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PEEFACE.

The method of integration by means of Germs adopted in

this Treatise is based on the admitted principle that in the

work of integrating a proposed differential equation we are

free to avail ourselves of the advantages offered by any dis-

tinctive peculiarities that are perceived to exist in the equation

itself prior to its integration. Any such peculiarity will, as

a matter of course, impress a corresponding peculiarity on

the integral to be found. Equations will therefore be classified

according to their distinctive peculiarities, those peculiarities

being indicated by the particular ways in which germs may

be connected with the variables of a differential equation

without disturbing or in any way affecting its form.

In this Treatise the differential equations that will be

brought before the reader are all linear and partial, in con-

sequence of which the doctrine of germs suitable for such

equations admits of being presented in a form that is easily

reduced to a system of singular efficiency. But there are

certain other equations that are not linear, and which there-

fore do not fall under the system that will be developed in the

following pages. The equation t-^J -J^ = -t^ is one of this

kind, for its form will not be affected if ax be written for x

;

neither will it be affected if bu and bt be written simul-

taneously for u and t ; and these arbitrary constants a, 6, will

therefore necessarily find a place (either explicitly or implicitly)

in its integral. Also as only x takes the constant a, this
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indicates a peculiarity of x as to the manner in which it can

appear in the integral. That u and t are alike related to b

is indicative of the existence of a peculiar relation of u to t.

And, further, we may write u 4- A for u, x + g for x, and t + h

for t (the constants A, g, h being perfectly arbitrary) without

affecting the form of the equation. This shews that if U be

an integral of it, so likewise will be the following,

gd hd

e
dx
+
dt (JJ+A).

We may therefore presume that as there has been found for

equations that are linear a " Doctrine of Germs" so there may

be a possible "Doctrine of Germ-like Constants" for equations

that are not linear.

In Chap. III. is introduced a theory of "Symbolical

Equivalences." The subject is regarded from a point of view

which may be considered as in some degree new. The exigencies

of this Essay did not seem likely to require the complete

development of this Theory ; and in consequence of this only so

much detail is given as was likely to be wanted in subsequent

chapters. The Theory is capable of throwing light on several

troublesome known paradoxes which have often been a source

of perplexity to the Mathematical Student.

As the author was induced to undertake the development of

the Doctrine of Germs by a desire to accomplish the complete

integration of Laplace's Equation, and the consequent discovery

of the general form of Laplace's Functions, he has deemed it to

be of some possible advantage to obtain and to exhibit those

results in several forms and aspects ; hoping also that by this

diversity the reader would be the more disposed to accept

results which so confirm one another.

It has been taken as an admitted definition of Laplace's

Functions, that any quantity which satisfies the equation (1) of
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Art. 127, is a Laplace's Function. Laplace's Equation is usually

given in two forms, viz. those in Arts. 124, 127 ; and to both of

these results have been adapted. The first of these forms does

not contain r\ the second does; and it will be seen that r

enters the latter in a manner that demands peculiar manage-

ment, and when so managed leads to remarkable results, which

can hardly fail to throw some light on the usually received

theory of Laplace's Functions.

There appears to be an exceptional case of these functions

which the reader will find in Art. 131.

It is needful to advise the reader before he enters upon the

task of reading some parts of this Treatise, that when arbitrary

constants occur in a general integral of a linear equation it will

consist of the sum of several subgeneral integrals ; and each of

these constants being arbitrary by nature will retain their arbi-

trary character when multiplied by a definite numerical quan-

tity ; and if such a constant be separated into several arbitrary

parts, each part will be as arbitrary as the original constant.

Hence in altering the form of a general integral it will not be

necessary to preserve the identity of any such constants, but

only the quality of their independent arbitrariness; and thus

we need not observe with respect to them the usual require-

ments of algebraic rules of reduction in passing from step to

step. The arbitrary constants referred to are used merely to

indicate the absolute independence of the subintegrals or sub-

general integrals of which they are the respective coefficients.

(See Art. 42 for an example of what is here alluded to.)

The author has pleasure in acknowledging the valuable

assistance rendered him by Mr Greenhill, M.A., Fellow of

Emmanuel College, in supervising this Essay in its passage

through the press.

Sheffield, Jan. 1, 1881.
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CHAPTER I.

INTRODUCTORY REMARKS.

In the present work we have not to deal with Linear Partial

Differential Equations in general, but only with such as are

known to be of difficult integration, and which have been found

to present themselves in connexion with the application of

Mathematics to various branches of Natural Philosophy.

This task we have undertaken not as a branch of analytical

enterprise, but as a contribution to the resources of those philo-

sophers who think it a matter of importance that Physical

Theories should be subject to the severe test of mathematical

confirmation. And in the execution of this task we believe that

we shall have the privilege of developing a method of integra-

tion which may be regarded as new, and that is singularly well

adapted to the integration of certain equations which have been

found intractable by ordinary methods.

1. In some cases a remarkable degree of uncertainty and

intricacy besets the answer to the question,—when may an inte-

gral of a linear differential equation be rightly styled its general

integral ? The following are some of the reasons of this uncer-

tainty.

E. 1
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If one of the independent variables (as x) of a linear differ-

ential equation occur therein not as a symbol of quantity but

only as a symbol of differential operation (as
-y-J

, then (suppos-

ing U an integral of the equation) not only will U be an integral

but so likewise will each one of the quantities

A dU nfU r d*U ....A
di'

B
dx*' ^,.... ad infinitum,

and (speaking generally) we thus can out of a single known
integral create an unlimited number of new integrals all differ-

ent from the original and from each other.

And not only can we thus create new integrals, but out of

these new ones we can by addition of all of them, or of a few of

them selected arbitrarily, create an unlimited number of fresh

integrals different from U and from each of those previously

found from U by differentiation.

Now as we have the right of forming known integrals into

groups as we please, and from the nature of the integrals of a

linear equation each group will be a new integral, we are obliged

to come to the conclusion that it is not easy to see on what

principle we can say of some one of the infinite mass of integrals

a proposed linear differential may have, that it is the general

integral.

2. We shall be able to shew, in the case of every linear

differential equation of the class supposed in the preceding

article, that it admits of integrals of a peculiar kind, forming a

distinct class, and they are generally infinite in number, and

when added together form a sum which is equivalent to the

general integral.

For distinctness of reference we shall denominate these in-

tegrals subiutegrals ; and when we speak of those collectively

which belong to the same differential equation we shall denomi-

nate them a family of subiutegrals.

If then P, Q, B, S,... be the individual members of a family

of subiutegrals, and u be the general integral of the same equa-
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tion as that to which they all individually belong, we shall

represent the relation between u and P, Q, P,... by the following

equation,

u =AP + BQ + CB + DS+... adinfin (1),

A, B, C, D, ... being arbitrary constants, the use of which in

this equation is, to indicate the absolute independence of

P, Qy
R, ... as integrals of the proposed equation.

3. Sometimes the general integral (1) will divide itself by

some peculiarity of form into two or more distinct parts; and

to these independent parts we intend to refer under the desig-

nation of subgenera! integrals.

The number of such subgeneral integrals that belong to a

proposed differential equation is generally dependent on the

order or some other peculiarity of the equation.

4. When we know a family of subintegrals (as P, Q, P, ...)

we can by grouping them into different heaps, and finding the

sum of each group, take the various sums thus formed as a

family of subintegrals; and as a family it will be symbolically

equivalent to the original family (P, Q, P, ...), though the

members of the new family may happen to have no similitude

of form to the members of the other.

Their equivalence results from the one fact that each of

them explicitly or implicitly contains all the members of the

subintegral family of which u (the general integral) is known to

be constituted.

Thus a family of subintegrals always admits of being recast

by grouping, by summation of series, and other means whereby
a change of the forms of its members is effected.

This is important because it brings forward the question,

—

what will be the most convenient forms in which a family of

subintegrals can be obtained ?

One answer to this would be;—let the members of the

family be cast in such forms, that if any one member of the

family can be found all the other members may be obtained

1—2
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from it by simple and repeated differentiations or integrations

of that one member with respect to one or more of the inde-

pendent variables contained in the proposed differential equation.

We shall in due time shew how and under what conditions

this may be done.

5. As the existence of subintegrals is but little known, we

shall here add the following illustration.

d2u du
Let -7-2 ==-7- be a differential equation; then we can at a

glance detect the following as independent integrals of it

:

' V i.2
+ y ' l.a.sTi:! 1 1. 2. 3.

4"
1
"!.. 2.1 1.2'

each of which can be obtained from the one before it by inte-

gration with regard to x, and correction with regard to y. If this

be the whole family then

A, B, C, ... being arbitrary and absolutely independent con-

stants.

G. We shall see in future articles that changes of the inde-

pendent variables of a proposed differential equation can be

sometimes made without producing any effect whatever on the

form of the equation.

Whenever this can be done, the same changes of the same

variables may be made in any known integral of the proposed

equation without depriving that integral (however much changed

in form thereby) of its property of being still an integral, or of

its generality as an integral.

Also if the known integral should happen to be a particular

and not a general integral the change of variables just described

would introduce such a change of form of the integral itself as

might bring it nearer to the form of a general integral by intro-

ducing new arbitrary constants which we should be at liberty to

treat as germs not existing in the original particular integral.
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7. We have just used the word germ; let us now explain

what we mean by it.

We are aware that integration generally introduces to our

notice in the integral certain constant quantities which have no

existence in the differential equation itself. Such constants are

in fact the offspring of integration ; and are generally denomi-

nated arbitrary constants. The use of such constants in prob-

lems is well known.

This designation however is not sufficient for our purpose,

and we intend to speak of them, under certain circumstances, as

germs, or germ-constants. For as each of the variables of a pro-

posed linear differential equation is constant with reference to

every operating differential symbol contained therein except

its own, so an arbitrary constant (germ) is constant with refer-

ence to all the differential symbols except its own; and it or

any function of it contained in u may be operated on by its

own symbol of differential operation, though no such symbol is

contained in the proposed equation.

We may therefore consider a germ as being a new independ-

ent variable, i.e., an independent variable that is not contained

in the differential equation itself, but only in its integral.

Thus €
ax+a7y

is an integral of the equation -^ = -=- ; but the

constant a is constant only in reference to -7- and -=- , but not
ax ay

3

in reference to -y- ; and therefore in this integral we may con-

sider a either an arbitrary constant, or a new independent

variable additional to x and y; and this is the property to

which we refer when we call a a germ.

8. We shall find it convenient to be able to speak of certain

germs under specific names, which will refer to the manner in

which a germ in an integral may happen to stand (actually or

virtually) connected with its independent variable. Thus if a

germ g and an independent variable x stand connected in an

integral by addition (as distinguished from multiplication), (as

in the form x±g) we shall refer to g as the minor germ of x.
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But if the connexion be of the nature of multiplication

(as gx or -) we shall speak of g as the major germ of x.

9. Germs may also be regarded as being general, or real.

A general germ may receive any value whether real or

imaginary.

A real germ may receive only such values as are not imagi-

nary.

Nevertheless a general germ may be perfectly represented by

means of two real germs. Thus if K be a general germ, the

equation

K=M+im,
in which M and m are independent real germs, will perfectly

represent K, Hence a general germ is equivalent symbolically

to two real germs.

We shall throughout this Treatise use the two quantities i

and j in the ambiguous senses implied by the two independent

equations following,

i* = — 1, and j* = + l;

and both i and j will be regarded as independently carrying

with them their proper double algebraic signs.

10. There are functions of x which cannot be expanded by

MacLaurin's Theorem; and therefore the series A+Bx+ Cx*+ . .
.

,

in which the coefficients A, B, C, ... are all arbitrary, does not

symbolically represent a perfectly arbitrary function of x; but

Axa + BaP-\- Cxy +... in which A, B, G, ... are arbitrary and

a, j3, 7, ... not limited by the condition that they are to be posi-

tive integers, symbolically represents a perfectly arbitrary func-

tion.

We may distinguish these cases, when necessary, by denomi-

nating the former a MacLaurin's arbitrary function.

11. To find the potentiality of a germ when it occurs in an

integral only as an index or power of a function of the inde-

pendent variables.
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Let Wcom be an integral of a proposed equation, W and co

being functions of the independent variables, and m being a

germ that occurs only as the index of the quantity denoted by co.

We may give to m an infinite series of different values

a, /3, <y, ... at pleasure; and each one of these values of m will

furnish us with an independent integral; and all the integrals

so obtained we may unite in a single integral in the following

manner,

Wcom = W (Aco
a + Bco

p + Ccoy + . . . ad infin.),

A, B, C, ... being independent arbitrary constants.

But a, £, 7, ... being arbitrary also, the series

Aco
a + Bcop + Ccoy + ...

will represent an arbitrary function of co of the most perfectly

arbitrary kind

;

.-. Wcom =WF(co).

Hence a germ when it occurs in an integral as an index only

is potentially equivalent to an arbitrary function of the most

general kind.

The converse is manifestly true, viz., if F (co) be a perfectly

general arbitrary function of co, then will F (co) = co
m
symboli-

cally.

But if F(co) represent a MacLaurin's series only, then it does

not follow that F(co) = co
m
symbolically, for in this case F (co) is

clogged with the condition that the powers of co in the expan-

sion of F (co) must be positive integers. For such a function we
shall therefore when it occurs have to find a potential equivalent

clogged with the same condition. co
m

is, as we have said, too

general, and may consequently (if incautiously used) lead us

into error when we come to the generalizing of results obtained.

12. It will be a convenience to be allowed sometimes to

represent the product 1 . 2 . 3 ... n by the symbol n!.



CHAPTER II.

SOME GENERAL PROPERTIES OF GERMS.

13. Let ot.w=0 represent a general linear partial dif-

ferential equation of any number of independent variables, u

being the dependent variable, and zr denoting the compound

operating symbol. Also let U denote any integral of this

equation containing a germ. Denote the germ by c, and expand

£7 in a series according to the powers of c
;

.-. U=Pcp +Qcq + Rcr + (1),

in which p, q, r, ... are definite indices, and P, Q, P, ... are

functions of the independent variables.

Operate on each member of this equation with w, noting

that<*(C0 = 0;

.
• .' = («r . P) (f + (« . Q) cq + (*x . R) c

r
-f . . .

.

Now c being a germ is an arbitrary independent variable,

and consequently this must be an identical equation

;

.'. = S7.P, 0=<GT.<3, 0=<G7.P,...

that is, P, Q, R,... are independent integrals of the proposed

equation ; they are, in fact, the family of subintegrals, the

members of which are rendered independent by the fact that

the powers of c in equation (1) are all (Jifferent. They owe

their independence to the presence of a germ in U.

But we can preserve their independence another way, and

at the same time unite the subintegrals in a single integral,

thus
U=AP+BQ + CR + (2),

in which A, B, C, ... are arbitrary constants.
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Comparing this with (1) we perceive that the different

powers of a germ in an expanded integral are symbolically

equivalent to independent arbitrary constants.

We have now obtained the power of eliminating a germ by

expansion of an integral according to the powers of that germ.

And, conversely, we can eliminate arbitrary constants,

which belong to a series each term of which is a subintegral,

by means of an extemporized germ.

14. If the integral U in the preceding article should

happen to contain a second independent germ (n), then as

only m has been eliminated the subintegrals P, Q, R, ... will

each contain the germ n constituting each of them a germ-

integral of the proposed equation. From each of these n may
therefore be independently eliminated, and each of them will

be thereby resolved into its own constituent subintegrals.

Thus we have before us the fact that a subintegral may be also

a germ-integral, and in this character resolvable into subinte-

grals of a more elementary class : and the ultimate subintegrals

are those which do not contain a germ, and into which a germ
cannot be introduced.

We may arrive by one step at the ultimate subintegrals

of U by expanding U in the first instance in a series according

to the powers of both the germs m and n, and then writing

independent arbitrary constants for the germs and their powers

and different combinations.

The converse is also true, viz. that we may eliminate arbi-

trary constants by means of the powers and the combinations

of the powers of two or more independent germs.

