52, p. 136).

5. Find the area of an ellipse, using the cartesian equation ; check

by using the equations x = a cos
(f>, y — b sin cf) (see Ex. 51, p. 136).

A ns. irab.

6. Find the area of half an arch of the curve y = I cos 2 x.

7. Find the area between the parabolas y^ = 4:ax and x^ = 4 ay.

A71S. 1/ a-.

8. Show that the area bounded by a parabola and any chord

perpendicular to the axis is two thirds of the circumscribing

rectangle.

9. Find in two ways the area bounded by the parabola y = x'^, the

?/-axis, and the lines y = 1, y = 4.

10. Find the area bounded by the curve y — log x, the axes, and the

line ?/ + 1 = 0.

11. Find the area bounded by the curve y = log x, the x-axis, and

the line x =2. Ans. 0.386.

a I - — ^\
12. Find the area under the catenary ?/=-(ga+e aj, from

X — — a \iO X = a. An^. aP-\ e

e

13. Find the area between the curve x^ = 4 a^ — ay and the x-axis,

taking the element («) parallel to 0Y\ {h) parallel to OX.Ill
14. Find the area bounded by the parabola X'^ -\- y'^ = a'^ and the

coordinate axes. Ans. ^a^.
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15. Find the area of a circular segment of height h. Check by-

putting A = 2 r.

16. Find the area of one arch of the cycloid x = a(6 — sin 6),

y = a(l — cos 6). Ans. 3 na^.

17. Find the area bounded by the curves y = x, y = 2 x, y = x^.

Ans. |.

18. Find in two ways the area in the first quadrant bounded by the

curves y = x^, x'^ = 2 — y, y = 0.

19. Find in two ways the area bounded by the curve y=(l — x^y
and the a;-axis.

20. Find the area bounded by the curve y =(x — Sy^(x — 2) and

the a'-axis.

21. Find the area bounded by the curve y = —^—-, its asymptote,

and the maximum ordinate. Ans. 0.698.

22. Trace the curve y^(x'^ + a"^) = aP'x'^, and find the area bounded

by the curve and the line x = a. Ans. 0.83 a^.

23. Trace the curve ay- = ax^ + x^, and find the area of the loop.

24. Find the area bounded by the curve y^ = x^(l + x) and the

ar-axis. Why is the answer negative ?

25. Trace the curve y = ;- , and find the area under the curve

from X = - 2 to X :ir 0.
^ + ^^

^^,^ j 37_

26. Find in two ways the area bounded by the coordinate axes and

the curve y^ = 1 — 2 x — xy.

27. Find the area of the circle x = a sin 2 6, y = a cos 2 6.

28. Find the area bounded by the curve y = —^—, the a:-axis, and

the maximum ordinate. Ans. ^.

29. Find the area in the first quadrant under the curve y^ = ,

X — I

between the minimum ordinate and the ordinate at a;= 3. Ans. 2.05.

30. Trace the curve y^ = x'^(x+ 4:), and find the area inclosed by it.

212
Ans. ——

.

105

106. Plane areas in polar coordinates. Given the equa-

tion

of a plane curve in polar coordinates, let us try to find the

area bounded by the curve and the radii vectores corre-
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spending to 6 = a, 6 = /3. We can obtain an arbitrarily

close approximation to the area by inscribing in it n circu-

lar sectors of radius r^ and angle A^,

hence of area* | r,^A^, and forming
n

the sum V
J
r,^A6. Hence, by the

fundamental theorem,

i=l

By means of a theorem to be ^^^- ^^

proved in § 109, it can be shown that this result may
also be obtained by choosing as the element a triangle

of altitude r^, base rjA^, and area J r'jAB.

EXERCISES

1. Find the area swept out by the radius vector of the spiral of

Archimedes r=a6, in the interval from ^ == to ^ = 2 tt.

2. Solve Ex. 1 for the logarithmic spiral log r = a6.

3. Find by integration the area of the triangle bounded by the lines

r = a sec 0, B = (), 6 = — •

4

4. Find the area inside the lemniscate r^ = a^ cos 2 6. Ans. a^.

5. Find the area of the curve r^ = a^ cos $.

6. Find the entire area of the cardioid r = a(l+ cos 0) . Ans. f ira^.

n
7. Find the area between the parabola r = a sec'-^- and its latus

rectum.
"

Ans.^a^.

8. Find the area of the curve r = a sin 2 6. Ans. ^wa^.

9. Show that the area of one loop of the curve r = a cos nO is

2

, hence the total area inside the curve is one fourth or one half the
4 71

area of the circumscribed circle, according as 7i is odd or even.

* By elementary geometry, the area of a circular sector of radius r

and angle a is

A = l r^a.



156 CALCULUS

107. Volumes of revolution. The volume of a solid of

revolution may be found very readily by the fundamental

theorem.

Suppose the volume

is generated by revolv-

ing the area ABCD
about the line AB. If

we inscribe in the re-

volving area a set of

n rectangles of alti-

tude r» and- base AA,

each rectangle will gen-

erate in its rotation a

circular disk^ or cyl-

inder, of radius r^, alti-

tude Ah, and volume

irr^Ah. Further, as n

increases the sum of

these cylindrical vol-

umes approaches as its

limit the required vol-
FiG. 64

b
ume. Hence, by the fundamental theorem,

i=l

the limits being chosen so as to include the whole volume.

Of course in any problem both rand dh must be expressed

in terms of the coordinates.

When the axis of revolution does not form part of

the boundary of the revolving area, we may choose as

elements a set of circular rings, as in example (6)

below.

Examples : (a) The area in example (a), § 105, revolves

about OX. Find the volume generated.

Dividing the area into elements as in Fig. 61, we see



DEFINITE INTEGRAL AS LIMIT OF A SUM 157

that each rectangle generates a cylindrical volume-element
of radius ?/, altitude dx^ and volume iry'^dx. Hence

V="X'y^
dx — \iTa\ xdx= 27ra^.

(6) The above area rotates about OY.
Find the volume generated.

If we divide the area into elements as

in the figure, each element generates a

circular ring of outer radius a, inner

radius x^ thickness dy^ and volume

ir^a^ — ^^dy. Further, the limit of the

sum of these volumes is the required

volume. Hence

F= 'rr£\a'^ - x^)dy = ttJ'Y^^ -

Fig. 65

y'

16 a^
dy

r_
80 a^

= -Tra*-

This result could have been obtained equally well by
finding the volume generated by rotating the area OBQ
about Oy, and subtracting this from the volume of the

cjdinder formed by revolving the rectangle OABQ.
But in case it is possible to simplify the integral before

integrating, as often happens, the first method is to be

preferred.

108. Volumes of revolution : second method. The fol-

lowing method for finding volumes of solids of revolution

is often preferable to that of § 107.

Let us take as an element of the area ABO (Fig. (^6^ a

rectangle of length hi parallel to the axis of revolution AB^
and of width Ar. This rectangle generates by its rotation

a cylindrical shell of inner radius r^, altitude A^, and thick-

ness Ar. The volume of the shell is evidently

7r(ri -t- Ar')Vii — irrfhi = 2 TrrihiAr + Tr/^^Ar^,

and the limit of the sum of these elementary shells is evi-
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dently the required volume. Now it will be shown in the

next article that, in passing to the limit, we may neglect

the infinitesimal of higher

order* 7rhiAr\ Hence, by

the fundamental theorem,

Fig. 66

II

V= Urn ^ 2 TTTihiAr

= 2Tr Crh dr,

the integration being ex-

tended through the whole

region.

This result is easily re-

membered from the fact

that the integrand is the

differential of volume of

a right circular cylinder, the altitude being constant:

F=7rr2A, dV=2 7rrhdr.

Example : Solve example (6), § 107, by the present

method.

Divide the rotating area into rectangles parallel to OF,

as in Fig. 61. Each rectangle generates a cylindrical

shell of radius x, altitude g, and thickness dx. Hence

V= 2 TT
j

xg dx= 4: ira^ I x^ dx = f ira^.

109. A theorem on infinitesimals. It often happens, as

in the preceding article, that in applying the fundamental

n

* This is easily shown directly. The quantity neglected is ^ vhi^r^.
n i=l

This may be written irAr^ hi^r. When Ar approaches 0, the sum
n 1=1

^ hiAr approaches a finite limit, viz. the generating area, so that the

1=1

whole quantity approaches 0.
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theorem we have to replace the element as originally

chosen by another element differing from the first one by

an infinitesimal of higher order. That this is allowable

appears from the following

Theorem; The limit of a sum of positive infinitesimals

is unchanged when each infinitesimal is replaced hy another

that differs from it hy an infinitesimal of higher order.

It follows that, in taking the limit of such a sum, all in-

finitesimals of higher order may he neglected^ as was done in

§108.

In this connection it should perhaps be mentioned ex-

plicitly that two infinitesimals differ from each other by

an infinitesimal of higher order whenever the limit of their

ratio is 1, and conversely.

To prove the theorem, let Wj, 2^2' ••' ^n be a set of posi-

tive infinitesimals such that lim ^ ^» exists; and let Vj,

^2, •••, v„ be another set such that Vi differs from u^ by an

infinitesimal of higher order

:

^t = "^i + «^t?/t,

where w^ is infinitesimal. Then
n n n

lim 2 Vi= lim ^Ui-^ lim ^ ?/\Wj.

Denoting by w the absolute value of the largest of the t^'s,

we have
w n n

-W^Ui<^ Willi ^W^Ui.
t=l i—\ t=l

Since the first and third of these quantities both approach

0, the second must do likewise. Hence

n n

lim ^ Vi — lim ^ w^,

and the theorem is proved.
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EXERCISES

1. Find the volume of a sphere.

2. Find the volume of a right circular cone.

3. The hyperbola x^ — y'^ = a^ revolves about its transverse axis.

Find the volume of a segment of height a of the hyperboloid gen-

erated. Ans. |7ra3.

4. Find the volume generated by revolving the four-cusped hypo-

cycloid a;3 + 3/3 _ ^3 about OX. Ans. j%% ira^

5. Find the volume generated by revolving the area under the

curve ?/ = e^ from x = to x = 1 (a) about OX; {b) about OY; (c)

about the line x = 1. Ans. (c) 2 7r(e — 2).

6. The area under one arch of the sine-curve revolves (a) about

OX; (b) about OF. Find the volume generated.

Ans. (a) ^i (b) 2 7r2.

7. Find the volume obtained by revolving about OX the area
X X

under the catenary ?/ = -(ga + e «), from x = — a to x = a.

Ans. —7-

4 V^'-i)
8. The area OBC of Fig. 65 revolves (a) about the line CB

;

(b) about AB. Find the volume generated; check by solving in

two ways.

9. Find the volume of an oblate spheroid, using («) the ordinary

equation of the ellipse; (6) the parametric equations a; = acos<^,

y = bsm^. Solve each part in two ways. A71S. f Tra^ft.

10. The area in example (b), § 105, revolves about OX. Find the

volume generated.

11. Find the volume of a spherical segment of height h. Check

by putting h = 2 r.

12. Trace the curve a'^y'^ = x^(2 n — x), and find the volume gen-

erated by revolving the curve about the a:-axis.

13. Find the volume generated by revolving (a) about OX, (b)

about OY, the area between the curves 2 y =^ x^, y = x'^. Check the

results by solving in two ways.

14. Trace the curve (x — 4 a)y'^ = ax(x — 3 a), and find the

closed volume generated by revolving it about the a:-axis.

Ans. 6.12 a3.
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15. The curve y^ = x(x — l)(x

Find the closed volume oeuerated.

2) rotates about the a;-axis.

A ns. — •

4
16. Find the volume generated by revolving one arch of the cy-

cloid X = a(0 — sin 0), ij = a(l — cos 0) about the ar-axis. Ans. 5 ir^a^.

17. Trace the curve y(^x^ + y^) = a(^"^ — y'^), and find the volume

generated by revolving the loop about OY. Ans. 0.053 ira^.

18. Find the volume of a torus. Solve in two ways. Ans. 2 Tr^a%.

19. The area bounded by the curve y = (1 — x-)^ and the a:-axis

revolves about the ?/-axis. Find the volume generated, (a) by the

method of § 107 ; (h) by the method of § 108. In (a) evaluate the

integral in two ways, first by substituting for x^, next by substituting

for dy.

20. Trace the curve a^y'^ = a^x'*^ — x^, and find the volume gener-

ated by revolving one loop about OY. Ans. ^^ ira^.

21. A round hole of radius a is bored through the center of a

sphere of radius 2 a. Find the volume cut out.

22. Find the closed volume generated by revolving the curve

X^Cx^ Q, ^
y~ =—^, .—T- about the x-axis. Trace the curve. Ans. 0.072 ttci^.

23. Find the volume inside the cylinder x- + ?/- = 2 a^ and outside

the hyperboloid x^ + y'^ — z^ — a'^. A7is. | ira^.

24. Find the closed volume generated by revolving the curve

y- = x-^(x + 4), (a) about the x-axis, (b) about the ^/-axis.

25. Find in two ways the

volume generated by revolv-

ing about the ?/-axis the area

bounded by the curve y =
X

and the coordinate axes.

110. Other volumes.
The volume of any solid

can be expressed as a defi-

nite integral, provided we
know the area of every

plane section parallel to

some fixed plane. Let us

divide the volume into

slices of thickness Ah by
M

Fig. 67
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means of n planes parallel to this fixed plane. If on each

of these plane sections we erect a cylinder of altitude Ah
and base A^ where A is the area of the section, the sum
of the n cylindrical volumes thus formed will be approxi-

mately the required volume, and the limit of this sum
will be exactly the volume. Hence

V= limXAi^h = fAdh,
n-^QC t=l *^

with properly chosen limits.

Example : A woodsman chops

halfway through a tree 4 ft. in

diameter, one face of the cut

being horizontal, the other in-

clined at 45°. Find the volume

of wood cut out.

The figure shows one half of

the required volume. If we slice

up the volume by planes parallel

to the ^2-plane, the element of

volume is a triangular plate of

width 1/, altitude 2, and thickness

dx. Hence

V= 2 Pj ^z dx.

But

Fig. 68

so that

2 = y, and 2/ = V4 — X'

V= r(4:-x^}dx=5^cu.
Jo

ft.

EXERCISES

1. Solve the above example in a different way.

2. Find the volume of a tetrahedron with three mutually perpen-

dicular faces. Ans. ^abc.

3. Find the volume sliced off from a right circular cylinder by a

plane through a diameter of one base and tangent to the other base.

Ans. I rt^A.
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4. Find the volume of a right pyramid with a square base.

5. Find the vohime of an ellipsoid, using the answer to Ex. 5,

p. 153. Alls, ^irabc.

6. Find the volume of an elliptic cone. Ans. ^ Trabh.

7. Find the volume of a spherical wedge. Ans. f aa^.

8. Find the volume of a wedge cut from a right circular cone by

two planes through the axis. Ans. i aa%.

9. Obtain a formula for the volume of a wedge cut from any

solid of revolution by two planes through the axis.

10. A carpenter chisels a square hole of side 2 in. through a round

post of radius 2 in., the axis of the hole intersecting that of the post

at right angles. Find the volume of wood cut out. Ans. 15.3 cu. in.

11. Find the volume cut from the cylinder x'^ + t/'^ = a^ by the

planes z = ?nx, z = nx. Solve in two ways.

12. A right circular conoid is generated by a straight line which
moves always parallel to the a:y-plane and passes through the line y = h

in the ?/2-plane and the circle x'^ -{- z^ = a^ in the xs-plane. Find the

volume of the conoid. Ans. | ira^.

13. Find the volume in the first octant bounded by the hyperbolic

paraboloid generated by a straight line moving always parallel to the

z?/-plane and passing through the lines y + z = a in the yz-plane and

X = b in. the a^s-plane. Ans. ^ a%.

14. A banister cap is bounded by two equal cylinders of revolution

8 in. in diameter, whose axes intersect at right angles in the plane of

the base of the cap. Find the volume of the cap in two ways.

15. Find the volume of a right pyramid whose base is a regular

hexagon.

16. Find the volume in the first octant under the plane z = x and

inside a cylinder standing on the parabola ?/ = 4 — a;^ as a base. Solve

in two ways.

17. Solve Ex. 12 if the line ?/ = A is replaced by the line y -\- z = h

(/i>a). Ans. ^TTO^h.

18. Solve Ex. 13 if the line x = b is replaced by the line x = z.

19. Find the volume in the first octant bounded by the planes

X \- z = a, X + 2^ + 22 = 2 a.

111. Line integrals. The ordinary definite integral

depends on all the values of a given function /(a:) along

a straight line segment— the segment of the a;-axis from
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Fig. 69

x= a to X = h. It happens frequently that we have to

compute a quantity that depends in a similar way on the

values of a function F along a curvilinear arc 0. The
function F is in general dependent on both coordinates of

the point on the curve :

F= Fix, y).

But since y is given as a function of x by the equation of

the curve, the function F(x^ y) reduces at once to a func-

tion of one variable.

Given a function F(x, y) de-

fined at all points of a plane

curve (7, let us inscribe in C a

broken line of n segments As/

having equal projections ^x on

the a:-axis, multiply each seg-

ment by the value of F(x^ ^/) at

the corresponding point of division* P^ (Fig. 69), and form
n

the sum of these products, 2j -^fe^ Vi) ^^l ' The limit of

this sum, as the number of divisions becomes infinite, is

called the line integral of F(^x^ y) along the arc (7, and is

denoted by the symbol j F{x^ y) ds :

lis.% ^(^i' y^^'l =£^(^^ y) <^'-

112. Geometric interpretation of the line integral. The

existence of the limit last written may be made evident

geometrically. Let us interpret the function F(^x^ y) as

the 2-coordinate of a point on a surface in space :

(1) z = F(ix,y).

* It is of course merely for convenience that the broken-line segments

are drawn with equal projections on OX. Tlie division may be made in

any manner provided in the limit every segment approaches 0. Further,

Asj' may be multiplied by the value of i^(x, y) at either end-point of ASj'

or at any point on the subtended arc.
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On the curve C as directrix erect a cylindrical sur-

face with generators perpendicular to the rr^z-plane.

Each of the quan-

tities F(Xi,yi) As/

represents the area

of a rectangle in-

scribed in this cyl-

inder, having a

base As/ and an al-

titude F(x^^ 1/i), and

the sum of these

rectangles evi-

dently approaches

as its limit that

part of the cylin-

drical surface ly-

ing between the a;^-plane and the surface (1).

113. Fundamental theorem for line integrals. The
theorem of § 104 takes the following form for line in-

tegrals :

Given a function FQx^ ?/) defined at all points of an arc

C, iyiscrihe in the arc a broken line of n segments As/ having
n

equal projections on OX, andform the sum ^ F{Xi, t/i) ASi,

where (xi, y^ is the i-th point of division on C. Then

Urn V Fix^. y^)As^ = (f(x, y)ds.

Fig. 70

n-^cc
t=l

Hence, if in any problem an arbitrarily close approxima-

tion to the required quantity can be found by addi?ig up

terms of the type F(^x, y')As', the quantity is given exactly

114. Evaluation of line integrals. To evaluate a line

integral, we have in general to express both F(^x, ?/) and

ds in terms of x, y, or some other suitable variable, and
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then integrate between limits in such a way as to extend

the integration over the given arc.

Thus, if X is chosen as the variable of integration, we
replace ds by its value (§ 52)

^^=Vi+(tT^-'\dx)

and obtain

JFix, y-)d»=£Fix, y)^ll +(^)V
where a and b are the abscissas of the end points of C,*

and where y must be replaced by its value in terms of x

from the equation of the curve, f

- * It is assumed that no parallel to the y-Rxis can meet C in more than

one point. If this condition is not satisfied, C must consist of several

portions for each of which the condition holds, and each portion may be

considered separately.

t This transformation of the line integral into an ordinary integral

may be justified by the theorem of § 109. We have evidently

ASi' = Va^' + A^'=\ 1 + ^Ax.^ Ax

Now the limit of the sum ^ F (Xi, Pi)^! + ^^ Ax cannot be ex-

!=i Ax^

pressed directly as a definite integral by the theorem of § 104, since the

summand depends not only on Xi but on Ax as well. But the infinitesi-

mals F(Xi, ?/i)\/l -\--=2^^ ^^^ F{Xi, yi)y/l + y''^ Ax differ from each
Ax

other by an infinitesimal of higher order, since the limit of their ratio is

evidently 1, and hence the latter may be substituted for the former, by

§ 109. Therefore

\ F{x, y)ds = lim V F(x,, ?/,)\/l +^ Ax
JC n->oo ^ ^ Ax^

n

= lim V F(Xi, yi)Vl+yi'2Ax

= Cf(x, 7j)y/l + y'-^dx,
Ja

by the fundamental theorem of § 104.
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To integrate with respect to ^, we put

and express the entire integrand in terms of y.

If X and y are given in terms of a parameter t^ we use

In the discussion of line integrals, we have spoken in

terms of cartesian coordinates, but the argument is evi-

dently independent of the particular coordinate system

used.

Some simple types of line integrals are considered in

the next three sections ; other examples will be met with

later.

115. Length of a curvilinear arc. To find the length of

an arc of a plane curve (7, we proceed as follows : Inscribe

in Q a broken line of n segments As/ as in § 111, and
n

form the sum V As/. This sum is of course the length of

the broken line, and its limit is the length s of the arc. It

is evidently the line integral I c?s, the given function in

this case being ^{x^ y')-—!:

s= lim VAsJ=fds.

The process of finding the length of a curve is some-

times called rectification of the curve.

Example : Find the circumference of the circle

x^ -\- y^= a^.

Here
dy _ _x
dx y^
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i C dx= 4a I —r^:=
X= 4 a arcsin -

Va2 - x^ «.

= 2 7ra.

EXERCISES

1. Find the circumference of the circle x = a cos 9, y = a sin ^.

2. Rectify the semicubical parabola ay^ = x^ from a:.= to a: = 5 a.

Ans. -^T^j^-a.

3. Trace the curve 9 y"^ = 4:(1 + x-y, and find its length from
i: = to a; = 2.

4. Rectify the catenary 3/ = - [e« + e~o
J

ylm. -232.

e <»

2 2

from a: = to a: = a:

2\
2. L ^

5. Find the length of the four-cusped hypocycloid x^ -^ y^ = a^

Ans. 6 a.

6. Rectify the curve x = t% y = fi from ^ = to ^ = VS.
5

7. Find the length of the curve y = ^x^ between the origin and

the point a; = 4. Ans. ^^^(l+ev^).

8. Find the length of one arch of the cycloid. Ans. 8 a.

9. Trace the curve

9 ay'^ = x{x — 3 a)^,

and find the circumference of the

loop. Ans. 4 a V3.

10. Find the length of the curve

y — e^ from a: = to ar = f log 2.

116. Surfaces of revolution.

The surface generated by the

rotation of a plane curve

about a line AB in its plane

is easily expressed as a line

integral.

Fig. 71 Let US inscribe in the curve
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Q a broken line of n segments As/ . Each of the segments

As/ generates in the rotation the frustum of a right cir-

cular cone, the radii of whose bases may be called r^ and

r^ -\- Ar^-. The surface of this conical frustum is, by ele-

mentary geometry, the circumference of the middle sec-

tion multiplied by the slant height, or ^ir^r^ -h |^Ar^)As/.
n

The sum of these surfaces, V 2 7r(rj + \ Ar^)As/, ap-
1=1

proaches as its limit the required surface of revolution.

Hence, by the theorems of § 113 and § 109, we have

S= lim V2'rrnAs/ =2-17 r ds.

Example: Find the surface of a paraboloid of revolu-

tion bounded by a right section through the focus.

Given the equation of the generating parabola ?/^ = 4 ax^

we have

= 2 TT r%\/l + ^dx =1iT fV?/2 + 4 ^2 dx

= 2 TT
I
V4 ax -\- iaP'dx = (^ax + a^) ^

Jo a 3
.

= |7r«2(2V5-l).

EXERCISES

1. Work the above example, using y as the variable of integration.

2. Find the surface of a sphere, using polar coordinates.

3. Find the surface of a sphere, using cartesian coordinates.

Evaluate the integral in various ways (cf. Ex. 10, p. 146).

4. Find the surface generated by revolving the cubical parabola

a^y = x^ about OX, from x = to x = a. Ans. ^ (10 VIO - 1).
27

5. Find the surface generated by revolving (r/) about OX, (h)

about OY, the arc of the carve y =
'

between the minimum point
6 X . ^

and the point x = 2. A ns. (a) i^; {h) ^(15 + 4 log 2).
16 4
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1 x^
6. Trace the curve ?/ = - log x — ~ (cf. § 69), and obtain the sur-

face generated by revolving the curve about OY from x = 1 to x = 2.

Arts. 10.47.

7. Find the surface generated by revolving the catenary
_a '- _£

y — 2 (e** + e "), («) about OZ, (b) about OF, from a; = to a; = a.

Ans. (b) 27ra2^1--].

8. Find the surface generated by the revolution of an arch of the

cycloid about its base. Ans. %* Tra^.

9. Find the surface of a torus. Ans. Aiir'-ah.

10. Find the entire surface generated by revolving the curve

8 aV = a:2(a2 _ a;2) about OZ. Ans.^ira^

11. Find the surface formed by revolving the four-cusped hypo-
1 2. 2

cycloid x^ + y^ = a^ about OX. Ans. '^^ira^.

12. Find the surface cut from a sphere by a circular cone of half-

angle a with its vertex at the center of the sphere.

117. Cylindrical

surfaces. Given a

cylinder whose di-

rectrix is a plane

curve (7, the area of

any portion of the

cylinder may be

found as follows

:

Inscribe in (7 a

broken line of sesf-

ments As/, •••, As„',

and inscribe in the

required area a set

of rectangles of alti-

tude A< and base AsJ. The limit of the sum of these rect-

angular areas is the area on the cylinder

:

n ^
S= lim VhiLSi' = \ hds.

Fig. 70



^
DEFINITE INTEGRAL AS LIMIT OF A SUM 171

Example : Find the area on the cylinder oi^ -\- z^ = a^

included between the planes y = 0^ y = mx.

Denoting by O the circular arc APB, we have

aS' = 4J yds = -i\ mx^l

= 4m| x\l -]
— dx

i C^xdx= 4 ma I

Jo z

= — 4 ma
I

(?2 = 4 ma'^.

Fig. 72

EXERCISES

1. In the above example, find the area of the section cut by the

plane y = mx.

2. Find the surface of the cap in Ex. 14, p. 163. Ans. 128 sq. in.

3. Find the surface of the cylinder x^ + y^ =a^ included between

the planes z = x, z = 3 x.

4. Find the surface cut off on the cylinder x"^ + y^ = a^ by the

paraboloid of revolution x'^ -\- y^ = hx Ans. 2 7r

5. Find the area, in the first octant, of the section of the cone

x^ — 2/^ + 2'^ =1 by the plane x -\- y = a.

6. The center of a sphere of radius 2 a is on the surface of a cyl-

inder of radius a. Find the surface of the cylinder intercepted by

the sphere. Ans. 16 a^.

7. Find the surface on the cylinder z^ = Alqx inside the cylinder

y2 = 4 ax, from x = to x = "d a. Ans. ^^ or.

8. Work the example of § 117, using polar coordinates.



CHAPTER XVI

INTEGRAL TABLES

118. Use of tables. In the solution of problems in-

volving integration, the work may frequently be much
shortened by the use of a table of integrals. Many such

tables have been prepared ; the references below are to

B. O. Peirce's Short Table of Integrals (Ginn & Co.).

The chief object in using a table is to save time. The
student is therefore not making the best use of the table

unless he is so familiar with its contents and arrange-

ment that he can tell at a glance whether the desired

formula is likely to be given and where it is to be

found. Further, it should be remembered that in many
cases the result may be found by the methods of Chap-

ter XII in less time than would be required if the table

were used.

—
x{\ — x^;(1 — aP")

Let us use formula bS of the table, with a = 1,

s,
dx 1

1

x^
lop-

J
^2 2
I a^e^ dx.

This integral is not given explicitly in the table, but

it resembles formula 402. Making the substitution

a:2 = 2, 2xdx= dz^

we find

j A'^'^dx = \j ze''dz= ^e'(z— l)

'
172

4— 3.~ 2 +h
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EXERCISES

Evaluate the following integrals, using a table whenever a saving

of time may be effected by so doing.

1. C^—'I^ ., Ans. \ arctan " ^ + ^ + C.

2. j
- "

"^

zr. vln.s. log ( Vl + a; + x"-^ + a: + |) + C
Vl + a: + a;2

. c fix
g

r^_^_^/^^
J (1 +x-)'^* -^ (1 -2x)2'

6. fxVl + ^-r/x. 7. C ^^^^ .

J *^ (1 + 3 xy

8. ixy/\ — xdx. 9. I sin'* a- (/x.

0. I 11. Xxcosx^dx.
•^ \ + cos X ^

2. fx'V'^a:. 13. ^xh-^ dx.

4. i arcsin x f/ar. 15. \\o^^xdx.

6.

i arcsin x f/ar. 15. j log"^

C" __^dx__^
yj p I

»/o ,/.,2 I ^2
* ^0 ,/;;2

//y

Vft^ + x'^
*^° V«^ + //'^

^ j^ V2; + t'^dt: Ans. Va - i log (2 + V3).

flog 2 .
71-

>•

J Ve^ - 1 dx. Ans.2--^-

20. Find the area bounded by the hyperbola x^ — if- = o?- and the

line X = 2a.

21. Find the length of the arc of a parabola from the vertex to the

end of the latus rectum. Ans. 2.29 a.

22. Find the surface generated by rev^olving the curve y — e"" about

OX from a: = to :c = 1.

23. Find the area inside the four-cusped hy^Docycloid x = a cos^ 6,

y = a sin^O. Ans. f Tra^.

24. Find the area of the ellipse r= ;:, where e is the
^ . .^ 1 + e cos^

eccentricity.
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25. Find the volume generated by revolving one arch of the cycloid

about its base. Ans. 5 Tr^a*.

26. Find the surface generated by revolving the curve 3 a^x + y^ =
about OF from y = to y = a.

27. Find the surface generated by revolving one arch of the sine

curve about the a:-axis. Ans. 2 7r[V'2 + log (1 + V2)].
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IMPROPER INTEGRALS

119. Definitions. Definite integrals in which either or

both of the limits of integration are infinite, and also those

in which the integrand becomes infinite within the inter-

val of integration, are called improper integrals. Such in-

tegrals have no meaning under the definitions so far laid

down (see §§ 98, 102) ; we proceed to show how they may
arise, and to find under what conditions a meaning can be

assigned to them.

Examples : (a) The area under the curve y = —^ from

a; = 1 to a: = 6 is evidently

•^1 X^ X

x'-

When h becomes infinite, the area approaches the limit 1.

