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Abstract

This paper generalizes the CAPM under inflation of Chen and Boness

[3] and Friend, Lanskroner and Losq [8]. Then we compare this

generalized CAPM under inflation with the APT under inflation of Elton,

Gruber and Rentzler [6]. Interestingly, both two models come out to be

the same. We also show that inflation is always priced in different

theoretical models, and that either the CAPM or the APT under inflation

can be expressed by several different ways.





Does the CAPM Under Inflation Differ From APT Under Inflation?

In the 1981 Survey of Investment Performance, Peat, Marwick,

Mitchell and Company [16] found that investment decisions over the

past decade have increasingly been made with an acute awareness of the

effects of inflation on asset values, reported earnings, and stock

prices. Thus, the classical Capital Asset Pricing Model (CAPM) of

Sharpe [25], Lintner [11] and Mossin [15] without an explicit con-

sideration of inflation will be misleading in the guidance of invest-

ment decisions, especially during high inflation periods such as 1970s

and early 1980s. Fortunately, several articles concerning the impact

of inflation on the linear asset pricing models have been derived in

recent years. Chen and Boness (CB) [3], Long [12] and Roll [18], and

Hagerman and Kim [9] have derived the models under inflation by utility

maximization approach in the discrete-time world. Later on, Friend,

Landskroner and Losq (FLL) [8] derive the model in the continuous-time

2
world. All of these authors derive the CAPM under inflation in a

3
mean-variance world. Recently, Elton, Gruber and Rentzler (EGR) [6]

and Wei [27] have utilized the Arbitrage Pricing Theory (APT) of Ross

[20, 21, 22] to derive the complete asset pricing models under infla-

tion. The EGR and the Wei studies differ in that the former assumes

that the return generating process is based upon real terms, while the

latter assumes that the return generating process is based upon nominal

4
terms. EGR also argue that inflation should be priced in the asset

pricing models. Indeed, inflation is priced in the APT framework in

both EGR's and Wei's models. Nevertheless, inflation is not priced in
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the mean-variance models of CB, FLL and Roll. We believe the mean-

variance approach to be creditable in that it has been utilized to

derive voluminous models in economics and finance. There is, however,

a logical inconsistency in the mean-variance derivations of CB , FLL and

Roll.

The purpose of this paper is to clarify the inclusion of inflation

into the mean-variance framework. Since inflation risk is a systema-

tic risk, the investor cannot diversify this risk away by simply

forming a portfolio. As a consequence, individual's utility should be

a function of price level. In other words, the covariance of infla-

tion and individual's wealth should be one of the arguments in the

expected utility function assuming that returns on assets and infla-

tion are a multivariate normal distribution or that the utility func-

tion is quadratic. Unfortunately, CB, FLL and Roll did not incor-

porate this feature into their models. This is essentially the reason

why inflation is not priced in their models. In this paper, both

discrete-time and continuous-time approaches are used to derive asset

pricing models under uncertain inflation. In addition, the model is

also derived in the APT framework assuming that the return generating

process is based on nominal rather than real returns. Since all of

the other models assume that investors use real returns to choose

between assets , it will be shown that even though the forms of the

models are different, all of them are equivalent.

In Section I, five different approaches are utilized to derive

the CAPM under inflation. Section II shows that all different models



derived in Section II are equivalent. A. brief summary is contained in

Section III.

I. Derivation of the Linear Asset Pricing Models under Uncertain Inflation

For the purpose of clarity and simplicity, throughout the paper R.

represents nominal return on asset i, while r. represents real return
J

on asset i. Meanwhile, M represents the value-weighted market

portfolio of all assets (including risk-free asset) . This portfolio

consists of a fraction a of assets m which is risky in nominal returns

and a fraction (1-a) of an asset F risk-free in nominal returns.

A. The Continuous-Time Fr amework--Merton' s Approach

Fisher [7] utilized Merton' s [14] continuous-time approach to

derive demand for index bonds. Breeden [1] also used this approach

to derive the consumption-base CAPM . This section applies the approach

used in Merton, Fisher and Breeden to derive the CAPM under inflation.

