

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

VIETA

NEWTUN

DESCARTES

GAUSS

DURELL'S

INTRODUCTORY ALGEBRA

BY
FLETCHER DURELL, Ph.D.

EEAD OF THE MATHEMATICAL DEPARTMENT IN THE
LAWRENCEVILLE SCHOOL

DURELL'S MATHEMATICAL SERIES

ARITHMETIC

Two Boor Series
Elementary Arithmetic
Teachers' Edition
Advanced Arithmetic
Three Book Series
Book One
Book Two
Book Three

ALGEBRA

Two Book Course Book One Book Two
Introductory Algebra
School Algebra
GEOMETRY
Plane Geometry
Solid Geometry
Plane and Solid Geometry
TRIGONOMETRY
Plane Trigonometry and Tables
Plane and Spherical Trigonometry and Tables
Plane and Spherical Trigonometry with Surveying and Tables
Logarithmic and Trigonometric Tables

PREFACE

The main object in preparing this new Algebra has been to simplify principles and give them interest, by showing more plainly, if possible, than has been done heretofore, the practical or common-sense reason for each step or process. For instance, at the outset it is shown that new symbols are introduced into algebra not arbitrarily, but because of definite advantages in representing numbers. Each successive process is taken up for the sake of the economy or new power which it gives as compared with previous processes.

This treatment should not only make each principle clearer to the pupil, but should give increased unity to the subject as a whole. We believe also that this treatment of algebra is better adapted to the practical American spirit, and gives the study of the subject a larger educational value.

Among the special features of this Introductory Algebra, the following may be mentioned:

A large number of written problems are given in the early part of the book, and these are grouped in types which correspond in a measure to the groups used in treating original exercises in the author's Geometry.

Many informational facts are used in the written problems. The central and permanent numerical facts in various departments of knowledge have been collected and tabulated on pages 280-286 for use in making problems. Similarly the most important
formulas in arithmetic, geometry, physics, and engineering have been tabulated for use by teacher and pupil (pp. 278, 279).

The self-activity of the pupil is aroused by examples which require the pupil to invent and solve problems of a specified kind, material for such examples being made available in the tables of formulas and numerical facts.

Many of the examples in the book require a frequent review of the principles of arithmetic, as of decimal fractions and percentage.

Numerous and thorough reviews of the portion of the Algebra already studied are also called for. A unique feature is the series of spiral reviews of the preceding part of the book by means of examples at the end of Exercises. Oral work is called for in like manner and is also emphasized in special important Exercises.

The utilities in symbolism in general; apart from technical algebra, are brought out in a special Exercise (pp. 249, 250) and thus the direct practical value of the study of algebra is much broadened.

The history of algebra is discussed in Chapter XIV, and questions on this chapter are inserted in appropriate places in the text.

The author wishes to express his indebtedness to Professor William Betz of the East High School, Rochester, New York, and to Dr. Henry A. Converse of the Polytechnic Institute, Baltimore, Maryland, for important aid in preparing the book. He is indebted also to School Science and Mathematics and the Mathematics Teacher for a few of the problems.

CONTENTS

CHAPTER PAGE
I. Algebraic Symbols 7
II. Negative Numbers 28
III. Addition and Subtraction; the Equation 39
IV. Multiplication 58
V. Division 76
VI. Equations (Continued) 93
VII. Abbreviated Multiplication and Division 109
VIII. Factoring 134
IX. Highest Common Factor and Lowest Common Multiple 160
X. Fractions 166
XI. Fractional and Literal Equations 196
XII. Simultaneous Equations 223
XIII. Graphs 251
XIV. History of Elementary Algebra 266
Material for Examples 278

INTRODUCTORY ALGEBRA

CHAPTER I

ALGEBRAIC SYMBOLS

1. The Use of Letters.

Ex. Walter and Harold made $\$ 27$ by gardening one summer. Walter, who was older and stronger, received a double share of the profits. How much did each receive?

$$
\begin{aligned}
& \text { SOLUTION WITHoUt THE AID of } \mathrm{x} \\
& 1 \text { share }= \text { Harold's part of the profits } \\
& 2 \text { shares }=\text { Walter's part of the profits } \\
& 1 \text { share }+2 \text { shares }=\$ 27 \\
& 3 \text { shares }=\$ 27 \\
& 1 \text { share }=\$ 9 \text { Harold's part } \\
& 2 \text { shares }=\$ 18 \text {, Walter's part }
\end{aligned}
$$

SOLUTION BY AID OF X

Let $\quad x=$ Harold's part of the profits
Then $\quad 2 x=$ Walter's part of the profits
Hence

$$
\begin{aligned}
x+2 x & =\$ 27 \\
3 x & =\$ 27 \\
x & =\$ 9, \text { Harold's part } \\
2 x & =\$ 18, \text { Walter's part }
\end{aligned}
$$

We see that by use of the letter x the solution is much shortened.
2. Algebra is that branch of mathematics which treats of number by the extended use of symbols.

Later algebra comes to have a wider meaning.
Algebra may also be briefly described as generalized arithmetic.
3. Utility of Algebra. A more extended use of symbols than is practiced in arithmetic (1) shortens the work of solving problems; (2) enables us to solve problems which we could not otherwise solve; and (3) gives other advantages which will become evident as we proceed (see Art. 143 and Exercise 76, p. 249).

EXERCISE 1

(Problems of Type I, i. e. of the form $\mathbf{x}+\mathrm{ax}=\mathrm{b}$.)

1. Two boys together catch 84 fish. If the boy whu owns the boat which they use, receives twice as many fish as the other boy, how many fish does each boy receive?
2. A man left $\$ 12,000$ to his son and daughter. To his daughter, who had taken care of him in his old age, he left a double share. What did each receive?
3. A man and boy by working a garden one summer made $\$ 128.80$. If the man received a share of the profits three times as large as the share received by the boy, how much did each receive?
4. Two boys together gathered 1 bu .4 qt . of hickory nuts. If the boy who climbed the trees received a double share, how many quarts did each receive?
5. Make up and work a similar example concerning two boys who gathered chestnuts.
6. Two girls made $\$ 18.60$ by sewing. The girl who supplied the thread and machine received twice as much as the other girl. How much did each make?
7. Make up and work a similar example concerning two girls who kept a refreshment stand.
8. Solve Ex. 1 without the use of x (see Art. 1). How much of the labor of writing out the solution is saved by the use of x ? Is there any other advantage in the use of x in solving a problem?
9. The total cotton crop of the world in a certain year was $15,000,000$ bales, and the United States in that year produced three times as much as all the rest of the world. How many bales of cotton did the United States produce?
10. A farm is worked on shares. As the tenant supplied the tools and fertilizers, he received twice as large a share of the profits as the owner of the farm. If the profits for one year are $\$ 6000$, how much does the tenant receive? The owner?
11. If the sum of the areas of New York and Massachusetts is 57,400 sq. mi. approximately; and New York is 6 times as large as Massachusetts, what is the area of each state?
12. One number is 5 times as large as another and the sum of the numbers is 240 . Find the numbers.
13. One number is twice as large as another and the sum of the numbers is 7.26 . Find the numbers.
14. One fraction is three times as large as another and their sum is $\frac{1}{3}$. Find the fractions.
15. One number is 4 times as large as another and their sum is .0045 . Find the numbers.
16. Separate $\$ 120$ into two parts such that one part is three times as large as the other.
Sug. Let $x=$ the smaller part.
17. Separate $5 \frac{1}{3}$ into two parts such that one part is 7 times as large as the other.
18. Make up and work an example similar to Ex. 11. Also one similar to Ex. 15. To Ex. 16.

Material for examples may be obtained from the lists of Important Numerical Facts given on pp. 514-520.
19. To look well, the middle part of a steeple should be twice as high as the lowest part, and the top part 8 times as high as the lowest part. If a steeple is to be 132 ft . high, how high should each part be?
20. A man wants to save $\$ 6000$ in three years. If he is to save twice as much the second year as the first, and three times as much the third year as the first, how much must he save each year?
21. A girl has $\$ 42$ to spend for a hat, coat, and suit. She wants to spend twice as much for her coat as for her hat, and three times as much for her suit as for her hat. How much does she spend for each?
22. A man bequeathed $\$ 84,000$ to his niece, daughter, and wife. If the daughter received twice as much as the niece, and the wife four times as much as the niece, how much did each receive?
23. A certain kind of concrete contains twice as much sand as cement and 5 times as much gravel as cement. How many cubic feet of each of these materials are there in $1000 \mathrm{cu} . \mathrm{yd}$. of concrete?
24. Make up and work a similar example for yourself where the materials in the concrete are as $1,2,4$.
25. In a certain kind of fertilizer the weight of the nitrate of soda equals that of the ground bone, and the weight of
the potash is twice as great as that of the ground bone. How many pounds of each of the materials are there in a ton of fertilizer?
26. If the amount of potash in a given kind of glass is 5 times as great as the amount of lime, and the amount of sand 3 times as great as the amount of potash, how many pounds of each will there be in 4000 lb . of glass?
27. The railroad fare for two adults and a boy traveling for half fare was $\$ 49.50$. What was the fare for each person?

Sug. Let $x=$ the smallest of the fares.
28. Separate 120 into three parts, such that the second part is twice as large as the first, and the third part three times as large as the first.
29. Separate 120 into three parts which shall be as $1,2,3$.
30. Separate 0372 into three parts in like manner. Also $\frac{5}{16}$.
31. Separate 240 into four parts which shall be as 1,1 , 2, 4 .
32. Separate $\$ 1800$ into three parts, such that the second is three times as large as the first, and the third 5 times as large as the second.
33. In one kind of concrete the parts of cement, sand, and gravel are as 1,2 , and 4 ; in another kind three parts are as 1,2 , and 5 . How many more pounds of cement are needed in a ton of one than of the other?
34. How many of the examples in this Exercise can you work at sight?

To get the greatest possible benefit from the use of letters to represent numbers, we now make further definitions and rules.
4. Three Classes of Symbols. Three principal kinds of symbols are used in algebra: (1) Symbols of quantity, (2) Symbols of operation, and (3) Symbols of relation.
5. Symbols for Known Quantities. Known quantities are represented in arithmetic by figures; as 2, 3, 27. They are represented in the same way in algebra, but also in another more general way, viz.: by letters; as by a, b, c.

The advantages in the use of letters to represent known numbers are: (1) letters are brief to write; and (2) a letter may stand for any known number, and thus by the use of letters we obtain results which are true for all numbers. See Exs. 34-40, p. 97.
6. Symbols for Unknown Quantities. Unknown quantities in algebra are usually denoted by the last letters of the alphabet; as x, y, z, u, v, etc.

The advantages in the use of distinct symbols for unknown quantities are numerous and will be gradually realized as we proceed. Some of these advantages are stated in Art. 3. See also Art. 143.
7. The Signs,,$+- \times, \div$, and $=$ are used in algebra, as in arithmetic, to denote addition, subtraction, multiplication, division, and equality respectively.

In algebra, multiplication is also denoted by a dot placed between the two quantities multiplied, or by placing the quantities side by side without any intervening symbol.

Thus, instead of $a \times b$, we may write $a \cdot b$ or $a b$.
8. Signs of Aggregation. The parenthesis sign, (), is used, as in arithmetic, to indicate that all the quantities inclosed by it are to be treated as a single quantity; that is, subjected to the same operation.

Thus, $5(2 a-b+c)$ means that the quantities inside the parenthesis, viz. $2 a,-b$, and $+c$, are each to be multiplied by 5 .

Again, $(a+2 b)(a+2 b+c)$ means that the sum of the quantities in the first parenthesis is to be multiplied by the sum of those in the second parenthesis.

Instead of the parenthesis, to prevent confusion, the following signs are sometimes used: the brackets [], the braces $\}$, and the vinculum - .
9. The Sign of Continuation is . . . This sign is read "and so on" or "and so on to."

Thus, $1,3,5,7, \ldots$ is read " $1,3,5,7$ and so on."
But $1,3,5,7, \ldots 19$ is read " $1,3,5,7$ and so on to 19 ."
10. The Sign of Deduction is \therefore and it is read "therefore" or "hence."

This sign is used to show the relation between súcceeding propositions.

EXERCISE 2

Express in words:

1. $5+a$.
2. $d-a$.
3. $a \div b$.
4. $a d$.
5. $2 a+3 b$.
6. $\frac{c}{a}-\frac{d}{b}$.
7. $5 b-a$.
8. $2 a+3 c$.
9. $c d-a b$.
10. $7(a+b)$.
11. $7(a-b)$.
12. $\frac{5 a+b}{x+y}$.
13. $a+b \div 3$.
14. $4+5(a+b)$.
15. $(a+b)(x-y)$.
16. $2 a+3 b-5 c$.
17. $a \div(x+y)$.
18. $\frac{a+b}{5}+\frac{c}{d}$.
19. If $a=1, b=2, c=3, d=4$, find the value of the combinations of symbols in Exs. 1-10.
20. Make and read an example similar to Ex. 5. To Ex. 10. Ex. 14.

Express in symbols:
21. x plus 3. The sum of x and 3 . The number which exceeds x by 3 .
22. x diminished by 3 . The number 3 less than x.
23. Two times a plus three times b.
24. The sum of 4 and of 5 times x.
25. One third of the sum of a and b.

Answer the following in algebraic language:
26. If a boy has a cents and earns 10 cents, how many cents will he then have?
27. How many, if he has a cents and earns b cents? How many, if he then spends c cents?
28. Walter has x marbles and his brother has 10 more than Walter. How many marbles has his brother?
29. Walter has b marbles and his brother has 5 more than twice Walter's marbles. How many has his brother?
30. If Mary is a years old now, how old will she be in 3 years? In 5 years? In x years?
31. What is the next larger number than 5 ? Than x ? n ? $x+1 ? x+2 ? n-1 ? x-2$?
32. What is the next larger even number than 6 ? Than $2 y$? $2 x$? $2 n+2$?
33. Taking x as the smallest number, write two consecutive numbers. Three conseeutive numbers. Four. Five.
(The following problems are mainly of Type II, i. e. of the form $x+x+a=b$.)
34. If there are 214 pupils in our school, and the number of girls exceeds the number of boys by 8 , how many boys and how many girls are there?
$\left.\begin{array}{rl}\text { Let } & =\text { the number of boys } \\ \text { Then } & x+8\end{array}\right)=$ the number of girls
35. Walter and his brother together had 60 marbles, and his brother had 10 more than Walter. How many marbles had each boy?
36. Make up and work an example similar to Ex. 35.
37. At New York on Dec. 21, the night is 5 hr . 32 min . longer than the day. Find the length of the day.
38. Separate $28 \frac{1}{2}$ into two parts such that ont shall exceed the other by $2 \frac{3}{4}$.
39. A baseball nine has played 62 games and won 8 more games than it has lost. How many games has it won?
40. In a certain election 12,784 votes were cast. If the successful candidate had a majority of 1732 , how many votes did he receive?
41. Make up and work an example similar to Ex. 40.
42. The sum of two consecutive numbers is 15 . Find the numbers.
43. The sum of three consecutive numbers is 33 . Find the numbers.
44. If $112,216 \mathrm{sq} . \mathrm{mi}$. are added to 24 times the area of the British Isles, the result will be $3,025,600 \mathrm{sq}$. mi. (the area of the United States). Find the area of the British Isles.
45. Twice the height of Mt. Washington with 1567 ft . added equals the height of Pike's Peak, or $14,147 \mathrm{ft}$. Find the height of Mt. Washington.
46. How many of the examples in this Exercise can you work at sight?
47. Which of the symbols mentioned in Arts. 6-10 are symbols of quantity? Of operation? Of relation?
48. Make up and work an example similar to Ex. 44. To Ex. 45.

Definitions and Principles

11. The term Factors has the same meaning in algebra as in arithmetic; that is, the factors of a number are the numbers which, multiplied together, produce the given number.

For example, the factors of 14 are 7 and 2 ; the factors of $a b c$ are a, b, and c.
12. Coefficients. A numerical factor, if it occurs in a product, is written first and is called a coefficient. Hence,

A coefficient is a number prefixed to a quantity to show how many times the given quantity is taken.

For example, in $5 x y, 5$ is the coefficient.
When the coefficient is 1 , the 1 is not written, but is understood.

Thus, $x y$ means $1 x y$.

The following enlarged definition of cœefficient is often used. In the product of several factors, the coefficient of any factor, or factors, is the product of the remaining factors.

Thus, in $5 a b x y$, the coefficient of y is $5 a b x$; of $x y$, is $5 a b$; of $a b$ is $5 x y$. What is the coefficient of b ? Of a ? x ? $5 a$? 5 ?

A numerical coefficient is a coefficient composed only of figures; as 15 in $15 a b$.

A literal coefficient is a coefficient composed only of letters; as $a b$ in $a b x$.

What, then, is a mixed coefficient? Give an example of one.
13. Power and Exponent are used in the same sense in algebra as in arithmetic.

A power is the product of equal factors.
A power is expressed briefly by the use of an exponent.
An exponent is a small figure or letter written above and to the right of a quantity to indicate how many times the quantity is taken as a factor.

Thus, for $x x x x$, or four x 's multiplied together, we write x^{4}, the exponent in this case being 4 . The expression is read " x to the fourth power."

When the exponent is unity, it is omitted. Thus, x is used instead of x^{1}, and means x to the first power.

A power is composed of two parts: (1) the base (i. e. one of the equal factors); and (2) the exponent.

Thus, in the power a^{3}, the base is a and the exponent is 3 .
14. Root and Radical Sign have the same meaning in algebra as in arithmetic.

A root of a number is one of the equal factors which, when multiplied together, produce the given number.

The square root of a number is one of two equal factors which, multiplied together, produce the given number. What is the cube root of a number? The fifth root?

Thus, 4 is the cube root of 64 , and a of a^{3}.
The radical sign is $\sqrt{ }$, and means that the root of the quantity following it is to be found. The degree of the root is indicated by a small figure placed above the radical sign.

The number denoting the degree of a root is the index of the root. For the square root, the figure or index of the root is omitted.

$$
\text { Thus, } \begin{aligned}
& \sqrt{9} \text { means "square root of } 9 . " \\
& \sqrt[5]{a} \text { means "cube root of } a . "
\end{aligned}
$$

15. Aids in Solving Problems ; Axioms. In solving problems like those given in Exercise 1 and the latter part of Exercise 2, certain principles are often important aids in discovering the relations used and simplifying them.

The most important of these principles are as follows:

1. The whole is equal to the sum of its parts.
2. Things equal to the same things, or equal things, are equal to each other.
3. If equals are added to equals, the results are equal.
4. If equals are subtracted from equals, the results are equal
5. If equals are multiplied by equals, the results are equal.
6. If equals are divided by equals, the results are equal.
7. Like powers, or like roots, of equals are equal.

These principles are sometimes called axioms.

EXERCISE 3

Write in words:

1. $5 b^{3}$.
2. $\frac{a^{2}+b^{2}}{3}$.
3. $\sqrt{a}+\sqrt[3]{b}$.
4. $b^{3} c^{2}$.
5. $(a+b)^{2}$.
6. $\sqrt{7 a+b}$.
7. $3 b^{2} c^{3}$.
8. $5(b-a)^{2}$.
9. 3^{b}.
10. $a+(b+c)^{2}$.
11. $\frac{1}{6} b^{2} c^{3}$.
12. $2 a^{2}+3 b^{3}$.
13. $\frac{9 a^{2}}{c}-\frac{3 b^{2}}{a}$.
14. $7 \sqrt[5]{6 a+b}$.
15. If $a=1, b=2$, and $c=3$, find the value of the combinations of symbols in Exs. 1-8.
16. If $a=4, b=8$, and $c=3$, find the value of the expressions in Exs. 9-12.

Write in symbols:
18. The square of the sum of a and b. Of $2 a$ minus $3 b$.
19. The cube root of the sum of a and b.
20. x plus x increased by 4 equals 14 .
21. x plus twice x plus x increased by 3 equals 108 .
22. Make up and work an example similar to Ex. 18. To Ex. 20.
23. Reduce to its simplest form $b+b+b+b+b$. Also $b \times b \times b \times b \times b$.

If $b=2$, what is the value of each of these results?
24. Make up and work an example similar to Ex. 23.
25. Reduce $3 a a a+7 b b b b-5 c c c c c c$ to its simplest form. How many more symbols are used in the long form than in the short form?
26. Find the value of 2^{n} when $n=1$. Also when $n=2$. 3. 5. 7.
27. Find the value of a^{n}, when $a=3$ and $n=4$. Also when $a=5$ and $n=3$.
28. Express the number of your great-grandparents as a power of 2 .
(The following are miscellaneous problems of Types I and II.)
29. A man and boy together spade up a garden containing 6000 sq . ft. If the man spades four times as much ground as the boy, how much does the boy spade?
30. Two boys earn $\$ 38$ by taking passengers on a motor boat. If the boy who owns the boat receives $\$ 10$ more than the other boy, how much does each receive?
31. A certain macadam road cost $\$ 1800$, of which the county paid twice as much as the state, and the township the same amount as the county. How much did each pay?
32. The top of the Statue of Liberty in New York Harbor is 306 ft . above the surface of the water. If the altitude of the pedestal is 4 ft . greater than the height of the statue, how high is each?
33. In a certain kind of gunpowder the weight of the charcoal equals that of the sulphur, and the amount of niter equals the charcoal and sulphur combined. How many pounds of each substance are needed to make a ton of gunpowder?
34. In a certain year in the United States $200,000,000$ bushels plus three times the number of bushels in the wheat crop equaled the corn crop, or $2,600,000,000$ bushels. How many bushels were in the wheat crop?
35. Point out the problems among Exs. 29-34 which belong to Type I. Also those which belong to Type II.
36. Make up and work an example similar to Ex. 29. To Ex. 31.
37. How many of the examples in this Exercise can you work at sight?

Algebraic Expressions

16. An Algebraic Expression is an algebraic symbol or combination of symbols representing some quantity; as $5 x^{2} y-6 a b+7 \sqrt[3]{a x}$
17. A Term is a part of an algebraic expression which does not contain a plus or minus sign. (Signs occurring inside a parenthesis are not considered in fixing the terms.)

Ex. 1. $5 x^{2} y-6 a b+7 \sqrt[3]{a x}$.
This algebraic expression contains three terms: viz. $5 x^{2} y,-\underline{6 a b}$, and $7 \sqrt[3]{a x}$.

Ex. 2. $5 x+a \div b+c$.
This expression also contains three terms: $5 x, a \div b$, and c.
Ex. 3. $7 a x^{2}+5(a+b)-c^{3}$.
Since the parenthesis, $(a+b)$, is treated as a single quantity, three terms occur in this expression: $7 a x^{2}, 5(a+b)$, and $-c^{3}$.
18. A Monomial is an algebraic expression of only one term; as $5 x^{2} y$ or c.
19. A Polynomial is an algebraic expression containing more than one term; as $3 a b-c+2 x+5 y^{2}$.

A monomial is sometimes called a simple expression, and a polynomial a compound expression.
20. A Binomial is an algebraic expression of two terms; as $2 a-3 b$.

A Trinomial is an algebraic expression of three terms; as $2 a-3 b+5 c$.

Evaluation of Algebraic Expressions

21. The Order of Operation in obtaining numerical values is the same in algebra as in arithmetic.
I. In a series of operations involving addition, subtraction, multiplication, division, and root extraction, the multiplications, divisions, and root extractions are to be performed before any of the additions and subtractions.

Ex. 1. Find the value of $4+12 \times 3$.

$$
\begin{aligned}
& 4+12 \times 3=4+36=40 \text { Ans. } \\
& \text { (hence } \\
& 4+12 \times 3 \text { does not equal } 16 \times 3 \text {, etc.) }
\end{aligned}
$$

Ex. 2. What is the value of $60-(8 \div 2)+3 \times 7$? $)$

$$
60-\grave{8} \div 2+3 \times 7=60-4+21=77 \text { Ans. }
$$

II. If a given expression contains one or more parentheses (or other signs of aggregation), each parenthesis is to be reduced to a single number before the operations of the expression as a whole are to be performed.

Ex. 1. $5+4(6-2)=5+4 \times 4=5+16=21$ Ans.
(hence $5+4(6-2)$ does not equal $9(6-2)$ or 9×4, etc.)
Note that in an expression like $\sqrt{16+9}$ the bar above the $16+9$ is a vinculum, or sign of aggregation.

Ex. 2. $\sqrt{16+9}=\sqrt{25}=5$ Ans.
(hence $\sqrt{16+9}$ does not equal $\sqrt{16} \dot{+} \sqrt{9}$, etc.)
22. The Numerical Value of an Algebraic Expression is obtained thus:

Substitute for each letter in the expression the number which the letter stands for;

Perform the operations indicated.

Thus, if $a=1, b=2, c=3$:
Ex. 1. Find the numerical value of $7 a b-c^{2}$.

$$
\begin{aligned}
7 a b-c^{2} & =7 \times 1 \times 2-3^{2} \\
& =14-9 \\
& =5 \text { Ans. }
\end{aligned}
$$

Ex. 2. Find numerical value of $\frac{9 b}{c}-5 a b^{2}+7\left(a^{3}+2 b\right)^{2}+3 c^{2}$. The given expression

$$
\begin{aligned}
& =\frac{9 \times 2}{3}-5 \times 1 \times 2^{2}+7\left(1^{3}+2 \times 2\right)^{2}+3 \times 3^{2} \\
& =3 \times 2-5 \times 4+7(1+4)^{2}+3 \times 9 \\
& =6-20+175+27 \\
& =188 \text { Ans. }
\end{aligned}
$$

EXERCISE 4

In each of the following examples, state the order of operations before working the example. Wherever possible, use cancellation. When $a=5, b=3, c=1$, and $x=6$, find the numerical value of

1. $2+3 a$.
2. $x-2 c$.
3. $4 b-2 x$.
4. $a+3 x$.
5. $5 a-3 x$.
6. $3(a+c)$.
7. $a+3 c-x$.
8. $5 x-2 b+a$.
9. $a+x \div b-c$.
10. $5 x \div b-c$.
11. $3 b-x$.
12. $2 x-4 b c$.
13. $a^{3}-b x^{2}$.
14. $2(2 a-c)$.
15. $x(a-b)$.
16. $4(a-3 c)^{2}$.
17. $2 x(2 a-3 b)^{2}$.
18. $3+2(x-a)$.
19. $5 x-3(2 b+c)$.
20. $2\left(x^{2}-a^{2}\right)+3 a c$.
21. $3 x(x-3)^{2}-9 x$.
22. $(x-1)(x-3)+x(x-a)$.
23. $3(2 x-5 c)-a\left(2 b^{2}-3 x\right)$.
24. $(5 b+x)\left(x-b+a-5 c^{2}\right)$.
25. $\frac{a+7 c}{x}$.
26. $\frac{5 a^{2}}{x-1}+\frac{3 c}{b}$.
27. $\frac{3 x^{2}-b}{a+2 c}$.
28. $\frac{(x-1)(b+1)(5 c-b)}{a b x}$.

$$
\text { 29. }\left(\frac{3 a^{2} b}{5 x}\right)\left(\frac{2 b}{x-1}\right)\left(\frac{4 c-1}{3 b}\right)
$$

If $a=\frac{1}{2}, b=\frac{2}{3}, x=2, y=\frac{3}{5}$, find the value of
30. $6 a$.
31. $b y$.
32. $a b x$.
33. $a^{2} x^{2}$.
34. $3 a b^{2}$.
35. $x-2 b$.
43. $5 x\left(b y-a^{2}\right)-b x$.
44. $6(a+b)^{2}+10(y-a)^{2}$.
45. $x+\sqrt{8 a}$.
41. $3 a+a(3 x-10 y)$.
42. $5 x-3(b y-a b)$.
48. Does $x^{2}+x=12$, if $x=2$? If $x=3$? 4? 5? 1?
49. Does $3 x^{2}-4 x=4$, if $x=1$? If $x=2$? 3? $\frac{2}{3}$? 0 ?
50. Does $x^{2}-5 x+6=0$, if $x=1$? If $x=2$? 3? 4? 5 ?
51. Does $x^{2}-\frac{7}{3} x-2=0$, if $x=1$? If $x=2$? 3 ? 4 ? $\frac{1}{2}$?
52. Show that $(a-2 b)^{2}=a^{2}-4 a b+4 b^{2}$, when $a=3$ and $b=1$.
53. That $\frac{a^{3}-b^{3}}{a-b}=a^{2}+a b+b^{2}$, when $a=2$ and $b=1$.
54. Find the value of $2 x^{2}$ when $x=1$. When
$=2.5$. $\frac{1}{2} .1 .5$.
Sug. The results may be conveniently arranged as in
Find the value of each of the following and tabulate results:

x	$\frac{2 x^{2}}{1}$
2	2
2	8
5	50
$\frac{1}{2}$	$\frac{1}{2}$
1.5	4.5

55. $2 x+1$, when $x=1$. When $x=2$. 3. 5. $\frac{1}{2} \cdot \frac{1}{4} \cdot 1.5$.
56. $x^{2}+2$, when $x=1$. When $x=2$. 3. $\frac{1}{2}$. 1. 5 .
57. $x(x+1)$, when $x=1$. When $x=2$. 3. .2. $\frac{1}{2}$. $\frac{1}{4}$.
58. In Exs. 4-10 state which of the expressions used are monomials. Also which are binomials. Trinomials. State the same for Exs. 35-40.

EXERCISE 5

1. If $A=l w$, find the value of A when $l=12$ and $w=5 \frac{1}{2}$. Also when $l=10.4$ and $w=5.8$.

Do you know what use is made of the formula $A=l w$ in arithmetic in finding areas?
2. If $V=l w h$, find V when $l=12, w=5$, and $h=3$. Also when $l=10.4, w=5.8$, and $h=3.05$.

Do you know what use is made of the formula $V=l w h$ in arithmetic in finding volumes?
3. If $p=b r$, find p when $b=350$ and $r=1.07$. Also when $b=7.68$ and $r=.045$. Also when $b=84,000$ and $r=.00 \frac{1}{8}$.

What does the iormula $p=b r$ mean in arithmetic in connection with the subject of percentage?
4. If $i=p r t$, find i when $p=\$ 300, r=.05$, and $t=2 \frac{1}{2}$. Also when $p=\$ 9327.50, r=.06$, and $t=3 \frac{2}{3}$.

What is the meaning in arithmetic of the formula $i=p r t$?
5. If $A=\pi R^{2}$, find the value of A when $\pi=3.1416$ and $R=10$.

Do you know of any use that is made of the formula $A=\pi R^{2}$ in arithmetic?
6. If $h=\sqrt{a^{2}+b^{2}}$, find the value of h when $a=8$ and $b=6$.

Do you know of any use that is made of the formula $h=\sqrt{a^{2}+b^{2}}$ in arithmetic?
7. If $s=\frac{1}{2} g t^{2}$, find s when $g=32.16$ and $t=4$. Also when $g=32.16$ and $t=2 \frac{1}{2}$.

Can you find out the meaning of the formula $s=\frac{1}{2} g t^{2}$?
8. A stone dropped from the top of a precipice reaches its base in 5 seconds. How high is the precipice?
9. If $C=\frac{5}{9}(F-32)$, find C when $F=95^{\circ}$. Also when $F=100^{\circ}$.

Do you know the meaning of the formula used in this example?
10. If iron melts at a temperature of $2700^{\circ} \mathrm{F}$., at what temperature does it melt on the centigrade scale?
11. If $A=\pi R^{2}-\pi r^{2}, \pi=3.1416, R=13$, and $r=12$, find A in the shortest way.
12. If 1 orange costs 3 cents, how many oranges can be bought for 12 cents? For x cents? For $x+y$ cents?
13. If 1 orange costs a cents, how many oranges can be bought for 25 cents? For x cents? For $x+y$ cents?
14. If 1 acre of land costs x dollars, what will one half an acre cost? $\frac{2}{3}$ of an acre? $\frac{3}{4}$ of an acre?
(The following problems are variations of Type I.)
15. If a 12 -year-old boy and a 16 -year-old boy together earn $\$ 48$ in mowing lawns, and the younger boy receives only half as much as the other, how much does each boy receive?

Let $x=$ no. dollars received by 16 -year-old boy
Then
$\frac{1}{2} x=$ no. dollars received by 12 -year-old boy
Hence or $\begin{aligned} x+\frac{1}{2} x & =\$ 48 \\ \frac{3}{2} x & =\$ 48\end{aligned}$
Multiplying these equal numbers by 2

$$
\begin{equation*}
3 x=\$ 96 \tag{Art.15,5}
\end{equation*}
$$

Dividing equals by 3

$$
\begin{aligned}
x & =\$ 32, \text { share of older boy } \\
\frac{1}{2} x & =\$ 16, \text { share of younger boy }
\end{aligned}
$$

16. A man left $\$ 24,000$ to his son and daughter. As his daughter had cared for him in his old age, he left his son only $\frac{2}{3}$ as much as he left his daughter. How much did each receive?
17. A man and boy together made $\$ 124.80$ by working a garden one summer. If the boy received $\frac{1}{3}$ as much as the man, how much did he receive?
18. A farm is worked on shares. As the owner of the farm supplies the tools and fertilizers, the tenant receives only $\frac{3}{4}$ as large a share of the profits as the owner. If the profits for one year are $\$ 4410$, how much does each receive?
19. Two men manage a store, and as one of them owns the building, the other receives only $\frac{3}{5}$ as large a share of the profits as the owner of the store. If the profits for one year are $\$ 6600$, what does each receive?
20. Separate 126 into two parts such that one of them is $\frac{1}{5}$ as large as the other. $\frac{2}{5}$ as large.
21. Separate .028 in the same manner as in Ex. 20.
22. A macadam road cost $\$ 18,000$. The county paid $\frac{1}{2}$ as much of the cost as the township, and the state paid $\frac{1}{6}$ as much as the township. How much did each pay?
23. A certain kind of concrete contained $\frac{1}{2}$ as much sand as gravel and $\frac{1}{2}$ as much cement as sand. How many pounds of each material were there in $1 \frac{3}{4}$ tons of concrete?
24. Make up and work an example similar to Ex. 16. To Ex. 20.
25. How many of the examples in this Exercise can you work at sight?

CHAPTER II

NEGATIVE. NUMBERS

23. Positive and Negative Quantity. Negative quantity is quantity exactly opposite in quality or condition to quantity taken as positive.

If distance east of a certain point is taken as positive, distance west of that point is called negative.

If north latitude is positive, south latitude is negative.
If temperature above zero is taken as positive, temperature below zero is negative.

If in business matters a man's assets are his positive possessions, his debts are negative quantity.

Positive and negative quantity are distinguished by the signs + and - placed before them.

Thus, $\$ 50$ assets are denoted by $+\$ 50$, and $\$ 30$ debts by $-\$ 30$. We denote 12° above zero by $+12^{\circ}$, and 10° below zero by -10°.

The use of the signs + and - for this purpose, as well as to indicate the operations of addition and subtraction, will be explained in Art. 26.
24. Algebraic Numbers is a general name for both positive and negative numbers.

The absolute value of a number is the value of the number considered without regard to its sign.

Thus, if one man travels 5 miles east and another man travels 5 miles west, the absolute distance traveled by the two men is the same, viz.: 5 miles. The two distances traveled, however, are different algebraic numbers, one distance being +5 miles and the other distance being - 5 miles.

In general the absolute value of both +5 and -5 is 5 ; and of both $+a$ and $-a$ is a.
25. The Utility of Negative Number lies in the fact that the use of negative number enables us to use two opposite or contrasted kinds of quantity in working a given problem.

Also by the use of negative quantity we are often able to choose an advantageous starting point in solving a problem.

The full meaning of these utilities and other advantages in the use of negative quantity will appear as we advance in the study of algebra.

EXERCISE 6

1. What is meant by a temperature of -8° ? By a latitude of -23° ? By the date -776 ? (Dates after the birth of Christ are taken as positive.)
2. If the temperature was 17° at noon and -8° at midnight, how many degrees did it fall?
3. If in a given time the temperature should fall from -5° to -12°, how many degrees would it fall?
4. If the temperature were 15° at a given time, what would it become after a fall of 10° ? Of $28^{\circ} ?-15^{\circ}$?
5. If the temperature were -8° at a given time, what would it become after a rise of 4° ? Of 15° ? -8° ?
6. Make up and work an example similar to Ex. 3. Also to Ex. 5.
7. If a traveler is in latitude -4° and travels north 7°, what does his latitude become? What does it become if instead he travels south 7° ?
8. If a man's property is $-\$ 7000$ and he saves $\$ 2000$ a year for 8 years, what does his property become?
9. If a vessel, at latitude 3°, sails south 345 miles, what does her latitude become if 60 miles equal 1° ?
10. If a man bought a horse for $\$ 150$ and sold it for $\$ 200$, what was his gain? What would his gain have been if he had sold it for $\$ 125$? For $\$ 100$?
11. What is meant by saving $-\$ 10$? By a distance -10 miles north?
12. What is the absolute value of -4 miles? Of +4 miles? -5 inches? -3° ? $-\$ 4200$?
13. Make up an example for yourself showing the meaning of absolute value.
(The following problems are variations of Type II, or are of Type III, viz.: $\mathrm{x}+\mathrm{ax}+\mathrm{b}=\mathrm{c}$.)
14. Walter and his brother together had 90 marbles, and his brother had 10 less than Walter. How many marbles had each boy?

Let
$x=$ no. of marbles Walter had
Then $\quad x-10=$ no. of marbles his brother had $x+x-10=90$
$2 x-10=90$
Adding 10 to each of these equals
(Art. 15, 3)

$$
\begin{aligned}
2 x & =100 \\
x & =50, \text { no. of marbles Walter had } \\
x-10 & =40, \text { no. of marbles his brother had }
\end{aligned}
$$

15. A basket ball team has played 27 games and has lost 3 less than it has won. How many games has it won?
16. In a certain election 12,420 votes were cast, and the defeated candidate had 210 less votes than the winning candidate. How many votes had each candidate?
17. Make up and work a similar example for yourself.
18. Walter and his brother together have 83 marbles. If his brother has 7 less than twice the number Walter has, how many has each boy?
19. One number exceeds 4 times another number by 5 , and the sum of the numbers is 100 . Find the numbers.
20. One number exceeds 3 times another number by .12 , and the sum of the numbers is 4.4. Find the numbers.
21. One fraction exceeds 5 times another fraction by $\frac{1}{9}$, and the sum of the fractions is $\frac{13}{9}$. Find the fractions.
22. The distance from New York to Chicago is 912 miles. If this is 24 miles less than 4 times the distance from New York to Boston, what is the latter distance?
23. The Eiffel Tower is 984 ft . high. If this is 126 ft . less than twice the height of the Washington Monument, what is the height of the Washington Monument?
24. How many of the examples in this Exercise can you work at sight?
25. Which of Exs. 14-23 are of type $x+x-a=b$, and which are of type $x+a x \pm b=c$?
26. Make up and work an example similar to Ex. 19. To Ex. 23.
27. Double Use of + and - Signs. The signs + and are employed for two purposes (see Arts. 7 and 23): first, to indicate the operations of addition and subtraction; and second, to express positive and negative quantity. We are able to make this double use of these signs because, in each use, the signs are governed by the same laws.

A person walks from O toward E a distance of 5 miles (to F) and then walks back toward W a distance of 3 miles (to A). If the dise
tance, to the right of O is regarded as positive, and therefore the distance to the left of O is negative, the distance from the starting point to the destination may be expressed as the sum of a positive quantity and a negative quantity; that is,

$$
\begin{aligned}
& \text { (positive distance } O F)+(\text { negative distance } F A) \\
& \qquad \text { or, }+5+(-3)=5-3=2
\end{aligned}
$$

The position arrived at may be determined in another way - viz. by deducting 3 miles from 5 miles. We obtain

$$
5-(+3)=5-3=2
$$

From this example we see that adding negative quantity is the same in effect as subtracting positive quantity.

Therefore, in the expression $5-3$, the minus sign may be considered either a sign of the quality of 3 , or as a sign of operation to be performed on 3 . Hence, we are able to use the signs + and - to cover two meanings.
27. Laws for the Use of + and - Signs. Whichever of the two meanings of + and - named in Art. 26 is assigned, we see that $+(-3)=-3$; also, $-(+3)=-3$.

The signs + and - applied in succession to a quantity are equivalent to the single sign -.

Or in symbols,

$$
+(-a)=-a ; \text { and }-(+a)=-a .
$$

Ex. Find the value of $8+4-11+3-6$. On squared paper show the meaning of the numbers involved.

$$
8+4-11+3-6=15-17=-2 \text { Ans. }
$$

Taking the distances to the right of $O P$ as positive, we have the diagram on p .33 showing the meaning of the numbers involved.

Note that the above process holds true whether a number preceded by a minus sign is regarded as the subtraction of a positive number or the addition of a negative number.

If in the illustration on p. 31 a person walks in the negative direction from O (i. e. toward W) a distance of 4 miles
to K, and then reverses his direction and goes 2 miles, he will be at B. Or stated in another way, diminishing the

		0				+	8										
														+	4		
									-11								
				+	+3												
	-2																
			-6														
			P														

distance traveled west by 2 miles, brings him to the same place as walking the full direction west and then walking 2 miles east.

It may be well to study another illustration of this principle. If a man owes two notes of $\$ 500$ and $\$ 100$ respectively, removing the note for $\$ 100$ is the same in effect as annexing $\$ 100$ in money to the debts as they are. That is,
$-\$ 500-\$ 100-(-\$ 100)=-\$ 500=\$ 100+\$ 100=-\$ 500$

Hence:

The sign - applied twice to a given positive quantity gives $a+$ result.

Or in symbols, $-(-\mathrm{a})=\neq \mathrm{a}$.

These laws enable us to use negative quantity with as great freedom as we use positive quantity, and hence are an important source of power, as will become more evident later.

Ex. On squared paper show
 the meaning of $-5-(-3)$. Also of $-5+3$. Hence, show that $-5-(-3)=-5+3$.

On the lower diagram on p. $33-5-(-3)$ means $O A-D A$, .or $O D$. Also $-5+3$ means $O A+B C$, or $O D$.

Hence, $-5-(-3)$ and $-5+3$ give the same result; or we may say $-5-(-3)=-5+3$.
28. The Algebraic Sum of two or more algebraic numbers is the result of combining the given algebraic numbers into a single number.

Thus, the algebraic sum of 4 and -7 is -3 .

EXERCISE 7

Find the value of each of the following and verify the result on squared paper:

1. $5-2$.
2. $6-8$.
3. $5-5$.
4. $-4+2$.
5. $-4-2$. 10. $-4-(-3)$. 15. $-4-(-1.5)$.
6. $0-4$.
7. $8-6-4$.
8. $7-5+4$.
9. $3+1-5$.
10. $5-(-8)$.
11. $-7+(-2)$.
12. $0-(-5)$.
13. $0+(-5)$.

$$
\begin{aligned}
& \text { 16. } 4+5-12+3-5 \\
& \text { 17. }-3+8-6-2+2-1
\end{aligned}
$$

18. At 6 A. M. a thermometer read 57°. It then made successive changes as follows: $+7^{\circ},-2^{\circ},+5^{\circ},-3^{\circ},-2^{\circ}$. What was the final reading?
19. In a certain football game, taking a distance toward the north goal as positive, during the first seven plays the ball started at the middle of the field and shifted its position in yards as follows: $+50-10-15-5+10-5-20$. Find the final position of the ball with reference to the middle of the field. On squared paper show the changes in the position of the ball, letting 5 yd . equal one space on the paper.
20. State in the language of debts and credits the meaning of

$$
-\$ 700-\$ 200-(-\$ 200)=-\$ 700-\$ 200+\$ 200
$$

Sug. If a man has debts of $\$ 700$ and $\$ 200$, the removal of the $\$ 200$ debt is the same as leaving his debts unchanged and adding $\$ 200$ to his possessions. He becomes worth $-\$ 700$ in either case.
21. State in the language of distance traveled east and west the meaning of
$-10 \mathrm{mi} .-2 \mathrm{mi} .-(-2 \mathrm{mi})=.-10 \mathrm{mi} .-2 \mathrm{mi} .+2 \mathrm{mi}$.
(The following are miscellaneous problems of Type II and Type III.)
22. A man and a boy together catch 320 fish, and the man receives three times as many fish as the boy. How many fish does each have?
23. A man has $\$ 3220$ in two banks and the amount in one bank exceeds that in the other by $\$ 540$. How much has he in each bank?
24. Two girls make $\$ 24.60$ by sewing, and the younger girl receives only one half as much as the older. How much does each receive?
25. Separate $\$ 12.68$ into two parts one of which shall be smaller than the other by $\$ 5$.
26. A given piece of bronze weighs 4600 lb . It contains twice as much tin as zinc, and $8 \frac{1}{2}$ times as much copper as zinc. How many pounds of each metal does the bronze contain?
27. The distance from the mouth of the Mississippi River to the source of the Missouri River is 4500 miles. The distance between the mouth of the Mississippi and the mouth of
the Missouri is 1700 miles less than the length of the Missouri. What is the length of the Missouri?
28. A farmer obtained 2720 pounds of cream in one month by the use of a separator. This is $\frac{1}{5}$ more than he would have obtained if his milk had been skimmed by hand. How much would he have obtained by the latter process?
29. The cost of a macadam road was $\$ 24,000$. The county paid twice as much as the state, and the township three times as much as the state. How much did each pay?
30. Three partners divided $\$ 14,000$, the second partner receiving $\$ 2000$ more than the first, and the third partner receiving twice as much as the first. How much did each receive?
31. Mt. Washington is 6290 ft . high, This is 170 ft . more than 10 times the height of the Singer Building (N.Y.). How high is the latter?
32. Make up and work an example similar to Ex. 18. Ex. 21. Ex. 24. Ex. 29.
33. How many of the examples in this Exercise can you work at sight?
34. Which of Exs. 22-33 of this Exercise are of Type I? Of Type II? Type III?
29. Graphs. A set of numerical facts may often be combined as a geometrical picture called a graph. The meaning and use of negative numbers are often well illustrated on a graph.

Ex. On a given day the following were the temperatures at a given place:

| Midnight -15° | 9 A. M. 2° | 6 P. M. | 10° |
| :--- | :--- | :--- | :--- | ---: |
| 3 A. M. -20° | Noon 10° | 9 P. M. | 0° |
| 6 A. M. -10° | 3 P. M. 15° | Midnight -10° | |

Graph these facts. Temperatures
We draw a horizontal line and on it mark off spaces to represent hours, as in the diagram. Perpendicular to this we draw a line and on it mark off spaces to represent temperatures. Above or below each point which represents an hour, a point is located which represents
 the temperature at that hour. Through the points thus located a continuous line $A B C D$ is drawn. This is the required graph.

EXERCISE 8

Graph each of the following sets of temperatures:

	Midnight	$3 \mathrm{~A} . \mathrm{M}$.	6 A. M.	9 A. M.	12 M	3 P. M.	6 P. M.	9 P. M.
1.	-20°	-30°	-20°	-10°	0°	10°	10°	0°
2.	-10°	-20°	-10°	0°	10°	20°	10°	0°
3.	-10°	-15°	-5°	10°	15°	25°	15°	-5°
4.	0°	-10°	-5°	15°	25°	30°	15°	5°

5. Make up and work a similar example for yourself.

Graph each of the following sets of temperatures:

		Jan. 1	Feb. 1	Mar. 1	Apr. 1.	May 1	June 1
6.		31°	31°	35°	42°	54°	
7.	New York	$-1^{\circ} \mathrm{C}$.	$-1^{\circ} \mathrm{C}$.	$1^{\circ} \mathrm{C}$.	$6^{\circ}{ }^{\circ} \mathrm{C}$.	$12^{\circ} \mathrm{C}$.	18°
	London	37°	38°	40°	45°	50°	57°

July 1	Aug. 1	Sept. 1	Oct. 1	Nov. 1	Dec. 1
71°	73°	69°	61°	49°	39°
$22^{\circ} \mathrm{C}$.	$23^{\circ} \mathrm{C}$.	$21^{\circ} \mathrm{C}$.	$16^{\circ} \mathrm{C}$.	$9^{\circ} \mathrm{C}$.	$4^{\circ} \mathrm{C}$.
62°	62°	59°	54°	46°	41°

9. Convert the temperatures given for London in Ex. 8 to temperatures on the Centigrade scale and graph them (see Ex. 9, p. 26).
10. Collect and graph sets of numerical facts similar to those given in the preceding examples.

CHAPTER III

ADDITION AND SUBTRACTION ; THE EQUATION

Addition

30. The Utility of Addition in Algebra.

Ex. Find the value of $3 a b^{2}+5 a b^{2}+2 a b^{2}$, when $a=2$ and $b=3$.

PROCESS WITHOUT ALGEBRAIC ADDITION

If we substitute directly in the given expression, we obtain

$$
\begin{aligned}
3 a b^{2}+5 a b^{2}+2 a b^{2} & =3 \times 2 \times 3^{2}+5 \times 2 \times 3^{2}+2 \times 2 \times 3^{2} \\
& =54+90+36 \\
& =180 \text { Ans. }
\end{aligned}
$$

process aided by algebraic addition

$$
\begin{aligned}
3 a b^{2}+5 a b^{2}+2 a b^{2} & =10 a b^{2} \\
& =10 \times 2 \times 3^{2} \\
& =180 \text { Ans. }
\end{aligned}
$$

In solving the above example, algebraic addition enables us to save more than half the work. Algebraic addition has other uses which will appear later.

Why do we now make definitions and rules?
31. Addition, in algebra, is the combination of several algebraic expressions into a single equivalent expression.

Addition is sometimes described as collecting terms in an expression.
32. Similar Terms (or like terms) are terms which contain the same literal factors and the same radical signs over the same factors.

Thus, $7 a b^{2}$ and $-5 a b^{2}$ are similar terms. Also $5 a \sqrt[3]{2}$ and $-6 a \sqrt[3]{2}$ are similar terms.

Dissimilar terms (or unlike terms) are terms which are unlike either in their literal factors or in the radical sign over the same factor.

Thus, $5 a^{2} b$ and $5 a b^{2}$ are dissimilar terms. Also $3 \sqrt[3]{5}$ and $3 \sqrt{5}$ are dissimilar terms.

The addition of dissimilar terms can only be indicated.
Thus, b added to a gives $a+b$; also $a^{3}-3 a^{2} b$ added to $3 a^{2}-b^{3}$ gives $a^{3}-3 a^{2} b+3 a^{2}-b^{3}$.
33. Method for Addition. The most convenient general method for addition is shown in the following examples:

Ex. 1. Add $4 x^{2}+3 x+2,3 x^{2}-4 x-3,-2 x^{2}-x-5$.
Arranging similar terms in the same column, and adding each column separately, we obtain

$$
\begin{array}{rlr}
\text { CHECK } \\
4 x^{2}+3 x+2 & = & 4+3+2= \\
3 x^{2}-4 x-3 & = & 3-4-3=-4 \\
-2 x^{2}-x-5= & -2-1-5=-8 \\
\text { Sum } 5 x^{2}-2 x-6 & =5-2-6=-3
\end{array}
$$

To check the accuracy of the work, we let $x=$ any convenient number, as 1 ; find the numerical value of each row; and compare the sum of these results with the numerical value of the algebraic expression obtained as the sum.

Ex. 2. Add $2 a^{3}-5 a^{2} b+4 a b^{2}+a^{2} b^{3}, 4 a^{2} b+2 a^{3}-a b^{4}-3 a b^{2}$, $a^{2} b-a^{3}+2 a b^{2}$.

Proceeding as in Ex. 1,

$$
\begin{array}{rlrl}
2 a^{3}-5 a^{2} b+4 a b^{2}+a^{2} b^{3} & =2-5+4+1 & =2 \\
2 a^{3}+4 a^{2} b-3 a b^{2} & -a b^{4} & =2+4-3-1 & =2 \\
-a^{3}+a^{2} b+2 a b^{2} & & =-1+1+2 & =2 \\
\text { Sum } 3 a^{3}+3 a b^{2}+a^{2} b^{3}-a b^{4} & =3+0+3+1-1 & =6
\end{array}
$$

In the second column the algebraic sum of the coefficients is $-5+4+1$, which $=0$; and as zero times a number is zero, the
sum of the second column is zero, which need not be set down in the result.

The work is checked by letting a and b each $=1$.
Hence, the process for addition may be stated as follows:
Arrange the terms to be added in columns, placing similar terms in the same column;

Find the algebraic sum of the numerical coefficients of each column and prefix this result to the literal factors common to the terms in the column.

Sometimes the algebraic sum of the coefficients of each group of similar terms is found without arranging the terms in columns.

EXERCISE 9

Add and check each result:

$\mathbf{1 .}$	2.	3.	4.	5.
-11	4	$8 x$	$-x$	$-7 x$
6	-10	$-6 x$	$-3 x$	$12 x$
		-		
6.	$\mathbf{7 .}$	$\mathbf{8 .}$	9.	10.
$2 a$	$-x^{2}$	$7 x y$	$a^{2} b$	$7 x^{2} y^{2}$
$5 a$	$3 x^{2}$	$-10 x y$	$5 a^{2} b$	$-10 x^{2} y^{2}$
$-12 a$	$5 x^{2}$	$2 x y$	$-3 a^{2} b$	$x^{2} y^{2}$

11. $3 a x,-2 a x, 5 a x, a x,-3 a x$.
12. $5 x^{2}, 12 x^{2},-10 x^{2}, x^{2},-16 x^{2}, 3 x^{2},-x^{2}$.
13. $7 a^{2} b^{2},-12 a^{2} b^{2},-a^{2} b^{2},-4 a^{2} b^{2}, 5 a^{2} b^{2}, 6 a^{2} b^{2}$.

14.	15.	16.	17.
$3(a+b)$	$-6(x-y)$	$5 \sqrt{a+x}$	$4 \pi r^{2}$
$5(a+b)$	$4(x-y)$	$-6 \sqrt{a+x}$	$-2 \pi r^{2}$
$-4(a+b)$	$-5(x-y)$	$\underline{2 \sqrt{a+x}}$	$\underline{\frac{1}{2} \pi r^{2}}$

18.	19.	20.
$3 x-2 y$	$5 x^{2}+7$	$a^{2}-a x+4 x^{2}$
$-2 x+3 y$	$x^{2}-10$	$3 a^{2}+2 a x-5 x^{2}$
$x-y$	$-7 x^{2}+1$	$-a^{2}-a x-x^{2}$

21. $a-2 b, 3 a+4 b, a+5 b,-5 a-b, a-5 b$.
22. $3 x^{2}+y^{2}, 2 x^{2}-7 y^{2},-4 x^{2}-5 y^{2}, x^{2}+3 y^{2},-3 y^{2}$.
23. $3 a x^{3}-5 b y^{3}, 2 a x^{3}+4 b y^{3}, 2 b y^{3}-4 a x^{3}, b y^{3}-a x^{3}$.

Reduce each of the following to its simplest form:
24. $x^{2}-x y+3 y^{2}+2 x^{2}+2 x y-2 y^{2}+x^{2}+y^{2}+3 x^{2}-x y$.
25. $m n-3 n^{2}+m^{2}+m^{2}+2 n^{2}-3 m n+m^{2}-n^{2}+m n-2 m^{2}$.
26. $x^{2}+y^{2}-2 z^{2}+3 x^{2}-y^{2}+2 z^{2}+z^{2}-2 x^{2}+x^{2}-z^{2}$.
27. $2 x^{2}-x y+3 x y-5 y^{2}+3 y^{2}-3 x^{2}+x^{2}+2 y^{2}-2 x y$.
28. $7 x+y+5 z-10 x y+2 y-3 z+13 x y-4 x z+5 z$ $-6 x-4 x z+2 x y-3 y+9 z+7 x-x z+21 x z-16 z+x-5 x y$.
29. $x^{3}+3 x^{2} y+3 x y^{2}+y^{3}+x^{3}-3 x^{2} y+3 x y^{2}-y^{3}+2 x^{2} y$ $-2 x y^{2}+y^{3}+x^{3}-y^{3}+x^{2} y-4 x^{3}-x y^{2}-y^{3}+y^{3}+x^{3}-$ $x^{2} y+x y^{2}$.

Collect similar terms in the following and check each result:
30. $2 x-3 y-5 x+4 z+4 y+z-2 y-x-3 z+2 x-3 y$.
31. $3 x y-5 a x+3 y^{2}-2 x y-3 x^{2}+4 a x-2 y^{2}+3 a x-2 x y$.
32. $x-3 y+2 z+2 y-2 x-z-3 x-4 z-2 x+z+2 x$.
33. $2 x-1+5 y-2+3 x+2+3 y-3-2 x+1-x-3 y$.
34. $3 \dot{a}^{2} b-2 a^{2} c+3 a^{2}-5 a^{2} b-a^{2}-3 a^{2} c+a^{2} b+6 a^{2} c-2 a^{2}$.
35. $5 x^{3}-3 x+4-2 x^{2}-6 x^{3}+4 x-7-x^{2}+x^{3}+3 x^{2}$ $-x+5+3 x^{2}-6 x-x^{2}+4 x-2 x^{2}+2 x$.
36. $2 x^{n}-5 x^{m}+3 x^{2}-x^{n}-7 x+3 x^{2}-3+2 x^{m}-5 x^{2}$ $+5+3 x^{m}$.
37. Reduce $3 x x x y y+8 x x x y y-5 x x x y y-2 x x x y y$ to its simplest form. About how much briefer is the form you obtain than the given form?
38. Make up and work an example similar to Ex. 37.
39. Make up and work an example showing the use of algebraic addition (see Ex. of Art. 30, p. 39).
40. State in general language the use of algebraic addition.
(The following are mixed problems of Types I, II, III.)
41. Three partners in a retail business made $\$ 18,000$ in one year. The second partner owned the building and received twice as large a share as the first partner. The third partner supplied most of the capital and received three times as large a share as the first. How much did each receive?
42. Make up and work a similar example for yourself.
43. Find three consecutive numbers whose sum is 36 .
44. Find four consecutive numbers whose sum is 106 .
45. Make up and work an example concerning five consecutive numbers.
46. The area of the United States and its outlying possessions is $3,742,155 \mathrm{sq} . \mathrm{mi}$. The area of the United States exceeds that of its outlying possessions by $2,309,045$ sq. mi. What is the area of the outlying possessions?
47. How many of the examples in this Exercise can you work at sight?
48. Name the type to which each of the above problems belongs (Exs. 41-46).

Subtraction

34. The Utility of Subtraction in Algebra.

Ex. Find the numerical value of $17 a^{2} b^{3}-15 a^{2} b^{3}$, when $a=3$ and $b=2$.

$$
\begin{aligned}
& \text { PROCESS WITHOUT ALGEBRAIC SUBTRACTION } \\
& \begin{aligned}
17 a^{2} b^{3}-15 a^{2} b^{3} & =17 \times 3^{2} \times 2^{3}-15 \times 3^{2} \times 2^{3} \\
& =17 \times 9 \times 8-15 \times 9 \times 8 \\
& =1224-1080=144 \text { Ans. }
\end{aligned}
\end{aligned}
$$

PROCESS AIDED BY ALGEBRAIC SUBTRACTION

$$
\begin{aligned}
17 a^{2} b^{3}-15 a^{2} b^{3} & =2 a^{2} b^{3} \\
& =2 \times 3^{2} \times 2^{3} \\
& =144 \text { Ans }
\end{aligned}
$$

In solving the above example, algebraic subtraction enables us to save more than half of the work. Algebraic subtraction has other advantages which will appear later.

Why do we now proceed to make definitions and rules?
35. Subtraction, in algebra, is the process of finding a quantity which, added to a given quantity (the subtrahend), will produce another given quantity (the minuend).

Thus, if we subtract $3 a b$ from $10 a b$, we obtain $7 a b$, for $7 a b$ added to $3 a b$ (subtrahend) gives $10 a b$ (minuend).
36. Signs in Subtraction. From Art. 26 it follows that

Subtracting a positive quantity is the same as adding a negative quantity of the same absolute magnitude; and

Subtracting a negative quantity is the same as adding a positive quantity of the same absolute magnitude.
37. Method for Subtraction. The most convenient general method in subtraction is to

Write the terms of the subtrahend under the terms of the minuend, placing similar terms in the same column;

Change the signs of the terms in the subtrahend mentally, and proceed as in addition.

Ex. 1. From $5 x^{3}-2 x^{2}+x-3$ subtract $2 x^{3}-3 x^{2}-x+2$. Check the work by letting $x=1$.

> | CHECK | |
| ---: | :--- |
| $-2 x^{3}-2 x^{2}+x-3$ | $=5-2+1-3=1$ |
| $-2 x^{3}+3 x^{2}+x+2$ | $=2-3-1+2=0$ |
| $3 x^{3}+x^{2}+2 x-5$ | $=3+1+2-5=1$ |

The coefficient of x^{3} is $5-2$, or 3 , of x^{2} is $-2+3$, or 1 , etc.
Ex. 2. Subtract $2 a^{4}-3 a^{3} b-6 a^{2} b^{2}-2 a b^{3}+2 b^{4}$ from $a^{4}+5 a^{3} b-6 a^{2} b^{2}-3 a b^{3}$. Check the work by letting $a=1$ and $b=1$.

CHECK
$\begin{array}{rlrl}a^{4}+5 a^{3} b-6 a^{2} b^{2}-3 a b^{3} & =1+5-6-3 & =-3 \\ 2 a^{4}+3 a^{3} b+6 a^{2} b^{2}-2 a b^{3}+2 b^{4} & = & 2-3-6-2+2= & -7 \\ -a^{4}+8 a^{3} b-a b^{3}-2 b^{4} & =-1+8+0-1-2= & 4\end{array}$
The coefficient of $a^{2} b^{2}$ is $-6+6$, or 0 . The coefficient of b^{4} is $0-2$, or -2 .

EXERCISE 10

Subtract and check each result:

15. From $3 a+2 b-3 c-d$ take $2 a-2 b+c-2 d$.
16. From $7-3 x+2 x^{2}$ take $15-4 x-5 x^{2}$.
17. From $x^{2}-y^{2}-z^{2}+8$ take $2 x^{2}+y^{2}-2 z^{2}+10$.
18. From $5 x y-3 x z+5 y z+x^{2}$ take $4 x z-2 x y-x^{2}$.
19. From $2-x+x^{2}+x^{4}$ take $3+x-x^{2}-x^{3}-2 x^{4}$.
20. Subtract $10 x^{2} y+3 x^{2} y^{2}-13 x y^{2}$ from $x^{2} y-x y^{2}+2 x^{2} y^{2}$.
21. Subtract $3-2 a b+3 a c-4 c d$ from $5-a c+8 c d-5 a d$.
22. Subtract $1+x-x^{2}+x^{3}-x^{4}$ from $2-x-x^{2}-x^{3}+x^{5}$.
23. Subtract $a+2 b-3 c+4 d$ from $m+2 b+d-x+a$.
24. Subtract $3 x^{4}-2 x^{2}+5 x-7$ from $3 x^{3}+2 x^{2}-x-7$.
25. Subtract $-x^{5}-2 x^{4}+x^{2}+5$ from $x^{5}-x^{3}+x^{2}-2 x+5$.
26. Subtract $3 x^{m}-3 x^{n}+x-3$ from $x^{m}+x^{n}-x^{2}+x-1$.
27. From the sum of $2 x$ and $3 y$ subtract their difference.
28. From 0 subtract $-3 x$. From 0 subtract $x-y$. From zero subtract $3 a^{2}-2 a b+b^{2}$.
29. Reduce $7 a a a b b+5 a a a b b-3 a a a b b$ to its simplest form.
30. Make up and work an example similar to Ex. 29.

If $A=x^{3}-3 x^{2}+1, B=2 x^{2}-5 x-3, C=3 x^{3}+x^{2}+3 x$, find the value of
31. $A+B+C$
33. $A+B-C$
32. $B-A+C$
34. $A-B+C$
(The following problems are variations of Types I and II.)
35. Find the value of x, if $3 x-2$ in. $=7$ in.
36. Separate $\$ 24.80$ into two parts such that one part is smaller than the other by $\$ 4.60$.
37. Separate $\$ 24.80$ into two paits such that the smaller part equals $\frac{1}{3}$ of the larger part.
38. Separate $\$ 5000$ into three parts such that the second part shall exceed the first by $\$ 300$, and the third shall exceed the first by $\$ 800$.
39. Separate $\$ 5000$ into three parts such that the secund part shall exceed the first by $\$ 300$, and the third shall exceed the second by $\$ 800$.
40. Separate $\$ 6000$ into three parts such that the second part equals $\frac{1}{2}$ of the first, and the third part equals $\frac{1}{5}$ of the first.
41. Separate $\$ 6000$ into three parts such that the second part is double the first, and the third part is double the second.
42. Make up and work an example similar to Ex. 36. To Ex. 40.
43. Name the type of which each of the above problems (Exs. 36-43) is a variation.
44. How many of the examples in this Exercise can you work at sight?
45. How many of the examples in Exercise 1 can you now work at sight?

Use of the Parenthesis

38. Utility of the Parenthesis. The parenthesis is useful in indicating an addition or a subtraction in a brief way.

Thus, $2 a+3 b-5 c-(3 a-2 b+3 c)$ indicates that $3 a-2 b+3 c$ is to be subtracted from $2 a+3 b-5 c$.

The parenthesis will also be found useful in indicating multiplication and division in a brief manner, and other uses of the parenthesis will become evident as we proceed.
39. Removal of a Parenthesis. From the processes of addition and subtraction it follows that

When a parenthesis preceded by $a+$ sign is removed, the signs of the terms inclosed by the parenthesis remain unchanged. But

When a parenthesis preceded by a minus sign is removed, the signs of the terms inclosed by the parenthesis are changed, the + signs to - , and the - signs to + .

Ex. Simplify $2 a+3 b-5 c-(3 a-2 b+3 c)$.
$2 a+3 b-5 c-(3 a-2 b+3 c)=2 a+3 b-5 c-3 a+2 b-3 c$

$$
=-a+5 b-8 c \text { Ans. }
$$

Let the pupil check the work by letting $a=1, b=1, c=1$.
40. Parenthesis within Parenthesis. Using the parenthesis as a general name for all the signs of aggregation, it is evident that several parentheses may occur one within another in the same algebraic expression. The best general method of removing several parentheses occurring thus is as follows:

Remove the parentheses one at a time, beginning with the innermost;

Collect the terms of the result.
It is also possible to remove the parentheses in reverse order, that is, by removing the outside parenthesis first, etc. Working an example in this way often forms a convenient check on the first process.

Ex. Simplify $5 x-y-[4 x-6 y+\{-3 x+y+2 z-$ $(2 x-z)\}]$.

$$
\begin{aligned}
& 5 x-y-[4 x-6 y+\{-3 x+y+2 z-(2 x-z)\}] \\
= & 5 x-y-[4 x-6 y+\{-3 x+y+2 z-2 x+z\}] \\
= & 5 x-y-[4 x-6 y \\
= & 5 x-y x-4 x+6 y+2 z-2 x+z] \\
= & 6 x+4 y-3 z \text { Ans. }
\end{aligned}
$$

The work may be checked by removing the parentheses in reverse order, or by the method of substitution as follows:

Letting $x=1, y=2, z=3$, we have

$$
\begin{aligned}
& 5 x-y-[4 x-6 y+\{-3 x+y+2 z-(2 x-z)\}] \\
&= 5-2-[4-12\{-3+2+6-(2-3)\}] \\
&= 3-[-8+\{5-(-1)\}]=3-[-8+\{5+1\}] \\
&= 3-(-8+6)=3-(-2)=3+2=5 \\
& \text { Also } 6 x+4 y-3 z=6+8-9=5
\end{aligned}
$$

EXERCISE 11

Remove parentheses and collect similar terms. Check each result either by substitution of numerical values, or by reversing the order in which the parentheses are removed.

1. $3 a+(2 a-b)$.
2. $x-[2 x+(x-1)]$.
3. $2 x-(x-1)$.
4. $5 x+(1-[2-4 x])$.
5. $x+(1-2 x)$.
6. $2-\{1-(3-a)-a\}$.
7. $3 x-(1+3 x)$.
8. $2 x-[-x-(x-1)]$.
9. $x-(-x-1)$.
10. $2 y+\{-x-(2 y-x)\}$.
11. $x+2 y-(2 x-y)$.
12. $a-\{-a-(-a-1)\}$.
13. $\left[x^{2}-\left(x^{2} y-z^{2}\right)-z^{2}\right]+\left(x^{2} y-x^{2}\right)$.
14. $1-\{1-[1+(1-x)-1]-1\}-x$.
15. $x-[-\{-(-x-1)-x\}-1]-1$.
16. $1-\{2+[-3-(-4-5-6)-7]\}$.
17. $a-\{a+[b-(a+b+c-a+b+d)-c]\}$.
18. $x-\left\{2 x^{2}+\left(3 x^{3}-3 x-\left[x+x^{2}\right]\right)+\left[2 x-\left(x^{2}+x^{3}\right)\right]\right\}$.
19. $x^{4}-\left[4 x^{3}-\left[3 x^{2}-(2 x+2)\right]+3 x\right]-\left[x^{4}+\left(3 x^{3}+2 x^{2}\right.\right.$ $-3 x-1)]$.
20. $-[-2 x-\{-(-2 x-1)-2 x\}-1]-2 x$.
21. $x-[x+(x-y)-\{x+(y-x)-2 y\}+y]-y+x$.
22. $25 x-[12+\{3 x-7-(-12 x-\overline{5+15 x})-(3+$ $2 x)\}]+7-(3 x+5)+(2 x-3)+x+8$.
23. In $3 x-(5 a-2 b+c)$, what is the sign of $5 a$ as the example stands?
24. In Ex. 12, Exercise 10, indicate the subtraction by use of a parenthesis. Do the same in Ex. 13.

Remove the parentheses and find the value of x in each of the following:

$$
\begin{array}{ll}
\text { 25. } x+(x+2)=7 . & \text { 27. } 5 x-(2 x-3)=12 . \\
\text { 26. } 3 x-(x+2)=8 . & \text { 28. } 4 x-\left(x-\frac{2}{3}\right)=2 \frac{1}{4} .
\end{array}
$$

29. Make up and work an example similar to Ex. 16. To Ex. 26.
30. How many of the examples in this Exercise can you work at sight?
31. How many of the examples in Exercise 3 (p. 19) can you work at sight?
32. Insertion of a Parenthesis. It is clear that the process of removing a parenthesis may be reversed; that is, that terms may be inclosed in a parenthesis.

Inverting the statements of Art. 39, we have
Terms may be inclosed in a parenthesis preceded by the plus sign, provided the signs of the terms remain unchanged;

Terms may be inclosed in a parenthesis preceded by the minus sign, provided the signs of the terms are changed.

$$
\text { Ex. } \begin{aligned}
a-b+c+d-e & =a-b+(c+d-e), \\
\text { or, } & =a-b-(-c-d+e) \text { Ans. }
\end{aligned}
$$

EXERCISE 12

In each of the following insert a parenthesis inclosing the last three terms, each parenthesis to be preceded by a minus sign. Check the work either by removing the parenthesis in the answer, or by numerical substitution.

1. $x^{3}-3 x^{2}+3 x-1$.
2. $x^{4}+4 x-x^{2}-4$.
3. $a-b+c+d$.
4. $a^{2} b^{2}-2 c d-c^{2}-d^{2}$.
5. $1+2 a-a^{2}-1$.
6. $4 x^{4}-9 x^{2}+12 x y-4 y^{2}$.
7. $1-a^{2}-2 a b-b^{2}$.
8. $x^{4}-4 x^{3}+4 x^{2}+4 x-4-x^{2}$.

It is often useful to collect the coefficients of a letter into a single coefficient.

Ex. Collect the coefficients of x, y, and z in the expression, $3 x-4 y+5 z-a x-b y-c z-b x+a y+a z$.
The complete coefficient of x is $(3-a-b)$; of $y,(-4-b+a)$ or $-(4+b-a)$; of $z,(5-c+a)$.

Hence, the expression may be written,

$$
(3-a-b) x-(4+b-a) y+(5-c+a) z \text { Ans. }
$$

In like manner collect the coefficients of x, y, and z :
9. $m x-n y+3 z+2 x+n z-4 y$.
10. $x-y-2 z-a x+b y-a z-b x-a y+c z$.
11. $-7 x+12 y-10 z-2 a x+3 b z-c y+2 b x-6 d y$.
12. $5 y-3 a c x-5 c d z-4 a b x-3 c d y+2 c x-4 z-5 a x$.

