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Abstract

In this paper we describe a new machine learning approach, based on a double-

layered architecture and the Genetic Algorithms(GAs), to learning decision rules for

financial classification. These rules can be implemented in an expert system for future

consultation in the particular application area. GAs represent a new class of learning

algorithms based on the model of the biological evolution process. Equipped with unique

search behavior and solution-seeking properties, GAs provide an interesting new technique

for such financial-classification tasks as bankruptcy prediction and credit analysis.

However, some modifications to the basic GAs would be necessary in order to make the

method suitable for solving the financial-classification problems. One of the objectives of

this paper is to identify the aspects of GAs that need to be modified for the classification

domain and how they can best be incorporated in the GAs. More importantly, we expand

on the concept of GA and develop a learning method called Double-layered Learning

System(DLS) that integrates GA with a similarity-based learning technique called

Probabilistic Learning Systems(PLSl). DLS proves to be an effective improvement over

both GA and PLS1. An analysis is included to evaluate the performance of DLS in terms of

computational efficiency, prediction accuracy, conciseness of the concepts generated, and

rule refinement.
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1. Introduction

Machine learning methods can help automate the knowledge-acquisition process in

building expert systems(Buchanan[1989]). In this paper we describe a hybrid approach

combining the genetic algorithms and probabilistic learning to the problem of learning

decision rules for financial classification. The problems considered can be described by the

following decision task: Based on a set of financial attributes and qualitative information,

assess a firm's financial performance and risks, and determine its ordinally ranked credit

risk category. Examples of financial applications falling into this class of problems include

bankruptcy prediction, bond rating, default prediction, and commercial loan classification.

GAs represent a new class of algorithms based on the model of the biological evolution

process. Equipped with unique search behavior and solution-seeking properties, GA
provides an interesting new technique for solving the financial-classification problems. It is

also a rule-induction technique for acquiring classification knowledge(Holland

et.al.[1986]). However, some modifications to the basic GA would be necessary in order

to make the method more effective. One of the objectives of this paper is to identify the

aspects of GA that need to be modified for the classification domain and how they can best

be incorporated in the GA for rule learning.

In addition, some similarity-based learning techniques developed by artificial

intelligence researchers recently, such as the tree induction method by Quinlan[1986] and

the probabilistic learning method by Rendell[1986] have been applied to the same

classification problem domain and have shown very promising results. These methods are

non-parametric and have demonstrated many advantages as classification tools over the

statistical methods traditionally used in this area. Buchanan [1989], for instance, pointed out

that the traditional statistical techniques are " knowledge poor" procedures that are unable to

use knowledge we may bring to the learning task. In addition, Currim et al. [1989], Carter

& Cartlett[1987], and Hansen and Messier[1988] have shown the superiority of the tree

induction method, ID3, over statistical methods. Shaw & Gentry[1989], Rendell

et.al.[1989] have shown the comparable performance of PLS1.

Methods for similarity-based learning fall into two categories (Rendell[1990]):

(1) those which use the data to instantiate a parameterized model defined over instance-

space (I-space) 1
. Thus the problem is to fit data to some model of the function; and

(2) those which use the data to select a candidate concept defined over hypothesis-space

(H-space)2 . Thus the problem here is to optimize some measure of hypothesis quality.

Algorithms like PLSKappendix A) and ID3(Quinlan[1986]) are of the first category

whereas GA is of the second type. I-space algorithms are generally fast whereas H-space



algorithms are slow but stable. Though the structure of the H-space depends on the I-

space, I-space algorithms do not fare well if the function in H-space is not unimodal (i.e.,

if it has multiple peaks). Also, algorithms like PLS1 are not stable if there is interaction

among different attributes (feature interaction (Rendell[1983])). The data, and the training

examples, in the financial-classification domain is characterized by high feature interaction

(for example, increase in sales has a effect on profits), multiple peaks in I-space(for

example, there might be several reasons for a company to go bankrupt), and lack of any

underlying distribution. GA, a H-space method, does not have the above mentioned

problems of dealing with these characteristics and thus is particularly appealing for financial

classification

.

To evaluate GA as a methodology for learning financial-classification rules, we

compare our GA with two of the more successful similarity-based learning algorithms,

Probabilistic Learning System (PLS1) and tree-induction method, ID3, and demonstrate the

advantages of GA. However, GA is computationally slow compared with PLS1 or ID3. To

overcome this shortcoming, we develop a new learning technique, referred to as the double

layered learning system, for improving the performance of solving the financial-

classification problems.

The Double-layered Learning System(DLS)3 combines PLS1 and GA together and

therefore incorporates the features of both types of methods(I-space and H-space

algorithms). Empirical analysis confirms that DLS produces better classification results

than PLS1 or GA. The hybrid technique points to a very promising direction for

developing rule learning algorithms for financial classification.

We base our empirical analysis of the DLS on three different real world data sets from

the financial domain (see appendix B for details): (l)Bankruptcy data set is from the

Standard and Poor 1 Compustat Industrial Annual Research file of Companies and

Compustat Industrial files , and is used to predict bankruptcy of firms; (2)Default loan data

set (Abdel-Khalik and El-Sheshai[1980]) is used to classify a set of firms into those that

would default and those that wouldn't default on loan payments; and (3)Loan data set

consists information about loan risk classification of different firms from a regional bank,

with a rank of 1 being for the lowest risk level and a rank of 5 for the highest risk level.

With these different sets of financial data we hope to obtain consistency in evaluating the

learning techniques under study.

From the empirical studies earned out to evaluate the performance of DLS, the

following findings come to light: (1) DLS has the effect of rule refinement over the rules

generated by PLS1 and GA, (2) the concepts generated by DLS are more concise; (3) it

improves the prediction accuracy of the rules generated, over that of PLS1 and GA; and (4)



it improves the efficiency of GA because of the good initial population, thanks to PLS 1

.

Thus the findings confirm that DLS, a hybrid technique, combines the advantages of both

PLS1 andGA.

The organization of the paper is as follows: In the next section we give a brief overview

of the GA and discuss some of its important properties; in § 3 we discuss concept

representation with a GA; in § 4 we present the GA for classification problem with the

appropriate modifications; in § 5 we illustrate the search process of the GA; in § 6 the

empirical results and comparisons of the GA with ID3 and PLS1 are illustrated; § 7

describes the double layered learning system combining GA and PLS1; in § 8, two

examples are used to demonstrate the working of DLS; and finally, in § 9, the empirical

results of DLS are discussed.

2. Genetic Algorithm

2.1 Review

The learning of classification rules can be thought of as searching through the space of

rules (or hypothesis) and thus has all the problems associated with a search problem,

mainly the combinatorial explosion of the search space with the increase in the number of

dimensions of instance space (i.e., number of attributes).

An efficient way of tackling the problem will be the use of a search algorithm which can

simultaneously search different regions of the search space, in parallel, instead of the

traditional algorithms which follow a single search path in the search space. Such an

algorithm is more likely to find a global optimum if there are many peaks in the hypothesis

space. This has important implication for the classification problem in terms of the

prediction accuracy of the rules or hypothesis found. The traditional methods for

classification perform very well in classifying the training data set but perform not so well

on testing data, in other words they usually locate a local maxima if the training instances

happen to be from around the local maxima.

Genetic Algorithms (GAs) are adaptive search algorithms which have the above desired

properties of parallel search and ability to locate global maxima without getting trapped in

local maxima. They represent a class of general purpose adaptive search techniques which

have been used in a wide range of optimization problems. Goldberg(1989), describes GA

as search algorithms based on the mechanics of natural selection and natural genetics. They

combine survival of the fittest among string structures with a structured yet randomized

information exchange to form a search algorithm with some of the flair of human search. In



every generation a new set of artificial creatures(strings) is created using bits and pieces of

the fittest of the old; an occasional new part is tried for good measure. While randomized,

genetic algorithms are no simple random walk, they efficiently exploit historical

information to speculate on new search points with expected improved performance.

A GA should be equipped with the following four components for achieving the effect

of rule learning:

(1) a chromosomal representation of solution to the problem.

(2) a way to create an initial population of solutions.

(3) an evaluation function that rates the solutions in terms of their "fitness".

(4) genetic operators that alter the composition of solutions during reproduction

In addition, in applying GA, one needs to decide the various values for the parameters

that the genetic algorithm uses, such as the population size, the number of generations, and

the probability of mutations. As will be seen later in this paper, varying the mutation rate

greatly enhances the GA in terms of avoiding a local optimum and facilitating the

convergence to a good solution.

Since the GA works with string structures (analogous to chromosomes in biological

systems), the hypothesis (or rules or solutions) should be encoded and represented in a

string form. This low level representation with which a GA works is called genotype , and

the corresponding set of apparent characteristics is called phenotype. The individual

elements of the genotype are called genes , and their possible values are alleles.

The GA's work with a population of hypothesis at a time, the number of hypothesis

being a parameter of choice. Each hypothesis is evaluated using the training examples and a

"fitness" score, usually measuring the accuracy of the hypothesis, is assigned to it. Starting

from an initial population of hypothesis, the GA exploits the information contained in the

present population and explores new hypothesis (abduction) by generating a new

population of hypothesis from the old population through application of genetic operators.

The genetic operators most often used are: (a) reproduction; (b) crossover, and (c)

mutation.

