

 SHEIBRARYO : SOFCAIFORN这
 NVIOSAMELES. 空
 NOFCAlIFORN/

 CHEUBRARYO

SUHE UNIVERS/2

GHELIBRARYO

THE

DOGTRINE AND

APPLICATION

 0 F
F L U XIO N S.

CONTAINING
(Befides what is common on the Subject)
A. Number of New Improvements in the THEORY.

AND

The Solution of a Variety of New, and very Interefting, Problems in different Branches of the MATHEMATICKS.

PARTTI.
By THOMAS LSIMPSON, F.R.S.
THE SECOND EDITION.
Revifed and carefully corrected.

L O N D O N:

Printed for John Nourse, in the Strand, Bookselef to His Majesty.

$\overline{M D C C L X X V I .}$

TO THE

Right Honourable.

George Earl of Macclesfield.

MY LORD,

AS I efteem it a very great Honour to be permitted to place the following Sheets under your Lordship's Protection, who are not only an Encourager of, but an Ornament to, Mathematical Learning; I have taken more than ordinary Pains, that, What is here uttered into the World, with fuch Advantage, may not be found altogether unworthy of fo difinguifhed a Patron.

I am not vain enough to imagine, that, to One fo deeply read in the fe abftrufe and curious Speculations, as your Lordship is uniA 2 verfally
verfally allowed to be, this Work will appear without Faults: But then, I have the Satiffaction to think, on the other hand, that, whatever is Here to be met with capable of bearing the Teft of an exact and folid Judgment, will alfo have its due Weight, and not fail of receiving your Lordfhip's Approbation: And if, upon the Whole, there is Merit enough found to entitle me to a favourable Reception, it will gratify the highert Ambition of,

> My Lord,

Your LORDSHIP's

Mof Obedient Humble Servant,

Tho. Simpfon.

PREFACE.

HA VING, in the Year 1737, publifhed a Piece, on this fame Subject, under the Title of A Treatife of Fluxions (whereof the whole Impreffion hath been long fince fold) it may be proper here, firt of all, to affign the Reafons why this Work is fent abroad into the World as a New Book, rather than a Second Edition of the faid Treatife. Which, in fhort, are thefe two: Firft, becaufe the prefent Work is vaftly more full and comprehenfive; and, fecondly, becaufe the principal Matters in it which are alfo to be met with in that Treatife, are handled in a different Manner.

Besides the Prefs-Errors with which the faid Treatife abounds, there are feveral Obfcurities and Defects (which the Author's Want of Experience, and the many Difadvantages he then laboured under, in his firft Sally, may, it is hoped, in fome meafure excufe.) But what is

$$
\text { A } 3 \quad \text { now }
$$

now offered to the Publick, being a Performance of more mature Confideration and Judgment, it will, I flatter myfelf, be found much more correct, and claim a favourable Reception; efpecially, as particular Care and Pains have been taken to put every Thing in a clear Light, and to oblige the lower, as well as the more experienced, Clars of Readers.

The Notion and Explication Here given of the firf Principles of Fluxions, are not effentially different from what they are in the abovementioned Treatife, tho' expreffed in other Terms. The Confideration of Time, which I have introduced into the General Definition, will, perhaps, be diniked by Thbofe who would have Fluxions to be meer Velocities: But the Advantage of confidering them otberwife (not as the Velocities Themfelves, but the Magnitudes They would, uniformly, generate in a given finite Time) appear to me fufficient to obviate any Objection on that Head.

By taking Fluxions as meer Velocities, the Imagination is confined, as it were, to a Point, and, without proper Care, infenfibly involved in metaphyfical Difficulties: But according to our Method of conceiving and explaining the Matter, lefs Caution in the Learner is neceffary, and the higher Orders of Fluxions are rendered much more eafy and intelligible - Befides, tho' Sir

$$
P R E F A C E .
$$

Ifaac Newton defines Fluxions to be the Velocities. of Motions, yet He hath Recourfe to the Increments, or Moments, generatec in equal Particles of Time, in order to determine thofe Velocities; which he afterwards teaches us to expound by finite Magnitudes of other Kinds: Without which (as is already hinted above) we could have but very obfcure Ideas of the higher Orders of Fluxions: For if Motion in (or at) a Point be fo difficult to conceive, that, Some have, even, gone fo far as to difpute the very Exiftence of Motion, how much more perplexing muft it be to form a Conception, not only, of the Velocity of a Motion, but alfo in infinite Changes and Affections of It, in one and the fame Point, where all the Orders of Fluxions are to be confidered?

Seeing the Notion of a Fluxion, according to our Manner of defining It, fuppofes an uniform Motion, it may, perhaps, feem a Matter of Difficulty, at firft View, how the Fluxions of Quantities, generated by Means of accelerated and retarded Motions, can be rightly affigned; fince not any, the leaft, Time can be taken during which the generating Celerity continues the fame: Here, indeed, we cannot exprefs the Fluxion by any Increment or Space, aitually, generated in a given Time (as in uniform Motions.) But, then, we can eafily determine, what the contemporary Increment, or generated Space coould be, if the Acceleration, or Retardation, was to ceafe

$P R E F A C E$.

at the propofed Pofition in which the Fluxion is to be found: Whence the true Fluxion, itfelf, will be obtained, without the Affiftance of infinitely fimall Quantities, or any metaphyfical Confiderations.

Thus, for Example, the Motion of a Ball, defcending by the Force of its own Gravity, is continually acce!erated; but to have the Fluxion of the Diftance fall'n thro' at any given Pofition of the Ball, we muft find how far the Ball would, uniformly, defcend, from that Point, in a given Time, if the Gravity, or the Earch's Attraction, from thence, was to ceare afting. By which Means we fhall have as clear an Idea of the Fluxion and the true Meafure of the Velocity of the Ball, at any Point affigned, as in thofe Cafes where the Motion is, actually, uniform.

Again, if a Right-line be fuppofed to move parallel to itfelf with an equable Motion, and to increafe in Length, at the fame Time; the Area generated thereby, will increafe with an accelerated Velocity: But the Fluxion thereof, at any given Poftition of the Line, will be had by taking that Part of the Increment which would, uniformly; arife, was the Length (as well as the Velocity) of the Line to continue invariable from the propofed Pofition. For, if the Length be fuppofed to increafe, from the faid Pofition, the Area generated, from thence, will be, evidently, greater than That which would uniformly arife in the fame Time; fince the new Parts, produced

$$
P R E F A \subset E .
$$

each fucceeding Moment, are greater and greaterTherefore the Fluxion muft be lefs than any Space that can be defrribed, in the given Time, when the Line increafes, And, in the fame Manner, the Fluxion will appear to be greater than any Space that can be defrribed, in the fame Time, when the Line decreafes. It muft, therefore, be equal to that Space, which will arife, when the Length of the generating Line, from the given Pofition, is fuppofed neither to increafe nor decreafe : Agreeable to Art. 4.

Thus much it feem'd proper to offer Here with regard to the Firf Principles-I hall now proceed to fay fomething concerning the Order obferv'd in treating, and putting together, the feveral Parts of the Work; wherein the Eafe and Benefit of the younger Beginner have been particularly confulted: To load fuch an One with a Multitude of Rules and Precepts, before giving him any Talte of their Ufe and Application, would, certainly, be very difcouraging; and like obliging a Traveller to afcend an high Mountain, without allowing him to ftop by the Way, to take Breath, and refrefh his Spirits with a Profpect of the agreeable and extenfive View he has to expect when he arrives at the Summit: I have therefore, after demonftrating the Firft Principles, proceeded immediately to exemplify their Utility in feveral catertaining Enquiries, before touching
 ficult

PREFACE.

ficult Parts of the Direct. And, fince that Branch of the Inverfe Method which treats of the Comparifon of Fluents is, naturally, fomewhat difficult, it is referred to the Second Part of the Work, together with fuch other Matters in the Theory as might appear, either, too tedious or hard to a Learner at firft fetting out. The like Care has been taken in the Difpofal of the reft of the Work - As to the feveral Particulars whereof It is compofed, I mult refer to the Book itfelf, They being too many to be here enumerated: One Thing, however, I mult not omit to take notice of, relating to that Part which treats of the aforefaid Bufinefs of Fluents: To which it may, perhaps, be objected, That, notwithftanding my having infifted fo largely on the Subject, there are a Number of Forms of Fluxions and Fluents to be met with in Authors, that I have not fo much as touch'd upon. This is granted; but then they are moft of them fuch as, I dare pronounce, can never arife in any Inquiry into Nature : And it would, doubtlefs, be Time and Labour mifapply'd, to fwell the Work, and embarrafs the Learner with a Number of unneceffary Difficulties, and empty Speculations; when what is, really, proper and ufful, in the Subject, is fufficient (it is well known) to exercife his utmoft Attention and Refolution.

I Cannot put an End to this Pieface without acknowleaging my Obligations to a fmall Tract,

$$
P R E F A C E . \quad \text { xi }
$$

intitled, An Explanation of Fhuxions in a Short EJay on the Theory; printed for W. Innys: Wrote by a worthy Friend of mine (who was too modeft to put his Name to that, his firft, Attempt) whofe Manner of determining the Fluxion of a Rectangle, and illuftrating the higher Order of Fluxions, I have, in particular, follow'd, with little or no Variation.

The following. BOOKS are all written by Mr. Thomas Simploin, F. R. S. and printed for F. Nourfe.

'TH E Elements of Geometry; with their Application to the Menfuration of Superficies and Solids, to the Determination of the Miaxima and Minima of Geometrical Quantities, and to the Confruction of a great Varicty of Geometrical Problems, 8 vo. the third Edition, 5 s.
2. Trigonometry Plain and Spherical, with the Confruction and Application to Logarithms, the Second Edition, 8 vo , 1s. 6 d .
3. A Treatife of Algebra; wherein the fundamental Principles are fully and clearly demonftrated and applied to the Solution of a great Variety of Problems, and to a Number of other ufeful Enquiries, the Fourth Edition, 8vo. 6s.
4. Select Exercifes for young Proficients in the Mathematics, 8 vo , 5s. 6 d.
5. The Doctrine of Annuities and Reverfions, deduced from Gereral and Evident Principles: with ufeful Tables, fhewing the Values of fingle and joint Lives, \&ic. at different Rates of Intereft, the Second Edition with the Appendix, $8 \mathrm{vo}, 3^{5}$.
6. Effays on feveral curious and ufeful Subjects in fpeculative and mixed Mathematics; in which the moft difficult Problems of the Firft and Second Books of Newton's Principia are explained, 4to, 6 s.
7. Mathematical Differtations on a Variety of Phyfical and Analytical Subjects, 4to. 7 s .
8. Mifcellaneous Tracts on fome curious and very interefting Subjects in Mechanics, Phyfical Aftronomy, and Speculative Mathematics, 4 to. 7 s .

[. 1]

THE

Doctrine and Application

O F

FLUXIONS.

P A R T the Firft.

SECTIONI.

Of the Nature, and Invefigation, of Fluxions.

1. N order to form a proper Idea of the Nature of Fluxions, all Kinds of Magnitudes are to be confidered as generated by the continual Motion of fome of their Bounds or Extremes; as a Line by the Motion of a Point; a Surface by the Motion of a Line; and a Solid by the Motion of a Surface.
2. Every Quantity fo generated is called a variable, or flowing Quantity: And the Magnitude by which any fowing Quantity would be uniformly increafed in a given Portion of Time, with the generating Celerity at any propofed Pofition, or Inftant (was it from thence to continue invariable) is the Fluxion of the faid Quantity at that Pofition, or Infant.

Thus, let the Point m be conceived to move from A, and generate the $\begin{array}{ccc}7 n \quad m & \eta\end{array} \begin{aligned} & \text { variable Right- } \\ & \text { line Am, by a } \\ & \text { Motion any how }\end{aligned}$ let the Celerity thereof, when it arrives at any propofed Pofition R, be fuch as zoould, was it to continue uniform from that Point, be fufficient to defribe the Diftance, or Line Rr , in the given Time allotted for the Fluxion: Then will $\mathrm{R} r$ be the Fluxion of the variable Line A m, in that Pofition.
3. The Fluxion of a plane Surface is conceived in like Manner,
 by fuppofing a given Right= line $m n$ to move parallel to itfelf, in the Plane of the parallel, and immoveable Lines AF and BG: For, if (as above) Rr_{r} be taken to exprefs the.Fluxion of the Line $\mathrm{A} m$, and the Rectangle RrsS be completed ; then that Rectangle, being the Space which would be uniformly defrribed by the generating Line $m n$, in the Time that Am would be uniformly increafed by mr, is therefore the Fluxion of the generated Rectangle Bm, in that Pofition, according to the true Meaning of the Detinition.
4. If the Length of the generating Line $m n$ continually varies, the Fluxion of the Area will A:lll be expounded by a Rectangle under that Line and the Fluxion of the Abfcilfa, or Bafe: For let the curvilineal Space Amn be generated by the continual, and parallel, Motion of the (now) variable Line $m n$, and let Rr be the Fluxion of the Bafe, or Ablciffa, Am (as before) ; then the Rectangle RrsS will, here alro, be the Fluxion of the generated Space Amn: Becaure, if the Length and Velocity of the generating Line $m n$ were

of FLUXIONS.

to continue invariable from the Pofition RS, the Rectangle RrsS would then be uniformly generated, with the very Celerity wherewith it begins to be generated, or with which the Space Amn is increafed in
 that Pofition.
5. From what has been hitherto faid it will appear, that the Fluxions of Quantities are, always, as the Celerities by which the quantities themfelves increafe in Magnitude: Whence it will not be difficult to form a Notion of the Fluxions of Quantities otherwife generated; as well fuch as arife from the Revolution of Right-lines and Planes, as thofe by parallel Motion: But of this hereafter. I come now to fhew the Manner of determining the Fluxions of algebraic Quantities; by which all others, of what Kind foever, are explicable. But firt of all it will be requifite to premife the following Ob fervations.
I. That the final Letters u, w, x, y, z of the Alphabet are commonly put for variable Quantities; and the initial Letters a, b, c, d, \&c. for invariable ones: Thus the Diameter of a given Circle may be denoted by $a_{\text {, }}$ and the Sine of any Arch thereof (confidered as variable) by x.
II. Tnat the Fluxion of a शuantity reprefented by a Fingle Letter, is ufually expreffed by the fame Letter with a Dot or Full-point over it: Thus the Fluxion of x is reprefented by \dot{x}, and that of y by \dot{y}.
III. That the Fluxion of a Quantity which decreafes, inflead of increafing," is to be confidered as negative:

The Nature and Invefigation

PROPOSITION I.

6. The Fluxion of a Quantity being given, it is propofith to find the Fluxion of any Power of that Quantity.

As a clear underftanding of this Problem will be of great Importance throughout the whole Work, it may not be improper to confider it firft in one or two of its moit fimple Cafes.
Cafe 1. Let \dot{x} exprefs the Fluxion of x, (according to the foregoing Notation) and let the Fluxion of x^{2} be required.

Conceive two Points m and n to proceed, at the fame time, from, two other Points A and C, along the Right-lines $A B$ and $C D$, in fuch fort, that the Meafure of the Diftance CS (y), defcribed by the latter, may be, always, equal to the Square of that $\operatorname{AR}(x)$, defcrited by the former moving uniformly.

Furthermore, let r, ξ, and R, S, be any contemporary Pofitions of the generating Points, and let the Lines \dot{x} and \dot{y} reprefent the refpective Diftances that would be uniformly defcribed, in the fame time, with the Celerities of thole Points at R and S, then thole Lines will exprefs the Fluxions of Am and $\mathrm{C} n$ in this Pofition, (by the Definition, Art. 2 and 5).

Moreover, fince $C s=A r^{2}$ and $C S=A R^{2}$ (by Hypothefis), if $\mathrm{R} r$ be denoted by ε, we thall have CS $(\dot{y})=x^{2}$, and C $s\left(=x-v^{2}\right)=x^{2}-2 x v+v^{2}$, and confequertly $\mathrm{S} s(=\mathrm{CS}-\mathrm{C} s)=2 x v-v^{2}$; from whence we gather, that, while the Point m moves over the Diftance v, the Point n moves over the Diftance

of FLUXIONS.

$2 x y-v^{2}$. But this laft Diffance (fince the Square of any Quantity is known to incieale fatter, in Proportion, than the Root) is not defribed with an uniform Motion (like the former), but an accelerated one; and therefore is equal to, and may be taken to exprefs, the uniform Space that might be defcribed with the mean Celerity at fome intermediate Point e, in the fame time. Therefore, feeing the Diftances that might be defcribed, in equal times, with the uniform Celerity of m, and the mean Celerity at e, are to each other as v to $2 x y$. $-v^{2}$, or as 1 to $2 x-v$, or, laftly, as \dot{x} to $2 x \dot{x}-v \dot{x}$, (all which are in the fame Proportion) it is evident, that, in the time the Point m would move uniformly over the Diftance \dot{x}, the other Point n, with its Celerity at e, would move uniformly over the Diftance $2 x \dot{x}$ $-v \dot{x}$. This being the Cafe, let r, R, and $s, \mathrm{~S}$, be. now fuppofed to coincide, by the Arrival of the generating Points at R and S , then e (being always between s and S, will likewife coincide with S; and the Diftance, $2 x \dot{x}-x \dot{x}$, which might be uniformly defcribed in the aforefaid time, with the Velocity at c, (now at S), will become barely equal to $2 x x \dot{x}$; which (by the Defin.) is equal to (j), the true Fluxion of $\mathrm{C} n$ or $x^{2}{ }^{2}$.

- It may, perhaps, feem inaccurate, tbat the Fluxions of x and x^{2} are compared togetber, and expreffed both by Lines, suben the flowing Quantities themfelves, confidered as a Right Line and a Square, admit of no Comparifon. -T'bis Objeciion would, indeed, be of force, were the Exprefions refirained to a geometrical Signification; but bere our Notions are more abfiratted and univerfal, not obliging us to regard wbat Kind of Extenfion, may be defined by sbis or that Exprefzon, but only the Values of the algebraic Quantities thereby fignified; to which the Meafures of all other Quantities wbatever are ultimately referred. And, thougb 2 uantities of different Kinds cannot be compared with each other, their Meafures, in Numbers, may.--Thus, for Inftance, though it would be wrong to affirm, that a Square whofe Area is 9 Inches is equal to a Line of 9 Inches long, yet it is no Impropriety at all to fay the Numbers exprefing their Meafures, in Inches, are equal.

7. Cafe 2. Let the Fluxion of x^{3} be required.

Suppofe every Thing to remain as in the preceding Cafe; only let $\mathrm{C} n$ be here equal to the Cube of Am (inftead of the Square).
Then, in the very fame manner, we have Ss ($=$ CS $\left.\left.-\mathrm{C}_{s}=x^{3}-\overline{x-v}\right)^{3}\right)=3 x^{2} v-3 x v^{2}+v^{3}$: From whence it appears, that the Diftances which might be defribed, in the fame time, with the uniform Celerity of m, and the mean Celerity at e, will, in this Cafe, be to each other as v to $3 x^{2} v-3 x v^{2}+v^{3}$, or as \dot{x} to $3 x^{2} \dot{x}-$ $\dot{3} x v \dot{x}+v^{2} \dot{x}$: Which laft Expreffion, when s, e, and S coincide (as before) will become $3 x^{2} \dot{x}$, the true Fluxion of x^{3} required.
8. Univerfally. Let $\mathrm{C} n \mathrm{be}$, always, equal to $\widehat{\mathrm{Am}}^{n}$; alfo let $\overline{x-2}^{n}$ (or $x-v$ raifed to the Power whofe Exponent is n) be reprefented by $x^{n}-a x^{n-1} v+b x^{n-2} v^{2}$ $-c x^{n-3} v^{3}$, छc. and let every Thing elfe be fuppofed as above.

Then, fince Ss $\left(x^{n}-\overline{x-2}^{n}\right)$ is $=a x^{n-1} v-b x^{n-2} v v^{2}$ $+c x^{n-3} v^{3}$, छc. it is plain that the Spaces which might be defribed, in the fame time, with the uniform Celerity of m, and the mean Celerity at e, will, here, be to eàch other as v to $a x^{p-1} v-b x^{n-2} v^{2}+c x^{n-3} v^{3}, \varepsilon^{\circ} c_{0}$ or as \dot{x} to $a x^{n-1} \dot{x}-b x^{n-2} v \dot{x}+c x^{n-3} v^{2} \dot{x}$, Ev.

Therefore, all the Terms, wherein v is found, vanifhing, when s, e, and S coincide, we have $a x^{n-1} \dot{x}$ for the required Fluxion of C_{n}, or x^{n}; which Fluxion, becaufe the numeral Co-efficient of the fecond Term of à Binomial involved is known to be, univerfally, equal to the Exponent of the Power, will allo be truly expreffed by $n x^{n-1} \dot{x}$. Q. E. I.
9. If the Quantity $A m$ (or x) be generated with an accelerated, or a retarded Motion, iniftead of an uni-

of FLUXIONS.

form one, the Fluxion of x^{n} (or $\mathrm{C} n$) will come out exactly the fame:
For the Spaces $r \mathrm{R}$ and $s \mathrm{~S}$, actually defcribed in the fame time, being always, to each other, in the Ratio of \dot{x} to $a x^{n-1} \dot{x}-b x^{n-2} v \dot{x}, \mathcal{E}^{\circ}$. the mean Celerities, at certain intermediate Points between r, R and s, S muff, alfo, be in that Ratio: Which, when v vanifhes (as above) will become that of \dot{x} to $a x^{n-1} \dot{x}$, (or $\left.n x^{n-1} \dot{x}\right)$ the very fame as before.

PROPOSITION II.

10. To find the Fluxion of the Product or Rectangle of two variable Quantities.

Conceive two Right-lines DE and FG, perpendicular to each other, to move, from two other Right : lines, $B A$ and $B C$, continually parallel to themSelves, and thereby generate the Rectangle $D F$. Let
 the Path of their
Interjection, or the Loci of the Angle H, be the Line BHR ; alfo let $\mathrm{D} d(\dot{x})$ and $\mathrm{F} f(\dot{y})$ be the Fluxions of the Sides $\mathrm{BD}(x)$ and $\mathrm{BF}(y)$, and let $d m$ and $f n$, parallel to DH and FH, be drawn. Therefore, because the Fluxion of the Space or Area BDH is truly expreffed by the Rectangle D_{m} ($=y \dot{x}^{*}$) and that *Ar to of the Area, or Space BFH, by the Rectangle Fin, and equal Quantities have equal Fluxions, it follows that the. Fluxion of the Rectangle $x y=\mathrm{DF}(=\mathrm{BDH}+\mathrm{BFH})$ is truly expreffed by $j x+\dot{x} y$. Q. E.I.

The Nature and Invefigation

The fame otherwife.
11. Let $x y$ be the given Rectangle (as before); and put $z=x+y$, then z^{2} being $=x^{2}+2 x y+y^{2}$, we have $\frac{1}{2} z^{2}-\frac{1}{2} x^{2}-\frac{1}{2} y^{2}=x y$. But the Fluxion of $\frac{1}{2} z^{2}-\frac{1}{2} x^{2}$ $-\frac{1}{2} y^{2}$, (and confequently that of its Equal $x y$) is $z \dot{z}$ - $x \dot{x}$ - $y \dot{j}$ (by Art. 6): Which, becaufe $z=x+y$ and $\dot{\tilde{z}}=\dot{x}+\dot{y}$, is alfo equal to $\overline{x+y} \times \bar{x}+\dot{y}-x \dot{x}-y \dot{y}=y \dot{x}+x \dot{j}$. Q.E.I.

Corollary. i.

12. Hence the Fluxion of the Product of three variable Quantities ($y z u$) may be derived: For, if x be put $=z u$; then $y z u$ will become $=y x$, and its Fluxion $=y \dot{x}+x \dot{y}$ (as above:) But x being $=z u$, and, therefore, $\dot{x}=z \dot{u}+u \dot{z}$, if thefe Values be fubftituted in $\dot{y} x$ $+\dot{x} y$, it will become $y \times \dot{z} u+\dot{u} z+z \dot{u} y=y \dot{z} u+y u \dot{z}+$ $z u j$ the Fluxion of $y z u$ required. In like Manner the Fluxion of $x y z u$ will appear to be $x y z i \dot{+x y \dot{z} u+}$ $\dot{x} y z u+x j z u$, and that of $x y z u w=x y z u r i v+x y z u w+$ $x y \dot{z} u w+x j z u \underline{v}+\dot{x} y z u w$.

Corollary 2.

13: Hence, alfo, the Fluxion of a Fraction $\frac{u}{z}$ may be determined. For, putting $x=\frac{u}{z}$, we have $x z=u$, and therefore $x \dot{z}+z \dot{x}=\dot{u}$ (as above); whence, by Tranfpofition and Divifion, $\dot{x}=\frac{\dot{u}}{\dot{z}}-\frac{x \dot{z}}{z}=\frac{\dot{u}}{z}=\frac{u \dot{z}}{z^{2}}$ (by writing $\frac{u}{\bar{z}}$ for $\left.x\right)=\frac{z \dot{u}-u \dot{\tilde{z}}}{z^{2}}$; which is the true Fluxion of x, or its Equal $\frac{x}{z}$, the Fraction propored.
14. Now, from the foregoing Propofitions, and their fubfequent Corollaries, the following praatical Rules,

of FLUXIONS.

for determining the Fluxions of algebraic Quantities, are obtained.

R ULE I.

To find the Fluxion of any given Power of a variable Quantity.
Multiply the Fluxion of the Root by the Exponent of the Power, and the Product by that Power of the Same Root whore Exponent is lefs by Unity than the given Exponent.

This Rule is inveftigated in Prop. 1, and is nothing more than $n x^{n-1} \dot{x}$ (the Fluxion of x^{n}) expreffed in Words.

Hence the Fluxion of x^{3} is $3 x^{2} \dot{x}$; that of x^{5} is $5 x^{4} \dot{x}$; and that of $\overline{a+y})^{7}$ is $7 \dot{y} \times \overline{a+y}{ }^{6}$, (becaufe, a being conftant, \dot{y} is the true Fluxion of the Root $a+y$, in this Cafe).
Moreover the Fluxion of $\left.\overline{a^{2}+z^{2}}\right|^{\frac{3}{2}}$, will be ${ }_{2}^{3} \times 2 z \dot{\tilde{z}}$ $\times \overline{a^{2}+z^{2}} \frac{3}{2}$, or $3 z \dot{z} \sqrt{a^{2}+z^{2}}$: For here, x being put $=a^{2}+z^{2}$, we have $\dot{x}=2 z \dot{x}$, and therefore $\frac{3}{2} x^{\frac{1}{2}} \dot{x}$, the Fluxion of $\left.x^{\frac{3}{2}}\left(\text { or } \overline{a^{2}+z^{2}}\right)^{3}\right)$ is $=3 z \dot{z} \sqrt{a^{2}+z^{2}}$, as above.

R U L E II.

15. To find the Fluxion of the Product of feveral variable Quantities multiplied together.

Multiply the Fluxion of each, by the Product of the ref of the Quantities, and the Sum of the Products thus arifing will be the Fluxion fought *.
Thus the Fluxion of $x y$, is $\dot{x} y+y \dot{x}$; that of $x y z$, is : Art. 12. $x y \dot{z}+x z \dot{y}+y z \dot{x}$; and that of $x y z u$, is $x y z \dot{u}+x y u \dot{z}+x z u \dot{y}$ $+j z u x$.

RULE

R U L E III.

16. To find the Fluxion of a Fraction.

From the Fluxion of the Numerator drawn into the Denominator, •ubtralt the Fluxion of the Denominator drawn into the Numerator, and divide the Remainder by *Art. 13 -tbe Square of the Denominator *.

Thus, the Fluxion of $\frac{x}{y}$ is $\frac{y \dot{x}-x \dot{y}}{y^{2}}$; that of $\frac{x}{x+y}$, is $\frac{\dot{x} \times \overline{x+y}-\overline{x+j} \times x}{\overline{x+y)^{2}}}=\frac{j x-\dot{x} y}{x+y^{2}}$; and that of $\frac{x+y+z}{x+y}$, or $1+\frac{z}{\dot{x+y}}$, is $\frac{\dot{z} \times \overline{x+y}-\overline{\dot{x}+\dot{y}} \times z}{\overline{x+\left.y\right|^{2}}}$; and fo of others.
17. In the Examples hitherto given, each is refolved by its own particular Rule; but in thofe that follow, the Ufe of two, and fometimes of all the three, Rules is requifite.

Thus (by Rule 1. and 2.) the Fluxion of $x^{2} y^{2}$ is $2 x^{2} j y+2 y^{2} x \dot{x}$; that of $\frac{x^{2}}{y^{2}}$ is $\frac{2 y^{2} x \dot{x}-2 x^{2} y \dot{y}}{y^{4}}$, (by Rule 1. and 3.) and that of $\frac{x^{2} y^{2}}{z}$ is $\frac{\overline{2 x^{2} y \dot{y}+2 y^{2} x \dot{x}} x z-x^{2} y^{2} \dot{z}}{z^{2}}$; where all the three Rules are neceffary.

When the propofed Quantity is affected by a Co-efficient, or conftant Multiplicator, the Fluxion found as above, muft be maltiplied by that Co-efficient or Multiplicator.

Thus, the Fluxion of $5 x^{3}$ is $15 x^{2} \dot{x}$. For, the Fluxion of x^{3} being $3 x^{2} \dot{x}$, that of $5 x^{3}$, which is 5 times as. great, muft confequently be $5 \times 2 x^{2} \dot{x}$, or $15 x^{2} \dot{x}$.

And, in the very fame Manner the Fluxion of $a x^{n}$ will appear to be nax $x^{r-1} \dot{x}$. Moreover, the Fluxion of $\frac{a}{\left.x^{2}+y^{2}\right]_{2}^{1}}$, or $a x_{x^{2}+y^{2}}{ }^{-\frac{1}{2}}$, will be expreffied by

of FLUXIONS.

 that of $\sqrt{x+y_{2}^{\frac{1}{2}}}$, or $\overline{\left.x+y_{2}^{2}\right)^{\frac{1}{2}}}$, by $\overline{\frac{1}{2} \bar{x}+\frac{1}{2} \times \frac{1}{2} \frac{1}{2} y-\frac{1}{2}} x$
 and that of $\frac{\overline{x+a^{2}}}{\sqrt{x^{2}-a^{2}}}$, or $\frac{\overline{x^{2} a^{2}}}{\left.x^{2}-a^{2}\right)^{\frac{1}{2}}}$, by $\frac{2 \dot{x} \times \overline{x+a} \times \overline{x^{2}-a} 7^{\frac{1}{2}}-x \dot{x} \times \overline{x^{2}-a^{2}}-\frac{1}{2} \times\left.\overline{x+a}\right|^{2}}{x^{2}-a^{2}}$; which by Reduction, is $=\frac{2 \dot{x} \times \overline{\left.x^{2}-a^{2}\right)^{\frac{2}{2}}-\dot{x} x \times \overline{x^{2}-a^{2}}}-\frac{1}{2} x \overline{x+a}}{\frac{x-a}{x}}$ $=\frac{2 \dot{x} \times \overline{x^{2}-a^{2}}-x \dot{x} \times \overline{x+a}}{\overline{x-a} \times \frac{\left.x^{2}-a^{2}\right)^{\frac{1}{2}}}{2}}=\frac{2 \dot{x} \times \overline{x-a} \times \overline{x+a}-\dot{x} x \times \overline{x+a}}{\overline{x-a} \times \sqrt{x^{2}-a^{2}}}$
$=\frac{\frac{x+a}{x+\bar{x}-2 a \dot{x}}}{x-a \times \sqrt{x^{2}-a^{2}}}$.
Having explained the Manner of confidering and determining the firft Fluxions of variable or flowing Quantities, it will be proper to fay fomething, now, concerning the higher Orders, as Second, Third, Fourch, ©̋c. Fluxions.
18. The Second Fluxion of a Quantity is the Fluxion of the variable or algebraic शuantity expreffing the. Firf Fluxion already defined *. Sy the Third Fluxion is \$Artaz. meant the Fluxion of the variable Quanti:y cxprefling the Scond: Aud by the Fourth, the Fiuxion of the variable Quantity experffing the Third Fluxion: And fo on.

Thus, for twample, let the Line $A B$ reprefent a variable Quantity, generated by, the Motion, of the Point B, and let the (firft) Fluxion thereof (or the Space that might be uniformly defcribed in a given Time, with the Celerity of B) be always exprefied by the Ditance
of the Point D from a given, or fixed Point C : Then, if the Celerity of B be not every where the fame; the Diftance CD, expreffing the Meafure of that Celerity, muft alfo vary, by the Motion of D, from, or towards C, according as the Celerity of B is an increafing or a decreafing one: And the Fluxion of the Line CD, fo varying (or the Space (EF) that might be uniformly defcribed in the aforefaid given Time, with the Celerity of D) is the fecond Fluxion of AB. Again, if the Motion of B be fuch that neither it, nor that of D, (which depends upon it) be equable, then EF, expreffing the Celeri: y of D , will alfo have its Fluxion GH; which is the third Fluxion of $A B$, and the fecond Fluxion of $C D$.

And thus are the Fluxions of every other Order to be confidered, being the Meafures of the Velocities by which their reppecive ficwing Quantities, the Fluxions of the *Ar. z. preceding Order, are generated *.
19. Hence it appears, that a fecond Fluxion always Ahews the rate of the Increafe, or Decreare, of the firft Fluxion; and that Third, Fourth, छ'c. Fluxions, differ in Nothing (except their Order and Notation) from Firft Fluxions, being actually fuch to the Quantities from whence they are immediately derived; and therefore are alfo determinable, in the very fame Manner, by the general Rules already delivered.

Thus, by Rule 3 . the (firft) Fluxion of x^{3} is $3 x^{2} \dot{x}$: And, if \dot{x} be fuppofed conftant, that is, if the Root x be generated with an equable Celerity, the Fluxion of $3 x^{2} \dot{x}$ (or $3 \dot{x} \times x^{2}$) again taken, by the fame Rule, will be $3 \dot{x} \times 2 x \dot{x}$, or $6 x \dot{x}^{2}$; which therefore is the fecond Fluxion of x^{3} : Whofe Fluxion, found in like Sort, will be $6 \dot{x}^{3}$, the third Fluxion of x^{3}. Farther than which

of FLUXIONS.

which we cannot go in this Care, becaufe the laft Fluxion $6 \dot{x}^{3}$ is here a conftant Quantity.
20. In the preceding Example the Root x is fuppofed to be generated with an equable Celerity: But, if the Celerity be an increafing or a decreafing one, then \dot{x}, expreffing the Meafure thereof, being variable, will alfo have its Fluxion; which is ufually denoted by \ddot{x} : Whofe Fluxion, according to the fame Method of Notation, is again defigned by \dot{x}; and fo on, with refpect to the higher Orders.
21. Here follow a few Examples, wherein the Root \dot{x}, (or y) is fuppofed to be generated with a variable Celerity.

Thus, the firt Fluxion of x^{3} is $3 x^{2} \dot{x}$ (or $3 x^{2} \times \dot{x}$). And, if the Fluxion of $3 x^{2} \times \dot{x}$ (confidered as a Rectangle) be, again, found (by Rule 2.) we fhall have $6 x \dot{x} \times \dot{x}+3 x^{2} \times \ddot{x}=6 x \dot{x}^{2}+3 x^{2} \ddot{x}$, for the fecond Fluxion of x^{3}.

Moreover, from the Fluxion laft found we fhall in like manner get $6 \dot{x} \times \dot{x}^{2}+6 x \times 2 \dot{x} \ddot{x}+6 x \dot{x} \times \ddot{x}+3 x^{2} \times \bar{x}$ (or $6 \dot{x}^{3}+18 x \dot{x} \ddot{x}+3 x^{2} \dot{x}$) for the third Fluxion of x^{3}.

Thus alfo, if $\dot{y}=n x^{n-1} \dot{x}$, then will $\dot{y}=n \times \overline{n-1} \times$ $x^{n-2} \dot{x}^{2}+n \ddot{x} x^{n-1}$; and if $\dot{z}^{2}=\dot{x} \dot{y}$, then will $2 \dot{z} \ddot{x}=$ $\dot{x} \dot{y}+\dot{y} \ddot{x}$: And fo of others. But, in the Solution of Problems, it will be convenient to make the firft Fluxion of fome one of the fimple Quantities (x or y) invariable, not only to avoid Trouble, but that it may ferve as a Standard to which the variable Fluxions of the other. Quantities, depending thereon, may be always referred. The Reader is alfo defired here (once for all) to take particular Notice, that the Fluxions of all Kinds and Orders, whatever, are contemporaneous, or fuch as may be generated together, with thair refpective' Celerities, in one and the fame Iime.

SECT.

Solution of Problems

S E C TION II.

On the Application of Fluxions to the Solution of Problems de Maximis et MiNIMIS.
22. F a Quantity, conceived to be generated by Motion, increafes, or decreafes, till it arrives at a certain Magnitude or Pofition, and then, on the contrary, grows leffer or greater, and it be required to determine the faid Magnitude or Pofition, the Queftion is called a Problem de Maximis छ Minimis.

General Illustration.

Let a Point m move uniformly in a Right Line, from A towards B, and let another Point n move after it, with a Velocity either increafing, or decreafing, but fo. that it may, at a certain Pofition, D, become equal to that of the former Point m, moving uniformly.
This being premifed, let the Motion of n be firft confidered as an in-
 creafing one; in which Cafe the Diftance of n behind m will continually increafe, till the two Points arrive at the cotemporary Pofitions C and D; but afterwards it will, again, decreafe; for the Motion of n, till then, being flower than at D, it is alfo flower than that of the preceding Point m (by Hypothefis) but becoming quicker, afterwards, than that cf m, the Diftance $m n$ (as has been already faid) will again decreafe : And therefore is Maximum, or the greateft of all, when the Celerities of the two Pqints are equal to each other.

But, if n arrives at D with a decreafing Celerity; then its-Motion being firft fwifter, and afterwards flower, than that of m, the Diftance min will firf decreafe and

de Maximis et Minimis.

then increafe; and therefore is a Minimum, or the leaft of all, in the forementioned Circumftance.

- Since then the Diflance mn is a Maximum or a Minimum, when the Velocities of m and n are equal, or when that Diftance increafes as faft through the Motion of m, as it decreafes by that of n, its Fluxion at that Inftant is evidently equal to Nothing *. Art. 2 Therefore, as the Motion of the Points m and n may and 5° be conceived fuch that their Diftance mn may exprefs the Meafure of any variable Quantity whatever, it follows, that the Fluxion of any variable Quantity whatever, when a Maximum or Minimum, is equal to Nothing.

E X A M P L E I.

23. To divide a given Right-line AB into two fuch Parts, AC, BC, that their Product, or Rectangle, may be the greatef polfible.
Put the given Line $A B$ $=a$, and let
 the Part AC, confidered as variable (by the Motion of C from A towards B) be denoted by x : Then BC being $=a-x$, we have $\mathrm{AC} \times \mathrm{BC}=a x-x^{2}$: Whofe Fluxion $a \dot{x}-2 \dot{x} \dot{x}$ being put $=0$, according to the prefcript, we get $a \dot{x}$ $=2 x x$, and confequently $x=\frac{1}{2} a$. Therefore AC and BC , in the required Circumftance, are equal to each other : Which we alfo know from other Principles.

E X A M P LE II.

24. To find the Fraction which Ball exceed its Cube by the greateft 2^{u} uantity polfible.
Lét x denote a variable Quantity, expreffing Number \therefore in general ; then the Excefs of x above x^{3} being univerfally reprefented by $x-x^{3}$, if the Fluxion thereof be taken, Eic. we fhall have $\dot{x}-3 x^{2} \dot{x}=0$; and therefore $x=\sqrt{\frac{1}{3}}$, the Fraction required.
E X.

Solution of Problems

EXAMPLEIII.

25. To determine the greateft Rectangle that can be ins fribed in a given Triangle.

Put the Bare AC of the given Triangle $=$ b, and its Altitude $\mathrm{BD}=a$; and let the Altitude (BS) of the infcribed Rectangle $m c$ (confidered as variable) be denoted by \because : Then, becaufe of the parallel Lines AC, and af, it will be as $\mathrm{BD}(a): \mathrm{AC}(b):: \mathrm{DS}(a-x): \frac{b a-b x}{a}$ $=a c:$ Whence the Area of the Rectangle, or $a c \times \mathrm{BS}$ will be $=\frac{b a x-b x^{2}}{a}:$ Whofe Fluxion $\frac{b a \dot{x}-2 b x \dot{x}}{a}$ being (as before) put $=0$, we fhall get $x=\frac{1}{2} a$. Whence the greateft infcribed Rectangle is that whofe Altitude is juft half the Altitude of the Triangle.
26. It will be proper to obferve here, that the Value of a Quantity, when a Maximum or Minimum, may oftentimes be determined with more Facility by taking the Fluxion of fome given Part, Multiple, or Power, thereof, than from the Fluxion of the Quantity itfelf. Thus, in the preceding Example, where the general Exprefion is $\frac{b a x-b x^{2}}{a}=\frac{b}{a} \times \overline{a x-x^{2}}$, if the conftant Multiplicator $\frac{b}{a}$ be rejected, we fhall have $a x-x^{2}$; whofe Fluxion $a \dot{x}-2 x \dot{x}$ being put $=0$, we get $x=\frac{1}{2} a$, the very fame es befors.

The Reafon of which is orvious; becaufe when the Quantity itfelf (be it of what Kind it will) is the greatef, or leaft poffible, any given Part, Power, or Multiple of it is allo the greateft or leaft poffible.
EXAMPLE IV.
27. Of all right-angled plain Triangles having the fame given Hypothenufe; to find that (ABC) wobofe Area is the greatef.

Let $\mathrm{AC}=a, \mathrm{AB}=x$, and $\mathrm{BC}=y$: Then, $x^{2}+y^{2}$ being $=a^{2}$, we fhall have $y=\sqrt{a^{2}-x^{2}}$, and confequently $\frac{x y}{2}=$ $\frac{x}{2} \cdot \sqrt{a^{2}-x^{2}}=$ the Area of the Triangle;

whofe Square $\frac{a^{2} x^{2}}{4}-\frac{x^{4}}{4}$ being, alfo, a Maximum *, *Art.26. the Fluxion thereof $\frac{a^{2} x \dot{x}}{2}-x^{3} \dot{x}$ muft therefore be $=0, t$: Whence x is found $=a \sqrt{\frac{T}{2}}$, and y tArt.z2. $\left(\sqrt{a^{2}-x^{2}}\right)=a \sqrt{\frac{\overline{7}}{2}}$.

The fame otherwife.
Since $\frac{1}{2} x y$ is a Maximum, and $x^{2}+y^{2}=a^{2}$, let the Fluxions of both be taken, and you will have $\frac{1}{2} x \dot{y}+\frac{1}{2} y \dot{x}$ $=0$, and $2 x \dot{x}+2 y \dot{y}=0$; from the former of ${ }^{2}$ which \dot{y} will be $=-\frac{y \dot{x}}{x}$; and from the latter, it will be $=-\frac{x \dot{x}}{y}$: Therefore $\frac{y \dot{x}}{x}$ and $\frac{x \dot{x}}{y}$ are equal to each other, and confequently $x=y$, (the fame as before.)

EXAMPLEV.

28. Of all right-angled plain Triangles containing the fame given Area, to find that wubereof the Sum of the two Legs $\mathrm{AB}+\mathrm{BC}$ is the leaft poffible. (See the preceding Figure.)

Let one Leg, $A B$, be denoted by x, and the Area of the Triangle by a; then the other Leg will be denoted by $\frac{2 a}{x}$, and the Sum of the two Legs will be $x+$ $\frac{2 a}{x} ;$ whereof the Fluxion is $\dot{x}-\frac{2 a \dot{x}}{x^{2}} ;$ which, put $=0$, gives $x(\mathrm{AB})=\sqrt{2 a}:$ Whence $\mathrm{BC}\left(\frac{2 a}{x}\right)$ is alfo $=$ $\sqrt{2 a}$. Therefore the two Legs are equal to each other.

> E X A M P LE VI.
29. To determine the Dimenfoons of the leaf Ifofceles Triangle ACD that can circumforibe a given Circle.

Let the Diftance (OD) of the Vertex of the Triangle from the Center of the Circle, be denoted by x, and let the remaining Part of the Perpendicular, which is the Radius of the Circle, be reprefented by a : Then, if OS, perpendicular to DC , be drawn, we fhall have $\mathrm{DS}=\sqrt{x^{2}-a^{2}}$; and therefore, fince $D S: O S:: D B: B C$, we likewife have $\mathrm{BC}=\frac{a \times \overline{x+a}}{\sqrt{x^{2}-a^{2}}}$; which multiplied by $\overline{x+a}(\mathrm{BD})$
gives $\frac{a x+\left.\right|^{2}}{\sqrt{x^{2}-a^{2}}}$ for the Area of the Triangle: Which being a Minimum, its Square mut be a Minimum, and consequently $\frac{\overline{x+a}{ }^{4}}{x^{2}-a^{2}}$, or its Equal $\frac{\overline{x+a_{1}}}{}{ }^{3}$, a Minimum alfo *. Whore Fluxion, therefore, which is "Art.26. $\frac{3 \dot{x} \times\left.\overline{x+a}\right|^{2} \times \overline{x-a}-\dot{x} \times \overline{x+a}}{}{ }^{3}$, being put $=0$, and the Whole divided by $\frac{\dot{x} \times \overline{x+a}}{\overline{x-a}}{ }^{2}$, we aldo get $3 \times \overline{x-a}$ $-\overline{x+a}=0$; whence $x=2 a$: Therefore, OD being $={ }_{2} \mathrm{OS}$, and the Triangles ODS and BDC equiangular, it is evident that DC is likewife $=2 \mathrm{BC}=\mathrm{AC}$; and f_{0} the Triangle ACD, when the leaft poffible, is equilateal.

EXAMPLE VII.

30. To determine the greatcfl Cylinder, dg, that can be inferibed in a given Cine ADB.

Let $a=\mathrm{BC}$, the Altitude of the Cone;
$b=\mathrm{AD}$, the Diameter of its Bare;
$x=f g(d h)$ the Diameter of the Cylinder, confidered as variable;
$p=\left(\frac{3,14159, \xi^{\circ} c .}{4}\right)$ the Area of the Circle whole Diameter is Unity.

Then, the Areas of Circles being to one another as the Squares of their Diameters, we have, $1^{2}: x^{2}:$: $p:\left(p x^{2}\right)$ the Area of the Circle figs: Moreover, from the Similarity of the Triangles $A D^{\circ} C$ and Adf, we have $\frac{1}{2} b(\mathrm{AC}): a(\mathrm{BC}):: \frac{1}{2} b-\frac{1}{2} x(\mathrm{Ad}): d f=\frac{a b-a x}{b} ;$ which multiplied by the Area $p x^{2}$ (found above) gives

$$
\mathrm{C}_{2} \quad p_{a b x^{2}}
$$

Art.22. be $=0^{}$, confequently $x=\frac{2 b}{3}$ and $d f=\frac{a}{3}$: From whence it appears, that the infcribed Cylinder will be the greateft poffible, when the Altitude thereof is juft $\frac{7}{3}$ of the Altitude of the whole Cone.

EXAMPLEVIII.

31. To determine the Dimenfions of a cylindric Meafure ABCD, open at the Top, which fhall contain a given 2uantity (of Liquor, Grain, \&ic.) under the leaf internal Superficies poffible.

Let the Diameter $\mathrm{AB}=x$, and the Altitude $\mathrm{AD}=y$; moreover let $p\left(3,14159, \mathcal{E}^{\circ} c\right.$.) denote the Periphery of the Circle whofe Diameter is Unity, and let c be the given Content of the Cylinder. Then it will be $1: p:: x:(p x)$ the Circumference of the Bafe; which, multiplied
by the Altitude y, gives $p x y$ for the concave Superficies of the Cylinder. In like Manner, the Area of the Bafe, by multiplying the fame Expreffion into $\frac{7}{\mp}$ of the Diameter x, will be found $=\frac{p x^{2}}{4}$; which drawn into the Altitude y, gives $\frac{p x^{2} y}{4}$ for the folid Content of the Cy linder ; which being made $=c$, the concave Surface $p x y$ will be found $=\frac{4 c}{x}$, and confequently the whole Surface $=\frac{4 c}{x}+\frac{p x^{2}}{4}:$ Whereof the Fluxion, which is, $-\frac{4 c \dot{x}}{x^{2}}+\frac{p x \dot{x}}{2}$, being put $=0$, we fhall get $-8 c+p x^{3}$ $=0$; and therefore $x=2 \sqrt[3]{\frac{c}{p}}$: Further, becaufe $p x^{3}$ $=8 c$, and $p x^{2} y=4 c$, it follows, that $x=2 y$; whence y is alfo known, and from which it appears, that the Diameter of the Bafe mult be juft the Double of the Altitude.

E X A MPLE IX.

32. Of all Cones under the fame given Superficies (s) to find that (ABD) whofe Solidity is the greatef.
Let the Semidiameter of the Bafe, $\mathrm{AC}=x$, and the Length of the flant Side $\mathrm{AB}=y$; and let p (as in the preceding Examples) denote the Periphery of the Circle whofe Diameter is Unity.

C 3
Then

Then the Circumference of the Bafe will be $=2 p$, the Area of the Bafe $=p x^{2}$, and the convex Superficies of the Cone $=\hat{p} x y$, (which laft is found by multiplying half the Periphery of the Bafe by the Length of the flaint Side): Wherefore, fince the whole Superficies is:
$=p x^{2}+p x y=s$, we have $y=\frac{s}{p x}-x$; whence the Altititude $C B\left(\sqrt{A B^{2}-A C^{2}}\right)=\sqrt{\frac{s^{2}}{p^{2} x^{2}}-\frac{2 s}{p}} ;$ which: multiplied by $\left(\frac{p x^{2}}{3}\right) \frac{5}{3}$ of the Area of the Bafe, gives $\frac{\rho^{2} x^{2}}{3} \sqrt{\frac{s^{2}}{p^{2} x^{2}}-\frac{2 s}{p}}$ for the folid Content of the Cone. Which being a $M a x i m u m$, its Square $\frac{s^{2} x^{2}}{9}-\frac{2 p s x^{4}}{9}$ muft alfo be a Maximum; and therefore $\frac{2 s^{2} x \dot{x}}{9}-\frac{8 p s x^{3} \dot{x}}{9}=0$; whence s- $4 p x^{2}=0$, and confequently $x=\sqrt{\frac{s}{4 p}}$ From which $y\left(=\frac{s}{p x}-x=\frac{s-p x^{2}}{p x}=\frac{3 p x^{2}}{p x}=3 x\right)$ will likewife be known; and from whence it will appear that the greateft Cone under a given Surface, (or a given Cone under the leaft Surface) will be when the Length of the flant Side is to the Semi-diameter of the Bare in the Ratio of 3 to r , or, (which comes to the fame) when the Square of the Altitude is to the Square of the whole Diameter in the Ratio of 2 to 1 .

E X A MPLEX.

33. To determine the Poffition of a Right-line DE , which, paffing through a given Point P , fhall cut two Rightlines AR and AS, given by Pofition, in juch fort that the Sum of the Segments, AD and AE, made thercly, may be the leaf polfible.

Make PB , parallel to $\mathrm{AS},=a$, and PC , parallel to $\mathrm{AR},=b$; and let $\mathrm{BD}=x$: Then, by reafon of the parallel Lines, it will be, $x: a:: b: \mathrm{CE}=\frac{a b}{x}:$ Therefore $\mathrm{AD}+\mathrm{AE}=b+x+a+\frac{a b}{x}$, and its Fluxion, $\dot{x}-\frac{a b \dot{x}}{x^{2}}$, which, in the required Circumftance, being $=0$, we have $x^{2}-a b$ alfo $=0$, and confequently $x=$ $\sqrt{a b}$; whence the Pofition of DE is known. But the fame Thing may be otherwife determined, independent of Fluxions, from the general Solution of the Problem for finding the Pofition of DE, when the Sum of the Segments AD and AE (inftead of being a Minimum) thall be equal to a given Quantity. Of which Problem, the geometrical Conftruction may be as follows.

C 4
Compleat

Compleat the Parallelogram ABPC (as before) and, in RA produced, take $\mathrm{A} c=\mathrm{AC}$, and let $c \mathrm{~F}$ be equal to the given Sum of the two Segments: Alfo let two Semi-circles be defcribed upon Bc and BF , and let AH , perpendicular to Bc , interfect the former in H ; likewife let HK , parallel to Fc , interfect the latter in I; draw ID perpendicular to Fc , and, through P and D draw DE; which will be the Pofition required. For $\mathrm{AB} \times \mathrm{Ac}$ being $=\mathrm{AH}^{2}=\mathrm{DI}^{2}=\mathrm{BD} \times \mathrm{DF}$, we have BD $: A B:: A c(A C): D F ;$ alfo, becaufe of the parallel Lines, we have $\mathrm{BD}: \mathrm{AB}:: \mathrm{AC}: \mathrm{CE}$; whence $\mathrm{DF}=$ $C E$, and confequently $A D+A E(A D+A C+F D)$ is equal to $c \mathrm{~F}$, which Conftruction is more neat than that in p. 155. of my Geometry. But to fhew how far this may conduce to the Matter firft propofed; we are to obferve, that, as the Problem here conftructed appears to be impofible, when the Right-line HK (intead of cutting or touching) falls wholly below the Circle BWF, the leaft poffible Value of BF (and confequently of AD +AE) muft, therefore, be when that Right-line touches the Circle; that is, when $\mathrm{BD}=\mathrm{DI}=\mathrm{AH}=\sqrt{\mathrm{AB} \mathrm{\times AC}}$; which Value is the very fame with that found above.

The fame Conclufion may alfo be deduced from the algebraic Solution of the forefaid Probiem: For, putting $b+x+a+\frac{a b}{x}(\mathrm{AD}+\mathrm{AE})=s$, and folving the Equation, x will be found $=\frac{s-a-b}{2} \pm \sqrt{\frac{s-a-\left.b\right|^{2}}{4}-a b}$: Which Equation being no longer poffible than till $\frac{\overline{s-a-\left.b\right|^{2}}}{4}$ $-a b$ is $=0$, we have x, in that Circumftance,,$^{4}=$ $\frac{s-a-b}{2}=\sqrt{a b}$; Aill as before. In iike Manner the Maxima and Minima may be determined in other Cafes, by finding the Pofition or Circumftance wherein the general Problem begins to be impofible, (fuppofing the Quantity fought to be given). But the Operation by

Fluxions

Fluxions is, for the general Part, much more fhort and expeditious.

E X A M P L E XI.

34. The fame being given as in the preceding Example, to determine the Poffition, when the Line DE , itfolf, is the leaft pofible.
Upon AF let fall the perpendicular PQ ; make BQ $=c$, and, the reft, as before: Then DP ${ }^{2}$ being ($=$ $\left.\mathrm{DB}^{2}+\mathrm{BP}^{2}-2 \mathrm{BQ} \times \mathrm{DB}\right)=x^{2}+a^{2}-2 c x$, and DB^{2} : $\mathrm{DP}^{2}:: \mathrm{DA}^{2}: \mathrm{DE}^{2}$, we have $x^{2}: x^{2}+a^{2}-2 c x:: 0+\left.x\right|^{2}$ $: \mathrm{DE}^{2}=\frac{\left.\overline{b+x}\right|^{2} \times \overline{x^{2}-2 c x+a^{2}}}{x^{2}}=\left.\overline{b+x}\right|^{2} \times \overline{1-\frac{2 c}{x}+\frac{a^{2}}{x^{2}} ;}$ whofe Fluxion, which is $2 \dot{x} \times \overline{b+x} \times 1-\frac{2 c}{x}+\frac{a^{2}}{x^{2}}+$ $\overline{b+x_{1}^{2}} \times \overline{\frac{2 c \dot{x}}{x^{2}}-\frac{2 a^{2} \dot{x}}{x^{3}}}$, being put $=0$, and the whole Equation divided by $2 \dot{x} \times \overline{b+x}$, there will come out I $\frac{2 c}{x}+\frac{a^{2}}{x^{2}}+\overline{b+x} \times \frac{c}{x^{2}}-\frac{a^{2}}{x^{3}}=0$; whence $x^{3}-2 c x^{2}+a^{2} x$ $+\overline{b+x} \times \overline{c x-a^{2}}=0$; that is, (by Reduction) $x^{3}-c x^{2}$ $+b c x-a^{2} b=0$: From the Refolution of which Equation, the Pofition of DE is determined.

Lemma.

35. If a Body or Point (n) be fuppofed to move in a Right-lime AB, its abfolute Celerity, in the Direction of that Line, will be to the relative Celerity, whereby it tends to, or from, a given Point C, any where out of the Line, as the Diftance $\mathrm{C} n$, is to the Difance $\mathrm{D} n$, intercepted by n and the Perpendicular CD; or, as Radius to the Co-fine of the Angle of Inclination $\mathrm{D}_{n} \mathrm{C}$.
For, putting $\mathrm{CD}=a, \mathrm{D}_{n}=x$, and $\mathrm{C}_{n}=y$, art. $_{2}$ we have $a^{2}+x^{2}=y^{2}$, and confequently $2 x \dot{x}=2 y \dot{y}$. $:$ and 50

Art. 2 and 5 .

COROLLARY.
It follows from hence, that the relative Celerities in any two different Directions $n \mathrm{E}$ and $n \mathrm{C}$, are directly as the Co-fines of the correfponding Angles DnE and $\mathrm{D} n \mathrm{C}$. Therefore, when $n \mathrm{E}$ is perpendicular to $\mathrm{C} n$, (and the Angle D_{n} E, therefore equal to C) the Celerity in the Direction $n \mathrm{E}$, will be to that in the Direction $\because \mathrm{C}$, as the Sine of $\mathrm{D}_{n} \mathrm{C}$ is to its Co-fine. From whence it appears, that the Celeritics in the Direstions $\mathrm{D} n, \mathrm{C} n$, and $\mathrm{E} n$ (perpendicular to $n \mathrm{C}$) are to each other as $\mathrm{C} n$, $\mathrm{D} n$, and CD refpectively.

> E X A M PLE XII.
35. To detcrmine the Pofition of a Point, from whence, if three Right-lines be drawn to fo many given Points A, B, C, their Sumt Ball be the leaft poffible.
Let HPG be the Periphery of a Circle defcribed about the Point A, as a Center, at any Diftance AG; in which let the Point P be conceived to move with an uniform Celerity, from G towards H. Then, becaufe the relative Celerity thereof, in the Direction PC, is to that in the Direction BP produced, as the Co-fine of the Angle CPH to the Co-fine of the Angle BPG; (by the preccering Lemma) ; and, firce thefe Cejerities, when
the Sum of CP and BP is a Minimum muft be equal *, "Art. 2 it follows, therefore, that the faid Angles CPH and BPG, as well as their Co-fines, will in that Circumftance become equal to each other ; and confequently APC alfo equal to A P B. B From whence it appears, that (take AG what you will) the Sum of the three Lines, AP, BP, and $C P$, cannot he the leaft poffible when the Angles APB and APC are unequal. And, by the fame
 Argument, it alfo appears that their Sum cannot be the leaft poffible, when the Angles BPA and BPC are unequal: i Therefore, their Sum muft be the leaft poffible, when all the three Angles about the Point P are equal to one another; provided the Cafe will admit of fuch an Equality, or that no one of the Angles of the Triangle ABC is equal to, or greater than $\frac{1}{3}$ of 4 Right Angles (for otherwife, the Point P will fall in the obtufe Angle): Hence this

Construction.

Defcribe, upon BC, a Segment of a Circle, to contain an Angle of 120°, and let the swhole Circle BCQ be compleated; and from A, to the Middle (Q) of the Arch BQC, draw AQ interfecting the Circumference of the Circle in P ; which will be the Point required. For, the Angles BPQ and CPQ, ftanding upon the equal Arches $B Q$ and $C Q$, have their Complements $A P B$ and $A P C$ equal to each other ; and therefore, the Angle BPC being 120° (by Conftruction) each of the faid
faid Angles APB, APC, will, likewife be 120 Degrees.

After the fame
 Manner, it will appear that the Sum of all the Lines AP, BP, CP, छ'c. drawn from any Number of given Points A, B, C, छc. to meet in another Point P, will be the leaft poffible, when the Co-fines of the Angles RPA, RPB, RPC, $\delta^{\circ} c_{c}$, that the faid Lines make with any other Line RS, paffing through the Point of Concourfe, deftroy each other: Which will be when all the Angles APB, BPC, CPD, $\mathrm{E}^{\circ} \mathrm{c}$. are equal, in all Cafes where the Pofition of the given Points will admit of fuch an Equality. But, if the Number of given Points be four, the required Point will be in the Interfection of the two Right-lines joining the oppofite Points: For, fuppofing APC and BPD to be continued Right-lines, the Co-fine of RPA will be equal and contrary to that of RPC, and that of RPB equal and contrary to that of RPD.

E X A M P L E XIII.

37. If two Bodies move at the fame Time, from two given Places A and B , and proceed uniformly fron thence in given Directions, AP and BQ , with Celerities in a given Ratio ; it is propofed to find their Pofition, and how far each bas gone, when they are the neareft poffible to each otber.

Let M and N be any two cotemporary Pofitions of the Bodies, and upon AP let fall. the Perpendiculars $N E$ and $B D$; alfo let $C B$ be produced to meet $A P$

in C , and let MN be drawn: Moreover, let the given Celerity in BQ be to that in AP, as n to m, and let AC, BC, and CD, (which are alfo given) be denoted by a, b, and c refpectively, and make the variable Diftance $\mathrm{CN}=x:$ Then, by reafon of the parallel Lines NE and BD , we fhall have $b(\mathrm{CB}): x(\mathrm{CN}):: c(\mathrm{Cl})$ $: \mathrm{CE}=\frac{c x}{b}$. Alfo, becaufe the Diftances, BN and AM, gone over in the fame Time, are as the Celerities, we likewife have, $n: m:: x-b$ (BN) : AM $=\frac{m x-m b}{n}$, and confequently $\mathrm{CM}(\mathrm{AC}-\mathrm{AM})=a+$ $\frac{m b}{n}-\frac{m x}{n}=d-\frac{m x}{n}$, (by writing $d=a+\frac{m b}{n}$). Whence $\mathrm{MN}^{2}\left(=\mathrm{CM}^{2}+\mathrm{CN}^{2}-\mathrm{CM} \times{ }_{2} \mathrm{CE}\right)$ will alfo be found $=d-\frac{m x 1^{2}}{n}+x^{2}-d-\frac{m x}{n} \times \frac{2 c x}{6}=d^{2}-\frac{2 d m x}{n}+\frac{m^{2} x^{2}}{n^{2}}$ $+x^{2}-\frac{2 c d x}{b}+\frac{2 c m x^{2}}{n b}$; whofe Fluxion $-\frac{2 d m \dot{x}}{n}+\frac{2 m^{2} x \dot{x}}{n^{2}}$ $+2 x \dot{x}-\frac{2 c d \dot{x}}{b}+\frac{4 c m x \dot{x}}{n b}$ being made $=0$ (becaufe MN is to be a Minimum) we get $-b d m n+m^{2} b x+n^{2} b x-n^{2} c d$ $+2 m n c x=0$; and confequently $x=\frac{m n b d}{m^{2} b+n^{2} b} b+2 m n c=$ $\frac{n d \times \overline{m b+n c}}{b \times \overline{m^{2}+n^{2}+2 m n c}}$; from whence BN, AM, and MN are alfo given.

The fame otherwifer
Becaufe the relative Celerities of the two Bodies, at M and N , in the Direction of the Line MN (produced) are truly expreffed by $\frac{C o-\text { ine } M}{\text { Radius }} \times m$, and $\frac{C o-\int . N}{R a d .}$
"Art.35. $\times n$, refpectively *; and as thefe Celerities, when the Diftance MN is a Minimum, do become equal to each Art.22.other t, it follows that, in this Circumftance, $m: n::$ Co-f. N.: Co-f. M : : Secant of M : Secant of N (by plane Trig.)

Whence this Conftruction. Take CH to CB in the given Ratio of m to n, and draw HB ; upon which

produced (if neceffary) let fall the Perpendicular AR ; draw RN parallel to AH , meeting CQ in N ; laftly, draw NM parallel to AR, and it will give the Pofition required. For, firft, it is plain, becaufe AM (RN) : $\mathrm{BN}(:: \mathrm{CH}: \mathrm{CB}):: m: n$, that M and N are cotemporary Pofitions : It is likewife plain, that RN and BN will be Secants of the Angles KNR (CMN) and KNB (CNM) to the Radius NK ; becaure the Angle NKR ($=$ ARK) is a Right-one. "Which Lines or Secants are in the propofed Ratio of m to n, as has been already fhewn.

But the fame Solution may be, yet, otherwife derived, independent of Fluxions, from Principles intirely geometrical. For, let m and n be any two cotemporary Pofitions at Pleafure, and let CH (as before) be to CB , as the Celerity in AP to that in CQ; moreover, let $n r$, parallel to AP , be drawn, meeting HB produce in r, and let A, r be joined. Then, fince CB: $\mathrm{CH}:: \mathrm{B} n: n r$ (by firm. Triangles) and $\mathrm{CB}: \mathrm{CH}:: \mathrm{B} n$: A m, (by Hyp.) it follows, that $n r$ and $\mathrm{A} m$, (which are parallel) will alto be equal to each other ; and therefore Ar and $m n$, likewife equal and parallel. But Ar is the leaft poffible when perpendicular to Hr . Whence the Solution is manifest.

EX A M PLEXIV.

38. Let the Body M move, uniformly, from A towards Q, with the Celerity m, and let another Body N proceded from B, at the Same time, with the Celerity n. Now it is proofed to find the Direction (BD) of the latter, fo that the Difance MN of the two Bodies, ruben the latter arrives in the Way or Direction $A Q$ of the former, may be the greatest poffible.

Let $B C$ be perpendicular to $A Q$, and make $A C=$ $a, \mathrm{BC}=b$, and $\mathrm{BN}=x$. Therefore, if the Pofition M be fuppofed cotemporary with N , we fall have n : $m:: x: \mathrm{AM}=\frac{m x}{n}$; whence $\mathrm{CM}=\frac{m x}{n}-a$, and consequently
fequently $M N(\mathrm{CN}-\mathrm{CM})=\sqrt{x^{2}-b^{2}}-\frac{m x}{n}+a ;$ whereof the Fluxion being taken, and made $=0$, we get $\frac{x}{\sqrt{x^{2}-b^{2}}}=\frac{m}{n}$; therefore $x=\frac{m b}{\sqrt{m^{2}-n^{2}}}$, and CN $\left(\sqrt{x^{2}-b^{2}}\right)=\frac{n b}{\sqrt{m^{2}-n^{2}}}:$ Whence, $m: n(:: \mathrm{BN}:$
CN :: Radius: Co-fine N. The fame Conclufion is otherwife derived, thus,

Let the Right-line BD be fuppofed to revolve about the Point B, as a Center, with a Motion fo regulated, that the intercepted Part thereof BN may increafe with the uniform Celerity n : Then, the Celerity with which *Arr.35. CN is increafed being $=\frac{n \times \text { Radius* }}{C o-\text { jine } \mathrm{N}}$, this Expreffion, when MN is a Maximum, muft, confequently, be equal \dagger Art.22.to (m) the Velccity of the other Body +M ; and therefore $m: n::$ Radius : Co-fine N , as before.

E X A M P L E XV.

39. Suppofing a Ship to fail from a given Place A, in a given Direction AQ , at the fame time that a Boat, from another given Place B, fets out in order (if poffible) to come up with her, and fuppofing the Rate at which each Veffel runs to be given; it is required to find in what Direction the latter muff proceed, So that, if it cannot come up with the former, it may, however, approach it as near as poffible.

Let the Celerity of the Ship be to that of the Boat in the given Ratio of m to n; alfo let D and F be the Places of the two Veffels 'when neareft poffible to each other, and, from the Center B, through F, fuppofe the Circumference of a Circle to be defcribed. Then (the Diftance DF being the leaft poffible), the Point F muit be in the Right-line (DB) joining the Point D and the

de Maximis \& Minimis.

Center B; becaule no other. Point in the whole Periphery, at which the Boat from B might arrive in the fame time, is fo near to D as that wherein the Line DB interfects the faid

Periphery- - But now, to get an Expreffion for DF, in algebraic Terms, let $B C$ be perpendicular to $A Q$, and make $\mathrm{AC}=a, \mathrm{BC}=b$, and $\mathrm{CD}=x$; and then BD $\left(\sqrt{\mathrm{BC}^{2}+\mathrm{CD}^{2}}\right)$ will be $=\sqrt{b^{2}+x^{2}}$; moreover, becaufe $m: n:: \mathrm{AD}(a+x): \mathrm{BF}$, you will have $\mathrm{BF}=\frac{n a+n x}{m}$, and confequently, $\mathrm{DF}=\sqrt{b^{2}+x^{2}}-\frac{n a+n x}{m}$; whofe Fluxion, $\frac{x \dot{x}}{\sqrt{b^{2}+x^{2}}}-\frac{n \dot{x}}{m}$, being made $=0$, we find $x=\frac{n b}{\sqrt{m^{2}-n^{2}}}$; whence the Direction BD is known : And, if the Value of x, thus found, be fubftituted in that of DF, (found above) we fhall have $\mathrm{DF}=$ $\frac{b \sqrt{m^{2}-n^{2}}-n a}{m}$; whence the Pofition of F is known.
And from which it is obfervable, that, as DF muft be a real, pofitive Quantity (by the Queftion) this Method of Solution can only obtain when m is greater than n, and $\zeta \sqrt{m^{2}-n^{2}}$, alfo greater than $n a$: For in all other Cafes the Boat will be able to come up with the Ship.

> The fame otherwife.

Let the Radius of the Circle EFH be conceived to increafe uniformly, with the Celerity n, whilf the Point

D moves uniformly along AQ , with the Celerity m ? Then, the Celerity at D, in the Direction of BD produced, being $=\frac{m \times C o-\sqrt{\text { ine }} \mathrm{D}}{\text { Radius }}$, the relative Celerity with which the Point D recedes from the Periphery of the faid variable Circle, will be univerfally expreffed by $\frac{m \times C_{0}-\text { fine } \mathrm{D}}{\text { Radius }}-n ;$ which being, $=0$, when DF is a Minimum, we bave in this Cafe $m \times C o-$-ine $\mathrm{D}=n \times R a-$ dius, and confequently $n: n::$ Radius : Co-fine D: Therefore, if, at C, a right-angled Triangle Cbd be conflituted, whofe Bafe $\mathrm{C} d=n$, and its. Hypothenufe $d b=m$, and parailel to the latter you draw BD, it will be the Direction, required: In which, if there be taken BF, a Fourth-proportional to m, n, and $A D$, you will alfo have the Pofition required.

> E X A M PLE XVI.
40. To determine the greateft Parabola that can be formed by cutting a given Cone ACD.

Let $n v$, parallel to CA, be the Axis of the Parabola $r \geq m$, and $r m$ the Base (or Ordinate) thereof; putting
$\mathrm{DC}=a, \mathrm{CA}=b$, and $\mathrm{D} n=x$; then; because of the parallel Lines, it will be, $a: b:: x: \frac{b_{x}}{a}=n v:$ Moreover, by the Property of the Circle, we have r^{2} ($=n m^{2}=\mathrm{D} n \times \mathrm{C} n$) $=a x-x^{2}$, and consequently rm $2 \sqrt{a, x-x^{2}}$; which multiplied by $\frac{2}{3} \times \frac{b x}{a}$ (becaufe every Parabola is $\frac{2}{3}$ of a Parallelogram of the fame Bare and Altitude) gives $\frac{4 b x}{3^{a}} \sqrt{a x-x^{2}}$ for the Content of the Parabola : Whole Fluxion, or that of $a x^{3}-x^{4} *$ being *Arta6. put equal to Nothing; we find $x=\frac{3 a}{4}$: Whence $\eta v=$ $\frac{3}{4} \times \mathrm{AC}, r m=\mathrm{CD} \times \sqrt{3}^{\frac{3}{3}}$, and the Area of the greateft, or required, Parabola $=A C \times C D \times \frac{\sqrt{ } 3}{4}$.

EXAMPLE XVII.

41. To determine the greatcf Ellipfis BTES that can be formed by cutting a given Cone ABD.
Let BE be the greater, and TS the lefter, Axis of the Ellipfis BTES, confidered as variable by the Motion of (the End of the Tranfverfe) E, along the Line AD ; moreover let Av be parallel to AC the Axis of the Cone, meeting the Diameter BD in v, and let the Diameters EF and $n p$ be parallel to BD ; whereof the latter $n p$ is fuppofed to

pafs through O the Center of the Ellipfis : Then, putting $\mathrm{AC}=a, \mathrm{CD}=b$, and $\mathrm{C} v=x$, we fhall have $\mathrm{B} v=$ $b+x$; alfo, becaufe of the parallel Lines we have CD (b): $\mathrm{CA}(a):: \mathrm{Dv}(b-x): \frac{a \times \overline{b-x}}{b}=\mathrm{E} v$; whence $\mathrm{BE}\left(\sqrt{\mathrm{B} v^{2}+E v^{2}}\right)=\frac{\sqrt{b^{2} \times \overline{b+\left.x\right|^{2}}+a^{2} \times \overline{b-\left.x\right|^{2}}}}{b}$. Furthermore, fince the Triangles EOn, EBD, and $\mathrm{BO} p, \mathrm{BEF}$ are equiangular, and $\mathrm{EO}(=\mathrm{BO})=\frac{1}{2} \mathrm{BE}$, we likewife have $\mathrm{O} n=\frac{1}{2} \mathrm{BD}=b$, and $\mathrm{O} p=\frac{1}{2} \mathrm{EF}=\mathrm{C} v$ $=x$; and confequently $\mathrm{O} n \times \mathrm{O} p\left(=\mathrm{OT}^{2}\right.$, by the Property of the Circle) $=b x$; whence $S T={ }_{2} \sqrt{b x}$, and therefore $\mathrm{BE} \times \mathrm{ST}=\frac{\sqrt{b^{2} \times \overline{\left.b+x)^{2}+a^{2} \times \overline{b-x}\right)^{2}} \times 4 b x}}{b}$.

Now the Area of any Ellipfis being in a conftant Ratio to the Rectangle of its greater and leffer Axes (namely as 3,14159 , $\mathfrak{c} c$. to 4) the laft general Expreffion muft therefore be a Maximum, when the Area is fo; and therefore its Fluxion, or that of $b^{2} x \times$ $\overline{b+x x^{2}}+a^{2} x \times b-\left.x\right|^{2}\left(=b^{4} x+2 b^{3} x^{2}+b^{2} x^{3}+a^{2} b^{2} x\right.$ *Art.22. $-2 a^{2} b x^{2}+a^{2} x^{3}$) equal to Nothing *; that is, $b^{4} \dot{x}$ $+4 b^{3} x \dot{x}+3 b^{2} x^{2} \dot{x}+a^{2} b^{2} \dot{x}-4 a^{2} b x \dot{x}+3 a^{2} x^{2} \dot{x}=0$: Whence $x^{2}-\frac{4 b x \times \overline{a^{2}-b^{2}}}{3 a^{2}+3 b^{2}}=-\frac{b^{2}}{3}$, and $\boldsymbol{x}=$ $\frac{2 b \times \overline{a^{2}-b^{2}}+b \sqrt{a^{4}-14 a^{2} b^{2}+b^{4}}}{3 a^{2}+3 b^{2}}$; from which the Ellipfis is known.

But it is obfervable, that, when $a^{4}-14 a^{2} b^{2}+b^{4}$ is negative, this Solution fails, becaufe the Square Root of a negative Quantity is to be extracted. Therefore, to determine the Limit, put $a^{4}-14 a^{2} b^{2}+b^{4}=0$; then, by ordering the Equation, you will get $a^{2}=b^{2} \cdot x$ $7+\sqrt{ } 48$, and $a=b \times \overline{2+\sqrt{3}}$; and therefore $a: b:: 2$ $+\sqrt{ } 3: 1$. Hence, if the Ratio of $A C$ to $C D$ be not
greater than that of $2+\sqrt{3}$ to 1 , or (which comes to the fame thing) if the Angle DAC be not lefs than 15 Degrees, the Fluxion of the Ellipfis can never become equal to Nothing; but the Ellipfis itfelf will increafe continually, from the Vertex till it coincides with the Bafe of the Cone; and therefore is greater at the Bafe than in any other Pofition.

- But it is further to be obferved, that this Problem is confined to, yet, narrower Limits. For, cither the Ellipfis will increafe, continually, from the Vertex, to the Bafe, of the Cone, (which is fhewn to be the Cafe when the Angle DAC is greater than 15°) or clfe it will increafe till the Point E arrives at a certain Pofition H , and afterwards decreafe to another certain Pofition b, and then increafe again till it coincides with the Bafe of the Cone, (for it muft always increafe again before it coincides with the Bafe, becaufe, after the Point E is got below the Perpendicular BQ, both the Axes of the Ellipfis increafe at the fame time).

The fame thing alfo appears from the foregoing Equa-

$$
2 b \times \frac{a^{2}-b^{2}}{} \pm \sqrt{a^{4}-14 a^{2} b^{2}+b^{4}}
$$

tion $x=\frac{2 b \times a-b^{2}}{3 a^{2}+3 b^{2}} ;$ whole two
Roots exprefs the two Values of x (or $\mathrm{C} v$) at the Times of the Maximum (at H) and its fucceeding Minimum (at b). Hence it is manifert, that the Ellipfis may admit of a Maximum between the Vertex of the Cone and the Perpendicular BQ, and yet, that Maximum be lefs than the Bafe of the Cone, unlefs the forefaid Angle DAC be fo much lefs than 15° (above found) that the Increafe from b to D, be lefs than the Decreafe from H to h . Now therefore, to determine the exact Limit, let the forefaid Increment and Decrement be fuppofed equal to each other, or, which is the fame in Effect, let the Ellipfis BTESE $=$ the Circle $\mathrm{BqD} m$, or $\mathrm{BE} \times \mathrm{ST}=\mathrm{BD}^{2}$, that is, let
$\frac{\sqrt{\left.b^{2} \times \overline{b+\left.x\right|^{2}}+a^{2} \times \overline{b-x}\right)^{2}} \times \overline{4 b x}}{b}=4 b^{2}$: From which
Equa-

Solution of Problems

Equation you will get $a^{2}=\frac{b^{2}}{x} \times \frac{4 b^{3}-b^{2} x-2 b x^{2}-x^{3}}{\frac{b-x)^{2}}{}}$ $=\frac{b^{2}}{x} \times \frac{4 b^{2}+3 b x+x^{2}}{b-x}:$ Moreover, from the Equation $b^{4} \dot{x}+4 b^{3} x \dot{x}+3 b^{2} x^{2} \dot{x}+a^{2} b^{2} \dot{x}-4 a^{2} b x \dot{x}+3 a^{2} x^{2} \dot{x}=0,(\mathrm{~g}$ ven above) you will, again, get $a^{2}=\frac{b^{2} \times \overline{b^{2}+4 b x+3 x^{2}}}{-b^{2}+4 b x-3 x^{2}}$ $=\frac{b^{2} \times \overline{b^{2}+4 b x+3 x^{2}}}{\overline{b-x} \times \overline{3 x-b}}$: Whence, by comparing there equal V alues, there arifes $\frac{4 b^{2}+3 b x+x^{2}}{x}=\frac{b^{2}+4 b x+3 x^{2}}{3 x-b}$ which, ordered, gives $x^{2}+2 b x-b^{2}=0$, and therefore $x=b \sqrt{2}-b$.
Moreover, $\frac{a^{2}}{b^{2}}$ being $=\frac{4 b^{2}+3 b x+x^{2}}{b x-x^{2}}$, if $b^{2}-2 b x$ be fubfituted herein for, its Equal, x^{2}; it will become $\frac{a^{2}}{b^{2}}=\frac{5 b^{2}+b x}{b x-x^{2}}=\frac{5 b+x}{3^{x-b}}=\frac{5 b+b \sqrt{ } 2-b}{3^{b \sqrt{2}-3 b-b}}=\frac{4+\sqrt{2}}{-4+3 \sqrt{2}}$
$=\frac{\overline{4+\sqrt{2}} \times \overline{4+3 \sqrt{2}}}{-4+3 \sqrt{2} \times 4+3 \sqrt{2}}=\frac{22+16 \sqrt{2}}{2}=11+8 \sqrt{ } 2$.
Hence we have, $1: \sqrt{11+8 \cdot \sqrt{2}}:: b$ (DC) $: a$ (AC) \therefore Radius to the Tangent of the Angle $A D C=78^{\circ} 3^{\prime}$: Whofe Complement $\mathrm{DAC}=11^{\circ} 57^{\prime}$, is the leait Li mit poffible. Therefore, unlefs the Angle which the flant Side makes with the Axis be lefs than $11^{\circ} 57^{\prime \prime}$, the greatelt Ellipfis will be leís than the Bafe of the Cone.

E X A MPLEXVIII.

42. Of all Triangles, baving the fame given Perimeter, and infcribed in the fame givion Circle ; to determine the greaitelt.

Tet the Diameter DA bifect the Bafe BC of the required Triangle BEC in H , draw AE, AB and BD ; alfo diaw AF perpendicular to BE , and GE , parallel to BC,
$B C$, meeting $A D$ in G : Then, putting $\mathrm{AD}=a$, half the given Perimeter of the Triangle $=b$, and $\mathrm{DH}=y$; we have $\mathrm{BH}=$ $\sqrt{a y-y^{2}}$, and therefore $\mathrm{EF}=b-\sqrt{a y-y^{2}}$. Moreover DH (y): AD (a) $:: \mathrm{DB}^{2}: \mathrm{DA}^{2}:: \mathrm{EF}^{2}$ $\left(\overline{b-\sqrt{a y-y^{2}}}{ }^{2}\right): E A^{2}$

$=\frac{a}{y} \times{\overline{b-\sqrt{a y-y^{2}}}}^{2}$;
A
therefore AG $\left(\frac{\mathrm{AE}}{}{ }^{2}\right)=\frac{\overline{\mathrm{AD}})}{y}{\overline{\sqrt{a y-y^{2}}}}^{2}$, and $\mathrm{HG}=$ ($\mathrm{AG}-\mathrm{AH} \Rightarrow$) $\frac{b^{2}-2 b \sqrt{a y-\dot{y}^{2}}}{y}$; whence the Area of the Triangle $\mathrm{BEC}(\mathrm{BH} \times \mathrm{HG})=\frac{b^{2} \sqrt{a y-y^{2}}}{y}-2 b a$ $+2 b y$; whofe Fluxion $2 b j-\frac{\frac{1}{2} a b^{2} j}{y \sqrt{a y-y y}}$ being put $=0$, gives $y \sqrt{a y-y y}=\frac{1}{4} b a$; whence y, and from thence the Sides of the, Triangle may be determined.

> EX A MP LE XIX.
43. To determine the greater Area that can be contained under four given Right-lines.

Though it is demonftrable from common Geometry that the Area will be a Maximum, when the. Trapezium $A B C D$, formed by the given Lines, may be infrribed in a Circle ${ }^{b}$, yet I Mall here give the Solution from the Principles of Fluxions, (whole Uses I am now
${ }^{2}$ By Prop. ${ }^{13}$. Page 62. Elem. Trig. See Page 117. of Elem. Geometry.
illuftrating. In order to which, let the Diagonal AC be drawn, and upon CB and $A D$ let fall the Perpendiculars AE and CF ; putting $\mathrm{AB}=a, \mathrm{BC}=b, \mathrm{CD}=c$,
 $\mathrm{DA}=d, \mathrm{BE}=x$, and $D F=y$: Then AE being $=\sqrt{a^{2}-x^{2}}$, and $\mathrm{CF}=\sqrt{c^{2}-y^{2}}$, the Area of the Trapezium $\left(\frac{1}{2} \mathrm{BC} \times \mathrm{AE}+\right.$ $\frac{1}{2} \mathrm{AD} \times \mathrm{CF}$) will be $=\frac{1}{2} b \sqrt{a^{2}-x^{2}}$ $+\frac{3}{2} d \sqrt{c^{2}-y^{2}}$;
*Att,22. and its Fluxion $\frac{-\frac{1}{2} b x \dot{x}}{\sqrt{a^{2}-x^{2}}}-\frac{\frac{1}{2} d y \dot{y}}{\sqrt{c^{2}-y^{2}}}=0$; and therefore $\frac{-d y \dot{y}}{\sqrt{c^{2}-y^{2}}}=\frac{b x \dot{x}}{\sqrt{a^{2}-x^{2}}}$. Moreover, fince $b^{2}+a^{2}+2 b x\left(=\mathrm{AC}^{2}\right)=d^{2}+c^{2}-2 d y$, by taking the Fluxion thereof, we have $2 b \dot{x}=-2 d \dot{j}$, or $-d \dot{j}=$ $b \dot{x}$; which, fubftituted for - $d \dot{j}$ in the foregoing Equątion, gives $\frac{b \dot{x} y}{\sqrt{c^{2}-y^{2}}}=\frac{b x \dot{x}}{\sqrt{a^{2}-\dot{x}^{2}}}$, and $\frac{y}{\sqrt{c^{2}-y^{2}}}=$ $\frac{x}{\sqrt{a^{2}-x^{2}}}$; and confequently, $\sqrt{c^{2}-y^{2}}$ (CF):y (DF) $:: \sqrt{a^{2}-x^{2}}(\mathrm{AE}): x(\mathrm{BE}):$ From which it appears that the Triangles DCF and ABE are fimilar, 2nd that ($D+A B C$ being $=2$ Right-angles) the Trapezium may be inferibed in a Circle; but this by the Bye. We are now to get an Expreffion for the Area in known Terms, and in order thereto we have $b^{2}+a^{2}+2 b x=$ $d d+c^{2}-2 d y, y=\frac{c x}{a}$, and $C F=\frac{c \sqrt{a^{2}-x^{2}}}{a}$ (becaufe AB : BE:: DC : DF, छ'c.) : Therefore, by Subftitution, $b^{2}+$ $a^{2}+2 b x=d^{2}+c^{2}-\frac{2 c d x}{a}$, and the Area $\left(\frac{1}{2} \mathrm{BC} \times \mathrm{AE}\right.$ $+\frac{3}{2} A D$
$\left.+\frac{1}{2} \mathrm{AD} \times \mathrm{CF}\right)=\frac{1}{2} b \sqrt{a^{2}-x^{2}}+\frac{c d}{2 a} \sqrt{a^{2}-x^{2}}=$ $\frac{\rho b+c d}{2 a} \sqrt{a^{2}-x^{2}} ;$ and therefore the Square thereof $=$ $\frac{\overline{a b+c d)^{2}}}{4 a^{2}} \times \overline{a^{2}-x^{2}}=\frac{\overline{a b+c d)^{2}}}{4 a^{2}} \times \overline{a+x} \times \overline{a-x}=\frac{\overline{a b+(c d)^{2}}}{4}$
$\times 1+\frac{x}{a} \times 1-\frac{x}{a}$. But fence $b^{2}+a^{2}+2 b x=d^{2}+c^{2}-$ $\frac{2 c d x}{a}$, we have $\frac{x}{a}=\frac{d^{2}+c^{2}-b^{2}-a^{2}}{2 a b+2 c d}, 1+\frac{x}{a}=1+$ $\frac{d d+c^{2}-b^{2}-a^{2}}{2 a b+2 c d}=\frac{2 a b+2 c d+d d+c^{2}-b^{2}-a^{2}}{2 a b+2 c d}=$ $\frac{\overline{d+c^{2}}-\overline{b-a^{2}}}{2 a b+2 c d}$; and $1-\frac{x}{a}=\frac{2 a b+2 c d-d d-c^{2}+b^{2}+a^{2}}{2 a b+2 c d}$ $=\frac{\overline{b+a)^{2}}-\overline{d-c}^{2}}{2 a b+2 c d}$; and consequently, the Square of the Area $=\frac{\left.\overline{a b+c d}\right|^{2}}{4} \times \frac{\overline{d+\left.\right|^{2}}-\overline{b-a)^{2}}}{2 a b+2 c d} \times \frac{\overline{b+a})^{2}-\overline{d-\bar{c}}}{2 a b+2 c d}$ $=\frac{\overline{d+a)^{2}-\overline{b-a)^{2}}} \times \overline{\overline{b+a)^{2}}-\overline{-a^{2}}}}{16}$ which (because the Difference of the Squares of any two Quantities is equal to a Rectangle under their Sum and Difference) will also be $=\overline{\overline{d+c+b-a}} \times \overline{d+c-b+a} \times \overline{b+a+a-c} \times$
$\frac{\overline{b+a-d+c}}{4}=\frac{1}{\frac{1}{2} d+\frac{1}{2} c+\frac{1}{2} b+\frac{1}{2} a-a} \times \frac{\overline{1} \frac{1}{2} d+\frac{1}{2} c+\frac{1}{2} b+\frac{1}{2} a-b}{}$ $\overline{\times \frac{1}{2} d+\frac{1}{2} \dot{c}+\frac{1}{2} \dot{b}+\frac{1}{2} a-c} \times \overline{\frac{1}{2} d+\frac{1}{2} c+\frac{1}{2} b+\frac{1}{2} a-d}$. Whence it appears, that, if from $\frac{1}{2}$ the Sum of all the four Sides each particular Side be fubtracted, the continual Product of the Remainders will be the Square, or fecond Power, of the Area.

From this Theorem, the Rule in common Practice, for finding the Area of a Triangle, having the three Sides given, is deduced, as a Corollary : For, making
$a=0$, the Trapezium becomes a Triangle, and the fecond Power of its Area $=\overline{\frac{7}{2} d+\frac{1}{2} c+\frac{1}{2} b} \times \frac{\frac{1}{2} d+\frac{1}{2} c+\frac{1}{2} b-b}{b}$ $\times \frac{1}{2} d+\overline{\frac{1}{2} c+\frac{1}{2}} b=c \times \overline{\frac{1}{2} d+\frac{1}{2} c+\frac{1}{2} b-d}$: Which, in Words, is the common Rule.

EXAMPLEXX.

44. To find the greateff $\frac{\text { Value of } y \text { in the Equation } a^{4} x^{2}=}{x x+y j]^{3}}$.

By putting the whole Equation into Fluxions, $\xi^{\circ} \%$.
 Art.22. required Circumftance, when $\dot{y}=0^{}$, becomes $2 a^{4} x \dot{x}$ $=6 x \dot{x} \times\left.\overline{x^{2}+y^{2}}\right|^{2}$; whence $x^{2}+y^{2}=\frac{a^{2}}{\sqrt{3}}$, and $\left.x+y^{2}\right]^{3}$ $\doteq \frac{a^{6}}{3 \sqrt{3}}$: But, by the given Equation $\overline{x^{2}+y^{2 / 3}}=a^{4} x^{2}$; confequently $a^{4} x^{2}=\frac{a^{6}}{3 \sqrt{3}}$, and therefore $x=$ $a \sqrt{\frac{1}{3 \sqrt{3}}}$; whence $y^{2}\left(=\frac{a^{2}}{\sqrt{3}}-x^{2}\right)=\frac{2 a^{2}}{3 \sqrt{3}}$, and $y=a \sqrt{\frac{2}{3 \sqrt{3}}}$.

The fame oibcruife.
Since $\left.\overline{x x+y y}\right|^{3}$ is given $=a^{4} x^{2}$, we have $x^{2}+y^{2}=$ $a^{\frac{4}{3}} \times x^{\frac{2}{3}}$, and therefore $y^{2}=a^{\frac{4}{3}} \times v^{\frac{2}{3}}-x^{2}$; whofe Fluxion, $\frac{\frac{2}{3}}{} a^{\frac{4}{3}} \times x^{-\frac{2}{3}} \dot{x}-2 x \hat{x}$, being put $=0$, we alfo get $\frac{a^{\frac{4}{3}} \times \cdot x^{-\frac{1}{3}}}{3}$ $=x$; whore Cube is $\frac{a^{4} \times x-1}{27}=x^{3}$, or $\frac{a^{4}}{27 x}=x^{3}$; whence $27 x^{4}=a^{4}$, and confequently $x=a \sqrt{\frac{1}{3 \sqrt{3}}}$, the fame as before. 0
0
45. When

de Maximis \& Minimis.

45. When, in the general Expreffion, whofe Maximum or Minimum is fought, there are two or more indeterminate Quantities, independent of each other, their refpective Values, in the required Circumftance, will be determined, by making them flow, one by one, while the others are fuppofed invariable; as in the following

E X A M P L EXI.

Wherein it is propofed to find thrce fuch Values of x, y, and z, as Jhall make the Value of $\overline{b^{3}-x^{3}} \times \overline{x^{2} z-z^{3}}$ $x \overline{x y-y^{2}}$ the greatef pofible.

Firtt, confidering y as variable, and the reft conftant, we have $x \dot{y}-2 y \dot{y}=0$; whence $y=\frac{1}{2} x$, and $x y-y^{2}=$ Art.22i 2 ${ }_{3}^{3} x^{2}$. By making z variable, we have $x^{2} \dot{z}-3 z^{2} \dot{z}=0$; whence $z=\frac{x}{\sqrt{3}}$, and $x^{2} z-z^{3}=\frac{2 x^{3}}{3 \sqrt{3}}$. Now let thefe Values of $x y-y^{2}$ and $x^{2} z-z^{3}$ be fubftituted in the given Exprefion, and it will become $\frac{x^{2}}{4} \times \frac{2 x^{3}}{\partial \sqrt{3}} \times \overline{b^{3}-x^{3}}=$ $\frac{b^{3} x^{5}-x^{8}}{6 \sqrt{3}}$; therefore $5 b^{3} x^{4} \dot{x}-8 x^{7} \dot{x}=0$: Whence $x=$
$\frac{1}{2} b \times \sqrt[3]{5}, y\left(=\frac{1}{2} x\right)=\frac{x}{4} b \times \sqrt[3]{5}$, and $z\left(=\frac{x}{\sqrt{3}}\right)=\frac{1}{2} b x$ $\sqrt[{\sqrt[3]{5}}]{\sqrt{3}}$

The Reafon of the foregoing Procefs is obvious: For, if the Fluxion of the given Expreffion, when any one of the indeterminate Quantities is made variable, be not equal to Nothing, that Exprefion may become greater, without altering the Values of the reft, which are confidered as conftant t : And therefore cannot be \dagger Art.22, the greateft poffible, unlefs the faid Fluxion is equal to Nothing.

E X A MPLEXXI.

46. To determine the different Values of x, when that of $3 x^{4}-28 a x^{3}+84 a^{2} x^{2}-96 a^{3} x+48 b^{4}$ becomes a Maximum or Minimum.

The Fluxion of the given Exprefion being (as ufual) put equal to Nothing, we have $12 x^{3}-84 a x^{2}+168 a^{2} x$ $-96 a^{3}=0$, or $x^{3}-7 a x^{2}+14 a^{2} x-8 a^{3}=0$: From whence (by the Method of Divifors) we get $x-a=0$, $x-2 a=0$, or $x-4 a=0$: Therefore, the Roots of the Equation, or the three Values of x, are $a_{2} 2 a$, and 4 a.

Scholium.
47. It appears, from the laft Example, that a Quan-
\#- tity may admit of as many Maxima and Minima (according to the Meaning of the Definition *) as there are poffible Roots in the Equation, arifing from affuming its Fluxion equal to Nothing. Now to know which of thofe Roots point out a Maximum, and which a Minimum; find whether the Value of the faid Fluxion, a little before it becomes equal to Nothing, be pofitive or negative; if pofitive, the fucceeding Root gives a Maximum; but if negative, a Minimum: The Reafon of which is extremely obvious; becaufe fo long as any Quantity increafes, its Fluxion is pofitive, but when it decreafes the Fluxion is negative.

As an Example hereof, let the Quantity $3 x^{4}-28 a x^{3}$ $+84 a^{2} x^{2}-96 a^{3} x+48 b^{4}$, be again refumed; whofe Fluxion is $12 \dot{x} \times \overline{x^{3}-7 a x^{2}+14 a^{2} x-8 a^{3}}=12 \dot{x} \times \bar{x}-a x$ $\overline{x-2 a} \times \overline{x-3^{a}}$: Whereof the Value, before it becomes equal to Nothing, the firft time (or before $x=a$) being negative (becaufe the Product of three negative Factors is negative) its firft Root (a) therefore indicates a $M i_{-}$ nimum: Whence we may conclude, without confidering farther, that the fecond Root (2a) gives a Maximum, and the third (4a) another Minimum. But, if
you would know whether the firft or third Root gives the leffer Value of the two; it is but fubftituting in the given Quantity, which will come out $48 b^{4}-37 a^{4}$, and $48 b^{4}-64 a^{4}$ refpectively; therefore the latter is the leffer, and the very leaft Value the propofed Expreffion can admit of.
When all the Roots prove impoffible, the Quantity propofed (as its Fluxion can never become =0) mult either increafe, or decreafe, continually; and therefore can neither admit of a Maximum nor a Minimum.

Moreover, it may fo happen, that the Roots are poffible, the Fluxion $=0$, and yet the Quantity itfelf be + neither a Maximum nor a Minimum in that Circumftance.

For let us, again, fuppore the Polnt n to move after m, as in the general Illuftration, (vid. Art. 22.) only let the Velocity of n (in the firf Cafe) increafe no longer than 'till it arrives at D; after which let it again decreafe: Then, though the Fluxion of the Diftance $m n$ is Nothing, at the Pofition CD, yet the Diftance itfelf will not be a Maximum ; becaufe n (having afterwards, as well as before, a lefs Velocity than m) will ftill continue to lofe ground. - In the fame manner the Matter may be explained with regard to a Minimum. And it is evident, that thefe Cafes will always happen when the Fluxion of the given Quantity is of the fame Denomination (with regard to pofitive and negative) both before and after, it becomes equal to Nothing: Which, by the Rules of common Algebra, is known to be when the Equation admits of an even Number of equal Roots.- An Example hereof, however, may not be improper.

Let then the Quantity propoled be $24 a^{3} x-30 a^{2} x^{2}$ $+16 a x^{3}-3 x^{4}$; whofe Fluxion is $24 a^{3} \dot{x}-60 a^{2} x \dot{x}+$ $48 a x^{2} \dot{x}-12 x^{3} \dot{x}=12 \dot{x} \times \overline{a-x} \times \overline{a-x} \times \overline{2 a-x}$. Which being made $=0$, it appears that the two leaft Roots are equal. Thercfore there is neither a Maximum nor Minimum when $x=a$ (becaufe whether x be taken a little lefs, or a little greater, than a_{2} the Value of the Fluxion
will ftill be affirmative.) The greateft Root, however, not being affected with another equal one, indicates a Maximum, according to the Rule above prefcribed.

To render what has been obferved above ftill more confpicuous, let the given Expreflion, $24 a^{3} x-30 a^{2} x^{2}$ $+16 a x^{3}-3 x^{4}$, be reprefented by the variable Ordinate P.Q of the Curve AQMNR; whofe Abrciffa AP is (as ufual) denoted by x_{0}

Then, whilf $(12 x \times \overline{a-x} \times a-x \times \overline{2 a-x})$ the Fluxion of the Ordinate continues pofitive, (or till \bar{x} becomes $=a=\mathrm{AB}$) the Ordinate itfelf will increafe: But at the Pofition BM it becomes ftationary (if I may be allowed the Expreffion) the Fluxion being then $=0$. After which, the Fluxion being again affirmative, the Ordinate will again increafe, till x becomes $=2 a(=$ AC) ; when, the Fluxion becoming Nothing, a fe-

cond time,) and afterwards negative, CN will be a Maximum: Soon after which the Curye defcends. be-low-itg Axis, and continues to recede from it in infinitum.

Another Thing there is that ought to be regarded in - the Solution of thefe Kinds of Problems, and that is, whether the Maxima or Minima, found by affuming the Fluxion $=0$, fall within the Limits prefribed by the Nature of the Queftion or Figure; which is of ten reftrained by Conditions that do not enter into the algebraic Computation.
Thus, for Example; fuppofe it were required to find that Point (F) in a given Ellipfis ABHD which, of all others,
others, is the moft remote from the Extreme B of the conjugate Axis BD.

Then, drawing
FE parallel to the Tranfverfe AH, and putting $\mathrm{AH}=a, \mathrm{BD}$ $=b$, and $\mathrm{BE}=x$, we have, by the Property of the Curve BF^{2} $\left(=\mathrm{BE}^{2}+\mathrm{EF}^{2}\right) x_{1}^{2}$
$+\overline{b x-x^{2}} \times \frac{a^{2}}{b^{2}} ;$ from
whence x is found $=$

$\frac{\frac{1}{2} a^{2} b}{a^{2}-b^{2}}$. But, from the Nature of the Figure, the greateft Value that $x(=\mathrm{BE})$ can poffibly admit of is b (=BD), therefore if the Relation of a and b be fuch, that $\frac{\frac{\pi}{2} a^{2} b}{a^{2}-b^{2}}$ is greater than b, this Solution is manifefly impoffible. - To determine the Limit, therefore, make $\frac{\frac{1}{2} a^{2} b}{a^{2}-b^{2}}=b$; then it will be found that $2 b^{2}=\hat{a}^{2}$. Whence the foregoing Solution can only obtain when $2 \mathrm{BD}^{2}$ is equal to, or lefs than $A H^{2}$.

Again, it ought to be alfo confidered whether the Value of x, found by the common Method, gives a lefs Quantity for the-Maximum, and a greater, for the-Minimum, than will arife from the Extremes themfelves by which x is limited.

Thus, let it be required to determine the greateft and leaft Ordinates in a Curve, APR, whofe Equation is $y^{3}=6 a^{2} x-9 a x^{2}+$ $4 x^{3}$, and whofe greateft Abfciffa $A D$ is given equal $2 a$.

Here we fhall, by taking the Fluxion, Є̛C. have $x=$ $\frac{1}{\frac{1}{2}} a$, or $x=a$: The former of which V alues gives the correpponding Ordinate $\mathrm{BP}=a \sqrt[3]{\frac{5}{4}}$; and the latter, CQ $=a$: But the firft of thefe is not the greatef of all others, becaufe the Extreme DR exceeds it, being = $2 a$; nor is CQ the leaft poffible, becaufe the Ordinate at the other Extreme A is nothing at all.

Sometimes one, or more, of the Points $\mathrm{Q}, \mathrm{S}, \mathrm{E}^{\circ} \%$. \# determining the Maxima and Minima, will fall below the Axis AF, (as in the annexed Figure). In which Cafe the correfponding Value of the general Expreffion, reprefented by the Ordinate, will be negative: But at the Points $b, c, d, \xi^{\circ} c$. where the Curve interfeets the

Axis, it will be equal to nothing: Whence (by the Bye), the Reafon why the Roots of an Equation (x^{*} $-a x^{n-1}+b^{2} x^{n-2} \ldots+q^{n}=0$) are impoffible by Pairs is evident. For, feeing $A b, A c, A d, A e, \vartheta^{\circ} c$. are the Roots of that Equation, or the different Values of x, when the Ordinate $x^{n}-a x^{n-1}+b^{2} x^{n-2} \cdots \cdots \cdot+z^{n}$ (MN) becomes equal to Nothing, it is plain, if $P s$, expreffing the given Term q^{n}, be increafed to $\mathrm{P} a$, fo that AF (then coinciding with $a f$) may touch the Curve in S, the adjacent Roots $A d$ and Ae will then become equal;
equal; and if \dot{q}^{π} be farther increafed; for that the Axis may fall wholly below the Curve, not only thofe two, but alfo the other Roots, $\mathrm{A} b$ and $\mathrm{A} c$, will become impoffible.

Various other Obfervations might be made, relating to the Limits of Equations; determined by thefe Maxi$m a$ and Minima; but this being foreign to the Matter in hand, I fhall content myfelf with one Remark more, viz.

Any Expreflion which, being put equal to Nothing, adthits of two or more equal Roots, has as many fucceeding. Orders of Fluxions equal to Notbing, at the fame time, as are expreffed by the Number of thofe Roots minus one.

Thus, an Equation, having three equal Roots, has . both its firt and fecond Fluxions equal to Nothing, when the Fluent itlelf is equal to Nothing.

Hence we have another Way (befides that given + above) to know when a Quantity may have its Fluxion equal to Nothing, and yet neither admit of a Maximum nor a Minimum: For, fince this Circumftance always takes place when the Equation admits of an even Number of equal Roots (as has been already fhewn) the Number of Orders of Fluxions, equal to Nothing, at the fame time (including the Firft) mult alfo be cven.

Hence, alfo, we have an eafy Method for difcovering when fome of the Roots of an Equation are equal ; and, if fo, what they are.

Thus, let $x^{3} .-3 a x^{2}+4 a^{3}=0$ be propounded; whereof the Fluxion $3 x^{2} \dot{x}-6 a x \dot{x}$ being affumed equal to Nothing, we find $x=2 a$; which will alfo be a Root of the given Equation, if it admits of two equal ones: To try it, therefore, I fubfitute $2 a$ for x, and find it 2nfwers.

Again, let $8 x^{4}-28 a x^{3}+18 a^{2} x^{2}+27 a^{3} x-27 a^{4}=0$; whereof the firft and fecond Fluxions being $32 x^{3} \dot{x}-$ $84 a x^{2} \dot{x}+36 a^{2} x \dot{x}+27 a^{3} \dot{x}$ and $96 x^{2} \dot{x}^{2}-168 a x \dot{x}^{2}+$ $36 a^{2} \dot{x}^{2}$, if the latter of them be affumed $=0, x$ will
be found $=\frac{7 a}{8} \pm \sqrt{\frac{25 a^{2}}{64}}=\frac{3 a}{2}$, or $\frac{a}{4}$: One of which
Quantities, if the Equation propofed admits of three equal Roots, will be the Value of each of them : By trying $\frac{3 a}{2}$, it will be found to fucceed. Whence, by a well known Rule, the fourth Root (being $=\frac{28 a}{8}-\frac{3 a}{2}$ $\times 3=-a$) is alro given.
The Reafon of thefe Operations, as well as what is afferted above, may be thus demonftrated.
Let $\overline{-x} \times \overline{r-x} \xi_{c} \times \overline{\mathrm{A}+\mathrm{B} x+\mathrm{Cx}^{2}} \xi_{c}=0$, be any Equation, having two or more equal Roots, reprefented, each, by r : Put $y=r-x$, and let the Number of the equal Roots be denoted by n; then, by Subflitution, we have $x^{n} \times \overline{\mathrm{A}+\mathrm{B} \times \overline{r-y}+\mathrm{C} \times \overline{r-y})^{2}} \xi^{2}$. $=0$; which, by expanding the Powers of $r-y$, and putting $a=\mathrm{A}+\mathrm{B} r+\mathrm{C}_{r^{2}} \xi^{2} . b=\mathrm{B}+2 \mathrm{C} r+3 \mathrm{D} r^{2}, \mathrm{E}^{2}$. will be further transformed to $y^{n} \times \frac{a-b y+a y^{2}-d y^{3}}{} \xi_{c}$ $=$: Whofe Fluxion najy ${ }^{n-1}-\overline{n+1} \cdot b_{j y}^{n}+\overline{n+2}$. $\operatorname{cij}^{n+1} \mathrm{E}^{\circ} c$. is evidently equal to Nothing, when y_{2} or its Equal $r-x$, is Nothing (provided n be greater than Unity. It is equally plain, that the fecond Fluxion $n \cdot \overline{n-1} \cdot a j^{2} y^{n-2}-\overline{n+1} \cdot n b j^{2} y^{n-1}+\overline{n+2} \cdot \overline{n+1} \cdot a j^{2} y^{n}$ ξ° c. will alfo be equal to Nothing, in the fame Circumflance, if n be greater than $2, \xi^{\circ} c$. $\underbrace{\circ} c$.
Hence, univerfally, let the Number (n) of equal Roots be what it will, that of the Orders of Fluxions equal to Nothing, at the fame time, will be expreffed by that Number minus one, as was to be fhewn.

S ECTION HI.

The Ufe of Fluxions in drawing Tangents to Curves.

lleostration.

48. ET ACG be a Curve of any kind, and C to be drawn.

Conceive a Right-line $m g$ to be carried along uniformly, parallel to itfelf, from A towards Q, and let, at the fame time, a Yoint p fo move in that Line, as to defrribe, or trace out, the given Curve ACG: Alfo let $n m$, or $\mathrm{C} n$ (equal and parallel to mm) exprefs the Fluxion of Am , or the Celerity wherewith the Line $m g$ is carried; and let $n S$ exprefs the correfponding Fluxion of $n p$, , in the Pofition $m \mathrm{Cg}$, or the Celerity of the Point p, in the Line $m g$. - Moreover, through the Point C let the Right-Kine SF be drawn, meeting the Axis of the Curve (AQ) in F. E 2

The Ufe of Fluxions

Now, it is evident, if the Motion of p, along the Line $m g$, was to become equable at C , the Point p would be at S, when the Line itfelf had acquired the Pofition $m \mathrm{~S}_{g}$ (becaufe, by Hypothefis, $\mathrm{C} n$ and $n \mathrm{~S}$ exprefs the Diftances that might be defrribed by the two uniform Motions in the fame time).

And, if wsg be affumed to reprefent any other Pofition of that Line, and s the contemporary Pofition of the Point p (ftill fuppofing an equable Celerity of p); then the Diftances $\mathrm{C} v$ and $v s$, gone over, in the fame

time, by the two Motions, will, always, be to each other as the Celerities, or as $\mathrm{C} n$ to $n \mathrm{~S}$: Therefore, fince $\mathrm{Cv}:$ vs $:: \mathrm{C}_{n}: n \mathrm{~S}$ (which is a known Property of fimilar Triangles) the Point s will, always, fall in the Right-line FCS: Whence it appears, that, if the Motion of the Point p along the Line $m g$ was to become uniform at C , that Point would then move in the Rightline CS, inftead of the Curve-line CG.

Now, feeing the Motion of p, in the Defcription of Curves, muft, either, be an accelerated or a retarded one, let it be, firf, confidered as an accelerated one: In which Cafe the Arch CG will fall, wholly, above the Right-line CD (as in Fig. I.) becaure the Diftance
of the Point p from the Axis AQ, at the End of any given Time, is greater than it would be if the Acceleration was to ceafe at C ; and, if the Alcceleration had. ceafed at C, the Point p would (it is proved) have been always found in the faid Right-line FS.

But if the Motion of the Point p be a retarded one, it will appear, by reafoning in the fame manner, that the Arch CG will fall wholly below the Right-line CD (as in Fig. 2.)

This being the Cafe, let the Line mg, and the Point p, along that Line, be now fuppofed to move back again, towards \mathbf{A} and m, in the fame manner they proceeded from thence: Then, fince the Celerity of p (Fig. 1.) did before increafe, it muft now, on the contrary, decreafe; and, therefore, as p, at the End of a given Time, after repaffing the Point C, is not fo near to $A Q$, as it would have been, had the Velocity continued the fame as at C , the Arch C b (as well as CG) muft fall wholly above the Right-line FCD. And, by the fame Method of arguing, the Arch C , in the fecond Cafe, will fall, wholly, below FCD: Therefore FCD, in both Cafes, is a Tangent to the Curve at the Point C : Whence, the Triangles Fm C and $\mathrm{C} n \mathrm{~S}$ being fimilar, it appears, that the Sub-tangent $m \mathrm{~F}$ is always ${ }_{2}$ Fourth-proportional to ($n \mathrm{~S}$) the Fluxion of the ordinate ($\mathrm{C} n$), the Fluxion of the Absciffa, and the Ordinate (Cm).

Otherwife.

49. Let ACG reprefent the propofed Curve, and let she Right-line FCD be a Tangent to it, at any Point C , meeting the Axis AQ (produced if neceflary) in F: Suppofe a Point p to move along the Curve, from A towards G, and let the abfolute Celerity thereof at C, in the Direction of the Tangent CD, or the Fluxion of the Line Ap ro generated *, be denoted by CS, any * Arto 2 Part of the faid Tangent: Then, if AH, $m p$ and $m \mathrm{~S}$ and 5_{0} be made perpendicular, and I $p n$ parallel, to AQ, the relative Celerities of that Point, in the Directions C_{n} and $m \mathrm{C}$, wherewith $\mathrm{Ip}(=\mathrm{A} m)$ and $m p$ increafe in this
-Art.35. Pofition, will be truly expreffed by $\mathrm{C} n$ and $n \mathrm{~S}$ *: But the Celerities by which Quantities increafe are as the Fluxions of thofe Quantities: Therefore (CS being the Fluxion
 of the Curve-line Ap) $\mathrm{C} n$ and $n \mathrm{~S}$ are the correrponding Fluxions of the Abfciffa Am and the Ordinate $m p$: And we have $\mathrm{S} n: n \mathrm{C}$ $:: m \mathrm{C}: m \mathrm{~F}$, the fame as before.

Hence, if the Ablcifia Am be put $=x$, and the Ordinate $m p=y$, we fhall have $m \mathrm{~F}=\frac{\dot{y} \dot{x}}{\dot{y}}$: By means of which general Exprefion, and the Equation expreffing the Relation between x and y, the Ratio of the Fluxions \dot{x} and \dot{y} will be found, and from thence the Length of the Sub-tangent $(m \mathrm{~F})$ as in the following Examples.

> E X A M P L E I.
50. To draw a Right-line CT, to touch a given Circle BCA, in a given Point C.

Let $C S$ be perpendicular to the Diameter $A B$, and
 put $A B=a_{2}$ $\mathrm{BS}=x$ and SC $=y$: Then, by the Property of the Circle, y^{2} $\left(C S^{2}\right)=B S x$
AS $(=x \times \overline{a-x})$
$=a x-\frac{x^{2}}{\text { whereof }}$
whereof the Fluxion being taken, in order to determine the Ratio of \dot{x} and \dot{y}, we get $2 y \dot{y}=a \dot{x}-2 x \dot{x}$; confequently $\frac{\dot{x}}{\dot{y}}=\frac{2 y}{a-2 x}=\frac{y}{\frac{3}{2} a-x}$; which, multiplied by y, gives $\frac{y \dot{x}}{\dot{y}}=\frac{y^{2}}{\frac{1}{2} \tilde{a}-x}=$ the Sub-tangent ST *. Whence *Arr. 48 (O being fuppofed the Center) we have OS $\left(\frac{x}{2} a-x\right):$: and 49 . CS $(y):: \operatorname{CS}(y): S T$; which we alfo know from other Principles.

EXAMPLEII.

51. To draw a Tangent to any given Point $\dot{\mathrm{C}}$ of the conical Parabola ACG.

If the Latus ReClum of the Curve be denoted by a, the Ordinate MC by y, and its correfponding Abfcifa

AM by x; then the known Equation, expreffing the Relation of x and y, being $a x=y^{2}$, we have, in this Cafe, $a \dot{x}=2 y \dot{y}$; whence $\frac{\dot{x}}{\dot{y}}=\frac{2 y}{a}$, and confequently $\frac{y \dot{x}+}{\dot{y}}+$ Ant.48 $=\frac{2 y^{2}}{a}=\frac{2 a x}{a}=2 x=M F$. Therefore the Sub-tangent is juft the double of its correfponding Abfciffa AM : Which we likewife know from other Priñiples.

$$
\mathrm{E}_{4} \quad \text { EX }
$$

E X A M PLE III,

52. To draw a Tangent to a Parabola of any kind.

The general Equation of thefe fort of Curves being $a^{m} x^{n}=y^{m+n}$, we have $n a^{m} x^{n-1} \dot{x}=\overline{m+n} \times y^{m+n-1} \dot{y}$, and therefore $\frac{\dot{x}}{\dot{j}}=\frac{\overline{m+n} \times y^{m+n-1}}{n a^{m} x^{n-1}}$; whence $\frac{y \dot{x}}{\dot{j}}=$ $\frac{\overline{m+n} \times y^{m+n}}{n a^{m} x^{n-1}}=\frac{\overline{m+n} \times a^{m} x^{n}}{n a^{m} x^{n-z}}$ (becaufe $y^{m+n}=a^{m} x^{n}$) $=$ $\frac{m+n}{n} \times x=$ the true Value of the Subtangent: Which, therefore, is to the Abrciffa, in the conftant Ratio of $m+n$ to n.

EXAMPLEIV.

53. To draw a Tangent RT, to a given Point R , in a given Ellipfis BRA.

If $R S$ be an
Ordinate to the principal Axis AB , and there be put (as ufual) $\mathrm{BS}=x, \mathrm{RS}=y$, $\mathrm{AB}=a$, and the lefer Axis $=b$; we fhall, by the Property of the Curve, have $a^{2}: b^{2}:: a x-x^{2}(B S \times A S): y^{2}\left(\mathrm{RS}^{2}\right)$, and therefore $b^{2} \times \overline{a x-x^{2}}=a^{2} y^{2}$: Whence $b^{2} \times \overline{a \dot{x}-2 x \dot{x}}=2 a^{2} y \dot{y}$, and $\frac{\dot{x}}{\dot{y}}=\frac{2 a^{2} y}{b^{2} \times \overline{a-2 x}}$; and confequently the Sub-tangent - Art. $49 \operatorname{ST}\left(\frac{y \dot{x}}{\dot{y}}\right)^{*}=\frac{2 a^{2} y^{2}}{b^{2} \times \overline{a-2 x}}=\frac{a^{2} y^{2}}{b^{2} \times \frac{1}{2} a-x}=\frac{b^{2} \times \overline{a x-x^{2}}}{b^{2} \times \frac{\overline{1}}{2} a-x}=$
$\frac{\pi x-x^{2}}{\frac{3}{2} a-x}$. Whence the Point T being given, through which the Tangent must pars, the Tangent itself may be drawn.

But if you would derive an Expreffion for the Subtangent, in any other kind of Ellipfes (befides the contcal) let the Equation $a-x^{m} \times x^{x}=\frac{1}{4} \times y^{m+n}$, exhibit- $\frac{a}{c}$ ing the Nature of all Kinds of Ellipfes, be affumed: Then, by taking the Fluxion thereof, you will have $-m \dot{x} \times \overline{a-x}]^{m-1} \times x^{n}+n \dot{x} x^{n-1} \times \overline{a-x} x^{m}$ $=\frac{1}{\phi} \times \overline{m+n} \times y^{m+n-x} ;$ and therefore $\frac{y \dot{x}}{\frac{y}{y}}=\frac{a}{a}$

$$
\frac{\frac{d}{a} \times \overline{m+n} \times y^{m+n}}{x^{m-1} \times x^{n}+n x^{n-1} \times \overline{a-x} x^{m}}
$$

$$
\frac{a}{c}
$$

$\overline{-m \times\left.\overline{a-x}\right|^{m-1} \times x^{n}+n x^{n-1} \times \overline{a-x}{ }^{m}}$
$=\frac{\overline{m+n} \times \overline{a-x} x^{m} \times x^{n}}{\left.-m x^{n} \times\left.\overline{a-x}\right|^{m-1}+n x^{n-3} \times \overline{a-x}\right)^{m}}$ (because $\frac{f}{f} \times \frac{a}{c}$
$\left.y^{m+n}=\overline{a-\left.x\right|^{m}} \times x^{n}\right)=\frac{\overline{m+n} \times \overline{a-x} \times x}{-m x+n \times \overline{a-x}}=$
$\frac{\overline{m+n} \times \overline{a x-x^{2}}}{n a-\overline{n+m} \times x} ;$ which is the Sub-tangent required.

EXAMPLE V.

54. To draw a Tangent, to any given Point R, in a given Hyperbola Rh.

If a and c be put to denote the two principal Diasmeters of the Hyperbola, the Equation of the Curve will be $c^{2} \times \overline{a x+x^{2}}=a^{2} y^{2}$: From whence we have $\frac{c^{2} x}{a \dot{x}+}$
$\overline{a \dot{x}+2 x \dot{x}}=2 a^{2} y \dot{y}, \therefore \frac{\dot{x}}{\dot{j}}=\frac{a^{2} y}{c^{2} \times \frac{1}{2} a+x^{2}}$, and confequent-

$$
\begin{aligned}
& \text { ly } \frac{y \dot{x}}{\dot{y}}=\frac{a^{2} y^{2}}{c^{2}+\frac{1}{2} a+x} \\
& =\frac{c^{2} \times \frac{x}{x x+x^{2}}}{c^{2} x \frac{x}{1 a+x}}=
\end{aligned}
$$

$$
\frac{a x+x^{2}}{\frac{1}{2} a+x}=\text { ST. }
$$

Whence BT (ST $B S)=\frac{\frac{2}{2} a x}{\frac{1}{2} a+x}$ is alfo known ; and therefore the Point T being given the Tangent RT may be drawn.

The Manner of drawing Tangents to all Sorts of Hyperbolas, univerfally, will be the fame as in the Ellipfes, the Equations of the two Kinds of Curves differing in Nothing but their Signs.

> E X A M P L E VI.
55. Let the propofed Curve be that whofe Equation is $a x^{2}+x y^{2}+x^{3}-y^{3}=0$.

Then we fhall have $2 a x \dot{x}+y^{2} \dot{x}+2 x y \dot{y}+3 x^{2} \dot{x}-3 y^{2} \dot{y}$ $=0$; therefore $2 a x \dot{x}+y^{2} \dot{x}+3 x^{2} \dot{x}=3 y^{2} \dot{y}-2 x y \dot{y}, \frac{\dot{x}}{\dot{y}}=$ - Art.48 $\frac{3 y^{2}-2 x y}{2 a x+y^{2}+3 x^{2}}$, and confequently $\frac{y \dot{x}}{\dot{y}}=\frac{3 y^{3}-2 x y^{2}}{2 a x+y^{2}+3 x^{2}}$.

in drawing Tangents.

EXAMPLE VIL

56. Let the given Curve be the Ciffoid of Diocles, whole Equation is $y^{2}=\frac{x^{3}}{a-x}$.

Here we have $2 y \dot{y}=\frac{3 x^{2} \dot{x} \times \overline{a-x}+\dot{x} x^{3}}{\overline{a-\left.x\right|^{2}}}=\frac{3 a x^{2} \dot{x}-2 x^{3} \dot{x}}{\overline{a-\left.x\right|^{2}}}$:
Whence $\frac{\dot{x}}{\dot{y}}=\frac{2 y \times \bar{a}-\left.x\right|^{2}}{3 a x^{2}-2 x^{3}}$, and consequently the Subtangent $\left(\frac{y \dot{x}}{\dot{y}}\right)=\frac{2 y^{2} \times\left.\overline{a-x}\right|^{2}}{3 a x^{2}-2 x^{3}}=\frac{2 x^{3}}{a-x} \times \frac{\overline{a-x)^{2}}}{3 a x^{2}-2 x^{3}}=$ $\frac{2 x \times \overline{a-x}}{3^{a-2 x}}$.

> EX A MP L E VIII.
57. Let the Conchoid of Nicomedes be proofed; whereof the Nature is fuchs, that, if from a Point B, called

the Pole, any Number of Right-lines, BA, BR, $\mathrm{BR}, \mathrm{E}^{\circ}$ c. be drawn, the Parts of thole Lines CA, eR, UR, छ ic. intercepted by the Curve and its Axis CT, fall be, all, equal to each other.

In this Cafe (fuppofing AB and RS perpendicular, and RH parallel; to CT; and putting $\mathrm{BC}=a, \mathrm{Rv}$ $(\mathrm{AC})=\bar{b}, \mathrm{CS}=x$, and $\mathrm{RS}=y$) we have, per fim. Triang. $a+y(\mathrm{BH}): x(\mathrm{RH}):: y(\mathrm{RS}): \frac{x y}{a+y}=\mathrm{Sv}:$ But $\mathrm{Sv}\left(\sqrt{\mathrm{Rv}^{2}-\mathrm{RS}^{2}}\right)$ is alfo $=\sqrt{b^{2}-y^{2}}$; therefore $\frac{x y}{a+y}=\sqrt{b^{2}-y^{2}}$, or $x^{2} y^{2}=\left.\overline{a+y}\right|^{2} \times \overline{b^{2}-y^{2}}$ is the general Equation of the Curve; which, in Fluxions, gives $2 x^{2} y \dot{y}+2 y^{2} x \dot{x}=2 \dot{y} \times \overline{a+y} \times \overline{b^{2}-y^{2}}-2 y \dot{j} \times\left.\overline{a+y}\right|^{2}=$ $2 \dot{2 j} \times \overline{a+y} \times \overline{b^{2}-a y-2 y^{2}}$; and therefore $\frac{\dot{x}}{\dot{j}}=$ $\frac{\overline{a+y} \times \overline{b^{2}-a y-2 y^{2}}-x^{2} y}{x y^{2}}$, confequently $\frac{y \dot{x}}{\dot{j}}=$
$\frac{\overline{a+y} \times y \times \overline{b^{2}-a y-2 y^{2}}-x^{2} y^{2}}{y x x y}=$ $\frac{\overline{a+y} \times y \times \overline{b^{2}-a y-2 y^{2}}-\overline{a+y}^{2} \times \overline{b^{2}-y^{2}}}{y \times \overline{a+y} \times \sqrt{b^{2}-y^{2}}}$ (becaufe $x^{2} y^{2}$ $\left.=\left.\overline{a+y}\right|^{2} \times \overline{b^{2}-y y}\right)=\frac{b^{2} y-a y y-2 y^{3}-a b b+a y y-b b y+y^{3}}{y^{2} \sqrt{b b-y y}}$
$=\frac{-a b^{2}-y^{3}}{y \sqrt{b} b-y y}$: Which being a negative Quantity, the
Tangent will therefore fall on the contrary Side of the Ordinate, from the Vertex; and fo, by changing the Signs we fhall have $\frac{a b b+y^{3}}{y \sqrt{b b-y y}}$ for the Sub-tangent ST in this Cafe.

After the Manner of thefe Examples the Sub-tangent, in Curves whofe Abfciffas are Right-lines, may be determined: But if the Abfciffa, or Line terminating the Ordinate, on the lower Part, be another Curve, then the Tangent may be drawn as in the following

EX

E X A M PLE IX.

58. Let the Curve BRF be a Cycloid; whofe Abrciffa is here fuppofed to be the Semicircle BPA, to which let the Tangent PT be drawn (as above). Moreover let r RH be a Tangent to the Cycloid, at the cor-

refponding Point R , and let GRe be parallel to $T P v$; putting the Arch (or Abfciffa) $\mathrm{BP}=z$, its Ordinate $\mathrm{PR}=y, \mathrm{AF}=b$, and $\mathrm{BPA}=c$: Then, by the Property of the Curve, we fhall have $c(\mathrm{BPA}): b(\mathrm{AF}):: z$ (BP) : y (PR): Therefore $y=\frac{b z}{c}$, and $\dot{y}=\frac{b \dot{z}}{c}=r e$: But, by fimilar Triangles, $r e(j): \operatorname{Re}\left(=P_{v}=\dot{x}\right)::$ $\operatorname{PR}(y): \mathrm{PH}=\frac{y \dot{z}}{\dot{y}}=z$ (becaufe $y=\frac{b z}{c}$). Therefore, if in the Right-line PT, there be taken PH, equal to the Arch PB, you will have a Point H, through which the Tangent of the Cycloid mutt pafs.
EXAMPLEX.
59. Let BPb be a Curve of any Kind, to which the Method of drawing the Tangent $c \mathrm{Pg}$ is known; let

The Uje of Fluxions

BR b be another Curve of fuch a Nature, that the Ordinate PR (y) fhall atways be a Mean-proportional be-

tween BS (x) and AS $(a-x)$ fuppofing RPS perpendi*Art 48 cular to $\mathrm{AB}:$ Put $\mathrm{Po}=\dot{x}, \mathrm{SP}=v, o c=\dot{v}$, and or and 49. $=\dot{j}$: Then, (as above) or (j) : $\mathrm{R}_{e}(=\mathrm{Pc}=$ $\left.\sqrt{\dot{x}^{2}+\dot{v}^{2}}\right):: R P(j): \mathrm{PH}=\frac{y \sqrt{\dot{x}^{2}+\dot{v}^{2}}}{\dot{j}}:$ But, by the Equation of the Curve $y^{2}=a x-x x$; whence $2 y j=$ $\rho \dot{x}-2 x \dot{x}$, and $\frac{y}{\dot{y}}=\frac{2 a x-2 x^{2}}{a \dot{x}-2 x \dot{x}}$, and therefore $\mathrm{PH}=$ $\frac{2 a x-2 x^{2} \times \sqrt{\dot{x}^{2}+\dot{v}^{2}}}{a \dot{x}-2 x \dot{x}}$: Which will be expreffed independent of Fluxions, when the Property of the Curve BPh, or the Relation of x and v is given: Thus, let BPb be the common Parabola, and AB its Latus Rec-

in drawing Tangents.

tum; then v being $=\sqrt{a x}, \dot{v}$ will be $=\frac{a \dot{x}}{2 \sqrt{a x}}$, $\dot{x}^{2}+\dot{v}^{2}=\dot{x}^{2}+\frac{a \dot{x} \dot{x}}{4^{x}}=\frac{\dot{x} \dot{x} \times \overline{4^{x}+a}}{4 x}$; and therefore PH $\left(\frac{2 a x-2 x x}{a \dot{x}-2 x \dot{\bar{x}}+\sqrt{\dot{x}^{2}}}\right)=\frac{\overline{a-x} \times \sqrt{4 x^{2}+a x}}{a-2 x}$.

Thus far relates to Curves whofe Ordinates are parallel to each other: We come now to Curves of the fpiral Kind, whofe Ordinates all iffue from a Point: Such as the Spiral BAG, whofe Ordinates CB, CA; CG, are all referred to the Point C_{2}, called the Center of the Spiral.

Illustration.

60. Let SAN be a Tangent to the Spiral at any Point A, alfo let CT be perpendicular thereto, and let the Arch CBA (confidered as variable by the Motion of A towards G) be denoted by z, and the Ordinate CA by y.
Then $\dot{z}: \dot{y}:: \mathrm{AC}$ (y) : AT $=\frac{y^{j}{ }^{*}}{\dot{\tilde{z}}}$.

Hence, if upon CA, as a Diameter; a Semi-circle be defribed, and in it, from A, a Right-line AT equal to $\frac{y \dot{y}}{\dot{z}}$ be infcribed, that Right-line will be a Tangent to the Spiral at the Point A.
EXAMPLEI.
61. Let the Nature of the Curve CBA be fuch that the Arch CBA may be, always, to its correfponding

The Ufo of Fluxions

responding Ordinate CA in a conftant Ratio; namely as a to b : Then, becaufe $z: \rho:: a: b$, we have $z=$ $\frac{a y}{b}, \dot{z}=\frac{a \dot{y}}{b}$, and consequently $\operatorname{AT}\left(\frac{y \dot{y}}{\dot{z}}\right)=\frac{b y}{a}=\frac{b}{a} \times$ $A C$: Therefore, AC and AT being in a conftant Rato, the Angle CAT mut also be invariable. Which is a known Property of the logarithmic Spiral.

EX A MP LE II.

62. Let BAA be the Spiral of Archimedes; whole Nature is fuch that the Part EA of the generating Ordinate, intercepted by the Spiral and a Circle BED defcribed about the fame Center C , is always in a conftant Ratio to the correfponding Arch BE of that Circle.

Suppofe An perpendicular to AC, $\mathcal{E}^{\circ} \%$.
Put $\mathrm{BC}=c, \mathrm{CA}=y$, and let the given Ratio of AE to BE , be that of b to c : Then $b: c:: y-c$ (AE) : $\frac{c y-c c}{b}=\mathrm{BE}:$ whore Fluxion therefore is $=\frac{c \dot{y}}{b}$. Now

in Curves of contrary Flexure.

if the Right-line CAa be fuppofed to revolve about the Center C, the angular Celerity of the generating Point A, in the perpendicular Direction $\mathrm{A} n$, will be to: that of E as $A C$ to $E C$; therefore as the latter of there Celerities is expreffed by $\frac{\dot{y}^{*}}{b}$, the former will be ex- *Art 50 preffed by $\frac{y}{c} \times \frac{c \dot{y}}{b}$, or $\frac{y \dot{y}}{b}:$ Which is to (j) the Celerity of A, in the Direction Aa, as $\frac{y}{b}$ to Unity, or as y to b. Therefore CT and AT are in the fame Ratio, (by Art. 35) and consequently $\mathrm{AC}: \mathrm{CT}:: \sqrt{y+b 6}:$ y; and AC : AT : : $\sqrt{y y+b b}: b$; whence CT and AT are given equal to $\frac{y^{2}}{\sqrt{y y+b b}}$, and $\frac{b y}{\sqrt{y y+b b}}$ reSpectively. From cither of which (the Tangent AT) may be drawn by Art. 60 . And, in the fame manner may the Pofition of the Tangent of any other Spiral be determined.

SECTION* IV.

Of the Use of Fluxions in determining the Points of Retrogrefion, or contrary Flexure in Curves.
63. TTHEN a Curve ARS is, in one Part AR concave, and in the, other Part. RS convex, towards its Axis AC, the Point R limiting the two Parts is called a Point of Retrogreffion, or contray Flexure....The manner of determining which will appear from the following
ILLUSTRATION.

Suppofe a Right-line BD to be carried along uniformly, parallel to itfelf, from A towards C; and let the Point r fo
 move in that Line, at the fame time, as to trace out, or defcribe, the given Curveline ARS.

Then (by Art. 48.) while the Celerity of the Point r, in the Line BD, decreafes, the Curve will be concave to its Axis AC; but when it increafes, convex to the fame: Therefore, as any Quantity is a Minimum at the End of its. Decreale and the Beginning of its In-
*Art.22. creafe *, it follows that the faid Celerity, at the Point of Infexion R, muft be a Minimum: Whence, if the
\dagger Art. 5. Fluxion of the Ordinate Br , expreffing that Celerity \dagger, be (as ufual) denoted by \dot{y}; then will \dot{j} (the Fluxion \ddagger Art.22. of j) be equal to Nothing in that Circumftance \ddagger.

So far relates to Curves which are, in the former Part concave, and in the latter convex, to their Axes: But if (on the contrary) the Celerity of r firft increafes, and then decreafes, that Celerity, at the required Point, between the Increafe and Decreafe, will be a Maximum; and therefore its Fluxion (or \ddot{j}) is likewife equal to
§Art.22. Nothing in this Care §.
Furthermore, if CS (perpendicular to AC) be now confidered as an Axis, and the Abfcifla $S n$ (or its Complement $\mathrm{B} r=y$) be fuppofed to fow uniformly, (as AB was fuppofed before) ; then, by the fame Argument, the fecond Fluxion ($-\ddot{x}$) of the Ordinate $n r$
(or its Complement $\mathrm{AB}=x$) will be equal to Nothing. Hence it is evident that, at the Point of contrary Flexure, the fecond Fluxion of the Ordinate will become equal to Nothing, if the Abfciffa be made to flow uniformly; and vice verfa.
EXAMPLEI.
64. Let the Nature of the Curve ARS (fee the preceding Figure) be defined by the Equation $a y=a^{\frac{3}{2}} x^{\frac{1}{2}}+$ $x x$ (the Ablciffa AB and the Ordinate Br being, as ufual, reprefented by x and y refpectively). Then \dot{y}, exprefling the Celerity of the Point r, in the Line BD, will be equal to $\frac{{ }^{\frac{1}{2}} a_{2}^{3} x^{3}-\frac{1}{2} \dot{x}+2 x \dot{x}}{a}$. Whofe Fluxion, or that of $\frac{\frac{\pi}{2}}{} a^{3} x^{-\frac{x}{2}}+2 x$ (becaufe a and \dot{x} are conftant) muft be equal to Nothing *; that is, $-\frac{1}{7} a^{\frac{3}{2}} x^{-\frac{3}{2}} \dot{x}+2 \dot{x} *$ Art. 63 . $=0$: Whence $a^{\frac{3}{2}} x^{-\frac{3}{2}}=8, a^{\frac{3}{2}}=8 x^{\frac{3}{2}}, 64 x^{3}=a^{3}$, and $x=\frac{\frac{3}{4} a}{} a=\mathrm{AB}$; therefore $\mathrm{BR}\left(=\frac{a^{\frac{3}{2}} x^{\frac{1}{2}}+x x}{a}\right)=\frac{0}{1 \pi} a$: From which the Pofition of the Point R is given.

EXAMPLEII.

65. Let the Nature of the propofed Curve be defined by the Equation ayy-aax- $x^{3}=0$.

Then, by taking the firf and fecond Fluxions thereof (fuppofing \dot{x} conftant) we fhall alfo have $2 a y \dot{y}$ - aax $3^{x^{2} \dot{x}}=0$, and $2 a \dot{y}^{2}+2 a y \dot{y}-6 x \dot{x} \dot{x}=0$; whereof the latter, when \ddot{j} is $=0$, becomes $2 a j^{2}-6 x \dot{x}^{2}=0$, and therefore $\dot{j}^{2}=\frac{3 x \dot{x}^{2}}{a}$: But, by the former $\dot{j}=\frac{a^{2} \dot{x}+3 x^{2} \dot{x}}{2 a y}$; whence $\frac{3^{x \dot{x}^{2}}}{a}=\frac{\overline{a^{2} \dot{x}+\left.3 x \dot{x}\right|^{2}}}{\left.2 a y\right|^{2}}$, and confequently $12 a x y^{2}$ F_{2}
$\left.=a^{2}+3 x^{2}\right]^{2}$; but, by the given Equation, $12 a x y^{2}=$ $12 a^{2} \dot{x}^{2}+12 x^{4}$, therefore $\left.12 a^{2} x^{2}+12 x^{4}=\overline{a^{2}+3 x^{x}}\right]^{3}$, or $3 x^{4}+6 a^{2} x^{2}-a^{4}=0$: Wherice x will be found $=$ $a \sqrt{: \sqrt{\frac{4}{3}}-1}$

Othervife.

Since $a y^{2}=a^{2} x+x^{3}$, we have $y=\frac{\overline{\left.a^{2} x+x^{3}\right]^{\frac{1}{2}}}}{\sqrt{ } a^{3}}$, and therefore $\dot{y}=\frac{\frac{x_{2}}{2} a_{1}^{2} \dot{x}+\frac{3}{2} x^{2} \dot{x}}{\left.\sqrt{2} a^{2} x+x^{3}\right)^{\frac{1}{2}}}{ }^{\frac{1}{2}}$. Whofe Fluxion; or that of $\left.\overline{a^{2}+3 x^{2}} \times \overline{a^{2} x+x^{3}}\right)^{-\frac{x}{2}}$ (becaufe \dot{x} is conftant) being put $=0$, we get $6 x \times \frac{1}{a^{2} x+\left.x^{3}\right|^{-\frac{x}{2}}}$ $+\overline{a^{2}+3 x^{2}} \times \overline{-\frac{1}{2} a^{2}-\frac{3}{2} x^{2}} \times \overline{a^{2} x+x^{3}}{ }^{-\frac{3}{2}}=0$, or $6 x \times$ $\overline{a^{2} x+x^{3}}+\overline{a^{2}+3 x^{2}} \times-\frac{\overline{a^{2}+3 x^{2}}}{2}:$ Whence $3 x^{4}+6 a^{2} x^{2}$ $-a^{4}=0$, and $x=a \sqrt{: \sqrt{\frac{7}{3}}-1}$, the fame as before.

> E X A M P L E III.
66. Let the propored Curve be the Conchoid of Ni comedes, whereof the Equation is $x^{2} y^{2}=\left.\overline{a+y}\right|^{2} \times$ Art.57. $\overline{b^{2}-y^{2}}$, or $x^{2}=\frac{\overline{a+y)^{2}} \times \overline{b^{2}-y^{2}}}{y^{2}}$.

Here we have $x \dot{x}=\frac{\dot{y} \times \overline{a+y}+\overline{b^{2}-y^{2}}-y \dot{y} \times \overline{a+y}{ }^{2}}{y^{4}} \times y^{2}$
$\frac{-x \dot{y} \times \overline{a+y^{2}} \times \overline{b^{2}-y^{2}}}{y^{4}}=-\frac{\overline{a+y} \times \overline{a b^{2}+y^{3}}}{y^{3}} \times \dot{y}=$
$\frac{-a^{2} b^{2}}{y^{3}}-\frac{a b^{2}}{y^{2}}-a-y \times \dot{y}$: Whence, making \dot{y} inva-
riable, we alfo have $\dot{x}^{2}+x \ddot{x}=\frac{\overline{3 a^{2} b^{2}}}{y^{4}}+\frac{2 a b^{2}}{v^{3}}-1 \times \dot{y}^{2}$:
Which, becaufe \ddot{x} is $=0$, will be $\dot{x}^{2}=\frac{3 a^{2} b^{2}}{y^{4}}+\frac{2 a b^{2}}{y^{3}}-1 *$ Art. 6 . $\times \dot{j}^{2}=\frac{3 a^{2} b^{2}+2 a b^{2} y-y^{4}}{y^{4}} \times \dot{j}^{2}$. But fince, by the former Equation, $x \dot{x}=-\frac{\overline{a+y} \times \overline{a b^{2}+y^{3}}}{y^{3}} \times \dot{y}$, we likewife get $\dot{x}^{2}=\frac{\left.\left.\overline{a+y}\right|^{2} \times \overline{a b^{2}+y^{3}}\right)^{2}}{x^{2} y^{6}} \times \dot{y}^{2}$, and confequently
 the Equation of the Curve $x^{2} y^{2}$ is $=\overline{a+y}{ }^{2} \times \overline{b^{2}-y^{2}}$; therefore $\overline{3 a^{2} b^{2}+2 a b^{2} y-y^{4}} \times\left.\overline{a+y}\right|^{2} \times \overline{b^{2}-y^{2}}=\left.\overline{a+y}\right|^{2}$ $x \overline{\left.a b^{2}+y^{3}\right)^{2}}$, and $3 a^{2} b^{2}+2 a b^{2} y-y^{4} \times \overline{b^{2}-y^{2}}=\overline{\left.a b^{2}+y^{3}\right]^{2}}$; whence $y^{4}+4 a y^{3}+3 a^{2} y^{2}-2 a b^{2} y-2 a^{2} b^{2}=0$; which divided by $y+a$, gives $y^{3}+3 a y^{2}-2 a b^{2} \doteq 0$; from whence y may be determined. But if $b=a$, the Equation will become more fimple by dividing again by $y+a$; in which Cafe we get $y^{2}+2 a y-2 a^{2}=0$, and confequently $y=a \sqrt{ } 3^{-a}$.

E X A M PLE IV,

67. Let $a^{4} y=180 a^{3} x^{2}-110 a^{2} x^{3}+30 a x^{4}-3 x^{5}$.

Then will $a^{4} \dot{y}=360 a^{3} x \dot{x}-330 a^{2} x^{2} \dot{x}+120 a x^{3} \dot{x}-$ $15 x^{4} \dot{x} ;$

And $a^{4} j=36=a^{3} \dot{x}^{2}-660 a^{3} x \dot{x}^{2}+360 a x^{2} \dot{x}^{2}-6 c x^{3} \dot{x}^{2}$
Art. $6{ }_{3}$. Therefore, $6 a^{3}-11 a^{2} x+6 a x^{2}-x^{3}=0^{}$:
Which being divifible by any one of the three Quantities $a-x, 2 a-x$, or 3^{a-x}, the Root x muft therefore have three Values, $a, 2 a$, and $3 a$, and confequently the Curve, defined by the given Equation, as many Points of contrary Flexure.

