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TO THE

RIGHT HONOURABLE

George Earl of MaccksfaU.

MY LORD,

AS
I efleem it a very great Honour to

be permitted to place the
following

Sheets under your Lordfhip's Pro-
tection, who are not only an Encourager of,
but an Ornament to, Mathematical Learn-
ing; I have taken more than

ordinary Pains,
that, What is here ufhered into the World*
with fuch Advantage, may not be found al-

together unworthy of ib
distinguished a

Patron.

I am not vain enough to imagine, that, to
One fo deeply read in thefe abftrufe and cu-
rious Speculations, as your Lordmip is uni-
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verfally allowed to be, this Work will appear
without Faults : But then, I have the Satif-

fa&ion to think, on the other hand, that,

whatever is Here to be met with capable of

bearing the Teft of an exact and folid Judg-
ment, will a/ft have its due Weight, and not

fail of receiving your Lordmip's Approba-
tion: And if, upon the Whole, there is Merit

enough found to entitle me to a favourable

Reception, it will gratify the higheft Am-
bition of,

MY LORD,

Tour LORDSHIP'S

Moft Obedient Humble Servant,

Tho. Simpfon,



PREFACE.

HAVING,
in the Year 1737, publiflicd

a Piece, on this fame Subject, under the

Title of A <Treatife of Fluxions (whereof

the whole Imprefiion hath been long fmce fold)

it may be proper here, firft of all, to affign the

Reafons why this Work is fent abroad into the

World as a New Book, rather than a Second

Edition of the faid Treatife. Which, in fhort,

are thefe two : Firft, becaufe the prelent Work
is vaftly more full and comprehenfive ; and, fe-

condly, becaufe the principal Matters in it which

are alfo to be met with in that Treatife, are

handled in a different Manner.

BESIDES the Prefs-Errors with which the

faid Treatife abounds, there are feveral Obfcu-

rities and Defects (which the Author's Want of

Experience, and the many Difadvantages he then

laboured under, in his firft Sally, may, it is

hoped, in fome meafurc excufe.) But what is

A 3 now



PREFACE.
now offered to the Publick, being a Performance

of more mature Confidera.tion and Judgment,

it will, I flatter myfelf, be found much more

correct, and claim a favourable Reception , ef-

pecially, as particular Care and Pains have been

taken to put every Thing in a clear L,ight, and

to oblige the lower, as well as the more expe-

rienced, Clafs of Readers.

THE Notion and Explication Here given of

the firft Principles of Fluxions, are not effen-

tially different from what they are in the above-

mentioned Treatife, tho' expreffed in other Terms.

The Confideracion of Time, which I have in-

troduced into the General Definition, will, per-

haps, be difliked by Thofe who would have Flux-

ions to be nicer Velocities : But the Advantage of

confidering them otberwife (not as the Velocities

Themfelves, but the Magnitudes They would,

uniformly, generate in a given finite Time) ap-

pear to me fufficient to obviate any Objection on

that Head.

B y taking Fluxions as meer Velocities, the

Imagination is confined, as it were, to a Point,

and, without proper Care, infenfibly involved in

metaphyfical Difficulties : But according to our

Method of conceiving and explaining the Mat-

ter, lefs Caution in the Learner is neceflary, and

the higher Orders of Fluxions are rendered much
more eafy and intelligible Befides, tho' Sir

6
Ifaac
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Jfanc Newton defines Fluxions to he tie Velocities

of Motions, yet He hath Recourfe to the Incre-

ments, or Moments, generatca in equal Particles

of Time, in order to determine thofe Velocities ;

which he afterwards teaches us to expound by

finite Magnitudes of other Kinds : Without

which (as is already hinted above) we could have

but very obfcure Ideas of the higher Orders of

Fluxions : For if Motion in (or at) a Point be

fo difficult to conceive, that, Some have, even,

gone fo far as to difpute the very Exiilence cf

Motion, how much more perplexing muft it be

to form a Conception, not only, of the Velocity

of a Motion, but allb in infinite Changes and Af-

fections of //, in one and the fame Point, where

all the Orders of Fluxions are to be confidsred ?

SEEING the Notion of a Fluxion, according

to our Manner of defining It, fuppofes an uni-

form Motion, it may, perhaps, feem a Matter

of Difficulty, at firft View, how the Fluxions

of Quantities, generated by Means of accelerated

and retarded Motions, can be rightly afilgned ;

fmce not any, the leaft, Time can be taken during
which the generating Celerity continues the fame :

Kere, indeed, we cannot exprefs the Fluxion by

any Increment or Space, actually ^ generated in a

given Time (as in uniform Motions.) Bur,

then, we can eafily determine, what the contem-

porary Increment, or generated Space i-could be^

if the Acceleration, or Retardation, was to ceafe

at
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at the propofed Pofition in which the Fluxion is to

be found : Whence the true Fluxion, itfelf, will be

obtained, without the Affiftance of infinitely fmall

Quantities, or any metaphyfical Confiderations.

THUS, for Example, the Motion of a Ball, de-

fcending by the Force of its own Gravity, is con-

tinually accelerated
,
but to have the Fluxion of the

Diftance fail'n thro* at any given Pofition of the

Ball, we muft find how far the Ball would^ uniform-

ly, defcend, from that Point, in a given Time, if the

Gravity, or the Earth's Attraction, from thence,

was toceafe afting. By which Means we fhall have as

clear an Idea of the Fluxion and the trueMeafure of

the Velocity of the Ball, at any Point afilgned, as in

thofe Cafes where the Motion is, afinally ^ uniform.

AGAIN, if a Right-line be fuppofed to move

parallel to itfelf with an equable Motion, and to

increafe in Length, at the fame Time , the Area

generated thereby, will increafe with an accele-

rated Velocity : But the Fluxion thereof, at any-

given Pofition of the Line, will be had by taking

that Part of the Increment which would, uni-

formly; arife, was the Length (as well as the

Velocity) of the Line to continue invariable from

the propofed Pofition. For, if the Length be

fuppofed to increafe, from the faid Pofition, the

Area generated, from thence, will be, evidently,

greater than That which would uniformly arife

in the fame Time ; fmce the new Parts, produced
10 each
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each fucceeding Moment, are greater and greater-

Therefore the Fluxion muft be lefs than any Space
that can be defcribed, in the given Time, when

the Line increafes. And, in the lame Manner,
the Fluxion will appear to be greater than any

Space that can be defcribed, in the fame Time,
when the Line decreafes. It muft, therefore,

be equal to that Space, which will arife, when

the Length of the generating Line, from the given

Pofition, is fuppofed neither to increafe nor de-

creafe : Agreeable to Art. 4.

THUS much it feem'd proper to offer Here

with regard to the Firft Principles I fhall now

proceed to fay fomething concerning the Order

obferv'd in treating, and putting together, the

feveral Parts of the Work ; wherein the Eafe

and Benefit of the younger Beginner have been par-

ticularly confulted : To load fuch an One with a

Multitude of Rules and Precepts, before giving

him any Talte of their Uie and Application,

would, certainly, be very difcouraging -,
and like

obliging a Traveller to afcend an high Mountain,

without allowing him to flop by the Way, to take

Breath, and refrefh his Spirits with a Profpect of

the agreeable and extenfive View he has to expect

when he arrives at the Summit : I have there-

fore, after demonftrating the Firft Principles,

proceeded immediately to exemplify their Utility

in fevernl
-

tertaining Enquiries, before touching

he Inverfe Method, or the more dif-

ficult
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ficult Parts ofthe Direct. And, fmce that Branch

of-the Inverfe Method which treats of the Com-

parifon of Fluents is, naturally, Ibmewhat difficult,

it is referred to the Second Part of the Work, to-

gether with fuch other Matters in the Theory as

might appear, either, too tedious or hard to a

Learner at firft fetting out. The like Care has

been taken in the Difpofal of the reft of the

Work As to the feveral Particulars whereof

// is compofed, I muft refer to the Book itfelf,

They being too many to be here enumerated :

One Thing, however, I muft not omit to take

notice of, relating to that Part which treats of

the aforefaid. Bufinefs of Fluents: To which it

may, perhaps, be objected, That, notwithftand-

ing my having infifted fo largely on the Subject,

there are a Number of Forms of Fluxions

and Fluents to be met with in Authors, that I

have not fo much as touch'd upon. This is

granted ; but then they are moft of them fuch

as, I dare pronounce, can never arife in any In-

quiry into Nature : And it would, doubtlefs, be

Time and Labour miiapply'd, to fwell the Work,
and embarrafs the Learner with a Number of un-

necefiary Difficulties, and empty Speculations

when what is, really, proper and ufeful, in the

Subjefl, is fufficient (it is well known) to exer-

cife his utmoft Attention and Jvefolution.

I CANNOT put an End to this Preface without

acknowledging my Obligations to a fmall Tract,

in-
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intitled, An Explanation of Fluxions in a Short Effay
en the Theory, printed for W. Innys : Wrote by a

worthy Friend of mine (who was too modeft to

put his Name to that, his firft, Attempt) whofe
Manner of determining the Fluxion of a Re&angle,
and

illuftrating the higher Order of Fluxions, I

have, in
particular, follow'd, with little or no

Variation.

XI
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DOCTRINE and APPLICATION

o F

FLUXIONS.
PART the Firft.

SECTION I.

Of the Nature, and Invejiigatioriy of
Fluxions.

i.'^'N order to form a proper Idea of the Nature of

Fluxions, all Kinds of Magnitudes are to be
- confidered as generated by the continual Motion

u of fome of their Bounds or Extremes ; as a
-^- Line by the Motion of a Point ; a Surface by

the Motion of a Line j and a Solid by the Motion of a

Surface.

2. Every Quantity fo generated is called a variable, or

flowing Quantity : And the Magnitude by which any

flowing Quantity WOULD BE uniformly hicreajed in a

given Portion of 'Time, with the generating Celerity at any

propofed Pofetion^ or Inftant (was it from thence to con-

tinue invariable) is the Fluxion of the faid Quantity at

that Portion, or Injiant.
B Thus,



71

777

The Nature and Invef.igation

Thus, let the Points be conceived to move from A,
and generate them m r variable Right-A l line Am, by a

** Motion any how

regulated j
and

let the Celerity thereof, when it arrives at anv propofed
Pofition R, be fuch as would, was it to continue uni-

form from that Point, be fufficicnt to defcribe the Dif-

tance, or Line Rr, in the given Time allotted for the

Fluxion : Then will Rr be the Fluxion of the variable

'Line Am, in that Pofition.

3. The P'luxion of a plane Surface is conceived in

like Manner,
S Q by fuppofing a

given Right-
line mn to

move parallel
J * to itfelf, inA R r the Plane of

the parallel,

and immoveable Lines AF and EG : For, if (as above)
Rr be taken to cxprefs the Fluxion of the Line Am,
and the Rectangle RrsS be completed ; then that Rect-

angle, being the Space which wculd be uniformly de-

fcribed by the generating Line mn, in the Time that

Am would be uniformly increafed by m\, is therefore

the Fluxion of the generated Rectangle Bw, in that

Pofition, according to the true Meaning of the Defi-

nition.

4. If the Length of the generating Line mn con-

tinually varies, the Fluxion of the Area will
Jl':ll

be

expounded by a Rectangle under that Line and the

Fluxion of the Abfciilu, or Bafe : For let the cur-

vilineal Space Arnn be generated by the continual, and

parallel, Motion of the (now) variable Line mn, and
let Rr be the Fluxion of the Bafe, or Abfcifla, Am (as

before) ; then the Rectangle RrsS will, here allb, be the

Fluxion of the generated ISpace \mn : Becaufe, if the

Length and Velocity of the generating Line mn were
to
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to continue invari-

able from the Pofi-

tion RS, the Red-

angle RnS would
then be uniformly

generated, with the

very Celerity where-
with it begins to be

generated, or with

which the Space
Amn is increafed in

that Pofition.

5. From what has been hitherto faid it will appear,
that the Fluxions cf Quantities art, a/ways, as the

Celerities by which the quantities themfelves increase in

Magnitude: Whence it will not be difficult to form a

Notion of the Fluxions of Quantities otherwife generated ;

as well fuch as arife from the Revolution of Right-lines
and Planes, as thofe by parallel Motion : But of this here-

after. I come now to fliew the Manner of determin-

ing the Fluxions of algebraic Quantities ; by which all

others, of what Kind foever, are explicable. But firft

of all it will be requifite to premife the following Ob-
fervations.

I. 'That the final Letters u, w, x, y, z of the Alpha-
bet are commonly put for variable Quantities ;

and the ini-

tial Letters a, b, c, d, &c. for invariable ones: Thus
The Diameter of a given Circle may be denoted by a,
and the Sine of any Arch thereof (confidered as varia-

ble) by x.

II. Tnat the Fluxion of a Quantity reprefented by a

/ingle Letter, is ujually exprejjed by the fame Letter with

a Dot or Full-point over it : Thus the Fluxion of x is

reprefented by x, and that of y by y.
III. That the Fluxion of a Quantity which decreafes,

injttad of incrcafing, is to be confidered as negative.

B 2 PRO-
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PROPOSITION I.

$. 'the Fluxion of a Quantity being given, it is prepofeJ

to find the Fluxion of any Power of that Quantity.

As a clear undemanding of this Problem will be of

great Importance throughout the whole Work, it may

not be improper to confider it firft in one or two of its

moft fimple Cafes.

Cafe i. Let x exprefs the Fluxion of x, (according

to the foregoing Notation) and let the Fluxion of A"

be required.
Conceive two Points m and n to proceed, at the lame

time, from two other Points A and C, along the

Right-lines AB and CD, in fuch fort, that the Mea-

fure of the Diftance CS (y) t defcribed by the latter,

may be, always, equal to the Square of that AR (*)3

defcribed by the former moving uniformly.

A
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v*. But this laft Diftance (fince the Square of

any Quantity is known to incieafe fafter, in Propor-

tion, tlian the Root) is not defcribed with an uniform

Motion (like the former), but an accelerated one j and

therefore is equal to, and may be taken to exprefs, the

uniform Space that might be defcribed with the mean

Celerity at fome intermediate Point e, in the fame time.

Therefore, feeing the Diftances that might be defcribed,

in equal times, with the uniform Celerity of m, and

the mean Celerity at <, are to each other as v to 2xv
v
1

, or as I to ^x v, or, laftly, as x to 2xx vx9

(all which are in the fame Proportion) it is evident,

that, in the time the Point m would move uniformly
over the Diftance AT, the other Point /;, with its Cele-

rity at <>, would move uniformly over the Diftance 2xx
vx. This being the Cafe, let r, R, and j, S, be

now fuppofed to coincide, by the Arrival of the gene-

rating Points at R and S, then e (being always between
s and S, will likewife coincide with S; and the Diftance,
2xx XX, which might be uniformly defcribed in the

aforefaid time, with the Velocity at e, (now at S), will

become barely equal to 2xx j which (by the Defin.) is

equal to (j), the true FJuxion of Cn or ** a
.

>.

* It may, perhaps, feem inaccurate, that the Fluxion) of*
and AT* are compared together, and exprejjed both by Lines,
auben tbtflowing Quantities themjelves, considered as a Right
Line and a Square, admit of no Comparifon, 7bis Objection
would, indeed, be offeree, 'were the Expre^/ions retrained t a

geometrical Signification ; but here our Notions are more ab-

jlratted and univerfal, not obliging us to regard what Kind of
Extenfton, may be defined by this or that Exprejfion, but only
the Values of the algebraic Quantities thereby Jtgnified ; to

which the Meafures of all other Quantities whatever art ulti-

mately referred And, though Quantities of different Kinds
cannot be compared with each other, their Meafures, in Num-
bers, may. Thus, for Injiance, though it would be wrong
to affirm, that a Square whofe Area is 9 Inches is equal to a
Line off) Inches long, yet it is no Impropriety at all to fay the

Numbers exprefling their Meafures, in Inches, are equal.
B 3 7-
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7. Cafe 2'. Let the Fluxion of .v
3 be required.

Suppofe every Thin^ to remain as in the preceding
Cafe ; only let Cn be here equal to the Cube of Am
(inftead of the Square).

Then, in the very fame manner, we have S*
(

CS
Cj~x3 x -v\

l

}
= 3x*v $xv

i
-\-

rJ* : From whence
it appears, that the Diftances which might be defcribed,

in the fame time, with the uniform Celerity of w, and

the mean Celerity at ey will, in this Cafe, be to each

other as v to 3^1; yxv* + v 3

, or as x to 3*
a*

%xvx-\-v
1

'x : Which laft Expreflion, when j, ^, and S

coincide (as before) will become yzx y the true Fluxion
of x 3

required.

8. Univfr/ally. Let Cn be, always* equal to Am K
>

alfo let x t\" (or x v raifed to the Power whofe Ex-

ponent is n] be reprefented by x" ax" v+ bx if

ex' '""v
3

, &. and let every Thing elfe be fuppofed
as above.

T"U r c f n
i
u }

" l
L

n~'L i
rhcn,imcebj \x x il / is ax v bx v

+ ex" v3
, &c. it is plain that the Spaces which might

be defcribed, in the fame time, wiih the uniform Ce-

lerity of OT, and the mean Celerity at
<?, will, here, be

v i ,
i a , 3 , , .

to each other as v to ax v bx v-\-cx v3
, ?r.

^ " J
7

n ~ Z
. *~3 ! t^J

or as x to ax x bx vx-\-cx vV, <5c.

Therefore, all the Terms, wherein v is found, vanifh-

ing, when j, <?, and S coincide, we have ax x for

the required Fluxion of C, or x ; which Fluxion,
becaufe the numeral Co-efficient of the fecond Term of
a BinpmiaJ involved is known to be, univerfally, equal
to the Exponent of the Power, will alfo be truly ex-

prcfied by nx"
*

x. Q. E. I.

9. If the Quantity Am (or #*) be generated with an

accelerated, or a retarded Motion, inittad of an uni-

form
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form one, the Fluxion of x (or C) will come out

exactly the fame :

For the Spaces rR and jS, actually defcribed in the

fame time, being always, to each other, in the Ratio

of x to ax x bx vx> &c. the mean Celerities,

at certain intermediate Points between r, R and s> S

muft, alfo, be in that Ratio : Which, when v vanifhes

(as above) will become that of x to ax x,(ornx x)
the very fame as before.

PROPOSITION II.

10. To find the Fluxion of the Produft or Reftangle of
two variable Quantities.

Conceive two Right-lines DE and FG, perpendi-
cular to each

other, to move,
from two other ,

Right
- lines,

BA and BC,
continually pa-
rallel to them-
felves , and

thereby gene-
rate the Rect-

angle DF. Let

the Path of their

InterfecYion, or the Loci of the Angle H, be the Line

BHR; alfo let Dd (x) and Y f (y) be the Fluxions
of the Sides BD (x) and BF (y)^ and let dm and fn,
parallel to DH and FH, be drawn. Therefore, be-

caufe the Fluxion of the Space or Area BDH is truly

expreffed by the Rectangle Dm
(
= yx

*
)

and that * Art. 4.

of the Area, or Space BFH, by the Rectangle F, and

equal Quantities have equal Fluxions, it follows that the

Fluxion of theRedhngle xy ^=DF (= BDH-f BFH) is

truly exprefled by yx + xy. Q^ E. I.

B 4 Tfy
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The fame ctherwife.

II. Let xy be the given Re&angle (as before) ; and

put z =: * + j, then 2.* being n x* + 2xy + y
1
, we have^ i** J/ rr *y. But the Fluxion of iz* k**

1^% (and confequently that of its Equal xy) is zz

xx yj (by Art. 6) : Which, becaufe x x-j- y and

K=x+jy is alfo equal to A-+ yXx+j *.v yyyx
Q.E.I.

COROLLARY i.

12. Hence the Fluxion of the Producl: of three va-

riable Quantities (yzu) may be derived : For, if x be

put rr zu ; then yzu will become zzyx, and its Fluxion

z: yx + xj (c.;
alove :) But x being rz zw, and, there-

fore, x =. zu + ux., if thefe Values be fubftituted in jx

-f sty,
it will become^ x zu -f- uz-\-zuy'^.yzu+yuz+

zuj the Fluxion of ^zw required. Jn like Manner the

Fluxion of xyzu will appear to be xyzu 4- Aryzw 4-

xyzu + ATJZW, and that of xyzuw zr A^ZW -f xyzuw -J-

xyz-uw + xjzuw 4- xyzuw.

COROLLARY 2.

13. Hence, alfo, the Fluxion of a Fraction may
2*

#
be determined. For, putting * = , we have A-Z=,M

and therefore xz 4- zx r= fjj above) ; whence, by

Tranfpofition and Divifion, i (by
z z z z ^ '

u zu uz
writing for *) =-; j which is the true Fluxj-" Z Z

on of *, or its Equal , the Fradion propofed.2

14. Now, from the foregoing Propofitions, and their

fubfequent Corollaiies, the following pra&icai Rules,
for
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for determining the Fluxions of algebraic Quantities,
are obtained.

RULE I.

To find the Fluxion of any given Power of a. vari-

able Quantity.

Multiply the Fluxion of the Root by the Exponent of th(

Power> and the Produfl by that Power of toe fame Root

whofe Exponent it
lefs by Unity than the given Exponent.

This Rule is inveftigated in Prop, i, and is nothing-

more than nx"
*

x (the Fluxion of x") exprefled in

Words.

fience the Fluxion of x3
is 3*** ; that of x 5

is $x*x j

and that of a -f y]
7

is -jy X a + >)% (becaufe, a being

eonftant, j is the true Fluxion of the Root a+ y, in this

Cafe).

Moreover the Fluxion of a
1 + z7

}
1
, will be \X.2zz

X tf* -f Z^T, or 322 v/a* + z*: For here, x being put

^= a
1 + z

z
, we have i 222, and therefore | A- **, the

Fluxion of j;
1

(or a
1
-f z

1

]*) is =r 32^ v/a* + 2% as

above.

RULE II.

15. To find the Fluxion of the Produ& of feveral

variable Quantities multiplied together.

A^ultiply the Fluxion ofeach^ by the ProduSl of the reft

of the Quantities, and the Sum of the Produfts thus arl-

Jing will be the Fluxion fought *.
'

%A
Thus the Fluxion of *y, is xy -f- yx ; that of xyz, is

xyz + xzy +yzx j and that of xyzu, is xyzu+ xyuz + xzuy
+ yzux.

RULE
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RULE III.

16. To find the Fluxion of a Fraction.

From the Fluxion of the Numerator drawn into the De-

mminator, -fubtraft the Fluxim cf the Denominator

drawn into the Numerator, and divide the Remainder by

*Art.i3./^ Square ofthe Denominator *.

v <* v* >*y J

Thus, the Fluxion of is - 5} that of
JT":

is

ix ,-*+)** Jl^j , and that of 1+1+?,-
-^ + I V I M*+'

2
;<; X*+v x+ yXz ,, , ,or i + JTT
IS--__^

'-
; and fo of others.

17. In the Examples hitherto given, each is refolved

by its own particular Rule
; but in thofe that follow, the

Ufe of tv.o, and fometimes cf all the three, Rules is

requifite.
Thus (by Rule i. and 2-} the Fluxion of x*y'

i
is

.

x > that f ~ is
*

i i r
and that of ^- is

z z~

where all the three Rules are neceflary.
When the propofed Quantity is affected by a Co-effi-

cient, or conitant Alultiplicator, the Fluxion found as

above, mufl be
multiplied^}' that Co-efficient or Mul-

tiplicator.

Thus, the Fluxion of f*
3

is 15*^-. For, the Flu-

xion of x 3

being 3*
1

.*, that of 5-v
5

, which is 5 times

as great, muft confequently be 5X j^
2
^, or i^x.

And, in the very fame Manner the Fluxion of ax will
r. I

appear to be nax' x. Moreover, the Fluxion of

a I

-,
-

-i n or a x x* +_y
z

i % will be exprefled by
* 4-jrJ*
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a X xx 4- yv
X 'T[X9xte+ 9yjXx*+j*] , or

_ _ f -^^ -

that of v
/
-v-f-Vv > or A'-f-^'irj by v^-fl^iJ7 ^*

_^_ ^ j

*+7I) f^^ i.) or ll_l_-: 1, or

j i .
*

c x + a]
and that of == , or

x Jf
a

Q XXY.X* a I X

by Reduction, is

y^x
1

a~ xxX. x+ a _1x x x a x x+ a xx v

x a x Vx-

x a X y
'

x~ a
1

Having explained the Manner of confidering and de-

termining the iirft Fluxions of variable or flowing Quan-
tities, it will be proper to fay fomcthing, now, con-

cerning the hi-hcr Orders, as Second, Third, Fourch,
cffi. Fluxions.

18. The Secsnd Fluxion of a Quantity is the Fluxion

of the variabk or algebraic Quantity expreffing the Fir/I
Fluxion already defined y the Third Fhixian /iArt.s.
meant the Fluxion if the variable Quantity cxpnjjing tha

Second : And by the Fourth^ &e Fluxion of tb; variable

Quantity exp^'cjji':^ tk: Third Fluxion: /fr;dj

Thus, {";)! Kxampie, let the Line AB reprefcnt a va-
riable Quantity, generated by the Motion of the Point

B, and let the (hrft) Fluxion thereof (or the Space
that might be uniformly defcribed in a given Time, with
the Celerity of Bj be always exprefieu by the Diitance

6 of
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of the Point D from a given, or fixed Point C : Then,
if the Celerity of B

g be not every where

A' ~^ '

the fame; the Dif-

D tance CD, expref-

C "" *

fing the Meafure of

F that Celerity, muft

E ' alfo vary, by the

jj Motion of D, from,
G . or towards C, ac-

cording as the Cele-

rity of B is an increafing or a decreafing one : And the

FJuxion of the Line CD, fo varying (or the Space

(EF) that might be uniformly defcribed in the aforefaid

given Time, with the Celerity of D) is the fecond

Fluxion of AB. Again, if the Motion of B he fuch

that neither it, nor that of D, (which depends upon it)

be equable, then EF, expreffing the Celeii'y of D, will

alfo have its Fluxion GH; which is the third Fluxion

of AB, and the fecond Fluxion of CD.
And thus are the Fluxions of every other Order to be

confidered, being the Mcafures of the Velocities by winch

iheir refpeftive fcwing Quantities, the Fluxiom of the

'Art z. Prec ding Ordcr^ are generated *.

19. Hence it appears, that a fecond Fluxion always
{hews the rate of the Increafe, or Decreafe, of the firft

Fluxion ;
and that Third, Fourth, &c. Fluxions, dif-

fer in Nothing (except their OrJer and Notation) from

Firft Fluxions, being actually fuch to the Quantities
from whence they are immediately derived ; and there-

fore are alfo determinable, in the very fame Manner, by
the general Rules already delivered.

Thus, by Rule 3. the (firft) Fluxion of x3
is 3#V :

And, if x be fuppofed conftant, that is, if the Root .v

be generated with an equable Celerity, the Fluxion of

3*
1
.*- (or 3*X#

a

) again taken, by the fame Rule, will

be 2* * 2JC.X-, or 6xx* ; which therefore is the fecond

Fluxion of* 3
: Whofe Fluxion, found in like Sort,

will be 6^ 3

, the third Fluxion of * 3
. Farther than

which
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which we cannot go in this Cafe, becaufe the laft

Fluxion 6.*
J

is here a conftant Quantity.
20. In the preceding Example the Root x is fuppofed

to be generated with an equable Celerity : But, if the

Celerity be an increafing or a decreafing one, then *,

expreffing the Meafure thereof, being variable, will alfo

have its Fluxion ; which is ufually denoted by x :

Whofe Fluxion, according to the fame Method of No-
tation, is again defigned by x ; and fo on, with refpe<St

to the higher Orders.

21. HITC foliow a few Examples, wherein the Root
jr, (or y) is fuppofed to be generated with a variable

Celerity.

Thus, the firft Fluxion of x* is 3*** (or 3*
2

Xjr).

And, if the Fluxion of 3*
1
x.v (confidered as a Redl-

angle) be, again, found (by Rule 2.) we fhall have
*
lx*=6#x*+ *a

*> for the fecond Fluxion

Moreover, from the Fluxion laft found we {hall in

like manner get 6xXx l + 6xX2xx -f bxxxx -f- 3**X

(or bxi+iSxxx + ^x) for the third Fluxion of x3
.

Thus alfo, ify ~nx x, then will y'=.n^n ^

A: xl+ nxx ; and if i*~xy, then will

yx: And fo of others. But, in the Solution of

Problems, it will be convenient to make the firft

Fluxion of fome one of the fimple Quantities (x or y)
invariable, not only to avoid Trouble, but that it may
ierve as a Standard to which the variable Fluxions of the

other Quantities, depending thereon, may be always
referred. The Reader is alfo defired here (once for all)
to take particular Notice, that the Fluxions of all Kindt
end Orders, whatever, are contemporaneous, or fucb as

may be generated together, ivith their
rtfpeftive Celtri*

tiss, in one and the fame^Tinu.
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SECTION II.

On the Application of Fluxions to the Solu-

tion of Problems DE MAXIM is ET Mi-
NIMIS.

22. TF a Quantity, conceived to be generated by Mo-
[ tion, increafes, or decreafes, till it arrives at a

certain Magnitude or Pofition, and then, on the con-

trary, grows lefler or greater, and it be required to de-

termine the faid Magnitude or Pofition. the Queftion is

called a Problem tie Maximh & Minimi;.

GENERAL ILLUSTRATION.

Let a Point m move uniformly in a Right Line, from

A towards B, and let another Point n move after it,

with a Velocity either increafmg, or decreafmg, but fo

that it may, at a certain Pofition, D, become equal to

that of the former Point ;#, moving uniformly.

This being premifed, let the Motion of n be firft

confidered as an in-

A T\ rt -D creating one ; in
1

t
which Cafe the Di-

?l 711 ftance of behind

m will continually
increafe, till the two Points arrive at the cotemporary
Pofitions C and D ; but afterwards it will, again, de-

creafe; for the Motion of , till then, being flower than

at D, it is alfo flower than that of the preceding Point

m (by Hypothefis) but becoming quicker, afterwards,
than that cf TT?, the Diftance mn (as has been already
faid) will again decreafe : And therefore is a Maximum^
or the greateft of all. when the Celerities of the two
Paints are equal to each other.

But, if n arrives at D with a decreafmg Celerity ;

then its Motion being firft fwifter, and afterwards flower,
than that of JTJ, the Diftance mn will firft deireafe and

then
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then increafe ; and therefore is a Minimum, or the lead

of all, in the forementioned Circumftance.

Since then the Diftance mn is a Maximum or a Mi"
nimum, when the Velocities of m and n are equal, or

when that Diftance increafes as faft through the Mo-
tion of ;, as it decreafes by that of ,

its Fluxion at

that Inftant is evidently equal to Nothing *.Art. 2

Therefore, as the Motion of the Points m and n may* ^.
be conceived fuch that their Diftance mn may exprefs
the Meafure of any variable Quantity whatever, it fol-

lows, that the Fluxion of any variable Quantity what-

ever, when a Maximum or Minimum, is equal to No-
thing.

EXAMPLE I.

23. To divide a given Right-line AB into two fach
Parts, AC, BC, that their Produtt, or Rettangle, may
be the greateji pojfible.

Put the gi-
ven Line AB Q
= *, and let A' |R
the Part AC,
confidered as variable (by the Motion of C from A to-
wards B) be denoted by x : Then BC being a *,
we have AC X.ftC=ax ** : Whofe Fluxion ax^xx
being put o, according to the prefcript, we get ax

ixx, andconfequently* =: \a. Therefore AC and
BC, in the required Circumftance, are equal to each
other : Which we alfo.know from other Principles.

EXAMPLE II.

24. To find the Fraflien which Jhall exceed its Cube by
the

greatejl Quantity pofllble.

Let x denote a variable Quantity, expreffing Number
. in general ; then the Excefs of x above x 1

being uni-

verfally reprefented by xx\ if the Fluxion thereof be
^f. we fhall have x 3^-0 ; and therefore

the Fraction required*

E X-
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EXAMPLE TIT.

25. To determine the greateft ReRangle that can be in*

fcribed in a given Triangle.

Put the Bafe

AC of the gi-
ven Triangle

, and its Alti-

tude BD a ;

and let the Alti-

tude (BS) of the

infcribed Red-

angle me (confi-
dered as variable)

be denoted by x :

Then, becaufe of the parallel Lines AC, and ac, it

will be as BD (a) : AC (J) :: DS (</*) :

ac : Whence the Area of the Relangle, or ac x BS
box bx~ . box ibxx

will be := : Whofe fluxion being
a a

(as before) put = o, we fhall get x [a. "Whence the

greateft infcribed Rectangle is that whofe Altitude is juft
half the Altitude of the Triangle.

26. It will be proper to obferve here, that the Value
of a Quantity, when a Maximum or Minimum, may
oftentimes be determined with more Facility by taking
the Fluxion of fome given Part, Multiple, or Power,
thereof, than from the Fluxion of the Quantity itfelf.

Thus, in the preceding Example, where the genera]
baxbx* b

Expreffion is if the conftant

Multiplicator be rejected, we fhall have **
whofe Fluxion ax 2xx being put = o, we get * 4
the vtry fame as before,

10
'



de Maximis & Minimis.

The Reafon of which is obvious ; becaufe when the

Quantity itfelf (be it of what Kind it will) is the greateft,
or leaft poflible, any given Part, Power, or Multiple of
it is alfo the greateft or leaft poflible.

E X^A M P L E IV.

27. Of all right-angled plain Triangles having the fami
given Hypothennfe^ to find that (ABC) wl)oje Area is

the greateft.

Let AC = a, AB=.v,
and BC = y : Then,
JT -f- y* being IT a*9 we
fhall have y V^a*x\

and confequently

- V * x 1 = the
2

Area of the Triangle ; / B
whofe Square being, alfa, a Maximum *, Art.2 6.

the Fluxion thereof

be =: o, f : Whence

x*x mufl therefore

ence *" is found = aV
, and y"

otherwife.

Since i^y is a Maximum, and X1
+)*=:#% let the

Fluxions of both be taken, and you will have -~xy+ kyx
=o, and ixx + iyy =: o ; from the former of which y

xx
will be =

; and from the latter, it will be =. :

XX
Therefore and are equal to each other, and con-

x y

fequently x sz y, (the fame as before.)

C EX-
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EXAMPLE V.

l8. Of all right-angled plain Triangles containing tfc

fame given Area^ to find that whereof the Sum of the

two Legs AB +BC is the leaft pojjible. (See the pre-

ceding Figure.)

Let one Leg, AB, be denoted by *-, and the Area

of the Triangle by a j then the other Leg will be de-

la
noted by , and the Sum of the two Legs will be x -{-

-
j whereof the Fluxion is x---

-, which, put o,
x x

gives x Whence BC
f1&\

(-) is alfo =

V ia. Therefore the two Legs are equal to each

other.

EXAMPLE VI.

29. To determine the Dimenftons of the leajl Ifofceles
Tri-

angle ACD that can circumfcribe a given Circle.

Let the Diftance

(OD) of the Vertex

of the Triangle from

the Center of the Cir-

cle, be denoted by x>

and let the remaining
Part of the Perpendi-

cular, which is the

Radius of the Circle,

be reprefented by a:

Then, if OS, perpen-

dicular to DC, be drawn, we fhall have DS = VV a* ;

and therefore, fmce DS : OS : : DB : BC, we likewife

have BC = "-= which multiplied by ~a (BD)
v x a

7 gives
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ives ==== for the Area of the Triangle : Which
Vx*~a*

being a Minimum, its Square muft be a Minimum^ and

..
,

x 4- a] . -,-
, x-\-a\ ,.. .

confequently - ! -, or us Equal
!

, a Mini-
X ~ Q X (I

mum a!fo *. Whofe Fluxion, therefore, which is*
3

-, being put rr o, and
x a \-

'

x Xx + a}'
the Whole divided by p- , we alfo get 3 XA- a

x + a =. o ; whence xia \ Therefore, OD being
rz 2OS, and the Triangles ODS and BDC equiangular,
it is evident that DC is likewife = aBC = AC ; and fo

the Triangle ACD, when the leafl poflible, is equila-
teral.

EXAMPLE VII.

30. To determine the greateft Cylinder', dg^ that can bt

inferibed in a given Cone ADB.

Let ar=BC, the Altitude of the Cone ;

:=AD, the Diameter of its Bafe ;

x=fg (dh) the Diameter of the Cylinder, con-
fidered as variable ;

.
the Area of ,he

V 4 /

whofe Diameter is Unity.

Then, the Areas of Circles being to one another as

the Squares of their Diameters, we have, i
1

: A-* : :

p : (px*) the Area of the Circle figr: Moreover, from
the Similarity of the Triangles ABC and A^f, we have

ii(AC) : a (EC) : : {b '-* (Ad) : df
-

which multiplied by the Area px* (found above) gives
C 2 abx*
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= 0*, confequently

pabx
1

pax*

~~b~
for the folid

Content of

the Cylin-
der: Which

being a

Maximum ,

its Fluxion

n
mult

b

= and df - : From

whence it appears, that the infcribed Cylinder will be

the ereateft poflible, when the Altitude thereof is juft

| of the Altitude of the whole Cone.

EXAMPLE VIII.

31. To determine the Dimenjions of a cylindric Meafure
ABCD, open at the Tcpy which Jhall contain a given

Quantity (of Liquor, Grain^ &c.) under the leafl in-

ternal Superficies pojjible*

Let the Diameter

ABn#, and the Alti-
'< C tude AD y ; moreover

let p (3114159, &c.}
denote the Periphery of

the Circle whofe Dia-

meter is Unity, and let

c be the given Content
of the Cylinder. Then
it will be i : p ::x : (px)

> the Circumference of the

Bafej which, multiplied

by
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by the Altitude^, gives pxy for the concave Superficies
of the Cylinder. In like Manner, the Area of the Bafe,

by multiplying the fame Expreflion into ~ of the Dia-

meter *, will be found = j which drawn into the

21

=
i and therefore x

Altitude yy gives
- for the folid Content of the Cy-

linder ; which being made = c, the concave Surface

pxy will be found , and confequently the whole

Surface = -' + : Whereof the Fluxion, which is,* 4
4cx pxx
r + -

j being put o, we Ihall get Sc -f px
3

* 2*

2 \/ -
: Further, becaufe a*J

/
=. 8r, and px*y = 4^, it follows, that x == 2y ; whence

jf

is alfo known, and from which it appears, that the Dia-
meter of the Bafe muft be juft the Double of the Alti-

tude.

EXAMPLE IX.

32. Of all Cones under the fame given Superficies (s) t

find that (ABD) wbofe Solidity is the greatejl.

Let the Semi-

diameter of the

Bafe, AC =. *, and
the Length of the

flant Side AB =yt

and let p (
as in

the preceding Ex-

amples) denote the

Periphery of the

Circle whofe Dia-
meter is Unity.

Then
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Then the Circumference of the Bafe will be ~ 2px>

the Area of the Bafe />*% and the convex Superficies
of the Cone = pxy, (which laft is found by multiplying
half the Periphery of the Bafe by the Length of the

flant Side) : Wherefore, fince the whole Superficies is

px*+~pxy j, we have y~ x; whence the Alti-
PX

__

titude CB (/AH* AC 1

) = \/-^ -
; which

P * P .

multiplied by f
* -

J | of the Area of the Bafe, gives

for the folid Content of the Cone.

,j sx
Which being a Maximum, its Square

- muft

25^XX
alfo be a Maximum ; and therefore

9

\vhencej 4px
t

Q t and confequently x

4?

which v ( r= x =. ->-- = ^ =: 3*-) will like-J \ px px px
wife be known ; and from whence it will appear that

the greateft Cone under a given Surface, (or a given
Cone under the leaft Surface) will be when the Length
of the flant Side is to the Semi-diameter of the Bafe in

the Ratio of 3 to r, or, (which comes to the fame)
when the Square of the Altitude is to the Square of the

\vhole Diameter in the Ratio of 2 to i.

EX-
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EXAMPLE X.

33. To determine the Pofitlon of a Right-line DE, which,

pajfing through a given Point P, Jball cut two Right-
lines AR and AS, given by Pofition ^ in fuch fort that

the Sum of the Segment's, AD and AE, made thereby*

may be the leaft poffible.

s\
E

Make PB, parallel to AS, = a, and PC, parallel to

AR, = I, and let BD x: Then, by reafon of the

parallel Lines, it will be, x : a : : b : CE r:
X

Therefore AD + AE := + .* -j-a+ , and its Fluxion,x
abx

x -, which, in the requjred Circumftance, being

o, we have A-
1

ab alfo rz o, and confequently x zr

y ab ; whence the Pofition of DE is known. But the

fame Thing may be otherwife determined, independent
of Fluxions, from the general Solution of the Problem
for finding the Pofition of DE, when the Sum of the

Segments AD and AE (inftead of being a Minimum)
fhall be equal to a given Quantity. Of which Problem,
the geometrical Conftru&ion may be as follows.

C 4 Compleat
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Compleat the Parallelogram ABPC (as before) and,
in RA produced, talce Af = AC, and let ^F be equal
to the given Sum of the two Segments: Alfo let two
Semi-circles be defcribed upon EC and BF, and let AH,
perpendicular to Br, interfe<5l the former in H j like-

wife let HK, parallel to F<:, interfeft the latter in I ;

draw ID perpendicular to Yc, and, through P and D
draw DE ; which will be the Pofition required. For
AB xA<: being=AH

1 = DI a = BDxDF, we have BD
: AB : : Ac (AC) : DF; alfo, becaufe of the parallel

Lines, we have BD : AB : : AC : CE ; whence DF=
CE, and confequently AD + AE (AD + AC-f FD) is

equal to cF, which Conftru6tion is more neat than that

in p, 155. of my Geometry. But to (hew how far this

may conduce to the Matter firft propofed ; we are to

obferve, that, as the Problem here conftruc~ted appears
to be impoflible, when the Right-line HK (inftead of

cutting or touching) falls wholly below the Circle BWF,
the Jeaft poflible Value of BF (and confequently of AD
-j- AE) muft, therefore, be when that Right-line touches

the Circle; that is, when BD=DI~AH=v/ ABxAC ;

which Value is the very fame with that found above.

The fame Conclufion may alfo be deduced from the

algebraic Solution of the forefaid Problem : For, put-
ab

ting^-f x+ a+ (AD + AE) = s y and iolving the

Equation, x will be found = '-
-f ^/

s~a ~^\ _^.
4

Which Equation being no longer poflible than till
s~a~v

i

4
ab is o, we have AT, in that Circumftance,

$ ~ * - fs ^~^ h ^^^---= Vab j fnll as before. In like Manner the

Maxima and Minima may be determined in other Cafes,
by finding the Pofition or Circumftance wherein the

general Problem begins to be impoflible, (fuppofing the

Quantity fjught to be
given). But the Operation by

Fluxions
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Fluxions is, for the general Part, much more fhort and

expeditious.

EXAMPLE XI.

34. Tfie fame being given as in the preceding Example^ to

determine the Position, when the Line DE, itfc/fy
is the

leafl poffible.

Upon AF let fall the perpendicular PQj make BQ_
=r, and, the reft, as before: Then DP1

being (
=

DB*+BP2
2BQ_x DB) =**+* 2r, and

DP* :: DA 1
: DE% we have x* : x*-\-a

z
2cx ::

2c

* **

whofe Fluxion, which is 2xXb+ x X i-- _i--
*

rZ"?* x -^A beinS Put and tne whole
#2

jf
3

Equation divided by 2x X />-f x, there will come out I

i
--

r > whence ^?
3 2cx +a x

-f b+ xxcx a* =. 0; that is, (by Reduction) x 3 ex*

-\-bcx {fbo : From the Refolution of which Equa-
tion, the Pofition of DE is determined.

LEMMA.
35. If a Body or Point (n) be fuppofed to move in a

Right-line AB, its
abfoluie Celerity, in the Direftion of

that Line^ will be to the relative Celerity , whereby it tends

tOj orfrom, a given Point C, any where out of the Lint,
as the Dijiance C.. is to the Diftance D, intercepted by
n and the Perpendicular CD ; or t as Radius to the Co-fine

of the Angle of Inclination DC.
For, putting CD <?, D #, and Cn rr y, * ^

we have
z+ ..v

a

=>'', and confequently 2xx = 2yj>*.-aad 5'.

Z

Whence



Art.
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A D

Whence x :

y : : y (Cn) : x
(D) :: Radius :

Co-fineDC: Bur,
the Fluxions of

Quantities are as

the Celerities of

their Increafe *,
therefore the Truth
of the Proportion
is manifeft.

COROLLARY.
It follows from hence, that the relative Celerities in

any two different Directions wE and #C, are directly as

the Co-fines of the correfponding Angles DE and
DwC. Therefore, when E is perpendicular to Cn9

(and the Angle DE therefore equal to C) the Celerity
in the Direction E, will be to that in the Direction

C, as the Sine of DnC is to its Co-fine. From whence
it appears, that the Celerities in the Directions D, C,
and E/z (perpendicular to wC) are to each other as C,
D//, and CD refpectively.

EXAMPLE XII.

36. To determine the Pafttlon of a Point, from wbcn:e y

if three Right-lines be drawn to fo many given Points

A, E, C, their Sum fall be the Uajl poffibU.

Let HPG be the Periphery of a Circle defcrihed

about the Point A, as a Center, at any Diftance AG ;

in which let the Point P be conceived to move with an
uniform

Celerity, from G towards H. 7'hen, becaufe

thcj relative Celerity thereof, in the Direction PC, is to

that in the Direction BP produced, as the Co-fine of

the Angle CPH-to the Co-fine of the Angle BPG, (by
the pr(ct<i<n Lemma) j anJ> fincethefe Cekiities, when

the
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the Sum of CP and BP is a Minimum^ muft be equal *,* Art.

G

it follows, therefore,

that the faid Angles
CPH and BPG, as

well as their Co-fines,

will in that Circum-
ftance become equal
to each other ; and

confequently A P C
alfo equal to A P B.

From whence it ap-

pears, that (take AG
what you will) the

.Sum of the three

Lines, AP, BP, and

CP, cannot be the

leaft pofiible when the

Angles A P B and
A P C are unequal.
And, by the fame

Argument, it alfo appears that their Sum cannot

be the leaft pofiible, when the Angles BPA and

BPC are unequal : Therefore, their Sum muft be

the leaft pofuble, when all the three Angles about the

Point P are equal to one another ; provided the Cafe

will admit of firch an Equality, or that no one of the

Angles of the Triangle ABC is equal to, or greater than

of 4 Right Angles (for otherwife, the Point P will

fall in the obtufe Angle) : Hence this

CONSTRUCTION.

Defcribe, upon BC, a Segment of a Circle, to con-
tain an Angle of 120, and let the whole Circle BCQ_
be compleated ; and from A, to the Middle (QJ of the

Arch BQC, draw AQ_ interfering the Circumference
of the Circle in P ; which will be the Point required.

For, the Angles BPQ_ and CPQ^, ftanding upon the

equal Arches BQ^ and CQ_, have their Complements
APB and APC equal to each other; and therefore, the

Angle BPC being 120"" (by Conftruclion) each of the

laid

and 22.
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kid Angles APB, APC, will, likewife be 120 De-

grees.
After the fame

Manner, it will

appear that the

Sum of all the

Lines AP, BP,
CP, faff, drawn
from any Num-
ber of given
Points A, B, C,
faff, to meet in

another Point P,
will be the leaft

pofiible, when the

Co-fines of the Angles RPA, RPB, RPC, faff, that

the faid Lines make with any other Line RS, pafling

through the Point of Concourfe, deftroy each other :

Which will be when all the Angles APB, BPC, CPD,
faff, are equal, in all Cafes where the Pofition of the

given Points will admit of fuch an Equality. But, if the

Number of given Points be four, the required Point will

be in the Interfe&ion of the two Right-lines joining the

oppofite Points : For, fuppofing APC and BPD to be

continued Right-lines, the Co-fine of RPA will be equal
and contrary to that of RPC, and that of RPB equal
and contrary to that of RPD.

EXAMPLE XIII.

37. If two Bodies move at the fame Time, from two given
Places A and B, and proceed uniformly from thence in

given DireflionS) AP and BQ_, with Celerities in a

given Ratio j ;'/ is propofed to find their Pofition, and
howfar each has gone^ when they are the nearejl pojjible
to each other.

Let M and N be any two cotemporary Pofitions of
the Bodies, and upon AP let fali the Perpendiculars
NE and BI>j alfo let QB be produced to meet AP

in
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AM ED
in C, and let MN be drawn : Moreover, let the given

Celerity in BQ_be to that in AP, as n to m t and let

AC, BC, and CD, (which are alfo given) be denoted

by rt, b, and c refpeclively, and make the variable Dif-

tance CN =x: Then, by reafon of the parallel Lines
NE and BD, we fhall have b (CB) : x (CN) :: c (CD)

coc
: CE . Alfo, becaufe the Diftances, BN and

b

AM, gone over in the fame Time, are as the Cele-

rities, we likewife have, n : m :: x b (BN) : AM
=

, and confequently CM (AC AM)rrc-f-

mb mx mx mb\d , (by writingda+ ). Whence
n n n n /

will alfo be found

icdx icmx"- idmx inf
+x 7 + ; whofe Fluxion-- +-

b tip n n

_l o V ->

icdx A.CTTIXX

b nb

to be a Minimum) we get

+ 2mncx o; and confequently x

ndxmb+nc

by, m*+ n
L
+2mnc

are alfo given,

being made = o (becaufe MN is

i
i
bx -f rfbx rfcd

mnbd+ rfcd

?
and MN
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The fame oihcrivifc.-

Bccaufe the relative Celerities of the two Bodies, at-

M and N, in the Direction of the Line MN (pro-

n m Co-fwU Co-f.tf
ducedj are truly exprelled by ^ ,. X ;/z, and

"

Art.35. x, refpeftively *; and as thefe Celerities, when the

Diftance MN is a Minimum, do become equal to each

Art.zz.other f, it follows that, in this Circumftance, m : n : :

Co-f. N. : Co-f. M : : Secant of M : Secant of N (by

plane Trig.)
Whence this Conftruaion. Take CH to CB in the

given Ratio of m to n t and draw HB j upon which

produced (if necefTary) let fall the Perpendicular AR j

draw RN parallel to AH, meeting CQ_ in N; laftly,
draw NM parallel to AR, and it will give the Pofition

required. For, firft, ir is plain, becaufe AM (RN) :

BN
(: : CH : CB) ::;*:, that M and N are cotem-

porary Pofitions : It is Jikewife plain, that RN and BN
will be Secants of the Angles KNR (CMN) and KNB
(CNM) to the Radius NK j becaufe the Angle NKR
(r:ARK) is a Right-one. Which Lines or Secants

are in the propofed Ratio of m to , as has been already
fhewn.

But
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But the fame Solution may be, yet, otherwife de-

rived, independent of Fluxions, from Principles intirely

geometrical. For, let m and be any two cotempora-
ry Pofitions at Pleafure, and let CH (as before) be to

CB, as the Celerity in AP to that in CQ_; moreover,
let r, parallel to AP, be drawn, meeting HB pro-
duced in r, and let A, r be joined. Then, ilnce CB :

CH : : B* : nr (byfm. Triangles] and CB : CH : : En
: Aw, (by Hyp.) it follows, that nr and Am, (which
ire parallel) will alfo be equal to each other; and there-

fore Ar and mn, likewife equal and parallel. But Ar is

the lead poflible when perpendicular to Hr. Whence
the Solution is manifeft.

EXAMPLE XIV.

38. Let the Body M move, uniformly^ from A towards

Q^, with the Celerity /, atid let another Body N pro-
cced from. B, at the fame time^ with the Celerity n.

Now it is propofed to find the Direction (BD) of the

latter, fo that the Df/fance MN of the two Bodies,
when the latter arrives in the Way or Direftion A

~

theformer', ?nay be the
greaieft pojfible.

Let BC be perpendicular to AQ_, and make AC =z

<?, BCrz/', and BN=jc. Therefore, if the Pofition

M befuppofed cotemporary with N, we {hall have n :

mx .^..mxm :: x : AM = j whence CM ~.7,andcon-n n

fequently
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fequently MN (CN CM) = -S^Hp - 4- a 5
n

whereof the Fluxion being taken, and made o, we
x m mb

get . = ; therefore x = . .

, and CNVx*
b* n VrrS n*

Vx~-P}=, _ a
: Whence, m : n

(::
BN :

CN :: Radius : Co-fine N. The fame Conclufion is

otherwife derived, thus,

Let the Right-line BD be fuppofed to revolve about

the Point B, as a Center, with a Motion fo regulated,
that the intercepted Part thereof BN may increafe with

the uniform Celerity n : Then, the Celerity with which
n X Radius *

*Art.35.CN is mcreafed being ,. ^ , this Lxpreffion,

when MN is a Maximum^ muft, confequently, be equal

fArt.s2.to (m} the Velocity of the other Body f M ; and there-

fore m : n :: Radius : Co-fine N, as before.

EXAMPLE XV.

39. Suppofing a Ship to fail from a given Place A, in a

given Direction AQ_, at the fame time that a Boatt

from another given Place B, fets out in order (if pof-

fible)
to come up with her, and fuppojing the Rate at

which each FeJ/el runs to be given ; it is required to find
in what Direction the latter muji proceed^ fo that, if it

cannot come up with the former , ;'/ may, however^ ap-

proach it as near as
pofftile.

Let the Celerity of the Ship be to that of the Boat

in the given Ratio of m to n ; alfo let D and F be the

Places of the two Veflels when neareft poffible to each

other, and, from the Center B, through F, fuppofe the

Circumference of a Circle to be defcribed. Then (the
Diftance DF being the leaft poffible), the Point F muft

be in the Right-line (DB) joining the Point D and the

Center
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Center B; be-

caufe no other

Point in the

whole Periphe-

ry, at which
the Boat from
B might ar-

rive in the fame

time, is fo near

to D as that

wherein the

Line DB inter-

feds the faid

Periphery. But now, to get an Expreflion for DF, in

algebraic Terms, let BC be perpendicular to AQ_, and
make AC =<?, BC = , and CD=* ; and then BD

will be = yT+ x*-, moreover, be-

;7<

eaufe:::AD(fl-f AT): BF,youwillhaveBF=

and confequently, DF zr

m
l+ *a

whofe

=f
bei"g made = o, we find

, i whence the Direaion BD is knownV m n

And, if the Value of AT, thus found, be fubftituted in
that of DF, (found above) we fhall have DF =

m ~~n ~na
; whence the Pofition of F is known.m

And from which it is obfervable, that, as DF muft be a
real, pofitive Quantity (by the Queftion) this Method
of Solution can only obtain when m is greater than n
and ^vV--**, alfo greater than tia : For in all other
Cales the Boat will be able to come up with the Ship.

The fame otherwife,

Let the Radius of the Circle EFH be conceived to
mcreafe uniformly, with the

Celerity n3 whilft the Point
* D moves

33
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D moves uniformly along AQ_, with the Celerity m:
Then, the Celerity at D, in the Direction of BD pro-

m X Co-fine D
duced, being

--
~R~d'
-

'
e re 'atlve Celerity with

which the Point D recedes from the Periphery of the

faid variable Circle, will be univerfally expreffed by
,. , , . -..., .

n't which beina; = o, when DF is a
Radius

Minimum^ we have in this Cafe m X Co-fine D=n X Ra-
and confequently m : n :: Radius : Co-fine D.

Therefore, if, at C, a right-angled Triangle Cbd be

conftituted, whofe Bafe Cdn^ and its Hypothenufe
db m, and parallel to the latter you draw BD, it will

be the Direction required : In which, if there be taken

BF, a Fourth-proportional to m, n, and AD, you will

alfo have the Pofition required.

EXAMPLE XVI.

40. To determine the greatejl Parabola that can be formed
by cutting a given Cone ACD.

Let nv t parallel to CA, be the Axis of the Parabola

rvmt and rm the Bafe (or Ordinate) thereof; putting
DC
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rr<7, CAn, and Dn x; then, becaufe of the

parallel Lines, it will be, a\l'.\ x : nv : More-
a

over, by the Property of the Circle, we have m*
(nm1 DxCn) = axx\ and confequently rm

, _,__ T <j l)X
2v ax ,v

a
; which multiplied by x (becaufe ev-

3 *

ry Parabola is f of a Parallelogram of the fame Bafe and
_

- -

Altitude) gives Vax x~ for the Content of the
3"

Parabola : Whofe Fluxion, or that of ax 3 x* *
being

*Art.a6,

put equal to Nothing ; we find x : Whence qv
4

and the Area of the greateft,

-.
4

X-AC, m^r

or required, Parabolas:AC X CD X

EXAMPLE XViL

41. To determine the greatcft Ellipfi BTES that can It

formed by cutting a givtn Cone ADD.

Let BE be the

greater, and TS the

lefler, Axis of the El-

Jipfis BTES, confider-

ed as variable by the

Motion of (the End
of the Tranfverfe) E,

along the Line AD ;

moreover let Ev be

parallel to AC the Axis
of the Cone, meeting
the Diameter BD in vt

and let the Diameters

EF and np be parallel

to BD j whereof the

latter np is fuppofed to

D 2
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pafs through O the Center of the Ellipfis : Then, put-

ting AC~ #, CD=^, and Cvrr.v, we fhall have Bv
b+ x-, alfo, becaufe of the parallel Lines we have CD

(b) : CA (a) :: Dv (bx) :

*** *
=Ez;j whence

BE

Furthermore, fince the Triangles EOw, EBD, and

BO/>, BEF are equiangular, and EO (=BO) =-J- BE,
xve likewife have Oa=iBD=, and Cty= iEF=Cw
x ;

and confequently On X Op (r=OT% by the Pro-

perty of the Circle) bx ; whence ST = i V bx^ and

therefore BE x ST =

Now the Area of any Ellipfis being in a conftant

Ratio to the Rectangle of its greater and JefTer Axes

(namely as 3,14159, b'c. to 4) the laft general Ex-

preflion muft therefore be a Maximum, when the

Area is fo; and therefore its Fluxion, or that of b*x x

Art.2a. 2?
a^a + a*x 3

) equal to Nothing*; that is, b*x

fl*A?V = o :

.,,, 4/^.v X rt
a b1 I"

1

Whence x*----- -- , and x =
3* +3* 3

* P+b\/a4
l+a- .~

> from which the EU-
(f. p

Jipfis is known.
But it is obfervable, that, when a4 i^a

l
b'

t

-^b* is

negative, this Solution fails, becaufe the Square Root of
a negative Quantity is to be extracted. Therefore, to
determine the Litr.it, put a* J4^1 + ^4cr o ; then,

by ordering the Equation, you will get a
2 = b* x

74-^/48, and =^X2+ \/3; and therefore a : b :: 2

4-1/3 : I% Hence, if the Ratio of AC to CD be not

greater
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greater than that of 2 + ^3 to i> or (which comes to

the fame thing) if the Angle DAC be not lefs than 15

Degrees, the Fluxion of the Ellipfis can never become

equal to Nothing j but the Ellipfis itfelf will increafe

continually, from the Vertex till it coincides with the

Bafe of the Cone ; and therefore is greater at the Bafe

than in any other Pofition.

But it is further to be obferved, that this Problem is

confined to, yet, narrower Limits. For, either the

Ellipfis will increafe, continually, fiom the Vertex, to

the Bafe, of the Cone, (which is (hewn to be the Cafe
when the Angle DAC is greater than 15) or clfe it

will increafe till the Point E arrives at a certain Pofition

H, and afterwards decreafe to another certain Pofition b y

and then increafe again till it coincides with the Bafe of
the Cone, (for it muft always increafe again before it

coincides with the Bafe, becaufe, after the Point E is

5t below {he Perpendicular BQ_, both the Axes of the

llipfis
increafe at the fame time).

The fame thing alfo appears from the foregoing Equa.-*

tion x = -
;__., '-

~ whofe two

Roots exprefs the two Values of AC (or Cv) at the Times
of the Maximum (at H) and its fuccecding Minimum

(at h). Hence it is manifeft, that the Ellipfis may ad-

mit of a Maximum between the Vertex of the Cone
and the Perpendicular B Q_, and yet, that Maxi-
mum be lefs than the Bafe of the Cone, unlefs the

forefaid Angle DAC be fo much lefs than 15 (above
found) that the Increafe from /; to D, be lefs than
the Decreafe from H to /;. Now therefore, to de-

termine the exadl Limit, let the forefaid Increment
and Decrement be fuppofed equal to each other, or,

which is the fame in Effect, let the Ellipfis BTESB
= the Circle BqVm, or BExST=BD% that is, let

-̂1 =&* : From which

D 3 Equa-
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V- 4
3 *

Equation you will get a~ X
b x]

=: x-7-^
-

: Moreover, from the Equationx b x
b*x+ \b

3xx + $b*x-x -f cffx-^-bxx + 3a
ajpV=ot (gi-

, v 4 3*
ven above) you will, again, get <z =

J

; Whence, by comparing thefe

xx $x b

4y+ 3^+^_y+ 4faf + y*
Values, theieanfes ^

~ -
__,
-

o

which, ordered, gives xz

-\-2l<y ^*r:o, and therefore

x bi/2 b.

a* 4^4-.-?^+^
Moreover,

-^ being , __ ; , if ^* 2^ be

fubflituted herein for, its Equal, #% it will become

SP+ lx_
/
i " "

bx x~~
~~

3* b

4+ V/2X4+ 3V/2 _22+l6v/2- = n -f 8 V 2.----- ----
x
-

4+3/2X4+3^2_2_
Hc-ncc we have, i : 1/11+8/2 : \b (DC) : a (AC)
: : Radius to the Tangent of the Angle ADC = 78 3':
Whofe Complement DAC =r 11 57', is the leaft Li-

mit poffible. Therefore, unlefs the Angle which the

flant Side makes with the Axis be lefs than n 57", the

grcateit Ellipfis will be lefs rhan the Bafe of the Cone.

EXAMPLE XVIII.

42. Of (ill Triangles^ having the faxii given Perimeter
',

. Inscribed in the fame given Circle j to determine the

g'talejl.

Let the Diameter DA bifefl the Bafe BC of the re-

quired Triangle BEC in H, draw AE, AB and BD ;

draw AF perpendicular to BE, and G, parallel to
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BC, meeting AD in G :

Then, putting AD r= ,

half the given Perimeter

of the Triangle = b, and

DHiry ;
We have BH ~

Vay y*,
and

over DH (y)
:: DB :

therefore

. More-
AD (a)
:: EF*

"~
x

,

* <*

B

therefore AG
>

whence

the Triangle BEC (BHx HG) =
**

and HG =

of

iba

4 2by, whofe Fluxion iby being put = o,

gives yVayyy = ^ ba; whence y, and from thence
the Sides of the/Triangle may be determined.

EXAMPLE XIX.

43. To determine the greateft Area that can be contained

under four given Right-lines.

Though it is dc -nonftrable from common Geometry
that the Area will be a Maximum, when the Trape-
zium ABCD, formed by (he given Lines, may be in-

fcribed in a Circle b
, yet I fliall here give the Solution

from the Principles of Fluxions, (whole Ufts I am now

a
By Prop. 13. Page 62. Elem. Trig.

k See Page 117. of Elem. Geometry.

illuftrating).

39
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illuftrating. In order to which, let the Diagonal AC
be drawn, and upon CB and AD let fall the Perpendi-
culars AE and CF j putting AB=*, EC =l>, CD=c,

and DF = y :

Then AE being

=VV A-% and

CF = vV-/,
the Area of the

Trapezium
(|BC x AE +

*Art.22. and its Fluxion = o

and therefore
dyy bxx

Moreover,

(=AC
l

) n^-ft* iJy, by taking
the Fluxion thereof, we have ibx =.

2</y, or dj=
bx } which, fubftituted for dy in the foregoing Equa-

bxy bxx y
tion, gives : = ./ . .

and

and confequently, V^ .,* ( CF ) :

(DF) :: v *l

(AE) : * (BE) : From which it

appears that the Triangles DCF and ABE are fimilar^

2nd that (D-f ABC being = 2 Right-angles) theTrape-
Z-ium may be infcribed in a Circle; but this by the Bye.
XVe are now to get an Expreflion for the Area in known
Terms, and in order thereto we have

dd+fidy,y =-, and CF = ^""

:BE:: DC : D 9 &c.) : Therefore, by Subftitution, P

.v=^--r* -, and the Area (jBCxAE

-HAD
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cd

-fAD x CF) = yVf x 3- + V a
1

-r- x- =
ob -f- cd V x"- ; and therefore the Square thereof =;

ab+ cd}" ^

4

But fince

tf a* 2ab -f 2cd +
lab + led lab -f led

[

z_~7

_
' 2 ~~
1L

} and confequently, the Square of the

which becaufc

the Difference of the Squares of any two Quantities is

equal to a Rectangle under their Sum and
Difference)

11 ir v _ d+c+b a* d+c b+ axb + a+ac
will alfo be .

b->[ a d + - a x

xi^+ it + ib+iac X -W+ ic+& + \4-fl. Whence
it appears, that, if from i the Sum of all the four Sides

each particular Sjde be fubtracted, the continual Pro-
duel: of the Remainders will be the Square, or fccond

Power, of the Area.

From this Theorem, the Rule in common Practice,
for rinding the Area of a Triangle, having the three

Sides given, is deduced, as a Corollary ; For, making
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a n o, the Trapezium becomes a Triangle, and the fe-

cond Power of it3 Area zrTT+lT+lixp
lb^7x d+ ic+\bd: Which, in Words,

is the common Rule.

EXAMPLE XX.

44. To find the greateft Value ofy in the Equation <?*#*=

By putting the whole Equation into Fluxions, &c.
we have 2a*xx^.2xx-t-2yy X 3 X xz

-f y'~1

a
which in the

Art.az, required Circumftance, when y o *, becomes 2,a*xx

6x* x x*+y*f ; whence x*+y*=z -7-, and x+ /I
3

6
^

;= 7- : But, by the given Equation x*+ y
'
3 = fl

4
#*;

3V 3

confequently a4 ^r
2

. and therefore x =.

3v/3
\

<7 */ ; whence y
r

(
~r~ .v

z
1 T~ 2nd

jr
= a</~-L.

The fame other-wife.

Since xx+ yyV is -given
= a*x~^ we have x'+ y

1 =
4- a 4 *

a 1 X 4*7, and therefore
jp

1 c= aT X .V
T #a

; whofe Fluxion,

4- i /^"^" V \f
^

|ff
3 X.v ^ 2A'x, being put = 0, we alfo get

-

f

a* x X I a*
rr .v ; whofe Cube is =: x 3

, or ^- x* -

t

whence 27*
4 =rfl4

, and confequently x
'

the fame as before.

,
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45. When, in the general Expreffion, whofe Maxi-
mum or Minimum is fought, there are two or more in-

determinateQuantities, independent of each other, their

refpcdive Values, in the required Circumftance, will

be determined, by making them flow, one by one, while

the others are fuppofed invariable ; as in the following

EXAMPLE XXL

IPherein it is propofed to fini three fucb Values of *, yy

and z, as Jhall make the Value of b* x 3 X x^z z3

X Xy y
z

the greatefl pojffible.

Firft, confidering y as variable, and the reft conftant,

we have xj> iyy=Q
*

; whence^ = ?x 9 and xy /==
^x~. By making z variable, we have x*z yfx := o j

whence z= , and x^z z 3= -
. Now let thefe

Values of xy ^
2 and xxz z3 be fubftituted in the given

X* 2X3 _
Expreffion, and it will become x -7- x t>

3 x3 r:
4 3v 3

3^5_x *

7-7
-

j therefore ^b
3x*xSx 7^o: Whence x =

6/3

i* X V 5 J (
=W =i* * v/S, and z (= =!*x

V/3*

The Reafon of the foregoing Procefs is obvious :

For, if the Fluxion of the given Expreffion, when any
one of the indeterminate Quantities is made variable, be
not equal to Nothing, that Expreffion may become

greater, without altering the Values of the reft, whkh
are confidered as conftant f: And therefore cannot be

| Art.at,
the greateft poffible, unlefs the (aid Fluxion is equal to

Nothing.
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EXAMPLE XXII.

46. To determine the different Values of .*, when that of

3#* 28ax 3 + $4.a*x* 96<3
3
A-+ 48* becomes a Maxi-

mum or Minimum.

The Fluxion of the given Expreflion being (as ufual)

put equal to Nothing, we have i2x 3
84.v

a+ i68<7
a#

g6c
3 = o, or x 3

jax'*+ \\a
ix 8a 3 = o : From

whence (by the Method of Divifors) we get x a o,

X 20 O, or x 40 o : Therefore, the Roots of the

Equation, or the three Values of x, are
, 20, and

4*.

SCHOLIUM.

47. It appears, from the laft Example, that a Quan-
tity may admit of as many Maxima and Minima (ac-

Artzz. cording to the Meaning of the Definition *) as there

are poffible Roots in the Equation, arifing from af-

fuming its Fluxion equal to Nothing. Now to know
which of thofe Roots point out a Maximum^ and which
a Minimum ; find whether the Value of the faid Fluxion,
a little before it becomes equaj to Nothing, be pofitive
or negative j if pofitive^ the fucceeding Root gives a

Maximum ; but if negative^ a Minimum : The Reafon.

of which is extremely obvious ; becaufe fo long as any
Quantity increafes, its Fluxion is pofitive, but when it

decreafes the Fluxion is negative.
As an Example hereof, let the Quantity 3** 2$ax 3

4- 84<z
a*a qba

3x -f 48^*, be again refumed ; whofe

Fluxion is 2xXy 3

jax~+ \^a
rx 8a 3

I ix X x a x

x 2a X * 3: Whereof the Value, before it becomes

equal to Nothing, the firft time (or before x a) being

negative (becaufe the Product of three negative Factors

is negative) its firft Root (a) therefore indicates a Mi-
nimum : Whence we may conclude, without confiderr

ing farther, that the fecond Root (20) gives a Maxi-
and the third (40) another Minimum. But, if