This limit we define as the area " bounded " by the curve,

the a:-axis, and the line a: = 1, although it is not properly

a bounded area in the usual sense of the term. Symboli-

cally we write

r dx^_X
*^\ x^ x_

175

= 1.
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The first thought might be that the area in the figure

would increase indefinitely as the right-hand boundary
recedes. Our result shows that this is not the case — the

area is always less than 1. .

(5) The area under the curve

x'lp' = 1 from x= a (a> O') to a; = 1 is

A = r^ = 2Vx
^" ^x

= 2-2V^.

When a approaches 0, the initial ordi-

nate becomes infinite ; the area ap-

proaches the limit 2. This limit we
define as the area in the first quadrant
" bounded " by the curve, the axes,

and the line x== 1. For brevity, we
write merely

X = 2

Fig. 74

'0 ^x
but it must be borne in mind that the

geometric interpretation is quite different from that of the

ordinary integral.

(<?) Let us try to find the area under the curve y — —
x^

from x = — 1 to a: = 1. If we were to work carelessly,

without noticing that the integrand becomes infinite

within the interval, we might write

1

• -1 X^ X,
= -2,

which is obviously absurd. But if we write

dxA — lim I —- -f lim I

-ll-Vlhnf-iT.
X^-l «"^-oL XJa'*

lim
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it is clear that the limits do not exist, and the area-integral

has no meaning.

These examples suggest the following definitions

:

f (x) dx = lim I f(x) dx ;

I
f{x}dx= lim I f{x^dx^

provided the limits exist.

2. If fix) becomes infinite as x-^h~^

\ f{x)dx= lim I f{x}dx;

\if(x) becomes infinite as 2:->a+,

fQc)dx=\\m
I
f{x)dx^

provided the limits exist.

3. If /(a:) becomes infinite as a;->c, where a < c < b,

Jrb re' .
rb

I f(x)dx= lim I f\x^dx-{- lim I /{x^dx^

provided the limits exist.

120. Geometric interpretation. It is obvious that an in-

tegral with an infinite limit may be interpreted in general

as the area under a curve which is asymptotic to the 2:-axis
;

an integral whose integrand becomes infinite may usually

be thought of as the area between a curve and a vertical

asymptote. Of course, as in example (c) of § 119, these

integrals may not have any meaning in a given case.

EXERCISES

Evaluate the following integrals.

1- («) C~'^ Q^) T— 5 (0 Tcosxr/x; (^0 C e^dx.

Ans. (a) i; (Jj) meaningless; (c) meaningless; (d) ^.

2. \ — '

Ans. TT. 3. i ^- Ans. Meaningless.
^-Wl-x^ ^0 X

4. r — Ans. 2. 5. C" ^^
• Ans. 2\/2^.

^ ^ Vx ^^ V2a-t
N
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6. Trace the curve y = — — , and find the area between the

curve and its asymptote. Ans. 4:7ra^.

7. Find the volume generated by revolving the area of Ex. 6

about the asymptote. Ans. 47r%^.

8. Find the area in the fourth quadrant bounded by the curve

xy^ = (x — 1)'-^ and the coordinate axes.

9. Find the area in the second quadrant under the curve y = e''.

10. Find the volume generated by revolving (a) about OX,
(b) about OY, the. area in the second quadrant under the curve y = e'.

Ans. (a) |; (6) 2 7r.

11. The area in example (6), § 119, revolves about the ?/-axis.

Find the volume generated.

12. Find the surface generated by revolving about OX that portion

of the curve y = e"^ which lies to the left of the ^-axis. Ans. 2.29 tt.

13. Trace the curve x(x — yY = a^, and find the area bounded by
the curve, the ?/-axis, and the line a; = 4 a. Ans. 2 a^.

14. Find the volume generated by revolving about OY the area

under the curve y = e~2=^\ Check by solving in tvv^o ways.



CHAPTER XVIII

CENTROIDS. MOMENTS OF INERTIA

I. Centroids

121. Mass; density. The student is assumed to be

familiar with the idea of mass as introduced in physics.

A mass is said to be homogeneous if the masses contained

in any two equal volumes are equal. In all other cases

the mass is heterogeneous. In the present chapter we con-

fine our attention to homogeneous masses.

The density S of a homogeneous mass is the ratio of the

mass Mio the volume l^that it occupies :

V
That is, the density is the mass per unit volume.

Although every physical mass occupies a certain volume

or three-dimensional portion of space, nevertheless it is

frequently desirable to introduce the idea of the material

particle^ or geometric point endowed with mass.* The
mass-point may be imagined as the limiting form ap-

proached by a body whose dimensions approach 0, while the

density increases in such a way that the mass remains

finite.

Similarly we may think of masses of one dimension and

of two dimensions— i.e. of material curves and surfaces.

Such masses are represented approximately, for example,

by slender wires and thin sheets of metal. In these cases

we define the density as "linear density," or mass per

unit length,

S

* This notion is fundamental in studying the motion of a rigid body.

179
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and "surface density," or mass per unit area,

respectively.

122. Moment of mass. The product of a mass m, con-

centrated at a point P, by the distance Z of P from a given

point, line, or plane, is called the moment* of m with re-

spect to the point, line, or plane. Denoting this moment
by (x, we have

Q — ml.

If a system of points P^ P^^ •••, P„, having masses Wj,

jTZg, •••, m^ respectively, be referred to cartesian coordinate

axes, the moments of the system with respect to the three

coordinate planes are respectively

n

^1
n

In case the particles all lie in one of the coordinate

planes, the moments with respect to coordinate planes

reduce to moments with respect to coordinate axes.

The idea of mass-moment may be extended to the case

of a continuous mass by thinking of 'the mass as composed

of an indefinitely large number of particles. A precise

definition will be laid down in § 187. The actual compu-

tation of such a moment is usually effected by means of

definite integrals; we return to this question presently.

123. Centroid. Given any mass if, let G-y^^ G-^^ G-^y de-

note the moments of the mass with respect to the coordi-

nate planes. The point C whose coordinates ^, y, ^, are

given by the formulas

Mx = a^,. My = a,,, M-z=a,y

* More precisely, the simple moment^ or moment offirst order.
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clearly has the property that the moment of the mass with

respect to each of the coordinate planes is the same as if

the whole mass were concentrated at that point.

It is easily shown that this property holds for moments
with respect to any other plane. The proof for the gen-

eral case requires the use of multiple integrals (Chapter

XXIII); for a system of mass-particles the proof is as

follows. Let

(1) ax -\- hy -\- cz = p
be the equation of any plane in the normal form ; let

^, ^j, p^, '"'> Pn be the distances of the points O, P^ P^^ •••,

P^ from this plane. Now
p^ = ax^ -f %i + cz^ — p,

p^= ax^ + hyr, + cz^ - p,

so that
n n n n n

t=l J=l i=l ?=1 1=1

= aMx -h hMy + c3Iz - Mp
= M(^ax -{- by -\- ez — p}
= Mp.

That is, the moment of the system with respect to the

plane (1) is the same as if the whole mass were concen-

trated at O,

The point O is called the center of mass^ or centroid * ;

The centroid of a mass is a point such that the moment

of the mass ivith respect to any plane is the same as if the

ivhole mass ivere concentrated at that point.

By § 122, the coordinates of the centroid of a system of

particles are given by the formulas

n 71 . n

i=\ i=l i=l

* The centroid coincides with the center of gravity^ and is frequently

so-called ; but the term centroid is in some respects preferable.
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In the actual determination of centroids, the following

considerations are often useful (the first two apply only to

homogeneous masses):

(a) If the body has a geometrical center, that point is

the centroid.

(5) Any plane or line of symmetry naust contain the

centroid.

(c) If the body consists of several portions for each of

which the centroid can be found, each portion may be

imagined concentrated at its centroid: the problem thus

reduces to the consideration of a set of particles.

124. Centroids of geometrical figures. It is clear that,

for a homogeneous body of given size and shape, both the

mass and its moment with respect to any plane are pro-

portional to the density h. Hence, in the formulas for ^,

y^ i, 8 cancels out from both members, leaving the co-

ordinates of the centroid independent of the density.

We may therefore without loss of generality take S=l,
and are thus led to speak of centroids of geometrical

figures— volumes, areas, and lines— without reference to

the idea of mass.

EXERCISES

1. Find the centroid of the following plane systems of particles

:

(a) Equal particles at (0, 0), (4, 2), (3, - 5), (- 2, - 3).

(h) A mass of 2 units at (0, 1), one of 3 units at (3, — 3), one

of 6 units at (4, 1).

2. Four particles of mass 2, 4, 6, 8 units are placed at the points

(0, 0, 0), (0, 2, 2), (4, 1, 5), (- 3, 2, - 1) respectively. Find the

centroid.

3. Show that the centroid of two particles divides the line joining

them into segments inversely proportional to the masses.

4. Show that the centroid of three equal particles lies at the in-

tersection of the medians of the triangle having the three points as

vertices.

5. Equal particles are placed at five of the six vertices of a regular

hexagon. Find the centroid.
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6. Particles of mass 1, 2, •••, 8 units are placed at the successive

vertices of a regular octagon. Find the centroid.

7. Find the centroid of the cross section of an angle-iron, the sides

being 5 in. and 8 in., and the thickness of each flange 1 in.

Ans. (-V, f).

8. Find the centroid of the T-iron section (a) of Fig. 75, (b) of

Fig. 76.

I 9. Find the centroid of a wire frame in the shape of the perimeter

(a) of Fig. 75, (ft) of Fig. 76.

\'

<-2'-U 1"

n" ^
/

—

I

^3^_^

<-3'^

<-2^

4"

— 6''

Fig. 75

-8^

Fig. 76

10. From a circular disk a round hole is punched out, the two

circles being tangent internally. Find the centroid of the remaining

figure.

11. From a circular plate of radius 4 in. a hole 2 in. square is cut

out, one corner of the square being at the center of the plate. Find

the centroid of the remainder.

12. Find the centroid of a cylindrical basin of radius 4 in. and

depth 3 in., if the bottom is twice as thick as the sides.

13. A monument is composed of a block of stone of base 4 ft. by

3 ft. and height 2 ft. 6 in., surmounted by a cube of side 2 ft., this in

turn supporting a sphere of radius 1 ft. Find the centroid of the

whole figure.

125. Determination of centroids by integration. To
find the centroid of a continuous mass, we must in gen-

eral resort to integration. In the most general case mul-

tiple integrals (see Chapter XXIII) must be used, but in

most cases of practical importance the result may be

obtained by a single integration.

In the following discussion we restrict ourselves to one-,

two-, or three-dimensional bodies of the forms considered
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in Chapter JXV.* Let us choose, as in that chapter, a suit-

able geometrical element (of volume, area, or length), and

denote the mass contained in this element by Am^. Let x^^

yi, Zi be the coordinates of the centroid-f of Aw,. Then the
n

sum ^XiArrii represents approximately the moment of the
1=1

mass with respect to the ^2-plane (or the «/-axis, in the

case of a plane mass in the a^^-plane), and the limit of

this sum as n becomes infinitJ^ is exactly the moment in

question. In this way we obtain the following formulas

for the coordinates of the centroid :

M'x = lim Va^Awf,

n

M'^ = lim ^i/Anii,

n

Mz = lim ^zAnii.

Now upon recalling the meaning of Aw^, we see that

in any given case the above limits may be expressed as

definite integrals by the fundamental theorem of § 104.

The result may be written in the following form

:

(1) Mx= ( X dm, My= iydm, Mz= (zdm,

where x, «/, z are the coordinates J of the centroid of the

mass-element. In any problem each integrand must be

expressed in terms of a single variable, and limits are to

be assigned in such a way as to extend the integration

over the whole mass.

In the next few articles we explain more in detail tlie

application of the above formulas.

* Nevertheless the formulas obtained are applicable, with proper

interpretation, to all masses, with no restriction whatever.

t It follows from the theorem of § 109 that in the expressions for

these coordinates, all infinitesimals may be neglected.

I Apart from infinitesimals.
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126. Centroids of plane areas.* To find the centroid of

a plane area (thin sheet or plate) we choose an element of

area as in § 105 (or § 106, if polar coor-

dinates are used), and find the centroid

. from the formulas

Ax = Cx dA, Ay = i y dA,

*' where x and y are the coordinates of the

centroid of the element.

Uxample : Find the centroid of the area

in the first quadrant bounded by the

parabola y^= -iax and its latus rectum.

It With the element of area chosen as in

Fig. 61, we have

^ =
I

y dx = ^ a^

;

Fig. 61

Ax—
I

xydx-=^^a\ .

Jo Jo

Ay == j U ' ydx — 2ai

x^ dx= i a^

dx a^.

Hence

^ = f«' «/ = !«•

We may also find y very easily by taking the element

parallel to OX. Thus

-^y — I y(.^ ~ ^^dy = 2 a
j

(a — x^dx — aP^ etc.
Jo Jo

EXERCISES

Find the centroid of the following areas. In each case, draw a

figure and estimate the coordinates of the centroid, thus obtaining

a rough check on the result.

1. An isosceles triangle.

2. A semicircular area. Evaluate the integral in two ways.

* The problem of this article is of particular importance in the theory

of the flexure or bending of beams.
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3. One quadrant of an ellipse, using (a) the equation — + ^ = 1

(6) the equations x = a cos cf>, y = b sin <fi. Ans. {-^— , ^^— ).

4. Any triangle. Ans. At the intersection of the medians.

5. Half an arch of the sine curve. Ans. ( 1, -
)•

6. The area between the curves 2 7/ = x'^, y = x^. Get each coor-

dinate in two ways.

7. A circular sector. Ans. x =- a
^^^"

-

3 a

8. One arch of the cycloid. Ans. (tto, | a).

9. A semicircular area, using polar coordinates.

10. A circular segment. Check by putting h = a.

11. A trapezoid.

12. One loop of the curve r = a cos 2 0.

13. The area under the curve y — e"^ from a: = to a: = 1.

14. The area bounded by the curve y = ^
, the a:-axis, and the

maximum ordinate.

15. The area bounded by the parabola y = x^, the a;-axis, and the

line X = 3.

16. The area bounded by the curves y = x, y = 2 x, y = x^.

17. The area bounded by the catenary y = ^[e^ }- e~'^j , the axes,

and the line x = a.

18. The area swept out by the radius vector of the spiral of

Archimedes r = aO in the first revolution.

19. Half the area of the cardioid r = a(l — cos 0).

20. The upper half of the loop of the curve ay^ = ax^ — x^.

21. The area of Ex. 7, p. 153.

22. From one corner of a square of side a, a triangle of sides I a,

^ a is cut off. Find the centroid of the remaining area.

23. From a circle an inscribed isosceles right triangle is cut out.

Find the centroid of the remainder.

24. Prove the second proposition of Pappus :

The volume of any solid of revolution is equal to the product of

the generating area into the circumference of the circle described by

the centroid of the area.
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Solve the following by using the second proposition of Pappus.

25. Find the volume of a torus. Ans. 2 7r'^a%

26. Find the centroid of a right triangle.

27. Find the centroid of a semicircular area.

• 127. Centroids of volumes. The centroid of a volume

of revolution evidently lies on the axis of revolution, so

that a single coordinate determines its position. Taking

the axis of revolution as axis of x, we have

Vx=CxdV,

where the element of volume is chosen as in § 107 or

§ 108, and where x is the :c-coordinate of the centroid of

the element.

In certain special cases the centroids of other solids

may be found by a simple integration, but in general we
must resort to multiple integrals.

EXERCISES

Find the centroid of the following volumes. Draw a figure in

each case and estimate the coordinates of the centroid.

1. A hemisphere. Solve in two ways. Atis. x = ^a.

2. A right circular cone. Ans. x = I h.

3. A paraboloid of revolution bounded by a right section through

the focus.

4. Half an ellipsoid of revolution. Solve in various ways.

6. A spherical segment of height h. Check by putting h = r.

6. The volume generated by revolving (a) about OX, (6) about

OY, the area under the curve y = e"" from a: = to a; = 1.

7. The volume generated by revolving half an arch of the cycloid

about its base.

8. The volume formed by rotating the area under the parabola

2/2 = 4 aa; from x = to x = a, (a) about the y-axis
;

(b) about the

latus rectum
;
(c) about the line ?/ = 2 a.

9. The volume in Ex. 1.3, p. 163. Ans. Q 5, f a, i a).

10. The volume in Fig. 68. Check all three coordinates by solving

again with the element chosen in a different way.

11. An elliptic cone. Ans. x = ^h.
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12. One quarter of a right circular conoid (see Ex. 12, p. 163).

13. One quadrant of the banister cap in Ex. 14, p. 163.

14. A tetrahedron three of whose faces are mutually perpendicular.

Ans. (la, lb, ^c).

15. The volume of Ex. 16, p. 163. Solve in two ways.

16. One quarter of a right pyramid with a square base.

17. The volume of Ex. 18, p. 163.

18. The volume of Ex. 19, p. 161.

19. The volumes of Ex. 6, p. 160.

20. The volume formed by revolving about the ?/-axis the area

under the curve ?/ = e ^ ^ Take as the element a cylindrical shell,

and evaluate the integrals in two ways.

21. Obtain formulas for the coordinates of the centroid of a wedge
cut from any solid of revolution by two planes through the axis.

128. Centroids of lines. In the case of an arc of a

plane curve, the fundamental limits of § 125 may be

expressed at once as line integrals, by the theorem of

S113:

sx = I X ds^ sy = \ y ds^

where s is the length of the arc O.

Example: Find the centroid of a semicircular wire.

Taking the bounding diameter as axis of y, we have

^n */0 ^ \dnr.
dx

==2rxJl+^dx=2ar

dxj

X dx

r -'^ -^d^-x'

Hence

= — 2 a^a^ — x^

Jo

2 ^2 2 «2 2a

2a\

X =
s ira IT

By symmetry, ^ = 0.
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129. Centroids of curved surfaces. The coordinates of

the centroid of a surface of revolution (§ 116), or of a

cylindrical surface (§ 117), may be expressed in terms of

line integrals.

The required integrals are easily built up in each

problem.

EXERCISES

1. In the example of § 128, evaluate the integral by expressing

the integrand in terms of y.

Find the centroid of each of the following figures. •

2. A semicircular wire, using polar coordinates.

3. The arc of the curve ay^ = x^, from x- = to a: = 5 a.

X X

4. The arc of the catenary ?/=-(e«+e ") between two sym-

metric points.

5. The arc of the semicycloid (from cusp to vertex)

.

Ans. (^a,^a).

6. A hemispherical surface, using (rt) cartesian, (h) polar co-

ordinates. .4ns. X =\a.

7. The lateral surface of a right circular cone. Ans. Ic =\h.

8. The total surface of a right circular cone.

9. The cylindrical surface in Fig. 72.

10. The area in Ex. 5, p. 171.

11. The surface in Ex. 7, p. 171.

12. The surface of a paraboloid of revolution bounded by a right

section through the focus.

13. Prove the Jirst proposition of Pappus

:

The surface of a solid of revolution is equal to the length of the

generating arc multiplied by the circumference of the circle described

by the centroid of the arc.

14. Find the surface of a torus. Ans. i-Tr'-ab.

15. Find the centroid of a semicircular wire by tlie first propo-

sition of Pappus.
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II. Moments of Inertia

130. Moment of inertia. The product of a mass w, con-

centrated at a point P, b}^ the square of the distance r of

P from a fixed line, or axu^ is called the moment of the

second order, or moment of inertia^ of m with respect to

the given axis :

/= mr^.

The moment of inertia of a system of such masses is of

course the sum
n

rriirii=X 2
t' i '

If we think of a " continuous " mass as composed ulti-

mately of particles, the meaning of moment of inertia of

such a mass becomes clear. An analytic definition will be

given in § 187.

The moment of inertia of a homogeneous body is pro-

portional to the density. Taking 5 = 1, we may speak of

"moment of inertia" of areas, volumes, etc., no idea of

mass being involved.

131. Radius of gyration. The moment of inertia of any

mass M may always be written in the form

where the quantity R is called the radius of gyration^ or

radius of inertia^ of M with respect to the given axis of

moments. The meaning of the radius of gyration is

obvious : it is the distance from the axis at which a parti-

cle of mass M must be placed in order to have the same

moment of inertia as the original mass.

132. Determination of moment of inertia by integration.

The actual computation of the moment of the second order

of a continuous mass is effected by integration in much
the same way that the moment of the first order (§ 125)

is determined. In the general case, we must have re-
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course to double or triple integrals (Chapter XXIII) ; but

for the simple cases of practical importance the result can

usually be found by a single integration.

For the present we consider only such bodies as were

studied in Chapter XV. Let us choose a geometrical ele-

ment (of volume, area, or length) in some suitable way,

and denote the mass of thi's element by Am^. The element

must he so chosen that its radius of gyration is known *
; let

Ti denote this radius. Then the sum
n

is approximately the moment of inertia of the mass with

respect to the given axis, and the limit of this sum is

exactly the required moment

:

n

Z= lim Z/ r^^m^.
«—^OO 1=1 *

Now if we apply the fundamental theorem of § 104, the

above limit appears as the definite integral

(1) / =ff- dm.

where r is the radius of gyration of the mass element with

respect to the axis of moments. Of course the integrand

must be expressed in terms of a single variable and the

integration must be extended over the whole mass.

Just as, in finding centroids, we must take an element

the position of whose centroid is known, so here the

essential point is to choose an element whose radius of

gyration is known. Thus the moment of inertia of a

plane area (or of a thin sheet of mass) with respect to a

line in its plane may be found by taking as the element

a rectangle with its finite side parallel to the axis of

* In the expression for the radius of gyration, infinitesimals may as

usual be neglected.
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moments, since then the radius of gyration of the element

is simply its distance from the axis.

To find the moment of inertia of a volume of revolution

about the axis of revolution it is usually best to choose

the element as in § 108.

Examples : (a) Find the moment of inertia, with re-

spect to the ?/-axis, of the area bounded by the parabola

2/2 _. 4 ^2;, the ic-axis, and the latus rectum.

Taking the element parallel to OY^ we find

Iy= \ ""x^y dx = 2Va
I

x^ dx = | a^.

Since the mass, or area, is

we may write
ly = f Ma\

which shows that the square of the radius

of gyration is

i22= 3 a^

(5) The area in Fig. 61 revolves about

the ?/-axis. Find the moment of inertia

of the volume generated, with respect to

the axis of revolution.

Take as element of volume the cylin-

drical shell generated by the rectangle

shown in Fig. 61, so that

c? F^= 2 iTxy dx.

The radius of gyration of this shell about

the ?/-axis is evidently x. Hence

Iy= 2tt \ 0^ xy dx = 4: jr^a I a;^ dx

= -| ira^.

The mass, or volume, is

M= 2 7r i xy dx = ^ ira^

whence ly = | Ma^,

Fig. 61
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EXERCISES

Find the following moments of inertia.

1. A particle of mass 3 units at (0, 0), one of 4 units at (2, 2),

and one of 5 units at (— 1, — 3), with respect to each of the coordi-

nate axes.

2. Equal particles at (0, 0, 0), (0, 5, 0), (3, 4, 3), with respect to

each coordinate axis.

3. Equal particles at each corner of a cube, («) wdth respect to an

edge of the cube, (6) with respect to a diagonal of one face.

.4 ns. (a) Ma^; (h) lMa\
4. A straight rod or wire with respect to a perpendicular through

one end. Ans. \ Ml'^.

5. A rectangle about one side. Ans. i Ma"^.

6. A circular disk with respect to a diameter. Ans. \Mcfi.

7. The area in the example of § 132 with respect to the a:-axis,

(a) taking the element parallel to OX, (h) taking the element

parallel to OF and using the result of Ex. 5.

8. (a) An isosceles triangle, {h) any triangle, with respect to the

base.

9. A circular disk of radius 4 in. with a square of side 2 in. cut

out of the center, with respect to a diameter parallel to a side of the

square.

10. An ellipse with respect to each of its axes, using (a) the carte-

sian equation, (b) the equations x = a cos
<f), y = b sin

<f>.

11. The area bounded by the parabola 3/^ = 4 ax, the ?/-axis, and
the line y = 2a, with respect to each coordinate axis.

12. The area in Fig. 75, p. 183, (a) with respect to the base,

(h) with respect to the line of symmetry.

13. The area in Fig. 76, with respect to the base.

14. A sphere with respect to a diameter. Ans. f Ma^.

15. A cylinder of revolution, with respect to its axis. Ans. | Ma^.

16. A right circular cone with respect to its axis. Ajis. ^q Ma^.

17. A paraboloid of revolution bounded by the right section

through the focus, with respect to the axis.

18. An ellipsoid generated by revolving an ellipse about its major

axis, with respect to the axis of revolution. Use («) the cartesian

equation of the ellipse, (h) the equations x = a cos <^, y = h sin
<f}.
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19. The volume formed by revolving the area of Fig. 61 about the

latus rectum, with respect to the axis of revolution.

20. A circular disk about its axis— i.e. the line through the

center of the disk perpendicular to its plane. Ans. \Ma^.

21. A wire bent in the form of a square, with respect to (a) a side,

(6) a diagonal.

22. A circular wire with respect to a diameter, using (a) polar,

(h) cartesian coordinates.

23. The arc of the curve ay"^ = x^, from x = to x = 5 a, with

respect to the ?/-axis.

24. A spherical surface about a diameter, using (a) polar, (6)

cartesian coordinates.

25. The lateral surface of a cone of revolution, about its axis.

Ans. ^ MaK
26. A torus, with respect to its axis.

27. The surface of a torus, about its axis.

28. The surface of a paraboloid of revolution bounded by a right

section through the focus, with respect to the axis.

29. The surface in Ex. 5, p. 171, about tlie 2-axis.

30. The surface in Ex. 7, p. 171, about the ?/-axis.

31. The arc of the curve ay^ = x^ from x = to x = a revolves

about OY. Find the moment of inertia of the surface generated,

with respect to the y-axis.

32. Find the moment of inertia of the volumes in Exs. 14, 16, 17,

18, by using the result of Ex. 20.

33. The area under the curve y = e~^^ revolves about the ?/-axis.

Find the moment of inertia of the volume generated, with respect to

the 2/-axis. - Ans. 2 M.

133. Moment of inertia with respect to a plane. In most

applications we are concerned with moment of inertia with

respect to a line. Nevertheless it is frequently useful, as

we shall see presently, to introduce the idea of moment
of inertia with respect to a plane. The definitions and

discussion of §§ 130-132 hold at once ior the moment of

the second order with respect to a plane if we replace the

word '' line " (or '' axis ") throughout by the word " plane."
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Example : Find the moment of inertia of a sphere with

respect to a diametral plane.

Taking the plane of moments as y^-plane and choosing

as the element of volume a circular disk parallel to the

?/2-plane, we have

Iy^ = TT \ x^y^ dx = TT \ x^ijjp' — x'^^dx = t\ ira^ = -J- Ma?.

EXERCISES

Find the following moments of inertia.

1. The following system of particles, with respect to each of the

coordinate planes : 3 units at (0, 0, 2), 2 units at (4, 3, 2), 4 units at

(- 2, 2, 1), 1 unit at (3, - 3, 0).

2. A right circular cylinder with respect to the plane of the base.

3. A paraboloid of revolution bounded by a plane through the

focus at right angles to the axis, (a) for that plane ; (h) for the plane

tangent at the vertex.

4. A spherical surface for a diametral plane, using (a) cartesian,

(6) polar coordinates.

5. A right circular cone with respect to the plane of the base.^
Ans. -^^Mh\

6. An ellipsoid of revolution with respect to the plane through

the center perpendicular to the axis.

7. The lateral surface of a right circular cone, for the plane

through the vertex at right angles to the axis.

8. The volume in Fig. 68, with respect to each coordinate plane.

9. The banister cap of Ex. 14, p. 163, with respect to the plane of

the base.

10. A right pyramid with a square base, with respect to the plane

of the base.

11. An ellipsoid with respect to the three principal planes.

134. General theorems on moments of inertia. We pro-

ceed to state certain theorems by means of which the

work of finding moments of inertia may in many cases

be greatly simplified.
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Theorem I : The moment of inertia of any mass with

respect to a line is equal to the sum of the moments with re-

spect to two perpendicular planes through the line.

For example,

^x xy I -^zx'

Corollary : The moment of inertia of a plane mass

with respect to a line perpendicular to its plane is equal to

the sum of the moments with respect to two lines in the plane

intersecting at right angles in the foot of the perpendicular.

For example, for 'a mass in the a::?/-plane,

Theorem II : The moment of inertia of any mass with

respect to a line (^or plane) is equal to the moment with

respect to the parallel centroidal, line * (or plane) plus the

product of the mass by the square of the distance between the

lines (^or playies).

That is, if I is any line, T the parallel centroidal line, d

the distance between them, then

Ii = lT-^Md\

We shall prove these theorems at present only for a

system of particles, returning to the general case later

(§187).
To prove theorem I, let us take the two perpendicular

planes as the 2^j/-plane and the 23;-plane. Then, for a

system of n particles,
n

Ix= ^yni{yc + z?~),

Hence

'-xy 2^ rriiZ?,

n

i=l

I.=
-'-xy i~ -'-zx'

* That is, the parallel line through the centroid.
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The proof of the corollary is left to

the student.

To prove theorem II for any line I

and the parallel centroidal line I, we
note that in Fig. 77, by the cosine law,

d^^d^-^cT^-lddi cos6>^

where pi is the distance of nii from the

plane through I perpendicular to the

plane of I and I. Hence
Fig. 77

II II n n

^ rriidi- = ^ viid^^ + d^^mi — 2d^ miPi.
i—i i=\ • i—i i=i

n

But the quantity ^ ^^^ipt ^^ the mass-moment of first

i=i

order of the system with respect to the plane through I

perpendicular to the plane determined by I and I, and since

this perpendicular plane contains the centroid, the moment
in question is 0. Hence

1,=: !-,-{. Md\
The proof of theorem II for two parallel planes is still

simpler. It is left to the student.

EXERCISES

Find the following moments of inertia.

1. A right circular cylinder with respect to (a) a plane through

the axis
;

(b) a generator
;

(c) a diameter of the middle section

;

(<f) a line tangent to the base.

2. A cube with respect to (a) one face; (b) an edge.

3. A circular disk (a) for a tangent, (b) for a perpendicular

through a point in the circumference. Solve (6) in two ways.

4. An isosceles triangle about a line (a) parallel to the base

bisecting the altitude, (b) through the vertex perpendicular to the

plane.

5. A sphere with respect to a tangent. Solve in two ways.
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6. A square plate for a line perpendicular to its plane (a) through

a corner, (b) through the center.

7. A right pyramid with a square base, with respect to the axis.

8. The area in Fig. 75 with respect to a line through the centroid

(a) parallel to the base, (b) perpendicular to the plane.

9. A wire frame in the shape of an isosceles triangle, with respect

to a line (a) through the centroid parallel to the base, (b) through

the vertex perpendicular to the plane.