But, if you would know whether the Part of the Curve lying between any two adjacent Points, thus found, be convex or concave towards the Axis; fee whether the Value of the Expreffion for the fecond Fluxion of the Ordinate, between the two correfponding Roots, be pofitive or negative: For, in the former
Art. 5 Cafe, the Curve is convex, and in the later concave \dagger, and 48. (provided the whole Curve lies on the fame Side the Axis). Thus, in the Example before us; becaufe the fecond Fluxion of the Ordinate is always as $6 a^{3}-11 a a x$ $+6 a x x-x^{3}(=\overline{a-x} \times \overline{2 a-x} \times \overline{3 a-x})$ and it appears that the Value of this Expreffion, while x is lefs than the firfa. Root a, will be pofitive; the Curve, therefore, at the Beginning, will be convex to its Axis: But when x becomes greater than a, the faid Expreffion being negative, the Curve will then be concave, and fo continue 'till x is equal to the fecond Root $2 a$; after which the Fluxion again becoming affirmative, the Curve will accordingly be convex till $x=3 a$; beyond which Linnit the Curvature continually tends the fame Way.

But it will be proper to obferve, that there are Cafes where the fecond Fluxion of the Ordinate may become equal to Nothing, without either changing its Value from pofitive to negative, or the contrary, (fimilar to thofe already taken Notice of in Sect. II. p. 45 and 46.) which Cafes always happen when the Equation admits of an even Number of equal Roots: And then the Point found as above is not a Point of Inflexion; becaufe the Curvature on cither Side of it tends the fame Way.

[71]

SECTIONV.

The Uje of Fluxions in determining the Radii of Curvature, and the Evolutes of Curves.
68. A Curve $\ddagger \mathrm{OH}$ is faid to be the Evolute of another Curve ARB, when it is of fuch a Nature, that a Thread ROH, coinciding therewith (or wrapped upon the fame) being unwound or difengaged from it, by a Power acting at the End R, fhall, by that End (the Thread continuing tight) defcribe the given Curve ARB.
ILLUSTRATION.

From the Point O , where the Right-line RO (called the Radius of Curvature) touches the Evolute $p \mathrm{OH}$,

let the Semi-circle SRD be defrribed; which Scmicircle, having the fame Ranius with the given Curve, at R, will confequently have the fame Degree of Curvature. - But the Curvature in two Curves is the fame, when, the Fluxions of their Abfciffas being the faime, both the Firt, and Second Fluxions of their F_{4} cor-
correfponding Ordinates $\mathrm{R} n$ and $\mathrm{R} m$ are refpectively equal to 'each other: For, the Firf Fluxions being equal, the two Curves will have, at the common Point *Att.43. R, one and the farme Tangent $t \mathrm{R} h^{*}$: And, if the Second Fluxions be likewife equal, the Curvature, or Deflection from that Tangent, will alfo be the fame in both; becaufe thefe laft exprefs the Increafe or Decreafe \dagger Art.rg. of Miotion in the Direction of the Ordinate t, upon \ddagger Art.48, which the Curvature intirely depends \ddagger.

This being premifed, let the Abfciffa $\mathrm{S} m$ of the Semicircle (confidered as variable) be put $=w$, its Ordinate $\mathrm{R} m=v, \mathrm{R} r=\dot{w}, r b=\dot{v}$, and $\mathrm{R} b=\dot{z}$: Then, $\mathrm{R} b$ be$\| A \mathrm{ar} \cdot 48$. ing a Tangent to the Circle at $\mathrm{R} \|$, the Triangles R/br and $\mathrm{RO} m$ will be equiangular, and therefore iv (Rr) : $\dot{z}(\mathrm{RA}):: v(\mathrm{R} m): \mathrm{RO}=\frac{v \dot{z}}{\dot{w}}$; which, becaufe the Radius of every Circle is a conftant Quantity, muft be invariable, and confequently its Fluxion $\frac{\dot{v} \dot{z}+v \ddot{z}}{\dot{w}}=0$: Whence v is found $=\frac{\dot{v} \dot{z}}{-\ddot{z}}=\frac{\dot{z}^{2}}{-\dot{v}}$ (becaufe, \dot{w} being conftant, and $\dot{\omega}^{2}+\dot{v}^{2}=\dot{z}^{2}$, we have, in Fluxions $2 \ddot{v}=2 \dot{z} \ddot{z}$, and $\left.10 \frac{\dot{\dot{v} \dot{z}}}{-\ddot{z}}=\frac{\dot{z}^{2}}{-\ddot{v}}\right)$. Therefore fince v is $=$ $\frac{\dot{z}^{2}}{-\ddot{v}}$, we alfoget $S O=\operatorname{RO}\left(\frac{v \dot{z}}{\dot{w}}\right)=\frac{\dot{z}^{3}}{-\dot{v} \dot{v} \ddot{v}}=\frac{\left.\dot{i}^{2}+\dot{v}^{2}\right)^{\frac{1}{2}}}{-\dot{\dot{w}^{\dot{v}}}}$:
Which laft is a general Expreffion for the Radius of any Circle, whatever, in Terms of the Fluxions of its Abfciffa (w) and Ordinate (v). But, by what is premifed above, thefe Fluxions are refpectively equal to thofe of the Abfiffia $\mathrm{A} n(x)$ and Ordinate $\mathrm{R} n(y)$ of the propofed Curve ARB. Therefore, by writing \dot{x}, \dot{y}, and \dot{y}, inftead of \dot{w}, \dot{v}, and $\ddot{\ddot{v}}$, we have $\frac{\left.\dot{y}^{2}+\dot{x}^{2}\right)^{3}}{-\dot{x}_{2}}\left(=\frac{\dot{z}^{3}}{-\dot{x} \dot{j}}\right)$ for the general Value of the Radius of Curvature, RO.

The fame otherwife.

If the Radius of the Circle be put $=R$, and every Thing elfe be fuppofed as above; then (by the Property of the Circle) we fhall have $v^{2}\left(\mathrm{Rm}^{2}\right)=2 \mathrm{Rw}-w w^{2}$ ($\mathrm{S} m \times \mathrm{D} m$) : Whence, in Fluxions (making \dot{w} conftant) we get $2 v \dot{v}=2 \mathrm{R} \dot{w}-2 \dot{2} w \dot{v}$, and $2 \dot{v}^{i}+2 v \ddot{v}=-2 \dot{w}^{2}$: From the laft of which Equations v is found $=\frac{\dot{v}^{2}+\dot{w}^{2}}{-\ddot{v}}$ $=\frac{\dot{z}^{2}}{-\ddot{v}}$, and confequently RO $\left(\frac{v \dot{\tilde{z}}}{\dot{i} \hat{i}}\right)=\frac{\dot{z}^{3}}{-i \dot{v} \ddot{v}}=\frac{\dot{x}^{3}}{-\dot{x} \dot{j}}$, the jaime as before.

Otherwife without the Circle.

Let RO and $r \mathrm{O}$ be two Rays perpendicular to the Cutve, indefinitely near to each other; and from their Interfection O , let $\Theta \mathrm{F}$ be drawn parallel to $\mathrm{A} n$, cutting R n and $A F$ (parallel to $R n$) in E and F.

Therefore, fuppofing $\mathrm{RE}=v, \mathrm{~A}_{n}=x, \mathrm{R} n=y, \mathrm{E}_{0} c$ (as before) we fhall have, by fimilar Triangles, as RP

$(\dot{x}): \mathrm{P}_{q}(\dot{j}):: \mathrm{RE}(v): \mathrm{EO}=\frac{v \dot{y}}{\dot{x}}$; and confequently FO $(\mathrm{A} n+\mathrm{EO})=x+\frac{v \dot{y}}{\dot{x}}$: Which Value (as well as
that of AF) continuing the fame whether we regard the Radius RO, or the Kadius $r \mathrm{O}$, its Fluxion mult therefore be equal to Nothing; that is, $\dot{x}+\frac{\overline{i \dot{y}+v i j} \times \dot{x}-v i \ddot{x}}{\dot{x}^{3}}$ $=0$; whence $v=\frac{\dot{x}^{3}+\dot{x} \ddot{y} \dot{j}}{\dot{j} \ddot{x}-\dot{x} \dot{j}}$, and confequently RO $\left(\frac{v \dot{z}}{\dot{x}}\right)=\frac{\dot{x}^{2} \dot{z}+\dot{v} \dot{j} \dot{z}}{\dot{j} \dot{\ddot{x}}-\dot{x} \dot{y}}=\frac{\dot{x}^{2} \dot{z}+\dot{y}^{2} \dot{z}}{j \dot{x}-\dot{x} \dot{x}}=\frac{\dot{z}^{3}}{j \ddot{j}-x \dot{j}}:$ Which, if \dot{x} is fuppofed conftant ${ }_{2}$ or $\ddot{x}=0$, will become $\frac{\dot{z}^{3}}{-\dot{x}_{\dot{y}} \dot{y}^{3}}$, as aboue.
But if \dot{y} be fupposed conftant, it will be $\frac{\dot{z}^{3}}{\dot{x} \dot{j}}$. And, if \dot{z} be conftant, it will then be $\frac{\dot{z} \dot{x}}{\ddot{x}}$. For, fince $\dot{x}^{2}+\dot{y}^{2}$ $=\dot{x}^{2}$, by taking the Fluxion thereof, we have $2 \dot{x} \ddot{x}+$ $2 j \ddot{j}=0$; whence $\dot{j}=-\frac{\dot{x} \dot{x}}{\dot{j}}$; and therefore RO (=

$$
\left.\frac{\dot{z}^{3}}{\dot{y} \ddot{x}-\dot{x} j}\right)=\frac{\dot{z}^{3}}{\dot{y} \ddot{x}+\frac{\dot{x}^{2} \ddot{x}}{\dot{y}}}=\frac{\dot{j} \dot{z}^{3}}{\dot{j^{2}+\dot{x}^{2} \times \ddot{x}}}=\frac{\dot{j} \dot{z}}{\ddot{x}} \text {, as before. }
$$

Now from the feveral Values of the Radius of Curvature RO, found above, the cortefponding Values of Ae and eO will likewife be given.

Thus, if \dot{x} be made conftant; then, RO being $=$ $\frac{\dot{z}^{3}}{-\dot{x}^{j} j}$, we fhall have $\mathrm{Ae}\left(\mathrm{A} n+\mathrm{O} m=\mathrm{A} n+\frac{\dot{y}}{\dot{z}} \times \mathrm{RO}\right)=$ $x+\frac{\dot{j} \dot{z}^{2}}{-\dot{x} \dot{j}}$, and $\because\left(\mathrm{R} m-n \mathrm{R}=\frac{\dot{x}}{\dot{z}} \times \mathrm{RO}-\mathrm{R} n\right)=\frac{\dot{z}^{2}}{-\dot{j}}$ $-y$.

But, if \dot{y} be made conftant, then, RO being $=\frac{\dot{z}^{3}}{\dot{y} \dot{x}}$, We fhall have $\mathrm{AE}=x+\frac{\dot{z}^{2}}{\ddot{x}}$, and $\epsilon \mathrm{O}=\frac{\dot{x} \dot{z}^{2}}{j \ddot{x}}-y$:

Laftly, if \dot{z} be fuppofed conftant; then RO being $=\frac{\dot{y} \dot{z}}{\dot{x}^{2}}$ we Shall have $A_{e}=x+\frac{\dot{y}^{2}}{\ddot{x}}$, and $\mathrm{O}=\frac{\dot{x} \dot{y}}{\ddot{x}}-y$.

Which feveral Expreffions will ferve as fo many general Theorems for determining the Quantity of Curvature, and the Evolutes of given Curves: But, before we proceed to Examples, it will be proper to observe, that the Right-line Ap, denoting the Radius of Curvatore at the Vertex A (to be found by making x, or y, $=0$) mut always be fubtracted from RO and A_{e}, to have the true Length of the Arch pO , and its correfording Abfciffa pe.

EXAMPLE I.

69. Let the given Curve ARB be the common Parabola, whore Equation is $y=a^{\frac{1}{2}} x^{\frac{1}{2}}$: Then will $\dot{y}=\frac{1}{2} a^{\frac{1}{2}} \dot{x} x-^{-\frac{1}{2}}$
$=\frac{a^{\frac{x}{2}} \dot{x}}{2 x^{\frac{3}{2}}}$, and (making \dot{x} conftant) $\dot{j}=-\frac{1}{2} \times \frac{1}{2} a^{\frac{1}{2}} \dot{x}^{2} x^{-\frac{3}{2}}$
$=\frac{-a^{\frac{1}{2}} \dot{x}^{2}}{4 x^{\frac{3}{2}}}:$ Whence $\dot{z}\left(\sqrt{\dot{x}+y^{2}}=\frac{\dot{x}}{2} \sqrt{\frac{4 x+a}{x}}\right.$,

Of the Radii of Curvature,

and the Radius of Curvature RO $\left(\frac{\dot{z}^{3}}{-\dot{x}_{j}^{j}}\right)=\frac{\overline{a+4^{x} x^{\frac{3}{2}}}}{2 \sqrt{a}}$:
Which at the Vertex A, where $x=0$, will be $=\frac{1}{2} a=$ Ap. Moreover $A_{e}\left(x+\frac{\dot{y} \dot{z}^{2}}{-\dot{x} \dot{j}}\right)=\frac{1}{2} a+3^{x}$, and therefore $p e(A e-A p)=3 x$, the Abfciffa of the Evolute: Likewife $\mathrm{O}_{e}\left(\frac{\dot{z}^{2}}{-j}-y\right)=\frac{4 x^{\frac{3}{2}}}{\sqrt{ } a}$ the Ordinate of the Evolute. Therefore, $\overline{\mathrm{O}_{f}}{ }^{2} \times a$ being in a conftant Ratio to $\bar{p}]^{3}$, namely as 16 to 27 , the Curve is, in this Cafe, the Semi-cubical Parabola: Whore Arch pO $(\mathrm{RO}-A p)$ is alfo given $=\frac{\overline{a+\left.\dot{+x}\right|^{\frac{3}{2}}}}{2 \sqrt{a}}-\frac{1}{2} a$.

EXAMPLE II.

70. Let the Curve ARB denote a Parabola of any other Kind: Then, because $y=a x^{n}$ is an Equation to all Kinds of Parabolas, we have $\dot{y}=n a x^{n-1} \dot{x}$ and $\dot{y}=$ $n \times \overline{n-1} \times a x^{n-2} \dot{x}^{2}$: Therefore $\dot{z}\left(\sqrt{x^{2}+\dot{y}^{2}}\right)=$ $\dot{x} \sqrt{1+n^{2} a^{2} x^{2 x-2}}, \operatorname{RO}\left(\frac{\dot{z}^{3}}{-\dot{x} \dot{j}}\right)=\frac{\overline{\left.1 \overline{+n^{2}} a^{2} x^{2 n-2}\right)^{\frac{3}{2}}}}{-n \times n-1 \times a x^{n-2}}$, $\mathrm{A} e\left(x+\frac{\dot{y} \dot{z}^{2}}{-\dot{y}}\right)=x-\frac{x+n^{2} a^{2} x^{2 n-1}}{n-1}, O e\left(\frac{\dot{z}^{2}}{-\dot{y}}-y\right)$ $=\frac{1+\overline{2 n-1} \times n a^{2} x^{2 n-2}}{\sqrt{n-1} \times n a x^{n-2}}$, and $\mathrm{A} p=-\frac{n^{2} a^{2} o^{2 n-1}}{n-1}$: Which, if $n=\frac{1}{2}$, will become $=\frac{a^{2}}{2}$; but, if n be greater than $\frac{3}{2}$, it will be $=0$; and, if n be lefs than $\frac{1}{2}$, it,
it will be infinite: Whence it appears, that the Radius of Curvature at the Vertex will be a finite Quantity in Curves whofe firft (or leait) Ordinates are in the Subduplicate Ratio of their Abfoiftas, and in'all other Cafes, either Nothing, or Infinite.

$E X A^{\prime \prime} P^{\prime} L E$ If.

7r. Suppofe the given Curve to be an Ellipfis; whofe Equation (putting a and c for the two principal Diameters) is $a^{2} y^{2}=c^{2} \times \overline{a x-x^{2}}$.

Here, by taking the Firft and Second Fluxions of the given Equation, we have $2 a^{2} y \dot{y}=c^{2} \dot{x} \times \overline{a-2 x}$, and $2 a^{2} y^{2}+2 a^{2} \dot{y} \dot{y}=c^{2} \dot{x} x-2 \dot{x}=-2 c^{2} \dot{x}^{2} ;$ whence $\dot{y}=$ $\frac{c^{2} \dot{x} \times \overline{a-2 x}}{2 a^{2} y}$, and $-j=\frac{a^{2} \dot{y}^{2}+^{\prime} c^{2} \dot{x}^{2}}{a^{2} y}$: Which, by fubftituting the Values of y and \dot{y}, will became $\dot{y}=$ $\frac{c \dot{x} \times \overline{a-2 x}}{2 a \sqrt{a x-x^{2}}}$ and $-\dot{y}^{\prime}=\frac{a^{2} c^{2} \dot{x}_{1}^{2} \times\left.\overline{a-2 x}\right|^{2}}{4 a^{2} \times \overline{a x-x x} \times a b \sqrt{a x-x^{2}}}$ $+\frac{c \dot{x}^{2}}{a \sqrt{a x-x^{2}}}=\frac{\left(\dot{x}^{2}\right.}{a} \times \frac{\overline{a-2 x)^{2}}+4 \times \overline{a x-x^{2}}}{4 \times \overline{a x-x^{2}} \sqrt{a x-x^{2}}}=\frac{c a \dot{x}^{2}}{4 \times a x-\left.x^{2}\right|_{2} ^{3}}:$ Therefore $\dot{z}\left(\sqrt{\dot{y}^{2}+\dot{x}^{2}}\right)=\sqrt{\frac{\left.c^{2} \dot{x}^{2} \times a-2 x\right)^{2}}{4 a^{2} \times a x-x^{2}}+\dot{x}^{2}}$ $=\frac{\dot{x}}{2 a} \sqrt{\frac{c^{2} a^{2}+\overline{a^{2}-c^{2}} \times 4 a x-4 x^{2}}{a x-x^{2}}}$, and the Radius of Curvature $\left(\frac{\dot{z}^{3}}{-\dot{x j}}\right)=\frac{\overline{\left.a^{2} c^{2}+\sqrt[a^{2}-i^{2}]{ } \times \sqrt{4 a^{2} x-4 x^{2}}\right)^{\frac{3}{2}}}}{2 a^{4} c}$: Which when the Diameters a and c are equal, or the Ellipfis degenerates' to 'a Circle, will be every where equal to $\frac{a^{2} c^{2} 7^{\frac{3}{2}}}{2 a^{4} c}$, or $\frac{1}{2} a ;$ agreable to the Definition of a Circle.

EX.

EXAMPLEIV.

72. To find the Radius of Curvature, and the Evoluse of the common Cycloid.

Let ARB be the given Curve, and AOH its Evolute; alfo let $R b$ and $O S$ be parallel to $A C$, and $O O$ and $R m$

perpendicular to AC ; and put $\mathrm{ARB}(=2 \mathrm{BC})=a$, $\mathrm{AR}=z, \mathrm{~A} n=x$, and $\mathrm{R} n=y$: Then $\mathrm{BR}=a-z, \mathrm{~B} b$ $=\frac{1}{2} a-y$; and, by the Property of the Curve, a^{2} $\left.\left(\mathrm{AB}^{2}\right): a-z\right]^{2}\left(\mathrm{BR}^{2}\right):: \frac{1}{2} a(\mathrm{BC}) \vdots \frac{1}{2} a-y(\mathrm{~B} h)$ whence $y=\frac{2 a z-z^{2}}{2 a}$; therefore $\dot{y}=\frac{a \dot{z}-z \dot{z}}{a}, \dot{z}^{2}-y^{2}$ $\left(\dot{\dot{x}^{2}}\right)=\frac{\overline{2 a z-z^{2}} \times \dot{z}^{2}}{a^{2}}$, and $\dot{x}=\frac{\dot{z} \sqrt{2 a z-z^{2}}}{a}$. Whence (making \dot{z} conftant) $\ddot{x}=\frac{\dot{z}^{2} \times \overline{a-z}}{a \sqrt{2 a z-z^{2}}}$; from which
we get RO, or $\mathrm{AO}\left(=\frac{\dot{j}^{*}}{\ddot{x}}\right)=\sqrt{2 a z-z^{2}}$, and CO , ${ }^{* A r t .68 \text { 。 }}$ or $\mathrm{AS}\left(=\frac{\dot{y} \dot{x}}{\dot{x}}-y\right)=\frac{2 a z-z^{2}}{2 a}$; which, when $z=a_{3}$ or ROH coincides with BH , become $\mathrm{AOH}(\mathrm{BH})=a$, and $\mathrm{CH}(\mathrm{AG})=\frac{1}{2} a$. Hence, because it appears, that, $\overline{\mathrm{AH}}{ }^{2}\left(a^{2}\right): \mathrm{AO}^{2}\left(2 a z-z^{2}\right):: \mathrm{AG}\left(\frac{1}{2} a\right): \mathrm{AS}$ $\left(\frac{2 a z-z^{2}}{2 a}\right)$ it follows that the Evolute AOH is alpo a.
Cycloid equal, and fimilar, to the Involute ARB.
If the Evolute had been given, or fuppofed, a C_{5} cloid, and the Involute required, the Process would have been, more fimple, as follows,
Let $\mathrm{AH}(2 \mathrm{AG})=a, \mathrm{AO}(=\mathrm{RO})=z, \mathrm{AS}=x$, $\mathrm{SO}=y, \mathrm{BR}=v, \mathrm{~B} h=w, \mathrm{R} r=\dot{v}, \mathrm{R} t=\dot{v}, \mathrm{~g}^{\circ} c$. Then it will be \dagger,
tAste ${ }^{8} 8$.

$$
\begin{aligned}
& \dot{j}: \dot{z}(:: \mathrm{O} m: \mathrm{OR}):: \mathrm{R} t(\dot{z}): \mathrm{R} r=\frac{\dot{z} \dot{z} \dot{z}}{\dot{j}}, \\
& \dot{z}: \dot{y}:: z(\mathrm{RO}): \mathrm{O} m=\frac{z \dot{y}}{\dot{z}}, \\
& \dot{z}: \dot{x}:: z(\mathrm{RO}): \mathrm{R} m=\frac{z \dot{x}}{\dot{z}},
\end{aligned}
$$

Whence we have $\dot{v}=\frac{\dot{w} \dot{z} \dot{\tilde{y}}}{\dot{y}}, \mathrm{R} n(\mathrm{R} m-\mathrm{AS})=\frac{z \dot{x}}{\dot{z}}-x$, and $\mathrm{A} n(\mathrm{OS}-\mathrm{O} m)=y-\frac{z \dot{y}}{\dot{z}} ;$ which Exprefions anfiver to any Curve whatever.

But, in the Cafe above proposed, $\mathrm{AH}^{2}\left(a^{2}\right): \mathrm{AO}^{2}$ $\left(z^{2}\right):$ AG $\left(\frac{1}{2} a\right):$ AS (x); therefore $x=\frac{z^{2}}{2 a}, \dot{x}=\frac{z \dot{z}}{a}$, and $\dot{y}\left(\sqrt{\left.\overline{\tilde{z}^{2}-\dot{x}^{2}}\right)}=\frac{\dot{z} \sqrt{a^{2}-z^{2}}}{a}\right.$; and consequently $\mathrm{R} n$ $\left(\frac{z \dot{x}}{\dot{z}}-x\right)=\frac{z^{2}}{a}-\frac{z^{2}}{2 a}=\frac{z^{2}}{2 a}=\frac{x}{2} a-w($ or $\mathrm{CB}-\mathrm{B} b):$

Whence

Of the Radii of Curvature,

Whence alto $w=\frac{a^{2}-x^{2}}{2 a}$, and $\dot{v}\left(\frac{\dot{w} \dot{z}}{y}\right)=\frac{a w i}{\sqrt{a^{2}-x^{2}}}$ $=\frac{a \dot{w}}{\sqrt{2 a w}}:$ Therefore it will be $\dot{v}: \bar{u}(:: a: \sqrt{2 a w})$ $:: \sqrt{\frac{1}{2} a}: \sqrt{ } w$; that is 2 as $R r: R t:: \sqrt{\mathrm{BC}}: \sqrt{\overline{B b}}:$ Which is a known Property of the Cycloid.

Hitherto regard has been had to Curves where the Ordinates. are parallel to each other: . But when the Ordinates are all referred to a given Point, as in Spirals, $\xi^{\circ} c$, other Theorems will become neceffary; and may be thus derived:
73. Let ARB be the propored Curve, P the Point, or Center, to which its Ordinates are referred, NOL

Est. 5 .

 the Evolute, and RO^{-}the Ray of Curvature at R : Moreover, let PH be perpendiçular to RO ; and, fuppofing the $=$ Ordinate PR (y) to become variable by the Motion of the Point R -along. the Curve, let the Fluxions of AR and ${ }^{\mathrm{PH}}$. (p), expreffing: the Celerities of the Points R and H in Di rections perpendicular to RO*, be de-

[^0]Therefore,

Therefore, the Celerities, of any two Points, in a Right-line revolving about a Center, being as the Diftances from that Center, it follows that $\dot{p}: \dot{z}:: \mathrm{OH}$: OR ; whence by Divifion (putting $\mathrm{RH}=v$) we have-$\dot{z}-\dot{p}: \dot{z}:: v(\mathrm{RH}): \mathrm{RO}=\frac{v \dot{\tilde{z}}}{\dot{z}-\dot{p}}=\frac{v p \dot{z}}{p z-p \dot{p}}:$ But $p \dot{z}$ $=y \dot{y}$ (by Art. 60.) and therefore RO $=\frac{2 y j \dot{j}}{y \dot{y}-p \dot{p}}$; which, becaufe $\nu^{2}-p^{2}$ is $=v^{2}$ (and therefore $y \dot{y}-p \dot{p}=$ $v i \ddot{i})$ will alfo be $=\frac{v y \dot{y}}{v \dot{v}}=\frac{y \dot{y}}{\dot{v}}$.

The fame ctbervije.

Let SRD be a Circle defcribed about the Point O, as a Center, and fuppofe the Diftance PR to bevariable by the Motion of the Point R along the Arch of the Circle (inftead of the Curve): Then, drawing $O P$, and putting $O R$ $=r, \mathrm{PR}=y, \mathcal{E}^{\circ} c$. as before, we thall get OP^{2}
 $\left(\mathrm{OR}^{2}+\mathrm{PR}^{2}-{ }_{2} \mathrm{OR} \times \mathrm{RH}\right)=r^{2}+y^{2}-2 r v$; which (as well as r) being a conftant Quantity, its Fluxion $2 y \dot{y}-2 r \dot{v}$ muft be equal to nothing; and therefore $r=$ $\frac{y \dot{j}}{\dot{\nu}}$, the very fame as above. Nor is it of any Confequence whether \dot{y} and \dot{v} be here looked upon as refpecting the Circle, or the Curve, fince, at R, they muft be the fame in both Cafes ; otherwife the Curvature could not be the fame *. Now from the Value of RO thus *Art. $68 .^{\text {. }}$ found, which (corrected, when neceffary) will alfo exprefs the Length of the Arch NO of the Evolute \ddagger, \ddagger Art. 68 . the Ordinate PO and the Tangent OH of the Evolute
may be eafily deduced. For $\mathrm{OH}(\mathrm{RO}-\mathrm{RH})=\frac{y^{\frac{y}{2}}}{\dot{v}}$. $-v=\frac{\dot{p} \dot{\dot{v}}}{\dot{v}}$, and $\mathrm{PO}\left(=\sqrt{\mathrm{UH}^{2}+\mathrm{PH}^{2}}=\frac{p \sqrt{\dot{p}^{2}+\dot{v}^{2}}}{\dot{v}}\right.$ whence the Nature of the Evolute is known.
F X A M P L E I.
74. Let the given Curve AR be the logarithmic Spiral, whofe Nature is fuch, that the Angle PRQ (or RPH) which the Ordinate makes with the Curve is every where the fame.

Then (denoting the Sine of that Angle by b, and the Radius of the Tables by a) we have RH $(v)=\frac{b y}{a}$, and therefore RO $\left(\frac{y \dot{y}}{\dot{v}}\right)=\frac{a y \dot{y}}{b \dot{y}}=\frac{a y}{b}$; which being to PR (y) in the conftant Ratio of a to b, or of PR to RH, the Triangles ROP and RPH muft therefore be fimilar, and fo the Angle POH, which the Ordinate PO makes with the Evolute, being every where equal to PRQ, will likewife be invariable. Whence it appears that the Evolute is alfo a logarithmic Spiral, fimilar to the Involute; and that a Right-line drawn from the Center, perpendicular to the Ordinate, of any logarithmic Spiral, will pafs thro' the Center of Curvature.
E X A M PLE II.
75. Let the Curve propofed be the Spiral of Arclimedes; where we have $p=\frac{b y}{\sqrt{y^{2}+b^{2}}}$, and $v=\frac{y^{2}}{\sqrt{y^{2}+b^{2}}}$ (fee Art. 62.) Therefore $\dot{v}=2 y \dot{b^{2}} \times \overline{y^{2}+b^{2}}-\frac{1}{2}+y y x$
$\left.-\frac{1}{2} \times 2 y \dot{y} \times \overline{y^{2}+b^{2}}\right)^{-\frac{3}{2}} \pm \frac{2 y \dot{y}}{y^{2}+\left.b^{2}\right|^{\frac{1}{2}}}-\frac{y^{3} \dot{y}}{y^{2}+b^{2} i^{\frac{3}{2}}}=$
$\frac{2 y \dot{y} \times \overline{y^{2}+b^{2}}-x^{3} \dot{y}}{\overline{y^{2}+b^{2} \frac{3}{2}}}=\frac{y^{3} \dot{y}+2 b^{2} y \dot{y}}{\overline{\left.y^{2}+b^{2}\right)^{\frac{3}{2}}}}$; whence the Radius of

* Curvature $\frac{y \dot{y}}{\dot{v}}$ is here $=\frac{\overline{y y+b b})^{\frac{3}{2}}}{y^{2}+2 b^{2}}$; which being $=\frac{b}{2}$, *Art.73: when $y=0$, the Arch of the Evolute \dagger, reckoned from \dagger Art. 68 the Vertex, is therefore $=\frac{\overline{y y+b b} \frac{\frac{3}{2}}{y^{2}}}{y^{2}+2 b^{2}}-\frac{b}{2}$.

After the very fame Manner you may proceed in other Cafes: But if the Value of \dot{v} (or $\frac{y \dot{y}}{\dot{v}}$) changes, in aniy Cafe, from Pofitive to Negative, the Radius of Curvature (RO) after becoming infinite, will fall on the other Side of the Tangent, and the correfponding Point of the Curve, when $\dot{v}=0$, will be a Point of Contrary Flexure. Whence it may be obferved that the Point of Infiection, in a Curve whofe Ordinates are referred to a Center, may be found by making the Fluxion of the Perpendicular, drawn from the Center to the Tant gent, equal to Nothing, which Cafe is not taken Notice of in the preceding Section.

S E CTIONVI.

Of the Inverfe Method; or the Manner of determining the Fluents of given Fluxions.

76.N the Inverfe Method, which teaches the Manner of finding the refpective flowing Quantities of given Fluxions, there will be no great Difficulty in conceiving the Reafons, if what is already delivered in Sect. I. on the direct Metbod, has been duly confidered: Though the Difficulties that occur in this Part, upon another Account, are indeed vafly fuperior.

It is an eafy Matter, or not impofible at mof, to find the Fluxion of any flowing Quantity whatever; but in the Inverfe Metbod the Cafe is quite different: For, as there is no Method for deducing the Fluent from the Fluxion a priori, by a direct Inveftigation, fo it is impofible to lay down Rules for any other Forms of Fluxions, than thofe particular ones which we know, from the direct Method, belong to fuch and fuch kinds of flowing Quantitics. Thus, for Example, the Fluent of $2 \times \dot{x}$ is known to be x^{2}, becaufe it is found in Art.6. and $: 4$. that $2 x \dot{x}$ is the Fluxion of x^{2} : But the Fluent of $y \dot{x}$ is unknown, fince no Expreffion has been difcovered that produces $y \dot{x}$ for its Fluxion.
77. Now, as the principal Rule in the direct Method is that for the Fluxions of Powers, derived in Art. 8. (where it is proved that the Fluxion of x^{n} is, univerfally, exprefied by $n x^{n-1} \dot{x}$); fo the moft general Rule, that can be given in the Inverfe Method, muft be that arifing from the converfe thereof; which Bews bow to afign the Fluent of any Power of a variable 2 uantity drawn into the Fluxion of the Root; and which, expreffed in Words, will be as follows.

Divide by the Fluxion of the Root, add Unity to the Exponcnt of the Power, and divide by the Exponent s_{0} incricafod.

The Manner of finding Fuuents.

For, dividing the Fluxion $n x^{n-1} \dot{x}$ by \dot{x} (the Fluxion of the Root x) it becomes $n x^{n-1}$; and, adding to the Exponent ($n-1$) we have $n x^{n}$; which, divided by n, gives x^{n}, the true Fluent of $n x^{n-1}$, by Art. 8 .

Hence (by the fame Rule) the
Fluent of $3 x^{2} \dot{x}$ will be $=x^{3}$;
That of $8 x^{2} \dot{x}=\frac{8 x^{3}}{3}$;
That of $2 x^{5} x=\frac{x^{6}}{3}$
That of $y^{\frac{x}{2}} \dot{y}=\frac{2}{3} y^{\frac{3}{2}}$;
That of $a y^{\frac{5}{3}} \dot{y}=\frac{30 y^{\frac{8}{3}}}{8}$;
That of $y^{\frac{m}{n}} \dot{j}=\frac{y^{\frac{m}{n}}+1}{m+1}=\frac{\frac{m+n}{n y^{n}}}{m+n}$;
That of $\frac{a \dot{x}}{x^{n}}$, or $a \dot{x} x^{-n},=\frac{a x^{1-n}}{1-n}$;
That of $\overline{a+z}{ }^{3} \times \dot{\tilde{\sim}}=\frac{\overline{a+z}}{4}$;
And that of $\overline{a^{m}+z^{m}} \times z^{m-1} \dot{z}=\frac{\overline{a^{m}+z^{m}+1}}{m \times n 71}$:
For bere the Root, or the Quantity under the general Index n, being $a^{m}+z^{m}$, and its Fluxion $=m z^{m-1} \dot{\approx}$ (Art. 14.) we fhall, by dividing by the laft of there Quantities, have $\frac{\overline{a^{m}+z^{m}}}{m}$; whence, increafing the G 3 Index

Index by Unity, and dividing by $(n+1)$ the Index fo increared, there comes out $\frac{a^{m}+z^{m}}{m \times n+1}$.

After the very fame Manner the Fluents of other Expreffions may be deduced, when the Quantity, or Multiplicator, without the Vinculum is either equal, or in a conflant.Ratio, to the Fluxion of the Quantity, under the Vinculum : As in the Expreffion $\overline{a+c z^{n}} \times d z^{n-1} \dot{z}$; where the Number of Dimenfions of z under the Vinculum (or general Index) being equal to thofe of z without the Vinculum +1 , the Fluent may therefore be had, as in the preceding Examples;
and will come out $\frac{\left.a+c z^{n}\right) \times d}{n c \times \frac{m+1}{m}}$: And, that this (or any other Expreffion derived in like Manner) is the true Fluent will evidently appear, by fuppofing x equal to $a+c z^{n}$ the Quantity under the Vinculum; for then (equal Quantities having equal Fluxions) \dot{x} will be - Art. 8 : $=n c z^{n-1} \dot{z}$ *; and confequently $\overline{a+c z_{4}^{m}} \times d z^{n-1} \dot{z}$
$\left(=x^{m} \times \frac{d \dot{x}}{n c}\right)=\frac{d x^{m} \dot{x}}{n c} ;$ whofe Fluent is therefore
\ddagger Art.77. $\frac{d x^{m+1}}{n c \times m+1} \ddagger=\frac{\overline{d \times a+c z^{n}}}{n c \times \overline{m+1}}$, as before.
78. In affigning the Fluents of given Fluxions there is another Particular that ought to be attended to, not yet taken notice of; and that is, whether the flowing Quantity, found by the common Rule, above delivered, does not require the Addition or Subtraction of fome confant Quantity to render it complete. This

The Manner of finding Fluents.

indeed can, only, be known from the Nature of the Problem under Confideration; but that fuch an Addition or Subrraction may, in fome Cafes, become neceflary is evident from the Subjeet itfelf; fince a flowing Quantity increafed, or decreafed, by a conftant Quantity, has ftill the fame Fluxion; and therefore the Fluent of that Fluxion is as properly expreffed by the whole compound Expreffion, as by the variable Part of it, alone : Thus, for Inflance, the Fluent of $n x^{n-1} \dot{x}$ may be either reprefented by x^{n} or by $x^{n} \pm a$, becaufe (a being conftant) the Fluxion of $x^{n} \pm a$, as well as of x^{n}, is $m x^{n-1} \dot{x}$.
79. Hence it appears that it is the variable Part of a Fluent only which is afignable by the common Method; the confant Part (when fuch becomes neceflary) being to be afcertained from the particular Nature of the Problem. Now to do this, the beft Way is to confider how much the variable Part of the Fluent, firft found, differs from the Truth, in that particular Circumftance when the required Quantity which the whole Fluent ought to exprefs, is equal to Nothing; then that Difference, added so, or fubtracted from, the faid variable Part, as occafion requires, will give the Fluent truly corrected: For, fince the Difference of twa Quantities fowing with the fame Celerity (or having equal Fluxions) is either, Nothing at all, or conflantly the fame, the Difference in that Circumftance will likewife be the Difference in all other Circumftances: And therefore being added to the leffer Quantity, or fubtracted from the greater, both become equal.
80. To render what is above delivered as familiar as may be, I fhall put down a few Examples; in which the variable Quantities reprefented by x and y are fuppofed to begin their Exiftence together, or to be genebated, at the fame time.

1. Let $\dot{y}=a^{2} x \dot{x}$; then the Fluent, found as ufual will be $y=\frac{a^{2} x^{2}}{2}$; where taking $y=0, \frac{a^{2} x^{2}}{2}$ alfo vanimes, (becaufe then $x=0$ by Hypothefis): Therefore the Fluent requires no Correction in this Cafe.
2. Let $\dot{y}=\overline{a+x)^{3}} \times \dot{x}$: Here we firf have $y=$ $\frac{\overline{a+x}^{4}}{4}$; but when $y=0$, then $\frac{\overline{a+x}}{}{ }^{4}$ becomes $=\frac{a^{4}}{4}$ (firce x by Hypothefis is then $=0$:) Therefore $\frac{\left.\overline{a+x}\right|^{4}}{4}$ aluays excceds y by $\frac{a^{4}}{4}$; and fo the Fluent properly correctẹd will be $y=\frac{\overline{a+x}^{4}-a^{4}}{4}=a^{3} x+\frac{3^{a^{2}} x^{2}}{2}$ $+a x^{3}+\frac{x^{4}}{4}$.
But the very fame Fluent may be otherwife found, without needing any Correction: For the given Equation $\left.(\dot{y}=\overline{a+x})^{3} \times \dot{x}\right)$, by expanding $\left.\overline{a+x}\right)^{3}$, is tranfformed to $\dot{y}=a^{3} \dot{x}+3 a^{2} x \dot{x}+3 a x^{2} \dot{x}+x^{3} \dot{x}$; whence $y=$ $a^{3} x+\frac{3^{a^{2} x^{2}}}{2}+a x^{3}+\frac{x^{4}}{4}$; the fame as above.

Hence it appears that the Fluent of an Expreffion, found according to one Form, may require a very different Correction from the Fluent of the fame Fluxion found according to another Form.
3. Let $\dot{y}=\overline{a^{2}-x^{2}} \prod^{\frac{1}{2}} \times x \dot{x}$; then, firft, $y=-$ $\frac{\overline{\left.a^{2}-x^{2}\right)^{\frac{3}{2}}}}{3}$; where taking $y=0,-\frac{\left.\overline{a^{2}-x^{2}}\right|^{\frac{3}{2}}}{3}$ becomes

The Manner of finding Fluents,

$=-\frac{a^{3}}{3}$; therefore $-\frac{\overline{a^{2}-\left.x^{2}\right|^{\frac{3}{2}}}}{3}$ is too little by $\frac{a^{3}}{3}$;
and fo the Fluent corrected will be $y=\frac{a^{3}}{3}$, $\frac{\overline{\left.a^{2}-x^{2}\right)^{\frac{3}{2}}}}{3}$.
4. Let $\dot{y}=\bar{a}^{m}+\left.x^{m}\right|^{n} \times x^{m-x} \dot{x}$: Here we firf have $y=$ $\frac{a^{m}+x^{m+1}}{m \times n+1}$;
Equation becomes $\frac{{\overline{a^{m}}}^{n+1}}{m \times \overline{n+1}}=\frac{a^{m n+m}}{m \times \overline{n+1}}$; whence the
Equation, or Fluent, truly corrected is $y=$
$\frac{\left.\overline{a^{m}+x^{m}}\right)^{n+1}-a^{m+n+m}}{m \times \overline{n+1}}$.
5. Laftly, let $\dot{y}=a+b x^{x^{m}}+c x^{7 p} \times$
${ }_{m b x^{m-1}} \dot{x}+n c x^{n-1} \dot{x}$; then, in the firft Place, we have $y=$
${\overline{a+b x^{m}}+c x^{m}}^{p+1}$
$p+1$
$y=\frac{\left.\overline{a+b x^{m}+c x^{m}}\right)^{p+1}-a^{p+1}}{p+1}$.
81. Hitherto x and y are both fuppofed equal to Nothing at the fame time; but that will not always be the Cafe in the Solution of Problems. Thus, for Inftance, though the Sine and Tangent of an Arch are both equal to Nothing when the Arch itfelf is equal to Nothing, yet
the Secant is then equal to the Radius : It will be proper therefore to add an Example or two wherein the Value of y is equal to Nothing, when that of x is equal to any given Quantity a.

Let, then, the Equation $\dot{y}=x^{2} \dot{x}$ be firt propofed; whereof the Fluent (firft taken) is $y=\frac{x^{3}}{3}$; but when $y=0$, then $\frac{x^{3}}{3}=\frac{a^{3}}{3}$, by Hypothefis; therefore the Fluent, corrected, is $y=\frac{x^{3}-a^{3}}{3}$.

Again, let the propofed Equation be $\dot{y}=-x^{\prime \prime} \dot{x}$; then will $y=-\frac{x^{n+1}}{n+1}$; which corrected becomes $y=$ $\frac{a^{n+1}-x^{n+1}}{n+1}$

Laftly, let $\dot{j}=\overline{c^{3}+b \cdot x^{2}} 7^{\frac{1}{2}} \times x \dot{x}$; then, firf, $y=$
 comes $=\frac{\overline{\left.c^{3}+b^{2}\right)^{\frac{3}{2}}}}{3^{b}}$: therefore the Fluent corrected is $y=\frac{\left.\overline{c^{3}+b x^{2}}\right|^{\frac{3}{2}}-\overline{c^{3}+b a^{2}}}{3^{\frac{3}{2}}}$.
82. All the Examples hitherto given relate to fuch Fluxions as involve one variable Quantity only in each Term, whofe Fiuents are affignable from the Converfe of the firft General Rule, in Section I. But, befides thefe, various other Forms of Fluxions may be propofed, involving two or more variable Quantities, whofe Fluents may allo be found by Help of the other two General Rules delivered in the fame Section.

Thus the Fluent of $y \dot{x}+x \dot{j}$ is expreffed by $x y$ *; that ${ }^{* A r t} .30$. of $\frac{y \dot{x}-x \dot{y}}{y^{2}}$ by $\frac{x}{y}+$; that of $a \dot{x}+x \dot{j}+y \dot{x}$ by $a x+x y \ddagger ;$ and that of $n x \dot{x} y^{n-3}+y^{n} \dot{x}-n a x^{n-1} \dot{x} \times y^{n} x-a x^{n} \frac{p}{m}$ by $\frac{m x y^{\pi} x-a x^{n}}{p+m}$: For, dividing (in the laft Cafe) by the Fluxion of the Root $y^{n} x-a x^{n *}$, which (by Art. *Art.77* 14 and 15) is $n x y^{n-1} \dot{y}+y^{n} \dot{x}-n a x^{n-1} \dot{x}$, we firft have $y^{n} x-a x^{n} \frac{p}{m}$; whence, adding Unity to the Exponent $\frac{p}{m}$, and dividing by the Exponent fo increafed, we get $\frac{\overline{y^{n} x-\left.a^{x^{n}}\right|^{\frac{p}{m}}}}{\frac{p}{m}+1}=\frac{m x y^{y^{n} x-a x^{n}}}{p+m}$ for the true Flu-
ent of the Quantity propofed. But it feldom happens that thefe Kinds of Fluxions which involve two different variable Quantities in one Term, and yet admit of known, or perfect, Fluents, are to be met with in Practice: I thall therefore take no further Notice of them in this Place (but refer the Reader to the fecond: Part of the Work) my Defign here being to infift only upon what is moft general and ufeful in the Subject; which brings me to further confider thofe Forms of Fluxions, involving one variable Quantity only, that frequently occur in the Solution of Problems, whofe Fluents may (after proper Transformation) be found, by the Rule already delivered in Art. 77.

The Manner of finding Fluents?

83. It has been already hinted, that if a Fluxion of the Binomial Kind, as $\overline{a+c z^{n}} \times d z^{n-1} \dot{z}$, has the Index ($n-1$) of the variable Quantity (z) without the Vinculum +1 , equal to (n) the Index of the fame Quantity under the Vinculum, the Fluent thereof may be then truly found by the forementioned Rule. But the fame Obfervation may be farther extended to thofe Cafes where the Index without the Vinculume increafed by Unity is cqual to any Multiple of that under the Vinculum; as in the Expreffions, $\left.\overline{a+c z^{n}}{ }^{m} \times d^{2 n-1} \dot{z}, \overline{a+c z^{n}}\right]^{m} \times$ $d z^{3 n-1} \dot{z}, a+c z^{n} \times d z^{4^{n-1}} \dot{z}, \xi{ }^{m} c$. Whofe Fluents are thus determined.

Put $a+c z^{n}=x$, then will $z^{n}=\frac{x-a}{c}$, and $n z^{n-1} \dot{\sim}$
*Art. $\delta=\frac{\dot{x}^{\prime}}{c}$; and therefore $z^{2 n-1} \dot{z}=\frac{x-a}{c} \times \frac{\dot{x}}{n c}=$
$\frac{\dot{x} \dot{x}-a \dot{x}}{n c c}$; whence by Subfitution we get $\overline{\left.a+c z^{n}\right)^{m}} \times$
$d z^{2 n-1} \dot{z}=\frac{x^{m} x d \overline{\times \bar{x}-a \dot{x}}}{n c^{2}}=d \times \frac{x^{m+1} \dot{x}-a x^{m} \dot{x}}{n c^{2}}:$
Whofe Fluent (by Art. 77.) is therefore $=\frac{d}{n c^{2}} \times$

The Manner of finding Fluent.
$\frac{d \times a+c z^{n}}{n c^{2}} \times \frac{a+c z^{n}}{m+2}-\frac{a}{m+1}=\frac{d \times a+c z^{n}}{n+1} \times$ $\frac{c z^{n}}{m+2}-\frac{a}{m+2 \times \overline{m+1}}$; the true Fluent of $a+c z^{n} m^{m} \times$ $d z^{2 n-1} \dot{z}$.

Again; for the Fluent of $\overline{a+c z}^{m} \times d z^{3^{n-1}} \dot{\approx}$, because $z^{n-1} \dot{z}=\frac{\dot{x}}{n c}$, and $z^{n}=\frac{x-a}{c}$, we have $z^{3^{n-1} \dot{z}}$ $\left(=z^{2 n} \times z^{n-1} \dot{z}\right)=\frac{\left.\overline{x-a}\right|^{2}}{c^{2}} \times \frac{\dot{x}}{n c}=\frac{x^{2} \dot{x}-2 a x \dot{x}+a^{2} \dot{x}}{n c^{3}}:$

Whence, $\overline{\left.a+c z^{n}\right)^{m}}$ being $=x^{m}$, we get $a+c z^{m} \times$ $d z^{3^{n--1}} \therefore \dot{z}=d x^{m} \times \frac{\overline{x^{2} \dot{x}-2 a x \dot{x}+a^{2} \dot{x}}}{n c^{3}}=\frac{d}{n 6^{3}} \times$ $x^{m+2} \dot{x}-2 a x^{m+1} \dot{x}+a^{2} x^{m} \dot{x}$; whose Fluent is therefore $=\frac{d}{n c^{3}} \times \frac{x^{m+3}}{m+3}-\frac{2 a x^{m+2}}{m+2}+\frac{a^{2} x}{m+1}=$

$$
\frac{d x}{n c^{3}} \times \frac{x^{2}}{m+3}-\frac{2 a x}{m+2}+\frac{a^{2}}{m+1}=\frac{d \times a+c z^{n}}{n c^{3}} \times
$$

$$
\frac{a+c z^{n}}{m+3}-\frac{2 a a+2 a c z^{n}}{m+2}+\frac{a^{2}}{m+1}=\frac{d \times a+c z^{m+1}}{n c^{3}} \quad x
$$

$$
\frac{c^{2} z^{2 n}}{m+3}-\frac{2 a c z^{n}}{m+3 \times \overline{m+2}}+\frac{2 a^{2}}{m+3 \times \sqrt{m+2} \times \overline{m+1}}
$$

The Manner of finding Fluents.

Uxiverfally, let r denote any whole pofitive Number whatever, and let the Fluent of $\overline{a+\left.c z^{n}\right|^{m}} \times d z^{r n-1} \dot{z}$ be required; then, by putting $a+c z^{n}=x$, and proceeding as above, our propofed Fluxion is transformed to $\frac{d x^{m} \dot{x}}{n c^{r}} \times \overline{x-\left.a\right|^{r-1}}$; which, expanding $\overline{x-a)^{r-1}}$

E®c. Whofe Fluent is therefore $=\frac{d}{n r^{r}} \times \frac{x^{r}}{m+r}-$

$\frac{d x^{m+1}}{r} \times \frac{x^{r-1}}{m+r}-\frac{r-1 \times a x^{r-2}}{m+r-1}+\frac{r-1 \times r-2 \times a^{2} x^{r-3}}{2 \times m+r-2}$
$\mathcal{E}^{\circ} \mathrm{C}$
Where, r being a whole pofitive Number, the Multiplicators $\mathrm{I}, \mathrm{r}-\mathrm{I}, \overline{r-1} \times \overline{r-2}, \overline{r-1} \times \overline{r-2} \times \overline{r-3}, \xi^{\circ} c$. will therefore become equal to Nothing, after the r firf terms; and fo, the Series terminating, the Fluent itfelf will be truly exhibited in that Number of Terms: Except when $m+r$ is likewife a whole pofitive Number, lefs than r; in which Circumftance the Divifors $m+r$, $m+r-1, m+r-2, \varepsilon_{c} c$. becoming equal to Nothing, before the Multiplicators, the correfponding Terms of the Series will be infinite. And in that Cafe the Fluent is faid to fail, fince Nothing can then be determined from it.
84. Be-

The Manner of finding Fiuents.

84. Befides the foregoing, there is another Way of deriving the Fluent of $\overline{a+c z^{n}} \times d z^{r n-1} \dot{z}$, in Terms of the original flowing Quantity z; which will afford a Theorem more commodious for Practice than that above given : The Method of Inveftigation is thus.
Let $d \times \overline{a+c z^{n}}{ }^{m+1} \times \mathrm{Az}^{p}+\mathrm{Bz}^{p-0}+\mathrm{Cz}{ }^{p-2 v}+\mathrm{Dz}{ }^{p-\beta v}$. छ'c. (where $p, v, A, B, C, \xi^{\circ} c$. denote unknown, but deterninate, Quantities) be affumed for the Fluent fought: Then by taking the Fluxion of the Quantity fo affumed we fhall have
 equal to the given Fluxion, $a+c z^{m} \times d z^{m-1} \dot{\varepsilon}$, and the whole Equation divided by $a+c z^{7 \prime} \times d z^{-1} \dot{\tilde{z}}$, there comes out
 Whence, by collecting the Coefficients of the like Powers of z, we have

$$
\begin{aligned}
& \text { Where, comparing } p+n \text { and } r n \text {, the two greateft Ex- }
\end{aligned}
$$ ponents of x, we find $p=r n-n=r-1 \times n$; and by comparing the two next inferior Exponents $p+n-v$, and p, we.

likewife get $v=n$; which Values being fubftituted above, our Equation is reduced to
$\left.\begin{array}{r}\overline{m+r} \times s c \mathrm{Az}^{r n}+\overline{m+r-1} \times n c \mathrm{Bz}{ }^{r n-n}+\overline{m+r-2} \times n c \mathrm{Cz}^{r n-2 n} \xi_{c} \\ -z^{r n}+\overline{r-1} \times n a \mathrm{Az} z^{r n-n}+\overline{r-2} \times n a \mathrm{Bz}{ }^{r n-2 n} \vartheta_{c} .\end{array}\right\}=0$
Where, putting $m+r=s$, and comparing the Coefficents of the homologous Terms *, we have $\mathrm{A}=$ $\frac{1}{s n c}, \mathrm{~B}=-\frac{\overline{r-1} \times a \mathrm{~A}}{\frac{s-1}{} \times c}=-\frac{\overline{r-1 \times a}}{s \times s-1 \times n c^{2}}, \mathrm{C}=-$;
$\frac{\overline{r-2} \times a \mathrm{~B}}{s-2 \times c}=\frac{\overline{r-1} \times \overline{r-2} \times a^{2}}{s \times s-1 \times s-2 \times n c^{3}}, \mathrm{D}=-\frac{r-3 \times a \mathrm{C}}{s-3 \times c}$
$=-\frac{\overline{r-1} \times \overline{r-2} \times \overline{r-3} \times a^{3}}{s \times s-1 \times s-2 \times s-3 \times n c^{4}}$, Ec $c_{\text {. Etc. }}$
which Values, with thole of p and v, being fubflituted -
in the affumed Fluent, it becomes $d \times\left.\overline{a+c z^{n}}\right|^{m+1} \times$

$\delta^{\circ} c=\frac{d \times \overline{a+c z^{n}}}{s n c} \times \frac{z^{m-n}}{1}-\frac{\overline{r-1} \times a z}{s-1} \times s \quad+$
$\overline{r-1} \times \overline{r-2} \times a^{2} z^{r n-3^{n}}$ Ec. the true. Fluent of $\overline{s-1} \times \overline{s-2} \times c^{2}$

$$
m^{m+1}
$$

$\overline{a+c z^{n}} \quad \times d z^{r n-1} \dot{\tilde{z}}$, which was to be determined: Which Fluent therefore, when r is a whole pofitive Number, will always terminate in as many Terms as are expreffed by that Number; except in that particular Cafe, specified in the lift Article. Thus, if $r=2$, or the
Vid. p. 181. of my Treatife of Algebra.
the given Fluxion be $\overline{a+c z^{n}}{ }^{m} \times d z^{2 n-1} \dot{z}$; then, s $(m+r)$ being $=m+2$, the Fluent itfelf will become $\frac{d \times a+\left.c z^{n}\right|^{m-1-1}}{n c \times m+2} \times \frac{z^{n}}{1}-\frac{a}{m+1 \times c}=\frac{d \times a+\left.c z^{n}\right|^{m+1}}{n c^{2}} \times$
$\frac{c \bar{\varepsilon}^{n}}{m+2}-\frac{a}{m+2 \times m+1}$; which is exactly the fame with the firft of thofe found in Art. 8 j . by a different Method. The like Agreement will likewife be found, when r is $=3$: But when r, either denotes a broken, or a negative, Number, the Series for the Fluent will then run on to Infinity; becaufe no one of the Multiplicators $r-1, r-2, r-3, r-4, \xi^{\circ} \%$ can in that Cafe be equal to Nothing.
85. The foregoing Fluent, ie may be obferved, was found by affuming $\left.d \times \overline{a+c z^{n}}\right)^{m+z} \times \mathrm{Az}^{p}+\mathrm{Bz}^{p-v}+\mathrm{Cz}^{p-2 v}$ δ_{6}° and comparing the two greatert Exponents, of the Equation thence refulting: But if, inftead of $\mathrm{Az}^{p}+\mathrm{Bz}^{p-v}+\mathrm{Cz}^{p-2 v}$ 'v, an alcending Series, as $\mathrm{A} \tilde{z}^{p}+$ $\mathrm{B} z^{p \dagger v}+\mathrm{Cz}^{p \dagger+v v}{ }^{\circ} \mathrm{c}$. (where the Exponents of z continually increafe) be taken, and the two leaft Indices of z in the Equation (in like Manner refulting) be coimpared together, the fame Fluent will be had according to a different Form, which will be of good Ufe in many Cafes, when the foregoing fails, or runs out into an Infinite Series.

Thus, if $p+v, p+2 v, \varepsilon_{0} c$. be wrote in the Room of $p-v, p-2 v, \xi^{\prime} c$, refpectively, in the firt Equation of the laft Article, it will appear that
98. The Manner of finding Fluent. $\left.\begin{array}{l}+c n \times \overline{m+x} \times z^{n} \times \mathrm{Az}^{\bar{p}+\mathrm{Bz}} \overline{p+v}+\mathrm{C} z^{p+2 v} \\ +\overline{a+C z^{n}} \times p \mathrm{~A} z^{p}+\overline{p+v} \times \mathrm{B} z^{p+v}+\overline{p+2 v} \times \mathrm{Cz}^{p+2 v}\end{array}\right\}$ Which Equation may be reduced to
 Where, by comparing the two leaf Exponents, $\xi^{\circ} c$. p will be found $=r n, v=n ; \mathrm{A}=\frac{1}{p a}=\frac{\mathrm{I}}{r n a} ; \mathrm{B}=$ $-\frac{\overline{p+n \times m+1} \times c \mathrm{~A}}{\overline{p+v} \times a}=\frac{\overline{\overline{r+m+1} \times n c \mathrm{~A}}}{\overline{r+1} \times n a}=-$ $\frac{\overline{r+m+i} \times r}{r \times \overline{r+1} \times n a^{2}} ; \quad \mathrm{C}=-\frac{\overline{p+p+n \times m+1} \times C B}{\overline{p+2 v} \times a}=-$ $\frac{\overline{r+m+2} \times n \mathrm{~B}}{\overline{r+2} \times n a}=\frac{\overline{r+m+1} \times \overline{r+m+2} \times c^{2}}{\overline{r \times r+1} \times \overline{r+2} \times n a^{3}}$ \&ic, \&\%.. Therefore, denoting $r+m$ by s (as above) the Fluent of $\overline{a+c z^{n}}{ }^{m} \times d z^{r n-1} \dot{z}$, will (a / l_{0}) be truly represented by $d \times \overline{a+c z^{n}}{ }^{m+1} \times \frac{z^{m}}{r n a}-\frac{s+1 \times c z^{r n+n}}{r \times \overline{r+1} \times n a^{2}}+$
 $\times 1-\frac{\overline{s+1} \times c z^{n}}{\overline{r+1} \times a}+\frac{s+1 \times \overline{s+2} \times c^{2} z^{2 n}}{r+1 \times r+2 \times a^{2}}$ Er.

Which Series will terminate when s (or $r+m$) is a whole negative Number ; and therefore in all fuch Cafes the

The Manner of finding Fiuents:

the Fluent is exactly determined; provided r be not alfo a negative Integer lefs than s; for in this particular Circumftance the Fluent fails, the Divifor firf becoming equal to Nothing. Vid. Art. 83.

The Ufe of the two foregoing genetal Expreffions, for the Fluent of $\overline{a+c z^{m}}{ }^{m} \times d z^{r n-1} \dot{z}$, will appear from the following Examples.

EXAMPLEI.

86. Let it be required to find the Fluent of $\frac{b x \dot{x}}{\left.\overline{a+x}\right|^{\frac{1}{2}}}$, of

$$
\left.\bar{a}^{\prime+x}\right|^{-\frac{1}{2}} \times b \times \dot{x}
$$

By comparing the Fluxion here propofed with $\left.\overline{a+c z^{n}}\right)^{n} \times d z^{r n-1} \dot{z}$, we have $a=a, c=1, z=x, r=\mathrm{r}$, $m=-\frac{1}{2}, d=b, r n-\mathbf{1}$ (or $r-1$) $=1$; whence $r=2$, and $s(r+m)=\frac{3}{2}$; whereof the former being a whole pofitive Number, let thefe Values be therefore fubftituted in

$\left.\overline{r-1} \times \overline{r-2} \times a^{2} z^{r n-j^{n}}, \mho_{0}\right)$ the firft of the two general Expreffions for the Fluent, and it will become $\frac{b \times \overline{a+x^{\frac{1}{2}}}}{3^{\frac{3}{2}}} \times x-\frac{a}{\frac{1}{2}}=\frac{b \times \overline{a+x^{\frac{1}{2}}} \times \overline{2 x-4 a}}{3}$, the Quantity fought in this Cafe.
EX A M P LE II.
87. Let the Fluxion propofed be $\frac{b x^{3 n-1}}{\sqrt{a+f x^{n}}}$, or

$$
a+f x^{n-\frac{x}{2}} \times b x^{3 n-1} \dot{x}
$$

Here, by proceeding as above, we have $a=a, c=f$, $z=x, n=n, m=-\frac{1}{3}, d=b, r=3$, and $s(r+m)=$ $\frac{3}{2}$: Whence, by fubftituting there feveral Values in the fame general Expreffion, we get $\frac{b x a+f x^{\frac{n}{2}}}{\frac{1}{2}} \times$ $\overline{x^{2 n}-\frac{2 a x^{n}}{\frac{3}{2} f}+\frac{2 a^{2}}{\frac{3}{2} \times \frac{1}{2} f^{2}}}=\frac{b \times a+\left.f x^{n}\right|^{\frac{1}{2}}}{n f^{3}} \times$ $\frac{6 f^{2} x^{2 n}-8 a f x^{n}+16 a^{2}}{15}$.

EX A M P LE III.

88. Wherein the Quantity proposed is $\frac{\dot{y} \sqrt{g^{2}+y^{2}}}{y^{6}}$, or

$$
\left.\overline{g^{2}+y^{2}}\right|^{\frac{1}{2}}+y^{-6} \dot{y} .
$$

Here we have $a=g^{2}, c=1, z=y, n=2, m=\frac{s}{2}$, $d=1, r n-1($ or $2 r-1)=-6$; whence $r\left(=\frac{-6+1}{2}\right)$ $=-\frac{5}{2}$, and $s(r+m)=-2$; whereof the latter being a whole Negative Number, let the Several Values here exhibited be therefore fubftituted in
$\left(\frac{\left.\overline{a+c z^{n}}\right)^{m+1} \times d z^{r n}}{r n a} \times 1-\frac{\overline{s+1} \times c z^{n}}{\overline{r+1} \times a}+\frac{\overline{s+1} \times \overline{s+2} \times c^{2} z^{2 n}}{r+1 \times \overline{r+2} \times a^{2}}\right.$
ε_{c}.) the latter of the two general Expreffions above
derived, and it will become

$$
\frac{\left.g^{2}+y^{2}\right)^{\frac{3}{2}} \times y^{-5}}{-5 g^{2}} \times
$$

$1-\frac{-1 \times y^{2}}{-\frac{3}{2} \times g^{2}}=\frac{\overline{g^{2}+y^{2}}{ }^{\frac{3}{2}} \times \overline{2 y^{2}-3 g^{2}}}{15 g^{4} y^{5}}$; the true Fluent required.
EX A MP LE IV.
89. Lafly, let the given Fluxion be $\left.\overline{a-f z^{n}}\right)^{\frac{1}{2}} x$

$$
z^{-\frac{7}{2} n-1} \dot{z}
$$

Then, a being $=a, c=-f, m=\frac{1}{2}, d=1, r=-\frac{7}{2}$, and the reft as in the general Fluxion $\overline{a+c z^{7}}{ }^{m} x$ $d z^{r n-1} \dot{z}$; we shall, by fubftituting in the fecond Form (becaufes is here equal to (-3) a whole negative Number) have $\frac{\overline{a-f z^{n} 1^{\frac{3}{2}}} \times z^{-\frac{7}{2} n}}{-\frac{7}{2} n a} \times 1-\frac{-2 x-f z^{n}}{-\frac{5}{2} a}$
$\frac{-2 \times-1 \times f^{2} z^{2 n}}{-\frac{5}{2} \times-\frac{3}{2} a^{2}}=\frac{-\left.f z^{n}\right|^{\frac{3}{2}}}{-\frac{7}{2} n a z^{\frac{7}{2} n}} \times 1+\frac{4 f z^{n}}{5 a}+\frac{8 f^{2} z^{2 n}}{15 a^{2}}$
$=-\frac{\left.\overline{a-f z^{n}}\right|^{\frac{3}{2}} \times \overline{30 a^{2}+24 a f z^{n}+16 f^{2} x^{2 n}}}{105 n a^{3} z^{\frac{7}{2} n}}$.
90. Having infifted largely on the Manner of finding fuck Fluent as can be truly exhibited in Algebraic Terms; it remains now to fay fomething with regard H 3
to thole other Forms of Exprefions, involving one vav riable Quantity only, which, yet, are fo affected by compound Divifors and radical Quantities, that their Fluent cannot be accurately determined by any Method whatfoever; of which there are innumerable Kinds: But there is one general Method whereby the Fluent of fuch Expreffions are approximated, to any affigned Degree of Exactness; namely, the Method of Infinite Series; which it will, therefore, be neceffary to explain; fo far as relates to the Manner of expounding the Value of any compound Fraction, or furs Guancity, by Help of fuch a Series.

> EXAMPLE T.
91. Let, then, the Fraction $\frac{a x}{a-x} b e$, frt, given; to be converted into an Infinite Series.

Divide the Numerator $a x$ by the Denominator $a-x$, as is taught in Compound Divifion of common Algebra; then the Operation will find as follows :
$a-x) a x \quad\left(x+\frac{x^{2}}{a}+\frac{x^{3}}{a^{2}}+\frac{x^{4}}{a^{3}}+\varepsilon_{6}{ }_{c}\right.$

$$
\begin{aligned}
& \frac{a x-x x}{+x x} \\
& +x x-\frac{x^{3}}{a} \\
& +\frac{x^{3}}{a} \\
& \quad \frac{+\frac{x^{3}}{a}-\frac{x^{4}}{a^{2}}}{+\frac{x^{4}}{a^{2}}}
\end{aligned}
$$

$$
\underbrace{}_{0}
$$

Where

Where the Quotient, or Series $x+\frac{x^{2}}{a}+\frac{x^{3}}{a^{2}}+\frac{x^{4}}{a^{3}}+$ $\frac{x^{5}}{a^{7}}+\frac{x^{6}}{a^{5}} \xi^{6}$. infinitely, continued, is taken to expound the Value of the propofed Fraction $\frac{a x}{a-x}$:
92. But, though the Series thus arifing ought to be carried on to an Infinity of Terms, to have the true Value of the Quantity firft propofed; or, though the Quotient, continued to ever fo great a Number of Terms, will be fill fomething defective of the Truth; yet, if the Value of the Quantity (x) in the Numerator be but fmall in Comparifon of the Quantity (a) in the Denominator, the Remainder, after a few Terms in the Quotient, will become fo exceeding frall, as to be neglected without any confiderable Error; and then the Value of the Whole, or of the Quantity firt propofed, will be, very nearly, exhibited, by taking a. fmall Number of the leading Terms only,

Thus, for Inftance, let the Value of a be expaunded by 10 , and that of x by Unity; then the Remainder $\left(\frac{x^{3}}{a}\right)$ after the two firt Terms of the Quotient, being $=\frac{1}{10}$, this Value, divided by the given Divifor $(a-x=) 9$, will therefore give $\frac{1}{90}=0,01111111, \xi^{\circ} c_{0}$ for the Defect, by taking the two firft Terms only: But, if the three firft Terms be taken, the Defeet will be fill lefs confiderable; amounting to no more than $\frac{1}{900}$, or 0,00171111, छ\%.

This may likewife be made to appear, without any regard to the Remainder;' by collecting into one Sum, the Values of all the Terms to be taken: For, if only the firt two $\left(x+\frac{x^{2}}{a}\right)$ be propofed, their Sum will be
$=1,1$; which, deducted from the true Value of the given Fraction $\frac{a x}{a-x}\left(=\frac{10}{9}\right)=1,111$ IIII Eoc. the Difference will come out 0.01111, the very Jame as before.

Thus, alfo, by collecting the Sum of the three, four and five, छ'c. firft Terms of the Series, you will have 1,11; 1,111; and 1,1111 E\%. which, being fucceffively deducted from 1,111M1111 E゚c. (as above) there will remain 0,001111 ôc. 0,0011111 छ์c. 0,00001111 छgc. for the Errors or Defects in thofe Cafes refpectively.
93. From what has been faid in the preceding Ar ticle it appears, that Infinite Seriefes, in Algebra (according to a common Obfervation) are fimilar to, or correfpond with, Decimal Fractions in common Arithmetick: For, as a Decimal Fraction may be carry'd on to any propofed Number of Places, boweyer great, and yet never amount to a Quantity, which but a very little exceeds the Value of the three or four firf Places; fo a Series may be infinite with regard to the Number of its Terms, and yet a few of the leading Terms only, may be fufficient to exprefs the Value of the Whole, very nearly: Provided, always, that the Series has a fufficient Rate of Convergency, or that its Terms decreafe in a pretty large Proportion: For, otherwife, even, a great Number of Terms may be ufed to little Purpofe: Thus, in the foregoing Scries; $x+\frac{x^{2}}{a}+$ $\frac{x^{3}}{a^{2}} \xi^{6} c$ if x be taken $=a$, no Number of Terms will be fufficient to exhibit the Value of the correfponding Fraction $\frac{a x}{a-x}$, it being infinite in that Circumftance.
94. Having endeavoured to fhew, that the true $\mathrm{Va}-$ lue of an, infinite Series may be nearly obtained by adding together a few of the firt Terms only, I Thall now proceed to give other Examples of the Manner of
converting fractional, and furd, Quantities into fuch Kinds of Seriefes, in order to the Approximation of the Fluents of Expreffions affected by them.
E X A MPLE II.

Let the Quantity propofed be the Fraction $\frac{c^{2}}{c^{2}+2 c y+y^{2}}$; then, by proceeding as in the firf Example, you will have

$$
\begin{gathered}
\left.\epsilon^{2}+2 c y+y^{2}\right) c^{2} \ldots \ldots\left(1-\frac{2 y}{c}+\frac{3 y^{2}}{c^{2}}-\frac{4 y^{3}}{c^{3}}\right. \text { छcc. } \\
\\
\frac{c^{2}+2 c y+y^{2}}{-2 c y-y^{2}} \\
\\
\frac{-2 c y-4 y^{2}-\frac{2 y^{3}}{c}}{+3 y^{2}+\frac{2 y^{3}}{c}} \text { छc. }
\end{gathered}
$$

Where, from a few of the firft Terms of the Quotient, the Law of Continuation is manifeft ; the Numerators being in Arithmetical Progreffion; and the Signs, + and - , alternately.

EXAMPLEIII.

95. Let the Quantuty given be $\frac{1+x^{2}-2 x^{4}}{1-x-x^{2}}$.

Then the Quotient will be $1+x+3 x^{2}+4 x^{3}+5 x^{4}+$ $9 x^{5}+14 x^{6} \delta^{8} c$. where the Law of Continuation is manifeft; being fuch that the Coefficient of each fucceeding Term is equal to the Sum of thofe of the two Terms immediately preceding it.

EXAMPLEIV.

96. Let the Radical Quantity $\sqrt{\overline{a^{2}+x^{2}}}$ be profofed.

Here, according to the common Method of extracling the Square Root, the Procefs will fand as follows:

$$
\left.2 a+\frac{x^{2}}{a}-\frac{x^{4}}{4 a^{3}}\right) a a+x x\left(a+\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}} \xi_{0} c_{0}\right.
$$

$\frac{a a}{+x x}$
$\frac{+x x+\frac{x^{4}}{4 a^{2}}}{}$

$\frac{-\frac{x^{4}}{4 a^{2}}}{}$| $-\frac{x^{4}}{4 a^{2}}-\frac{x^{6}}{8 a^{4}}+\frac{x^{8}}{64 a^{6}}$ |
| :--- |

$+\frac{x^{6}}{8 a^{4}}-\frac{x^{3}}{64 a^{6}}$
97. The Law of Continuation in Sericfes, thus arifing, from radical Quantities, is not eafily difcovered : But, if you would carriy on the Series to any propofed Number of Terms, the Work will be a good deal fhortned, by dividing the Remainder by the Divifor, when half that Number of Terms is found (as in common Divifion) and obferving, at the fame time, to neglect all fuch Terms whofe Indices would exceed the greateff, or the greateft Plus the common Difference, in the faid Remainder, according as the whole Number of Terms propofed to be found is odd, ar even.

Thus, if it were propofed to continue the foregoing Series $a+\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}$ to 6 Terms, then the Divifor
(or double Quotient) being $2 a+\frac{x^{2}}{a}-\frac{x^{4}}{4 a^{3}}$, and the Remainder $\frac{x^{6}}{8 a^{4}}-\frac{x^{8}}{64 a^{6}}$ (as appears from the laft Article) the reft of the Operation will ftand thus:

$$
\begin{aligned}
& \left.2 a+\frac{x^{2}}{a}-\frac{x^{4}}{4 a^{3}}\right) \frac{x^{6}}{8 a^{4}}-\frac{x^{8}}{64 a^{6}}+0\left(\frac{x^{6}}{16 a^{5}}-\frac{5 x^{8}}{128 a^{7}}+\frac{7 x^{30}}{256 a^{9}}\right. \\
& \frac{x^{6}}{8 a^{4}}+\frac{x^{3}}{16 a^{6}}-\frac{x^{30}}{64 a^{2}} \\
& -\frac{5 x^{8}}{64 a^{6}}+\frac{x^{80}}{64 a^{8}} \\
& -\frac{5 x^{3}}{64^{6}}-\frac{5 x^{10}}{128 a^{8}} \\
& +\frac{7 x^{1}}{128 a^{8}}
\end{aligned}
$$

Which three Terms thus found being added to thofe found above, we have $a+\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}+\frac{x^{6}}{16 a^{5}}-$ $\frac{5 x^{8}}{128 a^{7}}+\frac{7 x^{30}}{256 a^{9}}$, for the 6 firft Terms of an infinite Series exhibiting the Value of $\sqrt{\overline{a^{2}+x^{2}}}$.
98. A nother Way of refolving any radical Quantity, is to aflume a Series (with unknown Coefficients) for the Value thereof; and then the Series fo affumed being raifed to the fecond, third, or fourth Power, E'c. according as the Root to be extracted is a fquare, cubic, or biquadratic one, छ ${ }^{\circ}$ c. an Equation will be obtained (free from Surds) from whence, by comparing the homologous Terms, the affumed Coefficients, and confequently the Series fought, will be determined ; as in

EXAMPLE V.

Where it is proposed to extract the Square Root of

$$
a^{2 n}+x^{2 n} \text { in an Infinite Series. }
$$

In which Cafe, affuming $\mathrm{A}+\mathrm{Bx}^{2 n}+\mathrm{Cx}^{4 n}+\mathrm{D} x^{6 n}+$ $+\mathrm{E}^{8 n}{ }^{8 \%}$. for the required Series, and taking the Square thereof, we have
and consequently

$$
\left.\begin{array}{rl}
\mathrm{A}^{2}+2 \mathrm{AB} x^{2 n}+2 \mathrm{AC}^{4 n}+2 \mathrm{AD}^{6 n} & +2 \mathrm{AE}^{8 n} \varepsilon_{c_{c}} \\
-a^{2 n}-x^{2 n}+\mathrm{B}^{2} x^{4 n}+2 \mathrm{BC}^{6 n} & +2 \mathrm{BD}^{8 n} \varepsilon_{c .} \\
& +\mathrm{C}^{2 n} x^{8 n} \xi_{c}
\end{array}\right\} \|!
$$

Therefore $A^{2}-a^{2 n}=0,2 A B-1=0,2 A C+B^{2}=0$, $2 \mathrm{AD}+2 \mathrm{BC}=0,2 \mathrm{AE}+2 \mathrm{BD}+\mathrm{C}^{2}=0$, * Er. From which we get $\mathrm{A}=a^{n} ; \mathrm{B}\left(=\frac{1}{2 \mathrm{~A}}\right)=\frac{1}{2 a^{n}} ; \mathrm{C}(=$ $\left.-\frac{\mathrm{B}^{2}}{2 \mathrm{~A}}\right)=-\frac{\mathrm{I}}{8 a^{3^{n}}} ; \mathrm{D}\left(=-\frac{\mathrm{BC}}{\mathrm{A}}\right)=\frac{1}{16 a^{5 n^{3}}} ; \mathrm{E}$ $\left(=-\frac{2 \mathrm{BD}+\mathrm{C}^{2}}{2 \mathrm{~A}}\right)=-\frac{5}{128 a^{7 n}} \vartheta^{\circ} c$. whence we have $\mathrm{A}+\mathrm{B} x^{2 n}+\mathrm{Cx}^{4 n}+\mathrm{D} x^{6 n}$ sc. $\left(=\sqrt{a^{2 n}+x^{2 n}}\right)=a^{n}$
*Yid. p. 181 of my Treatise of Algebra.
$+\frac{x^{27}}{2 a^{n}}-\frac{x^{4 \pi}}{8 a^{3 n}}+\frac{x^{6 n}}{16 a^{5 n}}-\frac{5^{8 n}}{128 a^{2 n}} \delta^{\circ}$. Which Seres, if n be expounded by Unity, will become $a+$ $\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}$ oc. the very fame with that in the preceding Article found by the common Method.
EX A M P LE VI.
99. Let it be required to refolve $a+b x^{7} 7^{\frac{1}{3}}$ into an Infinite Series.

Here, by afluming $\mathrm{A}+\mathrm{Bx}^{n}+\mathrm{C} x^{2 n}+\mathrm{D} x^{3 n} \xi_{c}$ and cubing the fame, Er'. we have

$$
\left.\begin{array}{r}
\mathrm{A}^{3}+3 \mathrm{~A}^{2} \mathrm{~B} x^{n}+3 \mathrm{~A}^{2} \mathrm{C} x^{2 n}+3 \mathrm{~A}^{2} \mathrm{D} x^{3 n}+\sigma^{0} c_{0} \\
-a-b x^{n}+3 \mathrm{AB}^{2 n}+6 \mathrm{ABC} x^{3 n}+\sigma^{2} c_{0} \\
+\mathrm{B}^{3} x^{3 n}+\sigma_{0} c_{0}
\end{array}\right\}=0
$$

Therefore $\mathrm{A}=a^{\frac{1}{3}} ; \mathrm{B}\left(=\frac{b}{3 \mathrm{~A}^{2}}\right)=\frac{b}{3 a^{\frac{2}{3}}} ; \mathrm{C}_{c}(=-$ $\left.\frac{\mathrm{B}^{2}}{\mathrm{~A}}\right)=-\frac{b^{2}}{9 a^{\frac{5}{3}}} ; \mathrm{D}\left(=-\frac{6 \mathrm{ABC}+\mathrm{B}^{3}}{3 \mathrm{~A}^{2}}\right)=\frac{5 b^{3}}{8 \mathrm{I} a^{\frac{3}{3}}} \varepsilon$.
and confequently, $\overline{a+b x^{n}}{ }^{\frac{1}{s}}\left(=\mathrm{A}+\mathrm{B} x^{n}+\mathrm{C} x^{2 n}+\varepsilon c_{c .}\right)$
$=a^{\frac{2}{3}}+\frac{b x^{n}}{3 a^{\frac{2}{3}}}-\frac{b^{2} x^{2 \pi}}{9 a^{\frac{5}{3}}}+\frac{5 b^{3} x^{3 n}}{81 a^{\frac{3}{3}}}+$ Es.
And, in the fame Manner, may the Root of any other Quantity be extracted: But as the celebrated Binomial Theorem, difcovered by the illuftrious Sir ISaac Newton, is vaftly more eafy and expeditious, in raifing Powers and extracting Roots than that, or any other, Method, I shall now explain the Ufos thereof; but,
firf of aill, it may not be amifs to fhew how the Theorem itfelf, from the Principles of Fluxions, may be derived.

Let, then, $1+y$ be a Binomial whore firft Term is Unity, and its fecond Term any propofed Quantity y; and let the Quantity to be expanded or thrown into a
Series be $\overline{1+y}$; where the Exponent v is fuppofed to denote any Number whatever, whole or broken, pofitive or negative.

Now it is evident that the firft Term of the required Series muft be Unity; becaufe wheri y is $=0$, the other Terms all vanifh; and, in that Cafe, $\overline{1+y}{ }^{\nu}$ is equal to Unity. Let, therefore, $1+\mathrm{Ay}^{m}+\mathrm{By}^{n}+\mathrm{C} y^{p}+\mathrm{D}^{q}{ }^{q}$ $छ^{\circ}$. be affumed to exprefs the true Value of the faid Series, or, which is the fame, let
$\left.\overline{1+y}\right|^{v}=1+\mathrm{Ay}^{m}+\mathrm{By}^{n}+\mathrm{C} y^{p}+\mathrm{D}_{y}^{q}$ ซoc. where $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mho_{c}, m, n, p, q$, छ' $_{c}$. denote unknown, but determinate Quantities:

Then, by taking the Fluxion of the whole Equation, -(fuppofing y variable) we fhall have $\overline{v j} \times \overline{1+y}^{v-1}=$ $m \dot{j} \mathrm{~A}^{m-1}+n \dot{j} \mathrm{~B}^{n-5}+\left\{j \mathrm{C}^{p-1}+q j \mathrm{D}^{q-1} छ^{q} \mathrm{c}\right.$. Whence, multiplying the Sides of the two Equations, crofs-wife, and dividing by $\dot{j} \times \overline{1+y})^{v-1}$, there comes out $\overline{1+y} \times m \mathrm{~A} y^{m-1}+n \mathrm{~B} y^{n-1}+p \mathrm{C}^{p-1}+{ }^{p} \mathrm{D} y^{q-1}$ छc. $=v+v \mathrm{~A} y^{m}+v \mathrm{By}^{n}+v \mathrm{C} y^{p}+v \mathrm{D} y^{q}$ धcc. which, by Reduction, is

The Manner of finding Flubnts.

Now, Fince we are at Liberty to take the Exponents of y what we will, fo as to anfwer the Conditions of the Equation, or fo that all the Terms here put down may mutually deftroy each other; let them, therefore, be fo taken that the Terms themfelves may be homologous, that is, let $m-1=0, n-1=m, p-1=n$, $q-1=p$, छ`. Then, m being $=1, n=2, p=3, q=4$, Es, if thefe feveral Values be fubfituted above, the Equation itfelf will become

Where, taking $\mathrm{A}-v=0,2 \mathrm{~B}+\mathrm{A}-v \mathrm{~A}=0,3 \mathrm{C}+2 \mathrm{~B}-$ $v \mathrm{~B}=0,4 \mathrm{D}+3^{C}-v \mathrm{C}=0$, छ'c. So that every Column of homologous Terms (and, confequently, the whole Expreffion) may vanifh, we alfo get $A=v ; B$ ($=$ $\left.\frac{v \mathrm{~A}-\mathrm{A}}{2}=\frac{\mathrm{A} \times \overline{v-1}}{2}\right)=\frac{v \times \overline{v-1}}{2} ; \mathrm{C}\left(=\frac{v \mathrm{~B}-2 \mathrm{~B}}{3}\right.$ $\left.B \times \frac{v-2}{3}\right)=v \times \frac{v-1}{2} \times \frac{v-2}{3} ; D\left(=\frac{v C-3 C}{4}=C \times\right.$
$\left.\frac{v-3}{4}\right)=v \times \frac{v-1}{2} \times \frac{v-2}{3} \times \frac{v-3}{4}, \mho_{c}$ ®. $_{0}$.
Whence, by writing thefe Values, with thofe of n, n, $p, q, \mathcal{E}^{\circ} c_{\text {. in }}$ ine Series $1+\mathrm{Ay}^{m}+\mathrm{By} y^{n}+\mathrm{C} y^{p}$ छ. firf affumed, we, at length, find $\overline{1+\beta}{ }^{v}=1+v y+\frac{v}{1} x$
$\frac{v-1}{2} \times y^{2}+\frac{v}{1} \times \frac{v-1}{2} \times \frac{v-2}{3} \times y^{3}+\frac{v}{1} \times \frac{v-1}{2} \times$
$\frac{v-2}{3} \times \frac{v-3}{4} \times y^{4}+v^{2} c$. which was to be inveftigated.
From the Series here brought out, any Power or Root, of any other compound Quantity, whether Binomial, Trinomial, छc. is eafily deduced: For, if p be put to reprefent the firft Term of any fuch Quansity, and Q the Quotient of the reft of the Terms di-
vided by the firf ; then the Quantity itfelf will be expreffed by $\mathrm{P}+\mathrm{PQ}$ or $\mathrm{P} \times \overline{1+Q}$ and the v Power thereof by $P^{v} \times \overline{I+Q^{v}}$ which therefore is equal to $\mathrm{P}^{v} \times 1+v \mathrm{Q}+\frac{v}{1} \times \frac{v-1}{2} \times \mathrm{Q}^{2}+\frac{v}{1} \times \frac{v-1}{2} \times \frac{v-2}{3} \times$
$\mathrm{Q}^{3}+\frac{v}{1} \times \frac{v-1}{2} \times \frac{v-2}{3} \times \frac{v-3}{4} \times \mathrm{Q}^{4}+E_{c} c$, by what is juft now determined.

But when v is a Fraction, as in the Notation of Roots, the Theorem here given will be render'd fomewhat more commodious for Practice, if, inftead of τ, 2 Fraction as $\frac{m}{n}$ be fubfituted; by which means it will
become $\mathrm{P}^{\frac{m}{n}} \times 1+\mathrm{Q} \mathrm{V}^{\frac{m}{n}}=\mathrm{P}^{\frac{m}{n}} \times 1+\overline{\frac{m}{n}} \mathrm{Q}+\frac{m}{n} \times$
$\frac{m-n}{\frac{m}{2 n}} \mathrm{Q}^{2}+\frac{m}{n} \times \frac{m-n}{2 n} \times \frac{m-2 n}{3^{n}} \mathrm{Q}^{3}+\frac{m}{n} \times \frac{m-n}{2 n} \times$
$\frac{m-2 n}{3^{n}} \times \frac{m-3^{n}}{4^{r}} \mathrm{Q}^{4}+\xi^{2} c$. whofe Ufe, in converting radical Quantities into Infinite Seriefes will appear from the following Examples.

EXAMPLEVII.

1co. Wherein it is propofed to extract the Square Root of $a^{2}+x^{2}$, in an Infinite Series.
Here the Quantity to be expanded being $\left.\overline{a^{2}+x^{2}}\right|^{\frac{1}{2}}$, of $a]^{\frac{1}{2}} \times 1+\frac{\frac{x x}{a a}}{}{ }^{\frac{x}{2}}$, by comparing it with the general Form; $\left.\mathrm{P}^{\frac{m}{n}} \times 1+\mathrm{Q}\right)^{\frac{m}{n}}$, we have $\mathrm{P}=a^{2}, \mathrm{Q}=\frac{x^{2}}{a^{2}}, m=1$;

The Manner of finding. Fiuents.

and $n=2$: Whence, by fubftituting there Values in the laft general Equation, we get
$\overline{a^{2}+x^{2} 1^{\frac{1}{2}}}=a \times \overline{1+\frac{1}{2} \times \frac{x^{2}}{a^{2}}+\frac{1}{2} \times-\frac{1}{4} \times \frac{x^{4}}{a^{4}}+\frac{1}{2} \times-\frac{1}{4}}$
$x-\frac{3}{6} \times \frac{x^{6}}{a^{6}}+\frac{2}{2} \times-\frac{1}{4} \times-\frac{3}{6} \times-\frac{5}{8} \times \frac{x^{8}}{a^{3}}+\xi_{0}=a+\frac{x^{2}}{2 a}$
$-\frac{x^{4}}{8 a^{3}}+\frac{x^{6}}{16 a^{3}}-\frac{5 x^{2}}{128 a^{7}} \delta^{\circ} c$. Which Series agrees exactly with thole found in Art. 97 . and 98. by different Methods.

EX AMPLE VIII.

101. Let it be required to extract the Cube-Root of $b^{3}-y^{3}$, in an Infinite Series.

Here by comparing $\overline{b^{3} 7^{\frac{3}{5}}} \times\left.\overline{1-\frac{y^{3}}{b^{3}}}\right|^{\frac{x}{3}}\left(=b^{\frac{3}{3}-y^{3}}{ }^{\frac{1}{3}}\right)$ with $\mathrm{P}^{\frac{m}{n}} \times \overline{1+\mathrm{Q}^{\frac{m}{n}}}$, it will be $\mathrm{P}=b^{3}, \mathrm{Q}=-\frac{y^{3}}{b^{3}}$ $m=1$, and $n=3$: Therefore, by Substitution, we get $\overline{b^{3}-y^{\frac{3}{3}}} \cdot\left(=b \times 1-\frac{y^{3}}{b^{3}} \|^{\frac{2}{3}}\right)=b \times \overline{1+\frac{1}{3} \times-\frac{y^{3}}{b^{3}}+\frac{1}{3} \times}$
$-\frac{2}{6} \times \frac{y^{6}}{b^{6}}+\frac{2}{3} \times \frac{3}{6} \times-\frac{5}{9} \times-\frac{y^{9}}{b^{9}}+\frac{2}{3} \times-\frac{2}{6} \times-\frac{3}{4} \times-$ $\frac{8}{T^{2}} \times \frac{y^{12}}{b^{12}}+8_{0}=b-\frac{y^{3}}{3^{b^{2}}}-\frac{y^{6}}{9 b^{5}}-\frac{5 y^{9}}{8 b^{8}}-\frac{10 y^{12}}{243^{b^{12}}}$ E\%\%.

The Manner of finding Fluents.

E X A MPLE IX.
102. Let the Quantity to be converted into an Infinite

Series be $\frac{a}{\sqrt{a x-x x}}$.
In this Cafe the given Quantity being firf transformed to $\sqrt{\frac{a}{x}} \times 1-\frac{x}{a}{ }^{-\frac{1}{2}}$ and $1-\frac{x}{a}$ afterwards compared with $\left.\overline{1+Q}\right|^{\frac{m}{n}}$, we have $Q=-\frac{x}{a}, m=-1$, and $n=2$; and therefore $I-\frac{x}{a}\left(=\frac{\frac{m}{1+Q}}{}{ }^{\frac{m}{n}}=1+\right.$ $\left.\frac{m}{n} \mathrm{Q}+\frac{m}{n} \times \frac{m-2 n}{2 n} \mathrm{Q}^{2}+\varepsilon^{\circ} c_{0}\right) \mathrm{I}+\frac{-\frac{1}{2}}{} \times \frac{-x}{a}+-\frac{1}{2} \times$ $-\frac{3}{4} \times \frac{x^{2}}{a^{2}}+-\frac{1}{2} \times-\frac{3}{4} \times-\frac{5}{6} \times \frac{-x^{3}}{a^{3}} \varepsilon_{\sigma_{n}}=1+\frac{x}{2 a}+$ $\frac{3 x^{2}}{8 a^{2}}+\frac{5 x^{3}}{16 a^{3}}+\frac{35 x^{4}}{128 a^{4}}+\varepsilon{ }^{\circ} c$. Which therefore, multiplied by $\sqrt{\frac{a}{x}}$, gives $\frac{a_{2}^{\frac{1}{2}}}{x^{\frac{\pi}{2}}}+\frac{x \frac{1}{2}}{2 a_{\frac{1}{2}}^{1}}+\frac{3 x^{\frac{3}{2}}}{8 a^{\frac{3}{2}}}+\frac{5 x \frac{5}{2}}{16 a^{\frac{5}{2}}}+$ $\frac{35 x \frac{7}{2}}{128 a \frac{7}{3}}+\varepsilon_{0} c=\frac{a}{\sqrt{a x-x x}}$, the Quantity propofed.
103. It may not be improper to obferve here, that, when both the Terms of the propofed Quantity are affirmative, and its Exponent alfo affirmative and lefs than Unity, the two firft Terms of the equal Series will be pofitive, and the reft negative and pofitive, alternately; but if only the firf Term of the Binomial be affrriative, all the Terms of the Series, after the firft, will be negative: Moreover, if the Exponent of
the given Quantity be negative, and both the Terms affirmative, the Signs will change alternately'; but if only the firft be affirmative, all the Terms of the equal Series will be poftive.

EXAMPLEX.

104. Let the 2uantity propofed be the Trinomial

$$
\left.x^{3}+2 x^{4}+3 x^{3}\right]^{\frac{1}{3}}
$$

Here, by dividing the reft of the Terms by the firft, Eoc. our given Quantity is reduced to $\left.\bar{x}^{3}\right)^{\frac{1}{3}} \mathrm{x}$ $\overline{1+2 x+3 x^{2}} 7^{\frac{x}{3}}$. Therefore, in this Case $\mathrm{P}=x^{3}, \mathrm{Q}=$ $2 x+3 x^{2}, m=\mathrm{I}$, and $n=3$: Whence (by Subttitu(ion) $\overline{\left.x^{3}+2 x^{4}+3 x^{5}\right)^{\frac{1}{3}}}=x \times 1+\frac{1}{3} \times \overline{2 x+3 x^{2}}+\frac{1}{3} \times$

Which, reduced to fimple Terms, is $=x+\frac{2 \dot{x}^{2}}{3}+$ $\frac{5 x^{3}}{9}-\frac{68 x^{4}}{8 \mathrm{I}}$ \&ic.
105. When the propofed Expreffion confifts of a rational, multiply'd by an irrational, Quantity, the Series anfwering to the irrational one muft be firft found, and afterwards multiply'd by the rational Quantity: But, if two, or more, compound-irrational Quantities are to ba drawn into each other, then take the Series anfwering to each Quantity, feparately, and multiply them togesher; obferving, always, to neglect all fuch Terms whofe Indices would exceed that of the laft, or higheft,

$$
\text { I } 2
$$

Term, which the Series fought is proposed to be continned to.

EXAMPLE XI.

106. Let the Quantity propofed be $\overline{1+x} \times \overline{1-x} \overline{1}^{\frac{1}{10}}$

Firft we have $\left.\overline{1-x}\right|^{\frac{7}{10}}=1-\frac{x}{10}-\frac{9 x^{2}}{10 \times 20}-$ $\frac{9 \times 19 x^{3}}{10 \times 20 \times 30}-\frac{9 \times 10 \times 29 x^{4}}{10 \times 20 \times 30 \times 40}-$ Ec. Which, muttiply'd by $1+x$, produces $\overline{1+x} \times 1-x^{\text {ri }}=\mathbf{1}+$ $\frac{9 x}{10}-\frac{29 x^{2}}{10.20}-\frac{9 \cdot 49 x^{3}}{10 \cdot 20.30}-\frac{9 \cdot 19 \cdot 69 x^{4}}{10 \cdot 20 \cdot 30.40} \delta_{c}=1+$ $\frac{9 x}{10}-\frac{29 x^{2}}{200}-\frac{147 x^{3}}{2000}-\frac{3933 x^{4}}{80000}-\xi^{0} c$.

EX A M P LE XII.

107. Where the Quantity to be exprefed in an Infinite Series is $\frac{\left.\overline{a^{2}-x^{2}}\right)^{\frac{x}{2}}}{\left.c^{2}-x^{2}\right)^{\frac{1}{2}}}$, or $\overline{\left.a^{2}-x^{2}\right)^{\frac{x}{2}} \times \overline{c^{2}-x^{2}}-\frac{1}{2}}$.
Here we have, $\overline{\left.a^{2}-x^{2}\right)^{\frac{1}{2}}}\left(a \times\left.\overline{1-\frac{x x}{a a}}\right|^{\frac{1}{2}}=a \times\right.$

$$
\begin{aligned}
& 1+\frac{1}{2} \times-\frac{x^{2}}{a^{2}}+\frac{1}{2} \times-\frac{1}{4} \times \frac{x^{4}}{a^{4}}+\frac{1}{2} \times-\frac{1}{4} \times-\frac{3}{6} \times-\frac{x^{6}}{a^{6}} \\
& +\xi_{c_{0}}=a-\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}-\frac{x^{6}}{16 a^{5}} \xi_{c_{0}}
\end{aligned}
$$

$$
\text { And } \bar{c}^{2}-\left.x^{2}\right|^{-\frac{1}{2}}\left(=c^{-x} \times 1-\left.\frac{x x}{c c}\right|^{-\frac{1}{2}}=c_{-}^{x} x\right.
$$

$1+-\frac{1}{2} \times-\frac{x^{2}}{c^{2}}+-\frac{1}{2} \times-\frac{3}{4} \times \frac{x^{4}}{c^{4}}+छ_{c}=\frac{1}{c}+$ $\frac{x^{2}}{2 c^{3}}+\frac{3 x^{4}}{8 c^{5}}+\frac{5 x^{6}}{16 c^{7}}$ धc. Whence, multiplying thefe two Values, one by the other, we get
$\frac{a}{c}+\overline{\frac{a}{2 c^{3}}-\frac{1}{2 a c}} \times x^{2}+\overline{\frac{3^{a}}{8 c^{5}}-\frac{1}{4 a c^{3}}-\frac{1}{8 a^{3} c}} \times x^{4}+$
$\frac{5 a}{16 c^{7}}-\frac{3}{16 a c^{5}}-\frac{1}{16 a^{3} c^{3}}-\frac{1}{16 a^{5} c} \times x^{6}+8 c_{0}$ for the four firft Terms of the Series fought.

E X A M PLEXIII.

108. Let the Quantity to be expand:d be the Multinomial; or infinite Series, $x^{p}+a x^{p+n}+b x^{p+2 n}+c x^{p+3 n}+\delta^{\circ} c$. ; whofe Exponent v denotes any Number whatever, whole or broken, pofitive or negative.

Here, dividing by the firft Term, the given Quantity is transformed to $x^{p v} \times 1+a x^{n}+b x^{2 n}+c x^{3^{n}}+d x^{4 n}+\delta_{c}$., which, if $a x^{n}+b x^{2 n}+c x^{3 n}$ छcc. be put $=y$, will become $\left.x^{t v} \times \overline{1+y}\right]^{v}$; which laft Expreffion (by Art.99.) is $=$ $x^{p v} \times 1+v y+\frac{v}{1} \times \frac{v-1}{2} \times y^{2}+\frac{v}{1} \times \frac{v-1}{2} \times \frac{v-2}{3}$
$\overline{x y^{3}+} \delta^{c}$. Whence (for Brevity fake) putting $A=v$, $\mathrm{B}=\frac{v}{1} \times \frac{v-1}{2}, \mathrm{C}=\frac{v}{1} \times \frac{v-1}{2} \times \frac{v-2}{3}, \mathrm{D}=\frac{v}{1} \times$

The Manner of finding Fluents.

$\frac{v-1}{2} \times \frac{v-2}{3} \times \frac{v-3}{4}, \varepsilon^{\circ} c$. and fubftituting for y, there comes out $\left.\bar{x}^{p}+a x^{p+n}+b x^{p+2 n}+c x^{p+3^{n}}+\varepsilon q_{0}\right]^{v}=$ $x^{p v}+\mathrm{A} a x^{p v+n}+\overline{\mathrm{A} b+\mathrm{B} a^{2}} \times x^{p v+2 n}+$
 $x x^{p v+4 n}+\overline{A_{c}+2 \mathrm{~B} a d+2 \mathrm{~B} b c+3 \mathrm{C} a^{2} c+3 \mathrm{C} a b^{2}+4 \mathrm{D} a^{3} b}$ $\overline{+\mathrm{E} a^{5}} \times x^{p \nu+5^{n}}+\varepsilon_{0} c$.

E X A M PLE XIV.

109. To extract the Square Root of $a^{2}-x^{2}$, and from thence to determine the Fluent of $\dot{x} \sqrt{a^{2}-x^{2}}$, in an Infinite Series.

By proceeding as in the foregoing Examples, the Value of $\sqrt{a^{2}-x^{2}}$ in an Infinite Series will be iound to be a $\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}-\frac{x^{6}}{10 a^{5}}-\frac{5 x^{8}}{128 a^{7}}-E c^{\circ}$. Which multiplied by \dot{x} gives $\dot{x} \sqrt{\overline{a^{2}-x^{2}}}=a \dot{x}-\frac{x^{2} \dot{x}}{2 a}-\frac{x^{4} \dot{x}}{8 a^{3}}-$ $\frac{x^{6} \dot{x}}{10 a^{5}}-\frac{5 x^{8} \dot{x}}{12 x a^{7}}$ ©c. Whofe Fluent therefore (by Art. 77.) is $=a x-\frac{x^{3}}{6 a}-\frac{x^{5}}{40 a^{3}}-\frac{x^{3}}{112 a^{5}} \frac{5 x}{1152 u^{2}}-\varepsilon \varepsilon^{\circ} c$: Which was to be determined.

EXAMPLE, XV.

110. Let it be required to approximate the Fluent of

$$
\frac{a^{2}-x^{2} 7^{\frac{1}{2}} \times x^{n} \dot{x}}{\bar{c}^{2}-x^{2} 1^{\frac{1}{2}}} \text { in an Infinite Series. }
$$

It appears, from Example 12, that the Value of $\frac{\frac{a^{2}-x^{2} \|^{\frac{1}{2}}}{\left.c^{2}-x^{2}\right]^{\frac{2}{2}}}}{}$, exprefled in' a Series, is $\frac{a}{c}+\frac{a}{2 c^{3}}-\frac{1}{2 a c}$ $x x^{2}+\frac{3 a}{8 c^{5}}-\frac{1}{4 a c^{3}}-\frac{1}{8 a^{3} 6} \times x^{4}+\frac{5 a}{16 c^{7}}-\frac{3}{16 a c^{5}}-$ $\frac{1}{16 a^{3} c^{3}}-\frac{1}{16 a^{5} c} \times x^{6}+\mho^{3} c$. Which Value being therefore multiplied by $x^{n} \dot{x}$, and the Fluent taken (by the common Method) we get $\frac{a x^{n+1}}{n+1 \times c}+\overline{\frac{a}{2 c^{3}}-\frac{1}{2 a c}}$
$\times \frac{x^{n+3}}{n+3}+\overline{\frac{3 a}{8 c^{5}}-\frac{1}{4 a c^{3}}-\frac{1}{8 a^{3} c}} \times \frac{x^{n+5}}{n+5}+$
$\overline{\frac{5 a}{16 c^{7}}-\frac{3}{16 a c^{5}}-\frac{1}{16 a^{3} c^{3}}-\frac{1}{16 a^{5} c}} \times \frac{x^{n+7}}{n+7}+$ 6$_{6}$.

EX AM P LE XVI.

111. Wherein it is proofed to approximate the Fluent of $x^{p}+a x^{p+n}+b x^{p+2 n}+c x^{p+3^{n}}+\delta_{0} l_{1}^{v} \times x^{m-1} \dot{x}$ in a Series.

Here, if A be put $=v, \mathrm{~B}=v \times \frac{v-1}{2}, \mathrm{C}=v \times \frac{v-1}{2}$
$\times \frac{v-2}{3}, \mathrm{D}=v \times \frac{v-1}{2} \times \frac{v-2}{3} \times \frac{v-3}{4}$, sc. the Quantity $x^{p}+a x^{p+n}+b x^{p+2 n}+c x^{p+3^{n}}$ Etc. $\left.\right|^{v}$ expanded, will $\mathrm{be}=x^{p v}+\mathrm{A} a x^{p u+n}+\overline{\mathrm{A} b+\mathrm{Ba}^{2}}+x^{p u+2 n}+$ $\overline{\mathrm{A} c+2 \mathrm{~B} a b+\mathrm{Ca}^{3}} \times x^{p v+3 n}+\overline{\mathrm{Ad}+2 \mathrm{Bac}+\mathrm{Bb}^{2}+3^{\mathrm{C} a^{2} b}}$ $\overline{+D a^{4}} \times x^{p^{v+4 n}}+\xi^{v} c$, as appears from Art. 108. Therefore this Expreffion being multiplied by $x^{m i-1} \dot{x}$, and the Fluent taken (as ufual) we fall have $\frac{x^{p u+m}}{p v+m}+$
$\frac{\mathrm{A} a x^{p z+m+n}}{p v+m+n}+\frac{\overline{\mathrm{A} b+\mathrm{Ba} a^{2}} \times x^{p v+m+2 n}}{p v+m+2 n}+$
$\overline{\mathrm{Ac}+2 \mathrm{Bab}+\mathrm{Ca}^{3}} \times x^{p v+m+3 n}$

$$
\frac{2 \mathrm{Dab}+\mathrm{Ca} \times x}{p v+m+3^{n}}+
$$

$$
p v+m+4^{n}
$$

$+\xi^{\circ} c$. for
the Quantity proposed to be found.

SECTION VII.

Of the Ufe of Fluxions in finding the Areas of Curves.
C A S E I:

112. E T ARC be a Curve of any Kind whofe Ordinates are perpendicular to an Axis AB.

Imagine a Right-line $b \mathrm{Rg}_{g}$ (perpendicular to AB) to move parallel to itfelf from A towards B; and let the Celerity thereof, or the Fluxion of the Abfciffa $A b$, in any propofed Pofition of that Line, be denoted by $b d$:

Then it will ap-
 pear, from Art. 4. that the Rectangle ($b n$) under $b d$ and the Ordinate $b R$, will exprefs the correfponding Fluxion of the generated Area abR : Which Fluxion, if $\mathrm{A} b=x$, and $b \mathrm{R}=y$, will therefore be $=y \dot{x}$: From whence, by fubftituting for y or \dot{x} (according to the Equation of the Curve) and taking the Fluent, the Area itfelf will become known.
C A S E II.
113. Let ARM be any Curve qubofe Ordinates CR, CR are all referred to a Point or Center.
Conceive a Right-line CRH to revolve ajout the given Center C, and let a Point R move along the
faid Line, fo as to trace out, or defcribe the propofed Curve Line ARM.

Now it is evident, that, if the Point R was to move from any Pofition Q, without changing its Direction and Velocity, it would
 proceed along the Tangent QS (inftead of the Curve) and defrribe Areas QsC, QSC about the Center C , proportional to the Times of their Defeription; becaufe thofe Areas, or Triangles, having the fame Altitude (CP), are as the Bafes Qs and QS, and thefe are as the Times, becaufe the Motion in the Tangent
(upon that Suppofition) would be uniform.
Hence, if RS be taken to denote the Value of (\dot{z}) the Fluxion of the Curve Line AR, the correfpanding Fluxion of the Area ARC, will be truly reprefented by - Art. 2 the, uniformly generated, Triangle QCS *: Which, and 5. putting the Perpendicular (CP) drawn from the Center to the Tangent, $=s$, will therefore be $\left\{=\frac{\mathrm{QS} \times \mathrm{CP}}{2}=\right.$ $\frac{s \dot{z}}{2}$; from whence the Area itfelf may be determined.

But, fince in many Cafes, the Value of \dot{z} cannot be computed (from the Property of the Curve) without fome Trouble, the two following Expreffions, for the Fluxion of the Area, will commonly be found more commodious, viz. $\frac{s y \dot{y}}{2 t}$ and $\frac{y^{2} \dot{x}}{2 a}$; where $t=\mathrm{RP}$ and $x=$ the Árch BN of a Circle, defcribed about the Center C, at
any Diftance a $(\neq \mathrm{CB})$, There Expreffions are derived from that ahove, in the following Manner; viz. $\dot{z}: \dot{y}:: y(\mathrm{CR}): t(\mathrm{RP})^{*}$; therefore $\dot{z}=\frac{y \dot{g}}{t} ;$ and \cdot Art. 350 confequently $\frac{s \dot{z}}{2}=\frac{s \dot{y} \dot{y}}{2 t}$; which is the firft Expreffion.

Again, becaufe the Celerity of R in the Direction of the Tangent is denoted by \dot{z}, that in a Direction perpendicular to CQ (whereby the Point R revolves about the Center C) will therefore be ($=\frac{\mathrm{CP}}{\mathrm{CR}} \times \dot{z}$) ${ }^{*}=$ Art. $35 \cdot$ $\frac{s \dot{z}}{y}$; which being to (\dot{x}) the Celerity of the Point N (about the fame Center) as the Diffance (or Radius) $\mathrm{CR}(y)$ to the Radius CN (a) we fhall, by multiplying Extremes and Means, have $\frac{a s \dot{z}}{y}=y \dot{x}$; and confequently $\frac{s \dot{z}}{2}=\frac{y^{2} \dot{x}}{2 a}$; which is the other Expreffion.

The Method of applying this, together with the preceding Forms, will appear at large from the following Examples: Wherein x, y, z, and u are all along put to denote the Abfiffa, Ordinate, Curve-line, and the Area relpectively, unlers where the contrary is exprefsly fpecified.

> E X A MPLE I.
114. Let it be propofed to determine the Area of a rigbtangled Triangle AHM.

Put the Bafe $\mathrm{AH}=a$, the Perpendicular $\mathrm{HM}=b$; and let $\mathrm{AB}(x)$ be any Portion of the Bafe, confidered as a flowing Quantity, and let $\mathrm{BR}(y)$ be the Ordinate, or Perpendicular, correfponding:

Then,

Then, because of the fimilar Triangles AHM and $A B R$, it will be, $a: b:: x: y=\frac{b x}{a}:$ When $\mathrm{ce} j \dot{x}$

Ar.irz. (the Fluxion of the Area $A B R^{}$) is, in this Cafe, $\overline{=}$ bx ix $\frac{b \times x}{a}$; and consequently the Fluent thereof, or the Area tArt.77. itself $=\frac{b x^{2}}{2 a}+:$ Which therefore, when $x=a$, and $B R$. coincides with $H M$, will become $\frac{a b}{2}=\frac{\mathrm{AH} \times \mathrm{HM}}{2}=$ the Area of the whole Triangle AHM; which we alta know from other Principles.

EXAMPLE IF.

135. Let the Curve ARMH, whole Area you would find, be the common Parabola.
In which Cafe the Relation of $\mathrm{AB}(x)$ and $\mathrm{BR}(y)$ being expreffed by $y^{2}=a x$ (where a is the Parameter) \ddagger Art .132. we thence get $y=a^{\frac{3}{2}} x^{\frac{1}{2}}$; and therefore $\dot{u}(=y \dot{x} \ddagger)$ $=a^{\frac{1}{2}} \dot{x}^{\frac{x}{2}} \dot{x}$: Whence $u=\frac{2}{3} \times a^{\frac{1}{2}} \dot{x}^{\frac{3}{2}}=\frac{2}{3} a^{\frac{1}{2}} x^{\frac{1}{2}} \times x=\frac{2}{3} y \dot{x}$ (because
(becaufe $a^{\frac{1}{2}} x^{\frac{1}{2}}=y$) $=\frac{2}{3} \times \mathrm{AB} \times \mathrm{BR}:$ Hence a Parabola is $\frac{2}{3}$ of a Reftangle of the Jame Bafe and Alitude.

The Area is here found in Terms of x; but it will, many times, be more eafily brought out in Terms of y (without radical Quantities) as in the very Cafe laft propofed: Where x being $=\frac{y^{2}}{a}$, we therefore have $\dot{x}=$ $\frac{2 y \dot{y}}{a}$; and confequently $\dot{u}(y \dot{x})=\frac{2 y^{2} \dot{y}}{a}$: Whence $u=$ $\frac{2 y^{3}}{3^{a}}=\frac{2 y}{3} \times \frac{y^{2}}{a}=\frac{2 y}{3} \times x=\frac{2}{3} \times \mathrm{AB} \times \mathrm{BR}$; the fame as before.

E X A M P L E III.

116. Let ARM (Jee she preceding Figure) be a Parabola of any. Kind; whereof the general Equation is $y^{m+n}=a^{m} x^{n}$.
Therefore, by extracting the Root, or dividing each Exponent by $m+n$, we have $y=a^{\frac{m}{m+n}} \times x^{\frac{\pi}{m+n}}$; whence
$\dot{u}(y \dot{x})=a^{\frac{z x}{m+n}} \times \frac{n}{\frac{n}{m+n}}$; and confequently u (the trus
Fluent, or Area) $=a^{\frac{m}{m+n}} \times \frac{\frac{x^{\frac{n}{m+n}+1}}{\frac{n}{m+n}+1}}{=}$
$\frac{a^{\frac{m}{m+n}} \times x^{\frac{n}{m+n}} \times x \times m+n}{m+2 n}=\frac{m+n}{m+2 n} \times y \times=\frac{m+n}{m+2 n} \times$
$A B \times B R$.
No Notice has been yet taken of any conftant Quantity to be added to, or fubtracted from, the variable One, firft found, in order to render it complete, agreeable to the Obfervation in Art. 78.
But that no fuch Correction is required in any of the preceding Examples, is evident from the Nature of the Figure; becaufe, when x and y are nothing, the Area (u) ought alfo to be nothing, which it actually is according to the Equations above exhibited.
The Fluent found in the fucceeding Example, will, however, ftand in need of a Correction.

EXAMPLEIV.

117. Where it is propofed to find the Ared of the Curve ARH , whofe Equation is $x^{4}-a^{2} x^{2}+a^{2} y^{2}=0$.
Here, the given Equation is reduced to $y=$ $\frac{x \times \overline{\left.a^{2}-x^{2}\right)^{\frac{1}{2}}}}{a}$; whence $\dot{u}(=y \dot{x})=\frac{\overline{\left.a^{2}-x^{2}\right)^{\frac{1}{2}}} \times x \dot{x}}{a}$:
-Art.77. Whereof the Fluent (by the common Rule *) is -

$\frac{\left.a^{2}-x^{2}\right)^{\frac{3}{4}}}{3^{a}}$: Which, when $x=0$ and $u=0$, becomes -
$\frac{a^{2}}{3}$; this therefore fubtracted from $-\frac{\left.\bar{a}^{2}-x^{2}\right)^{\frac{3}{2}}}{3^{a}}$, leaves $\frac{a^{2}}{3}-\frac{a^{2}-x^{2}}{3 a}$ for the Fluent corrected, or the true Value of the Area ABR *.

When the Ordinate BR $\left(\frac{x \sqrt{a^{2}-x^{2}}}{a}\right)$ becomes equal to Nothing, and B coincides with H, then x will become $=a=\mathrm{AH}$; and therefore the Area of the whole Curve ARH will be barely $=\frac{a^{2}}{3}=\frac{1}{3} \mathrm{AH}^{2}$

$$
E X A M P L E V
$$

118. Let it be required to determine the Area: of the hyperbolical Curve whole Equation is $x^{m} y^{n}=$ $a^{n \dagger n}$.
In this Cafe we have $y=\frac{\frac{a^{n}}{n}}{\frac{m}{n}}=\frac{m+n}{a^{n}} \times x^{\frac{-m}{n}} ;$
and therefore $\dot{u}(=y \dot{x})=a^{\frac{m+n}{n}} \times x^{\frac{-m}{n}} \dot{x}$: Whofe Fluent is $\frac{a^{\frac{m+n}{n}} \times x^{1-\frac{m}{n}}}{1-\frac{m}{n}}=\frac{\frac{m+n}{n} \times x^{\frac{n-m}{n}}}{n-m}$; which, when x is

$=0$, will alfo be $=0$, if n be greater than m : Therefore, the Fluent requires no Correction in this Cafe; the Area AMRB, included between the Afymptote AM and the Ordinate BR, being truly defined by $\left(\frac{\frac{m \dagger n}{n} \times x^{n-m}}{n-m}\right)$
the Quantity above determined.
But, if n be lefs than, m, then the Fluent, when $x=0$, will be infinite (becaufe the Index $\frac{n-\bar{m}}{n}$, being negative, o becomes a Divifor to $n a^{m+n}$:) Whence the Area AMRB will alfo be infinite.

But, here, the Area BRH comprehended between the Ordinate, the Curve, and the Part BH of the other Afymptote, is finite, and will be traly expounded by $\frac{n a^{n} \times x^{n}}{m-n}$ the fame Quantity with its Signs changed. For the Fluxion

Fluxion of the Part AMRB being $a \times x^{n} \quad x_{3}$ that of its Supplement BRH muft confequently he $a^{\frac{m+n}{n}} \times x^{\frac{-i m}{n}} \dot{x}:$ Whereof the Fluent is $\frac{a^{\frac{m+n}{n}} \times x^{\frac{1-m}{n}}}{I-\frac{m}{n}}$
$\frac{=a^{\frac{m+n}{n}} \times x^{\frac{n-m}{n}}}{m-n}=$ the Area BRH: Which wants no
Correction; becaufe, when x is infinite, and the Area $\mathrm{BRH}=\mathrm{o}$, the faid Fluent will alfo intirely vanih,
reeing the Value of $x^{\frac{m-n}{n}}$ (which is a Divifor to $a^{\frac{m+n}{n}}$) is then infinite.

> E X A M P L E VI.
119. Where let it be required to determine the Area of the circular Sector AOR.

Then, putting the Radius $A O$ (or $O R$) $=a$, the

Arch AR (confidered as variable by the Motion of R) $=z$, and $\operatorname{Rr}=\dot{z}$, the Fluxion of the Area will here K
:Arti, 13 . be expreffed by $\frac{a \dot{z}}{2}$ (= the Triangle ORr *:) Whence the Area itfelf is $=\frac{a z}{2}=A O \times \frac{1}{2} A R:$ From which it appears that the Area of any Circle is exprefled by a Recaangle under half the Circumference and half the Diameter.

EXAMPLE VII.

320. Wherein it is propofed to determine the Area CBAC of the logarithimic Spiral.

Let the Right-line AT touch the Curve at A ; upon which, from the Center C, let fall the Perpendiculat CT: Then, fince by the Nature of the Curve the

Angle TAC is every where the fame, the Ratio of AT (t) to CT (s) will here be conftant: And therefore the *Art.113. Fluent of $\frac{s}{t} \times \frac{y \dot{y}}{2} *=\frac{s}{t} \times \frac{y^{2}}{4}=$ the Area which was to be found.

E X.

EXAMPLE VIII.

121. Let the Curve ARM be the Involute of a given Circle AOQ.
In which Cafe the inteercepted Paft of the Tangent $R P(t)$ being every where equal to the Radius CO (a)

of the generating Circle, we therefore have $\mathrm{CP}(\mathrm{s})=$ $\left.\sqrt{\mathrm{CR}^{2}-\mathrm{RH}^{2}}\right)=\sqrt{y^{2}-a^{2}}$: Whence $i\left(=\frac{1 y}{2 t} *\right)$ Arti113.
$=\frac{\sqrt{y^{2}-a^{2}} \times y \dot{y}}{2 a}$; and confequently $u=\frac{\left.y^{2}-a^{2}\right)^{\frac{3}{2}}}{6 a}=$
CP^{3}
$\frac{\mathrm{CP}}{6 \mathrm{CA}}=$ the required Area $A C R$:
Which will alfo exprefs the Area ARO generated by the Radius of Evolution RO; becaufe, RO being $=$ K 2

132

The Ufo of Fluxions
Artorig the Arch AO, the Sector ACO ($\frac{1}{2} \mathrm{AO} \times \mathrm{OC}{ }^{}$) is $^{\text {s }}$ equal to the Triangle CRO ($\frac{1}{2} \mathrm{RO} \times \mathrm{OC}$) which equal Quantities being fucceffively fubtracted from CARO, there remains $A O R=A C R$.

EX A MP LE IX.

122. Let the Curve CRR, whose Area CRgC you would find, be the Spiral of Archimedes.

Let AC be a Tangent to the Curve at the Center

C, about which Center, with any Radius $\mathrm{AC}(=a)$ fuppofe a Circle-Agg to be defcribed; then the Arch (or Ablciffa) Ag correfponding to any proofed Ordinate CR, being to that Ordinate in a given, or conPlant, Ratio (fuppofe as m to n) we have $x(\mathrm{Ag})=$ -Art, $\mathrm{I}_{3} \cdot \frac{m y}{n}$; therefore $\dot{u}=\frac{y^{2} \dot{x}^{*}}{2 a}=\frac{m y^{2} \dot{y}}{2 a n}$, and confequently u $=\frac{m y^{3}}{6 a m}=$ the Area CRRgC.

E X A MP LE X.

123. Let the Equation of the Spiral CRR (fee the laft Figure) be $x=b y+c y^{2}+d y^{3}+e y^{4}+f y^{5}+$ E' $^{\circ}$.
Then, \dot{x} being $=b \dot{y}+2 c y \dot{y}+3 d y^{2} \dot{y}+4 e y^{3} \dot{y}+\xi^{c} c$. we thall have $u\left(=\frac{y^{2} \dot{x}}{2 a}\right)=\frac{b y^{2} \dot{y}}{2 a}+\frac{2 c y^{3} \dot{y}}{2 a}+\frac{3 d y^{4} \dot{y}}{2 a}$ $+\frac{4 c y^{5} y}{2 a}+\xi^{\circ} c$ and therefore $u=\frac{b y^{3}}{6 a}+\frac{2 c y^{4}}{8 a}+$ $\frac{3 d y^{5}}{10 a}+\frac{4 e y^{6}}{12 a} . \mho_{c}$. $=$ the true Value of the Area in this Cafe.

E X A M PLE XI.

124. Let it be propoped to find the Area of a Semicircle AREH.

Here, putting the Diameter $\mathrm{AH}=a, \mathrm{AB}=x$; and $\mathrm{BR} \equiv y \mathrm{E}^{\circ}$. (as ufual) we have $y^{2}\left(\mathrm{BR}^{2}\right)=a x-x x_{1}$

$(\mathrm{AB} \times \mathrm{BH})$, and confequently $\dot{u}(y \dot{x})=\dot{x} \sqrt{a x-x \dot{x}}=$ $a^{\frac{1}{4}} \frac{x}{2} \dot{x} \times 1-\left.\frac{x}{a}\right|^{\frac{1}{2}}:$ Which Expreffion not being of the Kind defcribed in Art. 83 and 85 . that admit of Fluents in K_{3} finite

The UJe of Fiuxions

finite Terms, let it therefore be refolved into an In--Art, go finite Series * and you will have $\dot{u}=a^{\frac{1}{2}} x^{\frac{1}{2}} \dot{x} \times$
$\quad 1-\frac{x}{2 a}-\frac{x^{2}}{8 a^{2}}-\frac{x^{3}}{16 a^{3}}-\frac{5 x^{4}}{128 a^{4}} \xi_{6}=a^{\frac{1}{4}} \times x^{\frac{1}{2}} \dot{x}-$ $\frac{x^{\frac{3}{2} \cdot x^{3}}-\frac{x^{\frac{3}{2}}-x}{8 a}+\frac{x^{\frac{7}{2}} \dot{x}}{16 a^{3}}}{8 a^{2}}$ E. From whence, the Fluent of,
every Trm being taken, according to the common
Method, there will come out $u=a^{-\frac{3}{2}} \times \frac{2 x^{2}}{3}=\frac{x^{\frac{3}{2}}}{5 a}$
 ABR . Now, when, $x=\frac{1}{2} a$, the Ordinate BR will coincide with the Radius OE; in which Cafe the Area becomes $=\frac{1}{2} a \sqrt{\frac{1}{2} a a} \times \frac{2}{3}-\frac{1}{10}-\frac{1}{1 \sqrt{3}}-\frac{1}{516}$ —

$0,0017-0,0004{ }^{\circ} c .=0,1964 a^{2} ;$ which, multiply'd by 2 , gives $0,3928 a^{2}$ for the Area of the Semi-circle AEH , nearly.

As the foregoing Series, in finding the Area of the whole Quadrant AOE, converges but flowly, a confiderable Number of Terms ought therefore to be taken to have the Conclufion but tolerably exact, the five firft. Terms above collected being fufficient to bring out-no more than three Places of Figures, that can be depended on. For which Reafon it may be of Ufe to confider, whether, by computing the Area of-fome particular Portion (ABR) of the faid Quadrant, that of the whole may not be deduced; where \dot{x} being finall in
comparifon of a, the Series may have fuch a Rate of Convergency, that a fraller Number of Terms will be fufficient ${ }^{*}$.

```
*Art.g2.
```

Now, in order to this, it is well known that, if the Arch AR be taken $=\frac{1}{5} \mathrm{AE}$ (or 30 Degrees) the Sine BR will be $=\frac{1}{2} \mathrm{AO}$; and confequently $\mathrm{AB}(x)=\mathrm{AO}$ $-\mathrm{OB}=\mathrm{AO}-\sqrt{\mathrm{OR}^{2}-\mathrm{BR}^{2}}$; which, if the Radius AO be expounded by Unity, (to facilitate the Operation) will be $=0,1339746$ very nearly: This therefore, with the Value of a, being fubfituted in the forementioned
Scries, $\sqrt{a x^{3}} \times \frac{2}{3}-\frac{x}{5 a}-\frac{x^{2}}{28 a^{2}}-$ Ec. we have
$\overline{0,0693505} \times \overline{0,6666666-0,0133975-0,0001603 \text { - }}$
$\overline{0,0000042}-\xi_{c_{1}}=0,0693505 \times 0,6531046=$ $0,0452931=$ the Area ABR: Which added to the Area OBR ($=$ OB: $\times \frac{1}{2} \mathrm{BR}=\sqrt{\frac{3}{4}} \times \frac{1}{4}=0,2165063$) gives: 0,2617994 , for the Area of the Sector AOR; the treble whereof, or 0,7853982 (becaufe $\mathrm{AR}={ }_{5} \mathrm{AE}$) will therefore be the Content of the whole Quadrant AOE: Which Number, found by taking four Terms of the Series only, is true to the laft Decimal Place.
This Conelufion may be otherwife brought out, by finding a Series for the other Part of the Area, included between the Radius OE and the Ordinate BR ; wherein the Co-fine OB (inftead of the verfed Sine AB) will be the converging (or variable) Quantity.

For, putting $O B=x$, and $O R(O A)=b$, we
bave $y\left(B R=\sqrt{O R^{2}-O B^{2}}=\frac{1}{\left.b^{2}-x^{2}\right)^{\frac{1}{2}}} ;\right.$ an ${ }^{d}$ confequently ($y \dot{x}$) the Fluxiort of the Area OBRE* $=$ *Artiz12.
$\dot{x} \times \overline{\left.b^{2}-x^{2}\right)^{\frac{1}{2}}}=b \dot{x}-\frac{x^{2} \dot{x}}{2 b}-\frac{x^{4} \dot{x}}{8 b^{3}}-\frac{x^{6} \dot{x}}{16 b^{5}}-\frac{5 x^{8} \dot{x}}{128 b^{7}}-$ $\frac{7 x^{70} x}{256 b^{9}}$ छo. Whence the Area itfelf is $=b x-\frac{x^{3}}{6 b}-$ $\frac{x^{5}}{40 b^{3}}-\frac{x^{7}}{112 b^{5}}-\frac{5 x^{9}}{1152 b^{7}}-\frac{7 x^{13}}{2816 b^{9}} \delta_{c}$

K 4
Now,

Now, if $x(O B)$ be affumed $=\frac{1}{2} \cdot A O$ (fo that the Arch ER may be $=\frac{1}{3} \mathrm{AE}$) and the V glue of $b(\mathrm{AO})$ be expounded by Unity, we hall have

$$
\begin{aligned}
& x^{3}\left(=x \times x^{2}=, 5 \times \frac{1}{4}=\frac{5}{4}\right)=, 125 \\
& x^{5}\left(=x^{3} \times x^{2}=\frac{125}{4}\right)=, 03125 \\
& x^{7}\left(=x^{5} \times x^{2}=\frac{03125}{4}\right)=, 0078125 \\
& x^{9}\left(=x^{7} \times x^{2}=\frac{x^{7}}{4}\right)=, 0019531+ \\
& x^{11}\left(=x^{9} \times x^{2}=\frac{x^{9}}{4}\right)=, 0004883
\end{aligned}
$$

Which Values of the Powers of x being respectively diyided by $6,40,112,1152,2816, \xi^{\circ} \mathrm{c}$. there will result $0,5000000-0,0208333-0,0007812-0,0000698$ $-0,0000085-0,0000012-0,0000002 \mathrm{Ev}^{\circ}$. $=$ 0,4783057 , for the Area OBRE in the forementioned Circumftance, when $\mathrm{OB}=\frac{1}{2} \mathrm{OA}:$. From which, deducting the Triangle OBR $\left(=\sqrt{\frac{3}{4}} \times \frac{1}{4}=0,2165063\right)$ the Remainder, 2617994 will confequently be the Area of the Sector EOR ; the treble whereof (because ER, is, here; $=\frac{1}{3} \mathrm{AE}$) will give the Area of the whole Quadrant; 0,7853982 ; as before.

EX A MPLEXII.

125. Let the Curve, whole Area you would find, be the CijJoid of Diocles; whereof the Equation is $y^{2}=\frac{x^{3}}{a-x}$.
-Art.1129. Here we have $\dot{u}(\gamma \dot{x} *)=\frac{x^{\frac{3}{2}} \dot{x}}{\sqrt{a-x}}=\frac{x^{\frac{3}{2}} \dot{x}}{a^{\frac{1}{2}} \times 1-\frac{x}{a}}$
$=\frac{x^{\frac{3}{2}} x^{\frac{1}{2}}}{a^{\frac{1}{2}}} \times 1-\left.\frac{x}{a}\right|^{-\frac{1}{2}}:$ Which being none of the Kind
that admit of Fluents in finite Terms*, let it therefore *Art. 8_{30} be refolved inco an Infinite Series, and you will have $\dot{u}={ }^{\text {and }} 85$.
$\frac{\frac{x^{\frac{3}{2}} \dot{x}}{\frac{1}{2}} \times 1+\frac{x}{2 a}+\frac{3 x^{2}}{8 a^{2}}+\frac{5 x^{3}}{16 a^{3}}+\frac{35 x^{4}}{128 a^{4}}+\sigma_{c}}{\frac{a^{2}}{\frac{5}{2}}}=\frac{1}{a^{\frac{5}{2}}} \times$
$x^{\frac{3}{2} \dot{x}}+\frac{x^{\frac{5}{2}} \dot{x}}{2 a}+\frac{3 x^{2} \dot{x}}{8 a^{2}}+\frac{5 x^{2} \dot{x}}{16 a^{3}}+$ gro. Whence u the 2.
Area itfelf) will come out $=\frac{1}{a^{\frac{1}{2}}} \times \frac{2 x^{2}}{5}+\frac{x^{2}}{7^{a}}+$
$\overline{\frac{x^{\frac{2}{2}}}{12 a^{2}}+\frac{5 x^{\frac{x}{2}}}{88 a^{3}}+\delta_{c}}=x^{2} \sqrt{\frac{x}{a} \times \frac{2}{5}+\frac{x}{7 a}+\frac{x^{2}}{12 a^{2}}+}$
$\overline{\frac{5 x^{3}}{88 a^{3}}+8 c}$

E X A MPLEXH.

126: Let the propofed Curve CSDR be of fuch a Nature, that (Juppofing AB Unity) the Sum of the Areas CSTBC and CDGBC anfwering to any two propofed Abraifas AT and AG, fhall be equal to the Area CRNBC whofe correfponding Abcifla AN dräun into AB is equal to, $\mathrm{AT} \times \mathrm{AG}$, the Product of the Meafures of the two former Abfilfas.

Firft, in order to determine the Equation of the Curve, (which mult be known before the Area can be found) let the Ordinates GD and NR move parallel to themfelves towards HF ; and, then, having put $\mathrm{GD}=y$,
$\mathrm{NR}=z_{2}$

The UJe of Fluxions

$\mathrm{NR}=z, \mathrm{AT}=a, \mathrm{AG}=s$, and $\mathrm{AN}=u$, the Fluxion of the Area CDGB will be reprefented by $y \dot{s}$, and that

*Art. 112. of the Area CRNB by zil *: Which two Expreffions muft, by the Nature, of tha Problem, be equal to each other; becaufe the latter Area CRNB exceeds the former CDGB by the Area CSTB, which is here confidered as a conftant Quantity; and it is evident that two Expreffions, that differ only by a conftant Quantity, muft always have equal Fluxions.
Since, therefore ys is $=z u$, and $/ u=a s$, by Hypothefis, it follows that $\dot{u}=a s_{2}$ and that the firft Equation (by fubflituting for \dot{u}) will become $y=a z j_{2}$ or $y=a z$, or laftly $y s=$ zas, that is, $G D \times A G=N R \times A N:$ Therefore $G D: N R:: A N: A G$; whence it appears that every Ordinate of the Curve is reciprocally as its correfponding Abciffia.
Now, to find the Area of the Curve fo determined, put $\mathrm{BC}=b$, and $\mathrm{BG}=x$: Then, fince $\mathrm{AG}(\mathrm{I}+x)$ $: A B^{\prime}(1):: B C(b): G D(y)$ we have $y=\frac{b}{1+x}$, and confequently $\dot{u}(=y \dot{x})=\frac{b \dot{x}}{1+x}=b \times \overline{\dot{x}-x \dot{x}+x^{2} \dot{x}-}$ $\overline{x^{3} \bar{x}+x^{4} \dot{x}}-$ Er $_{\text {. Whence, }}$ BGDC, the Area it-
felf will be $=6 \times x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}$ Esc. Which was to be found.

It may here be obferved that the Areas of the Spaces, above mentioned, are analogous to, and have the very fame Properties as Logarithms; and that thofe Spaces, or Logarithms, may be of different Forms or Values, according as you take the Value of the firft Ordinate BC, which may be affumed at Pleafure: Thus, if $B C$ be taken $=\mathrm{AB}=$ Unity, the Curve will become an equilateral Hyperbola whofe Center is A (becaufe then AG $x-\mathrm{GD}=\mathrm{AB}$) and in that Cafe they are called hyperbolical Logarithms: But, if $B C$ be taken $=0,43429+48$ (fo that the Logarithm, or the Area of the Space CDGB, anfwering to the Abfciffa AG, when expreffed by the Number 10, may be expounded by Unity, or: AB^{2}) we fhall then have the common, or Brigean Form of Logarithms.

From thefe Logarithms (given by the Tables) the Bufinefs of finding Fluents, is in many Cafes, very much facilitated: For, if the Fluxion given appears to agtee with the Fluxion of, any known Logarithmic Exprefion, its Fluent may, it is evident, be had by the Tables, ready calculated, without the Trouble of an Infinite Series.

But, now to know what Kinds of Fluents are explicable by Means of Logarithms, it will be neceffary to obferve that, the Fluxion of any' hyperbolic Logarithm is always expreffed by the Fluxion of the correfponding Number divided by that Number: This appears from above, where ($y \dot{x}$) the Eluxion of the Area (or Logaithm) $B G D C$, when $B C=A B=i$, is truly reprefented by $\frac{\dot{x}}{1+x}$; where $1+x(=\mathrm{AG})$ may ftand for any Number whatever; and \dot{x} for its Fluxion.

Hence

Hence the Fluent of $\frac{\dot{x}}{\sqrt{x^{2} \pm a^{2}}}$ will be expreffed by the hyperbolical Logarithm of $x+\sqrt{x^{2} \pm a^{2}}$: For the Fluxion of, $\left(x+\sqrt{x^{2} \pm a^{2}}\right)$ the Number itfelf, being \dot{x} $+\frac{x \dot{x}}{\sqrt{x^{2} \pm a^{2}}}=\frac{\dot{x} \sqrt{x^{2}+a^{2}}+x \dot{x}}{\sqrt{x^{2} \pm a^{2}}}=\frac{\dot{x}}{\sqrt{x^{2} \pm a^{2}}}$ $x \sqrt{x^{2} \pm a^{2}+x}$, this laft Quantity, divided by that Number, gives $\frac{\dot{x}}{\sqrt{x^{2} \pm a^{2}}}$, the very Fluxion firft propofed.
It alio appears that the Fluent of $\frac{\dot{x}}{\sqrt{2 u x+x^{2}}}$ will be truly expounced by the hyperbolical Logarithm of $a+$ $x+\sqrt{2 a x+x^{2}}$: Becaufe the Fluxion of the Number $\left(a+x+\sqrt{2 a x+x^{2}}\right)$ is here $=\ddot{x}+\frac{a \dot{x}+x \dot{x}}{\sqrt{2 a x+x x}}=$ $\frac{\dot{x}}{\sqrt{2 a x+x i x}} \times \overline{\sqrt{2 a x+x x}+a+x} ;$ which divided by that Number produces $\frac{\dot{x}}{\sqrt{2 a x+x x}}$.

Likewife the Fluent of $\frac{2 a \dot{x}}{a^{2}-x^{2}}$ will be reprefented by the hyperbolical Logarithm of $\frac{a+x}{a-x}$: Beeaufe, the Fluxion of $\frac{a+x}{a-x}$, being $\frac{\dot{x} \times \overline{a-x}+\dot{x} \times \overline{a+x}}{a-\left.x\right|^{2}}=\frac{2 a \dot{x}}{\overline{a-\left.x\right|^{2}}}$, if the fame be therefore divided by $\frac{a+x}{a-x}$, we fhall have $\frac{2 a \dot{x}}{\left.\overline{a-x}\right|^{2}} \times \frac{a-x}{a+x}=\frac{2 a \dot{x}}{a-x} \times \overline{a+x}=\frac{2 a \dot{x}}{a^{2}-x^{2}}$.

Laftly, the Fluent of $\frac{2 a \dot{x}}{x \sqrt{a^{2} \pm x^{2}}}$ will be denoted by the hyperbolical Logarithm of $\frac{a-\sqrt{a^{2} \pm x^{2}}}{a+\sqrt{a^{2} \pm x^{2}}}$; for here the Fluxion of the Number is $\frac{\mp x \dot{x}}{\sqrt{a^{2}+x^{2}}} \times$

$\sqrt{{\sqrt{a^{2} \pm x^{2}}}^{a+\sqrt{a^{2} \pm x^{2}}}}$; which divided by
$\frac{a-\sqrt{a^{2} \pm x^{2}}}{a+\sqrt{a^{2} \pm x^{2}}}$ gives $\frac{\mp 2 a x \dot{x}}{\sqrt{a^{2} \pm x^{2}} \times \overline{a+\sqrt{a^{2} \pm x^{2}}}}{ }^{2} \times$
$\frac{a+\sqrt{a^{2} \pm x^{2}}}{a-\sqrt{a^{2} \pm x^{2}}}=\frac{ \pm 2 a x \dot{x}}{\sqrt{a^{2} \pm x^{2}} \times \overline{a+\sqrt{a^{2} \pm x^{2}} \times a-\sqrt{a^{2} \pm x^{2}}}}$
$=\frac{\mp 2 a x \dot{x}}{\sqrt{a^{2} \pm x^{2}} \times \mp x^{2}}=\frac{2 a \dot{x}}{x \sqrt{a^{2} \pm x^{2}}}$, the Fluxion pro-
poled.
There four are the principal Forms of Fluxions; whore Fluent may be found from a Table of Logarithms of the hyperbolic Kind: Which Table, upon Occafion, may be eafily fupply'd by a Table of the common Form: For, fince the hyperbolical Logarithm of any Number is to the common Logarithm of the fame Number, in the content Ratio of Unity to 0,43429448 (as appears from above) it follows that if any common Logarithm be, either, divided by 0,43429448 , or muttiply'd by its Reciprocal 2,30258509, you will thence obtain the hyperbolical Logarithm corresponding.

The Ufe of Fluxions

E X A MPLE XIV:

127. Lit it be required to determine the Area of the Curve; whofe Equation is $a^{2} y-x^{2} y-a^{3}=0$.
-Art, 112. In which Cale y being $=\frac{a^{3}}{a^{2}-x^{2}}$, we have $\dot{u}(=y \dot{x})$.

$$
=\frac{a^{3} \dot{x}}{a^{2}-x^{2}}=a \bar{x}+\frac{x^{2} \dot{x}}{a}+\frac{x^{4} \dot{x}}{a^{3}}+\frac{x^{6} \dot{x}}{a^{5}}+\frac{x^{8} \dot{\dot{x}}}{a^{7}}+\varepsilon^{\circ} c_{0}
$$

Whence $u=a x+\frac{x^{3}}{3 a}+\frac{x^{5}}{5 a^{3}}+\frac{x x^{7}}{7 a^{5}}+\frac{x^{9}}{9 a^{7}}+छ_{6}$.
$=$ the Area fought.
But the fame Area (or Fluent) may be found without an Infinite Series, by Means of a Table of Logarithms, 'agreeable to the Obfervations in the laft Article: For, fince it there appears that the Fluent of $\frac{2 a \dot{x}}{a^{2}-x^{2}}$ is truly expreffed by the hyperbolic Logarithm of $\frac{a+x}{a-x}$, it follows that that of $\frac{a^{3} \dot{x}}{a^{2}-x^{2}}\left(=\frac{2 a \dot{x}}{a^{2}-x^{2}} x_{\frac{1}{2}} a^{2}\right)$ will be expreffed by the fame Logarithm multiply'd by $\frac{x}{2} a^{2}$. Thus, for Example fake, let a $(=A C)$ be
taken $=10$, and $x(=A B)=5$; then will $\frac{a+x}{a-x}=3$; whofe Logarithm taken from the common Tables is 0,4771213 ; which maltiplyd by the Moduris 2,30258509 (fee the laft Article) gives $1 ; 00861228$ for the hyperbolical Logarithm of $\frac{a+x}{a-x}$; and this again multiply'd by 50 ($\frac{1}{2^{2}}$) produces. $54,9306 \times 14$ for the true Value of the Area ABRC, in the aforefaid Circumfance, when $A C=10$, and $A B=5$.
EXAMPLEXV.
128. Where the propofed Curve is that whofe Equation is

$$
a^{2} y^{2}+x^{2} y^{2}=a^{4} .
$$

Heere, by reducing the given Equation, we get $y=$
$\frac{a^{2}}{\sqrt{a^{2}+x^{2}}}$: Therefore $y \dot{x}=\frac{a^{2} \dot{x}}{\sqrt{a^{2}+x^{2}}}=$..
Whence, the Fluent of $\frac{\dot{x}}{\sqrt{a^{2}+x^{2}}}$ being $=$ hyperb.

Log. of $x+\sqrt{a^{2}+x^{2}}$ (by Art. 126. that of $\frac{a^{2} \dot{x}}{\sqrt{a^{2}+x^{2}}}$ will confequently be $=$ the fame Logarithim multiply'd by a^{2}.