Thus if

we may (if A, B, G, ... be independent arbitrary constants)

express a symbolical equivalent to this series by means of two

independent germs m, n, thus,

U=A jl + {mx + ny) + (m*^ + mn^ +n2 ^Q + ...

j
= A€mx+nv ,
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We may reverse this process and at one step assume, if m, n

be independent germs, the following symbolical equivalence,

15. As a matter of experience we know that different

physical and geometrical problems lead us to the same forms

of partial differential equations. The equation

d*u d2u (Pu _ fl

is a well-known example of this. Hence each member of a

family of subintegrals being a complete integral in itself of its

-kind, expresses the solution of a particular problem in physics

or geometry, which can exist independently ; and it also

expresses what may be called an independent elementary state

of matter or some affection thereof; or some imaginable inde-

pendent geometrical condition of an elementary nature. The

subintegrals being independent, represent properties which can

exist independently in nature.

Hence whenever an integral can be resolved into elementary

subintegrals we have in such cases this fact before us ; that the

problem which brought us to the corresponding differential

equation is really of a compound nature and capable of being

resolved into a number of elementary problems, the super-

position of which in their proper proportions is equivalent to

the original problem.

Hence, also, one problem may require for its complete

representation one set (or group) of members selected from the

whole family of subintegrals; and another problem another

set of members. And thus comes into use that important

property of all linear differential equations, that the sum of

any of the members of a subintegral family is an integral of

the same differential equation and represents the superimposed

action of so many different geometrical or physical properties.

The selection of the group of individual members of a

family of subintegrals suitable for the solution of a given
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problem is sometimes a work of difficulty, and will always

make a demand upon the investigator's ingenuity.

1G. The connexion between the general integral of an

equation and its family of subintegrals is exhibited in Art. 13,

in the equation

UmAP +BQ+ CB+...

Now as these coefficients A, B, G,... are arbitrary and

independent it would appear on the face of this series that it

is incapable of being expressed in a finite form, there being

no law connecting the coefficients with one another. We have

seen however that by means of a germ and its powers we can

symbolically represent simultaneously in a finite form both

the integral itself and the arbitrariness and the independence

of the coefficients. There are cases in which this can be ac-

complished in more forms than one.

It is always an important object to assume a germ and its

powers in such forms and with such a law of coefficients as may
enable us to sum the series which is constituted of subintegrals

in a finite form. This cannot always be done; and when it

cannot, then the substitution of a germ and its powers for

A
f
B, C,... is generally useless; and recourse must be had

to the use of other means.

To make our meaning in this matter quite clear, we will

produce an example (of a very simple kind) of the process of

gathering up a whole family of subintegrals into one finite

form which contains them all, and yet at the same time im-

plicitly preserves the individuality and the independence of

every member of the family. This is the chiefest of all the

properties of a germ, and renders the doctrine of germs of

much importance. Nothing can well exceed their utility in

the discovery of symbolical equivalences ; and in the trans-

formation of integrals by means of these equivalences.
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17. Let it be granted that the following quantities con-

stitute as a whole a complete family of subintegrals, belonging

to a certain linear differential equation :

i. 5. iL + y. *L+wl. x*
i

*fy
,

y*
. &<>

*' 1' 1.2 1' 3r 1.1' 4r l^.l"
1- !^'

"We combine them on the principle of superposition into

a single integral U by means of arbitrary constants thus,

^t^+^+B^ffi+a
^g^M^?2y . jf

1.2.1^1 .2,

in which A, B, C, ... are absolutely arbitrary and independent.

We now assume an extemporised germ m, and use it and

its powers to replace (or eliminate) the arbitrary constants

A,B,G,...

U-= ^{l + m| +|)W(
;!!
f
l.li

+
'

J

= A(l +^ +
1.2 -}(*¥ +

1.2
+ )

= J$Gmx+m2V • (I)-

We have here prefixed the common coefficient A, because

every integral of a linear equation takes an arbitrary general

coefficient. In this simple form of the complete integral are

contained (without loss of their individual independence) all

the members of the subintegral family because m is a germ.

We may also now obtain the differential equation of which

the above are the independent subintegrals. For by dif-

ferentiating equation (1) with respect to its independent

variables x, y, we find

d?U__dU
dx* ~ dy { h

Now in reference to the form of this differential equation

we may remark ; that it would not be changed or in any way
affected were we to write x + g and y + h for x and y ; neither
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would its form be changed by writing mx and m2
y for x and y.

We shall express this by saying that this equation allows its

independent variables to take both major and minor germs.

In the above integral (1) the major germ m enters ex-

plicitly ; but if we write x + g, y + h for x, y in it, it takes the

following form,

^4 6
m {x+g)+im? (y+h) — j^ emg+mPh ^ €mx+m

iy — ^ €mx+m2
y^

Hence the exponential form of the integral (1) can be in

no way affected in generality by the introduction of major and

minor germs, the former being already present in it explicitly

;

and the latter implicitly, inasmuch as they may be said to lie

hidden in the external arbitrary coefficient A.

18. If one of the independent variables of a proposed

linear differential equation can take a minor germ, the family

of subintegrals can by means of that germ be cast in such

a form that all the subintegrals can be obtained from any

one of the family by simple integration and differentiation

with respect to that variable. (See Art. 4.)

Let ot . u — be a linear differential equation which allows

one of its independent variables (as x) to take a minor germ g.

Then as the writing of x + g for # in ct . u = produces no

change, we may do the same in any integral of ijt . u = without

destroying it as an integral ; and as the substitution of x + g
for x in an integral would introduce the new germ g the gene-

rality of the integral would not be diminished; but on the

contrary it would be increased, unless the integral in which

the substitution is made be itself perfectly general. Hence

the general integral must of necessity be of such a form that

the substitution of x + g for x in it cannot affect its perfect

generality,

.-. u = F(x+g,y, *,...).

Let this be expanded by Taylor's Theorem in powers of g;

/, g d a* d2
g3 dz

\ ^,
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The last step is by Art. 13; and A, B, G, ... are arbitrary

constants.

Hence A, B, G, ... are the coefficients of the subintegrals,

which therefore are in their order as follows [we denominate

F(x, y, ...) the first subintegral],

Ffay,.,.); sffo*-...)s fipFfay,...)! &c.

If any one of this family become known, then the whole

family may be found from that one, by integration and by

differentiation with regard to x.

From this property of minor germs, it becomes a matter

of no little importance, whenever it can be done, to reduce

a proposed equation which does not allow any of its independ-

ent variables to take a minor germ to a form that will allow a

minor germ.

19. The potentiality of a minor germ may always be repre-

sented in an equivalent form by means of an arbitrary function
;

that function being, however, not one of quantitative symbols

but of symbols of operation.

For when one of the independent variables (as x) takes a

minor germ (as g) we have seen that

u = F(x + g,y, ...)

If another variable (as y) take an independent minor germ

h, we should find in the same way that

d d^

dyj

and so on to any number of variables taking independent minor

germs.

=*(i'£)'*(
-*:*r")

-
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20. If an independent variable (as x) takes a minor germ

g, the general integral of the equation will always admit of

perfect symbolical expression in the form of an infinite series

according to positive integer powers of that variable.

For in this case

u = F(x + g,y, ...)

= F(g+x, y> ...)

which is a series that contains x in positive integer powers only

;

and this series is symbolically the complete general integral by

hypothesis.

If two of the independent variables (x, y) take independent

minor germs, then the general integral will always admit of

being expressed in the form of an infinite series containing both

x and y in positive integer powers only.

For in this case

u = F(x + g,y + h,z ...)

= F(g + x, h + y,z ...),

from which the proposition follows by expanding F by Taylor's

Theorem.

It is evident the proposition may be extended to all the

independent variables that take independent minor germs.

21. If -sr f

-7-,-7-J
w = be understood to represent any

linear differential equation of two independent variables (x
} y)

with constant coefficients, then will each of these variables take

an independent minor germ; and consequently the complete

general integral of the equation may be fully expressed in any
one of the three following equivalent forms,
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or (ii) ...U = P + Q^+R^+...

in which P, Q, R, ... represent series of the general form

A + B*
1
+ C^ + ...

or (ni)... u =P+Q?+R^-
2
+ ...

in which P, Q, B, ... represent series of the general form

When hereafter we assume the first of these forms as repre-

sentative of the complete general integral of a proposed differen-

tial equation, we must remember that the sole authority for the

truth of this assumption lies in the fact that we know from the

form of the differential equation itself that both so and y take

independent minor germs. The second form supposes that y
takes a minor germ ; and the third form supposes % to take a

minor germ.

22. Let iff lx, j- ,
-=-) u = 0, or briefly ct . u = denote a

linear differential equation in which one of the two inde-

pendent variables (as t) occurs only in the form of a differential

symbol of operation.

In this case the general integral is completely represented

by the following form,

u = F(se, t + g),

g being a minor germ of t

Now if we integrate such a differential equation as the one

before us by the method of infinite series, it will sometimes

happen that we shall obtain a result which may be represented

by the following

:

in which A, B, C, ... are independent arbitrary constants; and
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they are therefore the coefficients of the members of the family

of subintegrals of which u is constituted.

Hence we are at liberty to eliminate these arbitrary con-

stants by means of the powers of a germ.

t f
Now A + B = + C z

—- + ... is a MacLaurin's infinite series
X I . L

(see Art. 10) and its symbolical equivalent representative will

be under a certain restriction of form corresponding to this fact

(Art. 11); and the proper form may be found in the following

manner.

Equating the two preceding forms of u we have the following

symbolical equivalence

:

F(x,t+g) = 1r (x,^(A+B{ + C^ + ...y,

and the left-hand member being a function of t + g, the right-

hand member must be so likewise

;

•'• A + B
I
+ °A + - =f (f + 9) (!)•

Now /(£+#) =f(g + t), and whichever of these two forms

we adopt the result of the expansion of it in a series by Taylor's

Theorem must be symbolically equivalent to the left-hand

member of equation (1).

Hence

A + B
t
- + C^-2+ ...=f(g)+f(g).

t

J +f"(g). 2̂
+...(2).

But in order that (2) may be a symbolical equivalent of the

series on the left-hand, /(#),/' {g),f (g), ... must be different

powers of the germ g ; a condition that requires the following

supposition,

where p must be of such a value as shall render the expansion

°f (9 + t)
p an infinite series. Hence p must not be a positive

integer.

... A + B j + G^-2 + ... = (g + t)
p

, or = (* + gf.
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Hence u = yjr (x, £) . (g + t)
p

(3),

or »^(«, |) . (f +g? (4).

There are therefore two forms in which u may be presented,

a circumstance which is notable for the following reason.

Ifp were a positive integer (which it cannot be) these two

forms of u would be identical, because in that case the expan-

sions of (g + t)
p and (t 4- g)

p would be identical, with the exception

only that their respective terms would be in a reverse order.

But as p is not a positive integer the expansions of (g -f t/ and

(t+g)p are dissimilar, though symbolically equivalent (see Chap.

in.).

Hence that the integrals marked (3) and (4) are dissimilar

though symbolically equivalent, is due to the circumstance that p
is not a positive integer; and further that (t+g)p and (g + t)

p

are symbolically equivalent.

Consequently we have two dissimilar though symbolically

equivalent forms in which we may finally present the general

integral of the proposed equation, whenever that integral can be

found in the form

23. If we expand (g + t)
p in order to eliminate the germ g

and obtain the family of subintegrals of which u is constituted,

we obtain

the first subintegral = \jr (x, -7
-J

. A = i|r {x, 0).

The other subintegrals may all be obtained from this by inte-

grating it with respect to t successively (Art. 4 contains an

example of this).

But if we expand (t + g)
p the first subintegral will be equal

to i/r (x, -7- ) ,t
p

; and the other members of the family will be
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obtained from this by successive differentiations with respect

to*.

As it is always possible to differentiate, and not always pos-

sible to integrate, a given function of t, there will be an advan-

tage in using the form

first subintegral = yfr (at, j\ . t
p

(1).

But here crops up the question,—how are we to assign a

proper value to p ? for the preceding Article tells us nothing

respecting it but that it is not to be a positive integer. It does

not even tell us distinctly whether zero is to be classed among
positive or among negative integers. There is however no diffi-

culty in seeing that we must assign to p as small a value (apart

from its algebraic sign) as possible.

In some degree p is therefore a disposable numerical quan-

tity;*and we shall follow the rule of assigning to it the least

value (apart from algebraic sign) that will enable us to express

the first subintegral (1) in finite terms, for our object is to find

the integral of a proposed equation in finite terms.

24. One possible case must here be noticed. There being

nothing to fix a definite value of p in the investigation of

Art. 22, in the formula

first subintegral = yjr ix, -?-) t
p
,

if it should ever happen that this leads to a general subintegral

of the form W . co
p

, without the necessity of our assigning to p
any definite value, then p may be considered to be a germ, and

the first subintegral will be inclusive of the whole family of

subintegrals.

In this particular case therefore we have (by Art. 11),

u = W. co
p

= W. <£(*>).

25. We have said that the smallest possible value (apart

from algebraic sign) must be assigned to p in order to obtain

2—2
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the first of the family of suhintegrals, and that from the sub-

integral so found all the other members of the family may be

obtained by differentiation with -^ .J
dt

From this it is obvious that if we can obtain a finite sub-

integral by assigning to p a value which is not the least pos-

sible (apart from sign) the subintegral so obtained will be one

of the family of subintegrals ; and we may ascend from it to

the first subintegral by successive integrations with regard to t

We shall know when we have arrived at the first by the circum-

stance that we have arrived at a subintegral which is not inte-

grate in finite terms.

26. The general principle that we shall adopt in the inte-

gration of linear differential equations is that of taking advan-

tage of any peculiarity that may be perceived to exist in their

forms, favoring the introduction of germs into their integrals;

for as an integral that is perfectly general cannot be made more

general, the introduction of a germ, though it may affect the

generality of an integral that is not perfectly general, cannot

make it less general ; but on the contrary every germ intro-

duced brings it one step nearer to perfect generality.

When therefore a differential equation is proposed for inte-

gration we begin by changing (if necessary) the dependent and

independent variables (see Chap. IV.) with the object of bring-

ing the equation to its simplest form, or to a form which will

enable us to detect the possible existence of germs in the

integral.

The preceding Articles will have made it evident that it

would be a great point gained if the reduction and transfor-

mation can be carried on till we have arrived at a form in

which one at least of the independent variables shall occur

only in the form of a differential symbol of operation, for such

a variable will take a minor germ. The following will illus-

trate the method of proceeding with such an equation, and will

also be useful for reference.
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27. To integrate ~ = vr (x, y, . . . ^ , g- , . .

.J
, or simply

= vs . u.

This equation allows t to take a minor germ, and therefore

(Art. 21) the following will be a perfectly general form of its

integral

:

in which P, Q,B, ... are functions not of t but of the independ-

ent variables that occur in the operating function ts.

Substitute this form of u in the proposed equation

du

t /
2

/
3 \

1 ' 1.2 1.2.3

28. To integrate -p = ot (#, y, . . . -r- , t , . .

.

) m, or briefly,

By the same method as the above, and with the addi-

tional consideration that this equation allows us to write in

any integral jt instead of t, we obtain the following general

form of integral

:

•-(i+
1k-+5«'+.--

:

.)*

in which P, Q are independent functions of the variables con-

tained in ot.

The two serial members of u are independent subgeneral

integrals; and their independence is due to the circum-

stance that -57 occurs in the differential equation only in the

form (-77) , and their independence is secured symbolically
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by the existence of the ambiguous symbol j in the latter

of them.

It will be noticed that one of the subgeneral integrals con-

tains even powers of t only, and the other odd powers only.

But we are at liberty to construct out of them, by addition

and subtraction, two other equivalent subsequent ] integrals,

each of which shall contain both the odd and the even

powers of t

The following form of differential equation, though it

belongs to the case of two independent variables only, will

be found important, for many equations that occur in physical

enquiries can be made to depend upon it.

29. To integrate </> f-r-J u = vr f a, -j-)u.

By the usual method of integration by series the inte-

gral of this equation can generally be obtained in a form

equivalent to the following:

in which T is an arbitrary function of t.