It is assumed that there exist N risky assets, one risk-free nominal

bond, and one state variable, price level (it). Assuming that the rate

of inflation and returns on risky assets are stochastic, and price

level (it) and the price of risky asset (P.) follow a continuous-time

Markov process of the Ito type as

— = U (TT,t)dt + O (7T,t)dZ , (1)
IT TT 7T

TT

dP.
-= R.(7T,t)dt + o\(7T,t)dZ. , i = 1, ..., N (2)

P.
l

£| = R (*,t)dt, (3)



where B represents the value of the discount bond, which is assumed

non-stochastic in nominal returns. R.(iT,t) and a.(ir,t) are drift and

diffusion coefficients, respectively. The u (ir,t) represents the
IT

expected rate of inflation at time t while the prece level at that

time is it. R.(-rr,t) is the expected nominal return on asset i.

Similarly, a (Tr,t) is the standard deviation of inflation rate, which

depends on time and the price level and a,(ir,t) is the standard

deviation of nominal return on asset i. Z. and Z are Ueiner processes.
1 TT

L

For simplicity, we assume that the preferences of investors can be

summarized by a representative investor with a utility function for

lifetime consumption. Let X.. , ..., X , and X^ be proportions of the
1 n F

portfolio held in risky asset 1, ..., N, and the risk-free asset,

respectively. The flow budget constraint, given the dynamic change in

nominal wealth (W) , is

dW -
|
[EX.(R.-R) + RlW - TrCldt

1 i l F F '

n

+ W E X.o.dZ.

,

(4).,11 i
1=1

where C is the rate of consumption.

The representative investor is assumed to maximize the expected

value at each instant in time of a time-additive and state-independent

von Neumann-Morgenstein utility function for lifetime consumption.

That is,

max S / U(C(t) ,t)dt, (5)

subject to equation (4) and W(0) = W , and with U(C(t) ,t) strictly

quasiconcave in C. Let J(W,TT,t) be the maximum expected utility of
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lifetirae consumption in equation (5) that is attainable with nominal

wealth W for price level tt . That is,

J(W,ir,t) = max E / U(C(t),t)c1t. (6)

{c,x.[
L

t

The first-order conditions for the optimal control of equation (5)

subject to the dynamic wealth constraints of equation (4) through the

utilization of equation (6) are

= U
c
(C,t) - ttJ

w , (7)

= J (R.-R_) + J Wa..
f
+ ttJ a. , 1-1, .... N (8)W 1 F WW lM W7T ITT

where a.,, is covariance between nominal returns on risky asset i and

on the market portfolio M, and a. is the covariance of nominal return
11T

on risky asset i with rate of inflation. Equation (8) can be rewrit-

ten as

R. - R_ = T(W,tt)o + H(W,7r)ff, , 1-1, ..., N, (9)
1 C 1^1 ITT

where T(W,tt) = -WJ /J , is relative risk tolerance (the reciprocal of
ww w

relative risk aversion) , and H(W,tt) = -irJ /J . Since equation (9) is
wtt w

a pricing relation for any asset including the market portfolio,

substituting the market portfolio into equation (9), we have

R
M

- Ry = T(W,Tr)a
M
+ H(W,u)a

Mir
(10)

Likewise, consider the index bond if it exists, or an inflation hedge

portfolio. As noted in Fisher [7], the nominal return on the

index bond (R ) is a real return of r (which is a constant) plus the
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realized rate of inflation (d-r/ir ) . Substituting the index bond into

equation (9), we arrive at

R
T

- R_ = T(W,Tr)aM + H(W,tt)cj
I F Mir it

- (ID

Solving T(W,tt) and H(W,n-) from equations (10) and (11) and substi-

tuting the solutions of T(W,ir) and H(W,rr) into equation (9), the asset

pricing behavior may be written as

R. - R_ = [a. M , a. ]

1 T lM ITT

1

-1

M Mir

Mtt tt

(RM- R
F

)

(R
I

" V
(12a)

iM M F itt I F
(12)

where

iM

iM tt itt Mtt

M tt Mtt

itt M iM Mr

ITT 2 2
o\.a - a
M TT Mtt

If aw = 0, then b. w reduces to the traditional beta coefficient
Mtt iM

without considering inflation effect. However, b. (R_-R_) is an addi-
iir I f

tional term needed to determine the value of R.-R-, unless o. is zero.
1 F ITT

Now, if we consider the real wealth change rather than the nominal

wealth change, the budget constraint of equation (4) should be written

as



dW {[SX.CR.-R^-a. ) + (R_-w +a")]W - C}dt
1 1 t ITT r TT TT

+ W[EX.a.dZ.-a dZ ]

.