But to find whether the Fluent thus determined does not need a Correction \ddagger, let x be taken $=0$; then the \ddagger Ar, $\%_{0}$

Fluent

Fluent will become $=$ hyp. Lng. $a: \times a^{2}:$ Which, therefore, muift be fubtracted, to have the trus Value of the *Ar.-78. Area ACRB *; and then there refults $a^{2} \times$ hyp. Log. $x+\sqrt{a^{2}+x^{2}}-a^{2} \times$ hyp. Log. $a=a^{2} \times$ hyp. Log. $\frac{x+\sqrt{a^{2}+x^{2}}}{a}=u$

E X A M P L E XVI.

129. Let it be propofed to find the Area of the Hyperbola ABD, and alfo the Area of the hyperbolical Sector CAD; fuppofing C to be the Center, and A the prin2. cipal Vertex of the Curve.

Here, putting the Semi-tranfverfe Axis $\mathrm{CA}=a$, the Semi-conjugate $=c$, and $\mathrm{CB}=x$; we have, by the

Property of the Curve, $y(=B D)=\frac{c}{a} \sqrt{x x-a a}$; and therefore $\dot{u}=y \dot{x}=\frac{c \dot{x}}{a} \sqrt{x^{2}-a^{2}}=$ the Fluxion \ddagger Art.212. of the Area ABD \ddagger

But to find the Fluxion of the Sector CAD, it is to be obferved, that as the faid Sector is $=$ CBD -$\mathrm{ABD}=\frac{x}{2}-u$, its Fluxion will therefore be $=$
$\frac{\dot{x} \dot{y}}{2}+\frac{\dot{y} \dot{x}}{2}-\dot{u}=\frac{x \dot{y}}{2}-\frac{y \dot{x}}{2}($ becaufe $\dot{u}=y \dot{x} *)$ which, *Art. 112 . by fubftituting for y and j, their Equals $\frac{c}{a} \sqrt{x^{2}-a^{i}}$. and $\frac{c x \dot{x}}{a \sqrt{x^{2}-a^{2}}}$, is at length reduced to $\frac{a c}{2} \times$ $\frac{\dot{x}}{\sqrt{\dot{x}^{2}-a^{2}}}$: Whereof the Fluent (by Art. 126.) is $\frac{a c}{2}$ \times hyp. Log. $x+\sqrt{x^{2}-a^{2}}$; which corrected (by making $x=a$) will become $\frac{a \varepsilon}{2} \times$ hyp. Log. $x+$ $\sqrt{x^{2}-a^{2}}-\frac{a c}{2} \times$ hyp. Log: $a=\frac{a c}{2} \times$ hyp. Log. $\frac{x+\sqrt{x^{2}-a^{2}}}{a}=$ the Sector ADC : Which, fubtracted from $\frac{c x \sqrt{x^{2}-a^{2}}}{2 a}\left(=\frac{B C \times B D}{2}=\right.$ the Triangle $A B D$) leaves $\frac{c x \sqrt{x^{2}-a^{2}}}{2 a}-\frac{a c}{2} \times$ hyp. Log. $\frac{x+\sqrt{x^{2}-a^{2}}}{a}$ for the required Area of the Hyperbola ABD.

EXAMPLE XVII.

130. Let the Curve proposed be the Ellipfis AEB .

Then, putting the tranfiverfe $A x i s A B=a$, and thee Conjugate $(2 \mathrm{CE})=\epsilon$; we fill, by the Property of the Curve, have $y(D R)=\frac{c}{a} \sqrt{a x-x x}$, and therefore $\dot{u}(y \dot{x})=\frac{c}{a} \times \dot{x} \sqrt{a x-\dot{x} x}=$ the Fluxion of the Area ARD.

$$
\text { L } \quad \text { But }
$$

But $\dot{x} \sqrt{a x-x x}$ is known to exprefs the Fluxion of the correfponding Segment $A D_{n}$ of the circumfribing

Semi-circle; whofe Fluent is, therefore, given, by Art. 124 ; which being denoted by A, that of $\frac{c}{a} \times \dot{x} \sqrt{a x-x^{2}}$ will, confequently, be $=\frac{c}{a} \times$ A. Hence, the Area of the Segment of an Ellipfis, is to the Area of the correfponding Segment of its circumfcribing Circle, as the leffer Axis of the Ellipfis is to the greater; whence, it follows that the whole Ellipfis mult be to the whole Circle in the fame Ratio.

EXAMPLEXVIII.

131. Let the Curve AR \&c. whofe Area CARS you would find, be the Conchoid of Nicomedes.

Whereof the Equation (putting $\mathrm{BC}=a$, and RV $(=\mathrm{AC})=b$) is $x^{2} y^{2}=\overline{a+y}{ }^{2} \times \overline{b^{2}-y^{2}}$ (Vid. Art.57.) Which, by Reduction, becomes $x=\frac{a \sqrt{b^{2}-y^{2}}}{y}+$

$\sqrt{b^{2}-y^{2}}$: But, to bring it down to a, fill, more fimple Form, make $\sqrt{b^{2}-y^{2}}(=S V)=z$; then $y=$ $\sqrt{b^{2}-z^{2}}$; whence, by Subfitution, $x=\frac{a z}{\sqrt{b^{2}-z^{2}}}$ $+z$; and confequently $\dot{x}=$
$a \dot{x} \sqrt{b^{2}-z^{2}}+\frac{z \dot{z}}{\sqrt{b^{2}-z^{2}}} \times a z$
$\frac{b^{2}-z^{2}}{}+\dot{z}=$
$\frac{a \dot{z} \times \overline{b^{2}-z^{2}}+a z^{2} \dot{z}}{\overline{b^{2}-z^{2}} \times \sqrt{\overline{b^{2}-z^{2}}}}+\dot{z}=\frac{a b^{2} \dot{z}}{\overline{b^{2}-z^{2}} \times \sqrt{b^{2}-z^{2}}}+\dot{z} ;$
and therefore $\dot{u}(y \dot{x})=\sqrt{b^{2}-x^{2}} \times \frac{a b^{2} \dot{z}}{\overline{b^{2}-z^{2}} \times \sqrt{b^{2}-z^{2}}}$
$\overline{+\dot{z}}=\frac{a b^{2} \dot{z}}{b^{2}-z^{2}}+\dot{z} \sqrt{b^{2}-z^{2}}$.
But now, to exhibit the Fluent hereof; upon C , as a Center, with the Radius AC (b) let a Quadrant of a Circle AED be defcribed, and let RH, produced, meet the Periphery thereof in E, alfo let EF be parallel to AC , and let CE be drawn : It is evident (becaufe CE $(C A)=V R$ and $E F=R S$) that $C F$ is alfo $=V S$ $=z$; and therefore, EF being $\left(=\sqrt{\left.\mathrm{CE}^{2}-\mathrm{CF}^{2}\right)}=\right.$ $\sqrt{b^{2}-z^{2}}$, it appears that $\dot{z} \sqrt{b^{2}-z^{2}}$ (the fecond L 2

Term

The Ufe of Fluxions

Term of our given Quantity) expreffes the Fluxion of the Area AEFC: Whence, if to this Area (found by the Table of Segments) the Fluent of the firft Term -Ast.226. $\frac{a b^{2} \dot{z}}{b^{2}-z^{2}}$, or the hyp. Log. of $\frac{b+z}{b-z^{2}}, \times \frac{1}{2} a b^{*}$, be added, the Sum will be the whole Area ARCS, that was to be determined.

E X A.MPLE XIX.

132. Let it be required to determine the Area ASRA included by the common Cycloid ASM and its generating Semi-circle ARH.

Put the Radius $\mathrm{AO}($ or RO$)=a$, the Sine $\mathrm{BR}=y$, the Co -fine $\mathrm{OB}=x$, and the Arch $\mathrm{AR}(=\mathrm{RS}$, by the Property of the Cycloid) $=z$: Then AB being $=a$

$-x$, its Fluxion will be $-\dot{x}$; whence (\dot{u}) that of the

- Artinz, Area ARS is $=-z \dot{x}^{*}$. Now to find the Fluent thereof, make $w=-z x^{\prime}$ ($=$ the Fluent, if z was cons ftant)
ftant) then \dot{w} being $=-z \dot{x}-x \dot{z}$. , we fhall have *Artrei $\dot{u}(=-z \dot{x})=x \dot{v}+x \dot{z}$. But (by Art. 35.) \dot{z} (AR Fluxion) : \dot{j} (BR Fluxion):: Radius: Co-fine of the Angle ARB, or its Equal ROB :: OR (a): OB (x) : Therefore, by multiplying Extremes and Means, we get $x \dot{z} \equiv a \dot{y}$: Whence, by Subfitution $\dot{u}(\overline{=} \dot{w}+x \dot{z})=\dot{z}$ $+a \dot{y}$; and confequently, by taking the Fluent, $u=$ $w+a y=-z x+a y=A O \times B R-B O \times A R=$ the Area ARS.
Hence it follows that the Area (AEFA) when RB coincides with the Radius FO, is barely $=A O \times F O$ $=\mathrm{AO}^{2}$: And that the whole Area AMEFA is truly defined by - ARH $\times-\mathrm{OH}$, or by ARH $\times \mathrm{OH}$; that is by four times the Area of the generating Semi-circle.

$$
E X A M P L E-X X
$$

133. Let the Curve propofed be the Catenaria DAB.

Then, drawing BS and $b s$ parallel to the Axis AC, and $A S$ and $c b n$ perpendicular to the fame; and making (as ufual) $\mathrm{A}_{c}=x, \mathrm{c}=y$ and $\mathrm{A} b=z$, we ghall have, by

the Property of the Curve, $2 a x+x^{2}=z z$: Whence $x=$ $\sqrt{a^{2}+\dot{x}^{2}}-a$, and $\dot{x}=\frac{z \dot{z}}{\sqrt{a^{2}+z^{2}}}$: From which the L 3 Value

QArti.35. Value of \dot{j} (which in all Curves is $=\sqrt{\overline{\tilde{z}^{4}-\dot{x}^{2}}}$) will here be found $=\sqrt{\dot{z}^{2}-\frac{z^{2} \dot{z}^{2}}{a^{2}+z^{2}}}=\sqrt{\frac{a^{2} \dot{z}^{2}}{a^{2}+z^{2}}}$ $=\frac{a \dot{z}}{\sqrt{a^{2}+z^{2}}}$; and this multiplied by $\sqrt{a^{2}+z^{2}}-a$. ($=b s$) gives $a \dot{z}-\frac{a^{2} \dot{z}}{\sqrt{a^{2}+z^{2}}}(=$ the Rectangle $S b$)
$\dagger_{\text {Art. 112. }}=$ the Fluxion of the Area A: $b \dagger_{\text {. From whence, by }}$ taking the Fluent, the Area itfelf is found $=a z,-a^{2}$
IArt:126. \times byp. Log. $\frac{z+\sqrt{a^{2}+z^{2}}}{a^{0}} \ddagger:$ Which therefore deducted from the Rectangle sc $\left(=y x=y \sqrt{a^{2}+z^{2}}-a y\right)$, leaves $y \sqrt{a^{2}+z^{2}}-a y-a z,+a^{2} \times b_{j} p$. Log. $\frac{z+\sqrt{a^{2}+z^{2}}}{a}$ for the required Area Abc. But, fince $j=$ $\frac{a \dot{z}}{\sqrt{a^{2}+z^{2}}}$ we have $y=a \times$ hyp. Log. $\frac{z+\sqrt{a^{2}+z^{2}}}{a}$: whence, by Subflitution, the Area, at laft comes out $=y \sqrt{a^{2}+z^{2}}-a z$, or $=a \sqrt{a^{2}+z^{2}} \times$ byp, Log, $\frac{z+\sqrt{a^{2}+z^{2}}}{a},-a z$.

SCHOLIUM.

134. At the Beginning of this, and in the precedirg Sections, we have feen how the Fluxions of Quantities are determined, by conceiving the generating Motion to become uniform at the propofed Pofition; according to the
§ Art, 2. true Definition of a Fluxion §: But hitherto no particular Notice has been taken of tbe Method of Increments, or indefinitely little Parts, ufed (and miftaken) by many for that of Fluxions: In which the Operations are, for the general Part, exactly the fame; and which (tho' lefs accurate) may be applied to good Purpofe in finding the Fluxions themfelves, in many Cafes. For which Reafons it may not be improper to add here a
a few Lines on that Head, to fhew the Beginner how the two Methods differ from each other ; efpecially as we fhall be enabled, from thence, to draw out fome Conclufions that will be of Ufe in the enfuing Part of the Work.
It hath been frequently inculcated in the foregoing Pages, that the Fluxions of Quantities are always meafured by bow much the Quantities themflves would be uniformly augmented in a given Time. Therefore, if two

Quantities or Lines, AB and CD be generated together, by the uniform (or equable) Motion of two Points B and D , it foliows, that any two: Spaces Bb and $\mathrm{D} d$ actually gone over (whereby AB and CD are augmented) in the fame time, wili truly exprefs the Fluxions of the generated Lines $A B$ and $C D$: Whence it appears, that the Increments (or Spaces actually gone over) and the Fluxions are the fame in this Cafe, where the generating Velocities are equable.

But if, on the contrary, the Velocities of the two Points, in generating the Increments Mb and $\mathrm{N} d$, be fuppofed either to increafe, or to decreafe, the Lines or Increments fo generated will, it is plain, no longer exprefs the Fluxions of AB and CD ; being greater, or lefs than the Spaces that migbt be uniformly defcribed, in the fame Time, with the Velocities at M and N .

If, indeed, thofe Increments, and the Time of their Defcription, be taken fo exceeding fmall that the Motion of the Points during that Time may be confidered as equable, the Ratio of the faid Increments, will then exprefs that of the Fluxions, or be as the Velocity at M to that as N, indefinitely near; but cannot be con--
ceived to be frieily \int_{0}; unlefs, perhaps, in certaln parm: ticular Cafes.

Hence we fee that the Differential Methad, which proceeds upon thefe indefinitely little Increments (actually generated) as we do upon Fluxions (or the Spaces that: might be unifgundy generated) differs little, or nothing, from the Method of Fluxions, except in the Manner of Conseption, and in Point of Accuracy, wherein it appears defective: And yet it is very certain the Conclufions this Way derived are matbenatically true ; which has afforded Matter of Wonder to fome: But the Reafon why they are fo is very eafily explained. For, although the whole complete Increment is actually underftood by the Notation and firft Definition (of this Method) yet in the Solution of Problems the exact Meafure thereof is not taken, but only that Part of it which would arife from an uniform Increafe, agreeable to the Notion of a Fluxion; which admits of a ftrict Demonftration: But, after all, the Differential Method has one Advantage above that of Fluxions, which is, we are not there obliged to introduce the Properties of Motion. Since we reafon upon the Increments themfelves, and not upon the Manner in which they may be generated.

It has been hinted above, that, though the Increments of Quantities are not, frielly, as the Fluxions, yet from them the Ratio of the Fluxions may be deduced; and it appears that the fmaller thofe Increments are taken, the nearer their Ratio will approach to that of the Fluxions. Therefore, if we can, by any Means, find the Ratio to which the faid Increments, by conceiving them lefs and lefs, do perpetually converge, and which they may approach, before they vanifh, nearer than any affignable Lifference, that Ratio (called hereafter; for Diftinction Sake, the Ratio limiting that of the Increments) will be, fricily, that of the Fluxions.

This will more particularly appear from the following Inftances; wherein the Manner of deriving the Ratio of the Fluxions, from that of the Increments, is flewn.

1․ Let it be propofed to determine the Ratio of the Fluxions of x and x^{2}.

Now, if x be fuppofed to be augmented by any (fmall) Quantity x, fo as to become $x+x$; its Square $\left(x^{2}\right)$ will be augmented to $x+x^{2}=x^{2}+2 x^{\prime} x+x^{\prime} x^{\prime}$; whence the Increment of x^{2} will be $2 x^{\prime} x+x^{\prime} x$; which therefore is to $\left(x^{\prime}\right)$ the Increment of x, as $2 x+x^{\prime}$ to r. Hence, becaufe the leffer x is taken, the nearer this Ratio approaches to that of $2 x$ to I , which is its Limit, the Ratio of the Fluxions will therefore be exprefled by that of $2 x$ to I , or, which is the fame, by that of $2 x \cdot \dot{x}$ to \dot{x} (as in Art. 6.)
> 2°. Let the Ratio of the Fluxions of x and x^{*} be required.

Then, if x be augmented to $x+x ; x^{n}$ will be augmented to $x+x^{n}=x^{n}+n x^{n-x} x+\frac{n}{1} \times \frac{n-1}{2}$ $x^{n-2} x^{2}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} x^{n-3} x^{3} \xi_{c}$. (Vid. Art.
99. Whence the Increments of x and x^{π} will be to each other as 1 to $n x^{n-1}+\frac{n}{1} \times \frac{n-1}{2} x^{n-2} x+\frac{n}{1}$
 x is taken, the nearer the Ratio will approach to that

The Ufe of Fluxions

of I to $n x^{n-\bar{y}}$; which appears to be its Limit ; Therefore this lafRatio, or that of \dot{x} to $n x^{n-1} \dot{x}$, is the Ratio of the Fluxions required. (Vid. Art. 8.)
3°. Let it be propofed to determine the Proportion of the Fluxions of the Sides AC and BC , af a right-angled, plane Triangle ABC ; Juppofing the Perpendicular AB to remain invariable.

If $\mathrm{C} d$ be affumed to reprefent any Increment of BC and $\mathrm{D} d$, the correfponding Increment of $\mathrm{AC}(=\mathrm{AD})$ the Ratio of thofe Increments will be, univerfally, expreffed by that of the Sine of the Angle CDd to the Sine of the Angle DCd (by plane Trigevometry) and the Iefs the Increments are fuppofed to be, the nearer will the Angle CDd approach to a right one, or to an Equality with B; which is its Limit: And the nearer will DC d approach, at the fame time, to an Equality with BAC. Therefore the Ratio here limiting that of the Increments is that of the Sine of B (or Radius) to the Sine of BAC: Which alfo expreffes that of the required Fluxions. (Vid. Art. 35:)
In the fame way the Proportion of the Fluxions of other Kinds of algebraical and gcometrical Quantities
may be inveftigated; but it will be unneceffary to dwell longer upon this Head:- I fhall therefore only add one other Obfervation from hence (which will be of ufe hereafter) relating to the Value of an algebraic Fraction, in that particular Circumfance when bothits Numerator and Denominator become equal to Nothing, or vanifh, at the fame time. Which Vilue (it follows from above) will be found by dividing the Fluxion of the Numerator by that of the Denominator!.

For, fince the Value of any Fraction, in that Circumftance, is to be looked on as the limiting Ratio towards which its two Terms converge, before they vanifh, and feeing the Fluxions are, always, exprefled by that Ratio, the Truth of the Rule, or Pofition, is manifeft.
An Example, however, may not be improper :
Let therefore the Fraction $\frac{x^{2}-a^{2}}{x-a}$ be propounded, to find the Value thereof when $x=a$. In which Cafe, the true Value fought, or the Fluxion of the Numerator divided by that of the Denominator, is $=\frac{2 x \dot{x}}{\dot{x}}$
$=2 x=2 a$. And that this is the true Value, may be confirmed by common Divifion, whereby the Fraction propofed is reduced to $x+a$; whofe Value when $x=a$, is therefore $=2 a$, the very Jame as before.

SECTION VIII.

The Uje of Fluxions in the Rectification, or finding the Lengths, of Curves.

> CA S E I.
135. ET ACG be a Curve of any Kind whole Orainates are parallel to themselves and perpendicular to the Axis AQ.

If the Fluxion of the Abfciffa AM be denoted by Mm , or: by $\mathrm{C} n$ (equal and parallel to Mm) and $n \mathrm{~S}_{2}$

equal and parallel to Cr , be taken to reprefent the corresponding Fluxion of the Ordinate MC; then will the * Art. 48 Diagonal CS (touching the Curve in $\mathrm{C}^{\text {* }}$) be the Line and 49. which the generating point (p) would defcribe, was its Motion to become uniform at C (id. Art. 48 and 49.) which Line, therefore, truly exprefles the Fluxion of \dagger Art. s. the Space AC gone over, according to the Definition \dagger.

Hence, putting $\mathrm{AM}=x, \mathrm{CM}=y$, and $\mathrm{AC}=x$, we have $\dot{z}\left(=\mathrm{CS}=\sqrt{\left.\overline{\mathrm{C} n^{2}+\mathrm{S} n^{2}}\right)=\sqrt{\dot{x}^{2}+\dot{j}^{2}}} ;\right.$ from which, and the Equation of the Curve, the Value of z_{1} may be determined.

CASE II.

136. Let all the Ordinates of the proposed Curve ARM be referred to a Center C.

Then, putting the Tangent RP (intercepted by the Perpendicular CP) $=t$, the Arch BN, of a Circle defribed about the Center $\mathrm{C}=x$; the Radius CN (or $\mathrm{CB})=a$, छ$^{\circ}{ }^{\circ}$. (Did. Art. 113.) we have $\dot{z}: \dot{j}:: y$ (CR)

: t (RP*) and consequently $\dot{z}=\frac{j \dot{y}}{t}$: From whence *Ar t.35* the Value of z will be found, if the Relation of y and t is given.

But in other Cafes it will be better to work from the following Equation, viz. $\dot{z}=\sqrt{\dot{j}^{2}+\frac{y^{2} \dot{x}^{2}}{a^{2}}}$. Which is thus derived.

Let the Right Line, CR, be conceived to revolve about the Center C ; then fine the Celerity of the generating
nerating Point R in a Direction perpendicular to $C R$ is to (\dot{x}) the Celerity of the Point N, as CR (y) to CN (a) It will therefore be truly reprefented by $\frac{y \dot{x}}{a}$: Which being to (j) the Celerity in the Direction of $C R$, pro-
-Art.35. duced, as $\operatorname{CP}(s): \operatorname{RP}(t)$ it follows that $\frac{y^{2} \dot{x}^{2}}{a^{2}}: \dot{y}^{2}:$: $s^{2}: t^{2}:$ Whence, by Compofitions $\frac{y^{2} \dot{x}^{2}}{a^{2}}+\dot{y}^{2}: \dot{y}^{2}:: s^{2}$ $+t^{2}\left(y^{2}\right): t^{2}$; therefore $\frac{y^{2} \dot{x}^{2}}{a^{2}}+\dot{y}^{2}=\frac{y^{2} \dot{y}^{2}}{t^{2}}, \quad$ and confequently $\sqrt{\frac{y^{2} \dot{x}^{2}}{a^{2}}+\dot{y}^{2}}\left(=\frac{y \dot{y}}{t}\right)=\dot{z}$; as was to be fhewn.

But the fame Conclufion may be more cafily deduced from the Increments of the flowing Quantities, according to the preceding Scholium.
For, if $\mathrm{R} m, r m$ and $\mathrm{N} n$ be affumed to reprefent (z, , y and x) any very fmall correfponding Increments of AR, CR and BN , it will be as $\mathrm{CN}(a): \operatorname{CR}(y)::$ $\dot{\prime} \dot{\prime}$ (the Arch $\mathrm{N} n$) : the fimilar Arch $\mathrm{R} r=\frac{y x}{a}$. And, if the Triangle Rrm (which, while the Point m is returning back to R , approaches continually nearer and. nearer to a Similitude with CRP) be confidered as rectilineal, we fhall alfo obtain $z^{2}\left(=\mathrm{R} m^{2}=\mathrm{R} r^{2}+r m^{2}\right)$. $=\frac{y^{2} x^{2}}{a^{2}}+\dot{y}^{\prime}$: Whence, by writing \dot{x}, \dot{x} and \dot{j} for ${ }^{\prime},{ }^{\prime}, x$ and y (according to the Scholium) there comes out $\dot{z}^{2}=\frac{y^{2} \dot{x}^{2}}{a^{2}}+\dot{j}^{2}$, as before.

EXAMPLE I.

137. Let the Curve ARM whole Length is fought, be the Semi-cubical Parabola.
Whereof the Equation being $a x^{2}=y^{3}$, or $x=\frac{y^{\frac{3}{2}}}{a^{\frac{1}{2}}}$, we thence have $\dot{x}=\frac{3 y^{\frac{1}{2}} \dot{y}}{2 a^{\frac{1}{2}}}$: Whence $\dot{z}\left(=\sqrt{\left.\overline{\dot{y}^{2}+\dot{x}^{2}}\right)}\right) *$ Art, 135 a ,

$=\sqrt{\dot{j}^{2}}+\frac{9 y j^{2}}{4^{a}}=\frac{\dot{j} \times \overline{4 a+9)^{\frac{1}{2}}}}{2 a^{\frac{1}{2}}}$. Whore Fluent
(found by the common Rule) is $\frac{\overline{4 a+9]^{\frac{3}{2}}}}{27 a^{\frac{1}{2}}}$; which,
corrected (by making $y=0$) becomes $\frac{4 a+9)^{\frac{3}{2}}}{a^{2}}$. 27
$-\frac{8 a}{27}=x$.
EX-

The Ufo of Fluxions

EXAMPLE 11.

138. Let the Curve proposed be a Parabola of any (other) Kind.

Then $x=\frac{y^{n}}{a^{n-1}}$ being a general Equation to all
Kinds of Parabolas, we here have $\dot{x}=\frac{n y^{n-\mathrm{r}} \dot{y}}{a^{n-1}}$, and therefore $\dot{z}\left(=\sqrt{\left.\overline{j^{2}+\dot{x}^{2}}\right)}=\sqrt{\dot{j}^{2}+\frac{n^{2} y^{2 n-2} \dot{j}^{2}}{a^{2 n-2}}}=\right.$ $\dot{j} \times 1+\left.\frac{\dot{n}^{2} y^{2 n-2}}{a^{2 \pi-2}}\right|^{\frac{2}{2}}$: Whore Fluent, univerfally exprefled in an Infinite Series, is $y+\frac{n^{2} y^{2 n-1}}{2 n-1} \times 2 a^{2 n-2}$ $-\frac{n^{4} y^{4 n-3}}{4 n-3 \times 8 a^{4 n-4}}+\frac{n^{6} y^{6 n-5}}{\overline{6 n-5} \times 16 a^{6 n-6}}$, 'r $_{c_{0}}=z$.

But, when $2 n-2$, the Index of y, in the given Fluxion, is either equal to Unity, or to any aliquot Part of it, the Fluent may be accurately had in finite Terms, by Article 84.
For, by putting $\frac{1}{2 n-2}=v$, and $\frac{n^{2}}{a^{2 n-2}}=c$, our Fluxion $\left.\left(x+\frac{n^{2} y^{2 n-2}}{a^{2 n-2}}\right)^{\frac{1}{2}} \times \dot{j}\right)$ is, in the frit place, reduced to $1+\left.c y^{\frac{1}{v}}\right|^{\frac{1}{2}} \times \dot{y}$: Which being compared 7 with
with $\left.\overline{a+c z^{n}}\right|^{m} \times d z^{r n-1} \dot{z}$, the general Expreffion in the forefaid Article, we have $a=1, z=y, n=\frac{1}{v}$, $m=\frac{1}{2}, d=1, \dot{z}=\dot{y}, r n-1=0$, or $\frac{r}{v}-1=0$; whence $r=v, s(r+m)=v+\frac{r}{2}$; and confequently

$\left.1 \rightarrow 6 y^{\frac{1}{2}}\right|^{\frac{1}{2}}$ $x \dot{y}$; which was to be determined, ańd which will (it is plain) always terminate in v Terms, when v, or its Equal $\frac{1}{2 n-2}$, is a whole pofitive Number.

$$
\text { If } \frac{2 v+1}{2 v} \text { (derived from } v=\frac{1}{2 n-2} \text {) be fubfti- }
$$ tuted for its Equal n, the Equation of the Curve, will be changed to $a x^{2 v}=y^{2 v+1}$; which, if v be expounded by $\mathrm{I}, 2,3,4$, छc. fucceffively, will become $a x^{2}=y^{3}$, $a x^{4}=y^{5}, a x^{6}=y^{7}, a x^{8}=y^{9} छ^{\circ} c$. refpectively: In all which Cafes the Length of the Curve may therefore be accurately had from the Fluent above exhibited.

The Ufo of Fluxions

Moreover, if n be affumed $=2$ (or $v=\frac{1}{2}$) the general Equation, $x=\frac{y}{a^{n-1}}$, will then become $x=$
$\frac{y^{2}}{\sigma}$; answering to the common (or conical) Parabola, And therefore in that Cafe $\dot{z}\left(=1+\frac{n^{2} y^{2 n-2}}{a^{2 n-2}} \times \dot{y}\right)$. is $=\dot{y} \sqrt{1+\frac{4 y^{2}}{a^{2}}}=\frac{j \sqrt{\frac{\pi}{4} a^{2}+y^{2}}}{\frac{y}{2} a}=\frac{j \sqrt{b^{2}+y^{2}}}{b}$ (by putting $b=\frac{1}{2} a$) $=\frac{\dot{y} \times \overline{b^{2}+y^{2}}}{b \sqrt{b^{2}+y^{2}}}=\frac{1}{b} \times$ $\frac{b^{2} \dot{y}+y^{2} \dot{y}}{\sqrt{b^{2}+y^{2}}}=\frac{\mathbf{I}}{b} \times \frac{b^{2} y \dot{y}+y^{3} \dot{y}}{\sqrt{b^{2} y^{2}+y^{4}}}=\frac{1}{b}$ into $\frac{\frac{1}{2} b^{2} y \dot{y}+y^{3} \dot{j}}{\sqrt{b^{2} y^{2}+y^{4}}}$ $+\frac{\frac{1}{2} b^{2} y \dot{y}}{\sqrt{b^{2} y^{2}+y^{4}}}=\frac{1}{b}$ into $\frac{\frac{x}{2} b^{2} y \dot{y}+y^{3} \dot{y}}{\sqrt{b^{2} y^{2}+y^{4}}}+\frac{\frac{1}{2} b^{2} \dot{y}}{\sqrt{b^{2}+y^{2}}}$: Where, the Fluent of the firf Term (of the Fluxion fo transformed) being $=\frac{x}{2} \sqrt{b^{2} y^{2}+y^{4}}$ (or $\frac{x}{2} y \sqrt{b^{2}+y^{2}}$ by the common Rule; and that of the Second Term

- Ast.126. $=\frac{x}{2} b^{2} \times$ hyp. Log. $\frac{y+\sqrt{b^{2}+y^{2}}}{b}$, it follows that the Length of the Curve will, in this Cafe, be $=$ $\frac{\frac{x}{2} y \sqrt{b^{2}+y^{2}}}{b}+\frac{x}{2} b \times$ hyp. Log. $\frac{y+\sqrt{b^{2}+y^{2}}}{b}$.

EXAMPLEII.

139. Let the Curve propofed be the Involute of a Circle; whofe Nature is fuch, that the Part PR of the Tangent intercepted by the Point of Contact and the Perpendicular CP , is every where equal to the Radius CO of the ge-

nerating Circle : Therefore $\dot{z}\left(\dot{=} \frac{y \dot{j}_{*}}{t}\right)$ being here $={ }^{*}$ Att. $13 \sigma_{0}$ $\frac{y \dot{y}}{\dot{a}}$, we firft get $z=\frac{y^{2}}{2 a}$; which corrected, by making $y=a(=A C)$ becomes $\frac{y^{2}-a^{2}}{2 a}\left(\frac{C P^{2}}{2 C A}\right)$ the true Meafure of the required Arch AR.

The USe of Fluxions

EXAMPLE IV.

140: In which the Spiral of Archimedes is proposed. Where, the Value of t (AT) being denoted by $\frac{b y}{\sqrt{b^{2}+y^{2}}}\left(\sqrt{i d}\right.$. Art. 62.) we get $\dot{z}\left(=\frac{y \dot{j}}{t}\right)$ $=\frac{j \sqrt{b^{2}+y^{2}}}{b}$: Which Fluxion being exactly the

fame as that expreffing the Arch of the common Parabola, found in Article 13^{88}. its Fluent will therefore be truly reprefented by the Measure of the paid Arch, or by $\frac{\frac{x}{2} y \sqrt{b^{2}+y^{2}}}{b}+\frac{y}{2} b \times$ hyp. Log. $\frac{y+\sqrt{b^{2}+y^{2}}}{b}$, the
Value there exhibited.

E X A M P LE V.

141. Let the Curve be a Spiral whofe Equation is

$$
a^{m-1} x=y^{m} \text { (Vid. Art. 136.) }
$$

In which Cafe \dot{x} being $=\frac{m_{j}^{m-1}}{a^{m-1}}$, it is evident that $\dot{z}\left(=\sqrt{\dot{j}^{2}+\frac{y^{2} \dot{x}^{2}}{a^{2}}} *\right)=\sqrt{\dot{j}^{2}+\frac{m^{2} y^{2} m \dot{j}^{2}}{a^{2} m}}$.Art. 136_{0}
$=j \sqrt{1+\frac{m^{2} y^{2 m m}}{a^{2 m}}} ;$ and therefore $z=y+\frac{m^{2} y^{2 m+1}}{2 m+1} \times 2 a^{2 m}$
$-\frac{m^{4} y 4 m+1}{4 m+1 \times 8 a^{4 m}}+\frac{m^{6} y^{6 m+1}}{6 m+1 \times 16 a^{6 m}}$ E' $^{\circ}$. Which Value may be otherwife had, without an Infinite Series, when $\frac{1}{2 m}$ is a whole pofitive Number, Vid. Art. 138 .

E X A MPLEVI.

142. Where, the Right-jine, Vorfed-sine, Tangent, or Secant of an Arch of a Circle, being given, it is required to find the Lengtb of the Arch itfelf in Terms thereef.
Put the Verfed-fine $\mathrm{A} b=x$, the Right-fine $\mathrm{R} b=y$, the Tangent AT $=t$, the Secant OT $=s$, the Arch $A R$ $=z$, and the Radius AO , or $\mathrm{RO}=a$; alfo let $\mathrm{R} n=\dot{x}, n r$ $\bar{j} \dot{y}$ and $\operatorname{Rr}=\dot{z}$: Since the Angle $\pi \mathrm{R}$ ($=$ Rinhtangle $)=\mathrm{O} b \mathrm{R}$, and $r \mathrm{R}_{n}(=$ Right -
 angle $\left.-{ }_{n} \mathrm{RO}\right)=\mathrm{OR} b$, the Triangles $r \mathrm{R} n$ and ORb M 3 are
are therefore equi-angular ; and it will be, $\mathrm{R} b(y): \mathrm{OR}$ (a) :: $\mathrm{R} n(\dot{x}): \mathrm{Rr}(\dot{z})=\frac{a \dot{x}}{y}=\frac{a \dot{x}}{\sqrt{2 a x-x x}}$ (becaule, by the Property of the Circle $\sqrt{2 a x-x x}=y$.) Alfo, $\mathrm{O} b\left(\sqrt{a^{2}-y^{2}}\right): \operatorname{OR}(a):: n r(\dot{j}) \operatorname{Rr}(\dot{z})=$ $\frac{a \dot{y}}{\sqrt{a^{2}-y^{2}}}$. Thefe two Values exhibit the Fluxion of the Arch in Terms of the Verfed-fine and Rightfine refpectively: But, to get the fame, in Terms of the Tangent and Secant, we have (by fin. Triangles) $\mathrm{OT}\left(=s=\sqrt{a_{-}^{2}+t^{2}}\right): \mathrm{OA}(a):: \mathrm{OR}(a): \mathrm{O} b=$ $\frac{a^{2}}{s}=\frac{a^{2}}{\sqrt{a^{2}+t^{2}}}$: Hence $\mathrm{A} b=a-\frac{a^{2}}{5}=a-\frac{a^{2}}{\sqrt{a^{2}+t^{2}}}$; whofe Fluxion is therefore $=\frac{a^{2} s}{s^{2}}=\frac{a^{2} i t}{\left.a^{2}+t^{2}\right]^{\frac{3}{2}}}$: Whence (again by fimilar Triangles) AT $\left(=\sqrt{s^{2}-a^{2}}=t\right)$: OT $\left(=s=\sqrt{a^{2}+t^{2}}\right):: \mathrm{R} n: \mathrm{R} r=\frac{a^{2} \dot{s}}{\sqrt{s^{2}-a^{2}}}=$ $\frac{a^{2} t}{a^{2}+t^{2}}=\dot{z}$.

Now, from any one of the four Forms of Fluxions
 here found, the Value of the Arch itself (by taking the Fluent, in an Infinite Series) will likewife become known.

But the third Form, expreffed in Terms of the Tangent, being intirely free from radical Quantities', will be the moft ready in Practice, efpecially where the required Arch is but fmall; though the Series arifing from the firft Form, always, converges the faftef.

If, therefore, $\frac{a^{2} \dot{t}}{a^{2}+t^{2}}$ be now converted to an Infinite Series, we fall have $\dot{z}=\dot{t}-\frac{t^{2} \dot{t}}{a^{2}}+\frac{t^{\dot{t}} \dot{i}}{a^{4}}-\frac{t^{6} \dot{t}}{a^{6}}$ Ec. and consequently $z=t-\frac{t^{3}}{3 a^{2}}+\frac{t^{5}}{5 a^{4}}-\frac{t^{7}}{7 a^{a}}+$ $\frac{t^{\rho}}{9 a^{8}} \delta_{c} c=\mathrm{AR}$. Where, if (for Example Sake) AR be fuppofed an Arch of 30 Degrees, and AO (to render the Operation more early) be put = Unity, we Shall have $t=\sqrt{\frac{1}{3}}=.5773502$ (because $\mathrm{O} b \sqrt{\frac{3}{4}}$: bR ($\frac{1}{2}$): : AA (1): AT $(t)=\sqrt{\frac{1}{3}}$)

$$
\begin{aligned}
& \text { Whence } \\
& t^{3}\left(=t \times t^{2}=t \times \frac{1}{3}\right)=.1924500 \\
& t^{5}\left(=t^{3} \times t^{2}=\frac{t^{3}}{3}\right)=.0541500 \\
& t^{7}\left(=t^{5} \times t^{2}=\frac{t^{5}}{3}\right)=.0213833 \\
& t^{\prime}\left(=t^{7} \times t^{2}=\frac{t^{7}}{3}\right)=.0071277 \\
& t^{11}\left(=t^{2} \times t^{2}=\frac{t^{9}}{3}\right)=.0023759 \\
& t^{13}\left(=t^{11} \times t^{2}=\frac{t^{11}}{3}\right)=.0007919 \\
& t^{t^{25}}\left(=t^{13} \times t^{2}=\frac{t^{13}}{3}\right)=.0002639
\end{aligned}
$$

Er.

And therefore $A R=.5773502-\frac{.1924500}{3}+$
$\frac{.0641500}{5}-\frac{.02138 .33}{7}+\frac{.0071277}{9}-\frac{.0023759}{11}+$
M 4

$$
+\frac{: 0007919}{13}-\frac{.0002639}{15}+\frac{.0000879}{17}-\frac{.0000293}{19}
$$

$$
+\frac{.0000097}{21}-\frac{.0000032}{23}=.5235987: \text { Which mul- }
$$

tiplied by 6 gives $3.141592+$ for the Length of the Semi-periphery of the Circle whofe Radius is Unity.

At Article 126 . certain Forms of Fluxions were pointed out, whofe Fluents are explicable by means of hyperbolical Spaces, or a Table of Logaritbms: Which Forms, it is obfervable, agree in every thing, but the Signs (and conftant Quantities) with thofe exhibited above, for the Arch of a Circle. And thele laft, like them, may ferve as fo many (other) Theorems for finding Fluents by means of a Table of Sines, Tangerts and Secants. But, as fuch a Table is ufually calculated to a Radius of $1,000000 \mathrm{E}^{\circ}$. (or Unity) the following Equations, derived from thofe above, being adapted to that Radius, will be rather more commodious.

The way of deducing thefe Exprefions, from the foregoing ones, is extremely ealy: For, if A be put to denote the Arch whofe Radius is Unity, and whofe Verfed-fine, Right-fine, Tangent, or Secant is $\frac{w}{a}$ (according to the different Cafes here fpecified). Then, becaufe fimilar Arcs, of unequal Circles, are as their Radii,

Radii, it will be $1: a:: A:(a A)$ the Length of the Arch AR (fee the Figure.) Therefore, the Fluent of $\frac{a \dot{x}}{\sqrt{2 a x-x x}}$ (or $\frac{a \dot{u}}{\sqrt{2 a w-w^{2}}}$, putting $w \doteq x$) being $=a A(\mathrm{AR})$, that of $\frac{\dot{\mathrm{w}} \text {. }}{\sqrt{2 a w-w^{2}}}$ muft neceffarily be $=A:$ And in the very fame Manner the other Forms are made out.

EXAMPLEVII.

143. Let the propofed Curve be the common Cycloid.

Then, if the Radius AO of the generating Semi-circle* * See Fis, be denoted by a, we fhall have $B R=\sqrt{2 a x-x^{2}}$; and the Fluxion thereof $=\frac{a \dot{x}-x \dot{x}}{\sqrt{2 a x-x^{2}}}$: Which being added to $\left(\frac{a \dot{x}}{\sqrt{2 a x-x \dot{x}}}\right)$ the Fluxion of AR or its Equal RS (given by the preceding Article) we thence get $\frac{2 a \dot{x}-x \dot{x}}{\sqrt{2 a x-x^{2}}}=\frac{\dot{x} \times \overline{2 a-x}}{\left.x^{\frac{1}{2}} \times \overline{2 a-x}\right)^{2}}=\frac{\dot{x}}{x^{\frac{1}{2}}} \times$
$\overline{2 a-x} x^{\frac{2}{2}}$, for the true Fluxion of the Ordinate BS of the Cycloid.

$$
\text { Hence } \dot{z}\left(\sqrt{\dot{x}^{2}+\dot{y}^{2}}+\right)=\sqrt{\dot{x}^{2}+\frac{\dot{x}^{2} \times \overline{2 a-x}}{x}}=+ \text { Art. 1350 }
$$

$\left.\dot{x} \sqrt{\frac{2 a}{x}}=\overline{2 a}\right]^{\frac{1}{2}} \times x^{-\frac{1}{2}} \dot{x}$; and confequently, by taking the Fluent, $z=\frac{1}{2 a^{2}} \times \frac{x^{\frac{1}{2}}}{\frac{1}{z}}=2 \sqrt{2 a x}=$ the: Arch AS of the Cycloid.

The USe of Fluxions

EX A M P LE VIII.

144. Wherein it is required to determine the Length of the Arch of the common Hyperbola.
In this Cafe (the Semi-tranfverfe Axis being reprefented by b, and the Semi-conjugate by c) we have $\begin{gathered}b^{2} y^{2} \\ c^{2}\end{gathered}=2 b x+x^{2} ;$ and therefore $x=\frac{b \sqrt{c^{2}+y^{2}}}{c}$ $-b:$ Hence $\dot{x}=\frac{l y \dot{y}}{c \sqrt{c^{2}+y^{2}}}$, and $\dot{z}\left(=\sqrt{\dot{j^{2}+\dot{x}^{2}}}\right)$ $\sqrt{\dot{j}^{2}+\frac{b^{2} y^{2} y^{2}}{c^{2} \times c^{2}+y^{2}}}=\dot{y} \sqrt{1+\frac{b^{2} y^{2}}{c^{4}+c^{2} y^{2}}} ;$ which, by converting $\frac{b^{2} y^{2}}{c^{4}+c^{2} y^{2}}$ into an Infinite Series, becomes $\dot{y} \sqrt{1+\frac{b^{2} y^{2}}{c^{4}}-\frac{\dot{b}^{2} y^{4}}{c^{6}}+\frac{b^{2} y^{6}}{c^{8}}-\frac{b^{2} y^{8}}{c^{10}}}$ 玉 cc. But fill we have the Square Root to extract ; In order thereto let it be aflumed $=1+\mathrm{Ay}^{2}+\mathrm{By}{ }^{4}+\mathrm{Cy}{ }^{6}+\mathrm{D} y^{8} \mathrm{E}^{5} \mathrm{C}_{0}$ Then, by fquaring, and tranfpofing (id. Art. 98.) there aries

$$
\begin{aligned}
& 1+2 \mathrm{~A}^{2}+2 \mathrm{~B} y^{4}+2 \mathrm{C} y^{6}+2 \mathrm{D} y^{8} \varepsilon^{\circ} c \text {. } \\
& +A^{2} y^{4}+2 A B y^{6}+2 A C y^{8} \text { छ®. }^{\circ} \text {. } \\
& +B^{2} y^{8} \text { छ' }^{\circ} . \\
& \left.-1-\frac{b^{2}}{c^{4}} \times y^{2}+\frac{b^{2}}{c^{6}} \times y^{4}-\frac{b^{2}}{c^{8}} \times y^{6}+\frac{b^{2}}{c^{20}} \times y^{8} छ^{2} c .\right\}=0 \\
& \text { Hicnce } \mathrm{A}=\frac{b^{2}}{2 c^{4}} ; \quad \mathrm{B}=-\frac{b^{2}}{2 c^{6}}-\frac{1}{2} \mathrm{~A}^{2}=-\frac{b^{2}}{2 c^{6}} \\
& -\frac{b^{4}}{8 c^{0}} ; \mathrm{C}=\frac{b^{2}}{2 c^{8}}-\mathrm{AB}=\frac{b^{2}}{2 c^{8}}+\frac{b^{4}}{4 c^{10}}+\frac{b^{6}}{16 c^{12}}, \\
& \text { sic. sc. Therefore } \dot{z}\left(=j \sqrt{1+\frac{b^{2} y^{2}}{c^{4}}} \xi^{\circ} c .=j \times\right. \\
& \left.\overline{1+A y^{2}+B y^{4}} E c_{0}\right)=\dot{y}+\frac{b^{2}}{2 c^{4}} \times y^{2} \dot{y}-\overline{\frac{b^{2}}{2 c^{6}}+\frac{b^{4}}{8 c^{8}}} \times
\end{aligned}
$$

in finding the Lengtbs of Curves.

$y^{4} \dot{y}+\overline{\overline{b^{2}}} \frac{2 c^{8}}{}+\frac{b^{4}}{4 c^{10}}+\frac{b^{6}}{16 c^{12}} \times y^{6} \dot{y}$ Eoc. And confe-
quently $z=y+\frac{b^{2} y^{3}}{6 c^{4}}-\overline{\frac{b^{2}}{c^{2}}+\frac{b^{4}}{4 c^{4}}} \times \frac{y^{5}}{10 c^{4}}+$
$\overline{b^{2}}+\frac{b^{7}}{2 c^{4}}+\frac{b^{6}}{8 c^{6}} \times \frac{y^{7}}{14 c^{6}}$ © c.
By the very fame way of proceeding the Arch of an Ellipfis may be found, the Equations of the two.
Curves differing in nothing but their Signs.

S E C T I O N IX.

The Application of F_{Lu} uxions in invefigating the Contents of Solids.
145. ET ABC reprefent any Solid; conceived to be generated (or deferibed) by a Plane PQ paffing over it, with a parallel Motion: Let Hb (perpendicular to PQ) be taken to exprefs the Fluxion of AH (x) or the Velocity with which the generating Plane is carry'd; alfo let the Area of the Part, EmFn, of the Plane intercepted by, or contained in, the Solid, be denoted by A : Then it follows, from Art. 2 and 5. that the Fluxion of the Solid AEF , will be exprefled by $A \dot{x}$.
 From whence, by expounding A in Terms of x, (according to the Nature of the Figure) and then taking the Fiuent, the Content

The Uje of Fluxions

of the Solid (which we fhall, always, hereafter reprefent by s) will be given.

But, when the propofed Solid is that arifing from the Revolution of any given Curve AEB about AHD, as an Axis, the Fluxion (s) of the Solidity may be exhibited in a Manner more convenient for Practice: For, - Art. 124. putting the Area (3,141592 先c.*) of the Circle, whofe Radius is Unity, $=p$, and the Ordinate $\mathrm{EH}=y$, it will be $1^{2}: y^{2}:: p:\left(p y^{2}\right)$ the Area of the Circle EmF n, which being wrote above inftead of A, we have ; $=p y^{2} \dot{x}$. The Ufe of which will be fufficiently fhewn in the foliowing Examples.

E X A MPLE I.

146. Let it be propofed to find the Content of a Cone ABC.

Put the given Altitude (AD) of the Cone $=a$, and the Semi-diameter (BD of its Bafe $=b$: Then, the Diftance (AF) of the Circle EG, from the Vertex A, being denoted by x, छc. we have, by fimilar Triangles, as $a: b:: x: \operatorname{EF}(y)=\frac{b x}{a}$. Whence, in this Cafe, \dot{s}

$\left.i=p y^{2} \dot{x}\right)=\frac{p b^{2} x^{2} \dot{x}}{a^{2}}$; and confequently $s=\frac{p b^{2} x^{3}}{3^{a^{2}}} ;$ which, when $x=a$ ($=\mathrm{AD}$) gives $\frac{p b^{2} a}{3}\left(=p \times B D^{2} \times \frac{1}{3} \mathrm{AD}\right)$ for the Content of the whole Cone ABC . Which appears, from hence, to be juft $\frac{5}{5}$ of a Cylinder of the fame Bafe. and Allitude.

E X A M PLE II.

147. Where, let the Solid propofed be a parabolic Conoid, or that arifing from the Revolution of any Kind of Parabola about its Axis.
Then, from the Equation $a^{m-n} x^{n}=y^{m}$, of the generating Curve, we get $y=a^{\frac{m-\pi}{m}} x x^{\frac{n}{m}}$, and $\dot{s}\left(=p y^{2} \dot{x}\right)$ $=p a^{\frac{2 m-2 \pi}{m}} \times \dot{x} x^{\frac{2 n}{m}} ;$ and therefore $s=p a^{\frac{2 m-2 n}{m}} \times$ $\frac{x^{\frac{2 n}{m}+1}}{\frac{2 n}{m}+1}=p a^{\frac{2 m-2 n}{m}} \times \frac{m x^{\frac{2 n}{m}+1}}{2 n+m}=p a^{\frac{2 m-2 n}{m}} \times x^{\frac{2 \pi}{m}} \times$
$\frac{m x}{2 n+m}=p y^{2} \times \frac{m x}{2 n+m}=$ the Content of the Solid; which therefore is to $\left(p y^{2} x\right)$ the Content of the circumfcribing Cylinder, as m to $2 n+m$. Whence the Solid generated by the conical Parabola (where $m=2$, and $n=1$) appears to be juft $\frac{x}{2}$ of its circumfcribing Cy linder.

E X A M PLE III.

148. Let the propofed Solid AFBH be a Spheroid.

In which Cafe, putting the Axis $A B$, about which the Solid is generated, $=a$, and the other Axis FH, of the generating Ellipfis $=b$, it follows, from the Peperty of the Ellipfis, that $a^{2}: b^{2}:: x \times \overline{a-x}$ $(\mathrm{AD} \times \mathrm{BD}): y^{2}(\mathrm{DE})^{2}=\frac{b^{2}}{a^{2}} \times \overline{a x-x x:}$ Whence. we have $;\left(=p y^{2} \dot{x}^{*}\right)=\frac{p b^{2}}{a^{2}} \times \overline{a x \dot{x}-x^{2} \dot{x} ;}$ and Ar. 145 . $s=\frac{p b^{2}}{a^{2}} \times \frac{\sqrt{2} a x x-\frac{1}{3} x^{3}}{}=$ the Segment AIE. Which, when

The UJe of Fluxions

when $A D(x)=A B(a)$, becomes $\left(\frac{p b^{2}}{a^{2}} \overline{x^{\frac{1}{2}} a^{3}-\frac{1}{3} a^{3}}\right)$ $\frac{2}{6} a^{2}=$ the Content of the whole Spheroid. Where, if b (FH) be taken $=a(\mathrm{AB})$ we fhall alfo get $\frac{1}{6} p a^{3}$ for the true Content of the Sphere whore Diameter is a. Hence ä Sphere, or a Spheroid, is $\frac{2}{3}$ of its circumfcribing $\mathrm{Cy}-$ linder; for the Area of the Circle FH being expreffed
by $\frac{p b^{2}}{4}$, the Content of the Cylinder whofe Diameter is FH , and Altitude AB , will therefore be $\frac{p l^{2} a}{4}$; of which $\frac{2}{6} p a b^{2}$, is, evidently, two third Parts.

> E X A MPLE IV.
149. Let the Solid, whofe Content you would find, be the byperbolical Conoid.
Then, from the Equation, $y^{2}=\frac{b^{2}}{a^{2}} \times \overline{a x+x x}$, of the generating Hyperbola, we have $\dot{s}\left(p y^{2} \dot{x}\right)=\frac{p d^{2}}{a^{2}}$ $x \overline{a x \dot{x}+x^{2} \dot{x}}$, and confequentlys $=\frac{p b^{2}}{a^{2}} \times \overline{\frac{\overline{1}}{2} a x^{2}+\frac{7}{3} x^{3}}$ $=$ the Content of the Conoid; which therefore is to $\left(\frac{p b^{2}}{a^{2}} \times \overline{a x+x^{2}} \times x\right)$ that of a Cylinder of the fame Bafe and Altitude, as $\frac{1}{2} a+\frac{x}{3} x$ to $a+x$. This Ratio, if x be extremely fmall, will become as i to 2 very nearly: Whence it may be inferr'd, that the Content

in finding the Contents of Solids.

of a very fmall Part of any Solid, generated by a Curve, whofe Ray of Curvature at the Vertex is a finite Quantity, is half that of a Cylinder of the fame Bafe and Altitude, very nearly : Becaufe any fuch Curve, for a fmall Diftance, will differ infenfibly from an Hyperbola, whofe Radius of Curvature, at the Vertex, is the fame.

This might have been inferred, either, from the common parabolic Conoid, or the Spheroid, in the preceding Examples; but other Obfervations would not allow Room for it there.

EXAMPLEV.

150. In which the propofed Solid is that arijing from the Rotation of the Ciffoid of Diocles, about its $A x i$.

$$
\text { Here, } y^{2} \text { being }=\frac{x^{3}}{a-x^{\prime}} \text {, we have } \dot{s}\left(p y^{2} \dot{x}\right)=\text { Art. } 500
$$

$\frac{p x^{3} \dot{x}}{a-x}$. But, in Cafes like this, (where the Denominator
is rational and the variable Quantity in the Numerator of feveral Dimenfions) it will be neceffary to divide the latter by the former, in order to obtain the Fluent, by leffening the Number of Dimenfions: Thus, dividing $p x^{3} \dot{x}$ by - $x+a$, according to the Manner of compound Quantities, the Work will fand thus :
$-x+a) \underset{p x^{3} \dot{x}-0}{p a x^{2} \dot{x}}\left(-p x^{2} \dot{x}-p a x \dot{x}-p a^{2} \dot{x}\right.$
$+p a x^{2} \dot{x}-0$
$+p a x^{2} \dot{x}-p a^{2} x \cdot \dot{x}$
$+p a^{2} x \dot{x}-0$
$+p a^{2} x x-p a^{3} \dot{x}$
$+p a^{3} \dot{x}$
Where, the Quotient being - $p x^{2} \dot{x}-p a x \dot{x}-p a^{\frac{1}{i} \dot{x}}$, and the
Remainger $p a^{3} \dot{x}$, the Value of the given Fraction $\frac{p x^{3} \dot{x}}{a-x^{2}}$,

The Ufe of FLuxions

will therefore be truly expreffed by - $p x^{2} \dot{x}$ - $p a x \dot{x}$ $p a^{2} \dot{x}+\frac{p a^{3} \dot{x}}{a-x}$: Whofe Fluent, properly corrected, is $-\frac{1}{3} p x^{3}-\frac{2}{2} p a x^{2}-p a^{2} x+p a^{3} \times$ byp. Log. $\frac{a}{a-x}$ Vid, Art. 126.

EXAMPLE VI.

151. Let the Solid be that arijing from the Rotation of the Conchoid of Nicomedes about its Axis.

The Sub-tangent $\frac{y \dot{x}}{\dot{y}}$ of this Curve being $=\frac{-a b^{2}-y^{3}}{y \sqrt{b^{2}-y^{2}}}$ (Vid. Art. 48 and 57. .) we have $\dot{x}=\frac{-a b^{2} \dot{y}-y^{3} j}{y^{2} \sqrt{b^{2}-y^{2}}}$, and

- Art 145. therefore $\dot{s}\left(p y^{2} \dot{x}^{*}\right)=\frac{-p a b^{2} \dot{y}-p y^{3} \dot{y}}{\sqrt{b^{2}-y^{2}}}=-\frac{p a b^{2} \dot{y}}{\sqrt{b^{2}-y^{2}}}$ $-\frac{\partial y^{3} \dot{y}}{\sqrt{b^{2}-y^{2}}}$. But, in order for the more ealy finding the Fluent thereof, put $\sqrt{b^{2}-y^{2}}=u$; and then, y being $=\sqrt{b^{2}-u^{2}}$, and $j=\frac{-u u}{\sqrt{b^{2}-u^{2}}}$, we fhall, by Subftitution, get $\dot{s}=\frac{p a b^{2} \dot{u}}{\sqrt{b^{2}-u^{2}}}+p \times \overline{b^{2} \dot{u}-u^{2} \dot{u}}$. Whence, the Fluent of $\frac{u}{\sqrt{b^{2}-u^{2}}}$ being expreffed by the Arch (A) of the Circle whofe Radius is Unity and \dagger Art 342. Sine $\frac{u}{b} t$, the Fluent of the whole Expreffion will be $p a b^{2} \times A+p \times \overline{b^{2} u-\frac{1}{3} u^{3}}$. Which, when $y=0$, or $u=b$, gives ($p a b^{2} \times \frac{2}{2} p+p \times \frac{2}{3} b^{3}$) $p b^{2} \times \overline{\frac{7}{2} p a+\frac{2}{3} b}$ for the Content of the whole Solid, when its Axis becomes infinite.

EXAMPLE VII.

152. Where it is required to find the Content of a parabolic Spirdle; generated by the Rotation of a given Parabola ACB about its Ordinate AB.

Put CM (the Abfciffa of the given Parabola) $=a$, and the Semi-ordinate AM (or BM) $=b$; and, fuppofing ENF to be any Section of the Solid parallel to DC, let its Diftance MN (or EP) from DC, be denoted by w: Then, by the Property of the Curve, we fhall.

have $\mathrm{AM}^{2}\left(b^{2}\right): \operatorname{EP}^{2}\left(w^{2}\right):: \mathrm{CM}(a):: \mathrm{CP}=$ $\frac{a w^{2}}{b^{2}}$: Therefore EN $(=\mathrm{CM}-\mathrm{CP})=a-\frac{a w^{2}}{b^{2}}=$ $\frac{a \times \overline{b^{2}-w^{2}}}{b^{2}}$, and confequently $p \times \mathrm{EN}^{2}=\frac{p a^{2}}{b^{4}} \times$ $\overline{b^{4}-2 b^{2} w^{2}+w^{4}}=$ the Area of the Section EF : Which multiply'd by (\dot{w}) the Fluxion of MN, gives $\frac{p a^{2}}{b^{4}} \times \overline{b^{4}+\dot{w}-2 b^{2} w^{2} \dot{w}+w^{+}+\dot{w}}$ for the Fiuxion of the Solidity, * whofe Fluent, $\frac{p a^{2}}{b^{4}} \times \overline{b^{4} w-\frac{2}{3} b^{2} w^{3}+\frac{1}{5} w^{5}}$, Art. 1450 when w becomes $=b_{2}$ is $\left(\frac{8 p a^{2} b}{15}\right)$ half the Content of the Solid.

The Ufe of Fluxions

E X A MPLE VIII.

153. Let the Solid ACBD (See the laft Figure) be ea Spindle, generated by the Rotation of the Segment of a Circle, $A C B$, about its Chord, or Ordinate, AB.

Then, if the Radius OE be put $=r, \mathrm{OM}=d$, and $\mathrm{EP}=w \mathrm{E}^{5}$. (as before) we fhall have OP($=$ $\left.\sqrt{U E-E P^{2}}\right)=\sqrt{r^{2}-v^{2}}$, and EN ($=O P-O M$) $=\sqrt{r^{2}-w^{2}}-d$: Therefore \dot{s}, -in this Cafe, is $=$ $p \dot{v} \times \sqrt{r^{2}-w^{2}}-\left.a\right|^{2}=p r i v \times \overline{r^{2}-w^{2}+d^{2}-2 d \sqrt{r^{2}-w^{2}}}$ $=p \dot{w} \times \overline{r^{2}-d^{2}-w^{2}}-p r i v \times \overline{2 d \sqrt{r^{2}-w^{2}-2 d^{2}}:}$ Whence, the Fluent of the Part, $p \dot{w} \times \frac{2 d \sqrt{r^{2}-w^{2}-2 d^{2}}}{\sqrt{r}}$ ($\left.=2 d p \times \dot{\omega} \times \sqrt{r^{2}-\omega^{2}}-d=2 d p \times \dot{w} \times \mathrm{EN}\right)$ *Art. 122. being expreffed by $2 d p \times$ Area MNEC* the Fluent of the Whole, or the true Value of s, will be exprefled by $p w \times \overline{r^{2}-d^{2}-\frac{1}{3} w^{2}}-2 d p \times$ Area MNEC, or by its Equal $p \times M N \times \overline{{A M^{2}-\frac{1}{3} M N^{2}}^{2}}-2 p \times O M$ \times Area MNEC: Which, when $M N=M A$, gives $p \times \frac{2}{3} \mathrm{AM}^{3}-2 p \times \mathrm{OM} \times$ Aria $A C M$, for the Content of half the Solid: Where the Area $A C M$ may be found by Art. 124. or more eafily by the common Table of the Areas of the Segments of a Circle; to be met with in moft Book's of Gauging.

E X A M P L E IX.

154. Let it be propofed to find the Content of the Solid AEGB; whofe four Sides AH. AF, CH, CF are plane Surfaces, and its Ends ADCB, EFGH giveh Rectangles, parallel to each other.

Let the Sides $A B$ and $A D$, of the Bafe, be denoted by a and b; and thore of the TOp (EH and EF) by c and d refpectively; moreover, let b exprefs the perpendicular
dicular Height of the Solid; and let x (confider'd as variable) be the Diftance of (IL) any Section thereof (parallel to the Bare) from the Plane EG.

It is evident, from the Nature of the Figure, that the Section IL is a Rectangle ; and that
$b: x:: \mathrm{AB}-\mathrm{EH}: \mathrm{IM}-\mathrm{EH}:: \mathrm{BC}-\mathrm{HG}: \mathrm{ML}-\mathrm{HG}$. From there Proportions we have IM-EH $=\frac{\overline{a-c} \times x}{b}$ and $\mathrm{ML}-\mathrm{HG}=\frac{\overline{b-d} \times x}{b}$: Hence IM $=\frac{\overline{a-c} \times x}{b}$ $4 c$, and $\mathrm{ML}=\frac{\overline{b-d} \times x}{b}+d$; and confequently the Area of the Rectangle (IL) $=\frac{\overline{a-c} \times \overline{b-d}}{b^{2}} \times \cdots x^{2}+$ $\frac{a d-2 c d+c b}{b} \times x+c d$: Which being multiply'd by $\dot{\dot{x}}$, and the Fluent taken, there results $\frac{\overline{a-c} \times \overline{b-d} \dot{x} x^{3}}{3^{b^{2}}}$ $4 \frac{\overline{a d-2 c d+c b x x^{2}}}{2 h}+c d x$ for the Content of IFGL:

Which, when $x=h$, becomes $\left(\frac{\overline{a-c} \times \overline{b-d} \times b}{3}+\right.$

$$
\left.\frac{\overline{a d-2 c d+c b} \times b}{2}+c d b=\overline{2 a b+a d+b c+2 c d} \times \div b=\right)
$$

 the Quantity proposed to be found.
If EF (d) be fuppofed to vanifh, and the Lines EH and FG to coincide, the Planes AEHB and DFGC will form an Angle or Ridge, at the Top of the Solid (refembling the Roofs of rome Buildings, whore Ends as well as Sides run up floping) and, in this Cafe, the Content, found above, will become more fipple, being then expreffed by $\overline{2 a b+b c} \times \frac{1}{6} h$, or its Equal $\overline{2 A B+E H}$ $\times \mathrm{AD} \times \frac{1}{\frac{1}{2}}$.
But, if $E F$ be fuppofed $=E H$, and $A D=A B$, the Solid will then be the Fruftrum of a fquare Pyramid; and its Content $=\overline{a^{2}+a c+c^{2}} \times \frac{1}{3} h,=\overline{\mathrm{AB}^{2}+\mathrm{AB} \times \mathrm{EH}+\mathrm{EH}^{2}}$ $\times \frac{1}{3} b$: From whence, by taking EH $=0$, the Content of the whole Pyramid whore Bare is AB^{2}, and its Altitude h, will alfo be given, being $=A B^{2} \times \frac{1}{3} h$.

> EX A MPLEX.
155. Let the proofed Solid be that, commonly known by the Name of a Groin; whore Sections parallel to the Bate are, all, Squares, and whereof the two Sections perpendicular to the Bare, through the Middle of the oppofite Sides, are Semi-circles.

Let bcdef be any Section paralle to the Bare; and letitsDiftance A b from the Dertex of the Solid, be denoted by x; alfolet a reprefent ${ }^{*}$ the Radius AB (or BN) of the

in finding the Contents of Solids.

circular Section ABNA, perpendicular to the Bafe. Then, $b n$ being (by the Property of the Circle) $=$ $2 a x-x x$, the Side of the Square df, will be $=$ ${ }_{2} \sqrt{2 a x-x x}$, and therefore the Area $=4 \times \overline{2 a x-x x}$; whence $s=4 \dot{x} \times \overline{2 a x-x x}$, and confequently $s=4 \pi x^{2}$ $-\frac{4 x^{3}}{3}$: Which, when $x=a$, becomes $\frac{2 \pi 7^{3}}{3}=$ the Content of the whole Solid.

If the Solid be a Groin of any other Kind, or fuch, that its two Sections perpendicular to the Bafe, through the Middle of the oppofite Sides, are any other Curves than Semi-circles, the Content may, ftill, be found in the fame Manner; and will be always in proportion to the Solid generated by the Revolution of the faid Curve about its Axis, as a Square, is to its infcribed Circle. But, if the forefaid perpendicular Sections be Curves of different Kinds, the Sections parallel to the Bare will no longer be Squares, but Rectangles; whofe Sides are the correfponding (double) Ordinates of the refpective Curves. Thus, for Inftance, let one Section be a Circle and the other a Parabola, whofe Ordinates, to the common Ablcifla, x, are cxprefled by $\sqrt{d x-x x}$ and $\sqrt{a x}$, refpectively; then the Sides of the rectangular Section, parallel to the Bafe of the Groin, will be $2 \sqrt{d x-x x}$ and $2 \sqrt{a x}$: Whence the Area of that Section is $=4^{x}$ $\sqrt{a d-a x}$ and therefore $\dot{s}=4 x \dot{x} \sqrt{a d-a x}$: Where, by taking the Fluent, ${ }^{*} s=$

Content of fuch a Solid.

EX A M PLEXI:

156. Where she Solid BACD proposed is a kind of Cone, or Pyramid; form'd by conceiving Right-lines to be drawn from every Point in the Perimeter of any given Plane BDC, to a given Point, or Vertex, A above that Plane.

Let EFG be any Section parallel to BDC , whole perpendicular Di^{2} france ($A Q$) from the Vertex let be denoted by x; moreover, let the whole given Altitude (AP) of the Solid be put $=a$, and the Area of the Bare BDC (which is aldo fuppofed given) $=6$.

In the firft place, it is leafy to conceive that the Planes BDC and EFG mut be fimilar: And therefore, fince fimilar Figures are to each other as the Squares of their like Sides, or Dimenfions, it follows that $\mathrm{AP}^{2}\left(a^{2}\right): \mathrm{AQ}^{2}\left(x^{2}\right):: \mathrm{BDC}(b): \mathrm{EFG}=\frac{b x^{2}}{a^{2}}$. Whence $\dot{s}=\frac{b x^{2} \dot{x}}{a^{2}}$, and consequently $s=\frac{b x^{3}}{3 a^{2}}=\frac{b a}{3}$, when $x=a$. Therefore the Solidity of a Cone or Byramid, let the Figure of its Bare be what it will, is always had by multiplying the Area of the Bare by $\frac{1}{3}$ of the Altitude.

E X A MPLE XII.

157. Where it is propofed to find the Content of the Ungula EFGC, cut off from a given Cone, $A B C$, by a Plane EFG paffing through the Bare thereof.

Let AD be the perpendicular Height of the Cone, alfo let AM be perpendicular to HE , the Axis of the Section FEG, and let FAG be another Section of the Cone, thro' FG and the Vertex A.

Since the Solids CAFG and EAFG, whofe Bafes are FCG, and FEG, come under the Form fpecified in the preceding Example, their Contents will therefore be expreffed by FCG $\times \frac{1}{3} \mathrm{AD}$ and FEG $\times \frac{3}{3}$ AM refpectiveFCG $\times A D-F E G \times A M$
ly: Whofe Difference,
3
is the Solidity of the Ungula CEFG: Where the Bafes FCG and FEG being conic Sections, their Areas will be given by Art. 115.124 and 129 . from whence the whole will be known. Thus, if HE be fuppofed parallel to $A B$, the Section FEG, then being a Parabola, its Area will be $=\frac{2}{3} \times F \mathrm{FG} \times E \mathrm{EH}^{*}:$ Whence the Solidity of the *Art, 1150 N 4

Segment EFGA is $=\frac{7}{9} \times \mathrm{FG} \times \mathrm{EH} \times \mathrm{AM}:$ Which being deducted from that of CFGA (found by Help of the common Table of circular Segments) the Remainder will be the Content of the Ungula. But, if the Axis EH produced, cuts AB, the Section FEG will be a Segment of an Ellipfis EFKG; whofe conjugate Axis (fuppofing EN and KL perpendicular to AD) is

- Art. 4 i. $=2 \sqrt{E N \times K L}$. Now, in order to compute the Content, the eafieft way, in this Cafe, let the Ratio of EH to EK (which is given by Trigonometry) be expreffed by that of m to Unity, and let the Ratio of CH to CB, be as n to Unity: And from the common Table of Segments (adapted to the Circle whofe Diameter is Unity) let the Areas anfwering to the verfed Sines in and n, be taken and denoted by M and N refpectively : Then, the Area of FE ($\dot{\text { being }}=M \times \mathrm{EK} \times$
\dagger Art. $1242 \sqrt{E N} \times \mathrm{KL}$, and that of $\mathrm{FCG}=N \times \mathrm{BC}^{2}+$, the and 130; Content of the Ungula, by fubftituting thefe Values, will become $=\frac{1}{3} N \times \mathrm{BC}^{2} \times \mathrm{AD}-\frac{1}{3} M \times \mathrm{EK} \times \mathrm{AM} \times$ ${ }_{2} \sqrt{\mathrm{EN} \times \mathrm{KL}:}$ But, fince $\mathrm{AM}: \mathrm{AE}:: \mathrm{KQ}$ (perpend:cular to AC) : KE; and AN : AE :: KQ: KI, it follows, by Equality, that $\mathrm{AM} \times \mathrm{KE}=\mathrm{AN} \times \mathrm{KI}$; whence the Content of the Ungula is alfo expreffed by $\frac{1}{3} N \times \mathrm{BC}^{2} \times \mathrm{AD}-\frac{2}{3} M \times \mathrm{AN} \times \mathrm{KI} \times 2 \sqrt{\mathrm{EN} \times \mathrm{KL}}$. Which, if H be fuppofed to coincide with B , and KI_{I} with BC , will become $\frac{(0.78539}{3} \xi_{c}$. $\times \mathrm{BC}^{2} \times \mathrm{AD}-$ 0.78539

$$
\xi_{c .} \times A N \times B C \times 2 \sqrt{E N \times B D}=0.26179
$$

छcc. $\times \mathrm{BC} \times \mathrm{BC} \times \mathrm{AD}-2 \mathrm{AN} \times \sqrt{\mathrm{EN} \times \mathrm{BD}}$.
When the Section EFG is an Hyperbola, its Area may be found by means of a Table of Logarithms (inftead of a Table of Segments) whence the Content of the Ungula will likewife be had in that Cafe.

E X A M PLE XIII.

158. Let AFC, or AGD, be a Curve of any Kind; whofe Area, and the Content of the Solid arifing from its Rotation about its Axis, or Ordinate, $A B$, are both known; it is propofed to find, from thence, the Content of the Solid generated by the Revolution of that Curve about any other Line PR parallel to the faid Axis or Ordinate $A B$.

Let AP, FQ, and CR be all perpendicular to $A B$ and to the Axis of Motion PQR ; alfo let AP (or EQ) $=a, \mathrm{AE}$, confidered as variable, $=w$, the Area AFE , or $\mathrm{AEG}=M$, and the Solid, arifing from its Revolution about $\mathrm{AB},=$ N. It is plain that the Area of the Circle generated by QF will be $=p x$ $\mathrm{FQ}^{2}{ }^{*}=p \times \overline{a+E F}{ }^{2}$ $=p a^{2}+2 p a \times E F+p \times$ EF^{2}; from which de-

C D

* Art. 14 S. ducting the Area, $p a^{2}$, generated by QE , the Remainder, $2 p a \times \mathrm{EF}+p \times \mathrm{EF}^{2}$, will be the Area of the Annulus generated by EF: Whence the Fluxion of the Solid generated by AEF is truly reprefented by $2 p a \times E F \times \dot{\sim}+p \dot{w} \times E F^{2}+:$ And, in the fame manner, it will appear that the Fluxion of the Solid generated by AEG is $2 p a \times E G \times \dot{w}$ - pri $\times \mathrm{EG}^{2}$. But the Fluent of $\mathrm{EF} \times$ ris (or $\mathrm{EG} \times \dot{v}$) is = the Area (M) of AEF (or AEG) \ddagger, and that of $p \dot{u} \times E F^{2}$ (or $p \dot{w} \times E^{2}$) equal to (N) the given Solid \ddagger Art. 112. arifing from that Area \S; therefore the Fluent of the W hole, or the Solidity required, is $2 p a M+N$, in the former Cafe, and $2 p a M-N$ in the latter; where $2 p a$,

The Ufe of Fluxions

in either Cafe, expreffes the Periphery of the Cylinder defcribed by AB, about the Axis of Rotation PR.

Hence, if $A B C$ and $A B D$ are equal and fimilar to each other, then the Value of $M \xi^{\circ} c$. being the fame in both Cafes, it follows that the Content of the Solid generated by AFG will be expreffed by $2 p a \times 2 M$, or $2 p 3 \times$ Area AFG.

Now, if (for Example fake) ACD be fuppofed a Circle, whofe Semi-diameter is d, the Area of that Circle being $=p d^{2}$, the Solid generated by its Revolution (reprefenting the Ring of an Anchor) will therefore be $=2 p a \times p d^{2}=2 p^{2} a d^{2}$. But if you would know the Content of the Part generated by the upper Semicircle BAC, or the lower one BAD, let the Content *Art. 14 8 . $\left(\frac{4 p d^{3}}{3}\right)$ * of a Sphere whofe Semi-diameter is d, be wrote for N, in each of the two foregoing Expreffions, and you will then get $p^{2} a d^{2}+\frac{4 p d^{3}}{3}$, and $p^{2} a d^{2}-\frac{4 p d^{3}}{3}$.

Again, if AFC, and AGD be taken as Right-lines, you will have $M=\frac{\mathrm{AB} \times \mathrm{BC}}{2}$ (or $\frac{\mathrm{AB} \times \mathrm{BD}}{2}$) and \dot{N} tArt.146. $=p \times \mathrm{BC}^{2} \times \frac{1}{3} \mathrm{AB}$ (or $p \times \mathrm{BD}^{2} \times \frac{1}{3} \mathrm{AB}$) + : Hence the Solid generated by the Triangle $A B C$ is $(=2 p a \times$ $\left.\frac{A B \times B C}{2}+\frac{p}{3} \times \mathrm{BC}^{2} \times \mathrm{AB}\right)=p \times \mathrm{AB} \times \mathrm{BC} \times$ $\overline{\mathrm{RB}+\frac{1}{3} \mathrm{BC}}$; and that generated by ABD ($=2 p a \times$ $\left.\frac{A B \times B D}{2}-\frac{p}{3} \times B^{2} \times A B\right)=p \times A B \times B D \times$ $\overline{\mathrm{RB}-\frac{1}{3} \mathrm{BD}}$.

Laftly, let $A B C$ (or ABD) be confidered as a Parabola, whore Ordinate is $A B$, and A xis $C B$ (or $D B$): \ddagger Art. 115. Then M being here $=\frac{2}{3} \mathrm{AB} \times \mathrm{BC}\left(\right.$ or $\left.\frac{2}{3} \mathrm{AB} \times \mathrm{BD}\right) \ddagger$ §At. 152 . and $N=\frac{8 p}{15} \times \mathrm{AB} \times \mathrm{BC}^{2}$ § (or $\frac{8 p}{15} \times \mathrm{AB} \times \mathrm{BD}^{2}$)
in finding the Superficies of Solids.
it follows that the Solid generated by ABC will be $\left(=2 \rho a \times \frac{2}{3} \mathrm{AB} \times \mathrm{BC}+\frac{8 p}{15} \times \mathrm{AB} \times \mathrm{BC}^{2}\right)=4 p \times$ $A B \times B C \times \frac{5 B R+2 B C}{15}$, and that generated by $A B D$ $=4 p \times \mathrm{AB} \times \mathrm{BD} \times \frac{5 \mathrm{BR}-2 \mathrm{BD}}{15}$.

SECTIONX.

The Ufe of Fluxions in finding the Superficies of folid. Bodies.
159. ET FAF repreL. fent a Solid generated by the Revolution of any given Curve AF about its Axis AH; alfo let a Circle, whofe Diameter is the variable Line (or Ordinate) $R B R$, be conceived to move uniformly from A towards IF, and to dilate itfelf fo, on all Sides, at the fame time, as to generate, by its Periphery, the propofed Superficies RAR: Then the Length of that Periphery, or the generating Line, being exprefled by 3, 141592 * ซ゙ゥ. \times RR ($=2 p y$) and the Celerity with which it moves by $\dot{z}+$

* Art, 142 , †Art. 135 the Fluxion of the Superficies RAR, or the Space that IO
would be uniformly generated in the time of defcribing \dot{z}, will therefore be truly reprefented by $2 p y \dot{z}$.

Hence, if w be taken to reprefent the whole Surface RAR, generated from the beginning (according to the Method observed in the three laft Sections) we Shall

- Art. $3_{35 .}$ have $r \dot{u}=2 p y \dot{z}=2 p y \sqrt{\dot{x}^{2}+\dot{y}^{2}}$; whence w itself may be found,

EXAMPLE I.

160. Let it be propped to determine the convex Superfacies of a Cone ABC .

Then, the Semi-diameter of the Bare (BD, or CD) being put $=b$, the planting Line, or Hypothenufe, $\mathrm{AC}=c$, and FH (parallel to DC) $=y \mathrm{E}_{6} c$. we fall, from the Similarity of the Triangles ADC and Hmb , \dagger Art 159. have $b: c:: \dot{j}(m b): \dot{z}(H b)=\frac{c \dot{y}}{b}$: Whence $\dot{w}(2 p y \dot{z}+)$ $=\frac{2 p c y \dot{y}}{b}$; and consequently $w=\frac{p c y^{2}}{b}$. This, when
 $y=b$, becomes $=p c b=p$ $\times D C \times A C=$ the convex Superficies of the whole Cone ABC: Which therefore is equal to a Rectangle under half the Circumference of the Bare and the flatting Line.

in finding the Superficies of Solids.

EX A M PEI.

16r. Let the Solid, whole Surface you would find, be a Sphere AEBH.

In which Cafe, putting the Radius $\mathrm{OH}=a, \mathrm{AF}=x$, $H m=\dot{x}, E^{\circ} c$. we fall (by reafon of the fimilar Mriangles OHF and $\mathrm{Hmb}{ }^{*}$) have $y(\mathrm{FH}): a(\mathrm{OH})::$ *Art. 68 . $\dot{x}(\mathrm{H} m): \dot{z}(\mathrm{H} b)=\frac{a \dot{x}}{y}$: Therefore $\dot{\operatorname{viv}}(2, \dot{y} \dot{z})=$ pax; ; and consequently the Superficies (w) itself $=2 p a x=\mathrm{AF} \times$ Periph. AEBH. Which, if the whole 'Sphere be taken, will become $\mathrm{AB} \times \mathrm{Pe}_{-}$ riph. $\mathrm{AEBH}=$ four times the Area BEAHO.

Hence the Superficies of a Sphere is equal to four times the Area of its greateft Circle : And
 the convex: Superficies of any Segment thereof, is to that of the W hole, as the Axis (or Thicknefs) of the Negmont to the Diameter of the Sphere.

EX AM P LE III.

162. Wherein let the parabolic Conoid be proposed.

The Equation of the generating Parabola being $a x=y^{2}$, or $x=\frac{y^{2}}{a}$, we have $\dot{x}=\frac{2 y \dot{y}}{a}$, and therefore $\dot{z}\left(=\sqrt{\dot{j}^{2}+\dot{x}^{2}}+\right)=\sqrt{\dot{y}^{2}+\frac{4 y^{2} \dot{y}^{2}}{a}}=\frac{\dot{y} \sqrt{a^{2}+4 y^{2}}}{a}:+$ Art. 1350 Hence $r \dot{v} \cdot(2 p y \dot{y})=\frac{2 p y \dot{y}}{a} \times a^{2}+4 y^{2} 7^{\frac{1}{2}}$; whereof the

Tbe Ufe of Fiuxions

Fluent is $\frac{\left.p \times \overline{a^{2}+4 y^{2}}\right)^{\frac{3}{2}}}{6 a}$; which corrected (by fup-

- Art. 79. pofing $y=0$ *) gives $\frac{p \times \overline{\left.a^{2}+4 y\right)^{\frac{3}{2}}}}{6 a}-\frac{p a^{2}}{6}$, for the Superficies fought.
EXAMPLEIV.

163. Let it be required to determine the Superficies
of a Spheroid.

Let ACFHG reprefent one half of the propofed Spheroid, generated by the Rotation of the Semi-ellipfis FAG, about its Axis AH; put $\mathrm{AH}=a, \mathrm{FH}$ (or HG) $=c, \mathrm{BH}=x, \mathrm{BC}=y, \mathrm{FC}=z$, and the Superficies generated by FC (or GD) $=w$: Then, from the Na-

ture of the Ellipfis, we have $y=\frac{c}{a} \sqrt{\overline{a^{2}-x^{2}}}$; whence +Art. 135. $\dot{y}=-\frac{c x \dot{x}}{a \sqrt{a^{2}-\dot{x}^{2}}}$, and confequently $\dot{z}\left(=\sqrt{\dot{x}^{2}+\dot{y}^{2}}+\right)$.
$=\sqrt{\dot{x}^{2}+\frac{c^{2} x^{2} \dot{x}^{2}}{a^{2} \times a^{2}-x^{2}}}=\frac{\dot{x} \sqrt{a^{4}-a a-a x x x}}{a \sqrt{a a-x x}}=$
$\dot{x} \sqrt{a^{4}-b^{2} x^{2}}$
$\frac{a \sqrt{a^{2}-x^{2}}}{a}=$ (by putting (the Excentricity)
$\left.\sqrt{a^{2}-c^{2}}=b\right)=\frac{b \dot{x} \sqrt{\frac{a^{4}}{b b}-x^{2}}}{a \sqrt{a^{2}-x^{2}}}$: Therefore, in
this Cafe, $+\dot{v}(2 p y \dot{z})=\frac{2 p b c \dot{x}}{a a} \sqrt{\frac{a^{4}-x^{2}}{b b}}$; whole Fluent, in an Infinite Series, is $2 p c x \times$
$1-\frac{b^{2} x^{2}}{2 \cdot 3 a^{4}}-\frac{b^{4} x^{4}}{2 \cdot 4 \cdot 5 a^{8}}-\frac{3^{6} x^{6}}{2 \cdot 4 \cdot 6 \cdot 7 a^{22}}$. But the fame
Fluent may be, otherwife, very eafily exhibited by means of the Area of a Circle: For, if from the Center H, with a Radius equal to $\frac{a a}{b}$, a Circle SER be defcribed, and the Ordinate $B C$ be produced to interfect it in E , it is evident that $\mathrm{BE}=\sqrt{\frac{a^{4}}{b b}-x x}$, and that the Fluxion of the Area ESHB will be expreffed by \dot{x} $\sqrt{\frac{a^{4}}{b b}-x^{2}}$; which being to $\frac{2 p b c \dot{x}}{a \dot{a}} \times \sqrt{\frac{a^{4}}{b b}-x^{2}}$, the Fluxion before found, in the conftant Ratio of I to $\frac{2 p b c}{a^{2}}$, their Fluents muft therefore be in the fame Ratio; and fo the latter, expreffing the Superficies CFGD, will confequently be $=\frac{2 p b c}{a a} \times \mathrm{BESFH} \doteq 2 p \times \frac{\mathrm{FH}}{\mathrm{HS}}$ \times BESFH.

This Solution, it may be obferved, obtains only in Cafe of an oblong Spheroid, generated by the Rotation of the Ellipfis about its greater Axis; for, in an oblate

The Ufe of Fluxions

Spheroid, generated about the leffer Axis, the Value of b $\left(\sqrt{a^{2}-c^{2}}\right)$ will be impoffible; fince, in this Cafe HF is greater than HA. But, if we, here, put $b=$ $\sqrt{c^{2}-a^{2}}$, and $d=\frac{a^{2}}{b}$, the Value of \dot{w} (found above) will become $=\frac{2 p b c \dot{x}}{a^{2}} \sqrt{\frac{a^{4}}{b b}+x^{2}}=\frac{2 p c \dot{x}}{d} \sqrt{d^{2}+x^{2}}$ $=\frac{2 p c}{d} \times \dot{x} \sqrt{a^{2}+x^{2}}$: Whofe Fluent may be brought out by help of a Table of Logarithms: For, let the variable Part $\dot{x} \sqrt{d^{2}+x^{2}}$ be tranfformed to $\left(\frac{\dot{x} \times \overline{d^{2}+x^{2}}}{\sqrt{d^{2}+x^{2}}}=\frac{d^{2} \dot{x}+x^{2} \dot{x}}{\sqrt{d^{2}+x^{2}}}=\frac{d^{2} x \dot{x}+x^{3} \dot{x}}{\sqrt{d^{2} x^{2}+x^{4}}}\right.$ $=) \frac{\frac{1}{2} d^{2} x \dot{x}+x^{3} \dot{x}}{\sqrt{d^{2} x^{2}+x^{4}}}+\frac{\frac{1}{2} d^{2} x \dot{x}}{\sqrt{d^{2} x^{2}+x^{4}}}$, fo that the Numerator of the firft Term $\frac{\frac{1}{2} d^{2} x \dot{x}+x^{3} \dot{x}}{\sqrt{d^{2} x^{2}+x^{4}}}$ (now in a given Ratio to the Fluxion of the Quantity under the radical
*Art. 77. Sign) may be had by the common Rule *; by which means we get $\frac{x}{2} \sqrt{d^{2} x^{2}+x^{4}}$, for the true Fluent of the faid Term; to which adding the Fluent of the other Term $\frac{\frac{1}{2} d^{2} x \dot{x}}{\sqrt{d^{2} x^{2}+x^{4}}}$, or $\frac{\frac{1}{2} d^{2} \dot{x}}{\sqrt{d^{2}+x^{2}}}$ (given by Art. 126.) there arifes $\frac{x}{2} x \sqrt{d^{2}+x^{2}}+\frac{1}{2} d^{2} \times$ hyp. Log. $x+\sqrt{d^{2}+x^{2}}$, for the Fluent of $\dot{x} \sqrt{d^{2}+x^{2}}$: And \dagger Art. 8 8. this, corrected \dagger and multiplied by $\frac{2 p c}{d}$, gives $\frac{p c x}{d}$ $\sqrt{d^{2}+x^{2}}+p c d \times$ hyp. Log. $\frac{x+\sqrt{d d+x x}}{d}$, for the Superficies in this Cafe, where the propofed Spheroid is an oblate One.

EXAMPLE V.

164. Let the Solid, whole Superficies is fought, be the hyperbolical Conoid.

Let the femi-tranfuerfe Axis, of the generating Hy perbola, $=a$, the fermi-conjugate $=c$, and the Diftance of any Ordinate from the Center thereof $=x$; then from the Nature of the Curve you will have $y=$ $\frac{c}{a} \sqrt{x^{2}-a^{2}} ;$ whence $\dot{y}=\frac{c x \dot{x}}{a \sqrt{x x-a a}}, \dot{z}=$ $\frac{\dot{x} \sqrt{\overline{a^{2}+c^{2} \times x^{2}-a^{4}}}}{a \sqrt{\dot{\tilde{x} x-a a}}}$, and $\dot{\text { io }}(2 \not p y \dot{z})=\frac{2 p \dot{x}}{a a} \times$
$\sqrt{a a+c c} \times x x-a^{4}$; which last Value, if d^{2} be put $=$ $\frac{a^{4}}{a^{2}+\sigma^{2}}$, will be more commodioully expreffed by $\frac{2 p c \dot{x}}{d} \sqrt{x^{2}-d^{2}}$: whereof the Fluent, by proceeding as in the latter Part of the foregoing Example, will come out $=\frac{p c x \sqrt{x x-d d}}{d}-p c d \times$ byp. Log.
$x+\sqrt{x^{2}-d^{2}}:$ Which corrected (by taking $x=a$) becomes $\frac{p c x}{d} \sqrt{x x-d d}-p c^{2},-p c d \times$ hyp. Log. $\frac{x+\sqrt{x^{2}-d^{2}}}{a+\frac{c d}{a}}$, the true Meafure of the required Cu-

> EXAMPLE VI.
165. Let it be proposed to find the Superficies of the Solid called a Grain. (Yid. Art. 155.)
Let b chef be any Section of the Solid parallel to the Bale thereof, and let x denote its Difance from the
Vertex

Vertex A, alfo put z equal to the corresponding Arch An of the femi-circular Section N nA σ_{c}. whole Radius AB or BN let be denoted by a.

It appears from Art. 161. that $\approx=\frac{a \dot{x}}{\sqrt{2 a x-x x}}$:

- Atr.159. Which Value, multiplied by $(2 \sqrt{2 a x-x x})$ that of $d e(=2 b n)$ gives $2 a \dot{x} *$ for the Fluxion of one of the four equal convex Superficies by which the Solid is bounded. Hence the whole Superficies (excluding the Cafe) comes: out $=8 \dot{a}^{2}:$ Which therefore is exactly equal to twice the Bate.

If the Solid be fuppofed a Groin of any other Kind, fuch that its two equal Sections, through the Middle of the oppcfite Sides, are other Curves than Circles, the Superficies may fill be had in the fame manner; and will be always in proportion to the Superficies arifing from the Revolution of either of the raid equal Curves about its. Axis,' as a Square is to its inscribed Circle. Thus, the Superficies of a parabolic Conoid being $=$ $\frac{x \overline{a a+4 y y)^{2}}}{62}-\frac{\frac{3}{2} a^{2}}{6}$ (by Art. 162.) the convex Superficies of the Groin, fuppofing the generating Curve AnN to be a Parabola, will therefore be = $\frac{4 \times a^{2}+4 y z^{\frac{3}{2}}}{6 a}=\frac{4 a^{2}}{6}$.

EXAMPLE VII.

166. Whercin let it be riquired to find the convex Superficies of a conical Ungula ECFD; formed by a Plane DFE paffing through the Bafe of the Cone.

Let a right-angled Triangle AOM (whore Bafe OM is the Radius of the Circle BDCE) be fuppofed to revolve about the Axis AO; whilft a Right-line NP, drawn perpendicular to OM from the interfection of AM and the Arch EFD, traces out, upon the Bafe of the Cone, the Curve-line EPGD.

If MPOAN and $m p \mathrm{OA} n$ be confidered as two Pofitions of the generating Triangle indefinitely near to each other, it is evident that the Space MAm, generated by AM, will be to the Space MO_{m}, generated by OM, as AM to OM , or OB. Whence, MN and MP being proportional Parts of AM and

OM (becaufe NP is parallel to AO) it is likewife plain that the Spaces MNnm and MPpm, generated by thofe Parts, will be to each other in the fame Ratio of AM to OB. "And fince this every where holds, it follows that the whole Space (ENM) Ecc. generated by MN, will be to that (EPM) generated by PM, as AM to OB: And fo the whole required Superficies (generated by $A M$) is truly reprefented by $\frac{A M}{O B}$ Area EPGDCE.

But now, to find this Area, EPGDCE, it is obfervable that the Area of the Plane DFE (being the Segment of a Conic-fection) is given, by Art. 115. 129 or 130 . And it is very eafy to apprehend and de \lrcorner monftrate that the Area fo given will be to that of EGDH, as the Radius to the Co-fine of the Angle of the Inclination of the faid Plane to the Bafe, or as HF to HG. Therefore, feeing EGDH is $=\frac{\mathrm{HG}}{\mathrm{HF}} \times \mathrm{EFD}$, we have EPGDCE (= ECDHE - EGDH) = ECDHE $-\frac{\mathrm{HG}}{\mathrm{HF}} \times \mathrm{EFD}$; and confequently $\frac{\mathrm{AM}}{\mathrm{OB}} \times$ $\mathrm{EPGCDE}=\frac{\mathrm{AM}}{\mathrm{OB}} \times \mathrm{ECDHE}-\frac{\mathrm{AM} \times \mathrm{HG}}{\mathrm{OB} \times \mathrm{HF}} \times$ EFD $=$ the convex Superficies that was to be found.

If the Point H be fuppofed to coincide with B , ECDHE will become the whole Circle CB; and EDF will become a whole Ellipfis, whofe greater Axis is BF, - Art 4r. and its leffer Axis $=2 \sqrt{\mathrm{OB} \times \mathrm{OG}}$. $*$ Therefore, the \dagger Art. 124. Area of the former Figure will be expreffed by $p \times \mathrm{BO}^{2} \dagger$, and that of the latter by $p \times{ }_{2}^{\frac{1}{2}} \mathrm{BF} \times \sqrt{\overline{\mathrm{OB} \times U G} ;}$ and fo the convex Superficies of the Part BFC will be $\left(=\frac{\mathrm{AM}}{\mathrm{OB}} \times p \times \mathrm{BO}^{2}-\frac{\mathrm{AM} \times \mathrm{BG}}{\mathrm{OB} \times \mathrm{BF}} \times p \times \frac{2}{2} \mathrm{BF} \times\right.$ $\sqrt{O B \times O G}=\hat{p} \times \mathrm{AM} \times O B-\hat{p} \times \mathrm{AM} \times \frac{x}{2} \mathrm{BG} \times$ $\sqrt{\frac{O G}{O B}}$: Which being deducted from ($p \times A M \times$ OB) the Superficies of the whole Cone BAC, there refts $p \times A M \times \frac{1}{2} B G \times \sqrt{\overline{O G}}$, for the Superficies of the oblique Cone BAF ; which from benee is alfo given.

SCHOLIUM.

167. In molt of the Examples, delivered in the four lat Sections, the Part of the proposed Figure next the Vertex, whether, a Curve, Solid, or Superficies, is firft found ; from whence, by taking the Altitude (x) of that Part equal to (a) the Altitude given, the Content of the Whole is deduced : But, if the Content of the lower Seqmint (BCED) of any Figure ($A B C$) arifing by
 taking away a Part (ADE) next the Vertex, be required; then the Difference between the I Whole and the Part taken away (found as before explained) will be the Quantity fought.
Thus, for Example, let ABC be the common Pa rabola, and let it be propafed to find the Content of the Part, BCED, included between any two Ordinates BC (b) and DE (c) at a given Diftance BD (d) from each other: Then, the Equation of the Curve being $a x=y^{2}$, we have $\dot{x}=\frac{2 y \dot{y}}{a}$, and therefore $y \dot{x} *=\frac{2 y^{2} \dot{\dot{j}}}{a}$, Art. 132. whore Fluent $\frac{2 y^{3}}{3^{a}}$ is a general Exprefion for the Area comprehended between the Vertex and the Ordinate y : Whence, expounding $\%$, by b and c fuccefively, we get $\frac{2 b^{3}}{3^{a}}$ and $\frac{2 c^{3}}{3^{a}}$ for the corresponding Values of $A B C$ and ADE; whore Difference $\frac{2 b^{3}-2 c^{3}}{3^{a}}$ is the required Area BCED : But, to express the fame independent of a, it will be, by the Property of the Curve, $b^{2}: c^{2}:: \mathrm{AB}: \mathrm{AD}$;
whence, by Divifion, $b^{2}: b^{2}-c^{2}:: \mathrm{AB}: \mathrm{BD}(d)$ and confequently $\frac{b^{2}-c^{2}}{d}=\frac{b^{2}}{A B}=a$; which firft V alue being wrote inftead of a, there refults BCED $=\frac{\overline{2 b^{3}-2 c^{3}} \times d}{3 b^{2}-3 c^{2}}$ $=\frac{2 d}{3} \times \frac{b^{2}+b c+c^{2}}{b+c}$.

After the fame Manner, the Segments of other Figures may be found; but in many Cafes they will be more readily had from a direct Inveftigation, without either finding the Whole or the Part taken away.

Thus, in the Cafe above, if the Excefs of any Ordinate RP above DE (c) be denoted by w, we fhall have, by the Property of the Curve, $b^{2}-c^{2}\left(\mathrm{BC}^{2}-\right.$ $\left.D E^{2}\right):\left.\overline{c+w}\right|^{2}-c^{2}\left(\mathrm{RP}^{2}-\mathrm{DE}^{2}\right):: \mathrm{DB}(d): \mathrm{DP}=$ $\frac{d \dot{\times} \overline{2 c \tau u+z v^{2}}}{b^{2}-c^{2}}$; whore Fluxion $\left(d \times \frac{2 c \pi i v+2 \tau \tau i}{b^{2}-c^{2}}\right)$ mattiplied by $f+20(=P R)$ gives $d x$ $\frac{2 c^{2} \dot{w}+4 c w r i+2 w^{2} m}{b^{3}-c^{4}}$, for the Fluxion of the Area DPRE: Whereof the Fluent (which is $2 d w \times$ $\frac{c^{2}+c v+\frac{3}{v} v v^{2}}{t^{2}-c^{2}}$) will, when $v=b-c$ (or $\mathrm{RP}=\mathrm{BC}$) be truly expounded by $\frac{2 d \times \overline{b-c} \times \frac{1}{\frac{1}{b^{2}+\frac{1}{3}} b c+\frac{1}{5} c^{2}}}{b^{2}-c^{2}}$ or its Equal, $\frac{2 d}{3} \times \frac{b^{2}+b c+c^{2}}{1 b+c}$; the fame as before:

Again, for another Example, let CEDce be confidered as the lower Lrufrum of an Hemifphere, whofe Center is the Boint $\mathrm{B}:$ Then, BP being here, denoted by τv, we fhall have $y^{2}\left(=\mathrm{BR}^{2}-\mathrm{BP}^{2}\right)=b^{2}-w^{2}$, *Art 145. and confequently $p y^{2} z^{*}=p \times b^{2} \dot{z}-w^{2} w^{2}$; whofe Fluent

in finding the Superficies of Solids.

Fluent $\left(p \times \overline{b^{2} w-\frac{1}{3} w^{3}}=\frac{1}{3} p w \times \overline{b^{b^{2}-w^{2}}}=\frac{1}{3} p w \times\right.$ $\overline{2 b^{2}+b^{2}-w^{2}}=\frac{1}{5} \hat{j} w \times \overline{2 b^{2}+j^{2}}=\frac{1}{3} p \times \mathrm{BP}^{2} \times$ $\left.2 \mathrm{BC}^{2}+\mathrm{PR}^{2}\right)$ is the true Content of the Part CED $c c$; which will alfo hold when the Figure is a Spheroid.
This laft Method, of finding the Content of a Portion of a Figure, remote from the Vertex, will be of Service, when the general Value, for the Whole, cannot be exprefled without an infinite Series; becaure fuch a Series, in that Cafe, not converging, becomes ufelefs *.

By. dividing the whole propofed Figure, AHW, into a Number of fuch Portions, HV, GT, FS, \& ${ }^{\circ}$ c. the Content thereof may be ohtained, when to find it at once, by a Series, commencing from the Vertex, would be altogether impracticable.

But, to render fuch an Operation as mort and eafy as may be, it will be proper to find each Part (DQ, छ'c.) of the Figure, by means of a Series proceeding both Ways, from the middle Ordinate (MN) between the two correfponding Extremes (CR and DR).

Thus, lee the Value of MN (found by the Property of the Curve) be denoted by a; and let the Value of DR, in a Series, be reprefented by $a+b x+c x^{2}+d x^{3}+e x^{4}+$ $f x^{5}+\delta^{\circ} c$. where $x=\mathrm{MD}$; then the Area MDRN will be reprefented by the Fluent of $\dot{x} \times \overline{a+b x+c x^{2}+d x^{3}+}$ O_{4}

Ec. or by $x \times a+\frac{b . x}{2}+\frac{c x^{2}}{3}+\frac{d x^{3}}{4}+8 \%$. And by writing $-x$ inftead of x, the Ordinate CQ will be exprefled by $a-b x+c x^{2}-d x^{3}$ E c. and the Area MCQN;

Area CDRQ is $=2 x \times a+\frac{c x^{2}}{3}+\frac{e x^{4}}{5}+\frac{g x^{5}}{7}+$ ec. Therefore, if DE, EF, FG, and GH be fuppofed, each, $=B C(2 x)$ and the Areas DS, ET, sc. (found
as above) be denoted by $2 x \times \frac{1}{a}+\frac{c x^{2}}{3}+\frac{e x^{4}}{5}$ E cc. and
$2 x \times \stackrel{a}{a}+\frac{{ }^{\prime \prime} x^{2}}{3}+\frac{{ }^{e x^{4}}}{5}$ bo c. reflectively, it follows that the Area $\mathrm{CR}+\mathrm{DS}+\mathrm{ET}$ will be reprefented by $2 \times \times$ $\frac{a+\frac{1}{c}+{ }^{\prime \prime}}{a^{\prime \prime}} \varepsilon_{c}+\frac{2}{p^{\prime}} x^{3} \times \overline{c+c^{\prime}+c^{\prime \prime}} \varepsilon^{\prime} c_{0}+\frac{2}{3} x^{5} \times$ $e+c+e$ no c.

$\mathrm{DR}\left(=\sqrt{\mathrm{HR}^{2}-\mathrm{HD}^{2}}\right)=\sqrt{1-\overline{-^{2}}}=$
$\sqrt{1-p^{2}+2 p x-x^{2}}=\sqrt{a^{2}+2 p x-x^{2}} ;$ which, in a Series, is $\left(=a+\frac{2 p x-x^{2}}{2 a}-\frac{{\overline{2 p x}-x^{2}}^{2}}{8 a^{3}}+\varepsilon_{c} c_{1}\right)$
$=a+\frac{\beta c}{a}-\overline{\frac{1}{2 a}+\frac{p^{2}}{2 a^{3}}} \times x^{2}$ © co. Therefore, in this
$\mathrm{Cafe}, b=\frac{p}{a}, c=-\frac{1}{2 a}+\frac{p^{2}}{2 a^{3}}$, Ec. Which Valie of c, by writing $1-a^{2}$ for its Equal p^{2}, will be; reduced to $-\frac{1}{2 a^{3}}$. From whence it is alpo evident that $c^{\prime}=-\frac{1}{2^{\prime} q^{3}}$ (fuppofing a $(m n)=\sqrt{1-q^{2}}$)
Confequently $\frac{2 x \times a+a^{\prime}+a^{\prime \prime} \xi^{2} 2+\frac{2}{3} x^{3}}{1+c} \times \overline{c+c}{ }^{\prime \prime}$
 $\left.\frac{2 x^{3}}{3}\right)=\sqrt{\frac{55}{64}+\sqrt{\frac{63}{64}}} \times \frac{1}{4}-$
$\frac{1}{\frac{2 \times 55}{64} \sqrt{\frac{55}{64}}}+\frac{1}{\frac{2 \times 63}{64} \sqrt{\frac{63}{64}}} \times \frac{2}{64 \times 8 \times 3}=$
$\frac{\sqrt{55}+\sqrt{62}}{-32}-\frac{1}{3 \times 55 \sqrt{55}}-\frac{1}{3 \times 63 \sqrt{63}}=$
$\frac{\sqrt{55}+\sqrt{63}}{3^{2}}-\frac{\sqrt{55}}{3 \times 55 \times 55}-\frac{\sqrt{63}}{3 \times 63 \times 63}=$
$0,4873^{\circ}=$ the Area, CHWQ, that was to be found.
This Example, chofen as an lliuftration of the foregoing Method, may indeed be wrought the common Way; whence the versfame Conclufion is brought out

The Ufe of Fluxions

(Vide Art. 124.) But that Method is alfo applicable to any other Cafe, whether the Part propofed be near to the Vertex, or remote from it; and whether the Figure itfelf be a Curve, Solid or Superficies; fince the Meafure thereof may, always, be expreffed by the Area of ${ }^{2}$ Curve.

There is another Way, well known to Mathematicians, whereby the Area of a Curve may be determined, by means of a Number of equidiftant Ordinates; which Method, derived from that of Differences, may, alfo, be ufed to good Purpofe, in Cafes like thofe above fpecified: But, it having been treated of by feveral others, and alfo in my Difiertations, the Reader will excufe me, if no further Notice is taken of it here.

SECTION XI.

Of the 'Ufe of Fluxions in finding the Centers of Gravity, Percufion, and OCil? lation of Bodies.
168. HE Center of Gravity is that Point of a - Body, by which, if it were fufpended, it would rett in Equilibrio, in any Pofition.

Lemma.
1̄ g. Let p, q, r, s, Eoc, be any Number of given Weights, banging at an inflexible Line (or Rod) AM Jufpended in Eqquilibrio, in an borizontal Pofition, at the Point $\mathrm{O}_{;}$; to determine the Pofition of tbat Point.

Since (by Mechanics) the Force of any Weight (p) to raife the oppofite End (M) of the Balance, is as that Weight drawn into its Diftance (BO) from the Fulcrum,

in finding the Centers of Gravity, \&cc.

crim, we flail, from the Equality of there Forces, have $p \times O B+q \times O C+r \times O D=s \times O E+t \times O F$,

that is $p \times \overline{\mathrm{AO}-\mathrm{AB}}+q \times \overline{\mathrm{AO}-\mathrm{AC}}+r \times \overline{\mathrm{AO}-\mathrm{AD}}=$ $s \times \overline{\mathrm{AE}-\mathrm{AO}}+t \times \overline{\mathrm{AF}}-\mathrm{AO}$, and consequently $\mathrm{AO}=$ $p \times \mathrm{AB}+q \times \mathrm{AC}+r \times \mathrm{AD}+s \times \mathrm{AE}+t \times \mathrm{AF}$
$p+q+r+s+t$
From, which it appears, that, if each Weight be multiply'd by its Diflaise from the End (or any given Point) of the Axis, the Sum of all the Products divided by the Sum of all the Weights, will give the Difance of the Center of Gravity from that End (or Point.)

Note. The Products here mentioned are, ufually, cali'd the Forces, of their respective Weights; not in respect to their Action at the Center O (which is exprefled by a different Quantity) but with regard to the Effects they have in the Conclusion, or the Value of AO; which appear to be in that Ratio.

PROPOSITION I.

170. To determine the Center of Gravity of a Line, Plane, Superficies, or Solid (admitting the three former capable of being affected by Gravity.)
Let AMBC be the proposed Figure, and G the Center of Gravity thereof; thro which, parallel to the Horizon, let the Line EF be drawn, intericeting AC , at Right-angles, in O ; alpo let AK and NM be perpendicular to $\AA \mathrm{C}$, and parallel to EF .
171. Cafe

> 171. Care it. If the Figure AMBC be a Plane; let it be fuppored to reft in Equilibrio upon the Line EF ; and then, if the Line MN be confider'd as a Weight, its Force (defined above) will be exprefled by MN drawn into its Diftance (AN) from the End of the Axis AC ; that is by $y x$ (fuppofing, as ufual, $\mathrm{AN}=x$ and MN = 9 .) This, therefore, multiply'd by the Fluxion of AN, gives $y \times \dot{x}$ for the Fluxion of the Force of the Plane AMN ; whofe Flyent, when $x=A C$, expreffes the Force of the whole Plane, or the Sum of all the Produtts of the Ordinates (or Weights) by their refpective Diftances from AK : Which Fluent being, therefore, divided by the Area ABC, or the Fluent of yxं (according to the foregoing Lemma) the Quotient $\left(\frac{F i u, y+\dot{x}}{F i u, y \dot{x}}\right)$ will give (AO) the Diftance of the Center of Gravity from the Line AK.
172. Cafe 2. If the Figure be a Solid; let MN be a Section thereof by a Plane perpendicular to the Horizon; then, the Area of that Section being denoted by A, the Force thereof (confidered as above) will be expreffed by $A x$, and the Fluxion of the Force of the Solid AMN by $A_{x} \dot{x}$; whofe Fluent, divided by the Content of the Body, or the Fluent of $\{\dot{x}$, gives AO , in this Cafe. But, if the Solid be the half (or the whole) of that arifing from the Rotation of a Curve AMB about its Axis AC ; then (putting p for the Area of the Circle
-A.t. 145. whofe Radius is Unity) A will become $=\frac{1}{2} p y^{*}$ * $;$ and confequently $A O=\frac{F l u \cdot \frac{2}{2} f y^{2} x \dot{x}}{F / u \cdot \frac{1}{2} p y^{2} \dot{x}}=\frac{F l u \cdot y^{2} \dot{x} \dot{x}}{F h \cdot y^{2} \dot{x}}$.
173. Cafe 3. If the Figure propofed be the Curve-line AMB; then, the Force of a Particle at M being expreffed by $A N$ or $M Q(x)$ we thall (putting $A M=x$) have $\frac{\text { Flu. } x \dot{z}}{z}=\mathrm{AO}$.
174. Cafe 4. But if the Figure given be the Superficies generated by the Rotation of AMB about AC.
Then, the Periphery of the Circle generated by the Point M being $=2 p y$, it follows that $\frac{F l u .2 p y x \dot{z}}{F l u .2 p y \dot{z}}=$ $\frac{\text { Flu. } y x \dot{z}}{F l u . y \dot{z}}=A O$.

> E X A M PLE I.
175. Let the Figure propofed be the ifofceles Triangle ABC .

It is evident the Center of Gravity (O) will be fomewhere in the Perpendicular AQ: And, if $\mathrm{AQ}=a, \mathrm{BC}=b, \mathrm{AN}$ $=x$, and $\mathrm{MM}=y$; then y being $=\frac{b x}{a}$, we fhall have, by Cafe 1, AO (= $\left.\frac{F / u . y x \dot{x}}{F / u . y \dot{x}}\right)^{1}=\frac{F / u . x^{2} \dot{x}}{F l u . x \dot{x}}$

$=\frac{\frac{1}{3} x^{3}}{\frac{1}{2} x^{2}}=\frac{2 x}{3}=\frac{2}{3} A Q$, when $x=A Q ;$ and confequently $O Q=\frac{A Q}{3}$.
In the very fame manner, the Center of Gravity of any other (plane) Triangle will appear to be at $\frac{1}{3}$ of the Altitude of the Triangle.

EX AM PL E II.

176. Let the Figure proposed be a Parabola of any Kind;

$$
\text { whereof the Equation is } y=\frac{x^{n}}{a^{n-i}}
$$

Here, $\frac{F l u, y x \dot{x}}{F l u_{0} j \dot{x}}=\frac{F l u, x^{n+1} \dot{x}}{F l u_{0} x^{n} \dot{x}}=\frac{n+1}{n+2} \times x=$
the Diffance of the Center of Gravity from the Vertex of the Curve.

> E X A MP LE III.
177. Let BAC be a Segment of a Circle.

Then; if the Radius thereof be put $=r$; the hall have $y(N M)=\sqrt{2 r x-x x}$: Whence the Fluent of $y x \dot{x}(x \dot{x} \sqrt{2 r x-x x})$ will, by Art. 163. be found $=-$ $\left.\frac{2 r x-x x}{3}\right|^{\frac{3}{2}}$
:* Art. 171. gives $r-\frac{\mathrm{NM}^{3}}{3 \times \text { AreaANM }}=\mathrm{AO}{ }^{*}$, This, therefore, when BAC is a Semi-circle,
 becomes $=\frac{576}{1000} \times$ r, nearly.

But, with refpect to the Center of Gravity of the Arch BAC; we have, Flu. $x \dot{\tilde{z}}$, (by Cafe 3.) $=$ Fleet of $\frac{r x \dot{x}}{\sqrt{2 r x-x x}}=r \times \overline{\mathrm{AM}-\mathrm{MN}}$; and confequently AO bee $=r-\frac{r \times \mathrm{MN}}{\mathrm{AM}}$.

E X A MPLEIV:

178. Let ABC (fee the preceding Figure) reprefent a Segment of a Sphere, or Spheroid.
In which Cafe, denoting the Axis of the Sphere, or Spheroid, by a, and the other Axis of the generating Curve, when an Ellipfis, by b, we have $y^{2}=\frac{b b}{a a} \times \overline{a x-x x}$;

$=\frac{\frac{x}{3}}{\frac{1}{2} a x^{3}-\frac{x}{4} x^{4}} \frac{\frac{\pi}{3}-\frac{x}{3} x^{3}}{\frac{1}{3}} \frac{1}{\frac{1}{2} a-\frac{x}{4} x^{2}}=\frac{x \times \overline{4 a-3^{x}}}{6 a-4^{x}}=\mathrm{AO}$.
If the Solid be an hyperbolical Conoid, the Diftance (AO) of its Center of Gravity from the Vertex, will alfo be exhibited by the Expreffion here brought out, when the negative Signs are changed to pofitive ones.
179. In thofe Cafes where the Figure cannot be divided into two Parts, equal and like to each other (as a Curve is by its Axis, छ'c.) the Pofition of two Lines EO, eo (See the enfuing Figure) muft be determined, as aboves; in whofe Interfection (G) the Center of Gravity will be found.

EXAMPLEV.

Let ABC be a Semi-parabola of any Kind; whereof the Equation is $y=\frac{x_{1}}{a^{n-1}}$.
It appears, from Ex, 2. that (AO) the Diftance of EGO from the Vertex, is expreffed by $\frac{n+1}{n+2} \times \mathrm{AC}$: But to find the Pofition of Ge (perpendicular to $\mathrm{E}_{\mathrm{O}} \mathrm{O}$) let $\mathrm{M} n^{\prime}$ be parallel to eo, or AC ; then, AN being $\# x$,
and $N M(y)=\frac{x^{n}}{a^{n-1}}$, if $A C$ be denoted by b, wee

Shall have $\mathrm{M}_{n}=b-x$, and $\mathrm{M} n \times \mathrm{NM} \times \dot{y}=\overline{b-x} \times$ $\frac{x^{n}}{a^{n-1}} \times \frac{n x^{n-1} \dot{x}}{a^{n-1}}=\frac{n b x^{2 n-1} \dot{x}-n x^{2 n} \dot{x}}{a^{2 n-2}}$, for the Fluxion of the Sum of the Forces in this Cafe (Vide. Art. 171.) whore Fluent $\left(\frac{n b x^{2 n}}{2 n a^{2 n-2}}-\frac{n x^{2 n+1}}{\frac{2 n+1}{2 n+a^{2 n-2}}}\right.$ $=\frac{x^{2 n}}{a^{2 n-2}} \times \overline{\frac{b}{2}-\frac{n x}{2 n+1}}=y^{2} \times \overline{\frac{b}{2}-\frac{n x}{2 n+1}}=$ $y^{2} \times \frac{b}{4^{n+2}}$, or $\frac{\mathrm{BC}^{2} \times \mathrm{AC}}{4^{n+2}}$, when $x=b$) divided by the Area $\mathrm{ABC}\left(=\frac{\mathrm{BC} \times \mathrm{AC}}{n+1}\right)$ gives $\frac{n+1}{4 n+2} \times$ BC for the true Value of C , or OG . Which, in cafe of the common Parabola, where $n=\frac{1}{2}$, and where $\mathrm{AO}\left(\frac{n+1}{n+2} \times \mathrm{AC}\right)={ }^{3} \frac{3}{5} \mathrm{AC}$, will become $={ }_{3}^{3} \mathrm{CB}$. Before I leave this Subject it may not be improper to take notice, that, whatever Line you found your Calculations upon, by fuppofing the Figure to reft, in Equilibrio,
E.quilibrio, upon that Line, the very fame Point, for the Place of the Center of Gravity, will be determined.
180. Thus, let O be the Point in the Axis AC, of a given Curve BAD, determined, as above, by fuppofing the Figure to reft upon EF perpendicular to $A C$; and let RS be any other Line paffing
 through the Point O; then I fay the Sum of the Momenta of the Particles on each Side of RS will, a.fo, be equal. For, if from two Points, in any Ordinate MQ, equally diffant from the middle Point N , two Perpendiculars $m r$ and $n s$ be let fall upon RS, the Effeacy of thofe two Points, in refpect to RS, will be reprefented by $m r+n s$, or its Equal 2NH (fuppofing NH allo perpendicular to RS.) Whence the Efficacy of all the Particles in MQ wil! be expreffed by their Number multiplied by NH, or by $\mathrm{MQ} \times \mathrm{NH}$: Which is to their Efficacy (MQ× ON) when referred to the Line EF , in the confant Ratio of NH to ON, or of the Sine of the Angle RON to Radius. Whence it is evident that the Force of all the Ordinates (or the whole Curve) in the former Cafe, muft be to that in the latter, in the fame Ratio: But the faid Force, in the one Cafe, is equal to nothing by Hypothefis, therefore it muft be likewife fo in the other: And confequently the Sum of the Momenta of the Particles, on each Side of RS, equal to each other.

Much after the fame manner the thing may be proved, in a Solid: Whence it will appear that there is actually fuch a (fixed) Point in a Body as the Center of Gravity is defined to be: Which, however evident from mechanical Confiderations, is not fo eafy to demonftrate, geometrically, from the Refolution of Forces.

PROPOSITION II.

181. To determine the Center of Percuffion of a Body.

The Center of Percuffion is that Point, in the Axis of Sufpenfion of a vibrating (or revolving) Body, at which it may be ftopt, by an immoveable Obftacle, fo as to reft thereon in Equilibrio as it were, without acting upon the Center of Sufpenfion.

Let O be the Point of Sufpenfion, G the Center of Gravity, and SLM a Section of the Body, by the Plane wherein the Axis of Sufpenfion OGS performs its Motion; to which Section let all the Particles of the Body be conceived to be transferred in fuch Parts thereof where they would be projected into (orthographically) by Lines parallel to the Axis of Motion; which Suppofition will neither affect the Place of the Center of Gravity nor the angular Motion of the Body.

Since the angular Velocity of any Particle P is as the Diftance, or Radius, OP, its Force in the Direction, PB , perpendicular to OP, will be expreffed by $\mathrm{P} \times \mathrm{OP}$. Therefore the Efficacy of that Force upon the Axis, at B , in the perpendicular Direction BN (fuppofing the Axis ftopt at C the Center of Percuffion) will be $\mathrm{P} \times$ $O P \times \frac{O P}{O B}$, whofe Power to turn the Body about the Point C is therefore as $\mathrm{P} \times \mathrm{OP} \times \frac{\mathrm{OP}}{\mathrm{OB}} \times \overline{\mathrm{BC}}=\mathrm{P} \times$ $\frac{O P^{2} \times B C}{O B}=P \times \frac{O P^{2} \times \overline{O C-O B}}{O B}=P \times \frac{O P^{2} \times O C}{O B}$ $-\mathrm{P} \times \mathrm{OP}^{2}$; which, if PQ be made Perpendicular to
$O S$, will at laft (becaufe $\frac{O P^{3}}{O B}=O Q$) be reduced to $\mathrm{P} \times \mathrm{OQ} \times \mathrm{OC}-\mathrm{P} \times \mathrm{OP}^{2}$. By the very fame Argument, the Force of any other Particle P^{\prime} will be denoted by $\stackrel{\prime}{\mathrm{P}} \times \mathrm{O}^{\prime} \times O C-\stackrel{\prime}{\mathrm{P}} \times \mathrm{OP}^{\prime} छ^{\circ} c$. छc. But, as all there Forces mult deftroy one another (by the Nature of the Problem) the Sum of all the Quantities $\mathrm{P} \times \mathrm{OQ} \times \mathrm{OC}$, $\stackrel{P}{P} \times O Q^{\prime} \times O C, \xi^{\circ} c_{0}$ muft therefore be $=$ the Sum of all the Quantities $\mathrm{P} \times \mathrm{OP}^{2}, \stackrel{\mathrm{P}}{\mathrm{P}} \times \mathrm{OP}^{\prime} \mathrm{E}^{2}$. and confequently $\mathrm{OC}=\frac{\mathrm{P} \times \mathrm{OP}^{2}+\mathrm{P}^{\prime} \times \mathrm{OP}^{2}+\xi^{\circ} c . \xi^{\circ} c}{\mathrm{P} \times \mathrm{OQ}+\mathrm{P} \times \mathrm{OQ}^{\prime}+\xi_{c} . \delta_{c}}$. But (by the preceding Propofition) the Sum of all the Quantities $\mathrm{P} \times O Q+\mathrm{P}^{\prime} \times \mathrm{OQ}^{\prime}+\vartheta^{\circ} c$. is equal to $\mathrm{OG} \times$ by the Content of the Body. Therefore OC is likewife $=$

$\mathrm{OG} \times$ Body.

> The farne otberwife.

Since the Force of the Particle P, in the perpendicular Direction $N B$, is defined by $P \times \frac{\mathrm{OP}^{2}}{\mathrm{OB}}$, or its Equal,
$\mathrm{P} \times \mathrm{OQ}$, the Sum of all the Quantities $\mathrm{P} \times O Q$, $\mathrm{Y} \times \mathrm{OO}$, छc. Eic. will exprefs the Force which, acting at C perpendicular to OS, is fufficient to ftop the Body, without the Center of Sufpenfion O being any way affected: This Sum, therefore, drawn into OC $(=O C \times$ $\mathrm{P} \times O Q+\mathrm{P}^{\prime} \times \mathrm{OQ}^{\prime}+\mathrm{E}^{\circ}$. $\mho_{c} c_{\text {. }}$) is as the Efficacy of the faid Force to turn the Body about the Point O. But the Force of the Particle P , in the Direction BN being $\mathrm{P} \times \frac{\mathrm{OP}^{2}}{\mathrm{OB}}$, its Efficacy to turn the Body about the fame

Point (the contrary way) is as $\mathrm{P} \times \mathrm{OP}^{2}$; and conicequently the Efficacy of all the Particles as the Sum of all the Quantities $\mathrm{P}_{\times} \mathrm{OP}^{2}, \mathrm{P}_{\times}^{\prime} \mathrm{OP}^{\prime}{ }^{\prime} \xi_{c}$. $\xi^{\circ} c$. Therefore (Action and Re-action being equal) we have OC \times
$\mathrm{P}_{\times} \mathrm{OQ}+\mathrm{P}^{\prime} \times \mathrm{O} \mathrm{C}^{\prime}+\xi_{c}=\mathrm{P} \times \mathrm{OP}^{2}+\mathrm{P}^{\prime} \times \mathrm{OP}^{\prime}+\xi_{c}$. the fanc is before.

For the Center of Ofcillation, it will be requifite to premife the following.
LEMMA.
182. Suppofe two exceeding fmall Weights C and P , - aeling on each other by ireans of an infexible Line (or Wire PC) to vibrate in a vertical Plane ROFCM, about the Center O ; it is required to determine bow much the Motion of the one is afficted ly the other.

Let CH and PQ be perpendicular to the horizontal Line OR ; alfo let PB and CS be perpendicular to OP and OC refpectively.

If the Force of Gravity be denoted by Unity, the Forces acting in the Directions CS and PB , whereby the Weights, in their Defcent, are accelerated, will, according to the Refolution of Forces, be reprefented by $\frac{\mathrm{OH}}{\mathrm{OC}}$ and $\frac{\mathrm{OQ}}{\mathrm{OP}}$ Moreover, fince the Velocities are always in the Ratio of the Radii OC and OP, if the forefaid Forces were to be in that Ratio, or that of P was to become $\frac{\mathrm{OH}}{\mathrm{OC}}$ $\times \frac{O P}{O C}$, inftead of $\frac{O Q}{O P}$. I fay, in that Cafe, it is plain the Weights would continue their Motion with-
out affecting each other, or acting at all on the Line of Communication PC (or PB). Whence, the Excels of $\frac{O Q}{O P}$ above $\frac{O H}{O C} \times \frac{O P}{O C}$ muff be the accelerative Force whereby the Weight P acts upon the Line (or Wire) OC, in the Direction PB ; which multiply'd by the Weight P gives $P \times \overline{O Q}-\frac{O H \times O P}{O C^{2}}$ for the abfolute Force in that Direction: Which therefore, int the perpendicular Direction $N B$, is $P \times \frac{\overline{O Q}}{O P}-\frac{\mathrm{OH} \times O P}{O C^{2}}$ the Whole as $O B$ to $O C$, is truly defined by $\mathrm{P} \times$ $\frac{\mathrm{OC}}{\mathrm{OC}}-\frac{\mathrm{OH} \times \mathrm{OP}^{2}}{O \mathrm{C}^{3}}$. 2. E. 1.

If P be fuppofed to act upon C by means of PC (inftead of PB) the Conclufion will be no way different: For, let F (to fhorten the Operation) be put to denote the Force ($\mathrm{P} \times \frac{\overline{O Q}-\frac{O H \times O P}{O C^{2}} \text {) in the Direction }}{}$ PB , found above, then the Action thereof upon PC (according to the Principles of Mechanics) will be exprefled by $\mathrm{F} \times \frac{\text { Radius }}{\mathrm{Co}-\int . \mathrm{CPB}}$; which therefore in the Direction $S C$, perpendicular to OC , is $\mathrm{F} \times \frac{\text { Radius }}{\mathrm{Co}_{0-\int .} \mathrm{CPB}} \times$ $\frac{S . \mathrm{PCO}}{\text { Radius }}=\frac{S . \mathrm{PCO}}{C o-\int . \mathrm{CPB}}=\frac{S . \mathrm{PCO}}{S . \mathrm{OPC}}=\mathrm{F} \times \frac{\mathrm{OP}}{\mathrm{OC}}, \quad$ the very fame as before.

$$
P_{3}
$$

PRO.
PROPOSITION II.
183. To determine the Center of Ofcillation of a Body.

The Center of Ofcillation is that Point, in the Axis (or Line) of Sufpenfion of a vibrating Body, into which if the whole Body was contracted, the angular Velocity and the Time of Vibration would remain unaltered.

Let LMS be a Section of the Body by a Plane, perpendicular to the Horizon and the Axis of Motion, paffing thro' the Center of Gravity G and the Point of Sufpenfion O; and fuppofe all the Particles of the Body to be transferred to this Section, in fuch Places of it, as they would be projected into (orthographically) by Perpendiculars falling thereon. (Which Suppofition will no way affect the Conclufion, the angular Motion continuing the fame.) Moreover let C be the Center of Ofcillation, or that Point in the Axis OS where a Particle of Matter (or a fmall Weight) may be placed fo as to be neither accelerated nor retarded by the Action of the other Particles of Matter fituate in the Plane. Then, if, from C and any other Point P in the Plane LMS, two Perpendiculars CH and PQ be let fall upon the horizontal Line OR, the Force of a Particle (or Weight) at P to accelerate the Weight at C , will (according to the foregoing Lemma) be reprefented by $\mathrm{P} \times$
$\overline{O Q}-\frac{O H \times O P^{2}}{O C^{3}}$: Which, fuppofing GN perpendicular to OR, will alfo be expreffed by $\mathrm{P} \times$ $\frac{O Q}{O C}-\frac{O N}{O G} \times \frac{O^{2}}{O C^{2}}$, or its Equal P \times $\frac{\mathrm{OQ} \times \mathrm{OG} \times \mathrm{OC}-\mathrm{ON} \times \mathrm{OP}^{2}}{\mathrm{OC}^{2} \times \mathrm{OG}}$.

In the very fame manner the Force of any other Particle P^{\prime} will be reprefented by $P^{\prime} \times \frac{O Q}{\times O G \times O C-O N \times O P^{2}} \frac{O C^{2} \times O G}{O C}$ छ̌c. ઉંc.
Therefore the Forces of all the Particles deftroying each other (by Hypothefis) the Sum of all the Quantities $\overline{P \times O G} \times O Q \times O C-O N \times \mathrm{OP}^{2}$
 equal to nothing: Whence $\mathrm{P} \times \mathrm{OG} \times \mathrm{OQ} \times \mathrm{OC}+$ $\mathrm{P}^{\prime} \times \mathrm{OG} \times \mathrm{OQ}^{\prime} \times \mathrm{OC} \xi_{c}$. $\xi_{c} r_{1}=\mathrm{P} \times \mathrm{ON} \times \mathrm{OP}^{2}+$ $\mathrm{P}^{\prime} \times \mathrm{ON} \times \mathrm{OP}^{\prime}{ }^{\prime} \xi_{c}$. U^{\prime} c. and confequently $\mathrm{OC}=\frac{\mathrm{ON}}{\mathrm{OG}} \times$
 $\mathrm{P} \times \mathrm{OQ}+\mathrm{P} \times \mathrm{OQ}+\mathrm{E}_{\mathrm{c}}$.
Sum of all the Quantities $\mathrm{P} \times O Q+\mathrm{P}^{\prime} \times \mathrm{OQ}^{\prime} \mathcal{E}^{\prime}$. is equal to the Content of the Body multiplied by the Diffance (ON) of the Center of Gravity G from the Line LM (perpendicular to OC); whence OC is alfo $=\frac{\mathrm{ON}}{\mathrm{OG}} \times$

Which Expreffion continuing the fame in all Inclina-

$$
\mathrm{P}_{4}
$$

tions
tions of the Axis OS, the Point C, thus determined is a fixed Point, agreeable to the Definition; and appears to be the fame with the Center of Percuffion; fee Art. 181.

Corollary.

184. If PD, PD $\underbrace{\circ}$. be perpendicular to OS , the Nu merator of the Fraction found above, will become $\mathrm{P} \times$ $\overline{\mathrm{OG}^{2}+\mathrm{GP}^{2}-2 \mathrm{OG} \times \mathrm{GD}}+\dot{\mathrm{P}} \times \overline{\mathrm{OG}^{2}+\mathrm{GP}^{2}+2 \mathrm{OG} \times}$ $\overline{\mathrm{GD}}+$ छr. $_{\text {. छ\%c. }}$ (fince $\mathrm{OP}^{2}=\mathrm{OG}^{2}+\mathrm{GP}^{2}-2 \mathrm{OG} \times$ GD छ'c.) Which, becaufe all the Quantities $\mathrm{Px}-2 \mathrm{OG}$ $\times \mathrm{GD}+\stackrel{\mathrm{P}}{\times} \times{ }_{2} \mathrm{OG} \times \mathrm{GD}$ छْc. or $\mathrm{P} \times-\mathrm{GD}+\stackrel{\mathrm{P}}{\mathrm{P}} \times \mathrm{GD}$ छ'c. (by the Nature of the Center of Gravity) deftroy one another, will be barely $=\mathrm{P} \times \overline{\mathrm{OG}^{2}+\mathrm{GP}^{2}}+\stackrel{1}{\mathrm{P}} \times$ $\overline{\mathrm{OG}^{2}+\mathrm{GP}^{\prime}}+\xi_{c_{c}} \xi_{c_{0}}=\overline{\mathrm{P}+\mathrm{P}+\xi^{\prime} c_{0} \times \mathrm{OG}^{2}+\mathrm{P} \times}$ $\mathrm{GP}^{2}+\mathrm{P}^{\prime} \times \mathrm{GP}^{\prime}+\xi_{c}=M a / s \times \mathrm{OG}^{2}+\mathrm{P} \times \dot{\mathrm{GP}}{ }^{2}+$ $\stackrel{\prime}{\mathrm{P}} \times \mathrm{GP}^{\mathbf{z}}+$ छ$_{c}$. Whence it is evident that OC is, alfo, $\left(=\frac{M a / s \times \mathrm{OG}^{2},+\mathrm{P} \times \mathrm{GP}^{2}+\mathrm{P}^{\prime} \times \mathrm{GP}^{\prime}+\delta^{2} c . \varepsilon_{c}}{M a / s \times \mathrm{OG}}\right)$ $=\mathrm{OG}+\frac{\mathrm{P} \times \mathrm{GP}^{2}+\mathrm{P}^{\prime} \times \mathrm{GP}^{2}+\mathrm{E}_{6} .}{\text { Ma/s } \times \mathrm{OG}} ;$ and confequently $\mathbf{C G}=\frac{\mathrm{P} \times \mathrm{GP}^{2}+\dot{\mathrm{P}} \times \mathrm{GP}^{\prime}+\text { Ecc. }^{c} \text {. } c .}{M a \sqrt{s} \times \mathrm{OG}}$.

Whence it appears that, if a Body be turncd about its Center of Gravity, in a Direetion, perpendicular to the Axis of the Motion, the Place of the Center of Ofillation will remain unallered; becaufe the $Q u a n t i t i e s ~ P \times G P^{2}$, $P^{\prime} \times G P^{\prime}$ are no way affected by fuch a Motion of the Body.

in finding the Centers of Gravity, \&cc.

It alfo appears that the Diftance of the Center of Gravity from that of Ofillation (if the Plane of the Body's Motion remains unalter'd) will be reciprocally as the DiAtance of the former from the Point of Sufpenfisn. Therefore, if that Difance be found when the Point of Sufpenfion is in the Vertex, or 5 pofited, that the Operation may become the moft fintle, the Value thereof in any otber propofed Pofition of that Point weill likewife be given, by one Jingle Proportion.
185. But now, to thew how thefe Conclufions may be reduced to Practice, we muft firft of all obferve, that the Product of any Particle of the Body by the Square of its. Diftance from the Axis of Motion is (here) called the Force thereof (its Efficacy to turn the Body about the faid Axis being in that Ratio.) According to which, and the firft general Value of OC, it appears that, if the Sum of all the Forces be divided by the Product of the Body into the Difance of the Center of Gravity from the Point of Sufpenfion, the 2 uotient thence arifing will give the Diftance of the Center of Percufion, or Ofcillation from the faid Point of Sufpenfon.

The Manner of computing the Divifor has been already explained; it remains therefore to fhew how the Sum of all the Forces in the Numerator may be collected: Which will admir of reveral Cafes. Wherein, to avoid a Multiplicity of Words, I thall always exprefs the Diftance of the Center of Gravity from the Point of Sufpenfion by g, and the Diftance of the Center of Percuffion, or Ofcillation, from the fame Point, by C.

186. Cafe 1. Let OS be a Line Jufpended at one of its Extremes.

Then, if the Part OP (confidered as variable) be denoted by x, the Force of \dot{x} Particles, at P , will (as above) be defined by $\dot{x} \times x^{2}:$ Whofe Fluent ($\frac{1}{3} x^{3}$) therefore expreffes the Force of all the Particles in OP (or the Sum of all the Products, under each Particle, and the Square of its Diftance from O the Point of Sufpenfion. This Quantity therefore (when x be-

TO comes $=O S$) being divided by $\mathrm{OS} \times \frac{1}{2} \mathrm{OS}$ (according to the foregoing Rule or Ob fervation) we get $\left(\frac{1 \mathrm{OS}^{3}}{\frac{1}{2} \mathrm{OS}^{2}}=\right) \frac{2}{3} \mathrm{OS}$ for the Value of C, the true Diftance of the Center of Ofcillation (or Percuffion) from the Point of Sufpenfion.
187. Cafe 2. Let AB be a Line, vibrating in a vertical Plane, having its two Extremes A and B equally diftant from the Point of Sufpenfion O .

If $O G$. (perpendicular to $A B$) be put $=a$, and GP $=x$, the Force of \dot{x} Particles at P , will be denoted by $\dot{x} \times \overline{a^{2}+x^{2}}=\dot{x} \times$ OP^{2} : Whofe Fluent, divided by $a x$ (or PG $\times O G$) gives $\left(\frac{a^{2} x+\frac{1}{3} x^{3}}{a x}\right) a+$
$\frac{x^{3}}{3^{a}}=\mathrm{OG}+\frac{\mathrm{BG}^{2}}{3^{\mathrm{OG}}}=C$, when x becomes $=\mathrm{GB}$,
188. Cafe 3. Let APSQ be a Circle, vibrating in a vertical Plane. Let PQ be any Diameter thereof; then $\mathrm{OP}^{2}+\mathrm{OQ}^{2}$ being $=2 \mathrm{OG}^{2}+2 \mathrm{PG}^{2}$, the Sum of the Forces of two Particles at P and Q , (putting OG $=a$, and $\mathrm{AG}=r$) will be $=\overline{a^{2}+r^{2}} \times 2$; whence it is evident that the Sum of the Forces of all the Particles, in the whole Periphery, will be expreffed by their Number $\times a^{2}+r^{2}$, or by $\overline{a^{2}+r^{2}} \times$ Periph. APSQ: Which,
if p be put $=3.14 \mathrm{I}$ E゚c. will be $=\overline{a^{2}+r^{2}} \times 2 p r=2 p a^{2} r$ $+2 p r^{3}$. Hence the Force of the Circle itfelf is alfo given, being $=$ Fluent of $\overline{2 p a^{2} r+2 p r^{3}}$ $\times{ }^{\circ} r=p a^{2} r^{2}+\frac{1}{2} p r^{4}=\overline{a^{2}+\frac{1}{2} r^{2}}$ \times Gircle APSQ. Now, if the two Expreffions thus found be divided by $a \times$ Prriph. APSQ , and a \times Circle APSQ refpectively ${ }^{*}$, we thall have

$a+\frac{r^{2}}{a}$ and $a+\frac{r^{2}}{2 a}$, for the two correfponding
Values of C.
189. Cafe 4. Let AHBE be a Circle baving its Plane (always) perpendicular to the Axis of Sufpenfion OG.
Let AGB be that Diameter of the Circle which is parallel to the Axis of Motion RS; and let EF be any Chord parallel to $A B$ and RS; whofe Diftance, GP, from the Center of the Circle, let be denoted by x; putting OG $=a$, and $\mathrm{AG}=r$:

Then, by the Nature of the Circle, EF $=2 \sqrt{ } r^{2}-x^{2}$; whofe Diftance OP, from the Axis of Motion RS, is alfo given $=\sqrt{a^{2}+x^{2}}$. Hence it appears that the Force of all the Particles in the Line EF (defined in Art, 185.) will be reprefented by $\overline{a^{2}+x^{2}} \times 2 \sqrt{\sqrt{r^{2}-x^{2}} \text {. }}$ Therefore $\dot{x} \times \overline{a^{2}+x^{2}} \times 2 \sqrt{r^{2}-x^{2}}$ is the Fluxion of the Force of the Plane ABFE; whofe Fluent (when

$$
x=r)
$$

$x=r$) is $=\overline{a^{2}+\frac{1}{4} r^{2}} \times$ Area AEFBG; which, if p be put for the Area of the Circle whole Radius is Unity, will be $=\overline{a^{2}+\frac{1}{4} r^{2}} \times \frac{1}{2} p r^{2}$; whereof the Double ($p a^{2} r^{2}$ $+\frac{1}{4} p r^{4}$) is the Force of the whole Circle AEFH: whore Fluxion $2 p a r r+p r^{3} r$ (fuppofing r variable) being divided by \dot{r}, we likewife get $2 p a^{2} r+p r^{3}\left(=\overline{a^{2}+\frac{2}{2} r^{2}}\right.$ \times Periph. AEFH) for the Force of the Periphery AEFH. But the Center of Gravity, whether we regard the Circle itself or its Periphery, is in the Center of the Circle; therefore the Diftance of the Center of Oscillation from the Point of Sufpenfion, will in there two Cafes be exhibited by $a+\frac{r^{2}}{4 a}$ and $a+\frac{r^{2}}{2 a}$ refpectively.

If the Circle, inftead of being perpendicular to GO, either coincides, or makes a given Angle with it, the Value of C will come out exactly the lame; provided the Diameter AB fill continues parallel to the Axis of Motion RS : This appears from Art. 184. and may be, otherwife, very eafily demonstrated.
190. Cafe 5. Let the Figure proposed be a Curve AEF, moving (flat-ways, as it were) fo that the Plane defribed by the Axis OAS may be perpendicular to that of the Curve.

Here, putting $\mathrm{AP}=x, \mathrm{PN}=y$, $\mathrm{AN}=z, \mathrm{OA}=d, \mathrm{OG}=g$, and $\mathrm{AG}=a$, the Force of the Partickles in MN will be defined by $2 y \times \overline{a+x}{ }^{2}$. Therefore the Fluent of $2 y \dot{x} \times\left.\overline{d+x}\right|^{2}$ will be as the whole Force of the Plane NAM (or AEF, when $x=$ AS) and consequently $C=$ $\frac{F l u \cdot \overline{d+y^{2}} \times y \dot{x}}{\text { Flu. } \overline{d+x} \times y \dot{x}}$: Which, there-
fore, when the Point of Sulpenfion is in the Vertex A, will become $C=\frac{F l u . y x^{2} \dot{x}}{F l u . y x \dot{x}}$. Let this Value be denoted by v; then, the Diftance of the Centers of Gravity and Of́cillation being $v-a$, we have (by Art. 184.) $g: a:: v-a:\left(\frac{a \times \overline{v-a}}{g}\right)$ the Diftance of the fame Centers, when the Point of Sufpenfion is at O, and confequently C, in that $\mathrm{Cafe},=g+\frac{a \times \overline{v-a}}{g}$: Which Form will be found more commodious than the foregoing in moft Cafes.

After the fame Manner the Value of C, with refpect of the Arch AEF, will appear to be $=\frac{F l u,\left.\overline{d+x}\right|^{2} \times \dot{z}}{F / u, \overline{d+x} \times \dot{z}}$ $=g+\frac{a \times \overline{v-a}}{g}$, fuppofing $v=\frac{\text { Flu. } x^{2} \dot{z}}{\text { Flu. } x \dot{z}}$.
It may not be improper to give an Example or two of the Ufe of the foregoing Theorems.
191. Let therefore EAF be, firft, confider'd as an ifofceles Triangle: In which Cafe AP (x) and PN (y) being in a conftant Ratio, we have $y=\frac{b x}{c}$ (fuppofing $\mathrm{SF}=b$ and $\mathrm{AS}=c$.) Hence $C\left(=\frac{F \mid u \cdot \overline{d+x}{ }^{2} \times y \dot{x}}{F i u \cdot \overline{d+x} \times y \dot{x}}\right)$
$=\frac{\text { Flu. } d^{2} x \dot{x}+2 d x^{2} \dot{x}+x^{3} \dot{x}}{\text { Flu. } d x \dot{x}+x^{2} \dot{x}}=\frac{\frac{1}{2} d^{2}+\frac{2}{3} d x+\frac{1}{4} x^{2}}{\frac{1}{2} d+\frac{1}{3} x}=$ $\frac{6 d^{2}+8 d x+3 x^{2}}{6 d+4 x}$: Or (according to the fecond Form)
becaufe v $\left(\frac{F l u . y x^{2} \dot{x}}{\text { filu. } y x \dot{x}}\right)=\frac{3 x}{4}$, and a is known to

The Ufe of Fluxions

- Art. 175. be $=\frac{2 x}{3}$, we have $C\left(=g+\frac{a \times \overline{v-a}}{g}\right)=\dot{g}+$ $\frac{x^{2}}{18 g}$, where $g(=d+a)=d+\frac{2}{3} x$.