Now since the proposed equation allows t to take a

minor germ,

in which A, B, C, ... are the arbitrary coefficients of the mem-

bers of the family of subintegrals which constitute u. Their

places may therefore (Art. 13) be supplied by the powers of an

extemporized germ m

;

= e
mt

yjr (a, m) = e
mtX.
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When X is found by the substitution of this value of u in

the proposed equation, then u is known from the equation,

u = emtX.

30. Let ct(-7-,-7-,-t-,...]m=0 be a linear partial dif-

ferential equation of any number of independent variables and

having constant coefficients ; then will

be an integral of it ; L, M, N
t

. . . being germs subject only to

the following equation of condition,

= v(L,M
t
N

t ...).

For

^Wx' dy' S'^V^T^W Ty> d^ , '")
6LX+My+

= e
Lx+3fy+^+- * (L, M, N, ...)•

Now as L, M, JV, . . . are germs, we are at liberty to assume

such a relation to exist among: them as will render the right-

hand member of this equation equal to zero ; and the only

condition necessary for that purpose is «r (L, M
y
N, ...) = 0.

Hence subject to this condition U represents a quantity which

satisfies the proposed equation.

We have not said that U is the general integral of the

equation ; but as it contains independent germs it needs must
be one of a great degree of generality. As a matter of fact it

fails to be the general integral in such cases only as are dis-

tinguished by the recurrence of one or more of the operative

factorials into which -crf-^-, -j- , -7-,...) can in some cases

be resolved.

We shall be careful to prove the perfect generality of U in

every case in which we shall use it ; and then only shall we cite

it as the general exponential integral.

31. The germs L, M, N, ... being of the nature of general

germs are liable to contain imaginary quantities ; it will some-
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times be desirable to express the general exponential integral

in terms of real germs only. Let us therefore assume their

forms to be

L + il, M+im, N+in,

in which L, M, K, ... I, m, n, ... are all real quantities.

By this change the exponential integral takes the following

form

U=AeK+iI=AeK cosI+BeEsmI

= AeK cos (I+ B)

;

in which K= Lx + My + Nz + ...

and I=lx + my + nz+ ...

and the germs L, M, N, ... I, m,n, ... are subject to the two

equations of condition into which the following equation neces-

sarily divides itself,

= <G7 {L + tl, M + im
}
N+ in, ...).

32. If c be a germ contained in an integral TJ of a linear

differential equation tsr . u = 0, containing any number of inde-

pendent variables and its coefficients not being necessarily con-

stant; then will -r-, -rj, -tj > ... and generally </> f-r-J Ube

integrals of vr . TJ— 0.

The function
(f>

is conditioned by the equation <j> ( -v-
J

= 0.

Now c being a germ is not contained in ct ; and therefore c

and ot are commutative symbols. Also w . TJ— 0.

Hence </> ( -r ) TJ is an integral of -sr . u = 0.

33. The following indicates the possible existence of quasi-

minor germs in some cases.
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Suppose we have before us a linear equation of the following

form,
'

/ d d d j / 7/ , \
V = ™[7r>J->'T> ax +<)y + cz

>
ax + oy + cz),'

in which a, 6, c, a, b\ c' are definite constants.

It is evident that we may, without affecting this equation at

all, write x + g, y + h, z + k for x, y, z respectively, provided the

values of g, h, k are restricted by the two following conditions,

0—ag + bh + ck, and = ag + Vh + c'k.

Now as g, h, k are subject to these two linear conditions

only, each of them may be described as a definite multiple of

some one indefinite quantity I, which we may designate an

independent germ. This independent germ will be divided

among the three independent variables in certain definite pro-

portions, and be to each of them a minor germ, or rather a

quasi-minor germ ; for we have defined a minor germ (Art. 8)

as belonging exclusively to an individual independent variable.

Major Germs and Homogeneity.

34. By means of major germs we may extend the usual

definition of homogeneity in the following manner.

If a mathematical expression F(x, y, z, ...) be of such a form

that when max
}
mPy, myz, .

.

. are written in it for x
y y, z ... the

germ m becomes a mere factor or coefficient of the whole ; i.e. if

the following form of expression holds good,

F (max, mfiy, m^z, . . .) = mp F(x, y, z, . . .),

in which a, /3, <y ... have definite values; then we say that

F(x, y, z, ...) is a homogeneous expression of jp dimensions.

We may also say that x, y, z, ... are respectively of the

dimensions a, ft, 7, ... and we shall speak of m as being a major

germ in this case.

The following proposition will be found very important in

future operations.

35. Every homogeneous linear partial differential equation,

whether its coefficients be, or be not, constant, will have all its
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subintegrals (that are due to the elimination of a major germ)

homogeneous according to the above definition ; and they will

all be of different dimensions.

Let u — F(x
}
y,z,...) be the integral of a homogeneous

differential equation. Then since a general integral is not

affected as to its generality by any change of the independent

variables which does not affect the differential equation, we may
write max, mPy, myz, ... in both the equation and its integral

without affecting them

;

.*. u — F (max, mPy, m^z, ...) (1),

and by differentiation of this we obtain the following equation,

/ d
,

d d \ du / _>

l«*s +*j$+*J6 + "-v*""»as
(2) -

Now expand the right-hand member of equation (1) in powers

of m\
.'. u =Pmp +Qm9 + Rmr + (3),

in which P, Q, R ... are functions of x, y, z ... but not of m;
they in fact constitute the family of subintegrals due to the

elimination of the germ m.

Hence each of them (i.e. of P,Q, R ...) is an integral of the

proposed homogeneous equation ; and consequently each term

of (3) will satisfy the equation (2).

Taking the first term Pmp and substituting it in (2) we find

dP^ Q dP
,

dP A „
aX

dx-
+^d^ + ^z Tz

+ '" = PP &>

the meaning of which equation is, that the subintegral P is

homogeneous and ofp dimensions.

In the same way we learn that Q, R, ... are homogeneous

subintegrals of q, r, ... dimensions respectively.

The members of the family of subintegrals obtained by the

elimination of m have therefore this common property,

—

they are

all homogeneous ; but being of different dimensions their sum,

i.e. the general integral which contains them all, is not homo-

geneous.
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Homogeneity is, therefore, the distinctive feature of a sub-

integral.

36. As a major germ generally (though not always) belongs

to at least two independent variables, if a proposed differential

equation contains more than two such variables it may admit of

more than one independent major germ ; or if it admits of one

only, there may then be some independent variables that do not

take a major germ at all.

Hence it may happen that a differential equation may be

homogeneous with regard to only a portion of its independent

variables : and being homogeneous it may be of different dimen-

sions in reference to its different major germs.

Thus in the equation ^—j- =— , we may write mx, my, mH

for x
t y, t respectively, and the equation is therefore homo-

geneous.

Or we may write nx, nt for x and t, and consider the equa-

tion homogeneous with respect to x and t. So it is homogeneous

with respect to y and t And we may write Ix for x, and t~
x

y for

y. But all these results are included when we write hnx for x,

rlny for y, and mnt for t, there being three germs involved in this

case. This is therefore the most general assumption of major

germs ; and it implies that the equation is independently homo-
geneous with regard to x, y, f ; and to x, t ; and y, t. It there-

fore possesses a triple homogeneity; and to obtain general

results all three must be taken account of.

It will now be manifest that the existence of major and

minor germs can oftentimes be discovered prior to integration

from the form of the proposed differential equation by mere

inspection. We shall see hereafter, however, that there may be

possible major germs which are not so easily discovered.

And it is always to be remembered that we are at liberty to

introduce into a known integral any possible germs, and that

the result will be still an integral of the proposed equation,

which may be thereby rendered one of increased generality.



CHAPTER III.

ON SYMBOLICAL EQUIVALENCE.

37. We consider the elementary quantities and magnitudes

with which we have to do as being measurable by numbers;

and an essential property of every such quantity or magnitude

is, that " the whole is greater than a part of it."

Zero, which is usually denoted by the symbol 0, we consider

to be " the negation of quantity or magnitude." The absence or

negation of a quantity cannot be divided into parts ; and what

has no existence cannot be treated as having properties.

But zero, though non-existent as a measurable quantity,

admits of symbolical representation by means of real quantities

in an infinite variety of ways ; as for example,

- x — x\ = 1+ cos 2^—2 cos
2
a;

;

These are called equations, but we here speak of their right-

hand members as the symbolical equivalents of zero ; and hence

the mathematical sign (=) is to be understood not as always

denoting numerical equality, since zero is not a number, but as

(in such cases as these) denoting symbolical equivalence.

du nil
Also such a question as this,—find the integral of -*- + -j- = 0,

may be enunciated in the following equivalent form,—find the

most general form of u in terms of x, y which will render the

following equation a symbolical equivalence I -j- + -=-
J
u = 0.
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The reader will kindly keep in mind, whenever he finds the

sign (=) connecting two quantities, or two steps in an investiga-

tion, which are not equal algebraically, that that sign is in this

case to be read as signifying symbolical or integral equivalence.

We might preserve at every step, and in every equation, both

algebraic and symbolic equivalence, but this would have to be

done oftentimes at an inconvenient expenditure of time and
new algbraic symbols. After a little practice no inconvenience

will be found in the system employed in these investigations

which are chiefly about integrals. The sign ( = ) has three

meanings :—algebraic equality ;—symbolical equivalence ;—and

equal in generality as integrals.

38. For a reason analogous to that which leads us to

reject zero as a numerical quantity we reject infinity, for it

cannot be numerically increased by addition nor diminished

by subtraction, since it is not measurable by numbers.

Nevertheless there is a case of infinitude which can be dealt

with to advantage, viz., the case of series the number of whose

terms is infinite.

Infinite series are of two kind* :

—

1. A series may have a first term but no last term; or, in

other words, it may have a beginning but no end.

2. A series may have neither a first term nor a last term.

1 + 2 + 2
2 + 2

3 + . . . ad infin. is an example of the former

kind, and ... + ^ + ^ + ^ + 1 + 2 + 2
2 + 23 + ... of the latter

kind.

39. The meaning of the word equivalence which it will be

necessary to attach to the sign ( = ) in some of the subsequent

articles is so unusual that we shall add a few more illustrations.

The late Professor De Morgan proposed the following

equation for solution,

x = 2x.

If x be in this equation a numeral quantity, divide both

sides of the equation by x. Then on the ground that if equals
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be divided by equals the quotients are equal, we find 1 = 2,

a result which we are obliged to reject though obtained ac-

cording to the acknowledged principles of numerical reasoning.

Hence the only remaining inference is that the equation

before us is not one of numerical magnitudes. The equation

when put in a verbal form is this, " Find a numerical magnitude

that shall be numerically equal to the double of itself." When
thus stated the equation is seen at once to involve of necessity

a property irreconcilable with the properties of numerical

magnitudes.

40. But it remains to be ascertained whether the equa-

tion x = 2x admits of a solution reconcilable with symbolical

equivalence. Find x so that it shall be symbolically equivalent

to 2x, is now the problem before us.

There is no particular difficulty in finding the following

answer to this question,

a = ^(...+J + i + J + l + 2 + 4 + 8+...),

where A is an arbitrary constant.

Hence the right-hand member of this equation is a sym-

bolical equivalent of zero, which is all that is meant by the

equation

= J.(...+i + l + J + 1 + 2 + 4 + 8 + ...).

41. Let it be required to find x such that it shall exceed

its double by unity.

The algebraic equation for this case is

x = 2^ + 1,

of which there are three solutions, viz.

x = — 1,

#=1 + 2 + 4 + 8 + ...

and * = - (4 + 1+4+—)-

The first and last of these may be numerically equal ; but

it is evident that the second being a positive quantity cannot
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be numerically equal to either of the others. Hence the fol-

lowing are nothing but symbolical equivalences,

-1 = 1 + 2 + 4 + 8 + ...

i + i + i + ... = -(l + 2 + 4 + 8+...) (1). •

Both the terms of this last equation are legitimate expan-

sions of the same symbolical expression, —-

.

It is only in reference to the problem algebraically ex-

pressed by the equation x = 2x + 1, that we maintain these

equivalences to be real. They all satisfy this equation; yet

they are not its roots but its equivalences.

Another important matter is that the equivalence marked

(1) shews that two infinite series may be strictly equivalent

though one of them may be convergent, and the other di-

vergent.

42. We come now to speak of another matter which we
shall denominate "integral-equivalence" as being distinct from

algebraic equality. Brevity of expression is the chief object

to be attained by the use of this kind of equivalence. An
example will best explain its nature.

In integrating the equation -^—
2
=u by the method of infinite

series we find

7/^(l +
I^ + ....) + 5(f + TTJ-3 + ....),

in which the arbitrary constants A, B indicate that the entire

integral u consists of the sum of two independent integrals,

which we denominate subgeneral integrals. Each of these

is a perfect integral in itself and expressive of properties or

relations peculiar to itself. One of them contains only odd

powers and the other only even powers of x.

Having found the integral of the proposed equation in the

above serial form we proceed to introduce integral equivalences
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in the following manner, with the object of presenting the

integral in the briefest possible form.

= Aex + Be~x

= AeJx
.

This is our final result, and simple as it is, it is perfectly equi-

valent as an integral to the two infinite series which constitute

the entire value of u. In deducing it from those series the

arbitrary constants have suffered changes of identity at every

step, but we have been careful to preserve their only essential

quality, that they are arbitrary constants all through the

process of reduction.

Had the equation to be integrated been -j-^ + w = 0, our

result would have been

u = Ae1x
.

It will be seen from the above example that we shall

hereafter feel at liberty to use the sign ( = ), as denoting in-

tegral equivalence ; and that in so using it we shall consider

not the identity of the quantities denoted by A, B, C, ..., but

merely take care that each shall preserve its only essential

quality, viz., that it denotes a perfectly arbitrary and inde-

pendent quantity.

43. If / (x) be expanded in an infinite series it is usual to

represent the result thus,

f (x) = Ax* + BxP + Cxy + ... ad inf.

Professor De Morgan proposed that the left-hand member

should be denominated the Invelopment of the right-hand

member. We shall adopt this designation. It has been usual

to speak of f(x) as the sum of the series, but unless the series

be convergent this designation is incorrect.

When we meet with two symbolically equivalent series,

if we can find the invelopment of one of them we shall use that
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series in preference to the other without reference to its con-

vergence or non-convergence.

44. A series that has no last term may possess properties

not possessed by the sum of any number of its terms. Take
the following example

:

U=l-x + x2 -x*+...ad-'mL (1).

If we multiply this series by x and subtract the product

from unity it remains unchanged ; and this is not a property

of the series continued to n terms only. Hence the following

is true of the infinite series only, viz.

U=l-xU;
1U=

\ + x'

This is the invelopment of the series; i.e. it represents the

whole infinite series, and if it be expanded according to the

usual rules it will be found to produce the whole series.

But = -, and the latter expression is the invelop-
-L "t~ X X -J- JL

ment of the following infinite series,

= -* + -s--4+... ad inf. (2).
x + 1 x ar xs x4,

Now since the invelopments of these respective series are

symbolically and algebraically equal, we say that the following

is both a symbolical and an integral equivalence,

1 — x + x2 — . . . ad inf. = T + - 3 — ... ad inf.

;

and therefore in reducing an integral to its simplest or most

manageable form we should not hesitate, if necessary to secure

ultimate success, to introduce this equivalence, or any other

which rests on the same basis.

45. We shall now generalize the above results by shewing

that the two following infinite series are symbolically equivalent,

A + Bx + CV + ... « A + Bx~x + Cx'* + ...

E. 3
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in which A, B, C, ... are constant quantities, definite or indefi-

nite.

Instead of C, B, E, ... in the left-hand member write

respectively C - 2B, B' - 4C + 3J5, E' - 6B' + IOC" - 4£, &c.

.*. A+Bx+Cx2 + Bx*+...=A+B(x-2x* + 3xs - 4^4
+...)

+ C'(a2 -4.z3 + l(k4 -...)

+ B' (x
s - 6x* +...)

+ &c.

Bx C'x2 B'x*

{l+xf '

(1 + *)
4 (l+#) 6

'

. igar
1 (7Va DV8

= A + Bx-1 + Cx-^ + Dx-* + ...

The validity of this investigation depends entirely on the series

being infinite, and it cannot hold good for n terms, with the

single exception of n = 1.