you
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you wouM know whether the firft or third Root gives
~~~

the lefler Value of the two
;

it is but fubftituting in the

given Quantity, which will come out 48^* 37
4 and

48^* 644* refpe&ively; therefore the latter is the lef-

fer, and the very kaft Value the propofed ExprefHon can

admit of.

When all the Roots prove impofllble, the Quantity

propofed (as its Fluxion can never become rro) muft
either increafe, or decreafe, continually ; and therefore

can neither admit of a Maximum nor a Minimum,

Moreover, it may fo happen, that the Roots are pof-

fible, the Fluxion = o, and yet the Quantity itfelf be
* neither a Maximum nor a Minimum in that Circum-
ftance.

For let us, again, fuppofe the Point n to move after

tn, as in the general Illuftration, (vid. Art. 22.) only
let the Velocity of n (in the firft Cafe} increafe no
longer than 'till it arrives at D ; after which let it again
decreafe : Then, though the Fluxion of the Diftancc
mn is Nothing, at the Pofition CD, yet the Diftance
itfelf will not be a Maximum ; becaufe n (having after-

wards, as well as before, a lefs Velocity than m) will
ftill continue to lofe ground. In the fame manner the
Matter may be explained with regard to a Minimum.
And it is evident, that thefe Cafes will always happen
when the Fluxion of the given Quantity is of the fame
Denomination (with regard to pofitive and negative)
both before and after, it becomes equal to Nothing :

Which, by the Rules of common Algebra, is known
to be when the Equation admits of an even Number of
equal Roots. An Example hereof, however, may not
be improper.

Let then the Quantity propofed be 240** $oa
lxz

f i6ax 3

3** ; whofe Fluxion is 244** 6oa*xx -f-

4&**
1
* I2A 3* = i2A- x a xXa x X iax: Which

being made =o, it appears that the two leaft Roots are
equal. Therefore there is neither a Maximum nor Mi-
nimum when x=:a (becaufe whether x be taken a little

lefs, or a little greater, than a, the Value of the Fluxion
6

will
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will ftill be affirmative.) The greateft Root, however,
not being affected with another equal one, indicates a

Maximum^ according to the Rule above preferibed.

To render what has been obferved above ftill more

confpicuous, let the given Exprefiion, 2$a
3x ^oa'x

1

-f i6ax3

3X
4
, be reprefented by the variable Ordinatc

PCLof the Curve AQMNRj whofe Abfcifla AP is (as

ufual) denoted by x.

Then, whilft (iix x a x x a x x ia x) the

Fluxion- of the Ordinate continues pofitive, (or till x
becomes = a = AB) the Ordinate itfelf will increafe :

But at the Pofuion BM it becomes ftationary (if I may
be allowed the Expreffion) the Fluxion being then = o.

After which, the Fluxion being again affirmative, the

Ordinate will again increafe, till * becomes r: za
(
=.

AC) j when, the Fluxion "becoming Nothing, a fe-
fM

cond time,) and afterwards negative, CN will be a

Maximum: Soon after which the Curve defcends be-

low its Axis, and continues to recede from it in in-

fimtum,
Anotfier Thing there is that ought to be regarded in

the Solution of thefe Kinds of Problems, and that is,

whether the Maxima or Minima^ found by affutrung
the Fluxion =r o, fall within the Limits prefcribed by
the Nature of the Queftion or Figure ; which is often

reftrained by Conditions that do not enter into the al-

gebraic Computation.
Thus, for Example; fuppofe it were required to find

that Point (F) in a given Ellipfis ABHD which, of all

others,
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others, is the moft remote from the Extreme B of the

conjugate Axis BD.
Then, drawing

FE parallel to the

Tranfverfe AH, and

putting AH = fl, BD
=

, and BE=r*, we
have, by the Property
of the Curve BFZ

= BE* + EF2
) **

47

whence x is found n

I ,i. But, from the Nature of the Figure, the

greateft Value that x (r=BE) can poflibly admit of is

b
( =BD), therefore if the Relation of a and b be fuch,

that I ,1 is greater than b, this Solution is manifestly

impoffible. -* To determine the Limit, therefore,

make -7 rt, = b; then it will be found that 2
a= r.

a b

Whence the foregoing Solution can only obtain when
2BD* is equal to, or lefs than AH*.

Again, it ought to be alfo confidered whether the

Value of x, found by the common Method, gives a lefs

Quantity for the Maximum, and a greater for the Mini-

mum, than will arife from the Extremes themfelves by
which x is limited.

Thus, let it be

required to deter-

mine the greateft
and leaft Ordinates

in a Curve, APR,
whofe Equation is

y
3 =. fafx qax'

1

-}-

4#
3
, and whofe

greateft Abfcifla

AD is given equal
za.
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Here we fhall, by taking the Fluxion, &c. have *=s

4-0, or x~a : The former of which Values gives the cor-
3 >

refponding Ordinate BP = a \/ L . an(j the latter,CCL
4

zr : But the firft of thefe is not the greateft of all

others, becaufe the Extreme DR exceeds it, being =
20 ; nor is CQ_the leaft poflible, becaufe the Ordinate

at the other Extreme A is nothing at all.

Sometimes one, or more, of the Points Q_, S, &c.

determining the Maxima and Minima^ will fall below

the Axis AF, (as in the annexed Figure). In which
Cafe the correfponding Value of the general Expreflion,

reprefented by the Ordinate, will be negative : But at

the Points , ct d, &c. where the Curve interfets the

Axis, it will be equal to nothing : Whence (by the

Bye) the Reafon why the Roots of an Equation (x

ax*~
l

+ b
lx"~

%
.... +/ ) are imp*ffibleby Pairs

is evident. For, feeing Ab, A<r, Ad, A*1

, We. are the

Roots of that Equation, or the different Values of A,

x-x " *
. 71 " *

I

**

when the Ordinate * ax +b x + q

(MN) becomes equal to Nothing, it is plain, ifP/i,

exprefling the given Term q , be increafed to Pa, fo

that AF (then coinciding with af) may touch the Curve

in S, the adjacent Roots Ad and A* will then become

equal -,
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CqUal ; and if q be farthrr increafed, fo that the Axis

may fall wholly below the Curve, not only thofe two,
but alfo the other RootSj Ab and Ac, will become im-

poffible.

Various other Obfervations might be made, relating
to the Limits of Equations, determined by thefe Maxi-
ma and Minima ; but this being foreign to the Matter
in hand, I fhall content myfelf with one Remark more,
viz.

Any ExpreJJion which, being put equal to Nothing, ad"

mits of two or more equal Roots, has as many fuc-

ceeding Orders of Fluxions equal to Nathing, at the

fame time, as are expreffed by the Number of thofe
Roots

minus one.

Thus, an Equation, having three equal Roots, has

both its firft and fecond Fluxions equal to Nothing^
when the Fluent itfelf is equal to Nothing.
Hence we have another Way (befides that given -f-

above) to know when a Quantity may have its Fluxion

equal to Nothing, and yet neither admit of a Maximum
nor a Minimum: For, fmce this Circumftance always
takes place when the Equation admits of an even Num-
ber of equal Roots (as has been already fliewn) the

Number of Orders of Fluxions, equal to Nothing,
at the fame time (including the Firft) muft alfo be
even.

Hence, alfo, we have an eafy Method for difcovering _^.

when fome of the Roots of an Equation are equal j

and, if fo, what they are.

Thus, let x3

Tflx
1 + 4fl

3 o be propounded )

whereof the Fluxion 3*
1* daxx being aflumed equal

to Nothing, we find x~ 20
; which will alfo be a Root

of the given Equation, if it admits of two equal ones :

To try it, therefore, I fubftitute 20 for x, and find it

anfwers.

Again, let 8** 280**+ i8a***+ ija'x ija+^o ;

whereof the firft and fecond Fluxions being $2x
3x

$4ax*x + sbafxx -f 2j a
3x and 96*^ ibZaxx 1 +

36flV, if the latter of them be aflumed = o, x will

E be



Solution, of Problems, &c.

be found = +^/EpL 3f, Or. One of which
64 2 4*

Quantities, if the Equation propofed admits of three

equal Roots, will be the Value of each of them : By

trying , it will be found to fucceed. Whence, by a

well known Rule, the fourth Root (being = O 2

X 3 = a) is alfo given.
The Reafon of thefe Operations, as well as what is

aflerted above, maybe thus demonftrated.

Let r x x r x &c. x A+ B#+ CA-* c5V. = O,

be any Equation, having two or more equal Roots, re-

prefented, each, by r : Put> r; t #, and let the Num-
ber of the equal Roots be denoted by n; then, by Sub-

ftitution, we have /xA-tBxr ^ + Cxr y* &e.

= o ; which, by expanding the Powers of r y, and

putting a =. A 4- Br+Cr2
&V. b =. B -f 2Cr -f 3Dr% sV.

will be further transformed to/ X a h+ O'
1

*? &ft

zr : Whofe Fluxion najy*~~ n+i . bjy -f n+ 2 .

cyy* &c. is evidently equal to Nothing, when y, or

its Equal r *, is Nothing (provided be greater than

Unity. It is equally plain, that the fecond Fluxion
a , a - . ., ., __ t

. n*i . . i"~-i .

n . I . ay y n -f I . nby y +n+2..n+l .cy y
&c. will alfo be equal to Nothing, in the fame Cir-

cumftance, if be greater than 2, &c . &c.

Hence, univerfally, let the Number () of equal
Roots be what it will, that of the Orders of Fluxions

equal to Nothing, at the lame time, will be exprefied

by that Number minus one, as was to be (hewn.

SECT.



Ufe O/TLUXTIONS in drawing 'Tangents

to Curves.

ILLUSTRATION.
48. T E T ACG be a Curve of any kind, and C

\_j the" given Point from whence the Tangent is

to be drawn.

Conceive a Right-line mg to be carried along uni-

formly, parallel to itfelf, from A towards Q_, and let,

at the fame time, a "oint p fo move in that Line,
as to defcribe, or trace out, the given Curve ACG:
Alfolet mnz, or Cn (equal and parallel to mm) express

the Fluxion of Am^ or the Celerity wherewith the Line

mg is carried ; and let S exprefs the correfponding
Fluxion of ;/>, in the Pofition mCg, or the Celerity of

the Point
/>,

in the Line mg. Moreover, through the

Point C let the Right-line SF Ire drawn, meeting the

Axis of the Curve (^AQ.) in F.

E a Novr,
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Now, it is evident, if the Motion of p, along the

Line mg, was to become equable at C, the Point p
would be at S, when the Line itfelf had acquired the
Pofition mSg (becaufe, by Hypothefis, Cn and n$ ex-

prefs the Diftances that might be defcribed by the two
uniform Motions in the fame time).

And, ifwsg be aflumed to reprefent any other Pofi-
tion of that Line, and s the contemporary Pofition of
the Pointy (ftill fuppofing an equable Celerity of

/>) ;

then the Diftances Cv and w, gone over, in the fame

F in ro Q
time, by the two Motions, will, always, be to each

other as the Celerities, or as Cn to S : Therefore,
fmce Cv : vs :: Cn : S (which is a known Property
of fimilar Triangles) the Point s will, always, fall in

the Right-line FCS : Whence it appears, that, if the

Motion of the Point p along the Line mg was to become

uniform at C, that Point would then move in the Right-
line CS, inftead of the Curve-line CG.
Now, feeing the Motion of p, in the Defcription of

Curves, muft, either, be an accelerated or a retarded

one, let it be, firft, con fidered as an accelerated one :

In which Cafe the Arch CG will fall, wholly, above

the Right-line CD (as in Fig. i.) becaufe the Diftance

of
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of the Pointy from the Axis AQ_, at the End of any
given Time, is greater than it would be if the Accelera-

tion was to ceafe at C ; and, if the Acceleration had

ceafed at C, the Point p would ( it is proved ) have

been always found in the faid Right-line FS.
But if the Motion of the Point p be a retarded one,

it will appear, by reafoning in the fame manner, that

the Arch CG will fall wholly below the Right-line CD
(as in Fig. 2.)

This being the Cafe, let the Line mg^ and the Point

pt along that Line, be now fuppofed to move back

again, towards A and mt in the fame manner they pro-
ceeded from thence : Then, fince the Celerity of p
(Fig. i.) did before increafe, it muft now, on the con-

trary, decreafe ; and, therefore, as
p-,

at the End of a

given Time, after repaying the Point C, is not fo near

to AQ_, as it would have been, had the Velocity con-

tinued the fame as at C, the Arch Ch (as well as CG)
muft fall wholly above the Right-line FCD. And, by
the fame Method of arguing, the Arch C/>, in the ft-
cond Cafe^ will fall, wDolfyy below FCD : Therefore

FCD, in both Cafes, is a Tangent to the Curve at the

Point C : Whence, the Triangles FmC and OzS being
fimilar, it appears, that the Sub-tangent ;F is always
a Fourth-proportional to (nS) the Fluxion of the ordi-

nate (C), the Fluxion of the Abfciflfa, and the Ordi-
nate (Cm).

Otherwife.

49. Let ACG reprefent the propofed Curve, and let

the Right-line FCD be a Tangent to it, at any Point
C, meeting the Axis AQ. (produced if neceflary) in
F : ^uppofe a Point p to move along the Curve, from A
towards G, and let the abfolute Celerity thereof at C,
in the Direction of the Tangent CD, or the Fluxion of
the Line A/> fo generated *, be denoted by CS, any, Art<1
Part of the faid Tangent : Then, if AH, mp and roSaod 5.
be made perpendicular, and Ipn parallel, to AQ_, the
relative Celerities of that Point, in the Directions Cn
and mC, wherewith lp (=. Am) and mp increafe in this

E 3 Pofition,
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Art.35- Pofition, will be truly exprefled by Cn and S *
: But

the Celerities by which Quantities increafe are as the

Fiiixions of thofe Quantities : Therefore (CS be-

ing the Fluxion
TT /I of the Curve-line

i >
Ap) and S

m- m a

Cn
are the corre-

fponding Fluxions
of the Abfcifla

Am and the Or-
dinate mp : And
we have Sw : nC
: : mC : mF, the

fame as
before.

Hence, if the

Abfcifla Am be

put r= #, and the

Ordinate mp = yt

we fhall have mF = : By means of which general Ex-

preffion, and the Equation expreffing the Relation be-

tween x and y, the Ratio of the Fluxions x and y will be

found, and from thence the Length of the Sub- tangent

(mf) as in the following Examples.

EXAMPLE I.

50. To draw a Right-line CT, to touch a given Cirdt

BCA, in a given Point C.

Let CS be perpendicular (o the Diameter AB, and

put AB rr
/?,

BS = x and SC
= y : Then, by
the Property of

the Circle, y*

(CS
1
)
= BS x

AS
(

xXa A-)

== ax x1
;

whereof
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whereof the Fluxion being taken, in order to determine

the Ratio of x and yt we get iy'y
ax 2xx j confe-

x 2y y

quently = *" =r ; which, multiplied by y,'

y a 2x ?a x

vx v*"

gives *r = J = the Sub-tangent ST *. Whence *Art< 4t
a and AQ.

(O being fuppofed the Center) we have OS (~a x) :

CS (y) : : CS (y) : ST j which we alfo know from

other Principles.

EXAMPLE II.

51. To draw a Tangent to any given Point C of tht co-

nical Parabola ACG.

If the Latus Reflum of the Curve be denoted by at

the Ordinate MC by;-, and its correfponding Abfcifla

AM by x ; then the known Equation, expreffing the

Relation of * and y, being ax =yz
, we have, in this

x 2 y y^l"

Cafe, ax = iyy j whence =: , and confequently ?- f Art.48

2 y* 2ax= ~=:-- = 2x = MF. Therefore the Sub-tangenta a
is juft the double of its correfponding Abfcifla AM :

Which we likewife know from other Principles,

E < EX-
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EXAMPLE III,

52. To draw a Tangent to a Parabola ofany kind.

The general Equation of thefe fort of Curves
being;

m n i-4-B ,
"* n i . m-^-n i .

a x =zy , we have na x x m + n X y j,
^ i ..

^ ,

x Bi+nX^ , yx
and therefore -r = _ ; ; whence -r- j^

v
m B j y

^ 72fl A1 *

a
(becaufe y

"
=: %") =:

IB a
na x na x- X x the true Value of the Subtangent : Which,

therefore, is to the Abfcifla, in the conftant Ratio of

m -{-
n to n.

EXAMPLE IV.

53. Tt draw a Tangent RT, to a given Ptint R, in a

given Ellipfts BRA.

If RS be an
Ordinate to the

principal Axis

AB, and there

be put (as ufual)

ABr:<7, and the

letter Axis = b ; we fhall, by the Property ofthe Curve,
have a* : b* : : axxr

(BS x AS) : / (RS*), and there-

fore Z>*X ax x^a^y
1

: Whence Fxax 2xx=:

and -7-= -.
-

. ..-
j and confequently the Sub-tangent

y b x 2x

Art.49- ST f _
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. Whence the Point T being given, through

which the Tangent muft pafs, the Tangent itfelf may
be drawn.

But if you would derive an Expreffion for the Sub-

tangent, in any other kind of Ellipfes (befides the coni-

cal) let the Equation a JP Xx"~ + X y" , exhibit-
"

ing the Nature of all Kinds of Ellipfes, be aflum-

ed : Then, by taking the Fluxion thereof, you will

i . vn I n . n i ,

have mx x a x\ x* + nxx x a x]

m }- n I VX
y y; and therefore

x m -f- n X y

m X a *) X x + nx

m + ny. a *) X *

n i --
.

xa x
(becaufe f- x

OT-fWXfl -

na
j which is the Sub-tangent required.

EXAMPLE V.

54. To draw a Tangent, to any given Point R, in a given

Hyperbola BR.

If a and r be put to denote the two principal Dia-
meters of the Hyperbola, the Equation of the Curve

be c*x.v+ **=*>* : From whence we have c* x

ax +
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t
* ayx J<2 $>

"
~r = T""",' '^7^1 and confequent-V r X /7 ^J v
^/ * ^N 2," ^r *

- ST -

Whence BT (ST

BS) rz ---
is alfo

T !B S known ; and there-

fore the Point T being given the Tangent RT may b%

drawn.
The Manner of drawing Tangents to all Sorts of

Hyperbolas, univerfally^ will be the fame as in the El-

lipfes, the Equations of the two Kinds of Curves dif-

fering in Nothing but their Signs.

EXAMPLE VI.

55. Let the prspofed Curve le that whofe Equation is

Then we fhall have 2axx -f- >**+ ixyy -f

O j therefore 2axx +y"x

., and confidently*? =" ] y

E X-
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EXAMPLE VIL

56. Let the given Curve be the Ciffoid of Diodes, whofe

Equation is / = ^=^.

?*?xXa x+ xx3
'^ax

ix^x*x
Herewehave lyy = ^ . . = .= ==. - :

Whence 4-= ^^" ^3, and confequently the Sub-

tangent f
J
= 2 '- x j~ 5 =:

IX X fl AT

.
EXAMPLE VIII.

57. irf /^ Conchoid 0/*Nicomedes be propofed; where-
of the Nature is fuch, that, if from a Point B, called

R

the Pole, any Number of Right-lines, BA, BR,
BR, fcf<r. be drawn, the Parts of thofe Lines CA,
vR, UR, Wt. intercepted by the Curve and its Axis
CT } (hall be, all, equal to each other.

la
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In this Cafe (fuppofmg AB and RS perpendicular,
and RH parallel, to CT ; and putting BC == a, Ri;

(AC) b, CSrr^r, and RS y) we have, per ftm,

. a+y (BH) : x (RH) :: y (RS) :
_ = Sv .-

But Sv (/RV- RS1
) is alfo = VP-f- j therefore

-
V/fi^f, or x\y*=a+y\'

t
X "^/ is the

fl*f"_y

general Equation of the Curve; which, in Fluxions,

gives ix^yy+ 2y
zxx= 2j xa+yx b* y

1

2yj X

X
i>* ay 2v

x
: and therefore -r- =s

y

confequently =

y X.

= 7 -- : Which being a negative Quantity, the
yVbbyy

Tangent will therefore fall on the contrary Side of the

Ordinate, from the Vertex j and fo, by changing the

Signs we {hall have
/

for the Sub-tanaent
y v bbyy

ST in this Cafe.

After the Manner of thefe Examples the Sub-tangent,
in Curves whofe AbfcifTas are Right-lines, may be de-
termined : But if the AbfcifTa, or Line terminating the

Ordinate, on the lower Part, be another Curve, then
the Tangent may be drawn as in the following

EX-
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EXAMPLE IX.

58. Let the Curve BRF be a Cycloid; whofe

Abfcifla is here fuppofed to be the Semicircle BPA, to

which let the Tangent PT be drawn (as above). More-
over let rRH be a Tangent to the Cycloid, at the cor-

refponding Point R, and let GR* be parallel to TPv ;

putting the Arch (or Abfciffa) BP=z, its Ordinate

PR=^, AF=, andBPAn;: Then, by the Proper-

ty of the Curve, we (hall have c (BPA) : b (AF) :: x

(BP) :y (PR): Therefore.? = -, and y = ~ = re :

But, by fimilar Triangles, re (j) : R^ (= Pv = ) : :

PR (y) : PH = ?= z(becaufe^=~).
There-

fore, if in the Right-line PT, there be taken PH, equal
to the Arch PB, you will have a Point H, through
which the Tangent of the Cycloid muft pafs.

EXAMPLE X.

59. Let BPA be a Curve of any Kind, to which the

Method of drawing the Tangent cPg is known j Jet

BRA
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ERb be another Curve of fuch a Nature, that the Or-
dinatc PR (y) (hall always be a Mean-proportional be-

tween BS (x) and AS (a x) fuppofing RPS perpendi-

*Art48cular to AB : Put Po = xy SP =v, oc = <i> *, and er

aad 49. = j : Then, f *w^ er (y) : Re (
= PC =,

Z!: But, by:: RP (y) : PH =

the Equation of the Curve ^*r=^A xx; whence 2yj z:

Jf 2AT-2*
2

* 2*-^, and n :
--. and therefore rrl =r

jr r
'

e exprefled i

ax ixx

pendent of Fluxions, when the Property of the Curve

BP/j, or the Relation of x and v is given : Thus, let

BPA b th common Paiabola, and AB its Lotus Rec-

tum
-,



in drawing Tangents*

turn ; then v being =: V ax, <v wm b _ ~- ax

ax

_? + ff _ ** x 4* + *
. and therefore PH

4* 4*

a x X v 4*
1
-\-ax^xx X

a ixax 2**

Thus far relates to Curves whofe Ordinates are pa-
rallel to eich other : We come now to Curves of the

fpiral Kind, whofe Ordinates all iffue from a Point :

Such as the Spiral BAG, whofe Ordinates CB, CA,
CG, are all referred to the Point C, called the Center

f the Spiral.

ILLUSTRATION.
60. Let SAN be

a Tangent to the

Spiral at any Point A,
alfo let CT be per-

pendicular thereto,

and let the ArchCBA
(confidered a variable

by the Motion of A
towards G) be de-

noted by z, and the

OrdinateCA byj.
Then z :y : : AC

Hence, if upon CA, as a Diameter, a Semi-circle be
defcribed, and in it, from A, a Right-line AT equal

yy
to y be infcribed, that Right-line will be a Tangent

to the Spiral at the Point A.

EXAMPLE I.

61. Let the Nature of the Curve CBA be fuch,

that the Arch CBA may be, always, to its cor-

refponding

7
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refponding Ordinate CA in a conftant Ratio ; namely
as a, to b : Then, becaufe z: y i: a: b

9 we have si =.

4, i = % , and confequendy AT (4-) =^ = A x' V 2 ' a

AC : Therefore, AC and AT being in a conftant Ra-

tio, the Angle CAT muft alfo be invariable. Which ia

a known Property of the logarithmic Spiral.

EXAMPLE II.

62. Let BAA be the Spiral of Archimedes ; whofe

Nature is fuch that the Part EA of the generating Or-

dinate, intercepted by the Spiral and a Circle BED de-

(cribed about the fame Center C, is always in a conftant

Ratio to the correfponding Arch BE of that Circle.

Suppofe An perpendicular to AC, &c.
Put BC Cj CA=^, and let the given Ratio of AE

to BE, be that of b to c : Then b : c : :yt (AE) :

T = BE : whofe Fluxion therefore is = r Now
b b

if
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if the Right-line CEA# be fuppofed to revolve about

the Center C, the angular Celerity of the generating
Point A, in the perpendicular Direction A, will be to

that of E as AC to EC ; therefore as the latter of thefe

Celerities is exprefied by
-

, the former will be ex-
*Art- 5

prefled by x y,
or'~: Which is to (y) the Celerity

of A, in the Dire&ion A<7, as - to Unity, or as y to

b. Therefore CT and AT are in the fame Ratio, (by
Art. 35) and confequently AC : CT : : V yy -+ bb :

y i and AC : AT : : / vy + bb : b ; whence CT and

y
1 hAT are given equal to , and rr r-n^r re-

Vyy + bb V yy 4- lb

fpeflively. From either of which (the Tangent AT)
may be drawn by Art, 60. And, in the fame manner

may the Pofuion of the Tangent of any other Spiral
be determined.

SECTION IV.

Of the Ufe of Fluxions in determining the

Points of RetrogreJ/ion> or contrary Flexure

in Curves.

:

63. T T THEN a Curve ARS is, in one Part AR
VV concave, and in the other Part RS con-

vex, towards its Axis AC, the Point R limiting the

two Parts is called a Point of RetrogreiTion, or con-

trary Flexure. The manner of determining which will

appear from the following

F ILLUSTRA-
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ILLUSTRA TION.

D D S

n,

n
n

Suppofe a Right-line BD to be carried along uni-

formly, parallel to itfelf, from A towards C ; and let

the Point r fo

move in that

Line, at the fame

time, as to trace

out, or defcribe,
the given Curve-
line ARS.
Then (by Art.

48.) while the

Celerity of the

Point r, in the

Line BD, de-

creafes, the Curve
will be concave
to its Axis AC ;

A. B B B C but when ic in-

creafes, convex to

the fame : Therefore, as any Quantity is a Minimum at

the End of its Decreale and the Beginning of its In-

*Art.22. creafe *, it follows that the faid Celerity, at the Point

of Inflexion R, muft be a Minimum : Whence, if the

fArt. 5. Fluxion of the Ordinate Br, exprefling that Celerity f,
be (as ufual) denoted by y j then willj' (the Fluxion

JArt.22. of y) be equal to Nothing in that Circumftance J.

So far relates to Curves which are, in the former

Part concave, and in the latter convex, to their Axes :

But if (on the contrary) the Celerity of r fait increafes,
and then decreafes, that Celerity, at the required Point,
between the Increafe and Decreafe, will be a Maxi-
mum \ and therefore its Fluxion (ory) is likewije equal to

Art.22. Nothing in this Cafe .

Furthermore, if CS (perpendicular to AC) be now
confidered as an Axis, and the AbfcilFa S (or its

Complement Br y] be fuppofed to flow uniformly,

(as AB was fuppofed before) ; then, by the fame Argu-
ment, the fecond Fluxion ( x) of the Ordinate nr

(or
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(or its Complement AB =. x) will be equal to Nothing.
Hence it is evident that, at the Point of contrary Flex-

ure, the fecond Fluxion of the Ordinate will become

equal to Nothing, if the Abfcifla be made to flow uni-

formly 3 and vice vtrfa.

EXAMPLE I.

64. Let the Nature of the Curve ARS (fee the pre-

teding Figure) be defined by the Equation ay a*x~* -f-

xx (the Abfcifla AB and the Ordinate Br being, as

ufual, reprefented by x and y refpe&ively). Then j,

expreffing the Celerity of the Point r, in the Line BD,
3 _JL

will be equal to - : Whofe Fluxion, or

3 l

that of la 1
*-

T
-f- 2* (be"caufe a and x are conflant)

muft be equal to Nothing
*

;
that is, ^a"-x~^x -f- 2* *Art.6j

= : Whence <?*/"* = 8, a* = 8*% 64*' = a1
, and

- - \
* = |a = AB; therefore BR

(
= ****+.**

j
-, 9

a s
From which the Pofition of the Point R is given.

EXAMPLE II.

65. Let the Nature of the propofed Curve be defined

by the Equation ayy aax x9 rz o.

Then, by taking the firft and fecond Fluxions thereof

(fuppofing x conftant) we (hall alfo have zayy aax

2**x = o, and lay* + iayy bxxx = o ; whereof the
latter, when y is zr o, becomes Zay

1

6xx* =: o, and

therefore/ = 3-fL; But, by the former y=.
* ^* *

.

a *. oav >

a^x -4- "ixx \whence
PJ- =: = x 9 and confequently

F 2
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zr a* + -x'}
*

; but, by the given Equation, izaxy
l =r

12*V -f 12**, therefore I20V* + 12^* =: a
1

-j- 3*'{
or 3-v

4
4- 6^A-a fl*= o: Wherice * will be found =

_^__

Since
<7y* = <?V + ,v

s
, we have y = ' anc*

: Whbfetherefore y

Fluxion^ or that of- a
i+ ^x

r X a*x + x 3

)~~
i

( becaufe

x is conftant) being put o, we get 6x x aV -f A-
3
!

+ ^+3*
i x "^ |y

a
x g^ -}- ^

3
7 * = o, or 6x x

Fx
a 3 'Y

: Whence 3*?
4 -f6a

2
Ar*

a* =. o, and ^ rr ^V : V ^ ij the fame as be-

fore.

EXAMPLE III.

66. Let the propofed Curve be the Conchoid of Ar
;'-

(omedes9 whereof the Equation is x*y* =: a + y^ x

Art-57. b* i
a *. or x* =. r -^-.* * *-

Here
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.

Here we have awn:

Jg* X +" X J*/

a o nb

5 1 a y x y : Whence, making y inva-

'ifl^b
3"

"iab
1

nable, we alfo have x +xx
'

-f- i x j
1

:

Which, becaufe A? is = o*, will be x
1 = ^ h 1

Art.6j.

r V*

X j*. But fmce, by the
Y

r IT a V a v
former hquation, xx =.--^-- ^L

x^, we like-

r
"^^^~"^^~~

^

wife get ^* = f > X g +^ x ^ and confequent i v

%a
ibi+2aKi

'y _y*x AT*/ a-f->l XS^t*/j : But, by
the Equation of the Curve x^* is &-\-y] X ^

1
v
x
;

therefore 3g^
1
-j-2^

a
> _y

4 X c -f^1* x ^
l

y* =r 0+^*
X atf" +>

3
1% and 3<?^*+ 2fl/'

a

y ^
4 xil

^r

a
atf'-^y*)*'

whence/ + 4<7/ -f $a~y*2ab
1

y 2a*b
1- = oj which

divided by 7+0, gives / -f- 3^y
z 2^ = o ; from

whence
jr may be determined. But ifbay the Equa-

tion will become more fimple by dividing again by
y+ a-, in which Cafe we get >*-f 2ay ^aL

=: o, and
confequently y =: a^/ 3 a.

EXAMPLE IV,

67 . Let a+y =. i Sca3x* 1 1 oa
i
x3+ 300** 3**.

Then will a*j = ^6oa
3xx 330^**;* 4- \2Oax3x

F 3 And
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And a*J =r 36c*
3** 66co sxi* -f

Art.6j. Therefore, 6a 3
1 !**.*+ 6**'- *3 = o :

Which being divifible by any one of the three Quan-
tities a *, 2a *, or %a *, the Root * muft there-

fore have three Values, a, 20, and 3^, and confe-

quently the Curve, denned by the given Equation, as

many Points of contrary Flexure.

But, if you would know whether the Part of the

Curve lying between any two adjacent Points, thus

found, be convex or concave towards the Axis ;
fee

whether the Value of the Exprcflion for the fecond

Fluxion of the Ordinate, between the two corr fpond-
ing Roots, b r>iitive or negative : For, in t.ie former

Art. e Cafe, the Curve is convex, and in the 'atler concave f,
and 48. (provided the whole Curve lies on the fame Side the

Axis). Thus, in ihe Example before us ; becaufe the

fecond Fluxion of the Ordinate is a ways as 6a3 liaax

+ 6axx x3

(
=. a^x x 'ia * x 3* x) and it appears

that the Value of this Expreflion, while * is lefs than

the firft.lJ.oot fl, will be pofitive ; the Curve, there-

fore, at the Beginning, will be convex to its Axis :

Hut when x becomes greater than a, the faid ExprelTion

being negative, the Curve will then be concave, and fo

continue 'till x is equal to the fecond Root la ; after

which the Fluxion again becoming affirmative, the

Curve will accordingly be convex till * $a ; beyond
which Limit the Curvature continually tends the fame

Way.
But it will be proper to obferve, that there are Cafes

where the fecond Fluxion of the Ordinate may become

equal to Nothing, without either changing its Value
from pofitive to negative, or the contrary, (fimilar to

thofe already taken Notice of in Sefi. II. p. 45 and 46.)
which Cafes always happen when the Equation admits of
an even Number of equal Roots : And then the Point

found as above is not a Point of Inflexion, becaufe the

Curvature on either Side of it tends the fame Way.

SECT.



SECTION V.

The Ufe of Fluxions in determining the Radii

of Curvature, and the Evcfates of Curves.

68. A Curve /.OH is faid to be the Evolute of ano-

jtlL ther Curve ARE, when it is of fuch a Na-

ture, that a Thread ROH, coinciding therewith (or

wrapped upon the fame) being unwound or difengagod
from it, by a Power acting at the End R, ihall, by
that End (the Thread continuing tight) defcribe the

given Curve ARB.

ILLUSTRATION.
From the Point O, where the Right-line RO (called

the Radius of Curvature) touches the Evolute />OH,

B

let the Semi-circle SRD be defcribed ; which Semi-

circle, having the fame Rar.ius with the given Curve,
at R, will confequently have the fame Degree of Cur-
vature. But the Curvature in two Curves is the

fame, when, the Fluxions of their Abfciflas being the

fame, both the Firft, and Second Fluxions of their

F
4. cor-
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correfporHing Ordinates R and RAH are reflectively

equal : j^ch ether : For, the Firft Fluxions being

eq"ui, -he two Curves will have, at the common Point

*Art.4S. R, r-.j and the kii.. Tnn^ent tRh *: And, if the Se-

cond Fluxions be likewife equal, the Curvature, or

Deflection from ihat Tangent, will alfo be the fame in

both ;
l-o-'.'ife thefe laft exprefs the Increafe or Decreafe

fArt.ig. of Motion in the Direction of the Ordinate f, upon
JArt.48. whic ;

. ; Curvature intirely depends J.

Thi; t:eing premifed, let the Abfcifia Sm of the Semi-
circle (confidered as variable) be put = w, its Ordinate

Rmvt Rrrrw, rhw^ and R^rza;: Then, R/; be-

|jArt.48.$ng a Tangent to the Circle at R
||,

the Triangles R/;r

and ROw will be equiangular, and therefore ay (Rr) :

1}%
x (RA) :: v (Rtt) : RO = --

j which, becaufethe
CW

Radius of every Circle is a conftant Quantity, muft be

. .. vx-t-vZ
invariable, and conlequently its Fluxion :

:

Whence v is found rr ^- =; (becaufe, w being
z v

conftant, and ob* -f ^ = % we have, in Fluxions

,
. t

ii%. z 1
\

ivv 2-^ and to ~= r:
).

Therefore hnce^ is =
~v/

*
, r iC/-v or>f'v*\ ^ v-+ <w*]?

-,wealfogetSO=:RO I -r } r-rrrr ... :

i)
\ *w s ay 11 iv if

Which laft is a general Expreflion for the Radius of any
Circle, \vhatever, in Terms of the Fluxions of its Ab-
fcifla (w) and Ordinate (v). But, by what is premifed

above, thefe Fluxions are refye&ively equal to thofe of

the Abfcifla An (x) and Ordinate R (y) of the pro-

pofed Curve ARB. Therefore, by writing x, j, and
j>,

2.
|^ ,

- X. S ,"3 \
inftead of ov, y, and i- , we have y +-< l

(
_ ' z

j

*y > -H*f^
for the general Value of the Radius of Curvature, RO.

6 37*
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The fame ctherwife.

If the Radius of the Circle be put = R, and every

Thing e!fe be fuppofed as above; then (by the Property
of the Circle) we (hall have v 1

(Rra*) = 2 Rw vf"

(S^xD-Tz) : Whence, in Fluxions (making w conftant)

we get 2v-i> 2Raw iww, and 2v*+2v'v = 2iw*:
T. I i

From the hift of which Equations v is found
V

1>

*? r i T> ^ (VX- \ Z-
3 %3

r.
;
and confequently RO I )

~ .... -.
v V ov / w v x'j

the fame as before.

Otberwtfe without the Circle.

Let RO and rO be two Rays perpendicular to the

Curve, indefinitely near to each other ; and from their

Interfeftion O, let OF be drawn parallel to A, cut-

ting R and AF (parallel to Rw) in E and F.

Therefore, fuppofing RErrv, An=x, Rn=y, &c.

(as before) we fliall have, by fimilar Triangles, as RP

F K O

(x) :Pq (y) :: RE (v) : EO =: ?; and confequently

FO (A + EO) =x+
-j:

Which Value (as well as

that
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that of AF) continuing the fame whether we regard the

Radius RO, or the Radius rO, its Fluxion muff there-

fore be equal to Nothing ; that is, x+

X
=: p ; whence v = -rr r;. , and confequently RQ

yx xy
' 3

_ , . ,

: Which, if*
Xy yX Xy yX ;

z 3

is fuppofed conftant, or x = o, will become n. as

alovt.

But ifj be fuppofed conftant, it will be -~~. And,
xy

if x be conftant, it will'then be ~: For, fmce ? -f jr*

**, by taking the Fluxion thereof, we have 2^'-f
XX

2j>'no; whence j'
-

; and therefore RO (=
. . y

K,
3

j
J

)'g

rrr. = t=r- ^-7 9 as before.
mjfyj tf v *, -. *.. -U ' -*

Now from the feveral Values of the Radius of Cur-
vature RO, found above, the cortefponding Values of

Ae and *O will likewife be given.

Thus, if x be made conftant; then, RO being =;

& 3
v

'

, we (hall have Ae (A*+OrasA*-f 4 X RO) =
*y .

'

z

Ar-f-^'and^O (Rw R=4 xRO R) =
xy 2 '

y
y-

l

But, if^ be made conftant, then, RO being = -fr,

2 **
we fhall have AE rz x -f , and ^O = -rr- y.

AT J* *

Laftly,
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Laftly, if z be fuppofed conftant ; then RO being
vx y xy
'

-, we fhall have A* =: x 4- , and eO = y.3 ' x x J

Which feveral Expreffions will ferve as fo many ge-
neral Theorems for determining the Quantity of Cur-

vature, and the Evolutes of given Curves : But, before

we proceed to Examples, it will be proper to obferve,
that the Right-line A/>, denoting the Radius of Curva-
ture at the Vertex A (to be found by making *, or j,
== o) muft always be iubtra&ed from RO and A*, to

have the true Length of the Arch ^O, and its corre-

fponding AbfciiTa/**.

EXAMPLE I.

69. Let the given Curve ARBbethe common Parabola,ii
i_

i

whofe Equation is y = a*x* : Then will y =a*xx *

ax
, and (making;*- conftant) y ^

2**

Whence
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and the Radius of Curvature RO
*

*}'

Which at the Vertex A, where x=o, will be a =

Ap. Moreover A* (*+ ~
J {a + y, and there-

fore /<r (Ae Ap} 2#, the Abfcifla of the Evolute :

Likewife Oe ( v)
-- the Ordinate of the

V y ya
Evolute. Therefore, (5^)* x a being in a conftant Ratio

to^Tj
3

, namely as 16 to 27, the Curve is, in this

Cafe, the Semi-cubical Parabola : Whofe Arch pO

(RO Ap} is alfo given =

E X A M P L E II.

70. Let the Curve ARB denote a Parabola of any

oiher Kind : Then, becaufe y =. ax" is an Equation to

all Kinds of Parabolas, we have y nax" x and y =

n x i x ax x- : Therefore z (v/^+j
1
) =:

MV*"*, RO

A^
(
X + i

1 X nax

Which, if =4, will become - ^ ; but, if be

greater than 1, it will be = o j and, if be lefs than 1,
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it will be infinite : Whence it appears, that the Radius
of Curvature at the Vertex will be a finite Quantity in

Curves whofe fifft (or leaft) Ordinates are in the Sub-

chiplicate Ratio of their Abfciflas, and in all other Cafes,
either Nothing, or Infinite.

EXAMPLE III.

71. Suppofe the given Curve to be an Ellipfis ; whofe

Equation (putting a and c for the two principal Dia-

meters) is di

y
i

c
1
X ax x*.

Here, by taking the Firft and Second Fluxions of the

given Equation, we have zafyy fx x a 2*, and

2fl*^
2 + ia

l

yy c^x x 2* 2c**
x

j whence y

-, and y =
ay

t
VA;a

: Which, by fub-

ftituting the Values of y and J-,
will became y z=

x ax xx x ac\/ax x1

-, and the Radius of
ax x~

Curvature
(- jj =^>+ g* t'x^-^l*. Which

2<7 <:

when the Diameters a and r are equal, or the Ellipfis
degenerates to a Circle, will be every where equal to

, or la i agreeable to the Definition of a Circle.

EX-
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EXAMPLE IV.

72. To find the Radius of Curvature^ and the Evoluie
fff

the common Cycloid.

Let ARB be the given Curve, and AOH its Evolute;
alfo let R and OS be parallel to AC, and eO and R*

H
perpendicular to AC; and put ARB (irzBC) =d,
AR = z, An A-, and Rn =y : Then BR r=<z z, B= -s y>__ and, by the Property of the Curve, a*

(AB
a
) : ^^zf (BR

1
) : : fr ( BC) : a y (

B^ )

2^z z1 ax zz.
whence y =. ; therefore y =: . z >

la a J

(-*) = , and x =. .. Whence

(making z conftant) A: = : ,-i from which
a
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we get RO, or AO (
-

)
= y^az z% and rO,

V X J

or AS (
:= y) = ; which, when z =. a,

or ROH coincides with BH, become AOH (BH) = a,
and CH (AG) =i#. Hence, becaufe it appears, that,

AH)
1

(a*) : AO* (2*2 za

)
: : AG (*) : AS

(2rfZ

Z 1
\

) it follows that the Evolute AOH is alfo a
2a '

Cycloid equal, and fimilar, to the Involute ARB.
If the Evolute had been given, or fuppofed, a Cy-

cloid, and the Involute required, the Procefs would have

been, more fimple, as follows,
Let AH (aAG) = a, AO (=RO) = z, AS = *,

SO =
_y, BR = v,

B = w, Rr = i, R/ = w, fcftf . Then
it will be f,

j : i
( : : Ow : OR) : : R/ (,; : Rr = ^5.

z^
s :_y .' : z (RO) t O/w -r->

:* :: z (RO) : R = ^?,
2

Whence we have <y = ~, R (Rw AS)=^ A-,

2V
and An (OS O/n) = y f j which Expreffions an-

fwer to any Curve whatever.

But, in the Cafe above propofcd, AH 1
(a

1

) : AO*
X

{z*) : : AG (1<7) : AS (*) } therefore * =
, x = ~ f

i

j and
confequently R

c
'

Whence
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,.,, , r
a*

Whence alfo w

Artj.

^a
and <u { J

\ y

Therefore it will be -y : w
(: : a :

V 2aw

V\a : -v/ w ; that is, as Rr : Rf : : V/BC"

Which is a known Property of the Cycloid.
Hitherto regard has been had to Curves where the

Ordinates are parallel to each other : But when the Or-
dinates are all referred to a given Point, as in Spirals,
fs'c. other Theorems will become neceflary ;

and may
be thus derived.

73. Let ARB be the propofed Curve, P the Point,
or Center, to which its Ordinates are referred, NOL

the Evolute ,

and R O the

Ray of Cur-
vature at R :

Moreover, let

PH be perpen-
dicular to RO;
and, fuppofing
the Ordinate

PR (y) to be-

come variable

by the Motion
of the PointN

noted by z and p refpe&ively.

R along the

Curve, let the

Fluxions ofAR
and PH (p) t

expreffing the,

Celerities of
the Points R
and H in Di-
rections per-

pejidicular to

ROT*, be de-

Therefore,
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Therefore, the Celerities, of any two Points, in a

Right-line revolving about a Center, being as the Dif-

tances from that Center, it follows that p : z :: OH :

OR ; whence by Divifion (putting RHna) we have

y~ vpx D .

i-p : i st , (RH) : RO =^ = : B-V

^yvv

= yy (by Art. 60.) and therefore RO == --r ;

yypp
which, becaufe^* /* is = v* (and therefore^ pp z;

_, -M ir u
vyy yy

w] will alto be r z: -r-.

'the fame cthenvife.

Let SRD be a Circle defcribed about the Point O,
as a Center, and fuppofe the Diftance PR to be variable

by the Motion
of the Point R ^ ..*- T
along the Arch
of the Circle

(inftead of the

Curve) : Then,
drawing O P,
and putting OR
=r, PR =y, bV.
as before, we c^ ^lk '"""A
ihall get OP1

(OR'-fPR* 2OR xRH) = r*+/ 2rv; which

(as well as r) being a conftant Quantity, its Fluxion

2yj ir<v muft be equal to nothing ; and therefore r :=

*y

-r, the very fame as above. Nor is it of any Con-

fequence whethery and v be here looked upon as refpet-

ing the Circle, or the Curve ; fince, at R, they muft be

the fame in both Cafes ; otherwife the Curvature could

not be the fame *. Now from the Value of RO thus *Art.6S.

found, which (corrected, when neceflary) will alfo ex-

prefs the Length of the Arch NO of the Evolute J, jArt.63-

the Ordinate PO and the Tangent OH of the Evolute
G may
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if

may be eafily deduced. For OH (RO RH) = 4?

;., andPO (=
V >U

whence the Nature of the Evolute is known.

EXAMPLE I.

74. Let the given Curve AR be the logarithmic

Spiral, whofe Nature i: luch, that the Angle PRQ. (or

RPH) which the Ordinate makes wiih the Curve is

every where the fame.

Then (denoting the Sine of that Angle by b, and

by
the Radius of the Tables by a) we have RH (v) ~p

f yy \ &yy &y
and therefore RO ( ) = -77 = r; which bein<*

v i/ / by b

to PR (y) in the conftant Ratio of a to , or of PR to

RH, the Triangles ROP and RPH muft therefore be

fimilar, and fo the Angle POH, which the Ordinate
PO quakes with the Evolute, being every where equal
to PRQ_, will likewife be invariable. Whence it ap-
pears that the Evolute is alfo a logarithmic Spiral,
fimilar to the Involute j and that a Right-line drawn
from the Center, perpendicular to the Ordinate, of any
logarithmic Spiral, will pafs thro' the Center of Cur-
vature.

EXAMPLE II.

75. Let the Curve propofed be the Spiral of Archimedes;

by y*
where we have p -7 ~, and v ,

Yyt+ b* v y~

(fee Art. 62.) Therefore v r=
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y X lyy X f+JF\

lyy X y* -f- ^* T
3
V _

whence the Radius or

Curvature f is here

=jjjg>
Which being =-*, Mlt,j;

whence, the Arch of the Evolutef, reckoned 'from

yv 4- bbv- b
the Vertex, is therefore =r ~

2

After the very fame Manner you may proceed in other

Cafes : But if the Value of -v (dr =-r J changes, in any

Cafe, from Pofitive to Negative, the Radius of Cur-

vature (RO) after becoming infinite, will fill on the

other Side of the Tangent, and the correfponding Point

of the Curve, when v o, will be a Point of Contrary-
Flexure. Whence it may be obferved that the Point

of Infie&ion, in a Curve whofe Ordinates are referred

to a Center, may be found by making the Fluxion of

the Perpendicular, drawn from the Center to the Tan-

gent, equal to Nothing, which Cafe is not taken Notice

of in the preceding Section.

G 2 S E G-
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SECTION VI.

Of the Inverfe Method, or the Manner of de-

termining the Fluents ofgiven Fluxions.

76. TN the Jnverfe Method, which teaches the Man-
[ ner of finding the refpe&ive flowing Quanti-

ties of given Fluxi ns, there will be no great Difficulty
in conceiving the Reafons, if what is already delivered

in Sefl. i. on the direft Method, has been duly con-

fidered : Though the Difficulties that occur in this Part,

upon another Account, are indeed vaftly fuperior.

It is an eafy Matter, or not impoffible at moft, to

find the Fluxion of any flowing Quantity whatever;
but in the Invcrfe Method the Cafe is quite different :

JFor, as there is no Method for deducing the Fluent

from the Fluxion a priori , by a direct Investigation, fo

it is impofiible to lay down Rules for any other Forms
of Fluxions, than thofe particular ones which we know,
from the direct Method, belong to fuch and fuch kinds of

flowing Quantities. Thus, for Example, the Fluentof 2xx
is known to be #", becaufe it is found in An. 6. and 14.
that 2xx is the Fluxion of x~ : But the Fluent of yx is

unknown, fince no Exprefllon has been difcovered that

produces yx for its Fluxion.

77. Now, as the principal Rule in the direfl Method
is that for the Fluxions of Powers, derived in Art. 8.

(where it is proved that the Fluxion of x is, univer-

fatly, exprefied by nx x) ; fo the moft general

Rule, that can be given in the Inverfe Method, muft

be that arifing from the converge thereof > which Jhtws
hnu to ajjign the Fluent of any Power of a variable

Quantity drawn into the Fluxion of the Root j and which,

exprefled in Words, will be as follows.

Divide by the Fluxion of the Root, add Unity to the

Exponent of the Power, and divide by the Exponent fa

incrcafcd.

For,
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For, dividing the Fluxion nx
n
"~*x by * (the Fluxion

of the Root x] it becomes nx*~*\ and, adding I to

the Exponent (n i) we have **} which, divided by

tf, gives *", the true Fluent of nx , by Art. 8.

Hence (by the fame Rule) the

Fluent of 3;
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Index by Unity, and dividing by (n-f i) the Index Co

uicreafed, there comes out

After the very fame Manner the Fluents of other

Expreflions may be deduced, when the Quantity,
or Multiplicator, without the Vinculum is either

equal, or in a conftant, Ratio, to the Fluxion of the

Quantity, urvder the Vinculum : As in the Expreflion-m

a+ cz"
1

' X dz~~*x \ where the Number of Dimenfions

of z under the Vinculum (or general Index) being equal
to thofe of z without the Vinculum 4- i, the Fluent

may therefore be had, as in the preceding Examples}
,m4-i

a + cz> x d
and will come out-- . : And, that this (or

flf X / 4- i

any other Expreflion derived in like Manner) is the true

Fluent will evidently appear, by fuppofing x equal to

a + cz" the Quantity under the Vinculum ; for then

(equal Quantities having equal Fluxions) x will be

Art. 8.
= *cz~*x *

; 'and confequently a+ c* x dz
" *

(=*
w

x I =- ; whofe Fluent is therefore
nc / nc

4-
d
"

.__d
}Art.77 .

-
-I -

v- , as before.

78. In aligning the Fluents of given Fluxions there

is another Particular th^t ought to be attended to, not

yet taken notice of
; and that is, whether the flowing

Quantity, found by the common Rule, above deli-

vered, does not require the Addition or Subtraction of
fome conftant Quantity to render it complete. This

9 indeed
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indeed can, only, be known from the Nature of the

Problem under Confideration ; but that fuch an Addi-

tion or Subtraction may, in fome Cafes, become ne-

ceflary is evident from the Subject itfelf ; fmce a flow-

ing Quantity increafed, or decreafed, by a conftant

Quantity, ha* ftill the fame Fluxion ; and therefore the

Fluent of that Fluxion is as properly exprefled by the

whole compound ExprefEon, as by the variable Part of

it, alone : Thus, for Inftance, the Fluent of nx"~
l
x may

be either reprefentcd by *" or by #"-[^<7,becaufe(rf being

conftant) the Fluxion of x* ^<7, as well as of xn
, is

n i

nx

70,. Hence it appears that it is the variable Part of

a Fluent only which is aflignable by the common Me-
thod ; the con -ant Part (when fuch becomes neceflary)

being to be afcertained from the particular Nature of

the Problem. Now to do this, the beft Way is to con-

fider how much the variable Part of the Fluent, firft

found, differs from the Truth, in that particular Cir-

cumfrance when the required Quantity which the whole
Fluent ought to exprefj, is equal to Nothing }

then

that Difference, added o, or fubtraded from, the faid

variable Part, as occafion requires, will give the Fluent

truly corrected : For, f;:ice the Difference of two Quan-
tities flowing with the fame Celerity (or having equal
Fluxions) is either, Nothing at all, or con/iantly the

fame, the Difference in that Circumftance will like-

wife be the Difference in all other Circumftances : And
therefore being added to the lefler Quantity, or fub-

tracted from the greater, both become equal.
80. To render what is above delivered as familiar a.s

may be, I {hall put down a few Example? ; in which
the variable Quantities rcprefented by * and v are fup-

pofed to begin their Exiflence together, or to be gene-
MteJ, at the fame time.

G 4 I. Let
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1. Lety cfxx j then the Fluent, found as ufual,
*V* *V

,

will be y -:
j where taking y =: o, alfo va-

-- 2

nifties, (becaufe then xo by Hypothefis) : Therefore
the FJuent requires no Correction in this Cafe.

2. Let y =. ~a+ x\ X x : Here we firft have y =

i but when v o, then becomes =
4 44

(fince x by Hypothefis is then o :) Therefore
"

1* a*a
.. always exceeds ^by ; and fo the Fluent pro-

4 4
.4-

perly corrected will be y f Zlf_ fi
1

jf 4- 3 x

4 2
#*

But the very fame Fluent may be otherwife found,
without needing any Correction : For the given Equa-

tion -- a+ *l x A-/, by expanding a+ x] , is tranf-

formed to j=. a
3x -f $a~xx+

r

$ax
tx+ x 3x ; whence ^ =;

?V A-*

^3^ i ^2
}. ^7^3 ^_ j the fame as above.

2 4

Hence it appears that the Fluent of an Expreffion,

found according to one Form, may require a very
different Correction from the Fluent of the fame Fluxion

found according to another Form.

T

3. Let y a
1

*-
z

l

l X xx j then, firft, y =
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= j therefore
* ~~ *

is too little by ^p
a3

and fo the Fluent corrected will be y
- .

3
^ _ ^

4. Let y-=.<T+ .v"l X x
m~~*

x : Here we

- iJL_= 5 and making _y
= o, the latter Part of the

m

^1 nn+m
Equation becomes = a

; whence tho

Equation, or Fluent, truly co/rected is y r:-,n+I
" **

W X + I

5. Laftly, let j = a -f

mbx
m I

x+ w.v" ^ ; then, in the firft Place, we have^y

m "

g Y +CJ>r
j which corrected, as above, becomes

p+1

,
m *4-l

g+kc -{-ex I a
r

y -
p + I

8 1 . Hitherto x and y are both fuppofed equal toNothing
at th" fame time; but that will not always be the Cafe

in the Solution of Problems. Thus, for Inftance,

though the Sine and Tangent of an Arch are both equal

toNothing when the Arch itfelf is equal to Nothing, yet
the
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the Secant is then equal to the Radius : It will be proper
therefore to add an Example or two wnerein the Value
of y is equal to Nothing, when that of x is equal to any
given Quantity a.

Let, then, the Equation y x
r
x be hrfl propofed ;

x 3

whereof the Fluent (firft taken) is y ; but when

x 3
a*

y = o, then = , by Hypothefis j therefore the
' j

x* a 3

Fluent, corre&ed. is y rr .

3

Again, let the propofed Equation be j =r x x ;

+i
then will v = ; which corrected becomes y

+i
n-f-I 4-I

a x

Laftly, let y c
z

-f- bx~Y X xx\ then, firft, y =3

3

^
j and, when j = and x = *,

f
3

comes = C "^ '

: therefore the Fluent corrected is

3*

82. All the Examples hitherto given relate to fuch

Fluxions as involve one variable Quantity only in each

Term, whofe Fluents are afiignable from the Converfe

of the firft General Rule, in Seftiea I. But, befides thefe,

various other Forms of Fluxions may be propofed, in-

volving two or more variable Quantities, whofe Fluents

may alfo be fcund by Help of the other two General

Rule*- delivered m the fame Section.

Thus
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Thus the Fluent ofyx + xj is exprefled by xy* j thatArt.io.

Z- f j that of ax + xj+yx by ax+ xy %
;.j.Art. I3.

and that of wyy + y x n*x xX y"x-ax
* ^7

__H-W
n

"\~~m~mxyx-ax\ . f diyidin
/
in the Jaft

the Fluxion of the Root y x ax , which (by Art.

rti n n1
14 and 15) is nxy j+y x nax xt we nrft have

"
1

yx ax"\
m

; whence, adding Unity to the Exponent

~, and dividing by the Exponent fo increafcd, we get

p+m
m

ent of the Quantity proppfed.
But it feldom happens

that thefe Kinds of Fluxions which involve two dif-

ferent variable Quantities in one Term, and yet admit

pf known, or perfe#, Fluents, are to be met with in

Practice : I fliall therefore take no further Notice of

them in this Place (but refer the Reader to the fecond

Part of the Work) my Defign here being to infift only

upon what is moft general and ufeful in the Subject ;

which b-ings me to further confider thofe Forms of

Fluxions, involving one variable Quantity only, that

frequently occur in the Solution of Problems, whofe
Fluents may (after proper Transformation) be found,

by the Rule already delivered in Art. 77.

83. It
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83. It has been already hinted, that if a Fluxion of
m

the Binomial Kind, as a+ cz
'

x dz i, has the In-

dex (n i) of the variable Quantity (z) without the

Vinculum -f I, equal to () the Index of the fame Quan-
tity under the Vinculum^ the Fluent thereof may be then

truly found by the forementioned Rule. But the fame

Observation may be farther extended to thoft Cafis.

where the Index without the Vinculum increajed by Unity
is eyial

to any Multiple of that under the Finculum ; as

in the Expreffions, a+cz* X dz" z, a -f cz'\ X

|W

dz
V ~*

zt a + <' X ^z 4*"" 1

^,^. Whofe Fluents arc

thus determined.

* XQ - K I

Put/7+cz ^:jr, then will 2; -, and?;z x.

* an(^ therefore z =* Art.S.

i whence by Subftitution we get a -f-

_ ,

d x
x xax x

nc TIC

Whofe Fluent (by Art. 77.) is therefore = = X
nc

W-j-2 W-pI---
; which, by reftoring the Value of x.

m+2 m + I

becomes ,
X
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a+ cz
X m+ 2 m+i

cz

W + 2XW+I ; thetrue Fluent of
^nl

az %.

m

Again; for the Fluent of a + cz"i x dz^'~
l

z t be

caufe z"* = -I, and 2"- ^Zf, we have z 3*" 1*

Wf C

nc

i w I

Whence, + fz"' being r: .* , we get-f rz ' x

. w '

efz z= dx x
luxx

f-f-I tr. .

2fl.v .V+ O'AT A- ; whofe Fluent is there-

, <* x
fore x

m+i
dxa+

m -f 3 m+

z lacz

J **'* I j + 3X
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Univerfat/y, let r denote any whole pofitive Number
l

whatever, and let the Fluent of a+ czl xflfc'*"'
1

* be

required; then, by putting a+ cz =xy and proceed-
ing as above, our propofed Fluxion is transformed to

J n
~ r Iax x >

r r i
' x xa\ ; which, expanding x a\

nc

( by the Binomial Theorem ) becomes x
M

i x ta *+ r i x

r. tfhofe Fluent is therefore = x
nc

r rri* ax
_j_

r ix r7. x a *x
-r 2

2

Where, r being a whole pofitive Number, the Mul-

tiplicators i,r l,r i X r 2,r I X r 2 X r 3,^r.
will therefore become equal to Nothing, after the r firft

terms
;
and fo, the Series terminating, the Fluent itfelf

will be truly exhibited in that Number of Terms : Ex-

cept when IB 4- r is likewife a whole pofitive Number,
lefs than r ; in which Circumftance the Divifors m+ r9
m+ r i, m+ r 2, &V. becoming equal to Nothing,
before the Multiplicators, the correfponding Terms of

the Series will be infinite. And in that Cafe the Fluent
is faid to fail, fince Nothing can then be determined

from it.

84. Be-
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84. Befides the foregoing, there is another Way of

deriving the Fluent of a -f cz x dz z, in Term?
of the original flowing Quantity z ; which will afford a

Theorem more commodious for Practice than that above

given : The Method of Inveftigation is thus.

Let dxa+cz n

&V. (where />, i/, A, B, C, &V. denote unknown, but

determinate, Quantities) be aflumed for the Fluent

fought : Then by taking the Fluxion of the Quantity fo

afTutned we (hall have

py

j
fff A P~*U p~"2i*&

z X-f cz"\ xAz 4-Bz -f Cz 4-

l+I
""

/.-I

Dz fcff. -fdXa+ cz ' *MZ z + p v X

z+p2vxCz
f l

z &c. which being put
*Art -8 - IO

"

\
m

71 I
*"" - *

equal to the given Fluxion, a+ cz X dz c, and-
)"

r
l

x

the whole Equation divided by a + cz
' X dz , there

comes out

p-v p-l-v
2
p

-fCz +Dz !*<' ?
^.2W

> _ z
! feV. Jx/Az 4-/> i

Whence, by colleding the Coefficients of the like
Powers of z, we have

?

-

i=0
z + paAz

Where, comparing p+ n and rw, the two greateft Ex-

ponents of <x, we find p~rn nr I x ; and by com-
paring the two next inferior Exponents/* 4- n v, and/,we

likewife
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likewife get v n ; which Values being fubftituted

our Equation is reduced to

"

Where, putting m+ r=s, and comparing the Coeffi-

cients of the homologous Terms *, we have A r=

i _ r i XaA r IX
*

r I x r 2 X r -2 x a3

- ==- - -- '

4 > &c. Vc.
s x s ix s a x s 3 x nc

which Values, with thofe of p and v, being fubftituted

in the aflumed Fluent, it becomes d~>

rn n rn in
'

, rn in
z r I X az r i x r lY.az

SX S--IXS 2Xf*
rn in

"

of

n~~ l

zi which was to be determined:

Which Fluent therefore, when r is a whole pofitive

Number, will always terminate in as many Terms as

are expreflcd by that Number; except in that particular

Cafe, fpccificd'in the laft Article^ Thus, if r2, or

the

Vid. p. 1 8 1 of my Treati/e of Algebra.
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the given Fluxion be tf-f-<rz"' X dz"" * ; then, i

(w-fr) being w-f 2, the Fluent itfelf will become

which is exactly the fame with

the firft of thofe found in Art. 83. by a different Method.

The like Agreement will likewife be found, when r

{5 = 3: But when r, either denotes a broken, or a

negative, Number, the Series for the Fluent will theft

run on to Infinity \ becaufe no one of the Multiplicators

r -i, r 2, r 3, r 4, &c. can in that Cafe be

equal to Nothing.

85. The foregoing Fluent, ift may be obferved, was

found by afluming ^Xfl-f-fz"! xAz -f Bz -f-Cz

&c. and comparing the two greateft Exponents, of

the Equation thence refulting : But if, inftead of

p ft -z; 6 ~2<z/ P
Az +Bz -fCz &c. an afcending Series, as Az

-J-

Bz -fCz &c. (where the Exponents of z con-

tinually increafe) be taken, and the two leaft Indices

of z in the Equation (in like Manner refulting) be

compared together, the fame Fluent will be had ac-

cording to a different Form, which will be of good Ufe
in many Cafes, when the foregoing fails, or runs out into

an Infinite Series.

Thus, ifp + v, p-+-2v, &c. be wrote in the Room
of p v, p 2v, &V. refpe&ively, in the firft Equation
of the laft Article, it will appear that

H
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z -fp

Which Equation may be reduced to

T
I

___

J

-

+p 3
"

+P+v i

Where, by comparing the two leaft Exponents,^, p

will be found =. rti, v a ; A = ; B =:

pa rna

p-\-nxm-4-tKcA . r + w;-fiX<:A

vxa r+ i x na

Therefore, denoting r+w by s (as above) the Fluent of

,

rf-f-rz
' X dz" x, will f^j be truly represented by

rn ~~~

.WTI js J 4" I
rn+

d X a 4- ^2

5+iXi-r-2Xf
J
s

rXr+i

n?^ r X r-H X

Jffr. or its Equal-
rna

x i

Which Series will terminate when s (or r + m] is a

whole negative Number j and therefore in all fuch Cafes

the
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the Fluent is exadlly determined j provided r be not

alfo a negative Integer lefs than s
; for in this parti-

cular Circumftance the Fluent fails, the Divifor firft be-

coming equal to Nothing. Vid. Art. 83.
The Uiis of the two foregoing general ExpreflJons,

rn I

for the Fluent of '+,*" x dz , will appear

from the following Examples.

EXAMPLE I.

bxx

86. Ltt it be required ta find the fluent of i, OF
a + *i*

By comparing the Fluxion here propofed with

%9 we have aa^ f= i, z^x, n r,

m o d bt rn~i for r i) = i ; whence rz=2,
and s (r+ m) = | ; whereof the former being a whole

pofitive Number, let thefe Values be therefore fubftitutcd in

(
,. ,

rs n
dXa+ cz ' z

I
^_ X -. _ +

\ snc i--
&-,. the firft of the two ge-

j ixs ixc* y
neral ExprefKons for the Fluent, and it will become

x x - ~ ~
-

Quantity fought in this Cafe.

H 2 EX-
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EXAMPLE II.

87. Let tbt Fluxion propofed be

a+fx^X.bx
3"~ l

x.

Here, by proceeding as above, we have a a^ c~f*
zsrx, = rt, m -

t d-=b,r=.T^ and s (r+ m]
^ : Whence, by fubftituting thefe feveral Values in

the fame general Exprtffion, we get bxa+fx x

\f ^*i/
x

b x a +fx I

? 3
~ X

6 /'V*
1'

IS

EXAMPLE III.

y V ~P* + v*
88. tyherein the Quantity propofed is- 6 > or

Here we have ^ = ^% c I, z =j, = 2, w z: f,

6
d i, rn I (or2r 1)= 6jwhencer(= -

= , and s (r + m) = 2 ; whereof the lat-

ter being a whole Negative Number, let the feveral

Value* here exhibited be therefore fubftituted in

*+
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/
I a+ cz

.m+X

X I

rna r-fi x a r-f

.) the latter of the two general Expreflions above
3

>>' _c
" -^

"I Xjy
derived, and it will become

~~ 5S

i the true Fluent

required.

EXAMPLE IV.

1

. La/My, let the given Fluxion be a fo*l x

x.

Then, a being = a, c /, m=i, d i,r=r-,

and the reft as in the general Fluxion a -f rz"' x

Jz*~~
l

x j we (hall, by fubftituting in the fecond

Form (becaufe s is here equal to
( 3) a whole ne-

. n |i "5 _V /X."
fl
_/z I Xz

gative Number) have J_ L
X i -

90. Having infifted largely on the Manner of finding
fuch Fluents as can be truly exhibited in Algebraic
Terms i it remains now to fay fomething with regard

H 3 to
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to thole other Forms of Expreffions, involving one va

riable Quantity only, which, yet, are fo affe&ed by
compound Divifors and radical Quantities, that their

Fluents cannot be accurately determined by any Method
whatsoever ; of which there are innumerable Kinds :

But there is one general Method whereby the Fluents

of fuch Exprefiions are approximated, to any afligned

Degree of Exaclnefs ; namely, the Meehod of Infinite

Series; which it will, therefore, be necefiary to ex-

plain ; fo far as relates to the Manner of expounding
the Value of any compound Fraction, or furd Quan-
tity, by Help of fuch a Series.

EXAMPLE I.

91. Lett then, the fraftion be, firji, given j to be
Q3f

converted into an Infinite Series.

Divide the Numerator ax by the Denominator a .v,

as is taught in Compound Divifion of common Algebra j

then the Operation will ftand as follows i

Where
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** X* X*

Where the Quotient, or Series *-r-~ + ^ + ^ +

~Z + ~i^ infinitely continued, is taken to expound

the Value of the propofed Fraction " ;

a x

92. But, though the Series thus arifing ought to be

carried on to an Infinity of Terms, to have the true

Value of the Quantity firft propofed ; or, though the

Quotient, continued to ever fo great a Number of

Terms, will be^/?/// fomething defective of the Truth ;

yet, if the Value of the Quantity (#) in the Numerator
be but fmall in Comparifon of the Quantity (a] in the

Denominator, the Remainder, after a few Terms in

the Quotient, will become fo exceeding fmall, as to be

neglected without any confiderabJe Error ; and then

the Value of the Whole, or of the Quantity firft pro-

pofed, will be, very nearly, exhibited, by taking 3
fmall Number of the leading Terms only.

Thus, for Inftance, let the Value of a be expounded
by 10, and that of x by Unity; then the Remainder

(
)

after the two firft Terms of the Quotient, being

r: , this Value, divided by the given Divifor

(a *:= ) 9, will therefore give = 0,01 1 1 (I i i,&V.

for the Defect, by taking the two firft Terms only :

But, if the three firft Terms be taken, the Defect will
be jftill lefs confiderable ; amounting to no more than

i
-"

, or 0,001 1 1 1 1 1, cfc.

900
This may likewife be made to appear, without any

regard to the Remainder, by collecting into one Sum,
the Values of all the Terms to be taken : For, if only

*\

the firft two (x + -
J

be propofed, their Sum will be

HA s
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= !)}; which, deducted from the true Value of the

_.

'

. ox f io\
given Fraction-

( zz I
= i,niiiii &c. the

a x \ 9 '

Difference will come out e.oim, the -very fame as be-

fore.

Thus, alfo, by collecting the Sum of the three, four
and five, C3V. firft Terms of the Series, you will have

1,1 1
j i>i ii and 1,11 1 j fcfV. uhich, being fuc-

ceflively deducted from uiiiiiim &V. (as above)
there will remain c,ooim &c- o,coouii &V.
0,00001 in C5V. for the Errors or Defects in thofe

Cafes refpe&ively.

93. From what has been faid in the preceding Ar-

ticle jt appears, that Infinite Seriefes, in Algebra (ac-

cording to a common Obfervation) are fimijar to, or

correfpond with, Decimal Fractions in common Arith-

metick : For, as a Decimal Fraction may be carry 'd on
to any propofcd Number of Places, however great,
and yet never amount to a Quantity, which but a very
little exceeds the Value of the three or four firft Places ;

fo a Series may be infinite with regard to the Number
of its Terms, and yet a few of the leading Terms only,

may be fufficient to exprefs the Value of the Whole^

very nearly : Provided, always, that the Series has a

fufficient p.ate of Convergency, or that its Terms de-

creafe in a pretty large Proportion ; For, otherwife,

tveny a great Number of Terms may be ufed to little

x*

Purpofe : Thus, in the foregoing Scries, # -f -f.

#
*r &c. if x be taken rr <z, no Number of Terms will
a

be fufficient to exhibit the Value of the correfponding
fix

Fraction it being infinite in that Circumftance.
a x

94.. Having endeavoured to (hew, that the true Va-
lue of an infinite Series may be nearly obtained by ad-

ding together a few of the firft Terms only, I fhall

how proceed to give other Examples of the Manner of

con-
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Converting fractional, and furd, Quantities into fuch

Kinds of Meriefes, in order to the Approximation of ibc

Fluents of" Expreflions affe&ed by them.

EXAMPLE II.

Let the Quantity propofed be the Fraflion ^
--
t ;

then, by proceeding as in the firft Example, you will

have

Where, from a few of the firft Terms of the Quo-
tient, the Law of Continuation is manifeft ; the Nu-
merators being in Arithmetical Progreflion i and the

Signs, -{-
and , alternately.

EXAMPLE HI.

I -f- X* 2x*
95. Let the Quantity given be - -

Then the Quotient will be i 4- *-f-3*
l+ 4*

J
-f 5**-f

9*
s + 1 4*

6 &c. where the Law of Continuation is ma-
nifeft ; being fuch that the Coefficient of each fuc-

ceeding Term is equal to the Sum of thofe of the two
Terms immediately preceding it.

EX-
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EXAMPLE IV.

96. Let tae Radical Quantity v'cf+ x* be proofed.

Here, according to the common Method of ex-

trading the Square Root, the Proccfs v/ill {land as

follows :

AT* X4 \ / ** X4

; )
aa+ xx

[ a+ 5- &V.
a ^cPJ \ ^a 8 3

aa

97. The Law of Continu.atieh in Sericfes, thus arifing?
from radical Quantities, is not eafily difcovered : But,
if you would carry on the Series to any propofed Num-
ber of Tems, the Work wiH be a good deal fhortned,

by dividing the Remainder by the Divifor, when half

that Number of Terms is found (as in, consmon Di-

vifion) and observing, a,t the &jne time* to neglect all

fuch Tcrfliswbofe Indices would exceed the greateff, or

the greateil Plus the common Difference, in the faid

Remainder, according as the whole Number of Terms

propofed to be found is odd", or even.

Thus, if it were propofed to continue the foregoing
x

Series a H---
TJ-J

to 6 Terms, then the Divifor

(o,
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** **

(or double Quotient) being ja-f
"J""^1

'

Remainder
-^-r ^ (as appears from the laft Ar-

ticle) the reft of the Operation will ftand thus :

5*' ^
# 10

640'

5*
g

jc^~~
64**+ (>W*

S*'___5*
t0
-~

t^a
6 I28a*

Which three Terms thus found being added to thofe

AT* AT* *'

found above, we have a H --
^r

-

j^$
7A-

7 -f , -,
for the 6 firft Terms of an infinite

7 9 '

Series exhibiting the Value of r7+*
98. Another Way of refolving any radical Quantity,

is to affume a Series (with unknown Coefficients) for

the Value thereof; and then the Scries fo aflumed being
raifed to the fecond, third, or fourth Power, &c. ac-

cording as the Root to be extracted is a fquare, cubic,
or biquadratic one, &c. an Equation will be obtained

(free from Surds) from whence, by comparing the ho-

mologous Terms, the aflumed Coefficients, and con^

fequently the Series fought, will be determined j as in

EX-



io8 *Ihe Manner offinding FLUENTS.

EXAMPLE V.

. Where it is propofed to extratt the Square Rost ef

cf+ x
1"

in an Infinite Series.

In which Cafe, afluming A + B*
M

-f C*4
"

-f E*
8 " &c. for the required Series, and taking the

Square thereof, we have

+ 2AC*4"+ zAD
4" + iBC*

6"

and confequently

4" . A TN 6"^..

A* +2AB*
*"

,a
i ix -J-

Therefore A1
a
a

"=ro, aAB 1=0, 2AC + B x

=o,
aAD-t-2BC=o, 2AE+ 2BD4-C 2

=o, * &c. From

which we get A=/ ; B
(
=-^-)= -', C (=2A / 20

B'\ I BC\ I-
; D ---

2BD-fC*\ 5
( 7 I

-* ^f whence we have
2*"V ^ Q 7

A+B"+C,*+D
<P

6fc (=
' //V:

)=

*
rV./. 18 1 o/'wy Treati/e of Algebra.
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5* w,. which Se-

41 6"

~~~7,
"""*

, n -f-

la oa Iva I28*
7 '

ries, if n be expounded by Unity, will become a -f-

** ^4
- &c. the very fame with that in the pre-

20 8<2
3

ceding Article found by the common Method.

EXAMPLE VI.

VlT .

99. Let it be required to refolve a + bx" ' into an

Infinite Series.

Here, by afluming A + B

cubing the fame, &e. we have

+ D

-a bx" + 3AB
1
* + 6ABCx*

c. and

=: o

Therefore A = a
7

j B (= = 7; C (=

and confequently, a-f i

And, in the fame Manner, may the Root of any
other Quantity be extracted : But as the celebrated Bi-

nomial Theorem, difcovered by the illuftrious Sir Ijaac

Newton, is vaftly more eafy and expeditious, in raifmg
Powers and extracting Roots than that, or any other,

Method, I {hall now explain the Ufes thereof; but,
firft
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firft of all, it may not be amifs to fhew how the Theo-
rem itfelf, from the Principles of Fluxions, may be de-

rived.

Let, then, I +_> be a Binomial whofe firft Term is

Unity, and its fecond Term any propofed Quantity y j

and let the Quantity to be expanded or thrown into a
*p

Scries be i+^i ; where the Exponent v is fuppofed to

denote any Number whatever, whole or broken, po-
fitive or negative.
Now it is evident that the firft Term of the required

Series muft be Unity ; becaufe when y is = o, the other

Terms all vanifb. ; and, in that Cafe, \-\-y\ is equal to

Unity. Let, therefore, I + Ay" + B/ -f C/-|- D/
&c. be affumed to exprefs the true Value of the faid

Series, or, which is the fame, let

I -f y\
= i -f Ay + B^ + C^ -f Dy (3c. where

A, B, C, D, yr. m, n, p t q, &c. denote unknown, but

determinate Quantities :

Then, by taking the Fluxion of the whole Equation,

(fuppofing y variable) we fhall have vj> x T-t- y\
=

m i l f i f I

myAy + nyoy -^fj^y ~*~9J>Dy &c.

Whence, multiplying the Sides of the two Equations,

crofs-wife, and dividing by j x T+y\ , there comes

/> f

^ +vD^ &c. which, by Re-

duttion, is

m l X _ P"~ l
<t

*

mAy +nEy +pCy
*

Now,
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Now, fmce we are at Liberty to take the Exponents
of y what we will, fo as to anfwer the Conditions of

the Equation, or fo that all the Terms here put down

may mutually deftroy each other j Jet them, there-

fore, be fo taken that the Terms themfelves may be

homologous, that is, let m irro, I *, 1=,
q i

/>,
&c. Then, m being zri,=:2, /> 3, J 4>

t3c. ir" thefe feveral Values be fubftituted above, the

Equation itfelf will become

Where, taking A w=o, 26 -f A vh~Q,
vB=o, 40+ 30 vCrno, &c. fo that every Column
of homologous Terms (and, confequently, the whole

Exprcffion) may vanifh, we alfo get A=v ; B (=
vA. A A x v 1\ i;x v i p , _ vB aB

Bxt
^) = ^x^-

1

x ^=-
2

; D (
=

3 / 2 3

-
3x v ! v 2

^
3 4

Whence, by writing thefe Values, with thofe of m, ,

/>, y, ^. in the Series i -f A/*-f B>-"-f Cy &. firft

alTumed, we, at length, find
i-f-j)

= i -f- vj + x

I" X ~~~* x ~ x y T ~* X
2 123 12

f 2 W 3
r~ X x >* -f &V. which wis to be invefti-
6 4

gated.
From the Series here brought out, any Power or

Root, of any other compound Quantity, whether Bi-

nomial, Trinomial, sV. is eafily deduced : For, if p
be put to reprefent the firft Term of any fuch Quan-
tity, and Q_ the Quotient of the reft of the Terms di-

10 vided
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vided by the firft ; then the Quantity itfelf will be ex-*

prefled by P-J-PQ_or Pxi+Q_, and the v Power

thereof by P
v
x i + C, which therefore is equal to

V V~~ 1 1) 7J I V -
2,

7 x xQ! + T x x x

V Vl 112. V'i
Qf -f- X X X - xQ^+ esV., by what is

juft now determined.

But when v is a Fraction, as in the Notation of

Roots, the Theorem here given will be render'd fome-
\vhat more commodious for Practice, if, inftead of -ut

a Fra&ion as be fubftituted j by which means it will

become P x i + Q? " =P " x i + Q -f x
n ^- n

tn m m n m a_. m m
Q- + ;r*-ir*r^-1-i* x

m 2 tn 3
X ' Q! + &c. whofe Ufe, in

converting

radical Quantities into Infinite Seriefes will appear from
the following Examples.

EXAMPLE VII,

ICO. JPherein it is propofed to extrafJ the Square Root 6?
a
1
4- **, in an Infinite Series.

Here the Quantity to be expanded being ~a
r

^f x ,
. I i by comparing it with the general Form,
aa

~ >~ x*
P " X i -i-Ql , we have P=a% Qjr m ~ i f

it

and
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and nz : Whence, by fubftituting thefe Values in the

laft general Equation, we get

*-f*
rf = axi-Kx^ +

^x--;-X^.
+ X 'i

#6 v *
x -| x? + \ x -i x -

x -| x ^- + (ft. = +
** *6 5**

- - + r 7 TT^ & Which Series agrees3 ' 7

exactly with thofe found in Art. 97. and 98. by different

Methods.

EXAMPLE VIII.

10 1. Let it be required to extraft the Cube-Root of
I3

y*, in an Infinite Series.

Here by
~~y*Y ( - T\

comparing
r

l

r X I
p-

V = p .y*
\

with P X oT , it will be P=b*, Q_=
'

m~i andn= 3: Therefore, by Subftitution, we get

1\
.T y

3
] } V

3

P (^Xl-Ji)/ =*XI **#- + yX

-
i i v a v > v ___ ^-~ m v""* v ~< \fjbij^^A 5'^ 19 T7A T ^"~

/ / sy
9

io/*
F " =*

34*""^
""

sT^8 ^J77
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EXAMPLE IX.

102. Let the Quantity to be converted into an Infinite

Series be
V ax xx

In this Cafe the given Quantity being firft transformed

" x '
~~

a and I -
afterwards com-

_ "*

pared with 7+Q\ , we have Q_=
*

, m = l
a

t

and n~2 j and therefore i fTTTr^ -
a v *

'^.i IT

the Quantity pro-
^ ^^

pofed.

103. It may not be improper to obferve here, that,

when both the Terms of the propofed Quantity are af-

firmative, and its Exponent alfo affirmative and lefs

than Unity, the two firft Terms of the equal Series

will be pofitive, and the reft negative and pofitive, al-

ternately ; but if only the firft Term of the Binomial

be affirmative, all the Terms of the Series, after the

firft, will be negative : Moreover, if the Exponent of

10 the
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the given Quantity be negative, and both the Terms
affirmative, the Signs will change alternately*; but if

only the firft be affirmative, all the Terms of the equal
Series will be pofitive.

EXAMPLE X.

104. Let the Quantity propofed be the Trinomial

Here, by dividing the reft of the Terms by the

?<:. our given Quantity is reduced toTr^F x

Therefore, in this Cafe ?=*% Q.
2*4~ 3*% w=I j and n = 3: Whence (by Subftitu-

______________ t

tion) *3+ 2*4 + 3*
5

)

3 *X 1 + 4 X 2A-+3**! + T X

+ ;
x ~| x -| x

5x2*

1x*
Which, reduced to fimple Terms, is =: x + -

^_

68**
,

9 -TT^'
105. When the propofed Expreffion confifts of a ra-

tional, multiply'ti by an irrational, Quantity, the Series

anfwering to the irrational one nmft be firft found, and
afterwards multiply'd by the rational Quantity : But, if

two, or more, compound irrational Quantities are to b*
drawn into each other, then take the Series anfwering
to each Quantity, feparately, and multiply them toge-
ther ; obferving, always, to neglect all fuch Terms
>ynofe Indices would exceed that of the laft, or higheft,

I 2 Term,
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Term, which the Series fought is propofed to be con-

tinued to.

EXAMPLE XL

jo6. Lst the Quantity propofed be i -f x X I x\

Firft we have ,^" = T- ^ -
_
Q x 2Q

gx igj?
3 QX 19

_

> X

sV. Which, mul-
10X20X30 10X20X30X40

______ I

tiply'd by I+A?, produces i+#x i x?* = I +
gx_ 29 .v

a

_ 9-4Q*
3

. _ 9.19.69** ^ =14.
10 10.20 10.20.30 I0.20.30.4O

10 200 2000 80000

EXAMPLE XII.

107. Where the Quantity to be exprejjed in an Infiniie

r, or a
1 *n X c

1 #

Here we have, ^?1 (
x i -

~

An<J
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And 7"

H- --J x r + * *

** ?** 5*
6

j -f ^-y + -~
7

&c. Whence, multiplying thefe

two Values, one by the other, we get

., _fL l
* 3a * l

"I* _ ?
*" " X A" ~T~ 77~""c

^^ ~" ^ ^"^
r\ ^^ X A* T3

- s 3

Sa 3 i i

T~T x A-
6 + ^. for

i6t 7
i6flc

s

the four firft Terms of the Series fought.D

EXAMPLE XIII.

JC8. Lettbt Quantity to be expanded be the Multinomial^

or infinite Series, x + ax + bx + cx + &c.
|;

whofe Exponent v denotes any Number whatever^ whale
or broken^ pcjitive or negative.

Here, dividing by the firft Term, the given Quantitv is

fv n -in ~.n 4*1 \
transformed to x xi + ax+bx +cx +dx +&.$

which, if ax -f bx -{-ex &c. be put =y, will become

t*y .- . -\

x X i-f ^j ; which laft Expreflion (by Art. 99.) is

pv V V I V 1> 1 V 2
x
f X i +vy 4- yx -^- X >*+ 7 x -Y~ x

X/ +~ffr. Whence (for Brevity fake) putting A=v,
y <y i -y v I v 2 ^ V

\

"

i 3
'

"

i

I 3 v i
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V 1 V 2 V ?- x X - & and fubftituting for
_y,

there
2 3 4

comes out x +

+ Aa + B X

EXAMPLE XIV.

109. To extraff the Square Root of a~ AT% and from
thence to determine the Fluent of x V

f

a
i x

i

^ in an

Infinite Series.

By proceeding as in the foregoing Examples, the Value

of V a
1

x~ in an Infinite Series will be iound to be a

"."' . &c. Which
ia

! i i . . / , . *.*
plied by x gives x y a x" ~ ax TT-:

la 8a 3

v v Cjt* X
'- * <3c. Whofe Fluent therefore (by Art.

* " x r
~

ta 4oa
3

" ~
5 -

Which was to be determined.

EX-
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E X A M P L E XV.

IIO. Let it be required to approximate the Fluent of

, in an Infinite Series.

It appears, from Example 12, that the Value of

a>
"

**'
, exprefled in a Series, is _ ,

a '

i c 2c3
iac

ja

i_ _ L-. x x6 -f tf<r. Which Value being

therefore multiplied by x" *, and the Fluent taken (by

the common Method) we get . -^ + r~j
-

j^ \x /
" 2 fl^

, 35
i JL"" ~" X

3

i6<: 5

I 4 EX-
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EXAMPLE XVI.

III. IFhereinit is propofed to approximate the Fluent of

in a Series.

Here, if A be put = v, B r^rvX , C= v .,

2 2

, D=v x x - - x -, &c. the Quantity

<> />+ /'i-i^ P-K^" l
v

x +ax +bx* +cx &c.\ expanded, will

fv' _
+ A^ + Bo

x x^+ "

*
x * + ^. as appears from Art. 108. There-

ir.l
fore this Expreflion being multiplied by x x, and the

pw\-m

Fluent taken fas ufual) we {hall have -- 4-

pv+ m
fv+m+n "

A . . r> x ^ pv+m+znAax At>+ Ba*Xx
--

Ac
v + ^z +

al
b -f Da

+ 4 -F &V, for

the Quantity propoied to be found.

S E -
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SECTION VII.

Of the Vje of Fluxions in finding the Areas

of Curves.

CASE I.

E 7*ARC be a Curve of any Kind whofe Or-
dinatei are perpendicular to an Axis AB.

112.

Imagine a Right-line ^R^ (perpendicular to AB) to

move parallel to itfelf from A towards B ; and let the

Celerity thereof, or the Fluxion of the Abfcifla A, in

any propofed Pofition of that Line, be denoted by Id;
Then it will ap-
pear, from Art, 4.

that the Re&angle
(bn) under bd and
the Ordinate R,
will exprefs the

correfpondirig Flu-
xion of the gene-
rated Area abR. :

Which Fluxion, if

A x, and bR=y,
will therefore be

~vx : From whence, by fubftituting for y or x (ac-

cording to the Equation of the Curve) and taking the

Fluent, the Area itfelf will become known.

CASE II.

113. Let ARM be any Curve whofe Ordinates CR, CR
are all referred to a Point or Center.

Conceive a Right-line CRH to revolve about the

given Center C, and let a Point R move along th

faid



H

A

The UJe of FLUXIONS

faid Line, fo as to trace out, or defcribe the propofed
Curve Line ARM.
Now it is evident, that, if the Point R was to move

from any Pofition Q., without changing its Direction and

Velocity, it would

proceed along the

Tangent QS (in-
ftead of the Curve)
and defcribe Areas

QjC, QSC about
the Center C, pro-

portional to the

Times of their De-

fcription ; becaufe

thofe Areas, or Tri-

angles, having the

fame Altitude (CP),
are as the Bafes Qj
and QS, and thefe

are as the Times,
becaufe the Mo-
tion in the Tangent

(upon that Suppofition) would be uniform.

Hence, if RS be taken to denote the Value of (z)
the Fluxion of the Curve Line AR, the correfponding
Fluxion of the Area ARC, will be truly reprefented by

Art. 2 the, uniformly generated, Triangle QCS *
: Which,

?nd 5- putting the Perpendicu!ar (CP) drawn from the Center

QSxCP
to the Tangent, = j, will therefore be (

= =.

Ctg
-

; from whence the Area itfelf may be determined.
2

But, fince in many Cafes, the Value of z cannot be

computed (from the Property of the Curve) without fome

Trouble, the two following Expreflions, for the Fluxion
of the Area, will commonly be found more commo-

svy y
1^

dious, viz. and ; where /
~ RP and x =: the

it 20

Arch BN of a Circle, defcribcd about the Center C, at

any
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any Diftance <t (CB). Thefe Expreflu-ns are de-

rived from that a'oove, in the following Manner 5 viz.

z :j : : y (CR) : f (RP)
*

j therefore = ^ j andMit. 3 s,

confequently ;
which is the firft Expreffion.

Again, becaufe the Celerity of R in the Direction of

the Tangent is denoted by z, that in a Direction per-

pendicular to CQ_ (whereby the Point R revolves about

CP
the Center C) will therefore ^e ( QR

x *)
*' =

Art.
35.

ifUS

; which bejng to (x) the Celerity of the Point N

(about the fame Center) as the Diftance (or Radius)
CR (y) to the Radius CN (a) we fhal), by multiplying

QSZ
Extremes and Means, have =yx -, and confequently

2

: which is the other Expreffion.
2 la

The Method of applying this, together with the pre-

ceding Forms, will appear at large from the following

Examples : Wherein *, yt z, and u are all along put to

denote the AbfciiTa, Ordinate, Curve-line, and the Area

refpe&ively, tinlefs where the contrary is exprefsly

fpecilied.

EXAMPLE I.

114. Let it be propofcd to determine tfe Area of a right-

angled Triangle AHM.

Put the Bafe AH=a, the Perpendicular HM= j and

let AB (x) be any Portion of the Bafe, confidered as a

flowing Quantity, and let BR (y) be the Ordinate, or

Perpendicular, correfponding :

Then,
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Then, becaufe of the fimilar Triangles AHM and

ABR, it will be, a : b :: x : y =r --
. When

ce y

A B H

*Art.ii*.(the Fluxion of the Area ABR*) is, in this Cafe, ;=:

bxx
j and confequently the Fluent thereof, or the Area

fArt '77 '

itfelf = f : Which therefore, when *=, and BR
2a

ab AHxHM
coincides with HM, will become -

2 2

the Area of the whole Triangle AHM; which we alfq

know from other Principles.

EXAMPLE II.

115. Let the Curve ARMH, wbofs drea you wouldfind, U
the common Parabola.

In which Cafe the Relation of AB (x) and BR (y)

being exprefled by y*ax (where a is the Parameter)
t_

i
.

JArt,iia. we thence get^ = a*x* ; and therefore a
(
= yx % )

= tfV^ : Whence u = | X = a x x\yx
(becaufe
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(becaufe aV =y) = | X AB x BR : Hence a Para-

bola is $ of a Retlangle of thefame Bafe and Altitude.

R

A B

The Area is here found in Terms of * ; but it will,

many times, be more eafily brought out in Terms of y

(without radical Quantities) as in the very Cafe laft

y*
propofed : Where A- being = , we therefore have *==

2yv 2y v

; and confequently u (yx) = -
: Whence u -

^- = 3 x - = ^x* = jxABxBRs tbtfam
3* 3 3
as before. j

EXAMPLE III.

1 1 6. Let ARM (fee the preceding Figure) be a Para-
bola of any Kind', whereof the general Equation is

n-f-n m *

y a x .

Therefore, by extracting the Root, or dividing each

n

Exponent by m+ n, we have y =: a X x j whence



126 7&> Vfe of Fiirxrt>Ns

IM
I

77 WT 1

J
'#

z/ C^ = a x xx j and
confequently (the trut

Fluent, or Area) = a*~
*
x

m -f n

AB x BR.
No Notice lias been yet taken of any conftant Quan-

tity to be added to, or fubtra&ed from, the variable

One, firft found, in order to render it complete, agree-
able to the Obfervation in Art. 78.

But that no fuch Correction is required in any of tha

preceding Examples, is evident from the Nature of the

Figure j becaufe, when x and y are nothing, the Area

(u) ought alfo to be nothing, which it actually is ac-

cording to the Equations above exhibited.

The Fluent found in the fucceeding Example, will,

however, ftand in need of a Correction.

EXAMPLE IV.

117. ffbere ft is propofed to find tbt Arta. of the

ARH, whofe Equation is x* aV-M1

^* = o

Here, the given Equation is reduced to y
.

+ whence *( = ;*; = ** ""* '' x **
:

Art.77.
Whereof the Fluent (by the common Rule *) i$
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"* *'
: Which, when x0 and arro, becomes

3"

,*
--

; this therefore fubtracted from
a * '

. , leaves

3 - 3*
i

for the Fluent corre&ed, or the trueg *

Value of the Area ABR *.

When the Ordinate BR

*Art.78.

becomes

equal to Nothing, and B coincides with H, then * will

become =rtf=AHj and therefore the Area of the whole
ji

Curve ARH will be barely = = f AH*
3

EXAMPLE V.

118. Let it be required to detumine the Area of tbt

hyperbolical Curve whofe Equation is x* y" =

*f
ft

~
n

In this Cafe we have y = - = a X x

and
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m\n -m

and therefore u (=y*) = a
"

x x
*
x: Whofe Fluent

m\n m m\n r m

a* X x
"

_ na
"
X x

"

is
jjj JM

* wnicn wnen * *
J

= o, willalfobe =:o, if n be greater than m: There-

fore, the Fluent requires no Correction in this Cafe j

the Area AMRB, included between the Afymptote
AM and the Ordinate BR, being truly defined by

m\n n m\

I the Quantity above determined.
( n m
But, if n be lefs than m, then the Fluent, when #=0,

will be infinite (becaufe the Index - being nega-.

\

:) Whence the Areative, o becomes a Divifor to na

AMRB will alfo be infinite.

But, here, the Area BftH comprehended between the

Ordinate, the Curve, and the PartBH of the other Afymp-

na

m n
tote, is finite, and will be trulyexpounded by

the fame Quantity with its Signs changed. For the

Fluxion
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Fluxion of tV Part AV!RB being- a x * ' that

of its Supplement BRH muft confequentiy
!>e

" xx *
x : Whereof the Fluent is

tn '

|
w fi^**fff

lLa _*-2!5_L_ = the Area BRH : Which wants no
m n

Correction ; bccaufe, when x is infinite, and the Area

BRH = o, the faid Fluent will alfo intirely v uifh,

feeing the Value of x n

(which is a Divifor to

is then infinite.

EXAMPLE VI.

-t-" \

a
" '

119. Where let it be required to determine the Area of
the circular Seftor AOR.

Then, putting the Radius AO (or OR) = a, the

K

Arch AR (confidered as variable by the Motion of R)
^ z, and Rr = x, the Fluxion of the Area will here

K be



The life of FL tr xj ot? s

Att,n3 . be exprefled by (
= the Triangle ORr *

:) Whence

az
the Area itfelf is = = AO X |AR : From which it

appears that the Area of any Circle is exprefled by a

Re&angle under half the Circumference and half the

Diameter.

EXAMPLE VII.

J2.0. Wherein it is propofed to determine the Area CBAC
of the logarithmic Spiral.

Let the Right-line AT touch the Curve at A ; upon
which, from the Center C, let fall the Perpendicular
CT ; Then, fince by the Nature of the Curve the

Angle TAC is every where the fame, the Ratio ofAT
(t) to CT (s) will here be conftant : And therefore the

Art-iis-Fluent of x ^* = x - = the Area which
t 2 '4

was to be found.

E X-
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E X A M P L E VIII.

121. Let the Curve ARM be the Involute of a given
Circle

In which Cafe the intercepted Part of the TangentRP (t) being every where equal to the Radius CO (a)

of the
generating Circle, we therefore have CP (t) =

Whence u (=
2̂t

**vy* **jy j ., _--& ; and confequently = <._
2a 6a

CP
the required Area ACR :

Which will alfo exprefs the Area ARO generated bythe Radius of Evolution RO; becaufe, RO being =K 2 the
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*Art.n 9.the Arch AO, the Seder ACO (i AO X OC *) is

equal to the Triangle CRO (i;
RO x OC) which equal

Quantities being fucceffively fubtra&ed from CARO,
there remains AORzrACR.

EXAMPLE IX.

122. Let the Curve CRR, whofe dreaCRgC you would

) be the Spiral of Archimedes.

Let AC be a Tangent to the Curve at the Center

C, about which Center, with any Radius AC (a]
fuppofe a Circle A'gg to be defcribed ; then the Arch

(or Abfciffa) fig correfponding to any propofed Ordi-

nate CR, being to that Ordinate in a given,
or con-

ftant, Ratio (fuppofe as m to n] we have* (A^) =.

mv '
v * my y f i

; therefore u - = -J
,

and confequently u

ArMis. n 2 2tf

= ^- = the Area CRR^C.
tan

EX-
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E X A M P L E X.

123. Let the Equation of the Spiral CRR (fee the
lajl

Figure) be^
Then, x being = l>j + 2<yj + ^dy

1

} + ^ey
3

j -f &c.

.. y*x\ by*} lcy*ywe fhal! have u (
~

; = +
20 / 2a 20 20

20

3^ $

4^y
6

, + _
loa na
this Cafe.

r. and therefore = r
ta

true Value of the Area in

EXAMPLE XL

124. Let it be propefed to find the Area of a Semi-
circle AREH.

. Here, putting the Diameter AHzr*, AB~*, and
BR =y bV. (as ufual) we have /- (BR

a
)
= ax y*

ABO H
(AB x BH), and confequently u (yx) x ^ax xx =5

i_

a~x x x i I
: Which Expreflion not being of the

Kind defg-ibed mdrt. 83 and 85. that admit of Fluents in

t
finite
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finite Terms, let it therefore be refolved into an In-
i i

Art. 90 finite Series * and you will have rr *** x x
and 99. ; :

- .

X X 1
X 1

5** _ \ T .

I rj-i ri t-4 t$f' a X x x
2a 8a ioa 3 i2Qa4

4. .XX XX XX
-TT 7-3 &c. From whence, the Fluent of

2a oo iva -

j

every Term being taken, according to the common
.j. 5^

Method, there will come out u =r a * x 1- ^__

3 5"

t
X X

720* 704^

>
-

c . rr x V ax X

a x * * 5*
4

, . , A----- -- -1- vc. = the Area
<7 2oa 2a*

ABR. Now, when, AT = *

<?, the Ordinate BR will

coincide with the Radius OE ; in which Cafe the Area- -:-:-:-
becomes = ~ aV \aa~A \ T

' -^-
TTT T^

0,6666 0,1 0,0089

0,0017 0,0004 &V. = 0,1964^*; which, multiply'd

by 2, gives 0,39283* for the Area of the Semi-circle

AEH, nearly.
As the foregoing Series, in finding the Area of the

whole Quadrant AOE, converges but flowly, a con-

fiderable Number of Terms ought therefore to be taken

to have the Conclufion hut tolerably ex2<5t, the five

firft Terms above collected being fufficient to bring
cut no more than three Places of Figures that can be

depended on. For which Reafon it may be of Ufe to

confider, whether, by computing the Area of fome par-

ticular Portion (ABR) of the faid Qiiaclpnt, that of the

whole may not be deduced j where x being fmall in

com-
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comparifon of , the Series may have fuch a Rate of

Convergency, that a fmaller Number of Terms will

be fuffccient *.

Now, in order to this, it is well known that, if the

Arch AR be taken = iAE (or 30 Degrees) the Sine
BR will be i AO ; and confequently AB (x) AO
OB:=AO /OR1 BR a

; which, if the Radius AO
be expounded by Unity, (to facilitate the Operation)
will be =. 0,1339746 very nearly : This therefore, with
the Value of a, being fubftituted in the forementioned

Series, \/ax
3 x ~ -~ &c. we have

0,0694505 x 0,6666666 0,0133975 0,0001603

0,0000042 C3V. = 0,0693505 x 0,6531046 =
0,0452931 =. the Area ABR : Which added to the

Area OBR
(
= OB x ^8R = /Jx i = 0,2165063)

gives 0,2617994, for the Area of the Sector AOR j

the treble whereof, or 0,7853982 (becaufe AR = 7AE)
will therefore be the Content of the whole Quadrant
AOE : WT

hich Number, found by talcing four Terms
of the Series only, is true to the laft Decimal Place.

This Conelufton may be otherwife brought out,

by finding a Series for the other Part of the Area, in-

cluded between the Radius OE and the Ordirute BR ;

wherein the Co-fine OB (inftead of the verfed Sine AB)
will be the converging (or variable) Quantity.

For, putting OB =r x, and OR (OA) = b y we

have y (BR = V OR* OBa =
confequently (yx) the Fluxion of the Area OBRE * = Art.iu.

_ _ _""~
7V

IC* X*
!

, fcff. Whence the Area itfelf is = bx ~r ,

256^^ 6ff

4ob
3

Now,



Now, if A- (OB) be aflumed = AO (fo that the

Arch ER may be = ; AE) and the Value of b (AO)
bs expounded by Unity, we (hall have

(=A-XAr*=,5X|- y =,125
4

,03125

X 7 \
^:-- j = ,

4'
AT' (-A-'X^^:-- = ,0019531

#" (=*
9 X**=^-) = ,0004883

4

Which Values of the Powers of * being refpe&ively di-

vided by 6, 40, 112, 1152, 2816, &c. there will refult

0,5000000 0,0208333 0,0007812 0,0000698

0,0000085 0,0000012 0,0000002 &c. =
0,4783057, for the Area OBRE in the forementioned

Circurnftance, when OB r= \ OA^_ From which, de-

dueling the Triangle OBR (= V \ X \ =0,2165063)
the Remainder ,2617994 will confequently be the Area

of the Sector EOR ; the treble whereof (becaufe ER
is, bere^ = j AE) will give the Area of the whole

Quadrant, 0,7853982; as before.

EXAMPLE XII.

125. Let the Curve, wbofe Area you would findy be the

x 3

Ci/old of Diodes ; whereof the Equation is/ = a _ x
~

x* x x*"x

*Art.ii2, Here we have it (jx*) = ^-^
~ "~T

X
X I

a
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T . 71""*
__

* *
x i

- : Wh 'ch being none of the Kind~
-i a I

a

that admit o' Fluents in finite Terms *, let it therefore Art.8j,

be refolved inr> .<n T nfinite o'-ries, and you will have u

5*
3

1 Crf TIT. / t.
H

2 a
I 2JC x .

Area itfelf ) will come out = - X --h HP

rv* Vv- o x x'
5 i ffrV, ***;

'-*
~ x *

'
a 5

5*
3

*
\ ftff

CtO 1 I *

EXAMPLE XIII.

126; Let the propofed Curve CSDR be offuch a Nature^
that ( fuppofing AB Unity) the Sum of the Areas

CSTBC and CDGBC answering to any two propofed

Abfcl/jas AT and AG, jhall be equal io the Area

CRNBC whofe forrefponding Abfciffa AN drawn into

AB is equal to, AT x AG, the Produtt of the Meafures

of tint two former Abfcijjas,

Firft, in order to determine the Equation of the

Curve, (which mud be known before the Area can be

found) let the Ordinates GD and NR move parallel to

themfelves towards HF ; and, then, having put GD=y,
NR=z,
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NR = z, AT = *, AG = j, and AN = *, the Fluxion
of the Area CDGB will be reprefented by ys9 and that

. of the Area CRNB by ay *
: Which two Expreffions

muft, by the Nature of the Problem, be equal to each

other ; becaufe the latter Area CRNB exceeds the for-

mer CDGB by the Area CSTB, which is here con-

fidered as a conftant Quantity ; and it is evident that

two Expreflions, that differ only- by a conftant Quan-
tity, muft always have equal Fluxions.

Since, therefore ys is = zu, and- u = aj, by Hypothecs,

it follows that u as^ and that the firft Equation (by

fubftituting for u), will become ys =: azs t or y =: az t or

laftly ys=zs, that is, GD x AGrzNR x AN: There-

fore- GD : NR : : AN : AG ; whence it appears that

every rcii n:ite of the Curve is reciprocally as its cor-

refpond4ng Abfcifla.

Now, to find the Area of the Curve fo determined,

put BC = b, and BG = x : Then, fmce AG
(

I + x)

: AB (i) : : BC (b) : GD (y) we have y = and

confequently u
(
=. yx-)

^
b X x xx+ X*x

10
Whence, BGDC, the Area it-

fejf
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be =*x* ^ + ; - + ^ &c. Which
%}

was to be found.

It may here be obfer,yed that the Areas of the Spaces
above mentioned, are analogous to, and have the very
fame Properties as Logarithms ; and that thofe Spaces, or

Logarithms, may be of different Forma or Values, ac-

cording as you take the Value of the firft Ordinate BC,
which may be aflumed at Pieafure : Thus, if BC be

taken =. AB Unity, the Curve will become an equi-
lateral Hyperbola whofe Center is A (becaufe then AG
X GD =. AB 1

) and in that Cafe they are called hyper-
bolical Logarithms : But, if BC be taken 0,434294.48
(fo that the Logarithm, or the Area of the Space
CDGB, anfwering to the Abfcifla AG, when exprefled

by the Number 10, may be expounded by Unity, or

AB 1
) we fhall then have the common, or Erlgean Form

of Logarithms.
From thefe Logarithms (given by the Tables) the

Bufinefs of finding Fluents, is in many Cafes, very
much facilitated : For, if the Fluxion <;iven appears to

agree with the Fluxion of any known Logarithmic Ex-

prcflion, its Fluent may, it is evident, be had by the

Tables, ready calculated, without the Trouble of ai\

Infinite Series.

But, now to know what Kinds of Fluents are ex-

plicable by Means of Logarithms, it will be necefTary
to obferve that, the Fluxion of any hyperbolic Logarithm
is always exprejjed by the Fluxion of the corresponding
Number divided by that Number : This appears from

above, where (\x) the Fluxion of the Area (or Lo-

garithm) BGDC, when BC AB = I, is truly repre-

X
fented by ; where i -f x

( AG) may ftand for
1 f *

any Number whatever ; and x for its Fluxion.

Hence
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Hence the Fluent of will be exprefled by^* :

the hyperbolical Logarithm of x + v'x* + a
1

: For the

Fluxicn of (x -}- V
'

x~
-jr a

1

) the Number itfelf, bfing x

** _ * / x* a + ** __
*

t/V o
1 /*~ z

~

V x" a-

X /a?
1 ^ <f+ x, this laft Quantity, divided by that

Number, gives . - --
, the very Fluxion firft

V x2
- a

propofed.