10. An ellipsoid of revolution about a diameter of the middle cross

section.

11. The area in Fig. 76 with respect to a line through the centroid

parallel to the base.

12. A right circular cone with respect to (a) a diameter of the base,

(b) a line through the vertex perpendicular to the axis, (c) a diameter

of the middle cross section.

Ans. (&)(|A2+,3_«2)3/. ^c) (j\h^-}-^\a^)M.

13. The volume in Fig. 68, with respect to each coordinate axis.

14. An ellipse for a line through the center perpendicular to the

plane.

15. An ellipsoid for each of its axes.

135. Kinetic energy of a rotating body. The kinetic

energy of a particle of mass m moving with a velocity v is

defined as

If a particle at a distance r from a fixed line rotates

with an angular velocity &) about that line as an axis, its

linear velocity is (§ 58)

V =(Dr\

hence its kinetic energy is

The kinetic energy of a system of n particles rotating with

angular velocity w is

n

1=1

where I is the moment of inertia of the system with respect

to the axis of rotation. This formula holds in general.
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A discussion of the various systems of units in actual

use is outside the scope of this book. In the exercises

below the so-called engineering systeni is used. In this

system the mass m is replaced by the value

wm = —

,

9

where w is the " weight " in pounds, and g the acceleration

of gravity (32 ft. per second per second approximately).

If then V is expressed in feet per second, the energy is

measured in '' foot-pounds."

EXERCISES

1. A straight rod 10 ft. long, weighing 20 lbs., rotates about a

perpendicular through one end at the rate of 2 R. P. S. Find its

kinetic energy. Ans. 1650 ft.-lbs.

2. A flywheel 12 ft. in diameter whose rim weighs 10 tons makes

50 R. P. M. Neglecting the mass of the spokes, find the kinetic

energy of the .wheel. Ans. 156 ft.-tons.

3.. A flywheel 1 ft. in diameter, weighing 50 lbs., makes 100 R. P. M.

If the wheel can be considered as a uniform circular disk, find its

kinetic energy.

4. A wheel 4 ft. in diameter has 8 spokes weighing 20 lbs. each.

The rim weighs 600 lbs. Find the kinetic energy of the wheel when

it is making 20 R. P. M.

5. The kinetic energy of a solid sphere 1 ft. in diameter making

60 R.P.M. about an axis through its center is 5 ft.-lbs. Find the

weight of the sphere. Ans. 80 lbs.

6. A hollow cast-iron sphere (sp. gr. 7.5) 4 ft. in diameter rotates

about an axis through its center at the rate of 1 radian per second.

Its kinetic energy is 375 ft.-lbs. Find the inner radius. Ans. 1 ft.

7. Find the inner radius in Ex. 6 if the kinetic energy is 200

ft.-lbs.



CHAPTER XIX

LAW OF THE MEAN. EVALUATION OF LIMITS

Fig. 78

136. Rolle's theorem. Let there be given a continuous,

one-valued, and differentiable function </)(a;), which van-

ishes a.t X = a and x = h. In

order that the function, start-

ing with the value at x = a^

shall assume again the value

at rr = 6, it must first increase

up to some point P, and then

begin to decrease, or vice versa.

At P there is either a maximum or a minimum, and the

derivative is at that point.

We have thus * » O
Rolle's Theorem : If ^(a;) -^mntskes when x = a and

X = b^ then ^' (x) vani&hes for at least one value ofx between

a and b.
"*" '--^

If the fundamental assumptions of continuity and dif-

ferentiability are not satisfied, the theorem may not hold.

In Fig. 79 it falls be-

cajj^e <pQ^y is discon-

tinuous at one point

;

in Fig. 80 it fails be-

cause the derivative

is undefined at one

point.

137. The law of the mean. Let; f(^x} be a continuous,

one-valued, and differentiable function whose graph in

the interval x = a to x = b is shown in Fig. 81. It is

geometrically obvious that at some point P the tangent
200

Fig. 79 Fig. 80
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must be parallel to the secant

SQ. Now the slope of the

secant is

SR h-a '

the slope of the tangent at P
is /'(^i), where x^ is the ab-

scissa of P. Hence ^^^o^""*^^'

or

(1) iW-Ka) = (h-a)}'ixi). a<x,<b.
This relation is called the law of the mean.

138. Other forms of the law of the mean. It is often

necessary to apply formula (1) above with b = x, thus

making the length of the interval variable :

( '-) £i^) = •^(^) + ^^ "" ^)/'C^i)' a<x^<x.
It is to be noted that x-^^ is here a function of x.

Again, placing

a = x^ h — a -\- Ax^

and denoting by ^ a positive number less than unity, we
obtain

f(x 4- Ax) = f{x) + Axf'(x + OAx). < ^ < 1.

EXERCISES

For each of the following functions, show why Rolle's theorem

does not hold in the indicated interval.

1. y -^- -i<.r<i.

2. (y + 4y=x% -8<a;<8.

^ y = tan x, < x < tt.

4. Draw curves showing that the law of the mean may fail when

f(x) is discontinuous or non-differentiable in the interval.

5. At what point on the parabola y = x^ is the tangent parallel to

the secant through the points x = 0, x = 2 ?
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6. At what point on the curve y = x^ - x\s the tangent parallel to

the secant through (1, 0) and (2, 6)? Draw the figure.

7. Fmd the point on the curve y = log x where the tangent is paral-

lel to the secant through the points x = 1, a; = 2.

139. The indeterminate forms -, g- If two functions

/(a;), F(x) both vanish Sit x = a:

/(a)=0, l^(a) = 0,

their quotient -J-
^ assumes the " indeterminate form "

^
Fix)

- Sit X = a, and is undefined at that point. Nevertheless

the limit lim -^ ^ may exist. This fact is illustrated in
.^a F(X) ^

the derivation of the fundamental differentiation formulas,

where in each case both numerator and denominator of

the difference quotient —^ approach 0, yet the derivative,

which is the limit of that quotient, exists.

f (x^
In case the fraction ^„^ ^ does approach a limit when

Fix)
^^

X approaches a, we lay down the following definition:

/M
Fix)]

= lim ^ ^ ^

x=a x-^a F{x^

The function ^ ^ ^ thus becomes continuous at the point
F(x')

^

x — a^ by the definition of continuity (§ 12).

It may be possible to evaluate the limit by means of

more or less obvious transformations of "^^
, as was done

FQx^

in deriving the differentiation formulas. In many cases

the limit may be obtained by a method that will now be

developed.

By the law of the mean, using the form (1) of § 138
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we may write

F(x) = F{a) + (a: - a)F'(x,^),

where x^ and X2 lie between a and x. But by hypothesis

/(a) = l^(a)=0.

Hence
f(:x}^ (x-a}f'(x,) ^f'Cx,}

. F{x) (x-a)F'(x2^ F'ix^)

As X approaches a, x^ and x^ must do likewise, and we
have, by theorem III of § 8,

lim -^ ^ ^ = lim '-—^^-1^ = lim '^ / - = ^ ,^ ^
,

x^aF(x) x^aF'ix^) x-^a F' (x) F\a)

provided f'(a) and F'(^a) exist and F'{a')^0.

If /(a-) and J^(a;) both increase indefinitely as x ap-

proaches a

:

lim/(2;) = QO, lim JP(a;)= Qo,

the fraction "i,^ ^ is said to assume the indeterminate form
Fix)

^ 3.t X = a. Here again it may happen that lim \} ex-
'^ x-^a Fix)
ists, and it can be shown that the same method may be

applied in this case as in the case just treated.

f (x)
It may happen that the fraction '^^^ takes the form

^ ^^ F'(x)

- or ^. In this case we may differentiate numerator and

denominator again, and repeat as many times as necessary.

Finally, we may have a — co : i.e. ~y^ approaches the

form - or^ when x increases indefinitely. In this case

the rule holds also.

The results of this article may be summarized in the

following
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fix]

Fix)

f(x')Theorem : If the fraction ^ ^ ^ assumes the indetermi-

nate form - or — when x — a. then
•^

Q OO '

lim '^ ^ ^ z= lim •^ ^ ^
,

x^aF(X) x-^a F'{X)

provided the latter limit exists.

Thus we may differentiate the numerator and the de-

nominator separately^ and take the limit of the new
fraction thus formed. It must be borne clearly in mind,

however, that the theorem applies only to fractions in

which the numerator and the denominator hoth approach

or hoth increase indefinitely.

Example: Evaluate lim
^->o X

This fraction takes the form - when ri; = 0, so that the

theorem applies

:

1 . tan X 1 . sec^ x ^
lim = lim ——- = 1.
a:->0 X x-^0 1

140. The indeterminate forms • go , oo — oo. Given

the product of two functions /(a;) • FQx), suppose that as

X approaches a one function approaches while the other

increases indefinitely. The product is then said to take

the indeterminate form • oo

.

If we write

fix) . Fix) =^,
Tix)

it appears that the quotient last written assumes the

form or ^, and the theorem of § 139 may be applied.

If, as X approaches a, each of two functions /(a;), F(x)

increases indefinitely, their difference fXx')— F(x) is said

to assume the indeterminate form oo— oo. Here also
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we express /(^) — ^(2:) as a fraction which takes the

form - or ^ , and then apply the theorem.

Example : Evaluate lim x log x.

This takes the form • go. If we write it in the form

—5^, the theorem of § 139 becomes applicable

:

~x 1

lim X log X = lim —^— = lim = lim ( — 2:) = 0.

X X^

EXERCISES

Evahiate the following limits, when they exist.

1.
1. . cos X
lini •

^ TT IT

2^ 2

3. lim
x->4 x'^ + X — 20

5. lim sin 2 x
a—>0

X

7. lim a; log sin a;.

9. lim 3x^-4^
,

x^^ 2^2- 3a; + 1

11. lim
^'-4:^3

13. lim ^ — arcsin ^

e^-o sin^ 6

Trace the following curves.

14. y = X log a:.

16.
lOQ' X

V = —

2. lim — •

4.
x->-i a: + 1

6. lim a:e~*.

a—^cc

8. lim log cos a:

x->o a;

10.
T a: — 1
lim
x->x a:-'^ + 1

12. lim (sec x— tan x).

^n5. --.
6

15. ?/ = are~*.

17. y = X' log x.

18. Find the area in the fourth quadrant bounded by the curve

y = log X and the coordinate axes.

19. Find the centroid of the area in the second quadrant under the

curve y — e^. Obtain each coordinate in two ways.
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20. Find the moment of inertia of the area in Ex. 19, about each

coordinate axis.

21. Find the area bounded by the curve y = xlog x and the x-axis.

141. General remarks on evaluation of limits. While

the methods of §§ 189-140 are frequently very useful in

investigating the limit of a function at a point where the

function ceases to be defined, they are by no means

always applicable. In the first place, the function may
lose its meaning in some other way than by taking the

form TT or ^ (or a form reducible to one of these), so

that the theorem of § 139 cannot be brought into play,

yet it may be possible to show the existence of a limit by

other methods. Even when the function '^j^ ^ does take
^^""^

the form - or ^ the theorem may fail to apply because

'^—^—- approaches no limit, yet the limit of the original

quotient may exist. Again, the function ^_^
^
may take

/' (x)
the form i^ ov —^ and at the same time -^,, ; may ap-

proach a limit, yet it may be impossible to obtain any

result by the use of the theorem. Finally, there is

always the possibility that a function undefined at a; = a

may fail to approach any limit as x approaches a.

Each of these cases is illustrated by the following

sin X
Examples: (a) Evaluate lim •

Here the denominator increases indefinitely, while the

numerator oscillates between — 1 and 1, without ap-

sm X '

proaching any fixed value. Nevertheless, since is

X

never numerically greater than -, it clearly approaches 0.

37
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1
a:^ cos -

(b) Evaluate lim—:

x-^o Sin X

Since cos - lies always between — 1 and 1, the numer-

ator approaches and the fraction takes the form -x •

Differentiating numerator and denominator separately,

z X cos - + sm -
X X

we obtain a new fraction Tliis fraction
cos X

approaches no limit, since sin - oscillates between — 1

and 1, and the theorem is therefore inapplicable. But

the original fraction has a limit, which may be found

directly

:

X'^ COS -
X . X ' 1

lim —

:

= lim — • lim x cos - = 0,
x^o ^^^ ^ -r->o sin X x-^o X

X 1
since lim -^— = 1 and lim x cos - = 0.

x->o sm X x->o X

Ox
(c) Evaluate lim — •

X-^co O

This fraction takes the form —- By § 139,

y 2^ ,. 2- log 2 T 2^1og2 2
lim — = lim &— = lim ^— = ••-.

a>->oo 3^ a>->oo 3^ log 3 ^-».cc 3^ log^ 3

No matter how many times we differentiate, we cannot

2^
get rid of the quotient — • Yet if the function be writ-

ten in the form (f)^ it is seen to approach the limit 0.

(c?) Evaluate lim
x-^co X

In this case no limit is approached. For no matter

how large x be taken, as x varies from /^tt to (n -|- l)7r
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the function tan x^ and hence , ranges through all

possible values from — go to +20.

EXERCISES
a.

Evaluate the following limits, when they exist.

1- 1^"^^/ ^ris. 0. 2. lim sin <^ cot <^. Ans. -1.
n

M->00 2'

cos X

x-^-o X

5. lim ^°S<^1 + ^')

a—^00 .y

7.
,. tan X — X
lim ^

a:_>0 ^* — Sni X

9. lim '^^^^
.

j;_>oo cos 2 X

1 ^•,^_^ sin a; — sin a

^ns. 0. 4. lim (a:^ - x).

6. lim '

8. lim X sin - •

x->0 X

tan ^
10. Hm

«_. flrtan 3 B

12. Imi
x_^a X- a x->i a;3 - a-2 _ a; + 1

1
a; cos -

13. lim —: 14. lim (cot a: — cosec a:)

.

x-^Q sm a; a-^-o

15. lim^/?^±i. 16. lim —. Ans. 0.

Trace the following curves.

^„ sin a; ^o tana;
17. y = 18. y =

X
"

X

19. y = x^e-''. 20. y =—-
X

lo£r a;

21. Find the area bounded by the curve y = , the a:-axis, and

the maximum ordinate. Trace the curve. Aris. |.

22. Trace the curve y = —^
, and find the area under the curve

X log X
from X = 2 to a: = e. Ans. 0.367.

23. Trace the curve y = xe ^ , and find the area under the curve

in the first quadrant.

24. Find the moment of inertia of the area in Ex. 23, with respect

to each coordinate axis.



CHAPTER XX

INFINITE SERIES. TAYLOR'S THEOREM

I. Series of Constant Terms

142. Series of n terms. A series of n terras is an expres-

sion of the form

^1 + ^2 + ^3+ 1" ^»'

where each term is formed from the preceding one by

some definite law. Examples are the arithmetic series

a -{-[a -h d] -\- [a -h 2 d~\ + ••• -{-[a + ^n- l)d],

in which each term is formed from the preceding by the

addition of a constant cZ, and the geometric series

a -{- ar -\- ar^ + • • • + ar""^,

in which each term is equal to r times the one before it.

143. Infinite series. When the number of terms in-

creases indefinitely, a series of n terms becomes an infinite

series^ denoted by the symbol

aj -f «2 + ^3 + ••••

The series is defined by the law of formation of successive

terms, or, what amounts to the same thing, by the n-th or

general term.

The .general term may frequently be written down by
inspection of the first few terms, as in the following

Examples : (a) In the series

the general term is -•
n

(J) In the geometric series

l_l-}-l_i-i- ...
2 "^ 4 8 ' '

the general term is (— J)"~^.
p "

209
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(<?) In the series

1 1 _J_ 1 1 1 1 1

2"32-4'52.4.6*72.4. 6 •
8*9 '"'

, the general term is^ • ^.
144. Sum of an infinite series. It is shown in elemen-

tary algebra that the sum of a geometric series of n terms is

(1) s,
''-''''^

1 — r

of an arithmetic series of n terms,

where I is the last term

—

i.e.

>^„ = ^[2a+(^-l)(^].

Similarly the sum of any series of a finite number of terms

can be found.

On the other hand, an infinite series has no sum in the

ordinary sense of the term, since no matter how many
terms we might add up, there would always be an infinite

number left over. We may, however, give a meaning to

the term " sum " even in this case by laying down the fol-

lowing definition :

The sum of an infinite series is defined as the limits as n

increases iiidefinitely., of the sum of the first n terms :

provided the limit exists.

Thus the " sum " of an infinite series is the limit of an

ordinary sum.

Example : By (1), the sum of the first n terms of the

infinite geometric series

a -\- ar + ar'^ + • • • + a?'"~^ + • • •

is

aSL = a — ar

1-r
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Hence the sum of the series, if the sum exists, is

^__ lim a—_ar^

When r is numerically less than 1, the quantity ar" ap-

proaches as 72 increases, and

1 — r

When r is numerically greater than 1, the quantity ar" in-

creases indefinitely, and the above limit does not exist;

the series has no sum.

145. Convergence and divergence. If the series has a

sum aS', i.e. if S^ approaches a limit when n increases, the

series is said to be convergent., or to converge to the value S;

if the limit does not exist, the series is divergent.

It follows from the above example that a geometric

series converges to the value if |r|< 1; it diverges
1 — 7'

if |r| >1.
A series may diverge, as in the case of a geometric

series for which r > 1, because aS'„ increases indefinitely as

n increases ; or it may diverge because S^ increases and

decreases alternately, or oscillates, without approaching

any limit. In the latter case the series is called oscillatory.

EXERCISES

1. Show that every infinite arithmetic series is divergent.

2. Find the sum of a geometric series of n terms for which r = 1,

(a) directly, (6) by applying the theorem of § 189 to formula (1),

§ 144.

3. Show that the infinite geometric series for which r = 1 is

divergent.

4. Show that the infinite geometric series for which r = — 1, viz.

a — a-\-a— a-{- •••,

is oscillatory.

146. Tests for convergence. In the elementary applica-

tions divergent series are of no importance. Before being
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able to use a given series we must determine whether it

converges or diverges. If S^ can be expressed explicitly

as a function of n, as in the case of the arithmetic and

geometric series, we can in general determine the con-

vergence or divergence of the series directly, and find the

sum if it exists ; but S^ cannot be so expressed in most

cases.

A necessary condition for convergence is that the gen-

eral term approach as its limit :

lim a^ = 0.
n—>>oo

For, when this condition is not satisfied, each term that is

added changes S^ by an amount that does not approach 0,

so that the difference between S^ and a fixed number S
obviously cannot become and remain arbitrarily small.

This condition, though necessary, is not sufficient; i.e.

if the condition is not satisfied, the series diverges, but if

it is satisfied, the series still may diverge. This is illus-

trated by the harmonic series

14-14-14-14- ...

which will be shown in the next article to be divergent,

although

lim a„ = lim - = 0.

Many special tests for convergence have been devised,

applicable to more or less broad classes of series. Several

of the simplest are considered in the next few articles.

147. Cauchy's integral test. We will begin with an

JExample: Prove that the harmonic series

(1) i+i + j+i+-
is divergent.

Here the general term is

n
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Let us draw the curve

1
y=fi^~) =

X

erect the ordinates at 2: = 1,

2, 3, ••., 71, and complete the

circumscribed rectangles as

shown in the figure. Then
the areas of the rectangles

are, respectively,

1 1
1

' 2' 3'

Fig. 82

1

n

so that the sum of these areas is the sum of the first n

terms of the series (1) :

A 6 n

But the sum of the rectangles is clearly greater than the

area under the curve from a; = 1 to x=n'.

y dx= \ — = log 92.

1 *^l X

When n increases, the area log n under the curve becomes

infinite, hence S^ does likewise and the series diverges.

This example illustrates CaucTiyB integral test

:

Given a series of positive terms

(2) ai + «2 + ^3+ *••»

P^t an =fin).

If the function f(x) is defined not onlyfor positive integral

values, but for all positive values of x, and iffix) never in-

creases with X, then the series (2) converges or diverges ac-

fQx) dx does or does not exist.

The proof of this test is easily written out by drawing

the curve y =fQc) and following the process suggested by

the above example. The details are left to the student.

* For the definition of this improper integral, see § 119.
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EXERCISES

1. Write out the proof of Cauchy's integral test.

2. In the statement of the integral test, why is it assumed that

/(x) never increases with xl Show that it would be sufficient to

assume that/(x) never increases with x after some fixed point x — x^.

3. Prove that the series

1.2 2.3 3-4 4.5
is convergent.

4. Prove that the series

2P 3^ 4^

converges if 7? > 1, diverges if p ^ 1.

Test the following series for convergence.

1.2 3.4 5.6

6. 1 + —i— +
-*-

+
-^

+ '•'.

1+22 1+32 1+4^

7. i_2+3-4+ .-..

8. 1-f +i-f+ ••••

9. 1+i + i + f +-.
2 3 4

10, 1 + -A— + _2_ + ^ + ....^
1 + 22 1 + 32 1 + 42

11. Test the geometric series for convergence by the integral test.

148. Comparison test. Let

w
J -h ^2 + ^3 + * *

•

be a series of positive terms to be tested.

(a) If a series^ ^ ^ a^-\- a^-\- a^-\- ...

of positive terms, known to be convergent, can he found such

that ^

then the series to be tested is convergent.

(5) If a series 1,1,7,
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of positive terms^ known to be divergent^ can be found such

that -^ 1

Un ^ bn->

then the series to be tested is divergent.

To prove (a), let S^Cu) be the sum of the first n terms

of the 2^-series, Sn^a} the sum of the first n terms of the

a-series, and S(^a~) the sum of the a-series. Since all the

terms w„ are positive, S^Cu') always increases with n. On
the other hand, we have

S^Cu') < S^a') < S(a').

Since S^^u) always increases, but never exceeds the fixed

number >S'(a), it approaches a limit, by theorem IV of § 8,

which is not greater than SQa').

The proof of (b) is left to the student.

The success of the test depends on our ability to find

a convergent series whose terms are greater than the

corresponding terms of the series to be tested, or a diver-

gent series whose terms are less than those of the series to

be tested. To show that the terms of the w-series are

greater than those of some convergent series, or less than

those of some divergent series, proves nothing.

It is clear that the convergence of a series is not

affected by discarding any finite number of terms from

the series. Hence the conditions of the test do not need

to be satisfied from the very beginning of the series, but

only after a certain pointy all the terms up to that point

being neglected.

Example : Test the series

The series

^1.2 2.3 3.4

'22 32 42

is known to converge (Ex. 4, p. 214). Discarding the
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first term of the series to be tested, we have

1
u„ =

n(n -h 1)

The general term of the known series is

1
a„ =

n^

Since

the series in question converges.

EXERCISES

Test the following series as to convergence or divergence.

2.1. 1+ — +—

+

2 ! 3

!

1 4-A +A+

1,1.1,
v'2 V3 V4

K 1 , 1 , 1 , 1 ,

2 2-22 3-23 4-2*

1-2 34 5-6

4. 1 + 1 + U....
3 5 7

6. 1 +1 + 1+....
3-^ 52

149. Ratio test. There are many ''ratio tests"; the

simplest is the following :

Given the series

to be tested for convergence, form the ratio —^^ of a

general term * to the one preceding it.
U,

(a) If lim

(J) If lim

< 1, the series converges.

u.

the series diverges.

>1, or if
un+l

Ur
increases indefinitely/.

(«) If 1'™
}J_^00

un+l
Ur

= 1, the test fails.

* We may divide the (n + l)-th term by the w-th, the (71 + 10)-th by
the (n + 9)-th — a7iy general term by the one before it, since the question

of convergence is not affected by dropping any finite number of terms.
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This test holds for any series whatever, not merely for

series of positive terras.

Suppose we have case (aj :

^^^'^
un+l = L<1. At

present we shall consider only the case in which all the

terms are positive, and show later '

how the proof may be completed. r-- 4-
1—;-

Let us choose some number r be- -p^ go

tween L and 1. By the definition

of limit, the difference between the ratio _!^ and its limit

L ultimately becomes and remains as small as we please

;

therefore a number m can be found such that for all values

oi n^m we have

'^n-f-l ^< r.

Hence

'^m+3 <C '^m+2^' "^ '^mV •>

• • •

Discarding the first m terms of our series, we see that the

remaining terms are less than the corresponding terms of

the series

u^r -{- u^r^ + u,y -\ .

But this latter series, being a geometric series with ratio

r < 1, is convergent ; hence the given series is conver-

gent, by the comparison test.

Case (5) may be proved by showing that the general

term w„ does not approach when n increases indefinitely.

The details are left to the student.

The test may be shown to fail in case (c) by the follow-

ing example : For the series

2p 3^
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the test ratio is

T
n

_n 4-tT= 1+1

and

11 111
1

% >'0O

1+1
L ^J

= 1.

But, by Ex. 4, p. 214, when jt? < 1, this series diverges ;

when jo > 1, the series converges. Hence there are both

convergent and divergent series for which the limit of the

test ratio is 1.

150. Alternating series. A series whose terms are

alternately positive and negative is called an alternating

series. Such series are of frequent occurrence. Their

most important properties are contained in the following

theorems.

Theorem I : If after a certain point the terms of an

alternating series never increase numerically^ and if the

limit of the n-th term is 0, the series is convergent.

Theorem II : In a convergent alternating series^ the

difference between the sum of the series and the sum of

the first n terms is not greater numerically than the (n-\-V)-th

term

:

l^~^n| ^ l^n+ll-

To prove theorem I, let us write the series in the form

Wj — 1^2 + ^3 — ^4+ rt-^

where all the u'^ are positive. When n is even, say

II = 2 m, we may write S^ in the two forms

(1) ^2m= (^1 - ^2) + (i^3 - W4) + • • • + (^2m-l - '^2m)'>

(2) Sor^i= '^^1 — (^2 — Wg) — •
•

. — (U2,a~2 " '^2m-l) " %m-

Equation (1) shows that 82^ always increases, since each
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of the parentheses is positive. Equation (2) shows that

S2jn is always less than u^ Since ^2ff» always increases,

but never exceeds the fixed number u^^ it approaches a

limit S not greater than i^j, by theorem IV of § 8.

Further, the sum of an odd number of terms S2m+i ^-p-

proaches the same limit, since

lim (S.,^+^- jS^,,,) = lim W2m+i = 0-

Theorem II follows at once. For, if n is even, the dif-

ference S — Sn is the alternating series

and we have just shown that the sum of an alternating

series is not greater than the first term. Similarly if n

-^is odd.

151. Absolute convergence. A series is said to be abso-

lutely coyivergent if the series formed from it by replacing

all its terms by their absolute values is convergent. It

can be shown that a series always converges if the series

of absolute values converges. From this fact the proof

in § 149 is easily completed for the case when the terms

are not all positive.

EXERCISES

Determine whether the following series are convergent or divergent.

1.
2 2^ 2^

3.
fi'l /p3 ^4
- + - + -+ —.
2 3 4

5.
1 ! 2 ! 3!

10 102 103

7. l-i + i-i+-

9. l_l+l_i+
92 93 94

2. l-l+i--....
2! 3!

4.
4 V4/ V4/

6.
1 1.3 1.3.5

3 3-6 3.6.9

8. 1_1+1_1+....
32 ^52 72

^

LO. l-i + i-f + .".

11. Are the series in Exs. 7-10 absolutely convergent ?

12. Carry out the proof of case (h), § 149.
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y\\. Power Series

152. Power series. Up to this point we have con-

sidered only series whose terms are constants. The case

of greatest practical importance, however, is that in which

the terms are functions of a variable. In what follows,

we shall be chiefly concerned with the class known as

power series.

A series of the form

a^-\- a-^ \- a^x^ -{- •••,

where a; is a variable and a^, a^, a^^ ••• are constants, is

called a power series. Such series are of especial impor-

tance in practice.

A power series may converge for all values of the variable

x^ or for no values except ; but usually it will converge for

all values in some finite interval, and diverge for all values

outside that interval. The interval of convergence always

extends equal distances on each side of the point 2; = 0.

The interval of convergence can usually be determined

by the ratio test. We illustrate the process by an

Example : Find the interval of convergence of the series

Here

1 + 0; + ^+- +
2 3

x^

n
n+l

X
+— +

n

lim
un+l
Ur

= lim

X

71 + 1

X"^

n

= lim -
n-^ao n-j- 1

x\ = \x\

by the theorem* of § 139.

* Objection may be raised to the use of this theorem in the present

instance, on the ground that n is not a continuous variable. The objec-

tion, liowever, is easily disposed of. For, if we can prove by the theorem

that a given function of n approaches a certain limit when n varies con-

tinuously, it is certain that the same limit will be approached when n

varies through positive integral values.
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(a) The series converges when \x\ < 1, i.e. — 1< x <, 1.

(5) The series diverges when \x\ > 1.

(c) The test fails when x= ±1. But when x = l the

series is the harmonic series

and therefore diverges ; when x = — 1^ the series is

which converges by § 150.

Hence the interval of convergence is — 1 < a; < 1.

EXERCISES

Find the interval of convergence of the following series.

1. 1 + X + x^ i- x^ + •••.

2. 1- 2a; -h'dx-^ - i x^ -\- -.

3. i_? + ^_^+ ....

3 9 27

4. .r — — H •••. ^n5. All values of x.

3 ! 5

!

5. 1 + lOar + 2 . .100a:2 + 3 • 1000 x^ + •••.

6. 1 + a: + 2!a;2+ 3!x3+ ....

7. 1 + nx + ^-(iLlll) x2 4-
K^-l)(>^-2) ^3 + ....

2! 3!

2 3

8. 1 +a: + — +— + •••• ^ns. All values of a:.

2 ! 3

!

9. If a^ + Og + 03 + ••• is an absolutely convergent series and

&p &2» ^jp'''^; set of numbers that remain finite as n increases:

I

ft„
I

< M, where M is a constant, show that the series

aA + «2^2 + «3^3 + •••

converges absolutely.

10. Prove that the series

sin 3 X
,
sin 5 xsm X 1 • — . • •

32 5-^

converges absolutely for all values of x.

11. If a^ + flo + (Is + ••• is an absolutely convergent series and if

Mj + u^ + M„ + ••• is a series such that ^ approaches a limit when n

«n

increases, show that the w-series converges absolutely.
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12. State and prove a theorem for divergent series analogous to

that of Ex. IL

153. Maclaurin's series. It is shown in algebra that

the quantity (1 + x')^, where m is not a positive integer,

may be developed into an infinite series in powers of x by

the binomial theorem :

(1 -\-x)"^=l-\-mx-\ ^-——^x^-\ ^^ ^ -or + •••,

the expansion being valid for all values of x numerically

less than 1.

