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Abstract

Given a set of points on a Cartesian plane and the coordinate axes, the rectilinear network

design problem is to find a network, with sides parallel and perpendicular to the axes,

which minimizes the fixed and the variable costs of interactions between a specified set

of pairs of points. We show that, even in the presence of barriers, an optimal solution to

the problem is contained in a grid graph defined by the set of given points and the

barriers. This converts the spatial problem to a combinatorial problem. Finally, we show

connections between the rectilinear network design problem and a number of well-known

problems.
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1. Introduction

Many network design problems can be formalized as the following problem:

Given a set of points and a set of flows described by a pair of points, find a network

which permits every flow such that the sum of fixed cost of the network and variable cost

of flows is minimized. In many situations the network to be designed is constrained to a

subnetwork of a given graph, whereas in other cases it may not be the case. Problems

with no prespecified graph may still have some other restrictions on the kinds of edges

which can be included in the network. For example, in plant layout, the network to be

designed may represent the material handling structure, and may be restricted to take only

right angle turns. In the design of piping and electrical wiring in buildings, or connections

in printed circuit boards, similar restrictions are required. We will call the network design

problem which is constrained such that only horizontal and vertical arcs are allowed in

the network as the rectilinear network design problem. We consider a general case of the

network design problem in which there are regions on the plane, called barriers, through

which no flow is allowed.

Magnanti and Wong (1986) describe a discrete choice network design problem in

which the network to be designed has to be a subnetwork of a given graph. For our

problem no prespecified graph is given of which the solution has to be a subnetwork.

Since the rectilinear network design problem is posed on a Cartesian plane; there are

potentially an infinite number of horizontal and vertical arcs which can be added to the

network. In this paper, we will show that only a small number of these line segments are

required to find an optimal solution. This permits us to pose the problem on a graph

formed by these line segments instead of the plane, thereby reducing the complexity of

the problem. The consequent discretization of the problem has several benefits, including

reduction in the search space and ability to model as an integer program. The importance

of discretization of continuous problems through the establishment of a finite dominating

set has been well documented in location theory literature. We refer the reader to the

paper by Hooker et al. (1991) for a comprehensive survey of finite dominating set results

in location theory.

As we show later, the network design problem can be viewed as a generalization

of several well-known problems. In particular we show that the problem reduces to the

rectilinear Steiner tree problem (Hannan, 1966) and the shortest r-flow network problem

(Chhajed et al., 1992). A variant of the problem is also related to the 1 -median problem

(Hakimi, 1966), the p-median problem with barriers (Larson and Sadiq, 1983), the

rectilinear multifacility location problem (Francis and White, 1974) and the integrated
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station location and network design problem (Chhajed et al., 1992). Finite dominating set

or dominating graph solutions are known to exist for each of these problems without

barriers and for the p-median problem with barriers.

Our proof is different from the proof for the Steiner tree problem in Hannan

(1966) but follows the proof technique in Chhajed (1991). An interesting element of our

proof is the use of some results from the rectilinear location theory.

In the next section we will formally describe the problem and embed a network

called the grid graph on the Cartesian plane. In section 3, we consider the special case

where all barriers are isomeric polygons. These results are extended to arbitrarily shaped

barriers in section 4. We show connection of the rectilinear network design problem to

other well-known problems in section 5. Finally, we present conclusions in section 6.

2. Problem Statement and Grid Graph Construction

Let S be a set of n points on the two dimensional Cartesian plane. Along with the

set S we have a.flow set F whose elements are unordered pairs of points in S. The n

points in S may represent locations of demand/supply points or input/output stations in a

manufacturing plant and F may be the set of those pairs of points which have non-zero

interaction. Let fjj be the interaction cost per unit distance for flow [i,j] e F and C be the

fixed cost per unit length of the network. Further, let B = <<J Bj be the set of barriers.

Each Bi represents an open and bounded region. Note that the barriers can be non-

convex. The feasible region for the problem is FR = SRAB. If xj (yj) is the x-coordinate

(y-coordinate) of some point i e S, then d(i,j) is defined as the length of a shortest path

consisting of only horizontal and vertical line segments. Note that, in the presence of

barriers d(i,j) may be greater than or equal to Ixj -xjl + lyi -yjl, the rectilinear distance

between points i and j.

