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The Diffraction of Oblique Surface Waves
by a Right -Angle Bend

S.N. Karp and T.S. Chu

ABSTRACT

We investigate the diffracted field that arises when an incident

electromagnetic surface wave strikes the edge of a right-angle bend at an

oblique angle. One face of the bend supports the surface wave and the

other face is a perfect conductor. This diffraction problem is related

to the scanning surface wave antennas. An analysis of oblique surface

waves on an infinite impedance plane is first presented graphically.

We treat two cases. In one case the edge of the bend is parallel, and;,

in the other case, perpendicular, to the perfectly conducting direction of

the impedance plane. When the surface wave is incident normally, these

special cases reduce to the normal TM and TE surface waves respectively.

The mathematical formalism of the first case may be reduced to that of a

two dimensional TM problem which has been solved previously. The second

case involves two coupled mixed boundary conditions and is exactly analyzed

in detail. The effect of the obliquity on the reflection coefficient

and the radiation pattern under various conditions will be discussed.





1. Introduction

In this paper we discuss the diffracted field that arises when an

incident electromagnetic surface wave strikes the edge of a right -angle

bend at an oblique angle. One face of the bend which supports the siurface

wave is an impedance plane and the other face is a perfector conductor. The

edge of the bend may be either parallel or perpendicular to the perfectly-

conducting direction of the impedance plane. The diffraction of normally

incident siurface waves by a right -angle bend and its implication for surface

12
wave antennas have been analyzed in detail. The case of oblique incidence

bears a similar relationship to scanning surface wave antennas. In Section

2 we make a general analysis of oblique siirface waves on an infinite impedance

plane. The relationships among the propagation constants, the decay constant,

and other parameters are graphically presented. When the edge of the bend is

parallel to the perfectly conducting direction of the impedance plane, the

mathematical formalism may be reduced to that of normal incidence. This

analogy will be demonstrated in Section 3- Section h contains an analysis of

the case when the edge of the bend is perpendicular to the perfectly conducting

direction of the impedance plane. This case involves two coupled mixed boundary

conditions. The edge conditions, the jump conditions, and the boundary conditions

on the conducting face are used to determine the various coefficients.

Furthermore, the fields satisfy the divergence condition and are regular in

the infinity. In Section 5 simplified expressions for the coefficients of

the latter case are obtained for those special incident directions which are

2 2
nearly normal to the edge and which have k « k . In Section 6 we summarize

b



the results which include discussions on the reflected s\u:-face waves and the

radiation fields under various conditions.

2. Oblique Surface Waves

In this preliminary section, we examine the oblique surface waves on

an infinite impedance plane. It is of interest to study the possible directions

of propagation. In a sense we are therefore looking at the "geometrical optics"

of the propagation of waves in the surfaces. The impedance boundary conditions

on the plane x = in Fig. la may be defined by

(2.1) ,
^. -

;

= (-iX)H^

where T is the perfectly conducting direction, S is the direction perpendictilar

to T, and -i implies the time dependence e . The surface waves in the region

X < may be characterized by a scalar wave function u

ik S + ik T +ax
(2.2) u = e ^ ^

where k^, is the propagation constant in the S direction, k is the propagation

constant in the T direction, and a is a positive decay constant.

(2.3)

curl U
T

H = -:— curl curl U

Then U satisfies the following condition



(2.M -^ - ecu
L0€ X ,,2 , 2^

where a = —— (k - k )

k

The wave equation for the surface waves becomes

2 ,2 2
(2.5) k,

2 2
Substituting a into the above equation, we have an equation for k and k :

(2.6)
(w eX)' l+(co ex;

1
2 ,2

k^ - k
2(coeX)

where k, W, e and X are constants for a definite frequency and a definite

impedance plane. This parabolic curve has been drawn in Fig. 2. It should be

2 2
noticed that only those portions of the curve where both k and k^^ are positive

may indicate the propagation of surface waves. Furthermore, since a must be

2 2 2
positive, k should be less than k when X is positive, and k should be

2
greater than k when X is negative, a has been plotted as linear function

of k for both positive and negative X. The identity k /-w e X = u)^/-X has

been used in the indicated coordinates of the points C and D. It is interesting

to point out that the points A and B correspond to the normal TM mode surface

wave and the points C and D correspond to the normal TE mode surface wave.

