

UNIVERSITY OF
ILLINOIS LIBRARY

ftf URBANA-CHAMPAIGN
BOOKSTACKS

Digitized by the Internet Archive

in 2011 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/distributedknowl1159shaw

COPY 2

FACULTY WORKING
PAPER NO. 1159

JUL 2 5 1985

A Distributed Knowledge-Based Approach

To Flexible Automation

Michael J. Shaw
Andrew B. Whinston

College of Commerce and Business Administration

Bureau of Economic and Business Research
University of Illinois, Urbana-Champaign

BEBR
FACULTY WORKING PAPER NO. 1159

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign

July, 1985

A Distributed Knowledge-Based Approach
to Flexible Automation

Michael J. Shaw, Assistant Professor
Department of Business Administration

Andrew B. Whins ton
Purdue University

ABSTRACT

This paper applies automatic planning and distributed problem

solving methods to the on-line planning and control of cellular

flexible manufacturing systems, consisting of asynchronous manufac-

turing cells. A knowledge-based approach is used to determine the

course of action, resource sharing, and processor assignments. Within

each cell there is an embedded nonlinear planning system that executes

dynamic scheduling and supervises manufacturing operations. Because of

the decentralized control, real-time task assignments are carried out

by a negotiation process among cell hosts. The negotiation process is

modeled by augmented Petri nets— the combination of production rules

and Petri nets—and is executed by a distributed, rule-based algorithm.

1. Introduction

Flexible automation—automation that can handle a large and con-

stantly changing variety of produced items—has played an increasingly

important role in the efforts to improve the productivity of the manu-

facturing industry [15] [23]. The recent progress in computer tech-

nologies has accelerated the realization of flexible automation. The

use of computers in manufacturing, such as the numerically controlled

(NC) machines, adds programmability and thus versatility into manu-

facturing systems. More important, computers also provide on-line exe-

cution of manufacturing planning and decision making. These two

capabilities, computerized control and on-line planning, are integrated

into a well-orchestrated, automated manufacturing system—referred to

as the Computer Integrated Manufacturing Systems (CIMS)—that can pro-

duce wide-ranging items efficiently.

In implementing CIMS, the cellular architecture has emerged as the

most effective and economical organization for the system [5] , [22]

,

[29] . Such a system, referred to as the cellular flexible manufac-

turing system (CFMS), consists of a collection of "manufacturing

cells." As shown in Figures 1 and 2, each cell is controlled by a host

computer, which supervises the activities in the cell. Any cell can

communicate with other cells through a communications network (e.g., a

local area network). The computer architecture is highly distributed,

e.g., the host computers used in the National Bureau of Standard facil-

ity range from a VAX 11/780 to 8086- or 68000-based single board com-

puters and multiple processor systems 122] .

Insert Figures 1 and 2 Here

-2-

Intelligent manufacturing planning and control in a CIMS requires

knowledge bases that contain information about current tasks, manu-

facturing procedures, and the production environment [22]. Furthermore,

the evolution of the CIMS into distributed architectures has compli-

cated the information processing requirements. Issues that must be

considered include the effective planning and problem solving in the

distributed environment; the structuring of knowledge bases to facili-

tate knowledge sharing between system components; and the coordination

and communication among manufacturing cells. To achieve these, this

paper develops a distributed knowledge-based approach for manufac-

turing planning and control. In it, an embedded nonlinear planning

system in each cell generates production procedures, supervises

resource sharing, and guides manufacturing executions. This planning

system also keeps track of the manufacturing environment, directing

adjustments on the production procedures when necessary.

Moreover, since a job may consist of a set of tasks to be assigned

to several manufacturing cells, the system needs to supply a coor-

dinating mechanism that, through the communications network, permits the

matching of tasks to cells. To achieve such coordination by decentral-

ized control, three issues need to be addressed:

(1) the design of an interface language that enables effective com-

munication among cell hosts;

(2) the model of the problem-solving process which, through the com-

munications network, dynamically distributes tasks among the cells;

and

(3) the programming and execution of this problem-solving process at

each cell in a decentralized manner.

-3-

Following the distributed problem solving framework [8], [31], this

paper uses the "contract net" approach to meet these requirements. A

negotiation protocol, a high-level protocol, is used to ensure orderly

information transformation and events sequencing between asynchronous,

cooperating cells. The underlying idea is to structure the interac-

tions among cells by tasks negotiation.

In order to carry out the process systematically, it is important

to have a good representation of the negotiation protocol and to capture

the dynamic, concurrent nature of the protocol. Also, this represen-

tation should be integrated into executable programs to coordinate task

execution.

The augmented Petri net, an integration of production rules and

Petri nets, is used to model the negotiation protocol. The automation

of this augmented Petri nets leads to a distributed algorithm for task

allocation. Since the procedure is designed to be implemented by a

variant of a rule-based system—i.e., the control production system,

the knowledge-based system in a sense contains two kinds of program

knowledge: the knowledge for task planning and the knowledge for

intercell cooperation.

The remainder of this paper is organized as follows. Section II

characterizes the distributed problem-solving system in the CFMS envir-

onment and discusses the planning approach for flexible automation.

Section III shows the use of negotiation protocol for coordinating the

tasks; this protocol is then represented by the augmented Petri net

model. Section IV illustrates the implementation of the negotiation

protocol. The final section summarizes the paper.

-4-

II. Knowledge-Based Planning

The planning system, when organized as a knowledge-based system,

treats knowledge on three levels: data, knowledge base, and control.

By contrast, conventional programs treat knowledge on only two levels:

data and program. At the data level a knowledge-based system stores

declarative knowledge about the goals, the current situation of the

world, and the semifinished plan. At the knowledge-base level is

stored the domain-specific, procedural knowledge. This knowledge

models the actions of the world, and it is often represented by pro-

duction rules or operators. Finally, at the control level the know-

ledge about the strategy of plan construction is stored; this is the

control knowledge indicating how to select operators, and when to apply

them.