It alfo appears that the Fluent of -
: will be

y tax + x*-

truly exnounctd hy the hyperbolical Logarithm of a +
x + Viax -f x* Becaufe the Fluxion of the Number

ax -f xx

=^- "
: X ^/2ax + xx + a + x j which divided

V2GX + XX

bv that Number produces -=
V2a# + xv

Likewiie the Fluent of -5 5 will be reprefented by
ti m""' ^f

_ I .

the hyperbolical Logarithm of - -
: Beeaufe, the

T-I f a+x x xa- x+ x X tf-f x _
Fluxion of- , being -..,,

a x> ^
if the fame be therefore divided by --, we (hall have1 a x

a x lax lax

xf a+ x~ a x X a -f x
~~

a? **

Laftly,
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IGX
Laftly, the Fluent of == wi^ be denoted

by the hyperbolical Logarithm of
a a ^

. for
+/***'

^\-1Cx
here the Fluxion of the Number is -rr =r. xV? j-*

1 x

xx

4- 2axx
-

._>* ; which divided by
2

? X ^ J # ~t^

the Fluxion pro-
a -^x i^-^-x xr u ~rx

pofed.

Thefe four are the principal Forms of Fluxions ;

whofe Fluents may be found from a Table of Loga-
rithms of the hyperbolic Kind: Which Table, upon
Occafion, maybe eafily fupply'd by a Table of the com-
mon Form : For, fince the hyperbolical Logarithm of

any Number is to the common Logarithm of the fame

Number, in the confta^t Ratio of Unity to 0,43429448
(as appears from ah-ive) it follows that if any common

Logarithm be, either, divided by 0,43429448, or mul-

tiply'd by its Reciprocal 2,30258509, you will thence

obtain the hyperbolical Logarithm corresponding.

EX-
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EXAMPLE XIV.

127. Lit it be required to determine the Area of the Curve ;

whofe Equation is efyx^y <4
3

0.

Art.m- In which' Cafe y being = -^ we have it (yx]
*

& ~x
x*x X6x

H,

B M
X'f * f

Whence = ax -I- + r + T -j-
- 4- 6ff.

3 5<a
3

7<j
5

ga
7

=r the Area fought.
But the fame Area (or Fluent) may be found with-

out an Infinite Series, by Means of a Table of Lo-

garithms, agreeable to the Obfervations in the laft Ar-
ticle: For, fmce it there appears that the Fluent of

-
t ..

'- is truly exprcfled by the hyperbolic Logarithma * "X

a+x , . a3x / 2ax \
of-, it follows that that of-^ -; (

= -r ; x -la* )ax a ~x \ o ~~x /

will be exprefled by the fame Logarithm multiply'd by
if. Thus, for Example fake, let a (=AC) be

taken
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taken = 10, and*(:=AB) =5; then will =3;

whofe Logarithm taken from the common Tables
is 0,4771213; which muhiply'd by the Modulus

2,30258509 (Tee the laft Article) gives 1,09861228

for the hyperbolical Logarithm of :

j and this again

multipiy'd by 50 (**) produces 54,930614 for the

true Value of the Area ABRC, in the aforefaid Circum-

ftance, when AC= 10, and AB=r5.

EXAMPLE XV.

128* JVhere the propofcd
Curve is that wbofe Equation is

'43

Here, by reducing the given Equation, we get y =
: Therefore^ = * *Art. 1 1.

Whence, the Fluent of
^ ^ being =: hyperb.

14 | &

c

A B H

Log. of x + vV-f#* (by ^r/. 126. that of

will
confequenriy be =: the fame Logarithm multiply'd

by a*.

But to find whether the Fluent thus determined does
not need a Correaion k let x be taken = oj then the

jA
Fluent
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Fluent will become hyp. t ng. a : x c~ : Which, there-

fore, mufi h" fubtracled, to have the tru^ Value of the

Art.yS.Area ACRB*i and then rhere refults a
1 X hyp. Log.

x + l/fNh**
<? * hyp. Log. a = a* x hyp. Log.

_

EXAMPLE XVI.

129. Let it be propofed to fnd the Area of the Hyperbola

ABD, and afro the Area of the hyperbolical Seftor

CAD j fuppoftng C to be the Center^ and A the prin-

cipal Vertex of the Curve.

Here, putting the Semi-tranfverfe Axis CA.=at the

Semi^conjugate =: cy and CB =: x j we have, by the

Property of the Curve, y (=BD) = <\f
** aa;

ex
and therefore a = yx = ^/ AT* a

1 = the Fluxion

JArt.jii.of the Area ABD t

But to find the Fluxion of the Se&or CAD, it is

to be obferved, that as the faid Sedor is = CBD

ABD : ; a, its Fluxion will therefore be =
2
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*y y x *v y*
7 + T * -"t~T (becaufe *=J**) which, *Art .na.

by fubftituting for y and j, their Equals \/x* a*

r*.r
and /-r-=> is at length reduced to"V x a

./ ,
-i : Whereof the Fluent (by >/rf. 126.) is

V.*
1

az

X hyp. Log. * -f VV a
; vfrhich correaed (by

making *= a) will become x hyp. Log. x -f

^a
a* X hyp. Log. a = x hyp. Log.

* 4- Vx*~a*-- - = th Sedor ADC : Which, fubtraded

2

~
2

from -;-" (= . = the Triangle ABD)

leaves
* ""

^ x hyp. Log.
*"*****'

for the required Area of the Hyperbola ABD.

EXAMPLE XVIL

136. Let the Curve propofed be the EHlpfu AEBf.

Then, putting the tranfverfe Axis ABrirrf, and the

Conjugate (2CE) c ) we {hall, by the Property of

the Curve, have ^ (DR) =
^ Vox xx> and there-

fore (yx) s= - X x \/ax xx a the Fluxion of
a

the Area ARD.

I- But
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But* Vax xx is known toexprefs the Fluxion of
the cbrrefponding Segment AD of the circumfcribing

E

L
C D B

Semi-circle; whofe Fluent is, therefore, given, by Art.

f T I

124 j which being denoted by A, that of x * V ax x*

will, confequently, be = x A. Hence, the Area

of the Segment of an Ellipfis, is to the Area of the

correfponding Segment of its circumfcribing Circle, as

the lefler Axis of the Ellipfis is to the greater; whence,
it follows that the whole Ellipfis muft be to the whole

Circle in the fame Ratio.

EXAMPLE XVIII.

131 . Let the Curve AR &c. whofe Area CARS you would

) be the Conchoid of Nicomedes.

Whereof the Equation (putting BC = a, and RV

(= AC) = b) is *y =7T7V~x
I=71

(Vid. Art.tf.)

a */
* ,,*

Which, by Rcdudion, becomes x = ---Z. j.
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VV /: But, to bring it down to a, Jlill, more

fimplc Form, make v/^ / (= SV) = Z j then.? =

. #2
VJ? z1

i whence, by Subftitution, x =
"y

4- z ; and confequently x

z

But now, to exhibit the Fluent hereof; upon C, as a

Center, with the Radius AC (b) let a Quadrant of a

Circle AED be defcribed, and let RH, produced, meet
the Periphery thereof in E, alfo let EF be parallel to

AC, and let CE be drawn : It is evident (becaufe CE
(CA) = VR and EF = RS) that CF is alfo = VS
= z ; and therefore, EF being (= /CE1 CPJ =
VV z% it appears that VV z

a
(the fecond

L 2 Term
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Term of our given Quantity) exprefles the Fluxion of

the Area AEFC : Whence, if to this Area (found by

the Table of Segments) the Fluent of the firft Term
ab*% "b -f- z

Art.ii6. 71 1> or ^e kyP* k2' f L '__
x * a^ *> be added,

the Sum will be the whole Area ARCS, that was to be

determined.

EXAMPLE XIX.

132. Let it be required to determine the Area ASRA
included by the common Cycloid ASM and its generating

Semi-circle ARH.

Put the Radius AO (or RO) =*, the Sine BR = j,

the Co-fine OB=#, and the Arch AR (= RS, by the

Property of the Cycloid) = z : Then AB being = a

M

ABO H

A-, its Fluxion will be *; whence () that of the

Art, iii. Area ARS is = zx *. Now to find the Fluent there-

of, make w =: zx ( = the Fluent, if z was con-

ftant)



in fndtng Areas. 149

ftant) then w being = zx xz*9 we (hall have*Art ra

u ( zx) = <iv + xz. But C y Art. 35. ) *

(AR Fluxion) : y (BR Fluxioh) : : Radius : Co-line of

the Angle ARB, or its Equal ROB : : OR (a) : OB (x):

Therefore, by multiply ing Extremes and Means, we get

xk ay: Whence, by Subftitution u
(
= <u>4-*) r= iw

+ <7j; and confequently, by taking the Fluent, 14 =
w + ay

= z* -f ay
~ AO x BR BO x AR

the Area ARS.
Hence it follows that the Area (AEFA) Ahen RB

coincides with the Radius FO, is barely = AO x FO
= AO" : And that the whole Area AMHFA is truly
defined by ARH x OH, or by ARH x OH; that is

by four times the Area of the generating Semi-circle.

EXAMPLE XX.

133. Let the Curve fropofed be the Catenaria DAB.

Then, drawing BS and b$ parallel to the Axis AC,
and AS and cbn perpendicular to the fame ; and making
(as ufual) Ac ^ fb=y and A^= z, we (hall have, by

tfcc Property of ihc Curve, tax H AT* = zz : Whence*=
J

, and x = -7= .

--
~: From which the*

Value
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Value of y (which in all Curves is = v'i' x* *)

will here be found = \S & --
'̂- 1 ~

^_~
' anc*

_
multiplied by Va* + z* a

(-bs) gives ax -7~=f ( =the Rectangle S*}^ a z

-f- z
4

tt
=r the Fluxion of the Area A: f. From whence, by
taking the Fluent, the Area itfelf is found = az, a

1

Z -f- Y/ a ,

JArt. 12 6. X hyp. Log.
- ^_

j
. Which therefore de-

duded
fromjhej^eaangle se

(
=yx=y^a

leaves y /aa
-f z*

ay az, -f a* X ^ Z^.

- for the required Area Abe. But, fince j

1 . T * + VV -f- 2
a

we have y=.a X hyp. Log.
~

_ j

whence, by Subftitution, the Area, at laft comes out

rr y y*'a
1 + za

az, or z=: a Va~ -f-
2
X ^y/:, <^.

SCHOLIUM.

134. At the Beginning of this, and in the preceding
Sections,we have feen how the Fluxions of Quantities are

determined, by conceiving the generating Motion to be-

come uniform at the propofed Pofition ; according to the

4 Art. a. true Definition of a Fluxion : But hitherto no parti-
cular Notice has been taken of tbt Method of Incre-

ments^ or indefinitely little Parts, ufed (and miftaken)

by many for that of Fluxions : In which the Operations
are, for the general Part, exaaiy the fame ; and which,

(tho' lefs accurate) may be applied to good Purpofe in

finding the Fluxions themfelves, in many Cafes. For

which Reafons it may not be improper to add here a
1

9
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a few Lines on that Head, to (hew the. Beginner how
the two Methods differ from each other ; especially as

we (hall be enabled, from thence, to draw out fome

Conclufions that will be of Ufe in the enfuing Part of

the Work.
It hath been frequently inculcated in the foregoing

Pages, that the Fluxions of Quantities are always mea-

fured by how much the Quantities thetnfelves would be

uniformly augmented in a given Time. Therefore, if two

B
r 1M
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ceived '. r be JlriRly fo j unlefs, perhaps, in certain par*
ticular Cafes.

Hen^e we fee that the Differential Method, which

proceeds upon thefe indefinitely littlelncrements (actually

generated) as we do upon Fluxions (or the Spaces that

might be unifymly generated) differs little, or nothing,
from the Method of Fluxions, except in the Manner
of Conception, and in Point of Accuracy, wherein
it appears defective : And yet it is very certain the

Conclufions this Way derived are mathematically true ;

which has afforded Matter of Wonder to fome : But the

Reafon why they are fo is very eafily explained. For,

although the whole complete Increment is actually un-
derftood by the Notation and firft Definition (of this

Method) yet in the Solution of Problems the exa6l

Meafure thereof is not taken, but only that Part of it

which would arife from an uniform Increafe, agreeable
to the Notion of a Fluxion j which admits of a ftricl

Demonftration : But, after all, the Differential Method
has one Advantage above that of Fluxions, which is,

we are not there obliged to introduce the Properties of

Motion. Since we reafon upon the Increments them-

felves, and not upon the Manner in which they may be

generated.
It has been hinted above, that, though the Increments

of Quantities are not, Jlriflly, as the Fluxions, yet
from them the Ratio of the Fluxions may be deduced j

and it appears that the fmaller thole Increments are

tjken, the nearer their Ratio will approach to that of

the Fluxions. Therefore, if we can, by any Means,
find the Ratio to which the faid Increments, by con-

ceiving them lefs and lefs, do perpetually converge, and

which they may approach, before they vanifh, nearer

than any affignable Difference, that Ratio (called here-

after, for Diftin6tion Sake, the Ratio limiting that of
the Increments) will be, J?rifl/y, that of the Fluxions.

This will more particularly appear fr<~>m the follow-

ing Inflancts ,
wherein the Manner of deriving the

Ratio of the Fluxions, from that of the Increments,
is fhewn.
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I". Let it be propofed to determine the Ratio of tljt

Fluxions of x and **.

Now, if * be fuppofed to be Augmented by any

(fmall) Quantity x, fo as to become x -f- *, its Square

"7]* / / /

(**) will be augmented tax + x = x* -f ixx + xx ;

whence the Increment of x* will be ixx + x x-t which
/

t

therefore is to (x} the Increment of r, as 2#-fx to r

Hence, becaufe the lefler x is taken, the nearer this
Ratio approaches to that of ix to i, which is its Limit,
the Ratio of the Fluxions will therefore be exprefled by
that of 2* to i, or, which is the fame, by that of
to x (as in Art. 6,}

2. Lst the Ratio of the Fluxions of x and x* be

required.

Then, if x be augmented to x+ x, x will be
aug-

mented to x -f x =r x -f nx x
-j

, x

n n i n 2 5 /

99. Whence the Increments of x and x* will be to

n i n ni n z' ,
n

each other as j to nx -f- x- x x-\---12 X

fl ^ I ft __ O n --_ -5
' '

X - X- x 3# x &c. Where the fmaller
2 3

/

x is taken, thq nearer the Ratio will approach to that

of
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of I to nx i which appears to be its Limit : There-

fore this laftRatio, or that of x to nx *, is the Ratio
of the Fluxions required. (Fid. Art.%.)

3. Let it be propofed to determine the Proportion of the

Fluxions of the Sides AC and BC, of a
right-angled^

plane "Triangle ABC ; fuppoftng the Perpendicular AB
to remain invariable.

B

If Cd be afTumed to reprefent any Increment of BC
and LWj the correfponding Increment of AC (rzAD)
the Ratio of thofe Increments will be, univerfally, ex-

prefled by that of the Sine of the Angle CDd to the

Sine of the Angle DCd (by plane Trigc.xotnetry) and the

lefs the Increments are fuppofed to be, the nearer will

the Angle CD^ approach to a right one, or to an Equa-

lity with B ; which is its Limit : And the nearer will

DCd approach, at the fame time, to an Equality with

BAG. Therefore the Ratio here limiting that of the

Increments is that of the Sine of B (or Radius) to the

Sine of BAG : Which alfo exprefles that of the re-

quired Fluxions. (Vid. Art. 35.,)

In the fame way the Proportion of the Fluxions of

other Kinds of algebraical and geometrical Quantities

may
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may be inveftigated ; but it will be unnecefTary to dwell

longer upon this Head : I (hall therefore only add one

other Obfervation from hence (which will be of ufe

hereafter) relating to the Value of an algebraic Fraction,
in that particular Circumftance when both its Numerator
and Denominator become equal to Nothing, or vanifh,

at the fame time. Which VJue (it follows from above)
will be found by dividing the Fluxion of the Numerator by
that of the Denominator.

For, fmce the Value of any Fraction, in that Cir-

cumftance, is to be looked on as the limiting Ratio to-

wards which its two Terms converge, before they va-

nifh, and feeing the Fluxions are, always, exprefled by
that Ratio, the Truth of the Rule, or Pofttion, is

manifeft.

An Example, however, may not be improper :

x* a*

Let therefore the Fraction be propounded, to
x a

find the Value thereof when x~a. In which Cafe,
the true Value fought, or the Fluxion of the Nume-

2xx
rator divided by that of the Denominator, is = r-

x

= 2x=2<7. And that this is the true Value, may he

confirmed by common Divifion, whereby the Fraction

propofed is reduced to x+ a ; whofe Value when x at

js therefpre 2<?, the veryfame as before.

SEC-
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SECTION VIII.

'The U/e of Fluxions in the Rectification, or

fnding the Lengths, of Curves*

CASE I.

135. T ET ACG le a Curve of any Kind whofe Or-
\ j a'inates are parallel to themfehes and per-

pendicular to the Axis AQ;

If the Fluxion of the Abfcifla AM be denoted by
or by Cn (equal and parallel to Mm) and S,

M in

equal and parallel to Cr, be taken to reprefent the cor-.

refponding Fluxion of the Ordinate MC ; then will the

Art.48 Diagonal CS (touching the Curve in C *) be the Line
Id 49 which the generating point (p) would defcribe, was its

Motion to become uniform at C (Vid. Art. 48 and 49.)
which Line, therefore, truly exprefles the Fluxion of

7 Art. tithe Space AC gone over, according to the Definition f.

Hence, putting AM=#, CMrry, and ACrrz, we

have ~
(
= CS = Vc^TS^) = v/F+7 ; from

which, and the Equation of the Curve} the Value of a

may be determined.
CASE
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CASE II.

136. Let all the Ordinates of tie propoftd Curve

ARM bt referred to a Center C.

Then, putting the Tangent RP (intercepted by the

Perpendicular CP) = f, the Arch BN, of a Circle de-

fcribed about the Center C=x; the Radius CN (or

CB) =*, &c. (Vid. Art. 113.; we have z : y ::> (CR)

: t (RP*) and
confequently =: ^-: From whence*Art. 35,

the Value of z will be found, if the Relation of y and
* is given.

But in other Cafes it will be better to work from the

following Equation, viz. % =
. Which

is thus derived.

Let the Right Line, CR, be conceived to revolve
about the Center C i then fince the Celerity of the ge-

nerating



Derating Point R in a Direction perpendicular to CR is

to (x) the Celerity of the Point H, as CR (y) to CN
V^

(a) It will therefore be truly reprefented by : Which

being to (y) the Celerity in the Direction of CR, pro-

Art.35.duced, as CP (s) : RP (/)
*

it follows that^4" : / ::

y* jc
a

j* : t* : Whence, by Compofition, + y
1

: j>

2
:: j*

+ l* (;'):' 5 therefore
}~ + / =

,
and

confequently x-f- + / (:=-- = * ; as was to

be (hewn.

But the fame Conclufion may be more eafily deduced

from the Increments of the flowing Quantities, accord-

ing to the preceding Scholium.
i

For, if Rw, rm and N be aflumed to reprefent (z,
/

y and x) any very fmall correfponding Increments of

AR, CR and BN, it will be as CN (a) : CR (y) ::

/

x (the Arch N) : the fimilar Arch Rr = >-- And,

if the Triangle Rrm (which, while the Point m is re-

turning back to R, approaches continually nearer and

nearer to a Similitude with CRP) be confidered as

t, we fhall alfo obtain z
2

(
=Rwa=Rra+ r^)

/

y
1 x1

'

-^ \-y
z

: Whence, by writing z, x and y for
a

i i i

z, *and^ (according to the Scholium) there comes

v" x
1

out x* = T + j'% as before.

EX-
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EXAMPLE I.

137. Let the Curve ARM whofe Length is fougbty be the

Semi-cubical Parabola.

i

Whereof the Equation being ax*=y* y or x
,

%
a

i
Oy y w^^^^,*

we thence have* r= =~ : Whence z.
( Vj,*+x

2

*') *Art.i 3 5

(found by the common Rule) is2L9ZL. which,
L

corrected
( by making y z: o ) becomes

EX-
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EXAMPLE II.

138. Let the Curve propofed le a Parabola cf any

(other) Kind.

n

y
Then x r:

n_ I being a general Equation to all

a
T

4

Kinds of Parabolas, we here have *
n_ t

> &^d

2 2tf 2 .2

therefore s (=vj
a

. x

a

? X I -f-
-^ : Whofe Fluent, univerfally ex-

2.B 2
a

2 2 I

n y ____
prefled in an Infinite Series, is y + r

_ 27^z
,. 2 I X 2

4 4 3 6 6 5
w y y e.,

=r + ^ A* ^- = z"" AB 4 /- OB^O '

4^ 3 x8<r 6 5 x ioa

But, when 2 2, the Index of y, in the given

Fluxion, is either equal to Unity, or to any aliquot Part

of it, the Fluent may be accurately had in finite Terms,

by Article 84.
*

For, by putting == v, and
2

= c> our

Fluxion (2
2I 2

T 4 ny
2-2

^

X j) is, in the firft

reduced to i +cy
v

\ X j; Which being compared

7 with
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with a + cz \ x dz x, the general Expreflion in

the forefaid Article, we have a =r i, %=ry, w=r >

= o, or i = o ;

whence r=v> s (r -f m] = v -f
. and confequently

f.
* * Art. 84.

3

\ _ ^ = the Fluent

-s ,
^ ; which was to be determined, arid

which will (it
is plain) always terminate in v Terms,

when Vy or its Equal ^r~ > is a whole pofitive

Number.

ii} -j- i I \

If (derived from v = I be fubfti-
2V in 2/

tuted for its Equal , the Equation of the Curve, wiM

be changed to ax y"" ; which, if v be expounded
by 1,2, 3, 4, &c. fucceflively, will become axz = y

3
9

ax*y*i ax6=.y
7
y ax*-=zy

9 &e. refpedively : In all

which Cafes the Length of the Curve may therefore be

accurately had from the Fluent above exhibited.

M More-
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Moreover, if n be affumed :=r 2 (ori;=^) the ge-
n

y

neral Equation, x ~ , will then become x rr

a

v*

j anfwering to the common (or conical) Parabola.

2 2 2
n y

And therefore in that Cafe x
(

i + -

2

(by putting b = J =

4- ~~T=
" ;= into

*

Where, the Fluent of the firft Term (of the Fluxion

fo transformed) being == \ Vb*y
*

-\- f (or

by the common Rule ; and that of the fecond Term

= k V" X hyp. Log.---L
,

* it follows
b

that the Length of the Curve will, in this Cafe, be

W

T+ i* X hyp. Log.

E X-
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EXAMPLE III.

139. Let the Curve propofed be the Involute ofa Circle^

whole Nature is fuch, that the Part PR of the Tangent
intercepted by the Point ofContact and the Perpendicular
CP, is every where equal to the Radius CO of the ge-

'63

yy& i

nerating Circle : Therefore z
(
= ~-

J being here= Art,

jy y
1

, we firft get z = j which corrected, by makino-
a ia

/ a* f CP
1
\

y a (
= AC) becomes

("QT/ tne true

Meafure of the required Arch AR.

M 2 EX-



164 The Ufe ^FLUXIONS

EXAMPLE IV.

140. In which the Spiral of Archimedes is propofed.

Where, the Value of / (AT) being denoted by

y. a (Vid* Art. 62.) we get z
(
= -

J

"*" ^
: Which Fluxion being exactly the

fame as that expreffing the Arch of the common Para-

bola, found in Article 138. its Fluent will therefore be

truly reprefented by the Meafure of the faid Arch, or by

Value there exhibited.

E X-
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EXAMPLE V.

141. Let the Curve be a Spiral whofe Equation is

<T~
l

x^y* (Vid. Art. 136.)

.
m I

In which Cafe x being = -^-
, it is evident

m i

that z (

Which Value
f <* | A r-\ uit \jut ~f i x"\ & wi*

may be otherwise had, without an Infinite Series, when

-
is a whole pofitive Number, Vidt Art. 138.

EXAMPLE VI.

142. Where, the Right-fine, Verfed-fine, Tangent, or

Secant of an Arch of a Circle, being given, it is re-

quired to find the Length cf the Arch
it/elf in Terms

thereof.

Put the Verfcd-fme A =r x, the Right-fine
the Tangent AT

t> the Secant OT
=5, the Arch AR

z, and the Radius

AO, or RO, -
a ;

alfo let R;z .v, nr

y and Rr =. z :

Since the Angle
r*R

(
= Right-

angle) rr O^-R, and

r R (
= Right- b

an^le RO) = OR, the Triangles rR and OR
M 3 are
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are therefore equi-angular ; and it will be, "Rb (y) : OR

caufe, by the Property of the Circle i/zax xx = y. }

Alfo, Ob (vV /) : OR (a) : : nr (y) Rr (ij =
ay

-7=-. ?. Thefe two Values exhibit the Fluxion of
Vrf* jT

the Area in Terms of the Verfed-fine and Right-
fine refpeclively : But, to get the fame, in Terms of

the Tangent and Secant, we have (by fim. Triangles)

QT (=s = V'TT?) : OA (a) : : OR (a) : Qb =
'

: Hence AZ> = a "=. a

whofe Fluxion is therefore = ~r ~
5-:
Whence

*

^T?] 1

(again by fimilar Triangles) AT (= Vs
1

a* = <^ :

OT (=s=

at

Now, from any one of the four Forms of Fluxions

here found, the Value of the Arch ifcfelf (by taking the

Fluent, in an Infinite Series) will likewife become
known.

But the third Form, exprefled in Terms of the

Tangent, being intirely free from radical Quantities,
will be the moft ready in Practice, especially where the

required Arch is but fmall ; though the Series
arifing

from the firft Form, always, converges the fafteft.

if.



in fading the Lengths of Curves. 1-67

If, therefore, x be now converted to an In-

finite Series, we fhall have =r / ?+T ~

t$c. and confequently 'z =r / -f
-

g +

5 fcfr. = AR. Where, if (for Example Sake) AR

be fuppofed an Arch of 30 Degrees, and AO (to ren-
der the Operation more eafy) be put = Unity, we

iliall have / */~~\ .5773502 (becaufe O
*R(i)::OA(i): AT (/) = ":)

Whence
/
3

(
=/ x /

Z
rr/x4) = .1924500

i*
( sr<?X/=^J

= .0641500

r: -

-.0213833

=r 7 x/"= = .0071277

= =r .0007919

r= = -0002639

And therefore AR r= .5773502
3

.0641500 .0213833 .0071277 .0023759

5 7 9 n

M 4
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'.0007919 .0002639 .0000879

.0000097

15

.0000032

-f

-r- 2I 23

~
-5235987 = Which mul-

tiplied by 6 gives 3.1411,92 + for the Length of the

Semi-periphery
of the Circle whofe Radius is Unity.

At Article 1 26. certain Forms of Fluxions were pointed

out, whofe Fluents are explicable by means of hyper-
bolical Spaces, or a Table of Logarithms : Which Forms,
it is obfervable, a ree in every thing, but the Signs (and
ccnftant Quantities) with thofe exhibited above, for the

Arch of a Circle. And th fe lafr, like them, may
ferve as fo many (r-ther) Theorems for finding Fluents

by means of a Table of Smcs, Tanger t- and Secants.

But, as fuch a Table is ufually calculated to a Radius

of i,OOOOOO &c. (or Unity) the following Equations,
derived from thofe above, being adapted to that Radius,
will be rather more commodious.
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Radii, it will be i : a :: A : (aA] the Length of the

Arch AR (fee the Figure.) Therefore, the Fluent of

ax a*iu .

... -s (or
-

. -, putting w= x) being
v iax xx yiaw w

*ia

= aA (AR), that of , . muft neceflarilvr be
yiaw w

n: A : And in the very fame Manner the other Forois
are made out.

EXAMPLE VII.

143. Let thepropofcd Curve be the common Cycloid.

Then, if the RadiusAO of the generating Semi-circle* * See

be denoted by a, we fhal] have BR = Vzax x*; and'*''
'

the Fluxion thereof -f*
**

; Which bein?
1/2^ x*

added to
(

ax
J\ the Fluxion of AR or its

\V zax xx/

Equal RS (given by the preceding Article) we

thence et
2**~ Xx -

V/2ax x 1 _ "T X

2* x\ i fr the true Fluxion of the Ordinate BS of
thc'Cycioid.

Hence z fV/^T? t) = V** + il^JfHf -

^
~

f Art.

/^L - I

"
~^

x \/ ~ 2{i
\

x ' x
; and confequeatly, by taking

the Fluent, zr:I7 X JL 2 V
72^ = the Arch

AS of the Cycloid.

EX-
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EXAMPLE VIII.

1 44. Wterein it is required to determine the Length of the

Arch of the common Hyperbola.

In this Cafe (the Semi-tranfverfe Axis being repre-
fented by b, and the Semi-conjugate by t) we have

= 2bx + *' i and therefore * = b^ + **

f
1

c

Lyy ,- ___________r-

b: Hence * = -7==, and i (= Vj*+i*)
__ <'

a +/_
/ ^*y

l
y
x y b*y*v ? *

J^TT? =>'v i + TMTTy ' which >

&y
by converting;

--r-r into an Infinite Serie! y becomes
f* + c^

^V ^v* AV ^*v*

i+^--4-+Tr-!-TT ** But flill

t L C *

we have the Square Root to extradl ; In order thereto

let it be affumed = I + A/ + B/ + C/ + D/ &fr.

Then, by fquaring, and tranfpofing (Vid. Ait. 98.^
th'cre arifes

-J-AV-fzAB
=0

Hence A = ~j B zr - ^ -
- -

i+ i
1 ^

l b* b
6

. C" - AR _ 4- -- H---"""' 8
" "

8 ' C ll >

c

fc-V. esfr. Therefore i
(
= j v^ i + -+tsc. y X
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c. And confe-

By the very fame way of proceeding the Arch of

an Ellipfis may be found, the Equations of the two
Curves differing in nothing but their Signs.

145.

SECTION IX.

Application of FLUX IONS in invefiigating
the Contents of Solids.

LE
T ABC reprefent any Solid ; conceived to

be generated (or defcribed ; by a Plane PQ_
pafll \^ over it, with a parallel Motio:i : Let Hh (per-

pemiicular to PQJ be taken to exprefs the Fluxion of

AH (x) or the Velocity with which the generating
Plan is carry 'd ;

alfo let the Area of

the Part, ErnFn,
of the Plane inter-

cepted by, or con-

tained in, the Solid,

be denoted by A:
Then it fol'ows,
from Art. 2 ?.nd 5.
that the Fluxion of

the Solid AEF. will

be exprefled by Ax.
From whence, by
expounding A in Terms of #, (according to the Nature
of the Figure) and then taking the Fluent, the Content

of
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of the Solid (which wefhall, always, hereafter reprefent

by s) will be given.

But, when the propofed Solid is that arifmg from the

Revolution of any given Curve AEB about AHD, as

an Axis, the Fluxion (s) of the Solidity may be ex-

hibited in a Manner more convenient for Practice : For,

Art. 124. putting the Area (3,141592 &c*) of the Circle, whofe
Radius is Unity, = />, and the Ordinate EH y, it

will be i
2
:/::/>: (pyr) the Area of the Circle Em Fn,

which being wrote above inftead of A^ we have s

- rz py*x. The Ufe of which will be fufficiently fhevyn
in the following Examples.

EXAMPLE I.

146. Let it be propofed to find the Content of a
Cone ABC.

Put the given Altitude (AD) of the Cone ~ a, and

the Semi-diameter (BD of its Bafe = b: Then, the

Pittance (AF) of the Circle EG, from the Vertex A,
being denoted by x, &c. we have, by fimilar Triangles,

as a : b :: x : EF (y) = . Whence, in this Cafe, i

and

i

consequently s r

which, when x~ a

for the Content of the whole

__ Cone ABC. Which appears,
from hence, to bcjuft -V of a Cylinder of the fame Bafe

and Altitude.
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EXAMPLE II.

147. Inhere
',

let the Solid propofed be a parabolic Ganoid*

or that arifing from the Revolution of any Kind of
Parabola about tts Axis*

_ . mn t m
Then, from the Equation a x -

y , of the ge-
m H

nerating Curve, we get ya m xx m
, and j (=/>/*)

zm an 2

= pa x xx
m

; and therefore s pa X

2W- 2

= /./ X -- = the Content of the Solid j

which therefore is to (py*x) the Content of thecircum-

fcribing Cylinder, as m to 2n+ m. Whence the Solid

generated by the conical Parabola (where m^=2, and

=i) appears to bejuft i of its circumfcribing Cy-
linder.

EXAMPLE III.

14?. Let the propofed Solid AFBH be a Spheroid.

In which Cafe, putting the Axis AB, about which
the Solid is generated, rr#, and the other Axis FH,
of the generating Eilipfis = /, it follows, from the

Property of the Eilipfis, that *:*::* x a *

(AD x BD) : / (DE)
1 = ^ x ax^xx . Whence .

wehave \ (-pft*} - tf. x ^_^i and . Aftt

5 = X iaxxlx* = the Segment AIE. Which,

when



when AD (x) = AB (a),
-

becomes l~: xia
3

i

J pal* = the Content
of the whole Spheroid.

Where, if* (FH) betaken
= a (AB) we fhall alfo

get pa
3

for the true Con-
tent of the Sphere whofe
Diameter is a. Hence a

Sphere, or a Spheroid, is \
of its circumfcribing Cy-
linder } for the Area of the

Circle FH being expreffed

by , the Content of the Cylinder whofe Diameter

is FH, and Altitude AB, will therefore be -
;

4

of which i pab
r
, is, evidently, two third Parts.

EXAMPLE IV.

149. Let tie Solid, whofe Content you would find, be the

hyperbolical Conoid.

Then, from the Equation,/
1 = xax -f xx, of

the generating Hyperbola, we have s (fy ) = pb
1_ _

X axx+ x*x, and confequently s -j-x r a** + i f 3

== the Content of the Conoid j which therefore is to

f>b
z _____

^T x ax-\-x'
1 X *) that of a Cylinder of the fame

Bafe and Altitude, as a + f # too-f *. This Ratio,
if # be extremely fmall, will become as i to 2 very

nearly ; Whence it may be inferr'd, that the Content
of
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of a very fmall Part of any Solid, generated by a Curve,
whofe Kay of Curvature at the Vertex is a finite Quan-
tity, is half that of a Cylinder of the fame Bafe and Al-

titude, very nearly : Becaufe any fuch Curve, for a fmall

Diftance, will differ infenfibly from an Hyperbola, whofe
Radius of Curvature, at the Vertex, is the fame.

This might have been inferred, either, from the

common parabolic Conoid, or the Spheroid, in the pre-

ceding Examples} but other Obfervations would not

allow Room for it there.

EXAMPLE V.

150. In which the propofed Solid is that arifmg from tht

Rotation of the Ctffoid 0/~ Diodes, about its Axis,

x3

Here, _y* being =: _ ,
' we have s (fy*x) Art.

px*x-
. But, in Cafes like this, (where the Denominator

G^'^X

is rational arid the variable Quantity in the Numerator
of feveral Dimenfions) it will be neceflary to divide the

latter by the former, in order to obtain the Fluent, by
leflening the Number of Dimenfions : Thus, dividing

px
3x by #+<*, according to the Manner of compound

Quantities, the Work will ftand thus :

px
3x o ( px'xpaxx pa'x

px
3x pax

zx

-\-pax*x o

xx o

+pa
3x

\Vhere, the Quotient being px
z

xpaxxpa
'

x
, and the

Remainder pa*x, the Value of the given Fradion
a x*

will
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will therefore be truly exprefled by px*x
- paxx -*

pa*x -f : Whofe Fluent, properly corre&ed, is

Q

3 f ' a~x
Vid. Art. 126. .

EXAMPLE VI.

151. Let the Solid be that arifmg from the Rotation of the

Conchoid of Nicomedes about its
'

The Sub-tangent ~r of this Curve being = -

y

(Vid. Art. 48 and 57.) we have x =7?^==^, and
J ' b 1

if', *\ faV'ypfj
Art 145. therefore s (py x*} = / ,

=
y b

3-

"' ~' But, in order for the more eafy frnd-
Y fr

1

y
1"

ing the Fluent thereof, put vV/ =
j and then,

uu
y being = V * * and j =: ' we fhall,* 1

paF'u
by Subftitution, get s

z + p X b*u u*u .

Whence, the Fluent of -===. being exprefled byvb1 u

the Arch (A} of the Circle whofe Radius is Unity and

Sine f, the Fluent of the whole Expreffion will be

* x >/+/> X PU y
3
- Which, when>>_ o, or ub-,

gives C/^
a
X \p + p X |

^3
) />i

a
X i^ + yi for the

Content of the whole Solid, when its Axis becomes in-

finite. q
EX-
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EXAMPLE VII.

151. U^nere it is required to find the Content of a parafafic

Spindle ; generated by the Rotation of a given Parabola

ACB about its Ordinate AB.

Put CM (the AbfcifTi of the given Parabola) = ay

and the Semi-ordinate AM (or BM) = b\ and, fup-

pofing ENF to be any Sedlion of the Solid parallel to DC,
let its Diftance MN (or EP) from DC, be denoted

fcy w : Then, by the Property of the Curve, we fhall

.F,

have AM* (T-) : EP1
(w*) :: CM (a) : CP =

=5-: Therefore EN (= CM - CP) = =- =

V confequently p x EN 1 = x

* __ 2i*w* -f w* = the Area of the Se&ion EF :

Which multiply'd by (w) the Fluxion of MN, gives

&'.
b*

ov 1^1^ + tti
4aw for the Fluxion of the

Solidity,
* whofe Fluent, -^ x b+w ^b

lw3
-f }w s

,
* Art. 145*

fQ. 2 7 \
fopa b \

when w becomes =: b, is ( J half the Content

N EX-
of the Solid.
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EXAMPLE VIII.

153. Let the Solid ACBD
(fee the la/1 Figure) be a

Spindle, generated by the Rotation of the Segment of a

Circle, ACB, about its Chord, or Ordinate, AB.

Then, if the Radius OE be put = r, OMr=</, and
EP = w &c. (

as before
) we fhall have OP (

=
y/OL EP^nyV w l

, and EN
(
=OP OM )

:= VV w 2" d: Therefore s, in this Cafe, is =

v'r* w7-
d\ pw x r* w*+ d1

2^v/r
1

=. <w X r
l d

1 w~ -*- >au X ^d V'

r~ - w~ - -

Whence, the Fluent of the Part, pw x ld^/r
i w L 2^1

(
= T.dp X nu X V'r

2 wz d :=r 2dp x w X EN )
* Art. nz.

being exprefled by idp x Area MNEC * the Fluent

of the Whole, or the true Value of s, will be ex-

prefled by pw X r
z d

7- wz
-idp x Area MNEC,

or by its Equal p x MN x AM 1 4MN 1

2/> x OM
X Area MNEC: "Which, when MN = MA, gives

p x | AM 3

zp X OM X y/ra yfCAf, for the Con-
tent of half the Solid : Where the Area ACM may be

found by Art. 124. Or more eafily by the common Table
of the Areas of the Segments of a Circle j to be met

with in mofl Books of Gauging.

EXAMPLE IX.

154. Let it be propofed to find the Content of the S-Jld

AEGB; whofe four Sides AH, AF, CH, CF are

plane Surfaces, and its Ends ADCB, EFGH given

Rectangles, parallel to each other.

Let the Sides AB and AD, of the Bafe, be denoted

by a and b ; and thofe of the Top (EH and EF) by c

and d refpeiiively ; moreover, let h exprefs the perpen-
dicular
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dicular Height of the Solid ; and let x (confider'd as

variable) be the Diftance of (IL) any Section thereof

(parallel to the Bafe) from the Plane EG.

F

It is evident, from the Nature of the Figure, that
the Se&ion IL is a Re&angle ; and that
b : x :: AB-EH : IM EH :: BC HG : ML HG.

From thefe Proportions we have IM EH=
*

b

.d ML-HG= O*2
:

U TUTHence IM =
a~~C X *

r, and ML = - - -f </; and confequently the

AreaoftheReaangle(IL) =
ad 2cd+cb

j

X x -f eel: Which being mukiply'd by

*, and the Fluent taken, there refults

~C x b~d * **

ad 2cd+cl>xx'
t

+ cdx for the Content of IFGL :

N 2 Which,

179
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Which, when x = h, becomes

/ icrl+cb X

AB x AD-f EHxEF + nb+ ,hixAD +EFx h
the Quantity propofcd to be found.

If EF (d) be fuppofed to vanifh, and the Lines EH
and FG to coincide, the Planes AEHB and DFGC
will form an AnjHe or Ridge, at the Top of the Solid

(refembling the Roofs of fome Buildings, whofe Ends
as well as Sides run up Hoping) and, in this Cafe, the

Content, found above, will become morefimple, being;

then exprefled by lab + be X {A, or its Equal 2AB + EH

But, ifEF be fuppofed EH, and ADrr AB, the Solid

will then be the Fruftrum of a fquare Pyramid ; and its

Content =a*+ ac+ c
1 X j&, AB*+ ABxEH-f-EH

X y h: From whence, by taking EHr= o, the Content

of the whole Pyramid whofe Bafe is AB% and its Al-

titude b, will alfo be given, being c= AB*x | h.

EXAMPLE X.

5^. Let the propofed Solid be tinat ^ commonly known by tke

Name ofa Groin; whofe Sections parallel to the Bafe

are, all, Squares, and whereof the two Sections per-

pendicular to the Bafe, through the Middle of the

oppofite Sides, are Semi-circles.

Let bcdef be

any Section paral-

lei to the Bafej
andletitsDiftance

V 7 A^ from the Ver-

tex of the Solid,

be denoted by x ;

alfo let areprefent
the Radius AB
(or BN) of the

cir-
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circular Section ABNA, perpendicular to the Bafe.

Then, bn being {by the Property of the Circle) =
Viax y.y, the Side of the Square </f,

will be =
2 V iax xx, and therefore the Area 4 x lax xx ;

whence s 4* X lax xx, and confequently s ^(tx*

~-}3
A-X *2,fl\

: Which, when x = a, becomes =; the

Content of the whole Solid.

If the Solid be a Groin of any other Kind, or fuch,
that its two Sections perpendicular to the Bafe, through
the Middle of the oppofite Sides, are any other Curves
than Semi-circles, the Content may, {till, be found in

the fame Manner ;
and will be always in proportion to

the Solid generated by the Revolution of the faid Curve
about its Axis, as a Square, is to its infcribed Circle.

But, if the forefaid perpendicular Sections be Curves of
different Kinds, the Sections parallel to the Bafe will

no longer be Squares, but Rectangles ; whofe Sides are

the correfponding (double) Ordinates of the refpective
Curves. Thus, for Inftance, let one Section be a Cir-
cle and the other a Parabola, whofe Ordinates, to the

comrnon Abfcifla, *, are cxprefled by */dx .vxand y/axt

refpectively; then the Sides of the rectangular Section,

parallelto the Bafe of the Groin, will be 2 Vdxxx and

2 */ax : Whence the Area of that Section is =; 4*VW <?*, and therefore j ^Xx ^/aj ax .

Where, by taking the Fluent,
*

s

3 *

Content of fuch a Solid.

= the true

N 3 EX-
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EXAMPLE XI.

156. Where the Solid BA.CD propofed is a kind of Cone+
or Pyramid ; form'd by conceiving Right-lines to be

drawn from every Point in the Perimeter of any given
Plane BDC, to a given Point, or Vertex, A above

that Plane.

Let EFG be any
Se&ion parallel to BDC,
whofe perpendicular Di-

ftance (AQJ from the

Vertex let be denoted by
x i moreover, let the

whole given Altitude

(AP) of the Soli J be put
sz 0, and the Area of

the Bafe BDC (which is

alfofuppofed given) = b.

In the firfl place, it is

eafy to conceive that the

Planes BDC and EFG
muft be fimilar : And

therefore, fince ftmilar Figures are to each other as the

Squares of their like Sides, or Dimenfions, it follows

that AP* (*) : AQ! (**) :: BDC (b) : EFG =
l̂a

confequently s = -~ -

bx*x
Whence s = r>

when x a. Therefore the Solidity of a Cone or Py-

ramid, let the Figure of its Bafe be what it will, is

always had by multiplying the Area of the Bafe by -J-

of the Altitude,

EX-
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EXAMPLE XII.

157. Where it is propofed to find the Content of the
'

Vngula EFGC, cut off from a given Cone, ABC,

by a Plane EFG pafling through the Bafe thereof.

183

Let AD be the perpendicular Height of the Cone,
alfo let AM be perpendicular to HE, the Axis of the

Seftion PEG, and let FAG be another Sedion of the

Cone, thro' FG and the Vertex A.
Since the Solids CAFG and EAFG, whofeBafes are

FCG, and FEG, come under the Form fpecified in the

preceding Example, their Contents will therefore be ex-

prefled by FCG x \ AD and FEG x f AM refpeaive-
FCGxAD FEGxAM

ly : Whofe Difference,
-

,

is the Solidity of the Ungula CEFG : Where the Bafes

FCG and FEG being conic Sections, their Areas will be

given by Art. 115. 124 and 129. from whence the whole
will be known. Thus, if HE be fuppofed parallel to

AB, the Sedion FEG, then being a Parabola, its Area

will be = -| x FGx EH *
: Whence the Solidity of the Art. 115.

N 4 Segment
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Segment EFGA is = y X FG x EH X AM : Which
being deduced from that of CFGA (found by Help of

the common Table of circular Segments) the Re-
mainder will be the Content of the Ungula. But, if the

Axis EH produced, cuts AB, the Section FKG will be

a Segment of an Ellipfis EFKG ; whofe conjugate
Axis (fiippofing EN and KL perpendicular to AD) is

Art. 41. r: 2 v'ENxKL*. Now, in order to compute the

Content, the eafieft way, in this Cafe, let the Ratio of

EH to EK (which is given by Trigonometry) be ex-

ported by that of m to Unity, and let the Ratio of CH
to CB, be as n to Unity : And from the common Ta-
ble of Segments (adapted to the Circle whofe Diameter
is Unity) let the Areas anfwcring to the verfed Sines m
and , be taken and denoted by M and N refpeclive-

ly : Then, the Area of FEG being =: M X EK X

t Art. i 4 2 ^EN x KL, and that of FCG = N X BC l
t, the

and 130. Content of the Ungula, by fubftituting thefe Values,
wiUbecome = j N* EC 1 X AD $Mx EK x AM X

2 v'ENxKL: But, fmce AM : AE :: KQ. (perpen-
dicular to AC) : KE; and AN : AE :: KQ_: Ki, it

follows, by Equality, that AM x KE = AN x KI ;

whence the Content of the Ungula is alfo exprefied by

px AD t MX ANxKIx 2VLN x KU
Which, if H be fuppofed to coincide with B, and K

with BC, will become
'

fck. X BC 1
x AD

?

' 7 5 ^9
fcfg. x AN x BC x 2 1/hN x BD = 0.26179

&c. x BC x BC x AD 2AN x v'ENx BD.
When the SecYion EFG is an Hyperbola, its Area

may be found by means of a Table of Logarithms (in-
ftead of a Table of Segments) whence the Content of

the Ungula will likewife be had in that Cafe.

EX-
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EXAMPLE XIII.

158. Let AFC, or AGD, be a Curve of any Kind j

whofe Area, and the Content of the Solid arifmo; from

its Rotation about its Axis, or Ordinate, AB, arc

both known ; it is propofed to find, from thence, the

Content of the Solid generated by the Revolution of

that Curve about any other Line PR parallel to the

faid Axis or Ordinate AB f

Let AP, FQ_, and CR
be all perpendicular to AB
and to the Axis of Motion

PQR ; alfo let AP ( or

EQJ = a, AE, confidered

as variable, = iv y
the Area

AFE, or AEG = Mt
and

the Solid, arifing from its

Revolution about AB,
N. It is plain that the

Area of the Circle gene-
rated by QF will be p X

FQ^
* = p X a + EF|* *

Art<

=r pa
r + Ipa X EF -f- p X

EF* ; from which de-

ducting the Area, />*, ge-

nerated by QE, the Remainder, ipa X EF -f
t

will be the Area of the Annulus generated by EF:
Whence the Fluxion of the Solid generated by AEF
is truly reprefented by ipa X EF x w + pw x EFa

f :

And, in the fame manner, it will appear that the tArt-MS-

Fluxion of the Solid generated by AEG is ipa x EG x *v

r p<w x EG 1
. But the Fluent of EF x w (or EG x w)

is = the Area (M) of AEF (or AEG) t, and that of

p.-wx EF* (or^wx EG*) equal to (N) the given Solid * Art ' 112 -

arifing from that Area ; therefore the Fluent of the

Whole) or the Solidity required, is ipaM+N, in the ***.**$

former Cafe, and ipaM N'm the latter j where ipa^
in
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in either Cafe, exprefles the Periphery of the Cylinder
defcribed by AB, about the Axis of Rotation PR.

Hence, if ABC and ABD are equal and fimilar to

each other, then the Value ofM &c. being the fame in

both Cafes, it follows that the Content of the Solid ge-
nerated by AFG will be expreffed by ipa x iMy or

2/>? x Area AFG.
Now, if (for Example fake) ACD be fuppofed a

Circle, whofe Semi-diameter is dt the Area of that

Circle being == />^% the Solid generated by its Revolu-
tion "(representing the Ring of an Anchor) will therefore

be
~

ipa x pd* =. rfad'
1 ' But if you would know

the Content of the Part generated by the upper Semi-
circle BAG, or the lower one BAD, let the Content

*Art.i48. / _ ) * f a Sphere whofe Semi-diameter is dt be wrote
3

for AT
, in each of the two foregoing Exprefiions, and you

will then get^W* -j-
j

and p*ad*

Again, if AFC, and AGO be taken as Right-lines,
_ _ AB x BC AB x BD\

,
...

you will have M =.-.....
(or
--

J
and N

fArt. 146. -^xBC
a
x-|-AB (or/>xBD*x |AB) f : Hence the

Solid generated by the Triangle ABC is
(
= 2pa X

.

AB x BC
+ t x DC 1

x AB) = p x AB x BC x
2

.

T
3

RB + -JBC j and that generated by ABD (
= 2pa X

AB_x_BD _ L BDa = x AB x BD x
2 3

Laftly, let ABC (or ABD) be confidered as a Pa-

rabola, whofe Ordinate is AB, and Axis CB (or DB) :

JArt. 115.
Then M being here = f AB x BC (or f AB X BD) }

*Art . I52 .
and A^= ^

x AB x BC1
(or ^ x AB x BD')

t
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it follows that the Solid generated by ABC will be

(- 2pa x t-
AB x BC + ^ x AB x BC1

)
= 4^ x

AB x BC x generated by ABD

= ^ x AB x BD x
cBR 2BD
--

j

--

SECTION X.

Ufe of Fluxions in fading the Superficies

ofJolid Bodies.

E T FAF repre-
fent a Solid ge-

I59
*T

nerated by the Revolution of

any given Curve AF about

its Axis AH ; alfo let a

Circle, whofe Diameter is

the variable Line (or Ordi-

natc) RBR, be conceived

to move uniformly from A
towards FF, and to dilate

itfelf fo, on all Sides, at the

fame time, as to generate,

by its Periphery, the pro-

pofed Superficies RAR:
Then the Length of that

Periphery, or the generating
Line, being exprefled by
3, 141592

*
fcfc. x RR

(
= ipy) and the Celerity

with which it moves by z f

the Fluxion of the Superficies RAR, or the Space that

10 would

*Art,i4a,

t Art. 135;
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would be uniformly generated in the time of defcribing
x y will therefore be truly reprefented by 2pyz.

Hence, if w be taken to reprefent the whole Surface

RAR, generated from the beginning (according to the

Method obferved in the three laft Sections) we fhall

have W = :

may be found.
2py **-}" j*

*
; whence w itfelf

f An, 159.

EXAMPLE I.

160. Let it be propofed to determine the convex Super-

fries of a Cone ABC,

Then, the Semi-diameter of the Bafe (BD, or CD)
being put = , the flaming Line, or Hypothenufe,
AC =

<:,
and FH {parallel to DC) = y &c. we fhall,

from the Similarity of the Triangles ADC and Hmb9

have b ' c:: J (mk)
' *

(
H*) = : Whence w (2pyz f)

and confequently w = *--, This, when

y r= bt becomes = pcb rz p
X DC x AC = the con-

vex Superficies of the whole
Cone ABC : Which there-

fore is equal to a Rectangle
under half the Circumference

of the Bafe and the flaming
Line.

E X,
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EXAMPLE II.

161. Let the Solid, whofe Surface you would find,

be a Sphere AEBH.

In which Cafe, putting the Radius OH a, AF= .f,

Um *, &c. we fhall (by reafon of the fimilar Tri-

angles OHF and Hmh *) have y (FH) : a (OH) :: Art.6g.

ax
* (Urn) : k (Hk) = -

: Therefore <* fayz) =
Zpax ; and confequently
the Superficies (w) itfelf

= ipax AF x Periph.
AEBH. Which if the

whole Sphere be taken,
will become AB x Pe-

ripb. AEBH ~ four times
the Area BEAHO.
Hence the Superficies

of a Sphere is equal to

four times the Area of
its greateft Circle : And
the convex Superficies of any Segment thereof, is to that
of the tVhole, as the Axis (or Thicknefs) of the Seg-
ment to the Diameter of the Sphere.

EXAMPLE III.

162. Wherein let the parabolic Conoid be propofed.

The Equation of the generating Parabola being
y

y*t or x rr
, we have x =.

2yv
and therefore

Hence zv (2Py~) =^ 1

i whereof the

Fluent
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_ 1

Fluent is
p x *

,~^
^y

; which corrected (by fup-
ta

Art. 79. pofing^ = o *) gives

perficies fought.

6a
-

-, for theSu-
o

163. ^/ it be required to determine the Superficies

of a Spheroid.

Let ACFHG reprefent one half of the propofed

Spheroid, generated by the Rotation of the Semi-elHpfis

FAG, about its Axis AH ; put AH =*, FH (or HG)
=<:, BH=A-, BC=y, FC=z, and the Superficies ge-

nerated by FC (or GD) = w : Then, from the Na-

D

ture of the Ellipfis, we h2ve.y = *-** 5 whence

t Art. 1 3 5. y = a ^~^ a"d confequently (
= ** +/ 1 )



in folding the Superficies of Solids. 191

x**" X xx

rW b*x*
7~==r- :r (by putting (the Excentricity)

-r.' = "^^- : Therefore> i

this Cafe, w (ipyz)
:

- ^/ _ ^ . ^^ofcM
Fluent, in an Infinite Series, is zpcx x

But the fame

Fluent may be, otherwife^ very eafily exhibited by means

of the Area of a Circle : For, if from the Center H,
aa

with a Radius equal to -7-, a Circle SER be defcribeer,

and the Ordinute BC be produced to interfed it in E,

it is evident that BE = V'
j^

xx^ and that the

Fluxion of the Area ESH3 will be exprefied by *

/a* 2pbcx /a*
\/ x~; which being to X V -. JT,

bb aa bb

the Fluxion before found, in the conftant Ratio of i to

Z
, their Fluents muft therefore be in the fame Ra-

tio ; and fo the latter, expreffing the Superficies CFGD,
.i Kf-f

will confequently be = -^ x BESFH = 2p X 757:
aa lib

x BESFH.

This Solution, it may be obferved, obtains only in

Cafe of an oblong Spheroid, generated by the Rotation
of the Ellipfis about its greater Axis j for, in an oblate

Spheroid,



Ufe of FLUXIONS

Spheroid, generated about the lefTer Axis, the Value of b

\V <? f) will be impoflible; fmce, in this Cafd
HF is greater than HA. But, if we, here, put b =

a
1
, and d-Tt the Value of w (found above)

2 i>c-* X x V a
1- + x* : Whofe Fluent may be

brought out by help of a Table of Logarithms :

For, let the variable Part x V^ 2
-f *

a
be tranf-

formed to

(*** +
fj XX ~l~ XX

meratorof the firft Term *,- * ==-(nowinagivenYd x + x*

Ratio to the Fluxion of the Quantity under the radical

* Art. 77. Sign) may be had by the common Rule *
j by which

means we get { V
'

d^x
i + #4

, for the true Fluent of the

{aid Term j to which adding the Fluent of the other

Term */j*^ , ..*
or

t /jl . -i ( Siven b7 Ar**

126.) there arifes \x)/d* + x 7- + ? d* x hyp. Log.

* + VV + A-% for the Fluent of x ^d* + ** : And

t Art. 78.
th 's> corrected f and multiplied by , gives

Vd l + .v
l + ^rf x hyp. Log. J

^
, for the

Superficies in this Cafe, where the propofed Spheroid is

an blate One.

E X-
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EXAMPLE V.

164. Let the Solid, wboft Superficies ;'; ftttght^ be the

hyperbolical Conoid.

Let the femi-tranfverfe Axis, of the generating Hy-
perbola, :=<?, the femi-conjugate ~c, and the Diftance

of any Ordinate from the Center thereof = x ; then

from the Nature of the Curve you will have y =.

v . . ..-~ V x* a
1

; whence j

att

uXxxa+i which laft Value, if rf* be put =
a*

^'z
, ; will be more commodioufly exprefled by

2 f!fx

-^-
v .v* d* : whereof the Fluent, by proceeding

as in the latter Part of the foregoing Example, will

pcx y' x v _ jj
come out =-1- pcd x . Z.
AT + v/^ ^ 4

: Which correaed (by taking x=a)
PCX ,-

becomes - V xx dd pc\ ptd X hyp. Log.

x + \/A-
a d*---

, the true Meafure of the required Su-
a + _ perficies.

EXAMPLE VI.

165. Let it be propofed to find the
Superficies of the

Solid called a Grain. (V id. Art. 155.)

Let M/be any Sedion of the Solid parallel to the
Bafe therepf, and let x denote ics Diftance from the

Q Vertx
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Vertex A, alfo put z equal to the cfcfre"(pondino:
Arch

An of the femi-circular Section NA &c. whole Radius

AB or BN let be denoted by a. 4.

It appears from Art* 161. that z -, =
;

V lax xx

Which Value, multiplied by (2 V lax Ar.vjthatof

ds ( 2bn) gives lax * for the Fluxion ofone of the four

equal convex Superficies by whjch the Solid is bounded.

Hence the whole Superficies (excluding theBafe) comes
out = 80* : Which therefore is exadly equal to twice

the Bafe.

If the Solid be fuppofed a Groin of any other Kind,
fuch that its two equal Se&icns, through the Middle of

the oppcfite Sides, are other Curves than Circles, the

Superficies may Jlill be had in the lame manner ; and

will be always in proportion to the Superficies arifing

from the Revolution of either of the faid equal Curves

?.bout rts-Axis, as a Square is toils inscribed Circle.

Thus, the Superficies cf a parabolic "Conoid being =

ba
_ --

(fy Art. 162. ) the convex

Superficies of the Groin, fuppofing the generating
Curve AffN to be a Parabcla, will therefore be =:

"

6a
E X-
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EXAMPLE VII.

1 66. Wherein let It be required to find the convex Super-

ficies of a cinical Ungula ECFD ; formed by a Plans

DFE pafling through the Bafe of the Cone.

Let a right-angled Triangle AOM (whofe BafeOM
is the Radius of the Circle BDCE) be fuppofed to re-

volve about the Axis AO ; whilft a Right-line NP,
drawn perpendicular to OM from the interfetion of

AM and the Arch EFD, traces out, upon the Bafe of
the Cone, the Curve-line EPGD.

IfMPOANand
mpOAn be confi-

dered as two Po-
fitions of the ge-

nerating Triangle
indefinitely near to

each other, it is

evident that the

Space MA;w, ge-
nerated by AM,
will be to the

Space MOw, ge-
nerated by OM,
as AM to OM,
or OB. Whence,
MNand MP be-

ing proportional
Parts of AM and
OM (becaufe NP is parallel "to AO) it is likewise

plain that the Spaces MN/w and MP/>*, generated bv
thofe Parts, will be to each other in the fame Ratio of
AM to OB. And fmce this ever/ where holds, ic

follows that the whole Space (ENM) &c. generated bv
MN, will be to that (EPM) generated by PM, as AM
toOB : And fo the whole required Superficies (generated

by AM) is truly reprefented by , Area EPGDCE.

O 7 But
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But now, to find this Area, EPGDCE, it is ob-

fervable that the Area of the Plane DFE (being the

Segment of a Conic-fediion) is given, by Art. 115. 129
or 130. And it is very eafy to apprehend and dej

monilrate that the Area fo given will be to that of

EGDH, as the Radius to the Co-fine of the Angle of

the Inclination of the faid Plane to the Bafe, or as HF
HC*

to HG. Therefore, feeing EGDM is ==
J^T

x EFD,

we have EPGDCE (
= ECDHE EGDH )

=

ECDHE TjT. X EFD j and confequently 7^7 x
rir (Jo

FPrrnr -
AM FCHHF AM x HG

,EPGCDE = x ECDH OBxHF x

EFD the convex Superficies that was to be found.

If the Point H be fuppofed to coincide with B,
ECDHE will become the whale Circle CB; and EDF
will become a whole Ellipfis, whofe greater Axis is BF,

Art 41. and its lefler Axis = 2V/OBxOG. *
Therefore, the

f Art. 124. Area of the former Figure will beexprcfledby p x BO
1
-^

and that of the latter by p X - BF X \/Uttx OG j

and fo the convex Superficies of the Part BFC will be

AM AM x BG
,

VOB x OG) = p x AMxOB^xAMx IBGx
F^T

: Which being deducted from (p X AM x
OB

OB) the Superficies of the whole Cone BAC, there

refts p xAM x ' BG x \f. -~ p for the Superficies of

the oblique Cone BAF ; which from hence is alfo given.

SCHO-
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SCHOLIUM.

167. In moft of the Examples, delivered in

the four laft Sections, the Part of the propofed

Figure next the Vertex,

whether, a Curve, Solid,

or Superficies, is firft

found ;
from whence, by

taking the Altitude (#)
of that Part equal to (a)

the Altitude given, the

Content of the wholt is

deduced : But, if the

Content of the lower Seg-
ment (

BCED
)

of any

Figure (ABC) arifins; by

taking away a Part(ADE)
next the Vertex, be required ; then the Difference be-

tween the jybole and the Part taken away (found as

before explained) will be the Quantity fought.

Thus, for Example, lee ABC be the common Pa~

rabola9 and let it he propofed to find the Content of the

Part, BCED, included between any two Ordinates

BC (b) and DE (f) at a given Diftance BD (d) from

each other : Then, the Equation of the Curve being

2>
7

>= -,. ArttIJI .
ax =y\ we have x , and therefore

a

2V
3

whofe Fluent is a general Expreffion for the Area

comprehended between the Vertex and the Ordinate^;
Whence, expounding;-, by b and c fucceflively, we get

; and for the correfponding Values of ABC and

ADE ; whofe Difference is the required Area

BCED : But, to exprefs the fame independent of <7, it

bp, by the Property of the Curve, b~ \ c
1

:: AB : AD;
O 3 whence,
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whence, by Divifion, F : i>
z ~ r : : AB : BD (d) and

V-? l"~

confequently
- -rr: a > which firft Value being

wrote inflead of a, there refults BCED = 1 l^J

_ _
// 4 fo + f*

*
*" " X / ,

*

3 b + c

After the fame Manner, the Segment? of other Fi

jnires may be found ; but in many Cafes they will br

more readily had from a direct Investigation, without

either finding the Whole or the Part taken away.

Thus, in the Cafe at>ove, if the Exccfs of any Or-
iginate RP above DE (c) be denoted by w;, we fhall

have, by the Property of the Curve, b
z

c~ (BC
1

DE 1

) :7T S (RP* DE*-) : : DB (d) : DP =

d X 7 CIV -r iS . , T-,.

'

. 2W-f2U
iL'l-li-i-^

-
j

whofe Fluxion fJ X ~
^ __ fu ~~

i>

multiplied by c 4- to
(
= PR ) gives d x

2<rVu 4- - --
,- i r-1 r u-'

j
---

,
for the Fluxion of the Area

u " * C

DPRE : Whereof the Fluent
(
which is idiu x

fl + f +
,

4 ' C;

') will, when ; = *--. (or RP=BC)
u c /

, , ,
id X A <: X i //" + i ^f -|- f i--"

be truly expounded by--:

-XZ - ^-i_2
/r c

z

id' I* 4 ^f 4 t" . ,

or its Equal,
- x

b ^ c
' the fanic as l'cfore '

O ^

Az,ain-, for another Example, let CEDrr be confi-

dercd a$ the lower Fruftrum of an Hemifphcre, whofe

Center is the Point C : Then, LP bein^ here, denoted

by w, we (halt have y- (
- BR^ BP^ - ^ w%

* An. 145.
and confequently />>

Vu *
:rr

/>
x i-'-w -n/w ; whofe

Fluent
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Fluent (p x /*; \ w z X ^ ;"

x 2Z> =
-J x BP X

+ PR 1
) is the true Content of the PartCED^;

which will alfo hold when the Figure is a Spheroid.
This laft Method, of finding the Content of a Por-

tion of a Figure, remote from the Vertex, will be of

Service, when the general Value, for the IVliole, can-

not be exprefled without an infinite Series ; becaufe

fuch a Series, in that Cafe, not converging, becomes
ufelefs *.

By dividing the whole propofed Figure, AHW, into

a Number of fuch Portions, HV, GT, FS, &c. the

Content thereof may be obtained, v.hen to find if at

once-, by a Series, commencing from the Vertex, would
be altogether impracticable.

H
G

Art. gj.

But, to render fuch an Operation as (hort and eafy
as may be, it will be proper to find each Part (DQ_, &V.)
of the Figure, by means of a Series proceeding both

Ways, from the middle Ordjnate (MN) between the

two correfponding Extremes (CR and DR).
Thus, let the Value ofMN (found by the Property of

the Curve) be denoted by a ; and let the Value of DR,
in a Series, be reprefented by a-\- bx -{- ex* -\- dx

3 + ex++
fx

%
-f &c. where x MD ; then the Area MDRN will

be reprefented by the Fluent of K x a+ bx + ex*+ dx 3 +
O 4 trV.
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y */

bx
,

ex* . dx^
&c. or by x x a + + T

-j- &c. And
2 3 4

by writing x inflead of*, the Ordinate CQ_will be ex-

preffed by a bx + cx*dx3
fafc. and the Area MCQN,

bx cx
z

dx 3 ex*

by x x a \r -f C5V. whence the
r t. 'y A C

_ i CM VJIi , .

Area CDRQ. is = 2.v x a + -f +
6

-f CV.

Therefore, if DE, EF, FG, and GH be fuppofed,

each, = BC (ZA-J and the Areas DS, ET, tic. (found
1 /

as above) be denoted by 2* X a -\ \-
- - ts'c. and

3 5
a i

a (x
i-

ex*

ix X a -\ + -~ &c. refpeclively, it follows that

the Area CR + DS -f ET will be reprefented by 2*X

* + * + a

i a

e + e -f e fc

Q.

I\ n

A 3 X c 4- c -f c tf^. -f |

An Example will

the Ufe of this laft Expref-
fion : Let CHWQ_ be a

Portion of a Quadrant
HAW of a Circle, whofc
Bafe HC (conceived tJ be

divided into four equal

Parts) is equal half the Ra-
dius AH, reprefented by
Unity. Then, putting CM"A CM.1)^ H

H; ( f ) y, w. have, by the Property of the Cir-

cle, * (MN) = -//>, and

DR
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DR (= v'HR4 HD 1
) = v/i l^"** =

/>
?

-f 2/>jr
*
x = vV+ 2/ur **; which,

in a Serics> is (=#+ *a W
= a +tl L

-j-
.?-, x x

1
&c. Therefore, in this

a 2a l(r

-i, ^' Which Va-
2

J

lue of r, by \vrii ing i a
1

for its Equal j>% will be

reduced to --'-:. From whence it is alfo evident
2<2

t-rr _'_ (fuppofing
fl fwJ = Vi J

1

)

i

a ..3,3
Confequently 2^- x a+ a +a crV. -j" j x X <: -f f -f- c.

""
/

'

&f. + |* J x ^ -f <r + t esto ( + rtX2^J-^ff X

2*3
\

"" ~

TV = X -
04 04 4

y^' 2x6 3 /&$ 64x8x3

_.
sx 55_^55 3x63

3 2
'

3 X 55 X 55 3x63x63
~

0,4?730:f the Area > CP1WQ_, that was to be found.
This Example, chofcn as an iliuftration of the fore-

gging Method, may indeed be wrought the common
Way ; whence the very fame Conclufun is brought out

(Vide
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(Vide Art. 124.) But that Method is alfo applicable to

any other Cafe, whether the Part propofed be near to

the Vertex, or remote from it ; and whether the Figure
itfelf be a Curve, Solid or Superficies ; fmce the Mea-
fure thereof may, always, be exprefled by the Area of

a Curve.

There is another Way, well known to MathematU
cian?, whereby the Area of a Curve may be deter-

mined, by means of a Number of equidiftant Ordi-

nates; which Method, derived from that of Differences,

may, alfo, be ufed to good Purpofe, in Cafes like thofe

above fpecified : But, it having been treated of by feveral

ether's, and alfo in my DiJ/ertatiem, the Reader will ex-

cufe me, if no further Notice is taken of it here.

SECTION XI.

Of the Ufe of FLUXIONS in folding the

Centers of Gravity, PercuJJion, and Ofcih
lation of Bodies,

168. r~r\ HE Center of Gravity is that Point of a

Body, by which, if it were fufpended, it

would r.eli in Equilibrio, in any Pofition.

LEMMA.

.169. Letp, q, ?', 5, eft. be any Number of given Weights,

banging at an inflexible Line (or Rod) AM fufpended
in Kquilibrio,

in an horizontal Pofition, at the Poirti

Oj to determine the Pofition of that Point.

Since (by Mechanics) the Force of any Weight (p)
to raife the oppofite End (M) of the Balance, is as that

Weight drawn into its Diftance (BO) from the Ful-

crum,
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crum, we dial], from the Equality of thefe Forces,

have p x OB + q X OC-f A X OD=j x OE+/xOF,

M^-l;
Eorn c B

,A

r "7 /'

isj> X AO AB + fX AO- AC-j-rXAO
s x AE AO-f t x AF AO~, andconfequently AOrr
p x AB + q x AC + r x AD -f-

* x AE +' f x AF

From which it appears, that, if each Weight be multi-

ply d ly its Dijla,,ce from the End (or any given Point)

of the Axis, the Sum of all the Products divided by the Sum
of all the Weights, will give the Dijlance of the Center of
Gravityfrom that End (or Point.)

Note. The Produfta here mentioned are, ufually,
cali'd the Forces, of their refpecHve Weights; not iu

refpe6l to their Action at the Center O (which is ex-

prefled by a different Q^iantity) but v/ith regard to the

Effects they have in the Conclufion, or the Value of
AO j which appear to be in that Ratio.

.

PROPOSITION I.

170- To determine the Center of Gravity of a Line,
Plane, Superficies, or Solid (admitting the three former

capable of" being affected by Gravity.)

Let AMBC be the propofed Figure, and G the
Center of Gravity thereof; thro* which, parallel to
the Horizon, let the Line EF be drawn, interjecting
AC, at Right-angles, inO; alfo let AK and NM ba

perpendicular to AC, and parallel to EF.

171. Cafe
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.
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171. Cafe i. If
the Figure AMBC
be a Plane ; let it

be fuppofed to reft

in Equilibria upon
the Line EF ; and

then, if the Line

MN be confider'd

as a Weight, its

Force (defined a-

bsve) will be ex-

prefled by MN
drawn into its Diftance (AN ) from the End of the Axis

AC; that is by yx (fuppofing, as ufual, ANrz* and

MNiry.J This, therefore, multiply'd by the Fluxion
cf AN, gives yxx for the Fluxion of the Force of the

Plane AMN ; whofe Flyent, when A-=AC, exprefles
the Force of the whole Plane, or the Sum of all the

Produces of the Ordinates (or Weights) by
their re-

fpective Diftances from AK : Which Fluent being,
therefore, divided by the Area ABC, or the Fluent of

yx (according to the foregoing Lemma) the Quotient

{-' *.*} will give (AO) the Diftance of the Center

of Gravity from the Line AK.

172. Cafe 2. // the Figure be a 5c//W; let MN be a

Section thereof by a Plane perpendicular to the Ho-
rizon ; then, the Area of that Section being denoted by
4*,

the Force thereof (confidered as above) will be ex-

prefied by Ax, and the Fluxion of the Force of the Solid

AMN by Axx \ whofe Fluent, divided by the Content

of the Body, or the Fluent of 4*', gives AO, in this

Cafe. But, if the Solid be the half (or the whole) of

that arifmg from the Rotation of a Curve AMB about

its Axis AC ; then (putting p for the Area of the Circle

whofe Pvadius is Unity) A will become ipy"
*

; and

Flu. -I py^xx Flu. y
1xx

co&fequentjy AO = -rr
,

. . r , a .

r lit. -i pyx riu*y x

173. Cafe
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173. Cafe 3. If the Figure propofed be the Curve-line

AM 8; then, the Force of a Particle at M being expreflfed

by AN or MQ^(x) we fliall (putting AM = z) have

^J = AO.

205.

"'

174. Cafe 4.. But if the Figure given be the Superficies

generated by the Rotation ofAMB about AC.

Then, the Periphery of the Circle generated by the

Point M being 2py. it follows that

Flu. yxz
7.. .- = AO.
rlu. yz

EXAMPLE I.

Flu.

175. Let the Figure propofed be the
ifofceles Triangle ABC.

A

M,

O

B

It is evident the Center

of Gravity (O) will be

fomewhere in the Per-

pendicular AQ_: And,
if AQ=*, BC:=, AN
=*, and MM^yj then

bx
y being r: , we mall

kave, by Cafe I, AO (
=

Flu. yxx\ Flu. x*x

Flu. yx ) Flu. xx

iX* 1 V
=
TS = -T = 7 AQj when * = AQ.; and confe-

AO
quently OQ^ = ^

In the very fame manner, the Center of Gravity of
any other (plane) Triangle will appear to be at | of the
Altitude of the Triangle.

EX-
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EXAMPLE U.

. Let the Figure prcpofed be a Parabola ofany Kind;

whereof the Equation is y zr -fL_ .

a
"

Flu. yxx Flu. *" * -f i
Here. - -r n-- __ x x ='

Flu. yx p, n.
'

M-J-2' Flu. x x

the Diftance of the Center of Gravity from the Vertex

of the Curve.

EXAMPLE III.

177. Let BAG be a Segment of a Circle.

Then, if the Radius thereof be put r, we fliall

havej> (NM) = Virx xx: Whence the Fluent of

yxx (xx^irx xx) will, by Art. 163. be found =
.__ 3

irxxx^ +rxAreaANM ; which divided by ANM,
3

NM 3
. _.. ,, .=A ' ThlS '

.^ Art. 171. 6'"
3 x AreaANM

BAG is a Semi-circle,

becomes = x
10CO

r, nearly.

-T-. But, with
refpecT:

to

_\ the Center of Gravity
B Q of the Arch BAG;

we have, Flu. *i, ( by Cafe 3. ) ~ Fluent of

rxx
tr >*x AM MN ; and confequently

y' irx xx

r x MN

EX-
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EXAMPLE IV.

178. Let ABC (fee the preceding Figure) reprefent a

Segment of a Sphere^ or Spheroid.

In which Cafe, denoting the Axis of the Sphere, or

Spheroid, by a
y
and the other Axis of the generating

Curve, when anEllipfis, by , we have y*= xax xx;

and therefore

If the Solid be an hyperbolical Conoid, the Diftance

(AO) of its Center of Gravity from the Vertex, will

alfo be exhibited by the Expreflion here brought out,
when the negative Signs are changed topofitiveones.

1 79. In thofe Cafes where theFigure cannot be divided

into two Parts, equal and like to each other (as a Curve
is by its Axis, &c.) the Pofition of two Lines EO, eo

(fee the enfitlng Figure) muft be determined, as above ;

in whofe lma'fetion (G) the Center of Gravity will

be found.

EXAMPLE V.

Let ABC be a Semi-parabola of any Kind
-,
whereof the

Equation is, y
~

a

It appears, from Ex. 2. that (AO) the Diftaoce of

EGO from the Vertex, is exprefled by
- X AC :

But to find the Pofition of oGc (perpendicular to E.O)
let Mtf'be parallel to eo^ or AC ; then, AN being

~
x,

anU
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8

and NM (y) = *_ > if AC be denoted by , we

ihall have Mn =. b
* n I

71 o

-xy and M x NM X j = b x X

= n!'x x n* *
for the

* C*

Fluxion of the Sum of the Forces in this Cafe (Vid.

Art. 171.) whofe Fluent f nlx~ nx

zr. z

2+iXtf
2B

xl
- z 2

nxn* / X _
2-fl 2 2-fl

BC'x AC , n ,. ..

or : , when * b) divided

a

y x r . -

by the Area ABC (= -^^ )
gives

EC tot the true Value of Co, or OG. Which, in

cafe of the common Parabola, where n = i, and

where AO (^T"X AC) ='jAC, will become = *CB.

Before I leave this Subject it may not be improper

to take notice, that, whatever Lire you
found your

Calculations upon, by fuppofcrig the P igure to reft, in

Equilibria)
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Equilibria, upon that Line, the very fame Point, for the

Place of the Center of Gravity, will be determined.

1 80. Thus, let

O be the Point in

the Axis AC, of

a given Curve
B A D, deter-

mined, as above,

by fuppofmg the

Figure to reft

upon EF per-

pendicular to

AC ; and let

RS be any o-

ther Line paffing

through the Point O ; then I fay the Sum of the Mo-
menta of the Particles on each Side of RS will, a.'/o, be

equal. For, if from two Points, in any Ordinate A1Q_,
equally diftantfrom the middle Point N, two Perpendicu-
lars mr and ns be let fall upon RS, the Eff.ca v of thofe

two Points, in refpe&toRS,will bereprefented bymr-f ns9
or its Equal 2NH (fuppofmg NH alfo perpendicular to

RS.) Whence the Efficacy of all the Particles in MQ^
will be exprefled by their Number multiplied by NH,
or by MQ_x NTH : Which is to their Efficacy (MQ^x
ON) when referred to the Line EF, in the conftar.t

Ratio of NH to ON, or of the Sine of the AngleRON to Radius. Whence it is evident that the Force
of all the Ordinates (or the wrHe Curve) in the former

Cafe, muft be to that in the latter, in the fame Ratio:
But the faid Force, in the one Cafe, is equal to nothing
by Hypothecs, therefore it muft be likewife fo in the

other : And confequently the Sum of the Momenta of

the Particles, on each Side of RS, equal to each other.

Much after the fame manner the thing may be proved,
in a Solid : Whence it will appear that there is actually
fuch a (fixed) Point in a Body as the Center of Gravity-
is defined to be : Which, however evident from mecha-
nical Confederations, is not fo eafy to demonftrate, geo-

metrically, from the Refolution of Forces.
P PRO-
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PROPOSITION II.

18 1. To determine the Center of PercuJJkn of & Body.

The Center of Percuflion is that Point, in the Axis of

Sufpenfion of a vibrating for revolving) Body, at which
it may be ftopt, by an immoveable Obftacle, fo as to

reft thereon in Equilibria as it were, without acting upon
the Center of Sufpenfion.

Let O be the

Point of Sufpen-

fion, G the Center

of Gravity, and
SLM a Section of

the Body, by the

Plane wherein the

Axis of Sufpenfion
OGS performs its

Motion ; to which Section let all the Particles of the

Body be conceived to be transferred in fuch Parts thereof

where they would be projected into (ortbograpbically)

by Lines parallel to the Axis of Motion ; which Suppo-
fition will neither affect the Place of the Center of Gra-

vity nor the angular Motion of the Body.
Since the angular Velocity of any Particle P is as the

Diftance, or Radius, OP, its Force in the Direction,

PB, perpendicular to OP, will beexprefled by Px OP.
Therefore the Efficacy of that Force upon the Axis, at

B, in the perpendicular Direction BN (fuppofmg the

Axis ftopt at C the Center of percuffion) will be P x
OP

OP X 7=75, whofe Power to turn the Body about the
(Jo

OP
Point C is therefore as P x OP x ^-^ x BC = P x

vJrJ

OP* x BC OP*xOC OB_p OP*xOC
OB" OB OB
PxOP z

j which, if PQ^be made Perpendicular to

OS,
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OP*
OS, will at laft (becaufe^ = OQJ be reduced to

Px OQ^xOC P x OP1
. By the very fame Argument,

/

the Force of any other Particle P will be denoted by

P X OQ_x OC - P x OP* fcfc. &V. But, as all thefe

Forces muft deftroy one another (by the Nature of the

Problem) the Sum of all the Quantities P xOQ^x OC,

Px OQ_x OC, e$V. muft therefore be = the Sum of all

the Quantities P x OP1
, P x OP* &V. and confequently

PxOP'-f PxOP-f ear*. Uc.OC =-
;

---
. But (by the

P x OQ.4- Px OQ.+ #< &(
preceding Proportion) the Sum of all the Quantities

&c. is equal to OG X by the Con-
tent of the Body. Therefore OC is likewife =

PxOP*+PxOP-f
OG x Body.

"The fame otberwife.

Since the Force of the Particle P, in the perpendicular
OP 1

Direction NB, is defined by P x Q]T,
or its Equal,

PxOQ_, the Sum of all the Quantities PxOQ_, l^

fefr. 13c. will exprefs the Force which, a&ing at C per-
pendicular to OS, is fufficient to ftop the Body, without
the Center of Sufpenfion O being any way affected:

This Sum, therefore, drawn into OC
(
= OC x

P x OQ,+ P x OQ.-f &c . &c.) is as the Efficacy of
the faid Force to turn the Body about the Point O. But
the Force of the Particle P, in the Diredion BN being

PxQg-,
its Efficacy to turn the Body about the fame

P 2 Point
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Point (the contrary way) is as P x OP 1
; and confe-

quently the Efficacy of all the Particles as the Sum of

all the Quantities PxOP% P/ OP 1 &c. &c. Therefore

(Action and Re-a6tion being equal) we have OC X

PxOQ+PxOQ^I- He. - PxOP^PxOP-J- &c. the

fame as before.

For the Center of Ofcillation, it will be requifite to

premife the following

LEMMA.
182. Suppofe two exceeding Jniall Weights C and P,

afling on each other by means of an inflexible Line (or
Wire PC) to vibrate in a vertical Plane ROFCM,
about the Center O ; it v. required to determine how rr.uch

the Mstion cfthe one is
afftfted Ly the other.

Let CH and PQ. be per-

pendicular to the horizontal

Line OR; alfoletPB and

CS be perpendicular to OP
and OC re!pec~lively.

If the Force of Gravity
be denoted by Unity, the

Forces acting in the Di-

rections CS and PB, where-

by the Weights, in their

Defcent, are accelerated, will, according to the Refo-

OH OQ_
lution of Forces, be reprefented by

Moreover, fince the Velocities are always in the Ratio

of the Radii OC and OP, if the forefaid Forces were

OH
to be in that Ratio, or that of P was to become ^
X TTp-,

inftead of
gfep.

I fay, in that Cafe, it is

plain the Weights would continue their Motion with-
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out affe&ing each other, or a&ing at all on the Line
of Communication PC (or PB). Whence, the Excefs

, OQ OH OP
or

^y.y
above

-^r^,
x

-p^rr
mult be the accelerative

Force whereby the Weight P acls upon the Line (or

Wire) OC, in the Direction PB ; which multiply'd by

the Weight P gives P x
~--

^ for the ab-

folute Force in that Direction : Which therefore, irr the

OQ OHxOP
perpendicular Direction NB, is r X 5

OP
X

T=T]J
; whereof the Part ating upon C, being to

the Whole as OB to OC, is truly defined by P X

OQ. OHxOP
OC

"
OC 3

If P be fuppofed to a6t upon C by means of PC (in-
ftead of PB) the Conclufion will be no way different :

For, let F (to fhorten the Operation) be put to denpte

OQ" OH x OP \

the Force (Px ---
I in the Direction

PB, found above, then the Action thereof upon PC
(according to the Principles of Mechanics) will be ex-

pre.fled by F X -

^ ; which therefore in the Di-

redtion SC, perpendicular to OC, is F x -
^-.pu X

S. PCO S. PCO S. PCO _ OP
r

C.-/CPB
"

S. OPC
= Fx

OC" the

veryfame as before.

P
3 PRO-



214 T&e We f FLUXIONS

PROPOSITION III.

183. To determine the Center of Ofcillation ofa Body.

The Center of Ofcillation is that Point, in the Axis

(or Line) of Sufpenfion of a vibrating Body, into which
if the whole Body was contracted, the angular Velocity
and the Time of Vibration would remain unaltered.

Let LMS be a Section of the Body by a Plane, per-

pendicular to the Horizon and the Axis of Motion,

paffing thro' the Center of Gravity G and the Point of

Sufpenfion O ; and fuppofe all the Particles of the Body
to be transferred to this Section, in fuch Places of it, as

they would be projected into (crthograpbically) by Per-

pendiculars falling thereon. (Which Suppofition will no

way affecT: the Conclufion, the angular Motion conti-

nuing the fame.) Moreover let C be the Center of Ofcil-

lation, or that Point in the Axis OS where a Particle

of Matter (or a fmall Weight) may be placed fo as to

be neither accelerated nor retarded by the Action of the

other Particles of Matter fituate in the Plane. Then,
if, from C and any other Point P in the Plane LMS,
two Perpendiculars CH and PQ_be let fall upon the ho-

rizontal Line OR, the Force of a Particle (or Weight)
at P to accelerate the Weight at C, will (according
to the foregoing Lemma ) be represented by P X
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OQ, OH xTjP Which, fuppofing GN per-OC OC 3

pendicular to OR, will alfo be exprefied by P X

OQ~ ON OP
OC OG x OC*

r lt3

OQ.x OG x OC ONxOP* .'
,

,^-
*
-

' veryx
/

manner the Force of any other Particle P will be re-

' OQ. x OG x OC ONxOP*
prefented by P x - *-OC^OG~
Of*. fcfr.

Therefore the Forces of all the Particles de-

ftroying each other (by Hypothecs) the Sum of all

the Quantities P x OG x OQ_x OC ON x OP 1

+ PxOGxOClxOC ONxOPtfr. &c. nouft be

equal to nothing : Whence P x OG X OQ_x OC -f,

P x OG x OQ_x OC &c. &c. - P x ON x OP 1 +

P xON X OP1 &c. &c. and confequently OC = x

.. But ^^/. 171. and 172.) the

/ /

Sum of all the Quantities P x OQjf P x OQ,fcfr. is equal
to the Content of the Body multiplied by the Diftance

(ON) of the Center of Gravity G from the Line LM
ON

(perpendicular to OC) j whence OC is alfo =

P X OP 1+P XOF &c. &c . _ P X OPa
-r- P X OP*&e.&t.

ON x Body OU x Body

Which Expreflion continuing the fame in all Inclina-

P 4 tions



216 The Ufe of FLUXIONS

tions of the Axis OS, the Point C, thus determined is

a fixed Point, agreeable to the Definition ; and appears
to be the fame with the Center of Percuilion ; fee

Art. 1 8 1.

COROLLARY.
*

184. If PD, PD &c. be perpendicular to OS, the Nu-
jnerator of the Fraction found above, will become P X

2OGxGD-f PxOG a+GP z+20Gx

GD + fcr>. &c. (fmce OP1 r= OG^GP1
2OG X

GO &c.) Which, becaufe all the Quantities Px 2OG

xGD+ P x 2OG xGD &c. or Px GD + P xGD &c.

(by the Nature of the Center of Gravity) deftroy one

another, will be barely P x OG1
-f GP Z + P x

OG'+GP 1 + W*. Vc. = P+P+ &c. x OG a + Px

GPa+PxGP+ &c. = Mafs x OG l + PxGP 1
-!-

P xGP 1 + &c. Whence it is evident that OC is, alfo,

_ Mafs X OG% + P X GP^PxGP + &c. tfr.s

Mafs x OG )

PxGP l
-f-PxGP*-f= G + "

Mafs X QG
'

PxGP a+PxGP-i- fafc.

x OG
Whence it appears that, if a Body be turned about its

Center of Gravity^ in a Direffion^ perpendicular to the

Jlxis of the Motion^ the Place of the Center of Ofdllation

will remain unaltered \ becaufe the Quantities PxGP%
/ /

P x GP* are no way affected by fuch a Motion of the

Body.
It
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It alfo appears thai the Dijiance of the Center of Gra-

vity from that of Ofcillatisn (if the Plane of the Body's
Motion remains unalter'd) wIII be reciprocally as the Di~

Jiance of the fo
rmir from the Point of Sufpenfun. There-

fcrc, if that Dijiance be found when the Point of Stifpcn-

feon is in the Vertex, or fi pvfited, that the Operation may
become the moft fimtle, the Value thereof in any other pro-

pofed p niuon of that Point will
likeivife be given, by one

Jingle Proportion,

185. But now, to (hew how thefe Conclufions may
be reduced to Practice, we muft firft of all obferve, that

the Product ofany Particle of the Body by the Square of
its Dijiance from the Axis of Motion is (here) called the

Force thereof (
its Efficacy to turn the Body about the

faid Axis being in that Ratio.) According to which,
and the firft general Value of OC, it appears that, if
the Sum of all the Forces be divided by We Prcdutf of the

Bod] int3 the Dijiance of the Center of Gravity from the

Point cf Sufpenjion^
the Quotient thence arifing will give

the Diliance of the Center of Percujfton, or
Ojcillationfrom

tbefaid P&int of Siifpen/ton.