Consider now the problem of developing any given

function f(^x) in powers of x. We will assume for the

present that such a development is possible, and write

(1) fXx) =Cq + c^x + G^x^ 4- ••• + c,,x'' + ...,

where the coefficients Cq, c-^, Cg, ••• are constants to be de^

termined. Letting 2j=0, we get/(0) = c?Q; i.e. c^ is the

value of the given function at a: = 0. Differentiating (1),

f\x^ = Cj H- 2 ^2^ -h 3 ^32:2 ^ ...^

and setting 2: = 0, we find

/'(0)=.i.
Proceeding in this way, we find

/"(0) = 2.1.„
/"_(0)=8_.2.1.3,

/<»>(0) = m!e,„

• • •

Hence (1) takes the following form, called Maclaurins

series :

(2) /(^)= /(0) +/'(0):r+-M^+CT):.3+....

It must be remembered that as yet we have not proved

the validity of this result ; we have merely shown that,

.

if a development in powers of x is possible, it must have

the form (2). Evidently a necessary condition for the



INFINITE SERIES. TAYLOR'S THEOREM 223

existence of Maclaurin's series is that the function and its

successive derivatives be defined at x = 0.

Example : Expand e^ in Maclaurin's series.

Here

/(^)=6^ hence /(0) = 1,

f"ix)=e^ /"(0)=1,

• • • •
• • • • •

Therefore the development is

154. Taylor's series. More generally, let it be required

to develop a function f(^x') in powers of x — a^ where a is

a given number. Assuming

/(rr) = (?()+ c^{x — a) -\- c^(x — ay -\- c^(x — ay + •••,

and setting x = a^ we find

/(^)=^o-
Proceeding as in § 158, we obtain finally Taylor s series:

(1) /W=/(a)+/'(<i)(^-<')+-^(Jf-a)'

Thus Maclaurin's series is a special case of Taylor's series,

viz.: the case a = 0.

When a function is represented by the series (1), a -e

say that it has been developed or expanded in Taylor's

series about the point x = a.

If, in (1), we replace xhj a + h^ we obtain another im-

portant form of Taylor's series:

/(a + A) = /(a) +fXa)h+f^h?+f^^h?+ ....

It is clear that the Taylor series for a function f(x^ can

always be formally written down if the function and its



224 CALCULUS

derivatives of all orders are defined at rr = a. But it by
no means follows from this that the series represents the

function for any particular value of x. The series may
diverge, or, if convergent, its sum may not be /(a;). The
development in Taylor's series is valid only for those values

of X for which the series converges to the value fQc).

In the next article we show under precisely what cir-

cumstances a function may be developed in Taylor's series.

However, for all functions that we shall consider, the

series, if it converges at all, converges to the value f(x) ;

hence for those functions the interval within which Taylor's

series is valid coincides with the interval of convergence of the

series.

Example : Expand the function log x in Taylor's series

about the point a; = 1, and find the interval of convergence

of the series.

In this case a = 1 :

fix) = log X, fay = 0,

X

X'

/'"W = 2_

/'(I) = 1,

/'"(I) = 2,

Hence, by (1),

logx=(x-l}-l(x- 1)2 4- l(x - 1)3

The general term is

n

Applying the ratio test, we have

(x ^ 1)"+^

lim
n—>oo U,

= lim
n->-oc

7^4-l

(x— ly
n

= la;-l|.
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Thus the series converges when |a: — 1|<1, i.e. when

< 2; < 2. When 2; = 0, the series is

— 1 — 2 — 3 — •"-,

which is divergent (§ 1-47). When x=2, the series is

1 _ 1 4_l

which is convergent (§ 150). Hence, finally, the interval

of convergence is < 2: <2.

EXERCISES

1. In the Maclaurin series for e* (§ 153), show that the series

converges for all values of x.

In each of the following, determine the interval of convergence of

the series.

2. Expand sin z in powers of x.

Ans. sin x =x 1- — — •••.all values of x.
3 ! 5

!

'

3. Expand cos x about the origin.

x^ X*
Ans. cos X = 1 1 •••, all values of x.

2! 4!

4. Expand e^ in Taylor's series about the point x = 2.

6. By replacing a: by 1 + a: in the example of § 154, obtain the

development of log (1 + x) in powers of x.

Ans. log(l + a:)=a:-^'+|-^+..., -l<a:<l.

6. Expand log (1 — x) about the origin.

2 3 4

Ans. loga -x) =- X ,
- 1< a: <- 1.234 '=^

7. Obtain the binomial theorem

ri I
^\m 1 , , m(m — 1) 9 ,

m(m — 1) Cm — 2) «
.(i + a;)"* = 1 + mx -] >^ ^x^ H ^^ ^ ^x^ + •••.

2! 3!

8. Expand sin x about the point a: = -•

9. Show that log x cannot be expanded in powers of x.

10. Expand arctan x about the origin.

Ans. arctan x = x 1 ....

3 5

11. Show that, if P(x) is a polynomial of the n-th degree in x,

F(x) = P(a) + P'{a){x - a) +^^ {x - a)^ + ... + ^^^-li^(x - a)",
2

!

n\

whatever may be the values of a and x.

Q
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155. Taylor's theorem. Let the function f(x) and its

first n -{-1 derivatives be continuous in an interval includ-

ing the point a;= a, and let a;= a + A be a second point of the

interval. Let R^ denote the difference between f(a + K)

and the sum of the first n-{-l terms of the corresponding

Taylor's series (2), § 15J: ; i.e. set

(1) fQa + h')=fia) +f(a-)h+l^B+-

n !

For convenience, write R^ in the form

(n + 1) I

so that

(2) /(a+ A)=/(a)+/'(a)A+ - +f^-^h'^+ J^P„.
Consider now the auxiliary function

<i>(x) =fia + K) -/(x-) -Qa + h- a:)/'(.r)

{a+ h-xY j,,,.^-^ ^^^
(a+ h-xy

j,^^)^^^
2! n\

(a-{-h-xy+'^p
(^+ 1)1

This function evidently vanishes when x = a -\- h, and, by

(2), it also vanishes when x = a. Further, it results from

our hypotheses that (f>C^^ has a derivative <j>' (x) in the in-

terval from x=a to x=a-\-h. Hence (i>(x) satisfies all the

conditions of Rolle's theorem (§ 136) in that interval, and

its derivative must vanish at some point x^ of that interval.

Differentiating <j>(x)^ we find after simplifying that

n\

By Rolle's theorem,

f(a;i)=0,
hence



INFINITE SERIES. TAYLOR'S THEOREM 227

Substituting this value of P„ in (2), we get

(3) /(a+ A)=/(a)+/'(a)A+-^^^A2+ ... +/!::^^n

or, writing x— a for A,

(4) f{x)=f{a) + f{d){x- a) +^{x-af-{- ...

n! ^ ^ (n+1)! -^ ^
'^'

where a^j lies between a and a::.

P^ormula (4), or its equivalent (3), is called Taylor s

theorem tuith a remainder. The last term is called the re-

mainder after n -{- 1 terms

:

(n H- 1) 1

For 71=0, Taylor's theorem reduces to the law of the

mean (§ 137):

f{x-)=fia-) + (x-a)f'i^{)-

If n increases indefinitely, the right member of (4) be-

comes an infinite series, the Taylor's series iov f(x). The
necessary and sufficient condition that the series shall con-

verge to the value /(a:), and hence that the function shall

be developable in Taylor's series, is that

^im R^ = 0.

Example : Prove that the function e* can be developed

in powers of x for all values of x.

Here a = and

/(a:) = e-, f'Qx-) = 6^ ••-, /^"^^>(a:) = 6%

so that the remainder in Taylor's theorem has the form

n+l

Rn = . .
e-^^

(/l+l)I

where x^ is between and x.
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^n+l
By Ex. 8, p. 221, the quantity - —— is the general

(w + 1)

!

term of a series which converges for all values of x^ so

that, by § 146, this quantity converges to when n becomes

infinite. Hence, for all values of x,

and the proof is complete.

EXERCISES

1. In the Maclaurin series for sin x, prove that the remainder con-

verges to for all values of x.

2. Prove that cos x can be expanded in powers of x for all values

of X.

156. Approximate computation by series. We have

found in the preceding article that any function whatever,

provided certain conditions regarding continuity are

satisfied, can be represented by Taylor's theorem as a

polynomial of arbitrary degree, with a certain remaiyider

Rn- It is clear that i2„ is the error committed if we re-

place the function by the polynomial.

This suggests a method for computing approximately

the numerical value, for any given value of the argument,

of functions such as the sine, cosine, logarithm, etc., whose

value cannot be found directly. We have only to build

up the Taylor polynomial for the function in question,

and show that the error R^ is less than the allowable limit

of error for the problem in hand.

If now our function can be developed in Taylor's series,

we know at once that its value to any desired degree of ac-

curacy can be found by merely adding up a sufficient num-

ber of terms at the beginning of the series. For, by § 155,

the remainder, or error, R^ converges to as ti increases

indefinitely, and hence, by the definition of § 14, can be

made as small as we please by taking n sufficiently large.

An upper limit for the error committed by stopping at
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any point may frequently be found from the general prop-

erties of series. Thus in the case of an alternating aeries

the error is less than the first term neglected, by theorem

II of § 150.

Example : Compute sin 3° correct to five decimal places.

Since ^ ^sin:r=2:-— +--••.,

it follows that

sin3° = sin^ =— -i — +
, ,

60 601 6V60y 120V60y
= 0.052365-0.000024+ •••.

Since this is an alternating series, the error committed by

stopping with any term is less than the next term. With-

out computing the third term, we see that it is much too

small to affect the fifth decimal place, hence we need keep

only two terms

:

sin 3° =0.05234.

To be of practical use in computation, a series should

converge rapidly, as in the above example, so that a few

terms are enough to give the desired degree of accuracy.

In this connection the following point should be noted.

Our choice of a in Taylor's theorem is governed only by

the necessity of knowing at that point the value of /C^:)

and its derivatives. Since the remainder Mn contains the

factor (x— a)"+\ it is clear that, in general, the smaller the

difference x— a^ the faster the remainder will approach 0.

Hence in general, of all possible values for a, we should

choose that one lying nearest to the value of x in question.

Thus to compute sin 3°, we took a = ; if we had to com-

pute sin 47°, we would take * a = — , i.e. we would expand
•i

sin x in powers of 2;
; etc.

4

* Assuming of course that we know the value of the sine and cosine

only for the "principal angles '0, — , -, etc.
6 4
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EXERCISES

1. Draw on the same axes, on a large scale, the curve y = sinx

and the first and second " approximation curves " y = x, y = x — — ^ in
6

the interval < a; < tt. Estimate the interval within which each of

the approximating polynomials is correct to one decimal place.

2. Proceed as in Ex. 1 with the curve ?/ = e^ and the successive

approximation curves y = 1 -hx, y = l + x + — ,y = l + x-\ 1— ,in

the interval - 2 < a:< 2.

3. Compute (a) sin 1° to five places; (h) sin 9° to three places;

(c) cos 3° to four places.

4. Find the value of e to five decimal places. Ans. e = 2.71828 •••.

5. Compute (a) sin 47°, (b) cos 31°, each to four places.

6. Find the tenth root of e to five decimal places.

7. Find the value of e^-^^ to five decimal places.

8. Show that an arc of a great circle of the earth 2| miles long

recedes 1 ft. from its chord.

9. Taking the circumference of the earth as 40,000,000 meters,

show that the difference between the circumference and the perimeter

of a regular inscribed polygon of 1,000,000 sides is less than one fif-

teenth of a millimeter.

10. Within what interval can sin 6 be replaced by 0, if accuracy

to three decimal places is required ?

157. Operations with power series. Operations that can

always be performed upon series of a finite number of

terms, such as rearrangement of terms, multiplication of

one series by another, term-by-term differentiation or

integration, etc., cannot be assumed offhand to be allow-

able with infinite series, and in fact it is easily shown that

they are not allowable in all cases.

In dealing with developments in Taylor's series, it is

frequently desirable to know just when such elementary

operations are permissible. We therefore state, without

proof, the following theorems regarding power series.

Theorem I : Addition. Two poiver series may he added

togetherfor all values ofxfor which both series are convergent.
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That is, if the series

</>(a;) = (Iq + a^x + a^x^ +•••,

are both convergent, the series obtained by adding these

together will converge to the value <^(a:) + '^(x) :

(j)(x) H- yjr^x) = a^ -f 6q + (aj + ^i):^^ + (^2 + ^2)^ + •*••

Theorem II : Multiplication. Two power series

may he multiplied together for all values of x for which both

series are absolutely convergent.

That is, if the series

(f>(x) = ^0 + a^x H- a<^x^ + •••,

-^(x) = ^0 + ^1^ + M^ + •••

are both absolutely convergent, then

(f>(x) -^(x) = a^b^ H- (^i^o + «o^i)a:

+ («2^o + ^1^1+ <^oh)^^+ • • • •

Theorem III: Division. One convergent power series

may be divided by another., provided the constant term in the

denominator is not 0. The result holds within a certain

interval, the determination of which is beyond the scope

of this discussion.

Theorem IV : Substitution. If the series

z = a^^-\- a^y -{ a^y'^ + •••

converges for all values of y, aiid the series

y = bQ-}-b-^x + b^x^ + •••

converges for all values of x, the seizes for y may be sub-

stituted in the series for z and the result arranged in poivers

of X. This result holds for all values of x.

Theorem V : Differentiation. A poiver series may
he differentiated term hy term for all values of x within its

interval of convergence.*

Theorem VI : Integration. A poiver series may he

integrated term by term between any limits lying within the

interval of convergence.*

* The endpoints of the interval are excluded.
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These theorems enable us to obtain many Taylor ex-

pansions in which the evaluation of the successive deriva-

tives would be very tedious, and in which the law of

formation of the coefficients is so complicated that the

interval of convergence could not be determined directly.

Example : Expand e^^^^ in powers of a;, to x^ inclusive.

By Exs. 1, 2, p. 225, we have

sin^ -,
,

. . sin^a^
,

sin^a: ,
sin*a;

,

21 3! 4!

sin ic = 2^ — — +

Since both these series converge for all values of a:, the

series for sin x may, by theorem IV, be substituted in the

series for e^^^^:

.-=i + ^,_|i + ...)+(|_,_|! +
...J

^1/ 3;8 N3 1 / a?
, Y_^

+ 3l("-3T+-) +r! I" -3! +
•••;*"••••

Expanding the parentheses by theorem II and collecting

terms, we find

By theorem IV, this series converges for all values of x.

EXERCISES

Expand the following functions in powers of x, and determine the

interval of convergence in each case.

1. sin^a:. Ans. x^ - | a:* + 53 x^ + •••, all values.

2. cos^o:. Compare this result with that of Ex. 1.

•3 5

3. e'^sin x. Ans. x +x^ -{-—- — + ••• , all values.
3 30

4. log i^il£. 6. e=«<=08*.

1 — X

6. By integrating the series

=1— X+X^ — X^ + --'

1 + X

between the limits Oandx, obtain the Maclaurin series for log (1 + x).
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7. Expand arcsin x in powers of x by integrating the binomial

f 1
expansion of .

/8. Expand by division, and integrate the resulting series
^ 1 + x"-^

term by term. Cf. Ex. 10, p. 225.

9. By differentiating the Maclaurin series for log (1 — x) (Ex. 6,

p. 225), prove the formula of elementary algebra for the sum of an

infinite geometric series.

10. By means of series, prove the formula sin 2 x = 2 sin x cos x.

Expand each of the following in powers of a:; the interval of con-

vergence is as indicated in each case.

11. -^. -l<x<l.
1 — X

12. sec X. Jns. 1 +-^2 + ^a;4+ ..., _?<x<-
2 24 2 2"

1 o _ _
13. tana;. Ans. x -]- -x^ -^ —x^ ^ •, -^^x<'-

3 15 2 2

14. Show that, for values of x so small that the fourth and higher

wers of — may be ne^
a

replaced by a parabola.

15. Find the area under the curve y — from x = to x = \.

Draw the figure. Ans. 0.9461.

16. Find the centroid of the area in Ex. 15.

1 9

17. Find the area under the curve y = e -
, from x = to z = 1.

Ans. 0.86.

18. The area in Ex. 17 revolves about the a:-axis. Find the

centroid of the volume generated.

19. Raise 1.03 to the fifth power. Ans. 1.16.

20. Show that, in leveling, the correction for the curvature of the

earth is 8 in. for one mile.

21. A mountain peak 1 mile high, situated on an island, is just

visible from the mainland. If there is no refraction, how far out at

sea is the island? Solve in two ways. Ans. 90 miles.

22. Show that the length of the arc of the hyperbola xj/ = 1 from

x = 100 to a: = 200 differs from the length of the chord by one part in

5,000,000,000.

powers of - may be neglected, the catenary y = - (e" + e ") may be
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23. Find the difference between the circumference of the earth and

the perimeter of a regular circumscribed polygon of 1,000,000 sides.

Cf. Ex. 9, p. 230.

24. Find the surface generated by revolving the curve y =— about

the X-axis, from a; = to a: = ^.

158. Computation of logarithms. We have found

/y^ /yiO /y**x

log(l+a;)=a;--+--j+ •••,

/vi** /v»t> /y»*t

log (\ — X) = -~ X

each series holding for values of x numerically less than 1.

From these vre may deduce a series that is better adapted

to numerical computation than either of the above series.

Subtracting the second equation from the first (by

theorem I, § 157), we find

1 l-\-x ^(
,
x^ . x^

,

for values of x numerically less than unity. Let us put

1 + ^_ "^ + 1

1 — X m
or

1
x =

2m-f l'

where m may have any positive value. Then

(1) log (1 + m) = log m-\-2 1 + 1
2 m -hi 3(2 m + 1)3

+ L_. ..

5(2^ + 1)5

This series converges rapidly, and is therefore well

adapted to computation. It is easily shown that for

values of m > 1 the error committed by stopping at any

point is only slightly greater than the first term neglected.
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Example : Taking m = 1, we have

log2 = 2g 3.33^5.35^7.3'
= 2[0.3333 + 0.0123 + 0.0008 + .••]

= 0.693.

From this the logarithms of 4, 8, ... may be found directly.

With m = 2, we find log 3 ; from this and the previous

result we may obtain the logarithms of all numbers whose

only prime factors are 2 and 3. In fact, it is clear that

only the logarithms of prime numbers need be computed

by the series.

EXERCISES

1. Compute to three decimal places the natural logarithms of all

integers from 3 to 10 inclusive.

2. After finding log 10, obtam logj^ 2, logjQ 3.

3. By comparison with the geometric series

1 1 Ti ,
1

,
1

2n + l (2 7n + l)
fl

I

1
1

1
,

...1
^«+iL (2 m + 1)2 (2 7n + 1)4 J'

prove that the error committed by stopping with the n-th term of the

1

1

(2 w + 1)2

series (1) is less than times the first term neglected



CHAPTER XXI

FUNCTIONS OF SEVERAL VARIABLES

I. Partial Differentiation

159. Functions of several variables. Up to this point

we have been concerned with functions of a single argu-

ment. A function may, however, depend upon several

independent variables. For example, the volume of a cir-

cular cylinder is a function of its radius and altitude ; the

acceleration of a moving particle is a function of all the

forces acting on it ; the strength of a rectangular beam

is a function of its breadth and depth.

If 2 is a function of two variables x and y, we write

with a similar notation for functions of more than two

variables.

Geometrically a function of two variables may be rep-

resented as the ordinate of a surface in space. Thus

the equation
z = ax -\- hy -\- c

represents a plane ; the equation

z^Q? — if'

represents a hyperbolic paraboloid, etc.

A thorough study of functions of several variables is

beyond the scope of a first course in the calculus. In the

present chapter we set forth a few of the most important

definitions and theorems, confining our attention chiefly

to functions of two arguments.

160. Limits ; continuity. Suppose we have given a

function of two variables

(1) 2 = /(^, y)
236
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representing a surface in space. When x and y approach

the respective values x^^ ?/q, the function z is said to

approach a limit Zq if the point (2;, y, 2) of the surface (1)

approaches a definite limiting point (a^^, y^, Zq). In other

words, if when x is sufficiently near Xq and y is sufficiently

near y^ the difference between z and Zq becomes and re-

mains numerically less than any preassigned quantity

however small, then z is said to approach the limit Zq : in

symbols,
lim f(^x, y) = z^.

A function /(a;, y) is said to be continuous at the point

\\mf(x, y) = f(xQ, y^).
X—^Xq

Similar definitions are laid down for functions of more

than two variables.

In what follows, it is supposed that all functions occur-

ring are continuous at all points under consideration.

161. Partial derivatives. If y be kept jixed^ the func-

tion ^, ,

becomes a function of x alone, and its derivative may be

found by the ordinary rules. This derivative is called

the partial derivative of z with respect to a;, and is denoted

by any one of the symbols

ax dx

The partial derivative with respect to y has a similar

meaning.

The idea of partial differentiation may be extended at

once to functions of any number of variables. We have

only to remember that in differentiating with respect to

any one variable, all the other variables are treated as

constants.
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Fig, 84

162. Geometric interpretation of partial derivatives. To
keep y constant, say y = y^^ in the equation

means geometrically that we cut

the surface by the plane y = ^q.

. dz .

The partial derivative — is tliere-

fore the slope of the curve of in-

tersection of the surface and the

plane, i.e. of the curve whose equa-

tions are

The partial derivative — may be

interpreted similarly. ^

3z dz
163. Higher derivatives. The derivatives —-, —- are

* ydxdy
themselves functions of x and y, and their partial deriva-

tives can in turn be found. They are denoted by the

following symbols

:

by \dxj byox

dx\dyj dxdy ""^
,

.

dy\dyj dy^

The process can of course be repeated to find still

higher derivatives.

It can be shown that the two "cross-derivatives"

5% dh

dydx dxdy
are identical

:

d^z

dydx dxdy
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That is, the order of differentiation is immaterial. This is

true for derivatives of all orders, and for functions of any

number of variables.

EXERCISES

•J
<%

Find -T- ,
^— for the following functions.

ox dy

1. z = x^ -\- xy — S X -{- .5. Ans. — = 2 x + y — S
',

— = x.

dx oy
2. 2 = a:^ + 3 x'^y — xy -\- 2 y — 3.

3. 2 =(x2 - 2 xyy. ^. z= ^^^~^y^ .

5. 2 = ecos^cx-y)^ 6. 2 = logVa:2 + 3^2.

« . y A dz — y
7. z = arctan --^ • ^ "^s. — = ——^

.

a; 5a; a;^ + ?/^

8. Given /(a:, y, 2) = xyz + 3 .r^?/ + z^, find/,, /j^,/,.

-4 ns. /, = y(z + 6 a:).

9. It u = x^ + y^ — z^ + X + 2 y, find — , — ,
— •

dx oy oz

10. Find the slope of the curve cut from the hyperbolic paraboloid

2 = a:2 — 2^2 by the plane ?/ = 3, at the point (4, 3, — 2). Ans. 8.

11. Find tlie equations of the tangent to the parabola

2 = 3 x2 + 4 ?/2, a; = 2

at the point (2, 1, 16). Ans. x = 2,z=Sy^^.

12. If M = x^y-- 2 xy^ + 3 x^y^, show that x-:^ + y~-bu.

13. If w = (?/ - z){z - x)(^x - y), show that ^ + -^ + -^ = 0.
ox oy oz

(92^ fi-2z S-" 52-
14. Given 2 = a: + a;S^2 + 2 xY, find ^, -^, -^, ^ •

oa;2 ayaa; aa;a_y oy^

^•2-y Q'2-,

A ns. —- = 6 a;?/2 + 4:y*; '^ = 6 a-2?/ + 16 xy^.

dx^ oyox

d'-~ 52-
15. Given 2 = a:2^2 _j_ 3 ^^a^^s _ ^2^^ verify that

dydx dxdy

d^z 5^2 d^z
16. If 2 = cos (a: — y), show^ that = = -—— •

ayox^ oxoyox ox'-oy

17. If M = ei-2/-2^, verify that

52^ _ 52^
.

d'^u _ d'^u

dxdy dydx dydz dzdy
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18. If ^ = i log {x^^-y^), show that |^ + ^ = 0.

19. li z = x'^y, show that x—- + ^/-^ = 02.
^ dx dy

20. If M = x^+ y^+ y^, show that x^ + y^ + zp: = 2u.
dx dy dz

21. lif(x, y, z) = ^
show that/^2 +/^2 +/,, = 0.

Vx^ + ^/'-^ + z'^

22. Prove that if two functions u and y are so related that

du _ dv du _ dv

dx dy dy dx

then

'

d^^d^ = o.

dx^ dy'^

164. Total differentials. When x and ?/ change by
amounts Ax and A^, the function

z=f(x,^}
changes by an amount Az. It can be shown that Az may
be expressed in the form

dz dz
Az = —Ax-\ Ay + eAx + riAy,

dx dy

where € and 7] are infinitesimals.

The quantity —Ax-\ Ay is called the principal part
dx dy

(cf . § 49) of the infinitesimal Az. The total differential of

z is defined as the principal part of Az

:

J dz . . dz .

dz = — Ax-\ Ay.
dx dy

In particular, ii z = x, — =1 and — = 0, so that
dx dy

dx = Ax.
Similarly

dy = Ay.
Hence we may write

(1) dz = ^dx + ^^dy.
dx dy
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For functions of more than two arguments a similar

formula holds. Thus, if

(2) du = ^—dx -\ dy -\ dz.
ox dy dz

If x^ y, z are functions of a fourth variable f, then u be-

comes a function of t alone, and its differential has been

defined in § 50. It can be shown that the value of du

as given by (2) agrees with the earlier definition, so that

(2) still holds even when x, y, z are functions of a single

variable.

Example: Find approximately the increase in the area

of a rectangle if each of its dimensions increases by a

small amount.

We have
A = ah^

hence
dA = hda -|- adh.

The actual increase in the area is

^A=(a-\- da)(h-\-dh)—ah

= hda -f adh + dadh.

If da and dh are so small that their product can be

neglected in comparison with the other terms occurring,

the total differential dA represents the actual change AA
with sufficient accuracy.

165. Differentiation of implicit functions. Let y be de-

fined as a function of x by the equation

K^, 2/) = 0.

Let us for an instant put

then by (1), § 164,

dz = ^-dx -[-^- dy,
dx dy

da bda

(5

a Si-

I db
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But in the present instance

2 = 0,

hence
df f

dz = -^ dx -\- ^^ d^ = 0,
dx dy

or

(1) -£=-"^ (1^0).

The value of —^ as g^iven by this formula is of course
dx ^ -^

identical with that given by the method of § 25.

Again, let z be defined implicitly as a function of the

two independent variables x and y by the equation

F(:x,y,z)=0.

Put
u = F(x, y, z) ;

then

, dF.
,
dF.

,
dF.

du = —-dx+ -—-ay -\ dz,
dx dy dz

But since t^ = 0, du= likewise, and

— dx-\ dy -\ dz — 0.

dx dy dz

Further, since s is a function of x and y, we may write

dz dz
dz = — dx -\ dy.

dx dy

Eliminating dz between these two equations, we find

dx dz dx] \dy dz dy)

To find — , keep y fixed, so that dy = 0. Then
dx

dF dFdz^^Q
dx dz dx



FUNCTIONS OF SEVERAL VARIABLES 243

or
dF

dz dx

dx dF
dz

dF
dz

dy

dy

dF
dz

Similarly

(3) £=-.^ {~*0

EXERCISES

Find the total differential of each of the following functions.

1. z = x^ - 'S xy + y- + 2 y. 2. z = cos^ (x - y).

3. u = X -\- y + z. ^. u = log tan ^'
X

5. Let V be the volume, S the total surface, of a right circular

cylinder. If r and h change by an amount Ar and A^ respectively,

find d V, A V, dS, A5. Draw a figure.

6. In Ex. 5, if r = 5 ft., A = 10 ft., Ar = AA = 2 in., compute the

percentage of error made by using dV in place of AF and dS in place

of A5.

7. The dimensions x, y, z oi a rectangular parallelepiped change

by amounts Aa:, Ay, Az. Find dV, AV. Also obtain dV and AF
directly by inspection of a figure.

Find -^ in the following cases, using formula (1) of § 165.

8. 3x-4ty + 2xy = \.

9. (2x2- 3?/2)2+ 1 _ a;^^o.

10. Arctan ^ = x.
X

11. Given x^ + y^ -\- z^ = 1, find ^, ^ by formulas (2) and (3)
dx dy

of § 165.

12. Find the equations of the tangent to the circle x'2-i-y^ + z^=d6,

y = 4'at the point (2, 4, 4).

13. Find the equations of the tangent to the ellipse ar^ + 3 3/2 = z^,

s = 4 at the point (2, 2, 4).
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II. Applications to Solid Analytic Geometry

166. Tangent plane to a surface. It can be shown that

all the lines tangent to a surface

z = f{x, y)

at a point P : (a^Q, ^q, Zq) lie in a plane,* the tangent plane

to the surface at that point. This plane is of course

determined by any two of the tangent lines. We have

already learned (§ 162) how to find the equations of the

tangent lines lying in the planes x = Xq^ y = y^. Let us

assume the equation of the tangent plane in the form

2 - 2^0 = %(^' - ^o) + ^2(^ - ^o)'

where m^ and m^ are to be determined. Now the line of

intersection of this plane with the plane y — y^ has the

slope my But this line is the tangent lying in the plane

bz
y = ^Q, and, by § 162, its slope is the value of ^^ at P,

Bz
which value we shall denote by the symbol

^ dx

dxjp
dz

Hence

Similarly we find

^z-^

^y\p

Thus the equation of the plane tangent to the surface

dz
(1) ^~^o = ^ (^-^o) + i5

p
iy-yo)'

dyl

More generally, let the equation of the surface be given

in the implicit form

(2) FCx,y,z) = 0,

* Provided s, — , and ^ are continuous at P.
dx dy
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where the partial derivatives^— , — ,
^— do not all vanish

dx dy dz

at P : (xq, t/q, Zq). Suppose for definiteness that -— ^0.
dz _Jp

We may imagine equation (2) solved for z, and may then

write the equation of the tangent plane by formula (1).

But, by (2) and (3) of § 165,

dF dF

dz___^ i£^_^.
ex~ dF' By dF

dz dz

Substituting these values in (1), we find

BF;

dx

'dz

dF
dy

_

jp

(x — Xq) Q-p

~dz

iy - Vo)^

or

^ ^ fix p dy_
(j^-j/„)+g"'

p dz
(z - z.) = 0.

167. Normal line to a surface. The normal to a surface

at a point P is the line through P perpendicular to the

tangent plane.

It will be recalled from solid analytic geometry that the

direction cosines of any line perpendicular to the plane

Ax + By + Cz + D=0
are proportional to the coefficients A^ B, C. Hence, since

the normal is perpendicular to the tangent plane (3) of

§ 166, we have at once the following

Theorem: The direction cosines of the normal to the sur-

face
F(x,y.z)=0

at any point are proportional to the values of — , — , — at

,7 , . ^ dx dy dz
that point. ^

This theorem is fundamental in the geometry of surfaces.
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By analytic geometry, the equations of a line through

% ^0' ^0 with direction cosines proportional to a, 5, c are

^ ~ ^0 _ ^ ~ l/o _ ^ ~ ^0
.