3. The parallel case

Now we proceed to discuss the diffraction of oblique surface waves

by terminations. If we make a cut along the plane S = 0, and impose a perfectly



conducting condition on the half plane X > 0, S = 0, then the edge of the

right -angle "bend is parallel to the perfectly conducting direction of the

impedance plane. The geometry of the bend is illustrated in Fig. lb, where

the free space is defined by the angular region < cp < ^ jt , The boundary

conditions on the surfaces may be defined by

(3.1) r
X = 0, S <

(iX)H^J

^T



and U satisfies the wave equation:

(3.5) (V^ + k^)U =

The incident wave may be written as

(3.6: U = e
inc

X <

where a is a positive real number. Now the boundary conditions are transformed

"by (3.^) into the following form:

(3.7) <

aU X = 0, S <

S = 0, X >

CO £ )f 2 2
where a = —— (k - k ). Since the T-dependence of the field is always

k

e , the solution for U may be obtained by properly substituting k for k

in the solution of the two dimensional TM case.

The reflected oblique surface wave should be

.2 \-,

(3.8) U
ref

3i Vk^ - a^ I^ + ^3 f I a - I^ k e 3 j

3 ISl 3 ^
3i\/K^+ a^ I^ - ^3 (l^cL - i^Ke 3

j3^3^/-'



where I

o

(3.9) _ V^^^^^-y

K V K + a

^ r2 2^
I a +v K +a J

2v

2v

The far-field expression for the radiation part of U i£

(3.10) U - A ./-^ e
'^

i(k T+Kr- r|jt) cos ^

iK cos cp - a

kliv/^^ + a^

3i VK^+a^ I^ - 73 (
I^cc -IgK

3 \3 3

^

It is convenient to find the Poynting vector in terms of cylindrical

coordinates. If the terms of higher order than are neglected,

s/T

(3.11)

E =
9



(3.13) p = (p? + p^)^ = \J% K^iur

w ex ^ ^ ~ •'^

Since the ratio - = —-

—

in this oblique case, wherek~

W €X—-— is the corresponding ratio in the case of TM normal incidence, this

ratio becomes smaller when the obliquity of the incident surface wave

increases. It follows from the results of the two dimensional TM problem

that for a positive X the greater obliquity gives less reflected surface wave

and sharper radiation pattern, and this case reduces to the normal incidence

2
of a TM surface wave when the obliquity vanishes. For a negative X, k must

2
be greater k and k becomes imaginary. Substitution of an imaginary k into

Eq. (3-8) reveals a total reflection of the oblique surface wave in this case

of negative X.

U. The perpendicular case

If we make a cut along the plane T = 0, and impose a perfectly conducting

condition on the half plane x > 0, T = 0, then the edge of the right -angle bend

is perpendicular to the perfectly conducting direction of the impedance plane.

The geometry of the bend is illustrated in Fig. IC, where the free space is

defined by the angular region < cp < -^ . It is convenient to use the

coordinate system xTS' in this case where S' = -S. The boundary conditions

on the surfaces may be defined by

(^.1) > x = 0, T<0



(U.2) > T = 0, X >
E,. =

The divergence condition V-E = requires the following additional boundary

conditions

(^.3) ^ ^ ^ ' T = 0, x>0

aE
(i+.U) -^ + ikg.Eg, =0, X = 0, T <

ikg,S'
where the S' -dependence has been assumed as e . The incident surface

wave is given by Eqs. (2.2) and (2.3) where S = -S' , k =-k' and a = a

The second condition of Eq. (^.l) may be transformed into

^ SE^ SEg,

"^^^ 1^ ^w ~ ~br

^ '^' -^ - XE„, - ik^.E =0 x = 0, T<0
ox

"^ ~

where X = -^ . E„, or E may be eliminated between Eqs. (h.k) and (k.'^]
-X o x

to yield second order boundary conditions

(^«' 4 ' '^- - ''^">=

and



However, we may use the following linear combinations;

(U.9;

and

(i^.io;

j^. J^k^

^-, -t.

i(a3_- ag)

Then ^^ satisfies the following bovmdary conditions:

2

X = 0, T <
(^.11)

at.



2 2 2 2 2 2
where kg, + k - a^ - k =0 and a^ - Xa^ - k^, = 0.