The reproduction operator just duplicates the members of the population to be used to

derive new members. The number of copies that each member (hypothesis) gets is

proportional to its fitness score. Thus the fitness of an individual is clearly related to its

influence upon its future development of the population. When many offspring of a given

individual survive to reproduce, then many members of the resulting population, the "next



generation," will carry the alleles of that individual. Genotypes and phenotypes of the next

generation will be influenced accordingly.

After reproduction, new individuals are generated by selecting two individuals at a time

from the resulting population and applying the operator of crossover. Crossover

exchanges the genes between the two selected individuals(parents) to form two different

individuals. Crossover is the key to the power of the GAs as it helps in combining

information from different hypothesis to discover more useful hypothesis. Usually

crossover is applied with a constant probability Pc-

The mutation operator randomly changes some of the genes in a selected individual

and is applied at a much lower rate(Pm) as compared to crossover operator (i.e., Pm «
Pc ) . The basic GA can be described by the following procedure:

PROCEDURE GA (population size n, max. number of generations Ng)

begin;

select an initial population of n genotypes {g};

no-of-generations = 0;

repeat;

for each member b of the population;

compute f( g), the fitness measure for each member; /* evaluation */

repeat;

stochastically select a pair of genotypes gi, g2
with probability increasing with their fitness f; /* reproduction */

using the genotype representation of gi and g2,

mutate a random bit with probability pu ;
/* mutation */

randomly select a crossover point and

perform crossover on gi and g2 to

give new genotypes g'j and g'2; /* crossover */

until the new population is filled with n individuals g';;

no-of-generations = no-of-generation + 1;

until the number-of-generations has reached Ng or

one of the genotype is good enough; /* teimination */

end;

While most GAs would have this basic form, there are a variety of ways this procedure

can be implemented. Some of the implementation issues are described in §4, in which the

methods to specify the evaluation function, the sampling procedure for reproduction, the

probability for mutation, and the crossover mechanism are discussed. It is important to note

at this point that the specification of these parameters and mechanisms can affect the

performance of a GA.



2.2 Properties of Genetic Algorithms

A GA incorporates the search procedure whose mechanics are based on those of natural

genetic evolution. Fundamentally, a GA has features that make it robust and globally

oriented search procedure. Mathematical analysis reveals that the GA's search power is due

to computational leverage provided by the underlying process of schemata, or similarity

templates(Goldberg[1989]). Schemata are substructures of parameter codings, and they

describe subspaces of the coding space. Under the action of reproduction, schemata that are

associated with high fitness receive exponentially increasing number of copies in a

population. Crossover combines certain schemata in a randomized, yet structured way,

such that new schemata can be evaluated.

Thus, at each step the GA faces the twin processes of exploitation vs.

exploration. Exploitation refers to the process of exploiting the information (in the form

of schemata) which the population has acquired. Typically, exploitation is carried out by

reproduction operator by making copies of the coded structures(individuals) in proportion

to their fitness. Exploration, on the other hand, refers to the process of randomly exploring

new points in the search space. It is typically earned out by random mutations. Crossover

operator is the unique operator which incorporates both exploitation and exploration, the

exact tradeoff between the two depending on the type of crossover operator used.

Eshelman et.al.(1989) discuss this tradeoff in the form of biases for different crossover

operators, and suggest the use of a variety of crossover operators, such as the uniform

crossover operator or the multiple-point crossover operator.

Exploitation and exploration together can explain some of the important properties of a

GA. In the process of searching for the solution, the exploitation step helps put more

emphasis on the more promising coded structures; the exploration step helps generate new

candidates in the search space. There is a loss associated with either exploitation or

exploration. If the association of a particular schema with high fitness is due to

happenstance, then exploiting this association by giving increasing samples to the schema

will lead to a loss of performance. On the other hand favoring exploitation by random

mutations leads to loss of important information contained in the population. Thus, there

should be an optimal balance between exploitation and exploration which minimizes these

loses. Holland(1975) formalized this optimal balance by minimizing the expected loss due

to either exploration or exploitation. He showed that "Minimum expected loss" was a

more useful criterion of judging the algorithm than "convergence". In other words, A GA

can achieve good solution quality by fully taking advantages of both the exploitation and

the exploration steps.



GA has a number of algorithmic properties that may explain its ability to balance

between exploitation and exploration. First, the expected number of trials given to the^
value of an i& attribute(for all i & j) is infinite. This ensures that every point in the search

space is likely to be reached by the GA. Second, in executing a GA, for any schema, the

number of copies given to a schema by the GA is an exponential function of its fitness.

Third, the solution generated by a GA has minimized expected loss with respect to the

opportunity cost related to exploration and exploitation. Fundamentally, a GA has the

following properties that makes it computationally attractive as a classification technique.

(i) Implicit Parallelism: A GA works on a population of hypotheses instead of one at a

time. It can be shown that in a generation the GA processes about n 3 schemata

information(where n in the population size). As a result, GA is better able to search through

large search space. Because they implement parallel search, GAs can better handle badly

behaved objective functions.

(ii) Robustness: GAs operates on codings of parameters, rather than the parameters

themselves. GAs search in the hypotheses space in the learning process, as opposed to in

the instance space(Rendell[1990]). A GA is free from assumptions of other methods such

as continuity, existence of derivative, unimodality, or any distribution. Since a GA use the

fitness measure to guide the search in the hypotheses space, it has more tolerance for noise

in the data and changes in the environment.

(iii) Ability to perform global search. Because of the use of genetic operators, GAs

search around the hypotheses space not by following any functional form, gradient

information, or heuristics, but by exploration and exploitation. This means more globally

oriented search and less likelihood of getting stuck in local minimum. For example, De

Jong(1975) and Caruana & Schaffer(1989) used several functions to test the GA's

performance on search spaces. GA was able to find the global optimum in all the cases,

although several other methods failed to find the global optimum on the same data.

(iv) Conciseness: Partly because of the searching advantages of a GA. it usually

generates more concise concept descriptions. This is further confirmed by our empirical

study.

(v) Ability to learn concepts fast in high-dimension sparse spaces: Many

problems, including the financial classification problems, have the characteristics that it is

8



not known before hand which of the attributes considered are relevant for the concept being

learned. If the concept is of a vary low dimension in a high dimension hypothesis space,

then traditional similarity-based learning methods would waste lot of time in a high

dimension space(Syswerda[1989]). GAs, on the other hand, can handle this problem

nicely with their unique parallel search capability.

3. Knowledge Representation in Genetic Algorithms

3.1 Concept Representation

Since in this paper we are developing a GA for the purpose of performing classification

tasks, which can in general be viewed as the concept-learning problem, we shall now

first set the stage by addressing the representation issues related to concept learning and

how they can be handled by the GA using its genetic representation.

A concept is either a categorical or an uncertain classification rule, corresponding to a

binary or probabilistic class membership function over a space(i.e., the instance space)

defined by a set of attributes. Given the range of attribute values and function values, we

can express the correct concept as one of many candidates or hypotheses^ Rendell[1990]).

For a program to perform concept learning, it must be able able to formulate the hypotheses

of the correct concept.

A concept can be logically represented as

C = Ci v C2 v ... v Cp

= (|u & ... & |klfl ) v (|U &... & |k2 ,2) v...v (|1§p & ... & |kpjp),

where % corresponds to a proposition that specifies conditions for a particular coordinate, {

x[ = aj or x] = a2 or ...}. The following example from financial domain will help explain

the above representation:

Consider the concept C:

[ (NETJNCOME TO TOTAL,ASSETS RATIO < 0.048) and (TOTAL_DEBT TO TOTAL_ASSETS

RATIO > 0.534) OR

(TOTAL_DEBT TO TOTAL_ASSETS RATIO > 0.34) and (CASH_FLOW TO TOTALJDEBT

RATIO > 0.395) ]

In terms of the above representation p=2, ki=2, and k2=2. The concept is thus in the form

C = Ci v C2, where

C
l
=

ll,l & ^2,l ,



C2 = ll,2 & 12,2 .

|l,l = (NETJNCOME TO TOTAL_ASSETS RATIO < 0.048) ,

|2,1 " (TOTAL_DEBT TO TOTAL_ASSETS RATIO > 0.534) ,

?1,2
= (TOTAL_DEBT TO TOTAL_ASSETS RATIO > 0.34) , and

^2,2
= (CASH_FLOW TO TOTAL_DEBT RATIO > 0.395)

This concept description is referred to as the disjunctive normalform . It is known that

in mathematical logic that all possible expressions involving the elementary propositions are

tautologically equivalent to one in disjunctive normal form. Let X^ represents the set of

data points that satisfy C. Geometrically, all possible conditional sets Xc using conditions

of the disjunctive normal form correspond to all possible subsets of the space of attributes

xi„.xn . Packard[1989] has a very good discussion on the logic and geometry related to

concept representation.

3.2 Concept Representation with GA

To use the GA, we must be able to represent the domain knowledge by a vector called a

genotype. Packard(1989) describes a method to represent concept descriptions by

genotypes in a GA. Each of the genotypes is allowed to take on either a value of *,

indicating no condition is set for the corresponding attribute, or a sequence of numbers

(ci,..., Ck) indicating values for the corresponding attributes in a disjunctive term. For

example, ( *, *, (4,8), *, 5) is equivalent to the conditional set Xc = {x
|

( X3 = 4, or X3 =

8)&(x5 = 5)>.