Let N = (V(N), E(N)) represent a network with node set V(N) and arc set E(N),

which consists of only horizontal and vertical line segments. Such a network is called a

rectilinear network. Let d(i,j;N) be the length of a shortest path between nodes i and j on

the network N. If there is no path between nodes i and j on the network N then d(i,j;N) is

defined to be an arbitrary high number. An arc of E(N) adjacent to nodes i and j will be

represented by (i,j). Let L(k,r) represent the length of an arc (k,r). The rectilinear network

design problem can be written as:



(P) MinZ(N)= ^fijd(iJ;N) + C ^L(k,r) (1)
NczFR

[iJ]zF (k,r)eE(N)

subject to:

There is a path in N between i and j for all [i,j] e F. (2)

In problem (P), the network to be designed can have only horizontal or vertical

arcs. While there are infinitely many solutions to this problem we now describe a

dominating graph that is guaranteed to contain an optimal solution.

A grid graph for a set of points S, in the absence of barriers, is constructed as

follows: Draw a horizontal and a vertical line through each point of S. The intersection of

each horizontal line and vertical line defines a grid point. Take the intersection of these

lines with the smallest rectangle containing S with sides parallel to the axes. The union of

the grid points, the given set S, the rectangle, and the collection of horizontal and vertical

lines contained in this rectangle is the grid graph, I1(S) (Figure 1).

In the presence of barriers, the grid graph is drawn by adding extra nodes and arcs

as follows: The smallest circumscribing rectangle must now contain the set S and the

barriers. In addition to the horizontal and vertical lines through each point in S, draw all

the possible supporting vertical and horizontal lines for every barrier. The point at which

these lines support a barrier are called barrier vertices (BV). The lines through points in

S and the supporting lines are continued until they intersect with the smallest

circumscribing rectangle or a barrier. We shall denote the resulting grid graph as FIb(S).

The extra grid lines generated due to the presence of barriers are shown by heavy lines in

Figure 2.

The creation of a grid graph divides the feasible part of the Cartesian plane into

cells. Formally, a cell is a minimal closed region bounded by either grid lines or barriers

such that there are no grid lines in its interior. There are two types of cells :

i) Rectangular cells - These cells are rectangular in shape and may or may not

share a boundary with a barrier. If a rectangular cell shares a boundary with a

barrier then the intersection of the barrier boundary and the cell lies on a grid

line. If the barriers are isothetic polygons, i.e., polygons with each side

parallel to one of the co-ordinate axis, then all cells formed by the grid graph

will be rectangular,

ii) Irregular cells - These cells are not rectangular. For such cells the intersection

with a barrier boundary does not lie on a grid line. The boundary of an

irregular cell is composed of sections formed by grid lines and those formed



by the boundary of barriers. Irregular cells in which the grid line portion of the

boundary is contiguous are called deadend cells ; while cells where the grid

line portion of the boundary is non-contiguous are called alley cells. Figure 3

shows several cases of deadend and alley cells.

Associated with each cell are points called cell vertices. These are points generated by

the intersection of either two grid lines or by a grid line and a barrier boundary.

3. Network Design with Isothetic Barriers

In this section we will consider the case where all barriers are isothetic polygons.

This implies that the cells formed by the grid graph are rectangular.

Suppose we are given a feasible solution N to (P) embedded on a plane with

objective function value Z(N). We assume that there is a node at every point where there

is a change in the direction while following any path on this embedded network. If this

assumption is not satisfied, we can introduce additional nodes to modify the network so

that it satisfies the assumption without affecting the solution value (see Figure 4 for an

example of such a network). Henceforth, we will assume that very arc in E(N) is either

horizontal or vertical. We will now show that we can construct another feasible solution

with objective function value no larger than Z(N) such that it is a subgraph of I1b(S).

Let P(i,j) be the set of arcs of N used by a shortest path between nodes i and j in

N. If multiple paths exist we simply designate any one of them as the shortest path and

use it to define P(i,j). Without loss of generality, we assume that every arc of N will be in

some P(i,j), [i,j] e F. If this is not true for an arc (a,b) then we can delete it to obtain a

better feasible solution. Further, define T(i,j) to be the set of paths which contain the arc

(i,j) , i.e., T(i,j)={[j ,/ ] e F\(i,j) e P(i ,/ )}. For a feasible network N, we now define

quantities uy , vy and wy as follows:

uij=)
otherwise.

v. = \
C + IffJWuJtT * ' e M>1 s S< « J> e Em'

! otherwise.