1 1 1 TT TT

(13)

Here we assume the price level is one at time 0. The first-order

conditions for the optimal control of equation (5) ,
given the real

wealth dynamics of equation (13) , are

= U_(C,t) - J
L. W (14)

= J (R.-R -a. ) + J W(a. -a. )
W 1 F ITT WW lM ITT

+ ttJ a. , i = 1, . . . , N
WIT ITT

(15)

Recall that W wealth here is a real term, not a nominal term.

Utilizing the same techniques as the above, the following four dif-

ferent forms of pricing equations can be derived. Depending on how

one manipulates the a. term, the results are
-1

R, - R_ - [a. M , a. ]

1 T lM ITT

V %

MtT TT

(VV
(R

X
-R

F
)

(12a)

-1

R . - R_ =
[ (a.-o. ) , a. ]

1 T lM ITT ITT

( o* - a ) , a„
M Mtt Mtt

2 9

(o^. -o ) , a"
Mtt tt tt

(vv
(RrR

F
)

(12b)

-1

R. -. - Rr, - a . = [ a .
. , , a . ]

1 T ITT XM XTT

M Mtt

a,. , a
Mtt tt

(VR
F-

a
MTT

}

(R -R -a )
I F TT

(12c)
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-1

. - R_, - a. = [ (a .-a . ) , a. ]

l T ITT lM itt lrr
R. -

(a"-a ), aMM Mt Mtt

2 2
(

a

M -a ) , a"
Mtt tt tt

(vw }

(R_-R -a )
I F tt

(12d)

Later, we shall show that equations (12a) through (12d) are all

equivalent (i.e., they can be transformed into each other).

3. The Continuous-Time Framework—FLL's Approach

Following a similar approach to FLL's, the first-order conditions

can be expressed as follows

E!u '

(Vdf i
t+d C

)w
t

,

.
(w <j

i,
)dt +

°i
dz iH "• iml

>
N (16)

where W is the real wealth at time t, and E is the expectation opera-

tor. Since the investment opportunities depend on the price level tt
,

utility and, in turn, marginal utility should be influenced by the

9
price level. Unfortunately, FLL did not incorporate the price level

into the marginal utility. Expanding the marginal utility function in

equation (16) in a Taylor series about W and tt , we obtain

U f (W
, , , tt ) = U' (W , tt ) + U"(W , tt )

t+dt' t+dt' t' t t' t

• {([rX.(R.-R„+a. ) + (R_-y +a )]W^ - C)dt
1 I i T lit FTTTTt

+ W [ "X.a.dZ.-a dZ ] [

t 11 1 TT TT
J

3U' (W
t

,ir

t
)

3^
(t u dt + tt a dZ ) + e ,

t TT t TT TT

(17)

where e stands for terms of order higher than dt. Equation (17) is the

same as equation (7) of FLL except for the last terra which does not
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appear in FLL. However, that tern should be included in that marginal

utility must be a function of price level; otherwise, the result will

be biased. Substituting equation (17) into equation (16), taking

expected values, eliminating terms of order higher than dt and

rearranging the result yields

R
i

- h ' "i,
T(V "tX'lM-"!.'

+ ''"f't^h < 18 >

W U"(W ,TT )
t t t

where T(W ,ir ) = - —. , ?— is the relative tolerance of risk, and
t t U ( W , ir )

t ' t

3U»(W ,ir )

H(W ,tt ) = - tt /U'(W ,tt ). Equation (18) is similar to
t t t 3tt t t

equation (15). Therefore, the pricing relations of equations (12a)

through (12d) can be easily derived from equation (18).

C . The Discrete-Time Approach

We make the same assumptions as those in the derivation of the

10
classical CAPM except for the following

(1) Investors are risk-averse, single-period expected utility of

real terminal wealth maximizers.