The Manner of computing the Divifor has been al-

ready explained ; it remains therefore to (hew how the
Sum of all the Forces in the Numerator may be col-

lected : Which will admit of feverp.l Cafes. Wherein,
to avoid a Multiplicity of Words, I {hall always exprefs
the Diftance of the Center of Gravity from the Point

of Sufpenfion by gy and the Diftance of the Center of

Perculfion, or Ofcillation, from the lame Point, by C.

1 86. Cafe I. Let OS be a Line fufpended at one

of its Extremes.

Then, if the Part OP (confidered as variable) be de-
noted by *, the Force of x Particles, at P, will (as
above) be defined by x x x1

: Whofe Fluent
(-

* 3

)

therefore expreffes the Force of a!l the Particles in'oP
(or the Sum of all the Produces, under each Particle,
and the Square of its Diftance from O the Point of

Sufpenfion. This Quantity therefore (when x be-

comes
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T O comes = OS) being divided by OS X JOS
(according to the foregoing Rule or Ob-

_P fervation) we get (JQ^ =) OS

for the Value of C, the true Diftance of
the Center of Ofciilation (or Percuflion)

from the Point of Sufpenfion.

- C

* Art, 185,

()

187. Cafe 2. Let AB be a Lint, vibrating in a vertical

Plane^ having its two Extremes A and B equally dijiant

from the Point of Sufpenfion O.

If OG (perpendi-
cular to AB) be put
=:a, and GP *, the

Force of x Particles

at P, will be denoted

by x Xa*+ x* = x x
OP**: Whofe Flu-

divided by axP\
B

C
BG

ent,

(or PGxOG) gives

(
ax

. 4

~ = OG + -7c = C, when x becomes = GB,
3 3OG

188. Cafe 3. Let APSQ. be a Circle, vibrating in a

vertical Plane. Let PQ_be any Diameter thereof ; then

OP1 + OQ! being = lOG* + aPQ*, the Sum of the

Forces of two Particles at P and Q, (putting OG
= a, and AG = r) will be = a

l+ r* X 2; whence it is

evident that the Sum of the Forces of all the Particles,

in the whole Periphery, will be exprefled by their Num-

ber x/TrS orby^+ r
1 X Ptripb. APSQ.: Which,
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will 7*:Q
.':

/A.! \

if p be put 3.141

be =r a
1 + r

l X Zpr = t.pa*r

+ 2pr
3 Hence the Force of

the Circle itfelf is alfo given,

being Fluent of

x Circle APSQ. Now, if the

two Expreflions thus found

be divided by a x Ptriph.

APSQ, and a X Circle APSQ.
refpe&ively *, we (hall have

r
1 r

2

a + and a + r~> for the two
correfponding

Values of C.

Art. 185.

189. Cafe 4. JL*/ AHBE be a Circle having its Plant

(always) perpendicular to the Axis of Sufpenfan OG,
Let AGB be that

Diameter of the Cir-

cle which is parallel

to the Axis of Mo-
tion RS ; and let EF
be any Chord parallel

to AB and RS ; whofe

Diftance, GP, from

the Center of the

Circle, let be denoted

by x ; putting OG
= a, and AG = r :

Then, by the Nature of the Circle, EF r= 2vV **
whofe Diftance OP, from the Axis of Motion RS, is

alfo given = vV+ **. Hence it appears that the
Force of all the Particles in the Line EF (defined in

Art. 185.) will be reprefented by a*+x* x 2^r* x*~
Therefore* x **+ ** x 2V>_^ is the Fluxion of
the Force of the Plane ABFE; whofe Fluent (when

x=r)
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x r) is = a
1
-f \.

r* X Area AEFEG\ which, if p
be put for the Area of the Circle whofe Radius is Unity,

will be = a*+ r* X k Pr
*

"> whereof the Double (pa*r*

+ 5/>r
4
) is the Force of the whole Circle AEFH:

whofe Fluxion 2parr -}-/>r
3

r(fuppofingr variable) being

divided by r , we likewife get 2pa*r+pr
3

(
a
l
-\-r*

X Periph. AEFH) for the Force of the Periphery
AEFH. But the Center of Gravity, whether we re-

gard the Circle itfelf or its Periphery, is in the Center
of the Circle; therefore the Diftance of the Center of

Ofcillation from the Point of Sufpenfion, will in thefe

r
1

r
1

two Cafes be exhibited by a + and a + re-
4*2 2a

fpe&ively.
If the Circle, inftead of being perpendicular to GO,

cither coincides, or makes a given Angle with it, the

Value of C will come out exactly the fame ; provided
the Diameter AB ftill continues parallel to the Axis of

Motion RS : This appears from Art. 184.. and may be,

otherwife, very eafily demonftrated.

190. Cafe 5. Let the Figure propofed be a Curve AEF,
moving (flat-way'j, as it were) fo that the Plane de-

fcribed by the Axis OAS may be perpendicular to that

of the Curve.

Here, putting AP =. x, PN =y,
AN = z ,

OA - d, OG = g, and

AG^:a, the Force of the Par-

ticles in MN will be defined by

2y X a+ x\ . Therefore the

Fluent of 2yx xrf+x]
1

will be

as the whole Force of the Plane

NAM. (or AEF, when x =
AS )

and confequently C =
Flu d+ v|

a

X yx m

Flu. d+x x yx

: Which, there-

fore,
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fore, when the Point of Sufpenfion is in the Vertex A,
Flt4* V V^X

will become C = -jr.
:

r. Let this Value be de-
klu. yxx

noted by v ; then, the Diftance of the Centers of Gra-

vity and Ofcillaiion being v a, we have (by Art. 184.)

g : a :: v a : (

a x v
~~") the Diftance of the fame

f
Centers, when the Point of Sufpenfion is at O, and con-

fequently C, in that Cafe, = g +
"X^a

. Which
g

Form will be found more commodious than the fore-

going in moft Cafes.

After the fame iManner the Value of C, with refpecl:

of the Arch AEF, will appear to be = Flu '

^+*j*
* *

Flu, d+x X

It may not be improper to give an Example or two
of the Ufe of the foregoing Theorems.

191. Let therefore EAF be, firft, confider'd as an
ifofceles Triangle : In which Cafe AP (x) and PN (y)

hx
being in a conftant Ratio, we have^ = (fuppofing

SF=* and AS=,.) Hence C (=

Flu, f
Flu.

-- z

: Or
(
according fo the fecond Form)

Flu. ,~
4

and is kn wn to

be
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2X . a X v a \
Art. 175. be = *, we have C (= H--

J
= g +

x*
, where (

=d+ a) = d -f \ x.

Again, becaufe % and x are in a conftant Ratio, we

alfohave
^^M^** _ Flu.T+xY x x _

X * -K. --A? x x

-
, ,

T
; whence the Center of Ofcillation of

a-j- a X
the Lines EH and AF is given.

192. For a fecond Example, let EAF be fuppofed a

n

Parabola of any Kind, whofe Equation is y - :

c i 1

Then (according to Form 2.) we fha!l firft have v (=.

F!u.yx*x\ Flu. x x n+2xx T1T ,

g . . I = -z =- '

Whence,
Flu-y** /_ Flu. x* l

x n+ 2

n+ixx. , f ^~ f ,

f Art. 176. being =
CT+2

ti we alfo get C (
=

,g-
+

n+i X **= + v =- ; where g=.
^+2)'x4-3X^

But, with refpe<a to the Arch of the Curve, v
(
=

-v a _2 -
Flu. XXY c +nnx

which Value (found by infinite Series, and even with-

1 Art. i 3
out in fome ^afes t) tnat f c wil1 alfo be g'ven<

193. Cafe. 6. Let the proofed Figure be a Curve vi-

brating (edge-ways) fo that the Motion of the Axis may
be in the Plane of the Curve.

Then (by Cafe 2.) the Force of all the Particles in

the Line PN (fee the preceding Figure) being defined

by OP* x PN+ j- PN, or </+#!* x> -f |/ ( retaining
the

No-
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Flu. d+x
Notation above) we have C =.

flu.

Which, when the Point of Sufpenfion is in the Vertex

Fin. yx^x + T v
3* _

A, will become-rr-r2* : Let this (when
rlu. yxx

found) be denoted by v; then, it appears from the

preceding Cafe, that the general Value of C will, alfo,

, r ^ , , i
tf x v a

be reprefented by g +-
o

In the fame manner the Value of C, with

refpect to the Arch EAF, will be expounded by

or byg+
a*

9 fuppofing
-

S

Flu. XK

194. Example. Let the Equation of the given Curve be

y = -fL-
: Then v ( =

^ >***
+.1^I fl/ij i/w-

.,. i +2 . , 3~3" 3".
/Y. f A" X+ j XX _

+ 3

X X

= rT x x + ===== X -
: From which the

3x3+i *

Value of C is alfo given ; and from whence it appears,
that if n be expounded by 0, v will become =

2* if" 2 **-f y*
'

+ =: X -
; in which Cafe the Figure

^ <J <J ^
will degenerate to a Rectangle : But, if n be inter-

preted by i, the Figure EAF will then be an ifofceles

Triangle,
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Art.

*}J V"

Triangle, and v= + -
: Laftly, if n be taken

4 4*
1, the Curve will be the common Parabola, and v=

5f 1.
7
+

3

195. G?/* 7. Z>/ /& Figure AEFH <? fl Solid generated

by the Rotation of a Curve EAF about its dxi's AS j

/fonwir its. Bale HH parallel to the Axis of Motion

BOC.

B It appears, from Cafe 4.

that the Force of all the

Particles in the circular

Section hh (parallel to HH)
will be exprefTed by

OP 2
-f 1PN 1 X Circle M,

orOP z
x PN 2

-f iPN*xp
(p being = 3.14.15 &c.)

which, in algebraic Terms,

is d -f

Hence

X / + .

we have

x p.

C =

Flu.

Which, therefore, when the point of Sufpenfion is in

the Vertex A, becomes ^7 a . = v ; and
Jflu. y xx

, as in the precedingconfequently C =. g -\-

&

.Cafes.

But, with regard to the Superficies of the Solid ; it

is found, in Cafe 4. that the Force of the Particles in

the periphery MNA is expreffed by OP 1 + PN1
x

Peripb. Mb Nb = d + ffi* x ?py 4- Py
3

5 Hence
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Hence the Fluent of d+x^ x ipy+py* x , divided

c 77 , . ,
.F/K. */+*!* X 2yz -J- y

sx\
by that of d+x X 2/>y (=:

-r-^-?- - )

/*/. </+* X 2yz
'

will give the true Value of C with refpecl to the curve

Flu, 2yx*z $-y*z
Surface EbAhF. Which, putting v -

-p-
;

: ,

a X v a
is hkewife exprefled by g -f-

O

196. Ex. I. LetEAF be confidered as a Cone', then,

bx
putting AS =/", SF = i and AF c, we have^

~

ex . _. Flu. 7f^l*xjrV+ iv**
z = j and therefore C

(
= . _J_ y- ,

x f. But,

with refpeft to the convex Superficies, C will be found =:

iqy. Ex. 2. Zf/ EAF I3c. be confidered as a Sphert

whofe Center is S, and Radius ASrrr; in which

F/u.y*x*x+y+x\
y* being = zrx JT*, we have v ( = ^ ^-r2-

I
*

rlu. y xx J

Flu. r*x*x+ rx3xx*x r* + rx x*

Flu. 2rx*x x*x ^ r ^ x

whence C is alfo given. But, when * =r ir (or the

IT
whole Sphere is taken) v := : Therefore a being =:r,

and ^ = OS, in this Cafe, we have C
(
== ^ -f.

2r

198.
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R S 198. Cafe 8. Let the Fi-

gure propofed le a Solid, as

in the preceding Cafet but let

its Axis AG be^ here^ pa-
rallel to the Axis of Motion

ORS.

Then, if RP (OG) be

put -g,

M

AP = * &c. the Force of

the Particles in the Circle

NM (parallel to EF) will

be exhibited by g* + *>*

x#% or pgY+ipy* (Vid.

Cafe 3.) Hence we have C
1*5- flu.

g x Solid

Flu. 1 i

g*
t =

Moreover, with refpedt to the Superficies ; the Force

of the Particles in the Periphery of the faid Circle MN
j Art. 185. being 2pg*y + ipy

3
t> we ^ave > 'n th ' s ^- a ^"e ^

Fin, ipg-y + 2py
3 X g __ Flu. lpg

z
) + 2py

3 ~ _~ *
"
1

g x Superficies. g X Flu, 2pyz

X Flu.yz

199. Ex. i. Let EAF be a Segment of a Sphere,

vhofe Radius is r ; then/ being= 2rjf A;*, we {hall have

/?.!, ,

F*+
**./&..

7T^ p"

X_
,

=,+
307-

Which, when j; is expounded, either, by r or 2r, be-
i

, for the true Value of Cy whencomes n

either
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either the Hemifphere, or whole Sphere, is taken. But,
with refped to the Center of Ofcillation of the Super-

ficies thereof, we have z in this Cafe = Art. 14.

y irx xx

rx Flu. y
3z= : And therefore g+ ^f

- = g +
y gx.FIu.yz

Flu. irx xx X rx rx \x~
. _ . P -\

=
: Which, when

g* Flu rx g

x = r, or x r: 2r, becomes g + .

Off

200. Ex. 2. Let the S0//WEAF be a Paraboloi^ v.'bofc

n

generating Curve is defined by the Equation y =
c

44
.v x c

... ._
g x tin. x x^.c

xy* ....

Wtiere,

if n be taken = o, the Figure will become a Cylinder,

>
a

and C g + : But if n be expounded by i, the
O

3/
Figure will be a Cone, and C =. g + -

. Laftly, if

be taken = |, the Figare will be the Solid generated
*

from the common Parabola and C~g-\ .

SEC-
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SECTION XII.

Of tke Ufe of FLUXIONS in determining
the Motion ofBodies affetted by centripetal

Forces.

PROPOSITION I.

201. f I ^ H E Motion^ or Velocityy acquired by a Body
freely defcendtng from Re/ft by the Force of

an uniform Gravity, is proportional to the Time of its

Defcent ; and the Space gone over> as the Square of that

Time.

The firft Part of the Propofition is almoft felf-evi-

dent : For, fmce any Motion is proportional to the Force

by which it is generated, that generated by the Force

of an uniform Gravity muft be as the Time of Defcent ;

becaufe the whole Effect of fuch a Force, a&ing equally

every Inftant, is as that Time.

jj /^ Let, now, the Velocity acquired

during a Defcent of one Second of

Time, be fuch as would carry the Body
uniformly over any Diftance b in one
Second ; and let AB (x) denote the Di-
ftance defcended in any propofed Time
/ ; which Time let be denoted by PQ_;

making B r and QJJ =.t : Then it

will be, as i : / :: b : (bt} the Diftance

that would be uniformly defcribed in
i^

with the Velocity at B : Alfo i : / ::

the faid Diftance (bt) to bit = * *.

By taking the Fluent whereof we get

..B ^

c

..cl

- e

i/
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ifo*=*. Therefore the Diftance defcended ({b?) is

as the Square of the Time. Q E. D.

Olherwife, without Fluxions.

Conceive the Time ( PQJ of falling thro' AB to be

divided into an indefinite Number of very fmall equal

Particles, reprefented, each, by m ; and let the Diftance

defcended in the firft of them be A<r, in the fecond cdy
in the third de, S3c. &c. Then, the Velocity being al-

ways as the Time from the Beginning of the Defcent,
it wifrin the Middle of the firft of the faid Particles be
defined by ~ m ; in the Middle of the fecond by I f m ;

in the Middle of the third by 2 4 "*> &c. bV. But,
fince the Velocity at the Middle of any Particle of

Time, is a Mean between thofe at the two Extremes,
or betwixt any other two equally remote from it, the

correfponding Particle of the Diftance AB may, there-

fore, be confidered as defcribed by that mean Velocity.
And fo, the Spaces Ac^ cd^ de, ef^

&c. defcribed in equal

Times, being refpe&ive'.y as the faid mean Celerities | m,
1 4 ;j, 2 i m, 3 { 2, &c. it follows, by Addition, that

the Diftances, A^, A^, A*, A/", &c. gone over from

_, m ^m cm i6m y
the Beginning, are to one another as , , , ,222 2

&c. or i, 4, 9, 16, 25, &f<r. that is, as the Squares of
the Times. j>. . />.

COROLLARY i.

202. Since the Diftance that might be uniformly run
over in one Second, with the Velocity at B, is ex-

prefled by /-/, the Diftance that might be defcribed with
the fame Velocity in the Time t will therefore be ex-

prefTed by /X/, or bf : Whence it appears, that the

Space AB (
i It

1

) thro' which the Body falls in any
given Time t

y is juft the half of that which would be

uniformly defcribed with the Celerity at B, in the fame
Time.

Therefore5 fince it is found from Experiment, that a

Body near the Earth's Surface (where the Gravity may
0.3 be
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be taken as uniform) defcends about i6 T * Feet in the
firft Second, it follows that the Value of b (is in this

Cafe)= 2 X i6 T\= 32d : And confequently the Number
of Feet dclcc-aded in t Seconds, equal to i6TVxf

a
.

COROLLARY 2,

203. It is evident, whatever Force the Body de-

fcends by, the Value of b will always be as that Force;
iince a double Force, in the fame time, genei^es

a
double Velocity ; a treble Force, a treble Velocity, &c
Therefore, feeing our Equation \ bt

1
*, alfo gives t

v/ and b =: ;, it follows,
* -5

1. That the Diftance defcended is, univerfally, as

the Force and the Square of the Time conjunclly.
2. That the Time is always as the Square-root of the

Diftance applied to the Force.

3. And that the Force is as the Diftance apply'd to

the^Square of the Time What is above demonftrated

with refpedl to the Times, holds alfo in the Velocities,

when the accelerating Forces are equal.

PROPOSITION II.

204. 70 determine the Velocity',

and Time of Defcent^ cf a Body
along an inclined Plane AC.

From any Point F, in AC,
draw FE perpendicular to the ver-

tical Line AD, and make FB and
CD perpendiculartoAC, meeting
AD in B and D. Becaufe (by
the Principles of Mechanics) the

1

Force of Gravity in theDireclion

CF, whereby the Body is made to

defcend along the Plane, is to the

abfolute Force thereof, as AF to

AB,
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AB, or as AC to AD ; and fince (by Cafe I. Art. 203 .)

the Diftanccs defcended in equal Times are as the

Forces, it follows that the Time of Defcent thro' AF
will be equal to the Time of the perpendicular Defcent

thro' AB : And confequently the Time of Defcent thro*

AC equal to that thro' AD ; which is given by Prop. i.

Moreover, btcaufe the Velocities at F and B, acquired
in equal Times, are as the Forces, or as AF to AB j

and it appears from Prop. i. that the Velocity

at E*is to that at B, as v/AE : v/AB, or as

V/AE x AB (=AF) : /AB x AB (= AB) it fol-

lows, by Equality, that the Celerity at F is equal to

ng
. 1.

that at E ; which is therefore given, by the precedin

Propofition.

COROLLARY.

205. Hence the Time of Defcent along the Chord

AC of a Semi-circle ACD is equal to the Time of De-
fcent along the vertical Diameter AD: And, if the Chord

DGbeof the fame Length with AC (its Inclination to

the Horizon being alfo the fame) the Time of Defcent

along i: will alfo be equal to that along the vertical

Diameter.

PROPOSITION III.

206. Ij
r

, from two Points

A and D, equally remote

from the Center of Attrac-

tion C, two Bodies movet

with equal Celerities^ the

one along the Right-line

AC, the other in a Curve-

line DBQ_, their Celerities

at all other equal Dijiances

from the Center, will be

equal.

For, let CBandCEbe
any two Tuch Diftances ;

let the Arch. BE be de-

0.4

A
E
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fcribed, from the Center C, and alfo tb, indefinitely

near to it, cutting CB in n : Let the centripetal Force

at the Difhnce of CB, or CE, be reprefented by/, and

the Velocity at B, by v.

By the Refolution of Forces, the Efficacy of the

Force (f) in the Direction B, whereby the Velocity

of the Body is accelerated, will be
=^7-

x f: Alfo the

Time of moving over B (being as the Diftance apply'd
B

to the Velocity) is reprefented by : Therefore the

Increafe of Velocity, in moving thro' B, being as the

Force and Time conjunctly, will be defined by T>T */

x , or its Equal
- X /. In the fame Manner,

v "^

the Velocity at E being denoted by w9 the Time of

E*
falling thro' E* will be reprefented by , and the Ve-

E<r

locity generated in that Time by x/:Which is to that

(TD
-

Xf) acquired in falling thro' the Arch B, as

- to . Therefore, feeing the correfponding Incre-

ments of Velocity are always, reciprocally, as the Ve-
locities themfelves, it is manifeft, if thofe Velocities are

equal, in any two correfponding Pofitions of the Bodies,

they will be fo in all others, being always increafed

alike. But they are equal at A and D by Suppofition :

Therefore, faff. 4 E- D-

PROPOSITION IV.

207- To find the Ratio of the Velocities, and Times of

Deftent) cf Bodies^ in Curves j the Force of Gravity

being confidtrtd as uniform.

Let ARD reprefent a Curve of any Kind, along
which a Body dcfcends, by the Force of its own Gra-

vity
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vity from A
; let AC, RB, &c. be parallel, and CD

perpendicular, to the Horizon ; moreover, let R touch
the Curve at R ; and let CB u, AR = a/, and

Since the Points B
and R (as well as C
and A) may be looked

upon as equally re-

mote from the Earth's

Center (to which the

Gravitation tends), the

Velocity acquired in

defcending thro' the

Arch AR will (by the

laft Propofttion ) be

equal to that acquired by falling freely through the

Right-line CB ; which laft Velocity (by Prop, i.) is

always as -v/CB (or
a
). Therefore the Celerity,

whether the Body moves in a Right-line, or a Curve*
is always in the fubduplicate Ratio of the perpendicular
Defcent ; and fo, the Time in which R (ow) would be

uniformly defcribed, with that Celerity, will be univer-

fally as ; whofe Fluent is as the Time of
falling

233

through AR. E. /.

EXAMPLE.
208. Let the Curve ARD be any Portion of the

common Cycloid ; whereof the Vertex is D and Axis
DC ;

and whofe Nature (putting DC =r, and the Ray
of Curvature at D ~

a] is defined by the Equation 24

X DB:=DR*. Here, we have DR
( v^aTx i/DB)_ _ X

: V/2tf X c wi
1

; whofe Fluxion / 2a x
-it

I , with a contrary Sign, is the Value ofRn or ov ;

7 -")*

and
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therefore ^ = /U x
^~^"~" : Whofe Fluent,

at the loweft Point D, where u becomes = c, will (by

Art. 142.) be equal to Via multiplied by ^
)

half the Meafure of the Periphery of the Circle whofe
Diameter is Unity. Which Fluent (and confequently
the Time of Defcent) will therefore continue the fame,
let the Arch DA be what it will.

PROPOSITION V.

209. To determine the Paths of Prcjeftiles near the

Earth's
Surface ; (ncglefting the Refijiance of the

Atmofpbcre.)

Let a Body be pro-

jected fiom the Point

A, in the Direction

of the Line AC, with
a Velocity fufficient

to carry it uniformly
over the Diftance d
in the Time t , and
let the Space through
which it would freely

defcend, by its own
Gravity, in that time,
be denoted by b ; alfo

let the Sine of the

Angle of Elevation

BAG (to the Radius

r) be put
~

s, its

Co-fine = c, and the Diftance of the Point A from the

Ordinate Hm (cor.fidercd as moving parallel to itfelf

along with the Body) = x ; then, by Trig. HG (per-

pendicular to AB) will be = , and AG =

Becaufe the
Projectile

is turned afide, continually,
from a rectilinear Path, by the Earth's Attraction, it

muft
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muft defcribe a Curve -line AmEwB, to which AC is a

Tangent at the Point A : But that Attraction, acting

always in a Direction (Hw) perpendicular to the Ho-
rizon, can have no Effect upon that Part of the Velocity
with which the Body approaches the Line BC, parallel
to Hm ; therefore the Right-line HG (in which the

Body is always found) will continue to move uniformly
towards Hu, the fame as if Gravity was not to act;
and the D titan ce Gm defcended from the Tangent AC,
by means or the Attraction, will be the very lame as if

the Bod/ was to defcend from Reft along the Line GH.
This being premifcd, it is evident, that as d : AG
( ) : : t : ( ; x t

j
the Time of defcribing Am ;

r
L
x'

i
(br*x

1
\

and, as /* : -^ x t
1

: : I : f
-TJ*')

the Space (Gm}

through which a Body would freely defcend in that Time
(by Prop. i.)

sx Ir-x
1

csd'-x br**1 .

Hence
~Sd?>

or ^^ 1S a general

Value for the Ordinate Hm: By putting which = 0,

we get x =2 -T"! AB =: the Amplitude of the Pro-

jection. But, by putting its Fluxion equal to nothing,

we have x - r-r j which fubftituted for x in the Va-
2^r

i jt

lue of HOT, gives ji for the Altitude DE of the Pro-

jeaion. ^. E. /.

COROLLARY.

210. If another Body be projected, with the fame

Celerity, in the vertical Direction ASj then, s becoming

/ s*d*\= r, the Altitude of that Projection ^70J will be-

come
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come = AS ; which call h, and let this Value be
4^

fubftituted in thofe of AB and DE, and they will be-

come-^
and refpelively.

Hence, if from the Point Q^ where the Line of Di-

rection AC cuts a Semi-circle defcribed upon AS, the

Lines SQ_and QP be drawn, the latter perpendicular to

AB, the Triangles ASQ_ and AQP being fimilar, we

fhall have

r:*::A(AS): = AQ.

PROPOSITION VI.

a 1 1 . To determine the Ratio of the Forces, whereby Bodies,

tending to the Centers of given Circle^ are made to re-

volve in the Peripheries thereof.

Let ABH and alb be any two propofed Circles,

whereof let AB and ab be fimilar Arcsj in which, let

the
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the Velocities of the revolving Bodies be refpectively as

/^to v i make DBK and dbk parallel to the Radii AC
and ac, putting AC = , ac = r, and the Ratio of the

centripetal Force in ABH to that in abh> as F to /.
It is plain, becaufe the Angles ABD and abd are

equal, that the Velocities at B and , in the Directions

BK and bk^ with which the Bodies recede from the

Tangents AD and ady are to each other as the abfolute

Celerities ^and v *. But thofe Velocities, being the
* Art'35

Effects of the centripetal Forces acting in correfponding,

fimilar, Directions during the Times of defcribing AB
and ab, will therefore be as the Forces chemfelves when
the Times are equal ; but when unequal, as the Forces

and Times conjunctly. Therefore, the Times being
AB at R r

univerfally as -77- to , or as -77 to ( becaufe the
V v V v '

Arcs AB and at are fimilar) we have, as F x
-p

: f X

y-

: : V '. v\ whence (multiplying the Antecedents by

V v\
-p-

and the Confequents by ) it will be, as F :f : :

VI v*
-r- : : Therefore the Forces are as the Squares of the

Velocities directly, and as the Radii
inverfely.

Otberwife.

Let the indefinitely little Arch AB be the Diftance

that the Body moves over in a given, or conftant Par-

ticle of Time ; and let the centripetal Force at B be
meafured by twice the Subtenfe or Space AE through
which the Body is drawn from the Tangent AD in than

Time f.

Then,

f The Velocity 'which any Force, uniformly continued, is ca-

pable ofgenerating, in a given Body, in a given Time, is the

proper Meafure of the Intenfety cf that Force *. But this Pe-

ftcily is itjelf mtajitrgd by tht Space the Body would move uni-
*
Art, 203,

formly
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Then, by the Nature of the Circle, AB* t=r AH X
*

AE = AC x 2AE, and confsquently 2AE =
Therefore, the Force is as the Square of the Velocity ap-
plied to the Radius of the Circle (as before).

COROLLARY I.

Tf^* ^

112. Becaufe, F :/ :: : -, it follows that*t f

V:u :: V~RF : V7Z and

COROLLARY II.

113. If the Ratio of the periodic Times be denoted

by that of P top ; then the Ratio of the Velocities P, v
R r

being as
-p
to, we fhall have, by Equality V RF:

R rV rf '

~n ; ~T > whence alfoP p
R r

&'/'
'

~pZ
~i-> and

.

R:r::FPz
: fp\

firmly over in a given Time ; 'which Space is always the doublt

of that through which the Body wouldfreely defcend,from Reft,

* Art zoa.
** *^e Same ttme **

<
?t>erefore 2^^ 'J *** proper Meafure of

the centripetal Force, according as ive haiie ajjumed it.

It is true, iv&ea the Forces to be compared are all computed
in the fame Manner, from the Nafcent, or

indefinitely Jmatt

Subtenfes of contemporaneous Arcsy it matters not whether

we confider thofe Subtenfes, or their Doubles, as the Meafures

of the Forces, the Ratio being the fame in both Cafes. But
when the Forces fo found are to be compared 'with others de-

rived from a fluxicnal Calculus, it is
abfolutely ntcej/ary ta

take the double Subtenfe for the Meafure of the Force.

*This Note is inferttd, that the Learner may avoid the Errort,

which fame 'very confiderable Mathematicians ba-~ve fallen intt

ly not properly attending is this Particular.

Co-
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COROLLARY III.

214. If the Meafure of the Force, or the Velocity
that might be uniformly generated in a given Time (i )

be expounded by any Power a of the Radius AC (a] ;

then the Diftance through which a Body would freely
defcend in the fame Time, by that Force, uniformly

continued, will be expreflfed by \ a *. Therefore, * Art. ao.
the Diftances defcended, by means of the fame Force,

uniformly continued, being as the Squares of the

Times f, it is evident, if the Time of moving through t Art- ZOI<

AB be denoted by /, that the Diftance AE defcended

in that Time, will be denoted by
- x i a" .; And fo

'
i

we fliall have AB (
\/2AE x AC) = x a~^ ;

which being the Diftance defcribed by the revolving
Body in the Time /, it follows that the Space gone over

in the given Time (i) will be a : Which, there-

fore, is the true Meafure of the Celerity in this Cafe.
The fame conclufion might have been derived in much
fewer Words from Carol, i. but, as a thorough under-

ftanding hereof is abfolutely neceflary in what follows

hereafter, I have endeavoured to make it as plain as

poilible.

COROLLARY IV.

215. Hence the Time of Revolution is alfo derived;

for it will be as a
~

: 3.14159 &c. x la (the whole

Periphery) : : r : HlJJL^ o, . II ^. x

I n

z
ia , the true Meafure of the periodic Time.

Co-
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COROLLARY V.

2l6. Therefore, if n be expounded by i, o, I,

2 and 3 fucceffively, then the Velocity cor-
i

,

refponding will be as 0, a
, i, a 2

, and a l
; and

JL 2.

the Time of Revolution, as i, a
x
, a, a and a* re-

fpedtively.

SCHOLIU M.

117. From the preceding Propofition, and its fub-

fequent Corollaries, the Velocity and periodic Time of

a Body revolving in a Circle at any given Diftance from
the Earth's Center, by means of its own Gravity, may
be deduced: For let d be put for the Space thro* which
a heavy Body, at the Surface of the Earth, defcends in

the firft Second of Time, then id will be the Mea-
fure of the Force of Gravity at the Surface : And there-

fore, the Radius of the Earth being denoted by r, the

Velocity, />*r Second, in a Circle at its Surface, will be

, rr-. rT> 3- I4i5Q&
>

-X2r
K/ird't and the Time of Revolution =-7==-

v ird

/
3'H T 59 &Ct x V^ ~T (Seconds); which two Ex-

preffions,
becaufe r is = 21000000 Feet and ^=16,^

will therefore be nearly equal to 26000 Feet and 5075
Seconds, refpe&ively. Let R be now put for the Radius

of any other Circle defcribed by a Projectile about the

Earth's Center: Then, becaufe the Force of Gravitation

above the Surface is known to vary according to the

Square of the Diftance inverfely, we have (by Cafe 4
J- _

Corel. 5 .) r
""*

: R *
:: (26000 / the

Velocity (per

Second) at the Surface, to 26000 x \X -, the Ve-,
J\.

locity
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a

locity in the Circle whofe Radius is R. And f*

:: (575 ' the periodic Time at the Surface : to 5075 X

R>
, the Time of Revolution in the Circle R.

r 3

Which, if R be aflumed equal to (6or) the Diftance of
S. D

the Moon from the Earth, will give 2360000, or 27 . 3
nearly, for the periodic Time at that Diftance.

In like fort the Ratio of the Forces of Gravitation
of the Moon, towards the Sun and Earth, may be com-
puted. For, the centrifugal Forces in Circles, being
univerfally as the Radii apply'd to the Squares of the

,,,. /SiooooooN
I imes of Revolution, it will be as (

-
J the

Semi-diameter of the Magnus Orbis divided by the Square
of one Year (the periodic Time of the Earth and Moon
about the Sun) is to (240000x178) the Diftance 'of

the Moon from the Earth divided by r, the Square

of the periodic Time of the Moon about the Earth, fo

is 1,9 to i nearly ; and fo is the Gravitation of the

Moon towards the Sun to her Gravitation towards the

Earth.

Alfo, after the fame Manner, the centrifugal Force of
a Body at the Equator, arifing from the Earth's Rota-

tion, is derived. For fince it is found above, that 5075
Seconds is the Time of Revolution, when the centrifugal
Force would become equal to the Gravity, and it ap-
pears (by Cafe 2. Carol. 2.) that the Forces, in Circles

having the fame Radii, are inverfely as the Squares of

the periodic Times, we therefore have, as bbiboj" (the
H M

Square of the Number of Seconds in (23 56) one

whole Rotation of the Earth) to 5075!
*

(the Square of
the Number of Seconds above given) fo is the Force of

R Gravity
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Gravity (which we will denote by Unity) to -^-, the
289

centrifugal Force of a Body at the Equator arifing from
the Earth's Rotation.

But, to determine, in a more general Manner, the
Ratio of the Force of a Body revolving in any given

Circle^to
its Gravity, we have already given 3.14 fcfr. x

/ 2r
V*

^
for the Time of Revolution at the Surface of

the Earth, when the Gravity and centrifugal Force are

equal : Therefore, if the Time of Revolution in any
Circle whole Radius is a, be denoted by /, it follows,

from Carol. 2. lajl Prop, that, 2r
'

f
3

:: the Gravity of the Body : to its centrifugal Force

in that Circle ; which, therefore, is as Unity to

3. 14]* eft, x
:

j or as i to 1.228 x ~r vei7 near-
Ul t

ly : where a denotes the Number of Feet in the Ra-
dius of the propofed Circle, and t the Number of Se-

conds in one intire Revolution. So that, if the Length
of a Sling, by which a Stone is whirled about, be two

Feet, and the Time of Revolution ^ of a Second, the

Force by which the Stone endeavours to fly off, will

be to its Weight as 9.824 to Unity.
From this general Proportion, the centrifugal Force

and periodic Time of a Pendulum defcribing a conical

Surface may likewife be deduced.

For let SR, the Length
of the Pendulum, be de-

noted by g; the Altitude

CS of the Cone, by c ; the

Semi-diameter CR of the

Bafebyfl; and the Time
of Revolution by t : Then,
the Force of Gravity being

re-
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rcprefented by Unity* the Force with which the re-

volving iiody at R, the End of the Pendulum, tends

to recede from the Center C, will be defined by

**'' ~ M
, as has been already {hewn. There-,

fore, becaufe the Body is retained in the Circle RR by
the Action of three different Powers, i. e. the centri-

fugal Force ^
-

7
-

/ in the Direction CR,

the Force of Gravity ( i) in a Direction parallel to SC,
and the Force of the Thread or Wire RS, compounded
of the former two ; it follows, from the Principles of

Mechanics, that as SC (c) to CR (g) 9 fo is the Weight
of the Body at R, to the Force with which it acts upon

TM_ t*r- T> c
the Thread or Wire RS ; and as i

:: CS (c) : CR (a} : Whence d? = 3. t4&c.\* x

and / = 3. 14 &c- * \/T =i,io8/f nearly. Be-
d

caufe <&% or its Equal 3. 14^ r x 2c, exprefles the

Space a heavy Body will dcfcend, by its own Gravity,

in the Time / *, and fince i
1

: 3. 14 &V.]* 2c :

3. 14 &c\
l

X zc (
dt

1

} it therefore appears that, as

the Square of the Diameter of any Circle, is to the

Square of its Periphery, fo is twice the perpendicular
Altitude of the Cone, to the Diftance a heavy Body will

freely defcend in the Time of one whole Gyration of
the Pendulum, let the Bafe of the Cone and the Length
of the Pendulum be what they wiU.

PROPOSITION VII.

218. To determine thi Ratio of the Velocities of Sadies dt-

fcending, or amending, in Right-lines^ when accelerated, or

) by Forces^ varying according to a given Law.

Suppofe a Body to move in the Right-line CH, and

let the Force whereby it is urged towards C, or H,
R 2

b?
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be as any variable Quantity F ; Moreover, let the Ve-

locity of the . Body be reprefented by v ; putting its

Diftance CD, from the Point C :=:.*, and D</=*.

'

11 Then, fince the Time wherein the Space
Dd (x) would be uniformly defcribed, with

A *
the Velocity at D, is known to be as , the

"D Velocity that would be uniformly generated, or

deftroyed, in that Time by the Force F (be-

ing as the Time and Force conjunct!y) will

FJC

confequently be as : Which therefore muft
v

be equal to, Hh v, the uniform Increafe or

Decreafe of Celerity in that Time ; and confequently
-\-vv=: Fx. From whence, when the Value of F
is given in Terms of x, or v9 the Value of v will like-

wife be known. >. E. L

COROLLARY I.

219. Hence, the Law of the Velocity being given,

that of the Force is deduced : For, fince Fx = + vv9

Vu
it is evident that F =: -f- -r-.

x

COROLLARY II.

220. Hence, alfo, the Ratio of the Velocity at D
to that whereby a Body might revolve in the Periphery
of a Circle about the Center C, at the Diftance of CD,
will be known : For, if this laft Velocity be denoted by

w1

w, the Value of F will be rightly exprefTed by
*

:

VJ^x
Whence, by Subflitution, we have + vv = -

, or
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'f X *V X
fV X wa

x : Whence w* : v* : -f
--

: -*-,v JT
~ v * '

and confequently w; ; v :: v/^ -I
-- V^~ v

'

x
as well as above, the Sign of v mufl be taken -f or

according as the Body is urged from, or towards the

Center C.

PROPOSITION VIII.

22 if Suppojing a Body, let go from a given Point A with
a given Celerity (c) along a Right-line CH, to be

urged, either way, in that Line, by a Force varying as

any Power (n) of tbe Dljlancefrom a given Point C ;

to find^ not only, tbe Relation of the Velocities* and Spaces

gone over, but aIfo tbe Ti?nes of djcent and Defcent.

The Conduction of the preceding Problem being re-

tained, F will here be expounded by x"
t and we {hall

therefore have -Jrvv (~Fx) =xx; and confequently,

W *"T~'

by taking the Fluent thereof, + =--
; but to

2 n+ 1

correct the Fluent thus found, let x be taken = CA
(which we will call a) then v being r= r, the Fluent in

f* a***
^hat Circumftance will become -|

-- ~ -_ There-"
2 n+i

'

v
fore the Fluent duly corrected is + 4. ~

2 2

v*

" I

/ X= V c
* +come out = c
* + - _ . Where the

+i

Signs of v and x"
X

muft be alike, when both Q_ ; an-

increaie, or decreafe, at the farr.e time ; thit is,

H- 3 when,
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Art. azo. when the Force, from C, is a repulfive one *
; but, un-

like, when one increafes while the other decreafes, or

the Force, tending to C, is an attractive one. In the for-

mer Cafe we therefore have v y n-H

_ S+ 2X ~

fl T A " I *

.y 13 2-V

and, in the latter, v = ^ c
~
H

^~+~i

The Value of v being thus obtained, let the required

Time of moving over the Space AD be now denoted

by T j then, fince T is univerfally = ^,
we haveT

or f =

-M

=== according to the two forefaid

2*

n + i

Cafes refpeclively : From whence, by finding the Fluent,

the Time itfelf will be known. %. E. /.

COROLLARY.

222. If the Body proceeds from Reft at A, c will be
j_

s o, and we (hall have f = r*
+^ X

*--.. or

T =

V 2.V 2<2

t

I -f ]* X *

^/ fl+I +!V 2 2X

SCHOLIUM.

223. Although, the Fluents of the Expreflions given
above cannot be exhibited, in a general Manner, nei-

ther, in finite Terms, nor by means of circular Arcs

and Logarithms ; yet, in lome of the moft ufeful

Cafes
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Cafes that occur in Nature, they may be obtained with

great Facility.

247

Thus, if in
i + l**

n-J-i
(exprefling the Flux-

ion of the Time of Defcent along AD) n be expounded

by i, o, 2, and 3 fuccefTiveJy, the Fluxion itfelf

X X
will become equal

to ^===, -===,

^i**** and -r^=^ refpeaively : Whence, if

**-** **~*
ARF be a Quadrant of a Circle whofe Center is C, and

J\SC a Semi-circle whofe Diameter is AC, and DSR
be perpendicular to AC ; then it will appear,

i. That, when n I,

the Velocity (VV S)
at D will be repre-
fented by DR, and the

AR
Fluent fought by Art. 142.

2. That, when n = o, and T . =-, the
r 2a 2^

Velocity at D, and the Time of Defcent thro' AD, will

each be defined by

3. That, when n 2, and T = .

' ^
V ax xx

.he Vclocity be as

and the Time ofDefcent thro' AD, as V|ACxAS+DS.
R 4 4".
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axx
4. And that, when n 3. and T . .

V a
1 x1

DR
the Velocity will be as

Vvjj x '/ -r\> ar|d the Time as

ACxDR.
Hence the Time of the whole Defcent thro' the Ra-

dius AC, appears to be as
-r^, V/2AC, V . AC X AF,

or AC 1
. But the Time of one whole Revolution in

4AF
Art.aif. the Periphery ARF &V. was found to be as

-
-^r^* ;

AC~
AAF 4.AF

which in the four Cafes above fpecified ia ^TT, -
,A^ VAC

4AF x VAC", and 4AF x AC : Therefore, if the Time
of moving over the Quadrant AF be denoted by J-jj>,

it

follows that the Time of Defcent thro' the Radius AC,
AC" y/~T .

will be truly defined by & , jp x
J

G) v y i.
} ^ ^ AF J ** a

AC
or ^ x

-r-p according to the forefaid Cafes refpe&ively,

LEMMA.

224. The Areas which a rrushing Body deferibest ly

Rays drawn to the Center of Force, are proport'tsnal
to the Times oftheir Defcriptisn.

For, let a Body,
in any given Time,
defcribe the Right-
line AB, with an

uninterrupted uni-

form Motion ; bu,tk
c upon its Arrival at

B let it be impelled

towards the Center S, fo that, inftcad of proceeding

along
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along ABC, it may, after the Impulfe, defcribe the

Right-line Be.

Becaufe the Force, a&ing in the Line SB, can nei-

ther add to, nor take from, the Celerity which the Body
has in a Direction perpendicular to that Line, the Di-
ftance of the Body from the faid Line, at the end of a

given Time, will therefore be the very fame as if no
Force had a&ed ; and confequently the Area B^S equal
to the Area BCS, which would have been defcribed in

the fame time, had the Body proceeded uniformly along;
BC ; bccaufe Triangles, having the fame Bafe and Al-

titude, are equal.
Therefore feeing no Impulfe, however great, can af-

fect the Quantity of the Area defcribed about the Center

S, in a given Time, and becaufe the Areas ASB, BSC,
defcribed about that Point, when no Force ad~ts, are as

the Bafes AB, BC, or the Times of their Defcription,
the Proportion is manifeft.

COROLLARY.

225. Hence the Ve-

locity of a revolving

Body, at any Poinc Q_
prR

?
is inverftly as the

Perpendicular SP or

ST, falling from the

Center of Force upon
the Tangent a: that

Point.

For, let two other

Bodies m and n be fup-

pofed to move uniform-

ly from Q^and R, along
the Tangents QP and

RT, with Velocities re-

fpe&ively equal to thofe of the revolving Body at Q_and
R ; then the Diftances Q;?/ and R, gone over in the

fame Time, will be to each other as thofe Velocities ;

and the Areas QSm and RSi will be equal, being equal
to

249

T
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to thofe defcribed by the revolving Body in the fame

s. time *
: Whence Qm x SP being r= R x &T, it follows

that Qm : R* : : ST : SP : : <~ ~.

PROPOSITION IX.

To determine the Law of the centripetal Forcet

tending to a given Point C, whereby a Body may de~

fcribe
a given Curve AQH.

O

Let QP be a Tangent to the Curve at any Point Q_;

upon which, from the Center C, let fall the Perpendi-
cular CP ; putCQ_=j, CP=; and let the Velocity

of the Projectile at Q_be denoted by v.

Therefore, fince v1
is always as -j (by the Carol, to

Linana) it is evident, by taking the Fluxions of both

ii

Quantities, that vv will alfo be as j- : But the cen-

tripetal Force, whether the Body moves in a Right-line
or
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or a Curve, is always as r (by Art. 219. and 206.)

Therefore the centripetal Force is likewife as -j^'J

The fame otberivife.

227. Let the Ray of Curvature QO be denoted by
R: Then, becaufe the centripetal Forces in Circles are

known to be as the Squares of the Velocities directly and

the Radii inverfely *, it follows that the Force, tending
* Art.ai*.

to the Point O, whereby the Body might be retained in

its Orbit at Q_, or in the Circle whofe Radius is QO,

will be defined by x
-fc

: Whence (by the Refolution

of Forces) it will be CP (u) : CQ^(s) ::
^ (

the

Force in the Direction QO) : -j-pj, the Force in the

Direaion QC : Which, becaufe R = ~ f will alfo t Art. 73 .

be exprefled by
~

. %. E. I.

Another Way.

228. Let nq be the indefinitely fmall Part of the

Right-line Cy, intercepted by the Curve and the Tan-

gent Qj?, expreffing the Effect of the centripetal Force

in the Time of defcribing the Area QCn. Now thefe

Effects, or the Diftances defcended by means of Forces

uniformly continued, are known to be in the duplicate
Ratio of the Times , or of the Areas denoting thofe *

Times : Therefore, the centripetal Force at Q_, or the r
Art z

Diftance defcended by means thereof in a given Time,
will be as nq applied to the fecond Power <)f the Area

, or as
<ju>a X Q ^. This Expreffion is the fame

with
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with that given by Sir Ifasc Nervton, in his Principle!*

Book i. Prop. 6. But, to adapt it to a fluxional Cal-

culus ; let QE be an Ordinate to the principal Axis AG ;

and let (as ufual) AE =: x^ EQ_= ^, AQ_= z, Ee (or

Qf) = x, Q_? K. ; fuppofmg eq (parallel to EQJ to

interfeft the Curve and the Tangent in m and q.

Since Q_y is conceived indefinitely fmall (or in its

nafcent State) the Triangle nmq may be taken as recli-
t Art. 136. ]jneai

*
; alfo the Angle = CQP and the Angle m
Whence, it will be (by Trigonometry) as

CQP (n)
'

5. Qjp (m} ::mq:nq; that is, as -. ~?

:: mq : nq ~rp^7V)
-

: Which fubftituted above

CO x Qt x mq .

gives
- --

z for tne Meaiure of the centripetalCP 3 x Q_q
Force at Q^: But mq (fuppofing x to fio\y uniformly) i,s

known to be as j
* Therefore the Force at Q_, is as

CQ X Q/ X jr _ sxy

CP 3 x Qy*

'

' r lts qu ~v& '

'

e

vifor (u
3z 3

) is as the Cube of (QCj) the Fluxion of

the Area AQC.
The very fame Theorem may likewife be deduced

from that given by our fecond Method : For, fince (R)
x 3

f Art.68. the Ray of Curvature at QJs univerfally
*

=; n.rthe
xy

Value of-j- (there found) will here, by Subftitution,

sxy
become =. -yr,-'

u' z

This Exprefllon, tho' in appearance lefs fimplc than

-^- fuft found, is, for the general part, more commo.,-
W 3

J

dious in Practice.

Co-
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COROLLARY I.

219. If the Point C be fo remote that all Right-lines

drawn from thence to the Curve may be confider'd as

parallel to each other, the Force will then (making Qr
^~"SXV

perpendicular to C?) be as
''

|3
, or barely as

C^xQH

^j fince s (C?) in this Cafe may be rejected.

From this Expreflion, which is general, in all Cafes

where the Force ab in the Direction of parallel Lines,
it appears that the Force, which always acting in the

Direction of the Ordinate QE, would retain the Body

in its Orbit, is every where as rr j becaufe QC here

coincides with QE, and Qr becomes x.

COROLLARY II.

230. Becaufe the Force, tending to the Point C, is

r~*o ^^

univerfally as
cp* x QO ( 0t !sR ) the Force to any

other Point ct will, by the fame Argument, be as

=TJ . Hence the Forces, to different Centers
fp\ xQO
C and c (about which equal Areas are defcribcd in the

CP3

fame time) are to each other in the Ratio of rrr^ to

~~13

CjJinverfely.

COROLLARY III.

231. Moreover, the Ratio of the Velocity at Q to
the Velocity whereby the Body might revolve in a Circle
about the Center at C, at theDiflance CO, is eafily de-
duced from henCe : For, fiace the Celerity at Q> that

whereby
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whereby the Body might revolve in a Circle about the

Center O, and the Forces tending to the Centers O and
C are to each other as u (CP) and s (CQJ; it there-

fore follows, if the Ratio fought be aflumed as v to w,
v~ if*

that
rr^r

:

:yp
:: u : s (by Art. 212.) Whence alfo

v* : U? :: xQO (uR) : s x QC (V) and confequently

(becaufe R = J.
U'

The fame Proportion may alfo be derived from
2. Prop. 7. For it is' there proved that v : iu ::

V' -ii
: V ~ an(^ ^ aPPears from above, that

= : Whence the whole is manifcft.
v
"

u

If OL be made perpendicular to QC, QL will be

CPxQON uR ,QL uR- = , W*;= -
J and there-

fore v : w :: QL
a

: CQj : Which is another Pro-

portion of the propofed Celerities.

COROLLARY IV.

232. Laftly, the Law of centripetal Force being gi-

ven, the Nature of the Trajectory AQ^may from hence

be found j for fmce the Force (F) is univerfally defined

by r> it is evident that H-i will be =1 the Fluent
u 3

s 2.u

of Fs t which, when F is given in Terms of J, will

become known ; and then, the Relation between u and

i being given, the Curve itfelf is knowru
E X-
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EXAMPLE I.

233. Let the given Curve AQH be the logarithmic

Spiral, and C the Center thereof: Then u (CP) being

255

= i'., we have t (
= X

x
- i" Unity- Hence

it appears that the Force is in-

verfely as the Cube of the Di-

ftance; and the Velocity, every

where, equal to that whereby the

Body might revolve in a Circle at

the fame Diftance.

EXAMPLE II.

134. Let it be required to fnd the Law of the centripetal

Force, whereby a Body, tending to the Focus C, is made

to revolve in the Periphery of an Ellipfes AQDB.

From the other

Focus F draw FK
parallel to CP meet-

ing the Tangent PQ
(at Right-angles) in

K, join F, Qj put-

ting the tranfverfe

Axis AB = a, the

Semi-conjugate OD = *
, and the Parameter (

\ a f

-p: Then, CQ, and CP being denoted as above*
* Art. 231.

we have FQ.(=:AB CQ) =a ,; whence, by rea-
fon of the fimilar Triangles CQP and FQK, it will be

10
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~W */ y

a ~~ S * *
But FK x CP is

j

OD X

(by the Nature of the Curve.) Hence wi get

asXit1

r
I 4* 4

'- = 4 ; and confequently -77=- TT-;
J 7 zr Wr

whereof the Fluxion being -" A- S
.
, we obtain"

Y/ - - Hence, it appears that the centripetal

Force is, in this Cafe, as the Square of theDiftance in-

verfely ; and the Velocity at Q_ is to that whereby the

Body might defcribe a Circle at the Diftance CQ^, every
i_ jr^

where, in the Ratio of FQZ
to AO\

If the Curve had been an Hyperbola; then - X

<r (inftead of- x it
1

} would have been = | b* ;

*

and fo --V- x _ __
? tne very farae as before,

But, had it been a Parabola, the Equation would have

been^ x * = i*%
or^-(rr^)

=
;- p-, and

A

the Force flilL as r . But, the Meafwe of the Ve-
ps

- = \X2^~ 2;

) in this Cafe becoming

barely = V^T, it follows that the Velocity in a Parabola

is to that whereby the Body might defcribe a Circle at the

fame Diftance from the Center, in the conftant Ratio of

V2 to Unity.
EX-
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EXAMPLE III.

235. Let it be required to find the Law of the centripetal

Force, by which a Body^ tending to any given Point C,
in the Axis, is made to defcribe a conic Seflion AQH.

Put the femi-tranfverfe Axis (OAJ a, the femi-

conjugate =. , and the given Diftance of the Point

C from the Vertex A c: Put alfo the Abfcifla AE,
=r JT, the Ordinate EQ=iy, and CQ_= s (as before).
The Area of the Triangle ECQ,being (

= ^ECxEQJ
cy xy ,

,
. . , r cy x'y yx--

-, its Fluxion is therefore =- ;
2 2

which added to yx, the Fluxion of the Area AEQ_,

gives
- -- for the Fluxion of the whole Area

ACQ^defcribed about the Center of Force. Whence

(by Art. 228.) the required centripetal Force at Q_will

be as
c

Which Expreflion is general,

let the Curve be of what Kind it will. But in the

Cafe above, y being V iax + x
1
i we have j =.

bx x a -j- x*
-> y

alx~

a Viax -\- x
1

lax
[,

and
rj- + yx xj =
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_*'-"~r
""

... and therefore, by fubftituting theftf
a V 2ax + x*

sxj of' s

Values, we get ;
; =^ . 3

Cj + yx Ay! * x ca+ tf* ih cx
t

A

Which, becaufe TT is conftant, will alfo be as

From whence it follows,

If c be = ^p rf, or the Center of Force be In

the Center of the Section, the Force itfelf will be barely

as
(+ *) the Diftance.

2. If it be in the Focus, then ac -\- ax -f- r* be-

coming = CQ_x a, the Force will be inverfely as the

Square of the Diftance.

3*.
If the given Point be in the Vertex A, the Force

will be as T : Which therefore in the Circle ( where *=
x*

i* \ i

) will be as : , or the fifth Power of the Diftance
laj i

5

reciprocally.

4. Lafily, if the Point C be at an indefinite Diftance

from the Vertex, or the Force be fuppofed to acl in

the Direction of Lines parallel to the Axis AO j then

the Force will be as the Cube of OE inverfely.

PROPOSITION X.

236. To determine the Ratio of the Velocities of Bodies

revolving in different Orbits^ abcut the famey or dif-

ferent^ Centers ; the Orbits themfefaest and the Forces

whereby they are dcfcribedy being given.

Let AQH be any Orbit, defcribed about the Center

of Force C, and let the Force itfelf at the principal Ver-

tex A be denoted by F; alfo let r ftand for the Semi-

parameter, or the Ray of Curvature at the Vertex, and

let
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let CP be perpendicular to the Tangent QP.

Q

259

o

or

Then, the Celerity at A being, always, as

(by Art. 212.) we have CP : CA :: V7F (the Ve-

CA x ^ i'F

locity at A) to pp , the Velocity at Q_(y Art.

225.) Which anfwers in all Cafes, let the Values of AC,
t and F be what they will. Q E> !

COROLLARY I.

237. If the centripetal Force be as the Square of the

Diftance inverfely, or F be expounded by j^z > the

AC
Velocity at Q_ will become

p-p
X

Qp~
: Whence the Velocities, in different Orbits,

about the fame Center, are in the fubduplicate Ratio of

the Parameters, and the inverfe Ratio of the Perpen-
diculars from the Center of Force to the Tangents,
conjunctly.

COROLLARY II.

238. Hence, if the Celerity at Q^be denoted by Q^,

and Cy be drawn j then, Q_y being as
^rp,

it follows

that V7 is as CP x Q^, or as the Triangle QCq: There-
S 2 fore
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fore the Areas defcribed about a common Center oi

Force in a given Time, are in the fubduplicate Ratio of
the Parameters.

COROLLARY III.

239. Laftly, fince the Area of the Curve AQHB &c.
* Art. *34. whenanEllipfe*, is known to be as (AO X OD) AO X

yVx AO (fuppofmg O to be the Center) if the fame

be apply'd to Vr-> exprefling the Area defcribed in a

given Part of Time (by the laft Corel.) we fliall thence

have AO x t/AO, or AO* for the Meafure of the

Time of one whole Revolution. From whence it ap-

pears, that the periodic Times, let the Species of the

Ellipfes be what they will, are in the fefquiplicate Ratio

of their principal Axes.

PROPOSITION XI.

240. The centripetal Force, lending to a given Point C,
being as the Square of the Dijlances reciprocally, and

the Direftion and Velocity of a Body at any Point Q_
being given ; to determine the Path in which the Body
moves, and theperiodic Time> in cafe it returns.

It is evident from Art. 234. and 235. that the Tra-

jectory AQB is a conic Section j whereof the Point C is

one of the Foci,

Let
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Let F be the other Focus, and upon the Tangent
PQK let fall the Perpendiculars CP and FK, and let

CQ_ and FQ_ be drawn : Alfo put the femi-tranfverfe

Axis AO = <7, the given focal Diftance CQ_= dt and
the Sine of the Angle of Direction CQP (to the Ra-
dius i) ~m ; and let the given Velocity at Q_ be to

that whereby the Body might revolve in a Circle about
the Center C, at that Diftance, in any given Ratio of n

to Unity: Then it will be n : i :: FQj : AO* (by
Art. 234.) therefore

*
: i

2
: FQ_ (2* d] : AO (a) .

whence AO (a) is given = -__ v Moreover, fmce

CP = m x CQ_, and FK~m x FQ_, we have OD 1
(
=

whence the fe-
2 n

mi-conjugate Axis (OD) is given likewife.

Laftly, it will be (by Art. 239.) as CT* : AO* ::

(P) the periodic Time in any given Circle, whofe Radius

f *

is CT, tof
3
x P) the required Time of one Revo-

VCT*
lution when

theOrbitisanEllipfis; that is, when**islefs

than 2 : For, if
*
be = 2, the Curve fas its Axis

2 n*
becomes infinite) will degenerate to a Parabola; and, if
n
2
be greater than 2, the Axis being negative, it is then

an Hyperbola ; whofe two principal Diameters are equal
id imnd

to and -,

COROLLARY.

241. Seeing neither the Value of AO, nor that of
the periodic Time, is affeled with ;w, it follows that

the principal Axis, and the periodic Time, will remain
S 3 in-,
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invariable, if the Velocity at Q_be the fame, let the

Direction at that Point be what it will.

The fame Solution may likewife be brought out, from

Art. 238. by firft finding the principal Parameter : For,
it is evident that the Area defcribed by the Body about

the Center C, in any given Time, is to the Area de-

fcribed, in the fame Time, by another Body revolving
in a Circle at the Diftance CQ_, as mn to Unity : Hence,

Art. 238. it will be i
1

: rrfn* :: d : (m*a?d) the Semi-parameter* :

From which (proceeding as above) we get ff X tf/Vtf

(rzOD
2

)
= m* X 2.Gcl>d*', and confcqucndy a =:

:, the fame as before.

PROPOSITION XII.

242. The centripetal Force being as any Power (n) of

the Dijlance^ and the DlreElion and Velocity of a Body

at any Point A being giveny to determine the Orbit or

Trajectory.

From the Cen-
ter of Force C,
to any Point B in

the required Tra-

jeaory ABD, let

CB be drawn ;

join C, A, and

let Ab be the gi-
ven Direction of

the Body at the

Point A, and

Cb perpendicular
thereto ;

alfo let

the Velocity at

A be to that

whereby a Body
might defcribe a

Circle AEF, about the Center C, in any given Ratio

of p to Unity j putting CA=<?, and CB=*; Then
be
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fceeaufe this laft Velocity (the centripetal Force being as

-H

*" (or/) is rightly defined by a * *. the Velocity* Art. 214.

of the Body at A will be truly expreffed by

5+1

fa
*

.

Moreover, it is proved in Art. 221. and 206. that if the

Celerity, at any given Diftance a from the Center, be

denoted by <:,
the Celerity at any other Diftance x will

S
be truly reprefented by v' .* _L

Whence, />

*
being fubftituted for c, we have

>*+- x a""
1 - for the Celerity at B.

+ + i

But nowj to determine the Curve itfelf from hence,
let BP be a Tangent to it at B, and CP perpendicular
to BP

; alfo let CB, produced, meet the Periphery of

the Circle in E ; putting the Arch AE=rz, the forelaid

Velocity at B (to fhorten the Operation) =v, and
Cbb : Then it will be (by Art* 225.) v : c (the Ve-

locity at A) :: b : CP= - Whence BP ( =}

Moreover (by Art. 35.) we have, as CB : CP :: v :

CP
~ x v l^e Velocit of the Body at B in a ^~

redion perpendicular to CE; and confequently, as CB :

CP CPxCE
CE ::

- X v (the faid Velocity) to - Br-
><^ the

angular Velocity of the Point E (revolving with the

Body.) By the fame Article* the Velocity at B in the

S 4 D.i-
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BP
Direction CBE will be ^ x v : Therefore, the Ve-

locity of E being to the Velocity of B, in the faid Di-
CPxCE BP

rection, as
jp

to
^r, the Fluxions of AE (z)

and CB (x) muft confequently be in that Ratio; that is,

CPxCE BP CPxCE

lc a vx abac
X X

x Vx'v* b'c"
'

*/*V b*S

Which Equation is general, let the

Law of the centripetal Force be what it will : But in

2 ""T* 1

the Cafe above propofed, v'
2'

being =r
/
a
H

r.+i
2.V n l~i- . and f = p*a : it becomes

; whole

Fluent is the Meafure of the angular Motion ; from

which, when found, the Orbit may be conftru&ed :

Becaufe, when AE, or the Angle ACE is given, as

well as CB, the Pofition of the Point B is alfo given.
But this Value of z is indeed too complex to admit of

a Fluent in algebraic Terms, or even by circular Arcs

and Logarithms, except in certain particular Cafes ;

as when the Exponent n is equal to i, 2, 3, or

5 ; befides Ibme others wherein the Values of p and

n are related in a particular Manner. ^ E. /.

Co-
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COROLLARY I.

243. If the given Velocity at A be fuch that />* -f

- = o, or/> = \/
2
(which is always poffible

when the Value of + i is negative) our Equation will

become X
a P* __. .

Which, by put-

/

ting H+ 3=777, CJV. is reduced to ir

Whereof the Fluent will be found (by the fecond Part

of this Work (equal to + multiply'd by the Dif-

ference of the two circular Arcs, whofe Secants are

X &
and - to the Radius Unity/ From this Va-

4?
lue of the Arch AE thePofition of the Point B, in the

Orbit, is given.
But if the Angle of Direction CA be a right one,

the Fluent will become barelyn+ :

;

X Arch whofe

t
"X

Secant is ^-7- (becaufe then I a, and the Arch whofe

Secant is -7-, =: o) which therefore when x
a

becomes

in-
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infinite, will be truly defined by -f- x whole PerU- 2m

phery AF, &V. Whence ft is evident that the Body
muft either fly intirely off, or' fall to the Center C, in

a Number of Revolutions exprefled by -} ; accord-
2m

ing as the Value of m is pofitive or negative.
This, if n 2, and m = I, the Body will fly

intirely off in half a Revolution: And, if n = 4,
and m = I, it will fail to the Center in half a Re-
volution.

COROLLARY II.

244. Moreover, tho' the Fluent expreffing the Angle
at the Center cannot be exhibited in a general Manner

yet there are certain Cafes of the Exponent (n) where
its refpective Values may be derived from each other.

For let (as above) tf+3 be put ;/:, and (to
fhorten the Operation) let CA (a] be taken as Unity :

Then onr Equation will be transformed to i

'\/ I +-.

Make

x ,*_*_^
y = X

*
, and it will be farther transformed to x =

2 by

m A

y

Put r
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2 2/> \
P , or a* =- =-

J

r 2.* r
a xr 2/

and then we fliall

, . 2 by
pave * v

m

Which Expreffion (excepting the general Multiplicator
2 \

J being exactly of the fame Form with the firfl

above given, muft therefore be the Fluxion of the Angle
at the Center, when the Index of the Force is r 3 ;

for the very fame Reafons that the former appears to OQ

the Fluxion thereof when the Index is m 3 (or n.)

Hence, if the Fluent of

by = , or the

Angle at the Center, when the Exponent is r 3 (or

---
3) be denoted by w, the Value

T"3

ofz, (the Meafure of the faid Angle, when the Ex-

2M/

ponent is m 3 (or n) will be truly defined by

From which we collect that, if the Indices of the

A

Force, in any two Cafes, be reprefented by n and-
3, and the refpe&ive Diftances from the Center by

+ 3

x and x , then the Angles themfelves correfponding
to thofe Diftances will be every where in the conftant

Ratio of 2 to + 3. Therefore, when the Orbit can

be
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be conftru&ed in the one Cafe it alfo may in the other,

2/>
4

\
provided the above Equation a

1

( = )
r p

i Kr 2/
* _1_ i 4\^"

.

"*~ 3*?
, for the Relation of the Celerities at A,

_ v
--

I _ J

does not become impoflible, as it will, fometirnes, when
n is a negative Number.

COROLLARY III.

245. If the Body be fuppofed to move in a ver-

tical Direction AH ; then, putting the Velocity

>* -f
-^- x a"

+ l = o, we get at

(CH) Ip
1 X n-f i + il" X a the Height

i-f-i

_

Xa a ( AH) is the Diftance through which itmuft

freely defcend to acquire the given Celerity at A : This

Diftance, in cafe of an uniform Force, when n = o,
will become \ p

z
a : And, when the Force is in-

verfely as the Square of the Diftance, it wiil then be =;

But, when/* i, or the Velocity at A is juft fyffi-

cient to retain a Body in the Circle AEF, AH becomes

= 1 X a a: Which in the two Cafes
2

aforefaid will be equal to i<7, and a refpedively ; but,

infinite, when n is = 3.

Co-
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COROLLARY IV.

246. When the Value of n -j- I is pofitive, the Ve-

locity at the Center, where x = 0, will be barely =

**
-f-
-- x a*"*"

1

} but if the Value of + I

be negative, the Velocity at the Center will be infinite j

becaufe, then o
*

is infinite.

COROLLARY V.

247. Moreover, when + I is negative and x in-

J~~

finite, the Velocity alfo becomes \s />*H xa *;
n + i

becaufe then x = o.

Hence, if the centripetal Force be inverfely as fome

Power of the Diftance greater than the firft, the Body

may afcend, ad infinitum^ and have a Velocity always

greater than V' p* + - X a
*

j which is to,

/~,
~

pa
a

, the given Velocity, at A, as V' P h ^~^
l

p. And this will actually be the Cafe when the Value
2 2

of p* -{
;

is pofitive, or p* greater than >
n + I n i

but not otherwife, the fquare Root of a negative Quan-
tity being impoflible.

Thus, if n = 2, or the Force be inverfely as the

Square of the Diftance, and p\ at the fame time, greater

than 2
(

'

j
the Body will not only continue to

V""" 71 ' - 1 *

afcend in infinitum, but have a Velocity always greater

than that defined by Vp* 2, which is its Limit.

Co-
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COROLLARY VI.

248. Hence the leaft
Celerity fufficient to caufc the

Body to afcend for ever in a Right-line is given. For,

putting V p h xa = o, we have
/>
=

\/ ---- Therefore the leaft Celerity by which
n i

J

the Body might afcend for ever, is to that whereby it

may revolve in a Circle AEF, as \s -? . , to
i

Unity. From which it appears that, if the Force be

inverfely as any Power of the Diftance greater than the

third, a lefs Velocity will caufe a Body to afcend ad tn-

frutum than would retain it in a Circle.

SCHOLIUM.

249. From the Ratio of the Velocity

wherewith the_^ x/* 1 2^'

|

+i n+i J
Body arrives at any Diftance x from the Center, to that

( ^
Art 2*4.

which it ought to have to revolve in a Circle

at the fame Diftance, it will not be difficult to determine

in what Cafes the Body will be forced to the Center, and

in what others it will continue to fly from it ad infinitum.

For, firft, if the Angle CAb be acute, or the Body
from A begins to defcend, it will continue to do fo till

it actually arrives at the Center, if the former Velocity,

during the Defcent, be not fomewhere greater than the
,====

fl + !

latter, or the Quotient \r p" + ;
X rr

; J

X

greater than Unity j becaufe, if it ever begins to afcend,

it



in Centripetal Forces. 271

it muft have an dpfe, as D (where a Right-line drawn

from the Center cuts the Orbit at Right-angles) and

there the Celerity muft evidently be greater than that

fufficient to caufe the Body to revolve in a Circle.

Secondly, but if the Quantity

V' p* -f x - - 2
> in the Accefs of

the Body towards the Center, increafes fo as to become

greater than Unity, or be every where fo ; then the Ve-

locity at all inferior Diftances being more than fufficient

to retain a Body in a Circle at any fuchr Diftance, the

Projectile cannot be forced to the Center.

After the fame Manner, if the Angle CA be ob-

tufe, or the Body from A begins to afcend, it will con-
tinue to do fo for ever, when the forefaid Quantity is

always greater than Unity, or, which is the fame, when
the Body, in its Recefs from the Center, has in every
Place through which it pafTeth^a Velocity greater than
fufficient to retain it in a Circle at that Diftance.

It therefore now remains to find in what Laws of the

centripetal Force thefe different Cafes obtain : And, firft,

k is eafy to perceive that when the Value of n+ i is pofi-

V- tive > that of V f + x -
will,-

by increafing *, become equal to nothing. Therefore
the Body cannot afcend forever in this Cafe : Neither
can it dcfcend to the Center (except in a Right-line)
becaufe the forefaid Quantity, by diminifhing AT, be-<

comes greater than Unity (or any other alfignable

Magnitude.)
13 ut, if the Value of n be betwixt I, and 3,

the faid general ExprelTion, taking x infinite, will allo

2
become infinite, provided the Value of p* -f ;

be
n+ i

2 \

pcfitive (or />

z

greater than-
J.

Therefore the

Body
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Body, in this Cafe, may afcend adinfimtum^ but cannot

poffibly fall to the Center (except in a Right-lineJ fince,

\/ ?
, the Value of the general Expreflion ?

n -j- i

when A- = o, is greater than Unity.

Laftly, if n be exprefied by any negative Number
greater than 3, or the Law of the Force be inverfely
as any Power of the Diftance greater than the third, the

s~ a"^ 1 2
two extreme Values of V' ** -j x

+ i /+' +i

will, Jiill, be denoted as in the preceeding Cafe ; but

here the latter of them, \/ , is lefs than Unity.+ i
.

Therefore the Body muft, in this Cafe, either afcend for

ever, or be forced to the Center ; except in one parti-
cular Circumftance, hereafter to be taken notice of.

Now, from thefe Obfervations we gather,
1. That, when the centripetal Force is as any Power

of the Diftance directly, or lefs than the firft Power
thereof inverfely, the Orbit will always have an higher
and a lower Apfe j beyond which the Body cannot

afcend or defcend.

2. That, when the centripetal Force is inverfely
as any Power of the Diftance (whole or broken) be-

twixt the firft and third, the Orbit will alfo have two

Apftdcsi if p be lefs than \/ ; but otherwife,
n+i

only one; in which laft Cafe the Body, after it has

pafled its Apfe, will continue to recede from the Center

in infmtum.

3. That when the Force is inverfely as any Power

greater than the third, the Orbit can, at moft, have but

one Apfe', but, in fome Cafes, it will have none at all :

And it may be worth while to inquire here, under what

Keftridtions of the Velocity (p) this will happen ;
fince

thereby, befides being able to kngw when the Body will

be
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be forced to the Center, fcfr. we fhall fall upon a Cir-

cumftance fomewhat remarkable and curious.

Now it appears, that, if the Body from A begins to

defcend, it muft, when it comes to an Apfe at D, have

a Velocity there greater than is fufficient to retain it

in a Circle ; in which Cafe the general Expreflionn
_!_ (fo often mention'd

above) muft accordingly be greater than Unity. Let

it be therefore made equal to Unity, which is the ut-

moft Limit thereof, beyond which the Orbit cannot ad-

mit of an Apfe ; putting at the fame time A'-, or its Divifor

/>* + ~~ X Ar
1

p*F -^ , in the- X x
1

p*F--
+i." 1 '

general Equation of the Orbit, equal to nothing
(it being always fo at the Apfides.) Then, from
thefe two Equations, duly order'd, we fhaU get x ==

2-fn-f i.p*

+ 3

X a, and p* (
= -

)
-

x ~. Now, it is evident, if theP
Value of p be greater than is given from the laft Equa-
tion, the Orbit will have an Apfe ; but if lefs, it can
have none. In the former Cafe, the Body will there-

fore fly quite off; and in the latter, it will be forced to

the Center. But we are now, naturally, led to inquire
what will be the Confequence when the Value of p is

neither greater nor lefs, but exactly the fame as given from
the forefaid Equation : This is the Cafe above hinted at j

and here the Body will continue to defcend for ever in a

Spiral, yet never fo low as to enter within the Circle

-==-v t I

whofe Radius CD is = 2 + "+ t /
>

|
x a. For, if

* + 3 '

T the
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the contrary were poflible, the Body, at its Arrival to the

Circumference of that Circle, would (becaufe of the

forefaid Equations) not only have a Direction, but alfo

Velocity proper to retain it therein ; which cannot be,

becaufe the Parts of the Orbit on either Side of an Apfe
are always fimilar to each other.

From the fame Equation, the Value of the Limit

will alfo be given when the Angle of Direction CAb is

obtufe, or the Body is projected upwards :

For that Equation (as is eafy to demonftrate *) ad-

mits of two different Roots, or Values of p ; the one

greater, the other lefs, than Unity : Whereof the for-

mer, giving CD (x) lefs than CA, is to be taken in

the preceding Cafe, and the latter (making CD greater
than CA) in the prefent. And the Body will, either,

continue to afcend for ever, or come to an Apfe> and

from thence fall to the Center, according as the given
Value of p is greater or lefs than that here fpecified.

But if it be neither greater nor lefs, but exactly the

fame, then the Body, tho' it will ftill continue to afcend

for ever in a Spiral, yet it can never rife fo high as

the Circumference of the Circle whofe Radius CD is =r

X a, forReafons fimilar to thofe already

delivered, in refpedr. to the preceding Cafe.

Mathematical D.ffirf. p. 167.

END OF VOL. I.
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THE

DOCTRINE and APPLICATION

O F

FLUXIONS.
P A R T the Second.

...-.-,.. \

SECTION I.

be Manner of mvejligating the FLUXIONS

of Exponentials, with Thofe of the Sides

and Angles offpherical triangles.

TH
E Method of deriving the Fluxion of

any Power, x", of a flowing Quantity,
when the Exponent (v) is given or in-

variable, has been already fhewn : But,

if the Exponent be variable, that Method fails; in which

Cafe the Quantity *" is called an Exponential; whofe

Fluxion is thus determined.

Put z=x"9 and let the hyperbolic Logarithm of x be

denoted by y, then that of x(z) will, by the Nature

of Logarithms, be = vy, and therefore its Fluxion =
But the Fluxion of the Logarithm of %x /

T fc is.



276 Of the FLUXIONS

* Art. iz6. is alfo exprefied by *j whence we have =vj

andconfequentlyzzvj -f zyu : Which Equation, by fub-

X
t Ait. 126. ftituting for its Equal y f, becomes z=zzyi>+

vx
,... _ M

. Lc". x
X

I+ VX

'The fame otherwife^ without introducing the Properties

of Logarithms.

251. Let i-f-s; #, and n+w= v, fuppofing n con-

v ,.+w
flant and w variable : Then*- i-fz' =

1 k" w u> i

X I+Z) = I+ZJ X I -f WJB+ X

W TV 1 W 2

J Art, 99. Y X X - X

1 -f wz -J-
~ if

1

\ X Z*+tW> |w*+yW X Z 3 + &c.

whofe Fluxion, found the common Way, is nz x
nl -

-

_
====r-=rr

I 4-z] X I+tWB+iW

X Z 1 Wr. + I + Z| X tlz+ !C'i + tftc- Jil; X Z1
-f A /* j

X 2%i+ HtJ
aw ww f r^ X 2 3

-f ;w3 w~+ jty X 32*2:

tfff. which, by fubftituting .v and -z/ for their Equals
K I -====.

and w, becomes^ X j4- 2 | x i_
x z

1+ fff . -f i-f z) x rjz+ K-X- 4 it- ; x zz
-f ^r.

But, if w b^, now, fuppofed to vanifh, we fhall have

the true Value of the Fluxion when i>r=: ; which, in-. n I

that Circumftance, appears to berrwA- x i +s]
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-f I -fz) X z-v-~ Iz

a
<i> + jz

3
o> z4-vfcrV. = VA- X x

w I

It is plain, becaufe the Series, z |z
a
-f f z j &c.

here brought out, is known to exprefs the Fluent of

"-
-, or the hyperbolic Logarithm of i -fz *, that the * Art

two Conclufions agree exactly with each other : From
either of which the following Rule, for the Fluxions of

Exponentials, is deduced.

252. fo the Fluxion found by the common Rule (Art. 14.)

considering
the Exponent as conftant, add the Quantity

arifmg by multiplying the Fluxion of the Exponent, the

hyperbolic Logarithm of the Rut, and the propofed Quan-
tity itfelf, continually, together : Ihe Sum will be the

Fluxion when the Exponent is variable.

Thus, for Example, let the Quantity propofed be
a

a
1+ z 1

! , then the Fluxion thereof will be z X 2Z* X

V 4- z
a
\ + * X

<?*-{- z
a

j
X hyp. Log. a

1+ z*.

But, if the Root is conftant, and only the Exponent
variable, the Exponential will be more fimple ; and its

Fluxion will then be had by barely multiplying the Quan-
tity itfelf by

the Produtl under the Logarithm of the Root

and the Fluxion of the Exponent.

Thus, the Fluxion of a* will be exprefled by a* x *

xhyp.Log.a; and that of <?+ b* ) by^-f-^l s.nx

X h\>p. Log. a^+ b
1
. Thefe Kind of Exponentials oftener

occur, in Practice, than any other ; but, as it is very
rare that we meet with any, I (hall therefore proceed

now to the other Confideration propofed in the Head of

this Section ; namely, trie Merhod of determining the

Fluxions of the Sides and Angles of fpherical Triangles

(a Thing very ufeful in practical Aftronomy) which

I (hall deliver in the following Propofitions.
T 3 PRO-
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PROPOSITION I.

253. To determine the Ratio of the Fluxions of the feveral

Parts of a right-angled Jpherical Triangle j fuppofwg
the Hypcthenufe^ one Leg^ or one Angle, to remain csn~

Jlant->
while, the other Parts vary.

Let A, F, and G be the

Poles of the three Great-
Circles DEFG, ABD, and
ACE ; whereof the Pofition

of each is fuppofed to con-
tinue invariable, while ano-

ther Great-Circle HFCB is

conceived to revolve about

the Pole F: Whence, if GH
be fuppofed perpendicular to

FH, three variable right-

angled Triangles, FGH,
FCE, and ABC, will be

formed ; in the firft whereof, the Hypothenufe FG will

remain conftant ; in the fccond, the Leg EF ; and in

the third, the Angle A.
Let Eb (q) be the Fluxion (or indefinitely fmall In-

* Art. 134. crement*) of the Bafe AB, or the Angle F; and let

Cd meet the Great- Circle bh, at Right-angles, in d.
then it will be (per Spherics) as Sin. FB (Rad.) : Sin]

Sin. FC _ Co-f. BC

,
/Co-f.EC \ Co-f.EC

And, rang. C : Rad. :: Cd ( -^ X
qj

:^ ^ c

X q = the Fluxion of BC.

Moreover, Sin. C : Rad. :: Cd

C >-f. BC v,,
... ,, x q =. the iluxion of AC.
!>/. C.

2 Laftly,
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Laftly, Sine of FB (Rod.) : Sin. FH (BC) :: B
( ? ) :

Sin. BC
-g

: x q (=.Hm) =. the Fluxion of GH, or its

Complement C.

Now, if the feveral Quantities, in thefe three Equa-
tions for the Triangle AC, be expounded by their re-

fpcctive Equals in the other two Triangles CEF and

FGH, we fhall alfo have

Sin. CF.
cr TT- X a Flux. CF.
Tar.g. L-

*

Sin. CF
X q = Flux. CE.

X q - Flux. C.
Kad.

And

Co-f. FH
r^ ^ -

r x q = Flux. FH.
La-tang. Lit! z

- FH

COROLLARY I.

254. Hence, if, in any right-angled Spherical-Tri-

angle, the Hypothcnule be denoted by k, the two Legs
by L and /, the Angles, refpeclively, adjacent to them

by A and #, we ftiall, by fubftituting above, have three

Equations for each of the three Cafes. From the Com-
parifon and Compofition of which, the three following
Tables are deduced; exhibiting all the different Varieties

that "can poffibly happen, whether an Angle, a Leg, or

the Hypothenufe be fuppofed invariable.

TA TABLE
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TABLE I.

When one Angle A is invariable,

r _Tang. a Sin. a : Rad. ,
*

J-i x / ^ . X h
.

X a

.*__ Co-f. I __ Co-f. a Co-tang. I

Tang . a R Tang, a

b=^! X L= Q~* ', Co-tang. I -

Sin. a Co-f. a Sin. a

R Co-tang. I Go-tang. I

TABLE II.

When one Leg L is invariable,

__ Tang, a
x = Sin, a

x /_ _ .&... x
'

~~
Sin. b Sin. b

Co*f> b

Co-f.b : Sin. a Tan?, a
_

- J y Jl^Z.
*~ ~ X /

^~ " X H
< R Tang, h Tang, b

_ ^- b j_ C*'f' & ,' _ Tang, b
~

Tang, a R Tang, a

y_ Sin. -b _ .K. / _ T^wg
1

. h
- X vz - x b

=f.
X a,

Lo-J. a 6/. a

TABLE III.

When the Hyp. is invariable,__
^-/i Z. Co-f.L Sin. L

T
' '

x - '

X -
^^ . ^^^ - . . I ! /^ Ji

Co-tang. I R. Tang.L

Where, and alfo in the two preceding Tables, the Leg L
is adjacent to the Angle A> and the Leg /to the Angle a.

Co-
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COROLLARY II.

255. From the third original Equation, exprefilng
the Fluxion of the Angle C (Vid. Art. 253.) it appears
that the Superficies of any Spherical-Triangle ABC, is

proportional to the Excefs of its three Angles above
two Right-Angles. For (ECdb) the Fluxion of the

Triangle ABC, is = Sine BC x B, by Art. 161.) which
Sin. BC

being to, , x Bb> the Fluxion of the Angle C9

above fpecified, in the conftant Ratio of Radius to

Unity, the Fluents themfelves (properly corrected) muft

therefore be in that Ratio ; that is, the Superficies of

the Triangle ABC will always be proportional to the

Increafe of the Angle C, from its coinciding with >/,

or as the Excefs of A and C above two Right-Angles.

PROPOSITION H.

136. To determine the Ratto of ths Fluxions, or the in-

definitely fmall Increments^ of the different Parts of
an oblique Spherical-Triangle ABC ; two Sides thereof

AB, AC being invariable^ in Length.

Let Cc be an indefinitely

fmall Part of the Parallel de-

fcribed by the Extreme C of

the given Side AC, in its

Motion about the given Point

A ; moreover, let Cd be Part

of another Parallel, whofe

Pole is the given Point B; let

the Great-Circle EC meet CJ
in d\ and let the three Sides,

AB, AC, and BC, of the

Triangle be denoted by D, ,

and F refpedively.

Then,



282 Of tic FLUXIONS

Then (per Spherics) we (hall have

R : S. E :: CAc 4) : Cc = ^-' x

And, R-.S.F:: CEct(B) : Cd = -~- x B.

S E x S C
Alfo, R : S. dCc (ACB) ::Cc:F=

R1

'

But S. C : S. D : : S. B : S. E j therefore S. E X
S D x

S.DxS.B, and confequently /", alfo, = ^

S. C
? B

x A.

Again, : Co-f. dCc (ACB) : : Cc (~ x ^

S. E. x &-/: C
x A ( (~aj =

....
\Vhence fl =

Laftly, Cfl-f. cCd:(C) : R:-.Cd~

^, y\ iv.
CiO-t. G

Whence, by the very fame Argument (fubftituting
) for E, and for B in the two laft Equations) we

rt, T u *_S-D * Co-f. B - ,,,_
likcwife have C =: p^ x A, and -r

(
=

S.F
A >c o. r

S.F

Now, from the Equations thus found, it is manifeft,

J.
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257. Thefe Proportions, for the Fluxions of the Parts

of a Spherical-Triangle, are very ufeful in various Cafes

in Practical Ajlroncmy ; whereof I (hail here put down
one or two Inftances.

The firft is ; To determine the annual Alteration of

the Declination and Right-Afcenfion of a fixt Star,

through the Prcceflion of the Equinox.
Here A muft denote the Pole of the Ecliptic, B that

of the Equinoctial, and C the Place of the Star j and
then (by the firft and fourth Proportions) we have

Co-feca. D : Sin. B : : A : F-, and

S. F: Cot.C:: F : B ;

That is, i, As the Co-fecant of the Obliquity of
the Ecliptic is to the Sine of the Star's Right-Afcenfion
from the folflitial Colurey fo is the Precj[Jton of the Equi-
nox, or Alteration of Longitude, to the Alteration of

Declination.

2. As the Co-fine of the Star's Declination is to the

Co-tangent of its Angle of Pofition, fo is the Alteration

of Declination (found as above) to the Alteration of

Right-Afcenfion correfponding.
The fecond Example is to find how much the Am-

plitude, and the Time of the apparent Rifing and Setting
of the Sun, or a Star, are affe&ed by Refraction.

In this Cafe A muft de-

note the Pole of the Equa-
tor, and B the Zenith, and

the Side BC muft be an

Arch of qo Degrees, fo

that the Star C may co-

incide with the Horizon

QC : Then, from the very
fame Proportion, we have,

Sin. B : Co-feca. D : : F : A*

And, R \Co-t. C::F:B
But, R : Co-t. C(T. QCA) : : Sin. B (C9) : Co-tang. D

(Tang. ^A)
Hence

283
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Hence it apppears,
i. That, as the Co-fine of the true Amplitude

(confidered independent of Refradtion) is to the Tangent
of the Pole's Elevation, fo is the given horizontal Re-
fraclion to the Difference of Amplitudes thence arifing.

2. And, that, as the Co-fine of the true Amplitude
is to the Secant of the Pole's Elevation, fo is the faid

horizontal Refraction to the EffecT: thereof in the Time
of Rifing, or Setting of the Sun, or Star.

But this laft Proportion may be otherwife exprefled,
without the Amplitude : Thus,
S. AB x S. AC x S. A: R3

:: the horizontal Refradion,
to the fame Effeft.

PROPOSITION III.

258. To determine the fame as in the preceding Problem ;

Suppofmg one Side AB and one of its adjacent Anglesy

B, to continue invariable.

If from the End of the

given Side, oppofite to the

given Angle, a Perpendicular
AD be let fall, that Perpen-
dicular, as well as the Seg-
ment BD cut off thereby,
\vill be a conftant Quantity,
while the other Parts of the

Triangle A^D vary, by the

Motion of a along the Arch
cBD. Therefore the Problem is refolved by Cafe 2. of

right-angled Triangles. Fid. Art. 254.

259. It may not be amiis to give one Example of the

Ufe of this laft Propcfition : Which fball be, in finding
the Parallax of a Planet in Longitude and Latitude j that

of Altitude being given.
Here A muft ftand for the Pole of the Ecliptic, B

the Zenith, and a the Planet : Then, if the Hypo-
thenufe Aa be denoted by /;, the Leg. Da by /, and the

given Parallax, in Altitude, by /, it will appear, from

the
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the Place above quoted, that A (the Parallax in Long.)
Sin. a f Sin. EaA

will be = TP 7 X / = -z-. j- x /, and b
(
the

o/n. b o/. Aa

Co-f.a . Co-f.BaA
Parallax in Lat.) = p , X / 55-3 X /.