Collect the coefficients of x^{3}, x^{2}, and x :
13. $3 x^{3}+x-2 x^{2}-a x^{3}-5+a x^{2}-2 a x-c x^{3}-c x^{2}-c x$.
14. $-x^{2}-x-a x^{3}+x^{3}-a x+b x^{2}-a x^{2}-3 b x-2 b x^{3}+3 a$.
15. $a^{2} x^{2}-a x-a-b^{3} x^{3}-2 b^{2} x^{2}+3 b x-a^{3} x^{3}-c x^{2}+$ $3 c x-c$.

Equations and Transposition

42. An Equation is a statement of the equality of two algebraic expressions.

An equation, therefore, consists of the sign of equality and an algebraic expression on each side of it; as $3 x-1=2 x+5$.

The solution of an equation is the process of finding the value of the unknown number (as of x) in the given equation.
43. Members of an Equation. The algebraic expression to the left of the sign of equality is called the first member of the equation; the expression to the right of the sign of equality is called the second member.

$$
\text { Thus, in the equation } 3 x-1=2 x+3 \text {, }
$$

the first member is $3 x-1$; the second member is $2 x+3$.
The members of an equation are sometimes called sides of the equation.

The members of an equation are similar to the pans of a set of weighing scales which must be kept balanced. (See Art. 15, p. 18.)
44. Utility of Equations. An equation expresses the relation of at least one unknown quantity to certain known quantities. By means of an equation, we are often able to determine the value of the unknown quantity.

See the problems solved in Exercises 1, 2, etc., by the aid of equations.
45. The Transposition of a Term is moving the term from one member of an equation to the other member. We shall see that when a term is transposed, the sign of the term must be changed.

Ex. 1. Find the value of x in $x-5=7$.

PROCESS WITHOUT TRANSPOSITION

We have given

$$
\begin{align*}
x-5 & =7 \\
5 & =5 \tag{Art.}\\
x & =7+5 \\
\text { or } x & =12 \text { Ans. }
\end{align*}
$$

PROCESS WITH transposition

We have given
Transferring 5 to the right-hand member of the equation and $\}$ changing its sign,

$$
\begin{aligned}
x-5 & =7 \\
x & =7+5 \\
x & =12 \text { Ans. }
\end{aligned}
$$

Hence transposition is a short way of adding equal numbers to the two members of an equation. The labor saved by means of transposition is more evident when several terms are to be transposed at the same time.

For the present, however, in order to fix firmly in mind the nature of the process, we shall not transpose terms, but shall add equals to the members of an equation when we wish to transfer terms from one member to the other.

Ex. 2. Solve $5 x-(x+2)=3 x-(2 x-7)$.
Removing parentheses, Adding $-3 x+2 x+2$ to $\}$ each member,

$$
\begin{aligned}
5 x-x-2 & =3 x-2 x+7 \\
-3 x+2 x+2 & =-3 x+2 x+2 \\
\hline 5 x-x-3 x+2 x & =2+7 \\
3 x & =9 \\
x & =3 \text { Ans. }
\end{aligned}
$$

46. Checking the Solution of an Equation. The result obtained by solving an equation may be checked by substituting in each member of the original equation the value of x obtained by the solution. If the two members reduce to the same number, the value found for x is correct.

Thus, in Ex. 2, putting 3 in the place of x,
The left member, $5 x-(x+2)=15-(3+2)=15-5=10$
Also the right member, $3 x-(2 x-7)=9-(6-7)=9+1=10$

EXERCISE 13

Solve the following equations without transposition of terms. Verify each result obtained.

1. $x+2 x-3=6$.
2. $3 x-2=2 x+.74$.
3. $3 x=x+10$.
4. $5 x-1=14$.
5. $5 x-(2 x-3)=6$.
6. $7 x-(5 x+4)=-2$.
7. $4 x-3=12-x$.
8. $9 x=10-(x+5)$.
9. $5 x-1=3 x+7$.
10. $8 x+(3 x-4)=25$.
11. $10 x-(x-5)=4-(x+2)$.
12. $10-(3 x-5)=8-(7 x+2)$.
13. Solve Exs. 1-12 by aid of transposition of terms.

Solve the following problems and check each result:
14. If 5 times x equals 9 diminished by twice x, find x.
15. If $\frac{2}{3}$ of x equals 12 less $\frac{1}{3} x$, find x.
16. If 12 is added to a given number, the result equals three times the given number. Find the number.
17. One number exceeds another by 5 and the sum of the numbers is 12 . Find the numbers.
18. The difference of two numbers is 5 and the sum of the numbers is 13 . Find the numbers.
19. Separate 12 into two parts such that one part exceeds the other by 5 .
20. One number exceeds another by 1.4 and the sum of the numbers is 16.4. Find the numbers.
21. The difference of two numbers is 1.4 and the sum of the numbers is 16.4. Find the numbers.
22. Separate 16.4 into two parts such that one part exceeds the other by 1.4.
23. Make up and work three examples similar to Exs. 14-16. 'Also to Exs. 17-20.
24. Find three consecutive odd numbers whose sum is 45 . Also five consecutive odd numbers whose sum is 45 .
25. Find three consecutive even numbers whose sum is 60. Also five consecutive even numbers whose sum is 60 .
26. Make up and work an example similar to Ex. 24.
27. Make up and work an example similar to Ex. 25.
28. To what type does each of the above problems belong, or of what type is each a variation?

EXERCISE 14

Review

1. Find the value of $a+3(b-x)$, when $a=5, b=2$, and $x=1$.
2. Find the value of $3 x-(x-2)^{2}+2(x+1)(4-x)-$ $\sqrt{5 x+1}$, when $x=3$.
3. If $s=v t+\frac{1}{2} g t^{2}$, find the value of s when $v=10, g=32.16$, and $t=4$.
4. If $x=3$, find the value of $4 x^{2}$. Also of $(4 x)^{2}$.

Simplify:
5. $2 x^{4}-5 x^{3}-3 x^{2}+2 x-5+2 x^{3}-3 x^{4}-2 x+2 x^{2}-2 x+2 x^{2}$ $-6+3 x^{2}+x^{4}-3 x^{3}+7-x+2+3 x^{3}+2 x^{4}-4 x-2 x^{2}$.
6. $3 \sqrt{2}-5 \sqrt{3}+8+5 \sqrt{3}-2 \sqrt{2}-7+3 \sqrt{3}-4 \sqrt{2}-2$.

Subtract:
7. $3 x^{3}-2 x^{2}+5 x-3$ from $8 x^{3}-x^{2}-1$.
8. $5 x^{3}-3 x^{2} y+y^{3}$ from $3 x^{3}+7 x y^{2}-y^{3}$.

Simplify and collect:
9. $3 x-\{-2 x+[-4 x-(x-2)-x]-x\}-1$.
10. $9 x-\{-8 x-[7 x+(-6 x+1)-5 x]-4 x\}-(3 x+1)-2 x$.

Bracket coefficients of like powers of x :
11. $x^{5}-x^{3}+2-3 x^{4}-a x^{3}+a x^{5}-c x^{4}-2 a x^{2}+3 c x^{3}-2 c x^{5}-5 x^{2}$.
12. $1-x-x^{2}-x^{3}+2 a-2 a x+2 a x^{2}-2 a x^{3}-3 b x+3 b x^{2}$ $+3 b x^{3}+c x$.

Solve and give the reason for each step:
13. $3 x-5=x+7$.
15. $4 x+(x-1)=3 x-(x+2)$.
14. $5 x-(x-4)=16$.
16. $3-(x-2)=7-5 x$.
17. Subtract $5 x^{2}-3 a x-2 a^{2}$ from $-3 x^{2}+2 a x^{2}-a^{4}$.
18. Find the value of $5 x^{2}-3(a-2 x)+5 a^{2}$, when $a=4$ and $x=1$.
19. Add $5 x^{2}-3 a x+4 a^{2}$, $5 a x-3 x^{2}+a^{2}$, and $3 a x-x^{2}-2 a x$.
20. Simplify $x^{2}-\left[5 a x+\left(a^{2}-2 x^{2}-a x\right)-3 x^{2}\right]-5 a^{2}$. Test the accuracy of your work by letting $a=1$ and $x=2$.
21. Solve $5-\dot{x}=4-(7+3 x)$.
22. The land surface of the world is $51,240,000$ square miles. If the land area of the rest of the world is seven times that of North America, find the area of North America.
23. Add $\frac{1}{2} x^{2}-\frac{3}{4} x+\frac{1}{8}, \frac{1}{4} x^{2}+\frac{1}{8} x-\frac{1}{2}$, and $\frac{3}{4} x^{2}-\frac{1}{2} x+\frac{3}{8}$.
24. Subtract $\frac{1}{8} x^{2}-\frac{1}{2} x+\frac{3}{8}$ from $\frac{1}{2} x^{2}-\frac{3}{4} x-\frac{3}{8}$.
25. Add . $5 a^{2}-.15 a+2.5,1.2 a^{2}+.3 a-1.5$, and $-.75 a^{2}+.3 a-.7$.
26. Subtract $.27 a^{2}-.12 a-2.3$ from $1.5 a^{2}+2 a-1.7$.
27. Add $2(x+y)-3(x+z)+2(y+z), 4(x+z)-3(x+y)$ $-5(y+z)$, and $4(x+y)-(x+z)+4(y+z)$.
28. From the sum of $a^{2}-7 a b+3 b^{2}$ and $2 a^{2}-6 b^{2}+7 a^{2} b^{2}$, take the sum of $4 a^{2} b^{2}-3 a^{3}+2 a^{2}-b^{2}$ and $3 a b-2 b^{2}+a^{2}$.
29. What must be added to $x^{2}-x+1$ that the sum may be x^{3} ? That the sum may be $3 x$? 15 ? 0 ?
30. What must be subtracted from $2 x^{2}-3 x+1$ that the remainder may be x^{3} ? $x^{2}+10$? $7 ? a-x+1$?

$$
\begin{aligned}
\text { If } A & =4 x^{3}-2 x^{2} y+3 x y^{2}+y^{3}, & & C=3 x^{3}-x^{2} y+2 y^{3}, \\
B & =4 x^{3}-x^{2} y-x y^{2}-3 y^{3}, & & D=x^{3}-2 x y^{2}+y^{3},
\end{aligned}
$$

find the value of
31. $A-B+C-D$
33. $A-(B+C)+D$
32. $A-[B-(D+C)]$
34. $B+\{A-[C-D]\}$
35. By a diagram show that $-7-(-3)$ and $-7+3$ have the same value.
36. In an election for two candidates, 32,544 votes were cast. The successful candidate had a majority of 2416 votes. How many votes did each candidate receive?
37. The Panama Canal is 49 miles long and the part of it through the lowlands is 4 miles more than 8 times the part through the hills (called the Culebra Cut). How long is each part?
38. How many examples in Exercise 2 (p. 13) can you now work at sight?

CHAPTER IV

MULTIPLICATION

47. Multiplication, at the outset, may be regarded as the process of finding the result (called the product) of taking one quantity (the multiplicand) as many times as there are units in another quantity (the multiplier).

The term multiplication has acquired a much broader meaning than this, which is sometimes expressed as follows:
Multiplication is the process of finding a number (the product) which is obtained from a given number (the multiplicand) in the same way that another number (the multiplier) is obtained from unity.

Multiplication is useful as a means of shortening addition or subtraction. Later many other uses (often indirect) of multiplication will become evident.

Multiplication of Monomials

48. Multiplication of Coefficients. To multiply $4 a$ by $3 b$, we evidently take the product of all the factors of the multiplier and the multiplicand, and thus get $4 \times a \times 3 \times b$. Rearranging factors, we obtain as the product,

$$
4 \times 3 \times a \times b \text { or } 12 a b .
$$

Hence, in multiplying two monomials,
Multiply the coefficients to produce the coefficient of the product.

49. Multiplication of Literal Factors or Law of Exponents.

Ex. Multiply a^{3} by a^{2}.

$$
\begin{aligned}
\text { Since } a^{3} & =a \times a \times a \\
\text { and } a^{2} & =a \times a \times a \times a \times a \times a=a^{5} . \\
\therefore a^{3} \times a^{2} & =a \times a \times a \times a
\end{aligned}
$$

This may be expressed in the form

$$
\begin{gathered}
a^{3} \times a^{2}=a^{3+2}=a^{5}, \\
\text { or, in general, } a^{m} \times a^{n}=a^{m+n},
\end{gathered}
$$

where m and n are positive whole numbers.
Hence, in multiplying the literal factors of a monomial,
Add the exponents of each letter that occurs in both multiplier ind multiplicand.

$$
\text { Ex. } 4 a^{2} b c^{3} \times 3 a^{3} b^{2} x=12 a^{5} b^{3} c^{3} x
$$

50. Law of Signs. The law of signs in multiplication ollows directly from the general law of signs as stated in Art. 31.
(1) $+\$ 100$ taken 5 times gives $+\$ 500$, or, in general, $\mathrm{a}+$ quantity taken $\mathrm{a}+$ number of times gives a + result.
(2) $\$ 100$ of debts, that is, $-\$ 100$, taken 5 times gives $-\$ 500$, or, in general, a - quantity taken a + number of times, gives a - quantity as a result.
(3) $\$ 100$ deducted 5 times, or $\$ 100 \times-5$, gives as the total amount of deduction - $\$ 500$,
or, in general, a + quantity taken a - number of times, gives a - quantity as a result.
(4) Deducting $\$ 100$ of debts 5 times from a man's possessions is the same as adding $\$ 500$ to his assets; that is, $-\$ 100 \times-5=+\$ 500$,
or, in general, a - quantity taken a - number of times gives $a+$ quantity as a result.

We see from (1) and (4) that

$$
\text { either }+\times+ \text {, or }-\times- \text {, gives }+
$$

and from (2) and (3), that

$$
\text { either }-x+\text {, or }+x-\text {, gives }-
$$

In brief, in multiplication
Like signs give plus; unlike signs give minus.
51. Multiplication of Monomials. Combining the results of Arts. 48, 49, and 50, we may express the method of multiplying one monomial by another as follows:

Multiply the coefficients together for a new coefficient;
Annex the literal factors, giving each factor an exponent equal to the sum of its exponents in the terms multiplied together;

Determine the sign of the result by the rule that like signs give + , and unlike signs give -.

Ex. 1. Multiply $5 a^{2} b x^{3}$ by $-6 a b^{3} y^{2}$.
The product is $-30 a^{3} b^{4} x^{3} y^{2}$.
Ex. 2. Multiply $5 a^{n+3}$ by $2 a^{n-1}$.
Since $n+3$ and $n-1$, added, give $2 n+2$, the product is $10 a^{2 n+2}$.

EXERCISE 15

Multiply by	1.	2.	3.	4.	5.	6.
	-5	$-3 a$	$3 a b$	$30 x^{2} y^{2}$	$4 x$	$5 x$
	4	-2	- 5	-1	$-2 x$	-3x
Multiply by	7.	8.	9.	10.	11.	12.
	$3 a x$	$-6 x y^{2}$	$7 a x$	$-5 a^{2} b$	$6 c^{2} d$	$-2 x^{2} y z$
	- 4ax	- $7 x y^{2}$	-3ay	$-4 c d^{2}$	$-3 c d^{2}$	-8xy ${ }^{2} z^{3}$

13. 14. 15. 16. 17. 18.

Multiply	$4 x^{2}$	$\frac{1}{2} a x^{3}$	$.5 x$	$2.1 y^{3}$	$2 \frac{1}{2} x^{3}$	$\frac{3}{4} x^{2}$
by	$\underline{.2 x^{3}}$	$\frac{2}{3} a^{2} x^{3}$	$.03 x$	$\underline{.05 y^{2}}$	$\underline{\frac{3}{4} x}$	$\underline{.5 x}$
	19.	20.	21.	22.	23.	
Multiply	2^{n-1}	2^{n-1}	2^{n-1}	x^{n-1}	x^{n-2}	
by	$\underline{2^{2}}$	$\underline{2^{3}}$	$\underline{2}$	$\underline{x^{2}}$	x^{3}	

Verify Exs. 19-21 when $n=4$. Also Exs. 22 and 23 when $n=4$ and $x=3$.

$$
\begin{array}{lllll}
24 . & 25 . & 26 . & 27 . & 28 .
\end{array}
$$

Multiply $\quad a^{2} x^{n-1}$

| $a^{2} x^{n-1}$
 -
 -
 $\quad$$a^{2} x^{n-3}$$\quad a^{3} x^{3}$ |
| :--- | :--- |

$-a^{2} x^{n-3}$	$x^{2 n}$ $a x^{n+1}$

29.30.
31.
32.

$5(a+b)^{3}$	$3(a+b)^{4}$	$-6(a+b)$.	$7(a+b)^{n-1}$
$2(a+b)^{2}$	$-(a+b)$	$-2(a+b)^{3}$	$\underline{3(a+b)^{5}}$

33. Multiply 2^{n-2} by 2 and verify the result when $n=4$.
34. Write out all the factors of $7 a^{3}$: Of $(7 a)^{3}$.
35. $(a b)^{4}$ is how many times as large as $a b^{4}$ when $a=3$ and $b=2$?
36. How many x 's are there in the product of $5 a x^{3}$ by $6 a^{2} x^{5}$? How many a 's?
37. How much money do five empty pocket-books"contain? $5 \times 0=$?
38. Find the value of 7 times 0 . Of $5 a \times 0$. Of $0 \times x^{-} 6 x^{2} y^{3}$. Of $3(x+y) \times 0$.
If $a=4, b=\frac{3}{2}, c=0, x=1$, and $y=9$, find the value of
39. $a b c$.
$415 c x y^{2}$.
40. $4 c^{2}+a$.
41. $a^{2} c$.
42. $a^{2}+3 c y$.
43. $(3 c+x)^{3}$.
44. $\frac{a c+y}{3}$.
45. $\frac{5 a c^{2}+1}{x+y}$.
46. $\frac{2 a+c(x+y)}{4}$.
47. $\frac{5(x-1)+8}{2 a}$.
48. How many of the examples in this Exercise can you work at sight?
49. How many examples in Exercise 3 (p. 19) can you now work at sight?

Multiplication of a Polynomial by a Monomial

52. Utility of the Distributive Law in Multiplication; Rule. In arithmetic we have become familiar with the fact that, for instance, $5 \times 67=5(60+7)=5 \times 60+5 \times 7$; and that this principle enables us to perform all multiplications by committing to memory only the products up to 9×9.

Similarly, in algebra, $a(b+c)=a b+\varnothing c$. This is called the Distributive Law of Multiplication. By use of this law, all multiplications in algebra can be performed as a multiplication of pairs of monomials.

Hence, to multiply any polynomial by a monomial,
Multiply each term of the multiplicand by the multiplier, and set down the results as a new polynomial.

Ex. Multiply $2 a^{3}-5 a^{2} b+3 a b^{2}$ by $-3 a b^{2}$.

$$
\begin{array}{rlr}
2 a^{3}-5 a^{2} b+3 a b^{2} & = & 4 \\
-3 a b^{2} & =-12 \\
\text { Product } \frac{-6 a^{4} b^{2}+15 a^{3} b^{3}-9 a^{2} b^{4}}{}= & -48
\end{array}
$$

The check is obtained by letting $a=1$, and $b=2$.

EXERCISE 16

1.	2.	3.	4.
Multiply $2 a+3 x$	$3 x-2 y$	$4 x^{2} y-x y^{2}$	$7 a x-4 b y$
by $3 a x$	$-5 x y$	$2 x y$	- $3 a b x y$

Multiply:
5. $8 a c^{2}-3 m^{2} n$ by $5 a n$. 9. $3 x^{n+1}+7 x^{n}$ by $-4 x$.
6. $m-m^{2}-3 m^{3}$ by $-7 m^{2} n$.
10. $3 x^{n-1}+3 x^{n^{n}-2}$ by x^{2}.
7. $8 x^{2} y-5 x y^{2}-y^{3}$ by $3 x y$.
11. $3 x^{5 a}+5 x^{3 a}$ by $x^{4 a}$.
8. $2 x^{n}-3 x^{n-1}$ by x^{3}.

13.

Multiply $2.5 x^{2}-3.7 x+.51$
by $.4 x$

> | $\quad 15$ |
| :--- |
| $\frac{2}{5} a x^{2}-\frac{1}{5} a x-\frac{3}{5} a$
 $-\frac{1}{3} a x$ |

12. $2 a^{5 n}-7 a^{3 n}$ by $-2 a^{2 n}$.

14.

$\frac{3}{4} x-\frac{1}{2} x^{2}-\frac{4}{5}$
$\underline{\frac{1}{2} x}$
16.
$.4 x-\frac{1}{2} x^{2}-\frac{2}{3} x^{3}+.5 x^{4}$ $-.25 x^{3}$
17. What is the value of $7 x-5 y$ times zero?

Multiply:
18. $5(a+b)^{2}-3(a+b)-5$ by $2(a+b)$.
19. $7(x-y)^{2}+2(x-y)-6$ by $3(x-y)^{2}$.
20. $2(3 a+2 b)^{2}-5(3 a+2 b)+4$ by $4(3 a+2 b)$.
21. Reduce $(7 a a a b b-5 a a a b b) \times 6 a a b b$ to its simplest form. Compare the size of the result with that of the original expression.
(The following problems are mixed variations of Types I, II, and III.)
22. What number diminished by 19 equals 37 ?
23. What number increased by 19 equals 37 ?
24. What number diminished by 1.067 equals 4.5 ?
25. What number increased by twice itself and then by 24 equals 144 ?
26. What number increased by twice itself and then diminished by 24 equals 144 ?
27. What number increased by $\frac{1}{3}$ of itself and then by 20 equals 60 ?

- 28. What number diminished by $\frac{1}{4}$ of itself and then increased by 30 equals 90 ?

29. What number of dollars diminished by $\frac{1}{5}$ of itself and then by $\$ 30$ equals $\$ 160.60$?
30. If a number is multiplied by 3 and then diminished by 40 , the result is 140 . Find the number.
31. If 5 times a certain number is increased by 20.5 , the result is 870 . Find the number.
32. If five times a certain number is increased by 20.5 , the result is equal to three times the number increased by 160 . Find the number.
33. A man who died left $\$ 16,000$ to his son and daughter. The share of his daughter, who had taken care of him in his illness, was $\$ 500$ less than twice the share of the son. How much did each receive?
34. A cubic foot of iron and a cubic foot of aluminum together weigh 618 lb . If the weight of the iron is 14 lb . less than three times the weight of the aluminum, find the weight of each.
35. A baseball nine has played 54 games, and the number of games it has won is 3 less than twice the number it has lost. How many has it lost?
36. Of which type is each of the above problems (Exs. $22-35$) an instance or a variation?

Multiply each member of the following equalities by -1 and solve:
37. $-2 x-5=-x+4 . \quad$ 38. $-4 x-x=-6-9$.
39. Make up and work an example similar to Ex. 10. To Ex. 19.
40. Make up and work an example similar to Ex. 30. To Ex. 35 .
41. How many of the examples in this Exercise can you work at sight?

Multiplication of a Polynomial by a Polynomial
53. Arranging the Terms of a Polynomial. The multiplication of polynomials is greatly facilitated by arranging the terms in each polynomial according to the powers of some letter, in either the ascending or descending order.

Thus, $5 x^{2}+3-x+x^{4}-7 x^{3}$, arranged according to the ascending powers of x, becomes

$$
3-x+5 x^{2}-7 x^{3}+x^{4}
$$

Also, $a^{4}+b^{4}-4 a^{2} b^{2}-5 a^{3} b$, arranged according to the descending powers of a, becomes

$$
a^{4}-5 a^{3} b-4 a^{2} b^{2}+b^{4}
$$

54. Multiplication of Polynomials. By a double use of the Distributive Law:

$$
\begin{aligned}
(a+b)(c+d) & =a(c+d)+b(c+d) \\
& =a c+a d+b c+b d
\end{aligned}
$$

We see that a similar result is obtained, no matter how many terms occur in each polynomial.

Therefore, to multiply two polynomials,

Arrange the terms of the multiplier and the multiplicand according to the ascending or descending powers of the same letter;

Multiply each term of the multiplicand by each term of the multiplier;

Add the partial products thus obtained.
Ex. 1. Multiply $2 x-3 y$ by $3 x+5 y$.
The terms as given are arranged in order.
The most convenient way of adding partial products is to set down similar terms in columns, thus:

$$
\begin{array}{ll}
2 x-3 y & =-1 \\
\text { Partial products } \begin{array}{ll}
\frac{3 x+5 y}{6 x^{2}-9 x y} \begin{array}{l}
+10 x y-15 y^{2}
\end{array} \\
\text { Product } & =8
\end{array} \\
\frac{6 x^{2}+x y-15 y^{2}}{}=-8
\end{array}
$$

The check is obtained by letting $x=1$ and $y=1$ (or $x=y=1$). Note that this method checks only the signs and coefficients, not the letters or their exponents. Mistakes in letters and exponents, however, are rare in comparison with mistakes in signs and coefficients. A convenient check for all elements in the process is obtained by letting $x=y=2$. A useful check on the letters and exponents in many examples is given in Art. 56 .

Ex. 2. Multiply $2 x-x^{3}+1-3 x^{2}$ by $2 x+3-x^{2}$.
Arrange the terms in both polynomials according to the ascending powers of x. (Why is the ascending order chosen rather than the descending?)

$$
\left.\begin{array}{cc}
\begin{array}{c}
1+2 x-3 x^{2}-x^{3} \\
3+2 x-x^{2}
\end{array} & =-1 \\
3+6 x-9 x^{2}-3 x^{3} & = \\
+2 x+4 x^{2}-6 x^{3}-2 x^{4} \\
-x^{2}-2 x^{3}+3 x^{4}+x^{5}
\end{array}\right]
$$

Now multiply the two polynomials together with their terms in the order as first given. This will show you the advantage of arranging the terms in order before multiplying.

Ex. 3. Multiply $a^{2}+b^{2}+c^{2}+2 a b-a c-b c$ by $a+b+c$.
Arranging the terms according to powers of a,

$a^{2}+2 a b-a c+b^{2}-b c+c^{2}$	$=3$
$a+b+c$	$=3$
$a^{3}+2 a^{2} b-a^{2} c+a b^{2}-a b c+a c^{2}$	
$+a^{2} b+a^{2}+2 a b^{2}-a b c-b^{2}+2 a b c-a c^{2}+b^{3}+b^{2} c-b c^{2}+c^{3}$	
$a^{3}+3 a^{2} b+a^{2} c+3 a b^{2}+b^{3}+c^{3}=9$	

55. Degree of a Term; Homogeneous Expressions. The degree of a term is determined by the number of literal factors which the term contains. Hence, the degree of a term is equal to the sum of the exponents of the literal factors in the term.

Thus, $7 a^{3} b c^{2}$ is a term of the 6th degree, since the sum of the exponents in it is $3+1+2$, or 6 .

The degree of an algebraic expression is the same as the degree of that term in the expression which has the highest degree.

Thus, $7 x^{3}+3 x^{2} y^{2}+y$ is of the 4th degree.
A homogeneous polynomial is a polynomial of which all the terms are of the same degree.

Thus, $5 a^{2} b-b^{3}+a b^{2}$ is a homogeneous polynomial, since each of its terms is of the 3 d degree.
56. Multiplication of Homogeneous Polynomials. If two monomials are multiplied together, the degree of the product must equal the sum of the degrees of the multiplier and the multiplicand.

For instance, in Ex. 3, above, the multiplicand is of the 2d degree and the multiplier is of the 1st degree, and are both homogeneous. Their product is seen to be homogeneous and of the 3d degree.

The fact that the product of two homogeneous expressions must also be homogeneous affords a partial test of the accuracy of the work.

If, for instance, in Ex. 3, p. 67, a term of the 5th degree, such as $5 a^{3} b^{2}$, had been obtained in the product, it would have been at once evident that a mistake had been made in the work.
57. Detached Coefficients; Symmetrical Expressions. The process of multiplying algebraic expressions may often be further abbreviated by using only the signs and coefficients of terms, omitting the letters and their exponents and thus. saving much of the work of ordinary multiplication.

EXERCISE 17

Multiply and check each result:

1. $x-4$ by $2 x+1$.
2. $x-3$ by $3 x+2$.
3. $2 x+5$ by $x-7$.
4. $3 x-4 y$ by $4 x-3 y$.
5. $7 x^{2}-5 y^{2}$ by $4 x^{2}+3 y^{2}$.
6. $5 x y+6$ by $6 x y-7$.
7. $4 a^{2}-b^{2} c$ by $8 a^{3} c+2 a b^{2} c^{2}$.
8. $11 x^{3} y-7 x y^{3}$ by $3 x^{2}+2 y^{2}$.
9. $a^{2}-a b+b^{2}$ by $a+b$.
10. $x^{3}+x^{2} y+x y^{2}+y^{3}$ by $x-y$.
11. $4 x^{3}-3 x^{2}+2 x-1$ by $2 x+1$.
12. $2 x^{2}-3 x y+2 y^{2}$ by $3 x-5 y$.
13. $x^{3}-3 x^{2}+2 x-1$ by $2 x^{2}+x-3$.
14. $3 x^{2} y-4 x y^{2}-y^{3}$ by $x^{2}-2 x y-y^{2}$.
15. $x^{3}-3 x^{2} y+3 x y^{2}-y^{3}$ by $x^{2}-2 x y+y^{2}$.
16. $4 x^{3}-3 x^{2}+5 x-2$ by $x^{2}+3 x-3$.
17. $x^{4}-3 x^{2}+5$ by $x^{2}-x-4$.
18. $x^{3}-3 x y+y^{3}$ by $x^{3}-3 x y-y^{3}$.
19. $a^{2}-a b+b^{2}$ by $a^{2}+a b+b^{2}$.
20. $4 x^{2}+9 y^{2}-6 x y$ by $4 x^{2}+9 y^{2}+6 x y$.
21. $x^{4}-7 x^{2} y^{2}+6 x y^{3}-y^{4}$ by $x^{3}-2 x y^{2}+y^{3}$.
22. $x^{3}-6 a x^{2}+12 a^{2} x-8 a^{3}$ by $-x^{2}-4 a x-4 a^{2}$.
23. $a^{2}+b^{2}+x^{2}+2 a b-a x-b x$ by $a+b+x$.
24. $a b+c d+a c+b d$ by $a b+c d-a c-b d$.
25. $\frac{1}{2} a+\frac{1}{2} b$ by $\frac{1}{2} a-\frac{1}{2} b$.
26. $\frac{2}{3} x^{2}-4 x+\frac{4}{9}$ by $\frac{3}{4} x+\frac{9}{2}$.
27. . $5 a-.4 b$ by $.2 a-.3 b$.
28. $1.8 x^{2}-3.2 x+.48$ by $2.5 x+.5$.
29. $x^{n}+2 x^{n-1}+3 x^{n-2}-2$ by $x-2$.
30. $x^{n+1}-3 x^{n}+4 x^{n-1}-5 x^{n-2}$ by $x^{n}+2 x^{n-1}$.
31. $x^{n-4}-2 x^{n-3}+3 x^{n-2}-4 x^{n-1}+5 x^{n}$ by $2 x^{2}+3 x+1$.
32. Multiply $3 x-5+4 x^{2}+x^{3}$ by $2 x-3+x^{2}$ without changing the order of the terms. Now arrange the terms in each expression in descending order and multiply. About how much easier is the second process than the first?
33. Make up and work an example similar to Ex. 32.

Arrange the terms of the following in descending order of some letter, and multiply:
34. $4 x-3 x^{2}-5+2 x^{3}$ by $x+4$.
35. $3 x^{2}-5-x$ by $x+4 x^{2}-2$.
36. $2 x^{3}+y^{3}-4 x y^{2}+3 x^{2} y$ by $y^{2}+3 x^{2}-2 x y$.
37. Which of the polynomials in Exs. 16-24 are homogeneous?
38. A number increased by 3 times itself and then by 40 equals 180 . Find the number.
39. Separate 180 into two parts such that one part exceeds three times the other by 40 .
Sug. Let $x=$ the second part.
40. A number increased by $\frac{1}{2}$ of itself and then by 20 equals 95 . Find the number.
41. Separate 95 into two parts such that one part exceeds $\frac{1}{2}$ the other part by 20 .
42. A number increased by $\frac{2}{3}$ of itself and then diminished by 30 equals 70 . Find the number.
43. Separate 70 into two parts such that one part exceeds $\frac{2}{3}$ of the other part by 30 .
44. A number dir: inished by $\frac{2}{5}$ of itself and then increased by 30 equals 66 . Find the number.
45. A number increased by .06 of itself and then by $\$ 100$ equals $\$ 312$. Find the number.
46. Separate 400 into two parts such that one part exceeds 3 times the other part by 60 .
47. Separate $\$ 1000$ into two parts such that one part is smaller than 4 times the other part by $\$ 100$.
48. Of which type is each of the above problems (Exs. 38-47) an instance or a variation?
58. Multiplication Indicated by the Parenthesis; Simplifications. The parenthesis is useful in indicating multiplications or combinations of multiplications.

Thus, $(a-b+2 c)^{2}$ means that $a-b+2 c$ is to be multiplied by itself.
$(a-b+2 c)^{3}$ means that $a-b+2 c$ is to be taken as a factor three times and multiplied.

To perform the multiplication expressed by a power is to expand the power.

Again, $(a-b)(a-2 b)(a+b-c)$ means that the three factors, $a-b, a-2 b$, and $a+b-c$, are all to be multiplied together.

Also, $(a-2 x)^{2}-(a+2 x)(a-2 x)$ means that $a+2 x$ is to be multiplied by $a-2 x$, and the product is to be subtracted from the product of $a-2 x$ by itself.

We simplify an expression in which multiplications are indicated by parentheses and exponents by performing the operations indicated and collecting terms.

Ex. Simplify $3(x-2 y)(x+2 y)-2(x-2 y)^{2}$.

$$
\begin{aligned}
3(x-2 y)(x & +2 y)-2(x-2 y)^{2} \\
& =3\left(x^{2}-4 y^{2}\right)-2\left(x^{2}-4 x y+4 y^{2}\right) \\
& =3 x^{2}-12 y^{2}-\left(2 x^{2}-8 x y+8 y^{2}\right) \\
& =3 x^{2}-12 y^{2}-2 x^{2}+8 x y-8 y^{2} \\
& =x^{2}+8 x y-20 y^{2} \text { Ans. }
\end{aligned}
$$

Check this result by letting $x=1$ and $y=2$.

EXERCISE 18

Find the product of

1. $(-a)(-a)(-a)(-a)(-a)$.
2. $(-1)(-1)(-1)(-1)(-1)(-1)$.
3. $(x-y)(x-y)(x+y)(x-y)(x+y)$ in parenthesis form.
4. Find the value of $(-2)^{4}$. Of a^{n} when $a=-1$ and $n=7$.

Simplify by removing parentheses and collecting terms:

L5. $x-2(x+1)$.
LB. $(2 x+3)(5 x-4)$.
6. $(x-2)(x+1)$.
9. $7 a-3(4 a-8)$.

L7. $2 x+3(5 x-4)$.
10. $9 a+5(3 a+4)$.
11. $3 x(x-2)-2 x(x-3)$.

L 12. $\left(2 x^{2}-3 x+1\right)^{2}$.
ட13. $(2 a-3 b+5)^{2}-(2 a+3 b-5)^{2}$.
14. $(x-5)^{2}-(x+5)^{2}$.
15. $3 x-2\left(3 x^{2}-5 x+2\right)$.
16. $x-2(x-1)(x+3)$.
17. $(x-2)(x-1)(x+3)$.

L18. $3 a^{2}-(a-2 b)(3 a+4 b)$.
19. $(x-y-z)^{2}-x(x-2 y+2 z)$.
20. $2 x^{2}-3(x-1)^{2}+(x-2)^{2}$.
21. $3 x^{2}-x(1-x)(2+x)+x^{3}$.
22. $2-3(x-2)^{2}-2(3-2 x)(1+x)$.
23. $a^{2}-[x(a-x)-a(x-a)]-x^{2}$.
24. $(x-1)(x-2)-(x-2)(x-3)+(x-3)(x-4)$.
25. $3(x-y)^{2}-2\left\{(x+y)^{2}-(x-y)(x+y)\right\}+2 y^{2}$.
26. $x(x-y-z)-y(z-x-y)-z(z-y-x)-y^{2}$.
27. $3[(a+2 b) x+2 m y]-5[(m-c) y+b x]-4[(x-a)$ $a+c y]$.
28. $26 a b-(9 a-8 b)(5 a+2 b)-(4 b-3 a)(15 a+4 b)$.
29. Multiply the sum of $(a-2 x)^{2}$ and $(2 a-x)^{2}$ by $3 a-2(a-x)$.
30. Subtract $(x-2 y)^{3}$ from $x^{3}-8 y^{3}$ and divide the remainder by $x-2 y$.
31. Find the value of $3 \times 0+4$. Of $8-7 \times 0$. Of $6 \times 0 \times 5+7$.

If $a=3, b=0, x=-2$, and $y=-5$, find the values of
32. $2 a x$.
33. $b x^{3} y$.
34. $3 x^{2}+a b y$.
35. $b x y-a x^{2}$.
36. $b y^{2}+3 x(x-y)$.
37. $4 x^{2}-a b x(4 x-y)$.
38. $3 x-5(2 x+3)$.
39. $2\left(x^{2}+y\right)-a b y+a x^{3}$.
40. $2(1-2 x)^{2}+(x+y)\left(a^{2}+x\right)$.
41. $(x-1)^{2}-3(x+1)(x+2)-x\left(x^{2}-2\right)(y-2 x)$.
42. $3 a(a-2 x)-\left\{a-(a-1)(x+1)-(a+x)^{2}\right\}+5 a x$.

Find the value of
43. $(x+a)^{2}-(x-a)^{2}$ when $x=2 a$.
44. $5(x+p)^{2}-(x+p)(x-2 p)$ when $x=3 p$.
45. $3 x^{2}+4 x-5(x-1)^{2}$ when $x=a b$.
46. If $x=2$ and $y=1$, find the value of $(x+y)^{3}$. Also of $x^{3}+y^{3}$.
47. From the sum of $2 a+5 b$ and $3 b-5 a$, subtract three times $a-7 b$, and verify the result when $a=2$ and $b=5$. Also when $a=3$ and $b=-1$.
48. If a certain number is diminished by 24 and the result multiplied by 3 , the final result will be 78 . Find the number.
49. If a certain sum of money is increased by $\$ 150$ and the result multiplied by 4 , the final result will be $\$ 1000$. What is the original sum of money?
50. Separate $\$ 1000$ into two parts such that one part equals four times the sum of $\$ 150$ and the other part.
51. Separate,. 0015 into two parts such that one part equals 3 times the sum of .0001 and the other part.
52. The sum of two fractions is $1 \frac{2}{3}$, and the larger is three times the sum of the smaller and $\frac{1}{3}$. Find the fractions.
53. Separate $\$ 100$ into two parts such that the sum of one part and $\$ 10$ equals the other part.
54. Separate $\$ 100$ into three parts such that 3 times the sum of $\$ 5$ and one of the parts equals each of the other parts.
55. Separate $\$ 100$ into four parts such that twice the sum of one part and $\$ 1$ equals each of the other parts.
56. A man walked 15 miles, rode a certain distance, and then took a boat for twice as far as he had previously traveled. Altogether he went 120 miles. How far did he go by boat?
57. The sum of three numbers is 50 . The first number is twice the second, and the third is 16 less than three times the second. Find the numbers.
58. Find five consecutive numbers whose sum is 3 less than 6 times the least of the numbers.
59. The difference between two numbers is 6 , and if 3 is added to the larger, the sum will be double the less. Find the numbers.
60. Divide $\$ 4500$ among two sons and a daughter so that each son gets $\$ 100$ less than twice the daughter's share.
61. Find two numbers, whose difference is 14 , such that the greater exceeds twice the less by 3 .
62. The difference of the squares of two consecutive numbers is 43 . Find the numbers.
63. Three boys together earned $\$ 98$. If the second earned $\$ 11$ more than the first, and the third $\$ 28$ less than the other two together, how much did each earn?
64. Which of Exs. 48-63 are instances or variations of Type I? Of II? III?
65. Make up and work an example similar to Ex. 48. To Ex. 49.
66. Make up and work an example similar to Ex. 58. To Ex. 62.
67. How many examples in Exercise 6 (p. 29) can you now work at sight?

CHAPTER V

DIVISION

59. Division is the process of finding one factor when the product and the other factor are given.

The dividend is the product of the two factors, and hence it is the quantity to be divided by the given factor.

The divisor is the given factor.
The quotient is the required factor.
Thus, to divide $10 x y$ by $5 x$, we must find a quantity which, multiplied by $5 x$, will produce $10 x y$. The factor $5 x$ is the divisor, $10 x y$ is the dividend, and the other factor, or required quotient, is evidently $2 y$.

The division of a by b may be indicated in each of the following ways:

$$
b \underline{a,} \quad a \div b, \quad \frac{a}{b}, \quad \text { or } a / b
$$

60. General Principle. Division being the inverse of multiplication, the methods of division are obtained by inverting the processes used in multiplication.

Division of Monomials

61. Index Law for Division. If a^{5} is to be divided by a^{2}, we have

$$
\frac{a^{5}}{a^{2}}=\frac{a \times a \times a \times a \times a}{a \times a}=a \times a \times a=a^{3}
$$

Or, in general, $\quad \frac{a^{m}}{a^{n}}=a^{m-n}$,
where m and n are positive whole numbers.
62. The Law of Signs in Division is obtained by inverting the processes of multiplication.

Thus, in multiplication, if a and b stand for any positive quantities (see Art. 50, p. 59),
$+a \times+b=+a b$ Hence, by $\{+a b \div+b=+a \ldots$ (1)
$+a \times-b=-a b$ definition $-a b \div-b=+a \ldots$ (2)
$-a \times+b=-a b\}$ of divi- $\{-a b \div+b=-a \ldots$ (3)
$-a \times-b=+a b$ sion, $\quad(+a b \div-b=-a \ldots$ (4)
From (1) and (2) we see that the division of like signs gives + . From (3) and (4) we see that the division of unlike signs gives -. Hence, the law of signs is the same in division as in multiplication.
63. Division of Monomials. Combining the results obtained in Arts. 60, 61, and 62, we have the following method for the division of one monomial by another:

Divide the coefficient of the dividend by the coefficient of the divisor;

Obtain the exponent of each literal factor in the quotient by subtracting the exponent of each letter in the divisor from the exponent of the same letter in the dividend;

Determine the sign of the result by the rule that like signs give plus, and unlike signs give minus.

Ex. 1. Divide $27 a^{3} b^{4} x^{3}$ by $-9 a^{2} b x^{3}$.

$$
\frac{+27 a^{3} b^{4} x^{3}}{-9 a^{2} b x^{3}}=-3 a b^{3} \text { Quotient }
$$

since the factor x^{3} in the divisor cancels x^{3} in the dividend.
Ex. 2. Divide $a^{2^{m-3}}$ by a^{m-1}.

$$
\frac{a_{1}^{2 m-3}}{a^{m-1}}=a^{m-2} \text { Quotient }
$$

Check the work in each of the above examples by multiplying the quotient by the divisor.

EXERCISE 19

Divide and check the result:

1. $15 a$ by $-5 a$.
2. $-m^{3} n$ by $-m^{3}$.
3. $-3 x^{3}$ by x.
4. $8 a^{2} x^{2}$ by $-4 a x^{2}$.
5. $-30 x^{3} y^{2}$ by $-6 x^{2} y$.
6. $-7 x z^{3}$ by $7 z^{3}$.
7. $21 x y^{2} z$ by $-3 x z$.
8. $18 b c^{3} d^{3}$ by $-9 c^{3} d$.
9. $-33 x^{5} y^{6} z^{7}$ by $11 x y^{3} z^{5}$. 17. $2 \frac{1}{2} x^{3}$ by $\frac{3}{4} x^{2}$.
10. $28 x^{2} y^{2} z^{3}$ by $-14 x y^{2} z^{3}$. 18. $-\frac{1}{4} x^{2}$ by $.5 x$.
11. $4 \pi r^{2}$ by 2π. By r^{2}. By πr.
12. $\frac{1}{2} g t^{2}$ by $g t$. By $\frac{1}{4} g$. By $\frac{1}{2} t$.
13. $\frac{1}{2} m v^{2}$ by $\frac{2}{3} m$. By $.5 v^{2}$. By $.25 v$.
14. $20(x+y)^{3}$ by $-4(x+y)$. Ву $-2(x+y)^{2}$.
15. $-1.4(a-b)^{5}$ by $-7(a-b)^{3}$. By $-2(a-b)^{4}$.
16. $a^{6 n}$ by $a^{2 n}$. B $y a^{3 n}$. $-a^{n}$.
17. $-6 a^{n+3}$ by $2 a^{n+1}$. By a^{n+2}. a^{n}. $-3 a^{n-1}$. $a^{2 n-3}$.
18. $a^{2 n+5}$ by a^{n+1}. By $a^{2 n+3}$. a^{n-3}.
19. How many 2 's are multiplied together in 2^{10} ? In 2^{4} ? In the quotient of $2^{10} \div 2^{4}$?
20. How many x 's in x^{10} ? In x^{4} ? In the quotient of $x^{10} \div x^{4}$?
21. Divide 2^{n-1} by 2 and verify your result when $n=5$. Treat $2^{n-1} \div 2^{3}$ in the same way.
22. If an empty box is divided by partitions into 5 equal parts, will each compartment of the box be empty?
23. What is the value of $0 \div 5$? Of $0 \div 7$? State the meaning of the latter in a manner similar to that used in Ex. 30.
24. Give the value of $0 \div 10$. Of $0 \div a$. Of $0 \div 2 x$. Of $\frac{0}{7 a} \quad \frac{0}{7 a b} \quad \frac{0}{7 a b x} \quad \frac{0}{7 a^{2} b^{2} x^{3}}$.
25. What is the value of $\frac{3 a x}{7 y}$ when $a=0$? When $x=0$?

If $a=2, b=3, c=0, x=1$, find the value of each of the following:
34. $\frac{b c}{a}$
36. $\frac{c(2 b-x)}{4 a}$
35. $\frac{c(a+x)}{b}$
37. $\frac{5 a c}{b+x}$
38. What is a polynomial? A binomial? A monomial? Give two examples of each.

Division of a Polynomial by a Monomial

64. Utility in the Distributive Law of Division; Rule. In arithmetic we have become familiar with the fact that, for instance,

$$
\frac{65}{5}=\frac{50+15}{5}=\frac{50}{5}+\frac{15}{5}=10+3=13 ;
$$

and that this principle enables us to perform all divisions by committing to memory only the quotients up to $81 \div 9$.

Similarly, in algebra, divisions can be greatly simplified by the fact that

$$
\frac{a c+b c}{c}=\frac{a c}{c}+\frac{b c}{c}=a+b
$$

This is called the Distributive Law of Division.
Hence, to divide a polynomial by a monomial,
Divide each term of the dividend by each term of the divisor, and connect the results by the proper signs.

Ex. 1. Divide $12 a^{3} x-10 a^{2} y+6 a^{4} z^{2}$ by $2 a^{2}$.

$$
\frac{\left.2 a^{2}\right) 12 a^{3} x-10 a^{2} y+6 a^{4} z^{2}}{6 a x-5 y+3 a^{2} z^{2}} \text { Quotient }
$$

Ex. 2. Divide $6 a^{3 n+3}-4 a^{2 n+2}-2 a^{5 n-3}$ by $2 a^{n-1}$.

$$
\frac{\left.2 a^{n-1}\right)}{} \frac{6 a^{3 n+3}-4 a^{2 n+2}-2 a^{5 n-3}}{3 a^{2 n+4}-2 a^{n+3}-a^{4 n-2}} \text { Quotient }
$$

Check the work in each of the above examples by multiplying the quotient by the divisor.

EXERCISE 20

Divide and check:

1. $x^{3}-3 x^{2}$ by $-x$.
2. $20 x^{2}-8 x y$ by $4 x$.
3. $4 a b^{2}-6 a^{2} b c$ by $-2 a b$.
4. $-3 x^{3}+7 x^{2}-x$ by $-x$.
5. $15 x^{3} y-10 x^{2} y^{2}-5 x y^{3}$ by $5 x y$.
6. $-m-m^{2}+m^{3}-m^{4}$ by $-m$.
7. $14 x^{3} y^{2} z-21 x y^{2} z^{3}+x y z$ by $-x y z$.
8. $-3 x^{2}-2 x+5$ by -1 .
9. $.6 x^{2}-.12 x+9$ by -.3 .
10. . $02 a^{2}-.04 a b-.8 b^{2}$ by .5 .
11. $\frac{1}{2} x^{2}-\frac{2}{3} x-\frac{5}{2}$ by $-\frac{2}{3}$.
12. $\frac{2}{3} a^{4} b^{2}-\frac{1}{6} a^{3} b^{3}-\frac{1}{3} a^{2} b^{4}$ by $-\frac{3}{2} a b$.
13. $9 x^{3 n}-6 x^{2 n}+12 x^{n}$ by $-3 x^{n}$.
14. $-4 x^{2 n+1}+10 x^{2 n+2}-6 x^{n+2}$ by $2 x^{2 n}$.
15. $x^{n+3}-2 x^{n+2}+3 x^{n+1}+x^{n}$ by x^{n-1}.
16. $8 x^{m+2}-16 x^{m+1}-4 x^{m}-12 x^{m-1}$ by $-4 x^{m-2}$.
17. $9 x^{2 n-2}-6 x^{2 n-1}+12 x^{2 n}-3 x^{2 n+1}$ by $3 x^{n-1}$.
18. $10(a+b)^{2}-8(a+b)$ by $-2(a+b)$.
19. $.5(x-y)^{4}-.15(x-y)^{3}$ by $.5(x-y)^{2}$.
20. $(a+b) x-(a+b) y$ by $(a+b)$.
21. $(a-b) x+(a-b) y$ by $(a-b)$.
22. $x(x+1)+(x+1)$ by $(x+1)$.
23. $\frac{1}{3}$ of a number added to twice the number gives 210 . Find the number.
24. $\frac{2}{3}$ of a number added to 5 times the number gives 340 . Find the number.
25. $\frac{2}{3}$ of a number added to $\frac{1}{2}$ the number gives 140 . Find the number.
26. The difference between $\frac{2}{3}$ and $\frac{1}{2}$ of a certain number is 14. Find the number.
27. What number increased by .06 of itself gives 318 ?
28. What sum of money at simple interest for one year at 6% will amount to $\$ 318$?
29. What number increased by .15 of itself will amount to 690?
30. What sum of money at simple interest at 5% will amount to $\$ 690$ in 3 years?
31. For every nickel which a girl put in her savings bank her father put in a dime. If her bank contained $\$ 18.75$ at
the end of one year, how many nickels did the girl save in that time?
32. For every dime that a boy spent for books, his father gave him a quarter to spend for the same purpose. If he spent $\$ 52.50$ in all, how much did his father give him?
33. A purse contains $\$ 10.50$ in dollar bills and quarters, but there are twice as many quarters as bills. How many are there of each?
34. How can $\$ 2.25$ be paid in 5 and 10 cent pieces so that the same number of each is used?
35. How can $\$ 5.95$ be paid in dimes and quarters using the same number of each?
In the following equations divide each member by -1 and solve, checking each result:

$$
\begin{array}{ll}
\text { 36. }-1-3 x=-x-5 & \text { 38. }-x-(2 x-1)=-5 \\
\text { 37. }-5 x-8-x=-7 x+1 & \text { 39. }-7 x-5=-3 x+4
\end{array}
$$

40. How many of Exs. 23-35, pp. 81-82, belong to Type I? To Type II? III?
41. Make up and work an example similar to Ex. 31. To Ex. 36.
42. Make up and work an example similar to Ex. 13. To Ex. 18.
43. How many of the examples in this Exercise can you work at sight?

Division of a Polynomial by a Polynomial
65. General Method. The method of dividing one polynomial by another is to arrange the polynomials. according to the ascending or descending powers of some one letter,
and then, in effect, to separate the dividend into partial dividends, which are divided in succession by the divisor.

Ex. 1. Divide $6 x^{4}+7 x^{3}-3 x^{2}+11 x-6$ by $2 x^{2}+3 x-2$.
We divide the first term of the dividend, $6 x^{4}$, by the first term of the divisor, $2 x^{2}$, obtaining the quotient $3 x^{2}$. Multiplying this quotient, $3 x^{2}$, by the entire divisor, we obtain the first partial dividend. If we subtract this from the entire dividend and divide the remainder by $2 x^{2}$, we have a process like the following:

$$
\begin{aligned}
& \text { Dividend Divisor } \\
& \begin{array}{l}
\overbrace{6 x^{4}+7 x^{3}-3 x^{2}+11 x-6}^{6 x^{4}+9 x^{3}-6 x^{2}} \frac{-2 x^{3}+3 x^{2}+11 x}{-2}-6 \\
-2 x^{3}-3 x^{2}+3 x-2 x \\
3 x^{2}-x+3
\end{array} \underbrace{3 x^{2}-x+3}_{\text {Quotient }}=15 \div 3 \\
& \frac{-2 x^{3}-3 x^{2}+2 x}{6 x^{2}+9 x-6} \\
& \underline{6 x^{2}+9 x-6}
\end{aligned}
$$

A quick check on the parts of the work in which errors are most likely to be made is obtained by letting $x=1$, as is done in the solution above. A more complete check is obtained by finding the product of the divisor and quotient and noting whether the result equals the dividend.

Now state the process of dividing a polynomial by a polynomial as a general rule.

Ex. 2. Divide $31 a b^{3}-20 b^{4}-10 a^{2} b^{2}+6 a^{4}-a^{3} b$ by $3 a^{2}-5 b^{2}+4 a b$.

$$
\begin{aligned}
& 6 a^{4}-a^{3} b-10 a^{2} b^{2}+31 a b^{3}-20 b^{4} \frac{3 a^{2}+4 a b-5 b^{2}}{2 a^{2}-3 a b+4 b^{2}}=6 \div 2 \\
& \frac{6 a^{4}+8 a^{3} b-10 a^{2} b^{2}}{-9 a^{3} b}+31 a b^{3} \\
& \quad \frac{-9 a^{3} b-12 a^{2} b^{2}+15 a b^{3}}{+12 a^{3} b^{2}+16 a b^{3}-20 b^{4}} \\
& \quad+12 a^{2} b^{2}+16 a b^{3}-20 b^{4}
\end{aligned}
$$

Is the dividend homogeneous? The divisor? The quotient?

Ex. 3. Divide $x^{3}+y^{3}+z^{3}+3 x^{2} y+3 x y^{2}$ by $x+y+z$.
Arranging terms according to the descending powers of x,

$$
\begin{aligned}
& x^{3}+3 x^{2} y+3 x y^{2}+y^{3}+z^{3} x+y+z \quad=9 \div 3 \\
& x^{3}+x^{2} y+x^{2} z \quad x^{2}+2 x y-x z+y^{2}+z^{2}-y z=3 \\
& +2 x^{2} y-x^{2} z+3 x y^{2}+y^{3}+z^{3} \\
& \frac{+2 x^{2} y+2 x y^{2}+2 x y z}{-x^{2} z+x y^{2}-2 x y z+y^{3}}+z^{3} \\
& \frac{-x^{2} z-x z^{2}-x y z}{x y^{2}+x z^{2}-x y z+y^{3}+z^{3}} \\
& \begin{array}{r}
x y^{2}+y^{3}+y^{2} z \\
+x z^{2}-x y z+y^{2} z+z^{3} \\
+x z^{2}+y z^{2}+z^{3} \\
-x y z-y^{2} z-y z^{2}
\end{array} \\
& \text {..... } \quad-x y z-y^{2} z-y z^{2}
\end{aligned}
$$

The process of algebraic division may often be abbreviated by the use of detached coefficients. (See Appendix, p. 466.)

EXERCISE 21

Divide and check each result:

1. $3 x^{2}+7 x+2$ by $x+2$.
2. $6 x^{2}+7 x+2$ by $3 x+2$.
3. $12 x^{2}+x y-20 y^{2}$ by $3 x+4 y$.
4. $3 x^{2}+x-14$ by $x-2$.
5. $6 x^{2}-31 x y+35 y^{2}$ by $2 x-7 y$.
6. $12 a^{2}-11 a c-36 c^{2}$ by $4 a-9 c$.
7. $-15 x^{2}+59 x-56$ by $3 x-7$.
8. $44 x^{2}-x y-3 y^{2}$ by $11 x-3 y$.
9. $a^{2}-4 b^{2}$ by $a-2 b$. 12. $9 x^{2}-49$ by $3 x+7$.
10. $x^{3}-y^{3}$ by $x-y$. 13. $125-64 x^{3}$ by $5-4 x$.
11. $27 x^{3}+8$ by $3 x+2$. 14. $8 a^{3} x^{3}+y^{6}$ by $2 a x+y^{2}$.
12. $2 x^{3}-9 x^{2}+11 x-3$ by $2 x-3$.
13. $35 x^{3}+47 x^{2}+13 x+1$ by $5 x+1$.
14. $6 a^{3}-17 a^{2} x+14 a x^{2}-3 x^{3}$ by $2 a-3 x$.
15. $4 y^{4}-18 y^{3}+22 y^{2}-7 y+5$ by $2 y-5$.
16. $c^{5}+c^{4} x+c^{3} x^{2}+c^{2} x^{3}+c x^{4}+x^{5}$ by $c+x$.
17. $11 x-8 x^{2}+5 x^{3}-20+2 x^{4}$ by $x+4$.
18. $4 x+6 x^{5}+3 x^{2}-11 x^{3}-4$ by $3 x^{2}-4$.
19. $-x^{3} y-11 x y^{3}-2 x^{2} y^{2}+6 x^{4}-6 y^{4}$ by $2 x-3 y$.
20. $4 y^{3}+6 x^{6}-13 x^{4} y$ by $3 x^{2}-2 y$.
21. $x^{4}-16 y^{4}$ by $x-2 y$. 26. $x^{6}-y^{6}$ by $x+y$.
22. $x^{5}+32 y^{5}$ by $x+2 y$. 27. $256 x^{8}-y^{8}$ by $4 x^{2}-y^{2}$.
23. $9 x-18 x^{3}+8 x^{4}-13 x^{2}+2$ by $4 x^{2}+x-2$.
24. $10-x^{3}-27 x^{2}+12 x^{4}-3 x$ by $x+4 x^{2}-2$.
25. $22 x^{2}-13 x^{3}+10 x^{5}-18 x^{4}+5 x-6$ by $x+5 x^{2}-2$.
26. $14 x^{2} y^{3}-16 x^{3} y^{2}+6 x^{5}+y^{5}+5 x^{4} y-6 x y^{4}$ by $3 x^{2}+y^{2}$ $-2 x y$.
27. $5 a^{4} b-3 a^{3} b^{2}-a^{2} b^{3}+3 a^{5}-4 b^{5}$ by $a^{2}+3 a b+2 b^{2}$.
28. $x^{3}-y^{3}+z^{3}-x y z-2 x^{2} z+2 y z^{2}$ by $x-y-z$.
29. $c^{3}+d^{3}+n^{3}-3 c d n$ by $c+d+n$.
30. $y^{6}-2 y^{3}+1$ by $y^{2}-2 y+1$.
31. $2 x^{6}+1-3 x^{4}$ by $1+2 x+x^{2}$.
32. $6 x^{2} y^{2}-6 y^{2} z^{2}-6 x^{2} z^{2}-13 x y z^{2}-5 x y^{2} z$ by $3 x y+2 y z$: $+3 x z$.
33. $x^{5}-39 x+15-2 x^{3}$ by $3 x^{2}+6 x+x^{3}+15$.

ร०. $4 x^{6}-9 x^{4}+25-14 x^{3}-x^{2}$ by $2 x^{3}-x-5+3 x^{2}$.
40. $\frac{1}{4} a^{2}-\frac{1}{4} b^{2}$ by $\frac{1}{2} a+\frac{1}{2} b$.
41. $\frac{1}{9} x^{2}-\frac{1}{16} y^{2}$ by $\frac{1}{3} x-\frac{1}{4} y$.
42. $\frac{1}{8} a^{3}-\frac{1}{27} b^{3}$ by $\frac{1}{2} a-\frac{1}{3} b$.
43. $\frac{3}{4} x^{3}-\frac{11}{6} x+\frac{2}{3}$ by $\frac{3}{2} x-2$.
44. . $16 x^{2}-.25 y^{2}$ by $.4 x+.5 y$.
45. $2.88 x^{3}+10.86 x-19.2$ by $1.2 x^{2}+1.5 x+6.4$.
46. $6 x^{2 n+1}-13 x^{2 n}+6 x^{2 n-1}$ by $3 x^{n+1}-2 x^{n}$.
47. $12 x^{4 n}+13 x^{3 n}-x^{n}$ by $3 x^{n}+1$.
48. $4 x^{n+3}+5 x^{n+2}-x^{n+1}-x^{n}+x^{n-1}$ by $x^{2}+2 x+1$.
49. $6 x^{n+1}-5 x^{n}-6 x^{n-1}+13 x^{n-2}-6 x^{n-3}$ by $2 x^{2}-3 x+2$.
50. In Ex. 20 try to divide without arranging the terms of the dividend either in ascending or descending order.
51. What is the value of $\frac{7 x y}{x+y}$ when $x=0$? When $y=0$?
52. Divide $x^{5}+y^{5}$ by $x-y$ to 5 terms and note the remainder.
53. Divide 1 by $1-x$ to 4 terms and note the remainder.
54. Divide 1 by $1-a x$ to 3 terms.
55. If a boy walks at the rate of 3 miles an hour, how far will he walk in 5 hours? In a hours? In x hours? In $x+2$ hours?
56. A boy starts at a given time and walks 5 hours. Another boy then starts and rides a bicycle x hours until he overtakes the first boy. How many hours does the second boy ride? How many if the first boy has a start of a hours? Of y hours?
57. Two men A and B start from places 35 miles apart and walk toward each other at the rate of 4 miles and 3 miles an hour respectively. How many hours will it be before they meet?

Sug. In forming an equation, it is an aid to diagram a problem of this kind:

If the two men start at the same time and walk toward each other
 intil they meet, they must travel the same number of hours.

Let $\quad x=$ the number of hours each man travels.
Then $\quad 4 x=$ number of miles A travels.

$$
\begin{aligned}
3 x & =\text { number of miles B travels. } \\
4 x+3 x & =35 \\
7 x & =35 \\
x & =5, \text { no. hours before they meet. }
\end{aligned}
$$

Сheck. $4 x=20$, distance A travels.
$3 x=15$, distance B travels.
$20+15=35$
In working Exs. 58-72, draw a diagram as an aid in each solution:
58. Two men, A and B, start from places 42 miles apart and walk toward each other, at the rate of 4 and 3 miles per hour respectively. How many hours will it be before they meet?
59. Make up and work an example similar to Ex. 58.
60. Two bicyclists, A and B, start respectively from New York and Philadelphia, 90 miles apart, and ride toward each other. A rides 8 , and $\mathrm{B}, 12$ miles per hour. How long and how far will A ride before meeting B ?
61. Boston is 234 miles from New York. If two automobiles start from the two cities at the same time and travel
toward each other at the rate of 12 and 14 miles per hour respectively, how far will each go before they meet?
62. Make up and work a similar example concerning trains which travel between New York and Chicago, which are 912 miles apart.
63. One boy starts at a certain time from New York on a bicycle and travels toward Philadelphia at the rate of 8 miles an hour. One hour later another boy starts from Philadelphia and goes toward New York at the rate of 6 miles an hour. How long before they will meet?
64. New York and Washington are 228 miles apart. A train starts from New York at a given time and goes at the rate of 26 miles an hour, and two hours later a train starts from Washington and proceeds at the rate of 34 miles an hour. How long before they will meet?
65. Make up and work an example similar to Ex. 64 concerning trains which travel between Cincinnati and New Orleans, which are 830 miles apart.
66. Two boys start at the same place and travel in opposite directions on bicycles at the rate of 8 miles and 10 miles an hour. How long before they will be 108 miles apart?
67. If they travel in the same direction, how long before they will be 16 miles apart?
68. Two boys start from New York and Philadelphia at the same time and travel toward each other until they meet. If one goes twice as fast as the other and they meet in $7 \frac{1}{2}$ hours, what is the rate per hour of each boy?
69. If in Ex. 68 one boy went 5 miles an hour faster than the other, and they met in 6 hours, what was the rate of each?
70. Make up and work an example similar to Ex. 68 concerning automobiles traveling between New York and Washington.
71. Make up and work an example similar to Ex. 69 concerning railroad trains traveling between New York and Buffalo, which are 440 mi . apart.
72. A set out from a town, P , to walk to $\mathrm{Q}, 45$ miles distant, an hour before B started from Q toward P. A walked at the rate of 4 miles an hour, but rested 2 hours on the way; B walked at the rate of 3 miles an hour. How many miles did each travel before they met?
73. How many examples in Exercise 10 (p. 45) can you now work at sight?

EXERCISE 22

Review

1. Express the following in as few terms as possible: $3.2 x^{2}$ $2.5 x y+.16 y^{2}+1.5 x^{2}-.8 y^{2}-.32 x y+.4 y^{2}-1.5 x^{2}+.4 x y$.
2. Subtract $.15 a^{2}+.3 b^{2}-2.5 a b$ from $-7 a^{2}-4 a b-1.5 b^{2}$.
3. Add $2 \frac{1}{5} p^{2}-1.5 p+\frac{7}{2}, .75 p^{2}+\frac{3}{2} p-.4, \frac{3}{4}-6{ }_{4}^{3} p^{2}-.5 p$.
4. Simplify $3.2 x^{2}-\left[.8 x^{2}+\left(3.5 x-\frac{1}{2}-.2 x^{2}\right)-1.5-3 x\right]$.
5. Solve $.3 x-4=.2 x+.5$.
6. What is the root of an equation? How do you check your solution of an equation? Check Ex. 5.
7. Simplify $5 x-3(x-2)(x+7)+3(x-2)^{2}$.

If $a=0, b=1, c=4, x=-2$, find the value of
8. $a(b+c)-3 x$.
9. $(c+2 x)(b-a)-3(x+4)(x+5)$.
10. $\frac{3 a+5(2+x)}{b+c}$.
11. Multiply $x-2+4 x^{2}$ by $2 x^{2}-1-5 x$.
12. Divide $x^{4}+3-6 x^{2}+x^{5}+8 x-11 x^{3}$ by $2 x-x^{2}+3$.
13. Find three consecutive numbers whose sum is 33 .
14. In a certain kind of concrete, twice as much sand is used as cement, and twice as much gravel as sand. How many pounds of each are used in making 2800 lb . of concrete?
15. The record time for the 100 yd . swim at a certain date was $55 \frac{2}{5} \mathrm{sec}$. This was $7 \frac{2}{5} \mathrm{sec}$. more than 5 times that for the 100 -yd. dash. What was the record time for the latter?
16. Solve Ex. 15 without using x to represent the unknown number. How much of the labor of writing out the solution is saved by the use of x ? Is there any other advantage in using x to solve problems?
17. What is the dividend when the quotient is $x^{3}+2 x^{2}+7 x$ +20 , the remainder $62 x+59$, and the divisor $x^{2}-2 x-3$?
18. What is the divisor if the quotient is $x^{3}+3 x$, the dividend $x^{5}-8$, and the remainder $9 x-8$?
19. If $x=-\frac{2}{3}$ and $y=-\frac{3}{2}$, find the value of

$$
(3 x-2 y)^{2}\left(9 x^{2}+4 y^{2}\right)-6(y-x) \sqrt{6 x y\left(x+2 y^{2}+\frac{1}{3}\right)} .
$$

20. Add a to b. Also add $3 a-5 b$ to $4 c+7 d$.
21. Subtract $3 x-2 y+z$ from -7 . From $-a$. From b.
22. Subtract $2 a-3 b$ from 0 . Also 5 from 0 .
23. Can $3+2 a b$ be united in a single term? Give a reason.
24. The product of an even number of negative factors has what sign? Of an odd number of negative factors? Give an example using not less than five factors.
25. Express the following in a simpler form: $\operatorname{5aaa}(x-y)(x-y)$ $(x-y)(x-y)$.
26. If a boy's mark on each of three recitations is 0 , what is his average on the recitations? Give the value of $0+0+0$. Of 3×0. Of $\frac{0}{3}$.
27. Find the value of $8 \times 0-5+\frac{0}{7}$.
28. Form the power whose base is 5 and exponent 2 . Also the power whose base is 2 and exponent 5 . Find the difference in value between these two powers.
29. Find the value of each of the following products and verify each result for the values $x=2, a=3, b=1$.
(1) $x^{a} \cdot x^{2 a}$
(2) $x^{2 a+b} \cdot x^{a-b}$
(3) $x^{a+b} \cdot x^{a-b}$
30. From the product of $3 x^{2}-2$ and $2 x-5$ subtract 7 times the product of x and $x-2$.
31. Show on squared paper that $3 \times 4+5 \times 4=8 \times 4$.

Also that $4 \times 5+7 \times 5-2 \times 5=9 \times 5$.
32. Multiply ${ }_{3}^{2} x^{2}-a x+\frac{2}{3} a^{2}$ by $\frac{3}{4} x^{2}+\frac{1}{2} a x+\frac{1}{3} a^{2}$.
33. Divide $x^{3 n}-y^{3 n}$ by $x^{n}-y^{n}$.
34. Divide $2-x$ by $1+x$ to five terms in the quotient.
35. Divide $\left[\left(x^{2}-2 x-1\right)(x-1)+2 x^{2}-2 x\right]$ by $[(x+2)$ $\left.(x+1)-\left(x^{2}+2 x+3\right)\right]$.
36. Multiply $3.2 x^{2}-4.5 x y+1.8 y^{2}$ by $1.5 x-3.5 y$.
37. Divide $x^{6}-15$ by $x^{2}+x-1$ to five terms.
38. Divide $36 x^{2}+\frac{1}{9} y^{2}+\frac{1}{4}-4 x y-6 x+\frac{1}{3} y$ by $6 x-\frac{1}{3} y-\frac{1}{2}$.
39. Divide $2.4 x^{3}-0.12 x^{2} y+4.32 y^{3}$ by $1.5 x+1.8 y$.
40. Divide $a^{3}+b^{3}+c^{3}-3 a b c$ by $a+b+c$.

Solve and verify
41. $(2 x+1)(x-3)+7=x-2(x-4)(2-x)$.
42. $7 x-2(x-1)(2-x)-17=x(3 x+7)-(x+1)^{2}$.

Simplify:
43. $6 z+[4 z-\{8 x-(2 z+4 x)-22 x\}-7 x]-[7 x+\{14 z-$ $(4 z-5 x)\}]$.
44. $a^{2}(b-c)-b^{2}(a-c)+c^{2}(a-b)-(a-b)(a-c)(b-c)$.
45. What is the advantage of regarding a polynomial as made up of terms? (What is a polynomial? A term?)
46. What is the name of an expression containing two terms? Three terms?
47. Write a homogeneous expression containing three terms, and khe letters x and y.
48. If $s=a r^{n-1}$, find the value of s when $a=2, r=3, n=4$. Also when $a=2, r=1$, and $n=5$. When $a=3, r=\frac{1}{3}$, and $n=5$.
49. Who first used the letters x, y, and z to represent unknown numbers in equations in algebra? (See p. 455.) Find out all you can about this man.
50. Give some of the other symbols that were used to represent numbers before the use of the three last letters of the alphabet was suggested.
51. Can you point out any advantages in the use of x, y, and z instead of the other symbols once used for the same purpose?
52. Find out, if you can, whether any other symbols than the last letters of the alphabet are now used to represent an unknown number in an equation? How many different symbols can be used for this purpose?
53. Who invented the parenthesis sign and when?
54. How many examples in Exercise 13 (p. 54) can you work at sight?

CHAPTER VI

EQUATIONS (continued)

66. The Equation, members of an equation, and transposition have already been explained. (See Arts. 42-45, pp. 52-53.)
67. A Root of an equation is a number which, when substituted for the unknown quantity, satisfies the equation; that is, reduces the two members of the equation to the same number.

Ex. If in the equation, $3 x-1=2 x+3$, we substitute 4 in the place of x in each member, we obtain

$$
\begin{aligned}
& 3 x-1=12-1=11 \\
& 2 x+3=8+3=11
\end{aligned}
$$

The equation is satisfied. Hence, 4 is the root of the given equation.
68. The Degree of an Equation having One Unknown Quantity. If an equation contains only one unknown quantity, the degree of the equation (after the equation has been reduced to its simplest form) is determined by the highest exponent of the unknown quantity in the equation.