(2) Either returns on assets and inflation rate are normally dis-
tributed or the utility function is quadratic. However, the
former assumption is made to derive the model in this paper.

(3) At the end of the period, investors are still concerned about
the investment opportunities, or the individual's utilitv is a

i i

function of price level. *-*

CB make all the above assumptions except the last one. They

assume that the utility function is quadratic rather than that

returns are normally distributed. Breeden [1] has argued that in

the classical single-period model, all wealth is assumed to be con-

sumed at the end of period, so investment opportunities are irrele-

vant. From this argument, we can infer that utility is not a function
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of price level in addition to the real wealth in the single-period,

single-good model. However, in the real world, investors do not con-

sume all of their wealth at Che end of period. They are still con-

cerned with the reinvestment opportunities. Furthermore, there are

more than one good in the real world. From a different point of view,

inflation risk is a systematic one and it is never diversified away.

Consequently, the utility function should be influenced by the price

level. Moreover, the last assumption is very reasonable even in the

single-period model multi-good model.

Since returns on risky assets and inflation rate are assumed to be

a multivariate normal distribution, to maximize the representative

12
investor's expected utility is equivalent to

Max U(E(W), Var(W), Cov(W,tt)) (19)

{C,X.|

where W is the real wealth at the end of period, and ff is the price

level at the end of period. As defined in CB, the real return on

asset i (r.) is the nominal return (R.) minus the inflation rate (jj )11 7T

13
in the discrete-time model. The real wealth at the end of period is

w = y[i+zx.(R.-R„) + r_ - q ], (20)
1 1 r r tt

where W is the initial wealth.

The first-order conditions for equation (19) ,
given the random

real wealth of equation (20) , are
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—2S- [R.-Rj + 2W ^=- [« -«
]

3E(W) x F 3Var(W) lM 17T

+ tt 2£ a. - i=l, ..., N (21)
3Cov(W,tT) 17T

where R. is the expected value of R. . Equation (21) is similar to

equation (15). In consequence, from equation (21), we can easily

derive equations (12a) through (12d).

D. The APT Approach under a Nominal Return Generating Process

This section employs the APT approach to derive the CAPM under

inflation. First, it is assumed that the nominal return on an asset

can be generated from the nominal return on the market portfolio M and

an uncertain inflation rate. This two-factor model of Ross [20, 21]

can be described as

R, - R, + b. M(R-RM ) + b, (fl -y ) + e. (2 2)
1 l lMnM lit it ii 1

where e. is a random error term. The e's are assumed to be indepen-

dent of each other as well as uncorrelated with the market return
*M

and inflation p . The R , R^ , and y are expected values of R. , R^

and jj respectively. We further assume that the price level follows a

continuous-time Markov process of Ito type as was described in equa-

14
tion (1) , the real return of equation (22) is thus



cKP./tt)
l

,_ , v - R. + b. M [(R-RM ) - (t
]

( P . / tt ) i LM M >! Mir

2 2
+ b. [(p -u ) - B ] - p + a - Cov(j] , e.)

ITT TT TT IT TTTT IT I

+ e.
, (23)

where the Cov(0 ,e.) is zero by assumption. To determine the pricing

behavior, a well-diversified arbitrage portfolio is formed with weight

X. invested in asset i so that:
l

EX. =0
l

ZX.b. M = EX.b. =
1 lM 1 ITT

EX.e. £
l l

This arbitrage portfolio is constructed as well as diversified in the

sense that the residual risk is negligible. As a result, the real

return on the arbitrage portfolio is

ZX .?, = ZX.R. + (ZX.b. v)[(RM-RM ) - aM ]li 11 l lM M M Mtt

+ (ZX.b. )[(p -u ) - a
2

} + (lX.)(a
2
-y )

1 ITT TT TT TT 1 7T TT

+ ZX.e. ~ EX.R. (25)11 11

Since the arbitrage portfolio is almost risk-free and has a zero

investment, its real return should be zero. Namely, ZX.?. = andJ
1 1

from equation (25) ZX.R. = 0. As pointed by Ross [20, 21] and Roll and

Ross [19], the expected return R. should be a linear combination of 1,

b... and b. as follows
lM ITT
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R. - X. + X.b. M + X,b. , i=l, ..., N (26)
i 1 lM 2 itt

Substituting the nominal risk-free asset, the market portfolio and the

index bond into equation (26), we can have equation (12).