(3)

(4)

=
\c + Iffjw^ft/ trw *mj > u aJ) •em

(5)

[0 otherwise.

Notice that u = {uy}, v = {vjj} and w = {wy} are identically defined but over

different node sets. These quantities will be used to establish a relationship with the



rectilinear multifacility location problem. First, we have the following lemmas.

Lemma 1: If N is a feasible solution to problem (P) and u, v, and w are as defined in (3)

and (4), respectively, then,

Proof: Consider the right had side of the above expression,

I,£Af 'LjeM"VW>+ I«6M X,eSV*A+Sfcj £/cS^L(l''^

Substituting for ujj , vy and wy using (3), (4), and (5):

=MJeMJ>i,(iJ)eE(N)[
C + MC J]eT(iJ)fi7 J^''^

+
AeMje5,a,y)€£(^){

C +
Mi\f]eT{iJ)hf \

L{l
' j)

+
M,jeSJ>UiJ)eE(N)\

C +
Mrj]eT(iJ)fff \

L^^'

= C
Mi,j)eE(N)

L(lJ)+
MiJ)eE(N)

L(l >j)Mfj]eniJ)ftf

With every node ie M, we associate a set of nodes n(i) and a region r(i). These

are defined as follows (see Figure 5):

(i) if i coincides with a node of the grid graph then n(i) and r(i) are both set to this

node of the grid graph;

(ii) if i is on an arc of the grid graph then r(i) is the arc and n(i) includes the two

end-nodes of the arc; and

(iii) if i is in the interior of a cell then r(i) is the cell while the four corner nodes of

the cell constitute n(i).

Note that whenever wy is strictly positive, there is a horizontal or a vertical arc

between nodes i and j. Also, between any two points i' e r(i) and j' e r(j), there exists a

path of rectilinear length that does not cross a barrier. The same is also true when vy > 0.

When ujj > 0, both r(i) and r(j) are singleton sets consisting of the end nodes i and j,

respectively, of arc (i,j) and the above observation is trivially true.
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Now we consider the problem in which the locations of nodes in M are allowed to

vary anywhere on the plane (including the barriers). Let the variable z\ denote the

location of new facility i. We designate the nodes in M as newfacilities, and the nodes in

R' =MeM n(i)uS as existing facilities, and consider the following problem:

Q(N): MJn2J^^^,.^lieMlJeSV<W)+eI,.6MX;6fl(0<«W).

where v and w are defined in (3) and (4), and 9 is a large number.

Q(N) is equivalent to the rectilinear multifacility location problem (Francis and

White, 1974) in which, given a set of existing facilities (here R'), the locations of m new

facilities (here nodes in M) are to be determined to minimize the weighted sum of

distance between pairs of new facilities and between new and existing facilities. The first

term in Q(N) accounts for the interactions between pairs of new facilities while the

second and the third terms are the interactions between pairs of new and existing

facilities. We have the following lemma from Francis and White (1974):

Lemma 2: An optimal solution to the rectilinear multifacility location problem, with

existing facilities a, is contained in the grid graph 11(a). «»

Notice that in the above lemma, there are no barriers on the plane. We are now ready for

our next result.

Lemma 3: Given a feasible solution N to the network design problem and the

corresponding problem Q(N), it is never optimal to locate a new facility inside a barrier.

Proof: For any new facility ie M, consider the term

9X,e*(,)
d<W). (6)

The third term in Q(N) consists of these terms summed over all i e M. For any z\e r(i), (6)

remains constant and is stricdy greater than this when z\ <£ r(i) (see Figure 5). Note that

r(i) is defined as a property of the network N and does not change with z\. Since 9 is an

arbitrary large number, it is not optimal to locate i outside r(i). Finally, there are no

common points between the interior of a barrier and r(i) and thus the lemma follows. «»

Recall that 11(R) is the grid graph defined by the smallest rectangle

circumscribing R, and horizontal and vertical lines through every point of R. While

constructing FI(R), any barriers present on the plane are ignored. Further, let n(R) be the
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graph defined by removing from n(R) all the nodes and the associated arcs that are inside

the barriers. By lemmas 2 and 3, it follows that the new facilities will be located on the

nodes of the graph rc(R').

Lemma 4: Given a feasible solution to the network design problem, there exists an

alternate feasible solution of equal or lesser objective function value which is entirely on

the graph 7t(R').

Proof: Suppose we have a feasible solution N to (P) with objective function value Z(N).

