

ゅ日 ヨ己 ᄅᄅ9

The Diffusion of Crude Petroleum through Fuller's Earth.

DISSERTATION.

SUBMITTED TO THE BOARD OF UNIVERSITY STUDIES OF THE JOHNS HOPKINS UNIVERSITY IN CONFORMITY WITH THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY.

By

OSCAR ELLIS BRANSKY.

Easton, Pa.: Eschenbach Printing Company 1911.
侱

The Diffusion of Crude Petroleum through Fuller's Earth.

DISSERTATION.

SUBMITTED TO THE BOARD OF UNIVERSITY STUDIES OF THE JOHNS HOPKINS UNIVERSITY IN CONFORMITY WITH THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY.

By

OSCAR ELLIS BRANSKY. 4,

Easton, Pa.:
Eschenbach Printing Company
I9II.

TNBM
B8
$\because: \because_{0}^{\circ} \quad \because: \vdots:$

ACKNOWLEDGMENT.

To President Remsen, and Professors Morse, Jones, Renouf, and Acree, the author is greatly indebted for valuable instruction in the lecture room and laboratory. The author wishes, in particular, to express his gratitude to Dr. Gilpin, under whose guidance this investigation has been pursued, and to Dr. Day, of the United States Geological Survey. Thanks are also due to Prof. Swartz for important suggestions.

CONTENTS.

Acknowledgment 3
Introduction. 5
Object of this Investigation 14
Experimental 14
I. Relative Amounts of Oil Lost in Heated and Unheated Fuller's Earth 14
II. The Diffusion of Benzene in Solution through Fuller's Earth 18
III. The Fractionation of Crude Petroleum 31
IV. Chemical Examination of the Fractionated Oils 49
V. Selective Action of Fuller's Earth 53
Summary 56
Biographical 58

The Diffusion of Crude Petroleum through Fuller's Earth.

introduction. ${ }^{1}$

It is a well-established fact that the petroleum obtained from the sandstones of the Upper Devonian and Mississippian periods, generally known as the Pennsylvania oil, differs markedly from the natural oil found in the Trenton limestone, usually designated as the Ohio oil, or Trenton limestone oil. Both of these oils, in turn, are distinctly different from the petroleum occurring in the loose sands and soft shales of California. The unconsolidated tertiary clays, sands, and gravels in the southern United States, particularly in Texas, yield another variety of petroleum, characterized by properties more or less different from any of the preceding oils.

Not only do these differences exist between oils found in separate regions, but extreme variations in color and specific gravity, as well as in chemical composition, often occur between those of neighboring localities. On the other hand, close resemblances abundantly occur between petroleums of sections widely removed from each other. Some of the South American and many of the European oils, for instance, have been found to possess properties very similar to those of the oils of the southern United States; while the oil from the Corniferous limestone of Canada closely resembles the Ohio petroleum.

These variations in the oils of the United States and other countries have been carefully studied by many investigators. Such noted workers as Warren, Storer, Mabery, Pelouze, Cahours, Schorlemmer, Beilstein, Markownikoff, Engler, and Kurbatoff have devoted their lives to this subject. The question that naturally arises in connection with these variations is: Are these differences fundamental? Is the Pennsylvania petroleum as distinctly different from the Ohio oil as one chemical compound is from another? In answer to these

[^0]questions, the following extract from a paper read by Mabery ${ }^{1}$ in 1903 before the American Philosophical Society is of considerable importance: "Now, after years of arduous labor, I have reached the conclusion that petroleun from whatever source is one and the same substance, capable of a simple definition-a mixture of variable proportions of a few series of hydrocarbons, the product of any particular field differing from that of any other only in the proportion of the series and the members of the series." The evidence supporting this declaration has been and is accumulating constantly, and, at the present time, this view is generally accepted.

If petroleum, then, is one and the same substance, how can the extreme variations between the American oils be explained? Were the causes operating in the formation of the Pennsylvania oil, almost barren of sulphur and nitrogenous bodies, different from those acting in the production of the sulphur-bearing oils of Ohio, or the heavy sulphur and nitrogenous oils of California?

To account for the formation of crude petroleum, two views, as is well known, the organic and inorganic, have been advanced. The Pennsylvania oil, according to these theories, may have been formed either from organic or inorganic substances, or from both. It is as yet impossible, however, to state conclusively from which of these sources the oil was derived. It is apparent, therefore, that the differences between the Pennsylvania and the Ohio, Texas, and California oils cannot be explained upon the assumption that the former was formed from organic remains, while the latter were produced from inorganic matter, or vice versa. If, however, crude petroleum is organic in origin, it may have been formed either from vegetable or from animal remains. The following discussion is based upon the assumption that the abovementioned oils were derived from an organic source.

It has been suggested that the differences between these oils may be accounted for by assigning a vegetable origin to the Pennsylvania oil, and an animal origin to the others.

[^1]Mabery ${ }^{1}$ states that "It would seem that the small proportion of these bodies ${ }^{2}$ in the Pennsylvania oil, as compared with the larger proportions in the limestone oils and California oils should be strong evidence in favor of a different origin, that the Pennsylvania oil came from organic vegetable remains, which should permit of the small amounts of sulphur and nitrogen compounds from this class of oils." Newberry, Peckham, Orton, and other geologists also favor the view that the Pennsylvania oil is of vegetable origin, and is derived from the organic matter of the bituminous shales of the Devonian period.

The facts which have led to the association of this oil with a vegetable source are, first, that the cil is of a different character from the limestone oils of Ohio, and those of Texas and California; second, that the Pennsylvania petroleum is found in strata that bear but few fossils; third, the belief that the Chemung and immediately overlying formations are barren of animal organic remains; fourth, the existence of large quantities of microscopic fossils, whose origin many believe to be vegetable, in the black shales of the Lower and Middle Devonian periods, to which formations many investigators are inclined to refer the origin of the Pennsylvania oil.

It is generally recognized that the Pennsylvania oil differs markedly from the Ohio, Texas, and California oils. Investigation has shown that the former contains a much larger proportion of the paraffin hydrocarbons, and a much smaller percentage of benzene and unsaturated hydrocarbons and sulphur and nitrogenous bodies, than the latter oils. It is further generally admitted that the Pennsylvania oil was not formed in situ. These two facts have aided strongly in assigning a vegetable origin to this oil. To what strata, then, should the source of the oil be referred? The great coal formations of Pennsylvania, lying above the Chemung, seem, at a first glance, to offer a solution of this problem. It is a notable fact, however, that these formations have not, up to the present time, been connected, either chemically or geologically, with the Pennsylvania oil. The possibility exists, however,

[^2]that it was formed from vegetable remains in the Carboniferous formations above, and that then, by downward diffusion, it reached its present position in the Chemung. This view rests upon the physical fact that a liquid diffuses by the force of capillarity in all directions, downward as well as upward. Little attention has been given to this possibility, but it seems to deserve a very careful study. Owing, however, to the universal association of water under hydrostatic pressure with natural oil and gas, the migration of the latter is generally upward. This fact is attested by the accumulation of oil in anticlinal folds when water is present, and by the existence of the remarkable gushing oil wells. That the Pennsylvania oil, if not formed in situ, ascended to its present location seems, therefore, more probable.
In what strata below the Chemung, then, was the oil originally produced? It has been previously mentioned that a number of investigators refer the source of the oil to the black shales of the Lower and Middle Devonian periods. The organic matter of these shales is composed largely of microscopic sporangites, which suggest the existence, according to Orton, of masses of floating vegetation, or Sargasso seas. According to this view, the origin of the Pennsylvania oil is vegetable in character, and its primitive abode was in the shales of the Devonian age lying below the Chemung sandstone, to which it ascended under the influence of natural agencies. Another origin, animal in character, may be assigned to this oil. This view is that the oil was formed in the fossil-bearing strata of the Chemung age, and that it diffused to the sandstone reservoirs in which it is now found, and that during such a diffusion its original character was changed. Prof. C. K. Swartz, of the Johns Hopkins University, who has made a critical study of the Chemung strata in Maryland, informs us that fossil remains exist in considerable abundance in the strata of this age in Maryland and adjoining areas. In Pennsylvania, the corresponding strata have been found to bear many fossils. It is possible that the oil formed in these strata, and then diffused to the strata in which it now exists and which are barren of fossil remains.

The evidence accumulated in this investigation seems to show that it is not necessary to assign a vegetable origin to the Pennsylvania oil to explain the differences between it and the oils of Ohio and California. It is clear from the results of this and other investigations that, when such oils as those of Ohio and California and Texas, which seem to be of animal origin, are allowed to diffuse through such porous media as fuller's earth, they yield oils very similar to those of Pennsylvania. By assuming, therefore, that the Pennsylvania oil migrated from some primitive source, in which it may have been formed from animal remains, through shales, limestones, and sandstones, its peculiar character can be understood.

Whatever the original home of the oil, it seems probable that it migrated to its present location from some place below. It is with the changes occurring in crude petroleum as a result of such a migration through porous strata that the present investigation is primarily concerned.

In 1897, Dr. David T. Day, ${ }^{1}$ from his own observations, and those of Dr. John N. MacGonigle, proposed the view that the Pennsylvania oil, at some past time, possessed properties very similar to those of the Ohio oil, but that in its migration to its present abode from regions below, its character was changed to its present condition.

Guided by this view, he conducted, in the laboratories of the United States Geological Survey, an investigation into the changes occurring in crude petroleum when allowed to diffuse through porous media, such as fuller's earth. He demonstrated clearly that an oil resembling the light Pennsylvania oil could be readily produced in the laboratory from the heavier crude Ohio oil. Glass tubes were packed firmly with the dry earth, through which the crude oil diffused by its own force of capillarity. From the earth of the upper sections of the tubes, very light, in some cases colorless, oils were liberated by treatment with water; from the earth of the lower sections of the tubes, much darker and heavier oils were obtained.
${ }^{1}$ P. Am. Phil. Soc., 1897.

It will be observed that the fractionation is effected entirely by capillarity; oils with different surface tensions rise with different velocities through the capillary openings, such as the fine interstices and minute pores of the fuller's earth. A separation of the various constituents making up the complex of any one oil is thus produced. The view once held that this phenomenon is chemical was clearly disproved by Engler and Albrecht ${ }^{1}$ in 1901, and later by other investigators.

Any medium, therefore, sufficiently fine-grained and porous to afford capillary spaces causes a separation of the constituents of any mixture, provided they possess different surface tensions. The compact sandstones, shales, and limestones that recur in many cycles throughout the earth's crust present an excellent medium for the separation of the constituents of such a complex mixture as petroleum. The force of capillarity, assisted by the hydrostatic pressure of the water occurring in the interior of the earth, acting over vast periods of time, is, it seems safe to state, sufficiently powerful to transport the oil from the lower regions to those above. That the condition, therefore, to cause such a migration, with the consequent fractionation of the original oil, are abundantly present, appears extremely probable.

Let us examine, now, the conduct of the constituents of petroleum subjected to such a fractionation. The members composing the natural oil may be grouped under the following general heads: paraffin, aromatic, unsaturated hydrocarbons, sulphur, nitrogen, and oxygen compounds. The behavior of the paraffin and unsaturated hydrocarbons will be considered first.

Dr. David T. Day early observed that the unsaturated hydrocarbons are less diffusible than the paraffin hydrocarbons. Later, Gilpin and Cram clearly demonstrated that when petroleum is allowed to diffuse through tubes packed with fuller's earth, the unsaturated hydrocarbons collect in the earth of lower sections of the tubes, while the paraffins tend to accumulate in the lightest fraction at the top of the tube. In the
present investigation, these results have been fully confirmed. On pages 50 to 5^{2} are given the bromine absorption values, and the percentages by volume absorbed by concentrated sulphuric acid of the various oils obtained from definite sections of a tube. These figures indicate conclusively that the amount of unsaturated hydrocarbons in the oils from the lower sections of the tube is much greater than the amount of these hydrocarbons in the lightest fractions at the top of the tube. Furthermore, the bromine absorption values for the oils of similar fractions of the first, second, and third fractionation, given on page 5 I , show that in the progress of the fractionation more and more of the unsaturated hydrocarbons are removed. Herr, ${ }^{1}$ in Russia, has likewise observed that these hydrocarbons are less diffusible than the paraffins.