E. The APT Approach under Real Return Generating Process

Elton, Gruber and Rentzler [6] have derived the CAPM under infla-

tion by the APT approach assuming that the real rate of return is

generated by the real return on market and uncertain inflation. (See

Appendix A for the proof that r is the same as R in EGR)

,

J. /j

r. - rT - 8. (r -rT ) + 3. (r T-r_) (27)
1 I im m I itt I F

where

Cov(f.
)
r
M
)a

7T

- Cov(r.,y
7T

)Cov(r
M>

u
7T

)

Var(r )a - (Cov(rM ,y ))M TT M IT

Cov(r,,u
7T

)Var(r
M ) - Cov(r , ^Cov^,^ )

Equation (27) is expressed by real expected returns and beta coef-

ficients are also expressed in real terms. Equation (27) is different

from equation (12) at the first glance. But, as it will be shown in

the next section, they are actually equivalent.

II. A Comparison of the Models

This section compares the models derived in the preceeding sec-

tion. Moreover, the models expressed by the whole market portfolio M

are also compared with those expressed only by the risky market port-

folio m.
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A. Proof that Equations (12a) through (12d) are Eauivalent

In the preceding section, we derived the CAPM under inflation in

nominal terms as was shown in equations (12a) through (12d). Here we

want to examine that all four of these equations are equivalent.

First of all, it is easily shown that

-1 -1

2 9

( aw-oy, ) , o\,
M Mtt Mtt

2

(a.-o. ), a. ]

lM ITT ITT lM ITT

HIT TT

V Mtt

Mtt tt

Since both row vectors are equal to [b..,, b. (see equation (12))
lrl ITT

From this equality, one can easily see that equation (12a) is the same

as equation (12b); likewise, equation (12c) is equivalent to equation

(12d).

Next, we want to exemplify that equation (12a) equals to equation

(12c). Equation (12c) can be rewritten as

-1

. - R- - a. = (a. M , a. )
i T in lM ITT

R. -

_

V a
MTT

Mtt tt

m-S

R
I - R

F

-1

( a . x, , a . )
lM ITT

°M' Mtt

Mtt tt

Mtt

2
r

TT

and
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( a.M , a. )
iM it

M Mir

MTT TT

.1

-1 ~

Mtt

?

2 2 2
(v.,,,0 -o . a )o\. + (a. a,, -rr..,aM )a

iM it itt mir Mir iit M iM Mir t

2 2 2

M 7T Mtt

= a
ITT

Thus, equation (12c) is reduced to equation (12a). This completes the

proof that equations (12a) through (12d) are equivalent.

Q.E.D

B. Proof that Models Expressed by the Whole Market Portfolio M
has the same form as by the Risky Market Portfolio n

The whole market portfolio M can be expressed by the risky market

portfolios m as follows:

R^ = aR
m
+ (1-cORp

and

2 2 2
a,, = a a ; o\. - aa ; a.,, = aa. .M m Mtt miT iM lm

Substituting these relations into equation (12a) , we have
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-1

. - R_ = (no. , a. )
l F ioi in

R. -

2 2
a a , ua

m raiT

aa , a
IT1TT 7T

a(R -Rw )m F

(Rj-Rp)

(a. a. )
ira, itt

-1

a , a
m mn

a , a
nnr it

<VV

(RrV

= b. (R -R ) + b. (R
T
-R_.)

lm m F itt I F
(28)

When the whole market portfolio M is replaced by the risky market

portfolio m (see equation (12)), the results derived in the preceding

section still hold. However, the beta coefficients are expressed in

terms of the risky market portfolio m, and the market portfolio return

is expressed by R rather than R . Q.E.D.

C. Proof that the Models in Real Terms are Equivalent to

the Models in Nominal Terms

When the CB approximation between real and nominal return is used,

EGR derived equation (28) (the model in nominal terms which is equation

(14) in EGR) from equation (27) (the model in real terms which is

equation (16) in EGR). We have also derived equation (28) (the model

in nominal terms with the risky market portfolio m) from equation

(12a) (the model in nominal terms with the whole market portfolio M)

.