Again, becaure \dot{z} and \dot{x} are in a conftant Ratio, we alro have $\frac{\left.F l u \cdot \overline{d+x}\right|^{2} \times \dot{z}}{F l u \cdot \overline{d+x} \times \dot{\dot{z}}}=\frac{F \mid u . \overline{d+x}{ }^{2} \times \dot{x}}{F l u, \overline{d+x} \times \dot{x}}=$ $\frac{d^{2}+d x+\frac{7}{3} x^{2}}{d+\frac{1}{2} x}$; whence the Center of Ofcillation of the Lines EH and AF is given.
192. For a fecond Example, let EAF be fuppofed a Parabola of any Kind, whofe Equation is $y=\frac{x^{n}}{c^{n-1}}$:
Then (according to Form 2.) wie fhall firft have $v(=$ $\left.\frac{F l u . y x^{2} \dot{x}}{F l u . y x \dot{x}}\right)=\frac{F l u . x^{n+2} \dot{x}}{F l u . x^{n+1} \dot{x}}=\frac{\overline{n+2} \times x}{n+3}$: Whence,

+ Art. 176. a being $=\frac{\overline{n+1} \times x}{n+2}+$, we alfo get $C\left(=g+\frac{a \times \overline{v-a}}{g}\right)$ $=g+\frac{\frac{\overline{n+1} \times x^{2}}{n+22^{2} \times n+3} \times g}{} ;$ where $g=d+\frac{\overline{n+1} \times x}{n+2}$.

But, with refpect to the Arch of the Curve, $v(=$ $\left.\frac{\text { Flu. } x^{2} \dot{z}}{\text { Flu. } x \dot{z}}\right)$ is $=\frac{F l u . x^{2} \dot{x}_{c}^{\sqrt{2-2}+n n x^{2 n-2}}}{\text { Flu. } x \dot{x}^{\sqrt{2 n-2}+n n x^{2 n-2}}}:$ From
which Value (found by infinite Series, and even with-
$\ddagger \mathrm{Art}_{1}{ }_{3}$ 3. out in fome Cafes \ddagger) that of C will alfo be given.
193. Cafe. 6. Let the propojed Figure be a Curve vibrating (edge-ways) So that the Motion of the Axis may. be in the Plane of the Curve.
Then (by Cafe 2.) the Force of all the Particles in the Line PN (fee the preceding Figure) being defined by $\mathrm{OP}^{2} \times \mathrm{PN}+\frac{1}{3} \mathrm{PN}^{3}$, or $\left.\overline{d+x}\right)^{2} \times y+\frac{1}{3} y^{3}$ (retaining the No-

Notation above) we have $C=\frac{\left.F l u \cdot \overline{d+x}\right|^{2} \times y \dot{x}+\frac{1}{y} y^{3} \dot{x}}{F / u \cdot \overline{d+x} \times y \dot{x}}$: Which, when the Point of Sufpenfion is in the Vertex A, will become $\frac{F l u . y x^{2} \dot{x}+{ }_{3} y^{3} \dot{x}}{F l u . y x \dot{x}}$: Let this (when found) be denoted by v; then, it appears from the preceding Cafe, that the general Value of C will, alfo, be reprefented by $g+\frac{a \times v-a}{g}$.

In the fame manner the Value of C, with refpect to the Arch EAF, will be expounded by $\underbrace{}_{\text {Flu. } \overline{\overline{d+x}} \bar{x}^{2}+y^{2} \times \dot{z}}$, or by $g+\frac{a \times \overline{v-a}}{g}$, fuppofing $v=$ $\frac{\text { Flu. } \overline{x^{2}+y^{2}} \times \dot{z}}{\text { Flu, } \dot{x} \dot{z}}$.
194. Example. Let the Equation of the given Curve be $y=\frac{x^{n}}{c^{n-1}}:$ Then $v\left(=\frac{\text { Flu. } y x^{2} \dot{x}+\frac{1}{+} y^{3} \dot{x}}{\text { Flu. } y x \dot{x}}\right)=$ $\frac{\text { Flu. } c^{1-n} x^{n+2} \dot{x}+\frac{1}{3} c^{3-3^{n}} x^{3^{n}} \dot{x}}{\text { Flu. } c^{1-n} x^{m+1} \dot{x}}=\frac{\overline{n+2} \times x}{n+3}+$ $\frac{{ }_{3}^{\frac{1}{3}} c^{2-2 n} x^{3 n+1} \times \overline{n+2}}{3^{n+1} \times x^{n+2}}=\frac{\overline{n+2} \times x}{x+3}+\frac{\overline{n+2} \times c^{2-2 n} \times x^{2 n-8}}{3 \times 3^{n+1}}$ $=\frac{n+2}{n+3} \times x+\frac{\overline{n+2}}{3 \times \overline{3^{n+1}}} \times \frac{y^{2}}{x}:$ From which the V alue of C is alfo given; and from whence it appears, that if n be expounded by $0, v$ will become $=$ $\frac{2 x}{3}+\frac{2 y^{2}}{3^{x}}=\frac{2}{3} \times \frac{x^{2}+y^{2}}{y} ;$ in which Cafe the Figure will degenerate to a Rectangle: But, if n be interpreted by 1 , the Figure EAF will then be an ifofceles

Triangle,

Triangle, and $v=\frac{3 x}{4}+\frac{y^{2}}{4 x}$: Laftly, if n be taken $=\frac{r}{2}$, the Curve will be the common Parabola, and $v=$ $\frac{5 x}{7}+\frac{6}{3}$.
195. Cafe 7. Let the Figure AEFH be a Solid generated by the Rotation of a Curve EAF about its Axis AS; having its. Bafe HH parallel to the Axis of Motion BOC.

It appears, from Cafe 4: that the Force of all the Particles in the circular Section $b b$ (parallel to HH) will be expreffed by $\overline{\mathrm{OP}^{2}+\frac{1}{4} \mathrm{PN}^{2}} \times$ Circle b b, or $\overline{\mathrm{OP}^{2} \times \mathrm{PN}^{2}+\frac{1}{4} \mathrm{PN}^{4}} \times p$ (p being $=3.14$ i's $^{\circ}$ E.c.) which, in algebraic Tcrms, is $\overline{d+x_{1}^{2} \times y^{2}+\frac{1}{4} y^{4}} \times p$. Hence we have $C=$

Which, therefore, when the Point of Sulpenfion is in the Vertex A, becomes $\frac{F l u . y^{2} x^{2} \dot{x}+\frac{1}{4} y^{4} \dot{x}}{F / u . y^{2} x \dot{x}}=v$; and confequently $C=g+\frac{a \times \overline{v-a}}{g}$, as in the preceding Cafes.

But, with regard to the Superficies of the Solid; it is, found, in. Cafe 4. that the Force of the Particles in the Periphery $\mathrm{M} b \mathrm{~N} b$ is expreffed by $\overline{\mathrm{OP}^{2}+\frac{1}{2} \mathrm{PN}^{2}} x$ Peripb. $M b N b=\overline{d+\left.x\right|^{2}} \times 2 p y+p y^{3}$.

Hence the Fluent of $\overline{\left.\overline{d+x}\right|^{2} \times 2 p y+p y^{3}} \times \dot{z}$, divided by that of $\overline{d+x} \times 2 p y \dot{z}\left(=\frac{F l u . \overline{d+x})^{2} \times 2 y \dot{z}+y^{3} \dot{z}}{F(u \cdot \bar{d}+x \times 2 y \dot{z}}\right)$ will give the true Value of C with respect to the curve Surface E $h A b$ F. Which, putting $v=\frac{F l u .2 y x^{2} \dot{z}+y^{3} \dot{z}}{f^{\prime} \mid u .2 y x \dot{z}}$, is likewife expreffed by $g+\frac{a \times \overline{v-a}}{g}$.
196. Ex. 1. Let EAF be considered as a Cone; then, putting $\mathrm{AS}=f, \mathrm{SF}=b$ and $\mathrm{AF}=c$, we have $y=\frac{b x}{f}$, $z=\frac{c x}{f} ;$ and therefore $C\left(=\frac{F l u,\left.\overline{d+x}\right|^{2} \times y^{2} \dot{x}+y^{2} \dot{x}}{F l u \cdot \overline{d+x} \times y^{2} \dot{x}}\right)$ $=\frac{20 d^{2}+30 f d+12 f^{2}+3 b^{2}}{20 d+15 f}$, when $x=f$. But, with respect to the convex Superficies, C will be found $=$ $\frac{12 d^{2}+16 d f+6 f^{2}+3 b^{2}}{12 d+8 f}$.
197. Ex. 2. Let EAF oc. be confidered as a Sphere whole Center is S , and Radius $\mathrm{AS}=r$; in which Cafe, y^{2} being $=2 r x-x^{2}$, we have $v\left(=\frac{F / u . y^{2} x^{2} \dot{x}+\frac{1}{j} y^{4} \dot{x}}{F l u \cdot \dot{y}^{2} x \dot{x}}\right)$ $=\frac{F l u . r^{2} x^{2} \dot{x}+r x^{3} \dot{x}-\frac{3}{4} x^{4} \dot{x}}{F l u .2 r x^{2} \dot{x}-x^{3} \dot{x}}=\frac{\frac{1}{2} r^{2}+\frac{1}{\frac{1}{2}} r x-\frac{3}{3} x^{2}}{\frac{2}{3} r-\frac{1}{4} x} ;$ whence C is alfo given. But, when $x=2 r$ (or the whole Sphere is taken) $v=\frac{7 r}{5}$: Therefore a being $=r$, and $g=O S$, in this Cafe, we have $C(=g+$ $\left.\frac{a \times \overline{v-a}}{g}\right)=g+\frac{r \times 2 r}{5 g}=g+\frac{2 r^{2}}{5 g^{\circ}}$.

Q
$19^{8 .}$
 gure proposed be a Solid, as in the preceding Cafe, but let its Axis AG be, here, pavallel to the Axis of Motion PRS.

Then, if RP (OG) be put $=g, 3,1459 \varepsilon_{c}=p$, $\mathrm{AP}=\times \mathrm{E}_{3} \mathrm{c}$. the Force of the Particles in the Circle NM (parallel to EF) will be exhibited by $\overline{g^{2}+\frac{1}{2} y^{2}}$ $x p y^{2}$, or $p g^{2} y^{2}+\frac{1}{2} p y^{4}$ (Via. Cafe 3.) Hence we have $C=$

$g+\frac{\text { Flit } \cdot \frac{1}{2} y^{4} \dot{x}}{g \times \text { Flu. } y^{2} \dot{x}}$.
Moreover, with refpect to the Superficies ; the Force of the Particles in the Periphery of the faid Circle MN lAt. 885 . being $2 p g^{2} y+2 p y^{3} \ddagger$, we have, in this Cafe, $C=$ $\frac{F / u . \frac{2 p g^{2} y+2 p y^{3}}{} \times \dot{z}}{g \times \text { Superficies. }}=\frac{F l u .2 p g^{2} j \dot{z}+2 p y^{3} \dot{z}}{g \times \text { Flu. } 2 p y \dot{z}}=g+$ $\frac{\text { Flu. } y^{3} \dot{z}}{g \times \text { Flu. } y \dot{z}}$.
199. Ex. 1. Let EAF be a Segment of a Sphere, whole Radius is r; then y^{2} being $=2 r x-x^{2}$, we Shall have $C\left(g+\frac{F l u . \frac{1}{2} y^{4} \dot{x}}{g \times F\left(u \cdot y^{2} \dot{x}\right.}\right)=g+\frac{F l u .2 r^{2} x^{2} \dot{x}-2 r x^{3} \dot{x}+\frac{1}{2} x^{4} \dot{x}}{g \times F / u \cdot 2 r x \dot{x}-x^{2} \dot{x}}$ $=g+\frac{\frac{2}{r^{2}} x-\frac{r}{2} r x^{2}+\frac{1}{10} x^{3}}{g \times r-\frac{2}{3} x}=g+\frac{\frac{20 r^{2}-15 r x+3 x^{2}}{} \times x x}{30 r-10 x \times g}$. Which, when x is expounded, either, by r or $2 r$, becomes $=g+\frac{2 r^{2}}{5 g}$, for the true Value of C, when

in finding the Centers of Gravity, \&c.

either the Hemirphere, or whole Sphere, is take:. But, with refpect to the Center of Ofcillation of the Superficies thereof, we have \dot{z} in this $\mathrm{Cafe}=\frac{r \dot{x}}{\sqrt{2 r x-x x}}$ * A.t. 14 z ,
$=\frac{r \dot{x}}{y}:$ And therefore $g+\frac{F l u \cdot y^{3} \dot{z}}{g \times F l u \cdot y \dot{x}}=g+$
$\frac{F l u \cdot \overline{2 r x-x x} \times r \dot{x}}{g \times F L u \cdot r \dot{x}}=g+\frac{r x-\frac{1}{3} x^{2}}{g}$: Which, when
$x=r$, or $x=2 r$, becomes $g+\frac{2 r^{2}}{3 g}$.
200. Ex. 2. Let the Solid EAF be a Parabsloid, wubofe
generating Curve is defined by the Equation $y^{\prime}=\frac{x^{n}}{c^{n-2}}$:
Then $C=g+\frac{F l u \cdot \frac{1}{2} y^{4} \dot{x}}{g \times F l u \cdot y^{2} \dot{x}}=g+\frac{F l u . \pm x^{4 n} \dot{x} \times c^{4-4 n}}{g \times F i u . x^{2 n} \dot{x} \times c^{2-2 n}}$
$=g+\frac{\overline{2 n+1} \times x^{2 n}}{4^{n+1} \times 2 g \times c^{2 n-2}}=g+\frac{\overline{2 n+1} \times y^{2}}{4^{n+1} \times 2 g}$. Where, if n be taken $=0$, the Figure will become a Cylinder, and $C=g+\frac{y^{2}}{2 g}$: But if n be expounded by r , the Figure will be a Cone, and $C=g+\frac{3 y^{2}}{10 g}$. Laftly, if n be taken $=\frac{x}{2}$, the Figure will be the Solid generated from the common Parabola and $C=g+\frac{y^{2}}{3 g}$.

S E C T I O N XII.

Of the Ufe of Fluxions in determining the Motion of Bodies affected by centripetal Forces.

PROPOSITION I.

201. ГTHE Mation, or Velocity, acquired by a Body freely defcending from Reft, by the Force of an uniform Gravity, is proportional to the Time of its Defcent; and the Space gone over, as the Square of that Time.

The firft Part of the Propofition is almoft felf-evident: For, fince any Motion is proportional to the Force by which it is generated, that generated by the Force of an uniform Gravity mult be as the Time of Defcent; becaure the whole Effect of fuch a Force, acting equally every Inftant, is as that Time.

1 A Let, now, the Velocity acquired during a Defcent of one Second of Time, be fuch as would carry the Body. uniformly over any Diftance b in one Second; and let AB (x) denote the Diftance defcended in any propofed Time t; which Time let be denoted by PQ ; making $\mathrm{Bb}=\dot{x}$ and $\mathrm{Q}_{q}=\dot{t}$: Then it will be, as $1: t:: b:(b t)$ the Diftance that would be uniformly deferibed in " I, with the Velocity at B: Alfo ${ }_{1}^{\prime \prime}: i:$, the faid Diftance ($b t$) to $b \dot{t}=\dot{x}^{*}$. By taking the Fluent whereof we get
$\frac{1}{2} b t^{2}=x$. Therefore the Diftance defcended $\left(\frac{1}{2} b t^{2}\right)$ is as the Square of the Time.

Conceive the Time ($P Q$) of falling thro $A B$ to be divided into an indefinite Number of very fmall equal Particles, reprefented, each, by m; and let the Diftance defcended in the firft of them be A, c, in the fecond $c d$, in the third de, Ef.c. Ecc. Then, the Velocity being always as the Time from the Beginning of the Defcent, it wil in the Middle of the firft of the faid Particles be defined by $\frac{1}{2} m$; in the Middle of the fecond by $1 \frac{1}{2} m ;$ in the Middle of the third by $2 \frac{1}{2} m, \mathcal{E}^{c}$. E'c. But, fince the Velocity at the Middle of any Particle of Time, is a Mean between thofe at the two Extremes, or betwixt any other two equally remote from it, the correfponding Particle of the Diftance AB may, therefore, be confidered as defcribed by that mean Velocity. And fo, the Spaces $A c, c d, d e$, ef, $छ^{\circ} c$. defcribed in equal Times, being refpective!y as the faid mean Celerities $\frac{1}{2} m$, $1 \frac{1}{2} m, 2 \frac{1}{2} m, 3 \frac{1}{2} m$, Esc. it follows, by Addition, that the Diftances, $\mathrm{A} c, \mathrm{~A} d, \mathrm{~A}, \mathrm{~A} f, \mathcal{E}_{\mathrm{c}}$. gone over from the Beginning, are to one another as $\frac{m}{2}, \frac{4 m}{2}, \frac{9 m}{2}, \frac{16 m}{2}$, Ecc. or $1,4,9,16,25, \mathcal{E}^{\circ} c$. that is, as the Squares of the Times.

> Q.E.D.

Corollary i.

202. Since the Diftance that might be uniformly run over in one Second, with the Velocity at B, is expreffed by $l t$, the Diftance that might be defcribed with the fame Velocity in the Time t will therefore be expreffed by $b t \times t$, or $b t^{2}$: Whence it appears, that the Space AB ($\frac{1}{2} b t^{2}$) thro' which the Body falls in any given Time t, is juft the half of that which would be uniformly defcribed with the Celerity at B, in the fame Time.

Therefore, fince it is found from Experiment, that a Body near the Earth's Surface (where the Gravity may
be takcin as uniform) defcends about $16_{T^{\prime} / 2}$ Feet in the firft Second, it follows that the Value of b (is in this $\mathrm{C}_{2}\left(\mathrm{e}^{\prime}\right)=2 \times 16_{\frac{1}{12}}^{2}=32_{6}^{\frac{1}{6}}$: And confequently the Number of F cet defcended in t Seconds, equal to $16{ }_{t^{\prime}}=\times t^{2}$.

Corolfary 2.

203. It is evident, whatever Force the Body defcends by, the Value of b will al ways be as that Force; fince a double Force, in the fame time, genergtes a double Velocity; a treble Force, a treble Velocity, Eic. Therefore, feeing our Equation $\frac{1}{2} b t^{2}=x$, alfo gives $t=$ $\sqrt{\frac{x}{\frac{1}{2} b} b}$, and $b=\frac{x}{\frac{3}{2} t^{2}}$, it follows,
I. That the Diftance defcerded is, univerfally, as the Force and the Square of the Time conjunctly.
204. That the Time is always as the Square-root of the Diftance appiied to the Force.
205. And that the Force is as the Diftance apply'd to the Square of the Time -What is above demonftrated with refpect to the Times, holds alfo in the Velocities, when the accelerating Forces are equal.
PROPOSITION II.

206. To determine the Velocity, and Time of Defcent, of a Body along an inclined Plane AC.

From any Point F, in AC, draw FE perpendicular tothe vertical Line $A D$, and make FB and CD perpendicularto AC , meeting AD in B and D . Becaufe (by the Principles of Mechanics) the Force of Gravity in the Direction CF, whereby the Body is made to defcend along the Plane, is to the abfolute Force thereof, as AF to $A B$,

AB , or as AC to AD ; and fince (by Cafe 1. Art. 203.) the Diftances defcended in equal Times are as the Forces, it follows that the Time of Defcent thro' AF will be equal to the Time of the perpendicular Defcent thro' AB: And confequently the Time of Defcent thro' AC equal to that thro' AD; which is given by Prop. r. Moreover, becaufe the Velocities at F and B, acquired in equal Times, are as the Forces, or as AF to AB ; and it appears from Prop. 1. that the Velocity at E is to that at B, as $\sqrt{A E}: \sqrt{A B}$, or as $\sqrt{\mathrm{AE} \times \mathrm{AB}}(=\mathrm{AF}): \sqrt{\mathrm{AB} \times \mathrm{AB}}(=\mathrm{AB})$ it follows, by Equality, that the Celerity at F is equal to that at E ; which is therefore given, by the preceding Propofition.
2.E.I.

Corollary.
205. Hence the Time of Defcent along the Chord $A C$ of a Serni-circle $A C D$ is equal to the lime of Defcent along the vertical Diameter AD: And, if the Chord DG be of the fame Length with AC (its Inclination to the Horizon being alfo the fame) the Time of Defcent along it will alfo be equal to that along the vertical Diameter.
PROPOSITION III.
206. If, from two Points A and D , equali'y remote from the Center of Attraction C , two Bodies move, with equal Celerities, the one along the Right-line AC, the other in a Curveline DBQ, their Celerities at all other equal Diftances. from the Center, will be equal.

For, let CB and CE be any two fuch Diftances; let the Arch BE be de-

The Ufe of Fiuxions

fcribed, from the Center \mathbf{C}, and alfo $e b$, indefinitely near to it, cutting CB in n : Let the centripetal Force at the Diftance of CB , or CE , be reprefented by f, and the Velocity at B , by v.

By the Refolution of Forces, the Efficacy of the Force (f) in the Direction $B b$, whereby the Velocity of the Body' is accelerated, will be $\frac{\mathrm{B} n}{\mathrm{Bb}} \times f$: Alfo the Time of moving over Bb (being as the Diftance apply'd to the Velocity) is reprefented by $\frac{B b}{v}$: Therefore the Increafe of Velocity, in moving thro' $\mathrm{B} b$, being as the Force and Time conjunctly, will be defined by $\frac{\mathrm{B} n}{\mathrm{~B} b} \times f$ $\times \frac{B b}{v}$, or its Equal $\frac{\mathrm{B}_{n}}{v} \times f$. In the fame Manner, the Velocity at E being denoted by w, the Time of falling thro' E_{e} will be reprefented by $\frac{\mathrm{E}_{e}}{w}$, and the Velocity generated in that Time by $\frac{\mathrm{E} e}{w} \times f$: Which is to that $\left(\frac{\mathrm{Bn}}{v} \times f\right)$ acquired in falling thro' the Arch $\mathrm{B} b$, as $\frac{1}{w}$ to $\frac{1}{v}$. Therefore, feeing the correfponding Increments of Velocity are always, reciprocally, as the Velocities themfelves, it is manifeft, if thofe Velocities are equal, in any two correfponding Pofitions of the Bodies, they will be fo in all others, being always increafed alike. But they are equal at A and D by Suppofition: Therefore, $\mathrm{g}^{\circ} \mathrm{c}$.
2. E. D.
PROPOSITION IV.
207. To find the Ratia of the Velocities, and Times of Defient, of Bodies, in Curves; the Force of Gravity being confidered as uniform.
Let ARD reprefent a Curve of any Kind, along which a Body defcends, by the Force of its own Gra-
vity from A; let $A C, R B, \mathcal{E}_{6}$. be parallel, and $C D$ perpendicular, to the Horizon; moreover, let $\mathrm{R} n$ touch the Curve at R ; and let $\mathrm{CB}=u, \mathrm{AR}=w$, and $\mathrm{R} n=\dot{w}^{*}$.
-Art. 135°
Since the Points B and R (as well as C and A) may be looked upon as equally remote from the Earth's Center (to which the Gravitation tends), the Velocity acquired in defcending thro' the Arch AR will (by the laft Propofition) be
 equal to that acquired by falling freely through the Right-line CB; which laft Velocity (by Prop.. r.) is always as $\sqrt{\mathrm{CB}}$ (or $u^{\frac{1}{2}}$). Therefore the Celerity, whether the Body moves in a Right-line, or a Curve, is always in the fubduplicate Ratio of the perpendicular Defcent ; and fo, the Time in which $\mathrm{R}_{n}(\dot{v})$ would be uniformly defcribed, with that Celerity, will be univerfally as $\frac{\dot{w}^{\frac{1}{2}}}{u^{\frac{1}{2}}}$; whofe Fluent is as the Time of falling through AR.
श. E. I.

> E X A M PLE.
208. Let the Curve ARD be any Portion of the common Cycloid; whereof the Vertex is D and Axis DC ; and whofe Nature (putting $\mathrm{DC}=c$, and the Ray of Curvature at $\mathrm{D}=a$) is defined by the Equation $2 a$ $\times \mathrm{DB}=\mathrm{DR}^{2}$. Here, we have $\mathrm{DR}(=\sqrt{2 a} \times \sqrt{\mathrm{DB}})$
$=\sqrt{2 a} \times \overline{\bar{c}-u^{\frac{1}{2}}}$; whofe. Fluxion $-\sqrt{2 a} \times$ $\frac{\frac{1}{2} \dot{u}}{\overline{--\left.u\right|^{\frac{1}{2}}}}$, with a contrary Sign, is the Value of $R n$ or \dot{w};
therefore $\frac{\dot{v}}{u^{\frac{1}{2}}}=\sqrt{2 a} \times \frac{\frac{1}{2} \dot{u}}{\sqrt{c u}-u u}$: Whore Fluent, at the loweft Point D , where u becomes $=c$, will (by Art. 142.) be equal to $\sqrt{2 a}$ multiplied by $\left(\frac{3.14159^{8} \mathrm{E}^{\circ} \mathrm{c}}{2}\right)$ half the Mealure of the Periphery of the Circle whofe Diameter is Unity. Which Fluent (and confequently the Time of Defcent) will therefore continue the fame, let the Arch DA be what it will.

PROPOSITION V.

209. To determine the Paths of Prgjectiles near the Earit's Surface; (neglecting the Refiftance of the Atmojphere.).

Let a Body be pro-
 jected from the Point A, in the Direction of the Line $A C$, with a Velocity fufficient to carry it uniformly over the Diftance d in the Time t; and let the Space through which it would freely defcend, by its own Gravity, in that time, be denoted by b; alfo let the Sine of the Angle of Elevation BAC (to the Radius r) be put $=\dot{s}$, its Co-fine $=c$, and the Diftance of the Point A from the Ordinate $\mathrm{H} m$ (confidered as moving parallel to itfelf along with the Body) $=x$; then, by Trig. HG (perpendicular to $A B$) will be $=\frac{s x}{c}$, and $A G=\frac{r x}{c}$.

Becaufe the Projectile is turned afide, continually, from a rectilinear Path, by the Earth's Attraction, it muft
muft defcribe a Curve-line AmEmB , to which AC is a Tangent at the Point $\mathrm{A}:$ But that Attraction, acting always in a Direction (Him) perpendicular to the Horizon, can have no Effect upon that Part of the Velocity with which the Body approaches the Line BC, parallel to Hm ; therefore the Right-line HG (in which the Body is always found), will continue to move uniformly towards BC, the fame as if Gravity was not to act; and the Distance $\mathrm{G} m$ defcended from the Tangent AC, by means of the Attraction, will be the very lame as if the Body was to defcend from Reft along the Line GH. This being premifed, it is evident, that as $d: A G$ $\left(\frac{r x}{c}\right):: t:\left(\frac{r x}{c d} \times t\right)$ the Time of defcribing Am; and, as $t^{2}: \frac{r^{2} x^{2}}{c^{2} d^{2}} \times t^{2}:: b:\left(\frac{b r^{2} x^{2}}{c^{2} d^{2}}\right)$ the Space (Gm) through which a Body would freely defcend in that Time (by Prop. 1.)
Hence $\frac{s x}{c}-\frac{b r^{2} x^{2}}{c^{2} d^{2}}$, or $\frac{c s d^{2} x-b r^{2} x^{2}}{c^{2} d^{2}}$ is a general Value for the Ordinate Hm : By putting which $=0$, we get $x=\frac{c s d^{2}}{b r^{2}}=\mathrm{AB}=$ the Amplitude of the Projection. But, by putting its Fluxion equal to nothing, we have $x=\frac{c s d^{2}}{2 b r^{2}}$; which fubftituted for x in the Value of $\mathrm{H} m$, gives $\frac{s^{2} d^{2}}{4 b r^{2}}$ for the Altitude DE of the Projection.
श. E. I.

Corollary.

210. If another Body be projected, with the fame Celerity, in the vertical Direction AS; then, s becoming $=r$, the Altitude of that Projection $\left(\frac{s^{2} d^{2}}{4 b r^{2}}\right)$ will be-
come $\frac{d^{2}}{4^{b}}=$ AS ; which call b, and let this Value be fubftituted in thole of AB and DE , and they will become $\frac{4 h c s}{r^{2}}$ and $\frac{h s^{2}}{r^{2}}$ respectively.

Hence, if from the Point Q where the Line of Direaction AC cuts a Semi-circle defcribed upon AS, the Lines $S Q$ and $Q P$ be drawn, the latter perpendicular to $A B$, the Triangles ASQ and AQP being fimilar, we shall have

$$
\begin{aligned}
& r: s:: b(\mathrm{AS}): \frac{s b}{r}=\mathrm{AQ} \\
& r: s:: \frac{s b}{r}(\mathrm{AQ}): \frac{s^{2} b}{r^{2}}=\mathrm{PQ}=\mathrm{DE} \\
& r: c:: \frac{s b}{r^{2}}(\mathrm{AQ}): \frac{s b b}{r}=\mathrm{AP}=\frac{1}{4} \mathrm{AB} \\
& \\
& \\
& \\
& P R O P O S I T I O N ~ V I .
\end{aligned}
$$

211. To determine the Ratio of the Forces, whereby Bodies, tending to the Centers of given Circles, are made to revalve in the Peripheries thereof.

Let ABH and $a b b$ be any two propofed Circles, whereof let AB and $a b$ be fimilar Arcs; in which, let the
the Velocities of the revolving Boties be refpectively as V to v; make DBK and $d b k$. parallel to the Radii AC and $a c$, putting $\mathrm{AC}=R, a c=r$, and the Ratio of the centripetal Force in ABH to that in $a b h$, as F to f_{0}

It is plain, becaufe the Angles ABD and abd are equal, that the Velocities at B and b, in the Directions BK and $b k$, with which the Bodies recede from the Tangents AD and ad, are to each other as the abfolute Celerities V and v^{*}. But thofe Velocities, being the Effects of the centripetal Forces acting in correfponding, fimilar, Directions during the Times of defcribing AB and $a b$, will therefore be as the Forces themfelves when the Times are equal ; but when unequal, as the Forces and Times conjunctly. Therefore, the Times being univerfally as $\frac{\mathrm{AB}}{V}$ to $\frac{a b}{v}$, or as $\frac{R}{V}$ to $\frac{r}{v}$ (becaufe the Arcs AB and $a b$ are fimilar) we have, as $F \times \frac{R}{V}: f \times$ $\frac{r}{v}:: V: v$; whence (multiplying the Antecedents by $\frac{V}{R}$ and the Confequents by $\frac{v}{r}$) it will be, as $F: f:$: $\frac{V^{2}}{R}: \frac{v^{2}}{r}$: Therefore the Forces are as the Squares of the Velocities directly, and as the Radii inverfely.

Otherwife.

Let the indefinitely little Arch $A B$ be the Diftance that the Body moves over in a given, or conftant Particle of Time; and let the centripetal Force at B be meafured by twice the Subtenfe or Space AE through which the Body is drawn from the Tangent $A D$ in that Time. \dagger.

Then,
\dagger The Velocity which any Force, uniformly continued, is capable of generating, in a given Body, in a given Fime, is the proper Meafure of the Intenfity of that Force*. But this Velocity is itflelf meafured by the Space the Body would move uni- "Art, 203.

Then, by the Nature of the Circle, $A B^{2}=A H \times$ $\mathrm{AE}=\mathrm{AC} \times 2 \mathrm{AE}$, and confequently $2 \mathrm{AE}=\frac{\mathrm{AB}}{\mathrm{AC}}$: Therefore, the Force is as the Square of the Velocity applied to the Radius of the Circle (as before).

Corollary I.

212. Becaufe, $F: f:: \frac{V^{2}}{R}: \frac{v^{2}}{r}$, it follows that

$$
\begin{aligned}
& V: v:=\sqrt{R F}: \sqrt{r f_{2}} \text { and } \\
& R: r:: \frac{V^{2}}{F}: \frac{v^{2}}{f} .
\end{aligned}
$$

Corollary II.
213. If the Ratio of the periodic Times be denoted by that of P to p; then the Ratio of the Velocities V, v being as $\frac{R}{P}$ to $\frac{r}{p}$, we fhall have, by Equality $\sqrt{R F}$: $\sqrt{r f}:: \frac{R}{P}: \frac{r}{p}$; whence alfo

$$
\begin{aligned}
& F: f:: \frac{R}{P^{2}}: \frac{r}{p^{2}}, \text { and } \\
& R: r:: F P^{2}: f p^{2} .
\end{aligned}
$$

formly over in a given Time; which Space is always the double of that tbrough which the Body roould freely defcend, from Ref, in the Jame time ". T'berefore 2AE is the proper Mea/ure of the centripetal Force, according as wee bave aJumed it.It is true, wben the Forces to be compared are all computed in the Same Manner, from the Nafent, or indefinitely Small Subtenfes of contemporaneous Ares, it matters not rwhetber wee conffider thofe- Subtenfes, or their Doubles, as the Meafures of the Forces, the Ratio being the Same in both Cafes. But wuben the Forces fo found are to be compared rwith otbers derived from a fuxional Calculus, it is absolutely neceffary to take the double Subtenfe for the Meafure of ybe Force. This Note is inferted, that the Learner. may avoid the Errors, wobich fome very confiderable Mathematicians bave fallen inte by not properly atterding to this Particular.

Co-

Corollary III.

214. If the Meafure of the Force, or the Velocity that might be uniformly generated in a given Time (1) be expounded by any Power a^{n} of the Radius AC (a); then the Diftance through which a Body would freely defcend in the fame Time, by that Force, uniformly continued, will be expreffed by $\frac{\pi}{2} a^{\pi} *$. Therefore, ${ }^{\circ}$ Art 202 . the Diftances defcended, by means of the fame Force; uniformly continued, being as the Squares of the Times \dagger, it is evident, if the Time of moving through \dagger Art. 201. AB be denoted by t, that the Diftance AE defcended in that Time, will be denoted by $\frac{t^{2}}{I^{2}} \times \frac{\frac{1}{2}}{} a^{7}:$ And To we fhall have $\mathrm{AB}(\sqrt{2 \mathrm{AE} \times \mathrm{AC}})=\frac{t}{x} \times a^{\frac{n+1}{2}}$; which being the Diftance deferibed by the revolving Body in the Time t, it follows that the Space gone over in the given Time (I) will be a^{2} : Which, therefore, is the true Meafure of the Celerity in this Cafe. The fame conclufion might have been derived in much fewer Words from Corol. I. but, as a thorough underftanding hereof is abfolately neceffary in what follows hereafter, I have endeavoured to make it as plain as poffible.

Corollariy IV.

215. Hence the Time of Revolution is alfo derived; for it will be as $a^{\frac{n+1}{2}}: 3.14159$ \&8c. $\times 2 a$ (the whole Periphery) :: $\mathrm{r}: \frac{3.34 \mathrm{E}^{2} c_{0} \times 2 a}{a^{\frac{n+1}{2}}}$ or 3.14159 Er. x $\mathrm{ra}^{\frac{1-\pi}{2}}$, the true Meafure of the periodic Time.

Corollary V.
216. Therefore, if n be expounded by $1,0,-1$, -2 and -3 fucceffively, then the Velocity correfponding will be as $a, a^{\frac{7}{2}}, 1, a^{-\frac{1}{2}}$, and a^{-1}; and the Time of Revolution, as $\mathrm{I}, a^{\frac{1}{2}}, a, a^{\frac{3}{2}}$ and a^{2} refpectively.

SCHOLIUM.

217. From the preceding Propofition, and its fubfequent Corollaries, the Velocity and periodic Time of a Body revolving in a Circle at any given Diftance from the Earth's Center, by means of its own Gravity, may be deduced: For let d be put for the Space thro' which. a heavy Body, at the Surface of the Earth, defcends in. the firtt Second of Time, then $2 d$ will be the Meafure of the Force of Gravity at the Surface: And therefore, the Radius of the Earth being denoted by r, the Velocity, per Second, in a Circle at its Surface, will be $\sqrt{2 r d}$; and the Time of Revolution $=\frac{3.14159 \varepsilon^{\circ} c . \times 2 r}{\sqrt{2 r d}}$ $=3.14159$ Efc. $^{\times} \times \sqrt{\frac{2 r}{d}}$ (Seconds); which two Expreffions, becaufe r is $=21000000$ Feet and $d=16 \frac{1}{12}$ will therefore be nearly equal to 26000 Feet and 5075 Seconds, refpectively. Let R be now put for the Radius of any other Circle defcribed by a Projectile about the Earth's Center: Then, becaufe the Force of Gravitation above the Surface is known to vary according to the Square of the Diftance inverfely, we have (by Cafe 4. Corol. 5.) $r^{-\frac{1}{2}}: R^{-\frac{1}{2}}::\left(26000^{F}\right)$ the Velocity (per Second) at the Surface, to $26000 \times \sqrt{\frac{r}{R}}$, the Ve-
locity in the Circle whofe Radius is R : And $r^{\frac{3}{2}}: R^{\frac{7}{2}}$
$::\left(5075^{\text {S. }}\right)$ the periodic Time at the Surface : to $5075 \times$ $\sqrt{\frac{R^{3}}{r^{3}}}$, the Time of Revolution in the Circle R 。 Which, if R be affumed equal to ($60 r$) the Diftance of s.

D the Moon from the Earth, will give 2360000 , or 27.3 nearly, for the periodic Time at that Diftance.
In like fort the Ratio of the Forces of Gravitation of the Moon, towards the Sun and Earth, may be computed.. For; the centrifugal Forces in Circles, being univerfally as the Radii apply'd to the Squares of the Times of Revolution, it will be as $\left(\frac{81000000}{1}\right)$ the
Semi-diameter of the Magnus Orbis divided by the Square of one Year (the periodic Time of the Earth and Moon about the Sun) is to (240000×178) the Diftance of the Moon from the Earth divided by $\frac{1}{178}$, the Square of the periodic Time of the Moon about the Earth, fo is 1,9 to 1 nearly; and fo is the Gravitation of the Moon towards the Sun to her Gravitation towards the Earth.
Alfo, after the fame Manner, the centrifugal Force of a Body at the Equator, arifing from the Earth's Rotation, is derived. For fince it is found above, that 5075 Seconds is the Time of Revolution, when the centrifugal Force would become equal to the Gravity, and it appears (by Cafe 2. Corol. 2.) that the Forces, in Circles having the fame Radii, are inverfely as the Squares of the periodic Times, we therefore have, as $\frac{\mathrm{B0160}}{\mathrm{M}}{ }^{2}$ (the Square of the Number of Seconds in (23 56) one whole Rotation of the Earth) to $5075{ }^{2}$ (the Square of the Number of Seconds above given) fo is the Force of R

Gravity

Gravity (which we will denote by Unity) to $\frac{1}{289}$, the centrifugal Force of a Body at the Equator arifing from the Earth's Rotation.

But, to determine, in a more general Manner, the Ratio of the Force of a Body revolving in any given Circle, to its Gravity, we have already given 3.14 Evc. x
${ }_{d}{ }_{d}$ for the Time of Revolution at the Surface of the Earth, when the Gravity and centrifugal Force are equal : Therefore, if the Time of Revolution in any Circle whofe Radius is a, be denoted by t, it follows, from Corol. 2. laft Prop. that, $\frac{r}{\left.3 \cdot 14\right|^{2} \text { छc. } \times \frac{2 r}{d}}: \frac{a}{t^{2}}$
$\because:$ the Gravity of the Body : to its, centrifugal Force in that Circle; which, therefore, is as Unity to $\frac{\left.3.14\right|^{2} \text { Ec. } \times 2 a}{d t^{2}}$; or as I to $1.228 \times \frac{a}{t^{2}}$ very near-
ly: where a denotes the Number of Feet in the Radius of the propofed Circle, and t the Number of Seconds in one intire Revolution. So that, if the Length of a Sling, by which a Stone is whirled about, be two Feet, and the Time of Revolution $\frac{1}{2}$ of a Second, the Force by which the Stone endeavours to fly off, will be to its Weight as 9.824 to Unity.

From this general Proportion, the centrifugal Force and periodic Time of a Pendulum defcribing a conical Surface may likewife be deduced.

For let SR, the Length
 of the Pendulum, be denoted by g; the Altitude CS of the Cone, by c; the Semi-diameter, CR of the Bafe by a; and the Time of Revolution by t : Then, the Force of Gravity being
reprefented by Unity, the Force with which the revolving Body at R; the End of the Pendulum, tends to recede from the Center C, will be defined by
$\frac{3.14 \xi_{0} t^{2} \times 2 a}{d t^{2}}$, as has been already thewn. Therefore, becaufe the Body is retained in the Circle RR by the Action of three different Powers, i, e. the centrifugal Force $\left(\frac{2.14 \mathrm{El}^{2} \times 2 a}{d t^{2}}\right)$ in the Direction CR, the Force of Gravity (i) in a Direction parallel to SC, and the Force of the Thread or Wire RS, compounded of the former two; it follows, from the Principles of Mechanics, that as SC (c) to CR (g), fo is the Weight of the Body at R, to the Force with which it acts upon the Thread or Wire RS; and as $\mathrm{I}: \frac{\sqrt[3.14(G)^{2}]{d t^{2}} \times 2 a}{3 .}$:: $\operatorname{CS}(c): \operatorname{CR}(a):$ Whence $d t^{2}=3.14 \xi^{2} c .1^{2} \times 2 c$, and $t=3.14$ छci. $\times \sqrt{\frac{2 c}{d}}=1,108 \sqrt{c}$ nearly. Becaufe $d t^{2}$, or its Equal $\left.3 \cdot 14 \delta^{c}\right]^{2} \times 2 c$, exprefles the Space a heavy Body will defcend, by its own Gravity, in the Time $t *$, and fince $\left.1^{2}: 3.14 छ_{6}\right]^{2}:: 2 c: *$ Art, 2020 $3.14 \delta^{\circ} T^{2} \times 2 c\left(=d t^{2}\right)$ it therefore appears that, as the Square of the Diameter of any Circle, is to the Square of its Periphery, fo is twice the perpendicular Altitude of the Cone, to the Diftance a heavy Body will freely defcend in the Time of one whole Gyration of the Pendulum, let the Bafe of the Cone and the Length of the Pendulum be what they will.

PROPOSITION VII.

218. To determine the Ratio of the Velocities of Bodies de'Scending, or afcending, in Right-lines, when accelerated, or - retarded, by Forces, varying according to a given Law.

Suppofe a Body to move in the Right-line CH , and let the Force whereby it is urged towards C , or H , R 2
be as any variable Quantity F: Moreover, let the Nelocity of the Body be reprefented by v; putting its Diftance CD , from the Point $\mathrm{C}=x$, and $\mathrm{D} \dot{d}=\dot{x}$.

H Then, fince the Time wherein the Space Dd (\dot{x}) would be uniformly defcribed, with the Velocity at D , is known to be as $\frac{\dot{x}}{v}$, the
D Velocity that would be uniformly generated, or deftroyed, in that Time by the Force F (being as the Time and Force conjunctly) will consequently be as $\frac{F \dot{x}}{v}$: Which therefore mut be equal to, $\pm \dot{v}$, the uniform Increase or Decrease of Celerity in that Time; and consequently $\pm v \dot{v}=F \dot{x}$. From whence, when the Value of F is given in Terms of x, or v, the Value of v will likewife be known.
2. E. I.

Corollary I.
219. Hence, the Law of the Velocity being given, that of the Force is deduced: For, fince $F \dot{x}= \pm v \dot{v}_{\text {, }}$ it is evident that $F= \pm \frac{v \dot{v}}{\dot{x}}$.

Corollary II.

220. Hence, alfo, the Ratio of the Velocity at D to that whereby a Body might revolve in the Periphery of a Circle about the Center C, at the Diftance of CD, will be known: For, if this lat Velocity be denoted by - Art, 212, w, the Value of F, will be rightly expreffed by $\frac{w w^{2}}{x} *$: Whence, by Substitution, we have $\pm v \dot{v}=\frac{w w^{2} \dot{x}}{x}$, or

$$
\pm v^{2}
$$

$\pm v^{2} \times \frac{\dot{v}}{v}=w^{2} \times \frac{\dot{x}}{x}:$ Whence $w^{2}: v^{2}: \pm \frac{\dot{v}}{v}: \frac{\dot{x}}{x}$, and confequently $w: v:: \sqrt{ \pm \frac{\dot{v}}{v}}: \sqrt{\frac{\dot{x}}{x}}$. Where, as well as above, the Sign of \dot{v} muft be taken + or according as the Body is urged from, or towards the Center C.

PROPOSITION VIII.

221 Suppofng a Body, let go from a given Point A with a given Celerity (c) along a Righr-line CH , to be urged, either way, in that Line, by a Force varying as any Power (n) of the Difance from a given Point C ; to find, not only, the Relation of the Velocities, and Spaces gone over, but alfo the Times of Afcent and Defcent.

The Conftruction of the preceding Problem being retained, F will here be expounded by x^{n}, and we thall therefore have $\pm v \dot{v}(=F \dot{x})=x^{\prime \prime} \dot{x}$; and confequently, by taking the Fluent thereof, $\pm \frac{v v}{2}=\frac{x^{x+1}}{n+1}$; but to correct the Fluent thus found, let x be taken $=\mathbf{C A}$ (which we will call a) then v being $=c$, the Fluent in that Circumftance will become $\pm \frac{c^{2}}{2}=\frac{a^{n+1}}{n+1}$: Therefore the Fluent duly corrected is $\pm \frac{v^{2}}{2} \mp \frac{c^{2}}{2}=$ $\frac{x^{n+1}-a^{n+1}}{n+1} *$, or $v^{2} \sim c^{2}=\frac{2 x^{n+1} \cos 2 a^{n+1}}{n+1}$: Whencev will * Art. 78 . come out $=\sqrt{c^{2}+\frac{\mp 2 a^{n+1} \pm 2 x^{n+1}}{n+1}}$: Where the
Signs of v and x^{n+1} muft be alike, when both Quantities increafe, or decreafe, at the farre time; that is,

The lIfe of Fluxions

*Art. 220. when the Force, from C, is a repulfive one *; but, unlike, when one increases while the other decreases, or the Force, tending to \mathbf{C}, is an attractive one. In the formed Cafe we therefore have $v=\sqrt{c^{2}+\frac{2 x^{n+1}-2 a^{n+1}}{n+1}}$; and, in the latter, $v=\sqrt{c^{2}+\frac{2 a^{n+1}-2 x^{n+x}}{n+1}}$.

The Value of v being thus obtained, let the required Time of moving over the Space AD be now denoted by T ; then, fence $\dot{\mathrm{T}}$ is univerfally $=\frac{\dot{x}}{v}$, we have $\dot{\mathrm{T}}$

$$
=\frac{\dot{x}}{\sqrt{c^{2}+\frac{2 x^{n+1}-2 a^{n+1}}{n+1}}} \text {, or } \dot{\mathrm{T}}=
$$

Cafes refpectively: From whence, by finding the Fluent, the Time itfelf will be known.

Corollary.

222. If the Body proceeds from Reft at A, c will be $=0$, and we fall have $\dot{T}=\frac{\frac{n^{\frac{x}{2}}}{\sqrt{1+\dot{x}}}}{2 x^{n+1}-2 e^{n+1}}$, or

$$
\dot{T}=\frac{\overline{1+n}^{\frac{\pi}{2}} \times \dot{x}}{\sqrt{2 a^{n+1}-2 x^{n+x}}} .
$$

SCHOLIUM.
223. Although, the Fluent of the Expreffions given above cannot be exhibited, in a general Manner, nithere, in finite Terms, nor by means of circular Arcs and Logarithms; yet, in come of the molt ufeful Cafes

Cafes that occur in Nature, they may be obtained with great Facility.
Thus, if in $\frac{\overline{1+n)^{\frac{2}{2}}} \dot{\sqrt{n+1}}}{2 a^{n+1}-2 x^{n+3}}$ (expreffing the Fluxion of the Time of Defcent along AD) n be expounded by $1,0,-2$, and -3 fucceffively, the Fluxion itfelf will become equal to
 $\frac{\sqrt{\frac{1}{2}} a \times x \dot{x}}{\sqrt{a x-x x}}$, and $\frac{a x \dot{x}}{\sqrt{a^{2}-x^{2}}}$ relpeatively: Whence, if ARF be a Quadrant of a Circle whofe Center is C, and ASC a Semi-circle whofe Diameter is AC, and DSR be perpendicular to AC ; then it will appear,

$$
\text { 10. That, when } n=1, \quad \mathrm{~A}
$$

and $\dot{\mathrm{T}}=\frac{\dot{x}}{\sqrt{a^{2}-x^{2}}}$ the Velocity $\left(\sqrt{a^{2}-x^{2}}\right)$ at D will be reprefented by DR, and the Fluent fought by $\frac{A R}{A C}$.

2°. That, when $n=0$, and $\dot{\mathrm{T}}=\frac{\dot{x}}{\sqrt{2 a-2 x}}$, the Velocity at D , and the Time of Defcent thro' AD , will each be defined by $\sqrt{2 \mathrm{AD}}$.
3°. That, when $n=-2$, and $\dot{\mathrm{T}}=\frac{\sqrt{\frac{1}{2} a} \times x \dot{x}}{\sqrt{a x-x \dot{x}}}$, the Velocity $\left(\frac{\sqrt{a x-x x}}{x \sqrt{\frac{1}{2} a}}\right)$ will be as $\frac{\mathrm{DS}}{\mathrm{CD} \sqrt{\frac{1}{2} \mathrm{AC}}}$, and the Time of Defeent thro' $A D$, as $\sqrt{\frac{1}{2} A C} \times \overline{A S+D S}$.

R 4
4°. And that, when $n=-3$, and $\dot{\mathrm{T}}=\frac{a x \dot{x}}{\sqrt{a^{2}-x^{2}}}$, the Velocity will be as $\frac{\mathrm{DR}}{\mathrm{AC} \times \mathrm{CD}}$, and the Time as $\mathrm{AC} \times \mathrm{DR}$.

Hence the Time of the whole Defcent tho' the Radius AC , appears to be as $\frac{\mathrm{AF}}{\mathrm{AC}}, \sqrt{2 \mathrm{AC}} ; \sqrt{\frac{1}{2} \mathrm{AC}} \times \mathrm{AF}$, or AC^{2}. But the Time of one whole Revolution in - Att. 215 . the Periphery ARF ϑ°. was found to be as $\frac{4 \mathrm{AF}}{\mathrm{AC}^{\frac{n+1}{2}}}{ }^{*}$; which in the four C ares above frecified is $\frac{4 \mathrm{AF}}{\mathrm{AC}}, \frac{4 \mathrm{AF}}{\sqrt{\mathrm{AC}}}$, $4 \mathrm{AF} \times \sqrt{\mathrm{AC}}$, and $4 \mathrm{AF} \times \mathrm{AC}$: Therefore, if the Time of moving over the Quadrant AF be denoted by 2 , it follows that the Time of Defcent thro' the Radius AC, will be truly defined by $2,2 \times \frac{A C \sqrt{2}}{A F}, 2 \times \sqrt{\frac{1}{2}}$, or $2 \times \frac{A C}{A F}$ according to the foresaid Cares respectively,

$$
L_{\text {Е M M }} \dot{A} .
$$

224. The Areas' which a revolving Body defribes, by Rays drawn to the Center of Force, are proportional to the Times of their Difcription.

For, let a Body, in any given Time, defribe the Rightline $A B$, with . an uninterrupted uniform Motion ; but upon its Arrival at B let it be impelled towards the Center S, fo that, inftead of proceeding along
along $A B C$, it may, after the Impulfe, defcribe the Right-line Be.

Becaufe the Force, acting in the Line SB, can neither add to, nor take from, the Celerity which the Body has in a Direction perpendicular to that Line, the Diftance of the Body from the faid Line, at the end of a given Time, will therefore be the very fame as if no Force had acted; and confequently the Area BeS equal to the Area BCS, which would have been defcribed in the fame time, had the Body proceeded uniformly along BC ; becaufe Triangles, having the fame Bafe and Altitude, are equal.

Therefore feeing no Impulfe, however great, can affeet the Quantity of the Area defcribed about the Center S, in a given Time, and becaufe the Areas $A S B, B S C$, defcribed about that Point, when no Force acts, are as the Bafes $A B, B C$, or the Times of their Defeription, the Propofition is manifeft.

Corollary.

225. Hence the Velocity of a revolving Body, at any Point © or R_{2} is inverfely as the Perpendicular SP or ST, falling from the Center of Force upon the Tangent a : that Point.

For, let two other Şodies m and n be fup. pofed to move uniformly from Q and R, along the Tangents QP and
 RT, with Velocities refpectively equal to thofe of the revolving Body at Q and R ; then the Diffances $\mathrm{Q} m$ and $\mathrm{R} n$, gone over in the fame Time, will be to each other as thofe Velocities; and the Areas $\mathrm{QS} m$ and $\mathrm{RS} r$ will be equal, being equal

The Ufe of Fiuxions

to thofe defcribed by the revolving Body in the fame -Art.rı3. time *: Whence $\mathrm{Q} m \times S \mathrm{~S}$ being $=\mathrm{R} n \times S T$, it follows that $\mathrm{Q}_{m}: \mathrm{R} n:: \mathrm{ST}: \mathrm{SP}:: \frac{\mathrm{I}}{\mathrm{SP}}: \frac{\mathrm{I}}{\mathrm{ST}}$.
PROPOSITION IX.
226. To determine the Law of the centripetal Force, tending to a given Point C, whereby a Bady may defrribe a given Curve AQH.

Let $Q P$ be a T angent to the Curve at any Point Q; upon which, from the Center C, let fall the Perpendicular CP ; put $\mathrm{CQ}=s, \mathrm{CP}=u$; and let the Velocity of the Projectile at Qbe denoted by $थ_{0}$

Therefore, fince v^{2} is always as $\frac{1}{u^{2}}$ (by the Corol. to Lemma) it is evident, by taking the Fluxions of both Quantities, that ví will alfo be as $\frac{-\dot{u}}{u^{3}}$: But the centripetal Force, whether the Body moves in a Right-line
or a Curve, is always as $-\frac{v \dot{\psi}}{\dot{j}}$ (by Art. 2 19. and 206.) Therefore the centripetal Force is likewife as $\frac{\dot{u}}{u^{3} \dot{j}} \cdot 2$.E.I.

> The fame ctherwife.
227. Let the Ray of Curvature QO be denoted by R: Then, becaufe the centripetal Forces in Circles are known to be as the Squares of the Velocities directly and the Radii inverfely *, it follows that the Force, tending *Art. 212. to the Point O , whereby the Body might be retained in its Orbit at Q, or in the Circle whofe Radius is QO, will be defined by $\frac{1}{u^{2}} \times \frac{\mathrm{I}}{\mathrm{R}}$: Whence (by the Refolution of Forces) it will be CP (u):CQ(s):: $\frac{1}{u u^{2} R}$ (the Force in the Direction QO) : $\frac{s}{u^{3} R}$, the Force in the Direction QC: Which, becaufe $R=\frac{s j}{i i}+$ will. alfo \dagger Art. 73 . be expreffed by $\frac{i}{u^{3} \dot{j}}$. 2: E. I.

Another Way..

228. Let $n q$ be the indefinitely fmall Part of the Right-line $\mathrm{C} q$, intercepted by the Curve and the Tangent Qq, expreffing the Effect of the centripetal Force in the Time of defribing the Area QCn. Now thefe Effects, or the Diftances defended by means of Forces uniformly continued, are known to be in the duplicate Ratio of the Times \ddagger, or of the Areas denoting thofe Times \S : Therefore, the centripetal Force at Q, or the Diftance defcended by means thereof in a given Time, will be as $n q$ applied to the fecond Power of the Area $\mathrm{QC} q$, or as $\frac{n q}{\mathrm{Cr}^{2} \times\left(q^{2}\right.}$. This Expreffion is the fame
\ddagger Art. 20 Y. § Art. 224.
with that given by Sir JJaze Nezuton, in his Principia, Book 1. Prop. 6. But, to adapt it to a fluxional Calculus; let QE be an Ordinate to the principal Axis AG; and let (as ufual) $\mathrm{AE}=x, \mathrm{EQ}=y, \mathrm{AQ}=z, \mathrm{E}_{e}$ (or $\left.\mathrm{C}_{t}\right)=\dot{x}, \mathrm{Q}_{q}=\dot{z}$; fuppofing eq (parallel to EQ) to interfect the Curve and the Tangent in m and q.

Since Q_{q} is conceived indefinitely fmall (or in its nafcerit State) the Triangle $n m q$ may be taken as recti-- Arto 33^{6}. lineal *; alfo the Angle $n=\mathrm{CQP}$ and the Angle $m=$ Qqt: Whence, it will be (by Trigonometry) as S. $\operatorname{CQP}(n): S . Q_{q}(m):: m q: n q$; that is, as $\frac{\mathrm{CP}}{\mathrm{CQ}}: \frac{\mathrm{Q}_{t}}{\mathrm{Q}_{q}}$ $\frac{\mathrm{CQ} \times \mathrm{Q} t \times m q}{\mathrm{CP} \times \mathrm{Q}_{q}}:$ Which fubftituted above $\frac{\mathrm{CQ} \times \mathrm{Q} t \times m q}{\mathrm{CP}^{3} \times \overline{\mathrm{Qq}^{3}}}$ for the Meafure of the centripetal Force at $\mathrm{Q}:$ - But m^{\prime} (fuppofing x to flow uniformly) is known to be as $-j$: Therefore the Force at Q, is as $\frac{\mathrm{CQ} \times \mathrm{Q} t \times-\ddot{y}}{C P^{3} \times Q_{q^{3}}}$, or its Equal $\frac{-s \dot{x} \dot{y}}{u^{3} \dot{z}^{3}}$; where the Divifor $\left(u^{3} \dot{z}^{3}\right)$ is as the Cube of ($Q C q$) the Fluxion of the Area AQC.

The very fame Theorem may likewife be decuced from that given by our fecond Method: For, fince (R) * Ar.68. the Ray of Curvature at Q is univerfally * $=\frac{\dot{z}^{3}}{-\dot{x} j^{j}}$, the Value of $\frac{s}{u^{3} R}$ (there found / will here, by Subftitution, become $=\frac{-s \dot{x} \ddot{y}}{u^{3} \dot{z}^{3}}$.

This Expreffion, tho' in appearance lefs fimple than $\frac{\dot{u}}{u^{3} \dot{j}}$, firt found, is, for the general part, more commodious in'Practice.

Corollary I.

229. If the Point C be fo remote that all Right-lines drawn from thence to the Curve may be confider'd as parallel to each other, the Force will then (making $\mathrm{Q} r$ perpendicular to C_{q}) be as $\frac{-s \dot{x} \dot{y}}{\mathrm{C}_{q \times(2)^{3}}^{3}}$, or barely as $\frac{-\dot{x} \bar{j}}{\overline{\mathrm{Q} r}{ }^{3}}$; fince $s(\mathrm{C} q)$ in this Cafe may be rejected.
From this Expreffion, which is general, in all Cafes where the Force acts in the Direction of parallel Lines, it appears that the Force, which always acting in the Direction of the Ordinate QE, would retain the Body in its Orbit, is every where as $\frac{-\ddot{y}}{\dot{x}^{2}}$; becaufe (C here coincides with $C E$, and $\mathrm{Q} r$ becomes $=\dot{x}$.

Corollary II.
230. Becaufe the Force, tending to the Point C , is univerfally as $\frac{\mathrm{CQ}}{\mathrm{CP}^{3} \times \mathrm{QU}}$ (or $\frac{s}{u^{3} R}$) the Force to any other Point c, will, by the fame Argument, be as $\frac{C Q}{c P^{3} \times Q O}$. Hence the Forces, to different Centers \mathbf{C} and c (about which equal Areas are defrribed in the fame time) are to each other in the Ratio of $\frac{\mathrm{CP}^{3}}{\mathrm{CQ}}$ to $\frac{c p^{3}}{C Q}$ inverfely.

> Corollary III.

23r. Moreover, the Ratio of the Velocity at Q to the Velocity whereby the Body might revolve in a Circle about the Center at C, at the Diftance CQ, is eafily deduced from hence: For, fince the Celerity at Q is that whereby
whereby the Body might revolve in a Circle about the Center O, and the Forces tending to the Centers O and C are to each other as $u(\mathrm{CP})$ and $s(\mathrm{CQ})$; it therefore follows, if the Ratio fought be aflumed as v to w, that $\frac{v^{2}}{\mathrm{QO}}: \frac{w^{2}}{\mathrm{QC}}:: u: s$ (by Art. 212.) Whence alro $v^{2}: w^{2}:: u \times Q O(u R): s \times Q C\left(s^{2}\right)$ and confequently $v: w:: \sqrt{\frac{u R}{s s}}: 1::$

 (becaufe $R=\frac{s s}{u}$).
The fame Proportion may alfo be derived from Corol. 2. Prop. 7. For it is there proved that $v: z=:$ $\frac{\dot{v}}{s}: \sqrt{-\frac{\dot{v}}{v}}$; and it appears from
$\frac{\dot{v}}{v}=\frac{\dot{u}}{u}:$ Whence the whole is manifeft.
If OL be made perpendicular to CC, QL will be $\left(=\frac{\mathrm{CP} \times \mathrm{QO}}{\mathrm{CQ}}\right)=\frac{u R}{s}$, and $\frac{\mathrm{QL}}{\mathrm{CQ}}=\frac{u R}{s^{2}}$; and therefore $v: w:: \mathrm{QL}^{\frac{1}{2}}: \mathrm{CQ}^{\frac{1}{2}}$: Which is another Proportion of the propofed Celerities.

Corollary IV.
232. Laftly, the Law of centripetal Force being given, the Nature of the Trajectory AQ may from hence be found ; for fince the Force (F) is univerfally defined by $\frac{\dot{u}}{u^{3} s}$, it is evident that $\frac{-1}{2 u^{2}}$ will be $=$ the Fluent of $F s$; which, when F is given in Terms of s, will become known ; and then, the Relation betwcen u and s being given, the Curve itfelf is known.

EXAMPLE I.

233. Let the given Curve AQH be the logarithmic Spiral, and C the Center thereof: Then u (C户) being in this Care $=\frac{b s}{a} *$, we have $\frac{\dot{u}}{u^{3} \dot{s}}+\left(=\frac{\dot{b_{s}}}{\dot{a} s} \times \frac{a^{3}}{b^{3} s^{3}}\right) \dagger_{\dagger A r t .227_{0}}$ Art
$=\frac{a^{2}}{b^{2} s^{3}}$ and $\sqrt{\frac{u s}{s i}} \ddagger(=$
$\left.\sqrt{\frac{b s s}{a}} \times \frac{a}{b s s^{s}}\right)=$ Unity. Hence it appears that the Force is inverfely as the Cube of the Difrance ; and the Velocity, every where, equal to that whereby the Body might revolve in a Circle at the fame Diftance.

EX A MPLEII.

234. Let it be required to find the Law of the centripetal Force, whereby a Body, tending to the Focus C, is made to revolve in the Periphery of an Ellipsis AQDB.

From the other Focus F draw FK parallel to CP meeting the Tangent PQ (at Right-angles) in K, join $F, Q_{\text {; put- }}$ ting the tranfverfe Axis $\cdot \mathrm{AB}=a$, the
 Semi-conjugate $\mathrm{OD}=\frac{1}{2} b$, and the Parameter $\left(\frac{b^{2}}{a}\right)$
$=p$: Then, CQ and CP being denoted as above ${ }^{*}$, *Art. 23ro we have $\mathrm{FQ}(=\mathrm{AB}-\mathrm{CQ})=a-s$; whence, by reafoin of the fimilar Triangles CQP and FQK , it will be
$s: u:: a-s: \mathrm{FK}=\frac{\overline{a-s} \times u}{s}$. But $\mathrm{FK} \times \mathrm{CP}$ is $=O D^{2}$ (by the Nature of the Curve.) Herice we get $\frac{a-s \times u^{2}}{s}=\frac{1}{4} b^{2}$; and confequently $\frac{1}{u^{2}}=\frac{4 a}{b^{2} s}-\frac{4}{b^{2} ;}$ whereof the Fluxion being $-\frac{2 \dot{u}}{u^{3}}=-\frac{4 a \dot{b}}{b^{2} j^{2}}$, we obtain
 $=\sqrt{\frac{\mathrm{FQ}}{\mathrm{AO}}}$. Hence, it appears that the centripetal Force is, in this Cafe, as the Square of the Diffance inverfely; and the Velocity at Q is to that whereby the Body might defrribe a Circle at the Diftance $C Q$, every where, in the Ratio of $\mathrm{FQ}^{\frac{1}{2}}$ to $\mathrm{AO}^{\frac{1}{2}}$.
If the Curve had been an Hyperbola; then $\frac{a+s}{s} x$ $a^{2}\left(\right.$ inftead of $\left.\frac{a-s}{s} \times u^{2}\right)$ would have been $=\frac{1}{+2} b^{2}$; and fo $\frac{\dot{u}}{u^{3} s}=\frac{2 a}{b^{2}} \times \frac{1}{s^{2}}=\frac{2}{p s^{2}}$, the very fame as before, But, had it been a Parabola, the Equation would have been $\frac{a+0}{s} \times u^{2}=\frac{1}{4} b^{2}$, or $\frac{u^{2}}{s}\left(=\frac{b^{2}}{4^{a}}\right)=\frac{1}{4} p$; and the Force fill, as $\frac{2}{p s^{2}}$. But, the Meafure of the Ve locity $\left(\sqrt{\frac{u \dot{s}}{s i}}=\sqrt{\frac{2 a-2 s}{a}}\right)$ in this Care becoming. barely $=\sqrt{2}$, it follows that the Velocity in a Parabola is to that whereby the Body might defcribe a Circle at the fame Diftance from the Center, in the conftant Ratio of $\sqrt{2}$ to Unity.

E X A M PLE III.

235. Let it be required to find the Law of the centripetal Force, by which a Body, tending to any given Point C, in tbe Axis, is made to defcribe a conic Section AQH.

Put the femi-tranfverfe Axis $(\mathrm{OA})=a$, the femiconjugate $=b$, and the given Diftance of the Point C from the Vertex $\mathrm{A}=c$: Put alfo the Abfcifla AE , $=x$, the Ordinate $\mathrm{EQ}=y$, and $\mathrm{CQ}=s$ (as before).
The Area of the Triangle ECQ being ($=\frac{1}{2} \mathrm{EC} \times \mathbb{E} \mathrm{Q}$) $=\frac{c y-x y}{2}$, its Fluxion is therefore $=\frac{i \dot{y}-x \dot{y}-y \dot{x}}{2}$; which added to $y \dot{x}$, the Fluxion of the Area AEQ, gives $\frac{\dot{y}+y \dot{x}-x \dot{y}}{2}$ for the Fluxion of the whole Area ACQ defcribed about the Center of Force. Whence (by Art. 228.) the required centripetal Force at Q will. be as $\frac{-s \dot{x} \dot{y}}{c \dot{y}+y \dot{x}-\left.x\right|^{3}}$. Which Expreffion is genera!, let the Curve be of what Kind it will. But in the Care above, y being $=\frac{b}{a} \sqrt{2 a x \pm x^{2}}$, we have $j=$ $\frac{b \dot{x} \times \overline{a \pm x}}{a \sqrt{2 a x \pm x^{2}}}, \ddot{y}=\frac{-a b \dot{x}^{2}}{\left.2 a x \pm x^{2}\right)^{\frac{3}{2}}}$, and $c \dot{y}+j \dot{x}-x \dot{j}=$

The Ufe of Fuuxions

$\frac{b \dot{x} \times \overline{c a+a x+c x}}{a \sqrt{2 a x \pm x^{2}}}$; and therefore, by fubfituting thefe Values, we get $\frac{-s^{2 j} j}{\left(j+y \dot{x}-x j^{3}\right)^{3}}=\frac{a^{4} s}{b^{2} \times\left(a+a x \pm\left(x+1^{3}\right.\right.}$
Which, becaure $\frac{a^{4}}{b^{2}}$ is conftant, will alfo be as
$\frac{s}{c a+a x \pm c i)^{3}}$. From whence it follows,
I°. If c be二干 a, or the Center of Force be in the Center of the Section, the Force itfelf will be barely as (\pm s) the Diftance.
2°. If it be in the Focus, then $a c+a x \pm c x$ becoming $=\mathrm{CQ} \times a$, the Force will be inverfely as the Square of the Diftance.
3°. If the given Point be in the Vertex A, the Force will be as $\frac{s}{x^{-5}}$: Which therefore in the Circle (where $x=$ $\frac{s^{2}}{2 a}$) will be as $\frac{1}{s^{5}}$, or the fifth Power of the Diftance reciprocally.
4°. Lafly, if the Point C be at an indefinite Diftance from the Vertex, or the Force be fuppofed to act in the Direction of Lines parallel to the Axis AO ; then the Force will be as the Cube of OE inverfely.

PROPOSITION X.

236. To determine the Raito of the Velocities. of Bodies revolving in different Orbits, about the fame, or different, Centers; the Orbits themfelves, and the Forces whereby they are. difcribed, being given.

Let $A Q H$ be any Orbit, defcribed about the Center of Force C, and let the Force itfelf at the principal Vertex A be denoted by F; alfo let r ftand for the Semiparameter, or the Ray of Curvature at the Vertex, and let
let CP be perpendicular to the T tangent QP .

Then, the Celerity at A being, always, as $\sqrt{\overline{r F}}$ (by Art. 212.) we have $C P: C A:: \sqrt{r F}$ (the Nelocity at A) to $\frac{\mathrm{CA} \times \sqrt{r F}}{\mathrm{CP}}$, the Velocity at C (by Art. 225.) Which answers in all Cafes, let the Values of AC, r and F be what they will.

Corollary I.

237. If the centripetal Force be as the Square of the Diftance inverfely, or F be expounded by $\frac{1}{\mathrm{AC}^{2}}$? the Velocity at C will become $\frac{\mathrm{AC}}{\overline{\mathrm{CP}}} \times \sqrt{\frac{\overline{\dot{r}^{2}}}{\mathrm{AC}^{2}}}$, or $\frac{\sqrt{ } r}{C P}$: Whence the Velocities, in different Orbits, about the fame Center, are in the fubduplicate Ratio of the Parameters, and the inverfe Ratio of the Perpendiculars from the Center of Force to the Tangents, conjunctly.

> Corollary iI.
238. Hence, if the Celerity at Q be denoted by Q_{q}, and C_{q} be drawn ; then, $Q_{q \text { being as }} \frac{\sqrt{r}}{C P}$, it follows that \sqrt{r} is as $\mathrm{CP} \times \mathrm{Q}_{q}$, or as the Triangle QCq : ThereS 2 fore
fore the Areas defcribed about a common Center of Force in a given Timie, are in the fubduplicate Ratio of the Parameters.

Curolilary III.

239. Laftly, fince the Arca of the Curve AQHB E゚c. *Art. 234. when an Ellipfe*, is known to be as ($\mathrm{AO} \times \mathrm{OD}$) $\mathrm{AO} \times$ $\sqrt{r \times \mathrm{AO}}$ (fuppofing O to be the Center) if the fame be apply'd to \sqrt{r}, exprefing the Area defcribed in a given Part of Time (by the laft Corol.) we fhall thence have $\mathrm{AO} \times \sqrt{\overline{A O}}$, or $A O^{\frac{3}{2}}$ for the Meafure of the Time of one whole Revolution. From whence it appears, that the periodic Times, let the Species of the Ellipfes be what they will, are in the fefquiplicate Ratio of their principal Axes.

PROPOSITION XI.

240. The centripetal Force, tending to a given Point C, being as the Square of the Difances reciprocally, and the Direction and Velocity of a Body at any Point Q being given; to determine the Path in which the Body moves, and the periodic Time, in cafe it returns.

It is evident from Art. 234. and 235. that the Trajectory $A Q B$ is a conic Section; whereof the Point C is one of the Foci.

Let F be the other Focus, and upon the Tangent PQK let fall the Perpendiculars CP and FK , and let $C Q$ and $F Q$ be drawn: Alfo put the femi-tranfverfe Axis $\mathrm{AO}=a$, the given focal Diftance $\mathrm{CQ}=d$, and the Sine of the Angle of Direction CQP (to the Radius r$)=m$; and let the given Velocity at Q be to that whereby the Body might revolve in a Circle about the Center C, at that Diftance, in any given Ratio of n to Unity: Then it will be $n: 1:: \mathrm{FQ}^{\frac{1}{2}}: \mathrm{AO}^{\frac{\pi}{2}}$ (by Art. 234.) therefore $n^{2}: I^{2}: \mathrm{FQ}(2 a-d): \mathrm{AO}(a)$; whence $A O(a)$ is given $=\frac{d}{2-n^{2}}$. Moreover, fince $\mathrm{CP}=m \times \mathrm{CQ}$, and $\mathrm{FK}=m \times \mathrm{FQ}$, we have $\mathrm{OD}^{2}(=$ $\mathrm{CP} \times \mathrm{FK}=m^{2} \times \mathrm{CQ} \times \mathrm{FQ}=\frac{m^{2} n^{2} d^{2}}{2-n^{2}}$; whence the fe-mi-conjugate Axis (OD) is given likewife.

Laftly, it will be (by Art. 239.) as $\mathrm{CT}^{\frac{3}{2}}: \mathrm{AO}^{\frac{3}{2}}::$ (P) the periodic Time in any given Circle, whofe Radius is CT , to $\left(\frac{\mathrm{AO}^{\frac{3}{2}}}{\mathrm{CT}^{\frac{3}{2}}} \times P\right)$ the required Time of one Revolution when the Orbit is an Ellipfis; that is, when n^{2} islefs than 2: For, if n^{2} be $=2$, the Curve (as its Axis $\frac{2 d}{2-n^{2}}$ becomes infinite) will degenerate to a Parabola; and, if n^{2} be greater than 2, the Axis being negative, it is then an Hyperbola; whofe two principal Diameters are equal to $\frac{2 d}{n^{2}-2}$ and $\frac{2 m n d}{\sqrt{n^{2}-2}}$.
२. E. I.

Corollary.

241. Secing neither the Value of AO, nor that of the periodic Time, is affected with m, it follows that the principal Axis, and the periodic Time, will remain

The Ufe of Fiuxions

invariable, if the Velocity at Q be the fame, let the Direction at that Point be what it will.

The fame Solution may likewife be brought out, from Art. 238. by firf finding the principal Parameter: For, it is evident that the Area defcribed by the Body about the Center C, in any given Time, is to the Area defcribed; in the fame Time, by another Body revolving in a Circle at the Diftance CQ, as $m n$ to Unity: Hence, \#Att. 23^{3}. it will be $I^{2}: m^{2} n^{2}:: d:\left(m^{2} n^{2} d\right)$ the Semi-parameter *: From which (proceeding as above) we get $a \times m l^{2} n^{8} d$ $\left(=\mathrm{OD}^{2}\right)=m^{2} \times \overline{2 \pi d-d^{2}}$; and confequently. a $三$ $\frac{d}{2-n_{2}^{2}}$ the fame as before.

PROPOSITION XII.

242. The ceritripetal Force being as any Power (n) of the Difance, and the Direction and Velocity of a Body at any Point A being given, to determine the Orbit or Trajectiory.

From the Center of Force, C, to any Point B in the required Trajectory $A B D$, let CB be drawn; join C, A, and let $A b$ be the given Direction of the Body at the Point A, and $\mathrm{C} b$ perpendicular F. thereto ; alfo let the Velocity at A be to that whereby a Body might defcribe a Circle AEF, about the Center C, in any given Ratio of p to Unity; putting $\mathrm{CA}=a$, and $\mathrm{CB}=x$: Then
becaufe this lat Velocity (the centripetal Force being as
$x^{n}\left(\operatorname{or} a^{n}\right)$ is rightly defined by $a^{\frac{n+1}{2}}$, the Velocity* Art. 2140 of the Body at A will be truly expreffed by $\xrightarrow{n+}$
$p a^{2}$.
Moreover, it is proved in Art. 221. and 206. that if the Celerity, at any given Diftance a from the Center, be denoted by c, the Celerity at any other Diffance x will be truly reprefented by $\sqrt{c^{2}+\frac{2 a^{n}-2 x^{n}+1}{n+1}}$:

Whence, pa
2 being fubflituted for c, we have $p^{2}+\frac{2}{n+1} \times a^{n+1}-\frac{2 x^{n+1}}{n+1}$ for the Celerity at B.
But now; to determine the Curve itself from hence, let BP be a Tangent to it at B , and CP perpendicular to BP ; alto let CB , produced, meet the Periphery of the Circle in E ; putting the Arch $\mathrm{AE}=z$, the forefaid Velocity at B (to fhorten the Operation) $=v$, and $\mathrm{C} b=b$: Then it will be (by Art. 225.) vic (the Yelocity at A) :: $b: \mathrm{CP}=\frac{b c}{v}$ Whence $\mathrm{BP}(\bar{\square}$ $\sqrt{\left.\overline{C^{2}-C P^{2}}\right)}=\frac{\sqrt{x^{2} v^{2}-b^{2} c^{2}}}{v}$.

Moreover (by Art. 35.) we have, as $\mathrm{CB}: \mathrm{CP}::$: $\left(\frac{\mathrm{CP}}{\mathrm{CB}} \times v\right)$ the Velocity of the Body at B in' a Direaction perpendicular to CE ; and confequently, as CB : $\mathrm{CE}:: \frac{\mathrm{CP}}{\mathrm{CB}} \times v$ (the raid Velocity) to $\frac{\mathrm{CP} \times \mathrm{CE}}{\mathrm{CB}^{2}} \times v$ the angular Velocity of the Point E (revolving with the Body.) By the fame Article, the Velocity at B in the

The Ufe of Fiuxions

Direction CBE will be $\frac{\mathrm{BP}}{\mathrm{CB}} \times \dot{v}$: Therefore, the Velocity of E being to the Velocity of B , in the faid Di rection, as $\frac{\mathrm{CP} \times \mathrm{CE}}{\mathrm{CB}^{2}}$ to $\frac{\mathrm{BP}}{\mathrm{CB}}$, the Fluxions of $\mathrm{AE}(z)$ and $\mathrm{CB}(x)$ muft confequently be in that Ratio; that is, $\mathrm{CP} \times \mathrm{CE} \quad \mathrm{BP}$
$\frac{\mathrm{CP} \times \mathrm{CE}}{\mathrm{CB} \times \mathrm{BP}} \times \dot{x}=$
$\frac{b c}{v} \times \frac{a}{x} \times \frac{v \dot{x}}{\sqrt{x^{2} v^{2}-v^{-} c^{2}}}=\frac{a b c \dot{x}}{x \sqrt{x^{2} v^{2}-b^{2} c^{2}}}=$ $\frac{a b \dot{x}}{x^{1} \sqrt{\frac{x^{2} v^{2}}{v^{2}}-b^{2}}}$. Which Equation is general, let the

Law of the centripetal Force be what it will: But in the Care above propofed,' v^{2} being $=\overline{p^{2}+\frac{2}{n+1}} \times a^{n+z}$ $-\frac{2 x^{x+1}}{n+1}$, and $c^{2}=p^{2} a^{n+1}$; it becomes $\dot{z}=$

Fluent is the Meafure of the angular Motion; from which, when found, the Orbit may be conftructed: Becaufe, when AE, or the Angle ACE is given, as well as CB, the Pofition of the Point B is alfo given. But this Value of \dot{z} is indeed too complex to admit of a Fluent in algebraic Terms, or even by circular Arcs and Logarithms, except in certain particular Cafes; as when the Exponent n is equal to $1,-2,-3$, or -5 ; befides fome others wherein the Values of p and n are related in a particular Manner.

Corollary I.

243. If the given Velocity at A be fuch that $p^{2}+$ $\frac{2}{n+1}=0$, or $p=\sqrt{\frac{-2}{n+1}}$ (which is always poffible when the Value of $n+1$ is negative) our Equation will become $\dot{z} \times \frac{a b p \dot{x}}{x \sqrt{-p^{2} b^{2}+\frac{p^{2} x^{n+3}}{a^{n+1}}}}$: Which, by putWhereof the Fluent will be found (by the fecond Part of this Work (equal to $\pm \frac{2 a}{m}$ multiply'd by the Difference of the two circular Arcs, whofe Sccants are $\frac{x^{\frac{1}{2} m}}{b^{\frac{1}{2} m-1}}$ and $\frac{a}{b}$ to the Radius Unity.' From this Va$b a$
lue of the Arch AE the Pofition of the Point B, in the Orbit, is given.

But if the Angle of Direction CAb be a right one, the Fluent will become barely $= \pm \frac{2 a}{m} \times$ Arch whofe Secant is $\frac{x^{\frac{t}{2}}}{a^{\frac{1}{2} m}}$ (becaufe then $b=a$, and the Arch whofe Secant is $\frac{a}{b},=0$) which therefore when $x^{\frac{m}{2}}$ becomes
infinite, will be truly defined by $\pm \frac{1}{2 m} \times$ whole Peris phêry AF, soc. Whence it is evident that the Body mut either fly intirely off; or fall to the Center C , in a Number of Revolutions expreffed by $\pm \frac{1}{2 m}$; according as the Value of m is positive or negative.
Thus, if $n=-2$, and $m=1$, the Body will fly entirely off in half a Revolution: And, if $n=-4$, and $m=-1$, it will fall to the Center in half a Revolution.

Corollary II:

244. Moreover, tho' the Fluent expreffing the Angle at the Center cannot be exhibited in a general Manner yet there are certain Cafes of the Exponent (n) where its respective Values may be derived from each other.
For let (as above) $n+3$ be put $=m$, and ($t 0$ fhorten the Operation) let CA (a) be taken as Unity: Then our Equation will be transformed to $\dot{\sim}=$ $x \sqrt{1+\frac{2}{\overline{m-2} 2 \cdot p^{2}}} \times x^{2}-b^{2}-\frac{9 x^{m}}{\overline{m-2} \cdot p^{2}}$. Make $\dot{y}=x^{\frac{m}{2}}$, and it will be farther transformed to $\dot{z}=$ $\frac{2}{m} \times \frac{b j}{y \sqrt{1+\frac{2}{m-2 \cdot p^{2}} \times y^{\frac{4}{m}}-b^{2}-\frac{2 y^{2}}{m-2 \cdot p^{2}}}}:$
Put $r=\frac{4}{m}$, and it will become $\dot{z}=\frac{2}{m} \times$ by Laity, $\sqrt{\sqrt{\frac{r y^{2}}{r-2} \cdot p^{2}}-b^{2}+1-\frac{r}{r-2} \cdot p^{2}} \times y^{r}$
$\operatorname{let} \frac{r}{r-2 \cdot p^{2}}=\mathrm{I}+\frac{2}{r-2 \cdot q^{2}}\left(\right.$ or $\mathrm{I}-\frac{r}{r-2 . p^{2}}=-$
$\frac{2}{r-2 \cdot q^{2}}$, or $\left.q^{2}=\frac{2 p^{2}}{r-p^{2} \times r-2}\right)$ and then we fhall
have $\dot{z}=\frac{2}{m} \times \frac{b \dot{y}}{y \sqrt{1+\frac{2}{\overline{r-2} \cdot q^{2}}} \times y^{2}-b^{2}-\frac{2 y^{r}}{r-2 . q^{2}}}$.
Which Expreffion (exceepting thê general Multiplicator $\frac{2}{m}$) being exactly of the fame Form with the firft above given, mult therefore be the Fluxion of the Angle at the Center, when the Index of the Force is $r-3$; for the very fame Reafons that the former appears to be the Fluxion thereof when the Index is $m-3$ (or n.)

Hence, if the Fluent of

Angle at the Center, when the Exponent is $r-3$ (or $\frac{4}{m}-3=\frac{4}{n+3}-3$) be denoted by w, the Value of z, (the Meafure of the faid Angle; when the Exponent is $m-3$ (or n) will be truly defined by $\frac{2 w}{m}$.

From which we collect that, if the Indices of the Force, in any two Cafes, be reprefented by n and $\frac{4}{n+3}$ -3 , and the refpective Diftances from the Center by $\frac{n+3}{2}$
x and x^{2}, then the Angles themfelves correlponding to thofe Diftances will be every where in the conftant Ratio of 2 to $n+3$. Therefore, when the Orbit can

The Ufe of Fluxions

be conftructed in the one Cafe, it alfo may in the other, provided the above Equation $q^{2}\left(=\frac{2 p^{2}}{r-p^{2} \times r-2}\right)=$ $\overline{n+3 \cdot p^{2}}$, for the Relation of the Celerities at A, $2+n+1 \cdot p^{2}$
does not become impoffible, as it will, fometimes; when n is a negative Number.

Corollary III.

245. If the Body be fuppofed to move in a vertical Direction AH; then, putting the Velocity $\sqrt{p^{2}+\frac{2}{n+1}} \times a^{n+1}-\frac{2 x^{n+1}}{n+1}=0$, we get x $(\mathrm{CH})=\frac{\frac{1}{2} p^{2} \times \overline{n+1}+1}{\frac{1}{n+1}} \times a=$ the Height to which the Body will afcend: Hence $\frac{p_{2}^{2} p^{2} \times n+1+1}{\frac{1}{n+x}}$ $\times a-a(=\mathrm{AH})$ is the Diftance through which it muft freely defcend to acquire the given Celerity at A : This Diftance, in cafe of an uniform Force, when $n=0$, will become $=\frac{1}{2} p^{2} a$: And, when the Force is inverfely as the Square of the Diftance, it will then be $\overline{\text { a }}$ $\frac{p^{2} a}{2-p^{2}}$.

But, when $p=1$, or the Velocity at A is juft fufficient to retain a Body in the Circle AEF, AH becomes
$=\frac{\frac{3+n}{2}}{}{ }^{\frac{1}{n+1}} \times a-a:$ Which in the two Cafes aforefaid will be equal to $\frac{x}{2} a$, and a refpectively; but, infinite, when n is $=-3$.

Corollary IV.
246. When the Value of $n+\mathrm{I}$ is pofitive, the Ve locity at the Center, where $x=0$, will be barely $=$
$p^{2}+\frac{2}{n+1} \times a^{n+1}$; but if the Value of $n+x$ be negative, the Velocity at the Center will be infinite; becaufe, then 0^{n+1} is infinite.

Corollary V.
247. Moreover, when $n+1$ is negative and x infinite, the Velocity alfo becomes $=\sqrt{p^{2}+\frac{2}{n+1} \times a^{n+1} ;}$ becaule then $x^{n+1}=0$.

Hence, if the centripetal Force be inverfely as fome Power of the Diftance greater than the firtt, the Body may afcend, ad infinitum, and have a Velocity always greater than $\sqrt{p^{2}+\frac{2}{n+1} \times a^{n+1}}$; which is to, $p a^{\frac{n+1}{2}}$, the given Velocity, at A, as $\sqrt{p^{2}+\frac{2}{n+1}}$ to p. And this will actually be the Cafe when the Value of $p^{2}+\frac{2}{n+1}$ is pofitive, or p^{2} greater than $\frac{2}{-n-1}$, but not otherwife, the fquare Root of a negative Quantity being impofible.

Thus, if $n=-2$, or the Force be inverfely as the Square of the Diftance, and p^{2}, at the fame time, greater than $2\left(\frac{2}{-n-1}\right)$ the Body will rot only continue to alcend in infinitum, but have a Velocity always greater than that defined by $\sqrt{p^{2}-2}$, which is its Limit.

Corollary VI.

248. Hence the leaft Celerity fufficient to caufe the Body to afcend for ever in a Right-line is given. For, putting $\sqrt{p^{2}+\frac{2}{n+1} \times a^{n+1}}=0$, we have $p=$

Therefore the leaft Celerity by which the Body might afcend for ever, is to that whereby it may revolve in a Circle AEF, as $\sqrt{\frac{2}{-n-1}}$ to
Unity. From which it appears that, if the Force be inverfely as any Power of the Diftance greater than the third, a lefs Velocity will caufe a Body to afcend ad infinitum than would retain it in a Circle.

SCHOLIUM.

249. From the Ratio of the Velocity
$\left(\sqrt{p^{2}+\frac{2}{n+1} \times a^{n+\frac{1}{4}}-\frac{2 x^{n+1}}{n+1}}\right)$ wherewith the Body arrives at any Diftance x from the Center, to that $\left(\frac{n+1}{x^{2}}\right)$ * which it ought to have to revolve in a Circle at the farme Diftance, it will not be difficult to determine in what Cafes the Body will be forced to the Center, and in what others it will continue to fly from it ad infinitum.
For, firft, if the Angle CAb be acuie, or the Body from A begins to defcend, it will continue to do fo till it actually arrives at the Center, if the former Velocity, during the Defcent, be not fomewhere greater than the latter, or the Quotient $\sqrt{p^{2}+\frac{2}{n+1} \times \frac{a^{n+1}}{x^{n+1}}-\frac{2}{n+1}}$ greater than Unity; becaufe, if it ever begins to afcend,
it mult have an $A p \int e$, as D (where a Right-line drawn from the Center cuts the Orbit at Right-angles) and there the Celerity muft evidently be greater than that fufficient to caufe the Body to revolve in a Circle.Secondly, but if the Quantity
$\sqrt{p^{2}+\frac{2}{n+1} \times \frac{a^{n+1}}{x^{n+1}}-\frac{2}{n+1}}$, in the Accefs of the Body towards the Center, increafes fo as to become greater than Unity, or be every where fo; then the Velocity at all inferior Diffances being more than fufficient to retain a Body in a Circle at any fuch Diffance, the Projectile cannot be forced to the Center.

After the fame Manner, if the Angle CAb be ob: tule, or the Body from A begins to afcend, it will continue to do fo for ever, when the forefaid Quantity is always greater than Unity, or, which is the fame, whent the Body, in its Recefs from the Center, has in every Place through which it paffeth, a Velocity greater than fufficient to retain it in a Circle at that Diftance.
It therefore now remains to find in what Laws of the centripetal Force thefe different Cafes obtain: And, firft, it is eafy to perceive that when the Value of $n+\mathrm{I}$ is pofi-- tive, that of $\sqrt{p^{2}+\frac{2}{n+1} \times \frac{a^{n+1}}{x^{n+1}}-\frac{2}{n+1}}$ will, by increafing x, become equal to nothing. Therefore the Body cannot afcend for ever in this Cafe: Neither can it defcend to the Center (except in a Right-line), becaufe the forefaid Quantity, by diminifhing x, becomes greater than Unity (or any other affignable Magnitude.)
But, if the Value of n be betwixt - 1 , and - 3, the faid general Expreffion, taking x infinite, will allo become infinite, provided the Value of $p^{2}+\frac{2}{n+1}$ be pofitive (or p^{2} greater than $\frac{2}{-n-1}$). Therefore the Body

The Ufe of Fluxions

Body, in this Cafe, may afcend ad infinitum, but cannot poffibly fall to the Center (except in a Right-line) fince, $-\frac{2}{n+1}$, the Value of the general Expreffion,
when $x=0$, is greater than Unity:
Laftly, if n be expreffed by any negative Number greater than - 3, or the Law of the Force be inverfely as any Power of the Diftance greater than the third, the two extreme Values of $\sqrt{p^{2}+\frac{2}{n+1}} \times \frac{a^{n+1}}{x^{n+1}}-\frac{2}{n+1}$ will, fill, be denoted as in the preceeding Cafe; but here the latter of them, $\sqrt{\frac{-2}{n+1}}$, is lefs than Unity: Therefore the Body muft, in this Cafe, either afcend for ever, or be forced to the Center; except in one particular Circumftance, hereafter to be taken notice of.

Now, from thefe Obfervations we gather,
$\mathbf{1}^{\circ}$. That, when the centripetal Force is as any Power of the Diftance direclly, or lefs than the firft Power thereof inverfely, the Orbit will always have an higher and a lower $A p \int_{e}$; beyond which the Body cannot afcend or defcend.
2°. That, when the centripetal Force is inverfely as any Power of the Diftance (whole or broken) betwixt the firft and third, the Orbit will alfo have two
Apfides, if p be lefs than $\sqrt{-\frac{2}{n+1}}$; but otherwife, only one; in which laft Cafe the Body, after it has paffed its Apfe, will continue to recede from the Center in infinitum.
3°. That when the Force is inverfely as any Power greater than the third, the Orbit can, at moft, have but one Apfe; but, in fome Cafes, it will have none at all: And it may be worth while to inquire here, under what Reftrictions of the Velocity (p) this will happen; fince thereby, befides being able to know when the Body will

in Centripetal Forces.

be forced to the Center, \mathcal{E}°. we fhall fall upon a Circumfance fomewhat remarkable and curious.

Now it appears, that, if the Body from A begins to defcend, it muft, when it comes to an $A p / e$ at D , have a Velocity there greater than is fufficient to retain it in a Circle; in which Cafe the general Expreffion
 above) muft accordingly be greater than Unity. Let it be therefore made equal to Unity, which is the utmoft Limit thereof, beyond which the Orbit carnot admit of an $A p l e$; putting at the fame time \dot{x}, or its Divifor

general Equation of the Orbit, equal to nothing (it being always fo at the Apfides.) Then, from thefe two Equations, duly order'd, we fhall get $x=$

$\left.\overline{\frac{2+\overline{n+1} \cdot p^{2}}{n+3}}\right|^{\overline{n+1}} \times \frac{a^{2}}{b^{2}}$. Now, it is evident, if the Value of p be greater than is given from the laft Equation, the Orbit will have an Apfe; but if lefs, it can have none. In the former Cafe , the Body will therefore fly quite off; and in the latter, it will be forced to the Center. But we are now, naturally, led to inquire what will be the Confequence when the Value of p is neither greater nor lefs, but exactly the fame as given from the forefaid Equation: This is the Cafe above hinted at ; and here the Body will continue to defcend for ever in a Spiral, yet never folow as to enter within the Circle
whore Radius CD is $=\left.\frac{\frac{1}{2+\overline{n+1} \cdot p^{2}}}{\frac{n+3}{T}}\right|^{\frac{1}{n+x}} \times$ a. For, if
the contrary were poffible, the Body, at its Arrival to the Circumference of that Circle, would (becaufe of the forefaid Equations) not only have a Direction, but alfo Velocity proper to retain it therein; which cannot be, becaufe the Parts of the Orbit on either Side of an Apfe are always fimilar to each other.
From the fame Equation, the Value of the Limit will alfo be given when the Angle of Direction CAb is obtufe, or the Body is projected upwards:
For that Equation (as is eafy to demonftrate *) admits of two different Roots, or Values of p; the one greater, the other lefs, than Unity: Whereof the former, giving CD (x) lefs than CA, is to be taken in the preceding Cafe, and the latter (making CD greater than CA) in the prefent. And the Body will, cither, continue to afcend for ever, or come to an $A_{p} f$ e, and from thence fall to the Center, according as the given Value of p is greater or lefs than that here feccified. But if it be neither greater nor lefs, but exactly the fame, then the Body, tho' it will ftill continue to alcend for ever in a Spiral, yet it can never rife fo high as the Circumference of the Circle whofe Radius CD is $=$

delivered, in refpect to the preceding Cafe.

- Mathematical Difiert. p. 167.

END OF VOL. I.

BOOKS printed for J. Nourse in the Strand, Bookfeller to His MAJESTY.

1. CYCLOMATHESIS, or an eafy Introduction to the feveral Branches of the Mathematics. By William Emerfon, 11 Vol. 8vo £. 3. 13s. 6 d.
N.B. Any of the above Volumes may be had feparate.
2. The Method of Increments. By Mr. Emerfon, 4 to 7s. $6 d$.
3. A fhort Comment on Sir Ifaac Newton's Principia. By Mr. Emerfon, 8vo, 3 s.
4. Navigation; or the Art of Sailing upon the Sea. By Mr. Emerfon ; the fecond Edition 12 mo , 4s.
5. The Elements of Euclid. By R. Simfon, the fourth Edition, 8vo, 6s.
6. A Treatife of Mathematical Inftruments. By Mr. Robertfon, the third Edition, improved, $8 \mathrm{vo}, 55$.
7. A general Treatife of Menfuration. By Mr. Robertfon, the third Edition, $12 \mathrm{mo}, 3 \mathrm{~s}$.
8. The Elements of Navigation. By Mr. Robertfon, the third Edition improved, in Two large Volumes $8 \mathrm{vn}, 18 \mathrm{~s}$.
9. The Elements of Aftronomy, tranflated from the French of M. de la Caille. By Mr.Robertfon, 8vo, 6s:
10. Mathematical Tracts of the late Benj. Robins, Efq; with an Account of his Life, 2 Vol. 8 vo , 10s. 6 d .
11. An Eafy Introduction to the Theory and Practice of Mechanics. By S. Clarke, 4to, 6s.
12. Dr. Helfham's Courfe of Lectures in Natural Philofophy, the fourth Edition, $8 \mathrm{vo}, 5$ s.
13. Hydroftatical and Pneumatical Lectures. By Roger Cotes, the third Edition, 8vo, 5 s.
14. Dr. Hamilton's Treatife of the Conic Sections, Tranflated from the Latin, 4to. 12 s.
15. The fame Book in Latin, 4to, 12 s.
16. Philofophical Eflays. By Dr. Hamilton, $12 \mathrm{mo}, 2 \mathrm{~s} .6 \mathrm{~d}$.
17. Four Introductory Lectures in Natural Philofophy. By Dr. Hamilton, 12 mo , 25.
18. The Natural Hiftory and Philofophy of Earthquakes and Volcanoes. By Dr. Bevis, 8vo, 5s.
19. Maclaurin's Account of Sir Iraac Newton's Philorophical Difcoveries, third Edition, 8vo, 6 s.
20. A Treatife of Algebra. By C. Maclaurin, the third Edition, 8vo, 6s.
21. Sir Ifaac Newton's Method of Fluxions, tranflated by J. Colfon, 4to, 14 .

BOOKS printed for J. Nousre, in the Strand.

22. The Practice of Perfpective, on the Principles of Dr. Brook Taylor. By Jo. Highmore, 4to, f. I. Is.
2'3. The Mathematical Repofitory. By J. Dodfon, 3 Vol. $12 \mathrm{mo}, 125$.
23. Mathematical Lucubrations. ByMr. Landen, 4 to, 6 s.
24. A Difcourfe concerning the Refidual Analyfis. By Mr. Landen, 4to, 2 s .6 d .
25. The Refidual Analyfis, Book I. By Mr. Landen, $4 t \mathrm{t}, 6 \mathrm{~s}$.
26. Harmony of Ancient and Modern Geometry afferted. By R. Paman, 4to, 6s.
27. The Practical Gager. By W. Symons, the third Edition, 12 mo , 4 s .
28. The Britifh Gager, or Trader and Officer's Infructor in the Excife and Cuftoms, by S. Clark, 8vo. 5 s.
29. A voyage towards the North Pole in the Year 1773, by the Hon. Capt. Phipps, 4 to. 12s. 6 d .
30. A Hiftory of the Earth and Animated Nature, by Dr. Goldfmith, 8 vol. 8 vo. $2 l .8$ s. in boards.
31. Atlas Coleftis, on twenty eight Copper Plates, by J. Flamftead, Fol. 2l. 2s. in Sheets.
32. An Elementary and Methodical Atlas, on Thirty two Copper Plates, by John Palaviret. Fol. 21. r2s. 6d.
33. Traats Phy fical and Mathematical. By Dr. Matthew Stewart, 8vo, 7s. 6d.
34. Propofitiones Geometricæ, more Veterum demonftratæ. Auctore M. Stewart, 8vo, 6 s.
35. Menelai Sphæricorum Libri tres, curầ G. Coftard, 8vo.
36. Theodofii Sphæricorum Libri tres, Gr. \& Lat. 8vo.
37. Elements of the Theory and Practice of Chymiftry, tranfated from the French of M. Macquer, 2 Vol. $8 v o$, third Edition, los.
38. A Courfe of Chymiftry, divided into twenty four Lectures, by Dr. Henry Pemberton, 8vo, 5 s.
39. A Courfe of Phyfiology, divided into twenty Lectures, by Dr. Pemberton, 8vo, 55
40. A Treatife upon Electricity, tranflated fron the Italian of Signor Beccarea, 4to, with Copper Plates.
41. A Series of Experiments on the Subject of Phofphori and their Prifmatic Colours, by Benjamin
Wilfon, the Second Edition, improved, 4to. Gs.

THE

DOGTRINE A ND

APPLICATION

0 F

FLUÖIONS.

CONTAINING
(Befides what is common on the Subject)
A Number of New Improvements in the THEORY.
AND

The Solution of a Variety of New, and very Interefting, Problems in different Branches of the MATHEMATICKS.
P A R T II.

By THOMAS SIMPSON, F.R.S.
THE SECOND EDITION. Revifed and carefully corrected.

$$
\mathrm{L} O \mathrm{~N} D \mathrm{O} \mathrm{~N}:
$$

Printed for John Nourse, in the Strand, Bookseleerto His Majesty.

$$
\overline{M D C C L X X V I .}
$$

bexits kwa

$$
7 \text { is osery is in }
$$

वikn *

4100420
 Mmañ
-4

[275]

THE

Doctrine and Application

O F

FLUXIONS.

SECTION I.

The Manner of inveftigating the Fiuxions of Exponentials, with Thofe of the Sides and Angles of Spherical Triangles.
250. HE Method of deriving the Fluxion of any Power, x^{ν}, of a flowing Quantity, when the Exponent (v) is given or invariable, has been already fhewn: But, if the Exponent be variable, that Method fails; in which Cafe the Quantity x^{v} is called an Exponential; whofe Fluxion is thus determined.

Put $z=x^{v}$, and let the hyperbolic Logarithm of x be denoted by y; then that of $x^{v}(z)$ will, by the Nature of Logarithms, be $=v y$; and therefore its Fluxion $=$ $\dot{y} y+v j$: But the Fluxion of the Logarithm of $z=x^{v}$)
*Art. 126. is alfo exprefled by $\frac{\dot{\boldsymbol{x}}}{z}$; whence we have $\frac{\dot{x}}{z}=v \dot{y}+y \dot{v}$, and confequently $\dot{z}=z v \dot{y}+z y \dot{u}:$ Which Equation, by fub\dagger Art. 126. fituting $\frac{\dot{x}}{x}$ for its Equal $\dot{y} \dagger$; becomes $\dot{z}=z y \dot{v}+\frac{z v \dot{x}}{x}=$ $\dot{x}^{v} y \dot{v}+x^{v} \times \frac{v \dot{x}}{x}=x^{p} y \dot{v}+v x^{v-1} \dot{x}=\overline{x^{v} \dot{v} \times \operatorname{liyp} . \log \cdot x}$ $+v x^{v-1} \dot{x}_{0}$
The fame otberwife, without introducing the Properties of Logarithms.
251. Let $\mathrm{I}+z=x$, and $n+w=v$, fuppofing n conftant and w variabie: Then $x^{v}=\overline{1+z}^{n+z v}=\overline{1+z}^{n}$

$$
\times \overline{1+z})^{w}=\overline{1+z}^{n} \times \overline{1+w z+\frac{w}{1} \times \frac{w-1}{2} \times z^{2}+}
$$

\ddagger Art, gg. $\frac{w}{1} \times \frac{w-1}{2} \times \frac{w-2}{3} \times z^{3}+v^{c} . \ddagger=\left.\overline{1+z}\right|^{n} \times$
$1+w z+\frac{T}{2} w^{2}-\frac{1}{2} \tau u \times z^{2}+\overline{\frac{1}{2}} \psi^{3}-\frac{1}{2} w^{2}+\frac{T}{3} w \times z^{3}+\xi v c$. whofe Fluxion, found the common. Way, is $n \dot{z} . x$ $\overline{1+z})^{n-1} \times \overline{1+2 v z+\frac{T}{2} w^{2}-\frac{1}{2} w} \times z^{2}+\frac{1}{6} w^{3}-\frac{1}{2} w^{2}+\frac{1}{3} w$, $\overline{x z^{3}} \xi c .+\overline{1+z} \overline{x \dot{w} z+w \dot{z}+\overline{w \dot{w}-\frac{1}{2} \dot{w}} \times z^{2}+\frac{1}{2} v^{2}-\frac{1}{2} w}$ $\times 2 z \dot{z}+\frac{1}{2} w^{2} \dot{w}-w \dot{w}+\frac{1}{3} \dot{w} \times z^{3}+\frac{1}{2} w^{3}-\frac{1}{2} v^{2}+\frac{1}{3} w \times 3 z^{2} \dot{\tilde{v}}$ Evc. which, by fubfititing \dot{x} and \dot{v} for their Equals \dot{z} and \dot{r}, becomes $n \dot{x} \times \overline{1+2}{ }^{n-1} \times \overline{1+w z+\overline{\frac{1}{2} w^{2}-\frac{1}{2} w}}$ $\overline{x z^{2}+v_{c} c+\overline{1+z}}{ }^{n} \times \overline{j z+w \dot{x}+\overline{w i}-\frac{1}{i} \times z^{2}+\xi c}$. But, if w be, now, fuppofed to vanifh, we fhall have the true Value of the Fluxion when $v=n$; which, in that Circumitance, appears to $\mathrm{be}=n \dot{x} \times \overline{1+z} 7^{n-1}$.
$+\overline{1+z} \bar{n}^{n} \times \overline{z \dot{v}-\frac{1}{2} z^{2} \dot{v}+\frac{1}{5} z^{3} \dot{v}-\frac{1}{2} z^{4} \dot{v}} \xi^{\dot{c}} c_{0}=v \dot{x} \times x^{v-x}$
$+\dot{v} x^{v} \times \overline{z-\frac{1}{2} z^{2}+\frac{1}{3} z^{3}-\frac{8}{4} z^{4}} \xi^{\circ} c$. Q. E. 1.

It is plain, becaufe the Series, $z-\frac{1}{2} z^{2}+\frac{1}{3} z^{3}$ धc. here brought out, is known to exprefs the Fluent of $\frac{\dot{x}}{1+z}$, or the hyperbolic Logarithm of $1+z^{*}$, that the *Art. 126 .
two Conclufions agree exactly with each other: From either of which the following Rule, for the Fluxions of Exponentials, is deduced.
252. To the Fluxion found by the common Rule. (Art. 14.) confidering the Exponent as conflant, add the Quantity arifing by multiplying the Fluxion of the Exponent, the hyperbolic Logarithm of the Root, and the propofed 2uantity itfelf, continually, together: The Sum will be the Fluxion when the Exponent is variable.
Thus, for Example, let the Quantity propofed be $\overline{a^{2}+z^{2}}$, then the Fluxion thereof will be $z \times 2 z \dot{z} \times$ $\left.\overline{a^{2}+z^{2}}\right)^{z-1}+\dot{z} \times \overline{a^{2}+z^{2}} \approx \times \overline{\text { hyp. Log. a }+z^{2}}$.

But, if the Root is conftant, and only the Exponent variable, the Exponential will be more fimple; and its Fluxion will then be had by bavely multiplying the 2 uantity itfelf by the Product under the Logarithm of the Root and the Fluxion of the Exponent.

Thus, the Fluxion of a^{x} will be expreffed by $a^{x} \times \dot{x}$ \times hyp. Log. a; and that of $\overline{\left.a^{2}+b^{2}\right)^{n x}}$ by $\overline{a^{2}+\left.b^{2}\right|^{n x}}$ enix \times hyp. Log. $\overline{a^{2}+b^{2}}$. Thefe Kind of Exponentials oftener occur, in Practice, than any other; but, as it is very rare that we meet with any, I thall therefore proceed now to the other Confideration propofed in the Head of this Section; namely, the Method of determining the Fluxions of the Sides and Angles of fpherical Triangles (a Thing very ufeful in practical Aftronomy) which 1 hall deliver in the following Propofitions.

PROPOSITION I.

253. To determine the Ratio of the Fluxions of the fevera! Parts of a right-angled fpherical Triangle; fuppofing the Hypothenufe, one Leg, or one Angle, to remain conflant, while, the other Parts vary.

Let A, F, and G be the Poles of the three GreatCircles DEFG, ABD, and ACE; whereof the Pofition of each is fuppofed to continue invariable, while another Great-Circle HFCB is conceived to revolve about the Pole F: Whence, if GH be fuppofed perpendicular to FH , three variable rightangled Triangles, FGH, FCE, and ABC, will be formed ; in the firft whereof, the Hypothenufe FG will remain conftant; in the fecond, the Leg EF; and in the third, the Angle A.

Let $\mathrm{B} b(q)$ be the Fluxion (or indefinitely fmall In*Art. 134. crement ${ }^{*}$) of the Bafe $A B$, or the Angle F; and let $\mathrm{C} d$ meet the Great-Circle $b \mathrm{Fh}$, at Right-angles, in d; then it will be (per Spherics) as Sin. FB (Rad.) : Sin. $\mathrm{FC}:: \mathrm{B} b(q): \mathrm{C} d=\frac{\operatorname{Sin} . \mathrm{FC}}{\text { Rad. }} \times q=\frac{\text { Co-f. } \mathrm{BC}}{\text { Rad. }} \times q:$ And, Tang. $\mathrm{C}: \operatorname{Rad} .:: \mathrm{C} d\left(\frac{\text { Co-f. BC }}{\text { Rad. }} \times q\right): \frac{\text { Co-f.BC }}{\text { Tang. } \mathrm{C}}$ $\times q=$ the Fluxion of BC .

Morcover, Sin. C : Rad. :: $\mathrm{C} d\left(\frac{\operatorname{Co-f.BC}}{\text { Rad. }} \times q\right)$: $\frac{C-\text {-F. } \mathrm{BC}}{\text { Sin. } \mathrm{C} .} \times q=$ the Fluxion of AC .

Laftly, Sine of FB (Rad.) : Sin. FH (BC) :: $\mathrm{Bb}(q)$: Sin. BC
$\frac{\text { Rad. }}{\text { Ra }} q(=\mathrm{Hm})=$ the Fluxion of GH, or its Complement C .
Now, if the feveral Quantities, in thefe three Equations for the Triangle AEC, be expounded by their refpective Equals in the other two Triangles CEF and FGH, we fhall alfo have

$$
\begin{aligned}
& \frac{\text { Sin. } \mathrm{CF}}{\text { Tang. } \mathrm{C}} \times q=- \text { Flu } \times . \mathrm{CF} . \\
& \frac{\operatorname{Sin} . \mathrm{CF}}{\operatorname{Sin} . \mathrm{C}} \times q=- \text { Flux. CE. } \\
& \frac{\text { Co.-f. CF }}{\text { Rad. }} \times q=\text { Flux. C. } \\
& \text { And } \\
& \frac{C o-\rho \cdot \mathrm{FH}}{\text { Co-tang. } \mathrm{GH}} \times q=\text { Flux. } \mathrm{FH} . \\
& \text { Co-f. FH } \\
& \overline{C_{0}-\int . \mathrm{GH}} \times q=\text { Flux. } \mathrm{G} \text {. } \\
& \frac{\operatorname{Sin} . \mathrm{FH}}{\text { Rad. }} \times q=- \text { Flux. GH. } \\
& \text { 2. E.I. }
\end{aligned}
$$

Corollary I.

254. Hence, if, in any right-angled Spherical-Triangle, the Hypothenufe be denoted by h, the two Legs by L and l, the Angles, refpectively, adjacent to them by A and a, we fhall, by fubftituting above, have three Equations for each of the three Cafes. From the Comparifon and Compofition of which, the three following Tables are deduced; exhibiting all the different Varieties that'can poffibly happen, whether an Angle, a Leg, or the Hypathenufe be fuppofed invariable.
T4 TABLE

T A B L.E I.
When one Angle A is invariable,
$\dot{L}=\frac{\text { Tang. } a}{C_{o-\int} . l} \times i=\frac{\operatorname{Sin}, a}{C_{0}-\int . l} \times \dot{b}=\frac{\text { Rad. }}{\text { Sin. } l} \times \dot{a}$
$\dot{l}=\frac{C_{0}-l . l}{\text { Tang. } a} \times \dot{L}=\frac{\text { Coof. }^{2} a}{R} \times \dot{b}=\frac{\text { Co-tang. } l}{\text { Tang. } a} \times \dot{a}$
$\dot{b}=\frac{C_{0}-\int_{0} l}{\operatorname{Sin} \cdot a} \times \dot{L}=\frac{R}{C_{0-f_{0} \cdot a}^{\sin }} \times \dot{l}=\frac{\text { Co-tang. } l}{\operatorname{Sin.a}} \times \dot{a}$
$\dot{a}=\frac{\text { Sin. } l}{R} \times \dot{L}=\frac{\text { Tang. } a}{\text { Co-tang. } l} \times \dot{l}=\frac{\text { Sin. } a}{\text { Co-tang. } l} \times \dot{b}$

T A B L E II.

When one Leg L is invariable,
$\dot{A}=\frac{\text { Tang. } a}{\operatorname{Sin} . b} \times \dot{b}=\frac{\operatorname{Sin} . a}{\operatorname{Sin} \cdot b} \times \dot{l}=-\frac{R .}{C_{0}=f \cdot b} \times \dot{a}$
$\dot{a}=-\frac{\text { Co } \cdot \cdot b}{R} \times \dot{A}=-\frac{\operatorname{Sin} \cdot \cdot a}{\text { Tang. } b} \times \dot{l}=-\frac{\text { Tang. } \cdot a}{\text { Tang.b }} \times \dot{b}$
$\dot{b}=\frac{\text { Sin. } b}{\text { Tang. } a} \times \dot{A}=\frac{\text { Co-f. } a}{R} \times i=-\frac{\text { Tang. } b}{\text { Tang. } a} \times \dot{a}$
$i=\frac{\operatorname{Sin} \cdot b}{\text { Tang. } a} \times \dot{A}=\frac{R .}{C_{0-\int} \cdot a} \times \dot{b}=-\frac{\text { Tang. } b}{\operatorname{Sin} \cdot a} \times \dot{a}$

TABLE III.

When the Hyp. is invariable,
$\dot{A}=-\frac{C_{0-\text { tang }} \cdot l}{C_{0-\int} . L} \times \dot{L}=-\frac{C_{0-\int} \cdot l}{C_{0}-\int \cdot L} \times \dot{a}=\frac{R}{\operatorname{Sin} . L} \times \dot{b}$
$\dot{L}=-\frac{\text { Co-. } \cdot L}{\text { Cotang. } l} \times \dot{A}=\frac{\text { Sin. }}{R .} \times a=-\frac{\text { Tang. } l}{\text { Tang. } L} \times \dot{l}$
Where, and alfo in the two preceding Tables, the Leg L is adjacent to the Angle A_{2}, and the Leg l to the Angle a. C 0 -

of Spherical Triangles.

Corollary II.

255. From the third original Equation, exprefing the Fluxion of the Angle C (Vid. Art. 253.) it appears that the Superficies of any Spherical-Triangle ABC, is proportional to the Excefs of its three Angles above two Right-Angles. For ($\mathrm{BC} d b$) the Fluxion of the Triangle ABC , is $=$ Sine $\mathrm{BC} \times \mathrm{B} b$, by Art. 16I.) which Sin. BC
being to, $\frac{\operatorname{Sin} . \mathrm{BC}}{\text { Rad. }} \times B b$, the Fluxion of the Angle C, above fpecified, in the conftant Ratio of Radius to Unity, the Fluents themfelves (properly corrected) muft therefore be in that Ratio; that is, the Superficies of the Triangle ABC will always be proportional to the Increafe of the Angle C, from its coinciding with A, or as the Excefs of A and C above two Right-Angles.

PROPOSITION II.

256. To determine the Ratio of the Fluxions, or the indefinitely Small Increments, of the different Parts of an obligue Spherical-Triangle ABC; two Sides thereof AB, AC being invariable, in Length.

Let Cc be an indefinitely fmall Part of the Parallel defcribed by the Extreme C of the given Side AC, in its Motion about the given Point A ; moreover, let $\mathrm{C} d$ be Part of another Parallel, whofe Pole is the given Point B; let the Great-Circle Bc meet $\mathrm{C} d$ in d; and let the three Sides, $A B, A C$, and $B C$, of the Triangle be denoted by D, E, and F refpectively.

Then,

Then (per Spherics) we fall have
$R: S . E:: \operatorname{CAc}(\dot{A}): \mathrm{C}_{c}=\frac{S . E}{R} \times \dot{A} ;$
And, $R: S . F:: \mathrm{CB} d(\dot{B}): \mathrm{C} d=\frac{S . F}{R} \times \dot{B}$.
Alpo, $R: S . d \mathrm{C}_{c}(\mathrm{ACB}):: \mathrm{C}_{c}: \dot{F}=\frac{S . E \times S . C}{R^{2}} \times \dot{A}:$ But $S . C: S: D:: S . B: S . E$; therefore $S . E \times S . G$
$=S . D \times S . B$, and confequently \dot{F}, alfo, $=\frac{S . D \times S . B}{R^{2}}$ $\times \dot{A}$.
Again, $R: C_{0} \rho \cdot d \mathrm{C}_{c}(\mathrm{ACB}):: \mathrm{C}_{c}\left(\frac{S \cdot E}{R} \times \dot{A}\right):$ $\frac{S . E . \times C_{0}-f . C}{R^{2}} \times \dot{A}(=\mathrm{C} d)=\frac{S . F}{R} \times \dot{B} ;$
Whence $\dot{B}=\frac{S . E \times \operatorname{Co}-. G}{R \times S . F} \times \dot{A}$.
Laftly, Cot t. $\mathrm{C} d:(C): R:: \mathrm{C} d\left(\frac{S . F}{R} \times \dot{B}\right): \dot{F}=$ $\frac{S . F}{C_{\rho-t_{0} C}} \times \dot{B}$.

Whence, by the very fame Argument (fubftituting D for E, and C for B in the two lat Equations) we Hikewife have $\dot{C}=\frac{S . D \times C_{0-f . B}}{R \times S . F} \times \dot{A}$, and $\dot{F}(=$ $\left.\frac{S . F}{C_{0-\text { t. } . C}} \times \dot{B}\right)=\frac{S . F}{C_{o-t . B}} \times \dot{C}$.

Now, from the Equations thus found, it is manifeft, $1^{\circ} . \dot{A}: \dot{F}:: R^{2}: S . D \times S . B(:: C o-$ ceca. $D: S: B)$ 2°. $\dot{A}: \dot{B}:: R \times S . F: S . E \times C o-\int . C$ $3^{\circ} \cdot \dot{A}: \dot{C}:: R \times S . F: S . D \times C o-\int . B$ 4°. $\dot{B}: \dot{F}::$ Cot. C $: S . F$ $5^{\circ} \cdot \dot{C}: \dot{F}::$ Cot. $B: S . F$ $6^{\circ} . \dot{B}: \dot{C}:: C_{0-t .} C: C_{0-t .} B(:: T . B: T . C) \quad$ Q.E.I.
257. Thefe Proportions, for the Fluxions of the Parts of a Spherical-Triangle, are very ufeful in various Cafes in Practical Afronomy; whereof I thall here put down one or two Inftances.

The firft is ; To determine the annual Alteration of the Declination and Right-Afcenfion of a fixt Star, through the Precefion of the Equinox.

Here A muft denote the Pole of the Ecliptic, B that of the Equinoctial, and C the Place of the Star; and then (by the firft and fourth Proportions) we have

Co-fica. $D: \operatorname{Sin} . B:: \dot{A}: \dot{F}$; and
S. $F:$ Co t. $C:=\dot{F}: \dot{B}$;

That is, 1°, As the Co-fecant of the Obliquity of the Ecliptic is to the Sine of the Star's Right-Afcenfion from the folfitial Colure, fo is the Precefion of the Equinox, or Alteration of Longitude, to the Alteration of Declination.
2°. As the Co-fine of the Star's Declination is to the Co-tangent of its Angle of Pofition, fo is the Alteration of Declination (found as above) to the Alteration of Right-Afcenfion correfponding.

The fecond Example is to find how much the Amplitude, and the Time of the apparent Rifing and Setting of the Sur, or a Star, are affected by Refraction.
In this Cafe A muft denote the Pole of the Equator, and B the Zenith, and the Side BC muft be an Arch of go Degrees, fo that the $\mathrm{Star} C$ may coincide with the Horizon QC: Then, from the very fame Proportion, we have,

$\operatorname{Sin} . B: \operatorname{Co}-\operatorname{fecta}^{D} D:: \dot{F}: \dot{A}$,
And, $R: C o-t . C:: \dot{F}: \dot{B}$
But, $R: C_{0-t . t} C(T .2 C A):: \operatorname{Sin}, B(C 2):$ Cootang. D (Tang. 2A)

Hence it apppears,
1°. That, as the Co -fine of the true Amplitude (confidered independent of Refraction) is to the Tangent of the Pole's Elevation, fo is the given horizontal Refraction to the Difference of Amplitudes thence arifing.
2°. And, that, as the Co-fine of the true Amplitude is to the Secant of the Pole's Elevation, fo is the faid horizontal Refraction to the Effect thercof in the Time of Rifing, or Serting of the Sun, or Star.

But this laft Proportion may be otherwife expreffed, without the Amplitude: Thus,
$S . A B \times S . A C \times S . A: R^{3}::$ the horizontal Refraction, to the fame Effect.

PROPOSITION III.

258. To determine the fame as in the preceding Problem; Suppofing one Side AB and one of its adjacent Angles, B , to continue invariable.

If from the End of the given Side, oppofite to the given Angle, a Perpendicular AD be let fall, that Perpendicular, as well as the Segment BD cut off thereby, will be a conftant Quantity, while the other Parts of the Triangle $\mathrm{A} a \mathrm{D}$ vary, by the Motion of a along the Arch $a \mathrm{BD}$. Therefore the Problem is refolved by Cafe 2. of right-angled Triangles. Vid. Art. 254^{*}
259. It may not be amifs to give one Example of the Ufe of this laft Propofition: Which fhall be, in finding the Parallax of a Planet in Longitude and Latitude; that of Altitude being given.

Here A muft ftand for the Pole of the Ecliptic, B the Zenith, and a the Planet: Then, if the Hypothenufe $A a$ be denoted by h, the Leg. Da by l, and the given Parallax, in Altitude, by l, it will appear, from

of Spherical Triangles.

the Place above quoted, that \dot{A} (the Parallax in Long.) will be $=\frac{\operatorname{Sin} . a}{\operatorname{Sin} . b} \times i=\frac{\operatorname{Sin} . B a A}{\operatorname{Sin} . A a} \times i$, and \dot{b} (the Parallax in Lat.) $=\frac{\text { Co-f. } a}{\text { Rad. }} \times i=\frac{\text { Co-f. BaA }}{\text { Rad. }} \times i$.

If the Planet be in (or very near) the Ecliptic, and $a \mathrm{Q}$ be fuppofed a Portion of the Ecliptic, meeting AB , at Right-Angles, in Q , then (per Spherics) $\frac{\text { Sin. BaA }}{\text { Sin. Aa }}$
 $=\frac{\operatorname{Sin} .2 B}{\operatorname{Sin} . B a}$; whence, by fubitituting thefe Values above, we fhall, in this Cafe, have $\dot{A}=\frac{\text { Tang. } 2 a}{\text { Tang. } B a} \times$ i and $\dot{b}=\frac{\operatorname{Sin} .2 B}{\operatorname{Sin} . B a} \times i$; that is, in Words,

As, the Tangent of the Planet's Zenith Diftance, is to the Tangent of its Longitude from the nonagefimal Degree of the Ecliptic, fo is the Parallax in Altitude to the Parallax in Longitude.

And, as the Sine of the Zenith Diftance to the Cofine of the Altitude of the nonagefimal Degree, fo is the Parallax in Altitude to the Parallax in Latitude.

Becaufe the Parallax in Altitude, the horizontal Parallax (M) being given, is nearly $=\frac{\operatorname{Sin}, B a}{\text { Rad. }} \times M$, if this Value be fubfituted for i, in the two laft Equations, we fhall get $\dot{b}=\frac{\operatorname{Sin} .2 B}{\text { Rad. }} \times M$, and $\dot{A}=\frac{\text { Tang. } 2 a \times \operatorname{Sin} . B a}{\text { Rad. } \times \text { Tang. } B a}$ $\times M=\frac{\operatorname{Sin} . A B \times \operatorname{Sin} . B A a}{\text { Rad. }^{2}} \times M$.

Whence, we have thefe two other Theorems, for finding the required Parallaxes immediately from the horizontal Parallax, without either the Altitude or its Parallax.
I. As Radius to the Co-fine of the Altitude of the nonagefinal Degree of the Ecliptic, fo is the horizontal Parallax to the Parallax in Latitude.
2. And as the Square of Radius to the Rectangle under the Sines of the Altitude of the noragefimal Degree and the Planet's Longitude from thence, to is the horizontal Parallax to the Parallax in Longitude.
PROPOSITION IV.
260. Still, to determine the fame Thing; Juppging, one Angle A, and the Length. of its oppofite Side BD (or BD.) to remain confant.

Let ${ }^{\prime} D^{\prime}$ (equal to $B D)$ initerfect $B D$ in an indefinitely fmall Angle at P, and meet AB and $A D$ in \dot{B} and $\frac{1}{D}$; alfo in BD produced let there be taken PN $=P D^{\prime}$ and $P M=P B^{\prime}$,
and let N, \dot{D}, and M, \dot{B} be joined.
Since, by Hypothefis, $D B=\mathrm{DB}^{\prime}=M N$, if from the firft and laft of there equal Quantities DM, common, be taken away, there will remain $\mathrm{BM}=\mathrm{DN}$.

Morcover, fince the Triangles BMB and DND', in their ultimate State, may be confidered as rectilineal,

* Art.134. and right-angled at M and N^{*}, it will therefore be, as

$$
\mathrm{BM}: \mathrm{BB}:: \text { Co-f. B : Radius }
$$

And DN : DD' :: Co-f. D :: Radius.

of Spherical Triangles.

From whence, the Extremes in both Proportions being the fame, we have $\mathrm{BB}: \mathrm{DD}:: C_{0} \circ \rho . D: C_{0}-\mathrm{f} . \mathrm{B}:$ And therefore, if AB be denoted by H and AD by K, it appears that $\dot{H}: \dot{K}:: \operatorname{Co-f.} D: \operatorname{Co}-B$.

Again, per Soberics, Sin. $A: \operatorname{Sin} . B D(G)::$ Sin. $D: \operatorname{Sin} . H$:: Flux. Sin. D : Flux. Sin. H; becaufe, the Sines themfelves being in a conftant Ratio, their Fluxions mult be in the fame Ratio: But the Fluxion of the Sine of any Arc, or Angle, is to the Fluxion of the Arc or Angle itfelf, as the Co-fine to Radius *: *Art. 142 .
Therefore the Flux. Sin. D being $=\frac{C_{0-f .} D}{\text { Rad. }} \times \dot{D}$, and Flux. Sin: $H_{T}^{\top}=\frac{C_{0}-\int_{0} H}{\text { Rad. }} \times \dot{H}$, it follows that, Sin. A : Sin. $G:: \operatorname{Cof} . D \times \dot{D}: \operatorname{Co-f} H \times \dot{H}$; or $\dot{D}: \dot{H}:$: $\operatorname{Sin} . A \times \operatorname{Cof} . H: \operatorname{Sin} . G \times \operatorname{Cof} . D:$ And, by the very fame Argument, $\dot{B}: \dot{K}:: \operatorname{Sin} . A \times \operatorname{Co}-\int_{0} K: \operatorname{Sin} . G \times$ $C_{0}-\int$. B. Now, by compounding the former of thefe two Proportions with the firf above given, we get, $\dot{D}: \dot{K}:: \operatorname{Sin} . A \times C_{0}-\int . H: \operatorname{Sin}, G \times C_{0}-\int . B$. And, by compounding this laft with $\dot{K}: \dot{B}:: \operatorname{Sin} . G \times \operatorname{Co-} . B:$ Sin. $A \times \operatorname{Co}_{0}-\int . K$ (that immediately preceding it) we alfo obtain $\dot{D}: \dot{B}::$ Co-f. $H:$ Co-f. \dot{K}.

Whence, by collecting thefe feveral Proportions together, we have the following Table, for all the different Cafes.

$$
\begin{aligned}
& \dot{H}: \dot{K}:: C_{0}-\int_{.} D: C_{0-\int} B \\
& \dot{D}: \dot{B}:: C_{0}-\int . H: C o-\rho . K \\
& \dot{D}: \dot{H}:: \text { Tang. } D: \text { Tang. } H \\
& \dot{B}: \dot{K}:: \text { Tang. } B: \text { Tang. } K \\
& \dot{K}: \dot{D}:: \operatorname{Sin} . G \times \operatorname{Co}-\int . B: \operatorname{Sin}, A \times \operatorname{Co}-\int . H \\
& \dot{H}: \dot{B}:: \operatorname{Sin} . G \times \operatorname{Co}_{0} \int D: \operatorname{Sin}, A \times \operatorname{Co\sigma } . \dot{K}
\end{aligned}
$$

The Refolution

It may be observed, that the fourth and the laft are no new Cafes, but only the third and fifth repeated: And that, though the former of the two, left named, differs from that found above; yet it is very eafily deduced from it: For, fince it appears that $\dot{D}: \dot{H}:: \frac{\operatorname{Sin} \cdot A}{\operatorname{Co-} . D}$: $\frac{\operatorname{Sin} . G}{C o-f . H}$, and because Sin. $A: \operatorname{Sin} . G: i \operatorname{Sin} . D: \operatorname{Sin}$. H, it follows that $\dot{D}: \dot{H}:=\frac{\operatorname{Sin} . D}{C_{0-\int} \cdot D}: \frac{\operatorname{Sin} \cdot H}{\operatorname{Co-\int } \cdot H}::$ Tang. $D:$ Tang. H.

There is yet another Problem, when two Angles remain conftant; but this, by taking the Triangle formed by the Poles of the three given Circles, is reduced to Problem 2.

SECTION II.

Of the Refolution of fluxional Equations, or the Manner of finding the Relation of the flowing Quantities from that of the Fluxions.
261. THEN an Equation, expreffing the Relation of the Fluxions of the two vafriable Quantities, contains only one of thole Fluxions with its respective flowing Quantity in each Term, the Relation of the Quantities will be obtained by finding the Fluent of every Term; as has been already taught, in Sect. VI. Part I.

Thus, if $a x^{2} \dot{x}=y^{3} y$, then will $\frac{a x^{3}}{3}=\frac{y^{4}}{4}$.
And, if $x^{n} y^{m} \dot{x}=a \dot{y}$; by reducing it firft to $x^{n} \dot{x}=$ ar ${ }^{-2 n} \dot{y}$ (fo that its variable Quantities may be feparated) we have $\frac{x^{n+1}}{n+1}=\frac{a y^{1-m}}{1-m}$.

But, if the given Equation has its indeterminate Quantities and their Fluxions fo complicated together, that it cannot be brought under the Form there prefcribed, the Tafk will become much more difficult; tor is there any general Method to be given for fuch Kinds of Equations, whereof there are an infinite Variety.

The Method of Infinite Seriefes (in fome meafure explained already, and more fully confidered hereafter) is indeed very comprehenfive, and may be applied to good Purpofe in various Cafes; but, being tedious and attended with a Number of Inconveniencies, it is a Method we ought never to have Recourfe to till we have tried what may be, otherways, effected, by help of fuch particular Rules and Obfervations as we have been able to collect.

Accordingly, I fhall, here, firt point out fome of the moft proper \dot{W} ays to be tried, in order, if poffible, to bring out the Solution without an Infinite Serics.
262. The firf Method is, by multiplying, or dividing, the given Equation by fome Power or Produot of the Quantities concerned; fo as to bring it, if polfible, under the Form of fuch Fluxions, as, we know, do arife, if not. from the firtt, yet from the fecond, or third, of the thres general Kules in the direct Metbod.

Thus, if the given Equation be $\frac{\dot{x}}{x}+\frac{\dot{y}}{y}=\frac{x^{m} \dot{x}}{a y^{n}}$; then, the whole being multiplied by $x y$, fo that the two firft Terms, $y \dot{x}+x \dot{y}$, may become the (known) Huxion of the Rectangle $x y^{*}$, there arifes $y \dot{x}+x \dot{y}=\frac{x^{m+1} \dot{x}}{a y^{n-1}}$: But ${ }^{*}$ Ar. 10 . ftill we are at a Lofs for the Fluent of the laft Term, unlefs n be taken $=\mathrm{r}$ (fo that y may vanifh). In that

$$
x^{m+2}
$$ of the Fluents when that of the Fluxions is $\frac{\dot{x}}{x}+\frac{\dot{y}}{y}=$ $\frac{x^{m} \dot{x}}{c^{y} y}$: Which appears to be the only Care, of the given Equation, where this Method is of Ufe.

The Resolution

Again, lot the Equation $\frac{p \dot{x}}{x}+\frac{r \dot{y}}{y}=\frac{x^{m i} \dot{x}}{a y^{n}}$ be prow pored.

Here, multiplying by $x^{p} y^{r}$ (where the Exponents are the fame as the Coefficients of $\frac{\dot{x}}{x}$ and $\frac{\dot{y}}{y}$) we get $p x^{p+\dot{x}} \dot{x} \times y^{r}+x^{p} \times r y^{r-1} \dot{y}=\frac{x^{m+\rho} \dot{x}}{a y^{n-r}}$; in which the former Part of the Equation is known to exprefs the - Art. 15. Fluxion of $x^{p} y^{r}$. Therefore, when $n=r$, the Relation of the Fluent may be found, and will be exprefled by y_{j} $x^{p} y^{r}=\frac{x^{m+p+1}}{m+p+1 \times a}$: Which, if no Correction by a conftant Quantity be neceffary, may be reduced to $y_{r}=\frac{x^{m+1}}{m+p+1 \times a}$.

The fame Method nay alpo be extended to Fluxions of the higher Orders: Let $\ddot{x}-x \dot{z}^{2}=f \dot{\dot{x}}^{2}$ (which Equaton occurs hereafter, in the Refolution of a Problem of rome Difficulty). Then, multiplying by \dot{x}, it becomes $\dot{x} \ddot{x}-x \dot{x} \dot{z}^{2}=f \dot{z}^{2} \dot{x}$; where, \dot{z} being conftant, each Term admits, now, of a perfect Fluent, and we therefore have $\frac{\dot{x}^{2}}{2}-\frac{x^{2} \dot{z}^{2}}{2}=f x \dot{z}^{2}$: From whence, fuppofing no Correction neceflary, $\dot{z}=\frac{\dot{x}}{\sqrt{2 f x+x x}}$, and $z=$ hyp. Log. $f+x+\sqrt{2 f x+x^{2}}$ (by Art. 126.)
263. It may happen that the Solution of an Equation will become more eajy by fr f taking the Fluxion thsreaf; when, by that means, forme of the Terms defray each other.

The following is an Inftance of it (which, alfo, occurs, hereafter). Let $y+\frac{\dot{y} \times \overline{a-x}}{\dot{x}}=x-\frac{y \dot{x}}{\dot{y}}$: Whore Flux.

of Fluxional Equations.

ion, making \dot{x} conftant, is $\dot{y}+\frac{\ddot{y} \times \overline{a-x}-\dot{x}}{\dot{x}}=\dot{x}-$
$\frac{j \dot{x} \dot{j}-\operatorname{cox}^{j}}{j \dot{j}}$: Which, by reafon of the Terms deftroying one another, is reduced to $\frac{\ddot{y} \times \overline{a-x}}{\dot{x}}=\frac{y \dot{x} \ddot{y}}{j \dot{y}}$: Therefore, by expunging \ddot{y}, $\delta^{\circ} c$. we get $j y^{-\frac{1}{2}}=\dot{x} \times\left.\overline{a-x}\right|^{-\frac{r}{2}}$, and confequently $2 y^{\frac{1}{2}}=-2 \times \overline{a-a}^{\frac{1}{2}}+$ fome comfant 2 uantity.
264. Anotber Metbod, chiefly applicable to Equationis, of the firf Order of Fluxions, wherein only one of the twio variable 2 uantities $(x$ or y) enters, is, to fubfitute for the Ratio of the two Fluxions (\dot{x} and \dot{y}): From whence the Value of that Quantity zuill be bad, immiediately, in Terms of the faid affuried Ratio: And then, by taking its Fluxion, thai of the other Quantity (and from thence the Quaitity iffelf) will become known.

Thus, let $a \dot{x} \dot{j}^{3}=y \times \overline{\dot{x} \dot{x}+j \dot{y}}{ }^{2}$ (being the Equation of the Curve that generates the Solid of the leaft Refylance, when the Bulk and greateft Diameter are given). Then, by putting $\frac{\dot{x}}{\dot{y}}=v$, and fubfituting above, we . get $\left.a v j^{4}=y \times \overline{v^{2} j^{2}+j^{2}}\right)^{2}=j j^{4} \times \overline{v^{2}+1}{ }^{2}$; and confequently $y=\frac{a v}{\left.v^{2}+1\right]^{2}}$: Therefore $\dot{y}=\frac{a \dot{v}-3 \pi v^{2} \dot{v}}{v v+1]^{3}}$; and confequently $\dot{x}(=v \dot{j})=\frac{a v \dot{v}-3 a v^{3} \dot{v}}{v v+1}$: Whofe Fluent may be found, from Art. 84. or, otherwife, thus: Put $w^{2}=v^{2}+1$; then $v^{2}=w^{2}-1$, and $w v i=$ viv; by fubftituting which Values there arifes $\dot{x}=$ $\frac{a w u \dot{u}-3 a w \dot{w} \times \overline{w^{2}-1}}{2 v^{6}}=4 a z \dot{z} z u^{-5}-3 a \dot{z} v^{-3}$; and

The Refolution

fore $x=\frac{4 a w^{-}+}{-4}-\frac{3 a w^{-2}}{-2}=-\frac{a}{w^{4}}+\frac{3 a}{2 w^{2}}=\frac{3 a w^{2}-2 a}{2 w^{4}}$. $=\frac{3 a \times \overline{v^{2}+1}-2 a}{2 \times v v+1)^{2}}=\frac{a \times \overline{2 v v+1}}{2 \times \overline{v v+1)^{2}}}$; which, corrected
(by taking y, or $v=0$) becomes $x=\frac{a \times \overline{3 v v+1}}{2 \times \overline{v v+1)^{2}}}-\frac{a}{2}$.
From this Equation, by completing the Square, Eqc. v may be found in Terms of x; whence the correfponding Value of $y\left(=\frac{a v}{v v+1)^{2}}\right)$ will allo be known.
265. The fourth Method, which chiefly obtains when one of the indeterminate Quantities and its Fluxion, arife but to a fingle Dimenfion each, may be thus :

Let the Value of that Quantity, which is leaft involved, be firft fought, from the fickitious Equation arifing by negleciing all the Terms in the given Equation, where neither that Quantity, nor its Fluxion, are found: Then, to that Value, lat fome Power, or Powers, of the other Quantity, with zunknowe Coefficients, be added (according to the Dimenfions of the Terms neglected) and let the Sum be fubfituted in the given Equation, as the true Value of the firt mientioned Quartity: By which means a new Equation weill refult; from whence the affumed Caefficients may, fometimes, be detcrmined.
$E x$. Let the given Equation be $c x^{2} \dot{x}+y \dot{x}=a \dot{j}$.
By neglecting $c x^{2} \dot{x}$, or feigning $y \dot{x}=a \dot{y}$, we get $\frac{\dot{x}}{\dot{a}}=\frac{\dot{y}}{y}$: and confequently $\frac{x}{a} ;=$ hyp. Log. y-hyp.

* Art. 126, Log. d * $=$ hyp. Log. $\frac{y}{d}$: d being any confant Quantity, which the Nature of the Problem may require. Hence $\frac{y}{d}=$ the Nurr.ber whofe hyperbolical Logarithm is $\frac{x}{a}$: Which Number, if M be put for (2,71828 धैc.)
the Number whofe hyp. Log. is Unity, will be exprefied by $\overline{M A}^{\frac{x}{x}}$ (fince it is evident that the hyp. Log. hercof is $\left.\frac{x}{a} \times \log . M=\frac{x}{a}\right):$ Therefore $\frac{y}{d}=$ $\overline{M^{\frac{x}{a}}}$ and $y=d \times \bar{M}^{\frac{x}{a}}$. Now, to the Vaiue thus found, let there be added $\mathrm{A} x^{2}+\mathrm{B} x+\mathrm{C}$, in order to get the true Value; and then, \dot{y} being $=2 \mathrm{~A} x \dot{x}+\mathrm{B} \dot{x}+\frac{d \dot{x}}{a}$ $\times \frac{{ }_{M}^{x}}{\underline{a}}$, we fhall, by fubflituting in the given Equa-*Art. 2520 tion, have $c x^{2} \dot{x}+\mathrm{A} x^{2} \dot{x}+\mathrm{B} \dot{x}+\mathrm{C} \dot{x}+d \dot{x} M^{\frac{x}{a}}=2 \mathrm{~A} a x \dot{x}$ $+\mathrm{Ba} \dot{x}+d \dot{x} M^{\frac{x}{a}}$, and confequently $\overline{c+A} \times x^{2} \dot{x}+$ $\overline{B-2 A a} \times x \dot{x}+\overline{C-B a} \times \dot{x}=0$. Whence $\mathrm{A}=-c+$, tArt, 84 . $\mathrm{B}=-2 a c, \mathrm{C}=-2 a a c$; and confequently $y=-c x$
$\overline{x^{2}+2 a x+2 a a}+d \frac{x}{M^{a}}$. By the very fame Way, the Value of y, in the Equation $x^{n} \dot{x}+y \dot{x}=a \dot{y}$, will come out $=-c \times x^{n}+a x^{n-1}+n \cdot \overline{n-1} \cdot a^{2} x^{n-2}+n \cdot \overline{n-1}$.
$\overline{n-2 . a^{3}} \cdot x^{n-3}+\mathcal{S}^{3} c .+d M^{\frac{x}{a}}$.

266. But, what is a little remarkable, in thefe Equations, is, that the Exponential $d M^{\frac{x}{a}}$, tho' a wariable Quantity, fhould only ferve, as it were, to correct the Fluent, or perform the Office of a conftant Quantity. What I here mean will plainly appear, if it be confidered, that the Equation $y=-i \times \overline{x^{2}+2 a x+2 a a}$, where the faid Exponential is wanting, anfwers all the Conditions of the fluxional Equation firft propofed; which, upon Trial, will be found; and muft needs be
the Cafe, fecing d may be, cither, taken Nothing a 4 all, or any Quantity at Pleafurc.