An interesting confirmation in nature of these experiments has been recently presented by Clifford Richardson and K. G. MacKenzie. ${ }^{2}$ They found that a colorless natural naphtha from the Province of Santa Clara, Cuba, contained practically no unsaturated hydrocarbons, but was almost entirely a mixture of naphthenes and paraffins. Concentrated sulphuric acid absorbed but 0.76 per cent. by volume, while fuming sulphuric acid absorbed only 1.8 per cent. With the naphtha were obtained water and an emulsion of water, oil and clay. These investigators are of the opinion that the naphtha was "undoubtedly formed by the upward filtration of heavy petroleum through the clay stratum, similar to the fuller's earth filtrations of Gilpin and Cram, and the light naphtha in the upper part of the stratum was afterwards partly liberated by saline waters, the oil remaining in the clay forming with water the emulsion." ${ }^{2}$

A comparison of the proportions of unsaturated hydrocarbons in Ohio and Pennsylvania oils shows that the latter contains a much smaller percentage of these hydrocarbons. By assuming that the Pennsylvania oil diffused upward through such porous media as shales and limestones to its present location in the sandstones, it is possible to account for the

[^3]smaller amounts of the olefins in it on the basis of the experimental work described above. In its passage through the capillary interstices of the clays, limestone and sandstones, a fractionation, resulting in the removal of the unsaturated hydrocarbons, probably occurred. It is reasonable to conclude, therefore, that the variation in the content of unsaturated hydrocarbons between the Ohio, Texas, and California oils, on the one hand, and the Pennsylvania oil on the other, can be probably accounted for by assuming that the latter was subjected to capillary diffusion at some time in its career. That the light-colored naphthas occurring in various parts of the world were originally darker and heavier oils, and that their primitive character was changed by diffusion through media possessing the power of fractionation, seems very probable.

The behavior of the aromatic hydrocarbons, in particular benzene, in passing through fuller's earth, constitutes one of the subjects of this investigation. The results of this study, given in detail on pages 18 to 30 , indicate clearly that benzene, like the olefins, tends to collect in the lower sections of a tube of fuller's earth through which the benzene, in solution, is allowed to diffuse. That the aromatic hydrocarbons in the natural oil behave in a similar manner has not yet been decided. The proportion of these hydrocarbons in the Illinois oil investigated was too small to enable us to determine accurately their amounts in the various fractions obtained by the capillary diffusion of the crude oil. The ordinary methods, such as nitration with a mixture of nitric acid and sulphuric acids, and sulphonation, employed for the quantitative determination of the aromatic hydrocarbons, could not be used in this work, owing to the fact that these reagents readily affect the unsaturated hydrocarbons as well. A study of the conduct of the aromatic hydrocarbons in the natural oil containing large amounts of them will be undertaken in the near future. It is probable, however, that the benzene and homologous compounds in crude petroleum behave like the unsaturated hydrocarbons.

The presence of larger amounts of aromatic hydrocarbons
in the Ohio than in the Pennsylvania petroleum, and still larger amounts in the California and Texas oils, seems to afford further evidence in favor of the view that the Pennsylvania oil has undergone much greater diffusion, and consequently greater fractionation, than any of the other oils.

The conduct of the sulphur compounds in petroleum in the process of diffusion is similar to that of the unsaturated hydrocarbons. On page 52 , the percentages of sulphur present in the oils from different parts of the tube and different stages of fractionation are tabulated. One series of figures will be given to show the behavior of the sulphur compounds:

Lot 6.
Fraction A
" B
" D
" E

$\overbrace{$ First frac- tionation. }$^{\text {Per cent. of sulphur. }}$	Third frac- tionation.
0.04	0.003
0.05	\ldots
0.09	\ldots
0.16	\ldots

It is clear from these figures that the sulphur compounds, like the unsaturated hydrocarbons, tend to collect in the lower sections of a layer of faller's earth through which petroleum is allowed to diffuse.

In 1902, Clifford Richardson and E. C. Wallace, ${ }^{1}$ in an investigation on the occurrence of free sulphur in Beaumont petroleum, passed this oil upward through the kaolin filter described by Dr. D. T. Day at the Petroleum Congress in Paris, in 1900, and obtained a distinct fractionation. The percentages of sulphur in the crude oil, and the oils obtained by this fractionation were determined. The results are given in the following table:

Crude oil	Sp. gr. $25^{\circ} / 25^{\circ}$.	Per cent. sulphur.
Ist fraction	0.9140	1.75
2nd fraction	0.8775	0.70
3rd fraction	0.8986	0.91

It seems reasonable to assume from these results that the variations in the sulphur content between the Pennsylvania

[^4]and Ohio oils may be satisfactorily explained by the view that the former oil, as previously stated, diffused from other regions to its present location, and in its migration a large part of its original content of sulphur was removed. Further work upon this point will be undertaken in this laboratory.

No careful study of the behavior of the nitrogen and oxygen compounds in petroleum diffusing through a porous medium has as yet been undertaken. A careful investigation of this matter will be pursued in this laboratory later on. It is probable that such an investigation will show that the nitrogen compounds conduct themselves like the sulphur and unsaturated compounds.

The Object of this Investigation.

The present investigation was undertaken for the immediate purpose of studying the changes occurring in the crude Illinois oil when allowed to diffuse through fuller's earth. The more distant, but more fundamental, object was to gain further insight into the causes of the variations between the various oils of this country.

EXPERIMENTAL.

Preliminary Experiments.

The Relative Amounts of Oil Lost in Heated and Unheated Fulier's Earth.-Before the actual investigation of the Illinois oil was undertaken, experiments were made to determine the relative amounts of oil lost in heated and unheated fuller's earth. ${ }^{1}$ In the work of Gilpin and Cram, the earth was always heated until geysers ceased to form, and then allowed to cool for several hours. The purpose of heating the earth was to obtain larger yields of oil, but towards the close of their investigation it became apparent that the amount of oil lost in unheated fuller's earth was not as large as they had supposed it to be. Since much time and labor is consumed in the process of heating and then cooling the earth, it seemed advisable to settle this point at the outset.

Apparatus.-The apparatus employed for this investiga-

[^5]tion was essentially the same as that used by Gilpin and Cram. A, A, A, A (Fig. I) are tin reservoirs made to hold somewhat more than a liter. The tin tubes $B, B, B, B, 5.5$ feet in length, and I .25 inches in diameter, rest upon narrow tin supports placed upon the bottom of the reservoirs, and are connected with the branched glass tube F by suction tubing fitted with pinchcocks at E, E, E, E. The tube F is connected with the large tank C, which serves to maintain fairly constant pressures; C is in turn joined by the glass tube D to a manometer, and the latter connected with the Chapman pump. Any number of these tubes may be set up in series under the same diminished pressure.

After the tubes are closed at their lower ends with grooved corks covered with muslin to prevent the earth from sifting out, they are packed to the desired firmness with the fuller's earth. Each tube is then placed in its own reservoir, containing the oil to be fractionated. When they are connected to the branched tube F, the pressure in the system of tubes is reduced by the suction pump. The oil rises at first rapidly, then its diffusion gradually diminishes in power. When the reservoirs are almost exhausted, the tubes are disconnected
and clamped, with the bottom ends up, above shorter tubes of the same diameter, into which the oil-laden earth is allowed to slide. These shorter tubes are made of two curved pieces, joined at the bottom by a cap, and held together at the top by a ring. The cylinders are opened by slipping off the ring and cap and removing one of the curved pieces, and the earth divided into the desired sections. When water is added in portions to the earth and the two mixed thoroughly, the oil is displaced and is drawn off in separate portions.

Six tubes packed with heated fuller's earth were set up alternately with six tubes filled with the unheated earth. Each tube was placed in its own reservoir containing 950 cc . of crude oil. The oil was allowed to diffuse upward through the tubes under diminished pressure. Sixteen hours elapsed before the oil in the reservoirs was exhausted. Since the tubes did not rest directly upon the bottom of the reservoirs, a small amount of oil remained, the volume of which was subtracted from the volume originally supplied. The earth from each tube was shaken into a bucket, and the oil recovered by displacement with water, as described above. The results of these experiments are given in the following table:

Tubes.	Table I.-Heated Fuller's Earth.				
	Weight of fuller's earth.	Oil absorbed by earth.	$\begin{aligned} & \text { Oil } \\ & \text { recovered. } \end{aligned}$	Oil lost. cc.	Per cent oil lost
,	1005	850	450	390	46
3	1000	792	460	332	41
5	1035	850	500	350	41
7	1070	865	450	415	48
9	1035	813	430	383	47
11	1045	885	530	355	41
Total,		5055	2830	2225	44

Unheated Fuller's Earth.

2	1075	917	585	332	36
4	1095	853	562	291	34
6	1065	840	500	340	42
8	1045	814	435	379	46
10	1035	873	510	363	41
12	1055	850	485	365	$\frac{41}{}$
	$-\ldots$	5147	$\boxed{30}$	$\underline{2077}$	2070

The petroleum employed in the above experiments was a dark, green oil from Venango County, Pennsylvania, possessing a specific gravity of o.810.

Since the Illinois oil, which was used in the fractionation proper, described later, differs materially from the Pennsylvania petroleum, further experiments were undertaken to determine the relative amounts of this oil retained by heated and unheated earth.

Ten tubes, five of which were packed as uniformly as possible with fuller's earth that had been heated until geysers ceased to form, and the other five with unheated earth, were placed in reservoirs, each containing 950 cc . of Illinois oil, specific gravity 0.8375 . When the oil was entirely absorbed, the tubes were taken down and the oil-laden earth shaken into two breakable cylinders and divided into the following sections: A constitutes the section, 10 cm . in length, measured downward from the level to which the oil had ascended; B, the next $15 \mathrm{~cm} . ; C, 20 \mathrm{~cm} . ; D, 30 \mathrm{~cm} . ; E, 35 \mathrm{~cm} . ;$ the remainder of the earth to the bottom of the tube, designated as F, was entirely discarded.

The earth was then treated with separate portions of water. The oils displaced by the successive additions of water were collected separately and are designated in the table below as $A_{1}, A_{2}, B_{1}, B_{2}$, and so on; A_{1} is the oil first displaced, A_{2} the oil next expelled by further additions of water. The volumes and specific gravities of the recovered oils were determined. The results are given in the following table:

Table II.

Heated fuller's earth.		Vol., ce.	Unheated fuller's earth.	
Frac.	Spec. grav.		Spec. grav.	Vol., ce.
A_{1}	0.8287	100	0.8320	72
A_{2}			0.8352	22
B_{1}	0.8390	157	0.8405	184
B_{2}	0.8485	35	0.845	124
C_{1}	0.844 I	280	0. 8443	270
C_{2}	0.8507	67	0.8495	147
D_{1}	0.8450	393	0.8483	368
D_{2}	0. 8490	132	0.8517	210
E_{1}	0.8537	339	0.8500	360
E_{2}	o. 8564	174	o. 8569	185
		1701		1942

These results indicate that unheated fuller's earth retains no more oil than the heated earth. Although, in these experiments, the percentage of oil lost in the unheated is smaller than that lost in the heated earth, Gilpin and Cram, employing heated earth, recovered, in one test, 5,951 cc. from 9,070 cc., and, in another, $5,415 \mathrm{cc}$. from $8,915 \mathrm{cc}$., the amount of oil lost in the earth in the first test corresponding to 34 per cent., in the second to 39 per cent. It is clear, therefore, that there is no sufficient, if any, compensation for the time and labor spent in heating the earth. In the investigations that followed, therefore, the unheated fuller's earth was always used.