The field components are

fli.lij.) E = ci;rl V. T, H. = t^ ciirl curl V. T
^ ' mc mc mc icj|j. mc

Let

(1..15) f=^-V

Then f satisfies the wave equation and vanishes on both faces of the

wedge; therefore the general representation of f is

~ H^^^ ik ,S'

(U.16) ^ ^La \ -y^ (^)si^ ^ ^ ^

^'

n=l

where k = \/k - k , and \j/ may be obtained from Eq. (U.15).

ax p -a I ax
(1|.17) tn = -e / e ^ fd? + e F(S',T).

F(S',T)will be determined by the continuity conditions later. Let

(i^.l8) g

^2

Then g satisfies the wave equation, and vanishes on both faces of the wedge;

therefore the general representation of g is

(1|.19) g = 2_,^n 3
(kr)sin^cpe

n=l
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and ilf may be obtained from Eq. (J4.I8).

ax p -a I

(^.20) ^2 " ^ / ® ^ ^^

Here the limits of integration are chosen for a < 0. The general expression

for E satisfying Eqs. (i|.l) and C+.S) is

(^..1) ^. = J C„ „(^ (.., COS a^ . e"^'"

m=0 3

However, any singularity of the field components at the origin must be less

than -; hence A = B = when n > 3 and C^ = when m > 1. Now the fields

must satisfy the following edge condition: the current density flowing

perpendicularly towards the edge must be finite, i.e., H^,, is finite at the edge

3

^ 2

-
[ l^e 3 c^ H^^^(^cr) cos | cp - | KCJll^kvir) cos ^cp]e^

^''

3 3

Using the identities in Eqs. (U.29) and (I+.32), we obtain



12

f^-^^' §"= r(^}i(h-*2^

-rt^Hf(„)cosf..—Ll e^ /e ^^(^'(k. ,cos
f
.a^3 X 3

X 3
-^ ^ 3

^ TT^^^ ^ H!l)fKr)cos ^ . - 4^^ ^ ^l^ T "^i^ n)
A^a, „ /, X _ A a"

.f

3 X 3

dl

i

3
X 3 ^

3 _oo 3

KB^e -^ ax rT -a ? , , B

^2^2^
^ V r

"°'2^
(1) 2 ^B„ a . /? -a, I / , ^

-» 3 1 2 _^ ^ J

Substituting Eqs. (U.23) and (U.2i|) into Eq. (U.22) and an examination of the

singularities reveal the following conditions

:

.2

^^•25) -(^ (A^ -B^) . \ .c/3" .
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(^.26)
^1^2' i^^o

(U.27)

A check of the divergence condition V-E = shows the necessity of

the conditions (U.25) and (U.26). These two conditions also follow from the

regularity requirement of the fields in the infinity.

Since the incident field of f is (a + k ,a )e

a^x+ik^T + ikg,S'

a^x -ik^T+ikg,S'
the reflected surface wave is of the form R(a +k_,a-, )e , we

propose the following version of Eq. (4.17)

ik^.S'

(1^.28) ^^ = -e ^ Te ^ LH^^^(Kr)sin | cp + A^hJ^ ^(^r )sin ^ cpl e ^' d

a^x +ik„T +ik^,S'

(^j_+ kg,a^)e + R(a^+ kg,a^)e
X -ik^T+ ikg.S'

T >

Using

(U.29) ^ [H^^^(Kr)sin vcp] +^ [Hj^^(Kr)cos vcp] = KH[^|(Kr )cos(v - 1 )cp

we have



Ik

(^.30) ^ -A^H^^^(Kr)cos
I
2 ^^S'S'

e A^H^^'^Krjcos r cp e

3

ax p -a ^

A3_a^e j ^ afU^r)
2 ^^S'^'

cos -cp e d.5

ax p CLn ? iko.S'a^x o a^5
^1) ^

iKg,^
Aptt e / e H^ '(Kr)cos T cp e d

ax p -a I ik^.S'
^ Te ^ L^e 3 H|^^(Kr)cos

I
+ A2KHJ^^(Kr)cos ||e ^' d

ik^(a^+kg,a^) e - ik^(a^+ k^.a^ )e

y <

y >

Imposing the continuity conditions

(I+.31;

^^(x,+0) - ^lf^(x,-0) =

T = 0, X <

and using the identities
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{h.32)