Thus, if x is the only unknown,

$$
\begin{gathered}
2 x+1=5 x-8 \text { is an equation of the first degree. } \\
a x=b^{2}+c x \quad \text { is of the first degree. } \\
4 x^{2}-5 x=20 \quad \text { is of the second degree. } \\
3 x^{2}-x^{3}=6 x+8 \text { is of the third degree. }
\end{gathered}
$$

A simple equation is an equation of the first degree.
An equation of the first degree is also often termed a linear equation, for reasons which will be explained later. (See Art. 148.)
69. Identities and Conditional Equations. If we take the expression $(x-2)(x+2)=x^{2}-4$, and substitute $x=1$, we obtain $-3=-3$. The two members of the expression are found to be equal.

Similarly, they are found to be equal if we let $x=2,3,4$, etc.; $0,-1,-2$, etc.; or any number. An expression having this characteristic is termed an identity.

An identity (or identical equation) is an equality whose two members are equal for all values of the unknown quantity (or quantities) contained in it.

A conditional equation is an equation which is true for only one value (or a limited number of values) of x. For the sake of brevity, a conditional equation is usually termed an equation.

The equations studied in Art. 42 (p. 52) and Exercise 13 (p. 54) are conditional equations.

Hence, the sign $=$ is used in two senses in elementary algebra, viz.: to indicate sometimes an equation, and sometimes an identity. The context enables us to decide readily which of these two meanings the sign $=$ has in any given case.

Later it will be found useful to use the mark \equiv to indicate an identity, and $=$ to indicate a conditional equation, or equation proper.
70. The Aids in Solving an Equation, given in Art. 15, p. 18, stated more precisely, are as follows:

The roots of an equation are not changed if

1. The same quantity is added to both members of the equation.
2. The same quantity is subtracted from both members of the equation.
3. Both members are multiplied by the same quantity or equal quantities (provided the multiplier is not zero, or an expression containing the unknown).
4. Both members are divided by the same quantity (provided the divisor is not zero, or an expression containing the unknown).

Other principles similar to these are used later as aids in solving equations.

Transposition (see Art. 45, p. 52) is a short way of using Principles 1 and 2 of this article.
71. The Method of Solving a Simple Equation may now be stated as follows:

Clear the equation of parentheses by performing the operations indicated by them;

Transpose the unknown terms to the left-hand side of the equation, the linown terms to the right-hand side;

Collect terms;
Divide both members by the coefficient of the unknown quantity.
Ex. Solve $x(x-2)=x(x+4)-3(x-3)$.
Removing parentheses, $\quad x^{2}-2 x=x^{2}+4 x-3 x+9$
Transposing terms (Art. 70, 1, 2), $x^{2}-x^{2}-2 x-4 x+3 x=9$ Collecting terms,
$-3 x=9$
Dividing by -3 (Art. 70, 4),
$x=-3$ Root
Check. $x(x-2)=-3(-3-2)=-3(-5)=15$
$x(x+4)-3(x-3)=-3(-3+4)-3(-3-3)$
$=-3-3(-6)=-3+18=15$

EXERCISE 23

Solve the following; refer to each principle in Art. 70 as you use it, and check each answer:

1. $2 x=15-3 x$.
2. $15+3 x=27$.
3. $4 x-11=29$.
4. $16 x+3=15 x+7$.
5. $3 x-7=14-4 x$.
6. $2 x-7=8+5 x$.
7. $2 x-(x-1)=5$.
8. $2 \mathrm{ft} .+x=12 \mathrm{ft}$.
e. $14 x-10=12 x-3 x$.
9. $7 \mathrm{in} .+x=2 \mathrm{ft}$.
10. $x^{2}-x(x+5)=x+12$. 13. $7(2-3 x)=2(7-8 x)$.
11. $2 x-3(x-3)+2=0$. 14. $3-2(3 x+2)=7$.
12. $(x-8)(x+12)-(x+1)(x-6)=0$.
13. $5(x-3)-7(6-x)+3=24-3(8-x)$.
14. $3(x-1)(x+1)=x(3 x+4)$.
15. $4(x-3)^{2}=(2 x+1)^{2}$.
16. $8(x-3)-(6-2 x)=2(x+2)-5(5-x)$.
17. $5 x-(3 x-7)-\{4-2 x-(6 x-3)\}=10$.
18. $x+2-[x-8-2\{8-3(5-x)-x\}]=0$.
19. $2 x(x-5)-\left\{x^{2}+(3 x-2)(1-x)\right\}=(2 x-4)^{2}$.
20. $8 x^{2}+13 x-2\left\{x^{2}-3\left[(x-1)(3+x)-2(x+2)^{2}\right]\right\}=3$.
21. $.25 x-2=.2 x+3$.
22. $\frac{5}{2} x+6=\frac{1}{2} x+8$.
23. $1.6 x-.7=1.5 x-.3 . \quad$ 27. $\frac{7}{9} x-\frac{2}{3}=\frac{7}{3}-\frac{2}{9} x$.
24. $(.2 x+.2)(.4 x-.3)=(.4 x-.4)(.2 x+.3)$.
25. What right have we to change the equation $3 x=15-2 x$ to the form $3 x+2 x=15$?
26. If $2 x-3=5$, what right have we to transpose the -3 , and to write the equation in the form $2 x=5+3$?
27. What is the advantage in being able to add the same number to both members of an equation? To transpose a term? To divide both members of an equation by the same number?
28. Determine which of the following are identities and which conditional equations, or equations proper:
(1) $(x+3)(x-3)=x^{2}-9$.
(2) $(x+3)(x-3)=(x+1)(x-2)$.
(3) $(x+2)(x-1)=x^{2}+x-2$.
(4) $(x+2)(x-1)=x^{2}$.
29. Write an identity and an equation of which the first members are the same.
30. Prove that the sum of any three consecutive numbers equals three times the middle one of the numbers.

Sug. Let the three numbers be indicated by $n, n-1$, and $n-2$.
35. Find a similar result for the sum of five consecutive numbers. Of seven consecutive numbers.
36. Prove that the product of the sum and difference of any two numbers is equal to the square of the first, minus the square of the second. Illustrate by a numerical example.

Sug. Denote the two numbers by a and b.
37. Prove that the square of the sum of any two numbers equals the square of the first number, plus twice the product of the two numbers, plus the square of the second number. Illustrate by a numerical example.
38. State and prove a similar property for the square of the difference of two numbers.
39. Prove that if the sum of the cubes of two numbers is divided by the sum of the numbers, the quotient equals the square of the first number, minus the product of the first by the second, plus the square of the second.
40. State and prove a similar property of the difference of the cubes of two numbers.
Find the value of the letter in each of the following:
41. $3 a-2=7$.
44. $24=12-3 p$.
42. $5-2 b=1$.
45. $3(y-4)=5(2-y)$.
43. $5(c-1)=12-c . \quad$ 46. $r-3(r-1)=5$.
47. In $A=l w$, if $A=42 \frac{1}{2}$ and $l=8 \frac{1}{2}$, find w.
48. If $A=48.36$ sq. ft. and $w=6.2 \mathrm{ft}$., find l.
49. Convert each of the two preceding examples into an example concerning areas.
50. If $V=l w h$, and $V=504, l=12$, and $h=5$, find w.
51. Convert Ex. 50 into an example concerning volumes.
52. In $i=p r t$, if $i=\$ 27, r=.05$, and $p=\$ 240$, find t.
53. Convert Ex. 52 into an example concerning interest.
54. So far as we know, who first used an equation to solve a problem? Give this first problem thus solved, and tell all you know about the document in which it was found. (See pp. 266 and 274.)
55. Form an equation whose root is 2 and which contains four terms.
56. Make up and work an example similar to Ex. 15. To Ex. 31. Ex. 46.
57. How many of the examples in this Exercise can you work at sight?
72. Solution of Problems. In solving problems, the student will find it necessary to study each problem carefully by itself, as no rule or method can be found which will cover all cases. The following general directions will, however, be found of service:

By study of the problem, determine what are the unknown quantities whose values are to be obtained;

Let x equal one of these unlinown quantities;
State in terms of x all the other unknown quantities which are either to be determined or to be used in the process of the solution;

Obtain an equation by the use of a principle (such as, the whole is equal to the sum of its parts, or things equal to the same things are equal to each other);

Solve the equation, and find the value of each of the unknown quantities.

In solving problems it is especially important to note that we let $x=a$ definite number, not a vague quantity.

Thus, in working Ex. 1 of Exercise 24

we do not let	$x=$ A's marbles,
nor	$x=$ what A has,
but let	$x=$ number of marbles A has.

73. Checking the Solution of a Written Problem. The best way of checking the result obtained by solving a problem is to observe whether the result obtained satisfies the conditions as originally stated in the language of the problem. (This method is better than that used in checking the example in Art. 46, p. 53.)

Thus, to check Ex. 18, p. 54: after the answers 9 and 4 have been obtained, we note that the difference of 9 and 4 is 5 , and that the sum of 9 and 4 is 13 . 9 and 4 thus satisfy the original conditions of the problem.

What is the advantage in this method of checking the solution of a problem?

EXERCISE 24.

Oral

1. A has x marbles, and B has twice as many. How many has B ? How many have both?
2. There are 100 pupils in a school, of which x are boys. How many are girls?
3. If I have x dollars, and you have three dollars more than twice as many, how many have you? How many have we together?
4. Two boys together solved a examples. One did x examples. How many did the other solve?
5. The differencề between two numbers is 15 , and the less is x. What is the greater? What is their sum?
6. If n is a whole number, what is the next larger number? The next less?
7. Write three consecutive numbers, the least being x. Write them if the greatest is y.
8. John has x dollars, and James has seven dollars less than three times as many. How many has James?
9. If I am x years old now, how old was I ten years ago? a years ago? How old will I be in c years?
10. A man bought a horse for x dollars, and sold it so as to gain a dollars. What did he receive for it?
11. A man sold a horse for $\$ 200$, and lost x dollars. What did the horse cost?
12. If a yard of cloth cost m dollars, what will x yards cost?
13. A boy rides a miles an hour; how far will he ride in c hours?
14. A bicyclist rides x yards in y seconds. How far will he ride in one second?. In n seconds?
15. In how many hours can a boy walk x miles at a miles an hour?
16. A man has a dollars and b quarters. How many cents has he?
17. How many dimes in x dollars and y half-dollars?
18. I have x dollars in my purse and y dimes in my pocket. If I give away fifty cents, how much have I remaining?
19. By how much does 30 excced x ?
20. What number is 40 less than x ? What number is x less than 40 ?
21. What number exceeds x by a ? What number exceeds a by x ?
22. By how much does $a+b$ exceed x ?
23. How much did a girl have left if she had $\$ 5$ and spent $15 ¢$? If she had a dollars and spent b cents?
24. A boy had a dollars, received b cents, and then spent c cents. How many cents did he have left?
25. What is the interest on a dollars at b per cent for s years?
26. Express algebraically the following statement: a divided by b gives c as a quotient and d as a remainder.
27. A man having x hours at his disposal, rode a hours at the rate of 8 miles an hour, and walked the rest of his time at the rate of 3 miles an hour. How far did he ride? How far did he walk?

EXERCISE 25

1. Separate $\$ 84$ into two parts such that one part is three times as large as the other.
2. Separate $\$ 84$ into two parts such that one part exceeds the other by $\$ 12$.
3. Separate $\$ 84$ into three parts such that the first part is twice as large as the second, and the second part is twice as large as the third.
4. A boy has three times as many marbles as his brother, and together they have 48 ; how many has each?
5. A and B pay together $\$ 100$ in taxes; if A pays $\$ 22$ more than B, what does each pay?
6. Two boys made $\$ 67.50$ one summer by taking passengers on a launch. The boy who owned the launch received twice as large a share of the profits as the other boy. How much did each receive?
7. How many grains of gold are there in a gold dollar, if the gold dollar weighs 25.8 grains and 9 parts of the dollar are gold and 1 part copper?
8. A ball nine has played 64 games and won 12 more than it has lost. How many games has it won?
9. A man left $\$ 21,000$ to his wife and four daughters. If the wife received three times as much as each daughter, how much did each receive?
10. If he had left $\$ 21,000$ so that the wife received $\$ 10,000$ more than each daughter, how much would each have received?
11. A cubic foot of water and a cubic foot of alcohol together weigh 112.5 lb . The alcohol weighs $\frac{4}{5}$ as much as the water. What is the weight of a cubic foot of each?
12. Find three consecutive numbers whose sum is 63.
13. In a certain grade of milk the other solids equal three times the weight of the butter fat, and the liquid part of the milk weighs 7 times as much as the solids. How many pounds of butter fat in 4800 lb . of milk?
14. The difference of the squares of two consecutive numbers is 43 . Find the numbers.
15. At a certain date the record time for the quarter-mile run was 47 seconds, and 5 times the record time for the $100-$ yard dash exceeded the record time for the quarter-mile by 1 second. Find the record time for the 100 -yard dash at this date.
16. The difference of two numbers is 13 and their sum is 35. Find the numbers.
17. John solved a certain number of examples, and William did 12 less than twice as many. Together they solved 96. How many did each solve?
18. Three boys earned together $\$ 98$. If the second earned $\$ 11$ more than the first, and the third $\$ 28$ less than the other two together, how many dollars did each earn?
19. The sum of two numbers is 92 , and the larger is 3 less than four times the less. Find the numbers.
20. The sum of three numbers is 50 . The first is twice the second, and the third is 16 less than three times the second. Find the rumbers.
21. A farmer paid $\$ 94$ for a horse and cow. What did each cost, if the horse cost $\$ 13$ more than twice as much as the cow? $x+2 x+13=94$
22. Ex. 1 (p. 95) might be stated as a problem concerning an unknown number, thus: Twice a certain number equals 15 less three times the number. Find the number.

In like manner, convert Ex. 2 (p. 95) into a problem concerning an unknown number. Also Ex. 3. Ex. 8.
23. In reducing iron ore in a furnace, 7 times as many carloads of coke as of limestone are used, and 8 times as many carloads of iron ore as of limestone. If 800 carloads in all are used on a certain day, how many carloads of each is this?
24. One side of a triangle is twice as long as the shortest side. The third side exceeds the length of the shortest side by 12 yards. If the perimeter of the triangle is 360 yards, find each side.
25. A man spent $\$ 3.24$ for coffee and sugar, buying the same number of pounds of each. If the sugar cost 5 cents a pound and the coffee 22 cents, how many pounds of each did he buy?
26. The distance from New York to Chicago is 912 miles. If this is 24 miles less than four times the distance from New York to Boston, find the latter distance.
27. On a certain railroad in a given year the receipts per mile were $\$ 3085$. If the receipts per mile for freight exceeded those for passengers by $\$ 265$, find the receipts per mile from each of these sources.
28. A man left $\$ 64,000$ to his wife, daughter, and niece. To his daughter he left $\$ 4000$ more than to his niece, and to his wife $\$ 8000$ more than to his daughter and niece together. How much did he leave to each?
29. Find the number whose double exceeds 24 by 6.
30. The perimeter of a given rectangle is 26 feet, and the length of the rectangle exceeds the width by 5 feet. Find the dimensions of the rectangle.
31. The perimeter of a given rectangle is 18 yards, and the length exceeds the width by 3 ft . Find the dimensions. Make up and work a similar example for yourself.
$\overline{32}$. The length of a rectangle exceeds a side of a given square by 3 inches and the width of the rectangle is 2 inches less than a side of the square. If the area of the rectangle equals the ${ }^{x}$ area of the square, find a side of the square.

Sug. Denote the sides of the square and rectangle as in the diagram.

Since the areas of the two figures are equal,

$$
x^{2}=(x+3)(x-2), \text { etc. }
$$

In working Exs. 33-38, draw a diagram for each example.
33. The length of a rectangle exceeds a side of a given square by 8 ft . and the width of the rectangle is 4 ft . less than a side of the square. If the area of the rectangle equals the area of the square, find a side of the square.
34. If one side of a square is increased by 4 yd ., and an adjacent side by 3 yd ., a rectangle is formed whose area exceeds that of the square by 47 sq . yd. Find a side of the square.
35. The perimeter of a rectangle is 120 ft ., and the rectangle is twice as long as it is wide. Find its dimensions.
36. A certain rectangle is three times as long as it is wide. If 20 ft . is added to its length and 10 ft . is deducted from its width, the area is diminished by 400 sq . ft. Find the dimensions of the rectangle.
37. A rectangle is 5 ft . longer than it is wide. If its length is increased by 4 ft ., and its width by 3 ft ., its area is increased by $76 \mathrm{sq} . \mathrm{ft}$. Find the dimensions of the rectangle.
38. A rectangle is 4 in . longer than it is wide. If its length is increased by 4 in., and its width diminished by 2 in., its area remains unchanged. Find the dimensions of the rectangle.
39. Make up and work an example similar to Ex. 38.
40. A tennis court is 42 ft . longer than it is wide. If a margin of 15 ft . on each end and of 10 ft . on each side is added, the area of the court is increased by 3240 sq . ft. Find the dimensions of the court.
41. The length of a football field exceeds its width by 140 ft . If a margin of 20 ft . is added on each side and end of the field, the area is increased by $20,000 \mathrm{sq}$. ft . Find the dimensions of the field.
42. A boy is three times as old as his brother. Five years hence he will be only twice as old. Find the present age of each:
43. A man is twice as old as his brother. Five years ago he was three times as old. Find the age of each at the present time.
44. How many pounds of coffee at 30ϕ a pound must be mixed with 12 pounds of coffee at 20ϕ a pound to make a mixture worth 24ϕ a pound?
45. How many pounds of tea at $60 ¢$ a pound must be mixed with 25 lb . of tea at $40 ¢$ a pound, to make a mixture worth 45غ a pound?
46. Make up and work an example similar to Ex. 45.
47. Find five consecutive numbers whose sum shall be 3 less than six times the least.
48. Find three consecutive odd numbers whose sum is 63.
49. A telegram at a $25-2$ rate cost 47 cents. How many words were in the telegram?

Sug. A 25-2 rate means a cost of 25 cents for the first 10 words and 2 cents for each additional word.
50. Make up and work an example, similar to Ex. 49, concerning a telegram sent at a 40-3 rate.
51. A talk over a long distance telephone at a 50-7 rate cost 85¢. How many minutes did the talk last?

Sug. A 50-7 rate over a long distance telephone means a cost of 50 cents for the first 3 minutes and 7 cents for each additional minute.
52. A rectangle is 8 ft . longer than it is wide and the perimeter is 120 ft . Find the dimensions of the rectangle.
53. If 5 is subtracted from a certain number and the difference is subtracted from 115, the result equals three times the given number. Find the number.
54. If $\frac{1}{4}$ is added to double a certain fraction, the result is the same as if $\frac{5}{8}$ had been subtracted from three times the fraction. Find the fraction.
55. What number subtracted from 100 gives a result equal to the sum of 14 and the number?
56. Find the number which exceeds 12 by as much as three times the number exceeds 24.
57. Find five consecutive numbers such that the last is twice the first.
58. Find two consecutive integers such that the first plus 5 times the second equals 53 .
59. A man is 48 years old and his son is 18 . How many years ago was the father four times as old as the son? Also how many years hence will the father be twice as old as the son?
60. Find two numbers such that their difference is 20 , and one is four times as large as the other.
61. The length of a single tennis court exceeds the width by 51 ft . If the width is increased by 9 ft ., we have a double court, the area of which exceeds that of the single court by $702 \mathrm{sq} . \mathrm{ft}$. Find the dimensions of each court.
62. A boy sold a certain number of newspapers on Monday, twice as many on Tuesday, on Wednesday 5 more than on Monday, and on Thursday 7 less than on Tuesday. If he sold 310 newspapers on the four days, how many did he sell on each of the days?
63. Twenty-five men agreed to pay equal amounts in raising a certain sum of money. Five of them failed to pay their subscriptions, and as a result each of the other twenty had to pay one dollar more. How much did each man subscribe originally?
64. A boy starts from a certain place and walks at the rate of 3 miles an hour. Three hours later another boy starts after the first boy and travels on a bicycle at the rate of 6 miles an hour. How many hours will it be before the second boy overtakes the first? (Draw a diagram.)
65. If the boys had traveled in opposite directions, how many hours after the second boy started would it have been before they were 81 miles apart?
66. A boy was engaged to work 50 days at 75ϕ per day for the days he worked, and to forfeit 25ϕ every day he was idle. On settlement he received $\$ 25.50$; how many days did he work?
67. Which of the above problems belong to, or are variations of, Type I? Of Type II? III?
68. How many examples in Exercise 15 (p. 60) can you now work at sight?

CHAPTER VII

ABBREVIATED MULTIPLICATION AND DIVISION

Abbreviated Multiplication

74. Utility of Abbreviated Multiplication. In certain cases of multiplication, by observing the character of the expressions to be multiplied, it is possible to write out the product at once, without the labor of the actual multiplication. This is true of almost all the multiplication of binomials, and that of many trinomials, and by the use of the abbreviated methods at least three fourths of the labor of multiplication in such cases may be saved. The student should therefore master these short methods as thoroughly as the multiplication table in arithmetic.

75. I. Square of the Sum of Two Quantities.

Let $a+b$ be the sum of any two algebraic quantities.
By actual multiplication, $a+b$

$$
\begin{aligned}
& \frac{a+b}{a^{2}+a b} \\
& \frac{+a b+b^{2}}{a^{2}+2 a b+b^{2}} \text { Product }
\end{aligned}
$$

Or, in brief,

$$
(a+b)^{2}=a^{2}+2 a b+b^{2},
$$

which, stated in general language, is the rule:
The square of the sum of two quantities equals the square of the first, plus twice the product of the first by the second, plus the square of the second.

Ex. 1. $(2 x+3 y)^{2}=4 x^{2}+12 x y+9 y^{2}$ Product
Ex. 2. $104^{2}=(100+4)^{2}=100^{2}+8 \times 100+4^{2}$

$$
=10,000+800+16=10816 \text { Ans. }
$$

76. II. Square of the Difference of Two Quantities.

By actual multiplication, $a-b$

$$
\begin{aligned}
& \frac{a-b}{a^{2}-a b} \\
& \frac{-a b+b^{2}}{a^{2}-2 a b+b^{2}} \text { Product }
\end{aligned}
$$

Or, in brief,

$$
(a-b)^{2}=a^{2}-2 a b+b^{2}
$$

which, stated in general language, is the rule:
The square of the difference of two quantities equals the square of the first, minus twice the product of the first by the second, plus the square of the second.

Ex. 1. $(2 x-3 y)^{2}=4 x^{2}-12 x y+9 y^{2}$ Product
Ex. 2. $[(x+2 y)-5]^{2}=(x+2 y)^{2}-10(x+2 y)+25$

$$
=x^{2}+4 x y+4 y^{2}-10 x-20 y+25
$$

Product
To check the work of Ex. 2, let $x=2, y=1$.
Then $\quad\left[\left(x^{2}+2 y\right)-5\right]^{2}=(4+2-5)^{2}=(1)^{2}=1$
Also
$x^{2}+4 x y+4 y^{2}-10 x-20 y+25=4+8+4-20-20+25=1$.

EXERCISE 26

Write by inspection the value of each of the following and check each result:

1. $(n+y)^{2}$
2. $(c-x)^{2}$
3. $(2 x-y)^{2}$
4. $(3 x-2 y)^{2}$
5. $(5 x+1)^{2}$
6. $\left(x^{2}+1\right)^{2}$
7. $\left(x-y^{2}\right)^{2}$
8. $\left(1-7 y^{3}\right)^{2}$
9. $\left(3 x^{4}+5 x^{3}\right)^{2}$
10. $\left(6 x^{2} y-11 y^{2} z^{3}\right)^{2}$
11. $\left(5 x^{n}-3 y^{n} z^{m}\right)^{2}$
12. $\left(4 x^{3} y^{5} z^{2 n}+9 y^{3 n}\right)^{2}$
13. $\left(\frac{1}{2} x^{3}+\frac{2}{3} y\right)^{2}$
14. $\left(\frac{3}{4} a b-\frac{5}{6} x^{2}\right)^{2}$
15. $(.2 x+.3 y)^{2}$
16. $\left(.3 a+.04 b^{2}\right)^{2}$
17. $(.02 x-.03 y)^{2}$
18. $(1.5 m-.02)^{2}$
19. $[(a+b)+4]^{2}$
20. $[(a+b)-3]^{2}$
21. $[(a+b)+c]^{2}$
22. $[(2 a-x)+3 y]^{2}$
23. $[3+(a+b)]^{2}$
24. $[5 a-(x+y)]^{2}$
25. $\left[2 a^{2}-(b-2 c)\right]^{2}$
26. $[(x+y)-(a+b)]^{2}$
27. Find the value of 998^{2} by multiplying 998 by itself. This product might also have been obtained in the following way:

$$
\begin{aligned}
998^{2}=(1000-2)^{2} & =\left[1000^{2}-2 \times 2 \times 1000+2^{2}\right] \\
& =1,000,000-4000+4 \\
& =996,004
\end{aligned}
$$

After practice the part of the work in the brackets may be omitted.
Compare the amount of work in the two processes of finding the value of 998^{2}.

By the short method obtain the value of:
28. 999^{2}
29. 997^{2}
30. 9998^{2}
31. 51^{2}
32. 1003^{2}
33. 97^{2}
34. 996^{2}
35. 9997^{2}
36. $(99.2)^{2}$
37. Make up and work an example similar to Ex. 19. To Ex. 29. Ex. 36.
38. How many of the examples in this Exercise can you answer orally?
77. III. Product of the Sum and Difference of Two Quantities.

By actual multiplication, $a+b$

$$
\begin{aligned}
& \frac{a-b}{a^{2}+a b} \\
& \frac{-a b-b^{2}}{a^{2}-b^{2}} \text { Product }
\end{aligned}
$$

Or, in brief, $\quad(a+b)(a-b)=a^{2}-b^{2}$,
which, stated in general language, is the rule:
The product of the sum and difference of two quantities equals the square of the first minus the square of the second.

Ex. 1. $(2 x+3 y)(2 x-3 y)=4 x^{2}-9 y^{2}$ Product
Ex. 2. Multiply $x+(a+b)$ by $x-(a+b)$.
We have

$$
\begin{aligned}
{[x+(a+b)][x-(a+b)] } & =x^{2}-(a+b)^{2}, \text { by III. } \\
& =x^{2}-\left(a^{2}+2 a b+b^{2}\right), \text { by I. } \\
& =x^{2}-a^{2}-2 a b-b^{2} \text { Product }
\end{aligned}
$$

Let the pupil check the work.
It is frequently necessary to re-group the terms of trinomials in order that the multiplication may be performed by the above method.

Ex. 3. Multiply $x+y-z$ by $x-y+z$.

$$
\begin{aligned}
(x+y-z)(x-y+z) & =[x+(y-z)][x-(y-z)] \\
& =x^{2}-(y-z)^{2}, \text { by III. } \\
& =x^{2}-\left(y^{2}-2 y z+z^{2}\right) \text {, by II. } \\
& =x^{2}-y^{2}+2 y z-z^{2} \text { Product }
\end{aligned}
$$

Let the pupil check the work.

EXERCISE 27

Write by inspection the value of each of the following products, and check the work for each result:

1. $(x+z)(x-z)$
2. $(y-3)(y+3)$
3. $(3 x-y)(3 x+y)$
4. $(7 x+4 y)(7 x-4 y)$,
5. $\left(x^{2}-2\right)\left(x^{2}+2\right)$ 9. $\left(\frac{1}{2} a+\frac{1}{3} b\right)\left(\frac{1}{2} a-\frac{1}{3} b\right)$
6. $\left(a x^{2}-b^{2} y\right)\left(a x^{2}+b^{2} y\right)$
7. $\left(2 \frac{1}{4} x-\frac{1}{3} y\right)\left(2 \frac{1}{4} x+\frac{1}{3} y\right)$
8. $\left(1-11 x^{3}\right)\left(1+11 x^{3}\right)$
9. $(.2 x+.3 y)(.2 x-.3 y)$
10. $\left(2 x^{n}+5 y^{m}\right)\left(2 x^{n}-5 y^{m}\right) \quad$ 12. $\left(.05 a^{2}-.3 b^{3}\right)\left(.05 a^{2}+.3 b^{3}\right)$
11. $\left(\frac{3}{5} x+.7 y\right)\left(\frac{3}{5} x-.7 y\right)$
12. $\left(a^{n+1}+\frac{1}{2} b^{n-1}\right)\left(a^{n+1}-\frac{1}{2} b^{n-1}\right)$
13. $[(a+b)+3][(a+b)-3]$
14. $[(x+y)+a][(x+y)-a]$
15. $[(2 x-1)+y][(2 x-1)-y]$
16. $[4+(x+1)][4-(x+1)]$
17. $[2 x+(3 y-5)][2 x-(3 y-5)]$
18. $(a+b+3)(a+b-3)$
19. $(x+y+a)(x+y-a)$
20. $(4+x+1)(4-x-1)$
21. $(2 x+3 y-5)(2 x-3 y+5)$
22. $(4+x+y)(4-x-y)$
23. $\left(x^{2}+3 x+2\right)\left(x^{2}+3 x-2\right)$
24. $(a+b+3 x)(a+b-3 x)$
25. $(a+b-3 x)(a-b+3 x)$
26. $\left(x^{2}-x y+y^{2}\right)\left(x^{2}+x y+y^{2}\right)$
27. $\left(a^{2}+a+1\right)\left(a^{2}-a+1\right)$
28. $\left(2 x^{2}-3 x-5\right)\left(2 x^{2}+3 x-5\right)$
29. $\left(2 x^{2}+5 x y-y^{2}\right)\left(2 x^{2}-5 x y-y^{2}\right)$
30. $\left(x^{2}+x y-y^{2}\right)\left(x^{2}-x y-y^{2}\right)$
31. $[(a+b)-(c-1)][(a+b)+(c-1)]$
32. $\left[\left(x^{2}+y^{2}\right)+\left(x^{2} y^{2}+1\right)\right]\left[\left(x^{2}+y^{2}\right)-\left(x^{2} y^{2}+1\right)\right]$
33. $(x+y+z+1)(x+y-z-1)$
34. Work Ex. 16 in full (see Art. 54, p. 65). How mucb of this labor is saved by the short method of multiplication?
35. Make up and work an example similar to Ex. 36.
36. Multiply 93 by 87 . This product may also be obtained thus:

$$
\begin{aligned}
93 \times 87 & =(90+3)(90-3) \\
& =8100-9=8091
\end{aligned}
$$

Compare the amount of work in the two processes.
39. Make up and work an example similar to Ex. 38.

Find the value of each of the following in the short way:
40. 92×88
41. 103×97
42. 105×95
43. 1005×995
44. $103^{2}-97^{2}$
45. $(17.31)^{2}-(2.69)^{2}$

Find in the shortest way:
46. The area of a rectangle 102 ft . long and 98 ft . wide.
47. The cost of 32 doz. eggs at 28ϕ per dozen.
48. The cost of 67 yd . of cloth at 73ϕ a yard.
49. Make up and work two examples similar to Exs. 47-48.
50. Work Ex. 40 in full. How much of this labor is saved by using the short method of multiplication?

Write at sight the product for each of the following miscellaneous examples:
51. $(x+2 a)^{2}$
52. $(x+2 a)(x-2 a)$
53. $(x-2 a)^{2}$
54. $(3 x-1)(3 x+1)$
55. $(3 x-1)^{2}$
56. $\left(3 a^{2}-2 b^{3}\right)^{2}$
57. $\left(3 a^{2}-2 b^{3}\right)\left(3 a^{2}+2 b^{3}\right)$ 64. 97×103
58. $[(x+2 y)+5]^{2}$
59. $(x+2 y+5)(x+2 y-5)$
65. Make up and work an example in each principal form of abbreviated multiplication studied thus far.
66. How many of the examples in this Exercise can you answer orally?

78. IV. Square of any Polynomial.

By actual multiplication,

$$
\begin{aligned}
& a+b+c \\
& \frac{a+b+c}{a+b}+ \\
& \begin{array}{l}
a^{2}+a b+a c \\
\quad+a b+b^{2}+b c \\
\\
\quad+a c+b c+c^{2} \\
a^{2}+2 a b+2 a c+b^{2}+2 b c+c^{2}
\end{array} \text { Product }
\end{aligned}
$$

Or, in brief, $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 a c+2 b c$.
In like manner we obtain

$$
\begin{aligned}
(a+b+c+d)^{2}= & a^{2}+b^{2}+c^{2}+d^{2}+2 a b+2 a c+2 a d \\
& +2 b c+2 b d+2 c d
\end{aligned}
$$

Or, in general,
The square of any polynomial equals the sum of the squares of the terms plus twice the product of each term by each term which follows it.

It is often useful to indicate the order in which the products of the terms are taken as shown in the following diagram. (If the curved lines joining the terms are drawn as each product is taken, the numbers on these lines may be omitted.)

Ex. $\left(a-2 \cdot \frac{x^{2}}{a-c-3 x}\right)^{2}=a^{2}+4 b^{2}+c^{2}+9 x^{2}-4 a b+2 a c-6 a x$ $-4 b c+12 b x-6 c x$.
Let the pupil check the work.

EXERCISE 28

Find in the shortest way the value of the following and check each result:

1. $(2 x+y+1)^{2}$
2. $(x-2 y+2 z)^{2}$
3. $(3 x-2 y-5)^{2}$
4. $(2 a-b+3 c)^{2}$
5. $(x-2 y-3 z)^{2}$
6. $(4 x+3 y-1)^{2}$
7. $\left(x^{2}-x+1\right)^{2}$
8. $\left(2 a^{2}+5 a-3\right)^{2}$
9. $(x-y+z-1)^{2}$
10. $(2 x+3 y-4 z-5)^{2}$
11. $\left(3 x^{3}-4 x^{2}+x-2\right)^{2}$
12. $\left(\frac{1}{2} x^{2}-\frac{2}{3} x+5\right)^{2}$
13. $\left(\frac{2}{3} x^{3}-\frac{1}{2} x^{2}+\frac{3}{4} x+6\right)^{2}$
14. $(.2 a+.3 b-.5 c)^{2}$
15. Expand $(2 a-3 b+c-4 d)^{2}$ by multiplying in full. Now obtain the same result by the method of Art. 78, p. 115. About how much of the work of multiplication is saved by the latter method?
16. Make up and work an example similar to Ex. 15.

Write at sight the product for each of the following miscellaneous examples:

$$
\begin{aligned}
& \text { 17. }(2 a-3 b)^{2} \\
& \text { 18. }(2 a+3 b)(2 a-3 b) \\
& \text { 21. }\left(3 x^{2}+y^{3}\right)^{2} \\
& \text { 19. }(2+3 b)^{2} \\
& \text { 22. }\left(3 x^{2}-4 y^{3}\right)^{2} \\
& \text { 20. }\left(3 x^{2}-y^{3}\right)\left(3 x^{2}+y^{3}\right) \\
& \text { 23. }(x+2 y-3)(x \\
& \text { 25. }\left(4 x+\frac{1}{2} a-\frac{2}{3}\right)^{2} \\
& \text { 26. }\left(4 x+\frac{1}{2} a-\frac{2}{3}\right)\left(4 x+\frac{1}{2} a+\frac{2}{3}\right) \\
& \text { 27. }\left(x^{n+1}-3 x^{n-1} y\right)^{2} \\
& \text { 28. }\left(x^{n+1}-3 x^{n-1} y\right)\left(x^{n+1}+3 x^{n-1} y\right) \\
& \text { 29. }\left(.02 x^{2}-.3 x+.5\right)^{2}
\end{aligned}
$$

30. Make up and work an example in each principal form of abbreviated multiplication studied thus far.
31. V. Product of Two Binomials of the Form $\boldsymbol{x}+\boldsymbol{a}$, $\boldsymbol{x}+\boldsymbol{b}$.

By actual multiplication,

$x+5$	$x-5 y$	$x+a$
$\frac{x+3}{x^{2}+5 x}$	$\frac{x+3 y}{x^{2}-5 x y}$	$\frac{x+b}{x^{2}+a x}$
$\frac{+3 x+15}{x^{2}+8 x+15}$	$\frac{+3 x y-15 y^{2}}{x^{2}-2 x y-15 y^{2}}$	$\frac{+b x+a b}{x^{2}+(a+b) x+a b}$

By comparing each pair of binomials with their product, we observe the following relation:

The product of two binomials of the form $x+a$ and $x+b$ consists of three terms:

The first term is the square of the first term of the binomials;
The last term is the product of the second terms of the binomials;

The middle term consists of the first term of the binomials with a coefficient equal to the algebraic sum of the second terms of the binomials.

Ex. 1. Multiply $x-8$ by $x+7$.

$$
\begin{gathered}
-8+7=-1 . \quad-8 \times 7=-56 . \\
\therefore(x-8)(x+7)=x^{2}-x-56 \text { Product }
\end{gathered}
$$

Ex. 2. Multiply $(x-6 a)(x-5 a)$.

$$
\begin{gathered}
(-6 a)+(-5 a)=-11 a . \quad(-6 a) \times(-5 a)=+30 a^{2} . \\
\therefore(x-6 a)(x-5 a)=x^{2}-11 a x+30 a^{2} \text { Product }
\end{gathered}
$$

Ex. 3. Multiply $x+y+6$ by $x+y-2$.

$$
\begin{aligned}
(x+y+6)(x+y-2) & =[(x+y)+6][(x+y)-2] \\
& =(x+y)^{2}+4(x+y)-12 \text { Product }
\end{aligned}
$$

EXERCISE 29

Write the product for each of the following and check each result:

1. $(x+2)(x+5)$
2. $(x-5)(x-3)$
3. $(x-7)(x+4)$
4. $(x-4)(x+8)$
5. $(x+1)(x-7)$
6. $\left(x^{2}-2\right)\left(x^{2}-3\right)$
7. $\left(x^{2}+3\right)\left(x^{2}+1\right)$
8. $(a+3 x)(a-10 x)$
9. $(x-7 y)(x+y)$
10. $\left(x^{n}+5\right)\left(x^{n}-5\right)$
11. $[(x+y)+3][(x+y)+5]$
12. $[(x+y)-3][(x+y)+5]$
13. $(x+y-3)(x+y+5)$
14. $(a+2 b+5)(a+2 b+3)$
15. $(2 x+3 y+3 a)(2 x+3 y-5 a)$
16. $(x+a+b)(x-a-b)$
17. $(2 x+a+3 b)(2 x-a-3 b)$
18. $(2 x+a-3 b)(2 x-a+3 b)$
19. Find the product of $x+y+6$ and $x+y-3$ by multiplying in full. Then find the same product by the method of Art. ' 79. About how much of the work of multiplication is saved by use of the latter method?
20. Make up and work an example similar to Ex. 27.
21. A building lot is 167 ft . wide and 213 ft . deep. If the width and depth of the lot are each increased by 1 foot, find the increase in area without multiplying 167 by 213.

Write at sight the product for each of the following miscellaneous examples:
31. $(x+5)(x-5)$
35. $(x+5)(x-3 a)$
32. $(x+5)^{2}$
36. $(x-3 a)(x+3 a)$
33. $(x-5)^{2}$
37. $(x-3 a)(x+5 a)$
34. $(x+5)(x-3)$
38. $(x-5 a)^{2}$
39. $(x+y+5 a)(x+y-5 a)$
40. $(x+y+5 a)^{2}$
41. $(x+y+5 a)(x+y+3 a)$
42. $(x+y+5 a)(x+y-3 a)$
43. $\left(x^{2}+\frac{1}{2} x+3\right)^{2}$
44. $\left(x^{2}+\frac{1}{2} x+3\right)\left(x^{2}+\frac{1}{2} x-3\right)$
45. $\left(x^{2}+\frac{1}{2} x+3\right)\left(x^{2}+\frac{1}{2} x-5\right)$
46. $\left(a^{2}+a x+x^{2}\right)\left(a^{2}-a x+x^{2}\right)$,
47. Make up and work an example in each principal form of abbreviated multiplication studied thus far.
48. How many of Exs. 31-45 can you answer orally?
80. VI. Product of Two Binomials whose Corresponding Terms are Similar.

By actual multiplication,

$$
\begin{aligned}
& 2 a-3 b \\
& \frac{4 a+5 b}{8 a^{2}-12 a b} \\
& \frac{+10 a b-15 b^{2}}{8 a^{2}-2 a b-15 b^{2}} \text { Product }
\end{aligned}
$$

We see that the middle term of this product may be obtained directly from the two binomials by taking the algebraic sum of the cross products of their terms. Thus,

$$
(+2 a)(+5 b)+(-3 b)(+4 a)=10 a b-12 a b=-2 a b
$$

Hence, in general,
The product of any two binomials of the given form consists of three terms:

The first term is the product of the first terms of the binomials;
The third term is the product of the second terms of the binomials;

The middle term is formed by taking the algebraic sum of the cross products of the terms of the binomials.
Ex. Multiply $10 x+7 y$ by $8 x-11 y$.
To show the method of obtaining the middle term of the product, we write the given expression in the form

$$
(10 x+7 y)(8 x-11 y)
$$

Hence,
$(10 x)(-11 y)+(7 y)(8 x)=-110 x y+56 x y=-54 x y$
$\therefore(10 x+7 y)(8 x-11 y)=80 x^{2}-54 x y-77 y^{2}$ Product

EXERCISE 30

Write at sight the product of each of the following and check each result:

1. $(2 x+3)(x+4)$
2. $(2 x-3)(x-4)$
3. $(2 x+3)(x-4)$
4. $(2 x-3)(x+4)$
5. $(3 a+5)(2 a+3)$
6. $(3 a-5)(2 a+3)$
7. $(5 x-1)(x+7)$
8. $(x+3 y)(3 x-8 y)$
9. $\left(3 a^{2}+b\right)\left(4 a^{2}-5 b\right)$
10. $\left(x+\frac{1}{2}\right)\left(\frac{3}{4} x+\frac{1}{2}\right)$
11. $(a+.2 b),(2 a-.3 b)$
12. $\left(\frac{1}{2} x+\frac{3}{2} a\right)\left(\frac{3}{2} x-\frac{1}{2} a\right)$
13. How many examples in Exercise 9 (p. 41) can you now work at sight?

EXERCISE 31

Review

Write at sight the value of each of the following and check each result:

1. $(2 x+3)^{2}$	16. $(2 a+3 x+5)(2 a+3 x-5)$
2. $(2 x-3)^{2}$	17. $(2 a+3 x+5)(2 a+3 x-3)$
3. $(2 x+3)(2 x-3)$	18. $\left(1-2 x-3 x^{2}+x^{3}\right)^{2}$
4. $(x+3)(x-5)$	19. $(a+b+x+y)(a+b-x-y)$
5. $(2 x+3)(3 x-5)$	20. $\left(a^{2}+a x+x^{2}\right)\left(a^{2}-a x+x^{2}\right)$
6. $(x+3 y)(x+2 y)$	21. $\left(x^{a+b}-x^{a-b}\right)^{2}$
7. $(2 x+3 y)^{2}$	22. $\left(4 a^{2}+2 a+1\right)\left(4 a^{2}-2 a+1\right)$
8. $(2 x+3 y)(3 x-4 y)$	23. $\left(3 a x^{n}-2 a^{n-1} x\right)^{2}$
9. $(2 x-3 y)^{2}$	24. $\left(x^{n}+2 x y^{n-1}\right)^{2}$
10. $(2 x+3 y)(2 x-3 y)$	25. $(1-a)^{2}$
11. $(5 a-3 x)(4 a+5 x)$	26. $(a-1)^{2}$
12. $\left(7 x+3 y^{2}\right)^{2}$	27. $(-2 x+3 y)^{2}$
13. $\left(5 a^{2} .+3 y^{3}\right)\left(5 a^{2}-3 y^{3}\right)$	28. $(-2 x-3 y)^{2}$
14. $\left(a^{2}+3 x\right)\left(a^{2}-5 x\right)$	29. $(-a-b)(-a+b)$
15. $(2 a+3 x+5)^{2}$	30. $(-x+3)(-x-3)$

31. Why is it that the result of expanding $(-2 x-3 y)^{2}$ is the same as that of expanding $(2 x+3 y)^{2}$?
32. Give two expressions similar to those in Ex. 31 for which the product is the same.
33. Why is $(a-b)^{2}$ equal to $(b-a)^{2}$? Make up two expressions similar to these.
34. Make up and work an example in each principal form of abbreviated multiplication studied thus far.

Simplify, using the methods of abbreviated multiplication as far as possible:
35. $(a+2 b)^{2}+(a-2 b)^{2}$
36. $(a+2 b)^{2}-(a-2 b)^{2}$
37. $(2 x-1)^{2}+(1-2 x)^{2}$
38. $(2 x-1)^{2}-(2 x+1)^{2}$
39. $(3 a-1)^{2}+(2-3 a)(2+3 a)$
40. $(2 x-7 y)(2 x+7 y)-4(x-2 y)^{2}+13 y(5 y-x)$
41. $\left(3 x^{2}+5\right)^{2}+x^{2}(10-3 x)(10+3 x)-\left(5+13 x^{2}\right)^{2}$
42. $(a-c+1)(a+c-1)-(a-1)^{2}+2(c-1)^{2}$
43. $(x+y-x y)(x-y-x y)+x^{2} y-\left(x-y^{2}\right)\left(x+y^{2}\right)$
44. Show that $a^{2}=(a+b)(a-b)+b^{2}$.
45. By use of the relation proved in Ex. 44, obtain the value of $\left(7 \frac{1}{2}\right)^{2}$ in a short way.

SUG. We have $\left(7 \frac{1}{2}\right)^{2}=\left(7 \frac{1}{2}+\frac{1}{2}\right)\left(7 \frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}$ $=8 \times 7+\frac{1}{4}=56 \frac{1}{4}$ Ans.
Using the method of Ex. 45 find the value of:
46. $\left(8 \frac{1}{2}\right)^{2}$ 49. $\left(15 \frac{1}{2}\right)^{2}$
52. $(7.5)^{2}$
55. $(75)^{2}$
47. $\left(19 \frac{1}{2}\right)^{2}$
50. $\left(49 \frac{1}{2}\right)^{2}$
53. $(19.5)^{2}$
56. $(195)^{2}$
48. $\left(199 \frac{1}{2}\right)^{2}$
51. $\left(99 \frac{1}{2}\right)^{2}$
54. $(99.5)^{2}$
57. $(995)^{2}$
58. $(9.7)^{2} \quad\left(\right.$ Use $\left.(9.7)^{2}=10 \times 9.4+.3^{2}\right)$
59. $(9.8)^{2} \quad$ 60. $(9.6)^{2} \quad$ 61. $(4.8)^{2} \quad$ 62. 98^{2}
63. Find the value of $(a+b)^{3}$ by multiplication. Examine the result obtained. Make a rule for obtaining similar products in a short way. Treat $(a-b)^{3}$ in the same way.
64. By use of the rule obtained in Ex. 63, write out by inspection the value of $(x+y)^{3}$.
65. Also of $(a-x)^{3}$. 66. Of $(b+y)^{3}$.

Solve the following equations, using methods of abbreviated multiplication wherever possible:
67. $(2 x-1)^{2}-4 x^{2}=19$
68. $(2 x+1)^{2}-(2 x-1)^{2}=16$

Compute in the shortest way:
69. The area of a field 103 rd . long and 97 rd . wide.
70. The area of a square field each side of which is 98 rd .
71. The cost of 62 yd . of cloth at $58 \&$ per yard.
72. The cost of 85 A . of land at $\$ 95$ per A.
73. How many of the examples in this exercise can you work at sight?

Abbreviated Division

81. Utility of Abbreviated Division. In certain cases much of the labor of division may be saved by the use of mechanical rules. We discover these rules by performing the division operation in a typical case, noting the relation between the quantities divided and the quotient, and formulating this relation into a rule.

82. I. Division of the Difference of Two Squares.

Either by actual division, or by inverting the relation of Art. 77, p. 112, we obtain

$$
\frac{a^{2}-b^{2}}{a+b}=a-b \quad \text { and } \frac{a^{2}-b^{2}}{a-b}=a+b
$$

Hence, in general language,
The difference of the squares of two quantities is divisible by the sum of the quantities, and also by the difference of the quantities, the quotients in the respective cases being the difference of the quantities and the sum of the quantities.

Ex. 1. $\frac{4 x^{2}-9 y^{2}}{2 x-3 y}=2 x+3 y$ Quotient
Ex. 2. $\frac{x^{2}-(a+b)^{2}}{x+(a+b)}=x-(a+b)$ Quotient
Laf, the pupil check the work in these examples.

EXERCISE 32

Write at sight the quotient for each of the following, and check each result:

1. $\frac{a^{2}-x^{2}}{a-x}$
2. $\frac{9-4 x^{2}}{3-2 x}$
3. $\frac{x^{2}-81 y^{2}}{x+9 y}$
4. $\frac{25 x^{2}-36 y^{4}}{5 x-6 y^{2}}$
5. $\frac{16 x^{4}-49 y^{4}}{4 x^{2}+7 y^{2}}$
6. $\frac{25 x^{10}-y^{12}}{5 x^{5}-y^{6}}$
7. $\frac{a^{2} b^{4}-36 c^{6} d^{8}}{a b^{2}+6 c^{3} d^{4}}$
8. $\frac{\frac{1}{4} x^{2}-\frac{4}{9} y^{2}}{\frac{1}{2} x-\frac{2}{3} y}$
9. $\frac{\frac{9}{16} a^{4}-\frac{1}{9} x^{6}}{\frac{3}{4} a^{2}-\frac{1}{3} x^{3}}$
10. $\frac{.25 a^{2}-.16 b^{2}}{.5 a-.4 b}$
11. $\frac{.04 x^{2}-.09 y^{2}}{.2 x+.3 y}$
12. $\frac{x^{2}-.25 b^{4}}{x-.5 b^{2}}$
13. Divide $a^{2}+2 a b+b^{2}-4 x^{2}$ by $a+b-2 x$ by long division. Write the result of dividing $(a+b)^{2}-4 x^{2}$ by $a+b-2 x$ by the method of Art. 82. Estimate how much less the labor of the second process is than that of the first.
14. Make up and solve an example similar to Ex. 13.

Obtain in the shortest way the quotient for each of the following:

$$
\begin{aligned}
& \text { 15. } \frac{(x+1)^{2}-a^{2}}{x+1+a} \\
& \text { 16. } \frac{a^{2}-(b-2 c)^{2}}{a-(b-2 c)} \\
& \text { 17. } \frac{(a-b)^{2}-(c-1)^{2}}{(a-b)+(c-1)} \\
& \frac{4 x^{4}-\left(y^{2}+1\right)^{2}}{2 x^{2}+\left(y^{2}+1\right)}
\end{aligned} \text { 19. } \frac{1-(a+b-c)^{2}}{1+(a+b-c)} \text { 20. } \frac{(2 a+3 b)^{2}-(5 x-4 y)^{2}}{(2 a+3 b)-(5 x-4 y)} \text { (} 2 x+1
$$

Write a divisor and quotient for each of the following:
21. $\frac{a^{2}-4 x^{2}}{=}$
24. $\frac{9 a^{2}-(x+y)^{2}}{=}$
22. $\frac{a^{4}-4 x^{6}}{=}$
23. $\frac{x^{6}-y^{6}}{=}$

Find two factors for each of the following:
27. $2500-16$
28. 2484
29. 2491
31. 99.19
32. 6319
33. Divide $a^{2}-b^{2}$ by $a-b$. Divide $(a-b)^{2}$ by $(a-b)$.
34. Find the difference in value between $(x+y)^{2}$ and $x^{2}+y^{2}$, when $x=2$ and $y=3$.
83. II and III. Division of Sum or Difference of Two Cubes.

By actual division we can obtain,

$$
\frac{a^{3}+b^{3}}{a+b}=a^{2}-a b+b^{2}, \quad \text { and } \frac{a^{3}-b^{3}}{a-b}=a^{2}+a b+b^{2}
$$

Hence, in general language,
The sum of the cubes of two quantities is divisible by the sum of the quantities, and the quotient is the square of the first quantity, minus the product of the two quantities, plus the square of the second quantity; also

The difference of the cubes of two quantities is divisible by the difference of the quantities, and the quotient is the square of the first quantity, plus the product of the two quantities, plus the square of the second.

Ex. 1. $\frac{8 x^{3}-27 y^{3}}{2 x-3 y}=\frac{(2 x)^{3}-(3 y)^{3}}{2 x-3 y}$

$$
\begin{aligned}
& =(2 x)^{2}+(2 x)(3 y)+(3 y)^{2} \\
& =4 x^{2}+6 x y+9 y^{2} \text { Quotient }
\end{aligned}
$$

Ex. 2. $\frac{(a-b)^{3}+27}{(a-b)+3}=(a-b)^{2}-3(a-b)+9$

$$
=a^{2}-2 a b+b^{2}-3 a+3 b+9 \text { Quotient }
$$

Let the pupil check the work in these examples.

EXERCISE 33

Write at sight the quotient for each of the following and check each result:

1. $\frac{a^{3}+8}{a+2}$
2. $\frac{x^{3}-1}{x-1}$
3. $\frac{27 x^{3}-64}{3 x-4}$
4. $\frac{1+8 x^{6}}{1+2 x^{2}}$
5. $\frac{125-x^{9}}{5-x^{3}}$
6. $\frac{27 a^{6}+y^{12}}{3 a^{2}+y^{4}}$
7. $\frac{x^{6}+y^{6}}{x^{2}+y^{2}}$
8. $\frac{.008 x^{3}-y^{3}}{.2 x-y}$
9. $\frac{\frac{1}{8} x^{3}-\frac{1}{27} y^{3}}{\frac{1}{2} x-\frac{1}{3} y}$
10. Divide $8 a^{3}+27 b^{3}$ by $2 a+3 b$ by the method of long division. Now write out the same quotient by the method of Art. 83. Estimate how much of the labor of division is saved by using the second method of obtaining the quotient.
11. Make up and work an example similar to Ex. 11.
12. Treat $(a+b)^{3}-8 x^{3}$ divided by $(a+b)-2 x$ as in Ex. 11.

Obtain in the shortest way the quotient for each of the following:
14. $\frac{c^{3}+(1-x)^{3}}{c+(1-x)}$
17. $\frac{(a-1)^{3}-x^{6}}{(a-1)-x^{2}}$
15. $\frac{8-(x+y)^{3}}{2-(x+y)}$
18. $\frac{8 x^{3}+\left(x^{2}-1\right)^{3}}{2 x+x^{2}-1}$
16. $\frac{27 x^{6}+125 y^{9}}{3 x^{2}+5 y^{3}}$
19. $\frac{8(x-y)^{3}-z^{3}}{2(x-y)-z}$

Write the binomial divisor and the quotient for
20. $\frac{8 a^{3}-x^{3}}{=}$
21. $\frac{8 a^{3}-27 x^{3}}{=}$
22. $\frac{x^{3}+8 b^{3}}{=}$
23. $\frac{1-64 x^{3}}{=}$

$$
\text { 24. } \frac{8 a^{3}+1}{=}
$$

$$
\text { 25. } \frac{x^{6}+y^{6}}{=}
$$

$$
\text { 26. } \frac{x^{12}+y^{12}}{}=
$$

$$
\text { 27. } \frac{8 x^{6}-(a+b)^{3}}{=}
$$

$$
\text { 28. } \frac{(a+b)^{3}+(x+y)^{3}}{=}
$$

Find a factor of each of the following:
29. $20^{3}+3^{3}$
30. $8000+27$
31. 8027
32. 7973
33. 125027
34. 124973
35. Divide a^{3}. b^{3} by $a-b$. Also divide $(a-b)^{3}$ by $a-b$.
36. Find the difference in value between $x^{3}+y^{3}$ and $(x+y)^{3}$ when $x=2$ and $y=3$.

Write a binomial divisor and the corresponding quotient for each of the following miscellaneous examples:
37. $\frac{a^{2}-4 b^{2}}{}=$
38. $\frac{a^{3}-8 b^{3}}{=}$
39. $\frac{a^{3}+8 b^{3}}{=}$
40. $27 x^{3}-1=$
41. $\frac{9 x^{2}-1}{=}$
42. $16 a^{4}-9=$
43. $\frac{8 x^{3}-27 y^{3}}{=}$
44. $\frac{x^{3}+1}{=}$
45. $\frac{x^{2}-1}{=}$
46. $\frac{1-27 x^{3}}{=}$
47. $\frac{a^{2}-4(x+y)^{2}}{}=$
48. $\frac{a^{3}-8(x+y)^{3}}{8(x+y)^{3}+a^{3}}=$
49. $8(x+y)^{3}+a^{3}=$
50. $\frac{a^{4}-9(x-y)^{2}}{}=$
51. $\frac{27 a^{3}-(x-y)^{3}}{=}$
52. $\frac{(x+y)^{2}-(x-y)^{2}}{=}$
54. How many of the examples in this Exercise can you work at sight?
55. How many examples in Exercise 1 (p. 8) can you now work at sight?
84. IV, V, and VI. Division of Sum or Difference of any Two Like Powers.

By actual division we can obtain,

$$
\begin{aligned}
& \frac{a^{4}-b^{4}}{a+b}=a^{3}-a^{2} b+a b^{2}-b^{3} \text { Quotient } \\
& \frac{a^{4}-b^{4}}{a-b}=a^{3}+a^{2} b+a b^{2}+b^{3} \text { Quotient }
\end{aligned}
$$

$a^{4}+b^{4}$ is not divisible by either $a+b$ or $a-b$. But

$$
\begin{aligned}
& \frac{a^{5}+b^{5}}{a+b}=a^{4}-a^{3} b+a^{2} b^{2}-a b^{3}+b^{4} \text { Quotient } \\
& \frac{a^{5}-b^{5}}{a-b}=a^{4}+a^{3} b+a^{2} b^{2}+a b^{3}+b^{4} \text { Quotient }
\end{aligned}
$$

Hence,

The difference of two like even powers of two quantities is divisible by the sum of the quantities, and also by their difference;

The sum of two like odd powers of two quantities is divisible by the sum of the quantities;

The difference of two like odd powers of two quantities is divisible by the difference of the quantities:

For the quotient in all these cases -
(1) The number of terms in a quotient equals the degree of the powers whose sum or difference is divided;
(2) The terms of each quotient are homogeneous (since the exponent of a decreases by 1 in each term, and that of \boldsymbol{b} increases by 1 in each term).
(3) If the divisor is a difference, the signs of the quotient are all plus; if the divisor is a sum, the signs of the quotient are alternately plus and minus.

In the above statements the parts in italics should be committed to memory.

The last statement forms a general rule for signs of a quotient in all the cases of abbreviated division, including [-VI.

$$
\begin{aligned}
& \text { Ex. 1. } \begin{aligned}
& \frac{32 x^{5}+y^{5}}{2 x+y}=\frac{(2 x)^{5}+y^{5}}{2 x+y} \\
&=(2 x)^{4}-(2 x)^{3} y+(2 x)^{2} y^{2}-(2 x) y^{3}+y^{4} \\
&=16 x^{4}-8 x^{3} y+4 x^{2} y^{2}-2 x y^{3}+y^{4} \text { Quotient. } \\
& \text { Ex. 2. } \begin{aligned}
\frac{a^{10}+x^{10}}{a^{2}+x^{2}} & =\frac{\left(a^{2}\right)^{5}+\left(x^{2}\right)^{5}}{a^{2}+x^{2}} \\
& =\left(a^{2}\right)^{4}-\left(a^{2}\right)^{3}\left(x^{2}\right)+\left(a^{2}\right)^{2}\left(x^{2}\right)^{2}-\left(a^{2}\right)\left(x^{2}\right)^{3}+\left(x^{2}\right)^{4} \\
& =a^{8}-a^{6} x^{2}+a^{4} x^{4}-a^{2} x^{6}+x^{8}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

EXERCISE 34

Write at sight the quotient for each of the following and check each result:

1. $\frac{a^{5}+x^{5}}{a+x}$
2. $\frac{a^{5}-x^{5}}{a-x}$
3. $\frac{b^{7}+y^{7}}{b+y}$
4. $\frac{b^{7}-y^{7}}{b-y}$
5. $\frac{a^{5}+32}{a+2}$
6. $\frac{a^{7}-128}{a-2}$
7. $\frac{x^{5}-1}{x-1}$
8. $\frac{x^{5}+1}{x+1}$
9. $\frac{32 x^{5}-y^{5}}{2 x-y}$
10. $\frac{a^{11}+x^{11}}{a+x}$
11. $\frac{x^{10}-y^{15}}{x^{2}-y^{3}}$
12. $\frac{243-a^{5}}{3-a}$
13. Divide $32 a^{5}+x^{5}$ by $2 a+x$ by the method of long division. Now write the same quotient by the method of Art. 84, p. 128. Estimate how much of the labor of division is saved by using the second method.
14. Make up and work an example similar to Ex. 13.

Write a binomial divisor and the corresponding quotient for each of the following:
15. $\frac{a^{5}+y^{5}}{}=$
16. $\frac{a^{5}-y^{5}}{}=$
17. $\frac{b^{7}+x^{7}}{}=$
18. $\frac{b^{7}-x^{7}}{=}$
22. $\frac{y^{5}+1}{=}$

Obtain a factor of each of the following:
23. 100,001
a4. 100,243
25. 100,032
26. 99,757
27. Divide $a^{5}+b^{5}$ by $a+b$. Also divide $(a+b)^{5}$ by $a+b$.
28. Find the difference in value between $x^{5}-y^{5}$ and $(x-y)^{5}$, when $x=3$ and $y=2$.

EXERCISE 35

Review

Write at sight the quotient for each of the following:

1. $\frac{b^{2}-x^{2}}{b-x}$
2. $\frac{b^{3}-x^{3}}{b-x}$
3. $\frac{b^{5}-x^{5}}{b-x}$
4. $\frac{b^{5}+x^{5}}{b+x}$
5. $\frac{b^{3}+x^{3}}{b+x}$
6. $\frac{b^{2}-4 x^{2}}{b+2 x}$
7. $\frac{b^{3}-8 x^{3}}{b-2 x}$
8. $\frac{b^{5}-32 x^{5}}{b-2 x}$
9. $\frac{b^{3}+8 x^{3}}{b+2 x}$
10. $\frac{x^{2}-4(a+b)^{2}}{x-2(a+b)}$
11. $\frac{x^{3}-8(a+b)^{3}}{x-2(a+b)}$
12. $\frac{8 x^{3}-a^{3}}{2 x-a}$
13. $\frac{27 a^{6}-8(x+y)^{3}}{3 a^{2}-2(x+y)}$
14. $\frac{x^{12}+y^{9}}{x^{4}+y^{3}}$
15. $\frac{x^{12}-y^{8}}{x^{6}+y^{4}}$
16. In Ex. 11 remove the parenthesis in the dividend and divisor, and divide by long division. The work required is about how many times that required in the abbreviated process?

Write a binomial divisor and the corresponding quotient for each of the following:
17. $\frac{b^{3}-8 y^{3}}{}=$
18. $\frac{b^{2}-4 y^{2}}{}=$
19. $\frac{b^{3}+8 y^{3}}{}=$
20. $\frac{8 x^{3}-27}{}=$
21. $\frac{8 x^{3}+27}{}=$
22. $\frac{4 x^{2}-9}{}=$
23. $\frac{a^{5}-1}{=}=$
24. $\frac{a^{2}-4(x+y)^{2}}{=}$
25. $\frac{a^{3}+8(x+y)^{3}}{=}$
26. $\frac{a^{3}-8(x+y)^{3}}{}=$
27. $\frac{8 x^{6}+y^{9}}{}=$
28. $\frac{4 x^{4}-y^{6}}{=}$
29. $\frac{32 a^{5}-y^{5}}{}=$
30. $\frac{8 x^{6}-y^{9}}{=}$

Divide each of the following by $x-a$ in a short way:
31. $x^{3}-a^{3}+x^{2}-a^{2}$
32. $x^{3}-a^{3}+5\left(x^{2}-a^{2}\right)$
33. $x^{3}-a^{3}+5(x-a)$
34. $3\left(x^{3}-a^{3}\right)+4(x-a)$
35. $(x-a)^{3}+5\left(x^{2}-a^{2}\right)$
36. $7(x-a)^{3}+5(x-a)$

Find the value of each of the following in the shortest way:
37. $(a+b)(a+b)(a-b)(a-b)$
38. $(a+2 b)(a+2 b)(a-2 b)(a-2 b)$
39. $(3 x-2 y)(3 x-2 y)(3 x+2 y)(3 x+2 y)$

Simplify:
40. $5 x-3(x-2)^{2}-3(3-2 x)(1+x)$
41. $7-5(x-2)^{2}-3(3-2 x)(-x)$

Solve:
42. $(x-8)(x+12)-(x+1)(x-6)=0$
43. $(2 x-1)(x+3)-(x-3)(2 x-3)=72$
44. $\frac{x^{2}-4}{x-2}+3 x=8 \quad$ 45. $\frac{x^{3}-8}{x-2}-x^{2}+4=0$
46. Four times a certain number diminished by 12.07 , equals twice the number increased by 1.13 . Find the number.
47. Separate 1000 into three parts such that the second part is three times as large as the first part, and the third part exceeds the first part by 100 .
48. The Suez Canal is 100 miles long. This is 2 miles more than 8 times the length of the Simplon Tunnel. Find the length of the tunnel.
49. The temperature of the electric arc is $5400^{\circ} \mathrm{F}$. This is 464° more than 8 times the temperature at which lead fuses. Find the temperature at which lead fuses.
50. The velocity of sound in the air is 1090 ft . per second. This rate is 10 ft . more than 9 times the rate at which sensation travels along a nerve. Find the rate at which sensation travels. How does this compare with the velocity of an express train going 60 miles per hour?
51. Who first used the sign + to denote addition, and when? (See p. 268.)
52. Give some other symbols used to represent addition before the sign + was invented. Discuss as far as you can the relative advantages of these signs.
53. Answer the questions in Ex. 52 for the subtraction sign.
54. Answer the questions in Ex. 52 for the sign \times.
55. Answer the questions in Ex. 52 for the sign \div.
56. Answer the questions in Ex. 52 for the sign $=$.

CHAPTER VIII

FACTORING

85. The Factors of an expression (see Art. 11) are the quantities which, multiplied together, produce the given expression.

Factoring is the process of separating an algebraic expression into its factors.
86. Utility of Factoring. If it is known that

$$
x^{2}-8 x+15=(x-3)(x-5)
$$

and $\quad 2 x^{2}-13 x+21=(2 x-7)(x-3)$
Then $\quad \frac{x^{2}-8 x+15}{2 x^{2}-13 x+21}=\frac{(x-3)(x-5)}{(x-3)(2 x-7)}=\frac{x-5}{2 x-7}$
The above reduction of a fraction to a simpler form illustrates the usefulness of a knowledge of factoring in enabling us to simplify work and save labor.

Why do we now proceed to make definitions and rules and to divide the topic, Factoring, into cases?
87. A Prime Quantity in algebra is one which cannot be divided by any quantity except itself and unity; as a, b, $a^{2}+b^{2}, 17$.

In all work in factoring, prime factors are sought, unless the contrary is stated.
88. Perfect Square and Perfect Cube. When an expression is separable into two equal factors, the expression is 134
called a perfect square, and each of the factors is the square root of the expression.

Thus, $9 a^{2} x^{4}=3 a x^{2} \cdot 3 a x^{2}$. $\therefore 3 a x^{2}$ is the square root of $9 a^{2} x^{4}$.
Also, $x^{2}-4 x+4=(x-2)(x-2)$, and is therefore a perfect square, with $x-2$ for its square root.

When an expression is separable into three equal factors, the expression is called a perfect cube, and each of the factors is its cube root.

Thus, $27 a^{3} x^{6} y^{9}=3 a x^{2} y^{3} \cdot 3 a x^{2} y^{3} \cdot 3 a x^{2} y^{3}$.

$$
\therefore 3 a x^{2} y^{3} \text { is the cube root of } 27 a^{3} x^{6} y^{9} \text {. }
$$

89. The Factors of a Monomial are recognized by direct inspection.

Thus, the factors of $7 a^{2} x^{3}$ are $7, a, a, x, x, x$.
90. Factors of Polynomials. Multiply $4 x^{2}+2 x y+y^{2}$ by $4 x^{2}-2 x y+y^{2}$. What terms are canceled in adding the partial products? Because these terms have been thus canceled and have disappeared, it is difficult to take the final product $16 x^{4}+4 x^{2} y^{2}+y^{4}$ and from it discover the original factors which were multiplied together to produce it.

Hence, in factoring polynomials various methods must be devised to meet different cases, and the cases must be carefully discriminated.

Case I

91. A Polynomial having a Common Factor in all its Terms.

Ex. Factor $3 x^{2}+6 x$.

$$
3 x^{2}+6 x=3 x(x+2) \text { Factors }
$$

At first, in working examples of this kind, it is well to put the work in the following form:

$$
\frac{3 x) 3 x^{2}+6 x}{x+2}=3 x(x+2) \text { Factors }
$$

Check by Substitution If we let $x=2$

$$
3 x(x+2)=6(2+2)=24
$$

Also

$$
3 x^{2}+6 x=12+12=24
$$

Check by Multiplication

$$
\begin{gathered}
x+2 \\
3 x \\
\hline 3 x^{2}+6 x
\end{gathered}
$$

Hence, in general,
Divide all the terms of the polynomial by their largest common factor;

The factors will be the divisor and quotient.

EXERCISE 36

Factor the following and check the work for each example cither by substitution or by multiplication, or by both as the teacher may direct:

1. $2 x^{3}+5 x^{2}$
2. $3 a^{3} x^{2}-15 a^{2} x^{3}$
3. $\frac{3}{8} a^{2} b-\frac{5}{2} a b^{2}$
4. $x^{3}-2 x$
5. $18 x^{5}-27 x^{4} y$
6. $\frac{5}{6} a x^{3}-2 x^{4}$
7. $x^{2}+x$
8. $x^{2}-x^{3}-x^{4}$
9. $.2 x^{3}+.4 a x^{2}$
10. $3 a^{2}-a$
11. $a^{2} x-2 a^{2} x^{2}$
12. . $02 a x^{2}-.4 a^{2} x^{2}$
13. $7 a+14 a^{3}$
14. $\frac{1}{2} x^{3}+\frac{1}{4} x^{2}$
15. $1.2 m n-.6 m^{2}$
16. $3 a^{2}-6 a x+9 x^{2}$
17. $a^{4} b^{3} c-a^{3} b^{3} c^{3}+2 a^{2} b^{4} c^{2}$
18. $2 x+4 x^{2}-6 x^{3}$ 20. $2 x^{n} y^{4}-8 x^{2 n} y^{3}+6 x^{3 n} y^{2}$
19. $10 a^{3} b^{2}-35 a^{2} b^{3}$
20. $a^{m} b^{3} c^{2 n}+11 a^{m} b^{3} c^{2 n+1}$
21. $7(a+b) x+5(a+b) y$
22. $7(a+b) x^{2} y+5(a+b)^{2} x y^{2}$
23. $21(x-y)^{2}-14(x-y)^{3}$
24. $9(2 x-a)^{3}-12(2 x-a)^{5}$

In the shortest way find the value of
26. $847 \times 915-847 \times 913$
27. $312.75 \times 87-312.75 \times 84$
28. $8 \times 11 \times 23^{2}+7 \times 11 \times 23^{2}-5 \times 11 \times 23^{2}$
29. $\pi R^{2}+\pi r^{2}$ when $\pi=\frac{2}{7}{ }^{2}, R=8$, and $r=6$.
30. $\pi R^{2}-\pi r^{2}$ when $\pi=\frac{22}{7}, R=410$, and $r=60$.

Find the value of x in the following equations:
31. $a x+b x=10$. (What does the value of x become when $a=5$ and $b=15$?)
32. $a x=10-b x$
33. $a x+b x+c x=12$
34. $2 a x-b x+3 c x=15$

Factor the numerator and denominator of each of the following fractions and then simplify the fraction by canceling factors:
35. $\frac{3 a^{2} b-6 a b^{2}}{3 a^{2} b+6 a b^{2}}$
36. $\frac{x^{3}+2 x^{2}}{3 x^{4}-6 x^{2}}$
37. $\frac{a^{2} x^{3}}{4 x^{4}-6 x^{3}}$
38. $\frac{3 p q-6 p^{2} q^{2}}{12 p^{3} q^{3}-6 p q}$
39. From an examination of Exs. 26-38, state the uses or advantages of being able to factor by the method of Case I.
40. How many of the examples in this Exercise can you work at sight?