The Diffusion of Benzene in Solution through Fuller's Earth.In order to deal more intelligently with the fractionation of the crude Illinois petroleum, it seemed advisable to study the behavior of the individual aromatic hydrocarbons, especially benzene, both alone and mixed with paraffin hydrocarbons, when allowed to diffuse upward through fuller's earth. Gilpin and Cram established the fact that the paraffin hydrocarbons tend to collect in the lightest fractions at the top of the tube. Their method consisted in distilling by heat six samples of oils of different specific gravities, each 300 cc . in volume, and collecting ten fractions between definite intervals. Five of these samples consisted of oil partly fractionated by fuller's earth, and the other of the crude oil. The specific gravity and viscosity of each fraction were determined; then to 30 cc ., or to all there was where the amount was less than 30 cc. , an equal volume of concentrated sulphuric acid (specific gravity 1.84) was added, and the two shaken in a machine for half an hour or longer. The volume of the oil unaffected by the acid was measured, and, by subtraction, the volume of oil absorbed was calculated. This latter volume represents only approximately the percentage of unsaturated hydrocarbons present in the oil, because sulphuric acid of this strength readily dissolves benzene when the two are thoroughly shaken.

In this investigation various solutions of benzene and a refined paraffin oil, boiling between 160° and 240°, and only
slightly attacked by sulphuric acid, were made up and allowed to rise in tubes packed with unheated fuller's earth. The pressure in the system was reduced very little, because the liquid, under a greatly diminished pressure, rose too rapidly. About 24 hours elapsed before the oil in the reservoirs was exhausted.

The earth in each tube was shaken out and divided into six sections. Beginning at the uppermost point to which the oil had ascended, grade A consisted of the first 8 cm .; grade B of the next 8 cm .; grade C of 18 cm. ; grade D of 30 cm .; grade E of 35 cm .; and, finally, grade F of the remainder of the earth, depending on the height to which the oil had ascended. This division is the same as that used by Gilpin and Cram. The oil in the earth was displaced by water and drawn off.

The specific gravity of each fraction was determined by means of the Mohr-Westphal balance at exactly 20°. The fourth decimal is not to be considered as strictly accurate, but gives a closer approximation to the truth than if it were entirely discarded.

The viscosity was determined by means of the viscosometer described by Ostwald and Luther and modified by Jones and Veazey. ${ }^{1}$ The time taken for measured volumes of the oils to drain from the small bulb, whose capacity was 4.5 cc ., was compared with the time required for a similar amount of water to run through. These values were substituted in the equation

$$
y=y_{\circ} \frac{T S}{T_{\mathrm{o}} S_{\mathrm{o}}},
$$

where $y_{0}=$ coefficient of viscosity of water. For this, o.oroo2, the value obtained by Thorpe and Rodger, ${ }^{2}$ was used.
$t=$ time of flow of liquid under examination.
$S=$ specific gravity, measured at 20°, of liquid under examination.
$T_{\circ}=$ time of flow of water.
$S_{o}=$ specific gravity of water. Since the balance was calibrated for water, at 20°, the value for S is unity.
$y=$ coefficient of viscosity of cil under examination.
${ }^{1}$ Z. physik. Chem., 61, 351.
${ }^{2}$ Phil. Trans., A, 185, 397 (1894).

The amount of benzene present in each fraction was determined by shaking the oil with an excess of ordinary concentrated sulphuric acid (specific gravity r .84) for periods of time varying from 30 to 60 minutes, until there was no further diminution in the volume of the oil.

The following experiments demonstrate the power of this acid to dissolve benzene, forming benzenesulphonic acid:
(I) Twenty-five cc. of benzene were shaken vigorously in a machine with 25 cc . of concentrated sulphuric acid (specific gravity r.84) for 30 minutes. Amount of benzene dissolved, 7 cc., or 28 per cent.
(2) Twenty-five cc. were shaken for 30 minutes with 50 cc . of acid. Amount of benzene dissolved, 18 cc., or 72 per cent.
(3) Twenty-five cc. were shaken for 30 minutes with 75 cc . of acid. Amount of benzene dissolved, 25 cc., or 100 per cent.

The reagents usually employed for removing benzene are a mixture of fuming nitric and concentrated sulphuric acids. The work of Worstall, ${ }^{1}$ Francis and Young, ${ }^{2}$ and others, shows that such a mixture readily attacks the paraffin hydrocarbons, especially at higher temperatures, forming nitro derivatives, and also oxidizing them to a considerable extent. Furthermore, in working with this mixture the oil must be kept at a low temperature to prevent a violent reaction which results usually in the decomposition of the oil. In this work, therefore, in order to avoid the danger of attacking the paraffin hydrocarbons, and or the sake of convenience, concentrated sulphuric acid was used.

It seems advisable, at this point, to call attention to the fact that the power of ordinary concentrated sulphuric acid to remove benzene and homologous hydrocarbons has been generally overlooked. In order to determine the percentages of these hydrocarbons, it is customary to shake the oils to be analyzed with concentrated sulphuric acid, and then to nitrate the unaffected oil. It is assumed that the acid removes such substances as the unsaturated hydrocarbons, and does not attack the aromatic hydrocarbons. Thus, P.

[^6]Poni, ${ }^{1}$ in determining the presence and percentage of aromatic hydrocarbons in Roumanian petroleum, collected fractions between 35° and 70°, distilled under diminished pressure. These were purified by shaking with sulphuric acid, and each nitrated with a mixture of 1 part of nitric acid (specific gravity 1.5^{2}) and 2 parts sulphuric acid (specific gravity 1.8). The recovered oils were assumed to be paraffins and naphthenes, while the proportion of benzene and unsaturated hydrocarbons was calculated from the nitro products obtained. It is obvious from the results obtained in the present work that some of the benzene was removed in the process of purifying the fractions. The amount dissolved would depend upon the vigor of the shaking and its duration, as well as on the strength of the sulphuric acid. It is highly probable, therefore, that his percentage of benzene is too low.

In the study of the mixture of benzene and paraffin hydrocarbons, twenty-five cc. of each fraction, or the whole fraction when it was less than 25 cc ., were shaken vigorously with three times their volume of concentrated sulphuric acid for 30 minutes. The amount unabsorbed was measured over the acid in a burette, after sufficient time was allowed for most of the oil that was mechanically held in suspension to rise. The oil was then reshaken with a little more acid 15 minutes longer, and the volume again read. In cases where the benzene was present only in small quantities one shaking was sufficient, in other cases it was repeated a second time.

The paraffin oil employed, specific gravity o.797, was shaken several times with fresh portions of concentrated sulphuric acid until the acid was no longer colored, and only a slight diminution in volume occurred when a small sample of the oil was thoroughly shaken in a machine for some time with the acid. "The oil was then washed with water and sodium hydroxide and dried over calcium chloride. The specific grávity decreased to 0.792 .

When this oil was mixed with benzene in various proportions, and allowed to diffuse upward through fuller's earth, the following results, arranged in series, were obtained:

[^7]
Table III.

Series 1.-Oil alone. Specific gravity o.792. Level of oil, 28 cm .
Grade.
A
B
C
D
E
F

$$
\begin{array}{ll}
& 477^{1} \\
\text { Orig. vol., } & 778
\end{array}
$$

Series 2.-90 per cent. oil (0.792)-1o per cent. benzene (0.8775). Specific gravity, o.7983. Level of oil, 22 cm .

Grade.	Volume of	Specific gravity	Viscosity.	$\underset{\substack{\text { Per cent. } \\ \text { benzene. }}}{ }$
A	11	0.787	10.0
B	16	0. 7923		13.3
C	56	o. 7935	0.0131	11.6
D	109	0. 7943	0.0123	14.8
E	145	0. 7957	0.0120	14.4
F	245	o. 7955	0.0116	14.8
	$\begin{aligned} & 582 \\ & 872 \\ & 872 \end{aligned}$			

The results that are tabulated in the various series are expressed diagrammatically in the following curves. The ordinates represent the different grades of oil, and the abscissas, the percentages of benzene and the specific gravities.

The final curve represents in toto the results of the experimental work upon the diffusion of benzene in solution through fuller's earth. The ordinates of this curve represent the percentages of benzene, and the abscissas, the various mixtures of benzene and oil that were allowed to diffuse through the earth.

[^8]2.3

Fig. II. Series 2.

Series 3.-8o per cent. oil (0.792)-20 per cent. benzene (0.8775).
Specific gravity, o.8o6. Level of oil, 25 cm .
olume of oil, cc.

25
35
78
126
166
146
Specific gravity.

Viscosity.
Per cent.
Grade.
A
$\stackrel{B}{C}$
D
E
F
0.7948
0.0147
$15 \cdot 3$
r
576
Orig. vol., 892

Series 4.-75 per cent. oil (o.792)-25 per cent. benzene (o.8775). Specific gravity, o.8ı. Level of oil, 33 cm .
Grade.
A
B
C
D
E
F.

Volume of Specific oil, cc. gravity. 160.800

Viscosity ${ }^{1}$ Per cent
$35 \quad 0.803$
.... 22.0
$0.0129 \quad 23.3$
$74 \quad 0.8077$
0.0126
24.0
$128 \quad 0.805$
0.011424 .0
520.8068
0.0102
26.0
F
$120 \quad 0.8065$
0.0105
28.0

525
Orig. vol., 655

Fig. III. Series 2.

Per cent. Benzene. Specific Gravity. Fig. IV. Series 4.
${ }^{1}$ The viscosities of Grades A and B in a few of the tables are not given, because, in these series, which were the first to be made, the decision to determine the viscosities was reached only after the fractions had been treated with acid. Since A and B were small, all the oil was used up in this treatment.

Series 5.-75 per cent. oil (0.794$)^{1}-25$ per cent. benzene (o.8775). Specific gravity, o.8115. Level of oil, 24 cm .

Grade.	Volume of oil, ce.	Specific gravity.	Viscosity.	Per cent. benzene.
A	25	0.7942	0.0123	14.0
B	28	0.8048	0.0104	21.2
C	70	0.8105	0.0094	31.2
D	140	0.8100	0.0094	27.6
E	172	0.8100	0.0094	32.0
F	144	0.8093	0.0095	27.6
	$\underline{579}$			

Series 6.-75 per cent. oil (o.792)-25 per cent. benzene (0.8775). Specific gravity, o.8o83. Level of oil, 27 cm .

Grade.	Volume of oil, cc.	Specific gravity.	Viscosity.	Per cent. benzene.
A	22	0.7995	0.0106	17.5
B	$\mathbf{3 2}$	0.8055	0.0099	24.4
C	82	0.8052	0.0100	24.0
D	155	0.8085	0.0093	28.8
E	190	0.8085	0.0093	31.2
F	$\underline{93}$	0.8063	0.0096	28.8

Orig. vol., 923

Per cent. Benzene. Specific Gravity. Per cent. Benzene. Specific Gravity.
Fig. V. Series 5.
Fig. VI. Series 6.
${ }^{1}$ In Series $5,8,9$ and 10 the specific gravity of the refined oil is 0.794 . Since the quantity of oil of specific gravity 0.792 was not sufficient for all the series, a second quantity was prepared which had the specific gravity 0.794 . This oil was used in the above-mentioned series,

Series 7.-59.5 per cent. oil (o.792)-40.5 per cent. benzene (o.8775). Specific gravity, 0.8223 . Level of oil, 9 cm .

Grade.	Volume of oil, c.	Specific gravity.	Viscosity.	Per cent. benzerie.
A	9^{1}	\ldots.	\ldots	\ldots
B	15	0.8069	\ldots	14.0
C	48	0.816	0.0103	22.4
D	96	0.8182	0.0086	31.2
E	160	0.820	0.0082	31.6
F	255	0.8185	0.0083	29.6

Orig. vol., 922
Series 8.-50 per cent. oil (o.794)-50 per cent. benzene (o.8775).
Specific gravity, o.8295. Level of oil, 17 cm .