Because planning involves exploration of alternative sequences of

actions, a symbolic model of the real world, the "world model," repre-

sents the environment as the plans evolve. For any given planning

problem, the initial condition and the stated goal condition are both

treated as instances in the world model. The generation function of a

planning system, then, is to construct a course of action that trans-

forms one state of the world model, which contains an initial con-

dition, to a state which satisfies the goal condition. Thus, as shown

in Figure 3, a planning system for the CIMS has three basic com-

ponents :

Insert Figure 3 Here

(1) the world model, which contains a symbolic description of the real

world. This world model is represented by the collection of first-

-5-

order predicates in a database. Any instance of the database is

called a state of the world model. Examples of such database

elements in a world model are shown in Table 1.

Insert Table 1 Here

(2) The action model, which describes the transformational effects of

actions that map states to other states. Such transformations are

usually modeled by operators similar to the STRIPS operators

defined in [10]. In such an action model, each operator can be

specified

< list-of-arguments >

< list-of-precondition-literals >

< list-of-add-list-literals >

< list-of-delete-list-literals >

< resource-name >

< length-of-duration >

In addition to the standard STRIPS formalism—which specifies an

action by the add list, delete list, and preconditions—we have also

included two more descriptions for each action—the "resource" used

during the action, and the "duration" of the action. There are two

advantages to this addition: the increased representational power

of the action model and the resulting acceleration of conflict

detection and conflict resolution. An example is shown in Figure 4.

< Action - name >

< Precondition >

< Add list >

< Delete list >

< Resource >

< Duration >

Insert Figure 4 Here

-6-

(3) The inference engine, which directs the plan generation process.

It selects a sequence of operators to achieve the goal state from

a given initial state.

The linear plans can be generated by any STRIPS-like plan genera-

tion system [9], [10]. Such a planning system can use a backward-

chaining method in searching for the best actions [26]—i.e., it works

backward from the goal state and find a sequence of actions that could

produce this goal state from the initial state. The process of plan

generation, then, can be viewed as finding the solution path in a

search tree. The root of the tree is the goal state, and instances of

operators define the branches. The solution path starts with the root

(the goal state) and leads to the leaves (the initial state), thereby

defining the plan. An example of the search trees generated by the

planning system are depicted in Figure 5.

Insert Figure 5 Here

Within this planning framework, the manufacturing process cor-

responding to each task is modeled by state-changing transformations,

represented by operators. If the manufacturing processes for different

tasks are independent, then, in principle, they can be executed in

parallel. In reality, however, different tasks usually are competing

for machines, tools, and other resources; therefore, the planning

system must take into account the interactions among the processes. In

the planning literature, this interaction problem between tasks have

been treated by imposing constraints between planning steps to avoid

any potential conflicts [28], [34], [35]. Two kinds of schemes have

-7-

been used for this purpose: the "critic" mechanism [28] , and the

"reasoning about resource" scheme [35] . Because the plans generated by

these methods are partially ordered, these methods are called

"nonlinear planning."

For the flexible manufacturing environment, Shaw [29] used a non-

linear plan-generation scheme, implemented in Franz LISP, to derive the

desired production plans within each cell. The scheme requires four

steps:

Step 1. Generate a linearly-sequenced plan for each task.

Step 2. Identify problematic interactions between the planning

steps.

Step 3. Use precedence constraints to avoid conflicts.

Step 4. Identify alternative planning steps to improve the

performance.

An example of the partially ordered plan resulting from the scheme is

shown in Figure 6, where each of the nodes represents a planning operator.

Insert Figure 6 Here

This approach displays some desirable characteristics for real-time

planning and control in the CIMS environment. First, it is goal-

directed, i.e., users only need to specify the goals and the planning

system would, accordingly, derive the necessary steps on-line.

Second, it is dynamically adjustable. New goals can be accomodated

while the current production plan is still being executed; also, plans

can be modified when unexpected events occur (e.g., tool or machine

breakdowns). A "plan revision scheme" is initiated when bottlenecks

-8-

are detected; the scheme, in turn, seeks to use alternative resources

to improve the throughput [29]. In addition, travel paths taken by

guided carts or the arm movements of neighboring robots should be

analyzed so that any potential conflicts or interferences are avoided

[2], [20J.

Formally, the problem to be solved in the planning system can be

defined as a quadruple

PR = <S,0,IS,G>

where S is the set of states in the database, is the set of opera-

tors, defined as functions S - S. Both IS and G belong to S ; IS

denotes the initial state, and G denotes the goal state. The infer-

ence engine selects the sequence of operators in the search space

based on predefined control strategies.

To perform planning by a distributed system with a group of

"agents," the problem PR is decomposed into subproblems. The final

plan consists of a collection of plans for these subproblems, coor-

dinated to be applicable to all initial states IS and to achieve the

goal state G. The coordination between the planning agents may be

accomplished through messages passed between agents. The key issue,

then, is how to automate this coordination to result in orderly

interactions. The strategy we shall use throughout this paper consists

of four phases:

(1) Goal decomposition. A job is decomposed into tasks to be exe-

cuted by different cells.

(2) Tasks distribution. Tasks are distributed among the cells so that

each task is performed by the most appropriate cell available.

-9-

(3) Tasks execution. Cells perform the assigned tasks as required.

(4) Tasks synthesis. Finished tasks of the same job are assembled.

This strategy is referred to as the task-sharing strategy. Another

widely used strategy is result-sharing—i.e., each agent will indepen-

dently initiate its problem solving activities and subsequently aggre-

gates its results [8], [19]. In the foregoing task-sharing scheme, the

task distribution problem needs special attention because of the

loosely coupled, decentralized control structure. The following sec-

tions discuss the use of a negotiation process to achieve it.

III. The Contract Net Framework

A. The Negotiation Procedure

In a CFMS, each manufacturing cell specializes in a predetermined

part family so as to reduce the set-up cost. Several cells may be

assigned to a single job if its components belong to different part

families. To utilize the system resources efficiently, each task of a

job must be assigned to the most appropriate cell—this process is

referred to as task sharing. Task sharing also occurs when a cell is

overloaded and needs to distribute some of its tasks.