Rod. Rod.

If the Planet be in (or very near) the Ecliptic, and

/?Q_be fuppofed a Portion of the Ecliptic, meeting AB,
Sin. EaA

at Right-Angles, in Q^, then (per Spherics) -r: -T

fCo-f.
Ba$\ _ Tang. $a Co-f. Bad(Sin. Ba^\

\ Radius )
~

Tang. Ba*
*

Rad. \ Rad. /

rr -
r.

'

n - whence, by fubftituting thefe Values
6/n. DO

CT^ ^55/7

above, we fhall, in this Cafe, have A = <r
*'

K x

/ and >*
1- i- X j

that is, in Words,
o/n. /3

As, the Tangent of the Planet's Zenith Diftance, is

to the Tangent of its Longitude from the nonagefimal

Degree of the Ecliptic, fo is the Parallax in Altitude to

the Parallax in Longitude.

And, as the Sine of the Zenith Diftance to the Co-
fme of the Altitude of the nonagefimal Degree, fo is

the Parallax in Altitude to the Parallax in Latitude.

Becaufe the Parallax in Altitude, the horizontal Pa-

Sirit Bo
rallax (M) being given, is nearly = X M, if

this Value be fubftituted for /, in the two laft Equations,
. Sin.gB ,. . : Tang. $ax Sin. Ea

we fhall get h =-j^ x Af, and ^= ^d

S'tn.ABxSin.BAa ,.

Whence,
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Whence, we have theis two other Theorems, for

finding the required Parallaxes immediately from the ho-

rizontal Parallax, without either the Altitude or its

Parallax.

1. As Radius to the Co-fine of the Altitude of the

nonageftmal Degree of the Ecliptic, fo is the horizontal

Parallax to the Parallax in Latitude.

2. And as the Square of Radius to the Rectangle un-

der the Sines of the Altitude of the nonagefimal Degree
and the Planet's Longitude from thence, io is the hori-

zontal Parallax to the Parallax in Longitude.

PROPOSITION IV.

260. Still, to determine the fame Thing ; fuppofing^ one

Angle A, and the Length of its oppofite Side BD (or

i i

Let BD
( equal to

BD)imerfeaBDin an

indefinitely fmall Angle
at P, and meet AB

/ /

and AD in B and D ;

alfo in BD produced
let there be taken PN
= PD and PM = PB,

i
i

and let N, D, and M, B be joined.

Since, by Hypothecs, DB r: DB = MN, if from the

firft and lait or thcfe equal Quantities DM, common,
be taken away, there will remain BM = DN.

Moreover, fmce the Triangles BMB and DND, in

their ultimate State, may be confidered as rectilineal,

*
Art.i34. and right-angled at 'M and N*, it will therefore be, as

BM :B ::*-/ B: Radius

And DN : DD : : Co-f. D : : Radius.

From
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From whence, the Extremes in both Proportions be-

ing the tame, we have BB : DD :: Co-f. D : Co-f. B :

And rh^efore, if AB be denoted by H and AD by K,

it appears that H: K:: Co-f.
D : Co-f. B.

Again, per Spherics, tin. A : Sin. BD (G) :: Sin.

D : Sin. H : : Flux. Sin. D : Flux. Sin. H ; becaufe,

the Sines themfelves being in a conftant Ratio, their

Fluxions mult be in the fame Ratio : But the Fluxion

of the Sine of any Arc, or Angle, is to the Fluxion of

the Arc or Angle itfelf, as the Co-fine to Radius *
: *Art.i4i.

j-f.D
Therefore the Flux. Sin. D being = Rad.

x D, and

Co r H.
Flux. Sim 11=

~
J '

x Ht it follows that, Sin. A
Kaa.

: Sin. G : : Co-f. D x D: Co-f. H x H ; or D : H : :

Sin. Ax Co-f. H : Sin. G x Co-f. D : And, by the very
fame Argument, B : K :: Sin. A x Co-f. K : Sin. G X
Co-f. B. Now, by compounding the former of thefe

two Proportions with the firft above given, we get,

D : K : : Sin. A x Co-f. H : Sin. G x Co-f. B. And, by

compounding this laft with K : B : : Sin. G x Co-f. B :

Sin. A X Co-f. K (that immediately preceding it) we alfo

obtain D : B : : Co-f. H : Co-f K.

Whence, by collecting thefe feveral Proportions to-

gether, we have the following Table, for all the dif-

ferent Cafes.

H
D
D
B

K

H

K::Co-f.D: Co-f. B

B :: Co-f. H: Co-f. K

H:\Tang. D : Tang. H
K : : Tang. B : Tang. K
D : : Sin. G x Co-f. B : Sin. A x Co-f. H
B : : Sin. G *

Co-f. D : Sin. Ax Co-f. K
It
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*/

It may be obferved, that the fourth and the Jaft are no

new Cafes, but only the third and fifth repeated : And

that, though the former of the two, lafl named, differs

from that found above ; yet it is very eafily deduced
C "

ji

from it : For, fmce it appears that Z> : ti ::

'

:

L>0-J.
U

C' /"

JlS-Sy-, and becaufe 5/a. A : Sin. G : : Sin. D : Sin.

Co-f. ti

, f^ rr - Sin. D Sin. H
H, it follows that D'.H:: . ...... ::

Co-f. D Co-j. H
tang. D : Tang. H. Q. E. I.

There is yet another Problem, when two Angles re-

main conftant ; but this, by taking
the Triangle formed

by the Poles of the three given Circles, b reduced to

Problem 2.

SECTION II.

Of the Refolution offluxional Equations, or

the Manner offading the Relation of the

flowing Quantitiesfrom that of the Fluxions.

26i.~lT7r HEN an Equation, exprefling the Re-
\Y lation of the Fluxions of the two va-

riable Quantities, contains only one of thofe Fluxions

with its refpe<Stive flowing Quantity in each Term, the

Relation of the Quantities will be obtained by finding
the Fluent of every Term j as has been already taught,

/ Qg* y*
Thus, if ax'x =y*j, then will

3 4

And, if x y xaj; by reducing it firft to x x =

ay y (fo that its variable Quantities may be feparated)

we have
-

,

~ ~~
i m

n But,
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But, if the given Equation has its indeterminate Quan-
tities and their Fluxion? To complicated togeth-r, that

it cannot be brought under the Form ther^ orefcribed,

the Taflc will become much more difficult; lor is- there

any general Method to be given for fuch Kinils of Equa-
tions, whereof there are an infinite Variety.
The Method of Infinite Seriefes (in fome meafure ex-

plained already, and more fully confidered hereafter) is

indeed very comprehenfive, and may be applied to good
Purpofe in various Cafes ; but, being tedious and at-

tended with a Number of Inconveniencies, it is a Me-
thod we ought: never to have Recourfe to till we have

tried what may be, otherways, effected, by help of fuch

particular Rules and Obicrvations as we have been, able

to collect.

Accordingly, I fhall, here, firft point out fome of

the moft proper Ways to be tried, in order, if poflible,

to bring out the Solution without an Infinite Series.

262. The fir/I Method is, by multiplying^ or 'l'-vi .

the given Equation by fome Poiuer or Produfl cj

Quantities concerned ; fa as to bring it, if pojfib'f, under

the Form of fuch Fluxions, as, tue know, .do wife, if not .

from the firji, yet from the ficond, or thirdt of the three

general Rules in the direct Method.

Thus, if the given Equation be +
'

~
x y

'

,
af

then, the whole being multiplied by xy, fo tnat the two
firft Terms, 7*-4 xy, may become the (knownj Huxion of

wil .

x x
the Re&angle xy *, there arifes yx+ xy = __, : But

*

ay
ftill we are at a Lofs for the Fluent of the laft Term,
unlefs n be taken n i (fo that y may vanifh). In that

fK-f-2.

X
Cafe v/2 have xy = ===

; exprefling the Relationm -f 2 X a

of the Fluents when that of the Fluxions is 4.
x y

x"x
. : Which appears to be the oily Cafe, of the given

Equation, where this Method is of UL%
U Agai.i,
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A^ y* y M^ *,

Again, ht the Equation +
*

be pro-
** y n

ay

pofed.

Here, multiplying by a? / (where the Exponents
x y \

are the fame as the Coe&cients of and -
) we act

x y '

A V* v- V vpx x x y

ay

former Part of the Equation is known to exprefs the

Art. 15. Fluxion of .v
P
/*. Therefore, when rcrrr, the Relation

of the Fluents may be found, and will be exprefTed by
w-ty+l

Which, if no Correction by a
m+ p+i X.a

conftant Quantity be
neceflary, may be reduced to

m+l

~

m+p+ I X a'

The fame Method may alfo be extended to Fluxions
of the higher Orders : Letxxz*=fa? (which Equa-
tion occurs hereafter, in the Refolution of a Problem
of fome Difficulty). Then, multiplying by ;c,*it be-

comes xx atx*x:fat*x} where, being conftant, each
Term admits, now, of a perfect Fluent, and we therefore

have fxx?; From whence, fuppofing no-

Correction neceflary, x = rr and z =: hyp.
V2fx 4- xx

Log. f+ x + V 2fx + x* (by Art. 126.)

263. // may happen that the Solution of an Equation
will become more eajy by fi-Jl taking the Fluxion

thereof';

when, by that means, jome cf the Term* dejhoy each other.

The following is an Inftancc of it (which, alfo, occurs

hereafter). Lety -f-
-yx a *

x -7-: WhofeFkuc-
x y

2 ion,
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ion, making * conftant, is y -\
'-- *

y > ,' -i ^^VV
..

J
: Which, by reafon of the Terms deftroying

one another, is reduced to "- - =--~r '. Therefore,
x

by expunging y, &c. we get jy~- x x a x
{

1 --
1

*
r\

confequently 2y~* 2Xa x\* -\- fame conjlant g>uan-

tlty.

264. Another Method, chiefly applicable to Equations, ofthe

firjl Order of Fluxions, wherein only one of the two va-

riable Quantities (x or y) enters, is, to fukjiitute for the

Ratio of the two Fluxions (x and y) : From whence tie

Value of that Quantity iviil be hsd, immediately, in Terms

of the faidajfumed Ratio : And then, by taking its Fluxion,

that of the other Quantity (andfrom thence the Quantity

itfeif)
will become known.

Thus, let axj* y X xx+jy] (being the Equation of

the Curve that generates the Solid of the leajl Re-

e^ when the Bulk and greateft Diameter are given).

Then, by putting v, and fubftituting above, we

get avj* yX ^u
L

y
L

+j~\* =: yj* X "o
%

-|- 7)

*

; and con-

av a-v zmfv
lequently y

'

,
> : l nerefore v _- ,

-

7 J z -

aw lav v
and confequently x

( vyi)
t

i : V/hofe

Fluent may be found, from Art. 84.. or, othcrwife,
thus : Put w~ rdi + I ; then v~ zz w*

I , and ww n
^/< ; by fubftituting which Values there anlbs x

x w* ~ r - 5_ 77 ^..-y-^ and"
^i.*

.- W / y AilU

U 2 there-
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f _
lore x ^^

4 2 2w r

+JL-=?g - g x ^ + r

; which, corrected

2 XW 4- 1 2 X

.
,

a x -iw -f i a
(by taking: y, or wzroj becomes # .. ^ .

2 X wv + j 1

2

From this Equation, by completing the Square, C5V.

v may be found in Terms of x ; whence the correfpond-

fiV \

ing; Value of v ( ; z )
will alfo be known.

uv+ i
)
/

265. 7/fo fourth Method, which chiefly obtains when
one of the indeterminate Quantities and its Fluxion,
arife but to a fingle Dimenfion each, may be thus :

Let the Value cf that Quantity, which is hajl involved,

be firfl fought , from the
fictitious Equation arifing by neg-

lefting all the Therms in the given Equation, where neither

that Quantity, nor its Fluxion, are found : Then, to that

Value, lit feme Power, or Powers, of the other Quan-
tity, with unkniicn Coefficients, be added ( according to

th Dimenfions of the "ferms ntgleffed) and let the Sum
be fubjlituted in the given Equation, as the true Value of
the firjl mentioned Quantity : By which means a new

Equation will rejult ; from whence the aj/iimed Coefficients

y, fometimcs, be determined.

Ex. Let the given Equation be cx*x+yx= aj.

By neglecting cx~x } or feigning yx uy, we get

x y .v

: and confequently ;
n hyp. Log. y hyp.

y
Art. ia6, Log. ^* =hyp. Log. -7 ; d being any conftant Quan-

tity, which the Nature of the Problem may require.

y
Hence -7 =the Nurr.ber whofe hyperbolical Logarithm

is : Which Number, if Mbe put for (2,71828

the



of I* luxiona! Equations. 293

the Number whofe hyp. Log. is Unity, will be ex-

X

prefied by M]
a

(fmce it is evident that the hyp. Log.
X X \ V

hereof is x Lo. M = ) Therefore =
a a / a

X X

JWPand^ = </x ~M\
a

. Now, to the Value thus

found, let there be added A^+ B^+ C, in order to get

the true Value ; and then, y being =. 2A**-f B*-f

x

X M\
a

*, we fhall, by fubftituting in the given Equa-*
Art<

tion,

+dxM a
9 and confequently c+A X x*x 4-

B 2 Art x xx+ C Brt X x o. Whence A = tf, -{Art. 84.

B = 2ac,C=. ^aac t and confequently y . f x
X

x 1"+ i^+ ?-aa -\- dM a
. By the very fame Way, the

Value of y, in 'the Equation ex x~\-yx=.^^ will come

out = c X x -i-ax +njt i.a'x
"

-J-w. n j.

266. But, what is a little remarkable, in thcfe Equa-
X

tions, is, that the Exponential dM
a

, tho* a variable

Quantity, fhould only ferve, as it were, to corredt the

Fluent, or perform the Office of a conftant Quantity.
What I here mean will plainly appear, if it be con-

fidered, that the Equation v fx x
3"

-f lax -\- zaa,
v/here the faid Exponential is wanting, anfwers all the

(Conditions jpf the fluxional Equation firft propofed ;

\vhich, upon Trial, will be found ; and muft needs be

.

U 3 the
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the Cafe, feeing d may be, cither, taken Nothing at
all, or any Quantity at Pleafure.

But the Equation y c x xz 4 lax -f 2a
z

(when
*

dM 6
'is wanting) cannot be corrected, in the ufual Way,

fo as to give_yrro, when * o; fince, if any other con-
ftan: Quantity, befides 2a

i
c be introduced, the firft

ConditionsWill not be anfwer'd : The Correction rnufl,
X

therefore, be by the Exponential dA4
a

; and is thus.
X

Since y rr cx^ icax lca~ -{- dM
a

, if y be

taken o and x o, then 2ca~ -f- dM = o, or d~
lea'; and fo the Equation, truly corrected, is y c x

X

+ 2a'~cM
*

.

267. We come now to the lad Method; namely,
^hat of Infinite Seriefes ; which, tho' lefs accurate, is

vaftly more comprehenfive, than any yet explained :

The Manner of it is thus :

For the Quantity whofe Value you would find^ let an

I-ifinite Series, c r
^;jiing of tbz Poivcrs of the ether Qiian-

tiiy with unknoicn .>,
1; ajjltmtd\ which Seriest

ttgethtr with its Fluxlzn, or Fluxions, mujl be fubfti-

tiitsd injlead of thtlr Equals in the given Equation j

whence a new Equation will arife, from which, by com-

paring the hzmilogout "Terms, the ajjumcd Coefficients^ and

ccnfcquently the Valuefought, will be determined.

Thus, let the Equation
- -

j (reducible tox-
1 "T~ *

#v=o) he propofed ; to find x in Terms of y.

'Then, affuming *= A; + li/+ Cy
3 + Dj

4 + Ey* &c.
We have x= A/-f ittyy+ $Cy~y+ 4-D>-

3

j + c E/j -f 6fr.

Which Values being fubflituted in x j X)
1

O, we get
A -; + 2Bn -f sC/y -f 4.Dy

3

j -t- C5V. ? _
>'

There-
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Therefore A i = o, cr Am ; aB A=c, or B

~~i sC-Bno.orC^rz^j 4D-C
C i

=3 o, or D =. =s=- &<:.

4 2-3-4

And confequent/y x
( Ay + B/ -f C/ &c ) = y +

L* , 2l , JL. ,
^ + ^v

a ^2.3
"*"

2.3.4 2.34.5

Again, let it be required to find the Value of y, in
the Equation cx*x -f- yx ay, or ay yx cx^x n o.

Here, afluming jr=A.v+ B*1 + CATS + D^+ E* J + F*6

^zff. and proceeding as before, we fhall have

aAx+2aBx + 2aCx*x + 4aDx
3x+ 5aEx+x+ &i. )

o A** B*V C.v3
r D*** esfc. f

o p V J
Whence A =: o 2^B A =r o C = B-- =Whence A =: o ; 2^B A =r o ; 3C = B-\-c = c, or

C = 1,
c

-, or E rrr --- &c. and confequently

+-^- +.-
2* 3-4*" 3-4-5

3

/-. 4-/.
3-4-5-6^
268. It appears from this Example, that the Quantity

to be found, will not always require all the Terms of the

Series Ax + Bx~ -f C* 3 &c. And it may happen, in

innumerable Cafes, that the Series to beaflumed will de-

mand a very different Law from that where the Exponents
proceed according to the Terms of an arithmetical Pro-

grcflion having Dnity for the common Difference. And,
indeed, the greateft Difficulty we have here to en-

counter, is, to know what Kind of Series, with regard
to JLS Exponents, ought to be aflumcd, fo as to anfwer

the Conditions of the Equation, without introducing
more Terms than arc actually ncceiTary.

U4 For
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The following Rules will be found very ufeful upon
this Occaiion : Which, though they may become im-

practicable in certain particular Cafes, never take in any

fuperf.uous Tern:".

i. Having (if neccffary) freed your Equation from
FraFisns and Surds, let the Quantity, whofe Vu<--' is

fought i be fup.pofed equal to feme Power cf the other Quan-
tity with an Unknown Exponent (n) ; and let that Power,

together ^vith its Fluxion, or Fluxions, be fubftitutcd for
their (Juppojed) Equals in the given Equation.
2. Let the Itajl Exponents of the variable, or inde-

terminate, Quantity, in the new Equation, thence arifmg,
bz put equal to each other : Whence the Value of the un-

known Exponent n will be fcund,

3. Suhjlitute the Value of n, fi found, in all the Ex-

ponents where n is concerned j and then take the Dif-

ference bitiveen cr.e of the equal ones, above mentioned,

and every other Exponent, of the variable Quantity, in

the whole Equation.

4. To
thefe Differences, -write down all the leajl Num-

bers that can be compzfed cut of them, by continual Addi-

tion, either to tkemfelves, or to one ansiber ; //// you have,

by that means, get, in the ichole, as many different Terms,

GS you would have the required Series continued to.

5. Lajlly, let each of thoje Terms be increafed by the

Value of n (found by Rule 2.) and you will then have tk

Exponents of the Scries to be ajjumed.

E X A M P L E. I.

269. Let the Value cf x, in the Equation a^x*' -f x~

a*z~ =: C, be required.

Firft, by \vritir.g 2 for x, and r.z K for x, the

Indices of z will be 2 2, 2n, and o (which are deter-

mined by Infpe&ion, without regarding the Coefficients)

whereof the two leaft (in 2 and o) being put equal
to each other, we here find nr=i : Therefore, the Ex-

ponents being 0, 2, o, the Differences (according to

Rule 3.) are alfo c, 2 ; from whence, by adding 2 con-

tinually, we get o, 2, 4, 6, 8 &c. which (being each

in-
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increafed by the Value of w) give I, 3, 5, 7, q &c. for

the Exponents in this Cafe.

Let, therefore, x Az + Bz 3 + Cz 5
-f Dz 7 + &c.

Then, putting z~ i, in order to facilitate the Operation,
we fli.i.l have x = A -}- 382;* + 5Cz

4 + 7Dz
6 + We.

which two Values being fquared, and fubftituted in the

given Equation, it will become

rf*A
a
-f 6*ABz* + icr^ACz* -f-

+AV
f +-BV + &c.

m

Whence, a
iA1

=:a'
i

, and therefore A= i ; 6a
zE =

A, and therefore B = ^r = a > i oa
aAC

+ 2A = B x- aaB' 2AB = B x

1, and therefore C'+ 2 = -- =

2.3-4-5*
4

*~"

2-3-4-5-6'7*
6

EXAMPLE II.

270. Z-? the given Equation be afxjr 20
1
xy + oxx*"

+ X3

j 0; to find y.

Here, fubftituting A; "for y, the Exponents will be

_!: i, and -J-ii where, making j= i,

we



The

we get n2 : Whence, the Differences being O, 2, the

Series to be aflumed for^- wili be Ax'- -f B.v* -f C,v
6
-f

D# 8 + E.r
10

-f f<r. From which, making x i^ we
have j'

= 2A# +4B.v
3 + 6C,v 5 + SD# 7

cfc. and

j
; rr 2A -f 1 2B:<r -f joC*

4+ 560 v
c

And, thefe Values being iubftituted, the Equation be-

comes

2*A.r -f- i2fl
lB* 3 + 30-C* s + 56<rD.*:

7
-f fjfr. 7

4^Ax 8^'B.r 3
i 2^CAr 5 i^D^- 7 + CSV. > =o

+2A.v 3 +i2B.v s

+3oC^ 7 + Cifc. 3

Therefore A- = ',E = - --^ ;2a 4^ 4^
3 J

T2B

atix

Whkh Series is known to exprefs the Fluent of
ar+ x j

a 1
-f x'

L

or, k a X hyp. Log. : Confequently _y
is alfo

fl*-f.v=

1^ X hyp. Log.
-

. In this manner, it comes to

pafs, tbaty though we are obliged, in very complicated
Cafes, to have recourfe to Infinite Seriefes, we are

fometimes able, at laft, to give the Solution in finite

Terms, or, at leaft, by help of Logarithms, Sines and

Tangents : Which will always happen when the Series

can be fummed, or is found to agree with that arifing

from fome known Quantity.

271. Sometimes it happens, in Equations involving
the higher Orders of Fluxions, that the Exponents,
mention'd in Rule 2. whereof the leaft ought to be

made equal to each other, are fo exnrefTed, as to render

fuch an Equality impofTible. When this is the Cafe,

the Value of n, and the hrft Term of the required Se-

be determined from the Nature of the

Prcblcra to which the Equation belongs. We know,
in-
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indeed, from the Equation itfelf, that n muft be either

equal to Nothing, or to fome pofitive Integer, lefs than
that expreffing the Order of the higheft Fluxion in the

Equation : Becaufe the Term that has the lead Ex-

ponent, and which therefore cannot be compared v/lth

any other (being always affected by two or more of the

Factors, , n i, n 2,
V

5V. will then (one of thofe

Factors bein:: ~c) var.ifli intirejy out of the Equation ;

which, thereby, is render'd pofuble.
When and A are known, the reft of the Terms will

be found in the common Way, as in

EXAMPLE III.

Where the Equation fropofed is yx* + axj a 1

)'
r= o ;

tofad y.

By fuppofmg jr=r, and writing x forj, nx for- n 2 n n i

j, and n X n i X * for j', we get x + rtax -

n

n X n i Xf?V : But it is plain that no two of the

'Indices of A- can, Zvnf, be equal : The Value of n muft

therefore be either rro or Unity (in both which Cafes
n 2

the Term n X i X a"x vanifhes) but I fhaU

take the latter Value, and fuppofe the nrft Term of the

Series to be A*- ; then, the Differences of the forefaid

Exponents being i and 2, the Law of the Series will be

expreffed by i, 2, 3, 4 &c. Whence, affumingj =
Ax + B.V

1 + C,v 3
-f- Dx* &c. and proceeding as in the

former Examples, y will be found n A into x -f-

x* x3 x+ x 5
*

#6- + -- + 7.-: + r + 7 &c t or = A into x +
2a
~

-$<?
r

8^ 3 r
2+a* QOrt

5

i 2^ 3
3*

4
SAT

S

_ 8A;6._
2^ + 2.3^

+
2.3 4

3 +
2.3.4.5^*

+
2.3.4.5.6^

c/f. where the Law of Continuation is manifeft, the

Coefficient of every Numerator being compofed by the

Addition of the two preceding ones.

272. It
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272. It will be proper to obferve here, that, in Equa-
tions like the two laft propofed, where the higher Or-
ders of Fluxions are concerned, the Series exprefiing;

the Relation of the two Quantities muft always be found

in Terms of the Quantity flowing unifor.nly. And,
that, if the Number of Dimensions of the Fluxion of

the {"aid Quantity, after Substitution, be not the fame in

every Term, the Equation itlelf, put down to be re-

folved, is abfurd and impoffible, and fuch as never can

arife in the Solution of any Problem. In all proper

Equations the Number of fluxional Points (fuppofin^
the Powers of the Fluxions to be wrote without Indices)

will be the fame in every Term.

EXAMPLE- IV.

273. Inhere let the given Equation be a 3

y ay'x -f x*yy
x3x ; to find y.

By proceeding as ufual the Indices will here be n i,

2, 2+i and 3; whereof the leaft (which can be no

other than n i and 3) being compared, n will be given

4,: And the Differences will therefore be o, 5, 6 j to

which the Double of the Second and the Sum of the

fecond and third, &c. being put down, and then every

Term increafed by 4, tbere arifes 4, 9, i o, 14, 15, 1 6, 19

&c for the Exponents of the Series to be affiimed for y.

Let therefore j= A;c*-f B*
9 + C* 10

-f D* 1 * &c. then,

making* = i, y is = 4&
+ .

And, by fubftituting thefe Values above, we have

ts'c.l _

Whence A = ,,
B = 7 , fcfo

v' J- 1 *

&.
; j

*
If for J> *be Series Ax*-\rKx

s+Cx6+Dx 7 fcfr. cw-V r-

ponents ate in arithmetical Progrefan* had been aflumed,
ac-

tording to the Method of feme 'very good Authors, ny lefs than

fcven Juperfluous Term; muft have been introduced to obtain the

four above givtn.
274-
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274. Before I quit this Subject, it may not be amifs

to fubjoin the following Remarks.

i
w

. If the indeterminate Quantities are great in re-

fpefr, to the given ones, a defcending Series will, in moft

Cafes (where it is practicable) converge better than an

afcendingone. To obtain fuch a Scries, compare the

greateft Exponents, mention'd in Rule 2 inftead of the

leaft, and proceed according to the third and fourth

Rules *, whence a Series of Numbers will be found j Art. 268,

which, being fucceflively fubtracled from the Value of

, vou will have the Exponents of a defcending Series.

Thus, let the common-algebraic Equation a3x+ax3

a*y j>

4 o be propounded j to find ^, when x is great
in cornparifon of a.

Then, proceeding as ufual, the Exponents of the

four Terms of the Equation will be i, 3, n, \n ; whereof
the two greateft (4/7 and 3) being made equal, we get
wrr*-; therefore the Differences are c, 2 and 2^; and

n~ -^;
therefore the Differences are o, 2 and 2^; and

the Numbers to be fubtracted from n, are o, 2, -J, 4,
'

4
7
, &c. Confequently the Scries to be affumed for ^ is

3 -! -.<5 -'3

A.v
4 + B.r

4
-f Cx *-\-D.v -} c5Y. From whence

9 > O

A l
ff

*
a

'*

y will be found =r * + ^ .

4** 4^
2. Butj if the Quantity (x) in whofe Terms the

other is to be exprefied, be neither much greater nor
much fmaller than the given Quantity (a) 9 it will be

proper to fubftitute for the Excefs, or Defect, of the

(aid Quantity (x) above, or below, fome given Quan-
tity ; Ib that, having, by this means, exterminated *,
the Series arifing from the new Equation (wherein the

faid Excefs, or Defect, is the converging Quantity) will

have a due Rate of Convergency.
The Ufeof this is fo obvious that it needs no Example,

or farther Explanation.

3. Laftly, it will be proper to obferve, that, if the

Equation for the Value of A, arifing from the firft Co-
lumn of homologous Terms, admits of two or more,

equal
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equal Roots (which is a Cafe that may, perhaps, nevef

happen in practice) all the foregoing Precepts will be in-

fufficient ; unlefs the Equation alfo admits of fome other

Root, bcfidcs the equal ones,- whereby A may be more

commodiouny exprefled. To determine the Exponents,
in that particular Cafe, divide each of the Differences

mention'd in Rule 3. "by the Number of the equal
Roots ; and then proceed as ufual. The Reafons of

which, as well as of the Rules themfelves, I have long

ago given elfewhere, and have not Room to repeat
them here.

SCHOLIUM.

275. Although the Bufinefs of reverting Seriefes is

not a Branch of the Doctrine of Fluxions, but, more

properly, belongs to common: Algebra ; yet, as it is

often ufeful where Fluxions are concerned, and falls

under the general Rules iilufirated in the foregoing

Pages, I mall here add an Example or two on that

Head.

Let, then, ax+ bi~+ ex* +^4
-f ex"" 5"r. j>; tore-

vert the Series, or, to find x in an Infinite Series ex-

prefled in the Powers ofy.

Here, by writing y for #, the Indices of the Powers
of j, in the Equation, will be , 2, 3^, &c. and I ;

therefore i. and the Differences are o, i, 2, 3, 4, 5,
C3V. and fo the Series to be aflumed, in this Cafe, is

Aj>+ B/ -h Cy
3

-{-D/ bV. Which being involved and fub-

ftituted for the refpective Powers of x (neglecting, every

where, all fuch Powers of x and y as exceed the higheit

you would have the Series carry 'd to) there arifes

+ <sC>
3

4-rtD/
1
-

i

-f2MB/-|-2/;AC/ 7 .

l&t, -y

Whence,
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Whence, 'oy comparing the homologous Terms, A=:

_L Jt'.'r-/-
2/>AB-fM 3

\ 2^^
a

; b -~~ 3i C
(
r

* ^
:
~

;

-f 3c-
A 8B + dA*

^ _^c^a^d~~ ~~
f _, v 2/^^ at
c-c. and coniequently y -j- -f

-
;
- X v

!

a a3 a 5

X V
4

Cffr.'

For an Inftance of the Ufe of this Conclufion, Ic'.v

.r* # J x*
+ fcfir. y: Then, a being, in thi^34

Cafe, rri, b ^, =. }, </= J, 3?r. we fha{l

y
a

y
j

by fubftituting thefe Values, have #r=_y + +r~ +
2 O

;
4

feV. From whence, when y is given, A1 will alfo be
24

given ; provided the Value of
j>
be fufliciently fmall *.

* Art. jz,

Example 2. Let there be given ax-\-by+cy?+ dyy+
ef +J** +g

i

y + hxy
1* />

3
-f kx++lx*y &c. = o j to

lind y.

By aflumins ^^A.v+B^+Cv'+ D** fcfc. and pro-

ceeding as above, A will be found =: -7-, B rr .

</B + 2gAB +/+^A + 6A*+ :A 3

^_,_-
^ ^,DS

2eAC 4- ^B 1
+ ^B -f- 2AA B+ 3?A

aB + k+ /A +~

Example



204 *Fbe Reflation

3. Laftly, let *" + bx
m * p + ex

..
Here, in order to determine the Form of the Series

to be aflumed, let z be wrote for A- in the given Equa-
tion, according to the ufual Method

;
and then the Ex-

ponents, fuppofmg z tranfpofed, will be i, WOT, nm 4

np, nm+2np, nm 4- 3/>, &V. refpectively ; whereof the

two leaft (i and nm) being made equal to each other,

n is found n ; and the Differences are , ,m
op
=-. &c. Whence the Series to be aflumed for x is
m '

x + Bz
w

4 Cz
w

4- Dz
w

-I- CsTr. (for it is evi-

dent, by Infpe&ion, that the Coefficient (A) of the

firft Term muft here be an Unit.) This Series being
therefore raifed to the feveral Powers of .*, in the given

Equation, by Art. ic8. and the Coefficients of the ho-

mologous Terms in the new Equation compared together,

T, b i+m+.2Pxf>!>2mc
it will be found that, B =-- , C

^ ^ * --.

2m

in? 4 qmp 4- 9/>* + yn + 6p 4- i x b3

--- ~~

From the general Value of x, found above, innu-
merable Theorems, for

reverting particular Forms of

Seriefes, may be deduced.

Thus, if x+i>x* + ex 3
4. dx\ &c . = z ; then (m

being = r and p i ) x is = z bz*+ ibb c X z 3

X z4 &c.

And
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And, if x -f bx* + ex* + dx 1
-f fefc. = z ; f/ being~

I, and p= 2) xz bz3 + ^bb cXZ5 12^
3 8<-M

x z 7
fcrY.

i l
|- -

Alfo, if ** + &** -f / + <&* sfc. rr
.
z ; then

being k and />=i) x=z* ibz^+ibb zc xz6

18^+2^ x z
8

fcfr. &ff.

276. It may be cbferved that, in all thefe Forms of

Seriefes, the nrft Term is without a Coefficient (which
renders the Conclufion much morefimple.) There-

fore, when the Series to be reverted has a Co-efficient

in its firft Term, the whole Equation muft be firft of

all divided thereby : Thus, if the Equation was 3*
6*1 + Sx3

1 3#
4 &c, y j by dividing the whole

by 3 it will become x 2#* -I
-- -^ &c. = \y :

Where, putting z ^y, we have, by Form. I. #=:z+

SECTION III.

Of the Comparlfon of Fluents^ cr the Manner

of jinding one Fluentfrom another.

277. "\1I7"E have, already, pointed out the moft

VV remarkable Forms of Fluxions whofe
Fluents are explicable in finite Terms *

j and alfo * Art. 77.

fliewn the Ufe of Infinite Seriefes in approximating the 73
-|3'

84

Values of iuch Fluents as do not come under any of
ar

thofe Forms f : But this laft Method (as is before t Art< 99-

hinted) being troublefome, and attended with many.
Obftacles ; Mathematicians have therefore invented,
and {hewn, the Way of deriving one Fluent from

another: Which is of good Advantage when the Fluent

X fought
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fought can be referred to one, like thofe in Art. 126
and 142. exprefling the Logarithm of a Number, or the

Arch of a Circle ; fince the Trouble of an infinite

Series is, then, avoided.

As the Subject here propofed is of fuch a Nature,
that it would be very tedious and difficult, if not

altogether impracticable, to lay down Rules and Pre-

cepts for all the various Cafes j I fhall deliver, what I

have to offer thereon, by way of Problems j beginning
with fome very eafy ones, for the Sake of the young

Proficient.

P R O B. I.

X

278. The Fluent of. ; being given (by Art. 126.)

'tisprcpofedto find, from thence , the Fluent of
-

Let both the Numerator and Denominator of

==, be multiply 'd by x t fo that the Quantity

without the Vinculuin, in the Fluxion,

thus transformed, may become fome ccnftantPart of the

Fluxion of the higheft Term under the Vinculum :

XVhich Part, in this Cafe, being -, let ^ of the Fluxion

of the firfr, Term tinder the Vinculum (or -!- cfxx] be

therefore added to the Numerator, in order to have the

Whole, ^7=
"

-> a complete Fluxion ; and then the
V a*x + x*

Art, 77.
Fluent thereof, by the common Rule *, will be

V^V-J-** = -i
x vV-f*1

: But, from ibis, we are

now to dedu& the Fluent of the Quantity -: =.
1 v'v -f x*

\dix \
(
~ a

j that was added : Which Fluent, aj
v a* -f- jr/

that
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that of Pr= is given = *#. Log. *+ VV- *,

will be = i a* x hyp. Leg. x -f V? -f ^ ; and con-

fequently the Fluent fought = I x^a1 + x* i- a" x

/y/>. Z^. AT -f- V'a
1

-$- x . g). E, I.

P R O B. II.

tc-x

279. Let it be propofed to find the Fluent of ;,
d*"x~

x
from thai of v, -

a
-

; f(v0i ^y Art. 142.
' i? . ^

By proceeding as above, and adding \ a
1
xx to

4 a
1
xx x3*

the Numerator, we have *>- ;
=

; whereofV -A- **

the Fluent, by the common Ride, is { 1/aV1
**

( v * v/<r A-
1

: From which deducting the

7 g"".y^ i^
1^

Fluent of =, or y-
----

('given
I/a * x* V a

1 x1

-;- d~ X Arc (A) whofe Radius is Unity and Sine

rz f J there comes out a~ A \x V If #* . f An. 143,

280. In the fame Manner, if the Power without

the Vinculum, in the Exprefllon whofe Fluent is fought,
exceeds that in the other Exprefiion given, by the Ex-

ponent under the Vinculum, or by any Multiple of it,

the required Fluent may be determined, by one, or by
feveral Operations, according to the Value of the faid

Multiple.

XX
Thus, if the Fluent of = was fought; then,

1/V x*

becaufe the Index of .v, without the Vinculum^ exceeds

X 2 'that
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X
thai in ;_ by twice the Exponent under the

V a" x

Vinculum^ the required Fluent may be had from that of

X
v, ~

a,
at two Operations j by the firft whereof,

X'Jf

we have already found the Fluent of , ;
to be =

' Q jc

k<?A ~xVa
^ X 1"

: Whence, putting this Value

= 5, and proceeding as before,we alfo get ^ yVx6
x*

O '

A//7* v>2 |

8

'x
=. the true

Fluent of

P R O B. III.

281. Suppofog the Fluent of a + cz"- X z f"'
" !

2 to be

given = ^/, to find the Fluent of a+ cz
n

(
X z

l
~

r= B (where the Exponent of z, without the Vinculum
is incrtafed by the Exponent under the Vinculum).

Let the Part affected by the Vinculum be multiplied

by z
W?

, and the Part without be divided by the fame

Quantity ;
then our Fluxion will be transformed to

~o Vtf|

W
fn \" w? 1

az* + ez I xz K B : Where let ^ be, now,
fo taken that the Exponent (n+ q) of the higheft Power
of z under the Vinculum may be equal to (pn+ n mq)
that of the Power without the Vinculum -f- I ; that

is, let q =-^-~: Then (by Art. 77.) if the firft Term
ttl T 1

under
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under the Vinculum was conftant, the Fluent of the

"i ^r "t*- 1

faid Expreflion, or its Equal az + cz x,

J + cz+* ?
. But the

would be had

Fluxion hereof, fuppofing both Terms to be variable

(as they actually are) is ez* +
"t?

l x ~

/7/T
" " \*W

= x az* + fz"
1^! x **"*' (by the common

? L ^
T> i \ TI r

flz + fz n
Rule.) Therefore== =-

w+ ixn-H X<r

Flu. of az* 4- <:z"
Jf

l v ^""'i = B ; that is,

wtl

+" ^ ?

^
. x Flu'a+aF x

x + ^ Xr w-f ? X r

"'i = 5 ; or, by fubftituting for y,

xz __pa

i = B : But the /7. of

given
= A therefore, laftly,

a^c*___X_
m -f /> + i x nc

s

= B. Z.E.I.
x r

282- If the Quantity under the Vinculum be a Mul-

tinomial, <7 + <rz -f dz + ez &c- Then, fmce

i
OT

'f i

the Fluxion cf a+ cz" 4- Jz^" + fz
3*

6ffj x z^" is

n i . ; i .

xm-z x + 2n^z x -r-
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.-m
> f I

w 2 pi
" za

a + cz + dk l3'c\ X a +
^ i

X /* 2 =
*

, it is evident, that, if the

r pn I . pn f n I . *-f- 2 I . ,

fluents of s sr, 2 , z
r

55c. drawn

into the general Multiplicator a-\-cz -f d*
n
I3c. , be

denoted by A, B, C1

, Z>, &c. the Fluent of the

Whole-Quantity exhibited above ( which Fluent is

1-~
n
-

-
-

"\

m ^ *
\

+ f*+ dz
"

-f gg
5
Vf.i x !/" ) will alfo be ex-

preffed by pnajf+p+m+ i x <:+/> + 2*;+ 2 x

x /D e?V. Therefore, if there be given
as many of the Fluents d, B, C, D fcft-. as there are

Terms in rf+ cs" -f~
2*

-f ^3"

fcff . OT/ W One, that
other Fluent, be it which it will, will alfo be given from
hence. Thus if <sfc=o, e=o 9 &c . and the Value of--

1

m f I

/be given, we fhal] have a -f
"'

x /" p-
'.wf_ i "I

j and confequently 5z;
g

p

tne very fame as before.

P R O B. IV.

283. The Fluent of a+cx* Xx^"** being given (as
in the preceding Problem) to determine, from thence,

the Fluent of a+ cs?\ X K ; fuppo/tng v to

denote a whole pofoivs Number,

Let
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Let a+ cz"' be denoted by M-, alfo put/-f i

' / H H tn

P, />-*-! (/"+ 2 ) /*/*+ * (P+ 3) P &c ' and let the

Fluents of fl-ffs"
1

x , a-\-cz
'

x s:^"

+ ' x a/
5 '- J

i, rf+ fz"' x s^""1
* > Gfr. be re-

prefented by 4, j?, C
1

, D, &c. refpeaiveJy. Then, fmce

,
?-' ,. r= B

(by the preceding
rn+p+i x nc m+p+ixc
Prob.) it follows, from the very fame Argument, that

'
i

M*F _ PB =(,

m+ 'p + I X nc m -\-p + I X/r

n

M f paC _ = D
n

X c

Hence, by writing the Value of B in the fecond Equa-

tion, we have :

m
i

. . 1 A

j.-LL -'-- - r= C. In the fame Manner,
f

i

m+p+ i Xm+p+l X ?

by fubftituting this Value for Cin the 3d Equation, we get
u

m+p+ i x w w -f /> -f i x w + ^ + i x w*
X 4
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=D
m+p+i Xm+p+i XOT+/I+I X;3

Where the Law of Continuation is manifeft ; and from
whence it appears that the Value of any of the Quan-
tities B, C, D, E, I3c. or the Fluent exprefled in a ge-

ncral Manner, will be
m + q + I X nc

-

X. ncc

x/-f 2X/> + 3 (v) x a"'A

/v; x _
: Where, ^ = Fluent of

l

X 2, q=p + v r, sq + m, t=p +m+ii and

where the
Sign

of the laft Term (m which y/ is

found) muft be taken + or according as v is an

even or odd Number : Note, alfo, that the Parenthefis

(v) is put to exprefs the Number of Terms, or Factors,
to which the Series, or Product, preceding it, is to be

continued. The like Notation is to be understood in

other Cafes of the fame Kind, when they hereafter

occur.
Tb*
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*fbe fame oiberwlfe-.

284. Let q p + v i, and let a
-j- c*"\ X

P"^-.

Rz + Sz +Tz ...... -FA* -f M be

affumed for the Fluent fought : Then, by taking the

Fluxion thereof, you will have m+ i x ncz z x

X Rz + Sz , + A -f~ + f2
r

x

.

qnzRx + ^ n x *oz ...... -{- p_ m

f ^ X a+ cz"] y.zf>a
~ I

z't which muft be =

X
] or -f K i . x

z (or *+ ><
?

V) the Fluxion

propofed : Whence, dividing the whole Equation by

x 2""^, and tranfpofmg, there comes out

o ?
S-z

1 9"
-i P"

qn-n jn-z
.+/A Z f"^

Which, reduced, and the homologous Terms united,

becomes ,

?
XJ8

f

S

n X
x

"*

= o: Where, by making m -f q + i X ncR I = o,

r

Q &c. we

qaR.

//z-f?xc

m+ q + I X cn

~
i

- or (putting
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Hfi

Vc.
i I Xt 5-f-lXJXJ I X we

Where, becaufe the Exponent of the firft Term of the

Equation is qn (pn -\-vtt n) and that of the laft Term
(in which A and 3 are concerned) = />, it follows that

the Number of Coefficients to be taken as above (where-
of A is the laft) is exprefled by v : From which laft,

the Value of is given = pna&.
But, from the Law of the faid Coefficients, R, S,

. . . .A, it appears that the Value of A (whofe Place

from the Beginning is denoted by v) will be,= Hh

y.f^i.

<

j^2 qv+2 a"- J _
S -J- I.J-J I.....J V + 2

X
g-r-'-g-' *+'-.. ""I': And therefore

c

s.s I p +m +

rf" P-P~^~ l 'P~^~ 2'P~{~ 3 ff^ "
a; ^ 1 X -7 ( putting

c" A/+I./+ 2. /+ 3 ('t/; /
77i-f-i=fj as before.) Now, if the feveral Values of

S. T and 3> thus found, be fubftituted in

the aflumed Exprelfion, you will have the very fame

Conclufion as in the preceding Article.

COROLLARY i.

285. Since q is =:/>-}-
v I, the Fluent -f f**i X

1" r> ?"""
"~

P" f i

J?2 + o* .... -fA^ 4- 3 given above, may

be exprefled by N X Rz +Sz"' +Tz

j+i
(vj 4- p/f; where Ar = + "/ x 3", R =
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: And, where the Coefficient
(/J) of the

m +p + v 2 . c

given Fluent (A) will always be exprefled by the laft of
the Quantities R, <S, T . . . A multiplied bypna:
This is evident, becaufe it is found that #r: /># A
And the fame thing will alfo appear from the feveral par-
ticular Cafes (in Art. 283.) for the Values of B, C and
D : In each of which the Coefficient of the laft Term
(where A is concerned) is to that of the Term imme-

diately preceding it, in the conftant Ratio of i>a to

, or of pna to Unity.

COROLLARY II.

286. If the Value of c be negative, the general Fluent

(in Art. 283.) when a + cz
' = o (provided m+ 1, , and

p be pofitive) will become barely = + x -- x"
t t +i

.
,

f
jj

(v) X
-^j- } becaufe, in this Circumftance, all

* T 2

the Terms multiplied by
a Z

intirely vanifli.

If, therefore, b be wrote for c (to render the Ex-

preffion more commodious) we fliall have +- x -
^+2 a"A .-,

X
j C-y) x - for the true Fluent of a h?\ X

a
*

, generated while *, from Nothing, be-

comes = a : Where A denotes the Fluent of a z"'

/mi j

x * ^j generated in the fame time ; and where
t "==,

10
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t =. p -f- m -f i. Hence it follows that the Fluent of

, nl
m

pn l .
,

- n ^n , -\n

a t>z\ xz x X e+fz -f gz -f hz
y

&c.

(where *,/, , are any given Quantities) will be = A X

paf p.p+i.a*g-
< m the

forementioned Circumftance.

P R O B. V.

287. The Fluent (A) of a + cx"i x zp
" " T

x.
being gi~

. ~ m-\-r

vcn, to find the Fluent of a + cz"\ x z f
*' *

z
; fup-

pojing r to denote a whole pofitive Number.

Since a+ czfl =r a +cz"l x a 4- ^iz", it is evident
. . vm-f-l j _ ~~1

W
A

% a + fz I x az *-f-

,^+ i
i: Whofe Fluent ^y 7>* 7 ^Q+ CZ

. t:

a+c*

+ '

\m+i
j

In like Manner, if

this Fluent, of a -f ex" I > be denoted by

B, that of a + ? X zp
" *

% by C, ^fr. it will ap-

<7 + ftB*' X Z
"

,

pear that

a + cz"\

m -f 2 X aB

p+ m + 2 X n

'X z^" _
Z)> ^ Whence,

by fubftituting thefe Values, one by one, as in the pre-

ceding
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ceding Problem, and putting Q = a -f cz^ we get

*+**? j^TIxg"^Vl_

m + .

r. Whence it is

-.m+ r

evident, by Infpedion, that the Fluent of

x a*"
1
" x

z, exprefled in a general Manner, will be

r.n p +m + rxp-f m-\-r i.n

by putting m+rf, p + m-{-r=g, and making J^*"
1

'! X

z
fn

a general Multiplicator, will be reduced to J^*^

2 X ' * *
-f-

~~'~
",

"
I-

-"""-* ~~ "
_ _.'_~ ( T j "T"

m+i m -f 2 m -f 3
7 X TT T~" x r+ T~ r^ a -^ where it

appears (from the foregoing Values of 5, C, and DJ
that the Coefficient ofA is always equal tothelaft Term

of the preceding Series, multiplied by m
-\- j x na (in-

ftead of ^ z^"). ^. . /.

COROLLARY.

288. If c be negative, fo that j^, or its Equal,
a + cz", may become equal to Nothing, the Fluent will,

in

9
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in that Circumftance, be barely rz X '

p+m+ i p+ m+ 2

X ~
(r) X tf

r

^J provided the Values of m+i,

/>,
and n are pofitive : Or, if c, p, and n be pofitive, and

m+r+p negative, the fame Exprefiion will exhibit the

true Value of the whole Fluent, generated while z,
from Nothing, becomes infinite.

P R O B. VI.

289. The fame being given as in the preceding Problems ;

. w r

it is propofed to fnd the Fluent of a -f- cz"' X
/>-!.a x.

If r be wrote inftead of r, in the laft Article,

we fhall have m r=zf, p+ m r=zg, and ^"+
I zf *

-
(-r) X a"~

r
^, exprefling the required Fluent in

p+ rn+ 2

this Cafe.

m+i rn+ 2
But - x .

-
C5<r. continued to r

i +m+z
Faftors, fignifies

the fame thing as the Product con-

tinued downwards, or the contrary way, to r Factors,

according to the fame Law : And therefore is rr

, \ A r* u rW. After the fame

, .

(
-
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(r) and confequently the Fluent itfelf = j^z x

-gTr j$T *+'.jr+.g

290. It appears from hence that the Coefficient of A^
the given Fluent, will always be equal to that of the

laft Term of the preceding Series, multiplied byp + mxn :

For, feeing the Coefficient of the faid laft Term (whofe
Diftance from the tirft, inclufive, is denoted by r) muft be

x
~

r (by the Law of

the Series) wheref+rm and ^-fr i=
/>+w i (as

appears from above) it follows, by inverting the Order

of both Progreffions, that t+ >*-i.p+ >-~*.(r-i)
m.m i.m 2 (r)

x JL will alfo exprefs the fame Coefficient : Which,
na -

. p+ m.p + m-i.p+m-z (r)
multiplied by p + X, gives w .M_ Itffl,2 (r;

, the very Coefficient of ^, above determined. The
a

Ufe of this Conclufion will be feen in what follows.

P.R O-
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P R O B. VII.

291. The fame being, ft ill, given j to find the Fluent of
m

~"T\ pn -vni
a+ cz i x z z.

By proceeding as in the laft Problem, the required

Fluent of a+ cz"\ X z'" is derived from that of
'

^
fft

-fif-l-^TJit *1

a+ cz
n

\
Xz -x (given by Prol. 4.) and comes out

vn
-.m+1 pn

2
i 4L -'* x :

i ' 2 /
, i . ,

.

(v)
- x - x *

(v)
l 2

c
.- : Where, G> =

' And where, the Coefficient of A\s equal
to that of the laft of the preceding Terms, multiplied

by m + p x we. If the Manner of deducing the re-

quired Fluent, in this, and the laft, Problem, {hould not

appear fufficiently plain and fatisfactory to the Beginner j

the fame Conclufions may be, otherwife, brought out ;

by finding A^ in Terms of B, C, or Z>, from the fe-

veral particular Equations in Art. 283. or, by afluming
a defcending Series, inftead of an afcending one. Vid.

Art. 284.

P R O B. VIII.

292. The fame being, ftill, given ; to find the Fluent of-
?l

n+r
pn+vnl .

a+ cz
l xz?

x.

Let the Fluent of a -f cz" I xz x. (given by

Trob. 4.) be denoted by B, and that required by F:

Then,
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HI '

Then, if p + v be put = />,
the Value of F (the Fluent

of a + cz"\ x^"~ T

x} will be given from that of B

(the Fluent of a + cz"l x yfn~ l

) by writing 5 for

A and
/>

for
/>,

in A/. 287. Whence we get F=.>

Z ** ~
~t~ i

-
.

--1

-j-
~" ^ ~- " "

^

^ /*. 1 i

^ g.gi.n g.gi-gw ( }

m-\-i m-\-
ri ?K+3 . r o . TVd

i>-}-;7z-f-i p -\-tn-\- 7. /
) +'W-h3

i y

,
and

Which Fluent, by fubftituting the Value of B (in

Prob. 4.) becomes F=.^t+1 zt"' X 5 + ^^
-

t.eiM

+ . v
: j^_

rr; + -
x 7- - ,

;
<g

r

-^ i-g i' n p+to+i p+m + 2
(

x

?+2 />

(*) i x / (
r
) x a x T x

p+m+l p+m+2

\i x ~V : Where q=p+vi, s=m+q=

and tp+m+i ; and where the Sign of the laft Term
js + or according as v is an even or odd Number.
3> F L+y .i-/ 1 * *

Co-
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292. If the Jaft Term of the firft Scries, exdulive

i -

of the general Multiplicator j^ , be denoted by
r

0, the Multiphcator, -,

- * --
(r) x a

, to

p + m+i p+ m+2.
Art. 287, the feconcj Series will be m+i X na$

*
;

and there-

fore the firft Term of this Series, including its Mul-*

.. .tf . Wh :ch :r n
tiplicators, is =-i^r-- vvmcii, it A.

be put to denote the laft Term &3*+*xf*+
v*

of the

firft Series (with its Multiplicator) will be expounded by
_L TO

'-
; Hence it follows, that the Fluent of

S+l .CZ
n

+r Xxpa+
'vtt~ 1

x, given above, will alfo be truly

*& f"*~I *"*
/

exprefled by r- ZZTj
x

~jf ^7^.
X

fTW o *^ **

,/ / 2 f^ / x .
m + ' aR

__ 9_

f2l ?"" a aV
f \

fX """"1
"* "*"

T" X ~~"T" ( ^V

p+m+i .p + 7n+ 2 (r) X /./>

Where H, Iy K, L . ^, 5, Tt V, &t. repre-

fent the Terms immediately preceding thofe where they

ftand, under their proper Signs : R being the laft Term
of the firft Series i alfo /= m + r, g= m 4- r +

/>
+ -,

qp+v i, f=w+f, t=?n+p+i> and ^=

Co-
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COROLLARY II.

i

293. Since the Divifor, p + m + i ,p+ m+2 (r) x
l.t + i.t (v) y of the laft Term of the Fluent (by

fubftituting for / and p fcff.) is = p+m+i.p+m+z
(y) x />+V+/B+I . />+^+;tf+2 (r) : Where, the laft

Factor (p+m+v) of the firft Progreflion, is lefs by
Unity than the firft Fadtor of the Second; it is evident
that the faid fecond Progreflion is only a Continuation
of the firft to r more Factors : And fo, the laft Term
of the Fluent, where A is found, is truly exprefled by -f~

m+ 2 . ffl+3 (r) a
1^''A

. m+p+2 .

Hence it follows, that the Fluent of a + ex"

fn+vni . ..

-
T"7r + r

x v *, or that of a bz*\ X z

( making <rrr ij will, when a bzn becomes equal
to Nothing, be barely zr

p.p + i . p+2 (v] x m + i . m+2 . m+3 (r) a"*'A
m+p+i . m+p+2 . m+p+s (v+ r]- m ^_ lA being the Fluent of a z"! x tf , in that Cir-

cumftance, v and r whole pofitive Number?, and p
and m + 1 any pofitive Numbers, either whole or broken.

SCHOLIUM.
~tm-fr * f

294. If the Fluent of #-j-:
n

l x 2 (given

by Prc^. 5.) be denoted by Cj then (F) the Fluent of

. .

r^" X ^" "'a: (where m = w-f r) will be had,

from C (by Prob. 4.) according to a new Form, dif-

Y 2 ferent
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ferent from thofe already given. And, by following

the fame Method, the Fluents of a + "-
!

*

fr.+vi . ~~rr+r
'/ i. rr"'

js z, a-tczl x a K, and a+cz* \

X sr x. may alfo be found, each, according to

two different Forms, from a Combination of the cor-

refponding Cafes in the foregoing Problems.

But, as it is extremely tirefome to repeat the fame

thing, again and again, where fuch a Number of Sym-
bols are neceflarily concerned, I fhall here put down
one Solution to each Cafe (becaufe of their Ufe) leavig
the Procefs and the other Forms (which contain no new

Difficulty) toTbofe v?ho will be at the Trouble to fet

about them.

, TL fl ri. The rluent of a+c* ' x s z is

X set** g-*~J ^f1 + * %/ N
i _L ~~z~\ X - 4~ ^ . X \r}

f+ i.na

* ^ w^,,. _ V^ ^^^ , TX ^_ ^" .. ... ^^ ^\ ^
n f ^__. T f ^ O

. j rz A cz 2

XVhere //, /, K, L, R, 5, T9 &c. denote the

Terms immediately preceding thofe where they ftand,

under their proper Signs ; R being the laft Term of the

firft Series, alfo ^=fl-f-ex.", f=mr9 g=p + m~^vr,
qp-^v i, sm-\- p-\~v j, / /-f m + r, and A ~

J" tn i

tfie given Fluent of ff-f "/ x z *

2. Th
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2. The Fluent x* s =

w

Where qpvi^ s~m+r+p fm-\-ry gp-{-
+r, and the reft as in the preceding Cafe.

3. The Fluent of a-\-c~'' x

m

pn vn I .

Z IS =
'+* PX z

)

.

I .m 2
(
r ) X pl^2.p 3 (

v ) /+*
In which y=w r, g-=m+p r -v, qp v?l
j ^ -f ?, and the reft as before.

205. From what has been delivered in this SeHon,
the Fluents of various Forms of Fluxions may be ex-

hibited, by means of circular Arcs and Logarithms.

For, fince the Fluents of "' X

^X^"'"
1

^ and +^T~' X* i (which

I call original Ones) are all of them explicable by one,

or the other, of thefe two Kinds of Quantities (as will

- **""' '

appear farther on) thofe of

^
w ~r

i will alfo be given from thence, by the fore-
'

Y 3 going
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going Theorems. Whence the moil ufeful Forms of

Fluents in Csttis's Hannonia Menfiirarum will be ob-

tained, befides feme others, more general than any, or

the fame Kind, put down by that fagacious Author.
Here follow a few Examples of fome of the mod

ufeful Cafes,

EXAMPLE I.

296. Let the Fluxion given be

X Z
2V

) v being any whole pcfitive Number.

Then, the Fluent of d
x
-z-\ x a, or 77 TJ~T

being = hyp. Log. w -3 ; or, equal to the

t Art. 126. Arch whofe ine is r and Radius Unity
*

j according

as the fecond Term, in <5P+*% is pofitive or negative ;

let A be, therefore, taken to denote the faid Arch, or

Logarithm j and let a*+z\
*
X * be compared with

X 2 2 (whofe Fluent is, all along, fup-

pofed to be given /I] and you will have <3zr^% <:=

~j-i 9 n=2, m~ -|, 2/> 1=0, and therefore
/> 4 5

Whence, by fubftitutjng thofe Values in Art* 283. we
"J^J T

] ik ewife get q (p+ v i) = , f (^-f-?) =

I, / (m+p+ i) ni ; and, confequently, the Fluent

fought
- F^T x + "!!. _ jEE^jgH! +

2V 2V.2Z; 2

5
--'- ' '

2-u 7,
,.

'IV 1.11)- 3-fl Z 2V 1.2V 3- 2V

2V. 21; i-2V 4
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{) + x x |-x ~r (v)xd
iv

: In which the~
2 4 6 8

laft Term is negative, when the given Fluxion is

za<1 ' "

. and v, at the fame time, an odd Dumber ;

but in all other Cafes, affirmative.

EXAMPLE II.

?97- Let z~~'z Vfij'S (or d 1
+2;'M X z

v
z) be

propounded.

4.

Hre, denoting the Fluent aTfir\
l
* by A (as

above) and comparing d*-j-z?\, x z
2

^, with

pn-t-vrtr l . .ft..'
a -f cz ' X z 2

( ^/a, fyob. 8. ) we have r= r,

and the reft as in the laft Example : Whence alfo
t

p

z% and the Fluent itfelf =
2"J -f

x .(w;x' r^ 5, r, eifr. being the pre- t Art. 292 .

2V-|-2

ceding Terms with their Signs) rr

2V+2
,7, 1*V 1 O7 . x/4-

2a; 3

- +
2-L".2-y 2 2-y.2-z; 2.2^ 4

the Sign of the laft Term muft be regulated as in th^

Y 4 pre
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~WII '

preceding Example If the Fluent of .

K ~
or_ y?*?

of z "** Vd z

-j^K
L

(in which the Exponent is ne-

gative) be required j the Anfwer will be had in finite

Terms, independent of A> by Art. 85.

EXAMPLE III.-
\ I+r

298. Wherein the Fluxion propofed is d" K"\ x

s*V? ~*x J r and v being any wholepofitive Numbers.
__ _

_^ j j

Since the Fluent of ;/" z"
(

~
r

X^je*

*

(as will

2
appear hereafter) is truly exprefled by x Archy whofo

>
Sine is -r- and Radius Unity, let this Value be de-

d*

noted by A\ and then, by writing d
n

for a, i for r,* for w, and i for
/>,

/ y/r/. 292. we fhall have f
j____ T

2V- I

*) = <z

'l

T-''j and the Fluent, itfelf, equal to

~r <L-'r

2r I
J- .-^- V_L- v -^^J

. i fr) _ :l

' U

- -
f

. ..

-T" +1^2 X ^
2.4.6.8.10.12 (r+v)

t*

Art, 293. x drn+ vttJ: In which //, I, K . . . R, S, T, &c.

denote the preceding
Terms with their Signs ; R being
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the laft Term of the firft Series. Hence, becaufe all the

Terms, but the laft, vanifli, when 4L~ il follows that

the whole Fluent of d" zr

]

*
x z z, generated

while z, from Nothing, becomes equal to d^ is truly

expreffed by7
.4.6.8.10.12 (r+ v)

L3.5.7 (r) x ,,.fr 7 f; ^G G bei
2.4 6.8.10.12 (r+ v) ff

the Semi-Periphery of the Circle whofe Radius is Unity.

EXAMPLE IV.

299. Let it be required to find the whole Fluent of--, n i

a bz ' X . .,,/. >T
, generated while bz , /J-^/n .ZV0-

m
-. i

thing) becomes a ; that of a bz''\ X s

given ( A.}o (=^)

Here, by expanding <f+lxn , our given Fluxion
m

becomes ~ a bz'"\ x z ~ into d
*

d 1.2.</* I.2.3.^
3

Which Series being compared with +/*" -t- ^*
2fl f^4

Q 7

fFVi/.
^r/. 286.) we have <? = i, / rr

, ^

t-^ , &c. and confequently the Fluent fought
A

(by fubflituting thefe Values) equal to into i

d "

* 3 ak p p+i fi+i ak
- V/ - NX 4- V . - V
t
X

I
X ^ f

'

/+! I 2
X
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L PL til * L I!I _
2

, 3
3

fcr,. (<S\ ^^ 1 if I \

/ /+I- f+2 12 3 Mf

being =r />+CT+ i.)

Here the Values of w+i, n and p are fuppofed po-
/

* Art> 2g6. Titive ;
* and it is requifite that I + 7^

fiiould alfo be

pofitive;
otherwife the Fluent will fail. Although the

Series brought out above runs on to Infinity, yet it may
be- fum'd, in many Cafes : Thus, if the given Fluxion

i then, the forefaid Series be-

_
coming I I X + i x | x &?' its Sura

confequently x f +^

p: the Fluent fought : Where, /f (the tw&<?& Fluent of

a=:3z
n

< Xz* being =: ^ x Semi-Peri-
nVb

phery of the Circle whofe Radius is Unity, the Fluent

given above will, therefore, be rz
*
+ adk

X by the fame Semi-Periphery. If the Reader is de-

firous to fee a further Application of the Summation of

Scriefes, to the finding of Fluents, I muft refer him to

niy Differtations (where it is handled in a general Man-
ner) having neither Room nor Inclination to treat of

it here.

SEC-
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Of the Transformation of Fluxions.

301. T) Y the Transformation of Fluxions may be

j underftood, the reducing any fluxional Quan-
tity to a different, or more commodious, Form ; ac-

cording to which Senfe, a great Part of the fecond

Section would properly fall under this Head. But, what
is here propofed, and what is commonly meant by the

Transformation of Fluxions, ;V, the Method of or-

dering thofc Kinds of Expreflions which involve one va-

riable Quantity only with its Fluxion ; which, yet, are

fo affedted by radical Signs, that the Fluent, without
an Infinite Series, would be impracticable, were it not

for a new Subftitution, or fome other Kind of Tranf-

formation, whereby the given Fluxion is render'd more

manageable.

Something of this Sort has been already touch'd upon
in Art. 83. And in what follows I (hall farther point
out and exemplify the principal Cafes wherein fuch 2

Procedure will be of Service.

302. If the Number of Dimenjions of the variable Quan-

tity , without the Vinculum, increafedby Unity^ be fome ali-

quot Part) or Parts, of the Dimenjions of the fame hian-

tity, under the Vinculum, the Fluxion will be reduced to

a better Form by fubjlituting for that Power of the va-

riable Quantity, which arifes by dividing its Exponent,
under the Vinculum, by the Denominator of the Fraftion

txprejfmg thefaid aliquot Part, or Parts.

n I
I

Thus, if the Fluxion propounded be ~; by

liibftituting *=s
a

, and taking the Fluxion of both Sides

of the Equation, we have A =.\nz
i

z ; and there-

fore z a
x 7-

' Which Value, with that of K ,

being wrote for their Equals, in the given Fluxion, it

10 will
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X

will be transformed to , -, -^-=-\ Which, putting;
*"v c" + x*

*

a-=c^ (to make the Terms homologous), is alfo ex-

9f

prefled by
-

;.
: Whereof the Fluent will be

~nv a -v_x

given by Art. 126. or Art. 142. according as the Sign
of x is pofitive or negative.

303. If the Power of the variable Quantity under

the Vinculum has a Coefficient, it will be bell to bring
that Coefficient without the Vinculum.

i,: i .

z* ~
Ex. i. Where let the Fluxion given be -== :

V a + *"

Which, by bringing c without the Vinculum^ becomes

l*-i . in*

: From whence, by putting x r= z.

and proceeding as above, we get

Whofe Fluent, by Art. 126. is 7- x kyp. Log. x 4-

2.

f- **. This, by reftoring z, becomes --, x
f JlC'i

fyp. Log. z? + \ - + ^".
Which > correded (by

2

fuppofing it o when % = o) gives, at length, -^ x
1"

' "

typ- Log. \/ ~

Fluent of the Quantity propofed.
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But, when c is a negative Quantity, this Fluent fails,

becaufe the fquare Root of c is to be extracted. In

* X
this Cafe ; > - muft be transformed to

ia/\/- + x*

And then its Fluent (by
, / a

* V ex \S x 1

1 C

Art. 142.) will be had . X the Arch of a

Circle whofe Radius is Unity, and Right-Sine rr

x

J~ '"

Ex. 3. Let the given Fluxion be
. :

* V a -}- czf

Which, by bringing c without the Vinculum t and put-

ting x =. z,

1

, is transformed to -j-

Whereof the Fluent, by Art. 126. is -= x
ny a

v/-J +^ +
C

V~7-~ V a + "

= ~= X ^. LV.nv a

But here, when c is pofitive,

V a + V a + c*r

the Numerator will be negative; in which Cafe it will

be proper to change its Signs, andexprefs the Fluent by

h= X hyp. Log.
"*" __.

V -f
" + V

____
an
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an Alteration of the Signs can make no Difference i.t

the Fluxion, is evident from the Nature of Logarithms ;

X x \

becaufe the Fluxion of the Lb. of * ("=. /v x X '

is the fame with that of the byp. Log. of x. It will be

proper to obferve farther, that, iriftead of the Logarithm
above derived, any one of the following, equal, Quan-

r
V a -4- czn v/ a\

titles may be taken ; viz. hyp. Lo*. ; : - -

(found by multiplying both the Numerator and Deno-

minator of the forefaid Logarithm by V'a -{- cz" VV/)

y' a _j_ c~ y^~a~= 2 X fyp. Logi
~

(by the Nature
V cz?

of Logarithms) =: 2 x hyp. Log.
V a + czn + V a

( by multiplying, equally, by V a + cz" -}- V a )

But, take which of thefe Forms you will, the Fluent

fails when a is negative j becaufe the general Multiplicator

= is then impoflible. In this Cafe the Fluent of
n V a

or its Equal
~

, wil!

be given- by Art. 142. and is expounded by -, '

,

c

2
X A 7 ; where A denotes the Arch whofe

n Y a

*9 J \

Radius is Unity, and Secant j=-( A/lfl
].

/-^ ajV
c

In
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t B j
.

In the fame Manner the Fluent of fll
, i$ found

+ CZ*

I= / x Arch, whofe Radius is Unity and Tan-
V <7

J
. I

eent V' 1 > or equal to , X hyp. Log,
a "V ca

*\, according; as the Value of c is affir-

V a V - c^
mative or negative ; a being fuppofed affirmative.

304. When the Power9 or Powers, of the variable

Quantity without the Vinculum, or radical Sign, fally

mcflly, in the Denominator, it may be of Ufe to fub-
Jlitute for the Reciprocal of the faid Quantity, cr for
the Quotient which arifes by dividing feme known Quan-
tity, either, by it, or by fame Compound of it in the De-
nominator*

33

Ex. r. Let the propofed Fluxion be ~i ; , ;z \/ a* -f 2*
'

then, putting x = , we have z = ~, and %

a~
; and confequently ^5-

Whereof the Fluent is

Ex. 2. Let the given Fluxion be

Here, putting A: = , we Have % =
-

1 = Va* ax + x* ; and therefore the

Quantity



336 Of the

Quantity propofed is transformed to T-T. =====

Whofe Fluent may be found from a Table of Loga-
rithms j as will appear farther on.

305. If the Fluxion given is ajfefted by two dlf-

fertnt Surds, and the rational Fatter, or the Quantity
without the Vinculum, be in a conjlant Ratio to the

Fluxion of the Quantity tinder the Vinculum of either

Surd, or be related to it as in Art. 83. the given Fluxion

will be reduced to a moref:mple Form, by fubjlituting for
that Surd,

y~ \^/
z

\ z.
1

Ex. I. Let - be propounded.

^ZEE
7

Then, putting x Vf -f ~% we have z?.x*

^ = xx> and Vc *T = vV + f x* - V ^

23 y p- _j_ x*

(by making a V'<? + 2

) Whence /

Or, if x be put
~ VV x1

(inftead of >/* -f- z
1

) ;

then x* = c* *% g^ = '

xx, V b~ -f-
* =

V i
z

-I- r
1

^ ^r
2 n V a

2 x1
',

and confequently

. = x Va 1
x* : Whofe Fluent is

given by Art. 297. or 131.

Ex. 2. Let the given Fluxion be a -f f"l x e -f /* I X

f Art* 83. zf"~
~ 1

K ; fuppofing p to denote any wholepofitive Number fu

In this Cafe, let that of the two Quantities, a -f ex."

and ^ + /z", whofe Index (m or r) is the mftl com-

plex (which we will fuppofe the latter) be put = x ;

then we (hall have s"
--jr--,

z n-* z = ~
F J
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d + by putting d =. a

__\ and confequently d + -
\ x

= the Fluxion propofed : Where, p i being a whole

pofitive Number, the Value of x e\ will therefore

be exprefled, in finite Terms ; whence, if m be alfo a
whole pofitive Number, the Fluent itfelf will be had in

finite Terms : But, if m and r be the Halves of odd

Numbers, then the Fluent will be found (from Art.

298 or 294.) by means of circular Arcs and Logarithms.

306. If the given Exprejfion be ajfefted by two Surds

wherein the Powers of the variable Quantity are the

fame, and the rational Quantity , without the Vinculums,
be related to the Fluxion of either Surd, as in Art. 83.
it may be of Ufe to fubjlitute fir the Quotient , or Ratio,

of the two Quantities under the radical Signs ; especially,

if the Sum of the faid radical Signs, or Exponents

(fuppofing both Surds to be reduced to the Denominator)
is a whole Number.

Ex. I. Let the given Fluxion be
z'x

b3 + z* Sxtf
Then, writing x -, --, we have z3

r
3 x* i +#

and



Of the Transformation

and confequently

z z

Whofe Fluent is x

Ex. 2.

J_ A"
Here, putting x = > you will have

" =

ax e ni. afce X*

fcx

_ i^ x _ ax

i*\

. pn _ n

, a
n X fcx\

tr ,+/v _ ^rf
' ^^"

confequently the

-7
-~ r

\ _ af ce
\

~

/ cx\

Fluxion given =

Where, if ffl+ r be a whole
pofitjye

Number, greater

than ralfo a vhole pofitive Number) the Fluent w.ll

becaufebolh the Seriefe.

tM+r
-p

-I

and / r.J do
for the Values of ** 7|

Art. 99.
jnthat Cafe t?rn-;:r,ate *. But, if r and m-fr / I

be the Hakes of whole Numbers, pofitive or negative,

theifthe Fluent will be given by the laft Setion.

307. A Trinomial is reduced ta a Binomial by taking

away its middle Term ; that is, by ful/lituting for the

Sum or Difference of the Power of the variable Quantity
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n that Term and half i's Coefficient ; according as the

Signs of the two Terms, where the fald Quantity is found,
are like, or unlike.

Ex. I. Let the given FLixion be ==
V t>~ -j- cz -f- *~

then, putting X z-J- Ic, or 2; x if, we have z x,

vV i r -f ** ; whence (making a* = b
l

^c
1

)

there refults x = /- . : Whofe Flu-
t//' -f^z+ z Va-+ x-

cm is given, iy ^'/. 126.

/"
* T

^.

Ex. 2. Z,*/ //;^ Fluxion given be - .... .' .

z
-r-^-.

V+te" + f2
a"'

Firft, by bringing c without the Vinculum^ according

to Art. 303. we have V* 4- tz* + cx~" V7" x

5 -L + z2" : And, by putting x = z* +
c f

b -\r
n~ l *

, or z
" = A: -, we alfo get 2 * = _, and

c

5 + fi } = V^ 7 - ^ + * : Therefore the

Fluxion, transformed, is
-

. a bb
nV c x / ---

Whofc Fluent is given by drt. 126. when c is a pofitivc

Quantity
: But, when c is negative, the FJuxion muft be_fie_^

exprefled thus,
-

> -,,
' =>:

Anfwcring to -Psr/n 2. ^r/. 142.

Z 2 Ex.



340 Of the Transformation

/*
Ex, 3. .*/

be propofed.

Then, following the Steps of the laft Example,

f)
wim v

a
.

b*
. J4 Will

C v ~"
f-

"

c
'

c

be transformed to c
m

X + *
a
|

: More-
c 41 r

over, 2" being =* =^ </(by putting </ =:

^ \ ^ ir L 2 I

) and *"-' = -. we alfo have * z
/=

ic / n *

* \ ' j'

K T/ ~T~ ;
s *

- X

fcfr. Wf. From whence, by fubftituting thefe fc-

veral Values in the given Fluxion, and putting

_ __ - = f
*

there comes out

x xx dx -H h X *a*

Whofe Fluent, when the Exponent m is the Half of

any Integer* pofitive or negative, will be found, by
means of circular Arcs and Logarithms, from Art.

295-

308. When the Denominator is a rational Trinomial^

er Multinomial (that , when it is without a Vinculum)
the beft Way of proceeding^ for the general Part, is, to

refolve
the given Fraftion into binomial Ones. In or-

dtr to this, let its Denominator be ftigned = o ; by
means
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means of which Equation , whofe Roots muft be found\ you
will, by fubtraftir.g each Root from the indeterminate

Quantity (.*), have the binomial Dcriminatory of the re-

quired Frafliom into which the gjbin Orte may be rt-

jolved :
If^hofe correfponding Numerators, let be denited

Ax, Bx, Cx &c. then, by putting the Sum of the Frac-

tion*, thus a-ifing, equal to the given FrmEhtn* and re-

dv.::ng the whole Equation to the fame Denominator, the

ajjiimed Quantities A, B, C &c> by comparing the ho-

mologous 7<?rmj, will be determined.

x
Ex. T. Let the given Fraction le -5

-
7; then,

feigning x
1

-f ax -j- 1 o, the two Roots of the Equation

be la V ^ ^ and -ia + V S b:

Which being denoted by />
and y, we have x p and

x q for the two binomial Fadors whereby x"' -f ax + b

may be refolved, or by whofe Multiplication (x p
X x q) the faid Quant'uy is produced.

Let therefore -- + -- be now affumcd ( =x p
^

x-q

whole Equation to one Denomination &c. we get

A -i- B X xx qA -f pB -f i x x o : Whence A
is found =- , B =-

; and, confer uemlr.~~ '*

p yXAr f 4 p x x q
x*+ ax + b

X X
Ex. 2. Let the Qttanfity prrtefed&t , :

.
J * " J x* + ax~ + fix+ c

Here, if the binomial Favors whereby .r
3
-f ax

1

-{- ^.i-

-f c is produced be reprefcnted by x
/>,

x
q, and

. Ax Bx CJtxy. and there be aliumed -I- -(-
x p

' x q x r

Z3
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; then >

this Cafe, we ihall have Ax x qxx r+Bxx
r r+Cxx

px^x q x*=o; that is, by Redudion,

X x -f-

i

Whence
=o, and Aqr+Bpr+Cpq=Q. Now', from the firft

of thefe Equations, mukiply'd by p-t-q, fubtracl the

fecond, and you will have A*p r+Bxq r p-\-q :

Alfo, from the firft, mukiply'd by />f, fubcracl the third ;

then^x/>j rq -j- Bxpq pr pq :
I.aftly, from the

former of tne two Equations thus arifin?, mukiply'd by

/>, fubtracl: the latter, then Ay^pp^r ;

that is, A*p jxp r p* j and confequen'Iy A =
ii

=^= =- : Whence, by the very fame Argument.
P <l xpr
B =. - -^-

,
and C = -

.

q p xq-r rp x rq
309. After the fame Manner you may proceed in other

Cafes: But there is an Artifice, or Compendium, for

more readily determining the aiiumed Quantities A^B^C
&c. by which a great deal of Trouble is avoided : And
that is, by coniiiiering the Equation in fuch Circum-
ftances of the indeterminate Quantity jf, when it be-

comes moft fimple, or when moft of its Terms vanifh.

Thus, in the preceding Example, becaufe AX x q

X x r-f B x.r pKX r-f-Cx xpxx q x 1 is=o
(in all Circumftances of .r whatever) let xbc taken =p ;

then, all the Terms vani&ing, except the firft and laft,

we
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,

v/c have.f x J -/>*:=o ; and
confequently^/ =

^/0rr.
/> q X

j> r

Msre unfaerfally* let the given Fraction be

. x
nx ...

"
i "I , i n 1 n i. c_

* f ex + fa -r cx * oV.

1

-_ - (where 2 and n may
A- r

/>
X xq X * r X AT J ^f.

reprefent any whole pofitive Numbers whatever, pro-
vidwd the kilter be greater than the former.) Then,

Ax Bx C.': Dx
affuming + + -f ^^ feTr. =

.__fLf_ &c. we fhall have ^/ x
" i

- 1
ix + ax -f

A-_?x .r r X .v^7 &fr. + 5 x * ^X -r r x ^ f Sfr.

4- C X # p x x ^X r s &c. &c. xm =zo: From

whence, by expounding x by p 9 q, r &c. fucceffively,

p
m

we obtain A =
, yc>

, S =

^

^ p , q r . qs &c. r p . r q . r s &c.
'

fcfa. Whence the Fradions themfelves, whereof thefe

Quantities are the Coefficient, or Numerators, will like-

wife be given.
But the Numerators thus found may, fometimes, be

more commodioufly exprefTcd by Help of the given

Coefficients, a, , c, d &e. fo as to involve only one of

the Roots /, y,
r (ffr. in each Fraction. For, fmce

x pxx q*x r tff. is fuppofed, unherfally>
= x*

^. av
""~' I

_i- ^,v

n

"~*-|- ex"
"
3
&c. if both Sides of the

'Z, 4 Equation
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Equation be divided by x
/>,

we {hall have x q x

, . x" -f ax*
l

-f bx'
2 + cx"~* &c.

x r XX i i3V.

Which laft Expreflion, when x is
~

/>,
that is, when

both the Nume;ator and the Denominator become equal

to Nothing, will, manifeftly, be equal to (p q X p r

X
/>

s &V.) the Divifor of A. Therefore, if the

Fluxion of the Numerator be taken and divided by that

cf the Denominator, and p be wrote inftead of x (vid.

Page 155.) we fhail have np"~'
1 + n i x ap"~* -{-

h 2 X lp
n~3 &'c. pq x p r x ps &c. and there-

p
m

fore A
(

p q .p r . p s &

hm

^. .__- -^-- t g_3
. By the,

very fame Reafoning 5 rz

m
? /, _

nr
r J + I . ffr- + 2 . r c.

Hence it appears^ that, if tie Numerator cf tie given
Fratiion be divided by the Fluxion of the Denominator

(nrgler.iing x) and tie [ei'eral Roots p, q^ r &c. (found

by feigning the Denominator o) be, fuccejjivel^ fubfli-
tuicd in tne Quotient^ injhad ofx\ I fay, it is evident,
ihui the Quantities fj rejfuiting,

divided by x
/>, x y,

x r &c. will be the required, binomial^ Fraftisns into

the propojed multinomial One may be
refolvcd.

If fome of the Rco f
s

/>, y, r &c. are impof-
fjble, which is often the CaiV, the Fractions thus

found, where the impoffible Roots are concerned, muft
be
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be united in Pairs, and fo reduced to trinomial Ones, in
order to take away the imaginary Terms.

Thus, let the Fraction propofed be

and Jet two of the Roots, p and q, of the Equation

x*
-j. ax* + bx + c:=o be impoffible : Then, - - +

x p
Bx Cx xx--

!
--

being = -y-
- -

,
we (hall, by u-

x x r *J 4-fl*r-fp*4-r *
q

niting the imaginary Terms, have
**

Cx xx_ .

-I
--

, alfo, = -7-1 ;

-
j where the impof-*

fible Quantities deftroy one another. But, to render

this more obvious, k-t a be taken = o, b rro, and c =
Vjf

I, fo that the given Fraction may become -5
-

j

then the three Roots f/>, y, r) of the Equation, ** I

=0, will here be ---++/ "^, \/ 3^,2 42 4
J

and i ;
whereof the two former are

impoflible. More-
over, by dividing the Numerator (x) by the Fluxion of
the Denominator (3**) (according to the Prefm'pt) we

have i which, by writing p, q, r
fucceffively, in-

3*

{lead of *, becomes , and for the Values of A,
Of 3i O

B, and C, refpeaively. Whence y/+gx T^^_^

x_r * *'_!/ x' + X + I A I

1 jj ut the fame may be other-
3
VI OVI 1> OV -- _._ t - T* + 3* + 3 i*~3

wife,
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wife, inveftigated, in a more general Manner; by z.

fuming ~ H ; and proceeding as
3 A" + X + 1 X 1 X 3

1

in the firft and fecond Examples j whence the very fame
Conclufu.n will be derived.

If the Fra&ion propofed be of this Form, viz.

, the Method of Refo-
~mn + ax

-
+ bz

luttcn will,////, be the fame: Since, by patting xKn
y

the given Expreffion is reduced to

I

X
n

m i

+ ax

It may alfo be proper to obferve, ifjet^ in very

complicated Csfes, the Application of two, or more,
cf the fix foregoing Rules, may become necefiary.

Thus, for Example, if the Fluxion given be

" f n ~*"
ajf.cz

I Xe + fe + gz
A B

into two Binomial Fractions, -v- (according

to.- Art. 308.) we flaall have

~^ -
: Wheres

i\"

1

X b+z" a+cz> X k+z
n

if m be a whole pofitive Number, greater than />,
the

Fluent will be had in finite Terms (by Art. 306. Ex. ^.}

SEC-



SECTION V.

Inveftigation of Fluents of Rational

Fractions, of feveral Dtmenjions, according
to the Forms in Cotes's HARMONIA
MENSURARUM.

311. A S the Subjeft here propofed is a Matter of

f\, confiderable Difficulty, and has exercifed the

Attention of fome of the moft celebrated Mathemati-
cians (who, yet, feem to have condefcended very little

to the Information of their lefs experienced Readers) I

fhall endeavour to fet it in the cleareft Light poffible :

In order to which, it will be requifite to premife the

following Lemmas.

LEMMA I.

If the Sine of the Mean of three equi-different Arcs,

fuppofing Radius Unity, be multiplied by the Double of
the Co-fine of the common Difference,

and from the Pro-

jufl, the Sine of the
hj/'er

Extreme be fubtrafied, the

Remainder will be the Sine of the greater Extreme.

LEMMA II.

312. If G be taken to denote the greater9 and L the

lejjtr, of two unequal Arcs, and their Difference be ex-

prejjed by D ; then will,

Sin. G. x Co-f. D Sin. L. x Rad.-~
Co-f. L y Rad. Co-f. GxCo-f.D-

=-:
-=r-' z o. Cr

iz. D
Sin. G. X Rad. Sin. L X Co-f. D . T

-^TD = Co'f-
**

o The
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The former of thefe tv/o Lemmas maybe met with
in moft Authors upon Trigonometry ; and the latter is

nothing more than a Corollary to the co?nmon Theorems
for finding the Sine and Co-fine of the Sum and Dif-
ference of two given Arcs

; for which Reafons I (hail

not flop here to give their Demonftration.

COROLLARY.

313. If any Arch of the Circle, whofe Radius is

Unity, he denoted by j^, its Sine by 5, and its Co-ftne

by a ; and there be taken A ~ia, B ~ laA i , C
2*5 A, =D=2aCB, E=2aDC, F-
&c. it follows ( from Lemma I.) that,

Sin. 2^ (Sin. J^x 2a $*n -
)

2sa

Sin. 3.^' (Sin. 2$< 2a Sin.

Sin. 4^" (Sin. 3Jx 2Sin.
Sin. 5^ (Sat. 4^ X 2aSin. 3^ )

-
Sin. 6 Sin. 'x 2aSin.

LEMMA IIL

314. To refefae the Trinomial rzr>
2kr"x* -f A-

2
", where

, n is any whde Number, into fimple trinomial Faflors.

Since the firft Term of the given Quantity r
2"

2^"x" -f x
1"

is divifible, only, by the Powers of r,

and the laft, only, by thofe of x -

y and it appears that

r and x are concerned, exactly, alike ; let therefore

r* larx+x
1

(where r and x are, alfo^
alike concerned)

be allumcd for one of the r_c;uired trinomial Fadlors,

whereby r~" -*-2k "x
n

4- x~" may be refolved : And let

Cr 3x- + ^>W 4- H-.x'-\- x* (where r and * are, _/?///,
af-

fefled alike) K affumcd = r ?JrV~}-*' (the Va-
lue of.w, to ren !er the Operation more perfpjcuous^

being firft exprefled by 5.)

Then,
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Then, by Multiplication and Tranfpofition, we {hall

have

O =
Whence
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Whence, Aia, E~iAai, C=2aB/f, D~
-.5, and iC 2aD+ik=o. But, if ^ be taken to

denote the Arch (EF) of a Circle EHK, whofe Radius
EO is Unity, and Co-fine (Of) ; and j be put for

(Yf) the Sine of the fame Arch j then (by Coral, ts

Lem. i.) sA Sin. 2^>, sB = Sin. J, sC = Sin.

Sin. 2$ D 5i. 3.
fcfV. and confequently A =- ,

5 =-==

Sin. 4.$. Sin,

over, becaufe, aC laD+ik o, or

where (as appears from above) D x a

Cafe i. Lem. 2.) we therefore have

k* Whence this Conftruclion.

r Ty/i
Take R to denote

-j the Arch (EM) whofe

Co-fine (ON) is the

given Co-efficient^, and

let 4>. (EF) be taken

to EM as I to n ; then

the Co-fine (Of) of

this laft Arch will be the

true Value of a. But
this is only one of the

Values that a will admit

of: Fer it is v/ell known,

that the Co-fine of any Arch, is a!fo the Co- fine of the

fame Arch increafed by any Number of Times the whole

Periphery (P). Therefore, feeing the Co- fine of n%

(= Co- fine of R} is likewife = Co-fine P+R = Co-f.
~

2p + R = Cof. 3^ + R &c. it follows that ^( whofe

Co-fine is a} will be exprefied by any one of the Arcs,

P+R iP+R tf+R Wf ^ ($)r by Fj EG> EH> EJj



ly refohmg tlem into mortjimpte cms.

&c. fuppofing the whole Periphery to be divided ino u

equal Parts, from the Point F). Hence, if the Co-
fines of thefe feveral Arcs, expreffing all the different

Values of a, be represented by /, c and d^ &c. refpeo

tively, we fhall have r
1

2r#-f *% r
1

icrx+ .v% r
a

% &. for the feveral required Factors, by which
n X

ikr x -\- x may be refolved ;
and confequently

r* llrx -f x* X r
2

icrx -f x* x r
a

idrx -f x 1'

() =
-" L " "

i
z "

r?> E> r
r 2*r j? + A: . Q L. I,

Note, If the Sign of the middle Term -ikr*x
n
be po-

fitive, the Diftance (or Co-line) ON muft be taken on
the contrary Side of the Center : But when k is greater
than Unity, this Method of Solution fails ; finee no Co-
fine can be greater than the Radius.