Geometrically the set Xc for such conditions is a set of rectangles, instead of the more

general disjunctive normal form. Alteration of the GA to conditions of disjunctive normal

form would require a similar symbolic representation.

For example, a concept consisting of two variables : (1 < xj < 3) & (1.3 < X2 < 3.4)

can be represented by the coded structure, called phenotype as (1 3 1.3 3.4). Its

corresponding genotype can be constructed by mapping the phenotype into binary form.

The above concept can be similarly constructed to include the disjunctive forms, such as

( 1 3 1.3 3.4 2 4 5.2 7.5 )

This coded structure is equivalent to the following disjunctive form:

[(1 <xi <3) & (1.3 <x2 <3.4) ] v [(2<xi < 4) & (5.2 < x2 < 7.5) ]

10



4. GA for learning Classification Rules

4.1 Introduction

Classification problem concerns itself with finding of rules for pattern discrimination from

examples of correctiy classified patterns. The data or examples are of the form

( Xi, yi)

where Xi is a vector of independent variables (xi X2 ... xn ) and yi is the corresponding

classification variable. The patterns learned from the examples will be of the form ( Q, yi)

where Q is the conditions (the IF part of the IF-THEN rule) or the patterns classifying the

variable yi. Q can also be viewed as the concept description correspond to yi.The basic

tool for discerning the patterns Q from the data will be the GA here. The specific problem

being considered in this paper is the class of financial-classification problems, where Xi's

are the different types of financial variables of a company and yi's are the corresponding

credit risk classification of the company.

4.2 Representation

The conditions(hypothesis) are represented in the disjunctive normal form (DNF) as

C= (Ci v C2 v ... v Cp )

where each disjunct is a conjunction of conditions .

i.e., Q = (§i,i &... & §kifi)

In order to handle continuous variables each condition &j will be in the form of a closed

interval [aj bi], i.e.,

|j,i
= (ai< Xi <bi) ,ifai<bi

or ( at > Xi > bj) , if aj> bi

The representation with which the GA works (genotype) is obtained by mapping the

phenotype of Ci = (^i,i &... & §kj,i) into binary form. For example, if ki=2 and £,1,1 = [1

3] |,2,i
= [4 2], then the representation of Ci is

((1 3) (4 2)) —> phenotype

(001011100010) —> genotype,

(assuming each number is represented by a 3 bit binary number).

There are two ways of deriving the rules using a GA. One way is to let each member in

the population represent a complete concept ( Ci v C2 v ... v Cp).

Alternatively, the other method is to let each member be just a single disjunct Ci =
(£ji,i

&... & ^kj,i)- We use the second method in our GA because, unlike the first method, it

does not have to assume the knowledge of the number of disjuncts a priori. In this method,

11



the GA tries to find the best possible hypothesis(or disjunct) (i.e., covering as many

positive examples as possible). After it converges, the best hypothesis found is retained

and the positive examples which it covers are removed. The process is again repeated to

find a new hypothesis to cover as many of the remaining positive instances as possible.

This process terminates after all the positive instances are covered. The final rule is then

the disjunct of all the hypothesis found. This procedure of searching the instance space (I-

space) is called explanation based filtering (Cohen & Feigenbaum[l982]).

4.3 Evaluation Function

We first present the theoretical foundation leading to the fitness function which has

been used for Classification using GA (Packard[1989]), point out its drawbacks in present

context, and then present a fitness function which has the desired properties.

The fitness function which evaluates the fitness of each member of the population

should be based on the amount of the information about classification contained in it.

Communication theory provides us with a precise measure of information called entropy .

Applying this concept to the classification problem we find that if an object can be classified

into one of the several different groups, the entropy is a measure of the uncertainty of the

classification of that object. As the entropy increases, the amount of information that we

gain by knowledge of the final classification increases. Mathematically, if an object can be

classified into N different classes Ci, C2, Cn and the probability of an object in

class i is p(Q) then the entropy of classification, H(C) is

N

H(C) = -Xp(Q)log2 p(C 1 )

i-l

To evaluate the fitness of any condition we should first get the conditional probability

distribution of y values. Let C be a condition (individual in the population), then the

conditional probability disuibution of y values given that X_£ C is

Pc (y) = r^ X S(y-y')
Nc {X€C}

where Nc = number of training examples which satisfy C

and 8 (y-y
1

) = 1 if the class of the training example matches that of the

condition

= else

12



We may now use Pc(y) to evaluate the usefulness of the conditions in specifying y. This

evaluation will allow us to assign a "value" or "fitness" of any condition C. An appropriate

fitness measure is the Kullback-Leiblerfunction (Packard[1989])

v P (v)
F(C) = d(Pc ,P) = 2>c(v) log2 (£^) = Hmax -H(PC )

y
p(y)

where P(y) =— ,y€ {1,2...KD }

H(PC ) is the entropy of the distribution Pc (y)

and Hmax =—
For bankruptcy prediction, there are only two classes, positive and negative; in this

case y is binary and can take only two values for any C, i.e.,

y 8 {p, n>

Therefore, P(y) = 0.5, and

F(C) = Pc (p) log2 2Pc (p) + Pc (n) log2 2Pc (n) = Pc (p) log2 (

Pc(p)
) + log2 2(l -Pc (p))

(l'Pc(p))

where Pc (p) = 1 - Pc (n) = , the accuracy of the condition C.
(p + n)

Figure 4.1(a) shows the plot of F(C) vs. Pc(p) .

Insert Figure 4.1 (a) Here

The desired condition C is the one which covers all the positive instances without

covering any negative, i.e., one for which Pc(p) is as close to 1 as possible. We see that

F(C) is symmetric about Pc(p)=0.5 i.e., points Xi and X2 have the same fitness even

though X2 is more desirable than Xi, such ambiguity would create problems during the

evolution process in selecting the fitter members. Thus the fitness function needs to be

modified to have a monotonously increasing functional form, such as the one shown in

Figure 4.1(b). To that end, a simplified version of F(C) is considered:

F(Q- ?c2(P)

(l-Pc(p))

Figure 4.1(c) shows the plot of F'(C) Vs. Pc(p)

In addition, to take into account the poor statistics resulting from the dependence of the

fitness function on the number of positive examples covered, we let

F"(C) = F'(C) / P, where P = total number of positive examples

13



Normalizing the above function so as to have a maximum value of 1 when all the positive

examples are covered without any negative examples, we get the final function Fd(C),

which is the one shown in Figure 4.1(b).

A close look at the function Fd(C) reveals the following relationship:

Fd(C) = (7-^-) (£) (-) ifn>0
(p + n) P n

= £ if n =
P

The term (p / (p+n)) is just the accuracy of the condition C and is similar to the utility of the

"regions' considered by PLS1, (p / P) is the reliability of the accuracy and is similar to the

error term used in PLS 1 , and, ( 1 / n) is a penalty term for covering negative examples.

4.4 Modifications to the basic GA

In recent years there has been much work done studying the alternative ways to specify

the parameters as well as to incorporate the mechanisms involved in implementing GAs. In

the particular method we developed, we incorporated some of these modifications to the

basic GA, each of them have been proven empirically to enhance the performance of GAs.

Specifically, the major modifications include: (1) using Baker's (1987) stochastic universal

sampling technique in the reproduction process; (2) adopting a new crossover operator,

called uniform crossover, which is a more general, as well as more efficient, way to

perform crossovers; and (3) using a varying mutation probability that approaches zero

toward the end of the genetic process. The explanations of the three modifications follow.

1) Universal stochastic sampling :

The main culprit in terms of time complexity for a GA is the selection, or the sampling

procedure, used in the application of the reproduction operator. The expected number of

copies that each individual receives is proportional to its fitness. Specifically, the expected

number of copies that individual i gets at time t is jii(t)/u_(t) where U-i(t) is the observed

fitness of individual i at time t and u(t) is the average fitness of the population at time t.

Traditional sampling techniques use the so-called "spinning wheel" method, wherein

each wheel slice is proportional in size to some individual's expected value. The wheel has

to be spun as many times as the number of samples required. This technique is typically

implemented in 0(N2
) time, but can be implemented in 0(N*logN) by using a B-ttee. The

ttaditional techniques fall into one of the following six:

(a) Deterministic sampling,
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(b) Stochastic sampling with replacement,

(c) Stochastic sampling without replacement,

(d) Remainder stochastic sampling with replacement,

(e) Remainder stochastic sampling without replacement, and

(f) Stochastic tournament.

Baker(1987), uses three criteria for comparing the various sampling techniques. (1) bias :

defined as the absolute difference between an individual's actual sampling probability and

his expected value; (2) spread : defined as the range of possible values for the actual

number of copies that an individual receives in a given generation; and (3) efficiency : the

time complexity of the technique. Ideally, a sampling technique should have zero bias,

minimum spread and should not increase the GA's overall time complexity (other phases of

GA are O(LN), where L is the length of each individual, and N is the population size). The

"spinning wheel" method has zero bias but unlimited spread, i.e., any individual with

expected value > could be chosen to fill the entire next population.

Baker(1987), then goes on to propose a sampling technique, namely "Stochastic

Universal Sampling" (SUS), the only one which has zero bias, minimum spread and

has O(N) time complexity. SUS is analogous to spinning wheel with N equally spaced

pointers. Hence, a single spin results in N samples. We have used SUS in our GA, and

thus the overall time complexity of our GA is O(LN) or better.