We form the multifacility location problem Q(N). With the current location of new

facility i as z\ for all ie M (as defined by N), the objective function value of Q(N) is,

XttM Zjtlf
W

>l
d{z'> ^i )+ Xtatf 1/rtV<'< •»+ "XtetflJen(O

d^ iJ)

= Xfcj,X;«*V^< ' z
'i

>+ ZtaJf£/tf
vijWi'» + *i •

where ^, =0l.£MX .^^(z',,;) .

Let us now consider an optimal solution {z\*: ie M} to Q(N). From the proof of

lemma 3, the new facilities will be located within r(i) and with these locations, the term

Ki is a constant. Therefore, optimizing Q(N) minimizes the first two terms in Q(N).

Given an optimal solution to Q(N), we now construct an alternate network N* as

follows. For every pair of new facilities with wy > 0, construct a rectilinear length path

between i and j that is contained in tc(R'). Such a path must exist as argued in the

discussion following lemma 1. Similarly, we connect pairs of new and existing facilities

and pairs of existing facilities. Because the existing facilities do not move, the arcs

between pairs of existing facilities will be the same as in N. Although in network N*

every arc may not be either horizontal or vertical (they may be L shaped), the length of

arc (i,j) will be d(i,j) for every arc.

Now consider the solution value of the network N*.

-S^I^V<*VV+2<ufIytfV(**^+2i6sSy« ,V'<',y>C7)

< Z(N), as the last term in (7) is constant and the first two terms are minimized in

Q(N). Therefore, the theorem follows. «»

The node set R' is a subset of {SuBV}. This implies tc(R') c rc(SuBV). From this

and lemma 4, the solution to (P) must lie on tc(SuBV). There is a close relationship

between 7t(SuBV) and FIb(S). In constructing FIb(S), the horizontal and vertical lines



were terminated on reaching a barrier whereas, in tc(SuBV), the lines are continued past

the barriers. Thus, IIb(S) can be obtained from rc(SuBV) by the removal of these

continuation line segments. We now show that the continuation line segment can be

ignored while solving (P).

Theorem 1: Given a set of points S and a set of isothetic barriers, there exists an optimal

solution to (P) that is contained in the grid graph FIb(S).

Proof: From lemma 4 and the discussion following it, we have an optimal solution N*

that is contained in rc(SuBV). We show that there exists an alternate optimal solution that

does not involve the continuation line segments. Let A be the path in rc(SuBV) that is

defined by one such continuation line segment such that N*nA * 0. Note that the path A

will be either horizontal or vertical. By definition there are no points of S in A and

therefore nodes in AnN* can be moved.

Similar to our approach earlier, we form a multifacility location problem with the

nodes in N*nA as new facilities and all the nodes of N*, adjacent to the nodes in N*nA,

as existing facilities. The grid graph formed by these existing facilities will not contain

any point of A. Thus, the new facilities can be moved from A without increasing the

objective function value. Consequently, we can remove the continuation line segments

from ti(SuBV). This completes the proof of the theorem.«»

4. Dealing with Arbitrary Barriers

We now consider the problem where barriers may not be isothetic. As discussed

in section 2, the feasible region of the Cartesian plane is divided into rectangular cells and

irregular cells by the imposition of the grid graph. In the absence of irregular cells we

showed in the previous section that the feasible region FR can be replaced by the grid

graph. We now proceed to show that after a suitable augmentation of the grid graph, the

interiors of cells can be discarded even when irregular cells are present.

We first focus our attention on alley cells. It is possible that the only feasible

solution to the overall problem requires traversal through the alley cell. Since the grid

network does not contain any path that can cross the alley cell, it is now necessary to

augment the grid graph. The augmentation of the grid graph is performed iteratively as

follows. From every vertex of the grid cell a ray pointing towards the interior of the cell

and oriented parallel to one of the co-ordinate axes is constructed. This ray is terminated

when it intersects the boundary of the alley cell. The lines so constructed are then

appended to the grid graph. This augmentation results in the creation of new cells in the
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interior of the alley cell. At most one of these new cells can be an alley cell. The

procedure is repeated until there are no alley cells. Figure 6 shows an example of this

construction. As a result of the augmentation, the alley cell is divided into deadend cells

and rectangular cells. We denote the augmented grid graph by llg(S).