Case II

92. A Trinomial that is a Perfect Square. By Arts. 75 and 76 a trinomial is a perfect square when its first and last terms are perfect squares and positive, and the middle term is twice the product of the square roots of the end terms. The
sign of the middle term determines whether the square root of the trinomial is a sum or a difference.

Ex. 1. Factor $16 x^{2}-24 x y+9 y^{2}$.

$$
16 x^{2}-24 x y+9 y^{2}=(4 x-3 y)(4 x-3 y) \text { Factors }
$$

Ex. 2. Factor $(a+b)^{2}+4(a+b) x+4 x^{2}$.

$$
\begin{aligned}
(a+b)^{2}+4(a+b) x+4 x^{2} & =[(a+b)+2 x]^{2} \\
& =(a+b+2 x)^{2} \text { Ans. }
\end{aligned}
$$

Hence, in general, to factor a trinomial that is a perfect square,

Take the square roots of the first and last terms, and connect these by the sign of the middle term;

Take the result as a factor twice.

EXERCISE 37

Factor and check:

1. $4 x^{2}+4 x y+y^{2}$
2. $16 a^{2}-24 a y+9 y^{2}$
3. $25 x^{2}-10 x+1$
4. $x^{2}-20 x y+100 y^{2}$
5. $49 c+28 b c^{2}+4 b^{2} c^{3}$
6. $a^{3} b^{2}+4 a^{3} b+4 a^{3}$
7. $x y^{2}+2 x y+x$
8. $2 m^{2} n-4 m n+2 n$
9. $a^{5}+2 a^{4}+a^{3}$
10. $4 x^{3}+44 x^{2} y^{2}+121 x y^{4}$
11. $81 a^{3} b+126 a^{2} b^{2}+49 a b^{3}$
12. $8 a^{2} y-40 a x y+50 x^{2} y$
13. $2 x^{4}-8 x^{3}+8 x^{2}$
14. $30 x^{2} y+3 x^{4}+75 y^{2}$
15. $a^{3} x+a x^{3}-2 a^{2} x^{2}$
16. $x^{2 n}+2 x^{n} y+y^{2}$
17. $(a-b)^{2}-2 c(a-b)+c^{2}$
18. $9(x+y)^{2}+12 z(x+y)+4 z^{2}$
19. $16(2 a-3)^{2}-16 a b+24 b+b^{2}$
20. $25(x-y)^{2}-120 x y(x-y)+144 x^{2} y^{2}$
21. $a^{2}+b^{2}+c^{2}+2 a b+2 a c+2 b c$
22. $4=2+4 x y+9 y^{2}$
23. $\frac{1}{4} x^{2}+\frac{1}{3} x y+{ }_{9}^{9} y^{2}$
24. $.04 a^{2}-.12 a b+.09 b^{2}$
25. $25 a^{2}-30 a x+9 x^{2}$

Solve the following equations for x :
26. $a x-3 b x=a^{2}-6 a b+9 b^{2}$
27. $a x+3 b x=a^{2}+6 a b+9 b^{2}$
28. $x-2 a x=1-4 a x-4 a^{2}$
29. $2 a x+3 b x=4 a^{2}+12 a b+9 b^{2}$

Factor the following examples in Cases I and II, and check each result:
30. $x^{3}-4 x^{2}+4 x$
31. $x^{3}-3 x^{2}+4 x$
32. $m^{5}-2 m^{4} n+m^{3} n^{2}$
33. $m^{5}-m^{4} n+m^{3} n^{2}$
34. $a^{3} x^{2}-8 a^{3} x+16 a^{3}$
35. $a^{2} x^{2}-6 a^{2} x+4 a^{2}$
36. $10 a^{2}-20 a+10$
37. $20 a^{2}-10 a+10$
38. $16 a^{2} p^{2}-24 a^{2} p+9 a^{2}$
39. $4 x^{4}+4 x^{3} y+x^{2} y^{2}$
40. $8 x^{3}+16 x^{2} y+x y^{4}$
41. $16 m^{2} n^{3}-9 m n^{3}+n^{3}$
42. How many of the examples in this Exercise can you work at sight?

Case III

93. The Difference of Two Perfect Squares.

From Art. 77, p. 112, $\quad(a+b)(a-b)=a^{2}-b^{2}$
Hence,

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

But any algebraic quantities may be used instead of a and b. Hence, in general, to factor the difference of two squares, Take the square root of each square;
The factors will be the sum of these roots and their difference.

Ex. 1. Factor $x^{2}-16 y^{2}$.

$$
x^{2}-16 y^{2}=(x+4 y)(x-4 y) \text { Factors }
$$

Ex. 2. Factor $x^{4}-y^{4}$.

$$
\begin{aligned}
x^{4}-y^{4} & =\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right) \\
& =\left(x^{2}+y^{2}\right)(x+y)(x-y) \text { Factors }
\end{aligned}
$$

Ex. 3. Factor $(3 x+4 y)^{2}-(2 x+3 y)^{2}$.

$$
\begin{aligned}
&(3 x+4 y)^{2}-(2 x+3 y)^{2}=[(3 x+4 y)+(2 x+3 y)][(3 x+4 y)- \\
&(2 x+3 y)] \\
&=(3 x+4 y+2 x+3 y)(3 x+4 y-2 x-3 y) \\
&=(5 x+7 y)(x+y) \text { Factors } \\
& \text { Let the pupil check the above examples. }
\end{aligned}
$$

EXERCISE 38

Factor and check:

1. $x^{2}-9$
2. $x^{4}-9 a^{2} x^{2}$
3. $m-64 a^{2} m$
4. $242-2 x^{2}$
5. $x^{5}-x^{3}$
6. $100-81 m^{2}$
7. $3 x^{3}-75 x y^{6}$
8. $a^{4}-x^{4}$
9. $1-64 m^{2}$
10. $a^{4}-81 b^{4}$
11. $3 x^{2}-12 y^{2}$
12. $x^{8}-y^{8}$
13. $x^{3}-9 a^{2} x$
14. $x^{5}-x$
15. $a x^{6}-a x^{2}$
16. $a^{8} x-x$
17. $225 x^{2 n}-y^{2}$
18. $2 \frac{1}{4} x^{2}-\frac{4}{9} y^{2}$
19. $\frac{4}{2}{ }_{5} a^{2}-9 b^{2}$
20. $.09 x^{2}-.16 y^{2}$
21. . $01 a^{2}-.04 b^{2}$
22. . $25 y^{2}-\frac{1}{2} 5 b^{2}$
23. $.81 x^{2}-.0025 b^{2}$
24. $x^{4 n}-y^{2 n} z^{6}$
25. $(x+y)^{2}-1$
26. $x^{2}-(y+1)^{2}$
27. $(x-y)^{2}-9$
28. $4(x-y)^{2}-25$
29. $1-36(x+2 y)^{2}$
30. $(x+2 y)^{2}-(3 x+1)^{2}$
31. $25(2 a-b)^{2}-(a-3 b)^{2}$
32. $x^{12} y^{9}-y z^{16}$
33. $81 x^{12}-16 y^{4}$
34. $x^{5}-144 x y^{2} z^{6}$
35. $(a-b)^{2}-4(c+1)^{2}$
36. $1-100\left(x^{2}-x-1\right)^{2}$

Solve the following equations for x :
42. $a x+2 b x=a^{2}-4 b^{2}$
43. $a x-2 b x=a^{2}-4 b^{2}$
44. $3 x-a x=9-a^{2}$
45. $x-b x=1-b^{2}$

Factor the following miscellaneous examples:
46. $a^{2}-4 a$
47. $a^{2}-4$
48. $a^{2}-4 a+4$
49. $a^{3}-4 a$
50. $a^{3}-4 a^{2}+4 a$
51. $a^{4}-4 a^{3}+4 a^{2}$
52. $x^{3}-6 x$
53. $x^{3}-9 x$
54. $a^{3}+9 a^{2} x+6 a x^{2}$
55. $a^{3}+6 a^{2} x+9 a x^{2}$
56. $a^{5}-a x^{4}$
57. $a^{5}+a x^{4}$
58. $(a+x)^{2}-9$
59. $(a+b)^{2}-(x-y-a)^{2}$
60. Make up and work an example in factoring in each of the cases treated thus far.
61. How many of the examples in this Exercise can you work at sight?
62. How many of the examples in Exercise 2 (p.13) can you now work at sight?

Case IV

94. A Trinominal of the Form $x^{2}+b x+c$.

It was found in Art. 79 (p.117) that on multiplying two binomials like $x+3$ and $x-5$, the product, $x^{2}-2 x-15$, was formed by taking the algebraic sum of +3 and -5 for the coefficient of x (viz. -2), and taking their product (-15) for the last term of the result. Hence, in undoing this work to find the factors of $x^{2}-2 x-15$, the essential part of the process is to find two numbers which, added together, will give -2 and, multiplied together, will give -15 .

Ex. 1. Factor $x^{2}+11 x+30$.
The pairs of numbers whose product is 30 are 30 and 1,15 and 2 , 10 and 3,6 and 5 . Of these, that pair whose sum is 11 is 6 and 5 .

Hence,

$$
x^{2}+11 x+30=(x+6)(x+5) \text { Factors }
$$

Ex. 2. Factor $x^{2}-x-30$.
It is necessary to find two numbers whose product is -30 , and whose sum is -1 .

Since the sign of the last term is minus, the two numbers must be one positive and the other negative; and since their sum is -1 the greater number must be negative.

$$
x^{2}-x-30=(x-6)(x+5) \text { Factors }
$$

Ex. 3. Factor $x^{2}+3 x y-10 y^{2}$.
Since $5 y$ and $-2 y$, added give $3 y$, and multiplied give $-10 y^{2}$,

$$
x^{2}+3 x y-10 y^{2}=(x+5 y)(x-2 y) \text { Factors }
$$

Hence, in general, to factor a trinomial of the form

$$
x^{2}+b x+c
$$

Find two numbers which, multiplied together, produce the third term of the trinomial and, added together, give the coefficient of the second term;
x (or whatever takes the place of x) plus the one number, and x plus the other number, are the factors required.

EXERCISE 39

Factor and check:

1. $x^{2}+5 x+6$
2. $x^{2}-x-6$
3. $x^{2}+x-6$
4. $x^{2}+7 x-44$
5. $x^{2}-11 x+30$
6. $x^{2}+x-30$
7. $x^{2}+6 x y-16 y^{2}$
8. $x^{2}-6 x y-16 y^{2}$
9. $x^{2}+8 x+16$
10. $x^{2}+5 x-3$ h

11. $x^{2}-5 x-36$	19. $x^{2} y^{2}-23 x y+132$
12. $x^{4}-5 x^{2}-36$	20. $x^{2}-5 a x-24 a^{2}$
13. $x^{2}+3 x-28$	21. $x^{4}-9 x^{2}+8$
14. $x^{2}-2 x-48$	22. $2 a-14 a x-60 a x^{2}$
15. $x^{2}-8 x-48$	23. $2 x^{3}-22 x^{2}-120 x$
16. $x^{2}+13 x-48$	24. $x^{5}-25 x^{3}+144 x$
17. $x^{2}-22 x-48$	25. $x^{2 n}-x^{n}-56$
18. $x^{2}-4 x-96$	26. $a^{2} b^{2}-11 a b c^{2}-26 c^{4}$

27. $x^{2}+(a+b) x+a b$
28. $x^{2}+(2 a-3 b) x-6 a b$
29. $x^{2}+(a+2 b+c) x+(a+b)(b+c)$
30. $x^{2}+(a+b) x+(a-c)(b+c)$
31. $(x-y)^{2}-3(x-y)-18$

Factor and check each of the following miscellaneous examples:
32. $x^{2}-4 x+4$
33. $x^{2}-4$
34. $x^{2}-4 x+3$
35. $x^{3}-x^{2}-6 x$
36. $x^{3}-4 x$
37. $x^{3}+6 x^{2}+9 x$
38. $a^{4}-4 y^{2}$
39. $a^{4}-4 a^{2} y+a^{2} y^{4}$
40. $a^{8}-1$
41. $x^{2}+5 a x+6 a^{2}$
42. $x-x^{5}$
43. $a^{4}-7 a^{2}+12$
44. Make up and work an example in factoring to illustrate each case treated thus far.
45. How many of the examples in this Exercise can you work at sight?

Case V

95. A Trinomial of the Form $a x^{2}+\boldsymbol{b} x+\boldsymbol{c}$.

From Art. 80 (p. 119) it is evident that the essential part of the process of factoring a trinomial of the form $a x^{2}+b x+c$ lies in determining two factors of the first term and two factors of the last term, such that the algebraic sum of the cross products of these factors equals the middle term of the trinomial.

Ex. Factor $10 x^{2}+13 x-3$.
The possible factors of the first term are $10 x$ and $x, 5 x$ and $2 x$. The possible factors of the third term are -3 and 1,3 and -1 . In order to determine which of these pairs will give $+13 x$ as the sum of their cross products, it is convenient to arrange the pairs thus:

Variations may be made mentally by transferring the minus sign from 3 to 1 ; and also by interchanging the 3 and the 1 .

It is found that the sum of the cross products of

$$
\begin{array}{rr}
5 x, & -1 \\
2 x, & 3
\end{array} \quad \text { is }+13 x
$$

Hence, $\quad 10 x^{2}+13 x-3 \doteq(5 x-1)(2 x+3)$ Factors
Let the pupil check the work.
Hence, in general, to factor a trinomial of the form

$$
a x^{2}+b x+c,
$$

Separate the first term into two such factors, and the third term into two such factors, that the sum of their cross products equals the middle term of the trinomial;

As arranged for cross multiplication, the upper pair taken together and the lower pair taken together form the two factors.

EXERCISE 40

Factor and check:

1. $2 x^{2}+3 x+1$
2. $3 x^{2}-14 x+8$
3. $2 x^{2}+5 x+2$
4. $3 x^{2}+10 x+3$
5. $6 x^{2}-7 x-5$
6. $2 x^{2}+5 x-3$
7. $6 x^{3}+20 x^{2}-16 x$
8. $3 x^{4}-4 x^{3}-4 x^{2}$
9. $8 a^{2}+2 a-15$
10. $2 x^{2}+x-10$
11. $12 x^{2}-5 x-2$
12. $4 x^{2}+11 x-3$
13. $5 x^{2}+24 x-5$
14. $9 x^{3}-15 x^{2}-6 x$
15. $6 x^{2} y-2 x y-4 y$
16. $16 x^{2}-6 x y-27 y^{2}$
17. $12 x^{2}+x y-63 y^{2}$
18. $32 a^{2}+4 a b-45 b^{2}$
19. $4 x^{4}-13 x^{2}+9$
20. $9 x^{4}-148 x^{2}+64$
21. $12 x^{2}-7 x z-12 z^{2}$
22. $24 x^{3}+104 x^{2} y^{2}-18 x y^{4}$
23. $25 a^{4}+9 a^{2} b^{2}-16 b^{4}$
24. $16 x^{4}-10 x^{2} y^{2}-9 y^{4}$
25. $3 x^{2 n}-8 x^{n} y-3 y^{2}$
26. $25 a^{4}-41 a^{2} b^{2}+16 b^{4}$
27. $20-9 x-20 x^{2}$
28. $5+32 x y-21 x^{2} y^{2}$
29. $(a+b)^{2}+5(a+b)-24$
30. $3(x-y)^{2}+7(x-y) z-6 z^{2}$
31. $3\left(x^{2}+2 x\right)^{2}-5\left(x^{2}+2 x\right)-12$
32. $4 x\left(x^{2}+3 x\right)^{2}-8 x\left(x^{2}+3 x\right)-32 x$
33. $2(x+1)^{2}-5\left(x^{2}-1\right)-3(x-1)^{2}$

Factor and check each of the following miscellaneous examples:
34. $4 x^{2}-1$
35. $4 x^{2}+4 x+1$
36. $3 x^{2}+4 x+1$
37. $x^{2}+4 x+3$
38. $x^{4}-1$
39. $x^{3}-x^{2}-6 x$
40. $5 a^{2}+9 a-2$
41. $x^{2}-9 x+18$
42. $x^{3}-6 x^{2}+9 x$
43. $a^{2}-4(x+y)^{2}$
44. $3 x^{2}+7 x-6$
45. $(a+b)^{2}+2(a+b) x+x^{2}$
46. $x^{8}-a^{8}$
47. $x^{7}-x$
48. $x^{2}-a x-2 a^{2}$
49. $2 x^{3}-5 x^{2}-3 x$
50. Make up and work an example in factoring in each case treated thus far.
51. How many of the examples in this Exercise can you work at sight?
52. How many examples in Exercise 25 (p. 101) can you work at sight?

Case VI

96. Sum or Difference of Two Cubes.

From Art. 83 (p. 125), $\quad \frac{a^{3}+b^{3}}{a+b}=a^{2}-a b+\dot{b}^{2}$.
Hence,

$$
\begin{equation*}
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \tag{1}
\end{equation*}
$$

In like manner, $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \ldots$ (2)
But any algebraic expressions may be used instead of a and b in formulas (1) and (2).

Ex. 1. Factor $27 x^{3}-8 y^{3}$.

$$
27 x^{3}-8 y^{3}=(3 x)^{3}-(2 y)^{3}
$$

Use $3 x$ for a and $2 y$ for b in (2) above.

$$
27 x^{3}-8 y^{3}=(3 x-2 y)\left(9 x^{2}+6 x y+4 y^{2}\right) \text { Factors }
$$

In working examples of this type, it is often convenient to call $3 x-2 y$ the "divisor factor" and $9 x^{2}+6 x y+4 y^{2}$ the "quotient factor." Why are these names appropriate in this case?

Ex. 2. Factor $a^{6}+8 b^{9}$.

$$
\begin{aligned}
a^{6}+8 b^{9} & =\left(a^{2}\right)^{3}+\left(2 b^{3}\right)^{3} \\
& =\left(a^{2}+2 b^{3}\right)\left(a^{4}-2 a^{2} b^{3}+4 b^{6}\right) \text { Factors }
\end{aligned}
$$

Ex. 3. Factor $(a+b)^{3}-x^{3}$.

$$
(a+b)^{3}-x^{3}=[(a+b)-x]\left[(a+b)^{2}+(a+b) x+x^{2}\right]
$$

Let the pupil check the above examples.
Hence, in general, to factor the sum or difference of two cubes,

Obtain the values of \boldsymbol{a} and \boldsymbol{b} in the given example, and substitute these values in formula (1) or (2).

97. Sum or Difference of Two Like Odd Powers.

Since the difference of two like odd powers is always divisible by the difference of their roots (see Art. 84, p. 128), the factors of $a^{n}-b^{n}$, when n is odd, are the divisor, $a-b$, and the quotient.

Ex. 1. Factor $a^{5}-b^{5}$.

$$
a^{5}-b^{5}=(a-b)\left(a^{4}+a^{3} b+a^{2} b^{2}+a b^{3}+b^{4}\right)
$$

Since the sum of two like odd powers is divisible by the sum of the roots (see Art. 84, p. 128), the factors of $a^{n}+b^{n}$, when n is odd, are the divisor, $a+b$, and the quotient.

Ex. 2. Factor $x^{5}+32 y^{5}$.

$$
\begin{aligned}
x^{5}+32 y^{5} & =x^{5}+(2 y)^{5} \\
& =(x+2 y)\left[x^{4}-x^{3}(2 y)+x^{2}(2 y)^{2}-x(2 y)^{3}+(2 y)^{4}\right] \\
& =(x+2 y)\left(x^{4}-2 x^{3} y+4 x^{2} y^{2}-8 x y^{3}+16 y^{4}\right) \text { Factors }
\end{aligned}
$$

98. Sum or Difference of Two Like Even Powers.

The difference of two like even powers is factored to best advantage by Case III (p. 139).

Ex. 1. $x^{8}-y^{8}$.

$$
=\left(x^{4}+y^{4}\right)\left(x^{2}+y^{2}\right)(x+y)(x-y) \text { Factors }
$$

The sum of two like even powers cannot in general be factored by elementary methods unless the expression may be
regarded as the sum or difference of two cubes (Art. 96), or other like odd powers.

Ex. 2. $a^{6}+b^{6}=\left(a^{2}\right)^{3}+\left(b^{2}\right)^{3}$

$$
=\left(a^{2}+b^{2}\right)\left(a^{4}-a^{2} b^{2}+b^{4}\right) \text { Factors }
$$

But $a^{2}+b^{2}, a^{4}+b^{4}$, and $a^{8}+b^{8}$ cannot be factored by any elementary method, and are therefore prime expressions.

Let the pupil check the examples of Art. 97 and 98.

EXERCISE 41

Factor and check:

1. $m^{3}-n^{3}$
2. $c^{3}+8 d^{3}$
3. $27-x^{3}$
4. $a^{3}+8 b^{3} c^{3}$
5. $x^{3}-125$
6. $64 y^{3}-27$
7. $a^{3} b^{3}+1$
8. $1-1000 x^{3}$
9. $27 x^{4}+a^{3} x$
10. $512 x^{3}-y^{6}$
11. $a+343 a^{4}$
12. $a^{6}-x^{6}$
13. $x^{12}-y^{6}$
14. $a^{6}-64 n^{12}$
15. $250 x-2 x^{7}$
16. $8 x^{6}+y^{3}$
17. $(a+b)^{3}+1$
18. $125+(2 b-a)^{3}$
19. $8-(c+d)^{3}$
20. $(x-y)^{3}-27 x^{3}$
21. $16 x^{4} y^{6}-54 x z^{3}$
22. $x^{5}+y^{5}$
23. $x^{7}-y^{7}$
24. $a^{6}+m^{6}$
25. $x^{12}+y^{12}$
26. $a^{7}-128 b^{7}$
27. $a^{11}+x^{11}$
28. $a^{9}+b^{9}$
29. $32 x^{5}-1$
30. $a^{11}-b^{11}$
31. $243-x^{5}$
32. $64-(a-b)^{3}$
33. $8(x-2 y)^{3}+1$
34. $a^{10}-b^{10}$
35. $a^{10}+b^{10}$
36. $32 x^{5}-a^{10}$
37. $a^{6}+y^{9}$
38. $8 x^{12}+y^{9}$
39. Make up a binomial expression whose terms contain unlike exponents and which can be factored as the sum of two cubes. Also one that can be factored as the sum of two 5th powers.
40. Make up a binomial the exponents in whose terms are even numbers, and which can be factored as the sum of
two cubes. Also one that can be factored as the sum of two 5th powers.
41. State which of the following expressions can be factored:

$$
\begin{array}{llll}
x^{3}+y^{8} & x^{3}+y^{5} & x^{3}-y^{10} & x^{6}+y^{10} \\
x^{3}+y^{9} & x^{3}-y^{12} & x^{6}+y^{8} & x^{6}+y^{12} \\
x^{3}+y^{6} & x^{6}-y^{9} & x^{6}+y^{9} & x^{5}-y^{10}
\end{array}
$$

Factor and check each of the following miscellaneous examples:
43. $x^{2}-4 a^{2}$
51. $x^{6}+a^{9}$
44. $x^{3}-8 a^{3}$
52. $x^{6}-a^{6}$
45. $x^{2}-4 a x+4 a^{2}$
46. $x^{2}-4 a x+3 a^{2}$
47. $x^{4}-a^{4}$
48. $x^{5}+a^{5}$
49. $x^{2}-4(a+b)^{2}$
50. $x^{3}-8(a+b)^{3}$
53. $x^{12}+y^{9}$
54. $x^{12}-y^{12}$
55. $6 a^{2}-13 a+6$
56. $16 x^{2}-8 x y+y^{2}$
57. $x^{4}+27 a^{3} x$
58. $x^{12}+y^{3}$
59. Make up and work an example in factoring to illustrate each case treated thus far.
60. How many of the examples in this Exercise can you work at sight?

Case VII

99. A Polynomial whose Terms may be Grouped so as to be Divisible by a Binomial Divisor.

Ex. 1. $a x-a y-b x+b y=(a x-a y)-(b x-b y)$

$$
\begin{aligned}
& =a(x-y)-b(x-y) \\
& =(a-b)(x-y) \text { Factors }
\end{aligned}
$$

The last step in the preceding process is sometimes clearer to the pupil when written in the following form:

$$
(x-y) \frac{\alpha(x-y)-b(x-y)}{a}=(x-y)(a-b) \text { Factors }
$$

Ex. 2. $1+15 a^{4}-5 a-3 a^{3}=1-3 a^{3}-5 a+15 a^{4}$

$$
\begin{aligned}
& =\left(1-3 a^{3}\right)-5 a\left(1-3 a^{2}\right) \\
& =\left(1-3 a^{3}\right)(1-5 a) \text { Factors }
\end{aligned}
$$

Ex. 3. $a^{3}+3 a^{2}-4=a^{3}+2 a^{2}+a^{2}-4$

$$
\begin{aligned}
& =a^{2}(a+2)+(a+2)(a-2) \\
& =(a+2)\left(a^{2}+a-2\right) \\
& =(a+2)(a+2)(a-1) \text { Factors }
\end{aligned}
$$

Let the pupil check the above examples.

EXERCISE 42

Factor and check:

1. $a x+a y+b x+b y$
2. $x^{2}-a x+c x-a c$
3. $5 x y-10 y-3 x+6$
4. $3 a m-4 m n-6 a y+8 n y$
5. $a^{2} x+3 a x+a c x+3 c x$
6. $3 a^{2}+3 a b-5 a n-5 b n$
7. $x^{4}+x^{3}+2 x^{2}+2 x$
8. $2 x^{4}-2 x^{3}-2 a^{2} x^{2}+2 a^{2} x$
9. $y^{3}+y^{2}+y+1$
10. $a x^{2}-2 a^{2} x-x+2 a$
11. $x^{2}+3 y-3 x-x y$
12. $z^{3}-z^{2}-z+1$
13. $a b-b y-a+y$
14. $x^{5}-x^{4}-4 x+4$
15. $a^{2} x^{2}-b^{2} x^{2}-a^{2} y^{2}+b^{2} y^{2}$
16. $x(x+4)^{2}+4(x+4)$
17. $a^{2}(a+3)-3(a+3)$
18. $2\left(x^{2}-y^{2}\right)-(x-y)$
19. $4 x(x-1)^{2}+x-1$
20. $x^{3}-1+2\left(x^{2}-1\right)$
21. $x^{2}-y^{2}+x^{3}-y^{3}$
22. $x-y+x^{3}-y^{3}$
23. $x^{3}-y^{3}-x^{2}+y^{2}$
24. $x^{3}-y^{3}-(x-y)^{2}$
25. $4 a^{2}-a^{2} x^{2}+x^{2}-4$
26. $x^{3}-y^{3}+x^{2}-y^{2}+x-y$

> 27. $4 a x^{3}+8 a x-8 a-4 a x^{2}$
> 28. $a(3 a-x)^{2}-6 a x^{2}+2 x^{3}$
29. $x^{3}-8-7(x-2)$
30. $4\left(x^{3}+27\right)-31 x-93$
31. $(2 x+1)^{3}-(2 x+1)(3 x+4)$
32. $(2 x-3)^{3}+2 x^{2}-9 x+9$

$$
\begin{aligned}
& \text { 33. } x^{3}-7 x-6 \\
& \text { 34. } x^{3}-3 x^{2}-10 x+24 \\
& \text { 35. } x^{3}-8 x^{2}+17 x-10
\end{aligned}
$$

Factor and check each of the following miscellaneous examples:
36. $a^{3}-8 x^{3}$
37. $a^{2}-16 x^{2}$
38. $a^{2}-6 a x+9 x^{2}$
39. $a x-b x+a y-b y$
40. $a^{2}-a-2$
41. $x^{3}-a^{3}+2(x-a)$
42. $3 a^{2}-4 a-4$
43. $x^{6}+y^{9}$
44. $x^{3}-x^{2}+x-1$
45. $x^{3}-9 x^{2}+18 x$
46. $x^{6}+(a+b)^{3}$
47. $a^{8}-y^{8}$
48. $(a+b)^{2}-2(a+b) p+p^{2}$
49. $(a+b)^{2}-(a+b)-2$
50. $x^{2}+x^{3}-a^{2}-a^{3}$
51. $x+a^{3}-a-x^{3}$
52. Make up and work an example to illustrate each case in factoring treated thus far.
53. How many of the examples in this Exercise can you work at sight?

Special Cases Under Case III

100. By the Grouping of Terms we may often reduce an expression to the difference of two perfect squares.

Ex. 1. Factor $x^{2}-4 x y+4 y^{2}-9 z^{2}$.

$$
\begin{aligned}
x^{2}-4 x y+4 y^{2}-9 z^{2} & =\left(x^{2}-4 x y+4 y^{2}\right)-9 z^{2} \\
& =(x-2 y)^{2}-9 z^{2} \\
& =[(x-2 y)+3 z][(x-2 y)-3 z] \\
& =(x-2 y+3 z)(x-2 y-3 z) \text { Factors }
\end{aligned}
$$

Ex. 2. Factor $a^{2}-x^{2}-y^{2}+b^{2}+2 a b+2 x y$. $a^{2}-x^{2}-y^{2}+b^{2}+2 a b+2 x y=\left(a^{2}+2 a b+b^{2}\right)-\left(x^{2}-2 x y+y^{2}\right)$

$$
=(a+b)^{2}-(x-y)^{2}
$$

$$
=(a+b+x-y)(a+b-x+y)
$$

Let the pupil check the above examples.

EXERCISE 43

Factor and check:

1. $a^{2}+2 a b+b^{2}-x^{2} \quad$ 21. $2 a b+x^{2}-a^{2}-b^{2}$
2. $a^{2}-2 a b+b^{2}-4 x^{2}$
3. $x^{2}+a^{2}-y^{2}-2 a x$
4. $a^{2}-x^{2}-2 x y-y^{2}$
5. $a^{2}+y^{2}-x^{2}+2 a y$
6. $9 a^{2}-x^{2}-4 x y-4 y^{2}$
7. $a^{4}-x^{4}-2 x^{2} y-y^{2}$
8. $16 a^{2}-x^{2}+2 x y-y^{2}$
9. $x^{2}-y^{2}-1-2 y$
10. $m^{2}-x^{2}-y^{2}-2 x y$
11. $1+2 x y-x^{2}-y^{2}$
12. $a^{2}+b^{2}+2 a b-4 x^{2}$
13. $c^{2}-a^{2}-b^{2}+2 a b$
14. $a^{2}+b^{2}-4 x^{2}+2 a b$
15. $a^{2}+b^{2}-c^{2}-2 a b$
16. $a^{2}-4 x^{2}+b^{2}+2 a b$
17. $2 a b+a^{2} b^{2}+1-x^{2}$
18. $x^{2}-2 a b-a^{2}-b^{2}$
19. $2 z^{2}-4 z-2 z^{4}+2$
20. $20 y z+x^{2}-4 y^{2}-25 z^{2}$
21. $a^{2}+2 a b+b^{2}-c^{2}-2 c d-d^{2}$
22. $x^{2}+4 y^{2}-9 z^{2}-1-4 x y-6 z$
23. $9 a^{2}-25 x^{2}+4 b^{2}-1-10 x-12 a b$
24. $a^{2}-9 b^{2} x^{2}-1+6 b x-10 a b+25 b^{2}$

Factor and check each of the following miscellaneous examples:
26. $a x-b x+a y-b y$
27. $a^{2}-x^{2}-2 x y-y^{2}$
28. $a^{2}+a x-a b-b x$
29. $a^{2}-2 a b+b^{2}-x^{2}$
30. $2 a+2 b-3 a-3 b$
31. $4 a^{2}+4 a+1-b^{2}$
32. $9 x^{2}-4 a^{2}-4 a b-b^{2}$
33. $9 x^{2}-9 y^{2}+x-y$
34. $x^{3}-b^{3}+x^{2}-b^{2}$
35. $a^{2}+b^{2}-y^{2}+2 a b$
36. $a^{3}-27 y^{3}$
37. $a^{2}-6 a y+9 y^{2}$
38. $a^{4} x-16 x y^{4}$
39. $3 a^{2}-4 a+1$
40. $x^{5}-8(a+b)^{3}$
41. $a^{6}+y^{9}$
42. Make up and work an example in each case in factoring treated thus far.
43. How many of the examples in this Exercise can you work at sight?
101. The Addition and Subtraction of a Square will sometimes transform a given expression into a difference of two perfect squares.

Ex. 1. Factor $a^{4}+a^{2} b^{2}+b^{4}$.
Add and subtract $a^{2} b^{2}$.

$$
\begin{aligned}
a^{4}+a^{2} b^{2}+b^{4} & =a^{4}+2 a^{2} b^{2}+b^{4}-a^{2} b^{2} \\
& =\left(a^{2}+b^{2}\right)^{2}-a^{2} b^{2} \\
& =\left(a^{2}+b^{2}+a b\right)\left(a^{2}+b^{2}-a b\right) \text { Factors }
\end{aligned}
$$

Ex. 2. Factor $x^{4}-7 x^{2} y^{2}+y^{4}$.
Add and subtract $9 x^{2} y^{2}$.

$$
\begin{aligned}
x^{4}-7 x^{2} y^{2}+y^{4} & =x^{4}+2 x^{2} y^{2}+y^{4}-9 x^{2} y^{2} \\
& =\left(x^{2}+y^{2}\right)^{2}-9 x^{2} y^{2} \\
& =\left(x^{2}+y^{2}+3 x y\right)\left(x^{2}+y^{2}-3 x y\right) \text { Factors }
\end{aligned}
$$

Let the pupil check the above examples.

EXERCISE 44

Factor and check:

1. $c^{4}+c^{2} x^{2}+x^{4}$
2. $x^{4}+x^{2}+1$
3. $4 x^{4}-13 x^{2}+1$
4. $4 a^{4}-21 a^{2} b^{2}+9 b^{4}$
5. $9 x^{4}+3 x^{2} y^{2}+4 y^{4}$
6. $49 c^{4}-11 c^{2} d^{2}+25 d^{4}$
7. $16 x^{4}-9 x^{2}+1$
8. $100 x^{4}-61 x^{2}+9$
9. $225 a^{4} b^{4}-4 a^{2} b^{2}+4$
10. $32 a^{4}+2 b^{4}-56 a^{2} b^{2}$
11. $a^{4}+4 b^{4}$
12. $1+64 x^{4}$
13. $x^{4} y^{4}+324$

Factor and check each of the following miscellaneous examples:

$$
\begin{array}{ll}
\text { 14. } a^{4}+2 a^{2} x^{2}+x^{4} & \text { 20. } 4 a^{4}-4 a^{2} x^{2}+x^{4} \\
\text { 15. } a^{4}+a^{2} x^{2}+x^{4} & \text { 21. } a^{2}-a x-6 x^{2} \\
\text { 16. } a^{4}+4 a^{2} x^{2}+3 x^{4} & \text { 22. } b^{4}+a^{2} b^{2}+a^{4} \\
\text { 17. } a^{4}-4 x^{4} & \text { 23. } a^{4}+2 a^{2} b^{2}+b^{4} \\
\text { 18. } a^{4}+4 x^{4} & \text { 24. } a^{8}-x^{8} \\
\text { 19. } 4 a^{4}-13 a^{2} x^{2}+x^{4} & \text { 25. } a^{8}+64 x^{8}
\end{array}
$$

26. Make up and work an example in each case in factoring treated thus far.
27. Other Methods of Factoring algebraic expressions will le treated later. Thus it will be found that

$$
a^{2}+b^{2}=(a+b+\sqrt{2 a b})\left(a^{2}+b^{2}-\sqrt{2 a b}\right)
$$

Also,

$$
a^{2}+b^{2}=(a+\sqrt{-1} b)(a-\sqrt{-1} b)
$$

Factoring by use of the Factor Theorem is treated in more advanced text-books.
103. General Principles in Factoring. It is important in factoring to reduce each expression to its prime factors. Therefore it is important to use the different methods of factoring in such a way as to obtain prime factors most readily.

Hence, in factoring any given expression, it is useful to

1. Obscrve, first of all, whether all the terms of the expression have a common factor (Case I); if so, remove it.
2. Determine which other case in factoring can be used ncxt to the best advantage.
3. If the expression comes under no case directly, try to discorcr its factors by rearranging its terms; or by adding and subtracting the same quantity; or by separating one term into two terms.
4. Continue the process of factoring until each factor can be resolved no further.

EXERCISE 45

Review

Factor:

1. $3 x^{3}-3 x$
2. $2 x^{3}-8 x^{2} y+8 x y^{2}$
3. $x^{3}-11 x^{2}+30 x$
4. $4 x^{3}+5 x^{2} y-6 x y^{2}$
5. $12 a^{2}-2 a b-30 b^{2}$
6. $x^{4}-1-y^{2}+2 y$
7. $40 a^{3}-5$
8. $16 x^{4}-40 x^{3} y+25 x^{2} y^{2}$
9. $x^{2}+3 a x-3 a-x$
10. $3 x^{7}-3 x$
11. $4 a^{4}-5 a^{2}+1$
12. $2 x^{8}-32$
13. $x^{2}+4 x-45$
14. $4 x^{2}+2 a-a^{2}-1$
15. $5 a x^{9}-5 a$
16. $18 x^{3}-3 x^{2}-36 x$
17. $x^{4}+3 x^{2} z^{2}+4 z^{4}$
18. $a^{2} x^{2}-9 x^{2}-a^{2}+9$
19. $110-x-x^{2}$
20. $3 x^{2}+13 x y-30 y^{2}$
21. $7 a-7 a^{3} b^{4}$
22. $6 x^{2}+14 x+8$
23. $x^{4}-(x-2)^{2}$
24. $3 a+3 a^{4}$
25. $a^{3}-a^{2}+2 a-2$
26. $6 x^{3}-2 x-4 x^{2}$
27. $1-23 z^{2}+z^{4}$
28. $128-2 y^{3}$
29. $1-a^{2}-b^{2}-2 a b$
30. $21 a^{2}-17 a-30$
31. $x^{12}+y^{12}$
32. $8 x^{3}+729 z^{9}$
33. $405 x^{4} y^{4}-45 x^{4}$
34. $a^{5}-4 a^{3}+5 a^{2}-20$
35. $(c+d)^{3}-1$
36. $(x-y)^{2}+2(x-y)$
37. $24 x^{2}+5 x y-36 y^{2}$
38. $x^{3}-2 x^{2} y-4 x y^{2}+8 y^{3}$
39. $\left(a^{2}-6\right)^{2}-a^{2}$
40. $z^{4}+z^{2}+1$
41. $\left(a^{2}-b^{2}-c^{2}\right)^{2}-4 b^{2} c^{2}$
42. $21 x^{2}-40 x y-21 y^{2}$
43. $32+n^{5}$
44. $5 x^{7}+5 x y^{6}$
45. $m^{7}+n^{7}$
46. $2 a x^{3}+\frac{1}{4} a y^{3}$
47. $1+x-x^{4}-x^{5}$
48. $x^{2}-9-7(x-3)^{2}$
49. $4 a^{4}-37 a^{2}+9$
50. $x^{6}-64$

51. $x^{4}-49 y^{2}+9-6 x^{2}$
52. $x^{4} y^{4}-4 x^{2}+4-y^{2}-4 x^{2} y^{2}+4 x y$
53. $a^{2} n x-b c m^{2} y z+a c m x z-a b m n y$
54. How many of the examples in this Exercise can you work at sight?
55. Work again the odd-numbered examples on p. 88.

104. Factorial Method of Solving an Equation.

Ex. 1. Solve $x^{2}+5 x-24=0$.
Factoring the left-hand member, we obtain

$$
(x+8)(x-3)=0
$$

If any factor of a product equals zero, the entire product equals zero. Hence to obtain the roots for the above equation, we may let each factor in the left-hand member equal zero and obtain the value of x from the two resulting simple equations.

Hence we have for the above equation

$$
\begin{aligned}
x+8 & =0 \\
x & =-8 \text { Root }
\end{aligned}
$$

Check for $x=-8$

$$
\begin{aligned}
x^{2} & +5 x-24 \\
& =64-40-24 \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
\text { Also } \begin{aligned}
x-3 & =0 \\
x & =3 \text { Root } \\
\text { Check for } x & =3 \\
x^{2}+ & 5 x-24 \\
& =9+15-24 \\
& =24-24 \\
& =0
\end{aligned}
\end{aligned}
$$

Ex. 2. Solve $x(x-2)(3 x+4)(x+1)=0$.
Using the above method, we obtain

$$
x=0,2,-\frac{4}{3},-1 \text { Roots }
$$

Check for $x=0 . \quad x(x-2)(3 x+4)(x+1) \quad$ Let the pupil $=0(0-2)(0+4)(0+1)$ apply the checks $=0(-2) 4 \times 1=0 \quad$ for the other values of x.
Ex. 3. Solve $x^{3}-x^{2}=4 x-4$.
Transposing all terms to the left-hand member, we have

$$
\begin{aligned}
x^{3}-x^{2}-4 x+4 & =0 \\
x^{2}(x-1)-4(x-1) & =0 \\
(x-1)\left(x^{2}-4\right) & =0 \\
(x-1)(x+2)(x-2) & =0 \\
x & =1,2,-2 \text { Roots }
\end{aligned}
$$

Hence,

Let the pupil check the work.

EXERCISE 46

Solve and check each of the following:

1. $x^{2}-5 x+6=0$
2. $x^{2}-x-2=0$
3. $x^{2}-7 x=-12$
4. $x^{2}-x=6$
5. $x^{2}=x+12$
6. $x^{2}-16=0$
7. $x^{2}=9$
8. $x\left(x^{2}-4\right)=0$
9. $x^{3}-25 x=0$
10. $x^{3}=9 x$
11. $2 x^{2}-3 x+1=0$
12. $3 x^{2}-4 x=4$
13. $x^{3}-x^{2}-6 x=0$
14. $x^{2}+2 x=0$
15. $x^{2}+a x=0$
16. $x^{3}-a^{2} x=0$
17. $x^{3}+x^{2}=4 x+4$
18. $x^{3}+x^{2}-9 x-9=0$
19. $x^{4}-5 x^{2}+4=0$
20. $x^{3}-x^{2}-4 x+4=0$
21. $3\left(x^{2}-1\right)-2(x+1)=0$
22. $1+x^{4}=2 x^{2}$
23. $y^{4}-9 y^{2}=0$

$$
\text { 27. } y^{4}-13 y^{2}+36=0
$$

Form the equation whose roots are

28. 3 and 4	30. $-3,-7$	32. 0,2
29. $-5,2$	31. $1,2,-2$	33. $2,3,0$

34. The square of a certain number diminished by 4 times the number equals 45 . Find the number.
35. The square of a certain number increased by 6 times the number equals 40 . Find the number.
36. What number plus its square equals 12 ?
37. The square of a certain number diminished by 9 times the number equals zero. Find the number.
38. The square of what number equals 25 times the number?
39. The cube of what number equals 25 times the number?
40. Find two consecutive numbers whose product is 72 .
41. If to 3 times the square of a certain number we add 4 times the number, the result equals 4 . Find the number.
42. The depth of a certain lot equals three times the front, and the area of the lot is 7500 sq. ft . Find the dimensions of the lot.
43. The temperature at which iron fuses is $2800^{\circ} \mathrm{F}$., which is 332° more than 4 times the temperature at which lead fuses. Find the temperature at which lead fuses.
44. The area of Texas is $265,780 \mathrm{sq}$. mi. This is 29,240 sq. mi. less than 6 times the area of New York. Find the area of New York.
45. How many of the examples in this Exercise can you work at sight?
46. How many examples in Exercise 30 (p. 120) can you work at sight?

CHAPTER IX

HIGHEST COMMON FACTOR AND LOWEST COMMON MULTIPLE

105. Utility in the Highest Common Factor and Lowest Common Multiple. The advantages in the knowledge and use of the largest factor common to two or more expressions and of their lowest common multiple are similar to those found in arithmetic for the same principles. They aid in reducing fractions to a simple form, in adding and subtracting fractions, and in multiplying and dividing fractions. Other advantages will appear later.

Why do we now proceed to make definitions and rules?

Highest Common Factor

106. A common factor of two or more algebraic expres sions is an expression which divides each of the given expres. sions without a remainder.

The highest common factor of two or more algebrais expressions is the product of all their prime common factors

Thus, the highest common factor, or H. C. F., of $4 x^{2}, 12 x^{3}$, anc $16 x^{5} y$ is $4 x^{2}$.

107. The Method of Finding the H. C. F. is to

Factor the given expressions, if necessary;
Take the H. C. F. of the numerical coefficients;
Annex the literal factors common to all of the expressions, giving to each factor the lowest exponent which it has in any expression.

Ex. 1. Find the H. C. F. of $6 x^{2} y-12 x y^{2}+6 y^{3}$ and $3 x^{2} y^{2}$ $+9 x y^{3}-12 y^{4}$.
$6 x^{2} y-12 x y^{2}+6 y^{3}=6 y(x-y)^{2}$
$3 x^{2} y^{2}+9 x y^{3}-12 y^{4}=3 y^{2}\left(x^{2}+3 x y-4 y^{2}\right)=3 y^{2}(x+4 y)(x-y)$

$$
\therefore \text { H. C. F. }=3 y(x-y)
$$

Ex. 2. Find the H. C. F. of $3 a\left(a^{2} b-a b^{2}\right)^{2}$ and $a^{2}(b-a)^{2}$.

$$
\begin{aligned}
3 a\left(a^{2} b-a b^{2}\right)^{2} & =3 a[a b(a-b)]^{2}=3 a^{3} b^{2}(a-b)^{2} \\
a^{2}(b-a)^{2} & =a^{2}[-(a-b)]^{2}=a^{2}(a-b)^{2} \\
\therefore \text { H. C. } & =a^{2}(a-b)^{2}
\end{aligned}
$$

EXERCISE 47

Find the H. C. F. of

1. $4 a^{2} b, 6 a b^{2}$
2. $5 x^{3} y, 15 x^{2} y^{2}$
3. $24 a^{2} x^{3}, 56 a^{3} x^{2}$
4. $24 x y, 48 a x^{2}, 36 x$
5. $34 a^{5} x^{3}, 51 a x^{5}$
6. $x^{2}-3 x, x^{2}-9$
7. $4 x^{2}+6 x, 6 x^{2}+9 x$
8. $a^{3}-x^{3}, a^{2}-x^{2}$
9. $x y-y, x^{3}-x$
10. $4 a^{3}+2 a^{2}, 4 a^{3}-a$
11. $x^{2}+x, x^{2}-1, x^{2}-x-2$
12. $4 a^{3} x-4 a x^{3}, 8 a^{2} x^{3}-8 a x^{4}, 4 a^{2} x^{2}(a-x)^{2}$
13. $2 x^{3}-2 x, 3 x^{4}-3 x, 4 x(x-1)^{2}$
14. $6 x^{2}+5 x y-4 y^{2}, 4 x^{2}+4 x y-3 y^{2}$
15. $3 x^{3}-5 x^{2}-2 x, 4 x^{3}-5 x^{2}-6 x, x^{3}-4 x^{4}$
16. $b-a^{2} b, 3 b-a^{2} b-2 a^{4} b, b^{2}-a^{4} b^{2}$
17. $1-a^{3}, 1-a^{6}, 3 a+3 a^{2}+3 a^{3}, 1+a^{2}+a^{4}$
18. Find the H. C. F. of the numerator and denominator of the fraction in Ex. 5 (p. 170).
19. Beginning with Ex. 17 (p. 170), treat each example through Ex. 22 in the same way.

Find the H. C. F. of

$$
\begin{aligned}
& \text { 20. }\left(a^{2} b-a b^{2}\right)^{3},-a^{2} b^{2}(a-b)^{4} \\
& \text { 21. } 9\left(x^{2}-x y\right)^{3}, 12 x^{2}\left(x^{2}-y^{2}\right)^{2} \\
& \text { 22. }(a+b)(x-y),(a-b)(y-x) \\
& \text { 23. }(a+b)(x-y)^{2},(a-b)(y-x)^{2} \\
& \text { 24. } 4-x^{2}, x^{2}-x-2,(2-x)^{2} \\
& \text { 25. } 3 a^{2}-10 a+3,9 a-a^{3},(3-a)^{3} \\
& \text { 26. } x^{2}(x-a)^{2}, x\left(a^{2}-x^{2}\right)
\end{aligned}
$$

27. In Exs. 1 and 6, name some common factor of the two given expressions which is not their H. C. F.
28. Write two expressions whose H. C. F. is $a^{2} x^{3}$.
29. Write also two expressions whose H. C. F. is $3 x(x-1)$.
30. Write three expressions whose H. C. F. is $a(x-b)$.
31. How many of the examples in this Exercise can you work at sight?

Lowest Common Multiple

108. A common multiple of two or more algebraic expressions is an expression which will contain each of them without a remainder.

The lowest common multiple of two or more algebraic expressions is the expression of lowest degree which will contain them all without a remainder.

Thus, the lowest common multiple, or L. C. M., of $3 a^{3}, 6 a^{2} x$, and $4 a x^{2}$ is $12 a^{3} x^{2}$.
109. The Method of Finding the L.C.M. is to

Factor the given expressions, if necessary;
Take the L. C. M. of the numerical coefficients;
Annex each literal factor that occurs in any of the given ex-
pressions, giving the factor the highest exponent which it has in any one expression.

Ex. 1. Find the L. C. M. of $3 x^{4}-9 x^{3}, x^{3}-9 x$, and $x^{2}-6 x+9$.

$$
\begin{aligned}
3 x^{4}-9 x^{3} & =3 x^{3}(x-3) \\
x^{3}-9 x & =x(x+3)(x-3) \\
x^{2}-6 x+9 & =(x-3)^{2} \\
\text {. L. C. M. } & =3 x^{3}(x+3)(x-3)^{2}
\end{aligned}
$$

Ex. 2. Find the L. C. M. of $\left(a^{2} b-a b^{2}\right)^{3}, 2 a b(b-a)^{2}$, and $a^{2}\left(a^{2}-b^{2}\right)^{2}$.

$$
\begin{aligned}
\left(a^{2} b-a b^{2}\right)^{3} & =[a b(a-b)]^{3}=a^{3} b^{3}(a-b)^{3} \\
2 a b(b-a)^{2} & =2 a b[-(a-b)]^{2}=2 a b(a-b)^{2} \\
a^{2}\left(a^{2}-b^{2}\right)^{2} & =a^{2}(a+b)^{2}(a-b)^{2} \\
\therefore \text { ․ . C. M. } & =2 a^{3} b^{3}(a+b)^{2}(a-b)^{3} \text { Ans. }
\end{aligned}
$$

EXERCISE 48

Find the L. C. M. of

1. $3 a^{2} b, 2 a b^{2}$
2. $12 a^{2} x^{2}, 9 a^{2} y^{2}$
3. $2 a c, 3 b c, 4 a b$
4. $3 a^{2} b, 4 a c^{2}, 6 b^{2} c$
5. $42 x^{3} y^{2}, 28 y^{3} z^{2}$
6. $12 a^{2} b, 16 a b^{2}, 24 a^{2} b^{2}$
7. $2 x(x+1), x^{2}-1$
8. $3 a^{2}+3 a b, 2 a b+2 b^{2}$
9. $7 x^{2}, 2 x^{2}-6 x$
10. $x^{3}-1, x^{2}-1$
11. $x^{2}-y^{2}, x^{2}-3 x y+2 y^{2}$
12. $3 x^{3}-3 x, 6 x^{2}-12 x+6$
13. $5 a x^{2}(x-y)^{2}, 3 b x y\left(x^{2}-y^{2}\right)$
14. $x^{3}-3 x^{2}-40 x, x^{2}-9 x+8$
15. $a^{2}-b^{2}, a^{3}-b^{3}, a^{3}+b^{3}$
16. $6 x^{2}+6 x, 2 x^{3}-2 x^{2}, 3 x^{2}-3$
17. $4 a^{2} b+4 a b^{2}, 6 a^{2} b-6 a b^{2}, 3 a^{2}-3 b^{2}$
18. $2 x^{2}+x-1,4 x^{2}-1,2 x^{2}+3 x+1$
19. $3 x^{3}-3,6 x^{2}-12 x+6,2 x^{3}+2 x^{2}+2 x$
20. $12 x^{3}-2 x^{2}-140 x, 18 x^{2}+6 x-180,6 x^{3}-39 x^{2}+63 x$
21. $1-x+x^{2}-x^{3}, 1+x+x^{2}+x^{3}, 2 x-2 x^{3}$
22. $(x-1)^{3}, 7 x y^{3}\left(x^{2}-1\right)^{2}, 14 x^{5} y(x+1)^{3}$
23. $18 x^{3}-12 x^{2}+2 x, 27 x^{5}-3 x^{3}, 18 x^{3}-24 x^{2}+6 x$
24. $(x-1)(x+3)^{2},(x+1)^{2}(x-3),\left(x^{2}-1\right)^{2}, x^{2}-9$
25. Find the L. C. M. of the denominators of the fractions in Ex. 18 (p. 181).
26. Find the L. C. M. also of the denominators of the fractions in each example from Ex. 21 to Ex. 28 (inclusive), p. 181.

Find the L. C. M. of
27. $\left(a^{2} b-a b^{2}\right)^{4}, a^{3} b^{3}(a+b)^{2}$
28. $(a b c-b c d)^{3},\left(3 a^{2} c-3 a c d\right)^{2}, 6 a^{2} c^{2}-6 a^{2} d^{2}$
29. $\left(a^{2} b-a b^{2}\right)^{2},\left(a^{2}-a b\right)^{2},\left(a^{3}+a^{2} b\right)^{2}$
30. $9\left(x^{2}-x y\right)^{3}, 12\left(x^{2}-y^{2}\right)^{2}, 18\left(x^{3}+x^{2} y\right)^{2}$
31. $a-b, b-a$
32. $9(a-b)^{2}, 12(b-a)^{2}$
33. $(a+b)(x-y),(a-b)(y-x)$
34. $(a+b)(x-y)^{2},(a-b)(y-x)^{3}$
35. $4-x^{2}, x^{2}-x-2,(2-x)^{2}$
36. $x^{2}(x-a)^{2}, x\left(a^{2}-x^{2}\right)$.
37. Find two consecutive numbers the difference of whose squares is 5 .
38. Make up and work an example similar to Ex. 37.
39. The reclaimable swamp land in the United States and the land that is capable of irrigation equal $178,000,000$ acres all together. If the irrigable land exceeds the swamp land by $22,000,000$ acres, how many acres of each of these kinds of land are there?
40. The distance from New York to Havana is 1410 mi. If a steamer leaving New York travels at the average rate of 260 mi . per day, and one leaving Havana at the same time, travels at the average rate of 280 mi . per day, how many days and hours will elapse before the two steamers meet?
41. The distance of the sun from the earth is $92,800,000$ mi . This distance exceeds 107 times the diameter of the sun by $95,200 \mathrm{mi}$. Find the diameter of the sun.
42. A man bequeathed $\$ 20,000$ to his wife, daughter, and son. To his daughter he left $\$ 2000$ more than to his son, and to his wife three times as much as to his son. How much did he leave to each?
43. The distance of the moon from the earth is 238,850 mi . This exceeds 110 times the moon's diameter by 1030 mi . Find the diameter of the moon.
44. If 10 m . exceeds 10 yd . by 33.7 in., how many inches are there in a meter?
45. Write a common multiple of the expressions in Ex. 1, which is not their L. C. M.
46. Write a common multiple of the expressions in Ex. 10 which is not their L. C. M.
47. Write two expressions whose L. C. M. is $24 a^{2} b^{3} c^{2}$.
48. Write two expressions whose L. C. M. is $12 x^{3}(x-2)^{2}$ $(x-1)$.
49. Make up and work an example similar to Ex. 27. To Ex. 31. To Ex. 47.
50. How many of the examples in this Exercise can you work at sight?
51. How many examples in Exercise 35 (p. 131) can you work at sight?

CHAPTER X

FRACTIONS

110. Utility of Fractions. In algebra, as in arithmetic, fractions are useful in indicating new units, and in indicating quotients and thus opening the way to save labor by cancellation.

In algebra fractions also have other uses besides those which appear in arithmetic. Thus, in algebra, a fraction is often useful in expressing a general formula.

Ex. If an automobile goes a miles in b hours, how far would it go in c hours at the same rate?

$$
\begin{aligned}
& \frac{a}{b}=\text { no. of miles the automobile travels in } 1 \text { hour } \\
& \frac{a c}{b}=\text { no. of miles the automobile travels in } c \text { hours }
\end{aligned}
$$

Why do we now proceed to make definitions and rules?
111. A Fraction is the indicated quotient of two algebraic expressions. This quotient is usually indicated in the form $\frac{a}{b}$.

The fraction $\frac{a}{b}$ is read " a divided by b," or, for brevity, " a over b."
Note that the dividing line of a fraction takes the place of a parenthesis and is in effect a vinculum.

Another method of writing the preceding fraction is a / b. This is called the solidus notation. It is convenient in printing mathematical expressions, and is much used in European mathematical literature.
$\frac{x+1}{3 x-5}$ written in the solidus notation would be $(x+1) /(3 x-5)$
The numerator of a fraction is the dividend and the denominator is the divisor of the indicated quotient.

Terms of a fraction is a general name for both numerator and denominator.

EXERCISE 49

1. If three boys weigh a, b, c pounds respectively, what is their average weight?
2. If four boys can run the quarter mile in p, q, r, s seconds respectively, what is their average time?
3. How many acres are there in a field a feet long and b feet wide?
4. How many acres are there in a field c rd. $\times d$ rd.? In one f yd. $\times e \mathrm{ft}$.? $\quad p \mathrm{ft} . \times q$ rd.?
5. If sugar is worth a cents a pound, how many pounds can be obtained in exchange for b pounds of butter worth c cents a pound?
6. If coal is worth c dollars a ton, how many tons of coal can be obtained in exchange for p tons of hay worth b dollars a ton?
7. Make up and work a similar example concerning c calves, worth a dollars each, exchanged for chairs worth d dollars each.
8. If coal is worth c dollars a ton, how many tons can be obtained in exchange for f bushels of wheat worth h cents a bushel and for w bushels of corn worth y cents a bushel?
9. Who first used the letters a, b, c to represent known numbers? (See p. 268.) Tell all you can about this man.
10. Before the use of a, b, c, what other symbols were used to represent known numbers? Discuss the relative advantages in these different sets of symbols.
11. As a notation, in what respects is a / b superior to $a \div b$? To $\frac{a}{b}$? In what respects is it inferior to each of these?
12. How many examples in Exercise 45 (p. 155) can you now work at sight?
13. An integral expression is one which does not contain a fraction; as $3 x^{2}-2 y$.

An expression like $5 x^{2}+\frac{3}{2} x+\frac{1}{4}$ in which fractions occur only in the numerical coefficients is sometimes regarded as an integral expression.

A mixed expression is one which is part integral, part fractional.

$$
\text { Thus, } 3 x^{2}+x-5+\frac{x+1}{3 x^{2}-2}
$$

113. Sign of a Fraction. A fraction has its own sign, which is distinct from the sign of both numerator and denominator. It is written to the left of the dividing line of the fraction.

The sign of $-\frac{a}{b}$ is - , and the sign of $\frac{-a}{b}$ is + understood.

General Principles

114. A. If the numerator and the denominator of a fraction are both multiplied or divided by the same quantity, the value of the fraction is not changed.

For if a dividend is denoted by D, its divisor by d, and the quo;ient by Q

$$
\frac{D}{d}=Q, \text { and } D=d \times Q
$$

If m denotes any multiplier, $D \times m=d \times m \times Q$, or

$$
\begin{equation*}
\frac{D \times m}{d \times m}=Q \tag{Art.15,p.18}
\end{equation*}
$$

Also if m denotes any divisor except zero,

$$
\begin{equation*}
D \div m=d \div m \times Q, \text { or } \frac{D \div m}{d \div m}=Q \tag{Art.15}
\end{equation*}
$$

115. B. Law of Signs. By the laws of signs for multiplication and division (see Arts. 50, 62, pp. 59, 77),

$$
\begin{gathered}
\frac{a}{b}=\frac{-a}{-b},-\frac{a}{b}=\frac{-a}{b}=\frac{a}{-b}, \frac{a}{b c}=-\frac{a}{-b \times c}=\frac{a}{-b \times-c} \\
\frac{x+y}{y-x}=\frac{x+y}{-(x-y)}=-\frac{x+y}{x-y}
\end{gathered}
$$

Or, in general,
The signs of any even number of factors of the numerator and denominator of a fraction may be changed without changing the sign of the fraction.

But if the signs of an odd number of factors are changed, the sign of the fraction must be changed.

Transformations of Fractions

I. To Reduce a Fraction to its Lowest Terms
116. A Fraction in its Lowest Terms is a fraction whose numerator and denominator have no common factor.

To reduce a fraction to its lowest terms, as in arithmetic,
Resolve the numerator and the denominator into their prime factors, and cancel the factors common to both.

Ex. 1. Reduce $\frac{36 a^{3} x^{2}}{48 a^{2} x^{3} y^{2}}$ to its lowest terms.
Divide both numerator and denominator by $12 a^{2} x^{2}$ (see Art. 114).

$$
\therefore \frac{36 a^{3} x^{2}}{48 a^{2} x^{3} y^{2}}=\frac{3 a}{4 x y^{2}} \text { Ans. }
$$

Ex. 2. $\frac{9 a b-12 b^{2}}{12 a^{2}-16 a b}=\frac{3 b(3 a-4 b)}{4 a(3 a-4 b)}=\frac{3 b}{4 a}$ Ans.
Notice particularly that in reducing a fraction to its lowest terms it is allowable to cancel a factor which is common to both denominator and numerator, but it is not allowable to cancel a term which is common unless this term is a factor.

Thus,

$$
\frac{a b}{a c} \text { reduces to } \frac{b}{c} \text {; }
$$

but in $\frac{a+x}{a+y}$, a of the numerator will not cancel a of the denominator. This is a principle very frequently violated by beginners.

EXERCISE 50

Reduce each of the following to its simplest form:

1. $\frac{27}{36}$
2. $\frac{3 a^{3}-6 a^{2} b}{4 a^{2} b^{2}-8 a b^{3}}$
3. $\frac{2 a}{4 a^{2}-2 a}$
4. $\frac{72}{150}$
5. $\frac{8 a^{3} x^{4}}{12 a^{2} x^{5}}$
6. $\frac{12 x^{4} y z^{5}}{15 x^{3} y^{2} z^{5}}$
7. $\frac{3 a^{2} x}{6 a^{2}-9 a^{3} x}$
8. $\frac{72 x^{2} y^{3} z^{4}}{96 x y^{5} z^{3}}$
9. $\frac{(x-y)^{2}(x+y)^{3}}{\left(x^{2}-y^{2}\right)^{3}}$
10. $\frac{2 x^{2}-8 y^{2}}{4 x^{2}-2 x y-12 y^{2}}$
11. $\frac{6 x^{2}-x y-2 y^{2}}{6 x^{2}-7 x y+2 y^{2}}$
12. $\frac{(x-y)^{2}(x+y)^{3}}{\left(x^{2}-y^{2}\right)^{3}}$
13. $\frac{2 x^{2}-8 y^{2}}{4 x^{2}-2 x y-12 y^{2}}$
14. $\frac{8\left(x^{2}-1\right)}{12 x-12}$
15. $\frac{x^{3}-27}{x^{2}-6 x+9}$
16. $\frac{6 a^{2} b^{2}+12 a b^{3}}{9 a^{3} b+18 a^{2} b^{2}}$
17. $\frac{x^{2}-y^{2}}{(x+y)^{2}}$
18. $\frac{12 a^{2} x^{2}-8 a^{2} x y}{18 a x^{3}-12 a x^{2} y}$
19. $\frac{49 x^{2}-64 y^{2}}{14 x^{3}-16 x^{2} y}$
20. $\frac{2 x^{2}-3 x y}{4 x^{3}-9 x y^{2}}$
21. $\frac{3 x-6 y}{6 a x-12 a y}$
22. $\frac{4 x+4 y}{4 a x+4 a y}$

$$
2
$$

25. $\frac{(a+b)^{2}-c^{2}}{a^{2}-(b+c)^{2}}$
26. $\frac{1-(a-x)^{2}}{x^{2}-(a-1)^{2}}$
27. $\frac{12 x^{2}-2 a x-24 a^{2}}{4 x^{2}-2 a x-6 a^{2}}$
28. $\frac{x^{3}-8}{x^{2} y^{2}+2 x y^{2}+4 y^{2}}$
29. $\frac{x^{4}-9 x^{2}}{x^{4}-x^{3}-6 x^{2}}$
30. $\frac{x^{6}-y^{6}}{x^{4}+x^{2} y^{2}+y^{4}}$
31. $\frac{a x-b x-a y+b y}{a^{2}-b^{2}}$
32. $\frac{x^{2}-z^{2}-4-2 x y-4 z+y^{2}}{z^{2}-x^{2}-4-2 y z-4 x+y^{2}}$
33. What is the correct value of the fraction $\frac{1+4}{6+4}$? If the 4's are struck out, what does the value of the above fraction become? Is it allowable, therefore, to strike out the 4's in the above fraction?
34. Make up and work an example similar to Ex. 33.
35. Which of the following fractions can be simplified by striking out the 4's?
$\frac{1+4}{11+4} \quad \frac{x+4}{y+4} \quad \frac{4 x}{4(1+y)} \quad \frac{3 \times 4}{4+11} \quad \frac{4 a}{x+4} \quad \frac{4 a}{4 x}$
36. Make up and work an example similar to Ex. 35, involving 3 's.
37. Which of the following can be simplified by striking out the b^{2} 's?

$$
\frac{b^{2}+x}{b^{2}+y} \quad \frac{b^{2} x}{b^{2} y} \quad \frac{b^{2}-4}{3 b^{2}+4} \quad \frac{a^{2} b^{2}}{a^{2}+b^{2}} \quad \frac{a^{2} b^{2}}{b^{2} x^{4}}
$$

38. Which of the following can be simplified by striking out $a+b$ in both numerator and denominator?

$$
\frac{a+b}{a+b+c} \quad \frac{5(a+b)}{3(a+b)+c} \quad \frac{3 x(a+b)}{4 y(a+b)} \quad \frac{3(a+b)}{5(a+b)+c}
$$

39. Make up and work an example similar to Ex. 38 concerning the striking out of x. Of $(p+q)^{2}$.
40. Why is it allowable to subtract 4 from each member of the equation $x+4=a+4$ and not from each term of the fraction $\frac{x+4}{a+4}$?
41. How many of the examples in this Exercise can you work at sight?

EXERCISE 51

1. Reduce $\frac{(x-2)^{2}}{4-x^{2}}$ to its lowest terms.

$$
\frac{(x-2)^{2}}{4-x^{2}}=\frac{(x-2)(x-2)}{(2+x)(2-x)}=\frac{(2-x)(2-x)}{(2+x)(2-x)}=\frac{2-x}{2+x}
$$

Снеск. Let $x=1$, then, $\frac{(x-2)^{2}}{4-x^{2}}=\frac{(-1)^{2}}{4-1}=\frac{1}{3}$
Also,

$$
\frac{2-x}{2+x}=\frac{2-1}{2+1}=\frac{1}{3}
$$

Reduce to simplest form and check the work:
2. $\frac{(a-b)^{2}}{b^{2}-a^{2}}$
8. $\frac{a+b-c}{c^{2}-(a+b)^{2}}$
3. $\frac{(2 x-y)^{2}}{y^{2}-4 x^{2}}$
4. $\frac{9-m^{2}}{m^{2}-7 m+12}$
5. $\frac{9-x^{2}}{(x-3)^{2}}$
6. $\frac{2-y}{y^{2}-4}$
7. $\frac{a-b}{b-a}$
9. $\frac{6 y-3 x}{12 a y-6 a x}$
10. $\frac{6 a^{2} b-3 a^{3}}{4 a^{2} b^{2}-8 a b^{3}}$
11. $\frac{x^{3}-27}{9-6 x+x^{2}}$
12. $\frac{4-(a+b)^{2}}{(a-2)^{2}-b^{2}}$
13. $\frac{a x-b x-a y+b y}{b^{2}-a^{2}}$

Without changing the value of the fraction
14. Change each of the following so that the denominator of the fraction shall be $a-b$.
$\frac{-3}{b-a} \quad \frac{3}{b-a} \quad \frac{x}{b-a} \quad \frac{x-y}{b-a} \quad \frac{-3 x}{b-a} \quad \frac{2 a-3 b}{b-a}$
15. Change each of the following so that the denominator shall be $(x-y)(x-y)$.

$$
\frac{3}{(y-x)(y-x)} \quad \frac{-4}{(y-x)(x-y)} \quad \frac{a-b}{(y-x)^{2}}
$$

16. Show that $\frac{1}{(y-x)(z-y)}$ equals $\frac{1}{(x-y)(y-z)}$
17. By changing signs of factors, write each of the following in three different ways:
$\frac{5}{a-b} \quad \frac{a-b}{x-y}-\frac{a-b}{c-d} \quad \frac{a-b}{(x-y)(y-z)} \quad \frac{(b-a)(c-d)}{(y-x)(y-z)}$
Solve the following equations, after reducing the fraction in each equation to its simplest form:
18. $\frac{x^{2}-1}{x-1}+2 x=5$
19. $\frac{x^{3}-1}{x-1}-x^{2}=7$
20. $\frac{x^{3}+27}{x+3}=7+x^{2}$
21. $\frac{x^{3}-3 x^{2}}{x^{2}}=5-x$
22. $\frac{a x-3 a+b x-3 b}{a+b}=17$
23. $\frac{a x-5 a-b x+5 b}{a-b}=15-3 x$
24. $\frac{x^{3}-8}{x-2}-\frac{x^{3}+8}{x+2}=20$
25. How many of the examples in this Exercise can you work at sight?
II. To Reduce an Improper Fraction to an Integral or Mixed Quantity.
26. An Improper Fraction is one in which the degree of the numerator equals or exceeds the degree of the denominator.

Since a fraction is an indicated division, to reduce an improper fraction to an integral or mixed expression,

Divide the numerator by the denominator;
If there is a remainder, write it over the denominator, and annex the result to the quotient with the proper sign.
Ex. Reduce $\frac{x^{3}+4 x^{2}-5}{x^{2}+x+2}$.

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
x^{3}+4 x^{2}-5 \\
x^{3}+x^{2}+2 x
\end{array} \\
\begin{array}{c}
3 x^{2}-2 x-5 \\
\\
\frac{3 x^{2}+3 x+6}{-5 x-11}
\end{array} \\
\hline \text { 年 }+3+2 \\
\end{array} \\
& \therefore \frac{x^{3}+4 x^{2}-5}{x^{2}+x+2}=x+3-\frac{5 x+11}{x^{2}+x+2} A n s .
\end{aligned}
$$

When the remainder is made the numerator of a fraction with the minus sign before it, as in this example, the signs of terms of the remainder must be changed, since the vinculum is in effect a parenthesis (see Art. 41, p. 50).

EXERCISE 52

Reduce each of the following to a mixed quantity:

1. $\frac{32}{5}$
2. $\frac{121}{9}$
3. $\frac{181}{17}$
4. $\frac{x^{2}-2 x+3}{x}$
5. $\frac{4 x^{3}+6 x-5}{2 x}$
6. $\frac{10 a^{3} x^{3}+5 a x-7-a}{5 a x}$
7. $\frac{x^{3}-3 x^{2}+x-1}{x+1}$
8. $\frac{x^{2}+3 x y-2 y^{2}-1}{x+y}$
9. $\frac{3 x^{4}-13 x-28}{x^{2}-3}$
10. $\frac{x^{3}-x^{2}-x+2-a}{x-1}$
11. $\frac{x^{4}+1}{x^{2}+x-1}$
12. $\frac{x^{5}}{x^{2}-x-1}$
13. $\frac{2 x^{4}+7}{x^{2}+x+1}$
14. $\frac{x^{4}+x^{2}-x-1}{x^{2}+2}$
15. $\frac{9 a^{3}}{3 a^{2}-2 b}$
16. $\frac{x^{3}+x^{2}-4 x+7}{x+3}$
17. $\frac{2 a^{2}}{a+b}$
18. $\frac{x^{5}-x^{4}+x^{3}-2 x}{x^{3}+1}$
19. $\frac{1}{1+x}$ (To three terms.)
20. $\frac{1}{1+x-x^{2}}$
21. $\frac{8}{2+x-x^{2}}$
22. Make up an improper fraction with a monomial denominator and reduce it to a mixed number.
23. Make up an improper fraction with a binomial denominator and reduce it to a mixed number.
24. How many examples in Exercise 1 (p. 8) can you now work at sight?
III. To Reduce a Mixed Expression to a Fraction
25. To Reduce a Mixed Expression to a fraction, it is necessary simply to reverse the process of Art. 117. Hence,

Multiply the integral expression by the denominator of the fraction, and add the numerator to the result, changing the signs of the terms of the numerator if the fraction is preceded by the minus sign;

Write the denominator under the result.