From this the equations of the normal at any point may be

written down at once.

168. Angle between two surfaces ; between a line and a

surface. The angle between two surfaces at a point of in-

tersection is defined as the angle between the tangent planes

at that point, and this in turn is equal to the angle be-

tween the normals. This angle may be found by the

theorem of analytic geometry that, if two lines have direc-

tion cosines Zp m^, n^ and l^, m^, n^ respectively, the angle

between them is given by the formula

cos 6 = l^l^ + m^rric^ + n^n^-

The angle at which a line pierces a surface is defined as

the angle between the line and the tangent plane at the

piercing-point. This is evidently the complement of the

angle between the line and the normal.

Example : Find the angle between the cylinder ?/2 = 4 a;

and the ellipsoid 2x^ -\- g^ + z^ = 1 ?Lt the point (1, 2, 1).

For the ellipsoid, the partial derivatives are

dF . dF ^ dF ,-,— =4 a;, — = ^J/^ — = 2 z,

dx By dz

hence the direction cosines of the normal at (1, 2, 1) are

proportional to 4, 4, 2, and their actual values are
J, |, J.

For the cylinder,

dX dg dz

hence the direction cosines of the normal are n, —-<> 0.

Therefore "^2 V2

cos(9 = -— .? +— .?=0:
V2 3 V2 B

the surfaces intersect at right angles.
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EXERCISES

Find the equations of the tangent plane and normal line to each of

the following surfaces at the point indicated.

1. The cone x- + 'd if = z^ dit (2, 2, 4) ; draw the figure.

Ans. x+^y -2z = 0; -^-^ = ^Ln^ ^ ^jui

.

^ '13-2
2. The paraboloid z — x^ — ?/'^ at (1, 1, 0).

3. The cylinder y^ = 4: ax at (a, 2 a, «) ; draw the figure.

4. The paraboloid x = yz a,t the origin.

5. The sphere x^ -\- y^ -{- z^ — a^ at {xq, y^, z^).

Ans. x^x + y^y + zqz = a^.

6. The surface — ±f-±-=lat (a^o, yo, Zq).

7. Find the equations of the tangent to the circle x'^ -\- y'^ -\- z^ = ^,

x + y-\-z=^^t the point (1, 2, 2) ; draw the figure.

8. Find the angle between the sphere x^ + y^ + s;^ = 14 and the

ellipsoid 3 a;^ + 2 ^2 ^ s^ ^ 20 at the point (-1, - 2, 3). Ans. 23° 33'.

9. Show that at any point on the 2-axis there are two tangent

planes to the surface a^y'^ = x^(b'^ — z^)

.

10. Show that the sum of the squares of the intercepts on the axes
2 2 2 2

made by a tangent plane to the surface x^ + y'^ -{ z'^ = a^ is constant.

Sketch this surface.

11. Prove that the tetrahedron formed by the coordinate planes

and a tangent plane to the surface xyz = a^ is of constant volume.

12. Find the angle at which the normal to the hyperboloid

y^ — x^ -{- 4: z^ = IQ at the point (2, 2, 2) intersects the a:^-plane. Draw
the figure.

13. Find the equations of the projections on the coordinate planes

of the normal to the cylinder x = y + z~ Sit (2, 1, 1).

14. Find the equations of the normal to the surface x-y -\- y^-\- z^ = S

at the point (1, 1, 1).

15. Show that the sphere x- + y^ + z"^ = 2 a'^ and the hyperbolic

cylinder xy = a^ are tangent to each other at the point (a, a, 0).

16. Determine a and b so that the ellipsoid x-+2y^ + z^ = 7 and

the paraboloid z = ax^ + hy^ may intersect at right angles at (1, 1, 2).

Ans. a =: 3, & = — 1.

17. Find the angle between the normal to the oblate spheroid

3.2 _|_ ^2 ^ 2 5;2 — 10 at (2, 2, 1) and the line joining the origin to that

point. Ans, Arccos | V3.
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18. In Ex. 17, find the shortest distance from the origin to the

normal in question. Ans. ^V6.

19. Find the angle at which the line - = ^ = - pierces the ellipsoid

2 a;2 + i ?/2 + s2 ^ 2.5. Ans. 67° 48'.

20. Prove that every line through the center of a sphere intersects

the sphere at right angles.

169. Space curves. Two surfaces

(1) ^(x, y, z) = 0, ^{x, y, 2) =
intersect in general in a curve in space. The curve is de-

termined by the equations of the two surfaces considered

as simultaneous.

Since there are an infinite number of surfaces through a

given curve, and since the equations of any two of these

surfaces in general determine the curve, it follows that the

equations of the curve may be given in an infinite number
of ways. A particularly simple way is to give the equa-

tions of two of the " projecting cylinders "— i.e. the cylin-

ders through the curve with generators perpendicular to

the coordinate planes. Eliminating y and z in turn be-

tween the equations (1), we find two equations of the form

(2) ct>(ix,z}=0,ylr(x,y} = 0.

These equations represent cylinders through the curve (1)

with generators perpendicular to the a:2-plane and the

2;^-plane respectively.

We have seen that the coordinates of a point on a plane

curve are frequently given in terms of a parameter t. The
same device is often employed with curves in space : the

curve is given by the three parametric equations

(3) X =/(«), 2/ = KO.^ = KO-
By eliminating the parameter between two different pairs

of these equations, we obtain equations of the form (2).

170. Tangent line and normal plane to a space curve.

The tangent to the curve (1) of § 169 at the point

P : (a:Q, «/q, Zq) is the intersection of the tangent planes to
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the two surfaces

Hence its equations can be written down at once.

The normal plane is the plane through P perpendicular

to the tangent. To find its equation, we have only to

transform the equations of the tangent line to the

" symmetric form "

a h c

after which the equation of the normal plane can be

written directly.

Example : Find the equations of the tangent line and

the normal plane to the curve

^2 _^ ^2 + 2;2 = 3,

at the point (1, 1, 1).

The equations of the tangent are found by formula (3),

§ 166, to be

a; + ?/ + 2 = 3,

32; + ^ — 2^=2.

To put these equations in the symmetric form, let us

eliminate y and z in turn, thus representing the line by

two of its projecting planes :

22:-32 = -l,
5a^ + 3i/ = 8.

Equating the values of x from these two equations, we
find

_ -3j-h8_3^-l

or

3~' -5 ~
2

'

*

The equation of the normal plane is therefore ^

3(:r-l)-5(y-l)4-2(2-l)=0.
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171. Direction cosines of the tangent. Let us draw a

secant (Fig. 86) through P : (xq, y^, Zq) and a second point

P' : (^Xq + Ax, 7/q + A^, Zq + A^;), and denote by s the length

of the arc from a fixed point to P, by As the length of

the arc PP' . The direction cosines of the secant are

, Ax ot ^y I Az
cos a' = , cos p = ^

, cos 7' = .

pp! ppi ppi

those of the tangent are

T Aa; T Aa; As c?:ccosa= lim = iim =—

,

pp'^qPP' pp-^o^s pp> ds

_dy
ds

dz

ds

(1) cos/3=

cos 7 =

Hence the direction cosines of the tangent are propor-

tional to dx, dy, dz.

From this fact we obtain at

once the equations of the

tangent to the curve (3) of

§ 169. They are

^~ ^o -_ y ~ Vq _ ^ ~ ^0

/'Co) ^''(^o) ^'(<o)

The equation of the normal

plane may be written down
at once.

172. Length of a space

curve. Since

cos^ a 4- cos^ p 4- cos^ 7 = 1,

it follows from the formulas (1) of the preceding article

that

169 be-

Fig. 86

ds = dx -\- dy -\- dz .

Hence the length of the arc of the curve (3-) of
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tween any two points Pq : (^Xq, y^^ z^) and P^ : (a^j, y^, z^ is

For the curve (2) of § 169 this becomes

=rV'-(*)v(rM-]dx,

EXERCISES

1. Find the equations of the projecting cylinders of the curve

x^ 4- y^ = 2 a'^, x^ — if- -\r z^ — a^; also find the equations of the tan-

gent line and the normal plane at the point (a, «, a).

Ans. Normal plane : x — 3/
— 22; + 2a = 0.

2. Find the equations of the tangent line and the normal plane to

the circle x- + 2/2 _^ ^^ = 9, ?/ + 2 = 3 at the point (2, 2, 1).

3. Find the equations of the tangent line and the normal plane to

the helix x — a, cos 0, y = a sin 6, z = bd at the point 6 = 6q.

4. Find the length of one turn of the helix in Ex. 3.

5. Find the angle between the curves

x^ -\- y^ + z^ = 3,

z = xy,

and
x^ — y^ -{- z^ = 1,

X + y + z= 'd,

at the point (1, 1, 1).

6. Find the circumference of the circle 4: x'^ + 3y^ -{- 2z- = 1, z = x.

7. Find the condition that the surfaces ^(x, y, z) =0, ^(a:, y, z)=
intersect at right angles in a point (xq, y^., z^) '.

8. Find the centroid of the arc of the curve x^= 2 ay, x^ = 6 a^z

from (0,0,0) to ^«, ^, ^^



CHAPTER XXII

ENVELOPES. EVOLUTES

173. Envelope of a family of plane curves. The equa-

tion

(1) f(x, y, a) = 0,

where a is arbitrary, represents a family of plane curves :

a is constant for any one curve, but varies when we pass

from one curve of the family to another. Thus the

equation

represents all the unit circles having their centers on the

ir-axis ; the equation

y = X -\- k

represents the family of straight lines making an angle of

45° with OX.

It may happen that there exists a curve to which

each member of the family (1) is tangent. Such a

curve is called the envelope

of the family. The family of

circles mentioned above Have

the lines ?/ = ± 1 as their en-

velope, since each of the cir-

cles is tangent to these lines.

On the other hand, the fam-

ily of straight lines y =^x -\-h have no envelope.

174. Determination of the envelope. Suppose that the

curves

(1) fix. y, a) =
252

Fig. 87
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have an envelope. Let (2:, y) be the point of tangency

of the envelope with a curve Q of the family; then the

coordinates x and y are functions of a alone, and they

satisfy equation (1). Differentiating (1), we find (§ 165)

^ ^
dx dy ^ da

We have not yet made use of the fact that the envelope

and the curve C have a common tangent at (x^ y).

The slope of the tangent to at (a;, y) is determined

by the equation (§ 165)

(3) fdx + ^dy = 0,
dx dy

and this gives the slope of the envelope also. Combining

(2) and (3), we find

^da = 0.
da

But since x and y are functions of a, a is the independent

variable and we may take da =^ 0. We thus find

da

as a second equation, in addition to (1), that is satisfied by

the coordinates x^ y. Hence the equations

fix, y, a) = 0,

(^)

da

taken together constitute 'parametric equations of the en-

velope. The equation in cartesian coordinates can be

found by eliminating the parameter a.

In the above discussion the existence of the en-

velope was assumed. It can be shown, conversely, that

the curve (4) is an envelope, provided -^ and -^ do not

both vanish along the curve.
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Example : Find the envelope of the family of straight

a
lines 7/ = mx H , where m is the variable parameter.

m
Differentiating partially with respect to m, we find

= X - a

m2'

or

m a
= ± V-^ X

Substituting this value of m in

the original equation, we get

y = ± 2Vaa;,

or

?/2 = 4 ax.

This agrees with the result of

analytic geometr^^ that the

straight line y = mx +
a

is

m

Fig. 88

tangent to the parabola y'^= \ax

for all values of m,

175. Envelope of tangents.

Every curve may be considered as the envelope of its

tangents, as appears at once from the definition of the

envelope. This is illustrated by the example of the pre-

vious article, where the parabola was found as the enve-

lope of its tangents.

EXERCISES

Find the envelope of each of the following families of curves. In

each case draw several curves of the family, and the envelope.

1. The circles of radius a with their centers on the ^-axis.

2. The family of straight lines y = 1 mx + r»/*.

Afis. 16 3/3 + 27^:4 = 0.

3. The family of parabolas 3/^ - a{x - a). Ans. x ±2 y = 0.

4. The family of circles whose diameters are double ordinates of

a parabola.



ENVELOPES. EVOLUTES 255

5. The family of circles tangent to the a:-axis and having their

centers on the parabola y = x^. Ans. y = 0, 2 x^ + 2 y^ - y z=z 0.

6. The circles with centers on a parabola and passing through the

vertex of the parabola. Ans. y%x -\- 2 a)+ x^ = 0.

7. The circles through the origin with their centers on the

hyperbola x^ - y^ = a^ A7is. (x2 + ?fy= 4 a\x^ - y').

8. The family of ellipses whose axes coincide and whose area is

constant. Ans. Two conjugate rectangular hyperbolas.

9. A straight line segment of constant length moves with its ends

in two perpendicular straight lines. Find its envelope.

Ans. A hypocycloid of four cusps.

10. A straight line moves so that the sum of its intercepts on the111
axes is constant. Find its envelope. Ans. The parabola a:^ + y^ — ^2^

11. When a projectile is fired from a gun with an initial velocity

Vq inclined at an angle a to the horizontal, the equation of its path, all

resistances being neglected, is (§ 235)

px
y — X tan a — ^

2 vq^ cos^ a

Find the envelope of all possible trajectories when the angle of ele-

vation a varies. Ans. The parabola y = —^— :f—-

.

2g 2 v^^

12. The sides of a variable right triangle lie along two fixed lines.

If the area of the triangle is constant, find the envelope of the

hypotenuse.

13. Find the equation of the curve tangent to the lines

y = mx — am^,

where m is the parameter.

14. Find the equation of the curve which is tangent to the line

yoy = 2ax -\- ^ y^^

for all values of yo.

15. Find the equation of the curve tangent to the family of straight

lines

X cos ct -{- y sin cc = p,

where « is the variable parameter.

16. Find the equation of the curve tangent to the straight line

y = mx ± ^ahr^ + IP-

for all values of m. Ans. —-1-^ = 1.
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176. The evolute. When a point P moves along a

curve, the center of curvature Q (§ 54) describes a second

curve, called the evolute of the original curve.

It can be shown that the normal PQ to the original

curve is tangent to the evolute; i.e. the evolute is the

envelope of the normals. Its equation may therefore be

found by writing the equation of the normal to the given

curve in terms of a parameter, and then applying the

method of § 174.

Example : Find the evolute of the parabola «/^ = 4 ax.

It is shown in analytic geometry that the line

(1) y = mx — 2 am — am^

is normal to this parabola for all values of m. We have

therefore to find the envelope of the family (1), regarding

m as the variable parameter.

Differentiating partially with respect to m, we get

= X — 2 a — S am\
or

m^ = x —2 a

3a

Fig. 89

Equation (1) may be written

in the form

y = m(x —2 a— am^)^

or

^2 — rri^Qx —2 a— am^}^.

^ Substituting for m^, we find

the equation of the evolute

a " semi-cubical parabola
"

with a cusp at (2 a, 0).
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EXERCISES

1. Find the equation of the evolute of the parabola y^ = 4:ax by

writing the equation of the normal in terms of the ordinate of the

point at which the normal meets the curve.

2. In Ex. 1, show that the distance from any point P on the

parabola to the corresponding point on the evolute is equal to the

radius of curvature, thus verifying that the locus of the center of

curvature and the envelope of the normals are the same curve.

x^ iP"

3. Find the evolute of the ellipse "^ + 7^ = 1» given that the equa-

tion of the normal in terms of the eccentric angle <^ is

hy = ax tan <ji — (a^ — b^) sin
<f>.

Ans. (ax)^ + (byy = (a^ - &2)f.

2 2 1
4. Find the evolute of the hypocycloid x'^ + y^ = a^, the equation

of whose normal is

y cos a — X sin a = a cos 2 «.

2. 2. 2.

Ans. (x + y)^ + {x — y)^ = 2 a^.



CHAPTER XXIII

MULTIPLE INTEGRALS

177. Volume under a surface. Let us try to find the

volume V bounded by a portion T of the surface

the area S into which T projects in the 2:?/-plane, and the

cylindrical surface through the boundaries of S and T.

Z

Fig. 90

We can get an approximate expression for the required

volume as follows. Draw in S a set of n lines parallel to

258
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the «/-axis and a set of m lines parallel to the a;~axis, as

in Fig. 90, thus dividing S into rectangles of area A«/ A2;,

together with a number of irregular portions around the

boundary. By passing through each line of the two sets

a plane perpendicular to the a;?/-plane we divide V into

vertical rectangular columns, together with smaller ir-

regular columns. The upper boundary of each rectangu-

lar column is a portion of the surface T. Through that

point of the upper boundary of each column which is

nearest the :ri/-plane, pass a horizontal plane, thus form-

ing a set of rectangular prisms lying wholly within V.

The sum of the volumes of these prisms is evidently

an approximation to the required volume, the error com-

mitted being the sum of the irregular columns around

the outside, together with the portions lying above the

upper bases of the rectangular prisms. That is, approxi-

mately^

where /(a;<, ^,) is the altitude of the prism.

It is obvious that the error in this approximation may
be made arbitrarily small by taking both b^x and A?/ suf-

ficiently small. Hence the required volume is exactly

n m

(1) r= lim V VKx,, y^l^y Ax.

The "double limit" (1) may be evaluated by two

successive applications of the fundamental theorem of

§ 104, as follows.

Let us fix our attention on the rectangle P-Pl'Ql'QI in

S (Fig. 90). The volume AF/ whose base is this rec-

tangle may be found approximately by adding the volumes

of all the included elementary prisms. Hence, by the

fundamental theorem of § 104, AF"/ is given exactly
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by the formula
m

AF/ = lim ^f(Xi, y>}^yi^x

Xi and ^x remaining constant as we pass to the limit.

Now if we add all the volumes of this type, we have

approximately the required volume. It is to be noticed

that in the expression for A Vl the coefficient of ^x is a

function of Xi alone, since the limits yl and yl' are func-

tions of Xi alone. Thus we may apply again the theorem

of § 104, and find that the required volume under the sur-

face z =f(x, y) is

dx^F= lim 5 P f{Xi, y)dy Ax = f \
P f(x, y)dy

where a and h are the extreme values of x on the bound-

ary of S.

The quantity just found is usually written without the

brackets, thus

:

(2) V=j I f(ix,y)dydx.

It is called a double integral^ or more properly an iterated

integral^ being merely an integral of an integral. It

is to be noted that the inner integral sign belongs with

the inner differential, and that during the integration

with respect to ?/, x remains constant. Further, the

first or inner limits of integration are in general variables,

but the outer limits are always constants.

Of course we might integrate first with respect to x^

then with respect to y. The same argument as before

would lead to the formula

(3) V= rr"Ax,y)dxdy,

y remaining constant during the first integration.
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In the foregoing argument, we have assumed our vol-

ume to be divided into rectangular columns perpendicular

to the a^?/-plane. Frequently, however, it is more conven-

ient to erect columns perpendicular to one of the other

coordinate planes (cf. example (5) below). Such varia-

tions offer no difficulty provided the geometric meaning

of the successive integrations be kept clearly in mind. In

every problem, a sketch of the required volume should be

made, and the required double integral built up by inspec-

tion of the figure.

Examples: («) Find the volume in the first octant

bounded by the plane z = x-\- y
and the cylinder y = 1 — x'^.

Integrating in the order ?/, a;,

we have

•l-J-2

=
i i (x + y)dydx

=Xi^^+%
r 1—X2

dx

-£{-^-'-^^>
— 31~ 60* Fig. 91

(5) Find the volume common to the circular cylinder

?/2 _|_ ^2 — ay and the sphere x"^ -{- y^ -\- z^ = a^.

Let us divide the volume into columns perpendicular to

the ^z-plane :

X dzdy

Va*^ — y'^ -~ z^ dz dy^ etc.
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178. Volume under a surface : second method. The re-

sult of § 177 may be obtained by a somewhat different

method. The area of the section by a particular one of

the planes parallel to the i/z-plaue is evidently

Hence, by § 110, the volume is

A(x)dx= I
I f(x^y)dydx, .

a %/a*/y'

The actual work of obtaining the volume in any particular

case is therefore the same by the two methods— the only

difference is in the geometric interpretation of the succes-

sive steps. The great advantage of the method of § 177

is that it lends itself readily to the discussion of a great

variety of other problems besides the computing of vol-

umes, as we shall see in the next few articles.

Of course when ^(rr) is known to start with, the volume

may be found by a single integration as in § 110. This is

the case in several of the exercises below.

EXERCISES

In each of the following exercises, the limits of integration should

be obtained directly from a figure.

1. Find the volume in the first octant bounded by the planes

x = l, z = x-\-y and the cylinder y'^ = x. Ans. y

.

2. Find the volume in the first octant bounded by the cylinder

a:^ + ?/2 = a^ and the plane z = x + y. Ans. f a^.

3. Find the volume of a cylindrical column standing on the area

common to the two parabolas x = y'^, y = x'^ as base and cut off by the

surface 2 = 1 + ?/ — x^. Check the result by integrating in two ways :

first in the order y, x ; next in the order x, y.

4. Find the volume in the first octant bounded by the plane

y + z = 1 and the surface x = i — z — y^. Check as in Ex. 3.

5. Find the volume cut off from the paraboloid y = 1 ~ y ~
77

by the xz-^lane.
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6. Find the volume in the first octant under the surface z — xy

bounded by the cylinder ij — x^ and the plane ?/ = 1. Solve in two

ways,

7. Find the volume bounded by the surface z = xy, the cylinder

2/2 = ax, and tlie planes x-\-y = 2a, y — 0, z = 0.

8. Find the volume sliced off from the paraboloid az = a^ — x^ — y^

by the plane y -\- z = a.

9. Find the volume cut out of the first octant by the cylinders

z — \ — x'^, X = \ — y'^. Ans. \%.

10. Find the volume of. a segment of an elliptic paraboloid

bounded by a right section.

11. Find the volume bounded by the surfaces 4 y'^ -\- 4: z^ = x^,

X = 4: y, X = 2 a, z = 0. Ans. sVC-Itt — 3V3)a^.

12. Find in two ways the volume in the first octant bounded by

the paraboloid y = xz and the planes z = x, z= 2 — x.

13. Find the volume of a segment of a hyperboloid of two nappes

bounded by a right section.
2 2^2

14. Find the volume bounded by the surface x^ -\- y^ -{ z^ = a^.

Sketch this surface. Ans. /^ tt a^.

15. Find the volume in the first octant inside the cylinder

x^ + y''^ = 2 ax and outside the paraboloid x^ + y'^ = az. A71S. | tt a^.

16. Find the volume in the first octant bounded by the surface111
a J \hj \cJ 90

17. Show that the volume of any cone or pyramid is one third the

area of the base times the altitude.

18. Write out six different double integrals for the volume in the

first octant bounded by the cylinders y = x-, x^ -{ z'^ = 1.

19. Find the volume in Ex. 18 by simple integration.

179. Interpretation of the given function. Any function

/(a;, z/) of two independent variables may be interpreted

as the 2-coordinate of a point on a surface in space.

If, then, in any problem, we can express the required

quantity as -a double limit of tlie form (1), § 177, no

matter ivliat may he the geometric or physical meaning of the

given function f(x^ ?/), the limit may be evaluated by an
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iterated integration as in § 177. Thus the result of that

article is by no means confined to the determination of

volumes — we shall, as was mentioned in § 178, apply it

to the study of a variety of problems.

180. The double integraL In the argument of § 177 it

is not necessary that the function / be expressed in terms

of cartesian coordinates x and

y ; further, the area S need not

be divided into elements in the

particular way there adopted.

The essential points are, first,

that we have a function / of

two independent variables de-

fined at all points of the region

S\ second, that we divide S
into n elements AaS' which are

infinitesimal of the second

order.^

When S is divided in this

way, the double limit

Fig. 92 lim V/,A^

is called the double integral of the function / over the

region aS', and is denoted by the symbol
j j fdS

:

s

As noted in § 177, the integral I I
^
f(x^ V^^y dx is

often called a double integral, and it is evidently equal to

j \ f dS \ but it is clear that the latter integral is the

* That is, such that the maximum distance between two points on the

boundary of A 6^ approaches 0.
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more general, since it does not tie us down to a particular

coordinate system, or to a particular mode of division of S.

The integrals (2) and (3) of § 177 are merely two special

forms of the double integral.

181. The double integral in polar coordinates. Given a

function /(>, 6) of the polar coordinates r, ^, the double

integral I ( / dS may be evaluated as follows. Divide jS

s

into elements by a set of circles with center at the origin

and a set of lines radiating from

the origin, as in Fig. 93. Then
AS is the difference between

two circular sectors of angle A^
and radius r and r + Ar respec-

tively ; i.e.

AS = l(r + Ar)2A6' - ~i- r^AO

= (rAr 4- J aP)AO.

We may now repeat the argu-

ment of § 177, integrating first

with respect to r, and noting

that, by § 109, the infinitesimal

of higher order ^aPaO may be neglected. This leads to

the result

fffdS=lim^^f(r, e)rArAe =f^X^'fir, Q}rdrdB.
s

EXERCISES

Fig. 93

1. A round hole is bored through the center of a sphere. Find
the volume cut out, using polar coordinates.

2. A cyhnder is erected on the circle ?- = a cos ^ as a base. Find
the volume of the cylinder inside a sphere of radius a with center at

the origin.

3. Find the volume above the a;y-plane common to the paraboloid

2 = 4 — x^ — r/2 and the cylinder x^ }- ij- = 1, using polar coordinates.
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4. A square hole of side 2 whose axis is the 2-axis is cut through

the paraboloid of Ex. 8. Find the volume cut out.

5. Find the volume of a spherical wedge by double integTation.

6. Prove that when a curve r =f(0) revolves about the initial

line, the volume of revolution generated is given by the formula

F = 2 TT P f ' r sin 6-rdr d6.

Solve the following by the method of Ex. 6.

7. Find the volume of a sphere.

8. Find the volume generated by revolving the cardioid

r =a(l — sin ^) about its line of symmetry, Ans. |7ra^.

9,. The curve r^ = a^ sin 6 revolves about the y-axis. Find the

volume generated.

10. Find the volume generated by revolving one loop of the curve

r = a cos 2 $ about its line of symmetry.

11. Find the volume generated by revolving a circle about one of

its tangents.

12. Find the volume cut from a sphere by a cone of half-angle
ô

with its vertex at the center of the sphere. Check by using cartesian

coordinates.

13. Find the volume of the prolate spheroid generated by revolv-

ing about its major axis the ellipse

I
r —

1 — e cos
A 7S

where e is the eccentricity. Ans. —
3(l_e2)2

14. Find the volume of a paraboloid of revolution bounded by a

right section through the focus, taking the equation of the generating

n
parabola in the form r =— -• Ans. 2 7ra^.

1 — cos 6

182. Transformation of double integrals. We have seen

that the integrals (2) and (3) of § 177 are merely dif-

ferent forms of the double integral j I fdS. It may
s

happen that an integral given in the form (2) is difficult

or impossible to evaluate, but that when transformed to

the form (3), it becomes simple. Or sometimes after

evaluating the form (2) we change to the form (3) and
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evaluate again, merely as a check on the result. The
process of changing the form of an integral from (2) to

(3), or vice versa^ is called inverting the order of integration.

Another transformation of importance is the change

from one coordinate system to another— for instance,

from cartesian to polar coordinates.

Example : Evaluate I \ — cIt/ dx.

This integral cannot be evaluated di-

rectly, since the function — is not inte-

y
grable in terms of elementary functions.

But a study of the limits shows that

the field of integration is the triangle

bounded by the lines 2: = 0, y — x^ y = a.

Hence
Fig. 94

I I —ay dx
c/Q *Jx y *^o •^o y

sJo eydy = e° — 1.

y
X dy

EXERCISES

1. Check the result in example (a), § 177, by inverting the order

of integration.

2. Invert the order of integration in Exs. 1 and 2, p. 262.

3. Find the volume bounded by the cylinder x'^ = 4 ay and the

planes x + y + z = a, z = 0, a: = 0, integrating in two different ways.

4. Express the volume of Ex. 3 as a double integral in two other

ways.

5. Interpret the integral \
"

i
" V4 a^ — y^ dy dx as a volume,

and write out five other double integrals (all in cartesian coordi-

nates) for this same volume.

6. Evaluate i
"

(
" ^(.^ + y^dy dx, and check by inverting the

order of integration. Interpret geometrically.

7. Evaluate C ^^ e'''' dy dx. Ans. 0.859.
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8. Evaluate \ \
Jo Ji

dmates.

1 /'V^i-a

'O

9. Evaluate

sin
1 r2 2

6^2+2/2 (ffj fix by transforming to polar coor-

Ans. 1.35.

TTiJ

Jo J-z r
dy dx. ,

4
Ans. —•

ir

10. Express \ i/(/5 (a) in cartesian coordinates, (&) in polar coor-

s

dinates, where >S' is the triangle bounded by tlie lines x = a, y = 0,

y = x.

/• 2 /• o cos S
11. Transform 4

"^

I e''*^"<> r^/r//^ to cartesian coordinates.
Jo Jo

12. Compute the value of I | cos (x^ + y'^)dS extended over the

interior of the circle x^ + ?/'-= 1, • Ans. 2.644.

13. Find the area in the first quadrant under the curve y = e'2'^ by
noting that

'^^'dxyU^e-'-y'dyy^^^^Je-'-^^^y'-\lydx

Ans.
^^

Fig. 95

14. Find the centroid of

the area in Ex. 13.

183. Area of a sur-

face. Let us try to find

the area cr of a portion

of the surface

Y Suppose that the xy-^vo-

jection of a is the region

aS'. Let us divide S into

elements AaS' in any suit-

able way, and fix our

attention on a particular

one of these elements.

This element is the hori-

zontal projection of tlie
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portion Act of a. If we draw the tangent plane at some

point P of Act, then AaS' will be the horizontal projection

of a certain area Act' on the tangent plane. Hence

AaS' = Ao-' cos 7,

where 7 is the angle between the 2-axis and the normal

PiV^to o- at P, and

Ao-' =
cos 7

If now we form the sum of the quantities Act' and pass

to the limit, we have

^s^o^'^cosY ^^-^ cos 7

In case it is more convenient to project the area on the

xz- or the ^5;-plane, the corresponding formula is readily

developed.

Example : Find the area of that part of the surface

z= y -\-x'^ whose projection on the :c?/-j)lane is the triangle

bounded by the lines y = ()^ y — x, x = \.