H^^j(Kr)cos(v +l)cp - H^^|(Kr)cos(v- 1)9 = -
f "1^ rH^^\Kr)cos vcpl

H^^^(Kr)sin(v+l)cp - H^^^CKr )sin(v - l)cp = "
f |j

[^h[^^ (Kr )sin vcp]

yield the following two conditions

(^.33)
<^

3 3 3

2 2 jt2a^ i-jt i-

^A^a^I^ -fA^-^ ^1 + iVl^
' I^-JA^e^ I^- ^k^.l^- ik^(a^+ kg,a3_;

3 3 3 3 3

+ ik^R(a^+ kg,a^) =

where I is defined in Eq. (3-9) with a = a . Since A = DA ^ [see Eq. (l+.l+O)],

may solve Eqs. (U.33) for A and R.

(U.3U) A.

-iUk^(a. + k
1 "S'*"l

f3

.2 -

a i-rt

^^2^^^-^ ^2
ip 3

I3 22 ^3"

12
3

1 K 11 1 ^2 1

3 3 3 3

73

(U.35) R

Dl2 + 2^I^- e 3 I^|ik„ + 3
2 T

3 2 2 -^^'^

Da-i Ip - DKe -^I-, - ^-1 1, + a, e -' I^ - Kl,-L£ IkIII 2 1

3 3 3 3 3^

.2
a i-Tt

V^3|M2-*-2^^1-^ ^2

.n .2
IT 22 ^3''

Da I -DKe Ii-^i^i+a-ie ^2 " ^^1

3 3^
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surface wave will arise from this part of the fields. An examination of

Eq. (ij-.20) shows that \\r^ and its normal derivative are continuous across

the surface T = 0, x < 0; however, we must impose the vanishing of i|fp

over the surface T = 0, x > 0, i.e.,

(U.36) ^2 = 6^ / e ^ lB^H^^^Kr)sin | cp + B^h}^"^ ^(Kr )sin ^ ^|e d? =-"3 3

T = 0, X > .

Using Eq. (U.32), we obtain

ik S'fax p -a g /. ^ p
2B , ^

(U.37) M^2 = ^ r J^
^ B3_H^^^(Kr)sin|9d|--;f 4-^^(Kr)sin|1-3 3

2B a ax o -a^ , . i-rn ax o^ -a | , .

o I

- —|-^ e ^ /e ^ H|^^(Kr)sin
I
d^-Bge -^ e

^
e ^ H^^ ^(^r )sin | cpd|

.

-00 3 -co 3 j

Imposing the condition (U.36) yields

o-pX o -a e . . 2B a ax n -a | , >

(U.38) B^e ^ j e '^ H^^\K|5|)sin| Ml-—^ e ^ j e ^ H^^ \k ^ |
)sin ^ dl

3 -«, 3
_

o ,

fe""^ I^^^KUDsin

.2
i-jt ax p -a I , ,

- B^e ^ e
""

J
e ^ H^^^(k

| || )sin | Ttd? =

It follows that
CO

, .2 00 .

y^e 2 H{^^(K|)d5 + e 3
J'e

^ 4^^(K?)d|

o(I..39) i= ^ ^-^; 2 1

°^o5 ,,,, .

o 3
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The ratio k^/l^^ which is needed in Eqs. (U.3I1) and (4,35) may be foiind

from Eqs. (4.25), (4.26), (4.27)'and (4.39):

[^/e^^^(^)(.a)a|.^/3''p^a),.,„,]

(4. 40;

J>'f (K?)d|

^1
.2

Now the explicit expressions for the six coefficients k , R, A , B , B^ ,

and C^ have been obtained in the six equations, (4.34), (4.^35), (4.40), (4.27),

(4.38) and (4.25) respectively. This observation completes the formal solution

of this case.

It is of interest to determine the far-zone forms of the radiated field.

We first w ite down the asymptotic forms of the functions f and g.

(4.41) f
1 v JtKr

f ll«^
[^ i(Kr-— ) ^

(4.42) g
~

e

iko.S'

The far- zone forms of \|/ and f are expected to be

(4.43)

M (cp)

^ iHcr + ik^.S'

VT
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(k.hk) ^ = COS4) ^ - - smcp
g;: ~ coscp^ .