COROLLARY J.

315. If /= i, the Arch R (whofe Co-fine is k] be-

ing O, the Values of i, c, d, '&c. will be exprefled

o P iP %P
bv the Co-fines of the Arcs , , ,

- &V. re-
J n n n n

fpeciively
: And our general Equation will here become

r
*" _ 2rV -f- x'

n
~r'

L
2t>rx -f x* X r

1
icrx -f **

r* idrx -v x* (n}. From whence, by extracting the

Square-Root, on both Sides, we alfo have r" 03 x* ==

,1

r
* . zbrx -i- A-

1

)
X r" 2crx + X* 1

COROLLARY II.

316. But, if k r= i (or the middle Term be

p
4- 2rV) then the Arch R being r: , the Values cf

i, <:,
dy &c. will, ^r^, be defined by the Cofines of

the
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P
the Arcs -

,

,p
, , &c. and our Equation, by

taking the Root, as above, will become r" + x" =

r
t

^brx X r
2

(n).

SCHOLIUM.

317. From the two preceding Corollaries, the De-
monftration of that remarkable Property of the Circle

given, and applied to finding a vaft Number of Fluents,
in Cotes's Harmonia Menfurarum^ is very eafily, and

naturally, deduced.

For, let the

Periphery of the

whofe Radius is

exprefled by r,

be divided into

as many equal

Parts AB, BB,
/ //

BB, &V. as

there are Units

in the given In-

teger n ; fo that

AB, AB, AB,
&c. may refpe&ively exhibit the Values of the forefaid

P iP 3P
Arcs , , &c. (vid. Carol, i.) Moreover, let

n ' n n

OQ_be the Co- fine of the firft of them ; and, in the

Radius OA (produced if necefTary) let there be taken

OP- x> and let OB, QB, PB, OV. &c . be drawn:

P \
Then, the Cc-fme of the Angle AOB (- J

to

the
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the Radius I, being exprefled by c (yid. Corel. I.) it

will be i : c :: r (OB) : OQ_= cr: Whence PB*
(=

OB' + OP* 2OQ.XOP) =r* + ** 2ax=r* 2crx

By the very fame Argument PB* is =: r* idrx+ *%
fc"r. &c. Therefore, becaufe r" ^ ** rr r

1
.

1
X r

1
2ty*-f A-

1

}
x r

1
2^r^ + A-

1

] ^j, by Carol, f.

it follows that their Equals, AO o> OF" and PA x PB x

PBxPB &ff. muft be equal likewife : ^/^ is the

Part ofthe Theorem above hinted at.

, *

After the fame Manner, if the Arcs AC^ AC, AC,
'" P ^P qPA C be taken refpedlively equal to ,

- - &c.
2 2 ' 2

it will appear (from Coral. 2.) that AO" + PO* is

rrPC xPCxPC () Which is the latter Part of thtfan.e
theorem.

Hence (by the Bye) all the Roots of the Equa-
tion ** = r" are very readily found : For, fince

AO" co PO" =t PA x PB X PB &c. where the fecond

Factor and the laft, the third and the laft but one, &c.

are
refpedively equal to each other, it is evident that

PO" r*<r.x
n

is alfo =
r COAT x r

1
2<rr* -f x

1" X r
1

idrx + x* &c.

Whence, *" ^ r" being Oj it follows that r co * x

r
1

icrx -4- x' &c. is o : From which, by extra&ing
the Roots out of the Equations r en * O, r

1
icrx

-4- :r
l

o, r* 7.drx--x*~ CS'f. we get r, r X

^ -t- VV -
j, rX <: /^- r, rX </ -f /^~ 7,

A a fcfc.
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&c. for the feveral Roots of the Equation x" r ;

whereof the firft, only, is poflible when n is odd} and
the firft and laft when n is even.

By the fame Way of proceeding all the Roots of the

Equation, x" -f r" = O, will alfo be found : For, feeing

r s = r X r*

(PCXPCX PC faff.) where the firft Faftor and the

laft, the fecond and the laft but one, &c. are refpeo

lively equal to each other, it is plain that x" + r" is

likewife r
a

ibrx -j- ** X r* - 2crx + ** &c . and

confcquently x = r X b + Vb* i &c. &c. Where
the Roots are all impofliblej except the laft, when their

Number () is odd.

LEMMA IV.

318. Suppeftng every thing to remain as in the pre-iiii
ceding Lemma, and that , , f, d &c. denote the

D p i t> p i T>

Sines ff the Arcs R, ,
-

,

: &c. (whofen n n

Cc-fines are t, b> c, d
y &c.) then, I fay, the Fraftion

In n

nkr x brx
a

X

-
2cr.v -f- .

For,

. _
A'

1
-f 6V 5

.v
3
-f Dr*x+

"-f Cr*** -f >'V -f y^rA-
7
4- # 8 C^ '*' firefaid Lemma)

5m. 2

and it is alfo proved that A = ---
,

y">
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C rr
' ^

&c> it is evident, therefore, that

+ ^r^+^r^ fcfr .) is =
v

Sin. 2.9 .- X r 7x&c. and confequently
r 2arx+x

. ^ Xr* + Sin- 2$>xr
7x+ Sm. 3 ^ x r

6^x + Sin.

r 5
A?

3
-f- Sin. 5^> X r4^4 + Sin. 4^ x rj^ s

*Tf. In
which Equation, for a and j, let their feveral refpec-

/ / /

live Values by c, d &c. and , c^ d
y &c. be, fuccef-

n

fively, fubftituted ; and let the correfponding Arcs
,

t be reprefented by ^4

72 ?i

then we fhall have

r

i

x r

Which Equations, added all together, give

A a 2
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cp gaI
go a 3

S' 5' S" 5" a"

Co

a a s a a

X

I

But the Sines of the firft Column, being thofe of

an arithmetical Progreffion (whofe common Difference is

p
) by which the whole Periphery is divided into n

(5) equal Parts, their Sum will therefore, it is well

known, be equal to Nothing
-

t or all the negative ones-

equal to all the pofitiv ones.

9 The
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The fame is alfo true with regard to the Sines of th$

fccond Column j
whole Arcs ,

Q.P
&c. (having

- for their common Difference) divide

the Periphery (twice taken) into the fame Number (n)
of equal Parts. But the Sines of the middle Column

(which is the laft above exhibited) will not vaeifh, as

all the reft do : For, nQ being = , n

iP -f , sV. the common Difference will here be

equal to (P) the whole Periphery ; and therefore, every
Arch terminating in the fame Point with the firft, the

Circle will, in this Cafe, remain undivided, and the
/

Sine of each be equal to (k) the Sine of the firft.

Hence, our Equation is reduced to r IO
-2/$r 5# 5

-f-;c
IC X

which

divided by r' 2^rs^lS +*iI&
, and multiplied by rr, gives

/ / /

brx crx drx
*

r
1

2ir.v + of* r
1

2<r* + .r r
a

idrx + x*

S*r*x*
"&'' x

$> R L. ' ...... ~ "" *
-x; "* A-

_ _

otberwife.

319. Since r' -2lr AT -f x is rz r
z

a/r^-f- *
a
x

r* 2<:rA'-r-x
x X r

a
2^r^r-f .v* (n) by Lemma 3. it is

evident that, Log. r
20

2-rV + .v** = Log.

r
1

zbrx + x"
1
-f Log, r

1
icrx -f ** + Log. r

1

And, as this Equation holds univerfaily, let k and
be what they will (which two Quantities may be fyp-

pofed to flow independently of each other) let the

A a 3 Fluxion
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Fluxion of the whole Equation be taken, making k va-

riable (and Arconflant) ; which gives
~

ibrx icrx idrx

r* 2brx+ x~
'

r
z

^crx\-x"
~

r~ idrx+ x
1"

* Art- 6-

(n) *. But, k9 b, c, d> &c . are the Co-fines of the Arcs R,
R R-t-P R+iP

:
...

,
-

,
- &c. (whereof the correfponding

n n n

Sines are k9 i>, /, &c.) therefore, the Fluxion of the

firft of thefc Arcs being denoted by R, the Fluxion of

ij

each of the reft will be exprefled by : And fo (the
n

Fluxion of the Co- fine of an Arch bein? equal to the

Fluxion of the Aich itfelfdrawn into its Sine, applied to

. / . J? / .

t Art. 142. Radius f) it follows that k Rk, b x ,
=

n

T) /

l x c, &c. Which Values being fubflituted in the
n

P

foregoing Equation, and the whole divided by
- >

we have _ ?_ = _._ -f

i i

crx drx ,\
* (

LEMMA V.

3?O. To determine the Series, artfeng from the Divijion

ff Unity by a Trinomial^ x1
2arx -f r* } and to exhibit

the Remainder after any given Number (v) of Terms in

the Quotient.

Let x~
z
+ Jrx~*+ Br*x'~*+Cr3x'~

s+Dr<x'~
6

re-

prefent the required Quotient continued to 5 Terms
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(v, to render the Procefs the more obvious, being firft

expounded by that Number) and let Er*x *
-f Fr

6x 6

be the Remainder. Then, becaufe - t is =:
x 2arx -f r*

+ BSx* -f Cr*x* + Dr+x 6 +

, we IhalJ, by reducing the wholex J

Equation to one Denomination, have

M
I +

1 1
+

I +
Z" ? 5?

}
i:

i
m &

$ I *
1 | i

+ } :
**> % b

1
1

1

o i
I f 1
+ t -f

t t

Whence Aia^E
B, E=2aDC, and F-D.

A a 4 There
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Therefore, if j^ be now put for the Arch whofe
Radius is i and Co-fine a, and there be taken SSin.

^, S= SJn. 2^, S=Sla. 3^, &c. we fhall, alfo, have
/ // /// /;/ T

j, ^ s *- s
r - $ n S S

A (l)
-

y,
B -

-j,
C -

-j, /)_,- j''~
Lem. i.) And confequently ^

2arx -f r'

i // in . //// 6

S

Sin. 6 X Sx 5 5;. X

S X ^* larx
. Whence, umvtr-

Sr3x~ 5 &c. (to v

Sin. v+ i . Q X r x Sin. v& X r x
! ^-

. Which
S X x* 2arx + r

1

laft Equation (though obvious enough from the preceding

one) may be inveftigated in a general Manner (if re-

quired) by afluming x *+ Arx 3+ Brlx + Cr*x

V 2 v vI * \

-f ..... dr x -f er x +

~

V -~J

fr x +gr x _ - and proceed-

*- 2r*+ r*
' * wx+ r

ing as above: By which Means you will find A'=2a,

B=2*J-i, V*. /= 2-rf= ^'^x^. and g

Sin v Q
F^ -^ n(* t^lus may l

Lemma
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Lemma be made out, if any Objection, or Difficulty,
(bould arife about its being general.

COROLLARY.

321. If, in the given Trinomial ** zarx -f- r% we

fuppofe r% inftead of xa
, to be the leading Term

whereby the Quotient is produced ; then, fince r and
* are affe&ed exa&ly alike ; we {hall, by writing r for

*, and x for r, have

4
(v)
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B> x Flux. P
fented by ^pi ("uid. Art. 142.) or by

n x ~~\SF
; and confequently that of OBP. by

rr 2arx + xx'

p : Whence it is evident that the Fluent of
rr 2arx -f xx

-
(contemporaneous with x) is truly ex-.

prefled by x OBP.

XX
Again, fince

'

; may be transformed to
rr 2arx-\-xx J

arx-\-xx arx

rr-2arx+xx + rr-2arx+XX '>
where the Fluent of

r t> T rr 2arx -f xx ^*Art.6. the former Part is r: I
hyp. Log.

: * rr

PB1 -PB
| hyp. Log. prjpj

=. hyp. Log. -rj-~
i and that of the latter

Part = X OBP ; it appears that the Fluent of

xx . , , ,-- PB
expounded

y x OBP. $. E. /.

COROLLARY.

323. Since, PB-PO:: Sin. BOP (s) : Sin. OBP =.

; h follows> if the hyperbolical Lo-
sx

f Vr1
-

, .
,

,.
ganthm of- , be reprefented by M, and

sx
the Arch, whofe Sine is .

" and Radius
V rr~ larx -f xx

Unity,
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Unit;-, by N, that the Fluents of
rr _J^ + ^ a d

N aN
will be exprefied by and M+ re-

rr iarx-\-xx

fpedlively.

P R O B. II.

X X
324. To determine the Fluent of -:-----r ;1 arx - r*

m tfwy ;/>(?/* pojitive Number, and a //}

Ifo/Vy.

Let every thing remain as in Lemma 5. and then, if

the Equation there brought out be multiplied by x"x^

and v at the fame time be expounded by m i, we fhall

J"x n m 2 -
.

/' m ? .,01 m 4-
cet "^ "*"

fa x1

g/a. /fl^.X V"*xx Sin, m i x

5 X ^A: rr

Whofe Fluent will therefore be given by the preceding

Proportion : For, fuppofing the Values of Mznd N to

be as there fpecitied, the Fluent of the laft Term

(Sin, m^* r
m- lxx Sin. m^i .x $ x r^^

V --;^*-- -=

^-
) will, it

S x xx zarx -f- rr

is manifeft *, be exprefled by -=- into Sin. m^x r"* X * Art. 3*3.

r. . . /x* waM + -z tin. mi X ^.X r X TO- =o ro o

_
-r- into Sin. mQxM + Co-f. m^ N (by Lem. 2.
a
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Cafe i.)To which adding the Fluent pf the preceding Series,

I - m I

"

m 2
/' -

there refuits -
x . . ,

Srx Sr~x J
,

rn-l

^-r- X A. ///^.x -Af-j- Cfl-y. w^ x AT. ^. E. /.

*>

COROLLARY.

WT I .

325. Hence, the Fluent of ***+'"*'" x

xx 2arx + rr

be deduced : For, by writing mi, inilead of w, the

Fluent of

i *%X.M+Ca-f. mi X J^X^V; Which Flu-
OS

ent being multiplied by rs and that of
*

xx 2arx -if-rr

(given above) by a, we fliall, when the homologous
1 mi

Terms are united, have -~- x aS x
*

'. aS S x

m
"

a i VH^^~\ ffl* "!^^
// ' *" 3tf ^ f

r
Jl S 5x ( i) +^5- into ~
TO 2 > 3 6

OT j X .x Cc-/ w X a

JV, for the true Fluent of the Quan-

tity propounded.
/

P ^ o

But (ly Cafe I. I. 2.) ^-
(
=

gfa1 2g_X
<

"-^.
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a i' / . ?5 xa . a x 7</. 1

-y- ^ -

j =

fcV. And, by Cafe 2. of the fame Ltmmay

Co-f.m \x9Co-' c . ^ ,. r ,-- Sw. iW* Whence,
o

by fiibftkuting thefe Values, our Fluent is reduced to
m i m

Co-f. ,x
--

Co-f. 2^,x -- Co-f.m i m 2 J

? 1" 4

Co-f. ^9 x - C~iJ r
*

m 4.

^, x M Sin. M^ X AT.

P R O B. III.

326. To determine the Fluent of -$

the Re/inftIons fpeclfed In the preceding Problem.

If the Equation in Art. 321. be multiply'd by x~***
and v at the fame time be expounded by mt we

{hall have
r
1

iarx + ^r
1

-f Sr-V '* +^r"

r""
1

Sin. CT-f i X 4> .X rx Sin, m^ X xx

5
x ~

r
1

larx + x*

W 1

Where, the Fluent of the laft Term being ~ X

S into Sin. rnQ. x M 4-
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Sin. w-f i X^ Sin. m

tin. m^ X M+ Co J, m^ X N (by Cafe 3. Lem. 2.)

it follows that the Fluent of the whole Expreflion, or

the Quantity fought, will be truly exprefled by
/~Z *~

i m

*
+ fcfr. or its Equal

^H^ m 2.r3

X m. X A"
.

Sr ^

P R O B IV.

327. To/*/ the Fluent f ~
n > m and n

any whole pofit'ive
Numbers, whereof the former does

not exceed the latter.

L-t bed, &c. denote the Co-fines of the Arc*

3x360 sxrto" ^ (Radius being Unity)~~~
n n

Then (by
Carol. 2. Lor. 3.) we {hall have r + -

"rr 2Ar*.-H^f X rr 2crx+ xx\* X rr

. Whence

xx -f
" ^' ^-

.

and, confequently, by taking the Fluxion, on

};x
r'~~ I

x xtlrx xxcrx
Sides> *

~
xx2brx + rr

+ xx 2crx+ rr

XX
,

"*
*

(n)', which lad Equation, multiply'd by
XX 2&rx+rr

xxlrx XYcrv
xxlbrx + rr xx2.crx + >
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XX dfx
-\ (n). Let each Side hereof be nowXX idrx -f rr

v

fubtra&ed from n (or, which comes to the fame thing,

^ct
n , T be ^ken from , and each of the (n)

Terms on the other Side, from Unity) then w
nr brx+ rr

ft all have xxlbrx + rr
"

xx 2Crx+ rr

() - wnich multiply'd by fl

I

gives
-

m .

cx x

r" + #
IB 1 -

xx 2crx

But now, to determine the Fluent hereof, let the

fi 80 3x180" 5Xi8o9

feveral Arcs I
-

,
-

,
-

&c.) above
\ n n n

fpecified,
be denoted by ^ ,, ., ^, &fr. refpec-

/ *

lively ; alfo let 2V, A7
,
A7

, 6fc. exprefs the Meafures of

, r c . x*Sin. ^
the Angles whole bines are -

V rr ibrx -f xx*

i a

x x Sin. 9 x X Sin. 9 '

c. and M, Mt

V xx 2Crx+ rr -Jxx 2drx -t rr

, Gft. the hyperbolic Logarithms of
r

;/** 2<.TAC-J-rr V/A-A: idrx+ rr ,.-
>

---- err. Then (bvr r

Carol to Prob. 2.) the Fluent of the firft Term,

^exP undinS a b7 *) comes out
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X -
( + r"

1" 1
into

/. m^ x ivi. .

.n the fame Manner, by writing c for ay Q. ôr ->

Mj and N for Ar
) the Fluent of the fecond Term,

-^-^ ^- *, is found = C
-f. ^ x -

xx 2crx+ rr m I

. 01 a
' rx

Co-f. 19 x- We.^ m 2

Therefore the Fluent of the whole Expreffion, by

collecting the homologous Terms, appears to be

O n o O^ s> <s <a -a

5 ^ ^ ^ ^
ho K> K> N

&*&*&?*v-
X

! 3

CC

v"
X



oy refolding them into more Jimpk ones. 369

X
Sin.

&'.

x N Co-f. mQ X M

X N Co-f.

X AT C0-/.

x 2V

k xM

But the Co-fines of the firft Column being thofe of an

/i 80 3x180 5x180
arithmetical Proa-reffion ,

-^ .

\ n ' n n

260
csVJ whofe common Difference is -

, whereby the
n '

whole Periphery is divided into n equal Parts (v'td. Art.

317.) they will therefore deftroy one another ; fince it is

well known that, if the Periphery of any Circle be di-

vided into any Number (n) of equal Parts, the negative
Sines and Co-fines will be equal to the pofitive ones j

which is felf-evident when their Number is even.

Hence the Co-fines in the fecond and third Columns,
I3c. will alfo deftroy one another (vid. Art. 318.) But

thofe of the laft Column of all, as well as the Sines, having

unequal Multiplicators, muft remain as above, and

that Column, alone, (drawn into r
m~ l

) will be the
" *

X xm T
JC

. Whence, putting m$^true Fluent of

(= mx.-J =. R, and dividing by flr

hall (becaufe 4=

we

B b
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= Fluent of

COROLLARY.

328. Since the firft and the laft, the fecond and

the laft but one, &c. of the foregoing Quantities
x* 2brx -f rr, xx 2crx + rr, xx 2drx 4 rr

&c. are refpeclively equal to each other (vid. Art.

317.) the correfponding Fluents, found above, will

likewife be equal : And therefore the Fluent of

n ,r -f
will, alfo, be exprefled by

Sin. R x 2NCo-f. R x

Sin. x 7.N Co-f.
n

X 2M
Sin. $R x 2NCo-f. $R x o.M

&c.

The Number of Lines to be thus taken being

rr i
TZ, when n is even ; but, otherwife, r=

; in

which laft Cafe, the Logarithm, &c. in the laft Line,
muft be taken only once, inftead of twice j being that

. e
r + r

of

PR OB,
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P R O B. V.

329. To find the Fluent of 1
*

; m and n
r"--xn

in the preceding Problem.

If by r, d, l$c. be taken to denote the Co-fines of

theArcs
. to Terms, it willn '

n ' n

appear (from Carol, i. to Lem. 3.) that r" *" is =
rr 2brx+xx\ X rr

(n}. From whence, by following the Method of the

laft Problem, we alfo have

n i m i .

nr X x x

7 fW . . 7W^~J IW , W ' " I .

fl* * -f- TAT x cx x + rx x

xx ibrx -\- rr xx 2crx-^- rr

Which Fluxion having exactly the fame Form with that

in the preceding Problem, its Fluent will alfo be ex-

preflcd in the very fame Manner ; that is, by

rSin. m$i x N Co-f. mQ x M
Sin. mQ x N" Co-f. m<^ X til

Sin. mQ X N Cc-f. m'% x til

(6-ff. to n Lines.)

muft here for
o 360

180 .3 x 180
. (inftead of- ,

---
,

Bb 2
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36o 360
2m X ^

,

Therefore, fmce the multiple Arcs

are, in this Cafe, equal to o, m X
'* t

360
7w x T & (whereof the Sine of the firft is = o,n

and its Co-fine = Unity) we (hall, by putting RmX.

, and dividing the forefaid Fluent by nr"~ I

) have
n

r* - M
Sin. RxNCo-f. RxM m T ..

=Flu- * *T fu-

-^
X ^ Sm.iRxNCo-f.iRxM

("
cnt of
~

Sin.^R x NCo-f.^R xM
(&c. to n Lines.)

COROLLARY.

330. Since, in the Fluent here given, the fecond

Line and the laft, the third and the laft but one, &c.

are refpe&ively equal (vid. Art. 317.) the fame may alfo

be exhibited, thus ;

*
. . . M

X Sin. Co-f. R x T.M

Sin. 2R x zN Co-f. 2R x 2M
ff J

(&c. to Lines.)
2

SCHOLIUM.

331. If the Semi-Periphery ABCH of the Circle

whofe Diameter AH is 2r, be divided into as many
equal
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equal Parts AB, BC,

CB, B C fafr. as there

are Units in (fo that

373

1 80 = 2.

*3c. vld. Art. 317.
and 327.) and in the Radius OA

(produced, if'necefiary) there be taken OPzr*, and

PB, OB &c. be drawn, it will appear (from the faid

Articles, and from Prep, i.) that the Quantities

&c. in the former

of the two preceding Problems, will here be expounded

by PB, PB &c. refpeclively : From whence it is al-
/

fo plain, that the Meafures Ar
, N &c. of the Angles

whofe Sines are
x Sin. x x Sin.

fak.
* will here be expounded by OBP, OBP, far* - * Art. _

m I . andXX
Therefore the Fluent of , given in the Co-

n , n
r + x

rollary to the forefaid Proposition, may be thus exhibited,

Shi. R x 2 (OBP) Co-f. R*2(OA:PB)

Sin^R x 2 (OBP) Co-f. Rx2 (OA: PB)

y^. ~v.

Where the Arch R is
( tn X -

-J
= m x //, and

where (OA:PB) is put (after the Manner of Cotes)
pn

to exprefs the hyperbolical Logarithm of
^-7.

It is

alfo to be obferved, that, when the laft of the Points B,
Bb 3
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i n

B, B &c. faflls upqn H (which will always happen
when is an odd Number) the Angle, in the laft Line
of the Fluent, vrill vanifh, and the

correfponding
PH\

Logarithm (which is that of -~ muft then be

taken, inftead of twice, only once.

In the very fame Manner it will appear, that, the
/ //

Arcs ,, ^ &V. in the fecond Cafe, where the Fluent

mi .

X X
pf is fought, will be, refpe&ively, expounded

r x"

i i a

by AC, AC &c. alfo the correfponding Angles N, N
&c. by OCP, OCP &c. and the Fluent itfelf by

f * (OA : PC)

X
n

Sin. R*2 (OCP) Co-f. R x 2 (OA : PC)

Sw.2R x 2 (OCP) Co-f.2R x 2 (Ovf : PCj

Where the Arch
(
= m x ) = m x y#7 ; and

where, as well as in the preceding Cafe, all the Arcs,

Sines and Co-fines are fuppofed to have Unity for their

Radius,
v. T . ; i .XX X x,

o?2. From the Fluents of and ;

JJ n . n n n
r -f- x r x

vn+tn I
..

vn+m i .

thus given, tbofe of -^
> 7~"~^~>

r + x r + x

and , where v denotes any
n ** *" ji-u-i-i *^

whole Number, may be very eafily deduced j either from

Art. 283. and 291. or (more readily) by dividing the

Numerator by the Denominators and continuing the

Quo-
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Quotient to as many Terms as there are Units in v*. By Art. 150.
which means, ifp be put =: vn + my q =. vn m, and

I . mi .

the Fluents of-- and - be denoted by V
n n n n

r +* r x

and
^"refpeftively, the Fluents, in the four Cafes fpe-

dried above, will be exprefTed by
p*n n t an z
*__ J_ ,

r *
(v] ,

p u p 2n p yi~
f " ? x

lr> 1
, * ,

V
f____5 __^5 (<y) + "77-

2 " "
' ""

\
, <vn -rtf

V) -f r iV)

pn pin p 3

x-9 x 9 ~1 W_
and, + = JT + =-? ^ v) + -'

?r ^ . r 2 ^ . r
J ^

refpedlively.

Moreover, from the fame Fluents, tbofe of 't

e+faq

e fz?

will likewife become known :

For (having transformed the Fluxions here pro-

_y I

n

pofed to x r-, ^'fj let ^j- be put = *%
fi*

1 ^ ^.
*

i

"

_ J-l" ; then will ^ = -" X *", and
t I /I

W I .

IT *
confequently X =y X

B b 4 Whence
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m m

T?
~

I n ^~\~Z m
Whence z* * = T x

"7
"

x **" * and i -f-
T y I

=iz" ; and therefore

e\ n if 1 _ _ I

y I
I i*

/ _. x f.
A * 1

Whofe Fluent is given, by Pr<j. 4. or 5. But, r being

here = I, the general Multiplicator , there gi-

ven, will be barely = ~
: Which, drawn into X

m "*

s r>
~*

~
, gives

X
I

, for the general Multiplicator

in this Cafe.

One thing more, though well known to Mathemati-

cians, it may be proper here to take notice of; and that

relates to the Sines and Co-fines of the fore-men tion'd

Arcs, R, 2/2, 3#, &c. &c. (multiplying the feveral

Angles and Ratios) fome of which Arcs do frequently
exceed the whok Periphery : When this happens to be

the Cafe, the Periphery, or 360, muft be fubtra&ed

as often as poflible, and the Sine and Co-fine of the

Remainder be taken. If the Remainder be greater
than 1 80, the Sine, falling in the lower Semi-Circle,
\vill be negative; if, between 90 and 270, the Co-:

fine, falling beyond the Center, will be negative.

P R O B. VI.

333. To find the Fluent of
r

n and m denote any whole pofitive Numbers, and where

the given
'

ExpreJ/ion cannot be refolved into two Bino-

mials (k being lejs than Unity. Art, 308. and 310.)
Let
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Let R be the Arch whofe Co-fine is k and Radius

Unity, and let k be the Sine of the fame Arch ; more-
R R+i6o + 2 x 760

over, let the Arcs
, ,

-I *

. be denoted by ,

fcfc. and let b, f, ^ &Y. and , f, </ sfV. exprefs the
Sines, and the Co-fines of the fame Arcs

refpe&ively.
/ /

T-U .,,
nkr"x

n
brxThen will -- = ,
- .

crx drx
~t
-

; H- ~i
--

-j ; i *3c> (n) by Lemma A.. )r* -r 2crx 4- ** ' r 2drx+ x

From whence, multiplying the whole Equation by
xm
~ I

x xnJrm
~~'l

x i

/

'- we have ., = / -i into
,n r 2AT x -TX Mr

*
~
r *

*"

bxmx
Now, the Fluent of the firft Term hereof .

*

(if
M be put for the hyp. Log. of

**"" 2brx+

and N for the Arch whofe Radius is Unity, and Sine

~r--^=y=^' ) will appear (from Prop. 2.) to be =
yr *brx + x1/

m 2 _

Sin. 2^ X - + Sin. 3.^ X
Af*

" " ~
2t

x S/. w^x yW + 6V_//.

From
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Erom whence, if the Arcs whofe Sines are

x X Sin. 9 xX Sin.
-"

; ;> ;/ ,

2<r* -f **' VV =; &c, be repre-

/ //

fented by M, M &c. and the Logarithms whofe Num-
A/r' 2crx+ xi Vr1

idrx + x* ,,
bers are , &c. by

r r

N, N &c. refpedlively, the Fluent of the whole Ex-

preffion, omitting the general Multiplicator

will be

Sin.

i \
l

r-V

i^i^ysi,
Sin.

fSin.

Sin.

& V

jij**
., y<:. to w i Terms)'

3

Sin. m^X M+ Co-f. m^X. N
II II II I!

,* M+ Co-f. m^X N
a/

Sin. ^X M + Co-f.

But, the Sines of the firft Column being thofe of an

arithmetical Progreflion (whofe common Differecce is

5 360
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360 \-
J
which arifes by dividing the whole Periphery into

n equal Parts, their Sum will, therefore, be equal to

Nothing.
Moreover, the Sines of the fecond Column, having

2 X O^C- for the common Difference of their refpeSive

Arcs do, alfo, divide the whole Periphery (twice taken)
into n equal Parts, and therefore deltroy each other.

The fame is likewife true, with regard to the Sines
of every other Column (except the laft of all) when
m i is lefs than n. But, if m be greater than , the

Arcs, in the Column, whofe Place from the firlt, in->

clufive, is denoted by H, being exprefled by j^, j^,

n&c.(or ^,# + 360, + 2x360 &V.) whereof
the common Difference is the whole Periphery ; the

Sines of that Column do not deftroy one another, but
each is equal to that of the nrft Arc R (Vid. Art. 314,
and 318.) and confequcntly their Sum equal to?iXtin.R.

In like Manner, if m be greater than 2, the Series,

continued to m I Terms, will take in the Column,
/ //

where the Arcs are inQ, 277-*L 2^ &c> (r 2.R 9

2# + 2x360, 2/2 + 4x300 &c.) whereof the Sine

of each is, alfo, equal to the .oine of the firft (2^) and

therefore their Sum rr n x Sin. 1 R.

Thus, alfo, it will appear that the Sines of the Column
whofe Diftance from the firft, inclufive, is 3 (when m
is greater than 3^) will be each equal to Sin, 3 R ; C5V.

&e.
Therefore, feeing all the Columns do actually vanifh,

except thof; above fpecined ; whofe Places from the

Beginning are deno'.ed by , 2, yi &c. and whofe

correfponcing Terms, or Multiplicators are, therefore,
n

l^m
n

^Zr.J^rn
a

r

reprefented by m_n

csV. it is evident that the whole Expreflion will be re-

duced to
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Sin. R x- + Sin. 2 /c

I Pl- T>
-f Sin. ?R x

n m 2*
5 i min

nr x

rSin. w^x M+ Co-f.m^XN

I

Sin. mQxM+Co.f.m^xN
into X &'

Sin.

i i

IXN
n n

ni in

Which, multiply'd by ,
the forefaid, general,

' i

nkr

m n

Multiplicator, gives Sin. R X
;
+ Sin. zR X

m n.k
v m 2 an m :

r x r x *

~ + Sin. 3 -R x
OT 2W . k

rSin. mSi* M+Co-f.
i i

I Sin. m& XM+ Co-f.
r"

" >
4- x

<(
&. m$xM+Co-f.

$*N
n n

QxN
ni HI.

Sin.

for the true Fluent of ^ ,
x

: Where

the former Part of the Expreffion muft be continued to

as many Terms as there are Units in (the Re-
n

mainder, if any, being neglected.) ^. E. I.

COROLLARY
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COROLLARY.

334. If the Quotient arifmg from the Divifion of m
by n (when the former exceeds) be denoted by i>, and
the Remainder by t ; or, which is the fame, if vn -M =

m, it is evident the Arcs m^ m^ m^ &c. which

360
are refpeclively equal to m^ -f m X --

, m^_ -f 2m x
n

, &c. (by Conflruaion) will

260
alfo be equal to m<^+ v x 360 + / X --
360 + 2t x - &c. whereof the Sines and Co-fines

(omitting v X 360, 2^X 360 fcfr. the Multiples of the

whole Periphery) are the fame with thofe of m^.-\-t x

360 360
> ^.Hh 2/ x - "* refpedtively.w

Therefore, if the Arcs of the Progreffion, whereof

the firft Term is 01^,, and the common Difference / x

3^., be reprefented by Tt

cfy r &c. refpedively ; it

n

follows that the Fluent of (
or

2 _ n n 2,n %
r TJar-M +*

X Jf -- i-
I will, alfot be truly exprefled by2 ,

n n
.

21 / '' i l *
r ikr x + x /

* "t in

Sin. R X - -
-f Sin. iR X -

,
-f Sin..^R X

m n . k m 2n.k



382 Of the Fluents of Rational Prati'ions*

rs;n.r x M+CO-/.TXN

\ Sin. TxM + Co-f. fxN
// _// ft tf

Sin. T x M+ Co-f. 1' x JV

/// j'//

5m. r x A/

In the very fame Manner the Fluent of

(where the Sign of the fecond Terrtl
n n in

TS pofitive) will be exhibited ; if R be taken to denote

the Arch whofe Co fine is k\ which will, in this

Cafe, be greater than a Quadrant.

PROPOSITION VII.

335. To find the Fluent of

M 1 .

X
n n

2kr X + X
: under

zn *

the Reftriflions
mentioned in the lajl Problem.

Let every thing remain as before : Then we {hall

nm I. I I _ .

have -^ zn
= "71=1 into ^ x

,

f
n) Whereof the Fluent (by Prob. 3.)

r* 2crx -f *
a

appears to be ~ mto

'Sin. Q
'
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Sin.

5m.

7=
; ()

#z 7 . r*

. w^xM + Co-f.mQxN

Sin. wixM + Co-f, m>j(N

Which, by Reafoning as above, will be reduced to

m 2 m
______ x ________
Sin. R X -

Sin. zR X '

:;

OT n . kr- y3 / \
5/. 3 K X

(to- Termsj
z 3 . kr

^
5/. rxM+ Co-f. Tx AT

SCHOLIUM.
336. If, from the

Center O, of the

Circle ABCD, whofe

Radius OA, or OV,
is r, there be taken

OL equal to k and

OP x ; and if the

Arch AB be to the

Arch AK, whofe

Co-fine is + J, as

I to n > and each

of

_K
B
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of the Arcs BC, CD, DE tic. be taken equal to

^-^ tic. tic. Then the Angles R> ^,, ^ &V. fpe-

cified (in the two preceding Problems) being here ex-

pounded bv AK, AB, AC &c. refpe&iveJy, we have

PB ~ Vr
*

2^rx+^% PC ~ r r~ icrx -\- x* tic*

(Vid. Art. 317. and 323.) Whence, alfo, the Angles

f
'

/< X X 5"
"*

AT, N, $ &c. whofe Sines are

_ c. will here be
yr~ idrx -f *

equal to B, C, D tic. Therefore the Fluents of

and

given) will, alfo, be truly defined by
Sin. iR. r

'I

x
w~"Ztt Sin.

r Sin. R m *jn
"~

~*~ bin,

(there

(to Terms
J

: PB) +Co-f. rx

S/n.T'x (OC-.PC] +Co-f.T x

5m. f X ^O/) : PZ>; + Co-f. f X

Sin/f x (OE'.PE) +Co-f"fx(E)

Sin."fx (OF-.PF) +Co-f. f (-F;

And
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And by mn.r"

. r />

-x^

refpedively.

S;n.Tx(OC:PC) + Co-f.Tx(C)

.E

Where the Arc AK (or R} will be greater than a

Quadrant when the Sign of k is pofitive ; but lefs, when
' //

negative ; and where the Arcs 2~, 7", T &c. denote an
arithmetical Progreflion, whofe firft Term (T) is equal
to mxAB) and whereof the common Difference is

360
equal to (or EC) multiplied by w, when m is lefs

than j butotherwife by the Remainder, of m divided

by n.

C c 337.
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337. Hence the FJuent of '-
~, where f

e -f- fv + gz
*

is any Number, either whole or broken, may be very

eafily deduced : For, having transformed the Denomi-

nator to g X -
qr
& + 2

2
f, put = r

a% < -
S Z S g

2*r", and z? := x" j and then it will become g X
,

? ?

4: 2*rV+ A:
2"

: Moreover, s "

being =
,

tn _
1

~

w
.
w

f f I .

l x y and ^j: ?xz
n + /// X #

-I
*> the Numerator will be reduced to

- X jr"**-'
1

* : And fo, we have -^-

L x ;
~
n

In which A- = z
"

, r =~ X
r2" + 2*rV + a;""

i

Tl
2

", and *(= pj =
-^y=-

But, it may be

obferved, that the Fluent hereof is, only, given when

if
Art. 3j3. *_

^
or jts Equal k) is lefs than Unity *. Therefore,

V eg

jf '/ be greater than V fg \
or if the Values of e and g

are unlike, with regard to pofitive and negative, fo that

v 7r is impoflible, the above Solution fails. But, here,

the given Trinomial may be refolved into two Bino-

mials (by Art. 310.) and, from thence, the Fluent

may be found at two Operations (by Prab. 4. and $.)

For,
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For, by feigning e+ fy + gy*= y in order to fuch a

Refolution, we get
j * ^ and__

~ ?-^^ 4/f
~~

eg
for the Roots of that Equation,

o

or the two firft Terms of the required Binomials :

Which therefore are always poflible when ^f* eg is

pofitive, or when the foregoing Solution fails.

By denoting the faid Roots by H and K, the Trino-

mial e +fz?+gzit is refolved into^ x H z* x K z?>

ry e~f

from whence-- is reduced to

whofe

Fluent is given by y/r/. 332.

338. By proceeding the fame Way the Fluent of

-
rr: may likewife be found : For.

+ gjl + kz3*

fmce one, at leaft, of the three Roots of the Equation
e

-\- fy -f gy*+ hy
3 = o, muft be poflible, the propofed

Fluxion, if it cannot be refolved into three Binomials,

may, however, be reduced to one Binomial and one

Trinomial ; and fo, be brought under the foregoing
Forms : But this being a Speculation too much out of

the Way of common Ufe to be farther purfued, I fhall

here conclude this Section, with obfcrvirg, that, when ,

in the original Trinomial, above fpeciried, is neither

lefs, nor greater than Unity, the Fluent cannot then be

had directly, from either of the preceding Methods ; but

muft be found by Comparifon from the Fluent of

n-^m I .

---. Fid. Art. 289.
'"+*"

C c 2 SEC-
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SECTION VI.

The Manner of invejiigating Fluents, when

Quantities, and their Logarithms ; Arcs
and their Sines, &c. are involved together :

With other Cafes ofthe like Nature.

P R O B. I.

339- CUP POSING Q and n to denote given
Quantities ; it is propofed to find the Fluent of

Let $* x fa* + x
-

+ Cx*~ *
fcfr. be afTumed

for the Fluent required : Then the Fluxion thereof,

which is

x x hyp. Log. g.* x Ax* -f

muft confequently be rr x"xf : And therefore, by
putting m for the hyp. Log. of ^, we have

. 7

&V. $x -f nAx-~ +i. * + 2.C

Whence, comparing the Coefficients of the homologous
I nA n

Terms, we get A =
, B =-- = --

; , C =
z mm

n 1.5 W.K i

V. and confequently r x

Series,
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Series, it is plain, will always terminate when n is a
whole pofitire Number. j^. E. 7.

340. In the preceding Problem the Coefficients At

5, C, &c. of the -affumed Series were taken, in the

common Way, as conftant Quantities ; which, becauf*

of the general Multiplicator Qx, was fufficient.

But, in other Cafes, where a proper Multiplicator,
to exprefs the mechanical., or logarithmic, &c. Part of

the required Fluent, cannot readily be known, it will be

convenient to afiume a Series for the Whole (independent
of any general Multiplicator) wherein the Quantities

A) B, C} D, &c. muft be considered as variable.

P R O B. II.

341. 1o find the Fluent of z
m
x*~

t
x ; z being the

Hyperbolic-Logarithm of x ; and m and n any givm
Numbers.

Let there be aflumed Azn + Bzm
~

l + Cz*~z +
Dzm^ fcfc. = the Fluent of z

m
x
n- J

x : Then, in

Fluxions, we fhall have

-f B

ill
I

*:

But i = whence, by ordering the Equation, there

arifes

A 1 B 1 _j+ c 1 M,e*.
>xz

w ^>x 2:

CT"

Mi.g*>
z
_

x*"""
1

* J x J A1 J

Now, by making the Coefficients of the like Powers

of z, equal to Nothing, we have J=x"~~
I

xi
A

- ' mj
**\ - M**""':* B = - - ^1-

n ' ~~
* x ' n *

n**
'

Cc 3
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m i . Bx m . m i . x_
n I .

C. jjl 4 , ux nt . ,it * Jf X
{

~
/ 2. C. =

X

m.tn i . x" .

. and confequently the Fluent fought

ft

x
n

. m mz m.m r.z
into z h 1"

n * n

m . m i . m 2 . z* * m . m I . m 2 nt 3 . z
m~~

&c. Which, when m is a whole pofitive Number*
will terminate in m+i Terms. j^ ;

E. 7*

P R O B. III.

342. To find the Fluent of z*y ;
z being the Arch of a

given Circle^ and y the Sine correfponding.

Let there be afTumed Az
n
+Bzn~ l + Cz~* +

Dz"~~3 = Fluent of z'jj then, by taking the Fluxion,
we fhall have

/Az
> = o

z
H

y+ nAzr!~ I
z-i- n i .

Whence, putting A y = o, B + nAz = o, C
>7 i . JBirro, /> + 2 .Cx=o, &c. we get^ j.

wyi, C = n I . Bz &c.

But, if a and * be taken to denote the Radius and

Co-fme of the Arch z, it will appear, from Art. 142.

that^z ax and xz = ay : Therefore B = nax,

and g = nax; alfo C (n i . Bx) =
n.n i -nxz =. n . n I.*j, and Crr n.ni.a^y-

likewife D (= w 2 . Cz) n . n i . n 2 . tfyz

n . n i . n 2-.a
3x t and >:= n .n i . n 2-a

3x

Vc.
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&c. &c. and confequently v/z" -f Bz""
1 + Cz"~

z &f.

= yz* -f naxz""~
l n.n

2 . tf
3
A-z"~3 __ .

4 2
I . a yz n . n j .

^ /

In the very fame Manner the Fluent of z*w, or

z* X x (w being the Verfed-Sine of the Arch z )

will be found =: xz"+ nyaz
n~*

-f . I . J

tf. n i. ?z 2 ..

-f &c.

5
. l.n2,

Cc4 PROS.
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P R O B. IV.

343. The Quantities, x, y and z being the fame as in the

preceding Problem ; to find the Fluent ofz"x
r

f'j.

By afluming Az* -}- Bz"~
l

+ Cz"~
2
-f Dz"~ 3 &c.

and proceeding as above, we have A xr

y
m
y, B =

jiAz> C = n i . Bz, D 2 . Cz &c. or

(becaufe = B = - ?, C = -
-

D = " 2 ' aCJ &f. Therefore, if the Fluent
x

of x
r

fj (found from Art.- 142. and 291.) be denoted

Qy Ry c
by \ that of by Ri that of -, by o j that of

.* *

~, by T &c. it follows that the Fluent of z"x
r

y
m
j

x

will be truly reprefented by Qz" naR*"
1" 1 + n . n i .

a*5a
rt~~a n . n i . n 2 . a32V*~~3 tffr.

COROLLARY.

344. Since y '(Vid. Art. 142.) it fol-

lows that z*'fj is cV '
l

y*~*x
~ ^

:

Therefore the Fluents of thefe two laft Expreflions are,

alfo,
exhibited in the foregoing Scries.

345. As the Values of J^, R, 5, fcrV. in the preceding

Articles, are too complex to be purfued in a general

Manner, it may not be amifs to illuftrate the Method
of proceeding by an Example or two.

7 Let
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zy*i>

Let, then, the Fluxion propofed be - -
: Where n

y*y
being =i, m=2, and r = i, we have j^

** =

i (becaufe </a
l f -

*.) Whence .=

= ij*+ i*z*,and therefore (= Art..79.

?= i>j+ iz* (becaufe =*
, x

) and confequently R = * / + x 2*j anj fo>

^~>'^ x z . a x
^- gz

or
tfg

a

~2jryz+ ay
*

.xz-ftfX ,or ---
lsz 4 4

the true Fluent of ~ (= *y* = ~^) fArt. 344.

A^ain, let the Fluent of p* X z+^J
1

(exprefling
the Content of the Solid generated by the Revolution
of the Cycloid) be required.

Here, the given Expreflion, in fimple TermS, will

become pz*x ipzyx py*x : Whereof the Fluent
of the firftTerm />zV, will be had, by making n 2,
m i =:o, and r + i =. o (Vid. Form. 2. in Corol.}

1'y

Where, we therefore, have ^ = ~ = *
; whence

^ x ; alfo ~ = J* and * = ~ y J

likewifeS (--^) = - = *, 5 = x ; and

confequently the Fluent of *** ($z* naRz
n~~l

4- . n i . a
1Sz"~ &c.) =: **

To which, adding the Fluent f -: 2U 1 of the

fecond
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fecond Term izyx (found in the preceding Exam-

ple) and alfo that of y*x (or a*x + ***, found

the common Way) we get, in the Whole, a x x a1

-f zay yx x x -f I ay* -f a*x -f ^ *
3

; which, multi-

ply'd by p t
and corrected, gives, p into i a x x z

2

+ 2ayyx X z -{- ? ay* + a*x -f j*
3

7+, for the

true Fluent that was to be determined.

P R O B. V.

346. Suppofmg H to denote the Fluent of

zvn
~ l

i ; to find the whole Fluent of Hx abz"T X

a*""
1

*;, (when a bz" becomes equal to Nothing.)

By refolving k+ lz"\ Xz*"*"
1

* into fimple Terms,

and taking the Fluent, the ordinary Way, we get H
rlz

,

r . r-l . /
a

z^ Which
rvn '

x

Value being fubftituted above, and p wrote inftead of

m ir

q + v, we {hall have H X a bz"} Xzf K= x

; n 2"

/ i. . r r/z r.r j./~

2 . V+l.k

\ +,n-^~i

Let, now, the Fluent ofa bz\ X x (in the

propofed Circumftance) be denoted by A^ and put t=

p + m+i ; then it follows, from Art. 286. (by writing

~
for r, , for/, ^.) that L * A into +

v-f I . * a



involving the Fluents ofother given Fluxions . 395

P-T+1 . r.7=!
~~~~~^=~~~~~~"=^:^^
f.f+I -2.^+2

P . p+ i . p+ 2 . r . r i . r 2 al\
3= =

T
== '

x r& + fcfo will be
/ . t+i .t+ 2. 2.3 -y+ 3

the true Value of the Fluent. Q /.

JVfl/^, p and z+ i muft here be pofitive Quantities *
} Art.agfi.

and it is alfo requifite that
-j

(hould be greater than

: otherwife the Fluent will fail.
a

t

Ex. i. Let H \y~\ X j; and let the whole
j_

/"// of Hx i j*)

a

j, ^ demanded.

Then, -f being = j, / i, r:^, w = 2, r r=
4 * =^ j alfo a = i, ^ = i,m= 4, yr=i ;

=f, and yf(=the_
Fluent of i /)

a

>>J i ; we {hall, by fub-

ftituting thefe feveral Values above, get i -J
---

f.

3-3

J~S
+

Tl
+ ^ + iT

L
7I^- -Fluent of //x

(or ///; when ^=i. Which Fluent

//^
, it follows that = ~ +

Wl!ere ^ is * of the Pe-

//^
being alfo expreffed by , it follows that = ~

9 w i

liphery of the Circle whofe Radius is Unity.

Ex.
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Ex. 2. Let H c~ -J- z
1

]

* X x
-,

to find tht

ofHxFz^xfz.
Here, k f*, / I, w rr 2, r -|, v i

; alfo

(p+m+ i) = |, and ^
(

w&/* Fluent of /
l z

a
|

X z) r= h : Whence, by Subftitution, we have c
*

~~1T~ ~V WAXI TX-^-fTX"; TX-^- y<r. which,
^ C C

multiplied by c* (the Coefficient of z) gives X

-
j + ~ &c* for the true Fluent in this

3C 5 C 7C

Cafe : Where the Series is that exprefling the Arch of
Art. 141. the Circle whofe Tangent is h and Radius c

*
; and is

therefore equal to c x Arch, whofe Radius is Unity and

Tangent = : Whence this laft Arch (taken without

the multiplicator c) is the true Value of the Fluent.

SECTION VII.

Shewing bow Fluents,found by MeansofInfinite
Seriefes, are made to converge.

347. TT is found, in Art. 85. that the Fluent of
m

a -f- cz"\ x dz*
r'

, in an infinite Series,

T+ 1
on

... . . /r j u +<*"' XT
(makings 4-q*) w expreiied by

- x
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i
.

.
..

rf TX7L- + - --;
--- tfc . Whence

f+I .a q + l .q+^.a
it follows (and is evident by bare Infpeclion) that the

Fluent of a cy
n

\ X /"
~*

y (where the fecond Term
under the Vintulum is negative) will be truly defined by

into i H-
qna

4- & fuppofing J ~
But, befides the Series here given, and Thofe, /

y/r/. 83. 84. exprefling the fame Value, the Fluent of

a Cy
n
l x y?

tt~~ l

y will, yet, admit of another Form,
different from all of them ; by means whereof and that

above, we (hall be enabled to draw out fome very ufeful

Conclufions.

X z Which Fluxion, fo tranf-

formed, being compared with a + cz"\ X d-"~~
l

z.\ we

have m r q I, d=a2r+?+ I

J and j (q + m)
= r I ; whence, by fubftituting thefe Values

jn the firft Series, above given, the Fluent fought will

r . r r . r 2 .



398 The Manner ofmaking Fluents converge.

a~ ay"
Which, by reftoring y (or writing and

a tf a cy*

for their Equals a -f- (z"9 and z") becomes

qn q+i a cy" q+l.q+2.
1 ~ ->r

fcfr. the true Fluent, of a cy''

349. This Fluent may be otherwife found, inde-

pendent of that above, in the following Manner :

a cf\ x /"
It is evident, by taking the Fluxion of

qn

(which Quantity would be the Fluent fought, if

Tf 1"
' >

r a cy I X y . ,

a f/| was conftant) that
- ;

Fluent of a cy"f X /""' } Fluent of ~ x

'a^fff
1

x /""*"'~
I

ty : This Equation, by tranfpofmg

the laftTerm, and writing x in the room of a cy"

(for the Sake of Brevity) will become Flu. x'f^jt =

x y + If x F/a . /~ I

/
fl+B~" I

>. From the very fame

Argument (if,
inftead of r, we fubftitute r i, r--2

^c. fucceflively ; and, for y.
write q-\-i, q+ ?

&c. refpeaively) we fhall, alfo, have

T-,, r Z a + 2)i 1
.

Ftu. x y* y >
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Whence, by fubftituting thefe Values, one by one, in

that of, Flu. x
r

y**~
J

j, we get

re x- r .r-i.c*

? 1 q-ri.n q-q+i

p.
r 2 jn+zni. _ x

'y__ i
rcx

r'~ l

j
qn

'

1" q.fTl.n
i T""2 on"\-j.n **

~~~~"*""

rf v v ' r o f'** ^ y / I ' J& *

q.q+l.tt

(

^.y+i.^4-2.w ^ . y+ j . q-\-2 . y+3 . n
&c. Where the Law of Continuation is manifeft j and

x
r
y?"

where, by making _ - a general Multiplicator, we

fhall have the very Series above exhibited.

350. From the Equality of the two foregoing Ex-

preffions, for the Fluent of a cy"\ x y j9 (or

xr

y
}n
~ l

y} the Bufinefs of finding Fluents, by infinite

Seriefes, will, in many Cafes, be very much facilitated.

For, in the firft Place, it follows (by .dividing both by

tf
+l

?" r+i \
V ' xy

x or f L_
)

that the Seriefes i -h
qna qna J

&c. and X
. a *

3

muft alfo be equal to each other, let the feveral

Quan-
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Quantities, therein concerned, be what they will (which
may be otherwife proved, independent of Fluxions.)
Therefore, if in the room of q and s we write any other

Quantities p and /, the Equation will, /A'//, hold, and

will then become i -f
*+ * '/ +
P+l .a

_
p+l .X p+l.p+2.X~

(t being = p+r.)

Moreover, if as many Terms of the firft Series i

J+V*
,

J+"i H-2 . f
'

q+l.a q+i.q+ 2.a* q+ I q+ 2 . ?+ 3 . a

&c. be taken as are denoted by any given Number v,

and the laft of them be reprefented by j^,
it is evident,

from the Law of the Series, that the rirft of the re-

maining Terms will be exprefied by

the fecond, of them, by j|

LL. GV. and therefore the Sum of all of them (putting

q + v=p and s-^-v (zrr-f y-f -y) /) will be = ^ X

p+l .a p+l .p +

(by writing the Series found above in the room of its

Equal) and confequently the whole Series (including

the v firft Terms) i + '-LI'
^
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P*

{

r "^" 1 y f*

Which, drawn into the general Multiplicator
*

JL_

y/?rt

(vid. Art. 317.) will give the Fluent of a cf\

r

X.y
q
"~~ l

y

(or x
r

y
<i

*~*y} according to a new Form, compounded
out of the two preceding ones ; where the fecond Series

(the Value of p being large in refpett of r
j will al-

ways converge much fafter than the remaining Part

of the firft, for which it is iubftituted : But this will,

more fully, appear from what follows hereafter. It will

be proper to take notice here that the Fluent of

a-\-cz
n\ Xz x (the Fluxion firft propofed, where

the fecond Term under the Vinculum is pofitive) will

alio be had from hence (by writing z for y, m for r,

and c for c) and is therefore equal to

qna

drawn into the Sum of the two following Seriefes,

^ l.Cx Jl.f2.f __

Where, 5=^ + ?, p^v + y, t=s + % xa -f

and ^= the laft Term of the firft Series continued

to v Terms, v being any whole Number, at pleaiure.

A few Examples will (hew the Ufe of what is above

delivered.
D d Ex.
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351. Ex. ,. Let ~, or P^f"^ bepropounded.

->m

Which being compared with a+ cz"* X *?
"

*, we

havea=i, f I, ~i, A-rri-J-a;, 7~ i, yn I o,

ory~i; whence alfo s (m-\-q} o, /> (f-f-^) 'y-J-i,

f (j-f v) zr v, and consequently the Fluent itfclf (by
fubftituting thefe feveral Values in thelaft general The-

. x z? K* v i &
orem ) =. z into i. -f ( i>]

^'
2 3 4 t'+i.x

z
* I-f

&c. Where (Q) the laft Term of the firft Series

^-1 / v*& \
-f - the Multiplicatorf

'

)
to the

v \v -f i . x /

Second, will be = ^ .

~
; and fo the Fluent itfelf

tvill be reduced toz-- -f
---

(v]_23 4 v
-y--.A

<x ^ J

_L j==-- + .-- ------~ + &c. In which
X V+ 2.V+3. X

the Signs
-- and -f-> before **^*, obtain alternately,

according as -y is an odd or even Number. But, to

(hew the Advantage of expreffing the Fluent in this

Manner, by two different Seriefes, letzrrj, and let

ti be taken =. 8 ; then the Value of the firft Series (con-
tinued to 8 Terms) being = 0,6345238 &c. and That

i A iB 3C 4/)
of the fecund Scries = -$ + -

-f- + :d +-L-zL8 20 ^ 22 r
24 26

r

^^r-^c. (where A, #, C, D y<:. denote the Terms

preceding thofe where they ftand) = 0,0555555 +
0,0027778 -f 0,0002525 -f 0,0000316 -f- 0,0000048

-j--o,occcoo94-o,OOOC!002=:c,C5b6233; it is evident

that-
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IX

that the Fluent of-
>,
when becomes = i, will

be rr 0,634.5238+0,0586233 = 0,6931471 : Which
is true to the very laft Decimal Place ; and would have

required, at leaft, looooo Terms of the firft, or com-

mon, Series.

x

352. Ex. 2. Let the Fluent of ^ (ex^reffing the Arch

whofe Radius is I and Tangent z) be required.

In this Cafe we have azri, r=i, = 2, xm-fz*,
jw= I, qn 1=0, or q

= !, j = l, />=-y-|-i,
3 2 s 2 7

and the Fluent itfelf =. z -f
---

(v) -f-

X I +
2t/+ 3

2.4.6.x6

- bV. Where, if z be taken
3x

rri. and v= 6. we fhall have i-- + +
3 5 7III 1 I 2 I 2~

]T~n+;6
X] -

rs
+

ii
x ^ +

75
X
i7

x

^. = 0,785398 = the Fluent of ~ when z
19 i +z

i
(
=

-J
of the Periphery of the forefaid Circle)

Which Number, brought out by taking, only, 8 Terms
of the fecond Series, is more exact than if 100000

Terms of the common Series i -- -f -- fcjV.

had been ufed. And, if z be taken = y/^_L (r=
3

Tangent of 30) and ^y=r6, as before, the fame Num-
ber of Terms, will be fufficient to give the Anfwer, true

lo twice the Dtcimal Places above exhibited.

D d 2 353. Ex.
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ji

353. Ex. 3. Let the Fluxion prapofcd be
*+_y*|* x y.

Here we have, a=e*9 f I, zyy n^, xe^+y4
,

=, q=, s (ro-f?) = *, p (v + q)
- + | j /

(s + v) =. v+i; and therefore the Fluent fought (by

4^+ 5 ..

2 . 2y
s 2 . 6 . 2y'*

- 4-y+9 . A'
1

4^-1-5.4^+ 9.4^+13 . x 3

te'c. in which (as in all other Cafes) j denotes the laft

Term of the firft Series. This Fluent approximates
equally faft with thofe in the foregoing Examples : And
it may be obferved farther, that the Fluent will always
converge, however great the Value of z is taken, if

both a and c^ in the general Fluxion a+ tz
r

\ xz**
~ x

z,

are pofitive Quantities. But, if the fecond Term under
the Vinculum be negative, the Cafe will be otherwife,
when that Term becomes greater than half the Firft j

fince the Powers of , in the latter Part of the

Fluent, will then form an increafing Geometrical Pro-

grelfion.
It may, therefore, be of ufe to (hew how the

Theorem may be varied fo as to anfwer in this Cafe.

In order thereto, if in the Equations j=y-ff, and i -f

. a q+ I .

rcf r. r i . c*y . .

I -f == r- ^rr- =-^ fate, (given in Art. 350.)
q+l.X f+I.f+2.**

you write k for r, and p for f, and multiply by ,

5
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key"
you will have szzk+p, and i 4-= 4-

P+J.*
/f - ki. C*V

M
x T^\ . cv"

,

c. = X i 4- == 4
-P+2.X

1 a

. 7+2 . C*y'

+ i.p + 2 . a

Moreover, if the v firft Terms of the above Series i -{--
r 2

rr r . r i . f )

f- ^=: --- &c. be taken, and the laft

J-r-i .JT

of them be denoted by j^, it is plain the firft of the

remaining Terms will be = .9 x X 2 ,

q+ v x

the fccond =; 9 x
t~v ^ 1

x -.

r~V
x

' w '

y4^ ^4^4 l x

and the Sum of them all (putting q 4 ^ P antl

r- V =^) equal to lUl^L x t 4 J^" +
^ ^+i.x

J . J^Ti . t-y" ~i . j^:/ x
,
J4l.f/= &r<;. = -=^L- x - x 1 4 =

p+i.p + 2.x* Px a p+i.a

. (by the Equation above) and

confequently the Sum of the whole Series (i -f_
Vc.) = i -f ^U 4.

r ' r""-^ +
^-j-l . x q+i . q + 2 .x*

.y + 2.^+3. ^_'"
+ ^ Whichf

a p + i .p+ l a"

D d 3 rnul-
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x
r
y
?n

i

r

multiply'd by , gives the Fluent of a tf\

* Art. 343, X/"~"j (* or //"""'j) where k = r v, p = v

349<
+f, s (=&+p) = r+ q and x=acy". I fhall put

down one Example of the Ufe of this laft general Ex-

preflion ; where we will take y T/2y-y*
or 2 >1* *

y*y (being the Fluxion of the Area of the Circle whofe

Radius is Unity and verfed Sine y) In which Cafe,

a 2, c~\) r=i, rrri, yn I^l* r ?= t> ^=

y+ i, =z;+ |, s=2 y A-=2 7; and therefore the

Fluent fought r: -
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will, for the general Part, require the feweit Terms,
when the Number of thofe, taken in each Series, is

nearly the fame.

354. But, after all, another Theorem or Series, ftill,

feems wanting, to exprefs the Value of the whole Flu-

ent, when the Quantity under the Vinculum becomes

equal to Nothing ( which, in the Refolution of Problems,

is, commonly, what is required.) For, it is plain the

laft, above given, anfwers no better, here, than that

preceding it ; becaufe (the Divifor (x) being Nothing)
the former Part of it fails.

In order, therefore, to determine a proper Form, to

obtain in this Circumftance, it will be requifite to ob-

ferve, firft of all, from Article 286. that the whole

Fluent of a bz
n

\ X
~ T

*, fuppofmg that of
-.m 6 .

a 2"1 X yf x to be denoted by Ay will be truly

/r i u P P+* P + 2
/ )

*'
exprefled by

- x 7^ X (v) X _ : In

which t~m+p+ j ; and where it is requifite that the

Values of w-t-i and p (hould be pofitive, otherwife, A
being infinite, the Fluent (or Comparifon) fails. Hence,

becaufe the whole Fluent of a bz\ x a:*"""
1

*, (when
w-f-i

a bz
n

zr o) is found ^r -
, by the common

m -f i X nb

Way *, it follows, by writing this Value in the Room of Art. 77.

A, and expounding p by i, that the ivhole Fluent of and 78 -

bz"\

m
X 2"+* ^ is rightly exprefled by

-

D d 4
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That of abz'"x a:""
1

*, by fubftituting r inflead of

fc'-^i, will confequently be equal to - x
rti + 1 jti -\- 2

^ W
"J"/*

X -_^- Tr^ x
.

Let this Quantity be denoted

rnb
r

by B't then, ^y ^ fime Article^ the Fluents of the

fcveral Terms of the Series I, -,

drawn into the general Mukiplicator abz*

will be, refpeftively, expounded by thofe of the Series j,

&c.. drawn into B ; t be-

t . t+i t.t+i

ing nw + rH- 1,

If now the Differences of the Quantities i, ,

*j
r ^" ; &f , be, continually, taken *

; and for r t its

t .

Equal m I be fubftituted, the Value of any Term
of the Series, whofe Diitance from the firft, exclufive,

is denoted by s, or whofe correfponding Term, in the

b'z"

preceding Series, is- , will be univerfally ex-

a
s

1.2.3 x / . t+i . t+^

jf j be interpreted by o, i, 2,
sj^r.

fucceffively, you

- ^bove exhi-
ill have the Values x, -,

bited But, if s be taken as a Fraction, then the Value

pf fuch an intermediate Term will be found as will give
tnc

*
See my Mathematical E/ayt, P' 94-
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, J S _
b Z "\M rn I . .

the Fluent of - x c bzn \ x z z, m any pro-
a

pofed Circumftance of s ; which Fluent, it is evident,

J w
"h_? _L

will therefore be exprefled by B x i -
1 f

or its E al _

2

! . m + 2,

into i-

2 - I S-'^ 2 4

G fcf. (where , F, G fcfr. denote the Terms im-

mediately preceding
thole where they ftand, under their

j

proper Signs.) Whence, dividing by __, we have

(r
\ ._ X 1

r

, tff. for the true Fluent of a bzf\ X

21

From the laft Fluent /Aa/ of a n X z

fin which />
denotes any pofitive Fraaion, proper

or improper)
is very readily obtained : *or, U

fame (when a bz" = c) be denoted by A\ then the

Fluent of 7^1^^^^- will (according
to the

p

Article above quoted) be exprefled by
-

+fl| +
>

11- /v ) x 3 fuppofing
^ any

' V
pofitive
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~--
"i
w

pofitive Integer. Therefore, by making a lz
n

\ x

zr*+>-^ - a-iz \ X z/>
"+t'r~ I

i, or r + s =p+ v,

the correfponding Fluents muft, alfo, be equal j that is,

P I* 1 * I 2

m-f-2
x

1

fv) x *1A _ I

+2 l
'

f m+i

s-m+i
5V. And

confequently A (the whole Fluent of a bz"i x

2 7 <?

x- X :2
frj X - X into the Series i

m + 2 01 -f- 3
l

wr/
I _ j i . m-j-2 j 2 . w + 3

1 ' 2.r+i 3.^ + 2

and ^r=

^ r ; v and r being any whole pofitive Numbers at

pleafure.

355. An Example^ or two, of the Ufe of this Con-
clufion, may be proper.

i

1. Let the whole Fluent of i Vj"
"* x

( exprefimg
the Length of i of the Periphery of the Circle whofe
Radius is Unity) be demanded. In which Cafe, a be-

ing + I, *=J, !=
.-,

= 2, p ==i, r=r+^
2r-f i 2V 2r + i-

, and j~i/ r-f z r: ---
, the Fluent

2 2

fought will, therefore, (by fubflituting thefe Values) be

had = i x x A MX 2-x ^ x 1 W
1 3 5 ' 3 S
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1 . I

into i _
2r 2r -f- I 4 . 2r -f 3

5 . M -ir- f_ , ^^^
6 . 2r -f 5 8 . 2r + 7

by expounding -y by 5 and r by 3, will become =r

2,16710 Csfc. into I ^-1-^_ 2-^
2.7 4.9 6.11

JLl_L G -f
-21 # + _ii_5 7 + ^ ?

8.13 jo . 15 12.17
In the bringing out of which Value, all the Terms above
exhibited are requifue : But, of the common Series, i -f-

i
, 1.3 1.3.5

rr3 2.4.5
+
2.4^6.7

+ r* more than I0

times tha-t Number of Terms would be
neceflary to an-

fwer with the fame Degree of Exacinefs.

dx
Ex. 2. Let the Fluxion frcpifed be

,

(whofe whole Fluent, when x d, exprefTes the Time
of Defcent of a heavy Body in half the Arch of a Semi-

circle, whole Radius is d*.} * Art. 207.

Here, by comparing d
z

A*]

L

x A- ** with

-.
a bz Xz z y we have a d'^ p=ri, n~ 2, fn i

= ^, or p = -fi alfo s (p + v r) = -y r + ;,

/{'r+w + i) =r + i: Whence, by taking r and v,

each, equal to 4, the Fluent, itfclf, comes out :=

? 7 ii 15 . 246 8
X X X into X X X X

i 5 9 13 '357
4-9 ii 12. 13

1 1 . i . i qti.-
4-
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_

2,6215^* : Which is to 2 v/^', the Time of De-
fccnt along the vertical Diameter of the ferrfaid Circle,
as 2,6215 to 2,8184, or as 100 to 108? ;

After the fame Manner the Fluent will .ind in

other Cafes : But, with regard to the affigning of the

Values of r and z;, it may be obierved, that the An-
fwer will, common<y be brought out wkh the leaft

Trouble when v is taken greater by an Unit or two than

r ; which laft Quantity muft be greater ,r Icfs, ac-

cording as a greater or lefs Decree of F ,s ne-

ceflary.
-From the foregoing Expn. fiion-, by varying

the Values of v and r, a great Number of Theorems,
for the Summation of Serieies, may be deduced. But
this being foreign to my preient Purpoie, I am not at

Leifure to purfue it here.

356. Hitherto Regard has been had to Fluxions of

the Binomial-Kind : But, from thence, the Fluents of

Trinomials may alfo be found ; when theie laft can be'

reduced to Binomials (by Art. 307.) without introducing
new Radical Quantities.

--Befides which Method, I

{hall, hers, give another, which will anfwer where that

fails, and is alfo applicable to Multinomials.

m
X

z i) be denoted by A\ and let it be required to

find, from thence, the Fluent of the Radical Multino-

mial^ or Infinite Series, a -f- <r.v" + dx*"+ ex 3 "

-f/*
4"

fc?f. T"

pnl .

X * x.

Make "= ex" + dx -f ex*" -f &ff . and y
- x*" i

i

then, xn

being yf > if this Value be fubftituted for

i

#% in the firfl Equation, it will become cz" =z cy
f

-f

JL J.

dy* -f ey
f &< Whence, by reverting the Series, (by

Art*
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Art. 275.) y (/") is found = J* + Rf"*"
1

4.

Where R = '-, S = P-P+* v 1 ^ r -
2

X '
~ 7 ' ^ ~

6 ?- 4X 7 7-
Moreover, by taking the Fluxion of the Equation

thus brought out, and
dividing by />, we have x *x

J+ I *+!.
. / + 2 p />n4-ani.x Kzr

% -j.
i- x Sz x.

.

Now let this Value, with that of cx
n + dx

z"
-f /* 3*

+ t^c. (given above) be fubftituted in the proposed

Fluxion, and it will become a + cz"}"' x zfK
" l

x +

Alfo, let v denote the Place, or Diftance, of any
Term of this Series from the firft, cxclufivc ; then the

Term itfelf, drawn into the general Multiplicator, will

+ V
/T J I , A Pt+VM~l .

f A
be expreiied by a -f cz ' X -- A * * (A

being the correfponding Coefficient /?, S, 7", 2V.) and

y> 4. v
-

the Fluent thereof by -- A X a -f cz

t-n 2 /i^.v"
1'" 3"

f+I.Mf* 7-f I . i - S I HC
*

Where,
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Where, qp + v I, j=/w+ y, tp + ni+ I, and the

Sign of the laft Term is -f or , according as v is an

even or odd Number. Now, if in the Fluent thus gi-

ven, v be expounded by j, 2, 3,4, t3c. fucceflively, it

is evident the Fluent of the whole Expreflion will, in

all Circumftances of z, be obtained. But, if the Co-

efficient c be negative, fo that a + cz
n

may (by increafing

z) become equal to Nothing ; then, in that Circum-'

.ITT

ftance, the Fluent of the forefaid general Term a -f cz"\

% ~*z, making c b) being, barely, = x

X (v) x X *, it follows that
r -f i / + 2

l

p h"
J

the whole Fluent of the given Expreflion, or its Equal,

be truly
jf

A I. T>~ V>_Lr A.

reprcfented by
t.t + i.

pd
In which, R

^. and A - the Fluent

_
x

J

i, when <2 bz" =r o.

357. Hence, if the Fluxion given be of the Trino-
iial Kind (then, f, f, &c, vanifliing the ifhole Fluent

of



The Manner ofmaking Fluents converge. 415

of a bxn + dx*"} X /" '* (when a bx
n

-f <&2fl

= o) will, by fubftituting for R, 5, T, &c. be = A X

v i
.,.' * 77 T - . X 77 T

I * bb i . 2 . t .t+i

P-p+i
J . 2 . 3 . r . /-M . /+a W
358. Ifm+ i and

/>
are the Halves of any odd Affir-

mative-Numbers, the Fluent of a bz \ x a/>
*~I

a:,

when lx" =. o, will be equal to

i 3-5- 7 (M-f-Qx 1.3.5-7 (P-O
2. 4 . 0.8. 10. 12 (

G being the Periphery of the Circle whofe Diameter is

Unity. Therefore the Fluent ofa^bx"+ dx

pn I . _ . ~~^\ *B I .

X * A-, or its Equal, a bz Jx +
"

'

X Rz K, &c. is found, in this Cafe, by multiplying
the Expreffion here given, into the. foregoing Series, i -f

-~* Ra

359. An Example or two will help to (hew the Ufe

f what is above delivered.

Firft, let the Fluent of

v/ >_,>- -^
r4

(when the Divifor becomes equal to Nothing} be re

quired. ,

Then, by comparing a1 ** ~I with.

the.
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the general Trinomial a bx" + </***{
x *r*"> x, it

appears that a1 muft be, here, wrote in the room of a,

and that n, m t p, b and rf, will be interpreted by 2

, . i. and refpe&ively : Whence we22 raa

= _, and the Fluent fought = x

JLll .

T -3-5-7 _. l .-3-5-7-9-" . ^.~
2 . 2r

+ 2 . 2 . 4 . \r~
' "

2 . 2 . 4 . 4 . 6 . 6r 3 '

360. The fecond Example fhall be, to find the Fluent

expreffing. the Apfide Angle in an Orbit defcribed by
means ofa centripetal Force varying according to any
Power of the Diftance.

In which Cafe the given Fluxion being

=====
* PX W' *t. 242-

where A is fuppofed the higher Apfe, and CA (and

confequently Cb) equal to Unity) we fhall, by putting

j p* p,
= v, and I x1 =

jr,
reduce it to

I v x V 3y + ~ ?._ .

yy V.V-2 ^.^-2.^-3 ,
"

2
H

2.3
' 7 2 -3-4

the Q-uan-

tity
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tity under the Radical Sign (now anfwering to the

Form above prefcribed) being compared with

abx* -f dx
1* + ex*" bV.r, we have m = i,

2 3 3.4
&>V. Alfo the Value of/> with regard to the firft

Term (y~~*j) will be = *
(becaufe pn i = t)

likewife its Value in the fecond Term (y*y) is = -^-i in

the third =
-|-

&c. In the firft of thefe Cafes we>

therefore, have t (m+p+ i) = i, & (p x
-T-)

=
4.V s ._ V 2 .16^-- 3^t; +-22

6 '

72 16X45
Whence it follows, that the Fluent of the firft Term

2
/ tf x> when the

2 2 . 3

Quantity under the Radical Sign becomes equal to No-

thing (or the Body arrives at its lower Apfe) will be

G V2
truly exprefled by . into i +

S.v2 -4^S a
* + 7 . P 2 . Ibv

1

37V + 22 j

48v
a 6x48^

In the fame Manner it will appear^ that the Fluent

of the fecond Term, in that Circumftance, is =

Ee
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that of the Third = =. x
V *v

3S ' V
3

2
. P &c. that of the Fourth - ~j .

s

fcV. Uc.

Whence, the Fluent of the whole Series, by col-

liding thefe feveral Values together, will come out

G 9V1
<

1 1 2v 3 63^42^ 8--
A Q 3
-

P + &' Which, drawn into
o x ^.o'y

X~i i iP
l

-r

l

s P
3

fcrV. (the Value of_ G
the general Multiplicator \ V i &) gives - x

V 2v

* ^ 2 . 2V I 8* ?; 2 . 2V J . 2V- 1
I * + -- i _-

48 v*
'

72
fl3

X
j
&c. for the true Meafure of the Angle required,

in Parts of the Radius, or Unity : From whence, by

writing 180 inftead of G, we (hall have the fame in

Degrees : Which, laft of all, by reftorina; -, becomes

Where n is the Exponent of the Law of the Force,

whereby the Orbit is defcribed ; and j3, the Defect of

the Square of the Meafure of the Celerity, at the higher

jfpfe,
below That which the Body ought to have to re-

volve in a Circle, this laft being denoted by Unity.
The
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The fame Concluflon may be otherwife derived, by
bringing i y, in the transformed Fluxion, under the

Vinculum ; but this Way of going to work, though
we have but one Series to manage, will prove rather

more troublefome than the foregoing.

It will appear from the two preceding Examples, ef-

pecially the firft of them, that this laft Method of find-

ing Fluents is, chiefly, ufeful when all the Terms of
the given Expreflion, after the two firft, in refpeft of

thefe, are but fmall. Which is a Circumftance that

frequently occurs in the Refolution of phyfical Pro-

blems ; fuch as determining the Effect of the Atmo-

fphere's Refiftance upon the Vibration of Pendulums ;

and the Inequalities of the Planets arifing from their

Action on each other. In fhort, wherever the Fluent,
or the Quantity it exprefTes, would belong to the Circle,

or fome other of the Conic-Sections, were it not for

the Interpofition of fome fmall perturbating Force

(whereby new Terms, fmall in Comparifon of the two

firft, are introduced) the faid Method will be found of

very great Service;

SEC-
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SECTION VIII.

life ofFluxions in determining the Motion

of Bodies in rejijiing Mediums.

P R O B. I.

361. Suppofing that a Eody^ let go from a given Point

A, with a given Celerity, in a Right-line AQ^, is

ref:ficd ly a Medium (or any Force) afting according
to a givtn Power of the Velocity : To determine the

Velocity, and alfo the Sface run ever, at the End of a

given 'Time.

LE
T the given Celerity at A (meafur'd by the

Space which would be uniformly defcribed in any
propofed Time r) be put c, and that at any other

Point B, = v j moreover put AB = #, and the Time

B

of its Defcription z ;
and let the Refiftance, or Force,

adling upon the Body at A, be fuch, that, if the fame

was to be uniformly continued, the Body would have

all its Motion deftroyed thereby, in the Time wherein

it might move, uniformly, over a given Diftance d

(CD) with its firft Velocity c : Which Time, let be de-

noted, by /.

Then, fmce the whole Celerity c would bedeftroy'd in

the Time/, that Part of it which would be uniformly ta-

ken away in the Time r, above propofed, will be truly re-

T tC

prefented by
- X c ; or by -\ > which is equal to it,

becaufe the Spaces (c and d) defcribed with the fame
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Celerity are always as the Times (r and t) of their

Defcription j and therefore .

Hence, the Refiftance at B being to that at A (by

Hypothecs) as v" to c" it follows that the Velocity
which might be deftroyed in the given Time r, by a

'

Force equal to the Refiftance at B, will be exprefled by

cc i) v
-7 X
~

or its Equal n j_ a
' '

: Which Expreifion is,

therefore, the true Meafure of the Force of the faid

Refiftance.

Now, it appears, from Art. 218. that, if the Force
with which the Body is adted on (or the Velocity it

would generate in the given Time r) be reprefented by
jp, the Relation of the Meafures of the Velocity and

Space gone over, will be exprefied by the Equation -j~vv

vn

Fx : From whence, by writing
-
^^ inftead of

dc
~

Ft we have vv ~
B __ 2

"

(
Jhe Sign of wu be-

ing negative, becaufe v decreafes while x increafes *.) *Art. 5.

From this Equation, we get x rr dc"~~
2
v

l

~'''u ;

whofe Fluent is x ^ Lt
Xv

-f ; which,
2 n

corrected (by taking x o, and v c) becomes x =

,
n z 2 n

it x v '
X - I.

;; 2 i- j2

Moreover, fmce the Time (~) is to the Time r, a

the Diitance x to the Diftance f, \ve alfo have * (:=

)
= rflt*

"" z
v~~ *-v j and confeiiuently z ~

* /
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rd _ I= _^_ X _I _ x (b .

writing t for its Equal
-

J
: From which Equation

c ^__ sV"
we get

= i + if i x -| : Likewife,

from the preceding Equation, we get r=

i + 2 x
-jl

: Which two equal Values be-

ing compared together, there, at length, refults * ==

into i + n i x -7-n 2
j, for the required Re-

lation of x and z. . . L

COROLLARY.

362. If =s 2, or, the Refiftance be in the Duplicate
Ratio of the Velocity, the Equation exhibiting the Re-

c z
lation of % and v, will be = i -f , or v =:-

: But the other Equation (the Fluent failing)B

becomes impracticable. Here x, the Fluent of

t Art 6
* W^ ^e explicable by d X hyp. Log.

-
*, or by d x

C

#>. lo^. i + j becaufe v =

In
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In the like Manner, when =i, or the Refiftance is

as the Velocity, the Relation of v, x and z, will be

d x
exhibited by the Equations v = CX ~~T~ and z ~ ' x

423

that above, are the only two wherein the general So

lution fails.

P R O B. II.

363. If a Body, let go from a given Point

A with a given Celerity, in a vertical Line

CAQ^ is atted on by an uniform Gravity,
and alfo by a Medium, refiftinj according to

any given Power of the Velocity, 'tis pro-

pojed to determine the Relation of the 'Times,
the Velocities, and the Spaces gone over.

Let the Notation in the preceding Pro-

blem be retained ; and let the Force of Gra-

vity, in the given Medium (meafured by the

Velocity it might generate in the propofed
Time r *) be reprefented by b. Then, Art. 561,
this Value being added to, or fubtracked

A

C
the Meafure of the Re-

fiftance t according as the Body is in its Afcent, or f Art. 361.

n
1)

Defcent, we thence get-- -f b for the whole
J * -
dc

Force (F) whereby the Motion, at B, is affe&ed :

Whence (by Art. 218) * (= =^) - dc
n-*w

-

E c 4 may
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may be had, by the Means of circular Arcs, and Loga-
rithms,//<wj Art* 331. Q . /.

COROLLARY I.

/ v- N
364. It appears that the Force f

"
a _ a J of the Re-

\<st S.

fiftance is to (b), that of Gravity, in the given Me-

dium, as v
n

to bdc~
*

\ Therefore, if this Ratio be

expounded by that of v* to o", or a" be put = bdc
t~~z

-
t

it follows that a will exprefs the Celerity with which the

Refiftance would be equal to the Gravity (fmce, when
v~ a, the faid Ratio becomes that of Equality.) Hence,

alfo, by fubftituting -r for its Equal dc , we get

a <w
.

ra <v

x > and x =
b x v" a

n
b x v"an

COROLLARY II.

365. If the Refiftance be in the Duplicate Ratio of

the Celerity, cur two Jail Equations will become *

vv -f- aa
*

- * TTT^"
a* r<: + aa d tc -\- bd

= r x /^/. Z.5P-. =7- 3= x w*. Z.OP-. ^-r,
20 ^y+ ca 2 yr 6 wrU

(becaufe, here, a* bd.} From whence, when vz=ot

(fuppofing the Body to afcend) there comes out x =

x hyp. Log. i -\ , for the Height (A$J of the

whole Afcent. But, if t be taken ~ o, or the Body
9 be



in refilling Mediums. 425

be fuppofed to defcend from Reft, we {hall then have

X hyp. Log. i = the Diftance AE defcend-
2 /r aa

ed. Whence, ifN be put for the Number whofe Hyper-
2X

bolical Logarithm is -r, it follows, (becaufe^ Log. I

VV. 2K W I
- = 7- = Log. ff) that i = -^7, and

aa d aa N
SJT~^

confequcntly v =: a \S From which, the Di-

ftance AB being given, the Velocity acquired in the Fall

will be deiermintrd. Bur, if the Body, firft, afcends

from a given Point A, with a given Celerity c, and the

Celerity, acquired in falling, when it arrives, again, at

that Point, be required ; the fame may he exhibited in

a more commodious Form, independent of Logarithms,
c

and will be equal to
"'

* -
; betaufe N, in this

Cafe, is found above to be = i -f . Furthermore,aa

with regard to the Time (), we have already found

(
=

) according as the Motion of the Body
b x aa vv/

is from, or towards the Center of Force. Therefore

ra
the Time itfelf, in the former Cafe, will be rr -

b

drawn into the Difference of the two circular Arcs

c v
whofe Tangents are and , and whereof the com-

a a'

mon Radius is Unity
*

: Whence it follows that the

Time
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Time of the whole Afcent will be denoted by mul-

tiplied into the former of the faid Arcs.

But, in the other Cafe, the Fluent, exhibiting the
Time of Defcent, is not explicable by the Arcs of a
Circle, but by the Difference of the hyperbolical Lo-

r a-\-v a+ c ra
Art. 1*6. ganthms of and - - drawn into * There-a v a c zb

'

fore, when c o, or the Body falls from Reft, the

Time z will be barely r: x bvi>. Lo<r. ^ ~
2 a v b

t_ jr^

X hyp. Log. N* + N iT (by fubftituting the Value

of v found above, and ordering the Logarithm as in

This Equation, in the forementioned -Cir-.

cumftance, where N =. I H--, and v =
aa

aa

becomes * = x hyp. Log. ^ 1 , i , L.
aa a

SCHOLIUM.
366. If, according to Sir Ifaac Newton, we fuppofe

the Refiftance of the Air, to Bodies moving in it, to

be in the Duplicate Ratio of the Celerities *
j and that

* That the Refijlance is at tbe Square of the Celerity, the

Learner may, in fame meafure, ccncei've, by conjidtring that

tbe fame Body, with a double Velocity, not only puts twice the

Number of refijling Particles in Motion, in tbe fame time, but

alfo als upon each with a double Force; and therefore muftfujf'er
a four-fold Refinance, or a Refijlance proportional to thi Square

of tie Velocity. 'This would be ftrittly true, were it not that

the Particles fo put in Motion impel others lying before them*

and thereby prevent, as it were, the Action of tbe Body. What
Deviationfrom tbe foregoing Law may hence arife, is not eajy

to determine, 'fhis, however, feems plain, that tbe Refijlance

at the Beginning of any very fwift Motion (till tbe Air in tbe

Way of tbe Body cames July to participate of that Motion) will

l.e greater than 'That fuftaintd by another equal oay, moving
with thefame Celerity, that has been in Motionfame time.

a Ball,
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a Ball, in the Time it might move, unifcrmly, over a

Space ( d] which is to | of its Diameter as the Denfity
of the Ball to that of the Medium, would have all its

Motion taken away by a Force equal to that of the Re-

fiftance, uniformly continued : Then, from thefe Data^
applied to the Theorems in the preceding Article, we
fhall be able to determine the Velocities, and the Times
of the perpendicular Afcent and Uefcent of Bodies near

the Earth's Surface j allowing for the Refiftance of the

Atmofphere.
Thus, for Inftance, let a Cannon Bali, of four Inches

Diameter (whereof the Denfity, or fpecific Gravity, is

to that of Air as 6000 to i, nearly) be fuppofed to be

projected, perpendicular to the Horizon, with a Velocity
fufficient to caufe it to afcend to the Height of half a

Mile, or 2640 Feet, in vacua j which Velocity (by Art.

203 j will be found to anfwer to the Rate of about 412
Feet/^r Second: Then, according to the Proportion juft
now mentioned, it will be as i : booo : : | x 4 : 64000
Inches, or 5333 Feet ; which is the Value of d in this

Cafe. Therefore, if the Time r, in the preceding Ar-
ticle (which may be aflumed at pleafure) be here inter-

preted by one Second^ the correfponding Values of </, c

and b will be expounded by 5333 F. 412 F. and 32^
F. *

refpectively. Which Values being fubftituted in * An. ao*.

the feveral Equations in the laft Article, we fhall get

i. a(VTd} = 414 F. the Velocity, per Se-

cend, wherewith the Refiftance would be equal to the

(Gravity, or Weight, of the Ball.

2. X hyp. Log. i -\ =: 1835 Feet, the whole
2 r aa

Height of the Afcent.

3. -r x Arch, whofe Tang, is =: 10,08 Seconds^

the whole Time of the Afcent (which is lefs than the
s

Time, in vacuot by 2>73.)



428 Of the Motion of Bodies

c v F

4. v
( . A = 292, the Velocity, per^I+ 7j

Second^ acquired in the Defcent.

5 . Laftly, y x hyp. Log. ^ , + 1 + _1 _,
aa a

1 1,30 Second?, the Time of the Defcent.

Note, In this Example the Meafure of the abfolute

Gravity of the Body, in vicuo, is taken, inftead of its

Gravity in Air (the Difference, there* being too incon-
fiderable to he-regarded.) But, in Cafes where the fpe-
ciric Gravity of the Medium bears a fenfible Proportion
to that of the Body, the Force of Gravity (I) muft

n _ n*

be expounded by 32^ x -^ (inftead of 327V)

Where E is to J/as the fpecific Gravity of the Body to

that of the Medium.

P R O B. III.

367. To determine the Refinance, by means tubereof a

Body> gravitating uniformly in the Direction of parallel
Lines^ may deferibe a given Curve

Let ABC be the given Curve, and BQ_, parallel
to the Axis (or any given Line) AH, be the Direction
of Gravitation at any Point B : Make PER perpendi-
cular to AH and BQ^; and let AP=*, PB=_y, AB-s,
BM (N) = *, MN (B^) =>, BN = i, and the

Velocity of the Body at B in the Direction PBR = v.