A widely used metaphor for distributed problem solving is the

"society of experts metaphor"—i.e., the system under study is viewed

as a group of experts that solve problems cooperatively [4], [8], [17],

[24], Applying this metaphor to the CFMS environment, we will treat

each cell's host computer as an agent planning and managing its local

tasks. The whole CFMS, then, is a group of such agents with different

areas of specialties, and task sharing can be carried out by proper

cooperation among the cells. A cell should "negotiate" with other

-10-

cells to determine how to share tasks. Specifically, announcement-bid-

award cycles are used to distribute tasks to appropriate cells.

The anouncement-bid-award cycle is initiated when a manufacturing

cell has a task it is not capable of handling. The cell announces the

task to other cells to seek assistance. The announcement messages con-

tain three types of task-dependent information:

a) The eligibility specification: listing the qualification for a

cell to submit a bid.

b) The task abstraction: providing a brief description of the task

to allow interested cells to evaluate the task by comparing it with

other announced tasks.

3) The bid specification: specifying the expected format of the bid

to be submitted.

A cell in the network keeps an "active-task announcement list" for

every machine in the cell and ranks each announced task in the list

according to its type (Table A.l). When a machine becomes idle, the

cell selects a task at the top of the list and submits a bid to the

cell which announced the task (the manager cell). A manager cell may

receive several such bids in response to a single task announcement.

The award decision is made based on all the bids received, and the

manager cell selects the most preferable cell based on a ranking func-

tion, calculated by the distance between the two cells, the estimated

processing time, and the loading factor of the bidder. The successful

bidders are informed of the award through award messages from the

manager cells and the task will be transferred accordingly.

-11-

B. The Negotiation Protocol

To execute the negotiation process by way of communications activ-

ities, a set of communication rules must be established to regulate

the interactions between the cells so that they proceed in an orderly

fashion. Furthermore, the protocol also has to carry out the task

sharing process—the process of distributing tasks among cells. A for-

mal model for the CFMS protocol should contain three components:

1. A formalism for the message content. This task-dependent language

describes the task information in messages.

2. A formalism for the message format. This formalism, independent

of the task domain, is used to format all the messages, so that

the message content can be properly interpreted. For instance,

the formalism for a task announcement message is:

<task-announcement>: = TASK-ANNOUNCEMENT

{ name}

{ task-abstraction}

{eligibility-specification}

{bid-specification}

An instance of such a message is shown in Figure 7.

Insert Figure 7 Here

3. A formalism for the negotiation process. This formalism is used

to describe the proper sequencing of actions to carry out nego-

tiation procedure among cells. Since there may be several manager

cells at the same time, this formalism needs to describe asyn-

chronous, parallel processes.

-12-

The first two formalisms can use the context free grammar with BNF

expressions. This method is fairly standard in modeling protocols

and will not be discussed here. Details of it can be found in [31],

[33]. Subsequent discussions focus on the formalism for task nego-

tiation.

The network, on which the negotiation protocol is implemented can

be modelled as a three-layer structure. This structure is illustrated

in Figure 8. The negotiation protocol is a high-level, problem-

oriented protocol governing the coordination among cell hosts. The

host-to-host protocol, or the transport protocol, is used to provide

reliable communication between processes in different host computers;

it is often implemented by programs called transport stations in the

host's operating system. The lowest level of the protocol, the

transmission protocol, is responsible for the correct transmission

packeting and routing of data between cells; the transmission layer

actually incorporates the functions of the physical layer, the data-

link layer, and the network layer in the more common ISO multilayer

protocol model defined in [32]. Based on this layered protocol struc-

ture, task sharing among cells can be carried out by the negotiation

protocol at the problem-solving layer, with proper communications sup-

port from the transport and the transmission layers. Section IV will

illustrate the utilization of a graph model, the augmented Petri net, to

specify and, subsequently, to program the negotiation protocol.

Insert Figure 8 Here

-13-

IV. Modeling and Programming the Negotiation Protocol

A. A Model for the Negotiation Process

A good model for the negotiation process must describe two aspects

of task negotiation:

1. a procedural representation of the communication and coordination

mechanisms between the cells; and

2. a declarative representation of the local problem solving process

within a cell.

We use the augmented Petri net model [36] to achieve these require-

ments. The augmented Petri net is an integration of two representation

models: production rules are used to model the individual events (the

declarative representation), and the Petri net is used to model the

interactions and temporal relationships between these events (the pro-

cedural representation). The augmented Petri net model has been proven

effective in modeling asynchronous, concurrent processes where the com-

bination of state variables grows exponentially. In it, each tran-

sition corresponds to a production rule and the Petri net structure of

the model can be viewed as the interactions between the productions.

To understand the mechanism of an augmented Petri net, let us first

review some features of the Petri net as a modeling tool.

Originally designed to model process concurrency and precedence

relations, the Petri net model has been used to model, specify, and

verify communication protocols [6], [27]. The definition of the Petri

net follows:

-13-

protocol at the problem-solving layer, with proper communications sup-

port from the transport and the transmission layers. Section IV will

illustrate the utilization of a graph model, the augmented Petri net,

specify and, subsequently, to program the negotiation protocol.

to

Insert Figure 8 Here

IV. Modeling and Programming the Negotiation Protocol

A. A Model for the Negotiation Process

A good model for the negotiation process must describe two aspects

of task negotiation:

1. a procedural representation of the communication and coordination

mechanisms between the cells; and

2. a declarative representation of the local problem solving process

within a cell.

We use the augmented Petri net model [35] to achieve these require-

ments. The augmented Petri net is an integration of two representation

models: production rules are used to model the individual events (the

declarative representation), and the Petri net is used to model the

interactions and temporal relationships between these events (the pro-

cedural representation). The augmented Petri net model has been proven

effective in modeling asynchronous, concurrent processes where the com-

bination of state variables grows exponentially. In it, each tran-

sition corresponds to a production rule and the Petri net structure of

the model can be viewed as the interactions between the productions.

To understand the mechanism of an augmented Petri net, let us first

review some features of the Petri net as a modeling tool.

-14-

Definition 1 (Petri Net)

A Petri net, W, is a quadruple, W = <P,T,I,0>, where P is the set

of places, T is the set of transitions; I:T - P* defines the input

function, and 0:T - P* defines the output function.