But the Equation $y=-c \times \overline{x^{2}+2 a x+2 a^{2}}$ (when $d M^{\frac{\alpha}{a}}$ is wanting) cannot be corrected, in the ufual Way, fo as to give $y=0$, when $x=0$; fince, if any other conftant Quiantity, befides- $2 a^{2} c$ be introduced, the firft Conditions will not be anfwer'd: The Correction muft,
therefore, be by the Exponential $\dot{a} M^{\bar{a}}$; and is thus.
Since $y=-c x^{2}-2 c a x-2 c a^{2}+d M^{\frac{x}{a}}$, if y be taken $=0$ and $x=0$, then $-2 c a^{2}+d M^{0}=0$, or $d=$ $2 c a^{2}$; and fo the Equation, truly corrected, is $y=-c x$ $\overline{\dot{x}^{2}+2 a x+2 a^{2}}+2 a^{2} c M^{\frac{x}{a}}$.
267. We come now to the laft Method; ramely, that of Infinite Seriefes; which, tho' lefs accurate, is vaftly more comprehenfive, than any yet explained: The Manner of it is thus:

For the Quantity whofe Value you would find, let an Infinite Series, co.nfiting of the Powers of the otber Quantity with unknozun Cocfficicnts, be aflumed; which Series, together zuith its Fiuxiicn, or Fluxions, muft be fubfituted inflead of their Equals in the given Equation; zubence a necu Equation will arife, from wbich, by comparing the bomolorons Terms, the afumed Coefficients, and confcquen:ly the Value fought, will be deterinined.

Thus, let the Equation $\frac{\dot{x}}{1+x}=\dot{y}$ (reducible to \dot{x} -$\dot{y}-x \dot{j}=0$) be propofed; to find x in Terms of y. Then, aftuming $x=\mathrm{A} y+\mathrm{B} y^{2}+\mathrm{C} y^{3}+\mathrm{D} y^{4}+\mathrm{E} y^{5} \xi c$. We have $\dot{x}=A \dot{j}+2 \mathrm{~B} y \dot{y}+{ }_{3} \mathrm{C} y^{2} \dot{y}+4 \mathrm{D} y^{3} \dot{y}+{ }_{5} \mathrm{E} y^{4} \dot{y}+\mathrm{E}^{\circ} \mathrm{c}$. Which Values being fubftituted in $\dot{x}-\dot{j}-x \dot{j}=0$, we get

There-

Therefore $\mathrm{A}-1=0$, or $\mathrm{A}=1 ; 2 \mathrm{~B}-\mathrm{A}=\mathrm{c}$, or $\mathrm{B}=$ $\frac{\mathrm{A}}{2}=\frac{1}{2} ;{ }_{3} \mathrm{C}-\mathrm{B}=0$, or $\mathrm{C}=\frac{\mathrm{B}}{3}=\frac{1}{2.3} ; 4 \mathrm{D}-\mathrm{C}$ $=0$, or $\mathrm{D}=\frac{\mathrm{C}}{4}=\frac{1}{2 \cdot 3 \cdot 4}$ छंc. 2.
And confequentily $x\left(\mathrm{~A} y+\mathrm{By}^{2}+\mathrm{Cy}^{3} \varepsilon^{\circ} \mathrm{c}\right)=y+$ $\frac{y^{2}}{2}+\frac{y^{3}}{2 \cdot 3}+\frac{y^{4}}{2 \cdot 3 \cdot 4}+\frac{y^{5}}{2 \cdot 3 \cdot 4 \cdot 5}+$ E c.

Again, let it be required to find the Value of y, in the Equation $c x^{2} \dot{x}+\dot{y} \dot{x}=a \dot{y}$, or $a \dot{y}-y \dot{x}-c x^{2} \dot{x}=0$. Here, affuming $y=\mathrm{A} x+\mathrm{B} x^{2}+\mathrm{C} x^{3}+\mathrm{J} x^{4}+\mathrm{E} x^{5}+\mathrm{F} x^{6}$ $\mathrm{E}_{0}^{\circ} \mathrm{c}$. and proceeding as before, we fhall have

Whence $\mathrm{A}=0 ; 2 a \mathrm{~B}=\mathrm{A}=0 ; 3 a \mathrm{C}=\mathrm{B}+c=c$, or $\mathrm{C}=\frac{c}{3 a} ; 4 a \mathrm{D}=\mathrm{C}=\frac{c}{3 a^{a}}$, or $\mathrm{D}=\frac{c}{3 \cdot 4 a^{2}} ; 5 a \mathrm{E}=\mathrm{D}$ $=\frac{c}{3 \cdot 4 a^{a^{2}}}$ or $E=\frac{c}{3 \cdot 4 \cdot 5 a^{3}} E_{c} c$, and confequently y $\left(\mathrm{A} x+\mathrm{B} x^{2}+\mathrm{C} x^{3}+\delta_{c .}\right)=\frac{c x^{3}}{3 a}+\frac{c x^{4}}{3 \cdot 4 a^{2}}+\frac{c x^{5}}{3 \cdot 4 \cdot 5 a^{3}}$ $+\frac{c x^{6}}{3 \cdot 4 \cdot 5 \cdot 6 a^{4}}+\delta_{c} c$.
268. It appears from this Example, that the Quantity to be found, will not always require all the Terms of the Series $\mathrm{A} x+\mathrm{B} \dot{x}^{2}+\mathrm{C}_{x^{3}} \mathrm{E}_{6} c$. And it may happen, in innumerable Cafes, that the Series to be affumed will demand a very different Law from that where the Exponents proceed according to the Terms of an arithmetical Progreflion having Unity for the common Difference. And, indeed, the greateft Difficulty we have here to entcounter, is, to know what Kind of Series, with regard to its Exponents, ought to be affumed, fo as to anfiwer the Conditions of the Equation, without introducing more Terms than are actually neceffary.
U_{4}
For

The following Rules will be found very ufeful upon this Occafion: Which, though they may become impract:cable in certain particular Cafes, never take in any fuperfuous Terns.

1․ Having (if neiefary) freed your Equation from FraCionis and Surds, let the Quantity, zubofe Value is fought, be fuppofed equal to fome Power of the other Quiantity with an unknoven Exponent (n); and let that Power, togethicr zuith its Fluxion, or Fluxions, be fubfituted for their (Juppofed) Equals in the given Equation.
20. Let the liaft Exponents of the variable, or indeterminate, 2 nantity, in the new Equation, thence arifing, be put equal to eacis other: Whence the Value of the unknown Exponent n will be found.
3°. Subfitute the Value of n, fo found, in all the Exponents where n is concerned; and then take the Difference butween cree of the cqual ones, above mentioned, and every otber Exponcnt, of the variable Quantity, in the whole Equation.
4°. To thefe Difficences, write down all the leaf Numbers that can be comppofed out of them, by continual Addition, either to themfelves, or to one anoiber; till you bave, by that micans, got, in the whole, as many different Terms, as you would bave the required Series continued to.
5°. Lafty, let each of thofe Terms be increafed by the Value of in (found by Rule 2.) and you will then have the Expenents of the Scries to be affumed.

EXAMPLE, I.

26g. Let the Value of x, in the Equation $a^{2} \dot{x}^{2}+x^{2} \dot{\tilde{x}} \hat{\text { t }}$ - $a^{2} \dot{z}^{2}=0$, be required.

Firf, hy writing z^{x} for x, and $n z^{n-1} \dot{z}$ for \dot{x}, the Indices of z will be $2 n-2,2 n$, and O (which are determined by Infpection, without regarding the Coefficients) whereof the two leaft ($2 n-2$ and o) being put equal to each other, we here find $n=1$: Therefore, the Exponents being $0,2,0$, the Differences (according to Rule 3.) are also 0,2 ; from whence, by adding 2 continually, we get $0,2,4,6,8$ E\%\%, which (being each
increafed by the Value of n) give $\mathbf{1}, 3,5,7,9$ soc. for the Exponents in this Cafe.
Let, therefore, $x=\mathrm{A} z+\mathrm{Bz}^{3}+\mathrm{C} z^{5}+\mathrm{D} z^{7}+\mathrm{E}^{\circ} c$. Then, putting $\dot{z}=\mathrm{r}$, in order to facilitate the Operation, we hall have $\dot{x}=\mathrm{A}+3 \mathrm{Bz}^{2}+{ }_{5} \mathrm{Cz}^{4}+7 \mathrm{Dz}^{6}+$ E$^{\circ} c$. which two Values being fquared, and fubftituted in the given Equation, it will become

Whence, $a^{2} \mathrm{~A}^{2}=a^{2}$, and therefore $\mathrm{A}=1 ; 6 a^{2} \mathrm{~B}=-$
A, and therefore $B=-\frac{1}{6 a^{2}}=-\frac{1}{2.3 a^{2}} ; 10 a^{2} A C$
$\equiv-9 a^{2} \mathrm{~B}^{2}-2 \mathrm{AB}=-\mathrm{B} \times \overline{9 a^{2} \mathrm{~B}+2 \mathrm{~A}}=-\mathrm{B} \times$
$\overline{-\frac{3}{2}+2}=-\frac{B}{2}=\frac{1}{2 \cdot 3 \cdot 2 a^{2}}$, and therefore $C=$
$\frac{1}{2 \cdot 3 \cdot 4 \cdot 5 a^{4}} ; 14 \mathrm{AD}=-30 a^{2} x-\frac{1}{6 a^{2}} \times \frac{1}{120 a^{4}}-$
$2 \times \frac{1}{120 a^{4}}-\frac{1}{36 a^{4}}=\frac{1}{24 a^{4}}-\frac{1}{6 c a^{4}}-\frac{1}{36 a^{4}}=-$
$\frac{1}{360 a^{4}}$, and therefore $D=-\frac{1}{14 \cdot 360 a^{6}}=-$
$\frac{1}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6.7 a^{6}} ;$ and, confequently, $x=z-\frac{z^{3}}{2 \cdot 3^{2}}+$ $\frac{z^{5}}{2 \cdot 3 \cdot 4 \cdot 5 a^{+}}-\frac{z^{7}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 a^{6}}$ ® $^{\circ}$.

EX A MP LE II.

270. Let the given Equation be $a^{2} x \ddot{x}-2 a^{2} \dot{x} \dot{y}+a x \dot{x}^{2}$ $+x^{3} \dot{y}=0$; to find y.

Here, fubftituting x^{n} for y, the Exponents will be $n-\mathrm{I}, n-1, \mathrm{I}$, and $n \div \mathrm{I}$; where, making $n-\mathrm{I}=\mathrm{I}$, we
we get $n=2$: Whence, the Differences being 0 , 2, thie Series to be aflumed for y will be $\mathrm{A} x^{2}+\mathrm{B} \dot{x}^{4}+\mathrm{C} x^{6}+$ $D x^{8}+\mathrm{E} x^{10}+\mathrm{E}_{6}$. From which, making $\dot{x}=1$, we have $j=2 \mathrm{~A} x+4 \mathrm{~B} x^{3}+6 \mathrm{C} x^{5}+8 \mathrm{D} x^{7}$ छ E°. and $y=2 \mathrm{~A}+12 \mathrm{~B} x^{2}+30 \mathrm{C} x^{4}+56 \mathrm{D} x^{6}$
And, thefe Values being fubftituted, the Equation becomes
$\left.2 a^{2} A x+12 a^{2} B x^{3}+30 a^{2} \mathrm{C} x^{5}+56 a^{2} \mathrm{D} x^{7}+8 c^{2}.\right\}$ $\left.-4 a^{2} A x-8 a^{2} B x^{3}-12 a^{2} \mathrm{C} x^{5}-16 a^{2} D x^{7}+\xi^{7} c\right\}=0$ $+2 x+2 A x^{3}+12 \mathrm{~B} x^{5}+30 \mathrm{C} x^{7}+8_{0} c_{0}$.
Therefore $\mathrm{A}=-\frac{1}{2 a} ; \mathrm{B}=-\frac{2 \mathrm{~A}}{4 a^{3}}=-\frac{1}{4 a^{3}}$; $C=-\frac{r_{2} \mathrm{~B}}{18 a^{2}}=\frac{1}{6 a^{5}} ; D=-\frac{30 \mathrm{C}}{40 a^{2}}=-\frac{1}{8 a^{7}}$ छं c. and fo $y=\frac{x^{2}}{2 \dot{a}}-\frac{x^{4}}{4 a^{3}}+\frac{x^{6}}{6 a^{5}}-\frac{x^{8}}{8 a^{7}}+\frac{x^{\circ}}{10 a^{9}}-$ छoc. Which Series is known to exprefs the Fluent of $\frac{a x \dot{x}}{a^{2}+x^{2}}$ or, $\frac{3}{2} a \times$ hyp. Log. $\frac{a^{2}+x^{2}}{a a}$: Confequently y is alfo $=$ $\frac{-7}{2} a \times$ hyp. Log. $\frac{a^{2}+x^{2}}{a^{2}}$. In this manher, it comes to pafs, that, though we are obliged, in very complicated Cafes, to have recourfe to Infinite Seriefes, we are fometimes able, at laft, to give the Solution in finite Terms, or, at leaft, by help of Logarithms, Sines and Tangents: Which will always happen when the Series can be fummed, or is found to agree with that arifing from fome known Quantity.
271. Sometimes it happens, in Equations involving the higher Orders of Fluxions, that the Exponents, mention in Rule 2. whereof the leaft ought to be made equal to each other, are fo expreffed, as to render fuch an Equality impofinble. When this is the Cafe, the Value of n, and the firft Term of the required. Series, can orly be determined from the Nature of the Preblem to which the Equation belongs. We know,

of Fluxional Equations.

indeed, from the Equation itfelf, that n muft be either equal to Nothing, or to fome pofitive Integer, lefs than that expreffing the Order of the higheft Fluxion in the Equation: Becaufe the Term that has the leaft Eriponent, and which therefore cannot be compared with any other (being always affected by two or more of the Factors, $n, n-1, n-2$, 'E゙ c. will then (one of thofe Factors being $=0$) vanifh intirely out of the Equation; which, thereby, is render'd poffible.

When n and A are known, the reft of the Terms will be found in the common Way, as in

E X A M PLE III.

Where the Equation propofed is $y \dot{x}^{2}+a \dot{x} \dot{y}-a^{2} \dot{y}=0$; to find y.

By fuppofing $\dot{x}=\mathrm{r}$, and writing x^{n} for $y, n x^{n-1}$ for j, and $n \times \overline{n-r} \times x^{n-2}$ for \ddot{y}, we get $x^{n}+n a x^{n-1}$ $n \times \overline{n-1} \times n^{2} x^{n-2}$: But it is plain that no two of the 'Indices of x can, bere, be equal : The Value of n muft therefore be either $=0$, or Unity (in both which Cafes the Term - $n \times \overline{n-1} \times a^{2} x^{n-2}$ vanifhes) but I fhall take the latter Value, and fuppofe the firft Term of the Series to be $A x$; then, the Differences of the forefaid Exponents being I and 2, the Law of the Series will be expreffied by $1,2,3,4 \varepsilon^{\circ} \mathrm{c}$. Whence, affuming $y=$ $\mathrm{A} x+\mathrm{B} x^{2}+\mathrm{C} x^{3}+\mathrm{D} x^{4} \xi^{\circ} c$. and proceeding as in the former Examples, y will be found $=\mathrm{A}$ into $x+$ $\frac{x^{2}}{2 a}+\frac{x^{3}}{3 a^{2}}+\frac{x^{4}}{8 a^{3}}+\frac{x^{5}}{2 \dot{4} a^{4}}+\frac{x^{6}}{90 a^{5}}$ Ec. or $^{\circ}=\mathrm{A}$ into $x+$ $\frac{x^{2}}{2 a}+\frac{2 x^{3}}{2 \cdot 3 a^{2}}+\frac{3 x^{4}}{2 \cdot 3 \cdot 4 a^{3}}+\frac{5 x^{5}}{2 \cdot 3 \cdot 4 \cdot 5 a^{4}}+\frac{8 x^{6}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 a^{5}}+$ E®c. where the Law of Continuation is manifeft, the Coefficient of cvery Numerator being compofed by the Addition of the two preceding ones.
272. It will be proper to obferve here, that, in Equations like the two laft propofed, where the higher Orders of Fluxions are concerned, the Series expreffing the Relation of the two Quantities muft always be found in Terms of the Quantity flowing uniformly. And, that, if the Number of Dimenfions of the Fluxion of the faid Quantity, after Sublitution, be not the fame in every Term, the Equation itfelf, put down to be refolved, is abfurd and impoffible, and fuch as never can arife in the Solution of any Problem. In all proper Equations the Number of fluxional Points (fuppofing the Powers of the Fluxions to be wrote without Indices) will be the fame in every Term.

E X A M P L E. IV.

273. Where let the given Equation be $a^{3} \dot{y}-a y^{2} \dot{x}+x^{2} y \dot{y}$ $=x^{3} \dot{x}$; to find y.
By proceeding as ufual the Indices will here be $n-1$, $2 n, 2 n+1$ and 3 ; wherèf the leaft (which can be no other than $n-1$ and 3) being compared, n will be given =4: And the Differences will therefore be $0,5,6$; to which the Double of the Second and the Sum of the fecond and third, छ'c. being put down, and then every Term increafed by 4 , there arifes $4,9,10,14,15,16,19$ Ecc. for the Exponents of the Series to be affumed for y.

Let therefore $y=\mathrm{A} x^{4}+\mathrm{B} x^{9}+\mathrm{C} x^{10}+\mathrm{D} x^{14} \xi^{\mathrm{E}}$. then, making $\dot{x}=1, \dot{y}$ is $=4 \mathrm{~A} x^{3}+9 \mathrm{~B} x^{3}+10 \mathrm{C} x^{9}+14 \mathrm{D} x$ + O\%.

And, by fubftituting thefe Values above, we have $\left.\begin{array}{l}4^{3} a^{3} x^{3}+9 a^{3} \mathrm{~B} x^{8}+10 a^{3} \mathrm{C} x^{9}+14 a^{3} \mathrm{D} x^{13}+\xi^{2} c_{c} \\ -x^{3}-a \mathrm{~A}^{2} x^{8}+4 \mathrm{~A}^{2} x^{9}-2 a \mathrm{AB} x^{13}+\delta_{0} c_{0}\end{array}\right\}=0$

And ${ }^{*} y=\frac{x^{4}}{4 a^{3}}+\frac{x^{3}}{144 a^{3}} ;-\frac{x^{10}}{40 a^{0}}+\frac{x^{14}}{403^{22 a^{23}}} \varepsilon^{\circ} \%$.

* If for y, the Series $\mathrm{A} x^{4}+\mathrm{B} x^{5}+\mathrm{C} x^{6}+\mathrm{D} x^{7}$ E'c. culbofe $E x-$ ponents are in aritbmetical Progreflon, had been affursed, according yo the Metbod of fome very good Aushors, no. lefs than feven Superfluous Ternis maif beve been introduced to obtain the four above given.

274. Before I quit this Subject, it may not be amifs to fubjoin the following Remarks.
$\mathbf{1}^{\circ}$. If the indeterminate Quantities are great in refpect to the given ones, a defcending Series will, in moft Cales (where it is practicable) converge better than an afcending one. To obtain fuch a Scries, compare the grateft Exponents, mention'd in Rule 2 inftead of the leaft, and proceed according to the third and fourth Rules *, whence a Series of Numbers will be found ; *Art. 268. which, being fucceffively fubtracted from the V alue of n, you will have the Exponents of a defcending Series.

Thus, let the common-algebraic Equation $a^{3} x^{\prime}+a x^{3}$ $-a^{3} y-y^{4}=0$ be propounded ; to find y, when x is great in comparifon of a.
Then, proceeding as ufual, the Exponents of the four Terms of the Equation will be 1, $3, n, 4 n$; whereof the two greateft ($4 n$ and 3) being made equal, we get $n=\frac{3}{4}$; therefore the Differences are 0,2 and $2 \frac{1}{1}$; and $n=\frac{3}{4}$; therefore the Differences are 0,2 and $2 \frac{1}{4}$; and the Numbers to be fubtracted from n, are $0,2, \circ, 4$, $\frac{17}{4}, \mathcal{E}^{\circ} c$. Confequently the Scries to be affumed for y is $\mathrm{A} \mathrm{x}^{\frac{3}{4}}+\mathrm{B} x^{-\frac{5}{4}}+\mathrm{C} x^{-\frac{6}{4}}+\mathrm{D} x^{-\frac{1}{7}}+8 c$. From whence y will be found $=a^{\frac{1}{4}} x^{\frac{3}{4}}+\frac{a^{\frac{9}{4}}}{4 x^{\frac{3}{4}}}-\frac{a^{\frac{10}{4}}}{4 x^{\frac{6}{4}}}-\frac{3^{\frac{17}{4}}}{32 x^{7^{3}}}$ שoc.
2°. But, if the Quantity (x) in whofe Terms the other is to be expreflied, be neither much greater nor much fmaller than the given Quantity (a), it will be proper to fubftitute for the Excefs, or Defect, of the faid Quantity (x) above, or below, fome given Quantity; to that, having, by this means, exterminated x, the Series arifing from the new Equation (wherein the faid Excefs, or Defect, is the converging Quantity) will have a due Rate of Convergency.

The Ufe of this is fo obvious that it needs no Example, or farther Explanation.
3°. Laftly, it will be proper to obferve, that, if the Equation for the Value of A, arifing from the firft Column of homologous Terms, admits of two or more,

- equal Roots (which is a Cafe that may, perhaps, never happen in practice) all the foregoing Precepts will be infufficient ; unlefs the Equation alfo admits of fome other Root, befides the equal ones, whereby A may be more commodioufly expreffed. To determine the Exponents, in that particular Cafe, divide each of the Differences mention'd in Rule 3. by the Number of the equal Roots; and then proceed as ufual. The Reafons of which, as well as of the Rules themfelves, I have long ago given ellewhere, and have not Room to repeat them here:

Scholium:

275. Although the Bufinefs of reverting Seriefes is not a Branch of the Doctrine of Fluxions, but, more properly, belongs to common Algebra; yet, as it is often ufeful where Fluxions are concerned, and falls under the general Rules illuftrated in the foregoing Pages, I thall here add an Example or two on that Head:

Let, then, $a x+b x^{2}+c x^{3}+d x^{4}+e x^{5}$ छ®c. $=y$; to revert the Series, or, to find x in an Infinite Series expreffed in the Powers of y.

Here, by writing y^{n} for x, the Indices of the Powers of y, in the Equation, will be $n, 2 n, 3 n, \xi_{c} c_{2}$ and x ; therefore $n=1$. and the Differences are $0,1,2,3,4,5$, $\xi^{\circ} c$. and fo the Series to be affumed, in this Cafe, is $\mathrm{Ay}+\mathrm{By}^{2}+\mathrm{C} y^{3}+\mathrm{Dy}{ }^{4} \mathrm{Ec}^{2}$.' Which being involved and fubftituted for the refpective Powers of x (neglecting, every where', all fuch Powers of x and y as exceed the higheit you would have the Series carry'd to) there arifes

Whence, by comparing the homologous Terns, $\mathrm{A}=$
$\frac{1}{a} ; \mathrm{B}=-\frac{b}{a^{3}} ; \mathrm{C}\left(=-\frac{2 b \mathrm{AB}+c \mathrm{~A}^{3}}{a}\right)=\frac{2 b b-a c}{a^{5}} ;$
$D\left(=-\frac{2 b \mathrm{AC}+6 \mathrm{~B}^{2}+3 c \mathrm{~A}^{2} \mathrm{~B}+d \mathrm{~A}^{4}}{a}\right)=\frac{5 a b=-5 b^{3}-a^{2} d}{a^{7}}$, E c. and confequently $x=\frac{y}{a}-\frac{b y^{2}}{a^{3}}+\frac{2 b b-a c}{a^{5}} x-y^{3}$ $-\frac{5 b^{3}-5 a b c+a^{2} d}{a^{7}} \times y^{+} \xi^{2} c$.
For an Inflance of the Use of this Conclufion, let $x-$ $\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}$ Ec. $=y$: Then, a being, in this Cafe, $=\mathrm{r}, b=-\frac{1}{2}, \quad c=\frac{r}{3}, d=-\frac{1}{4}, \quad \xi c$. we fhatl, by fubftituting there Values, have $x=y+\frac{y^{2}}{2}+\frac{y^{3}}{6}+$
$\frac{y^{4}}{24} छ^{\circ}$. From whence, when y is given, x will alto be given; provided the Value of y be fufficiently fall *. * Art. $g z_{0}$

Example 2. Let there be given $a x+b y+c x^{2}+d x y+$ $e y^{2}+f x^{3}+g x^{2} y+b x y^{2}+i y^{3}+k x^{4}+l x^{3} y$ छ ${ }^{\circ} c$. $=0$; to. find y.

By affuming $y=\mathrm{A} x+\mathrm{B} x^{2}+\mathrm{C} x^{3}+\mathrm{D} x^{4} \mathrm{E}_{6}$, and proceeding as above, A will be found $=-\frac{a}{b}, \mathrm{~B}=-$ $\frac{c+d \mathrm{~A}+c \mathrm{~A}^{2}}{b}, \mathrm{C}=-\frac{d \mathrm{~B}+2 c \mathrm{AB}+f+j \mathrm{~A}+h \mathrm{~A}^{2}+i \mathrm{~A}^{3}}{b}, \mathrm{D}=$
$-\frac{d C+2 e A C+e B^{2}+g B+2 h A B+3 i A^{2} B+k+l A+t}{b}$ $\frac{m \mathrm{~A}^{2}+n \mathrm{~A}^{3}+p \mathrm{~A}^{4}}{4}, \varepsilon_{6}$

Example 3. Laftly, let $x^{m}+b x^{m+p}+c x^{m+2 p}+$ $d x^{m+3 p}+\varepsilon^{\circ} c .=z$.

Here, in order to determine the Form of the Series to be affumed, let z^{n} be wrote for x in the given Equaton, according to the ufual Method ; and then the Exponents, fuppofing z tranfpofed, will be $1, n m, n m+$ $n p, n m+2 n p, n m+3 n p, \xi^{\circ} c$. refpectively; whereof the two leapt (I and nm) being made equal to each other, n is found $=\frac{1}{m}$; and the Differences are $\frac{p}{m}, \frac{2 p}{m}$, $\frac{3 p}{m}, \delta^{\circ} c$. Whence the Series to be affumed for x is $x^{\frac{x}{m}}+\mathrm{Bz}^{\frac{1+p}{m}}+\mathrm{C} z^{\frac{1+2 p}{m}}+\mathrm{Dz}^{\frac{1+3 p}{m}}+\xi^{\circ} c$. (for it is avident, by Inipection, that the Coefficient (A) of the first Term muff here be an Unit.) This Series being therefore railed to the feveral Powers of x, in the given Equation, by Art. 108. and the Coefficients of the homologous Terms in the new Equation compared together, it will be found that, $B=-\frac{b}{m}, C=\frac{\overline{1+m+2 p \times 6 b-2 m c}}{2 m^{2}}$,
$\mathrm{D}=-\frac{\overline{2 m^{2}+9 m p+9 p^{2}+3^{m}+6 p+1} \times b^{3}}{6 m^{3}}+$
$\overline{\overline{1+m+3 p} \times b c} m^{2}-\frac{d}{m}$, E$^{\circ} c$.
From the general Value of x, found above, innumerable Theorems, for reverting particular Forms of Seriefes, may be deduced.

Thus, if $x+b x^{2}+c x^{3}+d \dot{x}^{4}, v_{c}=z$; then (m being $=1$ and $p=1) x$ is $=z-b z^{2}+\stackrel{2 b b-c}{ } \times z^{3}-$ $\frac{5^{3}-5^{b c+d}}{} \times z^{4}$ er $^{\circ}$.

of Fluxional Equations.

And, if $x+b x^{3}+c x^{5}+d x^{7}+\delta^{c} c=z$; (m being
$=1$, and $p=2) x=z-6 z^{3}+\overline{3 b b-6} \times z^{5}-\overline{12 b^{3}-8 c b+d}$ $\times z^{7}$ ® $\%$
Alfo, if $x^{\frac{1}{2}}+b x^{\frac{3}{2}}+c x^{\frac{3}{2}}+d x^{\frac{1}{2}} \delta^{\circ} c_{0}=. z$; then (m being $=\frac{1}{2}$ and $p=1$) $x=z^{2}-2 b z^{4}+\overline{7^{b b-26}} \times z^{6}-$

276. It may be obferved that, in all thefe Forms of Seriefes, the firt Term is without a Coefficient (which renders the Conclufion much more fimple.) .Therefore, when the Series to be reverted has a Co-efficient in its firft Term, the whole Equation muft be firft of all divided thereby: Thus, if the Equation was $3 x$ $6 x^{2}+8 x^{3}-13 x^{4} \delta^{\circ} c_{0}=y ;$ by dividing the whole by 3 it will become $x-2 x^{2}+\frac{8 x^{3}}{3}-\frac{13 x^{4}}{3} \xi_{c} c_{0}=\frac{7}{3} y$: Where, putting $z=\frac{7}{3} y$, we have, by Form. 1. $x=z+$. $2 z^{2}+\frac{16}{3} z^{3} \xi_{c} c_{0}=\frac{y}{3}+\frac{2 y^{2}}{9}+\frac{16 y^{3}}{81} \xi_{c}$.

S ECTION III.

Of the Comparifon of Fluents, or the Manner: of finding one Fluent from anotber.
277. E have, already, pointed out the moft remarkable Forms of. Fluxions whofe. Fluents are explicable in finite Terms*; and alfo *Att. 77. fhewn the Ufe of Infinite Seriefes in approximating the ${ }^{78.8}{ }^{3.8 .84}$. Values of fuch Fluents as do not come under any of thofe Forms \dagger : But this laft Method (as is before \dagger Art. $99 \cdot$ hinted) being troublefome, and attended with many. Obftacles; Mathematicians have therefore invented, and fhewn, the Way of deriving one Fluent from another: Which is of good Advantage when the Fluent
X fought

Of the Comparifon

fought can be referred to one, like thofe in Art. 126 and 142. exprefing the Logarithm of a Number, or the Arch of a Circle; fince the Trouble of an infinite Series is, then, avoided.

As the Subject here propofed is of fuch a Nature, that it would be very tedioiis and difficult, if not altogether impracticable, to lay down Rules and Precepts for all the various Cafes; I fhall deliver, what I. have to offer thereon, by way of Problems; beginning with fome very ealy ones, for the Sake of the young Proficient.

PROB. I.

278. The Fluent of $\frac{\dot{x}}{\sqrt{a^{2}+x^{2}}}$ being given (by Art. 126.)
'tis propofed to find, from thence, the Fluent of $\frac{x^{2} \dot{x}}{\sqrt{a^{2}+x^{2}}}$.
Let both the Numerator and Denominator of $x^{2} \dot{x}$
$\frac{x^{2} \dot{x}}{\sqrt{a^{2}+x^{2}}}$, be multiply'd by x, fo that the Quantity without the Vinculum, in the Fluxion, $\frac{x^{3} \dot{x}}{\sqrt{a^{2} x^{2}+x^{4}}}$, thus transformed, may become fome conftant Part of the Fluxion of the highent Term under the Vinculum: Which Part, in this Cafe, being $\frac{1}{4}$, let $\frac{2}{4}$ of the Fluxion of the firft Term under the Vinculum (or $\frac{1}{2} a^{2} \dot{x} \dot{x}$) be therefore added to the Numerator, in order to have the Whole, $\frac{1}{2} a^{2} x \dot{x}+x^{3} \dot{x}, ~ a ~ c o m p l e t e ~ F l u x i o n ; ~ a n d ~ t h e n ~ t h e ~$

- Artion. Fluent thereof, by the common Rule ${ }^{*}$, will be $\frac{7}{2}$ $\sqrt{a^{2} x^{2}+x^{4}}=\frac{1}{2} x \sqrt{a^{2}+x^{2}}$: But, from this, we are now to deduct the Fluent of the Quantity $\frac{\frac{x}{2} a^{2} x \dot{x}}{\sqrt{a^{2} x^{2}+x^{4}}}$ $\left.l=\frac{\frac{x}{2} a^{2} \dot{x}}{\sqrt{a^{2}+x^{2}}}\right)$ that was added: Which Fluent; as
that of $\frac{\dot{x}}{\sqrt{a^{2}+x^{2}}}$ is given $=$ hyp. Log. $x+\sqrt{a^{2}+x^{2}}$ *, *Art 226. will be $=\frac{1}{2} a^{2} \times$ hyp. Log. $x+\sqrt{a^{2}+x^{2}}$; and confrequently the Fluent fought $=\frac{1}{2} \times \sqrt{a^{2}+x^{2}}-\frac{1}{2} a^{2} \times$ hyp. Log. $x+\sqrt{a^{2}+x^{2}}$. 2. E. I.

PROB. II.

279. Let it be proofed to find the Fluent of $\frac{x^{2} \dot{x}}{\sqrt{a^{2}-x^{2}}}$, from that of $\frac{\dot{x}}{\sqrt{a^{2}-x^{2}}} ;$ given by Art. 142 .

By proceeding as above, and adding $-\frac{1}{2} a^{2} x \dot{x}$ to the Numerator, we have $-\frac{\frac{1}{2} a^{2} x \dot{x}-x^{3} \dot{x}}{\sqrt{a^{2} x^{2}-x^{4}}}$; whereof the Fluent, by the common Rule, is $-\frac{1}{2} \sqrt{a^{2} x^{2}-x^{4}}$ ($=-\frac{x}{2} \times \sqrt{a^{2}-x^{2}}$: From which deducting the Fluent of $-\frac{\frac{x}{2} a^{2} x \dot{x}}{\sqrt{a^{2} \dot{x}^{2}-x^{4}}}$, or $-\frac{\frac{1}{a} a^{2} \dot{x}}{\sqrt{a^{2}-x^{2}}}$ (given $=-\frac{1}{2} a^{2} \times \operatorname{Arc}(A)$ whore Radius is Unity and Sine $=\frac{x}{a}+$) there comes out $\frac{1}{2} a^{2} A-\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\dagger_{\text {Att }} 14_{4}$.
Q.E.I.
280. In the fame Manner, if the Power without the Vinculum, in the Exprefion whore Fluent is fought, exceeds that in the other Expreffion given, by the Exponent under the Vinculum, or by any Multiple of it, the required Fluent may be determined, by one, or by feveral Operations, according to the Value of the fail Multiple.
Thus, if the Fluent of $\frac{x^{4} \dot{x}}{\sqrt{a^{2}-x^{2}}}$ was fought; then, because the Index of x, without the Vinculum, exceeds X 2
that in $\frac{\dot{x}}{\sqrt{a^{2}-x^{2}}}$ by twice the Exponent under the Vinculum, the required Fluent may be had from that of $\frac{\dot{x}}{\sqrt{a^{2}-x^{2}}}$, at two Operations; by the firft whereof, we have already found the Fluent of $\frac{x^{2} \dot{x}}{\sqrt{a^{2}-x^{2}}}$ to be= $\frac{1}{2} a^{2} A-\frac{1}{2} x \sqrt{a^{2}-x^{2}}$: Whence, putting this Value $=B$, and proceeding as before, we alpo get $-\frac{1}{4} \sqrt{a^{2} x^{6}-x^{5}}$ $+\frac{3}{4} a^{2} B=-\frac{1}{4} x^{3} \sqrt{a^{2}-x^{2}}-\frac{3 a^{2} x}{8} \sqrt{a^{2}-x^{2}}+$ $\frac{3 a^{4} A}{8}=\frac{3 a^{4} A-\overline{2 x x+3 a a} \times \sqrt{a^{2}-x^{2}}}{8}=$ the true Fluent of $\frac{x^{4} \dot{x}}{\sqrt{a^{2}-x^{2}}}$.
PR O B. III.
281. Supposing the Fluent of $\overline{a+c z^{n} 1^{m}} \times z^{p n-1} \dot{z}$ to be given $=A$, to find the Fluent of $\overline{a+c z^{n} \mid} \times z^{p n+n-1} \dot{z}$ $=\dot{B}$ (where the Exponent of z, without the Vinculum is increafed by the Exponent under the Vinculum).

Let the Part affected by the Vinculum be multiplied by $z^{m q}$, and the Part without be divided by the fame Quantity; then our Fluxion will be transformed to $\overline{a z^{q}+\left.c z^{n+q}\right|^{m}} \times z^{p \eta \mid n-m q-1} \dot{z}=\dot{B}$: Where let q be, now, fo taken that the Exponent $(n+q)$ of the higheft Power of z under the Vinculum may be equal to ($p n+n-m q$) that of the Power without the Vinculum +1 ; that is, let $q=\frac{p n}{m+1}:$ Then (by Art. 7i.) if the firft Term under

of Fluent.

under the Vinculum was conftant, the Fluent of theraid Expreflion, or its Equal $\overline{\left.a z^{q}+c z^{n+q}\right)^{m}} \times z^{n+q-1} \dot{\approx}$, would be had $=\frac{{\overline{a z^{q}}+c z^{n+q}}_{m+1}^{m+1} \text {. }}{}$. But the Fluxion hereof, fuppofing both Terms to be variable (as they actually are) is $\overline{a z^{q}+\left.c z^{n+q}\right|^{m}} \times z^{n \dagger q-1} \dot{z}+$ $\frac{q a}{n+q \times c} \times \overline{\left.a z^{q}+c z^{n+q}\right)^{m}} \times z^{q-1} \dot{\tilde{z}}$ (by the common Rule.) Therefore $\left.\frac{\overline{a z^{q}+\left.c z^{n+q}\right|^{m+1}}}{m+q \times n+q} \times c\right)-\frac{q a}{n+q} \times c \quad \times$
Flu, of $\left.\overline{a z^{q}+c z^{n+q}}\right|^{m} \times z^{q-1} \dot{z}=B$; that is, $\frac{\overline{a+c z^{n}}}{\overline{m+1} \times \overline{n+q} \times c} \times \frac{q a}{n+q} \times 6 \times$ Flu. $\overline{a+c z^{n+q}} \times$ $z^{m q+q-1} \dot{z}=B$; or, by fubfituting for q, $\frac{\overline{a+c z^{n}}{ }^{m+1} \times z^{p_{n}}}{m+p+1} \times n c \quad \frac{p a}{\overline{m+p+1} \times c} \times$ Flu. $a+c z^{\pi^{m}} \times$ $z^{z^{n-1}} \dot{z}=B$: But the Flu. of $\overline{a+c z^{\eta^{m}}} \times z^{p n-1} \dot{z}$ is given $=A$; therefore, lafty, $\overline{\left.a+c z^{n}\right)^{m+x}}$

$\frac{p a A}{m+p+i \times c}=B$.
2. E. I.
282. If the Quantity under the Vinculum be a Muletinomial, $a+c z^{n}+d z^{2 \pi}+c z^{3 n}$ ซ\%. Then, fence the Fluxion of $a+c z^{n}+d z^{2 n}+c z^{3^{n}} \delta_{0} c .^{m}+1 \times z^{p n}$ is $\overline{m+1} \times n c z^{n-1} \dot{z}+2 n d z_{3}^{2 n-1} \dot{z}+3 n c z^{3^{n-1}} \dot{\tilde{\sim}} \dot{O}_{6}{ }_{6}$ \%
$\left.\overline{a+c z^{n}+d \dot{z}^{2 n} \vartheta_{c}}\right|^{m} \times z^{\dagger n}+\overline{a+c z^{n}+d z^{2 n}} \mathcal{v}_{c} .^{m+x}$ $\times p n z^{p-1} \dot{z}=$

$x a+c x^{n}+d z^{2 n} \varepsilon \varepsilon^{2} c .^{m}$, it is evident, that, if the Fluent of $z^{p n-1} \dot{z}, z^{p n+n-1} \dot{z}, z^{p n+2 n-1} \dot{z} \quad \xi_{c}$. drawn into the general Multiplicator $a+c z^{n}+d z^{2 n} \xi_{c} .{ }^{n}$, be denoted by A, B, C, D, δ_{c}, the Fluent of the Whole-Quantity exhibited above (which Fluent is
$a+c z^{n}+d z^{2 n}+c z^{3 n} \xi^{n} c 1^{m \dagger 1} \times z^{p n}$) will alpo be exprefled by pnaA $\overline{p+m+1} \times n 6 B+\overline{p+2 n n+2} \times n d C+$ $\overline{p+3 m+3} \times n e D$ G\%. Therefore, if there be given as many of the Fluent $A, B, C, D \mathcal{S}^{\circ} \mathrm{C}$, as there are Terms in $a+c z^{n}+d z^{2 n}+e z^{3 n} \xi^{c} c$. minus one, that other Fluent, be it which it will, will alfo be given from hence. Thus if $d=0, e=0, E^{\circ} c$. and the Value of A be given, we fall have $\overline{a+c z^{n}}{ }^{m+x} \times z^{p n}=p n a A+$ $\overline{p+m+1} \times n c B$; and consequently $B=\frac{\overline{a+c z^{n} \eta^{m+1}} \times z^{p n}}{\overline{p+m+1} \times n c}$ pah $-\frac{p a A}{p+m+1 \times c}$, the very fame as before.
PROB. IV.
283. The Fluent of $\overline{a+c z^{n}} \times z^{p n-1} \dot{z}^{m}$ being given (as in the preceding Problem) to determine, from thence, the Fluent of $\overline{a+c z^{n}} \times z^{p^{n+v n-1}} \dot{z}$; fuppofing v to denote a whole positive Number.

of Fluent.

Let $\overline{a+c z^{n}}{ }^{m 1}$ be denoted by M; also put $p+1=$ $\hat{p}, \dot{p}+1(p+2)=\stackrel{\mu}{p}, p+1(p+3)=\stackrel{m}{p}$ छึi. and let the Fluent s of $\left.a+c z^{n} \times z^{p n-1} \dot{z}, a+c z^{n}\right)^{m} \times z^{p^{n}-1} \dot{z}$,
$\left.\left.\overline{a+c z^{n}}\right)^{n} \times z^{n n-1} \dot{z}, a+c z\right)^{m} \times z^{\prime \prime \prime} n^{n-x} \dot{z}$, छ\% be reprefented by $A, B, C, D, \mathcal{E}^{\circ}$, reflectively. Then, fine
$\frac{M z^{p n}}{m+p+1} \times n c-\frac{f a A}{m+p+1 \times c}=B$ (by the preceding Prob.) it follows, from the very fame Argument, that

$$
\frac{\ddot{p a C}}{m+\ddot{p}+1 \times c}=D
$$

$$
m+\stackrel{\eta}{p}+1 \times n c \quad m+p+1 \times c
$$

છેఁ. છેఁ.

Hence, by writing the Value of B in the fecond Aquacion, we have
$m+\ddot{p}+1 \times m+\dot{p}+1 \times \overline{m+p+1} \times n c^{3}$

$$
=\frac{p p p a^{3} \cdot}{\|}=D .
$$

$\overline{m+p+1} \times m+p+1 \times m+p+1 \times c^{3}$
Where the Law of Continuation is manifeft ; and from whence it appears that the Value of any of the Guantitis $B, C, D, E, \exists^{*} c$. or the Fluent expreffed in a ge-
sural Manner, will be $\frac{M z^{q^{n}}}{m+q+1 \times n c}$
$\frac{q a M z^{q-1} \times n}{m+q+1 \times \overline{m+q} \times n c c}+\frac{q \times \overline{q-1} \times a^{2} M_{z^{q-2}} \times n}{\overline{m+q+1} \times m+q \times m+q-1 \times n c^{3}}$
(v) $\pm \frac{p \times \overline{p+1} \times \overline{p+2} \times \overline{p+3}(v) \times a^{v} A}{m+p+1 \times \overline{m+p+2} \times \overline{m+p+3}(v) \times c^{v}}$; or,

$-\frac{q . q-1 . q-2 \times a^{3} z n-4^{n}}{5.5-1.5-2} \times c^{3}$ (v) $\pm \frac{p}{t} \times \frac{p+1}{t+1} \times \frac{p+2}{t+2}$
$\frac{p+3}{t+3}(v) \times \frac{a^{v} A}{c^{v}}:$ Where, $A=$ Fluent of $\overline{a+c z^{n}}{ }^{m}$
$\times z^{p n-1} \dot{z}, q=p+v-\mathrm{I}, s=q+m, t=p+m+1 ;$ and where the Sign of the lat Term (in which A is found) must be taken + or - according as v is an even or odd Number : Note, aldo, that the Parenthefis (v) is put to exprefs the Number of Terms, or Factors, to which the Series, or Product, preceding it, is to be continued. The like Notation is to be underwood in other Cafes of the fame Kind, when they hereafter psçur.

The fame otherwise.

284. Let $q=\dot{p}+v-1$, and let $\left.a+c z^{\pi}\right)^{m+1} \times$ $R z^{q n}+S z^{q n-n}+\tau z^{q n-2 n} \ldots \ldots+\Delta z^{p n}+\beta A$, be aflumed for the Fluent fought: Then, by taking the Fluxion thereof, you will have $\overline{m+1} \times n c z^{n-1} \dot{z} \times \overline{a+c z^{n}}{ }^{m}$ $\times R z^{q n}+S z^{q n-n} \ldots \ldots+\Delta z^{p n}+\overline{a+c n}^{n+s}$
$q n \dot{z} R z^{q n-1}+\overline{q n-n} \times \dot{z} S z^{q n-n-1} \cdots \cdots+p n \dot{z} \Delta z^{p}$
$+\beta \times \overline{a+c z^{\eta}} \bar{m}^{m} \times z^{n-1} \dot{z}$; which mut be $=\overline{a+c z^{\prime}}{ }^{m}$. $x z^{p n+v_{n-1}} \dot{z}$ (or $\overline{a+c z^{n}}{ }^{m} x z^{q n+n-x} \dot{z}$) the Fluxion proposed: Whence, dividing the whole Equation by $\left.\overline{a+c z^{n}}\right]^{m n} \times z^{n-1} \dot{z}$, and tranfpofing, there comes out $\left.\begin{array}{c}\overline{m+1} \times n \times \overline{R z^{q n}+S z^{q n-n}+T z^{q n-2 n} \ldots \ldots+\Delta z^{p n}} \\ a+c z^{n} \times q n R z^{q n-n}+\overline{q_{n}^{n-n}} \times S z^{q n-2 n} \ldots \ldots+p n \Delta z^{p n-n} \\ -z^{q n} \quad * \quad+\beta z^{p n-n}\end{array}\right\} \cdots \begin{aligned} & 11 \\ & 0\end{aligned}$
Which, reduced, and the homologous Terms united, becomes
$\left.\left.\begin{array}{r}\overline{n+q+1} \times n c R \\ -1\end{array}\right\} \times z^{q^{n}+\overline{m+q} \times n c S}+q n a R \quad\right\} \times z^{q n-n}+$
$\left.\left.\left.\begin{array}{c}\overline{m+q-1} \times n c T \\ +q n-n\end{array}\right\} \times a S\right\} \times z^{q n-2 n} \cdots \cdots+{ }^{+p n a \Delta} \Delta\right\} \times z^{p n-n}$
$=0$: Where, by making $\overline{m+q+1} \times n c R-1=0$, $\overline{m+q} \times n c S+q n a R=0$, sc. we have $R=\frac{1}{\overline{m+q+1} \times c n}$, $S=-\frac{q q R}{m+q \times c}, \tau=-\frac{\overline{q-1} \times a S}{m+q-1} \times c$; or (putting

Of the Comparifon

$m+q=s) R=\frac{1}{s+1 \times n c}, s=-\frac{q a R}{s c}=-\frac{q a}{s+1 \times s c^{2}}$
$\mathcal{I}=-\frac{q-1 \times a S}{s-1 \times c}=\frac{g \times \overline{q-1} \times a^{2}}{s+1 \times s \times s-1 \times n c^{3}}, \mho_{c}$
Where, because the Exponent of the firs Term of the Equation is $q n(p n+v n-n)$ and that of the haft Term (in which Δ and β are concerned) $=p n$, it follows that the Number of Coefficients to be taken as above (whereof Δ is the laft) is exprefled by v : From which lift, the Value of β is given $=-$ prat Δ.

But, from the Law of the fail Coefficients, R, S, $\ldots . \Delta$, it appears that the Value of Δ (whore Place from the Beginning is denoted by v) will be $= \pm$ $\frac{q \cdot q-1 \cdot \overline{q-2} \ldots . \cdot \overline{q-v+2}}{3+1 . s .5-1} \ldots . . \overline{s-v+2} \times \frac{a^{n-1}}{n c^{n}}= \pm$ $\frac{q \cdot \overline{q-1} \cdot q-2}{s+1} \ldots . \overline{\frac{p+1}{1}} \ldots \ldots \overline{p+m+1} \times \frac{a^{n-1}}{n c^{n}}:$ And therefore β $(=-p n a \Delta)= \pm \frac{\overline{q \cdot q-1} \cdot \overline{q-2} \ldots \cdot \overline{p+1} \cdot p}{\frac{1+1 . s . s-1}{\overline{+} \cdot \ldots \cdot p+m+1}}$ $\times \frac{a^{n}}{c^{n}}= \pm \frac{\overline{p \cdot p+1} \cdot \overline{p+2} \cdot \overline{p+3}(v)}{t \cdot \overline{t+1} \cdot \overline{t+2} \cdot \overline{t+3}(v)} \times \frac{a^{n}}{c^{n}}$ (putting $p+m+1=t$, as before.) Now, if the feveral Values of R, S. $T \ldots \ldots$ and β, thus found, be fubftituted in the affumed Expreffion, you will have the very fame Conclufion as in the preceding Article.

Corollary 1 .

285. Since q is $=p+v-1$, the Fluent $\widehat{a+c z_{i}^{m+r}} \quad \times$ $\overline{R z} \bar{q}^{q n}+S z^{q n-z} \cdots+\overline{\Delta z} z^{p n}+\beta A$, given above, may be expreffed by $N \times R z^{v_{n}-n}+S_{z}^{v_{\pi}-2 n}+T_{z}^{v_{n}-3^{n}}$ (v) $+\beta A$; where $\left.N=\overline{a+c z^{n}}\right)^{m+1} \times z^{p n}, \quad R=$
$\frac{1}{m+p+v \times n c}, S=-\frac{\overline{p+v-1} \cdot a R}{m+p+v-1}, c^{2}, T=-$
$\frac{\overline{p+v-2} \cdot a S}{m+p+v-2} \cdot c$ And, where the Coefficient (β) of the given Fluent (A) will always be expreffed by the laft of the Quantities $R, S, T \ldots \Delta$, multiplied by - pna:
This is evident, becaufe it is found that $\beta=-$ pna Δ. And the fame thing will alfo appear from the feveral particular Cafes (in Art. 283.) for the Values of B, C and $D \dot{\text { In }}$ each of which the Coefficient of the laft Term (where A is concerned) is to that of the Term immediately preceding it, in the conftant Ratio of $p a$ to $\frac{1}{n}$, or of pna to Unity.

Corollary II.

286. If the Value of c be negative, the general Fluent (in Art. 283.) when $a+c z^{n}=0$ (provided $m+\mathrm{r}, n$, and p be pofitive) will become barely $= \pm \frac{p}{t} \times \frac{p+1}{t+1} \times$ $\frac{p+2}{t+2}(v) \times \frac{a^{v} A}{c^{v}}$; becaufe, in this Circumftance, all the Terms multiplied by $\left.\overline{a+c z^{n}}\right]^{m+1}$ intirely vanifh. If, therefore, b be wrote for $-c$ (to render the Expreffion more commodious) we thall have $\frac{p}{t} \times \frac{p+r}{t+1}$ $\times \frac{p+2}{t+2}(v) \times \frac{a^{v} A}{b^{v}}$ for the true Fluent of $\left.\overline{a-b z^{n}}\right|^{m} \times$ $z^{p n+v n-1} \dot{z}$, generated while $b z^{n}$, from Nothing, becomes = a : Where A denotes the Fluent of $\overline{a-b z^{n}}{ }^{m}$ $x z^{p g-x} \dot{z}$, generated in the fame time; and where

Of the Comparifon

$t=p+m+1$. Hence it follows that the Fluent of $\overline{a-\left.b z^{n}\right|^{m}} \times z^{p^{n-1}} \dot{\approx} \times \overline{c+f z^{n}+g z^{2 n}+b z^{3 n} \xi^{2}}$. (where e, f, g, are any given Quantities) will be $=\mathrm{A} \times$ $6+\frac{p a f}{t b}+\frac{p \cdot p+1 \cdot a^{2} g}{t \cdot t+1 \cdot b^{2}}+\frac{p \cdot p+1 \cdot p+2 \cdot a^{3} b}{t \cdot t+1 \cdot t+2 \cdot b^{3}}+\sigma_{c} c$. in the forementioned Cirçumftance.
PROB. V.
287. The Fluent (A) of ${\overline{a+c z^{n}}}^{m} \times z^{p n-1} \dot{z}$ being given, to find the Fluent of $\overline{a+c z^{n}}{ }^{m+r} \times z^{p n-1} \dot{z}$; suppoling r to denote a whole pofitive Number.
 that $\left.\overline{a+c z^{n}}{ }^{m+1} \times z^{p n-1} \dot{z}=\overline{a+c z^{n}}\right)^{m} \times a z^{p n-1} \dot{z}+$ $\left.\overline{a+c z^{n}}\right|^{m} \times\left(z^{p n+n-1} \dot{z}\right.$: Whore Fluent (by Prop. 3.) is $a A+\frac{a+c z^{n} \times z^{p n}}{m+p+1 \times n}-\frac{p a A}{m+p+1}=$ $\frac{a+c z^{n+1} \times z^{p n}}{\overline{p+m+1} \times n}+\frac{\overline{m+1} \times a A}{p+m+1}$. In like Manner, if this Fluent, of $a+\left.c z^{n}\right|^{m+1} \times z^{p n-x} \dot{z}$, be denoted by B, that of $\overline{\left.a+c z^{n}\right)^{m+2}} \times z^{p n-1} \dot{z}$ by C, छc. it will appear that $\frac{\overline{a+c z z^{n+2}} \times z^{p n}}{\overline{p+m+2} \times n}+\frac{\overline{m+2} \times a B}{p+m+2}=C$; $\frac{\left.\overline{a+c z^{n}}\right)^{m+3} \times z^{p n}}{\overline{p+m+3} \times n}+\frac{\overline{m+3} \times a C}{p+m+3}=D$, Sc. Whence, by fubfituting there Values, one by one, as in the prepceding
ceding Problem, and putting $2=a+c x^{n}$, we get: $C=\frac{2^{m+2} z^{p n}}{p+m+2 \cdot n}+\frac{\overline{m+2} \times a \cdot 2^{m+1} z^{p n}}{p+m+2} \overline{p+m+1 \cdot n}+$
$\frac{\overline{m+2} \cdot \overline{m+1} \times a^{2} A}{p+m+2} \cdot p+m+1=\frac{2^{m+3} z^{p n}}{\overline{p+m+3} \cdot n}+$
$\frac{\overline{m+3} \times a 2^{m+2} z^{p n}}{\overline{p+m+3} \cdot \overline{p+m+2} \cdot n}+\frac{\overline{m+3} \cdot m+2 \times a^{2}}{\overline{p+m+3} \cdot \overline{p+m+2} \cdot \frac{2^{m+1}}{p+m+1} \cdot n}$ $+\frac{\overline{m+3} \cdot \overline{m+2} \cdot \overline{m+1} \cdot a^{3} A}{\overline{p+m+3} \cdot \overline{p+m+2} \cdot \overline{p+m+1}}$, Ec. $_{c}$. Whence it is
evident, by Infection, that the Fluent of $\overline{a+c z^{n}}{ }^{m+r}$ $x z^{p n-1} \dot{z}$, expreffed in a general Manner, will be $\frac{2^{m+r} z^{p n}}{\overline{p+m+r} \cdot n}+\frac{\overline{m+r} \times a 2^{m+r-1} z^{p n}}{\overline{p+m+r} \times \overline{p+m+r-1} \cdot n} \xi_{c}$. Which, by putting $m+r=f, p+m+r=g$, and making $2^{m+i} \times$ $z^{p n}$ a general Multiplicator, will be reduced to $2^{m+1} \times$ $z^{p n} \times \frac{\overline{2^{r-1}}}{g^{n}}+\frac{f \times a 2^{r-2}}{g \cdot \overline{g-1} \cdot n}+\frac{f \cdot \overline{f-1} \times a^{2} 2^{r-3}}{g \cdot \overline{g-1} \cdot \overline{g-2} \cdot n}(r)+$
$\frac{m+1}{p+m+1} \times \frac{m+2}{p+m+2} \times \frac{m+3}{p+m+3}(r)$ a A; where it appears (from the foregoing Values of B, C, and D). that the Coefficient of A is always equal to the left Term of the preceding Series, multiplied by $\overline{m+x} \times n a$ (in-: stead of $\left.\mathscr{Q}^{m+1} z^{p n}\right)$.
2. E. 7 .

Corollary.
288. If c be negative, fo that 2 , or its Equal, $a+c z^{n}$, may become equal to Nothing, the Fluent will,

Of the Comparison

in that Circumftance, be barely $=\frac{m+1}{p+m+1} \times \frac{m+2}{p+m+2}$ $\times \frac{m+3}{p+m+3}(r) \times a^{r} A$; provided the Values of $m+1$, p, and n are pofitive: Or, if c, p, and n, be pofitive, and $m+r+p$ negative, the fame Expreffion will exhibit the true Value of the whole Fluent, generated while z, from Nothing, becomes infinite.

> PR O B. VI.
289. The fame being given as in the preceding Problems; it is proofed to find the Fluent of $\overline{a+c z^{n}}{ }^{m-r} \times$ $2^{p n-1} \dot{z}$.
If $-r$ be wrote inftead of r, in the laft Article, we thall have $m-r=f, p+m-r=g$, and $2^{m+1} z^{p n}$

$$
\times \frac{2^{-r-1}}{g n}+\frac{f \times \cdot a Q^{r-2}}{\bar{g} \cdot g-1 \cdot n}(-r)+\frac{m+1}{p+m+1} \times
$$

$\frac{m+2}{p+m+2}(-r) \times a^{-r} A$, expreffing the required Fluent in this Cafe.
But $\frac{m+1}{p+m+1} \times \frac{m+2}{p+m+2}$ sc. continued to Factors, fignifies the fame thing as the Product continued downwards, or the contrary way, to r Factors, according to the fame Law : And therefore is = $\frac{p+m}{m} \times \frac{p+m-1}{m-1} \times \frac{p+m-2}{m-2}(r)$. After the fame Manner we have $\frac{2^{-r-1}}{g^{n}}+\frac{f \times a Q^{-r-2}}{g . g-1 . n}(-r)=$
$-\frac{2^{-r}}{\overline{f+1} \cdot n a}-\frac{\overline{g+1} \cdot 2^{-1+1}}{f+1 \cdot \overline{f+2} \cdot n a^{2}}-\frac{\overline{g+1} \cdot \overline{g+2} \cdot Q^{-r+2}}{\overline{f+1} \cdot \overline{f+2} \cdot \overline{f+3} \cdot n a^{3}}$

of Fhuents.

(r) and confequently the Fluent itfelf $=2^{m+1} z^{p n} \times$ $\overline{-2^{-r}} \overline{\overline{f+1} \cdot n a}-\frac{\overline{g+1} \cdot 2^{1-r}}{f+1 \cdot f+2 \cdot n a^{2}}-\frac{\overline{g+1} \cdot \overline{g+2} \cdot 2^{2-r}}{f+1} \cdot \overline{f+2} \cdot \overline{f+3} \cdot n a^{3}(r)$. $+\frac{p+m}{m} \times \frac{p+m-1}{m-1} \times \frac{p+m-2}{m-2}(r) \times \frac{1}{a}$. Q.E.I.

Corollary.

290. It appears from hence that the Coefficient of A, the given Fluent, will always be equal to that of the laft Term of the preceding Series, multiplied by $\overline{p+m} \times n$: For, feeing the Coefficient of the faid laft Term (whore Diftance from the firft, inclufive, is denoted by r) mult be $\frac{\overline{g+1} \cdot \overline{g+2} \cdot \overline{g+3} \ldots \cdot \overline{g+r-1}}{\overline{f+1} \cdot \overline{f+2} \cdot \overline{f+3} \cdots \cdot \overline{f+r}} \times \frac{1}{n a^{r}}$ (by the Law of the Series) where $f+r=m$ and $g+r-\mathrm{r}=p+m-1$ (as appears from above) it follows, by inverting the Order of both Progreffions, that $\frac{\overline{p+m-1} \cdot \overline{p+m-2} \cdot(r-1)}{m \cdot m-1, \overline{m-2}(r)}$ $\times \frac{\mathrm{I}}{n a^{r}}$ will alfo' exprefs the fame Coefficient: Which, multiplied by $\overline{p+m} \times n$, gives $\frac{\overline{p+m} \cdot \overline{p+m-1} \cdot p+m-2}{m_{0} n-1 \cdot m-2(r)}$ $\frac{1}{a}$, the very Coefficient of A, above determined. The Ufe of this Conclufion will be feen in what follows.

Of the Comparifon

PROB.VII.

291. The fame being, fill, given; to find the Fluent of

$$
\overline{\left.a+c z^{n}\right)} \times z^{p n-v n-1} \dot{z} .
$$

By proceeding as in the laft Problem, the required Fluent of $a+\left.c z^{n}\right|^{m} \times z^{p n-v n-1}$ is derived from that of $\left.\overline{a+c z^{n}}\right)^{m} \times z^{p n+t^{n-1}} \dot{\approx}($ given by Prob. 4.) and comes out $=\mathscr{Q}^{m+1} z^{p n} \times \frac{\overline{z^{-v n}}}{q+1 \cdot n a}-\frac{\overline{s+2} \cdot c z^{n-v n}}{q+1 \cdot q+2 \cdot n a^{2}}+$
$\frac{\overline{s+2} \cdot \overline{s+3} \cdot c^{2} z^{2 n-v n}}{q+1 \cdot q+2 \cdot q+3 \cdot m a^{3}}(v) \pm \frac{t-1}{p-1} \times \frac{t-2}{p-2} \times \frac{t-3}{p-3}(v)$ $\times \frac{c^{v} A}{a^{v}}$: Where, $Q=a+c z^{n}, q=p-v-1, s=m+q$,
$t=p+m+1$: And where, the Coefficient of A is equal to that of the laft of the preceding Terms, multiplied. by $-\overline{m+p} \times n c$. If the Manner of deducing the required Fluent, in this, and the laft, Problem, fhould not appear fufficiently plain and fatisfactory to the Beginner; the fame Conclufions may be, otherwife, brought out; by finding A, in Terms of B, C, or D, from the feveral particular Equations in Art. 283 . or, by affuming a defcending Series, inftead of an afcending one. Vid. Art. 284.

> P R O B. VIII.
292. The fame being, ftill, given; to find the Fluent of

$$
a+c z^{n+r} \times z^{p^{n+v n-1}} \dot{z}
$$

Let the Fluent of $\left.\overline{a+c z^{n}}\right)^{m} \times z^{p n+v n-1} \dot{z}$ (given by Prob: 4.) be denoted by B, and that required by F : Then,

Then, if $p+v$ be put $={ }^{\prime}$, the Value of F (the Fluent of $\left.\left.\overline{a+c z^{n}}\right)^{m+r} \times z^{p n-1} \dot{z}\right)$ will be given from that of B (the Fluent of $\overline{a+c z^{n}}{ }^{n} \times z^{\text {pn-1 }} \dot{z}$) by writing B for A and p for p, in Art. 287. Whence we get $F=\mathscr{Q}^{m+x}$ $z^{p n} \times \frac{\overline{2^{r-1}}}{g n}+\frac{f a 2^{r-2}}{g \cdot g-1 . n}+\frac{f \cdot \overline{f-1} \cdot a^{2} श^{r-3}}{g \cdot \overline{g-1} \cdot g-2 \cdot n}(r)+$ $\frac{m+1}{1} \times \frac{m+2}{1} \times \frac{m+3}{1}(r) \times a^{r} B$: Where $p+m+1 \quad p+m+2 \quad p+m+3$
$p^{\prime}=p+v, f=m+r, g(=p+m+r)=p+m+v+r$, and $2=a+c z^{n}$.

Which Fluent, by fubftituting the Value of B (in Prob. 4.) becomes $F=2^{m+1} z^{p n} \times \frac{\overline{2^{r-1}}}{g^{n}}+\frac{f a^{2} 2^{r-2}}{g . \overline{g-1} \cdot n}$ $+\frac{f \cdot \overline{f-1} \cdot a^{2} Q^{r-3}}{g \cdot \overline{g-1} \cdot g-2 \cdot n}(r)+\frac{m+1}{p+m+1} \times \frac{m+2}{p+m+2}(r)$ $\times a^{n} \times 2^{m+1} z^{p n} \times \frac{z^{v n-n}}{s+1 . n c}-\frac{q a z^{v n-2 n}}{s+1 . s n c^{2}}+\frac{q \cdot q-1 . a^{2} z^{v n-3 n}}{s+1.5 \cdot s-1 \cdot n c^{3}}$. (v) $\pm \frac{m+1}{p+m+1} \times \frac{m+2}{p+m+2}(r) \times a^{r} \times \frac{p}{t} \times \frac{p+\mathbf{I}}{t+\mathbf{I}}$. (i) $\times \frac{a^{v} A}{c^{v}}$: Where $q=p+i-1, s=m+q=m+p+v-\mathrm{r}$, and $t=p+m+1$; and where the Sign of the lat Term is + or - according as v is an even or odd Number. QUE. I.
292. If the Jat Term of the firft Series, exclufive of the general Multiplicator $\mathcal{Q}^{m+1} z^{\beta n}$, be denoted by β, the Multiplicator, $\frac{m+1}{1} \times \frac{m+2}{1+m+1}(r) \times a^{r}$, to

$$
p+m+1 \quad p+m+2
$$

- Art. 2870 the fecond Series will be $=\overline{m^{+1}} \times n a \beta^{*}$; and therefore the first Term of this Series, including its Mull+ tiplicators, is $=\frac{\overline{m+1} \cdot a \beta 2^{m+1} \pi^{p n+v n}}{\overline{5+1} \cdot \pi^{n}}$: Which, if R be put to denote the lat Term $\beta \cdot Q^{m+1} z^{p n+v n}$ of the firft Series (with its Multiplicator) will be expounded by $\overline{m+1} . a R$ $\overline{s+1} \cdot c z^{n}$. Hence it follows, that the Fluent of $\overline{a+c z^{n}}{ }^{n+r} \times z^{p^{n+v n-1}} \dot{x}$, given above, will alpo be truly expreffed by $\frac{2^{m+r} x z^{p n+v n}}{g n}+\frac{f}{g-1} \times \frac{a H}{2}+\frac{f-1}{g-2} \times$ $\frac{a I}{2}+\frac{f-2}{g-3} \times \frac{a K}{2}(r)+\frac{m+1}{s+1} \times \frac{a R}{c z^{n}}-\frac{q}{s} \times$
$\frac{a S}{c z^{n}}-\frac{q-1}{s-1} \times \frac{a \tau}{c z^{n}}-\frac{q-2}{s-2} \times \frac{a V}{c z^{n}}(v) \pm$ $\frac{\overline{m+1} \cdot \overline{m+2} \cdot \overline{m+3}(r) \times p \cdot \overline{p+1} \cdot \overline{p+2}(v)}{p+m+1 \cdot p+m+2(r) \times t \cdot \overline{t+1} \cdot \overline{t+2}(v)} \times \frac{n^{v+r} A}{c^{v}}:$ Where $H, I, K, L \ldots . . R, S, T, V$, छ̇c. reprefont the Terms immediately preceding thole where they fland, under their proper Signs : R being the taft Term of the firft Series ; also $f=n+r, g=m+r+p+\because$, $q=p+v-1, s=m+q, t=m+p+1$, and $\mathscr{Q}=a+c z^{n}$.

of Fluents.

Corollary II.

293. Since the Divifor, $p+m+1 . p+m+2(r) \times$ $f . t+1 . t(v)$, of the laft Term of the Fluent (by fubftituting for t and $\hat{p} छ^{\circ}$ c.) is $=\overline{p+m+1} \cdot \overline{p+m+2}$ (v) $\times \overline{p^{+v+n+1}} \cdot \overline{p+v+m+2}(r)$: Where, the laft Factor $(p+m+v)$ of the firft Progreflion, is lefs by Unity than the firft Factor of the Second; it is evident that the faid fecond Progreffion is only a Continuation of the firft to r möre Factors: And fo, the laft Term of the Fluent, where A is found, is truly expreffed by \pm $\frac{\overline{p \cdot p+1} \cdot \overline{p+2}(v) \times \overline{m+1} \cdot \overline{m+2} \cdot \overline{m+3}(r)}{\overline{m+p+1} \cdot \overline{m+p+2} \cdot \overline{m+p+3}(v+r)} \times \frac{a^{v+r} A}{c^{v}}$.

Hence it follows, that the Fluent of $\left.\overline{a+c z^{n}}\right)^{m+r}$ $x z^{p n+v_{n}-\frac{x}{x}} \dot{z}$, or that of $\overline{a-\left.b z^{n}\right|^{n+r}} \times z^{p^{n+t r n-i}} \dot{z}$ (making $c=-b$) will; when $a-b \approx^{\pi}$ becomes equal to Nothing, be barely $=$
$\frac{p \cdot \overline{p+1} \cdot \overline{p+2}(v) \times \overline{m+1} \cdot \overline{m+2} \cdot \overline{m+3}(r)}{\overline{m+p+1} \cdot \overline{n+p+2} \cdot \overline{m+p+3}(v+r)} \times \frac{a^{v+r} A}{6 v}:$
A being the Fluent of $\overline{a-b z^{n} \|^{m}} \times 2^{p n-1} \dot{\tilde{z}}$, in that Circumflance, v and r whole pofitive Numbers, and p and $m+1$ any pofitive Numbers, either whole or broken.

SCHOLIUM.

294. If the Fluent of $\overline{a+c z^{n}}{ }^{m+r} \times \dot{z}^{p n-t} \dot{z}$ (given by Prob. 5.) be denoted by C; then (F) the Fluent of
$\overline{a+c \approx^{n}}{ }^{m} \times z^{p n+\tau n-1} \dot{z}$ (where ${ }_{m}^{\prime}=m+r$) will be had, from C (by Prob. 4.) according to a new Form, difY 2
ferent
ferent from thofe already given. And, by following the fame Method, the Fluents of $a+\left.c \approx\right|^{n i-r} \times$ $\left.z^{p^{n+1}+n^{-1}} \dot{\approx}, \overline{a t c z}\right]^{m+r} \times z^{p n-v n-1} \dot{z}$, and $\overline{a+c z^{n}}{ }^{m-r}$ $x z^{p n-v n-1} \dot{z}$ may alfo be found, each, according to two different Forms, from 'a Combination of the correfpoinding Cafes in the foregoing Problems.

But, as it is extremely tirefome to repeat the fame thing, again and again, where fuch a Number of Symbols are neceflarily concerned, I fhall here put down one Solution to each Cafe (becaufe of their Ufe) leaving the Procefs and the other Forms (which contain no new Difficulty) to Thofe who will be at the Trouble to fet about them.
1^{0}. The Fluent of $\overline{\left.a+c z^{n}\right)^{n i-r}} \times z^{p,+\tau \pi-1} \dot{\approx}$ is $=$ $-\frac{2^{n-r+1} \times z^{p n+v n}}{\overline{f+1} \cdot n a}+\frac{g+1}{f+2} \times \frac{2 H}{a}+\frac{g+2}{f+3} \times \frac{2!}{a}(r)$
$-\frac{2 R}{c z^{n}}-\frac{q}{s} \times \frac{a S}{c z^{n}}-\frac{q-1}{s-1} \times \frac{a T}{c z^{n}}-\frac{q-2}{s-2} \times \frac{a V}{c z^{n}}(v)$
$+\frac{s+1}{m} \times \frac{s}{m-1} \times \frac{s-1}{m-2}(r) \times \frac{p}{t} \times \frac{p+1}{t+1} \times \frac{p+2}{t+2}(v) \times \xlongequal[-c_{1}]{a^{v-r} A}$.
Where $H, I, K, L, \ldots R, S, T, \mathcal{E}_{c}$. denote the Terms immediately preceding thofe where they ftand, under their proper Signs; R being the laft Term of the firt Series, alfo $2=a+c z^{n}, f=m-r, g=p+m+v-r$, $q=p+v-1, s=n+p+v-1, t=p+m+1$, and $A=$ the given Fluent of $\overline{a+c z^{n}}{ }^{n} \times z^{p n-1} \dot{z}$,

of Fluent.

2. The Fluent of $\left.a+c z^{n}\right]^{m+r} \times z^{p n-v n-1} \dot{z}$ is $=$
$\frac{2^{m+r+1} \times z^{p n-v n}}{q+1 \cdot n a}-\frac{s+2}{q+2} \times \frac{H c z^{n}}{a}-\frac{s+3}{q+3} \times \frac{I_{c z}{ }^{n}}{a}$ (v)
$-\frac{R c z^{n}}{2}+\frac{f}{g-1} \times \frac{a S}{2}+\frac{f-1}{g-2} \times \frac{a \tau}{2}+\frac{f-2}{g-3} \times \frac{a T}{2}(r)$
$+\frac{s+2}{q+1} \times \frac{s+3}{q+2} \times \frac{s+4}{q+3}(v) \times \frac{m+1}{t} \times \frac{m+2}{t+1} \times \frac{m+3}{t+2}(r) \times \frac{-c^{2}}{a^{u-r}}:$
Where $q=p-v-1, s=m+r+q, f=m+r, g=p+m$ $+r$, and the reft as in the preceding Cale .
3. The Fluent of $\bar{a}+\left.c z^{n}\right|^{m-r} \times z^{p n-v n-1} \dot{z}$ is $=$
$-\frac{Q^{m-r+1} \times z^{p n-v n}}{f+1 . n a}+\frac{g+1}{f+2} \times \frac{2 H}{a}+\frac{g+2}{f+3} \times \frac{2 I}{a}(r)$
$-\frac{s+1}{q+1} \times \frac{.2 R}{a}-\frac{s+2}{q+2} \times \frac{S c z^{n}}{a}-\frac{s+3}{q+3} \times \frac{T c z^{n}}{a}(v)$
$+\frac{\overline{t-1} t-2 . t-3 . t-4 . t-5}{m n-1 . m-2(r) \times p-1 p-2 . p-3(v)} \times \frac{\overline{-1}^{v} A}{a^{r+0}}:$
In which $f=m-r, g=m+p-r-v, q=p-v-1$, $s=q+m$, and the reft as before.
4. From what has been delivered in this Section, the Fluent of various Forms of Fluxions may be exhibited, by means of circular Arcs and Logarithms. For, fiance the Fluent of $\overline{a+c z^{n}}{ }^{-1} \times z^{\frac{1}{2} n-1} \cdot \dot{z}$, $\left.\overline{a+c z^{-}}\right|^{-\frac{1}{2}} \times z^{\frac{1}{2} n-1} \dot{z}$, and $\left.\overline{a+c z^{\eta}}\right)^{-\frac{1}{2}} \times z^{-1} \dot{z}$ (which I call original Ones) are all of them explicable by one, or the other, of there two Kinds of Quantities (as will appear farther on) tho fe of $a+c z^{n-1} \pm r \times z^{\frac{1}{2} \pm^{v n}-1} \dot{z}$ $\overline{a+c z^{n}}{ }^{-\frac{1}{2} \pm r} \times z^{\frac{1}{2}}{ }^{v^{n}-1} \dot{z}$, and $a+c z^{x_{1}}-\frac{1}{2} \pm^{r}$
$z^{+t_{n-1}} \dot{z}$ will also be given from thence, by the fore-
$Y 3$
going Theorems. Whence the mot ufeful Forms of Fluents in Cotes's Harmonic Menfurarum will be obtained, befides forme others, more general than any, of the fame Kind, put down by that fagacious Author.

Here follow a few Examples of rome of the mort useful Cares,

> EXAMPLE I.
296. Let the Fluxion given be $\frac{z^{2 v} \dot{z}}{\sqrt{d^{2} \pm z^{2}}}$ (or $\frac{d^{2}+z^{2}}{}$)
$\left.\times z^{2 v} \dot{z}\right) v$ being any whole positive Number.
Then, the Fluent of $\overline{d^{2} \pm z^{2}}-\frac{1}{2} \times \dot{\tilde{z}}$, or $\frac{\dot{z}}{\sqrt{d^{2} \pm z^{z}}}$ being $=$ hyp. Log. $\frac{z+\sqrt{d^{2}+z^{2}}}{d}$; or, equal to the

- Art. 326. Arch whole Sine is $\frac{z}{d}$ and Radius Unity *; according 742. as the fecond Term, in $d^{2} \pm x^{2}$, is pofitive or negative; let A be, therefore, taken to denote the fail Arch, or Logarithm; and let $\left.\overline{a^{2} \pm z^{2}}\right|^{-\frac{1}{2}} \times \dot{z}$ be compared with $\overline{a+c z^{m^{\prime}}} \times z^{p n-1} \dot{z}$ (whore Fluent is, all along, fuppored to be given = A) and you will have $a=d^{2}, c=$ $\pm 1, n=2, m=-\frac{1}{2}, 2 p-1=0$, and therefore $p=\frac{1}{2}$: \bar{W} hence, by fubftituting thole Values in Art. 283. we likewife get $q(p+v-1)=\frac{2 v-\mathbf{1}}{2}, s(m+q)=v$ $-1, t(m+p+1)=1$; and, consequently, the Fluent fought $\left.=\overline{d^{2} \pm z^{2}}\right)^{\frac{1}{2}} \times \overline{ \pm \frac{z^{2 v-1}}{2 v}-\frac{\overline{2 v-1} \cdot d^{2} z^{2 v-3}}{2 v .2 v-2}} \pm$
$\frac{2 v-1 \cdot 2 v-3 \cdot d^{4} z^{2 v-5}}{2 v \cdot \overline{2 v-2} \cdot 2 v-4}-\overline{\frac{2 v-1}{2 v-3} \cdot \overline{2 v-5}} \frac{d^{6} z^{2 v-7}}{2 v \cdot 2 v-2 \cdot 2 v-4} \cdot 2 v-6$

of Fluents.

(v) $\pm \frac{1}{2} \times \frac{3}{4} \times \frac{5}{6} \times \frac{7}{8}(v) \times d^{2 v}:$ In which the lat Term is negative, when the given Fluxion is $\frac{z^{2 v} \dot{z}}{\sqrt{d^{2}+z^{2}}}$, and v, at the fame time, an odd Number; but in all other Cafes, affirmative.

EX A MP LE II.

297. Let $z^{2 v} \dot{z} \sqrt{d^{2} \pm z^{2}}\left(\right.$ or $\left.\overline{d^{2} \pm z^{2}}{ }^{-\frac{1}{2}+1} \times z^{2 v} \dot{z}\right) \quad b \dot{E}$ propounded.
Here, denoting the Eluent of $\overline{d^{2} \pm z^{2}}-1 \frac{1}{2} \dot{z}$ by A (as above) and comparing $\left.d^{d^{2} \pm z^{2}}\right|_{0} ^{-\frac{1}{2}+1} \times z^{2 v} \dot{\text {, }}$, with ${\widetilde{a+c z^{n}}}^{m \frac{1}{t} r}$ $\times z^{p n+w n-z} \dot{z}($ Did, Prob. 8.) we have $r=r$, and the reft as in the lat Example: Whence alpo $j(p+v)=v+\frac{1}{2}, f(m+r)=\frac{1}{2}, g=v+1,2=d^{2} \pm$ z^{2}, and the Fluent itself $=\frac{z^{2 v+1} \sqrt{d^{2} \pm z^{2}}}{2 v+2} \pm \frac{d^{2} R}{2 v z^{2}}$ $\mp \frac{\overline{2 v-1} \cdot d^{2} S}{2 v-2} \cdot z^{2} \overline{\frac{2 v-3}{2 v-} \cdot d^{2} T}(1+v) \pm \frac{1}{2 v-4} \times \frac{3}{4}$ $\times \frac{5}{6}(v) \times \frac{d^{2 v+2} A}{2 v+2} *\left(R, S, T, \mathcal{F}_{c} c\right.$ being the prem- Art. 2g20 ceding Terms with their Signs) $=\frac{\sqrt{d^{2} \pm z^{2}}}{2 v+2} \times \overline{z^{2 v+1} \pm}$

$(v+1) \pm \frac{1}{2} \times \frac{3}{4} \times \frac{5}{6} \times \frac{7}{8}(v) \times \frac{d^{2 v+2} A}{2 v+2}:$ Where the Sign of the lift Term muff be regulated as in the Y_{4} pres.

Of the Comparifon

preceding Example-If the Fluent of $\frac{\frac{z}{}_{-v y}^{x}}{\sqrt{d^{2} \pm x^{2}}}$, or of $z^{-v n} \dot{z} \sqrt{d^{2} \pm z^{2}}$ (in which the Exponent is negative) be required; the Answer will be had in finite Terms, independent of A, by Art. 85 .

EXAMPLEIIT.

298. Wherein the Fluxion propofed is $\left.\overline{d^{n}-z^{n}}\right|^{-\frac{1}{2}+r} \times$ $z^{\frac{1}{2} n+v r-1}{ }^{n} ; r$ and v being any whole positive Numbers. Since the Fluent of $\overline{d^{n}-z_{1}^{n}}-\frac{1}{2} \times z^{\frac{1}{n} n-1} \dot{z} \quad$ (as will appear hereafter) is truly exprefled by $\frac{2}{n} \times$ Arch, whole Sine is $\frac{z^{\frac{1}{2} x}}{d^{\frac{1}{2} x}}$ and Radius Unity, let this Value be denoted by A; and then, by writing d^{n} for $a,-1$ for c, $-\frac{1}{2}$ for m, and $\frac{1}{2}$ for p, in Art. 292. we fall have f $(m+r)=\frac{2 r-1}{2}, g(m+p+r+v)=r+v, q(p+v-1)$
$=\frac{2 v-1}{2}, s(m+q)=v-1, t(p+m+1)=1,2$ $\left(a+c z^{x}\right)=a^{n}-z^{n}$, and the Fluent, itself, equal to $\frac{2^{r-\frac{1}{2}} z^{v a+\frac{1}{2} n}}{\frac{r+v, n}{r+1}}+\frac{\overline{2 r-1}}{r+v-1} \times \frac{\frac{1}{2} l^{n} H}{2 .}+\frac{2 r-3}{r+v-2} \times$ $\frac{\frac{1}{\frac{1}{n}} d^{n} I}{2}+\frac{2 r-5}{r+v-3} \times \frac{\frac{1}{2} d^{n} K}{2}(r)-\frac{\frac{1}{2} d^{n} R}{v z^{n}}+\frac{2 v-1}{v-1} \times$ $\frac{\frac{3}{2} d^{n} S}{z^{n}}+\frac{2 v-3}{v-2} \times \frac{\frac{1}{2} d^{n} T}{z^{n}}(v)+\frac{1.3 \cdot 5 \cdot 7(r) \times 1 \cdot 3 \cdot 5 \cdot 7(v)}{2.4 \cdot 68.10 .12(r+v)}$
*Art. 295.** $\times d^{r n+v n} A$: In which $H, I, K \ldots R, S, T$, Etc: denote the preceding Terms with their Signs; R being the

Of Fluent.

the lift Term of the first Series. Hence, because all the Terms, but the left, yanif, when $2=0$, it follows that the whole Fluent of $\overline{d^{n}-z^{7}}{ }^{r-\frac{r}{2}} \times z^{\pi \times+\frac{1}{2}-\frac{1}{x}} \dot{\approx}$, generated while z, from Nothing, becomes equal to d, is truly exprefled by $\frac{1.3 .5 \cdot 7(r) \times 1 \cdot 3 \cdot 5 \cdot 7(v)}{2.4 .6 .8 .10 .12(r+v)} \times d^{r x+v n} A$, or by $\frac{\mathbf{1} .3 \cdot 5 \cdot 7(r) \times \mathbf{1} .3 .5 .7(v)}{2.4 .6 .8 .10 .12(r+v)} \times \frac{d^{r n+v n} G}{n} ; G$ being the Semi-Periphery of the Circle whole Radius is Unity.

EX A MPLEIV.

299. Let it be required to find the whole Fluent of $\frac{\overline{a-b z^{\prime}} \times z^{p r=1} \dot{z}}{\overline{d+k z^{n}}}$, generated while $b z^{n}$, from No-
thing, becomes $=a$; that of $\left.\overline{a-b z^{\prime}}\right) \times \approx^{p n-1} \dot{\approx}$ being given ($=A$.)
Here, by expanding $\left.\overline{d+k z^{n}}\right|^{-\beta}$, our given Fluxion $\frac{\text { becomes }=\overline{a-b z^{n}}{ }^{m} \times z^{f n-1} \dot{z} \text {, into } d^{-\beta} \times \bar{\beta} \frac{\beta z^{n}}{d}+\frac{\beta \cdot \beta+1 \cdot k^{2} z^{2 n}}{1 \cdot 2 \cdot d^{2}}-\frac{\beta \cdot \beta+1 \cdot \beta+2 \cdot k^{3} z^{n}}{1 \cdot 2 \cdot 3 \cdot d^{3}}}{\xi^{\circ} c .}$
Which Series being compared with $e+f z^{n}+g^{2 n} \quad \varepsilon^{\circ} c_{e}$ (Vic. Art. 286.) we have $e=1, f=-\frac{\beta k}{d}, g=$ $\frac{\beta \cdot \beta+I \cdot k^{2}}{1.2 . d^{2}}$, Ec. and confequently the Fluent fought (by fubflituting there Values) equal to $\frac{A}{d^{G}}$ into 1 $\frac{p}{t} \times \frac{\beta}{1} \times \frac{a k}{b d}+\frac{p}{t} \cdot \frac{p+1}{t+1} \times \frac{\beta}{1}, \frac{\beta+1}{2} \times\left.\frac{a k}{b d}\right|^{2}$.
$\frac{p}{t} \cdot \frac{p+1}{t+1^{\prime}} \cdot \frac{p+2}{t+2} \times \frac{\beta}{1} \cdot \frac{\beta+1}{2} \cdot \frac{\beta+2}{3} \times \overline{\frac{a k}{b d}}{ }^{3}+v_{c} \quad(t$ being $=p+m+\mathrm{I}_{\mathrm{p}}$)

Here the Values of $m+1, n$ and p are fuppofed po-- Art 286 , fitive; * and it is requifite that $1+\frac{a k}{b d}$ fhould alfo be pofitive; otherwife the Fluent will fail. Although the Series brought out above runs on to Infinity, yet it may be fum'd, in many Cafes: Thus, if the given Fluxion
be $\frac{\left.a-b z^{n}\right)^{-\frac{1}{2}} \times z^{\frac{1}{3} n-1} \dot{z}}{d+k z^{n}}$; then, the forefaid Series be-
coming $1-\frac{2}{2} \times \frac{a k}{b d}+\frac{3}{2} \times \frac{3}{4} \times\left.\frac{\frac{a k}{b d}}{\frac{2}{b d}}\right|^{2}-E_{c}$. its Sun will be $1+\left.\frac{a k}{b d}\right|^{-\frac{1}{2}}$; And consequently $\frac{A}{d} \times 1+\left.\frac{a k}{b d}\right|^{-\frac{x}{2}}$
$=$ the Fluent fought: Where, A (the whole Fluent of $\overline{a=b z^{n}}-\frac{1}{2} \times z^{\frac{1}{2} \pi-1} \dot{z}$ being $=\frac{1}{n \sqrt{b}} \times$ Semi-Periphery of the Circle whore Radius is Unity, the Fluent given above will, therefore, be $=\frac{1}{n \sqrt{b d^{2}+a d k}}$
x by the fame Semi-Periphery. If the Reader is defirous to fee a further Application of the Summation of Seriefes, to the finding of Fluents, I muff refer him to my Difertations (where it is handled in a general Manfer) having neither Room nor Inclination to treat of it here.

SECTIONIV.

Of the Transformation of Fluxions.
301.

BY the Transformation of Fluxions may be underfood, the reducing any fuxional Quantity to a different, or more commodious, Form; according to which Senie, ${ }^{3}$ great Part of the fecond Section would properly fall under this Head. But, wobat is here propofed, and what is commonly meant by the Transformation of Fluxions, is, the Method of ordering thofe Kinds of Expreffions which involve one variable Quantity only with its Fluxion; which, yet, are fo affected by radical Signs, that the Fluent, without an Infinite Series, would be impracticable, were it not for a new Subftitution, or fome other Kind of Tranfformation, whereby the given Fluxion is render'd more manageable.

Something of this Sort has been already touch'd upon in Art. 83. And in what follows I fhall farther point out and exemplify the principal Cafes wherein fuch 2 Procedure will be of Service.
302. If the Number of Dimenfions of the variable 2uantity, without the Vinculum, increafed by Unity, be fome aliquot Part, or Parts, of the Dimenfons of the fame Quartity, under the Vinculum, the Fluxion will be reduced to a better Form by fubfituting for that Power of the variable Quantity, which arifes by dividing its Exponent, under the Vinculum, by the Denominator of the Fraction exprefing the faid aliquot Part, or Parts.

Thus, if the Fluxion propounded be $\frac{z_{\frac{n^{n-1}}{}{ }^{n-1}}^{\sqrt{c^{n} \pm \pi^{n}}} \text {; }}{\text { by }}$ fubiftituting $x=z^{\frac{1}{2} n}$, and taking the Fluxion of both Sides of the Equation, we have $\dot{x}=\frac{1}{2} n \tilde{z}^{\frac{1}{2} n-1} \dot{z}$; and therefore $z^{\frac{1}{2} n-1} \dot{z}=\frac{\dot{x}}{\frac{1}{2} n}$: Which Value, with that of \approx^{n}; being wrote for their Equals, in the given Fluxion, it
will be transformed to $\frac{1}{\frac{1}{n} n} \frac{\dot{x}}{c^{n}} \pm x^{x^{2}}$: Which, putting $a=c^{\frac{1}{2} n}$. (to make the Terms homologous), is alfo expreffed by $\frac{\dot{x}}{\frac{1}{2} n \sqrt{a^{2} \pm x^{2}}}$: Whereof the Fluent will be given by Art. 126. or Art. 142. according as the Sign of x^{2} is pofitive or negative.
303. If the Power of the variable Quantity under the Vinculum has a Coefficient, it will be belt to bring that Coefficient without the Vinculum.
Ex. 2. Where let the Fluxion given be $\frac{z^{\frac{z}{n}^{n}-1} \dot{z}}{\sqrt{a+c z^{n}}}$: Which, by bringing c without the V inculuin, becomes $\frac{z^{\frac{7}{2} n-1} \dot{z}}{c^{\frac{1}{2}} \sqrt{\frac{a}{6}+z^{n}}}$: From whence, by putting $x=z^{\frac{1}{2}}$. and proceeding as above, we get

$$
\frac{\dot{x}}{\frac{1}{2} n c^{\frac{1}{2}} \sqrt{\frac{a}{6}+x^{2}}}
$$

Whore Fluent, by Art. 126. is $\frac{1}{\frac{1}{2} n c^{\frac{1}{2}}} \times$ byp. Log. $x+$
$\sqrt{\frac{a}{6}+x^{2}}$. This, by reftoring \approx, becomes $\frac{2}{n \sigma_{2}^{\frac{1}{2}}} \times$ by. Log. $z^{\frac{1}{2} n}+\sqrt{\frac{a}{6}+z^{n}}$. Which, corrected (by fuppofing it $=0$ when $z=0$) gives, at length, $\frac{\frac{2}{\frac{1}{2}}}{n c^{\frac{2}{2}}} \times$ hyp. Log. $z^{\frac{z^{n}}{n}}+\sqrt{\frac{a}{c}+z^{n}}-$ hyp. Log. $\sqrt{\frac{a}{c}}=$ $\frac{2}{n^{\frac{3}{2}}} \times$ hyp. Log. $\sqrt{\frac{c z^{n}}{a}}+\sqrt{1+\frac{c z^{n}}{a}}$ for the true Fluent of the Quantity proposed.
of Fluxions.

But, when c is a negative Quantity, this Fluent fails, becaufe the fquare Root of c is to be extracted. In this Cafe $\frac{\dot{x}}{\frac{1}{2} n c^{\frac{1}{2}} \sqrt{\frac{a}{c}+x^{2}}}$ mull be transformed to $\frac{\dot{x}}{\frac{1}{2} n \sqrt{-c} \times \sqrt{\frac{a}{-c}-x^{2}}}$: And then its Fluent (by Art. 142.) will be had $=\frac{1}{\frac{1}{2} n \sqrt{-c}} \times$ the Arch of a Circle whore Radius is Unity, and Right-Sine $=$ $\frac{x}{\sqrt{\frac{a}{-c}}}=\sqrt{\frac{\overline{-c z^{n}}}{a}}$.
Ex. 3. Let the given Fluxion be $\frac{\dot{z}}{z \sqrt{a+c z^{n}}}$. Which, by bringing c without the Vinculum, and putting $x=z^{\frac{1}{2} n}$, is transformed to $\frac{\dot{x}}{\frac{1}{2} n c^{\frac{1}{2}} \times \sqrt{\frac{a}{6}+x^{2}}}$:
Whereof the Fluent, by Art. 126. is $\frac{1}{n \sqrt{a}} \times$ bye. Log. $\frac{\sqrt{\frac{a}{c}}-\sqrt{\frac{a}{c}+x^{2}}}{\sqrt{\frac{a}{c}}+\sqrt{\frac{a}{c}+x^{2}}}=\frac{1}{n \sqrt{a}} \times$ hyp. Log.
$\frac{\sqrt{\bar{a}}-\sqrt{a+c z^{n}}}{\sqrt{\bar{a}}+\sqrt{\overline{a+c z^{n}}}}$. But here, when c is positive, the Numerator will be negative; in which Cafe it will be proper to change its Signs, and express the Fluent by $\frac{1}{n \sqrt{a}} \times$ hyp, Log. $\frac{\sqrt{a+c z^{n}}-\sqrt{a}}{\sqrt{a+c z^{n}}+\sqrt{a}}$. That, fuch
an Alteration of the Signs can make no Difference iif the Fluxion, is evident From the Nature of Logarithms ; becaufe the Fluxion of the Log. of $-x\left(=\frac{-\dot{x}}{-x}=\frac{\dot{x}}{x}\right)$ is the fame with that of the byp: Log. of x : It will be proper to obfervë farther, that, inftead of the Logarithmi above derived, any one of the following, equal, Quantities may be taken; viz. byp. Log. $\frac{\sqrt{\overline{a+c z^{n}}}-\sqrt{ } a^{2}}{c z^{\pi}}$ (found by multiplying both the Numerator and Denominator of the forefaid Logarithm by $\left.\sqrt{a+c z^{n}}-\sqrt{a}\right)$ $=2 \times$ byp. Log: $\frac{\sqrt{a+c z^{n}}-\sqrt{a}}{\sqrt{c z^{1}}}$ (by the Nature of Logarithms) $=2 \times$ byp. Log. $\frac{\sqrt{c z^{n}}}{\sqrt{a+c z^{n}}+\sqrt{a}}$. (by multiplying, equally, by $\sqrt{a+c z^{n}}+\sqrt{a}$) But, take which of thefe Forms you will, the Fluent fails when a is negative; becaufe the general Multiplicator $\frac{1}{n \sqrt{a}}$ is then impoffible. In this Cafe the Fluent of

be given by Art. 142. and is expounded by $\frac{1}{\frac{1}{2} n c^{\frac{1}{2}} \sqrt{-d}}$
$\times A=\frac{2}{n \sqrt{-a}}$; where A denotes the Arclo whofe Radius is Unity, and Secant $\frac{x}{\sqrt{\frac{-a}{c}}}\left(=\sqrt{\frac{c z^{7}}{-a}}\right)$.

In the fame Manner the Fluent of $\frac{z^{i n-r} \dot{x}}{a+c z^{n}}$, is found $=\frac{1}{n \sqrt{a c}} \times$ Arch, whore Radius is Unity and Tan. gent $\sqrt{\frac{c c^{n}}{a}}$, or equal to $\frac{1}{n \sqrt{-c a}} \times$ bys. Logo
$\sqrt{\sqrt{a}}+\sqrt{-c z^{n}}$, according as the Value of c is affirmative or negative; a being fuppofed affirmative.

304: When the Power, or Powers, of the variable 2uantity without the Vinculum, or radical Sign, fall, mofly, in the Denominator, it may be of Ufe to fubfitute for the Reciprocal of the faid Quantity, or for the Quotient which arifes by dividing foome known Quantity, either, by it, or by fome Compound of it in the $D_{c}-$ nominator.

Ex. 1. Let the propofed Fluxion be $\overline{z^{2} \sqrt{ } \frac{a^{3} \dot{z}}{a^{2}+z^{2}}}$; then, putting $x=\frac{a^{2}}{z}$, we have $z=\frac{a^{2}}{x}$, and $\dot{z}=-$ $\frac{a^{2} \dot{x}}{x^{2}}$; and confequently $\frac{\dot{a}^{3} \dot{\dot{z}}}{z^{2} \sqrt{a^{2}+z^{2}}}=\frac{-x \dot{x}}{\sqrt{x^{2}+a^{2}}}$: Whereof the Fluent is $-\sqrt{x^{2}+a^{2}}=-\sqrt{\frac{a^{4}}{z^{2}}+a^{2}}$. Ex. 2. Let the given Fluxion be $\frac{x \dot{z}}{a+\left.z\right|^{3} \times \sqrt{a^{2}+a z+z^{2}}}$,
Here, putting $x=\frac{a^{2}}{a+z}$, we have $z=\frac{a a-a x}{x}=$ $a \times \frac{a-x}{x}, \dot{z}=-\frac{a^{2} \dot{x}}{x^{2}}, z \dot{x}=-\frac{a^{3} \dot{x} \times \overline{a-x}}{x^{3}}$,
$\sqrt{a^{2}+a x+x^{2}}=\frac{a}{x} \sqrt{a^{2}-a x+x^{2}}$; and therefore the

Quantity propofed is transformed to $\frac{x^{2} \dot{x}-a x \dot{x}}{a^{4} \sqrt{a^{2}-a x+\dot{x}^{2}}}$: Whofe Fluent may be found from a Table of Logarithms; as will appear farther on.
305. If the Fluxion given is affected by two different Surds, and the rational Faitor, or the Quantity without the Vinculum, be in a conflant Ratio to the Fluxion of the Quantity under the Vinculum of either Surd, or be related to it as in Art. 83. the given Fluxion will be reduced to a more finple Form, by fubjituting for ibat Surd.

$$
\text { Ex. 1. Let } \frac{z \dot{z} \sqrt{b^{2}+z^{2}}}{\sqrt{c^{2}-z^{2}}} \text { be propounded. }
$$

Then, putting $x=\sqrt{b^{2}+z^{2}}$, we have $z^{2}=x^{2}-b^{2}$, $z \dot{\tilde{\sim}}=x \dot{x}$; and $\sqrt{c^{2}-\dot{x}^{2}}=\sqrt{c^{2}+b^{2}-x^{2}}=\sqrt{a^{2}-x^{2}}$ (by making $a=\sqrt{c^{2}+b^{2}}$) Whence $\frac{a \dot{z} \sqrt{b^{2}+z^{2}}}{\sqrt{c^{2}-z^{2}}}=$ *Ast. $2 \pi 9 \cdot \frac{x^{2} \dot{x}}{\sqrt{a^{2}-x^{2}}}$ *

Or, if x be put $=\sqrt{c^{2}-z^{2}}\left(\right.$ inftead of $\left.\sqrt{b^{2}+z^{2}}\right)$; then $z^{2}=c^{2}-x^{2}, z \dot{\tilde{z}}=-x \dot{x}, \sqrt{\bar{b}^{2}+z^{2}}=$ $\sqrt{b^{2}+c^{2}-x^{2}}=\sqrt{a^{2}-x^{2}}$; and confequently $\frac{z \dot{z} \sqrt{b b+z z}}{\sqrt{c c-z z}}=-\dot{x} \sqrt{a^{2}-x^{2}}$: Whofe Fluent is given by Art. 297. or 131.
Ex. 2. Let the given Fluxion be $\overline{\left.a+c z^{n}\right)^{m}} \times\left.\overline{e+f z^{n}}\right|^{r} \times$ t Art $9_{3} . z^{p n-1} \dot{\tilde{z}} ; \int u p p o$ fing p to denote any whole poritive Number t:

In this Cafe, let that of the two Quintities, $+c z^{n}$ and $e+f z^{n}$, whofe Index (m or r) is the molt complex (which we will fuppofe the latter) be put $=x$; then we flall have $z^{n}=\frac{x-e}{f} ; z^{n-1} \dot{z}=\frac{\dot{x}}{n f}$;
$z^{p n-1} \dot{z}\left(=z^{p n-1} \times z^{n-1} \dot{z}\right)=\frac{\overline{x-\left.e\right|^{p-1}}}{f^{p-1}} \times \frac{\dot{\dot{x}}}{n f} ;$
$a+c z^{n}=a+\frac{c x-c e}{f}=d+\frac{c x}{f}$ by putting $d=a ̈$ -
$\left.\frac{s e}{f}\right)$ and confequently $d+\left.\frac{c x}{f}\right|^{m} \cdot \times \frac{x-]^{p-1} \times x^{r} \dot{x}}{n f^{p}}$ $=$ the Fluxion propofed: Where, $p-1$ being a whole pofitive Number, the Value of $x-\rho^{p-1}$ will therefore be expreffed in finite Terms; whence, if m be alfo a whole pofitive Number, the Fluent itfelf will be had in finite Terms: But, if m and r be the Halves of odd Numbers, then the Fluent will be found (from Art. 298 or 294.) by meatris of circular Arcs and Logarithms.
306. If the given Expreflion be affetted by iwo Surds wherein the Powers of the variable 2uantity are the Same, and the rational 2 uantity, without the Vinculums, be related to the Fluxion of either Surd, as in Art. 83, it may be of Ufe to Jubfitute for the 2uotient, or Ratio, of the two Quantities under the radical Signs; efpecially, if the Sum of the Said radical Signs, or Exponents (Juppofing both Surds to be reduced to the Denominator) is a whole Number.
Ex. 1. Let the given Fluxion be $\frac{z^{2} \dot{z}}{\left.b^{3}+z^{3}\right)^{\frac{2}{3}} \times{\left.c^{3}-z^{3}\right)^{4}}^{3}}$. Then, writing $x=\frac{b^{3}+x^{3}}{c^{3}-x^{3}}$, we have $z^{3}=\frac{c^{3} x-l^{3}}{1+x} ;$

$\times c^{3}-\left.z^{3}\right|^{2}=x^{\frac{2}{3}} \times c^{3}-\frac{c^{3} x-b^{3}}{1+x}=\frac{b^{3}+c^{3} \times x^{2}}{1+x} x^{2} ;$
z
and confequently $\frac{z^{2} \dot{x}}{b^{3}+\left.z^{3}\right|^{\frac{2}{3}} \times c^{3}-\left.z^{3}\right|^{\frac{4}{3}}}=\frac{w^{-\frac{2}{3}} \dot{x}}{3 \times b^{3}+c^{3}}$:
Whore Fluent is $\frac{x^{\frac{2}{3}}}{b^{3}+c^{3}}=\frac{1}{b^{3}+c^{3}} \times \sqrt[3]{\frac{b^{3}+z^{3}}{c^{3}-z^{3}}}$.
Ex. 2. Let there be given

$$
\overline{\left.\overline{\left.a+c z^{z}\right)^{m}} \times \overline{a+f z^{n}}\right)^{r}}
$$

Here, putting $x=\frac{e+f z^{n}}{a+c z^{n}}$, you will have $z^{n}=$
$\frac{a x-c}{f-c x} ; n z^{n-1} \dot{z}=\frac{\overline{a f-c e} \times \dot{x}}{\overline{f-c x})^{2}} ; z^{p n-1} \dot{z} \quad\left(=z^{p n-n_{1}}\right.$ $\left.\times z^{n-1} \dot{z}\right)=\left.\overline{a x-e}\right|^{p-1} \times \frac{\overline{f-c e}}{n \times \overline{f-c x_{1}}} ; \overline{a+c z^{n}}{ }^{m}$
$x_{6}+f z^{n} \quad\left(=\overline{a+c z^{n}}{ }^{m+r} \times{\overline{e+f z^{n}}}^{r}-a+c \times \frac{a x-c}{f-c m}\right.$
$\left.x x^{r}\right)=\overline{\frac{a f-c e}{m+r}} x^{f-c x} x^{r}$; and consequently the Fluxion given $=\left.\frac{\overline{a x-a}^{p-1} r \times\left.\overline{f-c x}\right|^{m+m-p} \times x^{-r} \dot{x}}{n \times \overline{a f-c a}}\right|^{m+r-1}$.
Where, if $m+x$ be a whole pofitive Number, greater than p (also a whole pofitive Number) the Fluent will be truly had in finite Terms; because both the Seriefes for the Values of $a x-\epsilon]^{p-1}$ and $f-c, x+r-p-1$ do in that Cafe-terminate *. But, if r and $m+r-p-1$ be the Halves of whole Numbers, pofitive or negative, then the Fluent will be given by the lat Section.
307. A Trinomial is reduced to a Binomial by taking awning its middle Term; that is, by fulfituting for the Sum or Difference of the Power of the variable 2 quantity
in that Term and half its Coefficient; according as the Signs of the two Toms, where the Said 2 quantity is found, are like, or unlike.
Ex. 1. Let the given Fluxion be $\frac{\dot{\tilde{z}}}{\sqrt{b^{2}+c z+z^{2}}}$; then, putting $x=z+\frac{1}{2} c$, or $\dot{z}=x-\frac{1}{2} c$, we have $\dot{z}=\dot{x}$, and $\sqrt{b^{2}+c z+z^{2}}\left(=\sqrt{b^{2}+c x-\frac{2}{2} b^{2}+x^{2}-c x+\frac{1}{4} \sigma}\right)$ $=\sqrt{b^{2}-\frac{1}{4} c^{2}+x^{2}} ;$ whence (making $a^{2}=b^{2}-\frac{1}{4} c^{2}$) there refults $\frac{\dot{x}}{\sqrt{b^{2}+c z+z^{2}}}=\frac{\dot{x}}{\sqrt{a^{2}+x^{2}}}$: Whore Fluont is given, by Art, 126 .

Ex. 2. Let the Fluxion given be $\frac{f z^{n-1} \dot{z}}{\sqrt{a+b z^{n}+c z^{2 n}}}$.
Firft, by bringing s without the Vinculum, according to Art. 303. we have $\sqrt{a+b z^{n}+c z^{2 n}}=\sqrt{c} \times$ $\sqrt{\frac{a}{6}+\frac{b z^{n}}{6}+z^{2 n}}$: And; by putting $x=z^{n}+$ ${ }_{2 c}^{b}$, or $z^{n}=\dot{x}-\frac{b}{2 c}$, we also get $z^{n-\frac{x}{z}} \dot{z}=\frac{\dot{x}}{n}$, and $\sqrt{\frac{a}{c}+\frac{b z^{n}}{c}+z^{2 n}}=\sqrt{\frac{a}{c}+\frac{b x}{c}-\frac{b b}{2 c c}+x^{2}-}$ $\left.\overline{\frac{b x}{c}+\frac{b b}{4 c c}}\right)=\sqrt{\frac{a}{c}-\frac{b b}{4 c c}+x^{a^{a}}}:$ Therefore the Fluxion, transformed, is

$$
\frac{f \dot{x}}{n \sqrt{c} \times \sqrt{\frac{a}{c}-\frac{b b}{4 c c}+x^{2}}}
$$

Whore Fluent is given by Art. 126. when c is a pofitive Quantity: But, when c is negative, the Fluxion mut be expreffed thus,

$$
\overline{n \sqrt{-c} \times \sqrt{\frac{a}{-c}+\frac{b b}{4 c c}-x^{2}}}
$$

Answering to Form 2. Art. 142.
Ex.

Of the Transformation

Ex. 3. Let $\frac{f z^{n-1} \dot{z}+g z^{2 n-1} \dot{z}+b z^{3 n-1} \dot{z}+k z^{4 n-1} \dot{z}}{\overline{\left.a+b z^{n}+c z^{2 n}\right)^{m}}}$.
be proposed.
Then, following the Steps of the lat Example, $\overline{a+b z^{n}+\left.c z^{2 n}\right|^{m}}\left(=c^{m} \times \frac{a}{c}+\frac{b z}{c}+\left.z^{2 n}\right|^{m}\right)$ will be transformed to $c^{m} \times\left.\overline{\frac{a}{6}-\frac{b b}{4 c c}+x^{2}}\right|^{m}$: Moreover, z^{n} being $=x-\frac{b}{2 c}=x-d$ (by putting $d=$ $\left.\frac{b}{2 c}\right)$ and $z^{n-1} \dot{z}=\frac{\dot{x}}{n}$, we alto have $z^{2 n-1}(=$ $\left.\dot{x}^{n} \times z^{n-1} \dot{z}=\overline{x-d} \times \frac{\dot{x}}{n}\right)=\frac{x \dot{x}-d \dot{x}}{n} ; z^{3^{n-1}} \dot{z}$ $\left(=z^{2 n} \times z^{n-1} \dot{z}\right)=\left.\overline{x-a}\right|^{2} \times \frac{\dot{x}}{n}=\frac{x^{2} \dot{x}-2 d x \dot{x}+d^{2} \dot{x}}{n} ;$
Etc. Ec. From whence, by fubftituting there feveral Values in the given Fluxion, and putting $\frac{a}{c}-\frac{b b}{4 c c}=a^{2}$, there comes out
$\frac{\dot{f}+g \times x \bar{x}-d \dot{x}+b \times \overline{x^{2} \dot{x}-2 d x \dot{x}+a^{2} \dot{x}}+\vartheta_{c} c^{m}}{n c^{m} \times\left.\overline{e \epsilon+x x}\right|^{m}}:$
Whore Fluent, when the Exponent m is the Half of any Integer, pofitive or negative, will be found, by means of circular Arcs and Logarithms, from Art. 295.
308. When the Denominator is a rational Trinomial, or Multinomial (that is, when it is without a Vinculum) the beft Way of proceeding, for the general Part, is, to resolve the given Fraction into binomial Ones. In order to this, let its Denominator be frigned $=0$; by means

of Fluxions.

means of which Equition, whofe Roots muft be found, you will, by fubtralting each Root from the indeterminale Quantity (x), bave the binomial Deneminators, of the required Fractions into which the given Orte may be rejolved: Whofe corre/ponding Numerators, let be denoted A $\dot{x}, B \dot{x}, C \dot{x}$ \&ic. then, 'by putting the Sum of the Fractions, thus arijang, equal to the given Fraction, and reducing the wubole Equation to the fame Denominator, the a.fume.t Quantities A, B, C छ゙c. by comparing the bomoiogous Terms, will be determined.

Ex. r. Let the given Fraction be $\frac{\dot{x}}{x^{2}+a x+b}$; then, feigning $x^{2}+a x+b=0$, the two Roors of the Equation will be $-\frac{1}{2} a-\sqrt{\frac{1}{7} a^{2}-b}$, and $-\frac{1}{2} a+\sqrt{\frac{1}{4} a^{2}-b}$: Which being denoted by p and q, we have $x-p$ and $x-q$ for the two binomial Factors whereby $x^{2}+a x+b$ may be refolved, or by whofe Multiplication (x-p $x \overline{x-q}$) the faid Quantity is produced.
Let therefore $\frac{A \dot{x}}{x-p}+\frac{B \dot{x}}{x-q}$ be now affumed ($=$ $\left.\frac{\dot{x}}{x^{2}+a x+b}\right)=\frac{\dot{x}}{\overline{x-p} \times \overline{x-p}}$; then, by reducing the whole Equation to one Denomination $\mathcal{E}^{\circ} c$. we get $\overline{A+B} \times x \dot{x}-\overline{q A+p B+1} \times \dot{x}=0$: Whence A is found $=\frac{1}{p-q}, B=\frac{1}{q-p}$; and, confecuently,
$\frac{\dot{x}}{\overline{p-q} \times \overline{x-p}}+\frac{\dot{x}}{q-p \times \overline{x-q}}=\frac{\dot{x}}{x^{2}+a x+b}$.
Ex. 2. Let the Quantity profoffd be $\frac{x^{2} \dot{x}}{x^{3}+a \dot{x}^{2}+b x+c}$.
Here, if the binomial Faftors whereby $x^{3}+a x^{2}+b x^{0}$ $+c$ is produced be reprefented by $x-p, x-q$, and $x-\dot{y}$, and there be affumed $\frac{A_{\dot{x}}}{x-p}+\frac{B \dot{x}}{x-q}+\frac{C \dot{x}}{x-r}$
$\left(=\frac{x^{2} \dot{x}}{x^{3}+a x^{2}+b x+c}\right)=\frac{x^{2} \dot{x}}{x-p \times \overline{x-q} \times \overline{x-r}}$; then; in this Cafe, we fhall have $A \times \overline{x-q} \times \overline{x-r}+B \times \overline{x-p} \times$ $\overline{x-r}+C \times \overline{x-p} \times \overline{x-} q-x^{2}=0$; that is, by Reduction, $\left.\left.\left.\begin{array}{l}A \\ B \\ -1\end{array}\right\} \times x^{2}-\frac{\overline{q+r} \times A}{p+r} \times B \times C, \begin{array}{l}q r A \\ p+q\end{array}\right\} \times x+\begin{array}{l}p r B \\ p q C\end{array}\right\}=0$.
Whence $A+B+C=1, A \times \overline{q+r}+B \times \overline{p+r}+C \times \overline{p+q}$ $=0$, and $A q r+B p r+C p q=0$. Now, from the firtt of thefe Equations, multiply'd by $p+q$, fubtract the fecond, and you will have $A \times \overline{p-r}+B \times \overline{q-r}=p+q$: Alfo, from the firft, multiply'd by $p q$, fubtract the third; then $A \times \overline{p q-q q}+B \times p q-p r=p q$: Laftly, from the former of the two Equations thus arifing, multiply'd by p, fubtract the latter, then $A \times p p-p r-p q+q r=p p$, that is, $A \times \overline{p-q} \times \overline{p-r}=p^{2}$; and confequently $A=$ $\frac{p^{2}}{\overline{p-q} \times-r}$: Whence, by the very fame Argument,

$$
B=\frac{q^{2}}{q-p} \times q-r \text {, and } C=\frac{r^{2}}{r-p} \times r-q .
$$

309. After the fame Manner you may proceed in other Cafes: But there is an Artifice, or Compendium, for more readily determining the affumed Quantities A, B, C $\delta^{\circ}{ }^{\circ}$. by which a great deal of Trouble is avoided: And that is, by conficering the Equation in fuch Circumflances of the indeterminate Quantity x, when it becomes moft fimple, or when moft of its Terms vanifh.

Thus, in the preceding Example, becaufe $A \times \overline{x-q}$ $\times \overline{x-r}+B \times x-p \times x-r+C \times x-p \times x-q-x^{2}$ is $=0$ (in all Circumftances of x whatever) let x be taken $=p$; then, all the Terms vanifbing, except the firft and laft,
vic have $A \times \overline{p-i} \times \overline{p-r}-p^{2}=0$; and consequently $A=$ $\frac{p^{\eta}}{\overline{p-q} \times \overline{p-r}}$; the very fame as before:
More universally, let the given Fraction be

reprefent any whole pofitive Numbers whatever, provided the latter be greater than the former.) Then, afluming $\frac{A \dot{x}}{x-p}+\frac{B \dot{x}}{x-q}+\frac{C \dot{x}}{x-r}+\frac{D \dot{x}}{x-s} \xi_{c .}=$ $\frac{x^{m} \dot{x}}{} \xi_{c}$. we hall have $A x$ $x^{n}+a x^{n-1}+b x^{n-2}$ Etc.
$\overline{x-q} \times \overline{x-r} \times \overline{x-s} \varepsilon_{0}+B \times \overline{x-p} \times \overline{x-r} \times \overline{x-s} \xi_{0}$ $+C \times \overline{x-p} \times \overline{x-q} \times \overline{x-s} \xi^{\circ} c_{\text {. }}{ }^{\circ} c .-x^{m}=0:$ From whence, by expounding x by $p, q, r \xi^{\circ}$. fucceflively, we obtain $A=\frac{p^{m}}{p-q \cdot p-r \cdot p-\xi_{c} .}, \quad B=$
 छc. Whence the Fractions themfelves, whereof there Quantities are the Coefficient, or Numerators, will likewife be given.

But the Numerators thus found may, fometimes, be more cominodioully expreffed by Help of the given Coefficients, $a, b, c, d \xi^{\circ} c$. So as to involve only one of the Roots p, q, r sc. in each Fraction. For, fine $\overline{x-p} \times \overline{x-q} \times x-r$ gr. is fuppofed, univerfally, $=x^{n}$ $+a x^{n-1}+b x^{n-2}+c x^{x-3}$ छc. if both Sides of the Z. 4 Equation

Equation be divided by $x-p$, we thall have $\overline{x-q} \times$ $\overline{x-r} \times \overline{x-s} \xi_{c}{ }_{c}=\frac{x^{n}+a x^{r-1}+b x^{r-2}+c x^{n-3} \xi^{n} c .}{x-p}$
Which laft Expreffion, when r is $=p$, that is, when both the Numeiator and the Denominator become equal to Nothing, will, manifefly, be equal to $\overline{(p-q} \times \overline{p-r}$ $\times \overline{p-s} छ^{\circ} c_{1}$) the Divifor of A. Therefore, if the Fluxion of the Numerator be taken and divided by that of the Denominator, and p be wrote inftead of x (vid. Page 155.) we fhail have $n p^{n-1}+\overline{n-1} \times a p^{n-2}+$ $\overline{n-2} \times b p^{n-3} \varepsilon^{\circ} c .=\overline{p-q} \times \overline{p-r} \times \overline{p-s} \varepsilon^{\circ} \%$ and therefore $A\left(=\frac{p^{m}}{\hat{p}-q \cdot p-r \cdot p-s \varepsilon_{0} c_{0}}\right)=$

$\frac{\cdot r^{m}}{n r^{n-1}+n-1 \cdot a r^{n-1}+n-2} \cdot b r^{n-3} \xi^{\circ} c$.

Hence it appears, that, if the Numerator of the giveri Fraciion be divided by the Fiusion of the Denominator (nogleciing \dot{x}) and the ferceral Roots p, q, r\&c. (found by feigning the Denominator $=0$) be, fucceffively, fubfituted in the Quotient, inffead of x; I fay, it is evident, that the 2 uantities fo refulting, divided by $x-p, x-q$, $x-r$ Ecc. suill be the required, binomial, Fractions into. which the propofed multinomial One may be refolved.
310. If fome of the Rcots $p, q, \mp \delta^{\circ} c$. are impoffible, which is often the Cait, the Fractions thus found, where the impoffible Roots are concerned, muft

of Fluxions.

be united in Pairs, and fo reduced to trinomial Ones, in order to take away the imaginary Terms.
Thus, let the Fraction propofed be $\frac{x \dot{x}}{x^{3}+a x^{2}+b x+c}$, and let two of the Roots, p and q, of the Equation $x^{3}+a x^{2}+b x+c=0$ be impofible: Then, $\frac{A \dot{x}}{x-p}+$ $\frac{B \dot{x}}{x-q}+\frac{C \dot{x}}{x-r}$ being $=\frac{x \dot{x}}{x^{3}+a x^{2}+b x+c}$, we fhall, by uniting the imaginary Terms, have $\frac{\overline{A+B} \times x \dot{x}-\overline{A q+B p} \times \dot{x}}{x^{2}-\overline{p+q} \times x+p q}$ $+\frac{C \dot{x}}{x-r}$, alfo,$=\frac{x \dot{x}}{x^{3}+a x^{2}+b x+c}$; where the impoffible Quantities deftroy one another. But, to render this more obvious, let q be taken $=0, b=0$, and $c=$ - 1 , fo that the given Fraction may become $\frac{x \dot{x}}{x^{3}-1}$; then the three Roots (p, q, r) of the Equation, $x^{3}-1$ $=0$, will here be $-\frac{1}{2}+\sqrt{\frac{-3}{4}},-\frac{1}{2}-\sqrt{\frac{-3}{4}}$, and I ; whereof the two former are impoffible. Moreover, by dividing the Numerator (x) by the Fluxion of the Denominator ($3 x^{2}$) (according to the Prefript) we have $\frac{1}{3^{x}}$; which, by writing p, q, r fucceffively, inftead of x, becomes $\frac{1}{3 p}, \frac{1}{3 q}$ and $\frac{1}{3^{r}}$ for the Values of A, B, and C, repecaively. Whence $\frac{\overline{A+B} \times x-A q-B p}{x^{2}-p+q \times x+p q}$ $+\frac{C}{x-r}\left(=\frac{x}{x^{3}-1}\right)$ is $=\frac{-\frac{1}{3} x+\frac{x}{3}}{x^{2}+x+1}+\frac{\frac{x}{3}}{x-1}=$ $\frac{1-x}{3^{x^{2}}+3^{x}+3}+\frac{1}{3^{x}-3}$. But the fame may be, otherwife,
wife, inveffigated, in a more general Manner; by arfuming $\frac{P x+2}{x^{2}+x+1}+\frac{R}{x-1}=\frac{x}{x^{3}-1}$, and proceeding as in the firft and fecond Examples; whence the very fame Conclufron will be derived.
If the Fraction propofed be of this Form, viæo $\frac{z^{f n-1} \dot{z^{\prime}}}{z^{m n}+a z^{m n-n}+b z^{m n-2 n} \xi^{m} \text {. }}$, the Method of Refolution will, fill, be the fame: Since, by puting $x=x^{n}$, the given Expreffion is reduced to
$\frac{\frac{1}{-n} \times x^{p-1} \dot{x}}{x^{m}+a x^{m-1}+b x^{m-2} \vartheta_{c} c}$
It may alfo be proper to obferve, that, in very complicated Cafes, the Application of two, or more, of the fix foregoing Rules, may become neceflary. Thus, for Example, if the Fluxion given be

into two Binomial Fractions, $\frac{A}{b+z^{n}}+\frac{B}{k+z^{n}}$ (according.
30. Art. 308.) we fhall have $\frac{2^{p n-1} \dot{\tilde{z}}}{\overline{a+c z^{n} n^{m}} \times e+J z^{n}+g z^{2 n}}$

if n be a whole pofitive Number, greater than p, the Fluent will be had in finite Terms (by Art. 306. Ex. 2.)

SECTIONV.

The Inveftigation of Fluents of Rational Fractions, of Several Dimenfions, according to the Forms in Cotes's Harmonial Mensurarum.
317. $\triangle S$ the Subject here propofed is a Matter of confiderable Difficulty, and has exercifed the Attention of fome of the moft celebrated Mathematicians (who, yet, feem to have condefcended very little to the Information of their lel's experienced Readers) I fhall endeavour to fet it in the cleareft Light poffible: In order to which, it will be requifite to premife the following Lemmas.
LEMMA I.

If the Sine of the Mean of three equi-different Arcs,' fuppofing Radius Unity, be multiplied by the Double of the Co-fine of the common Difference, and from the Product, the Sine of the leffer Extrome be fubtracted, the Remainder will be the Sine of the greater Extreme.

Lemma II.

312. If G be taken to denote the greater, and L the lefer, of two unequal Arcs, and their Difference be expreffed by D; then will,
313. $\frac{\operatorname{Sin}, G . \times \operatorname{Cof} . D-\operatorname{Sin}, L . \times \operatorname{Rad} .}{\operatorname{Sin} . D}=\operatorname{Cof}_{a} . G$
314. $\frac{C_{0} \text { f. } L \times \text { Rad. }-C_{0} \text { f. } G \times \operatorname{Co-} \text {. } D}{\operatorname{Sin} . D}=\operatorname{Sin} . G$
315. $\frac{\operatorname{Sin}, G . \times \operatorname{Rad} .-\operatorname{Sin}, L \times \operatorname{Co-} . D}{\operatorname{Sin} . D}=\operatorname{Co-\rho } . L$.

The former of thefe two Lemmas may be met with in mof Authors upon Trigonometry; and the latter is nothing more than a Corollary to the common Theorems for finding the Sine and C_{o}-fine of the Sum and Difference of two given Arcs; for which Reafons I fhall not ftop here to give their Demonftration.

Coroliary.

313. If any Arch of the Circle, whore Radius is Unity, he denoted by 2 , its Sine by s, and its Co-fine by a; and there be taken $A=2 a, B=2 a A-1, C=$ $2 a B-A,=D=2 a C-B, E=2 a D-C, F=2 a E-D$, $E^{\circ} c$. it follows (from Lemma 1.) that,
$\operatorname{Sin}, 2$ 2. $\operatorname{Sin} .2 \times 2 a-\operatorname{Sin} .0)=25 a-0=5 A$
Sin. 3 2. (Sin. $22 \times 2 a-\operatorname{Sin} .2)=2 s A a-s=s B$ $\sin .42$. $(\operatorname{Sin} .32 \times 2 \pi-\operatorname{Sin} .22)=2 s B a-s A=s C$ $\operatorname{Sin} .52(\operatorname{Sin} .42 \times 2 a-\operatorname{Sin} .32)=2 s \mathrm{Ca}-5 B=5 D$ $\operatorname{Sin} .6$ Q $^{\circ}\left(\operatorname{Sin} .5\right.$ Q $^{\circ} \times 2 a-\operatorname{Sin} .4$ Q $\left.^{2}\right)=2 s D a-s C=s E$

ళic.
હંc.

Lемм A III.

314. To refolve the Trinomial $r^{2 n}-2 k r^{n} x^{n}+x^{2 n}$, where - n is any wuble Number, into fimple trinomial Factars.

Since the firft Term of the given Quantity $r^{2 n}$ $2 k r^{n} x^{n}+x^{2 n}$ is divifible, only, by the Powers of r, and the laft, only, by thofe of x; and it appears that r and x are concerned, exactly, alike; let therefore $r^{2}-2 a r x+x^{2}$ (where r and x are, alfo, alike concerned) be affumed for one of the recuired trinomial Factors; whereby $x^{2 n}-2 k^{n} x^{n}+x^{2 n}$ may be refolved: And let $\overline{r^{2}-2 a r x+x^{2}} \times \overline{r^{5}+A r^{7} x+B r^{6} x^{2}+C r^{5} x^{3}+D r^{4} x^{4}+}$ $\overline{C^{3} x^{5}+b^{\prime} r^{2} x^{6}+A r x^{\prime}+x^{6}}$ (where r and x are, Aill, affected alike) be affumed $=r-2 k r^{5} x^{5}+x^{10}$ (the Value of n_{9}, to render the Operation more perfpicuous q_{2} being firft expreffed by 5 .).
by refolving them into mere fimble ones.

Then, by Multiplication and Tranfofition, we fall have

350 Of the Fhuents of Rational Fractions,
Whence, $A=2 a, B=2 A a-1, C=2 a B-A, D=2 a C$ $-B$, and $2 C-2 a D+2 k=0$. But, if 2 be taken to denote the Arch (EF) of a Circle EHK, whore Radius EO is Unity, and Co-fine (Of) $=\ddot{a}$; and s be put for (Ff) the Sine of the fame Arch; then (by Corot. to Lem. 1.) $s A=\operatorname{Sin} .2$ 2, $s B=\operatorname{Sin} .32, s C=\operatorname{Sin} .42$ Ec. and consequently $A=\frac{\operatorname{Sin} .22}{s}, B=\frac{\operatorname{Sin} .3 .2}{s}, C$ $=\frac{\operatorname{Sin} .42}{s}, D=\frac{\operatorname{Sin} .5 \text { ? }}{s}$ or, $\left.\frac{\operatorname{Sin} . n 2}{s}\right)$. Moreover, becaufe, $2 C-2 a D+2 k=0$, or $D \times a-C \times 1=k$, where (as appears from above) $\mathrm{D} \times a-C \times 1=$ $\frac{\operatorname{Sin} .52 \times \operatorname{Coj} .2-\operatorname{Sin} .42 \times \operatorname{Rad} .}{s}=\operatorname{Co-} .52$.
Cafe 1. Lem. 2.) we therefore have Coff. 5 (n (2) $=k$. Whence this Conftruction.

Take R to denote the Arch (EM) whole Confine (ON) is the given Coefficient k, and let 2 (EF) be taken to EM as I to n; then the Co-fine (Of) of this last Arch will be the true Value of a. But this is only one of the Values that a will admit of: For it is well known, that the Co-fine of any Arch, is alpo the Co-fine of the fame Arch increased by any Number of Times the whole Periphery (P). Therefore, freeing the C_{0}-fine of $n \mathscr{2}$ ($=$ Confine of R) is likewife $=\mathrm{Co}$-fine $\widehat{P+R}=\mathrm{Co}-\mathrm{f}$. $\frac{1}{2 P+R}=$ Cor. $\overline{3 P+R} 8^{\circ} c$. it follows that 2 (whore Co-fine is a) will be expreffed by any one of the Arcs, $\frac{R}{n}, \frac{P+R}{n}, \frac{2 P+R}{n}, \frac{{ }_{3} P+R}{n} \xi_{c}$. (or by $\mathrm{EF}, \mathrm{EG}, \mathrm{EH}, \mathrm{EI}$,

छ\%.

by refolving them into more firmple ones,

Efc. fuppofing the whole Periphery to be divided inon equal Parts, from the Point F). Hence, if the Cofines of thefe feveral Arcs, expreffing all the different Values of a, be reprefented by b, c and $d, \xi c$. refpectively, we fhall have $r^{2}-2 b r x+m^{2}, r^{2}-2 c r x+x^{2}, r^{2}-$ $2 d r x+x^{2}$, छc. for the feveral required Factors, by which $r^{2 n}-2 k r^{n} x^{x}+x^{2 n}$ may be refolved; and confequently $\overline{r^{2}-2 b r x+x^{2}} \times \overline{r^{2}-2 c r x+x^{2}} \times \overline{r^{2}-2 d r x+x^{2}}(n)=$. $r^{2 n}-2 k r^{n} x^{n}+x^{2 n}$. 2.E.I.

Note, If the Sign of the middle Term $2 k r^{n} x^{n}$.be pofitive, the Diftance (or Co-line) ON muft be taken on the contrary Side of the Center: But when k is greater than Unity, this Method of Solution fails ; fince no Cofine can be greater than the Radius.

Corollary I.

315. If $k=I$, the Arch R (whofe Co-fine is k) being $=0$, the Values of $b, c, d, \Xi^{\circ} c$. will be exprefled by the Co-fines of the Arcs $\frac{0}{n}, \frac{P}{n}, \frac{2 P}{n}, \frac{3 P}{n}$ E $\sigma_{\text {. re- }}$ fpectively: And our general Equation will here become $r^{2 n}-2 r^{n} x^{n}+x^{2 n}=\overline{r^{2}-2 b r x+x^{2}} \times \bar{r}^{2}-2 c r x+x^{2}$ $\overline{r^{2}-2 d r x+x^{2}}(n)$. From whence, by extracting the Square-Root, on both Sides, we alfo have r^{n} is $x^{n}=$ $\left.\overline{r^{2}-2 b r x+x^{2}}\right)^{\frac{1}{2}} \times\left.\overline{r^{2}-2 c r x+x^{2}}\right|^{\frac{1}{2}}(n)$.

Corollary II.

316. But, if $k=-1$ (or the middle Term be $\left.+2 r^{*} x^{n}\right)$ then the Arch R being $=\frac{P}{2}$, the Values of b, c, d, E_{c}, will, here, be defined by the Cofines of the
the Arcs $\frac{P}{2 n}, \frac{3 P}{2 n}, \frac{5 P}{2 n}, \xi^{\circ}$. and our Equation, by taking the Root, as above, will become $r^{n}+x^{n}=$ $\left.\overline{r^{2}-2 b r x+x^{2}}\right|^{\frac{1}{2}} \times \overline{\left.r^{2}-2 c r x+x^{2}\right)^{\frac{3}{2}}}$ (n).

SCHOLIUM.

317. From the two preceding Corollaries, the Demonftration of that remarkable Property of the Circle given, and applied to finding a vaft Number of Fluents, in Cotes's Harmonia Menfurarum, is very eafily, and naturally, deduced.

For, let the Periphery of the Circle ABB © c. whofe Radius is expreffed by r, be divided into as many equal Parts $A B, B B^{\prime}$, ${ }^{\prime}{ }^{\prime \prime}{ }^{\prime \prime}$, छ̛̣. as there are Units in the given Integer n; fo that
$A B, A B^{\prime}, A B^{\prime \prime}$,
छc. may refpectively exhibit the Values of the forefaid Arcs $\frac{P}{n}, \frac{2 P}{n}, \frac{3 P}{n}$ छc. (vid. Corol. 1.) Moreover, let OQ be the Co-fine of the firft of them; and, in the Radius OA (produced if receffary) let there be taken $\mathrm{OP}=x$; and let $\mathrm{OB}, \mathrm{QB}, \mathrm{PB}, \mathcal{E}^{\circ} c . \mathcal{E}^{\circ}$. be drawn: Then, the C - fine of the Angle $\operatorname{AOB}\left(=\frac{P}{n}\right)$ to
the Radius I, being expreffed by c (vid. Corol. r.) it will be $1: c:: r(O B): O Q=c r$: Whence $\mathrm{PB}^{2}(=$ $\left.\mathrm{OB}^{2}+\mathrm{OP}^{2}-2 \mathrm{OQ} \times \mathrm{OP}\right)=r^{2}+x^{2}-2 c r x=r^{2}-2 c r x$ $+x^{2}$.

By the very fame Argument PB^{2} is $=r^{2}-2 d r x+x^{2}$, E゚c. Erc. Therefore, becaufe r^{n} \& $x^{n}=\overline{\left.r^{2}-2 b r x+x^{2}\right)^{\frac{1}{2}}}$
$\left.\left.\times \frac{r^{2}}{r^{2}}-2 c r x+x^{2}\right\rceil^{\frac{x}{2}} \times \frac{1}{r^{2}-2 d r x+x^{2}}\right)^{\frac{x}{2}}(n)$, by Corol. 1 . it follows that their Equals, $\mathrm{AO}^{n} \backsim \mathrm{OP}^{n}$ and $\mathrm{PA} \times \mathrm{PB} \times$ $\mathrm{PB} \times \mathrm{PB}$ हc. muft be equal likewife: Whicb is the firf Part of the Theorem above hinted xit.

After the fame Manner, if the Arcs $\mathrm{AC}, \mathrm{AC}, \mathrm{AC}$, $\mathrm{A}^{\prime \prime \prime} \mathrm{C}$ be taken refpecively equal to $\frac{P}{2 n}, \frac{3 P}{2 n}, \frac{5 P}{2 n}$ ש. it will appear (from Corol. 2.) that $\mathrm{AO}^{n}+\mathrm{PO}^{n}$ is $=\mathrm{PC} \times \mathrm{PC}^{\prime} \times \mathrm{PC}(n)$ Which is the latter Part of the fanie Theorem.

Hence (by the Bye) all the Roots of the Equation $x^{n}=r^{n}$ are very readily found: For, fince $\mathrm{AO}^{n} \propto \mathrm{PO}^{n}=\mathrm{PA} \times \mathrm{PB} \times \mathrm{PB} \xi c$, where the fecond Factor and the laft, the third and the laft but one, छ'\%. are refpectively equal to each other, it is evident that $\mathrm{AO}^{n} \propto \mathrm{PO}^{n}\left(r^{n}=x^{n}\right)$ is alfo $=\mathrm{PA} \times \mathrm{PB}^{2} \times \mathrm{PB}^{\prime} \times P \cdot \mathrm{~B}^{\prime \prime}=$ $\overline{r \operatorname{sex}} \times \overline{r^{2}-2 c r x+x^{2}} \times \overline{r^{2}-2 d r x+x^{2}}$ Er c. Whence, x^{n} is r^{n} being $=0$, it follows that $\overline{r \cos \times}$ $r^{2}-2 c r x+x^{2} \delta^{\circ} c$, is $=0$: From which, by extracting the Roots out of the Equations r os $x=0, r^{2}-2$ crx $\frac{+x^{2}=0, r^{2}-2 d r x+x^{2}=0 \delta^{c} c \text {. we get } r, r x}{c+\sqrt{c^{2}-1}, r x \frac{\sqrt{c^{2}-1}}{d-\sqrt{d^{2}-1}}, r x \sqrt{d+\sqrt{2}},}$ A a

छૅ.
\mathcal{E}_{c}. for the Several Roots of the Equation $x^{n}=r_{n}$; whereof the firft, only, is poffible when n is odd; and the firft and lift when n is even.

By the fame Way of proceeding all the Roots of the Equation, $x^{n}+r^{n}=0$, will alfo be found: For, feeing $x^{n}+r^{n}$ is $=\overline{r^{2}-2 b r x+\left.x^{2}\right|^{\frac{\pi}{2}}} \times\left.\overline{r^{2}-2 c r x+x^{2}}\right|^{\frac{1}{2}} \varepsilon_{c}{ }_{0}$ ($=\mathrm{PC} \times \mathrm{P} \mathrm{C}^{\prime} \times \mathrm{P}^{\prime \prime}{ }^{\prime} छ^{\circ} \mathrm{c}$.) where the first Factor and the lift, the fecond and the lat but one, Etc. are refpectively equal to each other, it is plain that $x^{n}+r^{n}$ is likewife $=\overline{r^{2}-2 b r x+x^{2}} \times \overline{r^{2}-2 c r x+x^{2}}$ Ec, and consequently $x=\dot{r} \times \overline{b \pm \sqrt{b^{2}-1}}$ Ec. Ec c. Where the Roots are all impoffible; except the lat, when their Number (n) is odd.

Lemma IV.
318. Supposing every thing to remain as in the premceding Lemma, and that ${ }_{k}^{\prime}, \dot{b}, c,{ }_{\prime}^{\prime}, \& c$. denote the Sines of the Arcs $R, \frac{R}{n}, \frac{\mathrm{P}+\mathrm{R}}{n}, \frac{2 \mathrm{P}+\mathrm{R}}{n}$ Ec. (wb ore Confines are $k, b, c, d, \delta x c$.) then, I fay, the Fraction $\frac{n_{n=r^{n}} x^{n}}{r^{2 n}-2 k r^{n} x^{n}+x^{2 \pi}}$ is equal to $\frac{b r x}{r^{2}-2 b r x+x^{2}}+$
$\frac{c r r x}{r^{2}-2 i r x+x^{2}}+\frac{d r x}{r^{2}-2 d r x+x^{2}}$ rc.
For, fine $r^{0}-2 k r^{5} x^{5}+x^{00}\left(r^{2 n}-2 k r^{n} x^{n}+x^{2 n}\right)$ is $=\overline{r^{2}-2 a r x+x^{2}} \times \overline{r^{8}+A r^{\prime} x+B r^{6} x^{2}+C r^{3} x^{3}+D r^{4} x^{4}}$ $+C r^{3} x^{5}+E r^{2} x^{6}+A r x^{7}+x^{8}$ (by the foresaid Lemma) and it is alto proved that $A=\frac{\operatorname{Sin} .22}{s}, B=\frac{\text { Sin. } 32 \text { 2 }}{s}$,
$c=\frac{\operatorname{Sin} .42}{s}$ Er. it is evident, therefore, that
$\frac{r^{10}-2 k r^{5} x^{5}+x^{10}}{r^{2}-2 a r x+x^{2}}\left(=r^{8}+A r^{7} x+B r^{6} x^{2} छ_{c}.\right)$ is $=r^{3}+$
$\frac{\text { Sin. 2. } 2}{s} \times r^{7} x{ }^{8} c$. and consequently $\frac{x r^{20}-2 k r^{5} x^{5}+x^{10}}{r^{2}-2 a r x+x^{2}}$
$=\operatorname{Sin} .2 \times r^{8}+\operatorname{Sin} .22 \times r^{7} x+\operatorname{Sin} .32 \times r^{6} x^{2}+\operatorname{Sin}$. $42 \times r^{5} x^{3}+\operatorname{Sin} .52 \times r^{4} x^{4}+\operatorname{Sin} .42 \times r^{3} x^{5} \xi_{r}$. In which Equation, for a and s, let their feveral refpectine Values $b, c, d, \xi^{\circ} c$. and $\frac{1}{b}, c, d, \notin c$. be, fucceffively, fubftituted; and let the correfponding $\operatorname{Arcs} \frac{R}{n}$, $\frac{P+R}{n}, \frac{{ }_{2} P+R}{n} \xi_{c}$. be represented by $2, \stackrel{\prime}{2}, \stackrel{\prime \prime}{2}$, σ_{c}. then we foal have
$b \times \frac{\overline{r^{10}-2 k r^{5} x^{5}+x^{10}}}{r^{2}-2 b r x+x^{2}}=\operatorname{Sin} .2 \times r^{8}+\operatorname{Sin} .22 \times r^{7} x$ Eco $_{0}$ $\frac{{ }^{\prime} \times \overline{r^{10}-2 k r^{5} x^{5}+x^{10}}}{r^{2}-2 c r x+x^{2}}=\sin _{0} \mathscr{Q} \times r^{3}+\operatorname{Sin} .2 \stackrel{1}{2} \times r^{7} x \xi^{\text {E }}$. છ\%. ษึ.

Which Equations, added all together, give
$\overline{r^{10}-2 k r^{5} x^{5}+x^{10}} \times \frac{\frac{b}{r^{2}-2 b r x+x^{2}}+\frac{c}{r^{2}-2 c r x+x^{2}}+}{\square}$
$\frac{\frac{1}{r^{2}-2 d r x+x^{2}}}{x}$. Of tbe Fluents of Rational Fractions,

But the Sines of the firft Column, being thofe of an arithmetical Progreffion (whofe common Difference is $\left.\frac{P}{n}\right)$ by which the whole Periphery is divided into n (5) equal Parts, their Sum will therefore, it is well known, be equal to Nothing; or all the negative ones equal to all the pofitive ories.

The fame is alfo true with regard to the Sines of the fecond Column; whofe Arcs $\frac{2 R}{n}, \frac{2 P+2 R}{n}, \frac{4 P+2 R}{n}$ Erc. (having $\frac{2 P}{n}$ for their common Difference) divide the Periphery (twice taken) into the fame Number (n) of equal Pars. But the Sines of the middle Column (which is the laft above exhibited) will not vanifh, as all the reft do: For, $n \mathfrak{Q}$ being $=R, n \mathfrak{Q}=P+R, n \mathscr{Q}$ $={ }_{2} P+R, \xi_{c}$. the common Difference will here be equal to (P) the whole Periphery; and cherefore, every Arch terminating in the fame Point with the firft, the Circle will, in this Cafe, remain undivided, and the Sine of each be equal to (k) the Sine of the firft.
Hence, our Equation is reduced to $\overline{r^{50}-2 k r^{5} x^{5}+x^{10} x}$ $\frac{b}{r^{2}-2 h r x+x^{2}}+\frac{c}{r^{2}-2 c r x+x^{2}}$ धoc. $=5^{\prime} k r^{4} x^{4}$; which
divided by $r^{10}-2 k r^{5} x^{5}+x^{10}$, and multiplied by $r x$, gives $\frac{{ }_{b r x}}{r^{2}-2 b r x+x^{2}}+\frac{{ }_{c} r x}{r^{2}-2 c r x+x}+\frac{d r x}{r^{2}-2 d r x+x^{2}} \theta^{c} c=$ $\frac{5 k r^{5} x^{5}}{r^{10}-2 k r^{5} x^{5}+x^{10}}=\frac{n k r^{n} x^{n}}{r^{2 n}-2 k r^{n} x^{n}+x^{2 n}}$. 2.E.D.