Writing the equation of the surface in the form

2 — ^ — 2:^ = 0,

we have for the partial derivatives the values

dF o ^F . OF .— = — zx^ — = — 1, — =1-
dx dy dz

Hence by the theorem of § 167, the direction cosines of

the normal are proportional to — 2 2:, — 1 , 1, and

1
cos 7 = — •

V4 2:2 4- 1 + 1

Therefore the required area is

o- =f^f^ V4 x^ + 2 dy dx

= f xV4: x^ H- 2 dx
Jo

= l.f(4a-2+2)- = ^5(6^- 20-



270 CALCULUS

EXERCISES

1. Find the area cut out of the plane x-\-y + 2z = 2a by the

cylinder a;2 + ?/- = rt-. Ans. ^VQ-n-a'^.

3

2. Find the area of that part of the surface z = y + ^x^ whosfe

projection in the ^-^/-plane is the triangle bounded by the lines y = 0,

Ans. if(2 +\/2).

The center of a sphere of radius a is on the surface of a cylinder

y = X, X = 2

Find the surface of the cylinder intercepted by the

Ans. 4 rt^.

of diameter a.

sphere.

4. In Ex. 3, find the surface of the sphere intercepted by the

cylinder. Ans. 2(7r — 2)a^.

5. How much of the conical surface z^ = x^ -\- y^ lies above a

square of side 2 a. in the x?/-plaue whose center is the origin ?

6. How much of the surface az = xy lies within the cylinder

3.2 ^ y2 — f^2 9 (Use polar coordinates.)

7. A square hole is cut through a sphere, the axis of the hole coin-

ciding with a diameter of the sphere. Find the area cut from the

surface of the sphere.
Ans. 16rt&arcsin 8 a^ arcsin

&2

62

184. Triple integrals.

z

Fig. 9G

We have seen that the integral

of a function of one

variable, extended

over a given inter-

val, may be inter-

preted as the area

under a plane

curve. Again, the

integral of a func-

tion of two varia-

bles extended over

a plane region may
be interpreted as

the volume under

a surface. If now

we have a function

of three variables
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defined at all points of a portion of space, no similar geomet-

ric interpretation for the integral of the function over the

given region is possible, since geometric intuition fails in

space of four dimensions. Nevertheless the meaning of

such an integral may be made plain by analogy with the

earlier cases.

Suppose we have given a function /(a:, ?/, z) defined at

all points of a three-dimensional region V. Let us pass

through V three sets of planes parallel to the coordinate

planes, thus dividing V into elementary rectangular

parallelepipeds of volume Aa: A?/ A2, together with smaller

irregular portions around the boundary. Now multiply

the volume of each element by the value of the function

at some point within the element, say at its center, and
form the sum of these products. The triple limit

Aa;->0 ^^ ^^ ^^

is defined as the value of the trijjle integral of /(a:, ?/, z)

over the region V.

This limit may be evaluated by three successive

integrations (cf. §177) :

r = lim yVy fix. y, z)Ax Ay Az
Ax->0 ^^ "^ '^

I I fix,y,z)dzdydx.
a %Jy ^ z'

The first integration extends over a vertical column of

base Ay Ax\ the limits z\ z" are the extreme values of z

in this column, and are in general functions of both x and

y. The integration with respect to y is extended over

a slice parallel to the ?/2-plane ; the limits y' and ^" are

the extreme values of y in this slice, and are functions of

X alone. In the final integration the limits are of course

the extreme values of x in the whole region.
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More generally, the function / may be given in terms

of any system of coordinates, and the region V may
be divided into elements in any suitable way.* We
write in general, for the value of the triple integral of /
over the region F^

V

It is hardly necessary to say that such transformations

as inversion of order and change from one coordinate

system to another are allowable and useful with triple

integrals, just as with double integrals.

It may be well to observe at this point that applica-

tions of triple integration are comparatively rare in ele-

mentary work. In the problems treated in the next two

articles, triple integrals are sometimes required.

The volume 1^ itself may be expressed as a triple inte-

gral, the given function/ being taken equal to unity :

V

It is true that the volume may be found more directly by

methods previously studied ; nevertheless it may be worth

while to solve a few exercises by the present method for

the sake of practice in determining the limits in triple

integration.

Example : Find the volume cut off from the paraboloid

z = l — x^ — ^
by the a;j/-plane.

^

In this case

* The element must of course be infinitesimal of the third order.
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3*8*2

3'

12

2\/l-x2 ,
ax

EXERCISES

Finci the following volumes by triple integration, drawing a figure

in each case.

1. The tetrahedron bounded by the coordinate planes and the

, X y z ^

plane -{•} + -= I.
a c

2. The volume bounded by the paraboloid x^ -\- y"^ = az, the cylin-

der a:- + y- = 2 ax, and the plane 2 = 0.
'

Ans. ^ na^.

3. Interpret the triple integral \ \ \
^'~^ dz dy dx geometri-

cally, and express the same volume as a triple integral in several other

ways, drawing a figure for each case.

185. Heterogeneous masses. The density of a homo-

geneous mass has been defined in § 121 as the ratio of

the mass to the volume it occupies

:

V
For a, heterogeneous mass, i.e. one whose density varies

from point to point, we must introduce the idea of density

at a point.

Consider an element of volume A F^ including a point P,

and let Ail[f denote the mass contained in AF". Then the

ratio —- is the average density in A Fi If A I^^ approaches

in such a way that P is always included, the ratio

in general approaches a limit * S, called the density at the

* In general this is true only if AT" is infinitesimal of the third order,

as in § 184.

T
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point P

:

5 ,. AM dM
6 = lim -— =

AF->oA7 dV
The mass of a heterogeneous body whose density at any

point is given as a function of the coordinates of the point

can be found by integration. We have only to choose a

suitable mass-element and integrate over the whole body.

The great point to be noted is that in general the element

itself must be homogeneous^* since otherwise the mass of

the element cannot be computed and hence the integral

cannot be built up.

In many cases it is possible to choose an element as in

Chapter XV and obtain the result by a simple integra-

tion ; in more complicated problems double or triple in-

tegration may be necessary.

We give the argument in full only for the general case

where triple integrals are employed. Given a mass M
occupying a volume FI divide I^into elements as in § 184,

and multiply each element A J^ by the density B at one of

its points. Then the sum ^^^^SAFis an arbitrarily

close approximation to the mass Mii AP^be taken suffi-

ciently small, and the mass is therefore given exactly by

the formula

r
For a mass distributed over a surface S, the idea of

"surface density" must be introduced:

g^ lim Aiff^ dM

whence, by argument now familiar,

M =ffBdS.

* By this is meant that the density at different points of the element

varies only by infinitesimal amounts ; cf. example («) below. By the

theorem of § 109, the infinitesimal variations may be neglected.
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Similarly, for a mass distributed along a curve (7, the

"linear density" is

g^ Urn AM^dM^
As">.o As ds

'

and

M=x Sds.

Fig. 97

Examples : (a) Find the mass

of a circular cone whose density q
varies as * the distance from the

axis.

Let us take the vertex of the

cone at the origin and its axis

along OX. If we divide the mass

into cylindrical shells about the axis, each element will be

"homogeneous" of density

B = kr = ky.

We have

dV= 2'7ry{h — x)di/^

M=fdM=j8dV=2 7rkf"y\h-x)dy

= 2 7rk \ y^lh y \dy = -irka^h.

(5) The density at any point of a cube is proportional

to the sum of the distances from three adjacent faces.

Find the mass of the cube.

Taking the three faces mentioned as coordinate planes,

and choosing the element as in § 184, we have

M= -^ P P p(3^ + ^ H- z')dz dy dx.

* To say that a varies as b, or a is proportional to 6, means that

a = kb, where k is constant.
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EXERCISES

Determine the following masses.

1. A straight rod whose density is proportional to the n-th power

of the distance from one end.

2. A semicircular wire whose density varies as the distance from

the diameter joining the ends. Ans. 2 ka^.

3. A circular plate whose density varies (a) as the distance from

the center; (b) as the distance from a fixed diameter. Ans. (b) f ka^.

4. A spherical surface whose density varies as the distance (a)

from a fixed diameter
; (^>) from a diametral plane. Ans. (a) kir'^a^.

5. A sphere whose density is proportional to the distance from the

center. Ans. kira^.

6. A rectangle whose density is proportional to the sum of the

distances from two adjacent sides.

7. A circular plate whose density varies as the distance from a point

on the circumference.

8. A square whose density is proportional to the distance from one

corner. A ns. .765 ka^.

9. The tetrahedron bounded by the coordinate planes and the

plane x + y + z = a, if the density is proportional to the sum of the

distances from the coordinate planes.

186. Centroids and moments of inertia: the general case.

We are now in position to lay down precise definitions of

the moment of first order, and the moment of inertia, of

any mass. Divide the mass into elements AF'as in § 184,

and multiply each element by the density 8 at a point

P : (^x, I/, z) of the element. Then the moment of the first

order with respect to the ^z-plane is defined as

lim yy:VxSAv= fffxSdv,
A K->o ^^ '^ '^ *^ y^

with a similar formula for the moment with respect to any

other plane. The centroid is defined as the point (i, ^, z)

whose coordinates are given by the formulas

Mx = fffxhdV,Mi/=fffyhdV,Mz=fffzhdV.
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Similarly, the moment of inertia with respect to any

axis is defined as

V

where r is the distance of a point of the element from the

axis.

While the above formulas are important from the

theoretical standpoint on account of their generality, it

must not be foi'gotten that in the actual computation of

moments of the first order and moments of inertia multiple

integrals are very rarely needed, at least for homogeneous

masses.

It will be remembered that the theorems of § 134 have

been proved only for a set of particles. The reader will

now have no difficulty in extending the proof to the

general case.

EXERCISES

1. Find the centroid of the volume in the first octant bounded by

the paraboloid az — x^ + y'^ and the planes ij — x^ x — a.

Ans. (I a, ^9^-a, I'jn).

2. Find the moment of inertia of the volume in Ex. 1, with

respect to the 2:-axis.

3. Find the centroid of the volume in Ex. 3, p. 262.

4. Find in two ways the centroid of the volume in Ex. 9, p. 263.

5. Find the moment of inertia, with respect to the x-axis, of the

volume in Ex. 4, p. 262. Check by inverting the order of integration.

In Exs. 6-10, use polar coordinates.

6. Find the moment of inertia, with respect to the 2-axis, of the

volume in Ex. 2, p. 265.

7. Find the centroid of a hemisphere (cf. Ex. 6, p. 266).

8. Find the moment of inertia of a sphere about a diameter.

9. Find the centroid of a spherical wedge of half-angle a. Check

by putting ct = 7-

10. For the wire of Ex. 2, p. 276, find (a) the centroid ; also the
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moment of inertia with respect to (b) the diameter joining the ends,

(c) the radius perpendicular to this diameter.

Ans. (a) x = \Tra; (b) ^Ma'^; (c) I Ma^.

11. Find the moment of inertia of a circular disk whose density

varies as the distance from the center, (a) about the axis of the disk,

(b) about a diameter. Ans. (a) ^Ma^.

12. Find the centroid of a rectangle whose density is proportional

to the sum of the distances from two adjacent sides.

13. Find the moment of inertia with respect to (a) the a:^-plane,

(6) the a;-axis, of the volume bounded by the planes z = x -\-y, x+y= a,

and the coordinate planes. Ans. (a) \ Ma^.

14. Find the moment of inertia, with respect to the yz-plane, of the

volume bounded by the planes x = 0, y = 0, z = a, z = x -^ y, integrat-

ing in the order z., y, x\ check by integrating in the order x, y, z.

16. Find the centroid of a straight rod whose density is propor-

tional to the n-th power of the distance from one end.

. _ n -t- 1

,

Ans. x=—— I.

n-h 2

16. By dividing a triangle into strips parallel to the base and con-

centrating the mass of each strip at its center, show that in finding

the centroid of the triangle we may replace the triangle by a straight

line lying along the median and having a density proportional to the

distance from the vertex. Hence find the centroid of any triangle by

the result of Ex. 1.5.

17. By a method analogous to that of Ex. 16, find the centroid of

any cone or pyramid.

18. Prove theorems I and IT of § 134 for the general case of any

continuous mass.



CHAPTER XXIV

FLUID PRESSURE

187. Force. If a particle of mass m moves with an ac-

celeration y, the product of the mass by the acceleration is

called force

:

F=mj\
and the motion is said to be due to the action of the force.

Since force is a mere numerical multiple of acceleration,

it follows that force is a vector (§ 5(j'). If several forces

act on the same particle, their combined effects are equiva-

lent to that of a single force, their resultant. Usually the

resultant is most easily found analytically by resolving

each force into components parallel to the coordinate axes

and summing in each direction to get the rectangular com-

ponents of the resultant, after which the resultant is found

by compounding these rectangular components (see the

example below).

If there is no force acting on the particle, or, what is the

same thing, if the resultant of all the forces is 0, the par-

ticle is said to be in equilibrium. It follows from § 59

that a particle in equilibrium is either at rest or moving

uniformly in a straight line.

If several forces act at various points of a body, it is

not always possible to compound them into a single result-

ant. In what follows, we shall consider only cases in

which this is possible.

Example : Find the resultant of a plane system of forces

i^i=10 1bs., ^2 =20 lbs., i^3 = 8 1bs., 7^^=15 lbs.

acting as in the figure, where a = arctan |.

279
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Fig. 98

Hence

The components parallel

to OX are, of F^, 10; of

F^, 20 cos a =16; of F^, 0;

of F^^ — 15 sin a = — 9.

"-^ Hence the a;-component Rj.

of the resultant is

i2^ = 10 + 16 + - 9 = 17.

Similarly,

i^^ = + 12 - 8 - 12 = - 8.

B = VI72 + 82 = V353 = 18.8 lbs.,

inclined to the a^-axis at an angle

arctan(-y\)=-25°12'.

188. Force distributed over an area. We have frequently

to consider a force not acting at a single point, but dis-

tributed over an area. Examples are the pressure of a

body of water upon a dam, that of a carload of sand

against the sides of the car, the attraction of an electric

point-charge upon an electrified plate, etc. If the mass

upon which the force acts be thought of as composed ulti-

mately of particles, such a distributed force may be

regarded as comprising the totality of forces acting on the

separate particles. We shall consider only the case in

which all these separate forces taken together are equiva-

lent to a single resultant ; the resultant is the total force

acting on the body.

Consider a force acting in the same direction at all

points of a plane surface /S', and suppose for concreteness

that the force is normal to the surface. If we denote by

Ai^ the total force acting on an element of area AaS' chosen

A Ti^

as in § 180, then the ratio —- is called the average pres-

sure on ^S. Now, if AaS' approaches in such a way that a
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A IT

certain point Q is always included, the ratio —- in general

approaches a limit, called the pressure at the point Q:

T AF dF
V = hm =
^ A,s'->o AS dS

When the pressure at every point is given as a func-

tion of the coordinates, the total force F can be found

by integration. In the most general case the force ap-

pears as a double integral, by § 180

:

s

but in most cases of practical importance the element of

area can be so chosen that a single integration is sufficient.

189. Fluid pressure. An example of force acting

normally to a surface is furnished by the pressure of a

fluid against a retaining wall.

The pressure, at any point of an incompressible fluid,

due to the weight of the fluid is equal to the weight per

unit volume times the depth h of the point below the

surface of the fluid :

p = wh.

We will assume the retaining area

to be plane and vertical. Let us

divide this area into horizontal

rectangular elements of area Z^AA

as in the figure. If we denote by

Pi the pressure at the depth A^,

the force acting on the rectangle

liAh is approximately *

pJiAh = whiliAh.
n

Then the sum ^ whiliAh is approximately the total force,

* The actual force on the rectangle evidently differs from the quantity

PiliAh by an infinitesimal of higher order, which may be neglected.

Surface

Fig. 99
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or total pressure * P, on the whole area, and the limit of

this sum is exactly P. Hence, by the fundamental

theorem of § 104,

where limits of integration are to be assigned in such a

way as to extend the integration over the whole area.

Example : A trough, whose

cross-section is an equilateral tri-

angle of side 2 ft., is full of water.

Find the total pressure on one end.

Let us take the origin at the

lower vertex of the triangle.

Then the equation of the line

OA is

^ = VS X.

The total pressure on the triangle is

dxP = 2wf "(V3 - ^)x d^ = 2 wJ\VS - V§ x)x^S

= 6 w \ (1 — x^x dx= Q tv\

= w = 62 lbs., nearly.

EXERCISES

1. A particle is acted on by two forces F^, F^ lying in the same

vertical plane and inclined to the horizon at angles ctj, a^. Find their

resultant in magnitude and direction, if F^ = 527 lbs., F^ = 272 lbs.,

«! = 127° 52', a2 = 32° 13'.

Ans. 569 lbs., inclined to the horizon at 99° 26'.

2. Six forces, of 1, 2, 3, 4, 5, 6 lbs. respectively, act at the same

point, making angles of 60° with each other. Find their resultant.

Ans. 6 lbs., acting along the line of the 5-lb. force.

* Care must be taken not to confuse the total pressure^ P, with the

pressure at a point., p. The former is a force, the latter, a force per unit

area.
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3. Work the example of § 189 with the origin at B.

4. Find the total pressure on one side of a plank 2 x 8 ft. sub-

merged vertically with its upper end (a) in the surface, (h) 4 ft.

below the surface.

5. A horizontal cylindrical boiler 4 ft. in diameter is half full of

water. Find the total pressure on one end. Ans. 330 lbs.

6. Work Ex. 5 if the boiler is full of water.

7. What force must be withstood by a vertical dam 100 ft. long

and 20 ft. deep?

8. Work Ex. 7 if the dam is a trapezoid 100 ft. long at the top

and 80 ft. long at the bottom, taking the origin at an upper corner.

Check by solving again with the origin in a different position.

9. Find the total pressure on one side of a right triangle of sides

AB = 3 ft., AC = 4 ft., submerged with A C vertical and (a) A in the

surface, (h) A 2 ft. deep, (c) C 2 ft. deep. In each case check as in

Ex. 8.

10. Find the total pressure on one face of a square 2 ft. on a side,

submerged with one diagonal vertical and one corner in the surface.

11. Find the force on one end of a parabolic trough full of water,

if the depth is 2 ft. and the width across the top 2 ft. Ans. ff w.

12. A trough 4 ft. deep and 6 ft. wide has semi-elliptical ends. If

the trough is full of water, find the pressure on one end.

13. Find the force that must be withstood by a bulkhead closing a

watermain 4 ft. in diameter, if the surface of the water in the reservoir

is 40 ft. above the center of the bulkhead. Ans. 16 tons,

14. Show that the problem of § 189 is analytically equivalent to the

following : To find the mass of a thin plate, if the density is propor-

tional to the distance from a line in the plane of the plate.

190. Resultant of parallel forces. Suppose we have

given a set of parallel forces /j, f^, ••-,fn-, whose resultant

(algebraic sum) F is not 0. The problem of finding the

line of action of the resultant is analogous to that of find-

ing the centroid of a set of mass particles.

Let us take the a;«/-plane perpendicular to the given

forces, and let (rr.-, «/,) be the point where the line of

action of /< pierces this plane. The moment of the result-

ant about each coordinate axis must equal the sum of the
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moments of the forces about the same axis. Hence the

line of action of ^pierces the a;?/-plane at the point whose'

coordinates ^, 'y are given by the formulas
n n

Fx = ^fiXi, Fy = ^fiVi.

191. Center of pressure. More generally, consider again

the case of a force acting normally at all points of a plane

area. Take the given plane as rr^z-plane, and divide the

surface into elements A/Sas in § 180 ; then the force on AaS*

is approximately p^S^ where p is the pressure at a point

(a:, y) of A/S^, and the moment of this force about the

«/-axis is xpAS. The sum of these moments is approxi-

mately the moment of the whole force, and the limit of the

sum is exactly that moment. Similarly, we can find the

moment about the 2:-axis. Hence the resultant acts at

the point whose coordinates ^, ^ are given by the formulas

Fx=ffxpdS, Fy^ffypdS,
* s s

where F is the total force. The point (x^ ^) is called

the center of pressure.

As usual, it happens in many problems that the double

integrals reduce to simple integrals, if the element be

properly chosen. In particular, in the problem of fluid

pressure it is easily seen that the depth of the center of

pressure below the surface is given by the formula

Ph = tv^hH dh,

where P is the total pressure.

EXERCISES

1. A straight beam AB 50 ft. long bears loads as follows: 100

lbs. at A, 100 lbs. at C, 200 lbs. at A 50 lbs. at B; AC = 10 ft.,

AD = 20 ft. Find the point of application of the resultant.

• 2. Work Ex. 1 if the segment AD bears a uniformly distributed

load of 5 lbs. per foot.
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3. Work Ex. 2 if the segment DB bears a distributed load which

increases uniformly from 5 lbs. per foot at D to 15 lbs. per foot at B.

4. A platform ABCD 20 ft. square bears a single concentrated

load. The reactions are, at A, 50 lbs.; at B^ 80 lbs.; at C, 100 lbs.

;

at D, 70 lbs. Where is the load ?

5. Find the most advantageous length for a lever to lift a weight

of 100 lbs., if the distance from the weight to the fulcrum is 4 ft.

and the lever weighs 4 lbs. per foot.

Find the depth of the center of pressure in the following cases.

6. A rectangle submerged vertically (a) with one edge in the

surface, (h) with its upper edge at a depth c. Ans. («) f a.

7. An isosceles triangle submerged with the line of symmetry

vertical and (a) the vertex, (6) the base, in the surface.

Ans. (a) I A; (6) \ h.

8. Any triangle submerged with one side in the surface.

9. One end of the parabolic trough of Ex. 11, p. 283.

10. A semicircle submerged with its bounding diameter in the

surface.

11. In each case of Ex. 9, p. 283, if the pressure is removed from

one side of the triangle, at what point must a brace be applied in

order to hold the triangle in position ?

.4ns. (a) With AB, AC as axes, (|, 2).

12. Show that the problem of § 191 is analytically equivalent to

that of finding the centroid of a plane mass of variable density p.



CHAPTER XXV

DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

I. General Introduction

192. Differential equations. A differential equation is

an equation that involves derivatives or differentials.

Various examples have arisen in our previous work, of

which the following may be mentioned

:

(§15)

(§16)

(§50)

(Ex. 43, p. 64)

(§51)

(Ex. 18, p. 50)

(Ex. 1, p. 81)

(Ex. 2, p. 78)

(Ex. 1, p. 2.39)

(10) ?1 + f^ = 0- (Ex. 22, p. 240)

Equations containing partial derivatives, such as ex-

amples (9) and (10), are called partial differential equa-

tions. Such equations are of great importance, but a

study of them is beyond the limits of this book.

286

(1)
ds 1

dt t^

(2) y"=4.

(3) dy = 2 cos 2 6 d6.

W y{n) ^ ^n^ax^

(5) xdx + y dy = ^,

(6)

(7)

(8)
(i+y¥ = „.y

(9) f = 2^ + 2/-.3.
ox
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193. Order of a differential equation. The order of a

differential equation is the order of the highest derivative

that occurs in it. Tlius, in § 192, examples (1), (3), (5)

are of the first order, (2), (6), (7), (8) are of the second

order, (4) is of the n-th order.

In the applications, equations of the first and second

orders are of predominant importance, and we shall be

chiefly concerned with these two types.

194. Solutions of a differential equation. A solution of

a differential equation is any relation between x and y
by virtue of which the differential equation is satisfied.

Thus equation (1) of § 192 is true if

1^

where c is arbitrary ; hence this relation is a solution of

the equation. A solution of (2) is easily seen to be

It appears from these examples that a solution of a

differential equation may involve one or more arbitrary

constants ; we shall find this to be true in general. It

follows that each equation has an infinity of solutions,

obtained by assigning different values to the arbitrary

constants.

By analogy with the integral calculus, a solution of a

differential equation is often called an integral of the

equation, and the arbitrary constants are called constants

of integration.

II. Equations of the First Order

195. The general solution. Suppose there is given a

relation (free of derivatives) between x, y and an arbi-

trary constant

:

(1) Fix, y, C-) = 0.
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Geometrically this equation represents a family of curves^

whose individual members are obtained by assigning par-

ticular values to c.

If we differentiate (1) with respect to x^ the arbitrary

constant c may be eliminated from the equation thus

formed and the original equation. The result of this

elimination is evidently an equation involving x^ y^ and

y^ ; i,e. it is a differential equation of the first order :

(2) *Cr^,y,j/')=0.

As this equation does not contain c, it represents a prop-

erty common to all the curves of the above-mentioned

family.

Since equation (2) is true by virtue of equation (1), it

follows that (1) is a solution of (2).

If a solution of a differential equation of the first order

contains an arbitrary constant, it is called the general

solution: hence (1) is the general solution of (2). It

can be shown that, in general, corresponding to every

differential equation of the form (2) there exists a gen-

eral solution (1) ; methods of finding this solution in

various cases will be considered presently.

It may be worth while to point out that, if the differ-

ential equation has the simple form

ax

the integral calculus gives us the general solution at

once

y=jf(x)dx + c.

It should also be noted that while in the integral cal-

culus the constant of integration always appears as an

additive constant, this is not true in general in the solu-

tion of a differential equation ; the constant often enters

in other ways.
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Examples : (a) Find the differential equation whose

general solution is

Differentiating, we find

di/ = 2 ce^ dx ;

eliminating c by division, we get

^ = 2dx.
y

This example illustrates the fact that the arbitrary con-

stant is not always additive.

(5) Find by inspection the general solution of the

equation

X dy •\- y dx=().

The answer is seen at once to be

xy = e.

196. Particular solutions. A solution obtained from

the general solution by assigning a particular value to

the arbitrary constant is called a particular solution of the

differential equation. Thus in example (^), § 195, the

equations xy =0, xy = 5, etc., are particular solutions.

In applied problems involving differential equations

we are often concerned with a particular solution.

Nevertheless the determination of the general solution

is usually a necessary preliminary step, after which the

required particular solution is found by determining

the arbitrary constant from given initial conditions. The
process is illustrated by the examples of § 77, which

should be reviewed at this point.

Differential equations involving y' to a degree higher

than the first may in some cases have a so-called singular

solution., which cannot be obtained from the general solu-

tion by assigning a particular value to the arbitrary con-

stant. As such solutions are of little importance in most

of the elementary applications, we shall omit a discussion

of them.
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EXERCISES

In the following cases, find the differential equation whose general

solution is the given equation.

1. y = x^ -{- c. 2. y — ex.

Z. y = ce^. A. y = ex -\- c^.

6. log r = kO. 6. xy -\- cy = \.

7. s = sin t -f c cos t. 8. c^ + 2 ey = x^.

Find by inspection the general solution of each of the following

differential equations.

9. dy — sin x dx = 0. 10. x dx -\- y dy = d.

11. ^=xdx. 12. ^i^ = ^'.

y y X

13. xdy + y dx -\- 2 dy = 0.

14. Find the equation of a curve M'hose slope at any point is

equal* to the abscissa of the point. How many such curves are

there? Draw several of them.

15. In Ex. 14, find the curve that passes through (4, — 3).

16. Solve Ex. 14, reading " ordinate " instead of " abscissa."

17. A point, starting with a velocity of 10 ft. per second, moves

under a constant acceleration of 8 ft. per second per second. Find

(a) the velocity, (/>) the distance from the starting point, after t

seconds of motion.

18. A point moves under an acceleration

dv 4 o *— = — 4 cos 2 t.

dt

If 17 = and X = 1 when ^ = 0, find v and x in terms of t.

197. Geometrical interpretation. In analytic geometry

we find that the locus of a point whose coordinates x^ y are

connected by an equation

is a certain curve, the graph of the equation. In general,

any value whatever may be assigned to x^ and the corre-

sponding value of y determined.

* That is, the number representing the slope is the same as that rep-

resenting the abscissa. It is only in this sense that a ratio, such as

the slope of a curve, can be equal to a length, such as the abscissa of a

point.
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If now we have given a differential equation of the

first order, and of the first degree in y\ i.e. a relation

between a;, y^ and y' of the form

(1) y' = Fix, y-),

it is clear that, in general, any values whatever may be

assigned to x and y provided we associate with them the

value of «/' given by the equation. Thus, equation (1) is

satisfied by the coordinates of any point (x^ y) provided

the point is moving in the proper direction. Starting with

any assumed initial position, and moving always in the

direction required by the given equation, the point de-

scribes a curve ; the values of a;, y^ y' at any point of the

curve satisfy the differential equation. Further, since

the initial position is entirely arbitrary, it is clear that

the point may be made to describe any one of a family of

curves, the so-called integral curves. The equation of this

family is, of course, the general solution of the differ-

ential equation ; it contains, as it should, an arbitrary

parameter, viz., the constant of integration. The graph

of any particular solution is merely one of the family of

integral curves.

Example ; Interpret geometrically the differential equa-

tion

X dx -i-y dy = 0.

Writing the equation in the form

dy _ _x
dx y

we see that the point (a:, y') must always be moving in a

direction perpendicular to the line joining it to the origin.

Its path is therefore any one of the family of circles with

center at the origin. This may be verified by observing

that the general solution of the differential equation is

2^ -{- y^ = c.
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EXERCISES

In each of the following cases find the equation of the family of

integral curves and draw several curves of the family.

1. ^f = 0. 2. y< = 5.

^ ax X

5. ^ = -y. 6. y' = y.
dx X

7. Find the differential equation of the family of circles through

the origin with centers on the x-axis. A ns. 2 xyy' = y"^ — x^.

8. Find the differential equation of the family of parabolas with

foci at the origin and axes coinciding with the x-axis.

9. Interpret geometrically the equations in Exs. 9, 12, and 14,

p. 290.

198. Separation of variables. In the remainder of this

chapter we show how to find the general solution of a

differential equation of the first order in some of the

simpler cases.

Every differential equation of the first order, and of the

first degree in «/', can evidently be written in the form

Mdx + iVc?y = 0,

where in general il!f and iVare functions of both x and t/.

It is often possible to transform the equation so that Jf is

a function of x alone and iVis a function of ^ alone ; this

transformation is called separation of variables. When
the variables have been separated, the differential equa-

tion may be solved by a simple integration, as in the fol-

lowing

Example : Solve the equation

XT/ dx -j- (a;^ + 1) c?^ = 0.

After division by y(x^ + 1) the equation takes the

form
xdx ,dy_r.
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Integrating, we get

ll0g(2;2+ 1) + log?/ = (7,

or

log y^x^ -f- 1 = c,

«/Va;2 -f 1 = gc^

y\x^ + 1) = c\

where ^' = e^c^

EXERCISES

Solve the following differential equations.

1. (1 + x)y dx + (1 — y)x dy = 0. Ans. log {xy) + x — y = c.

2. y' = axy'^. Ans. ax~y + cy + 2 = 0.

3. &mx cosy dx = co^ X s,\n y dy. Ans. cosy— c cos x.

4. -^ + /zza2. Ans. ?L±^ = ce^a.,
dx y — Cb

1 + y 1 - x

6. (1 + x)y^dx — x^ dy = 0.