(2) New crossover operator :

The traditional crossover operator used is the one point operator, as shown below.

1001:01 --> 1001:10

0110:10 --> 0110:01

This can be extended to a two point (or in general k-point) operator:

10:01:01 --> 10:10:01

01:10:10 --> 01:01:10

These are special cases of a more general operator called uniform crossover. Instead of a

crossover point it uses a mask which determines which bits are to be exchanged,

example, uniform operator:

100101 --> 110000

010101 ("mask")

011010 --> 001111
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Syswerda(1989), showed the superiority (with respect to finding good solutions) of

uniform crossover operator over one and two point traditional crossover operator on some

experimental functions. We also use uniform crossover operator to enhance the

performance of the GA.

(3) Varying mutation rate :

Instead of keeping the probability of mutation constant across the generations, we

decreased the probability starting from an initial value to uniformly over the total number

of generations. Specifically the probability of mutation at time(generation) t is determined

by(Holland[1975]):

Pm(t) = C t.°Pm

where,

Pm(0 = probability of mutation at time t,

0pm = initial probability of mutation, and

Q - a sequence of numbers satisfying the following:

(1) 0<Q< 1

(2) Q --> as t ->oo

(3) St Q --> °° as t --> oo

In our case, Q was (1-t / M) where M is a large constant (usually the limit of t).

Fogarty(1989), showed empirical evidence (albeit for a particular application) that varying

probability of mutation improved the performance of the GA significantly. This is verified

in §5.3.

5. Search Process of the GA: an Example

5.1 Applying GA to the Classification Problems

We consider two separate data sets to demonstrate the search process of the GA. First

is the default loan data set and the second is bankruptcy data set (appendix B). The detailed

search process of the GA will be demonstrated for the bankruptcy data.

Default Loan Classification

The data set had 32 instances (16 positive and 16 negative) and 18 attributes. The final

concept given by the GA had rule size of 3 (i.e., three disjuncts), as shown in Table 5.1

.
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Insert Table 5.1 Here

Thus the concept learned is (C\ v C2 v C3 ). The above concept can be interpreted as the

following rules:

Ci:

If [ (NETJNCOME TO TOTAL_ASSETS RATIO < 0.048) and (TOTAL_DEBT TO

TOTAL_ASSETS RATIO > 0.534) and (-0.357 < LONG_TERM_DEBT TO

NET_WORTH_TREND RATIO < 0.894) ]

then 'The firm would default on loan payment '

C2 :

If [ (TOTAL_DEBT TO TOTAL_ASSETS RATIO > 0.340) and (CASH_FLOW TO

TOTAL_DEBT RATIO > 0.395) and (QUICK_ASSETS TO SALES RATIO < 0.565) ]

then 'The fiim would default on loan payment '

C3 :

If [ (EARNINGS.TRENDS < 3.669) and (CASH_FLOW TO TOTAL_DEBT_TREND RATIO <

-0.077) ]

then 'The fiim would default on loan payment '

Bankruptcy Analysis

We consider a sample of instances from the bankruptcy data consisting of 58 training

examples (29 positive and 29 negative) to demonstrate the search process. In this example

the population size was 100, probability of crossover was 0.7, and the probability of

mutation was held constant at 0.01 in one experiment and varied to in other and their

results are compared. The fmal concept given by the GA for these data had rule size of four

(i.e., four disjuncts) is shown in Table 5.2. The rule thus learned is r = (C\ v C2 v C3 v

C4). The detailed search process of the GA for the first disjunct C\ is shown in Table 5.3.

Note that this set of data have been transformed into the values in the range [0, 58]. That

range was used in the initial population and the only schema in that generation is the the

most general description.
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The interesting aspect is that as more generations are generated, an important schema

emerges. In this case, the schema is (*(3 45)*****(28 37)*), which corresponds to the

description [( 3 < X2 <45) & ( 28 < xg < 37)]. This also emphasizes the building block

hypothesis , a keystone of the genetic algorithm approach, wherein the GA treats schemata

as the building blocks to the best hypothesis. It searches for better building blocks by

giving increasing number of copies to the more fitter schema, and recombining them using

the genetic operators. As is seen from the example above, when the GA converges, it has

the best schema in all the members of the population.

Insert Tables 5.2 and 5.3 Here

5.2 The Learning process

The initial population used by the GA consists of all general members, each covering

the entire instance-space. The GA then performs the equivalent of specialization on the

members through the application of genetic operators. Table 5.3 shows snapshots of the

top four members together with their most important schemata and fitness at different

generations. The following plot shows the fitness of the top four members as the number

of generations grows. The fitness measures converge at around the 60th generation among

these four members..

Insert Figure 5.1 Here

Another important parameter judging the learning rate is the on-line performance

measured by the average fitness of the population at any time t. The following plot shows

the average fitness of the population with generations. The average fitness did not converge

until at about the 90th generation.

Insert Figure 5.2 Here

5.3 Convergence process

By Figures 5.1 and 5.2 we have seen the convergence behavior of the GA. These

experiments present a feasible quantitative measure of the convergence rate of the
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algorithm. However, convergence does not guarantee a global optimum solution but can

sometimes lead to the "premature" convergence of the algorithm. Among others, varying

mutation rate is one way of avoiding premature convergence. As will be shown later, the

initial population used would also affect the convergence process.

Convergence to a particular 'good' solution can be measured by the rate of change of

the fraction of the population having the best solution. Since obtaining this exact fraction is

not feasible(in terms of time complexity) at each generation, one way of measuring it is to

look at the ratio of average fitness to maximum fitness of the population. The plot in Figure

5.3 shows the such a convergence curve. The convergence of this ratio indicates that there

is no more improvement in the fitness measure and the population reaches stability. This is

one way to determine the termination of the GA. Another commonly used termination

condition is simply prespecify the total number of generations (Goldberg[1989]).

Insert Figure 5.3 Here

5.4 Varying Mutation vs. Constant Mutation Rate

A very interesting finding in applying the GA is that by simply using a varying

mutation rate, the learning performance can greatly be improved. To verify the impact of

the way the mutation rate is specified, we earned out the same experiment with a constant

mutation rate of 0.01 and we compare the results with that of using a varying mutation rate

(varying as a function of the generation number ) as the one discussed in §4.4. The plots in

Figure 5.4 compares the learning rate for both types of methods for specifying the mutation

rate.

Insert Figure 5.4 Here

In Figure 5.4 the learning curves are specified in terms of the average fitness level and

in terms of the maximum fitness level; the former is referred to as the on-line performance;

the latter is referred to as the off-line performance. Varying mutation rate significantly

enhances the performance of the GA both in terms of (1) the avoiding a local optimum and

(2) converging to a 'good' solution. This can be explained by the fact that as the GA

approaches the correct concept description, exploitation becomes more important than

exploration in reaching the final solution. As a result, the probability of mutation should be

decreased so as not to stray away from the emerging good hypotheses that appear to be fit.
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In addition, the use of varying mutation rate would improve the level of fitness for the

concept learned. This is because the varying-mutation-probability approach starts with a

higher pm value than the constant-mutation-probability approach - which means more

exploration in the beginning, thus better ability to avoid local optimum.

6. Empirical Results

This section describes results of the experimental study carried out to study the relative

performance of inductive learning methods ID3 and PLS 1 vis-a-vis that of GA with respect

to prediction accuracy and conciseness of concept representation as measured by rule size.

The data used was bankruptcy data consisting of 104 instances (58 positive and 58

negative). Cross validation technique was used by drawing ten different random samples

(each consisting of 58 training and 46 testing examples) from the data set and using the

three methods to classify them. The following operators and parameter values were used

for the GA:

operators : Uniform crossover and varying mutation rate

parameter values : Prob. of crossover = 0.7, initial prob. of mutation = 0.1, and

population size = 100.

Table 6.1 shows the results of the 10 experiments for all the 3 methods,

Insert Tables 6. 1 Here

A t-test for paired observations was earned out, and at 5% level of significance the

difference between the prediction accuracy of GA and that of ID3 and PLS 1 was found to

be statistically significant. The same test for the rule size showed significant difference

between the rule sizes of GA, ID3, and PLS1. Thus we can conclude that (1)GA

outperformed ID3 and PLSl both in terms of prediction accuracy and conciseness (rule

size) and (2)GA was more consistent in the results as shown by the low variance in its

results as compared to ID3 and PLSl.
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7. Double Layered Learning Approach

GA holds promise as a robust machine learning method (especially for problems where

the hypothesis space is not very smooth and has many peaks) which, as shown by the

performance results just described, is able to find a concept representation with minimum

rule size and with prediction accuracy which is better than ID3 and PLS1. In other words,

it is able to locate a globally optimum concept when the traditional methods usually give a

sub-optimal concept. On the other hand, GA is computationally more costly than either of

the two inductive learning algorithms considered.

Based on the empirical study in the preceding section, one can conclude that there are

tradeoffs between the GA and the similarity-based learning systems, such as ID3 or PLS1,

in terms of accuracy, conciseness, and the computation cost. This gives rise to the idea of

combining the features of both types of systems so as to have the advantages of both - the

computational efficiency of these similarity-based learning algorithms and the ability of a

GA to perform global search and have concise descriptions. The resulting system is what

we refer to as the double layered system, wherein the first layer consists of a very efficient

algorithm ( in this case, PLS1) and the second layer which takes its input from the lower

layer consists of a GA. A prototype of such a system was developed and tested, which we

call Double Layered System (DLS), and is described as follows.