Ex. $x+y-\frac{x^{2}+y^{2}}{x-y}$

$$
\begin{aligned}
& =\frac{(x+y)(x-y)-\left(x^{2}+y^{2}\right)}{x-y} \\
& =\frac{x^{2}-y^{2}-x^{2}-y^{2}}{x-y}=\frac{-2 y^{2}}{x-y} \\
& =\frac{2 y^{2}}{y-x} \text { Ans. }
\end{aligned}
$$

EXERCISE 53

Reduce to a fraction:

1. $3 \frac{1}{7}$
2. $12 \frac{2}{9}$
3. $13 \frac{5}{12}$
4. $a-1+\frac{1}{a}$
5. $x+1+\frac{1}{x-1}$ 11. $\frac{3 a-1}{a-2}+a-1$
6. $x^{2}+x-1-\frac{1}{x-1}$
7. $x-a-\frac{a y-a^{2}}{x+a}+y$
8. $4 x-2-\frac{y-2}{2 x+1}$
9. $1-\frac{b^{2}-c^{2}+a^{2}}{2 b c}$
10. $a-b+\frac{2 b^{2}}{a+2 b}$
11. $6 a+\frac{(2-3 a)^{2}}{4}$
12. $x-1-\frac{x-1}{x^{2}+x+1}$
13. $\frac{(a+b)^{2}}{4}-a b$
14. $\frac{(2 a b-1)^{2}}{4}+2 a b$
15. $1-\left(x-x^{2}+\frac{1}{1+x}\right)$
16. $x^{2}-\left[x-\left(1-\frac{2}{x+1}\right)\right]$
17. $x^{3}-\left\{-x^{2}-\left[x+1-\frac{1}{1-x}\right]\right\}$
18. The distance from New York to Chicago is 912 mi ., which is 100 mi . more than one fourth of the distance from New York to San Francisco. Find the latter distance.
19. A running horse with a rider has gone 1 mi . in 1 min . $35 \frac{1}{2}$ sec., which is $13 \frac{1}{2} \mathrm{sec}$. more than three times the time in which an automobile has gone one mile. Find the latter time.
20. Make up two mixed numbers of your own and reduce them to improper fractions.
21. How many of the examples in this Exercise can you work at sight?
IV. To Reduce Fractions to Equivalent Fractions of the Lowest Common Denominator
22. To Reduce Fractions to their lowest common denominator, as in arithmetic, we

Find the lowest common multiple of the denominators of the given fractions;

Divide this common multiple by the denominator of each fraction;

Multiply each quotient by the corresponding numerator; the results will form the new numerators;

Write the lowest common denominator under each new numerator.

Ex. Reduce $\frac{2}{3 a x}, \frac{3}{4 a^{2} x}$, and $\frac{5 n}{6 a x^{2}}$ to equivalent fractions having the lowest common denominator.

The L. C. D. is $12 a^{2} x^{2}$.
Dividing this by each of the denominators, we get the quotients $4 a x, 3 x$, and $2 a$.

Multiplying each of these quotients by the corresponding numerator and setting the results over the common denominator, we obtain

$$
\frac{8 a x}{12 a^{2} x^{2}}, \frac{9 x}{12 a^{2} x^{2}}, \frac{10 a}{12 a^{2} x^{2}} \text { Ans. }
$$

EXERCISE 54

Reduce the following to equivalent fractions having the lowest common denominator:

1. $\frac{5}{8}, \frac{7}{12}$
2. $\frac{3}{5}, \frac{4}{15}, \frac{9}{20}$
3. $\frac{2 x}{9}, \frac{5 x}{6}$
4. $\frac{12 a}{5 b}, \frac{7}{10}, \frac{a}{b}$
5. $\frac{1}{2 a b^{2}}, \frac{2}{a^{2} b}, \frac{1}{a b}$
6. $\frac{2}{3 a^{2}}, \frac{3}{4 a x}, 2 a, \frac{1}{x}$
7. $\frac{a c}{b d}, \frac{a b}{c d}, \frac{b c}{a d}, \frac{a d}{b c}$
8. $\frac{1}{a^{2}-a}, 2, \frac{3}{a-1}$
9. $\frac{x}{1+x}, 1, \frac{1}{x}, \frac{1}{x+x^{2}}$
10. $\frac{x}{x^{2}-1}, \frac{1}{x^{3}-1}$
11. $\frac{1}{4 x^{2}-9}, \frac{1}{2 x+3}, \frac{1}{x}$
12. $\frac{1+x}{2-2 x}, 7, \frac{1-x}{3+3 x}$
13. $\frac{3}{x^{3}-1}, \frac{4}{x^{2}+x+1}, 4$
14. $\frac{3}{a^{2} b+a b^{2}}, \frac{4}{a^{2} b-a b^{2}}$
15. $\frac{1}{3 x-6}, \frac{5}{2 x+4}, \frac{3}{x^{2}-4}$
16. $\frac{2}{x-x^{3}}, \frac{x}{3+3 x}, \frac{x}{2-2 x}$

ADDITION AND SUBTRACTION OF FRACTIONS 179

Processes with Fractions

I. Addition and Subtraction of Fractions

120. The Method of Adding or Subtracting Fractions, as in arithmetic, is to

Reduce the fractions to their lowest common denominator; Add their numerators, changing the signs of the numerator of any fraction preceded by the minus sign;

Set the sum over the common denominator;
Reduce the result to its lowest terms.
Ex. 1. $\frac{a}{a-1}-a+\frac{1}{a^{2}-a}+\frac{1}{a}$

$$
=\frac{a}{a-1}-\frac{a}{1}+\frac{1}{a^{2}-a}+\frac{1}{a}
$$

$$
=\frac{a^{2}-a^{3}+a^{2}+1+a-1}{a(a-1)}
$$

$$
=\frac{-a^{3}+2 a^{2}+a}{a(a-1)}=\frac{-a^{2}+2 a+1}{a-1} \mathrm{Ans} .
$$

Ex. 2. Simplify $\frac{x^{2}}{x^{2}-1}+\frac{x}{(x+1)}-\frac{x}{1-x}$.
The factors of $x^{2}-1$ are $x+1$ and $x-1$. Hence, if the sign of the denominator, $1-x$, is changed, it will become $x-1$, and be a factor of $x^{2}-1$. But by Art. 115 (p. 169), if the sign of $1-x$ is changed, the sign of the fraction in which it occurs must also be changed. Hence, we have

$$
\frac{x^{2}}{x^{2}-1}+\frac{x}{x+1}+\frac{x}{x-1}=\frac{x^{2}+x^{2}-x+x^{2}+x}{x^{2}-1}=\frac{3 x^{2}}{x^{2}-1} \text { Ans. }
$$

Where the differences of three letters occur as factors in the various denominators, it is useful to have some standard order for the letters in the factors. It is customary to reduce the factors so that the alphabetical order of the letters is preserved in each factor, except that the last letter is followed by the first. This is called the cyclic order.

Thus, $a-b, b-c, c-a$ are written in the cyclic order.

Ex. 3. Simplify

$$
\frac{1}{(a-b)(c-a)}+\frac{1}{(a-b)(c-b)}+\frac{1}{(c-b)(a-c)} .
$$

Changing $c-b$ to $b-c$, and $a-c$ to $c-a$ where they occur. we obtain

$$
\begin{gathered}
\frac{1}{(a-b)(c-a)}-\frac{1}{(a-b)(b-c)}+\frac{1}{(b-c)(c-a)} \\
\quad=\frac{b-c-c+a+a-b}{(a-b)(b-c)(c-a)} \\
=\frac{2 a-2 c}{(a-b)(b-c)(c-a)}=\frac{-2}{(a-b)(b-c)} \text { Ans. }
\end{gathered}
$$

EXERCISE 55

Find the value of

1. $\frac{3}{2 x}+\frac{2}{x}-\frac{1}{3 x}$
2. $\frac{a}{a-b}-\frac{b}{a+b}$
3. $\frac{2}{3 a}-\frac{3}{4 a x}+\frac{1}{x}$
4. $x-\frac{3 x+1}{8}+\frac{1-3 x}{6}$
5. $\frac{5}{2 a c}-\frac{2}{3 a b}-\frac{1}{b c}$
6. $\frac{a+1}{2}-\frac{a-1}{2}$
7. $\frac{a+2 b}{2 a b}-\frac{6 a-1}{6 a^{2}}$
8. $\frac{x-1}{x+1}-\frac{x+1}{x-1}$
9. $\frac{2 a^{2} x+3}{4 a x^{2}}+1-\frac{3 a+x}{6 x}$ 10. $\frac{x+1}{x}-3+\frac{7-3 x}{3 x^{2}}$
10. $\frac{3 a-4 b}{2}-\frac{2 a-b-c}{3}+\frac{15 a-4 c}{12}$
11. $\frac{2 x^{2} y-3 z}{3 x^{2} y}-\frac{x z^{2}-y^{2} z}{2 x y^{2}}+\frac{y-3 x z^{2}}{6 x^{2} z}-\frac{2}{3}$
12. $\frac{x+1}{x-2}+\frac{1-x}{x+2} \quad$ 14. $\frac{m+1}{(m-1)^{2}}+\frac{2 m}{m^{2}-1}$

ADDITION AND SUBTRACTION OF FRACTIONS 181

15. $\frac{(a+b)^{2}}{4(a-b)^{2}}-\frac{2 b}{a-b} \quad$ 16. $\frac{3 x}{x+2}-\frac{2 x}{x-2}+\frac{10 x}{x^{2}-4}$
16. $\frac{1}{x^{2}+x}-2+\frac{2 x^{2}}{x^{2}-x}$
17. $\frac{1}{3 x-3}-\frac{1}{2 x+2}+\frac{x-5}{6 x^{2}-6}$
18. $\frac{2}{2 x-1}+\frac{3}{4 x+2}-\frac{7 x}{4 x^{2}-1}$
19. $\frac{x}{x^{2}-1}+2-\frac{x-1}{x+1}-\frac{x-2}{x-1}$
20. $\frac{3}{x+1}-\frac{4}{x+2}+\frac{2}{x+3}$
21. $\frac{x+2}{2 x^{2}+x-1}-\frac{x-3}{4 x^{2}-1}+\frac{2 x+5}{2 x^{2}+3 x+1}$
22. $\frac{b}{a+b}-\frac{a b}{(a+b)^{2}}-\frac{a b^{2}}{(a+b)^{3}}$
23. $\frac{2 x y}{x^{2}-y^{2}}+\frac{3 y}{2 x}+\frac{3 x}{2 y}-\frac{3 x^{2}-3 y^{2}}{2 x y}$.
24. $\frac{3 x-y}{x+2 y}+\frac{14 x y}{x^{2}-4 y^{2}}-\frac{3 x+y}{x-2 y}$
25. $1-\frac{2}{x-1}+x-\frac{3 x-1}{x+1}-\frac{2 x-5}{2}$
26. $\frac{2}{x+4}-\frac{x-3}{x^{2}-4 x+16}-\frac{x^{2}}{x^{3}+64}$
27. $\frac{5 x}{2(x-3)^{2}}-\frac{7}{3 x+9}-\frac{26}{4 x^{2}-36}$

Reduce each of the following fractions to its lowest terms and collect:
29. $\frac{x+3}{x^{2}-9}-\frac{1}{x-4} \quad$ 30. $\frac{x^{2}+x}{x^{2}-1}+1-\frac{x^{2}+x}{(x+1)^{2}}$
31. $\frac{4 b^{2}}{a^{2}-b^{2}}-\frac{(a-b)^{2}}{a^{2}-b^{2}}+2-\frac{3 a+3 b}{3 a-3 b}$
32. $\frac{3 x}{x^{2}-1}+\frac{4}{1-x}+\frac{1}{1+x}$
33. $\frac{2 a}{a^{2}-b^{2}}+\frac{1}{a+b}+\frac{2}{b-a}$
34. $\frac{3 x y}{x^{2}-4 y^{2}}-\frac{y-x}{2 y+x}+\frac{y+x}{2 y-x}$
35. $\frac{1}{x-1}+\frac{1}{1+x}+\frac{2 x}{1-x^{2}}$
36. $\frac{x^{2}+y^{2}}{x^{2}-y^{2}}-\frac{x}{x+y}+\frac{y}{y-x}$
37. $\frac{3}{8-8 a}+\frac{5}{4 a+4}-\frac{7 a}{8 a^{2}-8}$
38. $\frac{3}{x}+\frac{2}{x-1}+\frac{5 x}{1-x^{2}}-\frac{1}{x+1}-\frac{3}{x+x^{2}}$
39. $\frac{1}{(x-2)(3-x)}-\frac{1}{10-7 x+x^{2}}-\frac{1}{(5-x)(x-3)}$
40. $\frac{2}{(a-3)(b-2)}-\frac{3}{(a-2)(2-b)}+\frac{4}{(a-2)(3-a)}$
$+\frac{5}{(a-3)(2-b)}$
41. $\frac{2 b+a}{x+a}-\frac{2 b-a}{a-x}-\frac{4 b x-2 a^{2}}{x^{2}-a^{2}}$
42. $\frac{x+1}{6 x-6}-\frac{2 x-1}{12 x+12}+\frac{2}{3-3 x^{2}}-\frac{7}{12 x}$
43. $\frac{x^{2}-x-6}{x^{2}+5 x+6}-\frac{x^{2}+4 x+3}{x^{2}-4 x+3}-\frac{15 x}{9-x^{2}}$
44. $\frac{a^{2}+2 a b+b^{2}}{a^{2}-b^{2}}-\frac{4 a^{2}-b^{2}}{2 a^{2}-3 a b-2 b^{2}}+\frac{a^{2}-2 a b+3 b^{2}}{a^{2}-3 a b+2 b^{2}}$
45. $\frac{1-x^{2}}{9-x^{2}}+\frac{x^{2}-9}{3(x+3)^{2}}-\frac{x^{2}-4 x+3}{5(x-3)^{2}}-\frac{2 x}{5 x^{2}-45}$
46. $\frac{3 x+2}{x^{2}-5 x+6}+\frac{x}{8 x-x^{2}-15}-\frac{4-x}{7 x-x^{2}-10}$
47. $\frac{a}{(a-b)(a-c)}+\frac{b}{(b-c)(b-a)}+\frac{c}{(c-a)(c-b)}$
48.

$$
\frac{a^{2}}{(a-b)(a-c)}+\frac{b^{2}}{(b-c)(b-a)}+\frac{c^{2}}{(c-a)(c-b)}
$$

49. $\frac{y+z}{(x-y)(x-z)}+\frac{z+x}{(y-z)(y-x)}+\frac{x+y}{(z-x)(z-y)}$
50. $\frac{y z}{(x-y)(x-z)}+\frac{z x}{(y-z)(y-x)}+\frac{x y}{(z-x)(z-y)}$
51. $\frac{1+l}{(l-m)(l-n)}+\frac{1+m}{(m-n)(m-l)}+\frac{1+n}{(n-l)(n-m)}$
52. $\frac{1}{x}-\left\{\frac{x}{x+1}-\left[\frac{1-x}{x^{2}-x+1}-\frac{1}{x+1}\right]-1\right\}-\frac{1}{x^{3}+1}$
53. Make up and add three fractions with monomial denominators.
54. Also three with binomial denominators.
55. How many examples in Exercise 2 (p. 13) can you now work at sight?

II. Multiplication of Fractions

121. The Method of Finding the Product of two or more fractions, as in arithmetic, is to

Multiply the numerators together for a new numerator, and multiply the denominators together for a new denominator, canceling factors that are common to the two products.

This method reduces the multiplication of fractions to the multiplication of integral expressions, and enables us to use again our knowledge of the latter process.

$$
\text { Ex. } \begin{aligned}
& \frac{x+y}{x} \times \frac{x^{2}-y^{2}}{x^{3}+x y^{2}} \times \frac{4 x^{2}}{(x+y)^{2}} \\
= & \frac{x+y}{x} \times \frac{(x+y)(x-y)}{x\left(x^{2}+y^{2}\right)} \times \frac{4 x^{2}}{(x+y)(x+y)} \\
= & \frac{4(x-y)}{x^{2}+y^{2}} \text { Ans. }
\end{aligned}
$$

II. Division of Fractions

122. The Method of Dividing one fraction by another is the same as in arithmetic. For

$$
\begin{aligned}
\frac{a}{b} \div \frac{c}{d} & =\frac{a \times d}{b \times d} \div \frac{b \times c}{b \times d} \text { (see Art. 114, p. 168) } \\
& =\frac{a \times d}{b \times c}=\left(\frac{a}{b}\right)\left(\frac{d}{c}\right)
\end{aligned}
$$

Hence, to divide one fraction by another,
Invert the divisor and proceed as in multiplication.
Ex. $\frac{x^{3}-1}{x(x+1)} \times \frac{\left(x^{2}-1\right)^{2}}{x^{2}+x+1} \div \frac{(x-1)^{3}}{(x+1)^{2}}$

$$
\begin{aligned}
& =\frac{(x-1)\left(x^{2}+x+1\right)}{x(x+1)} \times \frac{\left(x^{2}-1\right)\left(x^{2}-1\right)}{x^{2}+x+1} \times \frac{(x+1)^{2}}{(x-1)^{3}} \\
& =\frac{(x+1)^{3}}{x} \text { Ans. }
\end{aligned}
$$

The reciprocal of a number is the result obtained by dividing unity by the given number.
Thus, the reciprocal of 2 is $1 \div 2$ or $\frac{1}{2}$; of x is $\frac{1}{x}$.
Hence, the reciprocal of a a fraction is the fraction inverted.
Thus, the reciprocal of $\frac{2}{3}$ is $1 \div \frac{2}{3}$; that is, $1 \times \frac{3}{2}$, or $\frac{3}{2}$.
Similarly, the reciprocal of $\frac{a}{b}$ is $\frac{b}{a}$; of $\frac{a-b}{x+y}$ is $\frac{x+y}{a-b}$.

EXERCISE 56

Simplify:

1. $\frac{5 x^{2} y}{14 a^{3} c} \times \frac{28 a^{2} b^{3}}{15 x y^{2}}$
2. $\frac{a^{2} b^{2}+3 a b}{4 a^{2}-1} \div \frac{a b+3}{2 a+1}$
3. $\frac{21 x y^{2}}{13 z^{3}} \div \frac{28 x^{3}}{39 z^{4}}$
4. $\frac{9 a^{2} b}{8 c^{2} x} \times \frac{28 a x^{2}}{15 b^{2} c} \div \frac{21 a^{3} x}{10 b c^{3}}$
5. $\frac{(a-1)^{3}}{a(x+1)^{2}} \times \frac{x+1}{(a-1)^{2}}$
6. $\frac{50 x^{2} z}{49 y^{n}} \times 28 x y^{3 n} \times \frac{-y^{n}}{40 x^{3}}$
7. $\frac{15 x}{2 x(2 x-1)} \times \frac{2 x(x+1)}{5 x^{2}}$
8. $\frac{2 x^{2}-x-1}{2 x^{2}+x-1} \times \frac{4 x^{2}-1}{x^{2}-1}$
9. $\frac{a^{3} y-a x^{2} y}{a^{3} x^{2}+a^{2} x^{2} y} \div \frac{a^{2} y-2 a x y+x^{2} y}{a^{2}+a y}$
10. $\frac{a^{3}-1}{(a+1)^{2}} \div \frac{a^{3}-a}{(a+1)^{3}}$
11. $\left(x+\frac{1}{x-1}\right) \times \frac{2 x-2}{x^{3}+1}$
12. $\frac{3 x^{2}+x-2}{4 x^{2}-4 x-3} \times \frac{4 x^{2}-1}{9 x^{2}-4}$ 15. $\left(\frac{x}{y}+1\right) \div\left(\frac{x^{2}}{y}+\frac{y^{2}}{x}\right)$
13. $\frac{x^{2}-y^{2}}{5 x y} \times \frac{x-y}{x+y} \times \frac{10 x^{2} y^{2}}{(x-y)^{2}} \times \frac{1}{2 x y}$
14. $\frac{3(a-b)^{2}}{4(a+b)^{2}} \times \frac{7\left(a^{2}-b^{2}\right)}{9(a-b)^{3}} \div \frac{14 a b}{8(a+b)}$
15. $\frac{x^{2}+2 x-3}{x^{2}+x-12} \times \frac{x^{2}+2 x-15}{x^{2}+2 x-3} \div \frac{x^{3}+5 x^{2}}{x^{3}+4 x^{2}}$
16. $\frac{6 x^{2} y-4 x y^{2}}{45 x^{2}-20 y^{2}} \times \frac{30 x+20 y}{4 x^{2} y^{2}} \times \frac{x y}{x+y}$
17. $\frac{6 x^{2}-5 x-4}{2 x^{2}+7 x-4} \times \frac{6 x^{2}+x-2}{4 x^{2}-4 x-3} \times \frac{2 x^{2}+5 x-12}{9 x^{2}-6 x-8}$
18. $\left(x+1+\frac{1}{x}\right)\left(x-1+\frac{1}{x}\right) \div \frac{x^{6}-1}{x^{2}\left(x^{2}-1\right)}$
19. $\left(\frac{a}{b}+1\right)\left(1-\frac{b}{a}\right) \times\left(1-\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right)$
20. $\frac{x^{3}+y^{3}}{x^{3}+x^{2} y+x y^{2}} \times\left(1+\frac{y}{x-y}\right) \div \frac{x^{2}-x y+y^{2}}{x^{3}-y^{3}}$
21. $\frac{x^{2}-(a-1)^{2}}{a^{2}-(x+1)^{2}} \times \frac{(a+x)^{2}-1}{1-(a-x)^{2}} \div \frac{a+x-1}{a-x-1}$
22. $\frac{2-b-a}{b-2-a} \times \frac{a^{2}-b^{2}-4 b-4}{a^{2}+b^{2}+2 a b-4} \times \frac{b^{2}-a^{2}-4 b+4}{b^{2}-a^{2}+4 a-4}$
23. $\left(\frac{1}{a b}+\frac{1}{b c}+\frac{1}{a c}\right)\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right) \div \frac{(a+b+c)^{2}}{a^{2} b^{2} c^{2}}$
24. $\left(\frac{1}{x}-x^{2}\right)\left(x+\frac{x^{2}}{1-x}\right) \div\left[(x+1)^{2}-x\right]$
25. $\left(\frac{1}{a^{2}}+\frac{1}{x^{2}}+\frac{2}{a x}-1\right) \div\left[\frac{x+a(1-x)}{a x} \times\left(1+\frac{a}{x}+a\right)\right]$
26. $\left[\frac{m+2 n}{m-2 n}+\frac{m-2 n}{m+2 n}\right] \div\left[\frac{m+2 n}{m-2 n}-\frac{m-2 n}{m+2 n}\right]$
27. Write the reciprocal of each of the following: $3, a, 2 x$, $\frac{4}{5}, \frac{1}{5}, \frac{a}{2 x}, \frac{1}{2 x}, \frac{a+2 x}{a-2 b}, \frac{1}{a^{2}-2 b}$.
28. Make up and work two examples involving both mul tiplication and division of fractions.
29. How many of the examples in Exercise 15 (p. 60) can you now work at sight?

IV. Reduction of Complex Fractions

123. A Complex Fraction is one having a fraction in its numerator, or in its denominator, or in both.

In simplifying any complex fraction, it is important to write the entire fraction at each step of the process.

Ex. $1 \frac{x}{1-\frac{x}{y}}=\frac{x}{\frac{y-x}{y}}=x \times \frac{y}{y-x}=\frac{x y}{y-x}$ Ans.
When the numerator and denominator of a complex fraction each contain fractions, the expression is often simplified most readily if we

Multiply both numerator and denominator by the lowest common denominator of the fractions contained in them.

Ex. 2. Simplify

$$
\frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}{\frac{x}{y}+\frac{y}{z}+\frac{z}{x}}
$$

Multiplying both numerator and denominator by $x y z$, obtain

$$
\frac{y z+x z+x y}{x^{2} z+x y^{2}+y z^{2}} \text { Ans. }
$$

124. A Continued Fraction is a fraction whose denominator is a mixed expression, having another mixed expression in its denominator, and so on until the fraction ends.

Ex. Simplify

$$
\begin{aligned}
& \frac{1}{x+\frac{1}{\left[1-\frac{3}{x-2}\right]}}=\frac{1}{\left.x+\frac{1 \times}{\left[\frac{x-5}{x-2}\right]}\right\} .}=\frac{1}{x+\frac{x-2}{x-5}} \\
& =\frac{1}{\frac{x^{2}-4 x-2}{x-5}}=\frac{x-5}{x^{2}-4 x-2} \text { Ans. }
\end{aligned}
$$

Hence, in general, to simplify a continued fraction,
Reduce the last mixed expression in the fraction to an improper fraction (see the brackets in the examples);

Then invert the last fraction and multiply it into the numerator under which it is placed (see the brace);

Thus alternately reduce a mixed number and invert a divison fraction until the simplification is completed.

EXERCISE 57
Simplify:

$$
\begin{aligned}
& \text { 1. } \frac{\frac{4}{x}-x}{1+\frac{x}{2}} \quad \text { 3. } \frac{x-\frac{1}{x}}{1-\frac{1}{x}} \\
& \text { 5. } \frac{1-\frac{1}{a+1}}{1+\frac{1}{a-1}} \\
& \text { 2. } \frac{2-\frac{1}{x}}{4-\frac{1}{x^{2}}} \\
& \text { 7. } \frac{2 x-\frac{1}{4 x^{2}}}{1-\frac{1}{2 x}} \\
& \text { 8. } \frac{\frac{1}{x}-\frac{3}{x^{3}}-\frac{2}{x^{2}}}{\frac{9}{x^{2}}-1} \\
& \text { 9. } \frac{\left(\frac{1}{x}+\frac{1}{y}\right)^{2}}{\left(1+\frac{x}{y}\right)^{2}} \\
& \text { 10. } \frac{\frac{a}{x^{2}}+\frac{x}{a^{2}}}{\frac{1}{a^{2}}-\frac{1}{a x}+\frac{1}{x^{2}}} \\
& 12 . \\
& \text { 11. } \frac{\frac{2 x}{y}+1-\frac{y}{x}}{\frac{2 x}{y}+\frac{y}{x}-3} \\
& \text { 8. } \frac{\frac{1}{x}-\frac{3}{x^{3}}-\frac{2}{x^{2}}}{\frac{9}{x^{2}}-1} \\
& \text { 4. } \frac{\frac{a b}{c}-2 d}{a-\frac{2 c d}{b}} \\
& 6 . \\
& \frac{x-\frac{2}{3}}{6}
\end{aligned}
$$

15.

$$
\frac{\frac{x}{a}+\frac{a}{x}-2-\frac{1}{a x}}{\frac{x}{a}-\frac{a}{x}-\frac{2}{a}+\frac{1}{a x}}
$$

16. $\frac{2\left(\frac{1}{2} x-\frac{1}{4}\right)}{2 x-1}-\frac{1}{2}$
17. $\frac{\frac{1-(a b-c d)^{2}}{(a b-1)^{2}-c^{2} d^{2}}}{\frac{(c d+1)^{2}-a^{2} b^{2}}{(a b+c d)^{2}-1}}$
18. $3-\frac{x-1}{2 x-\frac{5 x}{3}}$
19. $1-\frac{1}{1+a+\frac{2 a^{2}}{1-a}}$
20. $3-\frac{1}{a-\frac{a^{2}}{1+a}}$
21. $2 a-1-\frac{a-1}{2-\frac{a}{a-\frac{a}{1+a}}}$
22. $3-\frac{1}{1-\frac{2 x}{3 x-\frac{3 x}{x+1}}}$
23. $1-\frac{\frac{a-b}{\frac{2}{a+b}}}{}$
24. $1-\frac{\frac{a-b}{2}}{a+b}$
$1-\frac{a^{3}}{8}$
25.

$\frac{8}{1+\frac{a}{2}+\frac{a^{2}}{4}} \div(a-2)$
26. $\frac{\frac{1}{a}+\frac{1}{b+c}}{\frac{1}{a}-\frac{1}{b+c}} \times\left(1+\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)$
27. $\frac{1}{x+\frac{1}{x+2}} \times \frac{1}{x+\frac{1}{x-2}} \div \frac{x-\frac{4}{x}}{x^{2}+\frac{1}{x^{2}}-2}$
28.

$$
\frac{1+x^{3}}{1-\frac{x}{1+\frac{x}{1-x}}}-\frac{1-x^{3}}{1+\frac{x}{1-\frac{x}{1+x}}}
$$

29. $\frac{x^{3} y-y^{4}}{x y^{2}+x^{2} y} \div\left\{\frac{x^{4}+x^{3} y+x^{2} y^{2}}{\left(x^{2}-y^{2}\right)^{3}} \div \frac{1}{\left(1+\frac{y}{x}\right)^{2}}\right\}$.
30. $\frac{\frac{1}{a^{2}}-\left(\frac{1}{b}+\frac{1}{c}\right)^{2}}{\frac{1}{b^{2}}-\left(\frac{1}{a}+\frac{1}{c}\right)^{2}} \times \frac{\frac{1}{b^{2}}-\left(\frac{1}{a}-\frac{1}{c}\right)^{2}}{\frac{1}{c^{2}}-\left(\frac{1}{a}-\frac{1}{b}\right)^{2}} \times \frac{\left(\frac{1}{a}+\frac{1}{c}-\frac{1}{b}\right)^{2}}{\left(\frac{1}{a}-\frac{1}{c}\right)^{2}-\frac{1}{b^{2}}}$.
31. $\frac{1-2 \frac{1-2 x}{1+2 x}}{1+2 \frac{1+2 x}{1-2 x}}+\frac{4\left(\frac{1}{2}-\frac{1}{2} x+x^{2}\right)-\frac{2}{3}}{\frac{8}{3}\left(\frac{1}{2}+x+\frac{1}{2} x^{2}\right)-\frac{1}{3}}$.

Find the value
32. Of $\frac{22}{1+2 v}$ when $v=\frac{2}{7}$.
33. Of $\frac{-22}{1-v-v^{2}}$ when $v=-\frac{1}{3}$.
34. Of F when $F=\frac{m v^{2}}{r}, m=10.2, v=5$, and $r=\frac{5}{2}$.
35. Make up and simplify a continued fraction.
36. How many examples in Exercise 19 (p. 78) can you now work at sight?

EXERCISE 58

Oral Review

1. Give the value of each of the following:
(1) $\frac{1}{2 a}-\frac{1}{4 a}$.
(2) $\frac{1}{3 a}-\frac{1}{6 a}$.
(3) $\frac{a+b}{2}+\frac{a-b}{2}$.
(4) $\frac{a+b}{2}-\frac{a-b}{2}$.
(5) $\frac{1}{a}+\frac{1}{b}$.
(6) $\frac{1}{a}-\frac{1}{b}$.
2. Expand
(1) $\left(\frac{1}{x}+\frac{1}{y}\right)^{2}$
(2) $\left(\frac{2}{x}-\frac{3}{y}\right)^{2}$
(3) $\left(\frac{1}{a}-\frac{2}{b}\right)^{2}$
3. On the foot rule show the meaning of $\frac{1}{4} \mathrm{in} . \div 2$. Of $\frac{3}{4} \mathrm{in} . \div 2$.
4. Divide each of the following fractions by 2 : $\frac{8}{6}, \frac{3}{6}, \frac{7}{6}, \frac{8}{8}, \frac{8}{7}$, $\frac{2 a}{b}, \frac{a}{2 b}, \frac{a}{b}, \frac{a+b}{2}, \frac{6}{a}, \frac{7}{a}, \frac{3 x}{2 b}, \frac{5 x}{4 b}, \frac{4 b^{2}}{a}, \frac{3 b^{2}}{a}$.
5. Divide $\frac{3 x}{b}$ by 2. By $2 a$. $3 b$. $4 b$.
6. Divide 1 by each of the fractions $\frac{1}{2}, \frac{3}{2}, \frac{a}{2}, \frac{a}{b}, \frac{3 a}{2 b}$.
7. Give the reciprocal of $3, \frac{1}{3}, 4, \frac{1}{4}, \frac{3}{4}, \frac{a}{b}, \frac{b}{a}$.
8. Give the value of $\frac{1}{x}$ when $x=\frac{1}{2}$. When $x=\frac{1}{3}, \frac{1}{4}, \frac{1}{8}, \frac{2}{3}, \frac{3}{8}, \frac{2}{5}$, $-\frac{2}{3},-\frac{1}{a}, \frac{b}{c}$.
9. State the value of $\frac{3}{x}$ when $x=\frac{1}{2}$. When $x=\frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64}$, $-\frac{2}{3}, \frac{3}{2}, \frac{6}{5}$.
10. Give the value of $\frac{15}{2+x}$ when $x=-\frac{1}{5}$.
11. What is $\frac{1}{2}$ of $\frac{4}{5}$? Of $\frac{3}{5}, \frac{3}{7}, \frac{4}{7}, \frac{a-1}{2}, \frac{a}{b}, \frac{4 a}{b}, \frac{1}{2 a}, \frac{2 a}{3}, \frac{1}{4 a b}$?
12. If 4 is subtracted from both numerator and denominator of $\frac{5}{10}$, is the value of the fraction changed? By how much?
13. If $a=-\frac{3}{2}$ and $b=-\frac{1}{2}$, state the value of $\frac{-a}{b}$. Of $-\frac{3 a}{4 b}$.
14. What is the value of $1 \div 2 / 3$? Of $1 \div a / b$? Of $2 \div x / 2 y$?
15. Simplify those of the following fractions which can be reduced to lower terms:

$$
\frac{4 x}{4 a+b}, \frac{4 x}{4 a+4 b}, \frac{4 a}{4 b}, \frac{4}{a+4}, \frac{a-b}{b-a}, \frac{a+b}{a^{2}+b^{2}}, \frac{a^{2}+b^{2}}{a^{2}+x^{2}}, \frac{a^{2} b}{a^{2} x} .
$$

Give the value of
16. $-\frac{-3-1}{8}, \frac{-2}{-4-6}, \frac{8}{-2 / 3}, \frac{8}{a / b}, \frac{x^{2}-1}{1-x}$.
17. Of $\frac{1}{4} a^{3} \div \frac{1}{2} a_{2}^{2} \quad 1 a^{3} \div \frac{1}{3} a^{2} \quad \frac{2}{3} x^{4} \div \frac{1}{3} x^{2} \quad \frac{3}{8} x^{3} \div{ }_{3} x \quad 1 \div \frac{1}{3} x^{2}$ $1 \div \frac{2}{3} x^{2} 2 a^{2} \div \frac{3}{4} a \quad 2 \div 5 / 6 x$
18. Make up an illustration to show the value of 5×0 (for instance, in connection with a pupil's mark for 5 examples which he failed to work correctly).
19. Give in the briefest form the product of $(a-b)(b-a)$. Of $(x-2 y)(2 y-x) . \quad$ Of $(a-b)(a+b)\left(a^{2}+b^{2}\right)\left(a^{4}+b^{4}\right)\left(a^{8}+b^{8}\right)$.
20. Does $\frac{1}{(y-x)^{3}}=-\frac{1}{(x-y)^{3}}$?

EXERCISE 59

Written Review

1. Indicate by a parenthesis that $2 a-3 b+c$ is to be subtracted from $5 a+2 b-3 c$. Then remove the parenthesis and simplify.
2. Subtract the sum of $3 x+2 y-z$ and $a-x-3 y$ from -5 . Also from 0 .
3. Write by inspection the value of $[(3 a-b)-c+2 d]^{2}$.
4. Factor $(a+b-c)^{3}-(x+y-x)^{3} \cdot \frac{1}{x^{3}}-\frac{1}{y^{3}} \cdot 1-\frac{x^{3}}{8}$
5. Change $\frac{1}{x^{2}}-\frac{1}{x y}+\frac{1}{y^{2}}$ so that it shall be a perfect square.
6. What is the difference between an exponent and a power? Give an illustration.
7. Subtract $(5 a+1)(2 a-3)$ from $(a+2)(a+1)+(a+2)^{2}$.
8. Find the value of $3(x-1)^{2}-3(x+1)(x+2)-x(x-2)$ $(y-2 x)$ when $x=-2$ and $y=-5$.
9. Find the value of $\frac{2 A^{2}-B^{2}}{3 B}$ when $A=5 a$ and $B=2 a$.
10. By factoring find the roots of $x^{2}-5 x+6=0$. Prove your answer.
11. Show that $\frac{a-b}{c-d}$ is equal to $\frac{b-a}{d-c}$.
12. If $a=12 \frac{1}{2}, b=37 \frac{1}{2}, c=33 \frac{1}{3}$, and $d=10$, find in the shortest way the numerical value of each of the following: $\frac{4 d^{2}}{a}, \frac{4 d^{2}}{c}, \frac{4 d^{2}}{b}$.
13. From $7.08 a^{2}$ take $-4 \frac{1}{4} a^{2}$.
14. Reduce $-1+\frac{\left(a^{2}+b^{2}\right)^{2}}{4 a^{2} b^{2}}$ to an improper fraction.
15. When we change $x-3=5$ to $x=5+3$, what is the change ealled? What right have we to make this change? Why do we transpose -3 instead of adding 3 to each member of the given equation?
16. What is the use or advantage in being able to find the H. C. F. of two given expressions? In being able to find their L. C. M.? Illustrate.
1.7. Show that the sum of two numbers (as of a and b), divided by the sum of their reciprocals, equals the product of the given numbers.
17. If $s=\frac{a}{1-r}$, find the value of s when $a=2$ and $r=-\frac{1}{2}$. Also when $a=-\frac{2}{3}$ and $r=-\frac{3}{4}$.
18. If $s=\frac{r l-a}{r-1}$, find the value of s when $r=\frac{1}{2}, l=\frac{31}{2}$, and $a=-\frac{1}{2}$.
19. If $a=3$, which is greater, $\frac{a}{10-a}$ or $\frac{a+1}{3 a}$?
20. Divide $2 a^{3}+10-16 a-39 a^{2}+15 a^{4}$ by $2-5 a^{2}-4 a$.
21. Give an illustration to show why 3×0 gives zero. Also why $\frac{0}{3}$ gives zero.
22. Show that a common factor of any two algebraic expressions is also a common factor of their sum and difference. Of the sum and difference of any multiples of the given expressions.
23. Prove that if half of the sum of any two numbers (as of a and b) is added to half their difference, the result will equal the greater of the two numbers. Illustrate by two numerical examples.
24. Prove that if half the difference of any two numbers is subtracted from half their sum, the result will be the smaller of the two numbers.
25. Write an example of a continued fraction and reduce it.
26. Why is it allowable to change both minus signs to plus in $-x=-3$, and not in $-x-3$?
27. Collect in a short way $\frac{1}{x+2}+\frac{1}{x-2}+\frac{1}{x-3}+\frac{1}{x+3}$.

Sug. Collect the first two fractions first.
29. Collect in a short way $\frac{3}{x+2}-\frac{2}{x-3}-\frac{1}{x-2}+\frac{4}{x+3}$.
30. Also $\frac{x}{x-y}-\frac{x}{x+y}-\frac{2 x y}{x^{2}+y^{2}}-\frac{4 x y^{3}}{x^{4}+y^{4}}$.

Simplify:
31. $\frac{\frac{3}{2}\left(\frac{2}{3} x^{2}+\frac{1}{3} x-2\right)}{\frac{2}{3}\left(\frac{3}{2} x^{2}+\frac{5}{2} x-1\right)}$.
32. $\frac{2-x}{1-2 x}-\frac{x+2}{2 x+1}+\frac{6 x}{4 x^{2}-1}$.
33.

$$
\frac{\frac{x}{y}\left(\frac{y^{3}}{x}+x y-2 y^{2}\right)}{x^{2}+x y-2 y^{2}} .
$$

34. $\frac{1}{x-1}+\frac{2}{x-2}-\frac{3}{x-3}+\frac{4 x-3}{\left(x^{2}-x\right)(x-2)}$.
35. $\frac{1}{a-\frac{1}{a}}+\frac{1}{a+\frac{1}{a}}-\frac{2}{a-\frac{1}{a^{3}}}+\frac{b}{a b+\frac{b}{a}}$.
36. $\frac{3}{x^{2}-3 x+2}+\frac{2}{(x-1)(3-x)}+\frac{1}{(2-x)(x-3)}$.
37. $\left(\frac{a}{x}+\frac{x}{a}-2\right)\left(\frac{a}{x}+\frac{x}{a}+2\right) \div\left(\frac{a}{x}-\frac{x}{a}\right)^{2}$.
38. $\left\{\frac{1+x}{1+x^{2}}-\frac{1+x^{2}}{1+x^{3}}\right\} \div\left\{\frac{1+x^{2}}{1+x^{3}}-\frac{1+x^{3}}{1+x^{4}}\right\}$.
39. $\left\{\frac{a+\frac{1}{x}}{a-\frac{x^{2}}{a}}\right\}^{2} \times\left\{\frac{1+\frac{a}{x}}{1+\frac{1}{a x}}\right\}^{2} \times\left(\frac{1}{a}-\frac{x}{a^{2}}\right)^{2}$.
40. $\frac{x-4-\frac{4}{x-4}}{x-4-\frac{1}{x-4}} \times \frac{x-\frac{1}{x-2}-2}{x-\frac{4}{x-5}-2}$.
41. $\left\{1-\frac{\frac{9}{x^{2}}+\frac{x^{2}}{9}}{\frac{9}{x^{2}}-\frac{x^{2}}{9}}\right\} \times\left(\frac{3}{x}-\frac{x}{3}\right)\left(\frac{9}{x^{2}}+1\right)$.
42. $\frac{1+8 x^{3}}{1-\frac{2 x}{1+\frac{2 x}{1-2 x}}}-\frac{1-27 x^{3}}{1+\frac{3 x}{1-\frac{3 x}{1+3 x}}}$

$$
\text { 43. } \frac{x^{4}-5 x^{2}+4}{x^{2}+1} \times \frac{\frac{1}{x}-\frac{1}{x-2}}{x-\frac{1}{x}} \div \frac{2+\frac{4}{x}}{1+\frac{1}{x^{2}}}
$$

44. Given $a+b+c=2 s$, show that $a+b-c=2(s-c)$ and that $a-b+c=2(s-b)$.
45. Also show that

$$
1-\frac{a^{2}+c^{2}-b^{2}}{2 a c}=\frac{2(s-a)(s-c)}{a c}
$$

46. Also show that $1+\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{2 s(s-c)}{a b}$.
47. Show that

$$
\frac{(2 a-3 x)^{9}\left[8 x^{5}(a+2 x)^{3}+5 x^{4}(a+2 x)^{4}\right]+27 x^{5}(a+2 x)^{4}(2 a-3 x)^{8}}{(2 a-3 x)^{18}}
$$

reduces to

$$
\frac{2 a x^{4}(24 x+5 a)(a+2 x)^{3}}{(2 a-3 x)^{10}}
$$

48. The distance from New York to San Francisco by way of Cape Horn is $13,800 \mathrm{mi}$. This is 1920 mi . less than three times the distance from New York to San Francisco by way of Panama. Find the latter distance.
49. Make up and work an example similar to Ex. 48, using the fact that the distance from London to Bombay by way of the Cape of Good Hope is $11,220 \mathrm{mi}$., but by way of the Suez Canal is 6332 mi .

CHAPTER XI

FRACTIONAL AND LITERAL EQUATIONS

125. A fractional equation is an equation that contains an unknown number in a denominator.
Ex. $\frac{8}{x}+5=3 x$.
Equations containing binomial numerators and numerical denominators are frequently termed fractional equations, since they are solved in the same manner as fractional equations proper. See Ex. 1. of Art. 126.

An integral equation is an equation which does not contain an unknown number in a denominator.
126. The Method of Solving a Fractional Equation. If an equation contains fractions, it is necessary first to multiply the members of the equation by such a number as will remove the fractions.

Ex. 1. Solve $\frac{x+1}{2}-\frac{2 x-5}{5}=\frac{11 x+5}{10}-\frac{x-13}{3}$.
The L. C. D. of the denominators is 30 .
Multiplying both members of the equation by 30 (see Art. 70, 3), we have

$$
\begin{aligned}
15(x+1)-6(2 x-5) & =3(11 x+5)-10(x-13) \\
15 x+15-12 x+30 & =33 x+15-10 x+130 \\
15 x-12 x-33 x+10 x & =-15-30+15+130 \\
-20 x & =100 \\
x & =-5 \text { Root }
\end{aligned}
$$

Hence,

Check. $\frac{x+1}{2}-\frac{2 x-5}{5}=\frac{-5+1}{2}-\frac{-10-5}{5}=-2+3=1$

$$
\frac{11 x+5}{10}-\frac{x-13}{3}=\frac{-55+5}{\frac{10}{196}}-\frac{-5-13}{3}=-5+6=1
$$

Ex. 2. Solve $\frac{4}{1+x}+\frac{x+1}{1-x}-\frac{x^{2}-3}{1-x^{2}}=0$.
Multiplying by the L. C. D., $1-x^{2}$,

$$
\begin{aligned}
4(1-x)+(x+1)^{2}-x^{2}+3 & =0 \\
4-4 x+x^{2}+2 x+1-x^{2}+3 & =0 \\
-2 x & =-8 \\
x & =4 \text { Root }
\end{aligned}
$$

Let the pupil check the work.
Hence, in general,
Reduce each fraction in the equation to its lowest terms;
Clear the equation of fractions by multiplying each member by the L. C. D. of all the fractions;

Complete the solution by the methods of Chapter VI.

EXERCISE 60

Solve and check each result:

1. $\frac{x}{3}-\frac{3 x}{5}+\frac{7 x}{5}=\frac{34}{15}$.
2. $\frac{2 x-3}{4}+\frac{x+1}{6}=\frac{5 x+2}{12}$.
3. $\frac{1}{2 x}-\frac{3}{x}+\frac{5}{3 x}=\frac{3}{4 x}-\frac{19}{24}$.
4. $\frac{2 x}{3}-\frac{2 x+1}{5}=\frac{1}{3}$.
5. $\frac{3 x+5}{4}=1-\frac{x+4}{6}$.
6. $7=\frac{3}{5}(x-2)$.
7. $2 x-8-\frac{1}{7}(24-2 x)=0$.
8. $\frac{3}{4}(x-1)=\frac{1}{3}(x-2)$.
9. $3\left(\frac{2}{3} x-\frac{1}{2}\right)\left(\frac{1}{2} x+\frac{2}{3}\right)=x^{2}$.
10. $\frac{3-2 x}{8}-\frac{x-3}{6}-1=\frac{x+4}{3}+\frac{1}{24}$.
11. $\frac{3 x-1}{7}-\frac{x+1}{6}-\frac{4 x+1}{21}=\frac{3(x-1)}{4}-3$.
12. $\frac{2 x+5}{5}-\frac{x+1 \frac{1}{2}}{10}+x=\frac{5 x-10 \frac{1}{2}}{20}-\frac{1}{5}$.
13. $\frac{3-x}{10}-\frac{2}{3}(5+x)+\frac{x-3}{5}-\frac{1}{2}(2 x+5)=\frac{7 x-4}{6}$.
14. $2\left(x+\frac{1}{3}\right)+x\left(1-\frac{1}{2 x}\right)=\frac{6 x+5}{12}+\frac{x+5}{4}$.
15. $\frac{x+5}{7}-\frac{x+7}{5}+\frac{x+1}{2}-\frac{2 x-5}{10}=\frac{x+22}{70}$.
16. $\frac{2}{3}(5 x+2)-\frac{3}{4}(7 x-2)+\frac{1}{2}(3 x-2)=x-\frac{x}{2}$.
17. $.5 x-.4 x=.3$.
18. $1.5 x-5=x$.
19. $\frac{5}{2 x-1}=\frac{8}{3 x+1}$.
20. $.6 x-1.5=.2-.15 x$.
21. $\frac{1.5 x-1.6}{1.2}=\frac{3.5 x-2.4}{.8}$.
22. $\frac{6 x-5}{3 x-3}=\frac{8 x-7}{4 x+4}$.
23. $\frac{3.2 x-3.4}{4.5}=\frac{.6 x+4}{2.5}$.
24. $\frac{x}{3}-\frac{x^{2}-5 x}{3 x-7}=\frac{2}{3}$.
25. $\frac{x-1}{x+1}=\frac{3}{5}$.
26. $\frac{5}{1-x}+\frac{6}{1+x}=\frac{7}{1-x^{2}}$.
27. $\frac{3}{3-x}+\frac{4}{3+x}=\frac{8 x+3}{9-x^{2}}$.
28. $\frac{2 x+1}{2 x-1}-\frac{10}{4 x^{2}-1}=\frac{2 x-1}{2 x+1}$.
29. $\frac{1}{x+1}+\frac{1}{x-1}=\frac{2}{x+2}$.
30. $\frac{x-1}{x^{3}-8}=\frac{3}{x-2}+\frac{1-3 x}{x^{2}+2 x+4}$.
31. $\frac{x^{2}-x+1}{x-1}=2 x-\frac{x^{2}+x+1}{x+1}$.
32. $\frac{x-3}{2 x+6}-\frac{\frac{1}{6} x^{2}+1}{x^{2}-9}=\frac{x+3}{3 x-9}$.
33. $\frac{3}{x-1}+\frac{4}{x+1}-\frac{5}{2 x-2}=\frac{11}{3 x+3}+\frac{4}{1-x^{2}}$.
34. $\frac{x+1}{2 x-3}-\frac{x^{2}+7}{4 x^{2}-9}=\frac{2}{2 x+3}-\frac{x-1}{6-4 x}$.
35. $\frac{3 x^{2}-5}{3 x-6}-\frac{7}{6 x+12}-2-x=\frac{7}{2 x^{2}-8}$.
36.

$$
\frac{6 x+6}{2 x^{2}+5 x+3}-\frac{2 x+1}{2 x^{2}-x-1}=\frac{2 x}{x^{2}+2 x}
$$

Reduce each fraction in the following to its lowest terms and then solve:
37. $\frac{x}{2}=\frac{x^{2}-1}{x+1} \quad$ 39. $\frac{x^{2}-x-2}{x-2}=4-6(x-3)$.
38. $\frac{4 x+4}{x^{2}+x}-\frac{3}{4}=0$.
40. $\frac{x^{3}-8}{x^{2}+2 x+4}=8-3(x+4)$.

Find the value of the letter in each of the following:
41. $\frac{1}{v+2}+\frac{7}{3(v+2)}=\frac{2}{3}$. 43. $\frac{15}{3-2 s}-\frac{2}{6-4 s}-14=0$.
42. $\frac{1}{3(p-7)}+\frac{1}{6}=\frac{1}{2 p-14}$. 44. $\frac{4}{2 t+2}+\frac{31}{3 t+3}=\frac{1}{6}$.
45. $\frac{r+6}{11}-\frac{2 r-18}{3}+\frac{2 r+3}{4}=5 \frac{1}{3}+\frac{3 r+4}{12}$.
46. If $A=l w, A=600$ and $w=20$, find the value of l.

Do you know the meaning of this process in arithmetic in con nection with the rectangle?
47. In like manner, find l when $A=80$ and $w=11 \frac{2}{3}$.
48. If $V=l w h, V=720, l=10$, and $w=6$, find h.

Do you know the meaning of this process in arithmetic in connection with the study of volumes?
49. In like manner if $V=.36, w=.8$, and $h=.9$, find l.
50. If $p=b r, p=9$ and $b=45$, find r.

Do you know the meaning of this process in arithmetic in connection with the subject of percentage?
51. If $p=b r, p=760$ and $r=.05$, find b.
52. If $i=p r t, i=\$ 66, p=\$ 440$ and $t=3$, find r.

Do you know the meaning of this process in arithmetic in connection with the subject of interest?
53. If $i=p r t, i=\$ 66, p=\$ 360$, and $t=3 \frac{2}{3}$, find r.
54. If $i=p r t, i=\$ 15.75, p=\$ 75, r=.06$, find t.
55. If $C=\frac{5}{9}(F-32)$ find F when $C=50$. When $C=100$.

Do you know the meaning of this process?
56. If $L W=l w$ and $L=8, W=100$, and $w=40$, find l.

Can you find out the meaning of this formula and process?
57. If $R=\frac{g s}{g+s}$, find s when $R=10$ and $g=32$.
58. If $V=\left(1+\frac{t}{273}\right) v$, find v when $V=20$ and $t=13$.
59. If $K=\frac{1}{2} h\left(b+b^{\prime}\right), K=280, h=12$, and $b=10$, find b^{\prime}.
60. If $V=\pi R^{2} H, V=1540, \pi=\frac{22}{7}$, and $R=7$, find H.
61. If $T=\pi R(R+L), T=1144, \pi=\frac{22}{7}, R=14$, find L.
62. Make up and work an equation containing fractions with the denominators 4,6 , and 12 . Can you form the equation so that the root shall be $1 ? 2$? 4 ?
63. Make up and work an equation containing fractions with the denominators $x+2, x-2$, and $x^{2}-4$.
64. Work again Exercise 24 (p. 99).
127. Special Methods. The work of solving an equation may often be lessened by using some special method or device adapted to the peculiarities of the given equation.

First Special Method. If in a given equation the denominators of some fractions are monomials, and of others are polynomials, it is best to make two steps of the process of clearing the equation of fractions: (1) remove the monomial denominators and simplify as far as possible; (2) remove the remaining polynomial denominators.
Ex. 1. Solve $\frac{2 x+8 \frac{1}{2}}{9}-\frac{13 x-2}{17 x-32}+\frac{x}{3}=\frac{7 x}{12}-\frac{x+16}{36}$.
Multiplying by 36, the L. C. D. of the monomial denominators,

$$
8 x+34-\frac{36(13 x-2)}{17 x-32}+12 x=21 x-x-16
$$

Transposing all terms except-the fraction to right-hand side,

$$
-\frac{36(13 x-2)}{17 x-32}=-50
$$

Dividing by $-2, \frac{18(13 x-2)}{17 x-32}=25$

$$
\begin{aligned}
234 x-36 & =425 x-800 \\
191 x & =764 \\
x & =4 \text { Root }
\end{aligned}
$$

Let the pupil check the work.
Second Special Method. Before clearing an equation of fractions, it is often best to combine some of the fractions into a single fraction.

Ex. 2. Solve $\frac{x-1}{x-2}-\frac{x-2}{x-3}=\frac{x-3}{x-4}-\frac{x-4}{x-5}$.
In this equation it is best to combine the fractions in the lefthand member into a single fraction, and those in the right-hand member also into a single fraction, before clearing of fractions. We obtain

$$
\frac{-1}{(x-2)(x-3)}=\frac{-1}{(x-4)(x-5)}
$$

Clearing and solving, $\quad x=\frac{7}{2}$ Root
Let the pupil check the work.

EXERCISE 61

Solve the following and check each solution:

1. $\frac{3 x-1}{6}+\frac{4 x}{3 x+2}=\frac{x+5}{2}$.
2. $\frac{3-2 x}{4}+\frac{x}{6}-\frac{1-6 x}{15-7 x}=\frac{2-3 x}{9}$.
3. $2 \frac{1}{2}-\frac{3}{2 x+4}=\frac{2 x-1}{4}-\frac{x}{2}$.
4. $\frac{5 x+13}{12}=\frac{2 x+5}{6}+\frac{23}{4 x-36}-\frac{5-\frac{1}{4} x}{3}$.
5. $\frac{5}{7-x}-\frac{2 \frac{1}{4} x-3}{4}-\frac{x+11}{8}+\frac{11 x+5}{16}=0$.
6. $\frac{3 x-1}{30}+\frac{4 x-7}{15}=\frac{x}{4}-\frac{2 x-3}{12 x-11}+\frac{7 x-15}{60}$.
7. $\frac{6 x-7}{11 x+5}-\frac{x+1}{15}+\frac{2 x-1}{30}=\frac{199}{10}$.
8. $3+\frac{x+4}{7 x+11}=\frac{4-3 x}{8}+\frac{4 x+9}{12}-\frac{4-x}{24}+\frac{5}{4}$.
9. $\frac{3 x-2 \frac{1}{2}}{9}-\frac{7}{12}+\frac{x-\frac{1}{2}}{\frac{4}{3} x+11}=\frac{2 x-1 \frac{1}{2}}{3}-\frac{2 x+3 \frac{1}{2}}{6}$.
10. $\frac{2}{3}\left[\frac{2 x}{9}-\frac{1}{2}\left\{\frac{3 x-1}{6}+\frac{2 x-5}{7 x+8}+x\right\}\right]+\frac{19 x+3}{54}=0$.
11. $\frac{1.2 x-1.5}{1.5}+\frac{.4 x+1}{.2 x-.2}=\frac{.4 x+1}{.5}$.
12. $\frac{1}{x-2}-\frac{1}{x-3}=\frac{1}{x-4}-\frac{1}{x-5}$.
13. $\frac{x-1}{x-2}-\frac{x-3}{x-4}=\frac{x-5}{x-6}-\frac{x-7}{x-8}$.
14. $\frac{x-7}{x-8}-\frac{x-8}{x-9}=\frac{x-4}{x-5}-\frac{x-5}{x-6}$.
15. $\frac{3}{3 x-2}-\frac{2}{2 x-3}=\frac{2}{2 x+3}-\frac{3}{3 x+2}$.
16.* $\frac{2 x+1}{x+1}+\frac{2 x+9}{x+5}=\frac{2 x+3}{x+2}+\frac{2 x+7}{x+4}$.
16. $\frac{4 x-17}{x-4}+\frac{10 x-13}{2 x-3}-\frac{8 x-30}{2 x-7}-\frac{5 x-4}{x-1}=0$.
17. Work Ex. 2 by clearing all denominators at once. Then work the same example by the method of Art. 126. About what fraction of the work is saved by the second process?
18. Treat Ex. 13 in the same way as you treated Ex. 2.
19. On the average, the distance one must go below the surface of the earth to get an increase of 1° in temperature, is 62 ft . This is 1 ft . more than one third the distance one must go above the earth's surface to get a decrease of 1° in the temperature. Find the latter distance.
20. Who, so far as we know, first invented transposition in solving equations, and when? Who first brought the use of transposition into prominence?

[^0]22. From what language does the word algebra come? What does the word algebra mean?
23. Work the odd-numbered examples on p. 101. How many examples on that page can you work at sight?
128. Two Equivalent Equations are equations which have identical roots; that is, each equation has all the roots of the other equation and no other roots.

Thus, $x^{3}-4 x=0$, and $x(x+2)(x-2)=0$ are equivalent, since each is satisfied by the values $x=0,2,-2$, and by no other values of x.

If we multiply the two members of an equation by the same expression, the resulting members are equal, but the resulting equation may not be equivalent to the original equation.

Thus, if we take the equation $x=3$ and multiply each member by $x-2$, we obtain $x(x-2)=3(x-2)$ or

$$
(x-3)(x-2)=0,
$$

which is not equivalent to the original equation, since it has the root $x=2$, which the original equation does not have (Art. 103).

In general, if the two members of an integral equation are multiplied by $x-a$, the root a is introduced and the resulting equation is not equivalent to the original equation.
129. An Extraneous Root is a root introduced into an equation (usually unintentionally) in the process of solving the equation.

The simplest way in which an extraneous root may be introduced is by multiplying both members of an integral equation by an expression containing the unknown number. See the example of Art. 128.

A more common way in which extraneous roots are introduced during a solution - and one more difficult to detect-
is by a failure to reduce to its lowest terms a fraction contained in the original equation.

Thus, in solving $\frac{2 x-4}{(x-1)(x-2)}=1$, the first step should be to reduce the fraction $\frac{2 x-4}{(x-1)(x-2)}$ to its lowest terms. If this is done, we obtain the equation $\frac{2}{x-1}=1$, whence $x=3$.

If, however, we should fail to reduce the fraction to its lowest terms and should multiply both members by $(x-1)(x-2)$, we obtain $2 x-4=x^{2}-3 x+2$, whence $x^{2}-5 x+6=0$,

$$
\text { or }(x-3)(x-2)=0, \text { and } x=2,3 .
$$

On testing both of these results, we find that the extraneous root 2 has been introduced.

Often the fraction which can be reduced to simpler terms occurs in a disguised and scattered form. In this case it is best to solve the equation without attempting to collect the parts of the fraction. An extraneous root may then be detected by checking the results obtained.

Thus, the fraction in the above equation might be changed in the following way so as to make it difficult to detect its presence in the equation:
We have

$$
\frac{2 x-4}{(x-1)(x-2)}=1
$$

whence

$$
\begin{array}{r}
\frac{2 x-2}{(x-1)(x-2)}-\frac{2}{(x-1)(x-2)}=1, \\
\frac{2}{x-2}-\frac{2}{(x-1)(x-2)}=1 .
\end{array}
$$

There is nothing in the appearance of this last equation to indicate that it implicitly contains a fraction which should be simplified before proceeding with the solution proper.

Hence it is important constantly to remember that a root of an equation is not such because it is the result of a series of operations, as clearing an equation of fractions, transposition, etc., but because it satisfies the original equation.

130. Losing Roots in the Process of Solving an Equation.

If both members of the equation $(x-2)(x-3)=0$ are divided by $x-2$, we obtain $x-3=0$.

The resulting equation is not equivalent to the original equation since it does not contain the root $x=2$, which the original equation contains.

Hence, in general,
If both members of an equation are divided by an expression containing the unknown quantity, write the divisor expression equal to zero, and obtain the roots of the equation thus formed as part of the answer for the original equation.

EXERCISE 62

1. Multiply each member of the equation $x-2=1$ by $x-2$. Is the resulting equation equivalent to the original equation? Why?
2. Make up and work an example similar to Ex. 1.
3. Multiply each member of the equation $x=2$ by $x-5$. Is the resulting equation equivalent to the original equation? Why?
4. Divide each member of the equation $x^{2}-9=x-3$ by $x-3$. Is the resulting equation equivalent to the original equation? Why?
5. Make up and work an example similar to Ex. 4.
6. Solve the equation $\frac{x-3}{x^{2}-9}=1$ after first reducing the fraction to its lowest terms. Now solve the equation without reducing the fraction to its lowest terms. Do the two methods of solution give the same result? Which result is correct? Why?
7. Make up and work an example similar to Ex. 6.

Solve each of the following, check each result, and point
out each extraneous root, giving the probable reason for the occurence of such a root:
8. $\frac{x}{2}+\frac{1}{x+1}=\frac{x^{2}}{x+1}$.
9. $\frac{3}{x+1}=1-\frac{9}{(x+1)(x-2)}$.
10. $\frac{5}{(x+2)(x+3)}+1=\frac{5}{x+2}$.
11. $\frac{x^{3}-1}{x^{2}-1}=x-\frac{7}{6}$.
12. $\frac{2 x^{2}}{x^{2}-1}+\frac{x}{x-1}-\frac{x}{x+1}=3$.
13. Form an equation in which 3 is the extraneous root.
14. How many examples in Exercise 31 (p. 121) can you now work at sight?
131. A numerical equation is an equation in which the known quantities are expressed by figures. Thus, all the equations on p. 199 are numerical equations.

A literal equation is an equation in which some or all of the known quantities are denoted by letters; as by a, b, $c . .$. , or m, n, p. .

The methods used in solving literal equations are the same as those used in solving numerical equations.

Ex. Solve $a(x-a)=b(x-b)$.

$$
\begin{aligned}
a x-a^{2} & =b x-b^{2} \\
a x-b x & =a^{2}-b^{2} \\
(a-b) x & =a^{2}-b^{2} \\
x & =a+b \text { Root }
\end{aligned}
$$

Сheck.

$$
\begin{aligned}
& a(x-a)=a(a+b-a)=a b \\
& b(x-b)=b(a+b-b)=a b
\end{aligned}
$$

EXERCISE 63

Solve for x and check:

1. $3 x+2 a=x+8 a$.
2. $9 a x-3 b=2 a x+4 b$.
3. $5 a x-c=a x-5 c$.
4. $a x+b=b x+2 b$.
5. $3 c x=a-(2 b-a+c x)$.
6. $5 x-2 a x=3-b$.
7. $2 a x-3 b=c x+2 d$.
8. $(x+a)(x-b)=x^{2}$.
9. $a b(x+1)=a^{2}+b^{2} x$.
10. $(x-1)(x-2)=(x-a)^{2}$.
11. $a^{2} x=(a-b)^{2}+b^{2} x$.
12. $(a-b) x=a^{2}-(a+b) x$.
13. $\frac{a x}{b}+\frac{b x}{a}=\frac{a}{b}-\frac{b}{a}$.
14. $\frac{a+x}{a-2 x}=\frac{a-x}{a+2 x}$.
15. $\frac{4 x-a}{2 x-a}-1=\frac{x+a}{x-a}$.
16. $\frac{x}{a}+\frac{x}{b}+\frac{x}{c}=d$.
17. $\frac{3}{4}\left(\frac{x}{a}-1\right)=\frac{2}{3}\left(\frac{x}{a}+1\right)$.
18. $\frac{2 a}{3}\left(\frac{x}{a}-a\right)=\frac{3 a}{5}\left(\frac{x}{a}+a\right)$.
19. $\frac{a x-b}{a b}+\frac{b x-c}{b c}+\frac{c x-a}{a c}=0$.
20. $\frac{a x}{3 a+b}+\frac{b x}{3 a-b}=\frac{3 a^{2} x+b^{2}}{9 a^{2}-b^{2}}$.
21. $\frac{x}{a}-\frac{x}{a-b}=\frac{1}{a+b}-\frac{x}{b}$.
22. $\frac{a^{2}-x}{c}-\frac{b^{2}-x}{a}-\frac{c^{2}-x}{b}=\frac{a^{2}}{c}-\frac{b^{2}}{a}$.
23. $\frac{5 a^{2}-7 x}{3 a b}+\frac{a b^{2}+10 x}{5 a c}=\frac{10 c^{2}+3 x}{6 b c}+\frac{5(a-c)}{3 b}+\frac{b^{2}}{5 c}$.

FRACTIONAL AND LITERAL EQUATIONS
24. $\frac{\frac{a+x}{a}}{x-a}=\frac{1-\frac{x}{a}}{\frac{1}{a}-x} . \quad$ 25. $\frac{\frac{x-1}{a}}{\frac{a+1}{x}}=\frac{\frac{x}{a-1}}{\frac{a}{a+x}}$.
26. Make up and solve two literal equations.
27. How many examples in Exercise 35 (p. 131) can you now work at sight?

EXERCISE 64

Oral

Solve the following orally, without transposing any term containing x :

1. $4 x=-12$
2. $3 x=a$
3. $a x=5$
4. $a x=b$
5. $2 x-4=6$
6. $a x-5=7$
7. $b x+c=d$
8. $a x+b x=c$
9. $a x=c+5 x$

$$
\text { 10. } 6=3 x
$$

11. $10=-5 x$
12. $\frac{2}{3}=3 x$
13. $\frac{1}{x}=2$
14. $\frac{x}{3}=\frac{1}{4}$
15. $a=5 x$
16. $\frac{2}{x}=3$
17. $4=\frac{x}{2}$
18. $c=d x$
19. $\frac{a}{x}=1$
20. $-3=\frac{2 x}{5}$
21. $3 x=\frac{1}{2}$
22. $\frac{-3}{x}=9$
23. $4=\frac{2 x}{7}$
24. $2 x=-\frac{4}{5}$
25. $\frac{111}{x}=-37$
26. $a=\frac{b x}{c}$
27. $5 x=\frac{3}{4}$
28. $\frac{a}{x}=p$
29. $\frac{x}{2}=\frac{3}{5}$
30. $a x=\frac{1}{b}$
31. $\frac{1}{3} x=2$
32. $\frac{1}{2} x=\frac{4}{7}$
33. $\frac{x}{3}=2$
34. $\frac{2}{5} x=4$
35. $\frac{x}{4}=-\frac{2}{3}$
36. $\frac{x}{a}=5$
37. $-\frac{3}{4} x=6$
38. $\frac{1}{x}=\frac{1}{2}$
39. $\frac{2}{x}=\frac{3}{5}$
40. $-\frac{7}{3}=\frac{1}{x}$
41. $p+q=\frac{a+b}{x}$
42. $\frac{c-d}{x}=p+q$
43. $\frac{2}{3}=\frac{3}{x}$
44. $\frac{a x}{b}=\frac{c}{d}$
45. $\frac{2}{3} x=\frac{1}{5}$
46. $\frac{4}{x}=\frac{12}{15}$
47. How many examples in Exercise 45 (p. 155) can you now work at sight?

EXERCISE 65

Review

Solve for x and check:

1. $\frac{2}{x-2}-\frac{5}{x+2}=\frac{2}{x^{2}-4} . \quad$ 2. $\frac{x}{2}-\frac{x^{2}-1}{x-1}=5$.
2. $\frac{6 x+1}{15}-\frac{2 x-1}{5}-\frac{2 x-4}{7 x-16}=0$.
3. $\frac{x-b}{x-2 a}-\frac{x+b}{x+2 a}-\frac{4 a^{2}-b^{2}}{x^{2}-4 a^{2}}=0$.
4. $\frac{3 p x-3 q x}{x^{2}-q^{2}}-\frac{p-2 q}{x+q}+\frac{p-q}{q-x}=0$.
5. $\frac{x-2}{x-3}-\frac{x-3}{x-4}=\frac{x-5}{x-6}-\frac{x-6}{x-7}$.
6. $6+\frac{1}{4}\left(x-9-\frac{x-3}{5}\right)+3+\frac{x-5}{5}=\frac{x}{2}$.

Find the value of x in the shortest way, when
8. $\frac{44}{7} x=\frac{44}{7} \times 19+\frac{44}{7} \times 41$.
9. $3.1416 x=3.1416(723)-3.1416(476)$.
10. $\frac{x}{3}-\frac{x}{4}=2 . \quad$ 11. $\frac{2 x}{3}-\frac{x}{2}=5$.
12. If $\frac{3}{x}-\frac{2}{y}=4$, find the value of x when $y=\frac{1}{3}$. Also when $y=-\frac{3}{4} . \quad$ When $y=\frac{4}{5}$.
13. Solve for $l: \frac{211}{108}=\frac{\frac{2}{3} l-\frac{3}{4}}{-\frac{1}{3}}$.
14. Solve for $a: \frac{-640}{243}=a\left(\frac{-128}{2187}\right)$.
15. In adding $\frac{x-1}{4}+\frac{5 x}{6}$ we retain the L. C. D. 24. In solving the equation $\frac{x-1}{4}=\frac{5 x}{6}$ and clearing of fractions, the L. C. D. 24 disappears. What is the reason for this difference?
16. Make up an example similar to Ex. 15.
17. Make up and solve an equation which contains fractions with the denominators $8,2(x-1)$, and 4 .
18. Make up and solve an equation which contains fractions with the denominators $a+b, a-b$, and $b^{2}-a^{2}$.