Substituting Egs. (UAl), (k.hS) and (U.U) into Eq. (h.l'^) gives

(^•^5) 1^1 = i. cos cp-a^ y^ ^ [^1
sin ^ cp e + A^sin rcpe

Substituting Eqs. {k.k2), {h.k3) and (h.kk) into Eq. (U.l8) gives

(^•^6) ^2= i.cosc^-a, sl-^r ' ^BpSin
f

cp e 12,^^3^,^^, 12
J

^

Then substituting the above two expressions into Eq. .(^-^O) yields

ih.hl) E = T-r-^ 7 /-^ e
-^^ ^' '-/^ ^^-- Lsin |cp +A^sin ^cpe ^

1 r 2 1| "^^1
^ iK cos cp -a^ [\-- I ^ -^^2^^-

3
^^

J

rr- KKr-g^-k S')f a
\ 2 U -ifl

(1+.1+8) E,,= -^— 7-=^ e
i^ o (^ ±

B,sin f cp + B^sin -^cpe ^
\ynr.HU)

s' a-a VitKr ]ik cos cp -a |_ 1 3^ 2 >3
J

^2 r 2 u
- -: A^sin T cp + A^sin -cpe

IK cos cp-aLl 3^ ^ 3^

The far-zone form of E may be obtained directly from Eq. (ij-.2l).
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(Kr-?^+w ,S')
2_ ^ 12 S' ' eg

(U.i+9) E^ = C /^^ e — - ^Qg

Using the following relations for the far-zone cylindrical components:

(it. 50) E = E cos 9 + E sin cp

(1+.51) E^ = -E^ sin cp + E^ cos cp

(U.52) H = T^ V X E = ;i [-kg,E^? + (kg,E^ - KE3, )? + .E^S'] .

We may obtain the power flow densities:

(4.53) P^ = |Re [E^H*, - Eg.H;]

j^2

(^51.) Pg, =
I Re [e^h;- E^h;]

s

2wti
I

I -"cp

K,
The radiated far-field power flows in the directions tan = —^ , where is

an angle from the S'-axis with the following density:

^



5. ParticTxlar Incidences for the Perpendictilar Case

It is of interest to find simplified expressions for the coefficients

in those special incident directions which are nearly normal to the edge end

which correspond to k^, ~ k.

Let us make the substitutions

(5.1) sin 93^
= iff^

(5.2) cos 0,

where a is negative using Eqs. (3.9) and (4.39), we find

-i(^)
r °^p^ (1) p^ 2 sin V 9

(5-3) /e= H^'M)d| = 2^^j^ _^
'-' sm 9„

^2

(5.4) ^ = 2 cos ^ 9 e
^

B2 3 S^

We first consider the incident direction which is nearly normal to the

edge,

2

(5.6) — = :^ - :^ \/^ +4k„, ~ r - -^ = r(- -^) ,y^.^K-S')
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where b - -, T = T, and - is small. Now - — is small, 9 -^ - + i —
K K T K Dp ^ K

where k ~ k(l - "T ) Eq. (3-^0) becomes
2

A i|jt r 2a, 2a,

(5.7) D = - . e^ [_1 . , . ,^j
md

(5.7A)

2 L -2 ysi

^2 L v/3 K J

A i-rt r a 2a -,

(5.7C)
Ag a^

Substituting (5-7) into Eqs. (^.3^) and (U.35), and imposing the

k'
condition that t(= t) -> 0, we obtain

_.2

(5.8) A = a -^ e
^3'

(5.9) ..^A[..f^j
2 -T i|«

It is interesting to compare Eqs. (5.8) and (5-9) with Eqs. (26) and

(28) of Reference 2 respectively. (Please notice that the notation X in this



paper corresponds to a in Reference 2., the factor a in Eq. (5-8) is introduced

by the assumed form Eq.. {h.'L\) of the incident surface wave. ) Eq. (5.9) indicates

that the obliquity of the incident field tends to increase the reflection.

Substituting Eq. (5-7) into Eqs. (U.3^) and (1|.35) and imposing the

k-
condition that r(= r) -^°°j we obtain

1 ^ i^

(5.10) A^ = -a^(a^)^
(f)^

e^^

(5.11) R = e ^

We may compare the above two eq-uations with Eqs. (32) and (3^+) of

Reference 2 respectively. Furthermore, Eqs. (5-10) and (5.11) are valid in

all oblique directions where k is not too small, because either small & or

large r may give rise to small (- — ). The magnitude of the reflected oblique

surface wave approaches that of the incident oblique siorface wave as - approaches

infinity. Substituting Eq. (5-10) into Eq. (i;.55) may check the expected result

that the radiation field vanishes as - becomes infinitely large.