It is to be noticed also that the quantities G\ B', E\ ... are

used in the proof merely as artificial means of distributing the

terms of the left-hand series into groups suitable for our purpose.

And it is obvious that a different grouping would have led us to

another type of symbolical equivalence; as will be seen in the

following Article.

46. To shew that the two following infinite series are sym-

bolically equivalent to each other

;

A + Bx + Cx2
4- ... = xp (A+Bx-1 + Cx~* + ...),

the index p being subject to the sole condition that it must not

be a positive integer.

Instead of B, C, B, ... in the left-hand series substitute the

following quantities,

X I . —
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1 I . — [._..)

&C. = &C„

the law of these substitutions being obvious, and requiring, as

the series are infinite, that p shall not be a positive integer.

On making these substitutions and proceeding step by step

as in the preceding Article we arrive at the following symbolical

equivalence,

A + Bx + Cx* + ... = xp (A + Bx*+Cx* + ...)

= Azp + Bxp- l + Cxp-*+...

47. This result may be presented in the following form,

"'©•
And if A, B, C, . . . are absolutely arbitrary and independent,

then is also the function F( -=-) an arbitrary function of -j-
,

subject only to F( j-\ 0=0.

The value of this result in the discovery of subintegrals will

be seen when we come to the actual integration of equations.

The reader may compare these results with Art. 23.

3—2



CHAPTER IV.

THE TRANSFORMATION OF LINEAR DIFFERENTIAL EQUATIONS

OF THE SECOND ORDER.

I. Two independent variables; coefficients constant.

48. Our object in this chapter is to reduce equations to

their most simple forms with thewiew of discovering those forms

which present peculiar integrational difficulties.

We may classify any linear differential equation of two inde-

pendent variables and having constant coefficients under some

one of the four following heads,

/ x « d2a A du „ du ~
x ' dxdy ax dy

. ~ ~ d*u , , x d*u 7 d?u A du ^ du „
(^...^ 1?+ {a + b) 1̂ dy

+ abw + A-
d
- + B Ty+

Cu.

, x A / d . ad\ 2
. .du T,du

t n

*«* r, ( d , ad\* . f d ,
ad\ „

49. To reduce the form (a) assume a new dependent varia-

ble v such that

n=v€- Ay~Bx
.

This gives the following reduced form when substituted for u,
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which comprehends the two following elementary forms,

/iN d2
co , d?co . .

W =dX dy' md d^ry
='a <2) -

The former of these presents no integrational difficulty; and

the latter we shall integrate in a future Article.

50. To reduce the form (£) we change the dependent

variables by assuming two new variables f, rj such that

x=z^+rj and y = af + brj.

du _f d d\ , du_/d
h
d\

dg \dx dy) ' drj \dx dy) *

and the reduced equation is

d2u B — bAdu B — aAdu „
af drj a — bdl; b — a drj

which being of the form (a) can be reduced to the forms (1) and

(2), and therefore furnishes no new integrational difficulty.

51. To reduce form (7) we assume x = ^ + tj and y m af -f- -j rj
;

du (d d\ . du fd B d\
" -dr\TX+

a
dy)

U
'
and ^{dx +Afyh

and the following is the form of the reduced equation,

A d2
u . du n

and by changing the dependent variable, if necessary, by writing

vemrl for u, m being such as to satisfy the equation Am + G = 0,

we obtain the following form,

The following are therefore the ultimate forms furnished by

form (7),

,Q v (Fa d?co da) . .

(3) =
«P + <°' c&=dj W«

and S = ° (5 )>

of which (4) only presents any new integrational difficulty.
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52. To reduce form (8) we assume x = f + rj and y = a^ + br)\

du (

d

d\

and the reduced equation is

A d2
u .du

, n=
d? +

A
dS
+Cu>

a form which does not contain rj I which is equal to ——j-
J

and

presents no integrational difficulty. It is in fact an equation of

one independent variable ; and consequently, when it is inte-

grated, arbitrary functions of rj, or rather of (ax — y) must be

used instead of arbitrary constants.

53. Hence gathering together the forms that are of difficult

integration we find only the two following,

d2u i d2u _ du

dx dy
~

dx2 dy
'

These forms it will be our business to integrate in the follow-

ing chapter.

II. The case of three independent variables,

54 We may arrange any equation of this class under some

one of the four following heads,

, v ^ d2u A du 7 > du , ~ du
, T^

(a)...0=
7—r +A-J- + BJ- + C j +Aw.

x ' dxdy dx dy dz

d\i a?u .du ^du ~du j~

W'" - dxdy dxdz " dx dy dz

, .
rt d2

u d2u
t

, d2u A du T?
du n du „^ =

d^j + a
J*j2

+ b d^z + A T.
+ B

d
1/

+ C
<h +

K<>-

,., . dhi d*u
,

d'u
,

d°u . d*u d'u
(8). . .0 = jj, + a

<7?
+ ,8 -, + a

dxd;/
+ b2^+ ^
dx dy dz
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55. To reduce the form (a) we assume u=ve~ Ay ~ Bx~ mz
i

where m is a constant that satisfies the equation mC+ AB=K,
and the following is the reduced form of the equation,

which includes the two following elementary forms,

n

*

^*a) =o d -^2ft> =— (2)
* ' dxdy ' dxdy dz" r

;
''

The former of these presents no integrational difficulty.

56. To reduce the form (fi)
let x, y, £ be a new set of inde-

pendent variables, in which £=z — ay. The reduced form of

the equation is

d2u A du ^du ir* „. du T,

dx dy dx dy d£

which coinciding with form (a) introduces no additional integra-

tional difficulty.

57. To reduce form (7), for u write ve
mx+nl,+re

, the constants

m, n, p being such as will satisfy the three following equations

:

= A + n + ap, =B+m + bp, and = G + am + bn.

The reduced equation is the following,

d2
v d2

v 1 d 2
v rT ,

dx dy dx dz dy dz

in which K' — Cp — mn -f K.

Let now the independent variables be changed to x, y, f

where f= z— ay — bx. By this means the reduced equation

becomes
<Pv , d

2
v

, „,

dx dy d£2

which includes the two following new elementary forms,

/m d2
co d2

co , d2
<o d*co ...

(3) -j

—

r- = -^-, and -y—j-=-To* + a> (4).w dxdy d£2 dx dy d?
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i

58. To reduce the form (S), assume a new set of independ-

ent variables f, rj, f such that

% = x — gy, t) = y — hz, and f = z — kx,

the constants g, h, k being such as will satisfy the following con-

ditional equations,

0=og*-ag+l, 0=/3h2 -ch + l, and = k2 -bk + /3.

By these means the form (5) will be reduced to form (<y),

and consequently introduces no new elementary forms.

59. Gathering together the elementary forms which pre-

sent integrational difficulties, we find that they are the three

following

:

d2
u _ du d2u _d*u , d?u _ d2u

dx dy dz ' dx dy dz2 ' dx dy dz2

In this chapter we are therefore presented with five difficult

linear differential equations of the second order with constant

coefficients ; viz. two when there are two independent variables,

and three when there are three independent variables.



CHAPTER V.

INTEGRATION OF EQUATIONS OF TWO INDEPENDENT

VARIABLES.

In the preceding chapter we have seen that the two fol-

lowing equations present the only difficulties that are experi-

enced in the integration of linear equations of the second

order with constant coefficients. In this chapter we shall

bring in the properties of germs to our aid in the task of effect-

ing their complete integration.

60. To integrate 3^ =^-

According to Art. 21 the following is a series which may be

assumed for the complete integral of this equation,

which being substituted in the proposed equation gives the

following complete form of u,

where P«4+JSj+
<^T2 + -j

the constants A, B, C, ... which are absolutely arbitrary, being

the coefficients of the subintegral constituents of u. Hence we
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may write M,M2
, if

3
, ... for them (Art. 13),M being an extempo-

rized germ ; and then we shall have the following equivalence,

p =A+B*\^1-2 + AeMx .

y

u
d2 f
dx2 + 1.2'

d4

dx*
+ .

Thus it is proved, for the proposed equation, that the general

exponential integral of Art. 30 is the complete integral.

In this form of the general integral the minor germs of x and

t are implicitly contained in A, the general coefficient ; andM is

a general germ, i.e. it is liable to contain both real and imagi-

nary quantities. The major germ is explicitly contained in

the integral, on which account the integral takes a form which

we may refer to as the major-germ form.

61. In Art. 31 we have shewn the general method of ex-

pressing an exponential integral, that contains general germs, in

an equivalent integral containing real germs only.

In the integral just found we have merely to write M+ im
for M; and the following is the form in real germs M, m

;

.-. u = A^M2 - m2»+M* cos m (23ft + x+B).

The minor germs of x and t are in this integral implicitly

contained in the arbitrary constants A, B. The form is a

major-germ form.

62. To find the integral of ^-r2 = -77 in a minor-germ form,

i.e. in a form which renders the major germ latent in the arbi-

trary constants of the integral.

From Art. 34 we learn that the subintegrals obtained by

the elimination of a major germ will all be homogeneous and of

different dimensions. This therefore suggests the following

method of obtaining the subintegrals required.
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Let V be a function of x and t which is of zero dimensions.

The general representative of such a function in the case of the

proposed example will be V —
<f> f-r-J , for if Mx, APt be written

x
in this for x, t, the germ M will disappear. Denote -j by v, and

then the following general form of homogeneity will represent

any one of the subintegrals,

P = t*V,

the dimensions of this subintegral being p.

This being an integral of the proposed equation must satisfy

it, and being substituted therein, the following is the resulting

equation for the determination of V,

dv% + 2 dv P

Now we wish to obtain subintegrals in a finite form, or if

that be not possible, then in a form that shall give a finite

expression for u.

We make use of p (which is disposable) for this purpose

;

and enquire what value ofp will give a finite expression for V.

We can see at once that p — — \ will answer our purpose. The

above equation being integrated on this supposition, we find

t)2 v2 r v2

V=Ae~~i +Be~~z \e1dv\

.-. p = t
p V= Ar*e~u + Bt^e'it e*dv.

The last term we reject because it is not in a finite form

;

„/d d\ ^i _*2

•'• U = F [dx>dt)'
t2eU '

Now the proposed equation shews that -j- when applied to

any integral of the proposed equation is equivalent to (-r-)

applied to the same integral

;



44 INTEGKATION OF EQUATIONS

and this is the general integral of the proposed equation, in a

form that renders the major germ latent. (Here the sign =
denotes integral equivalence ; and F stands for the words " ar-

bitrary function of.")

Lest the reader should have any doubt of the generality of

this result we will obtain it in another manner.

d?w du
63. The proposed equation -z—

2
= -^ has constant coeffici-

ents, consequently the following is by Art. 21 the general as-

sumption for its perfect integral,

in which P, Q, R, ... are serial functions of t of the general form

A+B i +cJ^ + ...

The substitution of this value of u in the proposed equation

furnishes the following form of the general integral,

fa if d * a? \ n
(!)•

These are the two subgeneral integrals ; and the former

contains only even powers of x, and the latter only its odd

powers ; and this is due to the fact that -j- occurs in the pro-

posed equation in the form (-=-) only.
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The first subgeneral

Kit-)'

= * (J) (« + <?)* see Art. 22,

Our wish is to obtain the subgeneral integrals in a finite

form, and therefore we now ask what value of p will enable us

to find the iovelopment of this infinite series. There is no

particular difficulty in seeing that p = — J will enable us to

do this;

:. first subgeneral = e ~Ht+g) (t+g)~*

= F(^\.t-ie~ft (Art. 19).

And from this we can deduce the form of the second subgeneral

integral.

Differentiate with -=-
.

ax

(X X9 d '

\ /„ n t ti t \

Now the right-hand member of this is of precisely the same

form and generality as the second subgeneral integral in (1)

;

.*. second subgeneral =f(ji)-j- t
~ ie *t
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with the understanding that this integral shall contain only odd

powers of x.

Hence if we gather the two subgeneral integrals together we
have two terms, of which one contains only even powers of x,

and the other only odd powers

;

—('(£/(£)} ..-..*

-'($<-'•*.

which agrees with the result obtained in the previous Article.

64. Hence we have found the two following forms of the

general integral of the equation ^—2 = -j-
,

(l)...u = Ae™t+Mx,

in which the major germ M is explicit, and the minor germs

latent; and

in which both the major and minor germs are latent in the

general operative function F (-7-
J

;

-m-
It will not be forgotten by the reader, that when (=) does not

denote algebraic equality, it denotes the words "symbolical

equivalence."

65. To integrate -^—=- = u.
ax ay

Both x and y take minor germs. Hence the general integral

can be completely expressed in a series containing only positive

integer powers of x and y.
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The following may therefore be assumed as a general form

of u,

P, Q> R, ... being serial functions of x of the general form

Substitute this form of u in the proposed equation ; and the

following is the result (in which we take the liberty of using

dx
-t for the symbol of integration),

-t(»z)('+*i+«nt+'--)

- + (,*).,- Art. (29)

(1) = Aecx+C~^, c being a general germ.

Hence the exponential integral

u = AeMx+Ny, subject to MN = 1,

is perfectly general in the example before us in this Article.

We may obtain the first subintegral in the following manner

by the elimination of the germ c from (1).

The form of the proposed equation shews that the product

(xy) is of zero dimensions. Let v* = xy, and let Fbe a function

of v. We may assume the following as the general representa-

tive of subintegrals,

P = xp
V.

This being substituted in the proposed equation gives the

following for the determination of F,

av v dv
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This will be integrable in a finite form if we assume 2p + 1 = 0,

and therefore p = — \ ;

.'. V = Ae2v + Be- 2v

= Ae2iv
,

and the first subintegral P = x~^V

— cc~le2J^*v

-

••—VtB'S-^^* »
Now it appears from the form of the proposed equation that

the symbolical product of -j- and -r- is equivalent to unity, when

applied to any integral of that equation ; the above form of u

may therefore be presented in the following equivalent form,

The following equation is obviously true, and it gives rise to

the latter of these two subgeneral integrals,

— . x'h2^ = y-ie2^**
dy J

It has therefore been proved above that the elimination

of the major germ c from the exponential integral

u = Aecx+c
~

l*
(4)

gives the following form of the first subintegral, to which we
shall often have occasion to refer,

P^x-h2^,
Now the integral (4) is expressed in terms of c as a general

germ j but we may express it in real germs by writing

c (cos m + i sin m) for c,

and c
-1

(cos m — i sin m) for c
-1

,

in which new forms of the germs, c and m are to be considered

real germs.
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Let K=cx + c~
1

y, and I—cx—c~l

y, then the integral (4)

will take the following equivalent general form of expression in

real germs,

u = AeKco* m coa (Ismm + B) (5).

d?u
66. The various integrals of , , + u = may be deduced

from the two preceding Articles by writing therein — y for y.

.-. u = AeM*+Xv = F(J^,^\.x~i cos (2Jw + B)

subject to MN+ 1=0.

The following Article is introduced for the purpose of future

reference.

67. To change the independent variables of the expression

d2u

dxdy

'

Let f and 77 the new independent variables be such that

d d d , d d , d
~j~ ~ ji- + a -J- i

and -y- = -tt + b -v- .

dx dg drj dy d% drj

These assumptions require that a, b shall not be equal.

.*. g= x + y, and 77 = ax + by,

and also, x = - =? , and y = — v ~
, .a-b ' * a-b

&u = /d d \ (d_ .d\
dxdy \d% dy) \df; drj)

2?
+ (a +

*>3f3*
+ aW (1) '

Also (a-byxy^-^-aQirj-bg)

= -(v*-a + b v% + ab?) (2).

68. To integrate
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We deduce the required integral from Art. 65 by writing

therein the above values of x and y in terms of f and rj.

^W-a+bnt+abp)*

69. To integrate the equation (-7-2—
j-J

t*=0, in which

-r~,j — -T-] is repeated w times.

Changing the dependent variable, assume either u = e?™* F,

We begin with the former (m being a general germ).

-.Afll+y)"-1,

A. being a minor germ of y.

... u-**» Y
= Ae>mx+m*v(h + y)

n- 1
(1).