EXERCISE 66

1. Find the number the sum of whose third, fourth, and fifth parts is 94 .
2. Make up and work a problem concerning one fourth and one sixth of some number.
3. State $\frac{x}{3}-\frac{x}{4}=28$ as a problem concerning a number and find the number.
4. A certain number exceeds the sum of its third, fourth, and tenth parts by 38 . Find the number.
5. A piece of bronze weighs 415 pounds. It contains twice as much zinc as tin, and 8 times as much copper as tin. How many pounds of each material are in the bronze?
6. Find two consecutive numbers such that one seventh of the greater exceeds one ninth of the less by 1.
7. Express in symbols 15% of x. 5% of x. 115% of b.
8. Two men kept a store for a year and made $\$ 4800$. The man who owned the store building received 40% more of the profits than the other. How much did each receive?
9. In building a macadam road the county pays twice as much as the state, and the township pays 50% more than the state. How much does each pay if the road costs $\$ 18,000$?
10. Separate $\$ 770$ into two parts so that one shall exceed the other by 20%. By $33 \frac{1}{3} \%$.
11. The difference of two numbers is 9.3 increased by $\frac{5}{11}$ of the less of the two numbers equals $\frac{3}{7}$ of the greater. Find the numbers.
12. The iron ore in the United States is $\frac{1}{4}$ of the iron ore in the rest of the world. If there are $75,000,000,000$.tons of iron ore in the entire world, how many tons of iron ore are there in the United States?
13. The population of India is $\frac{5}{9}$ that of China, and the population of the rest of the world is $3 \frac{3}{5}$ times that of India. What is the population of India and China, if that of the entire world is $1,500,000,000$?
14. A man bequeathed $\$ 60,000$ to his wife and three children. In a first will he bequeathed his wife three times as large a share as one child received. Later he changed his will and bequeathed his wife $\$ 10,000$ more than the share of a child. By which of the two wills would she have received the larger amount?
15. In one kind of concrete, the parts of cement, sand, 'and gravel are 1,2 , and 4 . In another kind of concrete these parts are $1,3,5$. How many more cubic feet of cement are needed to make $5600 \mathrm{cu} . \mathrm{ft}$. of concrete of the first kind than of the second?
16. A girl's grades are, arithmetic 87 , reading 92 , and geography 85 . What grade must she have in spelling to make her general average 90 ?
17. The average wheat crop of the United States for four years was 660 millions of bushels. What would the crop for the fifth year need to be in order to make the average for the five years 700 million bushels?
18. A pupil has worked 15 problems. If he should work 9 more problems and get 8 of them right, his average would be .75. How many problems has he worked correctly thus far?
19. A baseball nine has played 36 games of which it has won 25 . How many games must it win in succession to bring its average of games won up to .75 ?
20. Make up and work an example similar to Ex. 19.
21. A baseball nine has won 19 games out of 36 games played. If after this it should win $\frac{3}{4}$ of the games played, how many games would it need to play to bring its average of games won up to $.66 \frac{2}{3}$?
22. A baseball nine has won 25 games out of 36 played. It still has 12 games to play. How many of these will it need to win in order to bring its average of games won up to .75 ?
23. How much water must be added to 50 gallons of milk containing 8% of butter fat to make a mixture containing 5% of butter fat?

Sug. The 50 gal. of milk contain $50 \times .08$ or 4 gal. butter fat. If x denotes the number of gallons of water, $\frac{4}{50+x}=\frac{5}{100}$, etc.
24. A certain kind of cream is $\frac{4}{5}$ butter fat, and a certain kind of milk is 3% butter fat. How many gallons of the cream must be added to 40 gallons of milk to make a mixture which is 5% butter fat?
25. Of what type is each of the above problems an example or variation?
26. A mass of copper and silver alloy weighs 120 lb . and contains 8 lb . of copper. How much copper must be added to the mass in order that 100 lb . of the resulting alloy shall contain 10 lb . of the copper?
27. A mass of copper and silver alloy weighs 120 lb . and contains 8 lb . of silver. How much silver must be added to the mass in order that 1 lb . of the resulting alloy shall contain $2 \frac{1}{5} \mathrm{oz}$. of silver?
28. If 100 lb . of sea water contains $2 \frac{1}{2} \mathrm{lb}$. of salt, how much fresh water must be added to it in order that 100 lb . of the mixture shall contain 1 lb . of salt?
29. How much fresh water must be added to 100 lb . of sea water in order that 20 lb . of the mixture shall contain 4 oz . of salt?
30. How much water must be evaporated from 100 lb . of salt water in order that 8 lb . of the water left shall contain 1 lb . of salt?
31. How much water must be added to a gallon of alcohol which is 90% pure, in order to make a mixture which is 80% pure?
32. If it takes a man 9 days to do a piece of work, what part of it will he do in one day? If it takes him x days to do the work, what part of it will he do in one day?
33. If a boy can do a piece of work in 15 days which a man can do in 9 days, how long would it take both working together to do the piece of work?

Sug. What fractional part of the work will the boy do in 1 day? The man? If together the boy and man can do the piece of work in x days, what part of the work can they do together in 1 day?
34. A can spade a garden in 3 days, B in 4 days, and C in 6 days. How many days will they require working together?
35. A and B together can mow a field in 4 days, but A alone could do it in 12 days. In how many days can B mow it?
36. A and B in $5 \frac{1}{7}$ days accomplish a piece of work which A and C can do in 6 days or B and C, in $7 \frac{1}{5}$ days. If they all work together, how many days will they require to do the same work?
37. One pipe can fill a given tank in 48 min . and another can fill it in 1 h . and 12 min . How long will it take the pipes together to fill the tank?
38. Two inflowing pipes can fill a cistern in 27 and 54 min . respectively, and an outflowing pipe can empty it in 36 min . All pipes are open and the cistern is empty; in how many minutes will it be full?

Sug. Since emptying is the opposite of filling, we may consider that a pipe which empties $\frac{1}{3 E}$ of a cistern in a minute will fill $-\frac{1}{36}$ of it each minute.
39. A tank has four pipes attached, two filling and two emptying. The first two can fill it in 40 and 64 min . respectively, and the other two can empty it in 48 and 72 min . respectively. If the tank is empty and the pipes all open, in how many minutes will it be full?
40. At what time between 3 and 4 o'clock are the hands of a watch pointing in opposite directions?

Solution. At 3 o'clock the minute-hand is 15 minute-spaces behind the hour-hand, and finally is 30 spaces in advance: therefore the minute-hand moves over 45 spaces more than the hour-hand.

Let $x=$ the number of spaces the minute-hand moves
But the minute-hand moves 12 times as fast as the hour-hand;

$$
\text { hence, } x=12(x-45) \text {. Solving, } x=49 \frac{1}{11} \text {. }
$$

Thus the required time is $49 \frac{1}{11} \mathrm{~min}$. past 3 .
41. When are the hands of a clock pointing in opposite directions between 4 and 5 ? Between 1 and 2?
42. What is the time when the hands of a clock are together between 6 and 7 ? Between 10 and 11?
43. At what instants are the hands of a watch at right angles between 4 and 5 o'clock? Between 7 and 8 ?
44. The planet Mars is in the most favorable position to be observed from the earth when it is in
 line with the earth and on the opposite side of the earth from the sun (Mars is then said to be in opposition). If the year is taken as 365 days, and it takes Mars 687 days to make one revolution about the sun, how long is the interval between two successive oppositions of Mars?

Sug. If it takes the earth x days to overtake Mars and thus put Mars again in opposition, how many revolutions about the sun does the earth make in x days? How many revolutions does Mars make in x days? In the interval from one opposition to the next, how many more revolutions about the sun does the earth make than Mars?
45. It takes the planet Jupiter 12 yr . to make one revolution about the sun. How long is it from one opposition of Jupiter to the next?
46. The interval between two successive oppositions of Mars is 780 days. Determine the time it takes Mars to make one revolution about the sun (i. e. the length of the year on Mars).
47. A courier travels 5 mi . an hour for 6 hours, when another courier starts at the same place and follows him at the rate of 7 mi . an hour. In how many hours will the second overtake the first?

Sug. If $x=$ the number of hours the second courier travels, how many hours does the first courier travel? How many miles (in terms of x) does the first courier travel? The second? Do the two couriers travel equal distances?
48. A courier who travels $5 \frac{1}{2} \mathrm{mi}$. an hour was followed after 8 hours by another, who went $7 \frac{1}{3} \mathrm{mi}$. an hour. In how many hours will the second overtake the first?
49. A woman can write 15 words per minute with a pen, and a girl can write 40 words per minute on the typewriter. The woman has a start of 3 hours in copying a certain manuscript. How long before the girl using the typewriter will overtake the woman?
50. A train running 40 mi . an hour left a station 45 min . before a second train running 45 mi . an hour. In how many hours will the second train overtake the first?
51. A gentleman has 10 hours at his disposal. He walks out into the country at the rate of $3 \frac{1}{2} \mathrm{mi}$. an hour and rides back at the rate of $4 \frac{1}{2} \mathrm{mi}$. an hour. How far may he go?
52. A and B start out at the same time from P and Q, respectively, 82 mi . apart. A walked 7 mi . in 2 hours, and B 10 mi . in 3 hours. How far and how long did each walk before coming together, if they walked toward each other? If A walked toward Q , and B in the same direction from Q ?
53. A certain room is 20 ft . long and 12 ft . wide. The walls and ceiling of the room together have an area of 752 sq. ft. How high is the ceiling?
54. A rifle ball is fired at a target 1100 yd . distant and $4 \frac{1}{2} \mathrm{sec}$. after firing the shot the marksman heard the impact of the bullet on the target. If the bullet traveled at the rate of 2200 ft . per second, what was the rate at which the sound of the impact traveled back to the marksman?
55. A rifle ball is fired at a target 1000 yd . distant and 4 sec. after firing the shot, the marksman heard the impact of the bullet on the target. If sound traveled at the rate of 1100 ft . per second, at what rate did the bullet travel?
56. A 21 lb . mass of gold and silver alloy when immersed in water weighed only 19 lb . If the gold lost $\frac{1}{19}$ of its weight when weighed under water, and the silver $\frac{1}{10}$ of its weight, how many pounds of each metal were in the alloy?

Sug. If x denotes the number of pounds of gold, how many pounds of silver were there in the mass?

The law involved in the above example is that when any object is weighed in water, it loses in weight an amount equal to the weight of the water which it displaces. Hence, if the specific gravity of gold is approximately 19 , the weight of the water displaced by the gold $=\frac{1}{19}$ of the weight of the gold.

Find out if you can who first used this method of determining the relative amounts of metal in an alloy and what use he first made of the method.
57. An alloy of aluminum and iron weighs 80 lb ., but when immersed in water it weighs only 60 lb . If the specific gravity of aluminum is $2 \frac{1}{2}$ while that of iron is $7 \frac{1}{2}$, how many pounds of each metal are in the alloy?
58. A mass of copper and tin weighing 100 lb . when immersed in water weighed 87.5 lb . If the specific gravity of copper is 8.8 and that of tin is 7.3 , how much of each metal was in the mass?
59. If a bushel of oats is worth 40ϕ and a bushel of corn is worth 55ϕ, how many bushels of each grain must a miller use to produce a mixture of 100 bu . worth 48ϕ a bushel?
60. A man has $\$ 5050$ invested, some at 4%, and some at 5%. How much has he at each rate if the annual income is $\$ 220$?
61. Divide the number 54 into 4 parts, such that the first increased by 2 , the second diminished by 2 , the third multiplied by 2 , and the fourth divided by 2 , will all produce equal results.
62. Find three consecutive numbers such that if they be divided by 2,3 , and 4 respectively, the sum of the quotients will equal the next higher consecutive number.
63. In the United States the gold dollar is 90% gold and 10% copper. If a mass of gold and copper weighing 24 lb . is 75% gold, how many pounds of gold must be added to it to make it ready for coinage into gold dollars?
64. My annual income is $\$ 990$. If $\frac{1}{4}$ of my property is invested at $5 \%, \frac{2}{5}$ at 4%, and the rest at 6%, find the amount of my property.
65. If one pipe can fill a swimming tank in 1 hour and another can fill it in 36 minutes, how long will it take the two pipes together to fill the tank?
66. At what time are the hands of a watch at right angles between 10 and 11 o'clock?
67. If one baseball nine has won 16 games out of 42 played, and another has won 18 out of 40 played, how many straight games must the first team win in order at least to equal the average of games won by the second team?
68. If the interval between two successive oppositions of the planet Saturn is 378 days, how long is the year on Saturn?
69. If A, B, and C together can do in $5 \frac{1}{3}$ days a certain amount of work, which B alone could do in 24 days, or C alone in 16 days, how long would A require?
70. How much water must be added to 1 gal. of a 5% solution of a certain chemical to reduce it to a 2% solution?
71. A baseball player who has been at the bat 150 times has a batting average of .240 . How many more times must he bat in order to bring his average up to .250 , provided that in the future his base hits equal half the number of times he bats?
72. A girl has worked a certain number of problems and has $\frac{2}{3}$ of them right. If she should work 9 more problems and get 8 of them right, her average would be .75 . How many problems has she worked?
73. If the sum of two consecutive integers is $4 p+5$, find the integers.
74. A man has a hours at his disposal. He wishes to ride out into the country and walk back. How far may he ride in a coach which travels b miles an hour, and return home in time, walking c miles an hour?
75. Generalize Ex. 33; that is, make up and work a similar example where letters are used instead of figures for the known numbers.
76. If E denotes the number of days it takes the earth to revolve once around the sun, P denotes the number of days it takes a planet (as Mars) to complete a revolution about the sun, and S the number of days between two successive oppositions of the planet, show that $\frac{1}{E}-\frac{1}{P}=\frac{1}{S}$.
77. The fore wheel of a carriage is a feet in circumference and the hind wheel is b feet. What distance has been passed over when the fore wheel has made c revolutions more than the hind wheel?
78. Make up and work three examples similar to such of the examples in this Exercise as the teacher may point out.

EXERCISE 67

1. Given $V=l w h$, find h in terms of the other letters. Also solve for l. For w.
2. Given $i=p r t$, find each letter in terms of the others.

Find each letter in terms of the others in the following formulas used in geometry:
3. $K=\frac{1}{2} b h$
4. $K=\frac{1}{2} h\left(b+b^{\prime}\right)$
5. $C=2 \pi R$
6. $S=\pi R L$
7. $T=\pi R(R+L)$
8. $T=2 \pi R(R+H)$

Also find each letter in terms of the others in the following formulas used in mechanics and physics:
9. $S=v t$
10. $L W=l w$
11. $C=\frac{5}{9}(F-32)$ 12. $C=\frac{E}{R}$
13. $R=\frac{g s}{g+s}$
14. $\frac{1}{f}=\frac{1}{p}+\frac{1}{p^{\prime}}$
15. By use of the formula in Ex. 2 determine in how many years $\$ 325$ will produce $\$ 84.50$ interest at 5 per cent.
16. Also find the rate at which $\$ 176$ will yield $\$ 43.56$ interest in 5 yr. 6 mo.
17. Change the following temperatures on the Centigrade scale to Fahrenheit readings:
(1) 50°
(2) 0°
(3) 2700°
18. Metals fuse at the following temperatures on the Centigrade scale. What are the temperatures at which they fuse on the Fahrenheit scale?
$\operatorname{Tin} 228^{\circ}$ Lead 325° Copper 1091° Iron 1540° $\frac{\frac{b c+d}{a}}{\frac{b c}{a}}=\frac{2 d}{a}$
20. A boy who weighs 80 lb . is on a teeter board at A, 6 ft . from the fulcrum F. He just balances a boy who $B \quad F^{F} \quad A$ is at B on the same board, 8 ft .
 from F. What does the second boy weigh? (Use the formula of Ex. 10.)
21. Make up and work an example similar to Ex. 19.
22. How many examples in Exercise 48 (p. 163) can you now work at sight?

CHAPTER XII

SIMULTANEOUS EQUATIONS

132. Need and Utility of Simultaneous Equations.

Ex. A farmer one year made a profit of $\$ 2221$ on 27 acres of corn and 40 acres of potatoes. The next year with equally good crops, he made a profit of $\$ 2028$ on 36 acres of corn and 30 acres of potatoes. How much did he make per acre on his corn and on his potatoes?

Let $\quad x=$ no. of dollars made on 1 acre of corn

$$
y=\text { " "" " " " " 1 "" " potatoes }
$$

From these equations the value of x may be found by combining the equations in some way which will get rid of, or eliminate, y. (See Arts. 136-138.)

Try to solve the above problem by the use of only one unknown, as x. If you succeed at all, you will find the method awkward and inconvenient.

Why do we now proceed to make definitions and rules?
133. Simultaneous Equations are a set or system of equations in which more than one unknown quantity is used, and the same symbol stands for the same unknown number.

Thus, in the group of three simultaneous equations,

$$
\begin{aligned}
& x+y+2 z=13 \\
& x-2 y+z=0 \\
& 2 x+y-z=3
\end{aligned}
$$

x stands for the same unknown number in all of the three equations, y for another unknown number, and z for still another.
134. Independent Equations are those which cannot be derived one from the other.

Thus,

$$
\begin{aligned}
x+y & =10 \\
2 x & =20-2 y
\end{aligned}
$$

and
are not independent equations, since by transposing $2 y$ in the second equation and dividing it by 2 , we may convert the second equation into the first.

But $3 x-2 y=5\}$ are independent equations, since neither one $5 x+y=6\}$ of them can be converted into the other.
135. Elimination is the process of combining two equations containing two unknown quantities so as to form a single equation with only one unknown quantity. Or, in general, elimination is the process of combining several simultaneous equations so as to form equations one less in number and containing one less unknown quantity.

There are three principal methods of elimination: I, addition and subtraction; II, substitution; and III, comparison.

These methods are presented to best advantage in connection with illustrative examples.
136. I. Elimination by Addition and Subtraction.

Ex. Solve

$$
\left\{\begin{align*}
12 x+5 y & =75 \tag{1}\\
9 x-4 y & =33
\end{align*}\right.
$$

In order to make the coefficients of y in the two equations alike, we multiply equation (1) by 4 , and (2) by 5 ,

$$
\begin{align*}
& 48 x+20 y=300 . \tag{3}\\
& 45 x-20 y=165 . \tag{4}
\end{align*}
$$

Add equations (3) and (4), $93 x=465$
Divide by 93 ,

$$
x=5 \text { Root }
$$

Substitute for x its value 5 , in equation (1),

$$
\begin{aligned}
60+5 y & =75 \\
\therefore y & =3 \text { Root }
\end{aligned}
$$

Check.

$$
\begin{array}{r}
12 x+5 y=12 \times 5+5 \times 3=75 \\
9 x-4 y=9 \times 5-4 \times 3=33
\end{array}
$$

Since y was eliminated by adding equations (3) and (4) the above process is called elimination by addition.

The same example might have been solved by the method of subtraction.

Thus, multiply equation (1) by 3 , and (2) by 4 ,

$$
\begin{align*}
& 36 x+15 y=225 . \tag{5}\\
& 36 x-16 y=132 . \tag{6}
\end{align*}
$$

Subtract (6) from (5), $\quad 31 y=93$

$$
y=3
$$

and $\quad x=5$
It is important to select, in every case, the smallest multipliers that will cause one of the unknown quantities to have the same coefficient in both equations.

Thus, in the last solution given above, instead of multiplying equation (1) by 9 , and (2) by 12 , we divide these multipliers by their common factor, 3 , and get the smaller multipliers, 3 and 4.

Hence, in general,
Multiply the given equations by the smallest numbers that will cause one of the unknown quantities to have the same coefficient in both equations;

If the equal coefficients have the same sign, subtract the corresponding members of the two equations; if the equal coefficients have unlike signs, add.

EXERCISE 68

Solve by addition and subtraction:

1. $3 x-2 y=1$
$x+y=2$
2. $2 x-7 y=9$
$5 x+3 y=2$
3. $4 x+3 y=1$
$2 x-6 y=3$
4. $5 x-3 y=1$
$3 x+5 y=21$
5. $x+5 y=-3$
$7 x+8 y=6$
6. $3 x-2 y=4$
$5 x-4 y=7$
7. $2 y+x=0$
$4 x+6 y=-3$
8. $9 x-8 y=5$
$15 x+12 y=2$
9. $4 x-6 y+1=0$
$5 x-7 y+1=0$
10. $8 x+5 y=6$
$6 y+2 x=11$
11. $5 x-3 y=36$
$7 x-5 y=56$
12. $\frac{x}{2}-\frac{y}{3}=1$
$\frac{x}{4}-\frac{y}{9}=1$
13. $\frac{x}{3}-\frac{y}{5}=3$

$$
\frac{x}{5}+\frac{y}{2}=8
$$

14. $\frac{2 x}{3}+\frac{y}{4}=1$
$\frac{3 x}{2}+\frac{5 y}{8}=2$
15. $\frac{4 x}{5}+\frac{3 y}{2}=-7$

$$
\frac{3 x}{4}+\frac{2 y}{5}=\frac{7}{2}
$$

16. $\frac{5 x}{6}-\frac{8 y}{9}=-6$
$\frac{3 x}{4}-\frac{5 y}{6}=-6$
17. Find two numbers whose sum is 12 and whose difference is 2 .
18. The half of one number plus the third of another number equals 13 , while the sum of the numbers is 33 . Find the numbers.
19. State Ex. 1 as a problem concerning two numbers.
20. State Ex. 2 as a problem concerning two numbers.
21. 7 lb . of sugar and 3 lb . of rice together cost 57ϕ; also 5 lb . of sugar and 6 lb . of rice cost $60 ¢$. Find the cost of a pound of each.
22. Make up and work an example similar to Ex. 18. To Ex. 21.
23. How many examples in Exercise 50 (p. 170) can you now work at sight?
24. II. Elimination by Substitution.

Ex. Solve

$$
\begin{align*}
& 5 x+2 y=36 \tag{1}\\
& 2 x+3 y=43 \tag{2}
\end{align*}
$$

From (1)

$$
\begin{align*}
& 5 x=36-2 y \\
\therefore \quad x & =\frac{36-2 y}{5} . \tag{3}
\end{align*}
$$

In equation (2) substitute for x its value given in (3),

$$
\begin{aligned}
2\left(\frac{36-2 y}{5}\right)+3 y & =43 \\
\frac{72-4 y}{5}+3 y & =43 \\
72-4 y+15 y & =215 \\
11 y & =143 \\
y & =13 \text { Root } \\
y \text { in }(3), \quad x & =\frac{36-26}{5}=2 \text { Root }
\end{aligned}
$$

Substitute for y in (3),
Let the pupil check the work.
Hence, in general,
In one of the given equations obtain the value of one of the unknown quantities in terms of the other unknown quantity;

Substitute this value in the other equation and solve.

EXERCISE 69

1. Work the examples of Exercise 68 (p. 225) by the method of substitution.

Find out which of the following sets of equations are worked more readily by the method of addition and subtraction, and which by the method of substitution, and work each example accordingly:
2. $x=3 y-5$
4. $x-3=0$
$2 x+5 y=12$
$2 y+3 x=5$
3. $3 x-4 y=1$
5. $2 x+3 y=1$
$4 x-5 y=1$
$3 x+4 y=2$
6. $7 x+8 y=19$
8. $y=3$
$5 x+6 y=13 \frac{1}{2}$

$$
2 x=3 y-17
$$

7. $x=2 y-3$

$$
y=5 x-21
$$

9. $y=3 x$
$4 x+5 y=38$
10. Make up and solve an example in simultaneous equations which is solved more readily by the method of addition and subtraction than by the method of substitution.
11. Make up and solve an example of which the reverse of Ex. 10 is true.
12. How many examples in Exercise 51 (p. 172) can you now work at sight?
13. III. Elimination by Comparison.

Ex. Solve

$$
\begin{align*}
& 2 x-3 y=23 \tag{1}\\
& 5 x+2 y=29 \tag{2}
\end{align*}
$$

From (1)

$$
\begin{equation*}
2 x=23+3 y \tag{3}
\end{equation*}
$$

From (2)

$$
\begin{equation*}
5 x=29-2 y \tag{4}
\end{equation*}
$$

From (3)

$$
\begin{equation*}
x=\frac{23+3 y}{2} \tag{5}
\end{equation*}
$$

From (4)

$$
\begin{equation*}
x=\frac{29-2 y}{5} . \tag{6}
\end{equation*}
$$

Equate the two values of x in (5) and (6),

$$
\frac{23+3 y}{2} \cong \frac{29-2 y}{5}
$$

Hence,

$$
\begin{aligned}
115+15 y & =58-4 y \\
19 y & =-57 \\
y & =-3 \text { Root }
\end{aligned}
$$

Substitute for y in (5), $\quad x=\frac{23-9}{2}=7$ Root
Let the pupil check the solution.
Hence, in general,
Select one unknown quantity, and find its value in terms of the other unknown quantity in each of the given equations;

Equate these two values, and solve the resulting equation.

EXERCISE 70

1. Work the examples of Exercise 68 (p. 225) by the method of comparison.

Ascertain by which of the three methods of elimination each of the following examples can be worked most readily, and solve accordingly:
2. $x=3 y+9$
7. $9 x+12 y=-6$

$$
x=5 y+13
$$

$$
6 x-5 y=-17
$$

3. $x=3 y+9$
$3 x-5 y=10$
4. $x=5$

$$
3 x-2 y=13
$$

4. $6 x+5 y-8=0$
$4 x-3 y-18=0$
5. $5 x+3 y=8$
$5 x-4 y=7$
6. $y=2 x$
$3 x+2 y=21$
7. $y=\frac{2}{5}(x-3)$
$y=\frac{3}{4} x+1$
8. $y=6 x-3$
$8-5 x=y$
9. $y=2 x+1$
$3 x+\frac{5 y}{2}=8$
10. Make up and solve an example in simultaneous equations which is solved more readily by the method of comparison than by either of the other two methods of elimination.
11. Make up and solve an example in simultaneous equations which is solved more readily by the method of substitution than by either of the other two methods.
12. Make up and solve an example solved more readily by the method of addition and subtraction than by the other two methods.

EXERCISE 71

Solve and check each result:

1. $\begin{array}{r}\frac{x+1}{3}-\frac{y}{4}=-1 \\ \frac{y}{3}-\frac{3 x+1}{4}=0\end{array}$
2. $x-\frac{y-2}{7}=5$

$$
4 y-\frac{x+10}{3}=3
$$

$$
\text { 5. } \frac{2 x-y}{5}+\frac{3 x+2 y}{11}=2
$$

$$
-\frac{2 x}{3}+\frac{4 x+y-1}{4}=1
$$

$$
\begin{aligned}
& \text { 6. } \frac{7}{y+3}-\frac{3}{x+4}=0 \\
& y(x-2)-x(y-5)+13=0
\end{aligned}
$$

$$
\text { 7. } \frac{2}{3}(x+3 y)-\frac{1}{2}(x+2 y)=\frac{7}{12}
$$

$$
3 y-\frac{2}{3}\left(x+4 y+\frac{5}{6}\right)=0
$$

8. $.4 x-.3 y=.7$
$.7 x+.2 y=.5$

$$
\text { 10. } \begin{array}{r}
.5 x+4.5 y=2.6 \\
1.3 x+3.1 y=1.6
\end{array}
$$

9. $2 x+1.5 y=10$

$$
.3 x-.05 y=.4
$$

11. $.8 x-.7 y=.005$

$$
2 x=3 y
$$

12. $\frac{1-3 y}{x+\frac{2-3 x}{3}}=x+13$

$$
\frac{10 y+1}{5}=y-\frac{2 x+3}{x+3-\frac{1+2 x}{2}}
$$

13. $\frac{x-y}{x+y}=\frac{1}{5}$

$$
\frac{\frac{y}{3}-\frac{3 x}{2}}{11 \frac{1}{2}}-\frac{\frac{5 y}{12}-\frac{2 x}{3}}{1 \frac{3}{4}}=2
$$

14. $(x-5)(y+3)=(x-1)(y+2)$

$$
x y+2 x=x(y+10)+72 y
$$

15. $\frac{x-2}{5}+\frac{x+10}{3}+\frac{10-y}{4}=13$

$$
\frac{2 y+6}{3}-\frac{4 x+y+6}{8}+4=0
$$

16. $\frac{6 y+5}{8}-\frac{3 x+5 \frac{1}{2}}{5 x-2 y}=\frac{9 y-4}{12}$

$$
\frac{2 y+3}{4}+\frac{x+y}{3 x-2 y}=\frac{4 y+7}{8}
$$

17. $\frac{3 x-2}{5}=\frac{6 x-5}{10}-\frac{x+y+6 \frac{1}{2}}{6 x+y}$

$$
\frac{3 y-2}{12}=\frac{2 y-5}{8}+\frac{3+7 x}{10 y-3 x}
$$

18. Practice oral work with small fractions as in Exercise 58 (p. 190).
19. Literal Equations.

Ex. Solve

$$
\begin{align*}
a x+b y & =c \tag{1}\\
a^{\prime} x+b^{\prime} y & =c^{\prime} \tag{2}
\end{align*}
$$

Multiply (1) by a^{\prime}, and (2) by a,

$$
\begin{align*}
& a a^{\prime} x+a^{\prime} b y=a^{\prime} c \tag{3}\\
& a a^{\prime} x+a b^{\prime} y=a c^{\prime} \tag{4}
\end{align*}
$$

Subtract (4) from (3), ($\left.a^{\prime} b-a b^{\prime}\right) y=a^{\prime} c-a c^{\prime}$

$$
\therefore y=\frac{a^{\prime} c-a c^{\prime}}{a^{\prime} b-a b^{\prime}} R o o t
$$

Again, multiply (1) by b^{\prime}, (2) by b,

$$
\begin{align*}
& a b^{\prime} x+b b^{\prime} y=b^{\prime} c \tag{5}\\
& a^{\prime} b x+b b^{\prime} y=b c^{\prime} \tag{6}
\end{align*}
$$

Subtract (6) from (5), ($\left.a b^{\prime}-a^{\prime} b\right) x=b^{\prime} c-b c^{\prime}$

$$
\therefore x=\frac{b^{\prime} c-b c^{\prime}}{a b^{\prime}-a^{\prime} b} R o o t
$$

Let the pupil check the work.
In solving simultaneous literal equations, observe that if the value obtained for the first unknown is a fraction containing a binomial term (or the value is complex in other ways), it is better not to find the value of the other unknown as in numerical equations, i. e. by substituting the value found in one of the original equations and reducing. A better method is to take both of the original equations and eliminate anew. See the solution of the preceding example.

EXERCISE 72

Solve and check each result:

1. $\begin{aligned} 3 x+4 y & =2 a \\ 5 x+6 y & =4 a\end{aligned}$
2. $2 a x+3 b y=4 a b$ $5 a x+4 b y=3 a b$
3. $a x+b y=1$
$a^{\prime} x+b^{\prime} y=1$
4. $x-y=2 n$
$m x-n y=m^{2}+n^{2}$
5. $2 b x+a y=4 b+a$
$a b x-2 a b y=4 b+a$
6. $a x-b y=a^{2}+b^{2}$
$b x+a y=2\left(a^{2}+b^{2}\right)$
7. $(a-b) x-(a+b) y=a^{2}+b^{2}$ $b x+a y=0$
8. $\frac{x}{a+b}+\frac{y}{a-b}=2$
$x-y=2 b$
9. $a x-b x=a y-d y$ $x-y=1$
10. $a x+b y=c$
$m x+n y=d$
11. $b x+a y=a+b$
$a b(x-y)=a^{2}-b^{2}$
12. $c^{2} x-d^{2} y=c-d$
$c d(2 d x-c y)=2 d^{2}-c^{2}$
13. $\frac{x+m}{y-n}=\frac{n}{m}$
$x+y=2 n$
14. $(a+1) x-b y=a+2$
$(a-1) x+3 b y=9 a$
15. $\frac{(a-b) x+(a+b) y}{a^{2}+b^{2}}=1$
$a x-2 b y=a^{2}-2 b^{2}$
16. $(a+b) x+c y=1$
$c x+(a+b) y=1$

$$
\text { 17. } \begin{aligned}
(a+b) x-(a-b) y & =3 a b \\
(a-b) x-(a+b) y & =a b
\end{aligned}
$$

18. $\frac{x-b}{a+b}+\frac{y-b}{a-b}=-1$
19. $\frac{x-1}{b-1}+\frac{y-a}{b-a}=1$.
$\frac{x+2 a}{a-b}+\frac{y-2 b}{a+b}=\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$
$\frac{x+1}{b}+\frac{y-1}{1-a}=\frac{1}{b}$
20. $(x-1)(a+b)=a(y+a+1)$

$$
(y+1)(a-b)=b(x-b-1)
$$

21. Make up and work an example similar to Ex. 7. To Ex. 11.
22. Three or More Simultaneous Equations.

Ex. Solve

$$
\left\{\begin{array}{l}
3 x+4 y-5 z=32 \tag{1}\\
4 x-5 y+3 z=18 \\
5 x-3 y-4 z=2
\end{array}\right.
$$

If we choose to eliminate z first, multiply (1) by 3 , and (2) by 5 ,

$$
\begin{array}{r}
9 x+12 y-15 z=96 \\
20 x-25 y+15 z=90 \tag{5}\\
\hline 29 x-13 y=186
\end{array} .
$$

Add (4) and (5),
Also multiply (2) by 4 , (3) by 3 ,

$$
\begin{align*}
16 x-20 y+12 z & =72 \tag{7}\\
15 x-9 y-12 z & =6 \\
\hline 31 x-29 y & =78
\end{align*}
$$

Add (7) and (8),
We now have the pair of simultaneous equations,

$$
\begin{aligned}
\left\{\begin{aligned}
29 x-13 y & =186 \\
31 x-29 y & =78 \\
x & =10 \\
y & =8
\end{aligned}\right\} \text { Roots }
\end{aligned}
$$

Solving these, obtain
Substitute for x and y in equation (1),

$$
\begin{aligned}
30+32-5 z & =32, \\
z & =6 \text { Root }
\end{aligned}
$$

Check.

$$
\begin{aligned}
3 x+4 y-5 z & =3 \times 10+4 \times 8-5 \times 6=32 \\
4 x-5 y+3 z & =4 \times 10-5 \times 8+3 \times 6=18 \\
5 x-3 y-4 z & =5 \times 10-3 \times 8-4 \times 6=2
\end{aligned}
$$

In like manner, if we have n simultaneous equations containing n unknown quantities, by taking different pairs of the n equations, we may eliminate one of the unknown quantities, leaving $n-1$ equations, with $n-1$ unknown quantities; and so on.

EXERCISE 73

Solve and check:

$\text { 1. } \begin{aligned} & x+y+z=6 \\ & 3 x+2 y+z=10 \\ & 3 x+y+3 z=14 \end{aligned}$	9. $\begin{aligned} & \frac{1}{3} x+\frac{1}{9} y+\frac{1}{6} z=2 \\ & \frac{1}{2} x+\frac{1}{3} y+\frac{1}{8} z=9 \\ & \frac{1}{6} x+\frac{1}{2} y+\frac{1}{3} z=3 \end{aligned}$
2. $\begin{aligned} & 3 x-y-2 z=11 \\ & 4 x-2 y+z=-2 \\ & 6 x-y+3 z=-3 \end{aligned}$	$\text { 10. } \begin{aligned} & 2 x+2 y-z=2 a \\ & 3 x-y-z=4 b \\ & 5 x+3 y-3 z=2(a+b) \end{aligned}$
$\text { 3. } \begin{aligned} 5 x-6 y+2 z & =5 \\ 8 x+4 y-5 z & =5 \\ 9 x+5 y-6 z & =5 \end{aligned}$	11. $\frac{2 x}{3}+\frac{3 y}{4}-\frac{4 z}{5}=18$
4. $\begin{aligned} & 3 x-\frac{1}{4} y+z=7 \frac{1}{2} \\ & 2 x-\frac{1}{3}(y-3 z)=5 \frac{1}{3} \\ & 2 x-\frac{1}{2} y+4 z=11 \end{aligned}$	$\frac{3 x}{2}-\frac{7 y}{5}+\frac{3 z}{10}=-41$
$\text { 5. } \begin{aligned} & 2 x+3 y=7 \\ & 3 y+4 z=9 \\ & 5 x+6 z=15 \end{aligned}$	$\text { 12. } \begin{aligned} & x+y+2 z=2(a+b) \\ & x+z+2 y=2(a+c) \\ & y+z+2 x=2(b+c) \end{aligned}$
$\text { 6. } \begin{array}{r} 2 x+4 y+3 z=6 \\ 6 y-3 x+2 z=7 \\ 3 x-8 y-7 z=6 \end{array}$	$\text { 13. } \begin{aligned} x+y-z & =3-a-b \\ x+z-y & =3 a-b-1 \\ y+z-x & =3 b-a-1 \end{aligned}$
$\text { 7. } \begin{aligned} & x+3 y+3 z=1 \\ & 3 x-5 z=1 \\ & 9 y+10 z+3 x=1 \end{aligned}$	$\text { 14. } \begin{aligned} & 3 x+2 y=\frac{13}{6} a \\ & 6 z-2 x=\frac{5}{3} b \\ & 5 y-13 z+x=0 \end{aligned}$
$\text { 8. } \begin{gathered} u+v-w=4 \\ u+v-x=1 \\ v+w+x=8 \\ u-w+x=5 \end{gathered}$	$\text { 15. } \begin{aligned} & -x+y+z+v=a \\ & x-y+z+v=b \\ & x+y-z+v=c \\ & x+y+z-v=d \end{aligned}$

16. Practice the oral solution of simple equations as in Exercise 64 (p. 209).
17. The Use of $\frac{1}{x}$ and $\frac{1}{y}$ as Unknown Quantities enables us to solve certain equations which would otherwise be difficult of solution.

Ex. 1. Solve

$$
\left\{\begin{array}{l}
\frac{5}{x}+\frac{13}{y}=49 \tag{1}\\
\frac{7}{x}+\frac{3}{y}=23
\end{array}\right.
$$

Multiply (1) by 7 , and (2) by 5 ,

$$
\left\{\begin{array}{l}
\frac{35}{x}+\frac{91}{y}=343 \tag{3}\\
\frac{35}{x}+\frac{15}{y}=115
\end{array}\right.
$$

Subtract (4) from (3), $\frac{76}{y}=228, \therefore \frac{1}{y}=3$, or $y=\frac{1}{3}$ Root
Substitute the value of y in (2), hence, $x=\frac{1}{2}$ Root
Let the pupil check the work.

Ex. 2. Solve

$$
\left\{\begin{array}{l}
\frac{3}{2 x}+\frac{5}{3 y}=11 \tag{1}\\
\frac{2}{x}-\frac{1}{4 y}=\frac{29}{4}
\end{array}\right.
$$

When x and y in the denominators have coefficients, as in this example, it is usually best first to remove these coefficients by multiplying each equation by the L. C. M. of the coefficients of x and y in the denominators of that equation. Hence,

Multiply (1) by 6 , and (2) by 4 ,

$$
\left\{\begin{array}{l}
\frac{9}{x}+\frac{10}{y}=66 \tag{3}\\
\frac{8}{x}-\frac{1}{y}=29
\end{array}\right.
$$

Solving (3) and (4) by the method used in Ex. 1,

$$
\left.\begin{array}{rl}
\therefore x & =\frac{1}{4} \\
y & =\frac{1}{3}
\end{array}\right\} \text { Roots }
$$

Let the pupil check the work.

EXERCISE 74

Solve and check:

1. $\begin{aligned} & \frac{4}{x}+\frac{7}{y}=3 \\ & \frac{3}{x}+\frac{5}{y}=2\end{aligned}$
2. $\frac{1}{x}-\frac{2}{y}=7$
$\frac{3}{x}+\frac{4}{y}=1$
3. $\frac{2}{3 x}+\frac{1}{2 y}=9$
$\frac{5}{6 x}+\frac{4}{5 y}=13$
4. $\frac{1}{2 x}+\frac{1}{3 y}=1$
$\frac{2}{3 x}+\frac{3}{2 y}=-5$
5. $\frac{3}{4 x}-\frac{5}{3 y}=11 \frac{1}{2}$
$\frac{5}{8 x}-\frac{3}{2 y}=10 \frac{1}{4}$
6. $\frac{1}{x}+\frac{1}{y}=\frac{1}{n}$
$\frac{1}{x}-\frac{1}{y}=n$
7. $\frac{a}{x}+\frac{b}{y}=\frac{a-b}{a}$
$\frac{b}{x}+\frac{a}{y}=\frac{b-a}{a}$
8. $\frac{m}{x}+\frac{1}{y}=m^{2}+n$

$$
\frac{1}{x}+\frac{n}{y}=m+n^{2}
$$

9. $\frac{a}{b x}+\frac{b}{a y}=2$
$\frac{b}{x}+\frac{a}{y}=\frac{a^{3}+b^{3}}{a b}$
10. $\frac{a+b}{x}+\frac{a-b}{y}=2 a$
$\frac{a}{x}+\frac{b}{y}=a+b$
11. $5 y-3 x=7 x y$

$$
15 x+60 y=16 x y
$$

12. $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2$
$\frac{2}{x}-\frac{1}{y}+\frac{1}{z}=7$
$\frac{3}{x}+\frac{2}{y}+\frac{5}{z}=14$
13. $\frac{3}{x}-\frac{1}{y}=3 \frac{1}{2}$
$\frac{5}{y}+\frac{3}{z}=-7$
$\frac{2}{x}-\frac{1}{z}=0$
14. $\frac{2}{3 x}-\frac{1}{2 y}+\frac{4}{5 z}=3 \frac{1}{30}$

$$
\frac{5}{2 x}-\frac{3}{4 y}-\frac{1}{3 z}=1_{1 \frac{5}{12}}
$$

$$
\text { 15. } \begin{aligned}
& \frac{1}{x}-\frac{1}{y}-\frac{1}{z}=\frac{1}{a} \\
& \frac{1}{y}-\frac{1}{z}-\frac{1}{x}=\frac{1}{b} \\
& \frac{1}{z}-\frac{1}{x}-\frac{1}{y}=\frac{1}{c}
\end{aligned}
$$

16. $\frac{a}{x}+\frac{b}{y}-\frac{c}{z}=l$
$\frac{a}{x}+\frac{c}{z}-\frac{b}{y}=m$
$\frac{b}{y}+\frac{c}{z}-\frac{a}{x}=n$
17. $5 y z+6 x z-3 x y=8 x y z$
$4 y z-9 x z+x y=19 x y z$
$y z-12 x z-2 x y=9 x y z$
18. Make up and work an example similar to Ex. 1. To Ex. 4. Ex. 13. Ex. 15.
19. Work again such examples on pp. 212 and 213 as the teacher may point out.
20. In the Solution of Problems Involving Two or More Unknown Quantities, it is necessary to obtain as many independent equations as there are unknown quantities involved in the equations and to eliminate. (See Art. 134, p. 224.)

Ex. Find a fraction such that if 2 is added to both numerator and denominator, the fraction becomes $\frac{1}{2}$; but if 7 is added to both numerator and denominator, the fraction becomes $\frac{2}{3}$.

Two unknown numbers occur in this problem, viz.: the numeraator and denominator of the required fraction. Hence two equations must be formed in order to obtain a solution of the problem.

Let $\frac{x}{y}$ represent the fraction.
Then, $\quad \frac{x+2}{y+2}=\frac{1}{2} \quad$ and $\quad \frac{x+7}{y+7}=\frac{2}{3}$
Clearing these equations, and collecting like terms,

$$
\begin{array}{r}
2 x-y=-2 \\
3 x-2 y=-7
\end{array}
$$

The solution gives $x=3$ and $y=8$.
Therefore $\frac{3}{8}$ is the required fraction.
Let the pupil check the work.

EXERCISE 75

1. Find two numbers whose sum is 23 and whose difference is 5 .
2. Twice the difference of two numbers is 6 , and $\frac{1}{6}$ of their sum is $3 \frac{1}{2}$. What are the numbers?
3. Find two numbers such that twice the greater number exceeds 5 times the less by 6 ; but the sum of the greater number and twice the less is 12 .
4. 2 lb . of flour and 5 lb . of sugar cost 31 cents, and 5 lb . of flour and 3 lb . of sugar cost 30 cents. Find the value of a pound of each.
5. A man hired 4 men and 3 boys for a day for $\$ 18$; and for another day, at the same rate, 3 men and 4 boys for $\$ 17$. How much did he pay each man and each boy per day?
6. In an orchard of 100 trees, the apple trees are 5 more than $\frac{2}{3}$ of the number of pear trees. How many trees are there of each kind?
7. One woman buys 4 yd . of silk and 7 yd . of satin, and another woman at the same rate buys 5 yd . of silk and 5_{5}^{4} yd. of satin. Each woman pays $\$ 17.70$. What is the price of a yard of each material?
8. Solve Ex. 7 without using x and y to represent unknown numbers (see Art. 1). About how much of the labor of writing out the solution is saved by the use of x and y ?
9. $1 \mathrm{cu} . \mathrm{ft}$. of iron and $1 \mathrm{cu} . \mathrm{ft}$. of lead together weigh 1180 lb .; also the weight of 3 cu . ft. of iron exceeds the weight of $2 \mathrm{cu} . \mathrm{ft}$. of lead by 40 lb . What is the weight of $1 \mathrm{cu} . \mathrm{ft}$. of each of these materials?
10. In an athletic meet, the winning team had a score of 26 points and the second team had a score of 21 points. If the winning team took first place in 7 events and second place in 5 events, while the second team took 6 firsts and 3 seconds, how many points does a first place count? A second place?
11. In an athletic meet, the three winning teams made scores as follows:

Team	1 sts	2 ds	3 ds	Total Score
A	5	2	2	33
B	3	3	1	25
C	1	4	6	23

What did each of the first three places in an event count in this meet?
12. Make up and work an example similar to Ex. 10.
13. Two partners agree to divide their profits each year in such a way that one partner receives $\$ 1000$ more than $\frac{2}{3}$ of what the other receives. If the profits for a given year are $\$ 10,000$, what does each partner receive?
14. Separate 240 into two parts such that twice the larger part exceeds five times the smaller by 10.
15. If the cost of a telegram of 14 words between two cities is 62ϕ, and one of 17 words is 71ϕ, what is the charge for the first 10 words in a message and for each word after that?
16. Make up and work an example similar to Ex. 15 concerning telegraph rates between two cities near your home.
17. A farmer one year made a profit of $\$ 1640$ on 20 acres planted with wheat and 30 acres planted with potatoes. The next year, with equally good crops, he made a profit of $\$ 1210$ on 30 acres planted with wheat and 20 acres planted with potatoes. How much per acre on the average did he make on each crop?
18. In three successive years, the farmer raised crops with profits as follows:
(1) 20 A . wheat, 30 A . corn, 40 A . potatoes; profits $\$ 1720$
(2) 30 A . wheat, 40 A . corn, 20 A . potatoes; profits $\$ 1520$
(3) 40 A . wheat, 20 A . corn, 30 A . potatoes; profits $\$ 1440$

What were his average profits per acre for each kind of crop?
19. The freight charges between two cities on 400 lb . of first-class freight and 600 lb . of second-class freight were $\$ 14.24$, while the charges on 500 lb . of first-class freight and 800 lb . of second-class were $\$ 18.48$. What was the rate per 100 lb . on each class?
20. The freight charges on shipments between two places were as follows: 800 lb . of 4 th class +500 lb . of 5 th class + 700 lb . of 6th class, $\$ 17.11 ; 1000 \mathrm{lb}$. of 4th class +600 lb . of 5 th class +800 lb . of 6 th class, $\$ 20.66 ; 600 \mathrm{lb}$. of 4 th class + 1000 lb . of 5 th class +900 lb . of 6 th class, $\$ 20.52$. Find the rate per 100 lb . for each of the classes named.
21. The corn and wheat crops of the United States in the year 1909 were together $3,509,000,000$ bu.; the corn and oat crops $3,779,000,000$ bu.; and the wheat and oat crops, $1,744,000,000$ bu. How many bushels were in each crop?
22. One cubic foot of iron and one cubic foot of aluminum weigh 636 lb .; a cubic foot of iron and one of copper weigh 1030 lb .; a cubic foot of copper and one of aluminum weigh 706 lb . How much does one cubic foot of each of these materials weigh?
23. In boring holes in a metal plate, three circles touching each other are to be drawn, the distances between their centers being .865 in., .650 in., and .790 in., respectively. Find the radius of each of the three circles.
24. The Eiffel Tower is taller than
 the Metropolitan Life Building of New York, and the latter building is taller than the Washington Monument. If the difference between the heights of the first two is 284 ft .; between the first and last is 429 ft .; and the sum of the first and last is 1539 ft ., find the height of each.
25. A ton of fertilizer which contains 60 lb . of nitrogen, 100 lb . of potash, and 150 lb . of phosphate is worth $\$ 21.50$; a ton containing 70, 80, and 90 lb . of these constituents in order is worth $\$ 19$; and one containing $80,120,150 \mathrm{lb}$. of each in order is worth $\$ 25.50$; what is the value of one pound of each of the constituents named?
26. If a bushel of oats is worth 40ϕ and a bushel of corn is worth 55ϕ, how many bushels of each must a miller use to produce a mixture of 100 bu . worth 48ϕ a bushel?
27. How many pounds of 20ϕ coffee and how many pounds of 32ϕ coffee must be mixed together to make 60 lb . worth 28\& a pound?
28. Make up and work an example similar to Ex. 27.
29. If two grades of tea worth $50 ¢$ and $75 ¢$ a pound are to be mixed together to make 100 lb . which can be sold for 72ϕ at a profit of 20%, how many pounds of each must be used?
30. A farmer wishes to combine milk containing 5% of butter fat with cream containing 40% of butter fat in order to produce 20 gal . of cream which shall contain 25% of butter fat. How many gallons of milk and how many of cream must he use?
31. A man has $\$ 5050$ invested, part at 4%, and the rest at 5%. How much has he invested at each rate if his annual income is $\$ 220$?

Can you work this example by use of one unknown quantity?
32. A man wishes to invest part of $\$ 12,000$ at 5% and the rest at 4% so that he may obtain an income of $\$ 500$. How much must he invest at each of the rates named?
33. Make up and work an example similar to Ex. 32.
34. If a rectangle were 3 in . longer and 1 in . narrower it would contain 5 sq . in. more than it does now; but if it were 2 in . shorter and 2 in . wider its area would remain unchanged. What are its dimensions?

Sug. Draw a diagram for each rectangle considered in the problem. See Ex. 30, p. 104.
35. If a rectangle were made 3 ft . shorter and $1 \frac{1}{2} \mathrm{ft}$. wider, or if it were 7 ft . shorter and $5 \frac{1}{4} \mathrm{ft}$. wider, its area would remain unchanged. What are its dimensions?
36. A party of boys purchased a boat and upon payment for the same discovered that if they had numbered 3 more, they would have paid a dollar apiece less; but if they had numbered 2 less, they would have paid a dollar apiece more. How many boys were there, and what did the boat cost?

Sug. Let $x=$ the number of boys, and $y=$ the number of dollars each paid. Then $x y$ represents the number of dollars the boat cost.
37. After going a certain distance in an automobile, a driver found that if he had gone 3 mi . an hour faster, he would have traveled the distance in 1 hr . less time; and that if he had gone 5 mi . faster, he would have gone the distance in $1 \frac{1}{2} \mathrm{hr}$. less. What was the distance?
38. Make up and work an example similar to Ex. 37.
39. If a baseball nine should play two games more and win both, it will have won $\frac{2}{3}$ of the games played. If, however, it should play 7 more and win 4 of them, it will then have won $\frac{3}{5}$ of the games played. How many games has it so far played and how many has it won?
40. If a physician should have 12 more cases of diphtheria and treat 10 of them successfully, he will have treated $\frac{3}{4}$ of his cases successfully. But if he should have 32 more cases and succeed with 30 of them, he will have succeeded with $\frac{4}{5}$ of his cases. How many cases has he had so far and how many has he treated successfully?
41. If 1 be added to the numerator of a certain fraction, the value of the fraction becomes $\frac{1}{3}$; but if 1 be subtracted from its denominator, the value of the fraction becomes $\frac{1}{4}$. Find the fraction.
42. There is a fraction such that if 4 be added to its numerator the fraction will equal $\frac{4}{5}$; but if 3 be subtracted from its denominator the fraction will equal $\frac{2}{3}$. What is the fraction?
43. Make up and work an example similar to Ex. 42.
44. A certain fraction becomes equal to $\frac{4}{9}$ if $1 \frac{3}{5}$ is added to both numerator and denominator. It becomes $\frac{1}{5}$ if $2 \frac{1}{4}$ is subtracted from both numerator and denominator. What is the fraction?
45. Find two fractions, with numerators 11 and 7 , respectively, such that their sum is $3 \frac{11}{12}$, but when their denominators are interchanged, their sum becomes $3 \frac{7}{12}$.
46. If $\frac{2}{3}$ is added to the numerator of a certain fraction, its value is increased by $\frac{2}{21}$; but if $2 \frac{1}{3}$ is taken from its denominator, the fraction becomes $\frac{6}{7}$. Find the fraction.
47. The sum of two numbers is 97 , and if the greater is divided by the less, the quotient is 5 and the remainder 1. Find the numbers.

Sug. The divisor multiplied by the quotient is equal to the dividend diminished by the remainder.
48. Divide the number 100 into two such parts that the greater part will contain the less 3 times with a remainder of 16 .
49. The difference between two numbers is 40 , and the less is contained in the greater 3 times with a remainder of 12. Find the numbers.
50. Separate 50 into two such parts that $\frac{1}{4}$ of the larger shall exceed $\frac{1}{3}$ of the smaller by 2 .
51. A tank can be filled by two pipes one of which runs 4 hr . and the other 5 ; or by the same two pipes if the first runs 3 hr . and the other 8 . How long will it take each pipe running separately to fill the tank?
52. Two persons, A and B, can perform a piece of work in 16 days. They work together for 4 days, when B is left
alone, and completes the task in 36 days. In what time could each do the work separately?
53. A and B can do a piece of work in 8 da.; A and C can do the same in 10 da.; and B and C can do it in 12 da. How long will it take each to do it alone?
54. 37 means $10 \times 3+7$. Does $x y$ mean $10 x+y$? Why this difference?
55. How would you write a number whose digits in order from left to right are l, m, and n ? Why may not such a number be expressed as $l m n$?
56. Express in symbols a number whose digits in order are a, b, c, and d. Whose digits are x, y, and $z . x$ and y.
57. A number consists of two digits whose sum is 13 , and if 4 is subtracted from double the number, the order of the digits is reversed. Find the number.
58. The sum of the digits of a certain number of two figures is 5 , and if 3 times the units' digit is added to the number, the order of the digits will be reversed. What is the number?
59. Twice the units' digit of a certain number is 2 greater than the tens' digit; and the number is 4 more than 6 times the sum of its digits. Find the number.
60. In a number of 3 figures, the first and last of which are alike, the tens' digit is one more than twice the sum of the other two, and if the number is divided by the sum of its digits, the quotient is 21 and the remainder 4. Find the number.
61. An oarsman can row 12 mi . down stream in 2 hr ., but it takes him 6 hr . to return against the current. What is his rate in still water and what is the rate of the stream?

Make up and work a similar example.
62. A boatman rows 20 mi . down a river and back in 8 hr.; he can row 5 mi . down the river while he rows 3 mi . up the river. Find the rate of the man and of the stream.
63. A man rows down a stream 20 mi . in $2 \frac{2}{3} \mathrm{hr}$., and rows back only $\frac{3}{5}$ as fast. Find the rate of the man and of the stream.
64. 3 cu . ft. of cast iron and 5 cu . ft . of wrought iron together weigh 3750 lb .; also 7 cu . ft. of the former and 4 cu . ft . of the latter weigh 5070 lb . What is the weight of $1 \mathrm{cu} . \mathrm{ft}$. of each?
65. Regarding the orbits of the earth and of the planet Mars as circles whose center is the sun, the greatest distance between the earth and Mars at any time is $234,000,000 \mathrm{mi}$., and the least distance between them is $48,000,000 \mathrm{mi}$. How far is each of them from the sun?
66. 2 lb . of tea and 5 lb . of coffee cost $\$ 2.50$. If the price of tea should increase 10% and that of coffee should diminish 10%, the cost of the above amounts of each would be $\$ 2.45$. Find the cost of a pound of each.
67. Two bins contain a mixture of corn and oats, the one twice as much corn as oats, and the other three times as much oats as corn. How much must be taken from each bin to fill a third bin holding 40 bu., to be half oats and half corn?
68. If A gives $\mathrm{B} \$ 10$, A will have half as much as B ; but if B gives $\mathrm{A} \$ 30, \mathrm{~B}$ will have $\frac{4}{5}$ as much as A . How much has each?
69. Two grades of spices worth 25ϕ and 50ϕ a pound are to be mixed together to make 200 lb . which can be sold at $52 ¢$ per lb. at a profit of 30%. How many pounds of each grade must be used?
70. A train maintained a uniform rate for a certain distance. If this rate had been 8 mi . more each hour, the time occupied would have been 2 hr . less; but if the rate had been 10 mi . an hour less, the time would have been 4 hr . more. Find the distance.
71. If the greater of two numbers is divided by the less, the quotient is 3 and the remainder 3 , but if 3 times the greater be divided by 4 times the less, the quotient is 2 and the remainder 20 . Find the numbers.
72. Why are we able to solve problems like Exs. 70 and 71 by algebra and not by arithmetic?
73. Find two numbers whose sum is a and whose difference is b.
74. If a pounds of sugar and b pounds of coffee together cost c cents, while d pounds of sugar and e pounds of coffee together cost f cents, what is the price of one pound of each?
75. If a bushel of oats is worth p cents, and a bushel of corn is worth q cents, how many bushels of each must be mixed to make r bushels worth s cents per bushel?
76. Find a fraction such that if a be added to both numerator and denominator the value of the fraction is p / q; but if b is added to both numerator and denominator, the value of the fraction is r / s.
77. Generalize Ex. 34 (p. 242), by using a letter for each number in the example.
78. Generalize Ex. 53 (p. 245), by using a letter for each number in the example.
79. Make up and work three examples similar to such of the examples in this Exercise as you think are most interesting or instructive.

143. Utilities in Algebra.

1. Brevity of expressions which represent numbers. Brevity means a saving of time and energy.

Thus, for instance, for " number of feet in the length of a rectangle," we may use a single letter as x.
2. The saving of space also opens the way for the use of auxiliary quantity of various kinds.

See, for instance, the process of factoring $a^{4}+a^{2} b^{2}+b^{4}, \mathrm{p} .153$.
3. By using a letter to represent any number (of a given class), we are able to discover and prove general laws of numbers.

Thus, $(a+b)^{2}=a^{2}+2 a b+b^{2}$ is true for any numbers whatever.
As an example of the discovery of new and useful laws of number, we may take the case where we know half the sum and half the difference of two numbers and desire to find the numbers themselves. In the above description of the known facts, there is nothing to suggest a method of obtaining the desired end. But if we express the given facts in the algebraic form, thus, $\frac{a+b}{2}$ and $\frac{a-b}{2}$, it is at once suggested that half the difference added to half the sum will give a, the greater of the two numbers, and subtracted will give b, the smaller.

It may be well to notice that one source of this discovery is that in the algebraic expression we used separate symbols, a and b, of nearly equal size for the two numbers considered.
4. Combination of several rules into one formula.

Thus, the single formula $p=b r$ combines three cases (and rules) used in arithmetic in treating percentage. Similarly, the formula $i=p r t$ covers all cases used in treating interest in arithmetic.

This advantage comes (1) from the fact that a letter may be used to represent any number. See 3 above.
(2) From the fact that an equation can be solved for any letter in the equation.
(3) From the approximately uniform size of the letters employed, which suggests that we treat all the letters alike and give each the leadership in turn.
5. The use of letters to represent unknown numbers often enables us to begin in the middle of a complex problem and work
in several directions and thus solve problems which otherwise we could not analyze. See the examples on pp. 242-243.
6. We should also remember constantly that the symbols used in algebra (and the advantages coming from their use) are but a part, or detail, of the more general subject of symbolism as a whole and of its utilities; and that a training in algebra should give a better grasp of the whole subject of symbols and their uses.

EXERCISE 76

1. Abbreviate the following as much as you can by use of the letter x :
$\frac{1}{2}$ a certain number $+\frac{1}{3}$ the number $=25$. How much shorter is your expression than the given expression?
2. Make up and work an example similar to Ex. 1.
3. Why does a knowledge of algebra suggest to us that a number like 27001 can be factored and also the method of doing this, while a knowledge of arithmetic does not do the same? (See Ex. 29, p. 127.)
4. Is a railroad ticket a symbol or representative of the money paid for it? What are the advantages in the use of the ticket? The disadvantages?
5. Discuss in the same way a check drawn on a bank and used in paying a bill.
6. In canceling a railroad ticket, what are the advantages in punching the ticket as compared with crossing it with a pencil mark? With burning it?
7. What is a newspaper (or a book) a symbol or representative of? What are the advantages in its use? The disadvantages?
8. A certain firm occupied a building running from 10 to 20 Barclay St. in a certain city as their place of business. In advertising in one magazine they gave their address as 10 Barclay St.; in another they gave their address as 12 Barclay St.; in another as 14 Barclay St. What was the advantage in doing this? By this means what double use was made of the symbols $10,12,14$, etc.
9. If a teacher has a set of papers from each of several classes, what is the advantage in arranging them at different angles when piling one set upon another?
10. Can you give another instance where difference of position is utilized as a symbol?
11. What are the advantages in using a flag as a symbol or representative of a nation?
12. What are the advantages and disadvantages of reading a book of travels as compared with traveling?
13. Why does a policeman in a large city have a number as well as a name? Name other classes of men which have numbers as well as names.
14. What are the advantages to a person in having a name?
15. Let each pupil make up (or collect) and work as many examples as possible similar to the examples in this Exercise.

Sug. This work is of such a nature that it may readily be extended in various directions at the option of the teacher.

CHAPTER XIII

GRAPHS

144. A variable is a quantity which has an indefinite number of different values.

A function is a variable which depends on another variable for its value.

Thus, the area of a circle is a function of the radius of the circle; the wages which a laborer receives is a function of the time that the man works.

A graph is a diagram representing the relation between a function and the variable on which the function depends for its value.

A function may depend for its value on more than one variable; thus, the area of a rectangle depends on two quantities - the length of the rectangle and the breadth. The present treatment of graphs, however, is limited to functions which depend on a single variable.

In algebra we study only those functions which have a definite value for each definite value of the variable.
145. Uses of Graphs. A graph is useful in showing at a glance the place where the function represented has the greatest or least value and where it is changing its value most rapidly, and in making clear similar properties of the function.

Graphs of algebraic equations are useful in making clear certain properties of such equations which are otherwise difficult to understand. A graph also often furnishes a rapid method of determining the root (or roots) of an equation.
146. Framework of Reference. Axes are two straight lines perpendicular to each other which are used as an auxiliary framework in constructing graphs; as $X X^{\prime}$ and $Y Y^{\prime}$.

The x -axis, or axis of abscissas, is the horizontal axis; as $X X^{\prime}$. The y-axis, or axis of ordinates, is the vertical axis; as $Y Y^{\prime}$.

The origin is the point in which the axes intersect; as the point 0 .

The ordinate of a point is the line drawn from the point parallel to the y-axis and terminated by the x-axis. The abscissa of a point is the part of the x-axis intercepted between the origin and the foot of the ordinate. Thus, the ordinate of the point P is $A P$, and the abscissa is $0 A$.

The ordinate is sometimes termed the " y " of a point, and the abscissa, the " x " of a point.

Ordinates above the x-axis are taken as plus; those below, as minus. Abscissas to the right of
 the origin are plus; those to the left are minus.

The co-ordinates of a point are the abscissa and the ordinate taken together. They are usually written together
in parenthesis with the abscissa first and a comma between.

Thus, the point $(2,4)$ is the point whose abscissa is 2 and ordinate 4 , or the point P of the figure. Similarly, the point $(-3,2)$ is Q ; $(-2,-2)$ is R ; and $(1,-4)$ is S .

The quadrants are the four parts into which the axes divide a plane. Thus, the points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$, and S lie in the first, second, third and fourth quadrants, respectively.

EXERCISE 77

Draw axes and locate each of the following points:

1. $(3,2),(-1,3),(-2,-4),(4,-1)$.
2. $\left(2, \frac{1}{2}\right),\left(-3,-1 \frac{1}{2}\right),\left(5,-\frac{5}{4}\right),\left(-2, \frac{1}{3}\right)$.
3. $(2,0),(-3,0),(0,4),\left(0,-\frac{1}{2}\right),(0,0)$.
4. $(1, \sqrt{2}),(1,-\sqrt{2}),(\sqrt{3}, 0),(\sqrt{5},-3),\left(-\frac{1}{2} \sqrt{5}, 2 \sqrt{2}\right)$.
5. Construct the triangle whose vertices are $(1,1),(2,-2)$ $(3,2)$.
6. Construct the quadrilateral whose vertices are $(2,-1)$, $(-4,-3),(-3,5),(3,4)$.
7. Plot the points $(0,0),(1,0),(2,0),(5,0),(-1,0)$, $(-3,0)$.
8. Also $(0,0),(0,1),(0,2),(0,3),(0,5),(0,-1),(0,-3)$.
9. All points on the x-axis have what ordinate?
10. All points on the y-axis have what abscissa?
11. Plot the following pairs of points and find the distance between each pair of points:
(1) $(6,5),(2,8)$
(3) $(3,-6),(-2,6)$
(2) $(3,0),(0,6)$
(4) $(0,0),(-3,5)$
12. Construct the rectangle whose vertices are $(1,3)$, $(6,3),(1,-2),(6,-2)$, and find its area.
13. Construct the rectangle whose vertices are $(-3,4)$, $(4,4),(-3,-2),(4,-2)$, and find its area.
14. Construct the triangle whose vertices are $(-3,-4)$, $(-1,3),(2,-4)$, and find its area.
15. In which quadrant are the abscissa and ordinate both plus? Both minus? In which quadrant is the abscissa minus and the ordinate plus? In which is the abscissa plus and the ordinate minus?
16. Practice oral work with small fractions as in Exercise 58 (p. 190).

Graphs of Equations of the First Degree
147. To Construct the Graph of an Equation of the First Degree Containing Two Unknown Quantities, as x and y,
Let x have a series of convenient values, as $0,1,2,3$, etc., $-1,-2,-3$, etc.;

Find the corresponding values of y;
Locate the points thus determined, and draw a line through these points.

Ex. Construct the graph of the equation $y=2 x-1$.
Construct the points $(0,-1),(1,1),(2,3),(3,5)$, $(-1,-3),(-2,-5)$, etc., and draw a line through them. The straight line $A B$ is thus found to be the graph of $y=2 x-1$.
148. Linear Equations. It will always be found that the graph of an equation of the first degree containing not more than two unknown quantities is a straight line. Hence, etc. etc.

A linear equation is an equation of the first degree.
149. Abbreviated Method of Constructing the Graph of a Linear Equation. Since a straight line is determined by two points, in order to construct the graph of an equation of the first degree it is sufficient to construct any two points of the graph and draw a straight line through them.

Ex. 1. Graph $3 y-2 x=6$.
When $x=0, y=2$; when $y=0, x=-3$. Hence, the graph passes through the points $(0,2)$ and $(-3,0)$, or $C D$ is the required graph.

The greater the distance between the points chosen, the more accurate the construction will be. It is usually advisable to test the
 result obtained by
locating a third point and observing whether it falls upon the graph as constructed.

If the given line does not pass through the origin, or nea: the origin on both axes, it is often convenient to construct the line by determining the points where the line crosses the axes.

Ex. 2. Graph $4 x+7 y=1$.
When $x=0, y=\frac{1}{4}$; when $y=0, x=\frac{1}{4}$. Hence, the graph passes close to the origin on both axes. Hence, find two points on the required graph at some distance from each other, as by letting $x=0,9$, and finding $y=\frac{1}{7},-5$. Let the pupil construct the figure.

EXERCISE 78

Graph the following. (It is an advantage, if possible, to draw the graph line in red, the rest of the figure in black ink.)

1. $y=x+2$
2. $y=x-2$
3. $3 x+2 y=6$
4. $3 x-2 y=6$
5. $3 x-5 y+15=0$
6. $y=2 x$
7. $4 x-5 y=1$
8. $\frac{x-1}{2}=3 y$
9. $x=3(y-1)$
10. $y=-x$
11. $y=4$
12. If $x=2$, show that whatever value y has, x always $=2$. Hence the graph of $x=2$ is a line parallel to the y-axis.
13. Graph $x=0$; also $y=0$.
14. Show how to determine from an inspection of a linear equation whether its graph passes through the origin; near the origin on one axis; near the origin on both axes.
15. Graph $5 x+6 y=1$; also $6 x-y=12$.
16. Obtain and state a short method of graphing a linear equation in which the term which does not contain x or y is missing, as $2 y-3 x=0$.

Before graphing the following, determine the best method of constructing each graph, and then graph:
17. $x+2 y=4$
20. $\frac{1}{7} x+\frac{1}{2} y=\frac{1}{2}$
23. $x-y=5$
18. $2 y=x$
21. $x=-3$
24. $y+2=0$
19. $5 x-6 y=1$ 22. $5 x+4 y=0$
25. $3 x-2 y+\frac{11}{2}=0$
26. Construct the triangle whose sides are the graphs of the equations, $y-2 x+1=0,3 y-x-7=0, y+3 x+11=0$.
27. An equation of the form $y=b$ represents a line in what position? One of the form $x=a$?
28. Make up and work an example similar to Ex. 4. To Ex. 26.
150. Graphic Solution of Simultaneous Linear Equations. If we construct the graph of the equation $x-y=3$ (the line $A B$) and the graph of $3 x+2 y=4$ (the line $C D$), and

measure the co-ordinates of their points of intersection, we find this point to be $(2,-1)$.

If we solve the pair of simultaneous equations $\left\{\begin{array}{l}x-y=3 \\ 3 x+2 y=4\end{array}\right.$ by the ordinary algebraic method, we find that $x=2$ and $y=-1$.

In general, the roots of two simultaneous linear equations correspond to the co-ordinates of the point of intersection of their graphs; for these co-ordinates are the only ones which satisfy both graphs, and their values are also the only values of x and y which satisfy both equations.

Hence, to obtain the graphic solution of two simultaneous equations,

Draw the graphs of the given equations, and measure the coordinates of the point (or points) of intersection.

Graphing two simultaneous equations forms a convenient method of testing or checking their algebraic solution.
151. Simultaneous Linear Equations whose Graphs are Parallel Lines. Construct the graph of $x+2 y=2$ and also of $3 x+6 y=12$.

You will find that the graphs obtained are parallel straight lines. Now try to solve the same equations algebraically. You will find that when either x or y is eliminated, the other unknown quantity is eliminated also, and that it is therefore impossible to obtain a solution. The reason why an algebraic solution is impossible is made clear by the fact that the graphs, being parallel lines, cannot intersect; that is to say, there are no values of x and y which will satisfy both of these lines, or both equations, at the same time.
152. Graphic Solution of an Equation of the First Degree of One Unknown Quantity. By substituting for y in the first equation of the pair $\left\{\begin{array}{l}y=x-3 \\ y=0\end{array}\right.$. the two equations
reduce to $x-3=0$. Accordingly, the graphic solution of an equation like $x-3=0$ can be obtained by combining the graphs of $y=x-3$ and $y=0$. In other words, the root of $x-3=0$ is represented graphically by the abscissa of the point where the graph of $y=x-3$ crosses the x-axis.

EXERCISE 79

Solve each pair of the following equations both graphically and algebraically, and compare the results in each example:

1. $\left\{\begin{array}{l}2 x+3 y=7 \\ x-y=1\end{array}\right.$
2. $\left\{\begin{array}{l}y=3 x-4 \\ y=-2 x+1\end{array}\right.$
3. $\left\{\begin{array}{l}2 y=x \\ x+y+6=0\end{array}\right.$
4. $\left\{\begin{array}{l}x+7 y+11=0 \\ x-3 y+1=0\end{array}\right.$
5. $\left\{\begin{array}{l}y=3 \\ 9 x-5 y=3\end{array}\right.$
6. $\left\{\begin{array}{l}y=0 \\ y=2 x+3\end{array}\right.$
7. $\left\{\begin{array}{l}y=2 x \\ x+y=0\end{array}\right.$
8. Solve graphically $2 x+3=0$
9. Solve graphically $3 x-5=0$
10. Discover and state the relation between the coefficients of two linear simultaneous equations whose graphs are parallel lines.
11. Solve graphically $\left\{\begin{array}{l}8 x+5 y=7 \\ 6 x+2 y=11\end{array}\right.$
12. Solve both algebraically and graphically $\left\{\begin{array}{l}2 x-3 y=5 . \\ 6 x-9 y=5 .\end{array}\right.$
13. Construct the quadrilateral whose sides are the graphs of the equations, $x-2 y-4=0, x+y=1$, $3 y-5 x-15=0, x+2 y-4=0$, and find the coordinates of the vertices of the quadrilateral.
14. Make up and work an example similar to Ex. 1. To Ex. 6.
15. How many examples in Exercise 26 (p. 110) can you now work at sight?

153. Graphic Solution of Written Problems.

I. Railway Problems.

Ex. The distance between New York and Philadelphia is 90 mi . At a given time, a train leaves each city, bound for the other city, the train from New York going at 40 mi. an hour and the one from Philadelphia at 30 mi . In how many hours will they meet, and at what distance from New York?

The train dispatcher represents the distance between the stations by the line $A B$, each space denoting 10 mi . Each space on $A I$ rep-
 resents 1 hour. He locates E three units to the right of A and one unit above $A B$, and F four units to the left of B and one unit above $A B$. He produces $A E$ and $B F$ to meet at C, and draws $C D$ perpendicular to $A B$.
He obtains the distance from A at which the trains meet, by measuring $A D$ to scale (and hence determines the siding at which one train must wait for the other). He obtains the time that elapses before the trains meet, by measuring $C D$ to scale.