After eliminating all alley cells, we consolidate the deadend cells. This is done as

follows: For a deadend cell Di, let J represent the set of cells that share a common

boundary with Di. If Dj€ J is a deadend cell and Di u Dj is also a deadend cell combine

Di and Dj. Combining two cells involves the removal of the common grid line boundary

between the cells. This procedure is terminated when all remaining cells are either

rectangular or in combination with Di result in an alley cell. Note that after

consolidation the grid line portion of each deadend cell is either a straight line or L-

shaped. Figure 7 shows cells before and after consolidation. Consolidation ensures that a

shortest rectilinear path between any two points on the grid line portion of the cell

boundary will lie on the cell boundary. After consolidation, let bk be the grid line portion

of the deadend cell Dk and Ik = Dk \bk be the cell without the grid line portion.

Lemma 6: Given a feasible solution to (P), there exists an alternate feasible solution of

equal or smaller length that does not intersect Ik-

Proof : Let N be feasible solution such that Q' = N n Ik * 0. Let Q be the closure of Q'.

The graph Q consists of r disconnected components {Qi,...,Qrl where QioQj=0, i*j.

Consider any component Qj and let J be the set of nodes of Qj that are also on

bk- Note that IJI >2, otherwise Qj can be deleted from N, since there is no demand point

inside the cell. Index the nodes in J as ai, a2, .... , am so that aj and aj+i are consecutive

nodes on bk, for i =1, ..., IJI-1. Define P(Q0 as the union of the shortest paths on bk,

between ai and ai+i, for i =1, ..., IJI-1. Note that the length of the shortest path on bk

between any pair of nodes in J is no longer than the length of the shortest path between

these nodes on Qj. Consequently, replacing Qj by P(Qj) in N will result in a solution with

flow cost no greater than the flow cost of N. Also, the total length of P(Qj) is no larger

than the sum of the length of edges in Qj.

Application of this to all Qj , j =1, ..., IJI will result in a solution that satisfies the

theorem. «»

We have shown that there exists a solution to (P) that does not intersect the

interior of a deadend cell created by the graph llg(S). The remaining cells are all

rectangular and thus by theorem 1 we can state the following result.
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Theorem 2 : Given problem (P) with arbitrary barriers, there exists an optimal solution

contained in the graph Ilg(S).

Although theorem 2 combinatorializes the network design problem, the

augmented grid graph may be large. To ameliorate the problem, the concept of a

rectilinear hull is used to reduce the size of the grid graph. A rectilinear hull, RH(Q), of

a point set Q is a smallest connected set containing Q such that for any pair of points a, b

in RH(Q), there is a rectilinear path of length d(a,b) between them contained in RH(Q).

This is defined as a cr-rectilinear hull in Ottmann et al., 1983. The rectilinear hull of n

points can be constructed in O(nlogn) time. The notion of a rectilinear hull can be

extended to problems with barriers. From this definition, it is sufficient to consider the

portion of the grid graph contained in RH(Q) to obtain an optimal solution to the

rectilinear network design problem. This generalizes the result of Provan (1988) for the

rectilinear Steiner tree.

5. Discussion of Related Problems

As mentioned in the introduction the network design problem can be shown to be

a generalization of several well-known problems. After discussing two such problems,

we present an extension of the network design problem which shows connection to other

problems.

Rectilinear Steiner Tree Problem: Given a set of points S on the plane, find a shortest

connected tree spanning S. Note that the Steiner tree may contain some points which are

not in S. The rectilinear Steiner tree problem has applications to wire layout for printed

circuit boards and utilities connections in buildings (Hannan, 1966).

To model this problem as (P), choose an i°e S and let the flow set

F ={[i°,j] : Vj€ SV5

}. Set all fpj =0 and C = 1. Any solution, N, to problem (P) with these

data will give a network which is connected and spans all points of S. The objective

function accounts for only the length of the network. It is easy to see that N will be a

rectilinear Steiner tree.

From theorem 2, not only can we obtain Hannan 's result that an optimal

rectilinear tree is contained in the grid graph, but extend it to the case of rectilinear

Steiner trees in the presence of arbitrary barriers.

Shortest r-Flow Network: Given a set F, find a rectilinear network N, of smallest length
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such that d(i,j;N)=d(i,j) V [i,j] e F. In this problem, the routing cost is minimized by

forcing each flow to follow a shortest path. With this requirement, the design now calls

for minimization of the fixed cost of the network. This problem is defined in Chhajed et

al . (1992) and arises in the context of material handling systems design.