In addition, we have shown that equations (12a) through (12d) are all
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equivalent. Hence, equations (12a) through (12d) , (27) and (28) are

all equivalent (i.e., one can be derived from the other).

Furthermore, EGR have shown that if the FLL or Fisher [7] approxi-

mation between real and nominal returns is used, their equation (15)

[p. 534] can be derived from our eauation (27) (equation (6) in EGR).

?

It is obvious that cov(R_, p ) = a~ from the definition of index bonds
1 TT IT

as described in Fisher [1975]. Following Section II. A, it is easily

shown that equation (15) in EGR can also be derived from our equation

(28) or equation (14) of EGR (see Appendix A). Consequently, when

either CB or FLL approximation between real and nominal returns is

used, the same results can be reached. Q.E.D

In sum, even though several forms of linear asset pricing models

under inflation were derived by different academicians, all of them

are equivalent (i.e., one can be derived from the other).

D. A Special Case

As argued by Fisher [7], if consumption is only a function of real

wealth, note that:

C = f (|) , 3C/9tt = -Wf'(W/Tr)/TT
2

and

3C/3W = f * (W/tO/tt

Hence,

dTT TT oW
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where W is nominal wealth. To differentiate the first-order condition

(7) with respect to tt and with respect to W, and then applying the

relation of equation (29), Fisher has shown

ttJ = -J -WJ (30)
wir w ww

Combining equations (8) and (30), we have

R - R_ - a. = T(W,7T)(a, M-a, ) (31)
1 T ITT lM ITT

Considering the market portfolio, equation (31) can be expressed as

o .-a .

R. - R_ - a. = y
1TT

(V-R -a. ) (32)
1 F ITT 2 M F ITT

which is the same as FLL's result.

Likewise, the indirect utility function J is only a function of

real wealth and time so that J in eauation (15) and 3U' (W ,tj )/3tt
wtt t t t

in equation (17) are zero. From this special case of equation (15)

and (17), equation (32) is easily derived. In the discrete-time case,

if consumption is only a function of real wealth, there is no

Cov(W, if) term in equation (19), and equation (21) reduces to

Ww! [W + 2W
3Var(S)

(ff
lM"

a
ln

)

Hence, we can derive

o. M - a.

\~ h = — ~
(VR

F
) ° 3)

which is the sane as Chen and Boness's [3],
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III. Conclusions

The impact of inflation on investments has attracted increasing

attention with regard to asset pricing models under uncertain infla-

tion. The CAPM under inflation is the simplest among them. Unfor-

tunately, inflation in the models of CB, FLL and Roll is not priced.

This fact leads EGR to argue that the asset pricing models under

inflation in the mean-variance world is inappropriate and the only-

correct model is derived from the APT framework. This paper has shown

that inflation in the mean-variance world is still priced. There is

nothing wrong with the mean-variance approach. There was wrong was

that CB and FLL did not realize that the investor's utility is a func-

tion of both real wealth and inflation, not just real wealth. When

utility is defined to be a function of both real wealth and inflation,

the expected rate of return on an asset should be a linear function of

a market risk premium and an inflation risk premium. This model is a

generalization of CB's, FLL's and Roll's models; however, if utility

was defined to be only a function of real wealth (and not a function

of inflation) , our generalized model can be reduced to the models of

CB, FLL and Roll. Furthermore, we showed that all models under infla-

tion, even in different forms, are eventually equivalent. This paper

deals with the theoretical arguments of these models; thus empirical

tests should be explored in a future research.
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Footnotes

Long derives the model under a multiperiod framework. In addi-
tion, Manaster [13] and Serco [2M compare the real and nominal effi-
cient sets.

2
Friend, Landskroner and Losq's continuous- t ime approach is

somewhat different from the method adopted by Merton [1^].

3
Elton, Gruber and Rentzler [6] view the models derived by CB

,

Long, Roll and FLL as mean-variance models.

4
More specifically, the model derived by Wei is the APT under

inflation, not the CAPM under inflation, and the market portfolio may
or may not be one of the common factors.