7.1 The Double Layered Learning System

A learning system, including the one described so far, can be generally characterized

by the diagram shown in Figure 7.1 (a), Where {(X,u)} is the input data set (better known

as the training data set). For each instance of (X,u), X is the vector of atuibute values and u

is the corresponding classification variable (usually a binary variable with 1 for positive and

for negative examples). The output of the system is the concept u(X) i.e., the

classification variable as a function of the attribute vector. The algorithm A takes as its input

the training data set {(X,u)> and finds a concept u(X) explaining the input data set. Thus

the problem of learning the concept can be thought of as the problem of finding the function

u(X).

The key idea of the DLS is to use PLS1 to generate a population of hypotheses to be

used as the input to GA. These inputs provide good initial population for GA, thus saving a

big chunck of GA's computational time for reaching the correct concept sooner. At the

same time. GA provides a more globally oriented search with implicit parallelism, thus

improving the quality of the learning results. The functional diagram of DLS is shown in
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Figure 7.1 (b), where {(X,u)> is the available data set and {(X,u)>i is the i
tn sub-sample4

generated from the data set using a random sampling technique. Jackknife technique

(Efron[1982]) of drawing random samples was considered. In this technique one or more

data points are removed from the data set S to get a sub-sample Si. This is repeated to get

more sub-samples Sj , i = 1,2 ... co. We use a Jackknife technique wherein a fixed percent

of the data points(say r%) are removed from S to get the subsamples Sj , i = 1,2 ... co. We

refer to this technique as the Jackknife technique of 'leave out r%\

Insert Fig. 7.1 (a) & (b) here

7.2 Features of the System

At first the random sample generator takes the input data set and generates different

random samples out of it using the Jackknife technique. The sample generator chooses 'n'

instances out of the N randomly to be used as testing against the final concept generated by

the system. From the remaining (N-n) instances, the jackknife technique of leave out r %'

is used to generate different random samples {(X,u) }i which are then used by PLS 1 to

generate different concepts u(X)i. These concepts are then used by the GA to form the

initial population. The GA works in the same way as described in § 4.2. At each generation

the GA uses the same (N-n) instances to evaluate its population of hypothesis. Before such

a system could be designed, however, there is the issue of interface between the two

algorithms PLS1 and GA.

In order for the GA to use the output of PLS1, the output of PLS 1 has to be changed

into the representation used by the GA (see § 4.2). The representation used by PLSl is

also similar but since the GA uses only single disjuncts in its population, the concept u(X)

given by PLSl needs to be broken into individual disjuncts and given as input to the GA.

This compatibility of the concept representation used by PLSl and GA is the key linkage

which ensure the success of the double layered approach.

Specifically, the concept descriptions generated by PLSl are represented by the

following form:

P = P
l

v... v Pm
= {(d

11
<x

iii
<e 11 )&...&(d lk <x

lik
<e lk)>v...v{(dml <x

imi
<eml )

&...&( dmk <x
lmk

< emk)>

=
<lll & ^12&-& ^lk> v <fel & fe2&-& l2k> v-v <lml & ^m2&-& ^mk>

22



Rendell(1986) defined each Pi as a region geometrically. But the representation used by

PLS1 is very compatible with the disjunctive normal form used by GA.

To generate enough samples for the initial population as the input to GA, the original

data set is partitioned into (0 subsamples by the jackknife technique. Each subsample is fed

into the PLS1, for a total of 0) runs. For each run i, PLS1 generates

p^pv.-.p^.
The DLS system takes each of the PVs from P1

as one member of the population, for i =

1,..., (0. Therefore, the initial population input to the GA component has a total of mi +

ni2+...+ mu members, represented in the form of genotypes.

8. Search Process of the DLS: an Example

We consider two data sets to show the working of the DLS. First, we use the

Bankruptcy Data to show the improvement brought on by the search process of DLS over

that of GA, and then use the Loan Data to show the improvement of DLS over PLS 1

.

Bankruptcy Analysis:

We consider a sample of instances from the bankruptcy data consisting of 58 training

examples (same as in § 5) to demonstrate the search process. The final concept given by the

DLS for these data had rule size of three (i.e., three disjuncts) as shown in Table 8.1.

Insert Table 8.1 Here

The rule thus learned is r = (Ci v C2 v C3 ). Comparing with § 5 we see that the rule size

has been reduced from 4 to 3. Now we shall compare the search process of the DLS with

that of the GA(§ 5) for the first disjunct C\. In this example the following parameter values

were used:

number of sub-samples used by PLS 1 = 10

population size = 42 (this is determined by the output from PLS1)

probability of crossover = 0.7

probability of mutation = 0.01
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Figure 8.1 shows the learning curve of DLS vs GA

Insert Figure 8.1 Here

Figure 8.1 shows the improvement in terms of solution ( the improvement in the fitness

measure in this case is about 0.1721, i.e. an improvement of 27.7%), population size

(which in this case was 42 as compared to 100 used for the GA alone). Since population

size is reduced to about half, it reduces the time complexity ofGA (O(LN)) proportionally.

This along with the 'good' initial population (thanks to PLS1) considerably improves the

efficiency compared to using GA alone. These results are further confirmed by the

empirical study.

Loan Classification:

The Loan data used consisted of information about different companies together with

their loan risk class (or category), with class 1 being the lowest risk level and class 5 the

highest risk. The data set had 100 instances. The concept generated by PLS1 had 47 rules

(or disjuncts). For brevity we would not show all those rules here. Instead we give the

rules generated by the DLS, which are 25 in number, and show the search process of the

DLS for one such rule.

Table 8.2 shows the rules learned for each of the classes.

Insert Table 8.2 here

The above rules can be interpreted in the following way:

If Rn orRi2 or R13 or Ri4is true

then the company belongs to the risk class 1

.

If R21 or R22 or R23 or R24 or R25 or R26 or R27 is tt*ue

then the company belongs to the risk class 2 .

If R31 or R32 or R33 or R34 or R35 or R36 or R37 is true

then the company belongs to the risk class 3 .

If R41 or R42 or R43 or R44 or R45 is true

then the company belongs to the risk class 4 .

If R51 or R52 is tine

then the company belongs to the risk class 5 .
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We will show the search process of DLS for rule R3 1 by showing snapshots of the top

4 members of the population at different generations. The initial population (i.e. at

generation 0) is the output from PLS1. The first 12 variables correspond to the cash flow

components as explained in appendix B, and the last three correspond to the qualitative

variables related to the quality of the loan-granting decision, such as the quality of the

collateral, whether the loan is secured, and whether the loan is guaranteed. The variable

range (* a) for X means that X < a, and * means that that variable is irrelevant and can take

any value (wild card).

Insert Table 8.3 here

This example shows the improvement brought on by the search process of the DLS

over the rules generated by PLS 1 . We see that the best rule generated by PLS 1 covers 22

instances. The GA part of DLS improves upon these rules, and takes only 3 generations to

improve it to cover 25 instances and thus helps in reducing the total size of the concept

from 47 rules to 25 rules. Thus DLS improves the rule size (or conciseness) over PLS 1 by

about 47% and the solution quality by about 9%.

9. Empirical Results with the Double Layered Learning System

9.1 The Empirical Study

We present the empirical results comparing the performance of DLS with GA and PLS 1

based on the two data sets used before i.e., bankruptcy data set and default loan data set.

Bankruptcy Analysis

This empirical study uses the same bankruptcy data set as in §6. The same 10 samples

of 58 training and 46 testing examples were used (n = 46 according to § 7.2). For each of

the samples, the jackknife technique was used to randomly select 10 different data group,

each with 60% of the 58 cases (i.e. each example in the set has 0.6 probability of being

selected).These 10 groups of data were used as 10 different inputs to the PLS1 component

to generate 10 different concept descriptions. As explained previously, the disjuncts in

these concept descriptions were used as the members of the initial population by the GA

component of the double layered system. The performance results are shown in Table 9.1.
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Insert Table 9. 1 here

A t-test for paired observations was carried out (as in §6), and the difference between

the prediction accuracy of DLS and PLS 1 was significant even at 2% level of significance.

However, the difference between the accuracy of DLS and GA was not found to be

statistically significant. The improvement in rule size by DLS over that of GA and PLS 1

was found to be statistically significant at 5% level of significance.

Default Loan Classification

The Default data set used is the same as in § 5.1. Only one training set with 32

instances and one testing set with 16 positive instances was used. The Jackknife technique

of leave out 40% was used to get 20 samples from the training set. The following

parameter values were used

number of sub-samples used by PLS1 = 20

population size for the GA = 46 (this is determined by the output from PLS1)

probability of crossover = 0.7

probability of mutation = 0.01

The results are shown in Table 9.2

Insert Table 9.2 here

The following were the rules obtained by PLS1 and DLS, along with the number of

instances they correctly predicted(from the total of 16).