7. Vl - 2/2c^x + Vl -x2f/2/ = 0. J^ns. xVl - y^ -^ yVl x"- = c.

8. '^=-kv^.
dt

9. ^ = _ cos 2 t.

dt

10. Show that the function

y = ce*

is the only function that is unchanged by differentiation.

11. Find a function whose first derivative is equal to the square of

the original function.* Interpret geometrically.

12. Determine the family of curves whose slope at any point is

equal to the product of the coordinates of the point. Find the curve

of this family that passes through the point (0, 1), and trace it.

13. A particle falls under gravity, the resistance of the air being

neglected. If the initial velocity is y^, find y and a; in terms of t.

* Cf . footnote, p. 290.
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14. Determine the family of curves represented by the equation

dx

15. In Ex. 14, find the curve (a) that passes through (0, 0) ; (&)

that crosses the line a; = 1 at an angle of 45°. Trace these curves.

199. Coefficients homogeneous of the same degree. A
polynomial in x and y is said to be homogeneous if all the

terms are of the same degree in x and y. More generally,

an}^ function of x and y is said to be homogeneous of the n-th

degree if, when x and y are replaced by kx and ky respec-

tively, the result is the original function multiplied by k"^.

Thus the function

X + Va;^ — y'^ -\- y log ^
X

is homogeneous of the first degree.

If, in the equation

Mdx + Ndy = 0,

the coefficients iHfand iVare homogeneous functions of the

same degree^ it is easily seen that the equation when solved

for y^ takes the form

i.e. y' is a function of ^ alone. This suggests the substitu-
X

tion of a new variable v for the ratio ^; i.e. the substitu-
.. X
tion

y = vx., dy = V dx -\- X dv.

This substitution always produces a differential equation

in V and x in which the variables are separable.

Example : Solve the equation

(rr -\- y)dx — x dy = ^.

Substituting

y= vx^ dy = V dx + X dv.,

we find

(ic -H vx)dx — x(y dx -\- x dv) = 0,

or

dx — xdv = ^.
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The variables can ]now be separated :

dx - dv=0,
X

log X — V -\- c = ^^

or, since

V =^^
X

y =^ X log X -\- ex.

EXERCISES

Solve the following differential equations.

1. {x + y)y' -}- X — y= 0. Ans. arctan ^ + - log (x^ + y^) = c.

X 2

2. (^x'^ + y^)dx — 2 xy dy = 0. Ans. x- — y^ = ex.

du *-

3. (xy — x^)— = y'^. Ans. y = ce'.
dx

4. x^ dy + y^ dx = 0.

6. x^ dx + y^ dy = 0.

6. u dv — V du — Vu'^ 4- v'^ du = 0. Ans. u^ = c^ + 2 cv.

7. x dx + Va;"^ + 1 ^^ = 0.

8. 2 uv du + (^2 - 3 u^)dv = 0. Ans. v^ = c(u^ - v^).

9. V — = — X — V.

dx

10. Show that, if AI and N are homogeneous of the same degree,

the equation
M dx + N dy =0

can always be put in the form

11. Give a general proof of the fact that, in the problem of § 199,

the substitution y = vx always leads to an equation in which the

variables are separable.

200. Exact differentials. The differential of a function

u of two variables x and y is given by formula (1) of

§164:

(1) du = — dx -\ dy.
dx dy



296 CALCULUS

The quantity

(2) Mdx + Ndy
is called an exact differential if it is precisely the dif-

ferential of some function u. Thus, the quantity

X dy •\- y dx is an exact differential, viz. d(xy^ ; on the

other hand, the quantity x dy — y dx is not an exact

differential.

If the quantity (2) is an exact differential, it appears

by comparison with (1) that there must exist a function

u such that

(3) ^ = M,
dx

(4) ^^ =K
dy

Differentiating (3) with respect to y and (4) with respect

to x^ we find

J2^ ^ QM BH _ dN
dy dx dy dxdy dx

c)lJI filJf

Equating values of -—— and -, by § 163, we get the
dy dx dx dy

relation

dM^dJsr
dy dx

as a necessary condition that (2) be an exact differential.

It can be shown that this condition is not only necessary

but sufficient: i.e. the quantity Mdx -\- Ndy is an exact

differential if and only if

dM ^dN
dy

~ dx'

201. Exact differential equations. The equation

(1) Mdx-\-Ndy=Q

is called an exact differential equation if its left member is

an exact differential.
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Since equation (1), when exact, has the form

du = 0,

its general solution is evidently

u = c.

While a general method can be given for finding the

function u^ we shall consider only cases in which this

function is readily found by inspection.

202. Integrating factors. If the equation

(1) Mdx-\-Ndi/ =
is not exact, its solution can still be put in the form

(2) u = c

by merely solving for the arbitrary constant. By differ-

entiating (2) we obtain an equation of the first order that

is satisfied whenever (1) is satisfied: this equation must

therefore have the form

v(Mdx-\-]Srdi/}=0,

where v is in general a function of both x and y. Thus
for every differential equation* (1) there exists a function

V, called an integratiiig factor^ whose introduction renders

the equation exact.

It can be shown that every differential equation has

not merely one, but infinitely many, integrating factors
;

nevertheless it is frequently impossible to find one of

them. In various cases, some of which will be considered

presently, an integrating factor can be found by direct

processes ; in other cases it is best found by inspection.

It should be noticed that in separating variables, as in

§ 198, we are really introducing an integrating factor.

Thus, in the example of that article, the integrating

factor is

1

K^ + 1)'

* Assuming the existence of the general solution. Cf. § 195.
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Example : Solve the differential equation

X dy — y dx =^ 0.

If we note thalt the differential of ^ is ^ ^V - V ^^
^ it

X x^

appears that — is an integrating factor in the present
x^

instance :

X dy — y dx _ r.

x^

x

y = ex.

Other integrating factors are — (which merely sepa-

rates the variables), — , — -•

y^ x^ ± y^

EXERCISES

1. Solve the above example by using each of the integrating

factors there mentioned, and compare the results.

2. Solve Ex. 1, p. 295, by means of an integrating factor.

Solve the following equations.

3. xdy —(x -\- y) dx = 0.

4. (2 a: + 2 ?/) dx + (2x + f)dy = 0.

5. (x — y^) dx + 2 xy dy = 0.

6. xdy — y dx = (x^ + y'^) dx.

7. (a: + y + 1) dx -\- (x - y) dy = 0.

8. xdx -^ y dy + x dy — y dx = 0.

9. xy' = y -\- Vx^ — y'^.

10. u(u + 2 v) du + (m2 - v^) dv = 0.

11.
^dv__ 1

^ds s^'

12. (sin y + 2 x) dx -\- X cos y dy = 0.

203. The linear equation. A differential equation of

the tirst order is said to be linear if it is of the first degree

in y and y' , Every such equation may evidently be
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written in the form

(1) y' +Py=- Q,

where P and Q are functions of x alone. We shall find

that the linear equation is of especial importance in the

applications.

Before undertaking to solve equation (1), let us con-

sider the special case

(2) / + P2/=0.
Here the variables are separable, and the solution may

be obtained at once :

^-{-Pdx = 0,

y
whence

log y + \ P dx = c^

(3) ye^^'^-" = c'.

Now, differentiating (3), we get

elPdx(^^y _|_ py ^^^ ^ Q^

which shows that e^^'^'^ is an integrating factor for equa-

tion (2). But since Q is a function of x alone, it follows

that e^^^"^ is likewise an integrating factor for equation (1).

Examples : (a) Solve the equation

dy -\-^y dx= x dx.

Here

P=2, CPdx = 2x, e^^'^'^ = e^.

Introducing the integrating factor e^^^ and integrating,

we find

ye^ = I xe^"" dx ==
I-

xe^"" — je^"" -\- (?,

whence
y = \x — \-\- ce-2^.

(6) Solve the equation

xy' — x^ — y = 0.

Writing this in the form

(4) dy — ^dx = x^dx,
X
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we have

P = , ] P dx= — logx^
X ^

whence

X

by formula (5) of § 44. Hence, dividing equation (4)

by X and integrating, we get

^ = i xdx =—\- c,

X *^ 2

2^ = a^ -\- c'x.

204. Equations linear in/(i/). The equation

(1) /w+^/w=e,
where P and Q are functions of x alone, is evidently

linear in /(«/), and may be solved by the method of the

preceding article.

An equation not given directly in the form (1) may
sometimes be reduced to that form by a simple trans-

formation. In particular, this is always possible with the

equation.

The process is as shown in the following

Example: Solve the equation

X y^

Let us write the equation in the form

y^ dy -\-'^dx= dx.
X

If we multiply through by 3, so that the first term be-

comes c?(^^), this equation is seen to be linear in y^

:

3 v^Sy^dy -i
—^ dx=S dx.

X
Here

P =z- e^^ ^^ = g31og X _ ^
X
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whence the solution of the equation is

^3^3 _ 3 i 2'^ dx =
I

x'^ -{- c,

^3 _
I
^ _j_ cx~^.

EXERCISES

Solve the following equations.

1. -^-\- y = X. Ans. y = x — 1 + cc*.
dx

2. {x + \) dy - 2y dx =(x + \)^dx.

Ans. 2y =(x + ly -\- c(x + l)^.

3. y' - xy = X.

4. X— + (1 -\- x)y = e^. Atis. 2 x?/e^ = e'^ + c.

dx

5. (x - 2y + 5) dx -j- (2 x + 4:)dy = 0.

6. y' sin y + sin x cos y = sin x.

7. dy + 1/(1 — xy^) dx = 0. Ans. — = a: H h ce^.

8. ^y^y' — 2//^ = X -f 1. ^ns. ?/^ = ce^ — 2 ^ — !•

9. -— = g — kv. Solve in two ways.

10. —^ cos X -\- y sin x = 1.

c/a:

11. —+ y cos a: = sin 2 x.

12. (1 + a;2) -^ -I- ?/ = arctan x.
dx

13. — z= — V + cos ^

14. (xy"^ + ?/)f/a: — x dy = 0.

15. dydx + (x + a:?/2) f//y = 0.

16. ydy + (xy^ — x) dx = 0. Solve in two ways.

17. X dy + {xey -\)dx — ^.

205. Geometric applications. Many of the properties

of a curve depend not only on the coordinates x^ y^ but

on the slope y^ as well. When a curve is defined by such
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properties, the analytic expression of the given data leads

to a relation between x^ y, and y'— in other words, to a

differential equation of the first order. The general

solution of this equation represents the family of ''inte-

gral curves," as seen in § 197 ; in many cases additional

data are given that enable us to determine the constant of

integration.

Example : Find the equation of the curves whose

normal always passes through a fixed point.

Let us take the fixed point as origin of coordinates.

The slope of the normal at (2;, ^) is
j

; but since the

normal passes through the origin, its slope is ^- Hence

the differential equation of the required curves is

or

xdx-[- y dy = 0.

Solving, we get

x^ + y^ = c.

The only curves having the given property are circles

with center at the given fixed point.

EXERCISES

1. Find the equation of the curves whose subnormal is constant.

Draw the figure. (See Ex. 22, p. 32 ; cf . also Ex. 8, p. 31.)

2. Find the equation of the curves whose subtangent is constant

and equal to a. Draw the figure. ^^^ _ ^^^^

3. Determine the curves in which the normal at any point is

perpendicular to the radius vector (i.e. the line joining the point

to the origin).

4. Determine tlie curves in which the perpendicular from the

origin upon the tangent is equal to the abscissa of the point of

contact.
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5. Determine the curves in which the area inclosed between the

tangent and the coordinate axes is, equal to n'^.

6. Determine the curves such that the area included between the

curve, the coordinate axes, and any ordinate is proportional to the

ordinate. .

'

Ans. y = ce".

7. Find the curve of Ex. 6 that crosses the ^-axis (a) at (0, 2 a)
;

(6) at an angle of 45°.

MISCELLANEOUS EXERCISES

Solve the following equations.

1. x^dy — (1 + xhj)dx = 0.

2. V— = 1 — v'^. Solve in two ways.
dx

3. dy — sin x dx = 2y dx.

4. y dx -f dy = y'^ dx. Solve in two ways.

5. (x — y)dx + (1 — X — 2 y)dy = 0.

6. dy + x^y dx = 0. Solve in two ways.

7. — = a — cos kt.

dt

8. ^ + (log V — \)dx = 0. Solve in tw^o ways.
y

9. y = 1 - y + sin t. 10. (a:2 - 4 xy)dx + y"^ dy = 0.

11. x^ -y = xVx^ + y\ 12. (1 + x^)dy - (1 + xy)dx = 0.

13. 'I^ = a^- kH\ 14. v — =y-v.
dt dy



CHAPTER XXVI

DIFFERENTIAL EQUATIONS OF HIGHER ORDER

I. Introduction

206. General and particular solutions. Being given a

relation between x^ y^ and n arbitrary constants, say

(1) ^(^. y, G^ •••,0=^'

let us differentiate this relation n times in succession.

The equations thus obtained form with the original

equation a set of n + 1 equations from which the n con-

stants may be eliminated. The result is a differential

equation of the n-\\\ order,

(2) ^(:r, ^, y, ...,y">) = 0.

Conversely, corresponding to a differential equation of

the form (2), there exists in general a relation of the form

(1) which satisfies the differential equation. Equation

(1) is called the general solution of equation (2). Thus
the general solution of a differential equation of the n-th order

involves n arbitrary constants.

It is understood that the general solution contains n

essential constants : i.e. that it cannot be replaced by an

equally general form containing a smaller number of con-

stants. Thus the equation

y = c^e^'^^^

appears at first sight to contain two constants, but there

is really only one. For, writing the equation in the form

y z= c^e^ • e*^2

304
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and setting

c^e''^ = (7,

we see that the equation

^ = Ce""

is equally general.

A particular solution is one that is obtained from the

general solution by assigning particular values to one or

more of the arbitrary constants. Thus a particular solution

may contain any number of constants less than the

maximum number, n.

For example, it follows from Ex. 18, p. 50, that the

equation

dt^

is satisfied by the equation

x = A cos kt -\- B sin kt,

where A and B are arbitrary. Since the differential

equation is of the second order, the solution here given,

containing two constants, is the general solution. Par-

ticular solutions are

x= A cos kU

X = A(cos kt + sin A;f),

x=^ sin kt^

rc = 0,

etc.

207. Geometric interpretation. Given a differential

equation of the second order, and of the first degree in y"^

y" =f(x,y, y),

we may in general assign values at pleasure to x^ ?/, and y\
and compute the corresponding value of y". The equation

is satisfied by the coordinates of any point (2:, y') moving

in any direction, provided its direction is changing at the

proper rate. Or, since the value of y", together with the

assumed value of y\ determines the curvature of the path,

we may also say that the differential equation is satisfied
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by the coordinates of any point moving in any direction,

provided its path has always the proper curvature.

The paths of the point (re, y) moving in the manner

just described are called, as in § 197, the integral curves

of the given differential equation. The ordinary equation

of the family of integral curves is of course the general

solution of the differential equation ; since this solution

contains two arbitrary constants, or parameters, it follows

that the integral curves form a doubly-iyijinite system.

The point (x^ ?/) may start from any assumed initial

position in any direction ; hence through any point in the

plane there pass infinitely many integral curves.

The above discussion is readily extended to differential

equations of the third and higher orders.

EXERCISES

Find the differential equation whose general solution is as follows.

1. y = c^ + c^e'^='. Ans. y" — 2 y' = 0.

2. y = c\e^ + c^e'^.

3. y = Cjfi^ + c^xe^.

4. y = Ci sin x + c^ cos x, Ans. y" \- y — 0.

5. y — c\-\- CgX + a;2.

6. ^ = Cl(l + Xy^ + Cg.

Solve the following differential equations, and discuss the nature

of the integral curves.

7. y" = 0. 8. y" = 1.

9. y" = 6 ar. 10. y" = y'

.

11.
^^ + -^'"3" = a. (Cf . Ex. 2, p. 78.)

2/ .

12. Solve Ex. 8, (a) if the curve touches the line y —2 x 2X (1,2);

(i) if the curve passes through the points (1, 2), (3, 3) ;
(c) if the

curve passes through (1, 1) ; {d) if the curve intersects the ly-axis at

right angles. Draw the curve (or several of the curves) in each case.

13. Solve Ex. 9 for each of the cases of Ex. 12.
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II. The Linear Equation with Constant
Coefficients

208. The linear equation. We have already (§ 203)

defined the linear equation of the first order as an equa-

tion that is of the first degree in y and y^ . More gener-

ally, a differential equation of the n-t\\ order is said to be

linear if it is of the first degree in ?/, ?/', •••, y^^^\ Thus

every linear differential equation of the n-th order can be

written in the form

where the coefficients
/?i,

•"•, Pn ^^^^ the right member X
are functions of x.

In what follows, we shall be concerned entirely with the

important special case in which the functions pi, •••, p„ are

constants

:

(1) y^^^ + ay-^^ + ... +a,y = X.

209. The homogeneous linear equation. A linear differ-

ential equation whose right-hand member is is said to

be homogeneous.^ Thus the general form of the homo-

geneous linear equation with constant coefficients is

(1) ?/<'^) + ay-^^ + -• +a^y = 0.

This equation is important not only in itself but because

its solution must be determined before that of the non-

homogeneous equation (1) of § 208 can be found.

If 1/ = ?/j is a particular solution of equation (1), then

y = ^1^1, where e^ is arbitrary, is also a solution, as ap-

pears at once by substitution in (1). Further, if y = y^

is a second particular solution,! then not only y = c^y,^

but also

y = e^y^ + c^y^

* That is, it is homogeneous in y and its derivatives. See § 199.

t That is, a solution not of the form y = Ciyi.
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is a solution. Finally, if

y = HVv
y = ^2^2'

y = CnVn

are n distinct particular solutions, then

y = ^1^1 + ^22/2+ ••• +^n«/n

is a solution, and since it contains n arbitrary constants,

it is the general solution.

We proceed to show that the general solution of equa-

tion (1) can always be written down, provided a certain

algebraic equation of the n-\h degree can be solved. The

theory will be developed in detail only for the equation

of the second order.

210. The characteristic equation. The homogeneous

linear equation of the first order, viz.,

y' + HV = ^'

is evidently satisfied by

y = e~^'^^

.

This suggests the possibility of determining m so that

y _ gmx

will be a solution of the equation

(1) y'^ + a^y' + a^y = 0.

Substituting in (1) the values

y = e"»^, y^ zzzme^""^ y" = m^e'^^

and bracketing out the factor e"*% we find that the differ-

ential equation is satisfied, provided

(2) m? H- a^m -\- a^z= 0.

Equation (2) is called the characteristic equatio7i* cor-

responding to (1). Thus
y z= e'^^

is a solution of equation (1) if and 07dy if m is a root of

the characteristic equation.

* Also called the auxiliary equation.



DIFFERENTIAL EQUATIONS OF HIGHER ORDER 309

211. Distinct roots. If the roots w^, m^ of the char-

acteristic equation are distinct, we obtain at once two

distinct particular solutions of the differential equation,

viz.,

y = e^i"", y = e'^i''.

Hence, by § 209, the general solution is

(1) y= Cie»^^i*+ c^e^^"".

Example: Solve the differential equation

y" -y'~'2y = (i.

The characteristic equation is

m^ — m — 2=0,

whence w = 2 or — 1.

Thus the general solution of the given equation is

212. Repeated roots. When the charactexistic equation

has equal roots, the method of the previous article does

not give the general solution. For, if m-^ = m^^ equation

(1) above becomes

y = {jj^"*!^ -f (?2e"'i^

hence the solution contains only a single constant, and is

a particular solution.

To find a second particular solution, let us try

y = xe^^^^

whence y^ = e'^^^'i^m^x + 1),

yif _ e'^^''(m^x -\- 2 Wj).

Substituting in the differential equation, we find that

y = xe^^^

will be a solution, provided

(1) {m^^ + a^m^ + a^yx + 2 w^ + «i = 0.

Now the coefficient of x vanishes because m^ is a root of

the characteristic equation. Further, since m-^ = Wg, it
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follows that

«!%=-^,
or 2m^-\- a^ = 0.

Thus (1) holds, and y —xe'^^'^ is a second particular

solution.

Therefore the general solution of the differential equa-

tion is

213. Complex roots. If the characteristic equation has

complex roots a ± z/9, the general solution takes the form

(1) = e^^Qc^e^^'^ -\- c^e-'^^^.

Up to this point the exponential function has not been

defined for imaginary values of the exponent. If, however,

we expand e'''' formally in Maclaurin's series, and compare

with the series for sin x and cos x^ we obtain the relation

(2) e»^ = cos X + i sin x.

In the theory of functions of a complex variable, this

formula is taken as the definition of the imaginary expo-

nential function.

By means of (2), the right member of (1) may be sim-

plified. For,
gi^x _ (3Qg ^^ + z sin ^x^

^-iPx — Qos ^x — i sin fix.

Whence (1) becomes

y = g''^[((Tj + Cg) cos fix + z(^i — C2) sin fix^^

or, if we place

Cj -f- <?2 = ^1 1 '^y^i
~ ^2) ~ ^2

and drop the accents,

(3) y = e^(Ci cos ^x + c^ sin pjt)

.

Changing again the meaning of c^ and e^, we may write

(3)" in the form

y = c^e*^ cos (^fix -{- ^2)?

as is easily verified. This form is to be preferred in cer-

tain applications.
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EXERCISES

Solve the following differential equations.

1. ^"_5y + 62/ = 0. 2. y" = y.

ax^ ax

5. //" + 3^' = 0. 6. — =^•2a;.
f/^2

7. ^ + ^^ = 0. 8. y" + ny' + 2d>y = 0.

9. y" - 4?/' + 4i/ = 0. ^ns. ?/ = qe2x ^ C2a;e2*.

10. ^.= 0.
. 11. 4^+4^' + r = 0.

12. 9/' + 12/ + 4// = 0. 13. y" -oy'^by.
14. y" + 2ij' + by —0. Ans. y = e~''{c^co&2 x + c^sm^x).

15. ?/" - 4 ?/' + 6 ?/ = 0. 16. ^ = - k'^x.

17. y' + 93/ = 0. 18. y" + 2y' + y = 0.

19. 8/'+ 16/+ Qy = 0.

20. Find the equation of a curve for which y" = y, if it crosses

the 3/-axis at right angles at (0, 1).

21. Find the equation of a curve for which y" = — y, ii it touches

the line ?/ = x + 1 at (0, 1).

22. Determine the curves for which the rate of change of the slope

is equal to the slope.

23. In Ex. 22, find the curve that touches the line y = 2 a: at the

origin. Ans. y = 2e^ — 2.

24. In Ex. 22, find the curves that cross the y-3,xh at 45°.

25. In Ex. 22, find the curve that passes through (0, 1) and ap-

.

proaches the negative a:-axis asymptotically.

26. Show that e '^ = i, e^' = - 1, e-""' = 1.

27. Derive formula (2) of § 213 by comparison of the Maclaurin

series for e'^, sin x, and cos x.

28. Show that, if the characteristic equation has equal roots m^,

the equation
/' + «i/y' + a^y =

can be reduced to the form z" = by the substitution y = ze^^i", and

derive the result of § 212 from this fact.
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214. Extension to equations of higher order. The the-

ory of §§ 210-213 is readily extended to equations of

higher than the second order. We give the results with-

out proof

:

Let there be given a differential equation

(1) ?/(«> + ay-^^ ^ ... j^a„y=0.

(a) If the roots Wj, mg, •••, m^ of the characteristic

equation
m^ -\- a^m^'^ -\- ••• + a,^ =

are all distinct, the general solution of (1) is

y = c^e'"^^ + c^e"^^-'' + • • • + c^e"^n^.

(6) Corresponding to a double root m-^^ the terms in the

general solution are

y = c-^e^-^^ 4- c^xe^^^ ;

corresponding to a triple root,

y = c^e"H^ -|- c^xe"^^^ -f- c^x^e"^-^"^
;

etc.

(c) A pair of complex roots a ± ^/3 give rise to the

terms

y = e«^((?j cos ^x + ^2 sin ^x} ;

a pair of double roots a ± iff give rise to the terms

y = e'^(^c^ cos I3x + ^2 sin fix + c^x cos fix 4- o^x sin fix^ ;

etc.

EXERCISES

Solve the following equations.

1. y'" _ 7 y' + 6 ?/ = 0. 2. y"' = 4 ?/.

3. ?/'" = y" + 6 ;/. 4. y^'^^ - 12 y" + 27 y = 0.

A71S. y — c^e^ + c^e ^ + c^xe * + c^x^e~''.

6. y"' = 0. 7. ?/(''^ -2y" + y = 0.

10. ?/" - 6 .?/" + 13 ^' = 0. Ans. y=c^^ e^''{c..2 cos 2x + c^ sin 2 a:).

11. '^ = x. 12. ^^ + 4^ = 0.
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13. 2/(*) - 4 y'" + 14 y" - 2Q y' + 25 ^ = 0.

14. y'" + 3 /' + 3 ^' + ^ =: 0. 15. y'" - 2 y" - y' + 2 ^ =: 0.

16. Prove the results of § 214 for the equation of the third order.

215. The non-homogeneous linear equation. Let us con-

sider now the non-homogeneous linear equation

(1) y«) + ^y-i)+ ... +a^y = X
In solving this equation, the first step is to write down

the general solution

of the homogeneous equation obtained from (1) by making

the right member 0. The quantity Y is called the comple-

mentary function.

The next step is to obtain, by any means whatever, a

particular integral of (1),

Then the equation

y = Y + y

is a solution of (1), as appears at once by substitution,

and since it contains n arbitrary constants, it is the gen-

eral solution.

Various methods are known for finding the particular

solution —
y = y-

The method given below, though not entirely general, is

usually the best method when it applies, and it is avail-

able in nearly all cases that arise in the simpler appli-

cations.

We begin with an

Example : Solve the equation

(2) y" —by' -\-Qy = x -\- e^"^.

The complementary function, i.e. the solution of the

IS

Y = c^e^^ -\- c^e^^.
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To obtain a particular integral of (2), proceed as follows;

Differentiating twice, we obtain

(3) ?/^4) _ ^yin J^Qy" = 4e2x^

Differentiating again, we get

(4) ?/«> - 5 ?/^4) 4_ 6 y"f = 8 e^^.

Multiplying equation (3) by 2 and subtracting from (4),

we get the homogeneous equation

(5) yib) _ 7 ya) ^ 16 y'" _ 12 7j" = 0.

It is easily seen that the complementary function Y
forms part of the solution of this equation ; hence two of

the roots of the characteristic equation

m^ — 7 m* + 16 m.^ — 12 w^ =
are m = 2, 3. The other roots are 2, 0, 0, Thus the

general solution of (5) is

(6) ^ = c^e^"" 4- o^e^"" + ^3 4- o^x + e^ xe^"^.

Let us substitute y in the original equation as a trial

solution, noting, however, that the terms arising from the

complementary function must disappear identically after

the substitution, so that it is sufficient to substitute*

(7) y = c^-{- c^x -{- c^xe^"".

We have
, , o 2^ . 2t

?/' = <?4 4- z Grxe^"" 4- ^5^ %
y^^ =. \ CrXe^^ 4- 4 Cr^e^^.

Substituting in (2), we find that (7) will be a particular

integral provided the equation

4 erxe^"" 4- 4 c^e^^ — ^ c^ — 10 c^x^"" .

— 5 c^e^^ 4- 6 (?3 4- 6 c^ 4- 6 CrX^"" = x + e"^^

holds identically— i.e. for all values of x. The terms in

xe'^'^ destroy each other. Equating coefficients of the other

functions, we find the following :

Coefficients of e^^ : 4 c^ — 5 Cg = 1.

Coefficients of a:

:

6 c^ = 1.

Constant terms : — 5 c^ 4- 6 Cg = 0.

* That is, we place, temporarily, c\ = C2 = 0.
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This gives

t?5 = — 1, ^4 = Qt <?3 = ^Q'

Substituting in (6), we get as the general solution of (2)

Thus the method consists of the following steps

:

(a) Write down the complementary function.

(6) Differentiate both members of the given equation

successively until the right member becomes 0, either

directly or by elimination. The original equation is thus

replaced by a derived homogeneous equation of higher order

(equation (5) in the example).

(c) Write down, by § 214, the general solution (equa-

tion (6) above) of this derived equation. The comple-

mentary function will always be a part of this solution, so

that certain of the roots of the characteristic equation are

known beforehand ; these should be removed at once by

synthetic division.

(t?) Of the arbitrary constants occurring in this general

solution, those belonging to the complementary function

({?j, c^ above) will remain arbitrary in the final result ;

they may therefore be placed temporarily equal to 0, since

we are trying to find merely a particular solution of the

original equation. The other constants, the so-called

superfluous constants, are determined by substituting the

value of 1/ in the original equation as a trial solution and

equating coefficients.

It is clear that the success of the method depends on our

ability to reduce the right-hand member to by differen-

tiation and elimination, as in the above example. Hence

JTand its successive derivatives must contain only a finite

number of distinct functions of x The method therefore

applies whenever X contains only constants or terms of the

form 2:% e°% sin" ax, cos" ax, or products of these, n being

a positive integer.
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EXERCISES

1. Check the result of the above example by differentiation.

Solve the following equations.

2. y" -1 y' +I2y = X. Ans. y = c^e^^ + c^e'^'' + ^^ ^ + ih-

Ans. y = c^e3^ + c^e^'^ + ie^^.3. y" - 5 y' + Q y = e*^.

4. y" + y = cos 2 X.

5. ?/" - 5 ?/' + 4 ?/ = 2 X - 3.

6. y" •^y'={l+xy.

7.
d'^x— = cos t — x>
dt:^

8. y" — ^ !i' + ^y = cos X —

9.
^^^ + 4 X :--_ sin 3 t + fi.

df^

?^. Ans. y = c^e^^ + c^e^ + j^ocosa:

—
x^o sin X + xe^"".

A ns. X — c^^ cos 2 f + c^ sin 2t — I sin 3 ^ + 1 i^ — ^.

10. y" — 2y' + y = xe"^. Ans. y = e^(c^ + c^x + Ix^).

11. ?/" + // = 1 + 2 cos^.

12.
dhj

,—-I + ?/ = x sin x.

yl«s. y = Cj^C

13.
d^u = u.
dir"

14. v= 0.
dv^

15. y'" _ ?jij" + 2y = 3a:-4

16. /"-2/' + y =e-.

17.
a;

18.

^ ns. u = \v^ + c-^ + Co.

J.n,s. 2/ = ci + e^(c^ + c^x + \ x^).

19. Prove the statement that the complementary function corre-

sponding to the original equation is always a part of the solution of

the derived homogeneous equation.

III. Miscellaneous Equations of the Second

Order

216. The equation y" =/(a:). In this section we con-

sider various classes of equations of the second order which

can be solved by special devices.
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The simplest case is that in which the second derivative

is a function of the independent variable :

y" =/(^)-

This equation can be solved directly by two successive

integrations. In fact, it is obvious that the equation

can be solved by n successive integrations.