Grade.	Volume of oil, oc.	Specific gravity.	Viscosity.	Per cent. benzene.
A	22	0.8 I22	\ldots	24.5
B	32	0.819	\ldots	28.4
C	78	0.8287	0.0077	44.8
D	II I	0.8275	0.0077	47.6
E	155	0.827	0.0077	39.2
F	$\underline{192}$	0.8256	0.0079	36.4

Orig. vol.,
960

Per cent. Benzene. Specific Gravity. Per cent. Benzene. Specific Gravity.
${ }^{1}$ In Series 7 the volume of Grade A recovered was so small that no measurements could be made.

Series 9.-50 per cent. oil (0.794)-50 per cent. benzene (0.8775). Specific gravity, 0.8315 . Level of oil, 18 cm .
Grade.
A
B
B
C
D
E
F

Volume of Specific
oil, cc. gravity. I 8 0.8I6
$24 \quad 0.8210$
0.8275
$136 \quad 0.8283$
$174 \quad 0.8293$
0.8277

144
572
Orig. vol., 923

Per cent.
benzene.
26.0
$34 \cdot 5$
47.6
50.0
49.2
40.0

Series 10.-50 per cent. oil (o.794)-50 per cent. benzene (0.8775). Specific gravity, o.8295. Level of oil, 16 cm .

Grade.	Volume of oil, co.	Specific gravity.	Viscosity.	Per cent. benzene.
A	31	0.8135	0.0097	31.6
B	45	0.825 I	0.008 I	43.6
C	85	0.8290	0.0076	46.4
D	140	0.8280	0.0077	47.6
E	175	0.8285	0.0076	49.6
F	$\underline{137}$	0.8272	0.0076	50.0
	$\underline{613}$			

Fig. IX. Series 9.

Per cent. Benzene. Specific Gravity.
Fig. X. Series 10.

Series 11.-75 per cent. crude oil (o.8io)-25 per cent. benzene (0.8775). Specific gravity, 0.8312 . Level of oil, 18 cm .

Grade.	Volume of oil, co. I2	Specific gravity.	Viscosity.	Per cent. benzene. ${ }^{1}$
A	$\mathbf{0 . 8 2 5 5}$	$\mathbf{0 . 0 4 4 5}$	$\ldots \ldots$	
B	52	0.8268	0.0423	\ldots
C	52	0.8280	0.0300	\ldots
D	76	0.8290	0.0298	\ldots
E	140	0.8300	0.0263	\ldots
F	186	0.8320	0.0276	\ldots

488
Orig. vol., 890
Series 12.-Benzene alone (o.8775). Level of oil, 33 cm .

Grade.	Volume of oil, cc	specific gravity.	Viscosity.	Per cent. benzene.
A	16	0.8765	\ldots	\ldots
B	155	0.877	\ldots	\ldots
C	68	0.878	0.0066	\ldots
D	128	0.8778	0.0066	\ldots
E	157	0.8775	0.0066	\ldots
F	89	0.877 I	0.0066	\ldots

Orig. vol., 888
An examination of these figures shows conclusively that benzene tends to collect in the lower portions of the tube. The specific gravities and viscosities confirm the results obtained by determining the percentages of benzene present by removing the benzene with concentrated sulphuric acid. The specific gravities of Grades F to C run very close together, and are all much greater than those of Grades A and B. Since benzene possesses a high specific gravity (in this work the specimen had a specific gravity of 0.8775), the larger value for the lower grades indicates the presence of larger amounts of benzene. The specific gravity of the paraffin oil was only o.792, showing that the higher specific gravities were due to larger percentages of benzene. Further, since the viscosity

[^9]

Fig. XI.
of the benzene used was o.oo66, and that of the paraffin oil about o.o150, the viscosities of those fractions containing higher percentages of benzene, we should expect, ought to be much smaller than those containing less benzene. The results show that the viscosities of the Grades F to C are much smaller than those of A and B.

It will be observed that the maximum in specific gravity is reached, not at F, as might be expected in the fractionation of the crude oil, but between C and D. Between B and C there is a marked decrease. This sudden break is found also in the viscosities, and in the percentages of benzene. While the sharp breaks in the curves represent the marked change in the proportion of benzene and the height to which it rises in the tube, no satisfactory explanation has yet been obtained as to why it should occur at these points. This action will be studied more carefully later.

In order to determine the degree of exactness of the percentages of benzene obtained, known amounts of benzene were added to the oil until the specific gravity corresponded closely to that obtained by fractionation. The amount of benzene thus added and the amount actually removed by the acid agree very closely, as the following results show:

Benzene in 25 cc. of mixture.	Specific gravity.	Benzene found in the grades of Series 8. cc.			
7.3	0.8143	Grade A	7.9	Specific gravity.	
9.4	0.8213	"	B	IO.9	0.8135
II.I	0.8274	"	F	12.5	0.8272
II.3	0.8287	"	E	12.4	0.8287
II.9	0.8293	"	C	$1 I .6$	0.8290

The variations in the specific gravities of the mixtures and those of the grade $A-F$ are due to the fact that in the latter series some fractionation had taken place, and therefore the paraffin oils mixed with the benzene were not identical with those mixed with the benzene in the series of prepared mixtures, as the paraffin oil used was not an individual substance but a mixture.

The Fractionation of Crude Petroleum.

The petroleum employed for the fractionation was an oil obtained from the E. E. Newlin farm, 2.5 miles west of Robinson, Crawford County, Illinois. The specific gravity of the oil was 0.8375 at 20°; its color was dark brown.

The fractionation of the oil was effected by upward diffusion through tubes packed with fuller's earth. In order to shorten the time required for the oil to diffuse by capillarity to the upper parts of the tube, the fine interstices and pores of the earth were evacuated by applying diminished pressure at the top of the tube. By this aid, the time required for the oil to reach the top of a tube was reduced from several weeks to one or two days.

The apparatus employed is the same as that described on page 14.

The tin tubes were packed as uniformly as possible by introducing definite amounts of earth, and ramming solidly with rods tipped with rubber stoppers. The degree of compactness depended upon the kind of oil to be used. For the crude oil, about one and one-half feet of the tube was filled at a time, and the earth packed as firmly as possible; for the lighter oils, one foot of the tube was filled at a time; for the oils heavier than the crude, between two and three feet of the tube were filled at one time.

The tubes were then placed individually in reservoirs containing 950 cc. of the crude oil, after which diminished pressure was applied at the top of the tubes. The oil rose rapidly at first, then diffused more and more slowly as the tops of the tubes were approached. When the oil in the reservoirs was completely exhausted, the tubes were disconnected from the blanched glass tube F (see Fig. I) and the oil-laden earth shaken into two breakable cylinders. For the various fractions, the following divisions of the earth were made: Fraction A constituted the first io cm ., measured downward from the level to which the oil had ascended; fraction B, the next $15 \mathrm{~cm} . ; C, 20 \mathrm{~cm} . ; D, 30 \mathrm{~cm} . ; E, 35 \mathrm{~cm}$. , and F, the remainder to the bottom of the tube. In the first fractionation up to

Lot 28, fraction F was dicarded; from Lot 28 to the end of the first fractionation, E and F were collected together.

After thus dividing the earth, the various portions were placed in separate receptacles and treated with water. After each addition of water the two were thoroughly mixed. The earth, when the oil first appears, is granular; as more water is added, liberating more oil, the earth becomes muddy, and when as much oil as possible has been expelled by the water, the earth has the consistency of glue.

The portions of oil liberated by successive additions of water were collected separately. As Gilpin and Cram ${ }^{1}$ pointed out, the oil that is first expelled, if not very small in volume as compared with the oils succeeding, possesses a lower specific gravity than the oil liberated by further additions of water; the latter, in turn, is lighter than the next succeeding oil. The oil that is liberated last, therefore, possesses a higher specific gravity than any of the oils preceding it. Sometimes, however, the specific gravity remains constant after the second or third extraction. This fractionation, by means of water, was combined with the fractionation effected by the fuller's earth. In the tables that follow, A_{1} is the oil first liberated, A_{2} the oil next liberated; in the lower fractions, i. e., C, D, E, three and sometimes four extractions were made before all the oil that could possibly be liberated by water was recovered.

The specific gravity of the oils was determined by means of the Mohr-Westphal balance. As mentioned before, the fourth decimal is not to be considered as rigidly accurate, but it gives a closer approximation to the truth than if it were entirely discarded. The temperature at which the specific gravity was measured was exactly 20°.
${ }^{1}$ Amer. Chem. Jour., 40, 495 (1908).

Table IV.-The First Fractionation.

Lot. No. of tubes.	4	5		6			
	ı0	8		10^{3}			
Hours req.	16	$\begin{aligned} & 17-7 \text { tubes } \\ & 24-1 \text { tube } \end{aligned}$		$\begin{aligned} & \text { 17- I tube }{ }^{4} \\ & \text { 40- } 3 \text { tubes } \\ & 96-1 \text { tube } \end{aligned}$		17-3 tubes 40- I tube	
Frac. ${ }_{\text {Spec. }}^{\text {grav. }}$	$\begin{aligned} & \text { Vol., } \\ & \text { ce. } \end{aligned}$	Spec. grav.	$\begin{aligned} & \text { Vol., } \\ & \text { cc., } \end{aligned}$	Spec. grav	vol., cc.	$\begin{aligned} & \text { Spec. } \\ & \text { grav. } \end{aligned}$	
$A_{1} 0.8295$	170	0.8313	130	0.8320	72^{5}	0. 8287	85^{5}
$A_{2} 0.8315$	100	0.8357	56	0.8352	22		
$B_{1} 0.8375$	327	0.8392	358	0.8405	184	0.8490	134
$B_{2} 0.8413$	250	0.8453	92	0.845	124	0.8485	35
$C_{1} 0.8418$	505	0.8419	425	0. 8443	270	0.844 1	218
$C_{2} 0.844^{2}$	223	0.8439	138	0.8495	147	0.8507	67
$C_{3} 0.8495$	74	0.8465	130				
$D_{1} 0.8449$	495	0.8454	640	0.8483	368	0.8450	302
$D_{2} 0.8455$	328	0.8500	167	0.8517	210	0.8490	132
$D_{3} 0.8490$	260	0.8509	195				
$E_{1} 0.8500$	545	0. 8495	575	0.8500	360	0.8537	215
$E_{2} 0.8510$	295	0.8513	185	0.8569	185	0.8564	174
$E_{3} 0.8567$	170	0.8555	130				

${ }^{1}$ Chapman pump was run day and night. Manometer indicated pressures ranging from 30 to 80 mm .

2 In lots 1 to $5,1000 \mathrm{cc}$. of crude oil were supplied to each tube.
${ }^{3}$ Beginning with lot $6,950 \mathrm{cc}$. of crude oil were supplied to each tube.
${ }^{4}$ The pressure in the tubes was diminished intermittently.
${ }^{5}$ See page 17 .