Had we taken the form u = em*"X we should have found

=(£-w)"(i+m
)"x'
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' which is equivalent to the following integrals,

(a—)"x=°- and (i+mJx-
'

.*. w = €mV{^l€^(^ + ^)n-i + Be~mx (x + l)
n- 1

} (2),

which agrees with (1) ; since As?™* represents both Ae™ and
Be-™.

A similar method of treatment will succeed with the equa-

tion

\dx dy )dy

We have hitherto confined ourselves to equations with

constant coefficients; but in the following examples the coef-

ficients are functions of one of the independent variables.

70. To integrate

d2u adu b du

dx dy xdx xdy'

In this equation x and y can take a major germ ; and y can

take a minor germ also.

Hence changing the dependent variable we assume the fol-

lowing general form for the integral of this equation,

u = e
mv X,

7n being the major germ, and X being a function of x.

This value of u being substituted in the proposed equation

gives the following for the determination of X :

(•-£>£-«

= A (mx — a)*,

.-. u = A{mx-a) b
<rv (1).

4—2
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In this integral the minor germ is latent, and the major

germ is explicitly involved in it. Also m is a general germ.

Again, to find the general integral in a form which renders

the major germ latent.

We assume afV as the general type of the subintegrals

;

7 being a function of v, and v = -

.

x

Substituting ofV for u in the proposed equation we find the

following equation for the determination of 7 in a finite form

;

d ( dV\ ., .dV
, lr A

That this may be integrable immediately the following

condition must be satisfied ; ap = — a.

Consequently in the general case /> = — !; but when a = 0,

p will be subject to no condition. a=0 is therefore an ex-

ceptional case.

d ( dV\
, n ,

.
N
<27 Tr

_

This equation being integrated, gives the following as the

first subintegral,

7 ^*6 ? .fe6 ?p=JL = ^. 6

r^6 ^ r

+ 3+r«" J
«*«"*

(2),x yb+l y

and u^F^\(x 1
V).

Thus the proposed equation is completely integrated in a

form that renders the major germ m latent; but the term

multiplied by B will not be in a finite form, and will therefore

have to be rejected, unless b be a positive integer.

We will now take the exceptional case, viz. when a = 0.

mm... ,
<Fu b du

71. To integrate -=—7- = - -=-
.

ax ay x ay

.-. u = xl
F(i/)+f(y).



CHAPTER VI.

EQUATIONS NEARLY RELATED TO. LAPLACE'S EQUATION.

Coefficients constant.

72. To integrate gj-^.
Let M be a general germ.

= <l>(x+jt) (1).

Expressed in terms of real germs only, we have by the

method of Art. 31,

u = A<F(X+M cosm (x +jt + B) (2),

M and m being in this form independent real germs.

To obtain the integral from which major germs are elimi-

nated, let us assume v = -, and V=(j>{v). Then all the sub-
t

integrals will be of the form P = t
p V, which substituted in the

proposed equation gives,

This equation will be integrable at once, and therefore

in finite terms, if we assume —2p =p(p — 1),
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The two roots of this are p — 0, and p = \. The former

is of a doubtful character as to whether zero is or is not to

be considered to be not a positive integer ; the latter we see is

allowable.

We try the former, rejecting that part of the result which

is not in finite terms, and find

F=P = ^logVr

= illog—* (3).°x + t
K '

To find the second subintegral, or rather the first sub-

integral corresponding to the second subgeneral integral, we
assume p — — 1.

' ' dv*

d ( 2 dV\ dV
dv\ dv J dv

Av + BV=
v*-l

and *-*r,*T£r W '

= A(x + t)-
1 + B(x-t)-\

'
: r*(S*

= F(x + t)+f(x-t) y

which agrees with equation (1).

But as the value of P in (4) is of the dimension (-1) we

may by integrating it with regard to x raise it to the dimen-

sion zero; in which case the first subintegral will be

73. Change the independent variables of the equation

dx* ~ df ;
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and let the new variables f, rj be such that

f-logJS^?, and „-log(J=D*,
then

d 2u _ d*u

Hence the form of the proposed equation is not changed by

this change of variables ; from which it follows that we are at

liberty to write log Jx2 - t
2
for x, and log f—77^) for t m any

integral of

d2u _ d2u

dxz ~~df y

and the resulting formula will be an integral of the same equa-

tion.

74. We shall now consider the equation

d2u d2u _ ft

dx2 dy2

We begin with the following proposition respecting this

equation and its integral. If in an integral of the proposed

equation we write ax -hjby for x, and ay —jbx for y}
the result-

ing formula will be an integral of the same equation; a, b being

arbitrary constants.

Let g = ax +jby, and t) — ay —jbx, and let f, tj be the new
independent variables. We find that the result of this change

is the following differential equation

d*u d 2u _
df*

+
dv

2
~

Hence the form of the equation is not affected by this change

of the independent variables; and consequently we may write

the above values of f, tj instead of x, y in any known integral of

the proposed equation and the resulting formula will also be an

integral of it.

On this we may remark that the substitution of ax+jby
and ay—jbx for x and y will introduce two germs a, b into the
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integral; and if the integral in which this substitution is made
had been deficient in the number of germs it contained, the

integral that results from these substitutions will contain two

additional germs, and may possibly now contain the requisite

number to render the integral general.

An example will illustrate this.

U=ex cosy

is manifestly an integral of the proposed equation, and it con-

tains no germs. Make the above substitutions for x and y; then

the following is also an integral of the proposed equation, and it

contains two germs a, b,

Z7= eaz+ibv cos (ay -fix).

If into this we introduce the minor germs of x and y we
have the following result which is (as we shall presently prove)

the general integral of the proposed equation,

U= Aeax+^ cos (ay -jbx + B) (1).

7o. To integrate -^ +— = 0.

The general exponential integral is

U^AlJtix+iy) (ty

=
(f>

(x + iy\

(in which we are at liberty to write ax + jby for x and ay — jbx

lor y).

Let r
2 = Xs + y

2
, and tan = -

,
. *. x = r cos 0, y = rsin0,

x

. u — <f>(r. cos 6 + % sin 6)

= <t>(re»)

= ^(rel
*

fl

) + i|r(r6-^)

= (rhie
)

— Arinein0

= (Arn + Br~ n
)
(aen9 + be~ nd

)

= (Arn + Br~ n)(acosn0+bsmn0) (2),
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n being a germ ; and A, B, a, b being independent arbitrary

constants.

76. Let r and 6 be made the independent variables instead

of x and y; then the equation of the preceding Article takes the

following form,

(rd\*
,
d*u n

from which we learn, that we may write in any integral of the

equation of the preceding Article ri for r, and j6 for 0.

Also 6 takes a minor germ, and r a major germ.

If we seek the first subintegral after the manner of Art. 72,

we find

first subintegral = A log Jx* + y
1 +B tan"

1 *

.

x

u = F&°zj^* +f{iy™'i »
The integrals (1) and (3) are symbolically equivalent.

If^log^ + 2/

2
,

Hence we may write log Jx2, + y
2
, tan"

1 - for #, y in any in-
x

tegral of the equation of the preceding Article, and the resulting

formula will be an integral of the same.

tit m • x d2u d*u
77. lo integrate -7-5 +-7-3 = u-

The general exponential integral may be presented in the

following form,

U = A^M

+

W x+(M-N)iy

— jleM(z+iy)+N(x-iy) ^
subject to the condition 4iMN= 1.
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This equation of condition will be satisfied if we assume

2M = c (cos m + i sin m)

2N = c
_1

(cos m — i sin m)

in which c and m are real germs, and also independent.

Let K= J (x cosm — y sin m)

and I—^{y cos m + x sin m)

.-. w = ^e^+«r
1)^cos{(c-c-1)/+ JB] (2).

78. If we now consider c a general germ, and assume

2M =s c, and 2JV = c"
1

, we find the exponential integral in this

form,

This form of the exponential integral agrees, as to its germ c,

with equation (1) of Art. 65, from which we learn that the follow-

ing is the form of the first subintegral P,

P = (x + iy) ' * e
j\/(x+iy)(x-iy)

t

This comprehends the two forms, (r
2 being equal to x* + y

2

),

P = {A (x+iy)~t + B (x- iy)"i\ eK

Now x + iy = r (cos + $ sin 6) = re 5®.

••• -(;
A 2 7? *\

= r-i(^6 2 + JB€" 2 )(a€'' + 5€-0 (1).

in which A, B, a, b are independent arbitrary constants.

This value is symbolically represented by the following brief

equivalent,

u = Ar-leir € 2
(2).

79. The integral of j-2 + -j-% + u = may be deduced from

the preceding Article by changing the algebraic sign of c"
1 but

not that of c.

.\ u = Ae^-o-W cos {(c + c"
1

) /+ B],
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and P= (x + iy)~ * ^to+tyuy-x)

80. There are several important equations related to

Laplace's equation which are reducible to the following type,

d?u _ d?u a du

df da? x dx

'

We shall denominate this, when a is a positive quantity, the

standard equation of this type, for a reason which will be seen

presently.

For a small number of particular values of a this equation

has been integrated, but for general values of a it has not been

integrated.

The value of a admits of reduction in the following manner.

Let a = 2n -f b, 2n being the greatest even integer in a ; and

let a) be an auxiliary dependent variable such that

d*(o _d?co b dco
'

W~dxr
'¥
xdx~ ( '

d
f

dco\
, t / d(o\

~ dx\ xdx) \xdx)

'

Operate on both sides of this equation with —p

,

<f /fcV I. (P fd<o\ h_d^(dm\
df \xdx) x ' da? ' \xdx) x dx \xdxJ

d?_ /dm\ b + 2 d_ / dco\

dx2 \xdxj x dx \xdxj

On comparing this equation with (1) we perceive that we have

here —7- instead of a>, and 6 + 2 instead of b. These changes
xdx

are simultaneous, and if repeated n times the following would

necessarily be the result,

!?(JLY ^!L(A.\
U

b + 2n d / d\m

df \xdx) dx2 \xdx) x dx \xdx)
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But a = 2n + b,

f ••• -tar- *
81. When the integral of the standard equation is known

for any positive value of a, the integral for an equal negative

value can be deduced from it.

For the equation

d?u _ d?u adu
df dx2 x dx

is immediately reducible to the following form,

d?u _ d „du
(I*

d

dt* dx ' dx

Now operate on this with (xa
-j-j ,

df \ dx)
~~

dx' dx\ dx)

If now we write eo for xa y we have
ax

d?(o . d „ d(o

.eft
8

da? ' da?

da?
8

a; dx a).

which agrees with the equation in u, with the exception of

having — a instead of a. If therefore u the integral of the

standard equation be*known the integral of (1) will be known

from the equation,

~*s »
It will therefore be a sufficient solution of the problem of

integrating the class of differential equations of the type

d2u _ d*u adu
3? " 5? + 5 d»

'

if in subsequent articles we confine ourselves to positive values

of a.
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82. The forms of the following differential equations are

all deducible from the general form

d?u _ d2u a du

dt
2 dx2 x dx

'

d2u f d
.

\dudu fa \(m
XW\X

dx
+a

)dx

^^VdxJ^'dx 1

*» = *-** *p (1).
dt

2 dx dx '

In this write f for (a — l)t and rj for a?
1- *.

*S-A£ »'• df ' drf

This form fails when a = 1, but in that case the following is

the reduced form

;

2 d
2u f d \* .„v

If in this we write f for log x, it takes the following form,

d2u _<* d2u
e
g

dt
2 dp

83. The integral of the equation

d2u _ d2u a du bu

dt
2 ~ dx2 x dx x2

can also be deduced from that of the standard equation.

Multiply it by x2
,

d*u

dt
2

(4).

x2

(xd \ fxd
, \

m, n being the roots of the equation

m2 + (1 - a) m + b = 0.



62 EQUATIONS NEARLY RELATED

d?u _» /acts m _„ (xd>
x
*df

~ x ©-•-©*"*

" df " X
dx'

X
~dx~ {l)

'

which it will be observed corresponds to the form (1) of the

preceding Article, m — n + 1 taking the place of a, and uxn of u.

This reduction fails, however, when m and n are equal. In

this case m = J (a — 1),

a*

fxd \*

*S»-©to *
which agrees with form (3) of the preceding Article.

84. To integrate

d*u _ d?u adu
df dx2 x dx

when a is a positive even integer.

In this case on referring to Art. 80 we find that b = 0, and

In = a. Hence the auxiliary equation (1) of that article takes

the following form

d*(o _d2
eo

df ~"M*

.-. co = F(t + x) +f(t-x)=F (t +jw).

... USS (A)\
\xdxJ

-&F(t+&
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85. To integrate the same equation when a = 1, i.e. when

the proposed equation is

d2u _ d?u 1 du

dtf do? x dx
'

"

2 d
2u _n

df̂ =
(
x
Tx)

u'

Now only t can take a minor germ ; but this equation is homo-
geneous on the supposition that t and x are of equal dimensions.

Hence v = - and V, which is a function of v, are of zero dimen-
x

sions. We may therefore assume P = afV to represent any one

of the members of the family of subintegrals. This being

substituted in the proposed equation gives the following equa-

tion for the determination of V in finite terms

;

d?V d

dv2

It is evident that this equation will be integrable if

-(2p + l)«p»,

.-. = (p + l)».

We have therefore to deal with a case of equal roots. One
integration gives the following result,

dV * dV . 17, I>

dv dv

We have now to introduce suppositions, since the form of the

integral of this equation will turn upon the relation between t

and x.

1. If f is less than x2
, v* is less than unity, then the equa-

tion to be integrated is

v_ A Bsin^v
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Hence the first subintegral, corresponding to the two sub-

general integrals, is

^sin"1 -

(1).

But this subintegral can be raised to zero dimensions by-

integrating it with respect to t, for (a? — f)~^ — -j .sin"
1 - (see

Art. 25). We may therefore take the following as the first

subintegral form of zero dimensions,

P =A (sin"
1

£) + B (sin"
1

£}
+ B (log mx)\

in which m is an extemporized major germ.

2. Again, let us now take the case when f is greater

than a;
2
, and therefore v* greater than unity.

The equation to be integrated is in this case,

.-. Vi>
2 -1. 7=^1 + .B log (vWl + Vf-1),

.-. P = («'-^)-J^ +51og(^+l +V
/^-l)}...(2).

This integral can be raised to zero dimensions by in-

tegrating it with respect to t, for

As only the variable t takes a minor germ, the family of

subintegrals can be obtained from (1) and (2) by differentiating

or integrating with respect to t.

The following is therefore the general integral required

in this Article,

. -,t

j - sin -

«- J,(l)^-^l

+/(l)-TO- if -' ><?'

or .-r$)V-W*ffc)*{^l+^l).
ift

2 >x\
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86. To integrate ^ =
J~i + ~

â s
*
when a u a P°sltlve

odd integer.

Referring to Art. 80 we find that b = 1 in this case, and

n m J (a— 1). Hence the auxiliary equation of that Article takes

the following form, /^^^~^TT^\
d?a> _ d?co 1 da r of the */v
"5? " ^~8 +

#3£f U N7 V E R S I T rl
which is the form integrated in the preceding Artidil ,.« k

.

/ d \*<*-»

ot- rn . ' dPtl cZ
2^ adu ,

87. To integrate -^ = -=—
a + ~ T~ when a is not an integer.

The differential equation for the determination of Fin this

case is

do

V d ( t dV\ fo ,
. dV

t

. \ XT7

and that this may be integrable so as to give V in a finite form

we must have — (2p + a) =p* —p — ap;

.-. (p + l)(p + a) = 0.

In this example therefore the two values ofp are not equal

;

and one part of each subintegral will correspond to p = — 1,

and the other to p = — a.

1. Let^ = -1.

Integrating the above on this supposition we find,

dV 2 dV /0 , - n

a

Multiply this by (1 - v*)~ l and integrate

;
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We reject the last term, being not integrable in finite terms,

and we only require one integral form for this value ofp

;

.-. P = x- 1 V=Ax1-«(a?-?)%~
1

(1).

2. Let p — — a.

Integrating the above equation on this supposition we find

(1 - ff V= A'f(l- v
2
) dv + B.

We reject the former term of this because it does not give an

integral in finite terms and we require only one integral form

for this value ofp ; '

/. P = x'« V=B(x>-?)~% (2).