PLS1:

Q:

If [(TOTAL_DEBT TO TOTAL_ASSETS RATIO < 0.763) and (CURRENT_ASSET TO

CURRENT_LIABILITY RATIO < 1.967)]

then 'the firm would default on loan payment' correctly predicted 6

C2 :

If [(NETJNCOME TO TOTAL_ASSETS RATIO < -0.015) and ((TOTAL_DEBT TO

TOTAL_ASSETS RATIO > 0.763) and (CURRENT_ASSET TO CURRENT_LIABILITY

RATIO < 1.967)]

then 'the firm would default on loan payment' correctly predicted 4
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C3 :

If [( 1 .967 < CURRENT_ASSET TO CURRENT_LIAB ILITY RATIO< 2.574) and

(WORKING_CAPITAL TO SALES RATIO > 0.226)]

then 'the firm would default on loan payment' correctly predicted 1

C4:

If [(CURRENT_ASSET TO CURRENT_LIABILITY RATIO > 4.578)]

then 'thefirm would default on loan payment' correctly predicted

DLS:

C'i:

If [(CURRENT_ASSET TO CURRENT_LIABILITY RATIO < 1 .967)]

then 'the firm would default on loan payment' correctly predicted 14

C2 :

If [(1.967 < CURRENT.ASSET TO CURRENT_LIABILITY RATIO < 2.574) and

(WORKING_CAPITAL TO SALES RATIO > 0.226)]

then 'the firm would default on loan payment' correctly predicted 1

C 3 :

If [(CURRENT_ASSET TO CURRENT_LIABILITY RATIO > 4.578)]

then 'the firm would default on loan payment' correctly predicted

The above result demonstrates the rule refinement feature of the DLS, wherein it combines

one or more rules from the output of PLS 1 to generate a more concise and powerful rule.

We can see that DLS combined the rules C\ & C2 from the output of PLS1 to get the

simple rule C'i:

If [(CURRENT_ASSET TO CURRENT_LIABILITY RATIO < 1 .967)]

then 'the firm would default on loan payment'

which correctly predicted 14 out of the 16 default loans, more than the combined prediction

of the output of PLS 1

.

A look at the rules Ci & C2 from the output of PLS1 shows that the attribute

(TOTAL_DEBT TO TOTAL_ASSETS RATIO) has the value of < 0.763 in Ci, and the value of

>0.763 in C2,with the value of the attribute (CURRENT.ASSET TO CURRENT_LIABILITY

RATIO) remaining same in both the rules. Thus combining these Riles would eliminate this

variable to give a more concise rule, which is what the DLS achieves. Thus, DLS reduces
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the rule size from 4 to 3 and improves the prediction accuracy from 68.8% to 93.8% vis-a-

vis that of PLS1.

9.2 Discussion

The comparison of the inductive learning program PLS1 with GA shows that the

accuracy of GA is better than PLS 1 and GA is able to find the most concise (optimum)

concept. On the other hand GA is very slow as compared to PLS 1 .The time complexity of

a GA is O(LN) or better, where L is the length of each member of the population and N is

the population size. There is also another important factor for the efficiency of a GA, and

that is the initial population with which it starts the search. If, to begin with, the population

consists of diverse members with 'good enough' fitnesses then the GA would be much

more efficient as is explained below. Brady(1985) showed the improvement in

performance brought on by maintaining diversity in the population, which in our case is

provided by the input from PLS1.

Figure 9.1 explains, in general, how the learning curve of the GA will be effected if the

initial population contains more fit members to start with. It attempts to generalize the

learning behavior of the DLS in comparison with a regular GA. As shown, if the initial

population has the maximum fitness of 'f then the GA would be saving 't' generations

worth of time, all else remaining same. It might also effect the final solution to which it

converges, as shown by 5 in the figure. Thus the main advantage of having a good initial

population would be efficiency. It also has important effect on the required population size

'N'. Since the optimum value of N depends on L and since L is fixed hence it appeal's that

there is no way of improving upon the time complexity of O(LN) without sacrificing

performance. But, it turns out that if the initial population is a 'good one', then the value of

N can be reduced without effecting the performance.

Insert Figure 9.1 Here

Thus, the double layered system has these advantages:

(J) it improves upon the time complexity of the GA by providing it with an initial

population ofgood hypothesis, with greater diversity, generated by PLS1;
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(2) it improves upon the accuracy of the PLS1 and GA by providing the ability ofa GA to

perform more global search, with a fitter population generated by PLS1; and

(3) it improves upon the rules(disjuncts) given by PLS1 and hence is able to cover all the

examples in less number of rules.

The above results show the improvement in both accuracy and conciseness brought on

by the Double Layered System over PLS1 1& GA (for the data set considered). Thus, from

the results of both § 6 and § 9 we can conclude that double layered system performs best

of all the three algorithms considered (ID3, PLS1 and GA), in terms of accuracy and

conciseness. Figure 9.2 shows the qualitative comparison of the inductive learning

algorithms ID3, PLS1 with GA on the three dimensions of accuracy, rule size (measuring

conciseness), and, efficiency and shows how double layered system(DLS) takes the best

from both PLS1 and GA. IDEAL in the figure refers to the (ideal)desired learning

algorithm.

Insert Figure 9.2 Here

In applying GA, the quality of the solution when the leaning process converges is not

guaranteed. For example, if we look at Figure 8.1, which is about the performance

improvement of DLS over GA. We can see that both the speed of convergence as well as

the fitness level when it converge have improved in the double layered system. Both of

these can be explained by having a population of hypotheses, generated by PLS1, that are

already pretty close to the final concept description. But the fact that DLS generates fitter

concepts points to the logical conclusion that the concept learned for classification is

dependent upon the initial population given in GAs. This unstable aspect of GA makes it

difficult to derive the optimality of the solutions generated by GA. On the other hand, it

also gives additional advantage to DLS which ensures that the GA stmts out with a good

population. DLS can be viewed as taking a decompositional approach(i.e., the original set

of training example is decomposed into smaller subsets) to concept learning, which enables

the system to be equipped with multiple mechanisms for pursuing several promising search

directions. The performance results therefore are predictably good. In theoretical biology,

this decomposition strategy is akin to the speciation phenomenon in biological

evolution(Brady[l985]).
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0.51 9 +ve 1 -ve

0.313 5 +ve 0-ve

0.125 2 +ve 0-ve

Disjuncts Fitness No. of +ve & -ve

Ci - ((-63 48) * (534 950) ************ (.357 894) * *
)

]

C2 - ( * * (340 950) (395 685) * * (29 565) ***********)

C3 . (*********** (.2090 3669) * * (-294 -77) * * *
)

1 - the * means that that particular attribute is not relevant and hence can take any value (wild card).

Table 5.1 Concept Descriptions Generated by the GA for Default Loan

data

Disjuncts Fitness No. of +ve & -ve

examples covered

Ci -((11 42) (3 45) (15 46) (0 46) (10 54) (3 48) (17 61) (28 37) (16 40))* - 0.6224 19 +ve 1 -ve

C2 -((16 53) (8 58) (12 46) (7 54) (18 30) (9 47) (10 54) (27 55) (24 41)) - 0.276 8 +ve 0-ve

C3 -((3 42) (0 60) (0 56) (21 63) (16 34) (10 13) (0 26) (1 59) (0 60)) - 0.035 1 +ve 0-ve

C4 - ((32 62) (3 60) (20 37) (25 58) (30 40) (24 59) (1 42) (22 24) (9 59)) - 0.035 1 +ve -ve

* each element of the list is the range of values for the respective attributes(see section 4.2)

Table 5.2 Concept Descriptions Generated by the GA for Bankruptcy

data.



Gen Members Important schema Fitness +ve -ve

D

((0 58)(0 58)(0 58)(0 58)(0 58)(0 58)(0 58)(0 58)(0 58)) (
*********) 0.0172 29 29

((0 58)(0 58)(0 58)(0 58)(0 58)(0 58)(0 58)(0 58)(0 58)) (
*********) 0.0172 29 29

((0 58)(0 58)(0 58)(0 58)(0 58)(0 58)(0 58)(0 58)(0 58)) (
*********) 0.0172 29 29

((0 58)(0 58)(0 58)(0 58)(0 58)(0 58)(0 58)(0 58)(0 58)) (
*********) 0.0172 29 29

M
((12 46)(3 38)(2 47)(0 58)(10 62)(3 42)(0 50)(2 58)(17 42)) (*(3 38)*******) 0.3820 12 1

((12 56)(2 38)(2 44)(8 50)(2 62)(5 58)(0 48)(17 51)(17 50)) (
*
(3 3g)*******) 0.3477 11 1

((28 58)(2 38)(6 44)(1 62)(9 62)(18 42)(1 58)(8 42)(1 42)) (*(3 38)*******) 0.3477 11 1

((0 40)(16 36)(2 61)(0 58)(10 62)(3 42)(0 58)(0 58)(0 42)) (*(16 36)*******) 0.3135 10 1

20)

((12 42)(3 39)(2 47)(0 62)(10 62)(3 32)(0 48)(17 35)(16 50)) (*(3 39)***(3 32)***) 0.4828 14

((13 46)(7 39)(3 47)(0 62)(10 62)(3 32)(8 48)(17 33)(0 48)) (*(7 39)***(3 32)*(17 33)*) 0.4506 14 1

((13 46)(7 39)(3 47)(0 62)(10 62)(3 32)(8 48)(17 33)(0 48)) (*(7 39)***(3 32)*(17 33)*) 0.4506 14 1

((30 42)(3 39)(3 45)(1 58)(15 54)(12 34)(16 40)(3 35)(0 34)) (*(3 39)***(12 34)**(0 34)) 0.4483 13

30)