A place is marked if it has one or more tokens; a transition is

enabled if each of its input places are marked. The firing of an

enabled transition removes one token from each of its input places and

adds one token to each of its output places. A token distribution

among the available places in a Petri net is called a marking of the

net.

Corresponding to each Petri net and an initial marking, Petri net

language is defined as follows:

Definition 2 (Petri Net Language)

If there exists a Petri net, W = <P,T,I,0>, a labelling function

1 for the transition 1:T + Z, and an initial marking X, then all the

possible sequences of transition firings constitute the Petri net

language:

L(l) » (1(3) E Z*|B e T* and 5(X,B)}

where 6 is the next-state function. For a sequence of transitions

t.., t.„, ..., t., , 6(X, t., t.„t,,.. .t.,) represents that the firing
jl j2' jk' jl j2 j3 jk'

of the transition sequence, t.., t
. „ , up to t., , is legal.

We now proceed to define formally an augmented Petri net:

Definition 3 (Augmented Petri Nets)

An augmented Petri net is composed of seven elements:

-15-

APN - <P,T,I,0,X ,AP,D>

where <P,T,I,0> is a Petri net as defined in Definition 1; X is the ini-

tial marking of this net. The set of transitions, T, also defines the

set of productions, with each transition corresponding to one produc-

tion rule. D is the set of database elements in the production system

and AP is the set of active productions whose conditions are satisfied

by D.

A transition t in T is "firable" iff

(1) t e AP; and

(2) I(t) is marked; I(t) represents the set of input places of the

transition t.

In the augmented Petri net model, since there is a production

corresponding to every transition, we can label the transition and the

associated production rule with the same labelling function. The

Petri net language in the augmented Petri net can thus be seen as

either the set of all possible sequences of transitions or, alter-

natively, as the set of all allowable sequences of production rule

invocations. If each transition corresponds to an activity, the Petri

net language generates the correct sequence of activities.

Task negotiations for several tasks are usually executed con-

currently. The manager cell may be ranking the incoming bids while

the potential contractors at the same time are collecting task-

announcements and deciding on whether to submit bids. Consequently,

the transfer of messages (e.g., task-announcements, bids) from one

cell to another requires synchronized activities among the cells

-16-

involved. Augmented Petri nets can help ensure the correct implemen-

tation of these synchronized activities.

To use the augmented Petri net model, the negotiation process can

be represented by two subsets: one (Figure 9) models the necessary

actions of the manager cell who announces a task to other cells, pro-

cessing the incoming bids and awards the task to the selected cell;

the other sub-net (Figure 10) models the corresponding actions of the

cells who receive the task-announcement (the contractor cells). This

sub-net deals with the decision on submitting bids.

Insert Figures 9 and 10 Here

Each activity in the process is represented by a production rule, and

the interactions among these activities are represented by the Petri net.

Each transition in the Petri net (denoted by a bar in the figures)

corresponds to one production rule. When a transition is enabled

(i.e., all input places are marked), the corresponding rules will

determine the firing condition.

Table 2 lists the set of production rules that correspond to the

transitions in the two augmented Petri nets in Figure 9 and Figure 10.

Rules Tl to T9 correspond to the task-announcement process of the

manager cell; rules T10 to T16 correspond to the bid-submitting pro-

cess of the contractor cell. At each step in the process, the aug-

mented Petri nets guide the negotiation process of all cells so

that the activities for task negotiation are correctly carried out.

Insert Table 2 Here

-17-

B. Implementing the Protocol

Consistent with the standard hierarchical structure for com-

munications protocol [1], the negotiation protocol represented by the

production system listed in Table 2 is specified at a higher level.

Necessary support to carry out this high-level protocol is provided by

protocol programs of lower layers, such as the transport and the

transmission layers in Figure 6. Programming the production system in

Table 2 requires three types of literals:

1. Simple predicates; these are state descriptions stored in the

database (Table 3);

2. Functions; they return a binary value after their invocations.

Functions are used mostly for conditions checking (Table 4);

3. Procedures; these are used to execute corresponding actions when

rules are triggered. Some of these actions may include com-

munication operations (Table 5);

Insert Tables 3, 4, 5 Here

Table 6 shows a language description, called PNL, for the Petri

nets in Figures 7 and 8. The purpose of expressing Petri nets with a

language like PNL is to have a machine-processable representation of

the Petri net; the PNL is translated, in turn, into a procedure

language recognizable to a host compiler [25]. To generate unambiguous

Petri net language, the description and processing of PNL require that

unique names be assigned to the places and transitions.

Insert Table 6 Here

-18-

C. Controlled Production Systems

The Petri net language discussed in Definition 2 can serve as the

"control language" to regulate the invocation of production rules in

the production system during its inference process. Such a production

system whose control structure is represented explicitly is called a

controlled production system.

Using control language in a rule-based production system gives two

advantages: first, the execution becomes more efficient because the

control language reduces the applicable set of production rules by

eliminating irrelevant production rules from consideration; second,

since the control structure is explicitly represented by this control

language, it can be modified without having to change the contents of

the production system. This separation between control and programs is

an important feature of the knowlege-based programming [13], [18]. Now

let us define a controlled production system and its relation with the

augmented Petri net model.

Formally, a production system can be defined as follows:

Definition 4 (Production System)

A production system is a triple

PS = <R,D,h>

where R is the set of production names, D is the set of database ele-

ments, and h is the interpretation of the production R, represented as:

h: R * (q,r)

-19-

q is the set of conditions and r the set of actions corresponding to

R. The state of the production system is defined by the contents of

the database elements. When the conditions of a production P , denoted

q(P.), is satisfied by the current database, then P.. is said to be

"invocable." If P. is invoked, then the database is transformed to a

new state, denoted by r(P.).

Definition 5 (Controlled Production System)

A controlled production system is defined as a quadruple

M = <R,D,h,C>.