We next consider another special incident direction where kg, ^k (i.e.

a -2a2

K ~ 0). Now - — is large. 0^ -4.- - i log —^ . Using Eq. (5.3), we may

approximate Eq. (i+.UO) by
2

A a 2a 3

(5.12) , . -1 . _-i(_-2)

and
2

B 2a 3

(5.12A) ^ = - (--r)
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A^ 2<x^ 3

(5.12B) — = -(

2 2
(5.12C) 5^

. -

Substituting (5-12) into Eqs.{k.3,h) and (U.35), we obtain

2

a a 3

(5.13;

^h'-¥]-4-<-5'|

(5.IU) R =



2W

When the obliquity vanishes in the perpendiciilar case, the incident

field becomes the two dimensional TE surface wave for a negative X, and the

incident field becomes a plane wave for a positive X.

6. Conclusions

A graphical analysis of oblique surface waves on an infinite impedance

plane has been presented. Then the diffractions of oblique surface waves

by terminations in the form of right -angle bends are treated. When the edge

of the bend is parallel to the perfectly conducting direction of the

impedance plane, the mathematical formalism may be reduced to that of the

TM normal incidence. For a positive surface reactance X in this case, the

amplitude of the reflection coefficient becomes smaller and the radiation power

pattern becomes more directive, when the obliquity of the incident direction

increases. The incident field becomes a TM surface wave when the obliquity

vanishes. For a negative surface reactance X in this geometry, we expect a

total reflection of the oblique surface wave.

When the edge of the bend is perpendicular to the perfectly conducting

direction of the impedance plane, the mathematical analysis involves two

coupled mixed boundary conditions. In addition to the jump conditions and

the boundary conditions, the edge condition must be used to determine the

coefficients in the field expressions. Various limiting cases are considered.

For a negative surface reactance X in this geometry, the amplitude of the

reflection coefficient tends to increase when the obliquity increases. The

incident field becomes a TE surface wave when the obliquity vanishes. A

total reflection of the oblique surface wave will occur when the obliquity
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2 2
reaches the condition k > k . For a positive surface reactance in this case,

the incident field becomes a plane wave when the obliquity vanishes; however,

the amplitude of the reflection coefficient also tends to increase when the

obliquity increases, and a total reflection will occur when the obliquity

2 2
satisfies. The condition k_, > k .

REFERENCES

1. F. C, Karal, S. N. Karp, T. S. Chu and R. G. Kouyoimjian, "Scattering of

a Surface Wave by a Discontinuity in the Surface Reactance on a Right -Angled

Wedge", Comm. on Pure and Appl. Math., Vol. lU, pp. 35-ii8, February I961.

2. T. S. Chu, R. G. Kouyoumjian, F. C. Karal and S. N. Karp, "The Diffraction

of Surface Waves by a Terminated Structure in the Form of a Right -Angled

Bend", IRE Transactions 01 Antennas and Propagation, Vol. 10, pp. 679-686,

November, I962.

3. R. W. Hougardy and R. C. Hansen, "Scanning Surface Wave Antennas - Oblique

Surface Waves over a Corr-ugated Conductor", IRE Transactions on Antennas

and Propagation, Vol. 6, pp. 370-376, October 1958.



26

> S

Fig. la

-¥ X

(u Perfectly conducting
c

o
a
m
s

r

t ^ X
oj Perfectly conducting

Fig. lb Fig. Ic



27

[k'-|(^)
-t t^)"]

Fig. 2





mi
S 5S ¥&

mi;

i-i^

5'
" ^ § .2 i

P

I 8,1

^sa35

ig§g.S5&^

6-a'Si

ill..

;i^

v = t; 1

! 2 . =

^° " « § ° s,

jTSS^j?

H.-lal

''
sis 2

5

2 6 8i5
^ ^ " g " ^ §•

"I Sl§g|s5&„
Sissies. S^^
^ ^ „ ? 2 ^

° 2 g J-^

ingS|°^sg§

I? II:

i5g.§

2^-H

:
= 25^

a„-^'3 fs, ^-s ,„2^^-«

» g 2 "° 2 g i"S

g,sa^ g









DATE due'