The fame otberwife.
319. Since $r^{2 n} \rightarrow 2 k r^{n} x^{n}+x^{2 n}$ is $=\frac{r^{2}-2 b r x+x^{2}}{} \times$ $\overline{r^{2}-2 c r x+x^{2}} \times \frac{r^{2}-2 d r x+x^{2}}{}(n)$ by Lemma 3. it is evident that, $\log . r^{2 x}-2 k r^{n} x^{n}+x^{20}=\log$. $\overline{r^{2}-2 b r x+x^{2}}+\log \cdot \overline{r^{2}-2 c r x+x^{2}}+\log \cdot \overline{r^{2}-2 d r x+x^{2}}$ (n). And, as this Equation hoids univerfatly, let k and x be what they will (which two Quantities may. be fuppofed to flow independently of each other) let the A a 3 Fluxion

Fluxion of the whole Equation be taken, making k variable (and x conftant) ; which gives $\frac{-2 \dot{k} r^{n} x^{n}}{r^{2 n}-2 k r^{n} x^{n}+x^{2 n}}$ $=\frac{-2 \dot{b} r x}{r^{2}-2 b r x+x^{2}}-\frac{2 \dot{c} r x}{r^{2}-2 c r x+x^{2}}-\frac{2 \dot{d} r x}{r^{2}-2 d r x+x^{2}}$
Art, $\mathbf{3 2 6}$. (n). But, $k, b, c, d, \Xi^{\circ} c$. are the Co-fines of the $\operatorname{Arcs} R$, $\frac{R}{n}, \frac{R+P}{n}, \frac{R+2 P}{n} \xi^{\circ} c$. (whereof the correlponding Sines are $\dot{k}, \dot{b}, \dot{c}, \xi^{\prime} c$.) therefore, the Fluxion of the firft of there Arcs being denoted by \dot{R}, the Fluxion of each of the reft will be expreffed by $\frac{\dot{R}}{n}$: And fo (the Fluxion of the Co-fine of an Arch being equal to the Fluxion of the Arch itself drawn into its Sine, applied to † Art. 142, Radius \dagger) it follows that $\dot{k}=\dot{R} k, \dot{b}=\frac{\dot{R}}{n} \times \dot{b}, \dot{c}=$ $\frac{\dot{R}}{n} \times \dot{c}^{\prime}$, ${ }^{\prime} c$. Which Values being fubfituted in the foregoing Equation, and the whole divided by $\frac{-2 \dot{R}}{n}$, we have $\frac{1 \hat{k}^{n} r^{n}}{r^{2 n}-2 k r^{n} x^{n}+x^{2 n}}=\frac{b_{r x}}{r^{2}-2 b r x+x^{2}}+$

$$
\frac{\frac{1}{r x}}{r^{2}-2 c r x+x^{2}}+\frac{d}{r^{2}-2 d r x+x^{2}}(n) .
$$

320. To determine the Series, arifing from the Divifion, of Unity by a Trinomial, $x^{2}-2 a r x+r^{2}$; and to exhibit the Remainder after any given Number (v) of Terms in the Quotient.

$$
\text { Let } x^{-2}+A r x^{-3}+B r^{2} x^{-4}+C r^{3} x^{-5}+D r^{4} x^{-6} \text { re }
$$ prefent the required Quotient continued to 5 Terms

by refolving them into more simple ones.

(v, to render the Process the more obvious, being firft expounded by that Number) and let $E r^{3} x-5+F r^{6} x-6$ be the Remainder. Then, becaufe $\frac{1}{x^{2}-2 a r x+r^{2}}$ is $=$ $x^{-2}+A r x^{-3}+B r^{2} x^{-4}+C r^{3} x^{-5}+D r^{4} x^{6}+$ $\frac{E r^{5} x^{5}+F r^{6} x^{6}}{x^{2}-2 a r x+r^{2}}$, we foal, by reducing the whole Equation to one Denomination, have

Whence $A=2 a, B=2 a A-1, C=2 a B-A, D=2 a C$ $-B, E=2 a D-C$, and $F=-D$.

There-

Of the Fruents of Rational Fractions,

Therefore, if 2 be now put for the Arch whole Radius is I and Co -fine a, and there be taken $S=\operatorname{Sin}$: 2, $\dot{s}=\operatorname{Sin} .22, \dot{s}=\operatorname{Sin} .32$, Ec, we fall, alto, have $A(2 a)=\frac{\stackrel{s}{s}}{s}, B=\frac{\stackrel{\prime \prime}{s}}{S}, C=\frac{\stackrel{\prime \prime \prime}{S}}{S}, D=\frac{\stackrel{\prime \prime \prime}{S}}{S}, E=\frac{\stackrel{S}{S}}{S}$ $=\frac{\operatorname{Sin} .62}{S} ; F(-D)=-\frac{\operatorname{Sin} .52}{S}$ (by Carol. to
Lem. 1.) And consequently $\frac{1}{x^{2}-2 a r x+r^{2}}=$ $\frac{S_{x}^{-2}+\stackrel{\prime}{S} r x^{-3}+\stackrel{\prime \prime}{S} r^{2} x^{-4}+\stackrel{!\prime \prime}{S} r^{3} x^{-5}+\stackrel{m \prime}{\prime \prime \prime} r^{4} x^{-6}}{S}+$
$\frac{\operatorname{Sin} .62 \times r^{5} x^{-5}-\operatorname{Sin} .52 \times r^{6} x^{6}}{S \times x^{2}-2 a r x+r^{2}}$. Whence, univerSally, $\frac{1}{x^{2}-2 a r x+r^{2}}=$
$\frac{S x^{-2}+{ }^{\prime} S_{r x}-3+\stackrel{11}{S} r^{2} x^{-4}+\stackrel{11}{S} r^{3} x^{-5} \text { Ec. (to Terms) }}{S}+$
$\frac{\overline{\sin . \overline{v+1}} \cdot 2 \times r^{v} x^{v}-\sin . v 2 \times r^{v+1} \cdot x^{v-1}}{S \times x^{2}-2 a r x+r^{2}}$. Which
lat Equation (though obvious enough from the preceding one) may be inveftigated in a general Manner' (if require) by afluming $x^{-2}+A r x^{-3}+B r^{2} x^{-4}+C r^{3} x^{-5}$ $+\ldots . . d r^{v-2} x^{-v}+e r^{v-1} x^{-p-1}+$
$\frac{\mathrm{fr}^{v} x^{-2}+g r^{v+x} x^{-v-1}}{x^{2}-2 a r x+r^{2}}=\frac{1}{x^{2}-2 a r x+r^{2}}$, and proceeding as above: By which Means you will find $A=2 a$, $B=2 a A-1, \sigma^{\circ} c . f=2 a c-d=\frac{\operatorname{Sin}: \overline{v+1} \times \cdot 2}{S}$, and g $(=-e)=-\frac{\operatorname{Sin} \cdot 2}{S}$ And thus may the third

Lemma be made out, if any Objection, or.Difficulty, Thould arife about its being general.

Coroliary:

321. If, in the given Trinomial $x^{2}-2 a r x+r^{2}$, we fuppofe r^{2}, inftead of x^{2}, to be the leading Term whereby, the Quotient is produced; then, fince r and x are affected exactly alike; we fhall, by writing r for x, and x for r, have $\frac{1}{r^{2}-2 a x r+x^{2}}=$
$\frac{S_{r}^{-2}+S_{x r^{-3}}+\stackrel{n}{S} x^{2} r^{-4}(v)}{S}+$
$\frac{\overline{\operatorname{Sin} . v+1} \times 2 \times x^{v} r-\overline{\sin . v 2} \times x^{v+1} \times r^{-v-1}}{S \times r^{2}-2 a x r+x^{2}}$
P R O B. I.
322. To find the Fluent of $\frac{\dot{x}}{r r-2 a r x+x x}$, together with that of $\frac{x \dot{x}}{r r-2 a r x+x x}$.

Let ABM छc. be a Circle whofe Radius. OA (or OM) is r, and let the Angle $A O B$ be fuch, that its Co-fine, to the Radius I, may be equal to a; or fo, that OQ (fuppofing BQ perpendicular to OA) may be $=$ ar: Morēover let 's denote the Sine of
 the faid Angle AOB, correfponding to the Co -fine a, and let OP (confisered as variable by the Motion of P along OA) exprefs the Value of x : Then, $\mathrm{PB}^{2}\left(\mathrm{OB}^{2}+\mathrm{OP}^{2}-2 \mathrm{OQ} \times \mathrm{OP}\right)$ $=r r-2 a r x+x x:$ And the Fluxion of the Meafure of the Angle QBP (Ràdius being Unity) will be reprefented

362 fented by $\frac{B 2 \times F l u x .2 ?}{B P^{2}}$ (vid. Art. 142.) or by $\frac{r s x-x}{r r-2 a r x+x x}$; and confequently that of $O B P$, by $\frac{r s \dot{x}}{r r-2 a r x+x x}$: Whence it is evident that the Fluent of $\frac{\dot{x}}{r r-2 \operatorname{arx}+x x}$ (contemporaneous with x) is truly expreffed by $\frac{1}{r s} \times O B P$.

Again, fince $\frac{x \dot{x}}{r r-2 a r x+x x}$ may be transformed to $\frac{-a r \dot{x}+x \dot{x}}{r r-2 a r x+x x}+\frac{a r \dot{x}}{r r-2 a r x+x x} ;$ where the Fluent of
EArt. ${ }^{326}$. the former Part is $=\frac{1}{2}$ hyp. Log. $\frac{r r-2 a r x+x x}{r r} *=$ $\frac{1}{3}$ hyp. $\log \cdot \frac{P B^{2}}{O B^{2}}=$ hyp. $\log \cdot \frac{P B}{O B}$; and that of the latter $P_{\text {art }}=\frac{a}{s} \times O B P$; it appears that the Fluent of $\frac{x \ddot{x}}{r r-2 a r x+x x}$ is truly expounded by byp. Log. $\frac{P B}{O B},+$ $\frac{a}{s} \times O B P$. 2. E. 7.

Corollazy.
323. Since, $P B: P O::$ Sin. $B O P(s): \operatorname{Sin}, O B P=$ $\frac{s x}{\sqrt{r r-2 a r x+x x}}$; it follows, if the hyperbolical Lo garithm of $\frac{\sqrt{r^{2}-2 a r x+x x}}{r}$, be reprefented by M, and the Arch, whofe Sine is $\frac{s x}{\sqrt{r r-2 a r \alpha+x x}}$ and Radius Unity,
by refolving them into more fimple ones.
Unity, by N, that the Fluents of $\frac{\dot{x}}{r r-2 a r x+x x}$ and $\frac{x \dot{x}}{r r-2 a r x+x \dot{x}}$ will be exprefled by $\frac{N}{r s}$ and $M+\frac{a N}{s}$ reSpectively.
PROB. II.
324. To determine the Fluent of $\frac{x^{m} \dot{x}}{x^{2}-2 a r x+r^{2}}$; fulpofing m any whole poffive Number, and a lefs than Unity.

Let every thing remain as in Lemma 5. and then, if the Equation there brought out be multiplied by $x^{m} \dot{x}_{0}$ and v at the fame time be expounded by $m-1$, we fhall get $\frac{x^{m} \dot{x}}{x^{2}-2 a r x+r^{2}}=\frac{S x^{m-2} \dot{x}+\dot{S}_{r} x^{m-3} \dot{x}+\stackrel{n}{S} r^{2} x^{m-4} \dot{x}}{S}$
$(m-1)+\frac{\overline{\operatorname{Sin} \cdot m 2} \times r^{m-1} \times \dot{x}-\overline{\sin \cdot m-1} \times 2 \times r^{m} \dot{x}}{S \times \overline{x x-2 a r x+r r}}$
Whofe Fluent will therefore be given by the preceding Propofition: For, fuppofing the Values of M and N to be as there rpecified, the Fluent of the laft Term $\left(\frac{\overline{\operatorname{Sin} m 2} \times r^{m-1} \times \dot{x}-\overline{\operatorname{Sin} n-1} \times 2}{S \times \overline{2 a r-2 a r x+r r}} \times r^{m} \dot{x}\right)$ will, it,
is manifeft *, be expreffed by $\frac{1}{S}$ into $\overline{\sin . m 2} \times r^{m-1} \times *$ Arto 323 .
$\overline{M+\frac{a N}{S}}-\overline{\sin . m-1} \times 2 \times r^{m} \times \frac{N}{r S}=\frac{r^{m-1}}{S}$ into
$\overline{\operatorname{Sin} . m 2} \times M+\frac{\overline{\sin . m 2} \times a-\overline{\operatorname{Sin} . \overline{m-1} \times 2}}{S} \times N$
$=\frac{r^{m-1}}{S}$ into $\overline{\operatorname{Sin} . m 2} \times M+\overline{C o-\int . m 2} \times N$ (by Lem. 2.
Cafe
${ }_{2} 64$ Of the Fluents of Rational Fractions,
Cafe.) To which adding the Fluent of the preceding Series, there refits $\frac{1}{S} \times \frac{S_{x}^{m-1}}{m-1}+\frac{S r x^{m-2}}{m-2}+\frac{S r^{2} x^{m-3}}{m-3}(m-1)$ $+\frac{r^{m-1}}{s} \times \overline{\overline{\operatorname{Sin} . m 2} \times M+\overline{C_{0-⺝} m 2} \times N}$. Q. E. I.

Corollary.

325. Hence, the Fluent of $\frac{a x^{m} \dot{x}+r x^{m-1} \dot{x}}{x \dot{x}-2 a r x+r r}$ may be deduced: For, by writing $m-1$, inftead of m, the Fluent of $\frac{x^{m \sim 1} \dot{x}}{x x-2 a r x+r r}$ will be found $=\frac{1}{S} \times$ $\frac{S_{x_{j}^{m-2}}^{m-2}}{m}+\frac{S_{S} x^{m-3}}{m-3}+\frac{S_{r}^{11} r^{m-4}}{m-4}(m-2)+\frac{r^{m-2}}{S} \times$ Sin. $\overline{m-1} \times \mathscr{2} \times M+C_{0-\int} \overline{m-1} \times 2 \times N$: Which Flueent being multiplied by r, and that of $\frac{x^{m \dot{x}}}{x x-2 a r x+r r}$ (given above) by $-a$, we fall, when the homologous Terms are united, have $\frac{1}{S} x-a S \times \frac{x^{m-1}}{m-1}-a S^{\prime}-S \times$ $\frac{r x^{m-2}}{m-2}-a S^{n}-S \times \frac{r^{2} x^{m-3}}{m-3}(m-1)+\frac{r^{m-1}}{S}$ into $\overline{\overline{S i n} m 2 \times a-\operatorname{Sin} m-1} \times 2 \times M-\overline{\overline{C o-j m 2} \times a-}$ $\overline{C_{0} \% m-1} \times 2 \times N$, for the true Fluent of the Quintitty propounded:

$$
\text { But (by Cafe 1. Lem. 2.) } \frac{a s-S}{S}(=
$$

$\left.\frac{\operatorname{Sin} .22 \times n-\operatorname{Sin} .2 \times \operatorname{Rad} .}{\operatorname{Sin} .2}\right)=\operatorname{Co-f.} 22:$ Alto
by reforming them into more simple ones.
$\frac{a S-S}{S}\left(\frac{\operatorname{Sin} .32 \times a-\operatorname{Sin}, 22 \times \text { Rad }}{S}\right)=\operatorname{Co-\int } .32$
For. And, by Cafe 2. of the fame Lemma,
$\frac{C_{0} \int_{0} m-1 \times 2-\overline{C o-T m 2} \times a}{S}=$ Sin. m Q: Whence,
by fubftituting there Values, our Fluent is reduced to
$-C_{0-\int} .2 \times \frac{x^{m-1}}{m-1}-C_{0} \int .22 \times \frac{r x^{m-2}}{m-2}-C_{0-\int} .32 \times$
$\frac{r^{2} x^{m-3}}{m-3}-C_{0}-\int .42 \times \frac{r^{3} x^{m-4}}{m-4}(m-1)-r^{m-1} \times$
$\overline{\overline{C_{0}-\int} . m^{2}} \times M-\overline{\sin . M 2} \times N$.
PROB. III.
326. To determine the Fluent of $\frac{x^{-m_{\dot{x}}}}{r^{2}-2 a r x+x^{2}}$; under the Refrizions Specified in the preceding Problem.

If the Equation in Art. 32 I. be multiply'd by $x^{-m \dot{x}}$, and: v at the fame time be expounded by m, we Shall have $\frac{x^{-m} \dot{x}}{r^{2}-2 a r x+x^{2}}=$
$\frac{S_{r}^{-3} x^{-m} \dot{x}+S_{r}^{\prime}{ }^{-3} x^{1-m} \dot{x}+S_{r}^{-4} x^{2-m_{\dot{x}}}}{S}(m)+$
$\int_{S}^{m} \times \frac{\overline{\sin \cdot \overline{m+1} \times 2} \times r \dot{x}-\overline{\sin . m 2} \times x \dot{x}}{r^{2}-2 a r x+x^{2}}:$
Where, the Fluent of the laft Term being $\frac{r^{-m-1}}{S} \times$
$\overline{\operatorname{Sin} . \overline{m+1 \times 2}} \times \frac{N}{S}-\overline{\operatorname{Sin} m 2} \times \overline{M+\frac{a N}{S}}=$ Art 323. $\frac{m-1}{s} \bar{s}$ into $\overline{\sin . m 2} \times M+$

$$
\frac{\sin \cdot \overline{m+1 \times 2}-\sin . m 2 \times a}{S} \times N=\frac{r^{-m-1}}{S} \times
$$

- Sin .mw $\times M+\overline{C o-j . m 2} \times N$ (by Cafe 3. Lem. 2.) it follows that the Fluent of the whole Expreffion, or the Quantity fought, will be truly expreffed by

$$
\begin{aligned}
& \frac{1}{S} \times \frac{S r^{-2} x^{1-m}}{1-m}+\frac{S_{r}^{-3} x^{2-m}}{2-m}+\xi^{\circ} c \text { or its Equal }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{S r^{m+1}} \times \overline{\overline{C 0}-j_{n . m 2} \times N-\overline{s i n e m 2} \times M .}
\end{aligned}
$$

PROB IV.
327. To find the Fluent of $\frac{x^{m-1} \dot{x}}{r^{n}+x^{n}} ; m$ and n being any whole positive Numbers, whereof the former does not exceed the latter.
Let b, c, d, ξ_{c}. denote the Co-fines of the Arcs $\frac{360^{\circ}}{2 n}, \frac{3 \times 360^{\circ}}{2 n}, \frac{5 \times 360^{\circ}}{2 n}$, 'Vo.. (Radius being Unity) Then (by Cool. 2. Lem.:3.) we fall have $r^{n}+x^{n}=$ $\overline{r r-2 b r x,+x x^{\frac{1}{2}}} \times\left.\overline{r r-2 c r x+x x}\right|^{\frac{1}{2}} \times \overline{r r-2 d r x+x x^{\frac{1}{2}}}$ (n). Whence Log. $\overline{r^{7}+x^{n}}=\frac{1}{2} \log , \overline{r r-2 b r x+x x}+$ $\frac{1}{2} \log \cdot \overline{r r-2 c r x+x x}+\frac{x}{2} \log \cdot \overline{r-2 d r x+x x}$ (n) and, confequently, by taking the Fluxion, on both Sides, $\frac{n x^{n-1} \dot{x}}{r^{n}+x^{n}}=\frac{x \dot{x}-b r \dot{x}}{x x-2 b r x+r r}+\frac{x \dot{x}-c r \dot{x}}{x x-2 c r x+r r}+$ - Art. $126, \frac{x \dot{x}-d r \dot{x}}{x x-2 \dot{a} r x+r r} *(r)$; which left Equation, multiply'd by

$$
\frac{x}{\dot{x}}, \text { gives } \frac{n x^{n}}{r^{x}+x^{n}}=\frac{x x-b r x}{x x-2 b r x+r r}+\frac{x x-c r x}{x x-2 c r x+r r}
$$

by refolving them into more fimble ones.

$+\frac{x x-d r x}{x x-2 d r x+r r}(n)$: Let each Side hereof be now subtracted from n (or, which comes to the fame thing,
let $\frac{n x^{n}}{r^{n}+x^{n}}$ be taken from n, and each of the (n)
Terms on the other Side; from Unity) then we Shall have $\frac{n r^{n}}{r^{n}+x^{n}}=\frac{-b r x+r r}{x x-2 b r x+r r}+\frac{-c r x+r r}{x x-2 c r x+r r}$
$+\frac{-d r x+r r}{x x-2 d r x+r r}(n):$ Which multiply'd by $\frac{x^{m-1} \dot{x}}{r}$, gives $\frac{n r^{n-1} \times x^{m-1} \dot{x}}{r^{n}+x^{n}}=\frac{-b x^{m} \dot{x}+r x^{m-1} \dot{x}}{x x-2 b r x+r r}+$
$\frac{-c x^{m} \dot{x}+r x^{m-1} \dot{x}}{x x-2 c r x+r r} \xi^{0} c$.
But now, to determine the Fluent hereof, let the Several Arcs $\left(\frac{180^{\circ}}{n}, \frac{3 \times 180^{\circ}}{n}, \frac{5 \times 180^{\circ}}{n} \xi^{\circ}\right.$ c.) above \{pecified, be denoted by $2, \stackrel{\text { 2 }}{2}, \stackrel{\prime \prime}{2}, \stackrel{m}{2}$, ध$^{\circ}$. refpectively; alfo let $N, \stackrel{\prime}{N}, \stackrel{n}{N}$, छc$_{c}$. exprefs the Meafures of the Angles whore Sines are $\frac{x \times \operatorname{Sin} .2}{\sqrt{r-2 b r x+x x^{2}}}$ $\frac{x \times \operatorname{Sin} . \dot{2}}{\sqrt{x x-2 c r x+r r}}, \frac{x \times \operatorname{Sin} . \stackrel{\prime \prime}{2}}{\sqrt{x x-2 d r x+r r}} \xi^{\circ}$. and M, \dot{M}, $\stackrel{n}{M}$, sc. the hyperbolic Logarithms of $\frac{\sqrt{x x-2 b r x+r r}}{r}$,
$\frac{\sqrt{x x-2 c r x+r} r}{r}, \frac{\sqrt{x x-2 d r x+r r}}{r}$ Etc. Then
Coral. to Prob. 2.) the Fluent of the first Term, $\frac{-b x^{m} \dot{x}+r x^{m-1} \dot{x}}{x x-2 b r x+r r}$ (expounding a by b) comes out
$-C_{0-f} 2 \times \frac{x^{m-1}}{i n-1}-C_{0} f .22 . \times \frac{r x^{m-2}}{m-2}-C_{0} . f$.
$32 \times \frac{r^{2} x^{m-3}}{m-3}(m-1)+r^{m-1}$ into Sin. $m \cdot 2 \times N-$ $\overline{C o-f m 2} \times M$.
In the fame. Manner, by writing c for a, Q $_{2}$ for 2 , \dot{M} for M, and \dot{N} for N) the Fluent of the fecond Term, $\frac{-c \dot{x}^{m} \dot{x}+r x^{m-1} \dot{x} \dot{x}}{x x-2 c r x+r r}$, is found $=-C_{0} \cdot \int . \frac{1}{2} \times \frac{x^{m-5}}{m-1}$. - Coo. $22^{2} \times \frac{r x^{m-2}}{m-2}$ छ\%. छ\%.

Therefore the Fluent of the whole Expreffion, by collecting the homologous Terms, appears to be

$$
\begin{aligned}
& \overline{\sin . m 2} \times N-\overline{C_{0-f . m 2}} \times M
\end{aligned}
$$

$$
\begin{aligned}
& +r^{\pi-1} \times\left\{\overline{\text { Sin. } m 2_{2}^{\prime \prime}} \times N^{\prime \prime}-\overline{\text { Co-f. } m 2^{\prime \prime}} \times M_{M}^{\prime \prime}\right. \\
& \overline{\operatorname{Sin}_{0} m} \times \stackrel{m}{N}-\overline{C_{0}-\rho_{0} m{ }_{2}^{m}} \times m
\end{aligned}
$$

But the Co-fines of the firf Column being thofe of an arithmetical Progreffion $\left(\frac{180^{\circ}}{n}, \frac{3 \times 180^{\circ}}{n}, \frac{5 \times 180^{\circ}}{n}\right.$ $\underbrace{\circ}$.) whofe common Difference is $\frac{360^{\circ}}{n}$, whereby the whole Periphery is divided into n equal Parts (vid. Art. 317.) they will therefore deftroy one another; fince it is. well known that, if the Periphery of any Circle be divided into any Number (n) of equal Parts, the negative Sines and Co-fines will be equal to the pofitive ones; which is felf-evident when their Number is even.

Hence the Co-fines in the fecond and third Columns, Esc. will allo deftroy one another (vid. Art. 318.) But thofe of the laft Column of all, as well as the Sines, having unequal Multiplicators, muft remain as above, and that Column, alone, (drawn into r^{m-1}) 'will be the true Fluent of $\frac{n r^{n-1} \times x^{m-r} \dot{x}}{r^{n}+x^{n}}$. Whence, putting m Q $\left(=m \times \frac{180^{\circ}}{n}\right)=R$, and dividing by $n r^{n-1}$, we

Thall (becaufe $\mathscr{2}=32, \dddot{2}=5 \mathscr{2}$, 㜽 $=72 \xi^{\circ}$.) have
2. E. I.

Corollary.
328. Since the first and the laft, the fecond and the daft but one, $\sigma^{\circ} c$. of the foregoing Quantities $x^{2}-2 b r x+r r, x=2 c r x+r r, x x-2 d r x+r r$ $\mathrm{E}^{\circ} \mathrm{c}$. are reflectively equal to each other (vide. Art. 317.) the correfponding Fluents, found above, will likewife be equal: And therefore the Fluent of $\frac{x^{m-1} \dot{x}}{r^{n}+x^{n}}$ will, al fo, be exprefled by

The Number of Lines to be thus taken being $=\frac{1}{2} n$, when n is even; but, otherwife, $=\frac{n+1}{2}$; in which laft Cafe, the Logarithm, $\mathcal{E}^{\circ} \mathrm{c}$. in the left Line, muff be taken only once, inftead of twice; being that of $\frac{r+x}{r}$ (id. Art. 317.)
by refolving them into more simple ones.

$$
\mathrm{PROB} \mathrm{O} .
$$

329. To find the Fluent of $\frac{x^{m-r} \dot{x}}{r^{n}-x^{n}} ; m$ and n being as in the preceding Problem.

If $b, c, d, \mho^{\circ} c$ be taken to denote the Co-fines of the Arcs $\frac{0}{n}, \frac{360^{\circ}}{n}, \frac{2 \times 360^{\circ}}{n} \xi^{\circ}$. to n. Terms, it will appear (from Corot. 1. to Lem. 3.) that $r^{n}-x^{n}$ is $=$ $\overline{r r-2 b r x+\left.x x\right|^{\frac{2}{2}}} \times \overline{r r-2 c r x+x x]^{\frac{r^{5}}{2}}} \times \overline{r r-2 d r x+\left.x x\right|^{\frac{1}{2}}}$ (n). From whence, by following the Method of the laft Problem, we alto have $\frac{n r^{n-1} \times x^{m-1} \dot{x}}{r^{n}-x^{n}}=$ $\frac{-b x^{m} \dot{x}+r x^{m-1} \dot{x}}{x x-2 b r x+r r}+\frac{-c x^{m} \dot{x}+r x^{m-i} \dot{x}}{x x-2 c r x+r r}$ sc. Which Fluxion having exactly the fame Form with that in the preceding Problem, its Fluent will aldo be expreffed in the very fame Manner ; that is; by

 $\frac{2 \times 360^{\circ}}{n}, \frac{3 \times 360^{\circ}}{n}$ Ec. (inftead of $\frac{180^{\circ}}{n},-\frac{3 \dot{\times 1} 180^{\circ}}{n}$, $\frac{5 \times 180^{\circ}}{n}$ छ0\%)
 are, in this Cafe, equal to $0, m \times \frac{360^{\circ}}{n}, 2 m \times \frac{360^{\circ}}{n}$, $3^{m} \times \frac{360^{\circ}}{n} \vartheta^{\circ} c$. (whereof the Sine of the firft is $=0$, and its Co-fine $=$ Unity) we foal, by putting $R=m \times$ $\frac{360^{\circ}}{n}$, and dividing the forefaid Fluent by $n r^{n-1}$, have

2. E. I.

Corollary.
330. Since, in the Fluent here given, the fecond Line and the lat, the third and the left but one, $\mathcal{E}^{\circ} \%$ are respectively equal (rid. Art. 317.) the fame may alpo be exhibited, thus;

SCHOLIUM.

331. If the Semi-Periphery ABCH of the Circle whore Diameter AH is $2 r$, be divided into as many equal
by refolving them into more fimple ones.
equal Parts $A B, B C$,
CB, B Ć ® $_{6}$. as there are Units in n (fo that $A B=\frac{180^{\circ}}{n}=2$,
$\mathrm{AB}^{\prime}=3 \times \frac{180^{\circ}}{n}=2^{\prime}$

E\%. vid. Art. 317. and 327.) and in the Radius OA (produced, if neceffary) there be taken $\mathrm{OP}=x$, and $\mathrm{PB}, \mathrm{OB} \mathcal{E}^{\circ}$. be drawn, it will appear (from the faid Articles, and from Prop. I.) that the Quantities $\sqrt{r^{2}-2 b r x+x x}, \sqrt{r^{2}-2 c r x+x^{2}} \xi^{\circ} c$. in the former of the two preceding Problems, will here be expounded by PB, PB ' ${ }^{\circ} \mathrm{c}$. refpectively: From whence it is alfo plain, that the Meafures $N, \stackrel{\prime}{N}$ छj.. of the Angles whofe Sines are $\frac{x \times \operatorname{Sin}, 2}{\sqrt{r^{2}-2 b r x+x^{2}}}, \frac{x \times \operatorname{Sin} .2}{\sqrt{r^{2}-26 r x+x^{2}}}$ $\xi_{c .}{ }^{*}$ will here be expounded by $\mathrm{OBP}, \mathrm{OB}^{\prime} \mathrm{P}, \mho^{\circ} \mathrm{c}$. $\xi^{\circ} \mathrm{c}$ * Arr. 322, Therefore the Fluent of $\frac{x^{m-1} \dot{x}}{r^{n}+x^{n}}$, given in the Coand 323 . rollary to the forefaid Propofition, may be thus exhibited; $\frac{r^{m-n}}{n} \times\left\{\begin{array}{c}\overline{\operatorname{Sin} . R} \times 2(O B P)-\overline{C o-\int R} \times 2(O A: P B) \\ \overline{\operatorname{Sin} .3 R} \times 2(O B P)-\overline{C o-\int R} \times 2\left(O A: P B^{\prime}\right) \\ \xi_{c} .\end{array}\right.$
Where the Arch R is $\left(=m \times \frac{180^{\circ}}{n}\right)=m \times A B$, and where ($O \mathrm{~A}: \mathrm{PB}$) is put (after the Manner of Cotes) to exprefs the hyperbolical Logarithm of $\frac{P B}{O A}$. It is alfo to be obferved, that, when the laft of the Points B, Bb 3
$\stackrel{\prime}{B}, \stackrel{\prime}{B}$ छrc. falls upqn H (which will always happent when n is an odd Number) the Angle, in the laft Line of the Fluent, will vanifh, and the correfponding Logarithm (which is that of $\frac{P H}{A O}$) muft then be $t_{2} k e_{2}$ inftead of twice, only once.

In the very fame Manner it will appear, that, the Ares $\mathcal{Q}, \mathscr{V}^{\prime \prime} \xi^{\circ} c$ in the fecond Cafe, where the Fluent of $\frac{x^{m-x} \dot{x}}{r^{n}-x^{n}}$ is rought, will be, refpectively, expounded by $A C, \cdot \Lambda C \mathcal{O}^{\circ} c_{0}$ alfo the correfponding Angles $\stackrel{\prime}{N}, \stackrel{\prime}{N}$ $छ_{c}$. by $O C P, O C P \xi^{\circ} c$. and the Fluent itfelf by

$$
\frac{n^{m-n}}{n} \times\left\{\begin{array}{l}
* \cdots \cdots \cdots(O A: P C) \\
\overline{\operatorname{Sin} . R} \times 2(O C P)-\overline{C_{0}-\int . R} \times 2(O A: P C) \\
\overline{\operatorname{Sin} .2 R} \times 2(O C P)-\overline{C_{0}-f \cdot 2 R} \times 2(O A: P C) \\
\xi_{C}
\end{array}\right.
$$

Where the $\operatorname{Arch} R\left(=m \times \frac{360^{\circ}}{n}\right)=m \times A C$; and where, as well as in the preceding Cafe, all the Arcs, Sines and Co-fines are fuppofed to have Unity for their Radius.
332. From the Fluents of $\frac{x^{m-1} \dot{x}}{r^{n}+x^{n}}$ and $\frac{x^{m-1} \dot{x},}{r^{n}-x^{n}}$
thus given, tbofe of $\frac{x^{v n+m-1} \dot{x}}{r^{n}+x^{n}}, \frac{x^{-v n+m-1} \dot{x}}{r^{n}+x^{n}}$ $\frac{x^{v n+m-1} \dot{x}}{r^{n}-x^{n}}$, and $\frac{x^{-v n+m-1} \dot{x}}{r^{n}-x^{n}}$, where v denotes any whole Number, may be very eafily deduced; either from Art. 283. and 291. or (more readily) by dividing the Numerator by the Denominator, and continuing the
Qino-

by refolving then into more simple ones.

Quotient to as many Terms as there are Units in v^{*}. By * Art. i go. which means, if p be put $=v n+m, q=v n-m$, and the Fluent of $\frac{x^{m-1} \dot{x}}{r^{n}+x^{n}}$ and $\frac{x^{m-1} \dot{x}}{r^{n}-x^{n}}$ be denoted by V and W respectively, the Fluents, in the four Cafes feecified above, will be expreffed by

$$
\frac{x^{p-n}}{p-n}-\frac{r^{n} x^{p-2 n}}{p-2 n}+\frac{r^{2 n} x^{p-3^{n}}}{p-3^{n}}(v) \pm r^{v n} V
$$

$$
\frac{x^{-q}}{-q r^{n}}-\frac{x^{n}-q}{n-q \cdot r^{2 n}}+\frac{x^{2 n-q}}{2 n-q \cdot r^{3^{n}}}(v) \pm \frac{V}{r^{v n}},
$$

$$
-\frac{x^{p-n}}{p-n}-\frac{r^{n} x^{p-2 n}}{p-2 n}-\frac{r^{2 n} x^{p-3 n}}{p-3^{n}}(v)+r^{v n} W
$$

$$
\text { and, } \frac{x^{-q}}{q^{r}}+\frac{x^{n-q}}{n-q \cdot r^{2 n}}+\frac{x^{2 n-q}}{2 n-q \cdot r^{3^{n}}}(v)+\frac{W}{r^{n}}
$$

respectively.
Moreover, from the fame Fluent, thorpe of $\frac{z^{\frac{n}{n}-1} \dot{z}}{e+f z_{q}}$,
and $\frac{z^{z^{-q-1}} \dot{\tilde{z}}}{e-1 z^{q}}$ will likewife become known :
For (having transformed the Fluxions here propoled to $\frac{1}{e} \times \frac{z^{\frac{m}{q}-1}}{1+\frac{f z_{q}}{e}}, \quad$ छे.c.) let $\frac{f z^{q}}{\epsilon}$ be put $=x^{n}$; or $x=\left.\frac{\overline{f^{q}}}{e^{\frac{1}{n}}}\right|^{m}$; then will $z^{\frac{m}{n^{q}}}=\frac{\frac{e}{f}}{\left.\right|^{\frac{m}{n}}} \times x^{m}$, and consequently $\frac{m q}{n} \times z^{\frac{m}{n} q-1} \dot{z}=\frac{e^{\frac{m}{f}}}{\frac{m}{n}} \times m x^{m-1} \dot{x}$.

Bb 4
Whence

Whence $z^{\frac{m}{n} q-1} \dot{z}=\frac{n}{q} \times\left.\frac{\ell}{f}\right|^{\frac{m}{n}} \times x^{m-1} \dot{x}$, and $1 \pm$ $\frac{f z^{q}}{e}=1 \pm z^{n}$; and therefore $\frac{z^{\frac{m}{n}-1}}{e \pm f z^{q}}\left(=\frac{1}{e} \times \frac{n}{q}\right.$

$$
\left.\times \frac{e^{\frac{m}{f}}}{n} \times \frac{x^{m-}-\dot{x}}{1 \pm x^{n}}\right)=\frac{n}{q e} \times \frac{e^{\frac{m}{n}}}{\left.\right|^{n}} \times \frac{x^{m-1} \dot{x}}{1 \pm x^{n}}:
$$

Whole Fluent is given, by Prob. 4. or 5. But, x being here $=\mathbf{I}$, the general Multiplicator $\frac{r^{m-n}}{n}$, there given, will be barely $=\frac{1}{n}$: Which, drawn into $\frac{n}{q e} x$ $\frac{\frac{e}{f}}{}{ }^{\frac{m}{n}}$, gives $\frac{1}{q e} \times \frac{e_{f}^{f}}{\frac{m}{--}}$, for the general Multiplicator in this Cafe.

One thing more, though well known to Mathematiclans, it may be proper here to take notice of; and that relates to the Sines and Co -fines of the fore-mention'd Arcs, $R, 2 R, 3^{R}, \xi^{\circ} c$. ξ_{c}. (multiplying the feveral Angles and Ratios) forme of which Arcs do frequently exceed the whole Periphery: When this happens to be the Cafe, the Periphery, or 360°, muft be fubtracted as often as poffible, and the Sine and Co-fine of the Remainder be taken. If the Remainder be greater than 180°, the Sine, falling in the lower Semi-Circle, will be negative; if, between 90° and 270°, the Co fine, falling beyond the Center, will be negative.
PR OB. VI.
333. To find the Fluent of $\frac{x^{n+m-1} \dot{x}}{r^{2 n}-2 k r^{n} x^{n}+x^{2 \pi}}$; where
n and m denote any whole pofitive Numbers, and where the given "Exprefion cannot be refolved into twa Binsmall, (k being less than Unity. Art. 308. and 310.)

Let R be the Arch whore Co-fine is k and Radius
Unity, and let k be the Sine of the fame Arch; moreover, let the Arcs $\frac{R}{n}, \frac{R+360^{\circ}}{n}, \frac{R+2 \times 360^{\circ}}{n}$;

$छ_{c} c$ and let $\dot{b}, c_{c}, d छ_{c}$ and $b, c, d \xi^{\circ} c$ e express the Sines, and the Co -fines of the fame Arcs refpectively.
Then will $\frac{n k r^{n} x^{n}}{r^{2 n}-2 k r^{n} x^{n}+x^{2 n}}=\frac{b}{r^{2}-2 b r x+x^{2}} \nsim$
$\frac{{ }^{\prime}{ }^{\prime} r x}{r^{2}-2 c r x+x^{2}}+\frac{{ }^{\prime} r x}{r^{2}-2 d r x+x^{2}}$ Etc. (n) by Leimma.4.)
From whence, multiplying the whole Equation by
$\frac{x^{m-1} \dot{x}}{n k r^{n}}$ we have $\frac{x^{n+m-1} \dot{x}}{r^{2 n}-2 k r^{n} x^{n}+x^{2 n}}=\frac{1}{n k r^{n-1}}$ into $\frac{{ }_{b} x^{m} \dot{x}}{r^{2}-2 b r x+x^{2}}+\frac{{ }_{c}^{\prime} x^{m} \dot{x}}{r^{2}-2 c r x+x^{2}}+\frac{d^{m} x^{m} \dot{x}}{r^{2}-2 d r x+x^{2}}$ छ $_{c}^{\prime}$. Now, the Fluent of the firft Term hereof $\frac{b x^{m} \dot{x}}{r^{2}-2 b r x+x^{2}}$ (if M be put for the hyp. Log. of $\frac{\sqrt{x^{2}-2 b r x+x^{2}}}{r}$, and N for the Arch whole Radius is Unity, and Sine $\frac{x \times \overline{\sin \cdot 2}}{\sqrt{r^{2}-2 b r x+x^{2}}}$) will appear (from Prop. 2.) to be $=$ $\overline{\operatorname{Sin} 2} \times \frac{x^{m-1}}{m-1}+\overline{\sin .22} \times \frac{r x^{m-2}}{m-2}+\overline{\operatorname{Sin} .32} \times$ $\frac{r^{2} x^{m-3}}{m-3} \mathcal{E}_{c}(m-1)+r^{m-1} \times \overline{\operatorname{Sin} . m 2 \times M+C_{0-j} n_{0}}$ $\overline{m 2 \times N}$

From whence, if the Arcs whore Sines are $\frac{x \times \operatorname{Sin}, \underline{2}}{\sqrt{r^{2}-2 c r x+x^{2}}}, \frac{x \times \operatorname{Sin}, \ddot{2}}{\sqrt{r^{2}-2 d r x+x^{2}}}$ sc. be reprerented by $M \prime, M_{M}^{\prime \prime} c$. and the Logarithms whore Numbens are $\frac{\sqrt{r^{2}-2 c r x+x^{2}}}{r}, \frac{\sqrt{r^{2}-2 d r x+x^{2}}}{r}$ Ec. by
\dot{N}, 综 ξ°. respectively, the Fluent of the whole Expreffion, omitting the general Multiplicator $\left(\frac{1}{{ }_{n k} r^{n-1}}\right)$ will be

But, the Sines of the frt Column being thole of an arithmetical Progrefion (whole common Difference is
$\frac{360^{\circ}}{n}$) which arifes by dividing the whole Periphery inta
n equal Parts, their Sum will, therefore, be equal to Nothing.

Moreover, the Sines of the fecond Column, having $\frac{2 \times 350^{\circ}}{n}$ for the common Difference of their refpective
Arcs do, alfo, divide the whole Periphery (twice taken) into n equal Parts, and therefore deftroy each other.

The fame is likewife true, with regard to the Sines of every other Column (except the laft of all) when $m \rightarrow I$ is lefs than n. But, if, m be greater than n, the Arcs, in the Column; whofe Place from the firt, in'
clufive, is denoted by n, being expreffed by $n \mathscr{2}$, n 2.,
n㜽 छc. (or $R, R+360^{\circ}, R+2 \times 360^{\circ}$ छ $c_{\text {. }}$) whereof the common Difference is the whole Periphery; the Sines of that Column do not deftroy one another, but each is equal to that of the fifft Aic R (Vid. Art. 3 ㅍ4. and 3:8.) and confequently their Sum equal to $\pi \times \operatorname{Sin} . R$.

In like Manner, if im be greater than, $2 n$, the Series, continued to m-r Terms, will take in the Column, where the Arcs are $2 \pi 2,2 n$ थ, $2 n$ ".2 $छ^{\circ} c$ (or $2 R$, $2 R+2 \times 360^{\circ}, 2 R+4 \times 360^{\circ}$ छ'c.) whereof the Sine of each is, alfo, equal to the Wine of the firf $(2 R)$ and therefore their Sum $=n \times \operatorname{Sin}, 2 R$.

Thus, alfo, it will appear that the Sines of the Column whore Diftance from-the firft, inclufive, is 3^{n} (when m is greater than 3^{n}) will be each equal to $\operatorname{Sin} .3 R$; छic. S°.

Therefore, feeing all the Columns do acualiy vanifh, except thof ${ }^{\text {r }}$ above fpecified; whore Places from the Beginning are denoted by $n, 2 n, 3^{n} \xi^{\circ} \%$ and whofe correfponding Terms, or Multiplicators are, therefore, reprefented by $\frac{r^{n-1} x^{m-n}}{m-n}, \frac{r^{2 n-1} x^{m-2 n}}{m-2 n}, \frac{r^{3^{n-1}} x^{m-3^{n}}}{m-3^{n}}$ $\mathrm{E}^{\circ} \mathrm{c}$. it is evident that the whole Expreffion will be reduced to
$\overline{\operatorname{Sin} . R} \times \frac{n r^{n-1} x^{m-n}}{n-n}+\overline{\operatorname{Sin} .2 R} \times \frac{n r^{2 n-1} x^{m-2 n}}{m-2 n}$
$+\overline{\sin .3^{R}} \times \frac{n r^{3^{n-1}} x^{m-3^{n}}}{m-3^{n}} छ_{c}$.
 Sin. $m \times \stackrel{\prime \prime \prime}{M}+\operatorname{Co-} . m_{2}^{\prime \prime \prime} \times \stackrel{m}{N}$

छัc. - છ๘.
Which, multiply'd by $\quad 1$, the forefaid, general, $n_{k}^{k} r^{n-1}$
Multiplicator, gives $\overline{\operatorname{Sin} . R} \times \frac{x^{m-n}}{\overline{m-n} \cdot k}+\overline{\operatorname{Sin} \cdot 2 R} \times$

$$
\frac{r^{2} x^{m-2 n}}{m-2 n \cdot k}+\overline{\sin \cdot 3^{R}} \times \frac{r^{2 n} x^{m-3^{n}}}{m-3^{n} \cdot k} \delta^{\circ} c .
$$

for the true Fluent of $\frac{x^{n+m-1} \dot{x}}{r^{2 n}-2 k r^{n} x^{n}+x^{2 n}}$: Where the former Part of the Expreffion muff be continued to as many Terms as there are Units in, $\frac{m-1}{n}$ (the Remainder, if any, being neglected.)
by refolving them into more simple ones.

Corollary.

334. If the Quotient arifing from the Division of m by n (when the former exceeds) be denoted by v, and the Remainder by t; or, which is the fame, if $v n+t=$
 are respectively equal to $m \mathscr{Q}+m \times \frac{360^{\circ}}{n}, m \mathscr{Q}+2 m \times$ $\frac{360^{\circ}}{n}, m 2+3 m \times \frac{360^{\circ}}{n}$, ® $^{\circ}$. (by Conftruction) will alto be equal to $m 2+v \times 360^{\circ}+t \times \frac{360^{\circ}}{n}, m 2+2 v \times$ $360^{\circ}+2 t \times \frac{360^{\circ}}{n}$ छ$\%$. whereof the Sines and Co-fines (omitting $v \times 360^{\circ}, 2 v \times 360^{\circ}$ vc. the Multiples of the whole Periphery) are the fame with thole of $m 2+t \times$ $\frac{360^{\circ}}{n}, m 2+2 t \times \frac{360^{\circ}}{n} \xi^{\circ} c$. respectively.

Therefore, if the Arcs of the Progreffion, whereof the firft Term is $m \mathscr{\prime}$, and the common Difference $t \times$ $\frac{360^{\circ}}{n}$, be represented by $\tau, \mathscr{T}, \mathscr{q}^{\mu \prime}$ Etc. respectively; it follows that the Fluent of $\frac{x^{n+m-1} \dot{x}}{r^{2 n}-2 k r^{n} x^{n}+x^{2 n}}$ (or, $\frac{x^{n+v n+t-1} \dot{x}}{r^{2 n}-2 k r^{n} x^{n}+x^{2 n}}$ will, aldo, be truly expreffed by
$\overline{\operatorname{Sin} . R} \times \frac{x^{m-n}}{\overline{m-n} \cdot k}+\overline{\operatorname{Sin} \cdot 2 R} \times \frac{r^{n} x^{m-2 n}}{\overline{m-2 n} \cdot k}+\overline{\operatorname{Sin} \cdot 3^{R}} x$ $\frac{r^{2 n} x_{i}^{m-3^{n}}}{\frac{1}{m-3^{n}} \cdot k}$ sc. ($\left.\frac{m-1}{n}\right)$

Of the Filches of Rational Fractions;

$$
\begin{aligned}
& \Gamma \text { Sin. } \mathcal{T} \times M+\operatorname{Co}-T \times N \\
& \operatorname{Sin} . \dot{T} \times{ }^{\prime} M \underline{I}+\operatorname{Co}-\int \dot{T} \times \dot{N} \\
& +\frac{r^{m-n}}{n k}\{
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Sin} . \text { 弚 } \times M / K \\
& \text { छั. - छ์. }
\end{aligned}
$$

In the very fame Manner the Fluent of

is positive) will be exhibited; if R be taken to denote the Arch whole Co fine is $-k$; which will, in this Cafe, be greater than a Quadrant.
PROPOSITION VII.
335. To find the Fluent of $\frac{x^{n-m-1} \dot{x}}{r^{2 n}-2 k r^{n} x^{n}+x^{2 n}}$; under the Refrifions mentioned in the laft Problem.

Let every thing remain as before: Then we fall have $\frac{x^{n-m-1} \dot{x}}{r^{2 n}-2 k r^{n} x^{n}+x^{2 n}}=\frac{1}{n k r-1}$ into $\frac{b x^{-m} \dot{x}}{r^{2}-2 b r x+x^{2}}$ $+\frac{c x^{-m} \dot{x}}{r^{2}-2 c r x+\dot{x}^{2}}(n)$ Whereof the Fluent (by Prob. 3.) appears to be $\frac{1}{n k_{r}^{r-1}}$ into
$-\left\{\begin{array}{l}\sin .2 \\ \operatorname{Sin}_{0} \\ \operatorname{Sin}_{0} \\ \sin _{\sigma_{0}}\end{array}\right\} \times \frac{x^{\mathrm{I}-m}}{m=1 . r^{2}}-\left\{\begin{array}{l}\sin .22 \\ \sin _{0} 22 \\ \sin _{2} 22^{\prime \prime} \\ \xi_{6}\end{array}\right\} \times \frac{x^{2-m}}{m-2 \times r^{5}}$
by refolving them into more simple ones.

$$
\begin{aligned}
& -\left\{\begin{array}{l}
\sin .32 \\
\sin _{0} 32 \\
\sin _{6} 3_{0}^{2} \\
\sigma_{0}
\end{array}\right\} \times \frac{x^{3-m}}{n-3 \cdot r^{4}}(m)+ \\
& \therefore[-\operatorname{Sin} m 2 \times M+\operatorname{Co}-\operatorname{S} 2 \times N \\
& \frac{1}{r^{+1}} \times\left\{\begin{array}{l}
-\operatorname{Sin} . m \dot{2} \times \dot{M}+\operatorname{Co}-\text { - } m \dot{2} \times \dot{N}
\end{array}\right.
\end{aligned}
$$

Which, by Reafoning as above, will be reduced to
$-\overline{\text { Sin. } R} \times \frac{x^{n-m}}{\overline{m-n} \cdot k r r}-\overline{\operatorname{Sin} \cdot 2 R} \times \frac{x^{2 n-m}}{\overline{m-2 n} \cdot k_{r}^{2 n}}$
$-\overline{\operatorname{Sin} .3^{R}} \times \frac{x^{3 n-m}}{\overline{m-3^{n}} \cdot k^{4 n}}\left(\right.$ to $\frac{m}{n}$ Terms $)$
$=\left[-\operatorname{Sin} . T \times M+C_{0}-F . T \times N\right.$

2.E. I_{0}
SCHOLIUM.
336. If, from the Center O, of the Circle ABCD, whore Radius OA, or OV, is r, there be taken OL equal to k and $\mathrm{OP}=x$; and if the A Arch $A B$ be to the Arch AK, whore Confine is $\pm k$, as I to n; and each of
 Of the Fluent of Rational Fractions; of the Arcs $\mathrm{BC}, \mathrm{CD}, \mathrm{DE} \mathcal{E}_{\mathrm{c} \text {. be taken equal to }}$
 cified (in the two preceding Problems) being here expounded by $A K, A B, A C छ^{\circ} \cdot$. respectively, we have $P B=\sqrt{r^{2}-2 b r x+x^{2}}, \quad \dot{P} C=\sqrt{r^{2}-2 c r x+x^{2}} \quad \sigma^{\circ} c \circ$ (Vid. Art. 317. and 323.) Whence, alpo, the Angles

$\frac{x \times \operatorname{Sin} . \text { 2. }}{\sqrt{r^{2}-2 c r x+x^{2}}}, \frac{x \times \operatorname{Sin} . \text {." }}{\sqrt{r^{2}-2 d r x+x^{2}}}$ Eco will here be equal to $B ; C, D$ orc. Therefore the Fluent of $\frac{x^{n+m-1} \dot{x}}{r^{2 n} \mp 2 k r^{n} x^{n}+x^{2 n}}$, and $\frac{x^{n-m-1} \dot{x}}{r^{2 n} \mp 2 k r^{n} x^{n}+x^{2 n}} \quad$ (there given) will, also, be truly defined by

$$
\frac{x^{m-n}}{m-n}+\frac{\operatorname{Sin} .2 R}{\operatorname{Sin} . R} \times \frac{r^{n} x^{m-2 n}}{m-2 n}+\frac{\operatorname{Sin} .3 R}{\operatorname{Sin} . R} \times \frac{r_{2 n} x^{m-3^{n}}}{m-3^{n}} .
$$

$$
\text { (to } \frac{m-1}{n} \text { Terms) }
$$

And by $-\frac{x^{n-m}}{\overline{m-n} \cdot r^{2 n}}-\frac{\operatorname{Sin}, 2 R}{\operatorname{Sin} . R} \times \frac{x^{2 n-m}}{m-2 n \cdot r^{3 n}}-$
$-\frac{\operatorname{Sin} \cdot 3^{R}}{\operatorname{Sin} \cdot R} \times \frac{x^{3 n-m}}{\overline{m-3^{n}} \cdot r^{4 m}}\left(\frac{m}{n}\right)$

छ゙ఁ.
reflectively.

Where the Arc $A K$ (or R) will be greater than a Quadrant when the Sign of k is pofitive ; but less, when negative; and where the Arcs T, $\mathcal{T}^{\prime}, \frac{\prime \prime}{T}$ Etc. denote an arithmetical Progreffion, whole firft Term (T) is equal to $m \times A B$, and whereof the common Difference is equal to $\frac{360^{\circ}}{n}$ (or $B C$) multiplied by m, when m is less than n; but otherwife by the Remainder, of m divided by n.
337. Hence the Fluent of $\frac{z^{q \pm \frac{m}{n} q-x} \dot{z}}{e f z^{q}+g z^{2 q}}$, whereq is any Number, either whole or broken, may be very eafily deduced: For, having transformed the Denominator to $g \times \frac{e}{g} \mp \frac{f z^{q}}{g}+z^{2 q}$, put $\frac{e}{g}=r^{2 n}, \frac{f}{g}=$ $2 k r^{n}$, and $z^{q}=x^{n}$; and then it will become $=g \times$ $\overline{r^{2 n} \mp 2 k r^{n} x^{n}+x^{2 n}}$: Moreover, $z^{q \pm \frac{m}{n} q}$ being $=$ $\overline{x^{n}}{ }^{\mathrm{T}} \frac{m}{n}=x^{n \pm m}$, and $\overline{ \pm \pm \frac{m}{n}} q \times z^{q \pm \frac{m}{n} q-1} \dot{z}=$

- $\overline{n \pm m} \times x^{n \pm^{m-1}} \dot{x}$, the Numerator will be reduced to $\frac{n}{q} \times x^{n \pm m-1} \dot{x}$: And fo, we have $\frac{z^{q \pm \frac{m}{n} q-1} \dot{z}}{e \mp f z^{q}+g z^{2 q}}=$ $\frac{n}{9 g} \times \frac{x^{n} \pm^{m-1} \dot{x}}{r^{2 n} \mp 2 k r^{n} x^{n}+x^{2 n}}$: In which $x=z^{\frac{q}{n}}, r=$ $\left.\frac{\frac{c}{g}}{\frac{1}{2 n}}\right|^{\frac{1}{2}}$, and $k\left(=\frac{\frac{1}{2} f}{g r^{n}}\right)=\frac{\frac{1}{2} f}{\sqrt{e g}}$. But, it may be obferved, that the Fluent hereof is, only, given when
-Art. $333 \cdot \frac{\frac{x}{2} f}{\sqrt{\text { eg }}}$ (or its Equal k) is lefs than Unity *. Therefore, if $\frac{2}{2} f$ be greater than $\sqrt{\operatorname{eg}}$; or if the Values of e and g ${ }_{a}$ re unlike, with regard to pofitive and negative, fo that $\sqrt{\mathrm{Eg}}$ is impoffible; the above Solution fails. But, here, the given Trinomial may be refolved into two Binomials (by Art. 3:0.) and, from thence, the Fluent may be found at swo Operations (by Prob. 4. and 5.)

For, by feigning e干 $f y+g y^{2}=0$, in order to fuch a Refolution, we get $\pm \frac{\frac{z}{2} f+\sqrt{\frac{1}{4} f^{2}-e g}}{g}$, and $\frac{ \pm \frac{1}{2} f-\sqrt{\frac{1}{4} f^{2}-g g}}{g}$ for the Roots of that Equation, or the two firft Terms of the required Binomials: Which therefore are always poffible when $\frac{1}{\ddagger} f^{2}-e g$ is pofitive, or when the foregoing Solution fails.

By denoting the faid Roots by H and K, the Trinomial e $f z^{q}+g z^{2 q}$ is refolved into $g \times \overline{H-z^{q}} \times \overline{K-z^{q}}$,
from whence $\frac{z^{q \pm{ }_{n}^{m} q-1} \dot{\tilde{\sim}}}{e \mp f z^{q}+g z^{2 q}}$ is reduced to

Fluent is given by Art. 332.
338. By proceeding the fame Way the Fluent of $\frac{z^{\frac{m}{n}} q-1}{e+f z^{q}+g z^{2 q}+h z^{3 q}}$ may likewife be found: For, fince one, at leaft, of the three Roots of the Equation $e+f y+g y^{2}+b y^{3}=0$, muft be poffible, the propofed Fluxion, if it cannot be refolved into three Binomials, may, however, be reduced to one Binomial and one Trinomial ; and fo, be brought under the foregoing Forms: But this being a Speculation too much out of the Way of common Ufe to be farther purfued, I fhall here conclude this Section, with obferving, that, when k, in the original Trinomial, above fpecified, is neither lefs, nor greater than Unity, the Fluent cannot then be had directly, from either of the preceding Methods; but muft be found by Comparifon from the Fluent of $\frac{x^{n \pm m-1} \dot{x}}{r^{n} \pm x^{n}}$. Vid. Art. 289.

Of the Fluent of Expreflions,

SECTION VI.

The Manner of invefigating Fluents, when Quantities, and their Logarithms; Arcs and their Sines, \&cc. are involved together: With other Cafes of the like Nature.
PROB. I.
339. $S_{\text {OPPOSING }}^{\text {Quantities ; it is proposed to find the Fluent of }}$ Quantities; it is proposed to find the Fluent of $x^{n} \dot{x} \mathscr{Q}^{x}$.

Let $\mathscr{Q}^{x} \times \overline{A x^{n}+B x^{n-1}+C x^{n-2}}$ छ\%. be affumed for the Fluent required: Then the Fluxion thereof, which is

- Art. 252. $\mathscr{Q}^{x} \dot{x} \times$ hyp. Log. 2** $\times \overline{A x^{n}+B x^{n-1}+C x^{n-2}}$ Ec. $^{n}+$ $2^{x} \times \overline{n \dot{x} A x^{n-1}+\overline{n-1}} \cdot B \dot{x} x^{n-2}+\overline{n-2} . C \dot{x} x^{n-3} \xi_{c}{ }_{0}$ muff consequently be $=x^{n} \dot{x} 2^{x}$: And therefore, by putting m for the hyp. Log. of 2 , we have
$\left.m A x^{n}+m B x^{n-1}+\quad m C x^{n-2}+m D x_{1}^{n-3} \mathcal{E}^{\circ} c_{0} \quad\right\} \|$ $\left.\left.-x^{n}+n A x^{n-1}+\overline{n-1} . B x^{n-2}+\overline{n-2} . C x^{n-3} \xi_{0}\right\}.\right\} \circ$ Whence, comparing the Coefficients of the homologous Terms, we get $A=\frac{1}{m}, B=-\frac{n A}{m}=-\frac{n}{m^{2}}, C=$ $-\frac{\overline{n-1} \cdot B}{m}=\frac{n \cdot \overline{n-1}}{m^{3}}$ छ\%. and consequently $\mathfrak{Q}^{\alpha} \times$ $\overline{A x+B x^{n-1}+C x^{x-2}+\xi_{0}}=\frac{Q^{x}}{m} \times \overline{x^{n}-\frac{n x^{n-1}}{m}+}$ $\frac{\overline{n \cdot \overline{n-1} \cdot x^{n-2}}}{m l^{2}}-\frac{n \cdot \overline{n-1} \cdot \overline{n-2} \cdot x^{n-3}}{m^{3}}$ oc. Which
involving the Fluents of other given Fluxions. 389
Series, it is plain, will always terminate when n is a whole pofitive Number.
2.E.I.

340. In the preceding Problem the Coefficients A, $B, C, \delta^{\circ} c$. of the affumed Series were taken, in the common Way, as conftant Quantities; which, becaule of the general Multiplicator $2 x$, was fufficient.

But, in other Cafes, where a proper Multiplicator, to exprefs the mechanical, or logarithmic, E'c. Part of the required Fluent, cannot readily be known, it will be convenient to affume a Series for the Whole (independent of any general Multiplicator) wherein the Quantities $A, B, C, D, \delta^{\circ} c$ muft be confidered as variable.
PR.O B. II.
341. To find the Fluent of $z^{m} x^{n-1} \dot{x} ; z$ being the Hyperbolic-Logarithm of x; and m and n any given Numbers:

- Leet thère be affumed $A z^{m}+B z^{m-1}+C z^{m-2}+$ $D z^{m-3} \vartheta^{\circ} c$. = the Fluent of $z^{m} x^{n-1} \dot{x}$: Then, in Fluxions, we f̣all have
$\left.\begin{array}{l}\dot{A} z^{m}+\dot{B} z^{m-1}+\dot{C} z^{m-2}+\dot{D} z^{m-3} \xi_{c} . \\ +m A z^{m-1} \dot{z}+\overline{m-1} \cdot B z^{m-2} \dot{z}+\overline{m-2} \cdot C z^{m-3} \dot{z} \dot{\varepsilon} c_{0}\end{array}\right\} \begin{aligned} & \| \\ & \alpha_{z} \\ & x_{x}\end{aligned}$
But $\dot{z}=\frac{\dot{x}}{x} ;$ whence, by ordering the Equation, there arifes
$\left.\left.\left.\left.-x^{n-1} \dot{x}\right\} \times z^{m}+\frac{\dot{B}}{\frac{m A \dot{x}}{x}}\right\} \times z^{m-1}+\frac{\dot{C}}{\frac{m-1 \cdot B \dot{x}}{x}}\right\}\right\}^{z^{m-2}, \xi_{c}}=0$
Now, by making the Coefficients of the like Powers of z, equal to Nothing, we have $\dot{A}=x^{\pi-1} \dot{x}, A=$
$\frac{x^{n}}{n} ; \dot{B}=\left(-\frac{m A \dot{x}}{x}\right)=-\frac{m x^{n-x} \dot{x}}{n}, \quad B=-\frac{m x^{n}}{n^{2}} ;$ C c 3
$\dot{C}\left(=-\frac{\overline{m-1} \cdot B \dot{x}}{x}=\right) \frac{m \cdot \overline{m-1} \cdot x^{n-1} \dot{x}}{n^{2}} C=$
$\frac{m \cdot \overline{m-1} \cdot x^{n}}{n^{3}} \varepsilon^{2} c_{0}$ and confequently the Fluent fought,
$=\frac{x^{n}}{n}$ into $z^{m}-\frac{m z^{m-1}}{n}+\frac{m \cdot \overline{m-1} \cdot z^{m-2}}{n^{2}}-$
$\frac{m \cdot \overline{m-1} \cdot \overline{m-2} \cdot z^{m-3}}{n^{3}}+\frac{m \cdot \overline{m-1} \cdot \overline{m-2} \cdot \overline{m-3} \cdot z^{m-4}}{n^{4}}$
$\xi^{\circ} c$. Which, when m is a whole pofitive Number? will terminate in $m+1$ Terms. 2. E. I°
PROB. III.

342. To find the Fluent of $z^{n} \dot{y} ; z$ being the Arch of a given Circle, and y the Sine corresponding.

Let there be affumed $A z^{n}+B z^{n-1}+C z^{n-2}+$ $D z^{n-3}=$ Fluent of $z^{n} \dot{y}$; then, by taking the Fluxion, we foal have
$\left.\begin{array}{l}\dot{1} z^{n}+\dot{B} z^{n-1}+\dot{C} z^{n-\dot{2}}+\dot{D} z^{n-3} \\ -z^{n} \dot{y}+n A z^{n-1} \dot{z}+\overline{n-1} \cdot B z^{n-2} \dot{z}\end{array}\right\}=0$
Whence, putting $\dot{A}-\dot{y}=0, \dot{B}+n A \dot{z}=0, \dot{C}+$ $\overline{n-1} \cdot B \dot{z}=0, \dot{D}+\overline{n-2} \cdot C \dot{z}=0, \varepsilon^{\circ} c$. we get $A=y$; $\dot{B}=-n y \dot{z}, \dot{C}=-\overline{n-1} \cdot B \dot{z} \mathcal{E}^{*} c$.

But, if a and x be taken to denote the Radius and Co-fine of the Arch z, it will appear, from Art. 142. that $y \dot{z}=-a \dot{x}$ and $x \dot{z}=n \dot{y}$: Therefore $\dot{B}=n a \dot{x}$, and $B=n a x$; aldo $\dot{C}(=-\overline{n-1} \cdot B \dot{z})=$ $n \cdot n-1 \cdot a x \dot{z}=-n \cdot \overline{n-1} \cdot a^{2} \dot{y}$, and $C=-n \cdot n-1 \cdot a^{2} y$; likewife $\dot{D}(=-\overline{n-2} \cdot C \dot{z})=n \cdot \overline{n-1} \cdot \overline{n-2} \cdot a^{2} y \dot{z}$
$=-n \cdot \overline{n-1} \cdot \overline{n-2} \cdot a^{3} \dot{x}$, and $D=-n \cdot n-1 \cdot n-2 \cdot a^{3} x$ $\varepsilon^{\circ} \mathrm{C}$.
involving the Fluent of other given Fluxions. 391 छ'. E'. $_{c}$. and consequently $A z^{n}+B z^{n-1}+C z^{n-2} \mho_{c}$. $=y z^{n}+n a x z^{n-1}-n \cdot \overline{n-1} \cdot a^{2} y z^{n-2}-n \cdot \overline{n-1}$: $\overline{n-2} \cdot a^{3} x z^{n-3}+\varepsilon^{\circ} \%$

$\stackrel{G}{-}$
2. E. 1 .

In the very fame Manner the Fluent of $z^{n} \dot{\sim}$, or $z^{*} \times-\dot{x}(w$ being the Verfed-Sine of the Arch $z)$ will be found $=-x z^{n}+n y a z^{n-1}+n \cdot n-1 \cdot x a^{2} z^{n-2}$ $-n \cdot \overline{n-1}, \overline{n-2} \cdot y a^{3} z^{n-3}-n, \overline{n-1}, n-2, \overline{n-3} \cdot x a^{4} z^{n-}{ }_{4}$ + E' .

PROB.
PROB. IV.
343. The Quantities, x, y and z being the fame as in the preceding Problem; to find the Fluent of $z^{n} x^{r} y^{m} \dot{y}$.
By affuming $A z^{n}+B z^{n-1}+C z^{n-2}+D z^{n-3}$ छgc. and proceeding as above, we have $\dot{A}=x^{r} y^{m} y^{j}, \dot{B}=-$ $n A \dot{z}, \dot{C}=-\overline{n-1} \cdot B \dot{z}, \dot{D}=-\overline{n-2} \cdot C \dot{\dot{z}} छ^{\circ} c$. or (becaufe $\dot{z}=\frac{a \dot{y}}{x}$) $\dot{B}=-\frac{n a A \dot{j}}{x}, \dot{C}=-\frac{\overline{n-1} \cdot a B \dot{y}}{x}$, $\dot{D}=-\frac{\overline{n-2} \cdot a C_{\dot{y}}}{x} छ_{c .}$. Therefore, if the Fluent of $x^{r} y^{m} j$ (found from Art. 142. and 291.) be denoted by 2 ; that of $\frac{2 \dot{y}}{x}$, by R; that of $\frac{R \dot{y}}{x}$, by S; tbat of $\frac{S j}{x}$, by $\tau \xi^{\circ} c$. it follows that the Fluent of $z^{n} x^{r} y^{m} y^{j}$ will be truly reprefented by $2^{n}-n a R z^{n-1}+n, \overline{n-1}$. $a^{2} S z^{n-2}-n \cdot n-1 \cdot n-2 \cdot a^{3} T z^{n-3}$ छ$\sigma^{3} c$.

Corollary.

344. Since $\dot{y}=-\frac{x \dot{x}}{y}=\frac{x \dot{z}}{a}$ (Vid. Art. 142.) it follows that $z^{n} x^{r} y^{m} \dot{y}$ is $=-z^{n} x^{r+1} y^{m-1} \dot{x}=\frac{z^{n} x^{r+1} y^{m} \dot{z}}{a}$:
Therefore the Fluents of thefe two laft Expreflions are, alfo, exhibited in the foregoing Series.
345. As the Values of $\mathcal{Q}, R, S, \mathcal{E}^{\circ}$. in the preceding Articles, are too complex to be purfued in a general Manner, it may not be amifs to illuftrate the Method of proceeding by an Example or two.

involving the Fluents of other given Fluxions. 393

Let, then, the Fluxion propofed be $\frac{z y^{2} \dot{j}}{x}$: Where n being $=1, m=2$, and $r=-1$, we have $\dot{\mathcal{Q}}=\frac{y^{2} \dot{j}}{x}=$ $\frac{y^{2} \dot{j}}{\sqrt{a^{2}-y^{2}}}$ (becaufe $\sqrt{a^{2}-y^{2}}=x_{\text {. }}$) Whence $2=-$ $\frac{1}{2} y \sqrt{\frac{1}{a^{2}}-y^{2}}+\frac{1}{2} a z=-\frac{1}{2} y x+\frac{1}{2} a z^{*}$, and therefore $\cdot \dot{R}(=$ Art. 279 .
 $\dot{\varepsilon}$) and confequently $R=-\frac{1}{4} y^{2}+\frac{1}{4} z^{2}$; and fo, $\frac{a z-y x}{2} \times-z+a \times \frac{y y-z z}{4}$, or $\frac{a z^{2}-2 x y z+a y^{2}}{4}$, is
the true Fluent of $\frac{z y^{2} \dot{y}}{x}\left(=-z y \dot{x}=\frac{y^{2} z \dot{z}}{a} \cdot \dagger\right) \quad$ tArt. 344 .
Again, let the Fluent of $-p \dot{x} \times \overline{z+y^{2}}$ (expreffing the Content of the Solid generated by the Revolution of the Cycloid) be required.

Herc, the given Expreffion, in fimple Terms, will become - $p z^{2} \dot{x}-2 p z y \dot{x}$ - $p y^{2} \dot{x}$: Whereof the Fluent of the firt Term - $p z^{2} \dot{x}$, will be had, by making $n=2$, $m-1=0$, and $r+1=0$ (Vid. Form. 2. in Corol.) Where, we therefore, have $\dot{\mathscr{}}=\frac{y \dot{y}}{x}=-\dot{x}$; whence $2=-x$; alro $\dot{R}\left(\frac{2 \dot{y}}{x}\right)=-\dot{y}$, and $R=-y$; likewife $\dot{S}\left(=\frac{R \dot{y}}{x}\right)=-\frac{j \dot{y}}{x}=\dot{x}, S=x$; and confequently the Fluent of $-z^{2} \dot{x}\left(2 z^{n}-n a R z^{n-1}\right.$ $+n \cdot \overline{n-1} \cdot a^{2} S z^{n-2} छ^{2}\left(c_{0}\right)=-x z^{2}+2 a y z+2 a^{2} x:$ To which, adding the Fluent $\left(\frac{a z^{2}-2 x y z+a y^{2}}{2}\right)$ of the fecond
fecond Term - $2 z y \dot{x}$ (found in the preceding Exampe) and alpo that of $-y^{2} \dot{x}$ (or $-a^{2} \dot{x}+x^{2} \dot{x}$, found the common Way) we get, in the Whole, $\frac{1}{2} a-x \times z^{2}$ $+\overline{2 a y-y x} \times z+\frac{1}{2} a y^{2}+a^{2} x+\frac{1}{3} x^{3}$; which, multiply'd by p, and corrected, gives, p into $\frac{1}{2} \overline{a-x} \times z^{2}$ $+\overline{2 a y-y x} \times z+\frac{1}{2} a y^{2}+a^{2} x+\frac{1}{3} x^{3}-\frac{4}{3} a^{4}$, for the true Fluent that was to be determined.

PROB. V.

346. Supposing H to denote the Fluent of $\overline{\left.k+l z^{n}\right)^{r}} \times$ $z^{\text {vn-1 }} \dot{z}$; to find the whole Fluent of $\left.H \times \overline{a-b z^{n}}\right]^{m} \times$ $z^{q n-1} \dot{z}$, (when $a-b z^{n}$ becomes equal to Nothing.)

By refolving $\overline{k+l z^{n}}{ }^{r} \times z^{v n-x} \dot{z}$ into pimple Terms, and taking the Fluent, the ordinary Way, we get $H=$ $\frac{k^{r} z^{v n}}{n} \times \frac{1}{v}+\frac{r l z^{n}}{v+1 \cdot k}+\frac{r \cdot r-1 \cdot l^{2} z^{2 n}}{2 \cdot v+2 \cdot k^{2}}$ sc. Which Value being fubftituted above, and p wrote inftead of $q+v$, we Shall have $H \times \overline{a-b z^{n}}{ }^{m} \times z^{q n-1} \dot{z}=\frac{k^{r}}{n} \times$ $\overline{a-b z^{n}}{ }^{m} \times z^{p n-1} \dot{\approx}$ into $\frac{1}{v}+\frac{r l z^{n}}{v+1} \cdot k+\frac{r \cdot \overline{r-1}, l^{2} z^{2 n}}{2 \cdot \overline{v+2} \cdot k^{2}}$ $+\frac{r \cdot \overline{r-1} \cdot \overline{r-2} \cdot l^{3} z^{3^{n}}}{2 \cdot 3 \cdot \overline{v+3} \cdot k^{3}} \delta_{c} \%$
Let, now, the Fluent of $\overline{a-b z^{n}}{ }^{m} \times z^{\beta^{n-1}} \dot{z}$ (in the proposed Circumftance) be denoted by A, and put $t=$ $p+m+1$; then it follows, from Art. 286. (by writing $\frac{1}{v}$ for $e_{2} \frac{r l}{v+1} \cdot k$ for f, Eff.) that $\frac{k^{r}}{n} \times A$ into $\frac{1}{v}+$
involving the Fluent of other given Fluxions. 395
$\left.\frac{p \cdot r}{t \cdot v+1} \times \frac{a l}{b k}+\frac{p \cdot \overline{p+1} \cdot r \cdot \overline{r-1}}{t \cdot \overline{t+1} \cdot 2 \cdot v+2} \times \frac{\overline{a l}}{b k}\right]^{2}+$
$\frac{p \cdot \overline{p+1} \cdot \overline{p+2} \cdot r \cdot \overline{r-1} \cdot \overline{r-2}}{t \cdot \overline{t+1} \cdot \overline{t+2} \cdot 2 \cdot 3 \overline{v+3}} \times\left.\frac{a!}{b k}\right|^{3}+\delta^{\circ} c$. will be the true Value of the Fluent.

Note, p and $m+1$ mut here be pofitive Quantities * ; Art, 286. and it is also requifite that $\frac{l}{k}$ mould be greater than $\frac{b}{a}$; otherwife the Fluent will fail.

Ex. נ. Let $\dot{H}=\overline{1-y}^{-\frac{1}{2}} \times \dot{y}$; and let the whole

$$
\text { Fluent of } H \times \overline{\left.1-y^{2}\right)^{-\frac{x}{2}}} \dot{y} \text {, be demanded. }
$$

Then, k being $=1, l=-1, z=y, n=2, r=$ $-\frac{1}{2}, v=\frac{1}{2} ;$ aldo $a=1, b=1, m=-\frac{1}{2}, q=\frac{1}{2}$; $p(=q+v)=1, t(=p+m+1)=\frac{3}{2}$, and A (三the whole Fluent of $\left.\left.\overline{1-y^{2}}\right|^{-\frac{1}{2}} \dot{j}\right)=1$; we fall, by fubfitting there feveral Values above, get $1+\frac{1}{3 \cdot 3}+$ $\frac{1}{5.5}+\frac{1}{7.7}+\frac{1}{9.9}+\frac{1}{11.11}$ Etc. = Fluent of $H \times$ $\overline{1-y^{2}}{ }^{-\frac{1}{2}} \times \dot{j}($ or $H \dot{H})$ when $y=1$. Which Fluent. being alto expreffed by $\frac{H^{2}}{2}$, it follows that $\frac{H^{2}}{2}=\frac{1}{1}+$ $\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+\frac{1}{81}$ Etc. Where H is $\frac{7}{4}$ of the $\mathrm{Pe}-$ niphery of the Circle whore Radius is Unity.

Ex.

396 The Manner of making Fluents converge.
Ex. 2. Let $\left.\dot{H}=\overline{c^{2}+x^{2}}\right]^{-\frac{3}{2}} \times \dot{z}$; to find the Fluent

$$
\text { of } \left.H \times \overline{b^{2}-z^{2}}\right]^{-\frac{1}{2}} \times c^{2} \dot{z} .
$$

Here, $k=c^{2}, l=1, n=2, r=-\frac{3}{2}, v=\frac{r}{2} ;$ alfo $a=b^{2}, b=1, m=-\frac{1}{2}, q=\frac{1}{2}, p(q+v)=1, t$
$(p+m+1)=\frac{3}{2}$, and $A\left(=\right.$ whole Fluent of $\overline{\left.h^{2}-z^{2}\right)^{-\frac{1}{2}}}$ $x z \dot{x})=b$: Whence, by Subftitution, we have τ^{3} $h \times \overline{1-\frac{2}{3} \times \frac{b^{2}}{c^{2}}+\frac{2}{3} \times \frac{b^{4}}{c^{4}}-\frac{1}{3} \times \frac{b^{6}}{c^{6}}}$ ซrc. which, multiplied by c^{2} (the Coefficient of \dot{z}) gives $\frac{1}{c} \times$ $\overline{b-\frac{b^{3}}{3 c^{2}}+\frac{b^{5}}{5 c^{4}}-\frac{b^{2}}{7 c^{6}}}$ ©c. for the true Fluent in this Cafe: Where the Series is that expreffing the Arch of *Art. 142. the Circle whole Tangent is b and Radius c; and is therefore equal to $c \times$ Arch, whofe Radius is Unity and Tangent $=\frac{b}{c}:$ Whence this laft Arch (taken without the multiplicator c) is the true Value of the Fluent.

S ECTIONVII.

Sbewing how Fluents, found by Means of Infinite Seriefes, are made to converge.
347. T is found, in Art. 85. that the Fluent of $\left.\overline{a+c z^{2}}\right|^{m} \times d z^{q^{n-1}} \dot{\dot{z}}$, in an infinite Series, (making $m+q=s$) is expreffed by $\frac{\left.\frac{a+c z^{n}}{}\right)^{m+1} \times d z^{q n}}{q^{n}} \times$

The Manner of making Fluents converge.

$\overline{x-\frac{\overline{s+1} \cdot c z^{n}}{\overline{q+1} \cdot a}+\frac{\overline{s+1} \cdot \overline{s+2} \cdot c^{2} z^{2 n}}{\overline{q+1} \cdot q+2 \cdot a^{2}}}-\xi \%$. Whence it follows (and is evident by bare Inspection) that the Fluent of $\overline{\left.a-c y^{n}\right)^{r}} \times y^{q n-1} \dot{y}$ (where the fecond Term under the Vinculum is negative) will be truly defined by $\frac{\overline{\left.a-c y^{n}\right)^{r+1}} \times y^{q n}}{q n a}$ into $:+\frac{\overline{s+y} \cdot c y^{n}}{q+1} \cdot a \quad+\frac{\overline{s+1} \cdot \overline{s+2} \cdot c^{2} y^{2 n}}{\overline{q+1} \cdot \overline{q+2} \cdot a^{2}}$ + Ec. fuppofing $s=r+q$.
But, befides the Series here given, and Thole, in Art. 83. 84, exprefling the fame Value, the Fluent of $\overline{a-c y^{m}} \times y^{q^{n-1}} \dot{y}$ will, yet, admit of another Form, different from all of them; by means whereof and that above, we hall be enabled to draw out forme very ufeful Conclufions.
348. Put $z^{n}=\frac{a y^{n}}{a-c y^{n}}$; then $y^{n}=\frac{a z^{n}}{a+c z^{n}}$, and therefore $n y^{n-y_{j}} \dot{y}=\frac{n a^{2} z^{n-1} \dot{z}}{\left.a+c z^{n}\right)^{2}}$; also $a-c y^{n}=\frac{a^{2}}{a+c z^{n}}$,

confequently $\overline{a-c y^{n}} \times y^{q \pi-1} \dot{y}=a^{2 r+q+1} \times$
$\overline{\left.a+c z^{n}\right)^{-r-q-1}} \times z^{q n-1} \dot{z}$: Which Fluxion, fo tran formed, being compared with $\left.\overline{a+c z^{n}}\right|^{m} \times d z^{n-1} \dot{z}$; we have $m=-r-q-1, d=a^{2 r+q+1}$, and $s(q+m)$ $=-r-\mathbf{I}$; whence, by fubflituting there Values in the first Series, above given, the Fluent fought will
be had $=\frac{\frac{\overline{a+c z]^{-r-q}} \times a^{2 r+q} \times z^{q^{n}}}{q^{n}} \times 1+\frac{r c z^{n}}{q+1} \cdot a}{r a}$
$\left.+\frac{r \cdot \overline{r-1} \cdot c^{2} z^{2 n}}{q+1 \cdot q+2 \cdot a^{2}}+\frac{r \cdot \overline{r-1} \cdot \overline{r-2} \cdot c^{3} z^{3 n}}{q+1} \cdot \overline{q+2} \cdot q+3 \cdot a^{3}\right) c_{0}$

The Manner of making Fluents converge.
Which, by reftoring y (or writing $\frac{a^{2}}{a-c y^{n}}$ and $\frac{a y^{n}}{a-c y^{n}}$ for their Equals $a+c z^{n}$, and z^{n}) becomes
$\overline{\left.\frac{a-c y^{n}}{}\right)^{r} \times y^{q n}} \times \overline{q^{n}} \times \frac{r}{q+1} \times \frac{c y^{n}}{a-c y^{n}}+\frac{r \cdot \overline{r-1}}{q+1 \cdot q+2} \times$
$\overline{\overline{c^{2} y^{2 n}}} \overline{\overline{a-\left.c y^{n}\right|^{2}}} \dot{\theta}^{c} c$, the true Fluent, of $\overline{\left.a-c y^{n}\right)^{r}} \times 9^{q n-1} \dot{y}$.
349. This Fluent may be otherwife found, independent of that above, in the following Manner:

It is evident, by taking the Fluxion of $\frac{\left.\overline{a-c y^{n}}\right|^{r} \times y^{q}}{q^{n}}$ (which Quantity would be the Fluent fought, if $\left.\overline{a-c y^{n}}\right|^{r}$ was conftant) that $\frac{\overline{a-c y^{n}}{ }^{r} \times y^{9 n}}{q^{n}}$ is $=$ the Fluent of $\overline{a-c y^{n}}{ }^{r} \times y^{q n-s} \dot{y}-$ Fluent of $\frac{r c}{q} \times$ $\left.\overline{a-c y^{n}}\right|^{r-1} \times y^{q^{n+n-1}} \dot{y}$: This Equation, by tranfoofing the lat Term, and writing x in the room of $a-c y^{n}$ (for the Sake of Brevity) will become Flu. $x^{r} y^{q^{n-1}} \dot{y}=$ $\frac{x^{r} y^{q^{n}}}{q^{n}}+\frac{r c}{q} \times$ Flu. $x^{r-1} y^{q^{n+n-1}} \dot{y}$. From the very fame Argument (if, inftead of r, we fubftitute $r-1, r-2$ Er. fucceffively ; and, for q. write $q+1, q+2, q+3$, Er. respectively) we fall, also, have
Flu. $x^{r-1} y^{g^{n+n}-r} j=\frac{x^{r-1} y^{q+n}}{\overline{q+1} \cdot n}+\frac{\overline{r-1} \cdot c}{q+1} x$
Fin. $x^{r-2} y^{q^{n+2 x-1}} \dot{y}$;
Fin. $x^{r-2} y^{q n+2 n-r} j=\frac{x^{r-2} y^{q n+2 n}}{\overline{1+2} \cdot n}+\frac{\overline{r-2} \cdot c}{q+2} \times$
Flu. $x^{r-3} y^{g^{n+}+3^{n-3}} \dot{y}$;

The Manner of making Fluents converge.

Whence, by fubftituting thee Values, one by one, in that of, Flu. $x^{r} y^{q n-1} y$, we get
Flu. $x^{r \prime} y^{q-1} \dot{y}=\frac{x^{r} y^{q n}}{q^{n}}+\frac{r c}{q} \times \frac{x^{r-1} y^{q^{n+n}}}{\overline{\underline{+1} \cdot n}}+\frac{r \cdot r-1 \cdot c^{2}}{q \cdot q+1}$
\times Flu. $x^{r-2} y^{q n+2 n-1} \dot{y}=\frac{x^{r} y^{q n}}{q^{n}}+\frac{r c x^{r-1} y^{q+n}}{q \cdot \overline{q+1} \cdot n}+$
$\frac{r \cdot \overline{r-1} \cdot c^{2}}{q \cdot \overline{q+1}} \times \frac{x^{r-2} y^{q n+2 n}}{q+2 \cdot n}+\frac{r \cdot \overline{r-1} \cdot \overline{r-2} \cdot c^{3}}{q \cdot \overline{q+1} \cdot q+2} \times$
Flu. $x^{r-3} y^{q n+3^{n-1}} \dot{y}=\frac{x^{r} y^{q n}}{q^{n}}+\frac{r c x^{r-1} y^{q^{n+n}}}{q \cdot q+1} \cdot n+$

$q \cdot q+1 \cdot q+2 \cdot n \quad q \cdot q+1 \cdot q+2 \cdot q+3 \cdot n$
${ }^{\circ}$ c. Where the Law of Continuation is manifeft; and where, by making $\frac{x^{r} y^{y^{n}}}{q^{n}}$ a general Multiplicator, we Shall have the very Series above exhibited.
350. From the Equality of the two foregoing Expreffions, for the Fluent of $\overline{a-c y^{n}} \times y^{q^{n-1}} \dot{y}$, (or $x^{r} y^{q^{n-1}} \dot{y}$) the Bufinefs of finding Fluents, by infinite Seriefes, will, in many Cafes, be very much facilitated.

For, in the firft Place, it follows (by dividing both by $\frac{\overline{\left.a-c y^{n}\right)^{r+1}} x y^{q^{n}}}{q n a}$ or $\frac{x^{r+1} y^{q^{n}}}{q^{n a}}$) that the Seriefes $\mathrm{I}+$ $\frac{\overline{s+1} \cdot c y^{n}}{\overline{q+1} \cdot a}+\frac{s+1 \cdot \overline{s+2} \cdot c^{2} y^{2 n}}{\overline{q+1} \cdot \overline{q+2} \cdot a^{2}}$ ifc. and $\frac{a}{x} \times$
$1+\frac{r c y^{n}}{\overline{q+1} \cdot x}+\frac{r \cdot \overline{r-1} \cdot c^{2} y^{2 n}}{q+1 \cdot q+2 \cdot x^{2}}+\frac{r \cdot \overline{r-1} \cdot \overline{r-2} \cdot c^{3} y^{n}}{\overline{q+1} \cdot q+2 \cdot q+3 \cdot x^{3}}+$
Sc. mut alpo be equal to each other, let the feveral

Quantities, therein concerned, be what they will (which may be otherwife proved, independent of Fluxions.) Therefore, if in the room of q and s we write any other Quantities p and t, the Equation will, fill, hold, and will then become $\mathrm{I}+\frac{\overline{t+1} \cdot c y^{n}}{\overline{\overline{p+1}} \cdot a}+\overline{\overline{t+1} \cdot \overline{t+2} \cdot c^{2} y^{2}} \overline{\overline{p+1} \cdot \overline{p+2} \cdot a^{2}}$
$+\delta_{c}=\frac{a}{x} \times 1+\frac{r c y^{n}}{\overline{p+1} \cdot x}+\frac{r \cdot \overline{r-1} \cdot c^{2} y^{2 n}}{\overline{p+1} \cdot p+2 \cdot x^{2}} छ_{c}$.
(t being $=p+r$.)
Moreover, if as many Terms of the firs Series $1+$ $\frac{\overline{s+1} \cdot c y^{n}}{\overline{q+1} \cdot a}+\frac{\overline{s+1} \cdot \overline{s+2} \cdot c^{2} y^{2 n}}{\overline{q+1} \cdot \overline{q+2} \cdot a^{2}}+\frac{\overline{s+1} \cdot \overline{s+2} \cdot \overline{s+3} \cdot c^{3} y^{3}}{\overline{q+1} \cdot \overline{q+2} \cdot \overline{q+3} \cdot a^{3}}$ \mathcal{E}°. be taken as are denoted by any given Number v, and the lat of them be represented by 2 , it is evident, from the Law of the Series, that the first of the remanning Terms will be expreffed by $2 \times \frac{s+v}{q+v} \times \frac{c y^{n}}{a}$; the fecond, of them, by $2 \times \frac{\overline{s+v}}{q+v} \times \frac{\overline{s+v+1}}{q+v+1} \times$ $\frac{c^{2} y^{2 n}}{d^{2}}$ Ec. and therefore the Sum of all of them (putting $q+v=p$ and $s+v(=r+q+v)=t)$ will be $=2 \times$ $\frac{t}{p} \times \frac{c y^{n}}{a}+2 \times \frac{t}{p} \times \frac{t+1}{p+1} \times \frac{c^{2} y^{2 n}}{a^{2}}+\delta_{0} c_{0}=$
$\frac{12 y^{n}}{p a} \times 1+\overline{\overline{\frac{t+1}{p+1} \cdot a}+\frac{\overline{t+1} \cdot t+2}{\overline{p+1} \cdot c^{2} y^{2 n}}+\varepsilon^{\circ} \%}$
$=\frac{12 y^{n}}{p x} \times 1+\overline{r y^{n}} \overline{\overline{p+1} \cdot x}+\frac{r \cdot \overline{r-1} \cdot c^{2} y^{2 x}}{\overline{p+1} \cdot \overline{p+2} \cdot x^{2}} छ_{c}$
(by writing the Series found above in the room of its Equal) and consequently the whole Series (including the v firf Terms $)=1+\frac{\overline{s+1} \cdot y^{n}}{\overline{q+1}: a}+$
$\frac{\overline{s+1} \cdot \overline{s+2} \cdot c^{2} y^{2 n}}{q+1 \overline{q+2} \cdot a^{2}}$ (v) $+\frac{t Q c y^{n}}{p x} \times 1+\overline{r c y^{n}} \overline{\overline{p+1} \cdot x}+$ $\frac{r \cdot r-1 \cdot c^{2} y^{2 i}}{\overline{p+1} \cdot p+2 \cdot x^{2}}+\frac{r \cdot r-1 \cdot r-2 \cdot c^{3} y^{n}}{p+1 \cdot p+2 \cdot p+3 \cdot x^{3}}+\mathcal{O}_{6}$ Which, drawn into the general Multiplicator $\frac{x^{r+1} \times y^{9 \pi}}{q^{n a}}$ (id. Art. 347.) will.give the Fluent of $\overline{a-c y^{2}}{ }^{r} \times y^{g n-1} \dot{y}$ (or $x^{r} y^{q n-1} j$) according to a new Form; compounded out of the two preceding ones; where the fecond Series (the Value of p being large in refpect of r) will always converge much after than the remaining Part of the firft, for which it is fubflituted: But this will, more fully, appear from what follows hereafter. It will be proper to take notice here that the Fluent of $\overline{\left.a+c z^{n}\right]^{m}} \times z^{q n-1} \dot{z}$ (the Fluxion firft proposed, where the fecond Term under the Vinculum is pofitive) will also be had from hence (by writing z for y, m for r, and - c for c) and is therefore equal to $\frac{x^{m+1} z^{q n}}{q n a}$ drawn into the Sum of the two following Seriefes, $1-\frac{\overline{s+1} \cdot c z^{n}}{q+1 \cdot a}+\frac{\frac{\overline{s+1} \cdot \overline{1}+2 \cdot c^{2} z^{2 n}}{q+1 \cdot q+2 \cdot a^{2}}}{q+\frac{s+1 . s+2 . s+3 \cdot c^{3} z^{3 n}}{q+1 \cdot q+2 \cdot q+3 \cdot a^{3}}}$
$-\frac{1,2\left(z^{n}\right.}{p x} \times 1-\frac{m c z^{n}}{\overline{p+1} \cdot x}+\frac{m \cdot m-1 \cdot c^{2} z^{2 n}}{\overline{p+1} \cdot \overline{p+2} \cdot x^{2}}-$
$\frac{m!m-1 \cdot m-2}{m} \cdot c^{3} z^{3^{n}}+\varepsilon^{\circ} c$.
$\overline{p+1} \cdot \overline{p+2} \cdot \overline{p+3} \cdot x^{3}$
Where, $s=m+q, p=v+q, t=s+v, x=a+c z^{n}$, and $2=$ the lat Term of the frt Series continued to v Terms, v being any whole Number, at pleafure. A few Examples will thew the Ufe of what is above delivered.
Dd

Ex.
351. Ex. 1. Let $\frac{\dot{z}}{1+z}$, or $\overline{1+z}^{-1} \dot{z}$, be propounded. Which being compared with $\left.\overline{a+c z^{n}}\right|^{m} \times z^{9 n-1} \dot{\tilde{z}}$, we have $a=1, c=1, n=1, x=1+z, m=-1, q n-1=0$, or $q=1$; whence aldo $s(m+q)=0, p(v+q)=v+1$, $t(s+v)=v$, and confequently the Fluent itself (by fubftituting thee feveral Values in the lat general Theorem $)=z$ into $1-\frac{z}{2}+\frac{z^{2}}{3}-\frac{z^{3}}{4}(v)-\frac{v 1,2}{v+1 \cdot x}$. $x_{1}+\frac{z}{v+2 \cdot x}+\frac{2 \cdot z^{2}}{v+2 \cdot v+3 x^{2}}+\frac{2 \cdot 3 \cdot z^{3}}{v+2 \cdot v+3 \cdot v+4 \cdot x^{3}}$, E\%. Where (2) the lat Term of the firft Series being $\pm \frac{z^{v-1}}{v}$, the Multiplicator $\left(\frac{v z 2}{v+1} \cdot x\right)$ to the Second, will be $=\mp \frac{z^{v}}{v+1, x}$; and fo the Fluent itself $\frac{\text { will be reduced to } z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\frac{z^{4}}{4}(v) \mp \frac{z^{v+1}}{v+1} \times x}{2 \cdot z^{2}} \times$ $1+\frac{z}{v+2 \cdot x}+\frac{2 \cdot z}{v+2 \cdot \overline{v+3} \cdot x^{2}}+\xi_{6}$. In which the Signs - and + , before z^{v+1}, obtain alternately, according as v is an odd or even Number. But, to Shew the Advantage of expreffing the Fluent in this Manner, by two different Seriefes, let $z=1$, and let t be taken $=8$; then the Value of the firft Series (continued to 8 Terms) being $=0,6345238$ Etc. and That of the fecund Series $=\frac{1}{18}+\frac{A}{20}+\frac{2 B}{22}+\frac{3 C}{24}+\frac{4 D}{26}$ $千 \frac{5 E}{28}$ \&cc. (where A, B, C, D \&cc. denote the Terms preceding thole where they flan) $=0,0555555+$ $0,0027178+0,0002525+0,0000316+0,0000048$ $+0,0000009+0,0000002=0,0586233$; it is evident that-

The Manner of making Fluents converge.

that the Fluent of $\frac{\dot{z}}{1+z}$, when z becomes $=1$, will be $=0,634523^{8}+0,0586233=0,693$ r471 : Which is true to the very laft Decimal Place; and would have required, at leaft, 100000 Terms of the firft, or common, Series.
352. Ex. 2. Let the Fluent of $\frac{\dot{z}}{1+z^{2}}$ (exprefling the Arch whofe Radius is 1 and Tangent z) be required.
In this Cafe we have $a=1, c=1, n=2, x=1+z z$, $m=-1, q n-1=0$, or $q=\frac{1}{2}, s=-\frac{1}{2}, p=v+\frac{1}{2}$, and the Fluent itfelf $=z-\frac{z^{3}}{3}+\frac{z^{5}}{5}-\frac{z^{7}}{7}(v) \pm$ $\frac{z^{2 v+1}}{2 v+1} \cdot x=\overline{1+\frac{2 \cdot z^{2}}{2 v+3 \cdot x}+\frac{2 \cdot 4 \cdot z^{4}}{2 v+3 \cdot 2 v+5 \cdot x^{2}}}+$ 2.4.6. z^{6}
$\overline{2 v+3} \cdot \overline{2 v+5} \cdot \overline{2 v+7} \cdot x^{3}$
E̛\%. Where, if z be takon
$=1$, and $v=6$, we fhall have $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+$
$\frac{1}{9}-\frac{1}{11}+\frac{1}{26} \times 1+\frac{1}{15}+\frac{1}{15} \times \frac{2}{17}+\frac{1}{15} \times \frac{2}{17} \times$
$\frac{3}{19} \xi^{\circ}$. $=0,785398=$ the Fluent of $\frac{\dot{z}}{1+z^{2}}$ when z $=1$ ($=\frac{1}{8}$ of the Periphery of the forefaid Circle) Which Number, brought out by taking, only, 8 Terms of the fecond Series, is more exact than if 100000 Terms of the common Series $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}$ छ\%. had been ufed. And, if z be taken $=\sqrt{\frac{I}{3}}(=$ Tangent of 30°) and $v=6$, as before, the fame Number of Terms. will be fufficient to give the Anfwer, true to twice the Decimal Places above exhibited.

$$
\mathrm{Dd} 2
$$

353. Ex.
354. Ex. 3. Let the Fluxion proposed be $\left.e^{+}+y^{4}\right)^{\frac{1}{2}} \times y$.

Here we have, $a=e^{4}, c=1, z=y, n=4, x=e^{4}+y^{4}$, $m=\frac{1}{2}, q=\frac{1}{4}, s,(m+q)=\frac{3}{4}, p(v+q)=v+\frac{1}{7} ; t$ ($s+v$) $=v+\frac{3}{4}$; and therefore the Fluent fought (by.

$\delta^{\circ} \mathrm{c}$. in which (as in all other Cafes) 2. denotes the left Term of the firm Series. This Fluent approximates equally fart with thofe in the foregoing Examples: And it may be observed farther, that the Fluent will always converge, however great the Value of z is taken, if
both a and c, in the general Fluxion $a+\left(x^{n} \|^{m} \times z^{q n-1} \dot{x}\right.$, are pofitive Quantities. But, if the Second Term under the Vinculum be negative, the Cafe will be otherwife, when that Term becomes greater than half the Firft; fine the Powers of $\frac{c x^{n}}{x}$, in the latter Part of the Fluent, will then form an increafing Geometrical Progreffion. It may, therefore, be of use to hew how the Theorem may be varied fo as to anfwer in this Cafe. In order thereto, if in the Equations $s=r+q$, and $1+$ $\frac{\overline{s+1} \cdot y^{n}}{\overline{q+1} \cdot a}+\frac{\overline{s+1} \cdot \overline{s+2} \cdot c^{2} y^{2 n}}{q+1} \cdot \overline{q+2} \cdot a^{2} \quad \delta_{c_{0}}=\frac{a}{x} \times$ $1+\frac{r c y^{n}}{q+1 . x}+\frac{r \cdot \overline{r-1} \cdot c^{2} y^{2 n}}{q+1 \cdot q+2 . x^{2}}$ छ$^{5} c$. (given in Art. 350:) you write k for r, and p for q, and multiply by $\frac{x}{a}$,

The Manner of making Fluents converge.
you will have $s=k+p$, and $x+\frac{k c y^{n}}{\overline{p+1} \cdot x}+$
$\frac{k \cdot \overline{k-1} \cdot c^{2} y^{2 n}}{\overline{p+1 \cdot p+2 \cdot x^{2}}}$ gr. $^{2}=\frac{x}{a} \times 1+\overline{\frac{\overline{s+1} \cdot c y^{n}}{\overline{p+1} \cdot a}+}$
$\frac{\overline{s+1} \cdot \overline{s+2} \cdot c^{2} y^{2 n}}{\overline{p+1} \cdot \overline{p+2} \cdot a^{2}} \varepsilon^{2} c$.
Moreover, if the v first Terms of the above Series i +
$\frac{r c y^{n}}{\overline{q+1} \cdot x}+\frac{r \cdot \overline{r-1} \cdot c^{2} y^{2 n}}{\overline{q+1} \cdot \overline{q+2} \cdot x^{2}}$ छc. be taken, and the lat of them be denoted by 2 , it is plain the firft of the remaining Terms will be $=2 \times \frac{r-v+1}{q+v} \times \frac{q^{n}}{x}$, the fecond $=2 \times \frac{r-v+1}{q+v} \times \frac{r-v}{q+v+1} \times \frac{c^{2} y^{2 n}}{x^{2}}, v_{c}$. and the Sum of them all (putting $q+v=p$, and $r-v=k$) equal to $\frac{\overline{k+1} \cdot 2 c v^{n}}{p x} \times 1+\overline{\frac{k c v^{n}}{\overline{p+1} \cdot x}}$
$\frac{\overline{k \cdot \overline{k-1} \cdot c^{2} y^{2 n}}}{\overline{p+1} \cdot \overline{p+2} \cdot x^{2}} \mho_{c}=\frac{\overline{k+1} \cdot Q c y^{n}}{p x} \times \frac{x}{a} \times 1+\overline{\frac{\overline{s+1} \cdot y^{n}}{p+1} \cdot a}$
$+\frac{s+1 \cdot s+2 \cdot c^{2} y^{2 n}}{\overline{p+1} \cdot \overline{p+2} \cdot a^{2}}$ Er c. $_{\text {. (by }}$ (by Equation above) and consequently the Sum of the whole Series $\left(1+\frac{r y^{n}}{q+1} \cdot x\right.$ छ$c.)=1+\frac{r y^{n}}{q+1} \cdot x$
$+\frac{r \cdot \overline{r-1} \cdot c^{2} v^{3 n}}{q+1 \cdot q+2 \cdot x^{2}}+$
$\frac{r \cdot \overline{r-1} \cdot r-2 \cdot c^{3} y^{3 x}}{\overline{q+1} \cdot \overline{q+2} \cdot \overline{q+3} \cdot x^{3}}(v)+\frac{\overline{k+1} \times c y^{n} \cdot 2}{p a} \times$
$1+\frac{\overline{s+1} \cdot c y^{n}}{\overline{p+1} \cdot a}+\frac{\overline{s+1} \cdot \overline{s+2} \cdot c^{2} y^{2 n}}{\overline{p+1} \cdot \overline{p+2} \cdot a^{2}}+v_{c}$. Which, multiply'd by $\frac{x^{r} y^{q^{n}}}{q^{n}}$, gives the Fluent of $\overline{a-c y^{n}}{ }^{r}$ *Art. $34^{8}, \times y^{9 n-1} \dot{y}\left(*\right.$ or $\left.x^{r} y^{q n-1} \dot{y}\right)$ where $k=r-v, p=v$ 349. $+q$, $s(=k+p)=r+q$ and $x=a-c y^{n}$. I shall put down one Example of the Ufo of this laft general Expreffion; where we will take $\dot{y} \sqrt{2 y-y^{2}}$ or $\overline{2-y y^{\frac{1}{2}}} x$ $y^{\frac{1}{2}} \dot{j}$ (being the Fluxion of the Area of the Circle whore Radius is Unity and verfed Sine y) In which Cafe, $a=2, c=1, n=1, r=\frac{1}{2}, q n-1=\frac{1}{2}$, or $q=\frac{3}{1}, k=$ -vt $\frac{1}{2}, p=v+\frac{3}{2}, s=2, x=2-y$; and therefore the Fluent fought $=\frac{2 x^{\frac{1}{2}} y^{\frac{3}{2}}}{3}$ into $1+\frac{y}{5 x}-\frac{y^{2}}{5 \cdot 7 x^{2}}+$ $\frac{\frac{3 y^{3}}{5 \cdot 7 \cdot 9 x^{3}}}{\frac{2 v-3 \cdot y \cdot 2}{2 v+3 \cdot 2} \times \frac{3 y^{4}}{\frac{7 \cdot 9 \cdot 11 x^{4}}{2 v}+\frac{3 y^{5}}{9 \cdot 11 \cdot 13 x^{5}}(v) \mp}+\quad \frac{3 y}{2 v+5}+\frac{3 \cdot 4 y^{2}}{2 v+5 \cdot 2 v+7}}+$ $\frac{3 \cdot 4 \cdot 5 y^{3}}{2 v+5 \cdot 2 v+7 \cdot 2 v+9}$ छ\%. Which, if y be taken
=1, and $v=5$, will become $=\frac{2}{3}+\frac{A}{5}-\frac{B}{7}+\frac{C}{3}$ $-\frac{5 D}{11}+\frac{7 E}{2 \times 13}+\frac{3 F}{15}+\frac{4 G}{17}+\frac{5 H}{19} E_{c}=0,785398$ (where A, B, C ' ${ }^{\prime}$. denote the feveral Terms, refpectively, without their Signs.) In bringing out which Conclusion, fix Terms of the fecond Series are required: But if y be taken $=\frac{1}{2}$ the Radius of the forefaid Circle, then four Terins of each Series will be more than fufficent to give the fame Number of Decimal Places. And it may likewife be observed, that, although no general Rule can be laid down for affigning the Value of v, fo as to answer the bet in all Cafes, yet the Conclufion

The Manner of making Fluents converge.

will, for the general Part, require the feweft Terms, when the Number of thofe, taken in each Series, is nearly the fame.
354. But, after all, another Theorem or Series, fill, feems wanting, to exprefs the Value of the whole Fluent, when the Quantity under the Vinculum becomes equal to Nothing (which, in the Refolution of Problems, is, commonly, what is required.) For, it is plain the laft, above given, anfwers no better, here, than that preceding it; becaufe (the Divifor (x) being Nothing) the former Part of it fails.
In order, therefore, to determine a proper Form, to obtain in this Circumftance, it will be requifite to obferve, firt of all, from Arlicle 286. that the whole
Fluent of $\overline{a-b z^{n}}{ }^{m} \times e^{p n+v n-1} \dot{z}$, fuppofing that of $\overline{a-b z^{m}}{ }^{m} \times 2^{p n-1} \dot{z}$ to be denoted by A, will be truly expreffed by $\frac{p}{t} \times \frac{p+1}{t+1} \times \frac{p+2}{t+2}(v) \times \frac{a^{v} A}{b^{v}}:$ In which $t=m+p+1$; and where it is requifite that the Values of $m+1$ and p fhould be pofitive, otherwife, A being infinite, the Fluent (or Comparifon) fails. Hence, becaufe the whole Fluent of $\overline{a-b z^{n}}{ }^{m} \times z^{n-1} \dot{z}$, (when $a-b z^{n}=0$) is found $=\frac{a^{m+1}}{m+1 \times n b^{\prime}}$, by the common Way *, it follows, by writing this Value in the Room of *Art. 77. A, and expounding p by 1 , that the whbole Fluent of and 78. $\overline{\left.a-b z^{n}\right]^{m}} \times z^{n+v^{n}-1} \dot{z}$ is rightly exprefled by $\frac{1}{m+2} \times$ $\frac{2}{m+3} \times \frac{3}{m+4}(v) \times \frac{a^{m+v+1}}{m+1 \times n b^{v+1}}$, or by $\frac{1}{m+1} \times$
$\frac{2}{n+2} \times \frac{3}{m+3}(v+1) \times \frac{a^{m+v+1}}{v+1} \times n b^{v+1}$: Whence
Dd 4
Thas

That of $\overline{a-l z^{n}}{ }^{m} \times z^{r n-1} \dot{x}$, by fubftituting r inftead of $v+1$, will confequently be equal to $\frac{1}{m+1} \times \frac{2}{m+2}$ $\times \frac{3}{m+3}(r) \times \frac{a^{m+r}}{r n b^{r}}$. Let this Quantity be denoted by B; then, by the fame Article, the Fluents of the feveral Terms of the Series $1, \frac{b z^{n}}{a}, \frac{b^{2} z^{2 n}}{a^{2}}, \frac{b^{3} z^{3}}{a^{3}} छ^{0} c_{4}$ drawn into the general Multiplicator $\overline{a-b z^{n}}{ }^{m} \times z^{r n-1} \dot{z}$, will be, refpectively, expounded by thofe of the Series I, $\frac{r}{t}, \frac{r \cdot \overline{r+1}}{t \cdot \overline{t+1}}, \frac{r-\overline{r+1} \cdot \overline{r+2}}{t \cdot \overline{t+1} \cdot \overline{t+2}}$ Fic, drawn into $B ; t$ being $=m+r+1$,

If now the Differences of the Quantities $\mathrm{r}, \frac{r}{t}$,
$\frac{r \cdot \overline{r+1}}{\bar{T}}$ E\% be, continually, taken *; and for $r-t$ its $t . t+1$
Equal -m-1 be fubftituted, the Value of any Term of the Series, whofe Diftance from the firft, exclufive, is denoted by s, or whole correfponding Term, in the preceding Series, is $\frac{b^{5} z^{5 n}}{a^{s}}$, will be univerfally exprefled by $1-\frac{s \cdot \overline{m+1}}{1 \cdot t}+\frac{5 \cdot \overline{\frac{5-1}{m+1} \cdot \overline{m+2}}}{\frac{1 \cdot 2 \times t \cdot \overline{t+1}}{}}$ s. $\overline{s-1} \cdot \overline{s-2} \cdot \overline{m+1} \cdot \overline{m+2} \cdot \overline{m+3}$
$1: 2 \cdot 3 \times 1 . t+1 \cdot t+2,+\delta_{6}$. Where, if s be interpreted by $0,1,2,3$ ' F°.' fucceffively, you will have the Values $1, \frac{r}{t}, \frac{r \cdot r+1}{t \cdot 1+1}$ Eoc. above exhibited: But, if s be taken as a Fraction, then the Value of fuch an intermediate Term will be found as will give the
the Fluent of $\frac{b^{5} z^{s n}}{a^{s}} \times \overline{a-b z^{n}} \times z^{m n-x} \dot{z}$, in any propored Circumftance of s; which Fluent, it is evident, will therefore be exprefled by $B \times 1-\frac{s \cdot m+1}{1 \cdot t}+$
 $\frac{2}{m+2} \times \frac{3}{m+3}(r) \times \frac{a^{m+r}}{m b^{r}}$ into $1-\frac{s . \overline{m+1}}{1 . t}-$ $\frac{\overline{s-1} \cdot \overline{m+2}}{2 \cdot \overline{t+1}} \times E-\frac{\overline{s-2} \cdot \overline{m+3}}{3 \cdot \overline{t+2}} \times F-\frac{\overline{s-3} \cdot \overline{m+4}}{4 \cdot \overline{t+3}} \times$
$G \xi^{\circ} c$. (where $E, F, G \xi^{\circ} c$. denote the Terms inmediately preceding thole where they flans, under their proper Signs.) Whence, dividing by $\frac{b^{3}}{a^{s}}$, we have
$\frac{1}{m+1} \times \frac{2}{m+2}(r) \times \frac{a^{m+r+s}}{r n b^{r+s}} \times \frac{1-s \cdot m+1}{t}=$
$\frac{\overline{\overline{s-1} \cdot \overline{m+2}}}{2 \cdot \overline{t+1}} \times E, \varepsilon^{\circ} c$, for the true Fluent of $\overline{a-b z^{n}}{ }^{m}: x$ $z^{r n+s n^{-1}} \dot{z}$,

From the left Fluent that of $\overline{a-\left.b z^{n}\right|^{m}} \times z^{p n-x} \dot{z}$ (in which p denotes any pofitive Fraction, proper or improper) is very readily obtained: For, if the fame (when $a-b z^{n}=0$) be denoted by A; then the Fluent of $\left.\overline{a-b z^{n}}\right|^{m} \times z^{p n t \dot{o}^{n-1}} \dot{z}$ will (according to the Article above quoted) be expreffed by $\frac{p}{p+m+1} \times$ $\frac{p+1}{p+m+2} \times \frac{p+2}{p+m+3}$ (v) $\times \frac{a^{v} A}{b^{v}}$; fuppofing v any pofitive
pofitive Integer. Therefore, by making $\left.\overline{a-b z^{n}}\right\rangle^{m} \times$ $z^{r n+s n-1} \dot{z}=\overline{\left.a-b z^{n}\right)^{m}} \times z^{p n+v n-1} \dot{z}$, or $r+s=p+v$, the correfponding Fluents muff, alfo, be equal ; that is,
$\frac{p}{p+m+1} \times \frac{p+1}{p+m+2}(v) \times \frac{a^{v} A}{b^{v}}=\frac{1}{m+1} \times \frac{2}{m+2}$
$\times \frac{3}{m+3}(r) \times \frac{a^{m+p+v}}{r n b^{p+v}} \times \overline{1-\frac{s \cdot \overline{m+1}}{t}}-\varepsilon c$. And
consequently A (the whole Fluent of $\overline{a-b z^{n}}{ }^{m} \times$ $\left.z^{p n-1} \dot{z}\right)=\frac{p+m+1}{p} \times \frac{p+m+2}{p+1} \times \frac{p+m+2}{p+2}(v) \times \frac{1}{m+1}$
$\times \frac{2}{m+2} \times \frac{3}{m+3}(r) \times \frac{q^{m+p}}{n r b^{p}} \times$ into the Series $1-$
$\frac{s \cdot \overline{m+1}}{1 \cdot t}-\frac{\overline{s-1} \cdot \overline{m+2}}{2 \cdot \overline{t+1}} E-\frac{\overline{s-2} \cdot \overline{m+3}}{3 \cdot \overline{t+2}} F-$
$\frac{\overline{s-3} \cdot \overline{m+4}}{4 \cdot \overline{t+3}} G$ छঞ. where $t=r+m+1$ and $s=p+$
$v-r$; v and r being any whole pofitive Numbers at pleafure.
355. An Example, or two, of the Use of this Conclufion, may be proper.
$1 \circ$. Let the whole Fluent of $\left.\overline{1-x^{2}}\right)^{-\frac{1}{2}} \dot{x}$ (expreffing the Length of $\frac{1}{4}$ of the Periphery of the Circle whole Radius is Unity) be demanded. In which Cafe, a being $+1, b=1, m=-\frac{1}{2}, n=2, p=\frac{1}{2}, t=r+\frac{1}{2}=$ $\frac{2 r+1}{2}$, and $s=v-r+\frac{1}{2}=\frac{2 v-2 r+1}{2}$, the Fluent Sought will, therefore, (by fubffituting there Values) be had $=\frac{2}{1} \times \frac{4}{3} \times \frac{6}{5}(v) \times \frac{2}{1} \times \frac{4}{3} \times \frac{6}{5}(r) \times$

The Manner of making Fluents converge.
$\frac{1}{2 r}$ into $\mathrm{I}-\frac{1 \cdot \overline{2 v-2 r+1}}{2 \cdot 2 r+1}-\frac{3 \cdot \overline{2 v-2 r-1}}{4 \cdot \overline{2 r+3}} E$ -
$\frac{5 \cdot \overline{2 v-2 r-3}}{6 \cdot \overline{2 r+5}} F-\frac{7 \cdot \overline{2 v-2 r-5}}{8 \cdot 2 r+7} G$ \&rc. Which;
by expounding v by 5 and r by 3 , will become $=$
2,16719 E ${ }^{\text {c. into } 1}-\frac{1 \cdot 5}{2 \cdot 7}-\frac{3 \cdot 3}{4 \cdot 9} E-\frac{5 \cdot 1}{6 \cdot 11} F+$
$\frac{7 \cdot 1}{8 \cdot 13} G+\frac{9 \cdot 3}{10 \cdot 15} H+\frac{11 \cdot 5}{12 \cdot 17} I+छ_{c}=1,5703$.
In the bringing out of which Value, all the Terms above exhibited are requifite: But, of the common Series, $1+$
$\frac{1}{2 \cdot 3}+\frac{1 \cdot 3}{2 \cdot 4 \cdot 5}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7}+8 \%$ more than 10 times that: Number of Terms would be neceffary to anfer with the fame Degree of Exactnefs.

Ex. 2°. Let the Fluxion propofed be $\frac{d \dot{x}}{x^{\frac{1}{2}} \sqrt{d^{2}-\dot{x}^{2}}}$ (whole whole Fluent, when $x=d$, expreffes the Time of Defcent of a heavy Body in half the Arch of a Semicircle, whore Radius is d^{*}.)

Art. 20\%.
Here, by comparing $\overline{d^{2}-x^{2}}{ }^{-\frac{1}{2}} \times x^{-\frac{1}{2}} \dot{x}$ with $\overline{a-b z^{n}}{ }^{m} \times z^{p n-1} \dot{z}$, we have $a=d^{2}, b=1, n=2, p n-1$ $=-\frac{1}{2}$, or $p=\frac{r}{4} ;$ aldo $s(p+v-r)=v-r+\frac{1}{4}$, $t(r+m+1)=r+\frac{1}{2}$: Whence, by taking r and v, each, equal to. 4 , the Fluent, itself, comes out $=$ $\frac{3}{1} \times \frac{7}{5} \times \frac{11}{9} \times \frac{15}{13}$ into $\frac{2}{1} \times \frac{4}{3} \times \frac{6}{5} \times \frac{8}{7} \times$
$\frac{d^{\frac{1}{2}}}{8}$ into $1-\frac{1 \cdot 1}{4 \cdot 9}+\frac{3 \cdot 3}{8 \cdot 11} E+\frac{7 \cdot 5}{12 \cdot 13} F+\frac{11 \cdot 7}{16 \cdot 15}$ $G+\varepsilon_{c_{1}}=\frac{11 \cdot 16 d^{\frac{1}{2}}}{13 \cdot 50} \overline{1-\frac{1}{36}+\frac{9 E^{2}}{88}+\text { vic. }^{2}}$
$=2,6215 d^{\frac{3}{2}}$: Which is to $2 \sqrt{2 d}$, the Time of Defcent along the vertical Diameter of the forefaid Circle, as 2,6215 to 2,8284 , or as 100 to 108 , nearly.

After the fame Manner the Fluent will be found in other Caifes: But, with regard to the affigning of the Values of r and v, it may be obferved, that the Anfwer will, commonly, be brought out with the leaft Trouble whenv is taken greater by an Unit or two than r; which laft Quantity muft be greater or lefs, according as a greater or lefs. Degree of Exactnefs is ne-ceffary.-From the foregoing Exprefions, by varying the Values of v and r, a great Number of Theorems, for the Summation of Seriefes, may be deduced. But this being foreign to my prefent Purpofe, I am not at Leifure to purfue it here.
356. Hitherto Regard has been had to Fluxions of the Binomial-Kind: But, from thence, the Fluents of Trinomials may alfo be found; when thefe laft can be reduced to Binomials (by Art. 307.) without introducing new Radical Quantities.-Befides which Method, I fhall, here, give another, which will anfwer where that fails, and is alfo applicable to Multinomials.
In order thereto, let the Fluent of $\left.\overline{a+c z^{n}}\right]^{m} \times$ $z^{p n-1} \dot{z}$, be denoted by A; and let it be required to find, from thence, the Fluent of the Radical Multinomial, or Infinite Series, $a+c x^{n}+d x^{2 n}+c x^{3 n}+f x^{4 n} \xi^{m} c .\left.\right|^{m}$ $x x^{p n-1} \dot{x}$.
Make $c z^{n}=c x^{n}+d x^{2 n}+e x^{3 n}+$ Erc. and $y=x^{p n}$; then, x^{n} being $=y^{\frac{1}{p}}$, if this Value be fubstituted for x^{n}, in the firf Equation, it will become $c z^{n}=c y^{\frac{1}{p}}+$ $a y^{\frac{2}{p}}+a y^{\frac{3}{p}} i_{0} \quad$ Whence, by reverting the Series, (by

The Manner of making Fluents converge.
Art. 275.) $\left(z^{p n}\right)$ is found $=z^{p n}+R z^{p n+n}+$ $S z^{p n+2 n}+\tau z^{p n+3 n}+E \%$.
Where $R=-\frac{p d}{c}, s=\frac{p \cdot \overline{p+3}}{2} \times \frac{d^{2}}{c^{2}}-\frac{p c}{c}, \tau=$
$-\frac{p \cdot \overline{p+4} \cdot \overline{p+5}}{6} \times \frac{d^{3}}{c^{3}}+p: \overline{p+4} \times \frac{d e}{c^{2}}-\frac{p f}{c} ध_{c}$
Moreover, by taking the Fluxion of the Equation thus brought out, and dividing by $p n$, we have $x^{f n-\mathrm{r}} \dot{x}$ $=z^{p n-1} \dot{z}+\frac{p+1}{p} \times R z^{p n+n-1} \dot{z}+\frac{p+2}{p} \times S z^{p n+2 n-1} \dot{z}$ $+\frac{p+3}{p} \times \tau_{z}^{p r+3 \pi-1} \dot{z}+$ Ec $_{6}$.
Now let this Value, with that of $c x^{n}+d x^{2 n}+8 x^{3 n}$ + E\%. (given above) be fubftituted in the proposed Fluxion, and it will become $\overline{a+\left.c z^{n}\right|^{m}} \times \overline{z^{\xi^{n-1}} \dot{z}+}$ $\overline{\frac{p+1}{p} \times R z^{p n+n-1} \dot{z}+\frac{p+2}{p} \times S z^{p n+2 n-1} \dot{z}+\xi_{c}}$,

Alto, let v denote the Place, or Diftance, of any Term of this Series from the firft, exclufive; then the Term itfelf, drawn into the general Multiplicator, will be expreffed by $\left.\overline{a+c z^{\prime}}\right)^{m} \times \frac{p+\dot{v}}{p} \Delta z^{p n+q u-i} \dot{z}(\Delta$ being the correfponding Coefficient R, S, T, \mathcal{J}_{c}.) and the Fluent thereof by $\left.\frac{p+v}{p} \Delta \times \overline{a+c z^{m}}\right)^{m+t} \times z^{p^{n}} \times$ $\frac{z^{v n-n}}{s+1}-n c$
$\frac{p a z^{2 n-2 n}}{s+1} \cdot s n c^{2}$
$\frac{p}{t} \times \frac{p+1}{t+1} \times \frac{p+q-1}{s+2}(v) \times \frac{p+v}{p} \times \Delta \times \frac{a^{2} z^{v n-3^{n}}}{c^{v}}(v)$ Where,

Where, $q=p+v-1, s=m+q, t=p+m+1$, and the Sign of the laft Term is + or -, according as v is an even or odd Number. Now, if in the Fluent thus given, v be expounded by $1,2,3,4$, छgc. fucceffively, it is evident the Fluent of the whole Expreffion will, in 2ll Circumftances of z, be obtained. But, if the Coefficient c be negative, fo that $a+c z^{n}$ may (by increafing z) become equal to Nothing; then, in that Circumftance, the Fluent of the forefaid general Term $\left.\overline{a+c z^{n}}\right]^{m}$
$\times \frac{p+v}{p} \Delta z^{p n+v n-s} \dot{z}$ (or $\left.\overline{a-b z^{n}}\right)^{m} \times \frac{p+v}{p} \Delta$ $z^{p n+v n-1} \dot{z}$, making $-c=b$) being, barcly, $=\frac{p}{t} \times$

- Art. 286. $\frac{p+1}{t+1} \times \frac{p+2}{t+2}$ (v) $\times \frac{p+v}{p} \times \frac{\Delta a^{v} A}{b^{v}} *$, it follows that the whole Fluent of the given Expreffion, or its Equal, $\bar{a}-b z^{n}{ }^{m} \times z^{p n-1} \dot{\sim}+\frac{p+1}{p} R z^{p n+\pi-1} \dot{z} \vartheta^{\circ} c$. will be truly. reprefented by $A \times 1+\frac{\overline{p+1} \cdot R a}{t b}+\frac{\overline{p+1} \cdot \overline{p+2} \cdot S a^{2}}{t \cdot \overline{t+1} \cdot b^{2}}$ $+\frac{\overline{p+1} \cdot \overline{p+2} \cdot \overline{p+3} \cdot \tau a^{3}}{t \cdot \overline{t+1} \cdot \overline{t+2} \cdot b^{3}}$ عcc. In which, $R=\frac{p}{b}$, $S=\frac{p \cdot \overline{p+3}}{2} \times \frac{d^{2}}{b^{2}}+\frac{p c}{b}, T=\frac{p \cdot \overline{p+4} \cdot \overline{p+5}}{6} \times$ $\frac{d^{3}}{b^{3}}+\frac{p \cdot \overline{p+1}}{1} \times \frac{d e}{b b}+\frac{p f}{b}, \varepsilon c$. and $A=$ the Fluent $\left.\overline{a-b z^{n}}\right|^{n} \times z^{p n-\mathrm{y}} \dot{z}$, when $a-b z^{n}=0$.

357. Hence, if the Fluxion given be of the Trinomial Kind (then, e, $f, E_{0} c_{0}$ vanuhing the whole Fiuent

The Manner of making Fluents converge.

of $\overline{a-b x^{n}+d x^{2 m}}{ }^{m} \times x^{f n-1} \dot{x}$ (when $a-b x^{n}+d x^{2 n}$ $=0$) will, by fubftituting for $R, S, T, \xi^{\circ} c_{0}$. be $=A \times$
$\left.1+\frac{p \cdot \overline{p+1}}{1 \cdot t} \times \frac{a d}{b b}+\frac{p \cdot \overline{p+1} \cdot \overline{p+2} \cdot \overline{p+3}}{1 \cdot 2 \cdot t \cdot \overline{t+1}} \times \frac{\overline{d b}}{b b}\right]^{2}+$

358. If $m+1$ and p are the Halves of any odd Affir-mative-Numbers, the Fluent of $a-\left.b z^{n}\right|^{m} \times \approx^{p-1} \dot{\sim}_{9}$ when $a-b z^{n}=0$, will be equal to
$\frac{1 \cdot 3 \cdot 5 \cdot 7\left(m+\frac{1}{2}\right) \times 1 \cdot 3 \cdot 5 \cdot 7\left(p-\frac{1}{2}\right)}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10 \cdot 12(m+p)} \times \frac{a^{m+p} G}{n b^{p}} \cdot$ And 298.8.
G being the Periphery of the Circle whofe Diameter is Unity. Therefore the Fluent of $a-b x^{n}+d x^{2 n}+\left.e x^{3 n} \xi_{c}\right|^{m}$ $\times x^{p n-1} \dot{x}$, or its Equal, $\overline{a-b z^{n}} \left\lvert\, \times x^{\overline{p n-1} \dot{z}+\frac{p+1}{p}}\right.$
$\times \overline{R z^{p n+n-1}} \dot{\approx} \mathcal{E}^{\circ}$. is found, in this Cafe, by multiplying the Expreffion here given, into the foregoing Series, if $\frac{\overline{p+1} \cdot R a}{t b}+E_{c}$.
359. An Example or two will help to fhew the Ufe ef what is above delivered.

Firft, let the Flucnt of

$$
\sqrt{a^{2}-x^{2}-\frac{x^{4}}{r a b}}
$$

(when the Divifor becomes equal to Nothing) be re* quired.

Then, by comparing $a^{2}-x^{2}-\frac{x^{4}}{r a a}{ }^{-\frac{1}{2}}$ with the
416. The Manner of making Fluent converge.
the general Trinomial $a-b x^{n}+\left.d x^{2 n}\right|^{m} \times x^{p r-1} \dot{x}$, it appears that a^{2} mut be, here, wrote in the room of a, and that n, m, p, b and d, will be interpreted by 2 , $-\frac{1}{2} ; \frac{1}{2}, 1$, and $-\frac{1}{\text { raa }}$ refpectively: Whence we have $t(p+m+1)=1, \frac{1.3 .5\left(m+\frac{1}{2}\right) \times 1.3 .5\left(p-\frac{1}{2}\right)}{2.4 .6(m+p)}$ $\times \frac{a^{m+p} G}{n b^{p}}=\frac{G}{2}$, and the Fluent fought $=\frac{G}{2} \times$ $1-\frac{1 \cdot 3}{2 \cdot 2 r}+\frac{1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 2 \cdot 4 \cdot 4 r^{2}}-\frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 r^{3}}+\varepsilon_{6}$
360. The fecond Example foal be, to find the Fluent expreffing the Apfide Angle in an Orbit defcribed by means of a centripetal Force varying according to any Power of the Distance.

In which Cafe the given Fluxion being
$\pm p \dot{x}$
$\sqrt{x \sqrt{p^{2}+\frac{2}{n+1} \times x^{2}-p^{2}+\frac{2 x^{n+3}}{n+1}}}$ (Fid. Art. 242. where A is fuppofed the higher Apfe, and CA (and consequently $\mathbf{C b}$) equal to Unity) we fall, by putting $1-p^{2}=\beta, \frac{n+3}{2}=v$, and $x-x^{2}=y$, reduce it to $\frac{\frac{1}{2} \sqrt{1-\beta} \times \dot{y}}{\overline{1-y} \times \sqrt{\beta y+\frac{1-v y-1-y^{2}}{1-v}}}=\frac{x}{2} \sqrt{1-\beta} \times$
$\beta-\frac{v y}{2}+\frac{v \cdot \overline{v-2}}{2 \cdot 3} \cdot y^{2}-\frac{v \cdot \overline{v-2} \cdot \overline{v-3}}{2 \cdot 3 \cdot 4} \cdot y^{3}+\xi_{c} .^{-\frac{1}{2}}$
$x y^{-\frac{1}{2}} \dot{j}+y^{\frac{1}{2}} \dot{j}+y^{\frac{3}{2}} \dot{j}+y^{\frac{5}{2}} \dot{j}+$ Eq. Where the yuan- $^{\text {. }}$ city
titty under the Radical Sign (now anfwering to the Form above prefcribed) being compared with
$\overline{a-b x^{n}+d x^{2 n}+e x^{3^{n}}} \xi_{c} .1^{m}$, we have $m=-\frac{1}{2}$,
$n=1, b=\frac{v}{2}, \frac{d}{b},=\frac{v-2}{3} \frac{e}{b}=-\frac{v-2 \cdot v-3}{3 \cdot 4}$ Fcc. Also the Value of p with regard to the first Term $\left(y^{-\frac{1}{2}} \dot{y}\right)$ will be $=\frac{1}{2}$ (because $\left.p n-1=-\frac{x}{2}\right)$ likewife its Value in the fecond Term $\left(y^{\frac{1}{2}} \dot{y}\right)$ is $=\frac{3}{2}$; in the third $=\frac{5}{2}{ }^{\circ} \%$. In the frt of there Cafes we, therefore, have $t(m+p+1)=1, R\left(p \times \frac{d}{b}\right)=$ $\frac{v-2}{6}, S=\frac{\overline{v-2} \cdot \overline{4 v-5}}{7^{2}}, \tau=\frac{\overline{v-2} \cdot \overline{16 v^{2}-37 v+22}}{16 \times 45}$.
Whence it follows, that the Fluent of the firn Term $\overline{\left.\left(\beta-\frac{v y}{2}+\frac{v \cdot \overline{v-2}}{2 \cdot 3} \cdot y^{2} छ_{c} .\right)^{-\frac{x}{2}} x y^{-\frac{x}{2}} \dot{y}\right) \text { when the } \mathrm{c}}$
Quantity under the Radical Sign becomes equal to Nothing (or the Body arrives at its lower Apfe) will be truly expreffed by $\frac{G}{\sqrt{\frac{\pi}{2} v}}$ into $i+\frac{v-2}{2 v} \cdot \beta+$ $\frac{5 \cdot \overline{v-2} \cdot \overline{4 v-5}}{48 v^{2}} \cdot \beta^{2}+\frac{7 \cdot \overline{v-2} \cdot \overline{16 v^{2}-37 v+22}}{6 \times 48 v^{3}} \cdot \beta^{3}$ $+\xi^{\circ} \mathrm{c}$.
In the fame Manner it will appear, that the Fluent of the fecond Term, in that Circumftance, is $=$ $\frac{G}{\sqrt{\frac{\pi}{2} v}} \times \frac{\bar{x} \cdot \beta+\frac{5 \cdot v-2}{4 v^{2}} \cdot \beta^{2}+\frac{35 \cdot v-2 \cdot 2 v-3}{48 v^{3}} \cdot \beta^{3}}{}$ Es Er.

418 The Manner of making Fluent converge.
Ec. that of the Third $=\frac{G}{\sqrt{\frac{T}{2} v}} \times \frac{3}{2 v^{2}} \cdot \beta^{2}+$
$\frac{35 \cdot \overline{v-2}}{12 v^{3}} \cdot \beta^{3} \xi_{c}$. that of the Fourth $=\frac{5}{2 v^{3}} \cdot \beta^{3}$
E\%\% E\%.
Whence, the Fluent of the whole Series, by colleching there feveral Values together, will come out $=$
$\frac{G}{\sqrt{\frac{1}{2} v}} \times I+\frac{1}{2} \beta+\frac{20 v^{2}-5 v+2}{48 v^{2}} \cdot \beta^{2}+$
$\frac{112 v^{3}-63 v^{2}-42 v-8}{6 \times 48 v^{3}} \cdot \beta^{3}+8 c$. Which, drawn into $\frac{x}{2} \times \overline{1-\frac{1}{2} \beta-\frac{1}{8} \beta^{2}-\frac{1}{T 6} \beta^{3}-E^{\circ} c \text {. (the Value of }}$ the general Multiplicator $\frac{x}{2} \sqrt{1-\beta}$) gives $\frac{G}{\sqrt{2 v}} \times$

$$
\mathbf{1}+\frac{\overline{v-2} \cdot \overline{2 v-1}}{4^{8}} \cdot \frac{\beta^{2}}{v^{2}}+\frac{\overline{v-2} \cdot 2 v-1}{7^{2}} \cdot \overline{2 v-1}
$$

$\overline{\times \frac{\beta^{3}}{v^{3}}}$ Es. for the true Measure of the Angle required, in Parts of the Radius, or Unity: From whence, by writing 180 inftead of G, we shall have the fame in Degrees: Which, lat of all, by reftoring n, becomes $\frac{180^{\circ}}{\sqrt{n+3}} \times 1^{*}+\frac{\overline{n-1} \cdot \overline{n+2}}{24} \times \frac{3}{n+3}+$
$\overline{\overline{n-1} \cdot \overline{n+2} \cdot \overline{n+2}} \overline{18} \times \overline{\frac{\beta}{n+3}}{ }^{3} \sigma_{0}$
Where n is the Exponent of the Law of the Force, whereby the Orbit is defcribed; and β, the Defect of the Square of the Meafure of the Celerity, at the higher Ape, below That which the Body ought to have to revolve in a Circle, this lat being denoted by Unity. The

The fame Conclufion may be otherwife derived, by bringing $1-y$, in the transformed Fluxion, under the Vinculum; but this Way of going to work, though we have but one Series to manage, will prove rather more troublefome than the foregoing.

It will appear from the two preceding Examples, efpecially the firft of them, that this laft Method of finding Fluents is, chiefly, ufeful when all the Terms of the given Expreffion, after the two firf, in refpect of thefe, are but fmall. Which is a Circumftance that frequently occurs in the Refolution of phyfical Problems; fuch as determining the Effect of the Atmofphere's Refiftance upon the Vibration of Pendulums; and the Inequalities of the Planets arifing from their Action on each other. -In fhort, wherever the Fluent, or the Quantity it expreffes, would belong to the Circle, or fome other of the Conic-Sections, were it not for the Interpofition of fome fmall perturbating Force (whereby new Terms, fmall in Comparifon of the two firft, are introduced) the faid Method will be found of very great Service:

SECTION VIII.

Tbe UJe of Fluxions in determining the Motion of Bodies in reffing Nediums.
PROB. I.
361. Suppofing that a Body, let go from a given Point A, with a given Celerity, in a Right-line AQ, is reffacd by a Medium (or any Force) aefing according to a given Power of the Velocity: To determine the Velocity, and alfo the Space run over, at the End of a , given Time.

L
E T the given Celerity at A (meafur'd by the Space which would be uniformly defrribed in any propofed Time r) be put $=c$, and that at any other Point $B,=v$; moreover put $A B=x$, and the Time

of its Defcription $=z$; and let the Refiftance, or Force, acting upon the Body at A, be fuch, that, if the fame was to be uniformly continued, the Body would have all its Motion deftroyed thereby, in the Time wherein it might move, uniformly, over a given Diftance d (CD) with its firft Velocity 6 : Which Time, let be denoted, by t.

Then, fince the whole Celerity c would be deffroy'd in the Time t, that Part of it which would be uniformly taken away in the Time r, above propofed, will be truly reprefented by $\frac{r}{t} \times c$; or by $\frac{c}{d}$; which is equal to it, becaufe the Spaces (c and d) defcribed with the fame Ce-

Celerity are always as the Times (r and t) of their Defcription; and therefore $\frac{r}{t}=\frac{c}{d}$.

Hence, the Refiftance at B being to that at A (by Hypothefis) as v^{n} to c^{n}, it follows that the Velocity which might be deftroyed in the given Time r, by a Force equal to the Refiftance at B, will be exprefled by $\frac{c}{d} \times \frac{v^{n}}{c^{n}}$, or its Equal $\frac{v^{n}}{d c^{n}-2}$: Which Expreffion is, therefore, the true Meafure of the Force of the faid Refiftance.

Now, it appears, from Art. 218. that, if the Force with which the Body is acted on (or the Velocity it would generate in the given Time r) be reprefented by F, the Relation of the Meafures of the Velocity and Space gone over, will be expreffed by the Equation \pm vi $=F \dot{x}:$ From whence, by writing $\frac{v^{n}}{d c^{n-2}}$ inftead of F, we have $-v \dot{v}=\frac{v^{3} \dot{x}}{d c^{n}-2}$ (the Sign of $v \dot{v}$ being negative, becaufe v decreafes while x increafes *.) *Ar. s. From this Equation, we get $\dot{x}=-d \varepsilon^{n-2} v^{1-n} \dot{v}$; whore Fluent is $x=-\frac{d c^{n-2} \times v^{2-n}}{2-n}+;$ which, corrected (by taking $x=0$, and $v=c$) becomes $x=$ $\frac{-c_{c}^{n-2} \times v^{2-n}+d}{2-n}=\frac{d}{n-2} \times\left.\frac{c}{v}\right|^{n-2}-1$

Moreover, fince the Time (\dot{z}) is to the Time r, as the Diftance \dot{x} to the Diftance v, we alfo have $\dot{z}(=$ $\left.\frac{r \dot{x}}{v}\right)=-r d c^{n-m^{2}} v^{\pi} \cdot \dot{v} ;$ and confequently $\boldsymbol{z}=$

$$
\text { Ee } 3
$$

$\frac{r d}{n-1 \times c} \times \overline{\left.\left.\frac{c}{v}\right]^{n-1}-1=\frac{t}{n-1} \times \frac{c}{v-1}\right)^{n-1} \quad(b y) .}$ writing t for its Equal $\frac{r d}{c}$): From which Equation we get $\frac{c}{v}=\left.\overline{1+\overline{n-1} \times \frac{z}{t}}\right|^{\frac{1}{n-1}}$: Likewife, from the preceding Equation, we get $\frac{c}{v}=$
 ing compared together, there, at length, refults $x=$ $\frac{d}{n-2}$ into $\left.\overline{x+\overline{n-1} \times \frac{z}{t}}\right|^{\frac{n-2}{n-1}}-1$, for the required $\mathrm{Re}-$ lation of x and z.

Corollary.

362. If $n=2$, or, the Refiftance be in the Duplicate Ratio of the Velocity, the Equation exhibiting the Relation of z and v, will be $\frac{c}{v}=1+\frac{z}{t}$, or $v=$ $\frac{c}{1+\frac{z}{t}}:$ But the other Equation (the Fluent failing) becomes impracticable. Here x, the Fluent of -- Art. 226. $\frac{d \dot{\tau}}{v}$, will be explicable by $d \times$ byp. Log. $\frac{c}{v}$, or by $d \times$ byp. Log. $1+\frac{z}{t} ;$ becaufe $v=\frac{c}{1+\frac{z}{t}}$.

In the like Manner, when $n=r$, or the Refiftance is as the Velocity, the Relation of v, x and z, will be exhibited by the Equations $v=c \times \frac{\overline{d-x}}{d}$, and $z=t \times$ hyp. Log. $\frac{c}{v}=t \times$ hyp. Log. $\frac{d}{d-x}$. Which Cafe, and that above, are the only two wherein the general Solotion fails.
PROB. II.

TQ 363. If a Body, let go from a given Point A with a given Celerity, in a vertical Line B. CAQ, is acted on by an uniform Gravity, and also by a Medium, reffing according to any given Power of the Velocity; 'ti propoled to determine the Relation of the Times,
A- the Velocities, and the Spaces gone over.
Let the Notation in the preceding ProT belem be retained; and let the Force of Fravity, in the given Medium (meafured by the Velocity it might generate in the proposed Time r. *) be reprefented by b. Then, Art. 36 x . this Value being added to, or fubtracted from $\left(\frac{v^{n}}{d c^{n-2}}\right)$ the Meafure of the Re-.
fiffance \dagger, according as the Body is in its Afcent, or \dagger Ar. 36 t .
Defcent, we thence get $\frac{v^{n}}{d c^{n-2}} \pm b$ for the whole
Force (F) whereby the Motion, at B, is affected :
Whence (by Art. 218) $\dot{x}\left(=\frac{-v \dot{v}}{F}\right)=\frac{-d c^{n-2} v \dot{v}}{v^{n} \pm d c^{n-2}}$;
and $\dot{z}\left(=\frac{r \dot{x}}{v} \ddagger\right)=\frac{-r d c^{n-2} \dot{v}}{v^{2} \pm b d c^{n-2}}$: Whore Fluent \ddagger Art. $362 \dot{z} \dot{\text { E }}$
may be had, by the Means of circular Arcs, and Logarithms, from Art. 331.