Set fy = (a very high number) V [i,j] e F and C=l. This will force the network

to have a shortest possible path for every flow (a path of rectilinear length) and minimize

the length of the network.

As before, theorem 2 generalizes the grid graph result of Chhajed (1989) to the

shortest r-flow network problem in the presence of barriers.

While the previous two problems were direct specializations of the network

design problem, we now consider a generalization of the network design problem: In

addition to the points in S in the rectilinear network design, we are given an additional set

of points S° whose locations are to be determined. Now the flow set consists of pairs of

points in S uS°- All the results presented in sections 3 and 4 can be extended to this

problem if the set of points S° are added to the set M defined in section 3. With this

generalization, we can now model several well-known problems as rectilinear network

design problems.

1 -median problem : The 1 -median problem is to locate a facility on a rectilinear plane

such that the weighted distance of the facility from a given set of existing facilities is

minimized. To model as a rectilinear network design problem let

S = the set of existing facilities

S° = {h}, where h is the facility to be located

F =
{ [h,i] : i € S}; fhj = wj, where wj is the weight associated with je S;

C = 0.

It is possible to obtain the grid graph optimality result for 1 -median problem with barriers

( Larson and Sadiq, 1983) from theorem 2.

While we cannot formulate the p-median problem as a rectilinear network design

problem, the grid graph optimality in the presence of barriers for the p-median problem

follows from the result of the 1 -median problem (Larson and Sadiq, 1983).

Multifacilitv location problem: The multifacility location problem is to find the optimal

locations for a given number of new facilities in relation to a given set of existing

facilities. In this problem a new facility may interact with the existing facilities as well as

with other new facilities. Let wjj represent the interaction between new facility i and

existing facility j and v,j represent the interaction between new facilities i and j. The
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objective is to minimize the weighted distance between all facilities. To formulate as a

rectilinear network design problem let,

S = set of existing facilities; S° = set of new facilities;

F = S° X S° US X S°;

(wy ifieS°,jeS
fij

~{vij ifieS°JeS°

C = 0.

The well known intersection point optimality result for this problem (Francis and White,

1974) may be derived from theorem 1. This should not be surprising as the multifacility

location problem without barriers was used to derive theorem 1. However, using theorem

2, we can now extend this result to the case of multifacility location with barriers.

Integrated Station Location and Flow Network Design Problem: Many researchers have

begun to investigate the problem of layout design beyond the basic block design (Chhajed

et al., 1992; Montreuil, 1987; O'Brien and Abdul Barr, 1980). One problem that arises in

this context is to locate exactly one input/output station in each department and design a

flow network (material handling network) connecting them. Such a problem also arises in

the automated guided vehicle system design (Usher et al., 1988).

This problem is a special case of problem (P) when rectilinear travel is assumed

and all departments are rectangular shaped. We have S°={one input/output station for

each department), F={[i,j] : i,j e S° and interact}, fjj = annualized flow between

departments i and j and C = fixed cost per unit length of the material handling network.

To restrict the location of each input/output station to be within its department, define t(i)

as the four comer vertices on the contour of department i. Set fjj = for i€ S° and je t(i),

and S=Ui t(i).

Chhajed et al. (1991) have shown the existence of a dominating graph for the case

when each department is an isothetic simple polygon following an approach similar to

ours. Although barriers are not considered in the above cited literature, they may exist in

a plant layout, e.g., preexisting machines or fixtures, restriction by certain departments

(clean room) on material flow through them.
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6. Conclusion

In this paper we have considered a rectilinear network design problem on a plane

in the presence of barriers. We have established that an optimal solution to the problem

lies on a specially constructed grid graph. The consequent discretization of the problem

has several benefits, including reduction in the search space and ability to model as an

integer program. We further show that the size of the grid graph can be reduced by

considering a rectilinear hull of the demand points and barriers.

The rectilinear network design problem is shown to contain several well-known

problems. Therefore the sufficiency of the grid graph for an optimal solution follows for

all these problems.
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Figure 2. Grid Graph in the Presence of a Barrier
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(d)
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(a), (b), (c) are deadend cells and (d) and (e) are alley cells.

Figure 3. Deadend and Alley Cells
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• Arcs and Nodes of the Grid Graph
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Figure 5. Definitions of Sets n(i) and r(i)
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The extra grid lines generated are indicated in bold.

Figure 6. Augmented Network Due to Alley Cell



21

(b)

Figure 7. Deadend Cells (a) Before and (b) After Consolidation.