Gathering the two parts of P together we have the following

complete value of the first subintegral,

P = Ax1-«{x*-ffi~
1

+ B(<* r f)~*.

The other members of the subintegral family are to be

derived from this equation by differentiation with -g

.

If t be greater than a?
9
, we may write (t* — a?

2
) for (x

2 — f) in

this subintegral.

It will be noticed also that the above subintegrals contain

only even powers of t. Subintegrals containing only odd powers

of t will be obtained from the above by differentiating once

with -j- . We may however pass from P to the general inte-

gral which (as only t can take a minor germ) will be (Art. 19)

88. To find an integral of the equation

-772 + (
cos x - r~ ) V + n

\
n + 1) cos * • w = 0.
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Only t takes a minor germ; and therefore, changing the de-

pendent variable, we may assume u = e
mt X, in which m is a

disposable constant

.-. (costf.^)
2

X + {n(n + l)cos
t x + m*}X = 0.

An equation of one variable only, of which a particular integral

may be found by assuming X~cos*#, I being a disposable

constant.

.*. Z"sin*a? — lcos*x + n (n + 1) cos
8 <c+m2 = Q;

.'. (P+m*) + (n* + n-rt -l)cosi x = 0;

.\ Z
2 + m2 = 0, and n* + n = l* + l;

.'. l = n or — (n+1), and m = il = in or — i(n + l);

.*. u = Aeint cosw a? + Be" 1 (w+1>
' secw+1 a?.

We have introduced this example here chiefly for the

following reason, and it will be hereafter referred to.

The integral of the equation does not depend directly upon

the given value of n, but upon the value of the product n (n+1).

Now this product will remain unchanged if we write — (n + 1)

for n ; and consequently the two terms of the above integral

belong to it of necessity.

The four following Articles are not specially connected with

Laplace's Equation, and therefore do not properly form a part

of the present Chapter ; but are here introduced as illustrations

of the principles laid down in Art. 33 respecting quasi-minor

germs.

89. Equations are occasionally met with which are of the

following type,

*(ax + by, £, |)«-0.

We may simplify this form by writing x, y for ax, by. This

change of the independent variables will reduce this equation

to a form which we may represent by

•(" + *as« i)
u=0 (1) -

5—2
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and this is the equation which we shall now shew how to

reduce to a more convenient form for integration; our object

being to obtain an equation in which one of the independent

variables shall appear only as a differential symbol of operation

(see Art. 18).

In the equation as now before us, though neither of the

independent variables can take a minor germ, they can take a

quasi-minor germ g ; for the equation (1) is in no way affected

when x + g is written for x and y — g for y simultaneously.

Hence the general integral of (1) must be of the following

form,

u = F(x+g,y-g)

•?*(*r$*M <
2>-

And F(x, y) being the first subintegral, all the other sub-

integrals are deducible from it by successive differentiations

\dx dy)

'

Now the relation between f^- — -j-j and {x + y) is such

(7
7 x

-z -j-
]
(x + y) m 0, and therefore in reference to the

compound operation [-3 -r- 1 the quantity (x + y) is constant.

This suggests the following assumption of new independent

variables f, tj.

Let ^— cix — hy, and tj = x + y ;

t , N d d d

and therefore f and 97 are independent variables which satisfy

the above conditions.
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A1 d d • d j d d i d
Also j- = -j- + a -jr. , and -j- = -, o-jt.,

dx drj d% dy drj af

and the equation becomes

w
{
v'i

+a
i> i,-

b
i)

u=0 (3)-

from which we see that equation (1) is now reduced to a form

in which one of its independent variables (f) occurs only as

a differential symbol of operation, and will consequently take a

minor germ.

The following example is one of historical interest.

nA rp . , cPu d?u
,

4ta du
90. To integrate ^ = ^s +— s .

We assume f = t — oc, and rj = t + x
;

dV _ a (du du\ n v

•'•

d£dv ~v \dv~~dl)
'"*' {) '

We may write mf, mrj for f, 9; in this equation without

affecting it ; hence f, rj take a major germ ; and f takes also

a minor germ.

This equation (1) has already been integrated in Art. 70

;

.\ u = A(jm,7}-a)- a6Jmt
(2),

mA (mrj - a)- aem^ +B {mrj + a)-««~**.

Also assuming rfV for the first subintegral, where V is a
t

function of v, and v=-, we find p = - 1, and the first sub-

integral

P = Vrf
x = >--

a
- e^ (4 + i? /is"" V" fl^) (3),

This integral will be in a finite form only when a is a nega-

tive integer. When a is not negative the last term must be

rejected.
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91. An inspection of the integral just found shews that

the case of a = 1 is peculiar, for then it takes the following

form, w^ + s/«-.*) ;

omitting the last term as not being a finite form, we have

Let this be differentiated with f^J, or (more generally

still) with t(j£;

t-x

= <l>(t + x).et+x.

92. To integrate the equation

, ^d2u , N / du , du\

We here assume x = rj + f, and y— ,
r\ — \\

dhi _ d2u a — bdua + bducu
/1

»

•'•

d![
2

~~dtf
+~~ % ~T~^ + ? (; *

If a = b this form of equation has been dealt with in Art.

83 ; but if a and b are unequal we may proceed in the fol-

lowing manner.

The variable f takes a minor germ ; and also we may write

m£, 7nr} for £ 7j without affecting it.

We may therefore assume v — ~ and V— a function of v ;

and the general type of subintegrals is P = rfV; and then

the following will be found to be the differential equation for

the determination of V:

+ 0>
9+ op + bp -p -f c) V,
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which will be integrable in finite terms if the coefficients of the

last two terms are equal. This gives the following equation for

the determination of the two values of p corresponding to the

two subgeneral integrals

:

p* + (l + a + b)p + (l+a + b + c) = 0.

Represent the roots of this equation by m+jn; their

sum = 2ra

;

/. 2ra = -(l4-a+ &);

also the equation in V being integrated once gives the fol-

lowing :

We omit B as not leading to a finite integral, and also

because each value of p, i. e. each sign of jn is required to

furnish only a single integral form of V.

Omitting B and integrating, we find

KV ^ +Br,"(V'-?T} (2).

Also —J(gp.

P may be expressed in terras of x and y as follows :

P
.(f-\,

+,r{^)\B(^f\ «
and in this case

\dx dyj

93. The preceding Article fails if the roots be equal, in

which case n = 0, and m = — £ (1 + a + b).
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Let Q = log—— ; we reduce equation (3) as follows; (=

means equivalence)

;

A (J3L)"+B(-2LY-A<«+Bt
-

v»+ y/ \»

+

y)

=A (e
n« + r*) + - (e*Q - €""«)

= A + BQ, when w = 0.

For equal roots therefore

(« + y)
-

2 ^ + 5 iog-SL) (4).

There still remains the case of imaginary roots, which will

be represented by writing in for jn;

= {AcosnQ + B smnQ] (5).



CHAPTER VII.

EQUATIONS OF THREE INDEPENDENT VARIABLES.

Coefficients constant.

94. All the independent variables of equations of this

class take minor germs ; and therefore a general integral of

any such equation will be expressible in an infinite series,

every term of which contains only positive integer powers

of the variables.

As a general rule the more independent variables are con-

tained in a proposed linear differential equation the more

independent major germs may there possibly be; but this

is not necessarily the case always. A major germ may per-

chance belong to only one, or to two only, or to all the inde-

pendent variables ; and thus an individual independent variable

may be under the influence of so many as there are different

major germs. When the major germs have been introduced

into the general exponential integral (Art. 34), we can then

eliminate them one by one in any order that shall be found

most convenient.

It will be found that the final result of the elimination of all

the germs will sometimes depend upon the manner in which

major germs were introduced into the original exponential

integral ; for sometimes they may be introduced in more ways

than one. And thus we may obtain in more forms than one a

general integral of the proposed equation free from major germs.

95. To integrate the class of equations represented by

d\ _du
dy) dt

'

(I
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In this class of equations oc, y, t take independent minor

germs, and therefore the general integral u is completely ex-

pressible in a series containing only positive integer powers of

these variables. We may, therefore, assume

tt =P+Q| + ij|
1

+ -sJ+...

in which P, Q, R, ... are series containing only positive integer

powers of x and y, the general type of them all being the follow-

ing,

Let the above series for u be substituted in the proposed

equation

;

ft .far .***,?** \ p

in which -cr is used, for brevity, to represent <xr ( -y- , -7-
J

.

Now in the series which P represents the coefficients are,

every one of them, absolutely independent and arbitrary. They

are therefore the coefficients of the family of subintegrals of

which u is constituted. We may therefore replace them with

two independent general germs M, N in the usual manner.

.-. u-(l + * + ?£+...).A*»n

==.^ €Mz+Ny+SUV,N)t (1),

which is the usual form of the general exponential integral.

That form of the general integral is therefore proved to hold

good for all equations of three independent variables of the class

proposed in this Article.
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C7

7 v

-T-, -j-
J

not resolvable into equal

factorials, for such a case requires a somewhat different treat-

ment. See Art. 69.

96. To integrate the class of equations represented by

(d d\ _anu
*W dy)

U
~df'

the operative symbol st f-r- , -t-j being supposed to be not re-

solvable into any factors that are equal.

Following the method of the preceding Article we find in

this case,

P representing the same series as before, and Q being an in-

dependent series of precisely the same form.

The two terms of which u consists are the subgeneral inte-

grals, one of them containing only even, and the other only odd

powers of t ; and wo notice that the form of the latter subgene-

ral integral may be deduced from the former by differentiating

with -=- once.
at

Now for the same reason as in the preceding Article we

may assume, as was there proved, that

Let *T{M
y
N) = L\

/ft* \
.

•
. first subgeneral integral = [1 + ^-

i

s7+t^'dt2 +
...J

eMx+ir?

-^**(i+£u,

+Jim-.v")

.*. form of second subgeneral integral is
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Both of these terms are comprehended in the one form

j£ €Mx+Ny t€jLtm

Hence both the subgenera! integrals may be included in the

single form

u = Ae*******1
*, subject to L2 = w (if, N).

Hence the exponential integral of Art. (30) is general and

complete for all linear differential equations that belong to the

class proposed in this Article.

The existence of the two independent subgeneral integrals

in this one expression for u is secured and indicated by the sym-

bol j, which always carries with it the double sign ± .

nt_ m . . d*u du du
97. To integrate W =^ +

Ty
.

Let the independent variables x
t y be changed, the new

variables f, rj being such that x = f + tj, and y — f+ mrj.

du du _du , d*u __du .

'*'
d^o
+
dTy~Ti '

and WJi W '

By this change of variables the proposed equation has be-

come an equation of only two independent variables t, f ; and

therefore the remaining variable 17 = y
is to take the places

of the arbitrary constants in the integration of (1).

The integral of (1) we find in Art. 60 to be

/. u = AeM^+m =(f)(x-y).eM2^+Mt (2).

This is the general exponential integral; and M is a general

germ.

By the same Article we have the following form of the first

subintegral,

P = A%-ie 4g =y 9)-^H^=g (3).
Jmx — y

The value of P contains only even powers of t, and therefore

it gives us only one of the subgeneral integrals. But the other
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subgenera! integral will be obtained from this by differentiating

with -r (Art. 96). Hence both subgeneral integrals are con-

tained in the following,

\W *Jmx —y

In this m is arbitrary and may be put equal to ( — 1).

98. To integrate £-(£ + £)'«.

Proceeding exactly as in the preceding Article we find

du __d?u

di~~d£2 '

... u = <l>(x-y).€m+W (1),

and P=Ji-*e a= y x
n

•

. e 4(m-i)2<»

.: u = F(j>).t-U-Tt.4>{x-y) (2).

93. To integrate g=(J: + -|)V

This may be resolved into the two following independent

simple equations,

du _ (du du\

'di~ ± \dx
+

fy)'

which can be integrated in the usual manner.

If we proceed with the proposed equation after the method

of the two preceding Articles we find -gy = -^ , which has been

integrated in Art. 72, whence we shall obtain the integral in its

various forms; but arbitrary functions of x — y will have to be

written instead of the arbitrary constants contained in them.
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100. To integrate $ +g + |)\ = 0.

By the same method the integral of this equation will be

obtained from Art. 75.

101. To integrate -55 = -7—7- .

cut doc cLy

The general exponential integral of this equation takes the

following form,

u = Ae*x+Nv+MNt (1)

= AeMx .eN{y+Mi>

= €Mx <f>(y + Mt) (2).

Similarly u = eNv ty (x + Nt) (3),

the last two being the results of the elimination of one germ

only.

To eliminate both the germs from (1) the simplest method

will be to change the forms of the germs M, N by assuming

M= ra + n, and JV= m — n ; m, n being two independent germs.

.*. u = Aem{'x+ y) +w'*t
. en (z-y)+n2 (-t)

m

Both m and n may be eliminated by Art. 64; and the chief

subintegral is

_(*+2/)2 OS-*)8 W

This form of P is such that we can at once obtain from it

the form of the general integral u.

-iMiweF *
102. The integral of the equation

du d2u , ,. d2u , d2u_ =_ +(a+6)__ +a6_
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may be deduced from the preceding Article by assuming as in

Art. 67,

103. To integrate ^| =^.
The general exponential integral is

u=AeMx+Ny+jLt
(1),

subject to the condition L2 = MN.

We may eliminate the germs, and obtain the first subinte-

gral in the following manner,

u = £ e
Mz

t e
Ny+sjN{jt^m.

By Art. 64 this gives the following subintegral by the

elimination of N, _

MP

.-. P = Ay-K€M (
x~(y)

This contains only even powers of t corresponding to one sub-

general integral, and the odd powers which are contained in the

other will be contained in -=- . Both subgeneral integrals are

contained in the following formula,

-'(S-'-^O'-S-*2/>

But x and y are interchangeable in the proposed equation,

and therefore also in P and u. Hence the complete values of

P and u are the following

:



80 EQUATIONS OF THREE INDEPENDENT VARIABLES.

Again, since MN=U, we may assume in this case,

M—Le (cosra + isinra),

and N= Le~x
(cosm — i sin m)

;

• ^ = ^[gL{(ca;+c~l
#) (cosm+t(«c-cr-ii/)sinm+^}

in which Z, m and c are independent real germs.

Let K= (ex 4- ca;"
1

^) cos m +^, and I=(cx — c
-1

3/) sin m.

= 4>(K + iI) + ^(K-iI) (3).

104. In the first part of the preceding Article we took no

account of the fact that the proposed equation allows us to

write ex for x, and c"
1

y for y quite independently of t The
variables x, y have therefore a special relation, and we have

therefore to consider the following form of the general ex-

ponential integral of that equation,

u — AeL^x+c
~ly+j()

= <t>(cx + c-
1y+t) + yjr (ex + 0-^-1) (4),

in which c is a general germ.

We may eliminate c by Art. 64, in the following manner

:

.'. u= AeiLt . ec (Ljc) +c_1W

;

= ar*. eL <
2V^l2!>

= x~l<l>(2\/xy+jt).

As # and y are interchangeable, the general integral may be

presented in the following form,

u=F
(&) •

""* * (2
^~

y +jt) +f (4) • y"** (2V^+i')-(5)-
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,,*- m • , d2u d2U
108. To integrate - 5 +^- = 0.

We have merely to write — x for x, or — y for y in the

results of the two preceding Articles. Or we may write it for t

106. The integral tf^ =^+ («+&)^+ ai^ may

be deduced from Art. 103 by means of the same change of the

variable x, y as occurs in Art. 67
;

x = 7 and v = — r >a-& u a-b
and

We may derive the following form of u from Art. 104 :

+ £ (a - J) i£]

107. Let a = 1 and b — — 1 in the preceding Article ; then

the integrals of the equation

d*u _ d*u d*u

d?~~df* ~dV
*

will be of the following forms,

«=*(S-«-'>->*(W)
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But t and 77 are interchangeable, and the two terms of this

integral may be represented as one ; the following is therefore

the form in greater detail,

f + ^-f
^•-'(S-« +«-i#^

/©•***W) *
The second form of u will be the following,

+/(J+yJ).«+io-»+Kf-n*+«ii (2 )-

108. If in the preceding Article we write if for f, the

integrals of the equation

d*u (Fit d*u _ n
df+d? +

«V~
will be

"'0)-<'+*-'<-^) <>

and

« -'(^+-<a) • (>»+*S)-l*(^P+?+6) •(*>

It being understood in these results that 2, f, 77 are all inter-

changeable.