((0 58)(3 39)(2 47)(0 62)(10 54)(5 31)(18 60)(18 50)(14 45)) (*(3 39)***(5 31)***) 0.4849 15 1

((0 58)(3 39)(2 47)(0 62)(10 54)(5 31)(18 60)(18 50)(14 45)) (*(3 39)***(5 31)***) 0.4849 15 1

((0 59)(3 39X10 47)(8 62)(10 54)(13 31)(16 60)(3 51)(1 56)) (*(3 39)***(13 31)***) 0.4506 14 1

((13 59)(11 39)(3 44)(0 60)(11 62)(5 31)(18 60)(18 50)(14 45)) (*(11 39)***(5 31)***) 0.4506 14 1

40)

((1 1 42)(3 45)(2 45)(0 42)(1 1 53)(3 59)(19 37)(28 37)(18 34)) (*(3 45)****(19 37)(28 37)*) 0.5193 16 1

((0 59)(3 39)(10 47)(0 62)(10 54)(5 31)06 52)(3 49)(1 56)) (*(3 39)***(5 31)***) 0.4849 15 1

((0 59)(3 39)(10 47)(0 62)00 54)(5 31)(16 52X3 49)0 56)) (*(3 39)***(5 31)***) 0.4849 15 1

((063)(3 39)(11 47)(0 46)0 54)0 63)( 16 60) (2 50) ( 11 52)) (*(3 39)*******) 0.4849 15 1

60)

(01 42)(3 45)(15 46X0 46)( 10 54X3 48)(17 61)(28 37)(16 40)) (*(3 45)*****(28 37)*) 0.6224 19 1

((11 42)(3 45)( 15 46)(0 46)( 10 54)(3 48)(17 61)(28 37X16 40)) (*(3 45)*****(28 37)*) 0.6224 19 1

((11 42)(3 45X15 46)(0 46)(10 54)(3 48)07 61)(28 37)06 40)) (*(3 45)*****(28 37)*) 0.6224 19 1

((11 42)(3 45)(1 5 46)(0 46)00 54)(3 48)(17 61 )( 28 37)0 6 40)) t*(3 45)*****(28 37)*) 0.6224 19 1

Table 5.3 An Example of the Learning Process by GA



GA ID3 PLS1

Prediction%

1) 63.04% 43.5% 63%

2) 69.6% 52.2% 60.9%

3) 69.6% 56.5% 52.2%

4) 67.4% 63.0% 63%

5) 67.4% 69.6% 71.7%

6) 78.3% 56.5% 67.4%

7) 58.7% 63.0% 54.35%

8) 65.2% 45.7% 65.2%

9) 58.7% 69.6% 60.9%

10) 69.6% 47.8% 58.7%

Average: 66.8% 56.74% 61.75%

Std. deviation: 5.52 8.98 9.34

Rule size:

1) 5 6 7

2) 5 4 6

3) 6 8 9

4) 6 9 13

5) 6 7 10

6) 5 7 10

7) 4 7 7

8) 5 7 8

9) 5 8 8

10) 5 7 9

Average: 5. 2 7 8.7

Std. deviation: 0. 6 1.27 1.91

Table 6. 1 Comparison Results of the Empirical Study



Disjuncts Fitness No. of +ve & -ve

examples covered

Ci -((32 53) (40 56) (11 48) (20 38) (26 61) (16 29) (8 33) (19 29) (20 40))* - 0.7945 24 +ve 1 -ve

C2 - ((39 48) (38 55) (1 1 49) (13 38) (27 53) (19 29) (8 23) (22 29) (20 35)) - 0. 104 3 +ve -ve

C3 - ((32 36) (40 54) (28 44) (16 34) (27 53) (13 29) (11 32) (19 29) (20 40)) - 0.069 2 +ve 1 -ve

Table 8.1 Concept Descriptions Generated by DLS



Class 1:

Rli: (TNF/TA > 0.1261) and (AP < 0.0364) and (OTHCL > 0.00315) and (FCEXP > -0.1572) and

(INVST < 0.0832) and (DIV < -0.1498).

Rl2: (OPER < 0.642) and ( -0.1498 < DIV < -0.1388).

R13: (INV < -0.1759) and (INVST < 0.152) and ( -0.1388 < DIV < -0.0948).

R14: (OTHA&L < -0.1354) and (-0.691 < INVST < -0.631) and (DIV > -0.0948)

Class 2:

R21: (TNF/TA > 0.168) and (AR > -0.1427) and (OTHCL < 0.1527) and (DIV < - 0.1388).

R22: (AR > -0.0776) and (INV > -0.1759) and (INVST < 0.152) and (-0.1388 < DIV < -0.0948).

R23: (AR > -0.1427) and (-0.635 < FIN < -0.611) and (INVST < 0.152) and (DIV > -0.0948).

R24: (TNF/TA < 0.168) and (AR > 0.0418) and (OTHCL < 0.1527) and (DIV < -0.1498).

R25: (TNF/TA > 0.2389) and (OTHCL < 0.2562) and (OTHA&L < -0.1354) and (FIN < -0.1027) and

(FCEXP > -0.1028) and (DIV > -0.1498).

R26: (FIN > 0.1393) and (FCEXP > -0.1708) and (INVST < -0.45) and (DIV > -0.1388).

R27: (AP < -0.3836) and (INVST < 0.152) and (DIV > -0.0948).

Class 3:

R31: (TNF/TA < 0.6478) and (OTHCA < 0.2325) and (OTHCL < 0.2217) and (-0.1244 < OTHA&L <

0.3177) and (-0.4173 <HN< 0.4781) and (FCEXP > -0.1368) and (INVST < 0.0488) and (DIV > -

0.0948).

R32: (OPER < 0.73) and (AR > -0.0776) and (-0.5876 < INVST < -0.0028) and (DIV > -0.0948)

R33: (TNF/TA < 0.3517) and (OTHCA < 0.2013) and (AP < 0.1372) and (OTHCL > -0.1694) and

(OTHA&L < 0.3177) and (-0.3812 < INVST < 0.0488) and (DIV > -0.0948).

R34: (AR < -0.0776) and (INV > -0.0584) and (-0.1388 < DIV < -0.0948).

R35: (0.3094 < TNF/TA < 0.6478) and (OPER > 0.07) and (OTHCA < 0.2013) and (AP > -0.3164) and

(FCEXP > -0.0892) and (INVST < 0.1864) and (DIV > -0.0948).

R36: (OPER > 0.642) and (-0.1498 < DIV < -0.1388).

R37: (AR < -0.1427) and (-0.635 < FIN < -0.61 1) and (INVST < 0.152) and (DIV > -0.0948).

Class 4:

R41: (TNF/TA < 0.676) and (0.356 < OPER < 0.664) and (AR < 0.2697) and (INV < 0.388) and

(OTHCA < 0.2325) and (AP > -0.2492) and (OTHCL < 0.2217) and (OTHA&L > -0.257) and (FCEXP < -

0.1232) and (INVST > -0.5532) and (DIV > -0.0948).



R42: (0.73 < OPER < 0.851) and (AR < 0.2914) and (OTHCA < 0.1077) and (OTHCL < 0.3022) and

(FIN < 0.3087) and (DIV > -0.0948).

R43: (0.168 < TNF/TA < 0.45) and (-0.128 < OPER < 0.642) and (INV < 0.3647) and (OTHCA <

0.2013) and (AP > -0.2996) and (-0.478 < OTHA&L < 0.2293) and (FIN > 0.4539) and (-0.1708 <

FCEXP < -0.001) and (INVST > -0.3812) and (DIV > -0.0948).

R44: (TNF/TA < 0.1966) and (OTHCL > 0.0377) and (OTHA&L > -0.2791) and (FCEXP > -0.2864) and

(DIV > -0.0948).

R45: (INV < 0.3647) and (OTHA&L > 0.3177) and (DIV > -0.0948).

Class 5:

R51: (OPER < 0.356) and (AP < 0.3052) and (-0.6548 < OTHA&L < 0.2735) and (FIN < 0.5749) and

(DIV > -0.0948).

R52: (OTHA&L < -0.7211) and (DIV > -0.1498).

Note: For each class the rules are in the order of importance, with the most

important rule being the first.