Lot. No. of tubes.	7			8		9	
	9			10		\%	
S 20-7 tubes		$\begin{aligned} & 20-1 \text { tube } \\ & 24-1 \text { tube } \end{aligned}$		$\begin{aligned} & 19-8 \text { tubes } \\ & 22-2 \text { tubes } \end{aligned}$		$\begin{aligned} & 24-2 \text { tubes } \\ & 40-8 \text { tubes. } \end{aligned}$	
Spec. Frac. grav.	Vol., cc.	Spec. grav.	Vol., cc.	Spec. grav.	Vol., cc.	Spec. grav.	Vol., cc.
$A_{1} 0.8325$	66	O.8175	45	0.8364	88	O. 8215	145
$A_{2} 0.8356$	30			0.8365	64	0.8234	90
$B_{1} 0.8395$	164	0.8333	I IO	0.8400	215	0.8330	397
$B_{2} 0.84 \mathrm{I} 8$	140			0.8420	240	0.8350	155
B_{3}						0.8400	87
$C_{1} 0.8408$	475	0.8417	132	0.8445	368	0.84 I 5	350
$C_{2} 0.8468$	123	0.8500	22	0.8467	225	0.6436	255
C_{3}				0.8495	82	0.8480	160^{1}
$D_{1} 0.8449$	500	0.8468	IIO	0.8465	460	0.8485	507
$D_{2} 0.8487$	270	0. 8498	106	0.8478	260	0.8495	280
D_{3}				0.8500	260	0.8545	247
$E_{1} 0.8500$	483	0.8533	228	0.8490	450	0.8548	313
$E_{2} 0.8524$	318			0.8495	354	0.8550	275
E_{3}	. .			0.8521	233	0.8580	375

Lot. No. of tubes. req.	10	11		12		13	
	8	10		9		10	
	14	17		42		$\begin{aligned} & 24-8 \text { tubes } \\ & 40-2 \text { tubes } \end{aligned}$	
Frac. $\begin{gathered}\text { Spec. } \\ \text { grav. }\end{gathered}$	Vol., cc.	Spec. grav.	Vol., cc.	Spec. grav.	$\begin{aligned} & \text { Vol., } \end{aligned}$	Spec. grav	Vol. cc.
$A_{1} 0.8273$	130	0.8258	215	0.8325	125	0.8323	122
$A_{2} 0.8288$	75	0.8318	70	0. 8345	87	0.8352	96
$B_{1} 0.8395$	220	0.8370	340	0.8430	235	0.8438	245
$B_{2} 0.8418$	160	0.848o	180	0.8467	120	0.8470	180
$C_{1} 0.8423$	240	0.8422	488	0.8470	278	0.8464	317
$C_{2} 0.8440$	195	0.8450	205	0.8487	288	0.8505	235
$C_{3} 0.8500$	150						
$D_{1} 0.8460$	410	0.8465	565	0. 8495	452	0.8500	312
$D_{2} 0.8475$	210	0.8490	310	0.8522	305	0.8492	375
$D_{3} 0.8500$	348	0.8530	187			0.8518	150
$E_{1} 0.8532$	320	0.8510	297	0.8505	475	0.8505	450
$E_{2} 0.8535$	282	0.8520	405	0.8533	490	0.8489	395
$E_{3} 0.8550$	215	0.8533	155			0.8518	180

${ }^{1}$ Several cubic centimeters of this fraction were mixed, accidently, with fraction E_{3}.

Lot.		18		19		20	
No. of tubes.		8					
Hours		24-5	ubes	40-8	bes	20-6	
req.		48-2	ubes	64-2		30-4	
	Vo	Spe	Vol	Spec.	Vol	Spec.	Vol.
Frac. grav.	c.	grav.	c..	grav.		grav.	
A 0.8258	225	0.8322	I 12	0.8320	146	0.8281	236
$B \quad 0.8432$	452	0.8435	335	0.8438	385	0.8413	518
$C_{1} 0.8480$	450	0.8495	250	0.8480	300	0.8450	350
$C_{2} 0.8488$	168	0.8500	250	0.8472	315	0. 8495	300
$D_{1} 0.8530$	520	0.8530	320	0.8509	422	0.8508	325
$D_{2} 0.8550$	350	0.8540	350	0.8535	355	0.8538	460
$E_{1} 0.8585$	385	0.8547	90^{2}	0. 8492	580	0.8513	445
$E_{2} 0.8598$	460	0.8526	640	0.8560	415	0.8540	550

${ }^{1}$ When the pressure in the tubes was diminished, the oil rose rapidly, and in a short time, the reservoirs were nearly two-thirds exhausted. The pump was stopped, and the remainder of the oil allowed to diffuse during the night under normal pressure.
${ }^{2}$ This irregularity, 2. e., the liberation of oil with a specific gravity higher than those of the oils immediately following, is observed when an amount of water is added sufficient to replace a very small amount of oil for the first fraction.

Lot. 21			22		23		24			
No. $\begin{aligned} & \text { Nobes } \\ & \text { tubes }\end{aligned}$			${ }_{40-10}^{6}$ tubes		$48-5 \text { tubes }$					
Hours	24-6,tubes									
	40-2 tub		40-6 6 tubes		$\begin{aligned} & 48-5 \text { tubes } \\ & 52-5 \text { tubes } \end{aligned}$		40-4 4 tubes			
	${ }_{\text {Spec. }}$	Vol., c.	Spec.	Vol., cc.	Spec.	Vol.,		Vol.,		
$A \quad 0$. 8275	245	0.828I	210	0.8241	330	0.8250	287		
B о	. 8410	615	0.8405	508	o. 8395	615	0.8408	535		
C_{1} o	. 8452	520	0.8459	265	0. 8448	420	0.8463	475		
C_{2} o	. 8488	226	0. 8472	410	0. 8470	305	0.8505	186		
D_{1} o	. 8512	533	0.8505	435	0. 8533	400	0.8540	525		
D_{2} o	. 8535	415	0.8523	450	0.854I	465	0.8540	360		
$E_{1} 0$. 8557	375	0.8615	385	0.8650	305	0.8623	393		
$E_{2} \mathrm{o}$. 8625	282	0.8585	365	0.8624	350	0.8645	335		
Lot.	25		26		27		28			
No. of tubes Hours			${ }_{2}^{17-2}{ }^{10}$ tubes				$\begin{aligned} & 10 \\ & 24-7 \text { tubes } \\ & 28-3 \text { tubes } \end{aligned}$			
	72-1 1 tube									
			24- 4 tubes							
Frac.	Spec. grav.	Vol.,	Spec. grav.	$\begin{gathered} \text { Vol., } \\ \text { Vc. } \end{gathered}$	Spec. grav.	Vol.,	Spec. grav	$\begin{gathered} \text { Vol., } \\ \text { ce. } \end{gathered}$		
$A \quad 0$	8270	225	0. 8284	315	0.8312	230	0.8333	240		
B o	. 8425	410	0.8422	550	0.8440	470	0. 8440	410		
C_{1} o	. 8495	75^{2}	0. 8473	520	0.8460	400	0.8458	415		
C_{2} o	. 8492	250	0.8508	178	0.8478	232	0.8500	177		
D_{1} o	. 8509	320	0.8515	600	0. 8482	435	0. 8470	387		
D_{2} o	. 8510	480	0. 8540	230	0.8500	420	0. 8498	400		
$E_{1} 0$. 8556	335	0.8559	490	0.8520	465	0.8492	690^{3}		
$E_{2} \mathrm{o}$. 8570	395	0. 8586	135	0.8565	335	0.8505	600		
Lot. No. of tubesHours req.	29		30		31		32			
			$\begin{aligned} & 15 \\ & 20-7 \text { tubes } \\ & 41-6 \text { tubes } \end{aligned}$		$\begin{gathered} 10 \\ 44-4 \text { tubes } \\ 89-6 \text { tubes } \end{gathered}$		$40-7$ tubes			
	$\begin{aligned} & 18-5 \text { tubes } \\ & 40-5 \text { tubes } \end{aligned}$				80-4lo3-4tubesSubesVol					
Frac.	Spec. grav.	Vol., c.	Spec grav.	Vol., c.			Spec. grav.	Vol.,	Spec. grav.	Vol.,
A	0. 8262	300	o. 8348	335	0. 8292	245	0.8270	445		
B	0.8395	505	0.8468	630	0. 8439	576	0. 8423	726		
C_{1}	0. 8463	390	0. 8490	560	0. 8495	465	0.8500	730		
C_{2}	0. 8488	270	0.8505	277	0.8523	205	0.8500	220		
D_{1}	0.8520	510	0. 8485	750	0.8517	670	o. 8545	750		
D_{2}	0. 8543	290	0.8502	540	0.8552	210	0.8543	540		
$E F_{1}$	0. 8550	417	0.8520	1125	0. 8555	805	0.8580	870		
$E F_{2}$	0.8559	645	0.8528	880	0.8610	360	0.8598	910		
		3327		5097		3536		5191		

${ }^{1}$ Pressure in the tubes was diminished intermittently.
${ }^{2}$ Some oil of this fraction was lost.
${ }^{3}$ Beginning with lot 28, fractions E and F were collected together.
${ }^{4}$ Pressure in tubes was diminished intermittently.

Lot. No. of tubes. req.	33	
	41- ${ }_{\text {4 }}{ }_{\text {tubes }}$	
	65-4 4 tubes	
	Spec.	Vo
Frac.		
A	0. 8330	290
B_{1}	0.8440	365
B_{2}	0.8462	165
C_{1}	0.8502	500
C_{2}	0.8540	160
D_{1}	0. 8555	655
D_{2}	0. 8562	250
$E F_{1}$	o. 8575	735
$E F_{2}$	o. 8585	480
		3600

34	
$\begin{aligned} & 10 \\ & \text { 44-6 tubes } \\ & 68-4 \text { tubes } \end{aligned}$	
Spec. grav	Vol., sc.
0. 8355	320
0. 8475	525
0.8508	470
0. 8543	190
0. 8575	530
0.8585	325
0. 8535	895
0. 8555	405
	3660

35
48- $\left.\quad \begin{array}{l}\text { tubes } \\ 72-3\end{array}\right)$
$\begin{array}{cc}\begin{array}{c}\text { Spec. } \\ \text { grav. }\end{array} & \begin{array}{c}\text { Vol., } \\ \text { cc. }\end{array} \\ 0.8380 & 235\end{array}$
$0.8460 \quad 452$
$0.8508 \quad 345$
0.8525245
$0.8549 \quad 580$
$0.8573 \quad 335$
0.8557645
$0.8570 \quad \underline{492}$
3329

Observations on the First Fractionation.
Specific Gravity.-The range of the specific gravity extended from 0.8175 , the value for Fraction A_{1} of Lot 7 , to 0.8650 , the value for Fraction E_{1} of Lot 13. The value for the crude oil itself was 0.8375 . The limits of the specific gravities of the individual lots averaged from 0.820 to 0.860 . The specific gravity decreases gradually from E to B, but between B and A, the decrease, in most of the lots, is much greater than between any two consecutive lower fractions. This marked change was also observed in the study of the diffusion of benzene in solution. A detailed investigation into the cause of this sudden divergence will be undertaken in the near future.

Color.-The colors of the fractions obtained extended from green to black. The lighter oils possessed a beautiful green fluorescent color, which shaded gradually to brown, and then to the deep black of the heavier oils.

Odor. -The unpleasant odor of the crude petroleum disappeared almost entirely in the oils of Fraction A and B; but the other fractions still possessed to a greater or less extent the odor of the natural oil.

The Volume of Oil Retained by the Fuller's Earth.-The amount of oil retained by the earth averaged about 55 per
cent. of the amount supplied. In the first fractionation of the crude Pennsylvania oil, specific gravity o.81o, Gilpin and Cram found that approximately 40 per cent. of the oil was retained by the earth. It is evident, therefore, that the amount of oil remaining in the earth depends chiefly upon the character of the oil. The Pennsylvania petroleum contains a much smaller percentage of unsaturated hydrocarbons, sulphur, and asphaltic substances than the Illinois oil employed in this investigation. Since the fuller's earth, as will be shown later, readily removes these substances in the process of fractionation, the large percentage of Illinois oil retained by the earth is thus clearly explained. It is safe to conclude that if the heavy Texas or California oil were allowed to diffuse through fuller's earth, the amount of oil retained would exceed the amounts of either of the above-mentioned oils lost in the earth.

The Second Fractionation.