109. To integrate ^ =5^+^ .

This equation takes the form

dt dxdy '

a form which is integrated in Art. 101.
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110. To integrate -73 = ^

—

r + u.
at ax ay

The general exponential integral of this equation is

u = -4c**+*iH-/X*

subject to the conditional equation

L2 = MN+l or L*-l = MK
We may here assume

Jf->e(£+l)i and iV
r = c"

l (Z-l),

c being a general germ
;

.-. Mx + JV?/ + j£tf = L {ex + c
-1

y +j7) + ex-
c~x

y ;

= Ae!°x
-<rl

v<l>(ca: + c~
1y+jt) (1).

The germ c still remains uneliminated ; we shall therefore

now shew how to eliminate both the germs (L and c) contained

in the exponential integral,

u = j± eJLt t ec(L+l)x+c-HL-l)y t

Hence by Art. 65, eliminating c, the following is the corre-

sponding first subintegral,

p_ €JLt f x-h e
±2 <J(L*-l)xy .

Let now £ = 2 V#^, then eliminating L by differentiation of

the last equation we find

.
d*(P</x) _ d*(P^x)

" -~aT~- dp + *rVf*

and by the method of Art. 78 the first subintegral of this

equation is

G—

2
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Hence the first subintegral of the proposed equation is

P = x~i(2^a;i/+jt)-ieLy/t2-^y (2),

whence u is known. The algebraic signs j and + in this inte-

gral are independent ; and oo, y are interchangeable.

111. In the preceding Article c is a general germ; but if

we wish to have the integral which is equivalent to (1) in real

germs, we may write

c (cos m + i sin m) for c, and c"
1
(cos m - i sin m) for c~\

c and m being now real germs.

__. . d2u d*u
112. To integrate -^.g-^-*.

Here the exponential integral is

subject to the condition

U = MN-\, or L2 -i2 = MJ!T.

We now assume

M=c{L + i), and JS
T = c"

1 (L - i),

c being a general germ;

= </>(ar + c"
1
2/+i^).cos {cx-c~x

y + I?) (1).

Following the method of Art. 110 we have

.*. P=eJLt
.
^-i e

*2V(L2+l)iC2/.

.-. P = a;-i(2A/a;y+i<)- i e
±V4^- <!

(
2

),

whence w is known. As before .r, y are interchangeable.
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113. In Art. 74 we Lave shewn that the independent

variables of the equation -j4 + ;p = ° may De changed without

affecting the form of the equation itself. We shall now prove

a corresponding property for the more general class of equations

included in the following form,

s?*^-"^ di)
u (1) -

Instead of x and y assume two new independent variables

f, f], such that f = Mx+jmy, and 7) = mx+jMy; the dis-

posable constants M, m being subject to the following con-

dition,

lP±m2 = l .(2).

Let the integral of (1) be u = F (x, y} t) ; and let

W =F& v, t).

df
±

dif
«(' i)

+ ^4- = s> it, %t)W.

But ~M =M W+2Mm
dfdv

+ m W5 '

and W=™*^ + *M™W +M
1W>

d*W d?W d2W , d2W / d
-•(' i) If.'•

cfo
2 * dtf &? ~ dif

On comparing the last result with the equation (1) we

see that W is an integral of (1). And as f, rj contain a germ

that is .not contained in F (x, y, t), the integral F (£, rj, t) will

contain that germ, and be at least as general as Ffa y, t).

Hence without diminishing the generality (and with a

chance of increasing it) we may write Mx+jmy and mx +jMy
for x and y in any integral of equation (1).

In equation (2) we may substitute \ (c + c"
1

) for M, and

l
-(c — c"

1

) for m when the upper sign of m2
is used in (2) ; but

23
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when the lower sign is used we must substitute %{c- c~
x

) for m,

c being a general germ.

The double sign in this Article is regulated by that in equa-

tion (1).

114. It will be observed as a property connecting the

two sets of independent variables used in the preceding

Article, that

We may represent either of these quantities by r
2
. Hence

in passing from the equation in terms of x, y to the equivalent

equation in f, rj, and expressing the results in terms of r and

another independent variable, the quantity r will occur in the

two resulting forms in the same manner, and be of the same

value in both.

, n „ ^ . , d?u
,
d2u du

115. To integrate gp + j^-^.

The general exponential integral may be written in the

following form :

u = AeMx+Ny+(-
M2+N**

= AeMH+Mx es
*t+y

'

v
.

By Art. G4 the germs M, N may be eliminated, and the fol-

lowing is the general form of the subintegrals,

p = fh € u .t~*e it

&+£ (ix+x/Xix-y)

= t
1

6 U =t 1
€ U

From this we may find u in the following manner,

\dx dy/ J \dx dyJ
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If now we assume x = r sin 0, and y — r cos 0, this integral

takes the following form, since

y + ix = r (cos 6 + i sin 6) = rei9
>

=k^G>) (?>•

116. To integrate

c£V cZ
2
m _ dw

efo?
2

dy* ~ dt

'

We might deduce this from the preceding Article by merely

writing iy for y ; but we shall integrate this equation in an

independent manner.

Let f, 7) be a new set of independent variables such that

g = %-t-y and i] = x — y ;

cZ
2^ _ du

dgdr)~ 4dt

'

This agrees in form with the equation integrated in Art. 101

;

•••-iKM* 1

*M .4!
t,

y*-x*

117. To integrate

d?u dhi _ ePw

dx2 + df~d?'

This has been integrated in Art. 107, but the following method

will serve as an illustration of the variety of ways in which

germs may be introduced into the general exponential integral

:
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Eliminate iV; then the first subintegral is

(<-a?)-4.€ v *-*'

<->-"(!^f-')
The proposed equation shews that in any integral we may write

jt for t We also notice that x and y are interchangeable.

Introducing these properties, we find the following general

integral,

118. The integral of the equation

&u &u d2u _

will be deduced from the preceding Article by writing it for jt\

This is a complete general integral of Laplace's equation.

119. By a different distribution of the major germs from

that in Art. 117 we may obtain in another form a general in-

tegral of the equation

cPu d?u _ d2u

dx~*
+ dy*~df'

Let M = ^ €
^+c-i| + i(C -c-i)| +,Y

}

Eliminate c by Art. 65 ; then the following is the first of the

subintegrals,

P = €JLt
. (x + iy)-* €

±LV*^2

,\ u = (x + iy)-*F(jt±JxT~+tf).
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120. If in preceding Article we write iz for jt, we find the

integral of the equation

d2u d^ d?u_

dtf dtf
+ dz2

'

in the following form,

u = (x + »y)-* J* (Jx?+y2 ± iz),

which is a form of the general integral of Laplace's equation

agreeing with (2) in Art. 108.

121. To extend to three independent variables the pro-

perty proved in Art. 113 for two.

Our equation is now of the following form,

/ d\ d2u d2
u

,
d2u

(
fe 5j

ttsa
2? +Si + 3? (1) -

Let r2 = x2 + y
2 + z

2
; and let £, v , £ be^

variables such that /p^^^or r^^^f
f=«w+«'y + «"4UlTIVERSiTr

K = ca + c'y + c'V.
! rF0Itf^

The nine constants in these expressions are disposable ; and we
are to dispose of them in such a way that when these values of

f, r]
y f are written for x, y, z in any integral of equation (1) the

resulting formula will also be an integral of the same equation.

Let u =F (x, y, z, t) be any integral of equation (1), then is

F= F (f, r], J, t) an integral of the equation

L d\ ,r d2u
,
d2u d2u

dV dV.dVdV fad ,
bd

,
cd\ JTBut

^x
= a

Ti
+ h

l^ + C Wr\di +Tv +W V
'

d2V__/ad bd cd\
2

v
•'•

dx2 \dg
+

dr,
+ dy
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f-(f+IM)v

Expanding and adding together the right-hand members of

these three equations, and assuming the following six relations

among the nine disposable constants,

1 = a2 + a'
2 + a"

2 = b
2 + b'

2 + b"
2 = c

2 + c'
2 + c"

2

and = ab + db' + d'b" = ac + dc + d'c" = bc + b'd + b"d\

we have the following general result,

ffV d?V d2V_d2 V d2 V d?V
dx2 + dy2 + dz% df

+
drf

+ d?

= ^ [t,
j^j

V, by equat. (2).

Hence V, which is equal to F (£, 77, £ t), is an integral of

equation (1) when the above values of f, rj, f are written for

x, y, z in F(x, y, z, t), which is equal to u.

122. It will be observed that the nine disposable constants

have to satisfy only six conditional equations; and moreover
that those six equations are such as prove the following general

relation between x, y, z and f, 77, f,

x2 +y2 + z
2 =£2 + v

2 +Z2
.

Hence r2
, which is equal to x2 + y

2 + z
2
, does not change in

value when we pass from x, y, z to the values represented by

t v, e

123. In reference to the equation (1) of Art. 121 we are

aware that x, y, z which it contains are not necessarily the

co-ordinates of a point P in space, nor is there necessarily any

system of co-ordinates to which they are referred ; but for con-

venience in what follows we will suppose them referred to an

arbitrary rectangular system of co-ordinates Ox, Oy, Oz, and we
will set off upon these axes the values of x,y

}
z; and suppose P
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the point in space of which x, y, z are thus constituted the

rectangular co-ordinates
;

... 0P2 = r
2 = x* + y

2 +z\

Now on these same co-ordinate axes set off a, a, a" as the

co-ordinates of a fixed point A ; and let b, b\ b" be those of B,

and c, c, c" those of G.

Then if we assume 0A = 0B=0C=1, these assumptions

satisfy the first three of the conditions to be satisfied by the

nine disposable constants ; and if these lines OA, OB, OG be

now supposed to be at right angles to each other, the following

equations shew that the constants will then satisfy the re-

maining three conditions also. For then

ab + a'b' + d'b" = cos AOB = cos ^ = 0,

77"

ac + ac + a"c" = cosAOG - cos ^ = 0,

bo + b'd + b"c" = cos BOG = cos | = 0. .

Hence, if OA, OB, OG be each equal to unity and mutually

at right angles, the six conditional equations are all satisfied

;

and OA, OB, OG may be taken as an arbitrary system of rect-

angular co-ordinate axes. We say an arbitrary system, because

of the nine disposable constants on which the positions of OA,

OB, OG depend three are still disposable, and these render the

position of this system so far arbitrary.

Now as x, y, z are the co-ordinates of P, and OP = r,

x — r cos xOP, y = r cos yOP, z = r cos zOP
;

.-. cos^OP = a- + a'^ + a'
, - = ^;

r r r r

.-. f = r cos A OP.

Similarly 7) — r cos BOP,

and £=rcos GOP.
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Therefore f, rj, f are the co-ordinates of P referred to the

arbitrary system of rectangular co-ordinate axes OA, OB, OC

;

the position of which in reference to the original fixed system

Ox, Oy, Oz depends upon the values arbitrarily assigned to the

remaining three still disposable constants; which we may in

fact describe as three disposable real germs.

When therefore we have before us an equation of the class

comprehended in the equation

('. D
d \ _ d?u cPu d2u

U
~dx~2

+
dtf

+ d?

we are at liberty to substitute, in any integral of it, in the

places of x, y, z, the values of f, tj, f in terms of x, y, z given in

Art. 121, and the formula produced by such substitution will

be an integral of the same equation ; and will virtually contain

three real germs which were not contained in the original

form of the integral. And moreover the value of r
2
will not

thereby be affected.

r 7 » rt *« d*ii d*u
t

cPu
Laplace s Equation, t-2 + -j—a + -p = 0.

124. The following is the simplest form of the general

exponential integral,

subject to the condition if2
4- A72 m 1.

This integral is equivalent to the following form,

u = AeL <**+JM cos (Lz + B).

If we now write in this for x, y, z the values of £, t), £ found

in Art. 121, we shall have a general form which may be thus

represented,

u = A€L (ax+a'y+a"
z) cos L (bx + b'y + b"z + B),
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(d, a', a", b
y
b\ V are not here the same as in Art. 121, but

at present they are disposable).

Let the cosine be replaced by its exponential equivalent;

• u __ j^ 6 L(a+ib. x+a'+ib' .y+a"+ib' - z)^

That this may be the general integral, the following condi-

tion must be satisfied,

= (a + ibf + (a + ibj + (a" + ib")\

which separates itself into the two following independent

conditions,

a2 + a"
2 +a,/2 = &

2 + 6' 2 +Z/'
2

,

ab + a'V + aW = 0.

Now the presence of the arbitrary germ L permits us,

without any loss of generality, to assume

a2 + a 2 + a'
/2 = &

2 + 6' 2 + b"
2 = 1

:

and this assumption being made we find, on reference to Art.

121, that these six disposable constants are identical with the

corresponding six in that Article
;

.*. ax + ay -f a!'z = f

,

and bx + b'y + b"z — rj,

and consequently the general exponential integral may be
expressed in the following brief form,

u = Ae L
* cos (Lri+B) (1),

and the above equations of conditions among the six constants

a, a', a"
}
b, b', b", shew that f and rj are interchangeable

;

.-. ««4VG'm(2$+.ir) (2).

Either of these results may be regarded as a general integral of

Laplace's equation; or by addition they may be combined

in a single integral.
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The six disposable constants are subject to only three con-

ditional equations.

On reference to Art. 1 23 we perceive that f, rj are the co-

ordinates of P referred to the two lines OA, OB; while x, y, z

are the co-ordinates of P referred to the three fixed rectangular

axes Ox, Oy, Oz.

Hence f, rj are the projections of OP (i.e. of r) upon OA,
OP respectively ; and as the positions of these two rectangular

axes are dependent on' three arbitrary germs, therefore the

values of £, rj involve those three germs, and consequently

the integral

u = Ae Lr
> cos {L% + B)

is a germ integral.

If we assign particular values to the three germs we obtain

from this a particular integral: and as particular values of

germs may be infinite in number, we may thus obtain an

unlimited number of particular integrals, which we may deno-

minate a new family of subintegrals : and out of them it may
be possible by proper management to construct a general

integral in finite terms in a form suitable to a physical or

geometrical problem which we may have in hand.

125. To integrate -+--
2 + _=0.

Assume the following form of the general exponential

integral,

Eliminate M; then the form of the resulting subinte-

gral is,

-mz2

P= e m{iy-x) m {{y + xy i € iy+x

= (iy + x)-h™ V X
~W+v)

;
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fr+^'Gnis)

_ J. (x + iy

r \x 4- 1?// \a?+ 2^/

-ljr(-£A „.-!*(•+£) (i)
r \x + iyJ[ r \ r

2
J

K '

. , 7?i being a germ,

p^i+i V
2/«

This integral contains only even powers of z ; conse-

quently this is only one of the subgeneral integral forms.

The other subgeneral form will be found from this by differ-

entiating with -T- .

Let us now assume x — r cos 6 cos
<f>, y = r cos 6 sin

<f>

z = r sin 6

;

.'. x + iy = r cos 6 (cos
<f>
+ 1 sin <£) = r cos e ?^

;

.'. w
^i/^ +Mm_^/cos^ V
r \ r

2
J r \ r ' J

1 r, /cos ,.\ ,_.

"?'("tt.-^J (3) -

This subgeneral integral contains two independent arbi-

trary functions by reason of the double sign of i.

We may obtain another form of the subgeneral integral in

the following manner

:

126. To integrate ^ +^ + £,= 0.

Assume the following form of the general exponential

integral,
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the germs M, m being subject to the equation M* + m2 = 1

;

.*. U = Ae iNz
. e

M(Nx)+m{Ny\

Eliminate M and m ; the following is the corresponding

form of the subintegral

:

P—(a± iy)-h*V ^^W'+iz) .

.-. u m (x ± iy)-*F (Jx* + y* + iz) (1)

= A(x± iy) -* (Ja? + f + iz)
m

,

m being here an extemporized germ. Also y and z are in-

terchangeable.