217. The equation y" =f(y)- An equation in which the

second derivative is a function of the dependent variable,

can always be rendered exact by introducing the integrat-

ing factor 2 y' dx in the left member, and its equivalent

2 d^ in the right member

:

2y'y"dx = 2f(y)dy.

Integrating, we find

y'^ = '^JKy^dy + c,.

After extracting the square root of both sides, we have a

differential equation of the first order, and of the first

degree in y\ in which the variables can be separated.

Example : Solve the equation

yZ

Multiplying through by 2 y' dx, we get

Id
2 y'y" dx = ^ ,

whence

y2 = _ + ^
1

?/2

'^c^y'^ — 1
y = ±

y
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Separating variables, we have

± ^c^y^ — 1

whence

^—^ — dx^

± '^c^y^ — 1 = c^a: 4- <?2'

218. Dependent variable absent. An equation of the

second order in which the dependent variable y does not

occur is an equation of the first order in y^ ; it may there-

fore be solved for j/' by the methods of Chapter XXV.
The result is of course an equation of the first order in y,

which in turn may be solved for y.

The problem of § 216 is evidently a special case of the

present one.

Example : Solve the equation

(1 + x)y'' - y = 0.

Setting

y' = v,y =^,
we have

(1 + x^dv — vdx — 0,

or

dv ^^ _ A

V 1 -\- X
Hence

log V — log (1 + 2-) = log Cy,

or

v = c^(l +^).

Replacing v hj y'^ and integrating again, we find

c
or, with (?j in place of -^,

y = c^(\ + xy 4- ^2-
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219. Independent variable absent. An equation of the

second order from which the independent variable x is

absent may be written as an equation of the first order in

the variables y and v by putting

dy d^y dv

dx dx^ dy

The truth of this last formula is obvious :

d^y _ dv _ dv dy _ dv

dx^ dx dy dx dy

It should be noted that the problem of § 217 is merely

a special case of the present one.

Example : Solve the equation

With

this becomes

or

Whence

^" = i/y •

dy

dvv— = yv,
dy

dv = y dy^

V = ^y^ + Cy

^^l =dx.

and, if c^ > 0,

^ /— arctan—^— = a: -f- c

C 2

This may be simplified by writing -j- in place of c^

— arctan ^ = a: 4- ^2*
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EXERCISES

Solve the following equations.

1.
^'^ = X8.

dx^

3. ..'" = «Y
4. y"= '•

Vy

dh 1
5.

dc^ fi

7. x^y" = y'.

9. y" = 1 - y'-

11. y" + yy' = o.

12.
d-^y ^ 1 <^3/ _
dx'^ X dx

d^x -,

Ans. ax = log(y + Vy'^ + c^) + Cg.

6 — =:-!

8. /y^//" = 7/.

10. ?/" = a:e*.

Ans. y = c^ log X + c2'

X (IX

13. !^= t-^^y.
dt^

^

U, t—+^=l. Ans. X = t + c,]ogt + c^.

dt^ dt
1 & -

16. y^ = -

.

Ans. (x - ciY +{y - c^y = a\

(1 + y"^)l «

16. ^ = - k^x.
df^

17.
d^ = _kH.
dfi

18. Of the above exercises, which ones can be solved by the

methods of section II?

19. Solve Exs. 16, 17 by the methods of section II.

20. Show how to solve the equation

y" + Py' + Qy'^ = 0,

where P and Q are functions of x alone.



CHAPTER XXVII

APPLICATIONS OF DIFFERENTIAL EQUATIONS IN

MECHANICS

I. Rectilinear Motion

220. Rectilinear motion. Consider a point P moving in

a straight line : for instance, the centroid of a falling

body, of the piston of a steam en- q p
gine, or of a train running on a '*

x-
>' ^

straight track. The position of the ^^^- ^^^

point at any instant is determined by its abscissa OP = x,

counted from an arbitrarily chosen origin on the line, a

definite sense along the line being selected as positive.

As the point moves, its abscissa 2; is a function of the

time

:

X=(f>(t).

If this function is known, the motion of the point is com-

pletely determined. The velocity v is found as the first

dx
derivative — , and the acceleration / as the second deriv-

d X
ative —— , of the abscissa x with respect to the time (see

§55).
In most applications, however, it is the converse prob-

lem that presents itself. Thus, the velocity may be given

as a function of ^ or a: or both, say

so that in order to determine the position of the point at

any time it is necessary to solve this differential equation

Y 321
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of the first order. Or, and this is the most common case,

the acceleration may be given as a function of t^ x^ and v

(or of any one or two of these), say

(1)
S^-^^*'"''"^-

The abscissa x is found in terms of t by solving this

differential equation of the second order.

It should be noted that when the acceleration (or the

velocity) is given, the motion is not completely determined

unless " initial conditions " are also given by means of

which the constants of integration can be determined.

221. Motion of a particle under given forces. Suppose

the '' point " whose motion was discussed in the preceding

article is a material particle moving under given forces.

If the particle is free to move in any direction, the motion

will be rectilinear only if the resultant F of all the applied

forces lies in the same straight line with the initial

velocity. The product of the mass by the acceleration is

equal to the resultant force, by § 187. If we multiply

both members of equation (1) above by m, and write

F(t^ x^ v) in place of m/(f, x^ v}, that equation takes the

form
drXm-^ = F(t,x,v-).

This equation and equation (1) of § 220 are mathematically

equivalent, since one is a mere constant multiple of the

other. The difference lies in the physical meaning of the

quantities involved.

It should be noted that the term " particle " as here used

does not mean necessarily a mere mass-point. The
'•'• particle " may be a body of any size or shape, provided

that all the forces acting may be regarded as applied at a

single point, and that the motion of one point determines

the motion of the whole mass, as in the case of a rigid

body moving without rotation.
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222. The equation of motion. The equation

(1) mg = F(f, X, K),

or its equivalent

(2)
S=/(^^-'')'

is called the equation of motion. It follows from what has

been said that the rectilinear motion of a particle is

determined by the equation of motion together with the

initial conditions.

In each problem there are in general three steps : first,

to write the equation of motion ; second, to solve this

equation, determining the constants of integration in

accordance with given initial conditions ; third, to in-

terpret the results.

When the forces acting are given, the equation of

motion can be written at once : we have only to equate

ox
w^—— to the sum of the components of the forces in the di-

(X/b

rection of motion.

In the most general case, the equation of motion may be

expressed as a differential equation of the second order in

X and t by substituting

dx

dt

Special cases, however, are common. If the force is a

function of t only, the method of § 216 evidently applies.

If # is a function of t and v, we may use the method of

§ 218, writing

^ON d'^x _ dv
^ ^

'd^~~dt'

If jP is a function of x and v, the method of § 219 applies

:

in this case, since

d^x _ dv _dv dx

dt^ dt dx dt
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we substitute

^ ^
dt^ dx

We shall find that in many cases a variety of methods

may be used.

In any problem we may desire to know the position of

the particle at any time, the velocity at any time, and the

velocity at any position. We should therefore try to

obtain three equations, giving * x in terms of <, v in terms

of f, and V in terms of x^ respectively. The {x^ f)-equation

is of course obtained by solving the equation of motion

(1) (or (2)) as an equation in x and ^, and determining

the constants. The (v, ^) -equation may be found by

differentiation of the (a:, Q-equation, after which the

(v, a:) -equation may be obtained (theoretically at least)

by eliminating t between the other two. If it is possible

to introduce (3) and apply the method of § 218, the

(v, ^) -equation results directly from the first integration
;

if formula (4) and § 219 can be used, the (v, 2:)-equation

is obtained directly.

223. Uniformly accelerated motion. A motion is said to

be uniformly accelerated if the applied force, and hence the

acceleration, is constant (cf. § ^b). If the constant ac-

celeration be denoted by h^ the equation of motion is

simply
di^x _ 7

EXERCISES

1. Write the differential equation of uniform rectilinear motion

(§ 55), and find x in terms of t, v in terms of t, and v in terms of x,

if a: = 2 and v = 4 when t — 0. Solve the equation of motion in three

ways, by the methods of §§ 212, 216, and 219, and obtain the (y, t)-

equation and the {v, a:)-equatiou in each of the ways suggested in

§ 222. Draw the graph of each equation.

* Explicitly if possible.
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2. Solve Ex. 1 if X = 10 when t = 5 and a; = 22 when t = 9. Find

the values of x and v when ( = 0.

3. The velocity of a particle at the time t is

u = 6 ^ — 5.

Find (a) the acceleration
;
(b) the space covered in 4 seconds

;
(c) the

velocity when x = 6 (x being measured from the starting point).

Describe the motion in words.

4. The velocity of a particle at the distance x from the starting

point is

V =Vx + 10.

Find X in terms of /; also find the acceleration.

5. A particle falls under gravity, all resistances being neglected.

Write the equation of motion, taking motion downward as positive,

and solve it by three methods. Explain the meaning of the con-

stants of integration.

6. Determine the constants of integration in Ex. 6 if the particle

falls from rest, the starting point being taken as origin. Draw the

graph of the (x, t)- and (v, ^)-equations, noting that the latter is the

first derived curve of the former (§ 3.5).

7. (a) Solve Ex. 5 if the initial velocity is 10 ft. per second up-

ward, (b) How far and how long does the particle rise ? (c) Find

V and t when the particle is 20 ft. below the starting point.

Ai^s. (c) V = 37.1 ft. per second.

8. Solve Ex. 5 if a: = 10 when t = 1 and x = 100 when t = 3.

Does the particle at first move upward or downward ? Find the ve-

locity at the end of 1 second. Ans. 13 ft. per second.

9. If a stone dropped from a balloon while ascending at the rate

of 20 ft. per second reaches the ground in 10 seconds, what was the

height of the balloon when the stone was dropped ? With what ve-

locity does the stone strike the ground ?

10. Solve Ex. 5 if the velocity 2 ft. below the starting point is

23 ft. per second. If the starting point is 500 ft. above the earth's

surface, when and with what velocity does the particle reach the

earth ? Ans. t = 5 or 6i seconds.

11. Show that the velocity acquired by a body falling from rest

through a height h is

V = V2 gh.

Derive the formula in two ways.

12. A body falls 50 ft. in the third second of its motion. Find the

initial velocity.
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13. A body falls under gravity. Find the distance covered in

6 seconds if at the end of 2 seconds the distance below the starting

point is 84 ft.

14. The motion of a railroad train is uniformly accelerated. If

when the train is 250 ft. from a station the velocity is 30 ft. per

second, when 600 ft. from the station it is 40 ft. per second, find the

acceleration, and the velocity when passing the station.

Ans. Vq = 20 ft. per second.

15. A stone is thrown vertically upward from the top of a tower.

At the end of 2 seconds it is 400 ft. above the ground, and is still

rising, with a velocity of 10 ft. per second. Find the height of the

tower. Ans. 316 ft.

16. A stone thrown upward from the top of a tower with a velocity

of 100 ft. per second reaches the ground with a velocity of 140 ft. per

second. Discuss the motion. What is the height of the tower?

Ans. 150 ft.

224. Momentum ; impulse. When a particle of mass m
is moving with a velocity v^ the product mv of the mass

by the velocity is called the momentum of the particle.

When a particle moves under a constant force F from

the time Iq to the time fj, the product F(^t^ — to) of the

force by the time during which it acts is called the impulse

of the force for that time-interval. More generally, if

F varies from instant to instant, let us divide the time

from ^Q to t^ into n equal intervals A^, multiply each A^

by the value of F at the beginning (or any other instant)

of the interval, and form the sum of the products thus

obtained. The limit of this sum, as A^ approaches 0, is

the impulse of the variable force F during the interval

from Iq to t-^

:

/= lim y FAt = f'Fdt.

225. The principle of impulse and momentum. Let us

write the equation
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in the form
dV XT

dt

Multiplying by dt and integrating from the time ^q, when
the velocity is v^^ to the time t^ when the velocity is v, we
find

(1) mv — tuVq =1 Fdt

By § 224, the left member of (1) is the change of

momentum in the time-interval from tf^ to t^, the right

member is the impulse of the force F. Henoe we have

the

Theorem : If a particle moves in a straight line^ the

change of momentum in any time-interval is equal to the

impulse of the force during that interval.

This theorem will be referred to as the principle of

impulse and momentum.

It should be observed that what we have really done

here is to find a first integral of the equation of motion

by the method of § 218. Since the force F is always

either directly or indirectly a function of ^, the above

theorem is true in general ; but in order actually to com-

pute the impulse directly in a given case, the force must

of course be given explicitly as a function of t

:

F=F(t).

If the force F is constant, equation (1) becomes simply

mv — 'MVq = Ft— FtQ.

226. Work. When a particle moves in a straight line

under the action of a constant force F, the work done is

defined as the product of the force by the distance passed

over :

W = Fx.

When the force is variable, we proceed as follows:

Take the line of motion as a:-axis, and suppose the body

moves from x— a to x=h. Divide the interval into

'
i
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segments Ax, and multiply each segment A2: by the value

of F at some point of Ax. The limit of the sum of the

products thus obtained is defined as the work of the vari-

able force during the motion :

227. The principle of kinetic energy and work. Let us

write the equation
d^x TTTm —- = J^

in the form
dV jy

dx

Multiplying by dx and integrating between the a;-limits

Xq and X and the corresponding v-limits Vq and v, we find

(1) lmv^-lmv,^= Crdx.

By § 135, the quantity -| mv^ is the kinetic energy of

the particle, hence the left member of (1) is the change

in kinetic energy from Xq to x. By § 226, the right

member is the work done- during the motion. Hence we

have the

Theorem : If a 'particle moves in a straight line, the

change of kinetic energy in any space-interval is equal to the

work do7ie hy the force in that interval.

This is the principle of kinetic energy and work.

Here we have merely applied to the equation of motion

the method of § 219. In order to compute the work

directly, the force must of course be given explicitly as a

function of a; :

F=F(x).

If the force is constant, equation (1) reduces to

J mv^ — }^ mv^ = Fx — Fxq.
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EXERCISES

1. Verify the principle of impulse and momentum in Exs. 7, 8,

p. 325.

2. Verify the principle of kinetic energy and work in Exs. 7, 8,

p. 325.

3. Solve Ex. 14, p. 326, by the principle of kinetic energy and work.

4. Solve Ex. 15, p. 326, by the principles of §§ 225, 227.

5. A ball of mass 5^ oz. strikes a bat with a velocity of 12^ ft.

per second, and returns in the same line with a velocity of 32 ft. per

second. If the blow lasts -^^ second, what force is exerted by the

batter? Ans. 9 lbs.

6. A ball of mass 5^ oz. moving at 50 ft. per second is caught and

brought to rest in a distance of 6 in. AVhat is the average pressure

on the hand? Ans. 26 lbs.

228. Constrained motion. The motion of a body some-

times depends on other conditions than the given forces.

Thus, the piston of a steam engine can move only along

the cylinder, a body sliding down an inclined plane can-

not fall through the plane, etc. The motion in such

cases is said to be constrained.

In the case of constrained motion, let the applied force

be resolved into components along, and at right angles to,

the path. The component in the direction of motion is the

"effective force" ; the motion is due entirely to this com-

ponent, and hence it is only this component that appears in

the equation of motion. For example, when a particle

slides down a smooth inclined plane, the effective force

is the component of gravity parallel to the plane.*

Further, it is evident that, in the definitions and

theorems of §§ 224-227, the force F must be taken as

merely the effective component. The component normal

to the path cannot do work, or contribute to a change

of momentum.

* The motion is supposed to take place alone; a ''line of greatest

slope" — i.e. a line at right angles to a horizontal line in the plane.
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EXERCISES

1. Write the equation of motion down an inclined plane, and solve

it in a variety of ways. Explain the meaning of the constants.

2. Determine the constants in Ex. 1 if the angle of inclination

to the horizon is 30°, and the initial velocity is (a) 0; (b) 10 ft. per

second up the plane. In (b), how far and how long will the body
move up the plane

?

A7is. (b) 3} ft.

3. A bead is strung on a smooth straight wire inclined at 45° to

the horizontal. What initial velocity must the bead be given to

raise it to a vertical height of 10 ft.?

4. A railroad train is running up a grade of 1 in 200 at the rate

of 20 miles per hour when the coupling of the last car breaks. Fric-

tion being neglected, (a) how far will the car have gone after 2 min-

utes from the point where the break occurred ? (b) When will it be-

gin moving down the grade? (c) How far will it be behind the train

at that moment ? (c?) If the grade extends 1 500 ft. below the point

where the break occurred, with what velocity will it arrive at the

foot of the grade? Ajis. (a) 2368 ft.; (b) 3 minutes 3 seconds

;

(c) 2689 ft.
;
(d) 25 miles per hour.

6. Show that it takes a body twice as long to slide down a plane

of 30° inclination as it would take to fall through the " height " of

the plane.

6. Show that in sliding down a smooth inclined plane a body ac-

quires the same velocity as in falling vertically through the height

of the plane.

7. A mass of 12 lbs. rests on a smooth horizontal table. A cord at-

tached to this mass runs over a pulley on the edge of the table ; from

the cord a mass of 4 lbs. is suspended. Discuss the motion. If the

12 lb. mass is originally 5 ft. from the edge of the table, find when
and with what velocity it reaches the edge. Check by the principles

of §§ 225, 227.

8. A cord hangs over a vertical pulley and carries equal weights

of 10 lbs. at each end. If a 1-lb. weight be added at one end, discuss

the motion of the system. Find v when the system has moved 6 ft.

229. Simple harmonic motion. If a point P moves in

a circle with constant angular velocity ©, the motion of

the projection P^ of P on a diameter of the circle is

called simple harmonic motion. As P moves in the circle
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uniformly, P^ oscillates from A through to B and back

again. p
Suppose Pj. is at A at the time y^

f = 0. Then in time t the angle / ^/

AOP swept out by the radius / ^
vector of P is equal to ojf, hence -^T P^ lA

the distance x of P^ from is V /

(1) x= a cos (ot^ ^ -^

where a is the radius of the circle.
^^' ^^^

If when t= the point P is not at ^, but at some
point P' such that the angle AOP' is equal to e, the

equation (1) is evidently replaced by

(2) x = a cos (^Q)t-\- e').

The abscissa x is called the displacement of P^.;

the maximum displacement a is the amplitude of the

motion.

The time of completing one whole oscillation from A
to B and back is called the period; it is evidently equal

to the time required for P to make one complete revolu-

tion, and is therefore

CD

The number of oscillations per unit time is called the

frequency ; it is obviously the reciprocal of the period :

n = - = -^
T lir'

The angle o)^ + e is called the phase-angle^ or simply the

phase, of the motion.

Differentiating (2), we get the velocity

dxv= —— — aw sin (&)^ + e),

and the acceleration

(3) j = —-=- aoi^ cos ((ot + e).
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Combining (2) and (3), we may write the acceleration

in the form

—- = — (o^x :

i.e. the acceleration is proportional to the displacement., and

is always directed opposite to it.

230. Attraction proportional to the distance. If a particle

moves in a straight line under the action of a force directed

toward a fixed point in the line of motion, and propor-

tional to the distance x from that point, the equation of

motion can evidently be written in the form

(1) m —— = — mk'^x.,

where A; is a constant, the minus sign being chosen be-

cause the force is always directed opposite to the displace-

ment X. The fixed point toward which the force is

directed is called the center offeree.

Integrating equation (1) by the method of § 213, we get

x= c-^ cos kt H- (?2 sin kt^

whence
Cm 'V

V = — = — ^(?isin kt-{- kccf cos kt.
dt

^ ^

Then

2'

Take v = and X = a when ^ = 0.

a = (?^, = kc.

whence c^ = a, (?2 = ^»

and finally

(2) x= a cos kt,

V = — ak sin kt.

Since x has here the same form as in equation (1) of

§ 229, it follows that a particle moving under the con-

ditions of this article performs simple harmonic oscilla-

tions about the center of force 0. This is a fact of

great importance, as forces directed toward a fixed point

and proportional to the distance from that point are of

frequent occurrence in nature.
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231. Hooke's law. When a spiral steel spring of length

AO=^l is stretched to a length AP = I + x, the tension

in the spring, or the force tending to restore it to its

natural length, is proportional to the extension x. This

law, known as Hookes law^ is obeyed very closely (pro-

vided the extension is not too great) by all so-called elastic

materials.

Suppose a steel spring of negligible mass is placed on

a smooth horizontal table with one end fast at A. Let

the natural lens^th of the

spring be A0= ?. A par- j^i I 9 ^ Qm
tide 01 mass m attached

to the free end is drawn

out to the position P and then released. The only force

acting is the tension in the spring, which by Hooke's law

is directed toward the position of equilibrium and is

proportional to the distance from 0. If the spring offers

the same resistance to compression as to extension, it fol-

lows from § 230 that the particle performs simple harmonic

oscillations about 0. The equation of motion is

Ct X 7 9
7n—- = — mfc^x.

Of course if the resistance to compression is not the

same as to extension, a different equation comes into play

as soon as the particle passes through 0.

EXERCISES

1. In the problem of simple harmonic motion, trace the curves

showing X, v, and j as functions of t, remembering that the graph of v is

the first derived curve, the graph of J the second derived curve, of

the graph of x. Take rt = l,(o = 2, e = 0.

2. Show that, if x performs periodic oscillations as in § 229, v and

/ do likewise. Prove the following from the equations of § 229, and

verify by the curves of Ex. 1 : the periods of all three are the same

;

the amplitude of v is o> times that of x, the amplitude of / is w times

that of y ; in phase, v differs from a: by ^ and J differs from v by ^ •



334 CALCULUS

3. In the problem of § 230, obtain the (y, i)-equation by two

methods. Ans. v = ±k Va^ — x^,

4. A particle has simple harmonic motion. Proceeding from

equation (1) of § 230, find x in terms of <, v in terms of i, and v in

terms of a:, if v = v^ and a: = when t — 0.

5. Show directly from equation (2) of § 230 that the particle

performs periodic vibrations about the center, and find the amplitude

and the period. Find when and where the velocity is a maximum,
and find the magnitude of the maximum velocity.

6. A steel spring offering the same resistance to compression as

to extension is placed on a smooth horizontal table with one end

fixed. The spring is stretched to a length 6 in. greater than the

natural length and then released. Discuss the subsequent motion of

a mass attached to the free end. Take Ic^ = 4. Find the period.

Ans. T" = TT seconds.

7. In Ex. 6, find the work done by the force in a quarter-oscilla-

tion. Check by the theorem of § 227.

8. Work Ex. 6 if the steel spring is replaced by a rubber band of

natural length 1 ft. Ans, T = 7.14 seconds.

9. In Exs. 6 and 8, discuss the effect of increasing the con-

stant k^.

10. Work Ex. 8 if F = 512. Ans. T = 0.6 second.

jij 11. A rubber band of natural length AB= l is suspended

vertically with a weight attached. The effect of the weight

is to stretch the band to a length AO — I 4- h. The weight

is given a displacement OP = a and then released. Write

the equation of motion and solve it completely. Show that

the particle performs simple harmonic oscillations about O,

provided a < A.

12. Solve Ex. 11 \ia>h.

13. In Ex. 11, find in two ways the work done by the

forces as the particle moves from P to 0.

14. In Ex. 11, the weight is let fall from a height h

above B. Determine the greatest extension of the rubber

band.

15. A bead is strung on a smooth straight wire, and is

'^" attached by a rubber band of very short natural length to a

point in the perpendicular bisector of the wire. Taking the wire as

axis of 2/, show that, if gravity can be neglected, the equation of

/

J5-I-

h

0-

a
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motion of the bead is approximately

Discuss the motion completely.

16. A particle is acted upon by a force of repulsion from a point O
proportional to the distance from 0. Neglecting gravity, write the

equation of motion and solve it completely, taking x = and v =Vq

when t = 0. Discuss the solution.

17. In Ex. 16, find the work done in the first 10 ft. of the motion.

Check by the principle of kinetic energy and work.

18. In Ex. 16, find the impulse of the force during the first

second. Check by the principle of impulse and momentum.

19. It is shown in the theory of attraction that the attraction of a

spherical mass on a particle within the mass is directed toward the

center of the sphere and is proportional to the distance from the

center. Discuss the motion of a particle moving in a straight tube

through the center of the earth, if the velocity at the surface is 0.

Determine the proportionality constant k^^irom. the fact that the force

at the surface is — mg.

20. In Ex. 19, how long does it take the particle to pass through

the earth? .4ws. 42^ luinutes.

21. A straight tube is bored through the earth connecting two

points of its surface. Show that the equation of motion of a particle

sliding in this tube is

d^x mqm— = - -^2. X,
df^ R

where R is the radius of the earth and x is the distance of the particle

from the midpoint of the tube. Discuss the motion. Show that

the time of passing through such a tube is independent of the posi-

tion of the endpoints.

II. Plane Curvilinear Motion

232. Rotation. In discussing circular motion, it is

usually convenient to take as dependent variable the

angle 6 swept out in the time t.

The problem of uniformly accelerated circular motion

(§ 58) is closely analogous to that of uniformly accelerated
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rectilinear motion. The equation of motion is evidently

where k is the constant angular acceleration.

233. The simple pendulum. A simple pendulum is a

point swinging in a vertical circle under the acceleration

of gravity.

Let P be a particle of mass m
connected to the point by a cord

or rod of length ?, and denote by

6 the angle between OP and the

vertical, by s the length of the arc

AP. The effective force acting on

P is the component of gravity tan-

gent to the circle ; since this is

directed opposite to s, it must be given the minus sign.

The equation of motion of P is therefore

ci)
'^''

Fig. 105

m—- = — mg sin 6,
dv"

But
s = ie,

so that (1) may be written

(2) ml—- = — mg sm v.

A first integration of (2) can be performed by the

method of § 219 ; the general solution, however, cannot

be expressed in terms of elementary functions. We shall

therefore consider only the case in which the oscillations

are so small that sin 6 may be replaced by (see § 156),

and (2) written in the form

(3) ml— = — mqO.
dfi

^

This equation shows that for small oscillations the

motion is approximately simple harmonic. The remainder

of the discussion is left to the student.
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EXERCISES

1. Write the equation of uniform circular motion, and solve it in a

variety of ways, explaining the meaning of the constants. Exhibit

the results graphically.

2. Proceed as in Ex. 1 for uniformly accelerated circular motion.

3. A wheel is making 400 R.P. M. when a resistance begins

to retard its motion at the rate of 10 radians per second. When
will it come to rest? How many revolutions will it make before

stopping ?

4. Solve equation (3), § 233, taking = Oq and v = when t = 0.

For convenience, put ^ = k'\

6. Show that, in the problem of the simple pendulum, the time of

one swing or beat is

9

6. Find the length of the "seconds pendulum"— i.e. a pendulum
making one swing per second— at a place where g = 32.17.

Ans. 3.2595 ft.

7. Find the angular velocity o in terms of 6 if the oscillations are

so large that (2), § 233, must be used.

8. Study the motion of a pendulum making small oscillations, if

the resistance of the air is proportional to the velocity.

234. The equations of motion. In the general case of

motion in a plane curve, it is convenient to resolve all

the applied forces into components parallel to the coord i-

nate axes. The product m —- of the mass by the a^com-

ponent of the acceleration (see § 59) is equal to the sum

Fx of the 2;-components of all the forces; similarly for the

y-components. We thus have the two equations of

motion

:

F:,,

-F„.
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In the most general case, both F^ and Fy are functions

of x^ y^ t, and the velocity-components i;^ =— , ?; = -^.
dt dt

We shall, however, confine our attention to the case in which

F^ is a function only of x^ v^., and ^, and Fy is a function

of 7/, Vy^ and t. In this case the two equations of motion

may be integrated separately. We thus obtain two equa-

tions giving respectively x and y in terms of t ; these are

parametric equations of the path of the moving point.

By the same methods as those already used we find equa-

tions giving v^ and Vy in terms of ^, and in terms of x and

y respectively. The total velocity v may be found by

§ 57.

235. Projectiles. A simple example of curvilinear

motion is furnished by a projectile moving under gravity

alone— i.e. in a medium whose resistance can be

neglected.

Let a particle be projected with an initial velocity v^

inclined at an angle a to the horizontal. With the start-

ing point as origin and the ^-axis positive upward, the

initial conditions are

2: = 0, ?/ = 0, Vx = VqCOs a, Vy = Vq sin a when f = 0.

The force of gravity acts vertically downward ; there is

no horizontal force. Hence the equations of motion are

d^x f. d^y

These may be integrated and the constants determined

precisely as in our earlier work.

EXERCISES

1. Solve the problem of §235 completely, finding a:, y, v^, and Vy

in terms of t, v^ in terms of x, and Vy in terms of y.

2. In Ex. 1, by eliminating t from the (x, t)- and (y, ^) -equations,

show that the path is a parabola.
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3. Show that, in the ideal case of § 235, where all resistances are

negligible, a projectile whose initial velocity is horizontal will strike

the ground in the same time as a body let fall from rest from the

same height.

4. The range of a projectile is the distance from the starting

point to the point where it strikes the ground. Show that the range

on a horizontal plane is
2

i2 =^ sin 2 a.

9

5. What elevation gives the greatest range on a horizontal plane ?

6. The time of flight is the time from the starting point until the

projectile strikes the ground. Show that on a horizontal plane the

time of flight is

9
7. A stone is thrown horizontally from the top of a tower 400 ft.

high, with a velocity of 20 ft. per second. (a) AVhen, (h) where,

and (c) with what velocity does it strike the ground ?

Ans. (a) 5 seconds
;
(c) 161.2 ft. per second, at 7° 8' to the vertical.

8. Find the work done by gravity in Ex. 7.

9. A stone slides down a roof sloping 30° to the horizon, through

a distance of 12 ft. If the lower edge of the roof is 50 ft. high,

(a) when, (h) w^here, (c) with what velocity does the stone strike

the ground? Ans. (6) 25.1 ft.

from the building
;
(c) 59.7 ft. per second, at 16" 30' to the vertical.

10. A pitcher throws a ball with a speed of 100 ft. per second, the

ball leaving his hand horizontally at a height of 5 ft. Show that

under the assumptions of § 235 the ball would strike the ground

before reaching the batter 60 ft. away.

11. A particle slides on a smooth roof inclined at 45° to the hori-

zontal. If the initial velocity is 10 ft. per second parallel to the edge

of the roof and the starting point is 20 ft. above the edge, find when,

where, and with what velocity the particle leaves the roof.

12. A particle moves under the action of a force directed toward

the origin and proportional to the distance from (cf. §230).

If the initial conditions are a: = 10, y = 0, v^ = 0, Vy = 20 ft. per

second, discuss the motion completely. Take k = 1.

13. Find the cartesian equation of the path in Ex. 12.

14. In Ex. 12, find the work done in one quarter of the period.

Check by the principle of kinetic energy and work.
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