The problem may also be solved algebraically in the same way as Exs. 57-61, p. 87.

The advantage of the graphical method is that in this solution it is easy to make allowance for any waits which trains may make at stations. Hence, railroad time-tables are often constructed entirely by graphical methods.

II. Problems in the Mixture of Materials.

Ex. In order to obtain a mixture containing 20% of butter fat, in what proportion should cream containing 30% of fat be mixed with milk containing 4% ?

Graphical Solution

We construct a rectangle, and write in two adjacent corners (here the left-hand corners) the per cents of fat (30 and 4) in the two given fluids; and in the middle of the rectangle we write the per cent (20) desired in the mixture. The differences between the number in the middle and the numbers in the

ω		16
	20	
4		10

Now solve this problem algebraically by the method used for Exs. 26-30, pp. 241-242; and by an examination of this solution, discover for yourself the reason for the above graphical solution.

EXERCISE 80

Solve the following problems graphically:

1. The distance between New York and Philadelphia is 90 mi . If a train leaves New York at noon and goes 40 mi . an hour, and another train leaves Philadelphia at the same time and travels 20 mi . an hour, at what time and how far from New York will they meet?
2. Make up and work an example similar to Ex. 1.
3. The distance between New York and Buffalo is 440 mi. If a train leaves New York at 11 a. m. and travels at the rate of 40 mi . an hour, and a train traveling 30 mi . an hour leaves Buffalo at the same time, at what time and how far from New York will the trains meet?
4. Make up and work an example similar to Ex. 3.
5. In order to obtain a mixture containing 22% butter fat, in what proportion must cream containing 32% of fat be mixed with milk containing 5% ?
6. In order to obtain a mixture containing 28% of butter fat, in what proportion must cream containing 35% of fat be mixed with cream containing 25% ?
7. Make up and work an example similar to Ex. 6.
8. In what proportion must oats worth 50¢ a bushel be mixed with corn worth $80 ¢$ a bushel in order to make a mixture worth $60 ¢$ a bushel?
9. Make up and work a similar example concerning mixing different grades of coffee.
10. The distance $P Q$ is 48 mi . At $8 \mathrm{~A} . \mathrm{m}$. one boy starts from P and walks toward Q at the uniform rate of 4 mi . an hour. At the same time another boy starts from Q on a bicycle and rides toward P at the rate of 8 mi . an hour but at the end of each hour of riding rests $\frac{1}{2}$ an hour. By means of a graph determine where and when the two boys will meet.
11. Make up and work an example similar to Ex. 10.
12. How many examples in Exercise 27 (p. 112) can you now work at sight?

EXERCISE 81

Review

1. Tell the degree of each term of

$$
5 x^{3}-4 x^{2} y^{2}-11 x-x y+x y^{3}-x^{4} y+3 x^{2}-7 y+11 .
$$

2. Factor (1) $x^{4}+4$.
(2) $m^{2}-2 m n+n^{2}+5 m-5 n$.
(3) $a^{2}-n^{2}-m^{2}-2 a b+2 m n+b^{2}$.
3. Factor $2\left(x^{3}-1\right)+7\left(x^{2}-1\right)$.

Simplify:
4. $\frac{4 x-5}{45}-\frac{4+x}{30}+\frac{2}{3}-\frac{x-5}{18}$:
5. $\frac{1-5 x}{6 x^{2}-6}+\frac{3 x+5}{4 x+4}+\frac{2 x-3}{3-3 x}$.
6. $\frac{2}{(x-1)^{3}}+\frac{1}{(1-x)^{2}}-\frac{2}{1-x}-\frac{1}{x}$.
7. $\frac{\frac{3}{5}\left(\frac{2}{3} x^{2}-\frac{11}{6} x-\frac{5}{2}\right)}{\frac{1}{4}\left({ }_{3}^{4} x^{2}-\frac{2}{3} x-2\right)}$.
8. $\frac{\left(x+\frac{1}{x}\right)^{2}-2\left(1+\frac{1}{x^{2}}\right)}{\left(x-\frac{1}{x}\right)^{2}}$.
9. $1-\frac{x}{a-\frac{a}{1-\frac{a}{a+x}}}$.

Solve:
10. $1 \frac{5}{6}+x=\frac{x-1}{2}+\frac{1}{3}-\frac{x-3}{5}$.
11. $3+\frac{x}{3}-\frac{1}{2}\left(4-\frac{x}{2}\right)=\frac{1}{3}\left\{\frac{x}{3}-\left(2 x-\frac{x+1}{2}\right)\right\}$.
12.

$$
\frac{3 x-2}{6}-\frac{5 x+14}{7 x+15}-\frac{3-2 x}{4}=x-1 \frac{1}{4}
$$

13. $\frac{x}{x-2}-\frac{x+1}{x-1}=\frac{x-8}{x-6}-\frac{x-9}{x-7}$.
14. $\frac{3 x}{2}-\frac{y}{3}=\frac{4}{9}$.

$$
\frac{5 x}{4}+\frac{3 y}{2}=3 \frac{1}{3}
$$

16. $\frac{x-2}{5}-\frac{10-x}{3}=\frac{y-10}{4}$.

$$
\frac{2 y+4}{3}-\frac{2 x+y}{8}=\frac{x+13}{4}
$$

15. $2 y-x=4 x y$.

$$
\text { 17. } \begin{aligned}
& (a-b) x+(a+b) y=a+b \\
& (x-y)\left(a^{2}-b^{2}\right)=a^{2}+b^{2}
\end{aligned}
$$

18. $.3 x+.2 y=1.3$.

$$
\begin{aligned}
& .3 y+.2 z=.8 \\
& .3 z+.2 x=.9
\end{aligned}
$$

19. $\frac{x}{y}=\frac{5}{6}$.

$$
x-y=-\frac{2}{15}
$$

20. Solve $\frac{x}{a}+\frac{y}{b}=\frac{1}{a b}$.

$$
\frac{x}{a^{\prime}}+\frac{y}{b^{\prime}}=\frac{1}{a^{\prime} b^{\prime}}
$$

21. Is it allowable to divide each term in $16 x=96$ by 16 ?

Is it allowable to divide each term of $16 x-96$ by $16 ?$ Give reasons.
22. Obtain the value of

$$
\frac{a x+1}{x}-\left[a(x+1)-\frac{a\left(x^{2}-1\right)-x}{x}\right], \text { when } x=\frac{a-1}{a}
$$

23. Solve $\frac{1}{a+b}+\frac{a+b}{x}=\frac{1}{a-b}+\frac{a-b}{x}$.
24. Why is it proper to change $-x=-3$ into $x=3$, and not proper to change $-x-3$ into $x+3$?
25. What number added to the denominators of $\frac{a}{b}$ and $\frac{c}{d}$, respectively, will make the results equal?
26. Does $\frac{c}{a-b}$ equal $\frac{c}{a}-\frac{c}{b}$? Does $\frac{a+b}{c}$ equal $\frac{a}{c}+\frac{b}{c}$? Does $\frac{c}{a+b}$ equal $\frac{c}{a}+\frac{c}{b}$? Verify your statements for the special case when $a=4, b=8$, and $c=2$.
27. The sums of three numbers taken two and two are 20,29 , and 27. What are the numbers?
28. Factor $8(x+y)^{3}-(2 x-y)^{3}$.
29. What is the advantage of being able to add the same number to both members of an equation? In being able to transpose a term? To divide both members of an equation by the same number? (See Art. 70.)
30. Solve $(a+c) x-(a-c) y=2 a b$.

$$
(a+b) x-(a-b) y=2 a c
$$

31. Does $\left(a^{2}+b^{2}\right)(a+b)$ equal $a^{3}+b^{3}$? Verify your statement by letting a and b have convenient numerical values. Can you prove your statement without the use of numbers?
32. If $K=\pi R^{2}$ and $C=2 \pi R$, find K when $C=10$ and $\pi=2^{2}{ }^{2}$.
33. If $s=\frac{1}{2} g t^{2}$ and $v=g t$, find s when $g=32$ and $v=64$.
34. If $C=2 \pi R$ and $V=\frac{4}{3} \pi R^{3}$, find V when $C=33$ and $\pi=\frac{22}{7}$ (use cancellation wherever possible).

Solve:
35. $4(x+y)+\frac{1}{x-y}=13$.
36. $3 x+\frac{6}{2 x-3 y}=6$.
$3(x+y)-\frac{10}{x-y}=-1$
$4 x-\frac{9}{2 x-3 y}=25$.
Sug. Let $p=(x+y), q=\frac{1}{x-y}$.
37. Show that $\frac{12 t\left(t^{3}+2\right)^{2}\left(2 t^{2}-3\right)^{2}-6 t^{2}\left(2 t^{2}-3\right)^{3}\left(t^{3}+2\right)}{\left(t^{3}+2\right)^{4}}$
reduces to $\frac{6\left(3 t^{2}+4 t\right)\left(2 t^{2}-3\right)^{2}}{\left(t^{3}+2\right)^{3}}$.
38. Graph $y=2 x+b$ when $b=1$. On the same diagram graph $y=2 x+b$ when $b=2$. When $b=-1$. When $b=0$.
39. Graph $y=a x+2$ when $a=1$. On the same diagram graph $y=a x+2$ when $a=2,3,-1,-3$.
40. Graph $y=3 x+2$, and $y=-\frac{1}{3} x+2$ on the same diagram.
41. Make up and work an example similar to Ex. 38. To Ex. 39.
42. The Fahrenheit reading at the boiling point of alcohol is 95° higher than the Centigrade reading. Find each of the readings.
43. Make up an example similar to Ex. 42, using the fact that ether boils at 96° Fahrenheit.
44. Give the value of $\frac{1}{a} \div a, a \div \frac{1}{a}, \quad-\frac{2}{5} x^{2} \div \frac{6}{5} x^{2}$.
45. What is the reciprocal of $\frac{1}{a}+\frac{1}{b}$?
46. Show that elimination by comparison is a special form of elimination by substitution.
47. Show that elimination by addition and subtraction may also be regarded as a form of elimination by substitution.
48. Eliminate a between the equations $F=M a$ and $s=\frac{1}{2} a t^{2}$.
49. Given $l=a+(n-1) d$ and $s=\frac{n}{2}(a+l)$, find s in terms of d, n, and l.

Sug. What letter must be eliminated?
50. Eliminate l between $l=a r^{n-1}$ and $s=\frac{r l-a}{r-1}$.

CHAPTER XIV

HISTORY OF ELEMENTARY ALGEBRA

295. Epochs in the Development of Algebra. Some knowledge of the origin and development of the symbols and processes of algebra is important to a thorough understanding of the subject.

The oldest known mathematical writing is a papyrus roll, now in the British Museum, entitled " Directions for Attaining to the Knowledge of All Dark Things." It was written by a scribe named Ahmes at least as early as 1700 в. с., and is a copy, the writer says, of a more ancient work, dating, say, 3000 в. с., or several centuries before the time of Moses. This papyrus roll contains, among other things, the beginnings of algebra as a science. Taking the epoch indicated by this work as the first, the principal epochs in the development of algebra are as follows:

1. Egyptian : 3000 B. C. -1500 B. C.
2. Greek (at Alexandria): 200 A.D. -400 A.D. Principal writer, Diophantus.
3. Hindoo (in India): 500 A. D.-1200 A.D.
4. Arab: 800 A. D.-1200 A.D.
5. European: 1200 A. D.- Leonardo of Pisa, an Italian, published in 1202 A. D. a work on the Arabic arithmetic which contained also an account of the science of algebra as it then existed among the Arabs. From Italy the knowledge
of algebra spread to France, Germany, and England, where its subsequent development took place.

We will consider briefly the history of
I. Algebraic Symbols.
II. Ideas of Algebraic Quantity.
III. Algebraic Processes.

I. History of Algebraic Symbols

296. Symbol for the Unknown Quantity.
297. Egyptians (1700 в. c.): used the word hau (expressed, of course, in hieroglyphics), meaning " heap."
298. Diophantus (Alexandria, 350 A. D.?): s^{\prime}, or $\mathrm{s}^{\mathrm{o}^{\prime}}$; plural, ss.
299. Hindoos (500 A. D. -1200 A. d.): Sanscrit word for " color," or first letters of words for colors (as blue, yellow, white, etc.).
300. Arabs (800 A. D. -1200 A. d.) : Arabic word for " thing " oi " root " (the term root, as still used in algebra, originates here).
301. Italians (1500 A. d.) : Radix, $R, R j$.
302. Bombelli (Italy, 1572 A. D.): (1)
303. Stifel (Germany, 1544): A, B, C, \ldots
304. Stevinus (Holland, 1586): (1)
305. Vieta (France, 1591): vowels A, E, I, O, U.
306. Descartes (France, 1637): x, y, z, etc.
307. Symbols for Powers (of x at first); Exponents.
308. Diophantus: $\delta v v a \mu \iota s$, or $\delta^{\bar{v}}$ (for square of the unknown quantity); $\kappa \nu \beta o s$, or κ^{ν} (for its cube).
309. Hindoos: initial letters of Sanscrit words for "square" and "cube."
310. Italians (1500 A. D.): " census" or "zensus" or " z " (for x^{2}); " cubus " or " c " (for x^{3}).
311. Bombelli (1579): (1), (2), (3), (for $\left.x, x^{2}, x^{3}\right)$.
312. Stevinus (1586): (1), (2), (3), (for $\left.x, x^{2}, x^{3}\right)$.
313. Vieta (1591): A, A quadratus, A cubus (for $x, x^{2} x^{3}$).
314. Harriot (England, 1631): a, aa, aaa.
315. Herigone (France, 1634): $a, a 2, a 3$.
316. Descartes (France, 1637): x, x^{2}, x^{3}.

Wallis (England, 1659) first justified the use of fractional and negative exponents, though the use of fractional exponents had been suggested earlier by Oresme (1350), and the use of negative exponents by Choquet (c. 1500).

Newton (England, 1676) first used a general exponent, as in x^{n}, where n denotes any exponent, integral or fractional, positive or negative.

298. Symbols for Known Quantities.

1. Diophantus: $\mu 0 v a \delta \epsilon s$ (i. e. monads), or μ°.
2. Regiomontanus (Germany, 1430): letters of the alphabet.
3. Italians: d, from dragma.
4. Bombelli: (2).
5. Stevinus: (2).
6. Vieta: consonants, B, C, D, F, \ldots.
7. Descartes: a, b, c, d.

Descartes possibly used the last letters of the alphabet, x, y, z, to denote unknown quantities because these letters are less used and less familiar than a, b, c, d, \ldots, which he accordingly used to denote known numbers.
239. Addition Sign. The following symbols were used:

1. Egyptians: pair of legs walking forward (to the left), $_$.
2. Diophantus: juxtaposition (thus, $a b$, meant $a+b$).
3. Hindoos: juxtaposition (survives in Arabic arithmetic, as in $2 \frac{3}{5}$, which means $2+\frac{3}{5}$).
4. Italians: plus, then p (or e, or ϕ).
5. Germans (1489):,,-+++ .
6. Subtraction Sign.
7. Egyptians: pair of legs walking backward (to the right), thus, Λ^{-}; or a flight of arrows.
8. Diophantus: \nless (Greek letter ψ inverted).
9. Hindoos: a dot over the subtracted quantity (thus, $m \dot{n}$ meant $m-n$).
10. Italians: minus, then M or m or $d e$.
11. Germans (1489) : horizontal dash, -.

The signs + and - were first printed in Johann Widman's Mercantile Arithmetic (1489). These signs probably originated in German warehouses, where they were used to indicate excess or deficiency in the weight of bales and chests of goods. Stifel (1544) was the first to use them systematically to indicate the operations of addition and subtraction.
301. Multiplication Sign. Multiplication at first was usually expressed in general language. But

1. Hindoos indicated multiplication by the syllable $b h a$, from bharita, meaning " product," written after the factors.
2. Oughtred and Harriot (England, 1631) invented the present symbol, \times.
3. Descartes (1637) used a dot between the factors (thus, $a \cdot b)$.
4. Division Sign.
5. Hindoos indicated division by placing the divisor under the dividend (no line between). Thus, ${ }_{d}^{c}$ meant $c \div d$.
6. Arabs, by a straight line. Thus, $a-b$, or $a \mid b$, or $\frac{a}{b}$.
7. Italians expressed the operation in general language.
8. Oughtred, by a dot between the dividend and divisor.
9. Pell (England, 1630), by \div.

303. Equality Sign.

1. Egyptians: $<\square$ (Also other more complicated symbols to indicate different kinds of equality).
2. Diophantus: general language or the symbol, \imath.
3. Hindoos: by placing one side of an equation immediately under the other side.
4. Italians: a or a; that is, the initial letters of aqualis (equal). This symbol was afterward modified into the form, ∞, and was much used, even by Descartes, long after the invention of the present symbol by Recorde.
5. Recorde (England, 1540): =.

He says that he selected this symbol to denote equality because " than two equal straight lines no two things can be more equal."

304. Other Symbols used in Elementary Algebra.

Inequality Signs, $><$, were invented by Harriot (1631).
Oughtred, at the same time, proposed $\sqsupset, ~ \sqsupset$ as signs of inequality, but those suggested by Harriot were manifestly superior.

Parenthesis, (), was invented by Girard (1629).
The Vinculum had been previously suggested by Vieta (1591).

Radical Sign. The Hindoos used the initial syllable of the word for square root, $K a$, from Karania, to indicate square root.

Rudolph (Germany, 1525) suggested the symbol used at present, $\sqrt{ }$, (the initial letter, r, in the script form, of the word radix, or root) to indicate square root, W to denote the 4th root, and NW to denote cube root.

Girard (1633) denoted the 2d, 3d, 4th, etc., roots, as at present, by $\sqrt[2]{ }, \sqrt[3]{ }, \sqrt[4]{ }$, etc.

The sign for Infinity, ∞, was invented by Wallis (1649).
305. Other Algebraic Symbols have been invented in recent times, but these do not belong to elementary algebra.

Other kinds of algebra have also been invented, employing other systems of the symbols.
306. General Illustration of the Evolution of Algebraic Symbols. The following illustration will serve to show the principal steps in the evolution of the symbols of algebra:

At the time of Diophantus the numbers $1,2,3,4, \ldots$ were denoted by letters of the Greek alphabet, with a dash over the letters used; as, $\bar{a}, \bar{\beta}, \bar{\gamma}, \ldots$

In the algebra of Diophantus the coefficient occupies the last place in a term instead of the first as at present.

Beginning with Diophantus, the algebraic expression, $x^{2}+5 x-4$, would be expressed in symbols as follows:

$\delta^{v} \bar{a}$ só $\bar{\epsilon}$ れ $\mu^{\circ} \bar{\delta}$	(Diophantus, 350 A. D.)
1 zp .5 Rm. 4	(Italy, 1500 A. D.).
$1 Q+5 N-4$	(Germany, 1575).
$1{ }_{12}$ p. 5 (1) m.4(0)	(Bombelli, 1579).
$1(2)+5(1)-4(0)$	(Stevinus, 1586).
$1 A q+5 A-4(0)$	(Vieta, 1591).
$1 a a+5 a-4$	(Harriot, 1631).
$1 a 2+5 a 1-4$	(Herigone, 1634).
$x^{2}+5 x-4$	(Descartes, 1637).

307. Three Stages in the Development of Algebraic Symbols.
308. Algebra without Symbols (called Rhetorical Algebra). In this primitive stage, algebraic quantities and operations were expressed altogether in words, without the use of sym-
bols. The Egyptian algebra and the earliest Hindoo, Arabian, and Italian algebras were of this sort.
309. Algebra in which the Symbols are Abbreviated Words (called Syncopated Algebra). For instance, p is used for plus. The algebra of Diophantus was mainly of this sort. European algebra did not get beyond this stage till about 1600 A. D.
310. Symbolic Algebra. In its final or completed state, algebra has a system of notation or symbols of its own, independent of ordinary language. Its operations are performed according to certain laws or rules, "independent of, and distinct from, the laws of grammatical construction."

Thus, to express addition in the three stages we have plus, $p,+$; to express subtraction, minus, m, - ; to express equality, wqualis, x, $=$.

Along with the development of algebraic symbolism, there was a corresponding development of ideas of algebraic quantity and of algebraic processes.

II. History of Algebraic Quantity

308. The Kinds of Quantity considered in algebra are positive and negative; particular (or numerical) and general; integral and fractional; rational and irrational; commensurable and incommensurable; constant and variable; real and imaginary.
309. Ahmes (1700 в. с.) in his treatise uses particular, positive quantity, both integral and fractional (his fractions, however, are usually limited to those which have a unity for a numerator). That is, his algebra treats of quantities like 8 and $\frac{1}{6}$, but not like -3 , or $-\frac{2}{5}$, or $\sqrt{2}$, or $-a$.
310. Diophantus (350 A. D.) used negative quantity, but only in a limited way; that is, in connection with a larger
positive quantity. Thus, he used $7-5$, but not $5-7$, or - 2. He did not use, nor apparently conceive of, negative quantity having an independent existence.
311. The Hindoos (500 A. D. -1200 A. D.) had a distinct idea of independent or absolute negative quantity, and used the minus sign both as a quality sign and a sign of operation. They explained independent negative quantity much as it is explained to-day by the illustration of debts as compared with assets, and by the opposition in direction of two lines.

Pythagoras (Greece, 520 в. с.) discovered irrational quantity, but the Hindoos were the first to use this in algebra.
312. The Arabs avoided the use of negative quantity as far as possible. This led them to make much use of the process of transposition in order to get rid of negative terms in an equation. Their name for algebra was "al gebr we'l mukabala," which means " transposition and reduction."

The Arabs used surd quantities freely.
313. In Europe the free use of absolute negative quantity was restored.

Vieta (1591) was principally instrumental in bringing into use general algebraic quantity (known quantities denoted by letters and not figures).

Cardan (Italy, 1545) first discussed imaginary quantities, which he termed " sophistic " quantities.

Euler (Germany, 1707-83) and Gauss (Germany, 17771855) first put the use of imaginary quantities on a scientific basis. The symbol i for $\sqrt{-1}$ was suggested by Gauss.

Descartes (1637) introduced the systematic use of variable quantity as distinguished from constant quantity.

III. History of Algebraic Processes

314. Solution of Equations. Ahmes solved many simple equations of the first degree, of which the following is an example:
" Heap its seventh, its whole equals nineteen. Find heap." In modern symbols this is,

$$
\text { Given } \frac{x}{7}+x=19 ; \text { find } x
$$

The correct answer, $16 \frac{5}{8}$, was given by Ahmes.
Hero (Alexandria, 120 в. c.) solved what is in effect the quadratic equation,

$$
\frac{11}{14} d^{2}+\frac{29}{7} d=s
$$

where d is unknown, and s is known.
Diophantus solved simple equations of one unknown quantity, and simultaneous equations of two and three unknown quantities. He solved quadratic equations much as is done at present, completing the square by the method given in Art. 226. However, in order to avoid the use of negative quantity as far as possible, he made three classes of quadratic equations, thus,

$$
\left\{\begin{array}{l}
a x^{2}+b x=c \\
a x^{2}+c=b x \\
a x^{2}=b x+c
\end{array}\right.
$$

In solving quadratic equations, he rejected negative and irrational answers.

He also solved equations of the form $a x^{m}=b x^{n}$.
He was the first to investigate indeterminate equations, and solved many such equations of the first degree with two or three unknown quantities, and some of the second degree.

The Hindoos first invented a general method of solving a quadratic equation (now known as the Hindoo method, see Art. 233). They also solved particular cases of higher degrees, and gave a general method of solving indeterminate equations of the first degree.
The Arabs took a step backward, for, in order to avoid the use of negative terms, they made six cases of quadratic equations; viz.:

$$
\begin{array}{ll}
a x^{2}=b x, & a x^{2}+b x=c \\
a x^{2}=c, & a x^{2}+c=b x \\
b x=c, & a x^{2}=b x+c
\end{array}
$$

Accordingly, they had no general method of solving a quadratic equation.

The Arabs, however, solved equations of the form $a x^{2 p}+b x^{p}$ $=c$, and obtained a geometrical solution of cubic equations of the form $x^{3}+p x+q=0$.

In Italy, Tartaglia (1500-1559) discovered the general solution of the cubic equation, now known as Cardan's solution. Ferrari, a pupil of Cardan, discovered the solution of equations of the fourth degree.

Vieta discovered many of the elementary properties of an equation of any degree; as, for instance, that the number of the roots of an equation equals the degree of the equation.
315. Other Processes. Methods for the addition, subtraction, and multiplication of polynomial expressions were given by Diophantus.

Transposition was first used by Diophantus, though, as a process, it was first brought into prominence by the Arabs. The word algebra is an Arabic word and means " transposition " (al meaning " the," and gebr meaning " transposition").

The Greeks and Romans had a very limited knowledge of
fractions. The Hindoos seem to have been the first to reduce fractions to a common denominator.

The square and cube root of polynomial expressions were extracted by the Hindoos.

The methods for using radicals, including the extraction of the square root of binomial surds and the rationalizing of the denominators of fractions, were also invented by the Hindoos.

The methods of using fractional and negative exponents were determined by Wallis (1659) and Sir Isaac Newton.
The three progressions were first used by Pythagoras (569 B. с.-500 в. с.)

Permutations and combinations were investigated by Pascal and Fermat (France, 1654).

The binomial theorem was discovered by Newton (1655), and, as one of the most notable of his many discoveries, is said to have been engraved on his monument in Westminster Abbey.

Graphs of the kind treated in this book were first invented by Descartes (France, 1637).

The fundamental laws of algebra (the Associative, Commutative, and Distributive Laws; see Arts. 316-317) were first clearly formulated by Peacock and Gregory (England, 1830-45), though, of course, the existence of these laws had been implicitly assumed from the beginnings of the science.

Students who desire to investigate the history of algebra in more detail should read the second part of Fine's Number System of Algebra, Ball's Short History of Mathematics, and Cajori's History of Elementary Mathematics.

MATERIAL FOR EXAMPLES

MATERIAL FOR EXAMPLES

Formulas
Formulas used in the following subjects may be made the basis for numerous examples.

I. Arithmetic

$$
\begin{aligned}
p & =b r \\
i & =p r t \\
a & =p+p r t
\end{aligned}
$$

$$
C=\frac{s\left[(1+r)^{n}-1\right]}{r}
$$

II. Geometry

$$
\begin{aligned}
K & =\frac{1}{2} b h \\
K & =\frac{1}{4} a^{2} \sqrt{3} \\
K & =\frac{1}{2} h\left(b+b^{\prime}\right) \\
C & =2 \pi R \\
K & =\pi R^{2} \\
K & =\pi R L \\
S & =4 \pi R^{2}
\end{aligned}
$$

$$
T=\pi R(R+L)
$$

$$
T=2 \pi R(R+H)
$$

$$
V=\pi R^{2} I
$$

$$
V=\frac{1}{3} \pi R^{2} H
$$

$$
V=\frac{4}{3} \pi R^{3}
$$

$$
S=\frac{\pi R^{2} E}{180}
$$

$$
K=\sqrt{s(s-a)(s-b)(s-c)}
$$

$$
V=\frac{1}{3} I I(B+b+\sqrt{B b})
$$

III. Physics

$$
\begin{array}{ll}
v=g t & F=\frac{m v^{2}}{r} \\
s=\frac{1}{2} g t^{2} & \\
s=\frac{v^{2}}{2 g} & E=\frac{m v^{2}}{2}
\end{array}
$$

$$
\begin{array}{rlrl}
E & =\frac{w v^{2}}{2 a} & R & =\frac{g s}{g+s} \\
e & =\frac{4 P l^{3}}{b h^{3} m} & \frac{1}{f} & =\frac{1}{p}+\frac{1}{p^{\prime}} \\
t & =\pi \sqrt{\frac{l}{g}} & H & =.24 C^{2} R t \\
C & =\frac{E}{R} & E & =\frac{4 n^{2} l^{2} w}{g} \\
& C & =\frac{5}{9}(F-32)
\end{array}
$$

IV. Engineering

H. P. $=\frac{\text { plan }}{33,000}$ (horse-power in an engine)

$$
\begin{aligned}
s & =\frac{w l^{2}}{8 t} \text { and } l^{\prime}=l+\frac{\delta s^{2}}{3 l} \text { (sag in a suspended wire) } \\
E & =\frac{4 B V^{2}}{5 R}(\text { elevation of outer rail on a curve) } \\
W & =\frac{B \times D^{2}}{L} l_{i} \text { (weight a beam will support) }
\end{aligned}
$$

$L=\frac{.0045(P-t)(T-t) C}{P}$ (length of hot-water pipe to heat
a house)
$T=\frac{D^{2} P L}{W}$ (tractive force of a locomotive)
$G=\frac{\sqrt{(15 D)^{5} I I}}{L}$ (no. gal. water delivered by a pipe)
$D=\sqrt{\frac{G}{.34 L N}}$ (diameter of a pump to raise a given amount of water)
$D=\sqrt[3]{\frac{W}{.5236(A-G)}}$ (diameter of balloon to raise a given weight)

Important Numerical Facts

Areas

Sq. Mi.
Rhode Island 1250
New Jersey 7815
New York 49,170
Texas 265,780
United States 3,025,600
North America 6,446,000
Land surface of earth 51,238,800
Great Britain and Ireland 121,371
France 207,054
Europe 3,555,000

Astronomical Facts

Planet	Diameter in Miles	Distance from Sun in Million Miles	Time of Revolution about Sun	Synodic Period in Days
Mercury	3030	36	88 da.	116
Venus	7700	67.2	225 da.	584
Earth	7918	92.8	365 da.	
Mars	4230	141.5	687 da.	780
Jupiter	86,500	483.3	11.86 yr .	399
Saturn	73,000	886	29.5 yr.	378
Uranus	31,900	1781	84 yr .	369
Neptune	34,800	2791	165 yr.	367

Sun's diameter
Moon's diameter
$866,400 \mathrm{mi}$.
Moon's distance
2162 mi . $238,850 \mathrm{mi}$.
Distance of nearest fixed star, 21 millions of millions of miles (or 3.6 light years).

Dates (A. D. UNLESS otherwise stated)

Rome founded . . 753 в. c. Declaration of Indepen- Battle of Marathon 490 в. с. dence 1776
Fall of Jerusalem 70
Fall of Rome 476 Battle of Waterloo 1815
Battle of Hastings . . 1066 Telegraph invented 1844
Printing with movabletype1438 message1858
Fall of Constantinople 1453 Telephone invented 1876
Discovery of America 1492 Battle of Manila Bay 1898
Jamestown founded. 1607
Distances
From New York to Miles From New York to Miles Boston 234 Philadelphia 90
Buffalo 440 Washington 228
Chicago 912 New Orleans 1372
Denver 1930 Havana 1410
San Francisco 3250 London 3375
San Francisco to Manila 4850
New York to San Francisco via Panama 5240
London to Bombay via Suez 6332
Heights of Mountains
Feet Feet
Mt. Washington . . 「6290 Mt. Mitchell 6711
Pike's Peak 14,147 Mt. Whitney 14,501
Mt. McKinley 20,464 Mt. Blanc 15,744
Mt. Everest 29,002 Acongua 23,802

Heights (or lengths) of Structures

Feet

Bunker Hill Monument. 221 Olympic 882 ft .
Washington Monument 555 Deepest shaft . . . 5000 ft .
Singer Building (N. Y.). 612 Deepest boring . . 6573 ft .
Metropolitan Life Simplon Tunnel . . $12 \frac{1}{4} \mathrm{mi}$.
Building 700 Panama Canal . . 49 mi .
Eiffel Tower 984 Suez Canal 100 mi.

Lengths of Rivers

Miles Miles

Hudson $2 S 0$ Mississippi 3160
Ohio 950 Rhine 850
Colorado 1360 Amazon 3300
Missouri 3100 Nile 3400

Rainfall (mean annual)

			Inches		Inches
Phoenix (Ariz.) . . .	7.9	New York	44.8		
Denver	14	New Orleans	.	.
Chicago	34		57.4	
Cherrapongee (Asia)	.	610			

Records (year 1910)
100-yard dash 9_{5}^{3} sec.
Quarter-mile run 47 sec.
Mile run $4 \mathrm{~m} .15 \frac{2}{5}$ sec.
Mile walk 6 m. $29_{5}^{\frac{1}{5}} \mathrm{sec}$.
Running high jump 6 t. $5 \frac{5}{8} \mathrm{in}$.
Running broad jump 2 ft. $7 \frac{1}{4} \mathrm{in}$.
Pole vault
$12 \mathrm{ft} .10 \frac{7}{8} \mathrm{in}$.
100-yard swim $55_{5}^{2} \mathrm{sec}$.
1-mile swim $23 \mathrm{~m} .16_{5}^{4} \mathrm{sec}$.
100 -yard skate $9_{5}^{4} \mathrm{sec}$.
1-mile skate 2 m .36 sec .
1 mile on bicycle 1 m .5 sec .
1 mile in automobile $27 \frac{1}{3}$ sec.
1 mile by running horse $1 \mathrm{~m} .35_{5}^{2} \mathrm{sec}$.
1 mile by trotting horse in race 2:03 $\frac{1}{4} \mathrm{~m}$.
Throw of baseball 426 ft .6 in .
Drop kick of football 189 ft .11 in .
Transatlantic voyage (from N. Y.) 4 da .14 h .38 m.
Typewriting from printed copy. 123 words in one minute
Typewriting from new material 6,136 words in one hourShorthand
Cost 1 lb . radium \$2,500,000187 words in one minute
Corn crop per acre
Milk from 1 cow (1 year) $27,432 \mathrm{lb}$.
Butter from cow/(1 year) 1164.6 lb .
Resources (crops, etc., year 1910)
(All these figures are approximate estimates.)
Coal lands in U. S. 400,000 sq. mi.Coal in U. S. 2,500,000,000,000 tons
Iron ore in U. S. $15,000,000,000$ tonsWater-power of Niagara. 7,000,000 H. P.Natural water-power in U. S.$75,000,000 \mathrm{H} . \mathrm{P}$.

Possible water-power in U. S. (developed by storige dams, etc.)
$200,000,000 \mathrm{H} . \mathrm{P}$.
Reclaimable swar ó lands in U.S. .
Lands in U. S. reclaimable by irrigation
$100,000,000$ acres

| National forest reserves of U. S. . | $168,000,000$ acres |
| :--- | :--- | ---: |
| Corn crop of U. S. | $3,000,000,000$ bu. |
| Wheat crop of U. S. | $700,000,000$ bu. |
| Cotton crop of U. S. | $13,000,000$ bales |

Temperatures (fahrenheit)

Normal temperature of the human body 98.7°
Ether boils at $96^{\circ} \quad$ Temperature of arc light 5400°

Alcohol boils at 173°
Water boils at 212°
Sulphur fuses at 238°
Tin fuses at 442°
Lead fuses at 617°
Iron fuses at 2800° (approx.)
(approx.)
Average change of temperature below earth's surface 1° per 62 ft . (increase)
above earth's surface 1° per 183 ft . (decrease)

Velocities

Wind	18 mi. per hr. (av.)
Sensation along a nerve .	120 ft per sec. (av.)
Sound in the air	1090 ft. per sec. (av.)
Rifle bullet	2500 ft . per sec. (av.)
Message in submarine cable	2480 mi . per sec.
Light	,000 mi. persec. (app

Weights

Boy 12 years old
75 lb . (av.)
Man 30 years old
150 lb . (av.)
Horse
1000 lb . (av.)
Elephant
Whale 60 tons (approx.)
1 cu . ft. of air
$1 \frac{1}{4}$ oz. (approx.)
$1 \mathrm{cu} . \mathrm{ft}$. of water
62.5 lb .

Specific Gravities

Air $\frac{1}{800}$ Stone (average) 2.5
Cork 24 Aluminum 2.6
Maple wood . 75 Glass 2.6-3.3
Alcohol . 79 Iron (cast) 7.4
Ice . 92 Iron (wrought) 7.8
Sea water 1.03 Lead 11.3
Water 1 Gold 19.3
Clay 1.2 Platinum 21.5
Miscellaneous
Heart beats per minute - Frog 10
Man 72
Bird 120
Smallest length visible to unaided eye. $\frac{1}{250}$ inch
Smallest length visible by aid of microscope $\frac{1}{125,000}$ inch
Accuracy of work in a machine shop $\frac{1}{1000}$ inch
Accuracy in most refined measurements . $\frac{1}{10.000,000}$ inch
Dimensions of double tennis court $78^{\prime} \times 36^{\prime}$
Dimensions of single tennis court $78^{\prime} \times 27^{\prime}$
Dimensions of football field $160^{\prime} \times 300^{\prime}$
Standard width of railroad track $4^{\prime} 8 \frac{1}{2}^{\prime \prime}$

Weights and Measures

Avoirdupois weight, 1 ton $=2000 \mathrm{lb} . ; 1 \mathrm{lb} .=16 \mathrm{oz} .=7000 \mathrm{gr}$. Troy weight, $1 \mathrm{lb} .=12 \mathrm{oz} .=5760 \mathrm{gr} . ; 1 \mathrm{oz} .=20 \mathrm{pwt} .=$ 480 gr .
Long measure, $1 \mathrm{mi} .=1760 \mathrm{yd} .=5280 \mathrm{ft} .=63,360 \mathrm{in}$.
Square measure, 1 A. $=160$ sq. rd. $=43,560$ sq. ft.; 1 sq. yd.

$$
=9 \mathrm{sq} \cdot \mathrm{ft}_{1}=9 \times 144 \mathrm{sq} \cdot \mathrm{in} .
$$

Cubic measure, $1 \mathrm{cu} . \mathrm{yd} .=27 \mathrm{cu} . \mathrm{ft} .=27 \times 1728 \mathrm{cu} . \mathrm{in}$.
Dry measure, $1 \mathrm{bu} .=4 \mathrm{pk} .=32 \mathrm{qt} .=64 \mathrm{pt}$.
Liquid measure, 1 gal. $=4 \mathrm{qt} .=8 \mathrm{pt} . ; 1 \mathrm{pt} .=16$ liquid oz.
Paper measure, 1 ream $=20$ quires $=480$ sheets.
Metric system, 1 meter $=39.37 \mathrm{in} . ; 1$ kilometer $=.621 \mathrm{mi}$. 1 liter $=1.057$ liquid qt.; 1 kilogram $=$ 2.2046 lb .

1 hectare $=2.471 \mathrm{~A}$.
1 kilometer $=10$ hectometers $=100$ decameters $=1000$ meters $=10,000$ decimeters $=$ 100,000 centimeters $=1,000,000$ millimeters.
At the option of the teacher, the pupil may insert on the blank pages at the end of the book other important formulas or numerical facts, particularly those which are important in the locality in which the pupil lives.

ANSWERS

EXERCISE 1

1. $56,28$.
2. 24,12 quarts.
3. Daughter, $\$ 8000$; son, $\$ 4000$.
4. Man, $\$ 96.60$; boy, $\$ 32.20$.
5. $\$ 12.40, \$ 6.20$.
6. $11,250,000$ bales.
7. Tenant, $\$ 4000$; owner, $\$ 2000$.
8. New York, 49,200 ; Mass., 8,200 sq. mi.
9. 200 and 40.
10. 4.84 and 2.42 .
11. $\frac{1}{4}$ and $\frac{1}{12}$.
12. Lowest part, 12 ft .; middle, $24 \mathrm{ft} . ;$ top, 96 ft .
13. $\$ 1000, \$ 2000, \$ 3000$.
14. Hat, $\$ 7$; coat; $\$ 14$; suit, $\$ 21$.
15. Niece, $\$ 12,000$; daughter, $\$ 24,000$; wife, $\$ 48,000$.
16. Cement, 3,375 ; sand, 6,750 ; gravel, $16,875 \mathrm{cu}$. ft.
17. Nitrate of soda, 500 ; ground bone, 500 ; potash, 1000 lb .
18. Lime, $190 \frac{1}{2} \frac{1}{7}$; potash, $952 \frac{{ }_{2}^{8}}{2}$; sand, $2857 \frac{3}{2} \mathrm{~T} \mathrm{lb}$.
19. Boy, $\$ 9.90$; adult, $\$ 19.80$. 30. .0062, .0124, .0186; $\frac{5}{96}, \frac{5}{48}, \frac{3}{32}$.
20. 20, 40, and 60.
21. $30,30,60,120$.
22. 20, 40, and 60 . 33. $35^{\frac{5}{7}} \mathrm{lb}$.

EXERCISE 2

19. (1) 6 ; (2) 3 ; (3) $\frac{1}{2}$; (4) 4 ; (5) 8 ; (6) 1 ; (7) 9 ; (8) 11 ; (9) 10 ; (10) 21 .
20. Walter, 25 marbles; brother, 35 marbles.
21. 9 hr .14 min .
22. $15 \frac{5}{8}, 12 \frac{7}{8}$.
23. 35.
1. 7,258.
2. 7 and 8.
3. 10, 11, and 12.
4. 121, 391 sq . mi.
5. 6290 ft .

EXERCISE 3

16. (1) 40 ; (2) 72 ; (3) 324 ; (4) 9 ; (5) 18 ; (6) 26 ; (7) $\frac{5}{3}$; (8) 9 ,
17. (9) 80 ; (10) 125 ; (11) 0 ; (12) 4.
18. 10; 32.
19. $2,4,8,32,128$.
20. 81, 125.
21. 2^{3}.
22. 1200 sq. ft.
23. $\$ 24$; $\$ 14$.
24. State, $\$ 360$; county, $\$ 720$; township, $\$ 720$.
25. Pedestal, 155 ft .; statue, 151 ft .
26. Charcoal, 500 lb .; sulphur, 500 lb .; niter, 1000 lb .
27. $800,000,000 \mathrm{bu}$.

EXERCISE 4

1. 17.	16. 16.	31. $\frac{2}{5}$	46. $2+\sqrt{2}$.	
2. 4.	17. 12.	32. $\frac{2}{3}$.	47. 0 .	
3. 0.	18. 5.	33. 1.	48. When $x=3$.	
4. 23.	19. 9.	34. $\frac{9}{3}$.	49. When $x=2$.	
5. 7.	20. 37.	35. $\frac{2}{3}$.	50. When	$=2,3$.
6. 18.	21. 108.	36. 7.	51. When	$x=3 .$
7. 2.	22.21.	37. $\frac{29}{15}$		
8. 29.	23. 21.	38. $\frac{8}{3}$.	55.	$2 x+1$
9. 6.	24. 63.	39. 24.	1	3
10. 9.	25. 2.	40. 15.	2	5
11. 3.	26. 15.	41. $\frac{3}{2}$.	3	7
12. 0.	27. 26.	42. $\frac{49}{5}$.	5	11
13. 17.	28. $\frac{8}{5}$.	43. $\frac{1}{6}$.	$\frac{1}{2}$	2
14. 18.	29. 3.	44. ${ }^{124}$.	- 4	1 $\frac{1}{3}$
15. 12.	30. 3.	45. 4.	1.5	4

EXERCISE 5

1. $66 ; 60.32$.
2. $180 ; 183.976$.
3. $374.5 ; .3456 ; 105$.
4. $\$ 37.50 ; \$ 2052.05$.
5. 314.16.
6. 10.
1. $257.28 ; 100.5$.
2. 402 ft .
3. $35^{\circ} ; 37 \frac{7}{2}$.
4. $1482{ }_{9}^{2}$.
5. 78.54 .
6. Daughter, $\$ 14,400$; son, $\$ 9,600$.
7. \$31.20.
8. Tenant, $\$ 1890$; owner, $\$ 2520$.

ANSWERS

19. Owner, $\$ 1125$; other, $\$ 2475$.
20. 21, 105; 36, 90.
21. . $0041, .0231 ; .008, .02$.
22. Township, $\$ 10,800$; county, 85,400 ; state, $\$ 1,800$.
23. Gravel, 2000 lb .; sand, 1000 lb .; cement, 500 lb .

EXERCISE 6

2. 25°.
3. $3^{\circ} ;-11^{\circ}$.
4. 7°.
5. $\$ 9000$.
6. $5^{\circ} ;-13^{\circ} ; 30^{\circ}$.
7. $-2 \frac{3}{8}^{\circ}$.
8. $-4^{\circ} ; 7^{\circ} ;-16^{\circ}$.
9. $\$ 50 ;-\$ 25 ;-\$ 50$.
10. 15 games.
11. Defeated candidate, 6,105 ; winning candidate, 6,315 .
12. Walter, 30 ; brother, 53.
13. $\frac{3}{3}, \frac{21}{8}$.
14. 81, 19.
15. 1.07, 3.33 .
16. 234 mi .
17. 555 ft .

EXERCISE 7

1. 3.
1. -2 .
2. 0 .
3. -2 .
4. -6 .
5. -4 .
6. -2 .
7. 6.
1. -1 .
2. -1 .
3. 13.
1. -9 .
2. 5.
1. -5.
2. -2.5
3. -5 .
4. -2 .
5. 62°.
6. +5
7. Man, 240; boy, 80 .
8. $\$ 1880 ; \$ 1340$.
9. Younger, $\$ 8.20$; older, $\$ 16.40$.
10. Zine, 400; tin, 800; copper, 3400 lb .
11. 3100 mi .
12. 2266 lb .
13. State, $\$ 4000$; county, $\$ 8000$; township, $\$ 12000$.
14. $\$ 3000, \$ 5000, \$ 6000$.
15. 612 ft .

EXERCISE 9

1. -5.	5. $5 x$	12. $-6 x^{2}$	18. $2 x$.
2. -6.	6. $-5 a$.	14. $4(a+b)$	20. $3 a^{3}-2 x^{3}$.
3. $2 x$.	7. $7 x^{3}$.	16. $\sqrt{a+x}$	21. $a+b$.
4. $-4 x$.	$11.4 a x$.	17. $\frac{5}{3} \pi r^{3}$	22. $2 x^{3}-11 y^{3}$.

23. $2 b y^{3}$.
24. $7 x^{2}+2 y^{2}$.
25. $m^{2}-m n-2 n^{2}$.

29: $2 x^{2} y+4 x y^{2}$.
30. $-2 x-4 y+2 z$.
31. $-x y+2 a x+y^{2}-3 x^{2}$.
35. 2.
36. $x^{n}+x^{2}-7 x+2$.
41. $\$ 3000 ; \$ 6000 ; \$ 9000$.
43. 11, 12, 13.
44. $25,26,27,28$.
46. 716,555 sq. mi.

EXERCISE 10

1. $4 a b$.
2. $-4 x$.
3. $8 x$.
4. x^{2}.
5. $2(a+b)$:
6. $\sqrt{a+x}$.
7. $x^{2}-5 x$.
8. $3 x^{3}-7$.
9. $6 x^{2}+7 x-8$.
10. $a+4 b-4 c+d$.
11. $-8+x+7 x^{2}$.
12. $-1-2 x+2 x^{2}+x^{3}+3 x^{4}$.
13. $12 x y^{2}-x^{2} y^{2}-9 x^{2} y$.
14. $1-2 x-2 x^{3}+x^{4}+x^{5}$.
15. $m-3 d-x+3 c$.
16. $-3 x^{4}+3 x^{3}+4 x^{2}-6 x$. 26. $-2 x^{m}+4 x^{n}-x^{2}+2$. 27. $6 y$. 28. $3 x ;-x+y ;-3 a^{2}+2 a b-b^{2}$.
17. $4 x^{3}-2 x-2$.
18. $2 x^{3}+6 x^{2}-2 x-4$.
19. $-2 x^{3}-2 x^{2}-8 x-2$.
20. $4 x^{3}-4 x^{2}+8 x+4$.
21. 3 in.
22. $\$ 10.10, \$ 14.70$.
23. $\$ 6.20, \$ 18.60$.
24. $\$ 1300, \$ 1600$, and $\$ 2100$.
25. $\$ 1200, \$ 1500$, and $\$ 2300$.
26. $\$ 3529_{\frac{7}{1} 7}^{7}, \$ 1764_{1}^{1 \frac{2}{7}}$, and $\$ 705_{1}^{\frac{1}{7}}$.
27. $\$ 857 \frac{1}{7}, \$ 1714^{\frac{2}{7}}$, and $\$ 3428^{\frac{4}{7}}$.

EXERCISE 11

1. $5 a-b$.
2. $x+1$.
3. $1-x$.
4. -1 .
5. $2 x+1$.
6. $-x+3 y$.
7. $1-2 x$.
8. $9 x-1$.
9. 4.
1. $4 x-1$.
2. 0.
1. $a-1$.
2. 0.
1. $2-2 x$.
2. $x+1$.
3. 6.
1. $2 c-b-d$.
2. $3 x-2 x^{3}$.
3. $-7 x^{3}+x^{2}-2 x-1$.
4. 2.
1. $-2 y$.
2. $-3 x$.
3. $\frac{5}{2}$.
4. 5.
1. 3.
1. $\frac{19}{8}$.

ANSWERS

EXERCISE 12

1. $x^{3}-\left(3 x^{2}-3 x+1\right)$.
2. $a-(b-c-d)$.
3. $1-\left(-2 a+a^{2}+1\right)$.
4. $1-\left(a^{2}+2 a b+b^{2}\right)$.
5. $x^{4}-\left(-4 x+x^{2}+4\right)$.
6. $a^{2} b^{2}-\left(2 c d+c^{2}+d^{2}\right)$.
7. $4 x^{4}-\left(9 x^{2}-12 x y+4 y^{2}\right)$.
8. $x^{4}-4 x^{3}+4 x^{2}-\left(-4 x+4+x^{2}\right)$.
9. $(m+2) x-(n+4) y+(3+n) z$.
10. $(1-a-b) x-(1-b+a) y-(2+a-c) z$.
11. $(-7-2 a+2 b) x+(12-c-6 d) y-(10-3 b) z$.
12. $(5-3 c d) y-(3 a c+4 a b-2 c+5 a) x-(5 c d+4) z$.
13. $(3-a-c) x^{3}-(2-a+c) x^{2}+(1-2 a-c) x-5$.
14. $(-a+1-2 b) x^{3}-(1-b+a) x^{2}-(1+a+3 b) x+3 a$.
15. $\left(-b^{3}-a^{3}\right) x^{3}+\left(a^{2}-2 b^{2}-c\right) x^{2}-(a-3 b-3 c) x-a-c$.

EXERCISE 13

1. 3.
1. 2.74 .
2. -3 .
3. $3 \frac{1}{2}, 8 \frac{1}{2}$.
4. 5.
1. 2.
1. $-\frac{9}{4}$.
2. 4,9 .
3. 3.
1. 2.
1. $\frac{9}{7}$.
2. $3 \frac{1}{2}, 8 \frac{1}{2}$.
3. 12.
1. 8.9, 7.5.
2. 3.
1. $\frac{1}{2}$.
2. 6.
1. 8.9, 7.5.
2. 8.9, 7.5.
3. 13, 15, 17; 5, 7, 9, 11, 13.
4. 18, 20, 22; 8, 10, 12, 14, 16.

EXERCISE 14

1. 8.
1. 12.
1. 297.28 .
2. 36 ; 144 .
3. $2 x^{4}-3 x^{3}+2 x^{2}-7 x-2$.
4. $(1+a-2 c) x^{5}-(3+c) x^{4}-(1+a-3 c) x^{3}-(2 a+5) x^{2}+2$.
5. $1+2 a-(1+2 a+3 b-c) x-(1-2 a-3 b) x^{2}-(1+2 a-3 b) x^{3}$.
6. 6.
1. 3.
1. $-\frac{1}{3}$.
2. $\frac{1}{2}$.
3. $-8 x^{2}+2 a x^{2}+3 a x+2 a^{2}-a^{4}$.

$$
\begin{array}{ll}
\text { 18. } 79 . & \text { 23. } 1 \frac{1}{2} x^{2}-1 \frac{1}{8} x . \\
\text { 19. } x^{2}+3 a x+5 a^{2} . & \text { 24. } \frac{3}{8} x^{2}-\frac{1}{4} x-\frac{3}{4} . \\
\text { 20. } 6 x^{2}-4 a x-6 a^{2} . & \text { 25. } .95 a^{2}+.45 a+.3 . \\
\text { 21. }-4 . & \text { 26. } 1.23 a^{2}+2.12 a+. \\
\text { 22. } 6,405,000 \text { sq. mi. } & \text { 27. } 3(x+y)+(y+z) \\
\text { 28. } 3 a^{3}-10 a b+3 a^{2} b^{2} .
\end{array}
$$

29. First, $x^{3}-x^{2}+x-1$; second, $-x^{2}+4 x-1$; third, $-x^{2}+x$ +14 ; fourth, $-x^{2}+x-1$.
30. First, $-x^{3}+2 x^{2}-3 x+1$; second, $x^{2}-3 x-9$; third, $2 x^{2}-3 x$ -6 ; fourth, $2 x^{2}-2 x-a$.

$$
\begin{array}{ll}
\text { 31. } 2 x^{3}-2 x^{2} y+6 x y^{2}+5 y^{3} . & \text { 33. }-2 x^{3}+2 x y^{2}+3 y^{3} . \\
\text { 32. } 4 x^{3}-2 x^{2} y+2 x y^{2}+7 y^{3} . & \text { 34. } 6 x^{3}-2 x^{2} y-3 y^{3} .
\end{array}
$$

36. 17,480; 15,064 votes.
37. Lowlands, 44 mi .; Culebra Cut, 5 mi .

EXERCISE 15

1. -20.	10. $20 a^{2} b c d^{2}$.	21. 2^{n}.	40. 0.
2. $6 a$.	11. $-18 c^{3} d^{3}$.	23. x^{n+1}.	41. 0.
$3 .-15 a b$.	12. $16 x^{3} y^{3} z^{4}$.	24. $a^{2} x^{n+2}$.	42. 16.
4. $-30 x^{2} y^{2}$.	13. $8 x^{5}$.	25. $-a^{3} x^{n+3}$.	43. 4.
5. $-8 x^{2}$.	14. $\frac{1}{3} a^{3} x^{6}$.	27. $-a^{3} x^{2 n-2}$.	44. 1.
6. $15 x^{2}$.	15. $.015 x^{2}$.	29. $10(a+b)^{5}$.	45. 3.
7. $-12 a^{2} x^{2}$.	17. $\frac{15}{8} x^{4}$.	32. 21 $a+b)^{n+4}$.	46. $\frac{1}{10}$.
8. $42 x^{2} y^{4}$.	18. $\frac{3}{8} x^{3}$.	33. 2^{n-1}.	47. 2.
9. $-21 a^{2} x y$.	19. 2^{n+1}.	35. 27.	39. 0.

EXERCISE 16

1. $6 a^{2} x+9 a x^{2}$.
2. $2 x^{n+3}-3 x^{n+2}$.
3. $-15 x^{2} y+10 x y^{2}$.
4. $-12 x^{n+2}-28 x^{n+1}$.
5. $8 x^{3} y^{2}-2 x^{2} y^{3}$.
6. $3 x^{n+1}+3 x^{n}$.
7. $-21 a^{2} b x^{2} y+12 a b^{2} x y^{2}$.
8. $3 x^{9 a}+5 x^{7 a}$.
9. $40 a^{2} c^{2} n-15 a m^{2} n^{2}$.
10. $-4 a^{7 n}+14 a^{5 n}$.
11. $-7 m^{3} n+7 m^{4} n+21 m^{5} n$.
12. $x^{3}-1.48 x^{2}+.204 x$
13. $24 x^{3} y^{2}-15 x^{2} y^{3}-3 x y^{4}$.
14. $\frac{3}{8} x^{2}-\frac{1}{4} x^{3}-\frac{2}{5} x$.
15. $-\frac{8_{1}^{2}}{15} a^{2} x^{3}+\frac{1}{15} a^{2} x^{2}+\frac{1}{5} a^{2} x$.
16. $\frac{1}{10} x^{4}+\frac{1}{8} x^{5}+\frac{1}{6} x^{6}-\frac{1}{8} x^{7}$.
17. $10(a+b)^{3}-6(a+b)^{2}-10(a+b)$.
18. $21(x-y)^{4}+6(x-y)^{3}-18(x-y)^{2}$.
19. 56 .
20. 18.
1. 60.
1. 5.567.
2. 40.
1. 56.
1. 80.
1. 30 .
2. $\$ 238.25$.
3. 69.75 .
4. Daughter, $\$ 10,500$; son, $\$ 5500$.
5. Iron, 460 lb .; aluminum, 158 lb .
6. 19. 37. -9 . 38. 3.

EXERCISE 17

1. $2 x^{2}-7 x-4$.
2. $3 x^{2}-7 x-6$.
3. $2 x^{2}-9 x-35$.
4. $12 x^{2}-25 x y+12 y^{2}$.
5. $28 x^{4}+x^{2} y^{2}-15 y^{4}$.
6. $30 x^{2} y^{2}+x y-42$.
7. $32 a^{5} c-2 a b^{4} c^{3}$.
8. $33 x^{5} y+x^{3} y^{3}-14 x y^{5}$.
9. $a^{3}+b^{3}$.
10. $x^{4}-y^{4}$.
11. $8 x^{4}-2 x^{3}+x^{2}-1$.
12. $6 x^{3}-19 x^{2} y+21 x y^{2}-10 y^{3}$.
13. $2 x^{5}-5 x^{4}-2 x^{3}+9 x^{2}-7 x+3$.
14. $3 x^{4} y-10 x^{3} y^{2}+4 x^{2} y^{3}+6 x y^{4}+y^{5}$.
15. $x^{5}-5 x^{4} y+10 x^{3} y^{2}-10 x^{2} y^{3}+5 x y^{4}-y^{5}$.
16. $4 x^{5}+9 x^{4}-16 x^{3}+22 x^{2}-21 x+6$.
17. $x^{6}-x^{5}-7 x^{4}+3 x^{3}+17 x^{2}-5 x-20$.
18. $x^{6}-6 x^{4} y+9 x^{2} y^{2}-y^{6}$.
19. $a^{4}+a^{2} b^{2}+b^{4}$.
20. $16 x^{4}+36 x^{2} y^{2}+81 y^{4}$.
21. $x^{7}-9 x^{5} y^{2}+7 x^{4} y^{3}+13 x^{3} y^{4}-19 x^{2} y^{5}+8 x y^{6}-y^{7}$.
22. $-x^{5}+2 a x^{4}+8 a^{2} x^{3}-16 a^{3} x^{2}-16 a^{4} x+32 a^{5}$.
23. $a^{3}+b^{3}+x^{3}+3 a b^{2}+3 a^{2} b$.
24. $\frac{1}{2} x^{3}-17 \frac{2}{3} x+2$.
25. $a^{2} b^{2}+c^{2} d^{2}-a^{2} c^{2}-b^{2} d^{2}$.
26. . $1 a^{2}-.23 a b+.12 b^{2}$.
27. $\frac{1}{4} a^{2}-\frac{1}{4} b^{2}$.
28. $4.5 x^{3}-7.1 x^{2}-.4 x+.24$.

$$
\begin{aligned}
& \text { 29. } x^{n+1}-x^{n-1}-6 x^{n-2}-2 x+4 \\
& \text { 30. } x^{2 n+1}-x^{2 n}-2 x^{2 n-1}+3 x^{2 n-2}-10 x^{2 n-3} \\
& \text { 31. } x^{n-4}+x^{n-3}-x^{n-2}+x^{n-1}-x^{n}+7 x^{n+1}+10 x^{n+2}
\end{aligned}
$$

EXERCISE 18

1. $-a^{5}$.
2. $(x+y)^{2}(x-y)^{3}$.
3. $16,-1$.
4. $-x-2$.
5. $x^{2}-x-2$.
6. $17 x-12$.
7. $10 x^{2}+7 x-12$.
8. $-5 a+24$.
9. $24 a+20$.
10. x^{2}.
11. $4 x^{4}-12 x^{3}+13 x^{2}-6 x+1$.
12. $40 a-24 a b$.
13. $-20 x$.
14. $-6 x^{2}+13 x-4$.
15. $-2 x^{2}-3 x+6$.
16. $x^{3}-7 x+6$.
17. $2 a b+8 b^{2}$.
18. $y^{2}-4 x z+2 y z+z^{2}$.
19. $2 x+1$.
20. -12 .
21. - 12.
1. 0
2. - 18 .
3. 16.
1. 12.
1. $76 p^{2}$.
2. $-2 a^{2} b^{2}+14 a b-5$.
3. $27,9$.
4. $-6 a+29 b$.
5. 50 .
6. $\$ 100$.
7. \$920, $\$ 80$.
8. .0012, . 0003 .
9. $2 x^{3}+4 x^{2}-2 x$.
10. $x^{2}+10 x-16$.
11. 0 .
12. $x^{2}-5 x+8$.
13. $3 x^{2}-10 x y+y^{2}$.
14. $x^{2}-z^{2}$.
15. $4 a^{2}-a x+b x+m y+c y$. 28. 0 .
16. $5 a^{3}+2 a^{2} x-11 a x^{2}+10 x^{3}$. 30. $6 x y$.
17. -1 .
18. 5.
1. -26 .
2. 29.
1. 2.
1. $8 a^{2}$.
2. $1 \frac{1}{2}, \frac{1}{5}$.
3. $\$ 45, \$ 55$.
4. \$10, \$45, \$45.
5. $\$ 13 \frac{3}{7}, \$ 28 \frac{\pi}{7}, \$ 28 \frac{\pi}{7}, \$ 28^{\frac{6}{7}}$.
6. 80.
1. 22, 11, 17.
2. 13, 14, 15, 16, 17.
3. $15,9$.
4. Daughter, \$940; each son, $\$ 1780$.
5. 25, 11.
6. 21, 22.
7. $\$ 26, \$ 37, \$ 35$.

EXERCISE 19

1. -3.
2. $5 x y$.
3. $-16 a$.
4. . $5 a$.
5. $-3 x^{2}$.
6. $-x$.
7. $-24 y$.
8. $\frac{10}{3} x$.
9. $-2 a$.
10. $-7 y^{2}$.
11. 40 m .
12. $2 r^{2}, 4 \pi, 4 r$.
13. $\frac{3 v^{2}}{4} ; m ; 2 m v$.
14. $-5(x+y)^{2} ;-10(x+y)$.
15. . $2(a-b)^{2} ; .7(a-b)$.
16. $a^{4 n} ; a^{3 n} ;-a^{5 n}$.

$$
\text { 25. }-3 a^{2} ;-6 a ;-6 a^{3} ; 2 a^{4} ;-6 a^{-n+6} .
$$

26. $a^{n+1} ; a^{2} ; a^{n+8}$.
27. 0 .
28. 0.
1. 0.

EXERCISE 20

1. $-x^{2}+3 x$.
2. $-2 b+3 a c$.
3. $1+m-m^{2}+m^{3}$.
4. $5 x-2 y$.
5. $3 x^{2}-2 x y-y^{2}$.
6. $3 x^{2}+2 x-5$.
7. $-2 x^{2}+.4 x-30$.
8. $-2 x+5 x^{2}-3 x^{2-n}$.
9. . $04 a^{2}-.08 a b-1.6 b^{2}$.
10. $x^{4}-2 x^{3}+3 x^{2}+x$.
11. $-\frac{3}{4} x^{2}+x+\frac{15}{4}$.
12. $-2 x^{4}+4 x^{3}+x^{2}+3 x$.
13. $-\frac{{ }_{9}^{9}}{} a^{3} b+\frac{1}{9} a^{2} b^{2}+{ }_{9}^{2} a b^{3}$.
14. $3 x^{n-1}-2 x^{n}+4 x^{n+1}-x^{n+2}$.
15. $-3 x^{2 n}+2 x^{n}-4$.
16. $-5(a+b)+4$.

$$
\text { 19. }(x-y)^{2}-.3(x-y)
$$

20. $x-y$.	24.60.	27. 300.	30. $\$ 600$.
22. $x+1$.	25. 120.	28. $\$ 300$.	31. 125 nickels
23. 90.	26. 84.	29. 600.	32. $\$ 37.50$.
33. 14 quarters, 7 bills.	34. 15 each.	35. 17 each.	
36. 2.	37. 9.	38. 2.	$39 .-2 \frac{1}{4}$.

EXERCISE 21

1. $3 x+1$.
2. $2 x+1$.
3. $4 x-5 y$.
4. $3 x+7$.
5. $3 x-5 y$.
6. $3 a+4 c$.
7. $-5 x+8$.
8. $4 x+y$.
9. $a+2 b$.
10. $x^{2}+x y+y^{2}$.
11. $9 x^{2}-6 x+4$.
12. $3 x-7$.
13. $25+20 x+16 x^{2}$.
14. $4 a^{2} x^{2}-2 a x y^{2}+y^{4}$.
15. $x^{2}-3 x+1$.
16. $7 x^{2}+8 x+1$.
17. $3 a^{2}-4 a x+x^{2}$.
18. $2 y^{3}-4 y^{2}+y-1$.
19. $2 x^{3}-x+1$.
20. $c^{4}+c^{2} x^{2}+x^{4}$.
21. $3 x^{3}+4 x^{2} y+5 x y^{2}+2 y^{3}$.
22. $2 x^{3}-3 x^{2}+4 x-5$.
23. $2 x^{4}-3 x^{2} y-2 y^{2}$.
24. $x^{3}+2 x^{2} y+4 x y^{2}+8 y^{3}$.
25. $x^{4}-2 x^{3} y+4 x^{2} y^{2}-8 x y^{3}+16 y^{4}$.
26. $x^{5}-x^{4} y+x^{3} y^{2}-x^{2} y^{3}+x y^{4}-y^{5}$.
27. $64 x^{6}+16 x^{4} y^{2}+4 x^{2} y^{4}+y^{6}$.
28. $2 x^{2}-5 x-1$.
29. $3 x^{2}-x-5$.
30. $2 x^{3}-4 x^{2}-x+3$.
31. $2 x^{3}+3 x^{2} y-4 x y^{2}+y^{3}$.
32. $3 a^{3}-4 a^{2} b+3 a b^{2}-2 b^{3}$.
33. $x^{2}+y^{2}-z^{2}-x z+x y-y z$.
34. $c^{2}+d^{2}+n^{2}-c d-c n-d n$.
35. $y^{4}+2 y^{3}+3 y^{2}+2 y+1$.
36. $2 x^{4}-4 x^{3}+3 x^{2}-2 x+1$.
37. $2 x y-2 x z-3 y z$.
38. $x^{2}-3 x+1$.
39. $2 x^{3}-3 x^{2}+x-5$.
40. $\frac{1}{2} a-\frac{1}{2} b$.
41. $\frac{1}{3} x+\frac{1}{4} y$.
42. $\frac{1}{4} a^{2}+\frac{1}{6} a b+\frac{1}{9} b^{2}$.
43. $\frac{1}{2} x^{2}+\frac{2}{3} x-\frac{1}{3}$.
44. . $4 x-.5 y$.
45. $2.4 x-3$.
46. $2 x^{n}-3 x^{n-1}$.
47. $4 x^{3 n}+3 x^{2 n}-x^{n}$.
48. $4 x^{n+1}-3 x^{n}+x^{n-1}$.
49. $3 x^{n-1}+2 x^{n-2}-3 x^{n-3}$.
50. $x^{4}+x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}+\frac{2 y^{5}}{x-y}$.
51. $1+x+x^{2}+x^{3}+\frac{x^{4}}{1-x}$.
52. $x+5, x+a, x+y$.
53. $1+a x+a^{2} x^{2}+\ldots$.
58.6 hr .
54. 15, $3 a, 3 x, 3(x+2)$.
55. $4 \frac{1}{2} \mathrm{hr}$., 36 mi .
56. $108 \mathrm{mi} ., 126 \mathrm{mi}$.
$63.5 \frac{6}{7} \mathrm{hr}$. after second boy starts.
64.2 hr .56 min . after second train starts.
57. 6 hr .
58. 4 mi ., 8 mi .
67.8 hr .
59. 5 mi ., 10 mi .
60. A, 24 mi ; B, 21 mi .

EXERCISE 22

1. $3.2 x^{2}-2.42 x y-.24 y^{2}$.
2. $-7.15 a^{2}-1.5 a b-1.8 b^{2}$.
3. $-3.8 p^{2}-.5 p+3.85$.
4. $2.6 x^{2}-.5 x+2$.
5. 45.
1. $-22 x+54$.
2. 6.
1. -18 .
2. 0.
1. $8 x^{4}-18 x^{3}-13 x^{2}+9 x+$
2. $1+2 x-3 x^{2}-x^{3}$.
3. 10, 11, 12.
4. Cement, $400 \mathrm{lb} . ;$ sand, 800 lb .; gravel, 1600 lb.
5. $9^{\frac{3}{5}}$ sec.
6. $x^{5}+x-1$.
7. $x^{2}-3$.
8. 38.
1. $a+b ; 3 a-5 b+4 c+7 d$.
2. $-7-3 x+2 y-z$, etc.
3. $-2 a+3 b ;-5$.
4. $x^{2}-1$.
5. $4.8 x^{3}-17.95 x^{2} y+18.45 x y^{2}-6.3 y^{3}$.
6. $x^{4}-x^{3}+2 x^{2}-3 x+5+\ldots$.
7. $6 x-\frac{1}{3} y-\frac{1}{2}$.
8. $1.6 x^{2}-2 x y+2.4 y^{2}$.
9. $a^{2}+b^{2}+c^{2}-a b-a c-b c$.
10. 2.
1. -3 .
2. $2 z-x$.
3. 0 .
4. $54 ; 2$; $\frac{1}{27}$.

EXERCISE 23

1.3.	10.17 in.	19.3.	28.3.
2.4.	$11 .-2$.	20.1.	41.3.
3.10.	12.11.	21.1.	42.2.
4.4.	13.0.	22.14.	$43.2^{\frac{5}{6}}$.
5.2.	$14 .-\frac{4}{3}$.	$23 .-3$.	$44 .-4$.
6.3.	15.10.	24.100.	$45.2 \frac{3}{4}$.
$7 .-5$.	16.6.	25.4.	$46 .-1$.
8.4.	$17 .-\frac{3}{4}$.	26.1.	47.5.
9.10 ft.	$18 . \frac{5}{4}$.	27.3.	48.7 .8 ft.

EXERCISE 25

1. $\$ 63, \$ 21$.
2. 8.4.
3. $5 a^{3}(x-y)^{4}$.
4. -5 .
5. (1) 512 ; (2) 512; (3) 64.
6. $6 x^{3}-22 x^{2}+10 x+10$.
7. $\frac{1}{2} x^{4}-\frac{5}{12} a x^{3}+\frac{2}{8} a^{2} x^{2}+\frac{{ }_{3}^{3}}{} a^{4}$.
8. $x^{2 n}+x^{n} y^{n}+y^{2 n}$.
9. $2-3 x+3 x^{2}-3 x^{3}+3 x^{4} \ldots$
10. $20,21,22$.
11. 150.
1. 21, 22.
2. $9 \frac{3}{5} \mathrm{sec}$.
3. $\$ 26, \$ 37, \$ 35$.
4. 11, 24.
5. John, 36; William, 60.
6. Horse, $\$ 67$; cow, $\$ 27$.
7. Limestone, 50 ; coke, 350 ; iron ore, 400.
24.87 yd., 174 yd., 99 yd.
8. Passengers, $\$ 1410$; freight, $\$ 1675$.
9. Niece, $\$ 12,000$; daughter, $\$ 16,000$; wife, $\$ 36,000$.
10. 15.

33.8 ft .
30. $4^{\prime} \times 9^{\prime}$.
31. $4 \mathrm{yd} . \times 5 \mathrm{yd}$.
32. 6 in .
34.5 yd .
37. $7^{\prime} \times 12^{\prime}$.
38.8 in. $\times 12 \mathrm{in}$.
35. $20^{\prime} \times 40^{\prime}$.
40. $36^{\prime} \times 78^{\prime}$.
36. $20^{\prime} \times 60^{\prime}$.
41. $160^{\prime} \times 300^{\prime}$.
43. Man, 20 yr.; brother, 10 yr.
44. 8 lb .
45. $8 \frac{1}{3} \mathrm{lb}$.
47. $13,14,15,16,17$.
48. 19, $21,23$.
49. 21 words.
51. 8 min .
52. $26^{\prime} \times 34^{\prime}$.
53. 30 .
54. $\frac{7}{8}$.
55. 43.
56. 6.
57. 4, 5, 6, 7, 8 .
58. 8,9 .
59. 8 yr., 12 yr.
60. $26_{3}^{2}, 6 \frac{2}{3}$.
61. $27^{\prime} \times 78^{\prime} ; 36^{\prime} \times 78^{\prime}$.
62. Mon., 52; Tues., 104; Wed., 57; Thurs., 97.
63. $\$ 4$.
65.8 hr . after second boy starts.
64. 3 hr . after second boy starts. 66.38 da .