Corollary I.
364. It appears that the Force $\left(\frac{v^{n}}{d c^{n-2}}\right)$ of the $\mathrm{Re}-$ fiftance is to (b), that of Gravity, in the given Medium, as v^{n} to $b d c^{n-2}$: Therefore, if this Ratio be expounded by that of v^{n} to a^{n}, or a^{n} be put $=b d c^{n-2}$, it follows that a will exprefs the Celerity with which the Refiftance would be equal to the Gravity (fince, when $v=a$, the faid Ratio becomes that of Equality.) Hence, alfo, by fubftituting $\frac{a^{n}}{b}$ for its Equal $d c^{n-2}$, we get

$$
\dot{x}=\frac{-a^{n} v \dot{v}}{b \times \overline{v^{n} \pm a^{n}}} \text {, and } \dot{z}=\frac{-r a^{n} \dot{v}}{b \times v^{n} \pm a^{n}} .
$$

Corollary II.

365. If the Refiftance be in the Duplicate Ratio of the Celerity, cur two laft Equations will become $\dot{x}=$ $\frac{-a^{2} v \dot{v}}{b \times v \tilde{v a}}$, and $\dot{z}=\frac{-r a^{2} \dot{v}}{b \times v v \pm a a}$; From the for-

- Art.sz6, mer whereof we get $x=-\frac{a^{2}}{2 b} \times b y p$. Log. $\frac{v v \pm a a^{*}}{c c \pm a a}$ $=\frac{a^{3}}{2 b} \times$ byp. Log. $\frac{c \pm a a}{v v \pm a a}=\frac{d}{2} \times b y p$. Log. $\frac{c \pm b d}{v v \pm b d}$ (becaufe, here, $a^{2}=b d$.) From whence, when $v=0$, (fuppofing the Body to afcend) there comes out $x=$ $\frac{d}{2} \times$ hyp. Log. $1+\frac{c}{a a}$, for the Height (12) of the whole Afcent. But, if 6 be taken $=0$, or the Body 9
be fuppofed to defcend from Reft, we fhall then have
$-\frac{d}{2} \times$ byp. Log. $\overline{1}-\frac{v v}{a a}=$ the Diftance $A B$ defcended. Whence, if N be put for the Number whofe Hyperbolical Logarithm is $\frac{2 x}{d}$, it follows, (becaure, Log. $1-$ $\left.\frac{v v}{a a}=-\frac{2 x}{d}=-\log . N\right)$ that $1-\frac{v v}{a a}=\frac{1}{N}$, and confequently $v=a \sqrt{\frac{\overline{N-1}}{N}}$. From which, the Di-
ftance $A B$ being given, the Velocity acquired in the Fall will be determined. But, if the Body, firt, afcends from a given Point A, with a given Celerity c, and the Celerity, acquired in falling, when it arrives, again, at that Point, be required; the fame may be exhibited in a more commodious Form, independent of Logarithms, and will be equal to $\frac{c}{\sqrt{1+\frac{c}{a a}}}$; becaufe N, in this
Cafe, is found above to be $=1+\frac{c c}{a a}$. Furthermore, with regard to the Time (z), we have already found that \dot{z} is $=\frac{-r a^{2} \dot{v}}{b \times \overline{v v}+a a}$, or $=\frac{-r a^{2} \dot{v}}{b \times \overline{v v-a a}}(=$ $\left.\frac{r a^{2} \dot{v}}{b \times a a-v v}\right)$ according as the Motion of the Body is from, or towards the Center of Force. Therefore the Time itfelf, in the former Cafe, will be $=\frac{r a}{b}$ drawn into the Difference of the two circular Arcs whofe Tangents are $\frac{c}{a}$ and $\frac{v}{a}$, and whereof the common Radius is Unity *: Whence it follows that the Art.r42. Time

Time of the whole Afcent will be denoted by $\frac{r a}{b}$ multiplied into the former of the faid Arcs:

But, in the other Cafe, the Fluent, exhibiting the Time of Defcent, is not explicable by the Arcs of a Circle, but by the Difference of the hyperbolical Lo-- Art. 126. garithms of $\frac{a+v}{a-v}$ and $\frac{a+c}{a-c}$ drawn into $\frac{r a}{2 b}$ *. Therefore, when $c=0$, or the Body falls from Reft, the Time z will be barely $=\frac{r a}{2 b} \times b y p$. Log. $\frac{a+v}{a-v}=\frac{r a}{b}$ \times byp. Log. $N^{\frac{3}{2}}+\overline{N-1}{ }^{\frac{1}{2}}$ (by fubftituting the Value of v found above, and ordering the Logarithm as in Art. 303.) This Equation, in the forementioned Circumftance, where $N=1+\frac{c c}{a a}$, and $v=\frac{c}{\sqrt{1+\frac{c}{a a}}}$,
becomes $z=\frac{r a}{b} \times b y p . \log \cdot \sqrt{1+\frac{c c}{a a}+\frac{c}{a}}$.

Scholium.

366. If, according to Sir lfac Newton, we fuppofe the Refiftance of the Air, to Bodies moving in it, to be in the Duplicate Ratio of the Celerities *; and that

[^1]a Ball, in the Time it might move, unifcrmly, over a Space (d) which is to $\frac{8}{3}$ of its Diameter as the Derifity of the Ball to that of the Medium, would have all its Motion taken away by a Force equal to that of the Refiftance, uniformly continued: Then, from thefe Data, applied to the Theorems in the preceding Article, we fhall be able to determine the Velocities, and the Times of the perpendicular Afcent and Defcent of B'odies near the Earth's Surface; allowing for the Refiftance of the Atmofphere.

Thus, for Inftance, let a Cannon Ball, of four Inches Diameter (whereof the Denfity, or fpecific Gravity, is to that of Air as 6000 to 1, nearly) be fuppofed to be projected, perpendicular to the Horizon, with a Velocity fufficient to caufe it to afcend to the Height of half a Mile, or 2640 Feet, in vacuo; which Velocity (by Art. 203.) will be found to anfwer to the Rate of about 412 Feet per Second: Then, according to the Proportion juft now mentioned, it will be as $1: 0000:: \frac{8}{3} \times 4: 64000$ Inches, or 5333 Feet; which is the Value of d in this Cafe. Therefore, if the Time r, in the preceding Article (which may be affumed at pleafure) be here interpreted by one Second, the correfponding Values of d, c and b will be expounded by 5333 F. 412 F . and $32^{\frac{1}{1}}$ F. * refpectively. Which Values being fubftituted in *Art. 202. the feveral Equations in the laft Article, we fhall get

$$
\mathrm{I}^{0} \cdot a(=\sqrt{b d})=414 \text { F. the Velocity, per Se- }
$$ cond, wherewith the Refiffance would be equal to the Gravity, or Weight, of the Ball.

$$
2^{\circ} \cdot \frac{d}{2} \times \text { byp. } \log .1+\frac{c i}{a l}=1835 \text { Feet, the whole }
$$

Height of the Afcent.
$3^{\circ} \cdot \frac{r a}{b} \times$ Arch. whore Tang. is $\frac{c}{a}=10,08$ Seconds,
the whole Time of the Afcent (which is lefs than the S
Time, in vacuo, by 2,73:)

$$
4^{\circ} \cdot v\left(=\frac{c}{\sqrt{1+\frac{c}{a a}}}\right)=\stackrel{\mathrm{F}}{292 \text {, the Velocity, for }}
$$

Second, acquired in the Defcent.

$$
5^{\circ} . \text { Laftly, } \frac{r a}{b} \times \overline{\text { hyp. Log. } \sqrt{1+\frac{c c}{a a}}+\frac{c}{a}}=
$$

11,30 Seconds, the Time of the Defcent.
Note, In this Example the Meafure of the abfolute Gravity of the Body, in vacuo, is taken, inftead of its Gravity in Air (the Difference, there, being too inconfiderable to be regarded.). But, in Cafes where the feecific Gravity of the Medium bears a fenfible Proportion to that of the Body, the Force of Gravity (b) muff be expounded by $32 \frac{1}{52} \times \frac{B-M}{B}$ (intend of $32 \frac{1}{12}$) where B is to M as the fpecific Gravity of the Body to that of the Medium.

> PROB. III.

36\%. To determine the Refifance, by means wubersof a Body, gravitating uniformly in the Direction of parallel Lines, may defcribe a given Curve.
Let ABC be the given Curve, and BQ , parallel to the Axis (or any given Line) AH, be the Direction of Gravitation at any Point B: Make PBR perpendicular to AH and BQ ; and let $\mathrm{AP}=x, \mathrm{~PB}=y ; \mathrm{AB}=z$, $\mathrm{BM} .(\mathrm{N} b)=\dot{x}, \mathrm{MN}(\mathrm{B} b)=\dot{y}, \mathrm{BN}=\dot{z}$, and the Velocity of the Body at B in the Direction PBR $=v$. Then, the Decrease of Velocity in the fid Direction, which is wholly owing to the Refiftance *, being represented by $-\dot{v}$, it follows that the corresponding Decreafe of Motion in the Direction BN, arifing from the fame Caufe, will be expreffed by $\frac{\dot{z}}{\dot{y}} \dot{x}-\dot{z}=-\frac{\dot{v} \dot{z}}{\dot{j}}$; and, that in the Direction $B M$, by $-\frac{\dot{v} \dot{x}}{\dot{j}}$. But, the Celerity

in reffing Mediums.

Celerity in this laft Direction being, every where, reprefented by $v \times \frac{\dot{x}}{\dot{y}}$, its Fluxion $\frac{v \ddot{x}+\dot{v} \dot{x}}{j}$, will be the

whole Alteration of Motion in the faid Direction, arifing from the Refiftance and the Force of Gravity, conjunctly: From which deducting the Part owing to the Refiftance, found above to be $\frac{\dot{v} \dot{x}}{\dot{\boldsymbol{j}}}$, the Remainder $\frac{v \ddot{x}}{\dot{y}}$ will be the Effect of the Gravity. Which being to (一 $-\frac{\dot{\partial} \dot{z}}{\dot{j}}$) the Effect of the abfolute Refiftance in the Direction BN, as 1 to $-\frac{\dot{\psi} \dot{z}}{v \ddot{x}}$, the Force of Gravity, muft therefore be to that of the required Refiftance, in the fame Ratio of I to $-\frac{\dot{v} \dot{z}}{v \ddot{x}}$.

Moreover, the Force of Gravity, meafured by the Velocity it would gencrate in a given Part of Time (1), being denoted by Unity, the Velocity generated thereby, in the Time $\left(\frac{\dot{y}}{v}\right)$ of defrribing $B b$, with the Celerity v, will likewife be truly exprefed by, $\frac{\dot{j}}{v}$, the Meafure of the
the faid Time: Which being put $=$ to $\left(\frac{v \ddot{x}}{\dot{y}}\right)$ the $V_{\text {ai- }}$ lue of the fame Quantity, given above, we thence have $v^{2}=\frac{\ddot{y} \dot{x}}{\ddot{x}}$: From whence, not only the Velocity, but the Refiftance will be found. But, if you would have the Refiftance expreffed independent of v; then let the Fluxion ($2 \dot{v} \dot{v}=-\frac{j^{2} \dot{\dot{x}}}{\dot{x} \ddot{x}}$) of the laft Equation be divided by the Fluent, which will give $\frac{\dot{v}}{v}=-\frac{\frac{1}{2} \dot{x}}{\dot{x}}$: And then, by fubflituting this Value in $-\frac{\dot{\psi} \dot{z}}{v \dot{x}}$, you will get $\frac{\dot{z} \dot{x}}{2 \ddot{x} \ddot{x}}$, for the true Force of the Refiftance, that of Gravity (or the Weight of the Body) being expounded by Unity.

The fame otherwife.

Let $B O$ be the Radius of Curvature at B, and let OQ be parallel to PB , meeting. BM, produced, in Q: Then, if the abfolute Gravity, acting in the Direction $B Q$, be denoted by Unity, its Force in the Direction BO, whereby the Body is retained in the Curve, will be reprefented by $\frac{B Q}{B O}$. Therefore, fince the Velocities in Circles are known to be in the Subduplicate Ratio

- Art. 212, of the Radii and of the Forces conjunctly *, the Velocity at B will be rightly exprefied by $\sqrt{\mathrm{BO} \times \frac{\mathrm{BQ}}{\mathrm{BO}}}$, or its Equal $\sqrt{\mathrm{BQ}}$. (For the Curve at, and indefinitely near, B may be takeñ as an Arch of a Circle whofe Radius is BO : And it is evident that the $\mathrm{Re}-$ fiftance has nothing to do in forcing the Body from the

Tangent,

Tangent, but only ferves to retard its Motion fo, that it may, every where, bear a duc Proportion to the given Force of Gravity acting in the Direction BO.) Hence, putting $\mathrm{BQ}=s$, the Increafe of the Celerity in the Time $\left(\frac{\dot{z}}{\sqrt{s}}\right)$ of defcribing BN , will be expreffed by the Fluxion of \sqrt{s}, or $\frac{s}{2 \sqrt{s}}$. Moreover, the Celerity that might be generated by Gravity in the faid Time $\frac{\dot{x}}{\sqrt{s}}$ being meafured thereby, the Increafe, in BN, arifing from the fame Caufe, will therefore be $=\frac{\dot{x}}{\sqrt{s}} \times \frac{\dot{x}}{\dot{z}}=\frac{\dot{x}}{\sqrt{s}}:$ Which, being taken from $\left(\frac{s}{2 \sqrt{s}}\right)$ the whole Increafe, found above, the Re mainder, $\frac{\dot{s}-2 \dot{x}}{2 \sqrt{s}}$, will be the Effect of the Refiftance: Which is to the Effect, $\frac{\dot{z}}{\sqrt{s}}$, of the abfolute Gravity as $\frac{\dot{s}-2 \dot{x}}{2 \dot{x}}$ to I . Therefore the Refiftance is to the Gravity (or Weight of the Body) as $\frac{2 \dot{x}-\dot{s}}{2 \dot{z}}$ to Unity: Where the Signs are changed, becaufe the two Forces act in contrary Directions.
Becaure $\mathrm{BO}=\frac{\dot{z}^{3}}{\dot{j} \dot{\ddot{x}}} *$, therefore $s\left(\mathrm{BO} \times \frac{\dot{y}}{\dot{z}}\right)=$ Art 68 . $\frac{\dot{x}^{2}}{\ddot{x}}=\frac{\ddot{j}^{2}+\dot{x}^{2}}{\ddot{x}}$ ($=$ the Square of the Celerity) whence $\dot{s}=\frac{2 \dot{x} \ddot{x} \ddot{x}-\overline{j^{2}+\dot{x}^{2}} \times \dot{x}}{\ddot{x} \ddot{x}}$, and confequently the Refiftance
fiftance $\frac{2 \dot{x}-\dot{j}}{2 \dot{z}}=\frac{\overline{\dot{y}^{2}+\dot{x}^{2}} \times \dot{\dot{x}}}{2 \dot{z} \dot{x} \dot{x}}=\frac{\dot{z} \dot{x}}{2 \ddot{x} \ddot{x}}$, the very fami as before.

Corollary.

368. If the Refiftance be fuppofed as any given Power of the Velocity drawn into (D) the Denfity of the Medium; then, from hence, the Denfity of the Medium, at every Point of the Curve, may be determined: For, the abfolute Celerity at B being reprefented by $\frac{v \dot{z}}{\dot{j}}$, the Refiffance at that Point will, according to the faid Hypothefis, be as $\left.\frac{\overline{v \dot{j}}}{\dot{j}}\right|^{n} \times D$; and therefore the Velocity that would be deftroyed thereby, in the Time $\left(\frac{\dot{y}}{v}\right)$ of defcribing $B N ;$ as $\left.\frac{\bar{v}}{\dot{j}}\right|^{n} \times \frac{D \dot{y}}{v}$: Which being put $=\left(-\frac{\dot{v} \dot{z}}{\dot{j}}\right)$ the Effect of the fame Refiftance, found above, we thence get $D=\frac{-\dot{v i j} j^{n-1}}{v z^{n-1}}$: Which, by fubflituting for v and \dot{v}, becomes $D=$ $\frac{\dot{x}}{2 \dot{x}^{n-1} \times \dot{x}^{-2^{-\frac{1}{2} n}}}$.
In this Corollary, and what, elfewhere; relates to unequal Denfities, the Gravity of the Body in the Medium is fuppofed to continue, every where, the fame, or, that the Attraction increafes with the Denfity, fo that the Difference between the fpecific Gravities of the Body and Medium may, at every Point, be a conftant Quantity.
in refining Mediums.

EXAMPLE I.

369. Let the propped Curve ABC be the common
Parabola :

Then, x being here $=\frac{y^{2}}{a}$, we have $\dot{x}=\frac{2 y \dot{y}}{a}, \ddot{x}=$ $\frac{2 \dot{y} \dot{y}}{a}$ and $\ddot{x}=0$; and therefore $\frac{\dot{z} \dot{x}}{2 \dot{x} \ddot{x}} *$ is alpo $=0:$ Art. 36% Whence it appears that a Body, to defcribe this Curve, muff move in Spaces intirely void of Refinance.
EX A MP LE II.
370. Let the Curve
ABC be taken as a 2 va-
drank of a Circle, whole Radius BO is $=a$.

In this Cafe we haves $(\mathrm{BQ})+=a-x$ ($=\mathrm{AO}$ -AP) whence $\dot{j}=-\dot{x}$, and therefore $\frac{2 \dot{x}-\dot{s}}{2 \dot{z}}=$
 $\frac{3 \dot{x}}{2 \dot{z}}=\frac{{ }^{2} \mathrm{~PB}}{2 \mathrm{AO}} \ddagger$. From which it is evident, that the \ddagger Art, 342_{0} Velocity is, every where, as $\sqrt{\mathrm{BQ}}$, and the Refiftance, to the Gravity (or Weight of the Body) as 3 PB to 2 OB .
PROB. IV.
371. The Centripetal Force (F) being given; to find the Refiftance and Velocity whereby a Body may defribe a given Spiral (or any other, polfible, Curve) about the Center of Farci.

Let P be the Center of Force, and BO the Radius of Curvature at any Point B in the proposed Curve, F. f

or, its Equal, $\sqrt{s F}:$ And therefore its increafe in the Time $\left(\frac{\dot{z}}{\sqrt{s F}}\right)$ of defcribing BN will be $\frac{s \dot{F}+F \dot{j}}{2 \sqrt{ } \sqrt{s F}}$: From which, deducting ($F \times \frac{\dot{z}}{\sqrt{5 F}} \times \frac{-\dot{y}}{\dot{z}}$) the Effect of the centripetal Force, in the fame Time and Direction, the Remainder, $\frac{s \dot{F}+F_{s}^{\dot{p}}+2 F \dot{y}}{2 \sqrt{s F}}$, is the Effect of the Refiftance. Therefore the Refiftance is to the centripetal Force as $\frac{s \dot{F}+F^{\dot{s}}+2 F \dot{y}}{2 \sqrt{s F}}$ to $\frac{F \dot{x}}{\sqrt{s \vec{F}}}$, or as $\frac{{ }_{s} \dot{F}+\vec{F}+2 F \dot{y}}{2 F \dot{x}}$ to Unity. 2. E. I.

E•X A PLE.

372. Let the Meafure (F) of the centripetal Force be expounded by any Power y^{n} of the Diftance; and let the Curve be the logarithmic Spiral ; putting the \dagger Art. 61. Co-fine of the given Angle PBN + (to the Radius r) \ddagger Art $74_{1}=c$. Then, s being here $=y \ddagger$, and $\dot{F}=n y^{x-1} y$, we
we have $\frac{s \dot{F}+F \dot{s}+2 F \dot{y}}{2 F \dot{z}}=\frac{n y^{n} \dot{y}+y^{n} \dot{y}+2 y^{n} \dot{y}}{2 y^{n} \dot{z}}=\frac{n+3}{2}$ $\times \frac{\dot{y}}{\dot{z}}=\frac{n+3}{2} \times \frac{c}{r}$.
Hence it appears that the Velocity muft be, every where, as $y^{\frac{n+1}{2}}$; and the Refiftance, to the centripetal Force, as $\frac{n+3}{2} \times \frac{c}{r}$ to Unity. But, when $n=-3$, $\frac{n+3}{2} \times \frac{c}{r}$ becomes $=0$; therefore the Body, in this Cafe, muft move in Spaces intirely void of Refiftance; agreeable to 'Art. 233. And, if $n+3$ be negative, an accelerating, inftead of a refifting Force, will be required.

Scholium.

373. If the Denfity of a Medium, wherein a Body moves, be either uniform, or varies according to a given Law, the Nature of the Curve, or Trajectory may be determined from what is delivered in the preceding Pages.

Thus, for Example, let the Denfity be fuppofed every where the fame, and the Refiftance as the Square of the Celerity; then, from Art. 368. we have $\frac{\dot{x}}{\dot{z} \ddot{x}}=D$; which, in order to exterminate \dot{x}, may be transformed to $\ddot{x} \dot{x}=\overline{\dot{y} \dot{y}+\dot{x} \dot{x}} \times D^{2} \ddot{x} \ddot{x}$: Where, D being a conftant Quantity (depending upon the given Denfity of the Medium) the Value of x will be found, as is taught in SecT. 2. Art. 268. 271. and comes out $=\frac{y^{2}}{p}+\frac{D y^{3}}{3 P}$ $+\frac{D^{2} y^{4}}{22 \phi}$ छir. In which p is put to denote the Para-

$$
\text { Ff } 2 \text { meter }
$$

meter of the Curve at the Vertex, or highef Point A, (to be determin'd from the Force of Gravity and the given Velocity of the Body at that Point.) This Solution anfwers near enough when the Refiftance is but frall in Proportion to the Gravity ; in other Circumftances, the Series not converging, it becomes ufelefs: For which Reafon, and becaufe the Cafe above fpecified is That fuppofed to obtain, in refpect to the Air near the Earth's Surface, and its Refiffance to Bodies moving therein, I fhall fhew, by a different Method, how the Nature of the Curve may be inveftigated.

In order thereto, let the Celerity at the higheft Point, A, above the Plane of the Horizon EC, be denoted by c; and let a be the Celerity with which the Refiffance is equal to the Gravity (vid. Art. 365 . and 366.)

Moreover, let d be put for the Diftance over which the Ball might uniformly move in the Time that the Medium would deftroy all its Motion, was the Refiftance to continue the fame, all along, as at the firft Inftant (Which Diftance, according to Sir Ifaac Newton, is, always, in Proportion to $\frac{8}{3}$ of the Ball's Diameter, as the Denfity of the Ball to that of the Medium.)

Then it will be, as $d: \dot{z}(\mathrm{BN}) \therefore \frac{v \dot{z}}{\dot{y}}$, the abfolute Celerity at B, to $\left(\frac{v \dot{x}^{2}}{d \dot{j}}\right)$ the Part thercof that would be uniformly deftroyed by the Refiftance in the Time of defcribing BN, with the Velocity at B: Which Value being alfo expreffed by $\frac{-\dot{v} \dot{z}}{\dot{y}}$ (vid. Art. 367) we
therefore have $\frac{v \dot{z}^{2}}{d \dot{j}}=-\frac{\dot{v} \dot{z}}{\dot{y}}$; whence $\frac{\dot{\tilde{z}}}{d}=\frac{-\dot{w}}{v}$, and consequently, by taking the Fluent, $\frac{z}{d}=-$ hyp. Log. v; which corrected (by putting $z=0$, and $v=c$) gives $-\frac{z}{d}(=$ hyp. Log. $c-$ hyp. Log. $v)=$ hyp. Log. $\frac{c}{v}$.

Furthermore, fince (by Hypothefis) the Refifance with the Celerity $\frac{v \dot{z}}{\dot{y}}$ (at B) is to the Force of Gravity, or the Refiffance with the Celerity a, as $\frac{v v \dot{z} \dot{z}}{\dot{j} \dot{y}}$ to a^{2}; and it appears, from the aforefaid Article, that the fame Ratio is alfo univerfally expreffed by that of $\frac{-\dot{v} \dot{z}}{v \dot{x}}$ to 1, it follows, from the Equality of there Ratios, that $\frac{\dot{z} \ddot{x}}{y \dot{y}}$ is $=-\frac{a^{2} \dot{v}}{v^{3}}$. But, in order to the Refolution of the Equation thus given, let the Tangent of the Angle PBA (or N) which the Ordinate, PB, makes with the Curve (fuppofing Radius Unity) be, every where, represented by $w:$ Then, because $\dot{x}=w \dot{y}, \dot{z}\left(\sqrt{\dot{j}^{2}+\dot{x}^{2}}\right)$ $=\dot{y} \sqrt{1+w^{2}}$, and $\ddot{x}=\dot{w} \dot{y}$ (\dot{y} being conftant) we Shall, by fubfituting there Values in the foresaid Equal-. tion, get $-\frac{a^{2} \dot{v}}{v^{3}}=\dot{v} \sqrt{1+w^{2}} ;$ whereof the Fluent will be given, $\frac{\frac{1}{2} a^{2}}{v^{2}}=\frac{1}{2} w \sqrt{1+w^{2}}+\frac{1}{2}$ hyp. Log. $w+\sqrt{1+w^{2}} *$: Which corrected (by taking. Art. $\mathbf{x} 26$, $v=($ and $w=0)$ becomes $\frac{\frac{1}{2} a^{2}}{v^{2}}-\frac{\frac{x}{2} a^{2}}{c^{2}}=\frac{x}{2} w \sqrt{1+w^{2}}$ $+\frac{1}{3}$ hyp. Log. $w+\sqrt{1+w^{2}}$. But, to fhorten the Ff 3
remaining Part of the Process, let the latter Part of the Equation, or the Fluent of $\dot{w} \sqrt{I+w^{2}}$ be denoted by 2; then $\frac{a a}{2 v v}$ being $=\frac{a a}{2 c c}+2$, we have $\dot{v}=$ $\frac{a c}{\sqrt{a a+2 c c^{2}}} ;$ and consequently $\frac{z}{d}$ (= hyp. Log. $\frac{c}{v}$) $=$ hyp. Log. $\frac{\sqrt{a a+2 c c, 2}}{a}=\frac{1}{2}$ hyp. Log. $\overline{1+\frac{2 c c, 2}{a a}}$.
From which two Equations, the Velocity of the Ball, and the Diffance it has moved, when its Direction makes any given Angle with the Horizon, may be compouted, let the Medium be as denfe as it will: Alfo, from hence, if the Celerity answering to any one given Angle of Direction be known, the Celerity corresponding to any other given Direction may be found, together with the Diffance deferibed between the two Pofitions. For v (in the Defcent of the Body) being, univerfally, equal to $\frac{a c}{\sqrt{a a+2 c^{2} 2}}$, the Value of c, expreffing the Celerity at the Vertex A, will be had from that Equation, and comes out $=\frac{a v}{\left.\sqrt{a a-2 v^{2}}\right)^{2}}$; whence alfo $z\left(=d \times\right.$ hyp. Log. $\left.\frac{c}{v}\right)=d \times$ hyp. Log. $\frac{a}{\sqrt{a a-2 v^{2} 2}}=-\frac{1}{2} d \times$ hyp. Log. $\overline{1-\frac{2 v v 2}{a a}}$.
From which, the Celerity at A being known, the reft is obvious.

But, in the ascending Part of the Curve EA, both z and Q mut be confidcred as negative, or wrote with contrary Signs: And then, from the foregoing Equations, we fall alto get $v=\frac{a c}{\sqrt{a a-2 c c} 2,}, c=\frac{a v}{\sqrt{a a+2 v v 2}}$,
and $-z=\frac{1}{2} d \times$ hyp. Log. $\overline{1-\frac{2 c c Q}{a a}}=-\frac{1}{2} d x$
hyp. Log. $\overline{I+\frac{2 v v Q}{a a}}$; and, confequently, $z=-\frac{1}{2} d$ \times hyp. Log. $\overline{1-\frac{2 c c Q}{a a}}= \pm d \times$ hyp. Log. $\overline{1+\frac{2 v v 2}{a a}}$ $=d \times$ hyp. Log. $\frac{v}{c}:$ Anfwering in this Cafe.
It fill remains to take fome notice of the Values of x and y (in order to have the Form, as well as the Length of the Curve.) Thefe, indeed, are not fo eafy to bring out as That of z, given above; nor can they be exhibited in a general Manner, either by circular Arcs, or Logarithms (that 1 have been able to difcover) but may, however, be approximated to any required Degree of Exactnefs, as will appear from what follows.

Since $z(=A B)$ is found $=\frac{1}{2} d \times$ hyp. Log. $\frac{a a+2 c^{2} Q}{a a}$, by taking the Fluxion thereof, we get $\dot{z}=$ $\frac{c c d \dot{Q}}{a a+2 c c \mathscr{Q}}=\frac{c^{2} d \dot{w} \sqrt{1+w^{2}}}{a a+2 c^{2} \mathscr{Q}}$ (becaufe $\left.\dot{Q}=\tau \dot{v} \sqrt{1+w^{2}}\right)$ Therefore $\dot{y}\left(=\frac{\dot{z}}{\sqrt{1+\omega^{2}}}\right)=\frac{c^{2} d \dot{w}}{a a+2 c^{2} Q^{2}}$; and \dot{x} $(=w \dot{j})=\frac{c^{2} d w i s}{a a+2 c^{2} Q}$: Which Equations, by taking r to 1 , as a^{2} to c^{2} (or as the Square of the Force of Gravity to the Square of the Refiftance at A) are reduced to $\dot{y}=\frac{d i w}{r+2 Q^{2}}$, and $\dot{x}=\frac{\text { dwriv }}{r+2 Q}$: Whence
we get $y=d$ into $\frac{w}{r+2 Q}+\frac{\frac{2}{3} \times \overline{1+w w)^{2}}-\frac{2}{3}}{r+22^{2}}+$
Ff 4
$\frac{\frac{8}{3} w \times \sqrt{1+\frac{2}{3} w^{2}+\frac{1}{3} w^{4}}-\frac{8}{3}}{\left.\sqrt[r+22)^{3}\right]{ }} \xi^{\circ} c$. And $x=d$ into
$\frac{\frac{1}{2} \cdot w^{2}}{r+2 Q}+\frac{\frac{1}{i} w \times \overline{1+w w}^{\frac{3}{2}}-\frac{1}{4} 2}{r+2 Q^{2}}+$
$\frac{\left.\frac{3}{b} \times \overline{1+w w}\right)^{3}-\frac{1}{6}-\frac{1}{2} Q^{2}}{r+22^{3}}$ sc, There Expreffions
(brought out by affuming $\frac{A}{r+2 Q}+\frac{B}{r+2)^{2}}+$ bi.
for the Fluent fought, and proceeding as in Art. 340.) converge very fat when r is large in comparison to Q; but in other Cafes the required Values will be had, with lees Trouble, from the following Method.

Let PKTK and AMTM be two Curves, whereof the Ordinates SK and SM, to the common Abfifla w $(=\mathrm{AS})$ are expreffed by $\frac{1}{r+2 \Omega}$ and $\frac{w}{r+22}$ refpectively: Then it is plain, from the foregoing Equations, that the Measures of the Areas of the raid Curves, miltiplied by d, will truly exhibit the Values of y and x;
anfwering to any given V alue of w (or AS) the Tangent of the Angle of Direction; or, or fpeak more geometrically, a Square upon AC (fuppofing AC $=$ Radius $=$ Unity) will be to either of the faid Areas ASKP, or ASM as the given Diftance d, to the Value of y or * required - But now as to a Way for computing thefe Areas (without which what has been faid about them would be to very litte Purpofe) the Method of Equi-diftant Ordinates may here be applied to very good Advantage (when the foregoing Seriefes do not converge) By means whereof the required Quantities may, with a Iittle Trouble, be brought out to a fufficient Degree of Exactnefs, let the Refiftance be as great as it will.

According to the fame Way of proceeding, the Values of x and y, in the Afcent of the Ball, will alfo be found, if the Ordinates $s k$ and $s m$, generating the re-
quired Areas, be taken, every where, equal to $\frac{1}{r-2 \chi}$ and $\frac{w}{r-22}$ (inftead of $\frac{1}{r+2.2}$ and $\frac{w-}{r+2.2}$).

From what has been thus far delivered, it will not be very difficult to calculate (according to the foregoing Hypothefis) all the principal Requifites concerning the Motion and Track of a Ball in the Air, projected with agiven Velocity, at a given Elevation; as will be more clearly feen by the Example fubjoined.

Suppofe a Cannon Ball of 4 Inches Diameter (whereof the Weight is nearly 9 Pounds) to be difcharged at an Elevation of 45 Degrees, with a Velocity fufficient to carry it to the Diftance of one Mile, on the Plane of the Horizon, were it not for the Refiftance of the Air.Then that Velocity, being the fame as might be freely acquired in a perpendicular Defcent of half a Mile *, *Aro 366. will be found to anfwer to the Rate of 412 Feet, per Second, according to Art. 202: and 366. From whence it is allo plain, that the Diftance d (foo often mentioned above) will here be expounded by 5333 Feet; and that the Celerity (a) with which the Refiftance would be equal to the Gravity (or Weight of the Ball) anfwers to the Rate of about 414 Feet per Second.

Moreover, fince the Tangent of the Angle of Elevation, or the firf Value of w, is given equal to Unity (or Radius) we have $2\left(\frac{1}{2} w \sqrt{w^{2}+1}+\frac{1}{2}\right.$ hyp. Log. $\overline{w+\sqrt{v^{2}+1}}=1.1478$: From which, and $v(=$ $\left.412 \sqrt{\frac{1}{2}}\right)$, we get $\approx\left(=\frac{1}{2} d \times\right.$ hyp. Log. $\left.1+\frac{2 v v 2}{a a}\right)$
$=2025$ Feet $=$ the Arch defcribed in the whole Afcent. Alfo $\left(c=\frac{v}{\sqrt{1+\frac{2 v v^{2}}{a a}}}\right)=199 \frac{x}{3}$ Feet, for the Rate of the Velocity, per Second, at the higheft Point: Whence $r\left(=\frac{a a}{c c}\right)=4,314$; by Means whereof the greateft Altitude of the Ball, and the horizontal Diftance correfponding thereto will likewife be found: For let AF, in the preceding Figure, be taken $=1$ (the given Value of w) and let the fame be divided into three Parts by equi-diftant Ordinates (which Number will anfwer fufficiently exact) then the fucceffive V alues of w, for the Ordinates $\mathrm{AP}, k s, k s$ and TF , being $0, \frac{1}{3}, \frac{2}{3}$ and I , tbofe of 2 will be $0,0.3394,0.713$, and 1.1478 , and the Ordinates themfelves (or the correfponding Values of $\frac{1}{r-22}$) to $0.2318,0.2751$, 0.3463 and 0.4953 , refpecively. From whence, by adding the two Extremes to three times the Sum of the two middle Terms, and dividing the whole by 8, we get 0.3239 for the Value of a mean Ordinate *: Which, as AF is here equal to Unity, is alfo the Meafure of the required Area AFTP: Which, therefore, being multiplied by 5333 (d) gives 1727 Feet, for the horizontal Diffance made good in the whole Afcent. In

[^2]the fame Way the Area AFm is found $=0.1828$. Whence the greateft Height of the Ball appears to be $(=0.1828 \times 5333)=975$ Feet.

By taking $\mathrm{AC}=1$, and repeating the Operation (only changing $r-22$ to $r+2$ 2) the Area ACTP will come out $=0.1883$, and ATC $=0.0875$; which multiplied by 5333 (as above) give 1004 F. and 467 F. for the Amplitude, and the Diftance defcended, from the higheft Point, when the Direction of the Ball makes an Angle with the Horizon equal to that in which it was projected.

But, to have the Direction when the Ball ftrikes the Ground, and the whole Amplitude of the Projection, we muft find the Value of the Tangent AB, when the Area ABL is equal to (0.1828) the Area AFm (fo that the Defcent, from the higheft Point, may become equal to the whole Afcent.) In order thereto, let 0.0875 ($\mathrm{A}^{\prime} \mathrm{TC}$) be deducted from 0.1828 (AFm) and the Re mainder 0.0953 will be $=$ CTBL; this, divided by TC (0.1513) quotes 0.63 ; which would be the Value of CB , if all the Ordinates $\mathrm{CT}, \mathrm{SM}, \Xi^{\circ} \mathrm{c}$. were equal : But, as it is obvious from the Nature of the Problem; and from the Law of the Ordinates already computed, that BL will be fomething greater than CT, and confequently CB lefs than 0.63 -I therefore fuppofe the Value of CB may be about 0.56 ; and, accordingly, proceed to compute the Area of CBLT anfwering to this Number; by means of CT (0.1513) and BL (0.1852) and one intermediate Ordinate SM (0.1715) and find it (from the Approximation $\frac{C T+B L+4 S M}{6} \times C B$) to come out $=0.0955$: Which is fo near the required Value 0.0953 , that it will be altogether needlefs to repeat the Operation. It is evident from hence, that the Tangent (AB) of the Angle of Direction, when the Ball frikes the Ground, is 1.56 ; anfwering to 57° : 20' From whence, CBK'T being found $=0.0752$, the whole Area ABKP will be had $=0.2635$, and confequently $0.2635 \times 5333=1405$ F. $=$ the Amplitude in the whole Defcent.

Furthermore, from the fail Value of w and that of $c\left(=199 \frac{1}{3}\right)$ given above, we get $z\left(=\frac{1}{2} d \times\right.$ hyp. $\left.\log .1+\frac{2 c c Q}{a a}\right)=1788$ Feet, for the Arch described in the Defeat; and also $v=142 \frac{1}{2} F$. which multiplied by r .8527 , the Secant of $57^{\circ}: 20^{\prime}$, gives 264 F . for the Celerity of the Ball, per Second, at the End of its Flight.

Now, by collecting the principal of the foregoing Conclufions, it appears,

1°. That the Velocity at the higher Point A of the Trajectory will be at the Rate of $199 \frac{7}{3}$ Feet, per Secold: Which is to the Velocity at the bigheff Point a of the Parabola (Lac) that would be defribed, were it not for the Refiftance, as 2 to 3, nearly.
2°. $\mathrm{EA}=2025$ and $\mathrm{E} a=30307$
$3^{\circ} \cdot \mathrm{EF}=1727$ and $\mathrm{E} f=2640$
4. $\mathrm{AF}=975$ and $a f=1320\}$ Feet
$5^{\circ} . \quad \mathrm{AC}=1788$ and $a_{c}=303^{\circ}$
$6^{\circ} . \mathrm{FC}=1405$ and $f c=2640$
7°. Angle $\mathrm{C}=57^{\circ}: 20^{\prime}$ and $c(=\mathrm{E})=45^{\circ}$.
80. Velocity at C to that at E, as $26+$ to 412 , or as 2 to 3 , nearly.

There Proportions, between the Diffances, in Air and in vacuo, hold at an Elevation of 45°, when the Refiftance, at going off, is nearly equal to the Gravity, or Weight, of the Ball. If the Velocity be greater than that above Specified, or the Body, projected, be, either,
either, lefs, or lefs denfe, the Curve will differ, fill, more from a Parabola.

Hence it evidently appears, that the Effect of the Air's Refiftance upon very fwift Motions, is too confiderable to be intirely difregarded in the Art of Gun-nery.--T is true the Merhod given above is, by much, too intricate for common Practice; but when the Law of the Refiffance to very fwift Motions is once fufficiently eftablifhed (which, according to fome laie Experiments, feems to be in a Ratio greater than that of the. Square of the Celerity) it will be no very difficult Matter to find out proper Approximations to correct the Proportions in common Ule.

S E CTIONIX.

The Ufe of Fluxions in determining the Attraction of Bodies under different Forms.

> PROBI.
374. Suppofing AC partendicular to AB , and that a Corpufcle at C is attracted towards every Point or Particle of the Line AB , by Forces in the reciprocal duplicate Ratio of the Difances; to determine the Ratio of the whole Force whereby the Corpuscle is urged in the Direfion CA.
Put $\mathrm{AC}=a$, and let AD (conlidered as variable by the Motion of D towards B) be denoted by x : Then, the Force of a Particle at D being as
$\frac{1}{\mathrm{CD}^{2}}$ (by Hypothe-
fis) its Efficacy in

the propofed Direction AC will (by the Refolution of Forces) be as $\frac{\mathrm{AC}}{\mathrm{CD}} \times \frac{\mathrm{x}}{\mathrm{CD}^{2}}=\frac{\mathrm{AC}}{\mathrm{CD}^{3}}=\frac{a}{\left.a^{2}+x^{2}\right)^{\frac{3}{2}}}$: Therefore $\frac{a \dot{x}}{a^{2}+\left.x^{2}\right|^{\frac{3}{2}}}$ is the Fluxion of the whole Force; whore Fluent, which (by Art. 85.) is $=\frac{x}{a \times a^{2}+x^{2} 1^{\frac{1}{2}}}$ $=\frac{\mathrm{AD}}{\mathrm{CA} \times C D}$, will, when $\mathrm{AD}=\mathrm{AB}$, be as the Force itself.
2.E.I.
PR OB. II.
375. Suppofing BCDE to represent a circular Plane, and that a Corpuscle H , in the Axis thereof AH , is attracked ty every Point or Particle of the Plane by Forces in the reciprocal duplicate Ratio of the Distances; to find the whole Force by which the Corpuscle is urged towards the Plane.

Let $\mathrm{AH}=a$, and $\mathrm{H} b=x$; then $\mathrm{A} b^{2}$ $=x^{2}-a^{2}$; which multiply'd by ($p=$ 3,14159 Etc.) the Area of the Circle whole Radius is Unifty, gives $p \times \overline{x^{2}-a^{2}}$. for the Area of the Circle Acdbe: whore Fluxion is $=2 p x x_{0}$. But the Force of a fingle Particle at b, in the Direction HA , is as $\frac{\mathrm{AH}}{\mathrm{H} b^{3}}$, or $\frac{a}{x^{5}}$ (fee the lat Problem) therefore the Fluxion of the whole Force is truly
in determining the Attraction of Bodies.
truly defined by $2 p x \dot{x} \times \frac{a}{x^{3}}$ or its Equal $\frac{2 p \dot{x}}{x^{2}}$ and the Force itfelf by the Fluent of $\frac{2 p a \dot{x}}{x^{2}}$; which (properly corrected) is $-\frac{2 p a}{x}+\frac{2 p a}{a}=2 p \times 1-\frac{a}{x}=2 p \times$ $\overline{I-\frac{A H}{B H}}$, when $x=H B . \quad$ 2.E.I.
376. In the preceding Problems, we have fuppofed the Attraction of each Particle, to be as the Square of the Diftance inverfely; that being the Law which is found to obtain in Nature: But if the Force, according to any other Law of Attraction, be required, the Procefs will be very little different.

Thus, let the Attraction be as any Power (n) of the Diftance: Then (in the laft Prob.) the Force of a Particle at b (upon H) being as x^{n}, its Force in the Direction HA will be as $\frac{a}{x} \times x^{n}$ or $a x^{n-1}$; which multiply'd by $2 p x \dot{x}$ (as before) gives $2 p a x \dot{x}$: whereof the Fluent $\frac{2 p a x^{n+1}-2 p a^{n+2}}{n+1}\left(=\frac{2 p}{n+1} \times\right.$ $\overline{\left.\mathrm{AH} \times \mathrm{BH}^{n+1}-\mathrm{AH}^{n+2}\right)}$ will be as the Force required.

> P R O B. III.
377. To determine the Attraciion of a Cone DHF at its Vertex; the Attrastion of each Particle being as the Squars of the Difance inverfely.

Put the Axis $\mathrm{EH}=a$, the Length of the Slant-Side $\mathrm{HD}($ or HF$)=b$, and AH (confidered as variable) $=x:$ Then (by fim. Triangles) a (HE): b (HF)
$\because x(\mathrm{HA}): \mathrm{HB}=\frac{b x}{a}$. But, by the lift Problem,

the Attraction of all the Particles in the Circle
 $\overline{1-\frac{a}{b}}$ (becaufe HB $=\frac{b x}{a}$) : Which therefore being multiply'd by \dot{x}, and the Fluent taken, we thence have $x-\frac{a x}{i}$ for the Attraction of ACHB: And this, when
 whole Cone DEHF: Which, if HK be made $=\mathrm{HE}$, and KG perpendicular to HE, will likewife be truly defired by $2 \not \equiv \times E G$ (because $H G=\frac{E H^{2}}{\mathrm{DH}}$). 2. E.I.
COROLLARY.
378. Seeing the Attraction of ACHB is, every where, as $x-\frac{a x}{b}$, or $\frac{b-a}{b} \times x$, it follows that the Forces of fimilar Cones, at their Vertexes, are directly as their Altitudes.

PROB. IV.

379. To find the Force of a Cylinder CBRF, at any Point A in the produced Axis; the Law of Attraction being fill as in the preceding Problems.

Put BG $(=C G=$ RH) $=b$; and let AS (taken as variable) $=x$: Therefore AT $=\sqrt{b^{2}+x^{2}}$, and $2 p \times 1-\frac{\mathrm{AS}}{\mathrm{AT}}=2 p \times$ $1-\frac{x}{\sqrt{b^{2}+x^{2}}}:$ Which (by Prob. 2.) expreffes the Force of all the Particles in the circular Surface IST.

Therefore $2 p \times \dot{x}-\frac{x \dot{x}}{\sqrt{b^{2}+x^{2}}}$ is the Fluxion of the required Force: Whofe Fluent $\left(2 p \times \bar{x}-\sqrt{b^{2}+x^{2}}\right)$ when $x=\mathrm{AG}$, will be $=2 p \times \overline{A G-A B}$; but when $x=\mathrm{AH}$, it will $\mathrm{be}=2 p \times \overline{\mathrm{AH}-\mathrm{AF}}$: Hence, by taking the former of thefe Values from the latter, we have $2 p \times \overline{\mathrm{AB}+\mathrm{BF}-\mathrm{AF}}$ for the Meafure of the true Force by which a Corpufcle at A is urged towards the Cylinder.

PROB.V.

380. The Law of the Force being fill fuppofed the fams; to deternine the Attraßtion of a Sphere OABGS, at any given Point H above its Surfacs.

Let BS be perpendicular to HG , and let HB be drawn; alfo put the Radius $\mathrm{AO}=a, \mathrm{OH}=b, \mathrm{AH}(b-a)$ $=c, \mathrm{H}_{n}=y$; and $\mathrm{HB}=c+x$; then $\mathrm{A} n=y-c, \mathrm{G} n$ $=2 a-y+c$, and confequently $y=c \times \overline{2 a-y+c}(=$ $\left.\mathrm{A} n \times \mathrm{G} n=\mathrm{Bn}^{2}=\mathrm{BH}^{2}-\mathrm{H}^{2}\right)=\frac{\mathrm{c}^{2}+x}{}{ }^{2}-y^{2}$: From which Equation we get $y=\frac{2 a c+2 c^{2}+2 c x+x^{2}}{2 a+2 \varepsilon}=$ $\frac{2 b c+2 c x+x^{2}}{2 b}$ (becaufe $a+c=b$.) Whence allo $2 p \times$ -Att. $37.5 \cdot \overline{1-\frac{\mathrm{H}_{n}}{\mathrm{HB}}} *=2 p \times \overline{1-\frac{2 b c+2 c x+x^{2}}{2 b \times \overline{c+x}}}=\frac{2 p \times \overline{2 a x-x^{2}}}{2 b \times \overline{c+x}}:$ Which multiply'd by $\frac{c \dot{x}+x \dot{x}}{b}=\dot{y}$ gives $\frac{p \times \overline{2 a x \dot{x}-x^{2} \dot{x}}}{b^{2}}$ for the Fluxion of the required Force; whereof the Fluent
$\frac{p x \overline{a x^{2}-\frac{1}{4} x^{3}}}{b^{2}}$ will be the Attraction of the Segment ABS: Which therefore, when B coincides with G and $*$ is $=2 a$, becomes $\frac{4 p a^{3}}{3 b^{2}}$, for the Meafure of the Attraction of the whole Sphere.
2. $E . I$.

Corollary I.

381. Hence the Attraction $\left(\frac{4 b a^{3}}{3 b^{2}}\right)$ at the Surface of the Sphere, where b is $=a$, will be $\frac{4 p a}{3}$; and therefore is directly as the Radius of the Sphere.

Corollary II.

382. Since $\frac{4 p a^{3}}{3}$ is known to exprefs the Content of Sphere whofe Radius is a ", it is evident that the At- *Art ${ }^{\text {r48 }}$. traction $\left(\frac{4 p a^{3}}{3 b^{2}}\right)$ of any Sphere is, univerfally, as its Quantity of Matter directly, and the Square of the Diftance from its Center inverfely; and is, moreover, the very fame as it would be, was all the Matter in the Sphere to be united in a Point at the Center.

Corollary III.

383. If inftead of a Corpufcle, or a fingle Particle of Matter, at H , we fuppofe another Sphere, having its Center at H : Then, fince the two Spheres, at O and H, act upon each other with the very fame Forces, as if each Mafs was contracted into its Center, it follows that the abfolute Force, with which two fpherical Bodies tend towards each other, is as the Product of their Maffes directly, and the Square of the Diftance of their

Centers inverfely: And therefore, if the Maffes are given, will be barely as the Square of the Diftance.
PROB. VI.
384. To determine the fame as in the loft Problem, the Force of each Particle being as any Power (n) of the Difänce.
Let $\mathrm{HB}=x$, and let every thing elfe remain as above; then we foal have $y=\frac{c^{2}+2 a c+x^{2}}{2 b}=d+$ $\frac{x^{2}}{2 b}$ (by putting $d=\frac{c^{2}+2 a c}{2 b}$) and confequently $\dot{y}=\frac{x \dot{x}}{b}$.

Now the Attraction of all the Particles in the circular Surface BS, is as $\frac{2 p}{n+1} \times \overline{\mathrm{H} n \times \mathrm{HB}^{n+1}-\mathrm{H}^{n+2}}$ (by Art. 376.) $=\frac{2 p}{n+1} \times \overline{y x^{n+1}-y^{n+2}}$: Which, multiply'd by $-\dot{y}$, gives $\frac{2 p}{\hat{n+1}} \overline{\times x^{n+x} y \dot{y}-y^{n+2}} \dot{y}$ for the Fluxion of the required Force: Which, because $y \dot{y}$ is $=$ $\overline{a+\frac{x^{2}}{2 b}} \times \frac{x \dot{x}}{b}=\frac{d x \dot{x}}{b}+\frac{x^{3} \dot{x}}{2 b^{2}}$, will likewife be expreffed by $\frac{2 p}{n+1} \times \frac{\overline{c x^{n+2} \dot{x}}}{b}+\frac{x^{n+4} \dot{x}}{2 b^{2}}-y^{n+\frac{1}{2}} \dot{y}$: Whereof the
Fluent is $\frac{2 p}{n+1} \times \frac{d x^{n+3}}{\overline{n+3} \times b}+\frac{x^{n+5}}{n+5 \times 2 b^{2}}-\frac{y^{n+3}}{n+3}$: Which, when B coincides with A , or $x=y=c$, will be $=$ $\frac{2 p}{n+1} \times \frac{\overline{d_{c}^{n+3}}}{n+3 \times b}+\frac{c^{n+5}}{n+5 \times 2 b^{2}}-\frac{c^{n+3}}{n+3}$: But, when 6 B co-

in determining the Attraction of Bodies.

B coincides with G, or $x=y=2 a+c(=f)$ it will become $=\frac{2 p}{n+1} \times \frac{d f^{n+3}}{n+3 \times b}+\frac{f^{n+5}}{n+5 \times 2 b^{2}}-\frac{f^{n+3}}{n+3}$.
Therefore the Difference of there two, which is $=$
$\frac{2 p f^{n+3}}{n+1} \times \frac{\overline{n+5} \times \overline{2 b d-2 b^{2}}+\overline{n+3} \times f^{2}}{\overline{n+3} \times \overline{n+5} \times 2 b^{2}}-\frac{2 p c^{n+3}}{n+1} \times$
$\frac{\overline{n+5} \times \overline{2 b d}-2 b^{2}-\overline{n+3} \times c^{2}}{n+3 \times \overline{2+5} \times 2 b^{2}}=$
$\frac{\overline{1+n} \times a b-c c}{} \times 2 p f^{n+3}+\overline{\overline{5+n}} \times a b+c c \times 2 p c^{n+3}$
(because $f=a+b$, and $2 d b=c^{2}+2 a c$) will be the Attraction of the whole Sphere.

Corollary.

385. Hence, the Attraction at the Surface of the Sphere (where $c=0$) will be $\frac{2 p}{n+1} \times$
$\frac{\overline{1+n} \times 2 a]^{n+3}+\overline{n+5} \times 0^{+3}}{\overline{n+1} \cdot \overline{n+3} \cdot \overline{n+5}}$: Which, if $n+3$ be pofitive, will be $=\frac{2 p \times \overline{2 a 1^{n+3}}}{n+3} \times \overline{n+5}$; but, otherwife, infinite.
386. Supposing ADBbA to be a Cuneus of uniformly dene Matter, compriz'd by two equal and Similar elliptic Planes ADBEA and AdbeA, inclin'd to each other, at the common Vertex A, of either their fir f or fecond Axes, in an indefinitely finall Angle BA b; To determine the Attraction thereof at the Point A, fuppofing the Force of each Particle of Matter to be as the Square of the Difance inversely.

GI 3

Let $D E$ be any Ordinate to the Axis $A B$, and let AD be drawn; alfo put $\mathrm{AB}=a, \mathrm{BC}=x, \mathrm{CD}=y$, and the Sine of the $A n g l e ~ B A b$, formed by the two Planes

(to the Radius I) $=d$; and let the Equation of either Curve be $y^{2}=f x-x^{2}-g x^{2}$: Which will anfwer, to the Conjugate, or Tranfveríe Axis thereof, according as the Value of g is pofitive or negative.

Now it will be, I (Radius) : $d:: a-x(\mathrm{AC}): \mathrm{C}_{c}$ $=d \times \overline{a-x}$, the Thicknefs of the Cuneus at the Ordinate (or Section) DE: Moreover, becaule $\mathrm{AD}^{2}=$ $A C^{2}+C D^{2}$, we have $A D=\sqrt{a-x 7^{2}+f x-x^{2}-g x^{2}}:$ Whence, $\frac{\mathrm{DE} \times C c}{\mathrm{AC} \times \mathrm{AD}}$, expreffing (by Art. 374.) the Attrace tion of the Particles in the indefinitely narrow Rectangle $\mathrm{DE} \times C_{c}$, will be defined by $\frac{2 d \sqrt{f x-x^{2}-g x^{2}}}{\sqrt{ }} \frac{\sqrt{-x)^{2}+f x-x^{2}-g x^{2}}}{}$: Which therefore, multiply'd by \dot{x}, will give the Fluxion of the Force to be found. But when $f x-x^{2}-g x^{2}$
be-
becomes $=0, x$ will be $=\frac{f}{1+g}(=\mathrm{AB})=a$; therefore, by fubftituting for f, our Fluxion will be tranfformed to $\frac{2 d \dot{x} \sqrt{1+g} \times a x-\overline{1+g \times x^{2}}}{\sqrt{a-\left.x\right|^{2}+1+g \times a x-\overline{1+g} \times x^{2}}}=$ $\frac{2 d \dot{\sqrt{1+g} \times \overline{a x-x^{2}}}}{\sqrt{a-x^{2}+1+g \times a x-x^{2}}}=\frac{2 d x \sqrt{\sqrt{1+g} \times x}}{\sqrt{a-x+1+g x x}}=$ $\frac{2 d \times \overline{1+g})^{\frac{1}{2}} \times x^{\frac{1}{2}} \dot{x}}{\overline{a+g x})^{\frac{1}{2}}}=\frac{\overline{1+g} g^{\frac{1}{2}} \times 2 d x^{\frac{2}{2}} \dot{x}}{a^{\frac{1}{2}}} \times$
$\overline{1-\frac{g x}{2 a}+\frac{3 g^{2} x^{2}}{2 \cdot 4 a^{2}}-\frac{3 \cdot 5 g^{3} x^{5}}{2 \cdot 4 \cdot 6 a^{3}}}$ ש\%. Whereof the Fluent, when $x=a$, will be $1+\left.g\right|^{\frac{1}{2}} \times 2 a d \times$ $\frac{2}{3}-\frac{2}{5} \times \frac{g}{2}+\frac{2}{7} \times \frac{3 g^{2}}{2.4}-\frac{2}{9} \times \frac{3 \cdot 5 g^{3}}{2.4 .6}$ छ $_{c}$ Which, becaufe $\overline{1+g}^{\frac{1}{2}} \times a$ is $=f \times\left.\sqrt{+g}\right|^{-\frac{1}{2}}=f \times$ $1-\frac{g}{2}+\frac{3 g}{2.4}-\frac{3 \cdot 5 g^{2}}{2 \cdot 4.6}$ छ\%. will (by multiplying the two Seriefes together $\xi^{\circ} c$.) be reduced to $2 d f x$ $\begin{aligned} & \frac{2}{3}-\frac{2 \cdot 4 g}{3 \cdot 5}+\frac{2 \cdot 4 \cdot 6 g^{3}}{3 \cdot 5 \cdot 7}-\frac{2 \cdot 4 \cdot 6 \cdot 8 g^{3}}{3 \cdot 5 \cdot 7 \cdot 9} \text { ®. }_{c} \\ & \text { 2. E. I. }\end{aligned}$

It may be obferved, that the Fluent given above may be brought out without an Infinite Series (by Art. 126: and 278.) But the Solution here exhibited is beft adapted to what follows hereafter; to which the Propofition itfelf is premifed as a Lemmia.

$$
\text { Gg } 4
$$

PROB.

PROB. VIII.

387. To determine the Attraction at any Point Q in the - Surface of a given Spheroid OAPES.

Let QRL be perpendicular to the Axis PS of the Spheroid, and QT perpendicular to the Tangent Ff of the generating Ellipfis at Q, mecting PS in T : Moreover, let $\mathrm{Q} a \mathrm{H} b$ be a Section of the Sphernid by a Plane perpendicular to that of the Ellipfis APES, and thro' any Point r, in the Axis thereof, draw CB c and $r \mathrm{~L}$ parallel to AE and PS: And make the Abfciffa $\mathrm{C} r=x$, its correfponding Semi-Ordinate $r a($ or $r b)=y, Q R=a_{r}$

and RT $=b$; alfo let the Sine (NG) of the Angle HQD (to the Radius $\mathrm{NQ}=1$) $=p$, its Co-fine QG $\equiv q$, and the Ratio of OA^{2} to OP^{2}, as any given Quantity b to Unity. Now, by reafon of the fimilar Triangles $\mathrm{Q} r \mathrm{~L}$ and QNG , we have $r \mathrm{~L}(\mathrm{BR})=p x$, and $\mathrm{QL}=q x$, and therefore $\mathrm{Br}(\mathrm{RL})=q x-a$: Alfo, from the Natuie of the Ellipfis, $\mathrm{AO}^{2}: \mathrm{PO}^{3}$ ($b: 1$) :: RT (b): OR $=\frac{b}{b}$: Likewife $\mathrm{AQ}^{2}: \mathrm{PO}^{2}$
in determining the Attraction of Bodies.
($b: 1):: \mathrm{QR}^{2}: \mathrm{OP}^{2}-\mathrm{OR}^{2}$; and $\mathrm{PO}^{2}: \mathrm{AO}^{2}(\mathrm{I}: b)$
$:: \mathrm{OP}^{2}-\mathrm{OB}^{2}: \mathrm{BC}^{2}=b \times \overline{\mathrm{OP}^{2}-\mathrm{OB}^{2}}=b \times$
$\overline{\mathrm{OP}^{2}-\overline{\mathrm{OK}+\mathrm{KB}}}{ }^{2}=b \times \overline{\mathrm{OP}^{2}-\mathrm{OR}^{2}-2 \mathrm{OR} \times \mathrm{RB}-\mathrm{RB}^{2}}$.
$=\mathrm{QR}^{2}+b x=-2 \mathrm{OR} \times \mathrm{RB}-K B^{2}$; becaufe (by the former Proportion) $\mathrm{QR}^{2}=b \times \overline{\mathrm{OP}^{2}-\mathrm{OR}^{2}}$: Whence, by the Property of the Circle, Carb , we get $y^{2}\left(\mathrm{BC}^{2}-\mathrm{Br} r^{2}\right)=\mathrm{QR}^{2}-$ $\mathrm{Br}^{2}-b \times \overline{2 \mathrm{OK} \times \mathrm{RB}+\mathrm{RB}^{2}}=a^{2}-\overline{q x-a^{2}}-b \times$
$\overline{\frac{2 b}{b} \times p x+p^{2} x^{2}}=\overline{a q-b p} \times 2 x-\overline{q^{2}+h p^{2}} \times x^{2}:$
Which Equation, by making $\mathbf{x}+B=h$, becomes $y^{2}=$ $\overline{a q-b p} \times 2 x-\overline{q^{2}+p^{2}+B p^{2}} \times x^{2}=\overline{a q-b p} \times 2 x-x^{2}-$ $B p^{2} x^{2}$ (becaufe $q^{2}+p^{2}=1=\mathrm{QN}^{2}$: Which being only of two Dimenfions, the Curve $\mathrm{Q} a \mathrm{H} b$, whereto it belongs, is an Ellipfis.

The Equation of the Curve $\mathrm{QaH} b$ being now obtained, let its Axis QH be fuppofed to revolve about Q , as a Center (the Plane of the Curve being always perpendicular to that of the Ellipfis APES) and let the Fluxion of the Arch MN (exprefling the Angle defcribed from the time the faid Axis begins its Motion at the Pofition ALD) be denoted by \dot{A} : Then, it is evident from the preceding Problem, that, $\overline{2 a q-2 b p} \times 2 \dot{A} \times$ $\frac{2}{3}-\frac{2 \cdot 4 B p^{2}}{3 \cdot 5}+\frac{2 \cdot 4 \cdot 6 B^{2} p^{2}}{3 \cdot 5 \cdot 7}$ छc. will be the Fluxion of the Attraction of the correfponding Part DQH of the Solid, upon a Corpufcle at Q, confidered as acting in the Direction HQ (which Expreffion is found, by, barely, writing $2 a q-2 b q, \dot{A}$, and $B p^{2}$, in the faid Problem, for f_{3}, d and g refpectively.)

Hence,

The Ufo of Fluxions

Hence, by the Refolution of Forces, the Fluxion of the Attraction, in the Directions QR and Qw (perpendicular to $Q R$) will be truly exhibited by $2 a q-2 b p$ $\times 2 \dot{A q} \times \frac{\frac{2}{3}-\frac{2 \cdot 4 B p^{2}}{3 \cdot 5}+\frac{2 \cdot 4 \cdot 6 B^{2} p^{4}}{3 \cdot 5 \cdot 7}}{3 . \text { E. }_{\text {. }} \text { and }}$ $\overline{2 a q-2 b p} \times 2 \dot{A p} \times \frac{\frac{2}{3}-\frac{2 \cdot 4 B p^{2}}{3 \cdot 5}+\frac{2 \cdot 4 \cdot 6 B^{2} p^{*}}{3 \cdot 5 \cdot 7}}{3} c_{c}$

Let now another Plane $\mathrm{Q} b$ be fuppofed to revolve about the Point Q, the contrary W an to the former, from QD towards Rf; and let ($n g$) the Sine of the Angle $\mathrm{RQ} b$ be denoted by P, and its Co-fine (Qg) by $\mathrm{Q}^{\text {: }}$ Then the Fluxion of the Attraction of the Part DOb, in the forefaid Directions QR and Qw (by writing - P inftead of p and 2 inftead of q) will appear to be
$\overline{2 a+2 b P} \times 2 \dot{A} 2 \times \frac{\frac{2}{3}-\frac{2.4 B P^{2}}{3 \cdot 5}+\frac{2 \cdot 4 \cdot 6 B^{2} P^{4} \xi^{\circ}}{3 \cdot 5 \cdot 7} .}{}$
and $\overline{2 a 2+2 b P} \times-2 \dot{A P} \times \frac{2}{3}-\frac{2 \cdot 4 B P^{2}}{3 \cdot 5}+$
$\overline{\frac{2 \cdot 4 \cdot 6 B^{2} P^{4}}{3 \cdot 5 \cdot 7}}$ छ\%. Which being added to those of the former Part, in the fame Directions, and $\frac{\dot{p}}{q}$ and - A st 142. $\frac{\dot{P}}{2}$ reflectively fubftituted inftead of \dot{A}^{*}, we have $4 a$ into $\frac{2}{3} \times \overline{q \dot{p}+2 \dot{p}}-\frac{2.4 B}{3 \cdot 5} \times \overline{q p^{2} \dot{p}+2 P^{2} \dot{p}}$ छ\% c. +46 into $\frac{2}{3} \times \overline{P \dot{P}-p \dot{P}}-\frac{2 \cdot 4 B}{3.5} \times \overline{P^{3} \dot{P}-p^{3} \dot{p} ध_{c} c . ~}$ And
$4 a$ into $\frac{2}{3} \times \overline{p p-P \dot{P}}-\frac{2.4 \mathrm{~B}}{3.5} \times \overline{p^{3} \dot{p}-P^{3} \dot{P}} \xi^{9} c_{\text {, }}$
-4^{b} into $\frac{2}{3} \times \overline{\frac{p^{2} \dot{p}}{q}+\frac{p^{2} \dot{P}}{2}}-\frac{2.4 B}{3 \cdot 5} \times \overline{\frac{p^{4} \dot{p}}{q}+\frac{p+\dot{P}}{2}}$ छ c.
for the Fluxion of the Attraction of both Parts together in the forefaid Directions: Whereof the Fluents, when N coincides with F , and n with f, will be the Attracton of the whole Spheroid in thole Directions. But now, in order to determine thee Fluents with as little Trouble as poffible, let m be affumed to denote any whole pofitive Number; then the Fluent of $\frac{p^{2 m} \dot{p}}{q}$, or $\frac{p^{2 m} \dot{p}}{\sqrt{1-p^{2}}}$, will be universally $=\frac{-q}{2 m} \times \overline{p^{2 m-1}}$ $+\frac{2 m-1}{2 m-2} \times p^{2 m-3}+\frac{2 m-1.2 m-3}{2 m-2.2 m-4} \times p^{2 m-5}(m)$ $+\frac{1 \cdot 3 \cdot 5 \cdot \cdots 2 m-1}{2 \cdot 4 \cdot 6 \cdots 2 m} \times$ the Arch (MN) whore Sine is p^{*} : And that of $\frac{P^{2 m} \dot{P}}{2}$, or $\frac{P^{2 m} \dot{P}}{\sqrt{1-P^{2}}}$ (in the Art, 296. 2 (fame Manner) $=\frac{-2}{2 m} \times \overline{P^{2 m-1}+\frac{2 m-1}{2 m-2} \times P^{2 m-3}}$ $\mathrm{E}_{\mathrm{c}} \mathrm{c} .+\frac{1 \cdot 2 \cdot 3 \cdot \cdot \cdot \overline{2 m-1}}{2 \cdot 4 \cdot 6 \cdots 2 m} \times \operatorname{Arch}(\mathrm{M} n$) whole Sine is P. But when N coincides with F , and n with f, the Sines p and P, of the Arches MF and $M f$, becoming equal, and (the Co-fine) $2=-($ Co-fine $) ~ q$, it is evident that the Sum of the Fluent of $\frac{p^{2 m} \dot{p}}{q}$ and $\frac{P^{2 m} \dot{P}}{2}$, will, in that Cafe, be truly exhibited by $\frac{1 \cdot 3 \cdot 5 \cdots \cdot \overline{2 m-1}}{2 \cdot 4 \cdot 6 \cdots 2 m} \times M F+\frac{1 \cdot 3 \cdot 5 \cdots \cdot \overline{2 m-1}}{2 \cdot 4 \cdot 6 \cdots 2 m} \times$
$M f$, or its Equal $\frac{1 \cdot 3 \cdot 5 \cdot \ldots \overline{2 m-1}}{2 \cdot 4 \cdot 6 \cdots 2 m} \times \mathrm{FM} f$; because,

The Uje of Fiuxions

caufe, then all the reft of the Terms (by reafon of the equal Quantities P, p and $\vee,-q$) deftroy one another. After the fame Danner the Sum of the Fluents of $g P^{2 m} \dot{p}$ and $2 P^{2 m} \dot{P}$, in the forefaid Circumftance, will

- Art. 297. appear to be $=\frac{1 \cdot 3 \cdot 5 \cdot 7 \cdots \cdot \overline{2 m-1}}{2 \cdot 4 \cdot 6 \cdot 8 \cdots \cdot 2 m+3} \times$ FM f^{*}.

Now, to apply this to the Matter in hand, let the Exponent of B, in any Term of either of the above found Fluxions be, univerfally, expreffed by n; then the numeral Coefficient (annexed to B) will be defined by $: \frac{2 \cdot 4 \cdot 6 \ldots 2 n+2}{2 n+3}$, and the variable Quantities $1 \cdot 3 \cdot 5 \cdots 2 n+3$
multiplied thereby, in the firf Line of the former Fluxion, will be $q p^{2 n} \dot{p}+2 P^{2 n} \dot{P}$: Therefore
$2 \cdot 4 \cdot 6 \ldots 2 n+2$
$1 \cdot 3 \cdot 5 \ldots 2 \overline{2 n+3} \times B^{n} \times \overline{q p^{2 n} p+2 P^{2 n} \dot{P}}$ is a General Term, (from. whence, if n be expounded by 1 , 2, 3 Evc. fucceffively, that whole Line will be produced.) But, the Fluent of $q p^{2 n} p+\vartheta p^{2 n} \dot{p}$, in the Circumftance above fpecified, (putting $m=n$ and FM f $=k)$ appears to $\mathrm{be}=\frac{\mathrm{r} \cdot 3 \cdot 5 \cdot 7 \cdot \cdot \overline{2 n-1}}{2 \cdot 4 \cdot 6 \cdot 8 \ldots \cdot \overline{2 n+2}} \times k$:
Which, therefore, multiplied by $2 \cdot 4 \cdot 6 \ldots \overline{2 n+2}$ $3 \cdot 5 \cdots 2 n+3$
$\times B^{n}$, gives $\frac{1 \cdot 3 \cdot 5 \cdot 7 \ldots \overline{2 n-1}}{2 \cdot 4 \cdot 6 \cdot 8 \ldots \overline{2 n+2}} \times \frac{2 \cdot 4 \cdot 6 \ldots \overline{2 n+2}}{3 \cdot 5 \cdots \overline{2 n+3}}$ $\times B^{n} k=\frac{B^{n} k}{2 n+1 \times \frac{1}{2 n+3}}$, for the true Fluent of the faid General Term: Which, if n be expounded by
$0, \mathbf{1}, 2,3$ 家. fuccefively, will become equal to $\frac{k}{1 \cdot 3}$, $\frac{B k}{3 \cdot 5}, \frac{B^{2} k}{5 \cdot 7}, \frac{B^{3} k}{7 \cdot 9}$ छc. respectively; and therefore the Fluent of the whole Line (drawn into the general Multiplicator 4a) is $=4 a k \times \frac{1}{1 \cdot 3}-\frac{B}{3 \cdot 5}+\frac{B^{2}}{5 \cdot 7}-$ $\frac{\overline{B^{3}}}{7 \cdot 9}$ Ec. But now, for the Fluent of the fecond Line: This, it is plain, will be $=46$ into $\frac{2}{3} \times$ $\overline{\frac{P^{2}}{2}-\frac{p^{2}}{2}}-\frac{2.4 B}{3.5} \times \overline{\frac{P^{4}}{4}-\frac{p^{4}}{4}} \delta_{c}^{\%}$. Which, in the forefaid Circumftance, when $P=p$, intirely vanifhes. Therefore it appears; that the Attraction of the whole Spheroid, in the Direction $Q R$, is truly expreffed by $4 a k \times \frac{\overline{1}}{1 \cdot 3}-\frac{B}{3 \cdot 5}+\frac{B^{2}}{5 \cdot 7}-\frac{B^{3}}{7 \cdot 9}$, or its Equal $4 k \times \overline{\frac{1}{1 \cdot 3}-\frac{B}{3 \cdot 5}+\frac{B^{2}}{5 \cdot 7}}$ छंc. $\times 2 R$.

After the fame Manner the Fluent of the firft Line, in the latter of our two. Fluxions, will be found to vanifh: And $\frac{2 \cdot 4 \cdot 6 \ldots \overline{2 n+2}}{1 \cdot 3 \cdot 5 \cdots \cdot \overline{2 n+3}} \times B^{n} \times \frac{\overline{p^{2 n+2} \dot{p}}}{q}+$ $\overline{\frac{P^{2 n+2} \dot{P}}{2}}$ will be a General Term to the second Line. Whereof the Fluent (by expounding $2 m$ by $2 n+2$) appears, from above, to be $=\frac{2 \cdot 4 \cdot 6 \ldots \cdot \sqrt{2 n+2}}{3 \cdot 5 \cdot 7 \cdots \cdot \sqrt{2 n+3}} x$ $B^{n} k \times \frac{1 \cdot 3 \cdot 5 \ldots \cdot \overline{2 n+1}}{2 \cdot 4 \cdot 6 \ldots \cdot \overline{2 n+2}}=\frac{B^{n} k}{2 n+3}:$ Which, when n is

The USe of Fluxions

n is interpreted by $0,1,2,3$ sc. fucceffively, comes out equal to $\frac{k}{3}, \frac{B k}{5}, \frac{B^{2} k}{7}$ 8\%. respectively: Therefore the Attraction of the Spheroid, in the Direction $Q_{w} w$, is exhibited by $-46 k \times \frac{1}{3}-\frac{B}{5}+\frac{B^{2}}{7}-\frac{B^{3}}{9}$ छ\%. and consequently, That in the oppofite Direction Qu, by $46 k \times \overline{\frac{1}{3}-\frac{B}{5}+\frac{B^{2}}{7}-\frac{B^{3}}{9}}=4 k \times \frac{1}{3}-$ $\overline{\frac{B}{5}+\frac{B^{2}}{7}}$ go. $\times \mathrm{RT}=4 k \times \overline{1+B} \times \overline{\frac{1}{3}-\frac{B}{5}+}$ $\frac{\overline{B^{2}}}{7} \xi_{c} \times \mathrm{OR}$ (because $\overline{1+B} \times \mathrm{OR}=\mathrm{RT}$.)

From which and the Force in the Direction $Q R$ (found above) not only the Direction of the abfolute

Attraction, but that Attraction itself will be known : For, let RI be taken to QR, as the Force in the Direaction $\mathrm{Q} v$ to that in the Direction QR ; and then, by 10
the
the Compofition of Forces, QI will be the Direction of the Attraction, or the Line in which a Corpuscle at Q tends to defend: And the Attraction itself, in that Direction, (being to that in QR , as QI to QR) will be defined by $4 k \times \frac{\bar{I}}{1 \cdot 3}-\frac{B}{3 \cdot 5}+\frac{B^{2}}{5 \cdot 7} \delta_{c} \times \mathrm{QI}$; which, fince 4^{k} is content, will also be as $\frac{1}{1 \cdot 3}$ $\overline{\frac{B}{3 \cdot 5}+\frac{B^{2}}{5 \cdot 7}}$ छ\%. \times Q. 2.E.I.

Corollary.

388. Since, by Conftruction, RI: $\mathrm{QR}:: \overline{1+B} \times$ $\overline{\frac{1}{3}-\frac{B}{5}+\frac{B^{2}}{7}-\frac{B^{3}}{9}}$ छं. \times OR $: \overline{\frac{1}{1 \cdot 3}-\frac{B}{3 \cdot 5}}$ $+\frac{B^{2}}{5 \cdot 7}$ sc. $\times Q R$, it follows that $\frac{1}{1 \cdot 3}-\frac{B}{3 \cdot 5}+$ $\frac{B^{2}}{5 \cdot 7}$ sc. $: \overline{1+B} \times \frac{1}{3}-\frac{B}{5}+\frac{B^{2}}{7}$ sc. : : RO : RI; whence (by Division) $\frac{1}{1 \cdot 3}-\frac{B}{3 \cdot 5}+\frac{B^{2}}{5 \cdot 7}$ Etc.: $\frac{3 B}{3 \cdot 5}$ $-\frac{3 B^{2}}{5 \cdot 7}+\frac{3 B^{3}}{7 \cdot 9}$ Ec. : : OR $\left(: \frac{\mathrm{OT}}{B}\right):$ OI; and consequently, $\frac{1}{1 \cdot 3}-\frac{B}{3 \cdot 5}+\frac{B^{2}}{5 \cdot 7}$ E$c .: 3 \times \frac{\bar{x}}{3 \cdot 5}$ $-\frac{B}{5 \cdot 7}+\frac{B^{2}}{7 \cdot 9}$ छ'. $_{C}:$: OT : OI.

Hence it appears that the Direction Q , of the absolute Attraction, divides the Part of the Axis OT, intercepted by the Center and. Normal, in a given Ratio: And that the Attraction itself (being defined

The Ufo of Fluxions

fined by $\frac{1}{1 \cdot 3}-\frac{B}{3 \cdot 5}+\frac{B^{2}}{5 \cdot 7} 8^{\circ} c \times \mathrm{CI}$) is every where as the fail Line of Direction QI.

Scholium.

389. Although the foregoing Conclufions are exhibited by infinite Seriefes, yet the Sums of thole Se--riefes are explicable by means of the Arch of a Circle.

Thus, let the Series $\frac{1}{3}-\frac{B}{5}+\frac{B^{2}}{7} \xi^{\circ} c$. (which is one of the two original ones above found) be put $=\delta$, and let $B=t^{2}$; then by Substitution, and multiplying the whole Equation by t^{3}, we fall have $\frac{t^{3}}{3}-\frac{t^{5}}{5}+$ $\frac{t^{7}}{7} \xi_{0} c_{0}=t^{3} S_{3}$: and consequently $t-\frac{t^{3}}{3}+\frac{t^{5}}{5}-\frac{t^{7}}{7}$ Etc. $=t-t^{3} S$: Where, the former Part of the Equaton is known to express the Arch of a Circle, whole -Art. 142. Tangent is $t\left(B^{\frac{1}{2}}\right)$ and Radius Unity *: Wherefore, putting that Arch $=A$, we have $A=t-t^{3} S$, and confequently $S=\frac{t-A}{t^{3}}=\frac{1}{3}-\frac{B}{5}+\frac{B^{2}}{7} \varepsilon_{0}{ }_{c}$.

Moreover, fence it appears that
$\left.\begin{array}{l}\frac{B}{3}-\frac{B^{2}}{5}+\frac{B^{3}}{7} \text { sc. }_{c} \\ -\frac{B}{5}+\frac{B^{2}}{7}-\frac{B^{3}}{9} \xi_{c}\end{array}\right\}$ is = $\frac{2 B}{3: 5}-\frac{2 B^{2}}{5 \cdot 7}+\frac{2 B^{3}}{7 \cdot 9}$
(where the Sum of $\frac{B}{3}-\frac{B^{2}}{5}+\frac{B^{3}}{7}$ oc. is already found $=\frac{t-A}{t^{3}} \times B=\frac{t-A}{t}$, and where That
in determining the Attraction of Bodies.
of $-\frac{B}{5}+\frac{B^{2}}{7}$ Ec; by the, fame Method will come out $\left.=\frac{t-A-\frac{1}{3} t^{3}}{t^{3}}\right)$ it is evident that $\frac{2 B}{3 \cdot 5}-\frac{2 B^{2}}{5 \cdot 7}$ $+\frac{2 B^{3}}{7 \cdot 9}$ Er. $_{c}=\frac{t-A}{t}+\frac{t-A-\frac{1}{3} t^{3}}{t^{3}}=$
$\frac{{ }^{2} t^{3}+t-A \times \overline{1+t^{2}}}{t^{3}} ;$
$\frac{B}{3 \cdot 5}+\frac{B^{2}}{5 \cdot 7}$ 'f. $\left(=\frac{1}{3}-\frac{\frac{2}{2} t^{3}+t^{2}-A \times \overline{1+t^{2}}}{2 t^{3}}\right)$
$=\frac{A \times \overline{1+t^{2}}-t}{2 t^{3}}$: Which is the Value of the other original Series found above : From whence that of $\frac{3}{3 \cdot 5}-\frac{3^{B}}{5 \cdot 7}+\frac{3^{B^{2}}}{7 \cdot 9}$ will also be had $=$ $\frac{3^{t}+2 t^{3}-3 A \times \overline{1+t^{2}}}{2 t^{5}}$.

Hence, if
$\frac{t-A}{t^{3}}\left(=\frac{1}{3}-\frac{B}{5}+\frac{B^{2}}{7}-\frac{B^{3}}{9}\right)$ be put $=f$;
$\frac{A \times \overline{1+t^{2}}-t}{2 t^{3}}\left(=\frac{1}{1 \cdot 3}-\frac{B}{3 \cdot 5}+\frac{B^{2}}{5 \cdot 7}\right.$ gcc. $)=g$;
And
$\frac{3 t+2 t^{3}-3 A \times \overline{1+t^{2}}}{2 t^{5}}\left(=\frac{3}{3 \cdot 5}-\frac{3 B}{5 \cdot 7}+\frac{3 B^{2}}{7 \cdot 9}\right.$ Etc. $)=b$ it is evident that OT will be to OI, in the conftant Rato of g to b; and that the Forces in the Directions Q, QR, and $\mathrm{Q} v$, will be as $g \times \mathrm{QI}, g \times \mathrm{QR}$, and $f \times$ $\overline{1+B} \times$ OR respectively: Where $\mathrm{I}+B$ is $=\frac{A O^{2}}{\mathrm{PO}^{2}}$:

PROB. IX.
300. To determine the Attraction at any Point D within a given Spheroid OAPES.

Let Oapes be another Spheroid, concentric with, and fimilar to, the given one; whofe Surface DeM Eic. paffes through the given Point D; alfo let FDf and HDh be taken as two oppofite, indefinitely flender, Cones (or Pyramids) conceived to be formed by drawing innumerable Lines HDF, $h \mathrm{D} f \cdot \mathcal{E}^{\circ}$ c. through the common Vertex D) which Cones (or Pyrannids) having the fame Angle, may be confidered as fimilar; and fo their *Art. 378 . Forces, at D, will be as the Altitudes DF and DH*: And, therefore, the Excefs of the former, above the latter, or the Force whereby a Corpufcle at D, tends towards F, through the, contrary, Action of the two oppofite. Cones, will be as DF - DH, or as DM ; becaufe (by the Property of the Ellip/is) MF-is, in all Pofitions, equal to DH ,

Hence it appears that the Parts of Matter FMmf. and $\mathrm{HD} h$, without the Spheroid apes (acting equally, in contrary Directions) can have no Effect at D: And this, being every where the Cafe, the whole, efficacious, Force at D muft therefore be that of the Spheroid Oapes.

Hence, if the Ratio of $O a^{2}$ to $O p^{2}$ (or of OA^{2} to OP^{2}) be denoted by that of $1+B$ to 1 , as in the laft Problem,
it follows, from thence, that the Attraction at D , in the Directions DM and DN (perpendicular to PS and AE; fee the next Fig.) will be expounded by $\frac{1}{1.3}-\frac{B}{3 \cdot 5}+\frac{B^{2}}{5 \cdot 7}$ $\mathrm{E}^{\circ} \mathrm{c} . \times \mathrm{DM}$, and
$\overline{1+B} \times \frac{1}{3}-\frac{B}{.5}+\frac{B^{2}}{.7}-\frac{B^{3}}{9}$ छ'c. \times DN refpectively, or by their Equals $g \times$ DM and $f \times \overline{I+B} \times$ DN: Where the Values of f and g are the fame as given in the preceding Article.

Coroleary.
391. Hence the Force wherewith a Corpufcle, any where within a given Spheroid, is attracted, either, towards the Axis, or the Plane of its Equator, is directly as the Diftance therefrom.

> P R OB. X.
392. Suppofing every Particle of Matter in a Spheroid to have a Tendency to recede, both, from the Axis PS, and from the Plane of the greateft Circle, by Means of Forces that are as the Difances from the faid Axis, and Plane, refpecively; to find the Direction DI wherein a Corpufcle, at any Point D, tends to move through the Action of the faid Forces and the Attraction conjuncily; and likewife the whole compound Force in that Direetion.

Let DM and DN be perpendicular to PS and AE, and let the given Forces, in the Direction of thofe Lines (independent of the Attraction) be expreffed by $m \times$ DM and $n \times$ DN refpectively.

Hh_{2}
There-

Therefore, fince (by the lat Problem) the Force of Attraction in the faid Directions is defined by $g \times D M$ and $f \times \overline{1+B} \times \mathrm{DN}$, the whole refuting Forces will be truly denoted by $\overline{g-m} \times \mathrm{DM}$, and $\overline{f \times \overline{1+B}-n}$ \times DN: Whence (by the Composition of Forces) it will be, $g-m: f \times \overline{1+B}-n:: \mathrm{DN}(\mathrm{OM}): \mathrm{MI}$; whence the Point I is given :

Also DM : DI :: $\overline{g-m} \times \mathrm{DM}$ (the Force in the Direction DM) : $\overline{g-m} \times$ DI, the Force in DI. 2.E.I.
PR OB. XI.
393. Every thing being fuppofed as in the preceding Problems, it is required to determine the Force of all the Particles in the Line (or Column) QDO tending to the Center O of the Spheroid.

Let IH be perpendicular to QO produced (See the loft Fig.) then the absolute Force, in the Direction DI, being $\overline{g-m} \times \mathrm{DI}$, that in the Direction DH , whereby a Corpufcle at D is urged towards the Center, will be $\overline{g-m} \times$ DH. Let now OD (confidered as variable) be denoted by x; then because the Ratio of OM to MI is given (being every where as $g-m$ to $f \times \overline{1+B}-n$, by the Precedent) and the Triangles ODM and IOH are fimilar, it follows that the Ratio of OD to OH will be given, or constant; and consequently that of DH to OH , likewife : Let therefore this Ratio of DH to OH be expreffed by that of r to s, and we fall have $\mathrm{DH}=$ $\frac{r x}{s}$, and confequently $(\overline{g-m} \times \mathrm{DH})$ the Force at D , equal to $\overline{g-m} \times \frac{r x}{s}$: Which therefore being multi-
plied by \dot{x}, and the Fluent taken, there comes out $\frac{g-m \times r x^{2}}{2 s}=\frac{g-m}{2} \times \mathrm{DO} \times \mathrm{DH}$, for the whole Force of the Line or Column OD at the Center.
Q.E.I.

Corollary.
394. If the given Forces m and n be fuch that the Ratio of OM to MI, (which is found to be univerfally as $g-m$ to $f \times \overline{1+B}-n$) may become as $1: 1+B$ (or as $\mu \mathrm{O}^{2}: a \mathrm{O}^{2}$) it is evident (from the Property of the Ellipfis) that the Line of Direction DI will be always perpendicular to the Surface of the Spheroid Oapes. In which Cafe $\mathrm{OD} \times \mathrm{DH}$ is alfo (by the Nature of the Ellipfis) $=\mathrm{O}^{2}$: And therefore the Force $\left(\frac{g-m}{2}\right.$ $\times \mathrm{OD} \times \mathrm{DH})$ of OD is $=\frac{g-m}{2} \times \mathrm{Oa}^{2}$: Which, when D coincides with Q , will become $\frac{g-m}{2} \times \mathrm{AO}^{2}$; and is, therefore, a conftant Quantity.

Moreove. fince in this Cafe, $g-m: f \times \overline{1+B}-n$ $:: \mathrm{x}: \mathrm{x}+B$ (by Hypothefis) we have $m-\frac{n}{1+B}=g$ - f : Which Equation, if n be taken $=0$, gives $m=g-f=\frac{2 B}{3 \cdot 5}-\frac{4 B^{2}}{5 \cdot 7}+\frac{6 B^{3}}{7 \cdot 9} छ^{\circ} c_{0}=\frac{\overline{3+t^{3}} \times A-3^{t}}{2 t^{3}} *$; Art 389. But, if m be taken $=0$, it will then give $n=-\overline{I+B}$ $\times \overline{g-f}=-\overline{1+B} \times \frac{\overline{2 B}}{3 \cdot 5}-\frac{4 B^{2}}{5 \cdot 7}+\frac{6 B^{3}}{7 \cdot 9} \xi_{c}$. Where, $t=B^{\frac{3}{2}}$, and $A=$ the Arch whofe Tangent is t, and Radius Unity.
Hh_{3}
PROP.

The Ole of Fluxions

PR OP. XII.

395. If an oblate Spheroid OAPES, whereof the Square of the Equatoreal Diameter AE, is to that of the Axis PS, in any given Ratio of $\mathrm{I}+B$ to 1 , revolves about its Axis, in much a Time, that the centrifugal Force, at the Equator A, is to the Attraction at the Surface of a Sphere whore Radius is OA, in the Ratio of $\frac{2 B}{3 \cdot 5}$ $\frac{4 B^{2}}{5 \cdot 7}+\frac{6 B^{3}}{7 \cdot 9}$ sc. to $\frac{1}{3}: 1$ fay, in that Cafe, every Particle of the Spheroid will be in Equilibrio; fo that, though the Cobefon of the Parts was to ccafe, the Figure itfelf. would remain unchanged.

For, the Attraction of the Spheroid, at A, being defined by $\frac{1}{1 \cdot 3}-\frac{B}{3 \cdot 5}+\frac{B^{2} e}{5 \cdot 7}$ E. \times AO (Art. 387 .) it is evident (by conceiving $B=0$) that $\frac{A O}{3}$ will reprefent the Attraction at the Surface of the Sphere whore Radius is AO : Whence (by Hypothefis) the centrifugal Force at A (putting $m=\frac{2 B}{3 \cdot 5}-\frac{4 B^{2}}{5 \cdot 7}+$ $\frac{6 B^{3}}{7.9}$ Ec.) will be truly defined by $m \times A O$; and confequently
fequently That, at any other Point $\mathrm{D}_{\text {; }}$ by $m \times \mathrm{DM}$ (becaufe the centrifugal Forces of Bodies defcribing unequal Circles, in equal Times, are known to be directly as the Radii *.) Hence, and from the Corollary to the laft *Art. $2 \mathrm{I}_{3}$. Problem, it appears that the Direction of Gravitation DI is always perpendicular to the Surface apes; and that the Force of all the Particles in the Line (or Canal) OD or OQ , towards the Center O , will continue invariable, take the Point Q in what Part of the Arch APE you will : From which laft Confideration, it follows that the Force, or Preffure of every Canal QO, at the Center O , (confidering the Body in a fluid State) will be the fame : Whence (by the Principles of Hy droftatics) a Corpufcle at D has no Tendency to move, either Way, in the Line OQ: And therefore, as it hath no Tendency to move in the Direction of the Surface Dpe (the Gravitation being perpendicular thereto) it is evident, from Mecbanics, that no Motion at all can enfue, in any Direftion.

Corollary I.

396. Since m is $=\frac{2 B}{3 \cdot 5}-\frac{4 B^{2}}{5 \cdot 7}+\frac{6 B^{3}}{7 \cdot 9}$ छoc. the

Gravitation $(\overline{g-m} \times \mathrm{DI})$ at any Point D in the Spheroid will therefore be as $\frac{1}{3}-\frac{B}{5}+\frac{B^{2}}{7} E_{0}$
$\times \mathrm{DI}=\frac{t-A}{t^{3}+2} \times \mathrm{DI}$ (fee Art. 38 g .

Corollary II.

397. If the Time of Revolution be given $=p$, and q be put to denote the Time wherein a (folid) Sphere, of the fame Denfity with the Spheroid, muft revolve; fo that the centrifugal Force, at the Equator thereof, may be equal to the Gravity: Then, as this laft Time is known to continue the fame, whatever the Magnitude of that Sphere is \dagger; and the centrifugal Forces, in equal \dagger Art 2_{1}. Hh_{4}

Circles, and 3^{88}.

Circles, are alpo known to be inverfely as the Squares of the periodic Times -it follows, that $p^{2}: q^{2}:: \frac{1}{3} \mathrm{AO}$ (the Attraction, or centrifugal Force, refpecting the Sphere OA, revolving in the Time q) $: \frac{2 B}{3 \cdot 5}-\frac{4 B^{2}}{5 \cdot 7}$ $\overline{+\frac{6 B^{3}}{7 \cdot 9}}$ E$^{\circ} c . \times A O$, the centrifugal Force of the Spheroid at A, revolving in the Time p. From which Proportion we get $\frac{q^{2}}{3 p^{2}}=\frac{2 B}{3 \cdot 5}-\frac{4 B^{2}}{5 \cdot 7}+\frac{6 B^{3}}{7 \cdot 9} \varepsilon_{0} c_{0}=$ $\frac{\overline{3+t^{2}} \times A-3^{t}}{2 t^{3}}$ (Art. 394.) Whence, by Help of the Trigonometrical-Canon, the Value of $\left.t=B^{\frac{1}{2}}\right)$ and, consequently, the Ratio of the two principal Diameters, will be found; fo that all the Parts of the Spheroid may remain in Equilibrio. But, when $\frac{q^{2}}{3 p^{2}}$ is fall, the Solution by an Infinite Series is preferable: For, then the Series $\frac{2 B}{3 \cdot 5}-\frac{4 B^{2}}{5 \cdot 7} \delta_{c} c\left(=\frac{q^{2}}{3 p^{2}}\right)$ converging fufficiently swift, we fall, by the Reverfion thereof, find $B=\frac{5 q^{2}}{2 p^{2}}+\frac{25 \times 6 q^{4}}{4 \times 7 p^{4}}+\frac{125 \times 37 q^{6}}{8 \times 49 p^{6}}$ sic. In which Cafe the Ratio of the Equatoreal Diameter to the Axis, if we take only the firft Term of the Series, will be, as $\sqrt{1+\frac{5 q^{2}}{2 p^{2}}}: 1$, or as $1+\frac{5 q^{2}}{4 p^{2}}$, nearly.

Which, if $\frac{p^{2}}{q^{2}}=28 g$, or the centrifugal Force at the Equator be to the Gravity as 1 to 289 (that being the Proportion at the Equator of the Earth *) will come out as 231 to 230 .
398. Becaufe, $\frac{\overline{3+t^{2}} \times A-3 t}{2 t^{3}}$, the latter Part of our forepoing Equation will be equal to Nothing, both when t is Nothing and Infinite, it is evident that the Value thereof cannot, in any intermediate Circumftance of t, exceed a certain affignable Quantity.
Wherefore, to determine this Limit of the Value of $\frac{q^{2}}{3 p^{2}}$ (beyond which the Problem becomes impofible) let the Fluxion of $\frac{\overline{3+t^{2}} \times A-3^{t}}{2 t^{3}}$, or its Double $\frac{\overline{3+t^{2}} \times A}{t^{3}}-\frac{3}{t^{2}}$ be taken and put $=0$, and you will have $-\overline{9+t^{2}} \times \hat{A}+\overline{3^{t+t^{3}}} \times \dot{A}+6 t \dot{t}=0:$ Which, becaufe $\dot{A}=\frac{t}{1+t^{2}} *$ will be reduced to $9 t^{*}$ Art. 142 . $+7 t^{3}-\overline{1+t^{2}} \times \overline{9+t^{2}} \times A=0$; where t is found $=2,5293$, from whence the correfponding Values of $\sqrt{1+t^{2}}$, and $\frac{q}{p}$ come out $=2,7198$, and 0.5805 E°. refpectively, Hence it appears that it is imporfible for the Parts of the Spheroid, in a fluid State, to continue at Reft among themfelves, when the Time of Revolution is fo great that $\frac{q}{p}$ exceeds 0,5805 δ_{c}. And that, of all the Spheroids which can be affumed by a Fluid revolving about an Axis, That whofe Equatoreal Diameter is to its Axis as 2,7198 to Unity, will perform its Revolutions in the fhorteft Time.

Thus, for Example, if a (folid) Sphere of the fame common Denfity with the Earth was to revolve about its Axis in the Time of $84 \frac{3}{7}$ Minutes, the centrifugal

Force at the Equator thereof would, it is known, be - Arto 217. equal to the Gravity *: Therefore, by taking $\frac{84^{\frac{3}{7}}}{p}\left(=\frac{q}{p}\right)$ $\underset{\mathrm{M}}{=} 0,58 \mathrm{H}=\mathrm{E}_{\mathrm{M}}^{\circ} \mathrm{c}$. the Time p will come out $=$ 146 or 2 26. Which Time is the leaft, poffible, wherein a Fluid, of the fame common Denfity with the Earth, can revolve, fo as to preferve its fpheroidal Figure. And this holds univerfally, let the Magnitude of the Body, or Fluid, be what it will.

Corollary IV.

399. Hence alfo may be determined the Spheroid, which a Epherical Body (of Ice or any other Matter) revolving in a given Time s, will converge to, when reduced to a fluid State *:

For, fince the Momenta of Rotation, in equal Spheres and Spheroids, are to one another, in a Ratio compounded of the direct Ratio of their Equatoreal Diameters, and the inverfe Ratio of the Times of their Rotation, it follows, if d be put $=$ the Diameter of the given Sphere, and $E=$ the Equatoreal Diameter of the required Spheroid, that $\frac{d}{s}=\frac{E}{p}$ (becaufe the Cuantity of Motion about the Axis is not affected by the Action of the Particles one upon another, while the Figure of the Fluid is changing.) Moreover, fince the Maffes of the Sphere and Spheroid are alfo equal to each other (by Hypothefis) we have $d^{3}\left(=\mathrm{AE}^{2} \times P S\right)=$ $\frac{E^{3}}{\left.1+t^{2}\right)^{\frac{1}{2}}}$: From which two Equations, exterminating d, there arifes $\left.p=\overline{1+t^{2}}\right)^{\frac{1}{6}} \times s$, for the Time of Revolution of the required Spheroid: Whence, by fubftituting this Value of p in the general Equation $\frac{q^{2}}{3 p^{2}}$

* The.Author in a Note, page 135 of his Mifcellaneous Traets in 410 , has correGed an Overfight in this Corollary, by taking here $\frac{e}{d} \times s$ (inftead of $\frac{e^{2}}{d^{2}} \times s$) whereby the remaining Part of this Article is rendered erroneous.
in determining the Attraction of Bodies.
$=\frac{\overline{3+t^{2}} \times A-3 t}{2 t^{3}}$, we get $\frac{q^{2}}{3 s^{2}}=\overline{1+t^{2}}{ }^{\frac{2}{3}} \times$
$\frac{3+t^{2} \times A-3 t}{2 t^{3}}$; from the Solution of which the Value of t, and the Spheroid itfelf, will be given.
But, fince the Value of the latter Part of the Equation can never exceed a certain affigeable Quantity, the Matter propofed can therefore be only poffible under certain Limitations: In order to determine thefe Limitations, let the Fr, tion of $\frac{1}{1+t^{2} 7^{\frac{x}{3}}} \times \frac{\overline{3+t^{2}} \times A-3 t}{2 t^{3}}$ be taken and put $=0$, and it will be found that $\overline{t+24 t^{2}+27} \times A-155^{3}-27 t=0:$ Whence t comes out $=7.5$, and the correfponding Value of $\frac{q}{s}=0,927$, nearly.

Hence the Parts of the Fluid cannot poffibly come to an Equilibrium among themfelves, when the Time s is lefs than $\frac{q}{0,927}$, but will continue to recede from the Axis, in Infinitum.
If q be taken $=8_{4 \frac{3}{4}}^{M}$ (as in the Example to the M H M preceding Corollary) s will be equal $91=1: 3 \mathrm{r}$: From which it appears, that, if the Earth (or a fpherical Body of the fame Denfity) was to revolve H M
about its Axis in lefs than $1: 31$; and, in the mean time, be reduced to a State of Fluidity, the Parts thereof towards the Equator would afcend, and continue to recede from the Axis, in Infinitum.

Corollary V:

400. Seeing the Values of t and A are given when the Spheroid is given, it follows that the Gravitation
tation $\left(\frac{t-A}{t^{3}} \times \mathrm{CI}\right)$ at any Point in the Surface of a Spheroid, whereof the Parts are kept in Equilibrio, by their Rotation about the Axis, will be accurately as a Perpendicular to the Surface at that Point, continued to the Axis of the Figure. Therefore the Gravitation at the Equator is to that at either of the Poles, as the Equatoreal Diameter to the Axis inverfly.

Corollary VI.

401. But, if the Spheroid differnbut little from a Sphere, the Excefs of QI above AO will (by the Property of the Ellipfis) be nearly as OR ${ }^{2}$. Whence it appears that the Increafe of Gravitation, in going from the Equator to the Pole, is as the Square of the Sine of Latitude, nearly.

Corollary VII.

102. Moreover, fince the Ratio of the Equatoreal Diameter to the Axis is found, in this Cafe, to be that + Art. 397. of $I+\frac{59^{2}}{4 p^{2}}$ to $I t$, the Excefs of that Diameter above the Axis will be to the Axis as $\frac{5 q^{2}}{4 p^{2}}$ to Unity; that is, as $\frac{5}{4}$ of the centrifugal Force at the Equator to the mean Force of Gravity. Whence, as the centrifugal Forces, in unequal Circles, are univerfally as the Radii directly, and the Squares of the periodic Times inverfly, it follows that the forcfaid Excefs (in Figures nearly fpherical) will be as the Radii directly, and as the Denfity and the Square of the Time of Rotation inverfy: From which Proportions, the Ratios of the greateft and leaft Diameters of the Planets nay be inferred from each other; fuppofing the Times of their Rotation, about their Axes, to be known.
in determining the Attraction of Bodies.

PROB. XIII.

403. To determine the Figure which a Fluit will acquire, when, befides the mutual Gravitation of the Parts thereof, it is attracted by , anotber Body, so remote, that all Lines drawn from it to the Surface of the Fluid, may be taken as Parallels.

Let OAPES be the propofed Fluid, and let MPS and MQg be Rightlines, drawn trom the remote Body M; whereof the former MPS paffes thro' the Center of Gravity O: Moreover, let the Plane AE be perpendicular to the Axis MOS; and put $\mathrm{NQ}=a$ and OM (the Diftance of the remote Body) $=d$; alfo put the Semi-diameter of the Body (at M) $=r$, and let its Denfity be to that of the Fluid APES, as any Quantity v to
 Unity. Then, fince, according to the foregoing Calculations, the Attraction at the Surface of a Sphere (of a given Denfity) is exprefled by $\frac{\frac{1}{3}}{}$ of the Radius, it follows that the Attraction of the Body M, at its Surface, will be explicable by $\frac{v r}{3}$: And therefore, the Force varying according to the Square of the Diftance in-*Art. 3^{880} verfly ${ }^{*}$, it will be, $d^{2}\left(\mathrm{MN}^{2}\right): r^{2}:: \frac{v r}{3}: \frac{v r^{3}}{3 d^{d^{2}}}$ the Attraction of M, at the Diftance MN : Alfo $\overline{d-a^{2}}$ $\left(\mathrm{MQ}^{2}\right): r^{2}:: \frac{v r}{3}: \frac{v r^{3}}{3 \times \overline{d-a})^{2}}$, its Attraction at the Diftance

The Ufo of Fluxions

Diffance $M Q$. Whence the Difference of there two, or $\frac{v r^{3}}{3 \times \overline{d-a})^{2}}-\frac{v r^{3}}{3 d^{2}}\left(=\frac{v r^{3}}{3 d^{3}} \times 2 a+\frac{3 a^{2}}{d}+\frac{4 a^{3}}{d^{2}}\right.$ Eco.) will be as the Force whereby a Corpufcle at Q endeavours to recede from the Plane AE: Which because (by Hypothefis) d is very great in refpect of a; will (by rejecting all the Terms after the firft) be expreffed by $\frac{2 v r^{3}}{3 d^{3}} \times a$, or its Equal $\frac{2 v r^{3}}{3 d^{3}} \times \mathrm{NQ}$.
In the very fame Manner, the Force whereby a Corpuscle at q, below the Plane AE, tends to recede therefrom, will be defined by $\frac{2 v r^{3}}{3^{d^{3}}} \times I N q$.

Now, therefore, feeing there Forces are, every where, as the Diftances NQ, $\mathrm{N} q$, from the Plane AE, it appears (by Art. 393. and 394.) that the Figure OAFES will be a Spheroid; whereof the Equation, for the Relation of its two principal Diameters (putting $n=\frac{2 v r^{3}}{3 d r^{3}}$) is $n=$ $-\overline{1+B} \times \overline{\frac{2 B}{3 \cdot 5}-\frac{4 B^{2}}{5 \cdot 7}+\frac{6 B^{3}}{7 \cdot 9}}$ oc. (In which, the Ratio of PS^{2} to $A E^{2}$ is denoted by that of I to $1+B$.) Hence, by reverting the Series, we have $B=$ $-\frac{15 n}{2}-\frac{225 n^{2}}{28}$ Er $^{\circ}$. and confequently PS : AE :: I :

$$
1-\frac{15 n}{2}-\frac{225 n^{2}}{23} \text { Ec. }:: 1: 1-\frac{15 n}{4}, \text { nearly : }
$$

Which, by reftoring the Value of n, becomes PS : AE $:: 1: 1-\frac{5 v r^{3}}{2 d^{3}}$. Q. E. I.

Corollary.

404. Becaufe $\frac{r}{d}$ expreffes the Sine of the apparent Semi-diameter of the Body M, to the Radius 1) feen at the Diftance OM, it follows, if the faid Sine be denoted by c, that PS:AE :: $1: 1-\frac{50}{2} \times c^{3}$; and confequently, by Divifion, PS : PS - AE :: $1: \frac{5 v}{2} \times c^{3}$.

Hence it appears, that the Forces of the Planets, to produce Tides at the Earth's Surface, are to one another as their Denfities, and the Cubes of their apparent Diameters conjunctly. (For the Sines of fmall Ares are nearly as the Arcs themfelves.)
E X A M PLE.

405: If c be taken $=$ the Sine of 16^{\prime} (expreffing the mean Apparent Semi-diameter of the Moon) and $v=$ $\frac{5}{4}$ (the Ratio of her Denfity with refpect to that of the Earth) our laft Proportion will become PS : PS AE :: 1: 0,000c00315: Whence, if PS be taken = 42000000 Feet (the Meafure of the Earth's Diameter) PS-AE will come out $=\stackrel{F}{13,23}$.

SECTION X.

Of the Application of Fluxions to the ReSolution of Such Kinds of Problems De Maximise et Minimise, as depend upon a particular Curve, whole Nature is to be determined.

ISHALL begin this Section with premifing the following useful
THEOREM.
406. If the Relation of two flowing Quantities y and u be required; fo that, when the Fluent of $y^{m} \dot{u}$ becomes equal to a given Value, that of $\frac{y^{r} \times \overline{\bar{u} \dot{u} \pm j \bar{j}^{n}}}{\bar{j}^{2 n-1}}$ may be a Maximum or a Minimum ; I fay, their Relation muff be foch that $\frac{y^{r-m} \dot{u} \times \overline{u \bar{u} \pm \dot{j} j}{ }^{n-1}}{\dot{j}^{2 n-1}}$ may be, every where, the fame, or equal to a constant Quantity.

The Demonftration hereof depends upon the fubfrequent

> Lemma.
407. If $a_{\alpha}+b_{\beta}=2$, wherein α and β are indeterminate, the Value of $A \times \overline{\alpha a \pm p p})^{n}+B \times\left.\overline{\beta \beta+p p}\right|^{n}$ will be a Maximum, or Minimum, when $\frac{A a}{a} \cdot \times$ $a_{a \in \pm p p^{n-1}}^{n}$ and $\frac{B \beta}{b} \times \overline{\beta \beta \pm p p}^{n-1}$ are equal to each other
other. For, by taking the Fluxions of both Expreffrons we have $a \dot{\alpha}+b \dot{\beta}=0$, and $2 n A \alpha \dot{\alpha} \times \cdot \overline{\alpha a} \pm p p^{n-1}$ $+2 n B \beta \dot{\beta} \times\left.\overline{\beta \beta \pm p p}\right|^{n-1}=0$: From whence, $\dot{\alpha}$ and $\dot{\beta}$ being exterminated, there refults $\frac{A \alpha}{a} \times \overline{\alpha x \pm P A^{n-1}}$ $=\frac{B \beta}{b} \times \overline{\beta \beta \pm p p}^{n-1}$. 2.E.D.

Hence, if $a c+b \beta+c \gamma+d \delta \sigma^{\circ} c .=2$ (where $\alpha, \beta, \gamma, \Omega \xi_{c}$. are indeterminate) it follows that A $\times \overline{\alpha a \pm p p^{n}}+B \times \overline{\beta \beta} \pm p p^{n}+C \times \overline{\gamma \gamma \pm p p}{ }^{n}$ $+D \times \overline{\delta \delta} \pm p p^{n} \xi^{\circ} c$, will be a Maximum or Minimum, when all the Quantities $\frac{A \alpha}{a} \times \overline{a \alpha \pm p p p^{n-1} \text {, }}$ $\frac{B \beta}{b} \times \overline{\beta \beta \pm p p}{ }^{n-1}, \frac{C \gamma}{c} \times \overline{\gamma \gamma \pm p p}{ }^{n-1} \hat{\sigma}^{\circ} c$. are equal to each other. For that Expreffion is a Maximum (or Minimum) when it cannot be increafed (or decreased) by altering the Values of the indeterminate Quantities involved therein ; but it may be increafed (or decreafed) by altering only two of them (as α and β) while the reft remain unchanged; unless $\frac{A_{\alpha}}{a} \times \overline{a \infty \pm P p_{1}^{n-1}}$ and $\frac{B \beta}{b} \times \overline{\beta \cdot 6 \pm p p} i^{n-1}$ are equal to each other. (This is proved above.) Therefore, when $A \times \overline{a x \pm p p p^{n}}+B \times$ $\overline{\beta \beta} \pm p l{ }^{n}+C \times \overline{\gamma \gamma \pm p p}^{n}+\delta^{c} c_{0}$ is a Maximum or Minimum, the Quantities $\frac{A_{a}}{a} \times \frac{\square \beta}{} \pm\left. p\right|^{n-1}$ and $\frac{B \beta}{b}$ $\times{\overline{\beta \beta} \pm \underline{\beta})^{n-1} \text { cannot be unequal : And, by the very }}^{n}$ fame Argument, no other two of the Quantities above specified can be unequal.

Of Problems De Maximis \& Minimis

If, in the Right-line PR, there be now affumed NŃ $=\alpha, N_{N \prime \prime}^{N}=\beta, \vartheta^{\circ} c$. and upon thefe, as Bares,

Rectangles ŃK, ŇNK be fuppofed, whore Altitudes NK, ŃK छ Ec. are denoted by $a, b, c, d \xi_{6}$. it is evident that c_{α} $+b \beta+c \gamma+d \delta \xi_{c}$. ($=2$) will be expreffed by the Sum of all the faid Rectangles, or the whole Polygon N.

Moreover, if, in the Right-line PL (perpendicular to $P R$) there be taken $M M, M M \neq \vartheta^{\circ}$. each equal to p, and, upon there equal Bares, Rectangles $M(M V$, M Vf E oc. be conftituted, whore Altitudes are denoted by $A \times \frac{\overline{a a \pm p p}^{p^{2 n}}}{}, B \times \frac{\overline{\beta \beta \pm p p}^{n}}{p^{2 n}}, \delta_{c} c$ it is likewise plain that the Value of $\frac{A \times \overline{\times a \pm p p}}{p^{n}}+\frac{B \times{\overline{\beta \beta \pm} \pm p p^{n}}_{p^{2 n-1}}^{p^{2 n-1}} .}{}$ $+\frac{C \times \overline{\gamma \gamma \pm} p^{n}}{p^{2 n-1}}$ will bo truly reprefented by the whole
whole Polygon Mb. Which Polygon (as p is conftant) will be a Maximum or Minimum, when $A \times$ $\overline{\alpha a \pm\left. p\right|^{n}}+E \times \overline{\beta \beta} \pm \underline{1}^{n}+\xi_{c_{0}}$ is a Maximum or Minimum; that is, when all the Quantities $\frac{A a}{a} \times$ $\frac{\overline{a a+p p_{1}^{n}-1}}{p^{2 n-1}}, \frac{B \beta}{b} \times \frac{\overline{\beta \beta+p p^{n-1}}}{p^{2 n-1}}$, Es. are equal to each other (as has been proved above.)

Let now, $A, B, C, D \mho^{\circ}$. be expounded by any Powers, (MP $, M^{\prime} P^{r}, M^{\prime \prime} P^{r}, \Xi^{*} c$.) of the reflective Diftances from a given Point P; and let, at the fame time, the correfponding V alues of a, b, c, d छ'c. be interpreted by any other propofed Powers $\mathrm{MP}^{m}, \mathrm{MP}^{m}$, Mum छ\%\%. of the fame given Diftances: Then the Area of the Polygon $\mathrm{N} /$ will be expreffed by $\mathrm{MP}^{m} \times a$
 Polygon $M h$, by $M P^{r} \times \frac{\left.\overline{\alpha a \pm p p}\right|^{n}}{p^{2 n-1}}+M^{\prime} P^{r} \times \frac{\beta \overline{\beta \beta+p p}}{}{ }^{n}$ $+{ }_{\mathrm{M}} \mathrm{P}^{r} \times \frac{{\overline{2 \eta \pm p p^{n}}}^{p^{2 n-1}}}{}+\delta_{c} c_{\text {. And the foresaid equal }}$ Quantities $\frac{A \alpha}{a} \times \frac{\overline{\alpha a \pm p p}^{-1}}{p^{2 n-1}}, \frac{B \beta}{b} \times \frac{\overline{\beta \beta+p)^{n-1}}}{p^{2 n-1}}$ छ\% will become $\mathrm{MP}^{r-m} \times \frac{a \times \overline{a z+p p})^{n-1}}{p^{2 \pi-1}}, \mathrm{MP}^{r-m}$ $\times \frac{\beta \times \overline{\beta \beta+p p}^{n-1}}{p^{2 n-1}}$, Ec. respectively.
Now let the Number of the Rectangles be fuppofed indefinitely great, and their Breadths indefinitely fall,
fo that the Area of each of the two Polygons $\mathrm{N} l$ and $\mathrm{M} b$ may be taken for that of its circumfcribing Curve : Moreover, let u and y be put to reprefent the Diftances of any two corresponding Ordinates EF and GI from the given Point P; and let \dot{y} be every where expreffed by $p\left(=M^{\prime} M=M^{\prime} M^{\prime \prime}=\vartheta^{\circ} c\right.$. $)$ Then, \dot{u} being a general Value for any of the Quantities $\alpha, \beta, \gamma, \delta \xi^{c}$. (or NN, NN Ec.) it follows; Firft, that the Fluxion of the Area of the Curve NEFK (the Ordinate being, every where, $=y^{m}$) will be truly defined by $y^{m} u^{\text {; S Second- }}$ ly, that the Fluxion of the Area MGIV (by fubftitoting y, \dot{z} and \dot{j} inftead of their Equals) will be $\frac{y^{r} \times \ddot{u} \ddot{ \pm}_{y y}^{n}}{\dot{y}^{n \pi-1}}$; and, laffly, that the Value of each of the equal Quantities, $M P^{r-m} \times \frac{a \times \overline{a z \pm p p^{n-1}}}{p^{2 n-1}}$, $\mathrm{M}^{r-m} \times \frac{\beta \times \overline{\beta \beta \pm p p})^{n-1}}{p^{2 n-1}}$, So $^{\prime}$, above specified, will be expreffed by $\frac{y^{r-m} \times \dot{u} \times \overline{u_{u} \pm j j^{n-1}}}{\dot{j}^{2 n-1}}$. Whence the Theorem is manifest.
408. If R and S be affumed to denote any Functions of y (that is, any two Quantities exprefled in Terms of y and given Coefficients; then, in order to have the Fluent of $S \times \frac{\overline{\left.u u^{\prime} \pm \dot{j}\right]^{n}}}{\dot{j}^{2 n-1}}$ a Maximum or Minimum, when that of $R i$ becomes equal to a given Value, it is requifite that $\frac{S \dot{u}}{R} \times \frac{\widetilde{u i u} \pm \dot{j i j}^{\pi-1}}{\dot{j}^{2 \pi-1}}$ mould be a constant

Quantity: This, also, is evident from the preceding Demonftration; and may be of Vie when the above premifed Theorem is not fufficiently general.
PROB. I.
409. To determine the Nature of the Curve ACE; \int_{0} that, the Length of the Arch AE being given, the Area ABE fall be a Maximum.

Calling (as usual) the Abfeiffa $A D, x$; the Ordinate DC, y; and the Arch AC, z, we have $\dot{x}=\sqrt{\overline{z^{2}}-\dot{j}^{2}}$; and therefore $y \dot{x}+=y x$ $\left.\overline{z \dot{z}-i j}\right|^{\frac{1}{2}}=$ the Fluxion of the Area ADC. Now, fince, by the Queftion, the

Fluent of $y \times \overline{\dot{z} \dot{z}-j y)^{\frac{1}{2}}}$ is to be a Maximum, when That of \dot{z} becoures equal to a given Quantity (ACE) let there two Fluxions be, reflectively, compared with
$\frac{y^{r} \times \overline{u u}-\left.\bar{j}\right|^{n}}{\dot{y}^{2 n-1}}$ and $y^{m} \dot{u}$ (as given in the foregoing
Theorem \ddagger.) By which means, $n=\frac{1}{2}, r=\mathbf{1}, \dot{u}=\dot{z}$,
and $m=0$; and consequently $\frac{\left.y^{r-m} \dot{u} \times \overline{u z}-\bar{j}\right]^{n-i} \ddagger \text { Art. 406, }}{j^{2 x-1}}$
$=j \dot{z} \times \bar{\approx} \dot{z}-\dot{j} y^{-\frac{1}{2}}$: Which (according to the fid Theorem) being, every where, equal to a conftant Quantity, we fall, by putting that Quantity $=a$, and ordering the Equation, get $\dot{z}^{2}=\frac{a^{2} \dot{y}^{2}}{a^{2}-y^{2}}$, and \dot{x}

$$
\begin{array}{r}
\left(\sqrt{\dot{x}^{2}-\dot{j}^{2}}\right)=\frac{y \dot{y}}{\sqrt{a^{2}-y^{2}}} ; \text { and, consequently, (by } \\
\text { Ii } 3
\end{array}
$$

Of Problems De. Maximis \& Minimis

taking the Fluent) $x=a-\sqrt{a^{2}-y^{2}}$, or $2 a x-x x$ $=y^{2}$; which is the common Equation of a Circle. 2: E. I.

Corollary.

410. It follows from hence, that the greateft Area that can poffibly be contain'd by a Right-line (AE) joining two given Points, and any Curve-line ACE of a given Length; terminating in the fame Points, will be when the faid Curve-line is an Arch of a Circle.

PROB. II.

411. The Length of the Arch AE (fee the preceding Figure) being given, to determine the Nature of the Curve, fo that the Solid generated by the Rotation thereof may be a Maximum.

- Art. 145. Since the Fluent of $y^{2} \times \overline{\left.\dot{x}^{2}-\dot{j}^{2}\right)^{\frac{1}{2}}}\left(\left(=y^{2} \dot{x} *\right)\right.$ is required to be a Maximum, when that of \dot{z} has a given Value $A C E$, every thing will remain as in the lift Problem; only, r mut here be $=2$: And there-
 Whence $\dot{z}=\frac{a \dot{y}}{\sqrt{a^{2}-y^{4}}} ;$ and consequently $\dot{x} \quad(=$ $\left.\sqrt{\dot{z}^{2}-\dot{j}^{2}}\right)=\frac{y^{2} \dot{y}}{\sqrt{a^{2}-y^{4}}}$: Which Values, if b^{2} be put $=a$ (in order to have the Powers homologous) will become $\dot{z}=\frac{b^{2} \dot{y}}{\sqrt{b^{4}-y^{4}}}$ and $\dot{x}=\frac{y^{2} \dot{y}}{\sqrt{b^{+}-y^{4}}}$: Whence z and x will be known. 2. E.I.
PR OB. III.

412. Tube Super facies generated by the Arch of a Curve, in its Rotation, about its Axis, being giver, ; to determine the Curve, fo that the Sold, itfelf, nay be a Maximum.
t Art. r_{4}." Because the Fluent of $y^{2} \times \overline{\left.\dot{z}^{2}-j^{2}\right)^{2}}+$ is to be 2 Maximum, when that of $y \dot{\sim}$ becomes equal to a given

depending upon a particular Curve.

Quantity ; let the Fluxions here exhibited be therefore compared with $\frac{y^{r} \times \overline{u u} \pm \ddot{y} \bar{y}^{n}}{\dot{y}^{2 n-1}}$ and $y^{m} \dot{u}$ (given in the Theorem.) By means whereof (r being $=2, \dot{u}=\dot{z}$, $n=\frac{z}{2}$, and $m=1$) we have $y \dot{z} \times \overline{\bar{z}^{2}-\dot{y}^{2}}{ }^{-\frac{1}{2}}=a$ (a conftant Quanticy *; which is the very Equation found "Art. 406. in Prob. 1. belonging to a Circle.

If the Solid be fuppofed given, and the Superficies a Minimum, we fhall come at the very fame Conclufion: For, $y^{2} \dot{x}$ and $y \times x+\frac{1}{x} y^{\frac{1}{2}}$ (which are refpectively as their Fluxions) being compared with $y^{m} \dot{u}$ and $\frac{y^{r} \times \overline{u u u+\ddot{y j}}{ }^{n}}{j^{2 n-1}}$ we have $m=2, \dot{u}=\dot{x}, r=1$, and $n=\frac{x}{2}$; and therefore $\frac{\dot{x}}{y \sqrt{\dot{x}^{2}+\dot{j}^{2}}}$ equal to a conftant Quantity: Which being denoted by $\frac{1}{a}$ (fo that the Terms may be homologous) there comes out $a \dot{x}=y \sqrt{\dot{x}^{2}+\dot{y}^{2}}$; whence $2 a x-x^{2}=y^{2}$ (as before.)
PROB. IV.
413. To determine the Curve HFB, from whofe Revolution a Solid BK Shall be generated; which, moving forward, in a Medium, in the Direction of its Axis DA, will be lefs refficed than any other Solid of the fame given Lerigth DA and Ba/c BC.

If $\mathrm{AE}=x, \mathrm{EF}=y, \mathrm{~F} p=\dot{x}$ E®c. it is evident, from the Principles of Mechanics, that the refifting Force of a Particle of the Medium at F (being as the Square of the Sine of the Angle of Inclination $p \mathbf{F q}$) will be truly

the whole Number of Particles acting upon FHKG is proportional to the Area of the Circle FG, or as y^{2}; the Fluxion hereof ($2 y j$) drawn into $\frac{\dot{j}}{\dot{x} \dot{x}+j \dot{y}}$, will therefore give $\frac{2 y \dot{j}^{3}}{\dot{x} \dot{x}+\dot{y} \dot{y}}$ for the Fluxion of the Refiftance upon FHKG.
Now, fince it is required (by the Queftion) to have the Fluent of $\frac{j \dot{j}^{3}}{\dot{x} \dot{x}+j \dot{y}}$ (or $\frac{y \times \overline{x+\dot{x}+j} \bar{y}^{-1}}{y^{-3}}$) a Maximum, when That of \dot{x} becomes equal to a given Quantity ($A D$), let thefe two Fluxions be therefore - Art 406. comparcd with $\frac{\left.y^{r} \times \overline{u u} u+\ddot{y y}\right]^{n}}{\dot{y}^{2 \pi-1}}$ and $y^{m \pi} \dot{u}$ *. Whence (r being $=1, \dot{x}=\dot{x}, n=-1$, and $m=0$) we get tArt. $406 . \frac{\left.y \dot{x} \times \overline{\dot{x} \dot{x}}+\dot{j}_{j}\right)^{-2}}{\dot{y}^{-3}}=a(a$ conftant Quantity \dagger); and confequently $y \dot{j}^{3} \dot{x}=a \times \overline{\dot{x} \dot{x}+j \dot{j}}{ }^{2}$: Whereof the Fluent will be found, by Art. 264. That the Curve does not meet its Axis in the extreme Point A, but has an Ordinate AH at that Point (as reprefented in the Figure) is evident from the foregoing Equation. For $\overline{\dot{x} \dot{x}}+\left.\dot{y} \dot{y}\right|^{2}$. $\left(\overline{\left.(q)^{4}\right)}\right.$ being, always, greater than $\left.\dot{j}^{3} \dot{x}(\overline{p q})^{3} \times \mathrm{F} p\right)$, j muft therefore be greater than a, in the fame Proportion; and fo, can never be equal to Nothing.

Now, as it is demonftrable that the Angle AHF muft be $\frac{3}{2}$ of a Right-Angle, AH (the leaft Value of y) will therefore be $=4 a$ (fince \dot{x} and \dot{y} are, in this Circumftance,

depending upon a particular Curve.

ftance, equal to each other.) But, what a, itfelf, ought to be, muft be determined from the given Values of AD and BD , and the Refolution of the forefaid Equation.

> PROB. V.
414. To determine the Solid of the leaft Refifance, fuppofing the Area of the generating Plane AHBD, and its greateft Ordinate DB to be given; (fee the preceding Figurc.)

Since (by the laft Article) the Fluxion of the Refiftance is exprefied by $\frac{y x \overline{\bar{x} \dot{x}+\dot{y}})^{-1}}{\dot{y}^{-3}}$, and that of the Area AEFH by $y \dot{x}$, it is plain (from the premifed Theo-

Whence, $\frac{\dot{y}^{3} \dot{x}}{\dot{x} \dot{x}+\left.\dot{y} \dot{y}\right|^{2}}$, or its Equal $\frac{\left.p q\right|^{3} \times \mathrm{F} p}{q \mathrm{~F}^{4}}$, being
every where the fame, the Angle $p \mathrm{Fq}$ muft alfo be invariable; and confequently HFB a Right-line. Therefore the Solid of the leaft Refiftance is (in this Cafe) either a whole Cone, or the Fruftrum of a, greater, Cone. But it is eafy to fhew, that, when the Area of the generating Plane $A B$ is given fo fmall, that the Angle B may be taken equal to the Half of a Rightangle; I fay, it is demonfrable, in this Cafe , that the Fruftrum fo arifing will be lefs refifted than a whole Cone, or any other Fruftrum, whereof the Bafe and the Area of the generating Plane are the Came.

In like manner the Solid of leaft Refflance, when its Bulk and greateft Diameter are given, may be determined: The Equation of the generating Curve being
$\frac{y^{-1} \dot{x} \times \overline{\dot{x} \dot{x}+j \dot{y}}{ }^{-2}}{\dot{y}^{-3}}=\frac{1}{a}$, or $a \dot{x} \dot{j}^{3}=y \times \overline{\dot{x} \dot{x}+\dot{y} \dot{j}^{2}}$:
Whereof the Solution is given in Art. 264.
PROB.

Of Problems Dc Maximis \& Minimus.

PR OB. VI.

415. To determine the Line, along which a Body, by its own Gravity, quill, defend, from one given Point A to another B, in the forte Time pofible.

Let $A D$ be parallel, an $\$ B C$ perpendicular, to the Horizon, interfecting each other in C ; and let QP be any Ordinate to the Curve parallel to BC : Then (calling $\mathrm{AP}, x ; \mathrm{PQ}, y \mathrm{E}_{0} c_{0}$) the Celerity at Q will be exprefled by $y^{\frac{1}{2}}$; alfo the Fluxion of the Time of Defcent tho' -Ar t.204. AQ will be truly defined by $\frac{\dot{x}}{y^{\frac{1}{2}}}$, or its Equal $y^{-\frac{3}{2}}$ $x \bar{x} \bar{x}+\dot{y j}]^{\frac{x}{2}}$. Here, therefore, the Fluent of $y^{-\frac{1}{z}} x$ $\overline{x \bar{x}+\bar{j} \dot{y})^{\frac{y}{2}}}$ is to be a Minimum, when that of \dot{x} arrives to tArt. 405. a given Value (AC). Whence, by the Theorem \dagger, $\left.y^{-\frac{1}{2}} \dot{x} \times \overline{\dot{x} \dot{x}+\dot{j} \dot{y}}\right)^{-\frac{\mathrm{T}}{2}}$ muff be $=$ a conftant Quantity: Which (to have the Terms homologous) let be denoted by $a^{-\frac{1}{2}}\left(\right.$ or $\frac{1}{\sqrt{a}}$). Then $a^{\frac{1}{2}} \dot{x}=y^{\frac{1}{2}} \times \overline{\dot{x} \dot{x}+\dot{j} j^{\frac{1}{2}}}$; whence $\dot{x}=\frac{y^{\frac{1}{2}} \dot{y}}{\sqrt{a-y}}=\frac{2}{\sqrt{a y-y y}} ; \dot{z}=\left(\sqrt{\dot{x}^{2}+\dot{y}^{2}}\right)$
$=\frac{a^{\frac{x}{2}} \dot{y}}{\sqrt{i a-y}}$; and confequently $z=2 a-2 a^{\frac{1}{2}} \sqrt{a-y}$
Therefore, when $y=a, z$ is $=2 a$; which two correfponding Values let be denoted by DV and AV ; and let $Q E$, parallel to $A D$, meet $D V$ in E; then VE ($\mathrm{VD}-\mathrm{ED}$) being $=a-y$, and $\mathrm{VQ}(\mathrm{AV}-\mathrm{AQ})$ $=2 a^{\frac{1}{2}} \sqrt{a-y}$, it follows that VD (a): VE $(a-y)::$ VA $^{2}\left(4 a^{2}\right):$ VQ $^{2}(4 a \times \overline{a-y})$ Which is one of the moft remarkable Properties of the Cycloid; the Curve which, therefore, anfwers the Conditions of the Problem.

If the Celerity be fuppofed as any Function (S) of the Quantity y, the Problem will be refolved in the fame manner: The Equation of the Curve being $\frac{\dot{x} \times \overline{\dot{x}} \dot{x}+j \dot{j}^{-\frac{1}{2}}}{S}=\frac{1}{a}$.

PROB. VII.
416. To find the Nature of the Curve AQE , along wwhich a beavy Body muft defand from an horizontal Line RC to a vertical Line CD, so that the Area CAE may be given, and the Time of the Defcent a Minimum.
If the Ordinate PQ
(parallel to CD) be
called y, and the Velo-
city at Q be denoted by
y^{n}; it is evident that the Fluent of $y^{-n} x$
$\overline{\dot{x} \dot{x}+j j \|^{\frac{1}{2}}}\left(=\frac{\dot{z}}{y^{n}}+\right)$

muft be a Minimum when that of $y \dot{x}$ amounts to a given Value.

Therefore (by the Theorem already mention'd fo often) we have $y^{-n-1} \dot{x} \times \overline{\dot{x} \dot{x}+\dot{y j}}{ }^{-\frac{1}{2}}=a^{-n-1}$; and confequently $\dot{x}=\frac{y^{n+1} \dot{y}}{\sqrt{a^{2 n+2}-y^{2 n+2}}}$; which, by writing $\frac{x}{2}$ inftead of n, becomes $\dot{x}=\frac{y^{\frac{3}{2}} \dot{y}}{\sqrt{a^{3}-y^{3}}}$: Whence x will be known. But, if the Celerity was to be every where uniform, then (n being $=0$) we fhould have $\dot{x}=\frac{y \dot{y}}{\sqrt{a^{2}-y^{2}}} ;$ and therefore $x=a-\sqrt{a^{2}-y^{2}}$: Which anfwers to a Circle.

Lemma.

417. If, upon a Tangent EP, from any Point C in the Circumference of a Circle FEC, a Perpendicular CP be let fall, the Cbord (CE) joining that Point and the Point of Contact, will be a Mean-Proportional between the faid Perpendicular CP and the. Diameter CF of the Circle.

For, the Angles P and CEF being both Right; and alro CEP $=F$, the Triangles CPE and CEF are fimilar: And therefore CP : CE :: CE : CF. 2. E. D.

PROB. VIII.

418. In the mixt-lin'd Triangle ACB , the Lengths of all the Sides (whereof CA and CB are Right-lines) are fuppofed given; 'tis required to find the Nature of the Curve-fide AEB, fo that the Area may be a Maximum.

Put the Arch $\mathrm{AE}=z, \mathrm{~F}^{*}$ and the Ordinate $\mathrm{CE}=y$; then, the Fluxion of the Area ACE being $\frac{\dot{y}}{2} \sqrt{\bar{z}^{2}-\dot{j}^{2}}$, ${ }^{*}$ the Fluent of $y \times \bar{z} \bar{z}-\bar{j} j^{\frac{r}{2}}$, generated in the Time wherein y, from CA, increases to CB, mut be a Maximum: Therefore, by the Theorem t,

we have $y \dot{z} \times \overline{z \dot{z}}-\bar{j} \dot{y}^{-\frac{x}{2}}$ $=a t$, or $\frac{\dot{z}}{\sqrt{\dot{z} \dot{z}-\dot{y} \dot{y}}}=\frac{a}{y}$. But, if CP be fup. poled perpendicular to the Tangent EP , then will $\frac{\dot{z}}{\sqrt{\dot{z} \dot{z}-\dot{j} \dot{y}}}($ Art. 35.$)=\frac{\mathrm{CE}}{\mathrm{CP}}=\frac{y}{\mathrm{CP}} ;$ and contequently $\frac{a}{y}=\frac{y}{\mathrm{CP}}$; or, $\mathrm{CP}: \operatorname{CE}(y):: \operatorname{CE}(y): a$: Which Proportion, by the Lemma, answers to a Circle; whereof the Quantity a is the Diameter.

Now, that AEB mut be an Arch of a Circle is alpo" evident from Prob. I. but, that the fame Arch, continu'd out, will pass tho' the Angle C, does not appear from thence. This is known from above; and is requifite in finding the particular Circle answering to any proposed Data.

> PR O B. IX.
419. To find the Path AEB rubich a Body mulls deforibe in moving uniformly from one given Point A to another B; fo that, being every where acted on by a Force, or Virtue, which varies according to the Inverfe-DuplicateRatio of the Difances from a given Center C, the zubole Action upon the Body Bal be a Minimum.

Putting

Of Problems De Maximin \& Minimis

- Art. 134.

Putting $A E=\approx$, $\mathrm{CE}=y$, d_{e} (indefinitele (mall) $=\dot{j}{ }^{*}, E_{\ell}=\dot{z}$, and $E d\left(\sqrt{\dot{z}^{2}-j^{2}}\right)$
$=\dot{i}$; we have $\frac{\dot{z}}{y^{2}}$
$\left(=y^{-2} \times \overline{\ddot{u} u+\ddot{y} y^{\frac{1}{2}}}\right)$
for the Measure of the Force which acts upon the Body. in defcribing the Particle $E_{e}(\dot{\sim})$: Moreover, if from the Center C, with any given Radius (r) an Arch KTtS of a Circle be defcribed, interféting CE in T , we fall have T (the Meafure of the Angle $\left.E C_{e}\right)=\frac{r \dot{u}}{y}$. Therefore, fince the Fluent of $y^{-2} \times \widetilde{u u+\ddot{j y}^{\frac{2}{2}}}$ is required to be a Minimum, and the cotemporary Fluent of $y^{-1} \dot{u}$ (between CA and CB) a given Quantity ; it follows, from the Theorem premifed at the Beginning of the Section, that $y^{-2+1} \dot{u} \times \widetilde{u u u+\ddot{j}}{ }^{-\frac{1}{2}}$ muff be equal to a conflat Quantity $\left(\frac{x}{a}\right)$ and confequently $\frac{\dot{u}}{u u+\dot{y}}$ $\left(=\frac{\sqrt{\dot{z}^{2}-j^{2}}}{\dot{z}}\right)=\frac{y}{a}$: Which is the very Equatimon found in the preceding Problem. 'Therefore, if thro' the three given Points A, B, and C, the Circumference of, a Circle be defcribed, the Arch thereof terminated by A and B will be the Path of the Body. 2. E. I.

Corollary.
420. If FR be a Tangent to the Circle, at the Extremity of the Diameter CF, and CA and CE be produce
duced to meet it in R and Q, it follows that the whole Action upon the Body, in defrribing the Arch AE, will be proportional to the correfponding Part RQ of the faid Tangent. For, if Ce be, alfo, produced to meet $F R$ in q, and EF be drawn, it is plain that the Triangles CEF and CFQ , as alfo CE and $\mathrm{C} q \mathrm{Q}$, are fimilar: Whence it will $\mathrm{be}, \mathrm{CE}(y): \mathrm{CF}(a):: \mathrm{CF}(a)$ $\vdots \mathrm{CQ}(\mathrm{o}: \mathrm{C} q)=\frac{a a}{y} ;$ and $\mathrm{CE}(y): \mathrm{E}_{\ell}(\dot{z}):: \mathrm{C}_{q}\left(\frac{a a}{y}\right)$ $: \mathrm{Q}_{2}=\frac{a a \dot{z}}{y y}$: Which (a being conftant) is as $\left(\frac{\dot{z}}{y y}\right)$ the Force that acts upon the Body in defcribing $\mathrm{E}_{e}(\dot{z})$. And, as this every where holds; the, whole Action in defcribing $A E$ mult therefore be proportional to $R \mathrm{Q}$. Which Force (it is eafy to prove) will be to that exerted on the Body in moving through the Chord AE, as the Chord to the Arch.

> PROB. X.
421. To determine the Path in which a Body may move from one given Point A to another B, in the Bortef Time poffible; fuppofing the Velocity to be, every where, proportional to any Power (y^{p}) of the Difance from a given Center C. (See the laft, Figure.).

Here every thing will remain as in the preceding Problem; only y^{-p} muft be wrote inftead of y^{-2}. Therefore we have $y^{-p+1} \times \dot{u} \times \overline{u \quad u}+\dot{y y} \overline{-}^{-\frac{1}{2}}=a$ confant Quantity: Which Quantity (to have the Terms homologous) let be denoted by $\frac{b}{a^{p}}$; then, by Reduction, $\frac{b y^{p-1}}{a^{p}}=\frac{\dot{u}}{\sqrt{u \dot{u}}+\dot{y y}}\left(=\frac{\mathrm{E} d}{\mathrm{E}_{e}}\right)=\frac{\mathrm{CP}}{\mathrm{CE}}=\frac{\mathrm{CP}}{y}:$
And confequently $\mathrm{CP}=\frac{b y^{p}}{a^{p}}$. Hence, if $p=0$, or the

Velocity be conftant; then CP being every where $=b$; the Body muft, in this Cafe, defcribe a Right-line. But, if $p=\mathrm{I}$, then CP being $=\frac{b y}{a}$; the Curve will

- Art. 74. be a logarithmic Spiral, whofe Center is C *: Except in that particular Cafe, where $\mathrm{CA}=\mathrm{CB}$, when it degenerates to a Circle.

Laftly, if $p=2$, the Curve will be a Circle (by the preceding Lemma) whofe Diameter is $\frac{a a}{b}$, and whofe Periphery paffes through the given Point C.

After the fame manner, the Value of CP (upon which the Nature of the Curve depends) may be determined, when the Velocity is expounded by any given Function (S) of the Diftance (y) from the Center of \dagger Art.407. Force: And (by writing S in the room of $y^{n}+\mathcal{E}^{\circ} \mathrm{c}$.) will come out $\mathrm{CP}=\frac{b S}{c}$; where b and c reprefent conftant Quantities.

When the Velocity is That which the Body may acquire, in defcending through BE, by a centripetal Force expreffed by y^{p}, then the Value of S (the Meafure of \ddagger Art. 221. that Velocity) being interpreted by $\sqrt{d^{p+1}-y^{p+1} \ddagger}$ am 206.
(where $\mathrm{CB}=d$) we therefore have $\mathrm{CP}=\frac{b \sqrt{i^{p+1}-y^{p+x}}}{c}$ for the Equation of the Curve of the fwifteft Defcent, according to this laft Hypothefis of a centripetal Force varying as any Power p of the Diftance.
422. Befides the Problems already refolved in this Section, there are others of the fame Nature which are confined to more particular Reftrictions, and require a different Method of Solution.

depending upon a particular Curvé.

Thus, if $2, R$ and S be fuppofed to denote any given Powers, or Functions, of the Ordinate (y) of a Curve ANM, and the Nature of the Curve be required, fo that, when the Fluent of $2 \dot{x}$ becomes equal to a given Quantity, the Fluent of $R \dot{z}$ may alfo become equal to another
 given Quantity, and That of $S \dot{z}$, a Maximum or Minimum: Then, becaufe there is, in this Cafe, a fecond Equation, or new Condition, beyond what is to be met with in any of the foregoing Problems, the Method of Solution hitherto explained, will, therefore, be infufficient. But, by a Procefs fimilar to that whereby the faid Method was demonftrated (affuming, here, three Expreffions, and three indeterminate Quantities, inftead of two *) a ge- *Art. 4070 neral Anfwer to this Problem (under all its Reftrictions) will be obtained : And is exhibited by the Equation, $\frac{\dot{z}}{\dot{x}}=\frac{p R \pm q S}{2}$; wherein p and q denote conflant

Quantities.

423. Though it feemis unneceffary to put down the Invention of this Equation, after what has been hinted above, yet it may not be improper to obferve, by way of Corollary, that, if $2=\mathrm{I}, R=\mathrm{I}$, and $S=y^{n}$, the Equation will then become $\frac{\dot{z}}{\dot{x}}=p \pm q y^{n}$; expreffing the Nature of the Curve, when, the whole Abfciff (AM) and correfponding Arch(AN) being both given Quantities, the Fluent of $y^{n} \dot{z}$ is a Maximum or Minimum, according as the Value of n is politive or negative: In both which Cafes, it is very eafy to perceive, that the Curve muft be concave to $A M$, and that the Value of $\frac{\dot{z}}{\dot{x}}$, or its

$$
\mathrm{Kk}
$$

Equal $p \pm q y^{\eta}$, muft, therefore, decreafe as y increafes; whence we may infer that the Sign of $q y^{n}$ muft be negative in the former Cafe, and pofitive in the latter.
$E x$. Let the Curve ABDE, be the Catenaria; formed by a flender Chain, or perfectly flexible Cord,

furpended by its two Extremes in the horizontal Line AE: Then, fince its Center of Gravity muft be the loweft poffible, the Fluent of $y \dot{z}$, when $\mathrm{AC}=\mathrm{AE}$, muft
*Art. 173. therefore be a Maximum * : Whence (n being here $=1$) our Equation $\left(\frac{\dot{z}}{\dot{x}}=p \pm q y^{n}\right)$ becomes $\frac{\dot{z}}{\dot{x}}=p$ -qy.