The subset <R,D,h> is a production system defined in Definition 4. A

state in the CPS is defined by a pair S = <u,X.> with u e C and

X, e D. A production rule p is said to be "applicable" if up e C. A

state <up,X~> is said to be derivable from the state <u,X.>, denoted

<u,X
1
> - <up,X

2
>

If p is applicable at <u,X.> (up e C) and the database elements in X.

satisfy the preconditions of p (q(X.) = TRUE), then the actions of p

change X to X
2
(r(X^ = X

2
).

The control language in effect guides the allowable sequences of

production invocations, i.e., a production is applicable only if it is

accepted by the control language. At each stage of the execution, the

control language acts to "focus" the control on a subset of the pro-

ductions, the applicable productions, and prohibits the other produc-

tions from being invoked.

-20-

Based on Definitions 1 through 5, we can now propose a theorem which

equates the augmented Petri net model to a production system controlled

by the Petri net language.

Theorem 1 :

For any augmented Petri net

APN = <P,T,I,0,X»AP,D>

there exists a controlled production system,

M = <R,D,h,C>

such that APN and M generate the same sequence of production rules.

Proof

For an augmented Petri net APN, the first five elements <P,T,I,0,X>

can define a Petri net language L(l). (Definition 2)

Since the active set of productions, AP, in APN is generated by

matching preconditions of the productions in T against the database

elements in D, AP is derivable from the production system <R,D,h> in M.

(Definition 4)

Now, if we let the Petri net language L(l) in APN be the control

language C in M, then:

(1) (-) If a transition t is firable in APN, t must satisfy (a) t e AP

and (b) I(t) is marked. These are equivalent to the conditions (a)

the production t is invocable in the production system <R,D,h> and

(b) t is accepted by the language C. Therefore, t is applicable

in M. (Definition 5)

-21-

(2) (+) If a production p is applicable in M, p must satisfy (a) p

is invocable in <R,D,h> and (b) p is accepted by the control

language C; these conditions are equivalent to the conditions (a)

p e AP and (b) p z L(l); therefore the transition corresponding to

p is firable in <P,T,I,0,X>. Thus, p is also firable in APN.

(Definition 3)

Q.E.D.

This isomorphism between (1) the augmented Petri net model and (2)

a production system model with a separate control language enables us

to deal with the task-sharing problem by using the production system

listed in Table 1, and the Petri nets (shown in Figure 9 and Figure 10)

can serve as the control structure. Such an algorithm is similar to

the inference procedure used in production systems, as the one used in

0PS5 [11]. The only difference is that in the beginning of each cycle

the algorithm picks the "applicable" rules by the control language.

Procedure - Task-sharing {executed by a manager cell}

Input: a task T, consisting of a set of decomposable subtasks (t.)

Begin

Repeat {Based on Controlled Production System}

(Step 1) <Control> —

Determine the set of productions accepted by the control language

- p';

(Step 2) <Selection> —

Select the productions among p' which are invocable + CF {the
conflict set} ;

-22-

(Step 3) <Conflict resolution> —

Select a production from the CF set according to the conflict
resolution strategy;

(Step 4) <Execution> —

Activate the "then" part of the selected production;

Until the goal condition appears in the database;

end { task-sharing}

.

The procedure uses the data-directed search scheme [3], [7]. In

Step 1, p is the set of production rules whose corresponding transitions

are firable by the current marking in the Petri net. Step 2 to Step 4

is the "recognition-action cycle:" a rule is invocable whenever there

are database elements that satisfy the conditions of the rule. If

more than one rule is invocable, then these rules are collected into

the conflict set CF. A conflict resolution strategy is used in Step 3

to select one rule from the set CF. Although many conflict resolution

strategies have been considered [3] [21] , Step 3 can be straightforward:

select the first production rule that is applicable. Step 4, in turn,

makes changes in the database according to the "then" component of the

selected rule. The cycle continues until either of two conditions

occurs:

(1) the goal state is derived and the inference procedure is success-

ful; or

(2) the goal state has not been achieved, but the conflict set in Step

2 is empty.

In the second case, the inference procedure has failed; an exception

handling routine will be called upon to take over.

-23-

D. Performance

The performance of the task-sharing algorithm is affected by two

factors: the performance of (1) the inference procedure in the

controlled production system and (2) the negotiation process among the

cells. The former is determined by the organization and search strate-

gies of the production system; the latter is determined by the param-

eters of the negotiation protocol. This section will discuss both

aspects.

For a conventional rule-based production executing data-directed

inference procedure, the cycle time of the recognize-act cycle is [21]

T. cycle T. condition-match + T. action

= (P x M x T. match) + ((A/P) x T.act),

where P = size of the production system;

M = size of the database (number of predicate literals);

T. match = Average time to find a match between preconditions

and the database elements;

A = number of action elements of all rules;

T.act = average time needed to execute the action parts of a

rule; and

A/P = average number of actions of a rule.

Since the task-sharing algorithm utilizes a control language to

screen the applicable production rules first, the cycle time of the

production system is modified as

-24-

T. cycle' = T. control + (P* x M x T. match) + ((A/P) x T.act)

where T. control is the time needed to locate the applicable produc-

tions by checking the control language. In our case, it is the time

taken for the Petri net language to find the firable transitions based

on the current markings.

P' is the size of the active production rules decided by the

control language; in general, P' < P.

The response time of the negotiation process is the sum of four

components

:

T - T, + T
2

+ T
3

+ T
4

,

where T, is the time for making task announcements, T_ is the time for

evaluating announced tasks by the bidders, T~ is the time for sub-

mitting bids, and T, is the time for bid evaluation by the manager

cell.

Among the four components, T. and T. are communications delays for

transmitting messages, thus they are affected by the load of the com-

munications network. T„ is the maximum time allowed for the bidder to

evaluate tasks before submitting the bid. It should be adaptable to

such factors as the deadline of tasks and frequency of job arrivals.

If there is a deadline Tn
for the job, then the manager cell should

impose a time constraint on T„:

T
2

< T
D
-T

x
-T

3
-T

4
-T

5
,

where T, is the estimated travel time for the workpiece to get to the

bidder cell from the manager cell.

-25-

E. Summary of the Approach

The production system, the inference engine, and the database for

executing task-sharing are integrated into a knowledge-based system

called the contract processor, to be implemented in every cell host.