The products obtained from the first fractionation were united according to the following arrangement:

Lot.	Specific gravity of the oils united.	Specific gravity o mixture.
36	0.8250-0.8350	0.8293
37	0.8350-0.8400	0.8390
38	0.8400-0.8450	0. 8433
39	0.8400-0.8450	0. 8433
40	0.8450-0.8500	0. 8490
41		
42	" "	"
43	" "	"
44	0.8500-0.8600	0.8543
45	" "	
46	"	"
47	"	"
48	"	"
49	" "	"
50	" "	"

The oils thus combined were subjected to chilling and filtration for the purpose of removing as much dissolved paraffin
as possible. The procedure was as follows: The oils were first chilled at temperatures ranging from 0° to 10° and then filtered through plaited filter papers. When the oil ceased to drip from the funnel, the residue upon the filter paper was placed in a larger filter press, and the remaining oil separated by pressure from the paraffin. The filter press was simple in construction. A piston, fitted closely in an iron cylinder, was gradually forced down upon the oil-laden paraffin, which rested upon a membrane of cotton duck fastened between perforated tin supports. The retained oil was forced through the membrane and was collected from the outlet below. The lighter oils deposited very little paraffin; from the heavier ones somewhat more paraffin was separated. Owing to the high viscosity of the heavier oils, the filtration proceeded very slowly. Since too much time was consumed in this process, the paraffin of some of the oils of Fraction E was not removed. A slight change in specific gravity occurred in the oils from which the paraffin was removed.

The final specific gravities of the united oils were as follows:

Lot.	Specific gravity.	
36	0.8305	Paraffin removed.
37	0.8415	
38	0.8433	Paraffin not removed.
39	0.8455	Paraffin removed.
40	0.8515	" "
41	0.8515	" "
42	0.8515	" "
43	0.8540	" "
44	0.8543	Paraffin not removed.
45	0.8543	" "
46	0.8543	" " "
47	0.8543	" " "
48	0. 8543	" " "
49	0.8557	Paraffin removed.
50	0.8557	" "

When these oils were again allowed to diffuse upward through fuller's earth, the following fractionation was obtained:

Table V.-The Second Fractionation.

Lot. No. of tubes. Hours req.	36		37		38		39	
	$\begin{aligned} & 5 \\ & 44-3 \text { tubes } \\ & 48-2 \text { tubes } \end{aligned}$		51		$\begin{aligned} & 8 \\ & \text { 48-7 tubes } \\ & 64-1 \text { tube } \end{aligned}$			
			\qquad 29- ${ }^{8}-4$ tubes 45-3 tubes 64-1 tube					
Frac.	Spec. grav.	Vol., c.	Spec. grav.	Vol.,	Spec. grav.	Vol.,	Spec. grav.	Vol.,
A	0. 8272	160	0.8292	135	0.8331	180	0.8290	255
B_{1}	0.8315	216	0.8421	215	0.8447	175	0. 8432	355
B_{2}	0.8331	58		. .	0.8455	210	o. 8458	110
C_{1}	0.8334	350	0.8467	295	0.8490	305	0. 8492	455
C_{2}	0.8355	85			0.8505	175	0.8513	180
D_{1}	0.8330	360	0. 8468	340	0. 8492	400	0.8505	740
D_{2}	0.8339	320	0.8485	152	0.8509	295	0.8527	275
$E F_{1}$	0. 8347	720	0.8480	535	0.8508	710	0. 8546	I 166
$E F_{2}$	0.8356	320	0.8489	215	0.8518	355	o. 8560	350
		2589		1887		3886		2805

Lot. No. of tubes. req.	40		41		42		43	
	$\begin{array}{r} 98 \\ \\ 78-5 \text { tubes } \\ 72-4 \text { tubes } \end{array}$		40		569		4 4 days-2 tubes 17 days- 2 tubes	
Frac.	Spec. grav.	Vol., cc.	Spec. grav	Vol., cc.	Spec. grav	Vol., ce.	Spec. grav.	vol.,
A	0.8305	380	0.8316	235	0.8325	210	0. 8435	65
B_{1}	0. 8438	515	0.8460	290	0.8487	265	0.8546	115
B_{2}	0. 8453	155	0.8480	65	0.8515	54		
C_{1}	0.8518	600	0.8523	375	'0.8540	335	o. 8575	200
C_{2}	0. 8539	170	0. 8540	100	0.8567	56		
D_{1}	o. 8550	685	0. 8558	470	0.8572	420	0.8605	220
D_{2}	0.8560	330	0.8571	110	0.8582	175	0. 8640	50
$E F_{1}$	o. 8605	780	0.8620	580	0.8640	675	0. 8650	225
$E F_{2}$	0.8620	600	0.8622	320	0.8650	200	o.8615	78
		4215		2545		2420		953

${ }^{1}$ In this series, as well as those following, the pressure in the tubes was diminished intermittently.

Observations on the Second Fractionation.

Specific Gravity.-The range of the specific gravities grows smaller as the oils to be fractionated become lighter, and less complex. Thus, in Lot 36, the range of specific gravity extends from 0.8272 , the value for Fraction A, to 0.8356 , the
${ }^{1}$ Owing to the weakness of the water pressure, the pressure in the tubes was only slightly diminished. The tubes were taken down before the reservoirs were completely exhausted. The distances to which the oil had risen were 35, 25, 30, 20, 10 cm . from the tops of the tubes.
${ }^{2}$ Owing to the weakness of the water pressure, the pressure in the tubes was diminished but slightly during this time. The tubes were taken down before the reservoirs were completely exhausted. The distances to which the oil had risen were $50,35,30,60,55 \mathrm{~cm}$. from the tops of the tubes.
value for $E F_{2}$, the difference between them being o.0084. In Lot 38 , the mother oil, of specific gravity 0.8433 , yielded fractions whose specific gravities ranged from 0.8331 to 0.8518 , amounting to a difference of 0.0187 . This fact appears to be general throughout the various lots, and points to the gradual formations of mixtures which will pass through the earth unaltered, just as the fractionation by distillation tends to yield substances with definite boiling points.

Color.-The color of the oils in this fractionation shaded from a very light yellow to greenish black.

Odor. -The odor of the crude petroleum vanished completely from the oils of this fractionation.

Volume of Oil Retained by the Earth.-The oil retained by the earth in this fractionation amounted to approximately 50 per cent., a smaller percentage, as is naturally to be expected, than in the fractionation of the crude petroleum.

The Third Fractionation.

The following oils obtained from the second fractionation were united for the third fractionation:

Lot 51.-Specific Gravity 0.8316.

Lot. Fraction.	Specific gravity.	Volume, ce.	Lot. Fraction.	Specific gravity.	Volume, cc.		
36	A	0.8272	160	42	A	0.8325	210
39	A	0.8290	255	44	A	0.8330	85
37	A	0.8292	135	36	B_{2}	0.8331	58
40	A	0.8305	380	38	A	0.8331	180
36	B_{1}	0.8315	216	46	A	0.8332	210
41	A	0.8316	235	36	C_{1}	0.8334	350
50	A	0.8320	170	49	A	0.8341	255

Lot 52.-Specific Gravity 0.8343 .

Lot.	Fraction.	Specific gravity.	Volume, cc.	Lot.	Fraction.	Specific gravity.	Volume, c.
36	D_{1}	0.8330	360	36	$E F_{1}$	0.8347	720
36	D_{2}	0.8339	320	36	$E F_{2}$	0.8356	320
47	A	0.8340	145	36	C_{2}	0.8355	85

Lot 53.-Specific Gravity 0.8433 .

Lot. Fraction.	Specific gravity.	Volume, cc.	Lot.	Fraction.	Specific gravity.	Volume, cc.	
45	A	0.8362	$\mathbf{1 7 0}$	38	B_{1}	0.8447	$\mathbf{1 7 5}$
48	A	0.8385	125	40	B_{2}	0.8453	155
37	B_{1}	0.8421	215	38	B_{2}	0.8455	210
39	B_{1}	0.8432	355	39	B_{2}	0.8458	50
40	B	0.8438	515				

1970
Lot 54.-Specific Gravity 0.8473 .

Lot.	Fraction.	Specific gravity.	Volume, c.		Lot. Fraction.	Specific gravity.	Volume, cc.
39	B_{2}	0.8458	60	50	B_{1}	0.8485	230
4 I	B_{1}	0.8460	290	42	B_{1}	0.8487	265
37	C_{1}	0.8467	295	39	C_{1}	0.8492	455
4 I	B_{2}	0.8480	65	38	C_{1}	0.8490	305
							$\underline{1965}$

Lot 55.-Specific Gravity 0.8485 .

Lot. Fraction
Specific Volume
$37 \quad D_{1}$
$37 \quad D_{2}$
$37 E F_{1}$
gravity. $\begin{gathered}\text { Volume, } \\ \text { cc. }\end{gathered}$ Lot. Fraction.
$0.8468 \quad 340 \quad 37 \quad E F_{2}$
Specific
gravity

$$
\begin{aligned}
& \text { Volume, } \\
& \text { cc. }
\end{aligned}
$$

$$
\begin{array}{ll}
0.8489 & 215 \\
0.8492 & 400
\end{array}
$$

$$
0.8500 \quad 275
$$

1917
Lot 56.-Specific Gravity 0.8508.

Lot.	Fraction.	Specific gravity.	Volume, cc.	Lot. Fraction.	Specific gravity.	Volume, cc.	
50	B_{2}	0.8500	70	45	B_{1}	0.8510	2 IO
49	B_{1}	0.8505	395	39	C_{2}	0.8513	180
44	B_{1}	0.8505	175	42	B_{2}	0.8515	54
46	B_{2}	0.8505	50	40	C_{1}	0.8518	600
38	C_{2}	0.8505	175				
							1909

Lot 57.-Specific Gravity 0.8509.

Lot.	Fraction.	Specific gravity.	Volume, cc.	Lot. Fraction.	Specific gravity.	Volume, cc.	
38	D_{1}	0.8505	740	38	D_{2}	0.8509	295
39	$E F_{1}$	0.8508	710	38	$E F_{2}$	0.8518	355

Lot 58.-Specific Gravity o.8558.

Lot.	Fraction.
49	B_{2}
45	B_{2}
4 I	C_{1}
48	B_{1}
4 O	C_{2}
42	C_{1}
4 I	C_{2}
47	C_{1}
46	C_{1}

$\underset{\text { gravity. }}{\substack{\text { Specific } \\ \text { Volu } \\ \text { cc }}}$

Specific gravity	Volume. c.
0.8560	380
0.8562	265
0.8565	300
0.8567	56
0.8567	95
0.8568	320
0.8572	230
0.8575	200
	.3896

Lot 59.-Specific Gravity 0.8563.
Lot. Fraction.

Specific gravity.	Volume, cc.	Lot.	Fraction.	Specific gravity.	Volume. cc.
0.8546	166	41	D_{2}	0.8571	IIO
0.8550	685	42	D_{1}	0.8572	420
0.8558	470	45	D_{2}	0.8580	IOO
0.8560	350	42	D_{2}	0.8582	175
0.8560	330	48	C_{2}	0.8586	90
0.8567	425	47	D_{1}	0.8595	430
					4750

Lot 60.-Specific Gravity 0.8615.

Lot. Fraction.	Specific gravity.	Volume, c.	Lot.	Fraction.	Specific gravity.	Volume, cc.	
46	D_{1}	0.8600	370	4 I	$E F_{1}$	0.8620	580
49	$E F_{1}$	0.8605	780	44	D_{2}	0.8620	120
43	D_{1}	0.8605	220	49	D_{1}	0.8620	500
44	D_{1}	0.8605	195	4 I	$E F_{2}$	0.8622	320
50	D_{1}	0.8609	480	48	D_{2}	0.8623	115
48	D_{1}	0.8610	325	49	D_{2}	0.8625	290
46	D_{2}	0.8613	120	50	D_{2}	0.8626	125
47	D_{2}	0.8618	70	42	E_{1}	0.8640	675
40	$E F_{2}$	0.8620	600				
							5880

Lot 61.-Specific Gravity 0.8680.

Lot.	Fraction.	Specific gravity.	Volume, cc.	Lot.	Fraction.	Specific gravity.	Volume, cc.
42	$E F_{2}$	0.8650	200	46	$E F_{2}$	0.8680	130
43	$E F_{1}$	0.8650	225	44	$E F_{2}$	0.8680	175
45	$E F_{1}$	0.8659	615	50	$E F_{1}$	0.8685	640
47	$E F_{1}$	0.8665	330	48	$E F_{1}$	0.8695	330
46	$E F_{1}$	0.8666	610	50	$E F_{2}$	0.8700	235
47	$E F_{2}$	0.8670	215	49	$E F_{1}$	0.8705	500
45	$E F_{2}$	0.8670	150	49	$E F_{2}$	0.8705	580
44	$E F_{1}$	0.8672	240				$\underline{4975}$

The oils thus united were fractionated by fuller's earth again, with the results given in Table VI.