Then, the Decreafe of Velocity in the faid Dire6tion,
which is wholly owing to the Reuftance *, being re-

prefented by -u, it follows that the correfponding De-
creafe of Motion in the Direction BN, arifing from the

rf~l ^*
"

^iw
fame Caufe, will be exprefled by X v=z-- ;

y y
*ux

and, that in the Direction BM, by ---. But, the

Celerity
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Celerity in this laft Diredion being, every where, re-

x
prefented by v X , its Fluxion

-f
will be the

whole Alteration of Motion in the faid Dire&ion, arifmg
from the Refiftance and the Force of Gravity, con-

jun&ly : From which deducting the Part owing to the

vx vx
Refiftance, found above to be -r, the Remainder

will be the EfFeft of the Gravity. Which being to

( ) the EffecT: of the abfolute Refiftance in the

3'

Direction BN, as i to r, the Force of Gravity,

muft therefore be to that of the required Refiftance, in

vx
the fame Ratio of i to .

Moreover, the Force of Gravity, meafured by the

Velocity it would generate in a given Part of Time
( i),

being denoted by Unity, the Velocity generated thereby,

in the Time (
J
ofdefcribing B/>, with the Celerity v9

y
will likewife be truly exprefed by, , the Meafure of

the
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the faid Time : Which being put rr to (~
J
the Va-

lue of the fame Quantity, given above, we thence have

yy
v* =. -

: From whence, not only the Velocity, but

the Refiftance will be found. But, if you would have

the Refiftance exprefled independent of v j then let the

i*\
Fluxion (zvu = -- . J

of the laft Equation be di-
XX '

*u ~
jc

vided by the Fluent, which will give = -
:

v x

1JZ

And then, by fubftituting this Value in , you will
vx

eet-^-, for the true Force of the Refiftance, that of* 2xx

Gravity (or the Weight of the Body) being expounded

by Unity.

The fame otberwife

Let BO be the Radius of Curvature at B, and let

OQ_ be parallel to PB> meeting BM, produced, in Q_:
Then, if the abfolute Gravity, acting in the Direction

BQ., be denoted by Unity, its Force in the Direction

BO, whereby the Body is retained in the Curve, will

BO
be reprefented by rrrr . Therefore, fmce the Veloci-

ties in Circles are known to be in the Subduplicate Ratio

Art.au, of the Radii and of ths Forces conjundly *, the Ve-

\/locity at B will be rightly exprefted by \BO x

or its Equal -V/BQ. (For the Curve at, and inde-

finitely near, B may be taken as an Arch of a Circle

whofe Radius is BO : And it is evident that the Re-
fiftance has nothing to do in forcing the Body from the

Tangent,
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Tangent, but only ferves to retard its Motion fo, that

it may, every where, bear a due Proportion to the

given Force of Gravity ac~ling in the Direction BO.)
Hence, putting BQ_= s, the Increafe of the Celerity

in the Time ( ^ J
of defcribing BN, will be ex-

prefled by the Fluxion of Vj, or r- Moreover,
2 Vj

the Celerity that might be generated by Gravity in the

faid Time -
=: being meafured thereby, the Increafe,

Vj
in BN, arifing from the fame Caufe, will therefore be

= -7= x -= : Which, being taken from
Vj x / s

the whole Increafe, found above, the Re-
(Wf)

mainder, -_^f, will be the Effe& of the Refiftance :

Which is to the EffecT:, =, of the abfolute Gravity
v s

as f~ 2*
to I. Therefore the Refiftance is to the

2*

Gravity (or Weight of the Body) as
***

to U-
2%

nity : Where the Signs are changed, becaufe the two
Forces acl: in contrary Directions.

Becaufe BO = ?:. *, therefore s (BO x 4 ")
= t Art. 6f.

JfX X /
*

(= the Square of the Celerity) whence

confequentiy the Re-

fiftance



43 2 Of the Motion of Bodies

fiftance . *~~i rr y
~*~ * x x

^-, tie very fame

at
before.

COROLLARY.

368. IF the Refiftance be fuppofed as any given
Power of the Velocity drawn into (D) the Denfity of
the Medium ; then, from hence, the Denfity of the

Medium, at every Point of the Curve, may be deter-

mined : For, the abfolute Celerity at B being repre-

fented by, the Refiftance at that Point will, according

~~- VI

to the faid Hypothefis, be as _ I x D j and therefore

9
the Velocity that would be deftroyed thereby, in the

Time (i-\ ofdefcribingtf, as 3 x ? : Which
\v J j\ v

being put = (
-r

J
the Effect of the fame Re*

X _ . X

fiftance, found above, we thence get D =
__,

:

"Usd

Which, by fubftituting for v and <i>, becomes D =

In this Corollary, and what, elfewhere, relates to un-

equal Denfities, the Gravity of the Body in the Me-
dium is fuppofed to continue, every where, the fame,

or, that the Attraction increafes with the Denfity, fo

that the Difference between the fpecific Gravities of

the Body and Medium may, at every Point, be a con-

ftant Quantity.

E X-
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EXAMPLE I.

369. Let the propped Curve ABC be the ctmmon

Parabola :

2
V ^ W

Then, x beiog here = , we have x = -^, x
d a,

- and x =: oj and therefore *
is alfo =

<* 2i>

Whence it appears that a Body, to defcribe this Curve,
muft move in Spaces intirely void of Refiftance.

EXAMPLE II.

370. Let the Curve
ABC be taken as a Qua-
drant cf a Circle, whofe
Radius BO is a.

In this Cafe we have s

(BCD f = * (= AO
AP) whence }=. x,

Q. X - -'- S

and therefore : =s O

433

Ffom which it is evident, that ^e
tArt,

Velocity is, every where, as /BQ, and the Refinance

to the Gravity (or Weight of the Body) as 3?B to

2OB.

P R O . IV.

371. 'lie Centripetal Force (F) being given-, to find

the Refinance and Velocity whereby a Body may defcribe
a

given Spiral (or any other, po/tble, Curve) about the

Center of Force.

Let P be the Center of Force, and BO the Radius

of Curvature at any Point B in the propofed Curve,

F f and
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B and let OQ.be per-

pendicular to BPQ;
alfo let BP = y, BQ,
= s, AB = z, BM
= y *, and BN
= x. Then, it is

evident from Art. 367.

^ that the Velocity at B
will be exprefled by

V/BOx
or, its Equal, v^.* And therefore its increafe in the

f_*_\ sF+ Fs
Time l ) of defcribing BN will be - ,-

:

== x
-^- j|

the Ef-From which, deduding (^ X
-f==

feft of the centripetal Force, in the fame Time and

Direction, the Remainder,
-7=- > is theEf-

2 v sr

of the Refiftance. Therefore the Refiftance is to

the centripetal Force as

SF + F*-k~2Fj . TTniftr
as :

yr. to Unity

EXAMPLE.

372. Let the Meafure (F) of the centripetal Force

be exoounded by any Power / of the Diftance ;
and

let the Curve be the logarithmic Spiral ; putting the

fAru 61. Co-fine of the given Angle PBN f (to the
RMiu^rJ

1 Art. 74, = t. Then, s being here = y t, and F = / >,

we
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*Lt
2i

x - = x -
a 2 r

Hence it appears that the Velocity muft be, every

where, as y
*

i and the Refiftance, to the centripetal

Force, as x - to Unity. But, when n =
3,

X - becomes = o ; therefore the Body, in this

Cafe, muft move in Spaces intirely void of Refiftance ;

agreeable to An. 233. And, if n-f-3 be negative, an

accelerating, inftead of a refifting Force, will be required.

SCHOLIUM.

373. If the Denfity of a Medium, wherein a Body
moves, be either uniform, or varies according to a

given Law, the Nature of the Curve, or Trajectory

may be determined from what is delivered in the pre-

ceding Pages.

Thus, for Example, let the Denfity be fuppofed every
where the fame, and the Refiftance as the Square of the1

. /

Celerity; then, from Art. 368. we have -^- =r D;zx

which, in order to exterminate , may be transformed

to ## = yy + xx x D*xx : Where, D being a conftant

Quantity (depending upon the given Denfity of the

Medium) the Value of x will be found, as is taught in

y* Dv*
Stfl. 2. Art. 268. 271. and comes out = +

P IP

~~r fisfr. In which p is put to denote the Para-

F f 2 meter
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meter of the Curve at the Vertex, or higheft Point A,
(to be determin'd from the Force of Gravity and the

given Velocity of the Body at that Point.) This So-

lution anfwers near enough when the Refinance is but

fmall in Proportion to the Gravity ; in other Circum-

ftances, the Series not converging, it becomes ufelefs :

For which Reafon, and becaufe the Cafe above fpe-
cified is That fuppofed to obtain, in refpec~l to the Air

near the Earth's Surface, and its Refiftance to Bodies

moving therein, I fhall {hew, by a different Method,
how the Nature of the Curve may be inveftigated.

o In order thereto, let the Celerity at the higheft Point,

A, above the Plane of the Horizon EC, be denoted by
c ; and let a be the Celerity with which the Refiftance

is equal to the Gravity (vid. Art. 365. and 366.)

Moreover, let d be put for the Diftance over which the

Ball might uniformly move in the Time that the Me-

dium would deftroy all its Motion, was the Refiftance

to continue the fame, all along, as at the firft Inftant

(Which Diftance, according to Sir Ifaac Newton, is, al-

ways, in Proportion to \ of the Ball's Diameter, as

the Denfity of the Bali to that of the Medium.)

Then it will be, as</: a (BN) :: ~, the abfolute

Celerity at B, to f- r l the Part thereof that would

be uniformly deftroyed by the Refiftance in the Time

of defcribing BN, with the Velocity at B : Which

Value being alfo expreffed by- -
(wV. Art. 367.) we

there-
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liz
1 vz z v

therefore have -r- n ; whence ~r r= , and
dj y d v

rt-

confequently, by taking the Fluent, -j
=. hyp.

Log. v, which corre&ed (by putting arzo, and v= c)

z c

gives -j (
= hyp. Log. c hyp. Log. v) = hyp. Log. -.

Furthermore, fince (by Hypothefis) the Refiftance

with the Celerity -f (at B) is to the Force of Gravity,

or the Refiftance with the Celerity a, as r- to a* ;

yy
and it appears, from the aforefaid Article, that the fame

T"| f2
Katio is alfo univerfally exprefled by that of to

I, it follows, from the Equality of thefe Ratios, that

~r is == -. But, in order to the Refolution of

the Equation thus given, let the Tangent of the Angle
PBA (or N) which the Ordinate, PB, makes with
the Curve (fuppofing Radius Unity) be, every where,

reprefented by w: Then, becaufe x"=.u>y y z (Y >
a+ x*}

=
_^

r i -f to
2

, and x = <wy (y being conftant) we
fhall, by fubftituting thefe Values in the forefaid Equa-

tion, get
-^j-

= , V i + ;* ; whereof the

Fluent will be given,
~ = I w Vi + w 1

-f 1 hyp

Log. w; + ^J + w1 *
: Which corrected (by taking* Art. 126,

JL
.j* i /7

1 an(^ 2 ^ If

v=f and wno) becomes ~-
f w "/j -f- w*

-J- i hyp. Log. w + v/j -f w*. But, to fhorten the

F f 3 re-
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remaining Part of the Procefs, let the latter Part of

the Equation, or the Fluent of ov Vj + wz
be de-

aa aa
noted by 9\ then- being = --\- .9 , we have v =

2VV ICC

^d confequcntly (= hyp. Log.
-l

l/aa + 2^.9 2jp= hyp. Log.
- - = 4 hyp. Log. i -I- -^.

From which two Equations, the Velocity of the Ball,

and the Diftance it has moved, when its Direction

makes any given Angle with the Horizon, may be com-

puted, let the Medium be as denfe as it will: Alfo,

from hence, if the Celerity anfwering to any one given

Angle of Direction be known, the Celerity conefpond-

ingto any other given Direction may be found, together

with the Diftance defcribed between the two Portions.

For v (in the Deicent of the Body) being,

equal to -... ---. =, the Value of r, exprefling
Yaa+irQ

the Celerity at the Vertex A, will be had from that

av
Equation, and comes out = - -

; whence
y aa 2-y j^t

alfo z (
d x hyp. Log. j

~ d x hyp. Log.

Vaa 2i>^
~

aa

From which, the Celerity at A being known, the reft

is obvious.

But, in the afcending Pnrt of the Curve EA, both
% and Q muft be confiticred as negative, or wrote with

contrary Signs: And then, from the foregoing Equations,

ac eru

we {hall alfo get v = , c ~ _-,
V aa 2fc<S> V aa -

and
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f

and z=i^x hyp. Log. i ---* = 1

. -w'

hyp. Log. i + -
; and, confequently, z r= ^

X hyp. Log. i
2U ^ - 1- d* hyp. Log. I +
aa oa

d x hyp. Log. : Anfwenng in this Cafe.

It flill remains to take fome notice of the Values of

AC and y (in order to have the Form, as well as the

Length of the Curve.) Thefe, indeed, are not fo

eafy to bring out as That of K, given above ; nor
can they be exhibited in a general Manner, either by
circular Arcs, or Logarithms (that 1 have been able to

difcover) but may, however, be approximated to any
required Degree of Exa<Slnefs, as will appear from what
follows.

Since z
(
= AB) is found * d X hyp. Log.

O(l "^ 2 ^P
', by taking the Fluxion thereof, we get 2 r:

aa + 2cc^ aa -f 2c

z
Therefore j (

= -* '
=

+ J and

(-ivy]- aa + 2fl^:
Which Equations, by taking

r to i, as a* to c* (or as the Square of the Force of

Gravity to the Square of the Refiftance at A) are re-

Ff 4
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. And * :r */ into

Thefe E ffions

(brought out by afTuming

for the Fluent fought, and proceeding as in Art. 34.0.)

converge very faft when r is large in comparifon to Q ;

but in other Cafes the required Values will be had, with
lefs Trouble, from the following Method.

^^
M T.

S S C S B
TO,

Let PKTK and AMTM be two Curves, whereof

the Ordinates SK and SM, to the common AbfdJJa w

~
AS) are expreflcd by refpec-

tively : Then it is plain, from the foregoing Equations,
that the Meafures of the Areas of the laid Curves, mul-

tiplied by </, will truly exhibit the Values of y and * ;

an-
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anfwering to any given Val ue of w (or AS ) the Tangent
of the Angle of Direction ; or, or fpeak more geo-

metrically, a Square upon AC (fuppofing AC Radius
= Unity) will be to either of the faid Areas ASKP,
or ASM as the given Diftance d, to the Value of y or

x required But now as to a Way for computing
thefe Areas (without which what has been faid about

them would be to very little Purpofe) the Method of

Eqtti-diftant Ordinates may here be applied to very good
Advantage (when the foregoing Serieies do not converge)
By means whereof the required Quantities may, with a

little Trouble, be brought out to a fufficient Degree of

Kxaftnefc, let the Refiftance be as great as it will.

According to the fame Way of proceeding, the Va-
lues of x and

_y,
in the Alcent of the Ball, will alfo be

found, if the Ordinates sk and :m, generating the re-

quired Areas, be taken, every where, equal to

. n i c l iv \
infteau of - and -. ).1

r-f 2^ r + 2.:/
From what has been thus far delivered, it will not

be very difficult to calculate (according to the foregoing

Hypothcfis) all the principal Requifites concerning the

Motion and Track of a Ball in the Air, projected with

a given Velocity, at a given Elevation ; as will be more

clearly feen by the Example fubjoined.

Suppofe a Cannon Ball of 4 Inches Diameter (where-
of the Weight is nearly 9 Pounds) to be difcharged at

an Elevation of 45 Degrees, with a Velocity fufficient to

carry it to the Diftance of one Mile, on the Plane of the

Horizon, were it not for the Refiftance of the Air.

Then that Velocity, being the fame as might be freely

acquired in a perpendicular Defcent of half a Mile *,
* Art. 366.

will be found to anfwer to the Rate of 412 Feet, per
Second^ according to Art. 202. and 366. From whence
it is alfo plain, that the Diftance d (fo often mentioned

above) will here be expounded by 5333 Feet ; and that

the Celerity (a) with which the Refiftance would be

equal to the Gravity (or Weight of the Ball) anfwers

to the Rate of about 414 Feet per Second.

More-
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Moreover, fmce the Tangent of the Angle of Ele-

vation, or the firft Value of w, is given equal to Unity

(or Radius) we have Q(tw v'w* -f i + ^ hyp. Log.

w + Viv 1 + i) = 1.1478 : From which, and v
(
=

._ N 2wQ \

412 V '.
;, we gets: (= i d X hyp. Log. i + 7

2025 Feet the Arch defcribed in the whole Af-

cent. Alfo (c
- -

V A -
199 i Feet, for

\

7 2VV&
]V i + -Jaa /

the Rate of the Velocity, per Second., at the higheft

GO \
Point: Whence r ( = j

= 4,314; by Means

whereof the greateft Altitude of the Ball, and the ho-

rizontal Diftance correfponding thereto will iikewife be

found : For let AF, in the preceding Figure, be taken~
i (the given Value of w) and let the fame be di-

vided into three Parts by equi-diftant Ordinar.es (which
Number will anfwer fufficiently exact) then the fuccefiive

Values of w> for the Ordinates AP, h, ks and TF,
being o, i, 7 and J, tbofe

of^ will be o, 0.3394,0.713,
and 1.1478, and the Ordinates themfelves (or the cor-

refponding Values of ^ j to 0.2318,0.2751,

0.3463 and 0.4953, refpeively. From whence, by
adding the two Extremes to three times the Sum of

the two middle Term?, and dividing the whole by 8,

we get 0.3239 for the Value of a mean Ordinate *:

Which, as AF is here equal to Unity, is aifo the Mea-
fure of the required Area AFTP: Which, therefore,

being multiplied by 5333 (d) gives 1727 Feet, for the

horixontal Diftance made good in the whole Afcent. In

p. 117. of my Mathematical DiffertatIons*

7 the
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the fame Way the Area Am is found 0.1828.
Whence the greateft Height of the Ball appears to be

(= 0.1828 x 5333) = 975 Feet -

By taking AC= 1, and repeating the Operation (only

changing r 2^, to r + 2^) the Area ACT? will

come out = 0.1883, and ATC = 0.0875; which

multiplied by 5333 (as above) give 1004 F. and 467
F. for the Amplitude, and the Diftance defcended, from
the higheft Point, when the Direction of the Ball makes
an Angle with the Horizon equal to that in which it

was projected.

But, to have the Direction 'when the Ball ftrikes the

Ground, and the whole Amplitude of the Projection,
we muft find the Value of the Tangent AB, when the

Area ABL is equal to (0.1828) the Area AFm (fo that

the Defcent, from the higheft Point, may become equal
to the whole Afcent.) In order thereto, let 0.0875

(ATC; be deduded from 0.1828 (AFw) and the Re-
mainder 0.0953 will be = CTBL ; this, divided by
TC (0.1513) quotes 0.63; which would be the Value
of CB, if all the Ordinates CT, SM, bV. were equal:
But, as it is obvious from the Nature of the Problem,
and from the Law of the Ordinates already computed,
that BL will be Cometh ing greater than CT, and con-

fequentlyCB leis than 0.63 1 therefore fuppofe the

Value of CB may be about 0.56 ; and, accordingly,

proceed to compute the Area ofCBLT anfwering to this

Number; by means of CT (0.1513) and BL (0.1852)
and one intermediate Ordinate SM (0.1715) and find

. . CT + BL + 4SM
it (rrom the Approximation

- ? xCB)

to come out 0.0955 : Which is fo near the required
Value 0.0953, that it will be altogether needlefs to re-

peat the Operation. It is evident from hence, that the

Tangent (AB) of the Angle of Direction, when the

Ball ftrikes the Ground, is 1.56 ; anfwering to 57 : 20';

From whence, CBKT being found rr 0.0752, the

whole Area ABKP will be had =r 0.2635, and confe-

quendy 0.2635x5333=1405 F. = the Amplitude in

the whole Defcent.

Fur.
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Furthermore, from the faid Value of w and that of

(= 199 y) given above, we get z (=: -5 d X hyp.

Lac. i +
aa

1788 Feet, for the Arch defcribed

in the Defcent ; and alfo v ~ 142 |F. which multi-

plied by 1.8527, the Secant of 57 : 20', gives 264 F.

for the Celerity of the Ball, per Second, at the End of

its Flight.

Now, by collecting the principal of the foregoing
Conclufions, it appears,

i. That the Velocity at the higheft Point A of the

Trajectory will be at the Rate of 199 $ Feet, per Se-

cond : Which is to the Velocity at the higheft Point a

of the Parabola (E<?<:) that would be defcribed, were it

not for the Refiftance, as 2 to 3, nearly.

2. EA = 2025 and Ea = 3030-*

3. EF 1727 and E/~'= 2640 I

4. AF = 975 and af = 1320 > Feet

5, AC = 1788 and ac r= 3030 I

6. FC ~
1405 and fc == 2640 J

7. Angle C = 57: 20' and *(=)= 45.
8. Velocity at C to that at E, as 264

to 412, or as 2 to 3, nearly.

Thefe Proportions, between the Diftances, in

Air and in vacus, hold at an Elevation of 45, when
the Refiftance, at going off, is nearly equal to the Gra-

vity, or Weight, of the Ball. If the Velocity be greater

than that above fpecified, or the Body, projected, be,

either,
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either, lefs, or lefs denfe, the Curve will differ, Jllll,

more from a Parabola.

Hence it evidently appears, that the Effect of the

Air's Refiftance upon very fwift Modons, is too con-

fiderable to be intirely di (regarded in the Art of Gun-

nery. 'Tis true the Method s;iven above is, by
much, too intricate for common Practice

; but when
the Law of the Refinance to very fwift Motions is once

Sufficiently eftablifhed (which, according to fome lace

Experiments, feems to be in a Ratio greater than thac

of the Square of the Celerity) it will be no very difficult

Matter to find out proper Approximations to correct

the Proportions in common Ule.

445

SECTION IX.

Tie Ufe of Fluxions in determining the At-

traftion of Bodies under different Forms.

P R O B I.

374. OUppofing AC perpendicular to AB, and that a.

^
Corpufcle at C is attracted toivards every Point

or Particle of the Line AB, by Forces in the reciprocal

duplicate Ratio of th^ Dijlanccs ; to determine the Ratio

of the whole Force wbertby tht Corpufcle u urged in the

Direflion CA.

Put AC=fl, and

let AD (confidered
as variable by the

Motion of D to-

wards B) be de-

noted by x : Then,
the Force of a Par-

ticie at D being as

~ (byHypothe-

fis) its Efficacy in
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the propofed Direction AC will (by the Refolution of

AC ACT? \ t ^^ J A <-

torces) be as prrj x TTT =r ^3CD
r~,

; : There-

fore
Ox

is the Fluxion of the whole Force ;

whofe Fluent, which (y Art. 85.) is =

AD
~ CA CD*
itfclf.

AD=AB, be as the Force

^. E. I.

P R O B. II.

^fcrB =

375- Suppofing BCDE to reprefent
a circular Plane,

and that a Corpufde H, in the Axis thereof AH, is at-

tracted by every Point or Particle of the Plane by Forces

in the reciprocal duplicate Ratio of the Dijlances ; to find
the whole Force by which the Corpufde is urged towards

the Plane.

Let AH= a, and

Hbx; then A*
<z* ; which

multiply 'd by (p=
3,14159 &c.) the

Area of the Circle

whofe Radius is U-

nity, gives^ x x
z

a"

for the Area of the

Circle hcdbe: whofe
Fluxion is = 2pxx.
But the Force of a

fingle Particle at b,

AH a
in the Direction HA, is as

-jjTj-f
or

-^ (fee the laft

Problem) therefore the Fluxion of the whole Force is

truly
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a ipx
truly defined by ^pxx x -5 or its Equal

-~ and the

Force itfelf by the Fluent of -^
; which

(properly

zpa zpa a
corrected) is -f = 2/> X I = ip x

AH
I TU , when x = HB. Q. . /.

376. In the preceding Problems, we have fuppofed
the Attraction of each Particle, to be as the Square of
the Diftance inverfely ; that being the Law which is

found to obtain in Nature: But if the Force, according
to any other Law of Attraction, be required, the Pro-
cefs will be very little different.

Thus, let the Attraction be as any Power (n) of the

Diftance : Then (in the laft Prcb.) the Force of a

Particle at b (upon H) being as *", its Force in the

g
Direction HA will be as X x" or ax"~~

l
j which

x

multiply'd by 2pxx (as before) gives 2pax x : whereof

n-f-I . -f-l
ax T 2

the

AH x BH"
+ '

AH""*"*) will be as the Force required.

P R O B. III.

377. To determine the Atirafi'ion of a Cane DHF at

its Vertex ; the Attraflion of each Particle being a: the

Square of the Diftance inverfely.

Put the Axis EHrr0, the Length of the Slant-Side

HD (or HF) r= b, and AH (confidered as variable)

= x: Then (by fim. Triangle*) a (HE) : b (HF)
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::* (HA) : HB = -. But, by the laft Problem,

H

the Attradion of all the Particles in the Circle

BC will be meafured by ip X I
^75

= *P x

J -
(becaufe HB = ~) : Which therefore being

multiply 'd by*, and the Fluent taken, we thence have

* __ ^ for the Attraction of ACHB : And this, when
a

L- LJi

x-c, will be, 2
/>

X EH-, the Force of the

whole Cone DEHF : Which, if HK be made = HE,
and KG perpendicular to HE, will likewife be truly de-

FH*\
fined by 2/xEG (becaufe HG = ^j- ^ E. I.

COROLLARY.

378. Seeing the Attradion of ACHB is, every

where, as x j , or ~^ X x, it follows that the

Forces of fimilar Cones, at their Vertexes, are diredly

as their Altitudes.
P R O B.
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P R O B. IV.

379. To find the Force of a Cylinder CBRF, at any
Point A in the produced Axis ; the Law of Attraction being

Jiill as in the preceding Problems.

Put BG (
= CG =

RH) = 6-, and let AS
(taken as variable) =: x:

Therefore AT = Vf+x\
and

AS
AT

i Which

(by Prob. 2.) exprefles the

Force of all the Particles

in the circular Surface 1ST.

B

XX
Therefore 2J x*.- y

--
a

is the Fluxion of the

required Force : Whofe Fluent (ip x * vV -f **)

when x = AG, will be = 2p x_AU Atf
; but when

A- = AH, it will be = 2p x AH AF : Hence, by
taking the former of thefe Values from the latter, we
have 2/> X AB + BF AF for the Meafure of the true
Force by which a Corpufcle at A is urged towards the
Cylin'de'r.

G PROB,
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P R O B. v.

380. The Law of the Force being ftill fuppofed the fami ;

to determine the Attraction cf a Sphere OABGS, at any

givtn Point H above its Surface.

Let BS be perpendicular to HG, and let HB be
drawn ; alfo put the Radius AO=*, OH=, AH (b a)= f, Hn = y, and HB = c+ x; then An=yc> Gn

=2.ay+ c, and confequently y^c K?a y 4- c (
=

An x G = BTZ
I = BH* Hn1

)
= TTTj* / : From

, . , ^ 2<?f -f 2C* + 1CX + Af*

which Equation we get y ==
2a

(becaufe a+ cb.) Whence alfo ip x

375-
' "

X ZtfA- .

x 2ax* ***
Which multiplyM by => givesD I)

for the Fluxion ofthe required Forcej whereof the Fluent
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*

p
- will be the Attraction of the Segment

ABS : Which therefore, when B coincides with G and

x is rz 2*, becomes
-^rr,

for the Meafure of the

Attraction of the whole Sphere. >. . /.

COROLLARY I.

381. Hence the Attraction f^rr) at the Surface

of the Sphere, where b is =r ay will be \ and

therefore is directly as the Radius of the Sphere.

COROLLARY II.

382. Since 3d js known to exprefs the Content of

Sphere whofe Radius is a *, it is evident that the At-
* Art- H'-

traction
( /r) of any Sphere is, univerfally, as its

Quantity of Matter directly, and the Square of the Di-
ftance from its Center inverfely ; and is, moreover, the

very fame as it would be, was all ths Matter in the

Sphere to be united in a Point at the Center.

COROLLARY III.

383. If inftead of a Corpufcle, or a fingle Particle

of Matter, at H, we fuppofe another Sphere, having its

Center at H: Then, fince the two Spheres, at O and

H, act upon each other with the very fame Forces, as

if each Mafs was contracted into its Center, it follows

that the abfolute Force, with which two fpherical Bo-

dies tend towards each other, is as the Produdt of their

Mafles directly, and the Square of the Diftance of their

G g 2 Centers
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Centers inverfely: And therefore, if the MafTes are

given, will be barely as the Square of the Diftance.

P R O B. VI.

384. To determine the fame as in the loft Problem, the

Force of each Particle being as any Power (n) of the

Dijiance.

Let HB ~ *, and let every thing elfe remain as

above ; then we fiiall have y =-7
- -r

x 1-
c~+ 2ac\ _ xx

r (by putting a =--
1 and confequentlyj .

Now the Attra&ion of all the Particles in the circular

Surface BS, is as -^- x H x HB"
4" 1 Un"^ (by

fl-f I

Art. 376.) -2L x y/"
1
" 1

/"*"*: Which, multi-
-

ply'd by j, gives X/ jjy / *y for the Flux-

ion of the required Force : Which, becaufe yy is =
T

x~ xx dx X 3x
+

-^
X -7- rr -T- + 7i will hkewife be exprefled

L^f^j; Whereof the

~. i7+ 3

Fluent is

+ 5 x 2A

Which, when B coincides with A, or x-yf, willbes

,"f3 "-I-S "-t-3

L x ==^ -- + ^-i-___- : But, when

-f 3 x^ H+ 5X2*
1 +3

B co-
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B coincides with G, or * = y = 2a + c (=f) it will

*

become =
+l

Therefore the Difference of thefe two, which is =:

2/-/""
+3 n -t-5X?3.-? 2.^-fn+ 3 X /* 2/>f"

+

+l + 3 X /: + 5 X 23* +l

n + $X 2bd 2
* ~ + 3 X ?

+ 3
'

-
-
5 X 23*

~

I + n x 03 " A 2pf^l + S + '

-t i x + 3 x + 5 x 3*

(bccaufe /= + 3 , and
2^3

-
, + 2^) will be the

Attradtion of the whole bphere. >. E I

COROLLARY.

385. Hence, the Attraction at the Surface of

the Sphere ( where c o ) will be -^- x

TTT, -

: Which, if

~2a\

pofitive,
will be : _^ ^==-j but, otherwife, in-

finite.

386. Suppoftng ADB^A to be a Cuneus of uniformly

denfe Matter, comprizd by two equal and ftmllar elliptic

Planes ADBEA and AdbeA, indin'd to each other, at

the common Vertex A., of either theirfirft or fecond Axes^
in an indefinitely fn.all Angle BAi ; To determine the At-
traftion thereof at the Point A, fuppofmg the Force of
each Particle ofMatter to be as the Square of the Di/iancc

g 3
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Let DE be any Ordinate to the Axis AB, and let

AD be drawn ; alfo put AB=r<7, BC=*, CDzry, and

the Sine of the Angle BA, formed by the two Planes

(to the Radius i) = d\ and let the Equation of either

Curve be y* fx AT* gx
1

: Which will anfwer,
to the Conjugate, or Tranfver.e Axis thereof, according
as the Value of g is pofitive or negative.

Now it will be, i (Radius) : d:\ ax (AC) : Cc

= d X a x, the Thicknefs of the Cuneus at the Or-
dinate (or Section) DE : Moreover, becaufe AD* =
AC*+CD*, we have AD = V^Zj'+Jx *' gx*:

Whence, expreffing (by Art. 374.) the Attrac-

tion of the Particles in the indefinitely narrow Rectangle

J.

DE x Cc, will be defined by ~r-

Which therefore, multiply'd by x, will give the Fluxion

of the Force to be found. But when fx x1
gx*
be-
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becomes= o, x will be = -~- (=AB) a\ there-

fore, by fubftituting for /, our Fluxion will be tranf-

formed to
ax i + X x

i+gXax i+g X **

idx V i + g X ax x* 2dxV i -f g X x

Fluent, when x = <?, will be i -f ^|
z x 2ad x

f.__A x J: , 3L x Jll_ 1 x i!5l y
3 i>. 7

X
2. 4 9 2.4.6

j. i

Which, becaufe i +^1* x a is =/X k -f^|
*
r= / X

1 - f + ^ -
ITT^

^ wil1 (by muItiP!y>"ng

the two Seriefes together &c.) be reduced to idf x

T 2 . 4g- 2 . 4 . 6^
3

2.4.6.8^'

3

" '

3-5 3-5-7 3-5.7.9
^.^./.

It may be obferved, that the Fluent given above

may be brought out without an Infinite Series (by Art.

126. and 2/8.) But the Solution here exhibited is beft

adapted to what follows hereafter j to which the Pro-

pofition itfelf is premifed as a L,emma.

G g4 PROB.
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P R O B. VIII.

387. To determine the Attrafilon at any Point Q_ in the

Surface ofa given Spheroid OAPES.

Let QRL be perpendicular to the Axis PS of the Sphe-
roid, and QT perpendicular to the Tangent F/of the

generating tllipfis at Q_, meeting PS in T : Moreover,
let Qalib be a Section of the Spheroid by a Plane per-

pendicular to that of the Ellipfis APES, and thro' any
Point r, in the Axis thereof, draw CBr and rL parallel

to AE and PS : And make the Abfcifla Qr=x, its cor-

refponding Semi-Ordinate ra (or rb) =z y> QR ~
ft)

F W

and RT = b ; alfo let the Sine (NG) of the Angle

HQp (to the Radius NQ= i )
=

/>,
its Co-fine QG

==
q.

and the Ratio of OA* to OP% as any given

Quantity h to Unity. Now, by reafon of the fimilar

Triangles QrL and QNG, we have rL (BR) = px,

and QL = qx, and therefore Br (RL) ax a :

Alfo, from the Nature of the Ellipfis, AO1
: PO*

(bii) :: RT (b) : OR = ~: Likewife AO1
: PO1
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(h: i) :: QR* : OPa
OR*; and PO^ : AO* (i : h)

::OP Z OB*:BC4 = x OP 1 OB1 = /., x

QP* UK.+ Kbl
l=A x OPa OR 1

2OR x RB RB*

aOKxRb KB*; becaufe (by the former

Proportion) Qtr^xOP* OR X
: Whence, by the Pro-

petty of the Circle, tacb, we get/ (BC
1

Br^rrQR
1

Br2
A x 2OR x RB-fRB* =* 7^l l

Ax

-jr
X />* H- ^ aq bp x 1x f + hp* X A:

1
:

Which Equation, by making i -f B k^ becomes >
z=

2* q
1+

^/>V (becaufe q* + p*= I =QNa
: Which being only

of two Dimenhons, the Curve QaH3, whereto it be-

longs, is an Ellipfis.

The Equation of the Curve QaHb being now ob-

tained, let its Axis QH be fuppofed to revolve about Q_,
as a Center (the Plane of the Curve being always perpen-
dicular to that of the Ellipfis APES) and let the Fluxion

of the Arch MN (exprefling the Angle defcribed from

the time the faid Axis begins its Motion at the Pofition

ALD) be denoted by A: Then, it is evident from

the preceding Problem, that, 2aq 2bp x lA X

2 2 . 4.d
z

2.4. 6
2

/>

+
c . .,, i a tr_-*

^.. . -t-- - &c. will be the Fluxion
3 3-5 3-5-7
of the Attraction of the correfponding Part DQH of

the Solid, upon a Corpufcle at Q_, confulered as aHng
in the Direction HQ_ (which Expreffion is found, by,

barely, writing laq zfy, ^, and Bp*y in the faid

problem, for f, d, and g rcfpedtively.)

Hence,
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Hence, by the Resolution of Forces, the Fluxion of

the Attraction, in the Directions QR and Qw (per-

pendicular to QR) will be truly exhibited by 2aq 2bp

2.4. bJl'p
4-

._,*--- fcfc and

Let now another Plane Q/; be fuppofed to revolve

about the Point Q_, the contrary Way to the former, from

QP towards Q/; and let (ng) the Sine of the Angle
RQ/j be denoted by P, and its Co-fine (Q^; by ^:
Then the Fluxion of the Attraction of the Part DQ/,
in the forefaid Directions QR and Qw (by writing P
inftead of p and ^ inftead of q) will appear to be

2 '

and 2a -f 2t>P X lAP X
3 3-5

' ^ &c. Which being added to thofe of
3-5-7

the former Part, in the fame Directions, and 2. and

9
n .

J+2i _ reflectively fubftituted inftead of A * we have

3.

into x0'+/- - x ^ +
^ 3 5

-

tf, into xPPpp
'

x P 3Pp3p& .

3 3-5
And

4* into x pj>PP 2-l_ x fp P3P &c.

2 />> P1P 2 . 4B p+'p P*P
-4J .ato - x 'J + ^--TV X + -T ^

for
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for the Fluxion of the Attraction of both Parts together
in the forefaid Directions : Whereof the Fluents, when
N coincides with F, and n withy, will be the Attrac-

tion of the whole Spheroid in thofe Directions. But

now, in order to determine thefe Fluents with as little

Trouble as poffible, let m be aflumed to denote any

P
tm
P

whole pofitive Number ; then the Fluent of L >
(

I
.

mm, /t ---

i will be univerfally = - X p
2"1 "" 1

Vip* 2m

zm 3 2m I . 2m 3 im 5

2 . 4 . 6 ... 2m
nzmn pzmp

is p
*

: And that of &" or
y''~H"^* (

in the*Art.49.

Q r 2w X
.

2WJ- r ^* 3

fame Manner) = - X P + x P

T .2.3....2M--I
2 . 4 . 6 . . . 2m

is P. But when N coincides with F, and n with f,

the Sines p and P, of the Arches MF and Mf, be-

coming equal, and (the Co-fine) ^= (Co-fine) ?,

.2T

it is evident that the Sum of the Fluents of -- and

Pwp wai in that Cafe, be truly exhibited by

"^7* _ _
i ?_L S..*-2i i

x MF + y-3-5*---*"-' x

^T4 . 6 . . . 2w
_.

2 ' 4 ' ' ' 2m

JV1/,
or its Equal L^ll|Iil|^=I

x FM/j be-

2.4.0... 2/B

caufe,
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caufe, then all the reft of the Terms (by reafon of the

equal Quantities P, p and j^, q) deftroy one another.

After the fame Manner the Sum of the Fluents of

qp'p and 4>P
2W
P, in the forefaid Circumftance, will

Art. *97 . appear to be = T ' 3 5 7 ?m--i x FM f *.

2 . 4. . 6 . 8 . . . 2w + 3

Now, to apply this to the Matter in hand, let the

Exponent of ,8, in any Term of either of the above
found Fluxions be, univerfally, exprefled by n ; then
the numeral Coefficient (annexed to B) will be defined

by .?J_: U_!_2" + 2
, and the variable Quantities

i . 3 . 5 . . . 2 + 3

multiplied thereby, in the firft Line of the former

Fluxion, will be qp
ta
p + QP-

nP : Therefore

neral Term, (from whence, if n be expounded by i,

2, 3 &V. fucceffively, that whole Line will be pro-

duced.) But, the Fluent of gp**p + gP**P9 in the

Circumftance above fpecified, (putting m=:n and FM/
=s /O appears to be = T 3 ' $ 7

2 . 4 6 . 8 . . . in -t- 2

Which, therefore, multiplied by
2 . 4 6 . . . 2 + 2

3 . 5 . . . a -f 3

2 .4. 6 . 8 . .

D" i

X B*k - -, for the true Fluent of the

2n + i X 2 -I- 3

faid General Term : Which, if n be expounded by
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0, I, 2, 3 &V. fuccefilvely, will become equal to ,

Bk B*k B*k
:-

. -. - &c. refpecuvely ; and therefore the
3-5 5-77-9
Fluent of the whole Line (drawn into the general

i B ~B*

Multiplicator 40 ) is \ak X- - 4.- _
i-3 3-5^5-7

V. But now, for the Fluent of the fecond

7-9
n

Line : This, it is plain, will be = 4^ into x_ _ 3
P* P

1
2 . 4# P4 6+~ -

7-
-

-J7J
x -.-

r~ Gfc. Which, in the

forefaid Circumftance, when P p, intirely vanifhes.

Therefore it appears, that the Attraction of the whole

Spheroid, in the Direction QR, is truly exprefled by

~T~ B & &
tak x --- + ---> r <*s Equal

1.3 3-5 5-7 7-9

x
i-3 3-55-7

After the fame Manner the Fluent of the firft Line,
in the latter of our two Fluxions, will be found to

A ,2.4.6... 2-f 2
fin *2n+ 2

ft

vamfli : And ---== X o x - _,_ i . 3 5--- 2 + 3 9

P^_ ^ wiH be a General Term to the fecond Line.

Whereof the Fluent (by expounding zm by 2 + 2)

2 . 4 6

3-5-7

, 2 . 4 6 . . . . in + ?

appears, from above, to be r: - X

I . ? . < . . . . 2W+ I Bn
k T T7 , ,

X -^ 2-=== .- : Which, when
2.4.6... 2n -f 2 2 + 3

is



he life of FLUXIONS

n is interpreted by o, I, 2, 3 &c. fucceflively, comes
z PL D*

out equal to , ,
-

fc?c. refpeclively : There-
m 9 -f

fore the Attraction of the Spheroid, in tlie Direction

D Ol Z?3

Qw, is exhibited by Lbk x 4. .

3 579
&c. and confequently, That in the oppofite Direction

Qv,
1 B & F

J. =4^x3579 3

- &V. x RT = 4* x i -

x OR (becaufe i~+lf x OR = RT.)

x ~ 435
From which and the Force in the Dire&ion QR

(found above) not only the Direction of the abfolute

H

Attraction, but that Attraction itfelf will be known :

For, let RI be taken to QR, as the Force in the Di-

rection Qv to that in the Direction QR i and then, by
10 the
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the Ccmpofition of Forces, QI will be the Direlion of
the Attraction, or the Line in which a Corpufcle at Q_
tends to defcend : And the Attraction itfelf, in that Di-

rection, (being to that in QR, as QI to QR) will be

_ ~D ZJ1

defined by 4* x 4. &c. x QI ;

i-3 3 5 5 7
^

which, fince $k is conftant, will alfo be as L_ _
i -3

F7 +
5^7

COROLLARY.

388. Since, by Conftruftion, RI : QR :: i + B x

JL ^ 5! &c OR '

3

" "

5 7
' "

9
"

i 3
""

3 5
i B

. x QR, it follows that h

_- + ~ &c. ::RO : RI ;

3 57
. .. n . .r ,

i B E1

3Bwhence (by Divihon) + cflr. :
*

i 3 3-5^5-7 3-5

i B B*
confequently, + &V. ! ? x

i-3 3-5 5-7 J
.

+ ^. : : OT : Ol.
5-7 7 9

3'S

Hence it appears that the Direaion QJ, of the
abfolute Attraction, divides the Part of the Axis
OT, intercepted by the Center and Normal, in a

given Ratio : And that the Attraftion itfelf (being de-

fined
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i 7? /"

fined by _i_ &c. x QJ) is every
1-3 3-55-7

where as the faid Line of Direction QT.

SCHOLIUM.

389. Although the foregoing Conclufions are ex-

hibited by infinite Seriefes, yet the Sums of thofe Se-

riefes are explicable by means of the Arch of a Circle.

i B Kl

Thus, let the Series + &c. (which is
*y c M
3 5 /

one of the two original ones above found) be put rr 5,
and let B rr /*; then by Subftitution, and multiplying

t
3

t*

the whole Equation by f
3
, we fhall have -f

t 7
t
3 S f

&fc =: t*S> and confequently t -I-
-

7 357
sY. rr / - t

3S : Where, the former Part of the Equa-
tion is known to exprefs the Arch of a Circle, whofe

Art. 142. Tangent is / (B*) and Radius Unity
*

: Wherefore,

putting that Arch 4, we have A t t
3
S, and con-

t A i B B 1

r

fequently 8
j3
=- -+ fff*

J /

Moreover, fince it appears that

7> D^ 733
Jj & JJ

T
""T +

~7 - _

B B* B>, 3-55-77-9
_r_ + &

5 7 9

5 * 5 J

CJ

(where the Sum of ~ + y ^- ls already

t ___ ^ t . J

found :r -= X B ~
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D 751

of -f &V. by the fame Method will come

out = 5
-

]
it is evident that* ' 3-55-7

7 -_
/
3

-f f // x i + t* c r
--

i and consequently - __

JL , _?1 . , _ A
3-5 5-7

' l
~

3

'; Which is the Value of the other

original Series found above : From whence that of

wiH alf be had =
3-5 5-7 7 -9

3* + 2/
3

$A x i + f*

"iT^"

Hence, if

/ A f i 5

And

2/
s 3-5 5-77-9

it is evident that OT will be to OI, in the conftant Ra-
tio ofg to b-y and that the Forces in the Directions

QI, QR, and Qy, will be as g x QJ, g X QR, and / x

i +E x OR refpetfively : Where i+5 is =^ .

H h P R O B.
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P R O B. IX.

3QO- to determine the Attraftion at any Point D within

a given Spheroid OAVES.

i

Let Oapes be another Spheroid, concentric with, and
fimilar to, the given one; whofe Surface D*M fcfr.

pafles through the given Point D ; alfolet FD/and HD
be taken as two oppofite, indefinitely {lender, Cones

(or Pyramids) conceived to be formed by drawing innu-

merable Lines HDF, hDf &c. through the common
Vertex D) which Cones (or Pyramids) having the

fame Angl?, may be confidered as fnnilar; and fo their
Art. 378. Forces, at D, will be as the Altitudes DF and DH *

;

And, therefore, the Excefs of the former, above the

latter, or the Force whereby a Corpufcle at D, tends

towards F, through the, contrary, Action of the two op-

pofite Cones, will be as DF DH, or as DM ; becaufe

(ly the Property of the Ellipfts) MF is, in all Portions,

equal to DH
Hence it appears that the Parts of Matter FMmf

and HD, without the Spheroid apes (adling equally,
in contrary Directions) can have no Effedt at D :

And this, being every where the Cafe, the whole, effi-

cacious, Force at D muft therefore be that of the

Spheroid Qapes.

Hence, if the Ratio of(V to Op
1

(or
of OAa

to OP1
)

be denoted by that of I +B to I, as in the laft Problem,
10 it
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it follows, from thence, that the Attraction at D, in the

Directions DM and DN (perpendicular to PS and AE ;

~~i B fi*~

fee the next Ftp-.) will be expounded by _i_

1-3 3-5^5-7

&V. X DM, and 3-5-7 9
(5V. x DN refpe&ively, or by their Equals g x DM
and / x i -f B x DN : Where the Values off and g
are the fame as given in the preceding Article.

COROL L AR Y.

391. Hence the Force wherewith a Corpufcle, any
where within a given Spheroid, is attracted, either,

towards the Axis, or the Plane of its Equator, is d,i-

redlly as the Diftance therefrom.

P R O B. X.

392. Suppofing every Particle of Matter in a Spheroid
to have a Tendency to recede, both, from the Axis PS, and

from the Plane cf the greatejl Circle, by Means of Forces

that are as the Di/lances from the [aid Axis, and Plane,

refpeflively j to find the Direftion DI wherein a
Corpufcle,

at any Point D, tends to move through the Aclion ef the

fold Forces and the Attraction conjtinftly j and
likewije the

whole compound Force in that Direction.

Let DM and DN
be perpendicular to

PS and AE, and let

the given Forces, in

the Direction of thofe

Lines (independent of

the Attraction) be ex-

preffed by m xDM and

n XDN refpe&ivcly.

Hh a There-
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Therefore, fmce (by the laft Problem) the Force
of Attraction in the faid Directions is defined by g x DM
and / x I + B x DN, the whole refulting Forces

will be truly denoted by g m X DM, andf x i + B n

X DN : Whence (by the Compofuion of Forces) it

will be, g m:fx \ + B n :: DN (OM) : MI ;

whence the Point I is given :

Alfo DM : DI :: gmx DM (the Force in the

Direaion DM) : f^m x DI, the Force in DI. QE. I.

P R O B. XI.

393. Every thing being fuppofed as in the preceding

Problems, it is required to determine the Force of all the

Particles in the Line (or Column} QDO tending to the

Center O of the Spheroid.

Let IH be perpendicular to QO produced (fee the

laft Fig.) then the abfolute Force, in the Direction DI,

being ~g-m * DI,that in the Direction DH, whereby
a Corpufcle at D is urged towards the Center, will be

g m x DH. Let now OD (confidered as variable)

be denoted by x ; then becaufe the Ratio ofOM to MI

is given (being every where as g m to /"x i -f B #,

by the Precedent) and the Triangles ODM and IOH are

fimilar, it follows that the Ratio of OD to OH will be

given, or conftant ; and confequently that of DH to

OH, likewife : Let therefore this Ratio of DH to OH
be exprefled by that of r to j, and we fhall have DH

f and confequently (g wxDH) the Force at D,

rx

equal to g m X : Which therefore being multi-

plied
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plied by x y and the Fluent taken, there comes out

- --
for h

2S 2

Force of the Line or Column OD at the Center.

COROLLARY.

394. If the given Forces m and n be fuch that the

Ratio of OM to MI, (which is found to be univerfally

as g m to f x i + 5 n) may become as i : i + E
(or as /O

X
: aO z

) it is evident (from the Property of

the Ellipfis) that the Line of Direction DI will be al-

ways perpendicular to the Surface of the Spheroid Oapes.
In which Cafe OD x DH is alfo (by the Nature of

the Ellipfis) = Ofi
1

: And therefore the Force

x OD x DH) of OD is =^^ x O*1
: Which,

p m
when D coincides with Q_, will become x AO*;

and is, therefore, a conftant Quantity.

Moreovti fmce in this Cafe, g m:fx i + B n

:: i : i +B (by Hypothefis) we have m ^ = g
1 T O

f : Which Equation, if be taken = o, gives

*
, a f + &(.* ;

i * Alt. 389.g J
3-5 5-77-9 K* '

But, if m be taken = o, it will then give n= i -f B
TS ?F 6P",. ....

x _/=-- 1 + l?x - + <* Where,

i

/ r= B*, and A = the Arch whofe Tangent is /, and

Radius Unity.

Hh 3 PROP.



47<>

PROP. XII.

395. If an oblate Spheroid OAPES, whereof th

Square of the Equatoreal Diameter AE, is to that of the

Axis PS, in any given Ratio of r -j- B to I, revolves

about its Axis, in fuch a Time, that the centrifugal Force,

at the Equator A, is to the Attraction at the Surface of

a Sphere whofe Radius is O A, in the Ratio of

7J1 753 *

-f &'c. to : / fay, in that Cafe, every
5-7 7-9 3

Particle of the Spheroid will be in Equilibrio ; fo that,

though the Cohejion of the Parts was to ccafe, the Figure itftlf

would remain unchanged.

For, the Attraction of the Spheroid, at A, being de-

fined by __ + &c. x AO (Art. 387.)
i-3 3-55-7

AO
it is evident (by conceiving B o) that will re-

O

prefent the Attralion at the Surface of the Sphere
whole Radius is AO : Whence (by Hypothefis) the

centrifugal Forcq at A (putting m n -f.

O J -J
"

/

6B3

&c.) will be truly defined by rn x AOj and con-
79

fequently
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fequently That, at any other Point D, by /w.xDM (be-
caufe the centrifugal Forces of Bodies describing unequal
Circles, in equal Times, are known to be

directly as

the Radii *.) Hence, and from the Corollary to the laft
* Art. 213.

Problem, it appears that the Direction of Gravitation
DI i

c

always perpendicular to the Surface apes; and
that the P'orce of all the Particles in the Line (or Canal)
OD or OQ_, towards the Center O, v/ill continue in-

variable, take the Point Q_ in what Part of the Arch
APE you viil : From which laft Confederation, it fol-

lows that the Force, or preffure of every Canal QO,
at the Center O, (confiJering the Body in a fluid State)
will be the fame : Whence (by the Principles of Hy-
droftatics) a Corpufcle at D has no^Tendency to move,
either Way, in the Line OQ_: And therefore, as it

hath no Tendency to move in the Direction of the Sur-

face D/>? (the Gravitation being perpendicular thereto)
it is evident, from Mechanic^ that no Motion at all

can enfue, in any Direction. j^. E. D.

COROLLARY I.

iB 48* 6B 3

c

?qo. Since m is -J- oY. the

3-5 5-77-9
Gravitation (g m x DI) at any Point D in the

~"i ~B B*
Spheroid will therefore be as 4. &c.357
X DI = -~r- X DI

(fee Art. 389.

COROLLARY II.

397. If the Time of Revolution be given r: ^, and

q be put to denote the Time wherein a (folid) Sphere,
of the fame Denfity with the Spheroid, muft revolve ;

fo that the centrifugal Force, at the Equator thereof,

may be equal to the Gravity : Then, as this laft Time
is known to continue the fame, whatever the Magnitude
of that Sphere is f > and the centrifugal Forces, in equal f Art. ai-.

H h 4 Circles,
ani !*
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Circles, are alfo known to be inverfely as the Squares
of the periodic Times--it follows, that p* : q* : : \AO
(the Attraction, or centrifugal Force, refpecling the

Sphere OA, revolving in the Time a) :
-_

____ 3-5 5-7
f.
D3

f- &c. X AO, the centrifugal Force of the

Spheroid at A, revolving in the Time p. From which

?* 25 4J3
1 6 3

Proportion we get ^ =- - +- &c .__ 3P 3 5 5.77.9
3 -M*x 3*

x

Trigonometrical-Canon, the Value of /
(
= 5 1

) and,

confequently, the Ratio of the two principal Diameters,
will be found j fo that all the Parts of the Spheroid

-

may remain in Equilibria. But, when -*-; is fmall,

the Solution by an Infinite Series is preferable : For, then

28 4B* a*

the Series-- - -
Oft. ( -?-J converging fuf-

j " ^ J / <J*

ficiently fwift, we {hall, by the Reverfion thereof, find

ca
1

25 x 6fl
4

125 x 37?
6

,

B = w + ^n# +
"S^F

n which

Cafe the Ratio of the Equatoreal Diameter to the Axis,

if we take only the firft Term of the Series, will be, as

l:!, orasi + nearly.

Which, if ^ = 289, or the centrifugal Force at

the Equator be to the Gravity as i to 28q (that beino;

At ^e Pr P rtlon at tne Equator of the Earth*) wiil
7*

come out as 231 to 230.
Co.*
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COROLLARY III.

398. Becaufe,
3 ~

the latter Part of

our foregoing Equation will be equal to Nothing, both

when / is Nothing and Infinite, it is evident that the

Value thereof cannot, in any intermediate Circumftance

of /, exceed a certain affignable Quantity.

Wherefore, to determine this Limit of the Value of
t

(beyond which the Problem becomes impoflible)
o* *

let the Fluxion of 3 + rx yf
3^ or hs Double

1 + / X yi *?~ be taken and put rr o, and you will

Which, becaufe A --
,

* will be reduced to at_ I + 1
v * Art. 14*,

+ Jt
3 i + f x 9 -J- t~ x A O ; where / is founJ

2,5293, from whence the correfponding Values of

V'l+r*, and -* come out -=. 2,7198, and 0.5805

&c. refpeclively. Hence it appears that it is impof-
fible for the Parts of the Spheroid, in a fluid State, to

continue at Refl among themfelves, when the Time of

q
Revolution is fo great that exceeds 0,5805 &c.

And thar, of all the Spheroids which can beaflumed by
a Fluid revolving about an Axis, That whofe Equatoreal
Diameter is to its Axis as 2,7198 to Unity, will per-
form its Revolutions in the fhorteft Time.

Thus, for Example, if a (folid) Sphere of the fame

common Denfity with the Earth was to revolve about

jts Axis in the Time of 841 Minutes, the centrifugal
Force
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Force at the Equator thereof would, it is known, be

equal to the Gravity*: Therefore,by taking ~( }
Art. 417.

=
p \ p/

:= 0,5805 &c. the Time p will come out =:

M H M
746 or 2 26. Which Time is the leaft, poflible,

wherein a Fluid, of the fame common Denfity with the

Earth, can revolve, fo as to preferve its fpheroidal Fi-

gure. And this holds univerfally, let the Magnitude of

the Body, or Fluid, be what it will.

COROLLARY IV.

399. Hence alfo may be determined the Spheroid,
which a fpherical Body (of Ice or any other Matter)

revolving in a given Time 5, will converge to, when
reduced to a fluid State *.

For, fmcethe Momenta of Rotation, in equal Spheres
and Spheroids, are to one another, in a Ratio com-

pounded of the diret Ratio of their Equatoreal Dia-

meters, and the inverfe Ratio of the Times of their

Rotation, it follows, if d be put = the Diameter of

the given Sphere, and E = the Equatoreal Diameter of

d E
the required Spheroid, that rr (becaufe the Quan-

tity of Motion about the Axis is not affe&ed by the

A&ion of the Particles one upon another, while the

Figure of the Fluid is changing.) Moreover, fince

the Maffes of the Sphere and Spheroid are alfo equal to

each other (by Hypothefis) we have d3

(r:AK-xPS)
PJ

.^
.. : From which two Equations, exterminating

r+?
i

4, there arifes p i + t
1

}

5
X J, for the Time of Re-

volution of the required Spheroid : Whence, by fub-
2

ftituting this Value of p in the general Equation -**
/*

* The Author in a Note, page 135 of his Mifcellaneous

Trotls in MO, has correed an Overfight in this Corollary,
i \

by taking here
-j

x , (infteadof
x s

j whereby

the remaining Part of this Article is rendered erroneous.
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; from the Solution of which the

Value of f, and the Spheroid itfelf, will be given.

_
But, fmce the Value of the latter Part of the Equa-

tion can never exceed a certain affigeable Quantity, the
Matter

propofed can therefore be only poflible under
certain Limitations : In order to determine thefe Limi-

tations, let the FJ- Mon of
>'

be taken and put o, and it will be found that

**+ 24**+27 X A ist
3

27* = o : Whence t

comes out =r
7.5, and the correfpondlng Value of

q .= 05927, nearly.

Hence the Parts of the Fluid cannot poffibly come
to an Equilibrium among themfelves, when the Time

s is lefs than , but will continue to recede from
0,927

the Axis, in Infiniium.
M

If q be taken 84.1 (as in the Example to the

M H M
preceding Corollary) s will be equal 91 = 1:31.
From which it appears, that, if the Earth (or a

fpherical Body of the fame Denfity) was to revolve

H M
about its Axis in lefs than i : 31 ; and, in the mean

time, be reduced to a State of Fluidity, the Parts thereof

towards the Equator would afcend, and continue to re-

cede from the Axis, in Ir.finitum.

COROLLARY V.

400. Seeing the Values of/ and A are given when
the Spheroid is given, it follows that the Gravi-

tation
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ft A
tation (

5
X QI) at any Point in the Surface of

a Spheroid, whereof the Parts are kept in Equilibria*

by their Rotation about the Axis, will be accurately as

a Perpendicular to the Surface at that Point, continued
to the Axis of the Figure. Therefore the Gravitation

at the Equator is to that at either of the Poles, as the

Equatoreal Diameter to the Axis inverfly.

COROLLARY VI.

401. But, if the Spheroid differ-but little from a

Sphere, the Excefs of QI above AO will (by the Pro-

perty of theEllipfis) be neatly as OR*. Whence it

appears that the Increafe of Gravitation, in going from

the Equator to the Pole, is as the Square of the Sine of

Latitude, nearly.

COROLLARY VII.

402. Moreover, fince the Ratio of the Equatoreal
Diameter to the Axis is found, in this Cafe, to be that

CO*

Art ,, of I + *?*to i f, the Excefs of that Diameter above the
Art - J97-

4^>
_

Axis will be to the Axis as ~j to Unity; that is, as --
4P 4

of the centrifugal Force at the Equator to the mean
Force of Gravity. Whence, as the centrifugal Forces,
in unequal Circles, are univerfally as the Radii diredly,
and the Squares of the periodic Times inverfly, it fol-

lows that the forefaid Excefs (in Figures nearly fpherical)
will be as the Radii directly, and as the Denfity and the

Square of the Time of Rotation inverfly : From which

Proportions, the Ratios of the greateftand leaft Diameters

of the Planets may be inferred from each other ; fup-

pofmg the Times of their Rotation, about their Axes,
to be known.

PRO,
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P R O B. XIII.

403. To determine the Figure which a Fluid will ac-

quire when, bcfides the mutual Gravitation of the Parts

thereof, it is attracted by ,another Body, fo remote^ that

all Lines drawn from it to the Surface of the Fluid, may
be taken as Parallels.

477

H MLet OAPES be the

propofed Fluid, and let

MPS and MQ^ be Right-
lines, drawn from the re-

mote Body M\ whereof

the former MPS paffes

thro' the Center of Gra-

vity O : Moreover, let

the Plane AE be perpen-
dicular to the Axis MOS ;

and put NQjr:0 and OM
(the Diftance of the re-

mote Body) == d ; alfo

put the Semi-diameter of

the Body (at M) = r,

and let its Denfity be to

that of the Fluid APES,
as any Quantity v to

Unity. Then, fmce, according to the foregoing Cal-

culations, the Attraction at the Surface of a Sphere (of
a given Denfity) is exprefled by | of the Radius, it fol-

lows that the Attraction of the BodyMy at its Surface,

will be explicable by : And therefore, the Force

varying according to the Square of the Diftance in-
* Art' 38*

verfly *, it will be, d* (MN) r ::
-

Attraction of M, at the Diftance MN
VT*

its Attraction at

Diftance
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Diflance MQ.. Whence the Difference of thefe t\vo,

vr 5_ vr* ^vr* ^ ^s
' r

JlT;^r
~~

3> (
~ ^ x 2-+ T + ^

(s'c.) will be as the Force whereby a Corpufcle at Q_
endeavours to recede from the Plane AE: Which bc-

caufe (by Hypothecs) d is very great in refpecT: of <?,

will (by rejecting all the Terms after the firft) be ex-

,

prefled by ^ x a, or its Equal
- x

In the very fame Manner, the Force whereby a

Corpufcle at qt below the Plane AE, tends to recede

2IT'
therefrom, will be defined by x Ny.

Now, therefore, feeing thefe Forces are, every where,
as the Diftances NQ, Ny, from the Plane AE, it appears

(by Art. 393. and 394.) that the Figure OAFE6 will be

a Spheroid j whereof the Equation, for the Relation of

2Vf3 \
its two principal Diameters (putting n =

~~j~i)
n

X __ , fefr. (In which,
3-5 5-7 7-9

the Ratio of PS 1
to AE a

is denoted by that of i to

i + B.) Hence, by reverting the Series, we have B

LL"__ liil &Ct and confequendy PS : AE :: i :

2 2b

Which, by reftoring the Value of ,
becomes PS : AE

::.:.- 5
- * * '

Co-
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COROLLARY.

404. Becaufe -7- exprefles the Sine of the apparent

Semi-diameter of the Body M, to the Radius i) feen at

the Diftance OM, it follows, if the faid Sine be de-

noted by c, that PS : AE :: I : i ^ x <r
3

; and
2

CfcJ

confequently, by Divifton, PS : PS AE :: i :
~ XcJ

.

Hence it appears, that the Forces of the Planets, to

produce Tides at the Earth's Surface, are to one an-

other as their Denudes, and the Cubes of their apparent
Diameters conj unduly. (For the Sines of fmall Arcs are

nearly as the Arcs themfelves.)

EXAMPLE.
405." If c be taken the Sine of 16' (expreifing the

mean Apparent Semi-diameter of the Moon) and v =
-

(the Ratio of her Denfity with refpeft to that of

the Earth) our lail Proportion will become PS : PS
AE :: i : 0,000000315 : Whence, if PS be taken =.

42000000 Feet (the Meafure of the Earth's Diameter)
F

PS AE will come out = 1 3,23.

SECT.



Of Problems De Maximis & Minimis

SECTION X.

Of the Application of FLUXIONS to the Re-

folution of fuch Kinds of Problems DE
MAXIMIS ET MINIMIS, as depend upon
a particular Curve, whofe Nature is to be

determined.

I
SHALL begin this Section with premifing the

following ufeful

THEOREM.
406. If the Relation of two flowing Quantities y and

u be required; fo that, when the Fluent of y it become:

equal to a given Value, that of
2. ~ : may be a

Maximum or a Minimum ; / fay, their Relation

V ti X tttt~\ VVJ

mujl be fuch that
J- J

may be, every

/""

where, the fame, or equal to a conjlant Quantity.

The Demonstration hereof depends upon the fub-

fequent

LEMMA.

407. If aa. -r ty == ^., wherein A and are inde-

terminate, the Value of Ax**j$ + B*W+pp}*

will be a Maximum or Minimum, when X

are equal to each

other
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other. For, by taking the Fluxions of both Expref-

fions we have aa, + 1$ o, and 2n^Aat x * + pp]"~

xn I

/53 + pp]
= O : From whence, a. and

jfA ._
being exterminated, there refults x *+/>/')

"~~ I

Hence, if * + + cy + ^ fefr. = ^ (where
', <A Wf. are indeterminate) it follows that A

+ D X 7J~^pp\" &c. will be a Maximum or ^f/-

nimum, when all the Quantities x ** + /
>

/
>l"~

I

>

^ are equal

to each other. For that Expreffion is a Maximum (or

Minimum) when it cannot be increafed (or decreafed)

by altering the Values of the indeterminate Quantities
involved therein ; but it may be increafed (or decreafed)

by altering only two of them (as A and ft) whilft the

JA _^
reft remain unchanged j unlefs x * i PPt""*

an^

"'
are equal to each other. (This is

proved above.) Therefore, wheny/ X a.&+ pp
* +

" + C X il" + fcff. is a Maximum or

Minimum, the Quantities
- +/>p|""~

I and "T" x ~

X ^3 + Pf\"~* cannot be unequal : And, by the very
fame Argument, no other two of the Quantities above

(pearled can be unequal.

li If,
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If, in the Right-line PR, there be now aflumed

NN = tt
t NN = 0, &c. and upon thefe, as Safes,

Re&angles l^K, NK be fuppofed, whofe Altitudes NK,

NK &V. are denoted by a, , c, d&c. it is evident that a&

-f ^ + ty + ^ &?f. f=: ^) will be exprefled by the

Sum of all the faid Re&angles, or the whole Polygon
Hi

Moreover, if, in the Right-line PL (perpendicular

to PR) there be taken MM, &c. each equal to

/>, and, upon thefe equal Bafes, Re&angles MV, MV"
&c. be confHtuted, whofe Altitudes are denoted by

A X B X
Z

Ut . it Iikewife

Tr , c
plain that the Value of Jgxgg_j

^-x
C x yy pp\* wiH be truly reprefented by the

i _
whole
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whole Polygon Mb. Which Polygon (as p is con-

ftant) will be a Maximum or Minimum, when A X

**~^pp\ + Bx. 03 ~4~W1

] ~1~ &c* is a Maximum or

Minimum ; that is when all the Quantities x
a

&c. are equal to

each other (as has been proved above.)

Let now, A^ B, C, D &c. be expounded by any

Powers, (MP
r,Mp

r

, MP' , &ff.) of the refpedive
Diftances from a given Point P; and let, at the fame

time, the correfponding Values of a, by f, d &c. be

interpreted by any other propofed Powers MP"1

, MP ,

a

MP* csV. of the fame given Diftances : Then the

Area of the Polygon N/ will be exprefled by MP* X *

+ MP"1 X p + MP" X y&c. ( i}\ and that of the

; 1" ; i*
rtet-f- Apt f Rfl -f-fip|

Polygon Mb, by MP
r
X ~^~ + MPr

x -^~

And the forefaid equal

^ refpeaively.

Now let the Number of the Rectangles be fuppofed

indefinitely great, and their Breadths indefinitely fmall,

I i 2 fo
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fo that the Area of each of the two Polygons N/ and

MA may be taken for that of its circumfcribing Curve :

Moreover, let u and y be put to reprefent the Diftances

of any two correfponding Ordinates EF and GI from

the given Point P; and let j be every where exprefled
i i 11

byp (=MM=MM= faV.) Then, u being a general

Value for any of the Quantities a, 0, y, / &c. (orNN,

NN &c.) it follows; Firft, that the Fluxion of the

Area of the Curve NEFK (the Ordinate being, every

where, = y") will be truly defined by/*a; Second-

ly, that the Fluxion of the Area MG'lV (by fubfti-

tuting y, u and y inftead of their Equals) will be

and, laftly, that the Value of each

r m et X
of the equal Quantities, Mr

r

. above fpecified, will

be expreff.d by

the Theorem Is manifejl.

408. If R and S be affumed to denote any Funclions

of v (that is, any two Quantities exprefled in Terms of

y and given Coefficients j then, in order to have the

~
Fluent of 5 x

*"~
a Maximum or Minimum,

IKl
y

when that of Ru becomes equal to a given Value, it is

~-
r-\

c l

rcquifite that% X ""^ Ihould be a conftant
"

y
'

Quan-
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Quantity : This, alfo, is evident from the preceding
Demonftration ; and may be of Ule when the above

premifed Theorem is not fufficiently general.

P R O B. I,

409. To determine the Nature $f the Curve ACE ; fe

/, the Length of the Arch AE being given ,
the Area

ABE/W/ be a Maximum.

Calling (as ufual) the Ab-
fcifla AD, A- ; the Ordina:e

DC, y; and the Arch AC,

2, we have x \/&* j** ;

and therefore yx f y x

K.%.
jjrj

1 rz the Fluxion of

the Area ADC. Now,
fmce, by the Queftion, the

Fluent of y x zz jjl
1

is to be a Maximum^ when
That of z becomes equal to a given Quantity (ACE) let

thefe two Fluxions be, refpeclively, compared with

485

y x

.in I

y

and y
m

u (as given in the foregoing

Theorem t) By which means, n = ', r = i, u z
i J Art. 406,

and m =. o ; and confequently

=: yz X Kxyy\
*

: Which (according to the faid

Theorem) brine, every where, equal to a conftant

Quantity, we (hall, by putting that Quantity = a,

and ordering the Equation, get a
1 =

fl __ ., and *
J>

and, confequently, (by

taking
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taking the Fluent) *
~ a v a

*

>% or lax xx

y
1

i which is the common Equation of a Circle.

COROLLARY.

410. It follows from hence, that the greateft Area
that can poffibly be contain'd by a Right-line fAE)
joining two given Points, and any Curve-line ACE of

a given Lengthy terminating in the fame Points, will

be when the faid Curve-line is an Arch of a Circle.

P R O B. II.

411. The Length of the Arch AE (fee the preceding

Figure) being given, to determine the Nature of the

Curve, ft that the Solid generated by the Rotation thereof

may be a Maximum.

Art.i45. Since the Fluent of y* X
*

-y^
-

( y*x *)

is required to be a Maximum, when that of z has a

given Value ACE, every thing will remain as in the

laft Problem j only, r muft here be 2 : And there-

= a.fore (by the 'Theorem) we have y*z x j$
ft y

Whence * =. ,

~

; and coafequently x
(

v a" y*_
Vz* - i'O : -~=\ Which Values, if F be

V a
y*-

put = a (in order to have the Powers homologous)

b*y
^

-

will become z rz ' and x =:
Vb* y*

Whence z and x will be known.

P R O B. III.

412.' The Superfetes generated by the drch of a Curve,
in its Rotation* about its Jx'n, being given ; to determine

the Curve, Jo tkatthe Solid, itjelf, way be a Maximum.

f Art i .
Becau*e the Fluent of / X s" /i| t is to be a

Maximum, when that of yx becomes equal to a given

Quan-
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Quantity ; let the Fluxions here exhibited be therefore

'
"' "V

compared with > x uu IE yy and y
m
u (given in the

.zn I

y

Theorem.) By means whereof (r being 2, u =
,

^
n = -, ar.d JTZ = I ) we have yz x

a

j*j (a
c:mftant Quantity

*
;) which is the very Equation found

* Art- 4 6-

in Prob. i. belonging to a Circle.

If the Solid be fuppofed given, and the Superficies a

Minimum^ we fhall come at the very fame Concluiion :

i

For, y^x and y x xx -f jj'|

l

(which are refpeftively as

their Fluxions) being compared with y
m
u and 2 ^L_

^i
we have m 2,u ^, r = i, and n f ;

and there-

Jf

fore : equal to a conftant Quantity : Which
yVS + y"

being denoted by (fo that the Terms may be ho-

mologous) there comes out ax y V x 1
-\- y~ j whence

lax x* y~ (as before.)

PROB. IV.

413. To determine the Curve HFB, from wbcfe Re-
volution a Solid BK jhall be generated ; which , myving

forward, in a Medium, in the Direftion of its Axis DA,
will be

Ifji reft/ltd than any other Solid of the fame given

Length DA and Baft BC.

If AE JT, EFzr^, Ff>=x ts'c. it is evident, from

the Principles of Mechanics, that the refifting Force of

a Particle of the Medium at F (being as the Square or

the Sine of the Angle of Inclination pq) will be truly

reprefented by ^ (

'

JK\
** +* \ Fy)V

'
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the whole Number of Par-

ticles acting upon FHKG
is proportional to the

Area of the Circle FG,
or as y

1

; the Fluxion
hereof (2yy) drawn into

yy
will therefore

give for the
xx + yy

Fluxion of the Refinance

upon FHKG.

Now, fince it is required (by the Queflion) to have

the Fluent of
XX -f-

Maximum^ when That of x becomes equal to a given

Quantity (AD), let thefe two Fluxions be therefore

Art. 406. comoared with

(r being I, u = x, n i

'*. Whence

m o) we get

Art.

confequently ^j
3^ r: a x xx + jjj" : Whereof the Flu-

ent will be found, by A? t. 264. That the Curve does not

meet its Axis in the extreme Point A, but has an Or-

<3inate AH at that Point (as reprefented in the Figure) is

evident from the foregoing Equation. For xx yyi"

(Fy)
4
^ being, always, greater than j

3
.v (pg\

3 x Yp) y

y muft therefore be greater than <?, in the fame Propor-
tion ;

and fo, can never be equal to Nothing.
Now, as it is demonftrable that the Angle AHF muft

be I of a Right-Angle, AH (the leaft Value of y) will

therefore be =. 40 (fince x and y are, in this Circum-

ftance,
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fiance, equal to each other.) But, what a, itfelf,

ought to be, muft be determined from the given Values
of AD and BD, and the Refolution of the forefaid

Equation.

P R O B. V.

414. To determine the Solid of the leqfl Refiftance^ fup-
pofing the Area of the generating Plane AHBD, and its

greatejl Ordinale DB to be given ; (fee the preceding

Figure,)

Since (by the laft Article) the Fluxion of the Re-

fiftance is exprefied by
-

**
_JP' , and that of the

y
'

Area AEFH by j*, it is plain (from the premifed Theo-

rem *) that fLfi_ is a conftant Quantity.
* Art. 406.

Whence, rL=& or its Equal BL^ll , being

every where the fame, the Angle pYq muft alfo be in-

variable j and confequently HFB a Right-line. There-
fore the Solid of the leaft Refiftance is (in this Cafe)
either a whole Cone, or the Fruftrum of a, greater,
Cone. But it is eafy to fliew, that, when the Area of

the generating Plane AB is given fo fmall, that the

Angle B may be taken equal to the Half ef a Right-

angle j I fay, it is demonftrable, in this Cafe, that the

Fruftrum fo arifing will be lefs refilled than a whole

Cone, or any other Fruftrum, whereof the Bafe and the

Area of the generating
Plane are the fame.

In like manner the Solid of haft Refiftance, when its

Bulk and greateft Diameter are given, may be deter-

mined : The Equation of the generating Curve being

y~
I

x X xx + yy}~~'
I

,

7
- m > or axy

~
y x xx -J- yj \

'

Whereof the Solution is given in Art. 264.
PR OB.
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P R O B. VI.

415. To determine the Line, along which a Body, fy

its own Gravity, wilt, dcfcend^ from one given Point A
to another 'By inthejhortfft Time poflible.

Let AD be parallel, and BC perpendicular, to the

Horizon, interfering each other in C ; and let QP be

any Ordinate to the Curve parallel to BC : Then (calling

AP, x ; PQ_,.y fcfcj the Celerity at Q^will be exprefled
L

by y* j alfo the Fluxion of the Time of Defcent thro'

An. 204. AQ^ will be truly defined by -7 *, or its Equal y i

~

X xx -f jy\ . Here, therefore, the Fluent of y~~^ x

** + yfi" is to ^e a Minimum, when that of x arrives to

t Arties- a given Value (AC). Whence, by the Theorem f,

y
3 x x xx -\-yj\

* muft be a conftant Quantity :

Which (to have the Terms homologous) let be denoted

by a"5"* (or =.\ Then a
r
x rr y* x xx -f j$

T
;

V/^
_i^

. . y*y rr
whence x ~ ^--^ = J-

-

t % = ^ ^ , -i\

9 =
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- -
; and confequently z=2<z a y.

Therefore, when ya, z is =: 20 ; which two cor-

refponding Values let be denoted by DV and AV ; and
let QE, parallel to AD, meet DV in E ; then VE
<VD ED) being = a y> and VQ_ (AV AQJ

id1
v a y, it follows that

VD (af: VE (a-y) :: VA* (4*') : VQ_* (4* x^J
Which is one of the moft remarkable Properties of the

Cycloid ; the Curve which, therefore, anfwers the Con-
ditions of the Problem.

If the Celerity be fuppofed as any Function (S) of
the Quantity y> the Problem will be refolved in the

fame manner: The Equation of the Curve being

Art. 408.

P R O B. VII.

416. To find the Nature of the Curve AQE, along

u-hich a heavy Body mujl defend from an horizontal Line

RC to a vertical Line CD, fo that the Area CAE may
be given, and the Time of the Defcent a Minimum.

If the Ordinate PQ,
( parallel to CD ) be

called .y,
and the Velo-

city
at Q_be denoted by

/" ; it is evident that

the Fluent of y~~" X

muft be a Minimum
when that of yx amounts to a given Value.

Therefore
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Therefore (by the Theorem already mention'd fo
i

often) we have y~' ~*x X xx+_v>l

*
a~~

> ~~ 1
j and

confequently = '

..; which, by wri-

y. y

ting i inftead of , becomes x
~

\ Whence
V a3

y
3

x will be known. But, if the Celerity was to be every
where uniform, then ( being o) we fhould have

VV r _r .-

* = ~r -^; and therefore # = a Vcfy*:
* a y

Which anfwers to a Circle.

LEMMA.

417. If, upon a Tangent EP, from any Point C in

the Circumference of a Circle FEC, a Perpendicular
C? be let fall, the Chord (CE) joining that Point and

the Point of Contafl, -will be a Mean-Proportional be-

tween the faid Perpendicular CP and the Diameter CF
tf the Circle*

For, the Angles P and
CEF being both Right ;

and alfo CEP ir F, the

Triangles CPE and CEF
are fimilar : And there-

fore CP : CE :: CE : CF.

P R O B. VIII.

418. In themixt-lind Triangle ACB, the Lengths of

all the Sides (whereof C&andCB are Right-lines) are

fuppofed given ; 'tis required to find the Nature of the

Curve-fide AEB, fa that the Ana may be a Maximum.
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Put the Arch AE rr z,

and the Ordinate CE = y

then, the Fluxion of the Area

ACE bein /^ j\
*

the Fluent of y X z* jj]
z

>

generated in the Time where-

in y y from CA, increafes to

CB, muft be a Maximum :

Therefore, by the TJ?eorem f,

F
493

* Art. 113.

f Art. 406.

we have yz X zz yy
* a= t> or 77

r* c

yy
= . But, if CP be fup-

pofed perpendicular to the Tangent EP, then will

yy
(Art. 35.;

- CE y
CP

~
d?

1 con

quently j
=

j
. or, CP : CE (y) :: CE (y) : a :

Which Proportion, by the Lemma^ anfwers to a Circle ;

whereof the Quantity a is the Diameter.

Now, that AEB muft be an Arch of a Circle is alfo

evident from Prob. j. but, that the fame Arch, con-

tinu'd out, will pafs thro' the Angle C, does not appear
from thence. This is known from above ; and is re-

quifite in finding the particular Circle anfwering to any

propofed Data.

PROB. IX.

4.19. To find the Path AEB which a Body mujl de-

ferthe in moving uniformly from one given Point A to

another B ; fo that, being every where acled on by a Force,

cr Virtue, which varies according to the Inverfe-Duplicate-

Ratio of the Di/lances from a given Center C, the whole

Aclion upon the Body frail be a Minimum.

Putting
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Art. 134.

Of Problems De Maximis & Minimis

Putting AE = z,

CE ~ y> de (indefinite-

ly fmaU) = j*\ Ee= z,

j
l
)and

= j

Ed ( y

for the Meafure of the
Force which a&s upon
the Body in

defcribing
the Particle Ee (zf:
Moreover, if from the
Center C, with any gi-

ven Radius (r) an Arch KT/S of a Circle be defcribed,

interfering CE in T, we (hall have Tt (the Meafure

of the Angle ECe) = . Therefore, fince the

_

Fluent of y~* X uu -f yy
' is required to be a Ml-

ximum, and the cotemporary Fluent of >*~
x
u (between

CAandCB) a given Quantity; it follows, from the

Theorem premifed at the Beginning of the Section,

muft be equal to a con-

and confequently

that/""
ri* X uu+ yy

flant Quantity (
J

C=**=?} -L.
\. * )

-
a

ti0n found in the preceding Problem. Therefore, if thro'

the three given Points A, B, and C, the Circumference

of a Circle be defcribed, the Arch thereof terminated

by A and B will be the Path of the Body. Jg. . /.

COROLLARY.

420. If FR be a Tangent to the Circle, at the Ex-

tremity of the Diameter CF, and CA and CE be pro-
duced
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duced to meet it in R and Q_, it follows that the whole
Action upon the Body, in defcribing the Arch AE,
will be proportional to the correfponding Part RQ. of

the faid Tangent. For, if Ce be, alfo, produced to

meet FR in y, and EF be drawn, it is plain that the

Triangles CEF and CFQ^, as alfo CE* and C?Q_, are

fimilar : Whence it will be, CE (y) : CF (a) :: CF (a)

: CQ. (or Cf) = ~ 5 and CE (y) : Ee (*) :: C? (-)

: Qj --
.' Which (a being conftant) is as f )

the Force that acts upon the Body in defcribing E* (2).
And, as this every where holds, the whole Action in

defcribing AE mult therefore be proportional to RQ.
Which Force (it is eafy to prove) will be to that ex-
erted on the Body in moving through the Chord AE, as

the Chord to the Arch.

P R O B. X.

421. To determine the Path in -which a Body may move

from one given Point A to another B, in the
Jhortejl Time

poj/ibte ; fuppoftng the Velocity to be, every where, propor-

tional to any Power (y? ) of the Dtftance from a given
Center C. (See the laft. Figure. )

Here every thing will remain as in the preceding
Problem ; only yf muft be wrote inftead of jr-*.

T-t- -/"+ 1 ~" "1 \
1 nerefore we have y x u x uu + yy>

~
a

conftant Quantity : Which Qiiantity (to have the Terms
b

homologous) let be denoted by ; then 4 by Reduction,

-f yy

CP_ CP
'

Ee CE ""

kf
And confequently CP = -^. Hence, if p =.0, or the

Ve-
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Velocity be conftant ; then CP being every where = b,

the Body muft, in this Cafe, defcribe a Right-line.

by
But, if p i, then CP being = j the Curve will

* An. 74. be a logarithmic Spiral, whofe Center is C *
: Except

in that particular Cafe, where CA = CB, when it de-

generates to a Circle.

Laftly, if p = 2, the Curve will be a Circle (by the

preceding Lemma) whofe Diameter is -r, and whofe

Periphery pafles through the given Point C.

After the fame manner, the Value of CP (upon
which the Nature of the Curve depends) may be de-

termined, when the Velocity is expounded by any given
Fundion (S) of the Diftance (y) from the Center of

t Art-^oy. Force : And (by writing S in the room of f \ &c.)

bS
will come out CP = j where b and c reprefent con-

ftant Quantities.

When the Velocity is That which the Body may ac-

quire, in defcending through BE, by a centripetal Force

cxprefled by /, then the Value of S (the Meafure of

JArt.22i. that Velocity) being interpreted by V df+I y
f *

t
aad 106.

(where CB= d) we therefore have CP= -.v

for the Equation of the Curve of the fwifteft Defcent,

according to this laft Hypothefis of a centripetal Force

varying as any Power/* of the Diftance.

422. Befides the Problems already refolved in this

Seclion, there are others of the fame Nature which are

confined to more particular Rsftri&ions, and require a

different Method of Solution.

Thus,
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Thus, if
j^> , R and S be fuppofed to denote any

given Powers, or Functions, of the Ordinate (y) of
a Curve ANM, and the A p JV
Nature of the Curve be

required, fo that, when,
the Fluent of >x be-

comes equal to a given

Quantity, the Fluent
of Rz may alfo be- ~j

j-jy-j.

come equal to another D
given Quantity, and That of S*> a Maximum or Mi-
nimum : Then, becaufe there is, in this Cafe, a fecond

Equation, or new Condition, beyond what is to be met
with in any ofthe foregoing Problems, the Method of So-

lution hitherto explained, will, therefore, be inefficient.

But, by a Procefs iimilar to that whereby the faid Method
was demonftrated (afiuming,here, three Expreflions, and
three indeterminate Quantities, inftead of two*) a ge-*

Art< 47
neral Anfwer to this Problem (under all its Reftridions)
will be obtained : And is exhibited by the Equation,

* pR + oS
- ~ -

(^~ > wherein p and q denote conuant

Quantities.

423. Though it feems unneceflary to put down the

Invention of this Equation, after what has been hinted

above, yet it may not be improper to obferve, by way

of Corollary, that, if Q I, R= I, and 5 /, the

Equation will then become -r p^r_ qy
n

; expreffing

the Nature of the Curve,when, the whole AbfcifTa (AM)
and correfponding Arch(AN ) being both given Quantities,

the Fluent of y"z is a Maximum or Minimum^ According
as the Value of n is pofitive or negative : In both which

Cafes, it is very eafy to perceive, that the Curve mull

be concave to AM. and that the Value of , or its
X

K k Equal
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Equal p + qy*y muft, therefore, decreafe as y increafes ;

whence we may infer that the Sign of qy
n muft be ne-

gative in the former Cafe, and pofitive in the latter.

Ex. Let the Curve ABDE, be the Gatenaria ;

formed by a flender Chain, or perfectly flexible Cord,

B

fufpended by its two Extremes in the horizontal Line
AE : Then, fince its Center of Gravity muft be the

loweft poffible, the Fluent of yz, when AC=AE, muft
Art. 173. therefore be a Maximum *

: Whence (n being here = i)

our Equation f 4- = p + qy" )
becomes

-j-
= p

But, in order to reduce ft to a more convenient

Form, let the Diftance (DF) of the loweft Point of the

Curve from the horizontal-Line AE be put b ; then,
when y (BC) becomes rr b, x will be = z ; and

therefore the Equation, in that Circumftance, is i =r p

qb j whence p i -f >
and confequently -7- =

i + qb qy I +q X b y : Which, by putting

I 55

, y (DH) s and a ~ is reduced to =: i

f *^^"^^*-. _ -

-f : From whence a'z* ( rro+7]
1
x x"}

~
a + 7]

1

a

X %? s
1

; and confequently BD
~ Y2as + ss.

For another Example (wherein the Exponent n will

be negative) Jet the required Curve be That along
which
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which a Body may defcend, by its own Gravity,
from one given Point A to another B, in lefs Time
than through any other Line of the fame Length. In

which Cafe, the Fluent of %,y
2
being a Minimum,

when A- and z become equal to given Quantities, our E-

quation (by writing ^ f r n) w^ nere become

_= p -j- fX
*

: From whence exterminating x, or

, by means of the Equation x
1 + y

1

% the Fluent

may alfo be determined.

SECTION XL

Tihe Refolution ofProblems of various Kinds.

P R O B. I.

424. /IN T hyperbolical Logarithm (y) leing given 4

-**
it is propoffd to find this natural Nlirtiber anfwer-

ing thereto.

If the Number fought be denoted by I + xt we (hall

X
(by drt. 126.) have y =.

, or y + xy x rr o.
I T X

Let Ay + By
1 + Cy* &c . x ; then Ay + 2.Byy

4~ 3Ot? & " - *> an<^ ur Equation will become

y -f Ayy + By*j + C>
3

j- ^. ? _
y# 2 Byy $Cy*y ^Dy

3
y &. J

"

Whence, by comparing the homologous Terms, we
A i B i .

ret A = i, 5 = , C = -
', D =

2 2' 3 2 3

Therefore i + + y-
-f42.3-4 2 2.3

'

&V. is (
= i + x) the Num-

2. 3

ber fought.
PR OB.
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P R O B. II.

425. The Radius AO and any Arch Aft of a Circle

ABD being given j tofind the Sine BC, and Co-fine OC
of that Arch.