The word "priced" in this paper refers to "a systematic risk."

See Roll and Ross [19] and Elton, Gruber and Rentzler [6].

This assumption has been discussed in Rubinstein [1974] and used
in Fisher [7], Brennan [2], Stapleton and Subrahmanyam [26], Chen and
Ingersoll [4], and others.

Here, we assume that the inflation hedge portfolio earns the same
returns as the index bond.

g
The real returns on risky assets and risk-free asset in continuous-

time framework has been derived in Fisher [7]. Here, we use his results
directly. Friend, Landskroner and Losq [8] have also derived the same
results

.

9
Breeden [1] has discussed this concept in detail. Also see

Merton [14]

.

See Jensen's [10] review article for a detail. Elton and Gruber

[5] derived the CAPM under inflation in a different way.

This assumption is similar to the implicit assumption made in

the multiperiod world.

12
Variance of inflation is treated as exogenous in determining the

utility of investors. However, Pinkyh [17] has recently showed that
variance of inflation can affect market cost of equity. The justifica-
tion of ommiting variance can be found in Long [12].

13
The real return on an asset in the discrete-time model is dif-

ferent from that in the continuous-time model. Interested readers can

compare the real returns defined in Chen and Boness [3] with Fisher's

[7].

14
The real return can also be derived in the discrete-time frame-

work by
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I + R.

f. -—-—i-1 a (l+R.)(l-fl ) -1
l 1 + vi -1 ^

= R. - a, + b. M [(RM-R )-aM 3

l l iM M m Mtt

+ b, [(fl -u )-a
2

] - Cov(e.
, p )

I TT IT IT IT 1 TT

i- e. .

l

If the time interval is very short, the approximation is very good.

Stapleton and Subrahtnanyam [26] have shown that given a linear
market model assumption, the sane relationship can be derived without
the approximation implicit in the APT argument. Wei [27] has
generalized this argument to a k-factor model with one of the factors
to be market portfolio. Equation (26) is only a special case of Wei.
Therefore, the pricing relationship derived in following is an exact
relation rather than an approximation.

From Footnote 13, we can derive the same result as equation [25]

in a discrete-time framework.

There is a type-error in equation (15) of EGR. The sign of

Cov(rjL,T) in EGR's eauation (15) should be positive rather than
negative.

1 Q

It is not always true. Breeden [1] has argued that consumption
is also dependent on the investment opportunities. This implies that
consumption is a function of both real wealth and price level in our
models

.
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Appendix A

R in our paper represents nominal return, while in EGR represents

real return. Likewise, r. in our paper represents real return, while

in EGR stands for nominal return.

1. Proof of that r in our paper (real return for inflation hedge

portfolio or index bond) = R_ in EGR (real return on zero-beta

portfolio)

.

Since real return for inflation hedge portfolio is assumed to be

constant, the covariance between real market portfolio return and

r. is zero, so is the covariance between inflation rate and r .

This implies that r is a real return on zero-beta portfolio. This

proves that r
T

in our paper is equal to R„ in EGR.

2. Proof of that equation (15) in EGR = (14) in EGR (or (28) in ours).

Equation (14) in EGR can be written as (using EGR notations)

-1

(A) r. - r_ » [a. ,a. ]

l F lm itt

2
a , a
m mrr

mTT' 7T

m F

r
Z

" r
F

Equation (15) in EGR can be written as

(B) r. - r_ - a. = (o. M , a. )
1 F ITT lM' ITT

-1

m TUTT

a , a2
mn ' tt

r -r^-a
m F mn

r — r — t
7 C 7 t
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Notice that the sign in front of a. should be negative (there was

a typing erro in EGR (15)). Furthermore,

a„ = Cov(r7 , tt) = Cov(R + tt , tt) ~ a"
Ztt Z Z TT

therefore, (B) can be written as

-1

(O r. - rr - a. = (o . t o . )
1 F ITT 1D1 17T

2
a , a
m tutt

a , a
nnr Tr

r -r -a
m F mTT

r -r-a
Z F TT

Equation (A) is similar to our (12a), while Equation (C) is similar

to our (12c). And we have proved that equation (12a) = (12c), thus

(A) = (C).
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