In terms of the distributed problem-solving strategy presented in

Section II, the primary function of such a contract processor is to

distribute tasks among the cells. According to this scheme, the

complete distributed planning algorithm is shown in Figure 11.

The major thrust of using augmented Petri nets and the corresponding

controlled production system is that it provides a suitably powerful

modeling language for executing the task-sharing process. Because of

the problem-solving ability of the negotiation protocol, the approach

also has flexibility in achieving task sharing in different situations.

More research needs to be done in exploring the optimization behavior

of the negotiation process. Nevertheless, the knowledge-based approach

has proved very effective in its performing the planning and control

functions. In particular: (1) It enforces the separation of the

knowledge description and the control structure. Knowledge is described

by production rules and the control structure is represented by the

augmented Petri nets. (2) It applies a uniform approach to both the

multi-task planning within a cell and the task-sharing planning among

the cells. As such, each cell's knowledge-based planning system con-

tains two types of knowledge: first, knowledge for planning and sche-

duling; and second, knowledge for task sharing and communication. (3)

It uses a decentralized scheme to perform intelligent manufacturing

planning and control. The approach, therefore, enjoys the benefits

-26-

associated with distributed processing systems such as: graceful

degradation, modularity, extensibilty , improved performance, and

reliability [12]

.

Moreover, the utilization of the knowledge-based approach for

handling information processing also permits future incorporation of

expert rules and heuristics. In this context the generalized manufac-

turing information system for a CIMS becomes a distributed expert

system, at each node the knowledge base contains manufacturing opera-

tors, task-sharing rules, and judgmental rules. This expert system's

task is to utilize the system resources effectively in the dynamically

changing environment.

V. Concluding Remarks

This paper has shown an approach for intelligent manufacturing

information processing based on the distributed knowledge-based frame-

work. The nonlinear planning system schedules tasks within each cell,

and the negotiation protocol coordinates task sharing among cells. A

model based on the augmented Petri nets has been developed to specify

the negotiation protocol and to capture the dynamic and concurrent

nature of the protocol.

The implementation of the protocol by a knowledge-based system

enforces the separation of logic and control components in the computer

program that executes the protocol; this gives flexibilities in the

software design aspect of the implementation. The use of knowledge-

based program also enables us to utilize unified representations for

both the planning activities and the task negotiation process.

-27-

Ref erences

[1] G. Bochman and C. Sunshine, "Formal methods in communication
protocol design," IEEE Transactions on Communications, pp.
624-631, 1980.

[2] D. Bourne and P. Fussell, "Designing programming languages for
manufacturing cells," The Robotics Institute, CMU-Rl-Tr-82-5

,

Carnegie-Mellon Universsity, 1982.

[3] B. Buchanan and R. Duda, "Principles of rule-based expert
systems," Computer Science Department, HPP-82-14, Stanford
University, 1982.

[4] B. Chandrasekaran, "Natural and social system metaphors for
distributed problem solving," IEEE Trans, on Systems, Man and

Cybernetics, Vol. 11, No. 1, pp. 1-5, January 1981.

[5] Cutkosky, et. al. , "Precision machining cells within a manu-
facturing system," The Robotics Institute, Carnegie-Mellon
University, 1983.

[6] A. Danthine, "Protocol representation with finite state models,"
IEEE Transactions on Communications, pp. 632-642, 1980.

[7] R. Davis, et. al. , "Production rules as a representation for a

knowledge-based consultation program," Artificial Intelligence,
Vol. 8, pp. 15-45, 1977.

[8] R. Davis and R. Smith, "Negotiation as a metaphor for distributed
problem solving," Artificial Intelligence, Vol. 20, pp. 63-109,
1983.

[9] R. E. Fikes, P. E. Hart and N. J. Nilson, "Learning and executing
generalized robot plans," Artificial Intelligence, 3(4), pp.
251-288.

[10] R. E. Fikes and N. J. Nilson, "STRIPS: A new approach to the

application of theorem proving to problem solving," Artificial
Intelligence, 2(3/4), 1971, pp. 189-208.

[11] C. Forgy, 0PS5 User's Manual. Department of Computer Science,
CMU-CS-81-135, Carnegie-Mellon University, 1981.

[12] P. H. EnsloWj "What is a Distributed Data Processing System,"
Computer, Jan. 1978, pp. 13-21.

[13] M. Georgeff, "Procedural control in production systems,"
Artificial Intelligence, Vol. 18, pp. 175-201, 1982.

-28-

[14] C. Hewitt, "Viewing control structures as patterns of passing
messages," Artificial Intelligence, Vol. 8, pp. 323-364, 1977.

[15] G. K. Hutchingson, "Flexibility is key to economic feasibility
of automating small batch manufacturing," Industrial Engineering,

pp. 77-86, June 1984.

[16] R. Kieburtz, "A hierarchical multicomputer for problem-solving
by decomposition," Proceedings of the IEEE Distributed Computing
Systems, pp. 631-71, 1979.

[17] W. Kornfeld and C. Hewitt, "The scientific community metaphor,"
IEEE Systems, Man and Cybernetics, 1981.

[18] R. Kowalski, "Algorithm = logic + control," Communications of

the ACM, Vol. 22, pp. 424-436, August 1979.

[19] V. Lesser and D. Corkill, "The distributed vehicle monitoring
testbed: a tool for investigating distributed problem solving
networks," The A.I. Magazine, Vol. 4, No. 3, pp. 15-33, 1983.

[20] T. Lozana-Perez , "Robot programming," Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, A.I. Memo No.

698, 1982.

[21] D. McDermott and C. Forgy, "Production system conflict resolu-
tion strategies," Pattern Directed Inference Systems, D. Waterman
and F. Hayes-Roth, Eds., Academic Press, 1978.

[22] C. McLean, M. Mitchell and E. Barkmeyer, "A computer architecture
for small-batch manufacturing," IEEE Spectrum, pp. 59-64, May
1983.

[23] M. E. Merchang, "Production: a dynamic challenge," IEEE
Spectrum, pp. 36-39, May 1983.