Table VI.-The Third Fractionation.

Lot. No. of tubes. req.	51		52		53		54	
	31		2		2		2	
	60		6					
	Spec.	Vol.;	Spec. ${ }^{60}$	Vol.,	Spec.	Vol.,	Spec.	Vol.,
Frac.								
A	0.8213	92	0.8219	65	0. 8266	73	0.8303	66
B	0.8303	185	0.8333	143	0.8431	115	0.8488	115
C_{1}	0.8337	165	0. 8375	190	0.8464	175	0.8518	175
C_{2}	0.8345	90						
D_{1}	0. 8353	210	0. 8388	188	0. 8468	145	0.8523	160
D_{2}	0. 8356	170	0.8393	90	0. 8474	115	0.8528	105
E_{1}	0.8366	385	0.8403	175	0. 8473	202	0. 8530	245
E_{2}			0.8411	92	0. 8488	73	0. 8548	60
F_{1}	0.8373	190	0.8431	88	0. 8496	170	0.8548	145
		1487		1031		1068		1091

Lot.	55		56		57		58	
$\begin{aligned} & \text { No. of } \\ & \text { tubes. } \\ & \text { Hours } \end{aligned}$	$\begin{aligned} & 48-1^{2} \text { tube } \\ & 72-1 \text { tube } \end{aligned}$		$9{ }^{2}$		$9{ }_{9}^{2}$		$\begin{aligned} & 72-3^{4} \text { tubes } \\ & 92-1 \text { tube } \end{aligned}$	
Frac.		Vol.,	Spec. grav.	$\begin{aligned} & \text { Vol., } \\ & \text { c. } \end{aligned}$	Spec. grav.	Vol.,	Spec grav.	Vol.
A	0. 8283	58	0.8313	75	0. 8336	55	0.8318	170
B	0. 8457	100	0.8488	135	0.8491	130	0.8531	260
C_{1}	0.8515	155	0.8546	170	0.8528	180	0. 8578	205
C_{2}							0. 8592	105
D_{1}	0.8521	220	0. 8553	150	0.855 I	185	0. 8588	205
D_{2}	0.8543	50	0.8560	92	0. 8573	45	0. 8593	340
E_{1}	0. 8540	270	0.8553	145	0. 8568	170	0.8603	325
E_{2}			0.8563	90	0.8588	70	0.8613	170
F	0.8566	180	0.8575	130	0.86II	170	0.8628	275
		1033		987		1005		2055

[^10]| Lot. | 59 | | 60 | | 61 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of tubes. | 5 | | 6 | | 5 | |
| Hours req. | 72 | | 72 | | | |
| | | | 5 days. ${ }^{1}$ |
| Frac. | Spec.
 grav. | Vol., | | | Spec. grav. | Vol., cc. | Spec. grav. | Vol., cc. |
| A | 0.8328 | 195 | 0.8343 | 195 | 0.8413 | |
| B | 0.8508 | 340 | 0.8540 | 330 | 0.8601 | |
| C_{1} | 0.8578 | 325 | O.860I | 290 | 0. 8683 | |
| C_{2} | 0.8588 | II2 | 0.86I8 | 130 | | |
| D_{1} | 0.8608 | 490 | 0.8628 | 440 | 0.8709 | |
| D_{2} | 0.8623 | 135 | 0. 8638 | 85 | | |
| E_{1} | 0.8628 | 475 | 0. 8664 | 425 | 0. 8688 | |
| E_{2} | 0.8633 | I 55 | 0.8683 | 140 | | |
| F | 0.8673 | 330 | 0.8703 | 310 | 0.8691 | |

Observations on the Third Fractionation.
Specific Gravity.-The decrease in the range of specific gravity as the oils supplied become lighter is observed in this fractionation as in the preceding ones.

Color.-The lightest oils were almost colorless; the heavier oils were dark brown to green.

Odor.-Most of the oils possessed an agreeable odor.
Prolonged Diffusion.-In Lot 6I, the time required for the oils to reach the tops of the tubes was five days. No fractionation, as is evident from an examination of the specific gravities, occurred in the lower parts of the tubes. The heavier oils of fractions D, E, and F were exceedingly viscous.

Volume of Oil Retained by the Earth.-The volume of oil retained by the earth in this fractionation amounted to approximately 45 per cent. The increase in the yield of oil indicates, therefore, a process of purification, in which, as will be shown later, such compounds as the unsaturated hydrocarbons are removed.

The Fourth Fractionation.

The following fractions obtained from the third fractionation were united for the fourth fractionation:

[^11]

Lot 68.-Specific Gravity 0.8533.

Lot.	Fraction.	Specific gravity.	Volume, cc.	Lot. Fraction.	Specific gravity.	Volume, cc.	
54	D_{1}	0.8523	180	54	E_{1}	0.8530	245
54	D_{2}	0.8528	105	60	B	0.8540	330
57	C_{1}	0.8528	180				
							IO40

Lot 69.-Specific Gravity 0.8556 .

Lot. Fraction.	Specific gravity.	Volume, cc.	Lot. Fraction.	Specific gravity.	Volume, cc.		
55	E_{1}	0.8540	270	56	E_{1}	0.8553	145
55	D_{2}	0.8543	50	56	D_{2}	0.8560	92
56	C_{1}	0.8546	170	56	E_{2}	0.8563	90
54	E_{2}	0.8548	60	55	F	0.8566	180
54	F	0.8548	145	57	E_{1}	0.8568	170
57	D_{1}	0.8551	185	57	D_{2}	0.8573	45
56	D_{1}	0.8553	150	56	F	0.8575	130
							1882

Lot 70.-Specific Gravity o.8596.

Lot. Fraction.	Specific gravity.	Volume, cc.	Lot. Fraction.		Specific gravity.	Volume, c.	
58	C_{1}	0.8578	205	60	C_{1}	0.8601	290
59	C_{1}	0.8578	325	58	E_{1}	0.8603	325
58	D_{1}	0.8588	205	59	D_{1}	0.8608	490
59	C_{2}	0.8588	112	57	F	0.86 II	170
57	E_{2}	0.8588	70	58	E_{2}	0.8613	170
58	C_{2}	0.8592	105	60	C_{2}	0.8618	130
58	D_{2}	0.8593	340				$\underline{2937}$

Lot 71.-Specific Gravity 0.8638 .

Lot.	Fraction.	Specific gravity.	Volume cc.	Lot.	Fraction.	Specific gravity.	Volume, c.
59	D_{2}	0.8623	135	60	D_{2}	0.8638	85
60	D_{1}	0.8628	440	59	E_{2}	0.8633	155
59	E_{1}	0.8628	475	60	E_{1}	0.8664	425
58	F	0.8628	375				$\underline{1990}$

$\begin{aligned} & \text { Lot. } \\ & \text { No. of } \\ & \text { tubes. } \\ & \text { Hours } \\ & \text { req. } \end{aligned}$	62		63		64		65	
	1		1		1		1	
	${ }_{\text {Spec. }}^{\text {Spav. }}$	Vol.,	${ }_{\text {Spec. }}{ }^{\text {grav. }}$	Vol.,	Spec. ${ }^{\text {d }}$	Vol.,	${ }_{\text {Spec. }}{ }^{48}$	Vol.,
${ }_{\text {Frac. }}$	grav.	cc.		cc.		cc.	grav. 8308	
B	0.8298	71	0.8273 0.8357	75	0.8378	41	0.8328	72
C	0.8323	90	0.8378	95	0.8401	81	0. 8463	92
D	0.8330	115	0. 8383	130	0.8408	115	o. 8473	130
E	0.8333	130	0.8388	98	0.8413	135	0.8471	130
F	0.834 1	75	0.8393	95	0.8418	70	0.8485	80
		513		538		499		544

Observations on the Fourth Fractionation.
Specific Gravity.-As in the preceding fractionations, the decrease in the range of specific gravity as the mother oils become lighter is again observed in this fractionation. It is evident, moreover, that there is a constant forward accumulation towards definite and constant mixtures. The lighter oils of one lot are found to possess specific gravities closely approaching those of the heavier oils of the preceding lot.

Color.-The oils of Fraction A were almost colorless; the color of the heavier oils ranges from green to light brown.

Odor.-All the oils of this fractionation possessed agreeable odors.

Volume of Oil Retained.-The volume of oil retained by the earth amounted to approximately 40 per cent.

Deposition of Paraffin.-In Fractions A and B of several of the lots, a fine, crystalline deposit separated out, and collected upon the bottom of the bottles containing the oils. When the oils were warmed, this deposit dissolved completely, showing it to be paraffin.

Chemical Examination of the Fractionated Oils. Unsaturated Hydrocarbons.

Action of Concentrated Sulphuric Acid.-The percentage of volume of oil absorbed by concentrated sulphuric acid (specific
gravity I .84) was determined according to the following procedure: Ten cc. of the oil to be examined were measured into a glass-stoppered bottle, and thirty cc. of concentrated sulphuric acid were added. The mixture was thoroughly shaken in a machine for thirty minutes and then poured into a burette. After allowing sufficient time for any oil that might be mechanically absorbed in the acid to rise to the top, the volume of unabsorbed oil was read directly over the acid. Owing to the formation of heavy emulsions, no attempt was made to neutralize and wash the oil.

The results of the analyses are given in the table below:

Lot.	Fraction.	Per cent. by volume absorbed.	Lot.	Fraction.	Per cent. by volume absorbed.
5 I	A	2.3	5 I	D_{1}	II .5
5 I	B	6.1	5 I	D_{2}	I2.O
5I	C_{1}	$9 . I$	5 I	E	I2.5
5I	C_{2}	IO.2	5 I	F	I4.5

Action of Bromine.-The method employed for determining the amount of bromine absorbed by the oils was as follows: Between 0.5 and 0.9 of a gram of the oil to be examined was dissolved in io to 15 cc . of carbon tetrachloride. Five cc. of a standard solution of bromine in carbon tetrachloride were then introduced, and the solution allowed to remain, with occasional shaking, in a dark place for 30 minutes. Ten cc. of a 10 per cent. solution of potassium iodide were then added, and the amount of iodine liberated determined immediately by titrating with a standard solution of sodium thiosulphate. A few drops of a starch solution were introduced to mark accurately the end of the titration. The amounts of bromine absorbed by addition and substitution were not estimated separately.

The amount of bromine absorbed, calculated upon the basis of 100 grams of oil, are given in the following table:

Table VIII.-First Fractionation.

Lot.	Fraction.	Per cent. of bromine absorbed.	Lot.	Fraction.	Per cent. of bromine absorbed.
32	A	5.02	32	D	7.87
32	B	6.96	32	E	8.00
32	C	7.40	Crude oil	7.64	

Second Fractionation.

Lot.	Fraction.	Per cent. of bromine absorbed.	Lot.	Fraction.	Per cent. of bromine absorbed.
36	A	4.74	36	D_{1}	6.8 I
36	B_{1}	5.40	36	D_{2}	6.28
36	B_{2}	5.66	36	$E F_{1}$	6.49
36	C_{1}	5.56	36	$E F_{2}$	7.18
36	C_{2}	6.18			

Third Fractionation.

Lot.	Fraction.	Per cent. of bromine absorbed.	Lot.	Fraction.	Per cent. of bromine absorbed.
5I	A	3.27	5I	D	4.92
5 I	B	4.36	5I	E	4.7 I
5I	C	4.47	5I	F	$5 \cdot 36$

Fourth Fractionation.