EXERCISE 26

1. $n^{2}+2 n y+y^{2}$.	4. $9 x^{2}-12 x y+4 y^{2}$.
2. $c^{2}-2 c x+x^{2}$.	8. $1-14 y^{3}+49 y^{6}$.
3. $4 x^{2}-4 x y+y^{2}$.	9. $9 x^{8}+30 x^{7}+25 x^{6}$.

$$
\begin{aligned}
& \text { 10. } 36 x^{4} y^{2}-132 x^{2} y^{3} z^{3}+121 y^{4} z^{6} \text {. } \\
& \text { 11. } 25 x^{2 n}-30 x^{n} y^{n} z^{m}+9 y^{2 n} z^{2 m} \text {. } \\
& \text { 12. } 16 x^{6} y^{10} z^{4^{n}}+72 x^{3} y^{3 n+5} z^{2 n}+81 y^{6 n} \text {. }
\end{aligned}
$$

13. $\frac{1}{\frac{1}{4}} x^{6}+{ }_{3}^{2} x^{3} y+\frac{4}{8} y^{2}$.
14. $.04 x^{2}+.12 x y+.09 y^{2}$.
15. . $09 a^{2}+.024 a b^{2}+.0016 b^{4}$.
16. $2.25 m^{2}-.06 m+.0004$.
17. $9+6 a+6 b+a^{2}+2 a b+b^{2}$.
18. $4 a^{4}-4 a^{2} b+8 a^{2} c+b^{2}-4 b c+4 c^{2}$.
19. $x^{2}+2 x y+y^{2}-2 a x-2 a y-2 b x-2 b y+a^{2}+2 a b+b^{2}$.
20. 998,001 .
21. 994,009 .
22. $99,960,004$.
23. 2,601.
24. 1,006,009.
25. 9,409.
26. 992,016.
27. 99,940,009.
28. $9,840.64$.

EXERCISE 27

64. 9991.

EXERCISE 28

1. $4 x^{2}+y^{2}+1+4 x y+4 x+2 y$.
2. $x^{2}+4 y^{2}+4 z^{2}-4 x y+4 x z-8 y z$.
3. $9 x^{2}+4 y^{2}+25-12 x y-30 x+20 y$.
4. $4 a^{2}+b^{2}+9 c^{2}-4 a b+12 a c-6 b c$.
5. $x^{2}+4 y^{2}+9 z^{2}-4 x y-6 x z+12 y z$.
6. $16 x^{2}+9 y^{2}+1+24 x y-8 x-6 y$.
7. $x^{2}-2 x^{3}+3 x^{2}-2 x+1$.
8. $4 a^{4}+20 a^{3}+13 a^{2}-30 a+9$.
9. $x^{2}+y^{2}+z^{2}+1-2 x y+2 x z-2 x-2 y z+2 y-2 z$.
10. $4 x^{2}+9 y^{2}+16 z^{2}+25+12 x y-16 x z-20 x-24 y z-30 y+40 z$.
11. $9 x^{6}-24 x^{5}+22 x^{4}-20 x^{3}+17 x^{2}-4 x+4$.
12. $\frac{1}{4} x^{4}-\frac{2}{3} x^{3}+\frac{49}{9} x^{2}-\frac{20}{3} x+25$.
13. $\frac{4}{8} x^{6}-\frac{2}{3} x^{5}+\frac{5}{4} x^{4}+\frac{29}{4} x^{3}-\frac{87}{16} x^{2}+9 x+36$.
14. $.04 a^{2}+.09 b^{2}+.25 c^{2}+.12 a b-.2 a c-.3 b c$.
15. $.0004 x^{4}-.012 x^{3}+.11 x^{2}-.3 x+.25$.

EXERCISE 29

1. $x^{2}+7 x+10$.
2. $x^{2}-8 x+15$.
3. $x^{2}-3 x-28$.
4. $x^{2}+4 x-32$.
5. $x^{2}-6 x-7$.
6. $x^{4}-5 x^{2}+6$.
7. $x^{4}+4 x^{2}+3$.
8. $a^{2}-7 a x-30 x^{2}$.
9. $x^{2}-6 x y-7 y^{2}$.
10. $x^{2}+.7 x+.1$.
11. $x^{2}+\frac{5}{6} x+\frac{1}{6}$.
12. $x^{2}+5.02 x+.1$.
13. $a^{2}+.52 a+.01$.
14. $x^{2}-\frac{1}{6} x-\frac{1}{6}$.
15. $a^{2}+\frac{1}{6} a-\frac{1}{3}$.
16. $a^{2} b^{2}+4 a b x+3 x^{2}$.
17. $a^{2} b^{2}-2 a b x-3 x^{2}$.
18. $x^{2} y^{2}-4 x y z^{2}-21 z^{4}$.
19. $x^{2 n}-25$.
20. $(x+y)^{2}+8(x+y)+15$.
21. $(x+y)^{2}+2(x+y)-15$.
22. $(x+y)^{2}+2(x+y)-15$.
23. $(a+2 b)^{2}+8(a+2 b)+15$
24. $(2 x+3 y)^{2}-2 a(2 x+3 y)-15$
25. $x^{2}-a^{2}-2 a b-b^{2}$.
26. $4 x^{2}-a^{2}-6 a b-9 b^{2}$.
27. $4 x^{2}-a^{2}+6 a b-9 b^{2}$. 30. 381 ft .

EXERCISE 30

7. $5 x^{2}+34 x-7$.
8. $3 x^{2}+x y-24 y^{2}$.
9. $12 a^{4}-11 a^{2} b-5 b^{2}$.
10. $\frac{3}{4} x^{2}+\frac{7}{8} x+\frac{1}{4}$.
11. $2 a^{2}+.1 a b-.06 b^{2}$.
12. $\frac{3}{4} x^{2}+2 a x-\frac{3}{4} a^{2}$.

EXERCISE 31

$$
\text { 19. } a^{2}+2 a b+b^{2}-x^{2}-2 x y-y^{2} .
$$

20. $a^{4}+a^{2} x^{2}+x^{4}$.
21. $16 a^{4}+4 a^{2}+1$.
22. $a^{2}-b^{2}$.
23. $2 a^{2}+8 b^{2}$.
24. $72 \frac{1}{4}$.
25. $380 \frac{1}{4}$.
26. $39,800 \frac{1}{4}$.
27. $240 \frac{1}{4}$.
28. $2450 \frac{1}{4}$.
29. 9604 sq. rd.
30. $380^{\frac{1}{4}}$.
31. $8 a b$.
32. $8 x^{2}-8 x+2$.
33. $-8 x$.
34. $-6 a+5$.
35. $3 x y$.
36. $-169 x^{4}$.
37. $c^{2}-2 c+2 a$.
38. $x^{2} y^{2}-x^{2} y-y^{2}+y$
39. $9900 \frac{1}{4}$.
40. 56.25 .
41. 380.25 .
42. 9900.25.
43. 5625.
1. 38,025 .
2. 23.04.
3. 990,025. 62. 9604.
4. 94.09.
5. 96.04 .
6. 92.16.
7. $-4 \frac{1}{2}$.
8. 2.
1. 9991 sq. rd
2. $\$ 35.96$. 72. $\$ 80.75$.

EXERCISE 32

1. $a+x$.	11. $.2 x-.3 y$.	28. $54,46$.
2. $3+2 x$.	15. $x+1-a$.	29. $53,47$.
4. $5 x+6 y^{2}$.	16. $a+b-2 c$.	30. $109,91$.
5. $4 x^{2}-7 y^{2}$.	18. $a-b-c+1$.	31. $10.9,9.1$.
7. $a b^{2}-6 c^{3} d^{4}$.	19. $1-a-b+c$.	32. $89,71$.
8. $\frac{1}{2} x+\frac{2}{3} y$.	27. $54,46$.	34. 12.
10. $.5 a+.4 b$.		

EXERCISE 33

1. $a^{2}-2 a+4$.
2. $x^{2}+x+1$.
3. $9 x^{2}+12 x+16$.
4. $25+5 x^{3}+x^{6}$.
5. $9 a^{4}-3 a^{2} y^{4}+y^{8}$.
6. $.04 x^{2}+.2 x y+y^{2}$.
7. $\frac{1}{4} x^{2}+\frac{1}{6} x y+\frac{1}{9} y^{2}$.
8. 23.
1. 23.
1. 53.
1. ${ }_{9} a^{2}-\frac{1}{6} a b^{2}+\frac{1}{16} b^{4}$.
2. $c^{2}-c+c x+1-2 x+x^{2}$.
3. $4+2 x+2 y+x^{2}+2 x y+y^{2}$.
4. $9 x^{4}-15 x^{2} y^{3}+25 y^{6}$.
5. $a^{2}-2 a+1+a x^{2}-x^{2}+x^{4}$.
6. $x^{4}-2 x^{3}+2 x^{2}+2 x+1$.
7. $4 x^{2}-8 x y+4 y^{2}+2 x z-2 y z+z^{2}$. 31. $23 . \quad 32$.
8. 47.
1. 90.

EXERCISE 34

1. $a^{4}-a^{3} x+a^{2} x^{2}-a x^{3}+x^{4}$.
2. $a^{4}+a^{3} x+a^{2} x^{2}+a x^{3}+x^{4}$.
3. $b^{6}-b^{5} y+b^{4} y^{2}-b^{3} y^{3}+b^{2} y^{4}-b y^{5}+y^{6}$.
4. $b^{6}+b^{5} y+b^{4} y^{2}+b^{3} y^{3}+b^{2} y^{4}+b y^{5}+y^{6}$.
5. $a^{4}-2 a^{3}+4 a^{2}-8 a+16$.
6. $a^{6}+2 a^{5}+4 a^{4}+8 a^{3}+16 a^{2}+32 a+64$.
7. $x^{4}+x^{3}+x^{2}+x+1$.
8. $x^{4}-x^{3}+x^{2}-x+1$.
9. $16 x^{4}+8 x^{3} y+4 x^{2} y^{2}+2 x y^{3}+y^{4}$.
10. $a^{10}-a^{9} x+a^{8} x^{2}-a^{7} x^{3}+a^{6} x^{4}-a^{5} x^{5}+a^{4} x^{6}-a^{3} x^{7}+a^{2} x^{8}-a x^{9}+x^{10}$.
11. $x^{8}+x^{6} y^{3}+x^{4} y^{6}+x^{2} y^{9}+y^{12}$.
12. $81+27 a+9 a^{2}+3 a^{3}+a^{4}$.
13. 11.
1. 13.
1. 12.
1. 7.
1. 210.

EXERCISE 35

31. $x^{2}+a x+a^{2}+x+a$.
32. $x^{2}+a x+a^{2}+5 x+5 a$.
33. $x^{2}-2 a x+a^{2}+5 x+5 a$.
34. $\left(a^{2}-b^{2}\right)^{2}$.
35. $\left(a^{2}-4 b^{2}\right)^{2}$.
36. $\left(9 x^{2}-4 y^{2}\right)^{2}$.
37. $3 x^{2}+14 x-21$.
38. $-11 x^{2}+29 x-13$.
39. 10.
1. 6.
1. $1 \frac{1}{2}$.
2. -4 .
3. 6.6.
4. 180, 540, 280.
5. $12 \frac{1}{4} \mathrm{mi}$.
6. 617°.
7. 120 ft . per sec. Latter is $1_{\frac{4}{1 I}}$ times as great.

EXERCISE 36

1. $x^{2}(2 x+5)$.
2. $3 a^{2} x^{2}(a-5 x)$.
3. $a^{2} x(1-2 x)$.
4. $x\left(x^{2}-2\right)$.
5. $9 x^{4}(2 x-3 y)$.
6. $\frac{1}{4} x^{2}(2 x+1)$.
7. $x(x+1)$.
8. $\frac{1}{8} x^{3}(5 a-12 x)$.
9. $2 x^{2}(x+2 a)$.
10. $x^{2}\left(1-x-x^{2}\right)$.
11. $\frac{1}{8} a b(3 a-20 b)$.
12. $(a+b)(7 x+5 y)$.
13. . $02 a x^{2}(1-20 a)$. 23. $x y(a+b)[7 x+5(a+b) y]$.
14. $6 m(2 n-m)$.
15. $3\left(a^{2}-2 a x+3 x^{2}\right)$. 24. $7(x-y)^{2}[3-2(x-y)]$.
16. $2 x\left(1+2 x-3 x^{2}\right)$. 25. $3(2 x-a)^{3}\left[3-4(2 x-a)^{2}\right]$.
17. $2 x^{n} y^{2}\left(y^{2}-4 x^{n} y+3 x^{2 n}\right)$. 26. 1694.
18. $a^{m} b^{3} c^{2 n}(1+11 c)$. 27. 938.25.
19. a 29. $314 \frac{9}{7}$.
20. 517,000.
21. $\frac{12}{a+b+c}$.
22. $\frac{10}{a+b}, \frac{1}{2}$.
23. $\frac{15}{2 a-b+3 c}$.
24. $\frac{a-2 b}{a+2 b}$.

EXERCISE 37

1. $(2 x+y)^{2}$.
2. $(4 a-3 y)^{2}$.
3. $(5 x-1)^{2}$.
4. $(x-10 y)^{2}$.
5. $c(7+2 b c)^{2}$.
6. $a^{3}(b+2)^{2}$.
7. $x(y+1)^{2}$.
8. $x\left(2 x+11 y^{2}\right)^{2}$.
9. $a b(9 a+7 b)^{2}$.
10. $2 y(2 a-5 x)^{2}$.
11. $2 x^{2}(x-2)^{2}$.
12. $\left(x^{n}+y\right)^{2}$.
13. $(a-b-c)^{2}$.
14. $(3 x+3 y+2 z)^{2}$.
15. $(8 a-12-b)^{2}$.
16. $(5 x-5 y-12 x y)^{2}$.
17. $(a+b+c)^{2}$.
18. $\left(\frac{9}{3} x+3 y\right)^{2}$.
19. $\left(\frac{1}{2} x+\frac{1}{3} y\right)^{2}$.
20. $(.2 a-.3 b)^{2}$.
21. $(5 a-3 x)^{2}$.
22. $a-3 b$.
23. $a+3 b$.
24. $1-2 a$.
25. $2 a+3 b$.

EXERCISE 38

1. $(x+3)(x-3)$.
2. $(5+4 a)(5-4 a)$.
3. $(2 a+7 b)(2 a-7 b)$.
4. $(x+2 y)(x-2 y)$.
5. $(1+8 m)(1-8 m)$.
6. $3(x+2 y)(x-2 y)$.
7. $x(x+3 a)(x-3 a)$.
8. $x^{2}(x+3 a)(x-3 a)$.
9. $m(1+8 a)(1-8 a)$.
10. $2(11+x)(11-x)$.
11. $\left(a^{2}+x^{2}\right)(a+x)(a-x)$.
12. $\left(a^{2}+9 b^{2}\right)(a+3 b)(a-3 b)$.
13. $\left(x^{4}+y^{4}\right)\left(x^{2}+y^{2}\right)(x+y)(x-y)$.
14. $x\left(x^{2}+1\right)(x+1)(x-1)$.
15. $x\left(a^{4}+1\right)\left(a^{2}+1\right)(a+1)(a-1)$.
16. $\left(15 x^{n}+y\right)\left(15 x^{n}-y\right)$.
17. $\left(\frac{3}{2} x+\frac{2}{3} y\right)\left(\frac{3}{2} x-\frac{2}{3} y\right)$.
18. $\left({ }_{5}^{2} a+3 b\right)\left({ }_{5}^{2} a-3 b\right)$.
19. $(.3 x+.4 y)(.3 x-.4 y)$.
20. $(.1 a+.2 b)(.1 a-.2 b)$.
21. $\left(.5 y+\frac{1}{5} b\right)\left(.5 y-\frac{1}{5} b\right)$.
22. $(.9 x+.05 b)(.9 x-.05 b)$.
23. $\left(x^{3}+y^{3}\right)\left(x^{3}-y^{3}\right)$.
24. $\left(x^{2 n}+y^{n} z^{3}\right)\left(x^{2 n}-y^{n} z^{3}\right)$.
25. $(x+y+1)(x+y-1)$.
26. $(x+y+1)(x-y-1)$.
27. $(x-y+3)(x-y-3)$.
28. $(2 x-2 y+5)(2 x-2 y-5)$.
29. $(1+6 x+12 y)(1-6 x-12 y)$.
30. $(4 x+2 y+1)(2 y-2 x-1)$.
31. $(11 a-8 b)(9 a-2 b)$.
32. $y\left(x^{6} y^{4}+z^{8}\right)\left(x^{3} y^{2}+z^{4}\right)\left(x^{3} y^{2}-z^{4}\right)$.
33. $\left(9 x^{6}+4 y^{2}\right)\left(3 x^{3}+2 y\right)\left(3 x^{3}-2 y\right)$.
34. $x\left(x^{2}+12 y z^{3}\right)\left(x^{2}-12 y z^{3}\right)$.
35. $(a-b+2 c+2)(a-b-2 c-2)$.
36. $\left(10 x^{2}-10 x-9\right)\left(-10 x^{2}+10 x+11\right)$.
37. $a-2 b$. 43. $a+2 b$.
38. $3+a$.
39. $1+b$.

EXERCISE 39

1. $(x+3)(x+2)$.
2. $(x+3)(x-2)$.
3. $(x+2)(x-3)$.
4. $(x+11)(x-4)$.
5. $(x+8 y)(x-2 y)$.
6. $(x-8 y)(x+2 y)$.
7. $(x-9)(x+4)$.
8. $\left(x^{2}+4\right)(x+3)(x-3)$.
9. $(x-12)(x+4)$.
10. $(x+16)(x-3)$.
11. $(x-24)(x+2)$.
12. $(x-12)(x+8)$.
13. $(x y-12)(x y-11)$.
14. $(x-8 a)(x+3 a)$.
15. $\left(x^{2}-8\right)(x+1)(x-1)$.
16. $x(x+4)(x+3)(x-4)(x-3)$.
17. $\left(x^{n}-8\right)\left(x^{n}+7\right)$.
18. $\left(a b-13 c^{2}\right)\left(a b+2 c^{2}\right)$.
19. $(x+a)(x+b)$.
20. $(x+2 a)(x-3 b)$.
21. $(x+a+b)(x+b+c)$.
22. $(x+a-c)(x+b+c)$.
23. $(x-y-6)(x-y+3)$.

EXERCISE 40

1. $(2 x+1)(x+1)$.
2. $(3 x-2)(x-4)$.
3. $(2 x+1)(x+2)$.
4. $(3 x+1)(x+3)$.
5. $(3 x-5)(2 x+1)$.
6. $(x+3)(2 x-1)$.
7. $2 x(x+4)(3 x-2)$.
8. $(2 x+5)(x-2)$.
9. $(4 x+1)(3 x-2)$.
10. $(4 x-1)(x+3)$.
11. $(5 x-1)(x+5)$.
12. $3 x(x-2)(3 x+1)$.
13. $2 y(3 x+2)(x-1)$.
14. $(8 a-9 b)(4 a+5 b)$.

$$
\begin{aligned}
& \text { 19. }(2 x+3)(x+1)(2 x-3)(x-1) . \\
& \text { 20. }(3 x+2)(x+4)(3 x-2)(x-4) . \\
& \text { 21. }(4 x+3 z)(3 x-4 z) . \\
& \text { 22. } 2 x\left(6 x-y^{2}\right)\left(2 x+9 y^{2}\right) . \\
& \text { 23. }(5 a+4 b)(5 a-4 b)\left(a^{2}+b^{2}\right) . \\
& \text { 24. }\left(8 x^{2}-9 y^{2}\right)\left(2 x^{2}+y^{2}\right) . \\
& \text { 25. }\left(3 x^{n}+y\right)\left(x^{n}-3 y\right) . \\
& \text { 26. }(5 a+4 b)(a+b)(5 a-4 b)(a-b) . \\
& \text { 29. }(a+b+8)(a+b-3) . \\
& \text { 30. }(3 x-3 y-2 z)(x-y+3 z) . \\
& \text { 31. }\left(3 x^{2}+6 x+4\right)(x+3)(x-1) . \\
& \text { 32. } 4 x(x+4)(x+2)(x+1)(x-1) . \\
& \text { 33. } 2(1+3 x)(2-x) .
\end{aligned}
$$

EXERCISE 41

1. $(m-n)\left(m^{2}+m n+n^{2}\right)$.
2. $(c+2 d)\left(c^{2}-2 c d+4 d^{2}\right)$.
3. $(a+2 b c)\left(a^{2}-2 a b c+4 b^{2} c^{2}\right)$.
4. $(3-x)\left(9+3 x+x^{2}\right)$.
5. $(a b+1)\left(a^{2} b^{2}-a b+1\right)$.
6. $(1-10 x)\left(1+10 x+100 x^{2}\right)$.
7. $x(3 x+a)\left(9 x^{2}-3 a x+a^{2}\right)$.
8. $\left(8 x-y^{2}\right)\left(64 x^{2}+8 x y^{2}+y^{4}\right)$.
9. $a(1+7 a)\left(1-7 a+49 a^{2}\right)$.
10. $(a+x)(a-x)\left(a^{2}-a x+x^{2}\right)\left(a^{2}+a x+x^{2}\right)$.
11. $\left(x^{2}+y\right)\left(x^{2}-y\right)\left(x^{4}-x^{2} y+y^{2}\right)\left(x^{4}+x^{2} y+y^{2}\right)$.
12. $\left(a+2 n^{2}\right)\left(a-2 n^{2}\right)\left(a^{2}+2 a n^{2}+4 n^{4}\right)\left(a^{2}-2 a n^{2}+4 n^{\prime}\right)$.
13. $2 x\left(5-x^{2}\right)\left(25+5 x^{2}+x^{4}\right)$.
14. $\left(2 x^{2}+y\right)\left(4 x^{4}-2 x^{2} y+y^{2}\right)$.
15. $(a+b+1)\left(a^{2}+2 a b+b^{2}-a-b+1\right)$.
16. $(5+2 b-a)\left(25-10 b+5 a+4 b^{2}-4 a b+a^{2}\right)$.
17. $(2-c-d)\left(4+2 c+2 d+c^{2}+2 c d+d^{2}\right)$.
18. $(-2 x-y)\left(13 x^{2}-5 x y+y^{2}\right)$.
19. $2 x\left(2 x y^{2}-3 z\right)\left(4 x^{2} y^{4}+6 x y^{2} z+9 z^{2}\right)$.
20. $(x+y)\left(x^{4}-x^{3} y+x^{2} y^{2}-x y^{3}+y^{4}\right)$.
21. $(x-y)\left(x^{6}+x^{5} y+x^{4} y^{2}+x^{3} y^{3}+x^{2} y^{4}+x y^{5}+y^{6}\right)$.
22. $\left(a^{2}+m^{2}\right)\left(a^{4}-a^{2} m^{2}+m^{4}\right)$.
23. $\left(x^{4}+y^{4}\right)\left(x^{8}-x^{4} y^{4}+y^{8}\right)$.
24. $(a-2 b)\left(a^{6}+2 a^{5} b+4 a^{4} b^{2}+8 a^{3} b^{3}+16 a^{2} b^{4}+32 a b^{5}+64 b^{6}\right)$.
25. $(a+x)\left(a^{10}-a^{9} x+a^{8} x^{2}-a^{7} x^{3}+a^{6} x^{4}-a^{5} x^{5}+a^{4} x^{6}-a^{3} x^{7}+a^{2} x^{\varepsilon}\right.$ $\left.=a x^{9}+x^{10}\right)$.
26. $(3-x)\left(81+27 x+9 x^{2}+3 x^{3}+x^{4}\right)$.
27. $(4-a+b)\left(16+4 a-4 b+a^{2}-2 a b+b^{2}\right)$.
28. $(2 x-4 y+1)\left(4 x^{2}-16 x y+16 y^{2}-2 x+4 y+1\right)$.
29. $\left(2 x-a^{2}\right)\left(16 x^{4}+8 a^{2} x^{3}+4 a^{4} x^{2}+2 a^{6} x+a^{8}\right)$.
30. $\left(a^{2}+y^{3}\right)\left(a^{4}-a^{2} y^{3}+y^{6}\right)$.
31. $\left(2 x^{4}+y^{3}\right)\left(4 x^{8}-2 x^{4} y^{3}+y^{6}\right)$.
32. $\left[8 x-(a+b)^{2}\right]\left[64 x^{2}+8 x(a+b)^{2}+(a+b)^{4}\right]$.

EXERCISE 42

1. $(a+b)(x+y)$.
2. $(x-a)(x+c)$.
3. $(5 y-3)(x-2)$.
4. $(m-2 y)(3 a-4 n)$.
5. $x(a+3)(a+c)$.
6. $(3 a-5 n)(a+b)$.
7. $x\left(x^{2}+2\right)(x+1)$.
8. $2 x(x+a)(x-a)(x-1)$.
9. $\left(y^{2}+1\right)(y+1)$.
10. $(a x-1)(x-2 a)$.
11. $(x-y)(x-3)$.
12. $(z-1)^{2}(z+1)$.
13. $(b-1)(a-y)$.
14. $(x-1)\left(x^{2}+2\right)\left(x^{2}-2\right)$.
15. $(x \pm y)(a \pm b)$.
16. $(x+4)(x+2)^{2}$.

17. $(a+3)\left(a^{2}-3\right)$.	19. $(x-1)(2 x-1)^{2}$.
18. $(x-y)(2 x+2 y-1)$.	20. $(x-1)\left(x^{2}+3 x+3\right)$.

$$
\text { 21. }(x-y)\left(x+y+x^{2}+x y+y^{2}\right)
$$

$$
\text { 22. }(x-y)\left(x^{2}+x y+y^{2}+1\right)
$$

$$
\text { 23. }(x-y)\left(x^{2}+x y+y^{2}-x-y\right)
$$

$$
\text { 24. }(x-y)\left(x^{2}+x y+y^{2}-x+y\right)
$$

$$
\text { 25. }(x+2)(1+a)(x-2)(1-a)
$$

$$
\text { 26. }(x-y)\left(x^{2}+x y+y^{2}+x+y+1\right) \text {. }
$$

$$
\text { 27. } 4 a(x-1)\left(x^{2}+2\right)
$$

28. $(3 a-x)(3 a+2 x)(a-x)$.
29. $(2 x-3)(4 x-3)(x-2)$,
30. $(x-2)(x+3)(x-1)$.
31. $(x+3)(2 x-5)(2 x-1)$.
32. $(2 x+1)(4 x-3)(x+1)$.
33. $(x+2)(x+1)(x-3)$.
34. $(x+3)(x-2)(x-4)$.
35. $(x-2)(x-1)(x-5)$.

EXERCISE 43

1. $(a+b+x)(a+b-x)$.	11. $(x+a-b)(x-a+b)$.
2. $(a-b+2 x)(a-b-2 x)$.	12. $(x-a+y)(x-a-y)$.
3. $(a+x+y)(a-x-y)$.	13. $(a+y+x)(a+y-x)$.
4. $(3 a+x+2 y)(3 a-x-2 y)$.	14. $\left(a^{2}+x^{2}+y\right)\left(a^{2}-x^{2}-y\right)$
5. $(4 a+x-y)(4 a-x+y)$.	15. $(x+y+1)(x-y-1)$.
6. $(m+x+y)(m-x-y)$.	16. $(1+x-y)(1-x+y)$.
7. $(a+b+2 x)(a+b-2 x)$.	17. $(c+a-b)(c-a+b)$.
8. $(a+b+2 x)(a+b-2 x)$.	18. $(a-b+c)(a-b-c)$.
9. $(a+b+2 x)(a+b-2 x)$.	19. $(a b+1+x)(a b+1-x)$.
10. $(x+a+b)(x-a-b)$.	20. $2\left(z-1+z^{2}\right)\left(z-1-z^{2}\right)$.

21. $(x+2 y-5 z)(x-2 y+5 z)$.
22. $(a+b+c+d)(a+b-c-d)$.
23. $(x-2 y+3 z+1)(x-2 y-3 z-1)$.
24. $(3 a-2 b+5 x+1)(3 a-2 b-5 x-1)$.
25. $(a-5 b+3 b x-1)(a-5 b-3 b x+1)$.

EXERCISE 44

1. $\left(c^{2}+c x+x^{2}\right)\left(c^{2}-c x+x^{2}\right)$.
2. $\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$.
3. $\left(2 x^{2}+3 x-1\right)\left(2 x^{2}-3 x-1\right)$.
4. $\left(2 a^{2}-3 a b-3 b^{2}\right)\left(2 a^{2}+3 a b-3 b^{2}\right)$.
5. $\left(3 x^{2}+3 x y+2 y^{2}\right)\left(3 x^{2}-3 x y+2 y^{2}\right)$.
6. $\left(7 c^{2}+9 c d+5 d^{2}\right)\left(7 c^{2}-9 c d+5 d^{2}\right)$.
7. $\left(4 x^{2}+x-1\right)\left(4 x^{2}-x-1\right)$.
8. $\left(10 x^{2}+x-3\right)\left(10 x^{2}-x-3\right)$.
9. $\left(15 a^{2} b^{2}+8 a b+2\right)\left(15 a^{2} b^{2}-8 a b+2\right)$.
10. $2\left(4 a^{2}+6 a b+b^{2}\right)\left(4 a^{2}-6 a b+b^{2}\right)$.
11. $\left(a^{2}+2 a b+2 b^{2}\right)\left(a^{2}-2 a b+2 b^{2}\right)$.
12. $\left(1+4 x+8 x^{2}\right)\left(1-4 x+8 x^{2}\right)$.
13. $\left(x^{2} y^{2}+6 x y+18\right)\left(x^{2} y^{2}-6 x y+18\right)$.

EXERCISE 45

10. $3 x\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)(x+1)(x-1)$.
11. $(2 a+1)(a+1)(2 a-1)(a-1)$.
12. $2\left(x^{2}+2 x+2\right)\left(x^{2}-2 x+2\right)\left(x^{2}+2\right)\left(x^{2}-2\right)$.
13. $(x+9)(x-5)$.
14. $(2 x+a-1)(2 x-a+1)$.
15. $5 a\left(x^{6}+x^{3}+1\right)\left(x^{2}+x+1\right)(x-1)$.
16. $3 x(3 x+4)(2 x-3)$.
17. $\left(x^{2}+x z+2 z^{2}\right)\left(x^{2}-x z+2 z^{2}\right)$.
18. $(x \pm 1)(a \pm 3)$.
19. $(11+x)(10-x)$.
20. $(3 x-5 y)(x+6 y)$.
21. $7 a\left(1 \pm a b^{2}\right)$.
22. $2(3 x+4)(x+1)$.
23. $(x+2)(x-1)\left(x^{2}-x+2\right)$.
24. $3 a(1+a)\left(1-a+a^{2}\right)$.
25. $\left(a^{2}+2\right)(a-1)$.
26. $2 x(3 x+1)(x-1)$.
27. $\left(1 \pm 5 z+z^{2}\right)$.
28. $2(4-y)\left(16+4 y+y^{2}\right)$.
29. $(1+a+b)(1-a-b)$.
30. $(3 a-5)(7 a+6)$.
31. $\left(x^{4}+y^{4}\right)\left(x^{8}-x^{4} y^{4}+y^{8}\right)$.
32. $\left(2 x+9 z^{3}\right)\left(4 x^{2}-18 x z^{3}+81 z^{6}\right)$.
33. $45 x^{4}\left(3 y^{2} \pm 1\right)$.
34. $\left(a^{3}+5\right)(a+2)(a-2)$.
35. $(c+d-1)\left(c^{2}+2 c d+d^{2}+c+d+1\right)$.
36. $(x-y)(x-y+2)$.
37. $(8 x-9 y)(3 x+4 y)$.
38. $(x+2 y)(x-2 y)^{2}$.
39. $(a+3)(a+2)(a-3)(a-2)$.
40. $\left(z^{2} \pm z+1\right)$.
41. $(a+b+c)(a+b-c)(a-b+c)(a-b-c)$.
42. $(7 x+3 y)(3 x-7 y)$.
43. $(2+n)\left(16-8 n+4 n^{2}-2 n^{3}+n^{4}\right)$.
44. $5 x\left(x^{2}+y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right)$.
45. $(m+n)\left(m^{6}-m^{5} n+m^{4} n^{2}-m^{3} n^{3}+m^{2} n^{4}-m n^{5}+n^{6}\right)$.
46. $\frac{1}{4} a(2 x+y)\left(4 x^{2}-2 x y+y^{2}\right)$.
47. $(2 a \pm 1)(a \pm 3)$.
48. $\left(1+x^{2}\right)(1+x)^{2}(1-x)$.
49. $(x \pm 2)\left(x^{2} \pm 2 x+4\right)$.
50. $6(x-3)(4-x)$.
51. $(x+1)(x+2)(x-3)$.
52. $y\left(2 x-z^{2}\right)\left(16 x^{4}+8 x^{3} z^{2}+4 x^{2} z^{4}+2 x z^{6}+z^{8}\right)$.
53. $\left(x^{4}+6 x^{2} y^{2}+y^{4}\right)(x+y)^{2}(x-y)^{2}$.
54. $\left(x^{2}+y^{2}+z^{2}\right)(x+z)(x-z)$.
55. $(a x-y)(x-1)\left(x^{2}+x+1\right)$.
56. $(a+b)(a-7 b)$.
57. $(a-b+x-y)\left(a^{2}-2 a b+b^{2}-a x+b x+a y-b y+x^{2}-2 x y+y^{2}\right)$.
58. $a^{2} b^{2}(a-b)^{2}$.
59. $(x+y)\left(2 x^{2}+x y+2 y^{2}\right)$.
60. $\left(x^{4}+a^{3}\right)\left(x^{8}-a^{3} x^{4}+a^{6}\right)$.
61. $(a-b)(x+y)(a-b+x+y)$.
62. $(a-b+2 x+2 y)^{2}$.
63. $\left(a^{2}+1\right)\left(a^{4}-a^{2}+1\right)(a \pm 1)\left(a^{2} \pm a+1\right)$.
64. $(2 a-3 b)(2 a+3 b+2)$.
65. $(2 a+3 b+1)(2 a-3 b-1)$.
66. $\left(a \pm b^{2}\right)(1-x)\left(1+x+x^{2}\right)$.
67. $(x+y)^{2}(x-y)^{2}$.
68. $(3+a)(x \pm 3)$.
69. $(x-1)^{2}(x+2)^{2}$.
70. $(a+b)^{3}$.
71. $(a b c-m n p)(a x-m y)$.
72. $(x+2+2 a-n)(x+2-2 a+n)$.
73. $(x-2)(x+5)(2 x+1)$.
74. $9 x^{2} y^{2}(x+y)^{2}(x-y)^{2}$.
75. $\left(a^{2}+2 b^{2}\right)\left(a^{2}-2 b^{2}+1\right)$.
76. $2(9 x-y)(x+3 y)$.
77. $\left(1+x-x^{2}\right)\left(1+2 x+2 x^{2}+x^{3}+x^{4}\right)$.
78. $(1-x)^{2}\left(1-2 x-x^{2}\right)$.
79. $(x+1)(a x-c)$.
80. $\left(x^{2} \pm 9 x+1\right)$.
81. $(a-3 b+3)(a-3 b-3)$.
82. $\left(x^{2}+4\right)(x+2)^{2}(x-2)^{2}$.
83. $9(1 \pm x)\left(7 x^{4}+6 x^{2}+3\right)$.
84. $\left(x^{2}-3+7 y\right)\left(x^{2}-3-7 y\right)$.
85. $\left(x^{2} y^{2}-2+2 x-y\right)\left(x^{2} y^{2}-2-2 x+y\right)$.
86. $(a x-b m y)(a n+c m z)$.

EXERCISE 46

1. $2,3$.
2. $2,-1$.
3. 3,4 .
4. $3,-2$.
5. $4,-3$.
6. ± 4.
7. ± 3.
8. $0, \pm 2$.

EXERCISE 47

1. $2 a b$.	11. $x+1$.	20. $a^{2} b^{2}(a-b)^{3}$
2. $5 x^{2} y$.	12. $4 a x(a-x)$.	21. $3 x^{2}(x-y)^{2}$.
3. $8 a^{2} x^{2}$.	13. $x(x-1)$.	22. $x-y$.
6. $x-3$.	14. $2 x-y$.	23. $(x-y)^{2}$.
7. $x(2 x+3)$.	15. $x(x-2)$.	24. $2-x$.
8. $a-x$.	16. $b\left(1-a^{2}\right)$.	25. $a-3$.
9. $x-1$.	17. $1+a+a^{2}$.	26. $x(x-a)$.
10. $a(2 a+1)$.		

EXERCISE 48

1. $6 a^{2} b^{2}$.
2. $36 a^{2} x^{2} y^{2}$.
3. $12 a b c$.
4. $12 a^{2} b^{2} c^{2}$.
5. $2 x\left(x^{2}-1\right)$.
6. $6 a b(a+b)$.
7. $14 x^{2}(x-3)$.
8. $\left(x^{3}-1\right)(x+1)$.
9. $\left(x^{2}-y^{2}\right)(x-2 y)$.
10. $6 x(x+1)(x-1)^{2}$.
11. $15 a b x^{2} y(x+y)(x-y)^{2}$.
12. $x(x+5)(x-8)(x-1)$.
13. $a^{6}-b^{6}$.
14. $6 x^{2}(x+1)(x-1)$.
15. $12 a b(a+b)(a-b)$.
16. $(2 x+1)(x+1)(2 x-1)$.
17. $6 x\left(x^{3}-1\right)(x-1)$.
18. $6 x(3 x+10)(2 x-7)(x-3)$.
19. $2 x\left(1+x^{2}\right)(1+x)(1-x)$.
20. $14 x^{5} y^{3}(x+1)^{3}(x-1)^{3}$.
21. $6 x^{3}(3 x+1)(x-1)(3 x-1)^{2}$.
22. $(x-1)^{2}(x+1)^{2}(x+3)^{2}(x-3)$.
23. $a^{4} b^{4}(a+b)^{2}(a-b)^{4}$.
24. $18 a^{2} b^{3} c^{3}(c \pm d)(a-d)^{3}$.
25. $a^{4} b^{2}(a+b)^{2}(a-b)^{2}$.
26. $36 x^{4}(x+y)^{2}(x-y)^{3}$.
27. $a-b$.
28. $36(a-b)^{2}$.

$$
\begin{array}{ll}
\text { 33. }(a+b)(a-b)(x-y) . & \text { 35. }(x+1)(x+2)(x-2)^{2} . \\
\text { 34. }(a+b)(a-b)(x-y)^{3} . & \text { 36. } x^{2}(a+x)(a-x)^{2} .
\end{array}
$$

37. 2, 3.
38. Irrigable land, $100,000,000 \mathrm{~A} . ;$ swamp land, $78,000,000 \mathrm{~A}$.
39. 2 da. 14 hr .40 min .
40. $866,400 \mathrm{mi}$.
41. Son, $\$ 3600$; daughter, $\$ 5600$; wife, $\$ 10,800$.
42. 2162 mi .
43. 39.37 in.

EXERCISE 49

1. $\frac{a+b+c}{3}$.
2. $\frac{b c}{a}$.
3. $\frac{a b}{43,560}$.
8: $\frac{f h+w y}{c}$.

EXERCISE 50

1. $\frac{3}{2}$.
2. $\frac{2 a}{3 x}$.
3. $\frac{4 x}{5 y}$.
4. $\frac{x}{2-3 a x}$.
5. $\frac{3 x z}{4 y^{2}}$.
6. $\frac{3 a}{4 b^{2}}$.
7. $\frac{1}{2 a-1}$.
8. $\frac{1}{2 a}$.
9. $\frac{1}{a}$.
10. $\frac{x-y}{x+y}$.
11. $\frac{2(x+1)}{3}$.
12. $\frac{5}{2(x-y)}$.
13. $\frac{a+b}{2(a-b)}$.
14. $\frac{2}{3 x-4 y}$.
15. $\frac{2 b}{3 a}$.
16. $\frac{1}{2 x+3 y}$.
17. $\frac{7 x+8 y}{2 x^{2}}$.
18. $\frac{x^{2}+3 x+9}{x-3}$.
19. $\frac{1}{x-y}$.
20. $\frac{2 a}{3 x}$.
21. $\frac{x+2 y}{2 x+3 y}$.
22. $\frac{2 x+y}{2 x-y}$.
23. $\frac{a+b-c}{a-b-c}$.
24. $\frac{1+a-x}{x+a-1}$.
25. $\frac{3 x+4 a}{x+a}$.
26. $\frac{x-2}{y^{2}}$.
27. $\frac{x+3}{x+2}$.
28. $x^{2}-y^{2}$.
29. $\frac{x-y}{a+b}$.

ANSWERS

EXERCISE 51

2. $\frac{b-a}{b+a}$.
3. $\frac{y-2 x}{y+2 x}$.
4. $\frac{3+m}{4-m}$.
5. $\frac{3+x}{3-x}$.
6. $\frac{-1}{y+2}$.
7. -1 .
8. $\frac{-1}{a+b+c}$.
9. $\frac{1}{2 a}$.
10. $-\frac{3 a}{4 b^{2}}$.
11. $\frac{x^{2}+3 x+9}{x-3}$.
12. $\frac{2+a+b}{2-a+b}$.
13. $\frac{y-x}{a+b}$.
14. $\frac{4}{3}$.
15. 6.
1. $\frac{2}{3}$.
2. 4.
1. 20.
1. 5.

EXERCISE 52

1. $6 \frac{9}{6}$.
2. $x-2+\frac{3}{x}$.
3. $2 x^{2}+3-\frac{5}{2 x}$.
4. $2 a^{2} x^{2}+1-\frac{7+a}{5 a x}$.
5. $x^{2}-4 x+5-\frac{6}{x+1}$.
6. $3 x^{2}+9-\frac{13 x+1}{x^{2}-3}$.
7. $13 \frac{4}{9}$.
8. $10 \frac{11}{17}$.
9. $x^{2}-1-\frac{x-1}{x^{2}+2}$.
10. $3 a+\frac{6 a b}{3 a^{2}-2 b}$.
11. $x^{2}-2 x+2+\frac{1}{x+3}$.
12. $2 a-2 b+\frac{2 b^{2}}{a+b}$.
13. $x^{2}-x+2-\frac{3(x-1)}{x^{2}+x-1}$.
14. $x^{2}-x+1-\frac{x^{2}+x+1}{x^{3}+1}$.
15. $x^{3}+x^{2}+2 x+3+\frac{5 x+3}{x^{2}-x-1}$.
16. $1-x+2 x^{2}-\frac{3 x^{3}-2 x^{4}}{1+x-x^{2}}$.

EXERCISE 53

1. $\frac{29}{7}$.
2. 112 .
3. $\frac{a^{2}-a+1}{a}$.
4. $\frac{x^{2}}{x-1}$.
5. $\frac{x^{3}-2 x}{x-1}$.
6. $\frac{8 x^{2}-y}{2 x+1}$.
7. $\frac{a^{2}+a b}{a+2 b}$.
8. $\frac{x^{3}-x}{x^{2}+x+1}$.
9. $\frac{a^{2}+1}{a-2}$.
10. $\frac{x^{2}+x y}{x+a}$.
11. $\frac{2 b c-b^{2}+c^{2}-a^{2}}{2 b c}$.
12. $\frac{(2+3 a)^{2}}{4}$.
13. $\frac{(a-b)^{2}}{4}$.
14. $\frac{x^{3}}{1+x}$.
15. $\frac{x^{3}-1}{x+1}$.
16. $\frac{x^{4}}{x-1}$.
17. 3248 mi . 21. $27 \frac{1}{3}$ sec.

EXERCISE 54

1. $\frac{15}{24}, \frac{1}{2}$.
2. $\frac{3}{68}, \frac{15}{6}, \frac{37}{67}$.
3. $\frac{4 x}{18}, \frac{15 x}{18}$.
4. $\frac{a}{2 a^{2} b^{2}}, \frac{4 b}{2 a^{2} b^{2}}, \frac{2 a b}{2 a^{2} b^{2}}$.
5. $\frac{1}{a^{2}-a}, \frac{2 a^{2}-2 a}{a^{2}-a}, \frac{3 a}{a^{2}-a}$.
6. $\frac{x^{3}+x^{2}+x}{(x+1)\left(x^{3}-1\right)}, \frac{x+1}{(x+1)\left(x^{3}-1\right)}$.
7. $\frac{x}{x\left(4 x^{2}-9\right)}, \frac{x(2 x-3)}{x\left(4 x^{2}-9\right)}, \frac{4 x^{2}-9}{x\left(4 x^{2}-9\right)}$.
8. $\frac{2 x+4}{6\left(x^{2}-4\right)}, \frac{15 x-30}{6\left(x^{2}-4\right)}, \frac{18}{6\left(x^{2}-4\right)}$.

EXERCISE 55

1. $\frac{19}{6 x}$.
2. $\frac{8 x-9+12 a}{12 a x}$.
3. $\frac{15 b-4 c-6 a}{6 a b c}$.
4. $\frac{3 a^{2}+b}{6 a^{2} b}$.
5. $\frac{9+10 a x^{2}}{12 a x^{2}}$.
6. $\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$.
7. $\frac{3 x+1}{24}$.
8. 9.
1. $\frac{4 x}{1-x^{2}}$.
2. $\frac{7-6 x^{2}}{3 x^{2}}$.
3. $\frac{25 a-20 b}{12}$.
4. $\frac{y^{3}-3 x^{2} z^{3}-6 y z^{2}}{6 x^{2} y^{2} z}$.
5. $\frac{6 x}{x^{2}-4}$.
6. $\frac{3 m^{2}+1}{(m+1)(m-1)^{2}}$.
7. $\frac{(a-3 b)^{2}}{4(a-b)^{2}}$.
8. $\frac{x^{2}}{x^{2}-4}$.
9. $\frac{2 x^{2}+3 x-1}{x\left(x^{2}-1\right)}$.
10. 0.
1. $\frac{1}{8 x^{2}-2}$.
2. $\frac{4 x-1}{x^{2}-1}$.
3. $\frac{x^{2}+5 x+10}{(x+1)(x+2)(x+3)}$.
4. $\frac{5 x^{2} y-3 y^{3}}{x\left(x^{2}-y^{2}\right)}$.
5. 0.
1. $\frac{5 x(x+3)}{(2 x+1)(2 x-1)(x+1)}$.
2. $\frac{x^{2}+4 x-13}{2\left(x^{2}-1\right)}$.
3. $\frac{b^{3}}{(a+b)^{3}}$.
4. $\frac{44-9 x}{x^{3}+64}$.
5. $\frac{x^{2}+90 x-9}{6\left(x^{2}-9\right)(x-3)}$. 29. $\frac{-1}{(x-3)(x-4)}$.
6. $\frac{x^{2}+2 x-1}{x^{2}-1}$.
7. $\frac{a-3 b}{a^{2}-b^{2}}$.
8. 0.
1. $\frac{13}{8\left(1-a^{2}\right)}$.
2. $\frac{3 x y}{4 y^{2}-x^{2}}$.
3. 0 .
4. $\frac{x}{1-x^{2}}$.
5. $\frac{6-x}{(x-2)(x-3)(x-5)}$.
6. $\frac{x^{2}-15 x-18}{\left(x^{2}-9\right)(x-1)}$.
7. $\frac{5-4 b}{(a-3)(a-2)(b-2)}$.
8. 0.
1. $\frac{-7}{12 x(x+1)}$.

47. 0.	49. 0.
48. 1.	50.1.

49. 0.
1. 2.

$$
\text { 44. } 0 .
$$

45. $\frac{17 x^{2}-42 x+39}{15\left(x^{2}-9\right)}$.
46. $\frac{x^{2}-4 x-22}{(x-2)(x-3)(x-5)}$.
47. $0.52 . \quad \frac{1}{x\left(x^{3}+1\right)}$.

EXERCISE 56

1. $\frac{2 b^{3} x}{3 a c y}$.
2. $\frac{a+x}{x^{2}(a-x)}$.
3. 4.
1. 2.
1. $\frac{9 y^{2} z}{4 x^{2}}$.
2. 3.
1. $\frac{a^{2}+a+1}{a}$.
2. $-\frac{5 y^{3 n} z}{7}$.
3. $\frac{3(x+1)}{x(2 x-1)}$.
4. $\frac{(x+1)(2 x-1)}{(2 x-3)(3 x+2)} \cdot 23 . x+y$.
5. $\frac{a b}{2 a-1}$.
6. $\frac{x^{2}+2 x-3}{x}$.
7. $\frac{2}{x+1}$.
8. $\frac{a+x-1}{a-x+1}$.
9. $\frac{x}{x^{2}-x y+y^{2}}$.
10. 11.
1. 2.
1. $\frac{a-1}{a(x+1)}$.
2. $\frac{1}{3 a b}$.
3. $\frac{2 x+3}{3(3 x-1)}$.
4. 5.
1. $-\frac{2 b}{a}$.

.

26. $\frac{a^{2} c+a b^{2}+b c^{2}}{a+b+c}$.
27. 28.
1. $\frac{1}{a}$.
2. $\frac{(2 x+1)^{2}}{(x+1)^{2}}$.
3. $\frac{1}{x+y}$.
4. $\frac{m^{2}+4 n^{2}}{4 m n}$.

EXERCISE 57

1. $\frac{2(2-x)}{x}$.
2. $\frac{1}{2 x^{2}-1}$.
3. $\frac{2-a^{2}+b^{2}}{2}$.
4. $\frac{x}{2 x+1}$.
5. $\frac{a-1}{a+1}$.
6. $\frac{a+3 b}{2 a+2 b}$.
7. $x+1$.
8. $\frac{a c+b c-a b}{a c+b c+a b}$.
9. $-\frac{1}{2}$.
-4. $\frac{b}{c}$.
10. $\frac{a-1}{a+1}$.
11. $\frac{x-a+1}{x+a-1}$.
12. $\frac{(a+b+c)^{2}}{2 b c}$.
13. $\frac{3 x-2}{18}$.
14. 0.
1. $\frac{a b-c d+1}{a b-c d-1}$.
2. $\frac{1}{x}$.
3. $\frac{4 x^{2}+2 x+1}{2 x}$.
4. $\frac{3}{x}$.
5. $-\frac{x+1}{x(x+3)}$.
6. $\frac{a(a+1)}{a^{2}+1}$.
7. $2 x$.
8. $\frac{(x-y)^{4}}{x}$.
9. $\frac{1}{x^{2}}$.
10. $\frac{2 a-1}{a}$.
11. -1 .
12. $\frac{1}{1+2 x}$.
13. $a+x$.
14. $a-1$.
15. 14.
1. $\frac{x+y}{x-y}$.
2. $\frac{6}{2-x}$.
3. -18 .
4. 102.

EXERCISE 59

1. $3 a+5 b-4 c$.
2. $-5-a-2 x+y+z ; 0-a-2 x+y+z$.
3. $9 a^{2}+b^{2}+c^{2}+4 d^{2}-6 a b-6 a c+12 a d+2 b c-4 b d-4 c d$.
4. $-8 a^{2}+20 a+9$.
5. $-\frac{33}{2}$.
6. 35.
1. $\frac{23 a}{3}$.
2. $\frac{a+1}{3 a}$.
3. $2,3$.
4. $32,12,10 \frac{\text { g. }}{}$.
5. $5+2 a-3 a^{2}$.
6. $11.33 a^{2}$.
7. $\frac{\left(a^{2}-b^{2}\right)^{2}}{4 a^{2} b^{2}}$.
8. $\frac{4 x^{3}-26 x}{\left(x^{2}-4\right)\left(x^{2}-9\right)}$.
9. $\frac{4 x^{3}-26 x^{2}-26 x+144}{\left(x^{2}-4\right)\left(x^{2}-9\right)}$.
10. $\frac{4}{3},-\frac{8}{21}$.
11. $\frac{8 x y^{7}}{x^{8}-y^{8}}$.

31. $\frac{3(2 x-3)}{2(3 x-1)}$.	38. $\frac{1+x^{4}}{x\left(1+x^{2}\right)}$
32. 0.	39. $\frac{1}{x^{2}}$.
33. $\frac{x-y}{x+2 y}$.	40. 1.
34. $\frac{9}{x(2-x)(x-3)}$.	41. $-\frac{2 x}{3}$.
35. $\frac{a}{a^{2}+1} \cdot$	42. $5 x$.
36. $\frac{4}{(1-x)(x-2)(x-3)}$.	43. $-\frac{1}{x}$.
37. 1.	48. 5240 mi.

EXERCISE 60

1. 2.	17. 3.	32. $\frac{1}{10}$.	47. $6 \frac{5}{7}$
2. 3.	18. 10.	33. -5.	48. 12.
3. 2.	19. $\frac{34}{15}$.	34. -7.	49. .5.
4. 2.	20. $\frac{8}{15}$.	35. -3 .	50. .2.
5. -1.	21. 5.	36. -4.	51. 15,200.
6. $133^{\frac{2}{3}}$.	22. 4.	37. 2.	52. 05.
7. 5.	23. 13.	38. $\frac{16}{8}$.	53. 05.
8. \%.	24. $\frac{41}{49}$.	39. 3.	54.3 yr .6 mo .
9. ${ }^{12}$.	25. -7.	40. $-\frac{1}{2}$.	55. 122, 212.
10. -2.	26. 4.	41. 3.	56. 20.
11. 5.	27. 2.	42. 8.	57. $14 \frac{6}{11}$.
12. $-\frac{3}{2}$.	28. ${ }^{5}$.	43. 1.	58. $19 \frac{1}{11}$.
13. -2 .	29. $-\frac{1}{2}$.	44. 73.	59. $36 \frac{2}{3}$.
14. $\frac{9}{3}$.	30. $-\frac{11}{12}$.	45. 5.	60. 10.
15. 0.	31. 0.	46. 30.	61. 12.

EXERCISE 61

1. $-\frac{4}{8}$.
2. -3 .
3. $-\frac{18}{11}$.
4. 12.
1. -9 .
2. $-\frac{1}{4}$.
3. $-\frac{1}{2}$.
4. -2 .
5. $-\frac{3}{2}$.
6. -23 .
7. 8.
1. 5.
1. 7.
1. 0.
1. $\frac{5}{2}$.
2. 183 ft .

EXERCISE 62

8. $2,-1^{*}$.

$$
\text { 11. } 1^{*},-\frac{13}{7}
$$

10. 2, -2*.
11. $3,-1^{*}$.

EXERCISE 63

1. $3 a$.
2. $\frac{b}{a}$.
3. $\frac{a}{b}$.
4. $17 a$.
5. $\frac{a^{2}-2}{2 a-3}$.
6. $19 a^{2}$.
7. $-\frac{c}{a}$.
8. $\frac{b}{a-b}$.
9. $\frac{a-b}{a+b}$.
10. $\frac{b}{2 a+b}$.
11. $\frac{a-b}{2 c}$.
12. $\frac{a}{2}$.
13. $\frac{a b(a-b)}{a^{3}-2 a b^{2}-b^{3}}$.
14. $\frac{3-b}{5-2 a}$.
15. $\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$.
16. $\frac{a c^{3}}{a c-a b+b c}$.
17. $\frac{3 b+2 d}{2 a-c}$.
18. 0.
1. $\frac{a b}{a-b}$. \quad 16. $\frac{a b c d}{a b+b c+a c}$.
2. 0.
1. $\frac{a}{3}$.
2. $\frac{a^{3}+a}{3 a^{2}-1}$.
3. $\frac{1}{2}\left(1-2 a-a^{2}\right)$.

EXERCISE 65

1. 4.
1. -12 .
2. -2 .
3. $\frac{2 a+b}{2}$.
4. $\frac{q^{2}}{p}$.
5. 5.
1. 59.
1. 60 .
2. 247 .
3. 24.
1. 30.
1. $\frac{3}{10} ; \frac{9}{4} ; \frac{6}{13}$.
2. $\frac{4}{27}$.
3. 45.

EXERCISE 66

1. 120.
1. 336.
1. 120.
1. Tin, $37 \frac{8}{11}$; zinc, $75 \frac{5}{11}$; copper, $301 \frac{9}{11} \mathrm{lb}$.
2. $27,28$.
3. $\frac{15 x}{100}, \frac{x}{20}, \frac{115 b}{100}$.
4. Owner, $\$ 2800$; other, $\$ 2000$.
5. State, $\$ 4000$; county, $\$ 8000$; township, $\$ 6000$.
6. $\$ 350, \$ 420 ; \$ 330, \$ 440.11 .33,42$.
7. $15,000,000,000$ tons.
8. India, 234,375,000; China, 421,875,000.
9. First, $\$ 30,000$; second, $\$ 22,500$.
10. $177 \frac{7}{3} \mathrm{cu} . \mathrm{ft} .22 .11 . \quad 29.100 \mathrm{lb}$.
11. 96.
1. 30 gal.
2. 80 lb .
3. $1 \frac{1}{3}$ da.
4. 860 million.
5. $1^{\frac{1}{15}}$ gal.
6. $\frac{1}{8}$ gal.
7. 10.
1. $4_{9}^{4} \mathrm{lb}$.
2. $9_{6}^{59} 9 \mathrm{lb}$.
3. $\frac{1}{9}, \frac{1}{x}$.
4. $5 \frac{5}{8}$ da.
5. 6 da.
6. 8.
1. 150 lb .
2. $\left\{\begin{array}{l}32 \frac{8}{11} \text { min. past } 6 . \\ 54 \frac{6}{1 \mathrm{i}} \text { min. past } 10 .\end{array}\right.$
3. $\left\{\begin{array}{l}5_{11}^{\frac{5}{11}} \text { and } 38_{\frac{2}{11}} \text { min. past } 4 . \\ 21_{11}^{\frac{9}{11}} \text { and } 54_{\frac{6}{11}} \text { min. past } 7 .\end{array}\right.$
4. 779 - da. $\quad 46.686$ da. $\quad 48.24 \mathrm{hr}$. $\quad 50.6 \mathrm{hr}$.
5. $398+$ da. $\quad 47.15 \mathrm{hr}$.
6. 108 min .
7. $191 \frac{1}{6} \mathrm{mi}$.
8. 36 lb .
9. $\$ 20,000$.
10. $22 \frac{1}{2} \mathrm{~min}$.
11. $5 \frac{\mathrm{~s}}{1 \mathrm{I}}$ and $38 \frac{8}{1 \mathrm{I}} \mathrm{min}$. past 10 .
12. 8 ft .
13. 1100 ft .
14. 6.
1. $2357+\mathrm{ft}$.
2. $29 \frac{1}{2} \mathrm{yr}$.
3. gold, $2 \frac{1}{9} \mathrm{lb}$.; silver, $18 \frac{8}{9} \mathrm{lb}$.
4. 12 da.
5. Aluminum, 35 lb .; iron, $45 \mathrm{lb} .70 .1 \frac{1}{2}$ gal.
6. Copper, $51 \frac{1}{3} \mathrm{lb}$.; tin, $48 \frac{2}{3} \mathrm{lb}$.
7. $\left\{\begin{array}{l}46 \frac{2}{3} \text { bu. oats. } \\ 53 \frac{1}{3} \text { bu. corn. }\end{array}\right.$
b0. $\left\{\begin{array}{l}\$ 3250 \text { at } 4 \% \text {. } \\ \$ 1800 \text { at } 5 \% .\end{array}\right.$
8. 6.
1. 15.
1. $2 p+2,2 p+3$.
2. $\frac{a b c}{b+c} \mathrm{mi}$.
3. $\frac{a b c}{b-a} \mathrm{ft}$.

EXERCISE 67

15. $5 \frac{1}{6} \mathrm{yr}$.
16. $4 \frac{1}{2} \%$.
17. (1) 122°; (2) 32°; (3) 4892°.
18. $442+^{\circ} ; 617^{\circ} ; 1995+^{\circ} ; 2804^{\circ}$. 20. 60 lb .

EXERCISE 68

1． 1,1 ．
5． $2,-1$ ．
9．$\frac{1}{2}, \frac{1}{2}$ ．
13． $15,10$.
2． $1,-1$ ．
6． $1,-\frac{1}{2}$ ．
10．$-\frac{1}{2}, 2$ ．
14． $3,-4$ ．
3．$\frac{1}{2},-\frac{1}{3}$ ．
7．$-3,1 \frac{1}{2}$ ．
11． $3,-7$ ．
15． $10,-10$ ．
4．2， 3.
8．$\frac{1}{3},-\frac{1}{1}$ ．
12． 8,9 ．
16． $12,18$.
17． 7,5 ．
18．12， 21.
21．Sugar，6ф；rice， 5 ¢．

EXERCISE 69

2． $1,2$.
4．3，-2 ．
6． $3,-\frac{1}{4}$ ．
8．$-4,3$ ．
3．$-1,-1$ ．
5． $2,-1$ ．
7． 5,4 ．
9． 2,6 ．

EXERCISE 70

2． $3,-2$ ．
4． $3,-2$ ．
6． 1,3 ．
8． 5,1 ．
3．$-3 \frac{3}{4},-4 \frac{1}{4}$ ．
5． 3,6 ．
7．$-2,1$ ．
9．咅妾，需
10．$-6 \frac{2}{7},-3 \frac{5}{7}$ ．
11．$\frac{17}{8}, \frac{12}{8}$ ．

EXERCISE 71
1． $5,12$.
5． 3,1 ．
9． 2,4 ．
13．18， 12.
2． 5,2 ．
6．$-1,4$ ．
10．$-.2, .6$ ．
14． $9,-1$ ．
3．$\frac{1}{4}$ ，$\frac{1}{5}$ ．
7．$-\frac{1}{2}, \frac{9}{3}$ ．
11．．015，． 01 ．
15．17， 6.
4．$-5,-1$ ．
8． $1,-1$ ．
12． $2,-3$ ．
16． $2,-1$ ．

$$
\text { 17. }-2,-3
$$

EXERCISE 72

1． $2 a,-\dot{a}$ ．
2．$-b, 2 a$ ．
8．$\frac{a}{b}, \frac{b}{a}$ ．
3．$\frac{b^{\prime}-b}{a b^{\prime}-a^{\prime} b}, \frac{a-a^{\prime}}{a b^{\prime}-a^{\prime} b}$ ．
9．$\frac{1}{c}, \frac{1}{d}$ ．
4．$m+n, m-n$ ．
10．$n-m, n+m$ ．
5．$\frac{2 b+1}{b}, \frac{a-2}{a}$ ．
11． $3, \frac{2 a+1}{b}$ ．
6．$a+2 b, 2 a-b$ ．
12．$a,-b$ ．13．$a+b, a-b$ ．
7．$\frac{c n-b d}{a n-b m}, \frac{a d-c m}{a n-b m}$ ．
14．$\frac{a-d}{b-d}, \frac{a-b}{b-d}$ ．
15. a, b.
16. $\frac{1}{a+b+c}, \frac{1}{a+b+c}$.
17. $\frac{a+2 b}{2}, \frac{a-2 b}{2}$.
18. $-a, b$.
19. b, a.
20. $a+1, b-1$.

EXERCISE 73

1. $1,2,3$.
2. $2,3,-4$.
3. $3,4,7$.
4. $2,2,2$.
5. $1 \frac{1}{2}, 1 \frac{1}{3}, 1 \frac{1}{4}$.
6. $2,3 \frac{1}{2},-4$.
7. $-3,3 \frac{1}{3},-2$ 。
8. $2,3,1,4$.
9. $12,18,-2$ 妾

$$
\text { 10. } a+b, a-b, 2 a \text {. }
$$

11. 6, 40, 20.
12. $x=-a+b+c$.
$y=a-b+c$.
$z=a+b-c$.
13. $x=a-b+1$.
14. $x=\frac{3 a-2 b}{6}$. $y=\frac{2 a+3 b}{6}$.
$y=-a+b+1$.
$z=a+b-1$.

$$
z=\frac{a+b}{6} .
$$

$$
\text { 15. } x=\frac{b+c+d-a}{4} . \quad z=\frac{a+b+d-c}{4} .
$$

$$
y=\frac{a+c+d-b}{4} . \quad v=\frac{a+b+c-d}{4} .
$$

EXERCISE 74

1. $-1,1$.
2. $\frac{1}{3},-\frac{1}{2}$.
3. $\frac{1}{8}, \frac{1}{10}$.
4. $\frac{1}{6},-\frac{1}{6}$.
5. $\frac{1}{2},-\frac{1}{6}$.
6. $\frac{2 n}{1+n^{2}}, \frac{2 n}{1-n^{2}}$:
7. $a,-a$.
8. $\frac{1}{m}, \frac{1}{n}$.
9. $\frac{a}{b}, \frac{b}{a}$.
10. $1,-\frac{1}{2}, \frac{1}{3}$.
11. $2,-\frac{1}{2}, 1$.
12. $\frac{-2 b c}{b+c}, \frac{-2 a c}{a+c}, \frac{-2 a b}{a+b}$.
13. $\frac{2 a}{l+m}, \frac{2 b}{l+n}, \frac{2 c}{m+n}$.
14. $\frac{1}{3},-\frac{3}{2}, 1$.
15. $1,1$.
16. $\frac{5}{3},-\frac{3}{4}$.
17. $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$.

EXERCISE 75

1. 9,14 .
2. Flour, 3 ; sugar, 5 ¢.
3. Man, $\$ 3$; boy, $\$ 2$.
4. $9,12$.
5. 2,8 .
6. 57 pear trees; 43 appic trees.
7. Silk, $\$ 1.80$: *atin. $\$ 1.50$.
8. Iron, 480 lb .; lead, 700 lb .
9. First, 3 points; second, 1 point.
10. First, 5 points; second, 3 points; third, 1 point.
11. $\$ 4600 ; \$ 5400$.
12. $67 \frac{1}{7}$ and $172 \frac{6}{7}$.
13. $50-3$.
14. Wheat, $\$ 7$; potatoes, $\$ 50$.
15. Wheat, $\$ 8$; corn, $\$ 20$; potatoes, $\$ 24$.
16. First-class, $\$ 1.52$; second-class, $\$ 1.36$.
17. Fourth-class, $\$ 1.02$; fifth-class, $\$.81$; sixth-class, $\$.70$.
18. Corn, $2,772,000,000$ bu.; wheat, $737,000,000$ bu.; oats, 1,007 , 000,000 bu.
19. Copper, 550 lb .; iron, 480 lb .; aluminum, 156 lb .
20. . 2875 in., . 5025 in., . 3625 in.
21. Eiffel Tower, $984 \mathrm{ft} . ;$ M. L. B'ld'g, 700 ft .; Wash. Mon., 555 ft
22. Nitrogen, 15ϕ; potash, $5 \phi ;$ phosphate, 5ϕ.
23. Oats, $466^{\frac{2}{3}}$ bu.; corn, $53 \frac{1}{3}$ bu.
24. 20 lb . of 20ϕ coffee; 40 lb . of 32ϕ coffee.
25. 40 lb . of 75 \& tea; 60 lb . of 50 \& tea.
26. Cream, $11 \frac{3}{7}$ gal.; milk, $8 \frac{4}{7}$ gal.
27. $\$ 3250$ at $4 \% ; \$ 1800$ at 5%.
28. $\$ 2000$ at $5 \% ; \$ 10,000$ at 4%.
29. $7^{\prime \prime} \times 5^{\prime \prime}$. 44. $\frac{4}{11}$.
30. $15^{\prime} \times 6^{\prime}$.
31. $\frac{11}{4}, \frac{7}{6}$.
32. 12 boys; $\$ 60$.
33. $\frac{4}{7}$.
34. 90 mi .
35. 16, 81.
36. 13 played, 8 won.
37. $21,79$.
38. 68 cases, 50 successful.
39. 14, 54.
40. $\frac{2}{9}$.
41. 32, 18.
42. $\frac{8}{15}$.
43. $5^{\frac{2}{3}} \mathrm{hr}$.; 17 hr .
44. A, in 24 da.; B, in 48 da.
45. A, $14_{\frac{2}{1} 7}^{7}$ da.; B, $18_{\frac{6}{13}}^{\frac{6}{3}}$ da.; C, $34^{\frac{2}{7}}$ da.
46. $49 . \quad 58.23 . \quad 59.64$.
47. 151.
1. Oarsman, 4 mi.; stream, 2 mi . per hr.
2. Oarsman, $5 \frac{1}{3} \mathrm{mi}$.; stream, $1 \frac{1}{3} \mathrm{mi}$. per hr .
3. Oarsman, 6 mi .; stream, $1 \frac{1}{2} \mathrm{mi}$. per hr.
4. Cast iron, 450 lb .; wrought iron, 480 lb .
5. From earth, $93,000,000 \mathrm{mi}$.; from Mars, $141,000,000 \mathrm{mi}$.
6. Tea, $50 \dot{\phi}$; coffee, 30 ф.
7. 24 bu. from 1 st; 16 bu. from 2 d.
8. A, \$70; B, $\$ 110$.
9. 80 lb . of $25 ¢$ spice; 120 lb . of $50 \&$ spice.
10. 480 mi .
11. $\frac{a+b}{2}, \frac{a-b}{2}$.
12. 11, 36.
13. $\frac{r s-q r}{p-q}, \frac{r s-p r}{q-p}$.

EXERCISE 77

11. (1) 5 ;
(2) $\sqrt{45}$;
(3) 13 ;
(4) $\sqrt{34}$.
12. 25 sq. spaces.
13. 42 sq. spaces.
14. $17 \frac{1}{2}$ s. spaces.

EXERCISE 79

1. 2,1 .
2. $1,-1$.
3. $-4,-2$.
4. 0,0 .
5. $-4,-1$.
6. $2,3$.
7. $-\frac{3}{2}, 0$.
8. $-\frac{3}{2}$.
9. $\frac{5}{3}$.
10. $2.9+,-3.3-$.

EXERCISE 80

1. $60 \mathrm{mi} . ; 1: 30$ р. м.
2. $3: 7$.
3. $251 \frac{3}{7} \mathrm{mi} . ; 5: 17 \frac{1}{8}$ P. M.
4. $2: 1$.
5. 17:10.
6. At end of 5 hr . 20 mi . from P .

EXERCISE 81

4. $\frac{7}{10}$.
5. $\frac{1}{12}$.
6. $\frac{x^{3}+1}{x(x-1)^{3}}$.
7. -2 .
8. $-\frac{8}{7}$.
9. -3 .
10. $\frac{3(4 x-15)}{5(2 x-3)}$.
11. $\frac{x^{2}+1}{x^{2}-1}$.
12. $a^{2}-b^{2}$.
13. $\frac{b c-a d}{a-c}$.
14. $\frac{a^{2}+x^{2}}{a^{2}}$.
15. 7, 10.
16. $\frac{a}{a-b}, \frac{b}{a+b}$.
17. $3,2,1$.
18. $\frac{2}{3}, \frac{4}{5}$.
19. $\frac{a^{\prime}-a}{a^{\prime} b-a b^{\prime}}, \frac{b^{\prime}-b}{a b^{\prime}-a^{\prime} b}$ 22. $-a-1$.
20. 11, 9, 18.
21. $9 y\left(4 x^{2}+2 x y+y^{2}\right)$.
22. $c-a+b,-a-b-c$.
23. $7 \frac{21}{2 \frac{1}{2}}$.
24. 64.
1. 22.
1. 2, 1.
2. $4,3$.
3. $174-{ }^{\circ} \mathrm{F} . ; 79-{ }^{\circ} \mathrm{C}$.
4. $s=\frac{n}{2}[2 l-(n-1) d]$.
5. $s=\frac{a r^{n}-a}{r-1}$.

14 DAY USE

RETURN TO DESK FROM WHICH BORROWED

LOAN DEPT.

This book is due on the last date stamped below, or on the date to which renewed.
Renewed books are subject to immediate recall.

8Mar ${ }^{\prime} 1 \mathrm{LLU}$	80ct'6iTA
	REC'D LD
IN StAEKS	007 y 1 घण
FEB 221961	6 Feb' 63 KL
	REC.D LD
REC'D LD	FFB 41963
MAV 281961	28 Feb' 632 F
$23 \mathrm{ACH}^{6} 15 \mathrm{C}$	REC'D I_D
$\begin{aligned} & \text { KEC'D LD } \\ & \pi / T_{\text {I }}^{288} 1961 \end{aligned}$	
AuGa	Mi4Y $15^{\prime} E 4-y$ p pit

[^0]: * Transpose the second and third fractions.