Let AO (BO) = r, AB = z, AC - *, BC = yy

c A
Bb rr: a, B = x, and In -=j> : Becaufe of the fimilar

Triangles OBC and Bnb, it will be

OB (r) : BC (y) : : Bb (x) : Bn (x)
And OB (r) : OC (r x) : : Bb () : bn (j)

From which we have

yk =: rx

And rj = ; xz.

Let x-Az+ Bz-+ C7?+ Dz*+ Ez* &c.

And
_y

~
^zz 4- />z

z + tz 3 + dz* + ez* &c.

Then, by Subftitution and Tranfpofition, our two

Equations will become

azx.

And

7.

c. S

5^2
4i Wr. ? _

^. J
"

P'rom which, by equating the homologous Terms, we get

Alfo =i, ^=
/I

,2r

7?

There
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'

Therefore 2rB = i, -irC = ,'

$rE =-- , &c. and confequently 5= , C o,
*

5 . 6r
z "2.3.4.5.6.^

Whence, alfo b (yC) = o, c (=

2 . 3r
Hence it is evident that y (

az + bz* -\- >

x 3 z 5 z 7

2 3r 2.3.4.5^ 2.3.4.5.6.7^
2;*

r. And that x (^dz+ Bz^+ Cz 3
&c.) rr

v
2r

__
3

"
s

"

2.3. 4r
3

"

2 . 3 . 4 . 5 . 6r s

P R O B. III.

426. To find the Value of *, when x* is a Minimum.

The Logarithm of x* is = x X / . *; whofe Fluxion

x x /- x -f i being = o, we have /:* = !. But

(by Prob. i.) the Number whofe hyp. Log. is > will

bei + j+T + r-; + Hrr^- Therefore ' by
4 i J * " '

4P

writing i inftead of y> we have * i I +

J 7* Subjlance of this Solution (being the mojt r.eat and

artful I have feen to that ufeful Problem) I had from a Letter

florid Needier ; which teas put into my Hands by a

Friend, who rtcei-iSd it from the late Dr. Halley, to wbnft
it ewas wrote.

Kk 3
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i

3>4> 5
^v. =0,367878

P R O B. IV.

427. To divide a given Number (a] fo that the con-

tinual Produtt ofall its Parts may be a iMaximum.

It is evident (from Art. 23.) that all the Parts "muft

be equal : If* therefore, any one of them be denoted

by *, their Number will be
, and we {hall have

4

x\* a Maximum: And therefore its Logarithm x
x

L . x a Maximum alfo : And its Fluxion ? X L . x
x

Art. aa.
~ =0.*: Whence R-L.x=i, and confequently

Bad 126.

I I I

2 2.3 2 3 4-

&c. Therefore the next inferior, or fuperior, Num-
ber to 2,71828 &c. that will exactly meafure the.

given Number a, is the required Value of each Part :

Thus, let a = io: then becaufe
,, ; A

f . 'Tlk'AX (F=T/- T2 .

nearly, the Number of Parts, in this Cafe, will be 4,

and the Value of each == =2.5.

P R O B. V.

428. To divide a given Angle AOB into two Parts
AUC and BOC, fo that the Produft of any given Powers,

AP" X BQ^, of tbeir Sines AP and BQ. may. bt a

Let
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Let AP, produced, cut the Radius OB in D, and
the Arch AB in F ; likewife let FE and ALbe perpen-
dicular to OB, and join O, F : Putting AOrrr, AP~x
and BQjry. Then, becaufe xn

y
m

is to be a Maximum,
we have nx"~~

J

x x /" -|- x" X my
m~ lyQ't and con-

fequently nyx = mxy.

Moreover, fmce the Fluxion

of the Arch AC is = -;

and that of BC =
^";""T'

we aifo have

rx
t= 0,

which multiply'd by the

ny
former Equation, &c. gives

- .

" = -7=
Vr^y Vr

or X
^

=. mx : Whence, becaufe. OQ_

(Vr
l

/) : QB (y) :: OP (v/r
2

x*) : PD =

.. .

-, we have n x PD (tnx] =: m x AP ;

Vr1
^*

and therefore PD : AP :: m : n\ whence (by Com-
pofuion and Divifion) AD : DF :: m + n: m n: But

(by fan. Triang.) AD : DF :: AL : EF ; confequently
r-f n : m n :: AL : FE ; that is, as the Sum of the

Indices of the two pn-.pofcd Powers is to their Dif-

ference, fo the Sine of the whole given Angle to the

Sine of the Difference of its two, required, Parts.

This Proportion is given in Words, at length, becaufe

it will he found of frequent Ufe in the Solution of "me-

chanical Problems.

Kk4 PR OB.
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P R O B. VI.

429. To Jkew that the
leaft Triangle that can le de-

fcribed about, and the greatejt Parallelogram in, a given
Curve ABC, concave to its Axis, will be when the Sub'

tangent FT is equal to the Safe BF of the Parallelogram^
or half the Bafe BT of the Triangk.

B
T A F

It appears from Art. 25. and is demonftrable by
commbn Geometry, that the greatcft Parallelogram that

can. be infcrib'ci in the Triangle BTR (fuppofmg the

Pofition of TR to remain the fame) will be that whofe
Bafe BF is half the Bafe BT of the Triangle : There-

fore, as a greater Figure cannot poffibly be infcribed in

the Curve BAG than in the Triangle BTR circum-

fcribing it, the greateft Parallelogram that can 'be in-

fcribed, either in the Triangle or the Curve, muft be

That above fpecified.
But now, to make it alfo appear that the Triangle

BTR is a Minimum when FTnBF j let B/r be any
other circumfcribing Triangle, and let the two Tan-

gents TER and ter interfecl each other in P. Then,
ER being ET, it is plain that RP is lefs than PT,
and Pr (lefs than PR lefs than PT) lefs than Pt : There-

fore, the Sides PR and Pr of the Triangle RPr being
lefs than the Sides, PT and Pt of the Triangle TP/,
and the oppofite Angles RPr and TPt equal to each

other, it follows that the Triangle PRr is lefs than TP* ;

and confequently, by adding the Trapezium BTPr to

both, it appears that BTR is lefs thanB/n

9 Co-
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COROLLARY.

430. Hence the greateft infcribed Parallelogram is

half the leaft circumfcribing Triangle.
In the fame Way it may be proved, that the greateft

infcribed Cylinder, and the leaft circumfcribing Cone,
in, and about, the Solid generated by Revolution of a

given Curve, will be when the Sub-tangent is equal to

twice the Altitude of the Cylinder, or f of the Altitude

of the Cone : And that the two Figures will be to each
other in the Ratio of 4 tog.

P R O B. VII.

431. Three Points A, B, C being given',
to find the

Pcfttion of a fourth Point P, fo that, if Lines be drawn

from thence to the three former, the Sum of the Produfts

a X AP, b X BP, and c xCP (ivhere a, If and c denote

given Numbers) jkall be a Minimum.

If CP and BP be produced to E and F, it will appear
from Art. 35. and 36. that the Sine of BPE muft be to

that of APE, as a to b\ and the Sine of CPF (BPE)
to that of APF, as a to c. Therefore, the Sines of

the three Angles BPE, APE, and APF (which Angles,
taken all together, make two Right-ones) being in the

given Ratio of a, b and r, it follows, that, if a Tri-

angle RST be conftru&ed, whofe Sides RS, ST and

RT are in the faid Ratio of a, b and c, the Angles

T, R and S oppofite thereto, will be refpe&ively equal
to
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to the fore-mention'd Angles BPE, APE, and APF.
From whence, alJ the Angles at the Point P being gi-

ven, the Pofition of that Point is given by common

Geometry.
But it is obfervable, that, when one of the three

given Quantities a, b, c (fuppofe a] is equal to, or

greater than, the Sum of the other two, a Triangle
cannot then be formed whofe Sides are proportional to

the faid Quantities : In that Cafe the Point P will fall

in the Point (A) correfponding to the greateft Quan-
tity (a}. For, it is plain that b X AB is lefs than b X BP
+ <?xAP; and that c* AC is lefs than cxCP+ r X AP ;

whence, by adding the Lefs to the Lefs, and the Greater

to the Greater, it alfo appears that x AB + * ACmuft

be lefs than l>xBP+ c X CP-f-+7 X AP lefs than

^xBP+^xCP+ cxAP; becaufe a (by Hypothefis)
is equal to, or greater than, -f c.

P R O B. VIII.

432. To determine in what Latitude a Right-line per-

pendicular
to the Surface cf the Earth, and Another

drawn, from the fame Point, to the Center, make the

greatejl Angle, pojfible,
with each other-, the Ratio of the

Axis end the Equatoreal Diameter being fuppofid given.

Let AE reprefent the Equa-
toreal Diameter, and SP the

Axis of the Earth (taken as

an oblate Spheroid) alfo let

RO and RM reprefent the

two Lines fpecilied in the

Problem, whereof let the latter

(perpendicular to ARS) meet
SP in M

;
and let RB be per-

pendicular to SP.

It is. evident, from the Property of the Ellipft?, that

SP* : AEa
:: BO : BM. And (by Trigonometry) BO

: BM :: Tang. BRO : Tang. BRM ; whence, by Equa-
lity*
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lity, SP* : AE4
:: Tang. BRO : Tang. BRM; there-

fore, by Compofition and Divifion, AE*-f SP* : AEX

SP Z
:: Tang. BRM + Tang. BRO : Tang. BRM

Tang. BRO. But, the Sum of the Tangents of any two

jingles is to their Difference,
as the Sine of the Sum of

thofe Angles to the Sine of their Difference
*

; whence it

follows that AE* + SP 1
: AE a

SP* :: Sine. BRM -f

BRO : Sine. BKiVi BKO (ORM).
Now, fince the Ratio of the two firft Terms is

conftant, or in every Part of the Ellipfis the fame, it is

obvious that the Angle ORM, or its Sine, will be the

greateft poflible, when its Antecedent (the Sine of

BKM-f ttKUj is the greateft poflible, that is when
BRM -f BRO = a Right-Angle and its Sine = Radius.

Therefore, in the propofed Circumftance, when ORM
is a Maximum^ our laft Proportion wili become AEa +
SP Z

: AE1 SP 1
:: Radius : Sine of ORM : And half

the Angle, fo found, added 45, will give (BRM) the

Complement of the required Latitude; becaufe BRM
+ BRO (or sBRM ORM) being == 90, it is evi-

dent that aBRMrrgc + ORM, and confequently BRM-
45 + j. ORM.

P R O B. IX.

433- Of a^ *^e Semi-cubical Parabolas^ to determine

that) whereof, the Length of the Curve being giveny tht

rfreajhallbe a Maximum.

The general Equation is ax* = y
3

: Moreover, the

37*
Area is univerfaJly == -, and the Length of the Curve

(fa Ari ^ , 3?i ) Let the

be put = f, and, by ordering the Equation, you will__ get

* Vi4, p> 56. ofmy



5o8 The Refolutlon of Problems

get y

i
a 3 x 8a]

T
!: Whence, **-

(and

confequently 4 j being
&J

a Maximum^ it is evident tha;

-, or its Equal a* x 27^ + 80!

40
5
'

muft likewife be a Maximum : Which, put into

Fluxions and reduced, gives a c x ? ' 3 ^ .

3^

Whence AT and
j;

will alfo be found.

P R O B. X.

434. To determine the Ratio of the Periphery of any given

Ellipfis to that of its circumfcribmg Circle.

Call the Semi-tranfverfe Axis CB, a ; the Semi-con-

jugate CEjtj any Ordinate Dr, y, and its Diftance

A C D B

CD from the Center, x: Then (by the Nature of the

Curve) y being = / aa **, we have y =

.

CXX
; and confequently (/ x* -j- f ) =

V* **

* */^
_5

c x ^
: Which by making d rr



vf various Kinds.

aa cc ... xV aa dxx
will be reduced to % = .

V aa xx

2 . 40* 2.4. oa

(by throwing the Numerator into a Series) whereof the

-whole Fluent, when * becomes rz a, will be z (ERB)

yj X I
~ -

2.4.4 2. 2.4. 4. 6. 6

-3 -3; 5-5-7^ ^ ,, ^ 2g6
x
where ^

2.2.4.4.6.6.8.8
denotes the Length of the Arch GB, or i of the Pe-

riphery of the circumfcribing Circle.

Hence it follows that the Periphery of the Ellipfis is

d
to that of its circumfcribing Circle, as i

-
-id'J

2.2.4.4 2.2.4.4.6.6

B + l x

& c , or as i

2.2 4.4
&c, to Unity : Where A^ B, C9 D &c. denote the

preceding Terms, under their proper Signs.

PROS. XI.

435. To determine the Difference between the Length

of the Arch of a Semi-hyperbola infinitely produced^ and

its Afymptote.

Call the Semi-tranfverfe Axis (AC) a ; the Semi-

conjugate (or its Equal AE) ; b the Diftance (CF) of

any Ordinate from the Center, #; the Ordinate itfelf,

y ; and the Arch correfponding, z : Then, from the

Nature of the Curve we have y
* a

-
; whence

a

y =
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C N
bxx

V*1
a

\ and confequently * (=Vx
i+j1

)

bbxx

V'xx aa

f CAa
\ a

\ r= CF and u m
x
i

: Which, making d*= <gp

transformed to x

\ X l a&
L_ j ^hereof the upper Surd, ex-

panded, is = i

uu 8.6.8/1 (s'c. Now the

Fluent of the firft Term hereof, ~-r into
__ uu

XX \
n:

a
. ==

j
is univerfally exprefTed by

v;
L

, or its Equal
BF x CE

: Which, if BN

be parallel to the Afymptote EC, will (becaufe AE :

CE :;
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CE :: BF : BN) be alfo truly reprefented by BN : And
this Line BN, when x or z becomes infinite, will co-

incide with the Afymptote. Therefore the Fluent

of the remaining Terms is the Difference fought :

Which Fluent, when ni, orj=ro (putting A for

\ of the Periphery of the Circle whofe Radius is Unity)

will be =: aA x H
2



Refolution of Problems

P R O B. XII.

4.36. To determine the Nature of the Curve CDHj
which will interfett any Number of fimilar and concentric

Ettipfts
AMB, amb &c. at Right-Angles.

Let the Tangent
DT, which is a

Normal to the El-

lipfis AMB, meet
the Axis AB in T j

and, fuppofmg AC,
CM, aC, Cm &c.
to be the principal
Semi-diameters of

their refpe&ive Ellipfes, let the given Ratio of AC 1
to

CM1

(or of flC
1

to C^&rV.) be that of I ton: Put-

ting CE x, ED n
jr, Dp (*) *, and dp y.

It is a known Property of the Ellipfis that AC 1
:

CM* :: CE : ET ; therefore ET -nx : Moreover ET
(nx) : Dp (x) :: ED (y) : pd (j) by fimilar Triangles)

whence = , or ; whereof the Fluent
nx y x y

Art. 126. is L : x L : a = L : y L : a *
(where a denotes

any conftant Quantity at Pleafure.) Hence we alib

n
x y y

have L: n xL: = L : , and consequently

=
, or a

a an

P R O B. XIII.

437. To find the Equation of a Curve ERD that wit!

rut any Number of Ellipfes^ or Hyperbolas, having the

fame Center O and Vertex A, at Right-Angles.

Let RT be a Tangent to any one of the propofed
Conic Sections ARF, at the Interfe&ion R, meeting

the
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O T A. B E O
the Axis AO in T ; and put AO=a, OB=x, BR=y,

nr=x, Rn=j: Then (per Conies) BT ==
ax'

in the Ellipfis, and =r
tt

-, in the Hyperbola :

Whence, by reafon of the fimilar Triangles TBR,

and Rrn, it will be (BT) :y (BR) :: - >

(Rn) : -f x (rn] : Therefore + yy =

*

XT, and confequently -f + d* = a'x L :

2 a

i x*. Where d denotes a conftant Quantity, depending
on the given Value of AE.

PROS. XIV.

438. Let two Points n and m movey at the fame time,

from two given Portions B and C, with equal Celerities^

along two Right- lines BA and EC perpendicular to each

other: 'Tis
proofed to determine the Curve ASC, to

which a Right-line joining the faid Points Jhall, always*
be a Tangent.

Let DS and ev be parallel to BA, and Sr perpen-
dicular thereto : Putting BCz=rf, CDr=A:, SD=

_y,
Sr

=.
X-, and rv ~y. Therefore (by fim. Triangles] y : x

LI :: y
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= Dm, and i : >::

bn: Whence Cm (CD Dm) = x - ?, and En (B*

-f bn] = v -f **"-? : Which two laft Values, be-
X

caufe the Velocities of the Bodies are equal, rouft alfo

yx_ a xxy
be equal to each other, that is, x --r > +-:

-
;

y x

Hence, by making X- conftant, and taking the Fluxion

i*y _. -
~

of the whole Equation, we get x

there

'"s .- .-. j __
^xj =yx~, and ,-

the Fluent on both Sides being taken, we have 2

_ 2 v
xT 2 Va x, and confequently * = 2 V/^-

_ ^; Which Equation pertains to the common Pa-

rabola.
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Otberwife more univerfatty, thus.

>

t
439

:

Put Cm v and En = w, and let thefe Quan-
tities (inftead of being equal) have any given Relation
to each other. Then, fince the abfolute Celerity of m
isexprefled by <u, its angular Celerity, in a Direction per-
pendicular to Sw, by which the Line Sm tends to re-

volve about the Point of Contact S as a Center, will

be
tru!y defined by

= X * (Art. 35

In the fame manner the angular Celerity of , about

the Point S, will be defined by
'

, X w. Now,
Kaa.

as thefe Celerities muft be to each other as the Di-
ftances Sm and Sn from the Center S (or directly as

the Radii) we have S; : Sa (:: DS : bn) :: Sin. Bmn X
y : Sin. Enm x ow ; whence, becaufe Sin. Bmn : &'#.

Enm :: En (w) : Em (a v) we alfo have DS : bn ::

w X v : a v x ov: Therefore, by Compofltion, DS :

(DS -f bn) w :: w>v : wv
-f-

a v x w, and confe-

quently DS = =
-' -

: Whence bn (w
wv + a v x w

__ a v X ww . nr\ r 01 bnxBm\
SD) == ; and BD (= S = I

uj<ij .j. a v X w "*

, .
... ; From whence the Curve itfelf

will be given.

If v and w be taken equal to each other (as above)

then SD (y) will become = , and BD =- - _ a u>

IV
2iv -f ; in which laft, if for w its Equal

a.

LI 2
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}/~ay be fubftituted, we fhall have BD = a

4- y ; and confequently CD (a BD) = 2 Y ay y,

the very fame as before.

P R O B. XV.

440. Suppofmg a Body T to proceed, uniformly, along

a Right-line BC, and another Body S, in purfuit of the

fame-, always direttly towards it, with a Celerity which

is to that of T, in any given Ratio, of i to H; it is pro-

pofed to find the Equation of the Curve ASD deferibed by

the latter.

Let the Tangent AB, which makes Right-Angle
3

with BC, be put = , BR = #, RS y, and AS = z:

B R T c

vx

Then theSubtangent RT being = ^, we have BT

= x + L.
: Moreover, fince the Diftances BT and

AS gone over in the fame Time, are as the Celerities

and i, we alfo have BT (
= n X AS) = z = x +

VAT

. : Whence, in Fluxions (making j conftant)
j-

V \
*

S r \/ V "T~ X

The
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The Fluent of which (by Art. 126.) is X Log. y

x 4. VV 4- x
1

= Log. I - : But when ya, x is = o,
y

and then the Equation becomes n x Log. a =: o ;

therefore the Fluent, duly corrected, is n x Log. a n

x -4- V^y* -4- .*
z

tf"
x Log. v = Log. -1- ^ -L

, or Log. =
y y*

ji

Whence it is evident that

/
and f5. ^ = Vv^Tl1 ;

from which, by fquaring both Sides, 2^ is found =
* '

v
" ' a v

1 *

Q*-'| whofe Fluent is 2* = +
/ a*

l

B -f-I

But when ^ = a, x is = o, and then,

a a ina
o = ---

1
-- --

; therefore the
l n n + i i

Fluent corrected is 2*
l_n

Otherwife (without fecond Fluxions.)

441. Put ST = P and RT == ^. Then fince the

abfolute Velocity of the Body S is denoted by Unity,
that with which the Ordinate SR is carry'd towards the

6) 6)

Body Twill be denoted by -p
X i or

jf (by Art. 35 .)

which fubtradted from n the Velocity of 7", leaves n

^
^ for the relative Celerity with which T recedes from

L 1 3 R :



5 1 8 The Rejolution of Problems

>
R : After the fame Manner, if from x the Celerity

of Tin the Direction ST produced, there be taken (i)
the Celerity of S in the fame Direction, the Remainder,
n9
-0

s
i, will be the Celerity with which T recedes

from S : Therefore, the Fluxions of Quantities being as

jp n>
the Celerities of their Increafe, we have n ~7J : "~5~

; and confequently nQ P X <j>=nP<l>x P.

But, fmcethe Quantities P and j^are concerned exactly
alike, the Equation thus derived will, in all probability,
become more fimple, by fubftituting for their Sum and

Difference: Let therefore P+^ J, and P Q=v,

or, which is the fame, let P =?= , and j^z= :

2 2

ns nv s v
Then, by Subfhtution, we ihall have

i v ns 4- nv s -f v s + v
X r= X j which con-

tracted, &c. becomes i+nxv's=zi Xj>i/, or i-J-x
*

= i x i whofe Fluent (corre&ed) is i-f

X Log. s = i wxLog. v+ 2nx Log. at or Log. J1+ *

-= Log. a v 1-". Whence s'+n = a
2" v l~\ and

confequently s
l+n x T/

I + B =fl
2" va

: But sv (
= S

X ST RT = RS 2

) =y* therefore j*+ x v1+ " ~
2 , y"

+I x v* 1=a v\ and v = . whence f (
- -)

a V w
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_ But RS : RT

JL9 and ix ~

, the very fame as before.

COROLLARY.

442. If the Velocity of S be greater than tbat of T
(or n be lefs than Unity) the two Bodies will concur

when the latter has moved over a Diftance expreffed by

-
; becaufe, when y becomes = o, ix is bardy =

But if the Velocity of S be lefs thaa tbat of

j

ina

j

Ty it is plain that 5 can never come up with T: Bat its

n l

neareft Approach will be when j ^T^j xa.-For,

+i

fmce ST is univerfally = r-
-

> let the FIux-

2/~ If?

ion of this Expreflion be taken and put equal to No-

thing ; and / will be found as above exhibited.

It" the Celerities of S and 7, inftead of being uni-

form, vary according to a given Law ; then, denoting
the former by A and the latter by B> the Equation of

x By
the Curve will be , ~ v : And if the

Yj-t-x "/

By
Fluent of -jr be explicable by a Logarithm, as L. NI

then, the Fluent of - l being L. -L_1-L_J!!* ,
Mtt.

vy +* j
LI 4 we
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we fhall have N v- v v
1

-f- x 1

-
j which, ordered,

gives A- rz - : Whence x will be found.
2 2^V

P R O B. XVI.

443. To determine the Frujlum CDEF cf a Trian-

gular-Prifm, cf a given Bafe CF and Altitude BA ;

uibicb, moving in a Medium^ in the Direfiion of its

Length BA, Jhall be refijled the hajl po/ible.

Draw CH parallel to BA meet-

ing ED, produced, in H : More-
over, let HP, PQ^and PR be per-

pendicular to CD, CH and DH
refpeclively.

Since the Number of refitting
Particles acting upon DC is as

DH, and the Force of each as

iTpT/
the Square of the Sine of

the Angle of Incidence DPR,
the whole Refinance fuftained by DC will therefore be

DH x DR Z

cxprefied by
--

ryrn;
, or DR, which is equal to it (by

the Similarity of the Triangles DHP and DPR) Whence
the Refinance upon ADC is truly exprefied by AR (AD
-f DR) and is a Minimum when its Defed (PQ.) be-

low the given Quantity AH (or BC) is a Maximum :

But PQis a Maximum when CQ^ and HQ_ are equal ;

becaufe, the Angle CPH being Right, a Semi-circle de-

fcribed upon CH will always pafs through the Point P ;

and it is well known that the greateft Ordinate in a

Semi-circle is That which divides the Diameter into two

equal Parts.

Hence the Angle DCH, when the Refiftance upon
ADC is a Minimum, will be juft the Half of a Right-

Angle, provided BC be given greater than BA; other-

wife,
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wife, the whole Prifm CAP will be lefs refifted than

any Fruftum CDEF of a greater Prifm.

P R O B. XVII.

444. To determine the Angle RBE which a Plane EBF
mujt make with the Wind blowing in a given Direction

RB, fo that the Plane itfelf may be urged in another given
Direction BA with the greats/I Force pojjible.

It is known, from the

Refolution of Forces, that

theForce whereby the Plane

EF is urged in the given
Direction BA, by a Par-

ticle of Air, acting in the

Direction RB, is directly as

the Rectangle of the Sines

of the Angles (ABE, RBE)
which the two given Directions make with the Plane :

Therefore, fmce the Number of Particles acting on EF
is as the Sine of RBE, it follows that the whole Force,

or Effect, of the Wind, in the Direftion BA, will be

as 5. ABE X Squ. S. RBE ; which being a Maximum,
we have (by Prob. 5.) 3 : I :: Sine of the whole given

Angle RBA : Sine of RBE ABE. Whence the Angles
RBE and ABE arc both given. Q E. I.

COROLLARY.
44 <j.

If the Angle RBA be a Right one (which is

the Cafe with regard to the Sails of a Windmill) then

the Sine of RBE ABE being ^ ,333 t$c. we
fhall have RBE ABE = 19 : 28' ; and confequenily

= 54 : 44'

521

PROB. XVIII.

44.6. If two Bodies A and B, joined by a String, be

urged in
oppojite Directions, towards P and Q_, by any

given Forces F and f, uniformly continued ; // is propofedty

find the Tenfion of the String, or the Force ivhsreby the

Bodies endeavour to recedefrom each other.

Since
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Since F /is the abfolute Force by which the two
Bodies are, conftantly, urged towards P, the whole

Motion, generated in Both, in any Time jT, will there-

fore be exprefled byFf X T: Whence, becaufe both

Bodies (by reafon of the String) acquire the fame Ve-

locity, the Motion generated in jf, alone, will be

- -. x Ff x T9 or that Part of the irbaU defined by
Ji -f- o

-3 . But the Motion of jf9 had it not been

retarded by the String (or B) would have been F
X T-, therefore the Lofs of Motion, by the A&ioa

B _
upon the String,, is FxT -j ^

x Ff x Ty

= 4~T1T
X T: Wbich' divided by *e Time T9

(wherein that Lofs or Effeft is produced) gives *} ^- ,

for the Tenfion of the Thread, or the Force fufiicient to

caufe the faid Lofs or Motion,

"The fame otberwife.

447. Becaufe the Force F, was it to aft alone, would

communicate, by means of the String, the fame Ve-

locity to B as to A, the Part therefore of the Force F
employ'd upon B, by which the String is ftretch'd, will

B
'

BF
be -3 n X F, or >. p.* And, from the very fame

Argument, if the Force / was to aft alone, the Teniion

of the Thread would be /. P : Therefore, when both

the
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fJi 2?p
the Forces act together, the Tenfion will be ~\~- '

For it is very plain that, their acting both at the fame

time, no way influences their refpective Effects on the

Thread. ^. . /.

COROLLARY.

448. If the Forces F andf be refpectively expounded
by the Mattes, or Weights, of the Bodies ^and B ; the

Tenfion of the Thread will then become

Whence it appears that the Tenfion of a Thread fliding
over a Pin or Pulley, by means of two unequal Weights
A and B3 fufpended at the Ends thereof, is equal to

-r., r>, -
.

~TT~D : lne Double whereof, or -j 77, is the Weight

which the Pin or Pulley fuftains, while the Bodies are

in Motion j becaufe the Thread hangs double, or on
both Sides the Pulley.

If feveral Bodies A^ 5, C, D &V. communicating by
means of a

String
or Wire AF, be urged towards a

Point P, in the Direction of the String or Wire, by
any given Forces^, ^, r, s &c. refpectively, the Tenfion

of the Part AB will be

/>
X ~B~+ C + D bV. A X g + r -f s &c.

.

A + B 4- C -f D (3'c.

of the Part BC

X D + E+F 4+B+ C X

4 + B -f C -f D &f.

All
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All which eafily follows from above ; and will an-
fwer alfo in thofe Cafes where fome of the Forces are

fuppofed to a6t in the contrary Direction, if every fuch
Force be confidered as a negative Quantity.

P R O B. XIX.

449. Let it be required to raife a given Weight N, to

a given Height BC, along an inclind Plane AC, by means

of another given freight M, cmnetfed to theformer by a

flexible Rope NrM, moving ever a Pulley at C j to find
the Tenfion cf the Rope ; a/Jo the Inclination and Length

of the Plane, fo that the Time of the whole Afcent may be

the lea/1 pojfible.

It is well known that

the Force by which N
tends to defcend along
the Plane AC, or acts

in oppcfition to J</(fup-

pofing BCntf, and AC

r: x ) will be :

x

Therefore M
x '

A.

or
xMaN.

x
is the efficacious Force, by which the

Bodies are accelerated : But it is likewife demonftrable

that the Time of defcribing any Line by means of a Ve-

locity uniformly accelerated, is in the fubduplicate Ratio

of the Length thereof, directly, and the fubduplicate

Arti 101. Ratio of the accelerating Force, inverfely
*

: Whence
it follows that the Time of defcribing AC will be

reprefented by
x

Whofe Fluxion
(
or

that of its Square) being made equal to Nothing, x will

be found = -1*7 , or M : zN :: a : x. Hence the

Time
M
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Time of the Afcent will be the leaft poffible, when the
Sine of the Plane's Inclination is to the Radius, as the
Power (M) is to twice the Weight, (N) to be raifed.

The Tenfion of the Rope will be determined from

aN
the laft Problem, (by writing AT for A, for F, M

fylN a -4- x
for B, andM for f) and comes out = , -, x .

. E. L
P R O B. XX.

450. Let AC reprefent a Piece of Timber, movealle

about a Center C, making any Angle ACG with the

Plane of the Horizon CG ; to determine the Pofttion of a

Prop or Supporter OS, of a given Length, which fball

fujlain it -with the greatejl Facility, in any given Pofi-
tion ; and alfo

what Inclination AC will have to the Ho-
rizon when the leajl Force that can fujlain it} is greater

than the leajl
Force in any other Pofttion*

Let R be the Center of Gra-

vity of the Beam AC, and let

R, R/n and CD be perpendi-

cular to AC, CG and OS re-

fpeaively : Putting SO=a, CR
r, Cm x, and the Weight

of the Beam = w.

Then, by the Principles of

Mechanics, we (hall have, firft,

as ROT : Rn, or as, r : x :: w :

C 7/1

(
J the Force

which adding at R, in the Direction R*, is fufficient to

xw
fuftain the Beam AC j fecondly, as CO : CR (r) ::

xw
the Force able to(the Quantity laft found)

fupport it, at O, in a perpendicular Direction; and,

laftly,

525
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hftly, as CD : CO :: g :

^~,
the Force, or Weight,

a&ually fuftained by the given Prop SO. Whirh Force

will therefore be the leaft poffible when the Perpendi-
cular CU is the greateil poffible, let the An^le of In-

clination GCA be what it will : But of all Triangles,

having the ferwe i> fe (OS) and vertical Angle (SCO)
the Ifoiceles one is known to have the greatcft Perpen-
dkular: Therefore the Triangle CSO will be Ifofceles,

and the Angles S and O equal to each other, when the

Weight fuftain'd by the Prop OS is a Minimum.

But, now, to give a Solution to the latter Part of

the Problem, or to find (fuppofing the Angles S and

V
O to be equal) when

^rr\
X iv is a Maximum^ let CD

produced meet ;;.'R in F
;

and then, becaufe of the fimi-

lar Triangles CDS and CwF, we fliali have CD : x

(Cm) :: SD (i aj : mF, or TTR = ~
i and confc-

v #jF
tiuently TTK X w - X w : But, fmce CF bifeds

, CIJ * a

the Angle ?>;CR, we alfo have, r+ x (CR-f CM) :
x

(Cm) :: V&=^ ' (W : ? =

x^/ r
. -: Whence the Force ^ x w, acting

upon the Supporter, is likewife truly exprefled by

: Whereof the Fluxion being taken and

put equal to Nothing &c. we get x =
2

Therefore CR : Cm (::i:^
S

^
M;; Radius: Co-

line of RCG= 5i : 50', the Inclination required.

P R O B.
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P R O B. XXI.

451. To determine the Pofttion of a Beam CD, move-

eible about one End C a! a Center^ and fuftained at the

other End I) by a given Weight Q_, appended to a Cord

QAD faffing over a Pulley at a given Point A.

A F K TT B Let G be <hc

Center of Gra-

vity of the Beam;
alfo let DF, GK
and CH be per-

pendicular' to the

Plane of the Ho-
rizon, and CL
and AH parallel
to the fame : Put-

ting AH=a, CH=, CDrrc, CG-dt DL=x, CL
= y y and the Weight of the Beam w. Then AF
= a y, DF -b + x, and AD (/AF'+DF 1

) =
V a* 2ay -f / + b* -f- 2bx -f- x* ; which (becaufe y* +
yi

1" = t
1

) will alfo be rz a
1 + b* +

zay (by putting/ *= whofe

is the

Momentum of the Weight j^, fuppofing the Beam to

to be in Motion. Moreover, becaufe DC : DL :: CG ;

GI, we have GI = j whofe Fluxion, , multi-

ply'd by w, is the Momentum of the Beam itfelf in a

vertical Direction.

Wherefore making thefe Momenta equal to each other

(according to the Principles of Mechanics) we get
bx ay dx

r.v x J= X /, and confequently

bx oj X f^.= dwx 2ay: But, fmce
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y* -}- x* = \ we have 2yy + ixx o, or y =.

X *"* *

-
: And therefore (by Subftitution) * 4- ~ x_ y

f- + 2bx 2ay t or by +
Vf* -\-ibx 20y: From whence, and the foregoing
Equation -*

1

-}-/*:=% both x and_y may be determined.

The fame other-wife.

452. It is evident, from Mechanics, that the Force

which, acting in the Direction DF, would fuftain the

End D, is to the whole Weight w, as CG to CD ;

CD
and therefore is =r TTTT X w : It is likewife Jcnown

that two Forces acting in the different Directions DF
and DA, fo as to have the fame EffecT: in fuftaining

DC, or caufmg It to move about the Point C, muft be
to each other, inverfely, as the Sines of the Angles of

Incidence FDC and ADC. Therefore we have 5. FDC
CD

: S. ADC :: j^: : x iu\ from which given Ratio of

the Sines, the Angles themfelves will be found, by an

algebraic Procefs independent of Fluxions.

COROLLARY.

453. If the Pofltion of CD be fuppofed given, and

the Tenfion of AD (or the Weight J^J be required:

Then, from the foregoing Proportion, we fhall have j^p
9 F1~)C" C(~"

..' . ... . X - - x w. Which will alfo exprefs the
jo.

Tenfion of AD when the End C is fuftained by a Cord
1>C inftead of ?. Pin at C : Whence it follows that the

Tenfions of two Cords AD and BC, fuftaining a Beam
or Rod CD, at its Extremes D and C, are exprefled by
5. FDC CG ,5. HCD DG

x x ^ and x x w > and
CD cD CD

there-
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therefore are to each other as or
CG DG

S. ADC ty
S. BCD

as S. BCD x CG to S. ADC X DG refpeaively 5 be-

caufe the Sine of FDC and that of its Supplement HCD
are equal to each other.

P R O B. XXII.

454.. To determine the Pofttion of a Beam DC, fuf-

pendedat its Extremes by two Cords AD and BC of given

Lengths , from two given Points A and B in the fame
horizontal Line AB.

Let G be the Center of Gravity of the Beam, and

Jet DF and CH be perpendicular to AB.

II B

It appears, from the Corol. to the laft Problem, that

the Tenfion of AD is to that of BC, as -

whence (by the Refolution of Forces) the
.

Force of AD, in a Direction parallel
to the Horizon,

is to the Force of BC, in the oppofite Direction, as

CG S. ADF DG S. BCH ___,. ,v tr> * v . Which
S. ADU 5

Rod. S. BCD x
Rad.

Forces, that the Beam may remain in Equilibria, muft

M m con-
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confequently be equal to each other; and therefore

5. BCD S. BCH DG D
ADC ~ ODF x

TIG'
But now ' to detcrmine

the Angles themfelves, from this Equation and the given

Lengths of AB, BC foV. let AD and EC be produced
to meet each other in P, and let PQ_, perpendicular to

AB, be drawn ; putting AB a, AD = b> BC = r,

DC=<i, DG=/, CG=, AP=*, and EP=y.
Then, becaufe AB : AP+ BP :: AP BP : AQ_ BQ_
AP 1 BP^ AP 1 BP*= AB "'

we have AQ~ = * AB +
2Att

ABa
-f AP 1 BP 1

=-AE
-

: ' an C01" e<
l
uen"y t"e Co-fine of

A (= Sine ADF) to the Radius x =

Whence, from the fame Argument, it is evident that

the Co-fine of B (= Sine BCH) will be exprefled by
_

2ABxBP iandThatofAPBby

And alfo by ~~pr) pr*
-

> which two laft Quan-

tities being equal to each other, we have PD x PC x

AP a+BP a AB*=AP x BP x PD^+ PC 1
I>Urrthat

is x b x y c x x
1

+y*a*= xy X 'xff+jHA* /.

Moreover, fincePC : PD :: S.ADC (or PDC) : S. BCD
PD 5. BCD S. BCH

(or PCD) we alfo have = - = - x

(by the firft Equation) ; whence CG x PD x

S. ADF = DG x PC x 5. BCH ; that is CG x PD x

AB*+AP* BP1
-^ AB*+ BPl AP

or
2AB X BP

CG
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CGxPD x BP x AB 2+AP2 BP^DG x PC x AP x

AB 2
-f BP 1

AP% which, in algebraic Terms,
x t>Xa* + x

i / fx xy cxa' + y* x1
. From

whence and the preceding Equation the Values of x and

y will be known.

P R O B. XXIII.

455. Suppofing a Beam CD, moveable about one End
C, as a Center, to be fujiained at the other End D by
means of a given Weight P, hanging at a Rope pa/Jin*
over a Pulley at a given Point A, vertical to C ; it is pro-
pofed to find the Curve APK along which the Weight mujl
afcend, or defcend, fo as to be, every where, ajujl Coun-
tfrpoife to the Beam.

v
A From the Center C,

with the Radius CD,
let a Semi-circle HDR
be defcribed, and let

DB and PF be perpen-
dicular to the vertical

Line AHCR ; alfo let

CD= a, CA-b, AH
=c, AF = *, PF=j,
HBzrz, and the Length
oftheRopeDAP=;;2j
likewife Jet HQ_ (h) be
the given Value of x

(AF) when D coincides with H.
Becaufe the Weight and the Beam are always in

Equilibria, by Hypothecs, their Momenta, and con-

fequently their Velocities, in a vertical Direction, muft
be every where in a conftant Ratio ; and therefore

the Diftance QF (h x) afcended by the Weight P9

will be, to the Diftance HB defcended by the End
of the Beam D likewife in a conftant Ratio : Let
this Ratio be that of b to any given Quantity d,

that is, let h x : z :: b : d, and we fhall have dh

dx-bz: Moreover, we have ADa
(CD*+AC a 2AC

X BC) =aHi* -2bXa z-b a*+2t>z = c
2 + 2&z

= S idh + ^dx : Whence AP (m AD) = w
M m 2
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zdh+idx, and therefore, / (AP
J AF 1

) =

x\ >. E. I.\/cc -m
After the fame manner a Curve may be found, along

which a Weight defcending, {hall be every where in

Equilibria with another Weight afcending thro' the Arch
of a given Curve.

P R O B. XXIV.

456. To find the Equation of a Curve ABH, along
which a given Weight P, fujpendsd by a String PED
faffing over a Pulley E, mri/f defcend, Jo thai the Tenfwn

of the String may vary according to any given Laiu.

Let EC be perpendicular, and

CP parallel, to the Plane of the

Horizon ;
alfo let AE #, ACn*,

CBrr:^, EP = v, and let the Ten-
fion of the String (or the Force

acting at the End D) be denoted

by any variable, or conftant, Quan-
tity 4;

Therefore, becaufe the Celerity
of the Weight P, in a vertical Di-

rection, is to its Celerity, in the

Direction EP produced, (or the

Celerity of the other End D) as

x to -v, it is evident that the Weight
itfelf muft be to the tending Force j^, inverfely in that

Ratio, and confequently Px=<j>v.

Furthermore, becaufe EC =a+ x and BC 2 nBE1

EC% we have y* r: v* fl+^|
l

: From which Equa-

tions, when the Relation of P and Q. 1S g'ven > the

Curve itfelf will alfo be known.

Thus, for Example, let the Ratio of P to j^, be

conftant, or that of m to , then mx being= /, we
have (by taking the Fluent) mx -\- na =. nv j whence

mx a / ,

2max
,

m*x*

v a -}- j and therefore jr (
= a +- -f- r~
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__ i . t . 7 m a

n n*

Which is the Equation of an Hyperbola.
Again, for a fecond Example, let the tending Force

^.bc to the Weight P, as DE" to AC" X f"-"
1

, or as

^
4J : x* c~"

m
(fuppofing ziPED and c any given

Line AF.) Therefore, fince ^ = tll^L x P, and
K * M

C *

A 1*b v\
V (=^y) = Px, we have b v\

I 1"
+ 1 .

j

+
n m m . . r b a O V\

c xx t and fo
+ I

m+i ; whence b
-1}

n +
-, and v

(
EP ) = b

,n + 1 ft -+- ' X

I

+ ^

. From which

the Relation of x and ^, or the Value of BC, is alfo

known.
But if m o, and = r, (which will be the Cafe

when the Force acting at D is equal to that by which a

Beam or Rod is made to move about a Center, as in

the laft Problem) v will then become, barely, = b

/, 0)'" 2]*, and therefore y
1

(
= v* a + x]

1

=. b V^ a\
l

.

2<rA a -\- x\
: Therefore

ABH is, in this Cafe, a Line of the fourth Order.

M m 3 PfcOB.
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P R O B. XXV.

457- Suppoftng a Ray of Light ABCD to be refrafied

at the Surface of a given Sphere MQND, and after-

wards reflefted any given Number (n) of Times, within

the Sphere j to determine the Diftance of the Incident Ray
AB from the Axis MN, fe that the Arch MBCDE, in-

tercepted by the given Point M and the emerging Ray at

E, may be a Minimum.

Let the Radius

^__O OB = i, the Sine

A \ sB/'" *>. of Incidence BR^Z"
r, and the Sine of

and let the given
Ratio of the two

laftbethat of/>to?.
Since all the An-

gles of Incidence

andReflexionBCO

OCD, CDO &c.

are equal, the Arcs

BC, CDandDEmuft alfo be equal; and confequently

MBCDE = MB + ;;+i x BC= MB + 2 + 2X BQ :

A*. 22. Whofe Fluxion is to be equal to Nothing*. Now
the Fluxion of the Arch MB, whofe Sine is * and

fArt.142. Radius Unity, will be = and that of

the Arch BQ_, whofe Co-fine (OP) is y, =

Hence we have

fince x : \

have

:?, y is = and y =
j and fo

-f 2 X
xy ^^^.

= o j whence (putting
jV

m =
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m = 2*+ 2) X is found = -1 v' t
*

: From

which it is obfervable, that, when mq is lefs than
/>, or

2-}-2 lefs than, the Arch MBCD continually m-r
creafes with BM ; and therefore is the leaft poffible,

when B coincides with M. 4>. E. I.

P R O B. XXVI.

458. If two Rays of Light PR and Pr, from a gfotn
Point P, making an

indefinitely fmall Angle with each

other) be reflected at a given Curve Surface ARB; '//';

propofed to determine the Concourfe, or Focus, Q^ of the

rrfefad Roys RQjand rQ.

Let RO, perpendi-
cular to the Curve, be
the Radius of a Circle

having the fame Cur-
vature with ARB at

R
} make PH and QM

perpendicular to RO,
joinQ_,O; andputRO

and RQ_= z.

Then, becaufe the Angle of Reflection ORQJs equal
to the Angle of Incidence ORP, the Triangles RQ_M
and RPH will be fimilar, and therefore y:v:: : RM
= -: Whence OQ.

1

(RO
1 + RQ^ 2RO x RM)

irvz

But, fmce this Quantity OQ^ continues the fame

(by Kypothefis) whether we regard one Ray or the
other (that is, whether y {lands for PR or Pr) its

Fluxion muft therefore be equal to Nothing; that

M m 4 is,
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irvzy -f- 2rviy irvzv
is, 22z

J- p& = o : Whence
y

vyz "~
/. 35.)*= -y therefore z=

vyy
: Moreover (by Art. 73.) r =r 21.

vyy
<D E I

i. Let ARE be an Arch of the Logarithmic

Spiral : whole Equation is av by f : And then, <

4x ^ ^)!J' \

being =:
, we fhall have z ( : . J = y :

a v
-

2)'-y vy/

Therefore in this Cafe the Incident and Reflected Rays
are equal to each other.

Ex. 2. Let ARE be fuppofed to degenerate into a

Right-line : In which Cafe v being conftant, its Fluxion

i>yy\
v is = o; and therefore z ( , } v; Which

<uy'

being negative, indicates that the Rays do not converge
after Reflection, but, on the contrary, diverge from a

Point on the contrary Side of ARE, at the Diftance;-.
Which is very eafy to demonftrate by common Geo-

metry.

P R O B. XXVII.

4.59. Let two Rays of Light PR and Pr, from a given
Point P, be refrafted at a given Curve Surfate ARE ; to

determine the Focus Q_ of the refrafied Rays RQ_and rQ.

Let the Lines RO, RH &c. be drawn, and denoted

as in the preceding Problem: Moreover, let the Sine of

Incidence PRH (to the Radius i) be reprefented by s,

and let it be to the Sine of Refra&ion ORQ^, in the

given Ratio of i to n.

Then
9
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Then (by Trigonometry) i :ns (Sine QRM)::z (RQJ
; QM nsz't and therefore RM r^ y^4 wVz*

rr z y i n~s~. From whence, following the Steps

of the preceding Problem, we alfo get QQ^=r*+z
t

2rzv'i-i-V_; and its Fluxion 2zz irzV i nV
2rzn ss

";
" ~ =: c ; or

Vl V ! V* rz x 1

= o. But (/y ^r/. 35J z = ny ; there-

fore j V i w*f
l
4" rj x * "

2
'$z ~f" wzw =: O :

Moreover (by Trig.} i (Radius) : i (Sine of PRH) ::

y (PR) : Vy
L

-y
1

(PH) whence we have jy =
j; r=

v*j yv-v= -5 ; which Values, of j
a
and j^, being

ftituted in the foregoing Equation, it becomes -

x -. w
- + _ + x i T- 4- H/-3 X

o, or

j nn x >
z

4~ 7I
*V*

'

4/ l" ^ I 2,

^ 4. V + rjtf X

> rr o ; or (putting

4- r -r

537
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*/ *x

yj
nzv*y nyzwv O. But (by Art. 73.) r ,

therefore zywi> + ufyy -\- nzv^y nyzv-vO, and

confequently z = - 1

: r* >. E. I.

Art. 142.

uy+ z^ x v

From this Solution, that of the preceding Problem

is eafily
derived : Alfo from hence the Cauftic (or the

Curve which is the Locus of all the Points Q_ thus

found) will likewifc be given.

P R O B. XXVIII.

460. To find the Time of the Vibration of a Pendulum

in the Arch cf a Circle.

Let AB denote the Pen-

dulum in a vertical Pofition ;

and from any Point D in the

given Arch CBH, wherein

the Vibrations are perform'd,
draw D/" parallel to CH ; and

and BD 2: By the Nature

of the Circle we have z

-i = *
: Whence the

Y 2ax xx

Fluxion of the Time, being
* 2*

4Art.*c7 . as -p= t will be defined by - GX

ax

Vtx xx X y/2a x
J.
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i

when xc9 (or ex
A-"*) =o) is, (by Art. 142. and 286.)

c 3 . 3c*

equal to ? V^ x i + 2 . a . M +
2 ^ a> 4 ^ ^ ^

j

3 3 5 5'
3

+ 3 3 5 5 7 7**

~
2.2.4,4.6.6.2tf)

3

2.2.4.4.6.6.8.8. 2y
CSfc. Which therefore is proportional to the Time of
half one Vibration; where p ftands for the Semi-Peri-

phery of the Circle whofe Radius is Unity.

COROLLARY I.

461. Since the Time of the perpendicular Defcent

of a Body through any given Right-line #, computed

according to the fame Method, is as the Fluent of

~. or 2 V u, it follows that the Time of
fallingY u

along the Diameter BF (2*), or the Cord CB *, will *Art.io5.

be truly defined by 2v/ 2a : Which therefore is to the

Time of the Defcent thro' the Arch CDB, as -'- to i

3 . 3^*
4. H s =rz &c. From whence,r 2 . 2 . 20 2 . 2 . 4 . 4 . 2a\

as the Time of falling thro' the Diameter BF, is abfo-

lutely given, by Art. 202. the true Time of Vibration

will alfo be known.

COROLLARY II.

462. If the Arch in which the Pendulum vibrates be

very fmall, the above Proportion will become, nearly,

as 4 to p : From which it appears, that the Time of

Defcent thro' any very fmall Arch CB is to that along

the Chord CB, as the Periphery of any Circle is to four

times its Diameter.

COROLLARY III.

463. Hence, we have a Method for determining how

far a Body freely defcends in a given Time j by knowing
the
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the Time of Vibration, of a given Pendulum: For, if

BN be afiumcd for the Space thro' which a Body would
detcend during the Time of one whole Vibration, in

the very fm all Arch CBHj then, the Diftances de-

Art. 201. fcended being as the Squares of the *
Times, we havr,

from the laft Corollary, as 4* : 2pl~ :: BF (20} : BN,
or i : lp~ : a : BN ; that is, as the Square cf the Dia-
meter of a Circ'e is to half the Square of its Periphery,
fo is the Length of the Pendulum, to the Diftance a

Body will freely defcend, from Reft, in the Time of

one Ofciliation. Thus, for inftance (becaufe it is found

from Experiment that a Pendulum 39,2 Inches long
vibiates Seconds) it will be as I : 4,934 (r=i/>

2
) :: 392

: 193 inches, the Diftance which a heavy Body will

fall in ihe firlt Second of Time.

COROLLARY IV.

464. Moreover, from the foregoing Series, the Time
which a Pendulum, vibrating in an exceeding fmall

Arch, will lofs when made to vibrate in a greater Arch
of the fame Circle may alfo be deduced :

For let T be put to denote the Number of Seconds

in 24 Hours (or any other given Time) then the Num-
ber of Vibrations, performed in that Time will be as

; which, therc-
3 . 3*

t . ft 14 2.2.4. 2tf
|

^5
""

f*

fore, in an exceeding fmall Arch (where c may be taken

as Nothing) will be exprefled by T: And fo the Time

(t} or Number of Vibrations loft will be T

4.4

-L j_
$c &c, (by dividing by the Denominator.)

%a 256**

Now, if the Number of Degrees defcribed on each

Side of the Perpendicular be reprefented by D, tife

Arch
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Arch itfelf, on each Side, will be= 3.14159 &c. x a
D .

x TTT- ; which, if the Value of D be not more than
loO

about 15 or 20 Degrees, will be nearly equal to its

Chord, reprefented by \/2ac (~1/BF x BE.) From

which Equation we get T-T ' This Value, fub-
fe a 6560

r^. *. T~\. A

ilituted above, gives tT/.

541

8x0500
-f

= T X Q- nearly : Which, when T is interpreted

by 864.00 Seconds (or one whole Day) becomes rr i x

.>% nearly : And fomany are the Seconds which will be

loft per Diem in the Arch D. From whence we gather,
that if the Pendulum meafures true Time in any fmall

Arch, whole Degrees on each Side the Perpendicular
are denoted by ^, the Number of Seconds loll per Diem

in another Arch whofe Degrees are B
t

will be nearly
?

reprefented by x B x A* : Thus, if a Pendulum

meafures true Time, in an Arch of 3 Degrees, it will

lofe lOj Seconds a Day in an Arch of 4 Degrees, and

24" in an Arch of 5 Degrees.

P R O B. XXIX.

465. To determine the Meridional Parts anjwenng to

any propofed Latitude, according to Wright'5 Projeflion,

applied to the true fpheroidal Figure ofthe Earth.

Let DAR be the

Axis, AB the Se-

mi-equatoreal Dia-

meter, and DBR a

Meridian, of the

Earth j
alfo let bn

be an Ordinate to

the Ellipfis DBR ;

puttingAD(=AR) A
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/ */

= r, BArrJ, A=rjr, bny, Bn=z, and the Meri-
dional Diftance (in Parts of the Semi-Axis AD) u.

Then, by the Nature of the Ellipfis, we have y d

f dxx
V i **; therefore j

~^
; ; and confequently

r i X

S~~ d*x*x*
* = \/ x* + : Which, by putting b* = d*

I """*XX
* A/ _

|_ A^y1

I, will be reduced to
/ Whence,

by the Nature of the Projection, it will be as bn

x V\ + b x
Of the

required : But we are no.w to get the fame thing ex-

prefled in Terms of the Latitude of the Place n: In

order thereto, putting the Sine of that Latitude = j, we

have, by Trigonometry, as %. ( .

J y
^ V i x*

(;. )
:: Radius (i) : JJ and confequentlyy i *v

*V i + ^a = dx j from which Equation x is found

s J*i

/.a zr^ : Whence x =

_ -
>a

-^^v k'-^v" (becaufe ^ = ' + * ) and
'

/ ^ \ d

laftly,
V i + ^V (

= 7 j
= TTTZTv : 'ch

feveral Values being fubftituted in that of w, found ^bove,

/ d s d
it will become f r x , ^ .

= x

; which refolved
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into two Parts, for the more readily finding the Fluent,

gives * = _I_
^f.^,.:

Whereof the Fluent

being taken, we have

2 . 302585 12c. x \d X Log.
i *

2 . 302585 fcfr. X | b X Log.
-

But, as 3,14159 fefc. x 2<f (the Meafure of the whole
Periphery of the Earth at the Equator, in Parts of the
Semi-Axis AD) is to 21600 (the Meafure of the fame
Periphery in Geographical Miles) fo is the forefaid Va-
lue of u to

3958 x Log. i-i-i

the correfponding Value

39586 d + bs

of
, in Geographical Miles, or the Meridional Parts

required.

COROLLARY.

466. If the Earth be confidered as differing but little

from a Sphere, d will be nearly rzi, and confequently

(V d
1

i ) the Value of , very fmall : Therefore, in

this Cafe, the latter Part of our Fluent f
* *

X

Log. -j ) will become nearly 3440^ (becaufea "" us^j

d+bi 2bs*\ I _
Loo-. - - - l x -r- *. But if theEarth

d bs d J 2 . 3025 &c.

be taken as a perfect Sphere, this laft Expreflion will

vanifh, and fo the Value of u will become barelyr=3958

* There is a Mijlake in p. 43. and 44. of my Dijfirtalions

(by forgetting to divide by tht Modulus 2.3025 &C.) ivbicb

mayfrom hence be ;
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X Log. . Which Logarithm, it is eafy to prove,

exprefies twice the artificial Tangent of half the given
Latitude increafed by 45 Degrees (Radius being Unity.)
Wherefore, if the Meridional Parts anfwering to any
given Latitude, thus found (from a Table of logarithmic

Tangents) when the Earth is confidered as a perfect

Sphere, be denoted by M, it follows that the Meridional

Parts anfwering to the fame Latitude, when the Earth

is taken as a Spheroid, will be nearly equal
to M

3440V- Which, becaufe AD (i) : AB (/i-f M) ::

An. 397-230 : 231 *, will (by fubftituting the Value of b hence

arifing) be reduced to M 30;. Whence the follow-

ing Rule. ,

M
As Radiusi to the Sine of the given Latitude, fo is 30

to a Fourth-Proportional ; which fubtrafted from the Me-
ridional Parts when the Earth is taken as a Sphere (found
as above) gives the Meridional Parts anfwering to thefame
Latitude , when it is confidered as an oblate Spheroid.

Thus, for Example, let the given Latitude be 50 :

Then, rirft, for the Meridional Parts in the Sphere ;

we muft, according to the foregoing Prefcript, take the

Logarithmic Tangent of 25 4-45, or 70: Which,
by the Table, is found = 0,43893 &c. This multi-

ply'd by the conftant Multiplicator 7916 (
= 2 X 3958)

produces 3475 for the Meridional Parts in the Sphere :

Then by the Rule above, it will be as Radius to the

Sine of 50, fo is 30 to 23 ; which fubtra&ed from

3475, leaves 3452 for the Meridional Parts anfwering
to 50 Latitude, in the Spheroid.

P R O B. XXX.

467. To determine the Paths which Shadows of 01-

jefts deferibe, upon the Plane of the Horizon, during thf

Suns apparent diurnal Revolution.

Let CSODT be the Plane of the Horizon, and AV
the perpendicular Height of the Object : Then, fmce

the Rays, intercepted by the higheft Point V, would,

in the Sun's diurnal Revolution, form a conical Sur-

face
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face VDFEH about that Point as a Vertex ; whofe Axis
PV produced pafTes thro' the Pole of the World ; it is

evident that the Path of the Shadow, being the Inter-

fe&ion of the Plane of the Horizon with that Surface^
muft be a Conic Section.

545

Let its two principal Diameters therefore (when an

Ellipfis, that is, when the Sun never defcends below the

Horizon) be CD and ST ; alfo let DPE and CG be

perpendicular to VP the Axis of the Cone, and CQ
perpendicular to DV : Putting the Sine of (QVC) twice

the Sun's Declination VEP=/; the Sine of (DCV) his

greater Meridional Altitude = e, and that of the lefler

(CDV) =h: Then (by planfrrig.) g : I (AV) :: i

(Radius) :CV =
5 and h (Sine of CDV : (CV)

o o

::/(Sine of DVC) : DC = -
: Moreover, i (Ra-

o

dius):~ (CV) :: p (the Sine of the Comp. Decl.
o

GVC) : GC = : And in the very fame Manner it

will be found that DP = j : But GC x DP = OS 1"

(vld. Art. 41.) whence we have ST (zOS) = ~r=~-
'

From which, and the Tranfverfe Axis (DC = , ) thJ

Curve itfelf is given.

Nn

gh>

. E. I.

LEMMA.-
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LEMMA.
468. In any fpherical Triangle, if Radius be fuppofea

Unity, the Produtt of the Sines of any two of the Sides
drawn into the Co-fine of the Angle th,y include, added to

the Produfi of their Co-fines, is equal to the Co-fine of the

remaining Side.

This is demonftrated by the Writers upon Spherics^

P R O B. XXXI.

469. The Elevation of the Pole and the Declination of
the Sun being given, to find at what Time of the Day the

jfzimutb ofthe Sun increafes thejkwejl.

-p
It is evident that the

Time fought will be when
the Fluxion of the Hour

Angle P, bears the greateft
Ratio poflible to That of

the Azimuth Z.
Now the Fluxion of the

Angle P is to that of Z,

univerfally, as Rad. X S. ZO
_ : S. PO X Co-f. O (by Art.

256. Cafe 2.) Confequently

S.POxCe-f. O Co-f. O'

c rjr\ * v * " "' - * s a Minimum, in this
X o. Ziw

Cafe, becaufe PO may be confidered as conftant.

Let now the Sine of PO be put />,
its

the Co-fine of PZ == b, that of ZO = x, and that of

O=yi then, the Sine of ZO being = YI A-% we

have (by the Lemma) p Vix* X y+dx~b; whence

bdx Co-f.O (_ y
v = -/; and therefore

-

7A (
~ TT^1

pVi x* *> zu V vi-

^ dx
. : Which put into Fluxions, and re-

p x i X L

6 duced,
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duced, gives x = -HI , for the Sine of the
a

Sun's Altitude at theTime required: Whence the Time
itfelf is given.

P R O B. XXXII.

470. To determine the Ratio of the Heat received from
ihe Sun in different Latitudes^ during the Time of one

whole Day, or any Part thereof.

Let/>= the Sine of the Sun's Polar-Diftance P (fee

the loft Fig.)
d its Co-fine, or the Sine of the Declination,

irz the Sine of the Pole's Elevation.

c its Co-fine, or the Sine of PZ.
z the Angle (P) exprefllng the Time from

*:= its Sine, and V I x* its Co-fine.

Then (by the foregoing Lemma) we fliall have

p cV i_ x* + bd Co-fine Zd = Sine of the Sun's

Altitude.

Now, it is known that the Number of Rays falling in

any given Particle of Time, upon a given horizontal

Plane, is as that Time and the Sine of the Sun's Alti-

tude conjundtly : Therefore the Number of Rays falling

jf

in the Time 2, or , (ind. Art. 142.) will
v I xx

be dtfined by pcx + bdz: Whofe Fluent pcx+ bdz is,

therefore, as the Heat required.
Where it may be obferved,
1. That when the Latitude and Declination are of

different Kinds, or P is greater than 90 Degrees,
the Value of d is to be confidered as a negative Quan-
tity.

2. That, if the Expreflion for the Heat found above

be divided by the Square of the Sun's Diftance from the

Earth, the Quotient will exhibit the Ratio of the Heat,

allowing for the Excentricity of the Earth's Orbit.

N n 2 Co-
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COROLLARY I.

471. If the Place propofed be at the Equator, the

Heat, received in half one diurnal Revolution, will be

barely as/>; becaufe bo, r=i, and *zrj.

COROLLARY II.

472. But if the Place be at the Pole, then the Heat

will be as d X 3,14.159 &c. fmce, in this Cafe, =0j
b I, and z (=. Semi-Circle) =3,14159 &(

LEMMA.

473. The Number of Particles of Light) ejefied by the

Sun* upon the Earthy in a given Time, is proportional

to the /Ingle defcribed about his Center in that Time.

For, let S reprefent the Center

of the Sun, AEB the Orbit of the

Earth (or That ofany other Planet)
and let E and r be two Points there-

in as near as poffible to each other:

Since the Triangle ESr may be

taken as rectilineal, its Area, if

the Angle ESr be fuppofed given,
or every where the fame, will be

as SExSr, or SE* : And there-

fore the Time of defcribing Er

(being always as that Area) is alfo explicable by SEa
:

But the Intenfity of the Light, or Heat, at the Diftance of

SE is as =KZ : Therefore the Intenfity compounded
oh,

with the Time (or the whole Number of Particles re-

ceived in that Time) will confequently be as g^ x SE*

( i ) : Which being every where the fame, the Propo-

fition is manifeft.

P R O B. XXXIII.

474. To determine the Ratio of the Heat received from
the Sun at the Equator and either of the Pales, during

the Time of one whale Year^ cr any Part thereof.
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^
If the Sine of the

Sun's Declination be

denoted by d and its

Co- fine by p, the

Heat received at the

Equator.and thePole,

during half one di-

urnal Revolution of

the Sun, will be ;

and dx. 3, 1 41 59 &c.

refpe&ively (by the

Corollaries to the preceding Problem).

Let the Sun's Longitude, confidered as variable, be
now denoted by z, and its Sine by s

; and let / be put
for the Sine of the Obliquity of the Ecliptic : Then
(per Spherics) we {hall have^^y}, and confequently p

( V\ d*} = /i /V : Wherefore, feeing the

Ratio of Heat in the two Places, for one Half-Day, is

that of ^i /V 10/^x3,14 fcfr. let each of thefe

Terms be multiplied by (
= z)

*
expreffingArt.i4a,

the Quantity of Heat falling upon the Earth in the

Time of describing z
(fee

the foregoing Lemma) then

>,_/*J-
,
and 3.1^the Produces will

I - 5

be the Fluxions of the required Heat, anfwering to %.

But now to exhibit the Fluents hereof, let ACB be

an Ellipfis whofe greater Semi-Axis AO is Unity,
and its Excentricity FO /; and, fuppofing ADB to

be a Circle defcribed about the Ellipfis, let the Arch DH
exprefs the Sun's Longitude from the Equinodlial Point ;

whofe Sine (OR) being = s, its Co-fine RH will ber=

V/i ss.

But, by the Property of the Ellipfis, OD (i)

ss ) : RG =OC :
(
V i ( v/

,
_ /r x "/i ss : Whofe Fluxion being =

Nn 3
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, we have
y

= ^-~ f
-

i
- = the Fluxion of CG. Whence it

V 1 ss

appears that the Fluent of ^
**! is truly denned

V/"T^
by CG, or CG x AO*.

But the Fluent of the other given Fluxion, 3. \^f x
ss

V i ss
, will be = 3, J4/x i /i w=r ADB X

FO X OD RH. Therefore the two Fluent?, when
H and G coincide with A, will be to each other as

CAxAO to ADBxFO: Whereof the Antecedent,

multiplied by 4, will be as the Heat received at the

Equator during one whole Year j and the Confequent,
multiplied by 2, as the Heat at the Pole in the fame
Time (becaufe the Sun (nines at the Pole only two

Quarters of the Year.) Hence the required Ratio, of

the Heat received at the Equator and Pole, in one
whole Year, will be That of CA x AO to DA xFO;

/* tf4 1 - T 5 f
6

or, in Species, as i
--- -*- J *

, ,2.2 2.2.4.4 2.2.4.4.6.6

Art.434-
* &c- toy"; which, in Numbers, is as 959 to 396, or

as 17 to 7, nearly.

P R O B. XXXIV.

475. To find vjhen that Part of the Equation of

Time, arijing frsm the Obliquity of the Ecliptic to the

l) if a Maximum.

In the right-angled fpherical Triangle ABC let the

Angle A be that made by the Ecliptic AC, and the

Equinoctial AB ; then the Problem will be, to find

when
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when the Difference be-

tween the Bafe AB and
the Hypothenufe AC is

the greateft poffible (the

Angle A remaining inva-

riable.) Now (by Art.

254.) we have Co-f. BC
: Sin. C : : Fluxion of AC
Fluxion of AB : Alfo (per Spherics) Sin. C : Co f. A : :

Co-f. A x Rod.
Rad. : Cof. BC = -

p . ~-- : Whence, by mul-
i>tn. U

tiplying the two firft Terms of the former Proportion

by thele equal Quantities, refpe&ively, we get this new

Proportion, viz. Co-f. BC\* : Co-f. A x Radius :: fo is

the Fluxion of AC to That of AB. But, when AC
AB is a Maximum^ thefe Fluxions become equal ; and

confequently Co-f. BC]
% =

Co-f. A x Rad. From
which Equation BC, and from thence AC, will be

known.

The fame', without Fluxions.

476. It will be (per Spherics} Rad. : Co-f. A :: Tang.
AC : Tang. AB ; and therefore by Compofition and

Divifion, Rad. + Co-f. A : Rad. Co-f. A :: Tang.
AC -|- Tang. AB : Tang. AC Tang. AB :: Sin.

AC +AB : Sin, AC AB, by the Theorem mentioned

in Problem 8th : From which, by following the Steps

there laid down, it appears that, Radius + Co-f. A :

Radius Co-f. A :: Radius : Sine of AC AB, when
a Maximum : Whence (AC + AB being then =: gO

u
)

both AC and BC will be given.

COROLLARY.

477. Since, Radius -f Co-f. A : Radius Co-f. A

: : Co-tang, k A : Tang. ^ A *
:: Radius}* : Tang.A\* i

Fid. f, 70. and 7 1 . of my Trigonometry.

N n 4 There-
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therefore Radius f : Tang, i AJ

*
: : Radius : Sine of

AC AB, Or, Radius : Tang, i A :: Tang. | A : the

Sine of the greateft Equation : Which, fuppofing the

Angle A to be 23 29', comes out 2 : 28' : 34" : an-

fwering, in Time, to 9 Minutes : 54. Seconds.

P R O B. XXXV.

478. To determine when the abfoluie Equation of Time,

atijwg from the Inequality of the Sun's apparent Mo-
tion^ and the Obliquity of the

Eclipiic, conjunRly^ is a

Maximum.

Let ABPD be the

Ellipfis in which the

Earth revolves about

the Sun in the Focus
S

; let F be the other

Focus, and T the

Place of the Earth in

its Orbit at the Time
required. Moreover,
about S, as a Center,
Jet a Circle GEKI be
defer i bed, whofe Dia-
meter GK is a Mean
Proportional between
the two Axes AP and
BDofthe Ellipfis; fo

that the Area thereof

may be equal to That
of the Ellipfis : And, fuppofing Sm to be indefinitely

near to ST, let ESa be a Sedtor of the faid Circle, equal
to the Area TSw.

Then, the Time in which the Earth moves through
the Arch Tin being to the Time of one intire Revo-
lution, as the Area TS/w, or ESw, is to the whole El-

Jipfis, or the equal Circle GEKF ; and thefe Areas

Ei>, and GEKI being in the Ratio of the Arch En

fo the whole Periphery GEKJ ; it is evident that E,
7 vr



of various Kinds.

or the Angle ESw, will exprefs the Increafe of the Mean
Longitude^ in the forefaid Time of defcribingthe ArchT/n.*
And that this Angle or Increafe, by reafon of the Equa-
lity of the Areas ES and TS/w, will be to the Angle
TS//7, exprefiing the correfponding Increafe of the True

Longitude, as ST* to SE*. Therefore, if the former

SE*
be denoted by M, the latter will be reprefented by ^=r2,

X M. But now to get a proper Exprefllon for the
Value of this Increafe of the True Longitude, in Al-

gebraic Terms ; let FT be drawn, and alfo TH, per-

pendicular to AP : Putting AC (=CP) a, CB ,

CS (
=CF) =f, ST-z, and the Co-line of (TSP)

the Earth's Diftance from its Perihelion (to the Radius

!)=*.- Then FT being (=AP ST) =2a z

(by the Property of the Ellipfis) and SHrrjrz (by Trig.)

we have FT + ST x FT bT (lax^a^z = FS
X zCH (2cX2Xc+ xz} by a known Property of Tri-

angles : From which Equation z (ST) is found 3=

~
. : And this Value, with that of ES*

a -f cx a + ex

(~ab] being fubftituted in the Increafe of the True Lon-

gitude, found above, we thence get
-r cy

^ ^ ^
b*

for the Meafure of that Increafe; where M denotes

the Increment of the Mean Motion correfponding.

This being obtained, let ^ yf T (in the an-

nexed Figure) reprefent the Southern Semi-Circle of

the Ecliptic, P the Place of the Perihelion, VS the

Tropic of Capricorn, Q the apparent Place of the Sun
in the Ecliptic, and QJ? his Declination, at the Time

required : Then it appears, (from Art. 475.) that the

Increafe of the True Longitude 0, in an indefinitely
fmall Particle of Time, will be to That of the Right-

Jtjcenfion ^Q_, in the fame Time, as the Square of the

Co-fine of Q_ is to a Rectangle under the Radius and

the Co-fine of the Angle A : Therefore, the former,

being;
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being exprefled by -
'

X My the latter is truly

a X a+ utf
v

,. J?g^. X Cof-. A
reprefentedby- -^- Co-f. "<tf
Which, in the required Circumftance, when the pro-

pofed Equation (or the Difference between the Sun's

Mean Motion and Right Afcenfion) is a Maximum^ muft

confequently be equal to (M} the correfponding In-

creafe of Mean Motion ; and therefore

. x

But, to obtain the Value of the latter Part of this

Equation, alfo, in Algebraic Terms, let the Sine and

Co-fine of (tf P) the Diftance of the Perihelion from

YT, be denoted by m and refpe&ively ; then, the

Co-fine of P being (as above) exprefled by *, and

its Sine by V i Xify we fhall thence get nx +
OT/I **=Co-fine of Vf = Sine of A (by the

km. of Trig.} But (putting the Sine of the Angle
-: =/> and its Co-fine =

q] we have (per Spherics]

Radius (i) : Sine &-) (nx+mVixx :: p : pnx +

fm\/ 1_xx Sine of Q.5; from whence C

i pnx + pmVi xx : Which Value, with

That of the Co-fine of the Angle Zz 9 beins fub-

ftituted above, we, at length, get
a
-

a cx =
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I pnx -f pm i xx\ . from which Equation the

Value of x may be determined.

The foregoing Equation, it may be obferved, gives
the Time of the Maximum which precedes the Winter
Solftice ; but if the Maximum following that Solftice be

fought; it is but changing the Sign of m, and then you

will have
* x ^"+^1* = ' pnx-pm Vi X

x\\
b* a

anfwering in this Cafe. And from the negative Roots
of this, and the preceding, Equation, the Times of the

other Maxima after, and before, the Summer Solftice will

alfo be obtained. ^. E. /.

COROLLARY.

479. It is evident that the Equation of the Earth's

Orbit (or that Part of the Equation of Time
arifing

from the Inequality of the Sun's apparent Motion) will

be a Maximum, when the Center of the Earth is in the

Interfection I of the Ellipfis and the Circle ; where the

Mean Motion and True Longitude increafe with the fame

Celerity.

P R O B. XXXVI.

480. To determine the Law of the Denfity of a Me-
dium and tic Curve defcribed therein, by Means of an

uniform Gravity, fo that the Projeftile may, every

move with thefame Velocity.

It appears, from Art. 367. that ^/ 21 is a general

Expreflion for the Celerity in the Direction of the Or-

dinate PER; whence X \/ , or its Equal,
y x

~=
, muft be the true Meafure of the abfolute Ce-

lerity,
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lerity, in the Dire&ion BN : Which being a conftant

Quantity (by Hypothefis) its Square muft alfo be con-

ftant ; and fo, we have ~ = a, and confequently
xx

-f yy (s:) ax.

But, in order to the Solution of the Equation
thus

given, make u : j :: x : y, or xuj ; then x~=-
uy^

and,

by Subftitution, u*j* + y
1
=. auy: Hence, y being -

Ou QUU Hi v C

, and x 7, we get^r:^ X Arch, whole
uu uu

Art. 142. Tangent is u
*
(and Secant Vj +uu) j

and * : i<7X

fAtt.126. Hyp. Log. j + uu' = a X Hyp. Log. V i -f t_ .
#

Therefore, as the Hyp. Log. of V i+uu s
-^-,

the Common Logarithm of ^i -f M will be =

0,434 2944 ^.XJf. and confequently jrr x y/r^, whofe

TT J T C *
Radius is Unity, and Log. Secant

Moreover, with refpeft to the Denfity of the Medium ;

if the abfolute Force of Gravity, in the Direction QB,
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be denoted by Unity, its Efficacy in the Dire&ion BN,
whereby the Body is accelerated, will be exprefled by
*

. T, u
-, or its Equal 7==== : Which, as the Velocityv i + uu
is fuppofed to remain every where the fame, muft alfo

exprcfs the Force of the Refiftance, in the oppofite Di-
reclion, or the true Meafure of the required Denfity.
This, therefore, if M be put for the abfolute Number
whofe Hyperbolical Logarithm is Unity, may'be had in

Terms of *, and will be i ~M\
a

: Becaufe
X
T"~ / X \

Hyp. Log. J4\" (=-) being = Hyp. Log. V i + Uu9

we have i +uu M^ whence u Ma
1 , and

confequently
VI + uu

P R O B. XXXVII.

481. Let a Line, or an inflexible Rod OP (conftdered

without regard to Thicknefs) be fuppofed to revolve

about one of its Extremes O, as a Center, with a Mo-
tion regulated according to any given Law j vuhiljl a

Ring, or Ball, carried about with it, and tending to the

Center O with any given Force, is fuffered to move or

Jlide freely along the faid Line or Rod : It is propofed to

determine the Velocity of the Ring, and its Prejfure upon
the Rod, in any propofed Pofition, together with the Nature

of the Curve ADL described by means of that compound
Motion.

Le ODP be any Pofition of the revolving Line,

and D the correfponding Pofition of the Body : More-

over, fuppofing ACK to be the Circumference of a

Circle
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Circle defcribed from the Center O, through the given
Point A, let the Meafure of the angular Celerity ot

that Line, in the faid Circumference ACK, be repre-

fented by tt\ alfo let v denote the Celerity of the Ring
at D in the Direction DP

; and w the true Meafure of the

centripetal Force: Call OA, a-, OD, x
;
and AC,

2 ; and let the given Values of u and t>, at A, be de-

noted by b and c refpe&ively. Then it will be, as a :

J
the paracentric Velocity of the Body, at

D; whofe Square, divided by the Diftance OD, gives

A ***
Art. 2ii.__.

> for tne true Meafure of the Centrifugal Force *
a

arifing from the Revolution of the Rod : From which
the centripetal Force -w being deducted, the Remainder,
xu*

ty, is the true Force whereby the Velocity in the

Line OP is accelerated. Therefore (by Art. 2i8.J we

xu* u*xx
have w= w x x zr wx.

a a*

Moreover, becaufe the Fluxion of the Time is ex-

X J

preffed either by or by > thefe two Values muft,

therefore,
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therefore, be equal to each other, and confequently

v == : From which, and the preceding Equation

(when u and ^v are exhibited in Terms of x or z) the re-

quired Relation of v, * and z will alfo become known
But now, in order to determine the Action of the Rod
upon the Ring ; let OdP be indefinitely near to ODP,
interfering ADLand ACK in d and c-t and put O</=:

/

x + x. Then, becaufe a Body, acted on by no other

Force befides That tending to the Center, about which
it revolves, defcribes Areas proportional to the Times*, *Art.**4.

and the angular Celerity of a Ray revolving with the

Body, is, in that Cafe, as the Square of the Diftance

of the Body from the Center, inverfely (vid. Art. 47$.)
it follows, that, if the Rod was to ceafe to act upon the

Ring, at the Pofition ODP, the angular Celerity at c9

x* '

would then be x x w, inftead of u + u. There-

' **
fore the Excefs of u -f- u above ^_, -. ^ x , which is

/ i

I 1UX 3/AT
l

.
%

=: u +-- lZ
-j- &c. is the Increafe of the faid an-

x x

gular Celerity, at the Diftance OC, arifing from the

of the Rod. Therefore it will be, as OC (a) : OD
/ J

' \
(x} :: the faid Increafe to

( + ^ ^- &c.

\ a a ax J
the Alteration of the Ring's paracentric Velocity, arifing

from the fame Caufe. Which, divided by (
-

}
the

. XVU 2.UV

Time wherein // is produced, gives 7
ax
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i

*lUT}X
- &c. for the Meafure of the Force, by which It
ax

is produced. From whence, by fubftituting in the

Room of , and neglecting all the Terms after the two

x

Art. 134- firft (in order to have the limiting Ratio *) we get

XVU
,

1UV ~,, - . ... , XVU 2UV- -f Therefore it will be, as - -

4. to
ax a ax a

bb xvu .

+ Art. an. t, or as --
4. -77- to Unity, fo is the Action of

a bbx bb

the Rod upon the Ring, to the (given) Centrifugal
Force at A (or the Force that would retain a Body in the

Circle ACK, with the Velocity b.} ^. E. I.

COROLLARY I.

482. If the angular Motion be uniform, the Equations

Pxx
found above, will become vv =r j- wx

9
and v =

bx
. From the latter of which, by taking the Fluxion,

we have {; = : whence (by Subftitution) -rr-
x zz

Fxx xz* wz*-- wx, and confequently x --r =. --ri" >

aa a o

from the Solution of which, the Relation of # and z

will be given. And then, the Value of v f
J being,

alfo known, the Action upon the Rod, which in this Cafe

2bv ( 2b*x\
is barely =. I =

J
will be given hkewife,

being
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. V J

being to ( )
the centrifugal Force in the Circle

ACK, as to Unity.
z

COROLLARY II.

483. But if the Angular Celerity be proportional to

any Power (x
m

] of the Diftance, and the Centripetal
Force w be, alfo, fuppofed to vary according to fome

Power (*") of the fame Diftance: Then, putting p to

denote the Centripetal, and q the Centrifugal, Force, at

the given Point A, the Value of iv will, here, be ex-

x" xm

pounded by X/>, and That of u by x: And there-
a a

fore, the paracentric Velocity of the Ring at D being =
xm x ( bx

m
**\ bb Fx+*

x t x I . I it will be as ; r-
V a

m* l J * Xa+ Z

x?, the Centrifugal Force at D *. Hence * Art, an.
*

am4-i . . * .

qx x px x
vv

*
; whereof the (corrected) Fluent

a~
'

a"

P*
is tw i cc = 2m+ 2

; From whence v is found =

/ qa ipam \>s // - - 4-
*""~OTI~f"-M
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Moreover, by fubftituting for w, and its Fluxion, we

xvii 2uv - bx
mv

get 4-- rr m + 2 x T-, exprefiinp; the Action* +'ax a

of the Rod upon the Ring : Which, therefore, when
m is expounded by 2, will intirely vanifh : And,
in that Cafe, z will become =

expreffing the Nature of the Trajeaory defcribed by
means of a Centripetal Force, varying according to any
Power (x") of the Diftance. But this Equation will

be rendered fomewhat more commodious, by fubftitutino-

the Values of b and c : For, if OQ_ (perpendicular to

the Tangent at A) be denoted by bt it will be, h:

\V />*(AQJ :: b (the Celerity in the Direaion AC)
* Art - 35- to c

~ /;a = the Celerity in the Direaion AH *.
h

t Art.aii. Therefore, b being \/ aq f, we have c
z

rr ay,

and x

"n n+i.q n+l.qa
:Jf

Which Equation is the fame, in effea, with that given
in Art. 242. by a different Method.

COROLLARY III.

484. If the Angular Celerity be fuppofed uniform, and

the Ring to have no other Motion along the Rod than

what it acquires from its Centrifugal Force; then f, wand

p being all of them equal to Nothing, %. will here be-'

bx ax
come, barely := * =- , == : And/ qx* Y x a"

\S -qa -\

a

there"



of various Kinds. 563

therefore z- a x Hyp. Log. 1,
+ v/**"" aa

. Hence

21

if the Number whofe Hyp. Log. is be denoted by

N, weJhall have x+ ^xx aa -N: From which

* is found := a X
1 ; whence x is> alfo, had :=

2 2JV

jfcAT aN Nz x
f

, , N x \ ~,~- - (becaufe -.-_). There-
2 2A/* 2 2.N N a '

N i
fore, it will be (by Carol, i.) as Unity is to .

2 2JV*

fo is the Angular Velocity () in the Arch ACK to the

Velocity with which the Body recedes from the Center
of Motion : And fo, likewife, is the Centrifugal Force
in that Arch to half the Preffure upon the Rod By

taking z = the whole Periphery, or =. Q. X 3 .145

I3c. N will come out =. 535-5, and * 267.7 X a -

From whence it appears that the Diftance of the Ring
from the Center at the End of one intire Revolution

will be almoft 268 times as great as at firft.

COROLLARY IV.

485. Ifa Body be fuppofed to defcend from the Point O,
(fee

the next Fig.) by the Force of its own Gravity, along
an inclin'd Plane OCP;'whilft the Plane itfelfmoves uni-

formly about thatPoint, from an horizontal PofitionOEH;
then the Place, and the Preflure of the Body upon the

Plane, in any given Pofition QCP, may, alfo, be derived

from the Equations in Corollary i. For let CB (perpen-
dicular toOH) beputrr;

1

; and let the Ratio of the Cen-

trifugal Force in the Circle ECK, to the Force of Gra-

vity (given by Art. 2 1 7.) be as r to Unity : Then, as

the Meafure of the former Force is exprefled by ,

O o 2 That
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That of the latter muft be reprefented by : and,' ra

confequently, its Efficacy in the Dire&ion PO, by

( = X 7^ ) : Which Value being fubftituted
raa \ ra OL'
for wt in the aforefaid Corollary, we have x

4 2.

JC%+ YX= -
. But now, in order to the Solution of this

aa raa

Equation, put the Radius OC (a} = I (that the Ope-
ration may be as fimple as pofiible) alfo, inftead of

y^Si2
* A^ r

*et i ts Equal z -J-
* &c. be fubfti-

Art. 425. 2.3 2.3.4.5
tuted, and let x be aflumed = ^a 3 + Bz* + Cz 7

-f

Then, by proceeding as is taught in Art. 267, the

i y? z 7

Value ofx will come out r: -into +
j-j-^-^y
&c. Whence- 5

2 . 3 .4. 5 . 6 . 7 . 8 .9 .

ip.
ii

the Velocity r-*) n tne P'ane, is, alfo, found

b y? z 6

into 1- &( Which, therefore! is
r 22.3.4.5.0
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to () the angular Velocity of the Plane, in the Arch

ECK, as +-r 4- &c. to r. Moreover,a 2.3.4.5.6
the Centrifugal Force in the faid Arch being denoted by
r {the Force of Gravity being Unity) it will likewife be

(by the above-mentioned Carol.} as I : :rr :
(
- -

)K \ * /

s6 3. 4- 5. .. . 9- .0

Force fufficient to keep the Body upon the Plane. But
the Force of Gravity 'in a Direction perpendicular to

the Plane (the Weight of the Body being jreprefented

OB z* z4

by Unit)) is 7^, = I +- * &c . From ^OC 2 2.3.4 Art.45

which deducting the Quantity laft found, there refts I

7Z
1

Z4 "?2
6

^- +- ---- &c. for the true Pref-
2

r
2.3.4 2.3.4-5-0

fure of the Body upon the Plane. By putting of Which
equal to Nothing, z

1
will be found rr 0.67715 ; an-

fwering to an Angle (EOC) of 47 : 9': Which Angle
is therefore the Inclination, when the Force of Gravity
is no longer fufficient to keep the Body upon the Plane.

Though the Value of x, given above, is found by
an Infinite Series, yet the Sum of that Series is eafily

exhibited by the Meafures of Angles and Ratios. For,

putting N to denote the Number whofe hyperbolical

Logarithm is z,

Art. 44

*
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t
From which taking s -j- 2 4. r~6 7

&V. ~
_y ;

and dividing the remainder by 2r, there re-

/i ~p ?
:

"\ i

fultS ( X -f 7 &* i 1
*

V r 2. 3^2. 3. 4. 5.-6. 7 S ir

~L _i_ y, for the true Value of x. Which, if

2 2N
required, may be exprefled independent of r ; by put-

ting ^for the Diftance through which a Body, freely, de-

fcends in the firft Second of Time, arid taking b to de-

note the Velocity of the Plane, (per Second) in the

Arch EC T
v : For then, the Ratio of the Centrifugal

Force, in the faid Arch, to the Force of Gravity (or

bb f bb \

Art. 211. That ofrte j) beins; as
(
= 7^:77 I to id *

,

i \ L/t-/

bb d
we ihall have r ~ , and confequently x = - x

* _L
2

""
2N y '

By Computations, not very unlike Thofe above, the

Motion of the Moon's Sfpogeey and the principal Equa-
tions of the Lunar Orbit may be exhibited ; by means
of proper Approximations, derived from the general

Equations in Art. '481. But this is a Confideration

that would require a Volume of itfelf, to treat it, from
firft Principles, with all the Attention and Perfpicuity
fuitable to the Importance of the Subject. I fhall con-

clude this Work with the following fhcrt Table of

Hyperbolical Lcgarithtts^ drawn up and communicated

by my ingenious Friend Mr. yohn Turner: Whereof
the Ufe, in finding Fluents, will fufficiently appear from

the foregoing Pages. In the faid Table we have given the

Hvper'oolical Logarithms of every whole Number and

hundredth Part of an Unit, from i to 10 (which Form
is beft adapted to the Purpofes above-mentioned) by
Help whereof, and the following Obfervations the Hy-

9 perbolical
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perbolical Logarithm of any Number, not exceeding
feven Places of Figures, may be found with very little

Trouble.

1. If the Number given be between I and 10 (fo as

tofall within the Limits ofthe Table.)

Then take from it the next inferior Number in the
x

Table, and divide the Remainder by tbfe faid inferior

Number increafed by half the Remainder; and let the

Quotient be added to the Logarithm of the faid inferior

Number, the Sum will be the Logarithm fought.

Thus, let the Hyperbolical Logarithm of 3.45678
be required i then the Operation
will ftand thus: 3.45339).O056y8(.0016442: Which
added to 1.2383742, the Log. of 3.45, gives 1.2400184
for the Logarithm fought.

2. When the Number propofed exceeds 1 0.

Find the Logarithm thereof, fuppofing all the Fi-

gures after the Firft to be Decimals ; then to the Lo-

garithm, fo found, let 2.3025851, 4.6051702, or

6.9077553 sV. be added, according as the whole Num-
ber confifts of 2, 3, or 4 &c. Places : The Sum will

be the Logarithm fought.
Thus, the Hyperbolical Logarithm of 345.678 will

be found to be 5.8451886 : For That of 3.45678 being

1.2400184; the fame, added to 4.6051702, gives the

very Quantity above exhibited. The Reafon of which,

as well as of the Operation in the preceding Cafe, is evi-

dent from the Nature and Conftruclion of Logarithms.

004
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