But x±iy = re*** cos 0, and Jx* + y
2 + iz = reie

;

.'. u = A (re*** cos 0)"* {rei9 )
m

= (re*** cos 6)-* Fire*) (2).

Also u = Ar™-* Jcos 6 .
€***

. e* 1* (3).

The form of this integral differs from that found in the

preceding Article, and illustrates the power we have over the

form of the general integral, since we can introduce the germs

into the general exponential integral in more than one set of

different relationships to the independent variables.

Laplace s Functions.

127. Let the independent variables in Laplace's equation

be changed from x, y, z to r, 0, <j> ; these being defined by the

equations before given, viz.,

x — r cos 6 cos <£, y =r cos 6 sin
<f>,

z — r sin 6
;

... ^ +^ + / = r3
.

and the transformed equation is

9 d?u ft
du

,
d*u * du ia d7u
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or more conveniently in the following form,

Concerning this form of Laplace's equation we remark that

r alone takes a major germ ; and
<f>

alone takes a minor germ.

Also /#,/(/> may at any time be independently written for 8, <j>

in any integral of it.

Now as mr may be written for r (m being a major germ) in

the integral of (1), that integral (Art. 13) may be expanded in a

series in powers of m
;

.*. u = mp .rpWp -\-mq .rqW
q

-\- ...

and the powers of m in this equation may be replaced with

independent arbitrary constants, which are in fact the coeffi-

cients of the subintegrals of u. The quantities denoted by W
are functions, not of r, but of 6 and cj>.

We may therefore take the following as the general repre-

sentative of the subintegrals of u
f

P = r
n W.

To determine W corresponding to a given value of n we
substitute this subintegral in equation (1), and the result is,

Q = n(n + 1) cos
2 6 . W + Uos . ~) W+ ~i =0...(2).

This is the Equation of Laplace's Functions, and from this

equation we perceive that r has been divided out, leaving W,
the representative of Laplace's Functions, dependent on the

value of the product n (n + 1), the only remanet of r.

128. Lemma. The numerical value of the product (n -f a)

(n + b) will suffer no change if we write in it - (n + a -f b)

for n.

Hence n (n + 1) remains unchanged in value when - (n + 1)

is written for n.
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This shews that instead of assuming the general form of the

subintegrals in the preceding Article to, be P = rn W, this will

not be a general assumption unless we write Arn
-V ar~

n~x
for r

n
;

.\ P=(Arn + ar-
n-1)W

is the general form of the subintegrals ; and if it be substituted

for u in equation (1) of the preceding Article the result will

be found to agree with equation (2).

Consequently W, the nth Laplace's function, is also the

-(n + l)th function.

Hence u admits of expansion in two independent series, one

comprising only positive powers of r, and the other only nega-

tive powers ; and the corresponding terms of these two series

will have the same forms of W. We say forms because IF will

contain at least two independent terms, the equation (2) being

of the second order.

129. In Art. 125 we have found the following subgeneral

integral of the equation

° = C0* e
-dr{dr

+
*J

U +{COs6 'd6)
U +

d<t>>
'

in which m is a germ.

As a particular case take m—n\ then the general term in

the expansion of u will be

«-£. (cos e.&f.

But we have shewn that this term is equal to Ar^^W;
consequently one part of W is (cos . e^)

n
; and the other part

will be found from this by writing — (n + 1) for n
;

.-. W=B (cos d.e^y + b (cos tf.e^r
1
-1

(1) ;

V. P- {Arn + ar-"-') {B (cos 6 . e^)
n + b (cos 6 . e^)"""

1

},

and if we write m (a germ) for n, we may write u for P.
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.\ u = (Arm + af™-1

) [B (cos 6 . e^)
m + b (cos 6 . e^)^1

}

= F(r cosO .e^ + ^f (r-
l cos6 .?*) (2).

130. We may find Win another general form by means of

Art. 126. For according to that Article we have

u = A (reM* cos 0)~* (reie
)

m
.

Assume m = n + \ as a particular case ; the corresponding

term in the expansion of u will be

r
n

. (e
±i*cosd)-lei (n+W.

Hence the part of W corresponding to this is

W={e±i*cos6)-l€i (n+»9
.

If in this we write — (n + 1) for n, we find the remaining part

of IF to be

W= (c*** cos ey* e-^+w.

Hence the complete value of W is

W= (e*** cos 0)~i [Be**+M + be-*n+*»}

= (e*** cos 0)-* {B cos n + £0 + J sin n + |0} (1),

and the value of the general term in the expansion of u cor-

responding to this will be

= (Arn + ar~n
-1)W (2).

Thus we have in this and the preceding Article found two

distinct forms of Laplace's functions.

We may write m (a germ) for n, and the results will then

take the form of arbitrary functions, and (2) will be equal to u.
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Exceptional case of Laplace'8 Functions.

131. This occurs when the value of n is such as renders

n (n + 1) = 0, for then the first term of equation (1) of Art. 127

vanishes, and the equation for the determination of W takes the

following form, .

Assume r such a function of 6 as shall satisfy the equation

dO = cos 6 .dr;

.: W=F(T + i<j>)

= *-(e*tan !+^) (1).

Also Arn + ar~
{n+l) becomes A + - when n = :

r

,.^ +g^tan^l) (2).

This gives us that portion of u which corresponds to two

terms of its expansion in integer powers of r, viz., A and -

.

The algebraic signs of j and i are independent in these

results.

132. To integrate the equation

d\i d2
a d2u _

dw* + df
+
'd?-

U '
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We may assume the following as the form of the general

exponential integral,

^ — j^ eNMx+Nmy Jrnz

subject to the two conditional equations

if2 + m2 = l, andiy2 + 7i
2 = l;

We may eliminate M and m from this integral, thereby

obtaining the following general subintegral form,

P= enz (x + iy) ~* e^vVts+iVKs-ty)

m (# + iy)
~ i enz+jNs/&+tf,

By the same method we now eliminate n and N, and obtain

the following as the first subintegral,

P=
(
x + iy) -* . {Jx

2 + y
2 ± iz) -*&+&++

= (a? + ty)~* (Jx2 + y
2 ± w)-» e* (1),

= (r cos . €<*) "* (re**) -I e'r

= r" 1 e** (cos 0.el* •***)"*
;

(
2).

Written out more fully this is equivalent to the following,

r
^(Aer + ae'^j3GC0(Bcos^^ + b8m

1^) (3).

It is not to be forgotten that the form of the proposed equa-

tion shews that in integral (1) y and z are interchangeable.

In (3) there are no interchangeable variables.

133. To integrate — +~2+— = u.

We assume the following as a form which is equivalent to

the general exponential integral,

u^Ae^^+^y+^cosXQx + my + nz + B) (1),

subject to the following condition (which the two disposable

constants p, \ enable us to assume)

(L + il)
2 + (M + im)2 +(N + in)

2 = 0.
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This resolves itself into the two following independent

equations,

L2 +M2 + N 2 = l
2 + m2 +n2

\
and Ll +Mm+Nn = j

^*

If the above value of u be substituted in the proposed equa-

tion we find that the following relation must hold good between

fju and \,

H
2 -\2 = l.

Hence if c be an extemporized germ this condition will be

satisfied by assuming

/i = i(c + c
_1

) andX = J(c-0 (3).

Hence the integral form in (1) is fully determined.

Again, let 8 = Lx+ My + Nz, and T^lx + my + nz, subject

to the equations (2) ;

.'. u = Ae^cos\T
= AellS+i?<T

= A 6C • * (S+m +a-1
.h(/3- i'D.

Eliminating c from this integral we find the following form

of the general subintegral,

P=(S + iT)-iej^&+T
~
3

(4).

134. The integrals of the equation

d 2u <Fu d2u _
dx2 dy2 dz2

may be deduced from the above integrals by changing the alge-

braic sign of c"
1 but not that of c.

-.ok m • , d2u d2u d 2u du
135. To integrate^ +^ +3? - 5 .

The general exponential integral may be put in the follow-

ing form,

u m AeLz+My+Nz+ <-L2+ip+N*) t

L, M, N being independent germs

;

.'. u = AeLH+Lx . €
,/2' +if# . eNH+Nz.
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The germs being all eliminated by Art. 64, we obtain the

following form of the first subintegral,

= £-$€~«.

We may pass from this to the general integral in the follow-

ing manner

:

A 3 _?.
3 -fd . d\ _t±£ \ * -£./& . d\ -*±

3 -I2
= $-*€ «

136. To integrate^+^4.^*^.
The general exponential integral is

11 = AGL (MXz+mN'y+nz+jt)

the germs being subject to the following conditions

:

M2 + m2 = l, and N2+n2 =l;

.'. U = ^6^^+^)
. eM(LNz)+m(LNy\

Eliminating if and m. we find the following subintegral,

P = eL(nz+jt) i ^ + ^-J eLN\/&+y~*

and eliminating iV and ?i in the same manner we find the fol-

lowing subintegral,

P = e
L# (a? + ty)"* (J^Tf ± iz)-i^*+++*

= (a? + ty) ~* (Jaf + y* ± iz)-$

e

LW+4
;
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/. u = (x + iy)~l (Jx* + y* ± iz) -*F {r +jt) (1)

= r"
1
(cos d .

€*'<***>) "i F (r +jt)

Vsec / <f> + D . <fc + 0\ frT/ N
'

• -^7— (^ cos£|- + 5 sm
^|-J

{i^(r + +/(r - t)}.(2)

137. Laplace's equation is rendered important beyond

most other equations by the circumstance that many pro-

blems of great interest in various branches of Natural Phi-

losophy lead to it, and for their perfect solution render a

knowledge of its general and complete integral a matter of

necessity; for without that knowledge the investigator is

obliged to assume some particular integral known to him, and

this he fixes upon as being likely to answer the object he

has in view. But this is a method which cannot but limit

the generality of his results, and so far limit their authority in

any case of appeal.

We shall, therefore, conclude this Essay with the follow-

ing summary of the method and principles by which we
have been enabled to accomplish the complete integration

of the equation

d?u d*u d2u _

(1). The form of this equation allows all the independent

variables to take independent minor germs.

(2). From this we learn that any general integral of it

may be perfectly expressed in the form of an infinite series in

which the powers of x, y, z are positive integers.

(3). From this it follows that, subject to the condition

the quantities L, M, N being otherwise arbitrary, and not

functions of any of the independent variables, the follow-

ing is a complete and perfect integral of the above equation

of Laplace,
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When we call this the general integral of Laplace's equa-

tion, we must remember that the word general as thus used

is dependent for its propriety on the fact that L y M, N are

indeterminate quantities and not mere arbitrary constants.

The equation y
2 = x may on the same principle be called

a "parabola" ; but when it is so called we assume that x and y
are indefinite quantities that simultaneously belong to every

individual point of the parabolic curve : for as x, y represent

simultaneously all the values they can possibly have that are

consistent with the equation y
2 = x, they simultaneously repre-

sent the co-ordinates of every point of the parabola.

On precisely the same principle we say that L, M, N
simultaneously represent all the values that can be given to

them which are consistent with the equation L2
-f M2+ N2 =

;

and accepting their significance in this general sense we de-

nominate the integral above written the general exponential

integral of Laplace's equation, just as we call y
2 = x a pa-

rabola.

(4). There are many systems or sets of values of L, M, N
in terms of two independent germs which will satisfy the equa-

tion L2 + M2 + N2 = 0. Each set of such values will give a

general integral in a form answering to that particular set

by means of which it is obtained. Examples of this occur in

the preceding Articles.

The following set of values of L, M, N containing two germs

only, leads to a simple result

;

2Lx + 2My + %Nz
= (L - iM) (x + iy) + (L + iM) (x - iy) + 2JV*.-

Let H 2 = L-iM, and K2 = L + iM;

.-. H*K 2 = L2 +M 2 = -N2

)

.-. N=iHK.

And 2Lx + 2My + 2Nz =H2
{x + iy) + K2 (x- iy) + 2iHKz

;

.-. u^AeWW cos {(H*- K2

) y+ 2HKz + £)...(«).

E. 8
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Also u = Aem (x+ iy) +2HKisi+Ki (x -iy).

From this form of u we may first eliminate H and then K,
which will give one part of us first subgeneral integral. The
other part of that same subgeneral will be obtained by first

eliminating K and then H. The result of elimination is the

complete first subgeneral

%y

The second subgeneral may be obtained from this by dif-

ferentiating with -j- . (See Art. 125.)

(5). We are tempted to pronounce the integral just found

to be perfectly general, and so it is in one sense, because it is

the type of the missing terms. But in another sense it is not

the complete general integral, for the form of the differential

equation of which it is the integral shews that in the complete

general integral x, y, z must be interchangeable ; they must

therefore be made to enter the general integral in a symmetri-

cal form.

This we may accomplish by means of Art. 121, and the

result will be that we shall have the following instead of the

integral in (4), (see Art. 125, equat. 1).

ru = F[Ax + BJ
+ Cz

),

A, B, G being germs subject to the equation

A 2 + B*+C2 =0.

We may therefore write L, M, N instead of A, Bt
G.

But in (3) we have the following form of integral in terms

of the same quantities,

= F(Lx + My + Nz).

Hence the complete form of the general integral of Laplace's

equation which involves x, y, z in a manner which allows
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sc, y, z to be interchanged without affecting its form is the

following

:

u = F(LX + My + N,) + lf(^±Ml±l£) (/9) .

We may therefore announce this as the complete general

integral of Laplace's equation in terms of #, y, z.

(6). We now make a change of the independent variables

from x, y, z to r, 6, cf>.

By this change the differential equation itself takes the

following form :

2 A rd frd
, , \ / A d \

2 d?u .

CO9e
-dr{crr

+ 1
)
U+

(
COS0 -

dd)
U+d?-9-

Also, since 2 cos </> = e** + e"**, and 2 sin <j> = i (e"**— €**)

;

.-. 2Lx + 2My + 2Nz

= 2r (L cos cos </> + M cos 6 sin + JVsin 0)

= ?• ((£ +tif)«-** + (Z - «L2Ef> e^} cos + 2/-^ sin

= r (K 2e-^ + ITV*) cos 6 + 2rJV sin 6

- + 2riHE sin £

If we now eliminate cos 6 and sin by means of their ex-

ponential equivalents, we find

4 (L cos cos <j) +M cos 6 sin <£ + iV sin 0)

r

As iT and K are independent germs, we may omit the factor 4

on the left hand.

Hence assuming Q to represent the right-hand member of

this equation the integral in (ft) may be thus expressed in terms

of r, 0, <j), and two germs H, K>

" = *><?) + */ (|) (7).
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By comparing (4) and (6) with each other it will be seen

that the set of germs arbitrarily adopted in (4) is forced on us

in (6) by the assumption, not altogether peculiar to this Essay,

of the following change of variables,

x— r cos 6 cos
(f>, y = r cos 6 sin

<f>,
and z = r sin 6.

(7). If by Art. 24 we express the arbitrary functions in (7)

by means of an extemporized germ m we find the following

equivalent integral,

u = ArmQ
m + ar""*"^"

1

.

It is shewn in Art. 129 that the two subgeneral integrals of

the equation

O = m(m + l)cos2
0. Q

m + (cos 6. ^j Q
m +^

(which is the equation of Laplace's functions) are Qn and QT
n~l

;

. \ u - (Arm + ar-™-
1

)
(BQm + b Q-^1

)

«FW) +]/(|), by Art 24

Hence (A^ + ar^'1

)
(BQm + bQ-m

~
1

) is exactly equivalent to

the integral in (6) ; and consequently the general expression for

Laplace's mth function is the following,

m* function - BQm + bQ-^1
(S),

B and b being independent arbitrary constants.

The independence of B and b indicates that there are two

distinct Laplace's mth functions, viz. Q
m and Q""1

"1

; the product

of which is constant, i.e. independent of m, being equal to Q~l

;

where Q = (#
2
e^ +ZV*) cos 6 + 2iHK sin d

= (He* + Ze'l) 2 €*«* + (JBTei: - Ke~^f €*<

(8). There is an exception to (8) corresponding to m = 0,

or — 1. This is pointed out in equat. 1 of Art. 131.
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