Lot.	Fraction.	Per cent. of bromine absorbed.	Lot.	Fraction.	Per cent. of bromine absorbed.
62	A	2.86	62	E	3.73

These results demonstrate conclusively that the unsaturated hydrocarbons tend to collect in the lower sections of a layer of fuller's earth through which the oil is allowed to diffuse. These figures confirm the results obtained by Gilpin and Cram in their work on the Pennsylvania petroleum. In their investigation, distillation by heat was employed in order to obtain fractions that could be readily studied. In this work the relative amounts of the unsaturated hydrocarbons in the various oils were determined directly as they came from the earth.

The percentages by volume of oil absorbed by concentrated sulphuric acid represent only approximately the percentages of unsaturated hydrocarbons, since, as was shown previously, any benzene which may have been present in the oils was also removed by the concentrated acid. This fact rendered impossible a quantitative separation of the aromatic from the unsaturated hydrocarbons. Since no other methods, besides nitration and sulphonation, neither of which could be here employed, were available, no results as to the
relative amounts of the aromatic hydrocarbons in the various fractions could be obtained.

It is evident from the results of the bromine determinations that, as the fractionation proceeds, the amounts of unsaturated hydrocarbons become smaller and smaller. A comparison of the amounts of bromine absorbed by Fraction A of the first, second, third and fourth fractionations is given below for the purpose of bringing out this point more clearly:

Per Cent. of Bromine Absorbed by Fraction A.			
First fractionation	Second fractionation	Third fractionation	Fourth fractionation.
5.02	4.74	3.27	2.86

Sulphur Compounds.-The sulphur in the various oils was determined by the usual method of combustion. For these determinations, the oils obtained from one tube of Lot 6 were employed. The results are given in the following table:

Lot 6 Fration.	Specific gravity.	Per cent. sulphur.	Lot 6. Fraction.	Specific gravity	Per cent. sulphur.
B	0.8195	0.04	D	0.8510	0.09
C	0.8362	0.05	E	0.8600	0.16
C	0.8440	Lost			

The percentage of sulphur in the Fractions A, C and E of Lot 5 I was also determined. The results were as follows:

Table X.-Lot 5 I.

Fraction.	Per cent. of sulphur.	Fraction.	Per cent. of sulphur.
A	0.003	E	0.006
C	0.040		

These results show that the sulphur tends to collect in the oils in lower sections of the tube. As the fractionation proceeds, the proportion of sulphur becomes smaller. The figures below indicate that as the oil is subjected to repeated fractionations, the sulphur is gradually removed:

> Per Cent. of Sulphur.

First fractionation. Second fractionation. Third fractionation.

Fraction $A \quad 0.04$
Fraction E 0.16
Fraction C.... 0.08
0.003
0.006
0.040

Selective Action of Fuller's Earth.

When the earth, from which as much oil as possible has been extracted by prolonged treatment of water, is dried, and then digested with ether, oils of surprisingly high specific gravity and viscosity are obtained.

In the experiments undertaken to study the selective action of fuller's earth, the procedure was as follows: The earth under examination was thoroughly treated with water until no more oil appeared. This muddy earth of the consistency of thin liquid paste was spread upon porous plates and allowed to dry at room temperature. Several weeks usually elapsed before the earth became completely dry. It was then finely pulverized, and after being thoroughly soaked and shaken with ether the mixture was allowed to remain undisturbed for 24 hours or more. The mixture was then filtered and the dissolved oil recovered by distilling off the ether from the filtrate. The residual earth was then digested with ether for some time by means of an electric stove that completely surrounded the flask. The oil thus extracted was added to the oil first obtained. In several cases the residual earth was treated further with ether in the Soxhlet extractor.

The results of these extractions are given in the following table:

Table XI.

Lot.	Fraction.	$\begin{aligned} & \text { Specific } \\ & \text { gravity } \\ & \text { at } 50^{\circ} \text {. } \end{aligned}$	Lot.	Fraction.	Specific gravity at 50°
7	A	0. 8470	25	A_{3}	0.8391
8	A	0.8502	25	B	0. 8489
18	A_{1}	0.8419			ic gravity
18	A_{2}	0.8400	5 I	A	0. 8368
19	A_{1}	0.8495	5 I	B	0. 8473
19	A_{2}	0.8495	51	C	0.8491
19	A_{3}	0.8600	71	D	0.8568
25	A_{1}	0.8363	51	E	0.8518
25	A_{2}	0.8381	5I	F	0.8553

The specific gravity of none of the oils of the first and second fractionation, extracted with ether, except those of Lot 19, could be determined at $20^{\circ} \mathrm{C}$. All were extremely vis-
cous; those of Lot 25 were so viscous at this temperature that they would not flow when the bottles containing them were inclined. The color of the oils ranges from brown to black. The ethereal solutions, however, of many of the oils were very light in color.

It is interesting to compare the specific gravities of the oils extracted with ether with those of the corresponding oils extracted with water. For this purpose, the oils extracted by water and by ether from the earth of Lot 51 are chosen. In the table below, the specific gravities of these oils at the same temperature, i. e., 20°, are given:

Table XII.-Lot 5I.					Specific
Fravity	at 20°.				
Frac.	Ether.	Water.	Frac.	Ether.	Water.
A	0.8368	0.8213	D	0.8568	0.833
B	0.8473	0.8303	E	0.8518	0.8366
C	0.8491	0.8337	F	0.8553	0.8373

As the figures above indicate, the specific gravities of oils extracted with ether are much higher than those of the corresponding oils extracted with water. The presence of such heavy and viscous oils in the upper sections of the tube can be explained only by assuming that they were carried to these heights in solution with the lighter oils, and were then removed by the earth. Since such viscous oils are totally unable to diffuse by capillarity to any appreciable extent, it is not probable that their transportation to the upper parts of the tube was effected by capillary diffusion.

Chemical Examination of the Oils Extracted by Ether-Unsaturated Hydrocarbons.

Action of Concentrated Sulphuric Acid.-The percentage by volume of oil absorbed by concentrated sulphuric acid (specific gravity 1.84) was determined according to the following procedure: Ten cc. of the oil to be examined were measured into a glass-stoppered bottle, and thirty cc. of concentrated sulphuric acid were added. The mixture was thoroughly shaken in a machine for 30 minutes and then poured into a burette.

After allowing sufficient time for any oil that might be mechanically absorbed in the acid to rise to the top, the volume of unabsorbable oil was read directly over the acid. Owing to the formation of heavy emulsions, no attempt was made to neutralize and wash the oil.

The oils selected for examination were those extracted by ether from the earth of Lots 36 and 51 .

The results of the analyses are given in the following table:

Action of Bromine.-The method employed for determining the amount of bromine absorbed by the oils has already been described (p. 50).

The amounts of bromine absorbed, calculated upon the basis of 100 grams of oil, are given in the table below. The values for the corresponding oils extracted with water are also given for comparison.

Lot.	Table XIV.						
	Fraction.	Oils extracted by ether. of bromine absorbed.	Oils extracted by water. Per cent. of bromine absorbed.	Lot.	Fraction.	Oils extracted by ether. Per cent. of bromine	Oils ex tracted by water. of bromine absorbed.
32	A	$5 \cdot 30$	5.02	51	B	4.45	$4 \cdot 36$
32	B	7.39	6.96	51	C	6.27	5.03
36	A	$5 \cdot 72$	$4 \cdot 74$	5 I	D	6.09	4.92
36	B	6.10	$5 \cdot 40$	51	E	5.98	4.71
36	C	6.72	$5 \cdot 56$	51	F	5.20	$5 \cdot 36$
51	A	3.27	3.27				

As these results clearly demonstrate, fuller's earth retains the unsaturated hydrocarbons, thus exercising a selective action.

Sulphur Compounds.-The sulphur in the oils obtained by extraction with ether was determined by the usual method of combustion. The results are given in the table below:

Table XV.					
Lot. 51.	Oils extracted by ether. Per cent. of sulphur	Oils extracted by water. Per cent. sulphu	Lot 51.	Oils extracted by ether. Per cent of sulphur	Oils extrac ted by water. Per cent. of sulphu
A	0.004	0.003	D	0.060	
B	O.OII		E	0.080	
C	0.050	0.040	F	0.080	0.006

The selective action of the earth, in regard to the sulphur compounds, is indicated by these results. This fact was also pointed out by Richardson and Wallace. It is very probable that the earth also retains largely the nitrogen compounds in the oil, and may also remove to a greater or less extent the benzene hydrocarbons.

These results seem to furnish evidence in favor of the view that the Pennsylvania oil diffused, at some time in the history, through porous media, which exercised a selective action upon it, removing a large part of the unsaturated and sulphur compounds, and probable the benzene and nitrogen compound.

SUMMARY.
r. When a solution of benzene and a paraffin oil is allowed to diffuse upward through a tube packed with fuller's earth, the benzene tends to collect in the lower sections and the paraffin oil in the upper sections of the tube.
2. When crude petroleum diffuses upward through a tube packed with fuller's earth, a fractionation of the oil occurs. The oil that is displaced by water from the earth from the top of the tube possesses a lower specific gravity than the oil obtained from the earth at the bottom of the tube.
3. As the fractionation proceeds, the range of specific gravity covered in succeeding fractionations becomes smaller, indicating a movement towards the production of mixtures which will finally pass through the earth, unaltered.
4. In the fractionation of petroleum by capillary diffusion through fuller's earth, the amounts of unsaturated hydrocarbons and sulphur compounds in the resulting fractions increase gradually from the lightest oils at the top to the heavier oils at the bottom of the tube.
5. Fuller's earth tends to refain the unsaturated hydrocarbons and sulphur compounds in petroleum, thus exercising a selective action upon the oil.

BIOGRAPHICAL.

The author of this dissertation, Oscar Ellis Bransky, was born in Baltimore, January 29, i886. He received his early education in the public schools of Baltimore. In 1904, he graduated from the Baltimore City College, and in October of the same year he entered the Johns Hopkins University. He received the degree of Bachelor of Arts in 1907. He then entered the post-graduate department of the university, pursuing Chemisty as his major, and Physical Chemistry and Geology as his minor subjects. During 1908-1909 he acted as laboratory assistant to Professor Renouf.

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

JUN 191918 (A). 28.190

GER 1815

8^{9938}

SEP 221931
MAR 28194
DEC 121997

[^0]: ${ }^{1}$ This research was aided by a grant received from the C. M. Warren Committee of the American Academy of Arts and Sciences.

[^1]: ${ }^{1}$ P. Am. Phil. Soc., 1903.

[^2]: ${ }^{1}$ P. Am. Phil. Soc., 1903.
 ${ }^{2}$ Reference is made to the sulphur, nitrogen, and oxygen compounds in petroleum.

[^3]: ${ }^{1}$ Petroleum August, 1909.
 ${ }^{2}$ Am. J. Sci., May, 1910.

[^4]: ${ }^{1}$ J. Soc. Chem. Ind., March, 1902.

[^5]: ${ }^{1}$ The fuller's earth employed in these investigations was generously supplied by the Atlantic Refining Company of Philadelphia.

[^6]: ${ }^{1}$ Amer. Chem. J., 20, 202; 21, 210.
 ${ }^{2}$ J. Chem. Soc., 1898, 928.

[^7]: ${ }^{1}$ Ann. Sci. Univ. Jassy, 1907, 192-202 (abstracted in J. Chem. Soc., 92, II, 883 (1907)).

[^8]: ${ }^{1}$ The original volumes of solution vary with each series, owing to the fact that more or less always remained behind in the reservoir below the level of the tin support. In Series 1, 2, 3, and 4, 950 cc . were supplied to each reservoir; in the rest of the series, each reservoir contained originally $1,000 \mathrm{cc}$.

 2 In this series the percentages of benzene are not given, because the paraffin oil alone was used.

[^9]: ${ }^{1}$ The percentages of benzene in Series 11 , in which crude oil was employed, are not recorded, because, owing to the formation of heavy black emulsions, the loss in volume could not be determined with any degree of accuracy.

[^10]: ${ }^{1}$ The tin tubes used in these lots were 1.5 inches in diameter.
 2 The pressure in the tubes was diminished intermittently.

[^11]: ${ }^{1}$ See below, this page.