But; in order to reduce it to a more convenient Form, let the Diftance (DF) of the loweft Point of the Curve from the horizontal-Line AE be put $=b$; then, when $y(B C)$ becomes $=b, \dot{x}$ will be $=\dot{z}$; and therefore the Equation, in that Circumftance, is $x=p$ $-q b$; whence $\ddot{p}=1+q b$, and confequently $\frac{\dot{z}}{\dot{x}}=$ $x+q b-q y=1+q \times \overline{b-y}$: Which, by putting $b-y(\mathrm{DH})=s$ and $a=\frac{1}{q}$ is reduced to $\frac{\dot{z}}{\dot{x}}=1$ $+\frac{s}{a}$: From whence $a^{2} \dot{z}^{2}\left(=\overline{a+s}^{2} \times \dot{x}^{2}\right)=\overline{a+s}^{2}$ $\times \overline{\dot{\tilde{z}}^{2}-\bar{s}^{2}}$; and confequently $\mathrm{BD}=\sqrt{2 \text { as }+s s .}$
For another Example (wherein the Exponent n will be negative) let the required Curve be That along which

depending upon a particular Curve.

which a Body may defcend, by its own Gravity, from one given Point A to another B, in lefs Time than through any other Line of the fame Length. In which Cafe, the Fluent of $z y-\frac{1}{2}$ being a Minimum, when x and z become equal to given Quantities, our E quation (by writing $-\frac{1}{2}$ for n) will here become $\frac{\dot{z}}{\dot{x}}=p+q y^{-\frac{\lambda}{2}}$: From whence exterminating x, or \dot{z}, by means of the Equation $\dot{x}^{2}+\dot{y}^{i}=\dot{z}^{2}$, the Fluent may alfo be determined.

SECTION XI.

The Refolution of Probleins of various Kinds.

> PROB. I.
424. $A^{N r}$ hyperboolical Logaritbm (j) being givien, it is propofed to find the natural Nuimber anfwering thereto.

If the Number fought be denoted by $\mathrm{i}+\dot{x}$, we fhall (by Art. 126.) have $\dot{y}=\frac{\dot{x}}{1+x}$, or $\dot{y}+\dot{x} \dot{x}=\dot{x}=0$. Let $A y+B y^{2}+C y^{3} \delta_{c}=x$; then $A y+2 B y y$ $+3 \mathrm{Cy}^{2} j \mathrm{~g}_{c}$. $=\dot{x}$, and our Equation will become $\left.\begin{array}{l}\dot{y}+A_{y y}+B y^{2} y+C y^{3} j \xi^{2}{ }^{2} . \\ A j-2 B y \dot{y}-3 C y^{2} y-4 D y^{3} j \dot{j} \xi_{0}\end{array}\right\}=0$.
Whence, by comparing the homologoüs Terms, we get $A=\mathrm{I}, B=\frac{\hat{A}}{2}=\frac{1}{2}, C=\frac{B}{3}=\frac{1}{2 \cdot 3}, D=$ $\frac{C}{4}=\frac{1}{2 \cdot 3 \cdot 4}$ छंC. Therefore $i+y+\frac{y^{2}}{2}+\frac{y^{3}}{2 \cdot 3}+$ $\frac{y^{4}}{2 \cdot 3 \cdot 4}+\frac{-y^{5}}{2 \cdot 3 \cdot 4 \cdot 5}$ gc. is $(=1+x)$ the Number fought.

K k 2
PROB.

PROB. II.

425. The Radius AO and any Arch AB of a Circle ABD being given; to find the Sine BC , and Co-fine OC of that Arch.

Let $\mathrm{AO}(\mathrm{BO})=r, \mathrm{AB}=z, \mathrm{AC}=x, \mathrm{BC}=y$,

$\mathrm{B} b=\dot{z}, \mathrm{~B} n=\dot{x}$, and $b n=\dot{y}$: Because of the fimilar Triangles OBC and B nb, it will be

$$
\mathrm{OB}(r): \mathrm{BC}(y):: \mathrm{B} b(\dot{z}): \mathrm{B} n(\dot{x})
$$

And $\mathrm{OB}(r): \mathrm{OC}(r-x):: \mathrm{B} b(\dot{z}): b n(\dot{y})$
From which we have

$$
y \dot{z}=r \dot{x} .
$$

And $r \dot{y}=r \dot{z}-x \dot{z}$.
Let $x=A z+B z^{2}+C z^{3}+D z^{4}+E z^{5}$ Etc.
And $y=a z+b z^{2}+c z^{3}+d z^{4}+c z^{5}$ छc.
Then, by Substitution and Tranfpofition, our two Equations will become

* $+a z \dot{z}+b z^{2} \dot{z}+c z^{3} \dot{z}+d z^{4} \dot{z}$ ध$^{3} c$.
$-r A \dot{z}-2 r B z \dot{z}-3^{r} C z^{2} \dot{z}-4 r D z^{3} \dot{z}-5 r E z^{4} \dot{z} \xi^{c} c$. $\}_{0}^{11}$ And
$r a \dot{z}+2 r b z \dot{\tilde{z}}+3 r c z^{2} \dot{z}+4 r d z^{3} \dot{z}+5 r e z^{4} \dot{z} \quad \xi^{6} c$. $-r \dot{z}+A z \dot{\sim}+B z^{3} \dot{z}+C z^{3} \dot{z}+D z^{4} \dot{z} \xi^{2} c$.
From which, by equating the homologous Terms, we get $A=0, a=2 r B, b=3 r C, b=4 r D, d=5 r E$ 家 c.
Also $a=\mathrm{r}, b=-\frac{A}{2 r}, c=-\frac{B}{2^{r}}, d=-\frac{C}{4 r} \xi^{\circ} c$.

Therefore $2 r B=\mathrm{r}, 3 r G=-\frac{A}{2 r,}, 4^{r} D=-\frac{B^{\prime}}{3 r}$, ${ }^{5} r E=-\frac{C}{4 r}, \mathcal{O}^{\circ}$. and confequently $B=\frac{1}{2 r}, C=0$, $D=-\frac{B}{3 \cdot 4 r^{2}}=-\frac{1}{2 \cdot 3 \cdot 4 r^{r^{2}}}, E=0, F=-$
$\frac{D}{5 \cdot 6 r^{2}}=\frac{1}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot r^{5}} \xi_{c}$.
Whence, aldo $b\left(=3^{r} C\right)=0, c(=4 r D)=-$ $\frac{1}{2.3 r^{2}} \xi_{c}$. E. $_{c}$
Hence it is evident that y ($=a z+b z^{2}+c z^{3} \xi_{c} c$.)
$=z-\frac{z^{3}}{2 \cdot 3^{r^{2}}}+\frac{z^{5}}{2 \cdot 3 \cdot 4 \cdot 5^{r^{5}}}-\frac{z^{7}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7^{r^{7}}}$ $+\xi^{\circ} c$. And that $x\left(=A z+B z^{2}+C z^{3} \xi_{c .}\right)=\frac{z^{2}}{2 r}-$ $\frac{z^{4}}{2 \cdot 3 \cdot 4 r^{3}}+\frac{z^{6}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 r^{5}}-\sigma_{c .} \ddagger$

PROB. III.

426. To find the Value of x, when x^{x} is a Minimum.

The Logarithm of x^{x} is $=x \times l . x$; whole Fluxion $\dot{x} \times l . x+\dot{x}$ being $=0$, we have $l: x=-\mathrm{I}$. But. (by Prob. 1.) the Number whole hyp. Log. is y will be $1+y+\frac{y^{2}}{2}+\frac{y^{3}}{2 \cdot 3}+\frac{y^{4}}{2 \cdot 3 \cdot 4} \xi^{\circ}$ c. Therefore, by writing - 1 inftead of y, we have $x=1-1+$
\ddagger The Subfance of this Solution (being the moft neat and artful I have seen to that ufeful Problem) I bad from a Letter fign'd ——— Needler; rubicb was put into my Hands by a Friend, who received it from the late Dr. Halley, to whore it was uyrote.

K k 3

The Refolution of Problems

$$
\frac{1}{2 \cdot}-\frac{1}{2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}-\frac{1}{2 \cdot 3 \cdot 4 \cdot 5} \varepsilon_{c_{c}}=0,367878
$$

PROB. IV.
427. To divide a given Number (a) Jo that the continual Product of all its Parts may be a Maximum.

It is evident (from Art. 23.) that all the Parts muft be equal: If, therefore, any one of, them be denoted by x, their Number will be $\frac{a}{x}$, and we fhall have $x^{\frac{a}{x}}$ a Maximum: And therefore its Logarithm $\frac{a}{x^{4}} x$ L. . a M Maximum alfo: And its Fluxion $-\frac{a \dot{x}}{x^{2}} \times L \cdot x$. - Art. 22. $-\frac{a \dot{x}}{x^{2}}=0^{*}$: Whence $H-L . x=1$, and confequently
$\dagger_{\text {Art. } 424 .} x=1+1+\frac{1}{2}+\frac{1}{2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4} \delta_{c .}=2.71828$ छoc. Therefore the next inferior, or fuperior, Number to 2,71828 Ec. that will exactly meafure the given Number a, is the required Value of each Part :
Thus, let $a=10$;; then becaufe $\frac{10}{2,71828 \text { छc. }}=4$ nearly, the Number of Parts, in this Cafe, will be 4, and the Value of each $=\frac{10}{4}=2.5$.
PROB. V.
428. To divide a given Angle AOB into two Parts. AOC and BOC, fo that the Product of any given Powers, $\mathrm{AP} \times \mathrm{BQ}^{m}$, of their, Sines AP and BQ may, be a Maximum.

Let $A P$, produced, cut the Radius $O B$ in D, and the Arch $A B$ in F; likewife let $F E$ and $A L$ be perpendicular to OB , and join $\mathrm{O}, \mathrm{F}:$ Putting $\mathrm{AO}=r, \mathrm{AP}=x$ and $\mathrm{BQ}=y$. Then, because $x^{n} y^{m}$ is to be a Maximum, we have $n x^{n-1} \dot{x} \times y^{m}+x^{n} \times m y^{m-1} \dot{y}=0$; and conSequently $n y \dot{x}=-m x \dot{j}$.

Moreover, fence the Fluxion of the Arch AC is $=\frac{r \dot{x}}{\sqrt{r^{2}-x^{2}}}$ and that of $\mathrm{BC}=\frac{r \dot{y}}{\sqrt{r^{2}-y^{2}}}$ (Art. 142i) we alpo have $\frac{r \dot{y}}{\sqrt{r^{2}-y^{2}}}+\frac{r \dot{x}}{\sqrt{r^{2}-x^{2}}}=0$,

or $\frac{\dot{y}}{\sqrt{r^{2}-y^{2}}}=\frac{-\dot{x}}{\sqrt{r^{2}-x^{2}}}$; which multiply'd by the former Equation, soc. gives $\frac{n y .}{\sqrt{r^{2}-y^{2}}}=\frac{m x}{\sqrt{r^{2}-x^{2}}}$ or $n \times \frac{y \sqrt{r^{2}-x^{2}}}{\sqrt{r^{2}-y^{2}}}=m x$: Whence, because, OQ^{\prime} $\left(\sqrt{r^{2}-y^{2}}\right): Q B(y)::$ OP $\left(\sqrt{r^{2}-x^{2}}\right): P D=$ $y \sqrt{r^{2}-x^{2}}$
$\frac{\sqrt{r^{2}-y^{2}}}{\sqrt{r^{2}}}$, we have $n \times \mathrm{PD}(=m x)=m \times \mathrm{AP}$; and therefore PD : AP ::m:n; whence (by Compofition and Divifion) $\mathrm{AD}: \mathrm{DF}:: m+n: m-n$: But (by sim. Triang.) $\mathrm{AD}: \mathrm{DF}:: \mathrm{AL}: \mathrm{EF}$; consequently, $m+n: m-n:: \mathrm{AL}: \mathrm{FE}$; that is, as the Sum of the Indices of the two prapofed Powers is to their Difference, fo the Sine of, the whole given Angle to the Sine of the Difference of its two, required, Parts. This Proportion is given in Words, at length, becaufé it will be found of frequent USe in the Solution of mechanical Problems.

P R O B. VI.

429. To flew that the leaft Triangle that can be deforibed about, and the greateft Parallelogram in, a given Curve ABC, concave to its Axis, will be when the Subtangent FT is equal to the Bafe. BF of the Parallelogrant, or balf the Bafe BT of the Triangli:

It appears from Art. 25. and is demonftrable -by common Geometry, that the greateft Parallelogram that can be infcrib'd in the Triangle BTR (fuppofing the Pofition of TR to remain the fame) will be that whofe Bafe BF is half the Bare BT of the Triangle: Therefore, as a greater Figure cannot poffibly be infcribed in the Curve BAC than in the Triangle BTR circumfrribing it, the greateft Parallelogram that can be infcribed, either in the Triangle or the Curve, muft be That above fpecified.

But now, to make it alfo appear that the Triangle BTR is a Minimum when FT=BF; let Btr be any other circumfcribing Triangle, and let the two Tangents TER and ter interfect each other in P. Then, ER bcing = ET, it is plain that RP is lefs than PT, and Pr (lefs than PR lefs than PT) lefs than $\mathrm{P} t$: Therefore, the Sides PR and Pr of the Triangle RPr being lefs than the Sides, PT and Pt of the Triangle TPt, and the oppofite Angles RPr and TPt equal to each other, it follows that the Triangle PRr is lefs than TPt; and confequently, by adding the Trapezium BTPr to both, it appears that BTR is lefs tharr Btr.

Corollary.

430. Hence the greater infcribed Parallelogram is half the leaf circumfribing Triangle.

In the fame Way it may be proved, that the greater infcribed Cylinder, and the leaft circumfcribing Cone, in, and about, the Solid generated by Revolution of a given Curve, will be when the Sub-tangent is equal to twice the Altitude of the Cylinder, or $\frac{2}{3}$ of the Altitude of the Cone: And that the two Figures will be to each other in the Ratio of 4 to g.

PROB. VII.

431. Three Points A, B, C being given, to find the Pofftion of a fourth Point P, So that, if Lines be drawn from thence to the three former, the Sum of the Products $a \times \mathrm{AP}, b \times \mathrm{BP}$, and $c \times \mathrm{CP}$ (wobere a, b and c denote given Numbers) Shall be a Minimum.

If $C P$ and $B P$ be produced to E and F, it will appear from Art. 35. and 36. that the Sine of BPE muff be to that of APE, as a to b; and the Sine of CPF (BPE) to that of APF, as a to c. Therefore, the Sines of the three Angles BPE, APE, and APF (which Angles, taken all together, make two Right-ones) being in the given Ratio of a, b and c, it follows, that, if a Triangle RST be conftructed, whore Sides RS, ST and RT are in the said Ratio of a, b and c, the Angles T, R and S oppofite thereto, will be refpectively equal
to the fore-mention'd Angles BPE, APE, and APF. From whence, all the Angles at the Point P being given, the Pofition of that Point is given by common Geometry.
But it is obfervable, that, when one of the three given Quantities a, b, c (fuppofe a) is equal to, or greater than, the Sum of the other two, a Triangle cannot then be formed whofe. Sides are proportional to the faid Quantities: In that Cafe the Point P will fall in the Point (A) correfponding to the greateft Quantity (a). For, it is plain that. $b \times \mathrm{AB}$ is lefs than $b \times \mathrm{BP}$, $+\dot{b} \times \mathrm{AP}$; and that $c \times \mathrm{AC}$ is lefs than $c \times C P+c \times A P$; whence, by adding the Lefs to the Lefs, and the Greater to the Greater, it alfo appears that $b \times \mathrm{AB}+c \times \mathrm{AC}$ muft be lefs than. $b \times \mathrm{BP}+c \times \mathrm{CP}+\overline{b+c} \times \mathrm{AP}$ lefs than $b \times \mathrm{BP}+c \times \mathrm{CP}+a \times \mathrm{AP}$; becaufe a (by Hypothefis) is equal.to, or greater than, $b+c$.

P R O B. VIII.

432. To determine in what Latitude a. Right-line perpendicular to the Surface of the Earth, and Another drawn, from the fame Point, to the Center, make the greatef Angle, poffible, with each other; the Ratio of the Axis and the Equatoreal Diameter being Juppofed given.

Let AE reprefent the Equatoreal Diameter, and SP the Axis of the Earth (taken as an oblate Spheroid) alfo let RO and RM reprefent the two Lines fpecified in the Problem, whereof let the latter (perpendicular to ARS) meet $S P$ in M; and let $R B$ be perpendicular to SP.

It is evident, from the Property of the Ellipfis, that $\mathrm{SP}^{2}: \mathrm{AE}^{2}:: \mathrm{BO}: \mathrm{BM}$: And (by Trigonometry) BO : BM :: - Tang. BRO: Tang. BRM; whence, by Equa-
lity, $\mathrm{SP}^{2}: \mathrm{AE}^{2}::$ Tang. BRO : Tang. BRM; therefore, by Compofition and Divifion, $\mathrm{AE}^{2}+\mathrm{SP}^{2}: \mathrm{AE}^{2}$ $-\mathrm{SP}^{2}::$ Tang. BRM + Tang. BRO : Tang. BRMTang. BRO. But, the Sum of the Tangents of any two Angles is to their Difference, as the Sine of the Sum of thofe Angles to the Sine of their Difference *; whence it follows that $\mathrm{AE}^{2}+\mathrm{SP}^{2}: \mathrm{AE}^{2}-\mathrm{SP}^{2}:$: Sine. $\overline{\mathrm{BRM}}+$ $\overline{B R O}$: Sine. $\overline{B K N I-B K O}(O R M)$.

Now, fince the Ratio of the two firft Terms is conftant, or in every Part of the Ellipfis the fame, it is obvious that the Angle ORM, or its Sine, will be the greateft poffible, when its Antecedent (the Sine of $\overparen{B K M+B K O}$) is the greateft poffible, that is when $B R M+B R O=$ R Right-Angle and its Sine \pm Radius. Therefore, in the propofed Circumftance, when ORM is a Maximum, our laft Proportion will become $\mathrm{AE}^{2}+$ $\mathrm{SP}^{2}: \mathrm{AE}^{2}-\mathrm{SP}^{2}:$: Radius : Sine of ORM : And half the Angle, fo found, added 45°, will give (BRM) the Complement of the required Latitude; becaufe BRM +BRO (or 2 BRM-ORM) being $=90^{\circ}$, it is evident that $2 \mathrm{BRM}=90+\mathrm{ORM}$, and confequently BRM: $=45^{\circ}+\frac{1}{2}$ ORM.

> PR O B. IX.
433. Of all the Semi-cubical Parabolas, to determine that, whereof, the Length of the Curve being given, the Area foall be a Maximum.

The general Equation is $a x^{2}=y^{3}:$ - Moreover, the Area is univerfally $=\frac{3 y^{\frac{5}{2}}}{5^{\frac{a^{2}}{2}}}$, and the Length of the Curve $=\frac{\overline{4 a+a y)^{\frac{3}{2}}}}{2 \overline{\frac{1}{2}}}-\frac{8 a}{27}$ (fee Art. 137.). Let the lait. of thefe be put $=c$, and, by ordering the Equation, you will get

[^3]get $y=\frac{a^{\frac{y}{3}} \times \overline{27 c+8 a)^{\frac{2}{3}}}-4 a}{9}$: Whence, $\frac{3 y^{\frac{3}{2}}}{5 a^{\frac{1}{2}}}$ (and confequently $\frac{y}{a^{\frac{3}{5}}}$) being a Maximum, it is evident that $\frac{a^{\frac{2}{3}} \times \overline{27 c+8 a a^{\frac{2}{5}}}-4 a}{a^{\frac{7}{5}}}$, or its Equal $a^{\frac{2}{13}} \times \frac{27 c+8 a a^{\frac{2}{3}}}{}$

- $4 a^{\frac{4}{5}}$ muff likewife be a Maximum: Which, put into Fluxions and reduced, gives $a=c \times \frac{9+3 \sqrt{2 I}}{3^{2}}$: Whence x and y will aldo be found.
PROB. X.

434. To determine the Ratio of the Periphery of any given Ellipfis to that of its circumscribing Circle.
Call the Semi-tranfverfe Axis CB, a; the Semi-conjugate CE, c; any Ordinate Dr, y; and its Diftance

CD from the Center, x : Then (by the Nature of the Curve) y being $=\frac{c}{a} \sqrt{a a-x x}$, we have $\dot{y}=$ $\frac{-c x \dot{x}}{a \sqrt{a a-x x}}$; and consequently $\dot{z}\left(\sqrt{\dot{x}^{2}+\dot{x}^{2}}\right)=$ $\frac{\dot{x} \sqrt{a^{4}-\overline{a^{2}-c^{2}} \times x^{2}}}{a \sqrt{a a-x x}}$: Which by making $d=$
$\frac{a-c c}{a a}$ will be reduced to $\dot{z}=\frac{\dot{x} \sqrt{a a-d x x}}{\sqrt{a a-x x}}=$ $\frac{a \dot{x}}{\sqrt{a a-x x}} \times 1-\frac{d x^{2}}{2 a^{2}}-\frac{d^{2} x^{4}}{2 \cdot 4 a^{4}}-\frac{3 d^{3} x^{6}}{2 \cdot 4 \cdot 6 a^{6}}$ छc. (by throwing the Numerator into a Series) whereof the zubole Fluent, when x becomes $=a$, will be z (ERB)
$=A \times I-\frac{d}{2 \cdot 2}-\frac{3 d^{2}}{2 \cdot 2 \cdot 4 \cdot 4}-\frac{2 \cdot 3 \cdot 5 d^{3}}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6}-$
$\frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 d^{4}}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot 8 \cdot 8}$ Eic. (by Art. 286.) where A denotes the Length of the Arch $\mathrm{G} n \mathrm{~B}$, or $\frac{x}{4}$ of the $\mathrm{Pe}-$ riphery of the circumferibing Circle.

Hence it follows that the Periphery of the Ellipfis is to that of its circumfcribing Circle, as $\mathrm{I}-\frac{d}{2.2}-$ $-\frac{3 d^{2}}{2 \cdot 2 \cdot 4 \cdot 4}-\frac{3 \cdot 3 \cdot \varsigma d^{3}}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6}$ छc. or as 1 $\frac{d}{2 \cdot 2} \times A+\frac{1 \cdot 3^{d}}{4 \cdot 4} \times B+\frac{3 \cdot 5^{d}}{6 \cdot 6} \times C+\frac{5 \cdot 7^{d}}{8 \cdot 8} \times D$ Ec. to Unity: Where A, B, C, D छc. denote the preceding Terms, under their proper Signs.

PR O B. XI.

435. To deternine the Difference between the Lergoth of the Arch of a Semi-byperbola infinitely produced, and its Afymptote.

Call the Semi-tranfverfe Axis (AC) a; the Semiconjugate (or its Equal AE) ; b the Diftance (CF) of any Ordinate from the Center, x; the Ordinate itfelf, y; and the Arch correfponding, z: Then, from the Nature of the Curve we have $y=\frac{b \sqrt{x^{2}-a^{2}}}{a}$; whence

$$
\dot{j}=
$$

$\dot{y}=\frac{b x \dot{x}}{a \sqrt{x^{2}-a^{2}}} ;$ and consequently $\dot{x}\left(=\sqrt{\overline{\dot{x}^{2}+\dot{y}^{2}}}\right)=$ $\frac{\dot{x} \sqrt{\frac{a a x x+b b x x}{a a}-a^{2}}}{\sqrt{x x-a a}}$: Which, making $d^{2}=\frac{a^{2}}{a^{2}+b^{2}}$
$\left(=\frac{\mathrm{CA}^{2}}{\mathrm{CE}^{2}}\right)$ and $u=\frac{a}{x}$ will be transformed to $\dot{z}=$
$-\frac{a u}{d u^{2}} \times \frac{\overline{1-d d u u u^{\frac{1}{2}}}}{\overline{1-\left.u u\right|^{\frac{1}{2}}}}$; whereof the upper Surd, expanded, is $=\mathrm{x}-\frac{d^{2} u^{2}}{2}-\frac{d^{4} u^{4}}{8}$ oi. And therefore $\dot{z}=$ $\frac{a}{d}$ into $\frac{-\dot{u}}{u^{2} \sqrt{1-u u}}+\frac{d^{2} u}{2 \sqrt{1-u u}}+\frac{d^{4} u^{2} \dot{u}}{8 \sqrt{1-u}}+$ $\frac{3 d^{6} u^{4} \dot{u}}{8.6 \sqrt{1-u} u}+\frac{3 \cdot 5 d^{8} u^{6} \dot{u}}{8.6 .8 \sqrt{1-u u}}$ Ec. Now the Fluent of the firft Term hereof, $\frac{a}{d}$ into $\frac{-\dot{u}}{u^{2} \sqrt{1-u u}}$ $\left(=\frac{x \dot{x}}{d \sqrt{x^{2}-a^{2}}}\right)$ is univerfally expreffed by $\frac{\sqrt{x^{2}-a^{2}}}{d}$, or its Equal $\frac{\mathrm{BF} \times \mathrm{CE}}{\mathrm{AE}}$: Which, if BN be parallel to the Afymptote EC , will (because AE :

CE :: $\mathrm{BF}: \mathrm{BN}$) be alfo truly reprefented by $\mathrm{BN}:$ And this Line BN, when x or z becomes infinite, will coincide with the Afymptote. Therefore the Fluent of the remaining Terms is the Difference fought: Which Fluent, when $u=\mathrm{I}$, or $y=0$ (putting A for $\frac{\pi}{4}$ of the Periphery of the Circle whofe Radius is Unity) will be $=a A \times \frac{d}{2}+\frac{d^{3}}{2 \cdot 2 \cdot 4}+\frac{3 \cdot 3^{d^{5}}}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot}+$ $\frac{3 \cdot 3 \cdot 5 \cdot 5^{d^{7}}}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot 8}+\frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7^{d^{9}}}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot 8 \cdot 8 \cdot 10} \varepsilon_{0}$ (by Art.286.) but $=0$ when $u=0$ (or y is infinite). Therefore the Excefs of the Afymptote above the Curve is truly exhibited by the preceding Series.
2.E.I.

If a be taken $=\mathrm{I}$, and $b=0$, then d will become = I: And therefore, the Curve in this Cafe falling into its Axis $A G$, we have $A \cdot \times \frac{1}{2}+\frac{1}{2 \cdot 2 \cdot 4}+$ $\frac{3 \cdot 3}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6}+\frac{3 \cdot 3 \cdot 5 \cdot 5}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot 8} छ_{C .}=C A$, or Unity. Whence it appears that the Sum of the Series $\frac{1}{2}+\frac{1}{2 \cdot 2 \cdot 4}+\frac{3 \cdot 3}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6}$ is the Reciprocal of $\frac{7}{7}$ of the Periphery of the Circle whofe Radius is Unity. And, from the Problem preceding the laft, it will likewife appear, that the Sum of the Series I -
$\frac{1}{2 \cdot 2}-\frac{3}{2 \cdot 2 \cdot 4 \cdot 4}-\frac{3 \cdot 3 \cdot 5 \cdot}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6}$ Er. will be denoted by the fame Quantity; and confequently that thefe two Seriefes are equal to each other. From the Addition and Subtraction of which and their Multiples, various other Seriefes may be produced, whofe Sums are explicable by means of the Periphery of a Circle,

PROB. XII.

436. To determine the Nature of the Curve $\mathrm{CDH}_{\text {, }}$, which will interject any Number of Similar and concentric Elliffes AMB, lamb \&c. at Right-Angles.

Let the Tangent DT, which is a Normal to the Ellipfis AMB, meet the Axis $A B$ in T; and, fuppofing AC, CM, aC, C ${ }_{m}$ ध. to be the principal Semi-diameters of their respective Ellipfes, let the given Ratio of AC^{2} to CM^{2} (or of $a \mathrm{C}^{2}$ to $\mathrm{C}^{2}{ }^{2}{ }^{2}$.) be that of I to $n:$ Putting $\mathrm{CE}=x, \mathrm{ED}=\gamma, \mathrm{D}_{p}\left(\mathrm{E}_{e}\right)=\dot{x}$, and $d p=\dot{j}$.

It is a known Property of the Ellipfis that AC^{2} : $\mathrm{CM}^{2}:: \mathrm{CE}: \mathrm{ET}$; therefore ET $=n x$: Moreover ET $(n x): \mathrm{D}_{p}(\dot{x}):: \mathrm{ED}(y): p d(j)$ by fimilar Triangles) whence $\frac{\dot{x}}{n x}=\frac{\dot{y}}{y}$, or $\frac{\dot{x}}{\dot{x}}=\frac{n \dot{y}}{y}$; whereof the Fluent

- Astor 126 . is $\mathrm{L}: x-\mathrm{L}: a=n \mathrm{~L}: y-n \mathrm{~L}: a$ * (where a denotes any conftant Quantity at Pleafure.) Hence we also have $\mathrm{L}: \frac{x}{a}=n \times \mathrm{L}: \frac{y}{a}=\mathrm{L}: \frac{y^{n}}{a^{n}}$, and conequently $\frac{x}{a}=\frac{y^{n}}{a^{n}}$, or $a^{n-1} x=y^{n}$.

PROB. XIII.

437. To find the Equation of a Curve ERD that will rut any Number of Ellipses, or Hyperbolas, having the fame Center O and Vertex A , at Right-Angles.

Let RT- be a Tangent to any one of the proofed Conic Sections ARF, at the Interfection R, meeting

the Axis AO in T ; and put $\mathrm{AO}=a, \mathrm{OB}=x, \mathrm{BR}=y$; $n r=\dot{x}, \mathrm{R} n=-\dot{y}$: Then (per Conics) BT $=\frac{a^{2}-x^{2}}{x}$, in the Ellipfis, and $=\frac{x^{2}-a^{2}}{x}$, in the Hyperbola : Whence, by reafon of the fimilar Triangles TBR, and $\mathrm{R} r n$, it will be $\frac{a^{2} \operatorname{co} x^{2}}{x}(\mathrm{BT}): y$ (BR) :: $-\dot{y}$ $(\mathrm{R} n): \mp \dot{x}(m)$: Therefore $+y y=\frac{a^{2} \dot{x}-x^{2} \dot{x}}{x}=\frac{a^{2} \dot{x}}{x}$ $-x \bar{x} ;$ and confequently $+\frac{y^{2}}{2}+d^{2}=a^{2} \times \mathrm{L}: \frac{x}{a}-$ $\frac{1}{2} x^{2}$. Where d denotes a conftant Quantity, depending on the given Value of AE.

PROB. XIV.

438. Let two Points n and m move, at the fame tine, from two given Poftions B and C , with equal Celerities, along two Right-lines BA and BC perpendicular to each other: 'Tis propofed to determine the Curve ASC, to which a Right-line joining the faid Points Jrall, always, be a Tangent.

Let DS and ev be parallel to BA, and Srb perpendicular thereto: Putting $\mathrm{BC}=a, \mathrm{CD}=x, \mathrm{SD}=y, \mathrm{~S} r$ $\overline{\text { 구 }} \dot{x}$, and $r v=\dot{y}$. Therefore (by fim. Triangles) $\dot{y}: \dot{x}$ L 1 : 1
$:: y: \frac{j \dot{x}}{\dot{j}}=\mathrm{D}_{m}$, and $\dot{x}: \dot{y}:: a-x(\mathrm{~S} b): \frac{\overline{a-x} \times \dot{y}}{\dot{x}}=$

 $+b n)=y+\frac{\overline{a-x} \times \dot{y}}{\dot{x}}$: Which two laft Values, becaure the Velocities of the Bodies are equal, muft alfo be equal to each other, that is, $x-\frac{y \dot{x}}{\dot{y}}=y+\frac{\overline{a-x} \times \dot{y}}{\dot{x}}$: Hence, by making $\dot{\tilde{x}}$ conftant, and taking the Fluxion of the whole Equation, we get $\dot{x}-\frac{j \dot{x} \dot{y}-y \dot{x} \dot{j}}{\dot{j}^{2}}=\dot{y}$ $\frac{\dot{x} \dot{y}-\overline{a-x} \times \ddot{y}}{\dot{x}} ;$ or $\frac{\overline{a-x} \times \ddot{j}}{\dot{x}}=\frac{y \dot{x} \ddot{y}}{\dot{j}^{2}}$; from which there arifes $\overline{a-x} \times j^{2}=y \dot{x}^{2}$, and $\frac{\dot{y}}{\sqrt{y}}=\frac{\dot{x}}{\sqrt{a-x}}$: Where, the Fluent on both Sides being taken, we have $2 \sqrt{y}$ $=2 \sqrt{a}-2 \sqrt{a-x}$, and confequently $x=2 \sqrt{a y}$ $-y:$ Which Equation pertains to the commion $\mathrm{Pa}-$ rabola.

of various Kinds.

Otberwife more univerfally, thus.

439. Put $\mathrm{C}_{m}=v$ and $\mathrm{B} n=w$, and let the f Quantities (inftead of being equal) have any given Relation to each other. Then, fince the abfolute Celerity of m is exprefled by \dot{r}, its angular Celerity, in a Dirétion perpendicular to Sm , by which the Line Sm tends to revolve about the Point of Contact S as a Center, will
 In the fame manner the angular Celerity of n, about the-Foint-S, will be defined by $\frac{\operatorname{Sin}, B_{n i m}}{\text { Rad. }} \times$ w. Now, as thefe Celerities mult be to each other as the Di ftances $S m$ and $S n$ from the Center S (or directly as the Radii) we have $\mathrm{Sm}: \mathrm{S} n(:: \mathrm{DS}: b n):: \operatorname{Sin} . \operatorname{Bmn} \times$ $\dot{v}: \operatorname{Sin} . \operatorname{Bnm} \times \dot{w}$; whence, becaufe Sin. Bmn:Sin. $B n m:: B n(w): B m(a-v)$ we alfo have DS : $b n::$ $q \times \dot{v}: \bar{a} \bar{v} \times \dot{w}$: Therefore, by Compofition, DS: (DS $+b n$) $w:: \quad w \cdot \dot{v}: w \dot{v}+\overline{a-v} \times \dot{w}$, and confequently DS $=\frac{v^{2} \dot{v}}{\tilde{w} \dot{v}+\bar{a}-v \times i v}$: Whence $b n(w-$
$\mathrm{SD})=\frac{\overline{a-v} \times w \dot{w}}{w \dot{v}+\overline{a-v} \times \dot{w}} ;$ and $\mathrm{BD}\left(=\mathrm{S} b=\frac{b n \times B n}{B n}\right)$
$=\frac{\left.\overline{a-i}\right|^{2} \times \dot{w}}{w \dot{v}+\overline{a-v} \times i v}$: From whence the Curve itfelf will be given.
If v and w be taken equal to each other (as above) then $S D(y)$ will become $=\frac{v^{2}}{a}$, and $\mathrm{BD}=\frac{\widetilde{a}-w^{2}}{a}$ $=a-2 w+\frac{z w^{2}}{a}$; in which laft, if for w its Equal Lil 2
$\sqrt{\text { ap }}$ be fubfituted, we fall have $\mathrm{BD}=a-2 \sqrt{ }$ ar $+y ;$ and consequently $\mathrm{CD}(a-\mathrm{BD})=2 \sqrt{a y}-y$, the very fame as before.

PROB. XV.
440. Supposing a Body T to proceed, uniformly, along a Rigbt-line BC , and another Body S , in purfuit of the Same, always directly towards it, with a Celerity which is to that of T , in any given Ratio, of I to n; it is proposed to find the Equation of the Curve ASD defrribed by the latter.

Let the Tangent $A B$, which makes Right-Angles with BC , be put $=a, B R=x, \mathrm{RS}=y$, and $\mathrm{AS}=z$:

Then the Subtangent RT being $=\frac{y \dot{x}}{-\dot{j}}$, we have BT $=x+\frac{y \dot{x}}{-\dot{y}}:$ Moreover, fince the Diftances BT and AS gone over in the fame Time, are as the Celerities n and I , we alpo have $\mathrm{BT}(=n \times \mathrm{AS})=n z=x+$ $\frac{y \dot{x}}{-\dot{y}}$: Whence, in Fluxions (making \dot{y} constant) $\frac{-y \ddot{x}}{\dot{y}}$ $=n \dot{x} ;$ and confequently $\frac{-n \dot{y}}{y}\left(=\frac{\ddot{x}}{\dot{x}}\right)=\frac{\ddot{x}}{\sqrt{\dot{y}^{2}+\dot{x}^{2}}}$: The

The Fluent of which (by Art. 126.) is $-n \times \log . y$ $=\log \cdot \frac{\dot{x}+\sqrt{\dot{j}^{2}+\dot{x}^{2}}}{\dot{j}}$: But when $y=a, \dot{x}$ is $=0$, and then the Equation becomes $-n \times$ Log. $a=0$; therefore the Fluent, duly corrected, is $n \times \log , a-n$ $x \cdot \log \cdot y=\log \cdot \frac{\dot{x}+\sqrt{\dot{j}^{2}+\dot{x}^{2}}}{\dot{y}}$, or Log. $\frac{a^{n}}{y^{n}}=$ $\log . \frac{\dot{x}+\sqrt{\dot{j}^{2}+\dot{x}^{2}}}{\dot{j}}$. Whence it is evident that $\frac{a^{n}}{y^{n}}$ $=\frac{\dot{x}+\sqrt{\dot{y}^{2}+\dot{x}^{2}}}{\dot{y}}$, and $\frac{a^{n} \dot{y}}{y^{n}}-\dot{x}=\sqrt{\overline{j^{2}}+\dot{x}^{2}}$;
from which, by fquaring both Sides, $2 \dot{x}$ is found $=$ $\frac{a^{n} \dot{j}}{y^{n}}-\frac{y^{n} \dot{y}}{a^{n}}$; whofe Fluent is $2 x=-\frac{a^{n} y^{1-n}}{1-n}+$ $\frac{a^{-n} y^{n+1}}{n+1}$. But when $y=a, x$ is $=0$, and then, $0=-\frac{a}{1-n}+\frac{a}{n+1}=-\frac{2 n a}{1-n n}$; therefore the
Fluent corrected is $2 x=-\frac{a^{n} y^{1-n}}{1-n}+\frac{a^{-n} y^{n \times 1}}{n+1}+$ $\frac{2 n a}{1-n^{2}}$. थ. E. I.

Otherwife (without fecond Fluxions.)

441. Put $\mathrm{ST}=P$ and $\mathrm{RT}=2$. Then fince the abfolute Velocity of the Body S. is denoted by Unity, that with which the Ordinate $S R$ is carry'd towards the Body τ will be denoted by $\frac{2}{P} \times 1$ or $\frac{2}{P}($ by Art. 35.) which fubtracted from n the Velocity of τ, leaves n $\frac{2}{P}$ for the relative Celerity with which τ recedes from

$$
\mathrm{L} 13
$$

R :
$\mathrm{R}:$ After the fame Manner, if from $\frac{Q}{P} \times n$ the Celerity of $\overline{\mathcal{T}}$ in the Direction ST produced; there be taken (r) the Celerity of S in the fame Direction; the Remainder, $\frac{n 2}{P}-1$, will be the Celerity with which T recedes from S : Therefore, the Fluxioris of Quantities being as the Celerities of their Increafe, we have $n-\frac{2}{P}: \frac{n \mathscr{2}}{P}$ $\rightarrow \mathrm{I}:: \dot{Q} \dot{P}$; and confequently $\overline{n-P} \times \dot{Q}=\bar{n}-2 \times \dot{P}$. But, fince the Quantities P and 2 are concerned exactly alike, the Equation thus derived will, in all probability, become more fimple, by fubftituting for their Sum and Difference: Let therefore $P+2=s$, and $P-2=v$, or, which is the fame, let $P=\frac{s+v}{2}$, and $Q=\frac{s-v}{2}$: Then, by Subflitution, we fhall have $\frac{n s-n v-s-v}{2}$ $\times \frac{\dot{i}-\dot{v}}{2}=\frac{n s+n v-s+v}{2} \times \frac{j+\dot{v}}{2}$; which contracted, $\xi^{\circ} \%$ becomes $\overline{1+n} \times v j=\overline{1-n} \times s i$, or $\overline{1+n} \times$ $\frac{j}{s}=\overline{1-n} \times \frac{\dot{v}}{v}$; whofe Fluent (corrected) is $\overline{1+n}$ $\times \log : s=\overline{1-n} \times \log . v+2 n \times \log . a$, or Log. s^{2+n} $=$ Log. $a^{2 n} v^{1-n}$. Whence $s^{1+n}=a^{2 n} v^{1-n}$, and confequently $s^{1+n} \times v^{1+n}=a^{2 n} j^{2}$: But sv($=\overline{S T+R T}$ $\left.\times \overline{\mathrm{ST}-\mathrm{RT}}=\mathrm{RS}^{2}\right)=y^{2}$ therefore $s^{\mathrm{I}+\pi} \times v^{\mathrm{I}+n}=$ $y^{2 n+2}=a^{2 n} v^{2} ;$ and $v=\frac{y^{n+1}}{a^{n}} ;$ whence $s\left(=\frac{y^{2}}{v}\right)$
$=\frac{a^{n}}{y^{n-1}}, \operatorname{ST}\left(\frac{s+v}{2}\right) \frac{a^{n}}{2 y^{n-1}}+\frac{y^{n+1}}{2 a^{n}}, \operatorname{RT}\left(\frac{s-v}{2}\right)$
$=\frac{a^{x}}{2 y^{x-1}}-\frac{y^{x+1}}{2 a^{n}} \cdot \operatorname{But} \operatorname{RS}(y): \operatorname{RT}\left(\frac{a^{x}}{25^{x-x}}-\frac{y^{x+1}}{2 a^{\pi}}\right)$
$:: \dot{y}: \dot{x} ;$ whence $2 \dot{x}=\frac{a^{\pi} \dot{y}}{y^{n}}-\frac{y^{x} \dot{y}}{a^{n-2}}$, and $2 x=-$
$\frac{a^{n} y^{1-n}}{1-n}+\frac{a^{-n} y^{n+1}}{n+1}+\frac{2 n a}{1-n n^{n}}$, the very fame as before.

Coroleary.

442. If the Velocity of S be greater than that of T (or n be less than Unity) the two Bodies will concur when the latter has moved over a Distance expreffed by
$\frac{n a}{1-n^{2}}$; becaufe, when y becomes $=0,2 x$ is barely $=$ $\frac{2 n a}{3-n^{2}}$. But if the Velocity of S be less than that ofT, it is plain that S can never come up with T : But its seareft Approach will be when $y=\frac{\overline{\pi-1}}{n+1} \frac{x}{2 x} \times a:$ For, france ST is univerfally $=\frac{a^{n}}{2 y^{n-1}}+\frac{y^{n+1}}{2 a^{n}}$, let the Fluxion of this Expreffion be taken and put equal to Nothing; and y will be found as above exhibited.
If the Celerities of S and I, inftead of being uniform, vary according to a given Law; then, denoting the former by A and the latter by B; the Equation of the Curve will be $\frac{\bar{x}}{\sqrt{\dot{j}^{2}+\dot{x}^{2}}}=-\frac{B \dot{y}}{A y}$: And if the Fluent of - $\frac{B y}{A y}$ be explicable by a Logarithm, as L. N; then, the Fluent of $\frac{\ddot{x}}{\sqrt{\dot{y}^{2}+\dot{x}^{2}}}$ being $L . \frac{\dot{y}+\sqrt{\dot{j}^{2}+\dot{x}^{2}}}{\dot{y}}$, Art. 126

$$
\mathrm{L} 14
$$

we fhall have $N=\frac{\dot{y}+\sqrt{\dot{j}^{2}+\dot{x}^{2}}}{\dot{y}}$; which, ordered, gives $\dot{x}=\frac{N \dot{y}}{2}-\frac{\dot{y}}{2 N}$: Whence x will be found.
P R O B. XVI.
443. To determine the Frufum CDEF of a Trian-gular-Pri/m, of a given Bafe CF and Altitude BA; which, moving in a Medium, in the Direction of its Length BA, fall be reffifed the leaft poffible.

Draw CH parallel to BA meeting ED, produced, in H: Moreover, let HP, PQ and PR be perperidicular to CD, CH and DH refpectively.

Since the Number of refifting Particles acting upon DC is as DH , and the Force of each as $\left(\frac{D R^{2}}{D P^{2}}\right)$ the Square of the Sine of the Angle of Incidence DPR, the whole Refiftance fuftained by DC will therefore be $\frac{D H \times D R^{2}}{D L^{2}}$, or $D R$, which is equal to it (by the Similarity of the Triangles DHP and DPR) Whence the Refiftance upon ADC is truly exprefied by AR (AD $+D R$) and is a Minimum when its Defect (PQ) below the given Quantity AH (or BC) is a Maximum: But PQ is' a Maximum when CQ and HQ are equal; becaufe, the Angle CPH being Right, a Semi-circle defrribed upon CH will always pafs through the Point P; and it is well known that the greateft Ordinate in a Semi-circle is That which divides the Diameter into two equal Parts.
Hence the Angle DCH, when the Refiftance upon ADC is a Minimum, will be juft the Half of a RightAngle, provided BC be given greater than BA ; otherwife,
wife, the whole Prifm CAF will be lefs refifted than any Fruftum CDEF of a greater Prifm.

PROB. XVII.

444. To determine the Angle RBE which a Plane EBF mu/t make with the. Wind blowing in a given Direction RB, fo that the Plane itfelf may be urged in another given Direftion BA with the greated Force poffible.
It is known, from the Refolution of Forces, that theForce whereby the Plane EF is urged in the given Direction BA,' by a Particle of Air, acting in the Direction RB, is directly as the Rectangle of the Sines of the Angles (ABE, RBE)
 which the two given Directions make with the Plane: Therefore, fince the Number of Particles acting on EF is as the Sine of RBE, it follows that the whole Force, or Effect, of the Wind, in the Direction BA, will be as S. ABE \times Squ.S. RBE; which being a Maximum; we have (by Prob. 5.) $3: 1::$ Sine of the whole given Angle RBA : Sine of RBE-ABE. Whence the Angles RBE and ABE are both given.

Corollary.

445. If the Angle RBA be a Right one' (which is the Cafe with regard to the Sails of a Windmill) then the Sine of $\overline{\mathrm{RBE}-\mathrm{ABE}}$ being $=\frac{1}{3}=, 333 \mathrm{E}^{\circ} \mathrm{c}$. we' fhall have RBE-ABE $=19^{\circ}: 28^{\prime}$; and confequently $\operatorname{RBE}\left(\frac{\mathrm{RBA}+\mathrm{ABE}}{2}\right)=54^{\circ}: 44^{\circ}$.

PROB. XVIII.

446. If two Bodics A and B , joined by a String, be urged in oppofite Diresfions, towards. P. and Q_{2} ly any, given Forces F and f, uniformly continued; it is propofed to find the Tenfion of the String, or the Force whercby the Bodies endeavour to recede from each otber.

Since $E-f$ is the abfolute Force by which the two Bodies are, conftantly, urged towards P, the whole Motion, generated in Both, in any Time T, will therefore be exprefled by $\overline{F-f} \times T$: Whence, becaufe both Bodies (by reafon of the String) acquire the fame VcIocity, the Motion generated in A, alone, will be $\frac{A}{A+B} \times \overline{F-f} \times T$, or that Part of the I Whole defined by $\frac{A}{A+B}$. But the Motion of. A, had it not been retarded by the String (or B) would have been F $\times T$; therefore the Lofs of Motion, by the Action

upon the String, is $F \times T-\frac{A}{A+B} \times \overline{F-f} \times T$, $=\frac{f A+F B}{A+B} \times T:$ Which, divided by the Time T_{2} (wherein that Lofs or Effect is produced) gives $\frac{f A+F B}{A+B}$, for the Tenfion of the Thread, or the Force fufficient to caufe the faid Lofs or Motion.

The fame otherwife.

447. Bećaufe the Force F, was it to act alone, would communicate, by means of the String, the fame $\mathrm{Ve}-$ locity to B as to A, the Part therefore of the Force F employ'd upon B, by which the String is ftretch'd, will be $\frac{B}{A+B} \times F$, or $\frac{B F}{A+B}$: And, from the very fame Argument, if the Force f was to act alone, the Tenfion of the Thread would be $\frac{f A}{A+B}$: Therefore, when both
the Forces act together, the. Tenfion will be $\frac{f A+B F}{A+B}$:
For it is very plain that, their acting both at the fame time, no way influences their refpective Effects on the Thread.
448. E. I.

Corollary.

448: If the Forces F and f be refpectively expounded by the Maffes, or Weights, of the Bodies A and B; the Tenfion of the Thread will then become $\frac{2 A B}{A+B}$. Whence it appears that the Tenfion of a Thread fiding over a Pin or Pulley, by means of two unequal Weights A and B, fufpended at the Ends thereof, is equal to $\frac{2 A B}{A+B}$: The Double whereof, or $\frac{4 A B}{A+B}$, is the Weight which the Pin or Pulley fuftains, while the Bodics are in Motion; becaufe the Thread hangs double, or on both Sides the Pulley.
If feveral Bodies A, B, C, D छrc. communicating by means of a String or Wire AF, be urged towards a Point P , in the Direction of the String or Wire, by any given Forces $p, q, \not ; s$ \& c. refpectively, the Tenfion of the Part $A B$ will be
$=\frac{p \times \overline{B+C+D} \varepsilon_{c}-A \times \overline{q+r+s} \xi^{\circ} c}{A+B+C+D \xi_{c}} ;$
of the Part BC
$=\frac{\overline{p+q} \times \overline{C+D+E} \xi^{\circ} \cdot-\overline{A+B} \times \overline{r+s+t} \varepsilon^{\circ} c .}{A+B+C+D \xi^{c} .} ;$

of $C D$
$=\frac{\overline{p+q+r} \times \overline{D+E+F}-\overline{A+B+C} \times \overline{s+t+v}}{A+B+C+D \xi_{0}} ;$
छ\%c. ヨ\%

All which eafily follows from above; and will anfwer alfo in thofe Cafes where fome of the Forces are fuppofed to act in the contrary Direction, if every fuch Force be confidered as a negative Quantity.

P R O B. XIX.

449. Let it be required to raife a given Weight N , to a given Height BC, along an inclin'd Plane AC, by means of another given Wecigbt M , connecied to the former by a flexible Rope N r M , moving cucr a Pulley at C ; to find the Tenfion of the Rope; aljo the Inclination and Length of the Plane, fo that the Time of the whole Afcent may be the leaft poffitle.

It is well known that the Force by which N tends to defcend along. the Plane AC, or acts in oppofition to M (fuppofing $\mathrm{BC}=a$, and AC $=x)$ will be $\frac{a N}{x}:$
Therefore $M-\frac{a N}{x}$, or $\frac{x M-a N}{x}$ is the efficacious Force, by which the Bodies are accelerated: But it is likewife demonftrable that the Time of defcribing any Line by means of a Velocity uniformly accelerated, is in the fubduplicate Ratio of the Length thereof, directly, and the fubduplicate -A.t. 203. Ratio of the accelerating Force, inverfely *: Whence it follows that the Time of defcribing AC will be reprefented by $\frac{x}{\sqrt{\times M-a N}}$: Whofe Fluxion (or that of its Square) being made equal to Nothing, x will, be found $=\frac{2 a N}{M}$, or $M: 2 N:: a: x$. Hence the Time

Time of the Ascent will be the leaf poffible, when the Sine of the Plane's Inclination is to the Radius, as the Power (M) is to twice the $W_{\text {eight }}^{(} N$) to be railed.

The Tenfion of the Rope will be determined from the lat Problem; (by writing N for $A, \frac{a N}{x}$ for F, M for B, and M for f) and comes out $=\frac{M N}{M+N} \times \frac{a+x}{x}$. 2. $E . I$.
PR O B. XX.
450. Let AC represent a Piece of Timber, moveable about a Center C, making any Angle ACG with the Plane of the Horizon CG; to determine the Position of a Prop. or Supporter OS, of a given Length, which fall fusain it with the greatef Facility, in any given Poizion; and also what Inclination AC will have to the Horizon when the leaf Force that can fuftain it, is greater than the leaf Force in any other Position.
Let R be the Center of Oravity of the Beam AC, and let $\mathrm{R} n, \mathrm{R} m$ and CD be perpendicular to $A C, C G$ and $O S$ refpectively: Putting $\mathrm{SO}=a, \mathrm{CR}$ $=r, \mathrm{C} m=x$, and the Weight of the Beam $=w$.

Then, by the Principles of
 Mechanics, we hall have, firft, as $\mathrm{R} m: \mathrm{R} n$, or as, $r: x:: w:\left(\frac{w v}{r}\right)$ the Force which acting at R, in the Direction $R n$, is fufficient to fuftain the Beam AC; fecondly, as $\mathrm{CO}: \mathrm{CR}(r):: \frac{x w}{r}$ (the Quantity laft found): $\frac{x w}{\mathrm{CO}}$, the Force able to fupport it, at O, in a perpendicular Direction; and, daftly,
laftly, as $\mathrm{CD}: \mathrm{CO}:: \frac{x w}{\mathrm{CO}}: \frac{x w}{\mathrm{CD}}$, the Force, or Weight, actually fuftained by the given Prop SO. Which Force will therefore be the leaft poffible when the Perpendicular CD is the greateft poffible, let the Angle of Inclination GCA be what it will: But of all Triangles, having the farse Bafe (OS) and vertical Angle (SCO) the Ifofeles one is known to have the greateft Perpendicular: Therefore the Triangle CSO will be Iforceles, and the Angles S and O equal to each other, when the Weight fuftain'd by the Prop OS is a Minimum.

But, now, to give a Solution to the latter Part of the Problem, or to find (fuppofing the Angles S and O to be equal) when $\frac{x}{C D} \times w$ is a Maximum, Jet CD produced meet $m R$ in F; and then, becaufe of the fimilar Triangles CDS and $\mathrm{C} m \mathrm{~F}$, we fhall have $\mathrm{CD}: x$ ($\left.\mathrm{C}_{m}\right):: \hat{\mathrm{SD}}\left(\frac{\pi}{2} a\right): m \mathrm{~F}$, or $\frac{x}{\mathrm{CD}}=\frac{m \mathrm{~F}}{\frac{1}{2} a}$; and confequently $\frac{x}{C D} \times w=\frac{m \mathrm{~F}}{\frac{2}{2}} \times s 0$: But, fince CF bifects the Angle $n \mathrm{CR}$, we alfo have, $r+x(\mathrm{CR}+\mathrm{C} m): x$ $(\mathrm{C} m): \sqrt{r^{2}-x^{2}} \cdot(\mathrm{R} m): \mathrm{F} m=\frac{x \sqrt{r^{2}-x^{2}}}{r+x}=$ $x \sqrt{\frac{r-x}{r+x}}$: Whence the Force $\frac{m \mathrm{~F}}{\frac{1}{2} a} \times w$, acting upon the Supporter, is likewife truly expreffed by $\frac{z w x}{\frac{\pi}{2} a} \sqrt{\frac{r-x}{r+x}}$: Whereof the Fluxion being taken and put equal to Nothing धe. we get $x=\frac{r \sqrt{5}-r}{2}$: Therefore CR : $\mathrm{C} m\left(:: 1: \frac{\sqrt{5}-1}{2}\right):$ Radjus: Co Gne of RCG $=51^{\circ}: 50^{\circ}$, the Inclination required.
451. To determine the Poffition of a Beam CD, naveable about one End C as a Center, and fuftained at the other End D by a given Weight Q, appended to a Cord QAD paling over a Pulley at a given Point A.

Let G be the Center of Kravity of the Beam; alpo let DF, GK and CH be perpendicular to the Plane of the Horizon, and CL and AH parallel to the fame: Putting $\mathrm{AH}=a, \mathrm{CH}=b, \mathrm{CD}=c, \mathrm{CG}=d, \mathrm{DL}=x, \mathrm{CL}$ $=y$, and the Weight of the Beam $=w$. Then AF $=a-y, \mathrm{DF}=b+x$, and $\mathrm{AD}\left(\sqrt{\mathrm{AF}^{2}+\mathrm{DF}^{2}}\right)=$ $\sqrt{a^{2}-2 a y+y^{2}+b^{2}+2 b x+x^{2}}$; which (because $y^{2}+$ $x^{2}=c^{2}$) will alto be $=\sqrt{\overline{a^{2}+b^{2}}+c^{2}+2 b x-2 a y}=$ $\sqrt{f^{2}+2 b x-2 a y}$ (by putting $f^{2}=a^{2}+b^{2}+c^{2}$). whore Fluxion, $\frac{b \dot{x}-a \dot{y}}{\sqrt{f^{2}+2 b x-2 a y}}$, multiply'd by 2 is the Momentum of the Weight 2 , fuppofing the Beam to to be in Motion. Moreover, becaufe DC : DL :: CG : GI, we have $\mathrm{GI}=\frac{d x}{c}$; whore Fluxion, $\frac{d \dot{x}}{c}$, multiply'd by w, is the Momentum of the Beam itself in a vertical Direction.

Wherefore making the fe Momenta equal to each other (according to the Principles of Mechanics) we get $\frac{b \dot{x}-a \dot{y}}{\sqrt{f^{2}+2 b x-2 a y}} \times 2=\frac{d \dot{x}}{c} \times w$, and confequently $\overline{b \dot{x}-a j} \times c 2=d w \dot{x} \sqrt{f^{2}+2 b x-2 a y}$: But, fince
$y^{2}+x^{2}=c^{2}$, we have $2 y \dot{y}+2 x \dot{x}=0$, or $-\dot{y}=$ $\frac{x \dot{\dot{x}}}{y}:$ And thercfore (by Subftitution) $\overline{b \dot{x}+\frac{a x \dot{x}}{y}} \times c \mathcal{Q}$ $=d w \dot{x} \sqrt{f^{2}+2 b x-2 a y}$, or $\overline{b y+a x} \times c \mathscr{Q}=d w y \times$ $\sqrt{f^{2}+2 b x-2 a y}:$ From whence, and the foregoing Equation $x^{2}+y^{2}=c^{2}$, both x and y may be determined.

The fame otherwife.

452. It is evident, from Mechanics, that the Force which, acting in the Direction DF, would fuftain the End D, is to the whole Weight w, as CG to CD; and therefore is $=\frac{C D}{C G} \times w:$ It is likewife known that two Forces asting in the different Directions DF and DA, fo as to have the fame Effect in fuftaining DC , or caufing It to move about the Point C , muft be to each other, inverfely, as the Sines of the Angles of Incidence FDC and ADC. Therefore we have S. FDC : S. $A D C:: 2: \frac{C D}{C G} \times w ;$ from which given Ratio of the Sines, the Angles themfelves will be found, by an algebraic Procefs independent of Fluxions.

Corollary.
453. If the Pofition of CD be fuppofed given, and the Tenfion of AD (or the Weight 2) be required: Then, from the foregoing Proportion, we fhall have $2=$ $\frac{S . F D C}{S . A D C} \times \frac{C G}{C D} \times w$. Which will alfo exprefs the Tenfion of AD when the End C is fuftained by a Cord BC inftead of a Pin at C : Whence it follows that the Tenfions of two Cords $A D$ and $B C$, fuftaining a Beam or Rod CD, at its Extremes D and C, are expreffed by $\frac{S . F D C}{S . A D C} \times \frac{C G}{C D} \times w$, and $\frac{S . H C D}{S . B C D} \times \frac{D G}{C D} \times w$; and there-
therefore are to each other as $\frac{\mathrm{CG}}{S . A D C}$ to $\frac{\mathrm{DG}}{S . B C D}$, or as $S . B C D \times C G$ to $S . A D C \times D G$ refpectively; becaufe the Sine of FDC and that of its Supplement HCD are equal to each other.
P R O B. XXII.
454. To determine the Pofition of a Beam DC, fuf. pended at its Extremes by two Cords. AD and BC of given Lengths, from two given Points A and B in the fame borizontal Line AB .

Let G be the Center of Gravity of the Beam, and let DF and CH be perpendicular to AB .

It appears, from the Corol. to the laft Problem, that the Tenfion of $A D$ is to that of $B C$, as $\frac{C G}{5 . A D C}$ to DG $\overline{S B C D}$; whence (by the Refolution of Forces) the Force of AD, in a Direction parallel to the Horizon, is to the Force of $B C$, in the oppofite Direction, as $\frac{C G}{S . A D C} \times \frac{S . A D F}{\text { Rad. }}$ to $\frac{D G}{S . B C D} \times \frac{S . \mathrm{BCH}}{\text { Rad. }}$. Which Forces, that the Beam may remain in Equilibrio, muft M m con-
confequently be equal to each other; and therefore $\frac{S . \mathrm{BCD}}{S . A D C}=\frac{S . \mathrm{BCH}}{S . \mathrm{ADF}} \times \frac{\mathrm{DG}}{\mathrm{CG}}$. But now, to determine the Angles themfelves, from this Equation and the given Lengths of $A B, B C \vartheta^{\circ}$. let $A D$ and $B C$ be produced to meet each other in P, and let $P Q$, perpendicular to AB , be drawn; putting $\mathrm{AB}=a, \mathrm{AD}=b, \mathrm{BC}=c$, $\mathrm{DC}=d, \mathrm{DG}=f, \mathrm{CG}=g, \mathrm{AP}=x$, and $\mathrm{BP}=y$.

Then, becaufe $A B: A P+B P:: A P-B P: A Q-B Q$ $=\frac{A P^{2}-B P^{2}}{A B}$, we have $A Q=\frac{1}{2} A B+\frac{A P^{2}-B P^{2}}{2 A B}$ $=\frac{A B^{2}+A P^{2}-B P^{2}}{2 A B}$; and confequently the $C 0-f$ fine of $A(=$ Sine $A D F)$ to the Radius $\mathrm{I}=\frac{A B^{2}+A P^{2}-B P^{2}}{2 A B \times A P}:$ Whence, from the fame Argument, it is evident that the Co-fine of B ($=$ Sine BCH) will be expreffed by $\frac{A B^{2}+B P^{2}-A P^{2}}{2 A B \times B P}$; and That of $A P B$ by $\frac{A P^{2}+B P^{2}-A B^{2} ;}{2 A P \times B P} ;$

$$
\frac{P D^{2}+P C^{2}-D C^{2}}{2 P D \times P C}
$$

And alfo by $\frac{D^{2}}{2 P D \times P C}$; which two laft Quantities being equal to each other, we have $\mathrm{PD} \times \mathrm{PC} \times$ $\overline{\mathrm{AP}^{2}+\mathrm{BP}^{2}-\mathrm{AB}^{2}}=\mathrm{AP} \times \mathrm{BP} \times \overline{\mathrm{PD}^{2}+\mathrm{PC}^{2}-\mathrm{DC}^{2} \text {; }}$ that is $\overline{x-b} \times \overline{y-c} \times \overline{x^{2}+y^{2}-a^{2}}=x y \times \overline{x-\left.b\right|^{2}+y-z^{2}-d^{2}}$. Moreover, fince PC : PD :: S. ADC (or PDC) : S.BCD $\mathrm{PD} \quad S . \mathrm{BCD} \quad S . \mathrm{BCH}$ (or PCD) we alfo have $\frac{\mathrm{PD}}{\mathrm{PC}}=\frac{S . B C D}{S . A D C}=\frac{S . B C H}{S . A D F} \times$ DG $\overline{\mathrm{CG}}$
(by the firft Equation) ; whence $\mathrm{CG} \times \mathrm{PD} \times$ S. $\mathrm{ADF}=\mathrm{DG} \times \mathrm{PC} \times S . \mathrm{BCH}$; that is $\mathrm{CG} \times \mathrm{PD} \times$ $\frac{A B^{2}+A P^{2}-B P^{2}}{2 A B \times A P}=D G \times P C \times \frac{A B^{2}+B P^{2}-A P^{2}}{2 A B \times B P}$, or
$\mathrm{CG} \times \mathrm{PD} \times \mathrm{BP} \times \overline{\mathrm{AB}^{2}+A \mathrm{AP}^{2}-\mathrm{BP}^{2}}=\mathrm{DG} \times \mathrm{PC} \times \mathrm{AP} \times$ $\overline{\mathrm{AB}}{ }^{2}+\mathrm{BP}^{2}-\mathrm{AP}^{2}$, which, in algebraic Terms, is $g y \times$ $\overline{x-b} \times \overline{a^{2}+x^{2}-y^{2}}=f x \times \overline{y-c} \times \overline{a^{2}+y^{2}-x^{2}}$. From whence and the preceding Equation the Values of x and y will be known.

P R O B. XXIII.

455. Suppofing a Beam CD, moveable about one End C, as a Center, to be Juflained at the other End D by means of a given Weight P, hanging, at a Rope pafing over a Pulley at a given Point A , vertical to C ; it is propofed to find the Curve APK along which the Weight muft afcend, or defsend, So as to be, every where, a juft Counterpoife to the Beam.

From the Center C, with the Radius CD, let a Semi-circle HDR be defcribed, and let DB and PF be perpendicular to the vertical Line AHCR ; alfo Jet $\mathrm{CD}=a, \mathrm{CA}=b, \mathrm{AH}$ $=c, \mathrm{AF}=x, \mathrm{PF}=y$, $\mathrm{HB}=z$, and the Length of the Rope DAP $=m$; likewife let HQ (b) be the given Value of x
(AF) when D coincides with H .
Becaufe the Weight and the Beam are always in Equilibrio, by Hypothefis, their Momenta, and confequently their Velocities, in a vertical Ditection, muft be every where in a conftant Ratio; and therefore the Diftance QF $(b-x)$ afcended by the Weight P, will be, to the Diftance HB defcended by the End of the Beam D likewife in a conftant Ratio: Let this Ratio be that of b to any given Quantity d, that is, let $h-x: z:: b: d$, and we fhall have $d h$ $d_{n}=b z$: Moreover, we have $A D^{2}\left(C D^{2}+A C^{2}-2 A C\right.$ $\times \mathrm{BC})=a^{2}+b^{2}-2 b \times \overline{a-z}=\overline{b-a^{2}+2 b z=c^{2}}+2 b x$ $=c^{2}-2 d h+2 d x$: Whence AP $(m-\mathrm{AD})=m$ (Mm2.
$\sqrt{c c-2 d h+2 d x}$, and therefore, $y^{2}\left(\mathrm{AP}^{2}-\mathrm{AF}^{2}\right)=$ $\left.\overline{m-\sqrt{c c-2 d b+2 d x}}\right|^{2}-x^{2}$. 2. E. I.

After the fame manner a Curve may be found, along which a Weight defcending, fhall be every where in Equilibrio with another Weight afcending thro' the Arch of a given Curve.

PROB. XXIV.

456. To find the Equation of a Curve ABH, along which a given Weight P, fulpended by a String PED pafing over a Puilly E, muft defend, fo that the Tenfion of the String may vary according to any given Law.

Let EC be perpendicular, and CP parallel, to the Plane of the Horizon; alfo let $\mathrm{AE}=a, \mathrm{AC}=x$, $\mathrm{CB}=y, \mathrm{EP}=v$, and let the Tenfion of the String (or the Force acting at the End D) be denoted by any variable, or conftant, Quantity 2.

Therefore, becaufe the Celerity of the Weight P, in a vertical Direction, is to its Celerity, in the Direction EP produced, (or the Celerity of the other End D) as
F) \dot{x} to \dot{v}, it is evident that the W eight itfelf muft be to the tending Force \mathcal{Q}, inverfely in that Ratio, and confequently $P \dot{x}=2^{\dot{v}}$.

Furthermore, becaufe EC $=a+x$ and $\mathrm{BC}^{2}=\mathrm{BE}^{2}-$ EC^{2}, we have $\left.y^{2}=v^{2}-\overline{a+x}\right)^{2}$: From which Equations, when the Relation of P and 2 is given, the Curve itfelf will alfo be known.

Thus, for Example, let the Ratio of P to 2, be conflant, or that of m to n, then $m \dot{x}$ being $=n \dot{v}$, we have (by taking the Fluent) $m x+n a=n v$; whence $v=a+\frac{m x}{n} ;$ and therefore $y^{2}\left(=a^{2}+\frac{2 m a x}{n}+\frac{m^{2} x^{2}}{n^{2}}\right.$
$\left.-a^{2}-2 a x-\dot{x}^{2}\right)=\frac{m-n}{n} \times 2 a x+\frac{m^{2}-n^{2}}{n^{2}} \times x^{3}:$
Which is the Equation of an Hyperbola.
Again, for a fecond Example, let the tending Force
2 be to the Weight P, as DE^{n} to $\mathrm{AC}^{m} \times c^{n-m}$, or as
$\overline{b-v})^{\pi}: x^{m} c^{r-m}$ (fuppofing $b=\mathrm{PED}$ and $c=$ any given Line AF.) Therefore, fince $\mathscr{Q}=\frac{\overline{b-v})^{n}}{c^{n-m} x^{\prime \prime}} \times P$, and $\frac{\overline{b-v}}{}{ }^{n} r^{n-m} \times P_{\dot{v}} \dot{v}(=2 \dot{v})=P_{\dot{x}}$, we have $\left.\overline{b-v}\right)^{n} \times \dot{v}$ $=c^{n-m} x^{m} \dot{x}$, and $\mathrm{fo} \frac{\overline{b-\left.a\right|^{n+1}}-\overline{b-v)^{n+1}}}{n+1}=$ $\frac{\tau^{n-m} x^{m+1}}{m+1}$; whence $\overline{b-i^{n+1}}=\overline{b-a]^{n+1}}-$ $\frac{\overline{n+1} \times c^{n}-m x^{m+1}}{m+1}$, and $v(E P)=b$ -

the Relation of x and y, or the Value of BC , is alfo known.

But if $m=0$, and $n=\mathrm{r}$, (which will be the Cafe when the Force acting at D is equal to that by which a Beam or Rod is made to move about a Center, as in the laft Problem) v will then become, barely, $=b$ -$\left.\overline{b-a)^{2}-2 c x}\right|^{\frac{1}{2}}$, and therefore $\left.y^{2}\left(=v^{2}-\overline{a+x}\right)^{2}\right)$ $=\left.\overline{b-\left.\sqrt{b-a}\right|^{2}-2 c x}\right|^{2}-\left.\overline{a+x}\right|^{2}$: Therefore ABH is, in this Cafe, a Line of the fourth Order.

PROB.

The Refolution of Problems

PROB. XXV.
457. Suppofing a Ray of Light ABCD to be refracted at the Surface of a given Sphere MQND, and afterwards reflected any given Number (n) of Times, within the Sphere; to determine the Difance of the Incident Ray AB from the Axis MN, fo that the Arch MBCDE, intercepted by the given Point M and the emerging Ray at E, may be a Minimum.

Let the Radius
 $\mathrm{OB}=\mathrm{I}$, the Sine of Incidence BR = x, and the Sine of Refraction $\mathrm{OP}=y$, and let the given Ratio of the two laft be that of p to q.

Sinceall the Angles of Incidence and ReflexionBCO OCD, CDO छ\%. are equal, the Arcs BC, CD and DE muft alfo be equal; and confequently $\mathrm{MBCDE}=\mathrm{MB}+\overline{n+1} \times \mathrm{BC}=\mathrm{MB}+\overline{2 n+2} \times \mathrm{BQ}:$ *Art. 22. Whofe Fluxion is to be equal to Nothing *: Now the Fluxion of the Arch MB, whofe Sine is x and †Art. 142. Radius Unity, will be $=\frac{\dot{x}}{\sqrt{1-x^{2}}} \dagger$; and that of the Arch $B Q$, whofe Co-fine (OP) is $y_{2}=\frac{-\dot{y}}{\sqrt{1-y^{2}}}$. Hence we have $\frac{\dot{x}}{\sqrt{1-x^{2}}}-\frac{\overline{2 n+2} \times \dot{y}}{\sqrt{1-y^{2}}}=0$: But fince $x: y:: p: q, y$ is $=\frac{q x}{p}$ and $\dot{y}=\frac{q \dot{x}}{p}$; and fo we have $\frac{\dot{x}}{\sqrt{1-x^{2}}}-\frac{2 n+2 \times q \dot{x}}{\sqrt{p^{2}-q^{2} x^{2}}}=0$; whence (putting
$m=2 n+2) x$ is found $=\frac{1}{q} \sqrt{\frac{m^{2} q^{2}-p^{2}}{m^{2}-1}}$: From which it is obfervable, that, when $m q$ is lefs than p, or $2 n+2$ lefs than $\frac{p}{q}$, the Arch MBCD continually increafes with BM ; and therefore is the leaft poffible, when B coincides with M.
2. E. I.

\therefore PR O B. XXVI.

458. If two Rays of Light PR and Pr , from a given Point P, making an indefinitely fmall Angle with eash other, be reflected at a given Curve Surface ARB; 'tis propofed to determine the Concourfe, or Focus,' Q of the refiected Rays RQ and $r \mathrm{Q}$.

Let. RO, perpendicular to the Curve, be the Radius of a Circle having the fame Curvature with ARB at R ; make PH and QM perpendicular to RO, join Q,O; andput RO $=r, \mathrm{PR}=y, \mathrm{RH}=v$, and $R Q=z$.

Then, becaufe the Angle of Reflection ORQ is equal to the Angle of Incidence ORP, the Triangles RQM and RPH will be fimilar, and therefore $y: v::\{: \mathrm{RM}$ $=\frac{v z}{y}:$ Whence $O Q^{2}\left(\mathrm{RO}^{2}+\mathrm{RQ}^{2}-2 \mathrm{RO} \times \mathrm{RM}\right)$
$=r^{2}+z^{2}-\frac{2 r v z}{y}$.
But, fince this Quantity $O Q^{2}$ continues the fame (by Hypothefis) whether we regard one Ray or the other (ihat is, whether y ftands for PR or P_{r}) its Fluxion muft therefore be equal to Nothing; that M m 4

$$
\text { is, } 2 z \dot{z}-\frac{2 r \dot{u} z+2 r v \dot{z} y-2 r v z \dot{y}}{y^{2}}=0: \text { Whence }
$$

$z=\frac{v y \dot{z}}{\frac{y^{2} \dot{z}}{r}+v \dot{y}-y \dot{v}}: \operatorname{But}(b y$ Art.35.) $\dot{z}=-\dot{y}$; therefore $z=$
$\frac{-v y}{\frac{y^{2} \dot{y} \dot{y}}{r}+v \dot{y}-y \dot{v}}$: Moreover (by Art. 73.) $r=\frac{y \dot{j} \dot{i} \text {; }}{}$;
$-\frac{r}{r}+v y-y v \quad$ therefore
$z=\frac{-\tau \mu \dot{y}}{-y \dot{v}+v \dot{j}-y \dot{v}}=\frac{v \dot{y} \dot{y}}{2 y \dot{u}-v \dot{j}} \quad$ 2.E.I.
Example 1. Let ARB be an Arch of the Logarithmic Spiral: whofe Equation is $a v=$ by \dagger : And then, $\%$ being $=\frac{b \dot{j}}{a}$; we fhall have $z\left(\frac{v y \dot{j}}{2 y \cdot i-v \dot{j}}\right)=y$:
Therefore in this Cafe the Incident and Reflected Rays are equal to each other.

Ex. 2. Let ARB be fuppofed to degenerate into a Right-line: In which Cafe v being conftant, its Fluxion \dot{v} is $=0$; and therefore $z\left(=\frac{v y \dot{y}}{-v \dot{j}}\right)=-y$: Which being negative, indicates that the Rays do not converge after Reflection, but, on the contrary, diverge from a Point on the contrary Side of ARB, at the Diffance y. Which is very eafy to demonftrate by common Geometry:

PROB. XXVII.

459. Let two Rays of Light PR and Pr, from a given Point P, be refracted at a given Curve Surface ARB; to delernine the Focus \mathbf{Q} of the refracied Rays $\mathrm{R} \mathbf{Q}$ and $r \mathbf{Q}$.
Let the Lines RO, RH ξ°. be drawn, and denoted as in the preceding Problem: Moreover, let the Sine of Incidence PRH (to the Radius 1) be reprefented by s, and let it be to the Sine of Refraction ORQ, in the given Ratio of I to n.

of various Kinds.

Then (by Trigonometry) $\mathrm{I}: n \mathrm{n}$ (Sine QRM) :: $z(\mathrm{RQ})$
$: \mathrm{QM}=n s z$; and therefore $\mathrm{RM} \equiv \sqrt{z^{2}-n^{2} s^{2} z^{2}}$

$=z \sqrt{1-n^{2} s^{2}}$. From whence, following the Steps of the preceding Problem, we alpo get $O Q^{2}=r^{2}+z^{2}$ $-2 r z \sqrt{1-n^{2} s^{2}}$; and its Fluxion $2 z \dot{z}-2 r \dot{z} \sqrt{1-n^{2} s^{2}}$ $+\frac{2 r z n^{2} s s}{\sqrt{1-n^{2} s^{2}}}=0 ;$ or $z \dot{z} \sqrt{1-n^{2} s^{2}}-r \dot{z} \times \overline{1-n^{2} s^{2}}$ $+n^{2} r z s s=0$. But (by Art. 35.) $\dot{z}=-n \dot{y}$; therefore $-z j \sqrt{1-n^{2} s^{2}}+r \dot{x} \overline{1-n^{2} s^{2}}+n r z s=0$: Moreover (by Trig.) I (Radius):s (Sine of PRH):: y (PR): $\sqrt{y^{2}-v^{2}}(\mathrm{PH})$ whence we have $s y=$ $\sqrt{y^{2}-v^{2}}, s^{2}=1-\frac{v^{2}}{y^{2}}$ and $s s=\frac{-y^{2} v \dot{v}+v^{2} y \dot{y}}{y^{4}}$
$=\frac{v^{2} \dot{y}-y v \dot{v}}{y^{3}}$; which Values, of s^{2} and $s \cdot s$, being rubftituted in the foregoing Equation, it becomes - $x j$ $\sqrt{1-n^{2}+\frac{n^{2} v^{2}}{y^{2}}}+x \dot{y} \times 1-n^{2}+\frac{n^{2} v^{2}}{y^{2}}+n r z-\mathrm{X}$ $\frac{v^{2} \dot{j}-y v \dot{v}}{y^{3}}=0$, or $-z y^{2} \dot{j} \sqrt{\overline{1-n n} \times y^{2}+n_{2}^{2} v^{2}}+r y \dot{j} \times$ $\overline{1-n n} \times y^{2}+n^{2} v^{2}+n r z \overline{v^{2} y-y v \dot{v}}=0$; or (putting $\left.\overline{\sqrt{1-n^{2}} \times y^{2}+n^{2} v^{2}}=w\right) \frac{-z y^{2} w \dot{y}}{r_{1}}+z v^{2} y \dot{y}+$

The Refolution of Problems

$$
\begin{aligned}
& n z v^{2} j=n y z v \dot{v}=0 \text {. But (by Art. } 73 . \text {) } r=\frac{y^{2}}{\dot{v}^{\prime}} \\
& \text { therefore - zywi }+w w^{3} y \dot{y}+n z v^{2} j-n y z v i=0 \text {, and } \\
& \text { consequently } z=\frac{w^{2} y j}{z u y+n v y} \times \dot{v}-n v^{2} \dot{j} \cdot \quad \text { 2.E.I. }
\end{aligned}
$$

From this Solution, that of the preceding Problem is eafily derived: Also from hence the Cauftic (or the Curve which is the Locus of all the Points $C^{(}$thus found) will likewife be given.

PROB. XXVIII.
460. To find the Time of the Vibration of a Pendulum in the Arch of a Circle.

A st. 342.

Let $A B$ denote the Pendulum in a vertical Pofition; and from any Point D in the given Arch CBH, wherein the Vibrations are perform'd, draw $\mathrm{D} f$ parallel to CH ; and let $\mathrm{AB}=a, \mathrm{BE}=c, \mathrm{~B} f=x$, and $\mathrm{BD}=z$: By the Nature of the Circle we have $\dot{z}=$
$\frac{a \dot{x}}{\sqrt{2 a x-x \dot{x}}} *$: Whence the
Fluxion of the Time, being
† Art. acc. as $\frac{\dot{z}}{\sqrt{E f}} t$, will be defined by $\frac{a \dot{x}}{\sqrt{c-x} \times \sqrt{2 a x-x x}}$
$\left.=\frac{a \dot{x}}{\sqrt{c x-x x} \times \sqrt{2 a-x}}=\frac{\frac{\overline{1}}{\frac{1}{2} a^{\frac{1}{2}} \times \dot{x}}}{\sqrt{c x-x x}} \times \mathrm{I}-\frac{x}{2 a}\right]^{-\frac{1}{2}}$
$=\frac{\frac{\pi}{\frac{1}{2}} a^{\frac{3}{2}} \times \dot{x}}{\sqrt{6 x-x x}} \times \overline{1+\frac{x}{2 \cdot 2 a}+\frac{3 x^{2}}{2 \cdot 4 \cdot 4 a^{2}}+\frac{3 \cdot 5 x^{3}}{2 \cdot 4 \cdot 6 \cdot 8 a^{3}}}$
$+\frac{3 \cdot 5 \cdot 7 x^{4}}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 16 a^{4}}$ Ec. Whereof the Fluent, when

of various Kinds.

when $x=c$; (or $\left.\frac{1}{c x-x^{2}}\right)^{\frac{1}{2}}=0$) is, (by Art. 142. and 286.)
equal to $p \sqrt{\frac{1}{2} a} \times 1+\frac{c}{2 \cdot 2 \cdot 2 a}+\frac{3 \cdot 3 c^{2}}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 2 a a^{3}}$
$+\frac{3 \cdot 3 \cdot 5 \cdot 5 c^{3}}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot 2 \pi 7^{3}}+\frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7 c^{4}}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot 8 \cdot 8 \cdot 2 Q)^{4}}$
E\%c. Which therefore is proportional to the Time of half one Vibration; where p ftands for the Semi-Periphery of the Circle whofe Radius is Unity.

Corollary I.

461. Since the Time of the perpendicular Defcent of a Body through any given Right-line u, computed according to the fame Method, is as the Fluent of $\frac{u}{\sqrt{u}}$ or $2 \sqrt{u}$, it follows that the Time of falling along the Diameter BF ($2 a$), or the Cord CB *, will * Art. 205 . be truly defined by $2^{\sqrt{2 a}}$: Which therefore is to the Time of the Defcent thro' the Arch CDB, as $\frac{4}{p}$ to x $+\frac{c}{2 \cdot 2 \cdot 2 a}+\frac{3 \cdot 3 c^{2}}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 2 a]^{2}}$ Ec. From whence, as the Time of falling thro' the Diameter BF, is abfolutely given, by Art. 202. the true Time of Vibration will alfo be known.

Corollary II.

462. If the Arch in which the Pendulum vibrates be very fmall, the above Proportion will become, nearly, as 4 to p : From which it appears, that the Time of Defcent thro' any very finall Arch CB is to that along the Chord CB, as the Periphery of any Circle is to four times its Diameter.

Corollary III.

463. Hence, we have a Method for determining how far a Body freely defcends in a given Time; by knowing
the Time of Y ibration，of a given Pendulum：For，if BN be affumed for the Space thro＇which a Body would defcend during the Time of one whole Vibration，in the very fmall Arch CBH ；then，the Diftances de－
＊Art．20r．fcended being as the Squares of the＊Times，we have， from the laft Corollary，as $4^{2}: 27^{2}:: \mathrm{BF}(2 a): \mathrm{BN}$ ， or $\mathrm{I}: \frac{1}{2} \dot{f}^{2}: a: B N$ ；that is，as the Square of the Dia－ meter of a Circle is to half the Square of its Periphery， fo is the Length of the Pendulum，to the Diftance a Body will freely defcend，from Reft，in the Tince of one Ofciliation．Thus，for inflance（becaufe it is found from Experiment that a Pendulum 39，2 Inches long vibrates Seconds）it will be as $1: 4,934\left(\right.$（二⿺𠃊 $\left.\frac{1}{2} p^{2}\right):: 39,2$ ： 193 Inches，the Diftance which a heavy Body will fall in the firft Second of Time．

Corollary IV．

464．Moreover，from the foregoing Series，the Time which a Pendulum，vibrating in an exceeding fmat Arch，will lofe when made to vibrate in a greater Arch of the fame Circle may alfo be deduced：

For let T be put to denote the Number of Seconds in 24 Hours（or any other given Time）then the Num－ ber of Vibrations，performed in that Time will be as

テ

fore，in an exceeding fmall Arch（where c may be taken as Nothing）will be exprefied by τ ：And fo the Time （ t ）or Number of Vibrations loft will be T－

$\overline{\frac{c}{8 a}+\frac{5 c^{2}}{256 a^{2}}}$ Ecc．（by dividing by the Denominator．）
Now，if the Number of Degrees defcribed on each Side of the Perpendicular be reprefented by D ，the Arch

of various Kinds.

Arch itfelf, on each Side, will be $=3.14159$ E'c. $^{\circ} \times$ a $x \frac{D}{180}$; which, if the Value of D be not more than about 15 or 20 Degrees, will be nearly equal to its Chord, reprefented by $\sqrt{2 a c}(=\sqrt{B F \times B E}$. $)$ From which Equation we get $\frac{c}{a}=\frac{D^{2}}{6560}$: This Value, fubftituted above, gives $t=\mathcal{T} \times \frac{D^{2}}{8 \times 0500}+\frac{5 D^{4}}{256 \times 650)^{2}} \mathcal{E C c}_{6}$. $=\tau \times \frac{D^{2}}{52480}$ nearly: Which, when τ is interpreted by 86400 Seconds (or one whole Day) becomes $=1 \frac{x}{2} X$ D^{2}, nearly: And fo many are the Seconds which will be loft per Diem in the Arch D. From whence we gather, that if the Pendulum meafures true Time in any fmall Arch, whofe Degrees on each Side the Perpendicularare denoted by Λ, the Number of Seconds loft per Diem in another Arch whofe Degrees are B, will be nearly reprefented by $\frac{3}{2} \times \overline{B^{2}-A^{2}}$: Thus, if a Pendulum meafures true Time, in an Arch of ${ }_{3}$ Degrees, it will lofe $10 \frac{1}{2}$ Seconds a Day in an Arch of 4 Degrees, and $24^{\prime \prime}$ in an Arch of 5 Degrees.

PROB. XXIX.

465. To deternine the Meridional Parts anfwering to any propofed Latitude, according to Wright's Projection, applied to the true Jpheroidal Figure of the Eartb.
Let. DAR be the Axis, $A B$ the Se-mi-equatoreal Diameter, and DBR a Meridian, of the Earth ; alfo let bn be an Ordinate to the Ellipfis D13R ; puttingAD ($=A R$)

$=1, \mathrm{BA}=d, \mathrm{~A} b=x, b n=y, \mathrm{~B} n=z$, and the Meridional Diftance (in Parts of the Semi-Axis AD) $=u$.

Then, by the Nature of the Ellipfis, we have $y=d$ $\sqrt{1-x^{2}} ;$ therefore $\dot{y}=\frac{-d x \dot{x}}{\sqrt{1-x^{2}}} ;$ and confequently $\dot{z}=\sqrt{\dot{x}^{2}+\frac{d^{2} x^{2} \dot{x}^{i}}{1-x \dot{x}}}:$ Which, by putting $b^{2}=d^{2}$ $\rightarrow \mathbf{1}$, will be reduced to $\dot{z}=\frac{\dot{x} \sqrt{1+b^{2} x^{2}}}{\sqrt{1-x^{2}}}$. Whence, by the Nature of the Projection, it will be as bn $\left(d \sqrt{1-x^{2}}\right): \mathrm{AB}(d):: \dot{z}\left(\frac{\dot{x} \sqrt{1+b^{2} x^{2}}}{\sqrt{1-x x}}\right): \dot{u}=$ $\frac{\dot{x} \sqrt{1+b^{2} x^{2}}}{1-x^{2}}$; which is the Fluxion of the Quantity required: But we are now to get the fame thing expreffed in Terms of the Latitude of the Place n: In order thereto, putting the Sine of that Latitude $=s$, we have, by Trigonometry, as $\dot{z}\left(\frac{x \sqrt{1+b^{2} x^{2}}}{\sqrt{1-x^{2}}}\right):-\dot{y}$ $\left(\frac{d x \dot{x}}{\sqrt{1-x^{2}}}\right)::$ Radius (1): s; and confequently $s \sqrt{1+b^{2} x^{2}}=d x$; from which Equation x is found $=$ $\frac{s}{\sqrt{d^{2}-b^{2} \dot{s}^{2}}}$: Whence $\dot{x}=\frac{d^{2} \dot{s}}{\frac{\left.d^{2}-b^{2} s^{2}\right)^{\frac{3}{2}}}{}}$; allo $1-x^{\hat{\imath}}=$ $\frac{d^{2}-b^{2} s^{2}-s^{2}}{d^{2}-b^{2} s^{2}}=\frac{d^{2}-d^{2} s^{2}}{d^{2}-b^{2} s^{2}}$ (becaufe $a^{2}=1+b^{2}$) and, lafty, $\sqrt{1+b^{2} x^{2}}\left(=\frac{d x}{s}\right)=\frac{d}{\sqrt{d^{2}-b^{2} s^{2}}}:$ Which feveral Values being fubftituted in that of \dot{u}, found above, it will become $\left(=\frac{d^{2} s}{d^{2}-b^{2} s^{2} T^{\frac{3}{2}}} \times \frac{d}{\sqrt{d^{2}-b^{2} s^{2}}} \times\right.$ $\left.\frac{d^{2}-b^{2} s^{2}}{d^{2} \times 1-s s}\right)=\frac{d \dot{s}}{d^{2}-b^{2} s^{2} \times 1-s s} ;$ which refolved
of various Kinds.
into two Parts, for the more readily finding the Fluent,
gives $\dot{u}=\frac{d \dot{s}}{1-s^{2}}-\frac{d b^{2} \dot{s}}{d^{2}-b^{2} s^{2}}$: Whereof the Fluent being taken, we have
$u=\left\{\begin{array}{r}2.302585 \text { Ecc. }^{2} \times \frac{1}{2} d \times \log \cdot \frac{1+s}{1-s} \\ -2 \cdot 302585 \text { Ec. }^{2} \times \frac{1}{2} b \times \log \cdot \frac{d+b s}{d-b s}\end{array}\right.$
But, as 3,14159 छ'c. $\times 2 d$ (the Meafure of the whole Periphery of the Earth at the Equator, in Parts of the Semi-Axis AD) is to 21600 (the Meafure of the fame Periphery in Geographical Miles) fo is the forefaid Value of u to
$\left\{\begin{array}{r}3958 \times \log \cdot \frac{1+s}{1-s} \\ -\frac{3958 b}{b} \times \log \cdot \frac{d+b s}{d-b s}\end{array}\right\}$ the correfponding Value
of u, in Geographical Miles, or the Meridional Parts required.

Corollary.

466. If the Earth be confidered as differing but little from a Sphere, d will be nearly $=i$, and confequently $\left(\sqrt{d^{2}-1}\right)$ the Value of b, very fmall: Therefore, in this Cafe, the latter Part of our Fluent $\left(-\frac{3958 b}{d} \times\right.$ Log. $\frac{d+b s}{d-b s}$) will become nearly $=344: b^{2} s$ (becaufe Log. $\left.\frac{d+b_{s}}{d-b_{s}}=\frac{2 b s}{d}\right) \times \frac{1}{2 \cdot 3025 \sigma^{c} \text {. }} *$. But if the Earth be taken as a perfect Sphere, this laft Expreffion will vanifh, and fo the Value of u will become barely $=3958$

[^4]$\times \log \cdot \frac{1+s}{1-s}$. Which Logarithm, it is eafy to prove, expreffes twice the artificial Tangent of half the given Latitude increafed by 45 Degrees (Radius being Unity.) Wherefore, if the Meridional Parts anfwering to any given Latitude, thus found (from a Table of logarithmic Tangents) when the Earth is confidered as a perfect Sphere, be denoted by M, it follows that the Meridional Parts anfwering to the fame Latitude, when the Earth is taken as a Spheroid, will be nearly equal to M $3440 b^{2} s$: Which, becaufe $\mathrm{AD}(1): \mathrm{AB}(\sqrt{1+b b})::$

- Art. 397.230: $23 \mathrm{I}^{*}$, will (by fubftituting the Value of b hence

 arifing) be reduced to $M-30$ s. Whence the following Rule.As Ralius, to the Sine of the given Latitude, fo is 30 to a Fourth-Proportional; which fubtrakted from the Meridional Parts when the Earth is taken as a Sphere (found as above) gives the Meridional Parts anfwering to the fame Latitude, when it is confidered as an oblate Spheroid.

Thus, for Example, let the given Latitude be 50° : Then, firt, for the Meridional, Parts in the Sphere; we muft, according to the foregoing Prefcript, take the Logarithmic Tangent of $25^{\circ}+45^{\circ}$, or $70^{\circ}:$ Which, by the Table, is found $=0,43893$ sjc. This multiply'd by the conftant Multiplicator 7916 ($=2 \times 395^{8}$) produces 3475 for the Meridional Parts in the Sphere : Then by the Rule above; it will be as Radius to the Sine of 50°, fo is 30 to 23 ; which fubtracted from 3475, leaves 3452 for the Meridional Parts anfwering to 50° Latitude, in the Spheroid.

P R O B. XXX.

467. To determine the Paths which Shadows of Objects defcribe, upon the Plane of the Horizon, during the Sun's apparent diurnal Revolution.

Let CSODT be the Plane of the Horizon, and AV the perpendicular Height of the Object: Then, fince the Rays, intercepted by the higheft Point V, would, in the Sun's diurnal Revolution, form a conical Sur-
face VDFEH about that Point as a Vertex'; whofe Axis PV produced paffes thro' the Pole of the World; it is evident that the Path of the Shadow, being the Interfection of the Plane of the Horizon with that Surface; muft be a Conic Section.

Let its two principal Diameters therefore (when an Ellipfis, that is, when the Sun never defcends below the Horizon) be CD and ST; alfo let DPE and CG be perpendicular to VP the Axis of the Cone, and CQ perpendicular to DV : Putting the Sine of (QVC) twice the Sun's Declination VEP $=f$; the Sine of (DCV) his greater Meridional Altitude $=g$, and that of the leffer (CDV) $=b:$ Then (by plane Trig.) $g: 1$ (AV) :: 1 (Radius) : $\mathrm{CV}=\frac{1}{g}$; and b (Sine of CDV $: \frac{1}{g}(\mathrm{CV})$ $:: f\left(\right.$ Sine of DVC) $: \mathrm{DC}=\frac{f}{g b}$: Moreover, I (Radius) $\frac{1}{g}(\mathrm{CV}):: p$ (the Sine of the Comp. Decl. GVC) : GC $=\frac{p}{g}$: And in the very fame Manner it will be found that $\mathrm{DP}=\frac{p}{b}:$ But $\mathrm{GC} \times \mathrm{DP}=\mathrm{OS}^{2}$ (vid. Art. 41.) whence we have $\mathrm{ST}(2 \mathrm{OS})=\frac{2 p}{\sqrt{g b}}$: From which, and the Tranfverfe Axis ($D C=\frac{f}{g h}$) the Curve itfelf is given.

Lemma.
468. In any fpherical Triangle, if Radius be fuppofea Unity, the Product of the Sines of any two of the Sides drawn into the Co-jine of the Angle thry include, added to the Product of their Co-jines, is equal to the Co-jine of the remaining Side.

This is demonftrated by the Writers upon Spherics.

PR O B. XXXI.

469. The Elevation of the Pole and the Declination of the Sun being given, to find at what Time of the Day the Azimuth of the Sun increafes the flowef.

It is evident that the Time fought will be when the Fluxion of the Hour Angle P, bears the greateft Ratio poffible to That of the Azimuth Z .

Now the Fluxion of the Angle P is to that of Z, univerfally, as Rad. $\times S . Z O$: S. PO \times Co- \int. O (by Art. 256. Cafe 2.) Confequently
$\frac{S . \mathrm{PO} \times C o \cdot f . \mathrm{O}}{\text { Rad. } \times \mathrm{S.ZO}}$, or $\frac{\text { Cof. } \mathrm{O}}{S . Z O}$ is a Minimum, in this Cafe, becaufe PO may be confidered as conftant.

Let now the Sine of PO be put $=p$, its $\mathrm{Co}-\mathrm{fine}=d$, the Co-fine of $\mathrm{PZ}=b$, that of $Z \mathrm{O}=x$, and that of $\mathrm{O}=y$; then, the Sine of $Z \mathrm{O}$ being $=\sqrt{1-x^{2}}$, we have (by the Lemma) p $\sqrt{1-x^{2}} \times y+d x=b$; whence $y=\frac{b-d x}{p \sqrt{1-x^{2}}}$ and therefore $\frac{C_{0}-f . O}{S . Z O}\left(=\frac{y}{\sqrt{1-x^{2}}}\right)$ $=\frac{h-d x}{p \times \frac{1}{1-x^{2}}}$: Which put into Fluxions, and re-
duced, gives $x=\frac{b-\sqrt{b^{2}-d^{2}}}{d}$, for the Sine of the Sun's Altitude at the Time required: Whence the Time itfelf is given.

> PR O B. XXXII.
470. To determine the Ratio of the Heat received from the Sun in different Latitudes, during the Time of one whole Day, or any Part thereof.
Let $p=$ the Sine of the Sun's Polar-Diftance P® (fee the laft Fig.)
$d=$ its Co -fine, or the Sine of the Declination.
$b=$ the Sine of the Pole's Elevation.
$c=$ its Co-fine, or the Sine of PZ.
$z=$ the Angle (P) expreffing the Time from Noon.
$x=$ its Sine, and $\sqrt{1-x^{2}}=$ its Co-fine.
Then (by the foregoing Lemma) we fhall have $p c \sqrt{1-x^{2}}+b d=$ Co-fine $Z \vartheta=$ Sine of the Sun's Altitude.

Now, it is known that the Number of Rays faling in any given Particle of Time, upon a given horizontal Plane, is as that Time and the Sine of the Sun's Altitude conjunctly: Therefore the Number of Rays falling in the Time \dot{z}, or $\frac{\ddot{x}}{\sqrt{1-x x}}$ (vid. Art. 142.) will be defined by $p c \dot{x}+b d \dot{z}$: Whofe Fluent $p c x+b d z$ is, therefore, as the Heat required.

Where it may be obferved,
I. That when the Latitude and Declination are of different Kinds, or P © is greater than 90 Degrees, the Value of d is to be confidered as a negative Quantity.
2. That, if the Expreffion for the Heat found above be divided by the Square of the Sun's Diftance from the Earth, the Quotient will exhibit the Ratio of the Heat, allowing for the Excentricity of the Earth's Orbit.

Corollary．I．
471．If the Place propofed be at the Equator，the Heat，received in half one diurnal Revolution，will be barely as p ；becaufe $b=0, c=\mathrm{I}$ ，and $x=\mathrm{I}$ ．

Corollary 11.

472．But if the Place be at the Pole，then the Heat will be as $d \times 3,14159$ ${ }^{\circ} c$ ．fince，in this Cafe，$c=0$ ， $b=r$ ，and $z(=$ Semi－Circle $)=3,14159$ も゚＇．

Lemma．
473．The Number of Particles of Light，ejected by the Sun，upon the Earth，in a given Time，is proportional to the Angle defcribed about his Center in that Time．

For，let S reprefent the Center
 of the Sun，AEB the Orbit of the Earth（or That of any other Planet） and let E and r be two Points there－ in as near as poffible to each other： Since the Triangle ESr may be taken as rectilineal，its Area，if the Angle ESr be fuppofed given， or every where the fame，will be as $\mathrm{SE} \times \mathrm{Sr}$ ，or $\mathrm{SE}^{2}:$ ：And there－ fore the Time of defrribing Er （being always as that Area）is alfo explicable by SE^{2} ： But the Intenfity of the Light，or Heat，at the Diftance of SE is as $\frac{1}{\mathrm{SE}^{2}}$ ：Therefore the Intenfity compounded with the Time（or the whole Number of Particles re－ ceived in that Time）will confequently be as $\frac{\mathbf{I}}{\mathrm{SE}^{2}} \times \mathrm{SE}^{2}$ （二1）：Which being every where the fame，the Propo－ fition is manifeft．

PROB．XXXIII．

474．To determine the Ratio of the Heat received from the Sun at the Equator and either of the Poles，during the Time of one whole Year，or any Part thereff．

If the Sine of the Sun's Declination be denoted by d and its Co-fine by p, the Heat received at the Equator,and thePole, during half one diurnal Revolution of the Sun, will be as p and $d \times 3,14159$ Esc.
 refpectively (by the Corollaries to the preceding Problem).

Let the Sun's Longitude, confidered as variable, be now denoted by z, and its Sine by s; and let f be put for the Sine of the Obliquity of the Ecliptic: Then (per Spherics) we Thall have $d=f s$, and confequently p $\left(=\sqrt{1-d^{2}}\right)=\sqrt{1-f^{2} s^{2}}$: Wherefore; feeing the Ratio of Heat in the two Places, for one Half-Day, is that of $\sqrt{1-f^{2} s^{2}}$ to $f s \times 3,14 \quad \mathcal{E} \%$. let each of thefe Terms be multiplied by $\frac{\dot{s}}{\sqrt{1-s s}}(=\dot{z})$ * exprefling *Art. 142 . the Quantity of Heat falling upon the Earth in the Time of defcribing \dot{z} (fee the foregoing Lemma) then the Products $\frac{\dot{j} \sqrt{1-f^{2} s^{2}}}{\sqrt{1-s^{2}}}$, and $3.14 f \times \frac{j s}{\sqrt{1-s^{2}}}$ will be the Fluxions of the required Heat, anfwering to \dot{z}.

But now to exhibit the Fluents hereof, let ACB be an Ellipfis whofe greater Semi-Axis AO is = Unity, and its Excentricity $\mathrm{FO}=f$; and, fuppofing ADB to be a Circle defcribed about the Ellipfis, let the Arch DH exprefs the Sun's Longitude from the Equinoctial Point ; whofe Sine (OR) being $=s$, its Co-fine RH will be $=$ $\sqrt{1-s s}$.

But, by the Property of the Ellipfis, OD (I) $\mathrm{OC}:\left(\sqrt{\mathrm{I}-f^{2}}\right):: \operatorname{RH}\left(\sqrt{\mathrm{I}-s_{s}}\right): \mathrm{RG}=$ $\sqrt{1-f f} \times \sqrt{1-s s}$: Whofe Fluxion being $=$ Nn 3

The Refolution of Problems

$\frac{v^{\prime} 1-f f \times-s \dot{s}}{\sqrt{1-s s}}$, we have $\sqrt[s^{2}+\frac{\overline{1-f f} \times s^{2} s^{2}}{I-s s}]{1-s}$
$=\frac{\dot{s} \sqrt{1-f^{2} s^{2}}}{\sqrt{i} \cdot \frac{1-s s}{\prime}}=$ the Fluxion of CG. Whence it
appears that the Fluent of $\frac{\dot{s} \sqrt{1-f^{2} s^{2}}}{\sqrt{1-s s}}$ is truly defined by CG ; or $\mathrm{CG} \times \mathrm{AO}^{2}$.

But the Fluent of the other given Fluxion, $3.34 f x$ $\frac{s s}{\sqrt{1-s s}}$, will be $=3,84 f \times \overline{1-\sqrt{1-s s}}=\mathrm{ADB} \times$ $\mathrm{FO} \times \overline{\mathrm{OD}-\mathrm{RH}}$. Therefore the two Fluents, when H and G coincide with A, will be to each other as $\mathrm{CA} \times \mathrm{AO}$ to $\mathrm{ADB} \times \mathrm{FO}$: Whereof the Antecedent, multiplied by 4, will be as the Heat received at the Equator during one whole Year; and the Confequent, multiplied by 2, as the Heat at the Pole in the fame Time (becaufe the Sun thines at the Pole only two Quarters of the Year.) Hence the required Ratio, of the Heat received at the Equator and Pole, in one whole Year, will be That of $\mathrm{CA} \times \mathrm{AO}$ to $\mathrm{DA} \times \mathrm{FO}$; or, in Species, as $:-\frac{f^{2}}{2 \cdot 2}-\frac{2 f^{4}}{2 \cdot 2 \cdot 4 \cdot 4}-\frac{3 \cdot 3 \cdot 5 f^{6}}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6.6}$

- Art. 434 * * ξ^{3}. to f; which, in Numbers, is as 959 to 396 , or as 17 to 7 , nearly.
PROB. XXXIV.

475. To find when that Part of the Equation of Time, arijing fromn the Obliquity of the Ecliptic to the Equinoctial, is a Maximum.

In the right-angled fpherical Triangle $A B C$ let the Angle A be that made by the Ecliptic $A C$, and the Equinoctia! $A B$; then the Problem will be, to find when
when the Difference between the Bafe $A B$ and the Hypothenufe AC is the greateft poffible (the Angle A remaining invariable.) Now (by Art. 254.) we have Co-f. $B C$: Sin. C :: Fluxion of AC

Fluxion of AB: Alfo (per Spherics) Sin. C:Co.f. A :: Rad. : Cof. $\mathrm{BC}=\frac{\operatorname{Coof.}_{\text {. }} \times \text { Rad. }}{\operatorname{Sin} . \mathrm{C}}:$ Whence, by multiplying the two firf Terms of the former Proportion by theie equal Quantities, refpectively, we get this new Proportion, viz. $\overline{C_{0}-f . B C}{ }^{2}: C_{0}-\int$. $A \times$ Radius $::$ 的 is the Fluxion of $A C$ to That of $A B$. But, when $A C$ AB is a Maximum, thefe Fluxions become equal; and confequently $\overline{\left.C_{0}-\int . B C\right]^{2}}=C_{0}-\int_{.} A \times$ Rad. From which Equation $B C$, and from thence $A C$, will be known.

The fame, without Fluxions.

476. It will be (per Spherics) Rad. : Co-f. A :: Tang. $\mathrm{AC}:$ Tang. AB; and therefore by Compofition and Divifion, Rad. + Coof. A : Rad. - Co-f. A :: Tang. $\mathrm{AC}+$ Tang. $\mathrm{AB}:$ Tang. $\mathrm{AC}-$ Tang. $\mathrm{AB}::$ Sin. $\overline{\mathrm{AC}+\mathrm{AB}}: \operatorname{Sin} . \overline{\mathrm{AC}-\mathrm{AB}}$, by the Theorem mentioned in Problem 8th: From which, by following the Steps there laid down, it appears that, Radius + Co-f. A: Radius - Co-f. $\mathrm{A}::$ Radius : Sine of $\overline{\mathrm{AC}-\mathrm{AB}}$, when a Maximum: Whence $\left(\mathrm{AC}+\mathrm{AB}\right.$ being then $\left.=90^{\circ}\right)$ both AC and BC will be given.

Corollary.

477. Since, Radius + Co-f. A : Radius - Co-f. A

-Vid. p. 70. and 71. of my Trigonometry. Nn_{4}, There-

The Refolution of Problems

therefore $\overline{\text { Radius }}^{2}: \overline{\text { Tang. } \frac{1}{2} \mathrm{~A}}{ }^{2}::$ Radius : Sine of $\overline{\mathrm{AC}}-\mathrm{AB}, \mathrm{Or}$, Radius : Tang. $\frac{1}{2} \mathrm{~A}::$ Tang. $\frac{1}{2} \mathrm{~A}:$ the Sine of the greateft Equation: Which, fuppofing the Angle A to be $23^{\circ} 29^{\prime}$, comes out $2^{\circ}: 28^{\prime}: 34^{\prime \prime}$: anfwering, in Time, to 9 Minutes : 54 Seconds.

PR O B. XXXV.

478. To determine when the abfolute Equation of Time, arifing from the Inequality of the Sun's apparent Motion, and the Obliguity of the Ecliptic, conjunctly, is a Maximum.

Let ABPD be the Ellipfis in which the Earth revolves about the Sun in the Focus S; let F be the other Focus, and T the Place of the Earth in its Orbit at the Time required. Morcover, about S, as a Center, let a Circle GEKI be defcribed, whofe Diameter GK is a Mean Proportional between the two Axes AP and BD of the Ellipfis; fo that the Area thereof may be equal to That of the Ellipfis: And, fuppofing $S m$ to be indefinitely mear to ST , let $\mathrm{ES} n$ be a Sector of the faid Circle, equal to the Area TSm.

Then, the Time in which the Earth moves through the Arch T'm being to the Time of one intire Revolution, as the Area TSm, or ESn, is to the whole Ellipfis, or the equal Circle GEKF ; and thele Areas ESn, and GEKI being in the Ratio of the Arch En to the whole Periphery GEKI; it is evident that En ,
or the Angle ES n, will exprefs the Increafe of the Mean Longitude, in the forefaid Time of defcribing the Arch Tm: And that this Angle or Increafe, by reafon of the Equality of the Areas ESn and TSm, will be to the Angle TSm, expreffing the correfponding Increafe of the True Longitude, as ST^{2} to SE^{2}. Therefore, if the former be denoted by M, the latter will be reprefented by $\frac{\mathrm{SE}^{2}}{\mathrm{ST}^{2}}$ $\times M$. But now to get a proper Expreffion for the Value of this Increafe of the True Longitude, in Algebraic Terms ; let FT be drawn, and alfo TH, perpendicular to AP : Putting $\mathrm{AC}(=\mathrm{CP})=a, \mathrm{CB}=b$, $\mathrm{CS}(=\mathrm{CF})=c, \mathrm{ST}=z$, and the Co-fine of (TSP) the Earth's Diftance from its Peribelion (to the Radius I) $=x$: Then FT being $(=\mathrm{AP}-\mathrm{ST})=2 a-z$ (by the Property of the Ellipfis) and $\mathrm{SH}=x z$ (by Trig.) we have $\overline{F T+S T} \times \overline{F T-S T}(2 a \times \overline{2 a-2 z}=F S$ $\times 2 \mathrm{CH}(2 c \times 2 \times \overline{c+x z})$ by a known Property of Triangles: From which Equation $z(S T)$ is found $=$ $\frac{a^{2}-c^{2}}{a+c x}=\frac{b^{2}}{a+c x}:$ And this Value, with that of ES ${ }^{2}$ $(=a b)$ being fubftituted in the Increafe of the True Longitude, found above, we thence get $\frac{a \times \overline{a+c x})^{2}}{b^{3}} \times M$ for the Meafure of that Increafe; where M denotes the Increment of the Mean Motion correfponding.

This being obtained, let $\approx \sim$ vs (in the annexed Figure) reprefent the Southern Semi-Circle of the Ecliptic, P the Place of the Perihelion, vs the Tropic of Capricorn, © the apparent Place of the Sun in the Ecliptic, and Q © his Declination, at the Time $^{\circ}$ required: Then it appears, (from Art. 475.) that the Increafe of the True Longitude $\bumpeq \odot$, in an indefinitely fmall Particle of Time, will be to That of the RightAfcenfion $\approx Q$, in the fame Time, as the Square of the Co-fine of Q^{\ominus} is to a Rectangle under the Radius and the Co-fine of the Angle \bumpeq : Therefore, the former,

The Refolution of Problems

being exprefled by $\frac{a \times \overline{a+c x})^{2}}{b^{3}} \times M$, the latter is truly
reprefented by $\frac{a \times\left.\overline{a+c x}\right|^{\circ}}{b^{3}} \times M \times \frac{\text { Rad. } \times \text { Cof. } \approx}{\overline{\left.C a-\int .(0)\right]^{2}}}$ Which, in the required Circumftance, when the propofed Equation (or the Difference between the Sun's

Mean Motion and Right Afcenfon) is a Maximum, muft confequently be equal to (M) the correfponding Increafe of Mean Motion; and therefore $\frac{a \times \overline{a+c \times\left.\right|^{2}}}{b^{3}}$
$=\frac{\left.\overline{C_{0}-f .} \overline{R_{0} Q}\right)^{2}}{\operatorname{Rad} . \times C_{0-f} \approx}$.
But, to obtain the Value of the latter Part of this Equation, alfo, in Algebraic Terms, let the Sine and Co-fine of (vp P) the Diffance of the Peribelion from $v p$, be denoted by m and n refpectively; then, the Co-fine of $P \odot$ being (as above) expreffed by x, and its Sine by $\sqrt{1-x x}$, we fhall thence get $n x+$ ${ }_{m} \sqrt{1-x x}=$ Co-fine of $\odot v=$ Sine of \approx © (by the Elem. of Trig.) But (putting the Sine of the Angle $\approx=p$ and its Co-fine $=q$) we have (per Spherics) Radius (I) : Sine $\because \odot(n x+m \sqrt{1-x x}:: p: p n x+$ $p m \sqrt{1-x x}=$ Sine of $Q \subset$; from whence $\overline{C o-f . Q(O)^{2}}$ $=1-p n x+p m \sqrt{1-x x^{2}}$: Which Value, with That of the Co-fine of the Angle \approx, being fubftituted above, we, at length, get $\frac{a \times \overline{a+c x)^{2}}}{b^{3}}=$
$\left.\frac{1-\overline{p n x}+p m \sqrt{1-x x}}{q}\right]^{2}$; from which Equation the
V alue of x may be determined.
The foregoing Equation, it may be obferved, gives the Time of the Maximum which precedes the Winter Solftice; but if the Maximum following that Solftice be fought; it is but changing the Sign of m, and then you will have $\frac{\left.a x^{a+c x}\right|^{2}}{b^{3}}=\frac{1-\overline{p n x-p m \sqrt{1-x x}})^{2}}{q}$, anfwering in this Cafe. And from the negative Roots of this, and the preceding, Equation, the Times of the other Maxima after, and before, the Summer Solftice will alfo be obtained.

Corollary.

479. It is evident that the Equation of the Earth's Orbit (or that Part of the Equation of Time arifing from the Inequality of the Sun's apparent Motion) will be a Maximum, when the Center of the Earth is in the Interfection I of the Ellipfis and the Circle; where the Mean Motion and True Longitude increafe with the fame Celerity.

> P R O B. XXXVI.
480. To determine the Law of the Denfity of a Medium and the Curve defcribed therein, by Means of an uniform Gravity, fo that the Projectile may, every where, move with the fame Velocity.

It appears, from Art. 367 . that $\sqrt{\frac{\dot{y} \dot{x}}{\ddot{x}}}$ is a general Expreffion for the Celerity in the Direction of the Ordinate $P B R$; whence $\frac{\dot{z}}{\dot{j}} \times \sqrt{\frac{\dot{j y}}{\ddot{x}}}$, or its Equal, $\frac{\dot{z}}{\sqrt{\ddot{x}}}$, muft be the true Meafure of the abfolute Ce lerity,

Jerity, in the Direction BN : Which being a conftant Quantity (by Hypothefis) its Square muft alfo be con-

ftant; and fo, we have $\frac{\dot{z} \dot{z}}{\ddot{x}}=a$, and confequently $\dot{x} \dot{x}$ $+\dot{y} \dot{y}(=\dot{z} \dot{z})=a \ddot{x}$.

But, in order to the Solution of the Equation thus given, make $u: 1:: \dot{x}: \dot{y}$, or $\dot{x}=u \dot{y}$; then $\ddot{x}=\dot{u} \dot{y}$, and, by Subftitution, $u^{2} \dot{y}^{2}+\dot{j}^{2}=a \dot{u} \dot{y}$: Hence, \dot{j} being $=$ $\frac{a \dot{u}}{u u+1}$, and $\dot{x}=\frac{a u \dot{u}}{u u+1}$, we get $y=a \times$ Arch, whore

- Art. 142. Tangent is u^{*} (and Secant $\sqrt{1+u u}$); and $x=\frac{x}{2} a x$ \dagger Ar. г26. Hyp. Log. $\overline{1+u u}=a \times$ Hyp. Log. $\sqrt{1+u u} \dagger$. Therefore, as the Hyp. Log. of $\sqrt{1+u u}$ is $=\frac{x}{a}$, the Common Logarithm of $\sqrt{1+u u}$ will be $=$ $\frac{0,43+2944 \xi^{\circ} c \times x}{a}$; and confequently $y=a \times$ Arch, whofe Radius is Unity, and Log. Secant $\frac{\overline{0.4342944 \xi^{\circ} c .} \times x}{a}$. Moreover, with refpect to the Denfity of the Medium; if the abfolute Force of Gravity, in the Direction $\begin{array}{r}\mathrm{QB}, \\ \text { be }\end{array}$
be denoted by Unity, its Efficacy in the Direction BN, whereby the Body is accelerated, will be exprefled by
$\frac{\dot{x}}{\dot{\dot{z}}}$, or its Equal $\frac{u}{\sqrt{1+u u}}$: Which, as the Velocity is fuppofed to remain every where the fame, muft alfo exprefs the Force of the Refiftance, in the oppofite Direction, or the true Meafure of the required Denfity. This, therefore, if M be put for the abfolute Number whofe Hyperbolical Logarithm is Unity, may be had in
Terms of x, and will be $x-\left.\overline{M^{\frac{-2 x}{a}}}\right|^{\frac{1}{2}}:$ Becaufe Hyp. Log. $\bar{M}^{\frac{x}{a}}\left(=\frac{x}{a}\right)$ being $=$ Hyp. Log. $\sqrt{1+u u \text {, }}$ we have $\sqrt{1+u u}=\overline{M^{a}}$; whence $\left.u=\frac{M^{\frac{2}{a}}}{\frac{2 x}{1}}\right]^{\frac{x}{2}}$, and confequently $\left.\frac{u}{\sqrt{1+u u}}=1-\bar{M}^{\frac{-2 x}{a}}\right)^{\frac{1}{2}} \cdot 2$. E. I.

P R O B. XXXVII.

481. Let a Line, or an inflexible Rod OP (confidered without regard to Thicknefs) be fuppofed to revolve about one of its Extremes O, as a Center, with a Motion regulated according to any given Law; whilf a Ring, or Ball, carried about with it, and tending to the Center O with any given Force, is fuffered to move or Side freely along the faid Line or Rod: It is propofed to determine the Velocity of the Ring, and its Prefure upon the Rod, in any propofed Pofition, together with the Nature of the Curve ADL defcribed by mcans of that compound Motion.

Le ODP be any Pofition of the revolving Line, and D the correfponding Pofition of the Body: Moreover, fuppofing ACK to be the Circumference of a Circle

Circle defcribed from the Center O, through the given Point A, let the Meafure of the angular Celerity of that Line, in the faid Circumference ACK, be repre-

fented by u; alfo let v denote the Celerity of the Ring at D in the Direction DP; and w the true Meafure of the centripetal Force: Call OA, $a ; \mathrm{OD}, x$; and AC, z; and let the given Values of u and v, at A, be denoted by b and c refpectively. Then it will be, as a : $x:: u:\left(\frac{u x}{a}\right)$ the paracentric Velocity of the Body, at D ; whofe Squarc, divided by the Diftance OD , gives - Art. $=\frac{1 \mathrm{r}}{} \cdot \frac{u^{2} x}{a^{2}}$, for the true Meafure of the Centrifugal Force * arifing from the Revolution of the Rod: From which the centripetal Force w being deducted, the Remainder, $\frac{x u^{2}}{a^{2}}-w$, is the true Force whereby the Velocity in the Line OP is accelerated. Therefore (by Art. 218.) we have $\varepsilon \cdot \dot{v}=\frac{\overline{x u^{2}}-w}{a^{2}} \times \dot{x}=\frac{u^{2} x \dot{x}}{a^{2}}-v \dot{x}$.

Moreover, becaufe the Fluxion of the Time is expreffed either by $\frac{\dot{x}}{v}$ or by $\frac{\dot{z}}{u}$, thefe two Values muft, therefore,
therefore, be equal to each other, and confequently $v=\frac{u \dot{x}}{\dot{z}}:$ From which, and the preceding Equation (when u and v are exhibited in Terms of x or z) the required Relation of v, x and z will alfo become knownBut now, in order to determine the Action of the Rod upon the Ring; let OdP be indefinitely near to ODP, interfecting ADL and ACK in d and c; and put $\mathrm{O} d=$
$x+\dot{x}$. Then, becaufe a Body, acted on by no other Force befides That tending to the Center, about which it revolves, defcribes Areas proportional to the Times *, * Art 224 and the angular Celerity of a Ray revolving with the Body, is, in that Cafe, as the Square of the Diftance of the Body from the Center, inverfely (vid. Art. 478.) it follows, that, if the Rod was to ceafe to act upon the Ring, at the Pofition ODP, the angular Celerity at c, would then be $\frac{x^{2}}{x+\frac{x^{\prime}}{2}} \times u$, inftead of $u+\frac{1}{u}$. Therefore the Excels of $u+\frac{1}{u}$ above $\frac{x^{2}}{x+\left.\frac{1}{x}\right|^{2}} \times u$, which is $=u^{\prime}+\frac{2 u x}{x}-\frac{3^{\prime} x^{2}}{x^{2}}$ E\%c. is the Increafe of the faid angular Celerity, at the Diftance OC, arifing from the Action of the Rod. Therefore it will be, as OC (a): OD $(x)::$ the faid Increafe to $\left(\frac{x u}{a}+\frac{2 u x^{\prime}}{a}-\frac{3 u x^{2}}{a x} \xi^{\prime} c\right.$. $)$ the Alteration of the Ring's paracentric Velocity, arifing from the fame Caufe. Which, divided by $\left(\frac{1}{x}\right)$ the Time wherein $I t$ is produced, gives $\frac{x v u}{a_{x}^{\prime}}+\frac{2 u v}{a}-$

The Refolution of Problems

$\frac{3 u v x}{a x} v_{0}$. for the Meafure of the Force, by which It is produced. From whence, by fubflituting $\frac{i}{x}$ in the

Room of $\frac{u}{x}$, and neglecting all the Terms after the two *Art. 134 - firft (in order to have the limiting Ratio *) we get $\frac{x v \dot{u}}{a \dot{x}}+\frac{2 u v}{a}$. Therefore it will be, as $\frac{x v \dot{u}}{a \dot{x}}+\frac{2 u v}{a}$ to \dagger Art. $211 . \frac{b b}{a} \dagger$, or as $\frac{x v \dot{u}}{b b \dot{x}}+\frac{2 u v}{b b}$ to Unity, fo is the Action of the Rod upon the Ring, to the (given) Centrifugal Force at A (or the Force that would retain a Body in the Circle ACK, with the Velocity b.) 2. E. I.

Corollary I.

482. If the angular Motion be uniform, the Equations found above, will become $v \dot{v}=\frac{b^{2} x \dot{x}}{a^{2}}-w \dot{x}$, and $v=$ $\frac{b \dot{x}}{\dot{z}}$. From the latter of which, by taking the Fluxion, we have $\dot{i}=\frac{b \ddot{x}}{\dot{\tilde{z}}}$; whence (by Subftitution) $\frac{b^{2} \dot{x} \ddot{x}}{\dot{z} \dot{z}}=$ $\frac{b^{2} x \dot{x}}{a a}-w \dot{x}$, and confequently $\ddot{x}-\frac{x \dot{z}^{2}}{a^{2}}=-\frac{w \dot{z}^{2}}{b^{2}}$; from the Solution of which, the Relation of x and z will be given. And then, the Value of $v\left(\frac{b \dot{x}}{\dot{z}}\right)$ being alfo known, the Action upon the Rod, which in this Cafe is barely $=\frac{2 b v}{a} \cdot\left(=\frac{2 b^{2} \dot{x}}{a \dot{z}}\right)$ will be given likewife, being

of various Kinds.

being to $\left(\frac{b b}{a}\right)$ the centrifugal Force in the Circle $A C K$, as $\frac{2 \dot{x}}{\dot{z}}$ to Unity.

Corollary II.

483. But if the Angular Celerity be proportional to any Power (x^{m}) of the Diftance, and the Centripetal Force w be, also, fuppofed to vary according to fome Power $\left(x^{n}\right)$ of the fame Diftance: Then, putting p to denote the Centripetal, and \dot{q} the Centrifugal, Force, at the given Point A , the Value of w will, here, be expounded by $\frac{x^{n}}{a^{n}} \times \dot{p}$, and That of u by $\frac{x^{m}}{a^{m}} \times b$: And therefore, the paracentric Velocity of the Ring at D being $=$ $\frac{x^{m}}{a^{m}} \times b \times \frac{x}{a}\left(=\frac{b x^{m+1}}{a^{m+1}}\right)$ it will be as $\frac{b b}{a}: \frac{b^{2} x^{2 m+2}}{x a^{2 m+2}}$:: $q: \frac{x^{2 m+1}}{a^{2 m+1}} \times q$, the Centrifugal Force at D *. Hence *Art. 211. $v \dot{v}=\frac{q x^{2 m+1} \dot{x}}{a^{2 m+1}}-\frac{p x^{n} \dot{x}}{a^{n}}$; whereof the (corrected) Fluent is $\frac{r}{2} v v-\frac{x}{2} c c=\frac{q x^{2 m+2}}{2 m+2} \times a^{2 m+1}-\frac{p x^{n+1}}{n+1 \times a^{n}}-\frac{q a^{i}}{2 m+2}$ $+\frac{p a}{n+1}$: From whence v is found $=$

$$
c-\frac{q a}{m+1}+\frac{2 p a}{n+1}+\frac{q x^{2 m+2}}{m+1 \cdot a^{2 m+1}}-\frac{2 p x^{n+1}}{n+1 \cdot a^{k}}
$$

and $\dot{\dot{z}}\left(=\frac{u \dot{x}}{v}=\frac{b \dot{x}^{m} \dot{x}}{a^{m} v}\right)=$

$$
b x^{m} \dot{x}
$$

$a^{m} \sqrt{c-\frac{q a}{m+1}+\frac{2 p a}{n+1}+\frac{q x^{2 m+2}}{m+1} \cdot a^{2 m+1}-\frac{2 p \cdot x^{n}+1}{n+1} \cdot a^{n}}$

Moreover, by fubftituting for u, and its Fluxion, we get $\frac{x v \dot{u}}{a \dot{x}}+\frac{2 u v}{a}=\overline{m+2} \times \frac{b x^{m} v}{a^{m+1}}$, expreffing the Action of the Rod upon the Ring: Which, therefore, when m is expounded by -2, will intirely vanifh : And, in that Cafe, \dot{z} will become $=$

$$
a^{2} b \dot{x}
$$

$$
x \sqrt{c c+q a+\frac{2 p a}{n+1} \times x^{2}-q a^{3}-\frac{2 p x^{n+3}}{n+1} \cdot a^{n}}
$$

expreffing the Nature of the Trajectory defcribed by means of a Centripetal Force, varying according to any Power $\left(x^{n}\right)$ of the Diftance. But this Equation will be rendered fomewhat mote commodious, by fubftituting the Values of b and c : For, if OQ (perpendicular to the Tangent at A) be denoted by b, it will be, b : $\sqrt{a^{2}-b^{2}}(A Q):: b$ (the Celerity in the Direction AC)
Art. 3.5. to $c=\frac{b \sqrt{a^{2}-b^{2}}}{b}=$ the Celerity in the Direction AH". \dagger Art.2ır. Therefore, b being $=\sqrt{a q} \dagger$, we have $c^{2}=\frac{a^{3} q}{b b}-a q$;

$$
\text { and } \dot{z}=\frac{a^{2} \dot{x}}{x \sqrt{\frac{a a}{b b}+\frac{2 p}{n+1} \cdot q} \times x^{2}-a^{2}-\frac{2 p x^{n+3}}{\overline{n+1} \cdot q a^{n+1}}}:
$$

Which Equation is the fame, in effect, with that given in Art: 242. by a different Method.

Corollary III.

484. If the Angular Celerity be fuppofed uniform, and the Ring to have no other Motion along the Rod than what it acquires from its Centrifugal Force; then c, m and p being all of them equal to Nothing, \dot{z} will here be-

$$
\text { come, barely }=\frac{b \dot{x}}{\sqrt{-q a+\frac{q x^{2}}{a}}}=\frac{a \dot{x}}{\sqrt{x^{2}-a^{2}}}: \text { And }
$$

therefore $z=a \times$ Hyp. Log. $\frac{x+\sqrt{x x-a a}}{a} \cdot$ Hence
if the Number whole Hyp. Log. is $\frac{z}{a}$ be denoted by N, we fall have $\frac{x+\sqrt{x x-a a}}{a}=N:$ From which x is found $=a \times \frac{\bar{N}+\frac{I}{2 N}}{2}$; whence \dot{x} is, aldo, had $=$ $\frac{a \dot{N}}{2}-\frac{a \dot{N}}{2 N^{2}}=\frac{N \dot{z}}{2}-\frac{\dot{z}}{2 N}$ (because $\frac{\dot{N}}{N}=\frac{\dot{z}}{a}$). Therefore, it will be (by Corol. 1.) as Unity is to $\frac{N}{2}-\frac{1}{2 N^{\prime}}$. fo is the Angular Velocity (b) in the Arch ACK to the Velocity with which the Body recedes from the Center of Motion: And fo, likewife, is the Centrifugal Force in that Arch to half the Preflure upon the Rod-By taking $z=$ the whole Periphery, or $\frac{z}{a}=2 \times \overline{3 \cdot 145}$ δ° c. N will come out $=535.5{ }^{\circ}$ and $x=267.7 \times a$: From whence it appears that the Diftance of the Ring from the Center at the End of one intire Revolution will be almoft 268 times as great as at firft.

Corollary IV.

485. If a Body be fuppored to defend from the Point O, (See the next Fig.) by the Force of its own Gravity, along an inclin'd Plane OCP; whilft the Plane itfelfmoves uniformly about that Point, fromanhorizontal Pofition OEH; then the Place, and the Preflure of the Body upon the Plane, in any given Pofition OCP, may, alfo, be derived from the Equations in Corollary I. For let CB (perpendicular to OH) be put $=y$; and let the Ratio of the Centrifugal Force in the Circle ECK, to the Force of Gravity (given in Art. 21.7) be as r to Unity: Then, as the Meafure of the former Force is expreffed by $\frac{b b}{a}$,

That

That of the latter muff be reprefented by $\frac{b b}{r a}$; ana, confequently, its Efficacy in the Direction PO, by $\frac{b b y}{r a a}\left(=\frac{b b}{r a} \times \frac{\mathrm{CB}}{\mathrm{OC}}\right):$ Which Value being fubftituted for $-w$, in the aforefaid Corollary, we have \ddot{x} $\frac{x \dot{z}^{2}}{a a}=\frac{y \dot{z}^{2}}{r a a}$. But now, in order to the Solution of this

Equation, put the Radius OC (a) $=1$ (that the Operation may be as fimple as poffible) aldo, inftead of y,
*Art. 425 . let its Equal $z-\frac{z^{3}}{2 \cdot 3}+\frac{z^{5}}{2 \cdot 3 \cdot 4 \cdot 5} * \xi^{\circ} c$. be fubftitutted, and let x be affumed $=A z^{3}+B z^{5}+C z^{7}+$ Dz ${ }^{9}$ Etc.

Then, by proceeding as is taught in Art. 267, the Value of x will come out $=\frac{1}{r}$ into $\frac{z^{3}}{2 \cdot 3}+\frac{z^{7}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}$ $+\frac{z^{11}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11}+E^{\circ} c$. Whence the Velocity $\left(\frac{b \dot{x}}{\dot{z}}\right)$ in the Plane, is, alfo, found $=$ $\frac{b}{r}$ into $\frac{z^{2}}{2} \pm \frac{z^{6}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}$ Ers. Which, therefore; is
to (b) the angular Velocity of the Plane, in the Arch ECK, as $\frac{z^{2}}{z}+\frac{z^{*}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}+E^{\circ}$ c. to r. Moreover, the Centrifugal Force in the faid Arch being denoted by r (the Force of Gravity being Unity) it will likewife be (by the above-mentioned Corol.) as $\mathbf{I}: \frac{2 \dot{x}}{\dot{\tilde{z}}}:: r:\left(\frac{2 r \dot{x}}{\dot{\boldsymbol{x}}}=\right.$) $z^{2}+\frac{z^{6}}{3 \cdot 4 \cdot 5 \cdot 6}+\frac{z^{10}}{3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10}+\xi^{0} c$. $=$ the Force fufficient to keep the Body upon the Plane. But the Force of Gravity in a Direction perperidicular to the Plane (the Weight of the Body being reprefented by Unity) is $\frac{\mathrm{OB}}{\mathrm{OC}}=\mathrm{I}-\frac{z^{2}}{2}+\frac{z^{4}}{2 \cdot 3 \cdot 4} *$ E'c. From . Art 4250° which deducting the Quantity laft found, there refts i$\frac{3 z^{2}}{2}+\frac{z^{4}}{2 \cdot 3 \cdot 4}-\frac{3 z^{6}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \mathcal{E}^{\circ} c$. for the true Preffure of the Body upon the Plane. By putting of Which equal to Nothing, z^{2} will be found $=0.67715$; anfwering to an Angle (EOC) of $47^{\circ}: 9^{\prime}$: Which Angle is therefore the Inclination, when the Force of Gravity is no longer fufficient to keep the Body upon the Plane.

Though the Vaiue of x, given above, is found by an Infinite Series, yet the Sum of that Series is eafily exhibited by the Meafures of Angles and Ratios. For, putting N to denote the Number whofe hyperbolical Logarithm is z,

+ Art. 4240
Half the Difference of which two Equations is $z+$

$$
\frac{z^{3}}{2 \cdot 3}+\frac{z^{5}}{2 \cdot 3 \cdot 4 \cdot 5}+\frac{z^{7}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} c=\frac{N}{2}-\frac{1}{2 N}
$$

From which taking $z-\frac{z^{3}}{2 \cdot 3}+\frac{z^{3}}{2 \cdot 3 \cdot 4 \cdot 5}-\frac{z^{7}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}$ E6. $=y$; and dividing the remainder by $2 r$, there re-
 $\frac{N}{2-\frac{1}{2 N}-y}$, for the true Value of x. Which, if required, may be exprefled independent of r; by putting d for the Diftance through which a Body, freely, defcends in the firft Second of Time, and taking b to denote the Velocity of the Plane, (per Second) in the Arch ECC: : For then, the Ratio of the Centrifugal Force, in the faid Arch, to the Force of Gravity (or

* Art. 211. That of r to 1) being as $\frac{b b}{1}\left(=\frac{b b}{\mathrm{OC}}\right)$ to $2 d$ *, we fhall have $r=\frac{b b}{2 d}$, and confequently $x=\frac{d}{b b} \times$ $\overline{\bar{N}-\frac{1}{2 N}-y}$.

By Computations, not very unlike Thofe above, the Motion of the Moon's Apogee, and the principal Equations of the Lunar Orbit may be exhibited; by means of proper Approximations, derived from the general Equations in Art. ${ }^{48} 8 \mathrm{r}$. But this is a Confideration that would require a Volume of itfelf, to treat it, from firft Principles, with all the Attention and Perfpicuity fuitable to the Importance of the Subject. I fhall conclude this Work with the following fhort Table of Hyperbolical Logarithmis, drawn up and communicated by my ingenious Friend Mr. Fobn Turner: Whereof the Ure, in finding Fluents, will fufficiently appear from the foregoing Pages. In the faid Table we have given the Hyperbolical Logarithms of every whole Number and hundredth Part of an Unit, from I to 10 (which Form is beft adapted to the Purpofes above-nentioned) by Help whereof, and the following Obfervations the Hy-
perbolical
perbolical Logarithm of any Number, not exceeding feven Places of Figures, may be found with very little. Trouble.
> 1^{0}. If the Number given be between I and 10 ($\int 0$ as to fall within the Limits of the Table.)

Then take from it the next inferior Number in the Table, and divide the Remainder by the faid inferior Number inctreafed by, half the Remainder; and let the Quotient be added to the Logarithm of the faid inferior Number, the Sum will be the Logarithm fought.

Thus, let the Hyperbolical Logarithm of 3.45678 be required; then the Operation will fand thus: 3.45339).005 $578(.0016442$: Which added to 1.2383742 , the Log. of 3.45 , gives 1.2400184 for the Logarithm fought.

2°. When the Number propofed exceeds 10.

Find the Logarithm thereof, fuppofing all the Figures after the Firft to be Decimals; then to the Logarithm, fo found, let $2.3025851,4.6051702$, or 6.9077553 E ${ }^{\circ}$ c. be added, according as the whole Number confifts of 2,3 , or $4 \mathrm{E}^{\circ} \mathrm{C}$. Places: The Sum will be the Logarithm fought.

Thus, the Hyperbolical Logarithm of 345.678 will be found to be 5.8451886 : For That of $3 \cdot 45678$ being 1.2400184 ; the fame, added to 4.6051702 , gives the very Quantity above exhibited. The Reafon of which, as well as of the Operation in the preceding Cafe, is evident from the Nature and Conftruction of Logarithms.

N	Logarithm			Logarithm	N	Logarithm	
2.01	. 6981347		2.34	.8501509	2.67	$.9^{820784}$	
2.02	-7030974		2.35	. 8544153	2.68	858167	
2.03	- 7080357		2.36	.8586616	2.69	. 9895411	
2.04	- 7129497		2.37	. 8628899	2.70	. 9932517	
2.05	. 7178397		2.38	. 8671004	2.71	.9963486	
2.06	-7227059		2.39	.871293?	2.72	1.0006318	
2.07	- 7275485		2.40	. 8754087	2.73	1.0043015	
2.08	. 7323678		2.41	. 8796267	2.74	1.0079579	
2.99	-7371640		2.42	. 8837675	2.75	1.0116008	
2.10	$\cdot 7419373$		2.43	.8878912	2.76	1.0152306	
2.11	.7466879		2.44	. 8919980	2.77	1.0188473	
2.12	. 7514160		2.45	. 8960880	2.78	1.0224509	
2.13	. 7561219		2.46	.9001613	2.79	1.0260415	
2.14	. 7608058		2.47	.9c4218I	2.80	1.0296194	
2.15	.7654678		2.48	. $90825^{8} 5$	2.81	1.0331844	
2.16	. 7701082	,	2.49	.9122826	2.82	1.0367 688	
2.17	. 7747271		2.50	.9162907	2.83	1.0402766	
2.18	. 7793248		2.51	. 9202827	2.84	1.0438040	
2.19	.7839015		2.52	.9242589	2.85	1.047318 .9	
2.20	.7884573		2.53	.9282193	2.85	1.0508216	
2.21	-7.929925		2.54	. 9321640	2.87	1.0543120	
2.22	. 7275071		2.55	. 9360933	2.88	1.0577902	
2.23	. 8020015		2.56	. 9400072	2.89	1.0612564	
2.24	. 806475^{8}		2.57	. 9439058	2.90	1.0647107	
2.25	.8109302		2.58	. 9477893	2.91	1.0681530	
2.26	. 8153648		2.59	.9516578	2.92	1.0715836	
2.27	. 8197798		2.60	.9555114	2.93	1.0750024	
2.28	. 8241754		2.61	. 9593502	2.94	1.0784095	
2.29	.8285518		\|2.62		.9631743	2.95	$1.08180 ; 1$
2.30	.8329091		\|2.63		.9669838	2.96	1.085189^{2}
2.31	. 8372475		2.64	. 9707789	2.97	1.0885619	
2.32	. 8415671		2.65	. 9745596	2.98	1.0919233	
2.33	. 8458682		2.66	. 9783261	2.99	1.0952733	
2.34	. 8501509		2.67	.9820784	3.00	1.0986123	

N	Logarithm	N	Logarithm\|	N	Logarithm
4.01	I. 3887912	$4 \cdot 34$	1.4678743	4.67	1.5411590
4.02	1.3912818	4.35	1.4701758	4.68	1.5432981
4.03	1.3937663	4.36	1.4724720	469	1.5454325
4.04	1.3962446	437	1.4747630	4.70	1.5475625
4.05	13987168	$4 \cdot 38$	1.4770487	471	1.5496879
06	1.4011829	$4 \cdot 39$	2.4793292	$4 \cdot 72$	1.5518087
4.07	1.4036429	4.40	1.4816045	$4 \cdot 73$	1.5539252
4.08	1. 4060969	4.41	1.4838746	4.74	1.5560371
4.09	I. 4085449	$4 \cdot 42$	1.4851396	¢.75	1.55^{81446}
4.10	1.4109869	4.43	1.4883995	$4 \cdot 76$	I. 5603476
4.11	1.4134230	$4 \cdot 44$. 4906543	$4 \cdot 77$	1.5623462
4.12	1.4158531	$4 \cdot 45$	I. 4929040	$4 \cdot 78$	1.5644405
$4 \cdot 13$	1.4182774	1.46	1.4951487	$4 \cdot 79$	1.5665304
$4 \cdot 14$	1.4205957	$4 \cdot 47$	I. 4973883	48 c	I. 5686159
4.15	1.4231083	4.48	1.4996230	4.81	1.5706971
4.16	1.4255150	$4 \cdot 49$	1.5018527	4.82	1.5727739
4.17	1.4279160	4.50	1.5040774	4.83	i.5748464
4.18	1.4303112	4.51	1.5062971	4.84	1.5769147
4.19	1.4327007	$4 \cdot 52$	1.5085119	4.85	1.5789787
4.20	1.4350845	4.53	1.5107219	4.86	1.5810384
4.21	1.4374626	$4 \cdot 54$	1.5129269	4.87	1.5830939
4.22	1.43.98351	4.55	1.5151272	4.8ε	1.585145^{2}
4.23	1.4422020	4.56	1.5173226	4.89	1.5871923
$4 \cdot 24$	1.4445632	4.57	1.519513^{2}	4.90	1.5^{89235}
4.25	1.4469189	4.58	1.5216990	4.91	1.5912739
4.26	1.4492691		1.5238800	4.92	1.5933085
4.27	1.4516138	4.60	$1.5260 ; 63$	4.93	1.5953389
4.28	1.4539530	4.61	1.5282278	4.94	1. 5973653
4.29	I. 4562867	4.62	1.5303947	$4 \cdot 95$	1.5993875
$4 \cdot 30$	1.4586149	4.63	1. 53255681	4.96	1.6014057
$4 \cdot 31$	1.4609379	4.64	1.5347143	4.97	1.6034198
$4 \cdot 32$	1.4632553	4.65	1.5368672	4.98	1.6054298
$4 \cdot 33$	1.4655675	4.66	1.5390154	4.99	1.6074358
$4 \cdot 34$	1.46787431	4.67	1.5411590	5.00	1.6094379

Hyperbolical Logaritbms.

A Table of

Hyperbolical Logaritbns.

A Table, \&rc.

University of California SOUTHERN REGIONAL LIBRARY FACILITY Return this material to the library from which it was borrowed．
cal Lib．
gET +1800
siomedieaíal tipranty
OCT 04 ian
n－CEIVER

SHEUNIVERSI?

AHELIBRARYOF.
 NOFCALIFORN/

 NOFCALIFORN/ NOSANCEIES: 空

 N.OF-CALIFORN/

AHE-IBRARYOF
 AHELIBRARYO NOFC(ALIFORM/

[^0]: noted by \dot{z} and \dot{p} respectively.

[^1]: * That the Reffance is as the Square of the Celerity, tbe. Learner may, in fome meafure, conceive, by confidering that the Same Body, with a double Velocity, not only puts twice the Number of reffifing Particles in Motion, in the Jame time, but alfo atis upon each rwitb a double Force; and therefore muff Juffer a four-fold Refjfance, or a Refifance proportional to the Square of the Velocity. This would be firielly true, were it not that the Particles fo put in Motion impel others lying before them, and thereby prevent, as it weve, the Action of the Body. What Deviation from the foregoing Larw may bence arije, is not ealy to determine. Thbis, bowever, Seems plain, that the Reffifance 'at the Beginning of any very fwift Motion (till the Air in the Way of the Body comes duly to participate of that Motion) weill be greater than That fufained by anotber equal Body, moving. with the fame Celerity, that has been in Motion fome time.

[^2]: * See p. II7. of. my Mathematical Difertations.

[^3]: - Vid. p. 56. of my Trigcnomatry.

[^4]: * There is a Mifake in p. 43. and 44. of my Difertations (by forgetting to divide by the Modulus $2 . j 025$ sc.) wibich. may from bence be realify'd.