Table 8.2 Rules Generated by DLS for Loan Data



Gen. no. members fitness +ve -ve

0)

((* 0.65) (* 0.73) * (* 0.37) (* 0.2) * * (-0.12 0.32) (-0.42 0.24) * (* 0.05) (-0.095 *) * * *) 0.458 22

((* 0.65) (0.07 *) (-0.43 *) * (* 0.2) (-0.32 *) (-0.28 0.29) (-0.66 *) (-0.13 *) (-0.1 *) (-0.59 0.08) (-0.1 *)***)

0.376 19 1

((* 0.65) (0.09 *)*(* 0.39) (* 0.23) * (* 0.22) (-0.12*) (* 0.45) (-0.13 *) * (-0.095 *) * * *) 0.2204 23 2

((* 0.63) * * * (-0.13 0.23) * (* 0.22) (-0.12 0.27) (* 0.48) (-0.13 *) (* 0.05) (-0.095 *)***) 0.2204 23 2

1)

((* 0.65) (* 0.73) * (* 0.37) (* 0.2) * * (-0.12 0.32) (-0.42 0.24) * (* 0.05) (-0.095 *)***) 0.458 22

((* 0.65) (* 0.73) * (* 0.37) (* 0.2) ** (-0.12 0.32) (-0.42 0.24) * (* 0.05) (-0.095 *) * * *) 0.458 22

((* 0.65) (* 0.73) *(* 0.37) (* 0.2) ** (-0.12 0.32) (-0.42 0.24) * (* 0.05) (-0.095 *) * * *) 0.458 22

((* 0.65) (* 0.73) * (* 0.37) (* 0.2) ** (-0.12 0.32) (-0.42 0.24) * (* 0.05) (-0.095 *) * * *) 0.458 22

2)

((* 0.65) (* 0.73) * (* 0.37) (* 0.2) * * (-0.28 0.32) (-0.42 0.24) * (* 0.05) (-0.095 *)***) 0.48 24 1

((* 0.65) (* 0.73) * (* 0.37) (* 0.2) * * (-0.12 0.32) (-0.42 0.24) * (* 0.05) (-0.095 *)***) 0.458 22

((* 0.65) (* 0.73) * (* 0.37) (* 6.2) * * (-0.12 0.32) (-0.42 0.24) * (* 0.05) (-0.095 *)***) 0.458 22

((* 0.65) (* 0.73) * (* 0.37) (* 0.2) ** (-0.12 0.32) (-0.42 0.24) * (* 0.05) (-0.095 *) * * *) 0.458 22

3)

((* 0.65) * * * (* 0.23) * (* 0.22) (-0.12 0.32) (-0.42 0.48) (-0.14 *) (* 0.05) (-0.095 *)***) 0.5 25

((* 0.65) (* 0.73) * (* 0.37) (* 0.2) * * (-0.28 0.32) (-0.42 0.24) * (* 0.05) (-0.095 *)***) 0.48 24

((* 0.65) (* 0.73) * (* 0.37) (* 0.2) * * (-0.28 0.32) (-0.42 0.24) * (* 0.05) (-0.095 *)***) 0.48 24

((* 0.65) (* 0.73) * (* 0.37) (* 0.2) * * (-0.28 0.32) (-0.42 0.24) * (* 0.05) (-0.095 *)***) 0.48 24

4)

((* 0.65) * * * (* 0.23) * (* 0.22) (-0.12 0.32) (-0.42 0.48) (-0.14 *) (* 0.05) (-0.095 *)***) 0.5 25

((* 0.65) * * * (* 0.23) * (* 0.22) (-0.12 0.32) (-0.42 0.48) (-0.14 *) (* 0.05) (-0.095 *)***) 0.5 25

((* 0.65) (* 0.73) * (* 0.37) (* 0.2) * * (-0.28 0.32) (-0.42 0.24) * (* 0.05) (-0.095 *)***) 0.48 24

((* 0.65) (* 0.73) * (* 0.37) (* 0.2) * * (-0.28 0.32) (-0.42 0.24) * (* 0.05) (-0.095 *)***) 0.48 24

50)

((* 0.65) * * * (* 0.23) * (* 0.22) (-0.12 0.32) (-0.42 0.48) (-0.14 *) (* 0.05) (-0.095 *)***) 0.5 25

((* 0.65) * * * (* 0.23) * (* 0.22) (-0.12 0.32) (-0.42 0.48) (-0.14 *) (* 0.05) (-0.095 *)***) 0.5 25

((* 0.65) * * * (* 0.23) * (* 0.22) (-0.12 0.32) (-0.42 0.48) (-0.14 *) (* 0.05) (-0.095 *)***) 0.5 25

((* 0.65) * * * (* 0.23) * (* 0.22) (-0.12 0.32) (-0.42 0.48) (-0.14 *) (* 0.05) (-0.095 *)***) 0.5 25

Table 8.3 An Example of the Learning Process of DLS



GA PLS1 DLS

Prediction accuracy:

1) 63.04% 63% 71.7%

2) 69.6% 60.9% 60.9%

3) 69.6% 52.2% 56.5%

4) 67.4% 63% 76.1%

5) 67.4% 71.7% 69.6%

6) 78.3% 67.4% 73.9%

7) 58.7% 54.35% 84.8%

8) 65.2% 65.2% 76.1%

9) 58.7% 60.9% 60.9%

10) 69.6% 58.7% 71.7%

Average: 66.8% 61.75% 69.4%

Rule size:

1) 5 7 3

2) 5 6 4

3) 6 9 5

4) 6 13 6

5) 6 10 4

6) 5 10 4

7) 4 7 7

8) 5 8 5

9) 5 8 6

10) 5 9 3

Average: 5.2 8.7 4.7

Table 9. 1 Comparison of the Performances of DLS with PLS1 and GA



GA PLS1 DLS

Prediction accuracy: 62.5% 68.8% 93.8%

Rule size: 3 4 3

Table 9.2 Comparison of Performance of DLS with PLS1 and GA on

Default Loan Data.

Appendix A

PLS1 Algorithm : The inductive process followed by the PLS1 algorithm starts with the

entire space of possible events (the 'feature space'). The space is then further split into two

'regions,' those of which have a greater likelihood to being in a specific class (positive

events) and those which have a greater likelihood to being in the other classes (negative

events). The process of splitting continues, each split using only one attribute that is chosen

according to an information-theoretic approach, until a stopping criterion is satisfied. In

each iteration, the region R in the feature space can be defmed by the tuple (r,u,e ), where r

is region or disjunct represented as conjunction of conditions (similar to the representation

given in sec. 4.2; a disjunction of regions would then constitute a concept or hypothesis); u

is the utility function giving the fraction of positive events to the total events covered by the

disjunct, and e is the error rate allowed by the disjunct which is based on the number of

positive events covered by the disjunct as compared to the total number of positive events.

Since the purpose of the algorithm is to maximise the dissimilarity between the

disjuncts, the split is made based upon maximising the difference in the utilities of the two

disjuncts (known as the distant function). Each disjunct, also called a hyper-rectangle, is

also associated with its error measure e . In proportion to the number of positive events

covered, e has a lower value. The distant function (d ) is defined as follows

d =
|

log u \
- log u 2 |

- t * log(e \*e 2)

where,

u l. w 2 - utilities for a tentative region dichotomy,



e 1,
e 2 _ respective error factors,

t - a constant representing degree of confidence.

Larger values of d correspond to higher dissimilarity.

Let S be the set of positive and negative training events and R as the hyper-plane

that contains all events in E , the PLS 1 algorithm can be summarized as follows:

ALGORITHM PLS1:

While any trial hyper-plane remains untested, do

Begin

1. Choose a hyper-plane not previously selected to become a tentative boundary for

two subregions of R, r \ and r 2.

2. Using the events from S , determine the utilities u \ and u 2 of r \ and r 2, and

their error factors e \ and e 2.

3. If this tentative dichotomy produces a dissimilarityd larger than any previous

value for d

then : create two permanent regions R \= (r \,u \,e \) and R 2 = (r iM 2,e 2 )

having the (previously recorded) common boundary that gives the most

dissimilar probabilities;

else : place R in the defined region set R to be output, and quit.

End.

Appendix B

Default-loan data set:

Abdel-Khalik and El-Sheshai (1980) had previously used this data set to classify a set of

firms into those that would default and those that wouldn't default on loan payments. This

data set has 32 examples of which 16 belong to the default class and the other 16 examples

belong to the non-default class. The 18 attributes in the example set are: (1) Net income /

total assets, (2) Net income / sales, (3) Total debt / total assets. (4) Cash flow / total debt.

(5) Long term debt / net worth, (6) Current assets / current liabilities, (7) Quick assets /

sales, (8) Quick assets / current liabilities, (9) Working capital / sales, (10) Current year

equity / total debt, (11) Sales trend, (12) Earnings ttend, (13) Current ratio trend, (14)



Working capital / sales trend, (15) Cash flow / total debt trend, (16) Long-term debt / net

worth trend, (17) Net income / total assets trend, and, (18) Net income / sales trend.

Bankruptcy data:

This data set is from the Standard and Poors' Compustat 1981 Industrial Annual Research

file ofCompanies and Compustat Industrial files, and was used to determine the companies

that failed during the period 1970-1981. The data was used to predict bankruptcy of firms

and is discussed in detail in Gentry, et al.(1985). The data set has 104 examples and two

classes (either bankrupt or not) and there are 9 continuous variables , which are (1) ratios

of total net flow (TNF), (2) funds from operations (NOFF), (3) working capital which

includes inventory, other current assets and liabilities and accounts payable (NWCFF), (4)

financial (NFFF), (5) fixed coverage expenses (FCE), (6) capital expenditures (NIFF), (7)

dividends (DIV), (8) other assets and liability flows (NOA&LF), and, (9) change in cash

and marketable securities (CC) with total assets (TA).

Loan risk rating data set:

This Loan Data consists of information about different companies together with their loan

risk class (or category), with class 1 being the lowest risk level and class 5 the highest risk.

The information is in the form of these 12 cash flow components: Total net Flow / Total

Assets(TNF/TA), operating(OPER), accounts receivables(AR), inventories(INV), other

current assets(OTHCA), accounts payables(AP), other current liabilities(OTHCL), other

asset and liability flows(OTHA&L), financial(FIN), fixed coverage expenditures(FCEXP),

investment(INVST), and dividends(DIV); together with qualitative information that

indicated whether the loan was guaranteed or not guaranteed, the liquidity status of the

collateral(COL), and secured or unsecured. The data set has 100 instances.