[24] M. Minsky, The society theory of thinking," Artificial Intelli-
gence - An MIT Perspective, P. Winton, Ed., MIT Press, 1979.

[25] R. Nelson, L. Haibt and P. Sheridan, "Casting Petri nets into
programs," IEEE Trans, on Software Engineering, Vol. SE-9, No.

5, pp. 590-602, September 1983.

[26] R. Nelson, Principles of Artificial Intelligence. Palo Alto:

Tioga, 1980.

[27] J. Peterson, Petri Net and the Modeling of Systems. Englewood
Cliffs, NJ: Prentice-Hall, 1981.

[28] E. D. Sacerdoti, A Structure for Plans and Behavior. New York:
North-Holland, 1977.

-29-

[29J M. J. Shaw, "The Design of a Distributed Knowledge-Based System for
Intelligent Manufacturing Information Systems," Ph.D. Thesis,
Purdue University, 1984.

[30 J M. J. Shaw and A. B. Whinston, "Automatic Planning and Flexible
Scheduling: A Knowledge-Based Approach," Proceedings IEEE
International Conference on Automation and Robotics, St. Louis,
1985.

[31] R. G. Smith, "The contract net protocol: high level communica-
tion and control in a distributed problem solver," IEEE
Transactions on Computer, Vol. 29, pp. 1104-1113, 1980.

[32J A. Tanenbaum, Computer Networks. New Jersey: Prentice-Hall,
1981.

(33 J A, Teng and M. Liu, "A formal approach to the design and imple-
mentation of network communication protocol," Proceedings of

COMPSAC, pp. 114-128, 1978.

[34 J S. Vere, "Planning in time: windows and duration for activities
and goals," Pattern Analysis and Machine Intelligence, Vol.

PAMI-5, No. 3, pp. 246-266, May 1983.

1 35 J D. E. Wilkins, "Domain independent planning: representation and
plan generation," Artificial Intelligence, 22, pp. 269-301, 1984.

136] M. Zisman, "Use of production systems for modelling asynchronous
concurrent processes," in Pattern Directed Inference Systems,
D. Waterman and F. Hayes-Roth, Eds., Academic Press, 1978.

D/278

APPENDIX

Insert Table A.l Here

Figure 1. A Cellular Flexible Manufacturing System (CFMS)

2. The Organization of a Manufacturing Cell
(Adapted from Cutkosky 1983)

3. Basic Structure of a Planning System

4

.

Examples of Operators in the Action Model

5. The Search Tree Generated for the Planning of One Job

6. A Partially-ordered Network Generated by the Nonlinear
Planning System

7. An Example of the Task-Announcement Message

8. The Protocol Hierarchy

9

.

The Task-Announcement Process

10. The Bidding Process

11. The Flow Chart of the Task-Sharing Algorithm

CELL #2

CELL #3

CELL #i

CELL #1

CELL #N

Figure 1. A Network of Manufacturing Cells

loading robot

cnc
iatMgffl

zs1

B 1 ~
13

I o
linear
tabla

Figure 2 The Organization of a Manufacturing Cell

(Adapted from CutXosky 1983)

->
CONTROL
STRATEGY <T

(Inference Engine)

±.

KNOWLEDGE BASE

- KNOWLEDGE RULES
> OPERATORS
• INFERENCE RULES

<r >

±
DATA BASE

PLANS
PARTIAL PLANS
CURRENT SITUATIONS
GOALS

Figure 3. Basic Structure of a Planning System

TRANSFER(M, M\ PT, t) : Transfer p*rt PT from machine M to machine M'

at time t.

Precondition : FTNISH-OP(M, OP, PT, t)

DIFFERENT(M, M')

PT-NEXTO?(OP, OP, PT)

MACH-OP(M\ OP*)

IDLE(M\ t)

Add-Iist : MACH-PT(M\ OP, PT, t)

IDLE(M, t)

Dclete-list : FINISH-OP(M, OP, PT, t)

IDLE(M\ t)

Resource : KT

Duration : 2

NEXTOP(M, OP, OP, PT, t) : Perform operation OP on part PT following

operation OP on the same machine M.

Preconditon : FTNISH-OP(M s OP, PT, t)

PT-NEXTOP(OP, OP, PT)

MACH-OP(M, OP)

Add-Iist : MACH-PT(M, OP, PT, t)

Dclete-list : FINISH-OP(M, OP, PT, t)

Resource : M

Duration :

Figure 4. Examples Of Operators In The Action Model

(m.iMd.t,.)

Figure 5. The Search Tree Generated for the Planning of One Job

figure 6. A Partially-ordered Network Generated by the Nonlinear Planning System

Eligibility Specification

MUST-HAVE: CONVEX-CUTTER

Task Abstraction

TASK-TYPE: Milling

BATCH-SIZE: 45

CELL-CODE: 0015

Bid Specification

COMPLETION TIME

Expiration Tim*

1200/3/10/1984

figure 7. An Example of the Task-Announcement Message

w
O
X

<3J

en

O
93

c
o

u o
CO u
•-J o
4-1 4-1

o o
00 U

z

03

o
X

I

4->

I

i-l

QO

o

o
CJ

o

o

0-

I

u

(T3

S-i

CD

O
U
O
4-1

o

a.

a)

CO

<D

3

En

30
c

i-l

o u

X >-,

C 03

C
O
•*-i

w
03 1-

£ >.
x c
c _:
^3

00

^

o
ro

03

Cfl

a;

u
o
-

C
Q>

6
<u

o
c
3
o
c
c
<

I

CD

tS

H
a>

H

CTi

4)

3

c">

CO

0)

0)

o
o
u

60
c

•H

CS

cu

u

60

(
st,rt)

Read Che

Job
Description

Partition the

Job into Subtasks

Call
Taak-Sharing (Tj)

For Every Cell
Having Nev Assignments

in the Set

Update the

Task Agenda

Inform the Monitor
of the New

Assignment

The Cell Host
Initiates

Multitask Planning

(Stop
J

<D

Fieure 11. The Flow Chart oi the Task-5'narir.? Algorich:

Table 1 Examples of Predicates Used in the World Model

IDLE(M,t): Machine M is idle at time t

MACH-PT(M,OP,PT,t): Machine M begins operation OP on part PT at time t

FINISH-OP(M,OP,PT,t): Machine M completes operation OP on part PT at

time t

DIFFERENT(M,M'): Machine M is a machine different from machine M f

MACH-OP(M,OP): Machine M is capable of performing operation OP

PT-FIRST-OP(OP,PT): Operation OP is the first operation on part PT

PT-NEXTOP(OP,OP' ,PT): Operation OP' should be performed on part PT

immediately after operation OP

DONE(PT.t): All operations on part PT are completed at time t

TOOL(M,OP,t) : The tool for operation OP is available to the machine M

at time t

Table 2 Specifying the Production System In Pros,ra» ?or»

T
t

11 (1TO-TASX cask)

Ch«n COSX-DTITTALIZATIOH task)

T If (TASE- EVALUATE Cask)

than (XRSK-AHMDKBSK cask)

T, If (BID-RETDRH bid)
AND (L2Q cljM-now deadline)

than (BID-PROCESSING bid)

T If (LBQ Clas-now deadline)

than

T If (CT clae-now deadline)
3 ARD (HE bid-Hat blank)

than (BID-ANARD bid- list)

T If (CT time- now deadline)
AND (EQ bld-ll.r blank)

than (REANNOUNCZ task)

T
?

If (REPLT-TO-AVARD accept)

than (LIST-ASSICXMENT task)

T
g

If (REPLY-TO-AWARD rejact)

Chan (BS-AUARD task)

T
9

If (HOT(TASE-EVALnATZ task))

Chan (LIST-AGENDA cask)

t If (TASK-ANNOUNCED task)
AMD (BID-EVALOATE caak)

than (TASK-RANKINC tank)

T If (1Q (PROCESSOR-FOK- TASK task)busy)

Chan aiST-ACTTVE-TASR-ANNOUNCEMENT cask)

T ,
If (8Q (PROCESSOR- FOR- TASK cask) Id la)

Chan (BID- REPLY (BIS- SELECT a-C-a-D)

T.. If (LBQ claw-now dead Una)

Chan (BIDDING cask)

T If (BID- REPLY accapc)
AND (CELL-CONDITION normal)

Chan (LIST-ACENDA cask)
AND (REPLY- TO-AWARD accapc)

I If (BID-REPLT accapc)
13 AND (CELL-CONDITION not-normal)

Chan (REPLY-TO-AWARD rejecc)

T
Jt

If (BID- REPLY rajaec)

Chan («*- HDDINC (SID- SELECT a-t-a-D)

1. (NEW-TASK task)

2. (BID-RETURN bid)

3. (LEQ time-now dead-line)

A. (REPLY-TO-AWARD accept)

5. (REPLY-TO-AWARD reject)

6. (NE bid-list blank)

7. (TASK-ANNOUNCED task)

8. (BID-REPLY accept)

9. (CELL-CONDITION normal)

Table 3. Predicate Literals Used in the Negotiation Protocol

1

.

(TASK-EVALUATE task) :

To evaluate Che new task, the current loading condition of the

cell, and the requirement of the task; the function returns binary

values

:

TRUE: the host decides not to accept the task, will announce the

task.

FALSE: the host will execute the task.

2. (Bid-EVALUATE task):

Similar to TASK-EVALUATE except now it is to decide whether to bid

or not. Also returns binary values:

TRUE: the cell decides to participate in the bidding.

FALSE: otherwise.

3. (PROCESSOR-FOR-TASK task)

Returns two answers:

IDLE: a candidate processor within the cell can execute the task now,

BUSY: all the candidate processors for the task are currently busy.

Table 4. Functions Used in the Negotiation Protocol

1

.

TASK-INITIALIZATION

2

.

TASK-ANNOUNCEMENT*

3. BID-PROCESSING

4. BID-AWARD*

5

.

REANNOUNCE*

6

.

REPLY-TO-AWARD*

7. REBIDDING*

8. LIST-ASSIGNMENT

9

.

REAWARD*

10. LIST-AGENDA

1 1

.

TASK-RANKING

1 2

.

LIST-ACTIVE-TASK-ASSIGNMENT

13. BID-REPLY*

14. BIDDING*

* communication operations are involved

Table 5. Procedures Used in the Negotiation Protocol

00

CM

c
00 00

c

^ en

C H
O
i—i

c

en
»-h

H

i—i >—

i

H C

;owcocowcocowZtJZZUZZO2S22Sa1c33HCuHHOuHHO-i
CO2 o

Oh

CO
z

CO
z

o
50

z
01

X

00 CO
o ••

CT\ «—

t

CO
H H C

<-l CM
1—1 1—

I

en o •<

0> 1—

<

I—

•

I-

C H C H

CO

u
<u

z

<u

P.:

u
o

i-l

o
00

V
a
J
z
Ou,

0)

0)

r-l

9

ON

vO

00

I—

1

CM CM en en -tf en m un r» f^. w CM V
H c H c H C c H c H c H H C

W CO U CO Cd CO CO W CO u CO W U CO
U z u z CJ z z U z u z U CJ z
2 2 2 2 2 2 2 3 2 3 2 2 2 2
Oh H Oh H Oh H H Oh H Oh H Oh p H

r-H CM m
c

*©

1. Active-Task-Announcement-List (a-t-a-1)

:

For each processor in the cell, this list keeps records on the

tasks that have been announced but not expired, and within the

capability of the processor. The cell-host will choose a task

from this list once the corresponding processor gets idle.

2. Assignment List:

Each manager cell keeps an assignment-list on all the tasks awarded

and the corresponding contractor cell.

3. Bid-List:

Each manager cell keeps a bid-list on all the bids received after

a task is announced.

A. Task-Agenda:

Each cell has a task-agenda which contains all the tasks assigned

to each processor.

Table A.l The Lists Used in the Negotiation Protocol

HECKMAN
BINDERY INC.

JUN95
» N MANCHESTER.!

lBound-To-Pl«^ INpiANA 46962_

